COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

PROGETTO DEFINITIVO

LINEA AV/AC VERONA - PADOVA
SUB TRATTA VERONA - VICENZA
1°SUB LOTTO VERONA - MONTEBELLO VICENTINO

SOTTOVIA

Progettazione

SL06 - SOTTOVIA AL km. 26+531

SL06A SCATOLARE - RELAZIONE DI CALCOLO - SOTTOVIA

GENERAL CONTRACTOR		ITALFERR S.p.A.	SCALA:
ATI bonifica Progettista integratore	Consorzio IRICAV DUE II Direttore		-
Franco Persio Bocchetto Dottore in Ingegneria Civile iscritto all'Ordine degli Ingegneri della Provincia di Roma al n°8664 – Sez. A settore Civile ed Ambientale			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV
I N O D	0 0	D	1 2	CL	S L 0 6 A X	0 0 1	Α

OTI basifisa	VISTO ATI BONIFICA				
HII DONIICA	Firma	Data			
	Ing. F.P. Bocchetto	Maggio 2015			

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato
А	EMISSIONE	F. Galdiero	Mag 2015	L. Lacopo	Mag 2015	P. Polidori	Mag 2015	Ing Alberto Checchi iscritto all'Ordine degli Ingegneri
								Provincia di Roma al n°12414 - Sez. A settore Civile e Ambientale
								Maggio 2015

File: IN0D00DI2CLSL06AX001A_00A.docx	CUP: J41E91000000009	n. Elab.:
	CIG: 3320049F17	

1°Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 2 di 52

Sommario

1	PRI	EMESSA	4
2	SC	OPO DEL DOCUMENTO	4
	2.1	Unità di misura	6
3	DO	CUMENTI DI RIFERIMENTO	7
	3.1	Documenti Referenziati	7
4	ALL	.EGATI	8
5	MA	TERIALI UTILIZZATI	9
	5.1	Calcestruzzo C32/40 MPA	9
	5.2	Acciaio in barre ad aderenza migliorata B450 C	10
6	INC	QUADRAMENTO GEOTECNICO	11
	6.1	Stratigrafia e parametri geotecnici di progetto	11
	6.2	Falda di progetto	12
	6.3	Interazione terreno-struttura	12
	6.4	Classificazione sismica	13
7	AN	ALISI DEL SOTTOVIA	13
	7.1	Analisi dei carichi	14
	7.1.1	Peso proprio della struttura e carichi permanenti portati (condizione PERM)	14
	7.1.2	Spinta del terreno (condizioni SPTSX e SPTDX)	15
	7.1.3	Carichi accidentali, ripartizione carichi verticali (condizione ACC-M)	17
	7.1.4	Spinta sui piedritti prodotta dal sovraccarico (condizioni SPACCSX e SPACCDX)	18
	7.1.5	Frenatura e avviamento (condizione AVV)	18
	7.1.6	Azioni termiche (condizione: TERM)	19
	7.1.7	Ritiro (condizione: RITIRO)	19
	7.1.8	Azioni della falda (condizione: SPW)	19
	7.1.9	Azioni sismiche	20
	7.2	Combinazioni di carico	24
8		DELLAZIONE ADOTTATA	
9		ALISI DELLE SOLLECITAZIONI	
10) V	'ERIFICHE AGLI SLU ED AGLI SLE (STR)	
	10.1	SEZIONE 1 - estremi fondazione	
	10.2	SEZIONE 2 - campata fondazione	42
	10.3	SEZIONE 3 – piede PIEDRitti.	44

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. Pag. 1N0D 00 DI2 CL SL06AX00 1A 3 di 52

10.4	SEZIONE 4 – testa PIEDRitti	46
	SEZIONE 5 – estremi copertura	
	SEZIONE 6 – campata copertura	
	'ERIFICHE GEOTECNICHE	
11.1	Verifica allo stato limite di sollevamento	52
12 V	ALUTAZIONE DELLE INCIDENZE	52

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

4 di 52

PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici relativi al Progetto Definitivo della tratta AV/AC Verona-Padova, subtratta Verona Porta Vescovo - Montebello Vicentino.

SCOPO DEL DOCUMENTO

La presente relazione ha per oggetto le analisi e le verifiche del sottopasso ferroviario al km 26+534.00 della tratta A.V./A.C. Verona-Padova, subtratta Verona Porta Vescovo - Montebello Vicentino.

Il sottopasso è costituito da una struttura scatolare di tipo classico, di dimensioni interne 8.50x6.50 m, con piedritti di spessore pari a 0.80 m, soletta di copertura di spessore pari a 0.80 m e soletta di fondazione di spessore pari a 1.00 m.

Si riportano, di seguito, alcune viste delle opere in progetto.

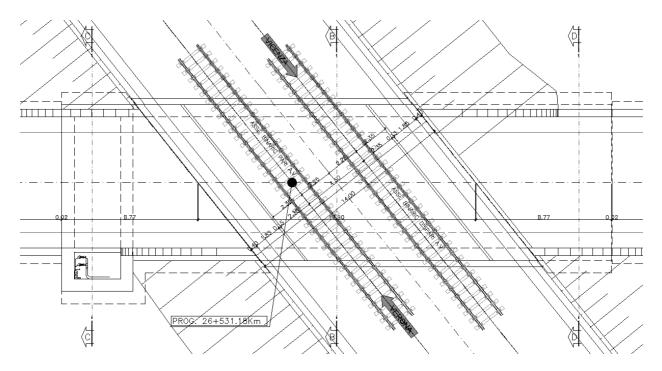


Figura 1 - Vista dall'alto

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A 5 di 52

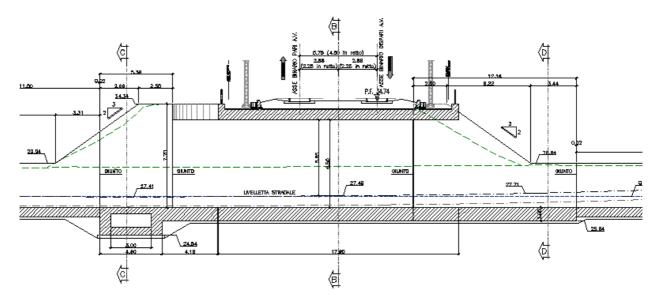


Figura 2 - Sezione longitudinale

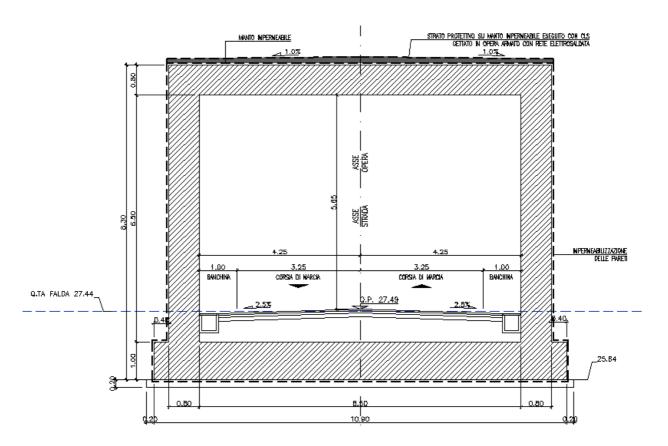


Figura 3 - Sezione trasversale

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

6 di 52

Per maggiori approfondimenti sulle geometrie delle diverse parti dell'opera si rimanda agli elaborati grafici di progetto.

2.1 UNITÀ DI MISURA

Le unità di misura usate nella relazione:

- lunghezze [m]
- forze [kN]
- momenti [kNm]
- tensioni [Mpa]

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

7 di 52

DOCUMENTI DI RIFERIMENTO

DOCUMENTI REFERENZIATI 3.1

Si riporta nel seguito l'elenco delle leggi e dei decreti di carattere generale, assunti come riferimento.

- Legge 5-1-1971 n° 1086: Norme per la disciplina de lle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Legge. 2 febbraio 1974, n. 64. Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.
- D.M. 14 gennaio 2008 Norme Tecniche per le Costruzioni
- Circolare 2 febbraio 2009,n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008.
- UNI EN 1992-1-1 "Progettazione delle strutture di calcestruzzo
- UNI EN 206-1-2001: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".

Si riporta, ora, l'elenco delle norme tecniche, delle circolari e delle istruzioni F.S. delle quali si è tenuto conto.

- RFI DTC INC CS SP IFS 001 A: Specifica per la progettazione geotecnica delle opere civili ferroviarie;
- RFI DTC INC PO SP IFS 001 A: Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario;
- Manuale di progettazione ITALFERR.

1°Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 8 di 52

4 ALLEGATI

Il presente documento è corredato dai seguenti allegati

- SOTTOVIA SL06 SOTTOVIA AL Km. 26+531 -VISTA DALL'ALTO – CARPENTERIA
- SOTTOVIA SL06 SOTTOVIA AL Km. 26+531 -PIANTA ALLO SPICCATO – CARPENTERIA
- SOTTOVIA SL06 SOTTOVIA AL Km. 26+531 -SEZIONE LONGITUDINALE A-A – CARPENTERIA
- SOTTOVIA SL06 SOTTOVIA AL Km. 26+531 -SEZIONI TRASVERSALI – CARPENTERIA
- PROFILI GEOTECNICI

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

9 di 52

MATERIALI UTILIZZATI

5.1 CALCESTRUZZO C32/40 MPA

 $f_{ck} = 32 \text{ N/mm}^2$ Resistenza cilindrica caratteristica

 $E_c = 33300 \text{ N/mm}^2$ Modulo elastico

Modulo di Poisson v = 0.20

 $\rho = 25 \text{ kN/m}^3$ Densità di Massa

Coefficiente di espansione termica: $\alpha = 1.00E-05 \text{ m/}$

Stato Limite Ultimo

Resistenza di calcolo a compressione semplice $f_{cd} = \alpha_{cc} f_{ck} / \gamma_{m}$

 $f_{cd} = 18.1 \text{ N/mm}^2$ dove $\alpha_{cc} = 0.85$ e $\gamma_m = 1.5$

Resistenza di calcolo a trazione semplice $f_{ctd} = f_{ctk} / \gamma_m$

 $f_{ctd} = 1.40 \text{ N/mm}^2$

Stati Limite di Esercizio

Tensioni limite di compressione:

in combinazione di carico rara: $\sigma_{c} = 0.60 f_{ck} = 19.2 Mpa$

 $\sigma_c = 0.45 f_{ck} = 14.4 MPa$ in combinazione di carico quasi permanente:

Stato limite apertura delle fessure

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 10 di 52

Tabella 1 - Criteri di scelta dello stato limite di fessurazione

C	Condizioni	Combinazione		Armatur	a	
Gruppi di esigenze	ambientali	di azioni	Sensibile		Poco sensi	ibile
	ambientan	ui azioni	Stato limite	Wd	Stato limite	$\begin{array}{c c} \mathbf{W_d} \\ \leq \mathbf{W_3} \\ \leq \mathbf{W_2} \\ \leq \mathbf{W_2} \\ \leq \mathbf{W_1} \\ \leq \mathbf{W_1} \end{array}$
	Ordinarie	frequente	ap. fessure	\leq W ₂	ap. fessure	\leq W ₃
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure ≤ v	\leq W ₂
1.	Acamagairea	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq W ₂
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$
	Malta agamagiya	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
c	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$

I valori limite sono pari a:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Nel caso in esame le verifiche a fessurazione sono condotte in condizioni ambientali aggressive e considerando un'armatura poco sensibile, pertanto si adotteranno i valori limite:

 $w_2 = 0.3 \text{ mm}$ per la combinazione di carico frequente

 $w_1 = 0.2 \text{ mm}$ per la combinazione di carico quasi permanente

Stato Limite Ultimo

età del cls in giorni, all'inizio del ritiro $t_s = 2 gg$ età del cls in giorni, al momento del carico $t_0 = 2 gg$,

età del cls in giorni per calcolo da ritiro $t = 365 \text{ gg/a} \times 150 \text{ a} = 54750 \text{ gg},$

5.2 ACCIAIO IN BARRE AD ADERENZA MIGLIORATA B450 C

B450 C (controllato in stabilimento)

 $f_{vk} = 450 \text{ MPa}$ tensione caratteristica di snervamento

 $f_{vd} = f_{vk} / 1.15 = 391 \text{ MPa}$ tensione caratteristica di calcolo

 $E_s = 210'000 \text{ MPa}$ modulo elastico $\sigma_{s} = 0.8 f_{yk} = 360 MPa$ tensione limite

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

Pag. PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A 11 di 52

INQUADRAMENTO GEOTECNICO

6.1 STRATIGRAFIA E PARAMETRI GEOTECNICI DI PROGETTO

Le caratteristiche geotecniche del volume di terreno che interagisce con l'opera sono riportate di seguito.

Sottovia Progressiva	Parametri geotecnici terreno di posa fondazione	Parametri geotecnici terreno laterale
26+534.00	Argille, limi	Rilevato ferroviario

I parametri geotecnici di riferimento per i terreni presenti in sito sono:

	Parametri geotecnici terreno in sito				
	γ _{sat}	C'	Φ'	ν	\mathbf{E}_{d}
	(kN/m ³)	(KPa)	(9		(MPa)
Argille, limi	18.00	25.00	20	0.3	3

I parametri geotecnici del rilevato ferroviario sono

 $\gamma = 20.00 \text{ kN/m}^3$ peso di volume naturale

 $\phi' = 35^{\circ}$ angolo di resistenza al taglio

c' = 0.00 kPacoesione drenata

Il calcolo delle spinte agenti sui piedritti è stato fatto sulla base dei parametri geotecnici che caratterizzano il rilevato ferroviario.

1°Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO

REV.

Pag.

INOD 00 DI2 CL SL06AX00 1A

12 di 52

6.2 FALDA DI PROGETTO

La quota del pelo libero della falda è a 2.00 m dalla quota di intradosso soletta di fondazione.

6.3 INTERAZIONE TERRENO-STRUTTURA

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terrenostruttura relativamente all'opera in esame. Il modello utilizzato è quello di suolo alla Winkler. Il valore della costante di sottofondo $k_{\rm w}$ è stato valutato con la formulazione di

Vesic:
$$k_w = E / [(1 - v^2) \cdot B \cdot I] = 300 \text{ kN/m}^3$$

avendo assunto, per l'opera in esame, un modulo elastico del terreno pari a:

$$E = 3 MPa$$

ed essendo il coefficiente di influenza

$$I = 0.971$$

ricavato per interpolazione lineare dalla seguente tabella in funzione del rapporto tra le dimensioni in pianta della fondazione

L/B = 1.349

ed assumendo

H/B = 5.

Tabella 5.4 Coefficiente di influenza / per uno strato di spessore finito H (Tsytovich,1976)

L/B	H/B = 0.5	H/B = 1.0	H/B = 2.0	H/B = 5.0
1	0.39	0.62	0.77	0.87
2	0.43	0.70	0.96	1.16
3	0.44	0.73	1.04	1.31
10 Fondazione	0.46	0.77	1.15	1.62
circolare	0.38	0.58	0.70	0.78

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -

RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 13 di 52

6.4 CLASSIFICAZIONE SISMICA

Il valore dell'accelerazione orizzontale massima in condizioni sismiche è stato definito in accordo al D.M. 14 gennaio 2008.

La categoria di suolo di fondazione viene definita sulla base della conoscenza di Vs30, ricavato dalle indagini sismiche eseguite nelle campagne geognostiche. In particolare, nel caso in esame si considera una categoria di suolo di **tipo C**: "Depositi di sabbie o ghiaie mediamente addensate o argille mediamente consistenti, con spessori variabili da diverse decine di metri fino a centinaia di metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi fra 180 m/s e 360 m/s (ovvero resistenza penetrometrica NSPT < 50 o coesione non drenata 70 < cu < 250 kPa).

7 ANALISI DEL SOTTOVIA

Nel seguito verrà esaminata una striscia di scatolare, avente lunghezza di 1.00 m. Le caratteristiche geometriche della sezione di calcolo esaminata sono:

Spessore medio del ballast + armamento	h _b =	0.80 m
Larghezza totale dello scatolare	$L_{tot} =$	12.47 m
Larghezza utile dello scatolare	$L_{\text{int}} =$	10.87 m
Larghezza mensola di fondazione sinistra	$L_{\text{msx}} =$	0.40 m
Larghezza mensola di fondazione destra	$L_{\text{mdx}} =$	0.40 m
Spessore della soletta di copertura	$S_s =$	0.80 m
Spessore piedritti	$S_p =$	0.80 m
Spessore della soletta di fondazione	$S_f =$	1.00 m
Altezza libera del tombino	$H_{\text{int}} =$	6.50 m
Altezza totale del tombino	$H_{tot} =$	8.30 m
Quota falda da intradosso fondazione	$H_w =$	2.00 m
Larghezza striscia di calcolo	b =	1.00 m

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

14 di 52

7.1 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

7.1.1 PESO PROPRIO DELLA STRUTTURA E CARICHI PERMANENTI PORTATI (CONDIZIONE PERM)

Il peso proprio delle solette e dei piedritti è stato calcolato considerando per il calcestruzzo $\gamma = 25 \text{ kN/m}^3$; risulta:

Peso soletta superiore	P _{ss} =	20.00 kN/m
Peso soletta inferiore	$P_{si} =$	25.00 kN/m
Peso piedritti	P _p =	20.00 kN/m

Peso permanenti portati soletta superiore (ballast, sub-ballast, supercompattato, rinterro):

Peso ballast	$p_b =$	14.40 kN/m
--------------	---------	------------

In più, viene aggiunto, come carico concentrato nei nodi 12 e 16 (nodi di connessione tra la soletta superiore e i piedritti) il carico permanente sulla soletta di copertura dovuto al peso della zona sovrastante la metà dello spessore del piedritto (la modellazione dello scatolare è stata fatta in asse piedritto):

Peso ricoprimento per metà spessore piedritto	$P_p = 5.76 \text{ kN}$
---	-------------------------

Linea AV/AC	VERONA –	PADOVA
-------------	-----------------	---------------

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

15 di 52

7.1.2 SPINTA DEL TERRENO (CONDIZIONI SPTSX E SPTDX)

La struttura è stata analizzata nella condizione di spinta a riposo. Il coefficiente di spinta è stato calcolato utilizzando la formula $K_0 = 1 - \sin\Phi'$, per cui si ottiene il valore

$$K_0 = 0.426$$
.

La pressione del terreno è stata calcolata come:

$$p = (p_b + h_{variabile}^* \gamma_{terreno_piedritto})^* K_0$$

per cui risulta:

Pressione estradosso soletta superiore	p ₁ =	6.14 kN/m
Pressione in asse soletta superiore	p ₂ =	9.55 kN/m
Pressione in asse soletta inferiore	$p_3 =$	72.66 kN/m
Pressione intradosso soletta inferiore	p ₄ =	76.93 kN/m

Nella figura seguente si riportano i diagrammi di spinta del terreno agenti sui piedritti.

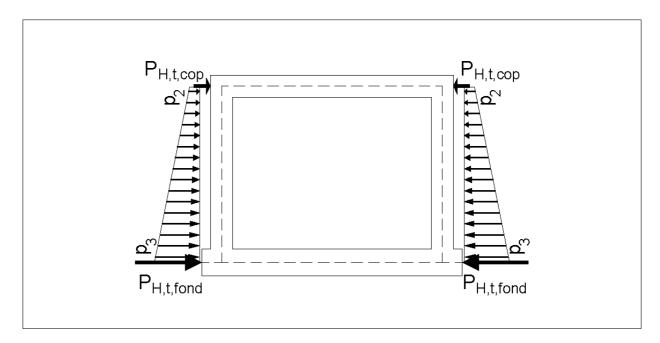


Figura 4 - Spinte del terreno

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 16 di 52

Alle spinte rappresentate dai diagrammi indicati in figura sono stati aggiunti, come carichi concentrati nei nodi 12 e 1 (per la SPTSX) oppure 16 e 11 (per la SPTDX), i contributi delle spinte del terreno esercitate su metà spessore delle soletta di copertura e di fondazione.

Spinta semispessore soletta di copertura $P_{H.t.cop} = 3.14 \text{ kN}$ Spinta semispessore soletta di fondazione 37.40 kN $P_{H.t.fond} =$

1° Sublotto: VERONA - MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

17 di 52

7.1.3 CARICHI ACCIDENTALI, RIPARTIZIONE CARICHI VERTICALI (CONDIZIONE ACC-M)

Il carico accidentale più sfavorevole per l'opera in esame è quello rappresentato dal treno LM71.

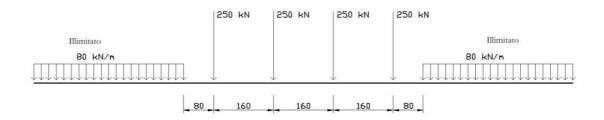


Figura 5 - Treno LM71

Per il calcolo del coefficiente dinamico Φ si è fatto riferimento al paragrafo 1.4.2 "effetti dinamici" della specifica RFI DTC INC PO SP IFS 001 A e nel caso in esame si è assunto $\Phi_2 = 1.270$.

Il sovraccarico ferroviario (LM71) è stato distribuito attraverso il ricoprimento costituito dal ballast (al di sotto delle traversine) con una pendenza 1/4, 2/3 negli strati (se presenti) tra il ballast e la soletta di copertura e 1/1 all'interno della soletta di copertura fino al piano medio della struttura, con un aumento dell'impronta di carico pari a:

$$\Delta d = 0.513 \text{ m}$$

La diffusione del carico in senso trasversale all'asse binario risulta dunque pari a:

$$L_d = 2.60 + 2 \Delta d = 3.63 \text{ m}$$

mentre in senso longitudinale si è assunto:

$$L_1 = 3 \times 1.60 + 2 \Delta d = 5.83 \text{ m}$$

Pertanto i carichi uniformemente ripartiti sulla soletta di copertura dovuti al treno LM71 (considerando il coefficiente di adattamento $\alpha = 1.1$ ed il coefficiente dinamico Φ_2) risultano:

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -

RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 18 di 52

Carico ripartito prodotto dalle forze concentrate $P_{V,Q1,cop} = 66.20 \text{ kN/m}$ Carico ripartito prodotto dal carico distribuito $P_{V,Q2,cop} = 22.07 \text{ kN/m}$

Cautelativamente si assume che il carico dovuto alle forze concentrate sia distribuito sull'intera luce della soletta di copertura.

7.1.4 SPINTA SUI PIEDRITTI PRODOTTA DAL SOVRACCARICO (CONDIZIONI SPACCSX E SPACCDX)

Si è considerata la sola spinta prodotta dal carico ripartito equivalente alle forze concentrate, che vale:

$$p_{H.Q.ritti} = (P_{V.Q1.cop} / \Phi_2) K_0 = 22.23 \text{ kN/m}$$

Anche in questo caso, sono stati aggiunti, come carichi concentrati nei nodi 1 e 12 per la spinta sul piedritto sinistro e 11 e 16 per la spinta sul piedritto destro, le seguenti forze:

Spinta semispessore soletta di copertura	$P_{H.Q.cop} =$	8.89 kN
Spinta semispessore soletta di fondazione	$P_{H.Q.fond} =$	11.11 kN

7.1.5 FRENATURA E AVVIAMENTO (CONDIZIONE AVV)

Per la condizione di carico in esame, in coerenza con il tipo di carico accidentale impiegato nelle altre condizioni esaminate, si è presa in considerazione la forza A_v di avviamento del modello LM71. Distribuendo tale forza sulla larghezza di diffusione del carico si ha:

Avviamento $A_v = 33 \text{ kN/m}$

Carico distribuito su L_d:

 $q_{Av} = A_v / L_d = 0.80 \text{ kN/m}^2$

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO

19 di 52

INOD 00 DI2 CL SL06AX00 1A

Tale azione è stata applicata, come carico orizzontale uniformemente distribuito, alla soletta di copertura.

7.1.6 AZIONI TERMICHE (CONDIZIONE: TERM)

Alla soletta superiore si è applicata una variazione termica uniforme pari a $\Delta T_u = \pm 15$ °C ed una variazione nello spessore, tra estradosso ed intradosso, pari a $\Delta T_v = \pm 5$ °C. Gli effetti delle variazioni termiche nella struttura sono stati determinati mediante l'inviluppo delle seguenti combinazioni:

TERM = inviluppo (
$$\pm \Delta T_u \pm \Delta T_v$$
)

7.1.7 RITIRO (CONDIZIONE: RITIRO)

Il ritiro viene applicato mediante una variazione termica uniforme della copertura, in grado di produrre la stessa deformazione nel calcestruzzo.

Gli effetti del ritiro sono stati valutati a lungo termine, attraverso il calcolo dei coefficienti di ritiro finale $\varepsilon_{cs}(t, t_0)$ e di viscosità $\phi(t, t_0)$, come definiti nell'Eurocodice 2 – UNI EN 1992-1-1-2005 e nel DM 14/01/2008.

I fenomeni di ritiro sono stati considerati agenti sulla sola soletta di copertura ed applicati nel modello come una variazione termica uniforme equivalente pari a:

$$\Delta T_{\text{ritiro}} = -11.76$$
 C.

7.1.8 AZIONI DELLA FALDA (CONDIZIONE: SPW)

Il pelo libero della falda è assunto a 2.00 m dalla quota di intradosso della fondazione del sottovia. I valori delle spinte agenti sui piedritti, sono stati calcolati come:

$$P = z \times \gamma_w$$

per cui risulta:

1°Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

20 di 52

Pressione quota testa falda	P _{w1} =	0.00 kN/m
Pressione in asse soletta inferiore	$P_{w2} =$	15.00 kN/m
Pressione intradosso soletta inferiore	$P_{w3} =$	20.00 kN/m

Alle azioni agenti su piedritti sono stati sommati i seguenti carichi:

Sottospinta idraulica sulla soletta di fondazione	$S_{w1} =$	20.00 kN/m
Spinta semispessore soletta di fondazione	$P_{H.w} =$	8.75 kN
Sottopinta semispessore piedritti	$P_{V.w} =$	8.00 kN

7.1.9 AZIONI SISMICHE

Forze di inerzia

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

Le forze sismiche sono pertanto le seguenti:

 $F_h = k_h \times W$ Forza sismica orizzontale $F_{V} = k_{V} \times W$ Forza sismica verticale

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni:

$$k_h = a_{ma x}/g$$

 $k_v = \pm 0.5 \times k_h$

Ai fini del calcolo dell'azione sismica secondo il DM 14/01/2008 si è assegnata all'opera una vita nominale $V_N >= 100$ anni ed una III classe d'uso Cu = 1.5, che danno luogo ad un periodo di riferimento $V_R = V_N \times C_U = 150$ anni.

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 21 di 52

A seguito di tale assunzione si ha allo stato limite ultimo SLV in funzione della latitudine e longitudine del sito in esame un valore dell'accelerazione pari a circa

$$a_g = 0.22 g.$$

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = Ss * S_T * a_g$$

dove: $S_s = 1.5$ Coefficiente di amplificazione stratigrafica

 $S_T = 1.0$ Coefficiente di amplificazione topografica

ne deriva che:

$$a_{max}=1.5*1*0.22g=0.330 g$$

$$k_h = a_{max}/q = 0.330$$

$$k_v = \pm 0.5 \times k_h = \pm 0.165$$

Gli effetti dell'azione sismica sono stati valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \psi_{2i} Q_{ki}$$

Dove nel caso specifico si assumerà, per i carichi dovuti al transito dei convogli ferroviari, $\psi_{2i} = 0.2$.

Pertanto avremo che:

Massa associata al peso proprio copertura	$G_1 =$	20.00 kN/m
Massa associata al carico permanente	$G_2 =$	14.40 kN/m
Massa treno	$Q_k =$	66.20 kN/m
Massa associata al peso proprio piedritti	$G_p =$	20.00 kN/m

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

22 di 52

Le forze di inerzia applicate al modello di calcolo, pertanto, valgono:

SismaH

Forza orizzontale sulla soletta. di copertura (carico orizzontale uniformemente distribuito applicato alla soletta di copertura):

$$F'_h = k_h (G_1 + G_2 + \psi_{2j} Q_{kj}) = 15.72 \text{ kN/m}$$

Forza orizzontale sui piedritti (carico orizzontale uniformemente distribuito applicato ai piedritti):

$$F''_h = k_h G_p = 6.60 \text{ kN/m}$$

SismaV

Per la forza sismica verticale avremo analogamente (carico verticale uniformemente distribuito applicato alla soletta di copertura):

Forza verticale sulla soletta di copertura:

$$F'_v = k_v (G_1 + G_2 + \psi_{2i} Q_{ki}) = 7.86 \text{ kN/m}$$

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

23 di 52

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

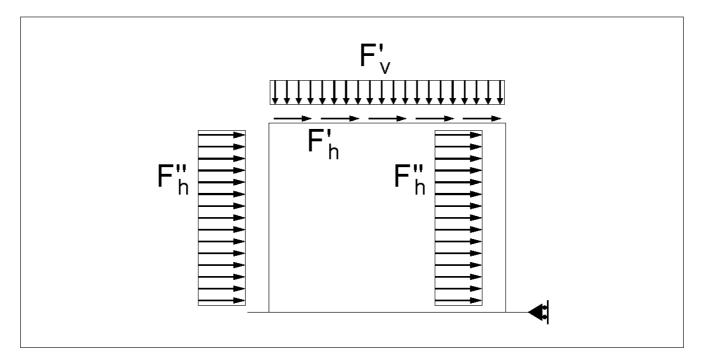


Figura 6 - Forze sismiche agenti sulla struttura

Spinta sismica terreno SPSDX e SPSSX

Le spinte delle terre sono state determinate con la teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione:

$$\Delta S_E = (a_{max}/g) \cdot \gamma \cdot H^2 = 405.4 \text{ kN/m}$$

con risultante applicata ad un'altezza pari ad H/2.

Nel modello di calcolo si è applicato il valore della forza sismica per unità di superficie agente su un piedritto, pari a:

$$\Delta s_E = \Delta S_E / H = 48.84 \text{ kN/m}^2$$

1°Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 24 di 52

7.2 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili;

utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \text{ x } E_Y \pm 0.3 \text{ 0x } E_Z \text{ oppure}$$
 $E = \pm 0.30 \text{ x } E_Y \pm 1.00 \text{ x } E_Z$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

1°Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -

RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 25 di 52

Gli effetti dei carichi verticali, dovuti alla presenza dei convogli, vengono sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti di cui alla Tabella 5.2.IV del DM 14/01/2008 di seguito riportata, In particolare, per ogni gruppo viene individuata una azione dominante che verrà considerata per intero; per le altre azioni, vengono definiti diversi coefficienti di combinazione. Ogni gruppo massimizza una particolare condizione alla quale la struttura dovrà essere verificata

Tabella 5.2.III - Carichi mobili in funzione del numero di binari presenti sul ponte

Variable Co. Co. Co.	Binari	Traffico	Traffico normale					
	Carichi	caso a(1)	caso b(1)	pesante(2)				
1	Primo	1,0 (LM 71"+"SW/0")	(*	1,0 SW/2				
	Primo	1,0 (LM 71"+"SW/0")	i.e	1,0 SW/2				
2	secondo	1,0 (LM 71"+"SW/0")	i g	1,0 (LM 71"+"SW/0")				
	Primo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 SW/2				
≥3	secondo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 (LM 71"+"SW/0")				
	Altri	#	0,75 (LM 71"+"SW/0")	(#3)				

Tabella 5.2.IV – Valutazione dei carichi da traffico (da DM 14/01/2008)

TIPO DI CARICO	Azioni ve	rticali	,	Azioni orizzonta		
Gruppo di carico	Carico Verticale (1)	Treno Scarico	Frenatura ed Avviamento	Centrifuga	Serpeggio	COMMENTI
Gruppo 1 (2)	1.0	-	0.5 (0.0)	1.0 (0.0)	1.0 (0.0)	massima azione verticale e laterale
Gruppo 2 (2)	-	1.0	0.0	1.0 (0.0)	1.0 (0.0)	stabilità laterale
Gruppo 3 (2)	1.0 (0.5)	-	1.0	0.5 (0.0)	0.5 (0.0)	massima azione longitudinale
Gruppo 4	0.8 (0.6; 0.4)	-	0.8 (0.6; 0.4)	0.8 (0.6; 0.4)	0.8 (0.6; 0.4)	fessurazione

Azione dominante

⁽¹⁾ Includendo tutti i fattori ad essi relativi (Φ , α , ecc..)

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag. 26 di 52

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

Nelle tabelle sopra riportate è indicato un coefficiente per gli effetti a sfavore di sicurezza e, tra parentesi, un coefficiente, minore del precedente, per gli effetti a favore di sicurezza.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

In particolare nel calcolo della struttura scatolare si è fatto riferimento alla combinazione A1 STR.

Tabella 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica (da DM 14/01/2008)

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γP	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
- (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
- (5) Aliquota di carico da traffico da considerare.
- (6) 1,30 per instabilità in strutture con precompressione esterna
- (7) 1,20 per effetti locali

ATI bonifica

Linea AV/AC VERONA – PADOVA

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag. 27 di 52

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

Tabella 5.2.VI - Coefficienti di combinazione ψ delle azioni (da DM 14/01/2008)

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80 ⁽²⁾	0,80(1)	-
carico	gr ₃	0,80 ⁽²⁾	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

Nella combinazione sismica le azioni indotte dal traffico ferroviario sono combinate con un coefficiente $\psi_2 = 0.2$ (punto 3.2.4 del DM 14/01/2008) coerentemente con l'aliquota di massa afferente ai carichi da traffico.

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

Tabella 2 - Riepilogo condizioni di carico

Peso proprio	DEAD
Carichi permanenti	PERM
Spinta del terreno sulla parete sinistra	SPTSX
Spinta del terreno sulla parete destra	SPTDX
Carico variabile LM71	ACCM
Spinta del carico var. (LM71) sulla parete sinistra	SPACCSX
Spinta del carico var. (LM71) sulla parete destra	SPACCDX
Avviamento e frenatura	AVV
Variazione termica sulla soletta superiore	Term
Ritiro	Ritiro
Azione sismica orizzontale con sisma proveniente da sinistra	Sisma H sx
Azione sismica orizzontale con sisma proveniente da destra	Sisma H dx
Azione sismica verticale	Sisma V
Incremento sismico della spinta sul terreno	SPSDX/SX
Spinte idrostatiche della falda	SPW

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 28 di 52

Si precisa che le combinazioni di carico considerate sono state definite considerando sia l'ipotesi di presenza di falda, con quota assunta pari al livello di progetto, che l'ipotesi di assenza di falda.

Si riportano di seguito le combinazioni allo SLU di carico ritenute più significative.

Combinazione fondamentale

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Tabelle 3a/3b - Combinazioni di carico A1 (non sismiche)

	Combinazioni di carico A1 (non sismiche) - assenza di falda																	
	1-A1	2-A1	3-A1	4-A1	5-A1	6-A1	7-A1	8-A1	9-A1	10-A1	11-A1	12-A1	13-A1	14-A1	15-A1	16-A1	17-A1	18-A1
DEAD	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.00	1.00	1.00	1.00	1.00	1.00
PERM	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.00	1.00	1.00	1.00	1.00	1.00
SPTSX	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
SPTDX	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.00	1.00	1.00	1.00	1.00	1.00
ACCM	1.45	1.45	1.16	1.45	1.45	1.16	0.00	0.00	0.00	1.45	1.45	1.16	0.00	0.00	0.00	1.45	1.45	1.16
SPACCSX	0.00	0.00	0.00	1.45	1.45	1.16	1.45	1.45	1.16	1.45	1.45	1.16	1.45	1.45	1.16	1.45	1.45	1.16
SPACCDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	1.45	1.16	0.00	0.00	0.00	0.00	0.00	0.00
AVV	0.00	0.00	0.00	1.45	1.45	1.16	0.00	0.00	0.00	1.45	1.45	1.16	0.00	0.00	0.00	1.45	1.45	1.16
Term	0.00	0.90	1.50	0.00	0.90	1.50	0.00	0.90	1.50	0.00	0.90	1.50	0.00	0.90	1.50	0.00	0.90	1.50
Ritiro	0.00	0.72	1.20	0.00	0.72	1.20	0.00	0.72	1.20	0.00	0.72	1.20	0.00	0.72	1.20	0.00	0.72	1.20
SPW	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	Combinazioni di carico A1 (non sismiche) - presenza di falda																	
	1-A1	2-A1	3-A1	4-A1	5-A1	6-A1	7-A1	8-A1	9-A1	10-A1	11-A1	12-A1	13-A1	14-A1	15-A1	16-A1	17-A1	18-A1
DEAD	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.00	1.00	1.00	1.00	1.00	1.00
PERM	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.00	1.00	1.00	1.00	1.00	1.00
SPTSX	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
SPTDX	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.00	1.00	1.00	1.00	1.00	1.00
ACCM	1.45	1.45	1.16	1.45	1.45	1.16	0.00	0.00	0.00	1.45	1.45	1.16	0.00	0.00	0.00	1.45	1.45	1.16
SPACCSX	0.00	0.00	0.00	1.45	1.45	1.16	1.45	1.45	1.16	1.45	1.45	1.16	1.45	1.45	1.16	1.45	1.45	1.16
SPACCDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	1.45	1.16	0.00	0.00	0.00	0.00	0.00	0.00
AVV	0.00	0.00	0.00	1.45	1.45	1.16	0.00	0.00	0.00	1.45	1.45	1.16	0.00	0.00	0.00	1.45	1.45	1.16
Term	0.00	0.90	1.50	0.00	0.90	1.50	0.00	0.90	1.50	0.00	0.90	1.50	0.00	0.90	1.50	0.00	0.90	1.50
Ritiro	0.00	0.72	1.20	0.00	0.72	1.20	0.00	0.72	1.20	0.00	0.72	1.20	0.00	0.72	1.20	0.00	0.72	1.20
SPW	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO

INOD 00 DI2 CL SL06AX00 1A

29 di 52

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \text{ x } E_Y \pm 0.30 \text{ x } E_Z$$
 oppure $E = \pm 0.30 \text{ x } E_Y \pm 1.00 \text{ x } E_Z$

avendo indicato con EY e EZ rispettivamente le componenti orizzontale e verticale dell'azione sismica.

Tabelle 4a/4b - Combinazioni di carico sismiche (sisma proveniente da sinistra)

Combinazioni di carico sismiche - assenza di falda																
	SH1	SH2	SH3	SH4	SH5	SH6	SH7	SH8	SV1	SV2	SV3	SV4	SV5	SV6	SV7	SV8
DEAD	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PERM	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SPTSX	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SPTDX	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ACCM	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
SPACCSX	0.20	0.20	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20	0.00	0.00
SPACCDX	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20
AVV	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Term	0.00	0.00	0.00	0.00	0.50	0.50	0.50	0.50	0.00	0.00	0.00	0.00	0.50	0.50	0.50	0.50
Ritiro	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma H sx	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	0.30	0.30	-0.30	-0.30	0.30	0.30	-0.30	-0.30
Sisma H dx	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma V	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	1.00	-1.00	1.00	-1.00	1.00	-1.00	1.00	-1.00
SPSDX	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	0.30	0.30	0.00	0.00	0.30	0.30
SPSSX	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	0.30	0.30	0.00	0.00	0.30	0.30	0.00	0.00
SPW	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag. 30 di 52

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

Combinazioni di carico sismiche - presenza di falda																
	SH1	SH2	SH3	SH4	SH5	SH6	SH7	SH8	SV1	SV2	SV3	SV4	SV5	SV6	SV7	SV8
DEAD	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PERM	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SPTSX	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SPTDX	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ACCM	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
SPACCSX	0.20	0.20	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20	0.00	0.00
SPACCDX	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20
ACVV	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Term	0.00	0.00	0.00	0.00	0.50	0.50	0.50	0.50	0.00	0.00	0.00	0.00	0.50	0.50	0.50	0.50
Ritiro	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma H sx	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	0.30	0.30	-0.30	-0.30	0.30	0.30	-0.30	-0.30
Sisma H dx	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma V	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	1.00	-1.00	1.00	-1.00	1.00	-1.00	1.00	-1.00
SPSDX	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	0.30	0.30	0.00	0.00	0.30	0.30
SPSSX	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	0.30	0.30	0.00	0.00	0.30	0.30	0.00	0.00
SPW	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 31 di 52

Combinazione caratteristica (rara):

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Tabelle 5a/5b - Combinazioni di SLE RARA

Combinazioni di carico SLE RARA - assenza di falda												
	1-R	2-R	3-R	4-R	5-R	6-R	7-R	8-R	9-R	10-R	11-R	12-R
DEAD	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PERM	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SPTSX	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SPTDX	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ACCM	1.00	1.00	0.80	1.00	1.00	0.80	0.00	0.00	0.00	1.00	1.00	0.80
SPACCSX	0.00	0.00	0.00	1.00	1.00	0.80	1.00	1.00	0.80	1.00	1.00	0.80
SPACCDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.80
AVV	0.00	0.00	0.00	1.00	1.00	0.80	0.00	0.00	0.00	1.00	1.00	0.80
Term	0.00	0.60	1.00	0.00	0.60	1.00	0.00	0.60	1.00	0.00	0.60	1.00
Ritiro	0.00	0.60	1.00	0.00	0.60	1.00	0.00	0.60	1.00	0.00	0.60	1.00
SPW	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Combinazioni di carico SLE RARA - presenza di falda												
	1-R	2-R	3-R	4-R	5-R	6-R	7-R	8-R	9-R	10-R	11-R	12-R
DEAD	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PERM	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SPTSX	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SPTDX	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ACCM	1.00	1.00	0.80	1.00	1.00	0.80	0.00	0.00	0.00	1.00	1.00	0.80
SPACCSX	0.00	0.00	0.00	1.00	1.00	0.80	1.00	1.00	0.80	1.00	1.00	0.80
SPACCDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.80
AVV	0.00	0.00	0.00	1.00	1.00	0.80	0.00	0.00	0.00	1.00	1.00	0.80
Term	0.00	0.60	1.00	0.00	0.60	1.00	0.00	0.60	1.00	0.00	0.60	1.00
Ritiro	0.00	0.60	1.00	0.00	0.60	1.00	0.00	0.60	1.00	0.00	0.60	1.00
SPW	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag. 32 di 52

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

Combinazione frequente:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Tabelle 6a/6b - Combinazioni di SLE FREQUENTE

	Combinazioni di carico SLE FREQUENTE - assenza di falda										
	1-FR	2-FR	3-FR	4-FR	5-FR	6-FR	7-FR	8-FR	9-FR		
DEAD	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
PERM	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
SPTSX	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
SPTDX	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
ACCM	0.80	0.80	0.00	0.80	0.80	0.00	0.00	0.80	0.80		
SPACCSX	0.00	0.00	0.00	0.50	0.50	0.50	0.50	0.50	0.50		
SPACCDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.50		
AVV	0.00	0.00	0.00	0.80	0.80	0.00	0.00	0.80	0.80		
Term	0.00	0.50	0.60	0.00	0.50	0.00	0.50	0.00	0.50		
Ritiro	0.00	0.50	0.60	0.00	0.50	0.00	0.50	0.00	0.50		
SPW	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

	Combinazioni di carico SLE FREQUENTE - presenza di falda										
	1-FR	2-FR	3-FR	4-FR	5-FR	6-FR	7-FR	8-FR	9-FR		
DEAD	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
PERM	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
SPTSX	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
SPTDX	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
ACCM	0.80	0.80	0.00	0.80	0.80	0.00	0.00	0.80	0.80		
SPACCSX	0.00	0.00	0.00	0.50	0.50	0.50	0.50	0.50	0.50		
SPACCDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.50		
AVV	0.00	0.00	0.00	0.80	0.80	0.00	0.00	0.80	0.80		
Term	0.00	0.50	0.60	0.00	0.50	0.00	0.50	0.00	0.50		
Ritiro	0.00	0.50	0.60	0.00	0.50	0.00	0.50	0.00	0.50		
SPW	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 33 di 52

Combinazione quasi permanente:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Tabelle 7a/7b - Combinazioni di SLE QUASI PERMANENTE

Combinazioni di c		
	1-QP	2-QP
DEAD	1.00	1.00
PERM	1.00	1.00
SPTSX	1.00	1.00
SPTDX	1.00	1.00
ACCM	0.00	0.00
SPACCSX	0.00	0.00
SPACCDX	0.00	0.00
AVV	0.00	0.00
Term	0.00	0.50
Ritiro	0.00	0.50
SPW	0.00	0.00

Combinazioni QUASI PERMAN di fa	ENTE - a									
	1-QP	2-QP								
DEAD	1.00	1.00								
PERM	1.00	1.00								
SPTSX	1.00	1.00								
SPTDX	1.00	1.00								
ACCM	0.00	0.00								
SPACCSX	0.00	0.00								
SPACCDX	0.00	0.00								
AVV	0.00	0.00								
Term	Term 0.00 0.50									
Ritiro	0.00	0.50								
SPW	1.00	1.00								

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

34 di 52

MODELLAZIONE ADOTTATA

Il modello di calcolo attraverso il quale è stata schematizzata la struttura è quello di telaio chiuso su letto di molle alla Winkler. Il programma di calcolo utilizzato è un programma ad elementi finiti, il Sap 2000 v.15.1.0.

Le caratteristiche delle aste modellate con elementi frame sono le seguenti:

Soletta di copertura	Sezione	1.00 x 0.80 mq
Piedritti	Sezione	1.00 x 0.80 mq
Soletta di fondazione	Sezione	1.00 x 1.00 mq

La modellazione dei piedritti è stata effettuata mediante un insieme di aste.

L'opera è stata considerata vincolata alla base mediante dei vincoli cedevoli in funzione delle caratteristiche elastiche del terreno di sottofondo, per il quale è stata considerata una costante di sottofondo

$$K_s = 300 \text{ kN/m}^3$$
.

Di seguito sono riportate delle viste con numerazione dei nodi e con numerazione degli elementi che costituiscono il modello di calcolo analizzato.

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

Pag.

INOD 00 DI2 CL SL06AX00 1A

PROGETTO LOTTO CODIFICA DOCUMENTO 35 di 52

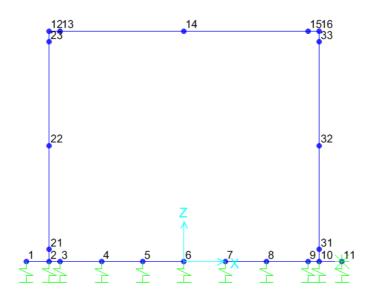


Figura 7 - Modello F.E.M struttura - numerazione nodi

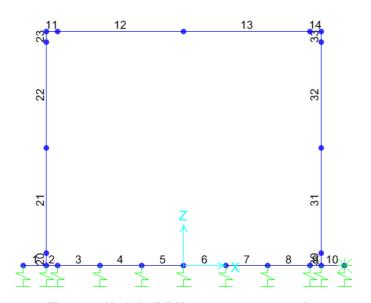


Figura 8 - Modello F.E.M. struttura - numerazione aste

1°Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 36 di 52

ANALISI DELLE SOLLECITAZIONI

Nelle seguenti tabelle sono riportati i valori massimi delle caratteristiche delle sollecitazioni ricavati per le sezioni oggetto di verifica, indicate in figura

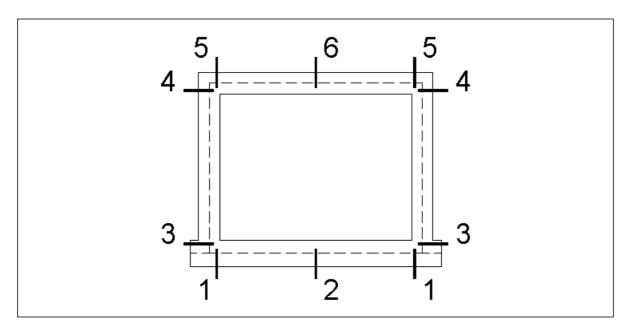


Figura 9 - Sezioni di verifica

ottenuti dagli inviluppi dei seguenti gruppi di combinazioni di carico:

- le combinazioni delle azioni per le verifiche agli SLU (A1)
- le combinazioni delle azioni in presenza di SISMA ORIZZONTALE, con

$$E_H = \pm 1.00 \text{ x } E_X \pm 0.30 \text{x } E_Z$$

e di SISMA VERTICALE, con

$$E_V = \pm 0.30 \times E_X \pm 1.00 \times E_Z$$

- le combinazioni delle azioni per le verifiche agli SLE nella combinazione RARA
- le combinazioni delle azioni per le verifiche agli SLE nella combinazione FREQUENTE
- le combinazioni delle azioni per le verifiche agli SLE nella combinazione QUASI PERMANENTE.

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -RELAZIONE DI CALCOLO SOTTOVIA

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

37 di 52

Nelle seguenti tabelle sono riportati i valori più conservativi delle caratteristiche di sollecitazione, ricavati per le sezioni oggetto di verifica dagli inviluppi dei risultati dei gruppi di combinazioni di carico individuati.

Sollecitazioni di verifica Inv_A1(-/+Falda)

Sezione	M _{Ed,max} KNm	${f N_{\sf Ed,min}} \ {f KN}$	$V_{Ed,max}$ KN
1	1379	159	850
2	-1723	159	240
3	1306	307	495
4	-1472	169	337
5	-1472	122	885
6	1433	122	827

Tabella 8 - Sollecitazioni di verifica SLU - A1

Sollecitazioni di verifica Inv_SH(-/+Falda) + Inv_SV(-/+Falda)

Sezione	M _{Ed,max} KNm	N _{Ed,min} KN	${\sf V_{\sf Ed,max}} \ {\sf KN}$
1	1448	-22	385
2	-892	-22	288
3	1464	300	640
4	-1140	162	315
5	-1140	111	399
6	-984	113	379

Tabella 9 - Sollecitazioni di verifica SLU - SISMA ORIZZONTALE/VERTICALE

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

Pag. 38 di 52

Sollecitazioni di verifica Inv_R(-/+Falda)

Sezione	M _{Ed,max} KNm	N _{Ed,min} KN	$egin{array}{c} oldsymbol{V}_{Ed,max} \ oldsymbol{KN} \end{array}$
1	919	184	596
2	-1170	184	153
3	863	324	341
4	-997	186	204
5	-997	117	610
6	978	117	570

Tabella 10 - Sollecitazioni di verifica SLE RARA

Sollecitazioni di verifica Inv_FR(-/+Falda)

Sezione	M _{Ed,max} KNm	${\sf N}_{\sf Ed,min} \ {\sf KN}$	V _{Ed,max} KN
1	742	193	531
2	-1030	193	118
3	687	334	274
4	-818	196	189
5	-818	95	522
6	841	95	487

Tabella 11 - Sollecitazioni di verifica SLE FREQUENTE

Sollecitazioni di verifica Inv_QP(-/+Falda)

Sezione	M _{Ed,max} KNm	${\sf N_{\sf Ed,min}} \ {\sf KN}$	$V_{Ed,max}$ KN
1	421	225	283
2	-477	225	50
3	387	344	209
4	-339	206	114
5	-339	98	201
6	338	98	187

Tabella 12 - Sollecitazioni di verifica SLE QUASI PERMANENTE

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO

INOD 00 DI2 CL SL06AX00 1A

39 di 52

10 VERIFICHE AGLI SLU ED AGLI SLE (STR)

Nelle verifiche delle solette di copertura e di fondazione, cautelativamente, non si è tenuto in conto del contributo dello sforzo normale.

Si riportano, di seguito, i risultati ottenuti. Si precisa che con:

B: larghezza delle sezioni oggetto di verifica, assunta sempre pari a 100 cm;

H: altezza delle sezioni oggetto di verifica;

c: copriferro di calcolo, valutato sommando al minimo di normativa (5.0 cm) lo spazio necessario alla collocazione delle eventuali barre di ripartizione e/o legature previste per l'incremento della resistenza a taglio, assunto pari a 2.0 cm;

A_f: quantitativo di armatura al lembo teso della sezione;

A'_f: quantitativo di armatura al lembo compresso della sezione;

CS è il minimo coefficiente di sicurezza ottenuto nella verifica.

1° Sublotto: VERONA – MONTEBELLO VICENTINO

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 40 di 52

10.1 SEZIONE 1 - ESTREMI FONDAZIONE

Geometria sezione ed armature

Altezza sezione H =1.000 m copriferro nominale **C** = 6.5 cm

 $u = c + \phi / 2 =$ 7.8 cm copriferro in asse

d = H - u = altezza utile 0.922 m

 $B = b_{w} = 1.000 \,\mathrm{m}$ Larghezza sezione

 $1 \Phi 26 / 15 =$ Armatura tesa: 35.40 cm² base

integr. $+1 \Phi 26$ / 30 = 17.70 cm² $A_f =$ 53.09 cm²

A'_f = 35.40 cm² Armatura compressa: $1 \Phi 26 / 15 =$

 $\mathbf{A}_{sw} =$ $1 \Phi 12 / 30x30 =$ 12.57 cm²/m Armatura a taglio

VERIFICHE AGLI SLU

Sollecitazioni di calcolo

 $N_{Ed} =$ Momento flettente \ Sforzo normale: **0.0** kN $M_{Ed.A1} = 1379.3 \text{ kN m}$ combinazione fondamentale

 $M_{Ed.S} = 1448.3 \, kN \, m$ combinazione sismica

Taglio

 $\mathbf{V}_{\mathsf{Ed}\;\mathsf{A1}} =$ combinazione fondamentale 849.9 kN m $V_{EdS} =$ combinazione sismica 385.3 kN m

Verifiche a pressoflessione

 $M_{Rd} = 1807.0 \, \text{kN m}$ Momento resistente

 $CS_{A1} = 1.31$ coefficiente di sicurezza

 $CS_{s} = 1.25$

Linea AV/AC VERONA – PADOVA

1° Sublotto: VERONA – MONTEBELLO VICENTINO

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 41 di 52

Verifiche a taglio

Taglio resistente con armatura a taglio

$$\mathbf{V}_{Rd} = \min(\mathbf{V}_{Rsd}, \mathbf{V}_{Rcd}) = \mathbf{1019.3} \, kN$$

$$\mathbf{V}_{Rsd} = 0.9 \, \mathbf{d} \, (\mathbf{A}_{sw} / \mathbf{s}) \, \mathbf{f}_{yd} \, (ctg\alpha + ctg\theta) \, sin\alpha = \mathbf{1019.3} \, kN$$

$$V_{Rcd} = 0.9 \text{ d } b_w \alpha_c f'_{cd} (ctg\alpha + ctg\theta) / (1 + ctg^2\theta) = 2589.5 \text{ kN}$$

dove
$$f'_{cd} = 0.5 f_{cd} = 9.05 MPa$$

$$ctg\theta = 2.50$$
 $\alpha_c = \alpha_c (\sigma_{cp} / f_{cd}) = 1.00$

coefficiente di sicurezza
$$CS_{A1} = 1.20$$

$$CS_{s} = 2.65$$

VERIFICHE AGLI SLE

Sollecitazioni di calcolo

\ Sforzo normale: $N_{Ed} =$ **0.0** kN Momento flettente $\mathbf{M}_{\mathsf{Ed}\,\mathsf{R}} =$ **918.9** kN m combinazione rara (caratteristica) $\mathbf{M}_{\mathsf{Ed.FR}} =$ 742.3 kN m combinazione frequente

 $\mathbf{M}_{\mathsf{Ed.QP}} =$ combinazione quasi permanente **421.0** kN m

Verifiche tensionali agli stati limite di esercizio

 $\sigma_{\rm cR} = 6.1 \, \text{MPa}$ ≤ (OK) calcestruzzo 19.2 MPa $\sigma_{c,QP} =$ **2.8** MPa ≤ (OK) 14.4 MPa

 $\sigma_{a,R} = 208.2 \, MPa$ ≤ (OK) acciaio 360.0 MPa

 $\mathbf{X}_{c} =$ 28.3 cm Posizione asse neutro

Verifiche a fessurazione

diametro e passo barre φ = 26.00 mm **S** = 150 mm deformazione media barre $\varepsilon_{\rm sm,fr} = 0.0006$ massima distanza tra fessure $\Delta_{\rm smax,fr} = 383.3 \,\rm mm$ $\mathbf{W}_{FR} =$ **0.23** mm ampiezza delle fessure ≤ (OK) 0.30 mm

 $\mathbf{W}_{\mathsf{OP}} =$ **0.13** mm ≤ (OK) 0.20 mm

1° Sublotto: VERONA – MONTEBELLO VICENTINO

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 42 di 52

10.2 SEZIONE 2 - CAMPATA FONDAZIONE

Geometria sezione ed armature

Altezza sezione H =1.000 m copriferro nominale **C** = 6.5 cm $u = c + \phi / 2 =$ 7.8 cm copriferro in asse d = H - u = altezza utile 0.922 m $B = b_{w} = 1.000 \,\mathrm{m}$

Larghezza sezione $1 \Phi 26 / 15 =$ Armatura tesa: 35.40 cm² base

> integr. $+1 \Phi 26 / 15 =$ $35.40\,cm^2$ $A_f =$ **70.79** cm²

A'_f = 35.40 cm² Armatura compressa: $1 \Phi 26 / 15 =$ $\mathbf{A}_{sw} =$ $1 \Phi 12 / 45x30 =$ 8.38 cm²/m Armatura a taglio

VERIFICHE AGLI SLU

Sollecitazioni di calcolo

 $N_{Ed} =$ Momento flettente \ Sforzo normale: **0.0** kN $M_{Ed.A1} = 1723.1 \text{ kN m}$ combinazione fondamentale $\mathbf{M}_{\mathsf{Ed.S}} =$ 891.8 kN m combinazione sismica Taglio $\mathbf{V}_{\mathsf{Ed.A1}} =$ combinazione fondamentale **240.0** kN m

 $V_{EdS} =$ combinazione sismica 287.6 kN m

Verifiche a pressoflessione

 $M_{Rd} = 2387.0 \, \text{kN m}$ Momento resistente

 $CS_{A1} = 1.39$ coefficiente di sicurezza $CS_{s} = 2.68$

1° Sublotto: VERONA – MONTEBELLO VICENTINO

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

43 di 52

Verifiche a taglio

Taglio resistente con armatura a taglio

$$\mathbf{V}_{Rd} = \min(\mathbf{V}_{Rsd}, \mathbf{V}_{Rcd}) = 679.5 \, kN$$

$$V_{Rsd} = 0.9 \text{ d} (A_{sw}/\text{s}) f_{yd} (ctg\alpha + ctg\theta) \sin\alpha = 679.5 \text{ kN}$$

$$V_{Rcd} = 0.9 \text{ d } b_w \alpha_c f_{cd}' (ctg\alpha + ctg\theta) / (1 + ctg^2\theta) = 2589.5 \text{ kN}$$

dove
$$f'_{cd} = 0.5 f_{cd} = 9.05 MPa$$

$$ctg\theta = 2.50$$
 $\alpha_c = \alpha_c (\sigma_{cp} / f_{cd}) = 1.00$

coefficiente di sicurezza
$$CS_{A1} = 2.83$$

$$CS_{s} = 2.36$$

VERIFICHE AGLI SLE

Sollecitazioni di calcolo

\ Sforzo normale: $N_{Ed} =$ **0.0** kN Momento flettente

 $M_{EdR} = 1170.5 \, \text{kN m}$ combinazione rara (caratteristica)

 $M_{Ed,FR} = 1030.1 \text{ kN m}$ combinazione frequente

 $\mathbf{M}_{\mathsf{Ed.QP}} =$ combinazione quasi permanente **477.3** kN m

Verifiche tensionali agli stati limite di esercizio

 $\sigma_{cR} = 7.1 \,\text{MPa}$ ≤ (OK) calcestruzzo 19.2 MPa

> $\sigma_{c,QP} =$ **2.9** MPa ≤ (OK) 14.4 MPa

 $\sigma_{a,R} = 201.4 \, MPa$ ≤ (OK) acciaio 360.0 MPa

 $\mathbf{X}_{c} =$ 32.0 cm Posizione asse neutro

Verifiche a fessurazione

diametro e passo barre φ = 26.00 mm **S** = 150 mm

deformazione media barre $\varepsilon_{\rm sm,fr} = 0.0007$

massima distanza tra fessure $\Delta_{\rm smax,fr} = 342.8 \, \rm mm$

 $\mathbf{W}_{\mathsf{FR}} =$ **0.23** mm ampiezza delle fessure ≤ (OK) 0.30 mm

> $\mathbf{W}_{\mathsf{OP}} =$ **0.11** mm ≤ (OK) 0.20 mm

1° Sublotto: VERONA – MONTEBELLO VICENTINO

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 44 di 52

10.3 SEZIONE 3 – PIEDE PIEDRITTI

Geometria sezione ed armature

Altezza sezione H = $0.800 \, \text{m}$ **C** = copriferro nominale 6.5 cm copriferro in asse $u = c + \phi / 2 =$ 7.8 cm altezza utile d = H - u = $0.722 \, \text{m}$

 $B = b_{...} = 1.000 \,\mathrm{m}$ Larghezza sezione

Armatura tesa: $1 \Phi 26 / 15 =$ base 35.40 cm² $+1 \Phi 26 / 15 =$ 35.40 cm² integr.

 $\mathbf{A}_{f} =$ **70.79** cm² **A'**, = 35.40 cm² Armatura compressa: $1 \Phi 26 / 15 =$

 $\mathbf{A}_{sw} =$ $1 \Phi 12 / 30x30 =$ 12.57 cm²/m Armatura a taglio

VERIFICHE AGLI SLU

Sollecitazioni di calcolo

M^{Ed} NEG \ Sforzo normale: Momento flettente combinazione fondamentale (A1) **1306.2** kN m 307.0 kN combinazione sismica (S) **1463.9** kN m 300.2 kN **Taglio**

 $\mathbf{V}_{\text{Ed.A1}} =$ combinazione fondamentale **494.7** kN m $\mathbf{V}_{\mathsf{Ed},\mathsf{S}} =$ combinazione sismica **640.5** kN m

Verifiche a pressoflessione

coefficiente di sicurezza Momento resistente $M_{Rd,NA1} = 1927.9 \text{ kN m}$ $CS_{A1} = 1.48$

 $M_{Rd.NS} = 1925.9 \, kN \, m$ $CS_{s} = 1.32$

Linea AV/AC VERONA – PADOVA

1° Sublotto: VERONA – MONTEBELLO VICENTINO

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

Pag. 45 di 52

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

Verifiche a taglio

Taglio resistente con armatura a taglio

$$\mathbf{V}_{\mathrm{Rd}} = \min(\mathbf{V}_{\mathrm{Rsd}}, \mathbf{V}_{\mathrm{Rcd}}) = \mathbf{798.2 \, kN}$$

$$\mathbf{V}_{\mathrm{Rsd}} = 0.9 \, \mathbf{d} \, (\mathbf{A}_{\mathrm{sw}} / \mathbf{s}) \, \mathbf{f}_{\mathrm{yd}} \, (\mathrm{ctg}\alpha + \mathrm{ctg}\theta) \, \mathrm{sin}\alpha = \mathbf{798.2 \, kN}$$

$$\mathbf{V}_{\mathrm{Rcd}} = 0.9 \, \mathbf{d} \, \mathbf{b}_{\mathrm{w}} \, \alpha_{\mathrm{c}} \, \mathbf{f}_{\mathrm{cd}}' \, (\mathrm{ctg}\alpha + \mathrm{ctg}\theta) / (1 + \mathrm{ctg}^2\theta) = 2069.9 \, \mathrm{kN}$$

dove
$$\mathbf{f'}_{cd} = 0.5 \, \mathbf{f}_{cd} = 9.05 \, \text{MPa}$$
 $\cot \theta = 2.50$ $\alpha_c = \alpha_c (\mathbf{\sigma}_{cp} / \mathbf{f}_{cd}) = 1.02$

coefficiente di sicurezza

$$CS_{A1} = 1.61$$

$$CS_{s} = 1.25$$

VERIFICHE AGLI SLE

Sollecitazioni di calcolo

Momento flettente	\ Sforzo norn	nale:	\mathbf{M}_{Ed}	\	N_{Ed}
combinazione rara (c	aratteristica)	(R)	862.6 kN m		324.1 kN
combinazione frequer	nte	(FR)	686.8 kN m		334.3 kN
combinazione quasi p	ermanente	(QP)	387.0 kN m		344.5 kN

Verifiche tensionali agli stati limite di esercizio

calcestruzzo	$\sigma_{c,R} =$	8.1 MPa	≤ (OK)	19.2 MPa
	$\sigma_{c,QP} =$	3.8 MPa	≤ (OK)	14.4 MPa
acciaio	$\sigma_{a,R} =$	170.9 MPa	≤ (OK)	360.0 MPa
Posizione asse neutro	$\mathbf{x}_{_{\mathrm{C}}} =$	30.0 cm		

Verifiche a fessurazione

diametro e passo barre
$$\phi = 26.00 \, \text{mm}$$
 $s = 150 \, \text{mm}$ deformazione media barre $\epsilon_{\text{sm,fr}} = 0.0005$ massima distanza tra fessure $\Delta_{\text{smax,fr}} = 323.3 \, \text{mm}$ ampiezza delle fessure $\mathbf{W}_{\text{FR}} = \mathbf{0.15} \, \text{mm} \leq (\text{OK})$ 0.30 mm $\mathbf{W}_{\text{QP}} = \epsilon_{\text{sm,QP}} \, \Delta_{\text{smax,QP}} = \mathbf{0.06} \, \text{mm} \leq (\text{OK})$ 0.20 mm

1° Sublotto: VERONA – MONTEBELLO VICENTINO

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 46 di 52

10.4 SEZIONE 4 – TESTA PIEDRITTI

Geometria sezione ed armature

Altezza sezione H = $0.800 \, \text{m}$ **C** = copriferro nominale 6.5 cm copriferro in asse $u = c + \phi / 2 =$ 7.8 cm altezza utile d = H - u = $0.722 \, \text{m}$ $B = b_{...} = 1.000 \,\mathrm{m}$ Larghezza sezione

Armatura tesa: $1 \Phi 26 / 15 =$ base 35.40 cm² $+1 \Phi 26 / 15 =$ $35.40\,cm^2$

70.79 cm²

A', = 35.40 cm² Armatura compressa: $1 \Phi 26 / 15 =$ $\mathbf{A}_{sw} =$ $1 \Phi 12 / 45x30 =$ 8.38 cm²/m Armatura a taglio

VERIFICHE AGLI SLU

Sollecitazioni di calcolo

 \mathbf{M}_{Ed} NEG \ Sforzo normale: Momento flettente **1472.0** kN m 169.0 kN combinazione fondamentale (A1) **1139.9** kN m combinazione sismica (S) 162.2 kN **Taglio** $\mathbf{V}_{\mathsf{Ed},\mathsf{A1}} =$ combinazione fondamentale **337.4** kN m

 $\mathbf{V}_{\mathsf{Ed},\mathsf{S}} =$ combinazione sismica 314.9 kN m

Verifiche a pressoflessione

coefficiente di sicurezza Momento resistente $M_{Rd,NA1} = 1885.7 \, \text{kN m}$ $CS_{A1} = 1.28$ $M_{Rd.NS} = 1883.6 \, kN \, m$ $CS_{s} = 1.65$

Linea AV/AC VERONA – PADOVA

1° Sublotto: VERONA – MONTEBELLO VICENTINO

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

Pag. 47 di 52

Verifiche a taglio

Taglio resistente con armatura a taglio

VERIFICHE AGLI SLE Sollecitazioni di calcolo

Momento flettente	\ Sforzo norr	nale:	\mathbf{M}_{Ed}	\	${f N}_{\sf Ed}$
combinazione rara (d	aratteristica)	(R)	996.6 kN m		186.1 kN
combinazione freque	nte	(FR)	818.3 kN m		196.3 kN
combinazione quasi į	permanente	(QP)	339.2 kN m		206.5 kN

Verifiche tensionali agli stati limite di esercizio

calcestruzzo	$\sigma_{c,R} =$	9.2 MPa	≤ (OK)	19.2 MPa
	$\sigma_{c,QP} =$	3.3 MPa	≤ (OK)	14.4 MPa
acciaio	$\sigma_{a,R} =$	209.8 MPa	≤ (OK)	360.0 MPa
Posizione asse neutro	$\mathbf{x}_{c} =$	28.6 cm		

Verifiche a fessurazione

diametro e passo barre	φ =	26.00 mm	s =	150 mm
deformazione media barre		$\varepsilon_{\rm sm,fr} = 0.0006$	6	
massima distanza tra fessure	Δ	$t_{\rm smax,fr} = 32^{\circ}$	7.1 mm	
ampiezza delle fessure	$\mathbf{w}_{FR} =$	0.21 mm	≤ (OK)	0.30 mm
$\mathbf{W}_{QP} = \boldsymbol{\varepsilon}_{sm,QP} \boldsymbol{\Delta}_{sm}$	ax,QP =	0.06 mm	≤ (OK)	0.20 mm

1° Sublotto: VERONA – MONTEBELLO VICENTINO

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 48 di 52

10.5 SEZIONE 5 – ESTREMI COPERTURA

Geometria sezione ed armature

Altezza sezione H = $0.800 \, \text{m}$ **C** = copriferro nominale 6.5 cm copriferro in asse $u = c + \phi / 2 =$ 7.8 cm altezza utile d = H - u = $0.722 \, \text{m}$ $B = b_{...} = 1.000 \,\mathrm{m}$ Larghezza sezione

Armatura tesa: $1 \Phi 26 / 15 =$ base 35.40 cm² $+1 \Phi 26 / 15 =$ $35.40\,cm^2$

70.79 cm²

A', = 35.40 cm² Armatura compressa: $1 \Phi 26 / 15 =$ $\mathbf{A}_{sw} =$ $1 \Phi 14 / 30x30 =$ 17.10 cm²/m Armatura a taglio

VERIFICHE AGLI SLU

Sollecitazioni di calcolo

 $N_{\rm Ed} =$ **0.0** kN Momento flettente \ Sforzo normale: $M_{Ed.A1} = 1472.0 \, \text{kN m}$ combinazione fondamentale $M_{Ed.S} = 1139.9 \, kN \, m$ combinazione sismica

Taglio

 $V_{Ed.A1} =$ combinazione fondamentale **885.1** kN m $V_{Ed.S} =$ 399.5 kN m combinazione sismica

Verifiche a pressoflessione

 $M_{Rd} = 1833.4 \, \text{kN m}$ Momento resistente

 $CS_{A1} = 1.25$ coefficiente di sicurezza $CS_{s} = 1.61$

1° Sublotto: VERONA – MONTEBELLO VICENTINO

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 49 di 52

Verifiche a taglio

Taglio resistente con armatura a taglio

dove
$$\mathbf{f'}_{cd} = 0.5 \, \mathbf{f}_{cd} = 9.05 \, \text{MPa}$$

$$ctg\theta = 2.50$$
 $\alpha_c = \alpha_c (\sigma_{cp} / f_{cd}) = 1.00$

 $CS_{A1} = 1.23$ coefficiente di sicurezza

$$CS_{s} = 2.72$$

VERIFICHE AGLI SLE

Sollecitazioni di calcolo

\ Sforzo normale: $N_{Fd} =$ **0.0** kN Momento flettente $\mathbf{M}_{\mathsf{Ed}\,\mathsf{R}} =$ **996.6** kN m combinazione rara (caratteristica) $\mathbf{M}_{\mathsf{Ed.FR}} =$ 818.3 kN m combinazione frequente $\mathbf{M}_{\mathsf{Ed.QP}} =$ combinazione quasi permanente 339.2 kN m

Verifiche tensionali agli stati limite di esercizio

acciaio

 $\sigma_{\rm cR} = 9.0 \, \rm MPa$ ≤ (OK) calcestruzzo 19.2 MPa

 $\sigma_{c,QP} =$ **3.1** MPa ≤ (OK) 14.4 MPa $\sigma_{a,R} = 222.1 \, MPa$ ≤ (OK) 360.0 MPa

 $\mathbf{X}_{c} =$ 27.3 cm Posizione asse neutro

Verifiche a fessurazione

diametro e passo barre φ = 26.00 mm **S** = 150 mm deformazione media barre $\varepsilon_{\rm sm,fr} = 0.0007$

massima distanza tra fessure $\Delta_{\text{smax,fr}} = 330.7 \,\text{mm}$

 $\mathbf{W}_{FR} =$ **0.24** mm ampiezza delle fessure ≤ (OK) 0.30 mm

 $\mathbf{W}_{\mathsf{OP}} =$ **0.10** mm ≤ (OK) 0.20 mm

1° Sublotto: VERONA – MONTEBELLO VICENTINO

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

PROGETTO LOTTO CODIFICA DOCUMENTO REV. INOD 00 DI2 CL SL06AX00 1A

Pag. 50 di 52

10.6 SEZIONE 6 - CAMPATA COPERTURA

Geometria sezione ed armature

Altezza sezione H = $0.800 \, \text{m}$ copriferro nominale C = 6.5 cm $u = c + \phi / 2 =$ copriferro in asse 7.8 cm altezza utile $d = H - u = 0.722 \,\mathrm{m}$ $B = b_w = 1.000 \,\mathrm{m}$ Larghezza sezione

 $1 \Phi 26 / 15 =$ Armatura tesa: base 35.40 cm² $+1 \Phi 26 / 15 =$ 35.40 cm² integr.

> $\mathbf{A}_{\iota} =$ **70.79** cm²

 $A'_{f} = 1 \Phi 26 / 15 =$ **35.40** cm² Armatura compressa: Armatura a taglio $\mathbf{A}_{sw} =$ $1 \Phi 14 / 30x30 =$ 17.10 cm²/m

VERIFICHE AGLI SLU

Sollecitazioni di calcolo

 $N_{\rm Ed} =$ **0.0** kN Momento flettente \ Sforzo normale: combinazione fondamentale $M_{Ed.A1} = 1432.7 \, \text{kN m}$ $M_{EdS} =$ combinazione sismica 984.1 kN m Taglio

 $V_{EdA1} =$ 827.3 kN m combinazione fondamentale combinazione sismica $V_{Ed.S} =$ **379.5** kN m

Verifiche a pressoflessione

 $M_{\rm Rd} = 1833.4 \, \rm kN \, m$ Momento resistente $CS_{A1} = 1.28$ coefficiente di sicurezza

 $CS_{s} = 1.86$

Linea AV/AC VERONA – PADOVA

1° Sublotto: VERONA – MONTEBELLO VICENTINO

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 – RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag.

PROGETTO LOTTO CODIFICA DOCUMENTO INOD 00 DI2 CL SL06AX00 1A

51 di 52

Verifiche a taglio

Taglio resistente con armatura a taglio

$$\mathbf{V}_{\mathrm{Rd}} = \min(\mathbf{V}_{\mathrm{Rsd}}, \mathbf{V}_{\mathrm{Rcd}}) = \mathbf{1086.4 \, kN}$$

 $\mathbf{V}_{\mathrm{Rsd}} = 0.9 \, \mathbf{d} \, (\mathbf{A}_{\mathrm{sw}} / \mathbf{s}) \, \mathbf{f}_{\mathrm{vd}} \, (\mathrm{ctg}\alpha + \mathrm{ctg}\theta) \, \mathrm{sin}\alpha = \mathbf{1086.4 \, kN}$

$$V_{Rcd} = 0.9 \text{ d } b_w \alpha_c f_{cd}^{(1)} (ctg\alpha + ctg\theta) / (1 + ctg^2\theta) = 2027.8 \text{ kN}$$

dove
$$f'_{cd} = 0.5 f_{cd} = 9.05 MPa$$

$$ctg\theta = 2.50$$
 $\alpha_c = \alpha_c (\sigma_{cp} / f_{cd}) = 1.00$

coefficiente di sicurezza
$$CS_{A1} = 1.31$$

$$CS_{s} = 2.86$$

VERIFICHE AGLI SLE

Sollecitazioni di calcolo

\ Sforzo normale: $N_{Fd} =$ **0.0** kN Momento flettente $\mathbf{M}_{\mathsf{Ed}\,\mathsf{R}} =$ **978.3** kN m combinazione rara (caratteristica)

 $\mathbf{M}_{\mathsf{Ed.FR}} =$ 841.5 kN m combinazione frequente

 $\mathbf{M}_{\mathsf{Ed.QP}} =$ combinazione quasi permanente **337.6** kN m

Verifiche tensionali agli stati limite di esercizio

 $\sigma_{_{\rm CR}} =$ ≤ (OK) calcestruzzo **8.8** MPa 19.2 MPa

> $\sigma_{c,QP} =$ **3.1** MPa ≤ (OK) 14.4 MPa

 $\sigma_{a,R} = 218.1 \, MPa$ ≤ (OK) acciaio 360.0 MPa

 $\mathbf{X}_{c} =$ 27.3 cm Posizione asse neutro

Verifiche a fessurazione

diametro e passo barre φ = 26.00 mm **S** = 150 mm

deformazione media barre $\varepsilon_{\rm sm,fr} = 0.0007$ massima distanza tra fessure

 $\Delta_{\text{smax,fr}} = 330.7 \,\text{mm}$ $\mathbf{W}_{FR} =$ **0.24** mm ampiezza delle fessure ≤ (OK) 0.30 mm

 $\mathbf{W}_{\mathsf{OP}} =$ **0.10** mm ≤ (OK) 0.20 mm

1° Sublotto: VERONA – MONTEBELLO VICENTINO

Titolo:

OPERE D'ARTE: SL06 SOTTOVIA Km 26+531 -RELAZIONE DI CALCOLO SOTTOVIA

REV.

Pag. 52 di 52

PROGETTO LOTTO CODIFICA DOCUMENTO

INOD 00 DI2 CL SL06AX00 1A

11 VERIFICHE GEOTECNICHE

11.1 VERIFICA ALLO STATO LIMITE DI SOLLEVAMENTO

In questo paragrafo si riporta la verifica al sollevamento, assumendo nel calcolo del peso dello scatolare (forza stabilizzante) il solo peso proprio delle strutture ed il sovraccarico permanente in copertura.

Essendo il peso proprio dello scatolare

$$PP = 428.97 \text{ kN} + 331.75 \text{ kN} + 2 \times 130.00 \text{ kN} = 1020.72 \text{ kN}$$

e la sottospinta idraulica

$$SPW = 20.00 \text{ kN/m x } 12.47 \text{ m} = 249.40 \text{ kN}$$

si ottiene il coefficiente di sicurezza:

F.S. =
$$(0.9 \text{ PP}) / (1.1 \text{ SPW}) = 3.35 \ge 1.00$$

per cui la verifica risulta soddisfatta.

12 VALUTAZIONE DELLE INCIDENZE

Si riportano, di seguito, i risultati ottenuti dalla valutazione delle incidenze degli elementi che costituiscono il sottovia.

Soletta di copertura	
Incidenza (Kg/mc)	130

Soletta di fondazione	
Incidenza (Kg/mc)	120

Piedritti	
Incidenza (Kg/mc)	120