

Elettrodotto a 380 kV in doppia terna "S.E. Udine Ovest - S.E. Redipuglia" ed opere connesse

PSPPRI08083

Rev. 00
Pag. 1 di 20

del 01/09/2008

Elettrodotto a 380 kV in doppia terna

"S.E. Udine Ovest - S.E. Redipuglia"

PIANO TECNICO DELLE OPERE "PARTE PRIMA"

RELAZIONE TECNICA ILLUSTRATIVA

Storia delle revisioni		
Rev. 00	del 01/09/2008	Emissione per PTO

Elaborato			Verificato		Approvato
G.Saraceno	L. Simeone	F.Perda	P. Antonelli		M. Rebolini
3E Ingegneria	PSR-PPR	PSR-PPR	PSR-PPR		PSR-PPR

Codifica

PSPPRI08083

Rev. 00 del 01/09/2008

Pag. **2** di 20

INDICE

2 MOTIVAZIONI DELL'OPERA 3 UBICAZIONE DELL'INTERVENTO E OPERE ATTRAVERSATE 4.1 Vincoli Aeroportuali. 4.2 Distanze di sicurezza rispetto alle attività soggette a controllo prevenzione incendi 5 CRONOPROGRAMMA 6 CARATTERISTICHE TECNICHE DELL'OPERA 6.1 Premessa. 6.2 Caratteristiche elettriche dell'elettrodotto 6.3 Distanza tra i sostegni. 6.4 Conduttori e corde di guardia 6.4.1 Stato di tensione meccanica 6.5 Capacità di trasporto. 6.6 Sostegni 6.7 Isolamento. 6.7.1 Caratteristiche geometriche 6.8 Morsetteria ed armamenti 6.9 Fondazioni. 6.10 Messe a terra dei sostegni 6.11 Caratteristiche dei componenti 6.12 Terre e rocce da scavo. 7 RUMORE. 8 INQUADRAMENTO GEOLOGICO PRELIMINARE 10 CAMPI ELETTRICI E MAGNETICI.	1 PREMESSA	3
4.1 Vincoli Aeroportuali 4.2 Distanze di sicurezza rispetto alle attività soggette a controllo prevenzione incendi 5 CRONOPROGRAMMA 6 CARATTERISTICHE TECNICHE DELL'OPERA 6.1 Premessa 6.2 Caratteristiche elettriche dell'elettrodotto 6.3 Distanza tra i sostegni 6.4 Conduttori e corde di guardia 6.4.1 Stato di tensione meccanica 6.5 Capacità di trasporto 6.6 Sostegni 6.7 Isolamento 6.7.1 Caratteristiche geometriche 6.7.2 Caratteristiche elettriche 1 6.7.2 Caratteristiche deltriche 1 6.8 Morsetteria ed armamenti 1 6.9 Fondazioni 1 6.10 Messe a terra dei sostegni 1 6.11 Caratteristiche dei componenti 1 6.12 Terre e rocce da scavo 1 RUMORE 1 RUMORE 1 18 INQUADRAMENTO GEOLOGICO PRELIMINARE 1 19 CAMPI ELETTRICI E MAGNETICI 1 19	2 MOTIVAZIONI DELL'OPERA	3
4.1 Vincoli Aeroportuali 4.2 Distanze di sicurezza rispetto alle attività soggette a controllo prevenzione incendi 5 CRONOPROGRAMMA 6 CARATTERISTICHE TECNICHE DELL'OPERA 6.1 Premessa 6.2 Caratteristiche elettriche dell'elettrodotto 6.3 Distanza tra i sostegni 6.4 Conduttori e corde di guardia 6.4.1 Stato di tensione meccanica 6.5 Capacità di trasporto 6.6 Sostegni 6.7 Isolamento 6.7.1 Caratteristiche geometriche 6.7.2 Caratteristiche elettriche 1 6.7.2 Caratteristiche deltriche 1 6.8 Morsetteria ed armamenti 1 6.9 Fondazioni 1 6.10 Messe a terra dei sostegni 1 6.11 Caratteristiche dei componenti 1 6.12 Terre e rocce da scavo 1 RUMORE 1 RUMORE 1 18 INQUADRAMENTO GEOLOGICO PRELIMINARE 1 19 CAMPI ELETTRICI E MAGNETICI 1 19	3 UBICAZIONE DELL'INTERVENTO E OPERE ATTRAVERSATE	
4.1 Vincoli Aeroportuali. 4.2 Distanze di sicurezza rispetto alle attività soggette a controllo prevenzione incendi 5 CRONOPROGRAMMA 6 CARATTERISTICHE TECNICHE DELL'OPERA 6.1 Premessa. 6.2 Caratteristiche elettriche dell'elettrodotto 6.3 Distanza tra i sostegni. 6.4 Conduttori e corde di guardia. 6.4.1 Stato di tensione meccanica. 6.5 Capacità di trasporto. 6.6 Sostegni. 6.7 Isolamento		
4.2 Distanze di sicurezza rispetto alle attività soggette a controllo prevenzione incendi 5 CRONOPROGRAMMA		
5 CRONOPROGRAMMA 6 6.1 Premessa 6.2 Caratteristiche elettriche dell'elettrodotto 6.3 Distanza tra i sostegni 6.4 Conduttori e corde di guardia 6.4.1 Stato di tensione meccanica 6.5 Capacità di trasporto 6.6 Sostegni 6.7 Isolamento 6.7.1 Caratteristiche geometriche 1 6.7.2 Caratteristiche elettriche 1 6.8 Morsetteria ed armamenti 1 6.9 Fondazioni 1 6.10 Messe a terra dei sostegni 1 6.11 Caratteristiche dei componenti 1 6.12 Terre e rocce da scavo 1 7 RUMORE 1 8 INQUADRAMENTO GEOLOGICO PRELIMINARE 1 9 CAMPI ELETTRICI E MAGNETICI 1		
6.1 Premessa		
6.1 Premessa		
6.2 Caratteristiche elettriche dell'elettrodotto 6.3 Distanza tra i sostegni 6.4 Conduttori e corde di guardia 6.4.1 Stato di tensione meccanica 6.5 Capacità di trasporto 6.6 Sostegni 6.7 Isolamento 6.7.1 Caratteristiche geometriche 6.7.2 Caratteristiche elettriche 6.8 Morsetteria ed armamenti 1 1 6.9 Fondazioni 1 1 6.10 Messe a terra dei sostegni 1 1 6.11 Caratteristiche dei componenti 1 1 6.12 Terre e rocce da scavo 1 1 7 RUMORE 1 1 8 INQUADRAMENTO GEOLOGICO PRELIMINARE 9 CAMPI ELETTRICI E MAGNETICI		
6.3 Distanza tra i sostegni 6.4 Conduttori e corde di guardia 6.4.1 Stato di tensione meccanica 6.5 Capacità di trasporto 6.6 Sostegni 1 6.7 Isolamento 1 6.7.2 Caratteristiche geometriche 1 6.8 Morsetteria ed armamenti 1 6.9 Fondazioni 1 6.10 Messe a terra dei sostegni 1 6.11 Caratteristiche dei componenti 1 6.12 Terre e rocce da scavo 1 7 RUMORE 1 8 INQUADRAMENTO GEOLOGICO PRELIMINARE 1 9 CAMPI ELETTRICI E MAGNETICI 1		
6.4 Conduttori e corde di guardia 6.4.1 Stato di tensione meccanica 6.5 Capacità di trasporto 6.6 Sostegni 6.7 Isolamento 6.7.1 Caratteristiche geometriche 6.8 Morsetteria ed armamenti 6.9 Fondazioni 6.10 Messe a terra dei sostegni 6.11 Caratteristiche dei componenti 6.12 Terre e rocce da scavo 7 RUMORE 8 INQUADRAMENTO GEOLOGICO PRELIMINARE 9 CAMPI ELETTRICI E MAGNETICI		
6.4.1 Stato di tensione meccanica 6.5 Capacità di trasporto. 6.6 Sostegni 6.7 Isolamento 1 6.7.1 Caratteristiche geometriche 1 6.7.2 Caratteristiche elettriche 1 6.8 Morsetteria ed armamenti 1 6.9 Fondazioni 1 6.10 Messe a terra dei sostegni 1 6.11 Caratteristiche dei componenti 1 6.12 Terre e rocce da scavo 1 7 RUMORE 1 8 INQUADRAMENTO GEOLOGICO PRELIMINARE 1 9 CAMPI ELETTRICI E MAGNETICI 1	-	
6.5 Capacità di trasporto. 6.6 Sostegni. 6.7 Isolamento. 6.7.1 Caratteristiche geometriche. 6.7.2 Caratteristiche elettriche. 6.8 Morsetteria ed armamenti. 6.9 Fondazioni. 6.10 Messe a terra dei sostegni. 6.11 Caratteristiche dei componenti. 6.12 Terre e rocce da scavo. 7 RUMORE. 8 INQUADRAMENTO GEOLOGICO PRELIMINARE. 9 CAMPI ELETTRICI E MAGNETICI.		
6.6 Sostegni 6.7 Isolamento 1 6.7.1 Caratteristiche geometriche 1 6.7.2 Caratteristiche elettriche 1 6.8 Morsetteria ed armamenti 1 6.9 Fondazioni 1 6.10 Messe a terra dei sostegni 1 6.11 Caratteristiche dei componenti 1 6.12 Terre e rocce da scavo 1 7 RUMORE 1 8 INQUADRAMENTO GEOLOGICO PRELIMINARE 1 9 CAMPI ELETTRICI E MAGNETICI 1		
6.7 Isolamento 1 6.7.1 Caratteristiche geometriche 1 6.7.2 Caratteristiche elettriche 1 6.8 Morsetteria ed armamenti 1 6.9 Fondazioni 1 6.10 Messe a terra dei sostegni 1 6.11 Caratteristiche dei componenti 1 6.12 Terre e rocce da scavo 1 7 RUMORE 1 8 INQUADRAMENTO GEOLOGICO PRELIMINARE 16 9 CAMPI ELETTRICI E MAGNETICI 16	•	
6.7.1 Caratteristiche geometriche 1 6.7.2 Caratteristiche elettriche 1 6.8 Morsetteria ed armamenti 1 6.9 Fondazioni 1 6.10 Messe a terra dei sostegni 1 6.11 Caratteristiche dei componenti 1 6.12 Terre e rocce da scavo 1 7 RUMORE 1 8 INQUADRAMENTO GEOLOGICO PRELIMINARE 1 9 CAMPI ELETTRICI E MAGNETICI 1	9	
6.7.2 Caratteristiche elettriche		
6.8 Morsetteria ed armamenti 1 6.9 Fondazioni 1 6.10 Messe a terra dei sostegni 1 6.11 Caratteristiche dei componenti 1 6.12 Terre e rocce da scavo 1 7 RUMORE 1 8 INQUADRAMENTO GEOLOGICO PRELIMINARE 1 9 CAMPI ELETTRICI E MAGNETICI 1		
6.9 Fondazioni 1 6.10 Messe a terra dei sostegni 1 6.11 Caratteristiche dei componenti 1 6.12 Terre e rocce da scavo 1 7 RUMORE 1 8 INQUADRAMENTO GEOLOGICO PRELIMINARE 1 9 CAMPI ELETTRICI E MAGNETICI 1		
6.10 Messe a terra dei sostegni		
6.11 Caratteristiche dei componenti		
6.12 Terre e rocce da scavo		
7 RUMORE	•	
8 INQUADRAMENTO GEOLOGICO PRELIMINARE		
9 CAMPI ELETTRICI E MAGNETICI1		
0.1 Did :		
	9.1 Richiami normativi	
9.2 Calcolo dei campi elettrici e magnetici	-	
10 NORMATIVA DI RIFERIMENTO		
11 AREE IMPEGNATE20	11 AREE IMPEGNATE	20
12 FASCE DI RISPETTO20	12 FASCE DI RISPETTO	20
13 SICUREZZA NEI CANTIERI20	13 SICUREZZA NEI CANTIERI	20

Codifica				
PSPPR	108083			
Rev. 00	2 4 20			
del 01/09/2008	Pag. 3 di 20			

1 PREMESSA

Oggetto della presente relazione tecnica è la descrizione degli aspetti specifici, non contenuti nella Relazione Tecnica Generale, del nuovo collegamento a 380 kV in doppia terna ottimizzata da realizzarsi tra le esistenti Stazioni Elettriche di Udine Ovest e Redipuglia.

2 MOTIVAZIONI DELL'OPERA

Tale intervento rientra in un più ampio piano di razionalizzazione della rete elettrica AT del Friuli Venezia Giulia per le cui motivazioni si rimanda al par. 2 della Relazione Tecnica Generale (doc. n. PSPPRI08078).

3 UBICAZIONE DELL'INTERVENTO E OPERE ATTRAVERSATE

I Comuni interessati dal passaggio dell'elettrodotto sono elencati nella seguente tabella:

REGIONE	PROVINCIA	COMUNE	PERCORRENZA (km)
		Basiliano	3,6
		Campoformido	2
		Lestizza	3,96
		Pozzuolo	1,77
		Mortegliano	3,75
	Udine	Pavia di Udine	1,67
Friuli Venezia Giulia		Santa Maria la Longa	6,27
Trian venezia Giana		Trivignano Udinese	2,79
		Palmanova	1,35
		San Vito al Torre	3,9
		Tapogliano	3,2
	Gorizia	Villesse	4
	GOITZIA	San Pier d'Isonzo	0,95

Si precisa che il Comune di Pasian di Prato verrà interessato unicamente ed in maniera marginale dalla fascia di rispetto di cui al par. 12.

L'elenco delle opere principali attraversate con il nominativo delle Amministrazioni competenti è riportato nell'elaborato Doc. n. PSPPEI08084 (Elenco opere attraversate). Gli attraversamenti principali sono altresì evidenziati anche nella corografia in scala 1:10 000 Doc. n. PSPPDI08085 allegata.

4 DESCRIZIONE DELLE OPERE

L'opera oggetto della seguente relazione tecnica consiste nella realizzazione di un nuovo collegamento a 380 kV in doppia terna ottimizzata tra le esistenti elettriche di Udine Ovest e Redipuglia.

Per meglio comprendere la presente descrizione si fa specifico riferimento alla corografia allegata Doc. n. PSPPDI08085.

Codifica PSPPR	RI08083
Rev. 00	1 11 20
del 01/09/2008	Pag. 4 di 20

Il tracciato dell'elettrodotto ha origine nella stazione di Udine Ovest (Comune di Basiliano).

Partendo dal sostegno capolinea "A" il tracciato si dirige verso sud mantenendosi praticamente in parallelo a quello dell'esistente elettrodotto a 380 kV "Udine Ovest – Planais".

Il tratto tra il vertice A e B non presenta particolari attraversamenti fatta eccezione per un acquedotto posto alla metà circa del tratto suddetto.

Tra il vertice B e C, entra nei confini comunali di Campoformido (UD), superando qualche strada comunale, per poi rientrare nel Comune di Basiliano tra il vertice D ed E; a partire dal vertice E il tracciato devia leggermente verso sud-ovest attraversando un acquedotto, la linea aerea esistente a 380 kV (che verrà spostata per evitarne il sovrappasso e per consentire un allontanamento parziale dall'abitato di Orgnano) e la S.S. n° 13 di Pontebbana.

A partire dal vertice I il tracciato devia verso sud-estentrando dapprima nel Comune di Pozzuolo del Friuli (UD) e successivamente nel Comune di Lestizza (UD) dove attraversa degli acquedotti.

All'altezza del vertice J, devia ulteriormente in direzione sud - est interessando il Canale di Passons, per poi entrare nel territorio nuovamente nel territorio di Pozzuolo del Friuli dove incrocia una linea MT e la S.P. n. 7 di Latisana.

Entrato nel territorio di Mortegliano (UD) supera il torrente Cormor, la S.S. n. 353 della bassa friulana e la S.P. n. 82 di Chiasellis (queste ultime due nuovamente nel Comune di Pozzuolo del Friuli).

A partire dal vertice O, il tracciato prosegue in direzione est ed entra nuovamente nel Comune di Mortegliano mantenendosi a nord dell'abitato di Lavariano attraversando la S.P 78 di Mortegliano, giungendo al vertice R e deviando in direzione nord – est.

Da qui il tracciato entra nel Comune di Pavia di Udine ed attraversa l'autostrada A23 Palmanova - Tarvisio, per poi entrare nel Comune di Santa Maria La Longa (UD) attraversando la ferrovia Udine - Cervignano, fino ad attestarsi alla nuova stazione 380/220 kV "Udine Sud".

Uscendo da questa, il tracciato si dirige verso sud mantenendosi in prossimità del confine comunale tra Santa Maria La Longa e Trivignano Udinese (UD), che viene attraversato in direzione est a partire dal vertice AE.

Dopo aver attraversato la S.P. n. 33 di Clauiano e la Roggia Milleacque in corrispondenza del vertice AF il tracciato entra nel Comune di Palmanova (UD) a nord dell'abitato di Ialmicco per poi attraversare, giunti nel territorio comunale di San Vito al Torre (UD), la linea a 220 kV "Udine Nord-Est – Redipuglia – der. SAFAU" di futura demolizione.

Dal vertice AG il tracciato devia verso sud-est attraversando prima la S.P. Triestina e poi la S.S. n. 252, per poi entrare, superato il vertice AH, nel Comune di Tapogliano (UD).

A partire dal vertice AI, il tracciato devia verso sud mantenendosi parallelo al Fiume Torre ed attraversandolo nel Comune di Villesse in provincia di Gorizia; superata l'autostrada Torino – Trieste ed una linea elettrica 132 kV della RFI, in corrispondenza del vertice AP il tracciato devia ad est attraversando prima la S.S. n. 35 e successivamente la linea 132 kV "Ca' Poia – Redipuglia" ed una serie di metanodotti.

Superata nuovamente l'autostrada Torino – Trieste (nel punto in cui la stessa supera il fiume Isonzo), il tracciato entra nel Comune di San Pier d'Isonzo; qui, dopo aver attraversato alcune linee MT, alcuni metanodotti e la S.P. n. 1 "Fogliano – Pieris" entra nella S.E. di Redipuglia.

Codifica				
PSPPR	108083			
Rev. 00	- 5 20			
del 01/09/2008	Pag. 5 di 20			

Lo sviluppo complessivo del tracciato è circa pari a 39,2 km.

4.1 Vincoli Aeroportuali

I vincoli aeroportuali sono illustrati nel par. 3.2 della Relazione Tecnica Generale (Doc. n. PSPPRI08078).

4.2 Distanze di sicurezza rispetto alle attività soggette a controllo prevenzione incendi

Recependo quanto richiesto dal Ministero dell'Interno, Dipartimento Vigili del Fuoco, Soccorso Pubblico e Difesa Civile, con Circolare Prot. DCPST/A4/RA/1200 del 4 maggio 2005 e con successiva nota inviata a Terna n. DCPST/A4/RA/EL/ sott.1/1893 del 9/07/08 si è prestata particolare attenzione a verificare il rispetto delle distanze di sicurezza tra l'elettrodotto a 380 kV in progetto e le attività soggette al controllo dei Vigili del Fuoco o a rischio di incidente rilevante di cui al D. Lgs. 334/99.

In occasione dei sopralluoghi effettuati si è rilevata diretta evidenza delle seguenti attività soggetta al controllo dei Vigili del Fuoco o a rischio di incidente rilevante di cui al D. Lgs. 334/99:

Opera	Tratta	Comune	Riferimento
Distributore Q8	N-O	Mortegliano	210m a S del vertice N
Metanodotto Snam	Q-R	Mortegliano	Sottopassante
Oleodotto interrato SI.LO.NE Trieste-Visco	AO-AP	Villesse	Sottopassante (in corrispondenza ad autostrada A4)
Metanodotto SNAM	AP-AQ	Villesse	Sottopassante
Cabina ENDESA (in progetto)	AP-AQ	Villesse	D>50m (dalla recinzione)
Cabina SNAM	AP-AQ	Villesse	D>120m (dalla recinzione)
Cabina ENDESA (in progetto)	AQ-AR	Villesse	D>16m (dalla recinzione)
Cabina SNAM	AQ-AR	Villesse	D>180m (dalla recinzione)
Metanodotto interrato Villesse- Centrale Endesa (in progetto)	AQ-AR	Villesse	Sottopassante
Metanodotto Snam Deriv. Gorizia	AQ-AR	Villesse	Sottopassante
Metanodotto Snam Deriv. Gorizia	AR-AS	Villesse	Sottopassante, Parallelismo D>25m
Metanodotto SNAM Mestre - Trieste	AR-AS	Villesse	Sottopassante
Metanodotto interrato Villesse- Centrale Endesa (in progetto)	AR-AS	Villesse	Sottopassante, Vertice AS a 115m
Metanodotto interrato Villesse- Centrale Endesa (in progetto)	AS-AT	Villesse	D>40m
Cabina snam	AT-AU	Villesse	61m a N
Metanodotto interrato Villesse-	AT-AU	Villesse	Vertice AT a 150m,

Codifica
PSPPRI08083

Rev. 00
del 01/09/2008

Pag. 6 di 20

Opera	Tratta	Comune	Riferimento
Centrale Endesa (in progetto)			Sottopassante
Metanodotto Snam Deriv. Gorizia	AT-AU	Villesse	Parallelismo D> 30m
Metanodotto SNAM Mestre - Trieste	AT-AU	Villesse	Sottopassante – Vertice AU D=39m
Oleodotto interrato SI.LO.NE Trieste-Visco	AW-AX	San Pier d'Isonzo	Sottopassante -Distanza vertice AW 12m
Metanodotto interrato Villesse- Centrale Endesa (in progetto)	AX-AY	San Pier d'Isonzo	Parallelismo D>20m
Metanodotto interrato IRIS	AX-AY	San Pier d'Isonzo	Sottopassante
Metanodotto interrato SNAM	AY-AZ	San Pier d'Isonzo	Sottopassante
Metanodotto interrato Villesse- Centrale Endesa (in progetto)	AY-AZ	San Pier d'Isonzo	Parallelismo D>20m
Cabina gas SNAM	AY-AZ	San Pier d'Isonzo	D=60m a N
Centrale SNAM	AY-AZ	San Pier d'Isonzo	D=70m a N

Resta a carico dei Comandi Provinciali dei Vigili del Fuoco la verifica del rispetto delle distanze di sicurezza nei confronti di eventuali attività di cui non sia possibile rilevare diretta evidenza.

5 CRONOPROGRAMMA

Il programma di massima dei lavori è illustrato nel par. 5 della Relazione Tecnica Generale (Doc. n. PSPPRI08078).

6 CARATTERISTICHE TECNICHE DELL'OPERA

6.1 Premessa

I calcoli delle frecce e delle sollecitazioni dei conduttori di energia, delle corde di guardia, dell'armamento, dei sostegni e delle fondazioni, sono rispondenti alla Legge n. 339 del 28/06/1986 ed alle norme contenute nei Decreti del Ministero dei LL.PP. del 21/03/1988 e del 16/01/1991 con particolare riguardo agli elettrodotti di classe terza, così come definiti dall'art. 1.2.07 del Decreto del 21/03/1988 suddetto; per quanto concerne le distanze tra conduttori di energia e fabbricati adibiti ad abitazione o ad altra attività che comporta tempi di permanenza prolungati, queste sono conformi anche al dettato del D.P.C.M. 08/07/2003.

Il progetto dell'opera è conforme al Progetto Unificato per gli elettrodotti elaborato fin dalla prima metà degli anni '70 a cura della Direzione delle Costruzioni di ENEL, aggiornato nel pieno rispetto della normativa prevista dal DM 21-10-2003 (Presidenza del Consiglio di Ministri Dipartimento Protezione Civile) e tenendo conto delle Norme Tecniche per le Costruzioni, Decreto 14/09/2005.

Codifica			
PSPPR	108083		
Rev. 00	~ 7 20		
del 01/09/2008	Pag. 7 di 20		

Per quanto attiene gli elettrodotti, nel Progetto Unificato ENEL, sono inseriti tutti i componenti (sostegni e fondazioni, conduttori, morsetteria, isolatori, ecc.) con le relative modalità di impiego.

Le tavole grafiche dei componenti impiegati con le loro caratteristiche è riportato nel Doc. n. PSPPDI08094 "Componenti elettrodotti aerei a 380 kV ST e DT" contenuto nel Doc. n. PSPPEI08093 "Appendice B – Caratteristiche componenti elettrodotti aerei".

L'elettrodotto sarà costituito da una palificazione a doppia terna armata con due terne di fasi ciascuna composta da un fascio di 3 conduttori di energia (con un totale di 18 conduttori) e una corda di guardia, fino al raggiungimento dei sostegni capolinea; lo stesso assetto, ma con fascio di conduttori binato, si ha tra il sostegno capolinea e i portali di stazione, come meglio illustrato di seguito.

6.2 Caratteristiche elettriche dell'elettrodotto

Per le caratteristiche principali dell'elettrodotto a 380 kV si faccia riferimento alle relative voci del par. 6 della Relazione Tecnica Generale (Doc. n. PSPPRI08078).

La portata in corrente in servizio normale del conduttore sarà conforme a quanto prescritto dalla norma CEI 11-60, per elettrodotti a 380 kV in zona B.

6.3 Distanza tra i sostegni

La distanza tra due sostegni consecutivi dipende dall'orografia del terreno e dall'altezza utile dei sostegni impiegati; mediamente in condizioni normali, si ritiene possa essere pari a 400 m.

6.4 Conduttori e corde di guardia

Fino al raggiungimento dei sostegni capolinea, ciascuna fase elettrica sarà costituita da un fascio di 3 conduttori (trinato) collegati fra loro da distanziatori. Ciascun conduttore di energia sarà costituito da una corda di alluminio-acciaio della sezione complessiva di 585,3 mm² composta da n. 19 fili di acciaio del diametro 2,10 mm e da n. 54 fili di alluminio del diametro di 3,50 mm, con un diametro complessivo di 31,50 mm.

Il carico di rottura teorico del conduttore sarà di 16852 daN.

Per zone ad alto inquinamento salino può essere impiegato in alternativa il conduttore con l'anima a "zincatura maggiorata" ed ingrassato fino al secondo mantello di alluminio. Le caratteristiche tecniche del conduttore sono riportate nella tavola RQUT0000C2 rev. 01 allegata nel Doc. n. PSPPDI08094 "Componenti elettrodotti aerei a 380 kV ST e DT".

Nelle campate comprese tra i sostegni capolinea ed i portali della stazione elettrica ciascuna fase sarà costituita da un fascio di 2 conduttori collegati fra loro da distanziatori (fascio binato). I conduttori di energia saranno in corda di alluminio di sezione complessiva di circa 1000 mm², composti da n. 91 fili di alluminio del diametro di 3,74 mm, con un diametro complessivo di 41,1 mm (tavola LC8 allegata nel Doc. n. PSPPDI08094 "Componenti elettrodotti aerei a 380 kV ST e DT").

Il carico di rottura teorico di tale conduttore sarà di 14486 daN.

I conduttori avranno un'altezza da terra non inferiore a metri 12, arrotondamento per accesso di quella minima prevista dall'art. 2.1.05 del D.M. 16/01/1991.

L'elettrodotto sarà inoltre equipaggiato con una corda di guardia destinata, oltre che a proteggere l'elettrodotto stesso dalle scariche atmosferiche, a migliorare la messa a terra dei sostegni.

Codifica PSPPRI08083			
Rev. 00	- 0 20		
del 01/09/2008	Pag. 8 di 20		

La corda di guardia, in acciaio zincato del diametro di 11,50 mm e sezione di 78,94 mm², sarà costituita da n. 19 fili del diametro di 2,30 mm (tavola LC 23 nel Doc. n. PSPPDI08094 "Componenti elettrodotti aerei a 380 kV ST e DT").

Il carico di rottura teorico della corda di guardia sarà di 10645 daN.

In alternativa è possibile l'impiego di una corda di guardia in alluminio-acciaio con fibre ottiche, del diametro di 17,9 mm (tavola LC 50 nel Doc. n. PSPPDI08094 "Componenti elettrodotti aerei a 380 kV ST e DT"), da utilizzarsi per il sistema di protezione, controllo e conduzione degli impianti.

6.4.1 Stato di tensione meccanica

Il tiro dei conduttori e delle corde di guardia è stato fissato in modo che risulti costante, in funzione della campata equivalente, nella condizione "normale" di esercizio linea, cioè alla temperatura di 15°C ed in assenza di sovraccarichi (EDS - "every day stress"). Ciò assicura una uniformità di comportamento nei riguardi delle sollecitazioni prodotte dal fenomeno delle vibrazioni.

Nelle altre condizioni o "stati" il tiro varia in funzione della campata equivalente di ciascuna tratta e delle condizioni atmosferiche (vento, temperatura ed eventuale presenza di ghiaccio). La norma vigente divide il territorio italiano in due zone, A e B, in relazione alla quota e alla disposizione geografica.

Gli "stati" che interessano, da diversi punti di vista, il progetto delle linee sono riportati nello schema seguente:

- EDS Condizione di tutti i giorni: +15°C, in assenza di vento e ghiaccio
- MSA Condizione di massima sollecitazione (zona A): -5°C, vento a 130 km/h
- MSB Condizione di massima sollecitazione (zona B): -20°C, manicotto di ghiaccio di 12 mm, vento a 65 km/h
- MPA Condizione di massimo parametro (zona A): -5°C, in assenza di vento e ghiaccio
- MPB Condizione di massimo parametro (zona B): -20°C, in assenza di vento e ghiaccio
- MFA Condizione di massima freccia (Zona A): +55°C, in assenza di vento e ghiaccio
- MFB Condizione di massima freccia (Zona B): +40°C, in assenza di vento e ghiaccio
- CVS2 Condizione di verifica sbandamento catene: +15°C, vento a 130 km/h
- CVS3 Condizione di verifica sbandamento catene: 0°C (Zona A) -10°C (Zona B), vento a 65 km/h
- CVS4 Condizione di verifica sbandamento catene: +20°C, vento a 65 km/h

Nel seguente prospetto sono riportati i valori dei tiri in EDS per i conduttori, in valore percentuale rispetto al carico di rottura:

•	ZONA A	EDS=21%	per il conduttore tipo RQUT0000C2 conduttore alluminio-acciaio

• **ZONA B** EDS=20% per il conduttore tipo RQUT0000C2 conduttore alluminio-acciaio

Il corrispondente valore di EDS per la corda di guardia è stato fissato con il criterio di avere un parametro del 15% più elevato, rispetto a quello del conduttore, nella stessa condizione di EDS, come riportato di seguito:

ZONA A	EDS=12.18%	per corda di guardia tipo	LC 23
	EDS=15%	per corda di guardia tipo	LC 50
ZONA B	EDS=11.60%	per corda di guardia tipo	LC 23

Codifica	
PSPPF	RI08083
Rev. 00	
del 01/09/2008	Pag. 9 di 20

EDS=13,9 %

per corda di guardia tipo

LC 50

Per fronteggiare le conseguenze dell'assestamento dei conduttori, si rende necessario maggiorare il tiro all'atto della posa. Ciò si ottiene introducendo un decremento fittizio di temperatura ($\Delta\theta$ nel calcolo delle tabelle di tesatura:

- -16°C in zona A
- -25°C in zona B.

La linea in oggetto è situata in "ZONA B"

6.5 Capacità di trasporto

La capacità di trasporto dell'elettrodotto è funzione lineare della corrente di fase. Il conduttore in oggetto corrisponde al "conduttore standard" preso in considerazione dalla Norma CEI 11-60, nella quale sono definite anche le portate nei periodi caldo e freddo.

Il progetto dell'elettrodotto in oggetto è stato sviluppato nell'osservanza delle distanze di rispetto previste dalle Norme vigenti, sopra richiamate, pertanto le portate in corrente da considerare sono le stesse indicate nella Norma CEI 11-60.

6.6 Sostegni

I sostegni saranno del tipo a doppia terna con mensole isolanti di varie altezze secondo le caratteristiche altimetriche del terreno, in angolari di acciaio ad elementi zincati a caldo e bullonati ed ove le prestazioni meccaniche richieste risultino non idonee al loro impiego si utilizzeranno sostegni a doppia terna a basi strette di tipo tradizionale (l'eventuale utilizzo di sostegni di tipologia tubolare potrà essere valutato in funzione delle prestazioni meccaniche richieste).

Gli angolari di acciaio sono raggruppati in elementi strutturali. Il calcolo delle sollecitazioni meccaniche ed il dimensionamento delle membrature è stato eseguito conformemente a quanto disposto dal D.M. 21/03/1988 e le verifiche sono state effettuate per l'impiego sia in zona "A" che in zona "B".

Essi avranno un'altezza tale da garantire, anche in caso di massima freccia del conduttore, il franco minimo prescritto dalle vigenti norme.

I sostegni saranno provvisti di difese parasalita.

Per quanto concerne detti sostegni, fondazioni e relativi calcoli di verifica, TERNA si riserva di apportare nel progetto esecutivo modifiche di dettaglio dettate da esigenze tecniche ed economiche, ricorrendo, se necessario, all'impiego di opere di sottofondazione.

Ciascun sostegno si può considerare composto dai piedi, dalla base, da un tronco e dalla testa, della quale fanno parte le mensole. Ad esse sono applicati gli armamenti (cioè l'insieme di elementi che consente di ancorare meccanicamente i conduttori al sostegno pur mantenendoli elettricamente isolati da esso) che possono essere di sospensione o di amarro. Vi sono infine i cimini, atti a sorreggere le corde di guardia.

I piedi del sostegno, che sono l'elemento di congiunzione con il terreno, possono essere di lunghezza diversa, consentendo un migliore adattamento, in caso di terreni acclivi.

Codifica		
PSPPR	108083	
Rev. 00	- 10 20	
del 01/09/2008	Pag. 10 di 20	

L'elettrodotto a 380 kV doppia terna e' realizzato utilizzando una serie unificata di tipi di sostegno, tutti diversi tra loro (a seconda delle sollecitazioni meccaniche per le quali sono progettati) e tutti disponibili in varie altezze (H), denominate 'altezze utili (di norma vanno da 15 a 54 m).

I tipi di sostegno standard utilizzati e le loro prestazioni nominali (riferiti alla zona B), con riferimento al conduttore utilizzato alluminio-acciaio Φ 31,5 mm, in termini di campata media (Cm), angolo di deviazione (δ) e costante altimetrica (K) sono i seguenti:

SOSTEGNI 380 kV Doppia Terna BASI STRETTE, ZONA B - EDS 20 %

TIPO	ALTEZZA	CAMPATA MEDIA	ANGOLO DEVIAZIONE	COSTANTE ALTIMETRICA
"N" Normale	18 ÷ 54 m	400 m	4°10'	0,2276
"M" Medio	18 ÷ 54 m	400 m	8°22'	0,2895
"V" Vertice	18 ÷ 54 m	400 m	32°	0,3825
"C"Capolinea	18 ÷ 54 m	400 m	60°	0,3825
"E" Eccezionale	18 ÷ 54 m	400 m	75°	0,3825

SOSTEGNI 380 kV Doppia Terna MENSOLE ISOLANTI, ZONA B - EDS 20 %

TIPO	ALTEZZA	CAMPATA MEDIA	ANGOLO DEVIAZIONE	COSTANTE ALTIMETRICA
"NI"	15 ÷ 42 m	350 m	0°	0,1048
"MI"	15 ÷ 42 m	350 m	6°17'	0,1572
"PI"	15 ÷ 42 m	350 m	12°35'	0,2096

SOSTEGNI 380 kV Doppia Terna TUBOLARI, ZONA B - EDS 20 %

TIPO	ALTEZZA	CAMPATA MEDIA	ANGOLO DEVIAZIONE	COSTANTE
				ALTIMETRICA
"NDT" Tubolare Monostelo	18 ÷ 30 m	300 m	0°	0,10
"MDT" Tubolare Monostelo	18 ÷ 30 m	300 m	6°	0,15
"PDT" Tubolare Monostelo	18 ÷ 30 m	300 m	12°	0,20

Ogni tipo di sostegno ha un campo di impiego rappresentato da un diagramma di utilizzazione nel quale sono rappresentate le prestazioni lineari (campate media), trasversali (angolo di deviazione) e verticali (costante altimetrica K).

Il diagramma di utilizzazione di ciascun sostegno è costruito secondo il seguente criterio:

Partendo dai valori di Cm, δ e K relativi alle prestazioni nominali, si calcolano le forze (azione trasversale e azione verticale) che i conduttori trasferiscono all'armamento.

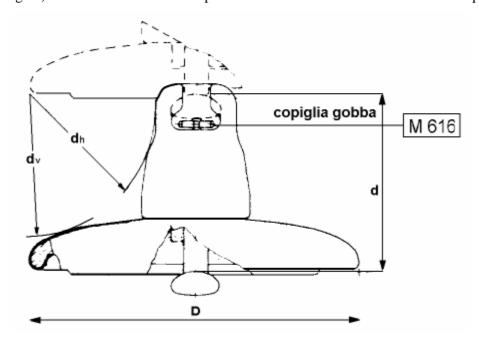
Successivamente con i valori delle azioni così calcolate, per ogni valore di campata media, si vanno a determinare i valori di δ e K che determinano azioni di pari intensità.

In ragione di tale criterio, all'aumentare della campata media diminuisce sia il valore dell'angolo di deviazione sia la costante altimetrica con cui è possibile impiegare il sostegno.

La disponibilità dei diagrammi di utilizzazione agevola la progettazione, in quanto consente di individuare rapidamente se il punto di lavoro di un sostegno, di cui si siano determinate la posizione lungo il profilo della linea

Codifica				
PSPPR	108083			
Rev. 00	- 11	^		
del 01/09/2008	Pag. 11 di 20	U		

e l'altezza utile, e quindi i valori a picchetto di Cm, δ e K , ricade o meno all'interno dell'area delimitata dal diagramma di utilizzazione stesso.


6.7 Isolamento

L'isolamento degli elettrodotti, previsto per una tensione massima di esercizio di 420 kV, sarà realizzato con isolatori a cappa e perno in vetro temprato, con carico di rottura di 160 e 210 kN nei due tipi "normale" e "antisale", connessi tra loro a formare catene di almeno 19 elementi negli amarri e 21 nelle sospensioni, come indicato nel grafico riportato al successivo paragrafo 6.7.2. Le catene di sospensione saranno del tipo a V o ad L (semplici o doppie per ciascuno dei rami) mentre le catene in amarro saranno tre in parallelo. Inoltre per i sostegni tubolari monostelo e per i sostegni a mensole isolanti saranno utilizzati anche isolatori a bastone in porcellana (tav. LJ 21).

Le caratteristiche degli isolatori rispondono a quanto previsto dalle norme CEI.

6.7.1 Caratteristiche geometriche

Nelle tabelle LJ1 e LJ2 allegate sono riportate le caratteristiche geometriche tradizionali ed inoltre le due distanze "dh" e "dv" (vedi figura) atte a caratterizzare il comportamento a sovratensione di manovra sotto pioggia.

6.7.2 Caratteristiche elettriche

Le caratteristiche geometriche di cui sopra sono sufficienti a garantire il corretto comportamento delle catene di isolatori a sollecitazioni impulsive dovute a fulminazione o a sovratensioni di manovra. Per quanto riguarda il comportamento degli isolatori in presenza di inquinamento superficiale, nelle tabelle LJ1 e LJ2 allegate sono riportate, per ciascun tipo di isolatore, le condizioni di prova in nebbia salina, scelte in modo da porre ciascuno di essi in una situazione il più possibile vicina a quella di effettivo impiego. Nella tabella che segue è poi indicato il criterio per individuare il tipo di isolatore ed il numero di elementi da impiegare con riferimento ad una scala empirica dei livelli di inquinamento.

INOUINAMENTO SALINITA' DI

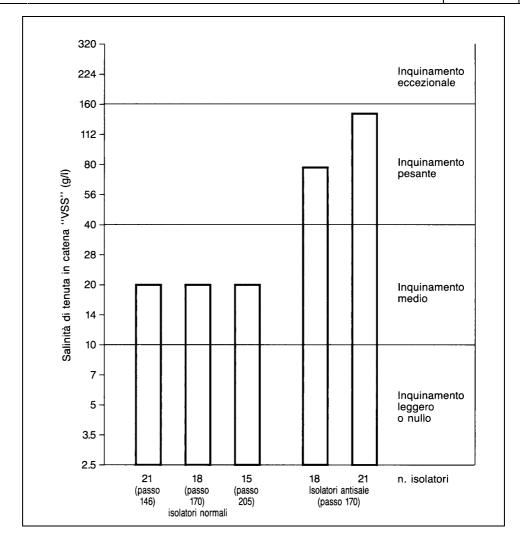
Codifica PSPPRI08083

Rev. 00 del 01/09/2008

Pag. **12** di 20

		TENUTA (kg/m²)
	 Zone prive di industrie e con scarsa densità di abitazioni dotate di impianto di riscaldamento 	
	• Zone con scarsa densità di industrie e abitazioni, ma frequentemente soggette a piogge e/o venti.	
I – Nullo o leggero (1)	Zone agricole (2)	10
	Zone montagnose	
	Occorre che tali zone distino almeno 10-20 km dal mare e non siano direttamente esposte a venti marini (3)	
	Zone con industrie non particolarmente inquinanti e con media densità di abitazioni dotate di impianto di riscaldamento	
II – Medio	• Zone ad alta densità di industrie e/o abitazioni, ma frequentemente soggette a piogge e/o venti.	40
	• Zone esposte ai venti marini, ma non troppo vicine alla costa (distanti almeno alcuni chilometri) (3)	
III - Pesante	 Zone ad alta densità industriale e periferie di grandi agglomerati urbani ad alta densità di impianti di riscaldamento producenti sostanze inquinanti 	160
	• Zone prossime al mare e comunque esposte a venti marini di entità relativamente forte	
	Zone di estensione relativamente modesta, soggette a polveri o fumi industriali che causano depositi particolarmente conduttivi	
IV – Eccezionale	Zone di estensione relativamente modesta molto vicine a coste marine e battute da venti inquinanti molto forti	(*)
	 Zone desertiche, caratterizzate da assenza di pioggia per lunghi periodi, esposte a tempeste di sabbia e sali, e soggette a intensi fenomeni di condensazione 	

- Nelle zone con inquinamento nullo o leggero una prestazione dell'isolamento inferiore a quella indicata può essere utilizzata in funzione dell'esperienza acquisita in servizio.
- (2) Alcune pratiche agricole quali la fertirrigazione o la combustione dei residui, possono produrre un incremento del livello di inquinamento a causa della dispersione via vento delle particelle inquinanti.
- (3) Le distanze dal mare sono strettamente legate alle caratteristiche topografiche della zona eda alle condizioni di vento più severe.
- (4) (*) per tale livello di inquinamento non viene dato un livello di salinità di tenuta, in quanto risulterebbe più elevato del massimo valore ottenibile in prove di salinità in laboratorio. Si rammenta inoltre che l'utilizzo di catene di isolatori antisale di lunghezze superiori a quelle indicate nelle tabelle di unificazione (criteri per la scelta del numero e del tipo degli isolatori) implicherebbe una linea di fuga specifica superiore a 33 mm/kV fase-fase oltre la quale interviene una non linearità nel comportamento in ambiente inquinato.



Codifica PSPPRI08083

Rev. 00

del 01/09/2008

Pag. 13 di 20

Il numero degli elementi può essere aumentato fino a 21 (sempre per ciò che riguarda gli armamenti VSS) coprendo così quasi completamente le zone ad inquinamento "pesante". In casi eccezionali si potranno adottare soluzioni che permettono l'impiego fino a 25 isolatori "antisale" da montare su speciali sostegni detti a"a isolamento rinforzato". Con tale soluzione, se adottata in zona ad inquinamento eccezionale, si dovrà comunque ricorrere ad accorgimenti particolari quali lavaggi periodici, ingrassaggio, ecc.

Le considerazioni fin qui esposte vanno pertanto integrate con l'osservazione che gli armamenti di sospensione diversi da VSS hanno prestazioni minori a parità di isolatori. E precisamente:

- gli armamenti VDD, LSS, LDS presentano prestazioni inferiori di mezzo gradino della scala di salinità
- gli armamenti LSD, LDD (di impiego molto eccezionale) presentano prestazioni di inferiori di 1 gradino della scala di salinità.
- gli armamenti di amarro, invece, presentano le stesse prestazioni dei VSS.

Tenendo presente, d'altra parte, il carattere probabilistico del fenomeno della scarica superficiale, la riduzione complessiva dei margini di sicurezza sull'intera linea potrà essere trascurata se gli armamenti indicati sono relativamente pochi rispetto ai VSS (per esempio 1 su 10). Diversamente se ne terrà conto nello stabilire la soluzione prescelta (ad esempio si passerà agli "antisale" prima di quanto si sarebbe fatto in presenza dei soli armamenti VSS.

Le caratteristiche della zona interessata dall'elettrodotto in esame sono di inquinamento atmosferico medio e quindi si è scelta la soluzione dei 21 isolatori (passo 146) tipo J1/3 (normale) per tutti gli armamenti in sospensione e quella dei 18 isolatori (passo 170) tipo J1/4 (normale) per gli armamenti in amarro. Per i tratti di linea che verranno realizzati con sostegni a mensole isolanti, si è scelta la soluzione dei 18 isolatori (passo 170) tipo J1/4 (normale) e 2 isolatori (2x1650) tipo J21/1(normale).

Codifica	
PSPPI	RI08083
Rev. 00	
del 01/09/2008	Pag. 14 di 20

6.8 Morsetteria ed armamenti

Gli elementi di morsetteria per linee a 380 kV sono stati dimensionati in modo da poter sopportare gli sforzi massimi trasmessi dai conduttori al sostegno.

A seconda dell'impiego previsto sono stati individuati diversi carichi di rottura per gli elementi di morsetteria che compongono gli armamenti in sospensione:

- 120 kN utilizzato per le morse di sospensione.
- 210 kN utilizzato per i rami semplici degli armamenti di sospensione e dispositivo di amarro di un singolo conduttore.
- 360 kN utilizzato nei rami doppi degli armamenti di sospensione.

Le morse di amarro sono invece state dimensionate in base al carico di rottura del conduttore.

Per equipaggiamento si intende il complesso degli elementi di morsetteria che collegano le morse di sospensione o di amarro agli isolatori e questi ultimi al sostegno.

Per le linee a 380 kV si distinguono i tipi di equipaggiamento riportati nella tabella seguente.

		CARICO DI ROTTURA (kN)		
EQUIPAGGIAMENTO	TIPO	Ramo 1	Ramo 2	SIGLA
a "V" semplice	380/1	210	210	VSS
a "V" doppio	380/2	360	360	VDD
a "L" semplice-	380/3	210	210	LSS
a "L" semplice-doppio	380/4	210	360	LSD
a "L" doppio-semplice	380/5	360	210	LDS
a "L" doppio	380/6	360	360	LDD
a mensole isolanti	LM90	2x210	300	MI
triplo per amarro	385/1	3 x 210		TA
doppio per amarro	387/2	2 x 120		DA
ad "I" per richiamo collo morto	392/1	30		IR

La scelta degli equipaggiamenti viene effettuata, per ogni singolo sostegno, fra quelli disponibili nel progetto unificato, in funzione delle azioni (trasversale, verticale e longitudinale) determinate dal tiro dei conduttori e dalle caratteristiche di impiego del sostegno esaminato (campata media, dislivello a monte e a valle, ed angolo di deviazione).

6.9 Fondazioni

Ciascun sostegno è dotato di quattro piedi e delle relative fondazioni.

La fondazione è la struttura interrata atta a trasferire i carichi strutturali (compressione e trazione) dal sostegno al sottosuolo.

Le fondazioni unificate sono utilizzabili su terreni normali, di buona o media consistenza.

Ciascun piedino di fondazione è composto da:

Codifica				
PSPPR	1080	83		
Rev. 00		15 20		
del 01/09/2008	Pag.	15 di 20		

- a) un blocco di calcestruzzo armato costituito da una base, che appoggia sul fondo dello scavo, formata da una serie di platee (parallelepipedi a pianta quadrata) sovrapposte; detta base è simmetrica rispetto al proprio asse verticale;
- b) un colonnino a sezione circolare, inclinato secondo la pendenza del montante del sostegno;
- c) un "moncone" annegato nel calcestruzzo al momento del getto, collegato al montante del "piede" del sostegno. Il moncone è costituito da un angolare, completo di squadrette di ritenuta, che si collega con il montante del piede del sostegno mediante un giunto a sovrapposizione. I monconi sono raggruppati in tipi, caratterizzati dalla dimensione dell'angolare, ciascuno articolato in un certo numero di lunghezze.

Dal punto di vista del calcolo dimensionale è stata seguita la normativa di riferimento per le opere in cemento armato di seguito elencata:

- D.M. Infrastrutture e Trasporti 14 settembre 2005 n. 159 "Norme tecniche per le costruzioni";
- D.M. 9 gennaio 1996, "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche";
- D.M. 14 febbraio 1992: "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche";
- Decreto Interministeriale 16 Gennaio 1996: "Norme tecniche relative ai "Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi".

Sono inoltre osservate le prescrizioni della normativa specifica per elettrodotti, costituita dal D.M. 21/3/1988; in particolare per la verifica a strappamento delle fondazioni, viene considerato anche il contributo del terreno circostante come previsto dall'articolo 2.5.06 dello stesso D.M. 21/3/1988.

L'articolo 2.5.08 dello stesso D.M., prescrive che le fondazioni verificate sulla base degli articoli sopramenzionati, siano idonee ad essere impiegate anche nelle zone sismiche per qualunque grado di sismicità.

L'abbinamento tra ciascun sostegno e la relativa fondazione è determinato nel progetto unificato mediante le "Tabelle delle corrispondenze" che sono le seguenti:

- Tabella delle corrispondenze tra sostegni, monconi e fondazioni;
- Tabella delle corrispondenze tra fondazioni ed armature colonnino

Con la prima tabella si definisce il tipo di fondazione corrispondente al sostegno impiegato mentre con la seconda si individua la dimensione ed armatura del colonnino corrispondente.

Come già detto le fondazioni unificate sono utilizzabili solo su terreni normali di buona e media consistenza, pertanto le fondazioni per sostegni posizionati su terreni con scarse caratteristiche geomeccaniche, su terreni instabili o su terreni allagabili sono oggetto di indagini geologiche e sondaggi mirati, sulla base dei quali vengono, di volta in volta, progettate ad hoc.

6.10 Messe a terra dei sostegni

Per ogni sostegno, in funzione della resistività del terreno misurata in sito, viene scelto, in base alle indicazioni riportate nel Progetto Unificato, anche il tipo di messa a terra da utilizzare.

Il Progetto Unificato ne prevede di 6 tipi, adatti ad ogni tipo di terreno.

Codifica
PSPPRI08083

Rev. 00
del 01/09/2008

Pag. 16 di 20

6.11 Caratteristiche dei componenti

Si rimanda per la parte relativa al 380 kV alla consultazione dell'elaborato Doc. n. PSPPEI08093 "Caratteristiche componenti elettrodotti aerei".

6.12 Terre e rocce da scavo

La realizzazione di un elettrodotto è suddivisibile in tre fasi principali:

- 1. esecuzione delle fondazioni dei sostegni;
- 2. montaggio dei sostegni;
- 3. messa in opera dei conduttori e delle corde di guardia.

Solo la prima fase comporta movimenti di terra, come descritto nel seguito.

La realizzazione delle fondazioni di un sostegno prende avvio con l'allestimento dei cosiddetti "microcantieri" relativi alle zone localizzate da ciascun sostegno. Essi sono destinati alle operazioni di scavo, getto in cemento armato delle fondazioni, reinterro ed infine all'assemblaggio degli elementi costituenti la tralicciatura del sostegno. Mediamente interessano un'area circostante delle dimensioni di circa 50x50 m, variabile in funzione della dimensione del sostegno e sono immuni da ogni emissione dannosa.

Durante la realizzazione delle opere, il criterio di gestione del materiale scavato prevede il suo deposito temporaneo presso ciascun "microcantiere" e successivamente il suo utilizzo per il reinterro degli scavi, previo accertamento dell'idoneità di detto materiale per il riutilizzo in sito ai sensi della normativa vigente. In caso contrario il materiale scavato sarà destinato ad idoneo impianto di smaltimento o recupero autorizzato, con le modalità previste dalla normativa vigente.

In particolare si segnala che per l'esecuzione dei lavori non sono utilizzate tecnologie di scavo con impiego di prodotti tali da contaminare le rocce e terre.

L'operazione successiva consiste nel montaggio dei sostegni, ove possibile sollevando con una gru elementi premontati a terra a tronchi, a fiancate o anche ad aste sciolte; nelle zone inaccessibili si procederà con falcone.

Ove richiesto, si procede alla verniciatura dei sostegni.

Saranno inoltre realizzati dei piccoli scavi in prossimità del sostegno per la posa dei dispersori di terra con successivo reinterro e costipamento.

Infine una volta realizzato il sostegno si procederà alla risistemazione dei "microcantieri", previo minuzioso sgombero da ogni materiale di risulta, rimessa in pristino delle pendenze del terreno costipato ed idonea piantumazione e ripristino del manto erboso.

In complesso i tempi necessari per la realizzazione di un sostegno non superano il mese e mezzo, tenuto conto anche della sosta necessaria per la stagionatura dei getti.

Di seguito sono descritte le principali attività delle varie di tipologie di fondazione utilizzate.

Codifica PSPPR	R108083
Rev. 00	15 20
del 01/09/2008	Pag. 17 di 20

Fondazioni a plinto con riseghe

Predisposti gli accessi alle piazzole per la realizzazione dei sostegni, si procede alla pulizia del terreno e allo scavo delle fondazioni. Queste saranno in genere di tipo diretto e dunque si limitano alla realizzazione di 4 plinti agli angoli dei tralicci (fondazioni a piedini separati).

Ognuna delle quattro buche di alloggiamento della fondazione è realizzata utilizzando un escavatore e avrà dimensioni di circa 3x3 m con una profondità non superiore a 4 m, per un volume medio di scavo pari a circa 30 mc; una volta realizzata l'opera, la parte che resterà in vista sarà costituita dalla parte fuori terra dei colonnini di diametro di circa 1 m.

Pulita la superficie di fondo scavo si getta, se ritenuto necessario per un migliore livellamento, un sottile strato di "magrone". Nel caso di terreni con falda superficiale, si procederà all'aggottamento della falda con una pompa di agottamento, mediante realizzazione di una fossa.

In seguito si procede con il montaggio dei raccordi di fondazione e dei piedi e base, il loro accurato livellamento, la posa dell'armatura di ferro e delle casserature, il getto del calcestruzzo.

Trascorso il periodo di stagionatura dei getti, si procede al disarmo delle casserature. Si esegue quindi il reinterro con il materiale proveniente dagli scavi, se ritenuto idoneo ai sensi della normativa vigente, o con materiale differente, ripristinando il preesistente andamento naturale del terreno.

Pali trivellati

La realizzazione delle fondazioni con pali trivellati avviene come segue.

- Pulizia del terreno; posizionamento della macchina operatrice; realizzazione di un fittone per ogni piedino mediante trivellazione fino alla quota prevista in funzione della litologia del terreno desunta dalle prove geognostiche eseguite in fase esecutiva (mediamente 15 m) con diametri che variano da 1,5 a 1,0 m, per complessivi 15 mc circa per ogni fondazione; posa dell'armatura; getto del calcestruzzo fino alla quota di imposta della fondazione del traliccio.
- Dopo almeno sette giorni di stagionatura del calcestruzzo del trivellato si procederà al montaggio e posizionamento della base del traliccio; alla posa dei ferri d'armatura ed al getto di calcestruzzo per realizzare il raccordo di fondazione al trivellato; ed infine al ripristino del piano campagna ed all'eventuale rinverdimento.

Durante la realizzazione dei trivellati, per limitare gli inconvenienti dovuti alla presenza di falda, verrà utilizzata, in alternativa al tubo forma metallico, di materiale polimerico che a fine operazioni dovrà essere recuperata e/o smaltita secondo le vigenti disposizioni di legge.

Micropali

La realizzazione delle fondazioni con micropali avviene come segue.

- Pulizia del terreno; posizionamento della macchina operatrice; realizzazione di una serie di micropali per ogni piedino con trivellazione fino alla quota prevista; posa dell'armatura; iniezione malta cementizia.
- Scavo per la realizzazione della fondazione di raccordo micropali-traliccio; messa a nudo e pulizia delle armature dei micropali; montaggio e posizionamento della base del traliccio; posa in opera delle armature del dado

Codifica PSPPRI08083		
Rev. 00	~ 10 · · 20	
del 01/09/2008	Pag. 18 di 20	

di collegamento; getto del calcestruzzo.

Il volume di scavo complessivo per ogni piedino è circa 4 mc.

A seconda del tipo di calcestruzzo si attenderà un tempo di stagionatura variabile tra 36 e 72 ore e quindi si procederà al disarmo dei dadi di collegamento, al ripristino del piano campagna ed all'eventuale rinverdimento.

Durante la realizzazione dei micropali, per limitare gli inconvenienti dovuti alla presenza di falda, verrà utilizzato un tubo forma metallico, per contenere le pareti di scavo, che contemporaneamente alla fase di getto sarà recuperato.

Tiranti in roccia

La realizzazione delle fondazioni con tiranti in roccia avviene come segue:

- pulizia del banco di roccia con asportazione del "cappellaccio" superficiale degradato (circa 30 cm) nella posizione del piedino, fino a trovare la parte di roccia più consistente;
- scavo, tramite demolitore, di un dado di collegamento tiranti-traliccio delle dimensioni 1,5 x 1,5 x 1 m;
- posizionamento della macchina operatrice per realizzare una serie di ancoraggi per ogni piedino;
- trivellazione fino alla quota prevista;
- posa delle barre in acciaio;
- iniezione di resina sigillante a espansione fino alla quota prevista;
- montaggio e posizionamento della base del traliccio;
- posa in opera dei ferri d'armatura del dado di collegamento;
- getto del calcestruzzo.

A seconda del tipo di calcestruzzo si attende un tempo di stagionatura variabile tra 36 e 72 ore, quindi si procede al disarmo delle casserature. Si esegue quindi il reinterro con il materiale proveniente dagli scavi, se ritenuto idoneo ai sensi della normativa vigente, o con materiale differente.

7 RUMORE

Si faccia riferimento al par. 7 della Relazione Tecnica Generale (Doc. n. PSPPRI08078).

8 INQUADRAMENTO GEOLOGICO PRELIMINARE

Si faccia riferimento al par. 8 della Relazione Tecnica Generale (Doc. n. PSPPRI08078).

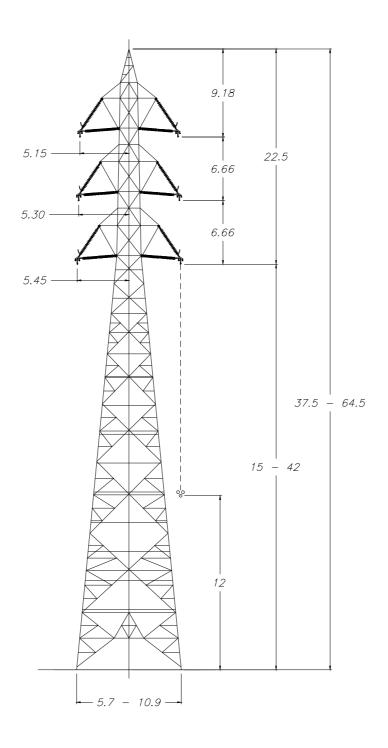
9 CAMPI ELETTRICI E MAGNETICI

9.1 Richiami normativi

Si faccia riferimento al par. 9.1 della Relazione Tecnica Generale (Doc. n. PSPPRI08078).

9.2 Calcolo dei campi elettrici e magnetici

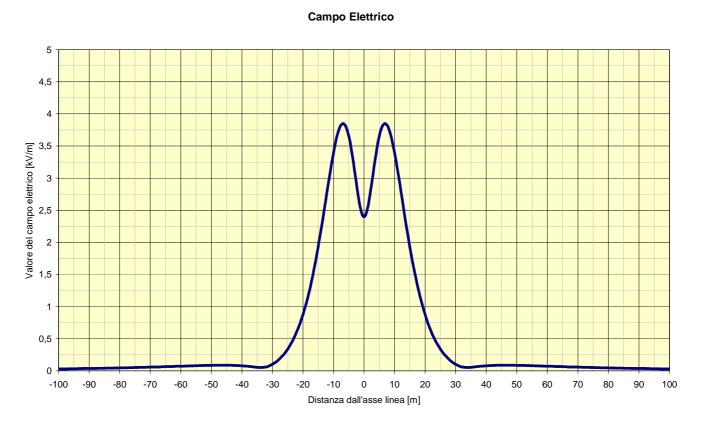
Si faccia anche riferimento al par. 9.2 della Relazione Tecnica Generale (Doc. n. PSPPRI08078).



Codifica
PSPPRI08083

Rev. 00
del 01/09/2008

Pag. 19 di 20


Per il calcolo delle intensità del campo elettrico si è considerata un'altezza dei conduttori dal suolo pari a 11,5 m, corrispondente cioè all'approssimazione per eccesso del valore indicato dal D.M. 1991 per le linee aree ove è prevista la presenza prolungata di persone sotto la linea. Tale ipotesi è conservativa, in quanto la loro altezza è, per scelta progettuale, sempre maggiore di tale valore. I conduttori sono ancorati ai sostegni, come da disegno schematico riportato nella figura seguente. Tra due sostegni consecutivi il conduttore si dispone secondo una catenaria, per cui la sua altezza dal suolo è sempre maggiore del valore preso a riferimento, tranne che nel punto di vertice della catenaria stessa. Anche per tale ragione l'ipotesi di calcolo assunta risulta conservativa.

| Codifica | PSPPRI08083 | Rev. 00 | Pag. 20 di 20 |

Nella figura seguente è riportato il calcolo del campo elettrico generato dalla linea 380 kV in doppia terna presa in considerazione:

Come si vede i valori di campo elettrico sono sempre inferiori al limite di 5 kV/m imposto dalla normativa.

Lo studio del campo magnetico è stato approfondito nell'Appendice "E" (doc. PSPPEI08118 – "Calcolo delle Fasce di Rispetto") al quale si rimanda.

10 NORMATIVA DI RIFERIMENTO

Si faccia riferimento al par. 10 della Relazione Tecnica Generale (Doc. n. PSPPRI08078).

11 AREE IMPEGNATE

Si faccia riferimento al par. 11 della Relazione Tecnica Generale (Doc. n. PSPPRI08078).

12 FASCE DI RISPETTO

Si faccia riferimento al par. 12 della Relazione Tecnica Generale (Doc. n. PSPPRI08078).

13 SICUREZZA NEI CANTIERI

Si faccia riferimento al par. 13 della Relazione Tecnica Generale (Doc. n. PSPPRI08078).