COMMITTENTE:

ALTA SORVEGLIANZA:

:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

TRATTA A.V. /A.C. TERZO VALICO DEI GIOVI PROGETTO DEFINITIVO

AREA DI SICUREZZA LIBARNA IMPIANTI ELETTRICI E SPECIALI

Relazione di calcolo impianti elettrici ordinari a servizio degli impianti di ventilazione, antincendio

GENERAL CONTRACTOR	,	ITALFERR S	nΔ		
GENERAL GONTHAGTOR		TIALI ERICO			
Consorzio Cociv Project Manadar (Ing. Gyagnozzi)					
Data: 26/03/2012					
COMMESSA LOTTO	ENTE C V	TIPO DOC.	OPERA/DISCIPLINA A I 9 4 B X	PROGR	REV.

Proge	Progettazione :							
Rev	Descrizione	Redatto	Data	Verificato	Data	Progettista Integratore	Data	IL PROGETTISTA
E00	Adeguamento sicurezza in galleria	Ing. F.Fantinato	16/03/2012	Ing.I. Barilli	20/03/2012	Ing. E. Pagani	23/03/2012	Ing. E. Ghislandi
				Y				GHIS AND AND CO Sez. A CHIOTI: a) civile e Ambientale b) industriale c) dell'informazione n°A 16993 MILANO Data: 26/03/2012

n. Elab.: File: A301-00-D-CV-CL-Al94-BX-001_E00.DOC

CUP: F81H92000000008

Foglio 2 di 44

INDICE

INDIC	E	2
1. GEI	NERALITA'	3
2. LEG	GGI E NORME DI RIFERIMENTO	4
3. IPO	TESI E CRITERI PROGETTUALI	5
4. STII	MA COMPLESSIVA DELLE POTENZE	5
5. DIM	IENSIONAMENTO LINEE BT	8
5.1	CALCOLO DELLE CORRENTI D'IMPIEGO	8
5.2	DIMENSIONAMENTO E VERIFICA A SOVRACCARICO DEI CAVI	9
5.2.1	GENERALITÀ	9
5.2.2	MODALITÀ DI POSA	11
5.2.3	DETERMINAZIONE DELLA PORTATA	17
5.2.4	DIMENSIONAMENTO DEI CONDUTTORI DI NEUTRO	27
5.2.5	DIMENSIONAMENTO DEI CONDUTTORI DI PROTEZIONE	27
5.2.6	CALCOLO DELLA TEMPERATURA DEI CAVI	28
5.3	CADUTE DI TENSIONE	28
5.4	CALCOLO DELLE CORRENTI DI GUASTO	31
5.4.1	MODELLIZZAZIONE DELLE APPARECCHIATURE IN RETE	31
5.4.2	CALCOLO DELLE CORRENTI MASSIME DI CORTOCIRCUITO	36
5.4.3	CALCOLO DELLE CORRENTI MINIME DI CORTOCIRCUITO	39
5.5	VERIFICA DELLA PROTEZIONE CONTRO IL CORTOCIRCUITO DELLE CONDUTTURE	40
5.5.1	GENERALITÀ	40
5.5.2	INTEGRALE DI JOULE	41
5.5.3	MASSIMA LUNGHEZZA PROTETTA	42
5.6	VERIFICA CONTATTI INDIRETTI	43
5.6.1	SISTEMA DI DISTRIBUZIONE TN	43

Foglio 3 di 44

1. **GENERALITA**'

Il presente documento costituisce la relazione di calcolo, del progetto definitivo, relativo agli impianti elettrici di potenza da realizzare nelle gallerie della linea ferroviaria A.V./A.C. Terzo Valico dei Giovi (MI-GE), dedicati ad alimentare principalmente le seguenti utenze:

- elettropompe del sistema Idrico Antincendio Area di sicurezza Libarna .
- elettropompe del sistema di Spegnimento Automatico a schiuma Area di sicurezza Libarna.
- sistema di segnalazione luminosa per l'evacuazione in Area di sicurezza Libarna.

Le caratteristiche dell'infrastruttura ferroviaria sono le seguenti:

- Linea principale, denominata del 3° Valico dei Gio vi da Genova a Tortona.
- Interconnessioni Lato Liguria.
- Interconnessioni Lato Piemonte.

Tutte le utenze utilizzano la tensione di esercizio pari a 400 Va.c 3F+T+N e ricevono l'alimentazione elettrica dalle cabine LF poste nei fabbricati di sicurezza esterni.

Nello schema a blocchi generale del sistema rif. A301-00-D-CV-DX-Al000X-005 sono identificate in modo grafico e immediato le relative utenze alimentate.

Nell'elaborato rif. A301-00-D-CV-PX-AI-00-0-X-004 "Impianto Idrico Antincendio - Controllo Fumi - Parte Elettrica - Tratta Complessiva - Schematico quadri elettici e cabine di alimentazione", sono riportate, in forma schematica le posizioni delle cabine per le in oggetto e sono inoltre riportati tutti i quadri principali di alimentazione gli impianti previsti.

I criteri alla base della progettazione degli impianti in oggetto si possono così elencare:

- sicurezza degli operatori, degli utenti e degli impianti;
- semplicità ed economia di manutenzione;
- scelta di apparecchiature improntata a criteri di elevata qualità, semplicità e robustezza, per sostenere le condizioni di lavoro più gravose;
- risparmio energetico;
- affidabilità degli impianti e massima continuità di servizio.

Il presente documento, relativamente ai calcoli dimensionali degli impianti di Bassa Tensione (BT), intende evidenziare:

- la normativa tecnica utilizzata per il dimensionamento;
- i criteri di dimensionamento, tenendo conto dei vincoli impiantistici e della normativa vigente;
- i dati tecnici di ingresso;

Foglio 4 di 44

- i risultati dei calcoli dimensionali e/o delle verifiche di calcolo necessarie per la definizione degli impianti stessi;
- i software di calcolo utilizzati per le verifiche (versione e data di compilazione).

In particolare, sono descritti in generale i principali metodi di calcolo e di verifica, riportando le prescrizioni indicate dalla normativa in uso. Talvolta nei casi specifici, qualora sia necessario, potranno essere introdotte opportune ipotesi semplificative.

I risultati delle verifiche di impianto, ottenute con software commerciale o tramite fogli di calcolo, sono riportati negli allegati, a cui dovrà essere fatto riferimento anche per le sigle e la simbologia adottata.

Per ulteriori dettagli sulle caratteristiche delle apparecchiature scelte, si rimanda agli elaborati grafici relativi.

2. LEGGI E NORME DI RIFERIMENTO

Nello sviluppo del progetto esecutivo delle opere impiantistiche descritte nel presente documento sono stati considerati, in particolare, i seguenti riferimenti:

- CEI 11-25 2001 II Ed. (IEC 60909-2001): Correnti di cortocircuito nei sistemi trifasi in corrente alternata. Parte 0: Calcolo delle correnti.
- CEI 11-28 1993 I Ed. (IEC 781): Guida d'applicazione per il calcolo delle correnti di cortocircuito nelle reti radiali e bassa tensione.
- CEI 17-5 VIII Ed. 2007: Apparecchiature a bassa tensione. Parte 2: Interruttori automatici.
- CEI 23-3/1 I Ed. 2004: Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e similari.
- CEI 33-5 I Ed. 1984: Condensatori statici di rifasamento di tipo autorigenerabile per impianti di energia a corrente alternata con tensione nominale inferiore o uguale a 660V.
- CEI 64-8 VI Ed. 2007: Impianti elettrici utilizzatori a tensione nominale non superiore a 1000V in corrente alternata e a 1500V in corrente continua.
- IEC 364-5-523: Wiring system. Current-carrying capacities.
- IEC 60364-5-52: Electrical Installations of Buildings Part 5-52: Selection and Erection of Electrical Equipment Wiring Systems.
- CEI UNEL 35023 2009: Cavi per energia isolati con gomma o con materiale termoplastico avente grado di isolamento non superiore a 4- Cadute di tensione.
- CEI UNEL 35024/1 1997: Cavi elettrici isolati con materiale elastomerico o termoplastico per tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in corrente continua. Portate di corrente in regime permanente per posa in aria.

Foglio 5 di 44

- CEI UNEL 35024/2 1997: Cavi elettrici ad isolamento minerale per tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in corrente continua. Portate di corrente in regime permanente per posa in aria.
- CEI UNEL 35026 2000: Cavi elettrici con materiale elastomerico o termoplastico per tensioni nominali di 1000 V in corrente alternata e 1500 V in corrente continua. Portate di corrente in regime permanente per posa interrata.
- CEI EN 50272: Prescrizioni di sicurezza per batterie di accumulatori e loro installazioni.
- IEC 60287: Electric cables Calculation of the current rating.

3. IPOTESI E CRITERI PROGETTUALI

Le ipotesi progettuali su cui si basa il progetto degli impianti elettrici in oggetto sono i seguenti:

- disponibilità di alimentazioni elettriche di potenza, derivate dai quadri BT in cabina elettrica SATURNO, di tipo 3F+N con tensione di esercizio di 400 Va.c.
- sistema di distribuzione tipo TN-S dalla cabina elettrica di derivazione
- frequenza 50 Hz.
- corrente massima di corto circuito presunta (valide per la scelta del potere di interruzione dei dispositivi di protezione) secondo quanto segue:
 - ≤40 kA (derivati dai rispettivi Power Center BT in cabina SATURNO);
- impianto di terra con collettore di terra locale (di fornitura SATURNO), nei pressi di ciascun quadro elettrico.

4. STIMA COMPLESSIVA DELLE POTENZE

I calcoli di progetto saranno eseguiti facendo riferimento alle seguenti dati di carico.

In particolare, nelle tabelle che seguono, sono riportate, per ogni locazione, le diverse tipologie di utenza, la potenza assorbita e richiesta al quadro elettrico in cabina SATURNO.

Foglio 6 di 44

Utenza	Pk./locazione	Tipo di utenza	Pn totale [kW]	N°utenze	Progressiva (rif. BP) Cabina SATURNO	Denominazione cabina di attestazione SATURNO	P singola partenza [kW]	N° partenze da Power Center SATURNO	Vn partenza SATURNO [V]	N° quadri	Nome Quadro elettrico
			AREA	DI SICUREZZA I	LIBARNA						
Centrale antincendio Valico	28+430	Elettropompe	30	1+1R	28+430	Cabina 42	35	2	400	1	QE.Al2
Nord		Servizi ausiliari GC	15				15	2	400	1	QE.AI.SA
Impianto		Elettropompe	300	1+1R 250 kW Pompe H20			250	2	400	1	QE.AS1
spegnimento automatico a schiuma	28+430			1+1R 15kW schiuma	28+430	28+430 Cabina 42	15	2	400	1	QE.AS2
Scriuma		Servizi ausiliari GC	10				10	2	400	1	QE.AS.SA

Nel seguito si riportano ulteriori dettagli sulle potenze di cui alle tabelle precedenti:

Quadro elettrico QE.AI.SA

Ausiliari centrale antincendio tipo					
	n	P [kW]	Pt [kW]	tipo	
Pompa di compenso	1	4.00	4.00	3P	
Aerotermo	1	3.00	3.00	3P	
Ventilazione locale	1	1.50	1.50	3P	
Misuratore portata	1	0.10	0.10	1P+N	
Cavi scaldanti	1	2.00	2.00	1P+N	
Misuratore livello	1	0.05	0.05	1P+N	
Ventilazione QESA	1	0.05	0.05	1P+N	
Scaldiglie QESA	1	0.05	0.05	1P+N	
UPS	1	1.76	1.76	1P+N	
kc*ku			0.80		
Totale			10.01		

Foglio 7 di 44

Quadro elettrico QE.AS.SA

Ausiliari centrale spegnimento automatico Libarna					
	n	P [kW]	Pt [kW]	tipo	
Sistema spegnimento automatico	1	5.00	5.00	3P+N	
Quadri monitori	2	5.00	10.00	3P+N	
Aerotermo	1	3.00	3.00	3P	
Ventilazione locale	1	1.50	1.50	3P	
Misuratore portata	1	0.10	0.10	1P+N	
Misuratore livello	1	0.05	0.05	1P+N	
Ventilazione QESA	1	0.05	0.05	1P+N	
Scaldiglie QESA	1	0.05	0.05	1P+N	
UPS1	1	1.76	1.76	1P+N	
UPS2	1	2.00	2.00	1P+N	
kc*ku			0.70		
Totale			16.46		

Foglio 8 di 44

5. DIMENSIONAMENTO LINEE BT

5.1 CALCOLO DELLE CORRENTI D'IMPIEGO

Per i carichi o utenze presenti nell'impianto la corrente d'impiego è calcolata dalla formula seguente, sulla base della potenza realmente assorbita:

$$I_b = \frac{P_d}{k_{ca} \cdot V_n \cdot \cos \varphi}$$

nella quale:

- Pd = Potenza effettivamente assorbita dal carico
- Vn = Tensione nominale del sistema
- cos φ = Fattore di potenza
- kca = fattore dipendente dal sistema di collegamento
- kca = 1 sistema monofase o bifase, due conduttori attivi;
- kca = 1.73 sistema trifase, tre conduttori attivi.

Se la rete è in corrente continua il fattore di potenza cosφ è pari a 1.

Dal valore massimo (modulo) di Ib vengono calcolate le correnti di fase in notazione vettoriale (parte reale ed immaginaria) con le formule:

$$\begin{split} \dot{I}_1 &= I_b \cdot e^{-j\varphi} = I_b \cdot \left(\cos \varphi - j \sin \varphi\right) \\ \dot{I}_2 &= I_b \cdot e^{-j(\varphi - 2\pi/3)} = I_b \cdot \left(\cos \left(\varphi - \frac{2\pi}{3}\right) - j \sin \left(\varphi - \frac{2\pi}{3}\right)\right) \\ \dot{I}_3 &= I_b \cdot e^{-j(\varphi - 4\pi/3)} = I_b \cdot \left(\cos \left(\varphi - \frac{4\pi}{3}\right) - j \sin \left(\varphi - \frac{4\pi}{3}\right)\right) \end{split}$$

Il vettore della tensione Vn è supposto allineato con l'asse dei numeri reali:

$$V_n = V_n + j0$$

La potenza di dimensionamento Pd è data dal prodotto:

$$P_d = P_n \cdot coeff$$

nella quale coeff è pari al fattore di utilizzo per utenze terminali oppure al fattore di contemporaneità per utenze di distribuzione.

La potenza Pn, invece, è la potenza nominale del carico per utenze terminali, ovvero, la somma delle Pd delle utenze a valle (Σ Pd a valle) per utenze di distribuzione (somma vettoriale).

Foglio 9 di 44

La potenza reattiva delle utenze viene calcolata invece secondo la:

$$Q_n = P_n \cdot \tan \varphi$$

per le utenze terminali, mentre per le utenze di distribuzione viene calcolata come somma vettoriale delle potenze reattive nominali a valle (ΣQd a valle).

Il fattore di potenza per le utenze di distribuzione viene valutato, di conseguenza, con la:

$$\cos \varphi = \cos \left(\arctan \left(\frac{Q_n}{P_n} \right) \right)$$

5.2 DIMENSIONAMENTO E VERIFICA A SOVRACCARICO DEI CAVI

5.2.1 **GENERALITÀ**

Di seguito sono illustrati i criteri di dimensionamento e verifica dei cavi e delle relative protezioni, in relazione alle correnti di sovraccarico.

Il riferimento è la Norma CEI 64-8/4 (par. 433.2), secondo la quale il dispositivo di protezione deve essere coordinato con la conduttura in modo da verificare le condizioni:

a)
$$I_b \le I_n \le I_z$$

b)
$$I_f \le 1.45 \cdot I_7$$

dove:

- Ib = Corrente di impiego del circuito
- In = Corrente nominale del dispositivo di protezione
- Iz = Portata in regime permanente della conduttura
- If = Corrente di funzionamento del dispositivo di protezione

Affinché sia verificata la condizione a) è necessario dimensionare il cavo in base alla corrente nominale della protezione a monte. Dalla corrente Ib, pertanto, viene determinata la corrente nominale della protezione (seguendo i valori normalizzati) e con questa si procede alla determinazione della sezione.

Il dimensionamento dei cavi rispetta anche i seguenti casi:

- condutture senza protezione derivate da una conduttura principale protetta contro i sovraccarichi con dispositivo idoneo ed in grado di garantire la protezione anche delle condutture derivate;
- conduttura che alimenta diverse derivazioni singolarmente protette contro i sovraccarichi, quando la somma delle correnti nominali dei dispositivi di protezione delle derivazioni non supera la portata Iz della conduttura principale.

Foglio 10 di 44

L'individuazione della portata si effettua utilizzando le seguenti tabelle di posa assegnate ai cavi:

- CEI 64-8 Tabella 52C (esempi di condutture);
- CEI-UNEL 35024/1 (portata dei cavi isolati in PVC ed EPR);
- CEI-UNEL 35026 (portata dei cavi interrati);

Esse oltre a riportare la corrente ammissibile (portata) in funzione del tipo di isolamento del cavo, del tipo di posa e del numero di conduttori attivi, riportano anche la metodologia di valutazione dei coefficienti di declassamento.

La portata minima del cavo viene calcolata come:

$$I_{z\min} = \frac{I_n}{k_{tot}}$$

dove il coefficiente ktot ha lo scopo di declassare il cavo e tiene conto dei seguenti fattori:

- tipo di materiale conduttore;
- tipo di isolamento del cavo;
- numero di conduttori in prossimità compresi eventuali paralleli;
- eventuale declassamento deciso dall'utente.

Laddove necessario, saranno posti dei vincoli cautelativi, sui coefficienti di declassamento utilizzati.

La sezione viene scelta in modo che la sua portata (ricavata dalla tabella) sia superiore alla I_{zmin} . Gli eventuali paralleli vengono calcolati nell'ipotesi che abbiano tutti la stessa sezione, lunghezza e tipo di posa (vedi norma 64.8 par. 433.3), considerando la portata minima come risultante della somma delle singole portate (declassate per il numero di paralleli dal coefficiente di declassamento per prossimità).

La condizione b) non necessita di verifica in quanto gli interruttori che rispondono alla norma CEI 23.3 hanno un rapporto tra corrente convenzionale di funzionamento I_f e corrente nominale I_n minore di 1.45 ed è costante per tutte le tarature inferiori a 125 A. Per le apparecchiature industriali, invece, le norme CEI 17.5 e IEC 947 stabiliscono che tale rapporto può variare in base alla corrente nominale, ma deve comunque rimanere minore o uguale a 1.45.

Risulta pertanto che, in base a tali normative, la condizione b) sarà sempre verificata.

Le condutture dimensionate con questo criterio sono, pertanto, protette contro le sovracorrenti.

Nei capitoli che seguono sono specificate le modalità di posa contemplate dalla Norma CEI 64-8, le tabelle ricavate dalle norme di cui sopra e i diversi metodi per la determinazione della portata.

Foglio 11 di 44

5.2.2 MODALITÀ DI POSA

Con riferimento alla norma CEI 64-8/5, le tipologie di installazione previste sono riportate nelle tabella seguente:

Foglio 12 di 44

ESEMPIO	RIFERIMENTO	DESCRIZIONE
0.0	1	cavi senza guaina in tubi protettivi circolari posati entro muri termicamente isolati
	2	cavi multipolari in tubi protettivi circolari posati entro muri termicamente isolati
	3	cavi senza guaina in tubi protettivi circolari posati su o distanziati da pareti
	3A	cavi multipolari in tubi protettivi circolari posati su o distanziati da pareti
	4	cavi senza guaina in tubi protettivi non circolari posati su pareti
	4A	cavi multipolari in tubi protettivi non circolari posati su pareti
	5	cavi senza guaina in tubi protettivi annegati nella muratura
	5A	cavi multipolari in tubi protettivi annegati nella muratura

Foglio 13 di 44

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	11	cavi multipolari (o unipolari con guaina), con o senza armatura, posati su o distanziati da pareti
	11A	cavi multipolari (o unipolari con guaina) con o senza armatura fissati su soffitti
	12	cavi multipolari (o unipolari con guaina), con o senza armatura, su passerelle non perforate
	13	cavi multipolari (o unipolari con guaina), con o senza armatura, su passerelle perforate con percorso orizzontale o verticale
	14	cavi multipolari (o unipolari con guaina), con o senza armatura, su mensole
	15	cavi multipolari (o unipolari con guaina), con o senza armatura, fissati da collari
	16	cavi multipolari (o unipolari con guaina), con o senza armatura, su passerelle a traversini
	17	cavi unipolari con guaina (o multipolari) sospesi a od incorporati in fili o corde di supporto

Foglio 14 di 44

ESEMPIO	RIFERIMENTO	DESCRIZIONE
15	18	conduttori nudi o cavi senza guaina su isolanti
	21	cavi multipolari (o unipolari con guaina) in cavità di strutture
	22	cavi unipolari senza guaina in tubi protettivi non circolari posati in cavità di strutture
	22A	cavi multipolari (o unipolari con guaina) in tubi protettivi circolari posati in cavità di strutture
	23	cavi unipolari senza guaina in tubi protettivi non circolari posati in cavità di strutture
	24	cavi unipolari senza guaina in tubi protettivi non circolari annegati nella muratura
6 6	24A	cavi multipolari (o unipolari con guaina), in tubi protettivi non circolari annegati nella muratura
8	25	cavi multipolari (o unipolari con guaina) posati in: controsoffitti pavimenti sopraelevati

Foglio 15 di 44

ESEMPIO	RIFERIMENTO	DESCRIZIONE
9	31	cavi senza guaina e cavi multipolari (o unipolari con guaina) in canali posati su parete con percorso orizzontale
	32	cavi senza guaina e cavi multipolari (o unipolari con guaina) in canali posati su parete con percorso verticale
	33	cavi senza guaina posati in canali incassati nel pavimento
	33A	cavi multipolari posati in canali incassati nel pavimento
	34	cavi senza guaina in canali sospesi
	34A	cavi multipolari (o unipolari con guaina) in canali sospesi
	41	cavi senza guaina e cavi multipolari (o cavi unipolari con guaina) in tubi protettivi circolari posati entro cunicoli chiusi, con percorso orizzontale o verticale
	42	cavi senza guaina in tubi protettivi circolari posati entro cunicoli ventilati incassati nel pavimento

Foglio 16 di 44

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	43	cavi unipolari con guaina e multipolari posati in cunicoli aperti o ventilati con percorso orizzontale e verticale
	51	cavi multipolari (o cavi unipolari con guaina) posati direttamente entro pareti termicamente isolanti
•	52	cavi multipolari (o cavi unipolari con guaina) posati direttamente nella muratura senza protezione meccanica addizionale
P	53	cavi multipolari (o cavi unipolari con guaina) posati nella muratura con protezione meccanica addizionale
	61	cavi unipolari con guaina e multipolari in tubi protettivi interrati od in cunicoli interrati
	62	cavi multipolari (o unipolari con guaina) interrati senza protezione meccanica addizionale
	63	cavi multipolari (o unipolari con guaina) interrati con protezione meccanica addizionale
	71	cavi senza guaina posati in elementi scanalati

Foglio 17 di 44

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	72	cavi senza guaina (o cavi unipolari con guaina o cavi multipolari) posati in canali provvisti di elementi di separazione: circuiti per cavi per comunicazione e per elaborazione dati
	73	cavi senza guaina in tubi protettivi o cavi unipolari con guaina (o multipolari) posati in stipiti di porte
	74	cavi senza guaina in tubi protettivi o cavi unipolari con guaina (o multipolari) posati in stipiti di finestre
	75	cavi senza guaina, cavi multipolari o cavi unipolari con guaina in canale incassato
	81	cavi multipolari immersi in acqua

Tabella 1 - Esempi di condutture (rif. CEI 64-8 tab.5C)

Le figure riportate sono solo indicative dei metodi di installazione descritti, ma non rappresentano la reale messa in opera.

5.2.3 **DETERMINAZIONE DELLA PORTATA**

5.2.3.1 Cavi isolati in PVC ed EPR (CEI-UNEL 35024/1)

Per la determinazione della portata dei cavi in rame isolati in materiale elastomerico o termoplastico si fa riferimento alla tabella CEI-UNEL 35024/1.

La norma non prende in considerazione i cavi con posa interrata, in acqua o i cavi posti all'interno di apparecchi elettrici o quadri e cavi per rotabili o aeromobili.

Foglio 18 di 44

In particolare:

il coefficiente ktot è ottenuto dal prodotto dei coefficienti k1 e k2 ricavati da Tabella 3, Tabella 4, Tabella 5, Tabella 6;

la portata nominale è ricavata da Tabella 7 e Tabella 8 in relazione al numero della posa (secondo CEI 64-8/5), all'isolante e al numero di conduttori attivi (riferita a 30℃).

k₁ è il coefficiente di correzione relativo alla temperatura ambiente

k₂ è il coefficiente di correzione per i cavi in fascio, in strato o su più strati.

Il coefficiente k_2 si applica ai cavi del fascio o dello strato aventi sezioni simili (rientranti nelle tre sezioni unificate adiacenti) e uniformemente caricati.

Qualora K₂ non sia applicabile, è sostituito dal coefficiente F:

$$F = \frac{1}{\sqrt{n}}$$

dove n è il numero di cavi che compongono il fascio:

n	1	2	3	4	5	6	7	8
F	1	0.71	0.57	0.5	0.44	0.41	0.37	0.35

Tabella 2 - Fattore di correzione per conduttori in fascio F

Foglio 19 di 44

Temperatura [℃]	PVC	EPR
10	1,22	1,15
15	1.17	1.12
20	1.12	1.08
25	1.06	1.04
30	1.00	1.00
35	0.94	0.96
40	0.87	0,91
45	0.79	0.87
50	0.71	0.82
55	0,61	0.76
60	0,50	0,71
65	-	0,65
70	-	0,58
75	-	0,50
80	-	0,41

Tabella 3 - Influenza della temperatura k1

n°di posa CEI 64-8	disposizione				nun	nero di (circuiti d	o di cavi	i multipe	olari			
		1	2	3	4	5	6	7	8	9	12	16	20
tutte le altre pose	raggruppati a fascio, annegati	1	0,8	0,7	0,65	0,6	0,57	0,54	0,52	0,5	0,45	0,41	0,38
11/12/2025	singolo strato su muro, pavimento o passerelle non perforate	1	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,7			
11A	strato a soffitto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61	noo	مالي مميد	rioro
13	strato su passerelle perforate orizzontali o verticali (perforate o non perforate)	1	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72	riduzio cii	suna ulte one per p rcuiti o ca nultipola	oiù di 9 avi
14-15-16-17	strato su scala posa cavi o graffato ad un sostegno	1	0,87	0,82	0,8	0,8	0,79	0,79	0,78	0,78			

Tabella 4 - Circuiti realizzati con cavi in fascio o strato k2

Foglio 20 di 44

n° posa CEI 64-8	metodo di i	nstallazione	numero	di cavi	per ogn	i suppo	rto		
			numero di passerelle	1	2	3	4	6	9
		posa	2	1,00	0,87	3 4 6 9 0,80 0,77 0,73 0,68 0,79 0,76 0,71 0,68 0,96 0,92 0,87 0,95 0,91 0,85 0,81 0,76 0,71 0,70 0,88 0,87 0,85 0,80 0,78 0,76 0,73	0,68		
13	passerelle perforate	ravvicinata	3	1,00	0,86	0,79	0,76	0,71	0,66
13	orizzonatali	posa	2	1,00	0,99	0,96	0,92	0,87	
		distanziata	3	1,00	0,98	0,95	0,91	77 0,73 6 0,71 92 0,87 91 0,85 96 0,71 97 0,85 98 0,76 96 0,73 97 0,96	
13	passerelle perforate	posa ravvicinata	2	1,00	0,88	2 3 4 6 87 0,80 0,77 0,73 0 86 0,79 0,76 0,71 0 99 0,96 0,92 0,87 98 0,95 0,91 0,85 88 0,81 0,76 0,71 0 91 0,88 0,87 0,85 86 0,80 0,78 0,76 0 85 0,79 0,76 0,73 0 99 0,98 0,97 0,96	0,70		
13	verticali	posa distanziata	2	1,00	0,91	0,88	4 6 0,77 0,73 0, 0,76 0,71 0, 0,92 0,87 0,91 0,85 0,76 0,71 0, 0,87 0,85 0,085 0,78 0,76 0,07 0,76 0,73 0, 0,97 0,96 0,96		
	scala posa	posa	2	1,00	0,86	0,80	0,78	0,76	0,73
14-15-16-	cavi	ravvicinata	3	1,00	0,85	0,79	0,76	0,73	0,70
17	elemento	posa	2	1,00	0,99	0,98	0,97	0,96	
	di sostegno	distanziata	3	1,00 0,87 0,80 0,77 0,73 0 1,00 0,86 0,79 0,76 0,71 0 1,00 0,99 0,96 0,92 0,87 1,00 0,98 0,95 0,91 0,85 1,00 0,88 0,81 0,76 0,71 0 1,00 0,91 0,88 0,87 0,85 1,00 0,86 0,80 0,78 0,76 0 1,00 0,85 0,79 0,76 0,73 0 1,00 0,99 0,98 0,97 0,96					

Tabella 5 - Circuiti realizzati con cavi multipolari in strato su più supporti (es. passerelle) k2

Per posa distanziata si intendono cavi posizionati:

ad una distanza almeno doppia del loro diametro in caso di cavi unipolari ad una distanza almeno pari alloro diametro in caso di cavi multipolari.

Se i cavi sono installati ad una distanza superiore a quella sopra indicata il fattore correttivo per circuiti in fascio non si applica ($k_2 = 1$).

Nelle pose su passerelle orizzontali o su scala posa cavi, i cavi devono essere posizionati ad una distanza dalla superficie verticale (parete) maggiore o uguale a 20 mm.

n°posa CEI 64-8		numero d circu	iti trifas	i		utilizzato per
		numero di passerelle	1	2	3	
13	passerelle perforate	2	0,96	0,87	0,81	3 cavi in formazione
13	passerelle periorate	3	0,95	0,85	0,78	orizzontale
13	passerelle perforate	2	0,95	0,84		3 cavi in formazione verticale
14-15-16-17	scala posa cavi o elemento	2	0,98	0,93	0,89	3 cavi in formazione
14-13-10-17	di sostegno	3	0,97	0,90	0,86	orizzontale
13	passerelle perforate	2	0,97	0,93	0,89	
13	passerelle periorate	3	0,96	0,92	0,86	
13	passerelle perforate	2	1,00	0,90	0,86	3 cavi in formazione a trefolo
14-15-16-17	scala posa cavi o elemento	2	0,97	0,95	0,93	
14-10-10-17	di sostegno	3	0,96	0,94	0,9	

Tabella 6 - Circuiti realizzati con cavi unipolari in strato su più supporti k2

Foglio 21 di 44

Nelle pose su passerelle orizzontali o su scala posa cavi, i cavi devono essere posizionati ad una distanza dalla superficie verticale (parete) maggiore o uguale a 20 mm. Le terne di cavi in formazione a trefolo si intendono disposte ad una distanza maggiore di due volte il diametro del singolo cavo unipolare.

	Altri fini di		'n										Portata [A]	[A]								
Metod. di install.	posa della	lsol.	conduttori									Sezion	e nomi	Sezione nominale [mm2]	[2]							
	CEI 64-8		caricati	-	1,5	2,5	4	9	10	16	25	35	20	20	95 1	120 1	150 1	185 2	240 3	300 400	0 200	630
:		0/10	2		14,5	19,5	26	34	46	61	80	66	119	151	182 2	210 2	240 2.	273 33	320		'	
cavi in tubo	1-51-71-73-	2	3		13,5	18	24	31	42	99	73	89	108	136	164 1	188 2	216 2	245 2	286		-	-
narete isolante	74	993	2		19	56	35	45	61	81	106	131	158	200	241 2	278	318 3	362 4:	424	_	Ľ	-
		EPR	3		17	23	31	40	54	73	92	117	141	179 :	216 2	249 2	285 3;	324 3	380		Ľ	Ľ
	3-4-5-22-23	0	2	13,5	17,5	24	32	41	57	76	101	125	151	192	232 2	369	309 34	353 4	415		-	-
cavi in tubo in	24-31-32-33) }	3	12	15,5	17	28	36	20	89	68	110	134	171	207 2	239 2	275 3	314 34	696			•
g g	34-41-42-72	EPR	2	17	23	31	42	54	75	100	133	164	198	253	306	354 4	402 4	472 5	555	Ė	-	•
			3	15	20	28	37	48	99	88	117	144	175	222	269 3	312 3	355 4	417 49	490			•
cavi in aria libera		PVC	2		19,5	56	35	46	63	82	112	138	168	213	258 2	299	344 39	392 44	461			
in posizione non	18		3		15,5	21	28	36	25	9/	101	125	151	192	232 2	269	309 3	353 4	415	<u> </u>	-	'
a portata di mano		200	2		24	33	45	58	80	107	142	175	212	270	327		_	_	_			
		Y L	3		20	28	37	48	71	96	127	157	190	242	293	H	_	H	H		_	Ŀ
cavi in aria libera	11-12-21-25	PVC	е	,	19,5	26	35	46	83	82	110	137	167	216	3 3	308	356 40	409 44	485 5	561 656	6 749	855
a tritogilo	43-52-53	EPR	3		24	33	45	58	80	107	135	169	207	268	328 3	383 4	444 5	510 6	2 209	703 823	3 946	1088
cavi in aria libera	13-14-15-16-	PVC	2		22	30	40	52	7	96	131	162	196	251	304	352 4	406 4	463 5-	9 949	529 754	868	1005
in piano a	17		3		19,5	56	35	46	63	82	114	143	174	225	275 3	321 3	372 4:	427 5	507 5	287 689	68 2 8 8	902
contatto		803	2		27	37	20	64	88	119	161	200	242	310	377 4	437 5	504 5	575 6	679	783 940	0 1083	3 1254
		`	3		24	33	45	58	80	107	141	176	216	279	342 4	400 4	464 5:	533 6:	634 7	736 868	8 998	1151
cavi in aria libera		PVC	2								146	181	219	281	341 3	396	456 5;	521 6	615 7	709 852	2 982	1138
uistariziati su uri	14-15-16		3								146	181	219	281	341 3	396	456 53	521 6	615 7	709 852	2 982	1138
orizzontale(2)		GOD	2	-	-	-	-	-	-	-	182	226	275	323	430 5	200	277 6	661 74	781 9	902 108	1085 1253	3 1454
			3		-	-		-	-	-	182	226	275	353	430 5	500 5	277 6	661 74	781 9	902 108	1085 1253	3 1454
di i		DVC	2						-		130	162	197	254	311 3	362 4	419 48	480 5	9 699	659 795	5 920	1070
distanziati su un	13-14-15-16	2	3					-	-	•	130	162	197	254	311 3	362 4	419 4	480 5	569 6	659 795	5 920	1070
piano verticale (2)	_	d	2						-	•	161	201	246	318	389 4	454 5	527 6	605 7	719 8	833 1008	1169	1362
		: i	3						,		161	201	246	318	389 4	454 5	527 6	605 7	719 8	833 100	1008 1169	1362

Tabella 7 - Portata cavi unipolari con e senza guaina con isolamento in PVC o EPR 1 2

_

¹ PVC: mescola termoplastica a base di polivinilcloruro (temperatura massima del conduttore uguale a 70 °C). EPR: mescola elastomerica reticolata a base di gomma etilenpropilenica o similari (temperatura massima del conduttore uguale a 90 °C)

Foglio 22 di 44

		630									-							
		200																
		400																
		300	334	298	442	396	394	339	532	455	593	497	741	621	530	464	693	9/9
		240	291	261	386	346	344	297	459	398	514	430	641	538	461	403	299	200
		185	248	223	329	295	294	255	384	340	434	364	542	456	392	341	909	424
		150	219	196	290	259	258	225	334	300	379	319	473	399	344	299	441	371
		120	192	172	253	227	232	206	305	268	328	276	410	346	299	259	382	322
	nm2]	92	167	150	220	197	201	179	265	233	282	238	352	298	258	223	328	278
Portata [A]	inale [n	20	139	125	183	164	168	149	221	194	232	196	289	246	213	184	269	229
Porta	Sezione nominale [mm2]	50	110	66	145	130	133	118	175	154	180	153	225	190	168	144	209	179
	Sezio	35	92	83	121	109	111	66	146	128	148	126	185	158	138	119	171	147
		25	75	89	66	89	06	80	119	105	119	101	149	127	112	96	138	119
		16	25	25	9/	89	69	62	91	80	94	08	115	100	85	9/	107	96
		10	10 4 4 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	63	29	80	1.1											
		9	32	58	42	24 88 88 22 12 44 12 54 18 23	46	14	28	52								
		4	25	23	33	30	08	27	40	32	40	34	49	42	36	32	45	40
		2,5	18,5	17,5	25	22	23	20	30	56	30	52	98	32	27	24	33	30
		1,5	14	13	18,5	16,5	16,5	15	22	19,5	22	18,5	56	23	19,5	17,5	24	22
		1		-	-		13,5	12	17	15	15	13,6	19	17	15	13,5	19	17
u _°	conduttori	caricati	7	3	2	3	2	8	2	3	2	3	2	3	2	e (3
	lsol.		Ć) L	EPR		Ć,	2	EPR			PVC	EPR		Ć	2	0	Ľ L
Altri tipi di	posa della	CEI 64-8		2-51-73-74			3A-4A-5A-21	22A-24A-25	33A-31-34A	43-32			13-14-15-16-		11-11A-52- 53-	12		
in protein	Metod. dl	III SIGIII	cavo in tubo	incassato in	parete isolante		cavo in tubo	in aria			cavo in aria	libera, distanziato	dalla parete/soffitt o	o su passerella	cavo in aria	libera, fissato	alla parete/	soffitto

Tabella 8 - Portata cavi multipolari con e senza guaina con isolamento in PVC o EPR 3

² I cavi unipolari affiancati che compongono il circuito trifase si considerano distanziati se posati in modo che la distanza tra di essi sia superiore o uguale a due volte il diametro esterno del singolo cavo unipolare.

³ PVC: mescola termoplastica a base di polivinil
cloruro (temperatura massima del conduttore uguale a 70 °C). EPR: mescola e
lastomerica reticolata a base di gomma etilen
propilenica o similari (temperatura massima del conduttore uguale a 90 °C)

Foglio 23 di 44

5.2.3.2 Cavi interrati (CEI-UNEL 35026)

Per la determinazione della portata dei cavi in rame con isolamento elastomerico o termoplastico si fa riferimento alla tabella CEI-UNEL 35026.

In particolare:

il coefficiente ktot è ottenuto dal prodotto dei coefficienti k1, k2, k3 e k4, ricavati da Tabella 9, Tabella 10, Tabella 11, Tabella 12.

la portata nominale è ricavata dalla Tabella 13 in relazione al numero della posa (secondo CEI 64-8/5), all'isolante e al numero di conduttori attivi (riferita a d una temperatura del terreno di 20℃).

- k1 è il coefficiente di correzione relativo alla temperatura del terreno
- k2 è il coefficiente di correzione per gruppi di circuiti installati sullo stesso piano
- k3 è il coefficiente di correzione relativo alla profondità di interramento
- k4 è il coefficiente di correzione relativo alla resistività termica del terreno

Foglio 24 di 44

Temperatura terreno [℃]	PVC	EPR
10	1.1	1.07
15	1.05	1.04
20	1	1
25	0.95	0.96
30	0.89	0.93
35	0.84	0.89
40	0.77	0.85
45	0.71	0.8
50	0.63	0.76
55	0.55	0.71
60	0.45	0.65
65	-	0.6
70	-	0.53
75	-	0.46
80	-	0.38

Tabella 9 - Influenza della temperatura del terreno - k1

	un cavo mu	ltipolare per o	iascun tubo							
n°circuiti		distanza fra	i circuiti [m]							
ii circuiti	a contatto	0.25	0.5	1						
2	0.85	0.9	0.95	0.95						
3	0.75	0.85	0.9	0.95						
4	0.7	0.8	0.85	0.9						
5	0.65	0.8	0.85	0.9						
6	0.6	0.8	0.8	0.9						
	un cavo un	ipolare per ci	ascun tubo							
n°circuiti	distanza fra i circuiti [m]									
ii circuiti	a contatto	0.25	0.5	1						
2	0.8	0.9	0.9	0.95						
3	0.7	0.8	0.85	0.9						
4	0.65	0.75	0.8	0.9						
5	0.6	0.7	0.8	0.9						
6	0.6	0.7	0.8	0.9						

Tabella 10 - Gruppi di più circuiti installati sullo stesso piano - k2

Codifica Documento	Foglio
A301-00-D-CV-CL-Al94-BX-001_E00.DOC	25 di 44

profonità di posa [m]	0.5	0.8	1	1.2	1.5
fattore di correzione	1.02	1	0.98	0.96	0.94

Tabella 11 - Influenza della profondità di posa – k3

	cavi u	nipolari			
resistività del terreno [K m/W]	1	1.2	1.5	2	2.5
fattore di correzione	1.08	1.05	1	0.9	0.82
	cavi m	ultipolari			
resistività del terreno [K m/W]	1	1.2	1.5	2	2.5
fattore di correzione	1.06	1.04	1	0.91	0.84

Tabella 12 - Influenza della resistività termica del terreno - k4

Foglio 26 di 44

	Altri tipi di		n°									Port	Portata [A]								
Metod. di install.	posa della	lsol.	conduttori								Sezi	one no	Sezione nominale [mm²	nm²]							
	CEI 64-8		caricati	1.5	2.5	4	9	10	16 2	25 3	35 5	20 2	70 95	5 120	150	185	240	300	400	200	630
cavi unipolari in tubi interrati a contatto		PVC	2	22	29	38	47	63	82 10	105 13	127 18	157 1	191 22	225 259	3 294	330	386				
(1 cavo per tubo)			3	20	56	34	43	25	74 9	1 36	115 1	141 1	171 201	11 231	1 262	293	342				
		9	2	56	34	44	54	73	95 13	122 1	148 1	182 2	222 261	301	343	382	450	209	265	999	759
		Y 1	3	23	31	40	49	29	85 1	110 1:	133 10	163	198 23	233 268	304	340	397	448	519	583	663
		PVC	2	21	27	36	45	61	78 10	101	123 1	153 1	187 22	222 256	3 292	328	385				
cavi unipolari in	61		3	18	23	30	38	51	8 99	10	104 13	129 1	158 18	187 216	3 246	277	325				
tubo interrato		993	2	24	32	41	52	20	91 1.	118 1	144 1	178 2	218 25	258 298	340	383	450	510	262	671	767
		4	3	21	27	35	44	29	77 10	1 00 1:	121 1	150 1	184 21	217 251	1 287	323	379	429	200	265	645
		PVC	2	19	25	33	14	99	73 9	1 1	115 1	143 1	175 20	208 240) 273	307	360				
cavi multipolari in	61		8	16	21	28	32	47	61 7	62	1: 1:	120 1	148 17	175 202	2 231	259	304				
tubo literiato		993	2	23	30	39	49	99	86 1.	111 1	136 10	168 2	207 24	245 284	324	364	428				
		4	3	19	25	32	41	22	72 9	93 1	114 1	141 1	174 20	206 238	3 272	306	360				

Tabella 13 - Portata cavi unipolari con e senza guaina e cavi multipolari con isolamento in PVC o **EPR 45**

⁴ PVC: mescola termoplastica a base di polivinilcloruro (temperatura massima del conduttore uguale a 70°C; EPR: mescola elastomerica reticolata a base di gomma etilenpropilenica o similari (temperatura massima del conduttore uguale a 90°C).

⁵ Per posa direttamente interrata con o senza protezione meccanica (posa 62 e 63), applicare il fattore correttivo 1,15 unitamente ai fattori correttivi K1, k2, k3, e k4.

Foglio 27 di 44

5.2.4 DIMENSIONAMENTO DEI CONDUTTORI DI NEUTRO

La norma CEI 64-8 par. 524.2 e par. 524.3, prevede che la sezione del conduttore di neutro, nel caso di circuiti polifasi, può avere una sezione inferiore a quella dei conduttori di fase se sono soddisfatte le seguenti condizioni:

- il conduttore di fase abbia una sezione maggiore di 16 mm²;
- la massima corrente che può percorrere il conduttore di neutro non sia superiore alla portata dello stesso
- la sezione del conduttore di neutro sia almeno uguale a 16 mm²; se il conduttore è in rame e a 25 mm²; se il conduttore è in alluminio.

Nel caso in cui si abbiano circuiti monofasi o polifasi e questi ultimi con sezione del conduttore di fase minore di 16 mm²; (conduttore in rame) e 25 mm²; (conduttore in allumino), il conduttore di neutro deve avere la stessa sezione del conduttore di fase.

$$S_f < 16mm^2$$
: $S_n = S_f$
 $16 \le S_f \le 35mm^2$: $S_n = 16mm^2$
 $S_f > 35mm^2$: $S_n = S_f/2$

Qualora, in base a esigenze progettuali, si scelga di dimensionare il neutro per la reale corrente circolante, dovranno essere fatte le medesime considerazioni relative ai conduttori di fase.

5.2.5 DIMENSIONAMENTO DEI CONDUTTORI DI PROTEZIONE

Le norme CEI 64.8 par. 543.1 prevedono due metodi di dimensionamento dei conduttori di protezione:

determinazione in relazione alla sezione di fase;

determinazione mediante calcolo.

Il primo criterio consiste nel determinare la sezione del conduttore di protezione seguendo vincoli analoghi a quelli introdotti per il conduttore di neutro:

$$S_f < 16mm^2$$
: $S_{PE} = S_f$
 $16 \le S_f \le 35mm^2$: $S_{PE} = 16mm^2$
 $S_f > 35mm^2$: $S_{PE} = S_f/2$

Il secondo criterio determina tale valore con l'integrale di Joule, ovvero la sezione del conduttore di protezione non deve essere inferiore al valore determinato con la seguente formula:

Foglio 28 di 44

$$S_p = \frac{\sqrt{I^2 \cdot t}}{K}$$

dove:

- Sp è la sezione del conduttore di protezione (mm²);
- I è il valore efficace della corrente di guasto che può percorrere il conduttore di protezione per un guasto di impedenza trascurabile (A);
- t è il tempo di intervento del dispositivo di protezione (s);
- K è un fattore il cui valore dipende dal materiale del conduttore di protezione, dell'isolamento e di altre parti.

Se il risultato della formula non è una sezione unificata, viene presa una unificata immediatamente superiore.

In entrambi i casi si deve tener conto, per quanto riguarda la sezione minima, del paragrafo 543.1.3.

Esso afferma che la sezione di ogni conduttore di protezione che non faccia parte della conduttura di alimentazione non deve essere, in ogni caso, inferiore a:

- 2,5 mm² se è prevista una protezione meccanica;
- 4 mm² se non è prevista una protezione meccanica;

5.2.6 CALCOLO DELLA TEMPERATURA DEI CAVI

La valutazione della temperatura dei cavi si esegue in base alla corrente di impiego e alla corrente nominale tramite le seguenti espressioni:

$$T_{cavo}(I_b) = T_{ambiente} + \left(\alpha_{cavo} \cdot \frac{I_b^2}{I_z^2}\right)$$
$$T_{cavo}(I_n) = T_{ambiente} + \left(\alpha_{cavo} \cdot \frac{I_n^2}{I_z^2}\right)$$

espresse in ℃.

Esse derivano dalla considerazione che la sovratemperatura del cavo a regime è proporzionale alla potenza in esso dissipata.

Il coefficiente α_{cavo} è vincolato dal tipo di isolamento del cavo e dal tipo di tabella di posa che si sta usando.

5.3 **CADUTE DI TENSIONE**

La caduta di tensione in una linea percorsa dalla corrente Ib è rappresentata dalla formula seguente:

Foglio 29 di 44

$$\Delta V = k_{cdt} \cdot I_b \cdot \sqrt{(R_L \cdot L_c)^2 + (X_L \cdot L_c)^2}$$

dove

- R_L = resistenza alla temperatura di funzionamento (per unità di lunghezza);
- X_L = reattanza della linea (per unità di lunghezza);
- k_{cdt} = coefficiente pari a 2 per i sistemi monofase e 1.73 per i sistemi monofase.

I parametri R_Le X_L per i cavi sono ricavati dalla tabella 35023-70 in funzione della tipologia (unipolare/multipolare) ed alla sezione dei conduttori (espressi in unità di lunghezza).

In particolare la resistenza è riferita alla temperatura di 80℃ e la reattanza è riferita a 50Hz.

Foglio 30 di 44

Sezione (mm2)	Cavi u	Cavi unipolari		ultipolari
	R	Х	R	х
	mΩ/m	mΩ/m	mΩ/m	mΩ/m
1	22.1	0.176	22.5	0.125
1.5	14.8	0.168	15.1	0.118
2.5	8.91	0.155	9.08	0.109
4	5.57	0.143	5.68	0.101
6	3.71	0.135	3.78	0.0955
10	2.24	0.119	2.27	0.0861
16	1.41	0.112	1.43	0.0817
25	0.889	0.106	0.907	0.0813
35	0.641	0.101	0.654	0.0783
50	0.473	0.101	0.483	0.0779
70	0.328	0.0965	0.334	0.0751
95	0.236	0.0975	0.241	0.0762
120	0.188	0.0939	0.191	0.0740
150	0.153	0.0928	0.157	0.0745
185	0.123	0.0908	0.125	0.0742
240	0.0943	0.0902	0.0966	0.0752
300	0.0761	0.0895	0.0780	0.0750
400	0.0607	0.0876	0.0625	0.0742
500	0.0496	0.0867	0.0512	0.0744
630	0.0402	0.0865	0.0417	0.0749

Se la frequenza di esercizio è differente dai 50 Hz si imposta

$$X'cavo = \frac{f}{50} \cdot Xcavo$$

Il calcolo può essere anche essere semplificato secondo la seguente formula seguente:

Foglio 31 di 44

$$cdt(I_h) = k_{cdt} \cdot I_h \cdot L_c \cdot (R_L \cdot \cos \varphi + X_L \cdot \sin \varphi)$$

Nei calcoli di verifica, il carico è ipotizzato concentrato a fondo della linea per le utenze singole e distribuito lungo la linea per le utenze multiple alimentate da dorsali.

La caduta di tensione da monte a valle (totale) di una utenza è determinata come somma vettoriale delle cadute di tensione, riferite ad un solo conduttore.

Nel caso in cui siano presenti trasformatori, il calcolo della caduta di tensione tiene conto della caduta interna e della presenza di eventuali prese di regolazione del rapporto spire.

La caduta di tensione percentuale è riferita alla tensione nominale dell'utenza in esame.

La verifica prevede il confronto tra il valore massimo calcolato nelle tre fasi e il limiti prestabiliti dalla Norma CEI 64-8 (par. 525).

5.4 CALCOLO DELLE CORRENTI DI GUASTO

Le tipologie di guasto considerate, sulla base della modellizzazione delle apparecchiature che compongono la rete, sono le seguenti:

- guasto trifase (simmetrico);
- guasto bifase (disimmetrico);
- quasto fase terra (disimmetrico);
- guasto fase neutro (disimmetrico).

Per i diversi casi, i risultati del calcolo riguardano le correnti di cortocircuito minime e massime immediatamente a valle della protezione dell'utenza (inizio linea) e a valle dell'utenza (fondo linea).

I parametri alle sequenze di ogni utenza vengono inizializzati da quelli corrispondenti della utenza a monte e, a loro volta, inizializzano i parametri della linea a valle.

Nel seguito è riportato il metodo di calcolo utilizzato, con particolare riferimento a quanto indicato nella norma CEI 11-25. Qualora si ritenga necessario, nei casi specifici, sono talvolta introdotte alcune approssimazioni, sotto opportune ipotesi, per mezzo di formule semplificate.

5.4.1 MODELLIZZAZIONE DELLE APPARECCHIATURE IN RETE

5.4.1.1 Trasformatori

Le caratteristiche dei trasformatori in rete sono ricavate a partire dai seguenti dati di targa:

- Potenza nominale Pn (in kVA);
- Perdite di cortocircuito Pcc (in W);
- Tensione di cortocircuito vcc (in %)
- Rapporto tra la corrente di inserzione e la corrente nominale Ilr/Irt;

Foglio 32 di 44

- Rapporto tra la impedenza alla sequenza omopolare e quella di corto circuito;
- · Tipo di collegamento;
- Tensione nominale del primario V1 (in kV);
- Tensione nominale del secondario V02 (in V).

Impedenza di cortocircuito del trasformatore espressa in $m\Omega$:

$$Z_{cct} = \frac{v_{cc}}{100} \cdot \frac{V_{02}^2}{P_n}$$

Resistenza di cortocircuito del trasformatore espressa in $m\Omega$:

$$R_{cct} = \frac{P_{cc}}{1000} \cdot \frac{V_{02}^2}{P_n^2}$$

Reattanza di cortocircuito del trasformatore espressa in $m\Omega$:

$$X_{cct} = \sqrt{Z_{cct}^2 - R_{cct}^2}$$

L'impedenza a vuoto omopolare del trasformatore viene ricavata dal rapporto con l'impedenza di cortocircuito dello stesso:

$$Z_{vot} = Z_{cct} \cdot \left(\frac{Z_{vot}}{Z_{cct}}\right)$$

dove il rapporto Z_{vot}/Z_{cct} vale usualmente 10-20.

In uscita al trasformatore si otterranno pertanto i parametri alla sequenza diretta, in $m\Omega$:

$$Z_d = \left| \dot{Z}_{cct} \right| = \sqrt{R_d^2 + X_d^2}$$

nella quale:

$$R_d = R_{cct}$$

$$X_d = X_{cct}$$

I parametri alla sequenza omopolare dipendono invece dal tipo di collegamento del trasformatore in quanto, in base ad esso, abbiamo un diverso circuito equivalente.

Pertanto, se il trasformatore è collegato triangolo/stella (Dy), si ha:

Foglio 33 di 44

$$R_{ot} = R_{cct} \cdot \frac{\left(\frac{Z_{vot}}{Z_{cct}}\right)}{1 + \left(\frac{Z_{vot}}{Z_{cct}}\right)}$$

$$X_{ot} = X_{cct} \cdot \frac{\left(\frac{Z_{vot}}{Z_{cct}}\right)}{1 + \left(\frac{Z_{vot}}{Z_{cct}}\right)}$$

$$Z_{ot} = Z_{cct} \cdot \frac{\left(\frac{Z_{vot}}{Z_{cct}}\right)}{1 + \left(\frac{Z_{vot}}{Z_{cct}}\right)}$$

Diversamente, se il trasformatore è collegato stella/stella (Yy) si ha:

$$R_{ot} = R_{cct} \cdot \left(\frac{Z_{vot}}{Z_{cct}}\right)$$

$$X_{ot} = X_{cct} \cdot \left(\frac{Z_{vot}}{Z_{cct}}\right)$$

$$Z_{ot} = Z_{cct} \cdot \left(\frac{Z_{vot}}{Z_{cct}}\right)$$

Fattore di correzione per trasformatori, CEI 11-25 (3.3.3)

Per i trasformatori a due avvolgimenti, con e senza variazione sotto carico, si deve introdurre un fattore di correzione di impedenza KT tale che:

$$Z_{cctK} = K_T \cdot Z_{cct}$$

$$Z_{otK} = K_T \cdot Z_{ot}$$

$$K_T = 0.95 \cdot \frac{c_{\text{max}}}{1 + 0.6 \cdot x_T}$$

dove la reattanza relativa del trasformatore è calcolata con la formula seguente:

Codifica Documento	
A301-00-D-CV-CL-Al94-BX-001_	E00.DOC

Foglio 34 di 44

$$x_T = \frac{X_{cct}}{V_{02}^2 / P_n}$$

Tale fattore deve essere applicato sia alla impedenza diretta che a quelle omopolari e non va applicato nel caso di autotrasformatori.

5.4.1.2 Generatori

Le caratteristiche dei generatori in rete sono ricavate a partire dai seguenti dati di targa:

- potenza nominale Pn (in kVA);
- reattanza sincrona percentuale xS;
- reattanza subtransitoria percentuale x";
- rapporto tra l'impedenza omopolare e l'impedenza sincrona Zog/ZS.

L'impedenza subtransitoria si calcola con la formula:

$$X'' = \frac{x''}{100} \cdot \frac{V_{02}^2}{P_n}$$

dalla quale si ricavano le componenti alla sequenza diretta:

$$R_d = 0$$
$$X_d = X''$$

La componente resistiva si trascura rispetto alla componente reattiva del generatore.

L'impedenza sincrona si calcola con la formula:

$$X_{S} = \frac{x_{S}}{100} \cdot \frac{V_{02}^{2}}{P_{n}}$$

Dalla quale, tramite il rapporto Zog/ZS, si ricavano le componenti omopolari:

$$R_0 = 0$$

$$X_0 = \frac{Z_{og}}{Z_s} \cdot X_s$$

5.4.1.3 Motori asincroni

Le caratteristiche dei motori asincroni in rete sono ricavate a partire dai seguenti dati di targa:

Foglio 35 di 44

- U_{rm} tensione nominale del motore [V] (concatenata per motori trifasi, di fase per motori monofasi collegati fase neutro o fase fase);
- I_{rm} corrente nominale del motore [A];
- S_{rm} potenza elettrica apparente nominale [kVA];
- P numero di coppie polari;
- I_{Ir}/I_{rm} rapporto tra la corrente a rotore bloccato (di c.c.) e la corrente nominale del motore;
- Fattore di potenza allo spunto.
- Possibilità di avviamento stella/triangolo per i motori trifasi, per cui si diminuisce I_{Ir}/I_{rm} di 3.

L'impedenza del motore si calcola con la formula:

$$Z_{M} = \frac{1}{I_{lr}/I_{rm}} \cdot \frac{U_{rm}^{2}}{S_{rm}}$$

Per i motori asincroni si considera la corrente di interruzione ib tenendo conto del tempo di ritardo di default pari a 0.02s, per calcolare i coefficienti m e μ

Il coefficiente m si calcola secondo la seguente tabella:

$$\mu = 0.84 + 0.26 \cdot e^{-0.26 \cdot (I_{lr}/I_{rm})} \qquad t_{\min} = 0.02 \, s$$

$$\mu = 0.71 + 0.51 \cdot e^{-0.30 \cdot (I_{lr}/I_{rm})} \qquad t_{\min} = 0.05 \, s$$

$$\mu = 0.62 + 0.72 \cdot e^{-0.32 \cdot (I_{lr}/I_{rm})} \qquad t_{\min} = 0.10 \, s$$

$$\mu = 0.56 + 0.94 \cdot e^{-0.38 \cdot (I_{lr}/I_{rm})} \qquad t_{\min} \ge 0.25 \, s$$

se $I_{lr}/I_{rm} \le 2$ allora $\mu = 1$.

Per il coefficiente q si deve prendere la potenza attiva meccanica espressa in MW e dividerla per il numero di coppie polari P al fine di ottenere la variabile m:

$$m = \frac{S_{rm} \cdot \cos \varphi \cdot \eta}{1000 \cdot P}$$

con $\cos \varphi$ fattore di potenza e η rendimento del motore.

Quindi:

$$\begin{aligned} q &= 1.03 + 0.12 \cdot \ln m & t_{\min} &= 0.02 \, s \\ q &= 0.79 + 0.12 \cdot \ln m & t_{\min} &= 0.05 \, s \\ q &= 0.57 + 0.12 \cdot \ln m & t_{\min} &= 0.10 \, s \\ q &= 0.26 + 0.10 \cdot \ln m & t_{\min} &\geq 0.25 \, s \end{aligned}$$

Codifica Documento	
A301-00-D-CV-CL-Al94-BX-001_	E00.DOC

Foglio 36 di 44

Se q>1 si pone q=1.

Si divide ZM per i coefficienti μ e q per ottenere l'impedenza equivalente vista al momento del guasto:

$$Z_{Mib} = \frac{Z_M}{\mu \cdot q}$$

Da cui, a seconda della tensione e della potenza del motore, si possono avere:

$X_{M} = 0.995 \cdot Z_{Mib}$ $R_{M} = 0.10 \cdot X_{M}$	per motori a media tensione con potenza Prm per coppie di poli >= 1 MW
$X_{M} = 0.989 \cdot Z_{Mib}$ $R_{M} = 0.15 \cdot X_{M}$	per motori a media tensione con potenza Prm per coppie di poli < 1 MW
$X_{M} = 0.922 \cdot Z_{Mib}$ $R_{M} = 0.42 \cdot X_{M}$	per motori a bassa tensione

Per le componenti alle sequenze si considerano le sole componenti dirette mentre quelle omopolari non vengono considerate, in quanto il contributo ai guasti lo danno solo i motori trifasi. Essi contribuiscono ai guasti trifasi e a quelli bifasi nelle utenze trifasi e bifasi.

$$R_d = R_M$$
$$X_d = X_M$$

5.4.2 CALCOLO DELLE CORRENTI MASSIME DI CORTOCIRCUITO

Le condizioni di calcolo sono le seguenti:

tensione di alimentazione nominale valutata con fattore di tensione c_{max} (CEI 11-25 tab.1);

impedenza di guasto minima, calcolata alla temperatura di 20℃.

La resistenza diretta, del conduttore di fase e di quello di protezione, viene riportata a 20 $^{\circ}$ C, partendo dalla resistenza a 80 $^{\circ}$ C, data dalle tabel le UNEL 35023-70, per cui esprimendola in m $^{\circ}$ C risulta:

$$R_{dcavo} = \frac{R_{cavo}}{1000} \cdot \frac{L_{cavo}}{1000} \cdot \left(\frac{1}{1 + (60 \cdot 0.004)}\right)$$

Foglio 37 di 44

Nota poi dalle stesse tabelle la reattanza a 50 Hz, se f è la freguenza d'esercizio, risulta:

$$X_{dcavo} = \frac{X_{cavo}}{1000} \cdot \frac{L_{cavo}}{1000} \cdot \frac{f}{50}$$

L'impedenza di guasto minima a fine utenza è ricavata dalla somma dei parametri diretti di cui sopra con quelli relativi all'utenza a monte.

Per le utenze in condotto in sbarre, le componenti della sequenza diretta sono:

$$R_{dsbarra} = \frac{R_{sbarra}}{1000} \cdot \frac{L_{sbarra}}{1000}$$

La reattanza è invece:

$$X_{dsbarra} = \frac{X_{sbarra}}{1000} \cdot \frac{L_{sbarra}}{1000} \cdot \frac{f}{50}$$

Per le utenze con impedenza nota, le componenti della sequenza diretta sono i valori stessi di resistenza e reattanza dell'impedenza.

Per quanto riguarda i parametri alla sequenza omopolare, occorre distinguere tra conduttore di neutro e conduttore di protezione.

Per il conduttore di neutro si ottengono da quelli diretti tramite le:

$$\begin{split} R_{0cavoNeutro} &= R_{dcavo} + 3 \cdot R_{dcavoNeutro} \\ X_{0cavoNeutro} &= 3 \cdot X_{dcavo} \end{split}$$

Per il conduttore di protezione, invece, si ottiene:

$$R_{0cavoPE} = R_{dcavo} + 3 \cdot R_{dcavoPE}$$
$$X_{0cavoPE} = 3 \cdot X_{dcavo}$$

dove le resistenze R_{dvavoNeutro} e R_{dcavoPE} vengono calcolate come la R_{dcavo}.

Per le utenze in condotto in sbarre, le componenti della sequenza omopolare sono distinte tra conduttore di neutro e conduttore di protezione.

Per il conduttore di neutro si ha:

$$R_{0sbarraNeutro} = R_{dsbarra} + 3 \cdot R_{dsbarraNeutro}$$

$$X_{0sbarraNeutro} = 3 \cdot X_{dsbarra}$$

Per il conduttore di protezione viene utilizzato il parametro di reattanza dell'anello di guasto fornito dai costruttori:

$$R_{0sbarraPE} = R_{dsbarra} + 3 \cdot R_{dsbarraPE}$$

 $X_{0sbarraPE} = 2 \cdot X_{anello}$ guasto

Foglio 38 di 44

I parametri di ogni utenza vengono sommati con i parametri, alla stessa sequenza, della utenza a monte, espressi in $m\Omega$:

$$\begin{split} R_d &= R_{dcavo} + R_{dmonte} \\ X_d &= X_{dcavo} + X_{dmonte} \\ R_{0.Neutro} &= R_{0.cavoNeutro} + R_{0.monteNeutro} \\ X_{0.Neutro} &= X_{0.cavoNeutro} + X_{0.monteNeutro} \\ R_{0.PE} &= R_{0.cavoPE} + R_{0.montePE} \\ X_{0.DE} &= X_{0.cavoPE} + X_{0.montePE} \end{split}$$

Per le utenze in condotto in sbarre basta sostituire sbarra a cavo.

Ai valori totali vengono sommate anche le impedenze della fornitura.

Noti questi parametri vengono calcolate le impedenze (in $m\Omega$) di guasto trifase:

$$Z_{k \min} = \sqrt{R_d^2 + X_d^2}$$

Fase neutro (se il neutro è distribuito):

$$Z_{k1Neutro\,\text{min}} = \frac{1}{3} \cdot \sqrt{\left(2 \cdot R_d + R_{0Neutro}\right)^2 + \left(2 \cdot X_d + X_{0Neutro}\right)^2}$$

Fase terra:

$$Z_{k1PE \min} = \frac{1}{3} \cdot \sqrt{(2 \cdot R_d + R_{0PE})^2 + (2 \cdot X_d + X_{0PE})^2}$$

Da queste si ricavano le correnti di cortocircuito trifase I_{kmax} , fase neutro $I_{k1Neutromax}$, fase terra $I_{k1PEmax}$ e bifase I_{k2max} espresse in kA:

$$\begin{split} I_{k\,\text{max}} &= \frac{V_n}{\sqrt{3} \cdot Z_{k\,\text{min}}} \\ I_{k1Neutro\,\text{max}} &= \frac{V_n}{\sqrt{3} \cdot Z_{k1Neutro\,\text{min}}} \\ I_{k1PE\,\text{max}} &= \frac{V_n}{\sqrt{3} \cdot Z_{k1PE\,\text{min}}} \\ I_{k2\,\text{max}} &= \frac{V_n}{2 \cdot Z_{k\,\text{min}}} \end{split}$$

Infine dai valori delle correnti massime di guasto si ricavano i valori di cresta delle correnti (CEI 11-25 par. 9.1.1.):

$$\begin{split} \boldsymbol{I}_{p} &= \boldsymbol{\kappa} \cdot \sqrt{2} \cdot \boldsymbol{I}_{k \max} \\ \boldsymbol{I}_{p1Neutro} &= \boldsymbol{\kappa} \cdot \sqrt{2} \cdot \boldsymbol{I}_{k1Neutr \circ \max} \end{split}$$

Foglio 39 di 44

$$I_{p1PE} = \kappa \cdot \sqrt{2} \cdot I_{k1PE \text{ max}}$$
$$I_{p2} = \kappa \cdot \sqrt{2} \cdot I_{k2 \text{ max}}$$

dove:

$$\kappa \approx 1.02 + 0.98 \cdot e^{-3\frac{R_d}{X_d}}$$

5.4.3 CALCOLO DELLE CORRENTI MINIME DI CORTOCIRCUITO

Il calcolo delle correnti di cortocircuito minime viene condotto come descritto nella norma CEI 11.25 par 2.5.

La tensione nominale viene moltiplicata per il fattore di tensione cmin di cui alla tab. 1 della norma CEI 11-25.

Per la temperatura dei conduttori ci si riferisce al rapporto CENELEC R064-003, per cui vengono determinate le resistenze alla temperatura limite dell'isolante in servizio ordinario dal cavo. Essa viene indicata dalla norma CEI 64-8/4 par 434.3 nella quale sono riportate in relazione al tipo di isolamento del cavo, precisamente:

- isolamento in PVC Tmax = 70℃
- isolamento in G
 Tmax = 85℃
- isolamento in G5/G7 Tmax = 90℃
- isolamento serie L rivestito Tmax = 70℃
- isolamento serie L nudo Tmax = 105℃
- isolamento serie H rivestito Tmax = 70℃
- isolamento serie H nudo Tmax = 105℃

Da queste è possibile calcolare le resistenze alla sequenza diretta e omopolare alla temperatura relativa all'isolamento del cavo:

$$\begin{split} R_{d\,\text{max}} &= R_d \cdot \left(1 + 0.004 \cdot \left(T_{\text{max}} - 20 \right) \right) \\ R_{0\,\text{Neutro}} &= R_{0\,\text{Neutro}} \cdot \left(1 + 0.004 \cdot \left(T_{\text{max}} - 20 \right) \right) \\ R_{0\,\text{PE}} &= R_{0\,\text{PE}} \cdot \left(1 + 0.004 \cdot \left(T_{\text{max}} - 20 \right) \right) \end{split}$$

Queste, sommate alle resistenze a monte, determinano le resistenze minime.

Valutate le impedenze mediante le stesse espressioni delle impedenze di guasto massime, si possono calcolare le correnti di cortocircuito trifase I_{k1min} e fase terra, espresse in kA:

Foglio 40 di 44

$$\begin{split} I_{k \min} &= \frac{0.95 \cdot V_n}{\sqrt{3} \cdot Z_{k \max}} \\ I_{k1 Neutro \min} &= \frac{0.95 \cdot V_n}{\sqrt{3} \cdot Z_{k1 Neutro \max}} \\ I_{k1 PE \min} &= \frac{0.95 \cdot V_n}{\sqrt{3} \cdot Z_{k1 PE \max}} \\ I_{k2 \min} &= \frac{0.95 \cdot V_n}{2 \cdot Z_{k \max}} \end{split}$$

5.5 VERIFICA DELLA PROTEZIONE CONTRO IL CORTOCIRCUITO DELLE CONDUTTURE

5.5.1 **GENERALITÀ**

Secondo la norma 64-8 par.434.3 "Caratteristiche dei dispositivi di protezione contro i cortocircuiti.", le caratteristiche delle apparecchiature di protezione contro i cortocircuiti devono soddisfare a due condizioni:

- il potere di interruzione non deve essere inferiore alla corrente di cortocircuito presunta nel punto di installazione (a meno di protezioni adeguate a monte);
- la caratteristica di intervento deve essere tale da impedire che la temperatura del cavo non oltrepassi, in condizioni di guasto in un punto qualsiasi, la massima consentita.

La prima condizione viene considerata in fase di scelta delle protezioni. La seconda invece può essere tradotta nella relazione:

$$I^2 \cdot t \le K^2 S^2$$

dove:

- I: corrente di corto circuito [A] espressa in valore efficace
- t: durata del corto circuito
- S: sezione del conduttore [mm₂]
- K: coefficiente che dipende dal tipo di cavo e dall'isolamento (descritto nei paragrafi successivi)

Pertanto, l'energia specifica sopportabile dal cavo deve essere maggiore o uguale a quella lasciata passare dalla protezione.

Codifica Documento	
A301-00-D-CV-CL-AI94-BX-001_E00.1	DOC

Foglio 41 di 44

La norma CEI al par. 533.3 "Scelta dei dispositivi di protezioni contro i cortocircuiti" prevede pertanto un confronto tra le correnti di guasto minima (a fondo linea) e massima (inizio linea) con i punti di intersezione tra le curve. Le condizioni sono pertanto:

Le intersezioni sono due:

- Iccmin≥linters min (quest'ultima riportata nella norma come la);
- Iccmax≤linters max (quest'ultima riportata nella norma come lb).

L'intersezione è unica o la protezione è costituita da un fusibile:

Iccmin≥linters min.

L'intersezione è unica e la protezione comprende un magnetotermico:

Icc max≤linters max.

Sono pertanto verificate le relazioni in corrispondenza del guasto, calcolato, minimo e massimo.

5.5.2 INTEGRALE DI JOULE

La verifica a corto circuito, come riportato nel paragrafo precedente, fa riferimento al calcolo dell'integrale di Joule:

$$I^2 \cdot t = K^2 \cdot S^2$$

La costante K viene data dalla norma 64-8/4 (par. 434.3), per i conduttori di fase e neutro e, dal paragrafo 64-8/5 (par. 543.1), per i conduttori di protezione in funzione al materiale conduttore e al materiale isolante. Per i cavi ad isolamento minerale le norme attualmente sono allo studio, i paragrafi sopraccitati riportano però nella parte commento dei valori prudenziali.

I valori di K riportati dalla norma sono per i conduttori di fase (par. 434.3):

•	Cavo in rame e isolato in PVC:	K = 115
•	Cavo in rame e isolato in gomma G:	K = 135
•	Cavo in rame e isolato in gomma etilenpropilenica G5-G7:	K = 143
•	Cavo in rame serie L rivestito in materiale termoplastico:	K = 115
•	Cavo in rame serie L nudo:	K = 200
•	Cavo in rame serie H rivestito in materiale termoplastico:	K = 115
•	Cavo in rame serie H nudo:	K = 200
•	Cavo in alluminio e isolato in PVC:	K = 74
•	Cavo in alluminio e isolato in G, G5-G7:	K = 87

I valori di K per i conduttori di protezione unipolari (par. 543.1) tab. 54B:

Codifica Documento	Foglio
A301-00-D-CV-CL-AI94-BX-001_E00.DOC	42 di 44

Cavo in rame e isolato in PVC:	K = 143	
Cavo in rame e isolato in gomma G:	K = 166	
Cavo in rame e isolato in gomma G5-G7:	K = 176	
Cavo in rame serie L rivestito in materiale termoplastico:	K = 143	
Cavo in rame serie L nudo:	K = 228	
Cavo in rame serie H rivestito in materiale termoplastico:	K = 143	
Cavo in rame serie H nudo:	K = 228	
Cavo in alluminio e isolato in PVC:	K = 95	
Cavo in alluminio e isolato in gomma G:	K = 110	
 Cavo in alluminio e isolato in gomma G5-G7: 	K = 116	
I valori di K per i conduttori di protezione in cavi multipolari (par. 543.1) tab. 54C:		
Cavo in rame e isolato in PVC:	K = 115	
Cavo in rame e isolato in gomma G:	K = 135	
Cavo in rame e isolato in gomma G5-G7:		
Cavo in rame serie L rivestito in materiale termoplastico:	K = 115	
Cavo in rame serie L nudo:	K = 228	
Cavo in rame serie H rivestito in materiale termoplastico:	K = 115	
Cavo in rame serie H nudo:	K = 228	
Cavo in alluminio e isolato in PVC:	K = 76	
Cavo in alluminio e isolato in gomma G:	K = 89	
Cavo in alluminio e isolato in gomma G5-G7:	K = 94	

5.5.3 MASSIMA LUNGHEZZA PROTETTA

Il calcolo della massima lunghezza protetta è eseguito mediante il criterio proposto dalla norma CEI 64-8 al paragrafo 533.3, secondo cui la corrente di cortocircuito presunta è calcolata come:

$$I_{ctocto} = \frac{0.8 \cdot U}{1.5 \cdot \rho \cdot (1+m) \cdot \frac{L_{\text{max prot}}}{S_f}}$$

partendo da essa e nota la taratura magnetica della protezione è possibile calcolare la massima lunghezza del cavo protetta in base ad essa.

Pertanto:

Foglio 43 di 44

$$L_{\text{max prot}} = \frac{0.8 \cdot U}{1.5 \cdot \rho \cdot (1+m) \cdot \frac{I_{\text{ctocto}}}{S_f}}$$

Dove:

- U: è la tensione concatenata per i neutro non distribuito e di fase per neutro distribuito;
- \(\rho \): è la resistività a 20℃ del conduttore;
- m: rapporto tra sezione del conduttore di fase e di neutro (se composti dello stesso materiale);
- I_{maq}: taratura della magnetica.

Viene tenuto conto, inoltre, dei fattori di riduzione (per la reattanza):

- 0.9 per sezioni di 120 mm²;
- 0.85 per sezioni di 150 mm²;
- 0.8 per sezioni di 185 mm²;
- 0.75 per sezioni di 240 mm²;

Per ulteriori dettagli si veda norma CEI 64-8 par.533.3 sezione commenti.

5.6 VERIFICA CONTATTI INDIRETTI

La verifica della protezione contro i contatti indiretti è eseguita secondo i criteri descritti dalla Norma CEI 64-8 e di seguito riportati, relativamente ai diversi sistemi di distribuzione.

Per assicurare la protezione contro i contatti indiretti mediante interruzione automatica del circuito è necessario adottare i seguenti accorgimenti:

- Collegamento a terra di tutte le masse metalliche;
- Collegamento al collettore di terra dell'edificio dei conduttori di protezione, delle masse estranee (ad esempio: le delle tubazioni metalliche entranti nel fabbricato) tramite collegamenti equipotenziali principali e supplementari.

5.6.1 SISTEMA DI DISTRIBUZIONE TN

La protezione contro i contatti indiretti, in un sistema TN, deve essere garantita mediante una o più delle seguenti misure:

- Tempestivo intervento delle protezioni di massima corrente degli interruttori preposti alla protezione delle linee e, laddove ciò non risultasse possibile, tramite protezioni di tipo differenziale
- Utilizzo di componenti di classe II

Foglio 44 di 44

• Realizzazione di separazione elettrica con l'uso di trasformatore di isolamento

Nel primo caso, affinché sia verificata la protezione contro i contatti indiretti, è necessario che in ogni punto dell'impianto sia rispettata la condizione:

$$I_a \leq \frac{U_0}{Z_g}$$

dove:

- U_0 è la tensione di fase (stellata)
- Z_g è l'impedenza dell'anello di guasto
- I_a è la corrente di intervento entro i tempi previsti dalla Norma

I tempi di intervento (dipendenti dalla tensione nominale), sono indicati nella tabella seguente (rif. CEI 64-8/4 tab.41A):

U0[V]	Tempi di interruzione [s]
120	0.8
230	0.4
400	0.2
>400	0.1

I dati in tabella sono validi per circuiti terminali protetti da dispositivi con corrente nominale non superiore a 32 A.

Tempi di interruzione convenzionali non superiori a 5 s sono ammessi negli altri casi.

Se il dispositivo di protezione è equipaggiato con una protezione differenziale, la corrente utilizzata per la verifica è la soglia di intervento nominale del dispositivo differenziale.