COMMITTENTE:

DIREZIONE INVESTIMENTI PROGRAMMA NODO DI NAPOLI

PROGETTAZIONE:

						GRUPPO FEE	,,,,,	FERR STATO ITALIANE
DIRE	EZIONE TECNI	CA					1,1-1	or Epilope 1
U.O.	STRUTTURE					dur. Len	nigots.	
PRO	GETTO ESECU	TIVO						
RADI I° LO LINE	ERARIO NAPO DOPPIO TRATTO OTTO FUNZION EA ROMA-NAPO ELITA' di SOPPRES piede ai lati della rampa	TA CANC NALE CA OLI VIA (SSIONE P	CELLO- NCELI CASSIN	O-FRAS O NEL C 43+833 – V	SO TEL COMUN	ESINO I IE DI MA	DDAL	ANTE ALLA
	11 12/11					Outsta	o ta tib	SCALA
COMMI	ESSA LOTTO FASI	E ENTE	TIPO DOC.	OPERA / D	ISCIPLINA	PROGR.	REV:	JMORO A
IF	0 L 0 0 E	09	CL	IVO	1 0 0	0 0 5	A	
Revis.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato/Data
A	Emissione Esecutiva	G.Grimaldi	Sett. 2015	T. Alberini	Sett. 2015	F.Cerrone	Sett. 2015	ITAL U.O ott. Ing

Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato/Data
Emissione Esecutiva	G.Grimaldi	Sett. 2015	T. Alberini	Sett. 2015	F.Cerrone	Sett. 2015	ITAL U.O ott. Ing
		_					FERA ANGE
							S.p.
						11 61	A. RE TOZZI ncia di Ro
	Emissione Esecutiva	Emissione Esecutiva G.Grimaldi	Emissione Esecutiva G.Grimaldi Sett. 2015	Emissione Esecutiva G.Grimaldi Sett. 2015 T. Alberini	Emissione Esecutiva G.Grimaldi Sett. 2015 T. Alberini Sett. 2015	Emissione Esecutiva G.Grimaldi Sett. 2015 T. Alberini Sett. 2015 F.Cerrone	Emissione Esecutiva G.Grimaldi Sett. 2015 T. Alberini Sett. 2015 Sett. 2015 Sett. 2015

n. Elab.: - 107 File: IF0L00E09CLIV0100005A.doc

Muri – Relazione di calcolo

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOL 00 E 09 CL IV0100 005 A 2 di 50

INDICE

1.	PREMESSA
2	NORMATIVE DI RIFERIMENTO
۷.	TVORMETTY E DI KII EKIMENTO
3.	MATERIALI
4.	DESCRIZIONE DELL'OPERA
5.	INQUADRAMENTO GEOTECNICO
6.	AZIONI SISMICHE
7.	METODO DI CALCOLO12
7.1	CONDIZIONI DI SPINTA SUL MURO IN CONDIZIONI STATICHE
7.2	CONDIZIONI DI SPINTA SUL MURO IN CONDIZIONI SISMICHE10
7.3	VERIFICHE GEOTECNICHE19
7.4	VERIFICHE STRUTTURALI19
8.	SOFTWARE DI CALCOLO
9.	GEOMETRIA DI CALCOLO
10.	ANALISI DEI CARICHI
10.1	SOVRACCARICO PERMANENTE
10.2	FORZE INERZIALI
11.	COMBINAZIONI DI CARICO
12.	VERIFICHE
12.1	CARATTERISTICHE DEI MATERIALI UTILIZZATI NELLE VERIFICHE
12.2	VERIFICHE GEOTECNICHE 29

Muri - Relazione di calcolo

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IF0L	00 E 09	CL	IV0100 005	A	3 di 50	

12.3	VERIFICHE STRUTTURALI SLU	39
	VERIFICHE STRUTTURALI SLE	
Ver	ifiche a fessurazione	<i>42</i>
	ifiche tensionali	
12.5	VERIFICHE STABILITÀ GLOBALE A2+M2+R2	48

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOL 00 E 09 CL IV0100 005 A 4 di 50

1. PREMESSA

La soppressione del P.L. al km 143+833 in corrispondenza di Via Calabroni viene risolta mediante la realizzazione di un cavalcaferrovia ubicato al km 143+672 della Linea Storica. Nell'ambito di tale intervento è prevista la realizzazione di marcipiedi ai lati della rampa stradale esistente della S.P. n°114 di approccio al cavalcavia sulla S.S di Fondo Valle Isclero.

Il progetto dell'opera è stato redatto sulla base delle impostazioni ed esigenze espresse dal progetto della viabilità, uniformandosi a quest'ultimo per quanto riguarda ubicazione ed ampiezza, oltre che, ovviamente, per quanto concerne le rispettive caratteristiche planimetriche ed altimetriche, riservando particolare attenzione ai franchi orizzontali e verticali minimi prescritti dalla normativa vigente.

La presente relazione ha per oggetto le verifiche, secondo il metodo semiprobabilistico agli Stati Limite (S.L.), dei muri di sottoscarpa previsti al piede dell'allargamento del rilevato stradale esistente.

Muri – Relazione di calcolo

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
IFOL 00 E 09 CL IV0100 005 A 5 di 50

2. NORMATIVE DI RIFERIMENTO

Le analisi strutturali e le verifiche di sicurezza sono effettuate in accordo con le prescrizioni di seguito elencate è conformi alle normative vigenti nonché alle istruzioni dell'Ente FF.SS:

- "Istruzione per la progettazione e l'esecuzione dei ponti ferroviari" (rif. RFI-DTC-ICI-PO-SP-INF-001-A);
- RFI DTC INC CS SP IFS 001 A Specifica per la progettazione geotecnica delle opere civili ferroviarie
- RFI DTC INC PO SP IFS 003 A Specifica per la verifica a fatica dei ponti ferroviari
- RFI DTC INC CS LG IFS 001 A Linee guida per il collaudo statico delle opere in terra
- RFI DTC INC PO SP IFS 002 A Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- RFI DTC INC PO SP IFS 004 A Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo
- RFI DTC INC PO SP IFS 005 A Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- Nuove norme tecniche per le costruzioni D.M. 14-01-08 (NTC-2008);
- Circolare n. 617 del 2 febbraio 2009 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008;
- Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20/03/2003. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica;
- Decreto del Presidente del Consiglio dei Ministri del 21/10/2003;
- Eurocodice 2: Progettazione delle strutture in calcestruzzo Parte 1.1: Regole generali e regole per gli edifici.
- UNI ENV 1992-1-1 Parte 1-1:Regole generali e regole per gli edifici;
- UNI EN 206-1/2001 Calcestruzzo. Specificazioni, prestazioni, produzione e conformità;
- UNI EN 1998-5 Fondazioni ed opere di sostegno.

Muri – Relazione di calcolo

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IFOL 00 E 09 CL IV0100 005 A 6 di 50

3. MATERIALI

Calcestruzzo C

28 / 35

Resistenza cilindrica caratteristica:

fck = 0.83xRck =

29 N/mmq

Resistenza di calcolo a compressione semplice: fcd = αcc fck / γm,

fcd = acc fck / ym =

16.46 N/mmg

acc =

0.85

ym =

1.5

Resistenza di calcolo a trazione semplice:

fctk =

1.94 N/mmg

fctd = fctk / ym =

1.29 N/mmg

Modulo elastico:

Ec =

32588 N/mmg

Densità di Massa:

 $\rho =$

25 kN/mc

Coefficiente di Espansione Termica:

α =

1.00E-05 m/ °C

Acciaio da cemento armato normale:

B450C

controllato in stabilimento.

tensione caratteristica di snervamento: f_{yk} = 450 N/mm²

resistenza di calcolo dell'acciaio: $f_{yd} = f_{yk} / \gamma_s$ dove γ_s =1.15 = 391 N/mm²

Modulo di elasticità: Es=200000 N/mm²

Qualora la classe di resistenza del calcestruzzo adottata per le analisi di calcolo e per le verifiche dei vari elementi strutturali risulti inferiore a quella indicata nel documento Tabella Materiali e Note Generali – IF0L 00 E 09 TT IV0100 001 è da ritenere valido quanto indicato in quest'ultimo documento cioè in Tabella Materiali e Note Generali – IF0L 00 E 09 TT IV0100 001.

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
IFOL 00 E 09 CL IV0100 005 A 7 di 50

4. DESCRIZIONE DELL'OPERA

Le analisi vengono svolte con riferimento ad un muro di sottoscarpa avente le minime dimensioni strutturali adottabili. Pertanto, ai fini realizzativi sono da intendersi valide unicamente le indicazioni riportate negli elaborati grafici di riferimento.

Il muro oggetto di analisi ha un'altezza massima del paramento frontale pari a 2.4m, una zattera di fondazione di larghezza pari a 2.7m ed altezza 0.3m.

5. INQUADRAMENTO GEOTECNICO

Per il terreno di fondazione sono state considerate le caratteristiche meccaniche del terreno in posto; per il terrapieno sono stati considerati i seguenti parametri caratteristici:

• $\gamma_k = 19 \text{ kN/m}3$

peso dell'unità di volume;

• $\phi_k = 35^{\circ}$

angolo di resistenza al taglio;

• $c_k = 0$

coesione;

• $\delta_k = 0^{\circ}$

angolo di attrito tra paramento verticale muro e terreno.

La superficie libera di falda non interferisce con l'opera

unità	tipo	γ	Eop	c'	φ
[-]	[-]	[kN/m ³]	[MPa]	[kPa]	[°]
2	Sabbie limose	17	15	0	30.0

Tabella 5.1: sintesi parametri di resistenza terreno di fondazione

LOTTO

CODIFICA

DOCUMENTO

REV. FOGLIO

A

8 di 50

Muri - Relazione di calcolo

PROGETTO IF0L

00 E 09

 \mathbf{CL}

IV0100 005

AZIONI SISMICHE 6.

In condizioni sismiche, il rispetto degli stati limite si considera conseguito quando:

- nei confronti degli stati limite di esercizio siano rispettate le verifiche relative allo Stato Limite di Danno;
- nei confronti degli stati limite ultimi siano rispettate le verifiche relative allo Stato Limite di salvaguardia della Vita.

Gli stati limite, sia di esercizio sia ultimi, sono individuati riferendosi alle prestazioni che l'opera a realizzarsi deve assolvere durante un evento sismico; nel caso di specie per la funzione che l'opera deve espletare nella sua vita utile, è significativo calcolare lo Stato Limite di Danno (SLD) per l'esercizio e lo Stato Limite di Salvaguardia della Vita (SLV) per lo stato limite ultimo.

Per la definizione dell'azione sismica si assumono i seguenti parametri di base:

Categoria di suolo:

C

Categoria topografica:

T1

Vita nominale:

VN = 75 anni;

(tab 2.4.1);

Classe d'uso:

III:

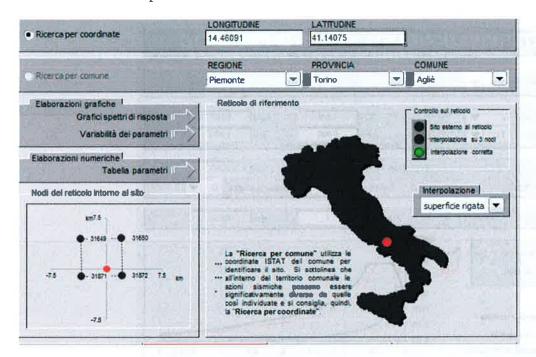
Coeff. d'uso:

cu = 1.5

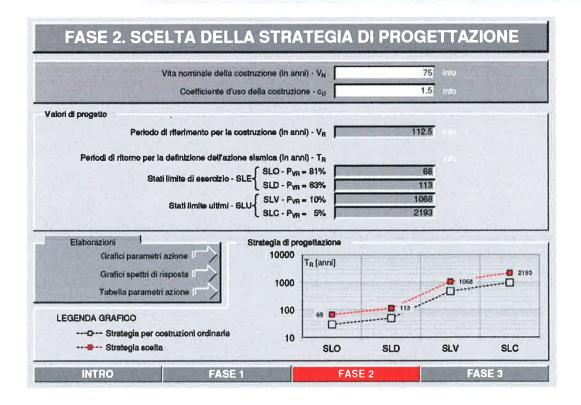
Periodo di riferimento per l'azione sismica:

 $VR = VN \times cu = 112.5$ anni

I parametri che definiscono l'azione sismica, calcolati mediante il documento excel Spettri-NTC.ver.1.0.3.xls fornito dal Consiglio Superiore dei Lavori Pubblici, vengono di seguito riportati:



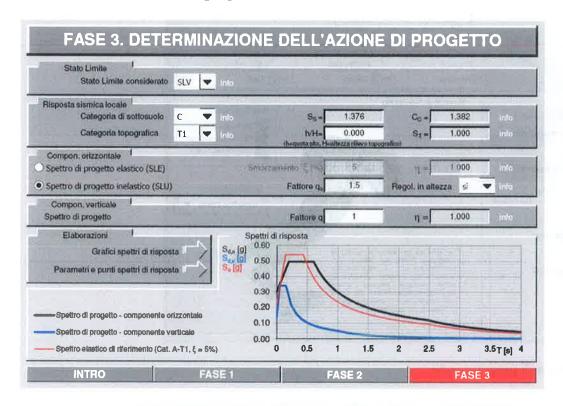
ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI


PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOL 00 E 09 CL IV0100 005 A 9 di 50

Individuazione della pericolosità sismica del sito

Scelta della strategia di progettazione



ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO 1º LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOL 00 E 09 CL IV0100 005 A 10 di 50

Determinazione dell'azione di progetto SLV

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0L
 00 E 09
 CL
 IV0100 005
 A
 11 di 50

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLV

STATO LIMITE	SLV
0.00	0.218 g
CONTRACTOR OF THE PARTY OF THE	2.477
N Table	0,435 s
S ₆	1.376
Cc	1.382
ST	1.000
0	1.500

Parametri dipendenti

S	1.376
n	0.667
	0.200 s
	0.601 s
To Wind	2.473 s

Espressioni dei parametri dipendenti

 $S = S_S \cdot S_T$

(NTC-08 Eq. 3.2.5)

 $\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$

(NTC-08 Eq. 3.2.6; §. 3.2.3.5)

 $T_B = T_C/3$

(NTC-07 Eq. 3.2.8)

 $T_C = C_C \cdot T_C^a$ $T_D = 4.0 \cdot a_g / g + 1.6$

(NTC-07 Eq. 3.2.7) (NTC-07 Eq. 3.2.9)

Punti dello spettro di risposi

	T(s)	Se (g)
	0.000	0.300
i → 1	0.200	0.496
G ←	0.601	0,496
	0.690	0.432
	0.779	0.382
	0.868	0.343
	0.957	0.311
	1.047	0.285
	1.138	0.262
	1.225	0.243
	1.314	0.227
	1.403	0.212
	1.492	0.200
	1.582	0.188
	1.671	0.178
	1.760	0.169
	1.849	0.161
	1.938	0.154
	2.027	0.147
	2.117	0.141
	2.206	0.135
	2.295	0.130
	2.384	0.125
D 4-	2.473	0.120
	2.546	0.114
	2.619	0.107
	2.691	0.102
	2.764	0.096
	2.837	0.092

Parametri e punti dello spettro di risposta verticale per lo stato limite:

Parametri indipendenti

r arament marketta	CIM
STATO LIMITE	SLV
a	0.138 g
Sa	1.000
S _T	1.000
P C	1.000
T_0	0.050 s
I.	0.150 s
DE VITA	1.000 s

Parametri dipendenti

SERVICE FACE AND AG	1.563
S	1.000
n i	1.000

Espressioni dei parametri dipendenti

 $S = S_S \cdot S_T$

(NTC-08 Eq. 3.2.5)

η = 1/q

(NTC-08 §. 3.2.3.5)

 $F_v = 1.35 \cdot F_o \cdot \left(\frac{a_g}{g}\right)^{0.5}$

(NTC-08 Eq. 3.2.11)

Punti dello spettro di risposta

SLV

	Tis	Sela
	0.000	0.138
Гв ◀	0.050	0.341
Тс ◀-	0.150	0.341
	0.235	0,218
	0.320	0.160
	0.405	0,126
	0.490	0.104
	0.575	0.089
- E	0.660	0.078
- 10	0.745	0.069
	0.830	0.062
- E	0.915	0.056
Гр 奪	1.000	0.051
	1.094	0.043
	1.188	0.036
	1.281	0.031
	1.375	0.027
	1.469	0.024
	1.563	0.021
	1.656	0.019
	1.750 -	0.017
	1.844	0.015
	1.938	0.014
	2.031	0.012
	2.125	0.011
	2.219	0.010
	2.313	0.010
	2.406	0.009
	2.500	0,008

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Iº LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO IF0L

LOTTO 00 E 09

CODIFICA \mathbf{CL}

DOCUMENTO IV0100 005

REV.

A

FOGLIO 12 di 50

Determinazione dell'azione di progetto SLD

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLD

STATO LIMITE	SLD
30	0.090 g
Fe	2,440
	0.346 s
Sign	1.500
Cis	1.491
S	1.000
a la	1.000

Parametri dipendenti		
S	1,500	
1	1.000	
To	0.172 s	
	0.516 s	
	1001	

Espressioni del parametri dipendenti

(NTC-08 Eq. 3.2,5)

 $\eta = \sqrt{10/(5+\xi_0)} \geq 0.55, \ \eta = 1/q \qquad \text{(NTC-08 Eq. 3.2.6; §, 3.2.3.5)}$

 $T_n = T_C / 3$

(NTC-07 Eq. 3.2.8)

 $T_{c} = C_{c} \cdot T_{c}^{*}$

(NTC-07 Eq. 3.2.7)

 $T_0 \simeq 4.0 \cdot a_g / g + 1.6$

(NTC-07 Eq. 3.2.9)

	1 8	Se [q]
	0.000	0,135
4	0.172	0.330
н	0.516	0.330
	0.584	0.291
	0.653	0,260
E	0.722	0.236
	0.791	0,215
Г	0.860	0.198
Е	0.928	0.183
Г	0.997	0.171
Г	1.066	0.160
Г	1.135	0.150
Е	1.204	0,141
Г	1,272	0.134
Г	1,341	0.127
Г	1.410	0.121
Г	1.479	0.115
Г	1.548	0.110
Е	1.617	0.105
E	1.685	0.101
Г	1.754	0.097
Г	1.823	0.093
Г	1.892	0.090
ı	1.961	0.087
Г	2.058	0.079
Г	2.155	0.072
Г	2,252	0.066
Г	2.349	0.060
Г	2.446	0.056
Г	2.543	0.052

Parametri e punti dello spettro di risposta verticale per lo stato limite:

Parai	meti	i inc	liper	identi
7579170	F 25 Tr	m work	Table 1	THE PERSON NAMED IN

STATOLIMITE	SLD
B _{2f}	0.037 g
S	1.000
ST	1.000
q	1.000
Tg	0.050 ₅
10 000	0.150 s
To	1.000 s

Darametri dinendenti

F.	0.989
S	1.000
/S / O / / -	1.000

Espressioni dei parametri dipendenti

 $S = S_S - S_T$

(NTC-08 Eq. 3,2.5)

(NTC-08 §, 3.2.3.5)

 $F_v = 1.35 \cdot F_o \cdot \left(\frac{a_g}{a}\right)^{0.5}$

(NTC-08 Eq. 3 2 11)

	Se (
0.00	0.03
0.05	0.08
4 0.15	60.08
0.28	0.05
0.32	0.04
0.40	0.03
0.49	0.02
0.57	5 0.02
.0.68	0.02
0.74	0.01
0.83	0.01
0.91	5 0.01
1.00	0.01
1.09	4 0.01
1.18	0.00
1.28	0.00
1.37	5 0.00
1.46	9 0.00
1.56	33 0.00
1,68	6 0.00
1,78	0.00
1.84	0.00
1.93	0.00
2.03	0.00
2.12	0.00
2.21	9 0.00
2.31	3 0.00
2.40	0,00
2.50	0.00
2.594	4 0.00

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOL 00 E 09 CL IV0100 005 A 13 di 50

In base alle accelerazioni massime attese sul sito in esame si valutano, alla luce dei parametri valutati sopra nella condizione di SLV, i coefficienti di intensità sismica da utilizzarsi nelle analisi pseudo statiche, con le espressioni che seguono; la Tabella 5.1 ne riporta una sintesi.

$$k_h = \beta_m \frac{a_{\text{max}}}{q}$$

$$k_v = \pm 0.5 \cdot k_h$$
 . The three proofunctions are the sum of the

essendo

$$a_{\text{max}} = S_s \cdot S_t \cdot a_g$$

Ss	ST	ag	a _{max}	βm	k _h	kν
[°]	[°]	[9]	[9]		[-] u	mi [-] = 1
1.376	1	0.218	0.2999	0.31	0.09299	0.0465

Tabella 6.1: sintesi parametri sismici

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOL 00 E 09 CL IV0100 005 A 14 di 50

7. METODO DI CALCOLO

L'analisi strutturale del muro di sostegno a fondazione diretta è stata condotta attraverso modelli di calcolo a mensola con incastro nella platea di fondazione (analisi del paramento) e con incastro nel paramento (analisi della fondazione lato valle e lato monte). Vista la geometria dell'opera a prevalente sviluppo longitudinale e le condizioni al contorno, le analisi e verifiche sono state effettuate prendendo in considerazione una porzione di muro corrispondente ad una larghezza unitaria.

Si riporta inoltre di seguito una breve sintesi della procedura proposta per il calcolo delle spinte orizzontali agenti sulla parete dell'opera di sostegno e delle azioni verticali agenti sulla suola di fondazione.

7.1 Condizioni di spinta sul muro in condizioni statiche

Considerato un terrapieno con peso per unità di volume γ , sovraccarico uniforme su terrapieno q, condizioni drenate ed assenza di falda, si assume in genere la distribuzione di pressioni riportata nella Figura 7.1. Alla generica quota z dal piano campagna risulta:

$$\sigma_a = \gamma k_a z + q k_a - 2c' \sqrt{k_a} \tag{0.1}$$

$$\sigma_p = \gamma k_p z + q k_p - 2c' \sqrt{k_p} \tag{0.2}$$

Il problema si riconduce quindi al calcolo dei coefficienti di spinta attiva ka o passiva kp.

Con riferimento allo schema di Figura 7.2, in condizioni statiche il coefficiente di spinta attiva e quello di spinta passiva sono valutati attraverso le espressioni di Muller-Breslau (1924):

$$k_{a} = \frac{sen^{2}(\psi + \varphi)}{sen^{2}\psi \cdot sen(\psi - \delta) \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \varepsilon)}{sen(\psi - \delta) \cdot sen(\psi + \varepsilon)}}\right]^{2}}$$
(0.3)

$$k_{p} = \frac{sen^{2}(\psi - \varphi)}{sen^{2}\psi \cdot sen(\psi + \delta) \left[1 - \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi + \varepsilon)}{sen(\psi + \delta) \cdot sen(\psi + \varepsilon)}}\right]^{2}}$$
(0.4)

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOL 00 E 09 CL IV0100 005 A 15 di 50

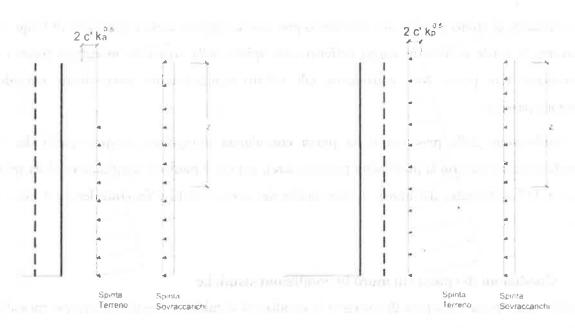


Figura 7.1: spinte orizzontali in condizioni statiche

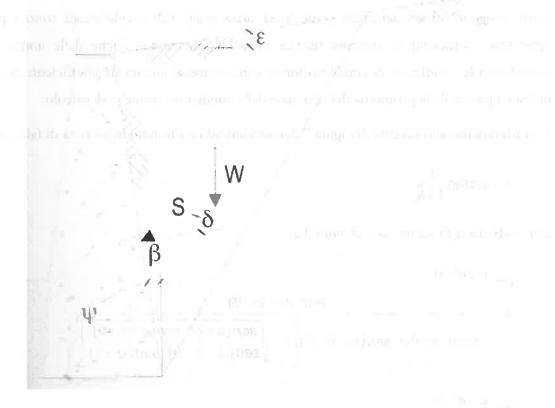


Figura 7.2: parametri geometrici per la valutazione dei coefficienti di spinta

Muri – Relazione di calcolo

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0L	00 E 09	CL	IV0100 005	Α	16 di 50

Il coefficiente di spinta passiva ove necessario può essere valutato con l'espressione di Caquot-Kerisel (1948) attraverso la quale si tiene in conto l'effetto sulla spinta della creazione in rottura passiva di superfici di scorrimento non piane. Non considerare tale effetto significherebbe sovrastimare considerevolmente la pressione passiva.

La distribuzione delle pressioni è da prassi considerata triangolare, mentre quella dei sovraccarichi è considerata costante con la profondità (rettangolare), per cui il punto di applicazione della spinta delle terre è posto a 1/3 dell'altezza del muro, mentre quella dei sovraccarichi è da considerarsi a metà dell'altezza del muro.

7.2 Condizioni di spinta sul muro in condizioni sismiche

L'analisi delle spinte sull'opera di sostegno in condizioni sismiche è eseguita attraverso metodi pseudo-statici. Nell'ipotesi di muro libero di muoversi in testa il metodo più appropriato è quello di Mononobe-Okabe il quale rappresenta un'estensione del criterio di Coulomb in cui il cuneo di rottura si muove come un corpo rigido soggetto ad accelerazioni verticali ed orizzontali. Tali accelerazioni sono espresse in funzione di opportuni coefficienti di intensità sismica kv e kh, menzionati anche dalle norme vigenti. Nel metodo considerato le condizioni di equilibrio limite sono espresse ancora da coefficienti di spinta attiva e passiva definiti a partire dalla geometria del sistema e dalle condizioni sismiche di calcolo.

Con riferimento allo schema di Figura 7.3, considerando un terreno in assenza di falda, si definisce:

$$\theta = \arctan \frac{k_h}{1 \pm k_v} \tag{0.5}$$

ed i coefficienti di spinta sono definiti da:

$$k_{a} = \frac{sen^{2}(\psi + \phi - \theta)}{\cos\theta \cdot sen^{2}\psi \cdot sen(\psi - \delta - \theta) \left[1 + \sqrt{\frac{sen(\phi + \delta) \cdot sen(\phi - \epsilon - \theta)}{sen(\psi - \delta - \theta) \cdot sen(\psi + \epsilon)}}\right]^{2}}$$

$$\epsilon \ge \phi' - \theta$$
(0.6)

per
$$\varepsilon \ge \phi' - \theta$$

$$k_a = \frac{sen^2(\psi + \phi - \theta)}{\cos\theta \cdot sen^2\psi \cdot sen(\psi - \delta - \theta)}$$
(0.7)

Muri – Relazione di calcolo

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
IFOL 00 E 09 CL IV0100 005 A 17 di 50

$$k_{p} = \frac{sen^{2}(\psi + \varphi - \Theta)}{\cos\Theta \cdot sen^{2}\psi \cdot sen(\psi + \Theta) \left[1 - \sqrt{\frac{sen\varphi \cdot sen(\varphi + \varepsilon - \Theta)}{sen(\psi + \Theta) \cdot sen(\psi + \varepsilon)}}\right]^{2}}$$
(0.8)

La spinta del terreno in condizioni sismiche vale perciò:

$$S_{a} = \frac{1}{2} \gamma \left(1 \pm k_{v}\right) k_{a} H^{2} \tag{0.9}$$

$$S_{p} = \frac{1}{2} \gamma \left(1 \pm k_{v} \right) k_{p} H^{2} \tag{0.10}$$

con inclinazione del piano di rottura valutabile attraverso l'espressione:

$$\alpha = \phi - \theta + \arctan\left[\sqrt{\frac{P \cdot (P + Q) \cdot (1 + Q \cdot R) - P}{1 + R \cdot (P + Q)}}\right] \tag{0.11}$$

essendo:

$$P = \tan(\phi - \theta - \varepsilon)$$

$$Q = \cot(\phi - \theta - \beta) \tag{0.12}$$

$$R = \tan(\theta + \beta + \delta)$$

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
IFOL 00 E 09 CL IV0100 005 A 18 di 50

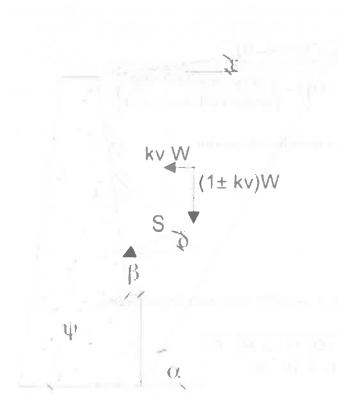


Figura 7.3: azioni sismiche pseudo-statiche

Nel caso di terreno con presenza di falda e permeabilità inferiore a 5x10-4m/sec si trascurano gli effetti idrodinamici dell'acqua maggiorando l'angolo θ secondo l'espressione:

$$\theta = \arctan\left(\frac{\gamma_{sat}}{\gamma_{sat} - \gamma_w} \frac{k_h}{1 \pm k_v}\right) \tag{0.13}$$

e la spinta agente sulla parete si definisce solo a mezzo di effetti statici:

$$S_{a} = \frac{1}{2} \gamma' (1 + k_{v}) k_{a} H^{2} + \frac{1}{2} \gamma_{w} H^{2}$$
(0.14)

Nel caso di valori maggiori di permeabilità va considerato anche l'effetto dinamico valutabile con l'espressione:

$$E_{wd} = \frac{7}{2} k_h \gamma_w H^2 \tag{0.15}$$

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0L	00 E 09	CL	IV0100 005	A	19 di 50

azione applicata ad un'altezza pari ad 0.4H dalla base del muro.

7.3 Verifiche geotecniche

Sono state condotte, in accordo con la normativa vigente le seguenti verifiche globali di carattere geotecnico:

- verifica al ribaltamento, eseguita con riferimento allo spigolo anteriore della platea di fondazione, confrontando il momento stabilizzante Ms dovuto alle forze verticali con il momento ribaltante Mr provocato dalle forze orizzontali
- verifica allo scorrimento, eseguita controllando che la somma delle forze orizzontali sia sufficientemente minore della forza di attrito che si può esplicare per effetto dei carichi verticali N al contatto tra platea di fondazione e terreno. Il coefficiente di attrito f è assunto pari a:

$$f = tg(\delta) = tg(\phi)$$

trascurando il contributo stabilizzante dovuto alla spinta passiva del terreno anteriore.

• verifica al carico limite dell'insieme fondazione-terreno utilizzando l'espressione della portanza unitaria limite secondo la teoria di Meyerhoff.

7.4 Verifiche strutturali

Sono state condotte, infine, le verifiche locali degli elementi che costituiscono l'opera di sostegno, valutando in corrispondenza delle sezioni caratteristiche le sollecitazioni esterne e i corrispondenti stati tensionali. Le sezioni di riferimento sono indicate nei report di calcolo. Le azioni sul paramento sono valutate considerando quest'ultimo incastrato nella soletta di fondazione. Le azioni sulla soletta di fondo (monte e valle) sono valutate col metodo del trapezio delle tensioni considerando questa incastrata al paramento.

RADDOPPIO TRATTA CANCELLO-BENEVENTO
I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E
VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL
COMUNE DI MADDALONI

COMUNE DI MADDALONI

ITINERARIO NAPOLI-BARI

PROGETTO LOTTO
IFOL 00 E 09

CODIFICA CL DOCUMENTO IV0100 005

REV. FOGLIO

A 20 di 50

8. SOFTWARE DI CALCOLO

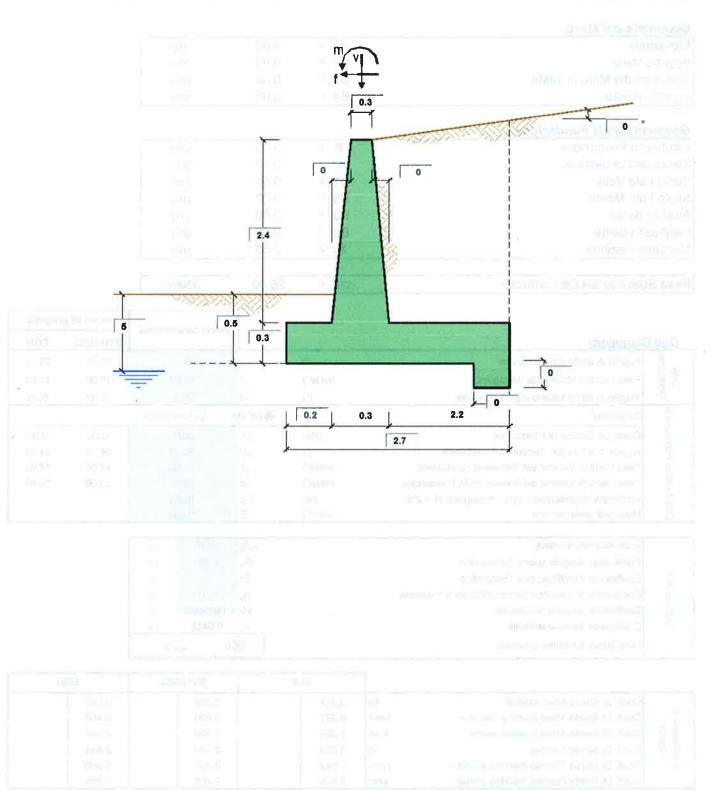
Le verifiche geotecniche e strutturali dell'opera di sostegno sono state eseguite mediante apposito foglio di calcolo.

La determinazione dell'accelerazione massima attesa al suolo è stata effettuata per mezzo di apposito foglio di calcolo (Spettri-NTCver.1.0.3) distribuito dal CSLLPP.

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO IF0L 00 E 09

LOTTO


CODIFICA CL

DOCUMENTO

REV. **FOGLIO**

IV0100 005 Α 21 di 50

9. GEOMETRIA DI CALCOLO

Muri – Relazione di calcolo

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOL 00 E 09 CL IV0100 005 A 22 di 50

DATI DI PROGETTO:

Geo	ome	etria	del	Muro

Elevazione	• H3 =	4.60	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.60	(m)
Aggetto monte	B4 =	0.00	(m)

Geometria della Fondazione

Geometra della i ondazione				
Larghezza Fondazione	В	=	5.00	(m)
Spessore Fondazione	H2	= 2	0.80	(m)
Suola Lato Valle	B1	=	0.50	(m)
Suola Lato Monte	B5	=	3.90	(m)
Altezza dente	Hd	=	0.00	(m)
Larghezza dente	Bd	=	0.00	(m)
Mezzeria Sezione	Xc	=	2.50	(m)

Peso Specifico del Calcestruzzo	ycls =	25.00	(kN/m ³)

			1	valori caratteristici	valori di j	orogetto
Dati C	Geotecnici	varori caratterisoci	STR/GEO	EQU		
eno	Angolo di attrito del terrapieno	(°)	φ'	35.00	29.26	29.26
Dati Terrapieno	Peso Unità di Volume del terrapieno	(kN/m³)	γ'	19.00	19.00	19.00
ᅙ	Angolo di attrito terreno-superficie ideale	(°)	δ	0.00	0.00	0.00
Fondazione	Condizioni		drenat	e Non Drenate		
qaz	Coesione Terreno di Fondazione	(kPa)	c1'	0.00	0.00	0.00
Fon	Angolo di attrito del Terreno di Fondazione	(°)	φ1'	30.00	24,79	24.79
2	Peso Unità di Volume del Terreno di Fondazione	(kN/m³)	γ1	17.00	17.00	17,00
erreno	Peso Unità di Volume del Rinterro della Fondazione	(k N /m³)	γd	20.00	20.00	20.00
⊢-	Profondità "Significativa" (n.b.: consigliata H = 2*B)	(m)	Hs	10.00		
Dati	Modulo di deformazione	(kN/m²)	E	15000		

	Accelerazione sismica	a _g /g	0.218	(-)
	Coefficiente Amplificazione Stratigrafico	Ss	1.376	(-)
Sismici	Coefficiente Amplificazione Topografico	ST	1	(-)
Sisr	Coefficiente di riduzione dell'accelerazione massima	βs	0.31	(-)
Dati (Coefficiente sismico orizzontale	kh	0.09299008	(-)
	Coefficiente sismico verticale	kv	0.0465	(-)
	Muro libero di traslare o ruotare	•	si 🛴	по

			SL	E	STR/C	SEO	EC	วัก
	Coeff. di Spinta Attiva Statico ka		0.271		0.343	Ï	0.343	
ti di	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.321		0.400		0.400	
efficienti Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.326		0.406		0.406	
effic	Coeff. Di Spinta Passiva	kp	3.000		2.444		2,444	
් රී	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.842		2.300		2.300	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.826		2.285		2.285	

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOL 00 E 09 CL IV0100 005 A 23 di 50

10. ANALISI DEI CARICHI

					valori caratteristici	valori di	progetto
Carichi	Agenti				SLE - sisma	STR/GEO	EQU
'E	Sovraccarico permanente Sovraccarico su zattera di monte	Uno (kN	m²) qi	р	11.00	11.00	12.10
Carichi permanenti	Forza Orizzontale in Testa permanente	_	l/m) fi	p	0.00	0.00	0.00
ပ္တိုင္ဆ	Forza Verticale in Testa permanente	(kt	/m) v	р	0.00	0.00	0.00
Δ.	Momento in Testa permanente	(kNn	/m) mj	р	0.00	0.00	0,00
	Sovraccarico Accidentale in condizioni statiche	e (kN	m ²)	q	20.00	26.00	30.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in cond	lizioni statich (kh	/m)	f	22.22	28.89	33.33
ondizior Statiche	Forza Verticale in Testa accidentale in condizi	oni statiche (kt	l/m)	v	0.00	0.00	0.00
Ŋ ź	Momento in Testa accidentale in condizioni sta	atiche (kNn	/m) n	n	0.00	0.00	0.00
	Coefficienti di combinazione coi	ndizione frequente Ψ1	1.00	CC	ondizione quasi permi	anente Ψ2	0.00
.⊑ o	Sovraccarico Accidentale in condizioni sismich	ne (kN	m²) q	s	10.00		
Condizioni Sismiche	Forza Orizzontale in Testa accidentale in cond	lizioni sismicl (kh	l/m) fs	s	0.00		
ond isrr	Forza Verticale in Testa accidentale in condizi	oni sismiche (kt	/m) v	s	0.00		
ე თ	Momento in Testa accidentale in condizioni sis	smiche (kNn	/m) m:	S	0.00		

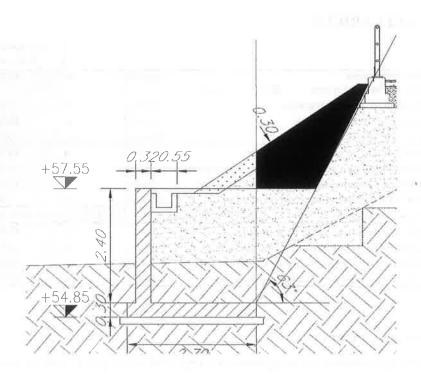
10.1 Sovraccarico permanente

Nelle analisi svolte si considera un riempimento a tergo del muro per il quale si assumono i seguenti parametri geotecnici caratteristici in condizioni drenate:

• $\gamma k = 19 \text{ kN/m3}$ peso dell'unità di volume;

• φk = 35° angolo di resistenza al taglio;

• ck = 0 coesione;


• $\delta k = 0^{\circ}$ angolo di attrito tra paramento verticale muro e terreno.

Nel caso in esame si considerano come carichi permanenti a monte dell'opera il sovraccarico dovuto al riempimento inclinato 3:2. In tali condizioni si condidera un sovraccarico permanente dovuto al terrapieno, considerando una retta inclinata $\pi/4+\phi/2$, come indicato in figura

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Iº LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0L	00 E 09	CL	IV0100 005	A	24 di 50

10.2 Forze inerziali

In condizioni sismiche le forze d'inerzia orizzontali e verticali su paramento, soletta di fondazione e terreno di riempimento su soletta di monte sono valutate attraverso le espressioni:

$$F_h = k_h W$$

$$F_{v} = k_{v}W$$

dove W è il peso delle masse oscillanti applicato nei rispettivi baricentri ed i parametri di intensità sismica sono definiti in accordo al paragrafo 6.

Muri – Relazione di calcolo

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOL 00 E 09 CL IV0100 005 A 25 di 50

11. COMBINAZIONI DI CARICO

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto nelle norme riportate nel §2.

Per il muro di sostegno sono state effettuate le verifiche con riferimento ai seguenti stati limite:

- SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU)
 - scorrimento sul piano di posa;
 - collasso per carico limite dell'insieme fondazione-terreno;
 - ribaltamento;

secondo l'approccio progettuale "Approccio 1" e tenendo conto dei coefficienti parziali riportati nelle Tabelle 5.2.V e 6.2.II per le azioni e i parametri geotecnici e della tabella 5.2.VI-VII per i coefficienti di combinazione delle azioni:

comb. 2
$$\Rightarrow$$
 (A2+M2+R2)

- SLU di tipo strutturale (STR)
- raggiungimento della resistenza negli elementi strutturali secondo l'approccio progettuale "Approccio 1" e tenendo conto dei coefficienti parziali riportati nelle Tabelle 5.2.V e 6.2.II per le azioni e i parametri geotecnici e della tabella 5.2.VI-VII per i coefficienti di combinazione delle azioni:

comb. 1
$$\Rightarrow$$
 (A1+M1+R1)

Ai fini delle verifiche degli stati limite ultimi si definiscono le seguenti combinazioni:

STR)
$$\Rightarrow \gamma G1 \cdot G1 + \gamma G2 \cdot G2 + \gamma Q1 \cdot Qk1 + \sum_{i} \psi 0i \cdot Qki$$

GEO-EQU)
$$\Rightarrow \gamma G1 \cdot G1 + \gamma G2 \cdot G2 + \gamma Q1 \cdot Qk1 + \sum_{i} \psi_{0i} \cdot Qki$$

Ai fini delle verifiche degli stati limite di esercizio (tensioni) si definiscono le seguenti combinazioni:

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
IFOL 00 E 09 CL IV0100 005 A 26 di 50

Rara)
$$\Rightarrow$$
 G1+G2+Qk1+ $\sum i\psi 0i\cdot Qki$

Ai fini delle verifiche degli stati limite di esercizio (tensioni e fessurazione) si definiscono le seguenti combinazioni:

Frequente)
$$\Rightarrow$$
 G1+G2+ ψ 11 ·Qk1+ \sum i ψ 2i·Qki

Per la condizione sismica, la combinazione per gli stati limite ultimi da prendere in considerazione è definita nella tabella 5.2.VI:

Combinazione sismica+M1+R1)
$$\Rightarrow$$
 E+G1+G2+ $\sum i\psi 2i\cdot Qki$

Combinazione sismica+M2+R2)
$$\Rightarrow$$
 E+G1+G2+ $\sum i\psi 2i\cdot Qki$

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF0L 00 E 09 CL IV0100 005 A 27 di 50

Carichi	Effetto	Coeff. Parziale	EQU	A1 (STR)	A2 (GEO)	SLE
Permanenti	favorevole		0.90	1.00	1.00	1.00
remanenti	sfavorevole	γG	1.10	1.30	1.00	1.00
Variabili	favorevole		0.00	0.00	0.00	0.00
v ariabili	sfavorevole	γQ	1.50	1.50	1.30	1.00

Parametro		Coeff. Parziale	M1	M2	SLE
angolo d'attrito	tan _{φ'k}	γ _φ ,	1.00	1.25	1.00
coesione	c' _k	γc'	1.00	1.25	1.00
resistenza non drenata	C _{uk}	γcu	1.00	1.40	1.00
peso unità di volume	γ	γ _γ	1.00	1.00	1.00

Verifica	Coeff. Parziale	R1	R2	R3	SLE
Capacità portante fondazione		1.00	1.00	1.40	2.00
Scorrimento	γR	1.00	1.00	1.10	1.30
Ribaltamento	red.	1.00	1.00	1.00	1.50

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOL 00 E 09 CL IV0100 005 A 28 di 50

12. VERIFICHE

Muri - Relazione di calcolo

12.1 Caratteristiche dei materiali utilizzati nelle verifiche

	ZZO		Acciaio
classe cls	C28/35		tipo di accialo B450C 💌
	Rek	35 (MPa)	
	fck	28 (MPa)	fyk = 450 (MPa)
	fom Ec	36 (MPa) 32308 (MPa)	γs = 1.15
	acc	0.85	(MACACITY OF A
	γς	1.50	fyd = fyk / γ s / γ E = 391.30 (MPa)
	$f_{cd} = \alpha_{cc} f_{ck}/\gamma c$	15.87 (MPa)	Es = 210000 (MPa)
	$f_{ctm} = 0.30 * f_{ck}^{2/3}$	2.77 (MPa)	_{6ys} = 0.19%
	limite SLE		
ombinazi	ione caratteristica (ra		
ombinazi	ione caratteristica (ra 16.8	Mpa	coefficiente omogenelzzazione accialo n = 15
ombinazi ^{Io}	ione caratteristica (ra		coefficiente omogeneizzazione acciaio n = 15
ombinazi fo	ione caratterística (ra 16.8 360	Mpa Mpa	
combinaz रु	ione caratteristica (ra 16.8 360 ione quasi permanen	Mpa Mpa	<u>Copriferro</u> (distanza asse armatura-bordo)
combinazi ज्ञ ज combinazi	ione caratterística (ra 16.8 360	Mpa Mpa	
combinazi দ দ combinazi	ione caratteristica (ra 16.8 360 ione quasi permanen	Mpa Mpa	<u>Copriferro</u> (distanza asse armatura-bordo)
combinaz उ _० अ	ione caratteristica (ra 16.8 360 ione quasi permanen 12.6	Mpa Mpa tte Mpa	<u>Copriferro</u> (distanza asse armatura-bordo)

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

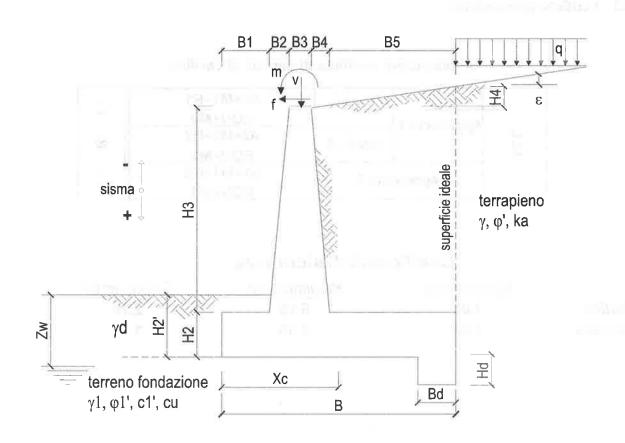
 IF0L
 00 E 09
 CL
 IV0100 005
 A
 29 di 50

12.2 Verifiche geotecniche

Combinazioni coefficienti parziali di verifica

		comb. 1	A1+M1+R1	U
٦,	Approccio 1	COITID: 1	EQU+M2	
	Approceio i	comb. 2	A2+M2+R2	∏ા હ
S		COIIID. 2	EQU+M2	
	Approccio 2	A1+M1+R3	╗	
	Approc	CIO Z	EQU+M2	

Coefficienti di sicurezza


	Scommento	Ribaltamento	Carico limite
Statico	2.06	5.15	2.20
Sismico	1.26	3.39	1.11

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOL 00 E 09 CL IV0100 005 A 30 di 50

OPERA

Esempio

DATI DI PROGETTO:

Geometria del Muro

Geometra del Mulo			
Elevazione	H3 =	2.40	(m)
Aggetto Vaile	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.30	(m)
Aggetto monte	B4 =	0.00	(m)

Geometria della Fondazione

Larghezza Fondazione	B	=	2.70	(m)
			1000	(111)
Spessore Fondazione	H2	=	0.30	(m)
Suola Lato Valle	B1	=	0.20	(m)
Suola Lato Monte	B5	=	2.20	(m)
Altezza dente	Hd	=	0.00	(m)
Larghezza dente	Bd	=	0.00	(m)
Mezzeria Sezione	Xc	=	1.35	(m)

Peso Specifico del Calcestruzzo	ycls = 25.00	(kN/m ³)
---------------------------------	--------------	----------------------

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF0L 00 E 09 CL IV0100 005 A 31 di 50

FOR7F		

			SLE	STR/GEO	EQU
- Peso del Mui	ro (Pm)		JLE	STRIGEO	EQU
Pm1 =	(B2*H3* _γ cls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3* _y cls)	(kN/m)	18.00	18.00	16.20
Pm3 =	(B4*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm4 =	(B*H2* _Y cls)	(kN/m)	20.25	20.25	18.23
Pm5 =	(Bd*Hd* _Y cls)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	38.25	38.25	34.43
- Peso del terr	eno e sovr. perm. sulla scarpa di monte del muro (Pt)				
Pt1 =	(B5*H3* _y ')	(kN/m)	100.32	100.32	90.29
Pt2 =	(0,5*(B4+B5)*H4*γ')	(kN/m)	0.00	0.00	0.00
Pt3 =	(B4*H3* _y)/2	(kN/m)	0.00	0.00	0.00
Sovr =	qp * (B4+B5)	(kN/m)	36.61	36.61	40.27
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	136.93	136.93	130.56
- Sovraccarico	accidentale sulla scarpa di monte del muro				
Sovr acc. Stat	q * (B4+B5)	(kN/m)	0	0	
Sovr acc. Sisn	n qs * (B4+B5)	(kN/m)	0		

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (M	m)		SLE	STR/GEO	EQU
Mm1 = `	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	6.30	6.30	5.67
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0.00	0.00	0.00
Mm4 =	Pm4*(B/2)	(kNm/m)	27.34	27.34	24.60
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	33.64	33.64	30.27
- Terrapie	no e sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(k N m/m)	160.51	160.51	144.46
Mt2 ≃	Pt2*(B1+B2+B3+2/3*(B4+B5))	(k N m/m)	0.00	0.00	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(k N m/m)	0.00	0.00	0.00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(k N m/m)	58.57	58.57	64.43
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	219.08	219.08	208.89
- Sovracca	arico accidentale sulla scarpa di monte del muro				
	Stat *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0	0	
	Sism *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0	U	
	DEL MURO E DEL TERRAPIENO rizzontale e verticale del muro (Ps)				
Ps h=	Pm*kh	(k N /m)		3.56	
Ps v=	Pm*kv	(kN/m)		1.78	
Like	CORRECTED CONTRACTORS			is kniso ni	
	rizzontale e verticale del terrapieno a tergo del muro			171134	
Ptsh =	Pt*kh	(kN/m)		12.73	
Ptsv =	Pt*kv	(kN/m)		6.37	
- Incremer	nto orizzontale di momento dovuto all'inerzia del mu	ıro (MPs h)			
MPs1 h=	kh*Pm1*(H2+H3/3)	(k N m/m)		0.00	
MPs2 h=		(kNm/m)		2.51	
MPs3 h=		(kNm/m)		0.00	
MPs4 h=		(kNm/m)		0.28	
MPs5 h=	, ·- ,	(kNm/m)		0.00	
MPs h=		(kNm/m)		2.79	

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0L	00 E 09	CL	IV0100 005	A	32 di 50

MPs1 v=	verticale di momento dovuto all'inerzia del muro (MPs kv*Pm1*(B1+2/3*B2)	(kNm/m)	0.00
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)	0.29
MPs3 v=		, ,	
	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)	0.00
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)	1.27
MPs5 ∨=	kv*Pm5*(B-Bd/2)	(kNm/m)	0.00
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	1.56
	10 10 10		
 Incremento 	orizzontale di momento dovuto all'inerzia del terrapier	no (MPts h)	
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	13.99
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	0.00
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	13.99
- Incremento	verticale di momento dovuto all'inerzia del terrapieno	(MPts v)	
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	7.46
1411 101 4	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00
MPts2 v=	KV 1 (2 ((112 1 113 1 1473) - (D - D3/3) 0.3)		
	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	0.00

CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO e condizione statica			SLE	STR/GEO	EQU
St =	0,5*γ*(H2+H3+H4+Hd)2*ka	(kN/m)	18.77	23.79	26.16
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	12.18	15.43	16.97
Sq acc =	q*(H2+H3+H4+Hd)*ka		kN/m)	0.00	0.00	0.00
- Componente	e orizzontale condizione statica					
Sth =	St*cosô	(kN/m)	18.77	23.79	26.16
Sqh perm =	Sq perm*cosδ		kN/m)	12.18	15.43	16.97
Sqh acc =	Sq acc*cosδ	(kN/m)	0.00	0.00	0.00
- Componente	e verticale condizione statica					
Stv =	St*senδ	(kN/m)	0.00	0.00	0.00
Sqv perm≃	Sq perm*sen∂	- (kN/m)	0.00	0.00	0.00
Sqv acc =	Sq acc*sen _δ	(kN/m)	0.00	0.00	0.00
- Spinta pass	iva sul dente					
Sp=1/2*g1"*Hd	2*\½*γ ₁ '*Hd ² *kp+(2*c ₁ '*kp ^{0,5} +γ1'*kp*H2')*Hd	(kN/m)	0.00	0.00	0.00

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
MSt1 = Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	16.89	21.41	23.55
MSt2 = Stv*B	(kNm/m)	0.00	0.00	0.00
MSq1 perm= Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	16.44	20.83	22.91
$MSq1 \ acc = Sqh \ acc*((H2+H3+H4+Hd)/2-Hd)$	(kNm/m)	0.00	0.00	0.00
MSq2 perm= Sqv perm*B	(kNm/m)	0.00	0.00	0.00
MSq2 acc = Sqv acc*B	(kNm/m)	0.00	0.00	0.00
$MSp = \gamma 1'' + Hd^{3} + (2*c1'' + kp^{0.5} + \gamma 1'' + kp + H2') + Hd^{2}/2$	(kNm/m)	0.00	0.00	0.00
MOMENTI DOVUTI ALLE FORZE ESTERNE				
Mfext1 = mp + m	(kNm/m)	0.00	0.00	0.00
Mfext2 = $(fp + f)*(H3 + H2)$	(kNm/m)	0.00	0.00	0.00
Mfext3 = $(vp+v)^*(B1 + B2 + B3/2)$	(kNm/m)	0.00	0.00	0.00

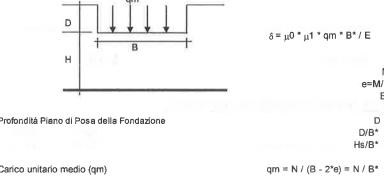
ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0L	00 E 09	CL	IV0100 005	A	33 di 50

VERIFICA	ALLO SCOF	RRIMENTO (STR/GEO)			
Risultante for	rze verticali (N Pm + Pt +) v+ Stv+ Sqv perm + Sqv acc	175.18	(kN/m)	
	rze orizzontali Sth + Sqh	m	39.22	(kN/m)	
' -	oui + oqii	T1	39.22	(KIWIII)	
Coefficiente of =	di attrito alla b tg _{φ1} '	ase (f)	0.46	(-)	
Fs scor		(N*f + Sp) / T	2.06	>	1
VERIFICA	AL RIBALTA	MENTO (EQU)			
Momento sta	abilizzante (Ms Mm + Mt		239.16	(kNm/m)	
Momento riba		q + Mfext1+ Mfext2 + MSp	46.46	(kNm/m)	
Fs ribalta	amento	Ms / Mr	5.15	>	1
VERIFICA	CARICO LII	MITE DELLA FONDAZIONE (STR/	GEO)		
Risultante for N =	rze verticali (N Pm + Pt +) v + Stv + Sqv (+ Sovracc)	Nm 175.		
Risultante for	rze orizzontali Sth + Sqh		39.2	22 39.22	2 (kN/m)
Risultante de	ei momenti risį ∑M	petto al piede di valle (MM)	210.4	49 210.4	9 (kNm/m)
					(,
Momento ris	petto al barice Xc*N - MM	ntro della fondazione (M)	26.0	01 26.0	1 (kNm/m)
Formula Ge	nerale per il	Calcolo del Carico Limite Unitrario (B	rinch-Hansen, 1970)		
Fondazione I	Nastriforme				
qlim = c'Nc*	ic + q ₀ *Nq*iq	+ 0,5*y1*B*Ny*iy			
c1 ⁴	coesione t	erreno di fondaz.		0.00	(kPa)
φ1'	-	ittrito terreno di fondaz.		24.79	(°)
γ1	peso unità	di volume terreno fondaz.		17.00	(kN/m³)
$q_0 = \gamma d^*H2'$	sovraccar	co stabilizzante		9.50	(kN/m ²)
e = M / N	eccentrici	tà	0.	15 0.1	5 (m)
B*= B - 2e	larghezza	equivalente	2.4	40 2.4	

I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI


PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0L	00 E 09	CL	IV0100 005	A	34 di 50

(Christian e Carrier, 1976)

175.18 (kN/m) 17.09 (kNm/m)

$i_{\gamma} = (1 - T/(N + B*c'\cot g_{\phi}))^{m+1}$ (fondazione nastriforme m = 2)	0.47	0.47	(-)		
qlim (carico limite	unitario)		160,54	160,54	(kN/m²)
FS carico limite F = glim*B*/ N		Nmin	2.20	>	1
	•	Nmax	2.20	>	

CEDIMENTO DELLA FONDAZIONE

	e=M/N	0,10	(m)
*	B*	2.50	(m)
Profondità Piano di Posa della Fondazione	D =	0.50	(m)
	D/B* =	0.20	(m)
	Hs/B* =	2.00	(m)
Carico unitario medio (qm)	qm = N / (B - 2*e) = N / B* =	69.94	(kN/mq)
Coefficiente di forma μ 0 = f(D/B)	μ0 =	0.953	(-)
Coefficiente di profondità $\mu I = f(H/B)$	μ1 =	0.66	(-)
Cedimento della fondazione	δ = μ 0 * μ 1 * qm * B* / E =	7.35	(mm)

CONDIZIONE SISMICA +

SPINTE DEL TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
- Spinta condizione sismica +				
Sst1 stat = 0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	18.77	23.79	23.79
Sst1 sism = $0.5*\gamma$ *(1+kv)*(H2+H3+H4+Hd) ² *kas*-Sst1 stat	(kN/m)	4.49	5.20	5.20
Ssq1 perm= qp*(H2+H3+H4+Hd)*kas*	(k N /m)	14.42	17.97	17.97
Ssq1 acc = qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	0.00	0.00	0.00
- Componente orizzontale condizione sismica +				
Sst1h stat = Sst1 stat*cosδ	(kN/m)	18.77	23.79	23.79
Sst1h sism = Sst1 sism*cosδ	(kN/m)	4.49	5:20	5.20
Ssq1h perm= Ssq1 perm*cos8	(kN/m)	14.42	17.97	17.97
Ssq1h acc= Ssq1 acc*cos8	(k N /m)	0.00	0.00	0.00
- Componente verticale condizione sismica +				
Sst1v stat = Sst1 stat*sen8	(kN/m)	0.00	0.00	0.00
Sst1v sism = Sst1 sism*sen8	(kN/m)	0.00	0.00	0.00
Ssq1v perm= Ssq1 perm*sen ₈	(kN/m)	0.00	0.00	0.00
Ssq1v acc= Ssq1 acc*sen8	(kN/m)	0.00	0.00	0.00
- Spinta passiva sul dente				
$Sp=\frac{1}{2}*_{\gamma_1}'(1+kv)\ Hd^2*kps^+ + (2*c_1'*kps^{+0.5} +_{\gamma_1}1'\ (1+kv)\ kps^{+*}H2')^*Hd$	(k N /m)	0.00	0.00	0.00

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV, FOGLIO
1F0L 00 E 09 CL IV0100 005 A 35 di 50

- Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI smica +	CO	SLE	STR/GEO	EQU
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	16.89	21.41	21.41
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	4.04	4.68	4.68
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =		(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	19.47	24.26	24.26
MSsq2 =	Ssq1v* B	(kNm/m)	0.00	0.00	0.00
MSp =	γ_1 *Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ⁺ *H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.00	
VERIFICA AL	LO SCORRIMENTO				
Risultante forze	verticali (N)				
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		183.32	(k N /m)	
Risultante forze					
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		63.24	(k N /m)	
Coefficiente di a	attrito alla base (f)				
f III-U'=	tgφ1'		0.46	(-)	
Fs ()=	(N*f + Sp) / T		1.34	>	- mg - 1
VERIFICA AL	RIBALTAMENTO				or morning
Momento stabil	izzante (Ms)				
Ms =	Mm + Mt + Mfext3			(k N m/m)	
Momento ribalta Mr =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	9 mily = 1	58.10	(kNm/m)	l carlso li
	Ms / Mr		4.35		1

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze verticali (N) N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	Nmin 183.32	Nmax 183.32	(kN/m)
Risultante forze orizzontali (T)			
T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp	63.24		(kN/m)
Risultante dei momenti rispetto al piede di valle (MM)			350m / (n
$MM = \sum M$	194.62	194.62	(k N m/m)
Momento rispetto al baricentro della fondazione (M)			
M = Xc*N - MM	52.86	52.86	(kNm/m)

1.11

Nmax

Muri – Relazione di calcolo

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0L	00 E 09	CL	IV0100 005	A	36 di 50

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

F = qlim*B*/N

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

quin - c Nc n	C + q0 liq + 0,5 yr B lity iy		
c1'	coesione terreno di fondaz.	0.00	(kN/mq)
φ1'	angolo di attrito terreno di fondaz.	24.79	(°)
γ1	peso unità di volume terreno fondaz.	17.00	(kN/m ³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	9.50	(kN/m ²)
e = M / N	eccentricità	0.29 0.2	, ,
B*= B - 2e	larghezza equivalente	2.12 2.1	2 (m)
l valori di Nc, l	Nq e Ng sono stati valutati con le espressioni suggerite d	da Vesic (1975)	
$Nq = tg^2(45 +$	$_{0}'/2)^{*}e^{(\pi^{*}tg(\phi))}$ (1 in cond. nd)	10.43	(-)
	$Nc = (Nq - 1)/tg(\varphi') $ (2+ _{\pi} in cond. nd)		(-)
$N_{\gamma} = 2*(Nq + 1)$		10.56	(-)
l valori di ic, iq	$_{ m I}$ e i $_{ m Y}$ sono stati valutati con le espressioni suggerite da $ m V$	/esic (1975)	
ig = (1 - T/(N +	+ B*c'cotg ₀ ')) ^m (1 in cond. nd)	0.43 0.4	3 (-)
ic = iq - (1 - iq		0.37 0.3	
	B*c'cotgφ')) ^{m+1}	0.28 0.2	
(fondazione na	astriforme m = 2)		
qlim	(carico limite unitario)	96.08 96.0	8 (kN/m²)
ES carico l	imite	Nmin 1.11 >	1

CONDIZIONE SISMICA-

FS carico limite

SPINTE DEL TERRENO E DEL SOVRACCARICO - Spinta condizione sismica -		SLE	STR/GEO	EQU
Sst1 stat = $0.5^*\gamma'^*(H2+H3+H4+Hd)^2*ka$	(kN/m)	18.77	23.79	23.79
Sst1 sism = $0.5^*\gamma'^*(1-kv)^*(H2+H3+H4+Hd)^2*kas^Sst1$ stat	(kN/m)	2.77	3.02	3.02
Ssq1 perm= qp*(H2+H3+H4+Hd)*kas	(kN/m)	14.66	18.24	18.24
Ssq1 acc = qs*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	0.00	0.00	0.00
- Componente orizzontale condizione sismica -				
Sst1h stat = Sst1 stat*cos _δ	(kN/m)	18.77	23.79	23.79
Sst1h sism = Sst1 sism*cosδ	(kN/m)	2.77	3.02	3.02
Ssq1h perm= Ssq1 perm*cosδ	(kN/m)	14.66	18.24	18.24
Ssq1h acc= Ssq1 acc*cosδ	(kN/m)	0.00	0.00	0.00

Muri – Relazione di calcolo		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	1-120	IF0L	00 E 09	CL	IV0100 005	A	37 di 50

141473 -	– Keiazione ai c		IF0L	00 E 09	CL I	V0100 005	A	37 di 5
	•	verticale condizione sismica -		UPLA LICE	a British i			
	t1v stat =	Sst1 stat*senδ		(kN/m)	0.00	0.00		0.00
	t1v sism =			(kN/m)	0.00	0.00		0.00
	q1v pem=	Ssq1 perm*sen8		(kN/m)	0.00	0.00		0.00
Ss	q1v acc=	Ssq1 acc*senδ		(kN/m)	0.00	0.00	1	0.00
	pinta passiv							
Sp	=½* _{γ1} '(1-kv)	$Hd^{2*}kps^{-}+(2*c_{1}*kps^{-0.5}+_{\gamma}1'(1-kv)kps^{-*}H2')*H_{1}$	d	(kN/m)	0.00	0.00		0.00
	OMENTI DE	ELLA SPINTA DEL TERRENO E DEL SOVRA	ACCARI	со	SLE	STR/GEO	E	วบ
MS	Sst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)		(kNm/m)	16.89	21.41	21	.41
	Sst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)		(kNm/m)	2.50	2.72		72
	Sst2 stat =	Sst1v stat* B		(kNm/m)	0.00	0.00		00
	Sst2 sism =	Sst1v sism* B		(kNm/m)	0.00	0.00		00
	Ssq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)		(kNm/m)	19.79	24.62		.62
	Ssq2 =	Ssq1v * B		(kNm/m)	0.00	0.00		00
	Sp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ^{+*} H2')*I	⊔4 ² /2	(kNm/m)	0.00	0.00		00
IVIO	ж –	γ ₁ τια κρε 75+(2 ετ κρε - +γτ κρε π2) ι	HU /2	(KINIII/III)	0.00	0.00	0.	00
М	OMENTI DO	OVUTI ALLE FORZE ESTERNE						
	ext1 =	mp+ms		(kNm/m)		0.00		
Mfe	ext2 =	(fp+fs)*(H3 + H2)		(kNm/m)		0.00		
Mfe	ext3 =	(vp+vs)*(B1 +B2 + B3/2)		(kNm/m)		0.00		
<u>VE</u>	RIFICA AL	LO SCORRIMENTO						
	ultante forze	e verticali (N)						
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v +	Ptsv		167.03	(kN/m)		
Ris	ultante forze	e orizzontali (T)						
T	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh			61.33	(kN/m)		
_		attrito alla base (f)						
f	=	$tg_{\phi 1}$ '			0.46	(-)		
Fs	10-0	(N*f + Sp) / T			1.26			1
<u>VE</u>	RIFICA AL	RIBALTAMENTO						
Moi	mento stabi	lizzante (Ms)						
Ms		Mm + Mt + Mfext3			252.72	(kNm/m)		
Moi	mento ribalt:	ante (Mr)						

Mome	ento ribali	tante (Mr)		
Mr	=	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	74.56	(kNm/m)
Fr	=	Ms / Mr Line Lucius	3.39	admill notice &

Muri – Relazione di calcolo

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0L	00 E 09	CL	IV0100 005	A	38 di 50

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante for	ze verticali (N)		Nmin	Nmax*	
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Pts	sv	167.03	167.03	(kN/m)
	ze orizzontali (T)		04.00		(1. N.I./)
Τ =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp		61.33		(kN/m)
Risultante de	i momenti rispetto al piede di valle (MM)	~			
MM_ =	Σ M		178.16	178.16	(kNm/m
116 9			- 2011-110		(
Momento risp	petto al baricentro della fondazione (M)				
M =	Xc*N - MM		47.33	47.33	(kNm/m
70	100 110-1		4000		
Formula Ge	nerale per il Calcolo del Carico Limite Unitrar	io (Brinch-Hansen	, 1970)		
Fondazione N	Nastriforme				
alim = c'Nc*i	ic + q ₀ *Nq*iq + 0,5*γ1*Β*Νγ*iγ				
4	40 224 24 250 / 2 = 25/ 2/				
c1'	coesione terreno di fondaz.		0.00		(kN/mq)
φ1'	angolo di attrito terreno di fondaz.		24.79		(°)
γ1	peso unità di volume terreno fondaz.		17.00		(kN/m ³)
$q_0 = \gamma d + H2'$	sovraccarico stabilizzante		9.50		(k N /m ²)
e = M / N	eccentricità		0.28	0.28	(m)
B*= B - 2e	larghezza equivalente		2.13	2.13	(m)
I valori di Nc,	Nq e Ng sono stati valutati con le espressioni sug	gerite da Vesic (19	75)		
$Na = ta^2/45 +$	$\Phi_{\phi}'/2)^* e^{(\pi^* t g(\phi'))}$ (1 in cond. nd)		10.43		(-)
Nc = (Nq - 1)			20.42		(-)
$N_{\gamma} = 2*(Nq +$			10.56		(-)
I valori di ic, i	q e iγ sono stati valutati con le espressioni suggeri	te da Vesic (1975)			
ig = /1 T//NI	+ B*c'cotg _Φ ')) ^m (1 in cond. nd)		0.40	0.40	(-)
ic = iq - (1 - i)(iq)	÷122		0.34	0.40	(-)
	+ B*c'cotgφ')) ^{m+1}		0.25	0.25	(-)
(fondazione n	astriforme m = 2)				
alles	(acrica limita unitaria)		99.30	00.00	(le N 1 / ma 2)
qlim	(carico limite unitario)		88.20	88.20	(k N /m ²)
		Nmin	1.13	>	4
FS carico	limite $F = q \lim^B N$		1.13		1
		Nmax	1.13	>	

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Iº LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO LOTTO

CODIFICA

DOCUMENTO

REV. FOGLIO

IF0L

00 E 09

CL

IV0100 005 A

39 di 50

12.3 Verifiche strutturali SLU

VERIFICA ALLO STATO LIMITE ULTIMO

CARATTERISTICHE DEI MATERIALI

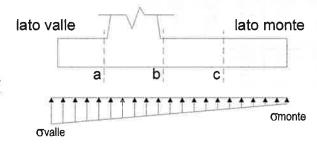
Calcestruzzo fck 28	<u>Acclaio</u>
γc 1,50 fcd = Rck /ym,c = 15,87	(MPa)
Copriferro	fyd = fyk $I_{YS} I_{YE} = $ 391.30 (MPa
c =	Es = 210000 (MPa) ε_{ya} = 0.19%

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

(cm)

Reazione del terreno

İ_{Ι-Π}

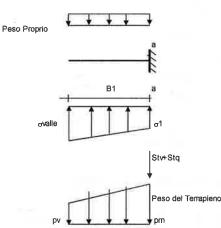

ovalle = N / A + M / Wgg

omonte = N / A - M / Wgg

A = 1.0*B 2.70 (m²)

 $Wgg = 1.0^{\circ}B^{2}/6$ (m³) 1.22

	N	M	ovalle	_o m onte
Caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	186.16	24.35	88.99	48.91
Statico	186,16	24.35	88.99	48,91
sisma+	183.83	43,61	103.98	32,19
sisma+	183,83	43.61	103.98	32,19
sisma-	166,52	37.07	92.19	31.16
SISITIA-	166,52	37,07	92.19	31,16


Mensola Lato Valle

Peso Proprio

PP ≃ 7.50 (kN/m)

$$\begin{split} \text{Ma} &= \ \sigma 1^* \text{B} 1^2 / 2 + (\sigma \text{valle} - \sigma 1)^* \text{B} 1^2 / 3 - \text{PP}^* \text{B} 1^2 / 2^* (1 \pm k \text{v}) \\ \text{Va} &= \ \sigma 1^* \text{B} 1 + (\sigma \text{valle} - \sigma 1)^* \text{B} 1 / 2 - \text{PP}^* \text{B} 1^* (1 \pm k \text{v}) \end{split}$$

caso	ovalle	σ1	Ma	Va
	[kN/m ²]	[kN/m ²]	[kNm]	(kN)
ntotio =	88,99	86.02	1.61	16.00
statico	88.99	86,02	1.61	16.00
iemel	103.98	98.66	1.89	20,82
sisma+	103.98	98.66	1.89	20,82
sisma-	92.19	87.67	1.67	18.22
	92 19	87 67	1.66	18 22

B5 - B5/2

PD

PP b-

b.

Mensola Lato Monte

	to monto	901H EU	111011
(kN/m ²)	7.50	=	PP
(kN/m)	0:00	==	PΩ

peso proprio soletta fondazione peso proprio dente

			•	7	
		Nmin	N max stat	N max sism	
pm	=	67.23	67.23	67.23	(kN/m ²)
pvb	=	67.23	67.23	67.23	(kN/m^2)
DVC:	=	67.23	67.23	67-23	(kN/m ²)

 $\label{eq:monte-pvb+PP} $$ Mb=(\sigma_{monte}-(pvb+PP)^*(1\pm kv))^*B5^2/2+(\sigma 2b-\sigma_{monte})^*B5^2/6-(pm-pvb))^*(1\pm kv)^*B5^2/3+(\sigma 2b-\sigma_{monte})^*B5^2/6-(pm-pvb)^*B5^2/3+(\sigma 2b-\sigma_{monte})^*B5^2/6-(pm-pvb)^*B5^2/6-(pm-pv$ -(Stv+Sqv)*B5-PD*(1±kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

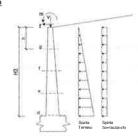
 $\label{eq:monte} $$ Mc = (\sigma_{monte} - (pvc + PP)^*(1\pm kv))^*(B5/2)^2/2 + (\sigma^2 - \sigma_{monte})^*(B5/2)^2/6 - (pm - pvc)^*(1\pm kv)^*(B5/2)^2/3 + (S1v + Sqv)^*(B5/2) - PD^*(1\pm kv)^*(B5/2 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 - (S1v + Sqv)^*(B5/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 - (S1v + Sqv)^*(B5/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 - (S1v + Sqv)^*(B5/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 - (S1v + Sqv)^*(B5/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 - (S1v + Sqv)^*(B5/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 - (S1v + Sqv)^*(B5/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 - (S1v + Sqv)^*(B5/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 - (S1v + Sqv)^*(B5/2) - ($

Vb=(σ_{monte}-(pvb+PP)*(1±kv))*B5+(σ2b-σ_{monte})*B5/2-(pm-pvb))*(1±kv)*B5/2-(Stv+Sqv)-PD*(1±kv)

Vc=(amorte-(pvc+PP)*(1±kv))*(B5/2)+(a2c-amorte)*(B5/2)/2-(pm-pvc)*(1±kv)*(B5/2)/2-(Stv+Sqv)-PD*(1±kv)

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

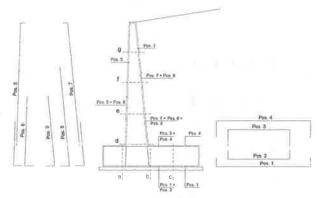
REV. **PROGETTO** LOTTO CODIFICA DOCUMENTO FOGLIO IF0L 00 E 09 CL IV0100 005 A 40 di 50


	amonte	o2b	Mb	Vb	0.70	Mo	Vc
caso	[kN/m ²]	[khl/m²]	[křém]	[kN]	[kN/m ²]	[ktēm]	(kN)
a batin a	48.91	81.57	-36.15	-20.69	65.24	-12.33	-19.42
statico	48.91	B1_57	-36,15	-20 89	85.24	-12.33	-19 42
	32.19	90.69	-84.17	-36 89	81 44	-21,94	-34,53
sisma+	32.19	90.69	-64.17	-36.89	61.44	-21.94	-34.53
	31.16	80.89	-56.92	-33 51	56.02	-19 24	-30 43
slema-	31.16	80.89	-56.92	-33.51	56,02	-19.24	-30 43

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

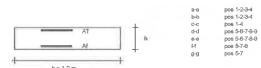
 $\begin{array}{lll} \text{Mt stat} &=& \mathcal{H} \; \text{Ka}_{\text{ortic}} \; ^{*} \gamma^{*} (1\pm k v) \eta^{*} ^{2} \eta^{*} J \\ \text{Mt siam} &=& \mathcal{H} \; ^{*} \gamma^{*} (Kes_{\text{ortic}} \; '(1\pm k v) + Ka_{\text{ortic}})^{*} \eta^{*} ^{2} \eta^{*} J \\ \text{Mq} &=& \mathcal{H} \; \text{Ka}_{\text{ortic}} \; ^{*} \eta \; ^{*} J \\ \text{M}_{\text{act}} &=& m \eta^{*} \\ \text{M}_{\text{extre}} &=& \Sigma P \eta \eta^{*} l \gamma^{*} k l \end{array}$


 $N_{ext} = v$ $N_{pp+inerpia} = \sum Pm_i^*(1\pm kv)$

	condizione statica											
seziona	,h	Mt	Mq	Med	Must	Next	Npp	Not				
neziona -	[m]	[kNm/m]	[KNmfm]	[kNm/m]	(křám/m)	[kN/m]	(křěm)	[kN/m]				
dd	2.40	15.42	16.68	0.00	32.30	0.00	18.00	18.00				
0-0	1.80	6.51	9 50	0.00	16,00	0.00	13.50	13 50				
64	1.20	1.93	4 22	0.00	6.15	0.00	9.00	9.00				
9-9	0.60	0.24	1,06	0,00	1,30	0.00	4,50	4,50				

ezione	h	Vt	Vq	Vest	Van
malone	[m]	[kN/m]	[khi/m]	[kNm]	[kN/m
dd	2.40	19.28	14.07	0.00	33,35
9-6	1.80	10.84	10,55	0,00	21.40
H*	1,20	4,82	7 03	0,00	11,65
9-9	0.60	1,20	3,52	0,00	4.72

SCHEMA DELLE ARMATURE



ARMATURE

pos	n*fml	- 4	II struto	pos	n*/mi	- ÷	II utrato	
1	50	16		5	5.0	16		
2	0.0	0		6	0.0	0		
3	50	16	u l	7	5.0	16		Calcola
4	5.0	16		8	0.0	0	ų l	
				9	0.0	0		

La spunta "il strato" significa che il ferro indicato viene messo internamente alla sezione come eecondo strato, altrimenti, quanto inserito, è considerato affancato a quello principale.

Sez.	M	N	h	Af	AY	Mu	MulMed
(-) (kNm)	(kN)	(m)	(cm²)	(cm²)	(kNm)	(.)	
a - a	1.89	0.00	0.30	10.05	20.11	94 23	49 75
b-b	-84 17	0.00	0.30	20 11	10.05	173.78	2 71
c - c	-21 94	0.00	0.30	10.05	10.05	93 97	4.28
d-d	32 30	18.00	0.30	10.05	10.05	95.86	2.97
0-0	16.00	13.50	0.30	10.05	10.05	95,38	5.96
f-f	6 19	9 42	0.30	10.05	10.05	94 96	15,35
g - g	1.32	4.71	0.30	10.05	10.05	94.48	71.75

(n.b.; M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Muri - Relazione di calcolo

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0L
 00 E 09
 CL
 IV0100 005
 A
 41 di 50

Sez.	V _{Ed}	h	V_{rd}
(-)	(kN)	(m)	(kN)
a - a	20.82	0.30	127.38
b - b	36.89	0.30	160.49
C - C	34.53	0.30	127.38
d - d	33.35	0.30	129.63
e-e	21.40	0.30	129.07
f – f	11.85	0.30	128.56
g - g	4.77	0.30	127.97

Non è necessaria armatura a taglio.

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO IF0L

LOTTO $00 \to 09$

CODIFICA DOCUMENTO \mathbf{CL}

IV0100 005

REV. **FOGLIO**

42 di 50

12.4 Verifiche strutturali SLE

Verifiche a fessurazione

VERIFICHE ALLO STATO LIMITE DI FESSURAZIONE

2.77

(MPa)

15

fctm = 0.48*Rck1/2 =

coefficiente omogeneizzazione acciaio n =

Es 210000 (MPa) Ēс 32308 (MPa)

Copriferro (distanza asse armatura-bordo)

αе

5.00 (cm)

6.50

Interferro tra I e II strato

5.00

Valore limite di apertura delle fessure

0.3 mm Quasi permanente = 0.2

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

ovalie = N / A + M / Wgg

omonte = N / A - M / Wgg

A = 1.0*B

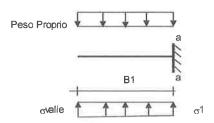
2.70 (m²)

 $Wgg = 1.0*B^2/6 =$

1.22 (m³)

	N	M	σvaile	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
Essa	175.18	17.09	78.95	50.81
Freq.	175.18	17.09	78.95	50.81
0.0	175.18	17.09	78.95	50.81
Q.P.	175,18	17.09	78.95	50.81

lato valle lato monte a C omonte **o**valle


Mensola Lato Valle

Peso Proprio

PP ≃ 7.50 (kN/m)

 $Ma = \sigma^{1*}B1^{2}/2 + (\sigma valle - \sigma^{1})^{*}B1^{2}/3 - PP^{*}B1^{2}/2^{*}(1\pm kv)$

	ovalle	σ1	Ma
caso	[kN/m ²]	[kN/m ²]	[kNm]
Freq.	78.95	76.87	1.42
	78.95	76.87	1.42
Q.P.	78.95	76.87	1.42
	78.95	76,87	1.42

62.24

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0L	00 E 09	CL	IV0100 005	A	43 di 50

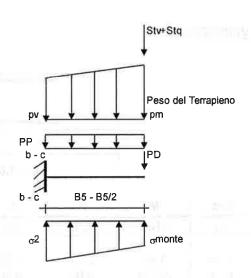
Mensola Lato Monte

pvc

Muri - Relazione di calcolo

 (kN/m^2) PP 7.50 peso proprio soletta fondazione peso proprio dente PD 0.00 (kN/m) Nmin N max Freq N max QP (kN/m^2) 62.24 62.24 pm 62.24 62.24 62.24 62.24 (kN/m^2) pvb

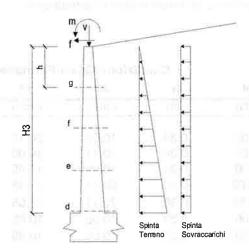
$$\label{eq:monte-pvb} \begin{split} \text{Mb=} &(\sigma_{monte}\text{-}(\text{pvb+PP}))^*\text{B5}^2/2 + (\sigma_2\text{b-}\sigma_{monte})^*\text{B5}^2/6 - (\text{pm-pvb}))^*\text{B5}^2/3 + \\ &- (\text{Stv+Sqv})^*\text{B5-PD}^*(\text{B5-Bd/2}) + \text{Msp+Sp*H2/2} \end{split}$$


62.24

 $\begin{aligned} \text{Mc} = & (\sigma_{\text{monte}} - (\text{pvc} + \text{PP}))^* (\text{B5/2})^2 / 2 + (\sigma_2 \text{c} - \sigma_{\text{monte}})^* (\text{B5/2})^2 / 6 - (\text{pm-pvc})^* (\text{B5/2})^2 / 3 + \\ & - (\text{Stv} + \text{Sqv})^* (\text{B5/2}) - \text{PD}^* (\text{B5/2} - \text{Bd/2}) + \text{Msp} + \text{Sp}^* + \text{B2/2} \end{aligned}$

62.24

 (kN/m^2)


σmonte	σ2b	Mb	σ2c	Mc
[kN/m ²]	[kN/m ²]	[kNm]	[kN/m ²]	[kNm]
50.81	73.74	-27.31	62.28	-9.14
50.81	73.74	-27.31	62.28	-9.14
50.81	73.74	-27.31	62.28	-9.14
50.81	73.74	-27.31	62.28	-9.14
	[kN/m²] 50.81 50.81 50.81	[kN/m²] [kN/m²] 50.81 73.74 50.81 73.74 50.81 73.74	[kN/m²] [kN/m²] [kNm] 50.81 73.74 -27.31 50.81 73.74 -27.31 50.81 73.74 -27.31 50.81 73.74 -27.31	[kN/m²] [kN/m²] [kNm] [kN/m²] 50.81 73.74 -27.31 62.28 50.81 73.74 -27.31 62.28 50.81 73.74 -27.31 62.28 50.81 73.74 -27.31 62.28

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

 $\begin{array}{lll} Mt & = \frac{1}{2} \; Ka_{orizz} * \gamma^*h^{2*}h/3 \\ Mq & = \frac{1}{2} \; Ka_{orizz} * q^*h^2 \\ M_{ext} & = m + f^*h \\ N_{ext} & = v \end{array}$

condizione Frequente

	obitalization i requestio									
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	Npp	N _{tot}		
36210116	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]		
d-d	2.40	11.86	12.99	0.00	24.85	0.00	18.00	18.00		
e-e	1.80	5.00	7.31	0.00	12.31	0.00	13.50	13.50		
f-f	1.20	1.48	3.25	0.00	4.73	0.00	9.00	9.00		
g - g	0.60	0.19	0.81	0.00	1.00	0.00	4.50	4.50		

condizione Quasi Permanente

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	Npp	N _{tot}	
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	2.40	11.86	12.99	0.00	24.85	0.00	18.00	18.00	
e-e	1.80	5.00	7.31	0.00	12.31	0.00	13.50	13.50	
f-f	1.20	1.48	3.25	0.00	4.73	0.00	9.00	9.00	
g-g	0.60	0.19	0.81	0.00	1.00	0.00	4.50	4.50	

FOGLIO

44 di 50

COMUNE DI MADDALONI

PROGETTO LOTTO CODIFICA DOCUMENTO REV.

IFOL 00 E 09 CL IV0100 005 A

Muri – Relazione di calcolo

VERIFICHE

		a-a	pos 1-2-3-4
		b-b	pos 1-2-3-4
		C-C	pos 1-4
— A'f		d-d	pos 5-6-7-8-9
	h	e-e	pos 5-6-7-8-9
——— Af		f-f	pos 5-7-8
		g-g	pos 5-7
b = 1.0 m			

Condizione Frequente

Sez.	M	N	h	Af	A'f	σC	σf	wk	Wamm
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	1.42	0.00	0.30	10.05	20.11	0.15	6.33	0.006	0.300
b-b	-27.31	0.00	0.30	20.11	10.05	2.40	62.59	0.042	0.300
c - c	-9.14	0.00	0.30	10.05	10.05	1.05	40.61	0.041	0.300
d - d	24.85	18.00	0.30	20.11	10.05	2.85	101.37	0.071	0.300
е -е	12.31	13.50	0.30	20.11	10.05	1.41	47.92	0.033	0.300
f-f	4.73	9.00	0.30	10.05	10.05	0.54	16.54	0.016	0.300
g-g	1.00	4.50	0.30	10.05	10.05	0.11	2.29	0.002	0.300

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	σC	σf	wk	Wamm
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	1.42	0.00	0.30	10.05	20.11	0.15	6.33	0.006	0.200
b - b	-27.31	0.00	0.30	20.11	10.05	2.40	62.59	0.042	0.200
C - C	-9.14	0.00	0.30	10.05	10.05	1.05	40.61	0.041	0.200
d - d	24.85	18.00	0.30	20.11	10.05	2.85	101.37	0.071	0.200
е -е	12.31	13.50	0.30	20.11	10.05	1.41	47.92	0.033	0.200
f-f	4.73	9.00	0.30	10.05	10.05	0.54	16.54	0.016	0.200
g - g	1.00	4.50	0.30	10.05	10.05	0.11	2.29	0.002	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

PROGETTO

LOTTO

CODIFICA

DOCUMENTO

REV. FOGLIO

45 di 50

Muri – Relazione di calcolo

IF0L

00 E 09

CL I

IV0100 005

Verifiche tensionali

VERIFICHE TENSIONI DI ESERCIZIO

DATI DI PROGETTO:

Caratteristiche dei Materiali

Calcestruzzo

Rck = 5 35

(MPa)

15

coefficiente omogeneizzazione acciaio n =

Copriferro
c = (distanza asse armatura-bordo)
c = 5.00 (cm)

combinazione caratteristica (rara)

To 16.8 Mpa 360 Mpa

combinazione quasi permanente.

σ_c 12.6 Mpa σ_f 360 Mpa

Interferro tra I e II strato

i_{I-II} 5.00 (cm)

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

ovalle = N / A + M / Wgg omonte = N / A - M / Wgg

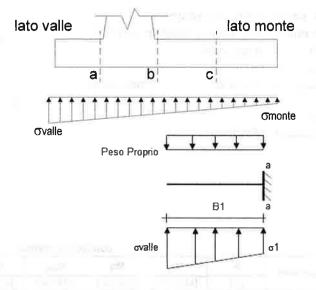
A = 1.0*B

= 2.70 (m²)

 $Wgg = 1.0*B^2/6$

1.22 (m³)

	N	M	σvalle	omonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
Dara	175.18	17.09	78.95	50.81
Rara	175.18	17.09	78.95	50.81


Mensola Lato Valle

Peso Proprio.

 $PP = 7.50 \quad (kN/m)$

 $Ma = \sigma 1*B1^{2}/2 + (\sigma valle - \sigma 1)*B1^{2}/3 - PP*B1^{2}/2*(1\pm kv)$

	σvalle	σ1	Ma
caso	[kN/m ²]	[kN/m ²]	[kNm]
Doro	78.95	76.87	1.42
Rara	78.95	76.87	1.42

PROGETTO

LOTTO

CODIFICA

DOCUMENTO

REV. **FOGLIO**

A

46 di 50

Muri – Relazione di calcolo

IF0L

00 E 09

 \mathbf{CL}

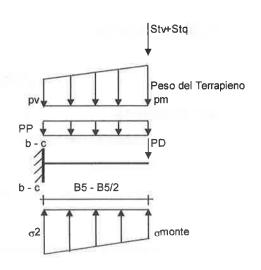
IV0100 005

Mensola Lato Monte

PP 7.50 (kNm^2) PD 0.00 (kN/m)

peso proprio soletta fondazione

peso proprio dente


Nmin N max stat N max sism

62.24 (kN/m^2) 62.24 62.24 pm 62.24 62.24 62.24 (kN/m^2) ρvb 62.24 (kN/m^2) 62.24 62.24 pvc

 $Mb = (\sigma_{monte} - (pvb + PP)^* (1 \pm kv))^* B5^2 / 2 + (\sigma 2b - \sigma_{monte})^* B5^2 / 6 - (pm - pvb))^* (1 \pm kv)^* B5^2 / 3 + (\sigma 2b - \sigma_{monte})^* B5^2 / 6 - (pm - pvb))^* (1 \pm kv)^* B5^2 / 3 + (\sigma 2b - \sigma_{monte})^* B5^2 / 6 - (pm - pvb))^* (1 \pm kv)^* B5^2 / 3 + (\sigma 2b - \sigma_{monte})^* B5^2 / 6 - (pm - pvb))^* (1 \pm kv)^* B5^2 / 3 + (\sigma 2b - \sigma_{monte})^* B5^2 / 6 - (pm - pvb))^* (1 \pm kv)^* B5^2 / 3 + (\sigma 2b - \sigma_{monte})^* B5^2 / 6 - (pm - pvb))^* (1 \pm kv)^* B5^2 / 3 + (\sigma 2b - \sigma_{monte})^* B5^2 / 6 - (pm - pvb))^* (1 \pm kv)^* B5^2 / 3 + (\sigma 2b - \sigma_{monte})^* B5^2 / 6 - (pm - pvb))^* (1 \pm kv)^* B5^2 / 3 + (\sigma 2b - \sigma_{monte})^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 3 + (\sigma 2b - \sigma_{monte})^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 3 + (\sigma 2b - \sigma_{monte})^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 3 + (\sigma 2b - \sigma_{monte})^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 3 + (\sigma 2b - \sigma_{monte})^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* B5^2 / 6 - (pm - pvb)^* (1 \pm kv)^* (1 \pm kv)$ -(Stv+Sqv)*B5-PD*(1±kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

 $Mc = (\sigma_{monte} - (pvc + PP) * (1 \pm kv)) * (B5/2)^2 / 2 + (\sigma_2 c - \sigma_{monte}) * (B5/2)^2 / 6 - (pm - pvc) * (1 \pm kv) * (B5/2)^2 / 3 + (\sigma_2 c - \sigma_{monte}) * (B5/2)^2 / 6 - (pm - pvc) * (1 \pm kv) * (B5/2)^2 / 3 + (\sigma_2 c - \sigma_{monte}) * (B5/2)^2 / 6 - (pm - pvc) * (B5/2)^2 / 3 + (\sigma_2 c - \sigma_{monte}) * (B5/2)^2 / 6 - (pm - pvc) * (B5/2)^2 / 3 + (\sigma_2 c - \sigma_{monte}) * (B5/2)^2 / 3 + (\sigma$ -(Stv+Sqv)*(B5/2)-PD*(1±kv)*(B5/2-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

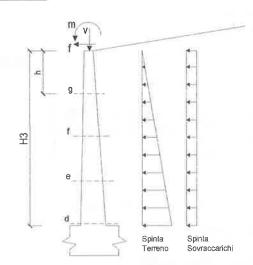
	σmonte	σ2b	Mb	σ 2 c	Мс
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m ²]	[kNm]
D	50.81	73.74	-27.31	62.28	-9.14
Rara	50.81	73.74	-27.31	62.28	-9.14

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz}} * \gamma * (1 \pm k v) * h^2 * h/3$

Mt sism = $\frac{1}{2} * \gamma * (Kas_{orizz} * (1\pm kv) - Ka_{orizz}) * h^2 * h/2$

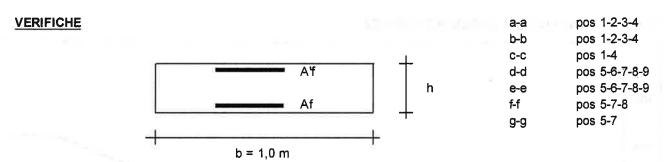

Mg = $\frac{1}{2}$ Ka_{orizz}*q*h²

 $= m+f^*h$

 M_{inerzia} $= \sum Pm_i*b_i*kh$ (solo con si:

 N_{ext} = v

 $N_{pp+inerzia} = \sum Pm_i^*(1\pm kv)$


condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
SCEIONE	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.40	11.86	12.99	0.00	24.85	0.00	18.00	18.00
е-е	1.80	5.00	7.31	0.00	12.31	0.00	13.50	13.50
f-f	1.20	1.48	3.25	0.00	4.73	0.00	9.00	9.00
g-g	0.60	0.19	0.81	0.00	1.00	0.00	4.50	4.50

Muri – Relazione di calcolo

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0L	00 E 09	CL	IV0100 005	\mathbf{A}	47 di 50

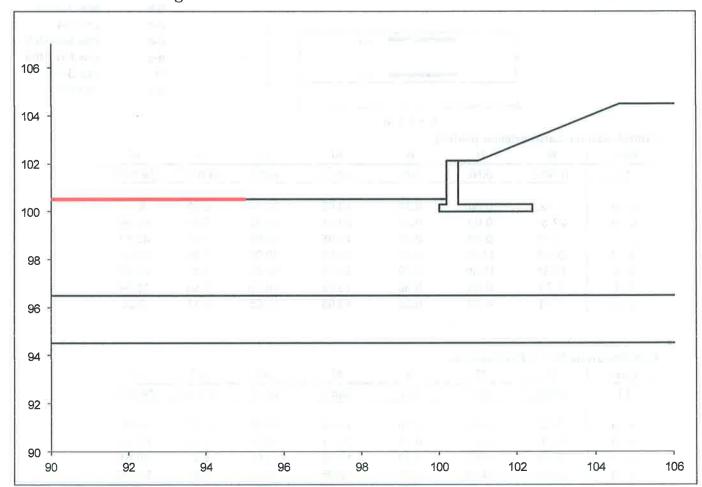
Combinazione Caratteristica (RARA)

JOHNSHIGE	One Caratter	isuca (ivriv	~ <i>!</i>				
Sez.	M	N	h	Af	A'f	Q.C	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	1.42	0.00	0.30	10.05	20.11	0.15	6.33
b - b	-27.31	0.00	0.30	20.11	10.05	2.40	62.59
C - C	-9.14	0.00	0.30	10.05	10.05	1.05	40.61
d - d	24.85	18.00	0.30	10.05	10.05	2.85	101.37
е -е	12.31	13.50	0.30	10.05	10.05	1.41	47.92
f-f	4.73	9.00	0.30	10.05	10.05	0.54	16.54
g - g	1.00	4.50	0.30	10.05	10.05	0.11	2.29

Combinazione Quasi Permanente.

	Olio Quadi I	omanone.					
Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	1.42	0.00	0.30	10.05	20.11	0.15	6.33
b - b	-27.31	0.00	0.30	20.11	10.05	2.40	62.59
C - C	-9.14	0.00	0.30	10.05	10.05	1.05	40.61
d - d	24.85	18.00	0.30	10.05	10.05	2.85	101.37
е -е	12.31	13.50	0.30	10.05	10.05	1.41	47.92
f - f	4.73	9.00	0.30	10.05	10.05	0.54	16.54
g - g	1.00	4.50	0.30	10.05	10.05	0.11	2.29

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)



ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0L
 00 E 09
 CL
 IV0100 005
 A
 48 di 50

12.5 Verifiche stabilità globale A2+M2+R2

ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

PROGETTO

LOTTO

CODIFICA

DOCUMENTO

FOGLIO

IF0L

00 E 09

CL

IV0100 005

49 di 50

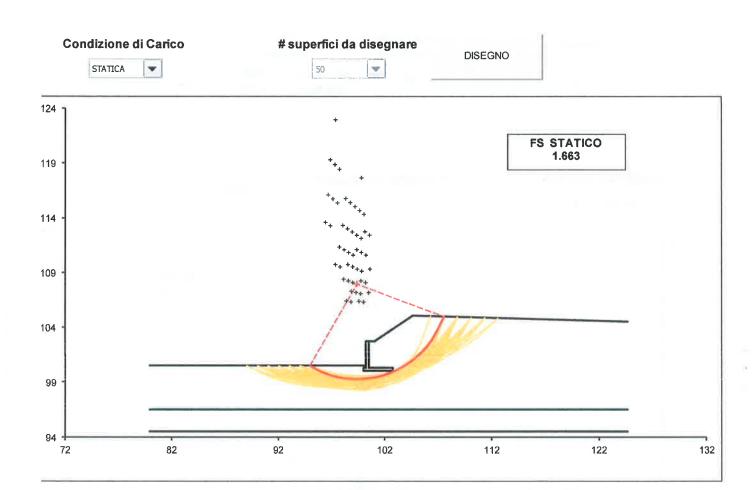
# Superfici Calcolate	FS Blsh	
4074	STATICO	1.663
1971	SISMICO	1.488

CALCOLO

superfici da disegnare

DISEGNO

Muri – Relazione di calcolo


ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO I° LOTTO FUNZIONALE CANCELLO-FRASSO TELESINO E VARIANTE ALLA LINEA ROMA-NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI

FOGLIO

50 di 50

PROGETTO LOTTO CODIFICA DOCUMENTO REV.

IFOL 00 E 09 CL IV0100 005 A

