

Campi di Barbara NW e Fauzia Modello Elasto-Plastico di Subsidenza Management Summary

LISTA DI DISTRIBUZIONE:

DPMF

MAGEOD

GEOMAG

AUTORI

G.Volonté	TEOR
A.Corradi	TEOR
G.Capasso	TEOR

Data: 30 Luglio 2010

0	Rapporto Finale	F. Casolini	S. Giammetti
		S. Mantica	P. Consonni
AGGIOR	NAMENTI	CONTROLLATO DA	APPROVATO DA

Indice

1	Intro	oduzione	3						
2	Modello Geomeccanico agli Elementi Finiti								
	2.1 Approccio metodologico								
	2.2	Geometria del modello	4						
	2.3	Proprietà dei materiali	6						
	2.3.	Densità della roccia	6						
	2.3.2	2 Peso specifico dei fluidi saturanti	6						
	2.3.	3 Comprimibilità uniassiale	7						
	2.4	Inizializzazione	11						
	2.4.	Stato tensionale iniziale	11						
	2.5	Storia di pressione	11						
3	Rist	Itati delle analisi eseguite con il modello elasto-plastico	12						
	3.1	Scenario di riferimento	12						
	3.2	Scenario upper	14						
4	Con	fronto con i dati della stazione CGPS	17						
B	ibliogra	fia	19						

eni	eni s.p.a. e&p division	Campi di Barbara NW e Fauzia – Modello Elasto-plastico di Subsidenza Management Summary	Pagina 3 di 19
-			

1 Introduzione

Il presente rapporto illustra i risultati dello studio geomeccanico relativo ai campi di Barbara NW e Fauzia, effettuato con lo scopo di valutare quantitativamente la subsidenza indotta dalla coltivazione dei giacimenti. I campi di Barbara NW e Fauzia sono situati nell'offshore adriatico (Figura 1) a circa 55 km a nord di Ancona. La profondità del fondale marino è di circa 70 m.

Figura 1 – Posizione dei campi di BarbaraNW e Fauzia.

La previsione di subsidenza è stata ottenuta da una serie di simulazioni ad Elementi Finiti (FE) eseguite con il codice di calcolo Abaqus [1]. Le informazioni relative alla geometria del giacimento, le proprietà petrofisiche e l'evoluzione delle pressioni sono state ottenute dagli studi fluido-dinamici di giacimento realizzati con il codice di calcolo Eclipse [2].

2 Modello Geomeccanico agli Elementi Finiti

2.1 Approccio metodologico

Lo studio geomeccanico di subsidenza è stato condotto utilizzando il codice FE Abaqus. La costruzione del modello è stata basata sulle seguenti informazioni:

- Mappe geologiche dei livelli interessati dai campi, estese in misura tale da descrivere interamente non solo le zone mineralizzate ma anche gli acquiferi laterali;
- Dettagliata descrizione della geometria e geologia dei "livelli mineralizzati + acquiferi connessi", riprodotta con accuratezza dalla maglia di calcolo numerica;
- Distribuzione di pressione nei "livelli mineralizzati + acquiferi connessi", calcolata con il modello di flusso 3D Eclipse. A fine produzione (2025 per Barbara NW, 2026 per Fauzia), si prevede l'estrazione di circa 1.219x10⁹ Sm³ di gas da Barbara NW e di 0.975 x10⁹ Sm³ da Fauzia. Gli studi fluido-dinamici di giacimento sono stati comunque protratti fino al 2050 (a pozzi chiusi) in modo da considerare l'effetto dell'evoluzione della pressione nelle regioni mineralizzate e in acquifero dopo la fine della produzione;
- Proprietà meccaniche della roccia descritte con una legge costitutiva del tipo Cam Clay Modificato, che tiene conto non solo della variazione della comprimibilità uniassiale (c_m) con lo stress efficace, ma modella accuratamente anche gli eventuali fenomeni di espansione dei sedimenti soggetti a ripressurizzazione;
- Calcolo della compattazione dei "livelli mineralizzati + acquiferi connessi" fatto sulla base dello spessore gross degli stessi e della più aggiornata stima della comprimibilità uniassiale ottenuta da misure in situ effettuate nei pozzi equipaggiati con markers nell'offshore adriatico.

E' da sottolineare che non esiste interferenza idraulica tra i due giacimenti in quanto i livelli mineralizzati a gas metano e che saranno messi in produzione nel campo di Fauzia sono diversi da quelli mineralizzati e attualmente in produzione nel campo di Barbara NW. La possibile interferenza meccanica, invece, è adeguatamente considerata, poiché è stato costruito un unico modello geomeccanico, discretizzato tramite una griglia ad elementi finiti che comprende entrambi i giacimenti.

2.2 Geometria del modello

Il modello Eclipse di Barbara NW è composto da 102x102x51 celle nelle direzioni I, J e K rispettivamente, per un totale di oltre mezzo milione di celle, delle quali circa 300000 sono attive. Il modello di Fauzia è composto da 124x77x51 celle, per un totale di circa 475000, di cui circa 350000 attive.

Considerato che il modello FE deve essere ulteriormente esteso, è stato necessario effettuare un processo di *upscaling* per limitare il numero dei gradi di libertà. La struttura verticale del modello Abaqus per le zone dei giacimenti è stata mantenuta pressoché identica ai modelli dinamici, accorpando tra loro solo livelli inattivi o non in produzione. Un analogo processo di *upscaling* è

1715	eni s.p.a.	Campi di Barbara NW e Fauzia – Modello Elasto-plastico di Subsidenza	Pagina 5 di 19
eni	e&p division	Management Summary	1 agina 5 di 17

stato attuato anche in direzione orizzontale, unendo tra loro un differente numero di celle a seconda della distanza dal centro del giacimento e delle dimensioni delle celle.

Il modello fluido-dinamico di Barbara NW interessa un'area di circa $17x19 \text{ km}^2$, mentre quello di Fauzia un'area di $18x11 \text{ km}^2$. A partire dalle geometrie dei singoli modelli fluido-dinamici sono state create due griglie FE che, per non risentire dell'influenza delle condizioni al contorno imposte ai bordi, sono state estese (side-burden) fino a ricoprire un'area di circa $30x28 \text{ km}^2$.

Le griglie così ricavate a partire dai singoli modelli fluido-dinamici sono state infine unite tra loro in un unico modello geomeccanico che, pertanto, considera in maniera ottimale le interazioni meccaniche tra i due giacimenti.

Il modello complessivo risulta suddiviso in 110 layer verticali, dal fondo mare fino ad una profondità di 5000 m, per un totale di 245432 elementi, 260427 nodi e 921121 gradi di libertà.

Figura 2 – A sinistra il confronto tra l'estensione del modello geomeccanico e dei modelli dinamici (riquadri neri). A destra la griglia complessiva.

Le condizioni al contorno assegnate al modello sono di spostamento nullo alla base della griglia e spostamento orizzontale impedito sui lati del modello.

2.3 Proprietà dei materiali

2.3.1 Densità della roccia

Partendo dai density log dei pozzi Fauzia 1 e Barbara NW da 2 a 7 è stato possibile calcolare un profilo continuo di densità (Figura 3) definito attraverso la seguente relazione:

$$\rho(z) = 0.181 \left(z - z_{fm} \right) + 2001.63 \quad \begin{bmatrix} kg \\ m^3 \end{bmatrix}$$
(1)

ove le profondità (z) sono misurate in metri TVDSS (*True Vertical Depth Sub Sea*) ed è stata considerata una profondità del fondale marino z_{fm} pari a 70 m, al di sopra della quale la densità è stata assunta pari a 1030.0 kg/m³.

Figura 3 – Profilo di densità da log ed analitico.

La densità della roccia è stata fornita al modello FE in forma tabulare come funzione della profondità secondo la precedente relazione.

2.3.2 Peso specifico dei fluidi saturanti

Viene fornito al modello FE il valore del peso specifico dei fluidi saturanti. Per ogni regione idromeccanica il valore di γ_f (relativo al gas o all'acqua) è stato considerato costante. Esso è stato

determinato partendo dalla profondità del contatto gas-acqua e dalla distribuzione iniziale delle pressioni calcolata dai modelli Eclipse.

2.3.3 Comprimibilità uniassiale

Il parametro geomeccanico chiave nelle simulazioni di subsidenza è la comprimibilità uniassiale c_m del materiale. E' oggi comunemente accettato [3] che i valori più attendibili di questo parametro, generalmente funzione non lineare dello stress efficace, siano quelli ottenuti dalle misure in situ tramite markers.

In assenza di dati specifici da marker sui campi di Barbara NW e Fauzia si è utilizzata per la stima della comprimibilità una correlazione regionale basata sul più ampio dataset possibile e relativa alle stesse formazioni del Nord Adriatico. Tale correlazione tra c_m e tensione verticale efficace σ'_v è stata proposta da Hueckel *et al.* [4] ed è riportata in Figura 4 ove sono rappresentate:

- relazione media, stima ottimale:

$$c_m = 0.01367 \cdot (\sigma_v')^{-1.16434} \tag{2}$$

- relazione upper, quantile 97.5%:

$$c_m = 0.01367 \cdot 10^{0.467} \cdot (\sigma'_v)^{-1.16434}$$
(3)

dove σ'_{v} è la tensione efficace verticale espressa in bar e c_{m} è il coefficiente di comprimibilità edometrica espresso in bar⁻¹.

In Figura 4 è inoltre messa a confronto la relazione di Hueckel *et al.* [4] con quella di Baù *et al.* [5]; si può osservare come le due risultino analoghe.

La tensione verticale efficace è stata calcolata tramite:

$$\sigma'_{v} = \sigma_{v} - p \tag{4}$$

dove σ_v è la tensione verticale totale e *p* la pressione dei pori. Quest'ultima è stata estratta dagli studi fluido-dinamici alla profondità di riferimento, mentre la tensione verticale totale σ_v è stata calcolata a partire dalla densità del materiale.

Figura 4 – Correlazione tra la comprimibilità uniassiale c_m e lo stress efficace in situ, derivata da misure su marker nei campi a gas del bacino nord adriatico (da [4]).

I campi di pressione dei modelli Eclipse sono stati stimati utilizzando comprimibilità dei pori coerenti con il modello geomeccanico.

Si segnala che studi recenti [6] hanno evidenziato come sia la correlazione di Baù *et al.* [5] sia quella di Hueckel *et al.* [4] tendano a sottostimare la comprimibilità uniassiale dei sedimenti posti a meno di 1500 m di profondità. Per tener conto di ciò, ovvero per profondità inferiori a 1500 m, Ferronato *et al.* [6] hanno proposto che, in via cautelativa, il valore di c_m ottenuto dalle precedenti correlazioni sia moltiplicato per 2. Si ottiene così la legge impiegata nello **scenario di riferimento**:

$$c_m = \begin{cases} 2 \cdot 0.01367 \cdot (\sigma'_v)^{-1.16434} & z < 1500m \\ 0.01367 \cdot (\sigma'_v)^{-1.16434} & z \ge 1500m \end{cases}$$
(5)

Allo scopo di effettuare un'analisi parametrica, oltre alla relazione (5), è stata considerata anche la legge di comprimibilità relativa al quantile superiore ed espressa dalla relazione (3): lo scenario di simulazione così realizzato è denominato **scenario upper**.

Solitamente, viene anche considerato uno scenario con comprimibilità più bassa (scenario lower, quantile 2.5%). In questo caso non è stato possibile realizzare l'history match delle pressioni di campo misurate in Barbara NW con tale scenario di comprimibilità, senza che venissero alterate in maniera non fisica altre caratteristiche petrofisiche del giacimento. Per questo motivo, tale scenario non è presente in questo studio.

In Tabella 1 sono riportati i valori di comprimibilità uniassiale (c_m), coefficiente di Poisson (v), modulo di Young (E), pendenza della retta di normal-compressione (λ) e di scarico-ricarico (κ) nel piano e:lnp' (dove e è l'indice dei vuoti e p' è la tensione efficace media) assegnati ai vari livelli per lo scenario di riferimento. Per ogni layer sono anche indicati i valori di profondità media, tensione verticale totale, pressione dei pori e tensione verticale efficace.

Lavor	z media	σ_{v}	р	σ'_v	C _m	v	E	x	к
Layer	[m]	[bar]	[bar]	[bar]	[bar ⁻¹]	-	[bar]	-	-
Overburden 1	251.8	43.2	25.4	17.8	9.56E-04	0.26	8.55E+02	-	-
Overburden 2	435.6	80.2	44	36.2	4.18E-04	0.26	1.95E+03	-	-
Overburden 3	619.4	117.8	62.6	55.2	2.56E-04	0.26	3.19E+03	-	-
Overburden 4	803.2	155.9	81.1	74.8	1.80E-04	0.26	4.55E+03	-	-
Barbara NW 1	987	194.8	100	94.8	1.37E-04	0.26	5.97E+03	2.02E-02	6.67E-03
Barbara NW 2	1048	207.8	106	101.8	1.26E-04	0.26	6.49E+03	-	
Barbara NW 3	1048	207.8	106	101.8	1.26E-04	0.26	6.49E+03	2.00E-02	6.59E-03
Barbara NW 4	1048	207.8	106	101.8	1.26E-04	0.26	6.49E+03	2.00E-02	6.59E-03
Barbara NW 5	1105	220	112	108	1.17E-04	0.26	6.99E+03	-	-
Barbara NW 6	1105	220	112	108	1.17E-04	0.26	6.99E+03	1.76E-02	5.80E-03
Barbara NW 7	1105	220	112	108	1.17E-04	0.26	6.99E+03	1.76E-02	5.80E-03
Barbara NW 8	1141	227.7	115	112.7	1.12E-04	0.26	7.30E+03	-	-
Barbara NW 9	1141	227.7	115	112.7	1.12E-04	0.26	7.30E+03	1.75E-02	5.77E-03
Barbara NW 10	1150	229.7	116	113.7	1.11E-04	0.26	7.36E+03	-	-
Barbara NW 11	1150	229.7	116	113.7	1.11E-04	0.26	7.36E+03	1.74E-02	5.76E-03
Barbara NW 12	1150	229.7	116	113.7	1.11E-04	0.26	7.36E+03	1.74E-02	5.76E-03
Barbara NW 13	1150	229.7	116	113.7	1.11E-04	0.26	7.36E+03	1.74E-02	5.76E-03
Barbara NW 14	1161	232	117	115	1.09E-04	0.26	7.50E+03	-	-
Barbara NW 15	1161	232	117	115	1.09E-04	0.26	7.50E+03	1.74E-02	5.75E-03
Barbara NW 16	1165	232.9	117.4	115.5	1.08E-04	0.26	7.57E+03	-	-
Barbara NW 17	1165	232.9	117.4	115.5	1.08E-04	0.26	7.57E+03	1.76E-02	5.82E-03
Barbara NW 18	1184	237	120	117	1.07E-04	0.26	7.64E+03	-	-
Barbara NW 19	1184	237	120	117	1.07E-04	0.26	7.64E+03	1.74E-02	5.73E-03
Barbara NW 20	1190	238.3	120.4	117.9	1.06E-04	0.26	7.71E+03	-	-
Barbara NW 21	1190	238.3	120.4	117.9	1.06E-04	0.26	7.71E+03	1.71E-02	5.64E-03
Barbara NW 22	1200.5	240.6	120.66	119.9	1.04E-04	0.26	7.86E+03	-	-
Barbara NW 23	1200.5	240.6	120.66	119.9	1.04E-04	0.26	7.86E+03	1.71E-02	5.63E-03
Barbara NW 24	1205	241.5	121.5	120	1.04E-04	0.26	7.86E+03	-	-
Barbara NW 25	1205	241.5	121.5	120	1.04E-04	0.26	7.86E+03	1.75E-02	5.78E-03
Barbara NW 26	1209	242.4	122.38	120	1.04E-04	0.26	7.86E+03	-	-
Barbara NW 27	1209	242.4	122.38	120	1.04E-04	0.26	7.86E+03	1.73E-02	5.71E-03
Barbara NW 28	1217.5	244.2	123	121.2	1.02E-04	0.26	8.01E+03	-	-
Barbara NW 29	1217.5	244.2	123	121.2	1.02E-04	0.26	8.01E+03	1.70E-02	5.62E-03
Barbara NW 30	1223	245.4	124	121.4	1.02E-04	0.26	8.01E+03	-	-
Barbara NW 31	1223	245.4	124	121.4	1.02E-04	0.26	8.01E+03	1.70E-02	5.62E-03
Barbara NW 32	1223	245.4	124	121.4	1.02E-04	0.26	8.01E+03	1.70E-02	5.62E-03
Barbara NW 33	1246	250.4	125.9	124.5	9.94E-05	0.26	8.22E+03	-	-
Barbara NW 34	1246	250.4	125.9	124.5	9.94E-05	0.26	8.22E+03	1.72E-02	5.67E-03
Barbara NW 35	1246	250.4	125.9	124.5	9.94E-05	0.26	8.22E+03	1.72E-02	5.67E-03
Barbara NW 36	1249.5	251.2	126.6	124.6	9.93E-05	0.26	8.23E+03	-	-
Barbara NW 37	1249.5	251.2	126.6	124.6	9.93E-05	0.26	8.23E+03	1.67E-02	5.52E-03

Tabella 1 – Proprietà assegnate, regione per regione, per lo scenario di riferimento.

1									
Barbara NW 38	1254.5	252.3	126.8	125.5	9.85E-05	0.26	8.30E+03	-	-
Barbara NW 39	1254.5	252.3	126.8	125.5	9.85E-05	0.26	8.30E+03	1.69E-02	5.59E-03
Barbara NW 40	1254.5	252.3	126.8	125.5	9.85E-05	0.26	8.30E+03	1.69E-02	5.59E-03
Barbara NW 41	1264	254.3	130	124.3	9.95E-05	0.26	8.21E+03	-	-
Barbara NW 42	1264	254.3	130	124.3	9.95E-05	0.26	8.21E+03	1.72E-02	5.67E-03
Barbara NW 43	1431	290.9	158	132.9	9.21E-05	0.26	8.87E+03	-	-
Barbara NW 44	1431	290.9	158	132.9	9.21E-05	0.26	8.87E+03	1.68E-02	5.53E-03
Barbara NW 45	1431	290.9	158	132.9	9.21E-05	0.26	8.87E+03	1.68E-02	5.53E-03
Barbara NW 46	1431	290.9	158	132.9	9.21E-05	0.26	8.87E+03	1.68E-02	5.53E-03
Barbara NW 47	1473	300.2	163	137.2	8.88E-05	0.26	9.20E+03	-	-
Barbara NW 48	1473	300.2	163	137.2	8.88E-05	0.26	9.20E+03	1.67E-02	5.50E-03
Barbara NW 49	1473	300.2	163	137.2	8.88E-05	0.26	9.20E+03	1.67E-02	5.50E-03
Underburden BNW 1	1567.2	321.1	158.3	162.8	3.64E-05	0.26	2.25E+04	-	-
Underburden BNW 2	1661.5	342.2	167.8	174.4	3.36E-05	0.26	2.43E+04	-	-
Underburden BNW 3	1850	384.8	186.9	198	2.90E-05	0.26	2.82E+04	-	-
Overburden Fauzia 1	1850	384.8	186.9	198	2.90E-05	0.26	2.82E+04	-	-
Overburden Fauzia 2	1960.4	410.1	198	212.1	2.67E-05	0.26	3.06E+04	_	_
Fauzia 1	2015.6	422.9	240.4	182.5	3.18E-05	0.26	2.57E+04	7.85E-03	2.59E-03
Fauzia 2	2015.6	422.9	240.4	182.5	3.18E-05	0.26	2.57E+04	7.85E-03	2.59E-03
Fauzia 3	2051 7	431.2	243 11	188.1	3 07E-05	0.26	2 66E+04	-	
Fauzia 4	2051.7	431.2	243.11	188.1	3.07E-05	0.26	2.66E+04	7.61E-03	2.51E-03
Fauzia 5	2051.7	431.2	243.11	188.1	3.07E-05	0.26	2.66E+04	7.61E-03	2.51E-03
Fauzia 6	2054.6	431.9	243.4	188.5	3 07E-05	0.26	2.66E+04	-	-
Fauzia 7	2054.6	431.9	243.4	188.5	3.07E-05	0.26	2.66E+04	7 60E-03	2 51E-03
Fauzia 8	2054.6	431.9	243.4	188.5	3.07E-05	0.26	2.66E+04	7.60E-03	2.51E-03
Fauzia 9	2076.2	436.9	246.16	190.7	3.02E-05	0.26	2.00E+04	-	-
Fauzia 10	2076.2	436.9	246.16	190.7	3.02E-05	0.26	2.71E+04	7 49E-03	2.47E-03
Fauzia 11	2076.2	436.9	246.16	190.7	3.02E-05	0.26	2.71E+04	7.49E-03	2.17E-03
Fauzia 12	2106.9	444	248.95	195.1	2.95E-05	0.26	2.712 + 01 2.77E+04	-	-
Fauzia 13	2106.9	444	248.95	195.1	2.95E-05	0.20	2.77E+01 2.77E+04	7.66E-03	2 53E-03
Fauzia 14	2106.9	444	240.95	195.1	2.95E-05	0.20	2.77E+04 2 77E+04	7.66E-03	2.55E 05
Fauzia 15	2100.9	448.3	250.3	198	2.90E-05	0.20	2.77E+04 2.82E+04	7.001 05	2.331 03
Fauzia 16	2125.3	448.3	250.3	198	2.90E-05	0.20	2.82E+04	7 54E-03	2 49E-03
Fauzia 17	2125.3	1/18 3	250.3	108	2.00E-05	0.20	2.82E+04	7.54E-03	2.4)E-03
Fauzia 18	2123.3	440.5	250.5	201.0	2.90E-05	0.20	2.82E+04 2.80E+04	7.34L-03	2.4912-05
Fauzia 10	2140.9	453.8	251.9	201.9	2.03E-05	0.20	2.09E+04	- 7 42E 03	- 2 45E 03
Fauzia 19	2140.9	453.8	251.9	201.9	2.03E-05	0.20	2.09E+04	7.42E-03	2.45E 03
Fauzia 20	2140.9	455.6	251.9	201.9	2.83E-05	0.20	2.09E+04	7.421-03	2.43L-03
Fauzia 21	2152.4	454.0	252.5	202.3	2.82E-05	0.20	2.90E+04	- 7 52E 02	2 49E 02
Fauzia 22	2152.4	454.0	252.5	202.3	2.02E-05	0.20	$2.90E \pm 04$	7.52E-05	2.46E-03
Fauzia 23	2152.4	454.0	252.5	202.3	2.02E-05	0.20	2.90E+04	7.52E-05	2.40E-03
Fauzia 24	2152.4	434.0	252.5	202.5	2.82E-05	0.20	2.90E+04	7.52E-05	2.48E-03
Fauzia 25	2152.4	434.0	252.5	202.5	2.82E-05	0.20	2.90E+04	7.52E-05	2.48E-03
Fauzia 26	2152.4	454.0	252.5	202.3	2.82E-05	0.20	2.90E+04	7.52E-05	2.48E-03
Fauzia 27	2158.4	456	253.4	202.6	2.82E-05	0.26	2.90E+04	-	-
	2138.4	430	253.4	202.0	2.02E-05	0.20	2.90E+04	7.93E-03	2.02E-03
Fauzia 29	2158.4	456	255.4	202.0	2.82E-05	0.26	2.90E+04	7.93E-03	2.02E-03
Fauzia 30	2138.4	450	255.4	202.0	2.82E-05	0.26	2.90E+04	1.93E-03	2.02E-03
Fauzia 31	21/0.4	458.8	254	204.8	2.78E-05	0.26	2.94E+04		-
Fauzia 32	21/0.4	458.8	254	204.8	2.78E-05	0.26	2.94E+04	7.22E-03	2.38E-03
Fauzia 33	21/0.4	458.8	254	204.8	2.78E-05	0.26	2.94E+04	1.22E-03	2.38E-03
Fauzia 34	21/3	439.4	254.28	205.1	2./8E-05	0.26	2.94E+04	- 1	-

Fauzia 35	2173	459.4	254.28	205.1	2.78E-05	0.26	2.94E+04	7.31E-03	2.41E-03
Fauzia 36	2173	459.4	254.28	205.1	2.78E-05	0.26	2.94E+04	7.31E-03	2.41E-03
Fauzia 37	2175.4	460	254.5	205.5	2.77E-05	0.26	2.95E+04	-	-
Fauzia 38	2175.4	460	254.5	205.5	2.77E-05	0.26	2.95E+04	7.60E-03	2.51E-03
Fauzia 39	2175.4	460	254.5	205.5	2.77E-05	0.26	2.95E+04	7.60E-03	2.51E-03
Fauzia 40	2180.3	461.1	254.78	206.3	2.76E-05	0.26	2.96E+04	-	-
Fauzia 41	2180.3	461.1	254.78	206.3	2.76E-05	0.26	2.96E+04	7.69E-03	2.54E-03
Fauzia 42	2180.3	461.1	254.78	206.3	2.76E-05	0.26	2.96E+04	7.69E-03	2.54E-03
Fauzia 43	2180.3	461.1	254.78	206.3	2.76E-05	0.26	2.96E+04	7.69E-03	2.54E-03
Fauzia 44	2180.3	461.1	254.78	206.3	2.76E-05	0.26	2.96E+04	7.69E-03	2.54E-03
Fauzia 45	2184.3	462.1	255.06	207	2.75E-05	0.26	2.97E+04	-	-
Fauzia 46	2184.3	462.1	255.06	207	2.75E-05	0.26	2.97E+04	7.69E-03	2.54E-03
Fauzia 47	2184.3	462.1	255.06	207	2.75E-05	0.26	2.97E+04	7.69E-03	2.54E-03
Fauzia 48	2190.9	463.6	255.77	207.8	2.74E-05	0.26	2.98E+04	-	-
Underburden 1	2752.72	597.8	278.1	319.8	1.66E-05	0.26	4.93E+04	-	-
Underburden 2	3314.54	737.7	334.8	402.9	1.27E-05	0.26	6.46E+04	-	-
Underburden 3	3876.36	883.2	391.6	491.6	1.00E-05	0.26	8.14E+04	_	-
Underburden 4	4438.18	1034.2	448.3	585.9	8.19E-06	0.26	9.98E+04	-	-

2.4 Inizializzazione

2.4.1 Stato tensionale iniziale

Per i campi di Barbara NW e Fauzia lo sforzo totale verticale è stato calcolato dal gradiente di overburden definito a partire dai log density eseguiti sui pozzi Fauzia 1 e Barbara NW da 2 a 7 (come descritto nel paragrafo 2.3.1). Lo sforzo orizzontale σ'_h è stato inizializzato partendo da condizioni di tipo edometrico definite come:

$$\sigma'_h = K_0 \cdot \sigma'_v \tag{6}$$

dove K_0 rappresenta il coefficiente di spinta a riposo che è stato posto pari a 0.54 [7].

2.5 Storia di pressione

La distribuzione tridimensionale di pressione e la sua evoluzione temporale, così come calcolata dai modelli di flusso Eclipse, è stata importata nel modello ad elementi finiti. Le pressioni sono state importate considerando 18 step temporali.

3 Risultati delle analisi eseguite con il modello elasto-plastico

3.1 Scenario di riferimento

I risultati delle previsioni di subsidenza per lo scenario di riferimento, ritenuto il più probabile, sono riportati in Tabella 2 per diversi step temporali durante e dopo la vita produttiva del campo. Lo studio è stato, infatti, protratto fino al 2050 (a pozzi chiusi) in modo da considerare l'effetto dell'evoluzione della pressione nelle regioni mineralizzate e in acquifero dopo la fine della produzione.

Tabella 2 – Risultati finali: massima subsidenza ed estensione del fenomeno per lo scenario di riferimento.

1-g	1-gen-2010 1-gen-2022		gen-2022	1-gen-2026		1-§	gen-2040	1-gen-2050	
Max sub (cm)	Max estensione (km)								
27	5	31	12	30	13	29	14	29	14

L'analisi dei risultati consente di osservare che, per lo scenario di riferimento:

- il valore massimo di subsidenza è previsto in corrispondenza del campo di Barbara NW e ٠ risulta pari a 31 cm. Tale valore è raggiunto nel 2022, si riduce a 29 cm dopo circa 20 anni e rimane stabile fino alla fine della simulazione. La subsidenza massima prevista in corrispondenza del campo di Fauzia è pari a 10 cm ed è raggiunta alla fine della simulazione (Figura 5);
- nel 2026 (fine della produzione) la massima estensione della linea di iso-subsidenza dei 2 • cm, calcolata come distanza del punto di massima subsidenza dalla linea dei 2 cm, è pari a 13 km, raggiunge i 14 km nel 2040 e rimane successivamente invariata (Figura 6 e Figura 7) a dimostrazione dell'assestamento del fenomeno;
- il fenomeno si esaurisce a circa 42 km dalla linea di costa.

Figura 5 – Scenario di riferimento: evoluzione nel tempo del valore di subsidenza nel punto di massimo, in corrispondenza del campo di Barbara NW (linea blu, punto di coordinate 2412321 m E, 4884565 m N) e del campo di Fauzia (linea rossa, punto di coordinate 2404061 m E, 4879477 m N).

Figura 6 – Curve di iso-subsidenza per lo scenario di riferimento a fine produzione (2026). Sono anche indicati i punti di massimo in corrispondenza del campo di Barbara NW (in blu) e di Fauzia (in rosso).

Figura 7 – Curve di iso-subsidenza per lo scenario di riferimento a fine simulazione (2050).

3.2 Scenario upper

I risultati delle previsioni di subsidenza per lo scenario upper sono riportati in Tabella 3 per diversi step temporali durante e dopo la vita produttiva del campo.

1-gen-2010 1		1-g	1-gen-2022		gen-2026	1-g	gen-2040	1-gen-2050		
Max sub (cm)	Max estensione (km)									
36	5	39	13	39	14	38	14	37	14	

Tabella 3 – Risultati finali: massima subsidenza ed estensione del fenomeno per lo scenario upper.

L'analisi dei risultati consente di osservare che, per lo scenario upper:

- il valore massimo di subsidenza è previsto in corrispondenza del campo di Barbara NW e risulta pari a 39 cm. Tale valore è raggiunto nel 2022, si riduce a 38 cm dopo circa 20 anni e a 37 cm dopo ulteriori 10 anni (fine della simulazione). La subsidenza massima prevista in corrispondenza del campo di Fauzia è pari a 20 cm ed è raggiunta alla fine della simulazione (Figura 8);
- nel 2026 (fine della produzione) la massima estensione della linea di iso-subsidenza dei 2 cm, calcolata come distanza del punto di massima subsidenza dalla linea dei 2 cm, è pari a

14 km e rimane successivamente invariata (Figura 9 e Figura 10) a dimostrazione dell'assestamento del fenomeno;

• il fenomeno si esaurisce a circa 42 km dalla linea di costa.

Figura 8 – Scenario upper: evoluzione nel tempo del valore di subsidenza nel punto di massimo, in corrispondenza del campo di Barbara NW (linea blu, punto di coordinate 2412321 m E, 4884565 m N) e del campo di Fauzia (linea rossa, punto di coordinate 2404061 m E, 4879477 m N).

Figura 9 – Curve di iso-subsidenza per lo scenario upper a fine produzione (2026). Sono anche indicati i punti di massimo in corrispondenza del campo di Barbara NW (in blu) e di Fauzia (in rosso).

Figura 10 – Curve di iso-subsidenza per lo scenario upper a fine simulazione (2050).

4 Confronto con i dati della stazione CGPS

I valori di subsidenza calcolati dal modello numerico sono stati confrontati con quelli misurati dalla stazione CGPS installata sulla piattaforma di produzione di Barbara NW in corrispondenza delle coordinate 2411866 m E 4884875 m N. Il periodo di osservazione in cui sono stati analizzati i dati va da gennaio 2008 a dicembre 2009 (Figura 11). Si noti che tale periodo è stato selezionato considerando un insieme di dati leggermente inferiore alla totalità delle misure disponibili alla data odierna, allo scopo di utilizzare un intervallo temporale che non contenga frazioni di anno, così da minimizzare l'effetto degli errori dovuti alle oscillazioni stagionali legate alle variazioni di temperatura.

Figura 11 - Misurazioni effettuate dalla stazione CGPS, aggiornate al 26 maggio 2010.

Si sottolinea comunque che, come indicato dall'ente certificatore dei dati (Università degli Studi di Bologna, Dipartimento di Fisica), un dataset inferiore a 36 mesi non può essere considerato sufficientemente attendibile al fine di una verifica del modello previsionale di subsidenza.

In particolare, serie storiche di durata inferiore a 36 mesi possono dare indicazioni sulla tendenza del fenomeno solo nel caso di grandi valori di subsidenza, mentre un monitoraggio di durata superiore a 36 mesi è raccomandabile per trarre informazioni sulla tendenza nel caso di piccoli valori di subsidenza, quale è quello in esame in questo studio.

Nonostante le misure attualmente disponibili non possano essere utilizzate se non a livello indicativo, il confronto tra i valori predetti dalle simulazioni e i dati da CGPS (Figura 12) mostrano come entrambi gli scenari forniscano risultati cautelativi in termini di subsidenza prevista.

Figura 12 – Spostamento misurato e calcolato secondo i due scenari in corrispondenza della stazione CGPS.

Bibliografia

- AbaqusTM, Dassault, versione 6.8.
 EclipseTM, Schlumberger, versione 2007.2.
- 3. D. Baù, M. Ferronato, G. Gambolati and P. Teatini: Basin-scale compressibility of the northern Adriatic by the radioactive marker technique. Géotechnique 52, No. 8, 605-616, 2002.
- 4. T. Hueckel, G. Cassiani, J.H. Prévost and D.A. Walters: Field Derived Compressibility of Deep Sediments of the Northern Adriatic. Land Subsidence, Special Volume, Proc. 7th Int. Symp. on Land Subsidence, Shanghai, 2005.
- 5. D. Baù, M. Ferronato, G. Gambolati and P. Teatini: Basin-scale compressibility of the northern Adriatic by the radioactive marker technique. Géotechnique 52, No. 8, 605-616, 2002.
- 6. M. Ferronato, G. Gambolati, P. Teatini and D. Baù: Interpretation of Radioactive Marker Measurements To Evaluate Compaction in the Northern Adriatic Gas Field, SPE Evaluation & Engineering, December 2003.
- 7. F.J. Santarelli, M. Brignoli, A. Pellegrino: La scelta del coefficiente di Poisson per formazioni a grande scala - 04/1996.