RELAZIONE DI CALCOLO DELLA SPALLA	TITO	OLO:	PONTE CANALE SPALLA LATO D		FICO STURA)	
UNITA' DI MISURA				nghezze =[m]		
				rze = [KN]		
1) DATI GENERALI				menti = [KNm]		
PESO SPECIFICO CALCESTRUZZO		25.00	Pe	si specifici = [k	(N/m^3]	
PESO SPECIFICO TERRAPIENO		20.00				
PLINTO: SBALZO ANTERIORE		1.50		se x: longitudir	nale	
PLINTO: SBALZO POSTERIORE		1.00		se y: verticale		
ALTEZZA BAGGIOLI APPOGGI		0.08	As	se z: trasversa	le	
ACCELERAZIONE SISMICA ORIZZONTALE		0.080				
ACCELERAZIONE SISMICA VERTICALE		0.040				
COEFFICIENTI PARZIALI SOLLECITAZIONI STATICHE						
	STR/GEO		GEO (A		EQU (A2	
CARIOUI REPMANIENTI	SFAV.	FAV.	SFAV.	FAV.	SFAV.	FAV.
CARICHI PERMANENTI	1.30	1.00	1.00	1.00	1.10	0.90
CARICHI ACCIDENTALI	1.50	0.00	1.30	0.00	1.50	0.00
SPINTE TERRENO	1.30	1.00	1.00	1.00	1.10	0.90
SPINTE ACCIDENTALI	1.50	0.00	1.30	0.00	1.50	0.00
PRESOLLECITAZIONI (TIRANTI)	1.00	1.00	1.00	1.00	1.00	1.00
COEFFICIENTI ALLO S.L.E. CARICHI ACCIDENTAL	RARA	1.00	FREQUENTE	0.75 JU	ASI PERM.	0.00
2) CARATTERISTICHE GEOMETRICHE DELLA STRU						
	lx	ly	lz	fy	xg	yg
PLINTO	4.05	1.30	5.00	658.13	2.03	0.65
MURO 1	0.00	0.00	0.00	0.00	1.50	1.30
MURO 2	1.55	6.70	2.60	675.03	2.28	4.65
MURO 3 (PARAGHIAIA)	0.50	1.55	2.60	50.38	3.30	8.78
MURO 4 (TRIANGOLO)	0.00	8.25	2.60	0.00	3.05	4.05
RISVOLTO SX (RETTANGOLO)	1.00	0.00	0.00	0.00	3.55	1.30
RISVOLTO SX (TRIANGOLO)	1.00	0.00	0.00	0.00	3.55	1.30
RISVOLTO DX (RETTANGOLO)	1.00	0.00	0.00	0.00	3.55	1.30
RISVOLTO DX (TRIANGOLO)	1.00	0.00	0.00	0.00	3.55	1.30
RISVOLTO CEN.	0.00	0.00	0.00	0.00	3.05	1.30
CORDOLO SX	1.50	0.00	0.00	0.00	3.30	1.30
CORDOLO DX	1.50	0.00	0.00	0.00	3.30	1.30
ORECCHIO SX (RETTANGOLO)	0.00	0.00	0.00	0.00	4.05	1.30
ORECCHIO SX (TRIANGOLO)	0.00	0.00	0.00	0.00	4.05	1.30
ORECCHIO DX (RETTANGOLO)	0.00	0.00	0.00	0.00	4.05	1.30
ORECCHIO DX (TRIANGOLO)	0.00	0.00	0.00	0.00	4.05	1.30
TRAVE SUPERIORE	0.00	0.00	2.60	0.00	3.05	9.55
3) CARATTERISTICHE GEOMETRICHE TRASVERSAL	I DEL TERRAP	PIENO Iy	lz	fy	xq	yq
TERRAPIENO	1.00	8.25	2.60	429.00	3.55	5.43
4) CARATTERISTICHE DEL SOVRACCARICO SUL TER				,		
COVERAGO ADIGO CTATICO	lx	int.	Iz	fy	xg	yg
SOVRACCARICO STATICO	1.00	10.00	2.60	26.00	3.55	9.55
SOVRACCARICO SISMICO	1.00	0.00	2.60	0.00	3.55	9.55
5) CARATTERISTICHE GEOMETRICHE DELLA FOND	AZIONE			20.25		
AREA DELLA FONDAZIONE				20.25		
W IN DIREZIONE LONGITUDINALE				13.67		
W IN DIREZIONE TRASVERSALE				16.88		

6) SPINTE DEL TERRENO E DEL SOVRACCARICO AGENTI SULLA STRUTTURA

FONDAZIONE - STATICHE - A1+M1	COEFFICIENTE DI SPINTA	0.271	(COULOMB: SPINTA ATTIVA)	
	q ly	lz	x fx	у
SPINTA DEL TERRENO (M1)	51.76 9.55	2.60		3.18
SPINTA DEL SOVRACCARICO (M1) FONDAZIONE - SISMICHE V.ALTO - A1+M1	2.71 9.55 INCR. COEFFICIENTE DI SPIN	2.60	4.05 67.29 (MONONOBE-OKABE: SPINTA ATTIVA)	4.78
FONDAZIONE - SISMICHE V.ALTO - ATTWIT	q ly	0.047		у
INCR. SPINTA DEL TERRENO (M1)	8.56 9.55	2.60		3.18
SPINTA DEL SOVRACCARICO (M1)	0.00 9.55	2.60		4.78
INCR. SPINTA DEL SOVRACCARICO (M1)	0.00 9.55	2.60		4.78
FONDAZIONE - SISMICHE V.BASSO - A1+M1	INCR. COEFFICIENTE DI SPIN		(MONONOBE-OKABE: SPINTA ATTIVA)	.,
INCR. SPINTA DEL TERRENO (M1)	q ly 8.50 9.55	lz 2.60		у 3.18
SPINTA DEL SOVRACCARICO (M1)	0.00 9.55	2.60		4.78
INCR. SPINTA DEL SOVRACCARICO (M1)	0.00 9.55	2.60		4.78
FONDAZIONE - STATICHE - A2+M2	COEFFICIENTE DI SPINTA		(COULOMB: SPINTA ATTIVA)	
ODINITA DEL TEDDENIO (MA)	q ly	Iz		у
SPINTA DEL TERRENO (M2) SPINTA DEL SOVRACCARICO (M2)	65.59 9.55 3.43 9.55	2.60 2.60		3.18 4.78
FONDAZIONE - SISMICHE V.ALTO - A2+M2	INCR. COEFFICIENTE DI SPIN		(MONONOBE-OKABE: SPINTA ATTIVA)	4.76
	q ly	lz	,	у
INCR. SPINTA DEL TERRENO (M2)	9.66 9.55	2.60	4.05 119.96	3.18
SPINTA DEL SOVRACCARICO (M2)	0.00 9.55	2.60		4.78
INCR. SPINTA DEL SOVRACCARICO (M2)	0.00 9.55	2.60		4.78
FONDAZIONE - SISMICHE V.BASSO - A2+M2	INCR. COEFFICIENTE DI SPIN q ly	0.048 Iz	(MONONOBE-OKABE: SPINTA ATTIVA) x fx	
INCR. SPINTA DEL TERRENO (M2)	9.61 9.55	2.60		у 3.18
SPINTA DEL SOVRACCARICO (M2)	0.00 9.55	2.60		4.78
INCR. SPINTA DEL SOVRACCARICO (M2)	0.00 9.55	2.60	4.05 0.00	4.78
ELEVAZIONE - STATICHE	COEFFICIENTE DI SPINTA		(COULOMB: SPINTA ATTIVA)	
CDINTA DEL TERRENO	q ly	lz 2.00		y 4.05
SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO	44.72 8.25 2.71 8.25	2.60 2.60		4.05 5.43
ELEVAZIONE - SISMICHE V.ALTO	INCR. COEFFICIENTE DI SPIN		(MONONOBE-OKABE: SPINTA ATTIVA)	3.43
	q ly	lz	,	у
INCR. SPINTA DEL TERRENO	7.40 8.25	2.60		4.05
SPINTA DEL SOVRACCARICO	0.00 8.25	2.60		5.43
INCR. SPINTA DEL SOVRACCARICO ELEVAZIONE - SISMICHE V.BASSO	0.00 8.25 INCR. COEFFICIENTE DI SPIN	2.60		5.43
ELEVAZIONE - SISMICHE V.BASSO	q ly	0.043 Iz	(MONONOBE-OKABE: SPINTA ATTIVA) x fx	у
INCR. SPINTA DEL TERRENO	7.34 8.25	2.60		4.05
SPINTA DEL SOVRACCARICO	0.00 8.25	2.60		5.43
INCR. SPINTA DEL SOVRACCARICO	0.00 8.25	2.60	3.05 0.00	5.43
INON: OF INTA DEE SO WASOARIOO	0.00 6.23	2.00	0.00	0.40
RISVOLTO SX - STATICHE	COEFFICIENTE DI SPINTA	0.271	(COULOMB: SPINTA ATTIVA)	
RISVOLTO SX - STATICHE	COEFFICIENTE DI SPINTA q ly	0.271 lx	(COULOMB: SPINTA ATTIVA) x fz	у
RISVOLTO SX - STATICHE SPINTA DEL TERRENO	COEFFICIENTE DI SPINTA q ly 0.00 0.00	0.271 lx 1.00	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00	y 1.30
RISVOLTO SX - STATICHE	COEFFICIENTE DI SPINTA q ly	0.271 lx 1.00 1.00	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00	у
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO	COEFFICIENTE DI SPINTA q ly 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q ly	0.271 lx 1.00 1.00 0.047 lx	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz	y 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO	COEFFICIENTE DI SPINTA q ly 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q ly 0.00 0.00	0.271 lx 1.00 1.00 0.047 lx 1.00	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00	y 1.30 1.30 y 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO	COEFFICIENTE DI SPINTA q ly 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q ly 0.00 0.00 0.00 0.00	0.271 lx 1.00 1.00 0.047 lx 1.00	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00	y 1.30 1.30 y 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO	COEFFICIENTE DI SPINTA q ly 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q ly 0.00 0.00 0.00 0.00 0.00 0.00	0.271 lx 1.00 1.00 0.047 lx 1.00 1.00	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00	y 1.30 1.30 y 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO	COEFFICIENTE DI SPINTA q ly 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q ly 0.00 0.00 0.00 0.00 0.00 0.00 INCR. COEFFICIENTE DI SPIN	0.271 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA)	y 1.30 1.30 1.30 y 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO	COEFFICIENTE DI SPINTA q ly 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q ly 0.00 0.00 0.00 0.00 0.00 0.00	0.271 lx 1.00 1.00 0.047 lx 1.00 1.00	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz	y 1.30 1.30 y 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO	COEFFICIENTE DI SPINTA q ly 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q ly 0.00 0.00 0.00 0.00 0.00 0.00 INCR. COEFFICIENTE DI SPIN q ly 0.00 0.	0.271 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00	y 1.30 1.30 y 1.30 1.30 1.30 y 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO	COEFFICIENTE DI SPINTA q ly 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q ly 0.00 0.00 0.00 0.00 0.00 INCR. COEFFICIENTE DI SPIN q ly 0.00 0.	0.271 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00	y 1.30 1.30 1.30 y 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO	COEFFICIENTE DI SPINTA q y 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00 0.00 0.00 0.00 0.00 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00 0.00 0.00 0.00 0.00 0.00 COEFFICIENTE DI SPINTA	0.271 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 0.271	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA)	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE	COEFFICIENTE DI SPINTA q y 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00 0.00 0.00 0.00 0.00 INCR. COEFFICIENTE DI SPIN q ly 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 COEFFICIENTE DI SPINTA q ly	0.271 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 0.271 lx 1.00 0.271 lx	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00	y 1.30 1.30 1.30 y 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO	COEFFICIENTE DI SPINTA q y 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00 0.00 0.00 0.00 0.00 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00 0.00 0.00 0.00 0.00 0.00 COEFFICIENTE DI SPINTA	0.271 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 0.271	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL TERRENO	Q	0.271 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 0.047 lx 1.00 0.047 lx 1.00 1.00 0.0271 lx 1.00 0.0271 0.00 0.0271	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) (MONONOBE-OKABE: SPINTA ATTIVA)	y 1.30 1.30 1.30 y 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO	COEFFICIENTE DI SPINTA q y 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00 0.00 0.00 0.00 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 COEFFICIENTE DI SPINTA q y 0.00 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q Iy y y y y y	0.271 lx 1.00 1.000 0.047 lx 1.00 1.000 1.000 1.000 1.000 0.047 lx 1.000 1.000 1.000 0.271 lx 1.000 0.047 lx 1.000	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA)	y 1.30 1.30 1.30 y 1.30 1.30 1.30 1.30 1.30 y 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO	COEFFICIENTE DI SPINTA q y 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00	0.271 lx 1.00 1.000 0.047 lx 1.00 1.000 1.000 0.047 lx 1.00 1.000 1.000 1.000 0.271 lx 1.00 0.047 lx 1.000 1	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO	COEFFICIENTE DI SPINTA q y 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00	0.271 k 1.00 1.00 0.047 k 1.00	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO	Q	0.271 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 0.0271 lx 1.00 1.00 0.0271 lx 1.00 1.00 0.047 lx 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO	COEFFICIENTE DI SPINTA q y 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00	0.271 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 0.0271 lx 1.00 1.00 0.0271 lx 1.00 1.00 0.047 lx 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) (MONONOBE-OKABE: SPINTA ATTIVA) (MONONOBE-OKABE: SPINTA ATTIVA)	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO	Q	0.271 x 1.00 1.00 0.047 x 1.00 1.00 0.047 x 1.00 0.047 x 1.00 1.00 1.00 1.00 0.271 x 1.00 1.00 0.047 x 1.00 0.047 x 1.00 1.00 0.047 x 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA)	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO	Q	0.271 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 0.271 lx 1.00 1.00 0.047 lx 1.00 1.00 1.00 1.00	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO	Q Y O.00 O	0.271 lx 1.00 1.000 0.047 lx 1.00 1.000 1.000 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO	Q	0.271 x 1.00 1.00 0.047 x 1.00 1.00 1.00 1.00 0.047 x 1.00 1.00 1.00 0.271 x 1.00 0.047 x 1.00 0.0271	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA)	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO	Q Y O.00 O	0.271 lx 1.00 1.000 0.047 lx 1.00 1.000 1.000 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 0.047 lx 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA)	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO PARAGHIAIA - STATICHE SPINTA DEL TERRENO	COEFFICIENTE DI SPINTA q y 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00	0.271 k 1.00 1.00 0.047 k 1.00	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA)	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO	Q	0.271 x 1.00 1.00 0.047 x 1.00 1.00 0.047 x 1.00 0.047 x 1.00 1.00 0.271 x 1.00 0.047	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 0.00 (COULOMB: SPINTA ATTIVA) x fx 3.05 16.93 3.05 16.93 3.05 16.93	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO PARAGHIAIA - STATICHE SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO PARAGHIAIA - SISMICHE V.ALTO	COEFFICIENTE DI SPINTA q y 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00	0.271 1x 1.00 1.00 0.047 1x 1.00 1.	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 16.93 3.05 16.93 3.05 10.92 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 16.93 3.05 10.92 (MONONOBE-OKABE: SPINTA ATTIVA) x fx	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO PARAGHIAIA - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO PARAGHIAIA - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO PARAGHIAIA - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO	COEFFICIENTE DI SPINTA Q	0.271 lx 1.00 1.000 0.047 lx 1.00 1.000 1.000 1.000 0.047 lx 1.00 1.000 0.2711 lx 1.000 1.000 0.2717 lx 1.000 1.000 0.047 lx 1.000 0.047 lx 1.000 1.000 0	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 16.93 3.05 10.92 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 16.93 3.05 10.92	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO PARAGHIAIA - STATICHE SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO PARAGHIAIA - SISMICHE V.ALTO	COEFFICIENTE DI SPINTA q y 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00	0.271 1x 1.00 1.00 0.047 1x 1.00 1.	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 10.92 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 16.93 (MONONOBE-OKABE: SPINTA ATTIVA)	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO PARAGHIAIA - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO PARAGHIAIA - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO PARAGHIAIA - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO	COEFFICIENTE DI SPINTA Q	0.271 x 1.00 1.000 0.047 x 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.271 x 1.001 1.000 0.047 x 1.001 1.000 0.047 x 1.000 1.000 0.047 x 1.000 1.000 0.047 x	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 10.92 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 16.93 (MONONOBE-OKABE: SPINTA ATTIVA)	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO PARAGHIAIA - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO PARAGHIAIA - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO PARAGHIAIA - SISMICHE V.BASSO	COEFFICIENTE DI SPINTA q y 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00	0.271 k 1.000 1.	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (S.55 0.00	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO PARAGHIAIA - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO PARAGHIAIA - SISMICHE V.BASSO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL TERRENO SINCR. SPINTA DEL TERRENO INCR. SPINTA DEL TERRENO INCR. SPINTA DEL TERRENO	COEFFICIENTE DI SPINTA q y 0.00 0.	0.271 x 1.000 1.000 0.047 x 1.000 1.00	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 16.93 3.05 10.92 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 16.93 3.05 10.92 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 16.93 3.05 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 2.80 3.05 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 2.80 3.05 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 2.80 3.05 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 2.80 3.05 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 2.80	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
RISVOLTO SX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO SX - SISMICHE V.BASSO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO RISVOLTO DX - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO RISVOLTO DX - SISMICHE V.BASSO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO SPINTA DEL SOVRACCARICO INCR. SPINTA DEL SOVRACCARICO PARAGHIAIA - STATICHE SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO PARAGHIAIA - SISMICHE V.ALTO INCR. SPINTA DEL TERRENO SPINTA DEL SOVRACCARICO PARAGHIAIA - SISMICHE V.BASSO	COEFFICIENTE DI SPINTA q y 0.00 0.00 2.71 0.00 INCR. COEFFICIENTE DI SPIN q y 0.00	0.271 k 1.000 1.	(COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 3.55 0.00 (COULOMB: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 3.55 0.00 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.55 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fz 3.05 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 16.93 3.05 10.92 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 2.80 3.05 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 2.80 3.05 0.00 (MONONOBE-OKABE: SPINTA ATTIVA) x fx 3.05 0.00 (MONONOBE-OKABE: SPINTA ATTIVA)	y 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30

7) FORZE E MOMENTI LONGITUDINALI AGENTI SULLA STRUTTURA

PERMANENTI IMPALCATO		fy	x	fx	у
STATICI R. VERTICALE IMPALCATO(PERM)		1666.00	2.00	_	_
R. ORIZZONTALE IMPALCATO (PERM)		-	- 2.00	49.98	8.08
R. CONTRASTI LONGITUDINALI (PERM.)		-	-	0.00	0.00
DINAMICI (SISMICI)					
R. VERTICALE IMPALCATO(PERM)		1901.50	2.00	-	-
R. ORIZZONTALE IMPALCATO (PERM)		-	-	57.05	8.08
R. CONTRASTI LONGITUDINALI (PERM.)		-	-	0.00	0.00
ACCIDENTALI IMPALCATO		fy	x	fx	У
STATICI		iy	^	IX.	у
R. VERTICALE IMPALCATO(ACC)		379.30	2.00	-	-
R. ORIZZONTALE IMPALCATO (ACC)		-	-	11.38	8.08
R. CONTRASTI LONGITUDINALÌ (ACC.)		-	-	0.00	0.00
DINAMICI (SISMICI)					
R. VERTICALE IMPALCATO(ACC)		0.00	2.00	-	-
R. ORIZZONTALE IMPALCATO (ACC)		-	-	0.00	8.08
R. CONTRASTI LONGITUDINALI (ACC.)		-	-	0.00	0.00
TIRANTI		fy	х	fx	У
R. ORIZZONTALE TIRANTI		- ',	- ^	0.00	0.00
R. VERTICALE TIRANTI		0.00	0.00	-	-
8) FORZE E MOMENTI TRASVERSALI AGENTI SI	ULLA STRUTTURA				
PERMANENTI IMPALCATO		ACCIDENTALI IMPALCATO			
STATICI		STATICI			
R. TRASVERSALE (PERM)	0.00	R. TRASVERSALE (ACC)			82.80
MOMENTO TRASVERSALE (PERM)	89.30	MOMENTO TRASVERSALE (A	(CC)		272.10
DINAMICI (SISMICI)		DINAMICI (SISMICI)			
R. TRASVERSALE (PERM)	118.70	R. TRASVERSALE (ACC)			0.00
MOMENTO TRASVERSALE (PERM)	409.80	MOMENTO TRASVERSALE (A	(CC)		0.00

VERIFICA DELLA FONDAZIONE A PONTE SCARICO - COMBINAZIONE STATICA

Nella tabella seguente si riportano le forze ed i momenti longitudinali (stabilizzanti e ribaltanti) agenti sulla fondazione della spalla. Le sollecitazioni sono riferite al punto anteriore della fondazione.

	fy	xg	fx	уд	ms	mr
PLINTO	658.13	2.03		,,,	1332.70	0.00
MURO 1	0.00	1.50			0.00	0.00
MURO 2	675.03	2.28			1535.68	0.00
MURO 3 (PARAGHIAIA)	50.38	3.30			166.24	0.00
MURO 4 (TRIANGOLO)	0.00	3.05			0.00	0.00
RISVOLTO SX (RETTANGOLO)	0.00	3.55			0.00	0.00
RISVOLTO SX (TRIANGOLO)	0.00	3.55			0.00	0.00
RISVOLTO DX (RETTANGOLO)	0.00	3.55			0.00	0.00
RISVOLTO DX (TRIANGOLO)	0.00	3.55			0.00	0.00
RISVOLTO CEN.	0.00	3.05			0.00	0.00
CORDOLO SX	0.00	3.30			0.00	0.00
CORDOLO DX	0.00	3.30			0.00	0.00
ORECCHIO SX (RETTANGOLO)	0.00	4.05			0.00	0.00
ORECCHIO SX (TRIANGOLO)	0.00	4.05			0.00	0.00
ORECCHIO DX (RETTANGOLO)	0.00	4.05			0.00	0.00
ORECCHIO DX (TRIANGOLO)	0.00	4.05			0.00	0.00
TRAVE SUPERIORE	0.00	3.05			0.00	0.00
TERRAPIENO	429.00	3.55			1522.95	0.00
SPINTA DEL TERRENO (M1)			642.61	3.18	0.00	2045.65
SPINTA DEL TERRENO (M2)			814.29	3.18	0.00	2592.16
SOVRACCARICO STATICO	26.00	3.55			92.30	0.00
SPINTA DEL SOVRACCARICO (M1)			67.29	4.78	0.00	321.31
SPINTA DEL SOVRACCARICO (M2)			85.27	4.78	0.00	407.15
R. VERTICALE IMPALCATO(PERM)	1666.00	2.00			3332.00	0.00
R. ORIZZONTALE IMPALCATO (PERM)			49.98	8.08	0.00	403.84
R. CONTRASTI LONGITUDINALI (PERM.)			0.00	0.00	0.00	0.00
R. ORIZZONTALE TIRANTI			0.00	0.00	0.00	0.00
R. VERTICALE TIRANTI	0.00	0.00			0.00	0.00

Combinazioni allo S.L.U.: le sollecitazioni riferite al baricentro della fondazione risultano:

	1) GEO (A1+M1)	2) GEO (A1+M1)	3) GEO (A2+M2)	4) EQU (A2+M2)
SFORZO VERTICALE V=	4561.08	3478.53	3512.33	3130.67
SFORZO LONGITUDINALE HL=	1001.30	1001.30	975.12	1078.60
SFORZO TRASVERSALE HT=	0.00	0.00	0.00	0.00
MOMENTO LONGITUDINALE ML=	2507.59	2820.74	2628.19	3145.32
MOMENTO TRASVERSALE MT=	116.09	116.09	89.30	98.23
LATO LONGITUDINALE EFFETTIVO REAGENTE	2.950	2.428	2.553	
LATO TRASVERSALE EFFETTIVO REAGENTE	4.949	4.933	4.949	
CARICO UNITARIO RISULTANTE QS=	312 36	290.39	277 93	

Combinazioni allo S.L.E.: le sollecitazioni riferite al baricentro della fondazione risultano:

Combinazioni allo S.L.E.: le sollecitazioni riferite al baricentro della fondazione risultano:						
	RARA	FREQUENTE	QUASI PERM.			
SFORZO VERTICALE V=	3504.53	3498.03	3478.53			
SFORZO LONGITUDINALE HL=	759.88	743.06	692.59			
SFORZO TRASVERSALE HT=	0.00	0.00	0.00			
MOMENTO LONGITUDINALE ML=	1885.59	1815.17	1603.93			
MOMENTO TRASVERSALE MT=	89.30	89.30	89.30			
LATO LONGITUDINALE EFFETTIVO REAGENTE	2.974	3.012	3.128			
LATO TRASVERSALE EFFETTIVO REAGENTE	4.949	4.949	4.949			
CARICO UNITARIO RISULTANTE QS=	238.11	234.66	224.73			

VERIFICA DELLA FONDAZIONE A PONTE CARICO - COMBINAZIONI STATICHE

Nella tabella seguente si riportano le forze ed i momenti longitudinali (stabilizzanti e ribaltanti) agenti sulla fondazione della spalla. Le sollecitazioni sono riferite al punto anteriore della fondazione.

	fy	xg	fx	уд	ms	mr
PLINTO	658.13	2.03			1332.70	0.00
MURO 1	0.00	1.50			0.00	0.00
MURO 2	675.03	2.28			1535.68	0.00
MURO 3 (PARAGHIAIA)	50.38	3.30			166.24	0.00
MURO 4 (TRIANGOLO)	0.00	3.05			0.00	0.00
RISVOLTO SX (RETTANGOLO)	0.00	3.55			0.00	0.00
RISVOLTO SX (TRIANGOLO)	0.00	3.55			0.00	0.00
RISVOLTO DX (RETTANGOLO)	0.00	3.55			0.00	0.00
RISVOLTO DX (TRIANGOLO)	0.00	3.55			0.00	0.00
RISVOLTO CEN.	0.00	3.05			0.00	0.00
CORDOLO SX	0.00	3.30			0.00	0.00
CORDOLO DX	0.00	3.30			0.00	0.00
ORECCHIO SX (RETTANGOLO)	0.00	4.05			0.00	0.00
ORECCHIO SX (TRIANGOLO)	0.00	4.05			0.00	0.00
ORECCHIO DX (RETTANGOLO)	0.00	4.05			0.00	0.00
ORECCHIO DX (TRIANGOLO)	0.00	4.05			0.00	0.00
TRAVE SUPERIORE	0.00	3.05			0.00	0.00
TERRAPIENO	429.00	3.55			1522.95	0.00
SPINTA DEL TERRENO (M1)			642.61	3.18	0.00	2045.65
SPINTA DEL TERRENO (M2)			814.29	3.18	0.00	2592.16
SOVRACCARICO STATICO	26.00	3.55			92.30	0.00
SPINTA DEL SOVRACCARICO (M1)			67.29	4.78	0.00	321.31
SPINTA DEL SOVRACCARICO (M2)			85.27	4.78	0.00	407.15
R. VERTICALE IMPALCATO(PERM)	1666.00	2.00			3332.00	0.00
R. ORIZZONTALE IMPALCATO (PERM)			49.98	8.08	0.00	403.84
R. CONTRASTI LONGITUDINALI (PERM.)			0.00	0.00	0.00	0.00
R. VERTICALE IMPALCATO(ACC)	379.30	2.00			758.60	0.00
R. ORIZZONTALE IMPALCATO (ACC)			11.38	8.08	0.00	91.94
R. CONTRASTI LONGITUDINALI (ACC.)			0.00	0.00	0.00	0.00
R. ORIZZONTALE TIRANTI			0.00	0.00	0.00	0.00
R. VERTICALE TIRANTI	0.00	0.00			0.00	0.00

	5) GEO (A1+M1)	6) GEO (A1+M1)	7) GEO (A2+M2)	8) EQU (A2+M2)
SFORZO VERTICALE V=	5130.03	3478.53	4005.42	3130.67
SFORZO LONGITUDINALE HL=	1018.37	1018.37	989.91	1095.67
SFORZO TRASVERSALE HT=	124.20	124.20	107.64	124.20
MOMENTO LONGITUDINALE ML=	2659.73	2958.65	2760.04	3283.23
MOMENTO TRASVERSALE MT=	1517.84	1517.84	1304.15	1499.98
LATO LONGITUDINALE EFFETTIVO REAGENTE	3.013	2.349	2.672	
LATO TRASVERSALE EFFETTIVO REAGENTE	4.408	4.127	4.349	
CARICO UNITARIO RISULTANTE QS=	386.23	358.81	344.72	
MOMENTO TRASVERSALE MT= LATO LONGITUDINALE EFFETTIVO REAGENTE LATO TRASVERSALE EFFETTIVO REAGENTE	1517.84 3.013 4.408	1517.84 2.349 4.127	1304.15 2.672 4.349	

Combinazioni allo S.L.E.: le sollecitazioni riferite al baricentro della fondazione risultano:

Combinazioni ano C.E.E le concentazioni mente ai bancontro della fondazione notattano.						
	RARA	FREQUENTE	QUASI PERM.			
SFORZO VERTICALE V=	3883.83	3782.50	3478.53			
SFORZO LONGITUDINALE HL=	771.26	751.59	692.59			
SFORZO TRASVERSALE HT=	82.80	62.10	0.00			
MOMENTO LONGITUDINALE ML=	1987.01	1891.24	1603.93			
MOMENTO TRASVERSALE MT=	1023.80	790.18	89.30			
LATO LONGITUDINALE EFFETTIVO REAGENTE	3.027	3.050	3.128			
LATO TRASVERSALE EFFETTIVO REAGENTE	4.473	4.582	4.949			
CARICO UNITARIO RISULTANTE QS=	286.88	270.65	224.73			

VERIFICA DELLA FONDAZIONE A PONTE CARICO - COMBINAZIONE SISMICA V.ALTO

Nella tabella seguente si riportano le forze ed i momenti longitudinali (stabilizzanti e ribaltanti) agenti sulla fondazione della spalla. Le sollecitazioni sono riferite al punto anteriore della fondazione. Il sisma si considera agente verso valle e verso l'alto.

	fy	xg	fx	уд	ms	mr
PLINTO	658.13	2.03	52.72	0.65	1332.70	34.27
MURO 1	0.00	1.50	0.00	1.30	0.00	0.00
MURO 2	675.03	2.28	54.07	4.65	1535.68	251.42
MURO 3 (PARAGHIAIA)	50.38	3.30	4.04	8.78	166.24	35.41
MURO 4 (TRIANGOLO)	0.00	3.05	0.00	4.05	0.00	0.00
RISVOLTO SX (RETTANGOLO)	0.00	3.55	0.00	1.30	0.00	0.00
RISVOLTO SX (TRIANGOLO)	0.00	3.55	0.00	1.30	0.00	0.00
RISVOLTO DX (RETTANGOLO)	0.00	3.55	0.00	1.30	0.00	0.00
RISVOLTO DX (TRIANGOLO)	0.00	3.55	0.00	1.30	0.00	0.00
RISVOLTO CEN.	0.00	3.05	0.00	1.30	0.00	0.00
CORDOLO SX	0.00	3.30	0.00	1.30	0.00	0.00
CORDOLO DX	0.00	3.30	0.00	1.30	0.00	0.00
ORECCHIO SX (RETTANGOLO)	0.00	4.05	0.00	1.30	0.00	0.00
ORECCHIO SX (TRIANGOLO)	0.00	4.05	0.00	1.30	0.00	0.00
ORECCHIO DX (RETTANGOLO)	0.00	4.05	0.00	1.30	0.00	0.00
ORECCHIO DX (TRIANGOLO)	0.00	4.05	0.00	1.30	0.00	0.00
TRAVE SUPERIORE	0.00	3.05	0.00	9.55	0.00	0.00
TERRAPIENO	429.00	3.55	34.36	5.43	1522.95	186.42
SOVRACCARICO SISMICO	0.00	3.55	0.00	9.55	0.00	0.00
SPINTA DEL TERRENO (M1)			642.61	3.18	0.00	2045.65
SPINTA DEL SOVRACCARICO (M1)			0.00	4.78	0.00	0.00
INCR. SPINTA DEL TERRENO (M1)			106.30	3.18	0.00	338.40
INCR. SPINTA DEL SOVRACCARICO (M1)			0.00	4.78	0.00	0.00
SPINTA DEL TERRENO (M2)			814.29	3.18	0.00	2592.16
SPINTA DEL SOVRACCARICO (M2)			0.00	4.78	0.00	0.00
INCR. SPINTA DEL TERRENO (M2)			119.96	3.18	0.00	381.88
INCR. SPINTA DEL SOVRACCARICO (M2)			0.00	4.78	0.00	0.00
R. VERTICALE IMPALCATO(PERM)	1901.50	2.00			3803.00	0.00
R. ORIZZONTALE IMPALCATO (PERM)			57.05	8.08	0.00	460.92
R. CONTRASTI LONGITUDINALI (PERM.)			0.00	0.00	0.00	0.00
R. VERTICALE IMPALCATO(ACC)	0.00	2.00			0.00	0.00
R. ORIZZONTALE IMPALCATO (ACC)			0.00	8.08	0.00	0.00
R. CONTRASTI LONGITUDINALI (ACC.)			0.00	0.00	0.00	0.00
R. ORIZZONTALE TIRANTI			0.00	0.00	0.00	0.00
R. VERTICALE TIRANTI	0.00	0.00			0.00	0.00

Combinazioni allo S.L.U.: le sollecitazioni riferite al baricentro della fondazione risultano quindi:

	9) GEO (A1+M1)	10) GEO (A2+M2)
SFORZO VERTICALE V=	3641.43	3641.43
SFORZO LONGITUDINALE HL=	951.14	1136.48
SFORZO TRASVERSALE HT=	118.70	118.70
MOMENTO LONGITUDINALE ML=	2548.35	3138.34
MOMENTO TRASVERSALE MT=	1448.70	1359.40
LATO LONGITUDINALE EFFETTIVO REAGENTE	2.650	2.326
LATO TRASVERSALE EFFETTIVO REAGENTE	4.204	4.253
CARICO LINITARIO RISUI TANTE OS-	326.70	368 02

VERIFICA DELLA FONDAZIONE A PONTE CARICO - COMBINAZIONE SISMICA V.BASSO

Nella tabella seguente si riportano le forze ed i momenti longitudinali (stabilizzanti e ribaltanti) agenti sulla fondazione della spalla. Le sollecitazioni sono riferite al punto anteriore della fondazione. Il sisma si considera agente verso valle e verso l'alto.

	fy	xg	fx	yg	ms	mr
PLINTO	658.13	2.03	52.72	0.65	1332.70	34.27
MURO 1	0.00	1.50	0.00	1.30	0.00	0.00
MURO 2	675.03	2.28	54.07	4.65	1535.68	251.42
MURO 3 (PARAGHIAIA)	50.38	3.30	4.04	8.78	166.24	35.41
MURO 4 (TRIANGOLO)	0.00	3.05	0.00	4.05	0.00	0.00
RISVOLTO SX (RETTANGOLO)	0.00	3.55	0.00	1.30	0.00	0.00
RISVOLTO SX (TRIANGOLO)	0.00	3.55	0.00	1.30	0.00	0.00
RISVOLTO DX (RETTANGOLO)	0.00	3.55	0.00	1.30	0.00	0.00
RISVOLTO DX (TRIANGOLO)	0.00	3.55	0.00	1.30	0.00	0.00
RISVOLTO CEN.	0.00	3.05	0.00	1.30	0.00	0.00
CORDOLO SX	0.00	3.30	0.00	1.30	0.00	0.00
CORDOLO DX	0.00	3.30	0.00	1.30	0.00	0.00
ORECCHIO SX (RETTANGOLO)	0.00	4.05	0.00	1.30	0.00	0.00
ORECCHIO SX (TRIANGOLO)	0.00	4.05	0.00	1.30	0.00	0.00
ORECCHIO DX (RETTANGOLO)	0.00	4.05	0.00	1.30	0.00	0.00
ORECCHIO DX (TRIANGOLO)	0.00	4.05	0.00	1.30	0.00	0.00
TRAVE SUPERIORE	0.00	3.05	0.00	9.55	0.00	0.00
TERRAPIENO	429.00	3.55	34.36	5.43	1522.95	186.42
SOVRACCARICO SISMICO	0.00	3.55	0.00	9.55	0.00	0.00
SPINTA DEL TERRENO (M1)			642.61	3.18	0.00	2045.65
SPINTA DEL SOVRACCARICO (M1)			0.00	4.78	0.00	0.00
INCR. SPINTA DEL TERRENO (M1)			105.55	3.18	0.00	336.02
INCR. SPINTA DEL SOVRACCARICO (M1)			0.00	4.78	0.00	0.00
SPINTA DEL TERRENO (M2)			814.29	3.18	0.00	2592.16
SPINTA DEL SOVRACCARICO (M2)			0.00	4.78	0.00	0.00
INCR. SPINTA DEL TERRENO (M2)			119.37	3.18	0.00	379.98
INCR. SPINTA DEL SOVRACCARICO (M2)			0.00	4.78	0.00	0.00
R. VERTICALE IMPALCATO(PERM)	1901.50	2.00			3803.00	0.00
R. ORIZZONTALE IMPALCATO (PERM)			57.05	8.08	0.00	460.92
R. CONTRASTI LONGITUDINALI (PERM.)			0.00	0.00	0.00	0.00
R. VERTICALE IMPALCATO(ACC)	0.00	2.00			0.00	0.00
R. ORIZZONTALE IMPALCATO (ACC)			0.00	8.08	0.00	0.00
R. CONTRASTI LONGITUDINALI (ACC.)			0.00	0.00	0.00	0.00
R. ORIZZONTALE TIRANTI			0.00	0.00	0.00	0.00
R. VERTICALE TIRANTI	0.00	0.00			0.00	0.00

Combinazioni allo S.L.U.: le sollecitazioni riferite al baricentro della fondazione risultano quindi:

	11) GEO (A1+M1)	12) GEO (A2+M2)
SFORZO VERTICALE V=	3786.62	3786.62
SFORZO LONGITUDINALE HL=	950.40	1135.89
SFORZO TRASVERSALE HT=	118.70	118.70
MOMENTO LONGITUDINALE ML=	2474.90	3065.38
MOMENTO TRASVERSALE MT=	1448.70	1448.70
LATO LONGITUDINALE EFFETTIVO REAGENTE	2.743	2.431
LATO TRASVERSALE EFFETTIVO REAGENTE	4.235	4.235
CARICO UNITARIO RISULTANTE QS=	326.00	367.82

VERIFICA AL RIBALTAMENTO (LONGITUDINALE) STATICA		SISMICA	SISMICA	
	PONTE SCARICO		V.ALTO	V.BASSO	
SFORZO VERTICALE V=	3130.67		3641.43	3786.62	
MOMENTO LONGITUDINALE MS= MOMENTO DI RIBALTAMENTO MR=	3145.32 6339.61		3138.34 7373.90	3065.38 7667.90	
COEFFICIENTE DI SICUREZZA MR/MS >1	2.02		2.35	2.50	
VERIFICA ALLO SCORRIMENTO SUL TERRENO COEFFICIENTI PARZIALI PARAMETRI GEOTECNI		PORTANZA A1+M1	A2.M2		
ANGOLO DI ATTRITO	CI	1.00	A2+M2 1.25		
COESIONE DRENATA		1.00	1.25		
COMPRESSIONE UNIASSIALE ROCCE		1.60	1.60		
COEFFICIENTI PARZIALI RESISTENZE		R1	R2		
CAPACITA' PORTANTE FONDAZIONE		1.00	1.00		
SCORRIMENTO FONDAZIONE		1.00	1.00		
		A4 - B44	A2.M2		
PESO SPECIFICO EFFICACE DEL TERRENO		A1+M1 10.00	A2+M2 10.00		
ANGOLO DI ATTRITO DEL TERRENO		35.00	29.26		
COESIONE DRENATA		0.00	0.00		
APPROFONDIMENTO DEL PIANO DI FONDAZION		1.00 0.00	1.00 0.00		
ROCK QUALITY DESIGNATION INDEX (RQD; =0 s LATO (MINORE) DELLA FONDAZIONE	e terreno sciolio)	4.05	4.05		
COEFFICIENTI DI PORTANZA (TERZAGHI)	Nc=	57.75	34.96		
	Nq=	41.44	20.58		
FATTORI DI FORMA (TERZAGHI)	Ng= Sc=	42.67 1.30	18.75 1.30		
TATION DITONWA (TENZAOTII)	Sg=	0.80	0.80		
PRESSIONE LIMITE	Qlim=	1105.70	509.66		
COEFFICIENTE DI ATTRITO		0.70	0.56		
ADESIONE DEL TERRENO		0.00	0.00		
PONTE SCARICO - COMBINAZIONE STATICA	1) GEO (A1+M1)	2) (SEO (A1+M1)	3) GEO (A2+M2)	
SFORZO VERTICALE V=	4561.08		3478.53	3512.33	
SFORZO LONGITUDINALE HL= SFORZO TRASVERSALE HT=	1001.30 0.00		1001.30 0.00	975.12 0.00	
MOMENTO LONGITUDINALE ML=	2507.59		2820.74	2628.19	
MOMENTO TRASVERSALE MT=	116.09		116.09	89.30	
VERIFICA DI PORTANZA LATO LONGITUDINALE EFFETTIVO REAGENTE	2.05		2.42	0.55	
LATO LONGITUDINALE EFFETTIVO REAGENTE	2.95 4.95		2.43 4.93	2.55 4.95	
CARICO UNITARIO RISULTANTE QS=	312.36		290.39	277.93	
CARICO UNITARIO RESISTENTE QR=	1105.70		1105.70	509.66	
COEFFICIENTE DI SICUREZZA QR/QS > 1 VERIFICA ALLO SCORRIMENTO	3.54		3.81	1.83	
SFORZO ORIZZONTALE RISULTANTE HS=	1001.30		1001.30	975.12	
SFORZO ORIZZONTALE RESISTENTE HR=	3193.70		2435.69	1967.49	
COEFFICIENTE DI SICUREZZA HR/HS >1	3.19		2.43	2.02	
PONTE CARICO - COMBINAZIONE STATICA	5) GEO (A1+M1)	6) 0	GEO (A1+M1)	7) GEO (A2+M2)	
SFORZO VERTICALE V= SFORZO LONGITUDINALE HL=	5130.03		3478.53	4005.42	
SFORZO LONGITUDINALE HL= SFORZO TRASVERSALE HT=	1018.37 124.20		1018.37 124.20	989.91 107.64	
MOMENTO LONGITUDINALE ML=	2659.73		2958.65	2760.04	
MOMENTO TRASVERSALE MT=	1517.84		1517.84	1304.15	
VERIFICA DI PORTANZA LATO LONGITUDINALE EFFETTIVO REAGENTE	3.01		2.35	2.67	
LATO TRASVERSALE EFFETTIVO REAGENTE	4.41		4.13	4.35	
CARICO UNITARIO RISULTANTE QS=	386.23		358.81	344.72	
CARICO UNITARIO RESISTENTE QR= COEFFICIENTE DI SICUREZZA QR/QS > 1	1105.70		1105.70	509.66	
VERIFICA ALLO SCORRIMENTO	2.86		3.08	1.48	
SFORZO ORIZZONTALE RISULTANTE HS=	1025.92		1025.92	995.75	
SFORZO ORIZZONTALE RESISTENTE HR=	3592.09		2435.69	2243.70	
COEFFICIENTE DI SICUREZZA HR/HS >1	3.50		2.37	2.25	
PONTE CARICO - COMBINAZIONE SISMICA	SISI	MA VERT. V.	ALTO	SISMA VE	RT. V. BASSO
OFORZO VERTICALE V	9) GEO (A1+M1)	10) GEO (A2+M2)	11) GEO (A1+M1)	12) GEO (A2+M2)
SFORZO VERTICALE V= SFORZO LONGITUDINALE HL=	3641.43 951.14		3641.43 1136.48	3786.62 950.40	3786.62 1135.89
SFORZO TRASVERSALE HT=	118.70		118.70	118.70	118.70
MOMENTO LONGITUDINALE ML=	2548.35		3138.34	2474.90	3065.38
MOMENTO TRASVERSALE MT= VERIFICA DI PORTANZA	1448.70		1359.40	1448.70	1448.70
LATO LONGITUDINALE EFFETTIVO REAGENTE	2.65		2.33	2.74	2.43
LATO TRASVERSALE EFFETTIVO REAGENTE	4.20		4.25	4.23	4.23
CARICO UNITARIO RISULTANTE QS=	326.79		368.02	326.00	367.82
CARICO UNITARIO RESISTENTE QR= COEFFICIENTE DI SICUREZZA QR/QS > 1	1105.70 3.38		509.66 1.38	1105.70 3.39	509.66 1.39
VERIFICA ALLO SCORRIMENTO	0.00		1.00	0.00	1.00
SFORZO ORIZZONTALE RISULTANTE HS=	958.52		1142.66	957.78	1142.07
SFORZO ORIZZONTALE RESISTENTE HR= COEFFICIENTE DI SICUREZZA HR/HS >1	2549.76 2.66		2039.81 1.79	2651.42 2.77	2121.13 1.86
OOLI I IOILINI E DI GIOUNEZZA FINITO >1	2.00		1.19	2.11	1.00
VERIFICA AL RIBALTAMENTO: COEFFICIENTE D				2.02	
VERIFICA DI PORTANZA DELLA FONDAZIONE: (OFFEICIENTE DI SIC	UREZZA MIN	IIMO	1.38	
VERIFICA ALLO SCORRIMENTO DELLA FONDAZ			774 MINIM	1.79	

VERIFICA DEL MURO FRONTALE A PONTE SCARICO E A PONTE CARICO- COMBINAZIONI STATICHE

Nella tabella seguente si riportano le forze ed i momenti longitudinali (stabilizzanti e ribaltanti) agenti sull'elevazione della spalla. Le sollecitazioni sono riferite al punto anteriore dell'elevazione.

	fy	xg	fx	уд	ms	mr
MURO 1	0.00	0.00			0.00	
MURO 2	675.03	0.78			523.14	
MURO 3 (PARAGHIAIA)	50.38	1.80			90.68	
MURO 4 (TRIANGOLO)	0.00	1.55			0.00	
CORDOLO SX	0.00	0.78			0.00	
CORDOLO DX	0.00	0.78			0.00	
TRAVE SUPERIORE	0.00	1.55			0.00	
SPINTA DEL TERRENO (M1)			479.57	2.75		1318.81
SPINTA DEL SOVRACCARICO (M1)			58.13	4.13		239.78
R. VERTICALE IMPALCATO(PERM)	1666.00	0.50			833.00	
R. ORIZZONTALE IMPALCATO (PERM)			49.98	6.78		338.86
R. CONTRASTI LONGITUDINALI (PERM.)			0.00	-1.30		0.00
R. VERTICALE IMPALCATO(ACC)	379.30	0.50			189.65	
R. ORIZZONTALE IMPALCATO (ACC)			11.38	6.78		77.15
R. CONTRASTI LONGITUDINALI (ACC.)			0.00	-1.30		0.00
R. ORIZZONTALE TIRANTI			0.00	-1.30	0.00	
R. VERTICALE TIRANTI	0.00	-1.50			0.00	

Le sollecitazioni riferite al centro geometrico della sezione di verifica risultano quindi:

A PONTE SCARICO SFORZO VERTICALE V= SFORZO LONGITUDINALE HL= MOMENTO LONGITUDINALE ML=	RARA	FREQUENTE	QUASI PERM.	S.L.U. (A1+M1)
	2391.40	2391.40	2391.40	3108.82
	587.68	573.15	529.55	775.61
	2303.98	2244.03	2064.19	3043.13
A PONTE CARICO SFORZO VERTICALE V= SFORZO LONGITUDINALE HL= MOMENTO LONGITUDINALE ML=	RARA	FREQUENTE	QUASI PERM.	S.L.U. (A1+M1)
	2770.70	2675.88	2391.40	3677.77
	599.06	581.68	529.55	792.68
	2485.43	2380.12	2064.19	3315.31

VERIFICA DEL MURO FRONTALE A PONTE CARICO - COMBINAZIONE SISMICA - SISMA VERTICALE VERSO L'ALTO

Nella tabella seguente si riportano le forze ed i momenti longitudinali (stabilizzanti e ribaltanti) agenti sul muro frontale della spalla. Le sollecitazioni sono riferite al punto anteriore del muro frontale.

	fy	va	fx	1/0	ms	mr
MURO 1	0.00	0.00	0.00	yg 0.00	0.00	0.00
MURO 2	675.03	0.78	54.07	3.35	523.14	181.13
MURO 3 (PARAGHIAIA)	50.38	1.80	4.04	7.48	90.68	30.16
MURO 4 (TRIANGOLO)	0.00	1.55	0.00	2.75	0.00	0.00
CORDOLO SX	0.00	1.80	0.00	0.00	0.00	0.00
CORDOLO DX	0.00	1.80	0.00	0.00	0.00	0.00
TRAVE SUPERIORE	0.00	1.55	0.00	8.25	0.00	0.00
SPINTA DEL TERRENO (M1)			479.57	2.75		1318.81
SPINTA DEL SOVRACCARICO (M1)			0.00	4.13		0.00
INCR. SPINTA DEL TERRENO (M1)			79.33	2.75		218.16
INCR. SPINTA DEL SOVRACCARICO (M1)			0.00	4.13		0.00
R. VERTICALE IMPALCATO(PERM)	1901.50	0.50			950.75	
R. ORIZZONTALE IMPALCATO (PERM)			57.05	6.78		386.77
R. CONTRASTI LONGITUDINALI (PERM.)			0.00	-1.30		0.00
R. VERTICALE IMPALCATO(ACC)	0.00	0.50			0.00	
R. ORIZZONTALE IMPALCATO (ACC)			0.00	6.78		0.00
R. CONTRASTI LONGITUDINALI (ACC.)			0.00	-1.30		0.00
R. ORIZZONTALE TIRANTI			0.00	-1.30	0.00	
R. VERTICALE TIRANTI	0.00	-1.50			0.00	
TOTALI STATICI (A1+M1)	2626.90		536.61		1564.57	1705.58
TOTALI SISMA LONGITUDINALE (A1+M1)	0.00		137.44		0.00	429.46
SISMA VERTICALE (V. ALTO)	-29.05	0.00	0.00		0.00	24.58

Le sollecitazioni riferite al centro geometrico della sezione di verifica risultano quindi:

, and the second	FASE STATICA	SISMA LONG.	SISMA VERT.	TOTALI S.L.U. (A1+M1)
SFORZO VERTICALE V=	2626.90	0.00	-29.05	2597.85
SFORZO ORIZZONTALE H=	536.61	137.44	0.00	674.05
MOMENTO LONGITUDINALE ML=	2176.86	429.46	2.07	2608.38

VERIFICA DEL MURO FRONTALE A PONTE CARICO - COMBINAZIONE SISMICA - SISMA VERTICALE VERSO IL BASSO

Nella tabella seguente si riportano le forze ed i momenti longitudinali (stabilizzanti e ribaltanti) agenti sul muro frontale della spalla. Le sollecitazioni sono riferite al punto anteriore del muro frontale.

	fy	xg	fx	yg	ms	mr
MURO 1	0.00	0.00	0.00	0.00	0.00	0.00
MURO 2	675.03	0.78	54.07	3.35	523.14	181.13
MURO 3 (PARAGHIAIA)	50.38	1.80	4.04	7.48	90.68	30.16
MURO 4 (TRIANGOLO)	0.00	1.55	0.00	2.75	0.00	0.00
CORDOLO SX	0.00	1.80	0.00	0.00	0.00	0.00
CORDOLO DX	0.00	1.80	0.00	0.00	0.00	0.00
TRAVE SUPERIORE	0.00	1.55	0.00	8.25	0.00	0.00
SPINTA DEL TERRENO (M1)			479.57	2.75		1318.81
SPINTA DEL SOVRACCARICO (M1)			0.00	4.13		0.00
INCR. SPINTA DEL TERRENO (M1)			78.77	2.75		216.63
INCR. SPINTA DEL SOVRACCARICO (M1)			0.00	4.13		0.00
R. VERTICALE IMPALCATO(PERM)	1901.50	0.50			950.75	
R. ORIZZONTALE IMPALCATO (PERM)			57.05	6.78		386.77
R. CONTRASTI LONGITUDINALI (PERM.)			0.00	-1.30		0.00
R. VERTICALE IMPALCATO(ACC)	0.00	0.50			0.00	
R. ORIZZONTALE IMPALCATO (ACC)			0.00	6.78		0.00
R. CONTRASTI LONGITUDINALI (ACC.)			0.00	-1.30		0.00
R. ORIZZONTALE TIRANTI			0.00	0.00	0.00	
R. VERTICALE TIRANTI	0.00	1.55			0.00	
-		*			•	
TOTALI STATICI (A1+M1)	2626.90		536.61		1564.57	1705.58
TOTALI SISMA LONGITUDINALE (A1+M1)	0.00		136.88		0.00	427.92
SISMA VERTICALE (V. BASSO)	29.05		0.00		24.58	0.00

	FASE	SISMA	SISMA	TOTALI
	STATICA	LONG.	VERT.	S.L.U. (A1+M1)
SFORZO VERTICALE V=	2626.90	0.00	29.05	2655.95
SFORZO ORIZZONTALE H=	536.61	136.88	0.00	673.49
MOMENTO LONGITUDINALE ML=	2176.86	427.92	-2.07	2602.71

PONTE CANALE - SPALLA - PLINTO LONGITUDINALE

Combinazioni: Momento massimo

 Ordinata rispetto a cui sono calcolate le sollecitazioni
 ys=
 650.00 [mm]

 Sforzo normale agente di calcolo
 Nsd=
 0.00 [kN]

 Momento agente di calcolo (rispetto a y=ys)
 Msd(y=ys)=
 434.20 [kNm]

Momento agente di calcolo (rispetto al baricentro della sezione: yg= 650.00 mm) Msd(y=yg)= 434.20 [kNm]

DATI GEOMETRICI SEZIONE

Calcestruzzo trave: modello parabola-rettangolo

Resistenza caratteristica cilindrica del calcestruzzo trave fck= $20.00 \text{ [N/mm}^2]$ Coefficiente riduttivo per resistenze di lunga durata $\alpha cc= 0.85$ Coefficiente parziale di sicurezza calcestruzzo trave $\gamma c= 1.50$ Resistenza di calcolo a compressione del calcestruzzo trave fcd= $11.333 \text{ [N/mm}^2]$ Resistenza di calcolo a trazione del calcestruzzo trave fctd= $1.032 \text{ [N/mm}^2]$

Elementi	b inf	h	b sup	y inf	y sup	εinf	ε sup	σ inf	σsup	NRd(y=0)	MRd(y=0)
	[mm]	[mm]	[mm]	[mm]	[mm]	‰	‰	[N/mm ²]	[N/mm ²]	[kN]	[kNm]
1	1000.0	1300.0	1000.0	0.0	1300.0	10.2564	-0.8523	0.000	-7.601	-413.26	522.93
2	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
3	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
4	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
5	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
6	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
7	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
8	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
9	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
10	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
totali		1300.0		0.0	1300.0					-413.26	522.93

Armatura ordinaria longitudinale: modello elastico-plastico indefinito

Modulo di elasticità acciaioEs= $210000.00 \text{ [N/mm}^2]$ Resistenza caratteristica acciaio ordinariofyk= $430.00 \text{ [N/mm}^2]$ Coefficiente parziale di sicurezza acciaio ordinario γ s=1.15Deformazione massima di calcolo ϵ ud=10.00 %Resistenza di calcolo acciaio ordinariofyd=373.91 [N/mm²]

Armature	Numero	Diametro	livello	area	εyd	εacc	σ асс	Nrd(y=0)	Mrd(y=0)
strato	ferri	[mm]	[mm]	[mm ²]	‰	‰	[N/mm ²]	[kN]	[kNm]
1	4	20	30.0	1256.64	1.7805	10.0000	373.91	469.87	-14.10
2	4	12	1270.0	452.39	1.7805	-0.5959	-125.14	-56.61	71.90
3	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
4	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
5	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
6	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
7	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
8	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
9	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
10	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
totali			30.0	1709.03	1.78054	10.0000		413.26	57.80

VERIFICA ALLO STATO LIMITE ULTIMO: MOMENTO FLETTENTE - SFORZO NORMALE

Profondità relativa dell'asse neutro (x/d)	ξ=	0.0009		
Altezza totale della sezione	h=	1300.0 [mm]		
Copriferro armatura tesa	C=	30.0 [mm]		
Altezza utile (h-c)	d=	1270.0 [mm]		
Profondità dell'asse neutro	x=	1.1 [mm]		
Rapporto tra copriferro armatura tesa ed altezza utile (c/d)	δ=	0.0236		
Braccio della coppia interna	z=	1235.38 [mm]		
Deformazione massima nel calcestruzzo	ε cls=	-0.8523 ‰	in y=	1300.00 [mm]
Deformazione massima nell'acciaio ordinario teso	ε acc=	10.0000 ‰	in y=	30.00 [mm]
Deformazione massima nell'acciaio di precompressione teso	ε ap=	0.0000 ‰	in y=	[mm]
Campo di deformazione specifica		2		
Parametro di deformazione λ ($\epsilon = \lambda + \mu y$)	λ=	1.026E-02		
Parametro di deformazione μ ($\varepsilon = \lambda + \mu y$)	μ=	-8.545E-06 [mm ⁻¹]		
Sforzo normale resistente (rispetto alla base - y=0)	Nrd(y=0)=	0.00 [kN]		
Momento resistente (rispetto alla base - y=0)	Mrd(y=0)=	580.73 [kNm]		
• • •	,			
Sforzo normale resistente (rispetto a y=ys)	Nrd=	0.00 [kN]		
Momento resistente (rispetto a y=ys)	Mrd=	580.73 [kNm]		
Coefficiente di sicurezza allo stato limite ultimo (Nrd=cost)	Mrd/Msd=	1.337		

VERIFICA ALLO STATO LIMITE ULTIMO: SFORZO DI TAGLIO

Sforzo normale agente di calcolo			Nsd=	0.00 [kN]
Sforzo di taglio agente			Vd=	579.00 [kN]
Carichi appesi o indiretti			Cad=	0.00 [kN/m]
Distanza della sezione dal bordo di appoggio (verifica solo VRcd	ee. av <= q.	EN 1002-1-1:6 2 1/8\\	av=	999999.00 [mm]
Sezione ad altezza variabile: Inclinazione dei lembi della membra		. , , , , ,	p=	0.20
Componente di taglio dovuto all'inclinazione dei lembi della memb		or it orcoderite doit wij.	Vmd=	-70.29 [kN]
Sforzo di taglio agente di calcolo: (Vsd = Vd + Vmd)	bratara		Vsd=	508.71 [kN]
Verifica elementi senza armature trasversali resistenti a taglie	0			
Larghezza (minima) della membratura resistente a taglio			bw=	1000.00 [mm]
Altezza utile sezione: d = h - c			d=	1270.00 [mm]
Braccio della coppia interna			z=	1235.38 [mm]
Area armature longitudinali tese			AsI=	1256.64 [mm ²]
Coefficiente: k=1+(200/d)^0.5 [<=2]			k=	1.397
Coefficiente: Vmin=0.035 * (k^1.5) * (fck^0.5)			Vmin=	0.25841 [N/mm ²]
Rapporto geometrico armatura longitudinale: pl= Asl / (bw *d)	[<=0.02]		ρl=	0.00099
Tensione media di compressione nella sezione: cp=Nsd/Ac [<=	=0.2 * fcd]		σcp=	0.000 [N/mm ²]
Sforzo di taglio resistente			Vrd=	328.18 [kN]
Coefficiente di sicurezza allo stato limite ultimo (>= 1; solo ca	alcestruzzo)		Vrd/Vsd=	0.645
Armeture audinovie transported (new textic)				
Armatura ordinaria trasversale (per taglio)			_	040000 00 [N/2]
Modulo di elasticità acciaio armatura trasversale			Esv=	210000.00 [N/mm²]
Resistenza caratteristica acciaio ordinario armatura trasversale			fyvk=	430.00 [N/mm ²]
Coefficiente parziale di sicurezza acciaio ordinario armatura trasv	/ersale		γs=	1.15
		Staffe		Ferri piegati
Resistenza di calcolo acciaio ordinario armatura trasversale	fysd=	373.91 [N/mm ²]	fypd=	299.13 [N/mm ²]
Disposizione armatura trasversale (staffe): numero bracci:	n=	2	n=	0
diametro:	φs=	12 [mm]	φp=	0 [mm]
interasse:	ss=	500.00 [mm]	sp=	0.00 [mm]
Inclinazione rispetto all'asse della trave (45°<=x<=90°)	αs=	90.00 °	αp=	45.00 °
Inclinazione dei "puntoni" di calcestruzzo rispetto all'asse della tra		tθ <=2.5)	cot θ=	2.500
Controllo limite inferiore cot θ in caso di significativo sforzo norma	ale:			
Tensione media di compressione nella sezione: σο	cp=Nsd/Ac		оср=	0.000 [N/mm ²]
Tensione tangenziale baricentrica			τb=	0.587 [N/mm ²]
Tensione principale massima baricentrica			σl=	0.587 [N/mm ²]
Inclinazione minima dei "puntoni" di calcestruzzo r			cot θi=	1.000
Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse		$(1 \le \cot \theta \le \cot \theta \le 2.$	cot θ=	2.500
Prolungamento delle armature longitudinali dovuto all'inclinazione		C 1 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a1=	1544.22 [mm]
Incremento momento flettente dovuto al taglio (traslazione diagra	ımma momer	iti: solo se: Msα + ΔM <	ΔM=	785.55 [kNm]
Verifica elementi con armature trasversali resistenti a taglio				
Verifica del calcestruzzo compresso				
Larghezza (minima) della membratura resistente a taglio			bw=	1000.00 [mm]
Altezza utile sezione: d = h - c			d=	1270.00 [mm]
Braccio della coppia interna			z=	1235.38 [mm]
Coefficiente αc ($\sigma cp/fcd=0.000$)			αc=	1.000
Resistenza a compressione ridotta del calcestruzzo: f'cd = 0.5*f	fcd		f 'cd=	5.667 [N/mm ²]
Sforzo di taglio resistente (calcestruzzo compresso)			Vrcd=	1191.31 [kN]
Coefficiente di sicurezza allo stato limite ultimo (>=1; calces	truzzo com	oresso)	Vrcd/Vsd=	2.058
Verifica dell'armatura trasversale d'anima				
			A 0.v=	226 10 [mm ²]
Area delle armature trasversali (staffe)			Asv=	226.19 [mm²]
Area staffe necessaria per carichi appesi			Ast'=	0.000 [mm²]
Area staffe utile al netto dell' armatura necessaria per carichi appr	esi		Ast"=	226.19 [mm²]
Area delle armature trasversali (ferri piegati)			Asw=	0.00 [mm ²]
Sforzo di taglio resistente (staffe)			Vrsd=	522.42 [kN]
Sforzo di taglio resistente (ferri piegati) Sforzo di taglio resistente totale armature trasversali			Vrpd= Vrsd=	0.00 [kN] 522.42 [kN]
CIOIZO di lagno resistente totale attitature trasversali			viou-	OLL.TE [KIN]
Sforzo di taglio resistente: Vrd=minimo(Vrcd; Vrsd)			Vrd=	522.42 [kN]
Coefficiente di sicurezza allo stato limite ultimo (>= 1; armatu	ura d'anima)		Vrd/Vsd=	1.027

TITOLO: PONTE CANALE - SPALLA - PLINTO LONGITUDINALE - COMB. RARA

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO); (Yç	64.436 cm)		SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)		Y=	64.44 cm
Sforzo normale (N>0: trazione; N<0: compressione)		N=	0.00 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)		M=	322.80 kN.m
Coefficiente di omogeneizzazione		m=	15
Ordinata asse neutro (dall'alto)		ys=	19.56 cm
Ordinata asse neutro (dal basso)		yi=	110.44 cm
Tensione calcestruzzo minima		sc1=	-2.583 N/mm ²
Tensione calcestruzzo massima		sc2=	0.000 N/mm ²
Tensione acciaio minima		sf1=	-32.81 N/mm ²
Tensione acciaio massima		sf2=	212.87 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	N/mm ²	N/mm ²
1	100.00	130.00	100.00	0.00	130.00	110.44	130.00	0.000	-2.583
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		130.00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²
1	4	20	3.00	12.57	212.87
2	4	12	127.00	4.52	-32.81
3	0	0	0.00	0.00	
4	0	0	0.00	0.00	
5	0	0	0.00	0.00	
6	0	0	0.00	0.00	
7	0	0	0.00	0.00	
8	0	0	0.00	0.00	
9	0	0	0.00	0.00	
10	0	0	0.00	0.00	
		Totale	35.82	17.09	

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys'

Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - SPALLA - PLINTO LONGITUDINALE - COMB. FREQUENTE

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO); (Υς 64.436 cm	n)	SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)	Y=	64.44 cm
Sforzo normale (N>0: trazione; N<0: compressione)	N=	0.00 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)	M=	304.40 kN.m
Coefficiente di omogeneizzazione	m=	15
Ordinata asse neutro (dall'alto)	ys=	19.56 cm
Ordinata asse neutro (dal basso)	yi=	110.44 cm
Tensione calcestruzzo minima	sc1=	-2.436 N/mm ²
Tensione calcestruzzo massima	sc2=	0.000 N/mm ²
Tensione acciaio minima	sf1=	-30.94 N/mm ²
Tensione acciaio massima	sf2=	200.73 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	N/mm ²	N/mm ²
1	100.00	130.00	100.00	0.00	130.00	110.44	130.00	0.000	-2.436
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		130.00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf	
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²	
1	4	20	3.00	12.57	200.73	
2	4	12	127.00	4.52	-30.94	
3	0	0	0.00	0.00		
4	0	0	0.00	0.00		
5	0	0	0.00	0.00		
6	0	0	0.00	0.00		
7	0	0	0.00	0.00		
8	0	0	0.00	0.00		
9	0	0	0.00	0.00		
10	0	0	0.00	0.00		
		Totale	35.82	17.09		

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys'

Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - SPALLA - PLINTO LONGITUDINALE - COMB. FREQUENTE

Riferimento:

D.M. 14 gennaio 2008 - "Norme tecniche per le costruzioni - Paragrafo 4.1.2.2.4

Circolare Consiglio Superiore dei Lavori Pubblici del 2 febbraio 2009, N. 617 - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008".

DATI GENERALI

Tipo impronte acciaio
Sensibilità armatura
Poco sensibile
Condizioni ambientali
Combinazione di azioni
Aderenza migliorata
Poco sensibile
Aggressive
Frequenti

VERIFICA ALLO STATO LIMITE DI FORMAZIONE DELLE FESSURE

Resistenza caratteristica cilindrica del conglomerato cementizio

Resistenza a trazione media del conglomerato cementizio (fctm = 0.30 (fck)^(2/3))

Resistenza a trazione allo stato di formazione delle fessure (fcfk = fctm/1.2)

fck=

2.0.0 N/mm²

2.210 N/mm²

1.842 N/mm²

Per la combinazione di azioni prescelta si ha (sezione interamente reagente - sollecitazioni effettive):

Tensione di trazione massima nel calcestruzzo scmax= 1.017 N/mm²

La sezione è verificata allo stato limite di formazione delle fessure

VERIFICA ALLO STATO LIMITE DI APERTURA DELLE FESSURE

a) Calcolo della deformazione unitaria media dell'armatura epsrm

29962 N/mm² Modulo elastico del calcestruzzo Ec= Modulo elastico delle armature Es= 210000 N/mm² Tensione nell'armatura tesa in sezione fessurata 200.732 N/mm² siamas= Base della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure 100.000 cm b,eff= Altezza della zona di calcestruzzo efficace [min(2.5(h-d);(h-x)/3;h/2] h,eff= 7.500 cm 750.000 cm² Area della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure Ac,eff = b,eff h,eff = 12.566 cm² Area della sezione di acciaio posta nell'area efficace Ac,eff As= Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff 0.016755 ro,eff=As/Ac,eff= Coefficiente per le condizioni di sollecitazione (0.6 azioni di breve durata, 0.4 azioni di lunga durata) kt= 0.6 0.000535 Deformazione unitaria media dell'armatura epsrm= Deformazione unitaria media dell'armatura (limite inferiore) (epsrm,lim = 0.6 sigmas/Es) epsrm,lim= 0.000574

b) Calcolo della distanza massima tra le fessure Dsmax

Distanza tra le barre (Int - fi) s1= 23.000 cm Diametro equivalente delle barre tese 20 mm fi= 2.000 cm Ricoprimento netto dell'armatura (Yf-fi/2) c= Distanza limite tra le barre da utilizzare nel calcolo (s = 5*(c+fi/2)) b= 15.000 cm Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff ro,eff=As/Ac,eff= 0.016755 Deformazione di trazione massima in sezione fessurata 0.000459 eps1= 0.000000 Deformazione di trazione minima in sezione fessurata eps2= Coefficiente di aderenza calcestruzzo alla barra (0.8 per barre ad aderenza migliorata, 1.6 per barre lisce) k1= 0.800 Coeffiiciente di forma del diagramma delle deformazioni di trazione nella sezione fessurata k2-0.500 Coefficiente k3= 3.400 Coefficiente 0.425 k4= Distanza massima tra le fessure Dsmax= 27.092 cm

c) Calcolo del valore caratteristico dell'apertura delle fessure wk

Deformazione unitaria media dell'armatura epsrm= 0.000574
Distanza massima tra le fessure
Valore caratteristico dell'apertura delle fessure (wk = epsrm Dsmax) wm= 0.155 mm

e) Verifica

Considerando secondo Normativa:

Condizioni ambiente: Aggressive
Combinazioni di azioni: Frequenti
Tipo di armatura: Poco sensibile

Valore nominale caratteristico dell'apertura delle fessure per la combinazione d'azioni considerata wk= 0.300 mm

La sezione è verificata allo stato limite di apertura delle fessure

TITOLO: PONTE CANALE - SPALLA - PLINTO LONGITUDINALE - COMB. QUASI PERMANENTE

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO); (Yç 64.43	36 cm)	SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)	Y=	64.44 cm
Sforzo normale (N>0: trazione; N<0: compressione)	N=	0.00 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)	M=	252.80 kN.m
Coefficiente di omogeneizzazione	m=	15
Ordinata asse neutro (dall'alto)	ys=	19.56 cm
Ordinata asse neutro (dal basso)	yi=	110.44 cm
Tensione calcestruzzo minima	sc1=	-2.023 N/mm ²
Tensione calcestruzzo massima	sc2=	0.000 N/mm ²
Tensione acciaio minima	sf1=	-25.69 N/mm ²
Tensione acciaio massima	sf2=	166.70 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	N/mm ²	N/mm ²
1	100.00	130.00	100.00	0.00	130.00	110.44	130.00	0.000	-2.023
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		130.00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²
1	4	20	3.00	12.57	166.70
2	4	12	127.00	4.52	-25.69
3	0	0	0.00	0.00	
4	0	0	0.00	0.00	
5	0	0	0.00	0.00	
6	0	0	0.00	0.00	
7	0	0	0.00	0.00	
8	0	0	0.00	0.00	
9	0	0	0.00	0.00	
10	0	0	0.00	0.00	
		Totale	35.82	17.09	

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys'

Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - SPALLA - PLINTO LONGITUDINALE - COMB. QUASI PERMANENTE

Riferimento:

D.M. 14 gennaio 2008 - "Norme tecniche per le costruzioni - Paragrafo 4.1.2.2.4

Circolare Consiglio Superiore dei Lavori Pubblici del 2 febbraio 2009, N. 617 - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008".

DATI GENERALI

Tipo impronte acciaio
Sensibilità armatura
Poco sensibile
Condizioni ambientali
Combinazione di azioni
Aderenza migliorata
Poco sensibile
Aggressive
Quasi permanenti

VERIFICA ALLO STATO LIMITE DI FORMAZIONE DELLE FESSURE

Resistenza caratteristica cilindrica del conglomerato cementizio

Resistenza a trazione media del conglomerato cementizio (fctm = 0.30 (fck)^(2/3))

Resistenza a trazione allo stato di formazione delle fessure (fcfk = fctm/1.2)

fck=

2.0.0 N/mm²

2.210 N/mm²

1.842 N/mm²

Per la combinazione di azioni prescelta si ha (sezione interamente reagente - sollecitazioni effettive):

Tensione di trazione massima nel calcestruzzo scmax= 0.844 N/mm²

La sezione è verificata allo stato limite di formazione delle fessure

VERIFICA ALLO STATO LIMITE DI APERTURA DELLE FESSURE

a) Calcolo della deformazione unitaria media dell'armatura epsrm

29962 N/mm² Modulo elastico del calcestruzzo Ec= Modulo elastico delle armature Es= 210000 N/mm² Tensione nell'armatura tesa in sezione fessurata 166.705 N/mm² siamas= Base della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure 100.000 cm b,eff= Altezza della zona di calcestruzzo efficace [min(2.5(h-d);(h-x)/3;h/2] h,eff= 7.500 cm 750.000 cm² Area della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure Ac,eff = b,eff h,eff = 12.566 cm² Area della sezione di acciaio posta nell'area efficace Ac,eff As= Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff 0.016755 ro,eff=As/Ac,eff= Coefficiente per le condizioni di sollecitazione (0.6 azioni di breve durata, 0.4 azioni di lunga durata) kt= 0.4 0.000513 Deformazione unitaria media dell'armatura epsrm= Deformazione unitaria media dell'armatura (limite inferiore) (epsrm,lim = 0.6 sigmas/Es) epsrm,lim= 0.000476

b) Calcolo della distanza massima tra le fessure Dsmax

Distanza tra le barre (Int - fi) s1= 23.000 cm Diametro equivalente delle barre tese 20 mm fi= 2.000 cm Ricoprimento netto dell'armatura (Yf-fi/2) c= Distanza limite tra le barre da utilizzare nel calcolo (s = 5*(c+fi/2)) b= 15.000 cm Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff ro,eff=As/Ac,eff= 0.016755 Deformazione di trazione massima in sezione fessurata 0.000381 eps1= 0.000000 Deformazione di trazione minima in sezione fessurata eps2= Coefficiente di aderenza calcestruzzo alla barra (0.8 per barre ad aderenza migliorata, 1.6 per barre lisce) k1= 0.800 Coeffiiciente di forma del diagramma delle deformazioni di trazione nella sezione fessurata k2-0.500 Coefficiente k3= 3.400 Coefficiente 0.425 k4= Distanza massima tra le fessure Dsmax= 27.092 cm

c) Calcolo del valore caratteristico dell'apertura delle fessure wk

Deformazione unitaria media dell'armatura epsrm= 0.000513

Distanza massima tra le fessure

Valore caratteristico dell'apertura delle fessure (wk = epsrm Dsmax) wm= 0.139 mm

e) Verifica

Considerando secondo Normativa:

Condizioni ambiente: Aggressive
Combinazioni di azioni: Quasi permanenti
Tipo di armatura: Poco sensibile

Valore nominale caratteristico dell'apertura delle fessure per la combinazione d'azioni considerata wk= 0.200 mm

La sezione è verificata allo stato limite di apertura delle fessure

PONTE CANALE - SPALLA - PLINTO TRASVERSALE Combinazioni: Momento massimo

 Ordinata rispetto a cui sono calcolate le sollecitazioni
 ys=
 607.82 [mm]

 Sforzo normale agente di calcolo
 Nsd=
 0.00 [kN]

 Momento agente di calcolo (rispetto a y=ys)
 Msd(y=ys)=
 1125.60 [kNm]

Momento agente di calcolo (rispetto al baricentro della sezione: yg= 607.82 mm) Msd(y=yg)= 1125.60 [kNm]

DATI GEOMETRICI SEZIONE

Calcestruzzo trave: modello parabola-rettangolo

Resistenza caratteristica cilindrica del calcestruzzo trave fck= $20.00 \text{ [N/mm}^2]$ Coefficiente riduttivo per resistenze di lunga durata $\alpha cc= 0.85$ Coefficiente parziale di sicurezza calcestruzzo trave $\gamma c= 1.50$ Resistenza di calcolo a compressione del calcestruzzo trave fcd= $11.333 \text{ [N/mm}^2]$ Resistenza di calcolo a trazione del calcestruzzo trave fctd= $1.032 \text{ [N/mm}^2]$

Elementi	b inf	h	b sup	y inf	y sup	ε inf	ε sup	σ inf	σsup	NRd(y=0)	MRd(y=0)
	[mm]	[mm]	[mm]	[mm]	[mm]	‰	‰	[N/mm ²]	[N/mm ²]	[kN]	[kNm]
1	4050.0	1000.0	4050.0	0.0	1000.0	10.2630	1.4975	0.000	0.000	0.00	0.00
2	4050.0	300.0	1550.0	1000.0	1300.0	1.4975	-1.1321	0.000	-9.199	-1297.17	1621.83
3	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
4	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
5	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
6	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
7	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
8	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
9	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
10	0.0	0.0	0.0	1300.0	1300.0	0.0000	0.0000	0.000	0.000	0.00	0.00
totali		1300.0		0.0	1300.0					-1297.17	1621.83

Armatura ordinaria longitudinale: modello elastico-plastico indefinito

Modulo di elasticità acciaioEs=210000.00 [N/mm²]Resistenza caratteristica acciaio ordinariofyk=430.00 [N/mm²]Coefficiente parziale di sicurezza acciaio ordinarioys=1.15Deformazione massima di calcolo ϵ ud=10.00 %Resistenza di calcolo acciaio ordinariofyd=373.91 [N/mm²]

Armature	Numero	Diametro	livello	area	εyd	εacc	σ асс	Nrd(y=0)	Mrd(y=0)
strato	ferri	[mm]	[mm]	[mm ²]	‰	‰	[N/mm ²]	[kN]	[kNm]
1	20	16	30.0	4021.24	1.7805	10.0000	373.91	1503.59	-45.11
2	10	12	1270.0	1130.97	1.7805	-0.8691	-182.52	-206.43	262.16
3	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
4	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
5	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
6	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
7	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
8	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
9	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
10	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
totali			30.0	5152.21	1.78054	10.0000		1297.17	217.05

VERIFICA ALLO STATO LIMITE ULTIMO: MOMENTO FLETTENTE - SFORZO NORMALE

Profondità relativa dell'asse neutro (x/d)	ξ=	0.0011		
Altezza totale della sezione	h=	1300.0 [mm]		
Copriferro armatura tesa	C=	30.0 [mm]		
Altezza utile (h-c)	d=	1270.0 [mm]		
Profondità dell'asse neutro	χ=	1.4 [mm]		
Rapporto tra copriferro armatura tesa ed altezza utile (c/d)	δ=	0.0236		
Braccio della coppia interna	z=	1220.28 [mm]		
Deformazione massima nel calcestruzzo	ε cls=	-1.1321 ‰	in y=	1300.00 [mm]
Deformazione massima nell'acciaio ordinario teso	ε acc=		in y=	30.00 [mm]
Deformazione massima nell'acciaio di precompressione teso	ε ap=		in y=	[mm]
Campo di deformazione specifica	сир	2	,	[]
Parametro di deformazione λ ($\epsilon = \lambda + \mu y$)	λ=	1.026E-02		
Parametro di deformazione μ ($\epsilon = \lambda + \mu y$)	μ=	-8.765E-06 [mm ⁻¹]		
Sforzo normale resistente (rispetto alla base - y=0)	Nrd(y=0)=	0.00 [kN]		
Momento resistente (rispetto alla base - y=0)	Mrd(y=0)=	1838.88 [kNm]		
Sforzo normale resistente (rispetto a y=ys)	Nrd=	0.00 [kN]		
Momento resistente (rispetto a y=ys)	Mrd=	1838.88 [kNm]		
Coefficiente di sicurezza allo stato limite ultimo (Nrd=cost)	Mrd/Msd=	1.634		

VERIFICA ALLO STATO LIMITE ULTIMO: SFORZO DI TAGLIO

Sforzo normale agente di calcolo			Nsd=	0.00 [kN]
Sforzo di taglio agente			Vd=	1876.00 [kN]
Carichi appesi o indiretti			Cad=	0.00 [kN/m]
Distance della sociaca della code di consecia (confire cola V/D ed		EN 4000 4 4:0 0 4(0))		000000 00 []
Distanza della sezione dal bordo di appoggio (verifica solo VRcd			av=	999999.00 [mm]
Sezione ad altezza variabile: Inclinazione dei lembi della membra	p=	0.00		
Componente di taglio dovuto all'inclinazione dei lembi della mem	bratura		Vmd=	0.00 [kN]
Sforzo di taglio agente di calcolo: (Vsd = Vd + Vmd)			Vsd=	1876.00 [kN]
Verifica elementi senza armature trasversali resistenti a tagli	io			
Larghezza (minima) della membratura resistente a taglio	10		bw=	4050.00 [mm]
Altezza utile sezione: d = h - c			d=	1270.00 [mm]
Braccio della coppia interna			z=	1220.28 [mm]
				4021.24 [mm ²]
Area armature longitudinali tese Coefficiente: k=1+(200/d)^0.5 [<=2]			Asl= k=	1.397
Coefficiente: Vmin=0.035 * (k^1.5) * (fck^0.5)	[0 001		Vmin=	0.25841 [N/mm ²]
Rapporto geometrico armatura longitudinale: ρl= Asl / (bw *d)	[<=0.02]		ρl=	0.00078
Tensione media di compressione nella sezione: ocp=Nsd/Ac [<	=0.2 * fcd]		оср=	0.000 [N/mm ²]
Sforzo di taglio resistente			Vrd=	1329.11 [kN]
Coefficiente di sicurezza allo stato limite ultimo (>= 1; solo c	aicestruzzo)	Vrd/Vsd=	0.708
Armeture audinosis transporado (nos taglis)				
Armatura ordinaria trasversale (per taglio)			_	21
Modulo di elasticità acciaio armatura trasversale			Esv=	210000.00 [N/mm²]
Resistenza caratteristica acciaio ordinario armatura trasversale			fyvk=	430.00 [N/mm ²]
Coefficiente parziale di sicurezza acciaio ordinario armatura trasv	versale		γs=	1.15
		0. "		
		Staffe		Ferri piegati
Resistenza di calcolo acciaio ordinario armatura trasversale	fysd=	373.91 [N/mm ²]	fypd=	299.13 [N/mm²]
Disposizione armatura trasversale (staffe): numero bracci:	n=	8	n=	0
diametro:	φs=	12 [mm]	φ p =	0 [mm]
interasse:	SS=	500.00 [mm] 90.00 °	sp=	0.00 [mm] 45.00 °
Inclinazione rispetto all'asse della trave (45°<=x<=90°)	αs=	90.00	αp=	45.00
Inclinazione dei "puntoni" di calcestruzzo rispetto all'asse della tra	ave (1 <= co	nt0 <-2 5\	cot θ=	2.500
Controllo limite inferiore cot θ in caso di significativo sforzo norm	,	NO <-2.5)	COL 0-	2.500
•				0.000 [N/mm ²]
Tensione media di compressione nella sezione: or	cp=NSu/Ac		оср=	
Tensione tangenziale baricentrica			τb=	0.561 [N/mm ²]
Tensione principale massima baricentrica			σl=	0.561 [N/mm ²]
Inclinazione minima dei "puntoni" di calcestruzzo			cot θi=	1.000
Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse		$(1 \le \cot \theta \le \cot \theta \le 2$		2.500
Prolungamento delle armature longitudinali dovuto all'inclinazione			a1=	1525.35 [mm]
Incremento momento flettente dovuto al taglio (traslazione diagra	amma mome	nti: solo se: ivisα + Δivi •	< ΔM=	2861.56 [kNm]
Verifica elementi con armature trasversali resistenti a taglio				
Verifica del calcestruzzo compresso				
Larghezza (minima) della membratura resistente a taglio			bw=	4050.00 [mm]
Altezza utile sezione: d = h - c			d=	1270.00 [mm]
Braccio della coppia interna			z=	1220.28 [mm]
Coefficiente ac (ccp/fcd= 0.000)			αc=	1.000
Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5*	fcd		f 'cd=	5.667 [N/mm ²]
Sforzo di taglio resistente (calcestruzzo compresso)	100		Vrcd=	4737.24 [kN]
Coefficiente di sicurezza allo stato limite ultimo (>=1; calces	struzzo com	presso)	Vrcd/Vsd=	2.525
, ,		. ,		
Verifica dell'armatura trasversale d'anima				
Area delle armature trasversali (staffe)			Asv=	904.78 [mm ²]
Area staffe necessaria per carichi appesi			Ast'=	0.000 [mm ²]
Area staffe utile al netto dell' armatura necessaria per carichi app	nesi		Ast"=	904.78 [mm ²]
Area delle armature trasversali (ferri piegati)	,		Asw=	0.00 [mm²]
Sforzo di taglio resistente (staffe)			Vrsd=	2064.16 [kN]
Sforzo di taglio resistente (statie)			Vrpd=	0.00 [kN]
Sforzo di taglio resistente (terri piegati) Sforzo di taglio resistente totale armature trasversali			Vrsd=	2064.16 [kN]
2.2.2.2. agno rosiono totalo amataro adoversan			¥150-	200 10 [101]
Sforzo di taglio resistente: Vrd=minimo(Vrcd; Vrsd)			Vrd=	2064.16 [kN]
Coefficiente di sicurezza allo stato limite ultimo (>= 1; armati	ura d'anima)	Vrd/Vsd=	1.100
. ,				

TITOLO: PONTE CANALE - SPALLA - PLINTO TRASVERSALE - COMB. RARA

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO); (Yç	60.307 cm)	SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)	Y=	60.31 cm
Sforzo normale (N>0: trazione; N<0: compressione)	N=	0.00 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)	M=	836.60 kN.m
Coefficiente di omogeneizzazione	m=	15
Ordinata asse neutro (dall'alto)	ys=	23.22 cm
Ordinata asse neutro (dal basso)	yi=	106.78 cm
Tensione calcestruzzo minima	sc1=	-2.620 N/mm ²
Tensione calcestruzzo massima	sc2=	0.000 N/mm ²
Tensione acciaio minima	sf1=	-34.22 N/mm ²
Tensione acciaio massima	sf2=	175.65 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	N/mm ²	N/mm ²						
1	405.00	100.00	405.00	0.00	100.00	89.48	100.00	0.000	0.000
2	405.00	30.00	155.00	100.00	130.00	106.78	130.00	0.000	-2.620
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		130.00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²
1	20	16	3.00	40.21	175.65
2	10	12	127.00	11.31	-34.22
3	0	0	0.00	0.00	
4	0	0	0.00	0.00	
5	0	0	0.00	0.00	
6	0	0	0.00	0.00	
7	0	0	0.00	0.00	
8	0	0	0.00	0.00	
9	0	0	0.00	0.00	
10	0	0	0.00	0.00	
		Totale	30.22	51.52	

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys'

Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - SPALLA - PLINTO TRASVERSALE - COMB. FREQUENTE

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO); (Yç 60.3	07 cm)	SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)	Y=	60.31 cm
Sforzo normale (N>0: trazione; N<0: compressione)	N=	0.00 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)	M=	789.10 kN.m
Coefficiente di omogeneizzazione	m=	15
Ordinata asse neutro (dall'alto)	ys=	23.22 cm
Ordinata asse neutro (dal basso)	yi=	106.78 cm
Tensione calcestruzzo minima	sc1=	-2.471 N/mm ²
Tensione calcestruzzo massima	sc2=	0.000 N/mm ²
Tensione acciaio minima	sf1=	-32.28 N/mm ²
Tensione acciaio massima	sf2=	165.67 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	N/mm ²	N/mm ²						
1	405.00	100.00	405.00	0.00	100.00	89.48	100.00	0.000	0.000
2	405.00	30.00	155.00	100.00	130.00	106.78	130.00	0.000	-2.471
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		130.00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²
1	20	16	3.00	40.21	165.67
2	10	12	127.00	11.31	-32.28
3	0	0	0.00	0.00	
4	0	0	0.00	0.00	
5	0	0	0.00	0.00	
6	0	0	0.00	0.00	
7	0	0	0.00	0.00	
8	0	0	0.00	0.00	
9	0	0	0.00	0.00	
10	0	0	0.00	0.00	
		Totale	30.22	51.52	

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys'

Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - SPALLA - PLINTO TRASVERSALE - COMB. FREQUENTE

Riferimento:

D.M. 14 gennaio 2008 - "Norme tecniche per le costruzioni - Paragrafo 4.1.2.2.4

Circolare Consiglio Superiore dei Lavori Pubblici del 2 febbraio 2009, N. 617 - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008".

DATI GENERALI

Tipo impronte acciaio
Sensibilità armatura
Condizioni ambientali
Combinazione di azioni
Aderenza migliorata
Poco sensibile
Aggressive
Frequenti

VERIFICA ALLO STATO LIMITE DI FORMAZIONE DELLE FESSURE

Resistenza caratteristica cilindrica del conglomerato cementizio

Resistenza a trazione media del conglomerato cementizio (fctm = 0.30 (fck)^(2/3))

Resistenza a trazione allo stato di formazione delle fessure (fcfk = fctm/1.2)

fck=

2.0.0 N/mm²

2.210 N/mm²

1.842 N/mm²

Per la combinazione di azioni prescelta si ha (sezione interamente reagente - sollecitazioni effettive):

Tensione di trazione massima nel calcestruzzo scmax= 0.738 N/mm²

La sezione è verificata allo stato limite di formazione delle fessure

VERIFICA ALLO STATO LIMITE DI APERTURA DELLE FESSURE

a) Calcolo della deformazione unitaria media dell'armatura epsrm

29962 N/mm² Modulo elastico del calcestruzzo Ec= Modulo elastico delle armature Es= 210000 N/mm² Tensione nell'armatura tesa in sezione fessurata 165.674 N/mm² siamas= Base della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure 100.000 cm b,eff= Altezza della zona di calcestruzzo efficace [min(2.5(h-d);(h-x)/3;h/2] h,eff= 7.500 cm 750.000 cm² Area della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure Ac,eff = b,eff h,eff = 40.212 cm² Area della sezione di acciaio posta nell'area efficace Ac,eff As= Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff 0.053617 ro,eff=As/Ac,eff= Coefficiente per le condizioni di sollecitazione (0.6 azioni di breve durata, 0.4 azioni di lunga durata) kt= 0.6 0.000627 Deformazione unitaria media dell'armatura epsrm= Deformazione unitaria media dell'armatura (limite inferiore) (epsrm,lim = 0.6 sigmas/Es) epsrm,lim= 0.000473

b) Calcolo della distanza massima tra le fessure Dsmax

Distanza tra le barre (Int - fi) s1= 18.400 cm Diametro equivalente delle barre tese 16 mm fi= 2.200 cm Ricoprimento netto dell'armatura (Yf-fi/2) c= Distanza limite tra le barre da utilizzare nel calcolo (s = 5*(c+fi/2)) b= 15.000 cm Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff ro,eff=As/Ac,eff= 0.053617 Deformazione di trazione massima in sezione fessurata 0.000379 eps1= 0.000000 Deformazione di trazione minima in sezione fessurata eps2= Coefficiente di aderenza calcestruzzo alla barra (0.8 per barre ad aderenza migliorata, 1.6 per barre lisce) k1= 0.800 Coeffiiciente di forma del diagramma delle deformazioni di trazione nella sezione fessurata k2-0.500 Coefficiente k3= 3.400 Coefficiente 0.425 k4= Distanza massima tra le fessure Dsmax= 12.553 cm

c) Calcolo del valore caratteristico dell'apertura delle fessure wk

Deformazione unitaria media dell'armatura epsrm= 0.000627
Distanza massima tra le fessure
Valore caratteristico dell'apertura delle fessure (wk = epsrm Dsmax) wm= 0.079 mm

e) Verifica

Considerando secondo Normativa :

Condizioni ambiente: Aggressive
Combinazioni di azioni: Frequenti
Tipo di armatura: Poco sensibile

Valore nominale caratteristico dell'apertura delle fessure per la combinazione d'azioni considerata wk= 0.300 mm

La sezione è verificata allo stato limite di apertura delle fessure

TITOLO: PONTE CANALE - SPALLA - PLINTO TRASVERSALE - COMB. QUASI PERMANENTE

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO); (Yç 60.307 cm	n)	SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)	Y=	60.31 cm
Sforzo normale (N>0: trazione; N<0: compressione)	N=	0.00 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)	M=	655.20 kN.m
Coefficiente di omogeneizzazione	m=	15
Ordinata asse neutro (dall'alto)	ys=	23.22 cm
Ordinata asse neutro (dal basso)	yi=	106.78 cm
Tensione calcestruzzo minima	sc1=	-2.052 N/mm ²
Tensione calcestruzzo massima	sc2=	0.000 N/mm ²
Tensione acciaio minima	sf1=	-26.80 N/mm ²
Tensione acciaio massima	sf2=	137.56 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	N/mm ²	N/mm ²						
1	405.00	100.00	405.00	0.00	100.00	89.48	100.00	0.000	0.000
2	405.00	30.00	155.00	100.00	130.00	106.78	130.00	0.000	-2.052
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		130.00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²
1	20	16	3.00	40.21	137.56
2	10	12	127.00	11.31	-26.80
3	0	0	0.00	0.00	
4	0	0	0.00	0.00	
5	0	0	0.00	0.00	
6	0	0	0.00	0.00	
7	0	0	0.00	0.00	
8	0	0	0.00	0.00	
9	0	0	0.00	0.00	
10	0	0	0.00	0.00	
		Totale	30.22	51.52	

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys'

Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - SPALLA - PLINTO TRASVERSALE - COMB. QUASI PERMANENTE

Riferimento:

D.M. 14 gennaio 2008 - "Norme tecniche per le costruzioni - Paragrafo 4.1.2.2.4

Circolare Consiglio Superiore dei Lavori Pubblici del 2 febbraio 2009, N. 617 - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008".

DATI GENERALI

Tipo impronte acciaio
Sensibilità armatura
Poco sensibile
Condizioni ambientali
Combinazione di azioni
Aderenza migliorata
Poco sensibile
Aggressive
Quasi permanenti

VERIFICA ALLO STATO LIMITE DI FORMAZIONE DELLE FESSURE

Resistenza caratteristica cilindrica del conglomerato cementizio fck= 20.0 N/mm²
Resistenza a trazione media del conglomerato cementizio (fctm = 0.30 (fck)^(2/3)) fctm= 2.210 N/mm²
Resistenza a trazione allo stato di formazione delle fessure (fcfk = fctm/1.2) fcfk= 1.842 N/mm²

Per la combinazione di azioni prescelta si ha (sezione interamente reagente - sollecitazioni effettive):

Tensione di trazione massima nel calcestruzzo scmax= 0.613 N/mm²

La sezione è verificata allo stato limite di formazione delle fessure

VERIFICA ALLO STATO LIMITE DI APERTURA DELLE FESSURE

a) Calcolo della deformazione unitaria media dell'armatura epsrm

29962 N/mm² Modulo elastico del calcestruzzo Ec= Modulo elastico delle armature Es= 210000 N/mm² Tensione nell'armatura tesa in sezione fessurata 137,561 N/mm² siamas= Base della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure 100.000 cm b,eff= Altezza della zona di calcestruzzo efficace [min(2.5(h-d);(h-x)/3;h/2] h,eff= 7.500 cm 750.000 cm² Area della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure Ac,eff = b,eff h,eff = 40.212 cm² Area della sezione di acciaio posta nell'area efficace Ac,eff As= Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff 0.053617 ro,eff=As/Ac,eff= Coefficiente per le condizioni di sollecitazione (0.6 azioni di breve durata, 0.4 azioni di lunga durata) kt= 0.4 0.000547 Deformazione unitaria media dell'armatura epsrm= Deformazione unitaria media dell'armatura (limite inferiore) (epsrm,lim = 0.6 sigmas/Es) epsrm,lim= 0.000393

b) Calcolo della distanza massima tra le fessure Dsmax

Distanza tra le barre (Int - fi) s1= 18.400 cm Diametro equivalente delle barre tese 16 mm fi= 2.200 cm Ricoprimento netto dell'armatura (Yf-fi/2) c= Distanza limite tra le barre da utilizzare nel calcolo (s = 5*(c+fi/2)) b= 15.000 cm Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff ro,eff=As/Ac,eff= 0.053617 Deformazione di trazione massima in sezione fessurata 0.000315 eps1= 0.000000 Deformazione di trazione minima in sezione fessurata eps2= Coefficiente di aderenza calcestruzzo alla barra (0.8 per barre ad aderenza migliorata, 1.6 per barre lisce) k1= 0.800 Coeffiiciente di forma del diagramma delle deformazioni di trazione nella sezione fessurata k2-0.500 Coefficiente k3= 3.400 Coefficiente 0.425 k4= Distanza massima tra le fessure Dsmax= 12.553 cm

c) Calcolo del valore caratteristico dell'apertura delle fessure wk

Deformazione unitaria media dell'armatura epsrme 0.000547
Distanza massima tra le fessure
Valore caratteristico dell'apertura delle fessure (wk = epsrm Dsmax) wm= 0.069 mm

e) Verifica

Considerando secondo Normativa:

Condizioni ambiente: Aggressive
Combinazioni di azioni: Quasi permanenti
Tipo di armatura: Poco sensibile

Valore nominale caratteristico dell'apertura delle fessure per la combinazione d'azioni considerata wk= 0.200 mm

La sezione è verificata allo stato limite di apertura delle fessure

PONTE CANALE - SPALLA - FUSTO

Combinazioni: Momento massimo

 Ordinata rispetto a cui sono calcolate le sollecitazioni
 ys=
 775.00 [mm]

 Sforzo normale agente di calcolo
 Nsd=
 -3677.80 [kN]

 Momento agente di calcolo (rispetto a y=ys)
 Msd(y=ys)=
 3315.30 [kNm]

Momento agente di calcolo (rispetto al baricentro della sezione: yg= 775.00 mm) Msd(y=yg)= 3315.30 [kNm]

DATI GEOMETRICI SEZIONE

Calcestruzzo trave: modello parabola-rettangolo

Resistenza caratteristica cilindrica del calcestruzzo trave fck= $20.00 \text{ [N/mm}^2]$ Coefficiente riduttivo per resistenze di lunga durata $\alpha cc= 0.85$ Coefficiente parziale di sicurezza calcestruzzo trave $\gamma c= 1.50$ Resistenza di calcolo a compressione del calcestruzzo trave fcd= $11.333 \text{ [N/mm}^2]$ Resistenza di calcolo a trazione del calcestruzzo trave fctd= $1.032 \text{ [N/mm}^2]$

Elementi	b inf	h	b sup	y inf	y sup	εinf	ε sup	σ inf	σsup	NRd(y=0)	MRd(y=0)
	[mm]	[mm]	[mm]	[mm]	[mm]	‰	‰	[N/mm ²]	[N/mm ²]	[kN]	[kNm]
1	2600.0	1550.0	2600.0	0.0	1550.0	10.2306	-1.6853	0.000	-11.053	-3914.30	5753.20
2	0.0	0.0	0.0	1550.0	1550.0	0.0000	0.0000	0.000	0.000	0.00	0.00
3	0.0	0.0	0.0	1550.0	1550.0	0.0000	0.0000	0.000	0.000	0.00	0.00
4	0.0	0.0	0.0	1550.0	1550.0	0.0000	0.0000	0.000	0.000	0.00	0.00
5	0.0	0.0	0.0	1550.0	1550.0	0.0000	0.0000	0.000	0.000	0.00	0.00
6	0.0	0.0	0.0	1550.0	1550.0	0.0000	0.0000	0.000	0.000	0.00	0.00
7	0.0	0.0	0.0	1550.0	1550.0	0.0000	0.0000	0.000	0.000	0.00	0.00
8	0.0	0.0	0.0	1550.0	1550.0	0.0000	0.0000	0.000	0.000	0.00	0.00
9	0.0	0.0	0.0	1550.0	1550.0	0.0000	0.0000	0.000	0.000	0.00	0.00
10	0.0	0.0	0.0	1550.0	1550.0	0.0000	0.0000	0.000	0.000	0.00	0.00
totali		1550.0		0.0	1550.0					-3914.30	5753.20

Armatura ordinaria longitudinale: modello elastico-plastico indefinito

Modulo di elasticità acciaioEs=210000.00 [N/mm²]Resistenza caratteristica acciaio ordinariofyk=430.00 [N/mm²]Coefficiente parziale di sicurezza acciaio ordinarioys=1.15Deformazione massima di calcolo ϵ ud=10.00 %Resistenza di calcolo acciaio ordinariofyd=373.91 [N/mm²]

-	1								
Armature	Numero	Diametro	livello	area	ε yd	ε acc	σ acc	Nrd(y=0)	Mrd(y=0)
strato	ferri	[mm]	[mm]	[mm ²]	‰	‰	[N/mm ²]	[kN]	[kNm]
1	11	20	30.0	3455.75	1.7805	10.0000	373.91	1292.15	-38.76
2	11	20	1520.0	3455.75	1.7805	-1.4547	-305.48	-1055.66	1604.60
3	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
4	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
5	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
6	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
7	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
8	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
9	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
10	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
totali			30.0	6911.50	1.78054	10.0000		236.50	1565.83

VERIFICA ALLO STATO LIMITE ULTIMO: MOMENTO FLETTENTE - SFORZO NORMALE

Profondità relativa dell'asse neutro (x/d)	ξ=	0.0017		
Altezza totale della sezione	h=	1550.0 [mm]		
Copriferro armatura tesa	C=	30.0 [mm]		
Altezza utile (h-c)	d=	1520.0 [mm]		
Profondità dell'asse neutro	x=	2.6 [mm]		
Rapporto tra copriferro armatura tesa ed altezza utile (c/d)	δ=	0.0197		
Braccio della coppia interna	z=	1439.79 [mm]		
Deformazione massima nel calcestruzzo	ε cls=	-1.6853 ‰	in y=	1550.00 [mm]
Deformazione massima nell'acciaio ordinario teso	ε acc=	10.0000 ‰	in y=	30.00 [mm]
Deformazione massima nell'acciaio di precompressione teso	ε ap=	0.0000 ‰	in y=	[mm]
Campo di deformazione specifica		2		
Parametro di deformazione λ ($\epsilon = \lambda + \mu y$)	λ=	1.023E-02		
Parametro di deformazione μ ($\varepsilon = \lambda + \mu y$)	μ=	-7.688E-06 [mm ⁻¹]		
Sforzo normale resistente (rispetto alla base - y=0)	Nrd(y=0)=	-3677.80 [kN]		
Momento resistente (rispetto alla base - y=0)	Mrd(y=0)=	7319.03 [kNm]		
Sforzo normale resistente (rispetto a y=ys)	Nrd=	-3677.80 [kN]		
Momento resistente (rispetto a y=ys)	Mrd=	4468.74 [kNm]		
Coefficiente di sicurezza allo stato limite ultimo (Nrd=cost)	Mrd/Msd=	1.348		

VERIFICA ALLO STATO LIMITE ULTIMO: SFORZO DI TAGLIO

Sforzo normale agente di calcolo			Nsd=	-3677.80 [kN]	
Sforzo di taglio agente			Vd=	792.70 [kN]	
Carichi appesi o indiretti			Cad=	0.00 [kN/m]	
Distanza della sezione dal bordo di appoggio (verifica solo VRcd se	e: av <= d; E	N 1992-1-1;6.2.1(8))	av=	999999.00 [mm]	
Sezione ad altezza variabile: Inclinazione dei lembi della membratu			p=	0.00	
Componente di taglio dovuto all'inclinazione dei lembi della membr	atura		Vmd=	0.00 [kN]	
Sforzo di taglio agente di calcolo: (Vsd = Vd + Vmd)			Vsd=	792.70 [kN]	
Verifica elementi senza armature trasversali resistenti a taglio					
Larghezza (minima) della membratura resistente a taglio			bw=	2600.00 [mm]	
Altezza utile sezione: d = h - c			d=	1520.00 [mm]	
Braccio della coppia interna			z=	1439.79 [mm]	
Area armature longitudinali tese			AsI=	3455.75 [mm ²]	
Coefficiente: k=1+(200/d)^0.5 [<=2]			k=	1.363	
Coefficiente: Vmin=0.035 * (k^1.5) * (fck^0.5)			Vmin=	0.24900 [N/mm ²]	
Rapporto geometrico armatura longitudinale: ρl= Asl / (bw *d)	<=0.02]		ρ =	0.00087	
Tensione media di compressione nella sezione: ocp=Nsd/Ac [<=0).2 * fcd1		, сср=	0.913 [N/mm ²]	
Sforzo di taglio resistente			Vrd=	1525.05 [kN]	
Coefficiente di sicurezza allo stato limite ultimo (>= 1; solo cal-	cestruzzo)		Vrd/Vsd=	1.924	
Armatura ordinaria trasversale (ner taglio)					
Armatura ordinaria trasversale (per taglio) Modulo di elasticità acciaio armatura trasversale			Esv=	210000.00 [N/mm²]	
Resistenza caratteristica acciaio ordinario armatura trasversale			fyvk=	430.00 [N/mm ²]	
Coefficiente parziale di sicurezza acciaio ordinario armatura trasve	rsale		γs=	1.15	
		04-#-	-	·	
Designation di calcale aggini ardinaria armetura trasversale	f.od-	Staffe		erri piegati	
Resistenza di calcolo acciaio ordinario armatura trasversale Disposizione armatura trasversale (staffe): numero bracci:	fysd= n=	373.91 [N/mm²] 4	fypd= n=	299.13 [N/mm²] 0	
diametro:	φs=	12 [mm]	φp=	0 [mm]	
interasse:	ss=	500.00 [mm]	sp=	0.00 [mm]	
Inclinazione rispetto all'asse della trave (45°<=α<=90°)	αs=	90.00 °	αp=	45.00 °	
Inclinazione dei "puntoni" di calcestruzzo rispetto all'asse della trav Controllo limite inferiore cot θ in caso di significativo sforzo normale		<=2.5)	cot θ=	2.500	
Tensione media di compressione nella sezione: ocp	=Nsd/Ac		оср=	0.913 [N/mm ²]	
Tensione tangenziale baricentrica			τb=	0.295 [N/mm ²]	
Tensione principale massima baricentrica			σl=	0.087 [N/mm ²]	
Inclinazione minima dei "puntoni" di calcestruzzo ris	petto all'ass	e della trave	cot θi=	3.388	
Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse d				3.388	
Prolungamento delle armature longitudinali dovuto all'inclinazioneθ			a1=	2439.15 [mm]	
Incremento momento flettente dovuto al taglio (traslazione diagram	ma moment	i: solo se: Msd + ΔM <	ΔM=	1426.65 [kNm]	
Verifica elementi con armature trasversali resistenti a taglio					
Verifica del calcestruzzo compresso					
Larghezza (minima) della membratura resistente a taglio			bw=	2600.00 [mm]	
Altezza utile sezione: d = h - c			d=	1520.00 [mm]	
Braccio della coppia interna			<u>z</u> =	1439.79 [mm]	
Coefficiente α c (σ cp/fcd= 0.081)			αc=	1.081	
Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5*fc	d		f 'cd=	5.667 [N/mm²]	
Sforzo di taglio resistente (calcestruzzo compresso)			Vrcd=	3305.67 [kN]	
Coefficiente di sicurezza allo stato limite ultimo (>=1; calcestr	uzzo compr	esso)	Vrcd/Vsd=	4.170	(VERIFICA NON RICHIESTA)
Verifica dell'armatura trasversale d'anima					
Area delle armature trasversali (staffe)			Asv=	452.39 [mm ²]	
Area staffe necessaria per carichi appesi			Ast'=	0.000 [mm ²]	
Area staffe utile al netto dell' armatura necessaria per carichi appes	si		Ast"=	452.39 [mm ²]	
Area delle armature trasversali (ferri piegati)			Asw=	0.00 [mm ²]	
Sforzo di taglio resistente (staffe)			Vrsd=	1650.37 [kN]	
Sforzo di taglio resistente (ferri piegati)			Vrpd=	0.00 [kN]	
Sforzo di taglio resistente totale armature trasversali			Vrsd=	1650.37 [kN]	
Storza di taglia registanta: Vrd-minima/Vrad. Vrad			Vrd=	1650 37 [LN]	
Sforzo di taglio resistente: Vrd=minimo(Vrcd; Vrsd) Coefficiente di sicurezza allo stato limite ultimo (>= 1; armatur.	a d'anima)		vra= Vrd/Vsd=	1650.37 [kN] 2.082	(VERIFICA NON RICHIESTA)
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,				

TITOLO: PONTE CANALE - SPALLA - FUSTO - COMB. RARA

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO);	(Yį	77.500 cm)		SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)			Y=	77.50 cm
Sforzo normale (N>0: trazione; N<0: compressione)			N=	-2770.70 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)			M=	2485.40 kN.m
Coefficiente di omogeneizzazione			m=	15
Ordinata asse neutro (dall'alto)			ys=	48.09 cm
Ordinata asse neutro (dal basso)			yi=	106.91 cm
Tensione calcestruzzo minima			sc1=	-4.932 N/mm ²
Tensione calcestruzzo massima			sc2=	0.000 N/mm ²
Tensione acciaio minima			sf1=	-69.36 N/mm ²
Tensione acciaio massima			sf2=	159.84 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	N/mm ²	N/mm ²
1	260.00	155.00	260.00	0.00	155.00	106.91	155.00	0.000	-4.932
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		155.00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²
1	11	20	3.00	34.56	159.84
2	11	20	152.00	34.56	-69.36
3	0	0	0.00	0.00	
4	0	0	0.00	0.00	
5	0	0	0.00	0.00	
6	0	0	0.00	0.00	
7	0	0	0.00	0.00	
8	0	0	0.00	0.00	
9	0	0	0.00	0.00	
10	0	0	0.00	0.00	
		Totale	77.50	69.12	

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys'

Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - SPALLA - FUSTO - COMB. FREQUENTE

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO);	(Yı	77.500 cm)		SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)			Y=	77.50 cm
Sforzo normale (N>0: trazione; N<0: compressione)			N=	-2675.90 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)			M=	2380.10 kN.m
Coefficiente di omogeneizzazione			m=	15
Ordinata asse neutro (dall'alto)			ys=	48.47 cm
Ordinata asse neutro (dal basso)			yi=	106.53 cm
Tensione calcestruzzo minima			sc1=	-4.711 N/mm ²
Tensione calcestruzzo massima			sc2=	0.000 N/mm ²
Tensione acciaio minima			sf1=	-66.29 N/mm ²
Tensione acciaio massima			sf2=	150.92 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	N/mm ²	N/mm ²
1	260.00	155.00	260.00	0.00	155.00	106.53	155.00	0.000	-4.711
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		155.00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²
1	11	20	3.00	34.56	150.92
2	11	20	152.00	34.56	-66.29
3	0	0	0.00	0.00	
4	0	0	0.00	0.00	
5	0	0	0.00	0.00	
6	0	0	0.00	0.00	
7	0	0	0.00	0.00	
8	0	0	0.00	0.00	
9	0	0	0.00	0.00	
10	0	0	0.00	0.00	
		Totale	77.50	69.12	

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys'

Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - SPALLA - FUSTO - COMB. FREQUENTE

Riferimento:

D.M. 14 gennaio 2008 - "Norme tecniche per le costruzioni - Paragrafo 4.1.2.2.4

Circolare Consiglio Superiore dei Lavori Pubblici del 2 febbraio 2009, N. 617 - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008".

DATI GENERALI

Tipo impronte acciaio
Sensibilità armatura
Poco sensibile
Condizioni ambientali
Combinazione di azioni
Aderenza migliorata
Poco sensibile
Aggressive
Frequenti

VERIFICA ALLO STATO LIMITE DI FORMAZIONE DELLE FESSURE

Resistenza caratteristica cilindrica del conglomerato cementizio fck= 20.0 N/mm²
Resistenza a trazione media del conglomerato cementizio (fctm = 0.30 (fck)^(2/3)) fctm= 2.210 N/mm²
Resistenza a trazione allo stato di formazione delle fessure (fcfk = fctm/1.2) fcfk= 1.842 N/mm²

Per la combinazione di azioni prescelta si ha (sezione interamente reagente - sollecitazioni effettive):

Tensione di trazione massima nel calcestruzzo scmax= 1.487 N/mm²

La sezione è verificata allo stato limite di formazione delle fessure

VERIFICA ALLO STATO LIMITE DI APERTURA DELLE FESSURE

a) Calcolo della deformazione unitaria media dell'armatura epsrm

29962 N/mm² Modulo elastico del calcestruzzo Ec= Modulo elastico delle armature Es= 210000 N/mm² Tensione nell'armatura tesa in sezione fessurata 150.922 N/mm² siamas= Base della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure 260.000 cm b,eff= Altezza della zona di calcestruzzo efficace [min(2.5(h-d);(h-x)/3;h/2] h,eff= 7.500 cm 1950.000 cm² Area della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure Ac,eff = b,eff h,eff = 34.558 cm² Area della sezione di acciaio posta nell'area efficace Ac,eff As= 0.017722 Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac.eff ro,eff=As/Ac,eff= Coefficiente per le condizioni di sollecitazione (0.6 azioni di breve durata, 0.4 azioni di lunga durata) kt= 0.6 0.000318 Deformazione unitaria media dell'armatura epsrm= Deformazione unitaria media dell'armatura (limite inferiore) (epsrm,lim = 0.6 sigmas/Es) epsrm,lim= 0.000431

b) Calcolo della distanza massima tra le fessure Dsmax

Distanza tra le barre (Int - fi) s1= 21.100 cm Diametro equivalente delle barre tese 20 mm fi= 2.000 cm Ricoprimento netto dell'armatura (Yf-fi/2) c= Distanza limite tra le barre da utilizzare nel calcolo (s = 5*(c+fi/2)) b= 15.000 cm Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff ro,eff=As/Ac,eff= 0.017722 Deformazione di trazione massima in sezione fessurata 0.000346 eps1= 0.000000 Deformazione di trazione minima in sezione fessurata eps2= Coefficiente di aderenza calcestruzzo alla barra (0.8 per barre ad aderenza migliorata, 1.6 per barre lisce) k1= 0.800 Coeffiiciente di forma del diagramma delle deformazioni di trazione nella sezione fessurata k2-0.500 Coefficiente k3= 3.400 Coefficiente 0.425 k4= Distanza massima tra le fessure Dsmax= 25.985 cm

c) Calcolo del valore caratteristico dell'apertura delle fessure wk

Deformazione unitaria media dell'armatura epsrm= 0.000431

Distanza massima tra le fessure

Valore caratteristico dell'apertura delle fessure (wk = epsrm Dsmax) wm= 0.112 mm

e) Verifica

Considerando secondo Normativa :

Condizioni ambiente: Aggressive
Combinazioni di azioni: Frequenti
Tipo di armatura: Poco sensibile

Valore nominale caratteristico dell'apertura delle fessure per la combinazione d'azioni considerata wk= 0.300 mm

La sezione è verificata allo stato limite di apertura delle fessure

TITOLO: PONTE CANALE - SPALLA - FUSTO - COMB. QUASI PERMANENTE

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO);	(Yı́	77.500 cm)		SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)			Y=	77.50 cm
Sforzo normale (N>0: trazione; N<0: compressione)			N=	-2391.40 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)			M=	2064.20 kN.m
Coefficiente di omogeneizzazione			m=	15
Ordinata asse neutro (dall'alto)			ys=	49.87 cm
Ordinata asse neutro (dal basso)			yi=	105.13 cm
Tensione calcestruzzo minima			sc1=	-4.047 N/mm ²
Tensione calcestruzzo massima			sc2=	0.000 N/mm ²
Tensione acciaio minima			sf1=	-57.05 N/mm ²
Tensione acciaio massima			sf2=	124.31 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	N/mm ²	N/mm ²
1	260.00	155.00	260.00	0.00	155.00	105.13	155.00	0.000	-4.047
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		155 00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²
1	11	20	3.00	34.56	124.31
2	11	20	152.00	34.56	-57.05
3	0	0	0.00	0.00	
4	0	0	0.00	0.00	
5	0	0	0.00	0.00	
6	0	0	0.00	0.00	
7	0	0	0.00	0.00	
8	0	0	0.00	0.00	
9	0	0	0.00	0.00	
10	0	0	0.00	0.00	
		Totale	77.50	69.12	

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys'

Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - SPALLA - FUSTO - COMB. QUASI PERMANENTE

Riferimento:

D.M. 14 gennaio 2008 - "Norme tecniche per le costruzioni - Paragrafo 4.1.2.2.4

Circolare Consiglio Superiore dei Lavori Pubblici del 2 febbraio 2009, N. 617 - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008".

DATI GENERALI

Tipo impronte acciaio
Sensibilità armatura
Poco sensibile
Condizioni ambientali
Combinazione di azioni
Aderenza migliorata
Poco sensibile
Aggressive
Quasi permanenti

VERIFICA ALLO STATO LIMITE DI FORMAZIONE DELLE FESSURE

Resistenza caratteristica cilindrica del conglomerato cementizio fck= 20.0 N/mm²
Resistenza a trazione media del conglomerato cementizio (fctm = 0.30 (fck)^(2/3)) fctm= 2.210 N/mm²
Resistenza a trazione allo stato di formazione delle fessure (fcfk = fctm/1.2) fcfk= 1.842 N/mm²

Per la combinazione di azioni prescelta si ha (sezione interamente reagente - sollecitazioni effettive):

Tensione di trazione massima nel calcestruzzo scmax= 1.272 N/mm²

La sezione è verificata allo stato limite di formazione delle fessure

VERIFICA ALLO STATO LIMITE DI APERTURA DELLE FESSURE

a) Calcolo della deformazione unitaria media dell'armatura epsrm

29962 N/mm² Modulo elastico del calcestruzzo Ec= Modulo elastico delle armature Es= 210000 N/mm² Tensione nell'armatura tesa in sezione fessurata 124.310 N/mm² siamas= Base della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure 260.000 cm b,eff= Altezza della zona di calcestruzzo efficace [min(2.5(h-d);(h-x)/3;h/2] h,eff= 7.500 cm 1950.000 cm² Area della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure Ac,eff = b,eff h,eff = 34.558 cm² Area della sezione di acciaio posta nell'area efficace Ac,eff As= Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff 0.017722 ro,eff=As/Ac,eff= Coefficiente per le condizioni di sollecitazione (0.6 azioni di breve durata, 0.4 azioni di lunga durata) kt= 0.4 0.000325 Deformazione unitaria media dell'armatura epsrm= Deformazione unitaria media dell'armatura (limite inferiore) (epsrm,lim = 0.6 sigmas/Es) epsrm,lim= 0.000355

b) Calcolo della distanza massima tra le fessure Dsmax

Distanza tra le barre (Int - fi) s1= 21.100 cm Diametro equivalente delle barre tese 20 mm fi= 2.000 cm Ricoprimento netto dell'armatura (Yf-fi/2) c= Distanza limite tra le barre da utilizzare nel calcolo (s = 5*(c+fi/2)) b= 15.000 cm Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff ro,eff=As/Ac,eff= 0.017722 Deformazione di trazione massima in sezione fessurata 0.000285 eps1= 0.000000 Deformazione di trazione minima in sezione fessurata eps2= Coefficiente di aderenza calcestruzzo alla barra (0.8 per barre ad aderenza migliorata, 1.6 per barre lisce) k1= 0.800 Coeffiiciente di forma del diagramma delle deformazioni di trazione nella sezione fessurata k2-0.500 Coefficiente k3= 3.400 Coefficiente 0.425 k4= Distanza massima tra le fessure Dsmax= 25.985 cm

c) Calcolo del valore caratteristico dell'apertura delle fessure wk

Deformazione unitaria media dell'armatura epsrm= 0.000355

Distanza massima tra le fessure

Valore caratteristico dell'apertura delle fessure (wk = epsrm Dsmax) wm= 0.092 mm

e) Verifica

Considerando secondo Normativa:

Condizioni ambiente: Aggressive
Combinazioni di azioni: Quasi permanenti
Tipo di armatura: Poco sensibile

Valore nominale caratteristico dell'apertura delle fessure per la combinazione d'azioni considerata wk= 0.200 mm

La sezione è verificata allo stato limite di apertura delle fessure

PONTE CANALE - PILA - PLINTO LONGITUDINALE Combinazioni: Momento massimo

 Ordinata rispetto a cui sono calcolate le sollecitazioni
 ys=
 600.00 [mm]

 Sforzo normale agente di calcolo
 Nsd=
 0.00 [kN]

 Momento agente di calcolo (rispetto a y=ys)
 Msd(y=ys)=
 181.00 [kNm]

Momento agente di calcolo (rispetto al baricentro della sezione: yg= 600.00 mm) Msd(y=yg)= 181.00 [kNm]

DATI GEOMETRICI SEZIONE

Calcestruzzo trave: modello parabola-rettangolo

Resistenza caratteristica cilindrica del calcestruzzo trave fck= $20.00 \text{ [N/mm}^2]$ Coefficiente riduttivo per resistenze di lunga durata $\alpha cc= 0.85$ Coefficiente parziale di sicurezza calcestruzzo trave $\gamma c= 1.50$ Resistenza di calcolo a compressione del calcestruzzo trave fcd= $11.333 \text{ [N/mm}^2]$ Resistenza di calcolo a trazione del calcestruzzo trave fctd= $1.032 \text{ [N/mm}^2]$

Elementi	b inf	h	b sup	y inf	y sup	εinf	εsup	σ inf	σ sup	NRd(y=0)	MRd(y=0)
	[mm]	[mm]	[mm]	[mm]	[mm]	‰	‰	[N/mm ²]	[N/mm ²]	[kN]	[kNm]
1	1000.0	1200.0	1000.0	0.0	1200.0	10.2741	-0.6899	0.000	-6.470	-261.22	306.68
2	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
3	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
4	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
5	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
6	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
7	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
8	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
9	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
10	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
totali		1200.0		0.0	1200.0					-261.22	306.68

Armatura ordinaria longitudinale: modello elastico-plastico indefinito

Modulo di elasticità acciaioEs=210000.00 [N/mm²]Resistenza caratteristica acciaio ordinariofyk=430.00 [N/mm²]Coefficiente parziale di sicurezza acciaio ordinarioys=1.15Deformazione massima di calcolo ϵ ud=10.00 %Resistenza di calcolo acciaio ordinariofyd=373.91 [N/mm²]

Armature	Numero	Diametro	livello	area	εyd	ε асс	σ асс	Nrd(y=0)	Mrd(y=0)
strato	ferri	[mm]	[mm]	[mm ²]	‰	‰	[N/mm ²]	[kN]	[kNm]
1	4	16	30.0	804.25	1.7805	10.0000	373.91	300.72	-9.02
2	4	12	1170.0	452.39	1.7805	-0.4158	-87.31	-39.50	46.21
3	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
4	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
5	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
6	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
7	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
8	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
9	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
10	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
totali			30.0	1256.64	1.78054	10.0000		261.22	37.19

VERIFICA ALLO STATO LIMITE ULTIMO: MOMENTO FLETTENTE - SFORZO NORMALE

Profondità relativa dell'asse neutro (x/d) Altezza totale della sezione	ξ= h=	0.0007 1200.0 [mm]		
Copriferro armatura tesa	C=	30.0 [mm]		
Altezza utile (h-c)	d=	1170.0 [mm]		
Profondità dell'asse neutro	χ=	0.8 [mm]		
Rapporto tra copriferro armatura tesa ed altezza utile (c/d)	δ=	0.0256		
Braccio della coppia interna	<u>z</u> =	1144.01 [mm]		
Defense in a service and advantages	-1	0.0000 %		4000 00 []
Deformazione massima nel calcestruzzo	ε cls=	-0.6899 ‰	in y=	1200.00 [mm]
Deformazione massima nell'acciaio ordinario teso	ε acc=	10.0000 ‰	in y=	30.00 [mm]
Deformazione massima nell'acciaio di precompressione teso	ε ap=	0.0000 ‰	in y=	[mm]
Campo di deformazione specifica		2		
Parametro di deformazione $\lambda (\epsilon = \lambda + \mu y)$	λ=	1.027E-02		
Parametro di deformazione μ ($\epsilon = \lambda + \mu y$)	μ=	-9.137E-06 [mm ⁻¹]		
Sforzo normale resistente (rispetto alla base - y=0)	Nrd(y=0)=	0.00 [kN]		
Momento resistente (rispetto alla base - y=0)	Mrd(y=0)=	343.87 [kNm]		
Sforzo normale resistente (rispetto a y=ys)	Nrd=	0.00 [kN]		
Momento resistente (rispetto a y=ys)	Mrd=	343.87 [kNm]		
Coefficiente di sicurezza allo stato limite ultimo (Nrd=cost)	Mrd/Msd=	1.900		

VERIFICA ALLO STATO LIMITE ULTIMO: SFORZO DI TAGLIO

Sforzo di taglio agente	Vd= Cad=	362.00 [kN]
Carichi appesi o indiretti	Cau=	0.00 [kN/m]
Distanza della sezione dal bordo di appoggio (verifica solo VRcd se: av <= d; EN 1992-1-1;6.2.1(a	8)) av=	999999.00 [mm]
Sezione ad altezza variabile: Inclinazione dei lembi della membratura (p>0 per h crescente con N		0.30
Componente di taglio dovuto all'inclinazione dei lembi della membratura	Vmd=	-47.46 [kN]
Sforzo di taglio agente di calcolo: (Vsd = Vd + Vmd)	Vsd=	314.54 [kN]
Verifica elementi senza armature trasversali resistenti a taglio		
Larghezza (minima) della membratura resistente a taglio	bw=	1000.00 [mm]
Altezza utile sezione: d = h - c	d=	1170.00 [mm]
Braccio della coppia interna	z=	1144.01 [mm]
Area armature longitudinali tese	AsI=	804.25 [mm²]
Coefficiente: k=1+(200/d)^0.5 [<=2]	k=	1.413
Coefficiente: Vmin=0.035 * (k^1.5) * (fck^0.5)	Vmin=	0.26303 [N/mm ²] 0.00069
Rapporto geometrico armatura longitudinale: pl= Asl / (bw *d) [<=0.02]	ρl=	
Tensione media di compressione nella sezione: cp=Nsd/Ac [<=0.2 * fcd] Sforzo di taglio resistente	σcp= Vrd=	0.000 [N/mm²] 307.74 [kN]
Coefficiente di sicurezza allo stato limite ultimo (>= 1; solo calcestruzzo)	Vrd/Vsd=	0.978
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Armatura ordinaria trasversale (per taglio)	_	2.
Modulo di elasticità acciaio armatura trasversale	Esv=	210000.00 [N/mm²]
Resistenza caratteristica acciaio ordinario armatura trasversale	fyvk=	430.00 [N/mm²]
Coefficiente parziale di sicurezza acciaio ordinario armatura trasversale	γs=	1.15
Staffe		Ferri piegati
Resistenza di calcolo acciaio ordinario armatura trasversale fysd= 373.91 [N/mm²	fypd=	299.13 [N/mm ²]
Disposizione armatura trasversale (staffe): numero bracci: n= 2	n=	0
diametro: ϕ s= 12 [mm]	φ p =	0 [mm]
interasse: ss= 500.00 [mm] Inclinazione rispetto all'asse della trave (45° <= α <= 90.00 °	sp= αp=	0.00 [mm] 45.00 °
intolinazione rispetto ali asse della trave (+5 1-2, 1-30)	up-	45.00
Inclinazione dei "puntoni" di calcestruzzo rispetto all'asse della trave $(1 \le \cot \theta \le 2.5)$	cot θ=	2.500
Controllo limite inferiore cot θ in caso di significativo sforzo normale:		
•		2
Tensione media di compressione nella sezione: σcp=Nsd/Ac	оср=	0.000 [N/mm ²]
•	σcp= τb=	0.393 [N/mm ²]
Tensione media di compressione nella sezione: cp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica	τb= σl=	0.393 [N/mm ²] 0.393 [N/mm ²]
Tensione media di compressione nella sezione: cp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave	τb= σI= cot θi=	0.393 [N/mm ²] 0.393 [N/mm ²] 1.000
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ	τb= σI= cot θi= <=2. cot θ=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500
Tensione media di compressione nella sezione: cp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave	τ b= σ l= $\cot \theta$ i= <=2. $\cot \theta$ = a1=	0.393 [N/mm ²] 0.393 [N/mm ²] 1.000
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ	τ b= σ l= $\cot \theta$ i= <=2. $\cot \theta$ = a1=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm]
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio	τ b= σ l= $\cot \theta$ i= <=2. $\cot \theta$ = a1=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm]
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso	τ b= σ l= $\cot \theta$ i= <=2. $\cot \theta$ = a1=	0.393 [N/mm ²] 0.393 [N/mm ²] 1.000 2.500 1430.02 [mm] 449.79 [kNm]
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio	tb= d= cot θi= <=2. cot θ= a1= ΔM < ΔM=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm]
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio	τb= σI= cot θi= <=2. cot θ= a1= ΔM < ΔM=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm]
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: d = h - c	τb= τb= σl= cot θi= <=2. cot θ= a1= ΔM < ΔM= bw= d=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: d = h - c Braccio della coppia interna Coefficiente ωc (σcp/fcd= 0.000) Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5*fcd	tb= σl= cot θi= <=2. cot θ= a1= ΔM < ΔM= bw= d= z= αc= f'cd=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000 5.667 [N/mm²]
Tensione media di compressione nella sezione: α cp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cot θ) Prolungamento delle armature longitudinali dovuto all'inclinazione θ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: $d = h - c$ Braccio della coppia interna Coefficiente α c (α cp/fcd= 0.000)	tb= σl= cot θi= <=2. cot θ= a1= ΔM < ΔM= bw= d= z= αc=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: d = h - c Braccio della coppia interna Coefficiente ωc (σcp/fcd= 0.000) Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5*fcd	tb= σl= cot θi= <=2. cot θ= a1= ΔM < ΔM= bw= d= z= αc= f'cd=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000 5.667 [N/mm²]
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: d = h - c Braccio della coppia interna Coefficiente αc (ccp/fcd= 0.000) Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5*fcd Sforzo di taglio resistente (calcestruzzo compresso)	tb=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000 5.667 [N/mm²]
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: d = h - c Braccio della coppia interna Coefficiente αc (σcp/fcd= 0.000) Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5*fcd Sforzo di taglio resistente (calcestruzzo compresso) Coefficiente di sicurezza allo stato limite ultimo (>=1; calcestruzzo compresso)	tb=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000 5.667 [N/mm²] 1103.20 [kN] 3.048
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: d = h - c Braccio della coppia interna Coefficiente αc (σcp/fcd= 0.000) Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5*fcd Sforzo di taglio resistente (calcestruzzo compresso) Coefficiente di sicurezza allo stato limite ultimo (>=1; calcestruzzo compresso)	tb=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000 5.667 [N/mm²]
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: d = h - c Braccio della coppia interna Coefficiente αc (σcp/fcd= 0.000) Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5*fcd Sforzo di taglio resistente (calcestruzzo compresso) Coefficiente di sicurezza allo stato limite ultimo (>=1; calcestruzzo compresso) Verifica dell'armatura trasversale d'anima Area delle armature trasversale (staffe)	tb=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000 5.667 [N/mm²] 1103.20 [kN] 3.048
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: d = h - c Braccio della coppia interna Coefficiente αc (σcp/fcd= 0.000) Resistenza a compressione ridotta del calcestruzzo: f'cd = 0.5*fcd Sforzo di taglio resistente (calcestruzzo compresso) Coefficiente di sicurezza allo stato limite ultimo (>=1; calcestruzzo compresso) Verifica dell'armatura trasversale d'anima Area delle armature trasversale (staffe) Area staffe necessaria per carichi appesi	tb=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000 5.667 [N/mm²] 1103.20 [kN] 3.048 226.19 [mm²] 0.000 [mm²]
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: d = h - c Braccio della coppia interna Coefficiente αc (σcp/fcd= 0.000) Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5*fcd Sforzo di taglio resistente (calcestruzzo compresso) Coefficiente di sicurezza allo stato limite ultimo (>=1; calcestruzzo compresso) Verifica dell'armatura trasversale d'anima Area delle armature trasversale (staffe) Area staffe necessaria per carichi appesi Area staffe utile al netto dell' armatura necessaria per carichi appesi	tb=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000 5.667 [N/mm²] 1103.20 [kN] 3.048 226.19 [mm²] 226.19 [mm²]
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: d = h - c Braccio della coppia interna Coefficiente αc (σcp/fcd= 0.000) Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5*fcd Sforzo di taglio resistente (calcestruzzo compresso) Coefficiente di sicurezza allo stato limite ultimo (>=1; calcestruzzo compresso) Verifica dell'armatura trasversale d'anima Area delle armature trasversali (staffe) Area staffe necessaria per carichi appesi Area staffe utile al netto dell' armatura necessaria per carichi appesi Area delle armature trasversali (ferri piegati) Sforzo di taglio resistente (staffe) Sforzo di taglio resistente (ferri piegati)	tb=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000 5.667 [N/mm²] 1103.20 [kN] 3.048 226.19 [mm²] 0.000 [mm²] 226.19 [mm²] 0.000 [mm²] 483.79 [kN] 0.00 [kN]
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: d = h - c Braccio della coppia interna Coefficiente ωc (σcp/fcd= 0.000) Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5*fcd Sforzo di taglio resistente (calcestruzzo compresso) Coefficiente di sicurezza allo stato limite ultimo (>=1; calcestruzzo compresso) Verifica dell'armatura trasversale d'anima Area delle armature trasversali (staffe) Area staffe necessaria per carichi appesi Area staffe utile al netto dell' armatura necessaria per carichi appesi Area delle armature trasversali (ferri piegati) Sforzo di taglio resistente (staffe)	tb=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000 5.667 [N/mm²] 1103.20 [kN] 3.048 226.19 [mm²] 0.000 [mm²] 226.19 [mm²] 0.00 [mm²] 483.79 [kN]
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: d = h - c Braccio della coppia interna Coefficiente αc (σcp/fcd= 0.000) Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5*fcd Sforzo di taglio resistente (calcestruzzo compresso) Coefficiente di sicurezza allo stato limite ultimo (>=1; calcestruzzo compresso) Verifica dell'armatura trasversale d'anima Area delle armature trasversali (staffe) Area staffe necessaria per carichi appesi Area staffe utile al netto dell' armatura necessaria per carichi appesi Area delle armature trasversali (ferri piegati) Sforzo di taglio resistente (staffe) Sforzo di taglio resistente (totale armature trasversali Sforzo di taglio resistente totale armature trasversali	tb=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000 5.667 [N/mm²] 1103.20 [kN] 3.048 226.19 [mm²] 0.000 [mm²] 226.19 [mm²] 0.00 [mm²] 483.79 [kN] 0.00 [kN]
Tensione media di compressione nella sezione: σcp=Nsd/Ac Tensione tangenziale baricentrica Tensione principale massima baricentrica Inclinazione minima dei "puntoni" di calcestruzzo rispetto all'asse della trave Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'asse della trave (1 <= cotθi <=cot θ Prolungamento delle armature longitudinali dovuto all'inclinazioneθ Incremento momento flettente dovuto al taglio (traslazione diagramma momenti: solo se: Msd + Δ Verifica elementi con armature trasversali resistenti a taglio Verifica del calcestruzzo compresso Larghezza (minima) della membratura resistente a taglio Altezza utile sezione: d = h - c Braccio della coppia interna Coefficiente αc (σcp/fcd= 0.000) Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5*fcd Sforzo di taglio resistente (calcestruzzo compresso) Coefficiente di sicurezza allo stato limite ultimo (>=1; calcestruzzo compresso) Verifica dell'armatura trasversale d'anima Area delle armature trasversali (staffe) Area staffe necessaria per carichi appesi Area staffe utile al netto dell' armatura necessaria per carichi appesi Area delle armature trasversali (ferri piegati) Sforzo di taglio resistente (staffe) Sforzo di taglio resistente (ferri piegati)	tb=	0.393 [N/mm²] 0.393 [N/mm²] 1.000 2.500 1430.02 [mm] 449.79 [kNm] 1000.00 [mm] 1170.00 [mm] 1144.01 [mm] 1.000 5.667 [N/mm²] 1103.20 [kN] 3.048 226.19 [mm²] 0.000 [mm²] 226.19 [mm²] 0.000 [mm²] 483.79 [kN] 0.00 [kN]

TITOLO: PONTE CANALE - PILA - PLINTO LONGITUDINALE - COMB. RARA

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO);	(Yı	59.753 cm)		SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)			Y=	59.75 cm
Sforzo normale (N>0: trazione; N<0: compressione)			N=	0.00 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)			M=	132.00 kN.m
Coefficiente di omogeneizzazione			m=	15
Ordinata asse neutro (dall'alto)			ys=	15.14 cm
Ordinata asse neutro (dal basso)			yi=	104.86 cm
Tensione calcestruzzo minima			sc1=	-1.451 N/mm ²
Tensione calcestruzzo massima			sc2=	0.000 N/mm ²
Tensione acciaio minima			sf1=	-17.45 N/mm ²
Tensione acciaio massima			sf2=	146.43 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	N/mm ²	N/mm ²
1	100.00	120.00	100.00	0.00	120.00	104.86	120.00	0.000	-1.451
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		120.00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²
1	4	16	3.00	8.04	146.43
2	4	12	117.00	4.52	-17.45
3	0	0	0.00	0.00	
4	0	0	0.00	0.00	
5	0	0	0.00	0.00	
6	0	0	0.00	0.00	
7	0	0	0.00	0.00	
8	0	0	0.00	0.00	
9	0	0	0.00	0.00	
10	0	0	0.00	0.00	
		Totale	44.04	12.57	

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys'

Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - PILA - PLINTO LONGITUDINALE - COMB. FREQUENTE

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO);	(Yı́	59.753 cm)		SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)			Y=	59.75 cm
Sforzo normale (N>0: trazione; N<0: compressione)			N=	0.00 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)			M=	115.90 kN.m
Coefficiente di omogeneizzazione			m=	15
Ordinata asse neutro (dall'alto)			ys=	15.14 cm
Ordinata asse neutro (dal basso)			yi=	104.86 cm
Tensione calcestruzzo minima			sc1=	-1.274 N/mm ²
Tensione calcestruzzo massima			sc2=	0.000 N/mm ²
Tensione acciaio minima			sf1=	-15.33 N/mm ²
Tensione acciaio massima			sf2=	128.57 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	N/mm ²	N/mm ²
1	100.00	120.00	100.00	0.00	120.00	104.86	120.00	0.000	-1.274
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		120.00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²
1	4	16	3.00	8.04	128.57
2	4	12	117.00	4.52	-15.33
3	0	0	0.00	0.00	
4	0	0	0.00	0.00	
5	0	0	0.00	0.00	
6	0	0	0.00	0.00	
7	0	0	0.00	0.00	
8	0	0	0.00	0.00	
9	0	0	0.00	0.00	
10	0	0	0.00	0.00	
		Totale	44.04	12.57	

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys'

Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - PILA - PLINTO LONGITUDINALE - COMB. FREQUENTE

Riferimento:

D.M. 14 gennaio 2008 - "Norme tecniche per le costruzioni - Paragrafo 4.1.2.2.4

Circolare Consiglio Superiore dei Lavori Pubblici del 2 febbraio 2009, N. 617 - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008".

DATI GENERALI

Tipo impronte acciaio
Sensibilità armatura
Poco sensibile
Condizioni ambientali
Combinazione di azioni
Aderenza migliorata
Poco sensibile
Aggressive
Frequenti

VERIFICA ALLO STATO LIMITE DI FORMAZIONE DELLE FESSURE

Resistenza caratteristica cilindrica del conglomerato cementizio fck= 20.0 N/mm²
Resistenza a trazione media del conglomerato cementizio (fctm = 0.30 (fck)^(2/3)) fctm= 2.210 N/mm²
Resistenza a trazione allo stato di formazione delle fessure (fcfk = fctm/1.2) fcfk= 1.842 N/mm²

Per la combinazione di azioni prescelta si ha (sezione interamente reagente - sollecitazioni effettive):

Tensione di trazione massima nel calcestruzzo scmax= 0.461 N/mm²

La sezione è verificata allo stato limite di formazione delle fessure

VERIFICA ALLO STATO LIMITE DI APERTURA DELLE FESSURE

a) Calcolo della deformazione unitaria media dell'armatura epsrm

29962 N/mm² Modulo elastico del calcestruzzo Ec= Modulo elastico delle armature Es= 210000 N/mm² Tensione nell'armatura tesa in sezione fessurata 128,566 N/mm² siamas= Base della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure 260.000 cm b,eff= Altezza della zona di calcestruzzo efficace [min(2.5(h-d);(h-x)/3;h/2] h,eff= 7.500 cm 1950.000 cm² Area della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure Ac,eff = b,eff h,eff = 8.042 cm² Area della sezione di acciaio posta nell'area efficace Ac,eff As= Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff 0.004124 ro.eff=As/Ac.eff= Coefficiente per le condizioni di sollecitazione (0.6 azioni di breve durata, 0.4 azioni di lunga durata) kt= 0.6 -0.000963 Deformazione unitaria media dell'armatura epsrm= Deformazione unitaria media dell'armatura (limite inferiore) (epsrm,lim = 0.6 sigmas/Es) epsrm,lim= 0.000367

b) Calcolo della distanza massima tra le fessure Dsmax

Distanza tra le barre (Int - fi) s1= 23.400 cm Diametro equivalente delle barre tese 16 mm fi= 2.200 cm Ricoprimento netto dell'armatura (Yf-fi/2) c= Distanza limite tra le barre da utilizzare nel calcolo (s = 5*(c+fi/2)) b= 15.000 cm Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff ro,eff=As/Ac,eff= 0.004124 Deformazione di trazione massima in sezione fessurata eps1= 0.000294 Deformazione di trazione minima in sezione fessurata 0.000000 eps2= Coefficiente di aderenza calcestruzzo alla barra (0.8 per barre ad aderenza migliorata, 1.6 per barre lisce) k1= 0.800 Coeffiiciente di forma del diagramma delle deformazioni di trazione nella sezione fessurata k2-0.500 Coefficiente k3= 3.400 Coefficiente 0.425 k4= Distanza massima tra le fessure Dsmax= 73.430 cm

c) Calcolo del valore caratteristico dell'apertura delle fessure wk

Deformazione unitaria media dell'armatura epsrm= 0.000367

Distanza massima tra le fessure

Valore caratteristico dell'apertura delle fessure (wk = epsrm Dsmax) wm= 0.270 mm

e) Verifica

Considerando secondo Normativa:

Condizioni ambiente: Aggressive
Combinazioni di azioni: Frequenti
Tipo di armatura: Poco sensibile

Valore nominale caratteristico dell'apertura delle fessure per la combinazione d'azioni considerata wk= 0.300 mm

La sezione è verificata allo stato limite di apertura delle fessure

TITOLO: PONTE CANALE - PILA - PLINTO LONGITUDINALE - COMB. QUASI PERMANENTE

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO);	(Yı	59.753 cm)		SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)			Y=	59.75 cm
Sforzo normale (N>0: trazione; N<0: compressione)			N=	0.00 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)			M=	114.90 kN.m
Coefficiente di omogeneizzazione			m=	15
Ordinata asse neutro (dall'alto)			ys=	15.14 cm
Ordinata asse neutro (dal basso)			yi=	104.86 cm
Tensione calcestruzzo minima			sc1=	-1.263 N/mm ²
Tensione calcestruzzo massima			sc2=	0.000 N/mm ²
Tensione acciaio minima			sf1=	-15.19 N/mm ²
Tensione acciaio massima			sf2=	127.46 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	N/mm ²	N/mm ²
1	100.00	120.00	100.00	0.00	120.00	104.86	120.00	0.000	-1.263
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		120.00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²
1	4	16	3.00	8.04	127.46
2	4	12	117.00	4.52	-15.19
3	0	0	0.00	0.00	
4	0	0	0.00	0.00	
5	0	0	0.00	0.00	
6	0	0	0.00	0.00	
7	0	0	0.00	0.00	
8	0	0	0.00	0.00	
9	0	0	0.00	0.00	
10	0	0	0.00	0.00	
		Totale	44.04	12.57	

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys'

Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - PILA - PLINTO LONGITUDINALE - COMB. QUASI PERMANENTE

Riferimento:

D.M. 14 gennaio 2008 - "Norme tecniche per le costruzioni - Paragrafo 4.1.2.2.4

Circolare Consiglio Superiore dei Lavori Pubblici del 2 febbraio 2009, N. 617 - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008".

DATI GENERALI

Tipo impronte acciaio
Sensibilità armatura
Condizioni ambientali
Combinazione di azioni
Aderenza migliorata
Poco sensibile
Aggressive
Quasi permanenti

VERIFICA ALLO STATO LIMITE DI FORMAZIONE DELLE FESSURE

Resistenza caratteristica cilindrica del conglomerato cementizio

Resistenza a trazione media del conglomerato cementizio (fctm = 0.30 (fck)^(2/3))

Resistenza a trazione allo stato di formazione delle fessure (fcfk = fctm/1.2)

fck=

2.0.0 N/mm²

2.210 N/mm²

1.842 N/mm²

Per la combinazione di azioni prescelta si ha (sezione interamente reagente - sollecitazioni effettive):

Tensione di trazione massima nel calcestruzzo scmax= 0.457 N/mm²

La sezione è verificata allo stato limite di formazione delle fessure

VERIFICA ALLO STATO LIMITE DI APERTURA DELLE FESSURE

a) Calcolo della deformazione unitaria media dell'armatura epsrm

29962 N/mm² Modulo elastico del calcestruzzo Ec= Modulo elastico delle armature Es= 210000 N/mm² Tensione nell'armatura tesa in sezione fessurata 127.457 N/mm² siamas= Base della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure 260.000 cm b,eff= Altezza della zona di calcestruzzo efficace [min(2.5(h-d);(h-x)/3;h/2] h,eff= 7.500 cm 1950.000 cm² Area della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure Ac,eff = b,eff h,eff = 8.042 cm² Area della sezione di acciaio posta nell'area efficace Ac,eff As= Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff 0.004124 ro.eff=As/Ac.eff= Coefficiente per le condizioni di sollecitazione (0.6 azioni di breve durata, 0.4 azioni di lunga durata) kt= 0.4 -0.000443 Deformazione unitaria media dell'armatura epsrm= Deformazione unitaria media dell'armatura (limite inferiore) (epsrm,lim = 0.6 sigmas/Es) epsrm,lim= 0.000364

b) Calcolo della distanza massima tra le fessure Dsmax

Distanza tra le barre (Int - fi) s1= 23.400 cm Diametro equivalente delle barre tese fi= 16 mm 2.200 cm Ricoprimento netto dell'armatura (Yf-fi/2) c= Distanza limite tra le barre da utilizzare nel calcolo (s = 5*(c+fi/2)) b= 15.000 cm Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff ro,eff=As/Ac,eff= 0.004124 Deformazione di trazione massima in sezione fessurata eps1= 0.000292 Deformazione di trazione minima in sezione fessurata 0.000000 eps2= Coefficiente di aderenza calcestruzzo alla barra (0.8 per barre ad aderenza migliorata, 1.6 per barre lisce) k1= 0.800 Coeffiiciente di forma del diagramma delle deformazioni di trazione nella sezione fessurata k2-0.500 Coefficiente k3= 3.400 Coefficiente 0.425 k4= Distanza massima tra le fessure Dsmax= 73.430 cm

c) Calcolo del valore caratteristico dell'apertura delle fessure wk

Deformazione unitaria media dell'armatura epsrm= 0.000364
Distanza massima tra le fessure
Valore caratteristico dell'apertura delle fessure (wk = epsrm Dsmax) wm= 0.267 mm

e) Verifica

Considerando secondo Normativa:

Condizioni ambiente: Aggressive
Combinazioni di azioni: Quasi permanenti
Tipo di armatura: Poco sensibile

Valore nominale caratteristico dell'apertura delle fessure per la combinazione d'azioni considerata wk= 0.200 mm

La sezione NON è verificata allo stato limite di apertura delle fessure

PONTE CANALE - PILA - PLINTO TRASVERSALE Combinazioni: Momento massimo

 Ordinata rispetto a cui sono calcolate le sollecitazioni
 ys=
 576.81 [mm]

 Sforzo normale agente di calcolo
 Nsd=
 0.00 [kN]

 Momento agente di calcolo (rispetto a y=ys)
 Msd(y=ys)=
 1042.60 [kNm]

Momento agente di calcolo (rispetto al baricentro della sezione: yg= 576.81 mm) Msd(y=yg)= 1042.60 [kNm]

DATI GEOMETRICI SEZIONE

Calcestruzzo trave: modello parabola-rettangolo

Resistenza caratteristica cilindrica del calcestruzzo trave fck= $20.00 \text{ [N/mm}^2]$ Coefficiente riduttivo per resistenze di lunga durata $\alpha cc= 0.85$ Coefficiente parziale di sicurezza calcestruzzo trave $\gamma c= 1.50$ Resistenza di calcolo a compressione del calcestruzzo trave fcd= $11.333 \text{ [N/mm}^2]$ Resistenza di calcolo a trazione del calcestruzzo trave fctd= $1.032 \text{ [N/mm}^2]$

Elementi	b inf	h	b sup	y inf	y sup	εinf	ε sup	σ inf	σ sup	NRd(y=0)	MRd(y=0)
	[mm]	[mm]	[mm]	[mm]	[mm]	‰	‰	[N/mm ²]	[N/mm ²]	[kN]	[kNm]
1	4000.0	1000.0	4000.0	0.0	1000.0	10.2807	0.9243	0.000	0.000	0.00	0.00
2	4000.0	200.0	2000.0	1000.0	1200.0	0.9243	-0.9469	0.000	-8.191	-1076.28	1250.84
3	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
4	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
5	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
6	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
7	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
8	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
9	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
10	0.0	0.0	0.0	1200.0	1200.0	0.0000	0.0000	0.000	0.000	0.00	0.00
totali		1200.0		0.0	1200.0					-1076.28	1250.84

Armatura ordinaria longitudinale: modello elastico-plastico indefinito

Modulo di elasticità acciaioEs=210000.00 [N/mm²]Resistenza caratteristica acciaio ordinariofyk=430.00 [N/mm²]Coefficiente parziale di sicurezza acciaio ordinarioys=1.15Deformazione massima di calcolo ϵ ud=10.00 %Resistenza di calcolo acciaio ordinariofyd=373.91 [N/mm²]

Armature	Numero	Diametro	livello	area	εyd	ε асс	σ асс	Nrd(y=0)	Mrd(y=0)
strato	ferri	[mm]	[mm]	[mm ²]	‰	‰	[N/mm ²]	[kN]	[kNm]
1	16	16	30.0	3216.99	1.7805	10.0000	373.91	1202.87	-36.09
2	8	12	1170.0	904.78	1.7805	-0.6663	-139.91	-126.59	148.11
3	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
4	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
5	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
6	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
7	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
8	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
9	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
10	0	0	0.0	0.00	0.0000	0.0000	0.00	0.00	0.00
totali			30.0	4121.77	1.78054	10.0000		1076.28	112.03

VERIFICA ALLO STATO LIMITE ULTIMO: MOMENTO FLETTENTE - SFORZO NORMALE

Profondità relativa dell'asse neutro (x/d)	ξ=	0.0009		
Altezza totale della sezione	h=	1200.0 [mm]		
Copriferro armatura tesa	c=	30.0 [mm]		
Altezza utile (h-c)	d=	1170.0 [mm]		
Profondità dell'asse neutro	χ=	1.1 [mm]		
Rapporto tra copriferro armatura tesa ed altezza utile (c/d)	δ=	0.0256		
Braccio della coppia interna	z=	1132.18 [mm]		
Deformazione massima nel calcestruzzo	ε cls=	-0.9469 ‰	in y=	1200.00 [mm]
Deformazione massima nell'acciaio ordinario teso	ε acc=	10.0000 ‰	in y=	30.00 [mm]
Deformazione massima nell'acciaio di precompressione teso	ε ap=	0.0000 ‰	in y=	[mm]
Campo di deformazione specifica		2		
Parametro di deformazione λ ($\varepsilon = \lambda + \mu y$)	λ=	1.028E-02		
Parametro di deformazione μ ($\varepsilon = \lambda + \mu y$)	μ=	-9.356E-06 [mm ⁻¹]		
Sforzo normale resistente (rispetto alla base - y=0)	Nrd(y=0)=	0.00 [kN]		
Momento resistente (rispetto alla base - y=0)	Mrd(y=0)=	1362.87 [kNm]		
Sforzo normale resistente (rispetto a y=ys)	Nrd=	0.00 [kN]		
Momento resistente (rispetto a y=ys)	Mrd=	1362.87 [kNm]		
Coefficiente di sicurezza allo stato limite ultimo (Nrd=cost)	Mrd/Msd=	1.307		

VERIFICA ALLO STATO LIMITE ULTIMO: SFORZO DI TAGLIO

Sforzo normale agente di calcolo				Nsd=	0.00 [kN]
Sforzo di taglio agente				Vd=	1737.60 [kN]
Carichi appesi o indiretti				Cad=	0.00 [kN/m]
Distanza della sezione dal bordo di appoggio (verifica solo VRc			. , , , ,	av=	999999.00 [mm]
Sezione ad altezza variabile: Inclinazione dei lembi della memb) per	h crescente con M):	p=	0.00
Componente di taglio dovuto all'inclinazione dei lembi della mer	mbratura			Vmd=	0.00 [kN]
Sforzo di taglio agente di calcolo: (Vsd = Vd + Vmd)				Vsd=	1737.60 [kN]
Varifica alamanti conza armatura tranvargali registanti a tag	ulia				
Verifica elementi senza armature trasversali resistenti a tag Larghezza (minima) della membratura resistente a taglio	Jiio			bw=	4000.00 [mm]
Altezza utile sezione: d = h - c				d=	1170.00 [mm]
Braccio della coppia interna				u- z=	1170.00 [mm]
Area armature longitudinali tese				Asl=	3216.99 [mm²]
Coefficiente: k=1+(200/d)^0.5 [<=2]				k=	1.413
Coefficiente: Vmin=0.035 * (k^1.5) * (fck^0.5)				Vmin=	0.26303 [N/mm ²]
Rapporto geometrico armatura longitudinale: pl= Asl / (bw *d)	[<=0.02]			νιιιιι= ρl=	0.00069
Tensione media di compressione nella sezione: σcp=Nsd/Ac [Sforzo di taglio resistente	<=0.2 icu	ı		σcp= Vrd=	0.000 [N/mm ²] 1230.97 [kN]
Coefficiente di sicurezza allo stato limite ultimo (>= 1; solo	calcostruz	70 \		Vrd/Vsd=	0.708
Coefficiente di Siculezza allo Stato lillille ditililo (>= 1, solo	caicesti uz	20)		VIU/VSU=	0.700
Armatura ordinaria trasversale (per taglio)					
Modulo di elasticità acciaio armatura trasversale				Esv=	210000.00 [N/mm ²]
Resistenza caratteristica acciaio ordinario armatura trasversale					430.00 [N/mm ²]
Coefficiente parziale di sicurezza acciaio ordinario armatura trasversale				fyvk= γs=	1.15
Coefficiente parziale di sicurezza accialo ordinario armatura tras	svei saic			75-	1.13
			Staffe		Ferri piegati
Resistenza di calcolo acciaio ordinario armatura trasversale	fysd	_	373.91 [N/mm ²]	fypd=	299.13 [N/mm ²]
Disposizione armatura trasversale (staffe): numero bracci:	,	=	8	n=	0
diametro:	φs		12 [mm]	φp=	0 [mm]
interasse:	SS		500.00 [mm]	sp=	0.00 [mm]
Inclinazione rispetto all'asse della trave (45°<=\alpha<=90°)	αs		90.00 °	αp=	45.00 °
, ,				·	
Inclinazione dei "puntoni" di calcestruzzo rispetto all'asse della t	trave (1 <=	cotθ	<=2.5)	cot θ=	2.500
Controllo limite inferiore cot θ in caso di significativo sforzo norr	male:				
Tensione media di compressione nella sezione:	σcp=Nsd/A	С		оср=	0.000 [N/mm ²]
Tensione tangenziale baricentrica				τb=	0.560 [N/mm ²]
Tensione principale massima baricentrica				σl=	0.560 [N/mm ²]
Inclinazione minima dei "puntoni" di calcestruzzo	rispetto al	l'asse	e della trave	cot θi=	1.000
Inclinazione assunta dei "puntoni" di calcestruzzo rispetto all'ass				cot θ=	2.500
Prolungamento delle armature longitudinali dovuto all'inclinazion	neθ			a1=	1415.23 [mm]
Incremento momento flettente dovuto al taglio (traslazione diagra	ramma mor	nenti	: solo se: Msd + ΔM <	∆M=	2459.11 [kNm]
Verifica elementi con armature trasversali resistenti a taglic)				
Verifica del calcestruzzo compresso					
Larghezza (minima) della membratura resistente a taglio				bw=	4000.00 [mm]
Altezza utile sezione: d = h - c				d=	1170.00 [mm]
Braccio della coppia interna				z=	1132.18 [mm]
Coefficiente α c (σ cp/fcd= 0.000)				αc=	1.000
Resistenza a compressione ridotta del calcestruzzo: f 'cd = 0.5	5*fcd			f 'cd=	5.667 [N/mm²]
Sforzo di taglio resistente (calcestruzzo compresso)				Vrcd=	4367.19 [kN]
Coefficiente di cierrome elle etete limite ultime (. 4. celes			\	\/*****\/***	2.542
Coefficiente di sicurezza allo stato limite ultimo (>=1; calce	estruzzo co	mpr	esso)	Vrcd/Vsd=	2.513
Verifica dell'armatura trasversale d'anima					
				A 01/-	004 79 [mm ²]
Area delle armature trasversali (staffe)				Asv=	904.78 [mm²]
Area staffe necessaria per carichi appesi				Ast'=	0.000 [mm²]
Area staffe utile al netto dell' armatura necessaria per carichi ap	pesi			Ast"=	904.78 [mm²]
Area delle armature trasversali (ferri piegati)				Asw=	0.00 [mm²]
Sforzo di taglio resistente (staffe)				Vrsd=	1915.14 [kN]
Sforzo di taglio resistente (ferri piegati)				Vrpd=	0.00 [kN]
Sforzo di taglio resistente totale armature trasversali				Vrsd=	1915.14 [kN]
Sforzo di taglio resistente: Vrd=minimo(Vrcd; Vrsd)				Vrd=	1915.14 [kN]
Coefficiente di sicurezza allo stato limite ultimo (>= 1; arma	itura d'anir	na)		Vrd/Vsd=	1.102
		,			

TITOLO: PONTE CANALE - PILA - PLINTO TRASVERSALE - COMB. RARA

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO);	(Yı́	56.278 cm)		SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)			Y=	56.28 cm
Sforzo normale (N>0: trazione; N<0: compressione)			N=	0.00 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)			M=	760.00 kN.m
Coefficiente di omogeneizzazione			m=	15
Ordinata asse neutro (dall'alto)			ys=	19.25 cm
Ordinata asse neutro (dal basso)			yi=	100.75 cm
Tensione calcestruzzo minima			sc1=	-2.814 N/mm ²
Tensione calcestruzzo massima			sc2=	0.000 N/mm ²
Tensione acciaio minima			sf1=	-35.63 N/mm ²
Tensione acciaio massima			sf2=	214.37 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	N/mm ²	N/mm ²
1	400.00	90.00	400.00	0.00	90.00	83.69	90.00	0.000	0.000
2	400.00	30.00	200.00	90.00	120.00	100.75	120.00	0.000	-2.814
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		120.00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²
1	16	16	3.00	32.17	214.37
2	8	12	117.00	9.05	-35.63
3	0	0	0.00	0.00	
4	0	0	0.00	0.00	
5	0	0	0.00	0.00	
6	0	0	0.00	0.00	
7	0	0	0.00	0.00	
8	0	0	0.00	0.00	
9	0	0	0.00	0.00	
10	0	0	0.00	0.00	
		Totale	28.02	41.22	

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys' Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - PILA - PLINTO TRASVERSALE - COMB. QUASI PERMANENTE

Gli sforzi sono applicati al baricentro della sezione omogeneizzata (SI/NO);	(Yţ	56.278 cm)		SI
Ordinata punto di applicazione sforzi (solo se non baricentrici)			Y=	56.28 cm
Sforzo normale (N>0: trazione; N<0: compressione)			N=	0.00 kN
Momento flettente(M>0: tende fibre inferiori; M<0: tende fibre superiori)			M=	661.50 kN.m
Coefficiente di omogeneizzazione			m=	15
Ordinata asse neutro (dall'alto)			ys=	19.25 cm
Ordinata asse neutro (dal basso)			yi=	100.75 cm
Tensione calcestruzzo minima			sc1=	-2.449 N/mm ²
Tensione calcestruzzo massima			sc2=	0.000 N/mm ²
Tensione acciaio minima			sf1=	-31.01 N/mm ²
Tensione acciaio massima			sf2=	186.59 N/mm ²

Sezione (dal basso)

Trapezio	bi	h	bs	Yi	Ys	Yi'	Ys'	si	SS
(n°)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	N/mm ²	N/mm ²
1	400.00	90.00	400.00	0.00	90.00	83.69	90.00	0.000	0.000
2	400.00	30.00	200.00	90.00	120.00	100.75	120.00	0.000	-2.449
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Totale		120.00							

Armature (dal basso)

Strato	Numero	Diametro	Yf	Af	sf
(n°)	ferri	(mm)	(cm)	cm ²	N/mm ²
1	16	16	3.00	32.17	186.59
2	8	12	117.00	9.05	-31.01
3	0	0	0.00	0.00	
4	0	0	0.00	0.00	
5	0	0	0.00	0.00	
6	0	0	0.00	0.00	
7	0	0	0.00	0.00	
8	0	0	0.00	0.00	
9	0	0	0.00	0.00	
10	0	0	0.00	0.00	
		Totale	28.02	41.22	

Legenda

bi= base inferiore trapezio

h= altezza trapezio

bs= base superiore trapezio

Yi= ordinata base inferiore trapezio

Ys= ordinata di base superiore trapezio

Yi'= ordinata di calcolo tensione calcestruzzo si

Ys'= ordinata di calcolo tensione calcestruzzo ss

si= tensione di calcolo calcestruzzo all'ordinata Yi'

ss= tensione di calcolo calcestruzzo all'ordinata Ys'

Af= area dello strato di acciaio alla quota Yf

Yf= ordinata dello strato di acciaio di area Af

TITOLO: PONTE CANALE - PILA - PLINTO TRASVERSALE - COMB. QUASI PERMANENTE

Riferimento:

D.M. 14 gennaio 2008 - "Norme tecniche per le costruzioni - Paragrafo 4.1.2.2.4

Circolare Consiglio Superiore dei Lavori Pubblici del 2 febbraio 2009, N. 617 - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008".

DATI GENERALI

Tipo impronte acciaio
Sensibilità armatura
Poco sensibile
Condizioni ambientali
Combinazione di azioni
Aderenza migliorata
Poco sensibile
Aggressive
Quasi permanenti

VERIFICA ALLO STATO LIMITE DI FORMAZIONE DELLE FESSURE

Resistenza caratteristica cilindrica del conglomerato cementizio

Resistenza a trazione media del conglomerato cementizio (fctm = 0.30 (fck)^(2/3))

Resistenza a trazione allo stato di formazione delle fessure (fcfk = fctm/1.2)

fck=

2.0.0 N/mm²

2.210 N/mm²

1.842 N/mm²

Per la combinazione di azioni prescelta si ha (sezione interamente reagente - sollecitazioni effettive):

Tensione di trazione massima nel calcestruzzo scmax= 0.725 N/mm²

La sezione è verificata allo stato limite di formazione delle fessure

VERIFICA ALLO STATO LIMITE DI APERTURA DELLE FESSURE

a) Calcolo della deformazione unitaria media dell'armatura epsrm

29962 N/mm² Modulo elastico del calcestruzzo Ec= Modulo elastico delle armature Es= 210000 N/mm² Tensione nell'armatura tesa in sezione fessurata 186.585 N/mm² siamas= Base della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure 400.000 cm b,eff= Altezza della zona di calcestruzzo efficace [min(2.5(h-d);(h-x)/3;h/2] h,eff= 7.500 cm 3000.000 cm² Area della zona di calcestruzzo efficace entro cui le barre influenzano l'apertura delle fessure Ac,eff = b,eff h,eff = 32.170 cm² Area della sezione di acciaio posta nell'area efficace Ac,eff As= Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff 0.010723 ro,eff=As/Ac,eff= Coefficiente per le condizioni di sollecitazione (0.6 azioni di breve durata, 0.4 azioni di lunga durata) kt= 0.4 0.000466 Deformazione unitaria media dell'armatura epsrm= Deformazione unitaria media dell'armatura (limite inferiore) (epsrm,lim = 0.6 sigmas/Es) epsrm,lim= 0.000533

b) Calcolo della distanza massima tra le fessure Dsmax

Distanza tra le barre (Int - fi) s1= 23.400 cm Diametro equivalente delle barre tese 16 mm fi= 2.200 cm Ricoprimento netto dell'armatura (Yf-fi/2) c= Distanza limite tra le barre da utilizzare nel calcolo (s = 5*(c+fi/2)) b= 15.000 cm Rapporto tra l'area della sezione di acciaio As e l'area di calcestruzzo efficace Ac,eff ro,eff=As/Ac,eff= 0.010723 Deformazione di trazione massima in sezione fessurata 0.000428 eps1= Deformazione di trazione minima in sezione fessurata 0.000000 eps2= Coefficiente di aderenza calcestruzzo alla barra (0.8 per barre ad aderenza migliorata, 1.6 per barre lisce) k1= 0.800 Coeffiiciente di forma del diagramma delle deformazioni di trazione nella sezione fessurata k2-0.500 Coefficiente k3= 3.400 Coefficiente 0.425 k4= Distanza massima tra le fessure Dsmax= 32.845 cm

c) Calcolo del valore caratteristico dell'apertura delle fessure wk

Deformazione unitaria media dell'armatura epsrm= 0.000533

Distanza massima tra le fessure

Valore caratteristico dell'apertura delle fessure (wk = epsrm Dsmax) wm= 0.175 mm

e) Verifica

Considerando secondo Normativa:

Condizioni ambiente: Aggressive
Combinazioni di azioni: Quasi permanenti
Tipo di armatura: Poco sensibile

Valore nominale caratteristico dell'apertura delle fessure per la combinazione d'azioni considerata wk= 0.200 mm

La sezione è verificata allo stato limite di apertura delle fessure