

Campo di CLARA NORD

Aggiornamento al 31/12/14

Il campo di Clara Nord è ubicato nell'offshore Adriatico circa 50 km a NE di Ancona, a una profondità d'acqua di circa 75 m, nella concessione B.C13.AS (Figura 2).

CONCESSIONE	SCADENZA	OPERATORE	TITOLARI	QUOTA	REGIONE
B C13 AS	27/05/2020	Eni	Eni	51%	Marcho
B.013.A3	21/03/2020		Edison	49%	Marche

Il giacimento è costituito da una blanda anticlinale con asse principale orientato N-S e si estende per circa 8 km². La serie mineralizzata è compresa tra 900 e 1400 mslm e interessa livelli della serie PLQ della Formazione Carola (Figura 3).

Il campo di Clara Nord è stato scoperto nel 1984 con la perforazione del pozzo Clara Nord 1; nel 1996 sono stati perforati i pozzi Clara Nord 2 e 3 per delimitare la struttura.

Nell'ottobre 1998 è stata presentata da Eni una domanda di pronuncia di compatibilità ambientale concernente la realizzazione della piattaforma Clara Nord con la perforazione di 5 pozzi e la posa del relativo sealine di collegamento.

Nel documento SIA si riportava un profilo di produzione ottenuto dagli studi statico e dinamico di giacimento (modello Eclipse) dell'ottobre 1998. Tale profilo stimava un recupero di 3460 MSm³ di gas in 29 anni con un picco di produzione giornaliera di 1300 kSm³/g.

La subsidenza massima, prevista in relazione a tale profilo e valutata con un modello geomeccanico del tipo Geertsma cilindrico, è stata pari a 14 cm (in corrispondenza del culmine del giacimento) dopo 15 anni dall'inizio produzione; alla stessa data il cono di subsidenza (linea d'isosubsidenza di 2 cm) è risultato estendersi per circa 2,8 km verso la costa.

Per tale previsione erano stati utilizzati i parametri geomeccanici che, con le informazioni disponibili a tale data, venivano considerati come più rappresentativi del comportamento della formazione, in particolare:

• compressibilità uniassiale $C_m = 0,509 \ 10^{-4} \ bar^{-1}$

coefficiente di Poisson V = 0,33.

In seguito al Decreto VIA nº 4470 del 7/02/00 che approvava il programma lavori presentato, nel periodo 1999-2000 si è sviluppato il campo con la perforazione di 5 nuovi pozzi (Clara Nord 4, 5, 6, 7 e 8) da una piattaforma di tipo BEAF. La produzione è stata poi avviata nel dicembre 2000 con una portata iniziale di circa 740 kSm³/g.

Nel luglio 2005, è stato trasmesso al Ministero dell'Ambiente il rapporto "Campo di Clara Nord – Aggiornamento / taratura del modello predittivo di subsidenza" (rel. Eni-INPE n° 94/05 di luglio 2005).

In tale aggiornamento il modello statico di giacimento è stato esteso agli acquiferi idraulicamente connessi ai livelli produttivi, ed è stato calibrato (modello dinamico Eclipse) sulla base della storia produttiva del giacimento stesso comprendente tutti i dati disponibili sino al 31/03/05.

Con il nuovo modello dinamico di giacimento si è generato un nuovo profilo di produzione che ha ridotto le riserve recuperabili a vita intera (24 anni) a un valore di 1300 MSm³, con un calo, quindi, del 62% rispetto allo studio dell'ottobre 1998.

La subsidenza massima, prevista in relazione a tale profilo e valutata con un modello geomeccanico del tipo Geertsma semianalitico, è stata pari a 30,7 cm al gennaio 2024; alla stessa data il cono di subsidenza (linea d'isosubsidenza di 2 cm) è risultato estendersi per circa 8 km verso la costa.

Per tale previsione sono stati utilizzati i parametri geomeccanici che, con le informazioni disponibili a tale data, erano considerati come più rappresentativi del comportamento della formazione, in particolare:

- compressibilità uniassiale $C_m = 9,51 \ 10^{-5} \ bar^{-1}$
- coefficiente di Poisson v = 0,30.

Nel maggio 2007 è stata fatta una nuova revisione degli studi statico e dinamico dei campi del Clara Complex (Clara Est, Clara Nord, Calpurnia) e del campo di Calipso per valutare anche eventuali effetti d'interferenza idraulica e meccanica fra i campi stessi.

A tale proposito si è proceduto a:

- costruire un unico modello statico di giacimento per i 4 campi dell'area; modello che è stato esteso anche agli acquiferi idraulicamente connessi ai livelli produttivi;
- simulare il comportamento dinamico di tali campi con un unico modello Eclipse sia per calibrare il modello statico, sia per tener conto di possibili interferenze dinamiche fra i campi stessi. Per la calibrazione si sono utilizzate le informazioni acquisite durante lo sviluppo e tutta la storia produttiva dei sopracitati 4 campi (aggiornata al 31/12/06).

Nel caso di Clara Nord (rel. *Eni-INPE n° 066d-07 del maggio 2007*) tale revisione ha portato a una riduzione del 47% del GOIP totale del campo rispetto al volume inizialmente stimato (*GOIP studio statico dell'ottobre 1998 pari a* 4620 *MSm³*, *GOIP revisione studio statico del maggio 2007 pari a* 2440 *MSm³*). Il nuovo modello ha previsto, inoltre, una diminuzione di circa il 71% rispetto alla stima dell'ottobre 1998 delle riserve producibili a vita intera, che risultano pari a 1006 MSm³ al 2013.

Il calo dei valori delle riserve recuperabili a vita intera che si riscontra tra lo studio iniziale di giacimento (ottobre 1998) e le successive revisioni del luglio 2005 e maggio 2007 è conseguenza del comportamento produttivo dei pozzi che si è rivelato inferiore alle attese a causa della produzione d'acqua di formazione.

Nel 2010 è stata fatta un'altra revisione dello studio statico e dinamico di giacimento (*rel. Eni-GISE n° 39/10 del dicembre 2010*) per individuare possibili azioni atte a ottimizzare la produzione e il recupero di gas, stante il notevole interesse minerario di livelli formati in prevalenza da alternanze molto fitte di sabbia, silt e argilla ("strati sottili") rinvenuti nel campo e in parte già sviluppati.

Tale studio ha portato a definire un nuovo profilo di produzione con riserve producibili a vita intera (i.e. 2020) aumentate del 42% e ammontanti a 1724 MSm³ (Figura 4).

Gli interventi d'ottimizzazione ipotizzati nel corso di detto studio sono stati realizzati tra agosto e dicembre 2011 con la perforazione di 4 side track (Clara Nord 4dirA, Clara Nord 8dirA, Clara Nord 6dirA e Clara Nord 7dirA).

Nell'aprile 2013, allo scopo di aggiornare il modello dinamico in seguito agli interventi fatti su Clara Nord e agli sviluppi previsti per ottimizzare il recupero finale dei campi di *Clara Com*-

plex e del campo di Calipso, è stata fatta un'ulteriore revisione degli studi statico e dinamico di tali giacimenti.

Nel caso di Clara Nord tale revisione ha portato a un nuovo profilo di produzione con riserve producibili a vita intera (i.e. 2020) aumentate del 15% e pari a un volume complessivo di 1975 MSm³.

In Figura 5 sono riportati gli andamenti storici della portata di gas (kSm^3/g), d'acqua (m^3/g) e della produzione cumulativa di gas aggiornata al 31/12/14 (pari a 1570 MSm^3).

Nella Figura 6 è presentato il confronto tra i profili di pressione calcolati con i modelli Eclipse del 12/2010 e del 04/2013 con le pressioni statiche misurate nel livello più rappresentativo del campo (livello PLQ-HH1). Considerato che la percentuale di riserve già prodotte al 31/12/14 è pari al 80% del totale e che il modello Eclipse dell'aprile 2013 riproduce in modo accurato i dati misurati di pressione, si ritiene che le previsioni sul comportamento futuro del campo in termini di produzione e pressione abbiano un buon grado di affidabilità.

Sulla base dei risultati degli studi (statico e dinamico) di giacimento fatti nel corso delle varie revisioni sopra descritte, di volta in volta si sono aggiornate le previsioni di subsidenza del campo Clara Nord e degli altri campi dell'area.

A tale proposito si ricorda che nel maggio 2007 è stato realizzato un unico modello geomeccanico a elementi finiti (FEM - Isamgeo) dei campi del *Clara Complex* e del campo di Calipso (rel. *Eni-INPE n° 074-07 del maggio 2007*).

Le simulazioni effettuate con tale modello avevano portato alle seguenti conclusioni:

- a) per il campo di Clara Nord il valore di subsidenza massima è risultato pari a 40 cm al 2007. L'incremento di subsidenza massima rispetto a quanto stimato nel SIA del 1998 è da imputarsi principalmente ai nuovi valori utilizzati per il coefficiente di compressibilità C_m, valori nettamente maggiori di quelli impiegati nella valutazione del 1998;
- b) l'estensione verso la costa del cono di subsidenza relativo ai 4 campi (*Clara Complex* e Calipso) è risultata sempre d'entità modesta (max. 6 km in corrispondenza del campo di Clara Est) per la presenza di un limite deposizionale dei livelli mineralizzati situato a SW

dei campi di Calipso e Clara Est di cui si dirà con più dettaglio in seguito. La distanza minima tra la costa e la linea d'isosubsidenza di 2 cm è risultata, pertanto, pari a 32 km. E' stata anche eseguita un'analisi di sensitività sulle proprietà geomeccaniche considerando due diversi livelli di probabilità per la compressibilità C_m, corrispondenti ai quantili 97.5% e 2.5% della relazione regionale proposta da Hueckel *et al*¹. Da tale analisi si è concluso che i valori massimi di subsidenza stimati per il giacimento di Clara Nord ricadevano nell'intervallo 12÷56 cm rispetto al valore di 40 cm del caso più probabile. Per maggiori dettagli su tali scenari si rimanda alla sopracitata relazione rel. *INPE n° 074-07 del maggio 2007*.

Nel corso del 2010, nell'ambito della documentazione tecnica preparata per l'istanza concernente il progetto di sviluppo della vicina struttura di Elettra, si è aggiornato il modello geomeccanico di tutta l'area al fine di prevedere l'eventuale subsidenza indotta dalla coltivazione dell'insieme dei 5 campi in essa compresi (*Clara Complex*, Calipso ed Elettra). Tale previsione è stata fatta con il modello FEM Isamgeo relativamente a tre diversi scenari di compressibilità (rel. *Eni-Tera: Campi del Clara Complex, Calipso ed Elettra - Modello Elasto-Plastico di Subsidenza-Management Summary - agosto 2010*).

Le simulazioni con modello sono state protratte fino al 2054 onde tener conto degli effetti dell'evoluzione della pressione nelle zone mineralizzate e in acquifero dopo la fine della produzione.

Per lo scenario di riferimento (C_m_Med), ritenuto il più probabile sulla base della taratura del coefficiente di compressibilità con i dati delle misure dei CGPS (installati dal 2007) sulle piattaforme dell'area, la subsidenza massima prevista per Clara Nord è stata stimata in 32 cm al 2012. Per quanto riguarda la distanza dalla costa della curva d'isosubsidenza di 2 cm, corrispondente alla massima estensione del cono di subsidenza relativo ai 5 campi, questa è risultata essere di circa 32 km.

Un ulteriore aggiornamento/taratura del modello geomeccanico del 2010 è stato fatto nel dicembre 2011, previa revisione del modello 3D di giacimento dei campi dell'area (*Clara*

¹ T. Hueckel, G. Cassiani, J. H. Prévost, and D. A. Walters, Field derived compressibility of deep sediments of the northern Adriatic, in Land Subsidence – Special Volume, Proc. of the 7th Int. Symp. on Land Subsidence, P. R. China, 23-28 Oct. 2005.

Complex, Calipso ed Elettra). Quest'ultima revisione si è resa necessaria per tener conto sia del nuovo progetto di sviluppo "Clara NW" che prevede la perforazione di 4 nuovi pozzi in corrispondenza di una culminazione secondaria (NW) di Clara Est, sia dei nuovi dati disponibili a seguito della campagna di workover del 2011 sui pozzi dei campi di Calpurnia e di Clara Nord. Nel caso di Clara Nord il nuovo studio di giacimento ha portato a una conferma del GOIP totale del campo e delle riserve producibili a vita intera rispetto alla valutazione fatta al dicembre 2010.

Con questi nuovi studi - statici, dinamici e geomeccanici - di giacimento si è voluto, quindi, valutare gli effetti di eventuali interazioni di tipo idraulico e/o meccanico fra campi del *Clara Complex,* di Calipso e di Elettra (*rel. Eni-Tera: Campi del Clara Complex, Calipso ed Elettra - Modello Elasto-Plastico di Subsidenza-Management Summary - dicembre 2011*).

Nel corso delle simulazioni con modello geomeccanico si sono considerati 3 possibili scenari per il coefficiente di compressibilità (C_m) che a loro volta hanno generato altrettanti scenari previsionali di subsidenza, i cui risultati oscillano nell'intorno di un valore medio all'interno di una banda di confidenza.

Per lo scenario ritenuto più probabile (C_m _Med), la subsidenza massima per il campo di Clara Nord è stata stimata in 48 cm (in corrispondenza della stazione CGPS installata in piattaforma) a fine produzione (2020).

Per lo scenario (C_m _Upper) più pessimistico e per tutti gli altri scenari considerati nello studio la linea d'isosubsidenza dei 2 cm si è sempre mantenuta a una distanza dalla costa superiore ai 32 km.

A supporto di un nuovo progetto di sviluppo denominato "Clara SE", che prevede l'installazione di una nuova piattaforma di produzione e la perforazione di due nuovi pozzi (Clara Est 14 dir e Clara Est 15 dir) per l'ottimizzazione della coltivazione di alcuni livelli del campo (serie PLQ- F.ne Carola), è stato nuovamente aggiornato nel corso del 2013 il model-lo dinamico di giacimento (rel. *Eni-GISE n.11/2013: Clara Complex – campi: Calipso-Calpurnia-Clara Est-Clara Nord-Elettra. Aggiornamento del modello di giacimento per model-lo geomeccanico. Scheda Riassuntiva aprile 2013*). Come fatto in precedenza, anche in quest'ultimo caso l'aggiornamento del modello di giacimento i campi del *Clara*

Complex, di Calipso ed Elettra al fine di tener conto delle possibili interazioni di natura idraulica e meccanica fra gli stessi.

Un nuovo modello geomeccanico 3D a elementi finiti (rel. *Eni-Tera: Campi del Clara Complex, (con il nuovo sviluppo "Clara Sud-Est"), Calipso ed Elettra - Modello Elasto-Plastico di Subsidenza-Management Summary - settembre 2013*) è stato poi finalizzato per valutare l'entità della subsidenza e l'estensione del relativo cono indotti dalla coltivazione dei campi sopracitati.

Ancora una volta le simulazioni fatte hanno preso in esame tre diversi scenari di compressibilità: i relativi risultati sono riportati in Tabella 1 per gli anni ritenuti più significativi durante e dopo la vita produttiva dei campi. Lo studio, infatti, è stato protratto fino al 2065 (fine simulazione) in modo da considerare l'effetto dell'evoluzione della pressione nelle regioni mineralizzate e in acquifero dopo la fine della produzione.

Tabella 1 – Risultati finali: massima subsidenza (espressa in cm) per tutti gli scenari

Scenario	2013	2021	2026	2035	2065
Cm_Med	51	68	67	65	62
Cm_Upper	68	92	90	88	84
Cm_Lower	11	15	15	15	16

Nel caso ritenuto più probabile (scenario di compressibilità Cm_Med), la subsidenza massima prevista per tutta l'area in esame si verifica proprio in corrispondenza del campo di Clara Nord ed è pari a circa 68 cm nel 2021; tale valore si riduce a circa 62 cm alla fine della simulazione (Figura 7).

Anche in questo nuovo aggiornamento del modello geomeccanico la linea d'isosubsidenza dei 2 cm si mantiene per tutti gli scenari considerati a una distanza dalla costa sempre superiore a 32 km (Figura 8).

Il fatto che tutti gli studi geomeccanici sino ad ora eseguiti per valutare i possibili effetti d'interferenza idraulica e meccanica fra vari i campi considerati concordino nel prevedere

che il fenomeno della subsidenza si esaurisca a grande distanza dalla costa (circa 32 km), ha una spiegazione nel particolare assetto geologico dell'area stessa, come del resto già accennato in precedenza.

Tale assetto, rappresentato nello sketch stratigrafico-strutturale di Figura 9 e basato su un'interpretazione sismica controllata con dati di pozzo, definisce uno schema di rapporti verticali e laterali tra le formazioni che costituiscono i giacimenti (reservoir e copertura) e il substrato che limitano l'estensione del fenomeno subsidenziale verso costa.

Infatti, lungo la direttrice esaminata (WSW-ENE) in direzione della costa, i livelli mineralizzati si chiudono per limite deposizionale in onlap sui livelli argillosi della F.ne Santerno che rappresenta un'importante barriera idraulica verso costa.

Il substrato dell'offshore anconetano presenta, inoltre, una successione carbonatica prepliocenica posta talora a poche centinaia di metri di profondità – (pozzo Brezza1 - Figura 9) che localmente affiora sulla costa (promontorio M.te Conero) in corrispondenza di alti strutturali appenninici, mentre la successione terrigena di copertura è relativa a intervalli stratigrafici differenti dalle zone reservoir del *Clara Complex* e campi limitrofi. Tutto ciò limita sensibilmente la possibilità che si possa verificare una depressurizzazione e conseguente compattazione dei sedimenti sulla costa e nelle fasce antistanti al litorale.

E' del tutto comprensibile, quindi, che:

 sia per la presenza di tale barriera idraulica di tipo sedimentologico-strutturale interposta tra il complesso dei giacimenti in esame e la costa,

• sia per l'elevata distanza dei giacimenti stessi dalla costa (ad es. 50 km per Clara Nord), in tutte le previsioni il fenomeno di subsidenza si esaurisca rapidamente in direzione della costa e, quindi, la distanza del cono di subsidenza dalla costa stessa risulti elevata (almeno 32 km).

Tra la fine del 2007 e l'inizio del 2008 è stato eseguito un rilievo batimetrico multi-beam di un'area (superficie 1662 km²) comprendente i campi del *Clara Complex* e di Calipso. Per Clara Nord, tale rilievo ha consentito di evidenziare una zona di disturbo relativamente limitata arealmente e coincidente più o meno con la zona di culmine del giacimento pur in presenza di un andamento irregolare del fondale marino (Figura 10). Tale disturbo altimetrico, probabilmente da collegarsi con la coltivazione del giacimento stesso, raggiunge al massi-

mo un valore di 20 cm, inferiore, quindi, ai 40 cm previsti dal modello di subsidenza del 2007 (rel. *Eni - Università di Urbino dell'agosto 2008 trasmessa a MATTM in data 11/11/*08).

A partire dai primi anni '70, Eni ha progettato e realizzato lungo la costa adriatica una rete di livellazione geometrica che, su richiesta degli Enti di Controllo a livello regionale e nazionale (Regione Emilia Romagna, Provincia di Ravenna, Comune di Ravenna e Ministero dell'Ambiente), viene rilevata da oltre un decennio con cadenza periodica. A partire dalla campagna 2011, dopo un intervallo di un anno nel 2010 (anno in cui non sono state fatte livellazioni), tale periodicità ha una cadenza triennale come raccomandato nelle "*Linee Guida per lo Studio del Fenomeni di Subsidenza nell'Ambito dei Progetti di Sviluppo Sostenibile di Campi ad Olio e Gas*" emesse dal Dip. DMMMSA dell'Università di Padova nel 2007. Le specifiche tecniche adottate sono quelle ora in uso per i rilievi della rete Eni e rispettano le indicazioni contenute nelle già citate linee guida emesse dall'Università di Padova. Eni, inoltre, ha affidato la certificazione della documentazione e della metodologia utilizzata a un ente esterno, che attualmente è il Dipartimento DICAM dell'Università di Bologna.

La rete di livellazione, rilevata nel 2014 è suddivisa nelle seguenti aree di attività:

- dorsale Adriatica, da Treviso fino a Pesaro, compreso lo sviluppo degli sbracci sul delta del Po, per un totale di circa 1100 km di sviluppo lineare;
- tratto da Pesaro a P.to San Giorgio, per un totale di circa 220 km di sviluppo lineare;
- tratto Marche-Abruzzo, da P.to San Giorgio a Pescara, per un totale di circa 110 km di sviluppo lineare.

Le operazioni si sono svolte nel periodo compreso tra giugno e ottobre 2014 sotto la diretta supervisione di tecnici Eni e dei tecnici dell'ente certificatore.

Si ritiene opportuno sottolineare che, sebbene vi siano punti di contatto tra i vari tratti di livellazione afferenti alla rete Eni, allo stato attuale non è possibile utilizzare in modo congiunto i valori di quota ottenuti sulle singole reti, a causa della disomogeneità tra i capisaldi origine delle tre reti di livellazione. Per ovviare a tale situazione, determinata da fattori am-

bientali (grandi distanze), su suggerimento del nostro ente certificatore è stata realizzata una linea di stazioni permanenti CGPS disposte a distanze regolari tra Pineto e P.to Sant'Elpidio che, con il consolidamento dei dati CGPS, costituiranno una serie di capisaldi origine omogenei, tali da consentire d'ottenere misure di quota fra loro consistenti da Treviso a Pescara.

Nel tratto di costa antistante alle piattaforme di Barbara NW, con l'acquisizione della campagna 2014, sono in totale disponibili 6 campagne di livellazione fatte negli anni 2006, 2007, 2008, 2009, 2011 e 2014. Si tratta complessivamente di un numero di misure ancora poco consolidato; il loro esame può consentire valutazioni d'ordine generale in merito alla velocità media di subsidenza del periodo 2006-2014, ma non può ancora essere considerato del tutto esaustivo ai fini del monitoraggio della costa che, comunque, è garantito da altri tipi di rilievo.

Nei prossimi anni, con nuove campagne di misura, con il consolidamento dei dati CGPS e dei rilievi SAR, sarà possibile fare interpretazioni più sicure dei dati di livellazione anche per il tratto a sud di Pesaro.

Si deve, inoltre, osservare che i dati di livellazione, misurati sul singolo caposaldo, non sono di solito sufficienti per caratterizzare la distribuzione areale della subsidenza. Le misure sul singolo caposaldo, infatti, possono essere talvolta alterate da "disturbi" accidentali intervenuti nel tempo sul manufatto su cui i capisaldi stessi sono stati materializzati.

Al fine d'ottenere una rappresentazione areale della subsidenza o della velocità media di subsidenza di una certa area è necessario avere, quindi, misure di livellazione di più capisaldi, per la cui interpretazione può convenire poi una suddivisione in opportune classi di valori, come di seguito specificato.

Per la tratta da Pesaro a P.to Sant'Elpidio le misure sui singoli capisaldi sono state elaborate tramite regressione lineare; le corrispondenti velocità medie annue d'abbassamento del suolo V_a^2 sono state poi raggruppate nelle seguenti 5 classi:

classe 4: include i capisaldi con V_a > 10 mm/a;

² Nel presente rapporto di norma le velocità di subsidenza (i.e di abbassamento della superficie) sono rappresentate con valori negativi. Per comodità d'interpretazione, però, nell'elenco che segue, come pure nei due paragrafi successivi, le velocità di subsidenza sono state rappresentate con valori positivi.

- classe 3: include i capisaldi con $5 \le V_a < 10 \text{ mm/a}$;
- classe 2, include i capisaldi con $3 \le V_a < 5$ mm/a;
- classe 1: include i capisaldi con $0 \le V_a < 3 \text{ mm/a}$;
- classe 0: include i capisaldi con V_a < 0 (sollevamento del suolo).

L'elaborazione con questo approccio delle misure di livellazione del periodo 2006-2011 mostra per l'area in esame un quadro di generale abbassamento (Figura 1), caratterizzato, però, da valori poco significativi, ove si consideri che il 93% dei punti analizzati ricade nella "classe 1" con una media pari a 1,6 mm/a.

I capisaldi per i quali si osservano alte velocità d'abbassamento (es. 15.6 mm/a nella zona di Pesaro), oppure fenomeni d'innalzamento del suolo (es. - 2 mm/a nella zona di P.to Sant'Elpidio) sono scarsi di numero (1%) e isolati: sono, quindi, poco significativi dal punto di vista areale. Non si possono escludere fenomeni localizzati dovuti a instabilità dei capisaldi stessi, che saranno comunque oggetto di verifica nelle prossime campagne di misura.

Figura 1 – Tratta Pesaro-Sant'Elpidio: Misure di livellazione (periodo 2006-2014)

Il confronto tra i dati CGPS delle stazioni ubicate nell'area in esame (Fano, Falconara e P.to San Giorgio) con le misure delle livellazioni mostra andamenti che, fatte salve le diverse precisioni in termini di ripetibilità, sono assolutamente compatibili.

Per completare il monitoraggio altimetrico del tratto di costa antistante alle piattaforme si è proceduto, inoltre, ad aggiornarne la copertura SAR (settembre 2014) per un'analisi integrata con i dati delle livellazioni (Appendice 1). Il confronto mostra come i profili altimetrici (Figura 11), pur se ottenuti con sistemi di monitoraggio molto diversi, abbiano un andamento del tutto comparabile senza particolari criticità.

Si è, quindi, proceduto all'integrazione dei dati SAR e di livellazione con i dati altimetrici forniti dalle stazioni CGPS installate nei siti onshore del tratto di costa antistante alle piattaforme.

Le attività di monitoraggio sono state integrate negli ultimi anni con un numero crescente di stazioni CGPS installate nelle piattaforme offshore. Dal 2007, infatti, sono state installate stazioni CGPS sulle piattaforme di Regina e Calpurnia (giugno 2007), Anemone B (agosto 2007), Annalisa (ottobre 2007), Calipso, Clara Est e Clara Nord (novembre 2007), Annamaria A e Annamaria-B (gennaio 2010), Clara W (ottobre 2010) e Guendalina (agosto 2011); le stazioni CGPS di Naide e PCC risultano, invece, operative dal luglio 2005, mentre la postazione Naomi-Pandora è attiva dal giugno 2002. Nel 2014, sono state installate anche le nuove stazioni CGPS di Elettra, Fauzia, la cui serie storica è troppo breve per consentire valutazioni specifiche.

Il sistema di monitoraggio è stato, poi, ulteriormente potenziato con la realizzazione lungo la costa, nel tratto prospiciente i campi sopracitati, di 3 stazioni altimetriche SSU (Satellite Survey Unit) equipaggiate ciascuna con un CGPS, un caposaldo di livellazione geometrica e due bersagli radar solidalmente connessi tra loro tramite una trave di cemento armato.

Le 3 stazioni SSU sono state realizzate nelle Centrali Eni di Rubicone, di Fano e di Falconara nel dicembre 2007 (Appendice 2); negli stessi siti sono stati perforati tra ottobre e dicembre 2008 anche tre pozzi assestimetrici per il monitoraggio della compattazione superficiale del terreno. Tali stazioni si sono aggiunte a quelle preesistenti, installate più a Nord lungo la costa ravennate, nelle località di Fiumi Uniti, di Smarlacca e di Spinaroni.

Inoltre, come detto in precedenza, sono state monumentate altre 4 stazioni CGPS in Ortona, Pineto, Grottammare e P.to Sant'Elpidio, il cui completamento è avvenuto nel dicembre 2009, tutte equipaggiate con 2 bersagli radar e con un caposaldo di livellazione.

Allo stato attuale la stazione di Ortona non è più operativa dal 19 aprile 2013 per l'alienazione dell'area.

Analogamente a quanto avviene per la livellazione, anche i dati del monitoraggio CGPS sono sottoposti a validazione da parte di un Ente esterno. Attualmente quest'attività è svolta dall'Università degli Studi di Bologna, facoltà di Fisica.

I dati CGPS acquisiti sulla piattaforma Clara Nord, certificati fino al 2013 e in fase di certificazione fino al 2014, sono stati elaborati con il software scientifico Bernese dalla ditta e-GEOS.

Per rappresentare in grafici plano-altimetrici la serie storica più completa di misure - ovvero quella estesa al 31/12/2014 (Figura 12) - sono stati utilizzati in questa relazione anche i dati non certificati, vista la generale convergenza di questi ultimi con quelli certificati, come mostrato in Tabella 2.

	Dat	ti Non Certi	ficati	C	Dati Certifica	ati	Delta (Non CertCert.)			
Stazione	Vel-N mm/a	Vel-E mm/a	Vel-H mm/a	Vel-N mm/a	Vel-E mm/a	Vel-H mm/a	D-N mm/a	D-E mm/a	D-H mm/a	
Clara-Nord	13,56	24,80	-16,92	13,01	25,24	-18,38	0,55	-0,44	1,46	

Tabella 1– Confronto dati CGPS certificati e non certificati aggiornati al 31/12/2013

A proposito dei monitoraggi GPS è opportuno precisare che l'analisi e l'interpretazione degli andamenti nel tempo delle misure altimetriche da utilizzarsi per una verifica/taratura dei modelli previsionali di subsidenza, non può essere considerata sufficientemente attendibile per dataset relativi a periodi di osservazione inferiori ai 36 mesi, come indicato dall'Ente che certifica tali dati con cadenza biennale.

L'Ente certificatore, infatti, verifica e valida i dati registrati al fine d'avere un numero sufficiente d'osservazioni per il corretto inquadramento delle componenti periodiche, della loro incidenza sulle misure e poter filtrare il "rumore" che per piccole velocità di subsidenza è dello stesso ordine di grandezza del valore del fenomeno fisico misurato.

Serie storiche di durata inferiore ai 36 mesi possono, quindi, essere utilizzate solo per confrontare il trend degli andamenti temporali delle misure altimetriche con quello dei valori calcolati da modello previsionale, qualora si abbia una subsidenza caratterizzata da valori di sufficientemente elevati. In questi casi sarà possibile monitorare solo eventuali anomalie di trend ma non procedere a un confronto diretto dei valori attesi da modello vs. i valori misurati.

In generale:

- dataset < 12mesi: solo follow up per monitoraggio dei dati acquisiti;
- dataset di 12÷36 mesi e
 - piccoli valori di subsidenza attesi: analisi tendenziale del fenomeno e monitoraggio delle anomalie verso il trend previsionale;
 - grandi valori di subsidenza attesi: analisi tendenziale del fenomeno per calibrazione del modello previsionale;
- dataset > 36 mesi: analisi di trend e calibrazione dei modelli geomeccanici confrontando il dato di velocità di subsidenza misurato (depurato dalla velocità di subsidenza naturale) e i valori dei modelli previsionali.

Le elaborazioni sono state fatte con software scientifico Bernese 5.0, strategia OBS-MAX, utilizzando i prodotti finali (effemeridi precise e file del polo) messi a disposizione dall'IGS (International GNSS Service).

Nel corso del 2013, a seguito del rilascio del nuovo sistema di riferimento, sono stati rielaborati tutti i dati secondo il sistema ITRF2008-IGB08, al quale fanno riferimento i grafici della presente relazione.

Per le nostre elaborazioni il sistema di riferimento è materializzato dalle stazioni appartenenti alla rete EUREF disponibili tra: Bucarest, Genova, Graz, Matera, Medicina, Padova, Penc, Sofia, Torino, Zimmervald. L'eliminazione degli outlier delle serie storiche è effettuata mediante test a 3 SIGMA iterativo.

Nel caso di Clara Nord, sulla base di una serie storica superiore ai 36 mesi, è possibile stimare una velocità media di subsidenza totale³ misurata dal CGPS pari a -22,5 mm/a (Figura 12), in aumento rispetto a quanto riportato nella precedente relazione d'aggiornamento (-17.6 mm/a al 2013).

Tale stima della velocità media di subsidenza totale, ottenuta per regressione lineare di tutti i dati della serie storica di misure CGPS rilevate sulla piattaforma di Clara Nord, non può cogliere, evidentemente, eventuali variazioni della velocità di subsidenza presenti in detta serie storica.

In quest'ultima, infatti, si possono individuare due distinti periodi (Figura 13):

- un periodo che va dall'installazione (novembre 2007) al luglio 2011, in cui la velocità media di subsidenza totale è pari a circa -6,5 mm/a;
- un periodo che va da dicembre 2011 al dicembre 2014, in cui la velocità media di subsidenza totale è pari a circa -46,0 mm/a.

Il cambio di pendenza (i.e. velocità) può essere messo in relazione ai risultati della campagna di workover eseguita a partire dall'agosto del 2011.

I valori di subsidenza stimati con il modello geomeccanico del settembre 2013 per i campi del *Clara Complex*, di Calipso ed Elettra sono stati confrontati con quelli misurati dalle stazioni CGPS installate sulle rispettive piattaforme di produzione, senza che questi ultimi siano stati depurati dalla componente di subsidenza naturale. Per il campo di Clara Nord, si può notare come il modello geomeccanico preveda un andamento della subsidenza maggiore, quindi più pessimistico, rispetto a quanto misurato dal CGPS (Figura 15).

In sintesi, le indicazioni del modello previsionale di subsidenza e i monitoraggi fatti da Eni consentono di escludere che l'eventuale subsidenza indotta dalla produzione di gas dai

³ La "subsidenza totale CGPS" rappresenta in questo caso l'abbassamento altimetrico che il fondale marino subisce in corrispondenza della piattaforma su cui è installato il CGPS. A determinare tale "subsidenza totale" concorrono vari fenomeni: la compattazione di strati profondi per estrazione di gas (subsidenza antropica), movimenti tettonici e costipazione naturale dei sedimenti (subsidenza naturale), compattazione dei sedimenti più superficiali a fondo mare per effetto del peso della piattaforma. Quest'ultimo fenomeno è evidente soprattutto nel periodo immediatamente successivo all'installazione della piattaforma stessa.

campi del *Clara Complex*, in particolare da Clara Nord, e dai campi di Calipso e di Elettra possa avere qualche impatto sull'andamento altimetrico del tratto di litorale monitorato.

Si segnala infine che:

- a) in Figura 16 viene presentata una scheda riassuntiva con i dati di campo e lo status dei monitoraggi;
- b) in Figura 17 viene presentato un particolare della rete di monitoraggio Eni.

Figura 2 - Ubicazione del Campo di Clara Nord

Figura 3 - Schema dei rapporti stratigrafici

CAMPO DI CLARA NORD	Profilo di Produzione calcolato da Modello ECLIPSE 3D 12/2010	Profilo di Produzione calcolato da Modello ECLIPSE 3D 04/2013	Gas.Prodotto reale al 31-12-2014	Profilo di Produzione calcolato da Modello ECLIPSE 3D 12/2010	Profilo di Produzione calcolato da Modello ECLIPSE 3D 04/2013	Gas.Prodotto reale al 31-12-2014	Percentuale Gas Prodotto vs Riserve calcolate da modello 3D del 4/2013
	(Cumulativa)	(Cumulativa)	(Cumulativa)	(Produzione anno)	(Produzione anno)	(Produzione anno)	
Anno	MSm3	MSm3	MSm3	MSm3	MSm3	MSm3	
2000	0	4	4	0	4	4	0%
2001	248	248	248	248	244	244	13%
2002	453	453	453	205	205	205	23%
2003	622	622	622	169	169	169	31%
2004	750	750	750	129	129	129	38%
2005	832	832	832	81	82	82	42%
2006	888	888	888	56	56	56	45%
2007	919	919	919	31	31	31	47%
2008	938	938	937	18	19	18	47%
2009	950	950	951	13	12	13	48%
2010	964	964	961	14	14	10	49%
2011	1013	1015	1012	49	51	51	51%
2012	1203	1302	1300	190	287	288	66%
2013	1358	1532	1458	156	230	158	74%
2014	1492	1674	1570	134	142	112	80%
2015	1586	1776		94	102		
2016	1644	1851		58	75		
2017	1679	1907		35	56		
2018	1707	1948		28	41		
2019	1721	1965		14	17		
2020	1724	1975		3	10		
2021							
2022							

Figura 4 – Campo di Clara Nord: tabella e grafico di produzione vs. modelli Eclipse

Figura 5 – Campo di Clara Nord: grafico di produzione storica

Profilo di produzione calcolata da modello ECLIPSE 3D 04/2013	SBHP calcolata da modello ECLIPSE 3D 04/2013	SBHP (pozzo 4C) Misurata da profilo statico	SBHP (pozzo 7C) Misurata da profilo statico	SBHP (pozzo 6) RFT			DAT	A		Misura	SBHP ata da pro statico	ofilo	S Misurat si	BHP a da profil atico	o Mi	RFT isurata da p statico	rofilo	SBHP Misurata o profilo stat	da ico
PLQ-HH1	PLQ-HH1										Barsa		E	arsa		Barsa		Barsa	
MSm3	Barsa	Barsa	Barsa	Barsa						р	ozzo 4C		ро	zzo 7C		pozzo 6		pozzo 6	
0.0	127.0	126.9					01/04/	2000			126.9								
12.1	127.0					1	08/11/	2002			105.6		1	05.9					
15.9	126.5						11/04/	2004			88.8								
19.9	126.0						01/01/	2010											
23.8	125.5						01/05/	2011								125.0			
27.8	125.0						01/02/	2012			87.0							126.0	
43.4	124.5																		
51.0	122.0										САМРО	י וח ר			IVEI		IH1		
54.2	119.0				14	0					0/100	5 01 0							
59.4	117.0				14														
64.8	115.9					<u>۸</u>													
71.4	114.9				12	20 											_		
74.7	112.1															/			
82.2	107.0	105.6	105.9		10						Δ_						/		
93.1	104.0				10	Τ									-				
100.5	103.0				sa										Δ				
101.0	102.0				8 9	io +													
120.4	100.0			-	<u> </u>														
122.2	99.0				1 6	in L		<u> </u>	BHP cal	colata da r	modello EC	IPSE 3	D 04/2013						
135.9	96.0				<u> </u>			s	BHP cal	colata da r	modello EC	IPSE 3	D 10/2010						
147.7	95.5				0,			• •		(por	TO 6) PET		5 10/2010						
147.7	94.0				4	0+	_	• 0		(pozz	100) Ki i	erefile e							
162.1	90.2	88.8						A 0		(0220 40) 1		promo a	auco						
183.9	95.0	00.0			2	n L		Δ S	unr	(pozz	100) RFI								
191.6	100.1				2	-Γ													1
192.3	103.2				1														
197.9	106.1	1				0+					1	,						1	
201.2	109.0				1	0		25	2	50	75	10	12	15		178	200	225	25(
225.0	114.5				1							0	0	0		01	0	01	0
225.0	120.5				1							PRO	סודנוסס	NF MSm	3				
225.0	122.3			125.0															
225.0	123.4	Ì																	
225.0	124.0			126.0															
225.0	124.5																		
225.0	124.6																		
225.0	124.7																		
225.0	125.2																		

Figura 6 – Campo di Clara Nord: confronto tra dati di pressione da profili statici e modello Eclipse

Figura 7 - Modello geomeccanico (settembre 2013): curve d'isosubsidenza per lo scenario di riferimento C_m_Med (subs. max. su Clara Nord: 68 cm @ 2021)

Figura 8 – Modello geomeccanico (settembre 2013): curve d'isosubsidenza per lo scenario di riferimento (caso C_m _Med @ 2065)

Figura 9 - Sezione sismica interpretata

Figura 10 – Campo di Clara Nord: confronto tra batimetria e modello geomeccanico (maggio 2007): curve d'isosubsidenza per lo scenario di riferimento (Caso C_m_Med@ 2065)

Figura 2 – Campo di Clara Nord: analisi dati SAR dal 2003 al 2014

Serie storica spostamenti IGb08 RETE Clara_Nord

Figura 3 – Campo di Clara Nord: serie storiche plano-altimetriche CGPS

CLARA NORD

FEED-PP - MODELLO EMPIRICO

Il modello empirico relativo alla stazione CGPS Clara Nord è stato stimato considerando un solo nodo di discontinuità.

FEED PP - MODELLO EMPIRICO								
Periodo	velocità	sigma						
•	[mm/y]	[mm/y]						
08/11/2007 - 06/07/2011	-6.5	0.1						
08/12/2011 - 31/12/2014	-46.0	0.1						

Note: La piattaforma in cui è installata la stazione CGPS Clara Nord ha avuto una attività di work-over nel periodo luglio 2011-febbraio 2012. Nonostante gli apparati siano rimasti alimentati e quindi in acquisizione, alcuni dati con qualità degradata non sono stati utilizzati al fine della caratterizzazione cinematica della stazione CGPS.

La mancanza di dati nel periodo 28/11/2010 – 16/01/2011 è da attribuirsi ad un guasto del sistema di alimentazione della stazione.

La mancanza di dati nel periodo 28/10/2013 - 18/12/2013 è da attribuirsi ad un secondo guasto del sistema di alimentazione della stazione.

Figura 4: Campo di Clara Nord: analisi della serie storica plano-altimetrica

	Intete	Fires		Cubaidanaa ayaadada a	CGPS				
CAMPO	Inizio	Fine	Riserve prodotte	Subsidenza prevista a	inizio	velocità media	mesi di		
CAIVIPO	produzion	Produzion	@ dic.2014	(accurationali riferimente)	registrazion	(mm/a) @ fine	registrazion		
	e	e		(scenano di menmento)	е	2014;	е		
NAIDE	2005	2022	81%	-8cm al 2023	giu-05	-3.8	114		
PCM	2001	2016	94%	-6,8cm al 2017	lug-05	-3.9	113		
REGINA	1997	2016	91%	-135cm al 2014	giu-07	-29.4	90		
CALPURNIA	2000	2020	95%	-50cm al 2035	giu-07	-4.5	90		
ANEMONE	1978	2026	95%	-33cm al 2020 giu-07		-4.9	90		
ANNALISA	2000	2023	83%	-10cm al 2027	ott-07	-4.7	87		
CLARA EST	2000	2034	35%	-55cmal 2035	nov-07	-13.5	86		
CLARA NORD	2000	2020	80%	-65cm al 2035	nov-07	-22.5	86		
BARBARA-NW	1999	2029	70%	-76cm al 2030	gen-08	-28.7	84		
CALIPSO	2002	2020	87%	-32cm al 2035	nov-07	-17.8	86		
ANNAMARIA "B"	2009	2039	32.6%	-51cm al 2040	gen-10	-81.0	60		
BONACCIA	1999	2035	57%	-421cm al 2036	dic-07	-87.2	85		
GUENDALINA	2011	2023	55%	-3cm al 2023	ago-11	-6.4	40		
NAOMI-PANDORA	2001	2037	31%	-2cm al 2038	giu-02	-1.4	150		
TEA-LAVANDA-ARNICA	2007	2019	93%	-3cm al 2020	nov-07	-5.0	86		
FAUZIA	2014	2027	3%	-9cm al 2030	set-14	n.d.	3		
ELETTRA	2014	2025	12%	-16cm al 2035	lug-14	n.d.	5		

Figura 5 - Velocità medie di "subsidenza totale" calcolate per tutta la serie storica di dati CGPS vs.

modelli

Figura 6 - Andamento temporale della subsidenza prevista da modello geomeccanico (settembre 2013) per lo scenario C_m_Med in corrispondenza delle piattaforme di produzione. Per Clara Nord, Clara Est, Calpurnia e Calipso le previsioni di subsidenza sono confrontate con le misure altimetriche da CGPS

			campi C	LARA E + N (J	.V. Eni 51% - Edison Gas 49%)					
DATI	DI CAMI	PO			DECRETO VIA n. 4470 del 7 FE	3BRAIO 2000					
UBICAZIONE PROFONDITA' FONDALE	offshore -	45 - 50 Km a 73 / 1	NE di Ancona 76 m	AGGIORN	AMENTO MODELLO DI GIACIMENTO E S	SUBSIDENZA (CLARA COMPLEX)					
LITOLOGIA FORMAZIONE RESERVOIR ZONA MINERARIA PROFONDITA' RESERVOIR TIPO DI PIATTAFORMA CARATTERISTICHE GEOLOGICHE		sabbie fini CAROL/ PLQ1- PL 750-1300 (TV BEAF TORBIDITI S(A .Q /DSS) DTTILI	STUDIO DI GIACIMENTO RISERVE (MSm3) MOD. GEOMECCANICO MAX SUBS AL CENTRO (cm) MAX DIST. CULMINE (Km)	SIA ULTIMO AGGIORNAMENTO MOD.STATICO E DINANICO E CLIPSE 3D *ottobre '98' MOD.STAT. E DINANICO E CLIPSE 3D *ottobre '98' MOD.STAT. E DINANIC E CLIPSE 3D *ottobre '98' OLIZIO CL. E / 3460 CL. N 6416 CL E / 1975 CL. N 6416 CL E / 1975 CL. N OLIZIO CL. E / 146 (CL. N) (dopo 15 anni) 56 (CL. E) / 28 (CL. N) @ 2021 32						
		D.M @feb '00	@ 31 dic. 2014		STATUS ATTUALE DEI MONITORAGGI						
CONCESSIONE DATA SCADENZA CONCESSIONE N. POZZI (produttori)	B.C13.AS 27/05/2020	4 CI.E 5 CI.N	5 CI. E 5 CI. N	LIVELLAZIONI	ACQUISITI I DATI DI LIVELLAZIONE, CERTIFICATI UNIVERSITA' DI BOLOGNA - DICAM, RELATIVI AGLI ANNI: # 1998-2005 # 2006-2009 / 2011-2014 IL PROSSIMO RILIEVO DELLA " DORSALE ADRIATICA E PESARO-PT.S.GIORGIO" SARA' EFFETTUATO NEL CORSO DE 2017 NEL TRATTO DI COSTA ANTISTANTE IL GIACIMENTO						
RISERVE TECNICHE A VITA INTERA (MSm3)		3120 CI.E 3460 CI.N	6416 CI.E 1975 CI.N	MARKERS	NON PRESCRITTI						
START UP PRODUZIONE FINE PRODUZIONE PREVISTA	ott.2000 CI.E dic.2000 CI.N	2029 CI. E	2034 CI.E	CGPS	NEL CORSO DEL 2007 SONO STATI INSTALLATI, NELLE 2 PIATTAFORME, I RISPETTIVI CGPS. NEL 2008 E' STATO INSTALLATO UN CGPS NELLA CENTRALE EN DI FALCONARA (ONSHORE) NEL TRATTO DI COSTA ANTISTANTE LE PIATTAFORME						
GAS PRODOTTO (MSm3)		2029 CI. N	2228 CI. E 1570 CI. N	SAR	ACQUISITO AGGIORNAMENTO COPERTURA SAR ® SETT.2014 DEL TRATTO DI COSTA ANTISTANTE LE PIATTAFORME PER ANALISI INTEGRATA DEI DATI ALTIMETRICI E PER L'INSERIMENTO DELLE P.ME CLARA E e CLARA N NEL PROGRAMMA DI MONITORAGGIO DELLA SUBSIDENZA ATTUALMENTE IN CORSO IN MOLTI GIACIMENTI DELL'ADRIATICO						
% RISERVE PRODOTTE			35% CI.E 80% CI.N	BATIMETRIE	ESEGUITO RILIEVO BATIMETRICO. DATA RILIEVO SETT.2	007-FEBBRAIO 2008					

Figura 8 - Particolare della rete di monitoraggio Eni

Appendice 1: aggiornamento dati SAR 2003-2014

L'analisi dei dati SAR ha interessato complessivamente tre data-set (Fig.1A) suddivisi geograficamente in:

- 1. Area di Ravenna da Porto Tolle a Cervia;
- 2. Area di Rimini da Cervia a Cattolica;
- 3. Area di Ancona da Cattolica a Civitanova Marche.

In tali aree, che presentano una piccola zona di sovrapposizione sufficiente a garantire continuità nei dati, sono ubicate le seguenti stazioni CGPS della rete Eni:

- Area di Ravenna: stazioni di Manara, di Smarlacca, di Spinaroni e di Fiumi Uniti;
- Area di Rimini: stazione di Rubicone;
- Area di Ancona: stazioni di Fano e di Falconara.

La calibrazione dei dati SAR è stata fatta con le misure CGPS acquisite nelle stazioni poste all'interno delle aree analizzate, partendo da quelle con la serie storica di dati più consistente (Smarlacca, Spinaroni e Fiumi Uniti dell'area di Ravenna).

Per il processo di calibrazione si è impiegata la misura della componente verticale della velocità d'abbassamento del suolo dell'area SAR più a nord (area ravennate), utilizzando in particolare le misure della stazione di Smarlacca. I dati acquisiti a Fiumi Uniti, a Spinaroni e in tutte le altre stazioni sono stati impiegati esclusivamente per la verifica dei risultati ottenuti.

L'analisi e il confronto dei SAR, non calibrati e acquisiti in un'area circolare (raggio di circa 150 m) intorno alla stazione CGPS di Smarlacca, hanno mostrato come questi sottostimino di -3,0 mm/a la componente verticale della velocità media d'abbassamento rispetto alla misura CGPS; per tale motivo ai valori di detta velocità media ottenuti con la tecnologia SAR è stata applicata una correzione pari a -3,0 mm/a.

Si sono poi confrontati tali dati SAR con le misure dei CGPS di Manara, Smarlacca e Spinaroni considerando i punti SAR disponibili in un'area circolare (raggio pari a 200 m) intorno a

eni spa exploration & production division

stazioni. Il confronto ha mostrato differenze inferiori a 1 mm/a tra le misure CGPS e i dati SAR calibrati, confermando la bontà della calibrazione effettuata.

Analogamente a quanto fatto anche negli anni precedenti, tutti gli altri data-set SAR, acquisiti a sud di quello dell'area ravennate, sono stati calibrati confrontando tra loro le componenti verticali della velocità d'abbassamento del suolo nelle rispettive aree di sovrapposizione. Tale confronto mostra mediamente una differenza di circa -3 mm/a in ognuno dei data-set analizzati. Detta differenza è stata ovviamente corretta nel processo di calibrazione.

Fig.1A – Mappa calibrazione dati SAR

Per verificare la correttezza di tutto il processo, sono state poi confrontate le velocità medie dei punti SAR, ricadenti in un raggio di 200 metri dalle postazioni CGPS di Fano e di Falconara (area di Ancona), con le velocità misurate dai CGPS, anche se per periodi inferiori alla serie storica SAR. La differenza riscontrata è stata inferiore a 2 mm/a, valore che, considerata anche la diversa scala temporale, ricade nel campo d'errore strumentale di entrambi i sistemi di misura.

Nella zona situata nell'intorno della stazione CGPS di Rubicone (area SAR di Rimini), i dati SAR mostrano un movimento verticale d'abbassamento fino al 2008 e di sostanziale stabilità poi per il periodo successivo. Le misure CGPS di detta stazione, installata nel dicembre 2007, confermano invece la sostanziale stabilità della zona a parità di osservazione temporale. Si può ritenere, quindi, che la differenza di velocità media riscontrata tra i dati SAR e i dati CGPS (pari a circa 2 mm) sia dovuta al diverso periodo di osservazione. Per tale motivo non si può fare un confronto diretto tra le velocità SAR e quelle CGPS senza avere opportunamente definito i tempi di riferimento. Per controllare il trend regionale dell'intera area in esame, è stata fatta un'analisi delle differenze tra la mappa d'interpolazione dati del data-base 2003-2013 e la corrispondente mappa d'interpolazione dati del data-base 2003-2014 (per l'interpolazione si è impiegato l'algoritmo IDW - Inverse Distance Weighted in ambiente GIS). Come rappresentato nelle Fig. 2A e Fig. 3A, non ci sono evidenti differenze di valori per l'intera area, se non nella zona adiacente al porto di Ravenna, per la quale, dopo attenta analisi, si è riscontrata una mancanza di dati per la scarsa coerenza del segnale SAR. Ciò ha prodotto un artefatto numerico, privo di significato fisico, nelle relative mappe d'interpolazione.

Fig. 2A – Tratto di costa da Comacchio a Fano: interpolazione IDW (Inverse Distance Weighted) dei dati Radarsat 1 -2 per il periodo 2003 – 2014 con il Tool Math – Spatial Analyst di ArcGIS

Fig. 3A – Tratto di costa da Fano a Porto Recanati: interpolazione IDW (Inverse Distance Weighted) dei dati Radarsat 1 -2 per il periodo 2003 – 2014 con il Tool Math – Spatial Analyst di ArcGIS

Confronto dati SAR 2003 - 2013 vs. 2003 - 2014

Utilizzando i dati interpolati per il periodo 2003 – 2013, è stato fatto un confronto con i corrispondenti dati del periodo 2003 – 2014, per individuare eventuali aree in cui si fosse verificato un aumento delle velocità di abbassamento del suolo.

Come mostrano le immagini di Fig. 4A e Fig. 5A non si notano sostanziali differenze fra i valori di velocità dei due data-set: gli scostamenti sono mediamente dell'ordine di circa 1 mm. L'unica zona per la quale si riscontrano differenze importanti, (dell'ordine di circa 10 mm), si trova a nord della città di Ravenna. Trattasi dell'area di cui si è detto in precedenza e che non dispone di dati SAR. L'algoritmo d'interpolazione ha, quindi, generato "artifacts" privi di ogni significato fisico.

Fig. 4A – Tratto di costa da Comacchio a Fano: mappa delle differenze tra i database 2003-2013 e 2003-2014, utilizzando il Tool Math – Spatial Analyst di ArcGIS

Fig. 5A – Tratto di costa da Fano a Porto Recanati: mappa delle differenze tra i database 2003-2013 e 2003-2014, utilizzando il Tool Math – Spatial Analyst di ArcGIS

Confronto dati SAR vs. Livellazione

Dal confronto SAR – livellazioni, non emergono differenze: entrambi i metodi, considerando la loro deviazione standard, non presentano anomalie evidenti (Fig. 6A e 7A, 8A e 9A, 10A e 11A, 12A e 13A).

L'unico punto d'attenzione si ha nel tratto Cervia – Pesaro (Fig. 9A) dove, in corrispondenza della città di Rimini (circa al km 30), si nota un valore negativo del dato SAR (-11,8 mm/a) che non è rilevato dalle campagne di livellazione del periodo 2009 – 2014. Tale anomalia è causata alla perdita di un caposaldo, il numero 00305400, che era disponibile nel periodo tra le campagne 1999 - 2009 e le cui misure risultavano in accordo con i dati SAR.

Fig. 6A – Tratto Codigoro – Cervia: confronto tra il database Radarsat 1-2 per il periodo 2003-2014e le campagne di livellazione 1999-2009 e 1999-2014

Fig. 7A – Tratto Codigoro – Cervia: dettaglio del grafico di confronto (Fig. 6A) tra il database Radarsat 1-2 (1999-2014) e le campagne di livellazione (1999-2014).

Fig. 8A – Tratto Cervia-Pesaro: confronto tra il database Radarsat 1-2 per il periodo 2003-2014 e le campagne di livellazione 1999-2009 e 2009-2014

Fig. 9A – Tratto Cervia – Pesaro: dettaglio del grafico di confronto tra il database Radarsat 1-2 per il periodo 2003-2014 e le campagne di livellazione 1999-2009 e 2009-2014.
In corrispondenza di Rimini, si nota un abbassamento registrato dal SAR e dalle livellazioni del periodo 1999-2009, che, però, non compare nelle livellazioni del periodo 2009-2014.
Tale anomalia è da attribuirsi alla perdita del caposaldo 00305400

Fig. 10A – Tratto Pesaro – Numana: confronto tra il database Radarsat 1-2 per il periodo 2003-2014 e la campagna di livellazione 2006-2014

Fig. 11A – Tratto Pesaro – Numana: dettaglio del grafico di confronto tra il database Radarsat 1-2 per il periodo 2003-2014 e la campagna di livellazione 2006-2014. Non si osservano anomalie: i due metodi descrivono lo stesso andamento

Fig. 12A – Tratto Numana – Civitanova Marche: confronto tra il database Radarsat 1-2 per il periodo 2003-2014 e la campagna di livellazione 2006-2014

Fig. 13A - Tratto Numana - Civitanova Marche: dettaglio del grafico di confronto tra il database Radarsat 1-2 per il periodo 2003-2014 e la campagna di livellazione 2006-2014.

-6 -8 -10

-12

-18

anno -14

Velocità mm/ -16

Non si notano anomalie: i due metodi descrivono lo stesso andamento

IDW 2 SqueeSAR Radarsat Pesaro - PSG 2º tratto 2003 - 2014

Livellazione 2006 - 2014

Appendice 2: Stazioni EPSU lungo la fascia costiera compresa tra Cervia ed Ancona - aggiornamento al dicembre 2014

Il monitoraggio della compattazione superficiale, lungo la fascia costiera adriatica compresa tra Cervia ed Ancona, viene effettuato tramite 3 stazioni EPSU (Extensometric Piezometric Survey Unit) denominate: Rubicone, Fano e Falconara. L'ubicazione di tali stazioni, installate tra il 2008 e il 2009, è riportata in figura 1B.

Figura 1B - Ubicazione delle stazioni EPSU.

In generale una stazione EPSU è costituita da un assestimetro, associato a uno o più piezometri, con il corredo di strumentazione meteorologica per la misura della temperatura e della pressione atmosferica (termometri sia in foro che in superficie, e un barometro in modo da compensare le misure dalla variazione della temperatura e pressione atmosferica) come schematicamente rappresentato in figura 2B.

Figura 2B - Rappresentazione schematica di una stazione EPSU

Più in dettaglio, in ciascuna delle 3 stazioni EPSU sono state installati i seguenti dispositivi di misura:

LOCALITA'	POZZO	STRUMENTAZIONE	PROFONDITA' (da P.C.)	DATA INSTALLA- ZIONE	
	CGRA-1	Assestimetro profondo	320 m	Gen. 2009	
Rubicone	CGRP-1 Piezometro cella singola		178 m	Gen. 2009	
	CGRP-2	Piezometro cella doppia	146 m e 70 m	Gen. 2009	
Fana	CGFNA-1 Assestimetro superficiale		40,8 m	Lug. 2008	
Fano	CGFNP-1	CGFNP-1 Piezometro superficiale		Lug. 2008	
Falconara	CGFLA-1 Assestimetro superficiale		40,3 m	Lug. 2008	
i alcollala	CGFLP-1	Piezometro cella singola	22 m	Lug. 2008	

Per ciascuna stazione EPSU si allegano:

- 1. scheda che ne descrive sinteticamente le principali caratteristiche;
- 2. grafico che mostra l'andamento temporale di tutte le misure;
- 3. file in formato excel che contiene i valori numerici di tali misure.

<u>N.B.:</u> Nella lettura dei dati riportati sui grafici relativi agli assestimetri, i valori positivi costituiscono la componente della compattazione (riduzione dello spessore dello strato di sottosuolo attraversato dall'assestimetro); al contrario i valori negativi costituiscono la componente dell'espansione (aumento dello spessore dello strato di sottosuolo attraversato dall'assestimetro).

Stazione EPSU di RUBICONE (installata dicembre 2009)

Strumentazione:

- assestimetro quota bottom: 316 m da p.c.
- piezometro singolo quota cella: 178 m da p.c.
- piezometro doppio quota celle: 146 e 70 m da p.c.

La raccolta dati di questa stazione è iniziata l'8 aprile 2009. A tale data (in occasione del collaudo) è stato fatto "lo zero" dei sensori di misura.

I dati sono stati acquisiti con regolarità secondo la seguente frequenza:

- 8 aprile 2009 22 maggio 2009 una misura ogni ora,
- 22 maggio 2009 2 novembre 2009 una misura ogni 2 ore,
- 2 novembre 2009 31 dicembre 2014 una misura ogni 6 ore.

Le misure sono state fatte con alimentazione a batteria fino al 22 maggio 2009. Da tale data fino al 14 luglio 2009 non si hanno registrazioni a causa dei lavori di messa a norma della baracca secondo la normativa ATEX. Dal 14 luglio è ripreso il normale ciclo di funzionamento della stazione.

Nel 2011 c'è da segnalare un black-out dei dati per mancanza di alimentazione dell'apparecchiatura tra il 29 settembre e il 14 ottobre.

L'ultima verifica generale della strumentazione, con controlli manuali dei livelli piezometrici e taratura di tutti i sensori, è stata fatta nel dicembre 2014.

Analisi dei dati assestimetrici

L'assestimetro misura la compattazione degli strati di terreno compresi tra il piano campagna (p.c.) e il punto più profondo d'ancoraggio dello strumento (316 m da p.c.).

Nei grafici allegati sono riportati sia i dati piezometrici, sia quelli assestimetrici per un confronto relativo. I dati relativi all'assestimetro sono espressi in millimetri e riportano gli spostamenti misurati rispetto a un valore base iniziale ("misura di zero"). Tale misura è quella dell'8 aprile 2009, data di collaudo del sistema. Valori positivi degli spostamenti nel grafico dell'assestimetro indicano una compattazione, valori negativi, viceversa, un incremento del-

lo spessore (i.e. espansione) degli strati di terreno monitorati.

Nel caso della stazione di Rubicone, la variazione nel tempo delle misure assestimetriche è caratterizzata da una curva ad andamento oscillatorio ben correlabile con le variazioni di li-vello delle falde acquifere registrate dal piezometro doppio.

In particolare, l'assestimetro ha registrato a partire dai primi mesi di funzionamento una compattazione crescente giunta a un massimo di circa 9,5 mm (ottobre 2009), per poi decrescere, fino quasi ad azzerarsi, nel periodo marzo-aprile 2010. A partire da metà maggio 2010 le misure mostrano una ripresa nel verso positivo (cioè aumento della compattazione) fino a circa metà settembre 2010 per un valore di picco di 5,3 mm. Da questa data si è registrata una riduzione della compattazione tanto che al 31 dicembre 2010 il valore registrato è stato pari a 1,9 mm. Tale riduzione è proseguita fino alla metà del mese di marzo 2011 raggiungendo 0,4 mm. Si nota poi un'inversione di tendenza, ovvero un aumento della compattazione che ha raggiunto, alla fine di giugno 2011, un valore di 2,7 mm. Da giugno 2011 a ottobre 2011 la compattazione è di nuovo aumentata giungendo a un valore di picco intorno ai 10 mm, per poi decrescere attestandosi intorno agli 8,5 mm al 31 dicembre 2011.

Nel corso del 2012, dopo un piccolo decremento della misura di compattazione durato sino ad aprile, si registra un aumento della stessa sino a 15,6 mm (settembre 2012) con un successivo assestamento sui 12,6 mm a fine 2012.

L'andamento oscillatorio delle misure è stato osservato anche nel corso del 2013-2014 con una compattazione complessiva di ca.14 mm al dicembre 2014, dopo aver raggiunto un picco massimo di circa 16 mm al settembre dello stesso anno.

Nella stessa area della stazione assestimetrica è installata anche una postazione CGPS. Ciò ha permesso un confronto fra la velocità media d'abbassamento del suolo stimata dai dati GPS con quella di compattazione del terreno ottenuta dalle misure assestimetriche. Tali velocità, che si riferiscono però a fenomeni fisici diversi anche se collegati fra loro, sono risultate in buon accordo, essendo rispettivamente di ca. 1,6 mm/a per il GPS e di ca. 2,4 mm/a per l'assestimetro.

Un'analisi qualitativa delle due serie temporali di misure (assestimetriche e geodetiche GPS - vedere grafico all.) mostra poi come queste siano ben correlate tra loro e come gli andamenti di entrambe le curve ben si correlino a loro volta con le oscillazioni stagionali del livel-

lo delle falde acquifere, fatto del resto già fatto notare in precedenza. Una possibile interpretazione di tale evidenza è che l'abbassamento del suolo registrato dal CGPS sia in buona parte prodotto dalla compattazione degli strati più superficiali di terreno; compattazione che a sua volta è controllata dal livello dell'acqua nelle falde.

Si segnala, inoltre, che per comodità di lettura del grafico:

- le misure del CGPS sono state filtrate con una media mobile su 50 campioni per meglio evidenziarne l'andamento;
- i valori della curva assestimetrica sono stati riportati in ordine inverso, così da renderne l'andamento coerente quello della curva GPS (spostamenti delle curve verso l'alto indicano sollevamenti del terreno e viceversa).

Analisi dei dati piezometrici

Nei grafici dei piezometri l'ordinata è la quota piezometrica (in m), ovvero la profondità del livello dell'acqua all'interno del tubo piezometrico riferita al piano campagna. Nello stesso grafico (come seconda ordinata) è riportato il valore della pressione barometrica.

Nel caso di Rubicone si notano delle effervescenze gassose nei tubi piezometrici causate dalla presenza di piccole quantità di gas nell'acqua; il fenomeno del resto era già osservato durante le operazioni di messa in opera dell'attrezzatura. Queste piccole effervescenze causano differenze di misura dei livelli d'acqua nei due tubi del piezometro profondo (pozzo CGRP-1), differenze che sono dell'ordine di 30 - 40 cm.

Nel mese di ottobre 2012 si sono puliti e controllati i 3 piezometri verificando il loro buon funzionamento.

Un nuovo intervento di spurgo è stato fatto a fine settembre 2014, controllando accuratamente piezometri e trasduttori. L'affidabilità di questi ultimi, in particolare, è stata verificata effettuando alcune misure manuali con freatimetro. Queste sono risultate del tutto in linea con le misure automatiche, consentendo di concludere che tutti i trasduttori erano perfettamente funzionanti e affidabili.

Le curve rappresentano i logs litologico-petrofisici tramite cui è stata ricostruita la serie stratigrafica del suolo attraversato.

con le modulazioni del GPS (spostamenti delle curve verso l'alto indicano sollevamenti del terreno e viceversa) campioni. Per comodità la curva assestimentrica è stata graficata con i valori in ordine inverso, in modo da renderla coerente Nel grafico per meglio apprezzare le modulazioni della curva GPS questa è stata filtrata con una media mobile su 50

Stazione EPSU di FALCONARA (installata ottobre 2008)

Strumentazione:

- assestimetro quota bottom: 40,3 m da p.c.
- piezometro a cella singola quota cella: 22 m da p.c.

La raccolta dati di questa stazione è iniziata il 16 ottobre 2008. A tale data (in occasione del collaudo) è stato fatto "lo zero" dei sensori di misura.

L'acquisizione dati è stata fatta con regolarità secondo la seguente frequenza:

- 16 ottobre 2008 18 maggio 2009 una misura ogni ora,
- 8 maggio 2009 31 dicembre 2014 una misura ogni 6 ore.

Nei periodi 7 ottobre 2011 - 2 novembre 2011 e 3 dicembre - 13 dicembre 2011 si è avuto un problema d'alimentazione all'apparecchiatura d'acquisizione automatica dei dati, con conseguente mancata registrazione degli stessi. Identico problema si è verificato tra febbraio e aprile 2012; si è perciò sostituito parte dell'hardware del sistema d'acquisizione.

L'ultima verifica generale della strumentazione, con controlli manuali dei livelli piezometrici e taratura di tutti i sensori, è stata effettuata nel dicembre 2014.

Analisi dei dati assestimetrici

L'assestimetro misura la compattazione degli strati di terreno compresi tra il piano di campagna (p.c.) e il punto più profondo d'ancoraggio dello strumento (40,3 m da p.c.).

Nei grafici allegati sono riportati sia i dati piezometrici, sia quelli assestimetrici per un confronto relativo. I dati relativi all'assestimetro sono espressi in millimetri e riportano gli spostamenti misurati rispetto a un valore base iniziale ("misura di zero"). Tale misura è quella del 16 ottobre 2008, data di collaudo del sistema. Valori positivi degli spostamenti nel grafico dell'assestimetro indicano una compattazione e, viceversa, valori negativi un incremento dello spessore (i.e. espansione) degli strati di terreno monitorati.

Come nel caso della stazione di Rubicone, anche per quella di Falconara la variazione nel tempo delle misure assestimetriche è caratterizzata da una curva ad andamento oscillatorio

ben correlabile con le variazioni di livello della falda d'acqua registrate dal piezometro.

In particolare, lo strumento ha registrato in un primo periodo (fino a metà dicembre 2008) un'espansione di circa -1,3 mm, che si è poi assestata intorno a circa -1 mm fino a metà giugno 2009. Si è avuta successivamente un'inversione di tendenza con un lento ma costante aumento dei valori misurati (cioè compattazione); valori che nei primi nove mesi del 2012 hanno raggiunto 1,3 mm. Tale trend si è poi attenuato nell'ultimo scorcio del 2012 con i valori misurati che sono scesi a circa -0,4 mm (fine 2012). Nel corso del 2013 si è osservato un ciclo simile a quello dell'anno precedente con un massimo di espansione del terreno verso marzo (circa -1 mm), e un massimo di compattazione intorno a settembre 2013 (ca. 0,7 mm) per attestarsi poi a fine anno intorno a - 0,5 mm.

Anche nel 2014 si osserva nelle misure un andamento oscillatorio, sostanzialmente ben correlabile con i cicli stagionali: si registra un massimo di espansione intorno a marzo (circa -1 mm), una compattazione di circa 0,5 mm a fine estate che tende lievemente a decresce-re (0,4 mm) verso la fine dell'anno.

Pur con un andamento oscillatorio nel tempo, non si nota nel grafico allegato un trend crescente di compattazione nel tempo. Le misure assestimetriche mostrano, quindi, una situazione del terreno sostanzialmente stabile, con assenza di un'apprezzabile compattazione.

Identico andamento emerge dall'analisi delle misure della velocità di abbassamento/sollevamento del suolo della stazione CGPS installata in loco. Il valore medio annuo di tale velocità è, infatti, di circa 0,4 mm/a in leggero sollevamento.

Un'analisi qualitativa delle due serie temporali di misure (assestimetriche e geodetiche GPS – vedere grafico all.) mostra poi come queste siano ben correlate tra loro con "pulsazioni" del terreno (espansioni e compattazioni) di piccolissima entità. Gli andamenti di entrambe le curve ben si correlano a loro volta con le oscillazioni stagionali del livello delle falde acquifere, come del resto si è osservato in precedenza.

Si segnala, inoltre, che per comodità di lettura del grafico:

- le misure del CGPS sono state filtrate con una media mobile su 50 campioni per meglio evidenziarne l'andamento;
- i valori della curva assestimetrica sono stati riportati in ordine inverso, così da renderne l'andamento coerente quello della curva GPS (spostamenti delle curve verso l'alto indi-

cano sollevamenti del terreno e viceversa).

Analisi dei dati piezometrici

Nello stesso grafico dei dati assestimetrici, si è riportata la piezometria.

Nel grafico del piezometro l'ordinata è la quota piezometrica (in m), ovvero la profondità del livello dell'acqua all'interno del tubo piezometrico riferita al piano campagna. Nello stesso grafico (come seconda ordinata) è riportato il valore della pressione barometrica.

Nel caso di Falconara il livello della falda è risultato molto alto, circa 1,3 m da p.c. Dato che si sono utilizzati 2 trasduttori di pressione - uno per ogni canna del piezometro Casagrande - si è in grado di controllare l'attendibilità delle misure.

Nel dicembre del 2014 si è fatta la manutenzione dei piezometri. In tale occasione si è misurato manualmente con un freatimetro il livello della falda per verificare la qualità delle misure registrate dai trasduttori. Le differenze riscontrate sono risultate sempre molto piccole, dell'ordine di 2-3 cm, per cui i piezometri sono da considerarsi affidabili e funzionanti.

L'assestimetro misura cedimenti del terreno rispetto all'ancoraggio p valori positivi = abbassamento valori negativi = sollevamento

campioni. Per comodità la curva assestimentrica è stata graficata con i valori in ordine inverso, in modo da renderla coerente con le modulazioni del GPS (spostamenti delle curve verso l'alto indicano sollevamenti del terreno e viceversa) Nel grafico per meglio apprezzare le modulazioni della curva GPS questa è stata filtrata con una media mobile su 50

Stazione EPSU di FANO (installata ottobre 2008)

Strumentazione:

- assestimetro quota bottom: 40,8 m da p.c.
- piezometro a cella singola: quota cella 6,1 m da p.c.

La raccolta dati di questa stazione è iniziata il 16 ottobre 2008. A tale data (in occasione del collaudo) è stato fatto "lo zero" per tutti i sensori di misura.

L'acquisizione dati è stata fatta con regolarità secondo la seguente frequenza:

- 16 ottobre 2008 18 maggio 2009 una misura ogni ora,
- 19 maggio 2009 31 dicembre 2014 una misura ogni 6 ore.

Nel periodo monitorato (10/2008 – 12/2014) non si sono notate anomalie né a livello sensoristico, né a livello di apparecchiatura d'acquisizione dati.

L'ultimo controllo generale della strumentazione, con misure manuali dei livelli piezometrici e taratura di tutti i sensori è, stato fatto nel dicembre 2014.

Analisi dei dati assestimetrici

L'assestimetro misura la compattazione degli strati di terreno compresi tra la superficie (p.c.) e il punto più profondo d'ancoraggio dello strumento (40,8 m da p.c.).

Nei grafici allegati sono riportati sia i dati piezometrici sia quelli assestimetrici per un confronto relativo. I dati relativi all'assestimetro sono espressi in millimetri e riportano gli spostamenti misurati rispetto a un valore base iniziale ("misura di zero"). Tale misura è quella del 16 ottobre 2008, data di collaudo del sistema. Valori positivi degli spostamenti nel grafico dell'assestimetro indicano una compattazione e, viceversa, valori negativi un incremento dello spessore (i.e. espansione) degli strati di terreno monitorati.

Anche nel caso della stazione di Fano, la variazione nel tempo delle misure assestimetriche mostra un andamento oscillatorio, sfasato, però, rispetto alle variazioni di livello della falda d'acqua. E' da segnalare, inoltre, che l'entità delle oscillazioni è meno marcata rispetto a

quanto registrato dagli assestimetri delle stazioni di Rubicone e Falconara.

Il valore massimo di compattazione si è avuto a inizio 2012 ed è risultato pari a circa 1,4 mm. Tale valore è poi sceso a circa 0,8 mm nel luglio 2012, per incrementarsi nuovamente a 1,2 mm verso la fine dello stesso anno.

Nel corso del 2013 si è assistito a un ciclo simile all'anno precedente, con la compattazione che si è attestata verso fine anno intorno a un valore di circa 1 mm.

Le misure assestimetriche acquisite nel 2014 mostrano un andamento praticamente identico a quello degli altri anni: si è, infatti, registrata una compattazione di ca. di 1 mm a inizio anno annullatasi praticamente nel periodo estivo (agosto) in corrispondenza del massimo della quota della falda. Verso fine anno la misura si è riportata nuovamente a ca. 1 mm. In questi primi cicli di misure l'assestimetro mostra, quindi, una situazione sostanzialmente

stabile, con assenza di un'apprezzabile compattazione del terreno.

Un comportamento del terreno pressoché identico è registrato dal CGPS ubicato in prossimità della stazione EPSU. I dati GPS danno la superficie del suolo in leggero innalzamento con velocità media di ca. 0,2 mm/a.

L'esame comparato delle due serie di misure (assestimetriche e geodetiche GPS – vedere grafico all.) mostra come queste abbiano gli stessi andamenti oscillatori ma sfasati nel tempo. In particolare la serie assestimetrica sembra essere ritardata di ca. 3-4 mesi rispetto a quella geodetica. E' bene osservare, però, che si tratta di movimenti del suolo di bassissima entità, per cui si è al limite del potere risolutivo delle due tecniche di misura.

Passando al confronto con la piezometria, si nota che entrambe le curve - assestimetrica e geodetica GPS - mostrano una certa correlazione con gli andamenti stagionali della falda.

La curva assestimetrica si presenta, però, sfasata anche rispetto a quella piezometrica, raggiungendo il minimo circa tre mesi dopo il massimo del livello piezometrico. Questo comportamento potrebbe essere spiegato dal ritardo con cui si contrae o rigonfia un grosso strato d'argilla (ca. 32 m) quando varia la sua saturazione in acqua. La presenza di tale strato d'argilla è stata rilevata durante la perforazione del foro assestimetrico.

La curva dei dati GPS sembra invece più pronta a registrare in superficie i movimenti di espansione e contrazione degli strati di terreno generati dalle variazioni del livello d'acqua nella falda. Va però notato che l'ubicazione dell'antenna CGPS (stazione SSU) dista circa

150-200 m dalla stazione EPSU, e probabilmente il terreno su cui è stata installata ha una stratigrafia caratterizzata da una minore presenza di livelli argillosi.

Si segnala, inoltre, che per comodità di lettura del grafico:

- le misure del CGPS sono state filtrate con una media mobile su 50 campioni per meglio evidenziarne l'andamento;
- i valori della curva assestimetrica sono stati riportati in ordine inverso, così da renderne l'andamento coerente quello della curva GPS (spostamenti delle curve verso l'alto indicano sollevamenti del terreno e viceversa).

Analisi dei dati piezometrici

Nello stesso grafico dei dati assestimetrici si è riportata la piezometria.

Nel grafico del piezometro l'ordinata è la quota piezometrica (in m), ovvero la profondità del livello dell'acqua all'interno del tubo piezometrico riferita al piano campagna. Nello stesso grafico (come seconda ordinata) è riportato il valore della pressione barometrica.

L'installazione di due trasduttori di pressione, uno per ogni canna del piezometro Casagrande, rende possibile controllare il grado di affidabilità del piezometro stesso. In questo caso la differenza di misura tra i due sensori è risultata di circa ±8 cm, il che rientra nella normale tolleranza dello strumento.

Negli ultimi 6 mesi di misure si deve segnalare un incremento di 1,8 m del livello dell'acqua in pochi giorni (25-26 luglio), fenomeno registrato su entrambi i tubi. Le ultime misure indicano una quota falda di circa -3 m da p.c.

valori negativi = sollevamento valori positivi = abbassamento L'assestimetro misura cedimenti del terreno rispetto all'ancoraggio profondo data

campioni. Per comodità la curva assestimentrica è stata graficata con i valori in ordine inverso, in modo da renderla coerente con le modulazioni del GPS (spostamenti delle curve verso l'alto indicano sollevamenti del terreno e viceversa) Nel grafico per meglio apprezzare le modulazioni della curva GPS questa è stata filtrata con una media mobile su 50

Conclusioni

Dall'insieme dei dati sino ad ora raccolti nelle 3 stazioni EPSU si nota, in generale, una buona correlazione diretta tra l'andamento stagionale della piezometrica e la compattazione del terreno misurata dagli assestimetri.

Tale correlazione è più evidente <u>nel caso di Falconara</u>, dove il piezometro monitora le falde superficiali più sensibili a tutte le variazioni stagionali di piovosità.

<u>Nel caso di Rubicone</u> le variazioni stagionali sembrano essere monitorate solo dai 2 piezometri più superficiali, mentre quello più profondo registra solo deboli variazioni di livello della falda, temporalmente sfasate rispetto all'andamento stagionale delle falde superiori. L'assestimetro di questa stazione, essendo il più profondo delle 3 EPSU, è anche quello che mostra una tendenza crescente nell'insieme delle misure di compattazione, registrando complessivamente circa 14 mm di abbassamento totale del terreno in circa 6 anni scarsi di funzionamento.

<u>Nel caso di Fano</u>, il trend delle curve piezometrica e assestimetrica è maggiormente influenzato dalla litologia attraversata dai pozzi, litologia che rende meno evidente la correlazione tra andamento stagionale del livello della falda e misure assestimetriche. Infatti, mentre il piezometro monitora le variazioni di livello della falda in uno strato ghiaioso-sabbioso superficiale (max. profondità 6 m dal p.c.), l'assestimetro è ancorato alla base di uno strato argilloso spesso circa 32 m e scarsamente comprimibile: lo strumento, infatti, nei circa 6 anni di funzionamento ha misurato una compattazione complessiva quasi nulla (1 mm circa).

Nella tabella seguente sono riportati i valori medi della compattazione (positiva) o espansione (negativa) del terreno e delle relative velocità ottenute dalle misure assestimetriche disponibili dall'inizio del funzionamento della strumentazione sino alla data del 31 dicembre 2014.

Si segnala che per le stazioni di Fano e Falconara le misure assestimetriche sono risultate molto basse, e che nel periodo d'osservazione non è emerso un trend ben definito di compattazione del terreno. In questo caso le medie annuali non si possono considerare veramente significative.

Sito	Anni di osservazione	Assestimetro	o profondo	Assestimetro superficiale		
		Spostamento compl. (mm)	Velocità (mm/a.)	Spostamento compl. (mm)	Velocità (mm/a)	
Rubicone	5,7	14,0	2,5	-	-	
Fano	6,2	-	-	0,9	-	
Falconara	6,2	-	-	-0,4	-	

(n.s.= non significativa)