Mit Beteiligung der Europäischen Union aus dem Haushalt der Transeuropäischen Verkehrsnetze finanziertes Vorhaben Opera finanziata con la partecipazione dell'Unione Europea attraverso il bilancio delle reti di trasporto transeuropee										
Ausbau Eisenbahnachse München-Verona BRENNER BASISTUNNEL Ausführungsplanung										
Potenziame GALL Progettazio	nto asse ferro ERIA D ne esecutiva	viario Monacc I BASE	-Verona DEL BI	RENNEI	RO					
D0700: Baulo	s Mauls 2-3			D0700: Lotto M	ules 2-3					
Projekteinhei	t			WBS						
Zugangstur	nel Trens			Galleria di ac	ccesso Trens	i				
Dokumentena	ırt			Tipo Documen	to					
Statische B	erechnung			Calcolo statio	со					
Titel				Titolo						
Statischer E	Bericht GA-T4	/T5		Relazione di	calcolo GA-1	Γ4/T5				
Man	PRO Progetto Infrastrutture Territorio a cli	Ma	ndante	Manc pini swi enginee	lante SS CS	Mano II [•] PASQU/ ENGINEER	dante <mark>ILI-RAUSA</mark> NG S.r.I/G.m.b.H.			
				Fachplaner / il prog Ing. Davic Ord. Ingg. Cor	gettista specialista de Merlini no N° 2354 A					
		Datum / Dat	a	Name / Nome		Gesellschaft /	Società			
Bearbeitet / I	Elaborato	30.01.2015		A. Battaglia / M	VI. Falanesca	Pini Swiss				
Geprüft / Ver	ificato	30.01.2015		D. Merlini		Pini Swiss				
G. Br	enner Basiste	e del Brenner unnel BBT SE	2	Name / R. Z	' Nome urlo	Name / K. Berg	' Nome meister			
Projekt- kilometer / Chilometro progetto	von / da 32.0+84 bis / a 54.0+15 bei / al	 ³ Projekt- kilometer / Chilometro opera 	von / da 0.0+00 bis / a 3.8+06 bei / al	Status Dokument / Stato documento		Massstab / Scala	-			
		Finhoit	Nummor	Dokumentenart	Vertrag	Nummor	Deviation			
Staat Stato	Los Lotto	Unità	Numero	Tipo Documento	Contratto	Codice	Revision			

Bearbeitungsstand Stato di elaborazione

Revision Revisione	Änderungen / Cambiamenti	Verantwortlicher Änderung Responsabile modifica	Datum Data
00	Vorläufige Abgabe / Consegna preliminare	A.Battaglia / M. Falanesca	22.05.2014
10	Endgültige Abgabe / Consegna definitiva	A.Battaglia / M. Falanesca	31.07.2014
11	Projektvervollständigung und Umsetzung der Verbesserungen aus dem Prüfverfahren / Completamento progetto e recepimento istruttoria	A.Battaglia / M. Falanesca	09.10.2014
20	Überarbeitung infolge Dienstanweisung Nr. 1 vom 17.10.2014 / Revisione a seguito ODS n°1 del 17.10.14	A.Battaglia / M. Falanesca	04.12.2014
21	Abgabe für Ausschreibung / Emissione per Appalto	A.Battaglia	30.01.2015

1 1										
•	MAAT									
2		MATERIALI								
2	2 1									
	2.1		10							
	2.1	ANKER								
	2.2	ANCORAGGI	10							
	2.3	STAHLBÖGEN								
	2.3	CENTINE								
	24	BETON								
	2.4	CALCESTRUZZO	11							
	2.5	BEWEHRUNGSSTAHL								
	2.5	ACCIAIO DA ARMATURA	11							
3	GEO									
3	MOD									
Ū	3.1	GEOLOGIE UND GEOMECHANIK								
	3.1	GEOLOGIA E GEOMECCANICA	12							
	3.2									
	3.2	ORIENTAMENTO DELLE DISCONTINUITÀ	14							
4										
4	COM	SEIBIRGSVERHALTEN								
-	4 1									
	4.1		15							
_										
5 5										
5			10							
	5.1	SEZIONE GA-T4	18							
	0.1 F	5.1.1 Modellaeometrie								
	F	5.1.1 Geometria del modello	18							
	F	5.1.2 Gebirgsmodell und Ausgangsspannungslage								
	Ę	5.1.2 Modello costitutivo dell'ammasso e stato tensionale iniziale								
	F	5.1.3 Eigenschaften der Außenschale								
	5	5.1.3 Caratteristiche dei rivestimenti di prima fase								
	5	5.1.4 Laststufe								
	5	5.1.4 Step di carico	22							
	E	5.1.5 Nachweisverfahren								
	5	5.1.5 Procedura di verifica	23							
	5	5.1.6 Eraebnisse								
	5	5.1.6 Risultati	23							
	5.2	QUERSCHNITT GA-T5								
	5.2	SEZIONE GA-T5	24							
	5	5.2.1 Modellgeometrie								
	5	5.2.1 Geometria del modello	24							
	5	5.2.2 Gebirgsmodell und Ausgangsspannungslage								
	5	5.2.2 Modello costitutivo dell'ammasso e stato tensionale iniziale	25							
	5	5.2.3 Eigenschaften der Außenschale Eigenschaften der Außenschale								
	5	5.2.3 Caratteristiche dei rivestimenti di prima fase	25							

		5.2.4	Laststufe	
		5.2.4	Step di carico	26
		5.2.5	Nachweisverfahren	
		5.2.5	Procedura di verifica	27
		5.2.6	Ergebnisse	
		5.2.6	Risultati	28
	5.3	ANA	LYSE DER STANDSICHERHEIT DER ORTBRUST	
	5.3	ANA	LISI DELLA STABILITÀ DEL FRONTE	29
		5.3.1	Nachweisverfahren	
		5.3.1	Procedura di verifica	29
		5.3.2	Eraebnisse	
		5.3.2	Risultati	
		5	3 2 1 Querschnitt GA-T4	0
		5	3.2.1 Sezione GA-T4	29
		5	3.2.7 Ouerschnitt GA-T5	
		5.	3.2.2 Sezione GA-T5	20
		5.		29
6	INN	ENSC	HALE	
6	RIV	ESTIM	ENTO DEFINITIVO	31
	6.1	STA	BWERKSMODELLE	
	6.1	MET	ODO DELLE REAZIONI IPERSTATICHE	31
	6.2	INTE	RAKTION TRAGWERK-BAUGRUND	
	6.2	INTE	RAZIONE TERRENO-STRUTTURA	31
		6.2.1	Modellierung der Bettung	
		6.2.1	Rigidezza radiale	32
		6.2.2	Federkonstanten Auflagerbereich/Sohle	
		6.2.2	Costante della molla nelle zone di appoggio / fondo	32
	6.3	EINV	VIRKUNGEN	
	6.3	ANA	LISI DEI CARICHI	33
		6.3.1	Eigengewicht G1	
		6.3.1	Peso proprio G1	33
		6.3.2	Kettenwerk G2	
		6.3.2	Catenaria G2	33
		6.3.3	Auffüllung mit Beton oberhalb des Sohlgewölbes G3	
		6.3.3	Riempimento in cls al di sopra dell'arco rovescio G3	34
		6.3.4	Wasserdruck G4	
		6.3.4	Pressione idraulica G4	34
		6.3.5	Gebirgslast G5	
		6.3.5	Carico dell'ammasso G5	34
		6.3.6	Squeezing e swelling G7	
		6.3.6	Squeezing e swelling G7	35
		6.3.7	Kriechen und Schwinden des Betons G6	
		6.3.7	Viscosità e ritiro del calcestruzzo G6	35
		6.3.8	Temperatur Q1	
		6.3.8	Temperatura Q1	
		6.3 9	Erdbebeneinwirkung E1	
		6.3.9	Azione sismica E1	36
		6.3.10	Aerodynamischer Druck A1	
		6310	Pressione aerodinamica A1	36
		6 2 11	Annrallast A2	
		6211	Πιτο Δ2	26
		0.0.11		

	6.3.12 Brand A3	
	6.3.12 Incendio A3	
	6.4 LASTFALLKOMBINATIONEN	
	6.4 COMBINAZIONE DI CARICO	
	6.5 NACHWEISVERFAHREN	
	6.5 VERIFICHE	
	6.5.1 Grenzzustand der Tragtahigkeit (GZT)	07
	6.5.1 Stati Limite Ultimi (SLU)	
	6.5.1.1 Tellsicherheitstaktoren Einwirkungen	27
	6.5.1.1 Coefficienti parziali di sicurezza per le azioni	
	6.5.1.2 Coefficienti di combinazione delle azioni	20
	6.5.1.2 Coefficienti di combinazione delle azioni	
	6.5.1.3 Combinazione delle azioni	38
	6.5.1.4 Teilsicherheitefaktoren Eestigkeit	
	6.5.1.4 Coefficienti narziali di sicurezza per le resistenze	38
	6.5.1.5 Bemessung auf Biegung und Druck	
	6.5.1.5 Verifica a pressoflessione	39
	6.5.1.6 Bemessung Querkraft	
	6.5.1.6 Verifica a taglio	
	6.5.2 Grenzzustände der Gebrauchstauglichkeit (GZG)	
	6.5.2 Stati Limite Esercizio (SLE)	40
	6.5.2.1 Teilsicherheitsfaktoren Einwirkungen	
	6.5.2.1 Coefficienti parziali di sicurezza delle azioni	40
	6.5.2.2 Kombinationsbeiwerte Einwirkungen	
	6.5.2.2 Coefficienti di combinazione delle azioni	40
	6.5.2.3 Lastfallkombinationen	
	6.5.2.3 Combinazioni delle azioni	40
	6.5.2.4 Teilsicherheitsfaktoren der Festigkeiten	
	6.5.2.4 Coefficienti parziali di sicurezza per le resistenze	40
	6.5.2.5 Ermittlung der Schnittgrößen und Verformungen	
	6.5.2.5 Calcolo delle deformazioni	40
	6.5.2.6 Begrenzung der Rissbreiten	
	6.5.2.6 Limitazione dello spessore delle fessure	40
	6.6 BAULICHE DURCHBILDUNG	
	6.6 STRUTTURA COSTRUTTIVA	41
	6.6.1 Expositionsklasse und Mindestbetondeckung	
	6.6.1 Classe di esposizione e copriferro minimo	41
	6.6.2 Mindestbewehrung	
	6.6.2 Armatura minima	
	6.7 ERGEBNISSE	
	6.7 RISULTATI	
7	VERZEICHNISSE	
7	ELENCHI	43
	7.1 TABELLENVERZEICHNIS	
	7.1 ELENCO DELLE TABELLE	43
	7.2 ABBILDUNGSVERZEICHNIS	
	7.2 ELENCO DELLE ILLUSTRAZIONI	44
	7.3 ANLAGENVERZEICHNIS	
	7.3 ELENCO APPENDICI	

	7.4	REFERENZDOKUMENTE	
	7.4	DOCUMENTI DI RIFERIMENTO	44
		7.4.1 Eingangsdokumente	
		7.4.1 Documenti in ingresso	44
		7.4.1.1 Ausführungsprojekt Baulos Mauls 2-3	
		7.4.1.1 Progetto Esecutivo Lotto Mules 2-3	
		7.4.1.2 Technische Projektaufbereitung	
		7.4.1.2 Elaborazione tecnica del progetto	45
		7.4.1.3 Ausführungsprojekt Erweiterung Baulos Mauls 1	
		7.4.1.3 Progetto Esecutivo Estensione Lotto Mules 1	45
		7.4.2 Normen und Richtlinien	
		7.4.2 Normativa	45
		7.4.3 Literatur	
		7.4.3 Letteratura	
	HAN		40
AP	PENL	JICE 1 - CURVE CARATTERISTICHE	
AN	HAN	G 2 - FEM- ANALYSE DER AUßENSCHALE DES QUERSCHNITTS GA-T4	
AP	PEND	DICE 2 - ANALISI FEM DEL RIVESTIMENTO DI PRIMA FASE SEZIONE GA-T4	51
ΔΝ	ΗΔΝά	G 3 – FEM - ANALYSE DER ALIRENSCHALE DES OLIERSCHNITTS GA-T5	
	DENI	DICE 3 - ANALISI FEM DEL RIVESTIMENTO DI PRIMA FASE SEZIONE GA-15	67
AN	HAN	G 4 - FEM- ANALYSEN DER INNENSCHALE	
AP	PENE	DICE 4 - ANALISI FEM DEL RIVESTIMENTO DEFINITIVO	84
AN	HAN	G 5 - ZWISCHENPLATTE	
AP	PEN	DICE 5 – SOLETTA INTERMEDIA	
1	EINF		
1	INTE	(ODUZIONE	
2	NOF	≹MEN UND RICHTLINIEN	
2	NOF	{MATIVA	157
2	мат		
ა ვ			158
5	2 1		
	3.1 2.1		159
	0.1		
	3.2		450
	3.2		
	RFR		
4		RECHNUNGSMODELL	
4 4	MOL	RECHNUNGSMODELL DELLO DI CALCOLO	158
4 4	MOI 4.1	RECHNUNGSMODELL DELLO DI CALCOLO BELASTUNGSANALYSE	158
4 4	MOI 4.1 4.1	RECHNUNGSMODELL DELLO DI CALCOLO BELASTUNGSANALYSE ANALISI DEI CARICHI	158 158
4 4	MOI 4.1 4.1	RECHNUNGSMODELL DELLO DI CALCOLO BELASTUNGSANALYSE ANALISI DEI CARICHI	158 158
4 4	MOI 4.1 4.1	RECHNUNGSMODELL DELLO DI CALCOLO BELASTUNGSANALYSE ANALISI DEI CARICHI 4.1.1 Eigengewicht G1 4.1.1 Peso proprio G1	158
4 4	4.1 4.1	RECHNUNGSMODELL DELLO DI CALCOLO BELASTUNGSANALYSE ANALISI DEI CARICHI 4.1.1 Eigengewicht G1 4.1.1 Peso proprio G1 4.1.2 Lüftung Q1	158 158 158
4 4	MOI 4.1 4.1	RECHNUNGSMODELL DELLO DI CALCOLO BELASTUNGSANALYSE ANALISI DEI CARICHI 4.1.1 Eigengewicht G1 4.1.1 Peso proprio G1 4.1.2 Lüftung Q1 4.1.2 Ventilazione Q1	158
4 4	4.1 4.1	RECHNUNGSMODELL DELLO DI CALCOLO BELASTUNGSANALYSE ANALISI DEI CARICHI 4.1.1 Eigengewicht G1 4.1.1 Peso proprio G1 4.1.2 Lüftung Q1 4.1.2 Ventilazione Q1 4.1.3 Nutzung Q2	158
4 4	MOI 4.1 4.1	RECHNUNGSMODELL DELLO DI CALCOLO BELASTUNGSANALYSE ANALISI DEI CARICHI 4.1.1 Eigengewicht G1 4.1.1 Peso proprio G1 4.1.2 Lüftung Q1 4.1.3 Nutzung Q2 4.1.3 Utilizzazione Q2	
4 4	MOI 4.1 4.1	RECHNUNGSMODELL DELLO DI CALCOLO BELASTUNGSANALYSE ANALISI DEI CARICHI 4.1.1 Eigengewicht G1 4.1.1 Peso proprio G1 4.1.2 Lüftung Q1 4.1.2 Ventilazione Q1 4.1.3 Nutzung Q2 4.1.3 Utilizzazione Q2 4.1.4 Brand A1	
4 4	MOI 4.1 4.1	RECHNUNGSMODELL DELLO DI CALCOLO BELASTUNGSANALYSE ANALISI DEI CARICHI 4.1.1 Eigengewicht G1 4.1.1 Peso proprio G1 4.1.2 Lüftung Q1 4.1.2 Ventilazione Q1 4.1.3 Nutzung Q2 4.1.4 Brand A1 4.1.4 Incendio A1	

4.1.4.1 Temperatur-Zeitkurve im Tunnelbau [UNI 11076]	
4.1.4.1 Curva della temperatura/tempo per tunnel [UNI 11076]	. 159
4.1.4.2 Koeffizienten zur Bewertung der temperaturbedingten Festigkeitsminderung der	
Materialien	
4.1.4.2 Coefficienti per la valutazione della diminuzione delle caratteristiche di resistenza dei	
materiali in funzione della temperatura	. 161
4.2 NACHWEISVERFAHREN	
4.2 VERIFICHE	. 162
4.2.1 Traggrenzzustände (GZT) und Gebrauchsgrenzzustände (GZG)	
4.2.1 Stati Limite Ultimi (SLU) e Stati Limite di Esercizio (SLE)	. 162
4.2.1.1 Kombinations- und Teilkoeffizienten der Sicherheit der Wirkungen	
4.2.1.1 Coefficienti di combinazione e parziali di sicurezza per le azioni	. 162
4.2.1.2 Teilsicherheitsbeiwerte der Festigkeiten	
4.2.1.2 Coefficienti parziali di sicurezza per le resistenze	. 162
4.3 ERGEBNISSE	
4.3 RISULTATI	. 163
4.3.1 Traggrenzzustände (GZT)	
4.3.1 Sollecitazioni Stati Limite Ultimi (SLU)	. 163
4.3.2 Gebrauchsgrenzzustände (GZG)	
4.3.2 Sollecitazioni Stati Limite d'Esercizio (SLE)	.163
4.3.3 Brandzustände (GZT)	
4.3.3 Sollecitazioni incendio (SLU)	.164
4.4 NACHWEISVERFAHREN	
4.4 VERIFICHE	. 164
4.4.1 Nachweis Grenzzustand der Tragfähigkeit	
4.4.1 Verifiche Stati Limite Ultimi	. 164
4.4.1.1 Prüfung auf Biegung	
4.4.1.1 Verifica a flessione	.164
4.4.1.2 Prüfung auf Querkraft	
4.4.1.2 Verifica a taglio	.164
4.4.2 Nachweis Grenzzustand der Gebrauchstauglichkeit	
4.4.2 Verifiche Stati Limite d'Esercizio	. 164
4.4.3 Prüfungen auf Rissbildung	
4.4.3 Verifiche a fessurazione	. 165
4.4.4 Prüfungen auf Verformung	
4.4.4 Verifica di deformabilità	. 165
4.4.5 Prüfung auf Ermüdung durch Biegung	
4.4.5 Verifica a fatica a flessione	. 166
4.4.6 Prüfung auf Ermüdung auf Querkraft	
4.4.6 Verifica a fatica a taglio	. 166
4.4.7 Brandprüfung (GZT)	
4.4.7 Verifica incendio (SLU)	.166
5 VERANKERUNGEN	
5 ANCORAGGI	.167
	400
ALLEGAIU 1	168
ANLAGE 2	
ALLEGATO 2	.169

ANLAGE 3	
ALLEGATO 3	170
ANLAGE 4	
ALLEGATO 4	
ANLAGE 5	
ALLEGATO 5	172
ANLAGE 6	
ALLEGATO 6	173

1 EINLEITUNG

Das vorliegende Dokument beinhaltet die Erläuterung zur Bemessung der Außenund Innenschalen des Zugangstunnels Trens (GA), die zwischen Kilometrierung km 45.1+92.420 und km 48.8+80.648 ca. (Oströhre) und zwischen Kilometrierung km 45.1+55.363 und km 48.9+09.091 ca. (Weströhre) konventionell vorgetrieben werden (GL-T).Der GA entwickelt sich in diesem Abschitt von Süden startend in Richtung Norden im Granitkomplex, in der Pustertallinie, in Tonaliten, der Maulser-Tal-Störung, dem Bündnerschieferkomplex und der Amphibolite (Geomechanische Homogenzonen 14 - 25 [2]) mit variablen Überlagerungen von 1200 m bis 440 m, wie in den geomechanischen Detailprofilen [3] angegeben und in Abbildung 1 dargestellt.

Der Ausbruchsquerschnitt in Ausbruchsklasse III für das in Abs. 3.1 berücksichtigte Gebirge, GA-T4 genannt, weist eine Ausbruchsquerschnittsfläche von 107.97 m² auf und sieht den Einsatz von Selbstbohrankern des Typs R38N (N_y ≥ 400 kN) und Anker des Typs Dywidag SN 28 (Ny ≥ 413 kN) von 6m Länge (Querabstand 1.5 m und Längsabstand 1.5 m), die Sicherung der Laibung mit Selbstbohrankern des Typs R51N (Ny ≥ 630 kN), von 12 m Länge (Querabstand 0.75 m und Längsabstand 3.0 m), Stahlgitterträger 4Ф26 mit variablem Achsenabstand von 0.75 - 1.5 m, Befestigung der Ortsbrust durch Selbstbohranker des Typs R51N (N_y ≥ 630 kN) von 15 m Länge und 1.4 m Achsenabstand sowie einer Gesamtstärke von 30 cm Spritzbeton vorgesehen.

Der Ausbruchsquerschnitt in Ausbruchsklasse IV für das in Abs. 3.1 berücksichtigte Gebirge, GA-T5 genannt, weist eine Ausbruchsquerschnittsfläche von 107.97 m² auf. Hier ist der Einsatz von radialen Ankern vorgesehen, welche aus Selbstbohranker des Typs R38N (N_y \ge 400 kN) von 8 m Länge (Querabstand 1.5 m und Längsabstand 1.5 m) bestehen, die Sicherung der Laibung mit selbstbohrenden Ankern des Typs R51N (N_y \ge 630 kN), 12 m lang (Querabstand 0.75 m und Längsabstand 3.0 m), Stahlbögen, welche aus zwei gekoppelten Profilteilen IPN 180 mit variablen Achsenabstand von 0.75 - 1.5 m bestehen, sowie eeine Befestigung der Ortsbrust mit selbstbohrenden Ankern des Typs R51N (N_y \ge 630 kN), von 15 m Länge und mit variabler Anzahl von 1/2m² bis auf 1/1.2m², sowie Spritzbeton von 30 cm Gesamtstärke.

Die analysierten Ausbruchquerschnitte zeigen eine bewehrte Innenschale, die aus Beton C30/37 besteht und dessen Mindeststärken, die auf jeden Fall die Bautolleranzen berücksichtigen, jeweils 60 und 70 cm an der Kalotte und am Sohlgewölbe betragen.

1 INTRODUZIONE

La seguente relazione riporta il dimensionamento dei rivestimenti di prima fase e definitivi della Galleria di accesso di Trens (GA), realizzata mediante avanzamento in scavo tradizionale tra le progr. 45.1+92.420 e 48.8+80.648 ca. (Canna Est) e tra le progr. 45.1+55.363 e 48.9+09.091 ca. (Canna Ovest). La GA in questa tratta si sviluppa a partire da sud verso nord attraverso il complesso dei Graniti, della zona di faglia della Pusteria, delle Tonaliti, della zona di faglia della Val di Mules, dei Parascisti e delle Anfiboliti (zone geomeccaniche omogenee 14 - 25 [2]) con coperture variabili da 1200 m a 440 come indicato nei profili geomeccanici di dettaglio [3] e riportato in Figura 1.

La sezione prevista per affrontare lo scavo in classe III per gli ammassi considerati al Par. 3.1, è denominata GA-T4, avente sezione di scavo 107.97 m², chiodature radiali costituite da barre autoperforanti tipo R38N (N_y \ge 400 kN) e ancoraggi Dywidag SN28 (N_y \ge 413 kN), con lunghezza 6 m (passo trasversale 1.5 m e longitudinale 1.5 m), consolidamento al contorno mediante barre autoperforanti tipo R51N (N_y \ge 630 kN), con lunghezza 12 m (passo trasversale 0.75 m e longitudinale 3.0 m), centine metalliche reticolari 4 Φ 26 con interasse variabile da 0.75 - 1.5 m, consolidamento del fronte con barre autoperforanti tipo R51N (N_y \ge 630 kN) di lunghezza 15m e interasse 1.4m e uno spessore di spritz-beton totale di 30 cm.

La sezione prevista per affrontare lo scavo in classe IV per gli ammassi considerati al Par. 3.1, è denominata GA-T5, avente sezione di scavo 107.97 m², chiodature radiali costituite da barre autoperforanti tipo R38N (N_y ≥ 400 kN), con lunghezza 8 m (passo trasversale 1.5 m e longitudinale 1.5 m), consolidamento al contorno mediante barre autoperforanti tipo R51N (N_y ≥ 630 kN), con lunghezza 12 m (passo trasversale 0.75 m e longitudinale 3.0 m), centine metalliche composte da due profilati IPN 180 accoppiati con interasse variabile da 0.75 - 1.5 m, consolidamento del fronte con barre autoperforanti tipo R51N (N_y ≥ 630 kN) di lunghezza 15m e quantità variabile da 1/2m² a 1/1.2m², e uno spessore di spritz-beton totale di 30 cm.

Per le sezioni in analisi, il rivestimento definitivo è armato ed è costituito da calcestruzzo C30/37 con spessore minimi, che tengono conto delle tolleranze in fase di costruzione, pari a 60 e 70 cm rispettivamente in calotta e nell'arco rovescio.

Abbildung 1: Auszug aus dem geomechanischen Längsprofil und des Figura 1: geologischen Lageplans [3] mit Angabe des Untersuchungsgebietes.

Figura 1: Estratto del profilo geomeccanico longitudinale e della planimetria geologica [3] con indicazione dell'area di studio.

Die Bemessung der Typprofile GA T2-T3 ist im Bericht D0700- I dimensionamenti statici per i profili tipo GA T2/T3 sono 22901 "Statischer Bericht GA (T2-T3)" angegeben.

2 MATERIALKENNWERTE

2.1 **SPRITZBETON**

Für die Bemessung der Spritzbetonaußenschale ist in der Regel ein Beton der Festigkeitsklasse C30/37 mit folgenden Eigenschaften zu berücksichtigen:

Per il dimensionamento del rivestimento di prima fase in betoncino proiettato si considera un calcestruzzo con classe di resistenza C30/37 con le seguenti caratteristiche:

2

$$f_{ck} = 30 \text{ MPa}$$

Dove:

fck è la resistenza caratteristica a compressione dello spritzbeton a 28 giorni

2.2 **ANCORAGGI**

Si prevede l'utilizzo di ancoraggi autoperforanti tipo R38N e R51N aventi le seguenti caratteristiche:

N_{yk} = 400 kN (R38N)

 $N_{vk} = 630 \text{ kN} (R51N)$

- Es è il modulo elastico
- Ny è il carico di snervamento del chiodo

Le centine metalliche IPN 180 e reticolari sono realizzate con

acciaio rispettivamente S355 e B450C aventi le seguenti

STAHLBÖGEN 2.3

Die Stahlbögen des Typs IPN 180 und die Gitterträger bestehen aus Stahl S355 und B450C und besitzen folgende Eigenschaften:

E_s = 210000 MPa

Dove:

- Es = Elastizitätmodul .
- fyk = charakteristischer Wert der Streckgrenze
- Es è il modulo elastico .
- fyk è la tensione caratteristica di snervamento

Wobei:

- ٠

- Ny = Ermüdungslast der Niete

Es = Elastizitätmodul

- Wobei:

- 2.2 **ANKER**
- nach 28 Tagen

Es wird der Einsatz von Anker des Typs R38N und R51N vorgesehen, mit folgenden Eigenschaften:

Hierbei sind:

Ecm = Mittelwert Sekantenmodul

- fck = charakteristische Druckfestigkeit Spritzbeton

MATERIALI

- Ecm è il valore medio del modulo elastico secante

Dove:

CENTINE 2.3

caratteristiche:

E_{cm} = 32000 MPa

2.1

riportati nel rapporto D0700-22909 "Relazione di calcolo GA (T2-T3)".

BETONCINO PROIETTATO

2.4 **BETON**

Für die Bemessung der Innenschale wird ein Beton der Festigkeitsklasse C30/37 mit folgenden Eigenschaften zu angenommen:

Per il dimensionamento del rivestimento definitivo si considera un calcestruzzo con classe di resistenza C30/37 con le seguenti caratteristiche:

Ecm è il valore medio del modulo elastico

fck è la resistenza a compressione caratteristica del

E_{cm} = 32000 MPa

$f_{ck} = 30 \text{ MPa}$

Dove:

.

- Ecm = Mittelwert Sekantenmodul •
- f_{ck} = charakteristische Druckfestigkeit des Betons • nach 28 Tagen

2.5 **BEWEHRUNGSSTAHL**

Folgende Betonstähle sind für die Bemessung Außenschale heranzuziehen:

2.5 **ACCIAIO DA ARMATURA**

calcestruzzo dopo 28 giorni

der Per il dimensionamento dell'anello si utilizza l'acciaio tipo B450C:

E_s = 210000 MPa

 $f_{yk} = 450 \text{ MN/m}^2$

dove:

- Hierbei ist:
 - E_s = Sekantenmodul •
 - fyk = charakteristischer Wert der Streckgrenze des • **Betonstahls**
- f_{yk} = tensione caratteristica di snervamento acciaio per cemento armato

Seite / Pag. 11/173

- $E_s = modulo elastico$ •

2.4 **CALCESTRUZZO**

Hierbei sind:

3 **GEOTECHNISCHES MODELL**

3.1 GEOLOGIE UND GEOMECHANIK

Der GA wird konventionell ausgebrochen und durchörtert von Süden nach Norden entsprechend den geomechanischen Profilen und den Detailprofilen des Projektes [3] zwischen den Stationierungen 44.5+15.0 und 45.1+31.6 ca. (Oströhre) die geomechanischen Zonen 14-25 mit variablen Überlagerungen von 440 m bis 1200 m.

3 MODELLO GEOTECNICO

3.1 GEOLOGIA E GEOMECCANICA

La GA è scavata in tradizionale e attraversa a partire da sud verso nord, in accordo con il profilo geomeccanico e progettuale di dettaglio [3], tra la progressive 44.5+15.0 e 45.1+31.6 ca. (canna est), le zone geomeccaniche 14-25 zone geomeccaniche omogenee con coperture variabili da 440 m a 1200 m.

Zone	Zone initial pk (approx.)	Zone final pk (approx.)	Zone length	Zone max overburden	Zone min overburden	Rock mass	Rock mass Length		
number	[km]	[km]	[m]	[m]	[m]	name	[% of zone length]	[m]	
1/	/5 1	15 5	300	1200	1095	GA-BCA-A-10g	85%	331.5	
14	43.1	45.5	350	1200	1055	GA-BCA-GS-10g	15%	58.5	
10			1202	112E	700	GA-BCA-GS-10g	90%	1082.7	
15	45.5	40.7	1203	1135	700	GA-BCA-A-10g	10%	120.3	
10bio	AG 7	47.26	550	700	450	FVM-S-PS	85%	413.1	
19012	40.7	47.20	552	700	450	FVM-S-B	15%	72.9	
19	47.25	47.34	75	450	450	FVM-C-Q	100%	75	
10hio	47.34	47.58	225	550	450	FVM-S-PS	85%	191.25	
19012						FVM-S-B	15%	33.75	
19ter	47.58	47.60	35	550	550	TM-T-TM	100%	35	
20	47.60	48.12	537	615	450	TM-T-1	100%	537	
21	48.12	48.16	46	655	620	TM-DZ-GA3	100%	46	
22	49.10	49.10	20	CEE	CCE	GB-CZ-GA2	5 0 %	15	
22	40.10	46.19	50	655	COO	GB-CZ-GA2ter	5 0 %	15	
23	48.19	48.30	148.5	745	655	GB-DZ-GA1	100%	148.5	
24	48.30	48.35	34	760	740	GB-G-GA-9	100%	34	
25	48.35	49.0	534.5	1090	465	GB-G-GA-10	100%	534.5	

Tabelle 1 geomechanische Homogenbereiche

Die Tabelle 2 zeigt die geomechanischen Grundparameter für die Definition der geomechanisch homogenen Zonen und die Wahrscheinlichkeitsverteilung nach Bieniawskis ([1], [2]) der unterschiedlichen Klassen.

Betreffend die Maulsertalstörung wurden die geologischen und hydrogeologischen Informationen aus den Dokumenten der Ausdehnung des Bauloses Mauls I [9] entnommen, die Charakterisierung kommt aus den Laborproben und aus den Beobachtungen des Verhaltens während des Ausbruchs.

Wobei:

- γ = spezifisches Gewicht des Gebirges
- σ_{ci} = einaxiale Druckfestigkeit der Gesteinsmatrix
- m_i = Krümmungsparameter aus triaxialem Druckversuch des Gebirgsmaterial

Tabella 1: Zone geomeccaniche omogenee

La Tabella 2 riporta i parametri geomeccanci di base che caratterizzano ciascuna zona geomeccanica omogenea e la distribuzione probabilistica delle diverse classi secondo la classificazione di Bieniawski ([1], [2]).

Per la Faglia della Val di Mules le informazioni geologiche e idrogeologiche sono tratte dai documenti dell'Estensione del Lotto Mules I [9]; la caratterizzazione deriva dalle prove di laboratorio e dall'osservazione del comportamento allo scavo.

Dove:

- γ è il peso di volume naturale dell'ammasso roccioso.
- σ_{ci} è la resistenza a compressione monoassiale di matrice.
- m_i è un parametro di curvatura dell'inviluppo di rottura triassiale del materiale roccia.

- E_i = Verformungsmodul der Gesteinsmatrix
- RMR = Rock Mass Rating 1989
- GSI = Geological Strength Index

- E_i è il modulo di deformazione di matrice.
- RMR è il Rock Mass Rating 1989.
- GSI è il Geological Strength Index.

Zone number	Rock mass name	γ [kN/m³]	σ _{ci} [MPa]	m _i [-]	E _i [GPa]	RMR	GSI	Classe di scavo RMR
1.4	GA-BCA-A-10g	27.8±0.52	140±48	20±6	53±8	70±5	65±10	
14	GA-BCA-GS-10g	27.3±1.49	75±5	17±3	56±10.9	60±5	50±5	
45	GA-BCA-GS-10g	27.3±1.49	75±5	17±3	56±10.9	60±5	50±5	
15	GA-BCA-A-10g	27.8±0.52	140±48	20±6	53±8	70±5	65±10	II
40010	FVM-S-PS	27.0	5	20	30	51	52	IV
19812	FVM-S-B	27.0	25	23	25	42	42	IV
19	FVM-C-Q	27.0	50	20	15	55	60	
10010	FVM-S-PS	27.0	5	20	21.5	51	52	IV
19012	FVM-S-B	27.0	25	23	25	42	42	IV
19TER	TM-T-TM	27.0	45	25	20	40	40	IV
20	TM-T-1	26.8±0.55	61±33	18±2	36±10	56±5	57±4	III
21	TM-DZ-GA3	26.4±0.65	26±5	20±2	8±2	46±4	47±5	
22	GB-CZ-GA2	26.0	5	20	22.5	55	55	
22	GB-CZ-GA2ter	26.0	5	20	22.5	55	55	
23	GB-DZ-GA1	26.0	55	30	22.5	45	45	
24	GB-G-GA-9	26.7±0.15	115±19	24±4	34±6.1	69±5	73±4	II
25	GB-G-GA-10	26.7±0.15	115±19	24±4	34±6.1	66±8	70±5	11

Tabelle 2: Bestimmung des Gebirges jeder homogenen Zone und Wahrscheinlichkeitsverteilung der unterschiedlichen Klassen [1], [2] und [7]
 Tabella
 2:
 Caratterizzazione
 degli
 ammassi
 di
 ciascuna
 zona

 omogenea
 e
 distribuzione
 probabilistica
 delle
 diverse

 classi
 [1], [2] e
 [7]

Die typischen Verformungs- und Festigkeitsparameter jeder Strecke wurden gemäß dem Bruchkriterium nach Hoek & Brown [27] berechnet, welches im allgemeinen geomechanischen Bericht [1] näher beschrieben wird. I parametri di deformabilità e di resistenza caratteristici di ciascuna tratta sono stati calcolati in accordo al principio di linearizzazione dell'inviluppo di rottura proposto da Hoek & Brown [27] e esplicitato nella relazione geomeccanica generale [1].

Zone number	Rock mass name	Class [-]	Max overburden [m]	¥ [kN/m³]	φ _{peak} [°]	φ _{res} [°]	с _{реак} [MPa]	c _{res} [MPa]	E _{rm} [MPa]	Ψ [°]
14	GA-BCA-A-10g	11	1200	27.8	42.21	33.15	4.887	2.900	21074	6.86
14	GA-BCA-GS-10g		1200	27.3	36.23	28.85	3.535	2.274	15528	4.53
45	GA-BCA-GS-10g	III	1105	27.3	36.23	28.85	3.535	2.274	15528	4.53
15	GA-BCA-A-10g	II	1135	27.8	42.21	33.15	4.887	2.900	21074	6.86
10010	FVM-S-PS	IV	700	27.0	24.31	18.37	0.893	0.572	10374	3.34
19013	FVM-S-B	IV	700	27.0	34.87	29.52	1.481	1.060	4574	4.36
19	FVM-C-Q		450	27.0	45.92	35.91	2.136	1.206	7800	8.61
10010	FVM-S-PS	IV	550	27.0	24.31	18.37	0.893	0.572	7435	3.34
19012	FVM-S-B	IV		27.0	34.87	29.52	1.481	1.060	4574	4.36
19TER	TM-T-TM	IV	550	27.0	39.62	34.41	1.818	1.326	5748	4.95
20	TM-T-1		640	27.0	44.8	36.1	2.143	1.330	12700	5.80
21	GB-DZ-GA3		655	27.0	36.81	30.78	1.857	1.295	3200	4.60
22	GB-CZ-GA2		665	26.0	23.99	17.59	1.023	0.633	9186	3.20
22	GB-CZ-GA2ter		000	26.0	23.99	17.59	1.023	0.633	9186	3.20
23	GB-DZ-GA1		665	26.0	42.14	35.94	2.650	1.857	5032	2.83
24	GB-G-GA-9	Ш	765	26.7±0.15	51.76	38.76	5.252	2.278	24304	12.94
					51.98 ¹⁾	35.93	8.701	2.872	28678	12.93
25	GB-G-GA-10	II / III	1100	26.7±0.15	47.14 ²⁾	35.93	5.416	2.872	19552	10.31
					41.46 ³⁾	35.06	3.934	2.710	6922	5.18
¹⁾ CSI - 85:	²⁾ CSI = 65: ³⁾ CSI = 1	45			41.46 ³⁾	35.06	3.934	2.710	6922	5.18

¹/GSI = 85; ²/GSI = 65; ³/GSI = 45

Tabelle 3: Typische Parameter der Gebirges in den unterschiedlichen Zonen und Klassen

Tabella 3: Parametri caratteristici dell'ammasso nelle diverse zone e classi

Wobei:

Dove:

1

- Φ_{peak}/Φ_{res} Reibungswinkel am Peak Restreibungswinkel
- c_{peak} / c_{res} Kohäsion am Peak / Restkohäsion
- Erm Gebirgsmodul
- Ψ Dilatanz

3.2 TRENNFLÄCHENORIENTIERUNG

Auf Grund der verfügbaren Daten aus der Regelplanung [7] und den Ortbrustaufnahmen für den GL Ost (km 47.9+94 / 48.8+99), GL West (km 48.1+47.2 / 48.8+99) und den Erkundungstunnel (km 10.9+19 / 11.9+22) wurden die Trennflächen aus Tabelle 4 berücksichtigt. Die Bruchkörperanalyse ist im Dokument D0700-22901 " Statischer Bericht GA (T2-T3)" enthalten.

- Φ_{peak} / Φ_{res} è l'angolo d'attrito di picco/residuo.
- c_{peak} / c_{res} è la coesione di picco/ residua.
- E_{rm} è il modulo d'ammasso.
- ψ è la dilatanza.

3.2 ORIENTAMENTO DELLE DISCONTINUITÀ

Sulla base dei dati disponibili dalla progettazione di sistema [8] e dai dati disponibili dei rilievi al fronte per la GL Est (pk 47.9+94 / 48.8+99), GL Ovest (pk 48.1+47.2 / 48.8+99) e cunicolo esplorativo (pk 10.9+19 / 11.9+22) sono state considerate le discontinuità riportate in Tabella 4. L'analisi dei blocchi è contenuto nel documento D0700-22901 "Relazione di calcolo GA (T2-T3)".

Pock mass name	ID loint	Dip direction	Dip	Max Persistence
ROCK mass name	ID Joint	[°]	[°]	[m]
	K1	80	70	10
	K2	170	85	10
	K3	230	70	10
	K4	170	45	10
GB-DZ-GA1	K5	30	85	3
GB-G-GA-9	K6	300	70	3
(do riliovi ol fronto)	K7	130	50	3
(da fillevi al fiolite)	K8	230	35	10
Ortsbrustaufnahmen)	K9	340	45	10
Onsbrustaumanmeny	K10	350	85	10
	K11	270	60	10
	K12	50	30	10
	K13	90	30	10
	K1	230	40	10
	K2	190	80	10
	K3	140	80	10
	K4	30	70	10
GB-CZ-GA2/	K5	325	85	10
GB-CZ-GAZIER	K6	180	20	10
(da fillevi al fionte)	K7	250	85	10
(dus dell Ortsbrustaufnahmon)	K8	85	20	10
Ortsbrüstaumanmen)	K9	290	70	10
	K10	90	80	10
	K11	40	70	10
	K12	357	80	10
	K1	15	75	10
	K2	270	65	10
	K3	170	80	10
TM-T-1/	K4	310	70	10
TM-DZ-GA3	K5	210	75	10
(da rilievi al fronte)	K6	70	50	3
(aus den	K7	125	65	10
Ortsbrustaufnahmen)	K8	200	30	10
	K9	10	30	10
	K10	90	90	10
	K11	340	30	10
	SC	345	45	3
GA-BCA-A-10g	RTF1	160	80	1
GA-BCA-GS-10g	RTFw	255	75	1
Doc. [13]	RTF3	300	85	1
	RTF6	020	80	3

Tabelle 4: Lage der Trennflächen

Tabella 4: Giacitura delle discontinuità

4 GEIBIRGSVERHALTEN

Die Ermittlung der Gebirgslast sowie die Ermittlung der Lastableitung von der Außen- auf die Innenschale erfolgt in Abhängigkeit des Gebirgsverhaltens:

- Bei spannungsdominiertem Gebirgsverhalten werden die Gebirgslasten durch die numerische Modellierung der Interaktion zwischen Gebirge und Ausbau ermittelt.
- Bei trennflächendominiertem Gebirgsverhalten ermitteln sich die Gebirgslasten in erster Linie aus Bruchkörperanalysen.

Zur Einschätzung des Gebirgsverhaltens und zur Unterscheidung der beiden Gebirgsverhalten ist das Kennlinienverfahren anzuwenden.

4.1 ABSCHÄTZUNG DES GEBIRGSVERHALTENS

Zur Abschätzung des Gebirgsverhaltens wurden die Dokumente [1], [2] und [7] berücksichtigt. Für weitere Details verweist man auf den Bericht [2]. In der folgenden Tabelle werden die aus dem Gebirgskennlinienverfahren resultierenden Ergebnisse aufgezeigt.

4 COMPORTAMENTO DELLA ROCCIA

Il calcolo del carico dell'ammasso e il calcolo del trasferimento del carico dal rivestimento esterno al rivestimento definitivo dipendono dal comportamento dell'ammasso:

- in caso di comportamenti dell'ammasso di tipo spingente, i carichi si calcolano tramite modellazione numerica dell'interazione fra ammasso e rivestimento;
- in caso di ammasso altamente fratturato, i carichi si calcolano mediante l'analisi dei blocchi.

Per la valutazione del comportamento dell'ammasso e per la differenziazione tra i due comportamenti si utilizza il metodo delle curve caratteristiche.

4.1 VALUTAZIONE DEL COMPORTAMENTO DELLA ROCCIA

Per la valutazione del comportamento dell'ammasso roccioso in esame sono stati presi in considerazione i documenti [1], [2] e [7]. Rimandando al Rapporto [2] per maggiori dettagli, si riporta nella tabella seguente i risultati ottenuti dalle linee caratteristiche.

Zone	Rock mass	Class	Zone max	G	¢,	c _r	F _{plf}	F _{pla}	c _f /R	F _{plf} /R	c _r /R	F _{pla} /R
Humber	harrie		overburden	[cm]	[cm]	[cm]	[m]	[m]	[%]	[-]	[%]	[•]
14	GA-BCA-A-10g	Ш	1200	0.66	2.22	1.55	0.00	2.39	0.14%	0.00	0.32%	0.49
14	GA-BCA-GS-10g	Ш	1200	1.39	4.62	3.23	0.96	<mark>4.6</mark> 1	0.29%	0.20	0.67%	0.95
15	GA-BCA-GS-10g	- 111	1125	0.58	1.92	1.35	0.00	2.85	0.12%	0.00	0.28%	0.59
15	GA-BCA-A-10g	Ш	1155	0.30	1.02	0.71	0.00	1.40	0.06%	0.00	0.15%	0.29
10hia	FVM-S-PS	IV	700	19.35	64.51	45.15	18.99	37.01	3.98%	3.91	9.29%	7.61
19012	FVM-S-B	IV	700	3.40	11.35	7.94	1.72	5.96	0.70%	0.35	1.63%	1.23
19	FVM-C-Q	- 111	450	0.52	1.75	1.22	0.00	1.52	0.11%	0.00	0.25%	0.31
10bic	FVM-S-PS	IV	550	12.66	42.22	29.55	13.25	26.72	2.61%	2.73	6.08%	5.50
19012	FVM-S-B	IV	330	2.14	7.14	5.00	1.03	4.73	0.44%	0.21	1.03%	0.97
19ter	TM-T-TM	IV	550	1.91	6.35	4.45	0.00	2.61	0.39%	0.00	0.92%	0.54
20	TM-T-1	Ш	615	0.51	1.69	1.18	0.00	2.11	0.10%	0.00	0.24%	0.43
21	TM-DZ-GA3	Ш	655	3.53	11.75	8.23	0.73	4.21	0.73%	0.15	1.69%	0.87
	GB-CZ-GA2	- 111	665	16.15	53.83	37.68	15.85	31.21	3.32%	3.26	7.75%	6.42
22	GB-CZ-GA2 ter	Ш	605	16.15	53.83	37.68	15.85	31.21	3.32%	3.26	7.75%	6.42
23	GB-DZ-GA1	Ш	745	1.38	4.61	3.23	0.00	2.05	0.28%	0.00	0.66%	0.42
24	GB-G-GA-9 (*)	- 111	760	0.20	0.67	0.47	0.00	0.50	0.04%	0.00	0.10%	0.10
		1		0.23	0.76	0.53	0.00	0.32	0.05%	0.00	0.11%	0.07
25	GB-G-GA-10	П	1090	0.49	1.63	1.14	0.00	1.37	0.10%	0.00	0.24%	0.28
		- 111		1.59	5.29	3.70	0.00	2.23	0.33%	0.00	0.76%	0.46

Tabelle 5: Ergebnisse Kennlinienverfahren. cr = Ortsbrustkonvergenz, ca = absolute Konvergenz am natürlichen Gleichgewicht, cr = relative Konvergenz am natürlichen Gleichgewicht, F_{plf} = plastische Zone an der Ortsbrust, F_{pla} = plastische Zone Gleichgewicht, R = Ausbruchradius (mit 4.86m angenommen). Tabella 5: Risultati del metodo delle Linee Caratteristiche. cr = convergenza al fronte, ca = convergenza assoluta all'equilibrio naturale, cr = convergenza relativa all'equilibrio naturale, FpII = fascia plastica al fronte, FpII = fascia plastica all'equilibrio naturale, R = raggio di scavo (assunto pari a 4.86m).

Innerhalb der Tabelle 6 sind die Angaben aus den Methoden laut Jehtwa, Bhasin, Hoek und Panet, betreffend die Bewertung des Risikos bei großen Verformungen des Gebirges (squeezing) und der Instabiliät der Ortsbrust, zusammen mit den Methoden von Tao Zhen-Yu und Hoek betreffend das Risiko des Bergschlages (rock burst) zusammengefasst. All'interno della Tabella 6 sono riassunte le indicazioni ottenute dai metodi di Jehtwa, Bhasin, Hoek e Panet per quanto riguarda la valutazione del rischio di elevate deformazioni dell'ammasso (*squeezing*) e di instabilità del fronte, insieme a quelle ottenute dai metodi di Tao Zhen-Yu e Hoek per il rischio di rottura fragile (*rock burst*).

						Rock burst				
Zone number	Rock mass name	Class	Zone max overburden	Jehtwa	Bhasin	Hoek	Par	Tao Zhen-Yu	Hoek	
							Face behaviour	Face condition		
14	GA-BCA-A-10g	Ш	1200	MiS	MS	FP	РР	STS	MRB	SSp
14	GA-BCA-GS-10g	- 111	1200	MoS	MS	FP	PP	STS		
15	GA-BCA-GS-10g	Ш	11.25	MoS	MS	FP	РР	STS		
15	GA-BCA-A-10g	Ш	1155	MiS	MS	FP	РР	STS	MRB	SSp
106.	FVM-S-PS	IV	F10	HS	HS	ES	Р	US		
Tapis	FVM-S-B	IV	510	HS	HS	ES	Р	US		
19	FVM-C-Q	Ш	450	MiS	MS	FP	E	US		
101-1-	FVM-S-PS	IV	- 550	HS	HS	ES	Р	US		
19012	FVM-S-B	IV		HS	HS	ES	Р	US		
19te r	TM-T-TM	IV	550	MoS	MS	ES	РР	US		
20	TM-T-1	Ш	615	MiS	MS	FP	РР	US		
21	TM-DZ-GA3	Ш	655	MoS	MS	MS	РР	US		
22	GB-CZ-GA2	Ш		HS	HS	ES	Р	US		
22	GB-CZ-GA2 ter	Ш	200	HS	HS	ES	Р	US		
23	GB-DZ-GA1	- 111	745	MoS	MS	FP	РР	US		
24	GB-G-GA-9 (*)	Ш	760	NS	NS	FP	E	S		
		1		NS	NS	FP	E	S	MRB	SSp
25	GB-G-GA-10	П	1090	MiS	MS	FP	E	S	MRB	SSp
		Ш]	MiS	MS	FP	РР	STS		

Jehtwa

Panet

<u>Tao Zhen-Yu</u>

No rockbursting Low rockbursting activity Moderate rockbursting activity High rockbursting activity

Hoek (Squeezing)

Tabella 6: Risultati dei metodi empirici.

stabilization measures

Cavity collapse (rock burst)

Tabelle 6: Ergebnisse der empirischen Methoden

In der Tabelle 7 wird ein Kriterium [25] [26] zur Abschätzung Ir des Verhaltens der Ortsbrust in Abhängigkeit der Ergebnisse des Gebirgskennlinienverfahrens (Konvergenz und a Ausdehnung des plastischen Zone an der Ortsbrust) e aufgezeigt

In Tabella 7 si riporta un criterio [25] [26] per stimare il comportamento del fronte di scavo in funzione dei risultati delle analisi con le linee caratteristiche (convergenza al fronte e estensione della fascia plastica al fronte).

Fronte stabile Stabile Ortsbrust	Fronte stabile a breve termine Kurzzeitige Stabile Ortsbrust	Tendenza all'instabilità del fronte Neigung der Ortsbrust zur Instabilität	Fronte instabile Ortsbrust
$c_f < 1\% R_{scavo}$	1% R_{scavo} < c_f < 2% R_{scavo}	2% R_{scavo} < c_f < 3% R_{scavo}	$c_f > 3\% R_{scavo}$
F _{pl f} << R _{scavo}	F _{pl f} < R _{scavo}	F _{pl f} ≥ R _{scavo}	F _{pl f} >> R _{scavo}

Tabelle 7: Vorgeschlagene Stabilitätskriterien in [25] [26]; c_f = Ortsbrustkonvergenz; F_{pf} = Umfang des plastischen Streifens an der Ortsbrust; R_{scavo} = r_{eq} = entsprechender Aushebungsradius.

Tabella 7: Criteri di stabilità proposti in [25] [26]; $c_f = convergenza al fronte; F_{pf} = estensione della fascia plastica al fronte; R_{scavo} = r_{eq} = raggio equivalente di scavo.$

Das Berechnungsergebnis laut Tabelle 5-7 und ausgehend von den Annahmen laut Kap. 3.1 wird aufgezeigt, dass die statische Bemessung im vorliegenden Dokument für die Gebirge der Klassen III und IV (Homogenzonen 19-23), welche in die Störzone des Maulsertales und der Pustertallinie fallen, gelten kann. Das erwartete Verhalten des Hohlraums ist im Wesentlichen von plastischer Art mit mittel bis stark druckhaftem Verhalten und einer Ortsbrust, deren Verhalten kurzzeitig stabil bis instabil bezeichnet wird.

Andere Betrachtungen, mittels Rückrechnung der geomechanischen Parameter (back-analysis) können im Anschluss an den Vortrieb der GL Ost und West innerhalb der Maulsertalstörung (pk 46.8 - 47.8) angestellt werden.

Dall'analisi delle Tabelle 5-7 e dalle considerazioni riportate al Par. 3.1 si evidenzia come il dimensionamento statico contenuto nel presente rapporto può essere valido per gli ammassi in classe III e IV (zone omogenee 19-23) che ricadono nella zona di faglia della Val di Mules e della Faglia della Pusteria. Il comportamento del cavo atteso è di tipo sostanzialmente plastico, con comportamento da mediamente a fortemente spingente e con il fronte che si presenta da stabile a breve termine ad instabile

Ulteriori considerazioni, attraverso analisi a ritroso dei parametri geomeccanici (back-analysis), potranno essere eseguite successivamente allo scavo della GL Est e Ovest all'interno della Faglia della Val di Mules (pk 46.8 - 47.8).

5 AUBENSCHALE

Aus der Analyse mittels Kennlinienverfahren für die Gebirge geht hervor, dass das Gebirgsverhalten druckhaft ist und deshalb eine Dimensionierung mittels numerischer Modellierung erforderlich ist.

Die numerischen Analysen wurden sowohl bei ebenen Verformungsbedingungen als auch bei axialsymmetrischen Bedingungen durchgeführt.

Die Analysen wurden mit dem Finite-Elemente-Programm MIDAS GTS [35] durchgeführt. Dieses ermöglicht es, die Lastgeschichte und das spann-verformende Verhalten des Gebirges im Verlauf sämtlicher Stufen der Bauwerkserrichtung zu verfolgen.

Bei ebenen Verformungen werden folgende Analysen durchgeführt:

- die Bestimmung des geotechnischen Bezugmodells das einen Querschnitt zur Tunnelachse darstellt;
- die Bestimmung der Kraft-Verformungs- und Festigkeitsgesetze des vom Aushub betroffenen Gebirges;
- die Bestimmung des Spannungszustands im Gebirge vor dem Tunnelaushub;
- die Simulation der Aushubphasen und der Stützenaufstellung.

Bei den axialsymmetrischen Analysen wurde folgendes berücksichtigt:

- Kreisquerschnitt und isotropischer Kraftzustand;
- Simulation des Etappenvortriebs;
- Vorkommen von Befestigungen an der Ortsbrust und an den Umrissen/Radial;
- Fehlen der Spritzbetonschale.

Nachfolgend werden die Annahmen für die Querschnitte GA- T4 (Kap. 5.1) und GA-T5 (Kap. 5.2) beschrieben, während in den Anhängen 2-3 die entsprechenden Plots und statischen Nachweise wiedergegeben sind.

5.1 QUERSCHNITT GA-T4

Zur Bemessung des Querschnittes GA-T4 wurde der Abschnitt mit der höchsten Überdeckung in der Maulsertalstörung (700 m) berücksichtigt

5.1.1 Modellgeometrie

Das Berechnungsmodell, der Problemsymmetrie zufolge, erstreckt sich 100 m in der Breite an den Enden des Hohlraums,

5 RIVESTIMENTO DI PRIMA FASE

Dall'analisi delle linee caratteristiche, si evidenzia che il comportamento dell'ammasso è di tipo spingente ed è pertanto richiesto un dimensionamento mediante modellazione numerica.

Le analisi numeriche sono state eseguite sia in condizioni di deformazione piana che in condizioni assialsimmetriche.

Le analisi sono state sviluppate mediante il programma agli elementi finiti MIDAS GTS [35]. Quest'ultimo consente di seguire la storia di carico e il comportamento tensio-deformativo dell'ammasso roccioso durante tutte gli step per la realizzazione dell'opera.

Le analisi, condotte nell'ipotesi di deformazioni piane, comportano:

- la definizione del modello geotecnico di riferimento che rappresenta una sezione trasversale all'asse della galleria;
- la definizione delle leggi sforzo-deformazione e di resistenza dell'ammasso roccioso interessato dagli scavi;
- la definizione dello stato tensionale presente nell'ammasso prima dello scavo della galleria;
- la simulazione delle fasi di scavo e di messa in opera dei sostegni.

Per quanto riguarda le analisi assialsimmetriche sono state considerate le seguenti:

- sezione circolare e stato di sforzo isotropo;
- simulazione dell'avanzamento a tappe;
- presenza di consolidamenti al fronte e al contorno/radiali;
- assenza del rivestimento in spritzbeton.

Nei seguenti paragrafi vengono riportate le assunzioni eseguite per le sezioni GA-T4 (Cap. 5.1) e GA-T5 (Cap. 5.2) mentre nelle Appendici 2-3 sono riportati i rispettivi plot e verifiche strutturali.

5.1 SEZIONE GA-T4

Per il dimensionamento della sezione GA-T4 si è considerata la sezione con la massima copertura all'interno della zona di faglia della Val di Mules (700 m).

5.1.1 Geometria del modello

Il modello di calcolo, in virtù della simmetria del problema, si estende per 100 m in larghezza agli

200 m in der Höhe, von denen sich 100 m unter und 100 m über der Schienenoberkante befinden. Durch die gewählten Modellabmessungen kann davon ausgegangen werden, dass eventuelle Randeinflüsse vernachlässigbar sind. Das Gebirge wurde mittels zweidimensionaler, quadratischer Elemente mit Abmessungen von ca. 200x200 cm diskretisiert. In der Nähe des Tunnels wird die Mesh verdichtet und die Elemente erreichen Abmessungen von 50x50 cm.

Die gewählten Auflagebedingungen verhindern eine Verschiebung in beide Richtungen am unteren Modellrand und blockieren Verschiebungen in horizontaler Richtung an den vertikalen Modellrändern. Am oberen Modellrand wurde ein Druck aufgebracht, welcher der vorhandenen Bodenauflast (von Tunnel bis Geländeoberkante) entspricht. estremi della cavità, 200 m in altezza, di cui 100 m al di sotto del piano del ferro e 100 m al di sopra di quest'ultimo. Tali limiti sono sufficienti per ritenere trascurabili gli effetti di bordo. L'ammasso è stato discretizzato mediante elementi bidimensionali quadrati di dimensioni pari a circa 200x200 cm, infittiti in prossimità della galleria, dove assumono dimensioni pari a circa 50x50 cm.

Le condizioni di vincolo al contorno del modello prevedono spostamenti impediti in entrambe le direzioni lungo il boundary inferiore e spostamenti impediti in direzione orizzontale lungo i boundary verticali. Sul boundary superiore è applicata una pressione pari al peso del terreno presente in sito fino alla quota del piano campagna.

Abbildung 2: Analyseabschnitt GA-T4

Analog zum Bericht [12] wurde der Effekt der Hohlraumsicherung mittels Festigkeitsparameter modelliert, welche leicht höher angenommen. als dem umliegenden Material entspricht, wie in Anhang 2 beschrieben.

Figura 2: sezione di analisi GA-T4

Analogamente al Rapporto [12] l'effetto del consolidamento del contorno del cavo è stato modellato tramite uno strato di materiale con parametri di resistenza lievemente superiori del materiale circostante come illustrato in Appendice 2.

5.1.2 Gebirgsmodell und Ausgangsspannungslage

Das Gebirge wurde als ein kontinuierlich elastisch-plastisches Medium modelliert mit Widerstandskriterium des Typs Mohr-Coulomb in Analogie zum Bericht [12]. Im Besonderen wurden die elastischen (Verformungsmodul und Poisson-Beiwert), elastisch-plastischen (c, φ, tension cut-off [22]) und physischen (Dichte und einachsider Komprimierungswiderstand) Eigenschaften der vom Aushub betroffenen Felsen bestimmt.

Aufgrund der im Abs. 4.1 und [6] aufgezeigten Bemerkungen, werden die geomechanischen Parameter des Gebirges FVM-S-B berücksichtigt:

5.1.2 Modello costitutivo dell'ammasso e stato tensionale iniziale

L'ammasso è stato modellato come un mezzo continuo elasto-plastico ideale avente criterio di resistenza di tipo Mohr-Coulomb analogamente al rapporto [12]. In particolare sono state assegnate le caratteristiche elastiche (modulo di deformazione e coefficiente di Poisson), elasto-plastiche (c, φ , tension cut-off [27]) e fisiche (densità e resistenza a compressione monoassiale) proprie delle rocce interessate dallo scavo.

Sulla base delle considerazione riportate nel Par 4.1 e nell'elaborato [6], sono stati considerati i seguenti parametri geomeccanici relativi all'ammasso FVM-S-B:

Lo stato di sforzo in sito è stato valutato secondo le

Zone max overburden [m]	RMR	¥ [kN/m³]	E _{rm} [MPa]	c [MPa]	φ [°]	Ψ [-]	τ [kPa]
700	42	27	4574	1.481	34.87	4.36	24
e geomechanisch	ne Param	eter (GA-T4)	Tabella 8	: Paramet	ri geome	eccanici co

Tabelle 8: Angenommene geomechanische Parameter (GA-T4)

Die Kraftlage vor Ort wurde gemäß folgenden Verhältnissen ausgewertet:

$$\sigma_y = \gamma \cdot z$$

$$\sigma_x = K_0 \cdot \sigma_z$$

Dove

seguenti relazioni:

Wobei:

- Z = Abstand des allgemeinen Elements von der • Geländeoberkante
- K_0 = Beiwert des horizontal wirkenden Erddrucks, ٠ gleich 0.75 angenommen.

5.1.3 Eigenschaften der Außenschale

Folgende Tabelle die Eigenschaften zeiat Sicherheitsmaßnahmen für das Profil GA-T4 auf:

- Z rappresenta la distanza del generico elemento dal piano campagna
- K₀ è il coefficiente di spinta orizzontale, assunto pari a 0.75.
- 5.1.3 Caratteristiche dei rivestimenti di prima fase

La seguente tabella riporta le caratteristiche dei der provvedimenti di messa in sicurezza per il profilo GA-T4:

			Anl	ker		Spritzbeton			Stählbogen		
			Anco	raggi		Beton	cino proie	Centine			
GA-T4	Position Posizione	Тур Тіро	N _y [kN]	L [m]	i _{längs/long} [m]	i _{quer/trasv} [m]	Klasse Classe [-]	s _{nom} [cm]	s _{min} [cm]	Тур Тіро	i [m]
	Radial	R38N	400	6	1.5	1.5	000/07	20	04	Gitterträger 0	
	Radiali	SN28	413	5.5	1.5	1.5					0.75-
	Umriss Contorno	R51N	630	8	3.0	0.75	030/37	30	24	4Ф26	1.5

Tabelle 9: Eigenschaften der Außenschale GA-T4

Tabella 9: Caratteristiche rivestimenti di prima fase GA-T4

Zur Modellierung des Spritzbetons wurden eindimensionale Elemente - beam mit elastischem Verhalten angenommen. Vorsichtshalber wurden zwei Analysen durchgeführt: eine mit E = 5 GPa, um die Verformungen zu maximieren und eine mit E = 15 GPa, um die Belastungen zu maximieren. Der Wert E = 15 GPa entspricht ca. 50% der Steifigkeit eines verhärteten Betons mittlerer Klasse; auf diese Weise ist es möglich das typische Verhalten der viskosen Verformung und des Schwindens zu berücksichtigen.

Die numerische Modellierung modelliert nicht die Stahlbögen aufgrund des konservativen Ansatzes, die Stahlbögen wurden nur bei den Abschnittsüberprüfungen aus Anlage 3 berücksichtigt.

Die Anker werden ins Modell eingefügt und zwar mit einem Grenzwiderstand, der ihrer Streckgrenze entspricht, die um den Widerstandsbeiwert ($Y_R = 1.15$) und der Reibung ($Y_R = 1.3$) faktorisiert wird, so wie mit BBT SE abgesprochen. Die Anker werden mit spezifischen eindimensionalen Elementen (Truss) nachgebildet, mit perfekt plastisch-elastischem Verhalten (Abbildung 3) und Von Mises Bruchkriterium ($N_{yd} = N_{yk}/1.15 = 348 \text{ kN}$). Sie sind mit den Gitterknoten über eine Schnittstelle verbunden, wobei Vorsichtswerte des Querwiderstands (190 kN/m) und der tangentiale Steifigkeit (15 MN/m/m) [33] berücksichtigt werden.

Analog zum Bericht [12] wurde die Wirkung der Hohlraumverfestigung durch eine Materialschicht mit leicht erhöhten Widerstandsparametern modelliert, wie in der Anlage 2 ersichtlich. Per la modellazione dello spritzbeton si sono assunti elementi monodimensionali beam con comportamento elastico. In via cautelativa si sono eseguite due analisi: una con E = 5 GPa per massimizzare le deformazioni e una con E = 15 GPa per massimizzare le sollecitazioni. Il valore di E = 15 GPa, corrisponde a circa il 50% della rigidezza di un calcestruzzo indurito di classe media; in questo modo è possibile considerare il caratteristico comportamento di deformazione viscosa e il ritiro.

Nella modellazione numerica, secondo un approccio conservativo, le centine non sono state modellate ma solamente considerate nelle verifiche sezionali riportate in Appendice 3.

Gli ancoraggi vengono inseriti nel modello con una resistenza limite pari alla loro resistenza a snervamento fattorizzata per il coefficiente sulle resistenze ($Y_R = 1.15$) e sull'aderenza di ($Y_R = 1.3$) come concordato con BBT SE. Gli ancoraggi sono stati riprodotti con specifici elementi monodimensionali (Truss) aventi comportamento elastico perfettamente plastico (Figura 3) con criterio di rottura alla Von Mises ($N_{yd} = N_{yk}/1.15 = 348 \text{ kN}$) collegati ai nodi della griglia mediante un'interfaccia considerando valori cautelativi di resistenza a taglio (190 kN/m) e rigidezza tangenziale (15 MN/m/m) [33].

Analogamente al Rapporto [12], l'effetto del consolidamento del contorno del cavo è stato modellato tramite uno strato di materiale con parametri di resistenza lievemente superiori del materiale circostante come illustrato in Appendice 2.

5.1.4 Laststufe

Nach einer ersten Phase der Modellinitialisierung, zur Berechnung des Ausgangsgleichgewichts, wird die Tunnelaushebung mittels Trägheits-Kräften der Aushebung simuliert (späterhin FFS).

Nachfolgend sind die Berechnungsstufen für das Modell mit ebenen Verformungen mit den aus der Interpolation der Kennlinien erhaltenen FFS (sh. Anhang 1) zusammengefasst:

- Geostatische Ausgangslage mit Bestimmung der Geometrie, der Umgebungslagen, der Stratigraphie und der geostatischen Ausgangsspannungen;
- Annullierung der Zonen innerhalb der Aushebung und Reduktion der FFS bis zum Wert den sie an der Ortsbrust einnehmen (FFS=18%);
- Reduktion der FFS bis zum Wert den sie bei der Einsetzung der Außenschale einnehmen (auf 1.5 m von der Ortsbrust) (FFS =8.5%);
- Einführung des numerischen Modells der radialen Ankerung in der Kalotte und Senkung der FFS auf ca.
 2% (1 Durchmesser, ca. 10 Meter)
- Aktivierung des Spritzbetons (Kalotte stot = 24 cm, E = 15 GPa; Sohle stot = 28 cm, E = 15 GPa) und Annullierung der FFS (FFS = 0%)
- 5) Entfernung der Außenschale und Simulation der Langzeitkonfiguration mit der Einsetzung der Innenschale. Diese ist mit der Bewehrungsmatte verbunden mittels eines Schnittstellenelementes, mit normaler dem Gebirge entsprechende Steifigkeit, und tangentiale Steifigkeit gleich Null. Dieses Schnittstellenelement ermöglicht die Wirkung der Abdichtungsschicht zwischen den zwei Schalen zu berücksichtigen, indem es die tangentialen Spannungen annulliert, darüber hinaus die Drucke zu schätzen die auf der Innenschale wirken.

5.1.4 Step di carico

Dopo una prima fase di inizializzazione del modello, necessaria per calcolare l'equilibrio iniziale, lo scavo della GA-T4 viene simulato mediante l'utilizzo delle Forze Fittizie di Scavo, di seguito denominate FFS.

Di seguito sono riassunti gli step di calcolo per il modello in deformazioni piane con le FFS ottenute dall'interpolazione delle curve caratteristiche (vedasi Appendice 1):

- Condizione geostatica iniziale con definizione della geometria, delle condizioni al contorno, della stratigrafia e delle tensioni geostatiche iniziali;
- Inserimento zona consolidata al contorno e riduzione delle forze FFS, fino al valore che assumono al fronte (FFS=18%);
- Riduzione delle FFS fino al valore che assumono nel momento di installazione del rivestimento di prima fase (1.5 m dal fronte) (FFS=8.5%);
- Introduzione nel modello numerico degli ancoraggi radiali in calotta e riduzione delle FFS a ca. 2% (1 diametro, ca. 10 metri);
- 4) Attivazione del calcestruzzo proiettato (calotta $s_{tot} = 24$ cm, E = 15 GPa; platea $s_{tot} = 28$ cm, E = 15 GPa) e annullamento delle FFS (FFS=0%).
- 5) Rimozione del rivestimento di prima fase e simulazione della configurazione a lungo termine con l'installazione del rivestimento definitivo. Quest'ultimo è collegato alla mesh mediante un elemento interfaccia avente rigidezza normale pari a guella dell'ammasso e rigidezza tangenziale nulla. Quest'ultimo elemento, oltre a consentire di valutare le pressioni che agiscono sul rivestimento definitivo, consente di considerare l'effetto del pacchetto di impermeabilizzazione presente tra i due rivestimenti, annullando le tensioni tangenziali.

Distance - Excavation forces (%)

Abbildung 4: Berücksichtigte FFS für das Modell GA-T4

Figura 4: FFS considerate per il modello GA-T4

5.1.5 Nachweisverfahren

Gemäß den NTC 2008 werden die Einwirkungen auf die Außenschale, die dem FEM Modell entnommen sind, um γ_G = 1,30 erhöht und die Widerstände des strukturellen Abschnitts um γ_c = 1,50 reduziert, das heißt γ_s = 1,15.

Die Nachweise gelten erfüllt, wenn folgende Ungleichung verifiziert ist:

 $E_d \leq R_d$

Hierbei ist:

- R_d = Bemessungswert Widerstand
- E_d = Bemessungswert Einwirkung

Weiters wird festgestellt, dass die Anker, welche ihre Streckgrenze erreichen (Nyd = 348 kN), nicht die axiale Verformungsgrenze von 5 % erreichen.

5.1.6 Ergebnisse

Die in Anhang 3 aufgezeigten Analysen bestätigen, dass das Verhalten des Gebirges durch ein mäßig druckhaftes Verhalten gekennzeichnet ist. Die Gesamtkonvergenz bei Vorhandensein von Befestigungen und Verkleidungen beträgt ca. 90 mm (relative Konvergenz ca. 40 mm) mit Ausbilung eines plastischen Streifens von maximaler Ausdehnung von ca. 4 m.

Die strukturellen Nachweise an der provisorischen Außenschale erweisen sich als erfüllt und die Anker erreichen die Streckgrenze (N_{yd} = 348 kN), aber nicht die Stahlverformungsgrenze ($\epsilon < 5\%$).

Der vom Gebirge ausgeübte Druck auf die Innenschale, bei Verfall der Außenschale, beträgt 380 kPa.

5.1.5 Procedura di verifica

In conformità alle NTC 2008 le azioni ricavate dal modello FEM sul rivestimento di prima fase sono aumentate di γ_G = 1,30 e le resistenze della sezione strutturale sono ridotte di γ_c = 1,50 ovvero γ_s = 1,15.

Le verifiche risultano soddisfatte se è verificata la seguente disuguaglianza:

Dove:

- R_d = Valore della resistenza di progetto
- E_d = Valore di progetto dell'effetto delle azioni

Inoltre si verifica che gli ancoraggi che raggiungono il limite di snervamento (Nyd = 348 kN) non superino il limite di deformazione assiale posto pari a 5%.

5.1.6 Risultati

Le analisi riportate nell'Appendice 3 confermano che il comportamento dell'ammasso è caratterizzato da un comportamento mediamente spingente. La convergenza totale in presenza dei consolidamenti e dei rivestimenti è di ca. 90 mm (convergenza relativa ca. 40 mm) con la formazione di una fascia plastica di estensione massima di ca. 4 m.

Le verifiche strutturali sul rivestimento provvisorio risultano soddisfatte e gli ancoraggi raggiungono il limite di snervamento (N_{yd} = 348 kN) ma non il limite di deformazione dell'acciaio (ϵ < 5%).

La pressione esercitata dall'ammasso sul rivestimento definitivo, al decadimento del rivestimento di prima fase, è dell'ordine dei 380 kPa.

5.2 QUERSCHNITT GA-T5

Zur Bemaßung des Abschnitts GA-T5 wurde der Abschnitt mit der höchsten Abdeckung in der Maulsertalstörung berücksichtigt und analog zum Bericht [12] wurde eine Überlagerung von 375 m (Abnnahme der Bildung eines Bogeneffekts, welcher die Reduzierung des effektiva auf die Laibung wirkenden Gebirgsdruckes erlaubt).

5.2.1 Modellgeometrie

Das Berechnungsmodell, der Problemsymmetrie zufolge, erstreckt sich 100 m in der Breite an den Enden des Hohlraums, 200 m in der Höhe, von denen sich 100 m unter und 100 m über der Schienenoberkante befinden. Durch die gewählten Modellabmessungen kann davon ausgegangen werden, dass eventuelle Randeinflüsse vernachlässigbar sind. Das Gebirge wurde mittels zweidimensionaler, quadratischer Elemente mit Abmessungen von ca. 200x200 cm diskretisiert. In der Nähe des Tunnels wird die Maschenweite verdichtet und die Elemente erreichen Abmessungen von 50x50 cm.

Die gewählten Auflageberdingungen verhindern eine Verschiebung in beide Richtungen am unteren Modellrand und blockieren Verschiebungen in horizontaler Richtung an den vertikalen Modellrändern. Am oberen Modellrand wurde ein Druck aufgebracht, welcher der vorhandenen Bodenauflast (von Tunnel bis Geländeoberkante) entspricht.

5.2 SEZIONE GA-T5

Per il dimensionamento della sezione GA-T5 si è considerata una sezione all'interno della zona di faglia della Val di Mules e analogamente al rapporto [12], è stata considerata una copertura pari a 375 m (ipotesi di una formazione di effetto arco che permette di ridurre le pressioni effettivamente agenti sui rivestimenti).

5.2.1 Geometria del modello

Il modello di calcolo, in virtù della simmetria del problema, si estende per 100 m in larghezza agli estremi della cavità, 200 m in altezza, di cui 100 m al di sotto del piano del ferro e 100 m al di sopra di quest'ultimo. Tali limiti sono sufficienti per ritenere trascurabili gli effetti di bordo. L'ammasso è stato discretizzato mediante elementi bidimensionali quadrati di dimensioni pari a circa 200x200 cm, infittiti in prossimità della galleria, dove assumono dimensioni pari a circa 50x50 cm.

Le condizioni di vincolo al contorno del modello prevedono spostamenti impediti in entrambe le direzioni lungo il boundary inferiore e spostamenti impediti in direzione orizzontale lungo i boundary verticali. Sul boundary superiore è applicata una pressione pari al peso del terreno presente in sito fino alla quota del piano campagna.

Abbildung 5: Analyseabschnitt GA-T5

Figura 5: sezione di analisi GA-T5

5.2.2 Gebirgsmodell und Ausgangsspannungslage 5.2.2

Das Gebirge wurde als ein kontinuierlich elastischplastisches Medium modelliert mit Widerstandskriterium des Typs Mohr-Coulomb in Analogie zum Bericht [12]. Im Besonderen wurden die elastischen (Verformungsmodul und Poisson-Beiwert), elastisch-plastischen (c, ϕ , tension cut-off und physischen (Dichte und einachsiger [27]) Komprimierungswiderstand) Eigenschaften der vom Aushub betroffenen Felsen bestimmt.

Aufgrund der im Abs. 4.1 aufgezeigten Bemerkungen, werden die geomechanischen Parameter des Gebirges FVM-S-PS berücksichtigt:

Modello costitutivo dell'ammasso e stato tensionale iniziale

L'ammasso è stato modellato come un mezzo continuo elasto-plastico ideale avente criterio di resistenza di tipo Mohr-Coulomb analogamente al rapporto [12]. In particolare sono state assegnate le caratteristiche elastiche (modulo di deformazione e coefficiente di Poisson), elasto-plastiche (c, φ , tension cut-off [27]) e (densità resistenza compressione fisiche е а monoassiale) proprie delle rocce interessate dallo scavo.

Sulla base delle considerazione riportate nel Par 4.1, sono stati considerati i seguenti parametri geomeccanici relativi all'ammasso FVM-S-PS:

Zone max overburden [m]	RMR	¥ [kN/m³]	E _{rm} [MPa]	c [MPa]	φ [°]	Ψ [-]	τ [kPa]
375	51	27	10375	0.893	24.3	3.34	3
ne geomechaniso	che Paran	neter (GA-T	5) Tal	bella 10: P	Parametr	i aeome	ccanici co

Tabelle 10: Angenommene geomechanische Parameter (GA-T5)

Die Kraftlage vor Ort wurde gemäß folgenden Verhältnissen ausgewertet:

$$\sigma_y = \gamma \cdot z$$

$$\sigma_x = K_0 \cdot \sigma_z$$

Wobei:

- Z = Abstand des allgemeinen Elements von der Geländeoberkante
- K₀ = Beiwert des waagrechten Schubs, gleich 0.75 angenommen ist.

5.2.3 Eigenschaften der Außenschale Eigenschaften der Außenschale

Folgende Eigenschaften Tabelle zeigt die Sicherungsmaßnahmen für das Profil GA-T5 auf:

Caratteristiche dei rivestimenti di prima fase La seguente tabella riporta le caratteristiche dei

provvedimenti di messa in sicurezza per il profilo GA-T5:

			Ank	er		5	Spritzbeton	Stählbogen			
			Ancor	aggi		Betoncino proiettato			Centine		
GA-T5	Position Posizione	Тур Тіро	N _y [kN]	L [m]	i _{längs/long} [m]	i _{quer/trasv} [m]	Klasse Classe [-]	s _{nom} [cm]	s _{min} [cm]	Тур Тіро	i [m]
U ATU	Radial Radiali	R38N	400	8	1.5	1.5	C30/37	30	24	2 IPN	0 75 - 1 5
	Umriss Contorno	R51N	630	12	3.0	0.75	000/01			180	

der

Tabelle 11: Eigenschaften der Außenschale GA-T5

Tabella 11: Caratteristiche rivestimenti di prima fase GA-T5

Zur Modellierung des Spritzbetons wurden eindimensionale Elemente - beam mit elastischem Verhalten angenommen.

Per la modellazione dello spritzbeton si sono assunti elementi monodimensionali beam con comportamento

Lo stato di sforzo in sito è stato valutato secondo le seguenti relazioni:

$$\sigma_y = \gamma \cdot z$$

$$x = K_0 \cdot \sigma_2$$

Dove

5.2.3

- Z rappresenta la distanza del generico elemento • dal piano campagna
- K₀ è il coefficiente di spinta orizzontale, assunto pari a 0.75.

Vorsichtshalber wurden zwei Analysen durchgeführt: eine mit E = 5 GPa, um die Verformungen zu maximieren und eine mit E = 15 GPa, um die Belastungen zu maximieren. Der Wert E = 15 GPa entspricht ca. 50% der Steifigkeit eines verhärteten Betons mittlerer Klasse; auf diese Weise ist es möglich das typische Verhalten der viskosen Verformung und des Schwindens zu berücksichtigen.

Die numerische Modellierung modelliert nicht die Stahlbögen aufgrund des konservativen Ansatzes, die Stahlbögen wurden nur bei den Abschnittsüberprüfungen aus Anlage 4 berücksichtigt.

Die Anker besitzen im Modell einen Grenzwiderstand, der ihrem Ermüdungswiderstand entspricht, der wiederum um den Widerstandsbeiwert ($Y_R = 1.15$) und Reibungsbeiwert ($Y_R = 1.3$) faktorisiert ist, wie mit BBT SE vereinbart. Die Anker werden mit spezifischen eindimensionalen Elementen (Truss) nachgebildet, mit perfekt plastisch-elastischem Verhalten (Abbildung 3) und Von Mises Bruchkriterium (N_{yd} = N_{yk}/1.15 = 348 kN). Sie sind mit den Gitterknoten über eine Schnittstelle verbunden, wobei Vorsichtswerte des Querwiderstands (190 kN/m) und der tangentiale Steifigkeit (15 MN/m/m) [33] berücksichtigt werden.

Analog zum Bericht [12] wurde die Wirkung der Hohlraumverfestigung durch eine Materialschicht mit leicht erhöhten Widerstandsparametern modelliert, wie in der Anlage 3 ersichtlich.

5.2.4 Laststufe

Nachfolgend sind die Berechnungsstufen für das Modell mit ebenen Verformungen mit den aus der Interpolation der Kennlinien erhaltenen FFS (sh. Anhang 1) zusammengefasst:

0) Geostatische Ausgangslage mit Bestimmung der Geometrie, der Randbedingungen, der Stratigraphie und der geostatischen Ausgangsspannungen;

1) Einfügen der befestigten Zone am Umriss und Verringerung der FFS bis zum Wert, den sie an der Ortsbrust einnehmen (FFS =12%);

2) Reduktion der FFS bis zum Wert, den sie bei der Einsetzung der Außenschale einnehmen (auf 1.5 m von der Ortsbrust) (FFS =8.5%);

3) Einführung der radialen Anker ins numerische Modell und Reduktion der FFS auf ca. 2.5% (10 Meter von der Ortsbrust -1 Durchmesser von der Ortsbrust);

4) Anbringung des Spritzbetons (Kalotte s_{tot} = 24 cm, E = 15 GPa; Gegengewölbe s_{tot} = 28 cm, E = 15 GPa) und

elastico. In via cautelativa si sono eseguite due analisi: una con E = 5 GPa per massimizzare le deformazioni e una con E = 15 GPa per massimizzare le sollecitazioni. Il valore di E = 15 GPa, corrisponde a circa il 50% della rigidezza di un calcestruzzo indurito di classe media; in questo modo è possibile considerare il caratteristico comportamento di deformazione viscosa e il ritiro.

Nella modellazione numerica, secondo un approccio conservativo, le centine non sono state modellate ma vengono considerate nelle verifiche sezionali (Appendice 4).

Gli ancoraggi vengono inseriti nel modello con una resistenza limite pari alla loro resistenza a snervamento fattorizzata per il coefficiente sulle resistenze ($Y_R = 1.15$) e sull'aderenza di ($Y_R = 1.3$) come concordato con BBT SE. Gli ancoraggi sono stati riprodotti con specifici elementi monodimensionali (Truss) aventi comportamento elastico perfettamente plastico (Figura 3) con criterio di rottura alla Von Mises ($N_{yd} = N_{yk}/1.15 = 348$ kN) collegati ai nodi della griglia mediante un'interfaccia considerando valori cautelativi di resistenza a taglio (190 kN/m) e rigidezza tangenziale (15 MN/m/m) [33].

Analogamente al Rapporto [12], l'effetto del consolidamento del contorno del cavo è stato modellato tramite uno strato di materiale con parametri di resistenza lievemente superiori del materiale circostante come illustrato in Appendice 3.

5.2.4 Step di carico

Di seguito sono riassunti gli step di calcolo per il modello in deformazioni piane con le FFS ottenute dall'interpolazione delle curve caratteristiche (vedasi Appendice 1):

0) Condizione geostatica iniziale con definizione della geometria, delle condizioni al contorno, della stratigrafia e delle tensioni geostatiche iniziali;

1) Inserimento zona consolidata al contorno e riduzione delle forze FFS, fino al valore che assumono al fronte (FFS=12%);

2) Riduzione delle FFS fino al valore che assumono nel momento di installazione del rivestimento di prima fase (1.5 m dal fronte) (FFS=8.5%);

3) Introduzione nel modello numerico degli ancoraggi radiali in calotta e riduzione delle FFS a ca. 2.5% (10.0 m dal fronte - 1 diametro dal fronte);

4) Attivazione del calcestruzzo proiettato (calotta

5) Entfernung der Außenschale und Simulation der Langzeitkonfiguration mit der Einsetzung der Innenschale. Diese ist mit der Mesh mittels eines Schnittstellenelements verbunden, mit normaler Steifigkeit, die dem Gebirge entspricht, und tangentialer Steifigkeit gleich Null. Dieses Schnittstellenelement ermöglicht es, die Wirkung der Abdichtungsschicht zwischen den zwei Schalen zu berücksichtigen, indem es die tangentialen Spannungen annulliert, sowie die Drucke zu schätzen, die auf der Innenschale wirken. s_{tot} = 24 cm, E = 15 GPa; platea s_{tot} = 28 cm, E = 15 GPa) e annullamento delle FFS (FFS=0%).

5) Rimozione del rivestimento di prima fase e simulazione della configurazione a lungo termine con l'installazione del rivestimento definitivo. Quest'ultimo è collegato alla mesh mediante un elemento interfaccia avente rigidezza normale pari a quella dell'ammasso e rigidezza tangenziale nulla. Quest'ultimo elemento, oltre a consentire di valutare le pressioni che agiscono sul rivestimento definitivo, consente di considerare l'effetto del pacchetto di impermeabilizzazione presente tra i due rivestimenti, annullando le tensioni tangenziali.

Distance - Excavation forces (%)

Abbildung 6: Berücksichtigte FFS für das Modell GA-T5

Figura 6: FFS considerate per il modello GA-T5

5.2.5 Nachweisverfahren

Gemäß den NTC 2008 werden die Einwirkungen auf die Außenschale, die dem FEM Modell entnommen sind, um γ_G = 1,30 erhöht und die Widerstände des strukturellen Abschnitts um γ_c = 1,50 reduziert, das heißt γ_s = 1,15.

Die Nachweise gelten erfüllt, wenn folgende Ungleichung verifiziert ist:

Hierbei ist:

- R_d = Bemessungswert Widerstand
- E_d = Bemessungswert Einwirkung

Die Anker, die ihre Ermüdungsgrenze erreichen (N_{yd} = 348 kN), überschreiten nicht die axiale Verformungsgrenze, die auf 5% gesetzt wurde.

5.2.5 Procedura di verifica

In conformità alle NTC 2008 le azioni ricavate dal modello FEM sul rivestimento di prima fase sono aumentate di γ_G = 1,30 e le resistenze della sezione strutturale sono ridotte di γ_c = 1,50 ovvero γ_s = 1,15.

Le verifiche risultano soddisfatte se è verificata la seguente disuguaglianza:

 $E_d \leq R_d$

Dove:

- R_d = Valore della resistenza di progetto
- E_d = Valore di progetto dell'effetto delle azioni

Inoltre si verifica che gli ancoraggi che raggiungono il limite di snervamento (N_{yd} = 348 kN) non superino il limite di deformazione assiale posto pari a 5%.

5.2.6 Ergebnisse

Die in Anhang 3 aufgezeigten Analysen bestätigen, dass das Verhalten des Gebirges durch ein druckhaftes Verhalten gekennzeichnet ist.

Die Gesamtkonvergenz bei Vorhandensein von Befestigungen und Verkleidungen beträgt ca. 380 mm (relative Konvergenz ca. 80 mm) mit Ausbilung eines plastischen Streifens von maximaler Ausdehnung von ca. 9/10 m.

Aufgrund des beobachtenden Ansatzes und unter Berücksichtigung der Informationen aus dem Vortieb der naheliegenden GL, wird das effektive Gebirgsverhalten bewertet und demzufolge entschieden, ob das Übermaß erhöht werden soll und/oder ob zusätzliche Maßnahmen zu egreifen sind [5].

Die strukturellen Nachweise an der provisorischen Verkleidung erweisen sich als erfüllt und die Anker erreichen die Ermüdungsgrenze ($N_{yd} = 348$ kN), aber nicht die Stahlverformungsgrenze ($\epsilon < 5\%$).

Der vom Gebirge ausgeübte Druck auf die Innenschale, bei Verfall der Außenschale, beträgt 630 kPa.

5.2.6 Risultati

Le analisi riportate nell'Appendice 3 confermano che il comportamento dell'ammasso è caratterizzato da un comportamento spingente.

La convergenza totale in presenza dei consolidamenti e dei rivestimenti è di ca. 380 mm (convergenza relativa ca. 80 mm) con la formazione di una fascia plastica di estensione massima di ca. 9/10 m.

Nell'ottica di un approccio osservazionale, a seguito delle informazioni ottenibili dallo scavo delle limitrofe GL, si dovrà valutare l'effettivo comportamento dell'ammasso e conseguentemente valutare se sia necessario aumentare il sovrascavo e/o predisporre provvedimenti integrativi [5].

Le verifiche strutturali sul rivestimento provvisorio risultano soddisfatte e gli ancoraggi raggiungono il limite di snervamento (N_{yd} = 348 kN) ma non il limite di deformazione dell'acciaio (ϵ < 5%).

La pressione esercitata dall'ammasso sul rivestimento definitivo, al decadimento del rivestimento di prima fase, è dell'ordine dei 630 kPa.

5.3 ANALYSE DER STANDSICHERHEIT DER ORTBRUST

5.3.1 Nachweisverfahren

In den Anhängen 2-3 werden die axialsymmetrischen Analysen aufgezeigt, welche zur Überprüfung der Wirkung der Ortsbrustbefestigung in Bezug auf Reduktion der Konvergenzen und der Ortsbrustextrusionen durchgeführt wurden.

5.3.2 Ergebnisse

5.3.2.1 Querschnitt GA-T4

Für den Abschnitt GA-T4 bestätigt die axialsymmetrische Analyse, die ohne Ausbau (Anhang 3) und mit Abschlägen von 1.5 m durchgeführt wurde, die Angaben des Kennlinienverfahrens. Es wird hervorgehoben, dass die Ortsbrustverformung ca. 90 mm beträgt, mit absoluter radialer Konvergenz von 130 mm, während der plastifizierte Bereich sich auf ca. 5 m vor der Ortsbrust und 4/5 m am Umriss ausdehnt.

Die Eingriffe an der Ortsbrust bestehen aus Selbstbohranker Typ R51N (Ny≥630kN), mit 15.00 m Länge, 6.00 m Überlagerung, 1.5 m Achsenabstand und mit einer Zementmischung mit Rck≥25MPa verpresst, die die Begrenzung der Ortsbrustextrusion auf ca. 70 mm ermöglichen, sowie die Begrenzung der Ausdehnung des plastifizierten Bereichs vor der Ortsbrust (4 m) und am Umriss (4 m) erlauben.

Aufgrund des beobachtenden Ansatzes wird man das tatsächliche Verhalten des Gebirges überprüfen und demnach die Stärke der Anker an der Ortsbrust reduzieren oder erhöhen müssen, auch hinsichtlich des Auftretens eventueller einzelner Abbruchblöcke.

5.3.2.2 Querschnitt GA-T5

Für den Abschnitt GA-T5, der innerhalb des Gebirges FVM-N-C analysiert wurde, bestätigt die axialsymmetrische Analyse, welche ohne Ausbau (Anhang 3) und mit Abschlägen von 1.5 m durchgeführt wurde, die Angaben des Kennlinienverfahrens. Es wird hervorgehoben, dass die Ortsbrustverformung ca. 310 mm beträgt mit absoluter radialer Konvergenz von 780 mm, während der plastifizierte Bereich sich auf ca. 6/7 m vor der Ortsbrust und 12 m am Umriss ausdehnt.

Die Eingriffe an der Ortsbrust bestehen aus Selbstbohranker Typ R51N (Ny≥630kN), mit 15.00 m Länge, 6.00 m Überlagerung, 1.5m Achsenabstand und mit einer Zementmischung mit Rck≥25MPa zementiert, welche die Begrenzung der Ortsbrustextrusion auf ca. 210 mm ermöglichen, sowie die Begrenzung der Ausdehnung des plastifizierten Bereichs vor der Ortsbrust (6 m) und am Umriss

5.3 ANALISI DELLA STABILITÀ DEL FRONTE

5.3.1 Procedura di verifica

Nelle Appendici 2-3 vengono riportati le analisi assialsimmetriche eseguite per verificare l'effetto dei consolidamenti del fronte in termini di riduzione delle convergenze e delle estrusioni al fronte.

5.3.2 Risultati

5.3.2.1 Sezione GA-T4

Per la sezione GA-T4, l'analisi assialsimmetrica eseguita in assenza dei rivestimenti (Appendice 3) e secondo sfondi di 1.5m, conferma le indicazioni delle linee caratteristiche. Si evidenzia che l'estrusione del fronte è pari a circa 90 mm, con convergenza radiale assoluta di 130 mm, mentre la zona plasticizzata si estende per circa 5 m davanti al fronte e di 4/5 m al contorno.

Gli interventi al fronte costituiti da barre autoperforanti tipo R51N (Ny \geq 630kN), con lunghezza 15.00m, sovrapposizione 6.00m, interasse 1.5m e cementati con miscela cementizia avente Rck \geq 25MPa, consentono di limitare l'estrusione al fronte a circa 70 mm, l'estensione della zona plasticizzata davanti al fronte (4 m) e al contorno (4 m).

Nell'ottica di un approccio osservazionale, si dovrà valutare l'effettivo comportamento dell'ammasso e conseguentemente ridurre o aumentare l'intensità degli ancoraggi al fronte anche in considerazione della presenza di eventuali singoli blocchi di distacco.

5.3.2.2 Sezione GA-T5

Per la sezione GA-T5, analizzata all'interno dell'ammasso FVM-N-C, l'analisi assialsimmetrica eseguita in assenza dei rivestimenti (Appendice 3) e secondo sfondi di 1.5m, conferma le indicazioni delle linee caratteristiche. Si evidenzia che l'estrusione del fronte è pari a circa 310 mm, con convergenza radiale assoluta di 780 mm, mentre la zona plasticizzata si estende per circa 6/7 m davanti al fronte e di 12 m al contorno.

Gli interventi al fronte costituiti da barre autoperforanti tipo R51N (Ny≥630kN), con lunghezza 15.00m, sovrapposizione 6.00m, interasse 1.5m e cementati con miscela cementizia avente Rck≥25MPa, consentono di limitare l'estrusione al fronte a circa 210 mm, l'estensione della zona plasticizzata davanti al fronte (6 m) e al contorno (10 m).

L'entità della convergenza massima e dell'estrusione al fronte

(10 m) erlauben.

Die Größenordnung der Konvergenzen und der Ortsbrustverformung, auch unter Vorhandensein der Hohlraumverfestigungen erscheint sehr hoch. Andererseits erachtet man es als nicht möglich, die Ortsbrustsicherungen noch witer zu verdichten. Während der Ausführung muss deshalb auf diesen Aspekt besonderes Augenmerk gelegt werden, indem die Klüftungen bestmöglich ausinjeziert werden.

Aufgrund des Beobachtungsverfahren wird das tatsächliche Verhalten des Gebirges anhand der angrenzenden Ausbrucharbeiten der GL (pk 46+800/47+800 e 48+115/49+331) beurteilt und dementsprechend die Anzahl der Ortsbrustanker reduziert oder erhöht.

anche in presenza degli interventi di consolidamento appare piuttosto alta. D'altra parte non si ritiene possibile incrementare ulteriormente in modo sensibile l'intensità del consolidamento del fronte. Particolare attenzione dovrà essere quindi posta a questo aspetto durante la fase esecutiva, curando al massimo la cementazione degli inclusi.

Nell'ottica di un approccio osservazionale, si dovrà valuatare l'effettivo comportamento dell'ammasso a seguito delle informazioni derivanti dallo scavo delle limitrofe GL (pk 46+800/47+800 e 48+115/49+331) e conseguentemente ridurre o aumentare l'intensità degli ancoraggi al fronte.

6 INNENSCHALE

6.1 STABWERKSMODELLE

Die Beanspruchungen der Innenschale sind durch das informatische Rechenprogramm MIDAS Gen2013, das auf die Finite-Elementen-Methode (FEM) basiert, berechnet worden.

Für die Berechnung wird ein Abschnitt des Tunnels mit einheitlicher Tiefe (1 m) berücksichtigt und ein Strukturmodell festgelegt und zwar mittels ebenen Finite-Elemente des Typs Träger (beam). Die Tunnelschale ist durch Elemente schematisiert, die kürzer als 0.5 m sind und die reellen Stärken des berücksichtigten strukturellen Elements besitzen (Kalotte, Widerlager, Gegenbogen/Grundplatte).

Die strukturelle Steifigkeit der Träger Elemente wird als E'_c x I_y des nicht gerissenen Schnitts berechnet. Das Trägheitsmoment I_g wird im Verhältnis zur Schnittachse aus Beton berechnet, wobei der Stahl, wo vorhanden, ausgelassen wird. Das elastische Modul E'_c im Falle von ebener Verformung, beträgt

mit:

- E_c = Elastizitätmodul des Betons;
- v = Poissonszahl (0.2);

Zur Modellierung des unbewehrten Betons wird ein elastischlineares Materialmodell verwendet. Die Neuverteilung der Belastungen werden laut Absatz 12.5 des EC2 berechnet, falls die abschnittsweise Steifigkeit durch die Bildung von Rissen, dort wo die Betonzugfestigkeit überschritten wurde (Bildung von plastischen Gelenken) verloren gegangen ist. Die Modellierung der plastischen Gelenke erfolgt durch den Einsatz von Torsionsfedern, deren Steifigkeit iterativ mit der Pöttler-Methode [31], [32] berechnet wird.

6.2 INTERAKTION TRAGWERK-BAUGRUND

Die Zusammenwirkung Boden-Struktur wird mit dem Einsatz von Point Support Elementen simuliert, die an die Modellknoten gesetzt werden. Nur bei Komprimierung übertragen diese Elemente den Knoten eine Reaktion, die dem Kontaktdruck Boden-Struktur entspricht. Die Steifigkeit der genannten Elemente wird unter Berücksichtigung des Reaktionsmoduls des Bodens k und der Schnittstelle, welche sich aus dem Paket der Abdichtung - Dränageschicht ergibt, bestimmt. Die erste wird laut den nachfolgend angeführten Relationen bestimmt und zwar jeweils für gekrümmte und gradlinige Oberflächen (Abs. 6.2.1 und 6.2.2). Die zweite wurde mit 60'000 kN/m³ aufgrund der Eigenschaften des Abdichtungsstreifens angenommen. Letztere gilt für Verschiebungen von weniger als 0.5 cm.

6 **RIVESTIMENTO DEFINITIVO**

6.1 METODO DELLE REAZIONI IPERSTATICHE

Le sollecitazioni nel rivestimento definitivo sono state calcolate mediante il programma di calcolo informatico MIDAS Gen2013, basato sul Metodo degli Elementi Finiti (FEM).

Per il calcolo si considera un concio di galleria con profondità unitaria (1m) e si definisce un modello della struttura mediante elementi finiti piani di tipo trave (beam). Il rivestimento della galleria è schematizzato con elementi di lunghezza inferiore a 0.5 m aventi gli spessori reali dell'elemento strutturale considerato (calotta, piedritto, arco rovescio/platea).

La rigidezza strutturale degli elementi trave è calcolata come E'_c x I_y della sezione non fessurata. Il momento d'inerzia I_y è calcolato rispetto all'asse della sezione in calcestruzzo, trascurando la presenza dell'acciaio ove presente. Il modulo elastico E'_c, in condizioni di deformazioni piane, vale:

$$E'_{c} = \frac{E_{c}}{1 - \nu^{2}}$$

dove:

- E_c = modulo di elasticità del calcestruzzo;
- v = rapporto di Poisson (0.2);

Per la modellazione del calcestruzzo non armato si utilizza un modello costitutivo del materiale elastico-lineare. Viene presa in considerazione la ridistribuzione delle sollecitazioni in seguito alla perdita di rigidezza sezionale causata dall'apertura di fessure laddove venga superata la resistenza a trazione del calcestruzzo (formazione di cerniere plastiche), in accordo con il paragrafo 12.5 dell'EC2. La modellazione delle cerniere plastiche avviene mediante l'inserimento di molle torsionali la cui rigidezza è calcolata iterativamente mediante il metodo di Pöttler [31][32].

6.2 INTERAZIONE TERRENO-STRUTTURA

L'interazione terreno-struttura viene simulata mediante l'utilizzo di elementi point support posti in corrispondenza dei nodi del modello. Tali elementi trasmettono ai nodi, solo se compressi, una reazione pari alla pressione di contatto terreno-struttura. La rigidezza degli elementi citati è determinata tenendo conto del modulo di reazione del terreno k e dell'interfaccia data dal pacchetto impermeabilizzazionestrato drenante. La prima è definita secondo le relazioni di seguito descritte (paragrafo 6.2.1 e 6.2.2), rispettivamente per superfici curve e rettilinee. La seconda è stata assunta pari a 60'000 kN/m³ in virtù delle caratteristiche del pacchetto d'impermeabilizzazione. Quest'ultima ha valenza per spostamenti inferiori a 0.5 cm. Superati tali spostamenti, la

Seite / Pag. 32/173

Werden diese Verschiebungen überschritten, entspricht die Schnittstellensteifigkeit der des Gebirges.

Die tangentiale Steifigkeit wurde aufgrund des Vorhandenseins des Abdichtungsmantels bei der Schnittstelle Boden-Struktur vernachlässigt.

Figura 7: Schematizzazione dell'interfaccia

Rigidezza radiale

Abbildung 7: Schamatisierung der Schnittstelle

6.2.1 Modellierung der Bettung

Die radiale Bettung der Innenschale im Gebrige/Boden ermittelt sich in der Regel unter Berücksichtigung des Elastizitätsmoduls E und der Querdehnzahl v des Gebirges/Bodens sowie der Systemlinie des entsprechenden Innenschalenradius R wie folgt:

Per la definizione della rigidezza del letto di molle radiali in materiale sciolto, si tiene conto del modulo elastico E, del coefficiente di Poisson v dell'ammasso roccioso e del raggio interno R della galleria.

$$K_{R} = E \times \frac{(1-\nu)}{(1+\nu)(1-2\times\nu)\times R} = \frac{E_{s}}{R}$$

Hierbei ist:

- $K_R =$ radiale Bettung Innenschale _ Gebirge • [MN/m³]
- E = Elastizitätsmodul des umliegenden Gebirges •
- ES = Steifemodul des umliegenden Gebirges •
- v = Querdehnzahl des Bodens/Gebirges
- R = **Tunnelradius Systemlinie**

6.2.2 Federkonstanten Auflagerbereich/Sohle

Das Widerlager der Konstruktion mit Sohlplatte bzw. offener Sohle wird durch Federn mit zugehöriger Steifigkeit in Abhängigkeit der dazugehörigen Einflussbreite "b" modelliert. Die Federkonstanten sind wie folgt zu ermitteln:

Federkonstante c_v – vertikal

 $C_v = E_{Geb.} \cdot 0.5 \cdot b$ •

Federkonsatnte ch - horizontal

 $c_h = 0.5 \cdot c_v$

Dove: .

6.2.1

- $K_R =$ rigidezza del letto di molle radiali a contatto con l'anello interno [MN/m³]
- E = modulo elastico dell'ammasso roccioso
- Es = modulo edometrico dell'ammasso roccioso
- v = coeff. di Poisson dell'ammasso roccioso
- R = raggio della galleria - linea di riferimento

6.2.2 Costante della molla nelle zone di appoggio / fondo

L'appoggio della costruzione con platea oppure con fondo aperto viene modellato con molla con rigidezza relativa all'area di influenza della singola molla "b". La constante della molla si calcola come segue:

Constante della molla cy - verticale

 $c_v = E_{Geb}, 0.5 b$

Constante della molla ch - orizzontale

 $c_{h} = 0.5 c_{v}$

La rigidezza tangenziale è stata trascurata in virtù della presenza del manto di impermeabilizzazione nell'interfaccia terreno-struttura.

rigidezza dell'interfaccia diventa quella dell'ammasso.

6.3 EINWIRKUNGEN

Im Folgenden werden folgende Kürzel für die Einwirkungen herangezogen:

- G = ständige Einwirkungen
- Q = vorübergehende Einwirkungen
- A = außergewöhnliche Einwirkungen (z.B. Brand, Anprall, Explosion)
- E = Erdbeben

6.3.1 Eigengewicht G1

Die für die Berechnung des Eigengewichts verwendete Querschnittsfläche pro Tunnelmeter basiert auf den Planmaßen der Konstruktion.

Das spezifische Eigengewicht des Stahlbetons ist mit $\Upsilon = 25 \text{kN/m}^3$ zu berücksichtigen.

6.3.2 Kettenwerk G2

Das Kettenwerk wird zur Sicherheit auf einem maximalen Abstand von 50 m angebracht, wie in der Abbildung ersichtlich. Aus diesen Lasten ergeben sich die am Aufhängepunkt anzusetzenden Lasten:

- Moment von 3,80 kNm
- Horizontallast von 0,70 kN
- Vertikallast von 2,50kN

6.3 ANALISI DEI CARICHI

Per le azioni si utilizzano le seguenti abbreviazioni:

- G = Azioni permanenti
- Q = Azioni variabili
- A = Azioni eccezionali (per es. incendio, urto, esplosione)
- E = Azioni sismiche

6.3.1 Peso proprio G1

Il volume utilizzato per il calcolo del peso proprio si basa sulle dimensioni effettive della struttura.

II peso specifico del calcestruzzo viene assunto pari $\Upsilon\text{=}25\text{kN/m}^3.$

6.3.2 Catenaria G2

Le catenarie vengono applicate per sicurezza su una distanza massima di 50 m, come nella Illustrazione. Da questi carichi derivano quelli da applicare al punto di sospensione:

- Momento di 3,80 kNm
- Carico orizzontale di 0,70 kN
- Carico verticale di 2,50kN

Abbildung 8: Lasten des Kettenwerks

Figura 8: Carichi della catenaria

6.3.3 Auffüllung mit Beton oberhalb des Sohlgewölbes G3

Das für die Berechnung des Eigengewichts verwendete Volumen basiert auf dem Planmaß der Konstruktion.

Das spezifische Gewicht des unbewehrten Betons wird mit $\Upsilon_{c,na} = 24 \text{ kN/m}^3$ angenommen.

Das spezifische Gewicht des Stahlbetons wird mit $\Upsilon_{c,ar} = 25 \text{ kN/m}^3$ angenommen.

6.3.4 Wasserdruck G4

Für druckentlastete (drainierte) Tunnel wird der Wasserdruck bei Regelquerschnitten mit Sohlgewölbe nur vom unteren Scheitelpunkt unter dem Sohlgewölbe bis in die Höhe der Ulmenlängsdrainage berücksichtigt. Die Wasserlasten sind dann wie folgt anzusetzen:

Abbildung 9: Lastbild Wasserdruck - drainierter Regelquerschnitt

6.3.5 Gebirgslast G5

Die Gebirgslast, die auf den Innenausbau für die Ausbruchsquerschnitte T4 und T5 wirkt, leitet sich durch die Berechnung mit der Finite-Elemente-Methode ab.

Die Gebirgslast zeigt einen konstanten Verlauf mit linearer Verminderung des Drucks, der unter dem Sohlgewölbe gegen Null geht.

Beide Gebirgslasten wurden nach vollständigem Verfall der fiktiven Aushubkräfte (letzte Stufe der FEM-Analyse) berechnet.

6.3.3 Riempimento in cls al di sopra dell'arco rovescio G3

Il volume utilizzato per il calcolo del peso proprio si basa sulle dimensioni effettive della struttura.

Il peso specifico del calcestruzzo non armato viene assunto pari a Y $_{c,na}$ = 24kN/m³.

Il peso specifico del calcestruzzo armato viene assunto pari a Y $_{\rm c,ar}$ = 25kN/m³.

6.3.4 Pressione idraulica G4

Per il caso di galleria drenata (senza pressione) nelle sezioni tipi con arco rovescio, il carico idraulico viene considerato solo dal vertice inferiore al di sotto dell'arco rovescio fino all'altezza del drenaggio sul piedritto. Il carico idraulico viene applicato secondo il seguente schema:

Figura 9: Pressione idrostatica - Sezione tipo drenata

6.3.5 Carico dell'ammasso G5

Il carico d'ammasso che agisce sul rivestimento definitivo per i profili di scavo T4 e T5 deriva da calcoli svolti mediante analisi agli elementi finiti.

Il carico dell'ammasso presenta un andamento costante con riduzione lineare della pressione che al disotto dell'arco rovescio tende a zero.

Entrambi i carichi sono calcolati a partire dal completo decadimento delle forze fittizie di scavo (ultimo step delle analisi FEM).

Abbildung 10: Qualitative Darstellung der nume-risch ermittelten Normalspannungen (rot), der aktiven Gebirgslast (blau) und der passiven Bettungsreaktion (grün)

6.3.6 Squeezing e swelling G7

Es sind keine Quellungen vorhanden.

Figura 10: Rappresentazione qualitativa delle tensioni normali (rosso), ottenute dal calcolo numerico, del carico attivo dell'ammasso (blu) e della reazione assestamento del terreno (verde).

6.3.6 Squeezing e swelling G7

Non sono presenti fenomeni di rigonfiamento.

6.3.7 Kriechen und Schwinden des Betons G6

Das Schwindmaß des Betons wird gemäß NTC 2008 Kap. 11.2.10.6 ermittelt.

Die Kriechzahl ϕ wird gemäß dem NTC 2008 Kap. 11.2.10.7 unter Berücksichtigung des Spannungszustandes aus einer Einwirkungskombination ständiger Lasten (G1 (Eigengewicht) + G2 (Kettenwerk)) ermittelt.

Kriechen und Schwinden des Betons bewirken eine Längenänderung ΔI (Endschwindmaß), auf die die Berechnung basieren muss, und zwar in Form einer gleichmäßigen Temperaturabkühlung.

Für alle Abschnitte die höher als 25 cm sind und aus Beton C30/37 bestehen, ergibt sich eine Durchschnittsverformung durch autogenes zeitlich unendliches Schwinden von 0.27‰. Bei der Bemessung wurde gemäß Norm 50% des Schwindens angenommen, gleichmäßige was durch eine Temperaturabkühlung von -13.4°C simulierbar ist. Diese Abkühlung muss, В., mittels z. Einsatz eines funktionstüchtigen Superverflüssigungsmittels (Typ MasterGlenium von BASF), nicht-kalkhaltigen Zuschlagstoffen und Zugabe eines Expansionsmittels (Typ MasterLife SRA100 von BASF) bewirkt werden. Das angewandte System muss auf der Baustelle durch Eignungsprüfungen nachgewiesen werden.

Bei der Modellierung der Innenschale, insbesondere bezüglich Absatz 4.1.1.1 des NTC08, wendet man eine gleichmäßige Temperaturabkühlung von -6.7° C für den GZT und von -8.9°C für den GZG an.

6.3.8 Temperatur Q1

Die Dimensionierung der Innenschale hat unter Berücksichtigung der Temperatureinwirkung gemäß der

6.3.7 Viscosità e ritiro del calcestruzzo G6

La deformazione dovuta al ritiro del calcestruzzo si calcola in base al paragrafo 11.2.10.6 delle NTC 2008.

Il coefficiente di viscosità φ si calcola ai sensi delle NTC 2008 par. 11.2.10.7, considerando la condizione tensionale derivante dalla combinazione di azioni permanenti (G1 (peso proprio) + G2 (catenaria)).

Viscosità e ritiro del calcestruzzo comportano un cambiamento in lunghezza ΔI (valore finale del ritiro), su cui deve essere basato il calcolo, in forma di diminuzione uniforme della temperatura.

Per tutte le sezioni con altezza maggiore di 25 cm e calcestruzzo con classe di resistenza C30/37 risulta una deformazione media per ritiro autogeno a tempo infinito pari a 0.27‰. Nel dimensionamento si è assunto il 50% del ritiro imposto dalla Normativa, simulabile mediante l'applicazione di un abbassamento uniforme della temperatura di -13.4 C°. Tale riduzione dovrà essere ottenuta, ad esempio, mediante l'utilizzo di un superfluidificante performante (tipo MasterGlenium della BASF), di inerti non calcarei e tramite l'aggiunta di un espansivo (tipo MasterLife SRA100 della BASF). Il sistema adottato dovrà essere verificato con prove preventive in cantiere.

Nella modellazione del rivestimento definitivo, con particolare riferimento al paragrafo 4.1.1.1 dell'NTC08, si procede applicando un abbassamento uniforme della temperatura di -6.7° C agli SLU e di -8.9°C agli SLE.

6.3.8 Temperatura Q1

Per il dimensionamento dei rivestimenti definitivi si considerano azioni termiche, in conformità alla seguente
nachfolgenden Tabelle entsprechend dem Abstand zum Portal tabella, secondo la distanza dall'imbocco. zu erfolgen.

	-		
Abstand Portal / Distanza dall'imbocco [km]	3,0 - 10,0		
Temperaturgra-dient / gradiente della temperatura ΔT / [°C]	:	2	
∆T _{eff} [°C]	Winter / Inverno	Sommer / Estate	
	-10	10	

Tabelle 12: Temperatureinwirkung Innenschale

Der Temperaturgradient ΔT gibt die Temperaturdifferenz zwischen der Innenkante Innenschale und Außenkante Innenschale wieder.

Temperaturbeanspruchungen während des Baus der Innenschale können vernachlässigt werden.

Die von der Temperatur ausgehenden Einwirkungen in Folge eines Brands sind Gegenstand des Absatzes 6.3.12.

6.3.9 Erdbebeneinwirkung E1

Im Gegensatz zu den anderen Lastkombinationen hat die Erdbebenlast einen geringen Einfluss und wird deshalb nicht berücksichtigt.

6.3.10 Aerodynamischer Druck A1

Die Verdichtungs- und Druckentlastungsvorgänge aus der Zugdurchfahrt sind im Dokument D0118-064 "Aerodynamik -Klima - Lüftung" festgelegt. Dem Dokument kann entnommen werden, dass im Extremfall (außergewöhnliche Einwirkungen) im Tunnel aerodynamische Einwirkungen von $\Delta_{p \text{ Druck}}$ = + 11 kN/m² und $\Delta_{p Sog}$ = - 9 kN/m² aufkommen. Da dies erhebliche Einwirkungen sind, auch unter Berücksichtigung der entsprechend angenommenen Teilsicherheitsfaktoren, werden die aerodynamischen Einwirkungen nur in Kombination mit den Einwirkungen, die einer außerordentlichen aus Bemessungslage stammen, berücksichtigt.

6.3.11 Anprallast A2

Die Einwirkung Aufprall Schienenfahrzeuge ist nur in den Verzweigungsbauwerken und Portalen zu berücksichtigen. Im untersuchten Abschnitt wurde sie demnach nicht berücksichtigt.

6.3.12 Brand A3

Die Dimensionierung im Brandfall wird gemäß den Vorschriften der EN 1992-1-2 ausgeführt.

Gemäß den Vorschriften des MD 28/10/2005 Sicherheit in den Eisenbahntunnels, wird die Stabilität aller Bauwerke in Hinblick auf die Temperatur-Zeit Kurve laut UNI 11076 gemäß D0118Tabella 12: Variazione termica

Il gradiente della temperatura ΔT indica la differenza di temperatura tra le superfici interna ed esterna del rivestimento in conci.

Le sollecitazioni derivanti dalla temperatura durante la costruzione dell'anello vengono trascurate.

Le azioni derivanti dalle alte temperatura a seguito di incendio sono oggetto del paragrafo 6.3.12.

6.3.9 Azione sismica E1

Il carico sismico rappresenta una condizione poco influente rispetto alle altre combinazioni di carico e pertanto non viene considerata.

6.3.10 Pressione aerodinamica A1

I processi di carico e scarico tensionale a seguito del passaggio dei treni sono definiti nel documento D0118-064 "Aerodinamica – clima – ventilazione". Dal documento si deduce che in casi estremi (azioni eccezionali) si presentano in galleria azioni aerodinamiche di Δ_p pressione = + 11 kN/m² e Δ_p aspirazione = - 9 kN/m². Poiché si tratta di azioni rilevanti, anche in considerazione dei relativi coefficienti parziali di sicurezza adottati, le azioni aerodinamiche si considerano solo associate in combinazione con le azioni derivanti dalla situazione di dimensionamento eccezionale.

6.3.11 Urto A2

Il carico da urto è da considerare solo nelle caverne di diramazione e ai portali. Nella zona in oggetto non è pertanto considerato.

6.3.12 Incendio A3

Il dimensionamento in caso di incendio si esegue in conformità alle prescrizioni della EN 1992-1-2.

In accordo con le prescrizioni del DM 28/10/2005 Sicurezza gallerie ferroviarie viene garantita la stabilità di tutte le opere in considerazione della curva temperatura-tempo secondo la UNI 11076 in conformità a D0118-04326 "Sicurezza contro le

04326 "Sicherheit gegen die Brandexplosionen" gewährleistet.

Die bewehrten und unbewehrten Abschnitte sind hinsichtlich eines Brandes gemäß den Kriterien des spezifischen Berichts [4] geprüft worden. Hier beschränkt man sich darauf hinzuweisen, dass, einvernehmlich mit der Tabelle D.6.3 des D.M. 16.02.2007 "Klassifizierung der Feuerbeständigkeit der Bauprodukte und -elemente für Bauwerke", folgende Bedingungen ausreichend zur Gewährleistung der REI 120 Klasse sind:

- Stärke 's' der tragenden Bauteile größer als 160 mm;
- Betondeckung 'a' (Achsabstand der Bewehrung von der ausgesetzten Oberfläche) größer als 35 mm.

Beide Voraussetzungen sind erfüllt.

6.4 LASTFALLKOMBINATIONEN

Die zu untersuchenden Lastfallkombinationen sind gemäß NTC 2008 mit den entsprechenden Kombinationsbeiwerten ψ zu berücksichtigen.

Die Lastfallkombinationen für die Dimensionierung der Innenschale sind in der 3 angegeben:

esplosioni di incendio".

Le sezioni, armate e non, sono state verificate nei confronti dell'incendio secondo i criteri esposti nella relazione specifica [4]. In questa sede ci si limita ad osservare che in accordo alla tabella D.6.3 del D.M. 16.02.2007 "Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi di opere da costruzione" condizioni sufficienti affinché la classe di resistenza REI 120 sia garantita sono:

- spessore 's' degli elementi strutturali maggiore di 160mm;
- copriferro 'a' (distanza dell'asse delle armature dalla superficie esposta) maggiore di 35mm.

Entrambi i requisiti sono soddisfatti.

6.4 COMBINAZIONE DI CARICO

Le combinazioni delle azioni da analizzare devono essere considerate in conformità alle NTC 2008, con i relativi coefficienti di combinazione ψ .

Le combinazioni delle azioni rilevanti per il dimensionamento dell'anello interno sono di seguito riportate nella Tabella 13:

				stän	iding / perman	renti			vorube	ergehend / va	riabili	auβerg	ewöhnlich / ec	cezionali
	Lastfall / Caso di	Eigengewicht	Oberleitung	Sohibeton	Wasserdruck	Gebirgslast ohne Auftrieb	Kriechen und Schwinden	Quell-druck	Temperatur (Sommer)	Temperatur (Winter)	Verkehrslast (Zugfahrt)	Brand	Druck infolge Zugfahrt	Sog infolge Zugfahrt
	carico Einwirkung sko mbination /Combinazi	Peso proprio	Catenaria	carichi permanenti sull'arco rovescio	Ganco idraulico	Carichi della roccia in condizioni asciutte	Ritiro e rilassamento	Swelling- Squeezing	Temperatura (Estate)	Temperatura (inverno)	Carico ferroviario	Fuoco	Carico aereodinamico (pressione)	Carico aereodinamico (aspirazione)
	on													
		G1	G2	G3	G4	G5	G6	G7	Q1	Q1	Q2	A3	A1	A1
		1.35							1.50					
2	<u> </u>	1.00							1.00					
na na	2	1.35					1.00			1.50				
2	-	1.00					1.00			1.00				
8	3	1.35	1.35	1.00					1.50					
Ē	~	1.00	1.00	1.00					1.00					
ŝ	4	1.35	1.35	1.00			1.00			1.50				
		1.00	1.00	1.00			1.00			1.00				
i.	5	1.35	1.35	1.00	1.35	1.35			1.50					
ž		1.00	1.00	1.00	1.00	1.00			1.00					
ä	6	1.35	1.35	1.00	1.35	1.35	1.00			1.50				
ž.	-	1.00	1.00	1.00	1.00	1.00	1.00			1.00				
ž	11	1.00	1.00	1.00					0.60				1.00	
ž	12	1.00	1.00	1.00			1.00			0.60				1.00
8	21	1.00	1.00	1.00	1.00	1.00			0.60			1.00		
	22	1.00	1.00	1.00	1.00	1.00	1.00					1.00		

Tabelle 13: Einwirkungskombinationen Innenschale

6.5 NACHWEISVERFAHREN

Für den Nachweis des Grenzzustandes der Trag- und Gebrauchstauglichkeit der Innenschale wurden die Lastfallkombinationen laut Vorgaben in NTC2008, Abs. 2.5.3 angewandt.

6.5.1 Grenzzustand der Tragfähigkeit (GZT)

6.5.1.1 Teilsicherheitsfaktoren Einwirkungen

Die zu berücksichtigenden Teilsicherheitsfaktoren variieren in Abhängigkeit der Kombinationsregeln und den Bedingungen und sind dem Anhang zu ent-nehmen. Folgende Tabella 13: Combinazioni di carico

6.5 VERIFICHE

Per la verifica allo stato limite ultimo ed allo stato limite di esercizio dell'anello interno sono state considerate le combinazioni delle azioni in conformità delle prescrizioni del paragrafo 2.5.3 delle NTC2008.

6.5.1 Stati Limite Ultimi (SLU)

6.5.1.1 Coefficienti parziali di sicurezza per le azioni

I coefficienti parziali di sicurezza da considerare variano in funzione delle combinazioni e del tipo di azioni. In conformità alle NTC2008, per le situazioni di dimensionamento Teilsicherheitsfaktoren sind gemäß EC 7 bzw. NTC2008 für standard, temporanee ed eccezionali sono da considerarsi i außergewöhnliche vorübergehende, seguenti coefficienti parziali di sicurezza: ständige, Bemessungssituationen zu berücksichtigen:

> γ_{Gj.inf günstig/favorevole} = 1,00 / 1,00 / 1,00 $\gamma_{Gj,sup ungünstig/sfavorevole} = 1,35 / 1,20 / 1,00$ $\gamma_{Q,1,sup}$ / $\gamma_{Q,i,sup}$ günstig/favorevole = 0,00 / 0,00 / 0,00 γ_{Q,1,sup} / γ_{Q,i,sup} ungünstig/sfavorevole</sub> = 1,50 / 1,30 / 1,00

Werden die Einwirkungen aus dem Schwinden für den Nachweis im Grenzzustand der Tragfähigkeit berücksichtigt, ist gemäß EC2, Teil 1, Abs. 2.4.2.1 der Teilsicherheitsbeiwert ysH = 1,0 zu berücksichtigen.

Kombinationsbeiwerte Einwirkungen 6.5.1.2

Folgende Kombinationsbeiwerte sind gemäß EN 1990 bzw. NTC2008 zu berücksichtigen:

Einwirkung /	Ψ_0	Ψ_1	Ψ ₂
Druck / Sog infolge Zugfahrt A1 / Pres- sione aerodinamica A1	0,8	0,5	0,0
Temperatur Q1 / Forze termiche Q1	0,6	0,6	0,5

Tabelle 14: Kombinationsbeiwerte

6.5.1.3 Lastfallkombinationen

Die zu untersuchenden Lastfallkombinationen sind gemäß NTC 2008 mit den entsprechenden Kombinationsbeiwerten w zu berücksichtigen.

Die für die Dimensionierung der Innenschale entsprechenden maßgebenden Lastfallkombinationen sind in Funktion der insitu vorherrschenden Randbedingungen auszuwählen

6.5.1.4 Teilsicherheitsfaktoren Festigkeit

Die Teilsicherheitsfaktoren der Widerstände bei einer ständigen und vorübergehenden Bemessungssituation sind, wie mit BBT SE vereinbart, unter Berücksichtigung einer Lebensdauer des Bauwerkes von 200 Jahren wie folgt zu berücksichtigen:

Stahlbeton

- Teilsicherheitskoeffizient für den Betonfestigkeit yc = . 1,60
- Abminderungsbeiwert zur Berücksichtigung • der Langzeitwirkung der Betondruckfestigkeit: $\alpha_{cc} = 0.85$
- Teilsicherheitskoeffizient für Stahlfestigkeit $\gamma_s = 1,20$ ٠

Unbewehrter Beton

Teilsicherheitskoeffizient für die Betonfestigkeit γ_c =

Considerando le azioni derivanti dal ritiro, per la verifica allo stato limite ultimo, si è considerato, in conformità all'EC2, parte 1, paragrafo 2.4.2.1 il coefficiente parziale di sicurezza $\Upsilon_{SH} = 1,0.$

6.5.1.2 Coefficienti di combinazione delle azioni

In conformità alla EN 1990 ovvero alla NTC2008 devono essere utilizzati i seguenti coefficienti di combinazione:

Tabella 14: Coefficienti di combinazione 6.5.1.3 Combinazione delle azioni

Le combinazioni delle azioni da analizzare devono essere considerate in conformità alle NTC 2008, con i relativi coefficienti di combinazione u.

Le combinazioni delle azioni rilevanti per il dimensionamento dell'anello devono essere scelte in funzione delle effettive condizioni al contorno in situ.

6.5.1.4 Coefficienti parziali di sicurezza per le resistenze

I coefficienti parziali di sicurezza per le resistenze in fase permanente e temporanea vanno considerati, come concordato con BBT SE, come segue tenendo conto della vita utile dell'opera di 200 anni:

Calcestruzzo armato

- Coefficiente parziale di sicurezza per la resistenza del calcestruzzo $\gamma_c = 1,60$
- Coefficiente riduttivo della resistenza а compressione del calcestruzzo di lunga durata: α_{cc} = 0,85
- Coefficiente parziale di sicurezza ys per la resistenza dell'acciaio γ_s = 1,20

Calcestruzzo non armato

Coefficiente parziale di sicurezza per la resistenza

1,60

 Abminderungsbeiwert zur Berücksichtigung der Langzeitwirkung der Betondruck- bzw. –zugfestigkeit: α_{cc.pl}./ α_{ct.pl}.= 0,80

FürdenNachweisderaußergewöhnlichenBemessungssituation sind die Teilsicherheitsfaktoren mit $\gamma_c =$ 1,2 und $\gamma_s =$ 1,0 zu berücksichtigen. Der Ab-minderungsbeiwertder Betondruckfestigkeit acc bleibt unverändert.

6.5.1.5 Bemessung auf Biegung und Druck

Die Bemessung des Stahlbetons erfolgt gemäß den Vorgaben des NTC2008, Abs. 4.1.2.1.2.

Der Nachweis des unbewehrten Betons erfolgt gemäß dem NTC2008, Kapitel 4.1.11.1.

Bei den unbewehrten Abschnitten mit hoher Exzentrizität, berücksichtigt man gemäß EC2 (\$12.3.1) die Betonzugfestigkeit bis zum Bemessungswert f_{ctd}. Der Nachweis gilt als erwiesen, wenn: del calcestruzzo $\gamma_c = 1,60$

• Coefficiente riduttivo della resistenza a compressione e a trazione del calcestruzzo di lunga durata: $\alpha_{cc,pl}$./ $\alpha_{ct,pl} = 0,80$

Per le verifiche nella situazione di dimensionamento eccezionale i fattori parziali di sicurezza devono essere considerati con $\gamma_c = 1,20$ e $\gamma_s = 1,00$. Il coefficiente di riduzione della resistenza a compressione del calcestruzzo α resta invariato.

6.5.1.5 Verifica a pressoflessione

Per il calcestruzzo armato il calcolo segue le indicazioni delle NTC2008, par. 4.1.2.1.2.

Per il calcestruzzo non armato si seguono le NTC 2008, par. 4.1.11.1.

Nelle sezioni non armate con un'elevata eccentricità, in accordo con l'EC2 (\$12.3.1) si considera la resistenza a trazione del calcestruzzo fino al valore di progetto f_{ctd} . La verifica risulta soddisfatta se:

$$\sigma_{1,2} = \frac{N_{Ed}}{A} \pm \frac{M_{Ed}}{J} \cdot (h/2) \leq \begin{cases} f_{cd} \\ f_{crd} \end{cases}$$

6.5.1.6

6.5.1.6 Bemessung Querkraft

Die Bemessung des Stahlbetons erfolgt gemäß den Vorgaben des NTC2008, Abs. 4.1.2.1.2.4.

Der Nachweis bei der unbewehrten Innenschale erfolgt gemäß NTC2008, wobei diese Ungleichung nachgewiesen wird:

Per il calcestruzzo armato il calcolo segue le indicazioni delle NTC2008, par. 4.1.2.1.3.

Verifica a taglio

Per il rivestimento interno non armato si seguono le NTC 2008, verificando la seguente disuguaglianza:

$$V_{Ed} \le V_{Rd} = f_{cvd} \cdot \frac{b \cdot x}{1.5}$$

$$f_{cvd} = \sqrt{f_{ctd}^2 + \sigma_c \cdot f_{ctd}} \qquad \qquad \text{per } \sigma_c \le \sigma_{c \text{ lim}}$$

$$f_{cvd} = \sqrt{f_{ctd}^2 + \sigma_c \cdot f_{ctd} - \delta^2/4} \text{ per } \sigma_c > \sigma_{c \, \text{lin}}$$

$$\delta = \sigma_c - \sigma_{c \text{lim}}$$
$$\sigma_{c \text{lim}} = f_{cd} - 2 \cdot \sqrt{f_{ctd}^2 + f_{cd} \cdot f_{ctd}}$$

Bei den überwiegend komprimierten Abschnitten wird die Durchschnittsbelastung der Komprimierung σ_c als Durchschnitt der Komprimierungen im reagierenden Abschnittsteil 'x' berechnet:

Nelle sezioni prevalentemente compresse, lo sforzo medio di compressione σ_c è calcolato come media delle compressioni nella porzione di sezione reagente 'x':

$$\sigma_c = \frac{N_{Ed}}{x} = \frac{N_{Ed}}{h - 2 \cdot e}$$

In den Abschnitten mit hoher Exzentrizität, bei Annahme der Betonzugfestigkeit bis f_{ctd}, wird der Querkraftwiderstand des Abschnitts ausgewertet, indem der ganze Abschnitt als reagierend (x=h) betrachtet wird und die Spannung σ_c als Durchschnittsspannung des ganzen Abschnitts, sowohl unter Druck- als auch unter Zugbelastung.

6.5.2 Grenzzustände der Gebrauchstauglichkeit (GZG)

6.5.2.1 Teilsicherheitsfaktoren Einwirkungen

Im Nachweis der Gebrauchstauglichkeit sind gemäß den Kombinationsregeln die charakteristischen Einwirkungen zu berücksichtigen.

6.5.2.2 Kombinationsbeiwerte Einwirkungen

Die in den Lastfallkombinationen zu berücksichtigenden Kombinationsbeiwerte sind der Tabelle 15 zu entnehmen. Die Kombinationsbeiwerte sind in der Tabelle 144 wiedergegeben

6.5.2.3 Lastfallkombinationen

Die zu untersuchenden Lastfallkombinationen sind gemäß NTC2008 mit den entsprechenden Kombinationsbeiwerten w zu berücksichtigen.

6.5.2.4 Teilsicherheitsfaktoren der Festigkeiten

Für den Nachweis der Gebrauchstauglichkeit sind die charakteristischen Werte der Festigkeiten zu berücksichtigen.

6.5.2.5 Ermittlung der Schnittgrößen und Verformungen

Die Ermittlung der Schnittgrößen bzw. der Systemverformung erfolgt im Grenzzustand der Gebrauchstauglichkeit (GZG) unter Berücksichtigung der Kombinationsregeln mit den charakteristischen Einwirkungen sowie den entsprechenden Kombinationsbeiwerten.

6.5.2.6 Begrenzung der Rissbreiten

Im Grenzzustand der Gebrauchstauglichkeit ist für die maßgebenden Lastfallkombinationen unter Berücksichtigung der Teilsicherheitsfaktoren und Abminderungsfaktoren ψ laut Tabelle 133 die maximale Rissweite unter Wkal Berücksichtigung NTC2008 nachzuweisen. Die zulässige Rissbreite für Normalbeton ohne besondere Anforderung der Dichtigkeit oder bei Existenz einer Abdichtung ist auf $w_{kal} \le 0.3$ mm zu begrenzen.

Nelle sezioni con un'elevata eccentricità, coerentemente con l'assunzione di considerare la resistenza a trazione del calcestruzzo fino al valore di f_{ctd}, la resistenza a taglio della sezione viene valutata considerando reagente l'intera sezione (x=h) e valutando la tensione σ_c come tensione media nell'intera sezione, sia compressa che tesa.

$$\sigma_c = \frac{\sigma_1 + \sigma_2}{2}$$

6.5.2 Stati Limite Esercizio (SLE)

6.5.2.1 Coefficienti parziali di sicurezza delle azioni

Nella verifica agli stati limite di esercizio devono essere considerate le azioni caratteristiche con le loro combinazioni.

6.5.2.2 Coefficienti di combinazione delle azioni

In Tabella 13 si trovano i coefficienti da considerare nelle combinazioni delle azioni. I coefficienti di combinazione sono da considerare come in Tabella 14.

6.5.2.3 Combinazioni delle azioni

Le combinazioni delle azioni da analizzare devono essere considerate in conformità alle NTC 2008, con i relativi coefficienti di combinazione u.

6.5.2.4 Coefficienti parziali di sicurezza per le resistenze

Per la verifica agli stati limite di esercizio si devono considerare i valori caratteristici delle resistenze.

Calcolo delle deformazioni 6.5.2.5

Il calcolo delle deformazioni del sistema si esegue allo SLE in considerazione delle regole di combinazione con i carichi caratteristici e dei relativi coefficienti di combinazione.

6.5.2.6 Limitazione dello spessore delle fessure

In considerazione delle NTC2008, si controlla allo SLE lo spessore massimo delle fessure wkal per le combinazioni di carico rilevanti, in considerazione dei fattori parziali di sicurezza e dei coefficienti di riduzione ψ secondo Tabella 13. La larghezza delle fessure ammessa per il cls normale senza particolari requisiti di spessore o in presenza di impermeabilizzazione è limitata a $w_{kal} \le 0.3$ mm.

In caso di particolari requisiti di spessore del rivestimento

Bei besonderer die Anforderung an Dichtigkeit der Betoninnenschale oder bei aggressiven oder sehr aggressiven Umgebungsbedingungen ist die maximale Rissweite auf w_{kal} ≤ 0,2 mm zu begrenzen.

6.6 **BAULICHE DURCHBILDUNG**

6.6.1 Expositionsklasse und Mindestbetondeckung

Gemäß UNI 11104 ist bei der Expositionsklasse XC3 die Verwendung von Beton C28/35, bei der Expositionsklasse XC4 Beton C32/40 vorgesehen.

Die Berechnung der Mindestbetondeckung zur Gewährleistung der Bauwerklebensdauer >100 Jahren erfolgt laut NTC2008:

	XC3	XC4
Festigkeitsklasse (UNI 11104)	28/35	32/40
Umweltbedingungen	Normal	Aggressiv
C _{min} [mm]	20	30
Nutzbare Lebenszeit >		
100 Jahre [mm]	+10	+10
Bauliche Toleranz [mm]	+10	+10

Tabelle 15: Mindestbetondeckung

Cnom [mm]

Um die Stärke zu vereinheitlichen, ist eine Betondeckung entlang des ganzen Tunnels von 5 cm vorgesehen.

40

50

6.6.2 Mindestbewehrung

Ist eine bewehrte Innenschale vorgesehen, wird die Mindestbewehrung gemäß NTC 2008, Punkt 4.1.6.1.1 definiert.

Die Querschnittsfläche der Längszugbewehrung darf nicht geringer sein als:

$$A_{S,\min} = 0.26 \frac{f_{ctm}}{f_{vk}} \times b \times d$$

und jedenfalls nicht geringer als 0,0013 x b xd,

wobei:

- b die mittlere Breite der Zugzone;
- d die Nutzhöhe des Querschnitts; •
- fctm der Mittelwert der Zugfestigkeit des Betons; •
- fyk der charakteristische Wert der Streckengrenze des •

interno o di condizioni ambientali aggressive o molto aggressive la larghezza massima è limitata a $w_{kal} \le 0,2$ mm.

6.6 STRUTTURA COSTRUTTIVA

6.6.1 Classe di esposizione e copriferro minimo

In accordo alle UNI 11104, in classe di esposizione XC3 è previsto l'utilizzo di calcestruzzo C28/35 mentre in classe di esposizione XC4 è previsto l'utilizzo di calcestruzzo C32/40.

Il calcolo del copriferro minimo al fine di garantire una vita utile dell'opera >100anni è condotto in accordo alle N.T.C. 2008:

	XC3	XC4
Classe di resistenza (UNI		
11104)	28/35	32/40
Cond. ambientali	Normali	Aggressive
C _{min} [mm]	20	30
Vita utile > 100anni [mm]	+10	+10
Tolleranza costruttiva [mm]	+10	+10

C _{nom} [mm]	40	50

Tabella 15: Copriferro minimo.

Per omogeneità si prevede un copriferro netto di 5 cm lungo tutto lo sviluppo delle gallerie.

6.6.2 Armatura minima

In caso il rivestimento necessiti di armatura il quantitativo minimo di armatura da inserire viene definito al punto 4.1.6.1.1 delle NTC 2008.

L'area dell'armatura longitudinale in zona tesa non deve essere inferiore a:

$$_{S,\min} = 0.26 \frac{f_{ctm}}{f_{vk}} \times b \times d$$

e comunque non minore di 0,0013 x b xd ,

dove:

- b rappresenta la larghezza media della zona tesa;
- d è l'altezza utile della sezione;
- f_{ctm} è il valore medio della resistenza a trazione del calcestruzzo:
- fyk è il valore caratteristico della resistenza a

Betonstahls ist.

trazione dell'armatura ordinaria.

6.7 ERGEBNISSE

Die in Anhang 4 aufgezeigten Analysen zeigen, dass für die FEM-Modelle zur Simulation der Lockerungslast für die Klassen T4 und T5 eine Biegebewehrung Φ 14 mit Abstand 150 an der Kalotte und Φ 16/ Φ 18 mit Abstand 150 an den Ulmen und Φ 18 mit Abstand 150 am Sohlgewölbe gebraucht wird. Die Verteilerbewehrung besteht aus Φ 10 mit Abstand 200.

Der Einbau von Schubbewehrung wird nicht als notwendig erachtet.

Der Bewehrungsgehalt beträgt ca. 60 kg/m³ Beton für die Innenschale und 150 kg/m³ für die Zwischendecken.

Die Ergebnisse aus den statischen Berechnungen wurden mit jenen aus vereinfachten Berechnungsmetoden und durch ähnliche Berechnungen an vergleichbaren Strukturen auf ihre Richtigkeit geprüft. Die erhaltenen Ergebnisse sind daher als akzeptabel und richtig.

6.7 RISULTATI

Le analisi riportate in Appendice 4 mostrano che i modelli FEM per la simulazione del carico d'allentamento per le classi T4 e T5 necessitano l'impiego di armatura flessionale Φ 14 passo 150 in calotta, Φ 16/ Φ 18 passo 150 lungo i paramenti e Φ 18 passo 150 nell'arco rovescio. L'armatura di ripartizione è costituita da Φ 10 passo 200.

Non si riscontra la necessità di predisporre dell'armatura a taglio.

L'incidenza d'armatura è di circa 60 kg/m³ di calcestruzzo per il rivestimento e di 150 kg/m³ per le solette intermedie.

I risultati emersi dall'analisi statica condotta sono stati validati mediante confronto con metodi di calcolo semplificati e attraverso raffronti con altre analisi svolte su opere paragonabili. I risultati ottenuti sono pertanto ritenuti accettabili e corretti.

7 VERZEICHNISSE

7.1 TABELLENVERZEICHNIS

Tabelle 1 geomechanische Homogenbereiche12 Tabelle 2: Bestimmung des Gebirges jeder homogenen Zone und Wahrscheinlichkeitsverteilung der unterschiedlichen Klassen [1], [2] und [7].....13 Tabelle 3: Typische Parameter der Gebirges in den unterschiedlichen Zonen und Klassen13 Tabelle 4: Lage der Trennflächen14 Tabelle 5: Ergebnisse Kennlinienverfahren. cf = Ortsbrustkonvergenz, ca = absolute Konvergenz am natürlichen Gleichgewicht, cr = relative Konvergenz am natürlichen Gleichgewicht, Fplf = plastische Zone an der Ortsbrust, Fpla = plastische Zone Gleichgewicht, R = Ausbruchradius (mit 4.86m angenommen).15 Tabelle 6: Ergebnisse der empirischen Methoden16 Tabelle 7: Vorgeschlagene Stabilitätskriterien in [25] [26]; cf = Ortsbrustkonvergenz; Fpf = Umfang des plastischen Streifens an der Ortsbrust; $R_{scavo} = r_{eq} = entsprechender$ Aushebungsradius.17 Tabelle 8: Angenommene geomechanische Parameter (GA-T4) 20 Tabelle 9: Eigenschaften der Außenschale GA-T420 Tabelle 10: Angenommene geomechanische Parameter (GA-25 T5) Tabelle 11: Eigenschaften der Außenschale GA-T525 Tabelle 13: Einwirkungskombinationen Innenschale.......37

 Tabelle 14: Kombinationsbeiwerte
 38

 Tabelle 15: Mindestbetondeckung41

7 ELENCHI

7.1 ELENCO DELLE TABELLE
Tabella 1: Zone geomeccaniche omogenee12
Tabella 2: Caratterizzazione degli ammassi di ciascuna zonaomogenea e distribuzione probabilistica delle diverse classi[1], [2] e [7]13
Tabella 3: Parametri caratteristici dell'ammasso nelle diversezone e classi13
Tabella 4: Giacitura delle discontinuità 14
Tabella 5: Risultati del metodo delle Linee Caratteristiche. cf= convergenza al fronte, ca = convergenza assolutaall'equilibrio naturale, cr = convergenza relativa all'equilibrionaturale, Fplf = fascia plastica al fronte, Fpla = fascia plasticaall'equilibrio naturale, R = raggio di scavo (assunto pari a4.86m).15
Tabella 6: Risultati dei metodi empirici
Tabella 7: Criteri di stabilità proposti in [25] [26]; $c_f =$ convergenza al fronte; $F_{pf} =$ estensione della fascia plastica al fronte; $R_{scavo} = r_{eq} =$ raggio equivalente di scavo
Tabella 8: Parametri geomeccanici considerati (GA-T4) 20
Tabella 9: Caratteristiche rivestimenti di prima fase GA-T420
Tabella 10: Parametri geomeccanici considerati (GA-T5) . 25
Tabella 11: Caratteristiche rivestimenti di prima fase GA-T5 25
Tabella 12: Variazione termica
Tabella 13: Combinazioni di carico
Tabella 14: Coefficienti di combinazione
Tabella 15: Copriferro minimo 41

7.2 ABBILDUNGSVERZEICHNIS

Abbildung 1: Auszug aus dem geomechanischen Längspro und des geologischen Lageplans [3] mit Angabe des	ofil
Untersuchungsgebietes	.9
Abbildung 2: Analyseabschnitt GA-T4	19
Abbildung 3: Kraft-Verformungsverhalten der Anker-Eleme 21	nte
Abbildung 4: Berücksichtigte FFS für das Modell GA-T42	23
Abbildung 5: Analyseabschnitt GA-T52	24
Abbildung 6: Berücksichtigte FFS für das Modell GA-T52	27
Abbildung 7: Schamatisierung der Schnittstelle	32
Abbildung 8: Lasten des Kettenwerks	33
Abbildung 9: Lastbild Wasserdruck – drainierter Regelquerschnitt 34	

7.3 ANLAGENVERZEICHNIS

- ANHANG 1 KENNLINIENVERFAHREN
- ANHANG 2 FEM- ANALYSEN FÜR DIE AUßENSCHALE SCHNITT GA-T4
- ANHANG 3 FEM ANALYSEN FÜR DIE AUßENSCHALE SCHNITT GA-T5
- ANHANG 4 FEM- ANALYSEN DES INNEAUSBAUS
- ANHANG 5 ZWISCHENDECKE

7.4 REFERENZDOKUMENTE

7.4.1 Eingangsdokumente

- 7.4.1.1 Ausführungsprojekt Baulos Mauls 2-3
 - [1] 02_H61_GD_992_GTB_D0700_13018 Brenner Basistunnel - Ausführungsplanung - D0700: Baulos Mauls 2-3 - Gesamtbauwerke - Technischer Bericht -Allgemeiner geomechanischer Bericht
 - [2] 02_H61_GD_040_GTB_D0700_22001 Brenner
 Basistunnel Ausführungsplanung D0700: Baulos
 Mauls 2-3 Gesamtbauwerke Teil 2 Geomechanischer Detailbericht
 - [3] 02_H61_GD_040_GLS_D0700_22004 Brenner
 Basistunnel Ausführungsplanung D0700: Baulos
 Mauls 2-3 Gesamtbauwerke Teil 2 -

7.2 ELENCO DELLE ILLUSTRAZIONI

Figura 1: Estratto del profilo geomeccanico longitudinale e della planimetria geologica [3] con indicazione dell'area di studio. 9

Figura 2: sezione di analisi GA-T419)
Figura 3: Comportamento sforzo-deformazione per gli ancoraggi 21	
Figura 4: FFS considerate per il modello GA-T4 23	3
Figura 5: sezione di analisi GA-T524	1
Figura 6: FFS considerate per il modello GA-T527	7
Figura 7: Schematizzazione dell'interfaccia	2
Figura 8: Carichi della catenaria	3
Figura 9: Pressione idrostatica - Sezione tipo drenata 34	1

Figura 10: Rappresentazione qualitativa delle tensioni normali (rosso), ottenute dal calcolo numerico, del carico attivo dell'ammasso (blu) e della reazione assestamento del terreno (verde). 35

7.3 ELENCO APPENDICI

- APPENDICE 1 CURVE CARATTERISTICHE
- APPENDICE 2 ANALISI FEM DEL RIVESTIMENTO DI PRIMA FASE SEZIONE GA-T4
- APPENDICE 3 ANALISI FEM DEL RIVESTIMENTO DI PRIMA FASE SEZIONE GA-T5
- APPENDICE 4 ANALISI FEM DEL RIVESTIMENTO DEFINITIVO
- APPENDICE 5 SOLETTA INTERMEDIA
- 7.4 DOCUMENTI DI RIFERIMENTO
- 7.4.1 Documenti in ingresso

7.4.1.1 Progetto Esecutivo Lotto Mules 2-3

- [1] 02_H61_GD_992_GTB_D0700_13018 Galleria di Base del Brennero - Progettazione esecutiva -D0700: Lotto Mules 2-3 - Opere generali - Relazione tecnica - Relazione geomeccanica generale
- [2] 02_H61_GD_040_GTB_D0700_22001 Galleria di Base del Brennero - Progettazione esecutiva -D0700: Lotto Mules 2-3 - Opere generali Parte 2 -Relazione geomeccanica di dettaglio
- [3] 02_H61_GD_040_GLS_D0700_22004 Galleria di Base del Brennero - Progettazione esecutiva -D0700: Lotto Mules 2-3 - Opere generali Parte 2 -

Geomechanisches und Planungsvorprofil - GA-T, FdE-CcT

- [4] 02_H61_EG_995_KTB_D0700_15003 Brenner
 Basistunnel Ausführungsplanung D0700: Baulos
 Mauls 2-3 Sicherheit bzgl. Feuerexposition
- [5] 02_H61_GD_040_KTB_D0700_22900 Brenner Basistunnel - Ausführungsplanung - D0700: Baulos Mauls 2-3 – Richtlinien zur Anwendung der Ausbruchsquerschnitte
- [6] 02_H61_GD_992_GLS_D0700_13034 Brenner
 Basistunnel Ausführungsplanung D0700: Baulos
 Mauls 2-3 Geologischer Längenschnitt
 Zugangstunnel Trens

7.4.1.2 Technische Projektaufbereitung

- [7] Geomechanischer Bericht Hauptröhren Mauls PMF Trens"
- [8] Geomechanischer Bericht Erkundungsstollen Mauls-Brenner
- 7.4.1.3 Ausführungsprojekt Erweiterung Baulos Mauls 1
 - [9] V04-OP.EG.05.01 "Erkundungsstollen Periadriatische Naht und vorbereitende Maßnahmen Bereich Mauls – Geologie – Hydrogeologie - Geotechnik – Geomechanischer Bericht km 47+709/46+843"
 - [10] D0755/02-V04-OP.EN.01.01 "Erkundungsstollen Periadriatische Naht und vorbereitende Maßnahmen Bereich Mauls – Statischer Bericht Aussenschale Haupttunel km 46+800/47+800"
 - [11] D0755/02-V04-OP.EN.01.02 "Erkundungsstollen Periadriatische Naht und vorbereitende Maßnahmen Bereich Mauls - Statischer Bericht Aussenschale -Erkundungsstollen km 46+800/47+800
 - [12] D0755/02-V04-OP.EN.01.03/04 "Erkundungsstollen Periadriatische Naht und vorbereitende Maßnahmen Bereich Mauls - Statischer Bericht Aussenschale der Haupttunnel von km 48+115/49+331"

7.4.2 Normen und Richtlinien

- [13] Norme Tecniche delle Costruzioni 2008 NTC 2008;
- [14] Circolare n.617, Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al DM 14 gennaio 2008
- [15] DM 28/10/2005 Sicherheit für Bahntunnel
- [16] UNI EN1990:2006 Eurocodice 0 Grundlage für Konstruktion und Dokumentation zur nationalen

Profilo geomeccanico e progettuale di previsione - GA-T, FdE-CcT

- [4] 02_H61_EG_995_KTB_D0700_15003 Galleria di Base del Brennero - Progettazione esecutiva -D0700: Lotto Mules 2-3 - Sicurezza nei riguardi di esposizione al fuoco
- [5] 02_H61_GD_040_KTB_D0700_22900 Galleria di Base del Brennero - Progettazione esecutiva -D0700: Lotto Mules 2-3 - Linee guida per l'applicazione delle sezioni di scavo
- [6] 02_H61_GD_992_GLS_D0700_13034 Galleria di Base del Brennero - Progettazione esecutiva -D0700: Lotto Mules 2-3 - Profilo geologico Galleria di accesso Trens

7.4.1.2 Elaborazione tecnica del progetto

- [7] Relazione geomeccanica Canne principali Mules PMF Trens
- [8] Relazione geomeccanica Cunicolo esplorativo Mules-Brennero

7.4.1.3 Progetto Esecutivo Estensione Lotto Mules 1

- [9] V04-OP.EG.05.01 "Cunicolo Esplorativo Periadriatica ed Opere Propedeutiche ambito Mules
 - Geologia - Idrogeologia - Geotecnica - Relazione geomeccanica km 47+709/46+843"
- [10] D0755/02-V04-OP.EN.01.01 " Cunicolo Esplorativo Periadriatica ed Opere Propedeutiche ambito Mules
 Relazione statica rivestimento di prima fase Galleria di Linea km 46+800/47+800"
- [11] D0755/02-V04-OP.EN.01.02 " Cunicolo Esplorativo Periadriatica ed Opere Propedeutiche ambito Mules
 Relazione statica rivestimento di prima fase -Cunicolo esplorativo km 46+800/47+800"
- [12] D0755/02-V04-OP.EN.01.03/04 "Periadriatica Galleria Principale - Opere strutturali - Relazione di calcolo rivestimento di prima fase delle gallerie di linea da pk 48+115/49+331"
- 7.4.2 Normativa
 - [13] Norme Tecniche delle Costruzioni 2008 NTC 2008;
 - [14] Circolare n.617, Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al DM 14 gennaio 2008
 - [15] DM 28/10/2005, Sicurezza nelle gallerie ferroviarie.
 - [16] UNI EN1990:2006 Eurocodice 0 Basi per la

Umsetzung;

- [17] UNI EN 1991-1; Eurocode 1 Actions on structures 2010/2011
- [18] UNI EN 1992:2005 Eurocodice 2 Planung von f
 ür Stahlbetonbauwerke und Dokumente zur nationalen Umsetzung;
- [19] UNI EN 1997:2005 Eurocodice 7 Geotechnik und Dokumente zur nationalen Umsetzung
- [20] UNI EN 1992-1-2:2005 "Progettazione delle strutture in calcestruzzo Parte 1-2: Regole generali -Progettazione strutturale contro l'incendio"
- [21] UNI 11076 del 1 luglio 2003, "Modalità di prova per la valutazione del comportamento di protettivi applicati a soffitti di opere sotterranee, in condizioni di incendi".
- [22] D.M. 16.02.2007 "Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi di opere da costruzione"

7.4.3 Literatur

- [23] Ribacchi R., Riccioni R. Stato di sforzo e di deformazione intorno ad una galleria circolare. Gallerie e grandi opere sotterranee, 1977.
- [24] Nguyen-Minh D., Guo C. Recent progress in convergence confinement method", Eurock '96, pagg. 855-860.
- [25] Gamble J.C. Durability-plasticity classification of shales. Ph. D. Thesis, University of Illinois, 1971.
- [26] Sakurai Lessons Learned from Field Measurements in Tunneling. Tunneling and Underground Space Technology, 1997.
- [27] HOEK E., CARRANZA TORRES C., CORKUM B. Hoek-Brown failure criterion. 2002
- [28] UNWEDGE-rocscience, Underground Wedge Stability Analysis Manual
- [29] Wang, J., 1993 Seismic Design of Tunnels A Simple State-of-the-Art Design
- [30] Hashash, Y., et al., 2001, Seismic design and analysis of underground structures, Tunnelling and underground space technology 16, (247-293)
- [31] Pöttler, R. Die unbewehrte Innenschale im Felstunnelbau - Standsicherheit und Verformung im Rißbereich, Beton und Stahlbetonbau Heft 6, 1993

progettazione strutturale e documento di applicazione nazionale3

- [17] UNI EN 1991-1; Eurocode 1 Actions on structures – 2010/2011
- [18] UNI EN 1992:2005 Eurocodice 2 Progettazione delle strutture in calcestruzzo e documento di applicazione nazionale
- [19] UNI EN 1997:2005 Eurocodice 7 Progettazione geotecnica e documento di applicazione nazionale
- [20] UNI EN 1992-1-2:2005 "Progettazione delle strutture in calcestruzzo Parte 1-2: Regole generali -Progettazione strutturale contro l'incendio"
- [21] UNI 11076 del 1 luglio 2003, "Modalità di prova per la valutazione del comportamento di protettivi applicati a soffitti di opere sotterranee, in condizioni di incendi".
- [22] D.M. 16.02.2007 "Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi di opere da costruzione"

7.4.3 Letteratura

- [23] Ribacchi R., Riccioni R. Stato di sforzo e di deformazione intorno ad una galleria circolare. Gallerie e grandi opere sotterranee, 1977.
- [24] Nguyen-Minh D., Guo C. Recent progress in convergence confinement method", Eurock '96, pagg. 855-860.
- [25] Gamble J.C. Durability-plasticity classification of shales. Ph. D. Thesis, University of Illinois, 1971.
- [26] Sakurai Lessons Learned from Field Measurements in Tunneling. Tunneling and Underground Space Technology, 1997.
- [27] HOEK E., CARRANZA TORRES C., CORKUM B. Hoek-Brown failure criterion. 2002
- [28] UNWEDGE-rocscience, Underground Wedge Stability Analysis Manual
- [29] Wang, J., 1993 Seismic Design of Tunnels A Simple State-of-the-Art Design
- [30] Hashash, Y., et al., 2001, Seismic design and analysis of underground structures, Tunnelling and underground space technology 16, (247-293)
- [31] Pöttler, R. Die unbewehrte Innenschale im Felstunnelbau - Standsicherheit und Verformung im Rißbereich, Beton und Stahlbetonbau Heft 6, 1993

- [32] Pöttler, R. Standsicherheitsnachweis unbewehrter Innenschalen, Bautechnik 67, 1990
- [33] Rocscience Phase2 online manual (Swellex / Split Sets Section - indicazioni Atlas Copco 2006)
- [34] Cai M., Kaiser P.K., Tasaka Y., Minami M. -Determination of residual strenght parameters of jointed rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences 44 pag. 247-256, 2007
- [35] MIDAS GTS Manual
- [36] Crowder J., Bawden W.F., Review of Post-Peak Parameters and Behaviour of Rock Masses: Current Trends and Research. Rocscience.
- [37] Hoek, E. (2007). *Practical Rock Engineering*. Toronto: Rocscience, e-book.

- [32] Pöttler, R. Standsicherheitsnachweis unbewehrter Innenschalen, Bautechnik 67, 1990
- [33] Rocscience Phase2 online manual (Swellex / Split Sets Section - indicazioni Atlas Copco 2006)
- [34] Cai M., Kaiser P.K., Tasaka Y., Minami M. -Determination of residual strenght parameters of jointed rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences 44 pag. 247-256, 2007
- [35] MIDAS GTS Manual
- [36] Crowder J., Bawden W.F., Review of Post-Peak Parameters and Behaviour of Rock Masses: Current Trends and Research. Rocscience.
- [37] Hoek, E. (2007). *Practical Rock Engineering*. Toronto: Rocscience, e-book.

ANHANG 1 – KENNLINIENVERFAHREN

Nachfolgend werden die charakteristischen Kuren dargestellt, anhand derer es möglich war folgendes zu bewerten:

- Radialer Drock Konvergenz
- Konvergenz Distanz zur Ortsbrust
- Radialer Druck Ausdehnung des plastischen Streifens außerhalb des Tunnelprofils
- Abstand zur Ortsbrust Ausdehnung des plastischen Streifens außerhalb des Tunnelprofils
- Abstand zur Ortsbrust Fiktive Ausbruchskräfte

Das Verfahren wurde angewandt unter Annahme eines elastisch-plastischen Materialverhaltens mit softening und nicht damit verbundenem Fließen des Materials Gestein laut Mohr-Coulomb und unter Berücksichtigung der Formelvon Ribacchi [23]. Für das Gebirge GA-T-R-8f liefern die Gebirgskennlinien keine glaubhaften Ergebnisse und werden deshalb nicht dargestellt.

Die Kurve "Konvergenz - Entfernung von Ortsbrust" wurde durch ein vereinfachtes, analytisches Verfahren ermittelt, das die Relationen von Nguyen, Minh et al. [24] verwendet.

APPENDICE 1 - CURVE CARATTERISTICHE

Di seguito sono riportate le curve caratteristiche, mediante le quali è stato possibile valutare:

- Pressione Radiale Convergenza.
- Convergenza Distanza dal Fronte.
- Pressione Radiale Estensione della Fascia Plastica oltre il profilo di scavo.
- Distanza dal fronte Estensione della Fascia Plastica oltre il profilo di scavo.
- Distanza dal Fronte Forze Fittizie di Scavo

L'analisi è stata eseguita assumendo un modello costitutivo elasto-plastico con softening e flusso non associato del materiale roccia secondo Mohr-Coulomb, nella formulazione proposta da Ribacchi [23]. Per l'ammasso GA-T-R-8f le curve caratteristiche non forniscono risultati attendibili e non vengono pertanto riportate.

La curva "Convergenza – Distanza dal fronte" è stata ricavata attraverso un procedimento analitico semplificato che sfrutta le relazioni proposte da Nguyen, Minh et al. [24].

ANHANG 2 - FEM- ANALYSE DER AUßENSCHALE DES QUERSCHNITTS GA-T4

Diese Anlage führt die wichtigsten Outputs der FEM-Analysen des Schnitts GA-T4 an, die mit dem Rechenprogramm Midas GTS durchgeführt wurden.

APPENDICE 2 - ANALISI FEM DEL RIVESTIMENTO DI PRIMA FASE SEZIONE GA-T4

Nella presente appendice sono riportati i principali output delle analisi agli elementi finiti della sezione GA-T4 effettuate con il programma di calcolo Midas GTS.

A2.1 OUTPUTS MODELL FEM

A2.1 OUTPUT MODELLO FEM

Abbildung 1: Verschiebungen xy [mm] - Ortsbrust GA-T4

Illustrazione 1: Spostamenti xy [mm] - fronte GA-T4

Abbildung 2: Plastificationen - Ortsbrust GA-T4

Abbildung 3: Verschiebungen xy [mm] bei 1.5m von der Ortsbrust GA-T4 Illustrazione 3: Spostamenti xy [mm] a 1.5m dal fronte GA-T4

Abbildung 4: Plastificationen bei 1.5m von der Ortsbrust GA-T4

Illustrazione 4: Plasticizzazioni a 1.5m dal fronte GA-T4

Abbildung 5: Verschiebungen xy [mm] Ende Ausbruch GA-T4

Illustrazione 5: Spostamenti xy [mm] fine scavo GA-T4

Abbildung 6: Vertikalspannungen σ_{yy} [kN/m²] – Ende Ausbruch GA-T4

Illustrazione 6: Tensioni verticali σ_{yy} [kN/m²] - fine scavo GA-T4

Abbildung 7: Horizontalspannungen σ_{xx} [kN/m²] – Ende Ausbruch GA-T4 Illustrazione 7: Tensioni orizzontali σ_{xx} [kN/m²] - fine scavo GA-T4

Abbildung 8: Plastifizierungen – Ende Ausbruch GA-T4

Illustrazione 8: Plasticizzazioni - fine scavo GA-T4

Abbildung 9: Normalspannungen auf der Außenschale [kN] – Ende Ausbruch GA-T4

Illustrazione 9: Sollecitazioni normali sul rivestimento di prima fase [kN] - fine scavo GA-T4

Abbildung 10: Momente auf der Aussenschale [kNm] – Ende Ausbruch GA-T4 Illustrazione 10: Momenti sul rivestimento di prima fase [kNm] - fine scavo GA-T4

Abbildung 11: Axialbelastung der Anker [-] – Ende Ausbruch GA-T4

Illustrazione 12: Deformazione assiale nei chiodi [-] - fine scavo GA-T4 Abbildung 12: Axialverformung der Anker [-] – Ende Ausbruch GA-T4

A2.2 NACHWEISE AUßENSCHALE

A2.2 VERIFICHE RIVESTIMENTO PRIMA FASE

Nachfolgend führt man den Nachweis des Querschnitts GA-T4

Nel seguito viene verificata la sezione GA-T4.

Nachweis Diagramm Wechselwirkung M-N

Verifiche diagramma di interazione M-N

Abbildung 14: Nummerierung der Knoten des numerischen Modells Illustrazione 14: Numerazione dei nodi del modello numerico GA-T4 GA-T4

Imj[m][m][kN][kNm][kNm][kN][-]1-4.550.00-857.10-4.09-1114.23-5.323.972-4.670.60-1498.00-28.43-1947.40-36.961.963-4.771.21-1873.00-0.71-2434.90-0.931.904-4.831.70-2178.0014.40-2831.4018.721.535-4.872.19-2362.0022.69-3070.6029.501.376-4.902.68-2529.0015.37-3287.7019.981.337-4.923.05-2699.0018.27-3508.7023.751.238-4.923.61-2759.0019.87-3567.208.431.2710-4.874.66-2731.008.01-3550.3010.411.2711-4.805.14-2711.007.91-3524.3010.281.2812-4.715.63-2654.002.48-3450.203.231.33	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5
7 -4.92 3.05 -2699.00 18.27 -3508.70 23.75 1.23 8 -4.92 3.61 -2759.00 19.87 -3586.70 25.83 1.20 9 -4.90 4.17 -2744.00 6.49 -3567.20 8.43 1.27 10 -4.87 4.66 -2731.00 8.01 -3550.30 10.41 1.27 11 -4.80 5.14 -2711.00 7.91 -3524.30 10.28 1.28 12 -4.71 5.63 -2654.00 2.48 -3450.20 3.23 1.33	6
8 -4.92 3.61 -2759.00 19.87 -3586.70 25.83 1.20 9 -4.90 4.17 -2744.00 6.49 -3567.20 8.43 1.27 10 -4.87 4.66 -2731.00 8.01 -3550.30 10.41 1.27 11 -4.80 5.14 -2711.00 7.91 -3524.30 10.28 1.28 12 -4.71 5.63 -2654.00 2.48 -3450.20 3.23 1.33	7
9 -4.90 4.17 -2744.00 6.49 -3567.20 8.43 1.27 10 -4.87 4.66 -2731.00 8.01 -3550.30 10.41 1.27 11 -4.80 5.14 -2711.00 7.91 -3524.30 10.28 1.28 12 -4.71 5.63 -2654.00 2.48 -3450.20 3.23 1.33	8
10 -4.87 4.66 -2731.00 8.01 -3550.30 10.41 1.27 11 -4.80 5.14 -2711.00 7.91 -3524.30 10.28 1.28 12 -4.71 5.63 -2654.00 2.48 -3450.20 3.23 1.33	9
11 -4.80 5.14 -2711.00 7.91 -3524.30 10.28 1.28 12 -4.71 5.63 -2654.00 2.48 -3450.20 3.23 1.33	10
12 -4.71 5.63 -2654.00 2.48 -3450.20 3.23 1.33	11
	12
13 -4.60 6.10 -2581.00 -5.55 -3355.30 -7.22 1.36	13
14 -4.44 6.57 -2557.00 -8.74 -3324.10 -11.36 1.35	14
15 -4.24 7.01 -2522.00 -8.96 -3278.60 -11.65 1.37	15
16 -3.99 7.44 -2432.00 -6.61 -3161.60 -8.59 1.43	16
17 -3.70 7.84 -2338.00 -4.19 -3039.40 -5.45 1.50	17
18 -3.37 8.20 -2229.00 -11.47 -2897.70 -14.91 1.52	18
19 -3.00 8.53 -2099.00 -6.67 -2728.70 -8.67 1.65	19
20 -2.60 8.83 -1973.00 -3.25 -2564.90 -4.23 1.79	20
21 -2.17 9.07 -1934.00 -10.59 -2514.20 -13.77 1.74	21
22 -1.71 9.28 -1948.00 3.15 -2532.40 4.10 1.81	22
23 -1.23 9.43 -1960.00 4.83 -2548.00 6.28 1.78	23
24 -0.75 9.53 -1974.00 -6.44 -2566.20 -8.37 1.75	24
25 -0.25 9.59 -2004.00 6.97 -2605.20 9.06 1.72	25
26 0.25 9.59 -1986.00 6.21 -2581.80 8.07 1.74	26
27 0.75 9.53 -1943.00 -7.11 -2525.90 -9.24 1.77	27
28 1.24 9.43 -1936.00 3.95 -2516.80 5.14 1.81	28
29 1.71 9.28 -1933.00 2.48 -2512.90 3.22 1.83	29
30 2.17 9.07 -1967.00 -11.12 -2557.10 -14.46 1.71	30
31 2.60 8.83 -2091.00 -4.55 -2718.30 -5.92 1.67	31
32 3.00 8.53 -2244.00 -4.69 -2917.20 -6.09 1.56	32
33 3.37 8.20 -2386.00 -14.59 -3101.80 -18.97 1.40	33
34 3.70 7.84 -2523.00 -6.63 -3279.90 -8.62 1.38	34
35 3.99 7.44 -2608.00 -3.56 -3390.40 -4.63 1.35	35
36 4.24 7.01 -2641.00 -7.75 -3433.30 -10.08 1.31	36
37 4.44 6.57 -2650.00 -7.06 -3445.00 -9.18 1.31	37
38 4.60 6.10 -2664.00 -3.27 -3463.20 -4.25 1.33	38
39 4.71 5.63 -2686.00 1.58 -3491.80 2.05 1.32	39
40 4.80 5.14 -2701.00 7.64 -3511.30 9.93 1.29	40
41 4.87 4.66 -2693.00 7.07 -3500.90 9.18 1.29	41
42 4.90 4.17 -2667.00 4.04 -3467.10 5.25 1.32	42
43 4.92 3.61 -2677.00 19.35 -3480.10 25.16 1.24	43
44 4.92 3.05 -2502.00 17.96 -3252.60 23.35 1.32	44
45 4.90 2.68 -2380.00 11.50 -3094.00 14.95 1.43	45
46 4.87 2.19 -2264.00 21.40 -2943.20 27.82 1.43	46
47 4.83 1.70 -2056.00 18.63 -2672.80 24.22 1.58	47
48 4.77 1.21 -1763.00 5.74 -2291.90 7.47 1.96	48
49 4.67 0.60 -1258.00 -7.88 -1635.40 -10.24 2.66	49

A2.3 NACHWEIS STABILITÄT DER ORTSBRUST

Nachfolgend gibt man die Plots der axialsymmetrischen Analysen für den Schnitt GA-T4 wieder.

Analysen ohne Befestigungsmaßnahmen

Die Analyse wurde ohne Befestigungsmaßnahmen an der Ortsbrust und ohne Außenschale sowie für Schritte von 1.5 m ausgeführt.

A2.3 VERIFICHE STABILITÀ DEL FRONTE

Nel seguito si riportano i plot delle analisi assialsimmetriche eseguite per la sezione GA-T4.

Analisi senza interventi di consolidamento

L'analisi è stata eseguita in assenza di interventi di consolidamento del fronte e di assenza dei rivestimenti di prima fase e per tappe di 1.5 metri.

Abbildung 15: Axialsymmetrisches Modell, plastifizierte Zone ohne Verankerungen an der Ortsbrust

Abbildung 16: Axialsymmetrisches Modell - Extrusion an der Ortsbrust

Illustrazione 16: Modello Assialsimmetrico, Estrusione al fronte

Abbildung 17: Axialsymmetrisches Modell, radiale Konvergenz

Illustrazione 17: Modello assialsimmetrico, convergenza radiale

Analyse mit Konsolidierungen

Die Analyse wurde mit Vorhandensein der Ortsbrustsicherung und am Umriss durchgeführt, mit einem Schritt von 1.5 m, wobei eine Mindestüberlappung von 6 m der Anker an der Ortsbrust berücksichtigt wurden.

Um den Beitrag der Konsolidierungen abzuschätzen, wird eine fiktive Erhöhung der Kohäsion Ac am befestigten Gebirge angebracht, die mit dem Begrenzungsdruck σ_3 (Resultierende der Zugfestigkeit eines Einschlusses dividiert durch Einflussbereich) zusammenhängt:

$\Delta \sigma_3 = \min \left[T_f = \pi \cdot D \cdot \alpha \cdot L \cdot \tau_a; T_f = \sigma_b \cdot A_b \right] \cdot \left(\frac{N_b}{A_b} \right)$ $\Delta c = \frac{\cos \phi}{\cos \phi}$. ^

Mit:

- $\Delta \sigma_3$ = Begrenzungsdruck
- N_b = Anzahl der Anker an Ortsbrust ٠
- Ab = Widerstandsfläche des Ankers •
- σ_b = Zug-Bruchfestigkeit
- D = Durchmesser Bohrung •
- α = Wulstkoeffizient •
- L = Länge Überlappung
- s_l = seitliche Oberfläche des Ankers •
- τ_a = Haftfestigkeit zwischen Anker und Mörtel (oder zwischen Mörtel und Boden)

Was hingegen die Befestigung des Umrisses des Hohlraums betrifft, so wird der Ansatz nach Hoek und Ribacchi, analog zum Dokument [12], angewandt. Man nimmt eine befestigte Zone von 1 m Quergröße an und führt eine Abfolge von gewichteten Durchschnitten durch mit Bezug auf die Widerstandsfläche der einzelnen Komponenten (Gebirge und Zementinjektion) und berechnet die äquivalenten Werte des Elastizität-und des Kohäsionsmodul:

$$\sigma_{cm,eq} = \frac{\sigma_{cm} \cdot A_{rock} + R_c \cdot A_c}{A_{TOT}}$$

$$c_{eq} = \sigma_{cm,eq} \cdot \frac{1 - \sin \varphi}{2 \cos \varphi}$$

$$E_{eq} = \frac{E_{rock} \cdot A_{rock} + E_c \cdot A_c}{A_{TOT}}$$

Dove:

σ_{cm} è

resiste

Mit:

- σ_{cm} Druckfestigkeit des urspr. Gebirges, die der einaxialen Druckfestigkeit entspricht;
- Arock Oberfläche des nicht befestigten Gebirges;
- R_c Widerstand der injizierten Mischung;
- Ac von der Injektion betroffene Fläche.

Analisi con interventi di consolidamento

L'analisi è stata eseguita con la presenza di interventi di consolidamento del fronte e al contorno per tappe di 1.5 metri, tenendo conto della sovrapposizione minima di 6 metri per gli ancoraggi al fronte.

La stima del contributo fornito dai consolidamenti è effettuata applicando un incremento di coesione fittizio Δc all'ammasso consolidato, legato alla pressione di confinamento σ_3 (risultante della resistenza a trazione di un incluso divisa per la sua area d'influenza):

$$\frac{1}{2(1-\sin\phi)}\cdot\Delta\sigma_{2}$$

In cui:

- $\Delta \sigma_3$ = pressione di confinamento
- N_b = numero delle barre al fronte
- A_b = area resistente della barra
- σ_b = resistenza di rottura a trazione
- D = diametro di perforazione
- α = coefficiente di sbulbatura
- L = lunghezza di sovrapposizione
- s_l = superficie laterale della barra
- τ_a = tensione di aderenza tra barra e malta (o tra malta e terreno)

Per quanto riguarda il consolidamento del contorno del cavo viene adottato l'approccio di Hoek e Ribacchi analogamente al Doc. [12]. Si considera una porzione di zona consolidata avente dimensione trasversale di 1m e si esegue un processo di medie pesate con riferimento all'area ed alla resistenza di ogni singolo componente (ammasso e iniezione cementizia), calcolando valori equivalenti di modulo elastico e coesione:

- Arock è la superficie dell'ammasso non consolidato;
- R_c è la resistenza della miscela iniettata;
- A_c è l'area interessata dall'iniezione.

0	Angolo d'attrito di picco	Φ' _p	36.3	o
าลระ	Angolo d'attrito residuo	Φ'r	30.1	0
u Lu	Angolo di dilatanza	ψ	3.1	٥
icia	Coesione di picco	c'p	1.545	MPa
ecu	Coesione residua	C'r	1.065	MPa
eot	Resistenza a compressione uniassiale di picco	$\sigma_{cm,p}$	6.104	MPa
Г і в	Resistenza a compressione uniassiale residua	$\sigma_{\text{cm,r}}$	3.697	MPa
met	Pendenza curva σ1/3	k	3.902	-
araı	Modulo elastico	Em	2500	MPa
<u>م</u>	Coefficiente di Poisson	ν	0.21	-

Parametri tunnel	Raggio tunnel	r ₀	5.2	m
	Copertura	h	620	m
	Peso specifico roccia	γr	26.5	kN/m ³
	Pressione idrostatica	p ₀	16.43	MPa

Consolidamento al contorno	Passo longitudinale	il	3.0	m
	Passo trasversale	it	0.75	m
	Numero barre / m ²	n	0.444	-
	area barra	Ab	0.015	m²
	Diametro corona	dc	0.1	m
	Coefficiente sbulbatura	α	1.3	-
	Area di iniezione	Ac	0.013	m²
	Resistenza iniezione	Rc	25	MPa
	Modulo elastico iniezione	Ec	25000	MPa
	Resistenza equivalente picco	R _{p,eq}	6.248	MPa
	Resistenza equivalente residua	R _{r,eq}	3.841	MPa
	Coesione di picco equivalente	C _{p,eq}	1.582	MPa
	Coesione residua equivalente	C _{r,eq}	1.107	MPa
	Modulo elastico equivalente	Eeq	2644	MPa

Consolidamento del nucleo	Numero consolidamenti	Nb	41.0	-
	Diametro perforazione	D	0.1	m
	Lunghezza sovrapposizione	L	6.0	m
	Coefficiente sbulbatura	α	1	-
	Tensione aderenza barra/malta	τ	0.3	MPa
	Tensione caratteristica SLU	σb	400	MPa
	Diametro esterno	de	0.038	m
	Diametro interno	di	0.019	m
	Area resistente	Ab	0.001	m²
	Area del fronte di scavo	sb	84.95	m²
	Resistenza a rottura	T1	340.23	kN
	Resistenza a sfilamento	T2	565.49	kN
	Pressione di confinamento longitudinale	Δσ3	0.164	MPa
	Coesione migliorata	с'	1.623	MPa

Abbildung 18: Axialsymmetrisches Modell, plastifizierte Zone beim Vorhandensein von Stützmitteln

Illustrazione 18: Modello Assialsimmetrico, Zona plasticizzata in presenza dei consolidamenti

Abbildung 19: Axialsymmetrisches Modell, Extrusion an der Ortsbrust

Illustrazione 19: Modello Assialsimmetrico, Estrusione al fronte

	DISPLACEMENT
	UNIT(m)
	+0.088
	+0.082
	 2.2%
	2.9%
	2.6%
	2.8% +0.066
	+0.060
	+0.055
	+0.049
	2.8%
	3.3% .0.029
	4.1%
	5.2% +0.033
	+0.027
	+0.022
	+0.016
	 8.4% +0.011
	 14.4%
	 33.4%
	+0.000
 	
	Λ
 	
	é

Abbildung 20: Axialsymmetrisches Modell, radiale Konvergenz

Illustrazione 20: Modello assialsimmetrico, convergenza radiale

ANHANG 3 – FEM - ANALYSE DER AUßENSCHALE DES QUERSCHNITTS GA-T5

Diese Anlage führt die wichtigsten Outputs der FEM-Analysen des Schnitts GA-T5 an, die mit dem Rechenprogramm Midas GTS durchgeführt wurden.

APPENDICE 3 - ANALISI FEM DEL RIVESTIMENTO DI PRIMA FASE SEZIONE GA-T5

Nella presente appendice sono riportati i principali output delle analisi agli elementi finiti della sezione GA-T5 effettuate con il programma di calcolo Midas GTS.

A3.1 OUTPUT MODELLO FEM

A3.1 OUTPUTS MODELL FEM

Illustrazione 21: Spostamenti xy [mm] - fronte GA-T5

Abbildung 21: Verschiebungen xy [mm] Ortsbrust GA - T5

0.000

Abbildung 22: Plastifizierungen - Ortsbrust GA-T5

Abbildung 23: Verschiebungen xy [mm] bei 1.5m von der Ortsbrust GA-T5

Illustrazione 23: Spostamenti xy [mm] a 1.5m dal fronte GA-T5

Abbildung 24: Plastifizierungen bei 1.5m von der Ortsbrust GA-T5

Illustrazione 24: Plasticizzazioni a 1.5m dal fronte GA-T5

Abbildung 25: Vercshiebungen xy [mm] Ende Ausbruch GA-T5

Illustrazione 25: Spostamenti xy [mm] fine scavo GA-T5

Abbildung 26: Vertikalspannungen σ_{yy} [kN/m²] – Ende Ausbruch GA-T5

Abbildung 27: Horizontalspannung σ_{xx} [kN/m²] – Ende Ausbruch GA-T5

Abbildung 28: Plastifizierungen – Ende Ausbruch GA-T5

Illustrazione 28: Plasticizzazioni - fine scavo GA-T5

Abbildung 32: Axialverformung der Anker [-]

Seite / Pag. 71/173

Abbildung 33: Last aus der Gebirgsauflockerung auf die Innenschale Illustrazione 33: Carico di allentamento sul rivestimento interno [kPa] [kPa] – Ende Ausbruch GA-T5 - fine scavo GA-T5

A3.2 NACHWEIS AUßENSCHALE

Nachfolgend führt man den Nachweis des Querschnitts GA-T5.

Nachweis Diagramm Wechselwirkung M-N

Im Bereich des Fußes des Widerlagers wurden die Höchswerte der Beanspruchungen vernachlässigt, da sie auf die theoretische Geometrie der mesh zurückzuführen sind, da durch die numerische Modellierung die Spannung konzentriert wird.

A3.2 VERIFICHE RIVESTIMENTO PRIMA FASE

Nel seguito viene verificata la sezione GA-T5.

Verifiche diagramma di interazione M-N

In corrispondenza del piede della muretta sono stati trascurati i picchi di sollecitazione in quanto dovuti alla geometria teorica della mesh che con la modellazione numerica genera delle concentrazioni di sforzi.

Abbildung 34: Nummerierung der Knoten des numerischen Modells

Illustrazione 34: Numerazione dei nodi del modello numerico

	х	Y	N ₁ ,	Mı	N	Ma	FS
	[m]	[m]	[kN]	[kNm]	[kNm]	[kN]	[_]
1	-4 680	-0.187	-936.00	-10.97	-1216.80	-14 26	4 33
2	-4 789	0.331	-1502.00	-6.93	-1952.60	-9.01	2.91
3	-4 882	0.853	-1730.00	0.30	-2249.00	1.02	2.64
4	-4 957	1 377	-1925.00	6.11	-2502.50	7.94	2.04
5	-5.013	1.877	-2099.00	-13 13	-2728 70	-17.07	2.00
5	-5.013	2 370	-2033.00	-13.13	-2082 20	-17.07	1 77
7	-5.034	2.373	-2234.00	-23.32	-2302.20	-10.05	1.77
8	-5.000	2.001	-2649.00	7 73	-3443 70	10.05	1.68
9	-5.000	3 378	-2759.00	17 38	-3586 70	22 59	1.55
10	-5.085	3.875	-2846.00	1/ 60	-3699.80	10 10	1.53
10	-5.003	4 371	-2040.00	-5.65	-3790.80	-7 35	1.53
12	-5.005	4.371	-2910.00	-0.00	-3859.70	-7.55	1.54
12	-4 943	5 363	-3011.00	-2.45	-3914 30	-3.18	1.55
14	-4 530	6.804	-3071.00	-16.65	-3002.30	-21.65	1.01
14	-4.333	6 336	-3059.00	-10.00	-3976 70	-21.00	1 38
16	-4.714	5 853	-3038.00	-23.00	-39/0.70	-23.30	1.30
10	-4 317	7 252	-3069.00	-20.93	-3989 70	-27.21	1.40
17	-4.053	7.675	-3003.00	-20.93	-4019.60	-27.21	1.33
10	-3 746	8.070	-3112.00	-5.60	-4045.60	-7.28	1.45
20	-3 400	8.431	-3073.00	-10.16	-3094 00	-13.21	1.43
20	-3.021	8 756	-3015.00	_1 99	-3919 50	-2.59	1.44
21	-2.610	0.730 0.041	-2950.00	3.00	-3835.00	3.90	1.51
23	-2 173	9 283	-2868.00	-13 13	-3728.40	-17.07	1.54
20	-1 714	9.200	-2829.00	-2.89	-3677.70	-3.76	1.61
25	-1 237	9.628	-2774 00	4 38	-3606.20	5.69	1.61
26	-0.747	9 729	-2685.00	-7 71	-3490.50	-10.02	1.66
20	-0.250	9 779	-2647.00	-5.81	-3441 10	-7.55	1.60
28	0.250	9 779	-2713.00	-6.56	-3526.90	-8.53	1.65
29	1 714	9 479	-2877.00	-1.55	-3740 10	-2.02	1.59
30	1.237	9.628	-2850.00	4.90	-3705.00	6.38	1.58
31	0.747	9.729	-2798.00	-6.92	-3637.40	-8.99	1.60
32	3.021	8.756	-3076.00	-2.88	-3998.80	-3.74	1.48
33	2.610	9.041	-3014.00	2.30	-3918.20	3.00	1.51
34	2.173	9,283	-2955.00	-13.33	-3841.50	-17.33	1.48
35	4.053	7.675	-3068.00	-7.64	-3988.40	-9.94	1.46
36	3.746	8.070	-3094.00	-5.97	-4022.20	-7.76	1.45
37	3.400	8.431	-3115.00	-10.86	-4049.50	-14.12	1.42
38	4.714	6.336	-3030.00	-24.38	-3939.00	-31.69	1.39
39	4.539	6.804	-3011.00	-21.22	-3914.30	-27.59	1.41
40	4.317	7.252	-3019.00	-17.77	-3924.70	-23.10	1.43
41	5.016	4.868	-2949.00	-4.10	-3833.70	-5.32	1.53
42	4.943	5.363	-2989.00	-3.98	-3885.70	-5.17	1.51
43	4.843	5.853	-3020.00	-12.47	-3926.00	-16.21	1.45
44	5.090	3.372	-2725.00	17.39	-3542.50	22.61	1.57
45	5.085	3.872	-2826.00	12.99	-3673.80	16.89	1.55
46	5.063	4.371	-2894.00	-7.63	-3762.20	-9.91	1.54
47	4.957	1.377	-2152.00	7.33	-2797.60	9.53	2.06
48	5.013	1.874	-2334.00	-15.89	-3034.20	-20.66	1.83
49	5.054	2.373	-2468.00	-31.73	-3208.40	-41.25	1.62
50	4.554	-0.702	-990.10	54.64	-1287.13	71.03	2.59
51	4.680	-0.187	-1549.00	-17.92	-2013.70	-23.30	2.62
52	4.789	0.331	-1796.00	-13.09	-2334.80	-17.02	2.36
53	4.882	0.853	-1991.00	-0.12	-2588.30	-0.16	2.31

	х	Y	N _k	M _k	N _d	M _d	FS
	[m]	[m]	[kN]	[kNm]	[kNm]	[kN]	[-]
54	4.55	-0.70	-539.20	54.64	-700.96	71.03	3.71
55	3.65	-1.11	-810.40	-26.78	-1053.52	-34.81	4.73
56	3.18	-1.28	-858.90	-17.04	-1116.57	-22.15	5.04
57	2.70	-1.43	-893.70	-6.38	-1161.81	-8.30	5.44
58	2.22	-1.56	-984.70	3.39	-1280.11	4.40	5.12
59	1.73	-1.65	-1094.00	7.55	-1422.20	9.81	4.46
60	1.24	-1.73	-1040.00	9.21	-1352.00	11.97	4.60
61	0.75	-1.78	-1010.00	5.51	-1313.00	7.17	4.89
62	0.25	-1.80	-996.50	2.61	-1295.45	3.39	5.10
63	-0.25	-1.80	-984.10	2.41	-1279.33	3.13	5.17
64	-0.75	-1.78	-975.70	4.18	-1268.41	5.43	5.12
65	-1.24	-1.73	-956.60	8.16	-1243.58	10.61	5.02
66	-1.73	-1.65	-962.80	7.85	-1251.64	10.21	5.01
67	-2.22	-1.56	-944.60	3.35	-1227.98	4.35	5.33
68	-2.70	-1.43	-984.80	-8.50	-1280.24	-11.05	4.87
69	-3.18	-1.28	-923.80	-16.77	-1200.94	-21.80	4.75
70	-3.65	-1.11	-851.00	-25.42	-1106.30	-33.05	4.64
71	-4.11	-0.92	-795.00	-38.98	-1033.50	-50.67	4.12
72	-4.55	-0.70	-518.70	53.87	-674.31	70.03	3.77

A3.3 NACHWEIS STABILITÄT DER ORTSBRUST

Nachfolgend gibt man die Plots der axialsymmetrischen Analysen für den Querschnitt GA-T5 wieder.

Analysen ohne Befestigungsmaßnahmen

Die Analyse wurde ohne Befestigungsmaßnahmen an der Ortsbrust und ohne Außenschale sowie für Schritte von 1.5 m ausgeführt.

A3.3 VERIFICHE STABILITÀ DEL FRONTE

Nel seguito si riportano i plot delle analisi assialsimmetriche eseguite per la sezione GA-T5.

Analisi senza interventi di consolidamento

L'analisi è stata eseguita in assenza di interventi di consolidamento del fronte e di assenza dei rivestimenti di prima fase e per tappe di 1.5 metri.

Abbildung 35: Axialsymmetrisches Modell, plastifizierte Zone, ohne Nägel Illustrazione 35: Modello Assialsimmetrico, Zona plasticizzata in assenza di ancoraggi al fronte

Abbildung 36: Axialsymmetrisches Modell; Extrusion an der Ortsbrust

Illustrazione 36: Modello Assialsimmetrico, Estrusione al fronte

Abbildung 37: Axialsymmetrisches Modell, radiale Konvergenz

Illustrazione 37: Modello assialsimmetrico, convergenza radiale

Analyse mit Konsolidierungen

Die Analyse wurde mit Vorhandensein der Ortsbrustsicherung und am Umriss durchgeführt, mit einem Schritt von 1.5 m, wobei eine Mindestüberlappung von 6 m der Anker an der Ortsbrust berücksichtigt wurden.

Um den Beitrag der Konsolidierungen abzuschätzen, wird eine fiktive Erhöhung der Kohäsion Δc am befestigten Gebirge angebracht, die mit dem Begrenzungsdruck σ_3 (Resultierende der Zugfestigkeit eines Einschlusses dividiert durch Einflussbereich) zusammenhängt:

Analisi con interventi di consolidamento

L'analisi è stata eseguita con la presenza di interventi di consolidamento del fronte e al contorno per tappe di 1.5 metri, tenendo conto della sovrapposizione minima di 6 metri per gli ancoraggi al fronte.

La stima del contributo fornito dai consolidamenti è effettuata applicando un incremento di coesione fittizio Δc all'ammasso consolidato, legato alla pressione di confinamento σ_3 (risultante della resistenza a trazione di un incluso divisa per la sua area d'influenza):

$$\Delta \sigma_3 = \min \left[T_f = \pi \cdot D \cdot \alpha \cdot L \cdot \tau_a; T_f = \sigma_b \cdot A_b \right] \cdot \left(\frac{N_b}{A_b} \right)$$

$$\Delta c = \frac{\cos\varphi}{2(1-\sin\phi)} \cdot \Delta\sigma_3$$

Mit:

- $\Delta \sigma_3 = \text{Begrenzungsdruck}$
- N_b = Anzahl der Anker an Ortsbrust
- A_b = Widerstandsfläche des Ankers
- σ_b = Zug-Bruchfestigkeit
- D = Durchmesser Bohrung
- α = Wulstkoeffizient
- L = Länge Überlappung
- s_l = seitliche Oberfläche des Ankers
- τ_a = Haftfestigkeit zwischen Anker und Mörtel (oder zwischen Mörtel und Boden)

Was hingegen die Befestigung des Umrisses des Hohlraums betrifft, so wird der Ansatz nach Hoek und Ribacchi, analog zum Dokument [12], angewandt. Man nimmt eine befestigte Zone von 1 m Quergröße an und führt eine Abfolge von gewichteten Durchschnitten durch mit Bezug auf die Widerstandsfläche der einzelnen Komponenten (Gebirge und Zementinjektion) und berechnet die äquivalenten Werte des Elastizität-und des Kohäsionsmodul: In cui:

- $\Delta \sigma_3$ = pressione di confinamento
- N_b = numero delle barre al fronte
- A_b = area resistente della barra
- σ_b = resistenza di rottura a trazione
- D = diametro di perforazione
- α = coefficiente di sbulbatura
- L = lunghezza di sovrapposizione
- s_l = superficie laterale della barra
- τ_a = tensione di aderenza tra barra e malta (o tra malta e terreno)

Per quanto riguarda il consolidamento del contorno del cavo viene adottato l'approccio di Hoek e Ribacchi analogamente al Doc.[12]. Si considera una porzione di zona consolidata avente dimensione trasversale di 1m e si esegue un processo di medie pesate con riferimento all'area ed alla resistenza di ogni singolo componente (ammasso e iniezione cementizia), calcolando valori equivalenti di modulo elastico e coesione:

$$\sigma_{cm,eq} = \frac{\sigma_{cm} \cdot A_{rock} + R_c \cdot A_c}{A_{TOT}}$$
$$c_{eq} = \sigma_{cm,eq} \cdot \frac{1 - \sin \varphi}{2 \cos \varphi}$$
$$E_{eq} = \frac{E_{rock} \cdot A_{rock} + E_c \cdot A_c}{A_{TOT}}$$

Mit:

- σ_{cm} Druckfestigkeit des urspr. Gebirges, die der einaxialen Druckfestigkeit entspricht;
- A_{rock} Oberfläche des nicht befestigten Gebirges;
- R_c Widerstand der injizierten Mischung;
- A_c von der Injektion betroffene Fläche.

Dove:

- σ_{cm} è la resistenza dell'ammasso originario pari alla resistenza a compressione monoassiale;
- A_{rock} è la superficie dell'ammasso non consolidato;
- R_c è la resistenza della miscela iniettata;
- A_c è l'area interessata dall'iniezione.

0	Angolo d'attrito di picco	Ф'р	22.3	o
าลระ	Angolo d'attrito residuo	Φ'r	18.6	0
um I	Angolo di dilatanza	ψ	1.9	0
<u>ici</u>	Coesione di picco	c'p	0.754	MPa
ecni	Coesione residua	c' _r	0.55	MPa
eot	Resistenza a compressione uniassiale di picco	$\sigma_{\text{cm,p}}$	2.248	MPa
Г. Ю	Resistenza a compressione uniassiale residua	$\sigma_{\text{cm,r}}$	1.531	MPa
met	Pendenza curva σ1/3	k	2.223	-
arai	Modulo elastico	Em	1000	MPa
ď	Coefficiente di Poisson	ν	0.21	-

iri	Raggio tunnel	r _o	5.2	m
met	Copertura	h	375	m
araı tun	Peso specifico roccia	γ _r	27	kN/m ³
4	Pressione idrostatica	p ₀	10.13	MPa

	Passo longitudinale	il	3.0	m
-	Passo trasversale	it	0.75	m
	Numero barre / m ²	n	0.444	-
orno	area barra	Ab	0.015	m ²
onto	Diametro corona	dc	0.1	m
	Coefficiente sbulbatura	α	1.3	-
to	Area di iniezione	Ac	0.013	m²
nen	Resistenza iniezione	Rc	25	MPa
dan	Modulo elastico iniezione	Ec	25000	MPa
soli	Resistenza equivalente picco	R _{p,eq}	2.393	MPa
Con	Resistenza equivalente residua	R _{r,eq}	1.675	MPa
0	Coesione di picco equivalente	C _{p,eq}	0.802	MPa
	Coesione residua equivalente	C _{r,eq}	0.602	MPa
	Modulo elastico equivalente	Eeq	1144	MPa

	Numero consolidamenti	Nb	58.0	-
	Diametro perforazione	D	0.1	m
	Lunghezza sovrapposizione	L	6.0	m
cleo	Coefficiente sbulbatura	α	1	-
onu	Tensione aderenza barra/malta	τ	0.3	MPa
del	Tensione caratteristica SLU	σb	650	MPa
to	Diametro esterno	de	0.051	m
ner	Diametro interno	di	0.038	m
idar	Area resistente	Ab	0.001	m ²
losı	Area del fronte di scavo	sb	84.95	m ²
Cor	Resistenza a rottura	T1	590.66	kN
-	Resistenza a sfilamento	T2	565.49	kN
	Pressione di confinamento longitudinale	$\Delta \sigma 3$	0.386	MPa
	Coesione migliorata	с'	0.932	MPa

Abbildung 38: Axialsymmetrisches Modell, plastifizierte Zone mit Befestigungen

Abbildung 39: Axialsymmetrisches Modell, Extrusion an der Ortsbrust

DISPLACEMENT
DXZ UNIT(m)
0.4%
+0.514
2.8% +0.480
2.8%
2.8%
2.9% +0.343
+0.308
+0.274
4.1% +0.240
5.2% +0.171
5.7%
6.6% +0.103
 14.5%
 +0.034
•

Abbildung 40: Axialsymmetrisches Modell, radiale Konvergenz

Illustrazione 40: Modello assialsimmetrico, convergenza radiale

ANHANG 4 - FEM- ANALYSEN DER INNENSCHALE

Die Anlage 4 führt die graphischen Darstellungen und wichtigsten Outputs der Analysen für den Innenausbau an, die mit dem Rechenprogramm Midas Gen durchgeführt wurden, sowie die Nachweise GZG und GZT.

APPENDICE 4 - ANALISI FEM DEL RIVESTIMENTO DEFINITIVO

L'appendice 4 contiene le rappresentazioni grafiche dei principali input e output dell'analisi del rivestimento definitivo condotte con il programma MIDAS Gen, oltre alle opportune verifiche sezionali allo SLU e SLE.

Figure 1 GA-T4-T5 cross section

N

Figure 3 Element local axis

ID	Name	Area (m^2)	Asy (m^2)	Asz (m^2)	lxx (m^4)	lyy (m^4)	lzz (m^4)	Сур (m)	Cym (m)	Czp (m)	Czm (m)
1	100 x 60	0.6000	0.5000	0.5000	0.0451	0.0180	0.0500	0.5000	0.5000	0.3000	0.3000
2	100 x 66	0.6600	0.5500	0.5500	0.0566	0.0240	0.0550	0.5000	0.5000	0.3300	0.3300
3	100 x 65	0.6500	0.5417	0.5417	0.0546	0.0229	0.0542	0.5000	0.5000	0.3250	0.3250
4	100 x 70	0.7000	0.5833	0.5833	0.0649	0.0286	0.0583	0.5000	0.5000	0.3500	0.3500
5	100 x 75	0.7500	0.6250	0.6250	0.0759	0.0352	0.0625	0.5000	0.5000	0.3750	0.3750
6	100 x 80	0.8000	0.6667	0.6667	0.0876	0.0427	0.0667	0.5000	0.5000	0.4000	0.4000
7	100 x 85	0.8500	0.7083	0.7083	0.0999	0.0512	0.0708	0.5000	0.5000	0.4250	0.4250
8	100 x 90	0.9000	0.7500	0.7500	0.1128	0.0607	0.0750	0.5000	0.5000	0.4500	0.4500
9	100 x 95	0.9500	0.7917	0.7917	0.1264	0.0714	0.0792	0.5000	0.5000	0.4750	0.4750

Table 1 Section characteristic

.

Table 2 Material parameters

ID	Name	Туре	Code	Elasticity (kN/m^2)	Poisson	Thermal (1/[F])	Density (kN/m^3)	Mass Density (kN/m^3/g)
1	C30/37	Concrete	NTC2008	3.30e+007	0.2	1e-005	2.50e+001	2.5493e+0
2	B450C	Rebar steel	NTC2008	21.0e+007	0.2	0	7.85e+001	7.850 e+0

Figure 5 Node numbering

Table 3 Bounderies parameters

.

Node	Туре	SDx (kN/m)	SDz (kN/m)	Stiffness (kN/m)	Direction	Multi-Linear Type	cx (m)	cy (kN)	dx (m)	dy (kN)
1	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
1	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
2	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
2	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
3	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
3	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
4	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
4	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
5	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
5	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
6	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
6	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
7	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
7	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
8	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
8	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
9	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
9	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
10	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
10	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
11	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
11	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
12	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
12	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
13	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0

Node	Туре	SDx (kN/m)	SDz (kN/m)	Stiffness (kN/m)	Direction	Multi-Linear Type	cx (m)	cy (kN)	dx (m)	dy (kN)
13	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
14	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
14	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
15	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
15	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
16	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
16	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
17	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
17	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
18	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
18	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
19	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
19	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
20	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
20	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
21	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
21	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
22	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
22	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
23	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
23	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
24	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
24	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
25	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
25	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
26	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
26	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
27	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
27	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
28	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
28	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
29	Linear	18000.0	0.0	0.0	Dx(+)	Unsymmetric	0.0	0.0	0.0	0.0
29	Componly	0.0	0.0	55000.0	Dz(-)	Unsymmetric	0.0	0.0	0.0	0.0
30	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	9300.0
31	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	9300.0
32	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	9300.0
33	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	9300.0
34	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
35	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
36	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
37	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
38	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
39	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
40	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
40	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
42	Multi-Linear	0.0	0.0	0.0	Dz(-)		0.01	150.0	0.10	5300.0
42	Multi-l incor	0.0	0.0	0.0	$D_{7}(-)$		0.01	150.0	0.10	5300.0
-+-3 ///	Multi-Linear	0.0	0.0	0.0	$D_{z}(-)$		0.01	150.0	0.10	5300.0
44	Multi-Linear	0.0	0.0	0.0	$D_{Z}(-)$		0.01	150.0	0.10	5300.0
40	Multi Lincor	0.0	0.0	0.0	$D_{2}(-)$	Unsymmetric	0.01	150.0	0.10	5300.0
40	Multi-Linear	0.0	0.0	0.0	$D_2(-)$	Unsymmetric	0.01	150.0	0.10	5300.0
41	Multi-Linear	0.0	0.0	0.0	$D_{Z}(-)$	Lineymmetric	0.01	150.0	0.10	5300.0
40		0.0	0.0	0.0	$D_2(-)$		0.01	150.0	0.10	5300.0
49	wuiti-Linear	0.0	0.0	0.0	DZ(-)	Unsymmetric	0.01	100.0	0.10	0.0080

Node	Туре	SDx (kN/m)	SDz (kN/m)	Stiffness (kN/m)	Direction	Multi-Linear Type	cx (m)	cy (kN)	dx (m)	dy (kN)
50	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
51	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
52	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
53	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
54	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
55	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
56	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
57	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
58	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
59	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
60	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
61	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
62	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
63	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
64	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
65	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
66	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
67	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
68	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
69	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
70	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
71	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
72	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	5300.0
73	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	9300.0
74	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	9300.0
75	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	9300.0
76	Multi-Linear	0.0	0.0	0.0	Dz(-)	Unsymmetric	0.01	150.0	0.10	9300.0

A.4.2. Load for cross section GA-T4-T5

N

.

Figure 7 Load G3

~_

Figure 9 Rock Load G5 for cross section GA-T4

Figure 10 Rock Load G5 for cross section GA-T5

~_

Figure 11 Load G6 SLU

Figure 12 Load G6 SLE

.

Figure 14 Load Q1 E (Temperature gradient)

Figure 15 Load Q1 I (Costant temperature)

N

Figure 16 Load Q1 I (Temperature gradient)

Figure 17 Load A1 P Paramenti (pression on paraments – Deck reaction)

~

Figure 18 Load A1 P Paramenti (pression on paraments)

Figure 19 Load A1 A Paramenti (aspiration on paraments – Deck reaction)

N

Figure 20 Load A1 A Paramenti (aspiration on paraments)

Figure 21 Load A1 P Volta (pression on crown – Deck reaction)

Figure 22 Load A1 P Volta (pression on crown)

Figure 23 Load A1 A Volta (aspiration on crown – Deck reaction)

N

Figure 24 Load A1 A Volta (aspiration on crown)

A.4.3. Load combinations

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NU	JM	NAME ACTIVE LOADCASE(FACTO	TYPE DR) +	LOADCASE(FA	ACTOR) +	LOADCASE(FACTOR)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	Inactive A G1(1.350) +	dd Q1 - E	E(1.500)		
3 3 Inactive Add G1(1350) + G2(1.350) + G3(1.000) 4 4 Inactive Add G1(1350) + G2(1.350) + G3(1.000) 5 5 Inactive Add G1(1.350) + G2(1.350) + G3(1.000) 6 6 Inactive Add G1(1.350) + G2(1.350) + G3(1.000) 7 11 Inactive Add G1(1.300) + G2(1.350) + G3(1.000) 7 11 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 8 12 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 8 12 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 9 21 Strength/Stress Add G1(1.100) + G5(1.000) + G1 - E(0.600) 11 SLE - 1 Inactive Add G1(1.000) + G2(1.000) + G1 - I(1.000) 12 SLE - 2 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 13 SLE - 3 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 14 SLE - 4 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 15 SLE - 5 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 16 SLE - 6 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 17 SLE - 1 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 10 22 Strength/Stress Add G1(1.000) + G5(1.000) + G1 - I(1.000) 11 SLE - 1 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 12 SLE - 2 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 13 SLE - 3 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 14 SLE - 4 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 15 SLE - 5 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 16 SLE - 6 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 17 SLE - 6 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 18 SLE - 1 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 19 SLE - 6 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 10 SLE - 6 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 11 SLE - 1 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 12 SLE - 1 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 13 SLE - 1 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 14 SLE - 1 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 15 SLE - 5 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 16 SLE - 6 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) 17 SLE - 7 Inactive Add G1(1.000) + G3(1.000) 18 SLE - 7 Inactive Add G1(1.000) + G3(1.000) 19 SLE -	2	2	Inactive A G1(1.350) +	dd G6 - SL	-U(1.000) +	Q1 - I(1.500)
4 4 Inactive Add $G(1, 1360) + G(2, 1360) + G(2, 1360) + G(3, 1.000)$ 5 5 Inactive Add $G(1, 1360) + G(2, 1360) + G(3, 1.000)$ 6 6 Inactive Add $G(1, 1360) + G(2, 1360) + G(3, 1.000)$ 6 6 Inactive Add $G(1, 1360) + G(2, 1.360) + G(3, 1.000)$ 7 11 Inactive Add $G(1, 1360) + G(2, 1.360) + G(3, 1.000)$ 7 11 Inactive Add $G(1, 1000) + G(2, 1.000) + G(3, 1.000)$ 8 12 Inactive Add $G(1, 1.000) + (1 - 1(1.000))$ 9 21 Strength/Stress Add $G(1, 1.000) + G(1, 1.$	3 +	3	Inactive A G1(1.350) + Q1 - E(1.500)	dd G2((1.350) +	G3(1.000)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	 4 +	4	Inactive A G1(1.350) + G6 - SLU(1.000) +	dd G2(Q1	(1.350) + - I(1.500)	G3(1.000)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5 +	5	Inactive A G1(1.350) + G4(1.350) +	dd G2(G5	(1.350) + (1.350) +	G3(1.000) Q1 - E(1.500)	
$7 11 \\ Inactive Add \\ G1(1.000) + G2(1.000) + G3(1.000) \\ (G1(1.000) + G2(1.000) + A1 - P(1.000) \\ (G1(1.000) + G2(1.000) + A1 - A(1.000) \\ (G1(1.000) + G1 - I(0.600) + A1 - A(1.000) \\ (G1(1.000) + G5(1.000) + G1 - E(0.600) \\ (G1(1.000) + G5(1.000) + G6 - SLU(1.000) \\ (G1(1.000) + G5(1.000) + G6 - SLU(1.000) \\ (G1(1.000) + G1 - E(1.000) \\ (G1(1.000) + G2(1.000) + G1 - E(1.000) \\ (G1(1.000) + G2(1.000) + G1 - E(1.000) \\ (G1(1.000) + G2(1.000) + G1 - I(1.000) \\ (G1(1.000) + G2(1.000) + G3(1.000) \\ (G1(1.000) + G2(1.000) + G3(1.000) \\ (G1(1.000) + G2(1.000) + G3(1.000) \\ (G1(1.000) + G2(1.000) + G1 - I(1.000) \\ (G1(1.000) + G2(1.000) + G3(1.000) \\ (G1(1.000) + G2(1.000) + G1 - I(1.000) \\ (G1(1.000) + G2(1.000) + G3(1.000) \\ (G1(1.000) + G3($	6 + +	6	Inactive A G1(1.350) + G4(1.350) + Q1 - I(1.500)	dd G2(G5	(1.350) + (1.350) +	G3(1.000) G6 - SLU(1.000))
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	7 +	11	Inactive A G1(1.000) + Q1 - E(0.600) +	Add G2(A1 -	(1.000) + P(1.000)	G3(1.000)	
9 21 Strength/Stress Add G1(1.000) + G5(1.000) + Q1 - E(0.600) 10 22 Strength/Stress Add G1(1.000) + G5(1.000) + G6 - SLU(1.000) 11 SLE - 1 Inactive Add G1(1.000) + Q1 - E(1.000) 12 SLE - 2 Inactive Add G1(1.000) + G6 - SLE(1.000) + Q1 - I(1.000) 13 SLE - 3 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) + Q1 - E(1.000) 14 SLE - 4 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) + G6 - SLE(1.000) + G1 - I(1.000) 15 SLE - 5 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) + G4(1.000) + G2(1.000) + G1 - E(1.000) 16 SLE - 6 Inactive Add G1(1.000) + G2(1.000) + G3(1.000) + G4(1.000) + G2(1.000) + G3(1.000) + G4(1.000) + G2(1.000) + G3(1.000) + G4(1.000) + G5(1.000) + G4(1.000) + G4(1.000) + G4(1.000) + G4(1.000) + G4(1.000) + G4(1.000) + G4(1.000) + G4(1.000) + G4(1.000) + G4(1.000) + G4(1.000) +	8 +	12	Inactive A G1(1.000) + G6 - SLU(1.000) +	Add G2(Q1	(1.000) + - I(0.600) +	G3(1.000) A1 - A(1.00	0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	21	Strength/Stress G1(1.000) +	Add G5((1.000) +	Q1 - E(0.600)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	22	2 Strength/Stress G1(1.000) +	s Add G5((1.000) +	G6 - SLU(1.000))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	S	LE - 1 Inactive G1(1.000) +	Add Q1 - E	E(1.000)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	S	LE - 2 Inactive G1(1.000) +	Add G6 - SL	.E(1.000) +	Q1 - I(1.000))
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	13 +	S	LE - 3 Inactive G1(1.000) + Q1 - E(1.000)	Add G2((1.000) +	G3(1.000)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 +	S	LE - 4 Inactive G1(1.000) + G6 - SLE(1.000) +	Add G2(Q1	(1.000) + - I(1.000)	G3(1.000)	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	15 +	S	LE - 5 Inactive G1(1.000) + G4(1.000) +	Add G2(G5	(1.000) + (1.000) +	G3(1.000) Q1 - E(1.000)	
	16 + +	S	LE - 6 Inactive G1(1.000) + G4(1.000) + Q1 - I(1.000)	Add G2(G5	(1.000) + (1.000) +	G3(1.000) G6 - SLE(1.000))

A.4.4. Output and check result for cross section GA-T4

A.4.4.1. Load combination SLU 1

Beam Diagram_Fz / ST_ N1

~

~_

Beam Diagram_Fz / ST_ N3

~

Beam Diagram_Fz / ST_ N5

9₆

~

N

Beam Diagram_Fz / ST_ N11

A.4.4.8. Load combination SLU 12

~

ENT-y 58.01 46.86 35.70 24.55 13.40

0.00 -8.90 -20.05

-31.20 -42.35 -53.50 -64.65

Beam Diagram_Fz / ST_ N21

9₆

midas Gen POST-PROCESSOR BEAM DIAGRAM

MOMENT-y 312.49 252.32

192.15

A.4.4.11.	Rebared	sections	ratio	checking
-----------	---------	----------	-------	----------

	SECTION CHECKING													
MEMBER	SECTION PROPERTIES	fck	fyk		LOAD CB	LOAD CB			N_Ed	M_Edy	M_Edz	V_Rdc	V_Rds	V_Ed
SECTION	Bc (m) Hc (m)	[N/mm ²]	[N/mm ²]	CHECK	M-N iteration	v	Rebar	N_Rdmax	Ratio-N	Ratio-My	Ratio-Mz	Ratio-Vc	Ratio-Vs	Ratio-V
1	100 x 75	20.00	450.00	014	NE	112	44.2.546	401070	2343.550	477.547	0.000	282.447	-	65.765
5	1.00 0.75	30.00	450.00	OK	N5	N3	14-2-P16	10.979	0.399	0.402	0.000	0.233	-	0.233
2	100 x 75	20.00	450.00	OK	NE	NE	14.2.016	10'070	2268.970	466.027	0.000	511.767	-	212.282
5	1.00 0.75	50.00	450.00	UK	N5	N5	14-2-P10	10 979	0.386	0.392	0.000	0.415	-	0.415
3	100 x 66	30.00	450.00	OK	N5	N5	14-2-P16	9'784	2187.970	427.147	0.000	453.567	-	369.808
2	1.00 0.66	50.00	450.00	ÖK	NS	115	14 2 1 10	5704	0.440	0.444	0.000	0.815	-	0.815
4	100 x 90	30.00	450.00	ОК	N5	N5	14-2-P18	13'239	2091.160	359.259	0.000	565.449	-	424.955
8	1.00 0.90				_	-	_		0.240	0.242	0.000	0.752	-	0.752
5	100 x 90	30.00	450.00	ОК	N5	N5	14-2-P18	13'239	2012.870	286.398	0.000	554.359	-	435.400
8	1.00 0.90								0.215	0.213	0.000	0.785	-	0.785
6	1.00 0.00	30.00	450.00	OK	N5	N5	14-2-P18	13'239	1960.390	225.784	0.000	546.924	-	407.431
0 7	100 0.90								1995 470	162 252	0.000	526 210	-	209 516
8	1.00 0.90	30.00	450.00	OK	N5	N5	14-2-P18	13'239	0 173	0 175	0.000	0 743	-	0 743
8	100 x 90								1835 210	61 473	0.000	529 190	-	346 357
8	1.00 0.90	30.00	450.00	OK	N5	N5	14-2-P18	13'239	0.149	0.149	0.000	0.655	-	0.655
9	100 x 90								1797.260	105.604	0.000	522,729	-	304.073
8	1.00 0.90	30.00	450.00	OK	N6	N5	14-2-P18	13'239	0.155	0.154	0.000	0.582	-	0.582
10	100 x 90								1779.010	208.548	0.000	519.699	-	212.697
8	1.00 0.90	30.00	450.00	ОК	N6	N5	14-2-P18	13'239	0.177	0.179	0.000	0.409	-	0.409
11	100 x 90							401000	1765.250	270.383	0.000	517.917	-	126.552
8	1.00 0.90	30.00	450.00	OK	N6	N5	14-2-P18	13'239	0.192	0.196	0.000	0.244	-	0.244
12	100 x 90	20.00	450.00	01	NG	NE	14.2.010	12/220	1754.470	305.108	0.000	517.230	-	73.860
8	1.00 0.90	30.00	450.00	UK	IND	IN 5	14-2-P18	13 239	0.202	0.206	0.000	0.143	-	0.143
13	100 x 90	20.00	450.00	OK	NG	NA	14 2 D19	12'220	1747.890	317.706	0.000	300.020	-	31.520
8	1.00 0.90	50.00	450.00	UK	IND	114	14-2-P16	15 259	0.208	0.206	0.000	0.105	-	0.105
14	100 x 90	20.00	450.00	OK	NE	NG	14 2 019	12'220	1738.170	315.251	0.000	515.980	-	64.971
8	1.00 0.90	30.00	430.00	UK	N3	NO	14-2-118	13 239	0.204	0.208	0.000	0.126	-	0.126
15	100 x 90	30.00	450.00	OK	NG	NZ	1/L-2-D18	12'230	1744.210	284.320	0.000	300.398	-	25.524
8	1.00 0.90	30.00	430.00	ÖK	110	114	14-2-1 10	15 255	0.197	0.196	0.000	0.085	-	0.085
16	100 x 90	30.00	450.00	ОК	N6	N4	14-2-P18	13'239	1747.800	283.853	0.000	300.020	-	31.275
8	1.00 0.90	50.00	150100	0.0			112110	10 200	0.197	0.196	0.000	0.104	-	0.104
17	100 x 90	30.00	450.00	ОК	N5	N4	14-2-P18	13'239	1751.620	269.254	0.000	299.375	-	39.466
8	1.00 0.90								0.191	0.195	0.000	0.132	-	0.132
18	100 x 90	30.00	450.00	ОК	N6	N5	14-2-P18	13'239	1765.560	254.413	0.000	517.908	-	109.520
8	1.00 0.90								0.189	0.190	0.000	0.211	-	0.211
19	100 x 90	30.00	450.00	ОК	N5	N5	14-2-P18	13'239	1776.120	196.992	0.000	519.740	-	196.265
8	1.00 0.90								0.174	0.176	0.000	0.378	-	0.378
20	100 x 90	30.00	450.00	ОК	N6	N5	14-2-P18	13'239	1800.920	105.782	0.000	523.194	-	270.905
8	1.00 0.90								0.155	0.154	0.000	0.518	-	0.518
21 o	1 00 1 000	30.00	450.00	ОК	N5	N5	14-2-P18	13'239	1020.070	0 152	0.000	0 700	-	0 722
0 22	100 v 00								1880 760	171.015	0.000	535 642	-	/13 51/
8	1 00 0 90	30.00	450.00	ОК	N5	N5	14-2-P18	13'239	0.176	0.175	0.000	0 772	-	413.314 0.772
23	100 x 90		<u> </u>					1	1952.160	242.648	0,000	545.758	-	441.125
8	1.00 0.90	30.00	450.00	OK	N5	N5	14-2-P18	13'239	0.198	0.200	0.000	0.808	-	0.808
24	100 x 90				N	• /=		10/	2007.390	303.462	0.000	553.582	-	458.724
8	1.00 0.90	30.00	450.00	ОК	N5	N5	14-2-P18	13'239	0.218	0.220	0.000	0.829	-	0.829
25	100 x 90								2094.750	368.442	0.000	565.958	-	405.316
8	1.00 0.90	30.00	450.00	OK	N5	N5	14-2-P18	13'239	0.243	0.246	0.000	0.716	-	0.716
26	100 x 66	20.00	450.00		N	N.=	44.2.545	01=0.1	2194.670	430.321	0.000	453.567	-	321.913
2	1.00 0.66	30.00	450.00	ÜK	N5	N5	14-2-P16	9 /84	0.442	0.447	0.000	0.710	-	0.710
27	100 x 75	20.00	450.00	01/	NE	NE	14.2.010	10/070	2267.560	469.959	0.000	511.767	-	221.659
5	1.00 0.75	30.00	450.00	UK	N5	115	14-2-216	10.979	0.393	0.392	0.000	0.433	-	0.433
28	100 x 75	20.00	450.00	OF	NE	NO	14.2.016	10'070	2343.240	479.988	0.000	282.447	-	64.618
5	1.00 0.75	50.00	450.00	UK	IND	IN 3	14-2-210	10.818	0.399	0.404	0.000	0.229	-	0.229
29	100 x 95	30.00	450.00	OK	N5	N6	14-7-P18	13'904	2399.910	479.988	0.000	622.474	-	121.042
9	1.00 0.95	50.00	-50.00	UK		110	17 1-1 10	13 304	0.277	0.277	0.000	0.194	-	0.194
30	100 x 95	30.00	450.00	ОК	N5	N6	14-2-P18	13'904	2381.750	456.167	0.000	619.873	-	217.277
9	1.00 0.95	30.00		51			1.2.110	10 004	0.270	0.268	0.000	0.351	-	0.351

SECTION CHECKING													•		
MEMBER	SECTION P	ROPERTIES	fck	fyk	CUE OK	LOAD CB	LOAD CB	D ubuu		N_Ed	M_Edy	M_Edz	V_Rdc	V_Rds	V_Ed
SECTION	Bc (m)	Hc (m)	[N/mm ²]	[N/mm ²]	CHECK	M-N iteration	v	Rebar	№_катах	Ratio-N	Ratio-My	Ratio-Mz	Ratio-Vc	Ratio-Vs	Ratio-V
31	100	x 90	20.00	450.00	OK	NE	NG	14 2 D19	12'220	2353.550	409.996	0.000	602.895	-	335.094
8	1.00	0.90	50.00	450.00	UK	N5	NO	14-2-P10	15 259	0.270	0.276	0.000	0.556	-	0.556
32	100	x 85	30.00	450.00	ОК	N5	N6	14-2-P18	12'575	2327.430	271.828	0.000	575.946	-	307.329
7	1.00	0.85								0.248	0.250	0.000	0.534	-	0.534
33	100	x 80	30.00	450.00	ОК	N5	N6	14-2-P16	11'643	2308.310	149.890	0.000	543.914	-	234.126
3/	1.00	0.80 x 75								2288 270	67 360	0.000	0.430	-	208 287
5	1.00	0.75	30.00	450.00	ОК	N5	N6	14-2-P16	10'979	0.226	0.226	0.000	0.407	-	0.407
35	100	x 70								2259.450	73.527	0.000	479.491	-	176.760
4	1.00	0.70	30.00	450.00	ОК	N6	N6	14-2-P16	10'315	0.240	0.244	0.000	0.369	-	0.369
36	100	x 65	20.00	450.00	OK	NG	NG	14 2 D16	0'651	2244.610	105.287	0.000	447.071	-	137.122
3	1.00	0.65	30.00	430.00	UK	NO	NO	14-2-110	9031	0.270	0.270	0.000	0.307	-	0.307
37	100	x 60	30.00	450.00	ОК	NG	N6	14-2-P14	8'749	2230.490	133.797	0.000	414.489	-	134.345
1	1.00	0.60			-	-	-			0.316	0.314	0.000	0.324	-	0.324
38	100	x 60	30.00	450.00	ОК	N6	N5	14-2-P14	8'749	2218.490	140.695	0.000	414.489	-	94.861
20	1.00	0.60 x 60								0.317	140.605	0.000	0.229	-	157 527
1	1 00	0.60	30.00	450.00	ОК	N6	N5	14-2-P14	8'749	0.317	0.320	0.000	0 380	-	0.380
40	100	x 60								2165.470	125.882	0.000	414,489	-	217,491
1	1.00	0.60	30.00	450.00	ОК	N6	N5	14-2-P14	8'749	0.304	0.304	0.000	0.525	-	0.525
41	100	x 60	20.00	450.00	01/	NG	NE	44.2.044	01740	2164.300	66.570	0.000	414.489	-	175.756
1	1.00	0.60	30.00	450.00	OK	N6	N5	14-2-P14	8.749	0.275	0.271	0.000	0.424	-	0.424
42	100	x 60	20.00	450.00	OK	NE	NE	14.2.014	9'740	2155.520	91.914	0.000	414.489	-	217.637
1	1.00	0.60	50.00	450.00	UK	N5	N5	14-2-114	8 749	0.285	0.290	0.000	0.525	-	0.525
43	100	x 60	30.00	450.00	ОК	N5	N5	14-2-P14	8'749	2157.300	126.650	0.000	414.489	-	170.244
1	1.00	0.60								0.303	0.306	0.000	0.411	-	0.411
44	100	x 60	30.00	450.00	ОК	N5	N5	14-2-P14	8'749	2154.260	139.690	0.000	414.489	-	130.697
1	1.00	0.60 x 60								2155 090	120 600	0.000	0.315	-	125 106
45	1.00	0.60	30.00	450.00	ОК	N5	N6	14-2-P14	8'749	0 311	0 310	0.000	0 302	-	0 302
46	100 x 60	100 x 60								2144.720	135,185	0.000	414,489	-	154,470
1	1.00	0.60	30.00	450.00	ОК	N5	N6	14-2-P14	8'749	0.307	0.308	0.000	0.373	-	0.373
47	100 x 60	100 x 60	20.00	450.00	011		NG	44.2.044	01740	43.293	74.911	0.000	414.489	-	174.910
1	1.00	0.60	30.00	450.00	ÜK	N4	Nb	14-2-P14	8 749	0.299	0.295	0.000	0.422	-	0.422
48	100	x 60	30.00	450.00	ОК	N2	N6	14-2-P14	8'749	34.464	91.312	0.000	414.489	-	186.409
1	1.00	0.60	50.00	150100	U.K.				07.15	0.385	0.380	0.000	0.450	-	0.450
49	100	x 60	30.00	450.00	ОК	N4	N6	14-2-P14	8'749	27.219	103.625	0.000	414.489	-	189.082
50	1.00	0.60 x 60								0.448	0.445	0.000	0.450	-	192 176
1	1.00	0.60	30.00	450.00	ОК	N2	N6	14-2-P14	8'749	0.508	0.500	0.000	0 442	-	0.442
51	100	x 60								18.171	120.158	0.000	414.489	-	169.062
1	1.00	0.60	30.00	450.00	ОК	N2	N6	14-2-P14	8'749	0.541	0.532	0.000	0.408	-	0.408
52	100	x 60	20.00	450.00	OK	ND	NG	14 2 D14	8'740	16.661	122.199	0.000	414.489	-	147.226
1	1.00	0.60	50.00	450.00	UK	INZ	טאו	14-2-114	0 /49	0.533	0.542	0.000	0.355	-	0.355
53	100	x 60	30.00	450.00	ОК	N2	N6	14-2-P14	8'749	16.662	122.199	0.000	414.489	-	148.200
1	1.00	0.60			5				- / 13	0.533	0.542	0.000	0.358	-	0.358
54	100	x 60	30.00	450.00	ОК	N2	N6	14-2-P14	8'749	18.175	120.146	0.000	414.489	-	170.023
55	1.00	0.00 x 60								21 720	11/ 092	0.000	0.410	-	18/ 112
1	1.00	0.60	30.00	450.00	ОК	N2	N6	14-2-P14	8'749	0.509	0.500	0.000	0.444	-	0.444
56	100	x 60								27.230	103.584	0.000	414.489	-	189.980
1	1.00	0.60	30.00	450.00	ОК	N4	N6	14-2-P14	8'749	0.448	0.445	0.000	0.458	-	0.458
57	100	x 60	30.00	450.00	OF	ND	NG	14-2 D14	Q'7/0	34.476	91.265	0.000	414.489	-	187.258
1	1.00	0.60	30.00	450.00	UK	INZ	IND	14-2-114	0 /49	0.385	0.380	0.000	0.452	-	0.452
58	100	x 60	30.00	450.00	ОК	N5	N6	14-2-P14	8'749	2133.180	120.050	0.000	414.489	-	175.698
1	1.00	0.60					-		-	0.297	0.300	0.000	0.424	-	0.424
59	100	x 00 0 60	30.00	450.00	ОК	N5	N6	14-2-P14	8'749	2145.360	138.144	0.000	414.489	-	155.187
60	1.00	x 60				<u> </u>	[2155 800	142 956	0.000	0.374 414 490	-	125 74
1	1.00	0.60	30.00	450.00	ОК	N5	N6	14-2-P14	8'749	0.314	0.309	0.000	0.303	-	0.303

	SECTION CHECKING														
MEMBER	SECTION PR	ROPERTIES	fck	fyk		LOAD CB	LOAD CB			N_Ed	M_Edy	M_Edz	V_Rdc	V_Rds	V_Ed
SECTION	Bc (m)	Hc (m)	[N/mm ²]	[N/mm ²]	CHECK	M-N iteration	v	Rebar	N_Rdmax	Ratio-N	Ratio-My	Ratio-Mz	Ratio-Vc	Ratio-Vs	Ratio-V
61	100>	x 60								2155.040	142.956	0.000	414.489	-	130.166
1	1.00	0.60	30.00	450.00	ОК	N5	N5	14-2-P14	8'749	0.314	0.309	0.000	0.314	-	0.314
62	100 >	k 60		150.00					017.40	2158.140	130.182	0.000	414.489	-	169.806
1	1.00	0.60	30.00	450.00	OK	N5	N5	14-2-P14	8.749	0.306	0.305	0.000	0.410	-	0.410
63	100 >	k 60	20.00	450.00	01	NE	NE	14.2.014	01740	2156.400	95.664	0.000	414.489	-	217.297
1	1.00	0.60	30.00	450.00	UK	N5	IN 5	14-2-P14	8 749	0.288	0.288	0.000	0.524	-	0.524
64	100 >	k 60	20.00	450.00	OK	NG	NE	14.2.014	9'740	2157.370	103.730	0.000	414.489	-	257.909
1	1.00	0.60	50.00	450.00	UK	INO	N5	14-2-P14	8 749	0.293	0.288	0.000	0.622	-	0.622
65	100 >	k 60	20.00	450.00	OK	NG	NE	14 2 D14	Q'740	2165.180	121.414	0.000	414.489	-	142.076
1	1.00	0.60	30.00	430.00	UK	NO	113	14-2-114	0745	0.301	0.303	0.000	0.343	-	0.343
66	100 >	k 60	30.00	450.00	OK	NG	N5	14-2-P14	8'749	2220.200	136.186	0.000	414.489	-	157.440
1	1.00	0.60	50.00	450.00	ÖK	110	115	14 2 1 14	0745	0.315	0.319	0.000	0.380	-	0.380
67	100 >	k 60	30.00	450.00	OK	NG	NG	14-2-P14	8'749	2219.160	136.186	0.000	414.489	-	94.929
1	1.00	0.60	30.00	430.00	OK	110	NO	14-2-1 14	0745	0.315	0.319	0.000	0.229	-	0.229
68	100 >	k 60	30.00	450.00	OK	NG	NG	14-2-P14	8'749	2231.170	129.253	0.000	414.489	-	134.379
1	1.00	0.60	50.00	450.00	ÖK	110	110	14 2 1 14	0745	0.313	0.312	0.000	0.324	-	0.324
69	100 >	k 65	30.00	450.00	OK	NG	NG	14-2-P16	9'651	2245.280	100.727	0.000	447.071	-	137.112
3	1.00	0.65	50.00	450.00	ÖK	110	110	14 2 1 10	5 051	0.268	0.271	0.000	0.307	-	0.307
70	100 >	k 70	30.00	450.00	ОК	N6	N6	14-2-P16	10'315	2260.130	68.971	0.000	479.491	-	176.719
4	1.00	0.70	50.00	150100			110	112110	10 515	0.239	0.243	0.000	0.369	-	0.369
71	100 >	k 75	30.00	450.00	ОК	N5	N6	14-2-P16	10'979	2288.920	71.977	0.000	511.767	-	208.215
5	1.00	0.75	50.00	150100	0.0		110	112110	10 5/ 5	0.227	0.230	0.000	0.407	-	0.407
72	100 >	k 80	30.00	450.00	ОК	N5	N6	14-2-P16	11'643	2309.000	155.081	0.000	543.914	-	234.830
6	1.00	0.80								0.237	0.233	0.000	0.432	-	0.432
73	100 >	k 85	30.00	450.00	ОК	N5	N6	14-2-P18	12'575	2328.150	277.892	0.000	575.946	-	308.694
7	1.00	0.85			•					0.249	0.253	0.000	0.536	-	0.536
74	100 >	k 90	30.00	450.00	ОК	N5	N6	14-2-P18	13'239	2354.350	417.158	0.000	603.004	-	336.952
8	1.00	0.90			-	_	-	-		0.273	0.278	0.000	0.559	-	0.559
75	100>	k 95	30.00	450.00	ОК	N6	N6	14-2-P18	13'904	2380.990	464.613	0.000	619.463	-	266.316
9	1.00	0.95				-				0.274	0.268	0.000	0.430	-	0.430
76	100>	k 95	30.00	450.00	ОК	N5	N3	14-2-P18	13'904	2403.160	477.547	0.000	333.874	-	60.887
9	1.00	0.95				-	-			0.277	0.276	0.000	0.182	-	0.182

A.4.4.12. Rebared sections ratio checking for fire combinations load

	SECTION CHECKING - FIRE COMBINATIONS LOAD														
MEMBER	SECTION P	ROPERTIES	fck	fyk	CHECK	LOAD CB	LOAD CB	Bahar		N_Ed	M_Edy	M_Edz	V_Rdc	V_Rds	V_Ed
SECTION	Bc (m)	Hc (m)	[N/mm ²]	[N/mm ²]	CHECK	M-N iteration	v	Rebar	№_катах	Ratio-N	Ratio-My	Ratio-Mz	Ratio-Vc	Ratio-Vs	Ratio-V
37(M+N) / 64(V)	100	x 60	20.00	260.00	OK	NDD	NDD	14.2 014	12/410	1642.980	88.098	0.000	444.354	-	190.388
1	1.00	0.55	50.00	300.00	UK	NZZ	INZZ	14-2-214	12 416	0.162	0.166	0.000	0.428	-	0.428
26(M+N) / 3(V)	100	x 66	20.00	260.00	OK	NICO	NDD	14 2 D16	12'016	1609.400	309.675	0.000	484.057	-	268.579
2	1.00	0.61	30.00	300.00	UK	IN22	INZZ	14-2-110	13 910	0.248	0.250	0.000	0.555	-	0.555
36(M+N) / 36(V)	100	x 65	20.00	260.00	OK	NDD	NDD	14 2 016	12/702	1652.620	68.623	0.000	489.128	-	98.927
3	1.00	0.60	50.00	300.00	UK	NZZ	INZZ	14-2-P10	15 /05	0.139	0.141	0.000	0.202	-	0.202
35(M+N) / 35(V)	V) 100 x 70		20.00	260.00	OK	N 21	NDD	14 2 016	14'766	1662.890	46.422	0.000	494.293	-	128.808
4	1.00	0.65	50.00	300.00	UK	NZI	IN22	14-2-P10	14 / 00	0.123	0.124	0.000	0.261	-	0.261
28(M+N) / 27(V)	100	x 75	20.00	260.00	OK	N122	NDD	14 2 D16	15'020	1720.560	346.296	0.000	514.519	-	162.394
5	1.00	0.70	30.00	300.00	UK	IN22	INZZ	14-2-110	13 828	0.217	0.220	0.000	0.316	-	0.316
72(M+N) / 72(V)	100	x 80	20.00	260.00	OK	NDD	NDD	14 2 016	16'901	1698.730	109.388	0.000	531.093	-	170.697
6	1.00	0.75	50.00	300.00	UK	IN22	IN22	14-2-P10	10 091	0.121	0.119	0.000	0.321	-	0.321
73(M+N) / 73(V)	100	x 85	20.00	260.00	OK	N122	N21	14 2 D19	19'205	1712.330	199.210	0.000	568.795	-	223.967
7	1.00	0.80	30.00	300.00	UK	IN22	N21	14-2-110	18 203	0.129	0.131	0.000	0.394	-	0.394
74(M+N) / 24(V)	100	x 90	20.00	260.00	OK	NDD	NDD	14 2 010	10'267	1731.030	300.427	0.000	546.523	-	328.339
8	1.00	0.85	50.00	500.00	UK	IN ZZ	INZZ	14-2-P18	19 207	0.144	0.144	0.000	0.601	-	0.601
76(M+N) / 25(V)	100	x 95	20.00	260.00	OK	NDD	N21	14 2 010	20'220	1765.920	343.521	0.000	596.928	-	193.339
9	1.00	0.90	50.00	500.00	UK	IN ZZ	11/21	14-2-118	20 330	0.146	0.143	0.000	0.324	-	0.324

A.4.4.18. Load combination SLE 6

~

STRESS CONTROL												
MEMBER	SECTION PROPERTIES		$\sigma_{ m ct,MAX}$	$\sigma_{ ext{ct. Adm}}$	CUTCK	$\sigma_{\rm c, MAX}$	$\sigma_{\text{c. Adm}}$	CUECK	$\sigma_{\rm s, max}$	$\sigma_{\text{S. Adm}}$	CUECK	
SECTION	Bc (m) Hc (m)	LOAD CB	[N/mm ²]	[N/mm ²]	CHECK	[N/mm ²]	[N/mm ²]	CHECK	[N/mm ²]	[N/mm ²]	CHECK	
1	100 x 75	SLE - N5	1.40	2.90	ОК	-6.03	-18.00	ОК	5.12	360.00	ОК	
2	1.00 0.75 100 x 75		4.00				40.00		F 00			
5	1.00 0.75	SLE - N5	1.39	2.90	ОК	-5.86	-18.00	ОК	5.09	360.00	OK	
3	100 x 66	SLE - N5	1.83	2.90	ОК	-6.74	-18.00	ОК	6.66	360.00	ОК	
4	1.00 0.88 100 x 90											
8	1.00 0.90	SLE - N5	0.29	2.90	ОК	-3.65	-18.00	ОК	1.42	360.00	OK	
5	100 x 90	SLE - N5	0.32	2.90	ОК	-3.19	-18.00	ОК	1.59	360.00	ОК	
6	100 x 90		0.24	2.00	01/	2.02	10.00	01	1.00	262.00	01	
8	1.00 0.90	SLE - N5	0.34	2.90	UK	-2.82	-18.00	UK	1.68	360.00	UK	
7	100 x 90	SLE - N5	0.35	2.90	ОК	-2.41	-18.00	ОК	1.74	360.00	ОК	
8	100 x 90	SLE - NG	0.35	2 90	OK	-1.83	-18.00	OK	1 75	360.00	OK	
8	1.00 0.90	JEE - NO	0.55	2.50	OK	-1.05	-10.00	OK	1.75	500.00	UK	
8	1.00 0.90	SLE - N6	0.34	2.90	ОК	-2.03	-18.00	ОК	1.67	360.00	OK	
10	100 x 90	SLE - N6	0.32	2.90	ОК	-2.57	-18.00	ОК	1.59	360.00	ОК	
8	1.00 0.90 100 x 90				-	-		-			-	
8	1.00 0.90	SLE - N6	0.31	2.90	ОК	-2.88	-18.00	ОК	1.55	360.00	OK	
12	100 x 90	SLE - N6	0.29	2.90	ОК	-3.06	-18.00	ОК	1.44	360.00	ОК	
8 13	1.00 0.90 100 x 90											
8	1.00 0.90	SLE - N6	0.27	2.90	ОК	-3.11	-18.00	OK	1.31	360.00	OK	
14	100 x 90	SLE - N6	0.25	2.90	ОК	-3.11	-18.00	ОК	1.19	360.00	ОК	
15	1.00 0.90 100 x 90						10.00		4.07			
8	1.00 0.90	SLE - N6	0.22	2.90	UK	-2.92	-18.00	UK	1.07	360.00	UK	
16 8	100 x 90	SLE - N6	0.25	2.90	ОК	-2.93	-18.00	ОК	1.18	360.00	ОК	
17	100 x 90		0.20	2 00	OK	2 07	19.00	OK	1 27	260.00	OK	
8	1.00 0.90	JLL - NO	0.28	2.50	UK	-2.07	-18.00	OK	1.57	300.00	UK	
18	1.00 0.90	SLE - N6	0.31	2.90	ОК	-2.79	-18.00	ОК	1.51	360.00	ОК	
19	100 x 90	SLE - NG	0 32	2 90	ОК	-2 52	-18 00	OK	1 57	360.00	ОК	
8	1.00 0.90	522 110	0.52	2.50		2.52	10/00		1.57	500.00		
8	1.00 0.90	SLE - N6	0.34	2.90	ОК	-2.03	-18.00	ОК	1.67	360.00	OK	
21	100 x 90	SLE - N6	0.35	2.90	ОК	-1.83	-18.00	ОК	1.72	360.00	ОК	
8	1.00 0.90 100 x 90				-			-			-	
8	1.00 0.90	SLE - N5	0.34	2.90	ОК	-2.47	-18.00	OK	1.69	360.00	OK	
23	100 x 90	SLE - N5	0.33	2.90	ОК	-2.91	-18.00	ОК	1.64	360.00	ОК	
° 24	100 x 90	CLE 115	0.01	2.00	<u> </u>	2.00	40.00		4	200.00	C 11	
8	1.00 0.90	SLE - N5	0.31	2.90	ОК	-3.28	-18.00	ОК	1.54	360.00	OK	
25	100 x 90	SLE - N5	0.28	2.90	ОК	-3.71	-18.00	ОК	1.36	360.00	ОК	
26	100 x 66		1.00	2.00	014	6 70	10.00	01/	6.02	260.00	01/	
2	1.00 0.66	SLE - INS	1.80	2.90	UK	-0.7ð	-18.00	UK	υ.δΖ	500.00	UK	
27	100 x 75 1.00 0.75	SLE - N5	1.42	2.90	ОК	-5.90	-18.00	ОК	5.29	360.00	ОК	
28	100 x 75	SLE - NS	1 43	2 90	OK	-6.06	-18.00	OK	5 25	360.00	OK	
5	1.00 0.75	JEE - NJ	1.45	2.50	UK	0.00	10.00	UK	5.25	500.00	OK	
9	1.00 0.95	SLE - N5	0.46	2.90	ОК	-4.20	-18.00	ОК	1.11	360.00	ОК	
30	100 x 95	SLE - N5	0.36	2.90	ОК	-4.07	-18.00	ОК	0.57	360.00	ОК	
9	1.00 0.95			2.00	2			5	2.57		5	

A.4.4.19. Stress checking

IMADE INTURE INTURE<		STRESS CONTROL													
sectors isctors	MEMBER	SECTION F	PROPERTIES		$\sigma_{ m ct, MAX}$	$\sigma_{ ext{ct. Adm}}$	CHECK	$\sigma_{ m c,MAX}$	$\sigma_{ ext{c. Adm}}$	CHECK	$\sigma_{\rm s,max}$	$\sigma_{\text{S. Adm}}$	CHECK		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SECTION	Bc (m)	Hc (m)	LOAD CB	[N/mm ²]	[N/mm ²]	CHECK	[N/mm ²]	[N/mm ²]	CHECK	[N/mm ²]	[N/mm ²]	CHECK		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	31	100) x 90	SLE - N5	0.63	2.90	ОК	-4.99	-18.00	ОК	1.40	360.00	ОК		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	32	1.00	0.90) x 85												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7	1.00	0.85	SLE - N5	0.07	2.90	OK	-3.67	-18.00	OK	0.14	360.00	OK		
6 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.01 3.60.00 0K1 5 1.00 0.70 SE · N5 0.14 2.90 0K -3.01 1.80.0 0K 0.59 36.00.0 0K1 3 1.00 0.66 SE · N5 0.41 2.90 0K -3.62 1.80.0 0K 0.59 36.00.0 0K1 3 1.00 0.66 SE · N5 0.41 2.90 0K -4.43 1.80.0 0K 2.17 36.00 0K1 3 1.00 0.60 SE · N5 0.40 2.90 0K -4.43 1.80.0 0K 2.13 36.00 0K1 3 1.00 × 60 SE · N5 0.40 2.90 0K -4.18 1.80.0 0K 1.1 36.00 0K1 41 1.00 × 60 SE · N5 0.25 2.90 0K -4.18 1.80.0 <td>33</td> <td>100</td> <td>) x 80</td> <td>SLE - N5</td> <td>0.10</td> <td>2.90</td> <td>ОК</td> <td>-3.15</td> <td>-18.00</td> <td>ОК</td> <td>0.29</td> <td>360.00</td> <td>ОК</td>	33	100) x 80	SLE - N5	0.10	2.90	ОК	-3.15	-18.00	ОК	0.29	360.00	ОК		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	1.00	0.80												
35 100 $\times 70$ 5E $\cdot N6$ 0.18 2.90 OK -3.01 -18.00 OK 0.59 360.00 OK 36 100 $\times 65$ 5E $\cdot N6$ 0.24 2.90 OK -3.62 -18.00 OK 0.55 360.00 OK 37 100 $\times 60$ 5E $\cdot N6$ 0.41 2.90 OK -4.35 -18.00 OK 2.17 360.00 OK 31 1.00 $\times 60$ 5E $\cdot N6$ 0.44 2.90 OK -4.43 -18.00 OK 2.33 360.00 OK 39 100 $\times 60$ 5E $\cdot N5$ 0.40 2.90 OK -4.43 -18.00 OK 1.78 360.00 OK 40 100 $\times 60$ 5E $\cdot N5$ 0.40 2.90 OK -3.46 -18.00 OK 1.51 360.00 OK 41 100 $\times 60$ 5E $\cdot N5$ 0.24 2.90 OK -4.18 -18.00 OK 1.01 360.00 OK <	5	1.00	0.75	SLE - N5	0.14	2.90	ОК	-2.76	-18.00	OK	0.43	360.00	ОК		
A 1.00 0.70 1.1.10 0.70 1.1.10 0.70 1.1.10 0.70 1.1.10 0.65 SE - N6 0.24 2.90 0K -3.62 -1.8.00 0K 0.95 36.000 0K 37 100 × 60 SE - N6 0.41 2.90 0K -4.33 -18.00 0K 1.76 36.000 0K 38 100 × 60 SE - N6 0.41 2.90 0K -4.43 -18.00 0K 2.17 36.000 0K 39 100 × 60 SE - N6 0.44 2.90 0K -4.43 -18.00 0K 2.33 360.00 0K 40 100 × 60 SE - N5 0.44 2.90 0K -4.18 -18.00 0K 1.51 360.00 0K 11 1.00 × 60 SE - N5 0.24 2.90 0K -3.75 -18.00 0K 1.01 360.00 0K 11 1.00 × 60 SE - N5 0.25 2.9	35	100) x 70		0.19	2 00	OK	2 01	18.00	OK	0.50	260.00	OK		
36 $100 \times K^{3}$ $SE \times N_{0}$ 0.24 2.90 OK -3.62 -18.00 OK 0.95 360.00 OK 37 100×60 $SE \times N_{0}$ 0.41 2.90 OK -4.43 18.00 OK 2.12 360.00 OK 38 100×60 $SE \times N_{0}$ 0.41 2.90 OK -4.43 18.00 OK 2.39 360.00 OK 11 100×60 $SE \times N_{0}$ 0.40 2.90 OK -4.43 18.00 OK 1.51 360.00 OK 11 100×60 $SE \times N_{0}$ 0.24 2.90 OK -3.66 -18.00 OK 1.51 360.00 OK 411 1100×60 $SE \times N_{0}$ 0.25 2.90 OK -4.18 18.00 OK 1.01 360.00 OK 444 100×60 $SE \times N_{0}$ 0.25 2.90 OK <td>4</td> <td>1.00</td> <td>0.70</td> <td>JLL - NO</td> <td>0.18</td> <td>2.90</td> <td>UK</td> <td>-3.01</td> <td>-18.00</td> <td>UK</td> <td>0.39</td> <td>300.00</td> <td>UK</td>	4	1.00	0.70	JLL - NO	0.18	2.90	UK	-3.01	-18.00	UK	0.39	300.00	UK		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36	100	0.65	SLE - N6	0.24	2.90	ОК	-3.62	-18.00	ОК	0.95	360.00	ОК		
1 1.00 6.67 SLE N6 0.41 2.90 OK -4.43 -18.00 OK 1.76 30.00 OK 38 100×60 SLE N6 0.49 2.90 OK -4.43 -18.00 OK 2.17 36.00 OK 39 100×60 SLE N6 0.54 2.90 OK -4.43 -18.00 OK 2.39 36.00 OK 40 100×60 SLE N5 0.40 2.90 OK -4.18 -18.00 OK 1.78 360.00 OK 41 100×60 SLE N5 0.24 2.90 OK -3.75 -18.00 OK 1.01 360.00 OK 42 100×60 SLE N5 0.25 2.90 OK -4.18 -18.00 OK 1.01 360.00 OK 1 1.00 0.60 SLE N5 0.25 2.90 OK -4.24	37	1.00) x 60		0.44	2.00	014	4.35	10.00	01	4.76	200.00	01		
38 100 KO SLE NG 0.49 2.90 OK -4.43 18.00 OK 2.17 360.00 OK 39 100 KO SLE NG 0.54 2.90 OK -4.43 -18.00 OK 2.39 360.00 OK 40 100 KO SLE NS 0.40 2.90 OK -4.43 -18.00 OK 1.78 360.00 OK 1 100 KO SLE NS 0.40 2.90 OK -3.46 -18.00 OK 1.51 360.00 OK 42 100 KO SLE NS 0.24 2.90 OK -3.75 1.800 OK 1.01 360.00 OK 1 1.00 0.60 SLE NS 0.25 2.90 OK -4.34 -18.00 OK 1.01 360.00 OK 1 1.00 0.60 SLE NS 0.25 2.90 OK -4.34 -18.00 OK 3.00 OK 4.41 360.00	1	1.00	0.60	SLE - N6	0.41	2.90	UK	-4.35	-18.00	UK	1.76	360.00	OK		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	38	100	0 x 60	SLE - N6	0.49	2.90	ОК	-4.43	-18.00	ОК	2.17	360.00	ОК		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	39	1.00) x 60												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1.00	0.60	SLE - N6	0.54	2.90	OK	-4.43	-18.00	OK	2.39	360.00	OK		
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0	40	100	0 x 60	SLE - N5	0.40	2.90	ОК	-4.18	-18.00	ОК	1.78	360.00	ОК		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	41	100) x 60	SI E - N 5	0.34	2 90	OK	-3.46	-18.00	OK	1 51	360.00	OK		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1.00	0.60	JEE - NJ	0.54	2.50	OK	-3.40	-10.00	OK	1.51	500.00	OK		
43 100 × 60 SLE - N5 0.25 2.90 OK -4.18 -18.00 OK 1.01 360.00 OK 44 100 × 60 SLE - N5 0.25 2.90 OK -4.34 -18.00 OK 1.02 360.00 OK 45 100 × 60 SLE - N5 0.25 2.90 OK -4.34 -18.00 OK 1.02 360.00 OK 46 100 × 60 SLE - N5 0.66 2.90 OK -4.34 -18.00 OK 1.93 360.00 OK 1 1.00 0.60 SLE - N5 0.66 2.90 OK -4.04 -18.00 OK 4.41 360.00 OK 1 1.00 0.60 SLE - N6 1.12 2.90 OK -3.70 -18.00 OK 6.37 360.00 OK 1 1.00 0.60 SLE - N6 1.30 2.90 OK -3.74 -18.00 OK 7.73 360.00	42	100	0.60	SLE - N5	0.24	2.90	ОК	-3.75	-18.00	OK	0.95	360.00	ОК		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	100) x 60		0.25	2 00	OK	/ 19	18.00	OK	1 01	260.00	OK		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1.00	0.60	JLL - NJ	0.23	2.90	OK	-4.18	-18.00	UK	1.01	300.00	OK		
45 100×60 SLE - N5 0.41 2.90 OK -4.34 -18.00 OK 1.93 360.00 OK 46 100×60 100×60 $5LE - N5$ 0.66 2.90 OK -4.34 -18.00 OK 3.20 360.00 OK 47 100×60 100×60 $5LE - N5$ 0.90 2.90 OK -4.04 -18.00 OK 4.41 360.00 OK 48 100×60 $5LE - N6$ 1.12 2.90 OK -3.70 -18.00 OK 5.48 360.00 OK 49 100×60 $5LE - N6$ 1.12 2.90 OK -3.39 -18.00 OK 6.37 360.00 OK 1 1.00 0.60 $5LE - N5$ 1.43 2.90 OK -3.74 -18.00 OK 7.33 360.00 OK 1 1.00 0.60 $5LE - N$	44	1.00	0.60	SLE - N5	0.25	2.90	ОК	-4.34	-18.00	ОК	1.02	360.00	ОК		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	100) x 60	SLE - NS	0.41	2 90	OK	-4 34	-18.00	OK	1 93	360.00	OK		
-100 100 × 60 SLE - NS 0.66 2.90 OK -4.27 -18.00 OK 3.20 360.00 OK 47 100 × 60 100 × 60 SLE - NS 0.90 2.90 OK -4.04 -18.00 OK 4.41 360.00 OK 48 100 × 60 SLE - N6 1.12 2.90 OK -3.70 -18.00 OK 5.48 360.00 OK 49 100 × 60 SLE - N6 1.12 2.90 OK -3.70 -18.00 OK 6.37 360.00 OK 50 100 × 60 SLE - N5 1.43 2.90 OK -3.74 -18.00 OK 7.03 360.00 OK 51 100 × 60 SLE - N5 1.51 2.90 OK -4.06 -18.00 OK 7.44 360.00 OK 52 100 × 60 SLE - N5 1.54 2.90 OK -4.06 -18.00 OK 7.58 360.00 OK	1	1.00	0.60	012 110	0111	2.50			10,00		1.55	500.00	0.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1.00	0.60	SLE - N5	0.66	2.90	ОК	-4.27	-18.00	OK	3.20	360.00	OK		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	47	100 x 60	100 x 60	SLE - N5	0.90	2.90	ОК	-4.04	-18.00	ОК	4.41	360.00	OK		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	48	1.00	0.60) x 60						10.00						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1.00	0.60	SLE - N6	1.12	2.90	OK	-3.70	-18.00	OK	5.48	360.00	OK		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	1.00	0.60	SLE - N6	1.30	2.90	ОК	-3.39	-18.00	ОК	6.37	360.00	ОК		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50	100) x 60		1 /2	2 90	OK	2 74	18.00	OK	7 02	260.00	OK		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1.00	0.60	JLL - NJ	1.43	2.90	OK	-3.74	-18.00	UK	7.03	300.00	OK		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	1.00	0.60	SLE - N5	1.51	2.90	ОК	-3.97	-18.00	ОК	7.44	360.00	ОК		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	52	100) x 60		1 54	2 00	٥v	-1.06	-18.00	OF	7 50	360.00	OF		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1.00	0.60	JLL - NJ	1.34	2.50	UK	-4.00	-10.00	OK	1.30	300.00	UK		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	53	1.00	0.60	SLE - N5	1.54	2.90	ОК	-4.06	-18.00	ОК	7.58	360.00	ОК		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	100) x 60	SLE - N5	1.51	2.90	ОК	-3.97	-18.00	ОК	7.44	360.00	ОК		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1.00	0.60												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1.00	0.60	SLE - N5	1.43	2.90	ОК	-3.72	-18.00	ОК	7.03	360.00	OK		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	56	100) x 60	SLE - N6	1.30	2.90	ОК	-3.38	-18.00	ОК	6.36	360.00	ОК		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	57	1.00	0.60 0 x 60												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1.00	0.60	SLE - N6	1.12	2.90	ОК	-3.72	-18.00	OK	5.48	360.00	OK		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	58	100) x 60	SLE - N5	0.90	2.90	ОК	-4.07	-18.00	ОК	4.40	360.00	ОК		
1 1.00 0.60 SLE - N5 0.66 2.90 OK -4.31 -18.00 OK 3.20 360.00 OK 60 100 x 60 SLE - N5 0.41 2.90 OK -4.38 -18.00 OK 1.92 360.00 OK	59	1.00) x 60												
60 100 x 60 SLE - N5 0.41 2.90 OK -4.38 -18.00 OK 1.92 360.00 OK	1	1.00	0.60	SLE - N5	0.66	2.90	ОК	-4.31	-18.00	OK	3.20	360.00	OK		
	60 1	100	0 x 60	SLE - N5	0.41	2.90	ОК	-4.38	-18.00	ОК	1.92	360.00	ОК		

	STRESS CONTROL													
MEMBER	SECTION P	ROPERTIES		$\sigma_{ m ct,MAX}$	$\sigma_{ ext{ct. Adm}}$		$\sigma_{ m c,MAX}$	$\sigma_{ ext{c. Adm}}$		$\sigma_{\rm s,max}$	$\sigma_{\text{S. Adm}}$			
SECTION	Bc (m)	Hc (m)	LOAD CB	[N/mm ²]	[N/mm ²]	CHECK	[N/mm ²]	[N/mm ²]	CHECK	[N/mm ²]	[N/mm ²]	CHECK		
61	100	x 60		0.25	2.00	OK	4.20	10.00	01	1.02	200.00	01		
1	1.00	0.60	SLE - INS	0.25	2.90	UK	-4.38	-18.00	UK	1.03	360.00	UK		
62	100	x 60		0.25	2.00	01	4 22	19.00	OK.	1.02	260.00	Č		
1	1.00	0.60	SLE - INS	0.25	2.90	UK	-4.25	-18.00	UK	1.02	500.00	UK		
63	100	x 60		0.24	2.00	OK	2 00	19.00	OK	0.06	260.00	OK		
1	1.00	0.60	SLE - INS	0.24	2.90	UK	-5.60	-18.00	UK	0.96	500.00	UK		
64	100	x 60		0.21	2.00	OK	2 01	19.00	OK	1 27	260.00	OK		
1	1.00	0.60	SLE - INS	0.51	2.90	UK	-5.91	-18.00	UK	1.57	500.00	UK		
65	100	x 60		0.40	2 00	OK	1 12	18.00	OK	1 90	260.00	OK		
1	1.00	0.60	JLL - NJ	0.40	2.50	OK	-4.15	-18.00	UK	1.00	300.00	UK		
66	100	x 60		0.54	2.00	01	1 20	19.00	OK	2 /1	260.00	2		
1	1.00	0.60	SLE - INO	0.54	2.90	UK	-4.50	-18.00	UK	2.41	500.00	UK		
67	100	x 60		0.50	2.00	01	4 27	19.00	OK	2 10	260.00	2		
1	1.00	0.60	SLE - INO	0.50	2.90	UK	-4.57	-18.00	UK	2.19	500.00	UK		
68	100	x 60		0.42	2.00	01	4 20	19.00	OK	1 70	260.00	2		
1	1.00	0.60	SLE - INO	0.42	2.90	UK	-4.50	-18.00	UK	1.78	500.00	UK		
69	100	x 65		0.24	2.00	01	2 57	19.00	OK.	0.07	260.00	2		
3	1.00	0.65	SLE - INO	0.24	2.90	UK	-5.57	-18.00	UK	0.97	500.00	UK		
70	100	x 70		0.19	2.00	01	2.07	19.00	OK.	0.62	260.00	2		
4	1.00	0.70	SLE - INO	0.18	2.90	UK	-2.97	-18.00	UK	0.82	500.00	UK		
71	100	x 75		0.15	2 00	OK	2 00	18.00	OK	0.46	260.00	C K		
5	1.00	0.75	JLL - NJ	0.15	2.50	OK	-2.80	-18.00	UK	0.40	300.00	UK		
72	100	x 80		0.11	2 00	OK	2 10	18.00	OK	0.22	260.00	C K		
6	1.00	0.80	JLL - INJ	0.11	2.90	OK	-3.10	-18.00	UK	0.32	300.00	UK		
73	100	x 85		0.09	2 00	OK	2 71	19.00	OK	0.17	260.00	OK		
7	1.00	0.85	JLL - NJ	0.08	2.50	OK	-3.71	-18.00	UK	0.17	300.00	UK		
74	100	x 90		0.32	2 90	OK	-/ 10	-18.00	OK	0.19	360.00	OK		
8	1.00	0.90	JLL - NJ	0.32	2.50	UK	-4.13	-10.00	UK	0.15	300.00	UK		
75	100	x 95		0.45	2 90	OK	-4.16	-18.00	OK	1.07	360.00	OK		
9	1.00	0.95	JLL - NJ	0.45	2.50	ОК	-4.16	o -18.00	OK	1.07	360.00	ОК		
76	100	x 95		0.44	2 00	OK	4 10	18.00	OK	1.01	260.00	OK		
9	1.00	0.95	JLL - NJ	0.44	2.90	UK	-4.19	-10.00	UK	1.01	300.00	UK		

A.4.5. Output and check result for cross section GA-T5

A.4.5.1. Load combination SLU 1

~_

Beam Diagram_Fz / ST_ N3

~

~_

Beam Diagram_My / ST_ N5

.

Beam Diagram_Fz / ST_ N6

Beam Diagram_Fz / ST_ N12

9₆

~

N

Beam Diagram_Fz / ST_ N22

N

A.4.5.11.	Rebared	sections	ratio	checking
-----------	---------	----------	-------	----------

	SECTION CHECKING														
MEMBER	SECTION P	ROPERTIES	fck	fyk		LOAD CB	LOAD CB			N_Ed	M_Edy	M_Edz	V_Rdc	V_Rds	V_Ed
SECTION	Bc (m)	Hc (m)	[N/mm ²]	[N/mm ²]	CHECK	M-N iteration	v	Rebar	N_Rdmax	Ratio-N	Ratio-My	Ratio-Mz	Ratio-Vc	Ratio-Vs	Ratio-V
1	100	x 75	30.00	450.00	OK	N5	N6	14-2-P16	12'964	3302.160	595.769	0.000	640.961	-	173.500
5	1.00	0.75	50.00	450.00	ÖK	113	110	14 2 1 10	12 504	0.447	0.447	0.000	0.271	-	0.271
2	100	x 75	30.00	450.00	ОК	N5	N5	14-2-P16	12'964	3185.950	567.385	0.000	640.961	-	351.459
3	1.00	0.75 x 66								0.423 3062 790	0.430 501 102	0.000	0.548	-	0.548 565 600
2	1.00	0.66	30.00	450.00	OK	N5	N5	14-2-P16	11'529	0.471	0.475	0.000	0.998	-	0.998
4	100	x 90	20.00	450.00	014	NE	NE	44.2.040	451624	2919.490	395.909	0.000	708.460	-	637.032
8	1.00	0.90	30.00	450.00	ÜK	N5	N5	14-2-P18	15'621	0.258	0.263	0.000	0.899	-	0.899
5	100	x 90	30.00	450.00	ОК	N5	N5	14-2-P18	15'621	2804.680	285.710	0.000	692.224	-	645.560
8	1.00	0.90								0.227	0.232	0.000	0.933	-	0.933
6	1.00	x 90 n 90	30.00	450.00	ОК	N5	N5	14-2-P18	15'621	0.206	195.369	0.000	681.365 0.878	-	598.383
7	1.00	x 90								2619,170	101.687	0.000	666.002	-	577,890
8	1.00	0.90	30.00	450.00	OK	N5	N5	14-2-P18	15'621	0.182	0.186	0.000	0.868	-	0.868
8	100	x 90	30.00	450.00	OK	NG	N5	14-2-D18	15'621	2550.970	190.941	0.000	655.660	-	496.931
8	1.00	0.90	30.00	450.00	OK	NO	115	14-2-1 10	15 021	0.195	0.191	0.000	0.758	-	0.758
9	100	x 90	30.00	450.00	ОК	N6	N5	14-2-P18	15'621	2484.890	294.625	0.000	646.400	-	430.892
0 10	1.00	v 90								2457 620	434 248	0.000	642.065	-	297.806
8	1.00	0.90	30.00	450.00	ОК	N6	N5	14-2-P18	15'621	0.242	0.248	0.000	0.464	-	0.464
11	100	x 90	20.00	450.00	OK	NG	NE	14 2 019	15'621	2437.500	513.328	0.000	639.358	-	169.256
8	1.00	0.90	50.00	450.00	UK	IND	си	14-2-P16	15 021	0.268	0.267	0.000	0.265	-	0.265
12	100	x 90	30.00	450.00	ОК	N6	N5	14-2-P18	15'621	2422.320	554.733	0.000	637.399	-	86.890
8	1.00	0.90								0.276	0.282	0.000	0.136	-	0.136
8	1 00	0.90	30.00	450.00	ОК	N6	N4	14-2-P18	15'621	0.284	0.283	0.000	0.094	-	0.094
14	1.00	x 90								2405.700	568.151	0.000	635.768	-	87.458
8	1.00	0.90	30.00	450.00	OK	N6	N6	14-2-P18	15'621	0.284	0.283	0.000	0.138	-	0.138
15	100	x 90	30.00	450.00	OK	N6	N4	14-2-P18	15'621	2408.260	521.012	0.000	326.188	-	25.210
8	1.00	0.90	50.00	450.00	ÖK	110		14 2 1 10	15 021	0.269	0.268	0.000	0.077	-	0.077
16	100	x 90	30.00	450.00	ОК	N6	N4	14-2-P18	15'621	2413.000	521.766	0.000	325.818	-	30.302
0 17	1.00	v 90								2423.050	509 380	0.000	325 191	-	37 896
8	1.00	0.90	30.00	450.00	OK	N6	N4	14-2-P18	15'621	0.266	0.265	0.000	0.117	-	0.117
18	100	x 90	20.00	450.00	OK	NG	NE	14 2 019	15'621	2437.650	492.337	0.000	639.336	-	145.188
8	1.00	0.90	30.00	430.00	UK	NO	NJ	14-2-1 18	15 021	0.258	0.263	0.000	0.227	-	0.227
19	100	x 90	30.00	450.00	ОК	N6	N5	14-2-P18	15'621	2458.290	425.126	0.000	642.116	-	274.462
8	1.00	0.90								0.242	0.243	0.000	0.427	-	0.427
20	1.00	0.90	30.00	450.00	ОК	N6	N5	14-2-P18	15'621	2489.740 0 211	0 215	0.000	0 594	-	384.253
21	1.00	x 90								2538.460	204.178	0.000	653.905	-	544.990
8	1.00	0.90	30.00	450.00	OK	N6	N5	14-2-P18	15'621	0.195	0.198	0.000	0.833	-	0.833
22	100	x 90	30.00	450.00	ОК	N5	N5	14-2-P18	15'621	2612.230	113.360	0.000	665.026	-	598.066
8	1.00	0.90			5					0.184	0.185	0.000	0.899	-	0.899
23 8	1.00	x 90	30.00	450.00	ОК	N5	N5	14-2-P18	15'621	2/15.590	0 217.097	0.000	0 040	-	644./11
24	100	x 90								2796.180	307.362	0.000	691.028	-	677.711
8	1.00	0.90	30.00	450.00	OK	N5	N5	14-2-P18	15'621	0.232	0.232	0.000	0.981	-	0.981
25	100	x 90	30.00	450.00	OK	N5	N5	14-2-018	15'621	2924.470	405.977	0.000	709.169	-	609.683
8	1.00	0.90	50.00	-50.00	UK		145	1-7 -1 10	15 021	0.263	0.261	0.000	0.860	-	0.860
26	100	x 66	30.00	450.00	ОК	N5	N5	14-2-P16	11'529	3073.080	503.286	0.000	566.876	-	498.288
2	1.00	0.66 x 75								3183 /20	570.250	0.000	0.879 640.961	-	364 632
5	1.00	0.75	30.00	450.00	ОК	N5	N5	14-2-P16	12'964	0.423	0.433	0.000	0.569	-	0.569
28	100	x 75	20.00	450.00	04	NE	NE	14 3 016	12'064	3301.660	596.528	0.000	640.961	-	162.222
5	1.00	0.75	50.00	450.00	UK	UD CIVI	CN	14-2-110	12 904	0.447	0.447	0.000	0.253	-	0.253
29	100	x 95	30.00	450.00	ОК	N5	N6	14-2-P18	16'418	3391.470	596.528	0.000	333.599	-	44.298
9	1.00	0.95 x 95								0.311	0.315	0.000	0.133	-	0.133
9	1.00	0.95	30.00	450.00	ОК	N5	N11	14-2-P18	16'418	0.310	0.307	0.000	0.286	-	0.286

	SECTION CHECKING														
MEMBER	SECTION F	ROPERTIES	fck	fyk	CHECK	LOAD CB	LOAD CB	Bohar		N_Ed	M_Edy	M_Edz	V_Rdc	V_Rds	V_Ed
SECTION	Bc (m)	Hc (m)	[N/mm ²]	[N/mm ²]	CHECK	M-N iteration	v	Rebai	N_Rumax	Ratio-N	Ratio-My	Ratio-Mz	Ratio-Vc	Ratio-Vs	Ratio-V
31	100	x 90	30.00	450.00	OK	N5	N5	1/L-2-D18	15'621	3343.440	533.009	0.000	763.458	-	393.796
8	1.00	0.90	30.00	450.00	ÖK	115	115	14-2-1 10	15 021	0.318	0.318	0.000	0.516	-	0.516
32	100	x 85	30.00	450.00	ОК	N5	N5	14-2-P18	14'824	3315.270	366.698	0.000	722.745	-	368.440
7	1.00	0.85	50.00	450.00	ÖK	113	115	14 2 1 10	14 024	0.296	0.295	0.000	0.510	-	0.510
33	100	x 80	30.00	450.00	OK	N5	N5	14-2-P16	13'760	3295.290	216.054	0.000	681.916	-	269.594
6	1.00	0.80	50.00	450.00	ÖK	113	115	14 2 1 10	15700	0.285	0.281	0.000	0.395	-	0.395
34	100	x 75	30.00	450.00	OK	NS	N5	14-2-P16	12'96/	3274.050	117.561	0.000	640.961	-	228.682
5	1.00	0.75	30.00	450.00	OK	115	115	14-2-1 10	12 304	0.278	0.282	0.000	0.357	-	0.357
35	100	x 70	30.00	450.00	OK	NG	N5	14-2-P16	12'167	3255.900	42.871	0.000	599.865	-	181.314
4	1.00	0.70	50.00	450.00	ÖK	110	115	14 2 1 10	12 107	0.278	0.278	0.000	0.302	-	0.302
36	100	x 65	30.00	450.00	ОК	N6	N6	14-2-P16	11'370	3229.880	34.406	0.000	558.612	-	131.279
3	1.00	0.65	50.00	450.00	ÖK	110	110	14 2 1 10	11570	0.293	0.296	0.000	0.235	-	0.235
37	100	x 60	30.00	450.00	OK	NG	NG	14-2-P14	10'337	3216.890	57.704	0.000	517.181	-	142.844
1	1.00	0.60	50.00	450.00	ÖK	110	110	14 2 1 14	10 557	0.331	0.325	0.000	0.276	-	0.276
38	100	x 60	30.00	450.00	ОК	N6	N5	14-2-P14	10'337	3205.360	59.641	0.000	517.181	-	119.867
1	1.00	0.60	50.00	150100				1.2.1	10 557	0.330	0.336	0.000	0.232	-	0.232
39	100	x 60	30.00	450.00	ОК	N6	N5	14-2-P14	10'337	3207.110	59.641	0.000	517.181	-	217.582
1	1.00	0.60								0.330	0.336	0.000	0.421	-	0.421
40	100	x 60	30.00	450.00	ОК	N5	N5	14-2-P14	10'337	3147.290	94.222	0.000	517.181	-	293.208
1	1.00	0.60			-	-	-			0.338	0.335	0.000	0.567	-	0.567
41	100	x 60	30.00	450.00	ОК	N5	N5	14-2-P14	10'337	3151.270	140.578	0.000	517.181	-	219.067
1	1.00	0.60				_	_			0.357	0.350	0.000	0.424	-	0.424
42	100	x 60	30.00	450.00	ОК	N5	N5	14-2-P14	10'337	3149.680	208.931	0.000	517.181	-	269.426
1	1.00	0.60				_	_			0.386	0.388	0.000	0.521	-	0.521
43	100	x 60	30.00	450.00	ОК	N5	N5	14-2-P14	10'337	3151.280	234.993	0.000	517.181	-	191.853
1	1.00	0.60				-	-			0.401	0.398	0.000	0.371	-	0.371
44	100	x 60	30.00	450.00	ОК	N5	N6	14-2-P14	10'337	3152.940	234.993	0.000	517.181	-	177.163
1	1.00	0.60								0.401	0.398	0.000	0.343	-	0.343
45	100	0.00	30.00	450.00	ОК	N5	N6	14-2-P14	10'337	3139.000	225.783	0.000	517.181	-	238.792
1	1.00	0.60								0.392	0.400	0.000	0.462	-	0.462
46	100 X 60	100 X 60	30.00	450.00	OK	N5	N6	14-2-P14	10'337	3120.250	188.713	0.000	0 5517.181	-	284.843
1	100 x 60	100 x 60								2009 500	121 490	0.000	0.551	-	214 092
47	1.00	0.60	30.00	450.00	OK	N5	N6	14-2-P14	10'337	0 3/17	0 350	0.000	0.609	_	0 609
18	1.00	0.00 1x 60							1	34.464	01 312	0.000	517 181		320 101
1	1 00	0.60	30.00	450.00	OK	N6	N6	14-2-P14	10'337	0.384	0.376	0.000	0.636	-	0.636
49	100	x 60								27.219	103.625	0.000	517,181	-	327.320
1	1.00	0.60	30.00	450.00	OK	N6	N6	14-2-P14	10'337	0.444	0.440	0.000	0.633	-	0.633
50	100	x 60								21.722	114.116	0.000	517.181	-	309.984
1	1.00	0.60	30.00	450.00	OK	N2	N6	14-2-P14	10'337	0.495	0.494	0.000	0.599	-	0.599
51	100	x 60		150.00					401007	18.185	119.429	0.000	517.181	-	277.652
1	1.00	0.60	30.00	450.00	OK	N2	N6	14-2-P14	10'337	0.533	0.522	0.000	0.537	-	0.537
52	100	x 60	20.00	450.00	OF	ND	NE	14.2.014	10'227	16.661	122.199	0.000	517.181	-	231.089
1	1.00	0.60	50.00	450.00	UK	INZ	IND	14-2-114	10 337	0.532	0.536	0.000	0.447	-	0.447
53	100	x 60	30.00	450.00	OK	N2	NG	14-7-D14	10'227	16.662	122.199	0.000	517.181	-	232.338
1	1.00	0.60	50.00	450.00	UK	192	NU	14-7-14	10 337	0.532	0.536	0.000	0.449	-	0.449
54	100	x 60	30.00	450.00	ОК	N2	N6	14-2-P14	10'337	18.190	119.415	0.000	517.181	-	278.885
1	1.00	0.60	30.00			2		21 2 1 27	10 357	0.533	0.522	0.000	0.539	-	0.539
55	100	x 60	30.00	450.00	ОК	N2	N6	14-2-P14	10'337	21.729	114.092	0.000	517.181	-	311.185
1	1.00	0.60				=				0.495	0.493	0.000	0.602	-	0.602
56	100	x 60	30.00	450.00	ОК	N6	N6	14-2-P14	10'337	27.230	103.584	0.000	517.181	-	328.472
1	1.00	0.60								0.445	0.440	0.000	0.635	-	0.635
57	100	x 60	30.00	450.00	ОК	N6	N6	14-2-P14	10'337	34.476	91.265	0.000	517.181	-	330.190
1	1.00	0.60								0.384	0.376	0.000	0.638	-	0.638
58	1.00	0.00	30.00	450.00	ОК	N5	N6	14-2-P14	10'337	3099.300	134.834	0.000	517.181	-	315.993
1	1.00	U.0U							<u> </u>	2121 070	102 512	0.000	0.011	-	205 764
59 1	1 00	0.60	30.00	450.00	OK	N5	N6	14-2-P14	10'337	0 376	192.512	0.000	0 223	-	205.704
- <u>-</u>	100	x 60								3130 010	229 077	0.000	517 121	-	239 600
1	1 00	0.60	30.00	450.00	ОК	N5	N6	14-2-P14	10'337	0.396	0.398	0.000	0.463	-	0.463
1	1.00	0.00							1	0.550	0.000	0.000	0.400		0.405

	SECTION CHECKING														
MEMBER	SECTION P	ROPERTIES	fck	fyk		LOAD CB	LOAD CB			N_Ed	M_Edy	M_Edz	V_Rdc	V_Rds	V_Ed
SECTION	Bc (m)	Hc (m)	[N/mm ²]	[N/mm ²]	CHECK	M-N iteration	V	Rebar	N_Rdmax	Ratio-N	Ratio-My	Ratio-Mz	Ratio-Vc	Ratio-Vs	Ratio-V
61	100	x 60								3153.940	239.528	0.000	517.181	-	177.867
1	1.00	0.60	30.00	450.00	OK	N5	N6	14-2-P14	10'337	0.401	0.406	0.000	0.344	-	0.344
62	100	x 60								3152.350	239.528	0.000	517.181	-	191.272
1	1.00	0.60	30.00	450.00	OK	N5	N5	14-2-P14	10'337	0.401	0.406	0.000	0.370	-	0.370
63	100	x 60	20.00	450.00	01	NE	NE	14.2.014	10/227	3150.810	213.747	0.000	517.181	-	268.976
1	1.00	0.60	30.00	450.00	UK	N5	N5	14-2-P14	10 337	0.390	0.388	0.000	0.520	-	0.520
64	100	x 60	20.00	450.00	OK	NE	NE	14.2.014	10'227	3141.620	145.612	0.000	517.181	-	339.052
1	1.00	0.60	50.00	450.00	UK	NЭ	NЭ	14-2-P14	10 557	0.356	0.363	0.000	0.656	-	0.656
65	100	x 60	20.00	450.00	OK	NE	NE	14 2 D14	10'227	3147.040	38.956	0.000	517.181	-	183.112
1	1.00	0.60	30.00	430.00	UK	113	113	14-2-114	10 337	0.317	0.321	0.000	0.354	-	0.354
66	100	x 60	30.00	450.00	OK	NG	N5	14-2-D14	10'337	3207.820	53.939	0.000	517.181	-	217.485
1	1.00	0.60	30.00	450.00	ÖK	110	115	14-2-1 14	10 337	0.329	0.324	0.000	0.421	-	0.421
67	100	x 60	30.00	450.00	OK	NG	N5	14-7-P14	10'337	3216.170	51.965	0.000	517.181	-	119.795
1	1.00	0.60	30.00	450.00	ÖK	110	115	14-2-1 14	10 337	0.328	0.334	0.000	0.232	-	0.232
68	100	x 60	30.00	450.00	ОК	N6	N6	14-2-P14	10'337	3217.610	51.965	0.000	517.181	-	142.879
1	1.00	0.60	50.00	150100				1.2.11	10 557	0.328	0.334	0.000	0.276	-	0.276
69	100	x 65	30.00	450.00	ОК	N6	N6	14-2-P16	11'370	3230.610	28.650	0.000	558.612	-	131.862
3	1.00	0.65			•					0.292	0.290	0.000	0.236	-	0.236
70	100	x 70	30.00	450.00	ОК	N6	N5	14-2-P16	12'167	3256.690	49.826	0.000	599.865	-	182.554
4	1.00	0.70								0.279	0.280	0.000	0.304	-	0.304
71	100	x /5	30.00	450.00	ОК	N5	N5	14-2-P16	12'964	3274.910	125.542	0.000	640.961	-	230.599
5	1.00	0.75								0.280	0.280	0.000	0.360	-	0.360
72	100	x 80	30.00	450.00	ОК	N5	N5	14-2-P16	13'760	3296.260	225.364	0.000	681.916	-	272.164
6	1.00	0.80								0.287	0.282	0.000	0.399	-	0.399
/3	100	X 85	30.00	450.00	ОК	N5	N5	14-2-P18	14'824	3316.310	377.615	0.000	/22./45	-	3/1.613
/	1.00	0.85								0.298	0.301	0.000	0.514	-	0.514
/4	1.00	x 90	30.00	450.00	OK	N5	N5	14-2-P18	15'621	3344.630	545.755	0.000	/63.458	-	397.439
8	1.00	0.90								0.324	0.318	0.000	0.521	-	0.521
/5	1.00	x 33	30.00	450.00	OK	N5	N5	14-2-P18	16'418	0.215	0.216	0.000	187.016	-	295.921
9	1.00	v 95								2286 050	610 664	0.000	0.570	-	50.662
70 9	1 00	0.95	30.00	450.00	OK	N5	N11	14-2-P18	16'418	0 314	0 319	0.000	0 152	-	0 152

A.4.5.12. Rebared sections ratio checking for fire combinations load

	SECTION CHECKING - FIRE COMBINATIONS LOAD														
MEMBER	SECTION P	ROPERTIES	fck	fyk	CUECK	LOAD CB	LOAD CB	Dahau		N_Ed	M_Edy	M_Edz	V_Rdc	V_Rds	V_Ed
SECTION	Bc (m)	Hc (m)	[N/mm ²]	[N/mm ²]	CHECK	M-N iteration	v	Rebar	№_катах	Ratio-N	Ratio-My	Ratio-Mz	Ratio-Vc	Ratio-Vs	Ratio-V
52(M+N) / 64(V)	100	x 60	20.00	260.00	OK	NDD	N 21	14.2 014	12/410	2362.780	187.623	0.000	546.868	-	269.589
1	1.00	0.55	50.00	300.00	UK	NZZ	N21	14-2-214	12 410	0.262	0.265	0.000	0.493	-	0.493
26(M+N) / 3(V)	100	x 66	20.00	260.00	OK	N/21	NICO	14 2 D16	12'016	2393.040	371.056	0.000	591.236	-	428.329
2	1.00	0.61	30.00	300.00	UK	N21	IN22	14-2-110	13 910	0.316	0.316	0.000	0.724	-	0.724
36(M+N) / 69(V)	100	x 65	20.00	260.00	OK	N/21	NICO	14 2 D16	12'702	2523.400	35.279	0.000	608.938	-	101.332
3	1.00	0.60	30.00	300.00	UK	N21	IN22	14-2-110	13 703	0.193	0.192	0.000	0.166	-	0.166
35(M+N) / 70(V)	100	x 70	20.00	260.00	OK	N 21	N 21	14 2 016	14'766	2541.250	13.005	0.000	623.963	-	140.959
4	1.00	0.65	50.00	300.00	UK	N21	N21	14-2-P10	14 / 00	0.175	0.178	0.000	0.226	-	0.226
1(M+N) / 27(V)	100	x 75	20.00	260.00	OK	N 21	N 22	14 2 D16	15'070	2571.120	439.773	0.000	627.666	-	276.202
5	1.00	0.70	30.00	300.00	UK	NZ1	N2Z	14-2-F10	13 828	0.295	0.290	0.000	0.440	-	0.440
72(M+N) / 72(V)	100	x 80	20.00	260.00	OK	N 21	N/21	14 2 D16	16'901	2570.130	151.282	0.000	653.089	-	210.488
6	1.00	0.75	30.00	300.00	UK	N21	N21	14-2-110	10 891	0.180	0.177	0.000	0.322	-	0.322
73(M+N) / 73(V)	100	x 85	30.00	360.00	OK	N21	N21	1/L-7-D18	18'205	2584.530	268.738	0.000	691.516	-	288.893
7	1.00	0.80	50.00	500.00	OK	NZI	NZI	14-2-1 10	10 205	0.188	0.190	0.000	0.418	-	0.418
74(M+N) / 24(V)	100	x 90	20.00	260.00	OK	N 21	N 22	1/ 2 D19	10'267	2605.340	399.502	0.000	646.146	-	508.393
8	1.00	0.85	50.00	500.00	UK	1121	1122	14-7-10	15 207	0.202	0.206	0.000	0.787	-	0.787
75(M+N) / 75(V)	100	x 95	20.00	260.00	OK	N/21	N/21	14 2 019	20/220	2626.030	450.449	0.000	721.270	-	232.827
9	1.00	0.90	30.00	300.00	UK	1121	NZ1	14-7-610	20 330	0.202	0.198	0.000	0.323	-	0.323

Beam Diagram_My / ST_ NSLE - 5

.

Beam Diagram_My / ST_ NSLE - 6

.

	STRESS CONTROL										
MEMBER	SECTION PROPERTIES		$\sigma_{ m ct,MAX}$	$\sigma_{ ext{ct. Adm}}$	CUTCK	$\sigma_{\rm c, MAX}$	$\sigma_{\text{c. Adm}}$	CUECK	$\sigma_{\rm s, max}$	$\sigma_{\text{S. Adm}}$	CUECK
SECTION	Bc (m) Hc (m)	LOAD CB	[N/mm ²]	[N/mm ²]	CHECK	[N/mm ²]	[N/mm ²]	CHECK	[N/mm ²]	[N/mm ²]	CHECK
1	100 x 75	SLE - N5	1.48	2.90	ОК	-8.38	-18.00	ОК	4.47	360.00	ОК
2	1.00 0.75 100 x 75		4.07				10.00		1.00		
5	1.00 0.75	SLE - N5	1.37	2.90	ОК	-8.02	-18.00	ОК	4.00	360.00	OK
3	100 x 66	SLE - N5	1.72	2.90	ОК	-8.98	-18.00	ОК	4.84	360.00	ОК
4	100 x 90										
8	1.00 0.90	SLE - N5	0.29	2.90	ОК	-4.81	-18.00	ОК	1.42	360.00	OK
5	100 x 90	SLE - N5	0.32	2.90	ОК	-4.07	-18.00	ОК	1.59	360.00	ОК
6	100 x 90		0.24	2.00	01/	2.40	10.00	01	1.00	262.00	01
8	1.00 0.90	SLE - N5	0.34	2.90	UK	-3.49	-18.00	UK	1.68	360.00	UK
7	100 x 90	SLE - N5	0.35	2.90	ОК	-2.85	-18.00	ОК	1.74	360.00	ОК
8	100 x 90		0.35	2 90	OK	-3 30	-18.00	OK	1 75	360.00	OK
8	1.00 0.90	SEL - NO	0.55	2.50	OK	-3.50	-10.00	OK	1.75	500.00	UK
8	1.00 0.90	SLE - N6	0.34	2.90	ОК	-3.84	-18.00	ОК	1.67	360.00	OK
10	100 x 90	SLE - N6	0.34	2.90	ОК	-4.61	-18.00	ОК	1.59	360.00	ОК
8	1.00 0.90 100 x 90				-	-		-			-
8	1.00 0.90	SLE - N6	0.81	2.90	ОК	-5.05	-18.00	ОК	2.66	360.00	OK
12	100 x 90	SLE - N6	1.05	2.90	ОК	-5.27	-18.00	ОК	3.98	360.00	ОК
8 13	1.00 0.90 100 x 90										
8	1.00 0.90	SLE - N6	1.13	2.90	ОК	-5.33	-18.00	ОК	4.42	360.00	OK
14	100 x 90	SLE - N6	1.14	2.90	ОК	-5.33	-18.00	ОК	4.46	360.00	ОК
15	1.00 0.90 100 x 90						10.00				
8	1.00 0.90	SLE - N6	0.87	2.90	UK	-5.06	-18.00	UK	3.02	360.00	UK
16 8	100 x 90	SLE - N6	0.87	2.90	ОК	-5.06	-18.00	ОК	2.99	360.00	ОК
17	100 x 90		0 70	2 00	OK	5.01	19.00	OK	2 50	260.00	OK
8	1.00 0.90	JLL - NO	0.79	2.50	UK	-3.01	-18.00	OK	2.30	300.00	UK
18	1.00 0.90	SLE - N6	0.69	2.90	ОК	-4.93	-18.00	ОК	2.01	360.00	ОК
19	100 x 90	SLE - NG	0 32	2 90	ОК	-4 56	-18 00	ОК	1 57	360.00	ОК
8	1.00 0.90	522 110	0.52	2.50			10/00		1.57	500.00	
8	1.00 0.90	SLE - N6	0.34	2.90	ОК	-3.86	-18.00	ОК	1.67	360.00	ОК
21	100 x 90	SLE - N6	0.35	2.90	ОК	-3.37	-18.00	ОК	1.72	360.00	ОК
8	1.00 0.90 100 × 90										
8	1.00 0.90	SLE - N5	0.34	2.90	ОК	-2.92	-18.00	ОК	1.69	360.00	OK
23	100 x 90	SLE - N5	0.33	2.90	ОК	-3.60	-18.00	ОК	1.64	360.00	ОК
° 24	100 x 90	CLE 115	0.01	2.00	<u> </u>		40.00		4	200.00	C 11
8	1.00 0.90	SLE - N5	0.31	2.90	ОК	-4.19	-18.00	ОК	1.54	360.00	OK
25 8	100 x 90	SLE - N5	0.28	2.90	ОК	-4.87	-18.00	ОК	1.36	360.00	ОК
26	100 x 66		1 77	2.00	01/	0.02	10.00	01/	4.01	260.00	01/
2	1.00 0.66	SLE - INS	1.73	2.90	UK	-9.02	-18.00	UK	4.91	500.00	UK
27	100 x 75 1.00 0.75	SLE - N5	1.40	2.90	ОК	-8.04	-18.00	ОК	4.16	360.00	ОК
28	100 x 75	SLE - NS	1 49	2 90	OK	-8 29	-18.00	OK	4 53	360.00	OK
5	1.00 0.75	JEE - NJ	1.45	2.50	UK	0.00	10.00	UK		500.00	OK
9	1.00 0.95	SLE - N5	0.28	2.90	ОК	-5.87	-18.00	ОК	0.00	360.00	ОК
30	100 x 95	SLE - N5	0.22	2.90	ОК	-5.78	-18.00	ОК	0.00	360.00	ОК
9	1.00 0.95			2.00	2			5	2.00		5

A.4.5.19. Stress checking

	STRESS CONTROL										
MEMBER	SECTION PROPERT	ES LOAD CB	$\sigma_{ m ct,MAX}$	$\sigma_{ m ct. Adm}$	CHECK	$\sigma_{\rm c, MAX}$	$\sigma_{\rm c.Adm}$	CHECK	$\sigma_{\rm s,max}$	$\sigma_{\text{S. Adm}}$	CHECK
SECTION 31	Bc (m) Hc (m 100 x 90)	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	
8	1.00 0.90	SLE - N5	0.60	2.90	ОК	-7.15	-18.00	OK	0.30	360.00	ОК
32	100 x 85	SLE - N5	0.07	2.90	ОК	-5.41	-18.00	OK	0.14	360.00	ОК
33	100 x 80	SLE - N5	0.10	2.90	ОК	-4.78	-18.00	OK	0.29	360.00	ОК
6 34	1.00 0.80 100 x 75										
5	1.00 0.75	SLE - N5	0.14	2.90	ОК	-4.37	-18.00	OK	0.43	360.00	OK
35	100 x 70 1.00 0.70	SLE - N6	0.18	2.90	ОК	-4.02	-18.00	OK	0.59	360.00	ОК
36 3	100 x 65 1.00 0.65	SLE - N6	0.24	2.90	ОК	-4.22	-18.00	ОК	0.95	360.00	ОК
37 1	100 x 60	SLE - N6	0.41	2.90	ОК	-4.91	-18.00	ОК	1.76	360.00	ОК
38	100 x 60	SLE - N6	0.49	2.90	ОК	-4.93	-18.00	ОК	2.17	360.00	ОК
39	100 x 60	SLE - N6	0.54	2.90	ОК	-4.94	-18.00	ОК	2.39	360.00	ОК
40	100 x 60	SLE - N5	0.40	2.90	ОК	-5.28	-18.00	ОК	1.78	360.00	ОК
41	100 x 60	SLE - N5	0.34	2.90	ОК	-5.88	-18.00	ОК	1.51	360.00	ОК
1 42	1.00 0.60 100 x 60	SLE - N5	0.24	2.90	ОК	-6.78	-18.00	ОК	0.95	360.00	ОК
1 43	1.00 0.60 100 x 60	SLE - NS	0.25	2 90	OK	-7 12	-18.00	OK	1.01	360.00	OK
1 44	1.00 0.60 100 x 60		0.25	2.50		7.12	-10.00	01	1.01	300.00	01
1 45	1.00 0.60 100 x 60	SLE - N5	0.25	2.90	UK	-7.12	-18.00	UK	1.02	360.00	UK
1	1.00 0.60	SLE - N5	0.41	2.90	OK	-6.99	-18.00	OK	1.93	360.00	OK
1	1.00 0.60	SLE - N5	0.66	2.90	ОК	-6.48	-18.00	OK	3.20	360.00	ОК
4/	100 x 60 100 x 1.00 0.60	SLE - N5	0.90	2.90	ОК	-5.71	-18.00	OK	4.41	360.00	ОК
48	100 x 60 1.00 0.60	SLE - N6	1.12	2.90	ОК	-5.42	-18.00	ОК	5.48	360.00	ОК
49 1	100 x 60 1.00 0.60	SLE - N6	1.30	2.90	ОК	-6.36	-18.00	ОК	6.37	360.00	ОК
50 1	100 x 60 1.00 0.60	SLE - N5	1.43	2.90	ОК	-7.14	-18.00	ОК	7.03	360.00	ОК
51 1	100 x 60	SLE - N5	1.51	2.90	ОК	-7.67	-18.00	ОК	7.44	360.00	ОК
52	100 x 60	SLE - N5	1.54	2.90	ОК	-7.86	-18.00	ОК	7.58	360.00	ОК
53	100 x 60	SLE - N5	1.54	2.90	ОК	-7.86	-18.00	ОК	7.58	360.00	ОК
54	1.00 0.60	SLE - N5	1.51	2.90	ОК	-7.66	-18.00	ОК	7.44	360.00	ОК
1 55	1.00 0.60 100 x 60	SLF - N5	1.43	2.90	OK	-7 12	-18.00	OK	7.03	360.00	ОК
1 56	1.00 0.60 100 x 60		1 20	2.50	01	6.22	18.00		6.26	260.00	
1 57	1.00 0.60 100 x 60	SLE - IND	1.30	2.90	UK	-0.33	-16.00	UK	0.30	500.00	OK
1	1.00 0.60	SLE - N6	1.12	2.90	OK	-5.39	-18.00	OK	5.48	360.00	OK
1	1.00 0.60	SLE - N5	0.90	2.90	ОК	-5.75	-18.00	OK	4.40	360.00	ОК
1	1.00 0.60	SLE - N5	0.66	2.90	ОК	-6.53	-18.00	ОК	3.20	360.00	ОК
60 1	100 x 60 1.00 0.60	SLE - N5	0.41	2.90	ОК	-7.04	-18.00	OK	1.92	360.00	ОК

	STRESS CONTROL											
MEMBER	SECTION P	ROPERTIES		$\sigma_{ m ct,MAX}$	$\sigma_{ ext{ct. Adm}}$		$\sigma_{ m c,MAX}$	$\sigma_{ ext{c. Adm}}$		$\sigma_{\rm s,max}$	$\sigma_{\text{S. Adm}}$	
SECTION	Bc (m)	Hc (m)	LOAD CB	[N/mm ²]	[N/mm ²]	CHECK	[N/mm ²]	[N/mm ²]	CHECK	[N/mm ²]	[N/mm ²]	CHECK
61	100	x 60		0.25	2.00	OK	7 10	10.00	01/	1.02	200.00	01
1	1.00	0.60	SLE - INS	0.25	2.90	UK	-7.19	-18.00	UK	1.03	360.00	UK
62	100	x 60		0.25	2.00	01	7 10	19.00	OK	1.02	260.00	Š
1	1.00	0.60	SLE - INS	0.25	2.90	UK	-7.10	-18.00	UK	1.02	500.00	UK
63	100	x 60		0.24	2.00	01	6.94	19.00	OK	0.06	260.00	OK
1	1.00	0.60	SLE - INS	0.24	2.90	UK	-0.64	-18.00	UK	0.96	500.00	UK
64	100	x 60		0.21	2.00	01	F 04	19.00	OK	1 27	260.00	OK
1	1.00	0.60	SLE - INS	0.51	2.90	UK	-5.94	-18.00	UK	1.57	500.00	UK
65	100	x 60		0.40	2.00	01	4 55	19.00	OK	1 00	260.00	OK
1	1.00	0.60	JLL - NJ	0.40	2.50	OK	-4.55	-18.00	UK	1.00	300.00	UK
66	100	x 60		0.54	2.00	01	1 96	19.00	OK	2 /1	260.00	2
1	1.00	0.60	SLE - INO	0.54	2.90	UK	-4.60	-18.00	UK	2.41	500.00	UK
67	100	x 60		0.50	2.00	01	1 96	19.00	OK	2 10	260.00	2
1	1.00	0.60	SLE - INO	0.50	2.90	UK	-4.60	-18.00	UK	2.19	500.00	UK
68	100	x 60		0.42	2.00	01	4 02	19.00	OK	1 70	260.00	2
1	1.00	0.60	SLE - INO	0.42	2.90	UK	-4.65	-18.00	UK	1.78	500.00	UK
69	100	x 65		0.24	2.00	01	4 15	19.00	OK	0.07	260.00	2
3	1.00	0.65	SLE - INO	0.24	2.90	UK	-4.15	-18.00	UK	0.97	500.00	UK
70	100	x 70		0.19	2.00	01	4.09	19.00	OK	0.62	260.00	2
4	1.00	0.70	SLE - INO	0.18	2.90	UK	-4.08	-18.00	UK	0.82	500.00	UK
71	100	x 75		0.15	2 00	OK	1 12	18.00	OK	0.46	260.00	C K
5	1.00	0.75	JLL - NJ	0.15	2.50	OK	-4.45	-18.00	UK	0.40	300.00	UK
72	100	x 80		0.11	2 00	OK	1 95	18.00	OK	0.22	260.00	C K
6	1.00	0.80	JLL - INJ	0.11	2.90	OK	-4.65	-18.00	UK	0.32	300.00	UK
73	100	x 85		0.09	2 00	OK	E /19	18.00	OK	0.17	260.00	OK
7	1.00	0.85	JLL - NJ	0.08	2.50	OK	-3.40	-18.00	UK	0.17	300.00	UK
74	100	x 90		0.22	2 90	OK	-6.04	-18.00	OK	0.08	360.00	OK
8	1.00	0.90	JLL - NJ	0.22	2.50	UK	-0.04	-10.00	UK	0.08	300.00	UK
75	100	x 95		0.37	2 90	OK	-5.03	-18.00	OK	0.00	360.00	OK
9	1.00	0.95	JLL - NJ	0.37	2.50	UK	-3.55	-10.00	UK	0.00	300.00	UK
76	100	x 95		0.26	2 00	OK	5.04	18.00	OK	0.00	260.00	OK
9	1.00	0.95	JLL - NJ	0.50	2.90	UK	-5.94	-10.00	UK	0.00	300.00	UK

ANHANG 5 - ZWISCHENPLATTE

Zwischenplatte.

APPENDICE 5 – SOLETTA INTERMEDIA

Der Anhang 5 behandelt die Nachweise der GZT und GZG der L'appendice 5 contiene le verifiche sezionali allo SLU e SLE svolte sulle solette intermedie.

1 **EINFÜHRUNG**

Dieser Bericht behandelt die Dimensionierung der Zwischendecke des Zugangstunnels.

Die tragende Struktur hat eine Lichtweite von ca. 8.3 m und liegt auf der Innenschale des Tunnels auf, wie aus der folgenden Abbildung hervorgeht.

1 INTRODUZIONE

Il presente allegato tratta il dimensionamento della soletta intermedia prevista nella Galleria di Accesso.

La struttura ha una luce di circa 8.3 m ed è appoggiata agli estremi sul rivestimento definitivo della galleria, come illustrato nella seguente figura.

Abbildung 41: Darstellung der Zwischenplatte

2 NORMEN UND RICHTLINIEN

- D.M. Infr. e Trasp. 28 ottobre 2005, "Sicurezza nelle gallerie ferroviarie. Analisi dei rischi - Misure di prevenzione e protezione - Approvazione dei progetti".
- [2] NTC 2008 del 14 gennaio 2008, "Norme tecniche delle Costruzioni D. Min. Infrastrutture".
- UNI EN 1992-1-1:2005 "Planung von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau"
- [4] UNI EN 1992-1-2:2005 "Planung von Stahlbeton- und Spannbetontragwerken – Teil 1-2: Allgemeine Regeln – Tragwerksbemessung für den Brandfall"
- [5] UNI 11076 vom 1.Juli 2003, "Prüfmethoden zur

Illustrazione 41: Rappresentazione della soletta intermedia

2 NORMATIVA

- D.M. Infr. e Trasp. 28 ottobre 2005, "Sicurezza nelle gallerie ferroviarie. Analisi dei rischi - Misure di prevenzione e protezione - Approvazione dei progetti".
- [2] NTC 2008 del 14 gennaio 2008, "Norme tecniche delle Costruzioni D. Min. Infrastrutture".
- [3] UNI EN 1992-1-1:2005 "Progettazione delle strutture in calcestruzzo Parte 1-1: Regole generali e regole per gli edifici"
- [4] UNI EN 1992-1-2:2005 "Progettazione delle strutture in calcestruzzo Parte 1-2: Regole generali -Progettazione strutturale contro l'incendio"
- [5] UNI 11076 del 1 luglio 2003, "Modalità di prova per la

Bewertung der baulichen Brandschutz-Maßnahmen für Decken von Untertagebauwerken im Brandfall."

MATERIALIEN 3

3.1 **BETON**

Hierbei sind:

Für die Dimensionierung der Decke ist ein Beton der Festigkeitsklasse C30/37 mit folgenden Eigenschaften zu berücksichtigen:

E_{cm} = 33000 MPa

3

 $f_{ck} = 30 \text{ MPa}$

Dove:

3.2

B450C:

- Ecm ist der Mittelwert des Sekantenmoduls Ecm è il valore medio del modulo elastico secante fck è la resistenza caratteristica a compressione dello
- fck ist die charakteristische Druckfestigkeit des Betons nach 28 Tagen
- **BEWEHRUNGSSTAHL** 3.2
- Für die Dimensionierung der Decke wird Baustahl des Typs B450C verwendet:
 - E_s = 210000 MPa

f_{vk} = 450 MPa

dove:

Es è il modulo elastico

calcestruzzo a 28 giorni

ACCIAIO DA ARMATURA

fyk è la tensione caratteristica di snervamento acciaio per cemento armato

MODELLO DI CALCOLO 4

Lo schema di calcolo della soletta intermedia è di trave su due appoggi con luce pari a 8.3m.

ANALISI DEI CARICHI 4.1

In seguito si definiscono le azioni da utilizzare nel dimensionamento della soletta intermedia

Peso proprio G1 4.1.1

Il volume utilizzato per il calcolo del peso proprio si basa sulle dimensioni effettive della struttura.

Il peso specifico del calcestruzzo viene assunto pari $\Upsilon = 25 \text{kN/m}^3$.

4.1.2 Ventilazione Q1

Hierbei ist:

- Es ist das Elastizitätsmodul
- fyk charakteristischer Wert der Streckgrenze des **Betonstahls**

4 BERECHNUNGSMODELL

Das Berechnungsmodell der Innenschale ist der eines Trägers auf zwei Stützen mit 8.3m Stützweite.

BELASTUNGSANALYSE 41

Anschließend werden die zur Dimensionierung der Innenschale anzuwendenden Belastungen festgelegt.

4.1.1 **Eigengewicht G1**

Die für die Berechnung des Eigengewichts verwendete Querschnittsfläche pro Tunnelmeter basiert auf den Realmaßen der Konstruktion.

Das spezifische Eigengewicht des Stahlbetons ist mit Υ = 25kN/m³ zu berücksichtigen.

4.1.2 Lüftung Q1

Für die Dimensionierung der Innenschale ist eine Sonderlast Per il dimensionamento delle solette intermedie si è adottato

valutazione del comportamento di protettivi applicati a soffitti di opere sotterranee, in condizioni di incendi".

MATERIALI

CALCESTRUZZO 3.1

Per il dimensionamento della soletta si considera un calcestruzzo con classe di resistenza C30/37 con le seguenti caratteristiche:

Per il dimensionamento della soletta si utilizza l'acciaio tipo

von ±20 kN/m2 (Szenario N), eine häufige Last von +9.27 kN/m2 (Szenario SZ 21), eine seltene Last von -5.90 kN/m2 (Szenario N) und eine Ermüdungslast von +6.56 kN/m2 (Szenario SZ 14) angewendet worden. Per Konvention werden die nach oben wirkenden Lasten mit dem Zeichen +, und die nach unten wirkenden mit dem Zeichen – gekennzeichnet.

4.1.3 Nutzung Q2

Für die Dimensionierung der Innenschale ist eine wechselnde Last von -4.0 kN/m² angewendet worden. Per Konvention werden die nach oben wirkenden Lasten mit dem Zeichen +, und die nach unten wirkenden mit dem Zeichen – gekennzeichnet.

4.1.4 Brand A1

Gemäß den Vorschriften des MD 28/10/2005 Sicherheit von Eisenbahntunneln wird eine Standfestigkeit aller Bauwerke angesichts der Temperatur-Zeitkurve laut UNI 11076 gewährleistet.

4.1.4.1 Temperatur-Zeitkurve im Tunnelbau [UNI 11076]

Die Feuerexposition wird mittels der Temperatur-Zeitkurve der Norm UNI 11076 beschrieben, die anschließend dargestellt, und im Rechnungsprogramm CPI win REI Calcolo verwendet wird. un carico eccezionale pari a $\pm 20 \text{ kN/m}^2$ (scenario N), un carico frequente pari a $\pm 9.27 \text{ kN/m}^2$ (scenario SZ 21), un carico raro pari a $\pm 5.90 \text{ kN/m}^2$ (scenario N) e un carico a fatica pari a $\pm 6.56 \text{ kN/m}^2$ (scenario SZ 14). Per convenzione si intendono agenti verso l'alto i carichi indicati con segno $\pm e$ agenti verso il basso quelli con segno \pm .

4.1.3 Utilizzazione Q2

Per il dimensionamento delle solette intermedie si è adottato un carico variabile pari a -4.0 kN/m². Per convenzione si intendono agenti verso l'alto i carichi indicati con segno + e agenti verso il basso quelli con segno -.

4.1.4 Incendio A1

In accordo con le prescrizioni del DM 28/10/2005 Sicurezza gallerie ferroviarie viene garantita la stabilità di tutte le opere in considerazione della curva temperatura-tempo secondo la UNI 11076.

4.1.4.1 Curva della temperatura/tempo per tunnel [UNI 11076]

L'esposizione al fuoco viene descritta dalla curva della temperatura/tempo della normativa UNI 11076, di seguito riportata ed inserita nel programma di calcolo CPI win REI Calcolo.

Abbildung 42: Temperatur-Zeitkurve

Illustrazione 42: Curva della temperatura/tempo

Tempo (min)	Temperatura (°C)
0	20
5	1140
10	1200
15	1235
20	1260
25	1290
30	1300
35	1312
40	1320
45	1330
50	1340
55	1345
60	1350
65	1345
70	1340
75	1330
80	1320
85	1312
90	1300
95	1290
100	1270
105	1250
110	1230
115	1215
120	1200

Abbildung 43: Temperaturwerte zu den verschiedenen Zeitpunkten

Illustrazione 43: Valori della temperatura nei diversi istanti temporali

4.1.4.2 Koeffizienten zur Bewertung der temperaturbedingten Festigkeitsminderung der Materialien Coefficienti per la valutazione della diminuzione delle caratteristiche di resistenza dei materiali in funzione della temperatura

Laut der Norm UNI EN 1992-1-2 wird die Materialfestigkeit bei steigender Temperatur gemindert, wie in den nachfolgenden Abbildungen dargestellt: In conformità alla UNI EN 1992-1-2 la resistenza dei materiali si riduce con l'aumento della temperatura, come rappresentato nelle figure seguenti:

- 1 Curva 1: calcestruzzo ordinario con aggregati silicei
- 2 Curva 2: calcestruzzo ordinario con aggregati calcarei

4.1.4.2

 Abbildung 44: Koeffizient k_c(θ) zur Bewertung der Abminderung der charakteristischen Betonfestigkeit (f_{ck})
 Illustrazione 44: Coefficiente k_c (θ) per tener conto della diminuzione della resistenza caratteristica (f_{ck}) del calcestruzzo

Curva 1 Armatura tesa (laminata a caldo) per deformazioni $\varepsilon_{e,fi} \ge 2\%$ Curva 2 Armatura tesa (trafilata a freddo) per deformazioni $\varepsilon_{e,fi} \ge 2\%$ Curva 3 Armatura compressa e tesa per deformazioni $\varepsilon_{e,fi} < 2\%$

Abbildung 45: Koeffizient k_s (9) zur Bewertung der Minderung der charakteristischen Zug- und und Druckfestigkeit (f_{yk}) der Stahlbewehrung Klasse N

Illustrazione 45: Coefficiente k_s (9) per tener conto della diminuzione della resistenza caratteristica (f_{yk}) a trazione e a compressione dell'armatura classe N.

4.2 NACHWEISVERFAHREN

Für den Nachweis des Grenzzustandes der Trag- und Gebrauchstauglichkeit der Innenschale sind die Wirkungskombinationen gemäß den Vorgaben im NTC2008, Abs. 2.5.3 berücksichtigt worden.

- 4.2.1 Traggrenzzustände (GZT) und Gebrauchsgrenzzustände (GZG)
- 4.2.1.1 Kombinations- und Teilkoeffizienten der Sicherheit der Wirkungen

Die Kombinationen der zu analysierenden Wirkungen müssen, laut allen NTC 2008, mit den entsprechenden Kombinationskoeffizienten ψ rechnen. Im überprüften Fall werden folgende Werte angewendet:

4.2 VERIFICHE

Per la verifica allo stato limite ultimo ed allo stato limite di esercizio della soletta intermedia sono state considerate le combinazioni delle azioni in conformità delle prescrizioni del paragrafo 2.5.3 delle NTC2008.

- 4.2.1 Stati Limite Ultimi (SLU) e Stati Limite di Esercizio (SLE)
- 4.2.1.1 Coefficienti di combinazione e parziali di sicurezza per le azioni

Le combinazioni delle azioni da analizzare devono essere considerate, in conformità alle NTC 2008, con i relativi coefficienti di combinazione ψ , nel caso in esame si adottano i seguenti valori:

Gefahren-Szenario / Scenario Di Pericolo	Nachweis- Verfahren / Verifica	Eigengewicht / Peso Proprio	Dauerlasten (Auslastung) / Carichi Permanenti (Utilizzazione)	Wechsellast (Auslastung) / Carichi Variabili (Utilizzazione)	Lüftungs-Druck (Ausnahme) / Pressione Ventilazione (Eccezionale)	Lüftungs-Druck (Wechselnd) / Pressione Ventilazione (Variabile)
	GZT/SLU	$\gamma_g = 1.00$	-	-	$\gamma_a = 1.00$	-
Lüftung / Ventilazione	GZG (HÄUFIGER) /SLE (FREQUENTE)	$\gamma_g = 1.00$	-	-	-	$\gamma_0 = 0.00$
	GZG (SELTENER) /SLE (RARO)	$\gamma_g = 1.00$	-	-	-	γ ₁ = 1.00
Brand/ Incendio	GZT/SLU	$\gamma_g = 1.00$	-	-	-	-
Ermüdung/ Fatica	GZT/SLU	$\gamma_g = 1.00$	-	-	-	$\gamma_q = 1.00$
	GZT/SLU	$\gamma_g = 1.35$	-	$\gamma_q = 1.50$	-	-
Auslastung / Utilizzazione	GZG (HÄUFIGER) /SLE (FREQUENTE)	$\gamma_g = 1.00$	-	$\gamma_q = 1.00$	-	-

Abbildung 46: Kombinations- und Teilkoeffizienten der Sicherheit der Wirkungen

Illustrazione 46: Coefficienti di combinazione e parziali di sicurezza per le azioni

4.2.1.2	Teilsicherheitsbeiwerte	der Festigkeiten
---------	-------------------------	------------------

Die auf die Materialienfestigkeit angewandten Sicherheitsbeiwerte zur Gewährleistung einer Lebensdauer von 200 Jahren, wie mit BBT SE vereinbart, sind folgende:

 γ c=1.6 e γ s=1.2 für Auslastungskombinationen

 γ c=1.2 e γ s=1.0 für Sonderkombinationen (Lüftung) und für den Brandlastfall

4.2.1.2 Coefficienti parziali di sicurezza per le resistenze

I coefficienti di sicurezza, concordati con BBT SE al fine di garantire una vita utile dell'opera di 200anni, applicati alle resistenze dei materiali sono i seguenti:

 γ c=1.6 e γ s=1.2 per le combinazioni di utilizzazione

 γ c=1.2 e γ s=1.0 per le combinazioni eccezionali (ventilazione) e per il carico da incendio

4.3.1 Traggrenzzustände (GZT)

4.3 RISULTATI

4.3.1 Sollecitazioni Stati Limite Ultimi (SLU)

Seite / Pag. 164/173

Im anlage 3 wird die Querschnittsprüfung auf Biegung der agli Stati Limite di Esercizio Gebrauchsgrenzzustände aufgezeigt.

4.4.3 Prüfungen auf Rissbildung 4.4.3 Verifiche a fessurazione Im Anlage 4 wird die Prüfung auf Rissbildung aufgezeigt. Nell'allegato 4 si riporta la verifica a fessurazione. 4.4.4 Prüfungen auf Verformung 4.4.4 Verifica di deformabilità Anschließend wird die Prüfung auf elastische sowie auf Nel seguito si esegue la verifica di deformabilità sia in fase viskose Verformung gezeigt. elastica che viscosa. Wie im Absatz C.4.1.2.2.2 des Rundschreibens der NTC2008 Come indicato nel paragrafo C.4.1.2.2.2 della circolare delle ist der Grenzwert 1/250 r Lichtweite. NTC2008 il limite è pari a 1/250 della luce. 8300mm/250 = 33.2 mm 8300mm/250 = 33.2 mm Elastische Verformung: Deformazione elastica: h =1000 mm h =1000 mm h = 330 h = 330 mm mm 9.25 kN/m 9.25 kN/m q = q = L = 8300 mm L = 8300 mm E = N/mm² E = N/mm² 33000 33000 2994750000 mm⁴ 2994750000 mm⁴ J = J = f = 8.08 mm f = 8.08 mm

Viskose Verformung:

Im Falle von viskose Verformung wird das elastische Modul reduziert laut UNI EN 1992-1-1 Absatz 7.4.3 mit der Formel 7.20:

$$\mathsf{E}_{\mathsf{c},\mathsf{eff}} = \mathsf{E}_{\mathsf{cm}}/(1 + \phi \infty, t_0)$$

Wenn man ein to gleich 7 Tage und eine relative Feuchtigkeit von 75% berücksichtigt erhält man von der Tabelle 11.2.VI der

b =	1000	mm
h =	330	mm
q =	9.25	kN/m
$\phi =$	2.5	
L =	8300	mm
E =	9429.57	N/mm ²
J =	2994750000	mm^4
f =	30.97	mm

In beiden Fällen ist der Pfeil tiefer als der Grenzpfeil.

Nel caso di deformazione viscosa il modulo elastico viene ridotto secondo UNI EN 1992-1-1 paragrafo 7.4.3 con la formula 7.20:

$$\mathsf{E}_{c,eff} = \mathsf{E}_{cm}/(1 + \phi \infty, t_0)$$

1000

b =

Deformazione viscosa:

Considerando un to pari a 7 giorni ed un'umidità relativa pari a valore di 2.5.

mm

h =	330	mm
q =	9.25	kN/m
φ =	2.5	
L =	8300	mm
E =	9429.57	N/mm ²
J =	2994750000	mm ⁴
f =	30.97	mm

In entrambi i casi la freccia è inferiore alla freccia limite.

4.4.5 Prüfung auf Ermüdung durch Biegung

Die Prüfungen auf Ermüdung durch Biegung werden laut UNI EN 1992-1-1, Absatz 6.8 durch getrennte Prüfungen des Beton und des Stahls ausgeführt. Ins besondere:

Stahlprüfungen: die Überprüfungen werden unter SLE-Zuständen ausgeführt, in dem man die zyklischen Wirkungen der widrigsten Grundkombination addiert (häufige Kombination bei Gebrauchsgrenzzustand). Danach wird die Ungleichheit (6.71) der Norm überprüft, wobei eine Zyklusanzahl von 10^6 (gerade Barren) und die Sicherheitskoeffizienten $\gamma_{F,fat}$ und $\gamma_{S,fat}$ entsprechend von 1.00 (Vermerk 1 von Absatz 6.8.4) und von 1.20 (Sicherheitskoeffizient des Bewehrungsstahls).

Betonprüfungen: die Überprüfungen werden unter SLE-Zuständen ausgeführt, in dem man die zyklischen Wirkungen der widrigsten Grundkombination addiert (häufige Kombination bei Gebrauchsgrenzzustand). Danach wird die Ungleichheit (6.77) der Norm überprüft. Bei der Berechnung der Planungsfestigkeit auf Ermüdung des Betons ($f_{cd,fat}$) müssen der Typ des Betons und die Dauer in Tagen, bei der die Anwendung der zyklischen Last beginnt, festgelegt werden: wenn man sich auf Sicherheitsabstand stellt kann man annehme, dass t₀=28Tage und s=0.20 (in dem man den Koeffizienten β_{cc} , in Absatz 3.1.2 festlegt, minimalisiert).

Im Anlage 5 wird die Prüfung Querschnittsprüfung auf Biegung der Ermüdungsgrenzzustände aufgezeigt.

4.4.6 Prüfung auf Ermüdung auf Querkraft

Die Prüfungen auf Ermüdung auf Querkraft werden laut UNI EN 1992-1-1, Absatz 6.8.7 Punkt (4) ausgeführt. Ins besondere für Bauglieder bei denen die Berechnung der Bewehrungen auf Querkraft auf Traggrenzzustand nicht nötig ist, kann man glauben, dass Beton der Ermüdung auf Querkraft stand hält wenn folgende Bedingungen eintreten:

- per $V_{Ed,min}/V_{Ed,max} \ge 0$:

 $V_{Ed,max} / V_{Rd,c} \le 0.5 + 0.45 \cdot (V_{Ed,min} / V_{Rd,c}) \le 0.9$

 $V_{Ed,min}/V_{Ed,max} = 7.01/34.24 = 0.20 \ge 0$

 $34.24/187.5 \le 0.5+0.45 \cdot (7.01/187.5) \le 0.9$

$0.18 \le 0.52 \le 0.9$

4.4.7 Brandprüfung (GZT)

Im Anlage 6 werden die Nachweise für den Lastfall des Brandes dargestellt.

4.4.5 Verifica a fatica a flessione

Le verifiche a fatica a flessione si effettuano secondo UNI EN 1992-1-1, paragrafo 6.8 eseguendo verifiche separate per il calcestruzzo e per l'acciaio. In particolare:

Verifiche lato acciaio: le verifiche sono eseguite in condizione SLE sommando le azioni cicliche alla combinazione di base più sfavorevole (Combinazione Frequente a Stato Limite di Esercizio). Si procede quindi verificando la diseguaglianza (6.71) della Normativa, considerando un numero di cicli N* pari a 10^6 (barre dritte) ed i coefficienti di sicurezza $\gamma_{F,fat}$ e $\gamma_{S,fat}$ pari rispettivamente a 1.00 (Nota 1 del paragrafo 6.8.4) e 1.20 (coefficiente di sicurezza sull'acciaio da armatura).

Verifiche lato cls: le verifiche sono eseguite in condizione SLE sommando le azioni cicliche alla combinazione di base più sfavorevole (Combinazione Frequente a Stato Limite di Esercizio). Si procede quindi verificando la diseguaglianza (6.77) della Normativa. Nel calcolo della resistenza di progetto a fatica del cls ($f_{cd,fat}$) occorre definire il tipo di cemento e il tempo in giorni in cui comincia l'applicazione del carico ciclico: ponendosi a favore di sicurezza si può assumere t₀=28gg e s=0.20 (minimizzando il coefficiente β_{cc} definito nel paragrafo 3.1.2).

Nell'allegato 5 si riporta la verifica della sezione a flessione allo Stato Limite di Fatica

4.4.6 Verifica a fatica a taglio

Le verifiche a fatica a taglio si effettuano secondo UNI EN 1992-1-1, paragrafo 6.8.7 punto (4). In particolare per membrature per le quali non è richiesto il calcolo di armature a taglio allo stato limite ultimo, si può ritenere che il calcestruzzo resista a fatica da taglio se si verificano le condizioni seguenti:

≤ 0.9

- per
$$V_{Ed,min}/V_{Ed,max} \ge 0$$
:
 $V_{Ed,max} / V_{Rd,c} \le 0.5 + 0.45 \cdot (V_{Ed,min} / V_{Rd,c}) \le 0$
 $V_{Ed,min}/V_{Ed,max} = 7.01/34.24 = 0.20 \ge 0$
 $34.24/187.5 \le 0.5 + 0.45 \cdot (7.01/187.5) \le 0.9$

 $0.18 \le 0.52 \le 0.9$

4.4.7 Verifica incendio (SLU)

Nell'Allegato 6 si riportano le verifiche per la condizione di carico da incendio.

5 VERANKERUNGEN

Das Verankerungssystem, das zur Verhinderung der Wölbung der Innenschalungen gedacht worden ist, besteht aus Stahlstiften die auf Querkraft arbeiten und in der Kalotte auf Höhe der Seitenschalungen betoniert sind.

Diese Elemente ermöglichen alle Bewegungen innerhalb der Schalungsoberfläche (X,Y Richtungen), aber nicht die Bewegungen senkrecht zur eigenen Oberfläche (Z Richtung). Die Anwendung dieses Systems ermöglicht das Element isostatisch zu erhalten, und so die Auswirkungen von Temperatur und Schrumpfung zu übergehen.

Die Höchstreaktion zur Abstützung ist 137.47 kN, daher werden Stifte des Typs HSD-CRT134V eingesetzt, seitlich des Elements werden $3\phi12$ links und $3\phi12$ rechts verteilt, ins gesamt $6\phi12$.

Hinsichtlich der Brandfestigkeit werden die Querkraft-Stifte mit eine Hülse ausgestattet, außerdem da sie senkrecht zur Schalung angebracht sind ist die Temperatur die diese Elemente erreichen auf alle Fälle niedriger als die der statischen Bewehrung. Aus diesen Gründen betrachtet man die Stiftbemessung nicht für problematisch hinsichtlich der Brandwirkung.

5 ANCORAGGI

Il sistema di ritegno pensato per evitare il sollevamento delle solette intermedie è costituito da degli spinotti in acciaio inox lavoranti a taglio inseriti in getto nella calotta, in corrispondenza delle facce laterale delle solette.

Tali elementi permettono tutti gli spostamenti interni al piano della soletta (direzione X,Y) ma non quelli perpendicolari al proprio piano (direzione Z). L'adozione di tale sistema permette di mantenere l'isostaticità dell'elemento, consentendo di trascurare gli effetti di temperatura e ritiro.

La reazione massima all'appoggio è pari a 137.47 kN, quindi si adottano spinotti tipo HSD-CRT134V, ai lati dell'elemento si disporranno $3\phi12$ a sinistra e $3\phi12$ a destra per un totale di $6\phi12$.

Per quanto riguarda la resistenza antincendio, gli spinotti a taglio saranno provvisti di guaina intumescente, inoltre, essendo posizionati in asse allo spessore della soletta, le temperature raggiunte da tali elementi sono comunque inferiori a quelle dall'armatura statica. Per questi motivi non si reputa problematica l'azione incendio in ambito di dimensionamento degli spinotti.

ANLAGE 1

ALLEGATO 1

Abbildung 58: Nachweis Biegedruck für den Gebrauchsfall (GZT)

Illustrazione 58: Verifica a pressoflessione carico di utilizzazione (SLU)

ALLEGATO 2

VERIFICA A TAGLIO SECONDO NTC2008 Art. 4.1.2.1.3.1

Verifica sezione senza armatura a taglio

f _{ck} =	30.00	MPa	Resistenza caratteristica a compressione cilindrica				
k =	1.886		Coefficiente				
h =	330	mm	Altezza geometrica della sezione				
d =	255	mm	Altezza statica della sezione				
A _s =	3'539	mm ²	Area di armatura longitudinale				
ρ ₁ =	0.01388		Percentuale di armatura				
N _{Ed} =	0	kN	Azione assiale di progetto				
A _c =	255'000	mm ²	Area della sezione di calcestruzzo				
$\alpha_{cc} =$	0.85		Coefficiente per carichi di lunga durata				
σ_{cp} =	0.00	MPa	Sforzo di compressione agente				
b _w =	1'000	mm	Larghezza sezione collaborante				
V _{Rd1} =	187.49	kN					
$V_{Rd2}(v_{min}) =$	126.58	kN					
V _{Rd} =	187.49	kN	V _{Ed} = 137.47 kN V _{Rd} > V _{Ed}				

Abbildung 59: Nachweis Querkraft

Illustrazione 59: Verifica a taglio

ANLAGE 3

ALLEGATO 3

Abbildung 62: Nachweis Biegedruck für den häufigen Lastfall Lüftung (GZT)

Illustrazione 62: Verifica a pressoflessione carico di utilizzazione frequente (SLE)

Crack verification

Text	Value	Text	Value	
Basic principles	EN 1992-1-1 7.3			
Cross section				
h	330.0 mm	Compression zone (uncracked)	165.0 mm	
d	255.0 mm	h-d	50.0 mm	
Cover c	37.0 mm	h _{c,eff}	55.0 mm	
A _{c.eff} Tension surface	55000 mm ²	= Min[2.5 (h-d); (h-x)/3; h/2]		
Concrete		Additional parameters		
Ec	33000.0 N/mm ²	Duration of load k _t	0.40	
$\alpha_{\rm e}$ (E _s /E _c)	6.10	Bond properties k1	0.800	
Creep coefficient	0	Distribution of strain k2	0.500	
f _{ctm}	2.9 N/mm ²	k3	3.400	
f _{ct,eff}	2.9 N/mm ²	k4	0.425	
Reinforcement		Results		
Es	205000.0 N/mm ²	Moment	121.8 kNm	
A _s (in tension surface)	3717 mm ²	Stress in reinforcement σ_s	146.3 N/mm ²	
Diameter \varnothing_{eq}	26.0 mm	$\varepsilon_{sm} - \varepsilon_{cm}$ (7.9)	0.41 0/00	
ρ_{eff}	6.757 0/0	Crack spacing $s_{r,max}$ (7.11) Crack width w_{r} (7.8)	0.19 m 0.13 mm	

Abbildung 63: Nachweis der Rissbildung (GZG)

Illustrazione 63: Verifica a fessurazione (SLE)

ANLAGE 5

ALLEGATO 5

Stress analysis Cross section (Girder): 330X1000

Extreme stresses and strain

Name	Class	Уq	zq	ε	σ_{d}	γ
		[m]	[m]	%	[N/mm ²]	[-]
RQS	C30/37	0.50	0.33	-0.0	-1.4	1.00
RQS	C30/37	-0.50	0	0.1	0	1.00
R1	B450C	0.42	0.26	-0.0	-1.1	1.00
R2	B450C	-0,42	0.07	0.1	17.5	1.00

Abbildung 64: Nachweis Biegedruck durch Eigengewicht (GZG)

Illustrazione 64: Verifica a pressoflessione carico peso proprio (SLE)

Stress analysis Cross section (Girder): 330X1000

Extreme stresses and strain

Name	Class	У _q [m]	z _q [m]	е [%]	σ _d [N/mm²]	γ [-]
RQS	C30/37	0.50	0.33	-0.2	-7.0	1.00
RQS	C30/37	-0.50	0	0.6	0	1.00
R1	B450C	-0.42	0.26	-0.0	-5.2	1.00
R2	B450C	-0.42	0.07	0.4	85.2	1.00

Abbildung 65: Nachweis Biegedruck Lastfall Ermüdung (GZG)

Illustrazione 65: Verifica a pressoflessione carico a fatica (SLE)

 $\Delta~\sigma_{s}$ = 85.2 N/mm²-17.51 N/mm² = 67.69 N/mm²

67.69 N/mm²< 162.5/1.2 = 135.42 N/mm²

 $\Delta \sigma_c$ = 7.0 N/mm²-1.4N/mm² = 5.6 N/mm²

5.6 N/mm²< 0.85·1·15.43·(1-(30/250)) = 11.54 N/mm²

ANLAGE 6

ALLEGATO 6

Abbildung 66: Nachweis Biegedruck Lastfall Brand (GZT)

Illustrazione 66: Verifica a pressoflessione carico da incendio (SLU)