GUA March	DRIL e Umb	AT oria S	ERC 3.p.A)		
ASSE VIARIO MAF E QUADRILATERO DI PEN MAXILOT	RCHE- etraz TO 1	-UME ZIONE	BRIA E INT	ERNA	4	
PROGETTO I	ESEC	UTIV	/0			
CONTRAENTE GENERALE		11	L RESPON	ISABILE DE	L CONTRAENTE	GENERALE
Val di Chienti						
<u>S.C.p.A.</u>		IL	L PROGETT	ISTA		
GRUPPO DI PROGETTAZIONE DEL PROGETTO ESECUTIVO APPROVATO						
ATI: TECHNITAL s.p.a. (mandataria) EGIS STRUCTURES & ENVIRONNEMENT S.A.						
SICS s.r.l. Società Italiana Consulenza Strade S.I.S. Studio di Ingegneria Stradale s.r.l. SOIL Geologia Geotecnica Opere in sotterraneo Difesa de	I territorio	IL	L GEOLOG	D		
INTEGRAZIONE PRESTAZIONI SPECIALISTICHE Dott. Ing. M. IL GEOLOGO Dott. Geol. F. Ferrari	Raccosta	7 C (L RESPON: CON IL PR ATI: TECHI	SABILE DELI OGETTO ESI NITAL-EGIS-	LA CONGRUENZA ECUTIVO APPROV. -SOIL-SIS-SICS)	FUNZIONALE ATO
VISTO:IL RESPONSABILE VISTO:IL COORDINATORE DEL PROCEDIMENTO SICUREZZA IN FASE DI	DELLA ESECUZIONE	L	A DIREZIO)NE LAVOR	I	
Dott. Ing. Vincenzo Lomma						
SUBLOTTO 2.1: S.S. 77 "VAL DI CHIEN TRATTI FOLIGNO-VALMENOTRE E GALLERIA	NTI" TRC MUCCI	NCO A-PO	PONTE NTELA	ELATRA TRAVE	VE — FOI (inclusa	LIGNO galleria)
RIPRISTINO VIABILITA' SE	CONDA	RIA-	STR	ADA 🕻	30	
STATO DI F RELAZIONE C	PROGETT(GEOTECNI	CA				
Codice Unico di Progetto (CUP)F12C03000050011 ex F12C03000050010	(comunicazione (CIPE 20/04/	^{/2015)} RE	EVISIONE	FOGLIO	SCALA
CODICE LAB. e FILE LO703A2E PCA40200 GE	Iina Tipo Do	L 00	ress.	Α		_
D						
С						
A EMISSIONE REV. DESCRIZIONE	28/0//15 DATA	REDATT	_ PE 10 VF	RIFICATO	APPROVATO	APPROVATO RESP.

INDICE

0	Premessa	2
1	Inquadramento e definizione dei terreni	2
2	Verifica di stabilità	4
3	Verifica e dimensionamento protezioni corticali	7
4	Risultati Verifiche di stabilità	11
5	Risultati Verifica e dimensionamento protezioni corticali	25
6	Dichiarazioni secondo N.T.C. 2008 (punto 10.2)	29

0 Premessa

La presente Relazione Geotecnica si pone l'obiettivo di descrivere e dimensionare le opere di rinforzo corticale e di valutare la stabilità dei pendii relativi al piano di recupero della strada di cantiere n° 30, di accesso alle aree di imbocco delle gallerie naturali Varano (imbocco Est) e Serravalle (imbocco Ovest) e all'impianto di betonaggio Beton 4, situata nel Comune di Serravalle di Chienti. La pista n° 30 verrà modificata rispetto allo stato attuale (di cantiere), prevedendo il collegamento della via Chienti con strada inter poderale pre-esistente alle pendici del Monte Barbontile. Partendo dalla via Chienti, il primo tratto della strada di progetto (dalla progressiva 0.000 - sez. 1 - alla progressiva 252.490 - sez. 26 -) sfrutterà la pista esistente, che verrà ristretta ad un'unica carreggiata di larghezza pari a 2,50 m; per la restante parte di sede stradale, al piede del Monte Borbontile, è previsto un rinterro con superiore banca. Il secondo tratto (dalla progressiva 252.490 - sez. 26 - alla progressiva 340.230 - sez. 35 -), invece, verrà realizzato ex novo per permettere il collegamento con il tratturo pre-esistente.

1 Inquadramento e definizione dei terreni

La pista n° 30 ed il suo prolungamento sino al collegamento con la stradina comunale corrono lungo un tratto del piede nord-ovest del Monte Barbontile, l'assetto geologico del sito (Figura 1) è caratterizzato dalla presenza della formazione della Maiolica, costituita da calcari stratificati con strati di spessore variabile tra i 10 e i 35 cm, ed in una piccola porzione da depositi di versante (MUSa) caratterizzati da elevata energia di trasporto e quindi prevalentemente granulari.

Figura 1 – Stralcio della Carta geologica regionale 1:10000 dell'area - stralcio Sezione 312120

Dall'elaborato del progetto esecutivo LO703.A2.E.P.CA402.00.CAN.REL.001.A si è potuto estrapolare i parametri geomeccanici del terreno (calcari stratificati) così come sotto riportati:

Strato	Peso unità	А	В	Т	Resistenza	Descrizione
	di volume				compressione	
	(kg/m ³)				monoassiale	
					(kg/cm ²)	
1	2450	0,198	0,662	-0,0007	250	Calcari
						stratificati

Inoltre, il rilevato sarà costituito da materiale granulare di buona qualità (CNR UNI 10006 A1-a; A1-b; A2-4; A2-5) proveniente dai lavori del vicino sublotto 1.2 o da cava di prestito corrispondente alle specifiche del CSA.

2 Verifica di stabilità

Normative di riferimento

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008)

- Circolare 617 del 02/02/2009

Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008.

Descrizione metodo di calcolo

La verifica alla stabilità del pendio deve fornire un coefficiente di sicurezza non inferiore a 1.10. Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. In particolare il programma esamina un numero di superfici che dipende dalle impostazioni fornite e che sono riportate nella corrispondente sezione. Il processo iterativo permette di determinare il coefficiente di sicurezza di tutte le superfici analizzate.

Nella descrizione dei metodi di calcolo si adotterà la seguente simbologia:

- I lunghezza della base della striscia
- α angolo della base della striscia rispetto all'orizzontale
- b larghezza della striscia $b=l x \cos(\alpha)$
- Φ angolo di attrito lungo la base della striscia
- c coesione lungo la base della striscia
- γ peso di volume del terreno
- u pressione neutra
- W peso della striscia
- N sforzo normale alla base della striscia
- T sforzo di taglio alla base della striscia
- E_s, E_d forze normali di interstriscia a sinistra e a destra
- X_s, X_d forze tangenziali di interstriscia a sinistra e a destra
- Ea, Eb forze normali di interstriscia alla base ed alla sommità del pendio
- ΔX variazione delle forze tangenziali sulla striscia $\Delta X = X_d X_s$

 ΔE variazione delle forze normali sulla striscia $\Delta E = E_d - E_s$

Metodo di Janbu (semplificato)

Il coefficiente di sicurezza nel metodo di Janbu semplificato si esprime secondo la seguente formula:

$$\Sigma[c_i b_i + (N_i / \cos(\alpha_i) - u_i b_i) tg\phi_i]$$

$$F = \frac{\sum_{i \in W_i} \sum_{j \in W_i} \sum_{i \in W_i} \sum_{j \in W_i}$$

dove il termine N_i è espresso da

 $N_{i} = [W_{i} - c_{i} I_{i} \sin \alpha_{\iota} / \eta + u_{i} I_{i} \tan \phi \sin \alpha_{\iota} / F] / m$

dove il termine **m** è espresso da

m = cos α + (sin α tan ϕ) / F

In questa espressione **n** è il numero delle strisce considerate, **b**_i e **a**_i sono la larghezza e l'inclinazione della base della striscia iesima rispetto all'orizzontale, **W**_i è il peso della striscia iesima , **c**_i e **Φ**_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed **u**_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Janbu semplificato contiene al secondo membro il termine **m** che è funzione di **F**. Quindi essa viene risolta per successive approssimazioni assumendo un valore iniziale per **F** da inserire nell'espressione di **m** ed iterare finquando il valore calcolato coincide con il valore assunto.

La semplificazione del metodo rispetto al procedimento completo consiste nel trascurare le forze tangenziali di interstriscia.

Criterio di rottura di HOEK-BROWN

Di seguito troveremo le relazioni esistenti tra **GSI**, m_b , s, D, σ_{ci} ed a. Tali relazioni vengono legate ai parametri del criterio di rottura di Mohor-Coulomb tramite le seguenti espressioni:

- **σ**_{ci} resistenza a compressione monoassiale della roccia intatta;
- m_i Coefficiente materiale roccia intatta;
- GSI Qualità ammasso roccioso;
- D Fattore di disturbo ammasso roccioso
- γ Peso dell'unità di volume della roccia

m_b=m_i exp[(GSI-100)/28-14 D)]

s=exp[(GSI-100)/(9-3 D)]

a=1/2+1/6[exp(-GSI/15)-exp(-20/3)]

Criterio di Hoek-Brown lineare

Riportiamo di seguito le espressioni di angolo di attrito e coesione media dell'ammasso roccioso

$$\begin{split} & \phi = \arcsin[(6 \text{ a } m_b \ (s+m_b \ \sigma_{3n})^{a-1})/(2 \ (1+a) \ (2+a)+6 \text{ a } m_b \ (s+m_b \ \sigma_{3n}))] \\ & c = [\sigma_{ci}[(1+2a)s+(1-a) \ m_b \ \sigma_{3n}] \ (s+m_b \ \sigma_{3n})^{a-1}]/[(1+a)(2+a) \ sqrt[1+[(6 \text{ a } m_b \ (s+m_b \ \sigma_{3n}))]/[(1+a)(2+a)]]] \\ & \sigma_{3n} = \sigma_{3max}/\sigma_{ci} \\ & \sigma_{3max} = \sigma_{cm} \ 0.72 \ [\sigma_{cm}/(\gamma \ H)]^{-0.91} \\ & \sigma_{cm} = \sigma_{ci} \ [m_b + 4 \ s - a \ (m_b - 8 \ s) \ (m_b \ / \ 4 + \ s)^{a-1}]/[2 \ (1+a) \ (2+a)] \end{split}$$

- $\pmb{\gamma}$: Peso dell'unità di volume della roccia
- H : altezza media del pendio.

3 Verifica e dimensionamento protezioni corticali

Il rafforzamento corticale è composto da barre di ancoraggio e rete in acciaio per evitare la caduta massi. L'obiettivo di questo sistema è guidare blocchi instabili sul fondo del declivio e ridurre così l'energia e la velocità dei blocchi stessi.

Il rafforzamento corticale è un sistema passivo in grado di contenere i detriti nella parte inferiore del pendio. Deve essere progettato tenendo conto di tutti i carichi in grado di trasmettere una sollecitazione sulla maglia per metro lineare:

- 1. peso della rete prescelta
- 2. peso dei detriti accumulati in corrispondenza del fondo della rete
- 3. pesi esterni come la neve o l'accumulo di ghiaccio

Questi tre carichi possono essere descritti dalle seguenti formule.

Carico totale dovuto alla rete:

$$W_m = \gamma_m \cdot H_s / sen\beta \cdot (sen\beta - cos\beta tan\delta) \cdot g$$

dove:

 γ_m = peso specifico della rete metallica

 H_s = altezza totale del pendio

 β = inclinazione del pendio

 $\delta = \mathrm{angolo} \ \mathrm{di} \ \mathrm{attrito} \ \mathrm{rete-terreno}$

g =accelerazione di gravità

Sollecitazione totale trasmessa dai detriti alla rete:

$$W_{d} = 1/2 \cdot \gamma_{d} \cdot H_{d}^{2} \cdot (1/\tan B_{d} - 1/\tan\beta) \cdot (\operatorname{sen}\beta - \cos\beta\tan\varphi_{d}) \cdot g$$

dove:

 $\gamma_d =$ peso specifico dei detriti

 H_d = altezza dell'accumulo dei detriti

 φ_d = angolo di attrito interno dei detriti

$$B_d = \arctan[H_d/(T_d + H_d/\tan\beta)] =$$
 valore dell'inclinazione esterna dei detriti

 $T_d =$ larghezza dell'accumulo dei detriti

Sollecitazione totale trasmessa dai carichi esterni (neve):

$$W_{s} = \gamma_{s} \cdot t_{s} \cdot H_{s} / sen\beta \cdot (sen\beta - cos\beta tan\varphi_{s}) \cdot g$$

dove:

 $\gamma_s =$ peso specifico della neve

 t_s = spessore della neve

 $\varphi_s =$ angolo di attrito neve-terreno

Il calcolo viene fatto usando il metodo Stato Limite Ultimo (SLU). Questo metodo fornisce margine di sicurezza, contro il raggiungimento dello stato limite di collasso introducendo alcuni fattori di sicurezza:

- Fattori parziali: le forze resistenti sono diminuite ricavando così la resistenza di progetto (Rd);
- Fattori di carico: i carichi permanenti e variabili sono aumentati per ricavare il carico teorico agente sul sistema (Ed).

Le equazioni alla base del metodo di calcolo sono descritte di seguito:

Mesh Design

9

Anchors design (1):

Working shear resistance of the anchor (j)

1. anchor diameter

$$FS_{anchor(j)} = \frac{S_{bar(j)}}{N_{(j)}} \ge 1.0$$

Force acting on the anchor (j), developed by the mesh and the cable (catenary solution)

Anchors design (2):

NOTE: the final suitable length of the anchor has to be evaluated during the drilling in order to verify the exact nature of the soil and confirmed with pull-out tests.

Superior structural system geometry

Lateral steel cables are often required for high slope without significant friction

Risultati Verifiche di stabilità 4

<u> Pista 30 - Sez. 11</u>

Dati

Descrizione terreno

Simbologia ad	dottata
Nr.	Indice del terreno
Descrizione	Descrizione terreno
γ	Peso di volume del terreno espresso in kg/mc
Yw	Peso di volume saturo del terreno espresso in kg/mc
φ	Angolo d'attrito interno 'efficace' del terreno espresso in gradi
с	Coesione 'efficace' del terreno espressa in kg/cmg
ϕ_{μ}	Angolo d'attrito interno 'totale' del terreno espresso gradi
Cu	Coesione 'totale' del terreno espressa in kg/cmq

n°	Descrizione	γ	γsat	φ'	c'
		[kg/mc]	[kg/mc]	[9]	[kg/cmq]
2	Terreno di riporto	1800	2000	35.00	0,000

Descrizione rocce

Simbolog	ia adottata								
Nr.	Indice roccia								
Descrizione	Descrizione								
GSI	Qualità ammasso roccioso (Geological Strength Index)								
mi	Coefficiente materiale roccia intatta								
σ_d	Resistenza a compressione monoassiale della roccia intatta espress	a in kg/cmq							
D	Fattore di disturbo ammasso roccioso								
_									
n°	Descrizione	γ	Ysat	GSI	mi				
		[kg/mc]	[kg/mc]						
1	Calcari stratificati	2450	2450	44,00	17,00				

Profilo del piano campagna

 Simbologia e convenzioni di segno adottate

 L'ascissa è intesa positiva da sinistra verso destra e l'ordinata positiva verso l'alto.

 Nr.
 Identificativo del punto

 X
 Ascissa del punto del profilo espressa in m

 Y
 Ordinata del punto del profilo espressa in m

n°	X	Y
	[m]	[m]
1	0,00	17,72
2	1,99	18,12
3	2,05	18,15
4	2,12	18,18
5	2,19	18,21
6	2,26	18,24
7	2,33	18,28
8	2,44	18,33
9	2,55	18,38
10	2,67	18,43
11	2,79	18,49
12	2,93	18,55
13	3,06	18,61
14	3,21	18,68
15	3,22	18,69
16	3,26	18,72
17	4,50	19,58
18	4,65	19,68
19	5,50	20,32
20	6,07	20,74
21	7,88	22,12
22	11,47	25,53
23	12,53	26,54
24	12,73	26,43
25	13.70	25.89

D

0,50

σci [kg/cmq]

250,00

n°	X	Y
	[m]	[m]
26	13,75	25,84
27	16,25	25,78
28	16,44	25,49
29	16,64	25,49
30	16,83	25,76
31	21,21	28,29
32	25,47	28,29
33	28,94	33,39
34	30,76	34,94

Descrizione stratigrafia

Simbologia e convenzioni di segno adottate Gli strati sono descritti mediante i punti di contorno (in senso antiorario) e l'indice del terreno di cui è costituito

Strato N° 1 costituito da terreno nº 1 (Calcari stratificati)

Coordinate dei vertici dello strato nº 1

n°	X	Y
	[m]	[<i>m</i>]
1	16,83	25,76
2	16,64	25,49
3	16,44	25,49
4	16,25	25,78
5	13,75	25,84
6	13,70	25,89
7	12,73	26,43
8	12,53	26,54
9	11,47	25,53
10	7,88	22,12
11	6,07	20,74
12	5,50	20,32
13	4,65	19,68
14	4,50	19,58
15	3,26	18,72
16	3,22	18,69
17	3,21	18,68
18	3,06	18,61
19	2,93	18,55
20	2,79	18,49
21	2,67	18,43
22	2,55	18,38
23	2,44	18,33
24	2,33	18,28
25	2,26	18,24
26	2,19	18,21
27	2,12	18,18
28	2,05	18,15
29	1,99	18,12
30	0,00	17,72
31	0,00	0,00
32	30,76	0,00
33	30,76	34,94
34	28,94	33,39
35	25,47	28,29
36	23,65	25,49

Strato N° **2** costituito da terreno n° 2 (Terreno di riporto)

Coordinate dei vertici dello strato nº 2

n°	x	Y
	[m]	[m]
1	25,47	28,29
2	21,21	28,29
3	16,83	25,76
4	23,65	25,49

Carichi sul profilo

Simbologia e co	Simbologia e convenzioni di segno adottate					
L'ascissa è intesa po	sitiva da sinistra verso destra.					
N°	Identificativo del sovraccarico agente					
Descrizione	Descrizione carico					
Carichi distribuiti						
$X_{ir} X_{f}$	Ascissa iniziale e finale del carico espressa in [m]					
Vx_{ir} Vx_{ir} Vy_{ir} Vy_{f}	Intensità del carico in direzione X e Y nei punti iniziale e finale, espresse in [kg/m]					

Carichi distribuiti

n°	Descrizione	Xi	X _f	Vyi	Vy _f	Vxi	Vx _f
		[m]	[m]	[kg/m]	[kg/m]	[kg/m]	[kg/m]
1	Traffico	13,75	16,25	2000	2000	0	0

Dati zona sismica

Identificazione del sito

Latitudine Longitudine Comune Provincia Regione	43.075759 12.957292 Serravalle Di Chienti Macerata Marche
Punti di interpolazione del reticolo	23191 - 23413 - 23414 - 23192
Tipo di opera	
Tino di costruzione	Opera ordinaria
Vita nominale	50 anni
Classe d'uso	II - Normali affollamenti e industrie non pericolose
Vita di riferimento	50 anni
Accelerazione al suolo $a_{\alpha} =$	2.266 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (Ss)	1.18
Coefficiente di amplificazione topografica (St)	1.20
Coefficiente riduzione (β_s)	0.28
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_{h} = (a_{q}/g^{*}\beta_{s}^{*}St^{*}S) = 9.15$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 4.57$

Dati normativa

<u>Normativa</u> : Norme Tecniche sulle Costruzioni 14/01/2008

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto	Simbologia	A2 Statico	A2 Sismico
Permanenti	Favorevole	γGfav	1.00	1.00
Permanenti	Sfavorevole	γGsfav	1.00	1.00
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	YQsfav	1.30	1.00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri	Simbologia	M2 Statico	M2 Sismico
Tangente dell'angolo di attrito	Ytano'	1.25	1.25
Coesione efficace	γe	1.25	1.25
Resistenza non drenata	γ _{cu}	1.40	1.40
Resistenza a compressione uniassiale	γ _{qu}	1.60	1.60
Peso dell'unità di volume	γ _γ	1.00	1.00

Coefficiente di sicurezza richiesto 1.10

Impostazioni delle superfici di rottura

Superfici di rottura circolari

Si considerano delle superfici di rottura	a circolari generate trami	te la seguente m	aglia dei centri
Origine maglia	[m]	$X_0 = 0,00$	$Y_0 = 25,00$
Passo maglia	[m]	dX = 1,00	dY = 1,00
Numero passi		Nx = 80	Ny = 60
Raggio	[m]	R = 10,00	

Si utilizza un raggio variabile con passo dR=1,00 [m] ed un numero di incrementi pari a 30

Opzioni di calcolo

Per l'analisi sono stati utilizzati i seguenti metodi di calcolo:

- JANBU

Le superfici sono state analizzate sia in condizioni **statiche** che **sismiche**.

- Le superfici sono state analizzate per i casi:
- Parametri caratteristici [PC];
- Parametri di progetto [A2-M2]

- Sisma orizzontale e Sisma verticale (verso il basso e verso l'alto)

Analisi condotta in termini di tensioni efficaci

Criterio di rottura adottato: **Hoek-Brown lineare** Presenza di carichi distribuiti

Condizioni di esclusione

Sono state escluse dall'analisi le superfici aventi:

- lunghezza di corda inferiore a	1,00	m
- freccia inferiore a	0,50	m
- volume inferiore a	2,00	mc

Risultati analisi

Numero di superfici analizzate	12342
Coefficiente di sicurezza minimo	1.145
Superficie con coefficiente di sicurezza minimo	1

Quadro sintetico coefficienti di sicurezza

N	letodo	Nr. superfici	FS _{min}	S _{min}	FS _{max}	S _{max}
JANBU		12342	1.145	1	26.948	12342

Caratteristiche delle superfici analizzate

Metodo di JANBU (J)

N°	Forma	C _x	C _v	R	Χv	x _m	V	Fs	Caso	Sisma
		[m]	[m]	[m]	[m]	[m]	[<i>mc</i>]			
1	С	17,00	36,00	10,00	17,25	23,37	4,86	1.145 (J)	[A2M2]	H+V
2	С	17,00	36,00	10,00	17,25	23,37	4,86	1.169 (J)	[A2M2]	H-V
3	С	17,00	37,00	11,00	17,25	23,72	5,38	1.206 (J)	[A2M2]	H+V
4	С	17,00	37,00	11,00	17,25	23,72	5,38	1.232 (J)	[A2M2]	H-V
5	С	17,00	38,00	12,00	17,25	24,05	5,88	1.263 (J)	[A2M2]	H+V
6	С	17,00	38,00	12,00	17,25	24,05	5,88	1.291 (J)	[A2M2]	H-V
7	С	17,00	39,00	13,00	17,25	24,37	6,36	1.316 (J)	[A2M2]	H+V
8	С	18,00	36,00	10,00	17,29	24,37	7,14	1.343 (J)	[A2M2]	H+V
9	С	17,00	39,00	13,00	17,25	24,37	6,36	1.347 (J)	[A2M2]	H-V
10	С	17,00	40,00	14,00	17,25	24,67	6,81	1.367 (J)	[A2M2]	H+V

Analisi della superficie critica

Simbologia adottata

Le ascisse X sono considerate positive verso destra Le ordinate Y sono considerate positive verso l'alto Le strisce sono numerate da valle verso monte numero d'ordine della striscia ascissa sinistra della striscia espressa in m N° $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ X_s \\ Y_{si} \\ X_g \\ Y_g \\ \alpha \\ \phi \\ C \\ \mathcal{L} \\ \mathcal{W} \\ Q \\ N \\ T \\ U \\ E_s \\ X_s \\ ID \end{array}$ ordinata superiore sinistra della striscia espressa in m ordinata inferiore sinistra della striscia espressa in m ascissa del baricentro della striscia espressa in m ordinata del baricentro della striscia espressa in m angolo fra la base della striscia e l'orizzontale espresso °(positivo antiorario) angolo d'attrito del terreno lungo la base della striscia coesione del terreno lungo la base della striscia espressa in kg/cmq sviluppo della base della striscia espressa in m(L=b/cosα) pressione neutra lungo la base della striscia espressa in kg/cmq peso della striscia espresso in kg carico applicato sulla striscia espresso in kg sforzo normale alla base della striscia espresso in kg sforzo tangenziale alla base della striscia espresso in kg pressione neutra alla base della striscia espressa in kg forze orizzontali sulla striscia a sinistra e a destra espresse in kg forze verticali sulla striscia a sinistra e a destra espresse in kg Indice della superficie interessata dall'intervento parametro del legame non-lineare di Hoek-Brown m_b s a parametro del legame non-lineare di Hoek-Brown parametro del legame non-lineare di Hoek-Brown resistenza a compressione monoassiale della roccia intatta kg/cmq parametro del legame non-lineare di Hoek-Brown kg/cmq σ_{d} σ_{cm} Η altezza media pendio m parametro del legame non-lineare di Hoek-Brown kg/cmq σ_{3max}

Superficie nº 1

Analisi della superficie 1 - coefficienti parziali caso A2M2 e sisma verso l'alto

Numero di strisce	21	
Coordinate del centro	X[m]= 17,00	Y[m]= 36,00
Raggio del cerchio	R[m]= 10,00	
Intersezione a valle con il profilo topografico	X _v [m]= 17,25	Y _v [m]= 26,00
Intersezione a monte con il profilo topografico	X _m [m]= 23,37	Y _m [m]= 28,29
Coefficiente di sicurezza	F _s = 1.145	

Geometria e caratteristiche strisce

N°	Xs	Y _{ss}	Y _{si}	X _d	Y _{ds}	Y _{di}	Xg	Yq	L	α	¢	с
	[m]	[m]	[<i>m</i>]	[m]	[m]	[<i>m</i>]	[m]	[m]	[m]	[9]	[°]	[kg/cmq]
1	17,25	26,00	26,00	17,56	26,18	26,02	17,45	26,07	0,30	2,31	29.26	0,00
2	17,56	26,18	26,02	17,86	26,35	26,04	17,72	26,15	0,31	4,06	29.26	0,00
3	17,86	26,35	26,04	18,16	26,53	26,07	18,02	26,25	0,31	5,81	29.26	0,00
4	18,16	26,53	26,07	18,47	26,71	26,11	18,32	26,36	0,31	7,57	29.26	0,00
5	18,47	26,71	26,11	18,77	26,88	26,16	18,63	26,47	0,31	9,33	29.26	0,00
6	18,77	26,88	26,16	19,08	27,06	26,22	18,93	26,58	0,31	11,11	29.26	0,00
7	19,08	27,06	26,22	19,38	27,23	26,29	19,23	26,70	0,31	12,89	29.26	0,00
8	19,38	27,23	26,29	19,69	27,41	26,37	19,54	26,83	0,31	14,69	29.26	0,00
9	19,69	27,41	26,37	19,99	27,59	26,46	19,84	26,96	0,32	16,50	29.26	0,00
10	19,99	27,59	26,46	20,30	27,76	26,56	20,15	27,09	0,32	18,33	29.26	0,00
11	20,30	27,76	26,56	20,60	27,94	26,67	20,45	27,23	0,32	20,18	29.26	0,00
12	20,60	27,94	26,67	20,91	28,11	26,79	20,75	27,38	0,33	22,05	29.26	0,00
13	20,91	28,11	26,79	21,21	28,29	26,93	21,06	27,53	0,33	23,94	29.26	0,00

N°	Xs	Y _{ss}	Y _{si}	Xd	Y _{ds}	Y _{di}	Xq	Yg	L	α	¢	с
	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[°]	[°]	[kg/cmq]
14	21,21	28,29	26,93	21,48	28,29	27,06	21,34	27,64	0,30	25,76	29.26	0,00
15	21,48	28,29	27,06	21,75	28,29	27,20	21,61	27,71	0,30	27,49	29.26	0,00
16	21,75	28,29	27,20	22,02	28,29	27,35	21,88	27,78	0,31	29,24	29.26	0,00
17	22,02	28,29	27,35	22,29	28,29	27,51	22,15	27,86	0,31	31,03	29.26	0,00
18	22,29	28,29	27,51	22,56	28,29	27,69	22,42	27,94	0,32	32,85	29.26	0,00
19	22,56	28,29	27,69	22,83	28,29	27,87	22,69	28,03	0,33	34,71	29.26	0,00
20	22,83	28,29	27,87	23,10	28,29	28,07	22,95	28,13	0,34	36,62	29.26	0,00
21	23.10	28,29	28.07	23,37	28,29	28,29	23,19	28,22	0,35	38,57	29.26	0,00

Forze applicate sulle strisce [JANBU]

N°	W	Q	N	т	U	Es	Ed	Xs	Xd	ID
	[kg]									
1	45	0	42	21	0	0	15	0	0	
2	132	0	122	60	0	15	54	0	0	
3	214	0	196	96	0	54	109	0	0	
4	291	0	263	129	0	109	176	0	0	
5	362	0	324	159	0	176	246	0	0	
6	429	0	380	186	0	246	316	0	0	
7	490	0	431	211	0	316	381	0	0	
8	545	0	477	233	0	381	436	0	0	
9	595	0	517	253	0	436	477	0	0	
10	639	0	553	270	0	477	501	0	0	
11	677	0	584	285	0	501	506	0	0	
12	709	0	609	298	0	506	489	0	0	
13	735	0	630	308	0	489	447	0	0	
14	629	0	539	264	0	447	393	0	0	
15	563	0	483	236	0	393	328	0	0	
16	493	0	423	207	0	328	257	0	0	
17	417	0	358	175	0	257	184	0	0	
18	335	0	289	141	0	184	116	0	0	
19	247	0	214	105	0	116	57	0	0	
20	153	0	134	65	0	57	16	0	0	
21	52	0	46	22	0	16	0	0	0	

Analisi della superficie 1

Superficie 1 - dettagli strisce

Visualizzazione superfici con coefficiente di sicurezza compreso tra 1,145 a 2,000

<u> Pista 30 - Sez. 31</u>

Dati

Descrizione terreno

Simbologia adottata

Nr.	Indice del terreno
Descrizione	Descrizione terreno
γ	Peso di volume del terreno espresso in kg/mc
Yw	Peso di volume saturo del terreno espresso in kg/mc
φ	Angolo d'attrito interno 'efficace' del terreno espresso in gradi
с	Coesione 'efficace' del terreno espressa in kg/cmg
ϕ_{II}	Angolo d'attrito interno 'totale' del terreno espresso gradi
C _u	Coesione 'totale' del terreno espressa in kg/cmq

n°	Descrizione	γ	γsat	¢'	c'
		[kg/mc]	[kg/mc]	[9]	[kg/cmq]
2	Terreno di riporto	1800	2000	35.00	0,000

Descrizione rocce

Simbologia adottata

Nr.	Indice roccia
Descrizione	Descrizione
GSI	Qualità ammasso roccioso (Geological Strength Index)
mi	Coefficiente materiale roccia intatta
σ_{d}	Resistenza a compressione monoassiale della roccia intatta espressa in kg/cmq
Ď	Fattore di disturbo ammasso roccioso

n°	Descrizione	γ	γsat	GSI	mi	σ _{ci}	D
		[kg/mc]	[kg/mc]			[kg/cmq]	
1	Calcari stratificati	2450	2450	44,00	17,00	250,00	0,50

Profilo del piano campagna

- Simbologia e convenzioni di segno adottate

 L'ascissa è intesa positiva da sinistra verso destra e l'ordinata positiva verso l'alto.

 Nr.
 Identificativo del punto

 X
 Ascissa del punto del profilo espressa in m

 Y
 Ordinata del punto del profilo espressa in m

n°	X	Y
	[m]	[m]
1	0,00	10,98
2	0,42	11,24
3	0,91	11,54
4	1,31	11,78
5	2,55	12,54
6	3,71	13,24
7	4,19	13,54
8	4,51	13,65
9	5,68	14,08
10	6,56	14,39
11	7,09	14,58
12	7,44	14,71
13	7,70	14,80
14	9,24	15,38
15	13,75	17,98
16	16,25	17,92
17	21,44	19,95
18	22,65	19,97
19	22,74	19,98
20	23,95	20,00
21	24,03	20,00
22	24,14	19,86
23	24,25	19,73
24	24,43	19,74
25	24,67	20,11
26	26,91	23,75
27	28,12	24,54
28	30,89	25,93

Descrizione stratigrafia

Simbologia e convenzioni di segno adottate Gli strati sono descritti mediante i punti di contorno (in senso antiorario) e l'indice del terreno di cui è costituito

Strato Nº 1 costituito da terreno nº 1 (Calcari stratificati)

Coordinate dei vertici dello strato nº 1

n°	X	Y
	[m]	[m]
1	9,24	15,38
2	7,70	14,80
3	7,44	14,71
4	7,09	14,58
5	6,56	14,39
6	5,68	14,08
7	4,51	13,65
8	4,19	13,54
9	3,71	13,24
10	2,55	12,54
11	1,31	11,78
12	0,91	11,54
13	0,42	11,24
14	0,00	10,98
15	0,00	0,00
16	30,89	0,00
17	30,89	25,93
18	28,12	24,54
19	26,91	23,75
20	24,67	20,11
21	24,43	19,74
22	24,25	19,73
23	24,14	19,86
24	24,03	20,00
25	23,95	20,00
26	22,74	19,98
27	21,51	18,92
28	18,87	13,73
29	10,07	13,79
30	9,67	13,97

Strato N° 2 costituito da terreno nº 2 (Terreno di riporto)

Coordinate dei vertici dello strato nº 2

n°	X	Y
	[m]	[<i>m</i>]
1	22,74	19,98
2	22,65	19,97
3	21,44	19,95
4	16,25	17,92
5	13,75	17,98
6	9,24	15,38
7	9,67	13,97
8	10,07	13,79
9	18,87	13,73
10	21,51	18,92

Carichi sul profilo

Ascissa iniziale e finale del carico espressa in [m] Intensità del carico in direzione X e Y nei punti iniziale e finale, espresse in [kg/m]

Carichi distribuiti

n°	Descrizione	Xi	X _f	Vyi	Vy _f	Vxi	Vx _f
		[m]	[m]	[kg/m]	[kg/m]	[kg/m]	[kg/m]
1	Carico 1	13,75	16,25	2000	2000	0	0
2	Carico 2	21,44	23,94	2000	2000	0	0

Dati zona sismica

Identificazione del sito

Latitudine	43.075759
Longitudine	12.957292
Comune	Serravalle Di Chienti
Provincia	Macerata
Regione	Marche
Punti di interpolazione del reticolo	23191 - 23413 - 23414 - 23192

Tipo di opera

Tipo di costruzione	Opera ordinaria
Vita nominale	50 anni
Classe d'uso	II - Normali affollamenti e industrie non pericolose
Vita di riferimento	50 anni
Accelerazione al suolo $a_q =$	2.266 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (Ss)	1.18
Coefficiente di amplificazione topografica (St)	1.20
Coefficiente riduzione (β_s)	0.28
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_{\rm h} = (a_{\rm a}/q^*\beta_{\rm s}^*{\rm St}^*{\rm S}) = 9.15$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 4.57$

Dati normativa

<u>Normativa</u> : Norme Tecniche sulle Costruzioni 14/01/2008

Coefficienti parziali per le azioni o per l'effetto delle azioni:

			AL DISHINCO
Favorevole	γGfav	1.00	1.00
Sfavorevole	γGsfav	1.00	1.00
Favorevole	γQfav	0.00	0.00
Sfavorevole	YQsfav	1.30	1.00
	Favorevole Sfavorevole Favorevole Sfavorevole	Favorevole YGrav Sfavorevole YGrav Favorevole YQrav Sfavorevole YQrav Sfavorevole YQrav	Favorevole γ _{Gfav} 1.00 Sfavorevole γ _{Gsfav} 1.00 Favorevole γ _{Gsfav} 0.00 Sfavorevole γ _{Qsfav} 0.30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri	Simbologia	M2 Statico	M2 Sismico
Tangente dell'angolo di attrito	Ytano'	1.25	1.25
Coesione efficace	γe	1.25	1.25
Resistenza non drenata	γ _{cu}	1.40	1.40
Resistenza a compressione uniassiale	γ _{qu}	1.60	1.60
Peso dell'unità di volume	γ_{γ}	1.00	1.00

Coefficiente di sicurezza richiesto

1.10

Impostazioni delle superfici di rottura

Superfici di rottura circolari

Si considerano delle superfici di rottura	circolari generate tramit	e la seguente m	aglia dei centri
Origine maglia	[m]	$X_0 = 0,00$	$Y_0 = 20,00$
Passo maglia	[m]	dX = 1,00	dY = 1,00
Numero passi		Nx = 80	Ny = 60
Raggio	[m]	R = 10,00	

Si utilizza un raggio variabile con passo dR=1,00 [m] ed un numero di incrementi pari a 30

Opzioni di calcolo

Per l'analisi sono stati utilizzati i seguenti metodi di calcolo:

- JANBU

Le superfici sono state analizzate sia in condizioni statiche che sismiche.

Le superfici sono state analizzate per i casi:

- Parametri caratteristici [PC];

- Parametri di progetto [A2-M2]

- Sisma orizzontale e Sisma verticale (verso il basso) Analisi condotta in termini di tensioni efficaci Criterio di rottura adottato: Hoek-Brown lineare

Presenza di carichi distribuiti

Condizioni di esclusione

Sono state escluse dall'analisi le superfici aventi:

m
mc

Risultati analisi

Numero di superfici analizzate	7804
Coefficiente di sicurezza minimo	1.209
Superficie con coefficiente di sicurezza minimo	1

Quadro sintetico coefficienti di sicurezza

Metodo	Nr. superfici	FS _{min}	S _{min}	FS _{max}	S _{max}
JANBU	7804	1.209	1	20.869	7804

Caratteristiche delle superfici analizzate

Simbologia adottata

- ascissa del punto di intersezione con il profilo (valle) espresse in m ascissa del punto di intersezione con il profilo (monte) espresse in m volume interessato dalla superficie espresso [mc]
- Simulation
 Simulation

 Le ascisse X sono considerate positive verso monte
 Le ordinate Y sono considerate positive verso l'alto

 N°
 numero d'ordine della superficie cerchio

 Cx
 ascissa x del centro [m]

 Cy
 ordinata y del centro [m]

 R
 raggio del cerchio espresso in m

 xv
 ascissa del punto di intersezione con il pr

 Xm
 ascissa del punto di intersezione con il pr

 V
 volume interessato dalla superficie esprese
- F_{s} coefficiente di sicurezza
- caso caso di calcolo

Metodo di JANBU (J)

N°	Forma	C _x	C _v	R	xv	×m	V	Fs	Caso	Sisma
		[m]	[m]	[m]	[m]	[m]	[<i>mc</i>]			
1	С	10,00	28,00	12,00	10,32	16,87	4,78	1.209 (J)	[A2M2]	H-V
2	С	4,00	47,00	32,00	9,37	20,50	7,21	1.262 (J)	[A2M2]	H-V
3	С	4,00	50,00	35,00	9,27	21,96	9,83	1.264 (J)	[A2M2]	H-V
4	С	4,00	51,00	36,00	9,25	22,24	10,71	1.265 (J)	[A2M2]	H-V

N°	Forma	C _x	Cv	R	Xv	x _m	V	Fs	Caso	Sisma
		[m]	[m]	[m]	[m]	[m]	[<i>mc</i>]			
5	С	4,00	49,00	34,00	9,30	21,67	8,95	1.268 (J)	[A2M2]	H-V
6	С	4,00	48,00	33,00	9,33	21,29	8,06	1.274 (J)	[A2M2]	H-V
7	С	3,00	54,00	39,00	9,54	22,03	8,74	1.276 (J)	[A2M2]	H-V
8	С	10,00	29,00	13,00	10,32	17,58	5,26	1.278 (J)	[A2M2]	H-V
9	С	3,00	53,00	38,00	9,58	21,76	7,92	1.279 (J)	[A2M2]	H-V
10	С	4,00	52,00	37,00	9,21	22,52	11,57	1.280 (J)	[A2M2]	H-V

Analisi della superficie critica

Simbologia adottata

Le ascisse X sono co	Le ascisse X sono considerate positive verso destra									
Le ordinate Y sono c	onsiderate positive verso l'alto									
Le strisce sono nume	erate da valle verso monte									
N°	numero d'ordine della striscia									
Xs	ascissa sinistra della striscia espressa in m									
Y _{ss}	ordinata superiore sinistra della striscia espressa in m									
Y _{si}	ordinata inferiore sinistra della striscia espressa in m									
Xq	ascissa del baricentro della striscia espressa in m									
Yq	ordinata del baricentro della striscia espressa in m									
α	angolo fra la base della striscia e l'orizzontale espresso °(positivo antiorario)									
φ	angolo d'attrito del terreno lungo la base della striscia									
С	coesione del terreno lungo la base della striscia espressa in kg/cmq									
L	sviluppo della base della striscia espressa in m(L=b/cosα)									
U	pressione neutra lungo la base della striscia espressa in kg/cmq									
W	peso della striscia espresso in kg									
Q	carico applicato sulla striscia espresso in kg									
N	sforzo normale alla base della striscia espresso in kg									
Т	sforzo tangenziale alla base della striscia espresso in kg									
U	pressione neutra alla base della striscia espressa in kg									
E _s , E _d	forze orizzontali sulla striscia a sinistra e a destra espresse in kg									
X _s , X _d	forze verticali sulla striscia a sinistra e a destra espresse in kg									
ID	Indice della superficie interessata dall'intervento									
m _b	parametro del legame non-lineare di Hoek-Brown									
S	parametro del legame non-lineare di Hoek-Brown									
a	parametro del legame non-lineare di Hoek-Brown									
σ _d	resistenza a compressione monoassiale della roccia intatta kg/cmq									
σ _{cm}	parametro del legame non-lineare di Hoek-Brown kg/cmq									
Н	altezza media pendio m									
σ_{3max}	parametro del legame non-lineare di Hoek-Brown kg/cmq									

Superficie nº 1

Analisi della superficie 1 - coefficienti parziali caso A2M2 e sisma verso il basso

Numero di strisce	21	
Coordinate del centro	X[m]= 10,00	Y[m]= 28,00
Raggio del cerchio	R[m]= 12,00	
Intersezione a valle con il profilo topografico	X _v [m]= 10,32	Y _v [m]= 16,00
Intersezione a monte con il profilo topografico	X _m [m]= 16,87	Y _m [m]= 18,16
Coefficiente di sicurezza	$F_{s} = 1.209$	

Geometria e caratteristiche strisce

N°	Xs	Y _{ss}	Y _{si}	Xd	Y _{ds}	Y _{di}	Xq	Yq	L	α	¢	с
	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[9]	[°]	[kg/cmq]
1	10,32	16,00	16,00	10,63	16,18	16,02	10,53	16,07	0,31	2,29	29.26	0,00
2	10,63	16,18	16,02	10,95	16,36	16,04	10,81	16,16	0,31	3,78	29.26	0,00
3	10,95	16,36	16,04	11,26	16,54	16,07	11,11	16,26	0,31	5,27	29.26	0,00
4	11,26	16,54	16,07	11,57	16,72	16,10	11,42	16,36	0,31	6,76	29.26	0,00
5	11,57	16,72	16,10	11,88	16,90	16,15	11,73	16,47	0,31	8,27	29.26	0,00
6	11,88	16,90	16,15	12,19	17,08	16,20	12,04	16,59	0,32	9,77	29.26	0,00
7	12,19	17,08	16,20	12,50	17,26	16,26	12,35	16,70	0,32	11,28	29.26	0,00
8	12,50	17,26	16,26	12,82	17,44	16,33	12,66	16,83	0,32	12,81	29.26	0,00
9	12,82	17,44	16,33	13,13	17,62	16,41	12,97	16,95	0,32	14,34	29.26	0,00
10	13,13	17,62	16,41	13,44	17,80	16,50	13,28	17,09	0,32	15,88	29.26	0,00
11	13,44	17,80	16,50	13,75	17,98	16,60	13,60	17,22	0,33	17,43	29.26	0,00
12	13,75	17,98	16,60	14,06	17,97	16,71	13,90	17,32	0,33	19,00	29.26	0,00
13	14,06	17,97	16,71	14,38	17,96	16,83	14,22	17,37	0,33	20,58	29.26	0,00
14	14,38	17,96	16,83	14,69	17,96	16,95	14,53	17,42	0,34	22,19	29.26	0,00
15	14,69	17,96	16,95	15,00	17,95	17,09	14,84	17,49	0,34	23,81	29.26	0,00
16	15,00	17,95	17,09	15,31	17,94	17,24	15,15	17,55	0,35	25,45	29.26	0,00
17	15,31	17,94	17,24	15,63	17,94	17,40	15,46	17,63	0,35	27,11	29.26	0,00
18	15,63	17,94	17,40	15,94	17,93	17,57	15,77	17,71	0,36	28,80	29.26	0,00
19	15,94	17,93	17,57	16,25	17,92	17,76	16,07	17,79	0,36	30,52	29.26	0,00

N°	Xs	Y _{ss}	Y _{si}	Xd	Y _{ds}	Y _{di}	Xq	Yg	L	α	¢	с
	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[9]	[°]	[kg/cmq]
20	16,25	17,92	17,76	16,56	18,04	17,95	16,39	17,91	0,37	32,27	29.26	0,00
21	16,56	18,04	17,95	16,87	18,16	18,16	16,67	18,05	0,38	34,05	29.26	0,00

Forze applicate sulle strisce [JANBU]

N°	w	Q	N	т	U	Es	Ed	Xs	X _d	ID
	[kg]									
1	47	0	48	22	0	0	16	0	0	
2	138	0	141	65	0	16	59	0	0	
3	225	0	227	105	0	59	122	0	0	
4	308	0	307	142	0	122	199	0	0	
5	385	0	381	177	0	199	284	0	0	
6	458	0	450	209	0	284	371	0	0	
7	526	0	514	238	0	371	456	0	0	
8	590	0	572	265	0	456	534	0	0	
9	648	0	626	290	0	534	600	0	0	
10	702	0	674	312	0	600	652	0	0	
11	750	0	718	333	0	652	686	0	0	
12	743	625	1305	605	0	686	707	0	0	
13	676	625	1238	573	0	707	690	0	0	
14	603	625	1166	540	0	690	638	0	0	
15	524	625	1090	505	0	638	554	0	0	
16	439	625	1010	468	0	554	446	0	0	
17	348	625	924	428	0	446	316	0	0	
18	250	625	833	386	0	316	173	0	0	
19	146	625	735	341	0	173	23	0	0	
20	71	0	68	31	0	23	7	0	0	
21	25	0	24	11	0	7	0	0	0	

Analisi della superficie 1

Superficie 1 - dettagli strisce

Visualizzazione superfici con coefficiente di sicurezza compreso tra 1,209 a 2,000

5 Risultati Verifica e dimensionamento protezioni corticali

Software impiegato

Protezione corticale esistente - Rif. sezione 14

Principali risultati dell'eleborazione

Results				
Mesh capacity check	Crest Rope check	Intermediate anchor cl	heck Lateral a	nchor check
2.34 Soddisfatta	2.75 Soddisfatta	6.37 Soddi	sfatta 3	.46 Soddisfatta
				x
		11	Input Wiz	ard
			Debris accumulation height [m]	Hd 1.5 ≑
Ha = 1.5 m Td = 0.5 m			Debris accumulation	Td 0.5 ≑
B = 56º			width [m]	
			Slope inclination [°]	β 56 🌲
	// /		Mach type	
		Hd = 1.5 m	Steelgrid MO 300	<u>^</u>
			Steelgrid MU 300 L Steelgrid MO 300 PVC Steelgrid HP 100	
	Bd DB		Steelgrid HR 50 Steelgrid HR 30	
		*	Steelgrid HR 100 PVC Steelgrid HR 50 PVC	v
	Td = 0.5 m			

MACRO 2 Drapery System Rock and Soil Slope Protection Design Software

MACCAFERRI

www.maccaferri.com

pag. 1 of 2

Cliente VAL DI CHIENTI / PISTA 30 - Sezione 14 - Protezione corticale esistente

Informazioni sul progetto

Titolo VAL DI CHIENTI	Description:	
Numero PISTA 30 - Sezione 14 - Protez	one corticale esistente	
Cliente VAL DI CHIENTI		
Progettista		

Input

Parete rocciosa

Inclinazione della parete [º]	8	56
Altezza totale della parete [m]	Hs	9,70
Altezza dell'accumulo detritico alla base [m]	Hd	1.50
Larghezza dell 'accumulo detritico alla base [m]	Td	0.50
Inclinazione della sacca di accumulo [º]	Bd	44.78
Angolo di attrito interno del detrito [º]		35.00
peso specifico del detrito [kN/m³]		20.00
Angolo di attrito rete-terreno [º]		25.00

Neve	
Peso specifico della neve [kN/m³]	4
Spessore della neve [m]	0.3

Rete

Tipo di rete	Steelgrid MO 300 L	
Resistenza a trazio	one massima [kN/m]	50.00
Peso per unità di	superficie [Kg/m²]	1.52

Fune superiore + ancoraggi di testa

Geometria della fune longitudinale superiore

Interasse orizzontale tra gli ancoraggi [m]	1.50
Interasse verticale tra gli ancoraggi [m]	0.00

Tipologia di fune

Diametro della fune [mm]	16
Resistenza nominale dell 'acciaio (grado) [MPa]	1770
Anima della fune	Steel
carico di rottura della fune [kN]	161

Tipo di ancoraggio

Tipo di barra	Steel bars B450C	
Diametro nomin	ale interno della barra (se cava.) [mm] 🛛	0
Diametro nomin	ale esterno della barra [mm]	24.0
Spessore della c	orona di corrosione [mm]	0
Tensione di sner	rvamento dell'acciaio [MPa]	450
Coefficiente di a	desione tra roccia e iniezione [MPa]	2.50

Fattore di Sicurezza

Pa	rete	rocciosa

Coefficiente di sicurezza sui carichi variabili	1.50		
Coefficiente di sicurezza sui carichi permanenti			
Rete			
Coefficiente di riduzione della resistenza a trazione della rete	1.50		
Geometria della fune longitudinale di testa			
Coefficiente di sicurezza sulla riduzione dell'interasse X	1.10		
Coefficiente di sicurezza sulla riduzione dell'interasse Y			
Cable type			
Coefficiente di sicurezza sulla resistenza della fune	2.00		
Anchor type			
Coefficiente di riduzione della resistenza dell'acciaio	1,16		
Coefficiente di riduzione per la resistenza della tensione roccia-iniezione			

MACRO 2 Drapery System Rock and Soil Slope Protection Design Software

MACCAFERRI www.maccaferri.com

pag. 2 of 2

Cliente VAL DI CHIENTI / PISTA 30 - Sezione 14 - Protezione corticale esistente

Risultati

RISUILAU								
Mesh capacity check		Crest Rope check		Intermediate anchor check		Lateral anchor check		
2.34	Soddisfatta	2.75	Soddisfatta	6.37	Soddisfatta	3.46	Soddist	fatta
Progettazio	one della ret	e		Ancoragg	i			
Carichi totali di	i progetto [kN/m]		14.23	Brogotto	dagli angarag	ai intermed		
Resistenza di p	rogetto della rete.	[kN/m]	33.33	Frogeno	degli aricorag	grintermed		
Rapporto resist	tenza carico		2.34	Resistenza di lavoro a taglio degli ancoraggi [kN]				15.9
			1	Contributo re	esistente a taglio [kN	۷]		101.3
Carico totale d	lovuto al detrito [k	:N/m]	3.28	Resistenza di	lavoro degli ancora	iggi		6.3
Carico totale d	lovuto alla neve [k	:N/m]	6.14	Brogottor	iono dogli on	ooroggi lata	vali	
Carico totale d	ovuto alla rete [k1	V/m]	0.10	Frogenaz	ione degli an	coraggi iatei	all	
Carico totale agente sul rivestimento [kN/m] 9.52		9.52	Forza massi ma sugli ancoraggi laterali [kN]				29.2	
			1	Resistenza di	lavoro a taglio degl	i ancoraggi [kN]		101.3
Massimo peso del detrito contenibile dalla rete [kN/m] 129.68		Resistenza di lavoro degli ancoraggi			3.4			
Progettazio	one della fur	ne		Sezione di lav	voro dell'acciaio [m	im²]		452.3
Massima resiste	enza a trazione dell	a fune [kN]	29.29	Tensione a sr	nervamento dell'acc	ciaio [kN]		175.5
Caricolo di lav	oro della fune (nu	minale) [kN]	80.50	Resistenza mi	nima richiesta per a	ncoraggi in fune [kN]	29.2
Papparte tra resistenza e carico di lavoro		2.75	Diametro minimo di perforazione (nominale) [mm]				40.00	

Carico massimo sugli ancoraggi intermedi [kN]	15.92
Carico massimo sugli ancoraggi laterali [kN]	29.29
Distanza massima ammissibile tra gli ancoraggi [m]	1.65
Lunghezza totale della corda [m]	1.67
Massima freccia della catenaria [m]	0.12
Carico massimo agente sulla fune [kN/m]	153.31

Sezione di lavoro dell'acciaio [mm²]	452.39
Tensione a snervamento dell'acciaio [kN]	175.50
Resistenza minima richiesta per ancoraggi in fune [kN]	29.29
Diametro minimo di perforazione (nominale) [mm]	40.00
Lunghezza minima di fondazione (nominale) [m]	0.49

Perso del detrito per ciascun acnoraggio [kN/m] 194.58

Carico massimo ammissibile di detrito

Carico massimo ammissibile di detrito [kN/m]	129.68
Volume massimo ammissibile di detrito [m³]	6.48

Geometry

N.B. In fase di esercizio, prestare attenzione alla manutenzione della protezione corticale in modo tale da evitare eccessivi accumuli di detriti alla base della rete e scongiurare così sollecitazioni eccessive all'intero sistema di protezione.

Per i tratti con rete esistente, la verifica è stata condotta sulla base dei seguenti dati forniti dall'impresa:

- geocomposito metallico costituito da rete a doppia torsione tipo 8x10 cm, filo dal diametro di 2.70 mm con funi di rinforzo longitudinali diam. 8 mm con interasse pari a 300 cm;
- fune di ancoraggio sommitale in acciaio, grado 1770 N/mmq, diametro Ø16 mm (UNI EN 12385-4), rivestimento in lega Galmac Zn-5%Al in accordo a UNI EN 10264-2 Classe A;
- piastra in acciaio zincata a caldo di dimensioni 250x250x8 mm;
- ancoraggio in barre in acciaio B450C filetatte, diametro Ø24 mm, lunghezza di infissione pari ad 1,00 m in sommità.

Occorre aggiungere alla base, ancoraggi in barre in acciaio B450C filetatte, diametro Ø24 mm, lunghezza di infissione pari ad 1,50 m alla base, inclinato verso il basso di 10° rispetto all'orizzontale e fune di ancoraggio alla base in acciaio, grado 1770 N/mmq, diametro Ø12 mm (UNI EN 12385-4), rivestimento in lega Galmac Zn-5%Al in accordo a UNI EN 10264-2 Classe A;

6 Dichiarazioni secondo N.T.C. 2008 (punto 10.2)

Analisi e verifiche svolte con l'ausilio di codici di calcolo

Il sottoscritto, in qualità di calcolatore delle opere in progetto, dichiara quanto segue.

Tipo di analisi svolta

Verifiche di stabilità:

L'analisi e le verifiche di stabilità sono condotte con l'ausilio di un codice di calcolo automatico.

I metodi di calcolo implementati sono i classici metodi delle strisce, basati sul concetto dell'equilibrio limite globale. La superficie di rottura è suddivisa in un determinato numero di strisce che consentono di calcolare le grandezze che entrano in gioco nelle equazioni risolutive.

Nel modulo terreni si adotta il criterio di rottura di Mohr-Coulomb. Nel modulo rocce si può adottare il criterio di rottura di Hoek-Brown o di Barton.

Il programma consente di inserire degli interventi di stabilizzazione, che possono intervenire secondo sue modalità diverse: variazione delle forze di interstriscia o resistenza a taglio equivalente.

L'analisi sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM 14/01/2008.

Verifica e dimensionamento protezioni corticali:

Si rimanda ai paragrafi precedenti per una esauriente spiegazione delle analisi svolte.

Origine e caratteristiche dei codici di calcolo

Verifiche di stabilità:

Titolo STAP - Stabilità Pendii Terreni e Rocce

Versione 12.0

Produttore Aztec Informatica srl, Casole Bruzio (CS)

Verifica e dimensionamento protezioni corticali:

Titolo Macro Studio

Versione 2.0.844

Produttore Maccaferri

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente

descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. La società produttrice ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, io sottoscritto asserisco che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.

Luogo e data

Il progettista