ENI S.p.A. - DIVISIONE E&P

SERVIZI DI MONITORAGGIO AMBIENTALE CAMPO BONACCIA NW

MONITORAGGIO DELL'AREA INTERESSATA DALL'INSTALLAZIONE DELLA PIATTAFORMA BONACCIA NW E DELLA CONDOTTA COLLEGANTE BONACCIA NW A BONACCIA

PRE-SURVEY (dicembre 2014 - marzo 2015)

INDAGINI FISICHE E CHIMICHE DELLA COLONNA D'ACQUA E DEI SEDIMENTI, INDAGINI SULLE COMUNITÀ PLANCTONICHE, ECOTOSSICOLOGIA DEI SEDIMENTI E INDAGINI SULLA COMUNITÀ BENTONICA

RAPPORTO n. 1

OPERATORE SCIENTIFICO:

CNR – ISMAR SEDE DI ANCONA

RESPONSABILE SCIENTIFICO:

GIANNA FABI

RAPPORTO A CURA DI:

GIANNA FABI

FABRIZIO BERNARDI AUBRY

ALFREDO BOLDRIN

ELISA CAMATTI

Anna De Biasi

LUDMILA KOZINKOVA

VERA SALVALAGGIO

ALESSANDRA SPAGNOLO

ANCONA, Ottobre 2015

INDICE

1.	INTI	RODUZIONE	1
2.	PIAT	TAFORMA BONACCIA NW	5
	2.1.	MATERIALI E METODI	5
		2.1.1. CAMPIONAMENTO IN MARE	5
		2.1.1.1 Caratteristiche fisiche e chimiche della colonna d'acqua	
		2.1.1.2 Indagini sulle comunità planctoniche	
		2.1.1.3 Misure correntometriche	8
		2.1.1.4 Indagini fisiche e chimiche dei sedimenti e della	
		comunità bentonica	
		2.1.1.5 Ecotossicologia dei sedimenti	
		2.1.1.6 Popolamento ittico	
		2.1.1.7 Rilevamento del passaggio di cetacei	11
		2.1.2. ANALISI DI LABORATORIO E ANALISI DEI DATI	12
		2.1.2.1 Caratteristiche fisiche e chimiche della colonna d'acqua	
		2.1.2.2 Indagini sulle comunità planctoniche	
		2.1.2.3 Indagini fisiche e chimiche dei sedimenti	
		2.1.2.4 Ecotossicologia dei sedimenti	
		2.1.2.5 Indagini sulla comunità bentonica	30
	2.2.	RISULTATI	36
		2.2.1. CARATTERISTICHE FISICHE E CHIMICHE DELLA COLONNA D'ACQU 2.2.1.1 Temperatura, salinità, torbidità, Ossigeno disciolto e fluorescenza indotta	
		2.2.1.2 Sali nutritivi	39
		2.2.1.3 Clorofille <i>a</i> , <i>b</i> e <i>c</i> e particellato sospeso	45
		2.2.1.4 Confronto tra l'area della futura piattaforma e le stazioni	40
		di controllo	
		Aromatici, BTEX	
		2.2.1.6 Glicole etilenico	
		2.2.1.7 Metalli pesanti	
		2.2.2. INDAGINI SULLE COMUNITÀ PLANCTONICHE	
		2.2.2.1 Fitoplancton	
		2.2.2.2 Zooplancton	
		2.2.3. INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI	
		2.2.3.1 Granulometria	
		2.2.3.2 Idrocarburi Policiclici Aromatici	
		2.2.3.3 Idrocarburi totali	
		2.2.3.4 Metalli pesanti	
		2.2.3.5 Sostanza organica	
		2.2.3.6 Total Organic Carbon (TOC)	
		2.2.4. ECOTOSSICOLOGIA DEI SEDIMENTI	77
		2.2.4.1 Dunaliella tertiolecta	
		2.2.4.2 Vibrio fischeri	77
		2.2.4.3 Corophium orientale	78
		2.2.4.4 Crassostrea gigas	79

2. 3. EA-L : ONA :	2.2.5. INDAGINI SULLA COMUNITÀ BENTONICA 2.2.5.1 Densità (N) e Biomassa (P) 2.2.5.2 Affinità biocenotiche delle specie rinvenute 2.2.5.3 Dominanza 2.2.5.4 Ricchezza specifica totale (S) 2.2.5.5 Ricchezza specifica media (S _m) 2.2.5.6 Diversità specifica (H') 2.2.5.7 MultiDimensional Scaling (MDS) 2.2.5.8 Valutazione dello stato ambientale 2.6. RILEVAMENTO DEL PASSAGGIO DI CETACEI CONCLUSIONI INE COLLEGANTE BONACCIA NW CON PIATTAFORMA CCIA MATERIALI E METODI 3.1.1. CAMPIONAMENTO IN MARE 3.1.1.1 Indagini fisiche e chimiche dei sedimenti e della comunità bentonica 3.1.1.2 Ecotossicologia dei sedimenti	8388909192949798
2. 3. EA-L : ONA :	2.2.5.1 Densità (N) e Biomassa (P)	8388909192949798
3. EA-L. ONA.	2.2.5.3 Dominanza 2.2.5.4 Ricchezza specifica totale (S) 2.2.5.5 Ricchezza specifica media (S _m) 2.2.5.6 Diversità specifica (H') 2.2.5.7 MultiDimensional Scaling (MDS) 2.2.5.8 Valutazione dello stato ambientale 2.6. RILEVAMENTO DEL PASSAGGIO DI CETACEI CONCLUSIONI INE COLLEGANTE BONACCIA NW CON PIATTAFORMA CCIA MATERIALI E METODI 3.1.1. CAMPIONAMENTO IN MARE 3.1.1.1 Indagini fisiche e chimiche dei sedimenti e della comunità bentonica	8991929498949798
3. EA-L. ONA.	2.2.5.4 Ricchezza specifica totale (S) 2.2.5.5 Ricchezza specifica media (S _m) 2.2.5.6 Diversità specifica (H'). 2.2.5.7 MultiDimensional Scaling (MDS) 2.2.5.8 Valutazione dello stato ambientale 2.6. RILEVAMENTO DEL PASSAGGIO DI CETACEI CONCLUSIONI INE COLLEGANTE BONACCIA NW CON PIATTAFORMA CCIA MATERIALI E METODI 3.1.1. CAMPIONAMENTO IN MARE 3.1.1.1 Indagini fisiche e chimiche dei sedimenti e della comunità bentonica	909192949798104104
3. EA-L. ONA.	2.2.5.5 Ricchezza specifica media (S _m) 2.2.5.6 Diversità specifica (H') 2.2.5.7 MultiDimensional Scaling (MDS) 2.2.5.8 Valutazione dello stato ambientale 2.6. RILEVAMENTO DEL PASSAGGIO DI CETACEI CONCLUSIONI INE COLLEGANTE BONACCIA NW CON PIATTAFORMA CCIA MATERIALI E METODI 3.1.1. CAMPIONAMENTO IN MARE 3.1.1.1 Indagini fisiche e chimiche dei sedimenti e della comunità bentonica	91 92 94 97 98 \ 104 104
3. EA-L. ONA.	2.2.5.6 Diversità specifica (H')	92 94 97 98 \ 104 104
3. EA-L. ONA.	2.2.5.7 MultiDimensional Scaling (MDS) 2.2.5.8 Valutazione dello stato ambientale 2.6. RILEVAMENTO DEL PASSAGGIO DI CETACEI CONCLUSIONI INE COLLEGANTE BONACCIA NW CON PIATTAFORMA CCIA MATERIALI E METODI 3.1.1. CAMPIONAMENTO IN MARE 3.1.1.1 Indagini fisiche e chimiche dei sedimenti e della comunità bentonica	92 94 97 98 \(\bar{\chi}\)104
3. EA-L. ONA.	2.2.5.8 Valutazione dello stato ambientale	9498 \(\begin{align*} \cdot \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
3. EA-L. ONA.	2.6. RILEVAMENTO DEL PASSAGGIO DI CETACEI	9798 \(\bar{\chi}\)104104
3. EA-L. ONA.	INE COLLEGANTE BONACCIA NW CON PIATTAFORMA CCIA MATERIALI E METODI 3.1.1. CAMPIONAMENTO IN MARE 3.1.1.1 Indagini fisiche e chimiche dei sedimenti e della comunità bentonica	98 104104
EA-L ONA 1.	INE COLLEGANTE BONACCIA NW CON PIATTAFORMA CCIA MATERIALI E METODI 3.1.1. CAMPIONAMENTO IN MARE 3.1.1.1 Indagini fisiche e chimiche dei sedimenti e della comunità bentonica	\ 104 104
ONA (1.	CCIA MATERIALI E METODI 3.1.1. CAMPIONAMENTO IN MARE 3.1.1.1 Indagini fisiche e chimiche dei sedimenti e della comunità bentonica	104 104 104
1.	MATERIALI E METODI	104 104
	3.1.1. CAMPIONAMENTO IN MARE	104
	3.1.1.1 Indagini fisiche e chimiche dei sedimenti e della comunità bentonica	
	comunità bentonica	101
	3.1.1.2 Ecotossicología dei sedimenti	
	3.1.2. Analisi di laboratorio e analisi dei dati	105
2.	RISULTATI	106
	3.2.1. Indagini fisiche e chimiche dei sedimenti	
	3.2.1.1 Granulometria	
	3.2.1.2 Idrocarburi Policiclici Aromatici	
	3.2.1.3 Idrocarburi totali	
	<u> </u>	
	-	
	3.2.3.3 Dominanza	
	3.2.3.4 Ricchezza specifica totale (S)	121
	3.2.3.5 Ricchezza specifica media (S _m)	122
	3.2.3.6 Diversità specifica (H')	
2		
3.	CONCLUSIONI	125
IBLI	OGRAFIA	127
	3. (IBLIC	3.2.1.4 Metalli pesanti 3.2.1.5 Sostanza organica 3.2.1.6 Total Organic Carbon (TOC) 3.2.2. ECOTOSSICOLOGIA DEI SEDIMENTI 3.2.2.1 Dunaliella tertiolecta 3.2.2.2 Vibrio fischeri 3.2.2.3 Corophium orientale 3.2.2.4 Crassostrea gigas 3.2.2.5 Ricerca di metalli pesanti in Hediste diversicolor 3.2.3. INDAGINI SULLA COMUNITÀ BENTONICA 3.2.3.1 Densità (N) e Biomassa (P) 3.2.3.2 Affinità biocenotiche delle specie rinvenute 3.2.3.3 Dominanza 3.2.3.4 Ricchezza specifica totale (S) 3.2.3.5 Ricchezza specifica media (S _m) 3.2.3.6 Diversità specifica (H') 3.2.3.7 Valutazione dello stato ambientale

- AL	L. A2	Indagini fisiche e chimiche dei sedimenti	VIII
- AL	L. A3	Indagini sulla comunità bentonica	XII
ALLEGATO B		e granulometriche dei siti posti nell'area della futura forma Bonaccia NW e controlli K1-K4	XV
ALLEGATO C		le granulometriche del sito C4 posto in corrispondenza turo sea-line e del controllo K6	XXIII

PARTECIPANTI AL PROGRAMMA

Il presente programma è stato svolto in collaborazione con il Consorzio Interuniversitario di Biologia Marina ed Ecologia Applicata (CIBM) di Livorno.

Analisi chimiche e fisiche colonna d'acqua e analisi comunità fitoplanctoniche

A. Boldrin	CNR - ISMAR Venezia
F. Acri	CNR - ISMAR Venezia
F. Bernardi Aubry	CNR - ISMAR Venezia
S. Bruno	CNR - ISMAR Venezia
D. Cassin	CNR - ISMAR Venezia
M. Casula	CNR - ISMAR Venezia
L. Dametto	CNR - ISMAR Venezia
A. De Lazzari	CNR - ISMAR Venezia
M. Pansera	CNR - ISMAR Venezia
S. Pasqual	CNR - ISMAR Venezia
P. Polidori	CNR - ISMAR Ancona
M. Leonetti	CNR - ISMAR Ancona
S. Leoni	CNR - ISMAR Ancona
M. Betti	CNR - ISMAR Ancona

Analisi dei sedimenti ed ecotossicologia

A.M. De Biasi	CIBM Livorno
G. Bontà Pittaluga	CIBM Livorno
S. Dell'Ira	CIBM Livorno
L. Kozinkova	CIBM Livorno
M. Pertusati	CIBM Livorno
S. Polese	CIBM Livorno
O. Spinelli	CIBM Livorno

Comunità bentonica

C. Cuicchi	CNR - ISMAR Ancona
L. Montagnini	CNR - ISMAR Ancona
P. Polidori	CNR - ISMAR Ancona
E. Punzo	CNR - ISMAR Ancona
V. Salvalaggio	CNR - ISMAR Ancona
A. Santelli	CNR - ISMAR Ancona
A. Spagnolo	CNR - ISMAR Ancona
P. Strafella	CNR - ISMAR Ancona

Hanno inoltre collaborato allo svolgimento dei campionamenti in mare i Sigg.ri Giampaolo Gaetani e Antonio Marziali imbarcati sulla M/R Tecnopesca II del CNR – ISMAR di Ancona utilizzata per le indagini.

1. INTRODUZIONE

In riferimento al Decreto n. 0000222 del 09/09/2014 emesso dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare il CNR-ISMAR UOS di Ancona è stato incaricato da ENI S.p.A. – Divisione E&P di effettuare un monitoraggio volto a valutare il potenziale impatto ambientale conseguente l'installazione della piattaforma Bonaccia NW e della condotta sottomarina collegante tale piattaforma alla piattaforma Bonaccia.

La piattaforma Bonaccia NW verrà ubicata in Adriatico centrale, a circa 60 km in direzione Est dalla costa marchigiana di Ancona, su un fondale di circa 87 m, nella zona delle sabbie argillose del largo.

L'area in cui sarà posta la struttura è particolarmente interessante dal punto di vista idrodinamico in quanto, trovandosi sulla mid-line, non è influenzata in maniera consistente dalla circolazione generale dell'Adriatico (verso Nord nel versante croato e verso Sud in quello italiano). Tuttavia, in alcuni periodi dell'anno può essere soggetta a un maggiore idrodinamismo dovuto al passaggio sul fondo di acque dense formatesi nel Nord Adriatico durante la stagione invernale con caratteristiche chimico-fisiche differenti da quelle presenti in zona e che possono modificare le caratteristiche biogeochimiche e la distribuzione spaziale dei sedimenti. La parte più superficiale, vista l'ubicazione della piattaforma, può essere interessata da eventi di Bora anche abbastanza consistenti, che possono determinare variazioni brusche di correnti nella parte più superficiale della colonna d'acqua (10-20 m).

Sulla base di tali considerazioni, considerando anche le esperienze condotte e/o tuttora in corso dal CNR-ISMAR presso analoghe strutture situate in Adriatico centrale e settentrionale (Fabi *et al.*, 2004; 2005; 2010a; 2010b; 2010c; 2013; 2014a; 2014b; 2014c; 2015) si è ritenuto opportuno proporre un programma di monitoraggio comprendente le seguenti indagini:

- 1. caratteristiche idrologiche della colonna d'acqua (correnti, temperatura, salinità, ossigeno disciolto, sali nutritivi, fluorescenza, ecc.) (solo piattaforma);
- 2. caratteristiche delle comunità fito- e zooplanctoniche (solo piattaforma come da prescrizione ARPAM del 06/02/2015);
- 3. caratteristiche fisiche e chimiche dei sedimenti presenti nel fondo mobile circostante (piattaforma e sea-line);
- 4. ecotossicologia dei sedimenti circostanti (piattaforma e sea-line);
- 5. caratteristiche delle comunità bentoniche presenti nei sedimenti circostanti (piattaforma

- e sea-line);
- 6. analisi di inquinanti in organismi marini (*Hediste diversicolor*) (piattaforma e sea-line);
- 7. analisi di inquinanti e di biomarkers in organismi marini insediati sulle parti sommerse della piattaforma (*Mytilus galloprovincialis*);
- 8. evoluzione del popolamento ittico (solo piattaforma);
- 9. rilevamento del passaggio di cetacei (piattaforma e sea-line).

Al fine di ottenere un quadro esaustivo degli effetti indotti dall'installazione delle strutture, sulla base delle indicazioni riportate nel Decreto n. 0000222 del 09/09/2014 e della tempistica delle operazioni di posa in opera fornite da ENI Divisione E&P, nel programma di monitoraggio sono state previste le seguenti fasi (Tab. 1-I):

Piattaforma Bonaccia NW:

- a. Fase precedente alla posa in opera della struttura: n. 1-2 survey.
- b. Fase di installazione della piattaforma e perforazione dei pozzi: le indagini ai punti 1) e 2) dell'elenco sopra riportato verranno condotte su base bimestrale per tutta la durata della fase: le indagini di cui ai punti 3-6 saranno effettuate nel corso di survey stagionali (inverno ed estate) il cui numero varierà in funzione della durata dei lavori. Il rilevamento del passaggio di cetacei avverrà mediante operatori MMO.
- c. Fase di produzione: le indagini previste ai punti 3-8 verranno condotte per 5 anni dopo la fine dei lavori di installazione delle strutture e perforazione dei pozzi. Per le indagini sedimentologiche, ecotossicologiche, sulla comunità bentonica e la ricerca di inquinanti e biomarkers in organismi marini si effettueranno survey stagionali (inverno ed estate). I campionamenti per lo studio della comunità ittica saranno mensili, mentre l'osservazione di mammiferi marini sarà effettuata mediante 3 campionamenti/mese. Le indagini previste al punto 1 verranno effettuate per tutta la durata dell'esercizio dell'impianto mediante campionamenti bimestrali. Le indagini di cui al punto 2 non sono previste in questa fase.

d. Fase di fine produzione:

- pre-smantellamento: verranno condotte le indagini di cui ai punti 3-5 e 7-8; eccetto lo studio della comunità ittica si prevede un survey per ogni tipologia di indagini che verrà effettuato subito prima dell'inizio dei lavori di smantellamento. Per la comunità ittica verranno condotti 3 survey;
- 2. smantellamento: in questa fase verranno condotte le indagini di cui ai punti 1, 3-5 e 8; si prevede come minimo n. 1 survey che potrà essere ripetuto in funzione

- della durata dei lavori;
- 3. post-smantellamento: tutte le indagini di cui ai punti 3-5 e 7-8 verranno condotte per un periodo di 3 anni dallo smantellamento della piattaforma. Quelle riguardanti i sedimenti e la comunità bentonica si svolgeranno in inverno e/o estate, il popolamento ittico verrà invece investigato mensilmente. Le indagini riguardanti la colonna d'acqua (punto 1) avranno la durata di 1 anno e si svolgeranno con cadenza bimestrale.

Condotta Bonaccia NW - Bonaccia:

- a. Fase precedente alla posa in opera della condotta: n. 1-2 survey;
- b. Fase di installazione: in questa fase saranno effettuati esclusivamente rilevamenti del passaggio di cetacei mediante operatori MMO.
- c. Fase di esercizio: le indagini verranno condotte per 3 anni dopo la fine dei lavori di installazione con cadenza stagionale (inverno ed estate). Al termine di tale periodo potrà essere valutata l'opportunità di proseguire ulteriormente con i controlli ambientali.

d. Fase di fine esercizio:

- 1. pre-smantellamento: in questa fase verrà effettuato un survey per caratterizzare la colonna d'acqua, per verificare lo stato dei sedimenti e per la caratterizzazione delle comunità bentoniche alla fine della fase di esercizio;
- 2. post-smantellamento: si prevede un monitoraggio della durata di un anno che includerà le indagini sulla colonna d'acqua, sui sedimenti e sulla comunità bentonica. Per le indagini riguardanti la colonna d'acqua è previsto un solo survey, tutte le altre saranno condotte in inverno e in estate.

Per le fasi a) e b) riguardanti sia la piattaforma che il sea-line sono stati previsti monitoraggi semplificati rispetto a quelli successivi all'installazione a causa dell'assenza fisica delle strutture (pre-survey) e di problemi tecnici legati alla presenza dei mezzi di lavoro (fase di installazione).

Per quanto concerne la fase d), data la lunga durata della fase di produzione di una piattaforma, si precisa che le modalità di monitoraggio e le indagini sono state redatte sulla base delle esperienze maturate sino ad oggi, ma è verosimile che nel tempo gli approcci metodologici riguardanti sia la dismissione delle strutture che le metodiche di monitoraggio ambientale si evolveranno. Pertanto il piano proposto potrebbe necessitare di modifiche sulla base delle nuove conoscenze acquisite.

Nel presente rapporto sono descritti i risultati conseguiti nella fase di pre-survey (dicembre 2014 - marzo 2015) che riguardano i punti 1-5 e 9 del precedente elenco.

Tab. 1-I – Survey previsti durante il programma di monitoraggio ambientale.

Fase	Comparti d'indagine	Piattaforma Bonaccia NW	Sea-line
	Colonna acqua	1-3 survey	
щ	Comunità planctoniche	1-3 survey	
pera	Sedimenti	1 survey	1-2 survey
Ante operam	Ecotossicologia dei sedimenti	1 survey	1-2 survey
Ant	Comunità bentonica	1 survey	1-2 survey
	Rilevamento cetacei	3-5 survey	
	Colonna acqua	Per tutta la durata della fase	
4)	Comunità planctoniche	Per tutta la durata della fase	
Cantiere	Sedimenti	Per tutta la durata della fase	
ant	Ecotossicologia dei sedimenti	Per tutta la durata della fase	
S	Comunità bentonica	Per tutta la durata della fase	
	Rilevamento cetacei	*	*
	Correntometria	Per tutta la durata della fase	
	Colonna acqua	Per tutta la durata della fase	
	Sedimenti	5 anni	3 anni
Esercizio	Ecotossicologia dei sedimenti	5 anni	3 anni
	Comunità bentonica	5 anni	3 anni
Es	Comunità ittica	5 anni	
	Analisi inquinanti e biomarker in organismi marini	5 anni	
	Rilevamento cetacei	5 anni	
C	Colonna d'acqua	**	1 survey
ent	Sedimenti	1 survey	1 survey
re Iam	Ecotossicologia dei sedimenti	1 survey	1 survey
Pre smantellamento	Comunità bentonica	1 survey	1 survey
maı	Comunità ittica	3 survey	
52	Rilevamento cetacei	Ad ogni occasione	
ıtο	Colonna acqua	Per tutta la durata della fase	
mento	Sedimenti	Per tutta la durata della fase	
ella	Ecotossicologia dei sedimenti	Per tutta la durata della fase	
Smantellaı	Comunità bentonica	Per tutta la durata della fase	
Sm	Rilevamento cetacei	Ad ogni occasione	
	Colonna acqua	1 anno	1 survey
Post smantellamento	Sedimenti	3 anni	1 anno
st am	Ecotossicologia dei sedimenti	3 anni	1 anno
Post itellar	Comunità bentonica	3 anni	1 anno
nan	Comunità ittica	3 anni	
SI	Rilevamento cetacei	Ad ogni occasione	

^{*} Monitoraggio in continuo da parte di operatori MMO (rif. DM punto A.7-a) ** Incluso nella fase di Esercizio

2. PIATTAFORMA BONACCIA NW

2.1. MATERIALI E METODI

Come già accennato nel Cap. 1, la piattaforma Bonaccia NW sarà ubicata a circa 60 km al largo di Ancona a una profondità di circa 87 m (fig. 2.1). Le coordinate del punto in cui avverrà l'installazione della struttura sono riportate in Tab. 2-I.

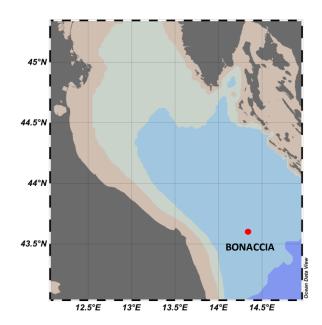


Fig. 2.1 - Ubicazione della piattaforma Bonaccia NW.

Tab. 2-I – Coordinate geografiche del punto in cui verrà installata la piattaforma Bonaccia NW.

Sito	Coordinate Geografiche
Piattaforma Bonaccia NW	43°35'59'',289N 14°20'08'',604E

2.1.1. CAMPIONAMENTO IN MARE

2.1.1.1 Caratteristiche fisiche e chimiche della colonna d'acqua

Per lo studio delle caratteristiche fisiche e biochimiche della colonna d'acqua sono stati effettuati due survey, di cui il primo a dicembre 2014 e il secondo a marzo 2015.

I prelievi sono stati effettuati in 5 stazioni disposte a croce, una delle quali posta nel punto in cui verrà installata la piattaforma e 4 entro un raggio di 2000 m (~ 1 mn) da esso, orientate da NW a SE e da NE a SW (fig. 2.2; Tab. 2-II). In tutte le stazioni sono stati misurati in continuo, mediante una sonda multiparametrica (CTD; All. A1-I) equipaggiata, oltre che con i sensori standard di pressione, temperatura e conducibilità, con un

fluorimetro Turner - Cyclops7 per la misurazione della concentrazione di clorofilla *a*, con un torbidimetro (Backscatterometro) Turner - Cyclops7 per la misurazione del particellato sospeso (TSM) e un sensore di ossigeno SBE43 per la determinazione della concentrazione di ossigeno disciolto periodicamente calibrata presso il centro di calibrazione del SACLAND della NATO di La Spezia, i seguenti parametri lungo la colonna d'acqua:

- profondità (pressione);
- temperatura;
- conducibilità (da cui si ricava la salinità);
- ossigeno disciolto;
- fluorescenza;
- torbidità (Backscatterometro).

Presso ogni stazione sono stati anche prelevati tramite bottiglie Niskin campioni di acqua a 4 quote (superficie, -20 m, -40 m e fondo). Su tali campioni sono stati misurati i seguenti parametri volti a valutare l'attività biologica nell'area:

- ossigeno disciolto tramite metodo Winkler;
- azoto inorganico come Ammoniaca, Nitriti e Nitrati;
- fosforo inorganico disciolto come Ortofosfato;
- silicio inorganico disciolto come Ortosilicato;
- carico solido totale come peso secco;
- concentrazione di pigmenti clorofilliani;
- idrocarburi totali;
- idrocarburi alifatici:
- idrocarburi policiclici aromatici;
- Solventi organici aromatici (BTEX);
- metalli pesanti (Alluminio, Arsenico, Bario, Cadmio, Cromo, Ferro, Indio, Mercurio,
 Nichel, Piombo, Rame, Silicio, Vanadio, Zinco);
- glicole etilenico.

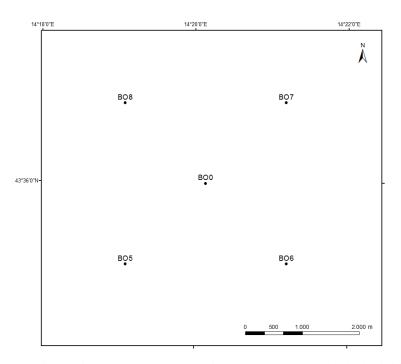


Fig. 2.2 - Schema di campionamento adottato nei due pre-survey per le indagini idrologiche.

Tab. 2-II - Coordinate geografiche delle stazioni di campionamento utilizzate per le indagini idrologiche.

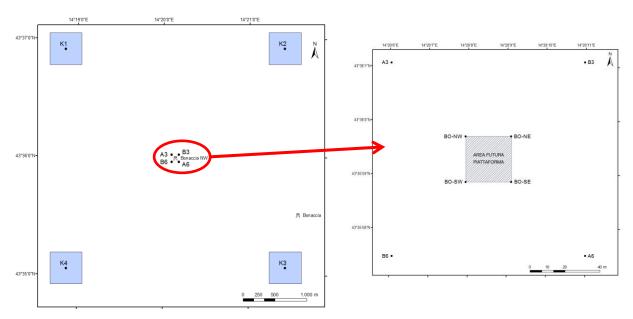
Nome Stazione	Longitudine Est	Latitudine Nord
BO0	43° 35' 59"	14° 20' 09"
BO5	43° 35' 13"	14° 19' 06"
BO6	43° 35' 14"	14° 21' 12"
BO7	43° 36' 45"	14° 21' 11"
BO8	43° 36' 45"	14° 19' 05"

2.1.1.2 Indagini sulle comunità plactoniche

In tutte le stazioni e alle quote campionate per i parametri fisici e chimici della colonna d'acqua sono stati raccolti 250 ml di acqua in bottiglie di vetro scuro per l'analisi delle comunità fitoplanctoniche. I campioni sono stati fissati con lugol (concentrazione finale 2%) immediatamente dopo il prelievo.

In ogni stazione, inoltre, è stata analizzata la comunità zooplanctonica lungo tutta la colonna d'acqua. I prelievi di zooplancton sono stati eseguiti utilizzando un retino standard di tipo WP2 con rete da 200 µm e diametro dell'area di bocca da 57 cm, effettuando pescate verticali da circa 5 metri dal fondo fino alla superficie (fig. 2.3). Il retino è munito di flussimetro HYDRO-BIOS KIEL per calcolare i m³ d'acqua filtrata. I campioni di organismi così raccolti sono stati fissati con formalina tamponata con tetraborato di sodio a una concentrazione finale del 4%.

Fig. 2.3 - Retino di tipo WP2 con flussimetro HYDRO-BIOS per campionamento dello zooplancton.


2.1.1.3 Misure correntometriche

In questa fase di pre-survey non sono state previste le misurazioni correntometriche essendo impossibile il posizionamento della strumentazione necessaria perché, trattandosi di un'area di mare aperto fortemente sfruttata dalla pesca a strascico, qualsiasi strumento posto sul fondo o a mezz'acqua rischierebbe di rimanere intrappolato nelle reti e quindi danneggiato e/o perso. Non si è ritenuto idoneo neanche adottare il sistema di misura lagrangiano poiché non adeguato per un monitoraggio sito-specifico.

2.1.1.4 Indagini fisiche e chimiche dei sedimenti e sulla comunità bentonica

Il survey è stato condotto nel gennaio 2015. I prelievi hanno interessato un'area di circa 2000x2000 m all'interno della quale sono state posizionate 12 stazioni lungo due transetti ortogonali tra di loro e aventi come punto di intersezione i pozzi stessi (fig. 2.4). Il primo transetto (transetto A) è stato orientato da NW verso SE e il secondo (transetto B) da NE verso SW, ortogonalmente alla linea di costa. Quattro stazioni sono state posizionate in corrispondenza del punto di installazione della piattaforma e 4 a 60 m di distanza da esso. Le altre 4 (controlli) sono state posizionate in modo random all'interno di aree (500x500 m) poste a circa 2000 m dal punto di installazione di Bonaccia NW. La distanza e la posizione delle singole stazioni dal punto "Bonaccia NW" e le profondità relative sono

riportate in Tab. 2-III.

Fig. 2.4 - Schema di campionamento utilizzato per le indagini sedimentologiche e sulla comunità bentonica. A destra il particolare dei quattro siti di prelievo nel punto di installazione della futura piattaforma. In verde l'area che verrà occupata dalla struttura.

Tab. 2-III - Dati identificativi delle stazioni di campionamento utilizzate durante il pre-survey per le indagini sedimentologiche e sulla comunità bentonica. In rosso i punti di campionamento in corrispondenza della futura piattaforma.

	Distanza dal sito Elettra (m)	Posizione rispetto alla futura piattaforma	Coordinate geografiche	Profondità (m)
A3	60	NW	43°36,030N 14°20,104E	86,9
BO NW	0	NW	43°36,001N 14°20,131E	87,2
BO SE	0	SE	43°35,994N 14°20,136E	87,2
A6	60	SE	43°35,996N 14°20,163E	87,2
В3	60	NE	43°36,018N 14°20,183E	87,0
BO NE	0	NE	43°36,002N 14°20,136E	87,1
BO SW	0	SW	43°35,997N 14°20,125E	87,1
В6	0	SW	43°35,975N 14°20,099E	87,0
K1	2000	NW	43°36,827N 14°18,760E	84,2
K2	2000	NE	43°36,968N 14°21,891E	84,7
K3	2000	SE	43°34,747N 14°21,497E	84,3
K4	2000	SW	43°35,078N 14°18,902E	85,9

Indagini fisiche e chimiche dei sedimenti - Tutte le stazioni sono state campionate mediante box-corer (fig. 2.5; All. A2-I).

In sito sono stati rilevati i seguenti parametri:

- aspetto macroscopico (colore, odore, eventuale presenza di frammenti di conchiglie, concrezioni, ecc.);
- tessitura;

presenza di strutture sedimentarie di varia natura;

Da ciascun campione, dopo la descrizione degli aspetti sopra elencati, sono state prelevate porzioni di sedimento ripartite in due aliquote per le seguenti analisi:

- granulometria;
- Idrocarburi Policiclici Aromatici (IPA);
- Idrocarburi totali:
- metalli pesanti (Alluminio, Arsenico, Bario, Cadmio, Cromo, Ferro, Indio, Mercurio,
 Nichel, Piombo, Rame, Silicio, Vanadio, Zinco);
- sostanza organica totale;
- TOC (Total Organic Carbon).

I campioni sono stati congelati e conservati a -18° C ad eccezione di quelli utilizzati per la granulometria, conservati a $+4^{\circ}$ C.

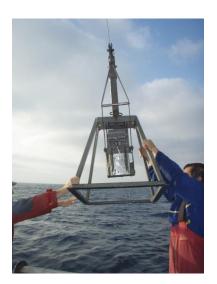


Fig. 2.5 – Box-corer utilizzato per le indagini fisiche e chimiche dei sedimenti.

Indagini sulla comunità bentonica - Tutte le stazioni sono state campionate mediante una benna di tipo Van Veen avente una capacità di 12 l e un'apertura di 0,095 m² (fig. 2.6; All. A3-I). Presso ogni stazione sono state effettuate 6 repliche. I campioni sono stati lavati e setacciati con maglia da 0,5 mm (All. A3-II) e fissati in formalina diluita in acqua di mare al 5%.

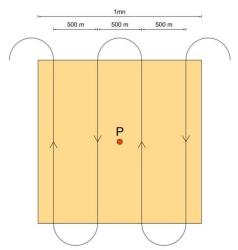
Fig. 2.6 – Benna Van Veen utilizzata per le indagini sulla comunità bentonica.

2.1.1.5 Ecotossicologia dei sedimenti

Presso le stazioni di campionamento BO SE, A3, A6, B3, B6, K1, K2, K3 e K4 (fig. 2.4) sono stati prelevati mediante benna Van-Veen anche campioni di sedimento per lo svolgimento dei seguenti saggi ecotossicologici:

- Dunaliella tertiolecta (accrescimento);
- *Vibrio fischeri* (variazione della bioluminescenza);
- Corophium orientale (mortalità dopo 10 giorni);
- Crassostrea gigas (embriotossicità).

La ricerca di inquinanti è stata effettuata su esemplari di *Hediste diversicolor*; le prove di bioaccumulo hanno riguardato i seguenti metalli pesanti: Alluminio, Arsenico, Bario, Cadmio, Cromo, Ferro, Indio, Mercurio, Nichel, Piombo, Rame, Silicio, Vanadio, Zinco. Dal campione di sedimento è stata prelevata solo la porzione superficiale (5-10 cm) eliminando lo strato di fango venuto a contatto con le pareti della benna, al fine di evitare eventuali contaminazioni. Il materiale così ottenuto è stato posto in recipienti puliti e conservato a circa 5°C.


2.1.1.6 Popolamento ittico

Nella fase di pre-survey non si è ritenuto necessario condurre tale tipo di indagine in quanto la valutazione degli eventuali effetti sulla fauna ittica dell'ambiente originale verrà effettuato nella fase post lavori tramite il confronto con siti di controllo.

2.1.1.7 Rilevamento del passaggio di cetacei

Gli avvistamenti di cetacei nell'area della futura piattaforma Bonaccia NW sono stati effettuati all'interno di un'area di circa 1 mn² avente al centro il punto Bonaccia NW.

All'interno di tale area sono stati tracciati dei transetti distanti circa 500 m l'uno dall'altro e percorsi a una velocità media di 5 nodi (fig. 2.7). Durante il survey due operatori osservavano simultaneamente l'eventuale presenza di cetacei registrandola sul quaderno di campo annotando l'ora, il numero degli esemplari, la loro posizione rispetto alla piattaforma e, ove possibile, la specie. Tali survey sono stati condotti sia nel corso delle campagne di campionamento della colonna d'acqua, dei sedimenti e della comunità bentonica, sia durante apposite crociere. Nel periodo gennaio - marzo 2015 sono stati effettuati complessivamente 6 avvistamenti, di cui 3 durante le indagini fisiche e chimiche dei sedimenti e le indagini sulla comunità bentonica e 3 ad hoc.

Fig. 2.7 - Schema di campionamento adottato per gli avvistamenti dei cetacei nell'area interessata dalla futura posa in opera della piattaforma Bonaccia NW. P = futura piattaforma.

2.1.2. ANALISI DI LABORATORIO E ANALISI DEI DATI

2.1.2.1 Caratteristiche fisiche e chimiche della colonna d'acqua

I campioni di acqua raccolti sono stati analizzati in laboratorio per valutare il contenuto dei sali nutritivi disciolti (nitrati, nitriti, ammonio, ortofosfati e ortosilicati), dell'ossigeno disciolto, dei solidi totali sospesi (TSM: Total Suspended Matter) e della concentrazione di pigmenti clorofilliani. Sono stati inoltre ricercati i vari inquinanti elencati nel Cap. 2.1.1.1.

Ossigeno disciolto - E' stato quantificato direttamente a bordo con metodo Winkler (1888): i campioni di acqua appena raccolti sono stati fissati con idrossidi misti di manganese e conservati al buio fino alla determinazione. La titolazione è stata effettuata con tiosolfato di sodio con metodo potenziometrico ed elettrodo di platino, entro le 4 h successive, utilizzando la buretta automatica Metrohm Basic Titrino 794 (All. A1-II) e confronto con soluzione standard di iodato di potassio (Strickland e Parsons, 1972;

Saggiomo *et al.*, 1990). Le analisi di ossigeno disciolto effettuate sono state utilizzate per calibrare i valori misurati dal sensore SBE 43 installato sulla sonda CTD- SBE19plusV2 per i profili in continuo.

Sali nutritivi - Il campione per l'analisi dei macro-nutrienti inorganici è prelevato dalla bottiglia di campionamento, dopo filtrazione con filtro in fibra di vetro Whatman GF/F (porosità = 0,7 μ m; Ø = 47 mm), e conservato al buio ad una temperatura di -20°C fino all'analisi.

L'analisi dei nutrienti è stata eseguita tramite un analizzatore colorimetrico automatico EasyChem PlusTM della ditta Systea s.r.l. (All. A1-III), seguendo le metodiche esposte in Grasshoff *et al.* (1999), in particolare:

- azoto da ammoniaca N-NH₃: il metodo prevede che l'ammoniaca reagisca in ambiente alcalino con fenolo e ipoclorito per formare blu di indofenolo letto a 660 nm;
- azoto da nitriti N-NO₂: lo ione nitrito è fatto reagire in ambiente acido con sulfanilamide e naftiletilendiamina per formare un composto diazoico di colore rosso.
 L'assorbanza del prodotto di reazione è misurata a 540 nm;
- azoto da nitrati N-NO₃: il metodo si basa sulla loro riduzione a nitriti e sul successivo dosaggio dei nitriti totali utilizzando la metodica sopra esposta. La riduzione viene effettuata facendo passare il campione attraverso una colonna di cadmio fornita dalla ditta Systea s.r.l.;
- ortofosfati P-PO₄: il campione viene trattato con ammonio molibdato in ambiente acido; il complesso che ne risulta viene ridotto con acido ascorbico a blu di molibdeno. Si misura l'intensità della colorazione così prodotta a 880 nm;
- ortosilicati Si-SiO₄: il metodo automatico prevede la misurazione fotometrica del prodotto di riduzione (blu di molibdeno) che si forma in presenza di acido ascorbico, quando lo ione silicio reagisce con ammonio molibdato in ambiente acido. Il complesso è letto a 880 nm; l'acido ossalico viene addizionato allo scopo di eliminare le interferenze dei fosfati.

Per ogni parametro i limiti di rilevabilità (IRSA, 1994) sono:

• N-NH₃: 0,05 μM;

• N-NO₂: 0,01 μM;

• N-NO₃: 0,10 μM;

• P-PO₄: 0,01 μM;

• Si-SiO₄: 0,02 μM.

Pigmenti clorofilliani - I campioni per la determinazione delle diverse clorofille sono stati prelevati mediante bottiglie idrologiche e filtrati a bordo, immediatamente dopo il prelievo, su filtri in fibra di vetro Whatman GF/F (porosità = 0,7 μ m; Ø = 47 mm), opportunamente conservati in freezer a -20°C fino al momento dell'analisi. La filtrazione è stata effettuata per aspirazione, con la minore depressione possibile per evitare la rottura delle cellule, in ogni caso minore di 200 mm Hg⁻¹.

Le analisi delle clorofille *a, b* e *c* sono state effettuate secondo il metodo Vidussi *et al.* (1996) mediante HPLC (High Performance Liquid Chromatography; All. A1-IV) HP 1090 dotato di detector DAD (photodiode array detector), utilizzando una colonna *Synergy-Hydro Reversed-phase* (150 mm x 3 cm x 4 µm). I dati sono stati acquisiti tramite integratore HP 3396 series II. L'estratto è stato iniettato attraverso un loop di 200 µl e l'eluizione ha previsto un flusso pari a 0,8 ml/min con un gradiente binario lineare fra il solvente A (metanolo:ammonio acetato 0.5 N, 70:30 v:v) e il solvente B (metanolo puro), avente il seguente programma (minuti, %A, %B): 0, 75, 25 - 1, 50,50 - 15, 0, 100 - 18,5, 0, 100 - 19, 75, 25. L'identificazione dei pigmenti è stata effettuata per confronto con standard esterni (DHI Laboratories) settando la lunghezza d'onda per la lettura a 440 nm. I valori di clorofilla sono stati utilizzati per calibrare i dati del sensore di fluorimetria Turner Cyclops-7 installato sulla sonda CTD- SBE19plusV2 per i profili in continuo.

Carico solido totale come peso secco - Il carico solido totale è stato determinato con la seguente procedura: i campioni prelevati mediante bottiglie idrologiche sono stati filtrati *in situ* su filtri in fibra di vetro Whatman GF/F (porosità = 0.7 μm; Ø = 47 mm), pesati a freddo con bilancia analitica Mettler 0,01 mg (All. A1-V) e riposti in singoli portafiltri numerati. La filtrazione è stata effettuata per aspirazione, con la minore depressione possibile per evitare la rottura delle cellule, in ogni caso minore di 200 mm Hg⁻¹. Per eliminare i residui salini il filtro è stato risciacquato nella fase finale della filtrazione del campione per 3 volte con acqua Milli-Q. Al termine dalla filtrazione i filtri sono stati conservati a -20°C in essiccatore fino al momento dell'analisi. La determinazione in laboratorio del peso secco totale è avvenuta per via gravimetrica, dopo essiccazione a 50-60°C per 4 ore, secondo le indicazioni riportate da Strickland and Parsons (1972). Il peso dei singoli filtri combusti è stato sottratto al peso del filtro corrispondente su cui è stato filtrato il campione. Le concentrazioni di TSM (total suspended matter) sono state espresse in mg/l. I valori di TSM sono stati utilizzati per calibrare i dati del sensore di torbidità Turner Cyclops-7 installato sulla sonda CTD- SBE19plusV2 per i profili in continuo.

Per l'acquisizione e l'elaborazione dei dati registrati tramite la sonda CTD è stato utilizzato il software fornito dalla casa produttrice seguendo le norme suggerite dall'UNESCO (UNESCO, 1988) e riportate sul manuale "Handbook of method protocols" (Artegiani, 1996); le grandezze derivate, come salinità e anomalie della densità, sono state calcolate secondo gli algoritmi dell'UNESCO (UNESCO, 1983). Per le varie elaborazioni grafiche sono stati utilizzati il software GrapherTM Vers. 11.5.791 (32 bit), aprile 2015 della Golden Software, LLC, e il software Ocean Data View © Vers: 4.6.3 (Schlitzer R., 2014; http://odv.awi.de).

Per la misura di inquinanti lungo la colonna d'acqua sono state utilizzate le metodiche elencate in Tab. 2-IV.

Tab. 2-IV - Elenco degli inquinanti analizzati lungo la colonna d'acqua e metodi di analisi utilizzati.

METALLI			
		limite	
	unità di misura		metodo
Alluminio	μg/L	0,1	EPA 6020A
Arsenico	μg/L	0,1	EPA 6020A
Bario	μg/L	0,1	EPA 6020A
Cadmio	μg/L	0,1	EPA 6020A
Cromo	μg/L	0,1	EPA 6020A
Ferro	μg/L	5	EPA 6020A
Mercurio	μg/L	0,1	EPA 6020A
Nichel	μg/L	0,1	EPA 6020A
Piombo	μg/L	0,1	EPA 6020A
Rame	μg/L	0,1	EPA 6020A
Vanadio	μg/L	0,1	EPA 6020A
Zinco	μg/L	0,1	EPA 6020A
Indio	μg/L	0,1	EPA 6020A
Silice	mg/L	0,01	EPA 200.7
OLVENTI ORGANICI AROMATICI (BTEX)			
Benzene	μg/L	0,1	EPA 5030C + EPA 8260C
Etilbenzene	μg/L	1	EPA 5030C + EPA 8260C
Stirene	μg/L	1	EPA 5030C + EPA 8260C
Toluene	μg/L	1	EPA 5030C + EPA 8260C
Xilene	μg/L	1	EPA 5030C + EPA 8260C
ALTRE SOSTANZE			
Idrocarburi totali (n-esano)	μg/L	30	EPA 5021A + EPA 3510C + 8015E
Etilenglicole	mg/L	10	M.U. 1367:99
Idrocarburi policiclici aromatici	μg/L	0,01-0,1	EPA 3510C + EPA 8310
Idrocarburi alifatici	μg/L	1	EPA 3510C + EPA 8270D

EPA METHOD 6020A, 2007 - Inductively coupled plasma-mass spectrometry.

EPA METHOD 200.7, 2001 - Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry.

EPA METHOD 5030C, 2003 - Purge-and-trap for aqueous samples.
EPA METHOD 8260C, 2006 - Volatile organic compounds by gaschromatography/ mass spectrometry (gc/ms).

EPA METHOD 5021A, 2003 - Equilibrium headspace.

EPA METHOD 3510C, 1996 - Separatory funnel liquid-liquid extraction.

EPA METHOS 8015D, 2003 - Nonhalogenated organics using gc/fid.

EPA METHOD 8310, 1986 - Polynuclear aromatic hydrocarbons.

EPA METHOD 8270D, 2007 - Semivolatile organic compounds by gas chromatography/mass spectrometry (gc/ms).

M.U. 1367:99 - Metodi Unichim, Qualità dell'acqua: determinazione di glicoli: etilenico, dietilenico, propilenico, dipropilenico e trietilenico - Metodo gascromatografico.

Metalli pesanti - Eccetto il Silicio, per gli altri metalli è stata adottata la tecnica della spettrometria di massa a plasma accoppiato induttivamente, indicata con ICP-MS. Tale tecnica sfrutta l'utilizzo di una torcia al plasma ICP per produrre la ionizzazione del campione e uno spettrometro di massa separa e rileva gli ioni prodotti.

Per la valutazione del silicio la base del metodo consiste nella misura delle intensità delle radiazioni elettromagnetiche emesse dagli atomi/ioni eccitati delle specie presenti nel campione, mediante tecniche spettrometriche con sorgente al plasma (ICP-OES). In seguito a fenomeni di eccitazione, avviene la produzione dello spettro di emissione composto dalle righe caratteristiche degli elementi presenti. Tali righe, dopo essere state separate mediante un sistema di dispersione, vengono inviate su un rivelatore (fotomoltiplicatore o a stato solido) che produce un segnale elettrico di intensità proporzionale all'intensità delle righe di emissione. Le intensità di emissione vengono rilevate, simultaneamente o in sequenza, e la concentrazione di analita presente nel campione viene determinata per confronto con una soluzione di riferimento a concentrazione nota.

Per tutti i metalli si è proceduto con l'agitazione del campione e il trasferimento di 100 ml in una beuta da 125 ml; dopo l'aggiunta di 5 ml di acido nitrico, la beuta è stata riscaldata su una piastra e il campione è stato fatto evaporare fino al raggiungimento di un volume di 10-20 ml. Completata la mineralizzazione, alla soluzione sono state aggiunte due successive aliquote di 5 ml di acqua. Una volta raffreddato, il campione è stato portato a volume con acqua per la successiva introduzione nello strumento di analisi. Lo strumento usato è uno spettrometro di massa con sorgente al plasma ICP-MS 7500ce, con cella di collisione Shield Torch e sistema ISIS, Agilent Technologies, dotato di autocampionatore ASX520, Cetac (All. A1-VI).

Per la misurazione del Silicio è stato utilizzato uno spettrometro simultaneo ad emissione atomica con plasma ad accoppiamento indotto ICP-AES Vista-MPX dotato di autocampionatore SPS-3, Varian (All. A1-VII).

Solventi organici aromatici (BTEX) - La determinazione è stata effettuata mediante gascromatografia accoppiata a spazio di testa dinamico ("Purge & trap"). Soltanto i composti scarsamente solubili in acqua, relativamente volatili, tendono ad occupare lo spazio di testa e quindi possono essere trasferiti nel gascromatografo; in tal modo è possibile minimizzare eventuali interferenze e/o contaminazioni della colonna gascromatografica e del rivelatore.

Il metodo prevede l'estrazione dalla matrice acquosa delle sostanze organiche volatili, con bassa solubilità in acqua, mediante il gorgogliamento di un gas inerte (elio) direttamente nelle vials di campionamento (40 ml). I composti così estratti vengono intrappolati in apposito materiale adsorbente. Terminata l'estrazione, la trappola viene riscaldata e gli analiti sono trascinati dal flusso del gas all'interno del gas cromatografo equipaggiato con rilevatore a massa.

Lo strumento utilizzato per la determinazione dei BTEX è uno spettrometro di massa quadrupolare HEWLETT-PACKARD GC/MS 5973 Network, munito di 1 autocampionatore a 51 posizioni per spazio di testa 4552 Purge & Trap e sistema di Purge & Trap Eclipse 4660 O.I. Analytical (All. A1-VII).

Idrocarburi totali - Questo parametro relativamente alle acque è da intendersi come somma delle due seguenti classi:

- a) i composti che, dopo i processi di estrazione e purificazione, sono rivelati mediante GC-FID, su colonna capillare non polare con tempi di ritenzione compresi tra quelli del n-decano (C10 H22) e del n-tetracontano (C40 H82) (frazione estraibile).
- b) i singoli idrocarburi, determinati mediante spazio di testa e analisi in gascromatografia con rivelatore FID, compresi tra il n-pentano (C5 H12) e in n-decano (C10 H12) inclusi (frazione volatile).

Analisi frazione volatile: Il metodo è applicabile a una vasta gamma di composti organici che hanno una volatilità sufficientemente elevata da essere efficacemente rimossi dal campione, mediante la procedura di equilibrio in spazio di testa.

In laboratorio, parte del campione d'acqua è stato trasferito in una vial per spazio di testa. All'interno della vial è stato inoltre aggiunto un modificatore di matrice e il relativo standard interno; successivamente, la vial chiusa e ben mescolata è stata posizionata nell'autocampionatore e mantenuta a temperatura ambiente. Il modificatore di matrice ha lo scopo di ben separare i composti volatili all'interno dello spazio di testa. Circa 1 ora prima dell'analisi, le singole fiale sono state riscaldate e miscelate per vibrazione meccanica.

L'autocampionatore ha quindi pressurizzato le vials con gas elio il quale ha spinto la miscela gassosa, formatasi nello spazio di testa attraverso una linea di trasferimento riscaldata, nella colonna GC. Le analisi sono eseguite utilizzando un GC con rilevatore a fiamma (FID).

Analisi frazione estraibile: In un cilindro graduato è stato misurato 1 l di campione che è stato travasato dal cilindro nell'imbuto separatore. Tale imbuto è stato agitato energicamente per circa 2', con sfiato periodico per scaricare la pressione in eccesso. Lo

strato organico è stato lasciato separato dalla fase acquosa per un minimo di 10' e si è ripetuta l'estrazione per altre due volte con porzioni fresche di solvente; al termine di tali operazioni i tre estratti di solvente sono stati uniti. L'essiccazione del campione dell'estratto è avvenuta tramite passaggio dello stesso su colonna di vetro, riempita con 20 g di sodio solfato anidro. Successivamente è stata eseguita la concentrazione in evaporatore rotante per effettuare il cambio del solvente per la successiva analisi cromatografica condotta mediante l'impiego si gascromatografo con rilevatore a fiamma (FID) con colonna capillare.

Gli idrocarburi totali sono stati determinati con un gascromatografo GC 8000 FISONS INST. con colonna capillare e rivelatore F.I.D., munito di autocampione per spazio di testa statico a 50 posizioni (All. A1-IX).

Idrocarburi Policiclici Aromatici (IPA) e Idrocarburi Alifatici (IA) - Utilizzando un cilindro graduato è stato misurato 1 litro (nominale) di campione che è stato travasato nell'imbuto separatore. Successivamente sono stati utilizzati circa 60 ml di cloruro di metilene per sciacquare il cilindro e questa aliquota è stata trasferita nell' imbuto separatore, che è stato scosso energicamente per circa 2', con sfiato periodico per scaricare la pressione in eccesso. Alla fine lo strato organico è stato lasciato separato dalla fase acquosa per un minimo di 10'. L'estrazione è stata ripetuta per altre due volte con porzioni fresche di solvente, unendo poi alla fine i tre estratti di solvente. L'essiccazione del campione dell'estratto è avvenuta tramite passaggio dello stesso su colonna di vetro, riempita con 20 g di sodio solfato anidro. Successivamente si è eseguita la concentrazione in evaporatore rotante per effettuare il cambio del solvente (acetonitrile e isoootano rispettivamente per analisi di IPA e idrocarburi Alifatici) per la successiva analisi cromatografica.

Nel caso degli **IPA**, la concentrazione di 16 IPA (priority pollutants per la USEPA) (naftalene, acenaftene, acenaftilene, fluorene, fenantrene, antracene, fluorantene, pirene, benzo(a)antracene, crisene, benzo(b)fluorantene, benzo(k)fluorantene, benzo(a)pirene, dibenzo(a,h)antracene, benzo(g,h,i)perilene, indenopirene) è stata determinata con cromatografo liquido ad alte prestazioni HPLC PE 200, accoppiato a un rivelatore a fluorescenza programmabile serie 200A. La colonna utilizzata è una Supelcosil LC-PAH (L = 150 mm ϕ = 3 cm, 5 micron) a fase inversa (All. A1-X). L'eluizione è avvenuta in gradiente ed è stata eseguita con acetonitrile-acqua come fase mobile ad un flusso di 0,8 ml/min. La colonna è stata termostatata a 40°C. Un programma di lunghezza d'onda variabile è stato sviluppato per consentire il rilevamento ottimale di tutti i composti.

L'identificazione e la quantificazione dei composti si basa sul confronto con i tempi di ritenzione e sulla misurazione dell'area dei picchi di standard di riferimento esterni. Il limite di rilevabilità è compreso tra 0,01 e 0,1 $\mu g/l$. Campioni di bianco sono stati eseguiti per l'intera procedura. Recupero e precisione sono stati validati con campioni di riferimento certificati. La metodica è stata ulteriormente verificata tramite periodica attività di intercalibrazione internazionale.

Gli IA sono analizzati mediante gascromatografia capillare con gascromatografo Agilent 7820A accoppiato a rilevatore di massa sistema MSD Agilent 7820A accoppiato a rilevatore di massa sistema MSD Agilent Serie 5977A con autocampionatore a 50 posizioni (All. A1-XI).

L'identificazione degli IA si basa sul confronto con il tempo di ritenzione di soluzioni standard, e la quantificazione è stata determinata dalle curve di taratura per ciascun composto analizzando cinque standard esterni. I limiti di rilevazione sono stati misurati con il metodo della curva di calibrazione e campioni di bianco sono stati eseguiti per l'intera procedura. Recupero del campione e precisione sono stati validati con campioni di riferimento certificati. La metodica è stata ulteriormente verificata tramite periodica attività di intercalibrazione internazionale.

Glicole etilenico - È stato misurato nei campioni di acqua mediante tecnica gas cromatografica utilizzando il rilevamento a ionizzazione di fiamma (FID). L'analisi in campioni d'acqua di mare non prevede la preparazione del campione, che è stato pertanto iniettato direttamente nello strumento previo prelievo di aliquota tarata.

Analogamente agli idrocarburi totali, l'etilenglicole è stato determinato con un gascromatografo GC 8000 FISONS INST. con colonna capillare e rivelatore F.I.D., munito di autocampione per spazio di testa statico a 50 posizioni (All. A1-IX).

2.2.1.2 Indagini sulle comunità planctoniche

Comunità fitoplanctonica - L'analisi qualitativa e quantitativa è stata effettuata secondo il metodo di Utermöhl (1958) mediante un microscopio invertito a contrasto di fase.

Ogni campione è stato posto a sedimentare, per 1-2 giorni, in camere di volume variabile tra 2 cm³ e 50 cm³, in funzione delle diverse abbondanze fitoplanctoniche.

I conteggi sono stati effettuati con un ingrandimento 400X su transetti, lungo il diametro della camera di sedimentazione, e per ogni campione sono state contate almeno 200 cellule/campione. La stima delle abbondanze fitoplanctoniche, espresse in cellule dm⁻³, è

stata calcolata applicando formule che tengono conto del numero di cellule contate, del numero dei transetti analizzati, del volume messo a sedimentare e dell'altezza del transetto (Zingone *et al.*, 2010).

L'identificazione dei singoli taxa è realizzata mediante l'uso delle seguenti chiavi tassonomiche: Tomas (1997), ICRAM (2006), Bérard-Therriault *et al.* (1999). Le chiavi tassonomiche utilizzate per i singoli gruppi sono riportate in Tab. 2-V.

Tab. 2-V - Chiavi tassonomiche utilizzate per la determinazione del fitoplancton.

Gruppo tassonomico	Riferimenti		
	Peragallo e Peragallo, 1897-1908		
Distance	Hustedt, 1930-1966		
Diatomee	Hendey, 1964		
	Sournia, 1987		
	Schiller, 1933-1937		
Dinoflagellate	Rampi e Bernhard, 1980		
_	Sournia, 1987		
Silicoflagellatae	Throndsen, 1993		
Coccolitoforidee	Rampi e Bernhard, 1981		
Coccontoloridee	Heimdal, 1993		
Euglenoficee	Throndsen, 1993		
Cloroficee	Pascher A., 1915		

Comunità zooplanctonica - I conteggi e il riconoscimento degli organismi sono stati eseguiti osservando, al microscopio binoculare ZEISS—Stemi 2000CS (massimo 100 ingrandimenti), almeno due aliquote per ogni campione, prelevando frazioni variabili da un minimo del 5% a un massimo del 40% del campione totale e, in ogni caso, contando non meno di 400 individui nel subcampione, mentre per le specie rare è stato analizzato il 100% del campione. Gli individui presenti sono stati contati e divisi per taxa. Le abbondanze calcolate sono state espresse come N.ind/m³.

Dopo l'analisi dei campioni al microscopio, i valori di abbondanza sono stati organizzati in fogli elettronici specie/campione. Tutte le specie sono state revisionate tramite il database World Register of Marine SpeciesWoRMS -(www.marinespecies.org).

L'identificazione dei singoli taxa è realizzata mediante l'uso delle seguenti chiavi tassonomiche: Rose (1933), Treguboff e Rose (1957), Avancini *et al.* (2006)

2.1.2.3 Indagini fisiche e chimiche dei sedimenti

Granulometria - In laboratorio i campioni di sedimento sono stati pesati tal quali per la determinazione del peso umido utilizzando una bilancia elettronica tipo "Europe" (All. A2-II). Successivamente sono stati posti in contenitori di alluminio e introdotti in stufa (All. A2-III) a 110°C per almeno 24 h. Una volta raggiunta la completa essiccazione si è proceduto alla misurazione del peso secco.

Per la separazione in sabbie e peliti ogni campione è stato immerso in acqua tiepida sino alla sua completa disgregazione; si è quindi proceduto alla setacciatura con maglie da 63 μ . Il materiale trattenuto dal setaccio, definito come sabbie, è stato fatto essiccare in stufa a 130°C per almeno 24 h ed è stato sottoposto ad indagine granulometrica, ovvero è stata analizzata la distribuzione percentuale in peso dei grani costituenti il campione secondo le loro dimensioni. Per questa analisi è stato utilizzato un set di setacci (All. A2-IV) aventi dimensioni delle maglie decrescenti (4000 μ , 2000 μ , 1000 μ , 500 μ , 250 μ , 125 μ , 63 μ). Una volta terminata la setacciatura sono stati pesati i residui di ogni setaccio ed è stata determinata la percentuale conchigliare presente. I dati così ottenuti sono stati riportati su un diagramma semilogaritmico e uniti mediante la cosiddetta "curva granulometrica".

Le peliti (materiale inferiore a $63~\mu$) sono state fatte decantare ed essiccare in stufa a 130°C sino a completa evaporazione. E' stata quindi eseguita l'aerometria mediante l'utilizzo di un densimetro (All. A2-V) per terreni secondo il metodo di Casagrande basato su due proprietà: a) velocità con cui si depositano i grani in sospensione in un liquido viscoso in quiete dipende dal volume, dalla forma e dal peso dei granuli stessi (Legge di Stokes); b) la densità della sospensione ad un dato istante è funzione della qualità del prodotto solido non ancora depositato.

Idrocarburi Policiclici Aromatici - Per la determinazione degli Idrocarburi Policiclici Aromatici (IPA) ogni campione è stato scongelato e privato dell'eventuale frazione più grossolana; in seguito, l'analisi è stata compiuta su un'aliquota di circa 20 g (peso umido), mentre una seconda aliquota è stata utilizzata per la determinazione del peso secco.

La determinazione degli IPA è stata effettuata mediante gas cromatografia utilizzando un Gas cromatografo doppia colonna (All. A2-VI). I componenti della miscela (IPA), separati tra loro, sono stati rilevati con la tecnica FID (rilevatore ionizzazione di fiamma), che consente di valutare i tempi di ritenzione e l'ampiezza dei picchi relativi. Il limite di rilevabilità dello strumento e quello della metodica corrispondono rispettivamente a 0,05 µg di solvente e 0,002 mg kg⁻¹ di campione s.s.

Sono stati ricercati nei siti di campionamento i 16 IPA indicati dall'EPA come con-

taminanti di interesse prioritario, espressi in mg kg⁻¹ di sostanza secca: Naftene, Acenaftalene, Acenaftene, Fenantrene, Antracene, Fluorantene, Pirene, Benz(a)Antracene, Crisene, Benzo(b)Fluorantene, Benzo(k)Fluorantene, Benzo(a)Pirene, Di-Benzo(a,h)Antracene, Fluorene, Benzo(g,h,i)Perilene, Indeno(1,2,3,c,d)Pirene. Le rette di calibrazione sono state preparate con la tecnica della standardizzazione esterna utilizzando come IPA di riferimento il Perilene, che permette anche di normalizzare le aree dei picchi dei singoli componenti la miscela e di confrontarle tra loro ai fini della quantizzazione.

Idrocarburi totali - Per gli idrocarburi leggeri (C<12) sono stati seguiti i metodi EPA 5021A (2003a) e EPA 8015D (2003b). 5 g di sedimento sono posti in vial in cui sono stati aggiunti 10 ml di acqua procedendo al riscaldamento della miscela a 65°C per 1 h. Successivamente 0,5 ml sono stati iniettati nello spazio di testa in Gascromatografia (GC) con rilevatore FID (All. 2-VI).

Gli idrocarburi pesanti (C>12) sono stati determinati seguendo il metodo ISO 16703 (2004). I campioni sono stati essiccati all'aria e una quantità nota omogeneizzata è stata estratta mediante sonificazione con acetone /n-eptano. Nella soluzione estraente è stata aggiunta la soluzione di riferimento per la finestra dei tempi di ritenzione (RTW) contenente n-tetracontano e n-dodecano. L'estratto è stato purificato su colonna Florisil. Un'aliquota dell'estratto purificato è stata quindi analizzata in GC-FID ed è stata misurata l'area totale dei picchi presenti nell'intervallo delimitato dalle due soluzioni di riferimento di n-tetracontano e n-dodecano. La quantità di idrocarburi è stata determinata mediante confronto con una soluzione di riferimento esterno costituito da quantità uguali di due differenti tipi di oli minerali.

Metalli pesanti - Sono stati analizzati i seguenti elementi, espressi in percentuale o mg kg⁻¹ di sostanza secca: Alluminio, Arsenico, Bario, Cadmio, Cromo, Ferro, Indio, Mercurio, Nichel, Piombo, Rame, Silicio, Vanadio e Zinco.

La mineralizzazione dei campioni è stata effettuata su circa 0.3 g di sostanza secca, mediante un sistema di digestione a microonde opportunamente programmato, aggiungendo a 3 ml di HNO_3 , 1 ml di HCl e 4 ml di H_2O .

Al termine della mineralizzazione i campioni sono stati filtrati e portati a un volume finale di 25 ml utilizzando acqua ultrapura. Gli acidi impiegati sono tutti rigorosamente ultrapuri. L'analisi per la determinazione del **mercurio** è stata condotta mediante tecnica AAS previa decomposizione termica ed amalgamazione (DMA-80 Analizzatore Diretto del Mercurio FKV; All. A2-VII) seguendo la metodica EPA 7473 (2007a). La prova è stata effettuata

direttamente sul campione tal quale (senza passaggio di mineralizzazione) pesando aliquote comprese tra 10 e 100 mg.

Le determinazioni di **cadmio, arsenico** e **piombo** sono state condotte mediante spettroscopia di assorbimento atomico in fornetto di grafite (Varian SpectrAA-240Z. All. A2-VIII), secondo la procedura EPA 7010 (2007b).

Le concentrazioni di **alluminio**, **bario**, **cromo**, **nichel**, **rame**, **silicio**, **ferro**, **vanadio** e **zinco** sono state ottenute mediante tecnica mediante tecnica ICP-AES (Varian ICP-720ES; All. A2-IX) seguendo la metodica EPA 6010C (2007c).

La mineralizzazione del campione di sedimento è stata effettuata su circa 0,45 g di sostanza secca mediante un sistema di digestione a microonde opportunamente programmato, utilizzando una miscela acida composta da a 9 ml di HNO₃, 3 ml di HCl (acidi concentrati). Al termine della mineralizzazione i campioni sono stati filtrati e portati a un volume finale di 25 ml utilizzando acqua Millipore.

L'analisi per la determinazione dell'indio è stata effettuata tecnica ICP-MS (Agilent Mod. 7700; All. A2-X) previa mineralizzazione acida impiegando un sistema "Digiprep" specifico per l'introduzione di campioni nell'ICP MS. Sono stati utilizzati circa 0,5 g di sostanza secca, mineralizzati con 10 ml di Acido Nitrico e portati a un volume finale di 50 ml utilizzando acqua Millipore.

L'accuratezza delle procedure di digestione e di analisi dei campioni è stata verificata impiegando i materiali standard di riferimento (LGC 6137 o MESS-3).

I recuperi percentuali ottenuti rispetto ai valori certificati dei suddetti materiali sono riportati in Tab. 2-VI.

Tab. 2-VI - Recuperi percentuali ottenuti sui materiali certificati LGC 6137, tranne il mercurio per il quale è stato usato MESS-3.

	Al	As	Ba	Cd	Cr	Cu	Fe	Hg	In	Ni	Pb	V	Si	V	Zn
ı	125	96	130	76	107	97	98	101	93	97	95	83	n.d.	107	95

Tutti i parametri strumentali sono stati inoltre ottimizzati tramite una risposta tipica strumentale conforme a quella fornita dalla casa costruttrice.

I limiti di rilevabilità strumentale e della metodica per i metalli determinati, relativamente alla strumentazione impiegata, sono riportati in Tab 2-VII.

Tab. 2-VII - Limiti di rilevabilità strumentali (D.L.) e della metodica (M.D.L.) dei metalli determinati.

	Al	As	Ba	Cd	Cr	Cu	Fe	Hg	In	Ni	Pb	V	Si	V	Zn
DL	1 μg/l	0,22 μg/l	0,15 μg/l	0,009 μg/l	0,9 μg/l	1,0 μg/l	0,8 μg/l	0,02 ng	0,2 μg/l	1,4 μg/l	0,2 μg/l	2,5 μg/l	0,7 μg/l	0,5 μg/l	1,4 μg/l
MDL	0.03	0,3 mg/kg	1,20 mg/kg	0,01 mg/kg	1,20 mg/kg	1,20 mg/kg	0,03	0,005 mg/kg	0,1 mg/kg	1,20 mg/kg	0,3 mg/kg	5 mg/kg	1,20 mg/kg	1,20 mg/kg	1,20 mg/kg

Sostanza organica - La determinazione della sostanza organica è stata eseguita mediante calcinazione in muffola: sono stati prelevati circa 3 grammi di sostanza essiccata (in stufa per 48h a 40°C) che sono stati successivamente posti in muffola a 375°C fino a peso costante.

TOC - Il Total Organic Carbon è stato determinato seguendo il Metodo VII.3 - Determinazione del carbonio organico (metodo walkley-black, DM 13/09/1999 - Ministro per le Politiche Agricole). Il carbonio organico è stato ossidato ad anidride carbonica, in condizioni standardizzate, con soluzione di potassio bicromato in presenza di acido solforico. La velocità della reazione viene favorita dall'innalzamento della temperatura conseguente alla brusca diluizione dell'acido. Dopo un tempo stabilito, la reazione è stata interrotta per aggiunta di opportuna quantità di H₂O e la quantità di potassio bicromato che non ha reagito è stata determinata per titolazione con una soluzione di ferro (II) solfato eptaidrato. Il punto finale della titolazione è stato accertato con l'aggiunta di un opportuno indicatore di ossidoriduzione.

2.1.2.4. Ecotossicologia dei sedimenti

Dunaliella tertiolecta

Il saggio di crescita algale con la cloroficea *Dunaliella tertiolecta* è stato eseguito secondo le indicazioni riportate nella linea guida ASTM E1218-04 (2004a). Il saggio consiste nell'esposizione di una quantità definita di clone algale in condizioni di crescita esponenziale a diverse diluizioni di campione (nella fattispecie elutriato) e al controllo negativo costituito da sola acqua marina artificiale. Prima dell'inoculo del clone algale, tutti i trattamenti, compreso il controllo, sono stati arricchiti con macro- e micronutrienti secondo le specifiche riportate in USEPA (1995).

<u>Preparazione degli elutriati</u> - L'elutriato è stato preparato secondo il metodo ICRAM (2001), utilizzando come acqua di lavorazione il medium preparato secondo le specifiche riportate nella norma UNI EN ISO 10253:2000 (2000).

Esecuzione del saggio – Il saggio con *D. tertiolecta* è stato condotto in triplicato, effettuando 5 diluizioni a partire dal campione tal quale; come supporto sono state utilizzate piastre sterili di polistirene da 24 pozzetti della capacità di 3 ml ciascuno. Parallelamente, per ogni piastra è stato eseguito anche un test con un controllo negativo costituito da acqua di diluizione (acqua di mare ISO a cui sono state aggiunte concentrazioni note di nutrienti). A ciascuna diluizione e al controllo è stata aggiunta una concentrazione nota di clone algale in rapporto di 1:1000. Una volta inoculato il clone algale (concentrazione iniziale 2x10³ cellule ml¹), le piastre sono state trasferite per 72 h in camera fitologica a condizioni di temperatura e luminosità controllate (T = 20±2°C, luminosità < 10000 lux). Al termine dell'esposizione è stata verificata la crescita algale nel campione, espressa come densità algale, mediante lettura al Coulter Counter; si è proceduto quindi al conteggio delle tre repliche del campione tal quale e del controllo e al loro confronto statistico, per verificare eventuali aumenti o diminuzioni significative della crescita algale nel campione rispetto al controllo e procedere eventualmente alla lettura delle altre diluizioni.

Espressione e analisi dei dati – I risultati del saggio possono essere riportati come percentuale di inibizione della crescita algale e, qualora la tossicità del campione lo consenta, in termini di EC₅₀ o EC₂₀. L'EC₅₀ e l'EC₂₀ si calcolano utilizzando il foglio Excel sviluppato dalla DTU (Danmarks Tekniske Universitet) denominato "KOK457T3" che utilizza i programmi statistici LOG457.EXE e LOG457W.EXE elaborati per la determinazione della relazione concentrazione-effetto in endpoint continui (Christensen *et al.*, 2009).

Sulla base dei risultati espressi in termini di inibizione/stimolazione della crescita e dell'analisi statistica del dato eco-tossicologico (eseguita secondo lo schema USEPA, 1991), i risultati del saggio possono essere suddivisi nelle seguenti categorie:

- assenza di effetto: percentuale di inibizione/stimolazione inferiore al 20% ed assenza di differenze significative;
- presenza di significativo effetto eutrofizzante: percentuale di biostimolazione > 20% e differenza significativa rispetto alla crescita nel controllo;
- presenza di significativo effetto tossico: inibizione della crescita > 20% e differenza significativa con il controllo.

<u>QA/QC</u> - La sensibilità di ogni clone algale impiegato per i test con i campioni di elutriato è stata verificata mediante il test di controllo positivo eseguito con bicromato di potassio il cui risultato, espresso come EC₅₀, è stato confrontato con i dati della carta di controllo del

laboratorio il cui intervallo è compreso tra 5,8 e 9,9 mg/l come cromo; altri parametri che devono essere rispettati affinché il test sia considerato valido sono:

- la densità cellulare dopo 72 h deve aumentare di un fattore non inferiore a 16 rispetto al valore di partenza $(2x10^3 \text{ cellule ml}^{-1})$;
- il coefficiente di variazione nei controlli e nel campione tal quale (CV%) ≤15%.

Vibrio fischeri (sistema Microtox®)

<u>Preparazione dell'elutriato</u> - Gli elutriati sono stati preparati dai sedimenti freschi secondo il protocollo indicato in ICRAM (2001).

Un'aliquota del sedimento da testare è stata unita con il volume calcolato dell'acqua di mare naturale filtrata in rapporto 1: 4. Le sospensioni ottenute sono state poste in agitazione per 1 h e centrifugate a temperatura di 10°C per 20' a 3000 rpm. Il sopranatante, che rappresenta l'elutriato, è stato prelevato con cautela e conservato a temperatura di -30°C.Prima dell'allestimento del test sono misurati il pH e la salinità dell'elutriato. La scala di tossicità adottata è riportata in Tab. 2-VIII.

Tab. 2-VIII - Scala di tossicità adottata per il saggio Microtox[®].

Criterio	Tossicità
EC20 ≥ 90%	Assente
$EC20 < 90\%$ e $EC50 \ge 90\%$	Bassa
$20\% \le EC50 < 90\%$	Media
EC50 < 20%	Alta

Corophium orientale

Il saggio effettuato con esemplari di *Corophium orientale* (fig. 2.8) è stato allestito secondo il protocollo ISO 16712:2005(E) (2005).

Fig. 2.8 - Esemplari di C. orientale.

Il principio del saggio biologico "a breve termine" (di tossicità acuta) consiste nell'esposizione di un numero stabilito di organismi per 10 gg al sedimento tal quale, con la finalità di stimare la percentuale di mortalità degli organismi stessi.

Gli anfipodi sono campionati setacciando il loro sedimento nativo con setaccio a maglia di 0,5 mm, che permette di selezionare organismi di ~4 mm idonei per il test, scartando gli individui maturi e le forme giovanili. Gli anfipodi selezionati sono quindi stati portati in laboratorio e acclimatati alle seguenti condizioni del test:

- temperatura dell'acqua: 16±2°C

salinità: 36±2‰

- illuminazione: continua

- O₂ disciolto nell'acqua sovrastante il sedimento: >60%.

Procedimento del saggio - Circa 200 cc di sedimento da testare sono stati introdotti in un barattolo di vetro da 1 l e sono stati aggiunti circa 750 cc di acqua di mare naturale filtrata. Per ogni campione sono state allestite 4 repliche. Dopo 24 h sono stati immessi 25 individui in ciascun barattolo. Come sedimento di controllo è stato utilizzato il sedimento nativo proveniente da un sito non contaminato. I barattoli contenenti gli organismi sono stati coperti per ridurre l'evaporazione dell'acqua, posti alla temperatura di 16±2°C e areati in continuo.

Dopo 10 gg è stato vagliato il contenuto di ogni barattolo contando gli organismi ancora vivi. Sono stati considerati morti gli anfipodi che, dopo una delicata stimolazione, non mostravano alcun movimento degli arti. La sensibilità degli organismi (96hLC50) è stata determinata tramite l'esposizione per 96 h alle concentrazioni di 0,8; 1,6; 3,2 e 6,4 mg l⁻¹ CdCl₂.

All'inizio e alla fine del saggio biologico sono stati misurati i seguenti parametri dell'acqua sovrastante il sedimento: pH, salinità, NH₄⁺ e ossigeno disciolto.

Elaborazione dei dati - Il saggio biologico è considerato valido quando la mortalità media all'interno del sedimento di controllo è ≤15% e quando la mortalità nella singola replica per l'intero periodo di esposizione è ≤20%. Sia nei campioni da testare che nel sedimento di controllo sono state calcolate le percentuali medie (± deviazione standard) degli anfipodi morti. La percentuale di mortalità rilevata in ogni campione è stata confrontata con quella nel sedimento di controllo. Il livello di tossicità è stato valutato prendendo in considerazione la percentuale di mortalità degli organismi osservata nei campioni da

saggiare, corretta con la formula di Abbott (M). La scala adottata per la quantificazione della tossicità è riportata in Tab. 2-IX.

Tab. 2-IX – Scala di tossicità relativa al test con *C. orientale*.

Tossicità a lungo termine	Giudizio
M<15%	Assente
15% <m≤30%< td=""><td>Bassa</td></m≤30%<>	Bassa
30 <m≤60%< td=""><td>Media</td></m≤60%<>	Media
M>60%	Alta

Crassostrea gigas

Il test di embriotossicità con *C. gigas* è stato eseguito in accordo con la linea guida standard ASTM E724-98 (2004b). Il saggio si basa sulla stima della percentuale di larve normoformate (larve D-shape) al termine delle 48 h di esposizione alla matrice di saggio, in questa circostanza rappresentata dall'elutriato.

<u>Preparazione degli elutriati</u> - L'elutriato è stato preparato secondo il metodo ICRAM (2001), utilizzando come acqua di lavorazione il medium preparato secondo le specifiche riportate nella guida ASTM E724-98 (2004b).

Esecuzione del saggio – Il test di embriotossicità è stato eseguito esponendo zigoti di *C. gigas* fecondati da meno di 4 h a diverse diluizioni del campione di elutriato da saggiare. Come acqua di diluizione è stato utilizzato il medium ASTM a S = 34. Il saggio è stato condotto utilizzando delle piastre sterili in polistirene con 24 pozzetti da 3 ml come supporto, in cui sono stati inoculati 60-70 zigoti per ml. L'esposizione è stata quindi condotta in triplicato, in condizioni di temperatura controllata (20°C), al buio, per 48 h. Al termine del test, il contenuto di tutti i pozzetti è stato fissato con una goccia di formalina tamponata ed è stata determinata la percentuale di larve normoformate (larve D) impiegando un microscopio ottico invertito.

QA-QC - La sensibilità di ogni batch di C. gigas è stata valutata mediante l'esecuzione del test con sostanza di riferimento (Cu); i risultati di tale test devono rientrare nei limiti della carta di controllo intralaboratorio (5-33 μ l⁻¹). La percentuale di larve normalmente sviluppate nel controllo con la sola acqua di diluizione deve inoltre essere superiore al 70%.

<u>Espressione e analisi dei dati</u> – I risultati del saggio di embriotossicità possono essere espressi sia in termini di percentuale di successo del test normalizzata (S%) rispetto alla risposta del controllo (acqua marina artificiale), sia in termini di EC₅₀, qualora la distribuzione dei dati relativi alle singole repliche ne consenta il calcolo tramite il software

Trimmed Spearman Karber v3.1 messo a disposizione da USEPA nel proprio portale. I dati di EC_{50} sono successivamente trasformati in unità di tossicità (TU) secondo l'equazione $TU = 100/EC_{50}$.

Al dato di tossicità è stato associato un giudizio qualitativo secondo lo schema riportato in Tab. 2-X.

Tab. 2-X - Scala di tossicità per il saggio di embriotossicità con *C. gigas* (da Losso *et al.*, 2007).

Parametro	Giudizio di Tossicità						
S > TL	Assente	Semiscala	C. F0				
$50 < S \le TL$	Bassa	dell'effetto	S>50				
$1 \le TU \le 2$	Media						
$2 \le TU < 4$	Alta	Semiscala delle T.U.	S≤50				
$TU \ge 4$	Molto alta	1.0.					

Dove:

 $S = [(Sopravvisuti campione) / (Sopravvissuti controllo)] \cdot 100$

TL = Toxicity limit = Controllo \cdot 90% del controllo

Ricerca di metalli pesanti in Hediste diversicolor

<u>Procedimento del test</u> - Il test di bioaccumulo è stato eseguito secondo i protocolli ASTM E1688-97a (1998; reapproved 2007) ed EPA/600//R-93/183 (1993).

Gli organismi non maturi di *H. diversicolor* (taglia 6-10 cm; fig. 2.9) sono stati campionati manualmente dalle porzioni di un sedimento estuario.

Fig. 2.9 - Esemplari di *H. diversicolor*.

Dopo il trasporto in laboratorio, sono stati sottoposti a spurgo per 3 gg in sabbia quarzifera sommersa in acqua proveniente dal sito di campionamento, areata continuamente. La salinità dell'acqua sovrastante la sabbia quarzifera è stata gradualmente portata al 36±2‰, ovvero a un livello corrispondente alla salinità richiesta nel test.

<u>Allestimento del test</u> - Il test è stato allestito in tre repliche per ogni campione di sedimento da testare poste in barattoli di vetro da 1 lt. In ogni barattolo sono stati inseriti ~300 cm³ di

sedimento da testare, ai quali sono stati aggiunti circa 600 ml di acqua di mare naturale filtrata (36±2‰). I barattoli sono stati quindi sistemati in camera condizionata, coperti e areati in continuo. Dopo 24 h dall'introduzione dei sedimenti sono stati registrati i parametri di inizio del test (pH, salinità, NH₄⁺ e ossigeno disciolto) e in ogni barattolo sono stati immessi 5 individui di *H. diversicolor*. Per l'intera durata del test i barattoli sono stati mantenuti alla temperatura di 16±2°C, aerati e illuminati senza alcun fotoperiodo. Come sedimento di controllo è stato utilizzato un sedimento nativo proveniente da un sito non contaminato. Il sedimento di controllo non contiene contaminanti o li contiene in concentrazioni molto basse. Il confronto tra il sedimento testato e il controllo consiste nella misura del livello di bioaccumulo. Il confronto degli organismi di controllo all'inizio e alla fine del periodo di esposizione indica se la contaminazione è avvenuta dall'acqua o dal sistema di esposizione. La mortalità degli organismi nel sedimento di controllo non dovrebbe superare il 10%.

Dopo 28 gg sono stati annotati i parametri finali del test e sono stati recuperati gli organismi dai singoli barattoli tramite setacciatura; gli individui vivi sono stati contati e reinseriti in barattoli contenenti sabbia quarzifera e acqua di mare filtrata. Dopo 3 gg i policheti spurgati sono stati recuperati e lavati in acqua distillata per 1 h per liberarli dal muco e dai residui della sabbia. Successivamente, sono stati congelati e sottoposti ad analisi chimica.

<u>Elaborazioni dei dati</u> - Per valutare l'eventuale bioaccumulo nei tessuti degli organismi è stata adottata la seguente formula:

$$D = (Ce - Cb)$$

dove:

D – variazione (riferita al bianco, ovvero alla quantità di metallo pesante presente nei tessuti degli organismi prima dell'inizio del test) della concentrazione dei metalli pesanti nei policheti a seguito dell'esposizione al sedimento da testare.

Cb - concentrazione del metallo nei tessuti degli organismi prima (bianco) della loro esposizione ai sedimenti testati;

Ce - concentrazione del metallo nei tessuti degli organismi dopo la loro esposizione ai sedimenti testati.

Si ritiene significativa al fine della valutazione del bioaccumulo una differenza ≥20%.

2.1.2.5 Indagini sulla comunità bentonica

Durante le analisi di laboratorio le sei repliche prelevate in ciascuna stazione sono state trattate separatamente. Il sorting è stato compiuto con l'ausilio di uno stereomicroscopio e di un microscopio ottico (All. A3-III e A3-IV) e l'identificazione degli organismi è stata

effettuata al più basso livello sistematico possibile. Gli individui appartenenti allo stesso gruppo sono stati contati e pesati (All. A3-V). Per ogni stazione sono stati quindi calcolati i seguenti indici medi utilizzando i dati relativi alle 6 repliche:

Abbondanza (N): $N ind 0,095 m^{-2}$

Biomassa (P): $gr 0.095 m^{-2}$

Indice di Dominanza (D; May, 1975): $D = n_i N^{-1}$

dove n_i = numero di individui della specie i-esima; N = numero totale di individui.

Ricchezza specifica totale (S; Pielou, 1974): Numero totale di specie presenti nelle

sei repliche

Ricchezza specifica media (S_m): Numero medio di specie presenti nelle

sei repliche

<u>Diversità specifica di Shannon-Weaver</u> (H'): $H' = -\sum p_i \cdot Log \ p_i$

dove: p_i = frequenza numerica della specie i-esima rispetto al totale degli individui (Pielou, 1974).

Le affinità biocenotiche o le preferenze ecologiche (Pérès e Picard, 1964; Bellan Santini e Ledoyer, 1972; Amouroux, 1974; Bourcier *et al.*, 1979; Bellan *et al.*, 1980; Nodot *et al.*, 1984; Salen-Picard, 1985; Augier, 1992; Bianchi *et al.*, 1993; Poppe e Goto; 1991; 1993; Rinelli e Spanò, 1997; Chimenz Gusso *et al.*, 2001) sono state ricercate per tutti i taxa determinati a livello di specie.

Con i dati di densità delle singole specie sono state calcolate le curve di dominanza cumulative. Per valutare le eventuali somiglianze tra le stazioni campionate, con i dati di densità è stata effettuata un'analisi statistica multivariata utilizzando il pacchetto software PRIMER (Clarke e Warwick, 2001).

Infine, per valutare lo stato ecologico dell'area, sono stati confrontati i risultati di tre differenti indici (l'indice W di Clarke, l'indice AMBI e l'indice BENTIX; Clarke e Warwick, 2001; Borja et al. 2000; Simboura e Zenetos, 2002; Muxika et al., 2007; Borja e Mader, 2008), seguendo quanto suggerito da Teixeira et al. (2007). Questi Autori riportano infatti la possibilità di ottenere, attraverso la combinazione dei risultati derivati da più indici, un buon set di dati in grado di descrivere lo stato della qualità ecologica di una determinata area. Tutti gli indici utilizzati per questo scopo sono stati applicati quasi esclusivamente in aree marine costiere. Tuttavia, sono già stati utilizzati nell'ambito offshore in diversi casi (Fabi et al., 2013; 2014a; 2014b; 2014c; 2015 Spagnolo et al., 2014) fornendo utili indicazioni sull'eventuale impatto causato dalle piattaforme E' da sottolineare che sia Borja (indice AMBI), sia Simboura (indice BENTIX), ritengono che i

loro indici possano essere un valido strumento per determinare lo stato ecologico dell'ambiente circostante le piattaforme estrattive offshore dell'Adriatico (comunicazioni personali degli Autori).

Per quanto concerne i tre indici scelti per questo scopo, l'indice W prevede l'integrazione dei dati di abbondanza numerica e di biomassa delle singole specie. Tale metodo si basa sul presupposto che in aree stabili è favorita la presenza di specie con una "strategia di tipo k", con ciclo vitale lungo, grandi dimensioni corporee degli individui adulti, raramente dominanti numericamente, ma dominanti in termini di biomassa. Al contrario, nelle comunità disturbate, viene favorita la presenza di specie con "strategia di tipo r", dette anche opportuniste, caratterizzate da un ciclo vitale breve e piccola taglia corporea, che generalmente risultano dominanti numericamente (Pianka, 1970).

L'indice si basa sulla seguente formula:

$$\sum_{i}^{S} \left(B_{i} - A_{i} \right) / \left[50 \left(S - 1 \right) \right]$$

dove: B_i e A_i = biomassa e abbondanza della specie i-esima; S = Ricchezza specifica totale.

Questo indice oscilla da -1 a +1 e indica nel primo caso la presenza di una comunità fortemente disturbata e, nel secondo, la presenza di un ambiente non perturbato. Nel caso in cui il valore sia vicino allo 0, l'ambiente è da considerare moderatamente perturbato (Craeymeersch, 1991). Per ottenere una classificazione della qualità dell'ambiente si è deciso di utilizzare gli intervalli di valori dell'indice W riportati in Tab. 2-XI.

Tab. 2-XI - Classificazione della qualità dell'ambiente in base al range di valori dell'indice W.

Classificazione dell'ambiente	W
Non disturbato	$1,000 \ge W \ge 0,700$
Leggermente disturbato	$0,699 \ge W \ge 0,300$
Moderatamente disturbato	$0,299 \ge W \ge -0,100$
Povero	$-0.101 \ge W \ge -0.500$
Pessimo	$-0.501 \ge W \ge -1.000$

L'indice AMBI è stato applicato da Muxica *et al.* (2005) oltre che in ambienti marino-costieri, anche in aree più profonde (costa occidentale svedese) e in aree interessate dalla presenza di piattaforme petrolifere (Mare del Nord). Assume valori compresi tra 0 (ambiente non inquinato o disturbato) a 7 (ambiente estremamente inquinato o disturbato). Basandosi essenzialmente sul rapporto percentuale delle specie presenti nel campione, previamente suddivise in 5 gruppi ecologici in base al grado di tolleranza o sensibilità a un

gradiente di stress ambientale, consente di classificare, come richiesto dalla Direttiva 2000/60/EC, gli ambienti marini costieri nelle seguenti categorie:

- 1. non disturbati (0≤AMBI≤1);
- 2. leggermente disturbati (1≤AMBI≤3,5);
- 3. moderatamente disturbati (3,5≤AMBI≤5);
- 4. molto disturbati (5≤AMBI≤6);
- 5. estremamente disturbati (6≤AMBI≤7).

I gruppi ecologici nei quali vengono raggruppate le specie (il cui elenco disponibile nel software AMBI 5.0 è aggiornato a marzo 2012) sono identificati soprattutto in base alla loro sensibilità ad arricchimenti organici:

- gruppo I: Specie molto sensibili ad arricchimento organico e presenti solo in condizioni ambientali ottimali. Tale gruppo include i carnivori specialisti e alcuni policheti tubicoli detritivori.
- gruppo II: Specie indifferenti all'arricchimento organico, sempre presenti in basse densità senza particolari variazioni nel tempo. Esse includono sospensivori, alcuni carnivori poco selettivi e scavatori.
- gruppo III: Specie tolleranti a un eccessivo arricchimento organico nei sedimenti.

 Queste specie possono essere presenti in condizioni normali, ma le loro popolazioni sono stimolate da un aumento di sostanza organica. Si tratta prevalentemente di detritivori superficiali.
- gruppo IV: Specie opportuniste di secondo ordine; principalmente piccoli policheti detritivori sub-superficiali, come i cirratulidi.
- gruppo V: Specie opportuniste di primo ordine; sono detritivori che proliferano in sedimenti poco ossigenati e ridotti.

Gli intervalli di valori dell'indice AMBI e la conseguente classificazione della qualità dell'ambiente sono riportati in Tab. 2-XII.

Infine, l'indice BENTIX è stato sviluppato per stabilire gli impatti causati da fattori di stress generalizzati e non discrimina tra disturbo di origine naturale o antropogenica. E' stato applicato con successo, tra l'altro, in aree soggette ad inquinamento organico (Simboura *et al.*, 2005) e a sversamenti accidentali di petrolio (Zenetos *et al.*, 2004a) ed è attualmente utilizzato in diverse aree del Mediterraneo nell'ambito del framework del *WFD intercalibration exercise* (EC, 2003).

Tab. 2-XII - Classificazione della qualità dell'ambiente in base al range di valori dell'indice AMBI (Borja *et al.*, 2000).

Environmental Classification	AMBI
Ambiente non inquinato	$0.0 < AMBI \le 1.2$
Ambiente leggermente inquinato, di transizione	$1,2 < AMBI \le 3,3$
Ambiente moderatamente inquinato	$3,3 < AMBI \le 5,0$
Ambiente fortemente inquinato	$5,0 < AMBI \le 6,0$
Ambiente estremamente inquinato	Azoico

Questo indice si basa sulla suddivisione dei taxa di fondo mobile (per i quali è fornita una lista) in 3 principali gruppi ecologici:

- 1. gruppo 1 (GI): include specie sensibili a un disturbo in generale;
- 2. gruppo 2 (GII): include specie tolleranti a un disturbo o a uno stress. Le popolazioni possono rispondere a un arricchimento organico o a un'altra fonte di inquinamento attraverso un incremento delle densità;
- 3. gruppo 3 (GIII): include le specie opportuniste di primo ordine, quelle pioniere e le specie tolleranti a situazioni di ipossia.

Una volta composti i tre gruppi sopra citati, viene applicato il seguente algoritmo:

$$BENTIX = [(6 \times \%GI) + 2 \times (\%GII + \%GIII)] / 100$$

dove: %G = percentuale della somma delle densità di ciascun gruppo sulla densità totale registrata nella stazione di campionamento.

Sulla base dei risultati ottenuti, per ogni sito di campionamento è stato possibile stilare una classifica della qualità dell'ambiente secondo i criteri riportati in Tab. 2-XIII. In Tab. 2-XIV è infine riportata la classificazione dello stato ecologico dell'ambiente indicata in Bettencourt *et al.* (2004) sulla base della combinazione di tre differenti indici.

Tab. 2-XIII - Classificazione della qualità dell'ambiente in base al range di valori dell'indice BENTIX (Zenetos *et al.*, 2004b).

Environmental Classification	BENTIX
Ambiente non inquinato	$4,5 \le BENTIX < 6$
Ambiente leggermente inquinato, di transizione	$3,5 \le BENTIX < 4,5$
Ambiente moderatamente inquinato	$2,5 \le BENTIX < 3,5$
Ambiente fortemente inquinato	$2 \le BENTIX < 2,5$
Ambiente estremamente inquinato	Azoico

Tab. 2-XIV - Classificazione dello stato ecologico derivata dalla combinazione di tre differenti indici (Bettencourt *et al.*, 2004).

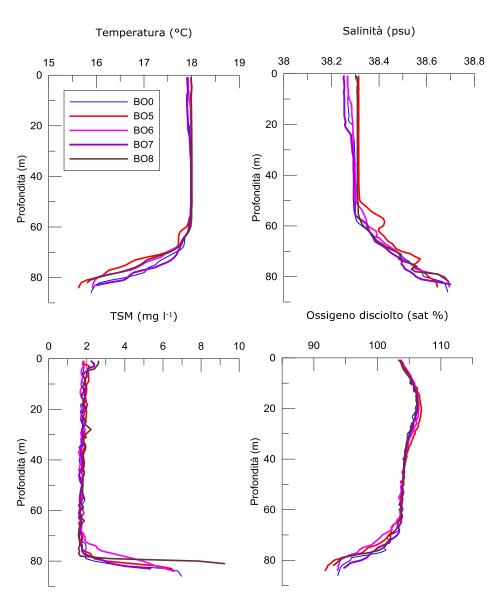
Indice n. 1	Indice n. 2	Indice n. 3	Stato ecologico
non disturbato	non disturbato	non disturbato	alto
non disturbato	non disturbato	leggermente disturbato	alto/buono
non disturbato	leggermente disturbato	leggermente disturbato	buono
leggermente disturbato	leggermente disturbato	leggermente disturbato	buono
leggermente disturbato	leggermente disturbato	moderatamente disturbato	buono/moderato
leggermente disturbato	moderatamente disturbato	moderatamente disturbato	moderato
moderatamente disturbato	moderatamente disturbato	moderatamente disturbato	moderato
moderatamente disturbato	moderatamente disturbato	fortemente disturbato	moderato/povero
moderatamente disturbato	fortemente disturbato	fortemente disturbato	povero
fortemente disturbato	fortemente disturbato	fortemente disturbato	povero
estremamente disturbato	fortemente disturbato	fortemente disturbato	povero/pessimo
estremamente disturbato	estremamente disturbato	fortemente disturbato	pessimo
estremamente disturbato	estremamente disturbato	estremamente disturbato	pessimo

2.2. RISULTATI

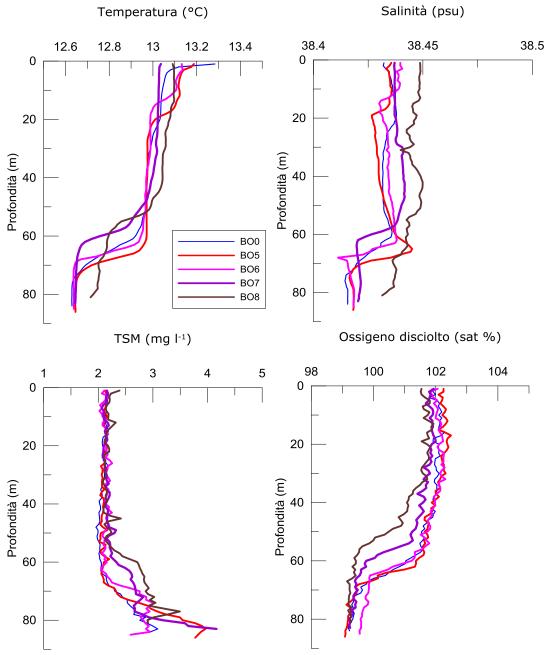
2.2.1. CARATTERISTICHE FISICHE E CHIMICHE DELLA COLONNA D'ACQUA

2.2.1.1 Temperatura, salinità, torbidità, Ossigeno disciolto e fluorescenza indotta

Nel **dicembre 2014** (fig. 2.10) la colonna d'acqua è risultata quasi totalmente rimescolata, con valori di temperatura vicini a 18°C e pressoché costanti fino a circa 60 m di profondità, con una riduzione negli strati sottostanti fino ad arrivare ai valori minimi di 15,62°C registrati al fondo della stazione BO5. La salinità ha presentato andamento opposto a quello della temperatura, con valori intorno a 38,3 psu dello strato superficiale e un aumento al di sotto dei 55-60 m sino a valori superiori a 38,6 psu. Nella stazione BO7 sono stati registrati sia il minimo alla quota di superficie (38,25 psu), che il massimo alla quota di fondo (38,70 psu).


La torbidità, rilevata come backscattering, ha presentato in tutte le stazioni un netto aumento delle concentrazioni verso il fondo, raggiungendo la concentrazione massima di 9,23 mg/l sul fondo della stazione BO8 L'ossigeno disciolto ha mostrato saturazioni >100%, con un leggero aumento dalla superficie, sino a 20 m di profondità. Al di sotto, sino a circa 65 m, il suo valore è rimasto pressoché costante, ma da questa quota si è osservato un progressivo decremento verso il fondo, dove sono stati raggiunti i minimi valori di saturazione, pari a 91,8% (fondo della stazione BO5).

A marzo 2015 (fig. 2.11) i valori di temperatura sono risultati inferiori a quelli della precedente campagna, oscillando tra 12,63°C (fondo) e 13,28°C (superficie). I profili verticali hanno mostrato i minimi al fondo, al di sotto dei 70 m, e lievi differenze fra le varie stazioni. La salinità è risultata pressoché costante su tutta la colonna, variando tra 38,42 psu e 38,45 psu. La torbidità ha mantenuto generalmente lo stesso trend osservato a dicembre 2014 e una colonna piuttosto omogenea fino a 55-60 m. Il minimo (2,03 mg/l) è stato misurato alla quota di 40 m nella stazione BO0, mentre i valori più elevati sono stati rilevati verso il fondo, dove è stato raggiunto un massimo di 4,16 mg/l nella stazione BO7.


L'ossigeno disciolto ha presentato percentuali di saturazione pressoché costanti sino a circa 40-50 m , con un massimo di 102,37 % a -20 m nella stazione BO5, per poi via via diminuire raggiungendo valori minimi (sino a 99,08%) alla quota di fondo della stessa stazione.

La fluorescenza misurata a **dicembre 2014** (fig. 2.12) ha presentato valori di poco superiori a 0,2 µg/l dalla superficie fino a circa 50 m, con un picco di concentrazione, pari

a 0,320 μg/l, nella stazione BO5 in superficie. Intorno ai 60 m di profondità le concentrazioni sono diminuite sino a circa 70 m, raggiungendo sul fondo valori compresi tra 0,069 μg/l (BO6 e BO7) e 0,113 μg/l (BO5). A **marzo 2015** tutte le stazioni hanno seguito un andamento simile eccetto BO8: in superficie i valori sono apparsi di poco superiori a 0,200 μg/l. Dopo un incremento generale che ha portato a un picco intorno ai 40-50 m (massimo 0,407 μg/l nella staz. BO5), è avvenuta una riduzione verso i 60 m di profondità che ha portato a concentrazioni intorno a 0,310 μg/l sul fondo. La stazione BO8 è stata caratterizzata da una fluorescenza superficiale più elevata rispetto alle altre (0,292 μg/l) e da un lieve decremento a partire dai 40 m di profondità sino ai 60 m. Sul fondo ha presentato una fluorescenza simile alle altre (0,344 μg/l).

Fig. 2.10 - Profili di temperatura (°C), salinità (psu), particellato sospeso totale (Total Suspended Matter - TSM; mg/l) e ossigeno disciolto (in percentuale di saturazione - sat %). **Dicembre 2014**.

Fig. 2.11 - Profili di temperatura (°C), salinità (psu), particellato sospeso totale (Total Suspended Matter - TSM; mg/l) e ossigeno disciolto (in percentuale di saturazione - sat %). **Marzo 2015**.

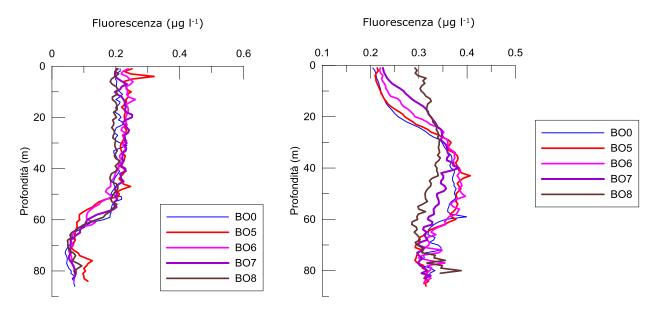
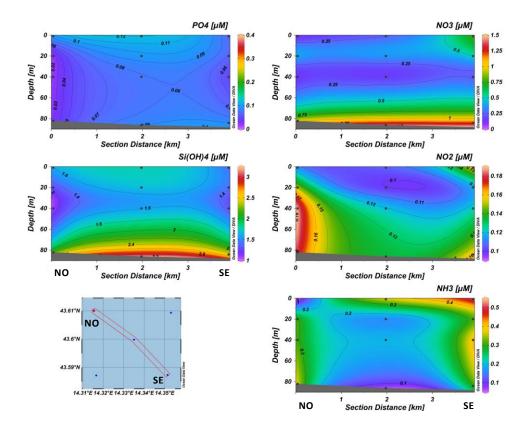



Fig. 2.12 - Profili di fluorescenza (µg/l) ottenuti a dicembre 2014 (sinistra) e a marzo 2015 (destra).

2.2.1.2 Sali nutritivi

A dicembre 2014 (figg. 2.13 e 2.14) gli ortofosfati (PO₄) hanno presentato concentrazioni basse nella parte più occidentale dell'area indagata, con un minimo di 0,02 μ M a 20 m nella stazione BO5 e a 20 e 40 m di profondità nella stazione BO8. La massima concentrazione (0,43 μ M) è stata registrata a Nord-Est, ovvero nella stazione BO7 a quota 20 m. I nitrati (NO₃) hanno mostrato un aumento con la profondità in tutte le stazioni, con un massimo di 1,56 μ M al fondo nella BO5. La minima concentrazione è stata registrata nella stazione BO8 a quota 40 m. Le concentrazioni più basse sia per i nitriti (NO₂) che per l' ammoniaca (NH₃) sono state misurate nell'area centrale, stazione BO0, nello strato sub superficiale (quota 20 m), rispettivamente con minimi di 0,10 μ M e 0,14 μ M. I massimi valori di NO₂ sono stati misurati nelle stazioni più a Ovest, con un massimo assoluto di 0,21 μ M a quota 20 m nella stazione BO5. L'ammoniaca (NH₃), invece, ha mostrato le più alte concentrazioni nelle stazioni orientali, con un massimo di 0,51 μ M nella BO6 in superficie. Come per i nitrati, un evidente aumento delle concentrazioni verso il fondo è stato osservato anche per gli ortosilicati (Si(OH)₄), con un massimo di 3,42 μ M al fondo della BO5 dove, a quota 20 m, si è registrato anche il minimo assoluto pari a 0,92 μ M.

Fig. 2.13a - Sezioni verticali delle stazioni BO8 , BO0 e BO6 rappresentanti le concentrazioni di nitriti (NO_2) , nitrati (NO_3) , ortofosfati (PO_4) , ortosilicati $(Si(OH)_4)$ e ammoniaca (NH_3) , espresse in μM . **Dicembre 2014**.

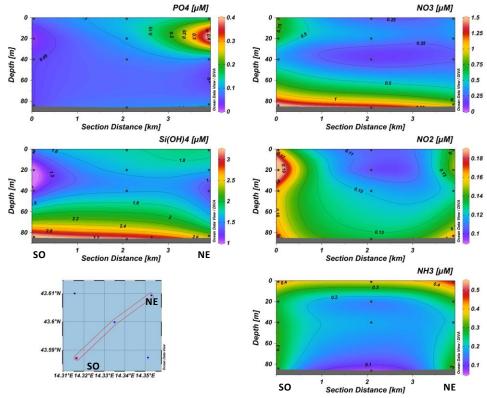
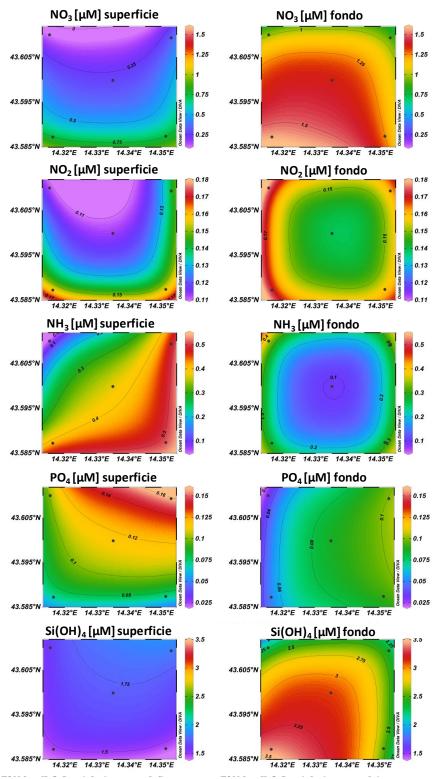
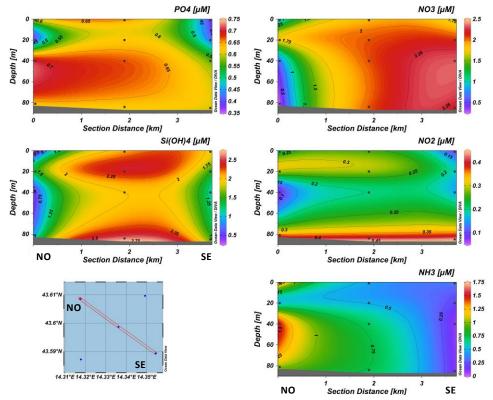




Fig. 2.13b - Sezioni verticali delle stazioni BO5 , BO0 e BO7 rappresentanti le concentrazioni di nitriti (NO_2) , nitrati (NO_3) , ortofosfati (PO_4) , ortosilicati $(Si(OH)_4)$ e ammoniaca (NH_3) , espresse in μ M. Dicembre 2014.

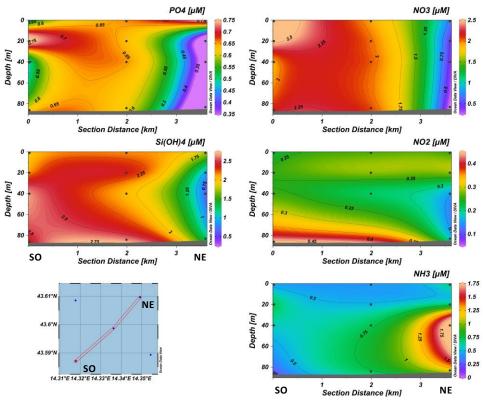


Fig. 2.14 - Mappe areali rappresentanti le concentrazioni di nitriti (NO_2), nitrati (NO_3), ammoniaca (NH_3),ortofosfati (PO_4) e ortosilicati ($Si(OH)_4$) espresse in μM , in superficie e al fondo. **Dicembre 2014**.

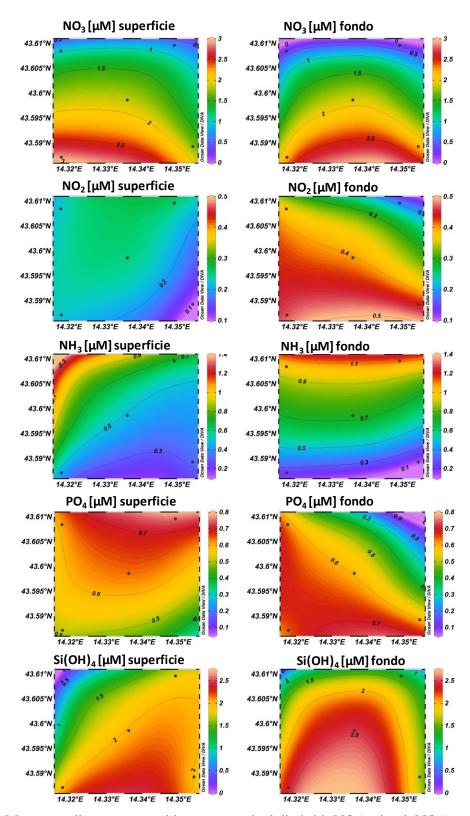
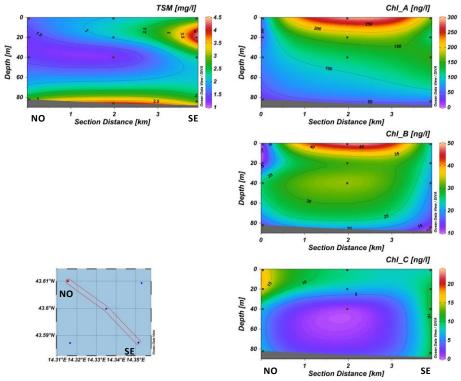

Nel marzo 2015 (figg. 2.15 e 2.16) gli ortofosfati hanno presentato concentrazioni più elevate rispetto a dicembre 2014, raggiungendo un massimo circa doppio del valore precedente (0,79 µM; fondo della stazione BO0 e -20 m della stazione BO5); il minimo (0,07 μM) è stato registrato al fondo della BO7. Anche i nutrienti azotati (NH₃, NO₂ e NO₃) sono aumentati notevolmente in questa situazione. I nitrati (NO₃) hanno presentato una concentrazione media 3 volte più alta rispetto alla campagna di dicembre 2014 (1,57 μM a marzo e 0,53 μM a dicembre), con un massimo di 2,91 μM nella stazione BO5 (superficie), mentre i valori più bassi sono stati misurati nelle stazioni BO7 e BO8. I nitriti (NO₂) hanno mostrato le più alte concentrazioni al fondo e il massimo (0,46 µM), circa il doppio rispetto a dicembre 2014, alla quota di fondo della BO5. L'ammoniaca (NH₃) ha raggiunto i valori più alti nelle stazioni a Nord, con un massimo di 2,10 µM a quota 40 m nella stazione BO7. Le concentrazioni più basse sono state misurate nella stazione BO6, con un minimo pari a 0,09 µM a quota 40 m. A differenza di tutti gli altri nutrienti, gli ortosilicati (Si(OH)₄) non sono particolarmente variati rispetto a dicembre. La massima concentrazione (2,69 µM) è stata osservata a quota 40 m della stazione BO5 e la minima (0,26 µM) in superficie nella stazione BO8.

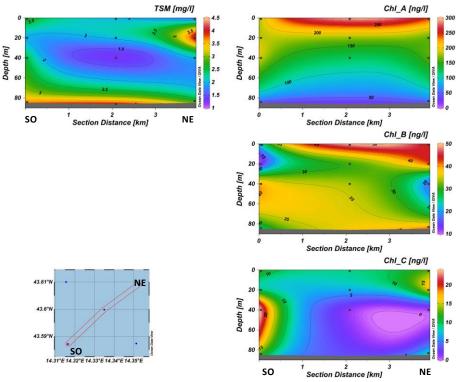
Fig. 2.15a - Sezioni verticali delle stazioni BO8 , BO0 e BO6 rappresentanti le concentrazioni di nitriti (NO_2), nitrati (NO_3), ortofosfati (PO_4), ortosilicati ($Si(OH)_4$) e ammoniaca (NH_3), espresse in μM . **Marzo 2015**.

Fig. 2.15b - Sezioni verticali delle stazioni BO5 , BO0 e BO7 rappresentanti le concentrazioni di nitriti (NO_2), nitrati (NO_3), ortofosfati (PO_4), ortosilicati ($Si(OH)_4$) e ammoniaca (NH_3), espresse in μM . **Dicembre 2014**.

Fig. 2.16 - Mappe areali rappresentanti le concentrazioni di nitriti (NO_2), nitrati (NO_3), ammoniaca (NH_3),ortofosfati (PO_4) e ortosilicati ($Si(OH)_4$) espresse in μM , in superficie e al fondo. **Marzo 2015**.

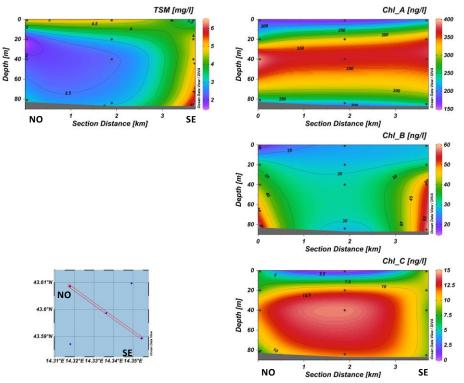

2.2.1.3 Clorofille a, b e c e particellato sospeso

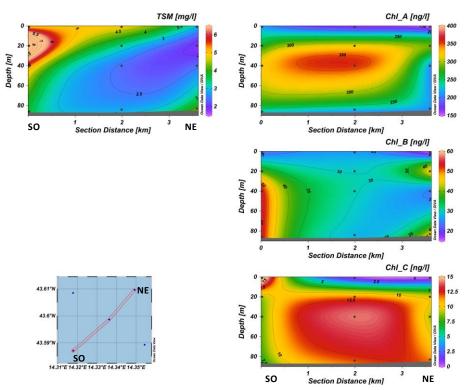
A dicembre 2014 sia la clorofilla a che la clorofilla b hanno mostrato quasi sempre una diminuzione verso il fondo, mentre la componente di clorofilla c è risultata piuttosto variabile (figg. 2.17 e 2.18). La clorofilla a è oscillata tra 7,28 e 296,51 ng/l, valori registrati rispettivamente al fondo e in superficie nella stazione BO0. Nella quota superficiale dello stesso sito è stato registrato anche il massimo di clorofilla b, pari a 49,64 ng/l, mentre il suo minimo (11,42 ng/l) è stato misurato al fondo della BO0 e BO6 e a quota 20 m nella BO5. La componente di clorofilla c è oscillata tra un minimo di 0,01 ng/l a 40 m nelle stazioni BO0 e BO7 e un massimo di 24,91 ng/l sempre a quota 40 m nella stazione BO5.


Le concentrazioni di materiale sospeso (Total Suspended Matter –TSM) hanno mostrato valori generalmente maggiori verso il fondo, variando tra 1,05 mg/l a quota 40 m nella stazione BO0 e un massimo di 4,46 mg/l a 20 m nella BO6.

A marzo 2015 le concentrazioni di clorofilla *a* sono risultate più elevate rispetto alla situazione di dicembre 2014, con tendenza ad aumentare negli strati intermedi della colonna d'acqua (massimo di 397,76 ng/l a 40 m nella stazione BO8; figg. 2.19 e 2.20). La clorofilla *b* ha mostrato una tendenza all'aumento verso il fondo; essa è variata tra 14,55 ng/l (BO7, superficie) e 57,97 ng/l (BO6, fondo). La componente di clorofilla *c* ha mostrato una concentrazione mediamente inferiore a quanto trovato in dicembre, con una distribuzione piuttosto variabile lungo la verticale. In generale le concentrazioni più elevate sono state osservate verso il fondo.


La distribuzione del contenuto di materiale sospeso è stata caratterizzata da una elevata variabilità sia verticale che spaziale. Il massimo (9,23 mg/l) è stato registrato a 20 m nella stazione BO5.


Fig. 2.17a - Sezione verticale delle stazioni BO8, BO0, e BO6 rappresentante le concentrazioni di particellato sospeso (TSM) espresso in mg/l, clorofilla a (Chl a), clorofilla b (Chl b) e clorofilla c (Chl c), espresse in ng/l. **Dicembre 2014**.


Fig. 2.17b - Sezione verticale delle stazioni BO5, BO0, e BO7 rappresentante le concentrazioni di particellato sospeso (TSM) espresso in mg/l, clorofilla a (Chl a), clorofilla b (Chl b) e clorofilla c (Chl c), espresse in ng/l. **Dicembre 2014**.

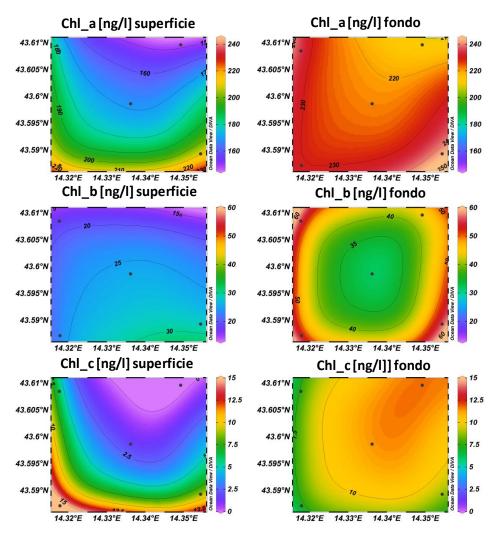
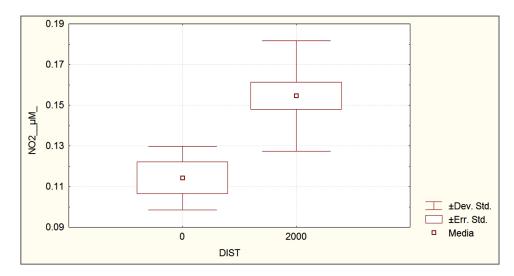
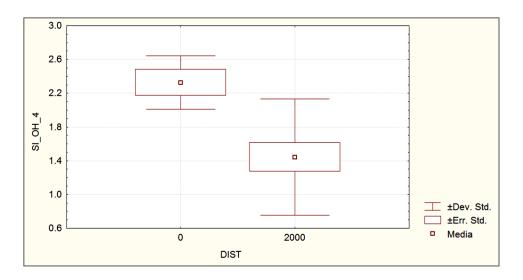

Fig. 2.18 - Mappe areali rappresentanti le concentrazioni di clorofilla a (Chl a), clorofilla b (Chl b) e clorofilla c (Chl c) espresse in ng/l. **Dicembre 2014**.

Fig. 2.19a - Sezione verticale delle stazioni BO8, BO0, e BO6 rappresentante le concentrazioni di particellato sospeso (TSM) espresso in mg/l, clorofilla a (Chl a), clorofilla b (Chl b) e clorofilla c (Chl c), espresse in ng/l. **Marzo 2015**.


Fig. 2.19b - Sezione verticale delle stazioni BO5, BO0, e BO7 rappresentante le concentrazioni di particellato sospeso (TSM) espresso in mg/l, clorofilla a (Chl a), clorofilla b (Chl b) e clorofilla c (Chl c), espresse in ng/l. **Marzo 2015**.


Fig. 2.20 - Mappe areali rappresentanti le concentrazioni di clorofilla a (Chl a), clorofilla b (Chl b) e clorofilla c (Chl c) espresse in ng/l. **Marzo 2015**.

2.2.1.4 Confronto tra l'area della futura piattaforma e le stazioni di controllo

Per stimare la variabilità nell'area esaminata e, in particolare, evidenziare eventuali differenze fra la stazione centrale (BO0) e le quattro stazioni localizzate a circa 2000 m da essa, è stata applicata l'analisi della varianza per tutti i parametri. L'analisi ha evidenziato differenze significative (p<0,05) solo per i nitriti (NO₂) in dicembre (fig. 2.21) e per i silicati (Si(OH)₄) in marzo (fig. 2.22). Non sono emerse differenze significative per tutti gli altri parametri analizzati nella colonna d'acqua.

Fig. 2.21 - **Dicembre 2014**. Box-plot della concentrazione di NO_2 (in μM) nella stazione BO0 (DIST 0) e nelle stazioni a 2000 m (DIST 2000, staz. BO5, BO6, BO7, BO8). Le differenze sono significative al livello p<0,05.

Fig. 2.22 - **Marzo 2015**. Box-plot della concentrazione di $Si(OH)_4$ (in μM) nella stazione BO0 (DIST 0) e nelle stazioni a 2000 m (DIST 2000, staz. BO5, BO6, BO7, BO8). Le differenze sono significative al livello p<0,05.

2.2.1.5 Idrocarburi totali, Idrocarburi alifatici, Idrocarburi Policiclici Aromatici, BTEX

Tutti questi composti eccetto gli IA sono risultati ovunque, e in entrambi i survey, al di sotto dei limiti di rilevabilità strumentale (Tabb. 2-XV e 2-XVI). L'unica eccezione riguarda gli IA rilevati esclusivamente alla quota superficiale delle stazioni BO0 e BO6 nel 1° pre-survey e a -40 m della BO6 nel marzo 2015, rilevati comunque in basse concentrazioni.

Tab. 2-XV - Concentrazioni (μ g/l) di Idrocarburi totali, IA e IPA registrate nelle diverse stazioni e alle diverse quote nei due pre-survey condotti in dicembre 2014 e marzo 2015.

	1° pre-sur	vey (dicembr	e 2014)	2° pre-su	rvey (marzo	2015)
Stazione	Idroc. totali (n-esano)	IA (C10-C32)	IPA (16 IPA)	Idroc. totali (n-esano)	IA (C10-C32)	IPA (16 IPA)
BO0 sup	< 30	1,11	< 0,01	<30	< 1	< 0,01
BO0 20 m	< 30	< 1	< 0,01	<30	< 1	< 0,01
BO0 40 m	< 30	< 1	< 0,01	<30	< 1	< 0,01
BO0 fondo	< 30	< 1	< 0,01	<30	< 1	< 0,01
BO5 sup	< 30	< 1	< 0,01	<30	< 1	< 0,01
BO5 20 m	< 30	< 1	< 0,01	<30	< 1	< 0,01
BO5 40 m	< 30	< 1	< 0,01	<30	< 1	< 0,01
BO5 fondo	< 30	< 1	<0,01	<30	< 1	< 0,01
BO6 sup	< 30	8,52	< 0,01	<30	< 1	< 0,01
BO6 20 m	< 30	< 1	<0,01	<30	< 1	< 0,01
BO6 40 m	< 30	< 1	< 0,01	<30	1,44	< 0,01
BO6 fondo	< 30	< 1	< 0,01	< 30	< 1	< 0,01
BO7 sup	< 30	< 1	< 0,01	<30	< 1	< 0,01
BO7 20 m	< 30	< 1	< 0,01	<30	< 1	< 0,01
BO7 40 m	< 30	< 1	< 0,01	<30	< 1	< 0,01
BO7 fondo	< 30	< 1	< 0,01	<30	< 1	< 0,01
BO8 sup	< 30	< 1	< 0,01	<30	< 1	< 0,01
BO8 20 m	< 30	< 1	< 0,01	<30	< 1	< 0,01
BO8 40 m	< 30	< 1	< 0,01	<30	< 1	< 0,01
BO8 fondo	< 30	< 1	< 0,01	<30	< 1	< 0,01

Tab. 2-XVI - Microinquinanti organici (BTEX; μ g/l) determinati nelle diverse stazioni e alle diverse quote nel corso dei due pre-survey condotti in dicembre 2014 e marzo 2015.

		1° pre-surve	y (dicembi	e 2014)			2° pre-surv	ey (marzo	2015)	
Stazione	Benzene	Etilbenzene	Stirene	Toluene	Xilene	Benzene	Etilbenzene	Stirene	Toluene	Xilene
BO0 sup	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO0 20 m	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO0 40 m	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO0 fondo	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO5 sup	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO5 20 m	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO5 40 m	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO5 fondo	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO6 sup	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO6 20 m	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO6 40 m	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO6 fondo	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO7 sup	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO7 20 m	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO7 40 m	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO7 fondo	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO8 sup	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO8 20 m	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO8 40 m	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1
BO8 fondo	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1

2.2.1.6 Glicole etilenico

Nel dicembre 2014 il Glicole etilenico ha presentato in BO0, B06 e B07 (in quest'aultima in superficie e a -20 m) valori al di sopra del limite di rilevabilità, con un massimo di 159 mg/l nella stazione BO0 in superficie (Tab. 2-XVII). A tale riguardo, considerando che il prodotto è utilizzato normalmente nei processi di trattamento dei fluidi di estrazione e nell'area monitorata non erano presenti attività estrattive al momento del survey, data anche l'ampia variabilità delle concentrazioni misurate, il rinvenimento di glicole etilenico può essere ricondotto alla presenza di masse d'acqua provenienti da zone vicine in cui l'attività estrattiva era in opera. Nel 2° pre-survey questo composto non è stato rilevato in alcuna stazione.

Tab. 2-XVII - Concentrazioni (mg/l) di Glicole etilenico registrate nelle diverse stazioni e alle diverse quote nel corso dei due pre-survey condotti in dicembre 2014 e marzo 2015.

Stazione	1° pre-survey (dicembre 2014)	2° pre-survey (marzo 2015)
BO0 sup	159	< 10
BO0 20 m	137	< 10
BO0 40 m	130	< 10
BO0 fondo	131	< 10
BO5 sup	< 10	< 10
BO5 20 m	< 10	< 10
BO5 40 m	< 10	< 10
BO5 fondo	< 10	< 10
BO6 sup	133	< 10
BO6 20 m	126	< 10
BO6 40 m	127	< 10
BO6 fondo	125	< 10
BO7 sup	126	< 10
BO7 20 m	123	< 10
BO7 40 m	< 10	< 10
BO7 fondo	< 10	< 10
BO8 sup	< 10	< 10
BO8 20 m	< 10	< 10
BO8 40 m	< 10	< 10
BO8 fondo	< 10	< 10

2.2.1.7 Metalli pesanti

Nel **dicembre 2014** (Tab. 2-XVIII) l'alluminio ha presentato, in più di metà stazioni, valori inferiori al limite di rilevabilità. Il minimo, pari a 0,50 μ g/l, è stato misurato nella stazione BO7 in superficie e il massimo di 3,7 μ g/l al fondo della BO6. L'arsenico e il bario sono risultati pressoché costanti in tutte le stazioni, oscillando rispettivamente tra un minimo di 1,68 μ g/l (fondo della BO6) e 2,36 μ g/l (BO0, -20 m) e tra 5,9 μ g/l, a quota 20 m della BO6 e un massimo di 7,2 μ g/l in superficie e a -20 m nella stazione BO0. Anche il silicio è

risultato sempre rilevabile e con valori piuttosto costanti e compresi tra $0.18 \mu g/l$ (BO8, - 20) e $0.36 \mu g/l$ (BO6, fondo).

Cromo, mercurio e rame sono risultati sempre al di sotto del limite di rilevabilità, con una sola eccezione per ogni metallo (BO0 superficie per Cr e Cu e BO7 -40 m per Hg). Anche il ferro, eccetto in BO0 superficie e fondo, BO7 -20 m e BO5 -40 m, è risultato sempre al di sotto del limite di rilevabilità. L'indio, invece, è risultato assente ovunque. Il nichel è sempre stato rilevato, con un minimo di 0,16 μ g/l al fondo della BO7 e un massimo di 1,17 μ g/l alla quota 20 m della stessa stazione. Il cadmio e il piombo hanno presentato valori al limite di rilevabilità soltanto nelle stazioni BO0 e BO6, risultando assenti altrove. Vanadio e zinco, pur presentando alcuni valori al di sotto del limite, hanno mostrato una certa variabilità. Il vanadio è oscillato tra un minimo di 0,11 μ g/l (BO7, -20 m) e un massimo di 0,31 μ g/l sul fondo della BO5. Lo zinco ha presentato un range compreso tra 0,5 μ g/l a quota 20 m della BO8 e 78,0 μ g/l al fondo della BO6. In generale, le concentrazioni rlevate per i vari metalli sono risultate modeste.

A marzo 2015 (Tab. 2-XVIII) l'alluminio è stato quasi sempre rilevato, con valori variabili tra un minimo di 0,1 µg/l al fondo del sito BO0 e un massimo di 16,5 µg/l nella stessa stazione ma a quota 20 m. Sempre misurabili sono risultati anche il bario, il cromo, il nichel, il vanadio, l'arsenico e il silicio. Il bario è oscillato tra un minimo di 7,9 μg/l (BO5, -20 m e fondo; BO6, superficie) e un massimo di 8,90 µg/l, registrati alle quote di 20 e 40 m nella stazione BO0. Il cromo ha presentato concentrazioni piuttosto basse e costanti, variando tra 0,17 µg/l nella BO5 a quota 20 m e 0,60 µg/l, sempre a 20 m, nella stazione BOO. Il nichel ha presentato sia il minimo che il massimo nella stazione BOO (rispettivamente 0,24 µg/l e a 1,78 µg/l). Il vanadio è risultato molto costante, essendo compreso tra 1,35 µg/l (BO0, superficie) e 1,63 µg/l (BO7, fondo). Arsenico e silicio hanno presentato valori costanti analogamente a dicembre, oscillanti rispettivamente tra 1,35 µg/l (B5, -40 m) e 1,70 µg/l (BO0, -20 m), e tra 0,14 mg/l (BO0, -20 m) e 0,22 mg/l (BO7, superficie e BO8, fondo). Lo zinco anche in questa campagna è risultato particolarmente variabile, oscillando tra 2,0 µg/l, a 40 m nella stazione della BO5, e 96,2 µg/l, a 20 m della BO0. Piombo, rame e ferro sono risultati molto frequentemente al di sotto del limite di rilevabilità; il primo è stato rilevato in BO0 (superficie e -20 m), BO5 (superficie) e BO7 (ovunque eccetto in superficie), il rame a due quote delle stazioni BO0 e BO6, a tre quote della BO7 e in superficie della BO5, e il ferro alla quota dei 20 m delle stazioni BO0, BO7 e BO8 e in superficie della BO5. Le concentrazioni di cadmio, mercurio e indio sono sempre state inferiori al limite di rilevabilità. In generale tutti i metalli hanno presentato concentrazioni modeste.

 $\textbf{Tab. 2-XVIII} - \text{Metalli pesanti } (\mu g/l) \text{ determinati nelle diverse stazioni e alle diverse quote nel corso dei due pre-survey condotti in dicembre 2014 e marzo 2015.}$

					1	l° pre-sı	ırvey (d	icembre	2014)					
Stazione	Al	Ba	Cd	Cr	Hg	Ni	Pb	Cu	V	Zn	As	Fe	In	Si
BO0 sup	2,9	7,2	< 0,1	0,19	< 0,05	0,98	0,1	0,2	< 0,1	24,5	2,03	6,2	< 0,1	0,26
BO0 20 m	< 0,1	7,2	0,1	< 0,1	< 0,05	0,83	0,1	< 0,1	0,22	<0,1	2,36	<5	< 0,1	0,22
BO0 40 m	1,9	6,1	<0,1	<0,1	< 0,05	0,77	0,1	<0,1	<0,1	19,5	2,09	<5	< 0,1	0,25
BO0 fondo	1,9	6,1	0,1	<0,1	<0,05	0,83	0,2	<0,1	<0,1	40,3	1,95	9,0	< 0,1	0,29
BO5 sup	<0,1	6,4	< 0,1	< 0,1	<0,05	0,50	< 0,1	< 0,1	0,28	20,5	2,02	<5	< 0,1	0,21
BO5 20 m	< 0,1	6,1	< 0,1	< 0,1	< 0,05	0,26	< 0,1	< 0,1	0,28	<0,1	1,82	<5	< 0,1	0,29
BO5 40 m	<0,1	6,7	<0,1	<0,1	<0,05	0,52	< 0,1	<0,1	0,27	<0,1	2,03	8,3	< 0,1	0,26
BO5 fondo	< 0,1	6,5	<0,1	<0,1	< 0,05	0,20	< 0,1	<0,1	0,31	<0,1	1,93	<5	< 0,1	0,31
BO6 sup	3,6	6,1	0,2	<0,1	<0,05	1,13	< 0,1	<0,1	< 0,1	44,0	2,06	<5	< 0,1	0,04
BO6 20 m	<0,1	5,9	<0,1	<0,1	<0,05	0,37	0,1	<0,1	<0,1	14,6	2,10	<5	< 0,1	0,20
BO6 40 m	<0,1	6,0	0,1	<0,1	<0,05	0,55	0,1	<0,1	<0,1	20,7	2,18	<5	< 0,1	0,22
BO6 fondo	3,7	6,0	0,2	<0,1	<0,05	0,79	0,2	<0,1	< 0,1	78,0	1,68	<5	< 0,1	0,36
BO7 sup	0,5	6,6	< 0,1	< 0,1	<0,05	0,51	< 0,1	< 0,1	< 0,1	25,7	1,93	<5	< 0,1	0,19
BO7 20 m	0,9	6,2	< 0,1	< 0,1	<0,05	1,17	< 0,1	< 0,1	0,11	10,6	1,95	14,2	< 0,1	0,22
BO7 40 m	< 0,1	6,6	< 0,1	<0,1	0,2	0,34	< 0,1	<0,1	< 0,1	<0,1	1,71	<5	< 0,1	0,26
BO7 fondo	< 0,1	6,5	< 0,1	< 0,1	<0,05	0,16	< 0,1	< 0,1	0,30	<0,1	2,05	<5	< 0,1	0,33
BO8 sup	<0,1	6,6	<0,1	<0,1	< 0,05	0,34	<0,1	<0,1	0,13	2,3	1,89	<5	< 0,1	0,21
BO8 20 m	<0,1	6,5	<0,1	<0,1	<0,05	0,40	<0,1	<0,1	0,21	0,5	1,81	<5	< 0,1	0,18
BO8 40 m	<0,1	6,5	<0,1	< 0,1	< 0,05	0,30	< 0,1	< 0,1	0,19	<0,1	1,83	<5	< 0,1	0,21
BO8 fondo	<0,1	6,2	<0,1	< 0,1	< 0,05	0,47	< 0,1	< 0,1	0,16	<0,1	1,93	<5	< 0,1	0,34

						2° pre-	survey (1	narzo 2	015)					
Stazione	Al	Ba	Cd	Cr	Hg	Ni	Pb	Cu	V	Zn	As	Fe	In	Si
BO0 sup	4,1	8,2	< 0,1	0,42	< 0,05	0,63	0,2	0,4	1,35	19,6	1,59	< 5	< 0,1	0,16
BO0 20 m	16,5	8,9	< 0,1	0,60	< 0,05	1,78	0,2	0,7	1,48	96,2	1,70	8,8	< 0,1	0,14
BO0 40 m	5,4	8,9	< 0,1	0,35	<0,05	0,54	< 0,1	< 0,1	1,40	12,0	1,48	< 5	< 0,1	0,18
BO0 fondo	0,1	8,2	< 0,1	0,26	<0,05	0,24	< 0,1	< 0,1	1,43	< 0,1	1,62	< 5	< 0,1	0,16
BO5 sup	5,6	8,3	< 0,1	0,29	<0,05	0,69	0,2	0,1	1,46	39,1	1,59	7,8	< 0,1	0,20
BO5 20 m	< 0,1	7,9	< 0,1	0,17	<0,05	0,26	< 0,1	< 0,1	1,49	< 0,1	1,43	< 5	< 0,1	0,20
BO5 40 m	2,2	8,1	< 0,1	0,18	<0,05	0,72	< 0,1	< 0,1	1,59	2,0	1,35	< 5	< 0,1	0,17
BO5 fondo	2,2	7,9	< 0,1	0,28	<0,05	0,67	< 0,1	< 0,1	1,49	10,6	1,60	< 5	< 0,1	0,21
BO6 sup	2,1	7,9	< 0,1	0,39	<0,05	0,30	< 0,1	0,5	1,42	37,4	1,59	< 5	< 0,1	0,16
BO6 20 m	5,2	8,1	< 0,1	0,45	<0,05	0,52	< 0,1	0,1	1,37	56,5	1,54	< 5	< 0,1	0,18
BO6 40 m	2,9	8,6	< 0,1	0,38	< 0,05	0,44	< 0,1	< 0,1	1,41	15,2	1,49	< 5	< 0,1	0,16
BO6 fondo	0,7	8,1	< 0,1	0,32	<0,05	0,45	< 0,1	< 0,1	1,53	< 0,1	1,55	< 5	< 0,1	0,20
BO7 sup	2,6	8,0	< 0,1	0,31	<0,05	0,49	< 0,1	0,2	1,44	< 0,1	1,53	< 5	< 0,1	0,22
BO7 20 m	6,4	8,3	< 0,1	0,42	<0,05	0,99	0,2	0,2	1,52	36,5	1,67	5,7	< 0,1	0,17
BO7 40 m	5,4	8,3	< 0,1	0,37	<0,05	0,47	0,1	< 0,1	1,46	28,4	1,69	< 5	< 0,1	0,15
BO7 fondo	3,1	8,6	< 0,1	0,28	<0,05	0,60	0,1	0,2	1,63	25,4	1,62	< 5	< 0,1	0,19
BO8 sup	4,4	8,1	< 0,1	0,23	<0,05	0,27	< 0,1	0,2	1,53	13,9	1,49	< 5	< 0,1	0,18
BO8 20 m	4,1	8,4	< 0,1	0,30	<0,05	0,27	< 0,1	< 0,1	1,46	66,2	1,50	5,1	< 0,1	0,19
BO8 40 m	2,1	8,0	< 0,1	0,24	<0,05	0,31	< 0,1	< 0,1	1,46	15,1	1,49	< 5	< 0,1	0,20
BO8 fondo	3,1	8,2	< 0,1	0,27	< 0,05	0,49	< 0,1	< 0,1	1,41	26,5	1,57	< 5	< 0,1	0,22

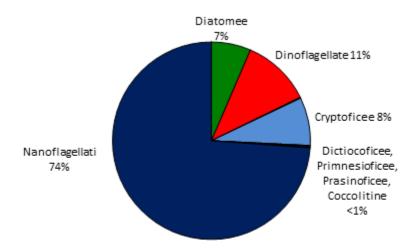
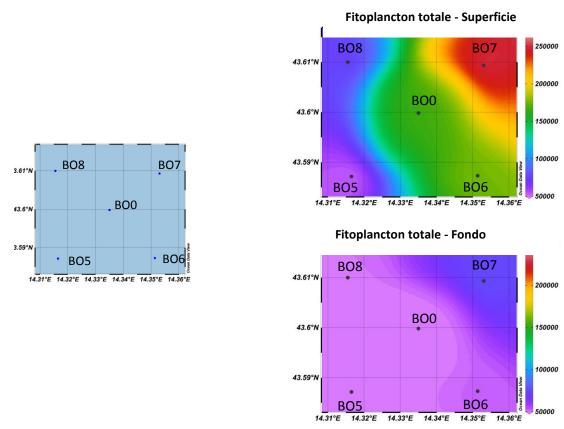
2.2.2. INDAGINI SULLE COMUNITÀ PLANCTONICHE

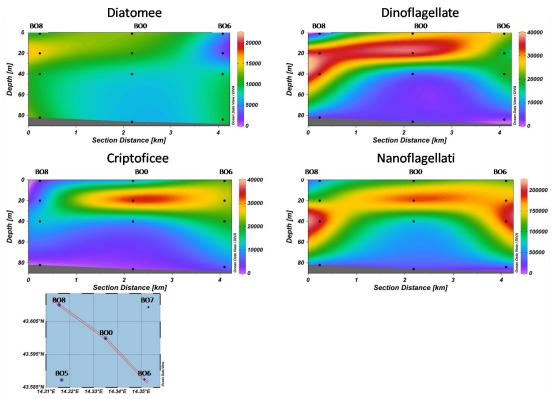
2.2.2.1 Fitoplancton

Nella campagna condotta nel **dicembre 2014** sono stati identificati 80 taxa appartenenti ai seguenti gruppi tassonomici: Diatomee (47), Dinoflagellate (14), Coccolitine (3), Criptoficee (4), Crisoficee (1), Prasinoficee (1), Dictiocoficee (3), Nanolagellati (1; fig. 2.23). Con il termine Nanoflagellati viene indicato il gruppo che include le forme sferiche di dimensioni ridotte (circa 5 µm) dotate di flagello e appartenenti a classi diverse che, a causa delle ridotte dimensioni, non possono essere determinate a livello di specie.

Complessivamente le forme flagellate hanno prevalso in abbondanza, con un contributo medio dei Nanoflagellati indeterminati del 74%. In misura molto minore hanno contribuito le Dinoflagellate (11%), le Criptoficee (8%) e le Diatomee e (7%). Altri taxa come le Coccolitoforidee o le Dictiocoficee hanno presentato abbondanze totali molto basse (contributo medio < 1%).

Le abbondanze fitoplanctoniche sono variate da un minimo di 32.344 cell/dm³ (stazione BO5, fondo) a un massimo di 277.443 cell/dm³ (BO0, -20 m) e hanno mostrato un andamento lungo la colonna caratterizzato da picchi di abbondanza tra la superficie e la quota di 40 m e da valori minimi al fondo (tra 83 m e 87 m; figg. 2.24-2.26). In superficie le abbondanze maggiori si sono riscontrate alla stazione BO7 (251.205 cell/dm³) i valori più bassi alle stazione BO5 (52.472 cell/dm³).


Fig. 2.23 - Dicembre 2014. Contributo percentuale medio dei principali gruppi tassonomici del fitoplancton.

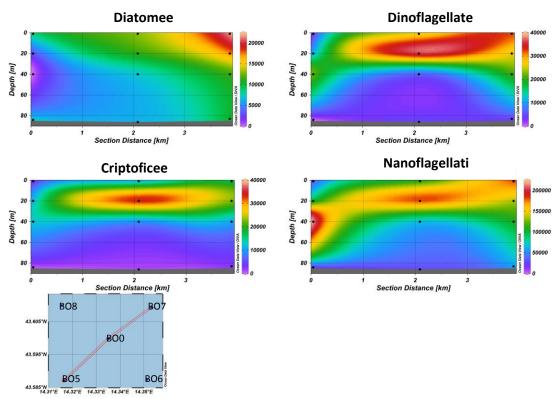

Fig. 2.24 - **Dicembre 2014**. Mappe areali delle abbondanze fitoplanctoniche espresse in cell/dm³ in superficie e al fondo.

Fig. 2.25 - Dicembre 2014. Abbondanze dei taxa fitoplanctoinici rinvenuti durante il periodo di studio.

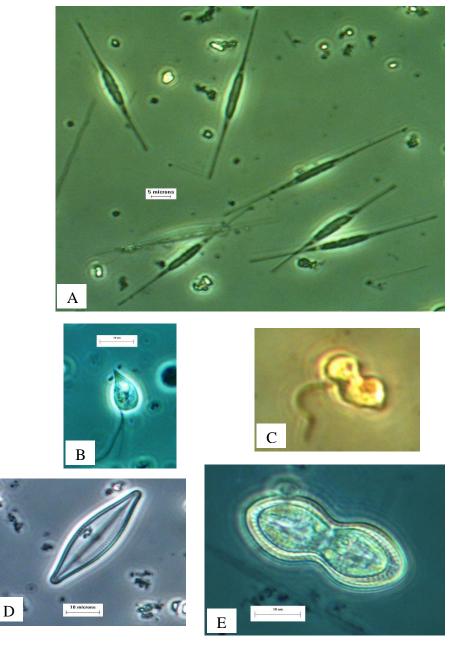


Fig. 2.26a - **Dicembre 2014**. Sezioni verticali delle abbondanze dei principali taxa fitoplanctonici; stazioni BO8, BO0 e BO6.

Fig. 2.26b - **Dicembre 2014**. Sezioni verticali delle abbondanze dei principali taxa fitoplanctonici; stazioni BO5, BO0 e BO7.

Le specie che hanno maggiormente caratterizzato i popolamenti fitoplanctonici (fig. 2.27) sono state tra le forme flagellate *Leucocryptos marina* (Criptoficee) e *Gyrodinium flagellare* (Dinoflagellate), tra le Diatomee *Cylindrotheca closterium*. Tali specie sono risultate più abbondanti tra la superficie e alle quote di 20 m e 40 m, meno abbondanti alle quote di fondo. Al fondo il contributo relativo delle Diatomee è stato maggiore per la presenza di specie bentoniche risospese (*Navicula* sp. e *Diploneis crabro*).

Fig. 2.27 - Specie fitoplanctoniche rinvenute a **Dicembre 2014**. A) *Cylindrotheca closterium*; B) *Leucocryptos marina*; C) *Gyrodinium flagellare*; D) *Navicula* spp. E) *Diploneis crabro*.

Nella campagna di **marzo 2015** sono stati identificati 53 taxa, appartenenti ai seguenti gruppi tassonomici: Diatomee (29), Dinoflagellate (13), Coccolitine (2), Criptoficee (4), Crisoficee (1), Primnesioficee (1), Prasinoficee (1), Dictiocoficee (1), Nanolagellati (1; fig.2.28).

Le abbondanze fitoplanctoniche sono variate da un minimo di 60.375 cell/dm³ (stazione BO3, -20 m) a un massimo di 467.911 cell/dm³ (BO5, -20 m).

Anche in questo caso complessivamente hanno prevalso le forme flagellate, con un contributo medio dei Nanoflagellati indeterminati del 77%. In misura molto minore hanno contribuito le Criptoficee (11%), le Dinoflagellate (9%) e le Diatomee e (3%). Altri taxa come le Coccolitoforidee o le Dictiocoficee hanno presentato abbondanze totali modeste (<1%).

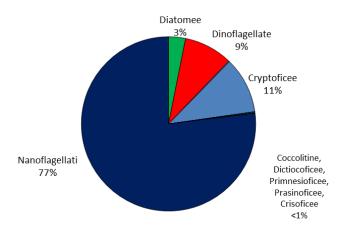
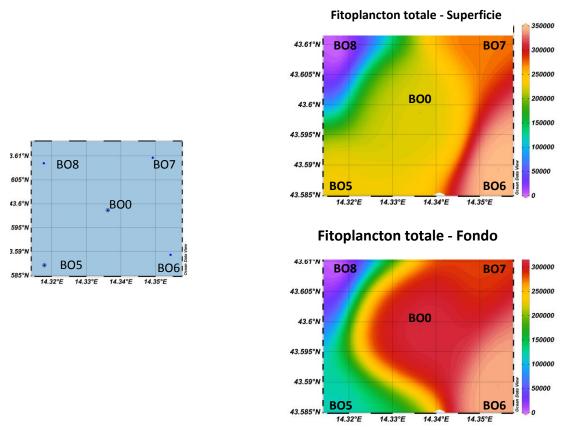
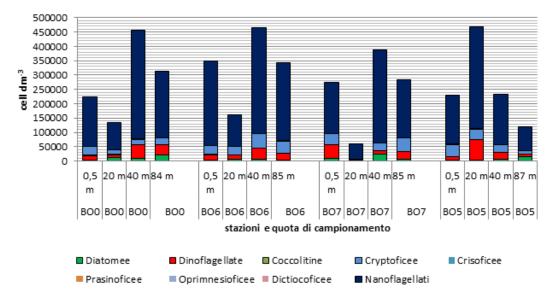
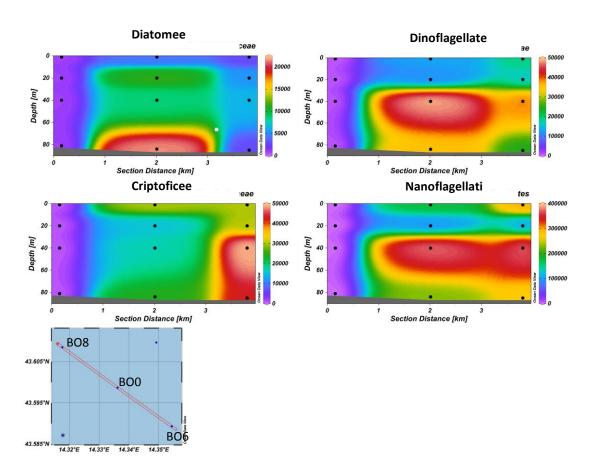




Fig. 2.28 - Marzo 2015. Contributo percentuale medio dei principali gruppi tassonomici del fitoplancton.


Le abbondanze fitoplanctoniche hanno mostrato un andamento caratterizzato da picchi di abbondanza tra la quota di 20 m, 40 m e la quota di fondo (figg. 2.29-2.31). In superficie il valore più basso è stato riscontrato alla stazione BO0 (22.4251 cell/dm³) e il massimo in BO6 (349.320 cell/dm³). Al fondo i valori di abbondanza sono variati tra 120.035 cell/dm³ nella stazione BO5 e 343.569 cell/dm³ in BO6.

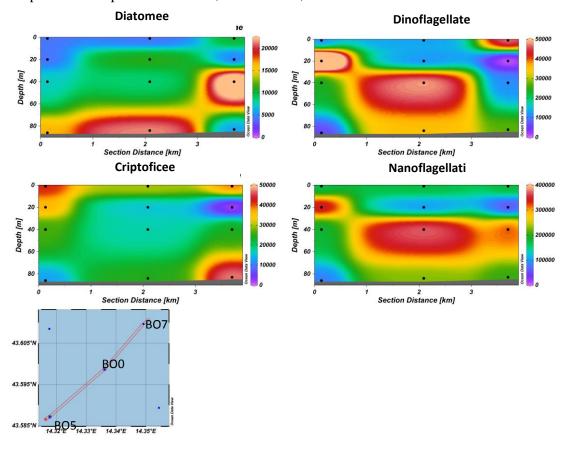

Fig. 2.29 - **Marzo 2015.** Mappe areali delle abbondanze fitoplanctoniche espresse in cell/dm³, in superficie e al fondo.

Fig. 2.30 - **Marzo 2015**. Abbondanze dei taxa fitoplanctonici rinvenuti durante il periodo di studio.

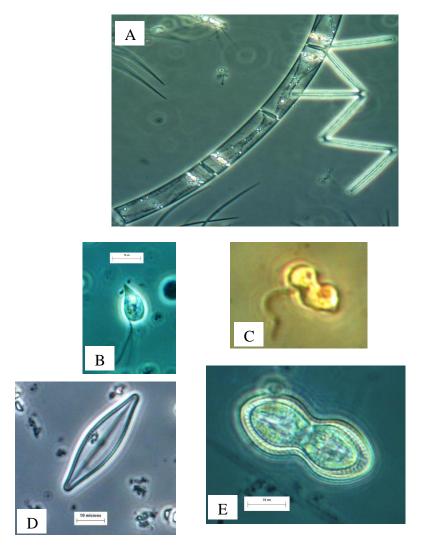


Fig. 2.31a - **Marzo 2015**. Sezioni verticali delle abbondanze dei principali taxa fitoplanctonici espresse in cell/dm³; stazioni BO8, BO0 e BO6.

Fig. 2.31b - **Marzo 2015**. Sezioni verticali delle abbondanze dei principali taxa fitoplanctonici espresse in cell/dm³; stazioni BO5, BO0 e BO7.

Le specie che hanno maggiormente caratterizzato i popolamenti fitoplanctonici sono state *Leucocryptos marina* (Criptoficee) e *Gyrodinium flagellar*e (Dinoflagellate) e, tra le Diatomee, *Guinardia flaccida* (fig. 2.32). Alle quote di fondo il contributo delle Diatomee è stato maggiore per la presenza di specie bentoniche risospese (*Navicula* sp. e *Diploneis crabro*).

Fig. 2.32 - Specie fitoplanctoniche rinvenute a Marzo 2015. A) *Guinardia flaccida* e *Thalassionema nitzschioides*; B) *Leucocryptos marina*; C) *Gyrodinium flagellare*; D) *Navicula* sp. E) *Diploneis crabro*.

Dal confronto tra i due survey sono emerse abbondanze fitoplanctoniche mediamente più elevate in marzo 2015 rispetto a dicembre 2014 (fig. 2.33).

Nelle Tabb. 2-XIX e 2-XX sono riportate rispettivamente la lista floristica e le abbondanze dei gruppi rinvenuti.

Fig. 2.33 - Abbondanze fitoplanctoniche medie dei principali gruppi tassonomici nella campagna di dicembre 2014 e marzo 2015.

Tab. 2-XIX - Lista floristica delle specie fitoplanctoniche rinvenute nel corso dei due presurvey.

<u>Diatomee</u>	Diatomee	<u>Dinoflagellate</u>
Amphiprora sp.	Pseudo-nitzschia pseudodelicatissima	Und. naked dino
Amphora exigua	Pseudonitzschia sp.	Und. thecate dino
Amphora sp.	Pseudo-nitzschia sp.	
Asterionellopsis glacialis	Pseudosolenia calcar-avis	Coccolitine
Cerataulina pelagica	Rhizosolenia setigera	Emiliania huxleyi
Chaetoceros affinis	Rhizosolenia styliformis	Pontosphaera sp.
Chaetoceros decipiens	Synedra sp.	Rhabdosphaera claviger
Chaetoceros sp.	Thalassionema nitzschioides	Syracosphaera pulchra
Coscinodiscus sp.	Thalassiosira sp.	
Cyclotella sp.	Und. Pennate diatoms	<u>Criptoficee</u>
Cylindrotheca closterium		Leucocryptos marina
Dactyliosolen fragilissimus	<u>Dinoflagellate</u>	Teleaulax acuta
Diploneis crabro	Ceratium symmetricum	Telonema subtilis
Guinardia flaccida	Gymnodinium verruculosum	Und. Cryptophyceae
Guinardia striata	Gymnodinium sp.	
Hemiaulus hauckii	Gyrodinium spirale	<u>Crisoficee</u>
Leptocylindrus danicus	Gyrodinium flagellare	Meringosphaera mediterranea
Lioloma pacificum	Gyrodinium sp.	
Navicula cryptocephala	Oxytoxum mediterraneum	<u>Prasinoficee</u>
Navicula forcipata	Oxytoxum parvum	Pyramimonas sp.
Navicula sp.	Oxytoxum sp.	
Nitzschia sigma	Oxytoxum variabile	<u>Primnesioficee</u>
Nitzschia sp.	Pronoctiluca spinifera	Chrysochromulina sp.
Pleurosigma normanii	Prorocentrum minimum	
Pleurosigma sp.	Prorocentrum sp.	<u>Dictiocoficee</u>
Proboscia alata	Protoperidinium sp.	Dictyocha fibula
Psammodictyon panduriformis	Scrippsiella trochoidea	Dictyocha speculum
Pseudo-nitzschia pungens		
Pseudonitzschia galaxiae		<u>Flagellati</u>
		Nanoflagellates

Tab. 2-XX - Abbondanze dei gruppi fitoplanctonici (n. cell/dm³) rinvenuti nei due survey (dicembre 2014, in alto; marzo 2015, in basso) alle diverse quote delle stazioni di campionamento.

Stazione	Distanza dalla struttura [m]	Quota [m]	Diatomee cell/dm ³	Dinoflagellate cell/dm ³	Coccolitine cell/dm ³	Criptofice e cell/dm ³	Chrysophyceae cell/dm ³	Prasinoficee cell/dm ³	Primnesioficee cell/dm ³	Dictiocoficee cell/dm ³	Nanoflagellati cell/dm³	Totale cell/dm³
BO0	0	0	12.937	25.875	2.156	10.781	-	2.156	-	1.078	111.048	166.031
BO0	0	20	11.501	38.814	-	35.938	-	-	-	-	191.190	277.443
BO0	0	40	7.188	4.313	-	7.906	-	-	-	719	58.938	79.064
BO0	0	86	6.468	5.390	-	1.617	-	1.078	-	-	30.727	45.280
BO5	2000	0	8.627	4.313	-	3.594	-	-	-	-	35.938	52.472
BO5	2000	20	3.234	10.781	-	11.320	-	-	-	539	99.189	125.063
BO5	2000	40	-	22.642	-	12.937	-	-	-	1.078	222.096	258.753
BO5	2000	84	7.393	-	-	924	-	-	-	-	24.027	32.344
BO6	2000	0	5.390	24.796	-	21.563	-	-	-	-	125.064	176.813
BO6	2000	20	2.876	17.252	-	24.438	-	1.438	-	-	168.190	214.194
BO6	2000	40	8.624	19.406	-	19.406	-	-	-	-	194.065	241.501
BO6	2000	84	9.346	1.438	719	6.469	-	1.438	-	-	33.063	52.473
BO7	2000	0	21.562	32.344	-	17.250	-	-	-	-	180.049	251.205
BO7	2000	20	17.252	25.877	-	23.001	-	-	-	-	135.127	201.257
BO7	2000	40	11.501	20.845	719	10.781	-	-	-	-	107.814	151.660
BO7	2000	83	10.242	4.851	-	2.695	-	-	-	=	58.219	76.007
BO8	2000	0	10.783	3.594	-	2.876	-	-	-	-	57.501	74.754
BO8	2000	20	15.092	35.578	-	7.547	-	-	1.078	1.078	120.751	181.124
BO8	2000	40	10.063	34.501	-	12.938	-	-	-	-	208.440	265.942
BO8	2000	82	11.645	3.450	862	-	-	-	-	-	33.638	49.595
BO0	0	0	4.312	12.937	3.234	30.188	-	-	-	-	173.580	224.251
BO0	0	20	11.214	11.214	1.725	15.525	-	-	-	-	95.739	135.417
BO0	0	40	8.625	49.594	-	17.250	2.156	-	-	-	379.505	457.130
BO0	0	84	21.564	35.938	-	24.438	-	-	-	-	231.440	313.380
BO5	2000	0	4.313	11.502	-	41.688	-	2.875	-	-	169.627	230.005
BO5	2000	20	4.312	71.157	-	36.657	-	-	2.156	-	353.629	467.911
BO5	2000	40	7.546	22.640	-	25.875	-	-	1.078	-	176.815	233.954
BO5	2000	86	16.532	6.470	-	12.938	-	-	-	-	84.095	120.035
BO6	2000	0	2.876	18.689	2.875	30.189	-	-	-	-	294.691	349.320
BO6	2000	20	5.390	16.172	-	30.188	-	-	-	-	109.970	161.720
BO6	2000	40	6.469	38.813	-	49.595	-	-	-	-	370.880	465.757
BO6	2000	85	2.876	24.440	-	43.125	-	2.875	-	-	270.253	343.569
BO7	2000	0	10.065	47.439	-	38.813	-	-	-	-	176.815	273.132
BO7	2000	20	4.312	-	-	1.078	-	-	-	1.078	53.907	60.375
BO7	2000	40	25.877	11.500	-	24.438	-	-	-	-	324.879	386.694
BO7	2000	83	5.752	27.314	-	47.438	-	1.438	-	-	202.690	284.632

2.2.2.2 Zooplancton

In Tab. 2-XXI sono riportati i dati relativi alle analisi sui popolamenti zooplactonici effettuate in tutte le stazioni nelle due campagne condotte a dicembre 2014 e a marzo 2015, mentre in Tab. 2-XXII viene riportato l'elenco delle specie di Copepodi, di Cladoceri e dei gruppi tassonomici rinvenuti nei due periodi di studio.

In **dicembre 2014** in tutte le stazioni si sono rinvenuti valori relativamente bassi di abbondanza (fig. 2.34). Il minimo è stato rilevato nella stazione B01 (311 ind/m³), mentre il massimo è stato registrato nella stazione B04 (786 ind/m³).

Pochi sono stati i taxa che hanno caratterizzato i popolamenti zooplanctonici invernali (Tab. 2-XXI). In tutte le cinque stazioni ha dominato il gruppo dei Copepodi (con percentuali pari a circa il 70% rispetto al totale della comunità; fig.

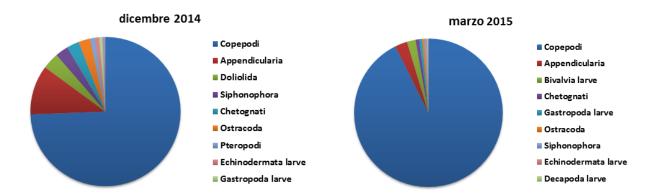
2.35), gli individui appartenenti alla classe Appendicularia (10% circa), i Sifonofori, i Doliolidi e i Chetognati con valori percentuali inferiori al 5% (fig. 2.35).

Tab. 2-XXI - Abbondanze (n. ind/m³) dei vari gruppi tassonomici rinvenuti nei due pre-survey condotti a dicembre 2014 e a marzo 2015.

Data	1° pre-survey											2° pre-survey								
Stazione	BC	00	BC)6	BO	7	BO8		BC)5	BO	0	BO	6	BO)7	BC	8	BC)5
	ind/m ³	%	ind/m ³	%	ind/m ³	%	ind/m ³	%	ind/m ³	%										
Copepodi	229,03	73,69	487,32	74,90	442,72	73,63	557,49	70,91	520,63	73,03	3324,55	93,39	2110,44	90,80	2708,91	90,36	1459,12	94,85	3225,00	93,20
Cladoceri					0,04	0,01									5,28	0,18	2,01	0,13		
Amphipoda	1,82	0,59	0,12	0,02	1,84	0,31	0,37	0,05	0,24	0,03	0,32	0,01	2,29	0,10	0,07	0,00	2,01	0,13	0,35	0,01
Appendicularia	30,03	9,66	71,64	11,01	51,83	8,62	102,21	13,00	65,08	9,13	111,78	3,14	52,65	2,27	87,13	2,91	30,19	1,96	88,89	2,57
Bivalvia larve	0,73	0,23	1,59	0,24	3,34	0,56	3,72	0,47	1,27	0,18	47,90	1,35	80,11	3,45	71,29	2,38	8,05	0,52	52,78	1,53
Chetognati	10,92	3,51	12,74	1,96	23,41	3,89	11,15	1,42	22,22	3,12	28,74	0,81	22,89	0,98	23,76	0,79	6,04	0,39	30,56	0,88
Decapoda larve	1,25	0,40	1,71	0,26	1,71	0,28	0,56	0,07	0,83	0,12	1,12	0,03	2,29	0,10	3,70	0,12	6,04	0,39	8,33	0,24
Doliolida	12,74	4,10	22,29	3,43	23,41	3,89	22,30	2,84	26,98	3,79	0,08	0,00	0,00	0,00	0,00	0,00	0,15	0,01	8,33	0,24
Echinodermata larve	0,91	0,29	4,78	0,73	8,36	1,39	7,43	0,95	4,76	0,67	6,39	0,18	2,29	0,10	15,84	0,53	0,00	0,00	5,56	0,16
Eufausiacei	0,00	0,00	0,08	0,01	0,38	0,06	0,56	0,07	0,16	0,02					0,86	0,03				
Gastropoda larve	2,34	0,75	2,03	0,31	1,67	0,28	7,53	0,96	8,13	1,14	12,77	0,36	22,89	0,98	31,68	1,06	4,03	0,26	16,67	0,48
Hydrozoa	0,91	0,29	1,59	0,24	0,00	0,00	5,57	0,71	3,17	0,45	0,16	0,00	2,29	0,10	2,64	0,09				
Isopodi			0,08	0,01	1,76	0,29														
Misidacei	0,05	0,01			0,08	0,01			0,04	0,01										
Ostracoda	8,19	2,64	19,10	2,94	13,38	2,22	14,87	1,89	20,63	2,89	9,58	0,27	4,58	0,20	23,76	0,79	12,08	0,78	13,89	0,40
Phoronida									1,59	0,22										
Polychaeta	1,84	0,59	3,30	0,51	0,59	0,10	4,04	0,51	2,18	0,31	6,39	0,18	2,29	0,10	5,28	0,18	2,01	0,13	0,28	0,01
Pteropodi	3,64	1,17	1,59	0,24	8,40	1,40	11,20	1,42	7,98	1,12	0,00	0,00	2,29	0,10	1,06	0,04	0,45	0,03	1,11	0,03
Salpidi	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,01												
Siphonophora	1,82	0,59	19,10	2,94	15,05	2,50	26,02	3,31	22,22	3,12	9,58	0,27	16,02	0,69	15,84	0,53	6,04	0,39	8,33	0,24
Teleostea larve	0,91	0,29			1,67	0,28	1,86	0,24	1,59	0,22					0,07	0,00				
Teleostea uova	3,64	1,17	1,59	0,24	1,67	0,28	9,29	1,18	3,17	0,45	0,48	0,01	1,03	0,04	0,79	0,03	0,15	0,01	0,14	0,00


Nel **marzo 2015** i popolamenti zooplanctonici hanno mostrato valori di abbondanza numerica notevolmente più elevati rispetto alla situazione precedente (fig. 2.31). Il massimo valore assoluto è stato registrato nella stazione B01 (3.560 ind/m³) e il minimo nella stazione B04 (1.538 ind/m³; fig. 2.34).

Come in dicembre, in tutte le cinque stazioni il popolamento zooplanctonico è risultato costituito da pochi taxa (Tabb. 2-XXI e 2-XXII). Il contributo percentuale dei Copepodi è salito a valori superiori al 90% seguito da quello delle Appendicolarie e delle forme larvali di Bivalvi (fig. 2.35). In marzo, seppur con abbondanze poco rilevanti, si segnala una maggiore presenza dei Crostacei Cladoceri, organismi prettamente tipici nella stagione calda (Tab. 2-XXI). In fig. 2.36 sono riportate alcune delle specie più indicative del popolamento rinvenuto.


Tab. 2-XXII - Lista faunistica delle specie di zooplanctone rinvenute nei due pre-survey (dicembre 2014 e marzo 2015).

2014 c marzo 2013).	1° pre-survey	2° pre-survey
Copepodi		<u> </u>
Aetideus giesbrechti	*	
Acartia negligens	*	
Calanus helgolandicus	*	*
Calocalanus contractus	*	*
Calocalanus plumulosus	*	
Calocalanus styliremis	*	*
Calocalanus sp.p.		*
Candacia armata	*	*
Centropages typicus		*
Clausocalanus furcatus	*	*
Clausocalanus jobei	*	*
Clausocalanus sp.p.	*	*
Clytemnestra sp.	*	*
Copilia sp.	*	
Corycaeus sp.p.	*	*
Ctenocalanus vanus	*	*
Diaixis pygmaea		*
Eucalanus attenuatus	*	
Euchaeta sp.	*	*
Euterpina acutifrons	*	*
Farranula sp.	*	
Mecynocera clausi	*	*
Nannocalanus minor	*	*
Neocalanus gracilis	*	*
Oithona similis	*	*
Oithona nana		*
Oithona plumifera	*	*
Oithona setigera	*	
Oithona sp.p.	*	
Oncaea sp.p.	*	*
Paracalanus denudatus	*	*
Paracalanus nanus	*	*
Paracalanus parvus	*	*
Pleuromamma sp.	*	

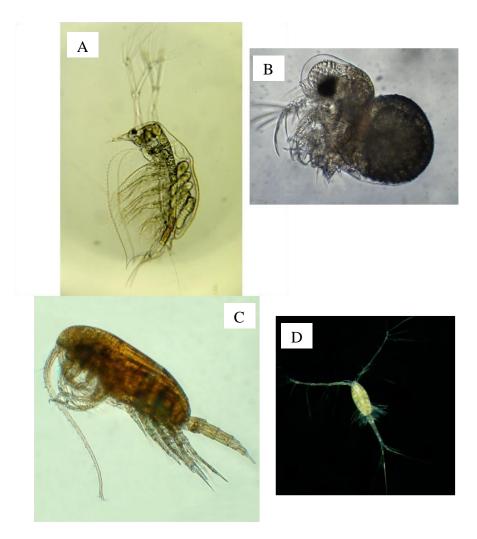

	1° pre-survey	2° pre-survey
Copepodi		
Sapphirina sp.	*	
Scolecithrix sp.	*	
Temora longicornis	*	
Temora stylifera	*	*
Cladoceri		
Evadne spinifera	*	
Penilia avirostris		*
Podon sp.		*
Altri taxa		
Amphipoda	*	*
Appendicularia	*	*
Bivalvia larve	*	*
Chetognati	*	*
Decapoda larve	*	*
Doliolida	*	*
Echinodermata larve	*	*
Eufausiacei	*	*
Gastropoda larve	*	*
Hydrozoa sp.p.	*	*
Isopodi	*	
Misidacei	*	
Ostracoda	*	*
Polychaeta	*	*
Pteropodi	*	*
Siphonophora	*	*
Teleostea larve	*	*
Teleostea uova	*	*

Fig. 2.34 - Abbondanze zooplanctoniche espresse in individui m³ nei mesi di dicembre 2014 e marzo 2015.

Fig. 2.35 - Contributo percentuale dei principali gruppi zooplanctonici nei mesi di dicembre 2014 e marzo 2015.

Fig. 2.36 - Specie zooplanctoniche: A) Cladocero *Penilia avirostris*; B) Cladocero appartenente al genere Podon; C).Copepode *Clausocalanus furcatus*; D) Copepode *Oithona plumifera*.

2.2.3. INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI

2.2.3.1 Granulometria

All'analisi visiva tutti i sedimenti sono apparsi di colore nocciola, molto simili tra loro e inodori, con uno strato ossidato compreso tra 0,5 cm e 1 cm (fig. 2.37). Segni di bioturbazione e residui conchigliari sono stati osservati in tutti i campioni (All. B).

Fig. 2.37 - Campioni di sedimento raccolti in corrispondenza dei siti BO NE, B3 e K2 durante il pre-survey.

Dall'analisi granulometrica (fig. 2.38; Tab. 2-XXIII) è emerso che tutti i campioni prelevati entro un raggio di 60 m dal sito della futura piattaforma erano costituiti in prevalenza dalla frazione sabbiosa, il cui picco è stato rilevato in corrispondenza di A6 (61,05%); il minimo è stato invece registrato in BO NW (58,31%). La restante parte dei campioni è apparsa costituita in prevalenza da silt, che ha raggiunto il massimo in BO SW (24,29%) e il minimo in A6 (21,86 %), mentre l'argilla è oscillato tra il 16,83% (B6) e il 17,93% (BO NW). Le tre frazioni granulometriche non hanno presentato differenze degne di nota con quanto rilevato ai controlli, tanto che tutti i 12 campioni sono risultati classificabili come sabbia siltosa secono Sheppard (All. B).

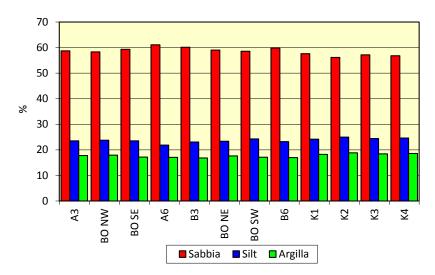
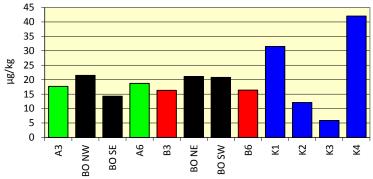


Fig. 2.38 - Ripartizione delle classi granulometriche, espresse in percentuale, nei sedimenti analizzati durante il pre-survey.

Tab. 2-XXIII - Composizione percentuale delle principali classi granulometriche dei sedimenti analizzati durante il pre-survey. Le stazioni di campionamento poste in corrispondenza della futura piattaforma sono evidenziate in rosso.

	Sabbia	P	elite	Classificazione di
	Sabbia	Silt	Argilla	Sheppard
A3	58,69	23,54	17,77	Sabbia siltosa
BO NW	58,31	23,76	17,93	Sabbia siltosa
BO SE	59,30	23,53	17,17	Sabbia siltosa
A6	61,05	21,86	17,09	Sabbia siltosa
В3	60,11	23,06	16,83	Sabbia siltosa
BO NE	59,00	23,36	17,64	Sabbia siltosa
BO SW	58,56	24,29	17,15	Sabbia siltosa
В6	59,80	23,24	16,96	Sabbia siltosa
K1	57,62	24,15	18,23	Sabbia siltosa
K2	56,15	24,99	18,86	Sabbia siltosa
K3	57,14	24,42	18,44	Sabbia siltosa
K4	56,80	24,62	18,58	Sabbia siltosa

2.2.3.2 Idrocarburi Policiclici Aromatici


I vari composti appartenenti agli Idrocarburi Policiclici Aromatici hanno presentato comportamenti diversi tra loro, seppur tutti con concentrazioni modeste, molto al di sotto degli LCB indicati dal "Manuale per la movimentazione dei sedimenti marini" (ICRAM-APAT, 2007). Molti di essi sono risultati presenti in tutti (Antracene, Benzo(ghi)perilene, Benzo(k)fluorantene, Indeno1,2,3cd-pirene) o quasi tutti (Pirene, Benzo(b)fluorantene, Fluorantene) i siti indagati. Diffusamente presenti sono apparsi il Naftalene e il Crisene, mentre il Fenantrene è risultato rilevabile in cinque stazioni tra cui tre controlli (Tab. 2-XXIV).

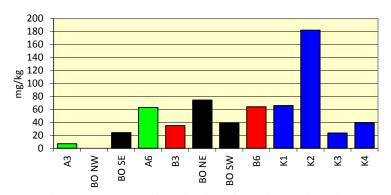
Il Benzo(a)antracene è stato quantificato unicamente in K1 e K4. Infine Acenaftene, Acenaftilene, Benzo(a)pirene, Dibenzo (a, h) antracene, Fluorene sono risultati ovunque al di sotto del limite di quantificazione della metodica.

Conseguentemente alle modeste concentrazioni dei singoli composti, anche gli IPA Totali sono apparsi scarsi (fig. 2.39). Il tenore maggiore è stato rilevato nel controllo K4 (42 µg/kg), ma anch'esso è da considerare estremamente basso.

Tab. 2-XXIV - Concentrazioni degli Idrocarburi Policiclici Aromatici (μg/kg s.s.) nei sedimenti prelevati durante il pre-survey. Le stazioni poste in corrispondenza della futura piattaforma sono evidenziate in rosso. Le celle vuote indicano l'assenza del composto in quel sito. Ove disponibili sono anche riportati gli LCB indicati da ICRAM-APAT (2007).

	LCB	A3	BO NW	BO SE	A6	В3	BO NE	BO SW	В6	K1	K2	К3	K4
Naftalene	35		1,9	1,4			1,5	1,7	1,7	1,5	1,3		1,9
Acenaftene	7												
Fluorene	21												
Fenantrene	87	1,0			1,0					1,8	1,0		2,2
Antracene	47	2,2	2,3	1,6	1,7	1,9	1,7	1,5	2,1	2,1	3,2	2,3	2,6
Fluorantene	113	1,3	1,5	1,1	1,4	1,3	1,8	1,6	1,2	3,0			3,2
Pirene	153	1,4	1,7	1,3	1,5	1,3	1,8	1,7	1,3	3,1			3,0
Benzo (a) antracene	75									1,4			1,4
Crisene	108	1,1	1,2		1,3	1,0	1,3	1,3		2,4			3,0
Benzo (b) fluorantene		3,1	4,1	2,2	3,4	2,8	4,7	4,5	2,8	4,8	1,4		9,1
Benzo (k) fluorantene		1,6	2,1	1,5	1,8	1,7	2,0	2,6	1,7	2,3	1,5	1,1	3,4
Benzo (a) pirene	80												
Dibenzo (a, h) antracene	6												
Benzo (g, h,i) perilene		2,6	3,3	2,5	2,9	2,9	3,0	2,7	2,8	4,5	1,8	1,5	5,4
Indeno (1,2,3 - c, d) pirene		3,4	3,4	2,7	3,7	3,3	3,3	3,2	2,8	4,6	1,9	1,0	6,8
Acenaftilene													
Totale	900	17,7	21,5	14,3	18,7	16,3	21,1	20,8	16,4	31,5	12,1	5,9	42,0

Fig. 2.39 - Concentrazioni (mg/kg s.s.) degli Idrocarburi Policiclici Aromatici totali nei sedimenti prelevati durante il pre-survey. In nero sono indicate le stazioni situate nell'area destinata ad accogliere la piattaforma Bonaccia NW.


2.2.3.3 Idrocarburi totali

Le concentrazioni degli idrocarburi leggeri (C<12) sono risultate in tutti i casi al di sotto del limite di quantificazione (Tab. 2-XXV).

Per quanto riguarda gli idrocarburi pesanti (C>12) i tenori sono apparsi variabili nei diversi siti (Tab. 2-XXV; fig. 2.40). Le concentrazioni determinate lungo i transetti e in corrispondenza del sito destinato ad accogliere la piattaforma sono oscillate in un intervallo compreso tra 7,1 mg/kg (A3) e 74,4 mg/kg (BO NE). In corrispondenza di BO NW questi contaminanti sono risultati al di sotto del limite di quantificazione. Ove rilevati, i valori sono risultati confrontabili o inferiori a quelli dei siti di controllo dove gli idrocarburi pesanti sono oscillati tra 23,6 mg/kg (K3) e 182,2 (K2).

Tab. 2-XXV – Idrocarburi (mg/kg) C>12 e Idrocarburi C<12 rilevate nei sedimenti campionati durante il pre-survey. In rosso i siti in cui verrà istallata la piattaforma Bonaccia NW.

	A3	BO NW	BO SE	A6	В3	BO NE	BO SW	В6	K1	K2	К3	K4
C>12	7,1	< 5,0	24,2	62,9	34,9	74,4	38,8	64,1	65,9	182,2	23,6	39,2
C<12	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5

Fig. 2.40 - Idrocarburi (mg/kg) C>12 rilevati nei sedimenti campionati durante il pre-survey. Gli idrocarburi <12 non sono riportati in quanto non rilevabili. In rosso i siti in cui verrà istallata la piattaforma Bonaccia NW.

2.2.3.4 Metalli pesanti

In Tab. 2-XXVI e in fig. 2.41 sono riportate le concentrazioni dei metalli pesanti quantificate nei sedimenti, risultate sempre e ovunque modeste.

Alluminio – Le percentuali di questo metallo rilevate entro 60 m dalla futura piattaforma sono oscillate tra 1,05% (A3) e 1,89% (B6), presentando una

concentrazione media $(1,45\pm0,26\%)$ del tutto in linea con quella dei controlli $(1,56\pm0,94\%)$, dove questo metallo ha presentato maggiore variabilità oscillando tra 0,68% (K3) e 2,58% (K4).

Arsenico – Le concentrazioni dell'arsenico rilevate lungo i transetti e nell'area destinata ad accogliere Bonaccia NW sono risultate tutte inferiori o simili al controllo K2 (9,78 mg/kg) tranne nel sito A3, dove è stato raggiunto il massimo assoluto (11,33 mg/kg), anch'esso corrispondente comunque a un valore modesto. In termini di concentrazioni medie, non sono state riscontrate particolari differenze tra quanto raggiunto entro un raggio di 60 m e i controlli (9,02±1,32 e 6,19±2,58 mg/kg rispettivamente).

Bario – Le concentrazioni di bario rilevate nell'area circostante la futura piattaforma sono apparse modeste, anche se tendenzialmente maggiori rispetto a quelle rilevate nei controlli. In termini di valori medi, a causa dell'elevata variabilità riscontrata soprattutto nei riferimenti, non sono comunque state riscontrate differenze (entro 60 m: 56,58±12,25; controlli: 34,05±19,91 mg/kg).

Entro 60 m da Bonaccia NW il tenore minore è stato rilevato in A3 (34,45 mg/kg), e il massimo B6 (75,02 mg/kg), valore quest'ultimo che, seppur modesto, corrisponde a oltre 2 volte la media dei controlli.

Cadmio – Per il cadmio è stata riscontrata una notevole omogeneità tra l'area circostante la futura piattaforma e i controlli (entro 60 m: 0,088±0,003; controlli: 0,092±0,019 mg/kg). Le concentrazioni sono risultate ovunque modeste.

Tab. 2-XXVI - Concentrazioni (mg/kg s.s.; Al e Fe espressi in %) dei metalli in tracce presenti nei sedimenti prelevati nel corso del pre-survey. In rosso le stazioni campionate nel sito in cui verrà installata la piattaforma Bonaccia NW.

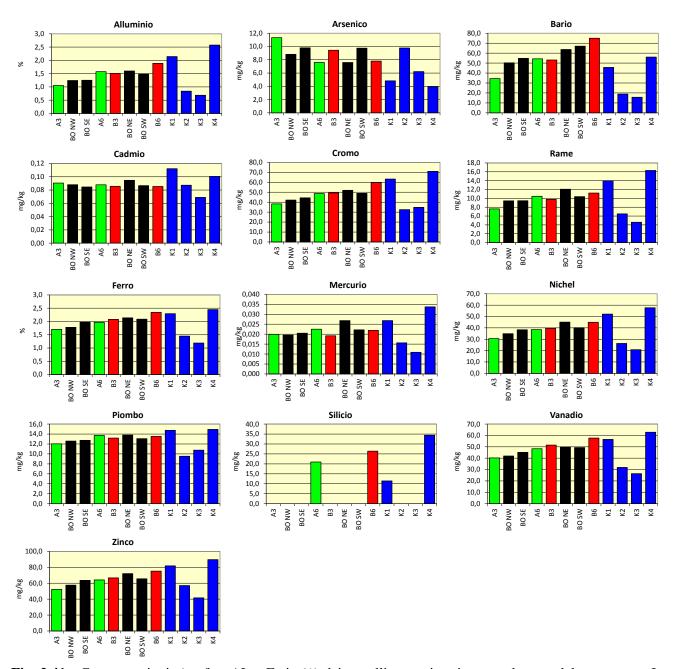
	Al	As	Ba	Cd	Cr	Cu	Fe	In	Hg	Ni	Pb	Si	\mathbf{v}	Zn
A3	1,05	11,33	34,45	0,0907	38,27	7,62	1,70	< 10	0,0199	30,56	12,02	< 5	40,22	52,16
BO NW	1,24	8,83	50,24	0,0881	42,18	9,43	1,78	< 10	0,0195	34,86	12,59	< 5	41,90	57,62
BO SE	1,25	9,80	54,80	0,0847	44,22	9,45	1,97	< 10	0,0205	38,32	12,73	< 5	45,19	63,54
A6	1,58	7,60	54,31	0,0879	48,71	10,46	1,97	< 10	0,0225	38,47	13,72	20,95	48,35	64,14
В3	1,51	9,44	53,09	0,0857	49,23	9,76	2,08	< 10	0,0192	39,56	13,19	< 5	51,51	66,58
BO NE	1,60	7,59	63,71	0,0948	51,91	12,07	2,14	< 10	0,0268	45,09	13,80	< 5	49,92	72,05
BO SW	1,49	9,76	67,05	0,0867	48,82	10,39	2,09	< 10	0,0221	40,17	13,07	< 5	49,33	65,60
B6	1,89	7,81	75,02	0,0855	59,63	11,20	2,34	< 10	0,0219	44,92	13,53	26,38	57,68	75,20
K1	2,14	4,83	45,68	0,1123	63,28	13,97	2,29	< 10	0,0268	52,12	14,75	11,43	56,53	81,67
K2	0,84	9,78	18,87	0,0874	32,48	6,49	1,45	< 10	0,0156	26,35	9,54	< 5	31,86	57,11
K3	0,68	6,22	15,62	0,0690	34,79	4,60	1,19	< 10	0,0109	20,84	10,76	< 5	26,36	41,49
K4	2,58	3,92	56,04	0,1006	70,89	16,31	2,45	< 10	0,0337	57,67	14,94	34,41	62,82	89,65

Cromo – Le concentrazioni del cromo rilevate lungo i transetti e nell'area destinata ad accogliere Bonaccia NW sono oscillate tra 38,27 mg/kg (A3) e 59,63 mg/kg (B6), risultando mediamente confrontabili con i controlli dove è stata riscontrata una maggiore variabilità (entro 60 m: 47,87±6,50; controlli: 50,36±19,58 mg/kg).

Rame – Le concentrazioni del rame rilevate entro 60 m dalla futura piattaforma sono oscillate tra 7,62 mg/kg (A3) e 12,07 mg/kg (BO NE). Analogamente agli altri metalli, non sono state riscontrate differenze tra la media di questi siti e la media deli controlli (10,05±1,33 e 10,34±5,67 mg/kg rispettivamente) caratterizzati, anche in questo caso, da una maggiore variabilità.

Ferro – Per il ferro è stato osservato un andamento molto simile a quello dei metalli precedenti. Entro 60 m dalla struttura le percentuali sono oscillate tra 1,70% (A3) e 2,34% (B6), risultando incluse nel range di variazione dei controlli (1,19-2,45%) e mediamente confrontabili con essi (entro 60 m: 2,01±0,20; controlli: 1,84±0,62 mg/kg).

Indio – Questo metallo è risultato al sotto del limite di quantificazione in tutte le stazioni analizzate.


Mercurio – Il mercurio ha presentato concentrazioni mediamente omogenee (entro 60 m: 0,022±0,002; controlli: 0,022±0,010 mg/kg). Analogamente alla maggior parte degli altri metalli, nell'area della futura piattaforma i tenori sono risultati inclusi nel range dei controlli.

Nichel – Le concentrazioni del nichel rilevate lungo i transetti e nell'area destinata ad accogliere Bonaccia NW sono oscillate tra 30,56 mg/kg A3) e 45,09 mg/kg (BO NE), risultando mediamente confrontabili con i controlli (38,99±4,83 e 39,25±18,35 mg/kg); questi ultimi sono apparsi caratterizzati, anche in questo caso, da una maggiore variabilità, con valori inferiori in K2 e K3 rispetto alle altre due stazioni.

Piombo – Anche il piombo ha esibito concentrazioni molto basse e omogenee tra loro entro 60 m dalla futura piattaforma, dove sono variate tra 12,02 mg/kg (A3) e 13,80 mg/kg (BO NE), valore quest'ultimo molto simile a quelli di A6 e B6. Mediamente non sono state riscontrate differenze con i controlli (13,08±0,61 e 12,50±2,76 mg/kg rispettivamente), caratterizzati da una maggiore variabilità e valori inferiori in K2 e K3 rispetto agli altri due siti.

Silicio –Nella maggior parte dei siti questo metallo è risultato al di sotto del limite di quantificazione. Entro 60 m dalla piattaforma è stato rilevato in A6 (20,95 mg/kg) e in B6 (26,38 mg/kg) e ai controlli solo in K1 dove è stato registrato il minimo

assoluto (11,43 mg/kg) e in K4 (34,41 mg/kg), dove è stato raggiunto il massimo assoluto.

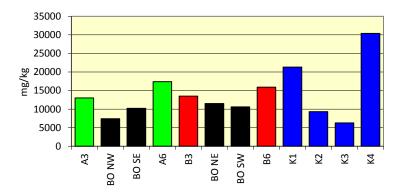
Fig. 2.41 - Concentrazioni (mg/kg; AL e Fe in %) dei metalli pesanti registrate nel corso del pre-survey. In nero le stazioni campionate nel sito in cui verrà installata la piattaforma. Non è riportato il grafico relativo all'indio in quanto non quantificabile in alcuna delle stazioni campionate.

Vanadio – Le concentrazioni del vanadio rilevate entro 60 m dalla futura piattaforma hanno presentato un andamento molto simile alla maggior parte dei metalli precedentemente descritti, con il minimo e il massimo riscontrati ancora una volta in A3 (40,22 mg/kg) e in B6 (57,68 mg/kg). Tali valori sono inclusi nel range di

variazione dei controlli (26,36-62,82mg/kg). Mediamente non sono state riscontrate differenze (entro 60 m: 48,01±5,57; controlli: 44,39±17,97 mg/kg).

Zinco – Anche per lo zinco entro 60 m dal punto di installazione di Bonaccia NW minimo e massimo sono stati registrati in A3 e B6 (52,16 e 75,20 mg/kg rispettivamente). Nessuna differenza ha riguardato le concentrazioni medie, anche in questo caso per la maggiore variabilità osservata ai controlli (entro 60 m: 64,61±7,34; controlli: 67,48±22,18 mg/kg).

2.2.3.5 Sostanza organica


Il contenuto di sostanza organica entro un raggio di 60 m dal sito destinato ad accogliere la piattaforma è oscillato in un intervallo compreso tra 7400 mg/kg (BO NW) e 17400 mg/kg (A6), valori tutti inclusi nel range di variazione dei controlli (6300-30400 mg/kg; Tab. 2-XXVII; fig. 2.42).

Tab. 2-XXVII – Concentrazioni di sostanza organica (mg/kg s.s.) rilevate nei sedimenti prelevati nel corso del pre-survey. In rosso le stazioni campionate nel sito in cui verrà installata la piattaforma Bonaccia NW.

-	so
A3	13.000,00
BO NW	7.400,00
BO SE	10.200,00
A6	17.400,00

_	SO
В3	13.500,00
BO NE	11.500,00
BO SW	10.600,00
B6	15.900,00

	so
K1	21.300,00
K2	9.300,00
K3	6.300,00
K4	30.400,00

Fig. 2.42 - Concentrazioni di sostanza organica (mg/kg s.s.) nei sedimenti relativi al presurvey. In nero le stazioni campionate nel sito in cui verrà installata la piattaforma Bonaccia NW.

2.2.3.6 Total Organic Carbon (TOC)

Il TOC è stato rilevato unicamente nel controllo K4 (1900 mg/kg; Tab. 2-XXVIII e fig. 2.43).

Tab. 2-XXVIII – Total Organic Carbon (TOC) espresso in mg/kg s.s. rilevato nei sedimenti prelevati nel corso del pre-survey. In rosso le stazioni campionate nel sito in cui verrà installata la piattaforma Bonaccia NW.

	TOC
A3	-
EL NW	-
EL SE	-
A6	=
В3	-
EL NE	-
EL SW	-
B6	-
K1	-
K2	-
K3	-
K4	1.900

Fig. 2.43 - Total Organic Carbon (TOC) espresso in mg/kg s.s. rilevato nei sedimenti prelevati nel corso del pre-survey. In nero le stazioni campionate nel sito in cui verrà installata la piattaforma Bonaccia NW.

2.2.4. ECOTOSSICOLOGIA DEI SEDIMENTI

2.2.4.1 Dunaliella tertiolecta

<u>QA-QC</u> - I due test eseguiti come controllo positivo con $K_2Cr_2O_7$ (6,6 mg/l come cromo) sono rientrati nei limiti della carta di controllo intralaboratorio (5,8 – 9,9 mg/l); i coefficienti di variazione tra le repliche nei campioni non diluiti, alla massima concentrazione, sono risultati conformi perché in tutti i casi inferiori al 15%. La crescita algale nei controlli è sempre stata superiore rispetto al limite minimo consentito (fattore \geq 16).

<u>Risultati del saggio</u> - I risultati del saggio applicato ai campioni sono riportati in Tab. 2-XXIX, contestualmente ai principali parametri di contorno misurati. In tutti i campioni non è stato evidenziato alcun effetto tossico. In alcuni casi è stato osservato un effetto biostimolante (valori negativi della % di effetto), ma statisticamente non sono risultati significativi (p>0,05) rispetto alla crescita misurata nei rispettivi controlli eseguiti con acqua marina artificiale.

Tab. 2-XXVI - Parametri di contorno e risultati relativi al saggio di tossicità con *D. tertiolecta* nei campioni prelevati nel pre-survey. In rosso è indicato il sito in corrispondenza della futura piattaforma. Valori negativi della % di effetto indicano effetto stimolante.

campione	pН	Salinità (‰)	% effetto/biostimolazione	EC ₅₀	Giudizio
BO SE	8,12	35	-13%	n.c.	Assenza di effetto
A3	8,14	35	+8%	n.c.	Assenza di effetto
A6	8,17	35	-11%	n.c	Assenza di effetto
В3	8,18	35	-8%	n.c	Assenza di effetto
В6	8,11	35	+3%	n.c	Assenza di effetto
K1	8,20	35	+6%	n.c	Assenza di effetto
K2	8,13	35	-15%	n.c	Assenza di effetto
K3	8,12	35	-10%	n.c	Assenza di effetto
K4	8,17	35	+2%	n.c	Assenza di effetto

2.2.4.2 Vibrio fischeri

 $\overline{QA-QC}$ – Il test con sostanza di riferimento (Cu) ha prodotto una EC₅₀ a 15' di 6,60 mg/l (LC=5,01 e UC=8,69) che è rientrata nei limiti della carta di controllo del laboratorio (4,24-11,19 mg/l).

<u>Risultati del test</u> – Tutti i sedimenti testati sono risultati privi di tossicità acuta (Tab. 2-XXX).

Tab. 2-XXX - Risultati del saggio biologico *V. fischeri* applicato ai sedimenti prelevati nel corso del pre-survey effettuato nell'ottobre 2013. In rosso, la stazione in cui verrà installata Bonaccia NW.

campione	pН	Salinità (‰)	% Effetto (15')	% Effetto (30')	EC20 (15/30')	EC50 (15/30')	Tossicità
BO SE	8,12	35	-1,42	-2,98	>90	>90	Assente
A3	8,14	35	17,11	-2,26	>90	>90	Assente
A6	8,17	35	15,06	-4,56	>90	>90	Assente
В3	8,18	35	18,49	-1,29	>90	>90	Assente
В6	8,11	35	13,57	-8,71	>90	>90	Assente
K1	8,20	35	10,84	-8,90	>90	>90	Assente
K2	8,13	35	17,69	-3,53	>90	>90	Assente
К3	8,12	35	3,27	-8,73	>90	>90	Assente
K4	8,17	35	13,82	-6,22	>90	>90	Assente

2.2.4.3 Corophium orientale

La sensibilità rilevata degli organismi verso il tossico di riferimento (CdCl₂) LC 50 = 2,59 (LC = 2,29 mg/l e UC = 2,94 mg/l) è rientrata nella carta di controllo di laboratorio. La sopravvivenza degli organismi sul sedimento di controllo dopo 10 gg è risultata conforme, in quanto superiore al 85%. In Tab. 2-XXXI sono indicati i principali parametri chimici e fisici misurati all'inizio e alla fine del test.

<u>Risultati del test</u> - Le percentuali di mortalità degli organismi osservate dopo 10 gg hanno documentato l'assenza di tossicità acuta in tutti i sedimenti testati (Tab. 2-XXXII).

Tab. 2-XXXI – Parametri chimici e fisici dell'acqua sovrastante il sedimento testato osservati all'inizio e alla fine del test. In rosso il sito in cui verrà installata la piattaforma.

campione		Iniz	io del te	st		Fine del test					
campione	T (°C)	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)	T (°C)	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)	
Controllo		36	8,19	0			36	8,20	0		
BO SE		36	8,09	0	-	15 1	37	8,01	0		
A3		36	8,05	0			38	8,05	0	> 85	
A6		36	8,03	0			36	8,03	0		
В3	15 . 1	36	8,07	0			38	8,05	0		
В6	15 ± 1	36	8,06	0	> 85	15 ± 1	37	8,04	0		
K1		36	8,03	0			37	8,04	0		
K2		36	8,05	0			36	8,04	0	1	
К3		36	8,06	0			38	8,05	0		
K4		36	8,03	0			37	8,04	0		

Tab. 2-XXXII - Percentuali di mortalità degli organismi *C.orientale* osservati nel test di tossicità acuta relativo al pre-survey. In rosso è indicato il sito della futura piattaforma.

Campione	N. organismi esposti	% organismi morti (± dev. st. %)	% (corretta) organismi morti	Giudizio
Controllo	100	$0 \pm 0,00$	0	=
BO SE	100	5 ± 0.80	5	Assente
A3	100	3 ± 0.80	3	Assente
A6	100	$4 \pm 5{,}66$	4	Assente
В3	100	$7 \pm 3,83$	7	Assente
B6	100	$2 \pm 2{,}31$	2	Assente
K1	100	$7 \pm 6,83$	7	Assente
K2	100	5 ± 3,83	5	Assente
K3	100	2 ± 2,31	2	Assente
K4	100	4 ± 3,27	4	Assente

2.2.4.4 Crassostrea gigas

QA-QC - Il test eseguito con la sostanza di riferimento ha prodotto una EC_{50} di 10,33 $\mu g/l$ di Cu che rientra nei limiti della carta di controllo (5-45 $\mu g/l$); la % di larve D-shape normalmente sviluppate nel controllo è risultata superiore al limite del 70%. Risultati del saggio - I valori dell'EC20 > 90 e dell'EC50 > 100 e le % delle larve D-shape regolari e conformi al controllo negativo presenti negli elutriati estratti dai sedimenti testati dimostrano l'assenza di tossicità cronica ovunque (Tab. 2-XXXIII).

Tab. 2-XXXIII - Risultati relativi al saggio di tossicità con *C. gigas* nei campioni prelevati nel corso del pre-survey. In rosso il sito corrispondente alla futura piattaforma Bonaccia NW.

campione	Concentrazione	% media di larve normali ± dev.st	% media di larve malformate	Correzione Abbott larve malformate	EC 20 (%)	EC 50 (%)	Tossicità
Controllo		$88 \pm 0,58$	12	0			
	100	79 ± 0.58	21	10			
BO SE	50	$81 \pm 1,53$	19	7	> 90	>100	Assente
	25	$86 \pm 0,\!58$	14	2			
	100	$79 \pm 1,73$	21	10			
A3	50	$80 \pm 1,00$	20	9	> 90	>100	Assente
	25	$84 \pm 1,53$	16	4			
	100	$80 \pm 0,58$	20	8			
A6	50	$81 \pm 1,53$	19	7	> 90	>100	Assente
	25	$85 \pm 2,08$	15	3			
	100	$80 \pm 1,53$	20	9			
В3	50	$80 \pm 1,53$	20	8	> 90	>100	Assente
	25	$85 \pm 1,53$	20	3			
	100	$79 \pm 1,53$	21	10			
B6	50	$84 \pm 2,08$	16	5	> 90	>100	Assente
	25	$84 \pm 3,21$	16	5			
	100	$79 \pm 1,53$	21	10			
K1	50	$81 \pm 1,53$	19	8	> 90	>100	Assente
	25	$85 \pm 1,53$	15	3			
	100	$79 \pm 2{,}31$	21	10			
K2	50	$80 \pm 1,53$	20	8	> 90	>100	Assente
	25	$85 \pm 1,53$	15	3			
	100	$79 \pm 1,53$	21	10			
К3	50	$81 \pm 1,15$	19	8	> 90	>100	Assente
	25	$86 \pm 1,53$	14	2			
	100	$80 \pm 1,53$	20	8			
K4	50	81 ± 1,53	19	7	> 90	>100	Assente
	25	$85 \pm 1,15$	15	3			

2.2.4.5 Ricerca di metalli pesanti in Hediste diversicolor

I parametri (chimici e fisici) dell'acqua sovrastante il sedimento, registrati all'inizio e al termine del test, sono riportati in Tab. 2-XXXIV, mentre in Tab. 2-XXXV sono indicate le mortalità degli organismi osservate nel test di bioaccumulo.

Le percentuali maggiori di mortalità sono state rilevate nei sedimenti A3, A6, K2 e K3.

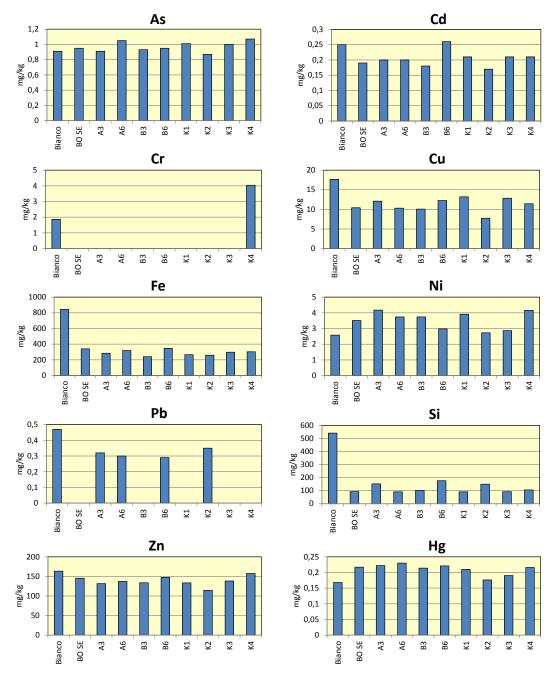
Tab. 2-XXXIV - Parametri (chimico-fisici) dell'acqua sovrastante il sedimento, registrati all'inizio ed al termine del test di bioaccumulo condotto nel pre-survey. In rosso è evidenziata la stazione campionata nel sito in cui verrà installata la piattaforma.

		Ir	nizio del te	st			F	ine del tes	st	
campione	Temp.	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)	Temp.	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)
Controllo		34	8,08	1			34	8,08	1	
BO SE		38	8,01	0			38	7,99	0,5	
A3		37	8,04	0			38	7,96	0	
A6		38	8,06	0			38	7,98	0	
В3	15 . 1	37	8,07	0	. 05	15 . 1	38	7,97	0,5	. 05
В6	15 ± 1	37	8,07	0	> 85	15 ± 1	37	7,96	0	> 85
K1		37	8,07	0			38	7,95	0	
K2		37	8,08	0			38	7,96	1	
K3		37	8,08	0			38	8,00	2	
K4		37	8,07	0			38	8,00	0	

Tab. 2-XXXV - Percentuali di mortalità degli organismi *H. diversicolor* osservate nel test di bioaccumulo condotto nel pre-survey. In rosso è evidenziata la stazione campionata nel sito in cui verrà installata la piattaforma.

Campione	Numero degli organismi esposti	% degli organismi morti (± dev.st %)
Controllo	18	$11 \pm 9,62$
BO_SE	18	$11 \pm 9,62$
A3	18	$39 \pm 9,62$
A6	18	$33 \pm 0,00$
В3	18	$22 \pm 9,62$
В6	18	$22 \pm 9,62$
K1	18	$28 \pm 10,00$
K2	18	$39 \pm 9,62$
K3	18	$44 \pm 9,62$
K4	18	$22 \pm 10,00$

In Tab. 2-XXXVI e in fig. 2.44 sono riportate le concentrazioni dei metalli pesanti rilevate nel bianco (tempo 0') e quelle rilevate nei tessuti di *H. diversicolor* esposti ai sedimenti testati per 28 gg, mentre la Tab. 2-XXXVI mostra le differenze tra le concentrazioni dei metalli pesanti rilevate nei tessuti di *H. diversicolor* dopo l'esposizione ai sedimenti testati e quelle determinate nel bianco (0').


Tab. 2-XXXVI - Concentrazioni (mg/kg; Al espresso in %) dei metalli pesanti rilevate nei tessuti di *H. diversicolor* nel pre-survey. (bianco = tempo zero 0'- organismi spurgati/non esposti ai sedimenti). In rosso è evidenziata la stazione campionata nel sito in cui verrà installata la piattaforma. Bianco = organismi analizzati al tempo 0, prima dell'esposizione al sedimento da testare. Controllo = organismi sottoposti per 28 gg a un sedimento di controllo. n.r. = non rilevabile.

_	Al	As	Ba	Cd	Cr	Cu	Fe	Ni	In	Pb	Si	V	Zn	Hg
Bianco	427	0,91	3	0,25	1,86	17,63	845,10	2,58	n.r.	0,47	540,14	n.r.	163,25	0,168
Controllo	n.r.	1,01	n.r.	0,29	n.r.	11,65	437,70	1,37	n.r.	n.r.	103,92	n.r.	174,22	0,256
BO SE	n.r.	0,95	n.r.	0,19	n.r.	10,42	340,17	3,51	n.r.	n.r.	92,91	n.r.	145,45	0,217
A3	n.r.	0,91	n.r.	0,20	n.r.	12,08	284,37	4,17	n.r.	0,32	152,04	n.r.	131,70	0,222
A6	n.r.	1,05	n.r.	0,20	n.r.	10,29	318,90	3,74	n.r.	0,30	91,13	n.r.	137,24	0,230
В3	n.r.	0,93	n.r.	0,18	n.r.	10,05	240,49	3,74	n.r.	n.r.	102,50	n.r.	133,60	0,214
B6	n.r.	0,95	n.r.	0,26	n.r.	12,25	345,07	2,98	n.r.	0,29	175,76	n.r.	147,60	0,221
K1	n.r.	1,01	n.r.	0,21	n.r.	13,19	265,40	3,91	n.r.	n.r.	91,03	n.r.	133,40	0,210
K2	n.r.	0,87	n.r.	0,17	n.r.	7,75	259,12	2,73	n.r.	0,35	149,55	n.r.	114,39	0,176
K3	n.r.	1,00	n.r.	0,21	n.r.	12,85	297,05	2,87	n.r.	n.r.	92,44	n.r.	138,35	0,190
K4	n.r.	1,07	n.r.	0,21	4,04	11,41	302,37	4,16	n.r.	n.r.	105,58	n.r.	157,43	0,216

Tab. 2-XXXVII - Differenze tra le concentrazioni dei metalli pesanti rilevate nei tessuti di *H. diversicolor* esposti al sedimento di controllo e ai sedimenti da testare e il bianco (0'). In rosso è evidenziata la stazione campionata nel sito in cui verrà installata la piattaforma. In grassetto sono evidenziati i valori che indicano bioaccumulo da parte degli organismi. (bianco = organismi spurgati/non esposti ai sedimenti testati; controllo = organismi esposti al sedimento di controllo). n.c. = non calcolabile.

_	Al	As	Ba	Cd	Cr	Cu	Fe	Ni	In	Pb	Si	V	Zn	Hg
Controllo	n.c.	0,10	n.c.	0,04	n.c.	-5,98	-407,40	-1,21	n.c.	n.c.	-436,22	n.c.	10,97	0,088
BO SE	n.c.	0,04	n.c.	-0,06	n.c.	-7,21	-504,93	0,93	n.c.	n.c.	-447,23	n.c.	-17,80	0,049
A3	n.c.	0,00	n.c.	-0,06	n.c.	-5,55	-560,73	1,59	n.c.	-0,15	-388,10	n.c.	-31,55	0,054
A6	n.c.	0,14	n.c.	-0,06	n.c.	-7,34	-526,20	1,16	n.c.	-0,17	-449,01	n.c.	-26,01	0,062
В3	n.c.	0,02	n.c.	-0,07	n.c.	-7,58	-604,61	1,16	n.c.	n.c.	-437,64	n.c.	-29,65	0,046
В6	n.c.	0,04	n.c.	0,01	n.c.	-5,38	-500,03	0,40	n.c.	-0,18	-364,38	n.c.	-15,65	0,053
K1	n.c.	0,10	n.c.	-0,04	n.c.	-4,44	-579,70	1,33	n.c.	n.c.	-449,11	n.c.	-29,85	0,042
K2	n.c.	-0,04	n.c.	-0,08	n.c.	-9,88	-585,98	0,15	n.c.	-0,12	-390,59	n.c.	-48,86	0,008
K3	n.c.	0,09	n.c.	-0,05	n.c.	-4,78	-548,05	0,29	n.c.	n.c.	-447,70	n.c.	-24,90	0,022
K4	n.c.	0,16	n.c.	-0,05	n.c.	-6,22	-542,73	1,58	n.c.	n.c.	-434,56	n.c.	-5,82	0,048

I livelli di **Al**, **Ba**, **Cr**, **In** e **V** sono risultati al di sotto dei limiti di quantificazione in tutti gli organismi test, dimostrando la mancanza di biodisponibilità di questi metalli. Per **Cd**, **Cu**, **Fe**, **Pb**, **Si** e **Zn** è stata rilevata la tendenza al rilascio. La biodisponibilità dell'**Arsenico** è risultata irrilevante in tutti i sedimenti. Al contrario, gli aumenti significativi delle concentrazioni di **Ni** rispetto al bianco osservate presso tutti i siti entro 60 m dalla futura piattaforma eccetto B6 e in due controlli (K1 e K3) su quattro hanno dimostrato un'apprezzabile biodisponibilità per tale elemento metallico. Analogamente, leconcentrazioni di **Hg** sono risultate in tutti gli organismi significativamente superiori rispetto alla concentrazione nel bianco eccetto nei controlli K2 e K3 indicando anche per questo metallo una notevole biodisponibilità.

Fig. 2.44 - Concentrazioni dei metalli pesanti rilevate negli organismi di *H. diversicolor* esposti ai sedimenti da testare al al bianco durante il pre-survey. Non sono iportati Al, Ba, Cr, In e V in quanto inferiori al limite di rilevabilità strumentale ovunque.

2.2.5. INDAGINI SULLA COMUNITÀ BENTONICA

2.2.5.1 Densità (N) e Biomassa (P)

In generale la comunità bentonica rinvenuta nei siti investigati è risultata abbastanza povera in termini di numero di individui (fig. 2.45). La massima densità è stata riscontrata nella stazione A3 (44,00±2,517 ind/0,095 m²) e la minima in B6 (17,00±1,732 ind/0,095 m²), entrambe poste a 60 m dalla futura piattaforma in direzione rispettivamente NW e SW. Ai controlli la densità è oscillata tra 25,33±3,93 ind/0,095 m² (K1) e 76,33±0,33 ind/0,095 m² (K3), corripondente al massimo assoluto. Eccetto questo sito, il range dei valori registrati ai controlli è apparso comparabile con quello ottenuto entro 60 m dalla futura piattaforma ad esclusione di B6.

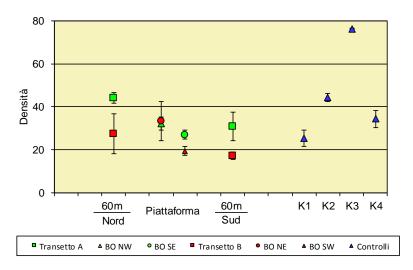
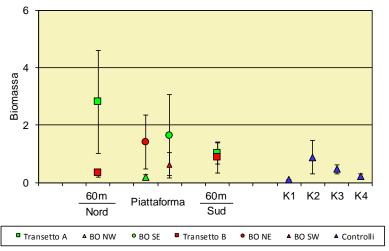


Fig. 2.45 – Densità (\pm e.s.) registrate presso i siti monitorati durante il pre-survey.

I policheti appartenenti alla famiglia Paraonidae e/o *Ophelina cylindricaudata* sono risultati i più abbondanti in tutte le stazioni inclusi i controlli. Solo in K2 e K3 dopo i paraonidi la seconda specie più abbondante è risultata il polichete *Aphelochaeta filiformis*. Sono risultati inoltre ben rappresentati in una o più stazioni i policheti *Ampharete acutifrons, Marphysa bellii, Notomastus aberans Paralacydonia paradoxa* e *Paradiopatra callipae*, i molluschi gasteropodi *Hyala vitrea* e *Turritella communis*, il crostaceo decapode *Callianassa subterranea*, e, infine, Sipuncula nd (Tab. 2-XXXVIII).


Tab. 2-XXXVIII – Lista e densità (n. ind/0,095 m²) delle specie rinvenute nelle stazioni campionate durante il pre-survey. Per ogni sito è riportato il numero totale di taxa osservati. Sono anche indicate le Biocenosi di appartenenza dei taxa determinati a livello di specie. DE = Biocenosi del Detritico Infangato; Lim = limicolo; Sab = sabulicolo; VTC = Bioc. dei Fanghi Terrigeni Costieri; VB = Bioc. dei Fanghi Batiali; C = Bioc. del Coralligeno; HP = Bioc. delle praterie di *Posidonia*; DC = Bioc. del Detritico Costiero; DE = Bioc. del Detritico infangato; MI = Bioc. dei Fondi Mobili Instabili; Minut = minuticolo; Mixt = misticolo; Lre = Larga Ripartizione Ecologica; SFBC = Bioc. delle Sabbie Fini Ben Calibrate; Sm = substrato mobile; SGCF = Bioc. delle Ghiaie Fini sotto l'influsso delle Correnti di Fondo; MO = indicatore della presenza di materia organica; SVMC = Bioc. delle Sabbie Infangate di Moda Calma.

Stazione					etto A				etto B				trollo	
		Biocenosi	A3	BO NW	BO SE	A6	B3	BO NE		B6	K1	K2	K3	K4
	utura piattaforma (m)		60	0	0	60	60	0	0	60	2000	2000	2000	2000
Cnidari														
Antozoi	Actiniaria nd	-								0,33		0,67		
Idrozoi	Hydroidea nd	-	0,33		0,33								1,00	
Crostacei														
Anfipodi	Ampelisca diadema	DE		1,33									0,67	
	Carangoliopsis spinulosa	VTC				0,33								
	Eriopisa elongata	VB		0,67		0,33								
	Harpinia dellavallei	VTC		0,33	0,33						0,33		1,00	
	Leucothoe lilljeborgi	MO		0.00							0,33			
	Liljeborgia psaltrica	DC		0,33										
	Orchomene grimaldii	VTC	1,33	1,00	0.00						0.00		0.00	0.00
	Paraphoxus oculatus	Mixt			0,33						0,33		0,33	0,33
	Perioculodes longimanus	SFBC		0.07									0,33	
	Podoprion bolivari	С	0.00	0,67										
	Stenothoe sp	-	0,33											
0	Stenothoe tergestina	С	0,33								0.00			
Copepodi	Copepoda nd	- \/TC				4.00		0.44			0,33			
Decapodi	Alpheus glaber	VTC	2.00	2.00	2.00	1,00	2.00	0,44	0.33	1.00	1 22	2 22	0.67	1.67
	Callianassa subterranea	Lim	2,00	2,00	2,00	2,00	2,00	1,00	0,33	1,00	1,33	2,33	0,67	1,67
	Chlorotocus crassicornis	VB	0.07	0.00	0.00	0.00			0,33	0.00	0.00	0.00		0.00
	Goneplax rhomboides Processa sp	VTC	0,67	0,33	0,33	0,33 0,33				0,33	0,33	0,33	0,67	0,33
		DL	0,67		0.33				0.33					0.33
Isopodi	Upogebia deltaura Anthura gracilis	Lim	0,67		0,33 0,33	0,67			0,33				3,33	0,33
isopodi	Gnathia sp	-	0,33		0,33									
	•	1 -	0,33											
Misidiacei	Paragnathia sp Misidiacea nd	1 -	0,33	0,67										
Tanaidacei	Leptochelia savignyi	c		0,07										0,67
Echinodermi	Leptochella Savigriyi													0,07
Echinoidi	Brissopsis atlantica mediterranea	VB			0,33									
Oloturoidei	Holothurioidea nd	-			0,33					0,33				
Molluschi	noothanoidea na									0,55				
Bivalvi	Abra nitida	VTC					0,33							
Divaivi	Abra prismatica	DC					0,33							
	Hiatella arctica	Sd	0,33				0,33							
	Kellia suborbicularis	DC	0,33										0,33	
	Kurtiella bidentata	VTC											0,33	0,67
	Nucula nitidosa	Lim			0,33	0,33	0,67	0,33	0,33					0,67
	Thyasira biplicata	Lim			0,00	0,33	0,01	0,00	0,00					0,07
	Thyasira succisa	Lim				0,55							1,00	
	Timoclea ovata	Lre										0,67	3,33	
Gasteropodi	Bela brachystoma	Lre	0,33									0,07	5,55	
Casteropour	Cylichna cylindracea	SFBC	0,00					0,33						
	Hyala vitrea	VTC	0,33	0,33		0,33		0,33	1,33	0,33	0,33		2,00	3,67
	Melanella polita	DC	0,00	0,00	0,33	0,00		0,00	1,00	0,00	0,00		2,00	0,07
	Turritella communis	VTC	0,67		0,33	0,33	0,33	1,67		1,00		1,33	1,00	
Nemertini	ramona commune	1 110	0,01		0,00	0,00	0,00	1,07		1,00		1,00	1,00	
	Nemertea nd	-		0,33									1,67	
Policheti				-,									.,	
	Ampharete acutifrons	VTC	0,67	0,67	1,67	0,33		0,67			1,00	3,00	8,33	
	Ampharetidae nd	1 -	0,33	1	0,33	.,		1	0,33		,	1,67	5,00	
	Ancystrosyllis groenlandica	VB	.,		.,				.,			0,33	-,	
	Aphelochaeta filiformis	MO	1,33	0,67	1,33	1,00	0,33	0,44	0,33	0,33	3,00	5,00	9,33	0,67
	Aphelochaeta marioni	MO	2,33	1	1,00		0,33	1,44	0,33				0,67	0,67
	Aponuphis bilineata	SGCF			0,67				0,67					
	Aponuphis brementi	Lim						0,44				0,33	1,00	
	Capitella capitata	MO				0,33		l '					l	
	Capitellidae nd							0,33						
	Chaetopteridae nd	-		0,33		0,33								
	Chaetozone caputesocis	Lim			0,33					0,33		0,33		
	Chirimia biceps	MO						0,33						0,33
	Cirratulidae nd	-	0,33				0,33		0,33			0,33	1,00	0,33
	Eupanthalis kinbergi	DE	0,33											
	Glycera rouxii	MO	1,00	1,00	0,33	0,67		0,33	0,33	0,67	0,67		0,67	1,00
	Goniada maculata	VTC	0,33									0,67		
	Harmothoe sp	-		0,33	0,33									
	Labioleanira yhleni	VTC			1,33	0,33			0,33		0,33	0,33		0,33
	Lumbrineris gracilis	Sab					0,33					1,00		
	Marphysa bellii	Lim	1,00	0,67	0,33	1,67	1,00	1,22	0,33	1,00	0,33	0,67	0,67	0,67
	Melinna palmata	Minut						0,33	0,33				0,33	0,33
	Micronephtys sphaerocirrata	Sab			0,33	0,33								
	Minuspio cirrifera	MO	0,67	1,33		1,00			0,33	0,33	0,33	1,00	2,00	
	Nephtys hystricis	VTC	1,00	0,67	1,33	0,33	0,33	1,11	0,33	0,33	0,67	0,67	0,33	0,33
1	Nereididae nd	-					0,33							
	Ninoe sp		0,33			0,33	0,67	0,44			•			

Tab. 2-XXXVIII - Continuo.

			Trans	etto A			Trans	etto B			Cont	rollo		
Stazione		Biocenosi	A3	BO NW	BO SE	A6	B3	BO NE	BO SW	B6	K1	K2	K3	K4
Distanza dalla	futura piattaforma (m)		60	0	0	60	60	0	0	60	2000	2000	2000	2000
Policheti														
	Notomastus aberans	MO	1,00	2,33		1,67	1,67		2,00	0,33	2,00	4,00	1,33	0,67
	Ophelina cylindricaudata	Lim	9,00	4,33	3,33	3,33	4,33	3,33	3,00	5,00	4,33	3,00	2,33	4,33
	Ophiodromus flexuosus	Sab				0,33		0,44					0,33	
	Paradiopatra calliopae	Lim	1,67	2,67		1,00	2,00	1,00	2,00	0,33	1,00	3,67	5,33	3,00
	Paralacydonia paradoxa	MO	3,33		1,00	0,67	2,00	0,33	1,00	0,67	1,67	1,00	1,00	0,67
	Paraonidae nd	-	7,67	5,00	5,00	6,33	6,67	13,22	3,00	2,67	4,33	8,00	13,33	7,00
	Pectinaria koreni	Sab				0,33								
	Phylo foetida	SVMC				0,33								
	Phylo norvegica	Lim			0,33									
	Pilargidae nd	-	0,67	0,33	0,33	0,33	0,33				0,33		1,00	0,33
	Poecilochetus serpens	VTC											0,33	0,33
	Prionospio ehlersi	Mixt	0,33						0,33			0,33		
	Prionospio sp	-		0,33		0,33	0,33			0,33				
	Prionospio steenstrupi	Lre		0,33										
	Sabellidae nd	-	0,33										0,33	
	Scoletoma fragilis	Lim										0,67		
	Scoletoma sp	-		0,67				0,78						
	Scoloplos armiger	Lre	0,33	0,33	0,33		0,33	0,67	0,67	0,33	0,33	0,33	1,00	0,33
	Spionidae nd	-			0,33	0,33							0,33	
	Spiophanes bombyx	SFBC		0,33										
	Sternaspis scutata	VTC			0,33									
	Syllidae juv	-										0,33		0,33
	Syllis sp	-	0,33					0,44						
	Terebellidae nd	-				0,67								
	Terebellides stroemi	MO										0,33		
Sipunculidi		1												
	Onchnesoma steenstrupi	VB	0,33	0,67							0,67	0,67	1,33	2,33
	Phascolion strombus	Lre											0,33	0,67
	Sipuncula nd	-	1,33	1,00	1,33	2,00	2,33	1,78	0,67	1,00	1,00	1,33	1,33	1,33
Densità totale	_		44,00	32,00	27,00	30,67	27,33	33,22	19,33	17,00	25,33	44,33	76,33	34,33
Ricchezza spe	cifica totale		37	31	32	35	22	26	24	20	23	30	39	29

In termini di biomassa (fig. 2.46), i valori nell'area circostante la futura piattaforma sono risultati estremamente bassi e compresi tra 0,19±0,07 gr/0,095 m² (BO NW) e 2,81±1,79 gr/0,095 m² (A3). In molti siti è stato ottenuto un elevato errore standard correlabile alla presenza in alcune repliche di uno o pochi esemplari di specie di notevoli dimensioni, come il riccio di mare *Brissopsis atlantica mediterranea*, il crostaceo decapode *Goneplax rhomboides* e il polichete *Eupanthalis kinbergi* nelle stazioni A3 e BO SE (fig. 2.47).

Fig. 2.46 – Biomassa (± e.s.) registrata presso i siti monitorati durante il pre-survey.

In BO NE l'elevata biomassa, se confrontata con le altre, è stata determinata dai quantitativi elevati di specie di dimensioni modeste ma incisive se particolarmente abbondanti come T. communis (Tab. 2-XXXIX). A causa degli elevati errori standard, anche le biomasse più elevate registrate entro 60 m dalla futura piattaforma sono risultate comparabili con quelle dei controlli $(0,10\pm0,02\le P\le 0,88\pm0,28$ gr gr/0,095 m²).

Fig. 2.47 – Esemplari di Goneplax rhomboides e Eupanthalis kinbergi, rinvenuti in una replica di A3.

Tab. 2-XXXIX – Lista e biomassa (gr. 0,095 m⁻²) delle specie rinvenute nelle stazioni campionate durante il pre-survey (ottobre 2013). * = <0,001 gr/0,095 m².

_	te durante ii pre sarv	<u> </u>		etto A		- \0,c		etto B			Con	trollo	
Stazione		A3	BO NW		A6	В3		BO SW	В6	K1	K2	КЗ	K4
	utura piattaforma (m)	60	0	0	60	60	0	0	60	2000	2000	2000	2000
Cnidari													
Antozoi	Actiniaria nd								0,005		0,023		
Idrozoi	Hydroidea nd	0,004		0,014								0,001	
Crostacei													
Anfipodi	Ampelisca diadema		0,002		0.004							*	
	Carangoliopsis spinulosa		0.004		0,001								
	Eriopisa elongata Harpinia dellavallei		0,001	0,001	-					*		0,001	
	Leucothoe lilljeborgi			0,001						*		0,001	
	Liljeborgia psaltrica		*										
	Orchomene grimaldii	*	0,001										
	Paraphoxus oculatus		,,,,,,,	*						*		*	*
	Perioculodes longimanus											*	
	Podoprion bolivari		0,002										
	Stenothoe sp	*											
	Stenothoe tergestina	*											
Copepodi	Copepoda nd									*			
Decapodi	Alpheus glaber				0,146		0,123						
	Callianassa subterranea	0,072	0,033	0,027	0,033	0,065	0,018	0,007	0,031	0,063	0,094	0,007	0,055
	Chlorotocus crassicornis	0.004	0.044	0.040	*			0,301	0.000	0.000	0.005		0.054
	Goneplax rhomboides	0,921	0,044	0,216					0,002	0,002	0,005	*	0,051
	Processa sp Upogebia deltaura	0,010	I	*	0,018 0,001	I		*			I	0,099	0,001
Isopodi	Anthura gracilis	0,010		*	0,001							0,099	0,001
ізороці	Gnathia sp	*											
	Paragnathia sp	*											
Misidiacei	Misidiacea nd		0,002										
Tanaidacei	Leptochelia savignyi	I	l .	I		I		I			I		*
Echinodermi													
Echinoidi	Brissopsis atlantica mediterranea			0,725									
Oloturoidei	Holothurioidea nd								*				
Molluschi													
Bivalvi	Abra nitida					0,004							
	Abra prismatica	0.005				*							
	Hiatella arctica	0,005											
	Kellia suborbicularis											Ŷ	
	Kurtiella bidentata Nucula nitidosa			0,176	0,014	*	*	0,174					0,020
	Thyasira biplicata			0,176	0,014			0,174					0,020
	Thyasira biplicata Thyasira succisa				0,002							0,001	
	Timoclea ovata										0,067	0,041	
Gasteropodi	Bela brachystoma	0,001									,,,,,,,	-,	l i
	Cylichna cylindracea	.,					*						
	Hyala vitrea	*	*		*		*	0,002	*	*		0,002	0,004
	Melanella polita			0,006									
	Turritella communis	0,484		0,280	0,245	0,017	1,114		0,537		0,539	0,153	
Nemertini													
	Nemertea nd		0,001									0,016	
Policheti													
	Ampharete acutifrons	*	*	0,001	*		*			0,001	*	0,002	
	Ampharetidae nd	*		*				*			0,002	0,020	
	Ancystrosyllis groenlandica	0.004		*	*	*	0.004	*	*	0.004	0.004	0.000	*
	Aphelochaeta filiformis Aphelochaeta marioni	0,001 0,001	Ī	*	-	*	0,001	*	_	0,001	0,001	0,002	0,001
	Apnelocnaeta marioni Aponuphis bilineata	0,001	I	0,001		I		0,001			I		0,001
	Aponuphis brimeata Aponuphis brementi			0,001			0,001	0,001			0,005	0,035	
1	Capitella capitata				*		5,501				0,500	5,500	
	Capitellidae nd	I	I	I		I	0,002	I			I		
]	Chaetopteridae nd	I	0,004	I	0,289	I	'	I			I		
	Chaetozone caputesocis		1	0,002					0,004		0,009		
	Chirimia biceps	I	I	I		I	*	I			I		*
	Cirratulidae nd	*		I		0,023		0,036			0,018	0,001	0,005
	Eupanthalis kinbergi	1,243		l .				l					
	Glycera rouxii	0,029	*	0,026	0,013	I	*	0,013	0,075	0,003		0,008	0,010
	Goniada maculata	. *	0.000			I		I			0,001		
1	Harmothoe sp		0,002	0.000	0.004			0.044		0.004	0.004		0.004
	Labioleanira yhleni Lumbrineris gracilis			0,090	0,001	*		0,044		0,001	0,001 0,003		0,001
]	Lumbrineris gracilis Marphysa bellii	0,014	0,063	0,014	0,044	0,071	0,100	0,004	0,164	0,003	0,003	0,046	0,048
]	Melinna palmata	0,014	0,003	0,014	0,044	0,071	0,100	0,004	0,104	0,003	0,020	0,046	0,048
1	Micronephtys sphaerocirrata			*	*		0,001	0,001				5,501	5,501
	Minuspio cirrifera	*	*	I	*	I		*	*	*	*	*	
]	Nephtys hystricis	0,011	0,004	0,059	0,002	0,031	0,044	*	0,041	0,002	0,009	0,002	*
	Nereididae nd	-,	.,	.,	-,	*	.,		.,	-,	-,,,,,,,	.,	
	Ninoe sp	*			*	0,092	*						
	Notomastus aberans	0,001	0,016		0,006	0,003		0,012	*	0,015	0,054	0,013	0,016
	Ophelina cylindricaudata	0,001	*	*	*	0,001	*	*	0,005	*	*	*	0,001
	Ophiodromus flexuosus	I		I	*	I	*	I			I	*	
	Paradiopatra calliopae	0,002	0,001		*	0,002	0,001	0,002	*	0,002	0,005	0,005	0,003

Tab. 2-XXXIX – Continuo.

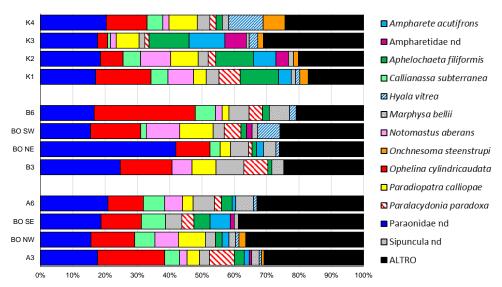
			Trans	etto A					trollo				
Stazione		A3	BO NW	BO SE	A6	B3	BO NE	BO SW				K4	
Distanza dalla	futura piattaforma (m)	60	0	0	60	60	0	0	60	2000	2000	2000	2000
Policheti													
	Paralacydonia paradoxa	0,001		*	*	*	*	0,001	*	0,001	0,001	0,001	*
	Paraonidae nd	0,001	*	0,001	0,001	*	0,001	*	*	0,001	0,002	0,002	0,001
	Pectinaria koreni				0,010								
	Phylo foetida				0,002								
	Phylo norvegica			0,004									
	Pilargidae nd	*	*	*	*	*				*		0,001	*
	Poecilochetus serpens											0,001	0,002
	Prionospio ehlersi	*						0,001			*		
	Prionospio sp		*		*	*			*				
	Prionospio steenstrupi		0,001										
	Sabellidae nd	*										*	
	Scoletoma fragilis										0,004		
	Scoletoma sp		0,004				0,008						
	Scoloplos armiger	*	*	*		*	*	*	*	*	*	*	*
	Spionidae nd			*	*							*	
	Spiophanes bombyx		0,001										
	Sternaspis scutata			*									
	Syllidae juv										*		*
	Syllis sp	0,001					*						
	Terebellidae nd				0,176								
	Terebellides stroemi	I									0,001		
Sipunculidi							l						
1	Onchnesoma steenstrupi	*	0,001							*	*	0,001	0,004
	Phascolion strombus						l					0,002	*
	Sipuncula nd	0,003	0,007	0,010	0,005	0,012	0,001	0,002	0,005	0,001	0,004	0,003	0,001
Biomassa tota	le	2,81	0,19	1,65	1,01	0,32	1,42	0,60	0,87	0,10	0,88	0,46	0,23

2.2.5.2 Affinità biocenotiche delle specie rinvenute

Nei siti campionati i taxa di fondo mobile sono risultati i più rappresentati nei popolamenti rinvenuti, sia in termini di numero di specie che di individui (Tab. 2-XL).

Tab. 2-XL – Numero di taxa (a) e di individui (b) rinvenuti nel corso del pre-survey e determinati a livello di specie suddivisi in base alla loro affinità biocenotica. In giallo sono indicati i gruppi più numerosi. Per la legenda si rimanda alla Tab. 2-XXXVIII.

a)		Trans	etto A			Trans	setto B			Controlli		
	A3	BO NW	BO SE	A6	B3	BO NE	BO SW	В6	K1	K2	K3	K4
Substrato mobile non rinv. in letter. (Sm)												
Limicoli (Lim, VTC, VB)	12	12	15	15	8	11	9	9	11	15	13	12
Sabulicoli (Sab, SFBC)		1	1	3	1	2				1	2	
Misticoli (Mixt, DC, DE, SGCF, SVMC)	2	2	3	1	1		2		1	1	3	1
Minuticoli (Minut)						1	1				1	1
Indicatori di Materia Organica (MO)	6	4	4	6	4	5	6	5	6	5	6	6
Substrato duro (C, HP, Sd)	3	1	1	1			1				1	2
Larga ripartizione ecologica (Lre)	2	2	1		1	1	1	1	1	2	3	2


b)		Trans	etto A			Trans	setto B		Controlli			
	А3	BO NW	BO SE	A6	В3	BO NE	BO SW	В6	K1	K2	K3	K4
Substrato mobile non rinv. in letter. (Sm)												
Limicoli (Lim, VTC, VB)	19,00	14,33	13,00	12,33	11,00	11,56	8,33	9,67	10,67	18,33	25,33	18,33
Sabulicoli (Sab, SFBC)		0,33	0,33	1,00	0,33	0,78				1,00	0,67	
Misticoli (Mixt, DC, DE, SGCF, SVMC)	0,67	1,67	1,33	0,33	0,33		1,00		0,33	0,33	1,33	0,33
Minuticoli (Minut)						0,33	0,33				0,33	0,33
Indicatori di Materia Organica (MO)	9,67	5,33	3,67	5,33	4,33	2,89	4,33	2,33	8,00	11,33	15,00	4,00
Substrato duro (C, HP, Sd)	1,33	0,67	0,33	0,67			0,33				3,33	1,00
Larga ripartizione ecologica (Lre)	0,67	0,67	0,33		0,33	0,67	0,67	0,33	0,33	1,00	4,67	1,00

Tra questi, i limicoli (Lim), ovvero gli organismi legati alla presenza di fondali limosi, hanno costituito ovunque il raggruppamento biocenotico più importante seguito dagli organismi indicatori di materia organica (MO), nonostante la percentuale di sostanza organica riscontrata nei sedimenti sia risultata piuttosto esigua (cfr. Cap. 2.2.3.5).

Tutte le altre categorie ecologiche, comprese quelle legate ai substrati duri o con una larga ripartizione ecologica (Lre), sono risultate poco rappresentative, sia per quanto riguarda il numero di individui che il numero di specie.

2.2.5.3 Dominanza

Per la rappresentazione grafica delle dominanze sono stati evidenziati i 13 taxa che complessivamente hanno costituito circa il 71% delle comunità, includendo i rimanenti nella categoria "altro" (fig. 2.48).

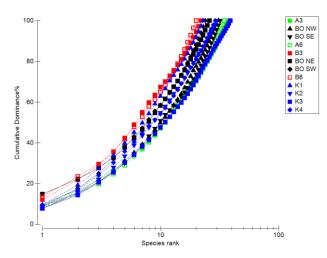
Fig. 2.48 - Valori percentuali di dominanza delle specie principali ottenuti nelle stazioni monitorate durante il pre-survey.

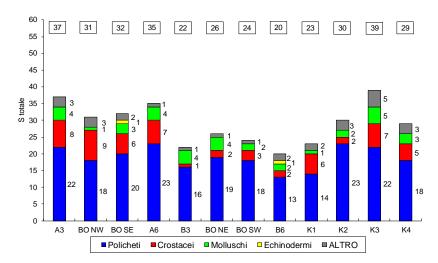
Nella maggior parte delle stazioni monitorate i policheti paraonidi hanno rappresentato il taxon dominante con valori oscillanti tra 15,52% (BO SW) e 39,80% (BO NE e K1). *O. cylindricaudata* ha eguagliato o superato i paraonidi rispettivamente in BO SW e K1 e in A3 e B6 e ha rappresentato nelle restanti stazioni il secondo taxon dominante, tranne nei siti di controllo K1, K2 e K3 dove la seconda specie prevalente è risultata *A. filiformis* con percentuali oscillanti tra 1'11,28% (K2) e il 12,23% (K3). Tutti gli altri taxa riportati in fig. 2.48 hanno

costituito al massimo il 10-11% dei popolamenti (*N. aberans* e *P. calliope* in BO SW e *H. vitrea* in K4).

La categoria "altro" è risultata ben rappresentata in tutti i siti con percentuali comprese tra il 17,11% (K1) e il 38,27% (BO SE), indicando che le specie rappresentate da un basso numero di individui apportano comunque un notevole contributo.

L'omogeneità tra i siti è stata messa in evidenza anche dalle curve di dominanza cumulativa riportate in fig. 2.49.




Fig. 2.49 - Curve di dominanza cumulative ottenute per le stazioni campionate nel presurvey.

2.2.5.4 Ricchezza specifica totale (S)

In tutta l'area indagata sono stati rinvenuti 97 taxa di cui 51 policheti, 24 crostacei, 14 molluschi, 2 echinodermi, 2 cnidari, 3 sipunculidi e 1 nemertino (Tab. 2-XXXVIII).

Le stazioni del transetto A hanno mostrato una Ricchezza specifica superiore rispetto a quelle del transetto B e ai controlli eccetto K3, con un massimo di 37 specie (A3) e un minimo di 31 specie in BO NW (fig. 2.50). I siti B3 e B6 sono apparsi i meno ricchi in numero di specie di tutta l'area indagata, con valori di S (rispettivamente 22 e 20) inferiori anche rispetto al controllo K1 (23), risultato quello con la Ricchezza specifica più bassa tra i siti K.

Ovunque i policheti hanno rappresentato il gruppo principale, seguiti dai crostacei e/o dai molluschi. Gli echinodermi sono stati censiti solo in BO SE e in B6 dove sono stati rappresentati da una sola specie.

Fig. 2.50 - Ripartizione secondo il phylum di appartenenza delle specie rinvenute nelle singole stazioni campionate durante il pre-survey. Sono anche riportati i valori della Ricchezza specifica totale ottenuti per i vari siti (riquadri).

Il numero di taxa esclusivi, ovvero censiti in un solo sito, è risultato limitato, variando da 7 nella stazione A3 a 1 in BO SW e B6, valori che corrispondono al massimo al 2,6% (A3) della Ricchezza specifica totale riscontrata in ciascuna stazione (Tab. 2-XXXVIII).

2.2.5.5 Ricchezza specifica media (S_m)

La Ricchezza specifica media ha presentato lo stesso trend osservato per S (fig. 2.51), oscillando tra 16,00±0,58 (BO SE) e 19,33±0,88 (A3) lungo il transetto A e tra 10,33±0,33 (B6) e 14,00±1,00 (BO NE) lungo B.

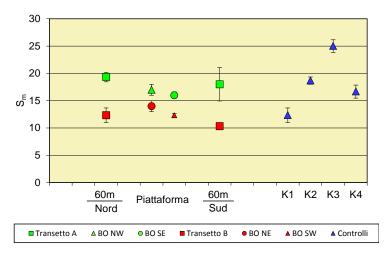


Fig. 2.51 – Ricchezza specifica media (\pm e.s.) registrata presso i siti monitorati nel corso del pre-survey.

Ai controlli minimo e massimo sono stati registrati rispettivamente in K1 $(12,33\pm1,33)$ e in K3 $(25,00\pm1,15)$, un range in cui rientrano i valori di S_m ottenuti nelle stazioni intorno alla futura piattaforma fatta eccezione per B6, risultata leggermente inferiore a K1.

2.2.5.6 Diversità specifica (H')

Anche nel caso della Diversità specifica (fig. 2.52) nell'area circostante la struttura di prossima installazione il transetto A ha mostrato valori superiori rispetto a B eccetto in BO SE $(2,55\pm0,07)$, comparabile a BO SW $(2,40\pm0,01)$. Il minimo è stato registrato ancora una volta in B6 $(2,10\pm0,08)$, a causa della dominanza di O. *cylindricaudata* e dei paraonidi che, insieme, hanno rappresentato oltre il 45% del popolamento. Questo sito è risultato comparabile solo a BO NE. Tutti i siti, eccetto B6, hanno presentato valori di H' compresi nel range ottenuto ai controlli $(2,30\pm0,11\leq H'\leq 2,80\pm0,03)$.

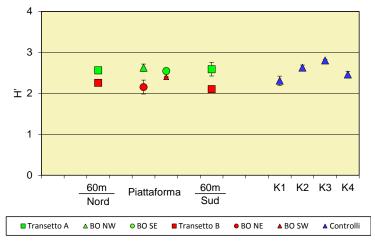
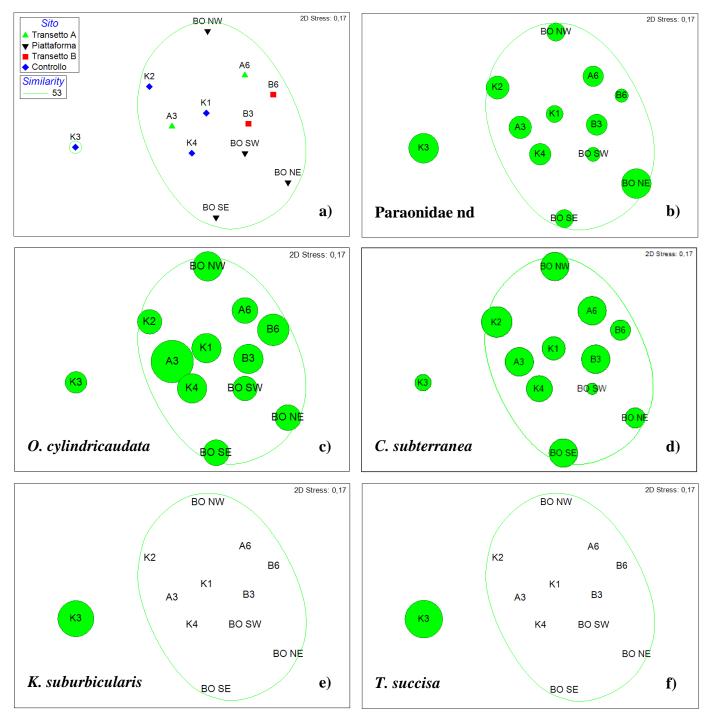



Fig. 2.52 - Diversità specifica (\pm e.s.) registrata nelle stazioni monitorate nel corso del presurvey.

2.2.5.7 MultiDimensional Scaling (MDS)

Il MultiDimensional Scaling, applicato ai dati di densità delle singole specie, ha confermato la confrontabilità tra la maggior parte delle stazioni poste nell'area in cui verrà installata la piattaforma e quelle di controllo, essendo tutte raggruppate in un unico grande cluster (similarità al 53%; fig. 2.53a) eccetto K3.

Questa similarità può essere facilmente spiegata dall'omogeneità in termini di abbondanza delle specie principali, come i policheti della famiglia Paraonidae nd, *O. cylindricaudata* e *C. subterranea* (figg. 2.53b - 2.53d). L'isolamento del sito di controllo K3 è una conseguenza sia dei ridotti quantitativi di alcuni taxa rispetto alle altre stazioni (es.: figg. 2.53c e 2.53d), sia della presenza esclusiva di altri (figg. 2.53e e 2.53f).

Fig. 2.53 – Rappresentazione bidimensionale dei siti campionati nel pre-survey tramite il metodo del MultiDimensional Scaling. I cerchi verdi indicano i quantitativi in termini di densità delle singole specie.

2.2.5.8 Valutazione dello stato ambientale

Indice W di Clarke

L'indice W di Clarke ha evidenziato la presenza di un ambiente leggermente disturbato in tutti i siti campionati nell'area intorno alla futura piattaforma e presso i controlli K2 e K4, con valori compresi tra 0,32 (BO NW e K4) e 0,52 (A3) (Tab. 2-LI). Sono risultati invece moderatamente disturbati i controlli K1 e K3 (entrambi con un valore pari a 0,28).

Tab. 2-LI – Valori dell'indice W di Clarke ottenuti per i siti monitorati durante il presurvey.

Stazione	W	Classificazione ambientale
A3	0,52	Leggermente disturbato
BO NW	0,32	Leggermente disturbato
BO SE	0,48	Leggermente disturbato
A6	0,45	Leggermente disturbato
B3	0,35	Leggermente disturbato
BO NE	0,49	Leggermente disturbato
BO SW	0,44	Leggermente disturbato
B6	0,49	Leggermente disturbato
K1	0,28	Moderatamente disturbato
K2	0,34	Leggermente disturbato
K3	0,28	Moderatamente disturbato
K4	0,32	Leggermente disturbato

Indice AMBI

L'indice AMBI (Tab. 2-LII) ha fornito una situazione più ottimistica rispetto a W, catalogando B6 e K4 come aree non impattate e tutti gli altri siti campionati come leggermente disturbati.

Le specie indifferenti all'arricchimento organico del II gruppo sono risultate le più rappresentate nella maggior parte delle stazioni, seguite da quelle del I gruppo (sensibili ad arricchimento organico e presenti solo in condizioni ambientali ottimali), ad eccezione dei siti BO SW, B6 e K4 in cui il I gruppo è risultato dominante. A seguire il III gruppo ecologico, caratterizzato dalla presenza di specie tolleranti a un eccessivo arricchimento organico nei sedimenti, quali Paraonidae nd e A. filiformis. È risultato particolare il caso della stazione K2, dove il III gruppo è risultato percentualmente superiore rispetto al gruppo I.

Le specie opportuniste di II ordine (IV gruppo) sono state rinvenute in tutti i siti campionati, anche se presenti con percentuali notevolmente inferiori alle precedenti.

Infine, il gruppo V, rappresentato da specie opportuniste di I ordine, è comparso solo in A6 e BO NE con una percentuale molto bassa.

Tab. 2-LII – Suddivisione percentuale delle specie rinvenute in ciascun sito monitorato durante il pre-survey nei 5 gruppi ecologici (I = specie molto sensibili; II = specie indifferenti all'arricchimento organico; III = specie tolleranti; IV = specie opportuniste di II ordine; V = specie opportuniste di I ordine) e classificazione del disturbo ambientale secondo l'indice AMBI. In giallo è riportato il gruppo ecologico più rappresentativo in ciascuna stazione.

Stazione	I(%)	II(%)	III(%)	IV(%)	V(%)	Mean AMB	Classificazione ambientale
A3	36,70	43,00	11,70	8,60	0	1,383	Leggermente disturbato
BO NW	36,00	38,20	20,20	5,60	0	1,433	Leggermente disturbato
BO SE	37,20	42,30	15,40	5,10	0	1,327	Leggermente disturbato
A6	32,20	44,80	17,20	4,60	1,10	1,466	Leggermente disturbato
В3	36,70	43,00	17,70	2,50	0	1,291	Leggermente disturbato
BO NE	20,40	66,90	7,40	4,30	1,00	1,48	Leggermente disturbato
BO SW	46,40	26,80	19,60	7,10	0	1,313	Leggermente disturbato
B6	44,00	40,00	12,00	4,00	0	1,14	Non disturbato
K 1	35,10	36,50	27,00	1,40	0	1,419	Leggermente disturbato
K2	23,60	43,30	28,30	4,70	0	1,713	Leggermente disturbato
K3	32,40	40,50	21,90	5,20	0	1,5	Leggermente disturbato
K4	49,50	32,70	14,90	3,00	0	1,069	Non disturbato

Indice BENTIX

L'indice BENTIX (Tab. 2-XLIII) ha classificato tutti i siti come leggermente disturbati eccetto K3, risultato moderatamente disturbato, confermando il risultato ottenuto per questa stazione con l'indice W.

Tab. 2-XLIII – Risultati dell'indice BENTIX e relativa classificazione del disturbo ambientale per i siti monitorati durante il pre-survey.

Stazione	BENTIX	Classificazione ambientale		
A3	4.12	Leggermente disturbato		
BO NW	4.00	Leggermente disturbato		
BO SE	4.05	Leggermente disturbato		
A6	3.98	Leggermente disturbato		
В3	3.95	Leggermente disturbato		
BO NE	3.73	Leggermente disturbato		
BO SW	3.75	Leggermente disturbato		
B6	4.43	Leggermente disturbato		
K 1	3.71	Leggermente disturbato		
K2	3.68	Leggermente disturbato		
K3	3.44	Moderatamente disturbato		
K4	3.90	Leggermente disturbato		

Stato ecologico

In Tab. 2-XLIV è riportato lo stato ecologico relativo alle diverse stazioni derivato dalla combinazione dei tre indici indici che è risultato buono entro 60 m dall'area della futura piattaforma e tra il buono e il buono/moderato nei siti di riferimento posti a circa 2000 m dalla futura struttura.

Tab. 2-XLIV – Classificazione dello stato ecologico derivata dalla combinazione dei tre differenti indici.

	W	AMBI	BENTIX	Ctata a sala miss	
	Classificazione ambientale	Classificazione ambientale	Classificazione ambientale	Stato ecologico	
A3	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono	
BO NW	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono	
BO SE	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono	
A6	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono	
В3	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono	
BO NE	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono	
BO SW	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono	
B6	Leggermente disturbato	Non disturbato	Leggermente disturbato	buono	
K 1	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato	
K2	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono	
K3	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato	
K4	Leggermente disturbato	Non disturbato	Leggermente disturbato	buono	

2.2.6. RILEVAMENTO DEL PASSAGGIO DI CETACEI

Nei mesi di pre-survey è avvenuto un solo avvistamento il giorno 13 gennaio 2015. In quell'occasione, alle ore 13:41 è stata notata la presenza di due esemplari di *Tursiops truncatus* a circa 1 km di distanza dal punto di installazione di Bonaccia NW verso NE (Tab. 2-XLV).

Tab. 2-2-XLII - Survey condotti per l'avvistamento di cetacei nell'area in cui verrà installata la piattaforma Elettra condotti durante i mesi di pre-survey.

	N. survey	N. avvist.
Gennaio 2015	3	1
Febbraio 2015	1	0
Marzo 2015	2	0

2.3. CONCLUSIONI

In riferimento al Decreto n. 0000222 del 09/09/2014 emesso dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare il CNR-ISMAR UOS di Ancona è stato incaricato da ENI S.p.A. - Divisione E&P di effettuare un monitoraggio volto a valutare il potenziale impatto ambientale conseguente l'installazione della piattaforma Bonaccia NW e della condotta sottomarina collegante tale struttura alla piattaforma Bonaccia. Gli aspetti indagati contemplati in tale monitoraggio sono stati scelti in base: a) alle specifiche riportate nel Decreto del Ministero dell'Ambiente e della Tutela del Territorio e del Mare; b) alle conoscenze acquisite dal CNR-ISMAR di Ancona a partire dalla sua costituzione (1969) nel campo dell'oceanografia e della biologia marina in Adriatico e negli altri mari italiani; c) alle numerose esperienze effettuate dal CNR-ISMAR di Ancona dal 1998 ad oggi presso altri impianti di estrazione off-shore installati in alto e medio Adriatico su diverse tipologie di fondale da 20 a 85 m di profondità (Regina, Anemone, Annalisa, Barbara NW, Calpurnia, Naomi-Pandora, PCMS-1, Emilio, Calipso, Clara Est, Clara Nord, Annamaria B, pozzi sottomarini Bonaccia EST 2 & 3; Fabi et al., 2001; 2004; 2005; 2010a; 2010b; 2010c; 2013; 2014a; 2015); d) alle caratteristiche idrologiche e sedimentologiche della zona in cui verrà installata Bonaccia NW.

E' stato proposto un monitoraggio comprendente indagini riguardanti la colonna d'acqua (solo piattaforma; studio delle correnti caratteristiche fisiche e chimiche), le comunità fito- e zooplanctoniche (solo piattaforma; solo nelle fasi di pre-survey e durante i lavori di installazione). i sedimenti (piattaforma e sea-line; granulometria, IPA, idrocarburi totali, metalli pesanti, sostanza organica, TOC, ecotossicologia, bioaccumulo), la ricerca di inquinanti e lo studio di biomarkers in esemplari di *Mytilus galloprovincialis* insediati sulle parti sommerse della piattaforma, la composizione quali-quantitativa della comunità bentonica (piattaforma e sea-line) e del popolamento ittico (solo piattaforma).

Il monitoraggio comprende diverse fasi:

- a. Fase precedente alla posa in opera delle strutture (pre-survey);
- b. Fase di installazione della piattaforma e perforazione dei pozzi;
- c. Fase di esercizio della piattaforma e del sea-line;
- d. Fase di fine esercizio della piattaforma e del sea-line.

Nella presente relazione sono riportati i risultati ottenuti nella fase di pre-survey condotto nel periodo dicembre 2014 - marzo 2015.

In questa fase per ogni comparto da investigare è stato proposto un monitoraggio semplificato rispetto a quello che verrà seguito nel periodo di produzione della piattaforma in quanto le indagini erano volte ad ottenere una caratterizzazione dell'areale in cui verrà installa ta la struttura. Per quanto concerne la colonna d'acqua l'indagine è stata effettuata presso 5 siti di campionamento di cui 1 posto in corrispondenza della futura piattaforma e 4 posizionate a circa 2000 m di distanza (controlli). Le medesime stazioni sono state campionate anche per la caratterizzazione delle comunità planctoniche. Sedimenti e comunità bentonica sono stati indagati presso 12 siti disposti a croce di cui 4 nell'area in cui verrà installata Bonaccia NW, 4 a 60 m e 4 a circa 2000 m di distanza (controlli).

Caratteristiche fisiche e chimiche della colonna d'acqua - L'area dove sarà installata la piattaforma di estrazione Bonaccia NW è caratterizzata da condizioni oceanografiche di mare aperto, essendo soggetta solo in parte alla circolazione costiera (Artegiani *et al.*, 1997a e 1997b). Le caratteristiche fisiche e chimiche della colonna d'acqua determinate durante il periodo analizzato (dicembre 2014 e marzo 2015) sono in accordo con la climatologia del bacino (Artegiani *et al.*, 1997a; Zavatarelli *et al.*, 1998).

I monitoraggi effettuati hanno evidenziato la presenza di condizioni idrologiche tardo autunnali in dicembre 2014 (temperature superficiali di circa 18°C), mentre in marzo 2015 erano presenti ancora condizioni invernali con temperature intorno a 13°C su tutta la colonna d'acqua. I valori di salinità, sempre superiore a 38,2 psu in entrambe le situazioni, confermano la limitata presenza di acque di diluizione continentale convalidando le condizioni offshore dell'area.

Per quanto riguarda gli aspetti idrochimici considerati, la concentrazione di ossigeno disciolto si è mantenuta su valori di saturazione sempre al di sopra del 90% e non sono state osservate quindi condizioni ipossiche durante il periodo considerato.

Le concentrazioni di nutrienti, particolarmente basse in dicembre, sono notevolmente aumentate in a marzo; in particolare, i fosfati hanno presentato concentrazioni 6 volte maggiori e i nitrati sono stati mediamente 3 volte più alti durante la campagna di marzo. Le concentrazioni di nutrienti trovate sono nei range dei valori noti per l'area (Zavatarelli *et al.*, 1998).

Il carico solido sospeso ha mostrato in generale un aumento della concentrazione nelle acque di fondo. Questo andamento è stato osservato frequentemente in Adriatico ed è legato a possibili processi di risospensione e trasporto di sedimenti (Wang e Pinardi, 2002; Wang *et al.*, 2006).

Le concentrazioni dei pigmenti clorofilliani sono rappresentative di condizioni di ridotta attività fotosintetica da parte degli organismi del plancton e hanno confermato le generali condizioni di oligotrofia dell'area (Zavatarelli *et al.*, 1998; Totti *et al.*, 2000). La clorofilla totale (come somma di CHL *a*, *b* e *c*) è risultata infatti sempre piuttosto bassa ma con un aumento in marzo, da collegare anche alla maggiore disponibilità di macronutrienti inorganici.

In tutte le situazioni analizzate la clorofilla b (caratteristica delle alghe verdi Prasinophyceae e delle Euglenophyta) è apparsa sempre predominante sulla clorofilla c (caratteristica delle diatomee). In marzo, è stato rilevato un importante aumento nella concentrazione di clorofille a e b rispetto a dicembre, mentre la clorofilla c è apparsa diminuita, anche se non in modo significativo.

Dai risultati relativi all'analisi della varianza applicata ai parametri chimici e fisici della colonna d'acqua per verificare eventuali differenze tra l'area in cui verrà installata la piattaforma Bonaccia NW e i siti di controllo è possibile concludere che le condizioni fisico-chimiche e biologiche nell'area in esame sono generalmente caratterizzate da una bassa variabilità.

Per quanto riguarda gli inquinanti organici e i metalli, le concentrazioni determinate nella colonna d'acqua nell'area di posa della piattaforma Bonaccia NW durante le campagne di dicembre 2014 e marzo 2015 sono risultate, per molti elementi, inferiori al limite di rilevabilità. Nei casi in cui i vari parametri hanno superato tale limite, le loro concentrazioni sono risultate comunque ampiamente al di sotto dei limiti previsti dalle leggi attinenti la qualità delle acque (es. i limiti per le acque riportati nella Direttiva 2008/105/EC). In conclusione, nel periodo di osservazione in tutta l'area esaminata non è stato evidenziato alcun particolare fenomeno di contaminazione ambientale.

Comunità planctoniche - Per quanto concerne il fitoplancton, le maggiori abbondanze sono state registrate nel survey condotto a marzo. Tale differenza con il survey precedente è dovuta alle condizioni più favorevoli per lo sviluppo del fitoplancton nel periodo tardo invernale (marzo) rispetto al periodo tardo autunnale

(dicembre): l'allungarsi del fotoperiodo e la maggior disponibilità di nutrienti ha favorito l'incremento delle abbondanze riscontrate nei prelievi di marzo 2015.

La disponibilità di luce e la maggior concentrazione dei nutrienti hanno influenzato anche la distribuzione del fitoplancton lungo la colonna, che spesso è risultato più abbondante alle quote di 40 m e alle quote di fondo nella campagna di marzo 2015.

La composizione in specie è risultata simile nei due survey a livello di grandi gruppi o classi, avendo prevalso sempre i nanoflagellati e le Criptoficee. Le Diatomee sono risultate sempre poco abbondanti, contribuendo maggiormente alle quote di fondo per l'apporto di forme bentoniche risospese.

Molte specie sono risultate presenti in entrambe le campagne: oltre a quelle già citate, anche le specie *Leptocylindrus danicus*, *Proboscia alata*, *Thalassionema nitzschioides* e *Telonema subtilis* sono risultate comuni ai popolamenti rinvenuti nelle due stagioni. Altre specie invece sono state rinvenute solo in una delle due campagne, essendo caratteristiche della stagione in cui è avvenuto il campionamento: in dicembre 2014 la diatomea *Lioloma pacificum* e, tra le Dictiocoficee, la specie *Dictyocha fibula*, entrambe caratteristiche del periodo autunnale e, in marzo 2015, la diatomea *Guinardia flaccida*, già rinvenuta nel periodo tardo-invernale-primaverile.

Le differenze rinvenute sia in abbondanza che in composizione specifica sono dovute alla normale successione stagionale e rientrano nella normale variazione spaziotemporale dei popolamenti fitoplanctonici.

Per quanto concerne lo zooplancton, a livello generale le comunità rilevate nei due periodi considerati nell'area in cui verrà installata la piattaforma Bonaccia NW hanno evidenziato una situazione tipica stagionale e solitamente riscontrabile nelle acque Adriatiche, sia in termini di abbondanze che di composizione delle comunità (Hure e Krsinic, 1998), con una dominanza dei Copepodi e, in particolare, di poche specie appartenenti principalmente ai generi *Clausocalanus* ed *Oithona*.

Caratteristiche sedimentologiche - L'area destinata ad accogliere la piattaforma Bonaccia NW è apparsa caratterizzata da un sedimento costituito in prevalenza da sabbia affiancata da percentuali confrontabili di silt ed argilla. I controlli sono risultati simili, tanto che tutti i sedimenti analizzati sono stati classificati come sabbia siltosa secondo Sheppard.

Per quanto riguarda i contaminanti indagati, i dati suggeriscono l'assenza di segnali di contaminazione ovunque. Sia i composti organici sia i metalli hanno infatti presentato complessivamente tenori bassi e mediamente confrontabili tra l'area entro un raggio di 60 m dalla futura piattaforma e i controlli. E' stata comunque riscontrata una maggiore variabilità nei controlli per tutti i composti ricercati, con minori concentrazioni presso i siti K2 e K3 posti rispettivamente a NE e SE rispetto al sito in cui verrà posizionata la piattaforma.

Ecotossicologia dei sedimenti - I saggi biologici condotti con *Dunaliella tertiolecta*, *Vibrio fischeri*, *Corophium orientale* e *Crassostrea gigas* hanno tutti evidenziato l'assenza di tossicità nell'intera area investigata.

I risultati del test di bioaccumulo eseguito utilizzando esemplari di *Hediste* diversicolor hanno dimostrato la parziale biodisponibilità solo di due dei 14 metalli esaminati (Hg e Ni). Tutti gli altri o sono risultati al di sotto del limite di rilevabilità strumentale, o sono stati rilasciati dagli organismi testati. Nel complesso, dunque, nel pre-survey non sono stati rilevati alcuni segnali di inquinamento da parte di metalli pesanti biodisponibili per gli organismi.

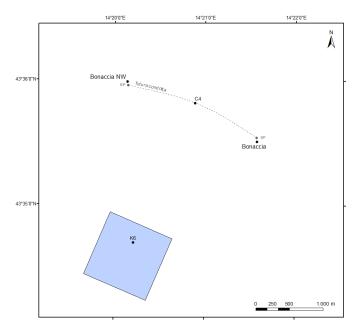
Comunità bentonica – La comunità bentonica rinvenuta nell'area circostante la futura piattaforma è risultata più povera in termini di numero di individui e di specie se comparata a quelle rinvenute nelle fasi di pre-survey presso le piattaforme Annamaria B, Elettra e Fauzia e presso i pozzi sottomarini Bonaccia EST 2 & 3, quattro strutture ubicate a profondità comprese tra 60 e 82 m nella medesima fascia granulometrica (Elettra e Fauzia) e su sabbia (Annamaria B e Bonaccia EST 2 & 3; Fabi *et al.*, 2009; 2010b; 2014b; 2014c).

La maggior parte dei taxa rinvenuti appartiene ai policheti, seguiti dai crostacei e dai molluschi. Scarsi sono invece risultati gli echinodermi, censiti solo in due siti con una sola specie.

Quasi tutti i taxa sono risultati tipici di fondali limicoli e ovunque è stato rinvenuto anche un discreto numero di organismi indicatori della presenza di materia organica nei sedimenti. Meno importanti sono risultati gli organismi sabulicoli, nonostante i sedimenti siano risultati costituiti per circa 2/3 da sabbia. Una situazione analoga era stata riscontrata durante le caratterizzazioni delle aree in cui sono stati installati i pozzi sottomarini Bonaccia EST 2 & 3 e le piattaforme Annamaria B, Fauzia ed Elettra (Fabi *et al.*, 2009; 2010b; 2014b; 2014c) e, più in generale, è comune in quel tipo di fondale (Marzialetti *et al.*, 2006; La Porta *et al.*, 2009).

Complessivamente, la maggior parte dei siti posti nell'area in cui verrà installata la piattaforma Bonaccia NW hanno mostrato valori degli indici biotici (Densità, Ricchezza specifica totale e media, Diversità specifica di Shannon-Weaver) abbastanza simili a quelli rinvenuti nei siti di riferimento posizionati a circa 2000 m dal punto della futura struttura, suggerendo una buona omogeneità in tutta l'area indagata, sia in termini quantitativi che di struttura dei popolamenti. Tale situazione è stata confermata anche dall'MDS, che ha raggruppato tutte le stazioni indagate in un unico grande cluster eccetto il controllo K3, situato a SE rispetto al sito delle futura piattaforma.

Da un'analisi più approfondita sulla struttura dei popolamenti mediante l'applicazione degli indici W di Clarke, AMBI e BENTIX, che consente di effettuare una valutazione dello stato ambientale come richiesto dalla Direttiva 2000/60/EC, è stato evidenziato che l'intera zona si trova in uno stato ecologico buono, che appare solo lievemente peggiore (buono/moderato) solo in due siti di controllo, K1 e K3, posizionati rispettivamente a NW e SE dal punto di installazione di Bonaccia NW.


3. SEA-LINE COLLEGANTE BONACCIA NW CON LA PIATTAFORMA BONACCIA

3.1. MATERIALI E METODI

3.1.1. CAMPIONAMENTO IN MARE

3.1.1.1 Indagini fisiche e chimiche dei sedimenti e sulla comunità bentonica

Il pre-survey è stato condotto nell'inverno 2015. Data lunghezza limitata del futuro sea-line (2,5 km), nella fase di pre-survey si è ritenuto sufficiente effettuare i prelievi su 2 stazioni, di cui 1 (C4) posta lungo il tracciato della condotta e 1 di controllo (K6) posizionata in modo random all'interno di un'area priva di altre strutture artificiali (1000 x1000 m) e distante circa 2000 m dal tracciato della condotta in direzione SW (fig. 3.1). La distanza e la posizione delle due stazioni dalla futura condotta sottomarina e le profondità relative sono riportate in Tab. 3-I.

Fig. 3.1 - Schema di campionamento utilizzato per le indagini sedimentologiche e sulla comunità bentonica.

Tab. 3-I - Dati identificativi delle stazioni di campionamento utilizzate durante il pre-survey per le indagini sedimentologiche e sulla comunità bentonica. In rosso il punto di campionamento in corrispondenza della futura condotta sottomarina.

	Distanza dalla condotta sottomarina (m)	Posizione rispetto alla futura condotta	Coordinate geografiche	Profondità (m)	
C4	0	-	43°35'48",96N 14°20'52",92E	89,0	
K6	2000	SW	43°34'42",12N 14°20'15",06E	86,4	

Per il campionamento dei sedimenti e della comunità bentonica sono state adottate le procedure già descritte per l'area in cui verrà installata la piattaforma Bonaccia NW, per cui per la loro descrizione si rimanda al Cap. 2.1.1.4.

3.1.1.2 Ecotossicologia dei sedimenti

Presso entrambe le stazioni di campionamento sono stati prelevati mediante benna Van-Veen anche campioni di sedimento per lo svolgimento dei saggi biologici descritti al Cap. 2.1.1.5.

3.1.2. ANALISI DI LABORATORIO E ANALISI DEI DATI

Per la descrizione delle analisi di laboratorio e dei dati relative alle indagini sedimentologiche, ecotossicologiche e sulla comunità bentonica si rimanda ai Capp. 2.1.2.3, 2.1.2.4 e 2.1.2.5 rispettivamente.

Per quanto concerne la ricerca di metalli pesanti nei sedimenti, è da segnalare che, oltre agli elementi indicati nella Specifica Tecnica e indicati nel Cap. 2.1.2.4, l'Arpam, presa visione della composizione degli anodi sacrificali che verrano posizionati a salvaguardia del sea-line ha esplicitamente richiesto le analisi anche di altri 7 elementi (manganese, magnesio, titanio, gallio, zirconio, stagno e ossido di zirconio; nota del 09/09/2015 - Prot. 0030224). Si sottolinea a tale proposito che, dati i tempi ristretti dalla richiesta, i relativi risultati non sono riportati nella presente relazione e verranno forniti come Addendun non appena disponibili. Si specifica inoltre l'ossido di zirconio verrà stimato esclusivamente tendo conto dei rapporti stechiometrici come se tutto lo zirconio fosse presente sotto forma di ossido.

Per quanto concerne invece la comunità bentonica, è solo da segnalare che, a causa del ridotto numero di stazioni, non è stato possibile applicare il MultiDimensional Scaling che verrà invece utilizzato a partire dal campionamento successivo.

3.2. RISULTATI

3.2.1. INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI

3.2.1.1 Granulometria

All'analisi visiva i campioni di sedimento si presentavano di colore ocra, inodori, con uno strato superficiale di 1 cm, senza distinzioni tra loro (fig. 3.2).

L'analisi granulometrica ha evidenziato un'elevata omogeneità tra i sedimenti analizzati, tutti classificati come sabbia siltosa secondo la classificazione di Sheppard (All. C). Infatti essi sono apparsi caratterizzati dalla dominanza della frazione sabbiosa, ammontante a 62,6% in SL C4 e 60,0% in K6 (Tab. 3-II; fig. 3.3). La frazione siltosa rappresentava in entrambi i casi poco più del 20% del campione. Infine, l'argilla è risultata pari al 16,1% in C4 e al 17,2% in K6.

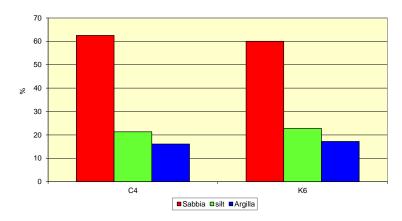


Fig. 3.2 - Campioni di sedimento prelevati dai due siti mediante box-corer nel pre-survey condotto nell'inverno 2015. C4: sito posto sul tracciato della futura condotta. K6: controllo.

Tab. 3-II - Percentuale delle principali frazioni granulometriche dei sedimenti campionati prima della realizzazione del sea-line. In rosso la stazione posta sulla futura condotta.

	Sabbia	H	Pelite	Classificazione di		
	Sabbia	Silt	Argilla	Sheppard		
C4	62,6	21,3	16,1	Sabbia siltosa		
K6	60,0	22,8	17,2	Sabbia siltosa		

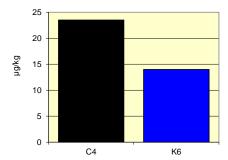


Fig. 3.3 - Ripartizione delle classi granulometriche, espresse in percentuale, nei sedimenti analizzati durante il monitoraggio antecedente l'installazione del sea-line.

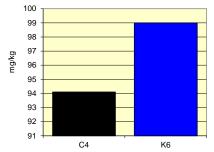
3.2.1.2 Idrocarburi Policiclici Aromatici

Diversi composti ricercati sono risultati presenti in entrambi i siti (Antracene, Benzo(b)fluorantene, Benzo(ghi)perilene, Benzo(k)fluorantene, Fluorantene, Indeno(1,2,3cd)pirene, Pirene), seppure in concentrazioni molto modeste e inferiori ai rispettivi LCB indicati da ICRAM-APAT (2007). Crisene e naftalene sono stati rilevati unicamente in C4. I restanti analiti sono risultati al di sotto del limite di quantificazione della metodica.

Essendo le concentrazioni dei singoli composti basse, anche gli IPA totali sono risultati scarsamente presenti (fig. 3.4; Tab. 3-III). Il tenore maggiore è stato rilevato SL C4 (23,5 μ g/kg), ma anche in questo caso si tratta di una concentrazione estremamente modesta.

Fig. 3.4 - Concentrazioni degli IPA (μ g/kg s.s.) nei sedimenti prelevati durante il pre-survey. C4 = sito posto in corrispondenza del futuro sea-line.

Tab. 3-III - Concentrazioni degli Idrocarburi Policiclici Aromatici (μg/kg s.s.) nei sedimenti prelevati durante il pre-survey. La stazione posta in corrispondenza della futura condotta sottomarina è evidenziata in rosso. Le celle vuote indicano l'assenza del composto in quel sito. Ove disponibili sono anche riportati gli LCB indicati da ICRAM-APAT (2007).


	LCB	C4	K6
Acenaftene	7		
Acenaftilene			
Antracene	47	1,8	1,8
Benzo (a) antracene	75		
Benzo (a) pirene	80		
Benzo (b) fluorantene		4,5	2,6
Benzo (g, h,i) perilene		3,4	2,4
Benzo (k) fluorantene		3,0	2,1
Crisene	108	1,8	
Fenantrene	87		
Fluorantene	113	1,7	1,1
Fluorene	21		
Indeno (1,2,3 - c, d) pirene		4,0	2,5
Naftalene	35	1,6	
Pirene	153	1,7	1,5
Dibenzo (a, h) antracene	6	·	
IPA Totali	900	23,5	14,0

3.2.1.3 Idrocarburi totali

Gli idrocarburi con C<12 non sono stati rilevati. Gli idrocarburi con C>12 sono stati rilevati in entrambe le stazioni con tenori confrontabili (Tab. 3-IV; fig. 3.5).

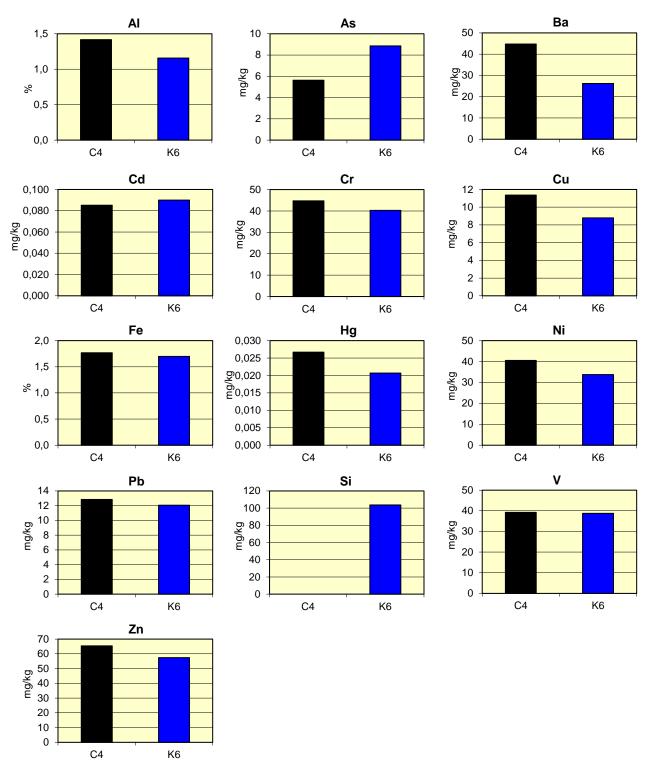
Tab. 3-IV – Idrocarburi (mg/kg) C>12 e Idrocarburi C<12 rilevate nei sedimenti campionati durante il pre-survey. In rosso il sito in cui verrà installato il sea-line.

_	C4	K6
Idrocarburi C<12	<0,5	<0,5
Idrocarburi C>12	94,1	99,0

Fig. 3.5 - Concentrazioni degli Idrocarburi totali con C>12 (mg/kg s.s.) nei sedimenti prelevati durante il pre-survey. C4 = sito posto in corrispondenza del futuro sea-line.

3.2.1.4 Metalli pesanti

Le concentrazioni dei metalli sono riportate in Tab. 3-V e in fig. 3.6.


In tutti i casi i valori sono risultati estremamente modesti e le eventuali differenze osservate tra un sito e l'altro sono da considerare del tutto trascurabili. Per questo motivo non si è ritenuto necessario descrivere dettagliatamente i singoli metalli.

Le concentrazioni di alluminio, bario, cromo, rame, ferro, mercurio, nichel, piombo, e zinco sono risultate maggiori in C4; tra questi, è da evidenziare il contenuto di bario in C4 risultato quasi doppio rispetto a K6.

L'arsenico è risultato maggiormente presente al controllo, con una differenza tra i due siti di quasi il 37%, e il silicio è stato individuato solo nei sedimenti di K6. Cadmio, ferro e vanadio hanno presentato concentrazioni molto simili nei due siti, mentre l'indio è risultato assente ovunque.

Tab. 3-V - Concentrazioni dei metalli in tracce (mg/kg s.s.; Al e Fe espressi in %) nei sedimenti campionati prima della realizzazione del sea-line. In rosso la stazione posta sulla futura condotta.

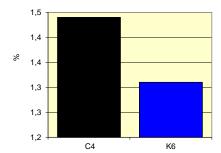

	Al	As	Ba	Cd	Cr	Cu	Fe	Hg	In	Ni	Pb	Si	V	Zn
C4	1,42	5,63	44,77	0,0851	44,77	11,36	1,77	0,0267	<0,02	40,50	12,84	< 5	39,25	65,41
K6	1,16	8,85	26,21	0,0900	40,27	8,80	1,70	0,0207	<0,02	33,73	12,06	103,60	38,75	57,39

Fig. 3.6 - Concentrazioni dei metalli in tracce (mg/kg s.s.; Al e Fe espressi in %) nei sedimenti campionati prima della realizzazione del sea-line. C4 = stazione posta sulla futura condotta. Non è riportato l'indio in quanto inferiore al limite di rilevabilità in entrambe le stazioni di campionamento.

3.2.1.5 Sostanza organica

La percentuale di sostanza organica rinvenuta nei sedimenti prelevati dal sito C4 è risultata leggermente superiore rispetto a quella del controllo K6 (fig. 3.7; Tab. 3-VI).

Fig. 3.7 – Sostanza organica (%) rilevata nei sedimenti campionati prima della realizzazione del sea-line. C4 = stazione posta sulla futura condotta.

Tab. 3-VI – Sostanza organica (%) rilevata nei sedimenti campionati prima della realizzazione del sea-line. In rosso la stazione posta sulla futura condotta.

C4	1,44
K6	1,31

3.2.1.6 Total Organic Carbon (TOC)

I tenori di carbonio organico totale sono risultati inferiori al limite di quantificazione in entrambe le stazioni.

3.2.2. ECOTOSSICOLOGIA DEI SEDIMENTI

3.2.2.1 Dunaliella tertiolecta

<u>QA-QC</u> - I test eseguiti come controllo positivo con $K_2Cr_2O_7$ (6,6 mg/l come cromo) sono rientrati nei limiti della carta di controllo intralaboratorio (5,8 – 9,9 mg/l); i coefficienti di variazione tra le repliche nei campioni non diluiti, alla massima concentrazione sono risultati conformi perché in tutti i casi inferiori al 15%. La crescita algale nei controlli è sempre stata superiore rispetto al limite minimo consentito (fattore \geq 16).

<u>Risultati del saggio</u> - I risultati del saggio applicato alle due stazioni campionate sono riportati in Tab. 3-VII, contestualmente ai principali parametri di contorno misurati. In entrambi i campioni non è stato evidenziato alcun effetto tossico. In K6 è stato osservato un effetto biostimolante ma statisticamente non significativo (p<0,05) rispetto alla crescita misurata nel controllo eseguito con acqua marina artificiale.

Tab. 3-VII - Parametri di contorno e risultati relativi al saggio di tossicità con *D. tertiolecta* nei campioni prelevati nel pre-survey. In rosso è indicato il sito in corrispondenza della futura condotta. Valori negativi della % di effetto indicano effetto stimolante.

campione	pН	S	% effetto	EC ₅₀	Giudizio
C4	8,12 35		+7	n.c.	Assenza di effetto
K6	6 8,14 35		-11 n.c.		Assenza di effetto

3.2.2.2 Vibrio fischeri

<u>QA-QC</u> – Il valore della EC50 a 15' uguale a 6,60 mg/l (LC=5,01 e UC=8,69) è rientrata nei limiti della carta di controllo del laboratorio (4,24-11,19 mg/l).

<u>Risultati del test</u> – Gli elutriati estratti dai sedimenti testati sono risultati privi di tossicità (Tab. 3-VIII).

Tab. 3-VIII - Risultati del saggio biologico *V. fischeri* applicato agli elutriati estratti dai sedimenti prelevati nel corso del pre-survey. In rosso, la stazione situata in corrispondenza del futuro sea-line.

campione	pН	Salinità (‰)	% Effetto (15')	%Effetto (30')	EC20 (15/30')	EC50 (15/30')	Tossicità
C4	8,17	35	13,82	-6,22	>90	>90	Assente
K6	8,23	35	-0,51	0,53	>90	>90	Assente

3.2.2.3 Corophium orientale

QA-QC - La sensibilità rilevata degli organismi verso il tossico di riferimento (CdCl₂) LC 50 = 2,59 (LC = 2,29 mg/l e UC = 2,94 mg/l) è rientrata nella carta di controllo di laboratorio. La sopravvivenza degli organismi sul sedimento di controllo dopo 10 giorni è risultata conforme, in quanto superiore al 85%.

In Tab. 3-IX sono indicati i principali parametri chimici e fisici misurati all'inizio e alla fine del saggio biologico eseguito nel pre-survey.

Tab. 3-IX – Parametri chimici e fisici dell'acqua sovrastante il sedimento testato osservati all'inizio e alla fine del test effettuato sui campioni prelevati nel pre-survey. In rosso la stazione situata in corrispondenza del futuro sea-line.

		Inizio (t		Fine d	el test	t				
campione	Temp. (°C)	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)	Temp. (°C)	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)	
Controllo	15±1	36	8,19	0		35 15±1	36	8,20	0,5		
C4		36	8,03	0	> 85		37	8,04	0	> 85	
K6		36	8,08	0			37	8,04	0		

<u>Risultati del test</u> - Le percentuali di mortalità degli organismi osservate nei campioni dei sedimenti testati hanno documentato l'assenza di tossicità acuta (Tab. 3-X).

Tab. 3-X - Percentuali di mortalità di *C. orientale* osservate nel test di tossicità acuta relativo al pre-survey. In rosso sono indicati i siti posti sul futuro sea-line.

campione	Numero degli organismi esposti	% degli organismi morti (± incertezza)	% (corretta) degli organismi morti	Tossicità
Controllo	100	$0 \pm 0,\!00$	0	-
C4	100	$3 \pm 2,00$	3	Assente
K6	100	$1 \pm 2,00$	1	Assente

3.2.2.4 Crassostrea gigas

<u>QA-QC</u> - Il test eseguito con la sostanza di riferimento ha prodotto una EC_{50} di 10,33 μ g/l di Cu che rientra nei limiti della carta di controllo intralaboratorio (5-45 μ g/l); la percentuale di larve D-shape normalmente sviluppate nel campione di controllo (88,0±0,6%) è risultata superiore al limite del 70%.

<u>Risultati del saggio</u> - Il saggio di embriotossicità applicato agli elutriati derivati dai sedimenti prelevati nel pre-survey ha evidenziato l'assenza di tossicità in entrambi i campioni esaminati, caratterizzati da una percentuale di larve normalmente formate

(percentuale di successo del test normalizzata S%) non marcatamente differente dal controllo (Tab. 3-XI).

Tab. 3-XI - Risultati relativi al saggio di tossicità con *C. gigas* nei campioni prelevati nel corso del pre-survey. In rosso la stazione situata in corrispondenza del futuro sea-line.

campione	Concentrazione	% media di larve normali ± dev.st	% media di larve malformate	Correzione Abbott larve malformate	EC 20 (%)	EC 50 (%)	Tossicità
Controllo		$88 \pm 0,58$	12	0			
	100	$79 \pm 1,15$	21	10			
C4	50	$80 \pm 1,73$	20	9	> 90	>100	Assente
	25	$83 \pm 2{,}31$	17	5			
	100	$79 \pm 2{,}31$	21	10			
K6	50	$81 \pm 1{,}15$	16	8	> 90	>100	Assente
	25	$86 \pm 1,78$	14	2			

3.2.2.5 Ricerca di metalli pesanti in Hediste diversicolor

I parametri (chimici e fisici) dell'acqua sovrastante il sedimento, registrati all'inizio e al termine del test condotto durante il pre-survey, sono riportati in Tab. 3-XII, mentre in Tab. 3-XIII sono indicate le mortalità degli organismi osservate nel test di bioaccumulo, risultate comparabili.

Tab. 3-XII - Parametri (chimico-fisici) dell'acqua sovrastante il sedimento, registrati all'inizio ed al termine del test di bioaccumulo condotto nel pre-survey. In rosso la stazione situata in corrispondenza del futuro sea-line.

		Inizio del test				Fine del test				
campione	Temp.	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)	Temp.	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)
Controllo	15±1	34	8,08	1		15±1	34	8,08	1	
C4		38	8,08	0	> 85		38	7,98	0,5	> 85
K6		37	8,07	0			38	7,97	0	

Tab. 3-XIII - Percentuali di mortalità degli organismi *H. diversicolor* osservate nel test di bioaccumulo condotto nel pre-survey. In rosso la stazione situata in corrispondenza del futuro sea-line.

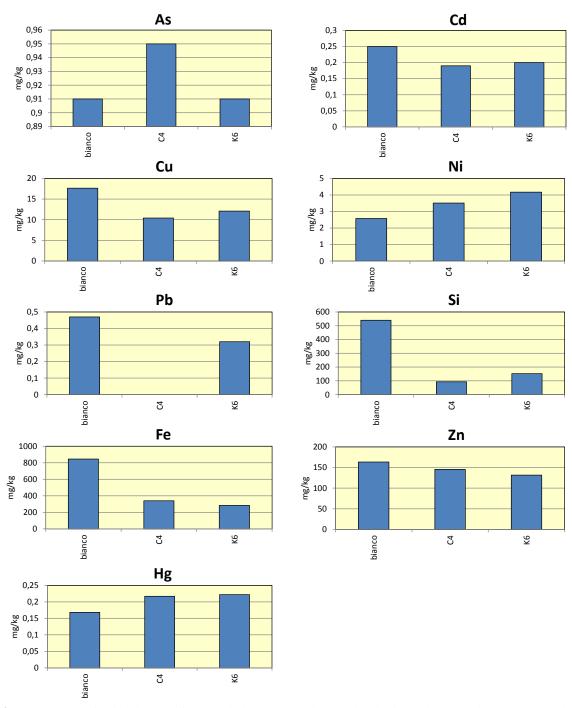
campione	N. degli organismi esposti	% organismi morti (± dev.st %)
controllo	18	$11 \pm 9,62$
C4	18	$17 \pm 0,00$
K6	18	$28 \pm 10,00$

In Tab. 3-XIV e in fig. 3.8 sono riportate le concentrazioni dei metalli pesanti nel bianco (tempo 0) e quelle rilevate nei tessuti di *H. diversicolor* esposti ai sedimenti

testati, mentre la Tab. 3-XV mostra le differenze tra le concentrazioni dei metalli pesanti rilevate nei tessuti di *H. diversicolor* dopo l'esposizione ai sedimenti testati e quelle determinate nel bianco (0').

Tab. 3-XIV - Concentrazioni (mg/kg; Al espresso in %) dei metalli pesanti rilevate nei tessuti di *H. diversicolor* nel pre-survey. Bianco = organismi analizzati al tempo 0, prima dell'esposizione al sedimento da testare. Controllo = organismi esposti per 28 gg a un sedimento di controllo. n.r.= non rilevabile. In rosso la stazione situata in corrispondenza del futuro sea-line.

campione	Al	As	Ba	Cd	Cr	Cu	Fe	Ni	In	Pb	Si	V	Zn	Hg
bianco	427	0,91	3	0,25	1,86	17,63	845,10	2,58	n.r.	0,47	540,14	n.r.	163,25	0,168
controllo	n.r.	1,01	n.r.	0,29	n.r.	11,65	437,70	1,37	n.r.	n.r.	103,92	n.r.	174,22	0,256
C4	n.r.	0,95	n.r.	0,19	n.r.	10,42	340,17	3,51	n.r.	n.r.	92,91	n.r.	145,450	0,217
K6	n.r.	0,91	n.r.	0,20	n.r.	12,08	284,37	4,17	n.r.	0,32	152,04	n.r.	131,700	0,222


Tab.3-XV - Differenze tra le concentrazioni dei metalli pesanti rilevate nei tessuti di *H. diversicolor* esposti ai sedimenti testati e il bianco (0') nel pre-survey. In rosso la stazione situata in corrispondenza del futuro sea-line. In grassetto le concentrazioni che indicano il bioaccumulo del metallo.

campione	Al	As	Ba	Cd	Cr	Cu	Fe	Ni	In	Pb	Si	V	Zn	Hg
controllo	n.c.	0,10	n.c.	0,04	n.c.	-5,98	-407,40	-1,21	n.c.	n.c.	-436,22	n.c.	10,97	0,088
C4	n.c.	0,04	n.c.	-0,06	n.c.	-7,21	-504,93	0,93	n.c.	n.c.	-447,23	n.c.	-17,80	0,049
K6	n.c.	0	n.c.	-0,05	n.c.	-5,55	-560,73	1,59	n.c.	-0,15	-388,1	n.c.	-31,55	0,054

Le concentrazioni di **Alluminio**, **bario**, **cromo**, **indio** e **vanadio**, inferiori ai limiti di quantificazione, indicano l'assenza di biodisponibilità in tutti i campioni dei sedimenti testati. Il **Piombo** è stato rilevato solo in K6 e in concentrazione inferiore al bianco.

Arsenico, cadmio, rame, ferro, silicio e zinco hanno presentato concentrazioni paragonabili o inferiori al bianco, indicando assenza di bioaccumulo o rilascio dei metalli.

Nichel e **mercurio** sono invece stati bioaccumulati negli organismi testati su entrambi i sedimenti.

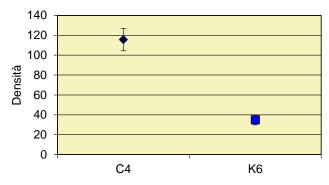


Fig. 3.8 – Concentrazioni dei metalli pesanti rilevate negli organismi di *H. diversicolor* nel corso del presurvey. C4 = stazione posta sulla futura condotta. Non sono riportati alluminio, bario, cromo, indio e vanadio in quanto le loro concentrazioni sono risultate inferiori al limite di rilevabilità strumentale nei sedimenti da testare.

3.2.3. INDAGINI SULLA COMUNITÀ BENTONICA

3.2.3.1 Densità (N) e Biomassa (P)

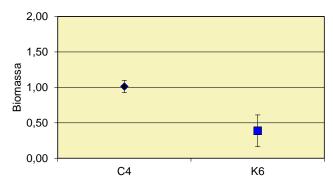

La comunità bentonica rinvenuta nelle 2 stazioni è risultata essere molto differente in termini di densità, con un di numero di individui più di tre volte superiore nel sito C4 rispetto a K6 (rispettivamente 115,67±11,33 ind/0,095 m² e 35,00±5,03 ind/0,095 m²; fig. 3.9).

Fig. 3.9 - Densità (\pm e.s.) registrate durante il pre-survey. C4 = sito posto in corrispondenza della futura condotta sottomarina. K6 = controllo.

I policheti appartenenti alla famiglia Paraonidae sono risultati il taxon più abbondante in entrambe le stazioni, seguiti da *Paradiopatra calliopae* e da *Ophelina cylindricaudata* in C4 (Tab. 3-XVI); le stesse due specie sono risultate le più abbondanti dopo i paraonidi anche in K6, ma con ordine inverso rispetto a C4.

Anche in termini di biomassa è stato ottenuto un valore maggiore in C4 rispetto a K6 (1,01±0,09 gr/0,095 m² e 0,39±0,22 gr/0,095 m²; fig. 3.10). In entrambi i casi, tuttavia, si tratta di valori modesti dovuti all'assenza di organismi di grandi dimensioni nelle repliche (Tab. 3-XVII).

Fig. 3.10 - Biomassa (\pm e.s.) registrata durante il pre-survey. C4 = sito posto in corrispondenza della futura condotta sottomarina. K6 = controllo.

Tab. 3-XVI – Lista e densità (n. ind/0,095 m²) delle specie rinvenute nelle stazioni campionate durante il pre-survey. Per entrambi i siti è riportato il numero totale di taxa osservati. VTC = Biocenosi dei Fanghi Terrigeni Costieri; VB = Bioc. dei Fanghi Batiali; DE = Bioc. del Detritico Infangato; Sab = sabulicolo; Lim = limicolo; Lre = larga ripartizione ecologica; Minut = minuticolo; Mixt = misticolo; MO = indicatore di materia organica; Sm = organismo di fondo mobile.

Distanza dal futuro sea-line (m)	Stazione		Biocenosi	C4	K6
Anfipodi	Distanza dal futu	uro sea-line (m)	Diocelloa	0	2000
Decapodi	Crostacei				
Hippomedon bidentatus	Anfipodi	Ampelisca diadema	DE	0,33	
Decapodi		Aoridae nd	-		0,33
Goneplax rhomboides		Hippomedon bidentatus	VTC	1,33	
Processa sp	Decapodi	Callianassa subterranea	Lim	0,33	1,33
Echinodermi Echinoidei Brissopsis atlantica mediterranea VB 0,33 Molluschi Abra alba Lim toll 0,67 0,33 Molluschi Abra alba Lim toll 0,67 0,33 Nucula nitidosa Lim 1,67 0,33 Nucula nitidosa Lim 1,00 1,67 0,33 Nucula suicata Mixt 1,00 1,67 0,33 Caudofoveata Falcidens gutturosus Lim 1,00 1,00 Hyala vitrea VTC 0,33 0,33 Mangelia coarctata Sm 0,33 0,33 Nemertini Nemertea nd - 0,67 Aphelochaeta filiformis VTC 0,33 Aphelochaeta filiformis MO 2,33 0,33 Aphelochaeta marioni MO 0,33 0,33 Capitellidae nd - 0 0,67 Chaetozone caputesocis Lim 0,03 0,03 Glycera rouxii MO 0,67 0,33		•	VTC	0,33	0,33
Echinoidei		Processa sp	-	0,67	0,33
Ofiuroidei Amphiura chiajei VTC 0,33 Molluschi Abra alba Lim toll 0,67 0,33 Bivalvi Abra alba Lim toll 0,67 0,33 Nucula nitidosa Lim 1,67 0,33 Nucula sulcata Lim 0,33 Saccella commutata Mixt 1,00 Trimical coresta Lim 1,00 Trimical communis VTC 0,33 Caudofoveata Falcidens gutturosus Lim 3,00 Hyala vitrea VTC 0,33 0,33 Mangelia coarctata Sm 0,33 0,33 Turritella communis VTC 0,33 0,33 Nemertini Nemertea nd VTC 0,67 Policheti Ampharete acutifrons VTC 0,67 Anystrosyllis groenlandica VB 0,67 Aphelochaeta marioni MO 0,33 Capitellidae nd - 0,67 Chaetozone caputesocis Lim 0,067	Echinodermi				
Molluschi		•			0,33
Bivalvi		Amphiura chiajei	VTC	0,33	
Myrtea spinifera					
Nucula nitidosa	Bivalvi				0,33
Nucula sulcata Lim 0,33 Ascacella commutata Thyasira succisa Lim 1,00		·	_		0.00
Saccella commutata					0,33
Thyasira succisa Lim 1,00 Again 1,00 Lim 3,00 3,0					
Caudofoveata Gasteropodi Falcidens gutturosus Hyala vitrea Lim VTC 3,00 0,33 0,33 Nemertini Nemertea nd - 0,67 Policheti Ampharete acutifrons Ancystrosyllis groenlandica Aphelochaeta filiformis Aphelochaeta filiformis Aphelochaeta marioni VTC MO 0,33 0,33 0,33 Aphelochaeta marioni Capitellidae nd Chaetozone caputesocis Lim MO 0,67 0,67 0,67 0,33 0,33 Chirimia biceps Glycera rouxii MO 0,33 0,33 0,33 Glycera rouxii MO 0,67 0,67 Lumbrineris gracilis Marphysa bellii Lim 4,00 0,67 4,00 0,67 Melinna palmata Minuspio cirrifera MO 1,67 0,67 Nephtys hystricis Ninoe sp Notomastus aberans Ophelina cylindricaudata VTC 0,67 0,33 0,33 0,33 0,033					
Mangelia coarctata	Coudeferente	-			
Mangelia coarctata Sm 0,33 VTC 0,33 VTC 0,33 VTC 0,33 VTC 0,33 VTC 0,67 Ancystrosyllis groenlandica Aphelochaeta filiformis MO 0,33 Capitellidae nd Chaetopteridae nd Chaetozone caputesocis Lim 0,33 Chirimia biceps MO 0,67 Lumbrineris gracilis Sab 0,67 0,33 Marphysa bellii Lim 4,00 0,67 Melinna palmata Minut 0,33 Minut		_			0.33
Nemertini Nemertea nd	Gasteropoul	-			0,33
Nemertini		-			ŀ
Nemertea nd	Nemertini	Turniena communis	VIC	0,33	
Policheti	racine fulli	Nemertea nd		0.67	
Ampharete acutifrons VTC 0,33 Ancystrosyllis groenlandica VB 0,67 Aphelochaeta filiformis MO 2,33 0,33 Aphelochaeta marioni MO 0,33 Capitellidae nd - 0,67 Chaetozone caputesocis Lim 0,33 Chirimia biceps MO 0,33 Glycera rouxii MO 0,67 Lumbrineris gracilis Sab 0,67 Marphysa bellii Lim 4,00 0,67 Melinna palmata Minut 0,33 Minuspio cirrifera MO 1,67 Nephtys hystricis VTC 0,67 0,33 Ninoe sp - 3,00 0,33 Notomastus aberans MO 1,33 Ophelina cylindricaudata Lim 7,33 6,33 Ophelina cylindricaudata Lim 19,00 2,33 Paralacydonia paradoxa MO 1,67 1,67 Paraaonidae nd - 53,33 11,33 <t< td=""><td>Policheti</td><td>Nemerica na</td><td></td><td>0,07</td><td></td></t<>	Policheti	Nemerica na		0,07	
Ancystrosyllis groenlandica VB 0,67 Aphelochaeta filiformis MO 2,33 0,33 Aphelochaeta marioni MO 0,33 0,67 Capitellidae nd - 0,67 0,33 Chaetozone caputesocis Lim 0,33 Chirimia biceps MO 0,67 0,33 Glycera rouxii MO 0,67 0,33 Lumbrineris gracilis Sab 0,67 0,33 Melinna palmata Minut 0,33 0,67 Melinna palmata Minut 0,33 0,67 Melinna palmata Minut 0,33 0,67 Nephtys hystricis VTC 0,67 0,33 Ninoe sp - 3,00 1,33 Notomastus aberans MO 1,67 Nephtys hystricis VTC 0,67 0,33 Notomastus aberans MO 1,33 0,33 Ophelina cylindricaudata Lim 7,33 6,33 Ophicidromus flexuosus Sab	i ononeu	Ampharete acutifrons	VTC		0.33
Aphelochaeta filiformis MO 2,33 0,33 Aphelochaeta marioni MO 0,33 0,67 Capitellidae nd - 0,67 Chaetopteridae nd - 0,33 Chaetozone caputesocis Lim 0,33 Chirimia biceps MO 0,33 Glycera rouxii MO 0,67 Lumbrineris gracilis Sab 0,67 0,33 Marphysa bellii Lim 4,00 0,67 Melinna palmata Minut 0,33 0,67 0,33 Melinna palmata Minut 0,33 0,67 0,67 0,67 0,67 0,33 0,67 0,67 0,33 0,67 0,67 0,67 0,33 0,67 0,67 0,73 0,67 0,67 0,73 0,67 0,67 0,73 0,67 0,67 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 <td></td> <td>•</td> <td></td> <td></td> <td></td>		•			
Aphelochaeta marioni MO 0,33 Capitellidae nd - 0,67 Chaetopteridae nd - 0,33 Chaetozone caputesocis Lim 0,33 Chirimia biceps MO 0,33 Glycera rowxii MO 0,67 Lumbrineris gracilis Sab 0,67 0,33 Marphysa bellii Lim 4,00 0,67 Melinna palmata Minut 0,33 Minuspio cirrifera MO 1,67 Nephtys hystricis VTC 0,67 0,33 Ninoe sp - 3,00 0,33 Notomastus aberans MO 1,33 Ophelina cylindricaudata Lim 7,33 6,33 Ophiodromus flexuosus Sab 0,33 Ophiodromus flexuosus Sab 0,33 Ophiodromus flexuosus Sab 0,33 Ophiodromus flexuosus Sab 0,33 Paradiocydonia paradoxa MO 1,67 Paragiopatra calliopae Lim <				2.33	
Capitellidae nd - 0,67 Chaetopteridae nd - 0,33 Chaetozone caputesocis Lim 0,33 Chirimia biceps MO 0,33 Glycera rouxii MO 0,67 Lumbrineris gracilis Sab 0,67 0,33 Marphysa bellii Lim 4,00 0,67 Melinna palmata Minut 0,33 0,67 0,33 Minuspio cirrifera MO 1,67 0,43 0,67 0,33 Ninoe sp - 3,00 0,33 0,33 0,33 0,00 0,33 Ninoe sp - 3,00 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 1,1,33 11,33 11,33 11,33 11,33 11,33 11,33 11,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33<		•			0,00
Chaetopteridae nd		•	-	0,00	0.67
Chaetozone caputesocis Lim 0,33 Chirimia biceps MO 0,33 Glycera rouxii MO 0,67 Lumbrineris gracilis Sab 0,67 0,33 Marphysa bellii Lim 4,00 0,67 Melinna palmata Minut 0,33 Minut 0,33 Minuspio cirrifera MO 1,67 Nephtys hystricis VTC 0,67 0,33 Ninoe sp - 3,00 0,33 1,33 O,33 O,33 A,33 O,33 O,33 A,33		-	-		
Chirimia biceps MO 0,33 Glycera rouxii MO 0,67 Lumbrineris gracilis Sab 0,67 0,33 Marphysa bellii Lim 4,00 0,67 Melinna palmata Minut 0,33 Minuspio cirrifera MO 1,67 Nephtys hystricis VTC 0,67 0,33 Ninoe sp - 3,00 0,33 Notomastus aberans MO 1,33 0,33 Notomastus aberans MO 1,33 6,33 Ophelina cylindricaudata Lim 7,33 6,33 Ophiodromus flexuosus Sab 0,33 0,33 Orbiniidae nd - 19,00 2,33 Paradiopatra calliopae Lim 19,00 2,33 Paranonidae nd - 53,33 11,33 Pilargis verrucosa Sab 0,33 Prionospio ehlersi Mixt 0,33 Prionospio sp - 0,33 Scoletoma sp - <		•	Lim		
Glycera rouxii		•	MO	0,33	
Marphysa bellii Lim 4,00 0,67 Melinna palmata Minut 0,33 Minut 0,33<		Glycera rouxii	MO		
Melinna palmata Minut Minuspio cirrifera 0,33 mode of the part of the		Lumbrineris gracilis	Sab	0,67	0,33
Minuspio cirrifera MO 1,67 Nephtys hystricis VTC 0,67 0,33 Ninoe sp - 3,00 0,33 Notomastus aberans MO 1,33 Ophelina cylindricaudata Lim 7,33 6,33 Ophiodromus flexuosus Sab 0,33 Orbiniidae nd - 0,33 Paradiopatra calliopae Lim 19,00 2,33 Paralacydonia paradoxa MO 1,67 Paraonidae nd - 53,33 11,33 Pilargidae nd - 53,33 11,33 Pilargis verrucosa Sab 0,33 Prionospio ehlersi Mixt 0,33 Prionospio sp - 0,33 Scoletoma sp - 0,33 Scoloplos armiger Lre 1,00 Spionidae nd - 0,33 Syllis sp - 0,33 Terebellidae nd - 0,33 Sipunculidi - 1,67 1,67		Marphysa bellii	Lim	4,00	0,67
Nephtys hystricis		Melinna palmata	Minut	0,33	
Ninoe sp - 3,00 0,33 Notomastus aberans MO 1,33 Ophelina cylindricaudata Lim 7,33 6,33 Ophiodromus flexuosus Sab 0,33 Orbiniidae nd - 0,33 Paradiopatra calliopae Lim 19,00 2,33 Paralacydonia paradoxa MO 1,67 1,67 Paraonidae nd - 53,33 11,33 Pilargia verrucosa Sab 0,33 1,33 Prionospio ehlersi Mixt 0,33 0,33 Prionospio ehlersi Mixt 0,33 0,33 Scoletoma sp - 0,33 0,33 Scoloplos armiger Lre 1,00 Spionidae nd - 0,33 Syllis sp - 0,33 Terebellidae nd - 0,33 Sipunculidi MO 0,33 0,33 Aspidosiphon muelleri WB 2,00 Onchnesoma steenstrupi VB 2,00		Minuspio cirrifera	MO	1,67	
Notomastus aberans		Nephtys hystricis	VTC	0,67	0,33
Ophelina cylindricaudata Lim 7,33 6,33 Ophiodromus flexuosus Sab 0,33 Orbiniidae nd - 0,33 Paradiopatra calliopae Lim 19,00 2,33 Paralacydonia paradoxa MO 1,67 Paraonidae nd - 53,33 11,33 Pilargidae nd - 1,33 Pilargis verrucosa Sab 0,33 Prionospio ehlersi Mixt 0,33 Prionospio sp - 0,33 Scoletoma sp - 0,33 Scoloplos armiger Lre 1,00 Spionidae nd - 0,33 Syllis sp - 0,33 Terebellidae nd - 0,33 Sipunculidi MO 0,33 0,33 Aspidosiphon muelleri MO 0,33 0,33 Onchnesoma steenstrupi VB 2,00 1,67 Densità totale 115,67 35,00		Ninoe sp	-	3,00	0,33
Ophiodromus flexuosus Sab 0,33 Orbiniidae nd - 0,33 Paradiopatra calliopae Lim 19,00 2,33 Paralacydonia paradoxa MO 1,67 53,33 11,33 Pilargidae nd - 53,33 11,33 Pilargis verrucosa Sab 0,33 Prionospio ehlersi Mixt 0,33 Prionospio sp - 0,33 Scoletoma sp - 0,33 Scoloplos armiger Lre 1,00 Spionidae nd - 0,33 Syllis sp - 0,33 Terebellidae nd - 0,33 Sipunculidi MO 0,33 0,33 Monchnesoma steenstrupi VB 2,00 Sipuncula nd - 1,67 1,67					
Orbiniidae nd - 0,33 Paradiopatra calliopae Lim 19,00 2,33 Paralacydonia paradoxa MO 1,67 53,33 11,33 Pilargidae nd - 53,33 11,33 Pilargis verrucosa Sab 0,33 Prionospio ehlersi Mixt 0,33 Prionospio sp - 0,33 Scoletoma sp - 0,33 Scoloplos armiger Lre 1,00 Spionidae nd - 0,33 Syllis sp - 0,33 Terebellidae nd - 0,33 Sipunculidi MO 0,33 0,33 Onchnesoma steenstrupi VB 2,00 Sipuncula nd - 1,67 1,67		· ·		7,33	
Paradiopatra calliopae Lim 19,00 2,33 Paralacydonia paradoxa MO 1,67 Paraonidae nd - 53,33 11,33 Pilargidae nd - 1,33 Pilargis verrucosa Sab 0,33 Prionospio ehlersi Mixt 0,33 Prionospio sp - 0,33 Scoletoma sp - 0,33 Scoloplos armiger Lre 1,00 Spionidae nd - 0,33 Syllis sp - 0,33 Terebellidae nd - 0,33 Sipunculidi Aspidosiphon muelleri MO 0,33 0,33 Onchnesoma steenstrupi VB 2,00 1,67 1,67 Densità totale 115,67 35,00		•	Sab		
Paralacydonia paradoxa MO 1,67 Paraonidae nd - 53,33 11,33 Pilargidae nd - 1,33 Pilargis verrucosa Sab 0,33 Prionospio ehlersi Mixt 0,33 Prionospio sp - 0,33 Scoletoma sp - 0,33 Scoloplos armiger Lre 1,00 Spionidae nd - 0,33 Syllis sp - 0,33 Terebellidae nd - 0,33 Sipunculidi Aspidosiphon muelleri MO 0,33 0,33 Onchnesoma steenstrupi VB 2,00 2,00 1,67 1,67 Densità totale 115,67 35,00 35,00 35,00 35,00 35,00 35,00 35,00			-	40.00	
Paraonidae nd - 53,33 11,33 Pilargidae nd - - 1,33 Pilargis verrucosa Sab 0,33 Prionospio ehlersi Mixt 0,33 Prionospio sp - 0,33 Scoletoma sp - 0,33 Scoloplos armiger Lre 1,00 Spionidae nd - 0,33 Syllis sp - 0,33 Terebellidae nd - 0,33 Sipunculidi Aspidosiphon muelleri MO 0,33 0,33 Onchnesoma steenstrupi VB 2,00 2,00 Sipuncula nd - 1,67 1,67 Densità totale 115,67 35,00					2,33
Pilargidae nd			MO		11 22
Pilargis verrucosa Sab 0,33 Prionospio ehlersi Mixt 0,33 Prionospio sp - 0,33 Scoletoma sp - 0,33 Scoloplos armiger Lre 1,00 Spionidae nd - 0,33 Syllis sp - 0,33 Terebellidae nd - 0,33 Sipunculidi MO 0,33 0,33 Aspidosiphon muelleri MO 0,33 0,33 Onchnesoma steenstrupi VB 2,00 2,00 Sipuncula nd - 1,67 1,67 Densità totale 115,67 35,00				53,33	
Prionospio ehlersi Mixt 0,33 Prionospio sp - 0,33 Scoletoma sp - 0,33 Scoloplos armiger Lre 1,00 Spionidae nd - 0,33 Syllis sp - 0,33 Terebellidae nd - 0,33 Sipunculidi Aspidosiphon muelleri MO 0,33 0,33 Onchnesoma steenstrupi VB 2,00 2,00 Sipuncula nd - 1,67 1,67 Densità totale 115,67 35,00		3	- Sah	0.33	1,33
Prionospio sp				0,33	033
Scoletoma sp			IVIIAL	0.33	0,33
Scoloplos armiger Lre 1,00		• •		0,33	0.33
Spionidae nd - 0,33		•	l re		
Syllis sp			-	0.33	1,50
Terebellidae nd - 0,33		-	-		
Aspidosiphon muelleri MO 0,33 0,33 Onchnesoma steenstrupi VB 2,00 Sipuncula nd - 1,67 1,67 Densità totale 115,67 35,00		, ,	-		
Aspidosiphon muelleri MO 0,33 0,33 Onchnesoma steenstrupi VB 2,00 Sipuncula nd - 1,67 1,67 Densità totale 115,67 35,00	Sipunculidi			_,	l
Onchnesoma steenstrupi Sipuncula nd VB 2,00 Densità totale - 1,67 1,67		Aspidosiphon muelleri	MO	0,33	0,33
Sipuncula nd - 1,67 1,67 Densità totale 115,67 35,00					·
Densità totale 115,67 35,00					1,67
	Densità totale				
	Ricchezza speci	fica totale			

Tab. 3-XVII – Lista e biomassa (gr/0,095 m²) delle specie rinvenute nelle stazioni campionate durante il pre-survey. * = <0,001 gr/0,095 m².

Stazione		C4	K6
Distanza dal futu	ro sea-line (m)	0	2000
Crostacei			
Anfipodi	Ampelisca diadema	0,002	
	Aoridae nd		*
	Hippomedon bidentatus	0,001	
Decapodi	Callianassa subterranea	0,003	0,016
	Goneplax rhomboides	0,001	0,067
	Processa sp	0,002	0,001
Echinodermi			
Echinoidei	Brissopsis atlantica mediterranea		0,161
Ofiuroidei	Amphiura chiajei	0,031	
Molluschi			
Bivalvi	Abra alba	0,103	0,008
	Myrtea spinifera	0,279	
	Nucula nitidosa	0,451	0,056
	Nucula sulcata	0,004	
	Saccella commutata	0,014	
	Thyasira succisa	*	
Caudofoveata	Falcidens gutturosus	0,003	
Gasteropodi	Hyala vitrea	*	*
	Mangelia coarctata	0,001	
	Turritella communis	0,002	
Nemertini			
	Nemertea nd	0,002	
Policheti			
	Ampharete acutifrons		0,001
	Ancystrosyllis groenlandica		*
	Aphelochaeta filiformis	0,002	*
	Aphelochaeta marioni	*	
	Capitellidae nd		0,001
	Chaetopteridae nd		*
	Chaetozone caputesocis		0,004
	Chirimia biceps	0,022	
	Glycera rouxii	0,007	
	Lumbrineris gracilis	0,001	0,001
	Marphysa bellii	0,011	0,025
	Melinna palmata	0,002	
	Minuspio cirrifera	*	
	Nephtys hystricis	0,013	0,009
	Ninoe sp	0,017	0,001
	Notomastus aberans		0,007
	Ophelina cylindricaudata	0,001	0,002
	Ophiodromus flexuosus		*
	Orbiniidae nd		0,018
	Paradiopatra calliopae	0,027	0,003
	Paralacydonia paradoxa	*	
	Paraonidae nd	0,004	0,002
	Pilargidae nd	0.55	*
	Pilargis verrucosa	0,001	0.000
	Prionospio ehlersi	_	0,003
	Prionospio sp	*	0.001
	Scoletoma sp		0,001
	Scoloplos armiger	0.55-	*
	Spionidae nd	0,002	
	Syllis sp	*	
	Terebellidae nd	0,001	
Sipunculidi			
	Aspidosiphon muelleri	0,001	*
	Onchnesoma steenstrupi	0,002	l
	Sipuncula nd	0,001	0,001
Biomassa totale		1,012	0,388

3.2.3.2 Affinità biocenotiche delle specie rinvenute

I popolamenti rinvenuti in entrambi i siti sono risultati composti quasi esclusivamente da taxa di fondo mobile (Tabb. 3-XVIIIa e 3-XVIIIb). In particolare, sia in termini di numero di specie che di individui e in entrambe le stazioni il gruppo biocenotico predominante è risultato quello degli organismi Limicoli (LIM) legati alla presenza di fango, seguito dagli Indicatori di Materia Organica (MO), seppure con valori di Ricchezza specifica e Densità molto inferiori ai primi.

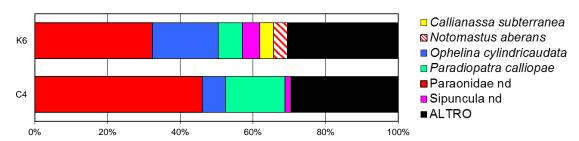
Sabulicoli (Sab) e Misticoli (Mixt) sono stati rinvenuti in entrambi i siti, anche se con un numero di taxa e di individui esigui.

I Minuticoli (Minut) sono apparsi rappresentati nel popolamento solo in C4, mentre gli organismi a Larga Ripartizione Ecologica (LRE) sono stati rappresentati da una sola specie nel sito K6.

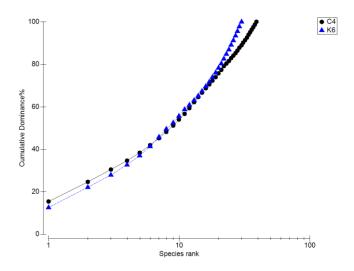
Tab. 3-XVIII - Numero di taxa (a) e di individui (b; n. ind 0,095 m⁻²) rinvenuti nel corso del pre-survey e determinati a livello di specie suddivisi in base alla loro affinità biocenotica. In giallo sono indicati i gruppi più numerosi. Per la legenda si rimanda alla Tab. 3-XVI.

_		
a)	C4	K6
Substrato mobile non rinv. in letter. (Sm)	1	
Limicoli (Lim, VTC, VB)	16	13
Sabulicoli (Sab)	2	2
Misticoli (Mixt, DE)	2	1
Minuticoli (Minut)	1	
Indicatori di Materia Organica (MO)	8	3
Larga ripartizione ecologica (Lre)		1
b)	C4	K6
Substrato mobile non rinv. in letter. (Sm)	0,33	
Limicoli (Lim, VTC, VB)	42,67	14,00
Sabulicoli (Sab)	1,00	0,67
Misticoli (Mixt, DE)	1,33	0,33
Minuticoli (Minut)	0,33	
Indicatori di Materia Organica (MO)	9,33	2,00
Larga ripartizione ecologica (Lre)		1,00

3.2.3.3 Dominanza


Per la rappresentazione grafica delle dominanze sono stati considerati i 6 taxa che complessivamente hanno costituito il 70% circa delle comunità rinvenute nel presurvey, includendo i rimanenti nella categoria "altro" (fig. 3.11).

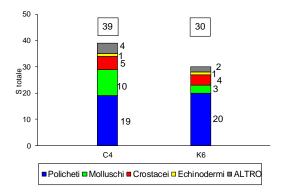
In entrambi i siti campionati i policheti appartenenti alla famiglia dei Paraonidae hanno rappresentato il taxon principale costituendo il 46% del popolamento rinvenuto in C4 e il 32% di quello in K6. Presso il futuro sea-line sono risultati


dominanti, dopo i paraonidi, *P. calliopae* (16%) seguito da *O. cylindricaudata* (6%), mentre presso il controllo la dominanza di queste due specie è risultata opposta (rispettivamente 7% e 18%).

Le specie secondarie catalogate in "altro" sono risultate complessivamente importanti, andando a costituire circa il 30% del popolamento associato a ciascuna delle due stazioni campionate.

L'andamento delle curve di dominanza cumulativa (fig. 3.112) indica una buona somiglianza tra i 2 siti monitorati. Risulta inoltre evidente nella stazione C4 la maggiore quantità di specie secondarie rispetto al controllo K6.

Fig. 3.11 - Valori percentuali di dominanza delle specie principali ottenuti nelle stazioni monitorate durante il pre-survey. C4 = sito posto in corrispondenza della futura condotta sottomarina. K6 = controllo.


Fig. 3.12 - Curve di dominanza cumulative ottenute per le due stazioni campionate nel presurvey. C4 = sito posto in corrispondenza della futura condotta sottomarina. <math>K6 = controllo.

3.2.3.4 Ricchezza specifica totale (S)

Nell'area investigata sono stati rinvenuti complessivamente 53 taxa, di cui 31 policheti, 10 molluschi, 6 crostacei, 3 sipunculidi, 2 echinodermi e 1 nemertino (Tab. 3-XVI).

La Ricchezza specifica totale è risultata superiore in C4 rispetto al controllo K6 (fig. 3.13). Tale differenza è dovuta principalmente alla maggiore quantità di molluschi registrata in C4, poiché policheti, crostacei ed echinodermi sono apparsi rappresentati da un numero di specie molto simile o identico tra i due siti.

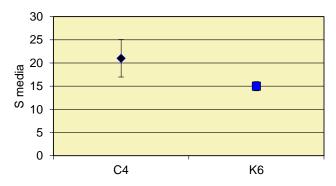

Dal punto di vista qualitativo, i sue siti sono apparsi piuttosto disomogenei; infatti, il numero di taxa esclusivi, riscontrati cioè in un solo sito, sono stati 22 nella stazione C4, corrispondenti a più di metà del popolamento associato (56%), e 14 in K6 (47% del popolamento censito nel controllo).

Fig. 3.13 - Ricchezza specifica totale ottenuta nelle stazioni monitorate nel pre-survey. C4 = sito posto in corrispondenza della futura condotta sottomarina. K6 = controllo.

3.2.3.4 Ricchezza specifica media (S_m)

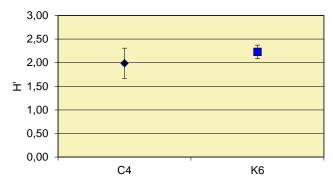

Analogamente a quanto riscontrato per S, la Ricchezza specifica media è risultata superiore in C4 (21,00±4,04) rispetto al controllo K6 (15,00±1,00), anche se in questo caso le differenze non sono apparse eclatanti come per S a causa dell'elevato errore standard registrato nel sito posto sul tracciato del sea-line (fig. 3.14).

Fig. 3.14 – Ricchezza specifica media (\pm e.s.) registrata presso i siti monitorati nel corso del pre-survey. C4 = sito posto in corrispondenza della futura condotta sottomarina. K6 = controllo.

3.2.3.5 Diversità specifica (H')

La Diversità specifica è risultata comparabile nei due siti indagati, con valori di 1,99±0,32 in C4 e 2,23±0,14 in K6 (fig. 3.15). Tali valori, non particolarmente elevati, sono stati determinati dalla dominanza di un numero limitato di specie nei popolamenti associati alle due stazioni. Infatti, ben il 69% e il 57% delle comunità rinvenute rispettivamente in C4 e K6 erano rappresentati dalle 3 specie principali (Paraonidae nd, *O. cylindricaudata* e *P. calliopae*; cfr. Cap. 3.2.3.3).

Fig. 3.15 - Diversità specifica (\pm e.s.) registrata nelle stazioni monitorate nel corso del presurvey. C4 = sito posto in corrispondenza della futura condotta sottomarina. K6 = controllo.

3.2.3.5 Valutazione dello stato ambientale

Indice W di Clarke

L'indice W di Clarke ha evidenziato la presenza di un ambiente moderatamente disturbato presso C4 e leggermente disturbato presso il controllo (Tab. 3-XIX).

Tab. 3-XIX – Valori dell'indice W di Clarke ottenuti per i siti monitorati nel pre-survey. C4 = sito posto in corrispondenza della futura condotta sottomarina. K6 = controllo

Stazione	W	Classificazione ambientale
C4	0.21	Moderatamente disturbato
K6	0.30	Leggermente disturbato

Indice AMBI

L'indice AMBI ha dato risultati leggermente migliori rispetto all'indice W di Clarke, classificando anche C4 come leggermente disturbato (Tab. 3-XX). In entrambe le stazioni la maggior parte delle specie è risultata appartenente al III gruppo ecologico, che comprende specie tolleranti, con percentuali molto alte, addirittura il 51% nella stazione posta in prossimità della futura condotta. A seguire, le specie del I gruppo (presenti solo in condizioni ottimali e con un basso arricchimento organico) e, con

percentuali inferiori, quelle del II gruppo (specie indifferenti all'arricchimento organico).

Tab. 3-XX – Suddivisione percentuale delle specie rinvenute in ciascun sito monitorato durante il presurvey suddivise nei 5 gruppi ecologici (I = specie molto sensibili; II = specie indifferenti all'arricchimento organico; III = specie tolleranti; IV = specie opportuniste di II ordine; V = specie opportuniste di I ordine) e classificazione del disturbo ambientale secondo l'indice AMBI. In giallo è evidenziato il gruppo ecologico più rappresentativo in ciascuna stazione.

Stazione	I(%)	II(%)	III(%)	IV(%)	V(%)	Mean AMBI	Classificazione ambientale
C4	34,50	12,80	51,00	1,70	0,00	1,80	Leggermente disturbato
K6	41,30	7,70	47,10	1,90	1,90	1,73	Leggermente disturbato

Indice BENTIX

L'indice BENTIX (Tab. 3-XXI) ha fornito risultati identici a quelli ottenuti con l'indice AMBI, classificando entrambi i siti campionati come leggermente disturbati.

Tab. 3-XXI – Risultati dell'indice BENTIX e relativa classificazione del disturbo ambientale per i siti monitorati durante il pre-survey. C4 = sito posto in corrispondenza della futura condotta sottomarina. K6 = controllo.

Stazione	BENTIX	Classificazione ambientale
C4	3,61	Leggermente disturbato
K6	3,92	Leggermente disturbato

Stato ecologico

In Tab. 3-XXII è riportato lo stato ecologico relativo alle due stazioni derivato dalla combinazione dei tre indici che risulta buono al controllo e buono/moderato in C4.

Tab. 3-XXII – Classificazione dello stato ecologico derivata dalla combinazione dei tre differenti indici.

	W	AMBI	BENTIX	Stato ecologico
	Classificazione ambientale	Classificazione ambientale	Classificazione ambientale	Stato ecologico
C4	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
K6	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono

3.3. CONCLUSIONI

Come già riportato nel Cap. 2.3, nella fase di pre-survey dell'area interessata dalla posa della futura condotta sottomarina collegante le piattaforme Bonaccia NW e Barbara C è stato proposto un monitoraggio semplificato rispetto a quello che verrà condotto una volta ultimata la condotta sottomarina. Data la lunghezza limitata del futuro sea-line (2,5 km), il campionamento è stato effettuato presso una stazione posizionata al centro del tracciato della condotta (denominata C4) e presso un sito di controllo (K6) posto in modo random all'interno di un'area priva di altre strutture artificiali (1000x1000 m) posta a circa 2000 m dal tracciato in direzione NW.

Nella presente relazione sono riportati i risultati ottenuti durante tale campionamento condotto nell'inverno 2015.

Caratteristiche chimiche e fisiche dei sedimenti - L'area interessata dalla posa della sea-line collegante la futura piattaforma Bonaccia NW all'esistente Bonaccia è caratterizzata da sedimenti sabbio-siltosi, con la sabbia rappresentante circa il 60% dei campioni. Le concentrazioni dei contaminanti organici sono apparse modeste ovunque e confrontabili tra i due siti indagati. Anche le differenze riscontrate per i metalli pesanti sono da considerare trascurabili, dati i tenori molto contenuti. Solo per il bario è stata registrata una concentrazione quasi doppia in C4, mentre l'arsenico è risultato maggiormente presente al controllo, unico sito in cui è stata rilevata anche la presenza di silicio. L'indio non è stato affatto rilevato. Anche i quantitativi di sostanza organica sono apparsi estremamente modesti, mentre il total organic carbon è risultato inferiore al limite di quantificazione ovunque.

Ecotossicologia - I test tossicologici effettuati per verificare se i sedimenti presenti nell'area in cui verrà posata la condotta sottomarina abbiano un qualche grado di tossicità per gli organismi marini si sono mostrati ottimali per la crescita algale di *Dunaliella tertiolecta*, per la bioluminescenza di *Vibrio fischeri*, per lo sviluppo larvale di *Crassostrea gigas* e per la sopravvivenza di *Corophium acherusicum*.

Il test di bioaccumulo di metalli pesanti nei policheti appartenenti alla specie *Hediste* diversicolor ha sostanzialmente rilevato l'assenza di biodisponibilità per la gran parte degli elementi metallici nei sedimenti testati. Solo nichel e mercurio sono risultati bioaccumulati negli organismi testati sui sedimenti prelevati sia dal tracciato del futuro sea-line che dal sito di controllo.

Comunità bentonica - In generale la comunità bentonica rinvenuta nei due siti monitorati durante il pre-survey condotto nell'inverno 2015 è risultata più ricca sia in termini sia di abbondanza che di biomassa lungo il tracciato della futura condotta sottomarina rispetto al sito di controllo. La maggior parte dei taxa osservati è risultata tipica di fondo mobile, con una predominanza di organismi limicoli, soprattutto policheti. Questi sono risultati rappresentati da un numero molto simile di taxa in entrambi i siti, analogamente ai crostacei e agli echinodermi, mentre i molluschi sono apparsi più numerosi nell'area del futuro sea-line. La Ricchezza specifica è pertanto risultata superiore nel sito posto sulla condotta. Nonostante li tra taxa dominanti siano risultati gli stessi nei due siti (Paraonidae nd, *Paradiopatra calliopae* e *Ophelina cylindricaudata*), sebbene con percentuali diverse, da un punto di vista qualitativo i popolamenti non sono apparsi omogenei, essendo stato rinvenuto un numero elevato di taxa esclusivi in ciascuna stazione.

La Diversità specifica è non apparsa particolarmente elevata ovunque a causa dell'elevata dominanza di pochi taxa sui popolamenti.

L'analisi della struttura dei popolamenti mediante l'applicazione degli indici W di Clarke, AMBI e BENTIX, ha permesso di evidenziare la presenza di uno stato ecologico buono al controllo e buono moderato nel sito sulla condotta, per una maggiore percentuali di specie tolleranti a situazioni di stress rispetto al riferimento, come ad esempio i policheti paraonidi, molto più abbondanti sul tracciato del sealine.

4. BIBLIOGRAFIA

- Amouroux J.M. 1974. Etude des peuplements infralittoraux de la côte du Roussillon. *Vie Milieu*, 24 (1) sèr. B: 209-222.
- Artegiani A. 1996. Temperature and salinity measurements of seawaters, Handbook of method protocols. MAST II Mediterranean Targeted Project. 34 pp.
- Artegiani, A., Bregant D., Paschini E., Pinardi N., Raicich F., Russo A. 1997a. The Adriatic Sea general circulation. Part I. Air-sea interactions and water mass structure, *J. Phys. Oceanogr.*, 27, 1492–1514.
- Artegiani, A., Bregant D., Paschini E., Pinardi N., Raicich F., Russo A. 1997b. The Adriatic Sea general circulation. Part II: Baroclinic Circulation Structure, *J. Phys. Oceanogr.*, 27, 1515–1532.
- ASTM. 1998. Standard guide for determination of the bioaccumulation of sediment-associated contaminants by benthic invertebrates. Standard ASTM E1688-97a. American Society for testing and materials, Philadelphia, PA: 1072-1121.
- ASTM. 2004a. Standard guide for conducting static toxitcity tests with microalghe. ASTM E1218-04-E1. 14 pp.
- ASTM. 2004b. Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs. ASTM E724-98. 21 pp.
- Augier H. 1992. *Inventaire et classification des biocénoses marines benthique de la Méditerranée*. Conseil de l'Europe. U.E.R. Des Sciences de la Mer et de l'Environnement de Luminy Marseille. 59 pp.
- Avancini M., Cicero A.M., Di Girolamo I., Innamorati M., Magaletti E., Sertorio Zunini T. 2006. *Guida al riconoscimento del plancton dei mari italiani*, Vol. I-II Zooplancton Neritico Tavole. Ministero dell'ambiente e della tutela del territorio DPN; ICRAM Istituto Centrale per la Ricerca scientifica e tecnologica applicata al mare.
- Azur Environmental. 1994. Microtox® M500 manual (A toxicity testing handbook).
- Bellan Santini D., Ledoyer M. 1972. Inventaire des amphipodes gammariens récoltés dans la Région de Marseille. *Tethys*, 4 (4): 899-934.
- Bellan G., Bellan Santini D., Picard J. 1980. Mise en évidence de modèles eco-biologiques dans des zones soumises à perturbations par matières organiques. *Oceanol. Acta*, 3: 383-390.
- Berard-Therriault L., Poulin M., Bossé L. 1999. *Guide d'identification du phytoplancton marin de l'estuaire et du golfe du Saint-Laurent*. NRC Research Press, 387 pp.
- Bettencourt A., Bricker S.B., Ferriera J.G., Franco A., Marques J.C., Melo J.J., Nobre A., Ramos L., Reis C.S., Salas F., Silva M.C., Simas T., Wolff W. 2004. *Typology and reference conditions for Portuguese transitional and coastal waters*. Instituto da Agua. Instituto do Mar, Lisbon.
- Bianchi C.N., Ceppodomo I., Galli C., Sgorbini S., Dell'Amico F., Morri C. 1993. Benthos dei mari toscani. I: Livorno Isola d'Elba (Crociera ENEA 1985). *ENEA Arcipelago Toscano Serie Studi Ambientali*: 263-291.
- Borja A., Mader J. 2008. *Instructions for the use of the AMBI index software (version 4.1)*. AZTI-Tecnalia. 13 pp.
- Borja A., Franco J., Pérez V. 2000. A narine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environment. *Mar. Poll. Bull.*, 40 (12): 1100-1114.

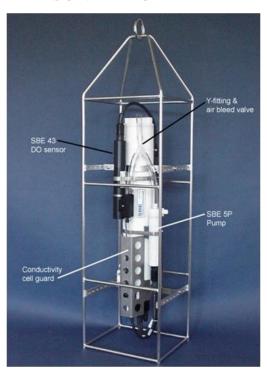
- Bourcier M., Nodot C., Jeudy De Grissac A., Tine J. 1979. Répartition des biocénoses benthiques en fonction des substrats sédimentaires de la rade de Toulon (France). *Tethys*, 9: 103-112.
- Camatti E., I. Ferrari 2010. MESOZOOPLANCTON. In "Metodologie di studio del plancton marino". G. Socal, I. Buttino, M. Cabrini, O. Mangoni, A. Penna, C. Totti (Eds.). ISPRA, Manuali e linee guida, 56/2010, 489-506.
- Chimenz Gusso C., Gravina M.F., Maggiore F.R. 2001. Temporal variations in soft bottom benthic communities in Central Tyrrhenian Sea (Italy). *Archo Oceanogr. Limnol.*, 22: 175-182.
- Christensen E.R., Kusk, K.O., Nyholm N. 2009. Dose-response regressions for algal growth and similar continuous endpoint: calculation of effective concentrations. *Environ. Toxicol. Chem.*, 28: 826-835.
- Clarke K.R., Warwick R.M. 2001. *Change in Marine Communities: An Approach to Statistical Analysis and Interpretation*. 2nd Edition. PRIMER-E, Plymouth, Uk. 172 pp.
- EC. 2003. Towards a guidance on establishment of the intercalibration network and the processes on the intercalibration exercise. CIS Working Group 2.5 (Intercalibration), Common Implementation Strategy of the Water Framework Directive, European Commission. 54 pp.
- EPA. 1993. Guidance manual, Bedded sediment Bioaccumulation Tests. EPA/600/R-93/183. 246 pp.
- EPA. 2003a. Volatile organic compounds in various sample matrices using equilibrium headspace analysis. EPA METHOD 5021A. 25 pp.
- EPA. 2003b. Nonhalogenated organics using gc/fid. EPA METHODS 8015D. 37 pp.
- EPA. 2007a. Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. EPA METHOD 7473. 15 pp.
- EPA. 2007b. *Graphite furnace atomic absorption spectrophotometry*. EPA METHOD 7010. 24 pp.
- EPA. 2007c. *Inductively coupled plasma-atomic emission spectrometry*. EPA METHOD 6010C. 34 pp.
- Fabi G., De Ranieri S., Grati F., Marini M., Spagnolo A. 2001. *Servizi di monitoraggio ambientale campo Regina. III Anno di indagine. Rapporto finale*. Rapporto per Eni S.p.A. Divisione AGIP, Distretto di Ravenna. 185 + XXVII pp.
- Fabi G., De Ranieri S, Manoukian S., Marini M., Scarcella G., Spagnolo A. 2004. *Servizi di monitoraggio ambientale Campo Barbara NW. Rapporto conclusivo di tre anni di indagine* (2000 2002). Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 228 + XLIX pp.
- Fabi G., Boldrin A., De Ranieri S., Manoukian S., Nasci C., Scarcella G., Spagnolo A. 2005. Servizi di monitoraggio ambientale Piattaforma di estrazione di idrocarburi gassosi "Naomi-Pandora". Rapporto conclusivo di due anni di indagine (2002-2003). Rapporto per Eni S.p.A. – Divisione E&P, Distretto di Ravenna. 201 + XXVIII pp.
- Fabi G., De Ranieri S., Spagnolo A. 2009. Servizi di monitoraggio ambientale Campo Annamaria B. Monitoraggio dell'area interessata dall'installazione della piattaforma Pre-survey (dicembre 2008). Indagini fisiche e chimiche dei sedimenti, ecotossicologia e indagini sulla comunità bentonica. Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 45 + XVI pp.
- Fabi G. De Ranieri S., Grilli F., Nasci C., Spagnolo A. 2010a. Servizi di monitoraggio ambientale Campo Clara Nord. Rapporto conclusivo di tre anni di indagine (estate 2005

- *inverno* 2008). Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 240 + XLIII pp.
- Fabi G., De Ranieri S., Nasci C., Spagnolo A. 2010b. Monitoraggio ambientale Pozzi sottomarini "Bonaccia EST 2 e Bonaccia EST 3" Monitoraggio delle aree interessate dall'installazione dei pozzi sottomarini e del sea-line collegante i pozzi con la piattaforma Bonaccia. Il Pre-survey (inverno 2010). Indagini fisiche e chimiche dei sedimenti, ecotossicologia e indagini sulla comunità bentonica. Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 113 + XXV pp.
- Fabi G., Campanelli A., De Ranieri S., Nasci C., Polidori P., Punzo E. 2010c. *Servizi di monitoraggio ambientale Campo Clara Est. Rapporto conclusivo di tre anni di monitoraggio (estate 2005 inverno 2008)*. Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 353 + XLI pp.
- Fabi G., De Ranieri S, Manoukian S., Marini M., Nasci C., Scarcella G., Spagnolo A. 2013. Servizi di monitoraggio ambientale Campo Naide. Rapporto conclusivo di 4 anni di monitoraggio, dal pre-survey al terzo anno dopo la posa (estate 2004 - inverno 2008). Rapporto per Eni S.p.A. – Divisione E&P, Distretto di Ravenna. 397 + xlvi pp.
- Fabi G., Bolognini L., Bruno S., De Ranieri S., Girasole M., Gomiero A., Malaspina S., Nasci C., Spagnolo A. 2014a. *Servizi di monitoraggio ambientale Campo Annamaria B Piano Nazionale. Monitoraggio dell'area interessata dall'installazione della piattaforma. I anno di indagine durante la fase di produzione. Rapporto Finale (estate 2010 inverno 2011).* Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 308 + LXXXVIII pp.
- Fabi G., Boldrin A., Campanelli A., De Ranieri S., Santelli A., Spagnolo A. 2014b. Servizi di monitoraggio ambientale Campo Elettra. Monitoraggio dell'area interessata dall'installazione della piattaforma e del sea-line collegante Elettra con la condotta Bonaccia Barbara C. Pre-survey (ottobre-dicembre 2013). Indagini fisiche e chimiche della colonna d'acqua e dei sedimenti, Ecotossicologia e Indagini sulla comunità bentonica. Rapporto n. 1. Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 119 + XXXI pp.
- Fabi G., Boldrin A., Cuicchi C., De Ranieri S., Grilli F., Spagnolo A. 2014c. Servizi di monitoraggio ambientale Campo Fauzia. Monitoraggio dell'area interessata dall'installazione della piattaforma e del sea-line collegante le piattaforme Fauzia Barbara B- Pre-survey (ottobre-dicembre 2013). Indagini fisiche e chimiche della colonna d'acqua e dei sedimenti, Ecotossicologia e Indagini sulla comunità bentonica. Rapporto n. 1. Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 122 + XXXIII pp.
- Fabi G., Bolognini L., De Ranieri S., Domenichetti F., Nasci C., Penna P., Santelli A., Spagnolo A. 2015. Servizi di monitoraggio ambientale Campo Tea. II anno dopo la posa in opera della piattaforma, III anno dopo la posa del sea-line Rapporto finale (estate 2006 estate 2009). Rapporto per ENI S.p.A. Divisione E&P, Distretto di Ravenna. 307 + XLV pp.
- Grasshoff K., Cremling K., Erhardt M. 1999. *Methods of seawater analysis*. Verlag Chemie, Weinheim, Germany. 600 pp.
- Heimdal B.R. 1993 *Modern Coccolithophorids*. Pagg. 147-248. In: *Marine phytoplankton a guide to naked flagellates and coccolithophorids*. Tanos editors, Academic Press.
- Hendey N.I. 1964. An introductory account of the smaller algae of British coastal waters. Part V: Bacillariophyceae, Diatoms. Fishery Invest. Lond. Ser. IV 5. 317 pp.

- Hure J., Krsinic F. 1998. *Planktonic copepods of the Adriatic Sea. Fauna Croatica*. Vol. 7 (2). 135 pp.
- Hustedt F. 1930-1966. *Die Kiesealgen von Deutschland, Österreichs und der Schweiz mit Berusichtigung der übrigen Länder Europas sowie der angrenzender Mehresgebiete*. In : Rabenhorst's Kriptogamen-Flora von Deutschland, Österreichs und der Schweiz. Akad; Verlag. m. b. H. Leipzig. 7 : Tl. 2. 920 pp. : Tl., 2 845 pp. ; Tl. 3, 816 pp.
- ICRAM. 2001. Metodologie analitiche di riferimento. Programma di monitoraggio per il controllo dell'ambiente marino-costiero (triennio 2001-2003).
- ICRAM, 2006. *Guida al riconoscimento del plancton dei mari italiani*. ROMA, Ministero Ambiente e Tutela del territorio e del mare. 503 pp.
- ICRAM-APAT. 2007. Manuale per la movimentazione dei sedimenti marini. 72 pp.
- IRSA-CNR. 1994. *Metodi analitici per le acque*. Istituto poligrafico e zecca dello Stato, Roma.
- ISO 2004. Determination of content of hydrocarbon in the range C10 to C40 by gas chromatography. ISO 16703:2004. 18 pp.
- ISO. 2005. Water quality determination of acute toxicity of marine or estuarine sediment to amphipods. ISO 16712:2005(E). 15 pp.
- La Porta B., Targusi M., Lattanzi L., La Valle P., Paganelli D., Nicoletti L. 2009. Relict sand dredging for beach nourishment in the central Tyrrhenian Sea (Italy): effects on benthic assemblages. *Mar. Ecol.*, 30(1): 97-104.
- Losso C., Picone M., Arizzi Novelli A., Delaney E., Ghetti P.F., Volpi Ghirardini A. 2007. Developing toxicity scores for embryotoxicity tests on elutriates with the sea urchin *Paracentrotus lividus*, the oyster *Crassostrea gigas* and the mussel *Mytilus galloprovincialis*. *Arch. Environ. Contam. Toxicol.*, 53: 220–226.
- Marzialetti S., Gabellini M., La Porta B., Lattanzi L., La Valle P., Paganelli D., Panfili M., Targusi M., Nicoletti L. 2006. Attività di dragaggio ai fini di ripascimento al largo di Montalto di Castro (VT): effetti sul popolamento a policheti. *Biol. Mar. Medit.*, 13 (11): 601-605.
- May R.M. 1979. Patterns of Species Abundance and Diversity. Pagg. 81-120, *in*: Cody M.L. and Diamond J.M. (Eds). *Ecology and Evolution of Communities*, 4.
- Muxica I., Borja A., Bonne W. 2005. The suitability of the marine biotic incex (AMBI) to new impact sources along European coasts. *Ecological Indicators*, 5: 19-31.
- Muxika I., Borja A., Bald J. 2007. Using historical data, export judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Framework Directive. *Mar. Poll. Bull.*, 55: 13-29.
- Nodot C., Bourcier M., Juedy De Grissac A., Hursner S., Regis J., Tine J. 1984. Répartition des biocénoses benthiques en fonction des substrats sédimentaires de la rade de Toulon (France). 2. La Grande Rade. *Tethys*, 11: 141-153.
- Peragallo H., Peragallo M. 1897-1908. *Diatomees Marine de France et des Districts Maritimes Voisins*. Micrographe Editeur Grez sur Loing (S. et M.). 419 pp.
- Pérès J.M., Picard J. 1964. Nouveau Manuel de Bionomie benthique de la Mer Mediterranée. *Recl. Trav. St. Mar. Endoume*, 31 (47). 137 pp.
- Pianka E.R. 1970. On r- and k-selection. Amer. Nat., 104: 592-597.
- Pielou E.C. 1974. *Population and Community Ecology: Principles and Methods*. Gordon and Breach Sci. Pubbl., New York. 424 pp.
- Poppe G.T., Goto Y. 1991. European Seashells (Polyplacophora, Caudofoveata,

- *Solenogastra, Gastropoda*). *Vol. 1.* Pubbl. by V.C. Hemmen, Grillparzerstr. 22, D-6200 Wiesbaden, Federal Republic of Germany. 352 pp.
- Poppe G.T., Goto Y. 1993. European seashells. Vol. II (Scaphopoda, Bivalvia, Cephalopoda). Hemmen V.C. (Ed.), Germany. 221 pp.
- Rampi L., Bernhardt M. 1980. Chiave per la determinazione tassonomica delle Peridinee Pelagiche Mediterranee, C.N.E.N., Roma (RT/B10 (81-13): 1-98.
- Rinelli P., Spanò N. 1997. Distribuzione di crostacei decapodi ed echinodermi di ambienti detritici insulari. *Biol. Mar. Medit.*, 4: 440-442.
- Rose M. 1933. Faune de France (26) Copepodes pélagiques. Ed. Paul Lechevalier, Paris, France.
- Saggiomo V., Catalano G., Ribera d'Alcalà M. 1990. Ossigeno disciolto. Pagg. 91-103. In: Innamorati M., Ferrari I., Marino D., Ribera d'Alcalà M. (eds), Metodi nell'ecologia del plancton marino. Nova Thalassia, Vol. 11.
- Salen-Picard C. 1985. Indicateurs biologiques et sedimentation en milieu circalitoral Mediterraneen. *Rapp. p. v. Réu. Comm. Int. pour l'Explor. Sci. Mer Médit.*, 29: 5.
- Schiller J. 1931-37. *Dinoflagellatae (Peridineae) Monografischer Behandlung*. In: Rabenhorst Kriptogamen-Flora von Deutschland, Österreichs und der Schweiz. Verlag. m. b. H. Leipzig. 10 (3) -1, 1-617, (1931-1933), (10) 3-2, 1-590, (1933-1937).
- Simboura N., Zenetos A. 2002. Benthic indicators to use in ecological quality classification of Mediterranean soft bottom marine ecosystem, including a new biotic index. *Mediterr. Mar. Sci.*, 3: 77-111.
- Simboura N., Panayitudus P., Papathanassiou E. 2005. A synthesis of the biological quality elements for the implementation of the European Water Framework Directive in the Mediterranean Ecoregion: the case of Saronikos Gulf. *Ecol. Ind.*, 5: 253-266.
- Sournia A. 1993. Atlas du phytoplancton marin. Editions du Centre National de la recerche Scientifique. (1), 1-219, (2) 1-297.
- Spagnolo A., Punzo E., Santelli A., Scarcella G., Strafella P., Grati F., Fabi G. 2014. Offshore platforms: comparison of five benthic indicators for assessing the macrozoobenthic stress level. *Mar. Pollut. Bull.*, 82: 55-65.
- Strickland J.D.H., Parsons T.R. 1972. A practical handbook of seawater analysis. *Bull. Fish. Res. Bd. Canada*, 167. 310 pp.
- Teixeira H., Salas F., Pardal M.A., Marques J.C. 2007. Applicability of ecological evaluation tools in estuarine ecosystem: a case of the lower Mondego estuary (Portugal). *Hydrobiologia*, 587: 101-112.
- Throndsen J. 1993. The planktonic marine flagellates. Pagg. 7-131. In: *Marine phytoplankton a guide to naked flagellates and coccolithophorids*. Tanos editors, Academic Press.
- Tomas C.R. 1997. *Identifying Marine Phytoplankton*. Academic Press, Arcourt Brace & Company.
- Totti C., Civitarese G., Acri F., Barletta D., Candelari G., Paschini E., Solazzi A. 2000. Seasonal variability of phytoplankton populations in the middle Adriatic sub-basin. *J. Plankton Res.*, 22(9): 1735–1756.
- Treguboff G., Rose M. 1957. Manuel de planctonologie Mediterraneenne. Paris. *Centre Nat. Rech. Sci.*, 1: 1-587.
- UNI EN ISO. 2000. Saggio di inibizione della crescita di alghe marine con Skeletonema costatum e Phaeodactylum tricornutum. UNI EN ISO 10253:2000. 14 pp.

- UNESCO. 1983. *Algorithms for computation of fundamental properties of seawater*. Tech. Pap. Mar. Sci., 44. 53 pp.
- UNESCO. 1988. *The acquisition, calibration, and analysis of CTD data*. Tech. Pap. Mar. Sci., 54. 59 pp.
- USEPA. 1991. Short-term methods for estimating the cronic toxicity of effluents and receiving waters to freshwater organisms -Section 14- Green alga Selenastrum capricornutum growth test Method 1003.0. EPA/600/4-91/002. 334 pp.
- USEPA. 1995. Short-term methods for estimating the chronic toxicity of effluent and receiving waters to west coast marine and estuarine organisms. EPA/600/R-95/136. 15 pp.
- Utermöhl H. 1958. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. *Mitt. Int. Verein. Limnol.*, 9: 1-38
- Vidussi F., Claustre H., Bustillos-Guzmàn J., Cailliau C., Marty J. C. 1996. Determination of Chlorophylls and carotenoids of marine phytoplankton: separation of Chlorophyll a from divinylChlorophyll a and zeaxanthin from lutein. *J. Plankton Res.*,18(12): 2377-2382.
- Wang, X.H., Pinardi N. 2002. Modeling the dynamics of sediment transport and resuspension in the northern Adriatic Sea. J. *Geophys. Res.*, 107(C12): 1-23..
- Wang, X.H., Pinardi N., Malacic V. 2006. Sediment transport and resuspension due to combined motion of wave and current in the northern Adriatic Sea during a Bora event in January 2001: A numerical modelling study. *Cont. Shelf Res.*, 27(5): 613 633.
- Winkler L.W. 1888. Die Bestimmung des im Wasser gelosten Sauerstoffes. *Chem. Ber.*, 21: 2843-2855.
- Zavatarelli M., Raicich F., Bregant D., Russo A., Artegiani A. 1998. Climatological biogeochemical characteristics of the Adriatic Sea. *J. Mar. Syst.*, 18: 227-263.
- Zenetos A., Chadjianestis I., Lantzoumi M., Simboura M., Sklivagou E., Arvanitakis G. 2004a. The Eurobulker oil spill: mid-term changes of some ecosystem indicators. *Mar. Poll. Bull.*, 48: 12-131.
- Zenetos A., Bellou N., Abousamra F. 2004b. The use of BENTIX in Assessing Ecological Quality of coastal waters across the Mediterranean. Proceedings of an international workshop on the promotion and use of benthic tools for assessing the healt of coastal marine ecosystems. Intergovernmental Oceanographic Commission. Workshop Report n. 195: 19-22.
- Zingone A., Totti C., Sarno D., Cabrini M., Caroppo C., Giacobbe M.G., Luglié A., Nuccio C., Socal G., 2010. *Fitoplancton: metodiche di analisi quali-quantitativa*. In: Metodologie di studio del plancton marino Socal et al. (Eds.). Manuali e Linee Guida, 56/2010.


ALLEGATO A

SCHEDE TECNICHE DELLA STRUMENTAZIONE UTILIZZATA NELLE INDAGINI

<u>A1</u>

INDAGINI FISICHE E CHIMICHE DELLA COLONNA D'ACQUA

SONDA MULTIPARAMETRICA CTD e "ROSETTE"

CTD: Sea Bird Electronics SBE19plusV2 (frequenza di campionamento 24 Hz) dotato dei seguenti sensori:

Sensore	Costruttore	Modello	Accuratezza	Intervallo di misura	Calibrazione
Temperatura	Sea Bird Electronics	Interno	± 0,005 °C	-5:+35°C	12/02/2014
Conducibilità	Sea Bird Electronics	Interno	± 0,0005 S m ⁻¹	0:9 S m ⁻¹	12/02/2014
Pressione	Sea Bird Electronics	Druck	± 0,1 % fondo scala	0: 600 m	04/02/2014
Ossigeno	Sea Bird Electronics	SBE 43	± 0,1 ml L ⁻¹	0 : 15 ml L ⁻¹	calibrazione con Winkler ad ogni campagna
Fluorimetro	Turner Designs	Cyclops-7	± 0,01 μg L ⁻¹	0 : 50 μg L ⁻¹	calibrazione con campioni di Chl ad ogni campagna
Torbidimetro	Turner Designs	Cyclops-7	± 0,01 NTU	0 : 300 NTU	calibrazione con campioni di TSM ad ogni campagna

Campionatore: Rosette General Oceanics equipaggiato con 12 bottiglie idrologiche Niskin da 10 lt.

A1-II Sistema di titolazione automatico con Metrohm Basic Titrino 794 e campionatore, utilizzato per le analisi dell'ossigeno disciolto

A1-IV HPLC per l'analisi dei pigmenti clorofilliani

HP 1090 dotato di detector DAD (photodiode array detector).

A1-V BILANCIA ANALITICA

Strumento	Costruttore	Modello	Risoluzione	Capacità
Bilancia elettronica	Mettler Toledo	ML204	0,0001 g	220 g

A1- VI Analisi metalli pesanti - Spettrometro di massa ICP-MS Agilent Technologies serie 7700

<u>A1-</u> VII Analisi del Silicio - Spettrofotometro a emissione atomica ICP-AES Vista-MPX

<u>A1-</u> VIII Analisi BTEX - Spettrofotometro di massa quadrupolare HEWLWTT-PACKARD GC/MS 5973 Network

<u>A1-</u> IX Analisi Glicole etilenico e Idrocarburi totali - Gascromatografo GC FISONS INST.

A1- X Analisi cromotografica degli IPA - Cromatografo liquido HPLC Perkin Elmer PE 200, accoppiato a un rilevatore a fluorescenza PE serie 200A

<u>A1-</u> XI Analisi cromotografica degli IA - Gascromatografo Agilent 7820A accoppiato a un rilevatore di massa sistema MSD Agilent Serie 5977A.

A2

INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI

A2-I BOX-CORER per il prelievo dei campioni

Materiale	Dimensione scatola campionatore (cm)
Ferro zincato	17x10x24,5h

A2-II BILANCIA ELETTRONICA

Le bilance elettroniche sono sensibili all'accelerazione di gravità; pertanto, in accordo con la direttiva 90/384, devono essere calibrate nel luogo di utilizzo con masse tarate in classe F1 che corrispondono a un peso di $200~\rm g$.

Strumento	Costruttore	Modello	Sensibilità	Capacità
-----------	-------------	---------	-------------	----------

Bilancia elettronica Gibertini Elettronica S.r.l. EU 2000 ±0,01 g 1000 g

A2-III STUFA TERMOSTATA "HIGH PERFORMANCE"

Strumento	Costruttore	Modello	Capacità (litri)	Temperatura (°C)	Precisione (°C)
Stufa termostata	F.lli Galli G&P	2100	96	50 – 300	±2

Ogni sei mesi viene inserito un termometro per verificare che la temperatura della stufa resti costante. La lettura del termometro viene eseguita ogni 45 minuti per una durata totale della prova di 3 ore. E' accettata una variazione di 2°C rispetto alla temperatura iniziale.

A2-IV SETACCI

Strumento	Costruttore	Serie	Materiale	Diametro (mm)	Dimensione delle maglie (μ)
Setacci normalizzati	Giuliani Teconologie S.r.l.	ASTM	acciaio inox	100 - 200	63, 125, 250, 500, 1000, 2000, 4000

Periodicamente si verifica che le maglie abbiano mantenuto le dimensioni e la forma originaria e si testa la regolarità delle saldature.

A2-V DENSIMETRO

Strumento	Costruttore	Serie	Scala (ml)	Divisione (ml)	Zavorra	Taratura (°F)
Densimetro per terreni	Vetrotecnica	Normale ASTM	0,995 – 1,040	0,001	piombo	68/68

Lo strumento non necessita di verifica e taratura. Viene sostituito quando la scala graduata non è più visibile.

<u>A2-VI</u> GAS-CROMATOGRAFO DOPPIA COLONNA, RIVELATORE FID - PERKIN ELMER SIGMA3B – DUAL FID

Il controllo interno della taratura dello strumento viene effettuato preliminarmente all'avvio di ogni indagine commissionata. Il controllo esterno e l'eventuale taratura ordinaria sono condotti annualmente da un Tecnico incaricato dalla Ditta costruttrice, quando il controllo interno risulta sfavorevole.

A2-VII DMA 80 per la misurazione del MERCURIO

Consente di effettuare analisi per la determinazione diretta del contenuto di mercurio su matrici di varia natura, senza che si rendano necessari trattamenti chimici del campione.

A2-VIII VARIAN SPECTRA AA-240 Z per la misurazione di CADMIO e PIOMBO E ARSENICO

Spettrofotometro ad assorbimento atomico usato mediante l'impiego del fornetto di grafite con piattaforma pirolitica. La correzione del rumore di fondo è assicurata dalla correzione di background transversa "Zeeman" e dall'interpolazione polinomiale per la correzione delle interferenze. Al fine di ridurre il rumore di fondo e il limite di rivelabilità e di incrementare la sensibilità vengono utilizzate lampade monoelemento a catodo cavo.

A2-IX VARIAN ICP-720ES per la misurazione di ALLUMINIO, BARIO, FERRO, CROMO, NICHEL, RAME, SILICIO, VANADIO e ZINCO

Spettrofotometro ad emissione atomica al plasma ad accoppiamento induttivo (ICP) e lettura sequenziale. Il sistema di raccolta della radiazione emessa dal plasma è di tipo assiale. Il generatore di radiofrequenze è 40 MHz. Per il raffreddamento del plasma viene impiegato argon ultrapuro.

<u>A2-X</u> ICP-MS Agilent Mod. 7700 per la misurazione dell'INDIO

A3 INDAGINI SULLA COMUNITA' BENTONICA

A3-I BENNA VAN VEEN

Materiale	superficie di sedimento campionata (m²)
Acciaio	0,095

A3-II SETACCIO

Materiale	Lato maglia (mm)
Acciaio inox	0,5

A3-III MICROSCOPIO STEREO ZEISS STEMI 2000-C

Range dello zoom: 0,65x...5,0x.

A3-IV MICROSCOPIO OTTICO ZEISS AXIOLAB

Obiettivi in dotazione: 10x, 40x, 100x.

A3-V BILANCIA ANALITICA

Strumento	Costruttore	Costruttore Modello Ri		Capacità
Bilancia elettronica	Mettler Toledo	ML204	0,0001 g	220 g

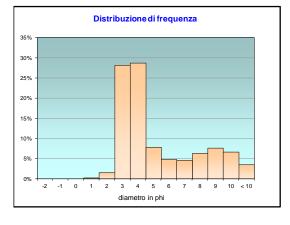
ALLEGATO B SCHEDE GRANULOMETRICHE DEI SITI POSTI NELL'AREA DELLA FUTURA PIATTAFORMA BONACCIA NW E DEI CONTROLLI K1 - K4 PRE-SURVEY

SILT SABBIOSO

SILT

SABBIA

SILTOSA

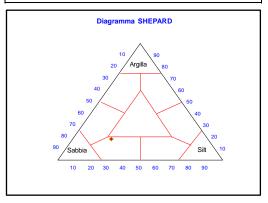

SABBA

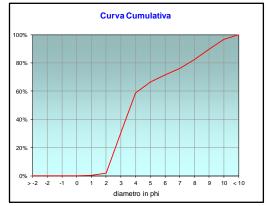
Stazione A3 (60 m NW)

Parametri Fisici		
Peso secco (g)	Ps	149,88
Peso umido (g)	Pu	246,95
Peso specifico	G	n.d.
Peso di volume (g/cm³)	γ	n.d.
Peso di vol. secco (g/cm3)	γ _d	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,38	1	500	0,25%	0,25%
Sabbia	2,33	2	250	1,56%	1,81%
	42,22	3	125	28,17%	29,98%
	43,03	4	62,5	28,71%	58,69%
	11,78	5	31	7,86%	66,55%
Limo	7,23	6	15,6	4,83%	71,38%
Limo	6,85	7	7,8	4,57%	75,94%
	9,42	8	3,9	6,29%	82,23%
	11,42	9	2,0	7,62%	89,85%
Argilla	9,95	10	0,98	6,64%	96,49%
	5,26	< 10	< 0,98	3,51%	######

Classificazione			
Shepard	sabbia-siltosa		
Wentworth			
Classazione	molto mal classato		
Asimmetria	asimmetrica positiva		
Appuntimento	platicurtica		

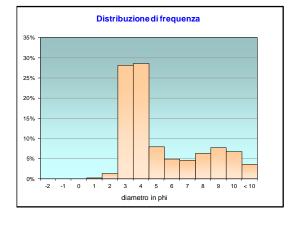



Parametri Statistici					
Media	M_{ϕ}	4,81			
Classazione	σ_{φ}	2,86			
Asimmetria	$S_{k\phi}$	0,29			
Appuntimento	K _G	0,78			
Mediana	Md	3,70			

Percentile	ф
5°	2,11
16°	2,50
25°	2,82
50°	3,70
75°	6,79
84°	8,23
95°	9,68

Classe granulometrica			
Ghiaia	Sabbia	Limo	Argilla
0,00%	58,69%	23,54%	17,77%

Note
3,41 g di materiale organogeno (conchiglie)

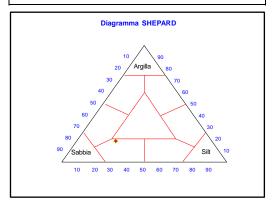


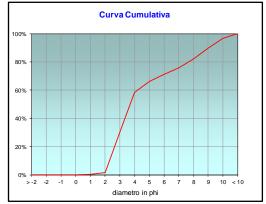
Stazione BO NW

Parametri Fisici			
Peso secco (g)	Ps	133,25	
Peso umido (g)	Pu	233,01	
Peso specifico	G	n.d.	
Peso di volume (g/cm ³)	γ	n.d.	
Peso di vol. secco (g/cm3)	γ _d	n.d.	
Umidità (%)	W	n.d.	

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,26	1	500	0,20%	0,20%
Sabbia	1,79	2	250	1,35%	1,54%
	37,55	3	125	28,18%	29,73%
	38,09	4	62,5	28,59%	58,31%
	10,57	5	31	7,93%	66,24%
Limo	6,49	6	15,6	4,87%	71,11%
Lillo	6,14	7	7,8	4,61%	75,72%
	8,45	8	3,9	6,34%	82,07%
	10,25	9	2,0	7,69%	89,76%
Argilla	8,93	10	0,98	6,70%	96,46%
	4,72	< 10	< 0,98	3,54%	######

Classificazione		
Shepard sabbia-siltosa		
Wentworth		
Classazione	molto mal classato	
Asimmetria	asimmetrica positiva	
Appuntimento	platicurtica	

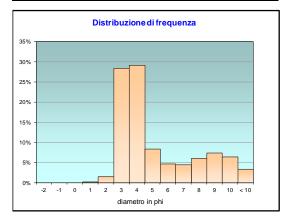



Parametri Statistici			
Media	M_{ϕ}	4,82	
Classazione	σ_{φ}	2,87	
Asimmetria	$S_{k\phi}$	0,29	
Appuntimento	K _G	0,77	
Mediana	Md	3,71	

Percentile	ф
5°	2,12
16°	2,51
25°	2,83
50°	3,71
75°	6,84
84°	8,25
95°	9,68

Classe granulometrica				
Ghiaia	Sabbia	Limo	Argilla	
0,00%	58,31%	23,76%	17,93%	

Note
2,61 g di materiale organogeno (conchiglie)

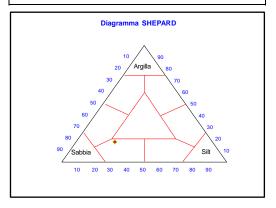


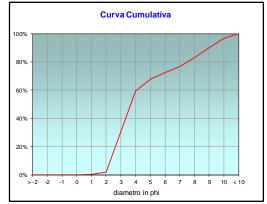
Stazione BO SE

Parametri Fisici			
Peso secco (g)	Ps	133,95	
Peso umido (g)	Pu	235,73	
Peso specifico	G	n.d.	
Peso di volume (g/cm ³)	γ	n.d.	
Peso di vol. secco (g/cm3)	γ _d	n.d.	
Umidità (%)	W	n.d.	

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,27	1	500	0,20%	0,20%
Sabbia	2,06	2	250	1,54%	1,74%
	38,03	3	125	28,39%	30,14%
	39,07	4	62,5	29,17%	59,30%
	11,22	5	31	8,38%	67,68%
Limo	6,25	6	15,6	4,66%	72,35%
LIIIO	5,91	7	7,8	4,41%	76,76%
	8,13	8	3,9	6,07%	82,83%
	9,86	9	2,0	7,36%	90,20%
Argilla	8,59	10	0,98	6,41%	96,61%
	4,54	< 10	< 0,98	3,39%	######

Classificazione		
Shepard	sabbia-siltosa	
Wentworth		
Classazione	molto mal classato	
Asimmetria	asimmetrica positiva	
Appuntimento	platicurtica	

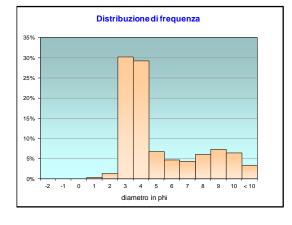



Parametri Statistici			
Media	M _φ	4,78	
Classazione	σ_{σ}	2,83	
Asimmetria	$S_{k\phi}$	0,29	
Appuntimento	K _G	0,82	
Mediana	Md	3,68	

Percentile	ф
5°	2,11
16°	2,50
25°	2,82
50°	3,68
75°	6,60
84°	8,16
95°	9,65

Classe granulometrica			
Ghiaia	Sabbia	Limo	Argilla
0,00%	59,30%	23,53%	17,17%

Note
2,82 g di materiale organogeno (conchiglie)

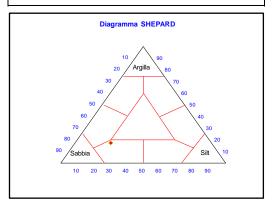


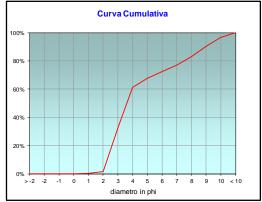
Stazione A6 (60 m SE)

Parametri Fisici		
Peso secco (g)	Ps	146,82
Peso umido (g)	Pu	237,49
Peso specifico	G	n.d.
Peso di volume (g/cm³)	γ	n.d.
Peso di vol. secco (g/cm3)	γ _d	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,41	1	500	0,28%	0,28%
Sabbia	1,95	2	250	1,33%	1,61%
	44,39	3	125	30,23%	31,84%
	42,88	4	62,5	29,21%	61,05%
	9,96	5	31	6,78%	67,83%
Limo	6,81	6	15,6	4,64%	72,47%
Limo	6,45	7	7,8	4,39%	76,87%
	8,88	8	3,9	6,05%	82,91%
Argilla	10,76	9	2,0	7,33%	90,24%
	9,37	10	0,98	6,39%	96,63%
	4,95	< 10	< 0,98	3,37%	######

Classificazione		
Shepard	sabbia-siltosa	
Wentworth		
Classazione	molto mal classato	
Asimmetria	asimmetrica positiva	
Appuntimento	platicurtica	

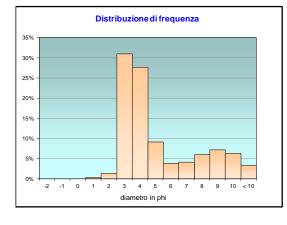



Parametri Statistici			
Media	M_{ϕ}	4,75	
Classazione	σ_{σ}	2,84	
Asimmetria	$S_{k\phi}$	0,30	
Appuntimento	K _G	0,81	
Mediana	Md	3,62	

Percentile	•
5°	2,11
16°	2,48
25°	2,77
50°	3,62
75°	6,58
84°	8,15
95°	9,65

Classe granulometrica			
Ghiaia	Sabbia	Limo	Argilla
0,00%	61,05%	21,86%	17,09%

Note	
3,54 g di materiale organogeno (conchiglie)	

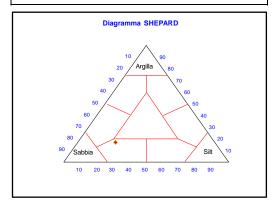


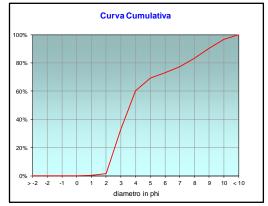
Stazione B3 (60 m NE)

Parametri Fisici			
Peso secco (g)	Ps	140,22	
Peso umido (g)	Pu	225,36	
Peso specifico	G	n.d.	
Peso di volume (g/cm³)	γ	n.d.	
Peso di vol. secco (g/cm3)	γ _d	n.d.	
Umidità (%)	W	n.d.	

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,39	1	500	0,28%	0,28%
Sabbia	1,81	2	250	1,29%	1,57%
	43,40	3	125	30,95%	32,52%
	38,69	4	62,5	27,59%	60,11%
	12,77	5	31	9,11%	69,22%
Limo	5,38	6	15,6	3,84%	73,06%
Lillo	5,84	7	7,8	4,16%	77,22%
	8,35	8	3,9	5,95%	83,17%
	10,12	9	2,0	7,22%	90,39%
Argilla	8,82	10	0,98	6,29%	96,68%
	4,66	< 10	< 0,98	3,32%	######

Classificazione		
Shepard	sabbia-siltosa	
Wentworth		
Classazione	molto mal classato	
Asimmetria	asimmetrica positiva	
Appuntimento	platicurtica	

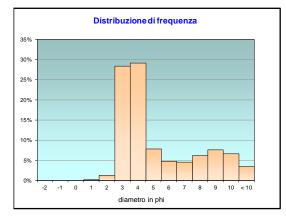



Parametri Statistici				
Media	M_{ϕ}	4,74		
Classazione	σ_{φ}	2,82		
Asimmetria	$S_{k\phi}$	0,29		
Appuntimento	K _G	0,83		
Mediana	Md	3,63		

Percentile	ф
5°	2,11
16°	2,47
25°	2,76
50°	3,63
75°	6,47
84°	8,11
95°	9,64

Classe granulometrica				
Ghiaia	Sabbia	Limo	Argilla	
0,00%	60,11%	23,06%	16,83%	

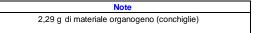
Note
8,3 g di materiale organogeno (conchiglie)

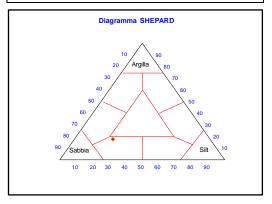


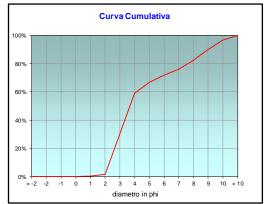
Stazione BO NE

Parametri Fisici		
Peso secco (g)	Ps	127,10
Peso umido (g)	Pu	227,26
Peso specifico	G	n.d.
Peso di volume (g/cm³)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,22	1	500	0,17%	0,17%
Sabbia	1,69	2	250	1,33%	1,50%
	35,99	3	125	28,32%	29,82%
	37,09	4	62,5	29,18%	59,00%
	9,92	5	31	7,80%	66,80%
Limo	6,09	6	15,6	4,79%	71,59%
Lillo	5,76	7	7,8	4,53%	76,13%
	7,93	8	3,9	6,24%	82,36%
	9,61	9	2,0	7,56%	89,93%
Argilla	8,37	10	0,98	6,59%	96,52%
	4,43	< 10	< 0,98	3,48%	######

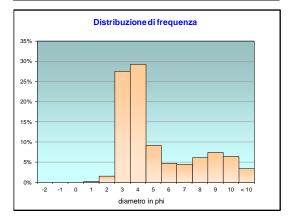

Classificazione		
Shepard	sabbia-siltosa	
Wentworth		
Classazione	molto mal classato	
Asimmetria	asimmetrica positiva	
Appuntimento	platicurtica	




Parametri Statistici				
Media	M_{ϕ}	4,81		
Classazione	σ_{φ}	2,85		
Asimmetria	$S_{k\phi}$	0,29		
Appuntimento	K_G	0,79		
Mediana	Md	3,69		

Percentile	φ
5°	2,12
16°	2,51
25°	2,83
50°	3,69
75°	6,75
84°	8,22
95°	9,67

Classe granulometrica				
Ghiaia	Sabbia	Limo	Argilla	
0,00%	59,00%	23,36%	17,64%	

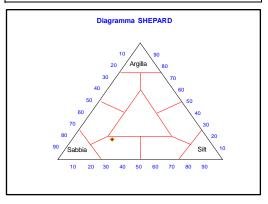


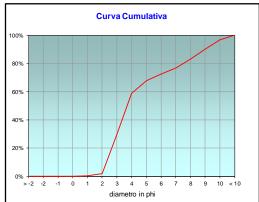
Stazione BO SW

Parametri Fisici		
Peso secco (g)	Ps	137,66
Peso umido (g)	Pu	243,02
Peso specifico	G	n.d.
Peso di volume (g/cm ³)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,37	1	500	0,27%	0,27%
Sabbia	2,11	2	250	1,53%	1,80%
	37,88	3	125	27,52%	29,32%
	40,25	4	62,5	29,24%	58,56%
	12,60	5	31	9,15%	67,71%
Limo	6,41	6	15,6	4,66%	72,37%
Limo	6,07	7	7,8	4,41%	76,78%
	8,35	8	3,9	6,07%	82,85%
	10,13	9	2,0	7,36%	90,20%
Argilla	8,82	10	0,98	6,41%	96,61%
	4,66	< 10	< 0,98	3,39%	######

Classificazione				
Shepard	sabbia-siltosa			
Wentworth				
Classazione	molto mal classato			
Asimmetria	asimmetrica positiva			
Appuntimento	platicurtica			

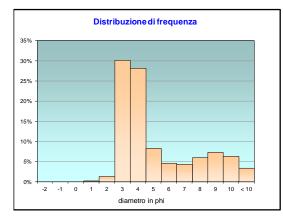



Parametri Statistici				
Media	M_{ϕ}	4,79		
Classazione	σ_{φ}	2,82		
Asimmetria	$S_{k\phi}$	0,29		
Appuntimento	K _G	0,82		
Mediana	Md	3,71		

Percentile	ф
5°	2,12
16°	2,52
25°	2,84
50°	3,71
75°	6,60
84°	8,16
95°	9,65

Classe granulometrica					
Ghiaia	Sabbia	Limo	Argilla		
0,00%	58,56%	24,29%	17,15%		

Note	
3,37 g di materiale organogeno (conchiglie)	

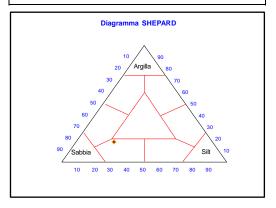


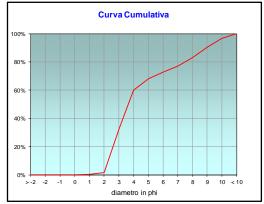
Stazione B6 (60 m SW)

Parametri Fisici		
Peso secco (g)	Ps	135,29
Peso umido (g)	Pu	218,07
Peso specifico	G	n.d.
Peso di volume (g/cm³)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,35	1	500	0,26%	0,26%
Sabbia	1,73	2	250	1,28%	1,54%
	40,71	3	125	30,09%	31,63%
	38,11	4	62,5	28,17%	59,80%
	11,20	5	31	8,28%	68,07%
Limo	6,23	6	15,6	4,61%	72,68%
Lillo	5,90	7	7,8	4,36%	77,04%
	8,12	8	3,9	6,00%	83,04%
	9,84	9	2,0	7,28%	90,31%
Argilla	8,57	10	0,98	6,34%	96,65%
	4,53	< 10	< 0,98	3,35%	######

Classificazione			
Shepard	sabbia-siltosa		
Wentworth			
Classazione	molto mal classato		
Asimmetria	asimmetrica positiva		
Appuntimento	platicurtica		

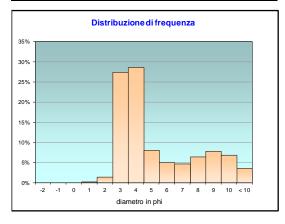



Parametri Statistici				
Media	M_{ϕ}	4,75		
Classazione	σ_{φ}	2,83		
Asimmetria	$S_{k\phi}$	0,29		
Appuntimento	K _G	0,82		
Mediana	Md	3,65		

Percentile	ф
5°	2,12
16°	2,48
25°	2,78
50°	3,65
75°	6,53
84°	8,13
95°	9,64

Classe granulometrica			
Ghiaia	Sabbia	Limo	Argilla
0,00%	59,80%	23,24%	16,96%

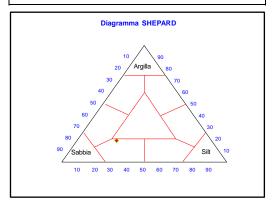
Note
7,59 g di materiale organogeno (conchiglie)

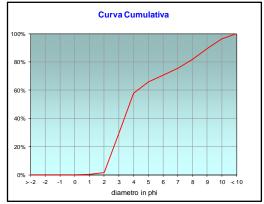


Parametri Fisici			
Peso secco (g)	Ps	132,37	
Peso umido (g)	Pu	230,87	
Peso specifico	G	n.d.	
Peso di volume (g/cm ³)	γ	n.d.	
Peso di vol. secco (g/cm3)	γ _d	n.d.	
Umidità (%)	W	n.d.	

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,30	1	500	0,23%	0,23%
Sabbia	1,84	2	250	1,39%	1,62%
	36,22	3	125	27,36%	28,98%
	37,91	4	62,5	28,64%	57,62%
	10,68	5	31	8,07%	65,68%
Limo	6,55	6	15,6	4,95%	70,63%
Limo	6,20	7	7,8	4,69%	75,32%
	8,54	8	3,9	6,45%	81,77%
	10,35	9	2,0	7,82%	89,59%
Argilla	9,02	10	0,98	6,81%	96,40%
	4,76	< 10	< 0,98	3,60%	######

Classificazione		
Shepard	sabbia-siltosa	
Wentworth		
Classazione	molto mal classato	
Asimmetria	asimmetrica positiva	
Appuntimento	platicurtica	

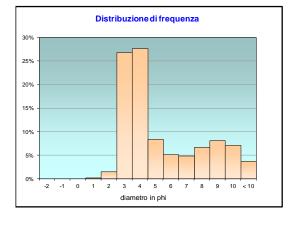



Parametri Statistici			
Media	M_{ϕ}	4,85	
Classazione	σ_{σ}	2,88	
Asimmetria	$S_{k\phi}$	0,29	
Appuntimento	K _G	0,76	
Mediana	Md	3,73	

Percentile	•
5°	2,12
16°	2,53
25°	2,85
50°	3,73
75°	6,93
84°	8,29
95°	9,69

Classe granulometrica			
Ghiaia	Sabbia	Limo	Argilla
0,00%	57,62%	24,15%	18,23%

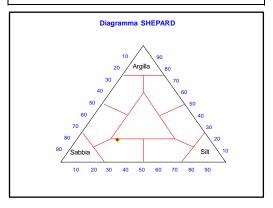
Note
2,69 g di materiale organogeno (conchiglie)

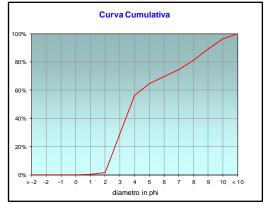


Parametri Fisici			
Peso secco (g)	Ps	130,62	
Peso umido (g)	Pu	26,89	
Peso specifico	G	n.d.	
Peso di volume (g/cm³)	γ	n.d.	
Peso di vol. secco (g/cm3)	γ _d	n.d.	
Umidità (%)	W	n.d.	

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,29	1	500	0,22%	0,22%
Sabbia	1,90	2	250	1,45%	1,67%
	35,02	3	125	26,81%	28,48%
	36,14	4	62,5	27,67%	56,15%
	10,90	5	31	8,35%	64,49%
Limo	6,69	6	15,6	5,12%	69,62%
Lillo	6,33	7	7,8	4,85%	74,47%
	8,72	8	3,9	6,67%	81,14%
	10,57	9	2,0	8,09%	89,23%
Argilla	9,21	10	0,98	7,05%	96,28%
	4,86	< 10	< 0,98	3,72%	######

Classificazione		
Shepard	sabbia-siltosa	
Wentworth		
Classazione	molto mal classato	
Asimmetria	asimmetrica positiva	
Appuntimento	platicurtica	

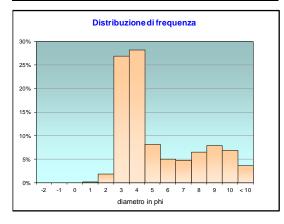



Parametri Statistici		
Media	M_{ϕ}	4,89
Classazione	σ_{σ}	2,91
Asimmetria	$S_{k\phi}$	0,29
Appuntimento	K _G	0,74
Mediana	Md	3,78

Percentile	•
5°	2,12
16°	2,53
25°	2,87
50°	3,78
75°	7,08
84°	8,35
95°	9,71

	Classe grai	nulometrica	
Ghiaia	Sabbia	Limo	Argilla
0,00%	56,15%	24,99%	18,86%

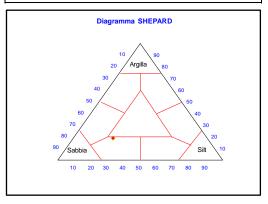
Note	
2,67 g di materiale organogeno (conchiglie)	

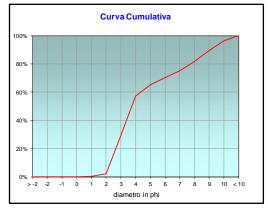


Parametri Fisici		
Peso secco (g)	Ps	139,52
Peso umido (g)	Pu	241,32
Peso specifico	G	n.d.
Peso di volume (g/cm ³)	γ	n.d.
Peso di vol. secco (g/cm3)	γ _d	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,26	1	500	0,18%	0,18%
Sabbia	2,59	2	250	1,85%	2,04%
	37,55	3	125	26,91%	28,95%
	39,33	4	62,5	28,19%	57,14%
	11,38	5	31	8,16%	65,30%
Limo	6,99	6	15,6	5,01%	70,30%
LIIIIO	6,61	7	7,8	4,74%	75,04%
	9,10	8	3,9	6,52%	81,56%
	11,03	9	2,0	7,91%	89,47%
Argilla	9,61	10	0,98	6,89%	96,36%
	5,08	< 10	< 0,98	3,64%	######

Classificazione		
Shepard sabbia-siltosa		
Wentworth		
Classazione	molto mal classato	
Asimmetria	asimmetrica positiva	
Appuntimento	platicurtica	

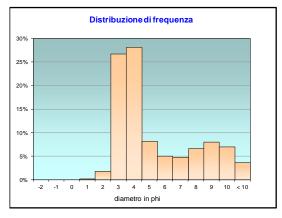



Parametri Statistici		
Media	M_{ϕ}	4,86
Classazione	σ_{φ}	2,89
Asimmetria	$S_{k\phi}$	0,29
Appuntimento	K _G	0,75
Mediana	Md	3,75

Percentile	ф
5°	2,11
16°	2,52
25°	2,85
50°	3,75
75°	6,99
84°	8,31
95°	9,70

	Classe gran	nulometrica	
Ghiaia	Sabbia	Limo	Argilla
0,00%	57,14%	24,42%	18,44%

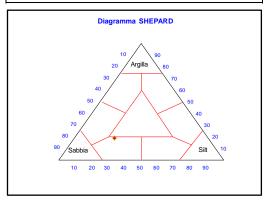
Note
3,07 g di materiale organogeno (conchiglie)



Parametri Fisici		
Peso secco (g)	Ps	134,59
Peso umido (g)	Pu	237,18
Peso specifico	G	n.d.
Peso di volume (g/cm ³)	γ	n.d.
Peso di vol. secco (g/cm3)	γ _d	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,22	1	500	0,16%	0,16%
Sabbia	2,33	2	250	1,73%	1,89%
	35,99	3	125	26,74%	28,63%
	37,91	4	62,5	28,17%	56,80%
	11,06	5	31	8,22%	65,02%
Limo	6,79	6	15,6	5,05%	70,07%
Lillo	6,43	7	7,8	4,78%	74,85%
	8,85	8	3,9	6,57%	81,42%
	10,73	9	2,0	7,97%	89,39%
Argilla	9,34	10	0,98	6,94%	96,33%
	4,94	< 10	< 0,98	3,67%	######

Classificazione		
sabbia-siltosa		
molto mal classato		
asimmetrica positiva		
platicurtica		

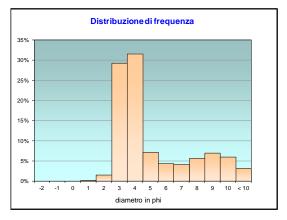



Parametri Statistici			
Media	M_{ϕ}	4,87	
Classazione	σ_{φ}	2,90	
Asimmetria	$S_{k\phi}$	0,29	
Appuntimento	K _G	0,75	
Mediana	Md	3,76	

Percentile	ф
5°	2,12
16°	2,53
25°	2,86
50°	3,76
75°	7,02
84°	8,32
95°	9,70

Classe granulometrica			
Ghiaia	Sabbia	Limo	Argilla
0,00%	56,80%	24,62%	18,58%

Note
2,7 g di materiale organogeno (conchiglie)

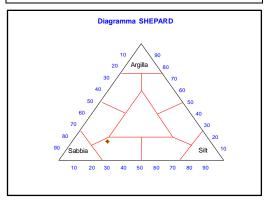

ALLEGATO C SCHEDE GRANULOMETRICHE DEL SITO C4 POSTO IN CORRISPONDENZA DEL FUTURO SEA-LINE E DEL CONTROLLO K6 PRE-SURVEY ARGILA ARGILA ARGILA SABBA SLIDSA SABBOS SLIT

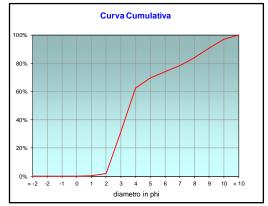
Stazione C4

Parametri Fisici		
Peso secco (g)	Ps	141,96
Peso umido (g)	Pu	252,06
Peso specifico	G	n.d.
Peso di volume (g/cm ³)	γ	n.d.
Peso di vol. secco (g/cm3)	γ _d	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,36	1	500	0,25%	0,25%
Sabbia	2,21	2	250	1,56%	1,81%
	41,55	3	125	29,27%	31,08%
	44,69	4	62,5	31,48%	62,56%
	10,12	5	31	7,13%	69,69%
Limo	6,21	6	15,6	4,37%	74,06%
Lillo	5,88	7	7,8	4,14%	78,20%
	8,09	8	3,9	5,70%	83,90%
	9,81	9	2,0	6,91%	90,80%
Argilla	8,54	10	0,98	6,02%	96,82%
	4,51	< 10	< 0,98	3,18%	######

Classificazione		
Shepard	sabbia-siltosa	
Wentworth		
Classazione	molto mal classato	
Asimmetria	asimmetrica positiva	
Appuntimento	platicurtica	

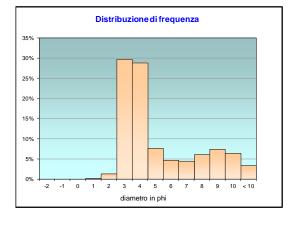



Parametri Statistici			
Media	M_{ϕ}	4,70	
Classazione	σ_{φ}	2,77	
Asimmetria	$S_{k\phi}$	0,30	
Appuntimento	K _G	0,89	
Mediana	Md	3,60	

Percentile	ф
5°	2,11
16°	2,48
25°	2,79
50°	3,60
75°	6,23
84°	8,02
95°	9,61

	Classe grai	nulometrica	
Ghiaia	Sabbia	Limo	Argilla
0,00%	62,56%	21,34%	16,10%

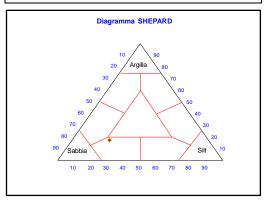
Note
3,3 g di materiale organogeno (conchiglie)

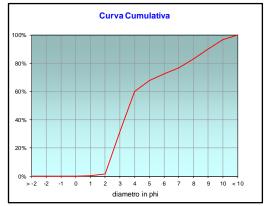


Parametri Fisici		
Peso secco (g)	Ps	145,27
Peso umido (g)	Pu	245,40
Peso specifico	G	n.d.
Peso di volume (g/cm³)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,00	0	1000	0,00%	0,00%
	0,32	1	500	0,22%	0,22%
Sabbia	1,93	2	250	1,33%	1,55%
	43,09	3	125	29,66%	31,21%
	41,88	4	62,5	28,83%	60,04%
	11,05	5	31	7,60%	67,64%
Limo	6,78	6	15,6	4,67%	72,31%
LIIIO	6,42	7	7,8	4,42%	76,73%
	8,83	8	3,9	6,08%	82,81%
	10,71	9	2,0	7,37%	90,18%
Argilla	9,33	10	0,98	6,42%	96,61%
	4,93	< 10	< 0,98	3,39%	######

Classificazione		
Shepard	sabbia-siltosa	
Wentworth		
Classazione	molto mal classato	
Asimmetria	asimmetrica positiva	
Appuntimento	platicurtica	




Parametri Statistici		
Media	M _φ	4,77
Classazione	σ_{σ}	2,84
Asimmetria	$S_{k\phi}$	0,29
Appuntimento	K _G	0,81
Mediana	Md	3,65

Percentile	ф
5°	2,12
16°	2,49
25°	2,79
50°	3,65
75°	6,61
84°	8,16
95°	9,65

	Classe gran	nulometrica	
Ghiaia	Sabbia	Limo	Argilla
0,00%	60,04%	22,77%	17,19%

Note
2,99 g di materiale organogeno (conchiglie)

