

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 1 di 50

Codifica Doc. P92 0 GF K C 002

Rev.1 09/10/2015

l					
0	FAC	PRIMA EMISSIONE	21/04/2015	IERINO'	CITTERIO
1	FUS	SECONDA EMISSIONE	03/07/2015	IERINO'	CITTERIO
2	FUS	TERZA EMISSIONE	09/10/2015	IERINO'	CITTERIO
REV.	ST.	DESCRIZIONE	DATA	VERIFICATO	APPROVATO

STUDIO PRELIMINARE DI ORMEGGIO

09/10/2015	TERZA EMISSIONE	ALS/LRO	SCZ	MBG
03/07/2015	SECONDA EMISSIONE	ALS/LRO	SCZ	MBG
21/04/2015	PRIMA EMISSIONE	ALS/LRO	SCZ	MBG
DATA	DESCRIZIONE	ESEGUITO	CONTROLL.	APPROVATO

DATA	DOC. N.	REV.	FOGLIO
09/10/2015	14-1286 H8	2	1

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 2 di 50

Codifica Doc. P92 0 GF K C 002

Rev.1 09/10/2015

INDICE

		<u>Pagina</u>
1	INTRODUZIONE	3
1.1	1 Descrizione del progetto	3
	2 II porto di oristano: inquadramento generale	
	3 Scopo del documento	
1.4	7.0101	
1.5		
	Sistema di riferimento	
- 21		_
2.1		
	3 Livello del Mare	
	4 Corrente	
3	SCELTA DELLE MINI LNG CARRIERS	13
3.1		
	2 Navi di Riferimento	
4	METODOLOGIA	
4.1	· Ootwaro	
	2 Condizioni meteomarine	_
	3 Arredi di Ormeggio	
5.1	1 Layout generale degli arredi di ormeggio	
	CONCLUSIONI	
•	VVIVEVVIVII	

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 3 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

1 INTRODUZIONE

1.1 DESCRIZIONE DEL PROGETTO

Edison S.p.A. intende realizzare all'interno del porto di Oristano un Terminale costiero per lo stoccaggio e la distribuzione di GNL di capacità utile pari a 10,000 m³.

Il Terminale sarà approvvigionato mediante gasiere di piccola taglia; in considerazione del continuo sviluppo del mercato delle navi di trasporto GNL di piccole dimensioni, ai fini della progettazione si è fatto riferimento a navi attualmente operanti sul mercato, di capacità pari a 7,500 e 15,600 m³, le cui caratteristiche dimensionali sono considerate rappresentative delle navi che potranno approvvigionare il deposito costiero e sono state utilizzate quale riferimento per lo sviluppo dell'ingegneria (con particolare riferimento al dimensionamento delle opere a mare).

L'effettiva capacità di riferimento delle navi che approvvigioneranno il terminale sarà definita in fase di più avanzata progettazione a valle di considerazioni tecniche di compatibilità, di disponibilità di mercato e di ottimizzazione della logistica di trasporto del GNL.

L'area di prevista ubicazione dell'impianto è situata all'interno del Porto di Oristano, in corrispondenza del Canale Sud; la zona di ormeggio delle bettoline presenta una lunghezza complessiva di circa 340 m, ed è costituita da un primo tratto, orientato lungo la direttrice Sud-Sud-Est/Nord-Nord-Ovest (lunghezza di circa 230 m) ed un secondo che si sviluppa da Sud a Nord.

Figura 1.1: Punto di realizzazione del nuovo terminale

Lo specchio acqueo antistante presenta una profondità media di -11 m rispetto al livello del medio mare (s.l.m.m.) (Consorzio Industriale Provinciale Oristanese, 2004).

Il progetto prevede la realizzazione degli interventi infrastrutturali e impiantistici necessari a consentire:

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 4 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

- l'attracco delle bettoline di capacità compresa fra 1,000 e 15,600 m³;
- il trasferimento del prodotto liquido (GNL) dalle stesse ai serbatoi di stoccaggio in pressione, attraverso bracci di carico;
- lo stoccaggio del GNL, mediante No. 7 serbatoi in pressione orizzontali di capacità utile di circa 1,430 m³ ciascuno;
- la distribuzione del prodotto attraverso operazioni di caricazione su bettoline ("terminal to ship") e camion ("terminal to truck").
- Come anticipato, il GNL sarà approvvigionato attraverso mini LNG Carriers di capacità massima di 15,600 m³, aventi dimensioni sostanzialmente contenute (lunghezza di circa 155 m e pescaggi non superiori a 8.5 m) e confrontabili con quelle delle navi già attualmente in arrivo presso il Porto.

1.2 IL PORTO DI ORISTANO: INQUADRAMENTO GENERALE

Lo scalo marittimo oristanese è classificato quale "porto di rilevanza nazionale" (Categoria II, Classe II) ai sensi dell'Art. No. 6, comma 5, della Legge No. 166 del 01/08/2002 (sito web Consorzio Industriale Provinciale Oristanese).

L'infrastruttura si trova nel corpo centrale dell'agglomerato industriale di Oristano, all'interno dell'omonimo golfo lungo la costa occidentale della Sardegna e quindi in una posizione particolarmente protetta; il canale navigabile presenta una profondità di -11 metri e consente l'attracco di navi di grossa stazza.

La contiguità all'agglomerato industriale consente allo scalo di svolgere le funzioni sia di un moderno porto commerciale dotato di un elevato livello di servizi e di aree per la movimentazione delle merci sia di porto industriale per le imprese che si localizzano lungo il canale navigabile (con la possibilità di effettuare le operazioni di imbarco e sbarco).

In attività dal 1975, lo scalo è operativo 365 giorni all'anno. È fornito di oltre 20 ettari di piazzali attrezzati e di 1,600 metri circa di banchine. I principali movimenti che interessano il porto sono relativi a materie prime e ai prodotti derivanti dall'attività produttiva delle aziende consortili (liquidi chimici, bentonite, cereali, prodotti alimentari, legname, cemento, etc.), carbone, fibre acriliche, poliesteri minerali e concimi.

Il porto di Oristano si caratterizza per la movimentazione di merci alla rinfusa di determinate tipologie: minerali, prodotti organici e chimici, idrocarburi, semilavorati dell'industria siderurgica e macchinari. La possibilità di movimentare queste merci su ampi spazi di banchina, senza interferenze con il traffico passeggeri e a costi concorrenziali, ha costituito il punto di forza dello sviluppo dello scalo negli ultimi due decenni.

Le direttrici di traffico lungo le quali vengono movimentate le merci alla rinfusa interessano in prevalenza i porti esteri e, in particolare le rotte con quelli di Spagna, Francia, Portogallo e di alcuni Paesi del Nord-Africa, ma anche porti al di là dell'Atlantico per l'importazione del carbone (Stati Uniti ed altri).

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 5 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

I volumi del traffico merci sono pari a 1,264,000 tonnellate circa di prodotti (dato al 2014), con una crescita del 6% rispetto all'anno precedente.

Per quanto concerne i transiti delle navi in ingresso/uscita, dai report forniti dalla Capitaneria di Porto di Oristano emerge come da Gennaio a Dicembre nel porto industriale abbiano transitato 279 navi (meno di una nave al giorno), di cui 30 italiane e 249 battenti bandiera estera, la maggior parte delle quali provenienti da Francia (88) e Spagna (67).

Il Porto di Oristano risulta comunque al momento utilizzato in percentuale limitata rispetto alle potenzialità dello stesso, come peraltro evidenziato dal dato relativo al numero di navi in ingresso/uscita registrato nel corso degli ultimi anni e presentato nella tabella sottostante (Consorzio Industriale Provinciale Oristanese, 2014).

Tabella 1.1: Numero di Transiti (Ingresso e Uscita) di Navi nel Porto di Oristano (Anni 1975-2014)

Anno	No. Navi	Anno	No. Navi
1975	28	1995	428
1976	27	1996	367
1977	17	1997	421
1978	37	1998	456
1979	128	1999	430
1980	197	2000	423
1981	256	2001	526
1982	256	2002	474
1983	330	2003	470
1984	308	2004	415
1985	305	2005	411
1986	323	2006	354
1987	366	2007	306
1988	346	2008	383
1989	328	2009	359
1990	335	2010	346
1991	272	2011	349
1992	266	2012	308
1993	250	2013	281
1994	379	2014	279

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 6 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

I dati in tabella evidenziano infatti un numero di navi in ingresso/uscita sensibilmente inferiore non solo alle massime potenzialità del Porto, ma anche ai traffici risalenti a circa 10-15 anni fa.

1.3 SCOPO DEL DOCUMENTO

Al fine di verificare l'esistenza di condizioni adeguate riguardanti l'ormeggio di suddette navi, è stato sviluppato il presente studio preliminare di ormeggio, con l'obbiettivo di:

- Individuare un layout di massima per gli arredi di ormeggio (fenders e mooring points) da installare presso l'accosto tali da ricevere le taglie di navi individuate e in modo da rispettare le indicazioni fornite all'interno degli standars normativi applicabili;
- Individuare le capacità di tali arredi in termini di SWL per i punti di ormeggio e energia assorbibile per quanto concerne i fenders in modo da rispettare le indicazioni fornite dagli standards normativi applicabili;
- Individuare i layout di ormeggio preliminari per le navi tipiche corrispondenti alle taglie individuate e verificarne l'adeguatezza in termini di robustezza;;

1.4 ACRONIMI

OCIMF Oil Companies International Marine Forum

GNL Gas Naturale Liquefatto

LNG Liquefied Natural Gas

LNGC LNG Carrier

HMPE High Modulus Polyethylene

MBL Minimum Breaking Load (Carico di rottura minimo)

s.l.m. sul livello del mare

s.l.m.m. sul livello medio mare

kn nodi

SMYS Specified Minimum Yield Strength

1.5 UNITA' DI MISURA

In questo documento sono utilizzate le unità di misura del sistema internazionale (SI).

Eccezioni possono essere fatte per:

Lunghezza: millimetri (mm);

Foglio 7 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Massa: tonnellate (t);

Forza: tonnellate forza (t);

• Angoli: gradi (deg).

1.6 SISTEMA DI RIFERIMENTO

Il sistema di riferimento globale è destrorso, avente origine sul livello del mare, ad altezza della murata della nave in corrispondenza della linea vapore dei bracci di carico. Questo punto è tipicamente il punto che viene considerato per allineare la spotting line di riferimento dei manifold della nave.

L'asse x è parallelo alla banchina e positivo verso la poppa della nave (verso circa 150°N), l'asse y è positivo verso costa (verso circa 60°N) e l'asse z è positivo verso l'alto.

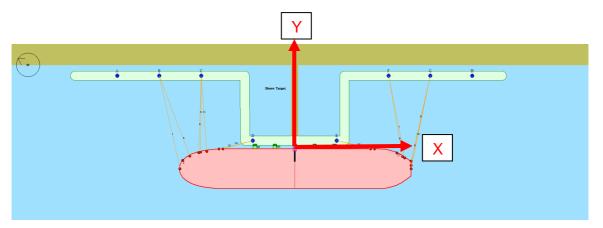


Figura 1.2: Sistema di riferimento Globale

Il sistema di riferimento locale della nave è destrorso, con l'origine sulla perpendicolare addietro, sul piano di simmetria longitudinale ed al livello della chiglia. L'asse x è positivo verso prua, l'asse y verso sinistra e l'asse z verso l'alto.

La convenzione adottata per le direzioni degli agenti meteomarini è riportata nella figura seguente:

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 8 di 50

Codifica Doc. P92 0 GF K C 002

Rev.1 09/10/2015

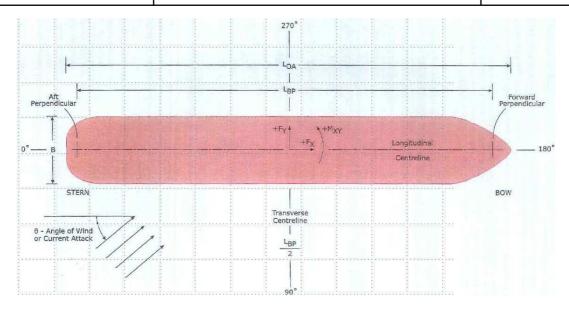


Figura 1.3: Sistema di Riferimento Nave – Azioni Meteomarine

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 9 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

2 CARATTERISTICHE METEO-CLIMATICHE DELL'AREA

Nell'ambito del presente progetto, D'Appolonia ha predisposto uno studio meteomarino preliminare finalizzato alla definizione delle condizioni tipiche ed estreme nel Golfo di Oristano e, ove possibile, all'interno del Porto (D'Appolonia, 2015).

Le risultanze dello studio, di cui è presentato un estratto nel presente Capitolo, sono state utilizzate quale base per la verifica dell'adeguatezza di spazi, pescaggi e condizioni all'interno del Porto tali da consentire lo svolgimento delle operazioni delle bettoline in sicurezza.

2.1 VENTO

L'analisi del campo di vento è stata condotta a partire dalle informazioni desunte dal database ECMWF ERA e relativo all'area al largo di Oristano; i valori sono statti ritenuti rappresentativi delle condizioni anemologiche del Porto di Oristano per i settori direzionali non influenzati dalla costa.

Come indicato nello studio, il regime medio annuale del vento è caratterizzato da una netta prevalenza dei settori direzionali 300 e 330°N (39% degli eventi) e secondariamente del settore 120°N (11%). Il resto degli eventi è distribuito piuttosto equamente tra le altre direzioni.

Per quanto riguarda le intensità, gli eventi con velocità inferiore a 10 m/s sono circa l'83% del totale, quelli inferiori a 20 m/s sono circa il 99%; valori superiori a 20 m/s sono presenti in circa lo 1% degli eventi, mentre i valori massimi sono di 26 m/s, provenienti da 60°N.

Nella figura sottostante si riporta la rosa annuale dei venti dell'area.

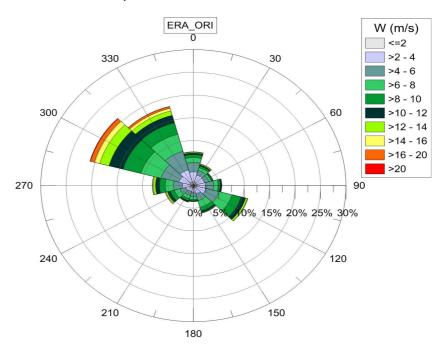


Figura 2.1: Rosa Annuale del Vento

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 10 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

Sono infine riportati nella seguente tabella i valori estremi della velocità del vento stimati per i vari periodi di ritorno considerati. Si noti che le direzioni di provenienza sono state raggruppate in 8 macrosettori e i valori estremi del vento riferiti alle durate di 1 ora, 10 minuti, 1 minuto e 3 secondi

Tabella 2.1: Valori Estremi della Velocità del Vento al largo di Oristano

	VAL	VALORI ESTREMI DEL VENTO (m/s) - PERIODO DI RITORNO											
DIR		1 Al	NO			10 A	NNI		25 ANNI				
(°N)	1h	10'	1'	3"	1h	10'	1'	3"	1h	10'	1'	3"	
0	18.0	19.4	21.2	29.1	21.7	23.5	25.9	35.3	23.1	25.1	27.7	37.7	
30-60	19.9	21.5	23.6	32.3	24.8	27.1	30.0	40.7	26.6	29.1	32.3	43.7	
90	14.2	15.2	16.5	22.8	16.8	18.1	19.7	27.2	17.7	19.1	20.8	28.7	
120-150	17.1	18.4	20.1	27.6	19.3	20.9	22.9	31.4	20.1	21.8	23.9	32.7	
180	14.5	15.5	16.9	23.3	17.4	18.7	20.5	28.1	18.4	19.9	21.7	29.9	
210-240	18.4	19.9	21.7	29.9	21.4	23.2	25.5	34.8	22.5	24.5	27.0	36.8	
270	18.3	19.7	21.6	29.6	21.2	23.0	25.3	34.5	22.2	24.1	26.6	36.2	
300-330	22.6	24.6	27.1	36.9	25.2	27.5	30.5	41.3	26.2	28.7	31.8	43.1	
OMNI	23.6	25.7	28.4	38.6	26.6	29.1	32.3	43.7	27.7	30.4	33.8	45.6	

2.2 MOTO ONDOSO

Il clima ondoso è stato valutato a partire dalle informazioni desunte dal database ECMWF ERA e relativo all'area al largo di Oristano, sulla base delle quali sono stati determinati il clima tipico annuale e i valori estremi verso costa, in corrispondenza di due punti ubicati rispettivamente a 30 e 20 m di profondità ed esterni al Porto.

Nella seguente figura è presentato il clima ondoso esterno al Porto, ad una profondità di 20 m.

Foglio 11 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

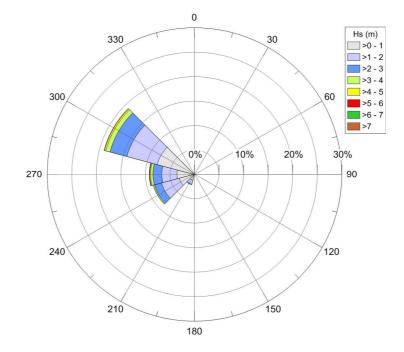


Figura 2.2: Rosa delle Onde a Costa – Punto B (20 m di Profondità)

In ultimo, sono stati definiti preliminarmente i valori massimi, per differenti tempi di ritorno (tra 1 e 100 anni), in corrispondenza di due punti ubicati rispettivamente presso (si veda la figura seguente):

- l'imboccatura del porto (Punto 1), in cui il moto ondoso generato sia da fenomeni locali sia da propagazione dal largo verso costa;
- all'interno del Porto di Oristano (Punto 2), caratterizzato da moto ondoso indotto dalla sola componente locale.

Nella sottostante tabella si riportano, in corrispondenza del Punto 2 (ritenuto maggiormente rappresentativo delle condizioni interni al porto), i valori delle altezze d'onda massimi preliminarmente stimati (per differenti tempi di ritorno); tali valori sono stati utilizzati per la verifica dell'esistenza di condizioni adeguate per lo svolgimento in sicurezza delle operazioni delle bettoline.

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 12 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

Figura 2.3: Punti di Calcolo delle Onde Estreme Locali

Tabella 2.2: Valori Estremi delle Onde in Corrispondenza del Punto 2 – Onde Generate Localmente

Direzione di Provenienza	PERIODO DI RITORNO (Anni)									
	1	1 10 25 50				100				
del Vento (°N)	Hs Loc (m)	Hs Loc (m)	Hs Loc (m)	Hs Loc (m)	Hs Loc (m)	Hs Loc (m)				
120-150	0.41	0.48	0.51	0.53	0.54	0.55				
270	0.63	0.77	0.81	0.85	0.87	0.88				

Come si evince dai valori in tabella, le altezze d'onda stimate risultano sempre inferiori a 1 m.

2.3 LIVELLO DEL MARE

La variazione del livello marino in prossimità della costa è stata stimata considerando cautelativamente i valori estremi delle oscillazioni del livello legate sia alla marea sia al set up del moto ondoso indotto dal vento. Complessivamente sono state stimate variazioni del livello del mare comprese fra 62 cm (massimo per tempo di ritorno di un anno) e 92 cm (massimo su 100 anni), quindi comunque sempre inferiori a 1 m.

2.4 CORRENTE

In assenza di misure dirette, la stima dell'intensità della corrente è stata condotta sommando i contributi legati al vento e alla marea. Cautelativamente, è stato assunto un valore massimo di corrente superficiale compreso tra 10 e 17 cm/s.

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 13 di 50 Codifica Doc. **P92 0 GF K C 002**

Rev.1 09/10/2015

3 SCELTA DELLE MINI LNG CARRIERS

3.1 ANALISI DELLA FLOTTA MONDIALE DI MINI LNG

Il primo passo per poter sviluppare le valutazioni di fattibilità riguardanti l'analisi di ormeggio e quello di effettuare un'analisi della flotta di mini LNG carriers attualmente presente sul mercato o in fase di costruzione. In particolare è stata creato un opportuno database raggruppante tutte le informazioni principali su tale categoria di navi aventi caratteristiche analoghe a quelle con un taglia compresa tra i 1,000 e 15,600 m³ come specificato al Capitolo 1 e come richiesto da Edison all'interno del documento "Oristano: Deposito Costiero GNL Basi Di Progetto".

Tale database è stato costruito sulla base delle informazioni provenienti da:

- Sea-web http://www.sea-web.com/seaweb_welcome.aspx;
- Clarkson http://www.clarksons.net/sin2010/;
- International Trends for Small Scale LNG Lloyd's Register Marine, June 2014;
- Small LNG Shipping Consultants http://small-lng.com/;
- RINA database.

Tabella 3.1: Lista delle navi mini LNG

n°	Name_of_Ship	Built	Deadweight	Flag	Status	Gas_Capacity	Ship_Type
1	AKEBONO MARU	2011	2528	Japan	In Service/Commission	3556	LNG Tanker
5	AVIC DINGHENG	2015		China	Under Construction	6300	LNG
8	CORAL ENERGY	2013	12344	Netherlands	In Service/Commission	15600	LNG Tanker
9	CORAL METHANE	2009	6018	Netherlands	In Service/Commission	7401	LNG Tanker
10	KAKUREI MARU	2008	1801	Japan	In Service/Commission	2536	LNG Tanker
11	KAKUYU MARU	2013	1865	Japan	In Service/Commission	2539	LNG Tanker
14	LNG INLAND BUNKER	2015		Germany	Under Construction	800	LNG Tanker
15	LNG OIL COMBI	2014		Germany	In Service/Commission	2000	LNG Tanker
19	NORGAS INVENTION	2011	10441	Singapore	In Service/Commission	10000	LNG Tanker
22	NORGAS UNIKUM	2011	12210	Singapore	In Service/Commission	11782	LNG Tanker
23	NORTH PIONEER	2005	1938	Japan	In Service/Commission	2512	LNG Tanker
24	NYK BUNKER BARGE TBN	2016		NWE	Under Construction	5100	LNG
25	PIONEER KNUTSEN	2004	817	Norway	In Service/Commission	1078	LNG Tanker
31	SHINJU MARU NO. 1	2003	1781	Japan	In Service/Commission	2538	LNG Tanker
32	SHINJU MARU NO. 2	2008	1781	Japan	In Service/Commission	2536	LNG Tanker
33	SHORT SEA LNG TANKER	2014		Germany	In Service/Commission	4000	LNG Tanker

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 14 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

3.2 NAVI DI RIFERIMENTO

Come anticipato al Capitolo 1, il GNL sarà approvvigionato al Terminale attraverso bettoline aventi caratteristiche analoghe a quelle di capacità compresa tra 7,500 e 15,600 m³, mentre la distribuzione sarà effettuata da unità con dimensioni analoghe a quelle da circa 1,000 m³. Nelle seguenti pagine si riportano le principali caratteristiche dimensionali delle taglie di navi delle capacità di cui sopra, assunte come riferimento ai fini delle presenti analisi.

Per le navi scelte è stato consultato il questionario Q88 all'interno del quale sono presenti numerose informazioni tecniche utili per le valutazioni oggetto di questa analisi.

Considerando che per un ormeggio presso un terminale come quello ipotizzato nel presente studio l'azione meteomarina che ha la maggiore influenza a livello di sollecitazioni indotte sugli arredi di ormeggio è il vento, nelle analisi svolte le navi sottocitate sono state considerate nella condizione di zavorra così da massimizzare le superfici esposte. Questa assunzione è ulteriormente supportata dal fatto che i valori di onda e corrente all'interno del porto commerciale sono sufficientemente bassi che sviluppano forze di minore entità su quella che è l'opera viva delle navi.

Inoltre, dato il livello attuale del progetto in cui non sono ancora definite una o più navi specifiche, non si hanno a disposizione i General Arrangement piuttosto che altre informazioni di dettaglio sulle strutture e/o arredi di ormeggio delle navi che attualmente sono state considerate come rappresentative delle categorie indicate dal Cliente.

Per questo motivo i punti di uscita dei cavi sono stati stimati in base alle fotografie disponibili o informazioni liberamente reperibili sui tipici database navali (vedasi Par3.1). Si tratta quindi di posizioni approssimate ma che comunque permettono di effettuare le necessarie valutazioni sul dimensionamento preliminare degli arredi di ormeggio e permettono di valutare eventuali interferenze tra gli stessi arredi di banchina e i cavi nave.

Per ogni nave di seguito elencata viene quindi fornito uno schema dei passacavi utilizzato per le valutazioni preliminari di ormeggio all'interno del software Optimoor. Il dettaglio delle posizioni di tali punti è invece riportato nella tabella immediatamente successiva. Si evidenzia come

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 15 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

Pioneer Knutsen

Figura 3.1: mini LNG Pioneer Knutsen

Tabella 3.2: Pioneer Knutsen: dati principali

	oneer Knutsen. dati pi	-				
Data	Value	Unit				
Capacità Nominale	1.000	m3				
Tipologia contenimento	Membrane	\				
LOA	68.870	m				
LPP	63.400	m				
В	11.800	m				
D	5.500	m				
Dislocamento a Pieno Carico	1938	t				
Dislocamento in Zavorra	1721	t				
DWT	817	t				
T Pieno carico	3.6	m				
T Zavorra	3.3	m				
Area Laterale in Zavorra	2700	m ²				
Area Laterale in Pieno Carico	2265	m ²				
Area Frontale in Zavorra	626	m ²				
Area Frontale in Pieno Carico	561	m ²				
Rateo di Scarico	200	m3/h				
Manifold	In compliance with latest edition of OCIMF	\				
Altezza manifold (quota dal ponte principale)	2.56	m				
Distanza manifold da centro nave (proravia)	0.0	m				
Numero di line di Ormeggio	10	\				
MBL	30	t				

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 16 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

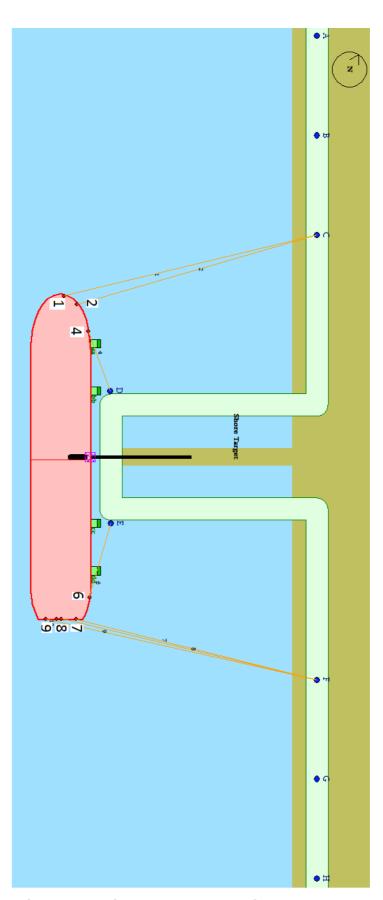


Figura 3.2: Pioneer Knutsen Fairleads Layout

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 17 di 50

Codifica Doc. P92 0 GF K C 002

Rev.1 09/10/2015

Tabella 3.3: Pioneer Knutsen: Posizione dei Fairleads

Fairlead Nu	mber	1	2	4	6	7	8	9
Posizione Longitudinale (riferita alla PP AD)	[m]	65.7	63.9	58.2	1.9	-2.6	-2.5	-2.6
Posizione Trasversale (riferita all'asse di simmetria nave)	[m]	0	3.2	5.5	5.7	3	0	-3
Posizione Verticale (riferita al ponte principale)	[m]	3	3	3	3	3	3	3

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 18 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

Coral Methane

Figura 3.3: mini LNG Coral Methane

Tabella 3.4: Coral Methane: dati principali

		Jilioipaii
Dati	Valore	Unità di misura
Capacità Nominale	7.400	m ³
Tipologia contenimento	Membrane	\
L_{OA}	117.800	m
L_{PP}	110.200	m
В	18.600	m
D	10.600	m
Dislocamento a Pieno Carico	10842	t
Dislocamento in Zavorra	7866	t
DWT	6018	t
T Pieno carico	7.1	m
T Zavorra	5.5	m
Area Laterale in Zavorra	1484	m ²
Area Laterale in Pieno Carico	1292	m ²
Area Frontale in Zavorra	411	m ²
Area Frontale in Pieno Carico	381	m ²
Rateo di scarico	900	m ³ /h
Manifold	In compliance with latest edition of OCIMF	\
Altezza manifold (quota dal ponte principale)	2.68	m
Distanza manifold da centro nave (proravia)	4.2	m
Numero di line di Ormeggio	16	\
MBL	42	t

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 19 di 50

Codifica Doc. P92 0 GF K C 002

Rev.1 09/10/2015

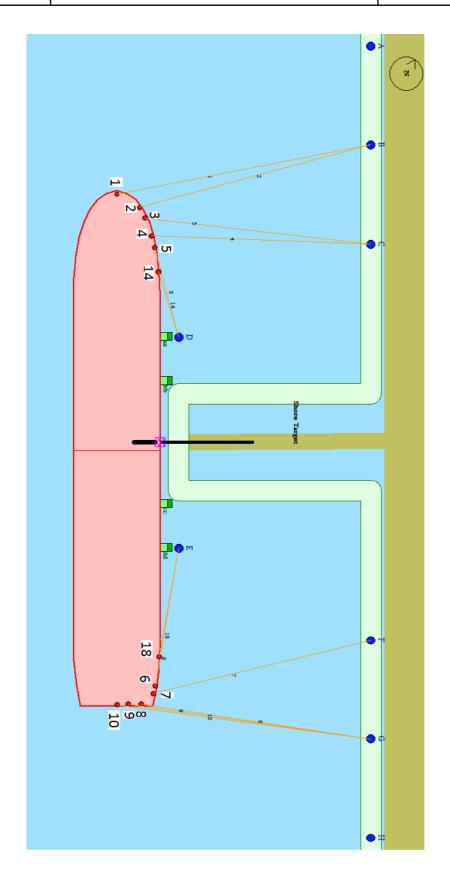


Figura 3.4: Coral Methane Fairleads Layout

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 20 di 50

Codifica Doc. P92 0 GF K C 002

Rev.1 09/10/2015

Tabella 3.5: Coral Methane: Posizione dei Fairleads

Fairlead Nu	mber	1	2	3	4	5	6	7	8	9	10	14	18
Posizione Longitudinale (riferita alla PP AD)	[m]	110.4	107.3	105	100.9	98.2	-1.5	-3.2	-5.6	-5.6	-5.7	92.7	5.1
Posizione Trasversale (riferita all'asse di simmetria nave)	[m]	0	4.9	6	7.4	8.1	8.2	7.9	5.2	2.5	0	8.9	9.1
Posizione Verticale (riferita al ponte principale)	[m]	3	3	3	3	3	3	3	3	3	3	3	0

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 21 di 50

Codifica Doc. P92 0 GF K C 002

Rev.1 09/10/2015

Coral Energy

Figura 3.5: mini LNG Coral Energy

Tabella 3.6: Coral Energy: dati principali

		•	
Data	Value	Unit	
Capacità Nominale	15.600	m ³	
Tipologia contenimento	Membrane	\	
L _{OA}	154.950	m	
L _{PP}	146.210	m	
В	22.700	m	
D	14.950	m	
Dislocamento a Pieno Carico	19513	t	
Dislocamento in Zavorra	11994	t	
DWT	12344	t	
T Pieno carico	8.2	m	
T Zavorra	5.4	m	
Area Laterale in Zavorra	2700	m ²	
Area Laterale in Pieno Carico	2265	m ²	
Area Frontale in Zavorra	626	m ²	
Area Frontale in Pieno Carico	561	m ²	
Capacità	15,600	m ³	
Rateo di scarico	1,620	m ³ /h	

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 22 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

Data	Value	Unit
Manifold	In compliance with latest edition of OCIMF	\
Altezza manifold (quota dal ponte principale)	2.00	m
Distanza manifold da centro nave (proravia)	6.0	т
Numero di line di Ormeggio	14	\
MBL	58.9	t

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 23 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

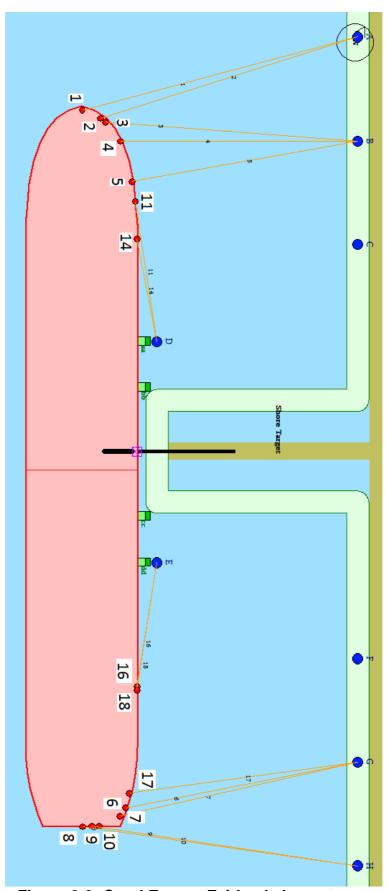


Figura 3.6: Coral Energy Fairleads Layout

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 24 di 50

Codifica Doc. P92 0 GF K C 002

Rev.1 09/10/2015

Tabella 3.7: Coral Energy Posizione dei Fairleads

Fairlead Nui	mber	1	2	3	4	5	6	7	8	9	10	11	14	16	17	18
Posizione Longitudinale (riferita alla PP AD)	[m]	148.1	146.4	145.6	141.4	132.6	-3.4	-5.2	-7.4	-7.4	-7.4	128.3	120.2	22.9	-0.2	22.2
Posizione Trasversale (riferita all'asse di simmetria nave)	[m]	0	3.9	4.9	7.9	10.3	9	7.9	3.6	2.1	0	11	11.3	11.3	9.8	11.3
Posizione Verticale (riferita al ponte principale)	[m]	3	3	3	3	3	0	0	0	0	0	3	3	0	0	0

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 25 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

4 METODOLOGIA

Il presente Capitolo illustra la metodologia di base con la quale sono state effettuate le valutazioni riguardanti l'ormeggio delle navi presso il terminale, il software utilizzato e le principali ipotesi di calcolo fatte. Il layout ormeggio porposto in questo documento è stato sviluppato in accordo ai criteri dello standard OCIMF MEG 3 applicabile nel caso di sistemi di ormeggio temporanei di navi ormeggiate in banchina.

4.1 SOFTWARE

Lo studio è stato condotto utilizzando il software commerciale OPTIMOOR, programma utilizzato a livello mondiale per le analisi di ormeggio di navi (in particolare nelle operazioni in area portuale), soprattutto al fine di effettuare verifiche in accordo ai requisiti indicati dall'OCIMF (Oil Companies International Marine Forum) o soddisfare la legislazione OPA-90 (US Oil Pollution Act). OPTIMOOR è in grado di verificare la risposta di qualsiasi tipologia di sistema di omeggio, sia offshore sia in aree portuali, tenendo in considerazione le forzanti dovute ad agenti meteo quali vento, onda, corrente, maree, ecc. In particolare, visto il livello di dettaglio del progetto, sono state condotte analisi di tipo statico ai fini di verificare la robustezza della soluzione proposta.

4.2 CONDIZIONI METEOMARINE

La verifica del sistema è stata condotta considerando un set di condizioni meteomarine selezionate sulla base dei dati di progetto riportati al Capitolo 2.

Il periodo di ritorno dei dati meteomarini è stato scelto come segue.

La probabilità di eccedenza accettabile per progetti offshore, cioè che si verifichi una condizione meteomarina superiore (più gravosa) rispetto a quella di progetto è calcolata come:

$$P = 1 - e^{-(\frac{t_{moor}}{T_{env}})}$$

dove t_{moor} è il periodo di permanenza all'ormeggio e T_{env} il periodo di ritorno degli agenti meteomarini.

Per un'installazione offshore progettata per una vita operativa di circa 20 anni, tutte le principali normative internazionali (in particolare le API RP-2SK, DNV-OS-E301, BV NR-493-DT-R02-E etc.) richiedono che la verifica di robustezza sia effettuata con condizioni meteomarine con periodo di ritorno di 100 anni. La probabilità di eccedenza accettata risulta quindi essere del 18%. Anche se non direttamente applicabile al caso in esame visto che l'oggetto dello scopo del lavoro non è il dimensionamento di un'installazione offshore permanente, questa metologia di calcolo può essere ritenuta applicabile ai fini di individuare un periodo di ritorno adeguato con il quale verificare i layout di ormeggio proposti.

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 26 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

In particolare, poiché tipicamente per le operazioni di carica e scarica di queste navi sono previste finestre temporali di ormeggio comprese tra le 12 e le 24 ore, nel caso in esame t_{moor} è pari a circa 12 ore e volendo mantenere la medesima probabilità di eccedenza, risulta che la verifica potrebbe essere fatta con condizioni meteomarine con periodo di ritorno T_{env} di 10 anni. In questo caso infatti, la probabilità di eccedenza è pari al **13.3%** e quindi inferiore al 18% sopracitato. Questo valore percentuale lascia intendere che queste condizioni sono cautelative e potrebbero non verificarsi durante la permanenza all'ormeggio.

Resta inteso che eventuali limitazioni sull'ingresso in porto, presa di ormeggio ed eventuali disconnessione di emergenza saranno da valutarsi tramite specifiche ordinanze della capitaneria di porto locale. Inoltre, considerando che le navi in oggetto di questo studio hanno valori di dislocamento non molto elevanti soprattutto in condizioni di zavorra, potrebbe non essere realistico utilizzare valori di vento corrispondenti alla media oraria. Sono stati quindi considerati valori di vento associati a periodi di raffica dei 30 secondi così come indicato anche dalle linee guida OCIMF. Tali valori sono stati ricavati dalle tabelle dello studio meteo riportate al Capitolo 2. In particolare i valori per questo periodo di raffica sono stati calcolati, per ogni direzione, secondo questi due step:

 dalle velocità di raffica dei tre secondi, che deriva da dati registrati in loco e non da desk study o informazioni di letteratura, è stato ricavato un valore di media oraria applicando la seguente formula

$$U_{x,t} = U_{x\,rif,3600} \, \left(1 - 0.41 \, \log \frac{t}{3600} \left(0.06 \, \left(1 + 0.043 \, U_{x\,rif,3600}\right) \left(\frac{z}{z\,rif}\right)^{-0.22}\right) \right) \, dt$$

risolvendo inversamente per l'incognita $U_{z rif. 3600}$;

• Da queste nuove e più conservative velocità del vento sulla media oraria sono stati ricavati i valori sui 30 secondi risolvendo direttamente per $U_{z,t}$ con t=30 secondi.

Tabella 4.1: Velocità dell vento sui 30"

Velocità del vento [m/s]									
3"	3600"*	30"							
35.3	25.8	32.2							
40.7	29.2	37							
27.2	20.5	25							
31.4	23.3	28.8							
28.1	21.1	25.8							
34.8	25.5	31.8							
34.5	25.3	31.5							
41.3	29.6	37.5							
calcolato da 10'(vedi									
Par. 4.3.2 del report	ricalcolato da 3" dalla	calcolato da 3600*con							
meteomarion P92 0 GF K C 001)	formula inversa di (1)	la formula (1)							

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 27 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

Di seguito sono riportati i casi meteomarini utilizzati nella verifica del sistema di ormeggio. All'azione del vento, che è da considerasi la principale fonte di sollecitaizone degli arrendi per questa tipologia di ormeggi, sono stati associati i valori di corrente ed onda in grado di generarsi all'interno del canale come riportato nella sintesi dello studio meteomarino al Capitolo 2.

In particolare, per ciascuna delle tre navi considerate e di cui le caratteristiche sono riportate al Capitolo 3.2, sono state considerate 8 direzioni di vento principali alle quali sono stati aggiunte le sollecitazioni di onda all'interno di angoli di sfasamento ragionevoli (+/- 45°). Dalle informazioni ricavate dal rapporto meteomarino si evidenzia che le direzioni di propagazione d'onda sono principalmente 270° e 120°-150° con valori di Hs rispettivamente di 0.41 e 0.63 m sempre considerando un periodo di ritorno di 1 anno.

Conservativamente infine, anche considerando il basso valore di velocità stimato, la corrente è stata considerata collineare con la direzione d'onda considerata.

Gli scenari considerati si possono quindi riassumere in questo modo:

Scenario Dir [°]* Vento [kn] Corrente [kn] Hs [m] 62 Scenario 1 Scenario 2 45 72 Scenario 3 90 48 0.41 da 120° 0.3 0.41 da 150° Scenario 4 135 56 0.3 Scenario 5 180 0.41 da 150° 50 0.3 Scenario 6 225 62 0.63 da 270° 0.3 Scenario 7 270 61 0,63 da 270° 0.3 Scenario 8 315 73 0,63 da 270° 0.3

Tabella 4.2: Condizioni Meteo Considerate

4.3 ARREDI DI ORMEGGIO

Punti di Ormeggio in Banchina

Il layout dei punti di ormeggio da installarsi in banchina è stato definito in maniera da soddisfare i requisiti geometrici di ormeggio proposti sia dall' *Port Engineer Planning Construction Maintenance and Security* che dall'OCIMF. Infatti, tali linee guida suggeriscono un layout degli arredi tale da ottimizzare il carico che le linee di ormeggio devono smaltire. Nelle figure sottostanti sono riportati degli estratti

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 28 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

delle lineeguida sopracitate con le principali indicazioni di inclinazione dei cavi per un ormeggio presso un terminale di discarica di GNL:

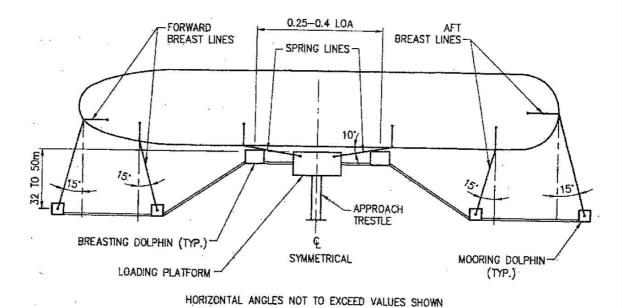


Figura 4.1: Layout di ormeggio ottimale suggerito dal Port Engineer Planning Construction Maintenance and Security

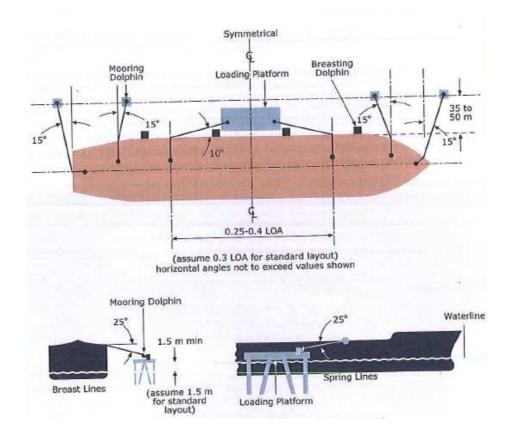


Figura 4.2: Layout di ormeggio ottimale suggerito dall'OCIMF

Foglio 29 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Si è quindi ipotizzato di equipaggiare la banchina con punti di ormeggio posizionati come riportato nella seguente tabella (rispetto al riferimento riportato in Figura 1.2), dove:

- X indica la distanza longitudinale (in m) dall'origine;
- Y indica la distanza trasversale (in m) dall'origine;
- Z indica l'altezza (in m) della bitta (ovvero la quota del punto di ancoraggio rispetto al piano banchina).

Tabella 4.3: Posizione delle Bitte in Banchina

BITTA	Х	Y	Z
Α	-90	35	0.5
В	-67.5	35	0.5
С	-45	35	0.5
D	-24	3.5	0.5
D'	-14	3.5	0.5
E'	14	3.5	0.5
E	24	3.5	0.5
F	45	35	0.5
G	67.5	35	0.5
Н	90	35	0.5

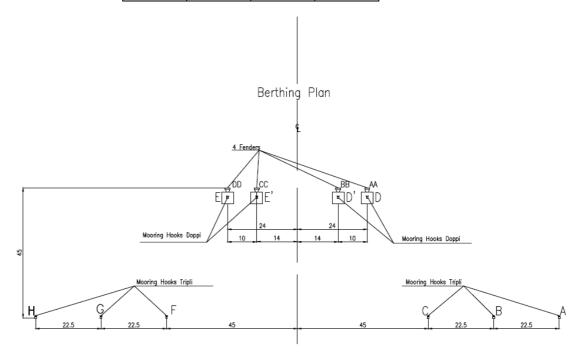


Figura 4.3: Layout arredi di ormeggio

É stato previsto l'utilizzo di ganci di ormeggio dotati di sistema di sgancio rapido. L'OCIMF fornisce le indicazioni necessarie per quanto riguarda i rapporti di forza da dover rispettare per gli arredi di ormeggio. In particolare il SWL di ogni punto di

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 30 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

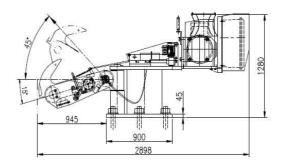
ormeggio deve essere maggiore o uguale del MBL del cavo che gli viene agganciato. Questo ha come scopo quello di rendere il cavo l'anello debole del sistema in modo che, in caso di impreviste anomalie e sovrasollecitazioni dovute a particolari condizioni di esercizio, sia il cavo a rompersi senza danneggiare gli arredi a cui è collegato. Infatti rimpiazzare un cavo risulta molto più facile rispetto al riparare o sostituire una bitta/gancio di ormeggio.

Nel caso specifico oggetto di questo studio, considerando le caratteristiche dei cavi di cui sono dotate le navi prese come riferimento, il SWL di ogni gancio dovrà essere maggiore o uguale di 58,9 t. Per questa analisi e per le successive valutazioni di capacità portante dei pali dei breasting dolphin su cui sono installati tali arredi, sono stati considerati dei ganci di ormeggio con un SWL di 60 t ciascuno.

Figura 4.4: Quick Release Hooks

In particolare i punti A, B, C, F, E e G sono stati considerati equipaggiati con ganci tripli mentre i punti D1, D2, E1 ed E2 con ganci doppi. Questo permette una buona flessibilità per quanto riguarda le linee di ormeggio sia esse alla lunga, traversini o spring.

Di seguito sono riportati alcuni estratti di una possibile tipologia di ganci:



PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 31 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

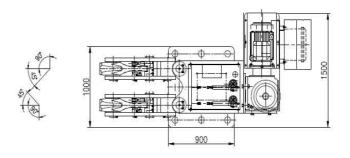
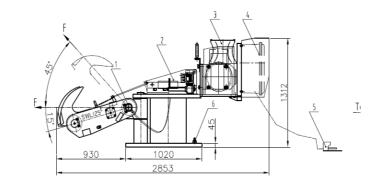



Figura 4.5: Quick Release Hooks doppi

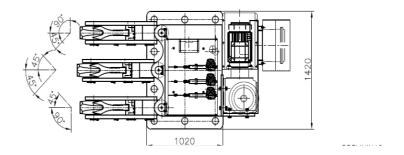


Figura 4.6: Quick Release Hooks tripli

COSTIERO GNL ORISTANO

PROGETTO AUTORIZZATIVO DEPOSITO

Foglio 32 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

Parabordi

Le informazioni sui fianchi piatti delle navi sono state utilizzate per ottimizzare la distanza a cui posizionare le breasting structure (di conseguenza i parabordi) seguendo le indicazioni fornite nelle linee guida del *Port Engineer Planning Construction Maintenance and Security.* In particolare è stato previsto di sistemare la coppia di fender più interna in un range compreso tra lo 0,25 e lo 0,4 Loa della nave più piccola prevista all'ormeggio della banchina. Di conseguenza risulta un interasse massimo tra la coppia di fender centrali pari a 28 metri. Sempre all'interno di dette lineeguida si sottolinea come, variando molto le dimensioni delle navi che posso attraccare presso un terminale, in fase di progettazione si deve tenere conto anche di una seconda coppia di fender che sia in grado di garantire un contatto adeguato anche con navi di dimesioni maggiori. In questo caso, considerando una seconda coppia di fender aventi un interasse di 48 metri, anche per la nave più grande considerata si riesce a garantire in range di interasse fender proposto.

Il design dei parabordi da installare presso il terminale oggetto di questo studio è stato invece sviluppato in accordo con quelli che sono le prescrizioni presenti all'interno delle *British Standard Bsi6349-4 Maritime structures- Code of practice for design of fendering and mooring systems.*

La scelta del fender passa attraverso la definizione dell'energia massima assorbibile che viene calcolata con la seguente formula:

$$E=0.5 * C_M * M_D * (V_B)^2 * C_E * C_S * C_C$$

Dove:

C_M: coefficiente idrodinamico di massa;

M_D: dislocamento della nave;

V_B: velocità di accosto della nave;

C_E: coefficiente di elettricità;

C_S: coefficiente di morbidezza;

C_C: coefficiente di configurazione dell'accosto.

Tramite la metodologia illustrata nelle suddette normative vengono deifiniti i diversi coefficienti descritti in funzione dei principali parametri geometrici della nave quali ad esempio altrezza di costruzione, larghezza, coefficiente di blocco etc..

L'energia assorbibile è stata quindi calcolata per tutte e tre le navi e per ognuna di esse sono state considerate due condizioni di carico: pieno carico (summer draft) e zavorra (normal ballast).

Foglio 33 di 50 Codifica Doc.

P92 0 GF K C 002

Rev.1 09/10/2015

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Tabella 4.4: Pioneer Knutsen: energia assorbibile

Pionerr Knutsen - I	
Ed	[kNm]
Pionerr Knutsen - S	
Ed	[kNm]

Tabella 4.5: Coral Methane: energia assorbibile

Coral Methane - Summer								
Ed 348 [kNm]								
Coral Methane - Normal Ballast								
Ed 244 [kNm]								

Tabella 4.6: Coral Energy: energia assorbibile

Coral Energy - Summer								
Ed 383 [kNm]								
Coral Energy - Normal Ballast								
Ed	[kNm]							

Il caso dimensionante risulta essere quello per la nave di maggiori dimensioni (Coral Energy) in condizioni di pieno carico con una energia pari a 383 kNm.

Si è proceduto quindi alla ricerca di un fender capace di assorbire tale valore di energia. Consultado i cataloghi di uno dei maggiori fornitori mondiali (www.fenderteam.com), si è deciso di adottare un fender in gomma conico con piastra di appoggio.

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 34 di 50

Codifica Doc. P92 0 GF K C 002

Rev.1 09/10/2015

Figura 4.7: Foto di un Parabordo

In particolare è stato scelto il modello SPC 1100 grado G1.8 evidenziato nella seguente tabella:

Tabella 4.7: Tabella caratteristiche parabordi tipo SPC

PERFORMANCE TABLE SPC-FENDER (RPD = Rated Performance Data in acc. with PIANC)

Fender Size	E/R	Rubber Grade / Performance Value	G 0.9	G 1.0	G 1.1	G 1.2	G 1.3	G 1.4	G 1.5	G 1.6	G 1.7	G 1.8
Size							100000		10000			
SPC 300	0.16	Energy	9	9	10	10	10	11	11	12	12	12
	0.10	Reaction	55	57	60	62	65	68	70	73	76	78
SPC 350	0.17	Energy	13	14	14	15	15	16	16	17	17	18
	0.1.	Reaction	76	78	91	93	96	98	100	102	104	107
SPC 400	0.21	Energy	21	21	22	23	24	25	26	27	28	29
51 € 100	0.21	Reaction	98	102	106	111	115	120	125	129	134	138
SPC 500	0.26	Energy	40	42	44	46	47	49	51	53	55	57
31 € 300	0.20	Reaction	153	159	166	173	180	188	195	202	209	217
SPC 600	0.31	Energy	69	72	75	79	82	85	88	92	95	98
31 C 000	0.51	Reaction	220	229	239	249	260	270	281	291	302	312
SPC 700	0.36	Energy	111	114	120	125	130	136	141	146	151	156
3PC 700	0.36	Reaction	300	312	325	340	354	368	382	397	411	425
SPC 800	0.42	Energy	165	170	179	187	194	202	210	218	226	233
SPC 800	0.42	Reaction	392	407	425	444	462	481	500	518	537	555
SPC 900	0.47	Energy	234	243	254	265	277	288	299	310	321	332
SPC 900	0.47	Reaction	496	515	538	562	585	609	632	656	680	703
SPC 1000	0.50	Energy	321	333	349	364	379	394	410	425	440	455
SPC 1000	0.52	Reaction	612	636	665	694	723	752	781	810	839	960
CDC 1100	0.57	Energy	427	443	465	484	504	524	546	566	586	606
SPC 1100	0.57	Reaction	741	767	805	840	875	910	945	980	1015	1050
CDC 1150	0.50	Energy	487	506	529	552	575	599	622	645	668	691
SPC 1150	0.60	Reaction	810	841	879	918	956	995	1033	1072	1110	1149
CDC 1200	0.50	Energy	554	575	601	628	654	680	706	733	759	785
SPC 1200	0.62	Reaction	882	916	958	1000	1042	1083	1125	1167	1209	1251
CDC 1200	0.60	Energy	706	732	766	799	833	866	900	933	967	1000
SPC 1300	0.68	Reaction	1030	1070	1118	1167	1216	1265	1314	1363	1412	1461
CDC 1400		Energy	881	914	956	998	1040	1082	1123	1165	1207	1249
SPC 1400	0.74	Reaction	1201	1247	1304	1361	1418	1475	1532	1589	1646	1703

Foglio 35 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Come da indicazioni del fornitore, per quanto riguarda le proprietà elastiche del parabordo, è stata considerata la curva reazione-deformazione da loro porposta e riportata nella figura sottostante e scalata con le opportune condizioni al contorno:

GENERIC PERFORMANCE CURVE SPC-FENDER

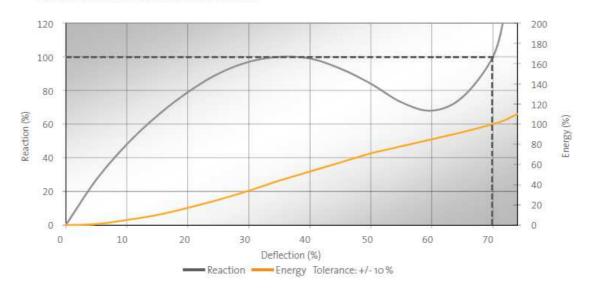


Figura 4.8: Curva risposta reazione-deformazione dei parabordi tipo SPC

Si è quindi ipotizzato di equipaggiare la banchina 4 parabordi tipo SPC 1100 grado G1.8 posizionati come riportato nella seguente tabella (rispetto al riferimento riportato in Figura 1.2):

- X indica la distanza longitudinale (in m) dall'origine;
- Y indica la distanza trasversale (in m) dall'origine;
- Z indica l'altezza (in m) della cono del parabordo.

Tabella 4.8: Posizione dei parabordi in banchina

Parabordo	Х	Υ	Z
aa	-24	0	1
bb	-14	0	1
СС	14	0	1
dd	24	0	1

Si è infine preliminarmente ipotizzata anche la superficie dei pannelli che verranno collegati al cono e ai quali si appoggeranno le murate delle navi. In particolare, all'interno delle linee guida OCIMF *Marine Reminal Baseline Criteria and Assessment questionnaire,* si raccomanda di dotare ogni parabordo di un pannello avente una superficie tale da non caricare le strutture nave oltre le 20 t/m². Considerando il caso di massima reazione del parabordo è stata ipotizzata una piastra da di dimensioni almeno pari a 1,8x3,0 metri.

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 36 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

Linee di ormeggio

Le linee di ormeggio utilizzate nelle analisi sono state modellate con le loro principali caratteristiche (numero di linee, MBL, diametro, materiale etc..) e in accordo con quelle che sono le disponibilà della nave in termini di passacavi e panama installati.

Utilizzando le caratteristiche già riportate nelle tabelle del Capitolo 3.2, sono stati individuati i seguenti possibili layout di ormeggio

Pioneer Knutsen (bettolina):

- 2 cavi alla lunga di prua (Linee 1 e 2);
- 1 spring di prua (Linea 4);
- 1 spring di poppa (Linea 6);
- 3 cavi alla lunga di poppa (Linee 6, 7 e 8).

Coral Methane (mini LNG 7500 m³):

- 3 cavi alla lunga di prua (Linee 1, 2 e 3);
- 2 traversini di prua (Linee 4 e 5);
- 1 spring di prua (Linea 14);
- 1 spring di poppa (Linea 18);
- 2 traversini di poppa (Linee 6 e 7);
- 3 cavi alla lunga di poppa (Linee 8, 9 e 10).

Coral Energy (mini LNG 15000 m³):

- 2 cavi alla lunga di prua (Linee 1 e 2);
- 3 traversini di prua (Linee 3, 4 e 5);
- 2 spring di prua (Linee 14 e 15);
- 2 spring di poppa (Linee 16 e 18);
- 3 traversini di poppa (Linee 6, 7 e 17);
- 2 cavi alla lunga di poppa (Linee 9 e 10).

Ai fini di rispettare le indicazioni presenti sulle linee guida OCIMF, essendo tutte le linee di materiale sintetico, lo stress ammissibile in ciascuna linea deve essere pari al 50% del proprio MBL.

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 37 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

5 RISULTATI

5.1 LAYOUT GENERALE DEGLI ARREDI DI ORMEGGIO

In considerazione delle valutazioni esposte nei precedenti capitoli di questo documento, in unione con le prescrizioni riportate all'interno del Piano Regolatore Portuale, vengono proposti i layout di ormeggio riportati nel documento P920IDKC001 in cui vengono evidenziate anche alcune sezioni verticali ai fini di verificare possibili interferenze tra i cavi di ormeggio e altri arredi di banchina. Tali layout permettono di ormeggiare le tre categorie di navi considerate in maniera da rispettare i requisiti riportati nelle linee quida OCIMF MEG 3 sia in termini di stress ammissibili sugli arredi che di inclinazione dei cavi. In particolare nelle tabelle sottostanti sono riportate le inclinazioni dei ciascuno dei cavi di ormeggio e nel documento P920IDKC001 sono riportati oltre ai piani di ormeggio di ciascuna nave, anche alcune sezioni rappresentative degli ingombri degli arredi. Considerando le situazioni limite di bettolina in pieno carico e bassa marea e gasiera da 15.000 m³ in zavorra ed alta marea non si riscontrano interferenze tra i cavi e i restanti arredi. Inoltre sul perimetro delle breasting structure sono stati previsti dei convogliatori tubolari che garantiscono ai cavi di non strisciare sullo spigolo vivo della banchina limitandone il consumo.

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 38 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

5.2 SOLLECITAZIONI SULLE LINEE E SUI FENDER

Nelle seguenti tabelle vengono riportate le sollecitazioni agenti sugli arredi di ormeggio in termini di tensione ammissibile sui cavi e compressione/reazione sui fender secodno gli scenari di carico ipotizzati al Paragrafo 4.2.

In aggiunta è stata fatta una valutazione preliminare sulla capacità del sistema di ormeggio di resisitere alle condizioni di verifica previste dalle linee guida OCIMF. In particolare esse prevedono la verifica del sistema (tensione agente nei cavi < del 50% del MBL di ciascuna linea) con 60 kn di vento omnidirezionali. Tale verifica è riportata nei grafici polari inseriti, per ongi tipologia di nave, a valle delle tabelle riassuntive.

Pioneer Knutsen (bettolina):

			SCENARIO) 1								
LINE	1	1 2 4 6 7 8										
to Bollard/Hook	С	С	D	E	F	F	F					
Total Line Lenght	51,2	49,3	13,2	16,1	48,9	51,7	54,7					
Inclination Down	2°	2°	8°	7°	3°	3°	2°					
Tension (t)	7,1	7,3	4,1	4,7	4,6	4,4	4,3					
% of Strength	24%	24%	14%	16%	15%	15%	14%					
					_							
FENDER	aa	bb	СС	dd								
Thrust (t)	0	0	0	0								
Compression (m)	0,00	0,00	0,00	0,00								
Pressure (t/m2)												

			SCENARIO	2			
LINE	1	2	4	6	7	8	9
to Bollard/Hook	С	С	D	E	F	F	F
Total Line Lenght	51,2	49,3	13,2	16,1	48,9	51,7	54,7
Inclination Down	2°	2°	8°	6°	2°	2°	2°
Tension (t)	11,8	12,0	11,8	12,5	8,6	8,2	7,8
% of Strength	39%	40%	39%	42%	29%	27%	26%
FENDER	aa	bb	СС	dd			
Thrust (t)	0	0	0	0			
Compression (m)	0,00	0,00	0,00	0,00			
Pressure (t/m2)							

Foglio 39 di 50

Codifica Doc. P92 0 GF K C 002

PROGETTO AUTORIZZATIVO DEPOSITO **COSTIERO GNL ORISTANO**

			SCENARIO	3			
LINE	1	2	4	6	7	8	9
to Bollard/Hook	С	С	D	E	F	F	F
Total Line Lenght	51,2	49,3	13,2	16,1	48,9	51,7	54,7
Inclination Down	2°	2°	8°	7°	2°	2°	2°
Tension (t)	3,9	4,0	6,4	4,8	6,4	6,2	5,9
% of Strength	13%	13%	21%	16%	21%	21%	20%
					_		
FENDER	aa	bb	СС	dd			
Thrust (t)	0	0	0	0			
Compression (m)	0,00	0,00	0,00	0,00			
Pressure (t/m2)							

			SCENARIO	4			
LINE	1	2	4	6	7	8	9
to Bollard/Hook	С	С	D	Е	F	F	F
Total Line Lenght	51,2	49,3	13,2	16,1	48,9	51,7	54,7
Inclination Down	2°	2°	8°	7°	2°	2°	2°
Tension (t)	1,7	1,6	9,5	slack	3,7	3,6	3,5
% of Strength	6%	5%	32%		12%	12%	12%
FENDER	aa	bb	СС	dd			
Thrust (t)	18	6	0	0			
Compression (m)	0,05	0,02	0,00	0,00			
Pressure (t/m2)	4,9	1,6					

			SCENARIO) 5						
LINE	1	1 2 4 6 7 8								
to Bollard/Hook	С	С	D	Е	F	F	F			
Total Line Lenght	51,2	49,3	13,2	16,1	48,9	51,7	54,7			
Inclination Down	2°	2°	8°	7°	2°	2°	2°			
Tension (t)	2,0	2,0	7,6	slack	2,5	2,5	2,4			
% of Strength	7%	7%	25%		8%	8%	8%			
FENDER	aa	bb	СС	dd						
Thrust (t)	14	17	23	26						
Compression (m)	0,04	0,05	0,07	0,08						
Pressure (t/m2)	3,9	4,2	5,9	6,7						

Foglio 40 di 50

Codifica Doc.

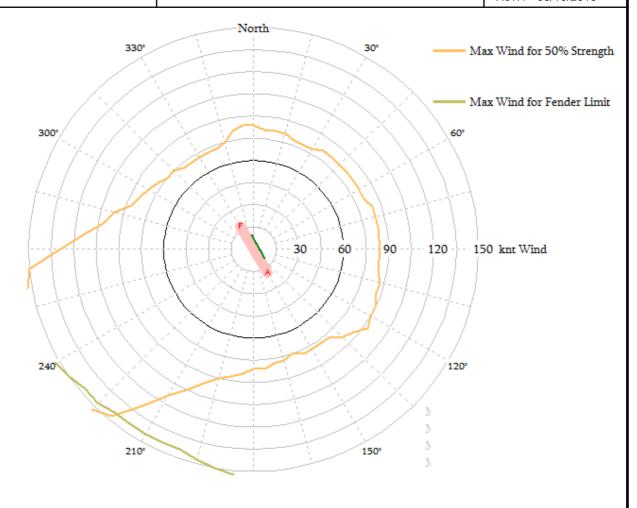
Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

			SCENARIO	6			
LINE	1	2	4	6	7	8	9
to Bollard/Hook	С	С	D	Е	F	F	F
Total Line Lenght	51,2	49,3	13,2	16,1	48,9	51,7	54,7
Inclination Down	2°	2°	8°	7°	2°	2°	2°
Tension (t)	2,3	2,3	3,7	1,4	2,3	2,3	2,3
% of Strength	8%	8%	12%	5%	8%	8%	8%
FENDER	aa	bb	СС	dd			
Thrust (t)	28	31	39	41			
Compression (m)	0,08	0,09	0,12	0,12			
Pressure (t/m2)	8,0	7,7	9,6	10,5			

			SCENARIO	7						
LINE	1	1 2 4 6 7 8								
to Bollard/Hook	С	С	D	Е	F	F	F			
Total Line Lenght	51,2	49,3	13,2	16,1	48,9	51,7	54,7			
Inclination Down	2°	2°	8°	7°	2°	2°	2°			
Tension (t)	2,3	2,3	0,1	4,6	1,9	1,9	1,9			
% of Strength	8%	8%	0%	15%	6%	6%	6%			
FENDER	aa	bb	СС	dd						
Thrust (t)	25	25	26	26						
Compression (m)	0,07	0,08	0,08	0,08						
Pressure (t/m2)	7,6	6,3	6,5	6,6						


			SCENARIC	8			
LINE	1	2	4	6	7	8	9
to Bollard/Hook	С	С	D	Е	F	F	F
Total Line Lenght	51,2	49,3	13,2	16,1	48,9	51,7	54,7
Inclination Down	2°	2°	9°	6°	2°	2°	2°
Tension (t)	3,0	3,2	slack	15,3	1,4	1,5	1,5
% of Strength	10%	11%		51%	5%	5%	5%
					_		
FENDER	aa	bb	СС	dd			
Thrust (t)	15	16	17	18			
Compression (m)	0,05	0,05	0,05	0,05			
Pressure (t/m2)	5.5	3.9	4.3	4.5			

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 41 di 50

Codifica Doc. P92 0 GF K C 002

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 42 di 50

Rev.1 09/10/2015

Codifica Doc.
P92 0 GF K C 002

Coral Methane (mini LNG 7500 m³):

SCENARIO 1												
LINE 1 2 3 4 5 6 7 8 9 10 14 18											18	
to Bollard/Hook	В	В	C	С	D	Е	F	G	G	G	D	E
Total Line Lenght	55,6	51,6	48,9	47,2	21,6	32,0	48,3	50,0	52,7	55,0	16,3	24,8
Inclination Down	5°	5°	5°	6°	13°	8°	6°	5°	5°	5°	17°	4°
Tension (t)	8,7	9,6	8,2	9,1	slack	7,5	5,7	3,9	3,3	3,2	slack	14,6
% of Strength	21%	23%	20%	22%		18%	14%	9%	8%	8%		35%

FENDER	aa	bb	СС	dd
Thrust (t)	0	0	0	0
Compression (m)	0,00	0,00	0,00	0,00
Pressure (t/m2)				

	SCENARIO 2											
LINE	1	2	3	4	5	6	7	8	9	10	14	18
to Bollard/Hook	В	В	U	U	D	Е	F	G	G	G	D	Е
Total Line Lenght	55,6	51,6	48,9	47,2	21,6	32,0	48,3	50,0	52,7	55,0	16,3	24,8
Inclination Down	5°	5°	5°	6°	12°	8°	5°	5°	5°	5°	16°	4°
Tension (t)	14,3	15,6	16,5	17,6	6,4	5,8	17,5	16,1	15,0	14,2	12,7	12,4
% of Strength	34%	37%	39%	42%	15%	14%	42%	38%	36%	34%	30%	29%

FENDER	aa	bb	СС	dd
Thrust (t)	0	0	0	0
Compression (m)	0,00	0,00	0,00	0,00
Pressure (t/m2)				

	SCENARIO 3														
LINE	1	2	3	4	5	6	7	8	9	10	14	18			
to Bollard/Hook	В	В	C	U	D	Е	F	G	G	G	D	E			
Total Line Lenght	45,9	42,2	42,0	37,2	36,5	37,9	38,8	40,1	42,8	45,1	16,3	25,1			
Inclination Down	5°	5°	6°	6°	13°	9°	6°	5°	5°	5°	17°	4°			
Tension (t)	4,1	4,5	5,5	6,0	5,3	1,4	11,9	12,1	11,3	10,7	9,1	4,5			
% of Strength	10%	11%	13%	14%	13%	3%	28%	29%	27%	26%	22%	11%			

FENDER	aa	bb	СС	dd
Thrust (t)	0	0	0	0
Compression (m)	0,00	0,00	0,00	0,00
Pressure (t/m2)				

Foglio 43 di 50

Codifica Doc.

P92 0 GF K C 002

Rev.1 09/10/2015

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

				SCEI	NARIO 4	4						
LINE	1	2	3	4	5	6	7	8	9	10	14	18
to Bollard/Hook	В	В	С	С	D	Ε	F	G	G	G	D	Ε
Total Line Lenght	45,9	42,2	42,0	37,2	36,5	37,9	38,8	40,1	42,8	45,1	16,3	25,1
Inclination Down	5°	5°	6°	6°	12°	9°	6°	5°	5°	5°	16°	4°
Tension (t)	slack	slack	slack	slack	9,3	slack	5,0	7,2	6,7	6,3	13,7	slack
% of Strength					22%		12%	17%	16%	15%	33%	
FENDER	aa	bb	СС	dd								
Thrust (t)	19	0	0	0								
Compression (m)	0,04	0,00	0,00	0,00								
Pressure (t/m2)	3,5											

	SCENARIO 5														
LINE	1	2	3	4	5	6	7	8	9	10	14	18			
to Bollard/Hook	В	В	С	С	D	E	F	G	G	G	D	E			
Total Line Lenght	45,9	42,2	42,0	37,2	36,5	37,9	38,8	40,1	42,8	45,1	16,3	25,1			
Inclination Down	5°	5°	6°	6°	12°	9°	6°	6°	5°	5°	17°	4°			
Tension (t)	0,7	0,6	1,3	1,2	7,3	slack	slack	slack	slack	slack	10,9	slack			
% of Strength	2%	1%	3%	3%	17%						26%				

FENDER	aa	bb	СС	dd
Thrust (t)	0	0	34	51
Compression (m)	0,00	0,00	0,07	0,11
Pressure (t/m2)			6,2	9,4

	SCENARIO 6														
LINE	1	2	3	4	5	6	7	8	9	10	14	18			
to Bollard/Hook	В	В	U	U	D	Е	F	G	G	G	D	Е			
Total Line Lenght	45,9	42,2	42,0	37,2	36,5	37,9	38,8	40,1	42,8	45,1	16,3	25,1			
Inclination Down	5°	5°	6°	6°	13°	9°	6°	6°	5°	5°	17°	4°			
Tension (t)	0,5	0,5	0,7	0,7	2,4	slack	slack	slack	slack	slack	3,8	0,1			
% of Strength	1%	1%	2%	2%	6%						9%	0%			

FENDER	aa	bb	СС	dd
Thrust (t)	32	43	66	73
Compression (m)	0,07	0,09	0,16	0,18
Pressure (t/m2)	5,9	8,0	12,2	13,5

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

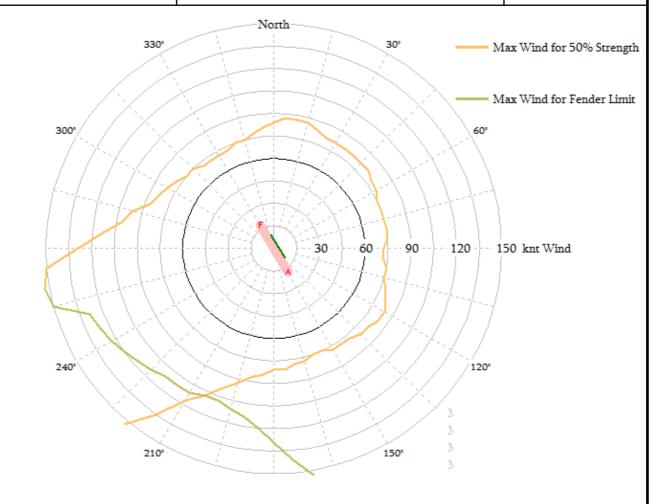
Foglio 44 di 50

Codifica Doc.
P92 0 GF K C 002

				SC	ENARIC	7						
LINE	1	2	3	4	5	6	7	8	9	10	14	18
to Bollard/Hook	В	В	С	С	D	Е	F	G	G	G	D	Е
Total Line Lenght	45,9	42,2	42,0	37,2	36,5	37,9	38,8	40,1	42,8	45,1	16,3	25,1
Inclination Down	5°	5°	6°	6°	13°	9°	6°	6°	5°	5°	18°	4°
Tension (t)	0,5	0,6	slack	0,1	slack	2,7	0,6	slack	slack	slack	slack	6,7
% of Strength	1%	2%		0%		6%	1%					16%

FENDER	aa	bb	СС	dd
Thrust (t)	52	52	52	52
Compression (m)	0,11	0,11	0,11	0,11
Pressure (t/m2)	9,6	9,6	9,7	9,7

				SCEI	NARIO 8	3						
LINE	1	2	3	4	5	6	7	8	9	10	14	18
to Bollard/Hook	В	В	C	C	D	Е	F	G	G	G	D	Е
Total Line Lenght	45,9	42,2	42,0	37,2	36,5	37,9	38,8	40,1	42,8	45,1	16,3	25,1
Inclination Down	5°	5°	6°	6°	14°	8°	6°	6°	5°	5°	19°	4°
Tension (t)	1,2	1,6	slack	0,1	slack	11,9	1,5	slack	slack	slack	slack	21,0
% of Strength	3%	4%		0%		28%	4%			·		50%


FENDER	aa	bb	CC	dd
Thrust (t)	20	22	26	28
Compression (m)	0,04	0,05	0,06	0,06
Pressure (t/m2)	3,8	4,1	4,9	5,2

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 45 di 50

Codifica Doc. P92 0 GF K C 002

Pressure (t/m2)

IMPIANTO / OPERA

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 46 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

Coral Energy (mini LNG 15000 m³):

			005010004													
					SC	ENARIC) 1									
LINE	1	2	3	4	5	6	7	9	10	11	14	16	17	18		
to Bollard/Hook	Α	Α	В	В	В	G	G	Η	Н	D	D	Е	G	Е		
Total Line Lenght	60,5	57,6	52,3	49,4	48,6	48,1	49,4	56,1	57,9	28,9	21,9	25,3	47,1	26,0		
Inclination Down	8°	9°	10°	10°	11°	7°	7°	6°	6°	19°	25°	14°	7°	13°		
Tension (t)	11,6	12,2	12,6	13,9	14,4	8,1	7,9	4,6	4,4	slack	slack	12,8	8,1	12,3		
% of Strength	20%	21%	21%	23%	24%	14%	13%	8%	7%			22%	14%	21%		
FENDER	aa	bb	СС	dd												
Thrust (t)	0	0	0	0												
Compression (m)	0,00	0,00	0,00	0,00												

					SCEI	NARIO 2	2							
LINE	1	2	3	4	5	6	7	9	10	11	14	16	17	18
to Bollard/Hook	Α	Α	В	В	В	G	G	Н	Н	D	D	Е	G	Е
Total Line Lenght	60,5	57,6	52,3	49,4	48,6	48,1	49,4	56,1	57,9	28,9	21,9	25,3	47,1	26,0
Inclination Down	8°	9°	10°	10°	10°	7°	7°	6°	6°	18°	24°	14°	7°	14°
Tension (t)	20,1	20,7	27,1	28,7	27,7	27,3	26,1	22,2	21,4	10,0	18,0	5,3	28,5	4,9
% of Strength	34%	35%	46%	49%	47%	46%	44%	38%	36%	17%	30%	9%	48%	8%
FENDER	aa	bb	СС	dd										
Thrust (t)	0	0	0	0										
Compression (m)	0,00	0,00	0,00	0,00										
Pressure (t/m2)			·											

					SC	ENARIC) 3							
LINE	1	2	3	4	5	6	7	9	10	11	14	16	17	18
to Bollard/Hook	Α	Α	В	В	В	G	G	Н	Н	D	D	Е	G	Е
Total Line Lenght	60,5	57,6	52,3	49,4	48,6	48,1	49,4	56,1	57,9	28,9	21,9	25,3	47,1	26,0
Inclination Down	9°	9°	10°	10°	11°	7°	7°	6°	6°	18°	24°	14°	7°	14°
Tension (t)	5,5	5,7	8,8	9,3	8,9	18,6	17,7	16,3	15,7	7,3	11,8	0,3\$	19,3	0,2\$
% of Strength	9%	10%	15%	16%	15%	31%	30%	28%	27%	12%	20%	0%	33%	0%
FENDER	aa	bb	СС	dd										
Thrust (t)	0	0	0	0	İ									I
Compression (m)	0,00	0,00	0,00	0,00	1									
Pressure (t/m2)														

					SCE	NARIO 4	4							
LINE	1	2	3	4	5	6	7	9	10	11	14	16	17	18
to Bollard/Hook	Α	Α	В	В	В	G	G	Н	Н	D	D	E	G	E
Total Line Lenght	60,5	57,6	52,3	49,4	48,6	48,1	49,4	56,1	57,9	28,9	21,9	25,3	47,1	26,0
Inclination Down	9°	9°	10°	11°	11°	7°	7°	6°	6°	18°	24°	15°	7°	14°
Tension (t)	slack	slack	slack	slack	slack	8,2	7,7	10,5	10,0	15,1	20,8	slack	8,8	slack
% of Strength						14%	13%	18%	17%	26%	35%		15%	
FENDER	aa	bb	СС	dd										
Thrust (t)	16	60	0	0	j									
Compression (m)	0,03	0,01	0,00	0,00	j									
Pressure (t/m2)	2,9				<u></u>									

COSTIERO GNL ORISTANO

PROGETTO AUTORIZZATIVO DEPOSITO

Foglio 47 di 50

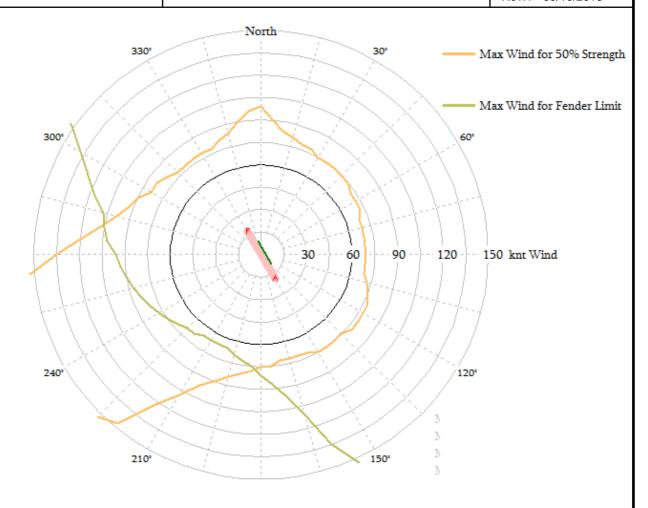
Codifica Doc.

P92 0 GF K C 002

2 A 57,6	3 B 52,3	4 B	5	6 G	7	9	10	11	14	16	17	18
57,6			В	G)							
	52,3			י	G	Н	Н	D	D	Ε	G	Е
00		49,4	48,6	48,1	49,4	56,1	57,9	28,9	21,9	25,3	47,1	26,0
J 9	10°	11°	11°	8°	7°	6°	6°	18°	24°	15°	8°	14°
2,5	5,4	4,9	2,9	slack	slack	slack	slack	12,7	12,0	slack	slack	slack
4%	9%	8%	5%					22%	20%			
bb	СС	dd										
0	45	80										
0,00	0,10	0,21										
	8,4	14,8										
)	4% bb 0	2,5 5,4 4% 9% bb cc 0 45 0 0,00 0,10	2,5 5,4 4,9 4% 9% 8% bb cc dd 0 45 80 0 0,00 0,10 0,21	2,5 5,4 4,9 2,9 4% 9% 8% 5% bb cc dd	2,5 5,4 4,9 2,9 slack 4% 9% 8% 5% bb cc dd	2,5 5,4 4,9 2,9 slack slack 4% 9% 8% 5% bb cc dd	2,5 5,4 4,9 2,9 slack slack slack 4% 9% 8% 5%	2,5 5,4 4,9 2,9 slack slack slack slack 4% 9% 8% 5%	2,5 5,4 4,9 2,9 slack slack slack slack 12,7 4% 9% 8% 5% 22% bb cc dd 0 45 80 0 0,00 0,10 0,21	2,5 5,4 4,9 2,9 slack slack slack slack 12,7 12,0 4% 9% 8% 5%	2,5 5,4 4,9 2,9 slack slack slack slack 12,7 12,0 slack 4% 9% 8% 5%	2,5 5,4 4,9 2,9 slack slack slack slack 12,7 12,0 slack slack 4% 9% 8% 5%

	SCENARIO 6													
LINE	1	2	3	4	5	6	7	9	10	11	14	16	17	18
LINE	1		5	4	5	D	/	9	10	11	14	10	1/	19
to Bollard/Hook	Α	Α	В	В	В	G	G	Н	Н	D	D	E	G	Е
Total Line Lenght	60,5	57,6	52,3	49,4	48,6	48,1	49,4	56,1	57,9	28,9	21,9	25,3	47,1	26,0
Inclination Down	9°	9°	10°	11°	11°	8°	7°	6°	6°	18°	24°	14°	8°	14°
Tension (t)	2,2	2,0	3,0	2,8	2,0	slack	slack	slack	slack	4,5	6,4	slack	slack	slack
% of Strength	4%	3%	5%	5%	3%					8%	11%			
FENDER	aa	bb	СС	dd										
Thrust (t)	2	47	106	101										
Compression (m)	0,01	0,10	0,37	0,47										
Pressure (t/m2)	0,4	8,7	19,6	18,8										

					SC	ENARIC)7							
LINE	1	2	3	4	5	6	7	9	10	11	14	16	17	18
to Bollard/Hook	Α	Α	В	В	В	G	G	Н	Н	D	D	Е	G	Е
Total Line Lenght	60,5	57,6	52,3	49,4	48,6	48,1	49,4	56,1	57,9	28,9	21,9	25,3	47,1	26,0
Inclination Down	9°	9°	10°	11°	11°	7°	7°	6°	6°	19°	26°	14°	8°	14°
Tension (t)	1,0	1,2	0,2	0,4	1,0	0,3	0,4	slack	slack	slack	slack	7,7	0,1	7,4
% of Strength	2%	2%	0%	1%	2%	1%	1%					13%	0%	13%
FENDER	aa	bb	СС	dd										
Thrust (t)	67	68	70	71										
Compression (m)	0,16	0,17	0,17	0,18										
Pressure (t/m2)	12,4	12,6	13,0	13,2										


					SCE	NARIO 8	3							
LINE	1	2	3	4	5	6	7	9	10	11	14	16	17	18
to Bollard/Hook	Α	Α	В	В	В	G	G	Н	Н	D	D	Е	G	Е
Total Line Lenght	60,5	57,6	52,3	49,4	48,6	48,1	49,4	56,1	57,9	28,9	21,9	25,3	47,1	26,0
Inclination Down	9°	9°	10°	11°	11°	7°	7°	6°	6°	20°	27°	13°	8°	13°
Tension (t)	2,6	3,0	0,6	1,2	2,6	1,5	1,7	slack	slack	slack	slack	26,3	1,1	25,4
% of Strength	4%	5%	1%	2%	4%	3%	3%					45%	2%	43%
FENDER	aa	bb	СС	dd										
Thrust (t)	18	18	19	19										
Compression (m)	0,04	0,04	0,04	0,04										
Pressure (t/m2)	3,4	3,4	3,5	3,6										

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 48 di 50

Codifica Doc. P92 0 GF K C 002

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 49 di 50

Codifica Doc.
P92 0 GF K C 002

Rev.1 09/10/2015

6 CONCLUSIONI

Lo studio di ormeggio svolto ha avuto come obbiettivo quello di definire un layout preliminare degli arredi di ormeggio e la robustezza strutturale di tale soluzione per il futuro terminale di discarica GNL a Oristano.

Il sistema di ormeggio proposto prevede l'installazione di:

- 6 ganci di ormeggio tripli aventi un SWL totale di 180 t da installarsi a terra;
- 4 ganci di ormeggio doppi aventi un SWL totale di 120 t da installarsi sui breasting dolphin;
- 4 parabordi modello SPC 1100 grado G1.8 (o equivalenti).

Il sistema di ormeggio è stato verificato considerando tre diverse taglie di navi, ovvero:

- **Bettolina:** LNG Carrier da 1,000 m³, rappresentativa della taglia minima di navi che potranno accedere al terminale per effettuare dispaccio di GNL;
- Mini LNG 7500 m³: LNG Carrier da 7,500 m³, rappresentativa della taglia media di navi che opereranno presso il terminale per approvigionamento di GNL;
- Mini LNG 15000 m³: LNG Carrier da 15,000 m³, rappresentativa della taglia massima di navi che opereranno presso il terminale per approvigionamento di GNL;

Le analisi, svolte mediante l'utilizzo del software commerciale Optimoor, hanno evidenziato che il sistema di ormeggio proposto risulta essere adeguato all'attracco delle navi in oggetto, garantendo che le forze agenti su parabordi e linee di ormeggio restano al di sotto dei valori limite (tensione massima minore di 50% MBL), nelle condizioni meteo estrapolate dallo studio meteomarino disponibile, d'accordo con l'OCIMF per quanto riguarda la nave da 15000 m³. Per le restanti due tipologie di navi si arriva alla percentuale massima di stress ammissibile sui cavi (50 e 51% rispettivemente per nave da 7500 m³ e per la bettolina). Questo risultato, è ritenuto accettabile vista l'attuale fase di progetto ma si suggerisce, una volta definite con maggior dettaglio le navi che opereranno presso il terminale, di effettuare analisi di ormeggio di dettaglio per individuare i limiti di operatività massimi del sistema.

Le risultanze di tale documento potranno essere utilizzate quale base per la definizione di eventuali ordinanze per la gestione delle navi in arrivo e partenza al terminale, che saranno comunque analizzate in dettaglio con le Autorità competenti durante le successive fasi di sviluppo del progetto.

Durante il processo autorizzativo del progetto, saranno comunque indagati in dettaglio tutti gli aspetti relativi di concerto con le Autorità coinvolte.

PROGETTO AUTORIZZATIVO DEPOSITO COSTIERO GNL ORISTANO

Foglio 50 di 50

Codifica Doc. P92 0 GF K C 002

Rev.1 09/10/2015

RIFERIMENTI

Port Engineering Planning Construction Maintenance and Security, Gregory P. Tsinker, john Wiley and Sons, 2004;

BSI, 2005, Maritime Structures — Part 4: Code of Practice for Design of Fendering and Mooring System, BS 6349:4:1994;

OCIMF, "Mooring Equipment Guidelines 3" (MEG 3) Third Edition, 2008;

OCIMF, "Marine Terminal Baseline Criteria and Asseeement Questionnaire, First Edition 2004;

D'Appolonia, 2015, "Deposito Costiero GNL Oristano – Studio Meteo-Marino Preliminare", Aprile 2015.