Ausbau Eis BREN Ausführung	Mit Beteiligung der Transeuropä Opera finanziata attraverso il bil eenbahnachse I INER BA	der Europäischen ischen Verkehrsne a con la partecipazi ancio delle reti di München-Vero ASISTU	Union aus dem Haus tzefinanziertes Vorha one dell'Unione Euro trasporto transeuro ona	halt ben ppea pee		Galleria di Basa del Bren Brenner Basistunnel BBI	Free SE
Potenziame GALL Progettazio	ento asse ferro ERIA D one esecutiva	viario Monacc I BASE	-Verona DEL BI	RENNE	<i>RO</i>		
D0700: Baulo	os Mauls 2-3			D0700: Lotto Mu	ıles 2-3		
Projekteinheit				WBS			
Gesamtbauwerke Teil 3				Opere genera	ali Parte 3		
Dokumenten	art			Tipo Document	:0		
Technische	er Bericht			Relazione teo	cnica		
Titel				Titolo			
Statische E	Berechnuna - J	Anschlüsse		Relazione di	calcolo – Inr	nesti	
Mar	Progetto Infrastruture Territorice er	Ma S PĆ	ndante	Mand pini swis enginee	lante SS rs	Mand I PASQU/ ENGINEER	dante <mark>LLI-RAUSA</mark> NG S.r.1/G.m.b.H.
Fachplaner / il p	progettista specialista	Fachplaner / il µ Ing. Roc	vrogettista specialista Irigo Correa	Fachplaner / il prog	ettista specialista	Fachplaner / il pro	gettista specialista
		Datum / Dat	a	Name / Nome		Gesellschaft /	Società
Bearbeitet /	Elaborato	30.01.2015		Nater		Pöyry	
Projekt- von / da 32.0+88 Bau- kilometer /				Name / R. Zu Status Dokument /	Nome urlo	Name / K. Berg Massstab /	′ Nome meister
INDUINER .	bis/a 54.0+15	Chilometro	bis / a 44.1+92	Stato		Scala	-
Chilometro progetto	bei / al	opera	bei / al	documento			
Chilometro progetto Staat Stato	bei / al Los Lotto	opera Einheit Unità	bei / al Nummer Numero	Dokumentenart Tipo Documento	Vertrag Contratto	Nummer Codice	Revision Revisione

Bearbeitungsstand Stato di elaborazione

Revision Revisione	Änderungen / Cambiamenti	Verantwortlicher Änderung Responsabile modifica	Datum Data
21	Abgabe für Ausschreibung / Emissione per Appalto	Nater / Correa	30.01.2015
20	Überarbeitung infolge Dienstanweisung Nr. 1 vom 17.10.2014 / Revisione a seguito ODS n°1 del 17.10.14	Donato / Nater	04.12.2014
11	Revision Definitive Version / Revisione Consegna definitiva	Donato / Nater	09.10.2014
10	Definitive Version / Consegna Definitiva	Donato / Nater	31.07.2014
00	Erstversion / Consegna preliminare	Donato / Nater	24.03.2014

1 1	EINFÜHRUNG INTRODUZIONE	4
2	MATERIALKENNWERTE	
2	MATERIALI	6
	2.1 SPRITZBETON	
	2.1 BETONCINO PROIETTATO	6
	2.2 ANKER	
	2.2 ANCORAGGI	6
	2.3 BETON	
	2.3 CALCESTRUZZO	6
	2.4 BEWEHRUNGSSTAHL	
	2.4 ACCIAIO DA ARMATURA	7
3	GEOTECHNISCHES MODELL	
3	MODELLO GEOTECNICO	8
	3.1 GEOLOGIE UND GEOMECHANIK	
	3.1 GEOLOGIA E GEOMECCANICA	8
	3.2 VORWORT	
	3.2 PREMESSA	8
	3.2.1 Geomechanische Parameter	
	3.2.1 Parametri geomeccanici	11
	3.3 TRENNFLÄCHENORIENTIERUNG	
	3.3 ORIENTAMENTO DELLE DISCONTINUITÀ	13
	3.4 TRENNFLÄCHENPARAMETER	
	3.4 PARAMETRI DELLE DISCONTINUITÀ	14
4 4	BEMESSUNG DER AUSKLEIDUNGEN DIMENSIONAMENTO DEI RIVESTIMENTI	15
5	AUSBRUCHSICHERUNG	
5	RIVESTIMENTI DI PRIMA FASE	
•	5.1 HAUPTRÖHRE GL-IN-CT	
	5.1 GALLERIE DI LINEA GL-IN-CT	
	5.2 QUERVERBINDUNGEN CT-IN-GL	
	5.2 CUNICOLI TRASVERSALI CT-IN-GL	
~		
6		22
0		
		22
		24
		25
	6.2.1 Ergebniege	20
	6.3.1 Ergebnisse	26
		20
7	VERZEICHNISSE	
7	ELENCHI	27
	7.1 TABELLENVERZEICHNIS	
	7.1 ELENCO DELLE TABELLE	27
	7.2 ABBILDUNGSVERZEICHNIS	
	7.2 ELENCO DELLE ILLUSTRAZIONI	

7.3 ANLAGENVERZEICHNIS	
7.3 ELENCO APPENDICI	
7.4 BIBLIOGRAFIE UND QUELLEN	
7.4 BIBLIOGRAFIA E FONTI	28
7.4.1 Dokumente der Ausschreibungsplanung	
7.4.1 Documenti in ingresso	
7.4.2 Normen und Richtlinien	
7.4.2 Normativa	29
7.4.3 Literatur	
7.4.3 Letteratura	
ANHANG 1 – TABELLEN DER GEBIRGSARTEN	
APPENDICE 1 – SCHEDE GEOMECCANICHE	32
ANHANG 2 – FEM-ANALYSE DER INNENSCHALE	
APPENDICE 2 - ANALISI FEM DEL RIVESTIMENTO DEFINITIVO	
ANHANG 3 - BLOCKANALYSE	
APPENDICE 3 - ANALISI DEI BLOCCHI	50
ANHANG 4 – BRANDBEMESSUNG	

APPENDICE 4 - ANALISI AL FUOCO

1 EINFÜHRUNG

Der folgende technische Bericht umfasst die Bemessung der Ausbruchsicherung und der Innenschale der Anschlüsse zwischen Hauptrohr und Querverbindung. Diese werden entlang der Strecke von km 32+090 bis km 44+192 (bez. Ostrohr) mit konventionellem Vortrieb realisiert [1]

Gemäss folgender Tabelle gibt es 37 Querverbindungen entlang dieser Strecke. 28 davon wurden mit konstanter Ausbruchsfläche 25.88 m² realisiert (Typ 1), und 7 zeigen eine Ausweitung des Profils bis auf 44.65 m² (Typ 2). Auf km 39+333 findet man die einzige Querverbindung Typ 3, mit einem wie Typ 2 ähnlichen Querschnitt, und auf km 32+090 findet man die einzige Querverbindung Typ 4, mit einem konstant aufgeweiteten Profil.

1 INTRODUZIONE

La seguente relazione riporta il dimensionamento dei rivestimenti, di prima fase e definitivi, degli innesti tra le Gallerie di Linea ed i cunicoli trasversali, scavati in tradizionale tra le progr. km 32+090 e 44+192 (Canna Est) [1].

Come si evince dalla seguente tabella, i cunicoli trasversali realizzati all'interno di questa tratta sono 37. Di questi 28 sono scavati con una sezione costante di area 25.88 m² (tipo a) e 7 presentano un'allargamento della sezione di scavo sino a 44.65 m² (tipo b). Al km. 39+333 si trova l'unico cunicolo trasversale di tipo 3, il quale presenta una sezione simile a quella di tipo 2, ed infine al km. 32+090 si trova l'unico cunicolo trasversale di tipo 4, il quale comporta una sezione allargata costante di 44.65 m².

Querverbindung / Cunicolo trasversale	Riferimento Canna Est [km]	L [m]	Tipologia di cunicolo	Sezione galleria di linea
32/2	32+090.0	70	4	GL-MS con concio di base
32/3	32+333.0	70	2	GL-MS con concio di base
32/4	32+667.0	70	1	GL-MS con concio di base
33/1	33+000.0	70	1	GL-MS con concio di base
33/2	33+333.0	70	1	GL-MS con concio di base
33/3	33+667.0	70	1	GL-MS con concio di base
34/1	34+000.0	70	1	GL-MS con concio di base
34/2	34+333.0	70	2	GL-MS con concio di base
34/3	34+667.0	70	1	GL-MS con concio di base
35/1	35+000.0	70	1	GL-MS con concio di base
35/2	35+333.0	70	1	GL-MS con concio di base
35/3	35+667.0	70	1	GL-MS con concio di base
36/1	36+000.0	70	1	GL-MS con arco rovescio
36/2	36+333.0	70	2	GL-MS con arco rovescio
36/3	36+667.0	70	1	GL-MS con arco rovescio
37/1	37+000.0	70	1	GL-MS con arco rovescio
37/2	37+333.0	70	1	GL-MS con arco rovescio
37/3	37+667.0	70	2	GL-MS con concio di base
38/1	38+000.0	70	1	GL-MS con concio di base
38/2	38+333.0	70	1	GL-MS con concio di base
38/3	38+667.0	70	1	GL-MS con concio di base
39/1	39+000.0	70	1	GL-MS con concio di base
39/2	39+333.0	70	3	GL-MS con concio di base
39/3	39+667.0	70	2	GL-MS con concio di base
40/1	40+000.0	70	1	GL-MS con concio di base
40/2	40+333.0	70	1	GL-MS con concio di base
40/3	40+667.0	70	1	GL-MS con arco rovescio
41/1	41+000.0	70	1	GL-MS con arco rovescio
41/2	41+333.0	70	2	GL-MS con arco rovescio
41/3	41+667.0	70	1	GL-MS con arco rovescio
42/1	42+000.0	70	1	GL-MS con arco rovescio
42/2	43+333.0	70	1	GL-MS con arco rovescio
42/3	42+667.0	70	1	GL-MS con arco rovescio
43/1	43+000.0	70	1	GL-MS con arco rovescio
43/2	43+333.0	70	2	GL-MS con arco rovescio
43/3	43+667.0	70	1	GL-MS con concio di base
44/1	44+000.0	70	1	GL-MS con concio di base

Tabelle 1: Liste der Querverbindungen entlang der Strecke

Tabella 1: Lista dei cunicoli trasversali lungo la tratta

Daraus schliesst man drei Anschlusstypen zwischen Hauptrohr und Querverbindung:

- CTa-(T1-T2-T3)-IN-GL-MS
- CTa-(T4-T5)-IN-GL-MS
- CTb-(T1-T2-T3)-IN-GL-MS [5].

Die Querschnitte der Haupröhre bei den Anschlüssen, mit 3 Abschlagslängen davor und danach (3 Abschlagslängen sind 4.5 m lang), wurden wie folgt ausgeführt: Zuerst wird jeder Tübbing mit 3 x 4.5 m langen SuperSwellex Pm24 Ankern gesichert. Die Tübbinge werden dann lokal zur Verbindung mit der Querverbindung ausgebrochen. Schliesslich wird der gesamte Bereich mit 10 cm faserverstärkten Spritzbeton überdeckt.

Für die Querverbindungen wird der Ausbruch wie gewöhnlich weiter geführt, unter Anwendung der diesbezüglich definierten Sicherungsklassen [13].

Die Innenschale besteht aus Stahlbeton C30/37, das Gewölbe ist 40 cm stark und die Sohle ist 50 bis 150 cm stark – alle Werte haben netto Toleranzen.

Im vorliegenden Dokument ist die Bemessung der Ausbruchsicherung und der Innenschale von den drei Anschlusstypen zwischen Hauptrohr und Querverbindung dargestellt. Ne si deducono quindi tre tipi di innesto tra Gallerie di Linea e Cunicolo Trasversali:

- CTa-(T1-T2-T3)-IN-GL-MS
- CTa-(T4-T5)-IN-GL-MS
- CTb-(T1-T2-T3)-IN-GL-MS [5].

Le sezioni della galleria corrente, in corrispondenza degli innesti e per una lunghezza di 4.5m (3 sfondi) prima e dopo i cunicoli trasversali, vengono rinforzate con i seguenti interventi: ciascun concio viene fissato con tre chiodi SuperSwellex Pm24, aventi lunghezza 4.5 m. I conci vengono poi demoliti nella zona corrispondente all'apertura del cunicolo, ed il tutto viene ricoperto da uno strato di 10 cm di betoncino fibrorinforzato.

Per i Cunicoli Trasversali lo scavo prosegue poi adottando le classi di sicurezza definite nella Relazione di Calcolo rispettiva [13].

Il rivestimento definitivo è costituito da calcestruzzo C30/37 con da 40 cm in corrispondenza della calotta e da 50 fino a 150 cm in platea. Tali spessori sono da intendersi come al netto delle tolleranze di costruzione e di tracciamento.

Oggetto della presente relazione è il dimensionamento dei tre diversi tipi di innesto tra le Gallerie di Linea ed i Cunicoli Trasversali sopraelencati.

2 MATERIALKENNWERTE

2.1 SPRITZBETON

Für die Bemessung der Außenschale ist in der Regel ein Spritzbeton der Festigkeitsklasse C30/37 mit folgenden Eigenschaften zu berücksichtigen:

BETONCINO PROIETTATO 2.1

MATERIALI

Per il dimensionamento del rivestimento di prima fase in betoncino proiettato si considera un calcestruzzo classe di resistenza C30/37 con le seguenti caratteristiche:

E_{cm} = 32000 MPa

2

f_{ck} = 30.71 MPa

Dove:

Ecm è il valore medio del modulo elastico secante

betoncino proiettato a 28 giorni.

fck è la resistenza caratteristica a compressione del

= charakteristische Druckfestigkeit des • fck Spritzbetons nach 28 Tagen.

2.2 ANKER

Wobei:

Es ist die Verwendung von Ankern des Typs Superswellex Pm16 vorgesehen, mit folgenden Eigenschaften:

Ecm = Mittelwert Elastizitätsmodul

ANCORAGGI

Si prevede l'utilizzo di ancoraggi tipo Superswellex Pm24 aventi le seguenti caratteristiche:

 $E_s = 210000$ MPa

2.2

 $N_y = 200 \text{ kN} (\text{Pm}24)$

Dove:

2.3

Es è il modulo elastico •

CALCESTRUZZO

seguenti caratteristiche:

N_v e il carico di snervamento.

BETON

Für die Bemessung der Innenschale ist in der Regel ein Beton der Festigkeitsklasse C30/37 mit folgenden Eigenschaften zu berücksichtigen:

E_{cm} = 32000 MPa

Dove:

- Ecm = Mittelwert Elastizitätsmodul •
- fck = charakteristische Druckfestigkeit des Betons • nach 28 Tagen.
- Ecm è il valore medio del modulo elastico fck è la resistenza a compressione caratteristica del

Per il dimensionamento del rivestimento definitivo si considera

un calcestruzzo con classe di resistenza C30/37 con le

calcestruzzo dopo 28 giorni.

- E_s = elastisches Modul •
 - $N_v = Streckgrenze.$ ٠

2.3

Wobei:

Wobei:

2.4 BEWEHRUNGSSTAHL

B450C heranzuziehen:

2.4 ACCIAIO DA ARMATURA

Für die Bemessung der Außenschale ist Stahl des Typs Per il dimensionamento dell'anello si utilizza l'acciaio tipo B450C:

$E_s = 210000$ MPa

 $f_{yk} = 450 \text{ MN/m}^2$

Dove:

E_s = elastisches Modul •

- Es è il modulo elastico •
- f_{yk} = charakteristischer Wert der Streckgrenze des • Betonstahls.
- f_{yk} è la tensione caratteristica di snervamento acciaio ٠ per cemento armato.

Wobei:

3 GEOTECHNISCHES MODELL

3.1 GEOLOGIE UND GEOMECHANIK

Die mit geschlossener Schild-TBM realisierte Hauptröhre zieht sich zwischen km 32+090 und km 44+192 durch verschiedene geologische und geomechanische Verhältnisse ab, die in den folgenden Dokumenten beschrieben sind:

- Voraussicht Geomechanische- und Projektierungsprofile [3]
- Geomechanischer Bericht Allgemein [1]

Entlang der Strecke befinden sich unterschiedliche geomechanische Grundeinheiten, die "Gebirgsarten" genannt sind, und aufgrund von derer die Definition von den Homogenbereichen basiert[2].

3.2 VORWORT

Die geomechanische Einheit dieses Projekts ist durch die "Gebirgsart" festgelegt, die aus einer oder mehreren Lithologien zusammengestellt ist.

Anhand der Anwesenheit und der geomechanischen Analogien der Gebirgsarten werden Homogenbereichen definiert, wie in [2] dargestellt.

Kilometrierung, Überdeckungen und lithologische Zusammensetzungen der Homogenbereichen sind in der folgenden Tabelle gezeigt.

3 MODELLO GEOTECNICO

3.1 GEOLOGIA E GEOMECCANICA

Le Gallerie di Linea, scavate interamente in TBM scudata, si sviluppano tra il km 32+090 ed il km 44+192 (rif. Canna Est) attraverso differenti caratteristiche geologiche e geomeccaniche, descritte nei seguenti documenti:

• Profili geomeccanici di Progetto Esecutivo [3].

• Relazione geomeccanica generale [1].

Lungo la tratta si riscontrano varie unità geomeccaniche omogenee di base chiamate "tipo di ammasso roccioso", sulle quali è basata la definizione dei domini geomeccanici omogenei [2].

3.2 PREMESSA

Il "tipo di ammasso roccioso", che è formato da una o più litologie, costituisce l'unità geomeccanica di base.

In funzione della presenza dei tipi di ammasso roccioso e della loro analogia geomeccanica si identificano delle zone omogenee, chiamate "domini geomeccanici omogenei", come introdotto in [2].

Il chilometraggio e le coperture relativi ai domini geomeccanici omogenei, così come la loro composizione litologica sono riportati nella seguente tabella.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[%] 95 5 85 10 5 45 30 0-5 0-5 40 25 20 5-10 55 20 55 20 15
$\begin{array}{c c c c c c c c } & & & & & & & & & & & & & & & & & & &$	95 5 85 10 5 45 30 0-5 45 20 5-10 5-10 55 20 15 40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 85 10 5 45 30 0-5 0-5 40 25 20 5-10 55 20 15 40
$ \begin{array}{c c} A.ZG-6-1b \\ \hline GA.ZG-6-1c \\ \hline GA.ZG-6-1c \\ \hline GA.ZG-6-1c \\ \hline GA.ZG-6-1c \\ \hline GA.ZG-7-1c \\$	85 10 5 45 30 0-5 0-5 40 25 20 5-10 5-10 55 20 15 15
$ \begin{array}{ c c c c c c } 2 & 0.4 & 2C & C^{-1} c & 34.9 & 36 & 1089 & 1502 & 941 & \hline \\ \hline & & & & & & & & & & & & & & & &$	10 5 45 30 0-5 0-5 40 25 20 5-10 5-10 55 20 15 10
GA.2GA.1b GA.UST.H-2b GA.T-H-2b	5 45 30 0-5 40 25 20 5-10 5-10 55 20 15 10
GA-UST-H-2b 36 36.3 295 1015 937	45 30 0-5 0-5 40 25 20 5-10 5-10 55 20 15 40
$ \begin{array}{c c c c c c c } \hline & $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	30 0-5 0-5 40 25 20 5-10 5-10 55 20 15 40
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0-5 0-5 40 25 20 5-10 5-10 55 20 15 40
GA.UST.R.2b GA.T.H.2b GA.T.H.4b	0-5 40 25 20 5-10 55 20 55 20 15 40
GA-T-H-2b GA-T-H-2b GA-T-H-2b	40 25 20 5-10 55 20 55 20 15
$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	25 20 5-10 5-10 55 20 15
4 GA-TM2b 36.3 37.3 1035 1006.5 753 GA-TA-2b GA-TA-2b -	20 5-10 55 20 15 40
$ \begin{array}{ c c c c c c c } \hline GA-TA-2b & & & & & & & & & & & & & & & & & & &$	5-10 5-10 55 20 15
GA-TR-2b GA-BS-KS-4b	5-10 55 20 15
GA-BS-KS-4b 37.3 38.3 925 886 611.5 1 GA-BS-KM4b GA-BS-KR-4b - <td>55 20 15</td>	55 20 15
5 GA-BS-GM-4b 37.3 38.3 925 886 611.5	20 15
GA-BS-KPH-4b GA-BS-FR-4b Image: Constant of the second se	15
GA-BS-FR-4b GA-BS-KS-4c GA-BS-KS-4c GA-BS-KS-4c GA-BS-KS-4c GA-BS-GM-4c GA-BS-GM-4c GA-BS-KP-4c	10
6 GA-BS-KS-4c 38.3 39.1 880 864 619.5 619	10
6 GA-BS-GM4c 38.3 39.1 880 864 619.5 619.5 GA-BS-KPH4c GA-BS-KPH4c GA-BS-KPH4c GA GA <t< td=""><td>50</td></t<>	50
GA-BS-KPH-4c Image: Constraint of the second s	25
GA-BS-PR-4c GA-BS-PR-4c GA GA-BS-GM-5c GA-BS-GM-5c Image: Control of the state of the	15
GA-BS-GM-5c GA-BS-KS-5c 39.1 41 1845 1251 864 1251	10
GA-BS-KS-5c 39.1 41 1845 1251 864	35
7 GA-BS-KPH5c 39.1 41 1845 1251 864 GA-BS-PR-5c GA-BS-KQ-5c Image: Constraint of the second se	35
GA-BS-PR-5c GA-BS-KQ-5c GA-BS-KQ-5c Image: Constraint of the second se	20
GA-BS-KQ-5c GA	8
GA-T-PH-6 GA-US-PH-6	2
GA-US-PH-6 41 42 990 1512 1187	38
8 GA-US-Q-6 41 42 990 1512 1187 GA-T-A-6 GA-T-R-6 Image: Comparison of the second secon	35
GA-T-A-6 GA-T-R-6 GA-T-PH-6a GA-US-O-6a	25
GA-T-R-6 GA-T-PH-6a GA-US-0-6a	1-2
GA-T-PH-6a	0-1
GA-US-O-6a	35
	30
GA-US-GM-6a 9 42 42.9 860 1605.5 1506.5	25
GA-T-PH-6a	8
GA-T-A-6a	0-2
	0-2
	20
	20
10 GA-BS1-W-88 42.9 43.8 940 1579 1016	3
	0-2
	25
11 GA-BST-KS-Rf 43.8 44.7 921 1069 905	100
GA-BST-KPH-8f	87
12 GA-T-R-8f 44.7 44.8 75 1078 1060	0-13
GA-T-A-8f	0-13
13 GA-BST-KS-8f 44.8 45.1 346 1111.5 1023	100
GA-BCA-A-10g	85
14 45.5 390 1199.5 1092	15
GA-BCA-GS-10g	90
15 45.5 47 1540 1134 590.5	

Tabelle 2: Kilometrierung, Überdeckung und lithologische Zusammensetzungen der Homogenbereichen Tabella 2: Chilometraggio, copertura e composizione litologica dei domini geomeccanici omogenei

Im detaillierten geomechanischen Bericht [2] sind die Parameter der Gebirgstypen auf der Basis der vorhandenen Parameter, die im generellen geomechanischen Bericht [1] dargestellt sind, weiter verarbeitet worden.

Dabei wird eine statistische Verteilung von den Ausgangswerten RMR und GSI erlaubt, um mehrere geomechanische Klassen zu simulieren. Die Werte von γ_k , $\sigma_{c,k}$, $E_{i,k}$ und $m_{i,k}$ sind also konservativer angesetzt, im Vergleich mit den gemittelten geomechanischen Basisparametern.

Von diesen Resultaten hängt die Zuteilung der geomechanischen Klassen innerhalb der verschiedenen Gebirgstypen ab.

Der intensive Rückzug der tektonischen Einheiten und der Lithologien verursacht die Wiederholung einiger Gebirgsarten, welche sehr ähnliche Charakteristika zeigen.

Folglich werden die Homogenbereiche aus Projektierungszwecken in Bemessungsschnitte weiter eingeteilt. Nella relazione geomeccanica di dettaglio [2] vengono rielaborati i parametri dei tipi di ammasso roccioso partendo dai parametri geomeccanici di base riportati nella Relazione geomeccanica generale [1].

In questa sede i valori di RMR e GSI di base vengono ridistribuiti in modo statistico al fine di simulare più classi geomeccaniche, e fornendo per γ_k , $\sigma_{c,k}$, $E_{i,k}$ ed $m_{i,k}$ dei valori più conservativi rispetto al valor medio dei parametri geomeccanici di base.

Da questi risultati dipende l'assegnazione delle classi geomeccaniche all'interno dei diversi ammassi.

Il ripetersi delle unità tettoniche e delle litologie correlate lungo il tracciato fa sì che alcuni domini omogenei presentino caratteristiche molto simili.

Di conseguenza, ai fini della progettazione, i domini geomeccanici omogenei vengono ulteriormente raggruppati in sei settori di calcolo.

Bemessungsschnitte / Settori di calcolo	Kilometrierung Oströhre von (km) / Progressiva Galleria principale canna est - (km)	Bis (km) /a (km)	Schnittlänge (km) / Lunghezza tratta (km)	Tektonische Einheiten / Unità tettoniche
OB-6-ZG	32+000	35+990	3+990	Subpennisches Basament (Zentralgneis und altes Dach). / Basamento Subpennidico
OB-5-UST	35+990	37+320	1+330	Untere Schieferhülle / Schieferhülle inf.
OB-4-BS	37+320	40+970	3+650	Obere Schieferhülle (Pfitscherdecke) / Schieferhülle sup. (Falda di Vizze)
OB-3-US	40+970	43+200	2+230	Untere Schieferhülle - ObereSchieferhülle (Pfitscherdecke und basis Glocknerdecke) / Schieferhülle inf Schieferhülle sup. (Falda di Vizze e base falda del Glockner)
OB-2-BST	43+200	45+105	1+905	ObereSchieferhülle (Glocknerdecke) / Schieferhülle superiore (Falda del Glockner)
OB-1-BCA	45+105	47+025	1+920	Ostalpin / Austroalpino

Tabelle 3: Charakterisierung der Bemessungsschnitten [2]

Tabella 3: Caratterizzazione dei settori di calcolo [2]

Für jeden Bemessungsschnitt werden die massgebenden Parameter anhand des Gebirgstyps mit den ungünstigsten Verhältnissen und der maximalen Überdeckung definiert. Von dieser Definition sind Rauhwacken, Kreide und Störungszonen ausgeschlossen. Per ogni settore di calcolo vengono stabiliti i parametri rappresentativi prendendo come riferimento il tipo di ammasso con caratteristiche geomeccaniche meno favorevoli, escludendo carniole, gessi e faglie, ed in base alle coperture ivi presenti. Die Anwendung der Lithologien mit Rauhwacken, Kreide und Störungszonen für die Definition der massgebenden Parameter wäre im Ansatz viel zu konservativ und nicht repräsentativ für den ganzen Bemessungsabschnitt. Die Durchquerungen sind separat im Bericht für Störzonenbewältigung beschrieben.

Auf der Basis dieser Wahl werden die charakteristischen Widerstands- und Verformungsparameter der Gebirgstypen für die entsprechenden Bemessungsschnitte bestimmt. Diese Parameter werden in der Folge für die Gebirgsanalyse (Kapitel 4), für die Analyse der Ausbruchsicherung (Kapitel 5) und für die Analyse der Innenschale (Kapitel 6) angewendet. L'attraversamento delle litologie con carniole, gessi e le zone di faglia, che imporrebbero l'uso di parametri non rappresentativi e troppo conservativi lungo le tratte, viene descritto separatamente nella relazione interventi speciali.

In base a questa scelta verranno quindi adottati i valori caratteristici dei parametri di resistenza e deformabilità dei corrispettivi tipi di ammasso roccioso per le analisi dell'ammasso roccioso (capitolo 4), del rivestimento di prima fase (capitolo 5) e del rivestimento definitivo (capitolo 6).

settori di calcolo	chilometraggio	peculiarità
OB6	34.3	granito, copertura massima, tratta omogenea
OB5	36	scisti di anidrite, pressione di rigonfiamento
OB4	40.2	complesso dei calcescisti, convergenze elevate
OB3	42	scisti di anidrite, pressione di rigonfiamento
OB2	44	complesso dei calcescisti, tratta omogenea

Tabelle 4: Massgebende Kilometrierung und Besonderheiten der Bemessungsschnitte

Die Gebirgsanalysen bei den massgebenden Kilometrierungen sind etscheidend für die Definition der Regelprofile und der Sondermassnahmen entlang der Projektierungsstrecke.

Die Wichtigkeit der Charakterisierung der Bemessungsschnitte liegt in der Lokalisierung der kritischen Zonen, bei welchen Sondermassnahmen angewendet werden müssen.

3.2.1 Geomechanische Parameter

Geologische Werte und Klasseneinteilung der Gebirgstypen entsprechendend der massgebenden Kilometierung, sind in der folgenden Tabelle gezeigt [2].

Diese Werte werden für die Analyse des Gebirgsverhaltens (Kapitel 4), der Ausbruchsicherung (Kapitel 5) und der Innenschale (Kapitel 6) angewendet. Tabella 4: Chilometraggi rappresentativi dei settori di calcolo e loro peculiarità

Le analisi eseguite ai chilometri rappresentativi dei settori di calcolo si rivelano decisive per la determinazione delle sezioni tipo applicate e delle misure di consolidamento da usare lungo le tratte d'interesse.

L'importanza della caratterizzazione dei settori di calcolo si rivela anche nella localizzazione delle zone critiche.

3.2.1 Parametri geomeccanici

I valori goelogici e la suddivisione in classi dei tipi di ammasso roccioso corrispondenti ai chilometraggi rappresentativi dei settori di calcolo sono riportati nella seguente tabella [2].

Questi valori verranno applicati per le analisi del comportamento dell'ammasso roccioso (capitolo 4), del rivestimento di prima fase (capitolo 5) e del rivestimento definitivo (capitolo 6).

Settori di calcolo	Zone Number	Rock mass name	Class [-]	GSI	σ _{ci} [MPa]	m _i	Ę [GPa]	γ [k Ⅳ m³]
6	1	GA-ZG-G-1z	II	70	218	30	50	25.3
0	2	GA-ZG-G-1b		70	115	23	46	26.3
5	3	GA-UST-PH-2b	N	35	71	8	43.4	27
5	4	GA-T-M-2b		55	60	14	40	27
	5	GA-BS-KS-4b		50	98	13	40.5	26.9
4	6	GA-BS-KS-4c		50	98	13	40.5	26.9
	7	GA-BS-GM-5c		-	-	-	-	-
3	8	GA-T-PH-6	Ш	40	90	11	39.2	27.4
0	9	GA-T-PH-6a	IV	35	71	8	43.4	27
	10	GA-BST-KS-8e	=	50	41	12	43	26.6
	11	GA-BST-KS-8f		50	41	12	43	26.6
2	12	-	-	-	-	-	-	-
	13	-	-	-	-	-	-	-

Tabelle 5: Charakterisierung der Gesteinsarten für jeden Homogenbereich und deren prozentuelle Verteilung [1]Fehler! Verweisquelle konnte nicht gefunden werden. Tabella 5: Caratterizzazione degli ammassi di ciascuna zona omogenea e distribuzione probabilistica delle diverse classi[1]

Settori di calcolo	Zone Number	Rock mass name	Class [-]	Zone max overburden [m]	γ[kN/m³]	φ _{picco} [°]	φ _{res} [°]	с _{ріссо} [MPa]	c _{res} [MPa]	E _{rm} [GPa]	ψ[°]
6	1	GA-ZG-G-1z	I	1715	25.3	48.96	40.15	8.22	5.03	20.3	7.96
	2	GA-ZG-G-1b	Ш	1502	26.3	21.77	16.93	2.2	1.46	3.93	2.72
5	3	GA-UST-PH-2b	N	1015	27	11.98	10.73	0.6	0.49	0.21	0
	4	GA-T-M-2b	Ш	1006.5	27	29.55	25.11	2.2	1.6	4.41	3.69
	5	GA-BS-KS-4b	Ш	886	26.9	33.6	28.98	2.28	1.67	4.4	4.2
4	6	GA-BS-KS-4c	Ш	864	26.9	38.07	30.38	16.54	1.79	11.1	4.76
	7	GA-BS-GM-5c	Ш	1251	-	-	-	-	-	-	-
3	8	GA-T-PH-6	Ш	1512	27.4	27.73	22.83	3.04	2.13	5.8	3.47
0	9	GA-T-PH-6a	N	1605.5	27	10.15	9.12	0.78	0.64	0.2	0
	10	GA-BST-KS-8e		1579	26.6	25.14	19.04	2.71	1.72	11.4	3.14
	11	GA-BST-KS-8f	Ш	1069	26.6	28.07	21.47	2.13	1.35	11.1	3.51
2	12	-	-	-	-	-	-	-	-	-	-
	13	-	-	-	-	-	-	-	-	-	-

Tabelle 6: Charakteristische Gebirgsparameter für die verschiedenen Zonen und Klassen [2].

Tabella 6: Parametri caratteristici dell'ammasso nelle diverse zone e classi [2].

Wobei:

Dove:

٠

٠

•

•

•

•

- Φ_{picco} ist der vornehmliche Reibungswinkel
- Φ_{res} ist der restliche Reibungswinkel
- c_{picco} ist die vornehmliche Kohäsion
- cres ist die restliche Kohäsion
- E_m ist das Eleastizitätsmodul des Gebirges
- ψ ist die Dilatanz.

3.3 TRENNFLÄCHENORIENTIERUNG

Auf der Basis der in der Regelplanung verfügbaren Daten wurden die folgenden Trennflächen berücksichtigt [2].

3.3 ORIENTAMENTO DELLE DISCONTINUITÀ

 Φ_{picco} è la resistenza al taglio di picco

Φ_{res} è la resistenza al taglio residua

cpicco è la coesione di picco

cres è la coesione residua

Erm è il modulo d'ammasso

ψ è la dilatanza.

Sulla base dei dati disponibili dalla progettazione di sistema [2] sono state considerate le discontinuità riportate di seguito.

Famiglie di	Immersione	Inclinazione	Persistenza max.
discontinuità	[°]	[°]	[m]
GA-BST-KS-8e,	GA-BST-KPH-	8e	
S	350	70	3-10
J1	180	70	<1
J2	85	80	1-3
J3	320	80	1-3
J4	220	80	1-3
GA-BST-KS-8f			
S	355	60	3-10
J1	285	85	<1
J2	110	75	1<
J3	50	65	3-10
ungsschnitt (OB2	Tabella 7:	Giacitura delle

Tabelle 7: Trennflächenorientierung im Bemessungsschnitt OB2

Famiglie di	Immersione	Inclinazione	Persistenza max.
discontinuità	[°]	[°]	[m]
GA-T-PH-6, GA-	US-PH-6		
S	310	25	3-10
J1	180	85	1-3
J2	80	85	<1
J3	265	70	<1
J4	50	80	1-3
GA-T-PH-6a, GA	<u>1-US-Q-6a</u>		
S	350	80	3-10
J1	180	85	1-3
J2	80	85	<1
J3	235	70	<1
J4	50	80	1-3

Tabelle 8: Trennflächenorientierung im Bemessungsschnitt OB3

Tabella 8: Giacitura delle discontinuità nel settore OB3

Famiglie di	Immersione	Inclinazione	Persistenza max.		
discontinuità	[°]	[°]	[m]		
GA-BS-KS-4b, G	GA-BS-GM-4b				
S	170	85	1-3		
J1	185	60	1-3		
J2	80	85	1-3		
J3	100	40	1-3		
J4	50	75	1-3		
J5	265	20	3-10		
GA-BS-KS-4c, GA-BS-GM-4c					
S	345	60	3-10		
J1	350	80	1-3		
J2	85	80	1-3		
J3	250	75	1-3		
J4	345	5	<1		
GA-BS-GM-5c,	GA-BS-KS-5c				
S	350	40	1-3		
J1	10	80	1-3		
J2	260	70	1-3		
J3	90	70	1-3		
J4	230	80	3-10		
J5	30	0	<1		

Tabelle 9: Trennflächenorientierung im Bemessungsschnitt OB4

Tabella 9: Giacitura delle discontinuità nel settore OB4

Famiglie di	Immersione	Inclinazione	Persistenza max.
discontinuità	[°]	[°]	[m]
GA-UST-PH-2b,	GA-T-PH-2b		
S	175	80	1-3
J1	360	80	1-3
J2	90	85	3-10
J3	325	70	<1
J4	215	85	<1
GA-UST-H-2b, C	<u>GA-T-H-2b</u>		
nessun dato/ke	ine Angahen		

Tabelle 10: Trennflächenorientierung im Bemessungsschnitt OB5

Tabella 10: Giacitura delle discontinuità nel settore OB5

-			
Famiglie di	Immersione	Inclinazione	Persistenza max.
discontinuità	[°]	[°]	[m]
GA-ZG-G-1z			
S	160	80	1-3
J1	85	85	1-3
J2	325	70	1-3
J3	50	80	1-3
GA-ZG-G-1b			
S	180	80	1-3
J1	160	80	1-3
J2	85	85	1-3
J3	325	70	1-3
14	50	80	1-3

Tabelle 11: Trennflächenorientierung im Bemessungsschnitt OB6

Tabella 11: Giacitura delle discontinuità nel settore OB6

3.4 TRENNFLÄCHENPARAMETER

Analog zum Bericht [2] werden auf der sicheren Seite die folgenden Scherparameter auf Trennflächen berücksichtigt, die auch die ungünstigsten Trennflächenbedingungen in Betrachung nehmen (ebenen glatten Harnischflächen, Chloritisierung, tonige Füllungen mit Wasseranwesenheit, usw.):

- Φ = 20°
- c = 0 MPa

3.4 PARAMETRI DELLE DISCONTINUITÀ

Analogamente al Rapporto [2], si adottano parametri conservativi per tenere in considerazione eventuali condizioni sfavorevoli delle discontinuità (superfici planari e lisce, riempimenti argillosi e presenza d'acqua, ecc.):

- Φ_k = 20°
- c_k = 0 MPa

4 BEMESSUNG DER AUSKLEIDUNGEN

Die Bemessung der Hauptröhre beim Anschluss mit der Querverbindung stützt sich auf die Einwirkungen, die für die Bemessung des Regelprofils in den bezüglichen Berichten erklärt sind und auf die geomechanischen Eigenschaften aus dem vorherigen Kapitel.

Hierzu sind zwei Momente zu berücksichtigen:

- 1) In der ersten Phase, die dem Ausbruch der Querverbindung entspricht. muss die Standfestigkeit des Tunnels kurzfristia gewährleistet werden, unter der Mitwirkung der Abschnitte Aussenschale der intakten des Hauprohrs;
- In der zweiten Phase, die dem Aufbau der Innenschale in der Anschlusszone und in der Querverbindung entspricht, müssen die Einwirkungen wieder in langfristiger Hinsicht homogen verteilt werden.

4 DIMENSIONAMENTO DEI RIVESTIMENTI

Il dimensionamento del rivestimento della galleria all'innesto con i cunicoli trasversali si basa sulle considerazione dei carichi utilizzati per il dimensionamento della galleria corrente, nel breve e nel lungo termine, secondo quanto riportato nelle relazioni di calcolo specifiche e sulla base della caratterizzazione geomeccanica richiamata al capitolo precedente.

Con riferimento a tali carichi, il dimensionamento dei rivestimenti presenta due momenti di verifica:

- in prima fase, corrispondente allo scavo del cunicolo trasversale, è necessario garantire la stabilità della galleria nel breve termine, anche in collaborazione con il rivestimento di prima fase dei tratti di galleria a sezione integra;
- in seconda fase, corrispondente al completamento della struttura in c.a. nella zona di innesto e del cunicolo trasversale, si deve equilibrare la totalità dei carichi di lungo termine.

5 AUSBRUCHSICHERUNG

Für die Bemessung der Zusatzmassnahmen der Aussenschale muss die Grenzspannung ' P_{Rd} ' der Auskleidungen grösser als die Auswirkungen ' P_{Ed} ' des statischen Systems sein.

$$P_{Rd} > P_{Ed}$$

Die Einwirkungen auf das Bauwerk resultieren aus den Einwirkungen des intakten Regelprofils 'P_{rif}', welche mit einem geometrieabhängigen Koeffizient R multipliziert werden.

$$P_{Ed} = P_{rif} \cdot R \cdot \gamma_G$$
$$R = 1 + \frac{b/2}{L_{zona-r inf}}$$

Unter Berücksichtigung der Querverbindungsbreite 'b' ≈ 5.5 m und der Länge der verstärkten Zone des Hauptrohrs 'L_{zona-rinf}' = 4.5m resultiert der Koeffizient:

R = 1.6

5 RIVESTIMENTI DI PRIMA FASE

Il dimensionamento degli interventi integrativi di prima fase è condotto verificando che la pressione di confinamento ' P_{Rd} ' fornita dai rivestimenti sia maggiore del carico che insiste sul rivestimento ' P_{Ed} '.

$$P_{Rd} > P_{Ed}$$

Il carico che insiste sul rivestimento è uguale al carico di riferimento della sezione corrente ' P_{rif} ' amplificato per un coefficiente R funzione della geometria delle canna interessate e per il coefficiente sulle azioni Υ_G =1.3.

$$P_{Ed} = P_{rif} \cdot R \cdot \gamma_G$$
$$R = 1 + \frac{b/2}{L_{zona-rinf}}$$

Considerando la larghezza 'b' dei cunicoli trasversali, pari a circa 5.5m, e la lunghezza della zona rinforzata lungo le gallerie correnti 'L_{zona-rinf}'=4.5m, il coefficiente di amplificazione dei carichi risulta uguale a:

$$R = 1.6$$

5.1 HAUPTRÖHRE GL-IN-CT

Es wird realistischerweise angenommen, dass die Querverbindung in einem Abstand von der Ausbruchsfront ausgeführt wird, bei welcher der Gebirgsdruck schon abgebaut ist. Dementsprechend wird die Einwirkung 'Prif durch das Eigengewicht des Tubbingselement plus dem Gewicht der dort massgebenden Ablösung (Bruchkörper) bestimmt.

$$P_{rif} = P_{concio} + P_{blocco}$$

Das Gewicht der grössten Auflösung wird mit UNWEDGE 3.0 berechnet.

5.1 GALLERIE DI LINEA GL-IN-CT

Ammettendo realisticamente la realizzazione del cunicolo ad una distanza dal fronte tale da ottenere delle pressioni d'ammasso nulle, la pressione di riferimento della sezione corrente 'P_{rif}' è definita dal peso proprio del concio sommata al più grande blocco gravitativo ivi possibile.

$P_{rif} = P_{concio} + P_{blocco}$

Il peso del più grande blocco deriva dall'analisi con UNWEDGE 3.0.

Abbildung 1: Resultate für den Gebirgstyp GA-BST-KS-8e

Figura 1: Risultati per il tipo d'ammasso GA-BST-KS-8e

Abbildung 2: Resultate für den Gebirgstyp GA-T-PH-6

Figura 2: Risultati per il tipo d'ammasso GA-T-PH-6

	Peso blocco	Peso concio	R	γg	P_Ed
GL-IN-CTA	[kN]	[kN]	[-]	[-]	[kN]
GA-BST-KS-8e	100	75	1.6	1 2	F20
flache Sohle	100	75	1.0	1.5	550
GA-T-PH-6 arco	1/17	95	1.6	1 2	103
rovescio	147	00	1.0	1.3	403

Tabelle 12: Resultat der auf die Aussenschale ausgeübten Einwirkungen

Die Grenzspannung ' P_{Rd} ' der Aussenschale besteht aus dem Widerstand der Anker ' $P_{Rd,chiodi}$ ' und wird wie folgt berechnet:

La pressione di confinamento fornita dal rivestimento di prima fase ' P_{Rd} ' è uguale quella fornita dai chiodi ' $P_{Rd,chiodi}$ ', valutata mediante la seguente relazione:

Tabella 12: Risultato dei carichi che insistono sul rivestimento

$$P_{Rd,chiodi} = \frac{N_{yk}}{A_{inf} \cdot \gamma_s}$$

Wobei:

- N_{yk} = Streckgrenze
- A_{inf} = Einflussfläche jedes Ankers
- Υ_s = Teilsicherheitsbeiwert des Stahls (1.15).

Die Verstärkungsmassnahmen werden 4.5 m vor und nach dem Querverbindungsausbruch angewendet.

$$P_{Rd,chiodi} = \frac{N_{yk}}{A_{inf} \cdot \gamma_s}$$

Dove:

- Nyk = Resistenza caratteristica a snervamento dei chiodi
- Ainf = Area di influenza di ciascun chiodo
- Y_s = Coefficiente parziale di sicurezza sull'acciaio (1.15).

Il rinforzo degli interventi di prima fase viene applicato nei due tratti di circa 4.5m a cavallo dell'interferenza con il cunicolo trasversale.

	N_yk	#	A_inf	γs	P_Rd
	[kN]	[-]	[m2]	[-]	[kN]
Dywidag SNØ28	413	2	0.25	1.15	718

Tabelle 13: Resultat der Anker

Gemäss vorheriger Tabelle sind die Verstärkungsmassnahmen für das Hauptrohr im Anschlussbereich in der Lage, eine Grenzspannung von P_{Rd} > 700 kN (zwei Dywidag SNØ28, Nvk = 413kN) pro Tübbingelement aufzunehmen. Dabei berücksichtigt man konservativerweise den Beitrag des Spritzbetons nicht. Die Grenzspannung ist immer kleiner als die Einwirkungen auf die Aussenschale. Die Analysen sind im Anhang 4 zu verfolgen.

5.2 QUERVERBINDUNGEN CT-IN-GL

Für die ersten 3 Abschlagslängen der Querverbindungen (entspricht einer Länge von 4.5 m) gelten für die Dimensionierung der Ausbruchsicherung die gleichen Tabella 13: Risultato degli ancoraggi

Come si evince dalla tabella i provvedimenti costruttivi previsti lungo la galleria di linea in corrispondenza degli innesti sono in grado di fornire una pressione di confinamento pari a $P_{Rd} > 700 \text{ kN}$ (due Dywidag SNØ28 da $N_{yk} = 413 \text{ kN}$) per concio trascurando conservativamente il contributo del betoncino proiettato. Essa è sempre superiore ai carichi che insistono sul rivestimento.

5.2 CUNICOLI TRASVERSALI CT-IN-GL

Per i primi tre sfondi dei cunicoli trasversali valgono le stesse considerazioni delle gallerie di linea.

Überlegungen wie bei den Hauptröhren.

Es wird realistischerweise angenommen, dass die Ausführung der Ausbruchsicherung in einem Abstand von Ausbruchsfront ausgeführt wird, bei welcher der der Gebirgsdruck schon abgebaut ist. Dementsprechend ist die Einwirkung 'Prif' durch das Gewicht der dort massgebenden Ablösung (Bruchkörper) bestimmt.

 $P_{rif} = P_{blocco}$

Das Gewicht der grössten Auflösung wird mit UNWEDGE II peso del più grande blocco deriva dall'analisi con 3.0 berechnet.

Ammettendo realisticamente realizzazione la del rivestimento ad una distanza dal fronte tale da ottenere delle pressioni d'ammasso nulle, la pressione di riferimento della sezione corrente 'Prif' è definita dal peso del più grande blocco gravitativo ivi possibile.

$$P_{rif} = P_{blocco}$$

UNWEDGE 3.0.

Abbildung 3: Resultate für den Gebirgstyp GA-BST-KS-8e

Figura 3: Risultati per il tipo d'ammasso GA-BST-KS-8e

Abbildung 4: Resultate für den Gebirgstyp GA-T-PH-6

Figura 4: Risultati per il tipo d'ammasso GA-T-PH-6

	Peso blocco [kN] 119	R	γG	P_Ed
	[kN]	[-]	[-]	[kN]
GA-BST-KS-8e	119	1.6	1.3	248
GA-T-PH-6	129	1.6	1.3	268

Tabelle 14: Resultat der auf die Aussenschale ausgeübten Einwirkungen

Die Grenzspannung ' P_{Rd} ' der Aussenschale besteht aus L dem Widerstand der Anker ' $P_{Rd,chiodi}$ ' und wird wie folgt p berechnet:

$$P_{Rd,chiodi} = \frac{N_{yk}}{A_{inf} \cdot \gamma_s}$$

Wobei:

- N_{yk} = Streckgrenze
- A_{inf} = Einflussfläche jedes Ankers
- Υ_s = Teilsicherheitsbeiwert des Stahls (1.15).

La pressione di confinamento fornita dal rivestimento di prima fase ' P_{Rd} ' è uguale quella fornita dai chiodi ' $P_{Rd,chiodi}$ ', valutata mediante la seguente relazione:

$$P_{Rd,chiodi} = \frac{N_{yk}}{A_{inf} \cdot \gamma_s}$$

Dove:

- N_{yk} = Resistenza caratteristica a snervamento dei chiodi
- A_{inf} = Area di influenza di ciascun chiodo
- Y_s = Coefficiente parziale di sicurezza sull'acciaio (1.15).

Il contributo del betoncino proiettato viene conservativamente trascurato.

Die Verstärkungsmassnahmen werden bei den ersten 4.5 m der Querverbindung angewendet.

Il rinforzo degli interventi di prima fase viene applicato nel tratto iniziale di circa 4.5m del cunicolo trasversale.

		N_yk	#	A_inf	γs	P_Rd
		[kN]	[-]	[m2]	[-]	[kN]
Cta-T2	Pm16	140	3	0.28	1.15	365
Cta-T3	Pm16	140	5	8.33	1.15	609
Cta-T3bis	Pm16	140	5	8.33	1.15	609
Cta-T4	Pm24	200	9	8.33	1.15	1565
Cta-T5	Pm19	200	9	8.33	1.15	1565

Tabelle 15: Resultate für die Verankerung

Tabella 15: Risultati degli ancoraggi

Die Resultate bestätigen, dass die Sicherheitsklassen für die Regelquerschnitte der Querverbindungen sich auch für die Anschlüsse eignen. Esse confermano che la classe di sicurezza scelta per la sezione corrente garantisce stabilità anche nelle zone d'innesto.

6 INNENSCHALE

1) Bemessung

Zulagebewehrung

Anschlussbereich

In der zweiten Phase muss die Kraftableitungder Einwirkungen auf die Innenschale zwischen Hauptröhre und Querverbindung gewährleistet werden. Das angenommene System für die Hauptröhren bedingt einen verstärkten, eingespannten Träger in Übereinstimmung mit dem Ausbruchsprofil der Querverbindung.

Der Träger wird von den intakten Teilen der Hauptrohrauskleidung abgestützt. Aus diesem Modell resultiert eine Biegebeanspruchung auf den Träger, die durch die einwirkende Normalkraft aus der Innenschale des intakten Hauptrohrquerschnitts kommt.Die Bemessung der Innenschale besteht aus drei Schritten:

6 RIVESTIMENTI DEFINITIVI

In seconda fase la totalità del carico viene trasferito al rivestimento della galleria completo del getto del rivestimento del cunicolo trasversale. La schematizzazione utilizzata per le gallerie di linea prevede un'architrave incastrata alle estremità, in corrispondenza della sezione di galleria principale tagliata dal cunicolo trasversale, e sostenuta dai due ritti, posti lateralmente al cunicolo trasversale e costituiti dalle parti di galleria principale integra.

Tale modello comporta uno stato di sollecitazione flessionale nell'architrave, conseguente al carico costituito dal valore dell'azione normale presente nel rivestimento definitivo integro della galleria principale, in corrispondenza della posizione dell'architrave.

Il dimensionamento dei rivestimenti definitivi si compone di tre fasi:

- 1) Dimensionamento dell'architrave
- 2) Verifica dei rivestimenti della galleria a sezione integra adiacente al cunicolo trasversale
- 3) Verifica dei rivestimenti del cunicolo trasversale.

6.1 BEMESSUNG DER ZULAGEBEWEHRUNG

des

verstärkten

Trägers

1

Nachfolgend ist das Modell des verstärkten Trägers dargestellt.

2) Nachweis der Innenschale für die Hauptröhre im

3) Nachweis der Innenschale für die Querverbindung

6.1 DIMENSIONAMENTO DELL'ARCHITRAVE

Di seguito è riportato il modello dell'architrave.

Abbildung 5: Modell des verstärkten Trägers

Figura 5: Modello dell'architrave

Es werden folgende Zustände geprüft:

- 1) Bemessung der Zugkraft und Bewehrungszulagen
- 2) Kontrolle Druckkraft auf anschliessende Nebenröhre
- Kontrolle konzentrierte Krafteinleitung im Sohlbereich

Die Nachweise stützen sich auf die Normalkrafteinwirkung am intakten Querschnitt, welche in die Komponenten der Hauptrichtungen zerlegt werden Vengono verificati:

- 1) Dimensionamento della tensione e delle armature aggiuntive per la trave
- 2) Controllo della pressione sul cunicolo adiacente
- 3) Controllo del flusso di forze nella zona di platea.

Le verifiche fanno riferimento alle azioni normali della sezione intatta delle gallerie di linea. Questa azione viene scomposta nelle direzioni principali del tunnel.

Abbildung 6: Schema der Einwirkungen auf den Träger

Die Normalkraft aus der Innenschale der Hauptröhre fliesst um die Öffnung (Winkel α) herum. Die rote Einwirkung entspricht der umfliessenden Normalkraft, welche sich je nach Position um den Winkel β neigt und somit ihre Grösse verändert. Die Einwirkende Normalkraft am homogenen Querschnitt ohne Öffnung ist N_d.

Die grüne Komponente in Längsrichtung der Hauptröhre ist die Zugkraft, welche für die Dimensionierung der Zulagebewehrung massgebend ist. Es wird der Winkel β auf Höhe der Zulagebewehrung berücksichtigt.Die blaue Komponente ist für die Kontrolle der Druckspannungen auf die Querverbindung massgebend. Die maximale Druckkraft resultiert aus dem Schnitt im First der anschliessenden Querverbindung.

Die violette Komponente dient zur Kontrolle der Krafteinleitung im Sohlbereich Figura 6: Schema delle azioni sull'architrave

L'azione normale della sezione integra della galleria di linea fluisce intorno all'apertura α . La freccia rossa rappresenta il flusso dell'azione normale intorno all'angolo α , la quale dipende dalla posizione lungo il contorno (angolo β . L'azione normale della sezione integra viene rappresentata come N_d.

La componente verde in direzione del tunnel rappresenta la forza rispetto alla quale viene dimensionata l'armatura addizionale dell'architrave rispetto alla sezione integra. Viene considerato l'angolo β all'altezza dell'inserimento del rinforzo per l'architrave.

La componente azzurra viene considerata per il controllo della pressione sul cunicolo adiacente. La pressione massima risulta al contatto con l'altezza massima del cavo del cunicolo trasversale.

La componente viola viene considerata per il controllo del flusso delle forze, e risulta decisiva in zona della platea.

N_d	3700 kN/m	
Z_d	1385 kN/m	
D_d	1850 kN/m	
L_d	3700 kN * 3.5 m = 12'000 kN/m	

Tabelle 16: Einwirkungen auf den Träger

Tabella 16: Azioni sull'architrave

- Die Auswirkungen bei den Auflagern und in 1) Feldmitte ergeben sich zu:
- 1) Le sollecitazioni all'incastro e in mezzeria risultano pari a:

$$\begin{cases} M_{inc} = \frac{N \cdot L^2}{12} \\ V_{inc} = \frac{N \cdot L}{2} \end{cases} \begin{cases} M_{mezz} = \frac{N \cdot L^2}{24} \\ V_{mezz} = 0 \end{cases}$$

Daraus ergibt sich für die Zulagebewehrung 2 Lagen von 4\u00f626.

- 2) Die Kontrolle der Druckkraft auf anschliessende das Nebenröhre ist für den Betonguerschnitt 35 cm x 1 m erfüllt.
- Die Kontrolle der Krafteinleitung im Sohlbereich auf 3) 1 m Breite ist erfüllt.

6.2 NACHWEISE DER INNENSCHALE IM HAUPTROHR

Die lateralen Abstützungen sind von einer M-N Einwirkung beansprucht, die aus dem darauf gestellten Träger zusammen mit der Einwirkung aus dem normalen Regelquerschnitt zusammengesetzt ist.

Für die M-N Einwirkungen der lateralen Abstützungen weden die gewöhnlichen Einwirkungen mit dem folgenden Koeffizien multipliziert:

$$R = 1 + \frac{b/2}{L_{zona-r \, \text{inf}}}$$

Unter Berücksichtigung der Querverbindungsbreite 'b' ≈ 5.5 m und der Länge der verstärkten Zone des Hauptrohrs 'Lzona-_{rinf}' = 4.5 m resultiert der Koeffizient:

$$R = 1.6$$

intakten GL Querschnitt, gemäss technischem Bericht

Programm Statik-6 berechnet worden sind.

Dalle sollecitazioni sopracitate, le verifiche dell'architrave per sono soddisfatte per un rinforzo di armature rispetto alla sezione integra pari a 2 strati di 4¢26 in zona dell'architrave.:

- 2) Il controllo della pressione sul cunicolo adiacente è soddisfatto per la sezione di calcestruzzo 35 cm x 1 m.
- Il controllo del flusso delle forze in zona di platea è 3) soddisfatto per per una profondità di 1 m..

VERIFICA DEI RIVESTIMENTI DELLA 6.2 **GALLERIA**

I ritti laterali sono sollecitati da uno stato di pressoflessione, dovuto alla reazione normale d'appoggio dell'architrave oltre allo stato di sforzo (N,M) presente nel rivestimento integro.

In particolare, le azioni nei ritti laterali sono calcolate amplificando quelle presenti nella sezione corrente per il coefficiente:

$$R = 1 + \frac{b/2}{L_{zona-rinf}}$$

Considerando la larghezza di scavo 'b' dei cunicoli trasversali, pari a circa 5.5m, e la lunghezza della zona rinforzata lungo le gallerie correnti 'Lzona-rinf'=4.5m, il coefficiente di amplificazione dei carichi sui ritti risulta uguale a:

$$R = 1.6$$

Im Anhang 2 sind die Nachweise der Innenschale der In Appendice 2 sono riportate le verifiche dei rivestimenti Hauptröhren im Anschlussbereich gezeigt, die mit dem FEMdefinitivi delle gallerie di linea in corrispondenza degli innesti, eseguite tramite il programma basato sul Metodo agli Elementi Finiti Statik-6. Die Basis dieser Berechnungen sind die Resultate des

La base di questi calcoli fa riferimento alle azioni ricavate in

23055. Jene Einwirkungen werden mit dem Koeffizient R multipliziert. Anhand der Ergebnisse werden die Anschlussquerschnitte armiert.

Die Verstärkungsmassnahmen werden 4.5 m vor und nach dem Querverbindungsausbruch angewendet.

sezione intatta, come ripercorribile nella rispettiva relazione di calcolo, le quali vengono moltiplicate per il fattore di amplificazione. In base ai risultanti sforzi vengono armate le sezioni di innesto.

Il rinforzo degli interventi di prima fase viene applicato nei due tratti di circa 4.5m a cavallo dell'interferenza con il cunicolo trasversale.

	GL-MS con concio di base - Anschluss				
	Calcestruzzo				
	C30/37	Arm.rad	Arm.long	Arm.taglio	
Calotta	40 cm	2ф14/150	2φ12/300	-	
Piedritti	50 cm	2ф14/150	2φ12/300	-	
Platea	50 cm	2ф16/150	2φ12/300	-	

	GL-MS con arco rovescio - Anschluss						
	Calcestruzzo	Calcestruzzo Arm.rad Arm.long Arm.tagl					
Calotta	40 cm	2¢20/150	2φ14/300	-			
	50 cm	2 _{\$\phi} 20/150	2φ14/300	-			
Piedritti	rinforzo 2. strato	φ20/150	-	-			
	160 cm	2¢20/150	2φ14/300	-			
Platea	rinforzo 2. strato	¢26/150	-	-			

Abbildung 7: Resultate für GL-IN-CT

6.3 NACHWEIS DER INNENSCHALE IN DER QUERVERBINDUNG

Die Innenschale der Querverbindungen ist von den Einwirkungen des Hauptrohres beansprucht. Diese sind aus den Einwirkungen des Trägers und den aufgeschlagenen Einwirkungen der Innenschale zusammengesetzt.

$$R = 1 + \frac{b/2}{L_{zona-r \, \text{inf}}}$$

Unter Berücksichtigung der Querverbindungsbreite 'b' \approx 5.5 m und der Länge der verstärkten Zone des Hauptrohrs 'L_{zona-rinf}' = 4.5 m resultiert der Koeffizient:

$$R = 1.6$$

Figura 7: Risultati GL-IN-CT

6.3 VERIFICA DEI RIVESTIMENTI DEL CUNICOLO TRASVERSALE

I rivestimenti definitivi dei cunicoli trasversali sono sollecitati dalle azioni derivanti dalle gallerie di linea. Esse sono composte dall'azione dell'architrave e dalle azioni incrementate del rivestimento definitivo.

$$R = 1 + \frac{b/2}{L_{zona-rinf}}$$

Considerando la larghezza di scavo 'b' dei cunicoli trasversali, pari a circa 5.5m, e la lunghezza della zona rinforzata lungo le gallerie correnti 'Lzona-rinf'=4.5m, il coefficiente di amplificazione dei carichi sui ritti risulta uguale a:

$$R = 1.6$$

Im Anhang 2 sind die Nachweise der Innenschale der Querverbindungen im Anschlussbereich gezeigt, die mit dem FEM-Programm Statik-6 berechnet worden sind. In Appendice 2 sono riportate le verifiche dei rivestimenti definitivi dei cunicoli trasversali in corrispondenza degli innesti, eseguite tramite il programma basato sul Metodo agli Elementi Finiti Statik-6.

Die Basis dieser Berechnungen sind die Resultate des Lat

La base di questi calcoli fa riferimento alle azioni ricavate

intakten Querschnitt der Querverbindungen, gemäss technischem Bericht 23056. Jene Einwirkungen werden mit dem Koeffizient R multipliziert. Anhand der Ergebnisse werden die Anschlussquerschnitte armiert.

Die Verstärkungsmassnahmen werden im ersten Querverbindungsabschnitt angewendet, ca. 4.5 m.

6.3.1 Ergebnisse

Die fogende Tabelle fasst die Resultate der Mindestabmessungen und der Berwehrungen im Anschlussbereich zusammen: in sezione intatta, come ripercorribile nella rispettiva relazione di calcolo 23056, le quali vengono moltiplicate per il fattore di amplificazione. In base ai risultanti sforzi vengono armate le sezioni di innesto.

Il rinforzo degli interventi di prima fase viene applicato nel primo tratto di cunicolo di circa 4.5m.

6.3.1 Risultati

La seguente tabella riporta un riassunto degli spessori minimi e delle armature considerate nelle verifiche delle gallerie di linea in prossimità degli innesti:

	GL-MS con concio di base - Anschluss					
	Calcestruzzo					
	C30/37	Arm.rad	Arm.long	Arm.taglio		
Calotta	40 cm	2ø14/150	2ø12/300	-		
Piedritti	50 cm	2ø14/150	2ø12/300	-		
Platea	50 cm	2 \0/150	2ø12/300	-		

	GL-M	S con arco rove	scio - Anschlu	SS
	Calcestruzzo	Arm.rad	Arm.long	Arm.taglio
Calotta	40 cm	2ф20/150	2ф14/300	-
	50 cm	2φ20/150	2ф14/300	-
Piedritti	rinforzo 2. strato	φ20/150	-	-
	160 cm	2ф20/150	2ф14/300	-
Platea	rinforzo 2. strato	φ26/150	-	-
		CT-a-T1-t	:2-t3	
	Calcestruzzo			
	C30/37	Arm.rad	Arm.long	Arm.taglio
	35 cm	2ф16/150	2ф12/300	2ф12/150
Calotta	rinforzo	φ16/300		
Piedritti	35 cm	2φ16/150	2φ12/300	-
Platea	35 cm	2φ14/150	2φ12/300	-

	CT-a-T4-T5			
	Calcestruzzo			
	C30/37	Arm.rad	Arm.long	Arm.taglio
	35 cm	2ф16/150	2φ12/300	2ф12/150
Calotta	rinforzo	φ16/300		
Piedritti	100 cm	2φ16/150	2\overline{12}/300	-
Platea	120 cm	2¢20/150	2φ14/300	-

	CT-b-T4-T5			
	Calcestruzzo			
	C30/37	Arm.rad	Arm.long	Arm.taglio
	35 cm	2ø18/150	2φ12/300	2ф16/300
Calotta	rinforzo	ф18/300		
Piedritti	35 cm	2ø18/150	2φ12/300	-
Platea	35 cm	2¢12/150	2\phi12/300	-

Tabelle 17: Abmessungen und Bewehrungen der Querschnitte im Anschlussbereich Tabella 17: Spessori e armature delle sezioni correnti in prossimità degli innesti

7 VERZEICHNISSE

7.1 TABELLENVERZEICHNIS

Tabelle 1: Liste der Querverbindungen entlang der Strecke 4

Tabelle 3: Charakterisierung der Bemessungsschnitten [2]10

Tabelle 5: Charakterisierung der Gesteinsarten für jedenHomogenbereich und deren prozentuelle Verteilung

[1]Fehler! Verweisquelle konnte nicht gefunden werden. 12

Tabelle 6: Charakteristische Gebirgsparameter für die verschiedenen Zonen und Klassen [2]...... 12 Tabelle 7: Trennflächenorientierung im Bemessungsschnitt OB2 13 Tabelle 8: Trennflächenorientierung im Bemessungsschnitt OB3 13 Tabelle 9: Trennflächenorientierung im Bemessungsschnitt OB4 14 Tabelle 10: Trennflächenorientierung im Bemessungsschnitt OB5 14 Tabelle 11: Trennflächenorientierung im Bemessungsschnitt OB6 14 Tabelle 12: Resultat der auf die Aussenschale ausgeübten Einwirkungen 18 Tabelle 13: Resultat der Anker 18 Tabelle 14: Resultat der auf die Aussenschale ausgeübten Einwirkungen 20 Tabelle 15: Resultate für die Verankerung...... 21

ABBILDUNGSVERZEICHNIS

Abbildung 1: Resultate für den Gebirgstyp GA-BST-KS-8e17

7.2

Abbildung 2: Resultate für den Gebirgstyp GA-T-PH-6 17
Abbildung 3: Resultate für den Gebirgstyp GA-BST-KS-8e1
Abbildung 4: Resultate für den Gebirgstyp GA-T-PH-6 20
Abbildung 5: Modell des verstärkten Trägers 22

7 ELENCHI

7.1 ELENCO DELLE TABELLE

Tabella 1: Lista dei cunicoli trasversali lungo la tratta 4

Tabella 2: Chilometraggio, copertura e composizione litologicadei domini geomeccanici omogenei9

Tabella 3: Caratterizzazione dei settori di calcolo [2] 10

Tabella 4: Chilometraggi rappresentativi dei settori di calcolo eloro peculiarità11

Tabella 5: Caratterizzazione degli ammassi di ciascuna zona omogenea e distribuzione probabilistica delle diverse classi[1] 12

Tabella 6: Parametri caratteristici dell'ammasso nelle diverse zone e classi [2]. 12

Tabella 7: Giacitura delle discontinuità nel settore OB2.... 13

Tabella 8: Giacitura delle discontinuità nel settore OB3.... 13

Tabella 9: Giacitura delle discontinuità nel settore OB4.... 14

Tabella 10: Giacitura delle discontinuità nel settore OB5.. 14

Tabella 11: Giacitura delle discontinuità nel settore OB6.. 14

Tabella 12: Risultato dei carichi che insistono sul rivestimento 18

Fabella 13: Risultato degli ancoraggi	. 1	8	3
---------------------------------------	-----	---	---

Tabella 14: Risultato dei carichi che insistono sul rivestimento 20

Tabella 15: Risultati degli ancoraggi	21
Tabella 16: Azioni sull'architrave	23
Tabella 17: Spessori e armature delle sezioni correnti in	
prossimità degli innesti	26

7.2 ELENCO DELLE ILLUSTRAZIONI

Figura 1: Risultati per il tipo d'ammasso GA-BST-KS-8e	17
Figura 2: Risultati per il tipo d'ammasso GA-T-PH-6	17
Figura 3: Risultati per il tipo d'ammasso GA-BST-KS-8e	19
Figura 4: Risultati per il tipo d'ammasso GA-T-PH-6	20
Figura 5: Modello dell'architrave	22

Abbildung 6: Schema der Einwirkungen auf den Träger 23	
Abbildung 7: Resultate für GL-IN-CT	1

7.3 ANLAGENVERZEICHNIS

- ANHANG 1 TABELLEN DER GEBIRGSARTEN
- ANHANG 2 FEM-ANALYSE DER INNENSCHALE
- ANHANG 3 BLOCKANALYSE
- ANHANG 4 BRANDBEMESSUNG

7.4 BIBLIOGRAFIE UND QUELLEN

7.4.1 Dokumente der Ausschreibungsplanung

- [1] 02_H61_GD_992_GTB_D0700_13018 Brenner Basistunnel - Ausführungsplanung - D0700: Baulos Mauls 2-3 - Gesamtbauwerke - Technischer Bericht - Geomechaniscer Bericht, Allgemein
- [2] 02_H61_GD_025_GTB_D0700_23001 bis Brenner Basistunnel - Ausführungsplanung - D0700: Baulos Mauls 2-3 – Gesamtbauwerke – Technischer Bericht – Geomechaniscer Bericht, Detail
- [3] 02_H61_GD_025_GLS_D0700_23002 bis 23008 -Brenner Basistunnel - Ausführungsplanung - D0700: Baulos Mauls 2-3 – Gesamtbauwerke – Längenschnitt – Voraussicht Geomechanisches- und Projektierungsprofile
- [4] 02_H61_EG_991_KLP_D0700_12050 bis 12056 -Brenner Basistunnel - Ausführungsplanung - D0700: Baulos Mauls 2-3 - Gesamtbauwerke - Lageplan -Lageplan der Bauwerke
- [5] 02_H61_TM_030_KRQ_D0700_23350 bis 23354 -Brenner Basistunnel - Ausführungsplanung - D0700: Baulos Mauls 2-3 - Haupttunnel - Regelquerschnitt - Ausbruchsquerschnitte
- [6] 02_H61_TY_030_KRP_D0700_23320 bis 23327 -Brenner Basistunnel - Ausführungsplanung - D0700: Baulos Mauls 2-3 - Haupttunnel - Regelprofil -Regelprofile
- [7] 02_H61_GD_025_KTB_D0700_23053 Brenner Basistunnel - Ausführungsplanung - D0700: Baulos Mauls 2-3 - Gesamtbauwerke Teil 3 - Technischer Bericht - Leitfaden für die Wahl des Ausbruchsquerschnitte
- [8] 02_H61_OP_025_KTB_D0700_23054 Brenner Basistunnel - Ausführungsplanung - D0700: Baulos

Figura 6: Schema delle azioni sull'architrave	23
Figura 7: Risultati GL-IN-CT	25

7.3 ELENCO APPENDICI

- APPENDICE 1 SCHEDE GEOMECCANICHE
- APPENDICE 2 VERIFICHE STATICHE DEL RIVESTIMENTO DEFINITIVO
- APPENDICE 3 ANALISI DEI BLOCCHI
- APPENDICE 4 ANALISI AL FUOCO

7.4 BIBLIOGRAFIA E FONTI

- 7.4.1 Documenti in ingresso
 - [1] 02_H61_GD_992_GTB_D0700_13018 Galleria di Base del Brennero - Progettazione esecutiva - D0700: Lotto Mules 2-3 - Opere generali – Relazione tecnica – Relazione geomeccanica generale
 - [2] 02_H61_GD_025_GTB_D0700_23001 Galleria di Base del Brennero - Progettazione esecutiva - D0700: Lotto Mules 2-3 - Opere generali – Relazione tecnica – Relazione geomeccanica di dettaglio
 - [3] 02_H61_GD_025_GLS_D0700_23002 fino a 23008 -Galleria di Base del Brennero - Progettazione esecutiva - D0700: Lotto Mules 2-3 - Opere generali – Profilo longitudinale – Profili geomeccanici e progettuali di previsione
 - [4] 02_H61_EG_991_KLP_D0700_12050 fino a 12056 -Galleria di Base del Brennero - Progettazione esecutiva - D0700: Lotto Mules 2-3 - Opere generali – Planimetria delle opere – Planimetrie (foglio 15/25 fino a foglio 21/25)
 - [5] 02_H61_TM_030_KRQ_D0700_23350 fino a 23354 -Galleria di Base del Brennero - Progettazione esecutiva - D0700: Lotto Mules 2-3 - Gallerie principali - Sezione tipo - Sezioni di scavo
 - [6] 02_H61_TY_030_KRP_D0700_23320 fino a 23327 -Galleria di Base del Brennero - Progettazione esecutiva - D0700: Lotto Mules 2-3 - Gallerie principali - Sezione tipo - Sezioni tipo applicate
 - [7] 02_H61_GD_025_KTB_D0700_23053 Galleria di Base del Brennero - Progettazione esecutiva - D0700: Lotto Mules 2-3 - Progettazione delle opere -Relazione tecnica - Linee guida per l'applicazione delle sezioni tipo
 - [8] 02_H61_OP_025_KTB_D0700_23054 Galleria di

Mauls 2-3 – Gesamtbauwerke Teil 3 – Technischer Bericht – Materialienbericht

- [9] 00_Ü01_GD_001_D0616_III_08_TB_3601_25 -Brenner Basistunnel - Regelplanung - D0700: Baulos Mauls 2-3 - Grundlagen für die Planung -Bemessung und konstruktive Durchbildung der Bauwerke - Technischer Bericht - Leitfaden für die Modellierung und Festlegung der Berechnungsgrundsätze
- [10] 00_Ü01_GD_001_D0616_III_08_TB_3602_25 Brenner Basistunnel Regelplanung D0700:
 Baulos Mauls 2-3 Grundlagen für die Planung Bemessung und konstruktive Durchbildung der
 Bauwerke Technischer Bericht Bemessungskonzept Spritzbetonaussenschale
- [11] 00_Ü01_GD_001_D0616_III_08_TB_3603_25 Brenner Basistunnel Regelplanung D0700:
 Baulos Mauls 2-3 Grundlagen für die Planung Bemessung und konstruktive Durchbildung der
 Bauwerke Technischer Bericht Bemessungskonzept Innenschale
- [12] 00_Ü01_GD_001_D0616_III_08_TB_3604_25 -Brenner Basistunnel - Regelplanung - D0700: Baulos Mauls 2-3 - Grundlagen für die Planung -Bemessung und konstruktive Durchbildung der Bauwerke - Technischer Bericht -Bemessungskonzept Tübbingring
- [13] 02_H61_OP_035_KTB_D0700_23056 Brenner
 Basistunnel Ausführungsplanung D0700: Baulos
 Mauls 2-3 Gesamtwerke Teil 3 Technischer
 Bericht- Technischer Bericht Querverbindungen
- [14] 00_Ü01_GD_001_D0616_III_01_TB_3002_25 –
 Brenner Basistunnel Regelplanung Grundlagen für die Planung – Technische Merkmale und
 Spezifikationen – Technischer Bericht –
 Bautoleranzen, Technische Vertragsbestimmungen
- [15] 02_H61_OP_035_KTB_D0700_23055 Brenner
 Basistunnel Ausführungsplanung D0700: Baulos
 Mauls 2-3 Gesamtwerke Teil 3 Technischer
 Bericht- Technischer Bericht Hauptröhre

Base del Brennero - Progettazione esecutiva - D0700: Lotto Mules 2-3 – Opere generali parte 3 – Relazione tecnica – Relazione sui materiali

- [9] 00_Ü01_GD_001_D0616_III_08_TB_3601_25 -Galleria di Base del Brennero - Progettazione di sistema – Dati di base per la progettazione – Dimensionamento e configurazione strutturale delle opere – Relazione tecnica – Linee guida per la modellazione e la definizione dei principi di calcolo
- [10] 00_Ü01_GD_001_D0616_III_08_TB_3602_25 Galleria di Base del Brennero Progettazione di sistema – Dati di base per la progettazione –
 Dimensionamento e configurazione strutturale delle opere – Relazione tecnica – Standard per il dimensionamento – Rivestimento esterno in spritzbeton (calcestruzzo proiettato)
- [11] 00_Ü01_GD_001_D0616_III_08_TB_3603_25 -Galleria di Base del Brennero - Progettazione di sistema – Dati di base per la progettazione – Dimensionamento e configurazione strutturale delle opere – Relazione tecnica – Standard per il dimensionamento strutturale dei rivestimenti definitivi
- [12] 00_Ü01_GD_001_D0616_III_08_TB_3604_25 -Galleria di Base del Brennero - Progettazione di sistema – Dati di base per la progettazione – Dimensionamento e configurazione strutturale delle opere – Relazione tecnica – Standard per il dimensionamento strutturale dell'anello in conci
- [13] 02_H61_OP_035_KTB_D0700_23056 Galleria di Base del Brennero - Progettazione esecutiva – D0700: Lotto Mules 2-3 - Opere generali Parte 3 – Calcolo statico – Relazione di calcolo – Cunicoli Trasversali
- [14] 00_Ü01_GD_001_D0616_III_01_TB_3002_25 -Galleria di Base del Brennero - Progettazione di sistema – Dati di base per la progettazione – Specifiche e requisiti tecnici – Relazione tecnica – Tolleranze costruttive – Condizioni contrattuali tecniche

02_H61_OP_035_KTB_D0700_23055 - Galleria di Base del Brennero - Progettazione esecutiva – D0700: Lotto Mules 2-3 - Opere generali Parte 3 – Calcolo statico – Relazione di calcolo – Gallerie di Linea

7.4.2 Normen und Richtlinien

[15] Technische Konstruktionsnormen 2008 - NTC 2008;

7.4.2 Normativa

[15] Norme Tecniche delle Costruzioni 2008 – NTC 2008;

- [16] Leitfaden N.617, Vorgehenweise für technische Konstrukitonsnormen, Ausgabe Januar 2008
- [17] DM 28/10/2005 Sicherheit für Bahntunnel
- [18] UNI EN1990:2006 Eurocodice 0 Grundlage für Konstruktion und Dokumentation zur nationalen Umsetzung;
- [19] UNI EN 1991-1; Eurocode 1 Actions on structures - 2010/2011
- [20] UNI EN 1992:2005 Eurocodice 2 Planung von für Stahlbetonbauwerke und Dokumente zur nationalen Umsetzung;
- [21] UNI EN 1997:2005 Eurocodice 7 Geotechnik und Dokumente zur nationalen Umsetzung
- [22] UNI EN 1992-1-2:2005
- [23] UNI 11076: 2003
- [24] D.M. 16.02.2007

7.4.3 Literatur

- [25] Ribacchi R., Riccioni R. Stato di sforzo e di deformazione intorno ad una galleria circolare. Gallerie e grandi opere sotterranee, 1977.
- [26] Nguyen-Minh D., Guo C. Recent progress in convergence confinement method", Eurock '96, pagg. 855-860.
- [27] Gamble J.C. Durability-plasticity classification of shales. Ph. D. Thesis, University of Illinois, 1971.
- [28] Sakurai Lessons Learned from Field Measurements in Tunneling. Tunneling and Underground Space Technology, 1997.
- [29] HOEK E., CARRANZA TORRES C., CORKUM B. Hoek-Brown failure criterion. 2002
- [30] UNWEDGE-rocscience, Underground Wedge Stability Analysis Manual
- [31] Wang, J., 1993 Seismic Design of Tunnels A Simple State-of-the-Art Design
- [32] Hashash, Y., et al., 2001, Seismic design and analysis of underground structures, Tunnelling and

- [16] Circolare n.617, Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al DM 14 gennaio 2008
- [17] DM 28/10/2005, Sicurezza nelle gallerie ferroviarie.
- [18] UNI EN1990:2006 Eurocodice 0 Basi per la progettazione strutturale e documento di applicazione nazionale3
- [19] UNI EN 1991-1; Eurocode 1 Actions on structures 2010/2011
- [20] UNI EN 1992:2005 Eurocodice 2 Progettazione delle strutture in calcestruzzo e documento di applicazione nazionale
- [21] UNI EN 1997:2005 Eurocodice 7 Progettazione geotecnica e documento di applicazione nazionale
- [22] UNI EN 1992-1-2:2005 "Progettazione delle strutture in calcestruzzo Parte 1-2: Regole generali -Progettazione strutturale contro l'incendio"
- [23] UNI 11076 del 1 luglio 2003, "Modalità di prova per la valutazione del comportamento di protettivi applicati a soffitti di opere sotterranee, in condizioni di incendi".
- [24] D.M. 16.02.2007 "Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi di opere da costruzione"
- 7.4.3 Letteratura
 - [25] Ribacchi R., Riccioni R. Stato di sforzo e di deformazione intorno ad una galleria circolare. Gallerie e grandi opere sotterranee, 1977.
 - [26] Nguyen-Minh D., Guo C. Recent progress in convergence confinement method", Eurock '96, pagg. 855-860.
 - [27] Gamble J.C. Durability-plasticity classification of shales. Ph. D. Thesis, University of Illinois, 1971.
 - [28] Sakurai Lessons Learned from Field Measurements in Tunneling. Tunneling and Underground Space Technology, 1997.
 - [29] HOEK E., CARRANZA TORRES C., CORKUM B. Hoek-Brown failure criterion. 2002
 - [30] UNWEDGE-rocscience, Underground Wedge Stability Analysis Manual
 - [31] Wang, J., 1993 Seismic Design of Tunnels A Simple State-of-the-Art Design
 - [32] Hashash, Y., et al., 2001, Seismic design and analysis of underground structures, Tunnelling and

underground space technology 16, (247-293)

- [33] Pöttler, R. Die unbewehrte Innenschale im Felstunnelbau - Standsicherheit und Verformung im Rißbereich, Beton und Stahlbetonbau Heft 6, 1993
- [34] Pöttler, R. Standsicherheitsnachweis unbewehrter Innenschalen, Bautechnik 67, 1990
- [35] Rocscience Phase2 online manual (Swellex / Split Sets Section - indicazioni Atlas Copco 2006)
- [36] Cai M., Kaiser P.K., Tasaka Y., Minami M. -Determination of residual strenght parameters of jointed rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences 44 pag. 247-256, 2007
- [37] MIDAS GTS Manual

underground space technology 16, (247-293)

- [33] Pöttler, R. Die unbewehrte Innenschale im Felstunnelbau - Standsicherheit und Verformung im Rißbereich, Beton und Stahlbetonbau Heft 6, 1993
- [34] Pöttler, R. Standsicherheitsnachweis unbewehrter Innenschalen, Bautechnik 67, 1990
- [35] Rocscience Phase2 online manual (Swellex / Split Sets Section - indicazioni Atlas Copco 2006)
- [36] Cai M., Kaiser P.K., Tasaka Y., Minami M. -Determination of residual strenght parameters of jointed rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences 44 pag. 247-256, 2007

[37] MIDAS GTS Manual

ANHANG 1 – TABELLEN DER GEBIRGSARTEN

APPENDICE 1 – SCHEDE GEOMECCANICHE

Di seguito sono riportate le schede geomeccaniche per gli ammassi rocciosi secondo la Relazione [15].

Geotechnische Kennwerte	Gebirgsart GA-BST-KS-8f		
Parametri geotecnici	Tip	o di ammasso roccioso GA-BST-	KS-8f
Lithologia	Bündnerschieferkomplex	c Dünnschichtige Wechselfolge vo	n Glimmermarmor,
Lithologie	Kalzitquarzit und Phyllit (531)		
Litelaria	Complesso dei calcescisti: alternanze poco spessi di calcescisti, quarziti calcitici e		
Litologia	filladi (531)		
Gesteinskennwerte / Mineralogie (Labor)	Mittelwert (M)	Standardabweichung (s)	Versuchsanzahl (n)
Parametri della roccia / Mineralogia (Laboratorio)	Valore medio (M)	Deviazione standard (s)	Numero di prove (n)
γ [MN/m³]	0,02656	± 0,00036	63
oci [MPa] med (F sf)	41	± 18	3
oci [MPa] min (F 45° sf)	24	± 9	12
mi [-] (Hoek&Brown) aus TriaxDruckversuch / da prova triassiak	12	± 2	4
E [MPa] aus EnaxDruckversuch / da prova uniassiale	43000	± 11100	15
v [-] aus EinaxDruckversuch / da prova uniassiale	0,21	± 0,05	8
CAI [-]	2.7	± 0,4	8
äguiv, Qz-Gehalt / Contenuto egu.di Qz [%]	42	± 9	8
Quellpotential / Potenziale di swelling	keines / assente		
Trennflächeneigenschaften (Kartierung / Bobrungen)	Statistische Auswertung	der Orientierungen und Eigenscha	aften der Trennflächen
Proprietà delle discontinuità (Rilevamento / Sondaggi)	Elaborazione statistica d	elle giaciture e delle proprietà delle	e discontinuità
Schieferung: Orientierung / Abstand			
Scistosità: Giacitura / Spaziatura	S: 355/60		
Trennflächenorientierung [2] (Vertrauenskogel)	RTF2w: 285/85	RTE6: 050/65	
Giacitura delle discontinuità (Cono di confidenza)	RTE5: 110/75		
Trennflächenabstände [mm]	RTE2w: 200-600	RTE6: 200-600	
Spaziatura delle discontinuità	RTE5: 200-600	S: 60-200	
Trennflächendurchgängiskeit [m]	DTE2w: <1	DTE6: 3.10	
Persistenza della discontinuità	DTES: <1	C: 2 10	
Terre Bisteriza delle discontinuita	RTFD. ST	5. 3-10 DTEC: 0	
Anathina dalla dia sastinuità	RTFZW.U	R1F0.0	
Apertura della discontinuita	RTFD.U	5.0 DTC: 10.12	
Dursesità della dia sentinuità	RTFZW. 4-0	R1F0.10-12	
Rugosita delle discontinuita	K1F5.4-0	5.4-0	
Alteraciona della diagontinuità			
Alterazione delle discontinuita			
Piempimente delle discontinuità (tipe e %)			
Transflächenkenmuerte (Laber)		Bandbreite	Versuchs an 70hl (n)
Parametri delle discontinuità (Laboratorio)		Bange	Numero di prove (n)
(0	44.0-	46.3 / 19.4-35.8	3/2
o peak / res [] (unverwitt, TF / Disc. inalterate)	1.7-	4 1 / 0 27-0 47	3/2
Cebirgekennwerte in Situ		Bandbreite	Versuchsanzahl (n)
Parametri dell'ammasso roccioso in sito		Range	Numero di prove (n)
F [MPa] /BLA / Prova dilatometrica); Last/carico 87.8-10.6 MPa	3	2500-63600	2
Gebirgskennwerte	Statistik der Indexwerte u	berechnete Festigkeits- und Verf	ormungsparameter
Parametri dell'ammasso roccioso	Statistica dei parametri ir	ndice e parametri di resistenza e d	eformabilità calcolati
Indexwerte (Kartierung / Bobrungen)	Mittelwert (M)	Standardabweichung (s)	Versuchsanzahl (n)
Parametri indice (Rilevamento / Sondaggi)	Valori medio (M)	Deviazione standard (s)	Numero di prove (n)
ROD [%] (ISBM)	85	±	
RMR [-] (Bieniaw ski, 1999)	60	±	
GSI [-] (Hoek)	50	02:	· ·
Festigkeits- u. Verformungskennwerte (berechnet)	Kombination 1: M	Kombination 2: M - s	Kombination 3: M+s
Parametri di resistenza e deformabilità (calcolati)	Combinazione 1: M	Combinazione 2: M - s	Combinazione 3: M+s
rec [MPa] (Hoek&Brown)	1.5	0.9	2.0
dem [MPa] (Hoek&Brown)	4.6	2.8	6.3
c [MPa] (Mohr-Coulomb): H min =910m / H may =1110m	18/20	1.5/1.7	20/23
(0 [°] (Mohr-Coulomb); H min = 910m / H max = 1110m	28/26	24/23	30/29
E [MPa] (Boyd/Serafim 1983 / Hoek 2002 / Hoek&Diederichs 2006	-/(4900)/13200	-/(3900)/9800	-/5700/16600
Charakteristische Werte / Valori caratte	eristici	Inputparameter /	Valori di input
y k (Gebirge / ammasso) [kN/m ³]	27.0	GSI [-] - Hoek&Brow n	50
oci.k (Gestein / roccia) [MPa]	33*	RMR [-] - Bienaw ski	60
room k (Gebirge / anmasso roccioso) [MPa]	6.3	gy (v*H.min/max) [MPa]	24.6/30.0
Ck (Gebirge / anmasso roccioso) IMPa1 - H min/may	20/23	ko [-]	0.8-1.0
(sk (Gebirge / ammasso roccioso) [9] - Himminax	30/28	7.552 5.4	0,0-1,0
E k (Gebirge / anmasso roccioso) [MPa]	5500		
Bemerkungen	*Wert: M+s (F 45° sf)	1	1
gen			
Note	*Valore: M+s (E 45° sf)		
1.10.00.000			
	1		

Geotechnische Kennwerte	Gebirgsart GA-US-PH-6a		
Parametri geotecnici	Tip	o di ammasso roccioso GA-US	-PH-6a
Lithologie	Kaserer-FM: Phyllit bis Glimmerschiefer, Quarzphyllit, untergeordnet Schwarzphyllit (611, 623)		
Litologia	FM di Kaserer: da fillade a micascisto, fillade quarzifera, subordinato fillade nera (611, 623)		
Gesteinskennwerte / Mineralogie (Labor)	Mittelwert (M)	Standardabweichung (s)	Versuchsanzahl (n)
Parametri della roccia / Mineralogia (Laboratorio)	Valore medio (M)	Deviazione standard (s)	Numero di prove (n)
γ [MN/m³]	0,02704	± 0,00055	23
oci[MPa] max (F⊥sf)	71	± 15	18
oci [MPa] min (F 45° sf) aus PLT / da prova PLT	43	± 9	10
mi [-] (Hoek&Brow n) aus TriaxDruckversuch / da prova triassiak	6 8	± 2	9
E [MPa] aus EinaxDruckversuch / da prova uniassiale	43400	± 8100	15
v [-] aus EinaxDruckversuch / da prova uniassiale	0,22	± 0,04	9
CAI [-]	3,0	± 0,3	8
äquiv. Qz-Gehalt / Contenuto equ.di Qz [%]	69	± 2	3
Quellpotential / Potenziale di swelling	keines / assente		
Trennflächeneigenschaften (Kartierung / Bohrungen)	Statistische Auswertung	der Orientierungen und Eigensc	haften der Trennflächen
Proprietà delle discontinuità (Rilevamento / Sondaggi)	Elaborazione statistica d	elle giaciture e delle proprietà de	lle discontinuità
Schieferung: Orientierung / Abstand			
Scistosità: Giacitura / Spaziatura	S: 350/80		
Trennflächenorientierung [°] (Vertrauenskegel)	RTF1: 180/70	RTF3: 235/70	
Giacitura delle discontinuità (Cono di confidenza)	RTF2e: 080/85	RTF6: 050/80	
Trennflächenabstände [mm]	RTF1: 200-600	RTF3: 20-60	S: 20-60
Spaziatura delle discontinuità	RTF2e: 60-200	RTF6: 200-600	0.2000
Trennflächendurchgängigkeit [m]	RTF1: 1-3	RTF3: <1	S: 3-10
Persistenza delle discontinuità	RTF26:<1	PTE6:1.3	0.0-10
Transflächenöffnung [mm]	DTE1.0	DTE2:0	8:0
Aportura della discontinuità	RTF1.0	PTE6:0	3.0
Troppföchonrauigkeit IPCs []	DTE1: 4 9	DTE2: 4.9	C+ / Q
Puganità della discentinuità	RTF1.4-0	RTF3. 4-0	5.4-0
Treasfie her resulter und (DL ICO 11000 1)	K1F20.4-0	R1F0. 8-10	
Alternatione delle discontinuità			
Atterazione delle discontinuita	~		
Diamaimente delle discentiouità (line e %)			
Riempiniento delle discontinuità (upo e %)		Pandhroite	Manuaha anashi (a)
Personal della diagonation the diagonal della diagonalità di la di		Panga	Versuchsanzahl (n)
Parametri delle discontinuità (Laboratorio)		Range	Numero di prove (n)
φ peak / res [] (unverwitt, TF / Disc. inalterate)			
C peak / res [IVIP a] (UNVerWitt, TF / DISC, Inaiterate)		Bandbraite	Versusheenzehl (n)
Gebirgskennwerte in-Situ		Pange	Numoro di provo (n)
Farametri dell'ammasso roccioso in sito	4	0000 45300	Numero di prove (ii)
E [MPa] (BLA / Prova dilatometrica): Last/carico 8,7-9,5 MPa	4 Statistik dar Indowyorts u	berechnete Festigkeite und Ve	z rformunge parameter
Gebirgskennwerte	Statistica dei parametri i	n berechnete Pestigkens- und ve	deformabilità calcolati
Parametri dell'ammasso roccioso	Mittelweet (M)	Standardabweichung (s)	
Indexwerte (Kartierung / Bohrungen)	Mitterwert (M)	Deviations standard (s)	Versuchsanzahl (h)
Parametri indice (kilevamento / Sondaggi)	valori medio (IVI)		Numero di prove (n)
RQU [76] (ISRM)	10	±	
CSI (1/(heal)	45	I LE	
Got [-] (HOEK)	35 Kombination 4-M	±0 Kombination 2: M. n	Kombination 2.11
Pestigkeits- u. vertormungskennwerte (berechnet)	Combination 1: M	Combination 2: M - S	Combination 3: M+s
Parametri di resistenza e deformabilità (calcolati)	Combinazione 1: M	Combinazione 2: M - S	Combinazione 3: M + s
oc [iviPa] (Hoek&Brow n)	1,/	1,0	3,2
α _{cm} [MPa] (Hoek&Brow n)	7,9	5,5	12,0
c [IVIIPa] (Mohr-Coulomb): H min =1510m / H max =1610m	3,3/3,4	2,872,9	3,9/4,0
φ[](Monr-Coulomb): H min=1510m / H max =1610m	31/30	27/27	33/33
E [IVIP a] (Boyd/Seratim 1983 / Hoek 2002 / Hoek&Diederichs 2006	/500/(3600)/4900	/500/(2400/2900)	/500/5200/8200
Charakteristische Werte / Valori caratte	Inputparameter / Valori di input		/ valori di input
γ k (Gebirge / ammasso) [kN/m ³]	27,0	GSI [-] - Hoek&Brow n	40
σci, k / (σci max / min) (Gestein / roccia) [MPa]	55* / (71 / 43)	RMR [-] - Bienaw ski	45
σcm.k (Gebirge / ammasso roccioso) [MPa]	7,5	σv (γ*H max) [MPa]	43,5
ck (Gebirge / ammasso roccioso) [MPa]	2,5	K0 [-]	0,7-0,9
φk (Gebirge / ammasso roccioso) [°]	24	-	
E k (Gebirge / ammasso roccioso) [MPa]	6000		
Bemerkungen	* Der Wert für die maßgebende Belastungsrichtung (F sf) wurde auch von PLT-Tests abgeleitet;		
	Laborergebnisse der Lithologien 611 und 623		
Note	* Il valore per la direzione di carico determinante (F ∥ sf) è stato dedotto ancha da prove PLT;		
	Risultati delle prove di laboratorio delle litologie 611 e 623		

Geotechnische Kennwerte	Gebirgsart GA-BS-KPH-5c			
Parametri geotecnici	arametri geotecnici Tipo di ammasso roccioso GA-BS-KPH-5c			
Lithologie	Bündnerschieferkomplex: Kalkphyllit, Kalkglimmerschiefer, Phyllit (533)			
Litologia	Complesso dei calcescisti: filladi e scisti carbonatiche, filladi (533)			
Gesteinskennwerte / Mineralogie (Labor)	Mittelwert (M)	Standardabweichung (s)	Versuchsanzahl (n)	
Parametri della roccia / Mineralogia (Laboratorio)	Valore medio (M)	Deviazione standard (s)	Numero di prove (n)	
γ [MN/m ³]	0,0274	± 0,00004	15	
nci [MPa] max (F i sf)	54	± 13	5	
nci [MPa] min (F 45° sf)				
mi [-] (Hoek&Brown) aus Triax -Druckversuch / da prova triassiak	8	±1	4	
E [MPa] aus Einax -Druckversuch / da prova uniassiale (E 45° sf)	39400	± 5500	4	
2 [Mill d j dds dindx: blddxversiden) dd prova dindasiale (i 46 si) x [] aus Enax -Druckversich / da prova uniassiale	0.25	+ 0.03	4	
	2.5	+0.3	2	
äguiv Oz.Gebalt / Contenuto egu di Oz (%)	51	+ 4	2	
Qualingtential / Potenziale di swelling	keines / assente	÷.*:	2	
Transfischensizenschaften (Kestierung / Behrungen)	Statistische Auswertung	der Orientierungen und Eigensch	aften der Trennflächen	
Description della discontinuità (Rifusamente (Sandarai))	Elaborazione statistica di	elle giaciture e delle proprietà del	le discontinuità	
Schieferung Orientierung (Abstend	Liaborazone statistica di		le discontinuita	
Schleierung: Orientierung / Abstand	S2: 350/40			
Scistosita: Giacitura / Spaziatura	DTE4: 040/00	DTF2=: 000/70	BTE9, 000/00	
Irenntiachenorientierung [*] (Vertrauenskegel)	RTF1: 010/80	R1F2e: 090/70	R1F8: 030/00	
Giacitura delle discontinuità (Cono di confidenza)	RTF2w: 260/70	R1F6: 230/80		
Irennflächenabstände [mm]	R (F1: 200-600	R (F2e: 200-600	RTF8: 200-600	
Spaziatura delle discontinuità	RTF2w: 200-600	RTF6: 200-600	S2: 20-60	
Trennflächendurchgängigkeit [m]	RTF1: 1-3	RTF2e: 1-3	RTF8: <1	
Persistenza delle discontinuità	RTF2w: 1-3	RTF6: 3-10	S2: 1-3	
Trennflächenöffnung [mm]	RTF1:0	RTF2e: 0	RTF8:0	
Apertura della discontinuità	RTF2w: 0	RTF6: 0	S2: 0	
Trennflächenrauigkeit JRC0 [-]	RTF1: 10-12	RTF2e: 4-8	RTF8: 8-10	
Rugosità delle discontinuità	RTF2w: 4-8	RTF6: 10-12	S2: 4-8	
Trennflächenverwitterung (EN ISO 14689-1)				
Alterazione delle discontinuità				
Trennflächenfüllung (Typ u. %-Anteil)				
Riempimento delle discontinuità (tipo e %)				
Trennflächenkennwerte (Labor)	1	Bandbreite	Versuchsanzahl (n)	
Parametri delle discontinuità (Laboratorio)	Range Numero di prove (r		Numero di prove (n)	
φ _{res} [°] (unverwitt. TF / Disc. inalterate)		23,2-26,6	2	
C res [MPa] (unverwitt. TF / Disc. inalterate)		0,01-0,13	2	
Gebirgskennwerte in-Situ	1	Bandbreite	Versuchsanzahl (n)	
Parametri dell'ammasso roccioso in sito		Range	Numero di prove (n)	
E [MPa] (BLA / Prova dilatometrica)				
Gebirgskennwerte	Statistik der Indexwerte u	berechnete Festigkeits- und Ver	formungsparameter	
Parametri dell'ammasso roccioso	Statistica dei parametri ir	ndice e parametri di resistenza e d	deformabilità calcolati	
Indexwerte (Kartierung / Bohrungen)	Mittelwert (M)	Standardabweichung (s)	Versuchsanzahl (n)	
Parametri indice (Rilevamento / Sondaggi)	Valori medio (M)	Deviazione standard (s)	Numero di prove (n)	
RQD [%] (ISRM)	70	±	1.1-1-1.V./	
RMR [-] (Bieniaw ski, 1999)	50	±	1	
GSI [-] (Hoek)	40	± 5		
Festigkeits- u. Verformungskennwerte (berechnet)	Kombination 1: M	Kombination 2: M - s	Kombination 3: M+s	
Parametri di resistenza e deformabilità (calcolati)	Combinazione 1: M	Combinazione 2: M - s	Combinazione 3: M+s	
m [MPa] (Hoek&Brown)	1.8	1.0	3.0	
m [MPa] (Hoek&Brown)	6.8	4.6	9.0	
c [MPa] (Mohr-Coulomb): H min =870m / H=1250m	18/22	15/18	22/27	
(a [°] (Mohr-Coulomb); H min = 870m / H max = 1250m	28/25	24 / 22	31/28	
E [MPa] (Boyd/Serafim 1983 / Hoek 2002 / Hoek Diederiche 2006	10000/4100/6300	10000 / (3100 / 3800)	10000 / 6100 / 10000	
Charakteristische Werte / Valori caratte	ristici	Inputparameter	/Valori di input	
v k (Gebirge / ammasso) [kN/m ³]	27.0	GSI [-] - Hoek&Brown	40	
mi k / (mi max) (Gestein / roccia) [MPa]	41* (54)	RMR [-] - Bienow ski	50	
mm k (Gehirne / ammesea racciaea) [MDa]	55	av (v*H mittel/med) [MPA]	23 5 / 33 8	
Och (Cobirge / annesso roccioso) [MDo]	47/04	ko [-]	0.010	
<pre>v (Gebirge / annasso roccioso) [vir a] - H,mm/max</pre>	27/24		0,0-1,3	
φ κ (Gebirge / anmasso roccioso) [] - H,min/max	21124	-		
E K (Gebirge / ammasso roccioso) [MPA]	*Mittelw ert Standardehmei	chung	1	
bemerkungen	mitterw ert - StandardabW el	unung		
Note	*Valore medio - dev. Standa	rd		
NUIC	valore medio - dev. Standa			
	I			

Geotechnische Kennwerte	Gebirgsart GA-T-PH-2b			
Parametri geotecnici	Tip	Tipo di ammasso roccioso GA-T-PH-2b		
	Aigerbach-FM: Phyllit, Ch	loritphyllit, Kalkphyllit, Quarzphyl	it (566, 569)	
Lithologie	1956-000 1 HD-1961.6H			
Litologia	FM di Algerbach: Fillade, fillade cloritica, fillade calcarea, fillade quarzifera (566, 569)			
Gesteinskennwerte / Mineralogie (Labor)	Mittelwert (M)	Standardabweichung (s)	Versuchsanzahl (n)	
Parametri della roccia / Mineralogia (Laboratorio)	Valore medio (M)	Devlazione standard (s)	Numero di prove (n)	
~ IMN/m ² l	0.02743	0.0009	14	
mi (MPa) max (E i st)	90	± 18	7	
mi IMPal min (F 45° sf)	39	+2	2	
m L1 (Hock&Brown) aus Triay - Druckversuch / da arrwa triassiak	11	+4		
EIMPal aur Enay . Druckvoreuch (da prova uniasciale	39200	+ 5400	7	
L Taue Triav, Druckusreuch (da serva triacciale	0.23	+0.02	1 4	
CALL	31	+07		
Bruis Oz-Gebelt / Contenuto egu di Oz [%]	25	+4	2	
Ocollectential / Potenziale di swelling	keines / seconte	2.4		
Transflichensing schaften (Kertierung / Rehuman)	Statistische Auswortung	der Orientienungen und Figenso	haften der Trennflächen	
Description de la dissection de la Contrarte d	Elaboratione statistica de	alle gissitute e delle proprietà de	alle discontinuità	
Schleferung, Odersterung (Absterd	CIBDOIAZONO SIAUSULA U	ene graciune e dene proprieta di	sile discontinuita	
Schelerung: Orienterung / Abstand	S2: 175/80			
Teanfâchanariantiarina (2) 24 tean 1	DTE4-260/80	PTE2-226/70		
Circle and all a discontinuity (Vertrauenskegel)	DTC2-1000/05	DTF0: 045/05		
Giacitura delle discontinuità (Cono di confidenza)	R (F2e: 090/85	R IF0. 213/85	62.00.00	
Trennflächenabstände (mm)	R1F1:200-600	RTF3: 600-2000	S2: 20-60	
spazatura delle discontinuità	K1F28:200-600	R1F6: 600-2000	00.4.0	
Trennflächendurchgangigkeit [m]	KIF1:1-3	R1F3: <1	S2: 1-3	
Persistenza delle discontinuità	RTF2e: 3-10	RTF6: <1		
Trennflächenöflnung (mm)	RTF1:0	RTF3:0	S2:0	
Apertura della discontinuita	RTF2e:0	RTF6:0		
Trenntachenrauigkeit JRCo [-]	R1F1:4-8	RTF3:8-10	52:4-5	
Rugosita delle discontinuita	R(1F20:4-8	R1F6:4-8		
Frenntrachenverwitterung (EN ISO 14689-1)				
Atterazione delle discontinuita				
Pierreimachemationg (1ypla: 76-74nteil)				
Transfillebackgemueste (Labor)		Bandhraita	Upreciebe aparbl (a)	
Personaliti della discontinuità (Labor)		Pange	Numero di erroro (n)	
Parametri delle discontinuita (Laboratorio)		317.318	o o o o o o o o o o o o o o o o o o o	
r _ (MPa1/umueruitt TE (Der insterate)		0.01-0.33	2	
Gehirnskennwerte in Situ	-	Bandhreite	Versuchsanzahl (n)	
Parametri dell'ammasso roccioso in sito		Range	Numero di prove (n)	
E [MPa] (BLA / Prova diatometrica): Last/carico 7.8-10.2 MPa	4	7900-59700	2	
Gebirgskennwerte	Statistik der Indexwerte u	berechnete Festigkeits- und Ve	erformungsparameter	
Parametri dell'ammasso roccioso	Statistica dei parametri ir	ndice e parametri di resistenza e	deformabilità calcolati	
Indexwerte (Kartierung / Bohrungen)	Mittelwert (M)	Standardabweichung (s)	Versuchsanzahl (n)	
Parametri indice (Rilevamento / Sondaggi)	Valori medio (M)	Deviazione standard (s)	Numero di prove (n)	
RQD [%] (ISRM)	70	±		
RMR [-] (Bienlaw ski, 1999)	50	±		
GSI [-] (Hoek)	45	± 5	-	
Festigkeits- u. Verformungskennwerte (berechnet)	Kombination 1: M	Kombination 2: M - s	Kombination 3: M + s	
Parametri di resistenza e deformabilità (ca/co/ati)	Combinazione 1: M	Combinazione 2: M - s	Combinazione 3: M + s	
e: [MPa] (Hoek&Brown)	3,0	1,7	4,8	
otm [MPa] (Hoek&Brown)	13,2	9,4	17.7	
c [MPa] (Mohr-Coulomb). H min =740m / H max =1010m	2,2/2,6	1,8/2,2	2,6/3,1	
φ [*] (Mohr-Coulomb): H min =740m / H max =1010m	36/33	32/30	39/36	
E [MPa] (Boyd/Serafim 1983 / Hoek 2002 / Hoek&Diederichs 2006	10000/7100/8800	10000 / (3600 / 3800)	10000 / 7500 / 10000	
Charakteristische Werte / Valori caratte	eristici Inputparameter / V		/ Valori di input	
γ × (Gebirge / ammasso) [kN/m ^a]	27,0	GSI [+] - Hoek&Brow n	40	
ccuk / (cci max/min) (Gestein / roccia) [MPa]	60* / (90 / 39)	RMR [-] - Bienaw ski	50	
ccm, k (Gebirge / ammasso roccioso) [MPa]	8,8	ov (y*H.min/max) [MPa]	20,0 / 27,3	
Ck (Gebirge / ammasso roccioso) [MPa] - H,min/max	1,9/2,3	ko [-]	0,8-1,3	
φκ (Gebirge / ammasso roccioso) [*] - H,min/max	33/30			
E k (Gebirge / ammasso roccioso) [MPa]	6300			
Bemerkungen	* Der Wert für die maßgeber	nde Belastungsrichtung (F [sf) w un	de auch von PLT-Tests abgeleitet;	
100.00	Laborergebnisse der Litholo	gien 560 und 566		
Note	* Il valore per la direzione di	carico determinante (F sf) é stato	dedotto ancha da prove PLT;	
	Risultati delle prove di labora	torio delle Itologie 560 e 566		

Geotechnische Kennwerte	Gebirg	sart: Zentralgneis-Schiefer-1z	(GA-ZG-S-1z)		
Parametri geotecnici	Tipo di ammas	sso roccioso: Gneis centrale-s	cisti-1z (GA-ZG-S-1z)		
Lithologia	Biotitschiefer z.T. Bitotiph	yllit			
Litologia	Scisti biotitici in parte filla	idi biotitici			
Gesteinskennwerte / Mineralogie (Labor)	Mittelwert (M)	Standardabweichung (s)	Versuchsanzahl (n)		
Parametri della roccia / Mineralogia (Laboratorio)	Valore medio (M)	Deviazione standard (s)	Numero di prove (n)		
γ [kN/m³]	27,70	1,02	4		
σci [MPa] (min) (α=20-50°)					
oci [MPa] (max) (α=50-90°)	47	33	2		
mi [-] (Hoek&Brow n) geschätzt / stimato	10				
E [MPa] aus EinaxDruckversuch / da prova uniassiale	42.000		1		
ν [-]	0,26	0,03	3		
CAI [-]					
äquiv. Qz-Gehalt / Contenuto equ.di Qz [%]	41	0,7	2		
Quellpotential / Potenziale di swelling	keines / assente				
Trennflächeneigenschaften (Kartierung / Bohrungen)	Statistische Auswertung	der Orientierungen und Eigens	chaften der Trennflächen		
Proprietà delle discontinuità (Rilevamento / Sondaggi)	Elaborazione statistica de	elle giaciture e delle proprietà d	lelle discontinuità		
Schieferung: Orientierung / Abstand	S2: 180/40-6				
Scistosità: Giacitura / Spaziatura	02.100/40-0				
Trennflächenorientierung [°] (Vertrauenskegel)	RTF1a: 160/80	RTF3: 325/70			
Giacitura delle discontinuità (Cono di confidenza)	RTF2e: 085/85	RTF6: 050/80			
Trennflächenabstände [mm]	RTF1a: 200-600	RTF3: 600-2000	S2: 60-200		
Spaziatura delle discontinuità	RTF2e: 200-600	RTF6: 600-2000			
Trennflächendurchgängigkeit [m]	RTF1a: 1-3	RTF3: 1-3	S2: 1-3		
Persistenza delle discontinuità	RTF2e: 1-3	RTF6: 1-3			
Trennflächenöffnung [mm]	RTF1a:0	RTF3:0	S2:0		
Apertura della discontinuità	RTF2e:0	RTF6: 0			
Trennflächenrauigkeit JRC [-]	RTF1a: 4-8	RTF3: 4-8	S2: 4-6		
Rugosità delle discontinuità	RTF2e: 4-8	RTF6: 8-10			
Trennflächenverwitterung (EN ISO 14689-1)					
Alterazione delle discontinuità	· · · · · · · · · · · · · · · · · · ·				
Trennflächenfüllung (Typ u. %-Anteil)					
Riempimento delle discontinuità (tipo e %)					
Trennflächenkennwerte (Labor)	Bandbreite		Versuchsanzahl (n)		
Parametri delle discontinuità (Laboratorio)		Range	Numero di prove (n)		
φ base /φ/φ res [1] (unverwitt. TF / Disc. inalterate)		-/43/-	2		
C/C res [MPa] (Unverwitt. 1 F / Disc. Inalterate)	Mittaliuset (MA)	1,27-	Z Marguraha anggahi (a)		
Gebirgskennwerte in-Situ	Valore media (M)	Deviazione standard (s)	Versuchsanzani (n)		
E MDol (DLA (Draw dilatematrica))	valore medio (M)	15800	Numero di prove (n)		
E [IVIFA] (BLA / Prova dilatometrica).	Statistik der Inderwerte u	herechnete Festigkeits- und V			
Beremetri dell'emmesse ressiese	Statistica dei parametri ir	dice e parametri di resistenza	e deformabilità calcolati		
Indexworte (Kartierung / Rebrungen)	Mittelwort (M)	Standardabweichung (s)	Versuchs anzahl (n)		
Barametri indice (Pilovamente / Sondaggi)	Valori medio (M)	Deviazione standard (s)	Numero di prove (n)		
ROD [%] (ISBM)	an	+	inaniero di prove (ii)		
RMR [-] (Bieniaw ski 1999)	60	+	-		
GSI [-] (Heek)	45	+ 5			
Festigkeits- II Verformungskennwerte (herechnet)	Kombination 1: M	Kombination 2: M-s	Kombination 3: M+s		
Parametri di resistenza e deformabilità (calcolati)	Combinazione 1: M	Combinazione 2: M - s	Combinazione 3: M+s		
m [MPa] (Hoek&Brown)	2.1	0.5	4.8		
dem [MPa] (Hoek&Brown)	7.3	2.0	14.0		
c [MPa] (Mohr-Coulomb): H min =940m / H may =1490m	2.1/2.8	1.2/1.6	29/48		
([°] (Mohr-Coulomb): H min =940m / H max =1490m	29,2/25.8	19.5 / 16.8	34,7/31.1		
E [MPa] (Boyd/Serafim 1983 / Hoek 2002 / Hoek 2006)	-/5100/9400	-/2100/5700	-/8900/21000		
Charakteristische Werte / Valori caratt	eristici	Inputparamete	r / Valori di input		
v k (Gebirge / ammasso) [kN/m³]	27.7	GSI [-] - Hoek&Brow n	45		
oci, k (Gestein / roccia) (min,max) [MPa]	30 ⁻¹⁾	RMR [-] - Bienaw ski	60		
ocm, k (Gebirge / ammasso roccioso) [MPa]	5	ov (y*H, min/max) [MPa]	26,0/41.3		
ck (Gebirge / ammasso roccioso) [MPa] Hmin/Hmax	1,8 /2,4	ko [-]	0,5-0,8		
φk (Gebirge / ammasso roccioso) [°] Hmin/Hmax	26/23				
E k (Gebirge / ammasso roccioso) [MPa]	30000	1			
Bemerkungen	1) Wert mit Anisotroprieeffe	kt korrigiert			
Note	1) Correzione effetto dell'ani	isotrpia			

ANHANG 2 – FEM-ANALYSE DER INNENSCHALE

APPENDICE 2 - ANALISI FEM DEL RIVESTIMENTO DEFINITIVO

L'appendice 2 contiene le rappresentazioni grafiche dei principali input e output dell'analisi del rivestimento definitivo condotte con il programma STATIK-6, oltre alle opportune verifiche sezionali allo SLU e SLE.

PROFILO GL-MS con concio di base

• Verifiche

				Profil	GL-MS Anschluss				
	fck	f ctk	yc fro	d foto	l f	sd f	vk vs		R
	30.7	2.06	1.6 15.3	36 1.03	37	75.0 4	<u>50</u> 1.2		1.6
					-				
s		M_d,a [kNm]	N_d,a[kN] b	h	σ_	_1 [N/mm2] σ	_2 [N/mm2] Nach	nweis σ_1 Nachweis σ_2	_
M-N chwe GZT	Gewölbe	-83	-3704	1000.0	400.0	-6.1	-12.4 i.O.	i.O.	
Nac	Sohle	-107	-4936	1000.0	500.0	-7.3	-12.4 i.O.	i.O.	
	Autrager	152	-4029	1000.0	500.0	-11.7	-4.4 1.0.	1.0.	
s		M_d,a [kNm]	N_d,a[kN] b	h	σ_	_1 [N/mm2] σ	_2 [N/mm2] Nach	nweis σ_1 Nachweis σ_2	_
A-N nwei:	Gewölbe	-62.4	-2972.8	1000.0	400.0	-5.1	-9.8 i.O.	i.O.	
Nacl P	Sohle	-80.0	-3654.4	1000.0	500.0	-5.4	-9.2 i.O.	i.O.	
	Auflager	112.0	-2984.0	1000.0	500.0	-8.7	-3.3 i.O.	i.O.	
	Sohle								
	-		n	ø	S	A	s	M_Rd [kNm]	_
	mind.Bew	595							
_	rad. Bew.	ok		2.0	16.0	0.150	2681	204.9	9
Jrung	long. Bew.	ok	536	2.0	12.0	0.300	754		
ewel	Cowölbo								
	Gewone		n	ø	s	۵	s	M. Rd [kNm]	_
	mind.Bew	476		0	5		5		
	rad. Bew.	ok		2.0	14.0	0.150	2053	120.0	6
	long. Bew.	ok	411	2.0	12.0	0.300	754		
s	V d[kN]	v [mm]	σ 1 [N/mm2] σ 2	[N/mm2][N/mm2] a	clim &	fou	d V Rd [kN]	
a hwei	207.0	400.0	-6.1	-12.4	365.5983628	<u>-c,iiii 0</u> 7.14	2.12	3.08 820.9	5
Nac	362.0	500.0	-11.7	-4.4	539.6023244	7.14	0.92	3.03 1008.36	6
							_		
<u>G</u> veis	V_d [kN]	x [mm]	<u>σ_1[N/mm2]</u> σ_2	[N/mm2] σ_c[<u>N/mm2] σ</u>	_c,lim δ	f_cv	d V_Rd [kN]	-
lo tach o	153.0	400.0	-5.1	-9.8	322.3939197	7.14	0.29	2.95 /86.30	6
-	207.0	500.0	-0.7	-3.5	403.010791	7.14	-1.17	2.00 094.90	U
	Gewölbe								_
ırung		V_d,a [kN]	n	ø	s	A	s	V_Rd [kN]	
eweh		pro 300mm		0.0	- 44.0	0.000	4004		
ă		99.36		2.0	14.0	0.300	1026	127.4	4

PROFILO GL-MS con arco rovescio

• Verifiche

				Profil GL-N	/IS, ohne Sohlstein				
Quellen 0.	3 MPa								
	f_ck f_	_ctk γ∝	f_cd	f_ctd	f_sd	f_yk	γs	R	
	30.7	2.06	1.6	15.36	1.03	375.0	450	1.2	1.6
s	Μ	ld,a[kNm] N	d,a[kN] b	h	σ 1[N	/mm2] σ 2 [N	/mm2] Nachwei	sσ1 Nachweisσ2	
achwe	Gewölbe	163.2	-8067.2	1000.0	400.0	-26.3	-14.0 nicht i.O.	i.O.	
2 U 2 V	Sohle	-500.8	-7147.2	1000.0	1600.0	-3.3	-5.6 i.O.	i.O.	
2	Auffager	198.4	-7987.2	1000.0	500.0	-20.7	-11.2 nicht1.0.	I.U.	
hweis	Gewölbe	<u>d,a [kNm]</u> N_ 120.0	_d,a[kN] b	1000 0	σ_1[N 400.0	/mm2] σ_2[N. -19.4	-10.4 i O	$s\sigma_1$ Nachweis σ_2	
N Nac	Sohle	-371.2	-5750.4	1000.0	1600.0	-2.7	-4.5 i.O.	i.O.	
Ś	Auflager	147.2	-5913.6	1000.0	400.0	-20.3	-9.3 i.O.	i.O.	
	Sohle								
	mind Row	100/	n	Ø	S	As		M_Rd [kNm]	
	rad. Bew	ok		2.0	20.0	0.150	4189	1173.7	
	long. Bew.	ok	838	2.0	14.0	0.300	1026		
	max.Bew	15598							
	Rad.Bew. II			1.0	20.0	0.150	2094	1173.7	
_	Zulagen II	OK		1.0	26.0	0.150	3540	1952.2	
hrung							M_F	Rd,max 3125.9	
Bewe	A								
	Gewölbe		2			Ac		M Pd [kNm]	
	mind.Bew	476		0	3	7.5			
	rad. Bew	ok		2.0	20.0	0.150	4189	231.2	
	long. Bew.	ok	838	2.0	14.0	0.300	1026		
	max.Bew								
	Zulagon	3899		1.0	20.0	0 150	2004	200.9	
	Zulagen Auflager	3899		1.0	20.0	0.150	2094	309.8	
	Zulagen Auflager	3899		1.0	20.0	0.150	2094	309.8 Rd,max 541.0	
	Zulagen Auflager	3899		1.0	20.0	0.150	2094	309.8 Rd,max 541.0	
	Zulagen Auflager	3899		1.0	20.0	0.150	2094	309.8 Rd,max 541.0	
le is	Zulagen Auflager V_d [kN] x	3899 [mm] <u></u>	_1[N/mm2] σ_2[N	1.0 I/mm2] <u></u> с [N	20.0 <u>(mm2] _{σ_C},lin</u>	0.150 <u>1 δ</u>	2094 M_t	309.8 Rd,max 541.0 V_Rd [kN]	
Q Vachweis <u>GZT</u>	Zulagen Auflager V_d [kN] x 336.0	3899 [<u>mm] σ</u> 400.0	<u>-1[N/mm2]</u> σ_2[N -26.3 -20.7	1.0 <u>J/mm2] σ_c [N</u> -14.0 11 2	20.0 <u>(mm2]</u> σ_c,lin 468.8003109 966.9002904	0.150 <u>1 δ</u> 7.14 7.14	2094 <u>f_cvd</u> 13.03	309.8 Rd,max 541.0 V_Rd [kN] 4.67 1246.05	
0 Nachweis GZT	Zulagen Auflager V_d [kN] x 336.0 796.0	3899 [mm] <u>σ</u> 400.0 500.0	_ <u>1 [N/mm2]</u> σ_2 [N -26.3 -20.7	1.0 √/mm2]_σ_c [N -14.0 -11.2	20.0 / <u>mm2] σ_c,lim</u> 468.8003109 886.8003894	0.150 <u>η δ</u> 7.14 7.14	2094 <u>f_cvd</u> 13.03 8.83	309.8 Rd,max 541.0 V_Rd [kN] 4.67 1246.05 4.19 1395.01	
O Nachweis <u>627</u>	Zulagen Auflager V_d [kN] x 336.0 796.0	3899 [mm] <u>σ</u> 400.0 500.0	<u>_1 [N/mm2]</u> σ_2 [M -26.3 -20.7	1.0 //mm2] σ_c [N -14.0 -11.2	20.0 <u>/mm2] σ_c,lim</u> 468.8003109 886.8003894	0.150 <u>1 δ</u> 7.14 7.14	2094 <u>f_cvd</u> 13.03 8.83	309.8 Rd,max 541.0 V_Rd [kN] 4.67 1246.05 4.19 1395.01	
0 Nachweis <u>GZT</u>	Zulagen Auflager V_d [kN] x 336.0 796.0	3899 [<u>mm] σ.</u> 400.0 500.0	_ <u>1 [N/mm2]</u> σ_2 [N -26.3 -20.7	1.0 <u>J/mm2] σ_c [N</u> -14.0 -11.2	20.0 / <u>mm2] σ_c,lim</u> 468.8003109 886.8003894	0.150 <u>η δ</u> 7.14 7.14	2094 <u>f_cvd</u> 13.03 8.83	309.8 Rd,max 541.0 V_Rd [kN] 4.67 1246.05 4.19 1395.01	
o o weis Nachweis i <u>rG 627</u>	Zulagen Auflager V_d [kN] x 336.0 796.0 V_d [kN] x	3899 [<u>mm] σ.</u> 400.0 500.0 [<u>mm] σ.</u> 400.0	<u>1 [N/mm2]</u> σ_2 [N -26.3 -20.7 <u>1 [N/mm2]</u> σ_2 [N -19.4	1.0 <u>J/mm2] σ_c [N</u> -14.0 -11.2 J/mm2] σ_c [N -10.4	20.0 <u>/mm2] σ_c,lin</u> <u>468.8003109</u> <u>886.8003894</u> <u>/mm2] σ_c,lin</u> <u>399.2005632</u>	0.150 $\frac{1}{7.14}$ $\frac{\delta}{7.14}$ $\frac{1}{2.78}$	2094 <u>f_cvd</u> 13.03 8.83 <u>f_cvd</u> 17.71	309.8 Rd,max 541.0 V_Rd [kN] 4.67 1246.05 4.19 1395.01 V_Rd [kN] 4.05 1081.27	
a Nachweis Satta	Zulagen Auflager V_d [kN] x 336.0 796.0 V_d [kN] x 249.0 590.0	3899 [mm] <u>o</u> 400.0 500.0 [mm] <u>o</u> 400.0 400.0	<u>-1 [N/mm2]</u> σ_2 [N -26.3 -20.7 -19.4 -19.4 -20.3	1.0 J/mm2] σ_c [N -14.0 -11.2 J/mm2] σ_c [N -10.4 -9.3	20.0 <u>/mm2] σ_c,lin</u> 468.8003109 886.8003894 <u>/mm2] σ_c,lin</u> 399.2005632 672.0007118	0.150 <u>1 δ</u> <u>7.14</u> <u>7.14</u> <u>7.14</u> <u>-2.78</u> -2.78	2094 <u>f_cvd</u> 13.03 8.83 <u>f_cvd</u> 17.71 17.56	309.8 Rd,max 541.0 V_Rd [kN] 4.67 1246.05 4.19 1395.01 V_Rd [kN] 4.05 1081.27 4.04 1076.24	
Q Nachwels GIG GIG	Zulagen Auflager V_d [kN] x 336.0 796.0 V_d [kN] x 249.0 590.0	3899 [mm] <u>σ</u> 400.0 500.0 [mm] <u>σ</u> 400.0 400.0	<u>-1 [N/mm2]</u> σ_2 [N -26.3 -20.7 -19.4 -19.4 -20.3	1.0 J/mm2] σ_c [N -14.0 -11.2 J/mm2] σ_c [N -10.4 -9.3	20.0 <u>/mm2]</u> σ_c,lin 468.8003109 886.8003894 <u>/mm2]</u> σ_c,lin 399.2005632 672.0007118	0.150 $\frac{1}{7.14}$ $\frac{\delta}{-2.78}$ -2.78	2094 <u>f_cvd</u> 13.03 8.83 <u>f_cvd</u> 17.71 17.56	309.8 Rd,max 541.0 V_Rd [kN] 4.67 1246.05 4.19 1395.01 V_Rd [kN] 4.05 1081.27 4.04 1076.24	
O Nachweis Barge GIG GZI	Zulagen Auflager V_d [kN] x 336.0 796.0 V_d [kN] x 249.0 590.0	3899 [mm] σ. 400.0 500.0 [mm] σ. 400.0 400.0	<u>-1 [N/mm2]</u> σ_2 [N -26.3 -20.7 -19.4 -19.4 -20.3	1.0 J/mm2] σ_c [N -14.0 -11.2 J/mm2] σ_c [N -10.4 -9.3	20.0 <u>/mm2] σ_c,lin</u> 468.8003109 886.8003894 <u>/mm2] σ_c,lin</u> 399.2005632 672.0007118	0.150 <u>1 δ</u> 7.14 7.14 7.14 <u>-2.78</u> -2.78	2094 <u>f_cvd</u> 13.03 8.83 <u>f_cvd</u> 17.71 17.56	309.8 Rd,max 541.0 V_Rd [kN] 4.67 1246.05 4.19 1395.01 V_Rd [kN] 4.05 1081.27 4.04 1076.24	
a a Næchweis Nachweis GIG <u>GIG</u>	Zulagen Auflager V_d [kN] x 336.0 796.0 V_d [kN] x 249.0 590.0 Gewölbe	3899 [mm] <u>σ.</u> 400.0 500.0 [mm] <u>σ.</u> 400.0 400.0	<u>-1[N/mm2]</u> σ_2[N -26.3 -20.7 -19.4 -19.4 -20.3	1.0 J/mm2] σ_c [N -14.0 -11.2 J/mm2] σ_c [N -10.4 -9.3	20.0 <u>/mm2] σ_c,lin</u> 468.8003109 886.8003894 <u>/mm2] σ_c,lin</u> 399.2005632 672.0007118	0.150 <u>n δ</u> 7.14 7.14 <u>7.14</u> <u>δ</u> -2.78 -2.78	2094 <u>f_cvd</u> 13.03 8.83 <u>f_cvd</u> 17.71 17.56	309.8 Rd,max 541.0 V_Rd [KN] 4.67 1246.05 4.19 1395.01 V_Rd [KN] 4.05 1081.27 4.04 1076.24	
o Nachwels Nachwels Sat	Zulagen Auflager V_d [kN] x 336.0 796.0 V_d [kN] x 249.0 590.0 590.0	3899 (mm) <u>σ</u> 400.0 500.0 (mm) <u>σ</u> 400.0 400.0 - 400.0	<u>-1 [N/mm2]</u> σ_2 [N -26.3 -20.7 -19.4 -19.4 -20.3	1.0 <u>J/mm2] σ_c [N</u> -14.0 -11.2 <u>J/mm2] σ_c [N</u> -10.4 -9.3	20.0 <u>/mm2] </u>	0.150 <u>1 δ</u> 7.14 7.14 7.14 <u>1 δ</u> -2.78 -2.78 -2.78	2094 <u>f_cvd</u> 13.03 8.83 <u>f_cvd</u> 17.71 17.56	309.8 Rd,max 541.0 V_Rd [kN] 4.67 1246.05 4.19 1395.01 V_Rd [kN] 4.05 1081.27 4.04 1076.24	
awehrung O Nachweis Satt	Zulagen Auflager V_d [kN] x 336.0 796.0 V_d [kN] x 249.0 590.0 Gewölbe V_	3899 [mm] σ. 400.0 500.0 [mm] σ. 400.0 400.0 400.0 -d,a [kN] pro 300mm 382.08	<u>-1[N/mm2]</u> σ_2[N -26.3 -20.7 -19.4 -20.3	1.0 J/mm2] σ_c [N -14.0 -11.2 J/mm2] σ_c [N -10.4 -9.3 Ø 2.0	20.0 <u>/mm2] σ_c,lin</u> 468.8003109 886.8003894 <u>/mm2] σ_c,lin</u> 399.2005632 672.0007118 s	0.150 $\frac{1}{5.14}$ $\frac{5}{-2.78}$ -2.78 -2.78 -2.78	2094 <u>f_cvd</u> 13.03 8.83 <u>f_cvd</u> 17.71 17.56 4189	309.8 Rd,max 541.0 V_Rd [kN] 4.67 1246.05 4.19 1395.01 V_Rd [kN] 4.05 1081.27 4.04 1076.24 V_Rd [kN]	

PROFILO CT-a-T1-T2-T3

• Verifiche

				С	T-a-T1-T2-T3				
	f_ck f_	_ctk γ∘	f_cd	f_cto	f_sd	f_yk	γs	I	R
	30.7 2.	06 1.	6 15.36	1.03	375.0	450	1.2		1.6
	N	1_d,a[kNm] N_	_d,a[kN] b	h	σ_1[I	V/mm2] σ_2 [N	l/mm2] Nachwe	is σ_1 Nachweis σ_2	
A-N Tweis	Gewölbe	189	-2528	1000.0	350.0	-16.5	2.0 nicht i.O	. i.O.	
Nach	Sohle	-102	-1445	1000.0	350.0	0.9	-9.1 i.O.	i.O.	
	Auflager	-85	-1445	1000.0	350.0	0.0	-8.3 1.0.	1.0.	
io .	Cowälbo	1_d,a [kNm] N_	_d,a[kN] b	h	<u>σ_1[</u>	<u>V/mm2]</u> σ_2 [N	I/mm2] Nachwe	is σ_1 Nachweis σ_2	
M-N achwe <u>GTG</u>	Sohle	-76.8	-10/0.4	1000.0	350.0	-12.2	-68i0	i.O.	
ż	Auflager	-62.4	-1068.8	1000.0	350.0	0.0	-6.1 i.O.	i.O.	
	Soble								
			n	ø	S	As		M_Rd [kNm]	
	mind.Bew	417							
	rad. Bew.	ok	444	2.0	14.0	0.150	2053	101.4	
ßun,	long. Bew.	OK	411	2.0	12.0	0.300	/54		
wehr	Gewölbe								
ä			n	ø	S	As		M_Rd [kNm]	
	mind.Bew	417				0.450		100 5	
	rad. Bew.	0k ok		2.0	16.0 16.0	0.150	2681	129.5	
	long. Bew.	ok	536	2.0	12.0	0.300	754	00.0	
	Ţ.								
10	V do[kN] v	[mm] _	1[N/mm2] = 2[N]	/mm2] _ c[N/mm2] - ali	m 5	foud		
D hweis <u>SZT</u>	<u>v_u,a [kiv]</u> x	<u>[[[]]]</u> <u>6</u> 350.0	-16.5	<u>/mm2j σ_c</u> [2.0	415.0116861	7.14	0.08	2.92 680.28	
Nac	273	349.9	0.0	-8.3	393.3718828	7.14	-3.01	2.30 537.73	
s	V.d.a[kN] x	[mm] σ	1 [N/mm2] σ 2 [N	/mm2] σ c[N/mm2] σc.li	m δ	f cvd	V Rd [kN]	
Chwei GTG	222	350.1	-12.2	1.5	352.6544598	7.14	-1.80	2.56 598.05	
Nac	202	349.7	0.0	-6.1	336.4691616	7.14	-4.09	2.05 478.19	
	Gewölbe								
rung	V	_d,a [kN]	n	Ø	S	As		V_Rd [kN]	
wehi		pro 300mm		0.0		0.450	4500		
Ä		90		2.0	12.0	0.150	1508	158.3	

PROFILO CT-a-T4-T5

• Verifiche

				(CT-1-T4-T5				
elle <mark>n</mark> 0.	3 MPa								
	fck f	ctk v	rc fcd	f ctd	fsd	fvk	γs		R
	30.7	2.06	1.6	15.36	1.03	375.0	450	1.2	K
									L
eis	[M_d,a [kNm] N	N_d,a[kN] b	h	σ_1[I	N/mm2] σ_2[N	/mm2] Nachwe	eis σ_1 Nachv	veis o_2
	Gewölbe	156.8	-3203.2	1000.0	350.0	-16.8	-1.5 <mark>nicht i.0</mark>	<mark>).</mark> i.O.	
201	Sohle	953.6	-2468.8	1000.0	1200.0	-6.0	1.9 i.O.	i.O.	
2	Auflager	-60.8	-3336.0	1000.0	1000.0	-3.0	-3.7 i.O.	i.0.	
					_				
200		<u>M_d,a [kNm]</u>	N_d,a[kN] b	h	σ_1[Ι	<u>V/mm2] σ_2 [N</u>	/mm2] Nachwe	eis σ_1 Nachv	veis <u>_2</u>
GTG	Gewölbe	116.8	-2299.2	1000.0	350.0	-12.3	-0.8 i.O.	i.O.	
	Sohle	/0/.2	-1824.0	1000.0	1200.0	-4.5	1.4 1.0.	1.0.	
	Autrager	-44.8	-2470.4	1000.0	1000.0	-2.2	-2.7 1.0.	1.0.	
	Sohle								
			n	ø	S	As		M_Rd	[kNm]
	mind.Bew	1428			00.0	0.450	4400		050 (
	rad. Bew	OK	000	2.0	20.0	0.150	4189		859.6
6un	Iong. Bew.	OK	838	2.0	14.0	0.300	1026		
wehr	Gewölbe								
Be	Gewolde		n	ø	s	As		M Rd	[kNm]
	mind.Bew	417		-	-				
	rad. Bew	ok		2.0	16.0	0.150	2681		129.5
	Zulage			1.0	16.0	0.300	670		66.8
	long. Bew.	ok	536	2.0	12.0	0.300	754		
is	V d[kN]	(mm) c	σ2[N/mm2] σ2[N	V/mm2] σc[N	J/mm2] σc,li	m δ	f cvd	V Rd	[kN]
<u>GZT</u>	356	350.0	-16.8	-1.5	459.8047708	7.14	2.01	3.24	755.66
Nac	718	1000.0	-3.0	-3.7	1074.398362	7.14	-3.81	2.12	1413.73
s	Vd[kN]	(mm) o	σ2[N/mm2] σ2[N	V/mm2] σc[N	ا/mm2] σc,li	m δ	f cvd	V Rd	[kN]
GTG	264	350.0	-12.3	-0.8	386.2096098	-2.78	9.35	2.80	652.83
Nac	532	1000.0	-2.2	-2.7	925.5970285	-2.78	5.25	1.90	1265.85
	Gewölbe								
gu nr	Gewölbe	/_d,a [kN]	n	Ø	S	As		V_Rd [kN]
ewehrung	<u>Gewölbe</u>	/_d,a [kN] pro 300mm	n	ø	s	As	1500	V_Rd [kN]

PROFILO CT-b-T1-T2-T3

• Verifiche

$\frac{f_{ck} \ f_{ctk} \ \gamma \circ \ f_{cd} \ f_{ctd} \ f_{ctd} \ f_{sd} \ f_{yk} \ \gamma s}{30.7 \ 2.06 \ 1.6 \ 15.36 \ 1.03 \ 375.0 \ 450 \ 1.2} R_{30.7 \ 2.06 \ 1.6 \ 15.36 \ 1.03 \ 375.0 \ 450 \ 1.2}$	R 1.6 is σ_2	veis σ_1 Nachweis σ_2 nicht i.O. i.O. i.O.	γs 1.2 /mm2] Nachw -22 9 [0	<u>f_yk</u> 450	f_sd 375.0	f_ctd	f_cd	tk γ°	f_ck f	
$\frac{f_{ck} \ f_{ctk} \ \gamma \circ \ f_{cd} \ f_{ctd} \ f_{ctd} \ f_{sd} \ f_{yk} \ \gamma s}{30.7 \ 2.06 \ 1.6 \ 15.36 \ 1.03 \ 375.0 \ 450 \ 1.2} $	<u>R</u> 1.6 is σ_2	veis σ_1 Nachweis σ_2 nicht i.O. i.O. i.O.	γs 1.2 //mm2] Nachw -22.9 i 0	<u>f_yk</u> 450	f_sd 375.0	f_ctd	f_cd	tk γ¢	f_ck f	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>1.6</u>	veis σ_1 Nachweis σ_2 nicht i.O. i.O. i.O.	1.2 //mm2] Nachw -22.9 i O	450	375.0	1 00				
$M_{d,a}[kNm] N_{d,a}[kN] b h \sigma_{1}[N/mm2] \sigma_{2}[N/mm2] Nachweis \sigma_{1} Nachweis \sigma_{2} Nachweis $	is σ_2	veis σ_1 Nachweis σ_2 nicht i.O. i.O. i.O.	/mm2] Nachw			1.03	15.36	6 1.6	30.7 2	
$\frac{M_{d,a} [kNm] N_{d,a} [kN] b h}{Gewolbe} \frac{-254}{-324} - \frac{3648}{-324} 1000.0 350.0 2.0 -22.9 i.0. nicht i.0. Nicht i.0. 1200.0 -0.9 -1.2 i.0. i.0. 100.0 1200.0 -0.9 -1.2 i.0. i.0. 100.0 1000.0 -1.4 -1.1 i.0. i.0. 10. 100.0 -1.4 -1.1 i.0. i.0. 10. 10. 10. 10. 10. 10. 10. 10. 10. $	is σ_2	veis σ_1 Nachweis σ_2 nicht i.O. i.O. i.O.	/mm2] Nachw							
$\frac{1}{29} \underbrace{\frac{1}{29}}{\frac{1}{29}} \underbrace{\frac{1}{29}}{\frac{1}{29}} \underbrace{\frac{1}{29}}{\frac{1}{29}} \underbrace{\frac{1}{254}}{\frac{1}{234}} \underbrace{\frac{1}{1000.0}}{\frac{1}{200.0}} \underbrace{\frac{1}{200.0}}{\frac{1}{200.0}} \underbrace{\frac{1}{20.0}}{\frac{1}{200.0}} \underbrace{\frac{1}{200.0}}{\frac{1}{200.0}} \underbrace{\frac{1}{200.0}}{\frac{1}{20.$	<u>sσ_2</u>	nicht i.O. i.O. i.O.	-229i0	mm2] σ_2 [N	σ_1[N/	h	[kN] b	_d,a [kNm] N_	<u>N</u>	\$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	is σ_2	i.O. i.O.	1010	2.0	350.0	1000.0	-3648	-254	Gewölbe	M-N chweis <u>GZT</u>
M_d,a [kNm] N_d,a [kN] b h σ_1 [N/mm2] σ_2 [N/mm2] Nachweis σ_1 Nachweis σ_2 M_d,a [kNm] N_d,a [kN] b h σ_1 [N/mm2] σ_2 [N/mm2] Nachweis σ_1 Nachweis σ_2 Gewolbe -188.8 -2665.6 1000.0 350.0 1.6 -16.9 i.0. i.0. Sohle -25.6 -912.0 1000.0 1200.0 -0.7 -0.9 i.0. i.0. Auflager 17.6 -912.0 1000.0 1000.0 -1.0 -0.8 i.0. i.0.	is σ_2		-1.21.0. -1.1i.0.	-0.9 -1.4	1200.0	1000.0	- 1234	-32 21	Auflager	Nac
M_d,a [kNm] N_d,a [kN] b h $\sigma_1 [N/mm2]$ $\sigma_2 [N/mm2]$ Nachweis σ_1 Nachweis σ_2 Gewolbe -188.8 -2665.6 1000.0 350.0 1.6 -16.9 i.0. i.0. Sohie -25.6 -912.0 1000.0 1200.0 -0.7 -0.9 i.0. i.0. Auflager 17.6 -912.0 1000.0 1000.0 -1.0 -0.8 i.0. i.0.	<u>is σ_2_</u>								5	
M_d,a [kNm] N_d,a [kN] b h σ_1 [N/mm2] σ_2 [N/mm2] Nachweis σ_1 Nachweis σ_2 Gewölbe -188.8 -2665.6 1000.0 350.0 1.6 -16.9 i.0. i.0. Sohle -25.6 -912.0 1000.0 1200.0 -0.7 -0.9 i.0. i.0. Auflager 17.6 -912.0 1000.0 1000.0 -1.0 -0.8 i.0. i.0.	<u>is σ_2_</u>									
Gewölbe -188.8 -2665.6 1000.0 350.0 1.6 -16.9 i.O. i.O. Sohle -25.6 -912.0 1000.0 1200.0 -0.7 -0.9 i.O. i.O. Auflager 17.6 -912.0 1000.0 1000.0 -1.0 -0.8 i.O.		veis σ_1 Nachweis σ_2	/mm2] Nachw	mm2] σ_2 [N	σ_1[N/	h	[kN] b	_d,a [kNm] N_	Ν	
Sohle -25.6 -912.0 1000.0 1200.0 -0.7 -0.9 i.O. i.O. Auflager 17.6 -912.0 1000.0 1000.0 -1.0 -0.8 i.O. i.O.		i.O.	-16.9 i.O.	1.6	350.0	1000.0	-2665.6	-188.8	Gewölbe	M-N hweis <u>stG</u>
Faininger 17.0 -712.0 100.0 -100.0 -1.0 -0.01.0. 1.0.		i.O.	-0.9 i.O.	-0.7 -1.0	1200.0	1000.0	-912.0	-25.6 17.6	Sohle	Nac
		1.0.	-0.0 1.0.	-1.0	1000.0	1000.0	- /12.0	17.0	hundger	
Sohle									Sohle	
n ø s As M_Rd [kNm]	m]	M_Rd [kNm]		As	S	Ø	n		,	
mind.Bew 1428	76.0	76	1509	0 150	12.0	2.0		1428	mind.Bew	
long. Bew. ok 302 2.0 10.0 0.300 524	70.0	70.	524	0.300	10.0	2.0	802	ok	long. Bew.	
										ırung
ae we h										3e we h
									Courálha	
n ø s As M_Rd [kNm]		M_Rd [kNm]		As	s	ø	n		Gewone	
mind.Bew 417	-							417	mind.Bew	
rad. Bew. Ok 2.0 18.0 0.150 3393 159.9	159.9 83.2	159. 83	3393 848	0.150 0.300	18.0 18.0	2.0 1.0		ok	rad. Bew. Zulage II	
long. Bew. ok 679 2.0 12.0 0.300 754	00.2		754	0.300	12.0	2.0	579	ok	long. Bew.	
² V_d,a [kN] x [mm] σ_1 [N/mm2] σ_2 [N/mm2] σ_c [N/mm2] σ_c, lim δ f_cvd V_Rd [kN]	۱]	V_Rd [kN]	f_cvd	δ	mm2] σ_c,lim	/mm2] σ_c [N	/mm2] σ_2[N	mm] σ_	V_d,a [kN] x	re is
244 350.0 2.0 -22.9 370.1947597 7.14 3.28 3.02 704.10 444 1000.0 1.4 1.1 255.21109 7.14 5.01 1.52 1017.07	704.10	3.02 704.1	3.28 5.01	7.14	370.1947597	-22.9	2.0	350.0	244	Vachw <u>GZ</u>
- 444 1000.0 -1.4 -1.1 033.21100 7.14 -3.91 1.33 1017.97	017.97	1.55 1017.4	-0.91	7.14	635.21106	-1.1	-1.4	1000.0	444	-
V da[kN] x [mm] $\sigma 1$ [N/mm2] $\sigma 2$ [N/mm2] σc [N/mm2] σc [im δ f ord V Pd [kN]	4]	V Rd [kN]	foud	δ	mm2] or Lim	/mm2][N	/mm2] ~ 2 [N	mml a	V da[kN] v	s
□ 182 349.9 1.6 -16.9 320.5744814 7.14 0.47 2.97 694.01	694.01	2.97 694.0	0.47	7.14	320.5744814	-16.9	1.6	349.9	182	0 chwei <u>GTG</u>
2 328 1000.1 -1.0 -0.8 762.4593975 7.14 -6.23 1.41 942.98	942 98	1.41 942.9	-6.23	7.14	762.4593975	-0.8	-1.0	1000.1	328	Na
	772.70									
	772.70									
	772.70			۸ -				d o [kN]	Gewölbe	ĝ
v_u,a [κν] n ø s As V_Rd [κΝ] pro 300mm				As	S	Ø	n	u,a [KIN]	V	hrun
S I I I I I I I I I I I I I I I I I I I		V_Rd [kN]						ro 300mm		é

	GL-MS	con concio di l	base - Anschlu	SS
	Calcestruzzo			
	C30/37	Arm.rad	Arm.long	Arm.taglio
Calotta	40 cm	2ф14/150	2φ12/300	-
Piedritti	50 cm	2ф14/150	2\phi12/300	-
Platea	50 cm	2ф16/150	2\overline{12}/300	-

RIASSUNTO ARMATURE

	GL-M	S con arco rove	scio - Anschlu	SS
	Calcestruzzo	Arm.rad	Arm.long	Arm.taglio
Calotta	40 cm	2ф20/150	2ф14/300	-
	50 cm	2φ20/150	2ф14/300	-
Piedritti	rinforzo 2. strato	φ20/150	-	-
	160 cm	2ф20/150	2ф14/300	-
Platea	rinforzo 2. strato	φ26/150	-	-

-

		CT-a-T1-t	2-t3	
	Calcestruzzo			
	C30/37	Arm.rad	Arm.long	Arm.taglio
	35 cm	2ф16/150	2φ12/300	2ф12/150
Calotta	rinforzo	φ16/300		
Piedritti	35 cm	2ø16/150	2φ12/300	-
Platea	35 cm	2ø14/150	2ø12/300	-

		CT-a-T4	-T5	
	Calcestruzzo			
	C30/37	Arm.rad	Arm.long	Arm.taglio
	35 cm	2ф16/150	2ф12/300	2ф12/150
Calotta	rinforzo	φ16/300		
Piedritti	100 cm	2\phi16/150	2\phi12/300	-
Platea	120 cm	2¢20/150	2ф14/300	-

		CT-b-T4	-T5	
	Calcestruzzo			
	C30/37	Arm.rad	Arm.long	Arm.taglio
	35 cm	2ø18/150	2ø12/300	2φ16/300
Calotta	rinforzo	φ18/300		
Piedritti	35 cm	2\overline{18}/150	2\u00f612/300	-
Platea	35 cm	2ф12/150	2ф12/300	-

ANHANG 3 - BLOCKANALYSE

APPENDICE 3 - ANALISI DEI BLOCCHI

L'appendice 3 riporta i risultati delle analisi a blocchi condotte con il programma di calcolo UNWEDGE 3.0. Nelle tabelle è riportato il fattore di sicurezza minimo per ciascuna terna di discontinuità caratterizzanti le singole tratte omogenee mentre in forma grafica sono riportati solo i risultati della terna di discontinuità più gravosa.

				cavo				fronte	
	Joint Comb.	Wedge	Weight	T2	T3/bis	Т3	T4/T5	Weight	SF
HB5									
	134	RW	0.172				1.96	0.037	15.86
GA-UST-PH-2b	345	RW	0.123				1.6	0.007	31.1
	235	RW	0.079				<1.3	0.011	20.1
HB3									
	245	RW	0.147				1.34	0.022	35.89
	123	SR	0.104				1.52	0.005	190.17
<u>0A-1-F11-0</u>	125	SR	0.081				2.2	0.005	141.65
		SL	0.016						
	134	RW	0.136				1.47	0.01	20.8
<u>GA-T-PH-6a</u>	123	RW	0.077				0	0.013	17.45
	125	RW	0.041				0	0.015	15.55

GL_GA-BST-KS-8e (gleiche Geometrie wie PL)

CTa_GA-BST-KS-8e

ANHANG 4 – BRANDBEMESSUNG

APPENDICE 4 - ANALISI AL FUOCO

La seguente appendice riporta i risultati delle analisi al fuoco.

								GL - MS	con concio di base (1	1-T2-T3) - Anschl	uss									
											f_ck,t			f_cd,t						
							_			30 min 60	min 120 mir	1	30 min	60 min	120 min					
	<u>f_ck</u> f_c	tk γ⊂	f_ctl	<u>(γ</u> ς	f_cd	<u>f_ctd</u>	R 101/	/	druck (5cm)	30.7	21.3	7.4		19.2	13.3	4.6				
	30.7	2.9	1.6	2.9	1.6	19.2	1.8 1.6	6	zug (/ cm)	30.7	29.6	18.6		19.2	18.5	11.6				
									0.05											
												30min		60min	1	120min				
eis –	<u>M</u>	_d [kNm] N_(d[kN] M_d	[kNm] N_c	d[kN] b	h	А	[mm2]	J [mm4]	σ_1[N/mm2] σ_	2 [N/mm2] Nachwe	eis σ_1 Nachweis σ_2	Nachweis	σ_1 Nachweis o	_2 Nachwei	s σ_1 Nachweis σ_2	-			
GZ1 GZ1	Gewölbe	-52	-2315	-83	-3704	1000.0	400.0	400000.0	5333333333.3	-6.1	-12.4 i.O.	i.O.	i.O.	i.O.	i.O.	i.O.	druck			
Z	Sohle	-67	-3085	-107	-4936	1000.0	600.0	600000.0	1800000000.0	-6.4	-10.0 i.O.	i.O.	i.O.	i.O.	i.O.	i.O.	zug			
											1	30min	1	60min	1	120min				
s.	M_	_d [kNm] N_0	d[kN] M_d	[kNm] N_0	d[kN] b	h	A	[mm2]	J [mm4]	σ_1[N/mm2] σ_	2 [N/mm2] Nachwe	eis σ_1 Nachweis σ_2	Nachweis	σ_1 Nachweis d	_2 Nachweis	s σ_1 Nachweis σ_2				
M-N Chwe	Gewölbe	- 39.0	- 1858.0	-62	-2973	1000.0	400.0	400000.0	5333333333.3	-5.1	-9.8 i.O.	i.O.	i.O.	i.O.	i.O.	i.O.	druck			
2g	Sohle	- 50.0	-2284.0	-80	-3654	1000.0	600.0	600000.0	1800000000.0	-4.8	-7.4 i.O.	i.O.	i.O.	i.O.	i.O.	i.O.	zug			
						GL - MS con arco rovescio (T4.T5) - Anschluss														
QUELLEN 0.	3										-									
QUELLEN 0.	3										- -		1		1					
QUELLEN 0.	3	d [Ichima]	I FLAIT AN A	[[chima] hi c	d flani) is	h		[mm2]		- 1 [N/mm2] -	2 [N/mm2] Nashuu	30min	Nachuraia	60min		120min				
QUELLEN 0.	3 	<u>d [kNm] N_(</u>	<u>d [kN] M_d</u>	[kNm] N_(d [kN] b	h	A	[mm2]	J[mm4]	<u>σ_1 [N/mm2]</u> σ	2[N/mm2] Nachwo	30min eis σ_1_Nachweis σ_2	Nachweis	60min σ_1 Nachweis σ	<u>z_2</u> Nachweis	120min s σ_1 Nachweis σ_2	druck			
Machweis GATTeis	3 	<u>d [kNm] N_0</u> 102.0 -313.0	d [kN] M_d -5042.0 -4467.0	[<u>kNm] N_(</u> 163 -501	d [kN] b -8067 -7147	h 1000.0 1000.0	A 400.0 1600.0	[mm2] 400000.0 1600000.0	J [mm4] 5333333333333333333333333333333333333	σ_1 [N/mm2] σ_ -26.3 -3.3	2 [N/mm2] Nachwe -14.0 i.0. -5.6 i.0.	30min eis o_1 Nachweis o_2 i.O. i.O.	Nachweis	60min :σ_1 Nachweis α i.O. i.O.	5_2 Nachwei: i.O. i.O.	120min s σ_1 Nachweis σ_2 i.O. i.O.	druck Zug			
OUELLEN 0. M.N. M. M. M. M. M. M. M. M. M. M. M. M. M.	3 Gewölbe Sohle	<u>d [kNm] N_4</u> 102.0 -313.0	d <u>[kN] M_d</u> -5042.0 -4467.0	[<u>kNm] N_c</u> 163 -501	d [kN] b -8067 -7147	h 1000.0 1000.0	A 400.0 1600.0	[mm2] 400000.0 1600000.0	<u>J [mm4]</u> 5333333333.3 341333333333.3	<u>σ_1 [N/mm2]</u> <u>σ</u> _ -26.3 -3.3	2 [N/mm2] Nachwe -14.0 i.O. -5.6 i.O.	30min eis <u>σ_1 Nachweis σ_2</u> i.O. i.O.	Nachweis i.O. i.O.	60min .σ_1 Nachweis o i.O. i.O.	5_2 Nachweis i.O. i.O.	120min s σ_1 Nachweis σ_2 i.O. i.O.	druck zug			
OUELLEN 0. M-M Machweis	3 M_ Gewölbe Sohle	<u>d [kNm] N_(</u> 102.0 -313.0	d [kN] M_d -5042.0 -4467.0	<u>[kNm] N_c</u> 163 -501	d <u>[kN] b</u> -8067 -7147	<u>h</u> 1000.0 1000.0	A 400.0 1600.0	[mm2] 400000.0 1600000.0	J [mm4] 5333333333333333 341333333333333333	<u>σ_1 [N/mm2] σ</u> -26.3 -3.3	2 [N/mm2] Nachwe -14.0 i.O. -5.6 i.O.	30min eis <u>σ_1 Nachweis σ_2</u> i.O. i.O.	Nachweis i.O. i.O.	60min : <u>σ_1 Nachweis c</u> i.O. i.O.	5_2 Nachwei i.O. i.O.	120min sσ_1 Nachweisσ_2 i.O. i.O.	druck zug			
QUELLEN 0. N:W Nachweis M	3 Gewothe Sohle	<u>d [kNm] N_</u> 102.0 -313.0	<u>d [kN] M_d</u> -5042.0 -4467.0	[kNm] N_(163 -501	d [kN] b -8067 -7147	<u>h</u> 1000.0 1000.0	A 400.0 1600.0	[mm2] 400000.0 1600000.0	<u>J [mm4]</u> 5333333333.3 341333333333.3	<u>σ_1 [N/mm2] σ</u> -26.3 -3.3	2 [N/mm2] Nachw -14.0 i.0. -5.6 i.0.	30min <u>ais σ_1 Nachweis σ_2</u> i.O. i.O. 30min	Nachweis i.O. i.O.	60min :σ_1 Nachweis c i.O. i.O. 60min	5_2 Nachweis i.O. i.O.	120min s σ_1 Nachweis σ_2 i.O. i.O. 120min	druck zug			
QUELLEN 0. N:-W Siawh:200 N:- N:- N:- N:-	3 Gewolbe Sohle	<u>d [kNm] N_</u> 102.0 -313.0 d [kNm] N_	<u>d [kN] M_d</u> -5042.0 -4467.0 <u>d [kN] M_d</u>	[kNm] N_0 163 -501 [kNm] N_0	d (kN) b -8067 -7147 d (kN) b	h 1000.0 1000.0 h	A 400.0 1600.0 A	[mm2] 400000.0 1600000.0 [mm2]	<u>J [mm4]</u> 53333333333 3413333333333 J [mm4]	σ <u>1 [N/mm2]</u> σ -26.3 -3.3 σ <u>1 [N/mm2]</u> σ	2 [N/mm2] Nachw -14.0 i.0. -5.6 i.0. 2 [N/mm2] Nachw	30min eis σ_1 Nachweis σ_2 i.O. i.O. 30min eis σ_1 Nachweis σ_2	Nachweis i.O. i.O.	60min i.o. i.o. i.o. 60min 60min	5_2 Nachwei: i.O. i.O. j.O. i.O. 5_2 Nachwei:	120min s σ_1 Nachweis σ_2 i.0. i.0. 120min s σ_1 Nachweis σ_2	druck zug			
Mr.M N.M N.M N.M N.M N.M N.M N.M N.M N.M N	3 Gewolbe Sohle Gewolbe Sohle	<u>d [kNm] N_4</u> 102.0 -313.0 <u>d [kNm] N_4</u> 75.0 -232.0	<u>d [kN] M_d</u> -5042.0 -4467.0 <u>d [kN] M_d</u> -3733.0 -3594.0	[kNm] N_ 163 -501 [kNm] N_ 120 -371	d [kN] b -8067 -7147 d [kN] b -5973 -5750	<u>h</u> 1000.0 1000.0 <u>h</u> 1000.0	A 400.0 1600.0 A 400.0 1600.0	[mm2] 400000.0 1600000.0 [mm2] 400000.0 160000.0	<u>J [mm4]</u> 5333333333.3 341333333333.3 <u>J [mm4]</u> 5333333333.3 341333333333.3	<u>σ_1 [N/mm2] σ</u> -26.3 -3.3 <u>σ_1 [N/mm2] σ</u> -19.4 -2 7	2 [N/mm2] Nachw -14.0 i.0. -5.6 i.0. 2 [N/mm2] Nachw -10.4 i.0. -4.5 i.0	30min <u>eis σ_1 Nachweis σ_2</u> i.O. i.O. 30min <u>eis σ_1 Nachweis σ_2</u> i.O.	Nachweis i.O. i.O. Nachweis i.O.	60min i.0. i.0. i.0. 60min 60min i.0. i.0.	5_2 Nachwei: i.O. i.O. j.O. i.O. j.O. i.O.	120min s σ_1 Nachweis σ_2 i.O. i.O. 120min s σ_1 Nachweis σ_2 i.O. i.O.	druck zug druck zua			
QUELLEN O. N-W N-W N-W N-W N-W N-W N-W N-W	3 Gewölbe Sohle M_ Gewolbe Sohle	<u>d [kNm] N_</u> 102.0 -313.0 d [kNm] N_ 75.0 -232.0	d [kN] <u>M_d</u> -5042.0 -4467.0 d [kN] <u>M_d</u> -3733.0 -3594.0	<u>[kNm] N_</u> 163 -501 <u>[kNm] N_</u> 120 -371	d [kN] b -8067 -7147 d [kN] b -5973 -5750	h 1000.0 1000.0 h 1000.0 1000.0	A 400.0 1600.0 A 400.0 1600.0	[mm2] 400000.0 1600000.0 [mm2] 400000.0 1600000.0	<u>J [mm4]</u> 5333333333.3 341333333333.3 <u>J [mm4]</u> 5333333333.3 341333333333.3	<u>σ_1 [N/mm2] σ</u> -26.3 -3.3 <u>σ_1 [N/mm2] σ</u> -19.4 -2.7	2 [N/mm2] Nachw -14.0 i.0. -5.6 i.0. 2 [N/mm2] Nachw -10.4 i.0. -4.5 i.0.	30min eis σ_1 Nachweis σ_2 i.O. i.O. 30min eis σ_1 Nachweis σ_2 i.O. i.O.	Nachweis i.O. i.O. i.O. Nachweis i.O. i.O.	60min i.0. i.0. i.0. 60min 60min i.0. i.0. i.0.	J_2 Nachweit i.O. i.O. j.O. i.O. J_2 Nachweit i.O. i.O. j.O. i.O.	120min s σ_1 Nachweis σ_2 i.0. i.0. 120min s σ_1 Nachweis σ_2 i.0. i.0.	druck zug druck zug			
QUELLEN O. N-W N-W N-W N-W N-W N-W N-W	3 Gewölbe Sohle Gewolbe Sohle	<u>d [kNm] N_</u> 102.0 -313.0 <u>d [kNm] N_</u> 75.0 -232.0	d [kN] <u>M_d</u> -5042.0 -4467.0 d [kN] <u>M_d</u> -3733.0 -3594.0	<u>[kNm] N_</u> 163 -501 <u>[kNm] N_0</u> 120 -371	d [kN] b -8067 -7147 -7147 d [kN] b -5973 -5750	h 1000.0 1000.0 h 1000.0 1000.0	A 400.0 1600.0 A 400.0 1600.0	[mm2] 400000.0 1600000.0 [mm2] 400000.0 1600000.0	J [mm4] 5333333333 3413333333333 J [mm4] 53333333333 341333333333333	<u>σ_1 [N/mm2] σ_</u> -26.3 -3.3 <u>σ_1 [N/mm2] σ_</u> -19.4 -2.7	2 [N/mm2] Nachwe -14.0 i.O. -5.6 i.O. 2 [N/mm2] Nachwe -10.4 i.O. -4.5 i.O.	30min <u>eis σ_1 Nachweis σ_2</u> i.O. i.O. <u>i.O.</u> <u>30min</u> <u>eis σ_1 Nachweis σ_2</u> i.O. i.O.	 Nachweis i.O. i.O. i.O. Nachweis i.O. i.O. i.O. 	60min i.o. i.O. i.O. 60min σ_1 Nachweis c i.O. i.O.	J_2 Nachweit i.O. i.O. j.O. i.O. J_2 Nachweit i.O. i.O. j.O. i.O.	120min s σ_1 Nachweis σ_2 i.O. i.O. 120min s σ_1 Nachweis σ_2 i.O. i.O.	druck zug druck zug			
QUELLEN O. IIII NFW NFW NFW NFW NFW NFW	3 Gewölbe Sohle M_ Gewolbe Sohle	<u>d [kNm] N_</u> 102.0 -313.0 <u>d [kNm] N_</u> 75.0 -232.0	d [kN] <u>M_d</u> -5042.0 -4467.0 d [kN] <u>M_d</u> -3733.0 -3594.0	[kNm] N_ 163 -501 [kNm] N_ 120 -371	d [kN] b -8067 -7147 -7147 d [kN] b -5973 -5750	h 1000.0 1000.0 h 1000.0 1000.0	A 400.0 1600.0 A 400.0 1600.0	[mm2] 400000.0 1600000.0 [mm2] 400000.0 1600000.0	J [mm4] 5333333333 3413333333333 J [mm4] 53333333333 3413333333333333	<u>σ_1 [N/mm2] σ_</u> -26.3 -3.3 <u>σ_1 [N/mm2] σ_</u> -19.4 -2.7	2 [N/mm2] Nachwe -14.0 i.O. -5.6 i.O. 2 [N/mm2] Nachwe -10.4 i.O. -4.5 i.O.	30min <u>els σ_1 Nachweis σ_2</u> i.O. i.O. 30min <u>els σ_1 Nachweis σ_2</u> i.O. i.O.	Nachweis i.O. i.O. Nachweis i.O. i.O.	60min i.α_1 Nachweis c i.0. i.0. 60min i.α_1 Nachweis c i.0. i.0.	5_2 Nachweis i.O. i.O. j.O. i.O. j.O. i.O. j.O. i.O.	120min s σ_1 Nachweis σ_2 i.O. i.O. 120min s σ_1 Nachweis σ_2 i.O. i.O.	druck zug druck zug			
ONETTEN 0. NM NM NATIONALS ISI SI	3 Gewölbe Sohle Gewolbe Sohle	<u>d [kNm] N_</u> 102.0 -313.0 <u>d [kNm] N_</u> 75.0 -232.0	d [kN] <u>M_d</u> -5042.0 -4467.0 d [kN] <u>M_d</u> -3733.0 -3594.0 D4.cm	[kNm] N_ 163 -501 [kNm] N_ 120 -371	d [kN] b -8067 -7147 d [kN] b -5973 -5750 D4 cm	h 1000.0 1000.0 h 1000.0 1000.0	A 400.0 1600.0 A 400.0 1600.0	[mm2] 400000.0 1600000.0 [mm2] 400000.0 1600000.0	J [mm4] 5333333333 341333333333 J [mm4] 53333333333 3413333333333 3413333333333	<u>σ_1 [N/mm2] σ_</u> -26.3 -3.3 <u>σ_1 [N/mm2] σ</u> -19.4 -2.7	<u>2 [N/mm2] Nachwa</u> -14.0 i.O. -5.6 i.O. <u>2 [N/mm2] Nachwa</u> -10.4 i.O. -4.5 i.O.	30min eis σ_1 Nachweis σ_2 i.O. i.O. 30min eis σ_1 Nachweis σ_2 i.O. i.O. i.O.	Nachweis i.O. i.O. Nachweis i.O. i.O. i.O.	60min i.o. i.O. i.O. 60min c_1 Nachweis c i.O. i.O. i.O.	5_2 Nachwei: i.O. i.O. j.O. i.O. j_2 Nachwei: i.O. i.O.	120min s σ_1 Nachweis σ_2 i.O. i.O. 120min s σ_1 Nachweis σ_2 i.O. i.O.	druck zug druck zug			
ODEFITEN 0 NM NM TE2 202 202 202	3 	<u>d [kNm] N_</u> 102.0 -313.0 <u>d [kNm] N_</u> 75.0 -232.0 T 1508.0	d [kN] <u>M_d</u> -5042.0 -4467.0 d [kN] <u>M_d</u> -3733.0 -3594.0 D4 cm As 137.0	[kNm] N_ 163 -501 [kNm] N_ 120 -371 T 1508.0	d [kN] b -8067 -7147 d [kN] b -5973 -5750 D4 cm fyk 1370	h 1000.0 1000.0 h 1000.0 1000.0	A 400.0 1600.0 400.0 1600.0 curva 2	[mm2] 400000.0 1600000.0 [mm2] 400000.0 1600000.0	J [mm4] 5333333333 341333333333 J [mm4] 53333333333 3413333333333 3413333333333	<u>σ_1 [N/mm2]</u> <u>σ</u> -26.3 -3.3 <u>σ_1 [N/mm2]</u> <u>σ</u> -19.4 -2.7 M+	2 [N/mm2] Nachwe -14.0 i.O. -5.6 i.O. 2 [N/mm2] Nachwe -10.4 i.O. -4.5 i.O.	30min eis σ_1 Nachweis σ_2 i.O. i.O. 30min eis σ_1 Nachweis σ_2 i.O. i.O. i.O.	Nachweis Nachweis Nachweis Nachweis Nachweis	60min i.o. i.O. 60min .o_1 Nachweis c i.O. i.O. i.O.	5_2 Nachwei: i.0. i.0. j.0. i.0. j.0. i.0. j.0. i.0.	120min s σ_1 Nachweis σ_2 i.O. i.O. 120min s σ_1 Nachweis σ_2 i.O. i.O.	druck zug druck zug			
ONETTER 0' N-M National Nation	3 	<u>d [kNm] N (</u> 102.0 -313.0 <u>d [kNm] N (</u> 75.0 -232.0 T 1508.0	d [kN] M_d -5042.0 -4467.0 d [kN] M_d -3733.0 -3594.0 D4 cm As 137.0 361.0	[kNm] N 163 -501 [kNm] N_ 120 -371 -371 T508.0	d [kN] b -8067 -7147 d [kN] b -5973 -5750 D4 cm f_yk 137.0 361.0	h 1000.0 1000.0 h 1000.0 1000.0 k_s 450.0 450.0	A 400.0 1600.0 400.0 1600.0 curva 2 f_y 1 0.95	[mm2] 400000.0 1600000.0 [mm2] 400000.0 1600000.0 (k.t 450.0 477.5	J [mm4] 5333333333 3413333333333 J [mm4] 53333333333 3413333333333 3413333333333	<u>σ_1 [N/mm2]</u> <u>σ</u> -26.3 -3.3 <u>σ_1 [N/mm2]</u> <u>σ</u> -19.4 -2.7 M+ M 217.4	2 [N/mm2] Nachwo -14.0 i.0. -5.6 i.0. 2 [N/mm2] Nachwo -10.4 i.0. -4.5 i.0. 1031.7 980.7	30min eis σ_1 Nachweis σ_2 i.O. i.O. 30min eis σ_1 Nachweis σ_2 i.O. i.O. Nachweis M+ i.O. i.O.	Nachweis 1 Nachweis 1 Nachweis 1 Nachweis 1 Nachweis 1 Nachweis 1	60min :σ_1 Nachweis c i.O. i.O. 60min .σ_1 Nachweis c i.O. i.O. 	5_2 Nachwei: i.0. i.0. j.0. i.0. j.2 Nachwei: i.0. i.0. i.0. i.0.	120min s σ_1 Nachweis σ_2 i.O. i.O. 120min s σ_1 Nachweis σ_2 i.O. i.O.	druck zug druck zug			
ONETTEN 0' NMM NMM NMM NMM NMM NMM NMM NMM NMM NM	3 	<u>d [kNm] N_1</u> 102.0 -313.0 <u>d [kNm] N_4</u> 75.0 -232.0 T 1508.0 1508.0	d [kN] M_d -5042.0 -4467.0 d [kN] M_d -3733.0 -3594.0 D 4 cm As 137.0 361.0 593.0	[kNm] N 163 -501 [kNm] N_ 120 -371 -371 T508.0 1508.0	d [kN] b -8067 -7147 d [kN] b -5973 -5750 D 4 cm f_yk 137.0 361.0 593.0	h 1000.0 1000.0 h 1000.0 1000.0 k_s 450.0 450.0 450.0	A 400.0 1600.0 400.0 1600.0 curva 2 f_y 1 0.95 0.4	[mm2] 400000.0 1600000.0 [mm2] 400000.0 1600000.0 1600000.0 1600000.0	J [mm4] 5333333333 3413333333333 J [mm4] 53333333333 341333333333 341333333333 341333333333 341333333333 41.5934423 39.51377019 16.63737692	<u>σ_1 [N/mm2]</u> <u>σ</u> -26.3 -3.3 <u>σ_1 [N/mm2]</u> <u>σ</u> -19.4 -2.7 M+ M 217.4 207.1 89.8	2 [N/mm2] Nachwe -14.0 i.0. -5.6 i.0. 2 [N/mm2] Nachwe -10.4 i.0. -4.5 i.0. 1031.7 980.7 415.5	30min eis σ_1 Nachweis σ_2 i.O. i.O. 30min eis σ_1 Nachweis σ_2 i.O. i.O. i.O. i.O. i.O. i.O. ni.O.	Nachweis Nachweis Nachweis Nachweis Nachweis Nachweis Nachweis Nachweis Nachweis Nachweis Nachweis Nachweis	60min i.0. i.0. 60min σ_1 Nachweis c i.0. i.0. i.0. i.0.	5_2 Nachwei: i.O. i.O. j.O. i.O. j.2 Nachwei: i.O. i.O.	120min s σ_1 Nachweis σ_2 i.0. i.0. 120min s σ_1 Nachweis σ_2 i.0. i.0.	druck zug druck zug			
Chriefs armiertes Profil Machweis armiertes Profil Machweis GTG GTG GTG GTG GTG GTG GTG GTG GTG GT	3 Gewolbe Sohle M Gewolbe Sohle Sohle As 30 min 60 min 120 min	<u>d [kNm] N 1</u> 102.0 -313.0 <u>d [kNm] N 6</u> 75.0 -232.0 T 1508.0 1508.0 1508.0	d [kN] M_d -5042.0 -4467.0 d [kN] M_d -3733.0 -3594.0 D 4 cm As 137.0 361.0 593.0 D 5 cm	[kNm] N 163 -501 [kNm] N_ 120 -371 -371 T 1508.0 1508.0 1508.0 1508.0	d [kN] b -8067 -7147 d [kN] b -5973 -5750 D 4 cm f_yk 137.0 361.0 593.0 D 5 cm	h 1000.0 1000.0 h 1000.0 1000.0 k_s 450.0 450.0 450.0	A 400.0 1600.0 400.0 1600.0 curva 2 f_y 1 0.95 0.4	[mm2] 400000.0 1600000.0 [mm2] 400000.0 1600000.0 1600000.0 1600000.0	J [mm4] 5333333333 341333333333 J [mm4] 53333333333 341333333333 341333333333 341333333333 341333333333 34133333333 34133333333 41333333333 5333333 5333333 5333333 533333 533333 533333 53333 53333 53333 53333 53333 53333 53333 53333 53333 53333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 533 5333 533 5333 53 5	<u>σ_1 [N/mm2]</u> <u>σ</u> -26.3 -3.3 <u>σ_1 [N/mm2]</u> <u>σ</u> -19.4 -2.7 M+ M 217.4 207.1 89.8	2 [N/mm2] Nachwe -14.0 i.0. -5.6 i.0. 2 [N/mm2] Nachwe -10.4 i.0. -4.5 i.0. 1031.7 980.7 415.5	30min eis σ_1 Nachweis σ_2 i.O. i.O. 30min eis σ_1 Nachweis σ_2 i.O. i.O. i.O. i.O. i.O. i.O. i.O. i.O	Nachweis Nachwe	60min <u>σ_1 Nachweis c</u> i.O. i.O. 60min <u>σ_1 Nachweis c</u> i.O. i.O.	5_2 Nachwei: i.0. i.0. j.0. i.0. j.2 Nachwei: i.0. i.0. j.0. i.0.	120min s σ_1 Nachweis σ_2 i.0. i.0. 120min s σ_1 Nachweis σ_2 i.0. i.0.	druck zug druck zug			