

DIREZIONE CENTRALE PROGRAMMAZIONE PROGETTAZIONE

PA 12/09

CORRIDOIO PLURIMODALE TIRRENICO - NORD EUROPA
ITINERARIO AGRIGENTO - CALTANISSETTA - A19
S.S. N° 640 "DI PORTO EMPEDOCLE"
AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
Dal km 44+000 allo svincolo con l'A19

PROGETTO ESECUTIVO

Contraente Generale:

PIANO DI MONITORAGGIO AMBIENTALE


VIBRAZIONI

Relazione Conclusiva Monitoraggio Ambientale Ante Operam Vibrazioni

Cod	lice Unico	Prog	gett	:o (0	CU	P) :	F9	1B	09	000	07	000	1										
Cod	lice Elabo	rato:																					
PA	.12_09 -	- E	0	0	0	G	Е	2	2	0	Р	M	0	6	Р	R	Н) 2	7	•	Α	Scala:	
F												·											
E																							
D																							
С																							
В																							
Α	Aprile 2012				EM	ISSIC	NE					F.	CAR	Ll	С	FER	ONE	N	1. LIT	1		P. PAC	SLINI
REV.	DATA				DES	CRIZI	ONE					RE	DAT	то	VE	RIFIC	CATO	APP	ROV	ATC)	AUTORI	ZZATO
Respons	sabile del Procedi	mento:		Ing.	MAUI	RIZIO	ARAI	MINI															

Sommario

1.	VIBF	RAZIONI	2
	1.1	Premessa	
	1.2	Normativa di riferimento	3
	1.3	Strumentazione	10
	1.4	Valutazione del disturbo	11
	1.5	Modalità di monitoraggio e parametri rilevati	12
	1.6	Punti di monitoraggio	13
	1.7	Sintesi delle attività di monitoraggio Ante Operam	14
	1.8	Risultati delle misurazioni	15
	1.9	Conclusioni	18

Allegato

Scheda di campo e misura strumentale

Cod. elab.: 000GE220PM06PRH027	Tito	lo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH027 A.I	f	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 1 di 19

1. VIBRAZIONI

1.1 Premessa

La presente relazione riferisce in merito alle attività svolte per il Monitoraggio Ante Operam (A.O.) relativo alla componente Vibrazioni, così come previsto dal Piano di Monitoraggio Ambientale (PMA) allegato al progetto esecutivo dell'infrastruttura in oggetto. Il progetto prevede l'adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" lungo l'itinerario Agrigento - Caltanissetta - A19 del tratto ricadente nella Provincia di Caltanissetta, dal km 44+000 allo svincolo con l'A19.

La nuova infrastruttura ricade nel territorio provinciale di Caltanissetta, con un tracciato, dello sviluppo complessivo di circa 28 km, che in buona parte riutilizza il sedime esistente; l'intervento prevede essenzialmente il raddoppio e l'ammodernamento dell'attuale strada statale 640 "di Porto Empedocle" che al termine dei lavori sarà percorribile su quattro corsie, due per senso di marcia, con spartitraffico centrale (sezione tipo B del D.M. 5 novembre 2001).

Le attività di monitoraggio sono state eseguite secondo il programma e le specifiche tecniche previste nel PMA per tale componente.

Uno dei motivi principali per cui è stato necessario prevedere il monitoraggio della componente vibrazioni, è che quest'ultime possono provocare danni alle costruzioni ed ai manufatti in generale, sia per la loro propagazione alle strutture, attraverso i terreni, sia per gli assestamenti del terreno e quindi per eventuali suoi cedimenti.

Quest'ultimo effetto è spesso il più pericoloso quando si è in presenza di terreni a bassa densità e particolarmente nel caso delle terre sciolte incoerenti quali sabbie e ghiaie. La presenza dell'acqua aggrava il fenomeno.

Poiché gli assestamenti diminuiscono allontanandosi dalla sorgente delle vibrazioni, i cedimenti prodotti lungo una costruzione non sono uniformi e portano col tempo a inclinazioni e danni alle sovrastrutture.

A tal proposito, le misure eseguite hanno avuto il duplice scopo di monitorare il disturbo indotto sulla popolazione e di verificare che i ricettori interessati dalla realizzazione dell'infrastruttura siano soggetti ad una sismicità in linea con le previsioni progettuali e con gli standard di riferimento.

La normativa di settore sulle vibrazioni è ancora mancante, ma esiste una normativa tecnica di supporto per il disturbo alle persone (ISO 2361/UNI 9614) e per gli eventuali danni alle strutture (UNI 9916).

Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 2 di 19

Nel caso di un'infrastruttura viaria, tra i sistemi in grado di attenuare il disturbo provocato dalle vibrazioni, assume un ruolo rilevante il controllo della regolarità della pavimentazione. Negli edifici prossimi a strade ed autostrade con flussi di traffico pesante, significativi possono, infatti, registrarsi i livelli di accelerazione prossimi ai limiti UNI 9614, soprattutto in presenza di pavimentazioni in cattivo stato di manutenzione, giunti, condotte interrate passanti al di sotto della carreggiata.

Nel caso di sorgenti fisse (come ad esempio le attrezzature o gli impianti fissi di cantiere) il problema consiste nella corretta progettazione e realizzazione del supporto della macchina o impianto che genera le vibrazioni. Tale aspetto è generalmente curato direttamente dal costruttore della macchina o dell'impianto.

1.2 Normativa di riferimento

Il problema delle vibrazioni negli ambienti di vita, attualmente, non è disciplinato da alcuna normativa nazionale. Pertanto, qualora si intenda procedere ad una valutazione strumentale di tale fenomeno fisico è bene affidarsi alle corrispettive norme tecniche. Più precisamente la valutazione delle vibrazioni può essere condotta utilizzando gli standard appositamente elaborati sia in sede internazionale (ISO) sia in sede nazionale (UNI):

Normativa Comunitaria

- NORMA INTERNAZIONALE ISO 2631/1 (edizione 1997) Stima dell'esposizione degli individui a vibrazioni globali del corpo - Parte 1: Specifiche generali
- NORMA INTERNAZIONALE ISO 2631/2 (edizione 2003) Stima dell'esposizione degli individui a vibrazioni globali del corpo - Parte 2: Vibrazioni continue ed impulsive negli edifici (da 1 a 80 Hz).
- NORMA INTERNAZIONALE ISO 4866 (edizione 1990) Vibrazioni meccaniche ed impulsi - Vibrazioni degli edifici - Guida per la misura delle vibrazioni e valutazione dei loro effetti sugli edifici.
- DIN 4150-3 1999 Le vibrazioni nelle costruzioni Parte 3: Effetti sui manufatti

Normativa Nazionale

- NORMA UNI 11048 (2003) Vibrazioni meccaniche ed urti metodo di misura delle vibrazioni negli edifici al fine della valutazione del disturbo
- NORMA UNI 9916 (1991) Criteri di misura e valutazione degli effetti delle vibrazioni sugli edifici.
- NORMA UNI 9670 (prima edizione 1990) Risposta degli individui alle vibrazioni -Apparecchiatura di misura.

Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 3 di 19

- NORMA UNI 9614 (1990) Misura delle vibrazioni negli edifici e criteri di valutazione del disturbo.
- NORMA UNI 9513 (1989) Vibrazioni e Urti. Vocabolario

Le norme UNI 9614, UNI 9916 e DIN 4150-3 risultano di particolare interesse per il presente lavoro in quanto, oltre ad indicare le grandezze monitorate, riportano i valori limite mediante i quali è stato possibile valutare i valori rilevati.

Con riferimento alle norme sopra riportate si riportano, per completezza, le principali nozioni che sono state impiegate nello studio della componente "Vibrazioni".

La norma **UNI 9614** definisce il metodo di misura delle vibrazioni immesse negli edifici ad opera di sorgenti esterne o interne agli edifici stessi. Inoltre, la norma prevede criteri di valutazione differenziati a seconda della tipologia della vibrazioni (di livello costante, di livello non costante e impulsive).

I locali o gli edifici in cui sono immesse le vibrazioni sono classificati a seconda della loro destinazione d'uso in: aree critiche, abitazioni, uffici, fabbriche.

La UNI 9614 indica come grandezza preferenziale per la misura delle vibrazioni ai ricettori il valore r.m.s. (root-mean-square) dell'accelerazione ponderata in frequenza definito come:

$$a_{w} = \sqrt{\frac{1}{T} \int_{0}^{T} a_{w}(t)^{2} dt}$$

dove $a_w(t)$ è il valore "istantaneo" dell'accelerazione subita dal un punto materiale (pesata in frequenza mediante i filtri di ponderazione) durante il moto vibratorio e T è il tempo di integrazione.

Il livello di accelerazione viene espresso in dB come:

$$Lw = 20 \times Log \frac{a_w}{a_0}$$

dove L_w è il livello espresso in dB, a_w è l'accelerazione espressa in m/s² e $a_0 = 10^{-6}$ m/s² è il valore dell'accelerazione di riferimento.

Le vibrazioni sono rilevate lungo i tre assi di propagazione. Tali assi sono riferiti alla persona del soggetto esposto: l'asse x passa per la schiena ed il petto, l'asse y per le due spalle, l'asse z per la testa e i piedi (per la testa e i glutei se il soggetto è seduto).

Come prescritto dalla norma UNI 9614 le accelerazioni da valutare sono quelle comprese nel range di frequenza tra 1 e 80 Hz e il dato da considerare è il valore quadratico medio delle accelerazioni presenti durante l'intervallo di tempo esaminato.

Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 4 di 19

Considerando, inoltre, che la percezione da parte dei soggetti esposti varia a seconda della frequenza e dell'asse di propagazione, i valori rilevati sono ponderati in frequenza al fine di attenuare le componenti esterne agli intervalli di sensibilità, ottenendo così il livello equivalente ponderato dell'accelerazione Lw,eq.

La norma individua una soglia di percezione delle vibrazioni (che varia a seconda della frequenza considerata e dell'asse di riferimento) ed una soglia di percezione cumulativa da confrontarsi con i valori di accelerazione ponderata in frequenza secondo opportuni filtri di pesatura.

Tale soglia, come dimostrano le tabelle che seguono, si pone a $5*10^{-3}$ m/s² (74 dB) per l'asse z e a $3.6*10^{-3}$ m/s² (71 dB) per gli assi x e y.

VALORI E LIVELLI LIMITE DELLE ACCELERAZIONI COMPLESSIVE PONDERATE IN FREQUENZA VALIDI PER L'ASSE Z					
Destinations during	Accelera	zione			
Destinazione d'uso	m/s²	dB			
Aree critiche	5,0 10 ⁻³	74			
Abitazioni notte	7,0 10 ⁻³	77			
Abitazioni giorno	10,0 10 ⁻³	80			
Uffici	20,0 10 ⁻³	86			
Fabbriche	40,0 10 ⁻³	92			

Tabella 1 - Valori limite delle accelerazioni complessive ponderate in frequenza per l'asse Z

VALORI E LIVELLI LIMITE DELLE ACCELERAZIONI COMPLESSIVE PONDERATE IN FREQUENZA VALIDI PER GLI ASSI x E y						
Destinazione d'uso	Accelerazione					
Destinazione d'uso	m/s²	dB				
Aree critiche	3,6 10 ⁻³	71				
Abitazioni notte	5,0 10 ⁻³	74				
Abitazioni giorno	7,0 10 ⁻³	77				
Uffici	14,4 10 ⁻³	83				
Fabbriche	28,8 10 ⁻³	89				

Tabella 2 - Valori limite delle accelerazioni complessive ponderate in frequenza per gli assi X e Y

Nel caso di vibrazioni di livello non costante il parametro da rilevare, in un intervallo di tempo rappresentativo, è l'accelerazione equivalente $a_{w,eq}$ o il livello equivalente dell'accelerazione L_w , eq così definiti:

Ī	Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Ī	Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 5 di 19

$$a_{w.eq} = \left[\left(\frac{1}{T} \right) \int_{0}^{T} \left[a_{w}(t) \right]^{2} dt \right]^{0.5}$$

$$L_{W.eq} = 10 \log \left[\left(\frac{1}{T} \right)_0^T \left[a_W(t) / a_o \right]^2 dt \right]$$

dove $a_w(t)$ è il valore "istantaneo" dell'accelerazione ponderata in frequenza, T è la durata del rilievo e a_0 è il valore dell'accelerazione di riferimento, pari a 10^{-6} m/s².

Per la valutazione del disturbo, i valori dell'accelerazione equivalente ponderata in frequenza o i corrispondenti livelli possono essere confrontati con i limiti riportati nelle due tabelle precedenti. Fenomeni vibratori caratterizzati dal superamento di predetti limiti, possono essere considerati oggettivamente disturbanti per l'individuo esposto.

La norma **UNI 9916** non fornisce limiti ben definiti ma fornisce una guida relativa ai metodi di misura, di trattamento dei dati, di valutazione dei fenomeni vibratori allo scopo di permettere la valutazione degli effetti delle vibrazioni sugli edifici, con riferimento alla loro risposta strutturale ed integrità architettonica.

La norma considera per semplicità gamme di frequenza variabili da 0.1 a 150 Hz. Tale intervallo interessa una grande casistica di edifici e di elementi strutturali di edifici sottoposti ad eccitazione naturale (vento, terremoti, ecc.) nonché ad eccitazioni causate dall'uomo (traffico, attività di costruzione, ecc.). In alcuni casi l'intervallo di frequenza delle vibrazioni può essere più ampio ma, tuttavia, le eccitazioni con contenuto in frequenza superiore a 150 Hz non sono tali da influenzare significativamente la risposta dell'edificio.

La norma UNI 9916 conduce alla classificazione delle strutture in 14 categorie. Le strutture comprese nella classificazione riguardano:

- tutti gli edifici residenziali e gli edifici utilizzati per le attività professionali (case, uffici, ospedali, case di cura, ecc.);
- gli edifici pubblici (municipi, chiese, ecc.);
- edifici vecchi ed antichi con un valore architettonico, archeologico e storico;
- le strutture industriali più leggere spesso concepite secondo le modalità costruttive in uso per gli edifici abitativi.

La classificazione degli edifici è basata sulla loro resistenza strutturale alle vibrazioni oltre che sulla tolleranza degli effetti vibratori sugli edifici in ragione del loro valore architettonico, archeologico e storico.

I fattori dai quali dipende la reazione di una struttura agli effetti delle vibrazioni sono:

Ī	Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
	Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 6 di 19

- la categoria della struttura;
- le fondazioni;
- la natura del terreno.

La categoria di struttura è classificata in una scala da 1 a 8 (a numero crescente di categoria corrisponde una minore resistenza alle vibrazioni) in base ad una ripartizione in due gruppi di edifici:

- GRUPPO 1: edifici vecchi e antichi o strutture costruite con criteri tradizionali;
- GRUPPO 2: edifici e strutture moderne.

L'associazione della categoria viene fatta risalire alle caratteristiche tipologiche e costruttive della costruzione e al numero di piani.

Le fondazioni sono classificate in tre classi.

- Classe A comprende fondazioni su pali legati in calcestruzzo armato e acciaio, platee rigide in calcestruzzo armato, pali di legno legati tra loro e muri di sostegno a gravita.
- Classe B comprende pali non legati in calcestruzzo armato, fondazioni continue, pali e platee in legno.
- Classe C infine comprende i muri di sostegno leggeri, le fondazioni massicce in pietra e la condizione di assenza di fondazioni, con muri appoggiati direttamente sul terreno.

Il terreno viene classificato in sei classi:

- Tipo a: rocce non fessurate o rocce molto solide, leggermente fessurate o sabbie cementate;
- Tipo b: terreni compattati a stratificazione orizzontale;
- Tipo c: terreni poco compattati a stratificazione orizzontale;
- Tipo d: piani inclinati, con superficie di scorrimento potenziale;
- Tipo e: terreni granulari, sabbie, ghiaie (senza coesione) e argille coesive sature;
- Tipo f: materiale di riporto.

L'Appendice D della UNI 9916 contiene i criteri di accettabilità dei livelli delle vibrazioni con riferimento alla DIN 4150.

La parte 3 della DIN 4150 indica i punti in cui eseguire i rilievi all'interno di una abitazione e indica le velocità massime ammissibili per vibrazioni transitorie e continue.

Per vibrazioni transitorie la DIN 4150 indica tre posizione in cui eseguire i rilievi:

• in corrispondenza delle fondazioni;

Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 7 di 19

- sul solaio più elevato in corrispondenza del muro perimetrale;
- al centro dei solai.

Nella tabella che segue applicabile per vibrazioni transitorie sono riportati, per diverse tipologie di costruzioni, i valori di riferimento per vi sulle fondazioni ed a livello del solaio superiore.

		Val	ori di riferimento	per velocità di oscill	azione in mm/s
Riga	Tipi di edificio		Fondazioni fred	Ultimo solaio, orizzontale	
		da 1 a 10 Hz	da 10 a 50 Hz	da 50 a 100 Hz *	Tutte le frequenze
1	Costruzioni per attività commerciale, costruzioni industriali e costruzioni con strutture similari	20	da 20 a 40	da 40 a 50	40
2	Edifici abitativi o edifici simili per costruzione o utilizzo	5	da 5 a 15	da 15 a 20	15
3	Edifici che per la loro particolare sensibilità alle vibrazioni non rientrano nelle precedenti classificazioni e che sono da tutelare in modo particolare (monumenti sotto la protezione delle belle arti	3	da 3 a 8	Da 8 a 10	8

Tabella 3 - Valori di riferimento per velocità di oscillazione in relazione al tipo di edificio

La figura riportata nella pagina che segue riassume quanto esposto per le vibrazioni transitorie. Nella lettura di tale figura si deve rammentare che:

- Nel caso di misure in staz. 1 (fondazione) si prende a riferimento il valore maggiore delle tre componenti;
- Nel caso di misure in staz. 2 (ultimo solaio orizzontale del fabbricato) si prende in considerazione il valore maggiore tra le due componenti orizzontali;

Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 8 di 19

• Nel caso di misure in staz. 3 (mezzeria solaio) si prende in considerazione la vibrazione in direzione verticale.

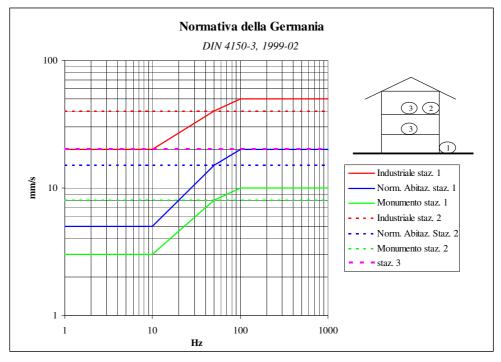


Figura 1 - Schema di misura secondo la normative DIN 4150-3

Nel caso di vibrazioni prolungate la norma DIN 4150 richiede l'esecuzione di misure all'ultimo solaio dell'edificio e in mezzeria dei solai. Nella tabella che segue sono riportati i valori di riferimento per ciascuna componente orizzontale misurate all'ultimo solaio dell'edificio

Riga	Tipo di edificio	Valori di riferimento per velocità di oscillazione in mm/s Ultimo solaio, orizzontale, tutte le frequenze
	Costruzioni per attività commerciale,	•
1	costruzioni industriali e costruzioni con	10
	strutture similari	
2	Edifici abitativi o edifici simili per costruzione o	5
_	utilizzo	<u> </u>
	Edifici che per la loro particolare sensibilità alle	
	vibrazioni non rientrano nelle precedenti	
3	classificazioni e che sono da tutelare in modo	2,5
	particolare (monumenti sotto la protezione	
	delle belle arti	

Tabella 4 - Valori di riferimento per velocità di oscillazione in relazione al tipo di edificio secondo la DIN 4150-3

Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 9 di 19

Per velocità massima è da intendersi la velocità massima di picco. Essa è ricavabile dalla velocità massima r.m.s. attraverso la moltiplicazione di quest'ultima con il fattore di cresta F. Tale parametro esprime il rapporto tra il valore di picco e il valore efficace. Per onde sinusoidali si assume F = 1.41; in altri casi si possono assumere valori maggiori. Nei casi più critici (ed es. esplosioni di mina) F può raggiungere il valore 6.

Infine la ISO 4866 fornisce una classificazione degli effetti di danno a carico delle strutture secondo tre livelli:

- Danno di soglia: formazione di fessure filiformi sulle superfici dei muri a secco o accrescimento di fessure già esistenti sulle superfici in gesso o sulle superfici di muri a secco; inoltre formazioni di fessure filiformi nei giunti di malta delle costruzioni in muratura di mattoni.
- Danno minore: formazione di fessure più aperte, distacco e caduta di gesso o di pezzi di intonaco dai muri; formazione di fessure in murature di mattoni.
- Danno maggiore: danneggiamento di elementi strutturali; fessure nei pilastri; aperture di giunti; serie di fessure nei blocchi di muratura.

1.3 Strumentazione

I rilievi sono stati eseguiti per mezzo di un analizzatore di frequenza in tempo reale Soundbook, capace di acquisire contemporaneamente il segnale da 4 canali.

A tale analizzatore sono stati collegati 3 accelerometri sismici a tecnologia piezoelettrica PCB 393A03 s.n. 4112, 4111, 4110 e 4108. Tali accelerometri utilizzano la tecnologia ICP ed hanno le seguenti caratteristiche.

In aggiunta ai suddetti accelerometri è stato utilizzato anche un velocimetro triassiale marca Sinus mod. 902219.7.

PERFORMANCE	VALORE
Sensitivity(± 5 %)	1000 mV/g
Measurement Range	± 5 g pk
Frequency Range(± 5 %)	0.5 to 2000 Hz
Frequency Range(± 10 %)	0.3 to 4000 Hz
Frequency Range(± 3 dB)	0.2 to 6000 Hz
Resonant Frequency	≥ 10 kHz
Broadband Resolution(1 to 10,000 Hz)	0.00001 g rms
Non-Linearity	≤1%
Transverse Sensitivity	≤ 7 %
Excitation Voltage	18 to 30 VDC
Constant Current Excitation	2 to 20 mA

Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 10 di 19

PERFORMANCE	VALORE
Output Impedance	<250 ohm
Output Bias Voltage	8 to 12 VDC
Discharge Time Constant	1 to 3 sec
Settling Time	<15 sec
Spectral Noise(1 Hz)	2 μg/√Hz
Spectral Noise(10 Hz)	0.5 μg/VHz
Spectral Noise(100 Hz)	0.2 μg/VHz
Spectral Noise(1 kHz)	0.1 μg/VHz
Electrical Isolation(Case)	≥ 108 ohm

Tabella 5 – Caratteristiche tecniche della strumentazione utilizzata

Grazie alla tecnologia ICP, gli accelerometri contengono un circuito integrato di condizionamento del segnale: l'elettronica converte l'alta impedenza di carica generata dal sensore in una bassa impedenza prontamente trasmissibile su un cavo coassiale verso lo strumento di analisi del segnale. La bassa impedenza si può trasmettere anche su cavi molto lunghi o in ambienti difficili con poca degradazione del segnale.

I 3 accelerometri sono stati collegati all'analizzatore mediante cavi BNC e poi avvitati rigidamente ad una massa cubica in acciaio del peso di 10 kg, posizionato sul pavimento per mezzo di tre piedini gommati che ne assicurano l'aderenza e la messa in bolla, in modo da rappresentare la terna di riferimento spaziale X, Y, Z.

1.4 Valutazione del disturbo

Per la valutazione del disturbo associato alle vibrazioni di livello costante, i valori delle accelerazioni complessive ponderate in frequenza o i corrispondenti valori riscontrati sui tre assi, sono stati confrontati con i limiti della UNI 9614 di seguito riportati, distinti in funzione della destinazione d'uso dell'edificio ove sono state rilevate.

	a (mm/s²)	L (dB)
Aree critiche	5,0 10 ⁻⁶	74
Abitazioni (notte)	7,0 10 ⁻⁶	77
Abitazioni (giorno)	10,0 10 ⁻⁶	80
Uffici	20,0 10 ⁻⁶	86
Fabbriche	40,0 10 ⁻⁶	92

Tabella 6 – Valori e livelli limite delle accelerazioni complessive ponderate in frequenza validi per l'asse Z

Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 11 di 19

	a (mm/s²)	L (dB)
Aree critiche	3,6 10 ⁻⁶	71
Abitazioni (notte)	5,0 10 ⁻⁶	74
Abitazioni (giorno)	7,2 10 ⁻⁶	77
Uffici	14,4 10 ⁻⁶	83
Fabbriche	28,8 10 ⁻⁶	89

Tabella 7 – Valori e livelli limite delle accelerazioni complessive ponderate in frequenza validi per gli assi X e Y

1.5 Modalità di monitoraggio e parametri rilevati

Il monitoraggio ambientale della componente Vibrazioni è consistita in una campagna di misure atta a rilevare la presenza di moti vibratori all'interno di edifici e a verificarne gli effetti sulla popolazione e sugli edifici stessi, in assenza di disturbi provenienti dalle lavorazioni.

In particolare, per quanto concerne gli effetti sulla popolazione, le verifiche hanno riguardato esclusivamente gli effetti di "annoyance", ovvero gli effetti di fastidio indotti dalle vibrazioni percettibili dagli esseri umani. Le norme di riferimento per questo tipo di disturbo sono la ISO 2631 e la UNI 9614 che indicano nell'accelerazione del moto vibratorio, il parametro fisico che può caratterizzare le vibrazioni ai fini della valutazione del disturbo indotto sulle persone.

Il monitoraggio in ante operam è stato effettuato in corrispondenza dei ricettori nei giorni feriali con due misure da 30 minuti effettuate una nel periodo diurno (07.00 – 22.00) e una nel periodo notturno (22.00 – 07.00), come prescritto dal Piano di Monitoraggio Ambientale.

Per quanto riguarda i descrittori vibrazionali, la grandezza primaria oggetto dei rilevamenti è il valore r.m.s. dell'accelerazione, misurato ad ogni istante t₀ come

$$a_{t_0} = \left[\frac{1}{T} \int_{t_0}^{t_0+T} a_t^2(t) dt\right]^{0.5},$$

per ogni banda di frequenza su intervalli di integrazione T=1 secondo.

I rilievi sono stati eseguiti contemporaneamente su 3 assi ortogonali X, Y, Z, dove l'asse Z è sempre rivolto verso l'alto mentre gli assi X e Y sono generalmente orientati come le strutture dell'edificio in cui si esegue la misura: ponendo quindi i sensori al centro di una

Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 12 di 19

stanza rettangolare, gli assi X e Y sono allineati in direzione ortogonale alle pareti, mentre l'asse Z è allineato in direzione perpendicolare al pavimento.

A partire dai valori di accelerazione in frequenza, sono stati riportati, nelle schede di misura:

- la time history delle accelerazioni, senza coefficienti di pesatura, in modo da confrontare i diversi andamenti del fenomeno vibrazionale sui 3 assi X,Y,Z
- la time history dell'accelerazione sull'asse Z (basamento e ultimo piano) ponderata in frequenza con il coefficiente di pesatura previsto dalla norma UNI 9614 (che recepisce i valori Wm della ISO 2631-2), sia nel periodo di riferimento diurno, che nel periodo di riferimento notturno.

1.6 Punti di monitoraggio

I punti si monitoraggio sono stati scelti adoperando il censimento adottato per lo studio della componente rumore, in quanto in esso sono inclusi ricettori entro una fascia di 250 metri per lato a partire dal bordo strada.

Considerando le tipologie di progetto, il posizionamento e la tipologia dei cantieri, la litologia presente e, soprattutto, la tipologia dei ricettori, sono state individuate tre situazioni di potenziale criticità nella fase ante operam dello studio di impatto ambientale.

La prima situazione interessa l'intorno dello svincolo di Caltanissetta sud, nella contrada Cialagra (km 12+600 circa). In quest'area sono presenti numerosi ricettori residenziali; la formazione geologica presente è costituita da sabbie e sabbie argillose da considerarsi terreni prevalentemente incoerenti ed eventualmente suscettibili di costipazione per vibrazione.

Il secondo caso è costituito dalla realizzazione della galleria S.Elia prevista sotto il centro abitato di Caltanissetta. La galleria sarà scavata quasi interamente all'interno della Formazione dei Trubi, costituita da calcari marnosi e marne calcaree. Al di sopra poggia la Formazione Marnoso-Arenacea costituita da calcareniti, sabbie, sabbie argillose, argille ed argille marnose. Con i litotipi presenti si può ipotizzare un'attenuazione delle vibrazioni indotte dallo scavo della galleria al piano campagna. Risulta anche influente, ad attenuare le vibrazioni, la profondità dello scavo stesso che si aggira intorno ai 120m circa.

L'ultima situazione potenzialmente critica, è rappresentata dalla realizzazione della galleria naturale in corrispondenza della chilometrica km 17+500 circa. Tale galleria attraversa una cresta argillosa costituita da argille grigio-azzurro tortoniane e marne argillose con cristalli

Cod. elab.: 000GE220PM06PRI	H027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH0	27 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 13 di 19

di gesso e livelli conglomeratici. La presenza di ricettori a destinazione residenziale sulla cresta e l'esigua profondità dello scavo, circa 20 m, fanno presupporre la possibilità di innesco di vibrazioni.

Fra tutti i ricettori che rientrano nelle situazioni sopra riportate sono stati scelti quelli più rappresentativi. Queste postazioni saranno poi oggetto di misure anche nelle fasi successive di corso d'opera e post operam, in modo tale da poter monitorare le eventuali alterazioni indotte dalla cantierizzazione e dal successivo esercizio dell'infrastruttura.

Si riporta di seguito l'identificazione dei punti di misura, con l'indicazione delle coordinate e la progressiva di riferimento rispetto al tracciato di progetto.

Codice punto	Coordinate (X;Y)	Prog.
VIB_001	2423481; 4142001	1+300
VIB_002	2423786; 4142490	1+700
VIB_003	2424869; 4142713	2+850
VIB_004	2428639; 4145327	7+500
VIB_005	2428867; 4145488	7+800
VIB_006	2430906; 4145992	9+850
VIB_007	2431320; 4146648	10+600
VIB_008	2432188; 4147221	11+650
VIB_009	2432543; 4147882	12+350
VIB_010	2432776; 4147793	12+450
VIB_011	2432698; 4148027	12+600
VIB_012	2433009; 4148516	13+200
VIB_013	2435775; 4151759	17+500
VIB_014	2436169; 4152708	18+500
VIB_015	2436607; 4153525	19+400
VIB_016	2436991; 4153559	19+700
VIB_017	2442510; 4154610	25+800
VIB_018	2443101; 4155129	26+500
VIB_019	2443547; 4155062	26+850
VIB_020	2427298; 4143948	4+800
VIB_021	2433412;4149251;	5+200
VIB_022	2435322;4151068	8+700

Tabella 8 – Identificazione dei punti di misura

1.7 Sintesi delle attività di monitoraggio Ante Operam

La misura di monitoraggio AO prevista nel piano di monitoraggio ambientale è stata eseguita per i primi 5 punti dal 9 febbraio al 2 marzo 2011 e per gli altri 17 recettori dal 12 al 13 aprile 2012.

Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 14 di 19

Si precisa che in alcune stazioni di misura non è stato possibile accedere all'interno del recettore a causa dell'assenza del proprietario. In questo caso si è proceduto all'effettuazione della misura all'esterno dell'abitazione in corrispondenza del cancello o del pianerottolo di ingresso.

Anche per le ore notturne non è stato possibile accedere alle abitazioni a causa del diniego da parte dei proprietari, a tal riguardo si è proceduto a determinare la misura per via analitica, mediante un opportuno algoritmo di calcolo, di seguito riportato:

- Misura in notturno solo al basamento esterno;
- Calcolo della amplificazione fra basamento e primo piano di quel specifico edificio, a partire dalla misura nel periodo diurno;
- Creazione della ponderazione "amplificazione+Wm";
- Calcolo dei valori al primo piano come somma tra l'accelerazione ponderata Wm al basamento e il valore di "amplificazione".

1.8 Risultati delle misurazioni

In allegato alla presente relazione sono riportate le schede dei risultati delle misure della componente vibrazione, effettuate nei punti di monitoraggio individuati nel PMA.

Per ogni misura delle vibrazioni effettuata è stata compilata la relativa "scheda di monitoraggio", con l'indicazione di:

- toponimo;
- coordinate di riferimento;
- stralcio planimetrico in scala 1:5000 del territorio.

allo scopo di consentire il riconoscimento ed il riallestimento dei punti di misura nelle diverse fasi temporali in cui si articola il programma di monitoraggio.

Ogni scheda di misura riporta inoltre alcune fotografie per testimoniare l'ubicazione della strumentazione in fase di registrazione del segnale e le relative time history riferite alle misurazioni effettuate. Le sorgenti indicate nelle schede sono quelle attualmente esistenti.

Si riportano di seguito le misurazioni effettuate relativamente alle accelerazioni registrate lungo l'asse principale Z, espresse in mm/s^{-2} , per i periodi di osservazione diurno e notturno. Sono indicati, inoltre, i limiti stabiliti dalla Norma UNI 9614 per il rilievo del disturbo sulla popolazione, al fine di correlare i risultati con la normativa tecnica adottata sul territorio nazionale.

Recettore	N° di piani del recettore	Punto di misura	Valore di accelerazione lungo l'asse Z <i>Periodo diurno</i> [mm·s ⁻²]				
	Limiti	normativi stabiliti ai sensi della Norma UNI 9614	7,0 10 ⁻⁶				
VIB 01	1	basamento	1.59 10 ⁻⁶				
VIB 02	1	basamento	1.34 10 ⁻⁶				
VIB 03	1	basamento	1.40 10 ⁻⁶				
VIB 04	1	basamento	1.47 10 ⁻⁶				
VIB 05	1	basamento	1.53 10 ⁻⁶				
VIB 06	1	basamento	$0.0031\ 10^{-6}$				
VIB 07	1	basamento	$0.0004\ 10^{-6}$				
VIB 08	1	basamento	0.0005 10 ⁻⁶				
VIB 09	2	basamento					
VID US	2	primo piano	0.0008 10 ⁻⁶				
VIB 10	1	basamento	$0.0015\ 10^{-6}$				
VIB 11	1	basamento	$0.0008\ 10^{-6}$				
VIB 12	2	0.0016 10 ⁻⁶					
VID 12	2	primo piano	$0.0029\ 10^{-6}$				
VIB 13	1	basamento	0.0005 10 ⁻⁶				
VIB 14	1	basamento	0.0005 10 ⁻⁶				
VIB 15	2	basamento	0.0004 10 ⁻⁶				
VID 13	2	primo piano	0.0008 10 ⁻⁶				
VIB 16	2	basamento	0.0008 10 ⁻⁶				
AID 10	2	primo piano	0.0051 10 ⁻⁶				
VIB 17	1	basamento	0.0005 10 ⁻⁶				
VIB 18	2	basamento	0.0004 10 ⁻⁶				
AID TO	2	primo piano	$0.0011\ 10^{-6}$				
VIB 19	1	basamento	0.0010 10 ⁻⁶				
VIB 20	1	basamento	0.0002 10 ⁻⁶				
VIB 21	2	basamento	0.0015 10 ⁻⁶				
VID 21	2	secondo piano	0.0036 10 ⁻⁶				
VIB 22	1	basamento	0.0005 10 ⁻⁶				

Tabella 9 – Valore di accelerazione lungo l'asse Z misurato nel periodo diurno espresso in mm·s²²

Cod. elab.: 000GE220PM06PRF	027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH02	27 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 16 di 19

Recettore	N° di piani del recettore	Punto di misura	Valore di accelerazione lungo l'asse Z Periodo notturno [mm·s ⁻²]		
	Limiti	normativi stabiliti ai sensi della Norma UNI 9614	10,0 10 ⁻⁶		
VIB 01	1	basamento	1.28 10 ⁻⁶		
VIB 02	1	basamento	1.30 10 ⁻⁶		
VIB 03	1	basamento	1.24 10 ⁻⁶		
VIB 04	1	basamento	1.28 10 ⁻⁶		
VIB 05	1	basamento	1.26 10 ⁻⁶		
VIB 06	1	basamento	0.0004 10 ⁻⁶		
VIB 07	1	basamento	0.0004 10 ⁻⁶		
VIB 08	1	basamento	0.0003 10 ⁻⁶		
VIB 09	2	basamento	0.0003 10 ⁻⁶		
VID U9	2	primo piano	0.0004 10 ⁻⁶		
VIB 10	1	basamento	$0.0003\ 10^{-6}$		
VIB 11	1	basamento	0.0002 10 ⁻⁶		
VIB 12	2	basamento	$0.0003\ 10^{-6}$		
VID 12	2	primo piano	$0.0010\ 10^{-6}$		
VIB 13	1	basamento	$0.0003\ 10^{-6}$		
VIB 14	1	basamento	0.0003 10 ⁻⁶		
VIB 15	2	basamento	0.0003 10 ⁻⁶		
VID 15	2	primo piano	0.0006 10 ⁻⁶		
VIB 16	2	basamento	0.0003 10 ⁻⁶		
VID 10	2	primo piano	0.0032 10 ⁻⁶		
VIB 17	1	basamento	0.0003 10 ⁻⁶		
VIB 18	2	basamento	0.0003 10 ⁻⁶		
A1D 10	۷	primo piano	0.0012 10 ⁻⁶		
VIB 19	1	basamento	0.0003 10 ⁻⁶		
VIB 20	1	basamento	0.0003 10 ⁻⁶		
VIB 21	2	basamento	0.0004 10 ⁻⁶		
AID 51	۷	secondo piano	0.0015 10 ⁻⁶		
VIB 22	1	basamento	0.0003 10 ⁻⁶		

Tabella 10 – Valore di accelerazione lungo l'asse Z misurato nel periodo notturno espresso in mm·s⁻²

Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 17 di 19

1.9 Conclusioni

Il presente documento riferisce dell'attività di monitoraggio ambientale svolta in fase Ante Operam sui lavori di Ammodernamento e adeguamento alla Cat. B del D.M. 5.11.2001 dal km 44+000 allo svincolo con l'A19 della S.S. n° 640 "di Porto Empedocle".

Il monitoraggio AO prevista nel piano di monitoraggio ambientale è stato eseguito per i primi 5 punti (da VIB_01 a VIB_05) dal 9 febbraio al 2 marzo 2011 e per gli altri 17 recettori (da VIB_06 a VIB_22) dal 12 al 13 aprile 2012.

Le misure eseguite, mirate all'acquisizione dei livelli vibratori attuali, hanno fornito risultati espressi sotto forma di grafici (che si allegano alla presente) relativi ai confronti tra i valori di accelerazione misurati ed i limiti imposti dalle norme, in particolare alla UNI 9614 relativa al disturbo vibrazionale arrecato alla popolazione.

Dai risultati delle misure si evince che le tutte le registrazioni rilevate in fase ante operam nei punti prestabiliti nel PMA risultano essere al di sotto dei limiti vigenti.

Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 18 di 19

Corridoio Plurimodale Tirrenico - Nord Europa / Itinerario Agrigento – Caltanissetta - A19 / S.S. n° 640 "di Porto Empedocle	?"
Ammodernamento e adequamento alla Cat. B del D.M. 5.11.2001 dal km 44+000 allo svincolo con l'A19	

Allegato

Scheda di campo e misura strumentale

Ī	Cod. elab.: 000GE220PM06PRH027 A	Titolo: RELAZIONE CONCLUSIVA MONITORAGGIO	Data: 04/12
	Nome file: 000GE220PM06PRH027 A.pdf	AMBIENTALE ANTE OPERAM Vibrazioni	Pagina 19 di 19

Direzione Generale

Corridoio Plurimodale Tirrenico – Nord Europa / Itinerario Agrigento – Caltanissetta – A19 S.S. n°640 di "Porto Empedocle"

Ammodernamento e adeguamento alla Cat. B del D.M. 5.11.2001 dal km 44+00 allo svincolo con l'A19

MONITORAGGIO AMBIENTALE ANTE OPERAM

VIBRAZIONI

MONOGRAFIE SCHEDE DI MISURA

VIBRAZIONI

Scheda di rilevazione

Strumentazione impiegata:

Data e ora inizio rilevazione:

QUEST VI 4000 - Ser. N°12438

Accelerometro

DYTRAN Model 3233A

Fenomeno vibratorio osservato:

Attività antropica - Fase ante operam

16 Febbraio 2011 ore 11.25

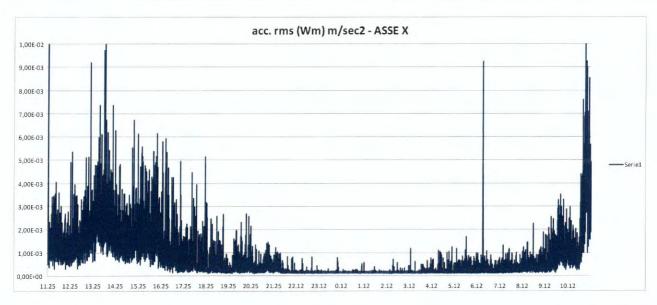
RILIEVO PLANIMETRICO

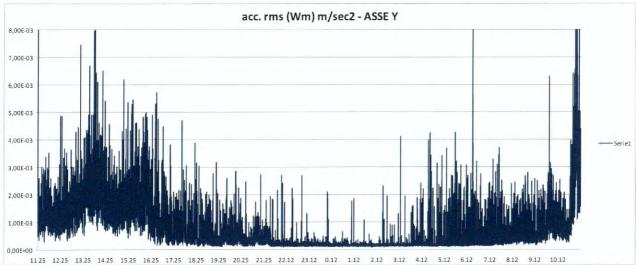
AMBIENTE INTERNO

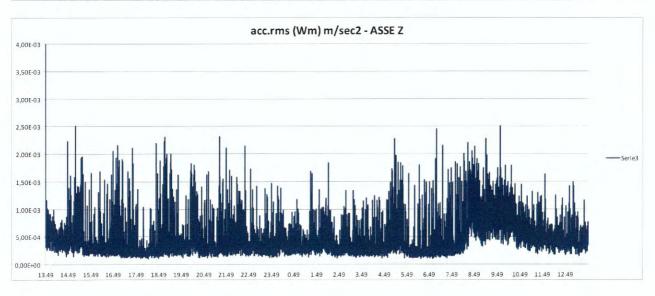
Misura VIB 001 Sede Caltar

Sede Caltanissetta – Ingresso abitazione su SS640

Durata rilievi (min.):


24 h


RIEPILOGO RISULTATI


	ASSE X				ASSE Y				ASSE Z			
	limite		weighted	Wm	limite	limite weighted Wm			limite		weighted	Wm
	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB
11.25.52	7,2	77	1,56E-06	93.2	7,2	77	1,58E-06	95.5	10	80	1,59E-06	97.3
12.25.52	7,2	77	1,37E-06	65.3	7,2	77	1,36E-06	64.7	10	80	1,33E-06	59.1
13.25.52	7,2	77	1,39E-06	68.3	7,2	77	1,38E-06	67.7	10	80	1,34E-06	61.4
14.25.52	7,2	77	1,37E-06	65.2	7,2	77	1,37E-06	65.0	10	80	1,31E-06	57.1
15.25.52	7,2	77	1,37E-06	66.3	7,2	77	1,37E-06	66.2	10	80	1,32E-06	58.1
16.25.52	7,2	77	1,35E-06	62.6	7,2	77	1,35E-06	62.4	10	80	1,30E-06	54.0
17.25.52	7,2	77	1,33E-06	59.3	7,2	77	1,33E-06	59.3	10	80	1,27E-06	50.4
18.25.52	7,2	77	1,31E-06	56.0	7,2	77	1,31E-06	56.8	10	80	1,25E-06	47.6
19.25.52	7,2	77	1,30E-06	55.3	7,2	77	1,30E-06	55.7	10	80	1,25E-06	47.1
20.25.52	7,2	77	1,28E-06	52.0	7,2	77	1,28E-06	52.9	10	80	1,24E-06	45.4
21.25.52	7,2	77	1,27E-06	49.2	7,2	77	1,28E-06	51.5	10	80	1,25E-06	46.1
22.25.52	7,2	77	1,23E-06	43.7	7,2	77	1,25E-06	47.8	10	80	1,25E-06	47.1
23.25.52	7,2	77	1,23E-06	43.3	7,2	77	1,25E-06	46.3	10	80	1,25E-06	46.7
0.25.52	7,2	77	1,23E-06	43.4	7,2	77	1,25E-06	46.0	10	80	1,26E-06	48.7
1.25.52	7,2	77	1,23E-06	43.0	7,2	77	1,24E-06	44.6	10	80	1,25E-06	46.5
2.25.52	7,2	77	1,23E-06	43.4	7,2	77	1,25E-06	47.4	10	80	1,25E-06	46.9
3.25.52	7,2	77	1,24E-06	44.3	7,2	77	1,27E-06	49.9	10	80	1,25E-06	47.6
4.25.52	7,2	77	1,25E-06	46.0	7,2	77	1,29E-06	53.4	10	80	1,25E-06	47.6
5.25.52	7,2	77	1,26E-06	48.0	7,2	77	1,31E-06	56.1	10	80	1,26E-06	48.2
6.25.52	7,2	77	1,28E-06	52.8	7,2	77	1,31E-06	56.8	10	80	1,28E-06	52.4
7.25.52	7,2	77	1,27E-06	49.7	7,2	77	1,31E-06	56.1	10	80	1,26E-06	48.5
8.25.52	7,2	77	1,29E-06	53.4	7,2	77	1,31E-06	57.1	10	80	1,27E-06	50.9
9.25.52	7,2	77	1,33E-06	60.7	7,2	77	1,33E-06	60.5	10	80	1,28E-06	52.2
10.25.52	7,2	77	1,39E-06	68.0	7,2	77	1,37E-06	66.9	10	80	1,32E-06	58.4

Scheda di rilevazione

Scheda di rilevazione

Strumentazione impiegata:

QUEST VI 4000 - Ser. N° 12438

Accelerometro

DYTRAN Model 3233A

Fenomeno vibratorio osservato: Attività antropica – Fase ante operam Data e ora inizio rilevazione:

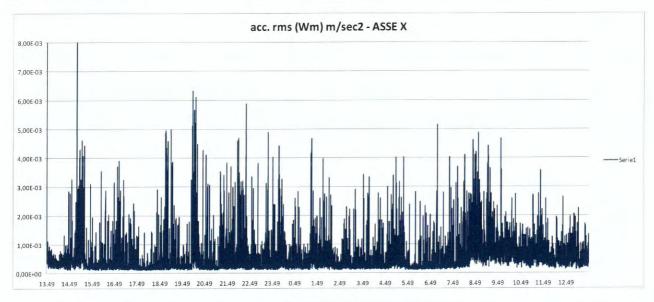
09 Febbraio 2011 ore 13.49

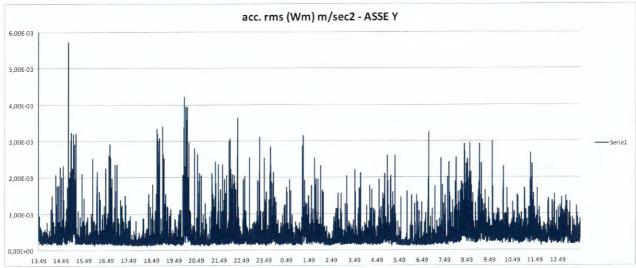
RILIEVO PLANIMETRICO

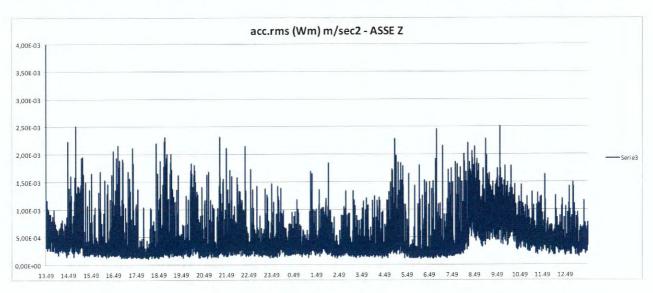
AMBIENTE INTERNO

VIB CAN 002 Misura Sede Caltanissetta - Abitazione lato svincolo Serra di Falco

Durata rilievi (min.):


24 h


RIEPILOGO RISULTATI


	ASSE X				ASSE Y				ASSE Z			
	limite		weighted	Wm	limite		weighted	Wm	limite		weighted Wm	
	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB
13.49.52	7,2	77	1,45E-06	77.0	7,2	77	1,45E-06	77.2	10	80	1,34E-06	61.8
14.49.52	7,2	77	1,33E-06	60.4	7,2	77	1,32E-06	58.1	10	80	1,31E-06	56.0
15.49.52	7,2	77	1,29E-06	53.6	7,2	77	1,28E-06	52.6	10	80	1,28E-06	52.0
16.49.52	7,2	77	1,31E-06	56.0	7,2	77	1,29E-06	53.6	10	80	1,29E-06	53.5
17.49.52	7,2	77	1,27E-06	50.8	7,2	77	1,26E-06	48.9	10	80	1,27E-06	49.8
18.49.52	7,2	77	1,33E-06	59.4	7,2	77	1,31E-06	56.2	10	80	1,30E-06	55.6
19.49.52	7,2	77	1,33E-06	60.4	7,2	77	1,31E-06	57.4	10	80	1,30E-06	55.0
20.49.52	7,2	77	1,30E-06	55.9	7,2	77	1,29E-06	53.4	10	80	1,28E-06	52.9
21.49.52	7,2	77	1,32E-06	58.1	7,2	77	1,30E-06	55.1	10	80	1,29E-06	53.8
22.49.52	7,2	77	1,30E-06	55.6	7,2	77	1,29E-06	53.3	10	80	1,28E-06	51.9
23.49.52	7,2	77	1,31E-06	56.6	7,2	77	1,30E-06	54.3	10	80	1,28E-06	52.2
0.49.52	7,2	77	1,31E-06	56.4	7,2	77	1,30E-06	54.5	10	80	1,28E-06	52.5
1.49.52	7,2	77	1,30E-06	55.6	7,2	77	1,29E-06	53.6	10	80	1,28E-06	52.7
2.49.52	7,2	77	1,29E-06	53.5	7,2	77	1,28E-06	51.9	10	80	1,28E-06	51.6
3.49.52	7,2	77	1,30E-06	54.1	7,2	77	1,28E-06	52.2	10	80	1,28E-06	51.1
4.49.52	7,2	77	1,32E-06	57.8	7,2	77	1,30E-06	54.6	10	80	1,30E-06	55.8
5.49.52	7,2	77	1,28E-06	52.1	7,2	77	1,27E-06	49.5	10	80	1,27E-06	50.6
6.49.52	7,2	77	1,30E-06	54.8	7,2	77	1,28E-06	52.0	10	80	1,28E-06	52.1
7.49.52	7,2	77	1,33E-06	59.7	7,2	77	1,31E-06	56.0	10	80	1,32E-06	57.7
8.49.52	7,2	77	1,34E-06	61.1	7,2	77	1,31E-06	56.5	10	80	1,33E-06	59.5
9.49.52	7,2	77	1,32E-06	58.5	7,2	77	1,30E-06	54.7	10	80	1,33E-06	59.0
10.49.52	7,2	77	1,31E-06	57.4	7,2	77	1,30E-06	55.2	10	80	1,30E-06	55.5
11.49.52	7,2	77	1,30E-06	55.8	7,2	77	1,29E-06	53.7	10	80	1,30E-06	54.0
12.49.52	7,2	77	1,31E-06	56.2	7,2	77	1,30E-06	54.0	10	80	1,29E-06	53.5

Scheda di rilevazione

Scheda di rilevazione

Strumentazione impiegata:

QUEST VI 4000 - Ser. N°12438

Accelerometro

DYTRAN Model 3233A

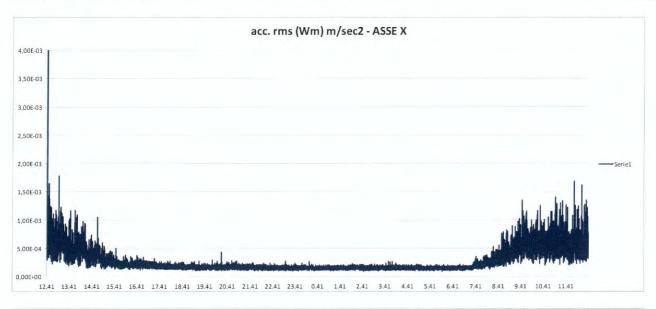
Fenomeno vibratorio osservato: Data e ora inizio rilevazione:

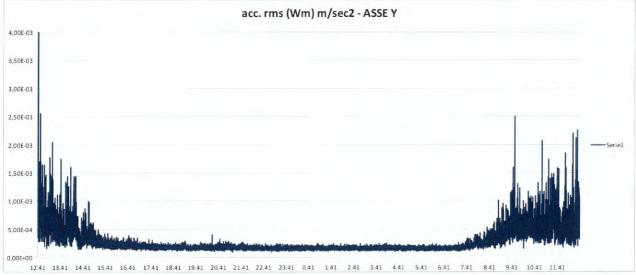
Attività antropica – Fase ante operam

14 Febbraio 2011 ore 12.41

RILIEVO PLANIMETRICO

AMBIENTE INTERNO


Misura VIB GAL 003 Sede Caltanissetta – Ingresso abitazione Durata rilievi (min.): 24 h


RIEPILOGO RISULTATI

		AS	SE X			A	SSE Y			A	SSE Z	
	limite		weighted	Wm	limite		weighted	Wm	limite		weighted	Wm
	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB
12.41.42	7,2	77	1,41E-06	71.4	7,2	77	1,41E-06	71.6	10	80	1,40E-06	70.1
13.41.42	7,2	77	1,29E-06	53.4	7,2	77	1,30E-06	54.5	10	80	1,33E-06	59.4
14.41.42	7,2	77	1,27E-06	50.2	7,2	77	1,27E-06	50.5	10	80	1,30E-06	54.8
15.41.42	7,2	77	1,25E-06	46.4	7,2	77	1,25E-06	46.7	10	80	1,27E-06	50.4
16.41.42	7,2	77	1,24E-06	45.4	7,2	77	1,24E-06	45.7	10	80	1,25E-06	47.9
17.41.42	7,2	77	1,24E-06	44.3	7,2	77	1,24E-06	44.7	10	80	1,25E-06	46.5
18.41.42	7,2	77	1,23E-06	43.9	7,2	77	1,24E-06	44.5	10	80	1,25E-06	47.3
19.41.42	7,2	77	1,23E-06	43.7	7,2	77	1,24E-06	44.4	10	80	1,25E-06	46.4
20.41.42	7,2	77	1,23E-06	43.9	7,2	77	1,24E-06	44.8	10	80	1,26E-06	48.0
21.41.42	7,2	77	1,23E-06	43.4	7,2	77	1,24E-06	44.2	10	80	1,25E-06	46.4
22.41.42	7,2	77	1,23E-06	43.1	7,2	77	1,23E-06	43.8	10	80	1,24E-06	44.6
23.41.42	7,2	77	1,23E-06	43.0	7,2	77	1,23E-06	43.8	10	80	1,24E-06	44.5
0.41.42	7,2	77	1,22E-06	42.9	7,2	77	1,23E-06	43.7	10	80	1,24E-06	44.1
1.41.42	7,2	77	1,23E-06	43.2	7,2	77	1,23E-06	43.8	10	80	1,24E-06	44.6
2.41.42	7,2	77	1,23E-06	43.0	7,2	77	1,23E-06	43.7	10	80	1,24E-06	45.2
3.41.42	7,2	77	1,23E-06	43.0	7,2	77	1,23E-06	43.9	10	80	1,24E-06	45.3
4.41.42	7,2	77	1,22E-06	42.7	7,2	77	1,23E-06	43.7	10	80	1,24E-06	45.1
5.41.42	7,2	77	1,22E-06	42.6	7,2	77	1,23E-06	43.6	10	80	1,23E-06	43.7
6.41.42	7,2	77	1,23E-06	43.2	7,2	77	1,24E-06	44.2	10	80	1,24E-06	45.5
7.41.42	7,2	77	1,25E-06	47.4	7,2	77	1,25E-06	47.8	10	80	1,29E-06	53.4
8.41.42	7,2	77	1,29E-06	53.1	7,2	77	1,28E-06	52.7	10	80	1,33E-06	59.5
9.41.42	7,2	77	1,30E-06	55.4	7,2	77	1,30E-06	55.3	10	80	1,33E-06	60.6
10.41.42	7,2	77	1,30E-06	55.6	7,2	77	1,31E-06	56.4	10	80	1,35E-06	62.2
11.41.42	7,2	77	1,30E-06	55.4	7,2	77	1,31E-06	56.1	10	80	1,35E-06	62.8

Scheda di rilevazione

Scheda di rilevazione

Strumentazione impiegata:

QUEST VI 4000 - Ser. N°12438

Accelerometro

DYTRAN Model 3233A

Fenomeno vibratorio osservato:

Data e ora inizio rilevazione:

Attività antropica – Fase ante operam

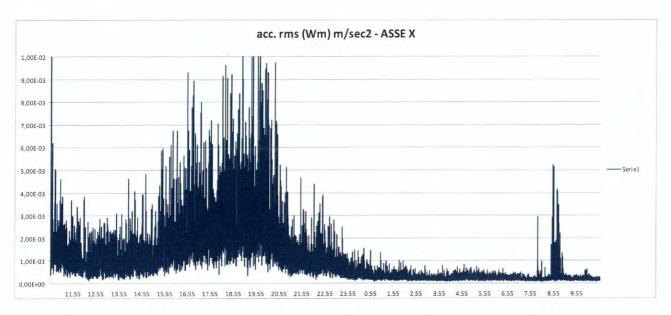
01 Marzo 2011 ore 10:56

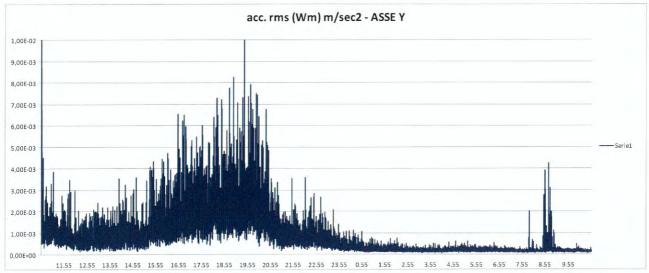
RILIEVO PLANIMETRICO

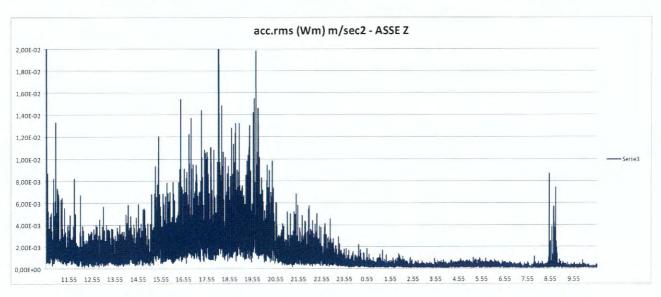
AMBIENTE INTERNO

Misura VIB CAN 004 Sede Caltanissetta – Cancello d'ingresso abitazione

Durata rilievi (min.):


24 h


RIEPILOGO RISULTATI


		AS	SE X			ASSE Y				ASSE Z				
	limite		weighted	Wm	limite	limite weighted Wm			limite		weighted	Wm		
	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB		
10.56.56	7,2	77	1,47E-06	81.0	7,2	77	1,48E-06	82.4	10	80	1,47E-06	80.3		
11.56.56	7,2	77	1,33E-06	60.3	7,2	77	1,32E-06	58.6	10	80	1,36E-06	64.0		
12.56.56	7,2	77	1,37E-06	65.1	7,2	77	1,35E-06	63.1	10	80	1,39E-06	68.3		
13.56.56	7,2	77	1,39E-06	68.9	7,2	77	1,38E-06	67.0	10	80	1,41E-06	71.6		
14.56.56	7,2	77	1,40E-06	70.1	7,2	77	1,39E-06	68.0	10	80	1,41E-06	72.0		
15.56.56	7,2	77	1,35E-06	62.4	7,2	77	1,33E-06	60.4	10	80	1,36E-06	64.1		
16.56.56	7,2	77	1,31E-06	57.0	7,2	77	1,30E-06	55.1	10	80	1,32E-06	58.4		
17.56.56	7,2	77	1,27E-06	50.0	7,2	77	1,25E-06	47.8	10	80	1,28E-06	51.4		
18.56.56	7,2	77	1,25E-06	47.4	7,2	77	1,24E-06	45.4	10	80	1,26E-06	48.7		
19.56.56	7,2	77	1,26E-06	48.7	7,2	77	1,25E-06	46.4	10	80	1,27E-06	50.6		
20.56.56	7,2	77	1,27E-06	50.1	7,2	77	1,25E-06	47.2	10	80	1,27E-06	50.9		
21.56.56	7,2	77	1,28E-06	51.6	7,2	77	1,27E-06	49.3	10	80	1,29E-06	53.2		
22.56.56	7,2	77	1,26E-06	48.0	7,2	77	1,25E-06	46.3	10	80	1,26E-06	48.8		
23.56.56	7,2	77	1,29E-06	53.5	7,2	77	1,28E-06	51.3	10	80	1,30E-06	55.1		
0.56.56	7,2	77	1,25E-06	47.8	7,2	77	1,24E-06	45.8	10	80	1,26E-06	48.5		
1.56.56	7,2	77	1,24E-06	44.9	7,2	77	1,23E-06	43.3	10	80	1,25E-06	47.0		
2.56.56	7,2	77	1,24E-06	45.7	7,2	77	1,23E-06	44.0	10	80	1,25E-06	46.9		
3.56.56	7,2	77	1,25E-06	46.6	7,2	77	1,24E-06	44.6	10	80	1,25E-06	47.8		
4.56.56	7,2	77	1,24E-06	45.8	7,2	77	1,23E-06	44.0	10	80	1,25E-06	47.1		
5.56.56	7,2	77	1,26E-06	48.3	7,2	77	1,25E-06	46.4	10	80	1,28E-06	51.2		
6.56.56	7,2	77	1,26E-06	48.4	7,2	77	1,25E-06	46.9	10	80	1,27E-06	50.1		
7.56.56	7,2	77	1,29E-06	53.6	7,2	77	1,29E-06	53.0	10	80	1,30E-06	55.8		
8.56.56	7,2	77	1,35E-06	62.1	7,2	77	1,35E-06	62.7	10	80	1,37E-06	65.2		
9.56.56	7,2	77	1,36E-06	64.1	7,2	77	1,35E-06	63.0	10	80	1,39E-06	69.9		

Scheda di rilevazione

Scheda di rilevazione

Strumentazione impiegata:

QUEST VI 4000 - Ser. N° 12438

Accelerometro

DYTRAN Model 3233A

Fenomeno vibratorio osservato: Attività antropica – Fase ante operam

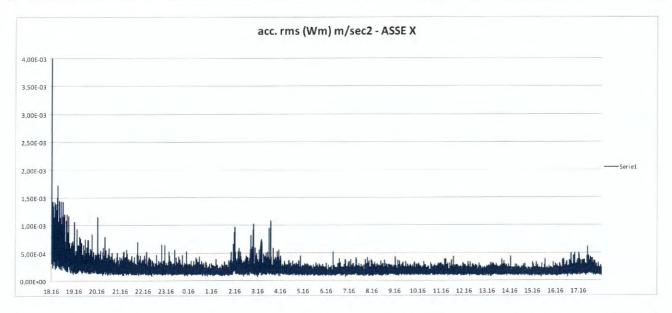
02 Marzo 2011 ore 18:16 Data e ora inizio rilevazione:

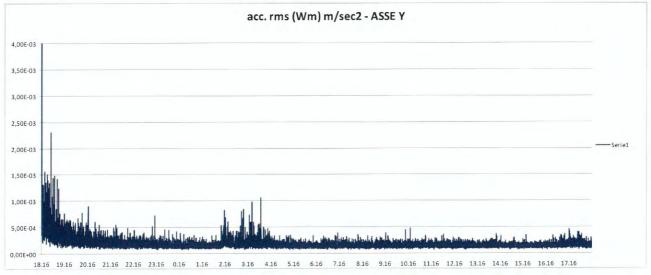
RILIEVO PLANIMETRICO

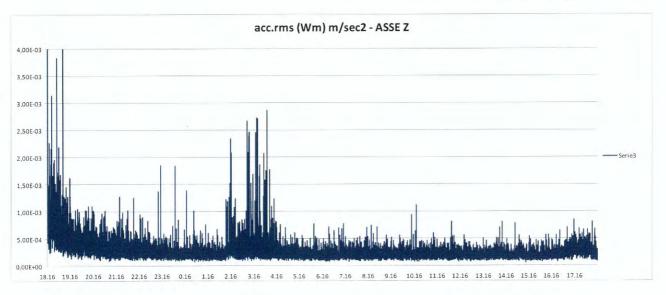
AMBIENTE INTERNO

Misura VIB CAN 005 Sede Caltanissetta - Cancello d'ingresso abitazione

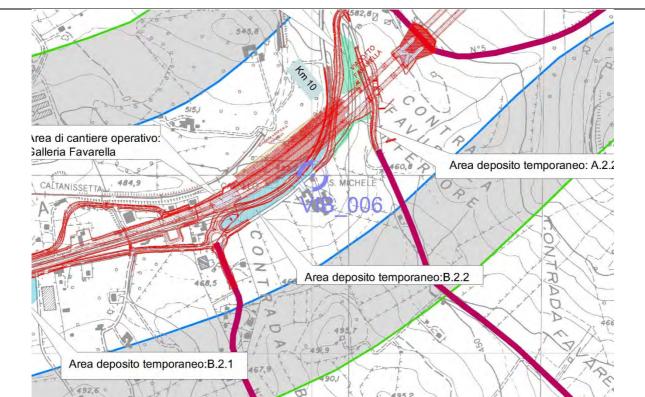
Durata rilievi (min.):


24 h


RIEPILOGO RISULTATI


	ASSE X				ASSE Y		ASSE Z					
	limite		weighted	Wm	limite		weighted	Wm	limite		weighted	Wm
	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB	mm/s2	dB
18.16.36	7,2	77	1,49E-06	83.0	7,2	77	1,50E-06	85.9	10	80	1,53E-06	88.1
19.16.36	7,2	77	1,25E-06	47.7	7,2	77	1,25E-06	46.8	10	80	1,27E-06	50.9
20.16.36	7,2	77	1,25E-06	46.2	7,2	77	1,24E-06	45.2	10	80	1,26E-06	49.0
21.16.36	7,2	77	1,24E-06	45.9	7,2	77	1,24E-06	44.8	10	80	1,27E-06	49.3
22.16.36	7,2	77	1,26E-06	48.3	7,2	77	1,25E-06	47.4	10	80	1,29E-06	53.9
23.16.36	7,2	77	1,24E-06	45.1	7,2	77	1,24E-06	44.1	10	80	1,25E-06	47.3
0.16.36	7,2	77	1,24E-06	44.9	7,2	77	1,23E-06	43.8	10	80	1,25E-06	47.1
1.16.36	7,2	77	1,24E-06	45.1	7,2	77	1,23E-06	44.0	10	80	1,25E-06	47.0
2.16.36	7,2	77	1,24E-06	44.9	7,2	77	1,23E-06	43.8	10	80	1,25E-06	46.9
3.16.36	7,2	77	1,24E-06	44.7	7,2	77	1,23E-06	43.6	10	80	1,25E-06	46.4
4.16.36	7,2	77	1,24E-06	44.2	7,2	77	1,23E-06	43.1	10	80	1,25E-06	46.1
5.16.36	7,2	77	1,25E-06	46.3	7,2	77	1,24E-06	44.6	10	80	1,26E-06	49.0
6.16.36	7,2	77	1,24E-06	44.7	7,2	77	1,23E-06	43.3	10	80	1,25E-06	46.0
7.16.36	7,2	77	1,24E-06	45.3	7,2	77	1,23E-06	43.7	10	80	1,24E-06	45.4
8.16.36	7,2	77	1,24E-06	45.2	7,2	77	1,24E-06	44.1	10	80	1,25E-06	46.5
9.16.36	7,2	77	1,33E-06	60.4	7,2	77	1,33E-06	59.9	10	80	1,36E-06	64.3
10.16.36	7,2	77	1,34E-06	61.2	7,2	77	1,34E-06	61.7	10	80	1,37E-06	66.3
11.16.36	7,2	77	1,30E-06	54.4	7,2	77	1,30E-06	54.2	10	80	1,32E-06	58.7
12.16.36	7,2	77	1,28E-06	51.7	7,2	77	1,28E-06	51.4	10	80	1,30E-06	55.9
13.16.36	7,2	77	1,27E-06	49.5	7,2	77	1,26E-06	48.8	10	80	1,28E-06	52.9
14.16.36	7,2	77	1,26E-06	48.4	7,2	77	1,25E-06	47.6	10	80	1,28E-06	51.7
15.16.36	7,2	77	1,26E-06	48.8	7,2	77	1,26E-06	48.5	10	80	1,29E-06	53.0
16.16.36	7,2	77	1,25E-06	47.9	7,2	77	1,26E-06	48.0	10	80	1,28E-06	52.9
17.16.36	7,2	77	1,25E-06	47.6	7,2	77	1,25E-06	46.1	10	80	1,27E-06	50.3

Scheda di rilevazione



VIB_06

Stralcio cartografico

UBICAZIONE PUNTO	COORDINATE					
Contrada Favarella	37°27′23.72″N	13°59′33.61″E				
DESCRIZIONE RECETTORE E CONTESTO						
Chiesa S. Michele posta a circa 55 mt dal tracciato	Chiesa S. Michele posta a circa 55 mt dal tracciato					

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

	TIPOLOGIA EDIFICIO	
	111 020011 1010	
Luogo di culto		

	TIPOLOGIA DELLA SORGENTE	
Strada statale SS 640		
Misura di Ante Operam		

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA		
accelerazione ponderata (Wm) asse z - periodo diurno	0.31 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno	0.04 mm/s ⁻²	

|--|

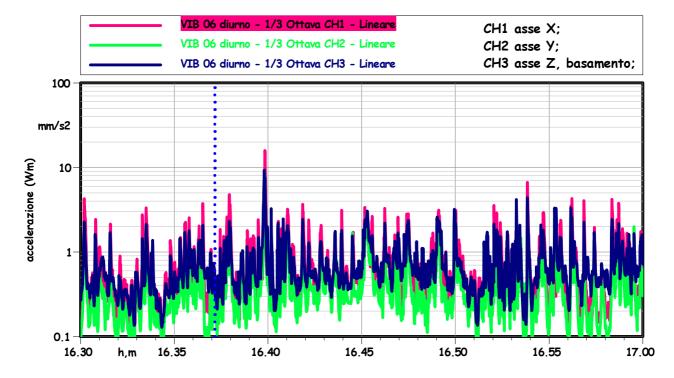


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

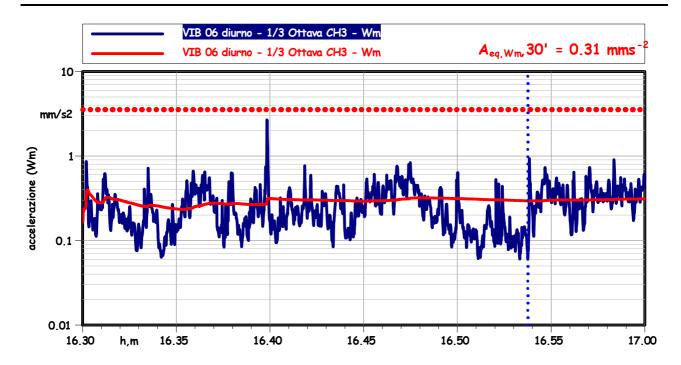


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno

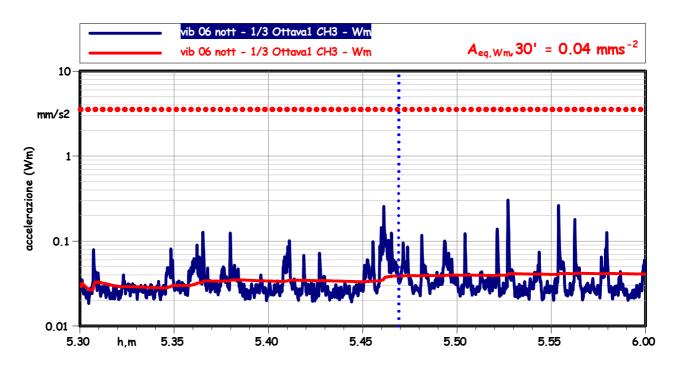
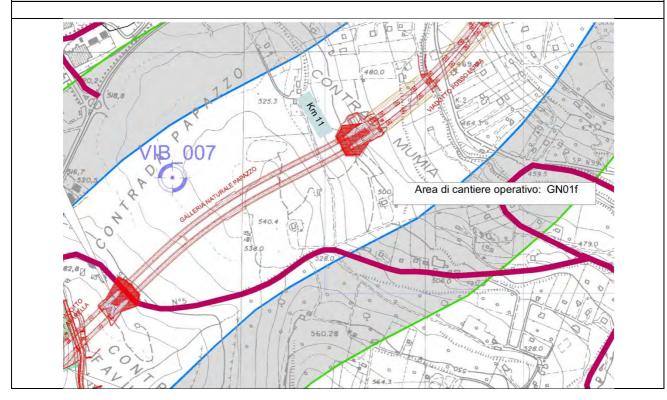


Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno


Il Tecnico Competente:	DATA	ORA
	12/04/12	16.40
Ing. Umberto Giglio	Firma:	1. Gr.f.

VIB_07

Stralcio cartografico

UBICAZIONE PUNTO COORDINATE					
Contrada Papazzo 37°27′36.81″N 13°59′49.42″E					
DESCRIZIONE RECETTORE E CONTESTO					
Abitazione privata su un unico livello posta a circa 115 mt dal tracciato					

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z	
Soundbook	Sinus mod. 902219.7 - triassiale			

TIPOLOGIA EDIFICIO

Abitazione composto dal solo piano terra

	TIPOLOGIA DELLA SORGENTE	
Strada statale SS 640		
Misura di Ante Operam		

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA			
accelerazione ponderata (Wm) asse z - periodo diurno	0.04 mm/s ⁻²		
accelerazione ponderata (Wm) asse z - periodo notturno	0.04 mm/s ⁻²		

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	/
--	---

NOTE

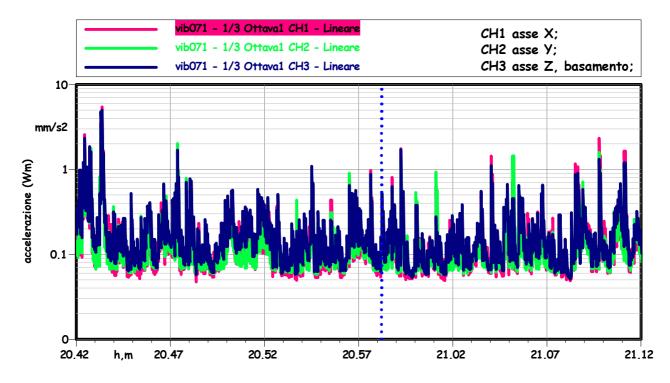


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

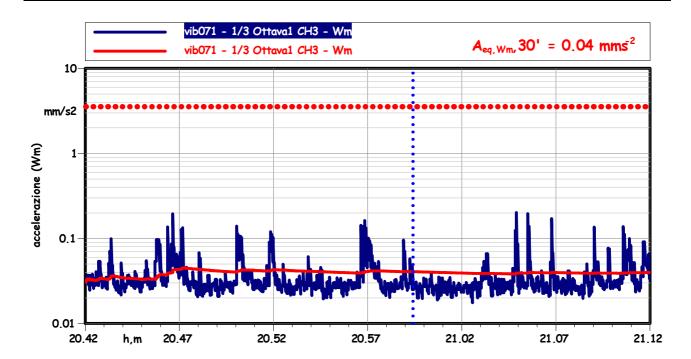


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno

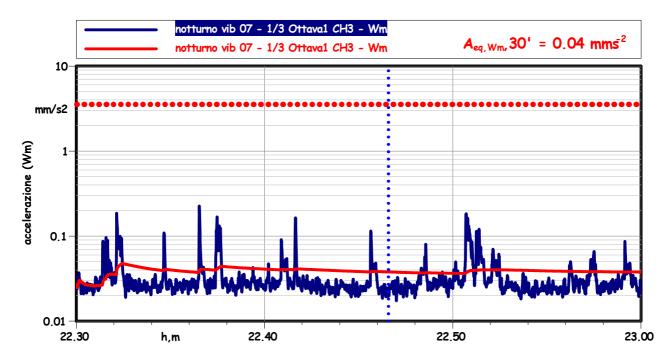
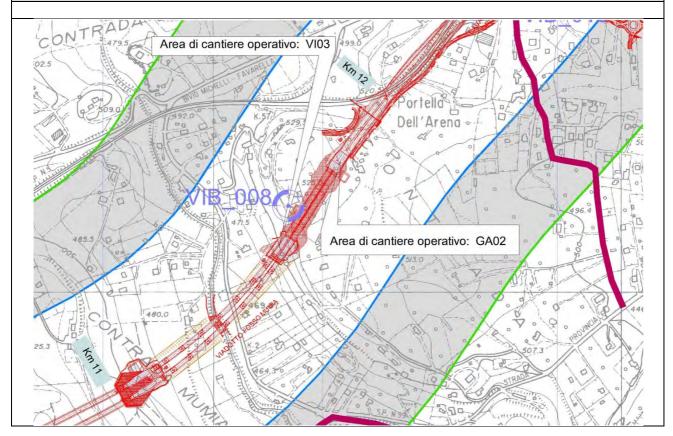



Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno

Il Tecnico Competente:	DATA	ORA
	12/04/12	20.42
Ing. Umberto Giglio	Firma:	1. Grafo

VIB_08

UBICAZIONE PUNTO	COORDINATE	
Contrada Niscima	37°28′4.07″N	14°0′24.90″E
DESCRIZIONE RECETTORE E CONTESTO		
Abitazione privata posta a circa 30 mt dal tracciato		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

TIPOLOG	A EDIFICIO
Abitazione	

	TIPOLOGIA DELLA SORGENTE
Strada vicinale Contrada Niscima	
Misura di Ante Operam	

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA	
accelerazione ponderata (Wm) asse z - periodo diurno 0.05 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno 0.03 mm/s ⁻²	

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	/

NOTE

A causa dell'assenza del proprietario la misura è stata effettuata all'esterno in corrispondenza del cancello di ingresso.

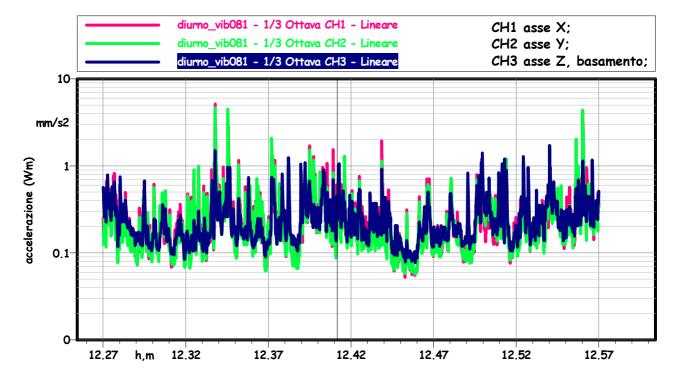


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

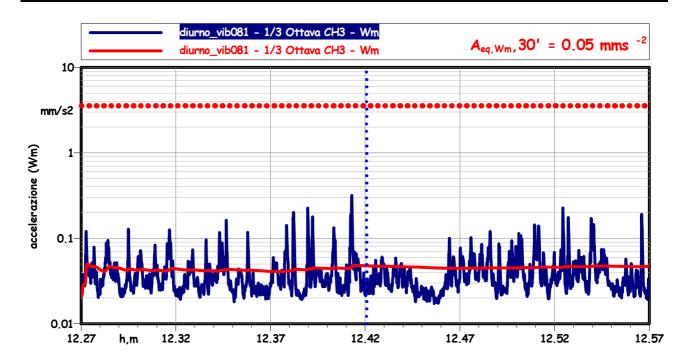


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno

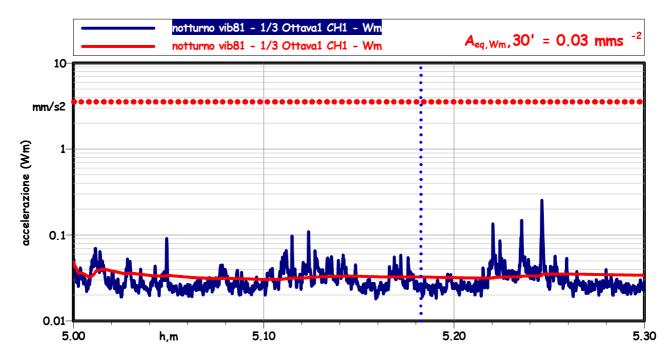
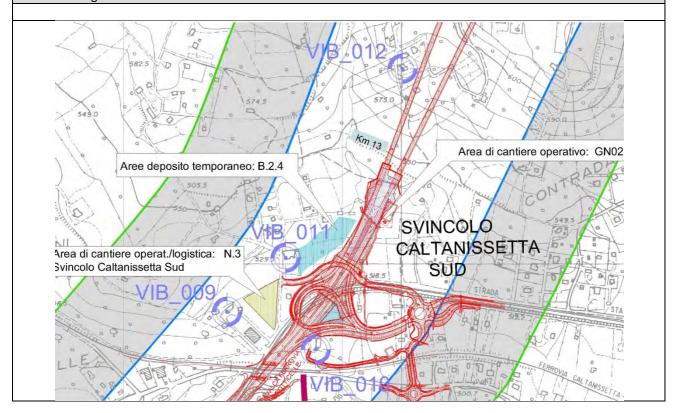



Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno

Il Tecnico Competente:	DATA	ORA
	13/04/2012	12.27
Ing. Umberto Giglio	Firma:	1. GrA0

VIB_09

UBICAZIONE PUNTO	COORDINATE	
Contrada Grotticelle	37°28′24.43″N	14°0′39.26″E
DESCRIZIONE RECETTORE E CONTESTO		
Abitazione privata posta a circa 155 mt dal tracciato		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

TIPOLOGIA EDIFICIO

Abitazione di composta da piano terra e primo piano

TIPOLOGIA DELLA SORGENTE	
SS 640	
Misura di Ante Operam	

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA		
accelerazione ponderata (Wm) asse z - periodo diurno al basamento	0.05 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno al basamento	0.03 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo diurno al primo piano	0.08 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno al primo piano	0.04 mm/s ⁻²	

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	1
ATTIVITÀ DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	l /

NOTE

La misura delle vibrazioni al primo piano nel periodo notturno è stata dedotta mediante opportuno algoritmo di calcolo

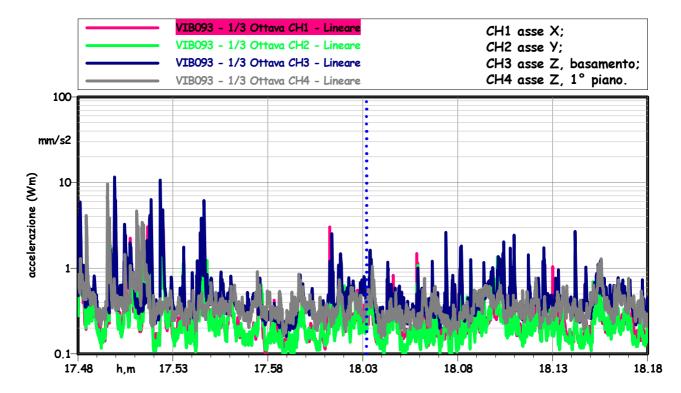


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento e primo piano)

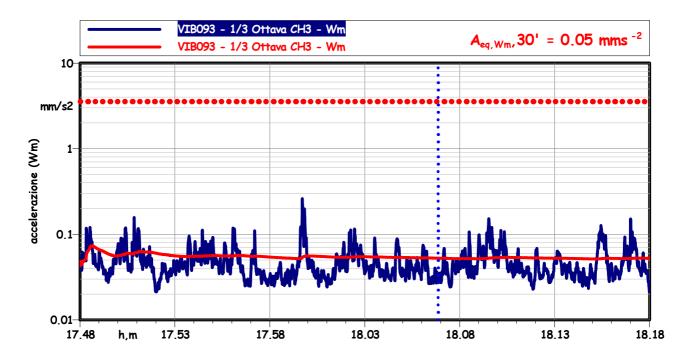


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno (basamento)

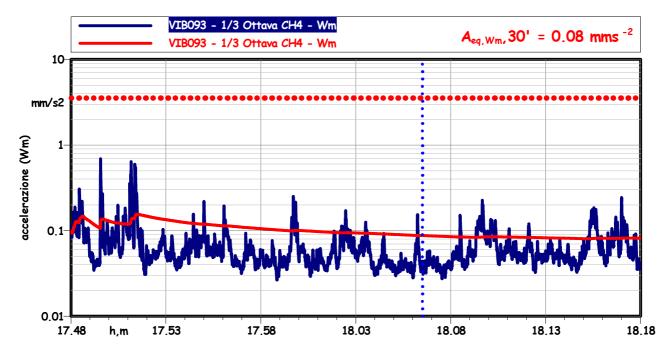


Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno (primo piano)

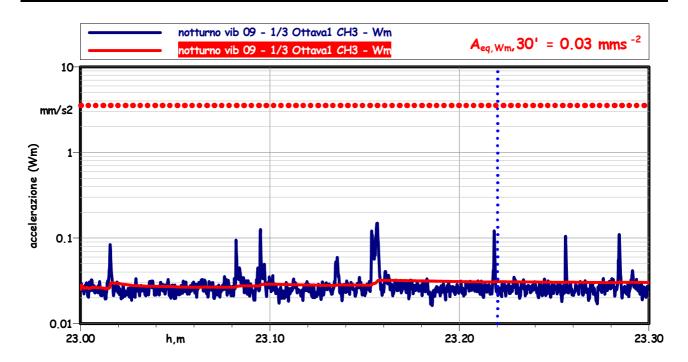
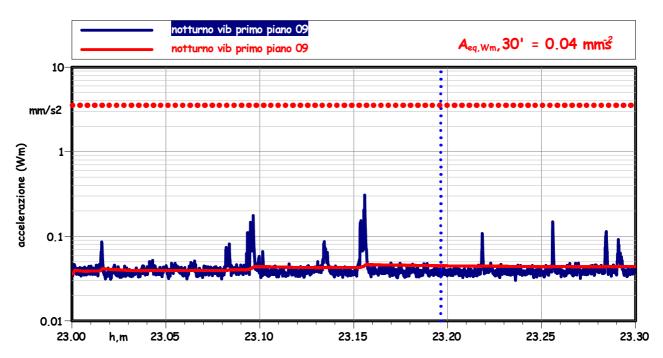
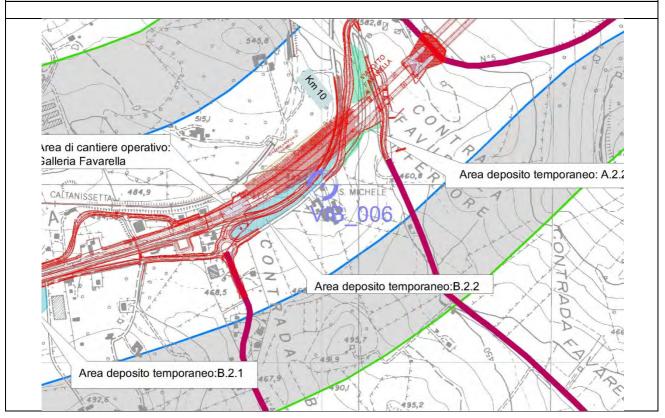


Figura 4 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno (basamento)




Figura 5 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno (primo piano)

Il Tecnico Competente:	DATA	ORA
	12/04/12	17.48
Ing. Umberto Giglio	Firma:	6.7. Grafo

VIB_10

UBICAZIONE PUNTO	COORDINATE	
Contrada Grotticelle	37°28′22.09″N	14°0′49.39″E
DESCRIZIONE RECETTORE E CONTESTO		
Abitazione privata distante circa 15 mt dal tracciato		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

TIPOLOGIA EDIFICIO Abitazione composta da piano terra e primo piano

	TIPOLOGIA DELLA SORGENTE	
Strada statale SS 640		
Misura di Ante Operam		

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA	
accelerazione ponderata (Wm) asse z - periodo diurno	0.15 mm/s ⁻²
accelerazione ponderata (Wm) asse z - periodo notturno 0.03 mm/s ⁻²	

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	/

NOTE

A causa dell'assenza del proprietario, la misura delle vibrazioni è stata eseguita in esterno in corrispondenza del cancello di ingresso.

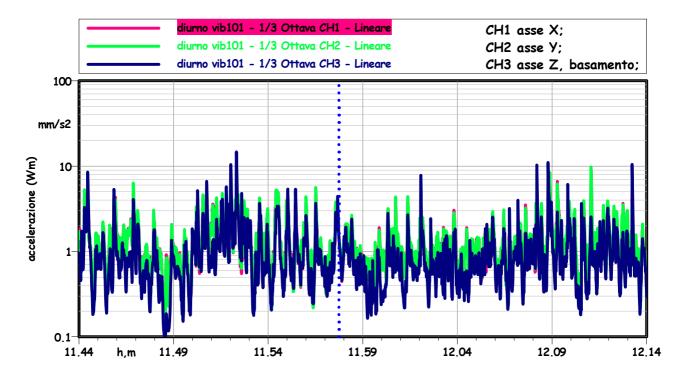


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

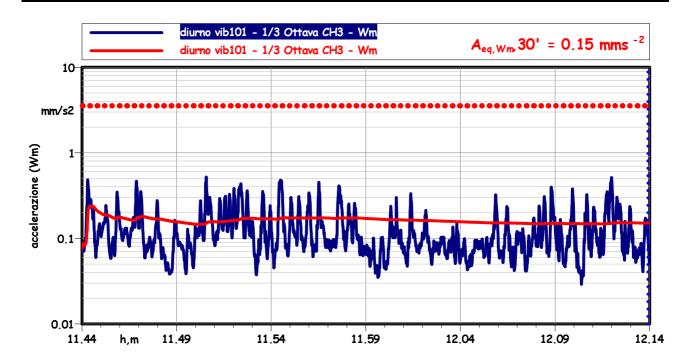


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno

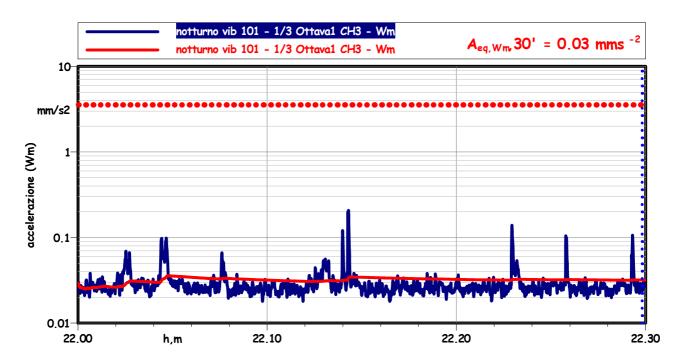
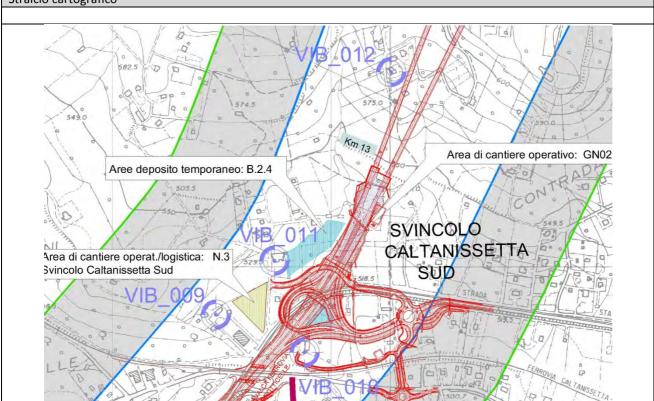



Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno

Il Tecnico Competente:	DATA	ORA
	13/04/12	11.50
Ing. Umberto Giglio	Firma:	T. G.A.

VIB_11

UBICAZIONE PUNTO	COORDINATE	
Contrada Grotticelle	37°28′28.78″N	14°0′45.50″E
DESCRIZIONE RECETTORE E CONTESTO		
Ristorante posto a circa 75 mt dal tracciato		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	Velocimetro triassiale Sinus r	nod. 902219.7	

TIPOLOGIA EDIFICIO
Ristorante

	TIPOLOGIA DELLA SORGENTE
Starada Statale 640 e strade vicinali	
Misura di Ante Operam	

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA	
accelerazione ponderata (Wm) asse z - periodo diurno 0.08 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno 0.02 mm/s ⁻²	

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	/

NOTE Frequento calpestio in seguito all'attività di ristorazione

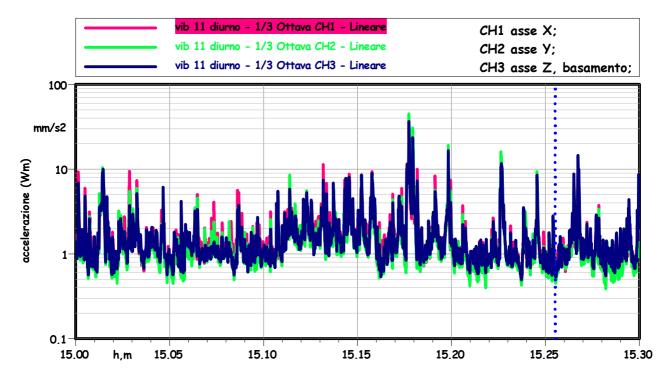


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

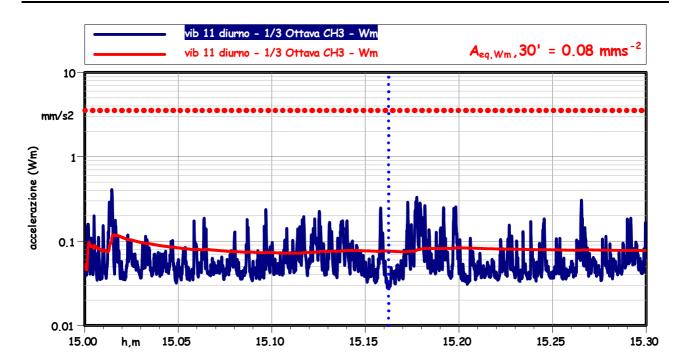
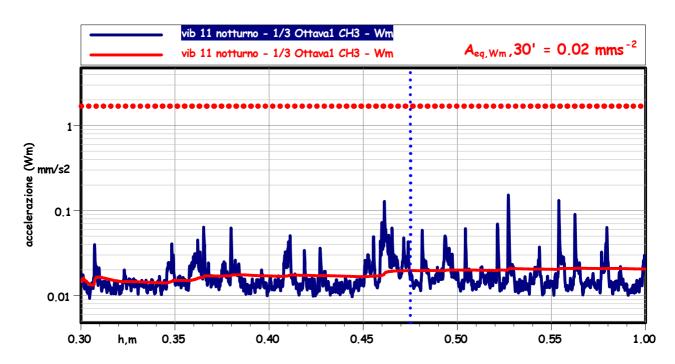
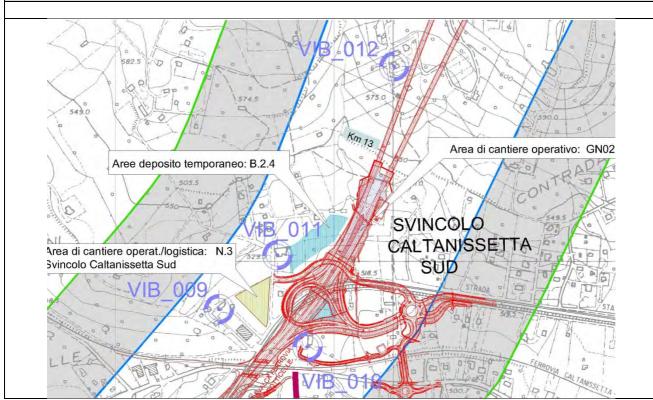


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno




Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno

Il Tecnico Competente:	DATA	ORA
	12/04/12	15.00
Ing. Umberto Giglio	Firma:	To Grafo

VIB_12

UBICAZIONE PUNTO	COORDINATE	
Contrada Cialagra	37°28′45.91″N	14°0′57.22″E
DESCRIZIONE RECETTORE E CONTESTO		
Abitazione privata posta a circa 35 mt dal tracciato		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

TIPOLOGIA EDIFICIO

Edificio composto da piano terra e primo piano

	TIPOLOGIA DELLA SORGENTE	
Strade vicinali e SS 640		
Misura di Ante Operam		

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA	
accelerazione ponderata (Wm) asse z - periodo diurno (basamento)	0.16 mm/s ⁻²
accelerazione ponderata (Wm) asse z - periodo diurno (primo piano) 0.29 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno (basamento)	0.03 mm/s ⁻²
accelerazione ponderata (Wm) asse z - periodo notturno (primo piano)	0.10 mm/s ⁻²

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	/
--	---

NOTE

La misura delle vibrazioni eseguita al primo piano nel periodo notturno è stata dedotta con opportuno algoritmo di calcolo

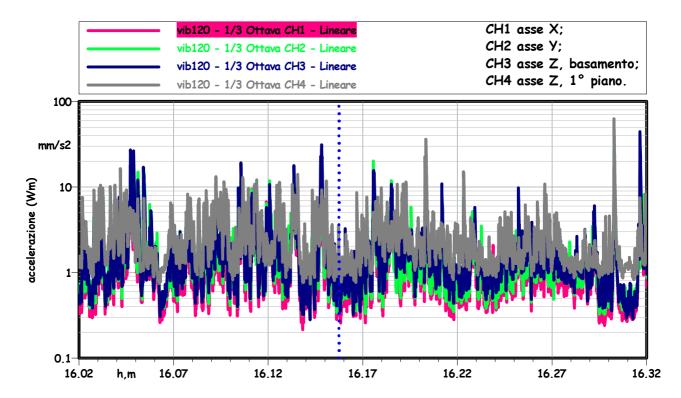


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

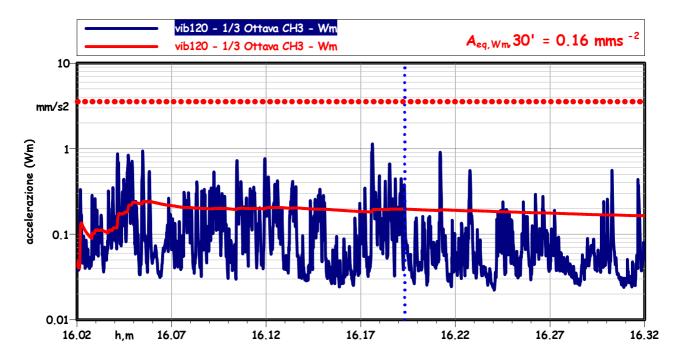


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno (basamento)

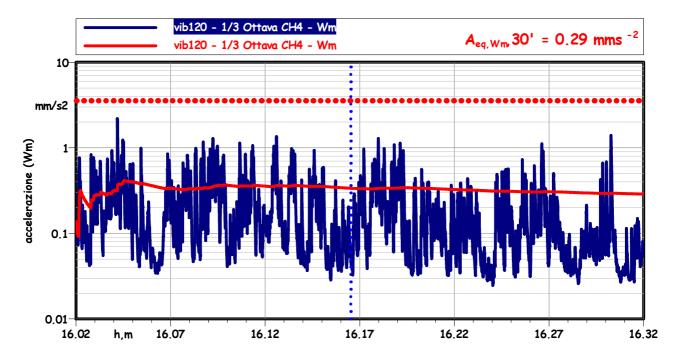


Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno (primo piano)

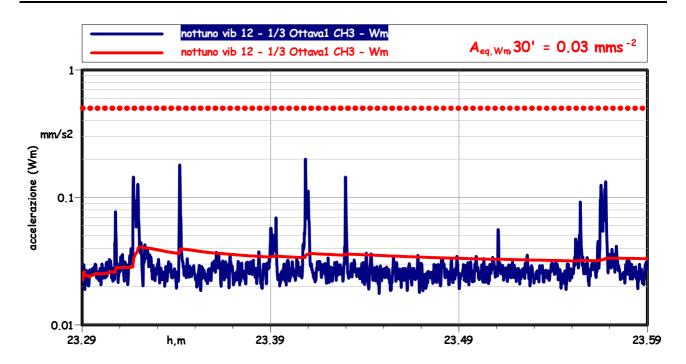


Figura 4 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno (basamento)

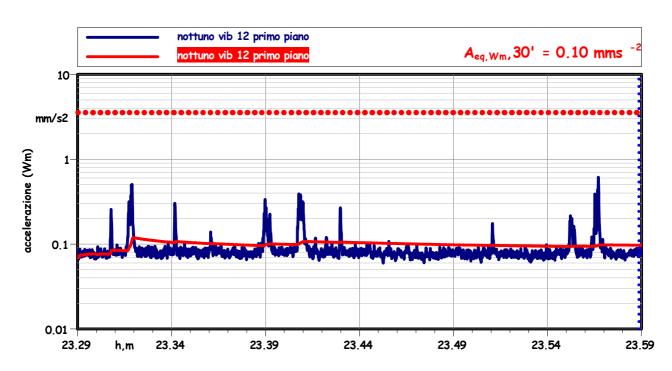


Figura 5 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno (primo piano)

Il Tecnico Competente:	DATA	ORA
	13/04/12	Pomeriggio
Ing. Umberto Giglio	Firma:	To Goto

VIB_13 Stralcio cartografico Area deposito temporaneo: B.3.2 Area di cantiere operativo: GN03 Area di cantiere operativo: GN02f deposito temporaneo: B.3.1 CASA SCARPINATI

UBICAZIONE PUNTO	COORDINATE	
Contrada S. Filippo Neri	37°30′33.21″N	14°2′46.31″E
DESCRIZIONE RECETTORE E CONTESTO		
Abitazione privata		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

	TIPOLOGIA EDIFICIO	
Edificio composto dal solo piano terra		

	TIPOLOGIA DELLA SORGENTE
Strada Statale 640 e strade vicinali	
Misura di Ante Operam	

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA		
accelerazione ponderata (Wm) asse z - periodo diurno 0.05 mm/s ⁻²		
accelerazione ponderata (Wm) asse z - periodo notturno	0.03 mm/s ⁻²	

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	/

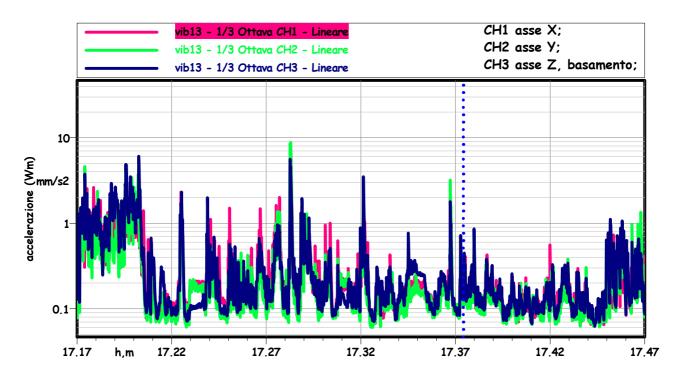


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

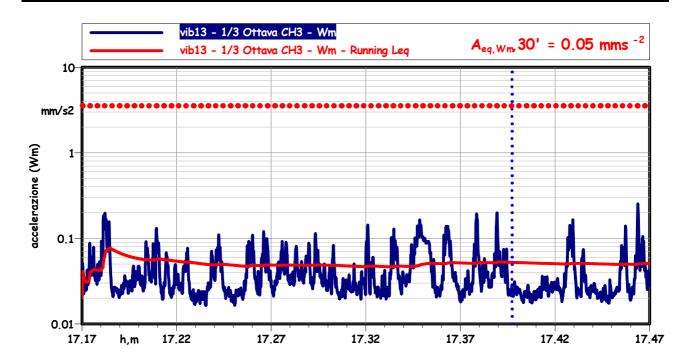
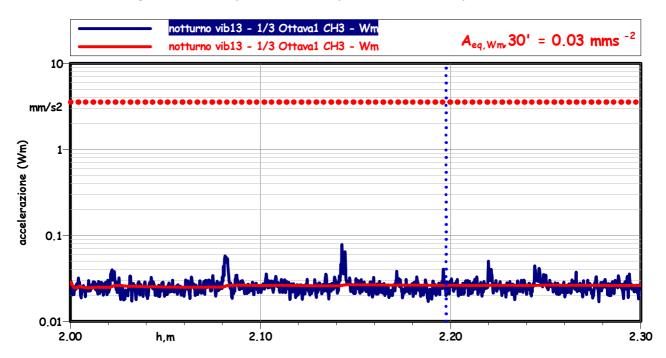
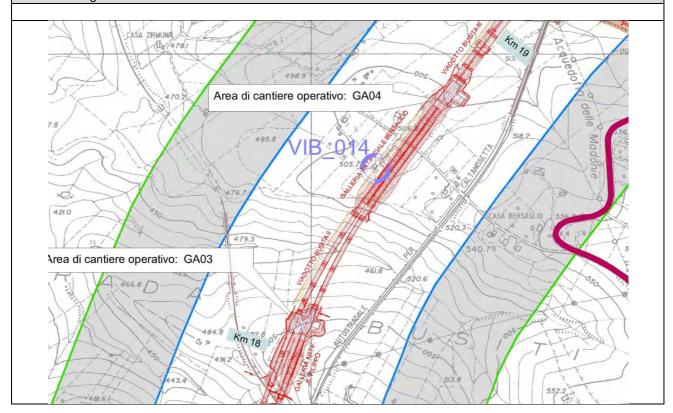


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno




Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno

Il Tecnico Competente:	DATA	ORA
	13/04/12	17.17
Ing. Umberto Giglio	Firma:	1. G. G. F.

VIB_14

UBICAZIONE PUNTO	COORDINATE	
Contrada Busiti	37°31′3.56″N	14°3′5.26″E
DESCRIZIONE RECETTORE E CONTESTO		
Abitazione privata posta a circa 20 mt dal tracciato		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

TIPOLOGIA EDIFICIO

Edificio composta dal piano terra e piano copertura

	TIPOLOGIA DELLA SORGENTE
Strada Statale 640 e strade vicinali	
Misura di Ante Operam	

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA		
accelerazione ponderata (Wm) asse z - periodo diurno 0.05 mm/s ⁻²		
accelerazione ponderata (Wm) asse z - periodo notturno 0.03 mm/s ⁻²		

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	/

NOTE

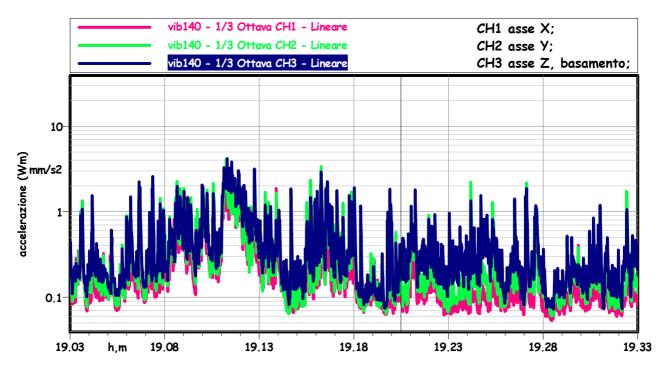


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

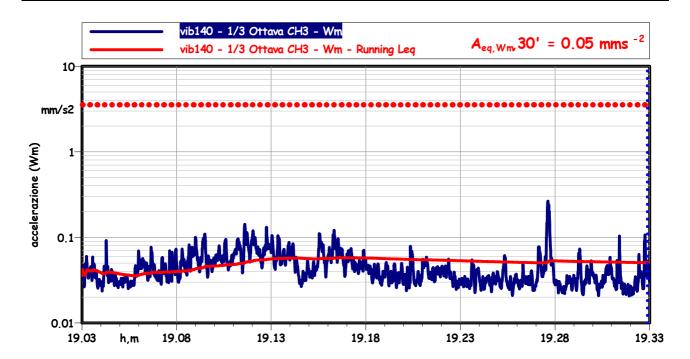


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno

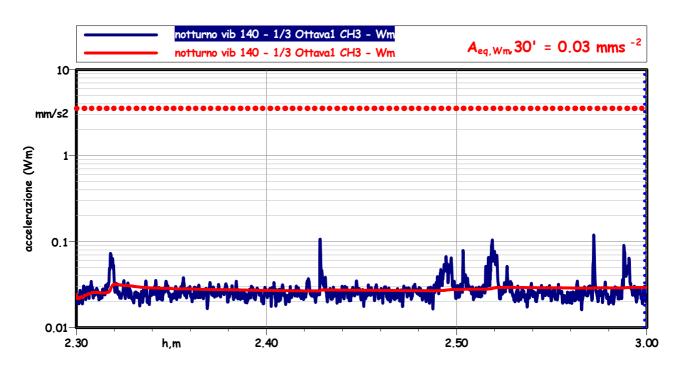
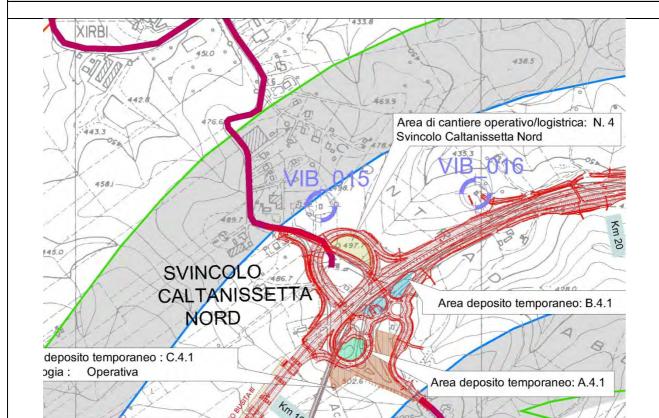



Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno

Il Tecnico Competente:	DATA	ORA
	13/04/12	19.03
Ing. Umberto Giglio	Firma:	7. GrA.

VIB_15

UBICAZIONE PUNTO	COORDINATE	
Contrada Abbazia Santuzza	37°31′29.95″N	14°3′21.68″E
DESCRIZIONE RECETTORE E CONTESTO		
Abitazione privata posta a circa 60 mt dal tracciato		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

TIPO	OGIA EDIFICIO
Edificio composto da piano terra e primo piano	

	TIPOLOGIA DELLA SORGENTE	
SS 640 e SS 122 bis		
Misura di Ante Operam		

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA		
accelerazione ponderata (Wm) asse z - periodo diurno (basamento)	0.04 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo diurno (primo piano)	0.08 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno (basamento)	0.03 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno (primo piano)	0.06 mm/s ⁻²	

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	1
THE THE BEAUTY OF THE LOCAL CONTROL OF THE CONTROL	1 /

NOTE

La misura delle vibrazioni al primo piano nel periodo notturno è stata ottenuta con opportuno algoritmo di calcolo

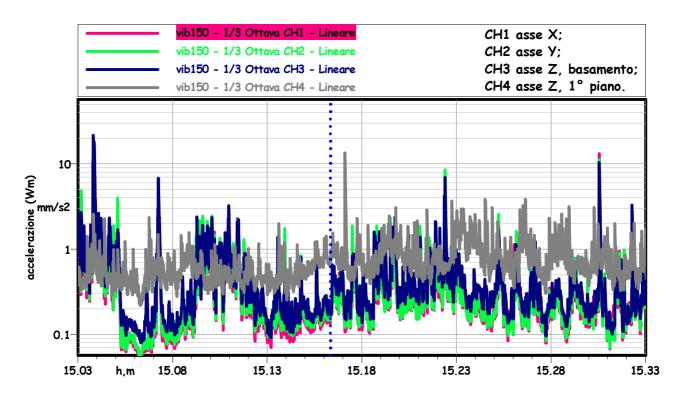


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

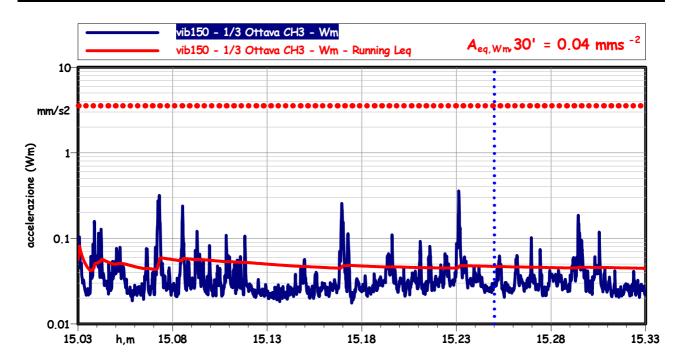


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno (basamento)

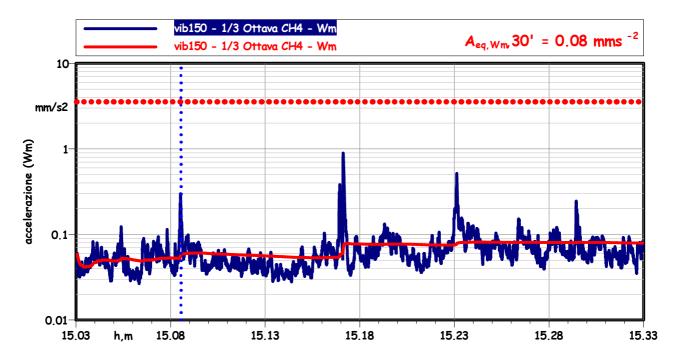


Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno (primo piano)

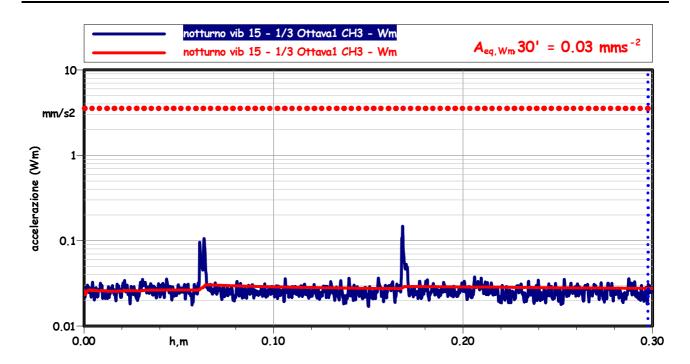
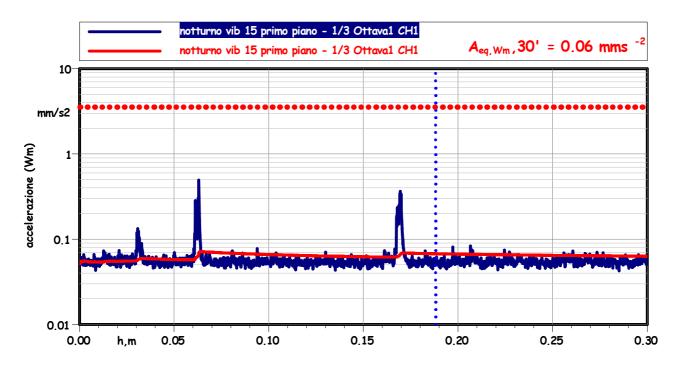
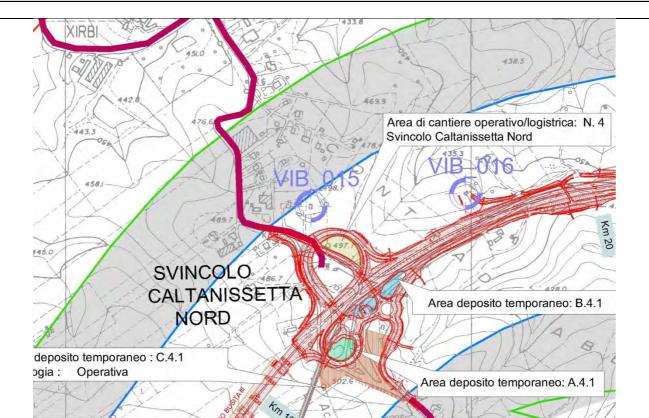


Figura 4 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno (basamento)




Figura 5 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno (primo piano)

Il Tecnico Competente:	DATA	ORA
	13/04/12	15.00
Ing. Umberto Giglio	Firma:	1. GrA.

VIB_16

UBICAZIONE PUNTO	COORDINATE	
Contrada Abbazia Santuzza	37°31′32.77″N	14°3′40.65″E
DESCRIZIONE RECETTORE E CONTESTO		
Abitazione privata posta a circa 50 mt dal tracciato		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

TIPOLOGIA EDIFICIO	
Edifico composta dal piano terra (non abitato), ed il primo piano	

TIPOLOGIA DELLA SORGENTE
SS 640
Misura di Ante Operam

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA		
accelerazione ponderata (Wm) asse z - periodo diurno (basamento)	0.08 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo diurno (primo piano)	0.51 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno (basamento)	0.03 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno (primo piano)	0.32 mm/s ⁻²	

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	1
THE THE BEAUTY OF THE LOCAL CONTROL OF THE CONTROL	1 /

NOTE

La misura delle vibrazioni eseguita al primo piano nel periodo notturno è stata ottenuta mediante opportuno algoritmo di calcolo

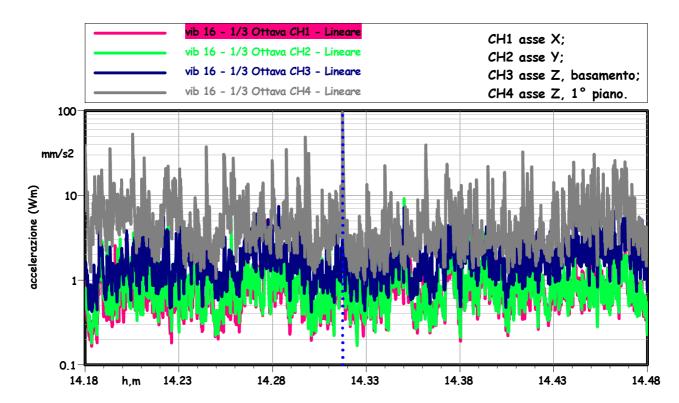


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

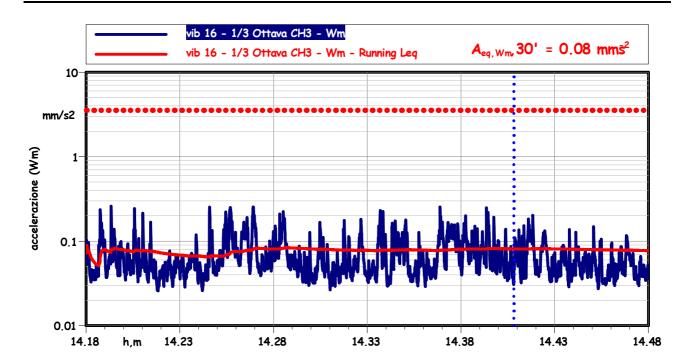


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno (basamento)

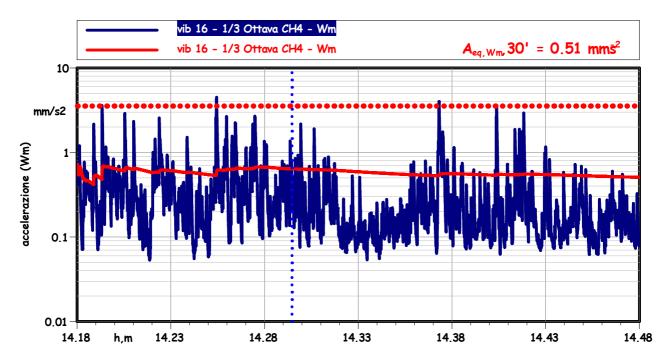


Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno (primo piano)

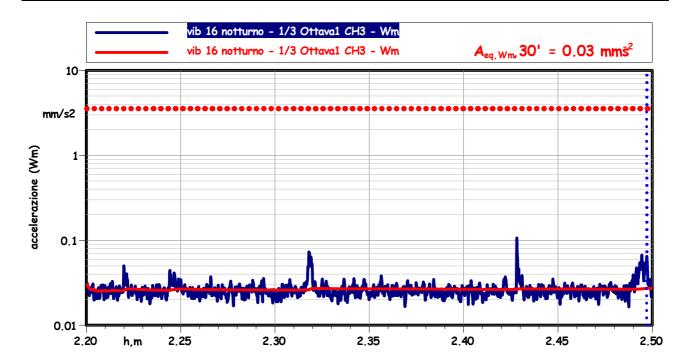


Figura 4 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno (basamento)

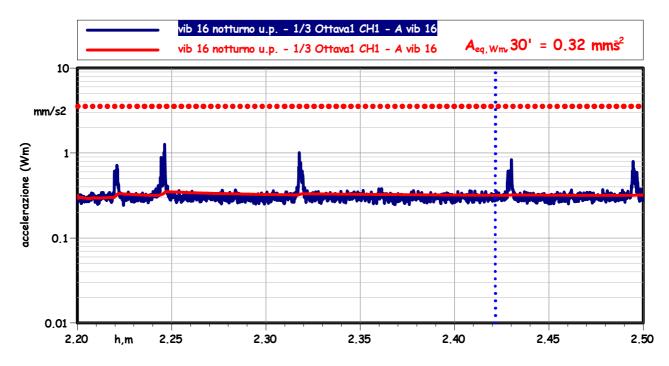
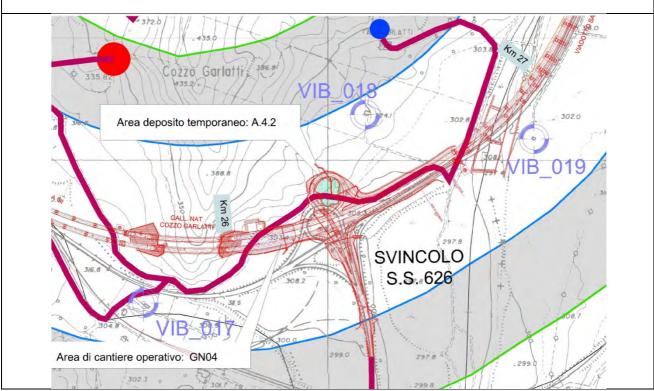



Figura 5 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno (primo piano)

Il Tecnico Competente:	DATA	ORA
	13/04/12	14.18
Ing. Umberto Giglio	Firma:	1. G. G. A.

VIB_17

UBICAZIONE PUNTO	COORDINATE	
Contrada Imera	37°32′6.53″N	14°7′22.33″E
DESCRIZIONE RECETTORE E CONTESTO		
Abitazione privata posta a circa 130 mt dal tracciato		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

	TIPOLOGIA EDIFICIO	
Edificio composto dal solo piano terra		

	TIPOLOGIA DELLA SORGENTE	
SS 640		
Misura di Ante Operam		

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA		
accelerazione ponderata (Wm) asse z - periodo diurno	0.05 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno	0.03 mm/s ⁻²	

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	/

NOTE

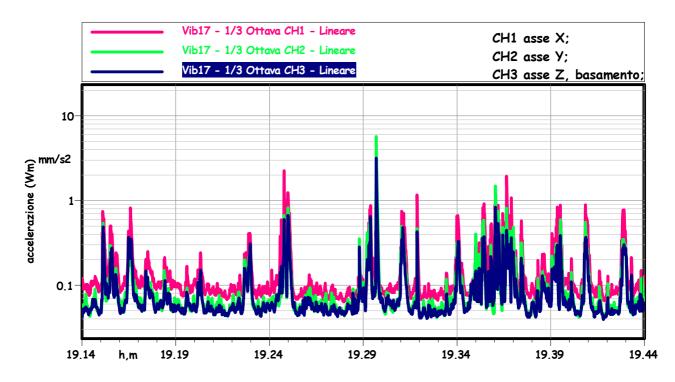


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

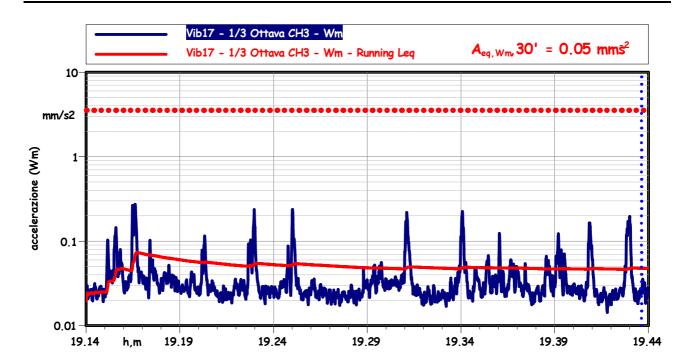


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno

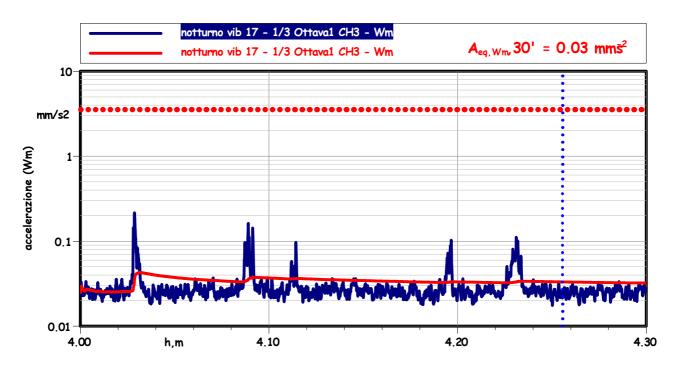
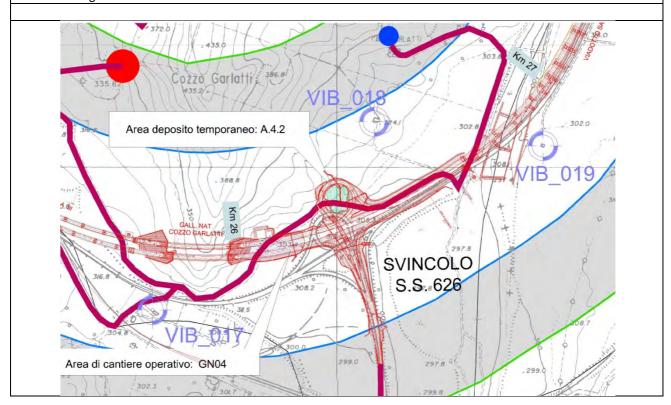



Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno

Il Tecnico Competente:	DATA	ORA
	12/04/12	19:14
Ing. Umberto Giglio	Firma:	1. Godo

VIB_18

UBICAZIONE PUNTO	COORDINATE	
Contrada Imera	37°32′23.72″N	14°7′46.28″E
DESCRIZIONE RECETTORE E CONTESTO		
Edificio disabitato posto a circa 200 mt dal tracciato		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

Edificio rurale

	TIPOLOGIA DELLA SORGENTE
SS 640	
Misura di Ante Operam	

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA		
accelerazione ponderata (Wm) asse z - periodo diurno (basamento) 0.04 mm/s ⁻²		
accelerazione ponderata (Wm) asse z - periodo diurno (primo piano)	0.11 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno (basamento)	0.03 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno (primo piano)	0.12 mm/s ⁻²	

NOTE

La misura delle vibrazioni eseguita al primo piano nel periodo notturno è stata ottenuta mediante apposito algoritmo di calcolo

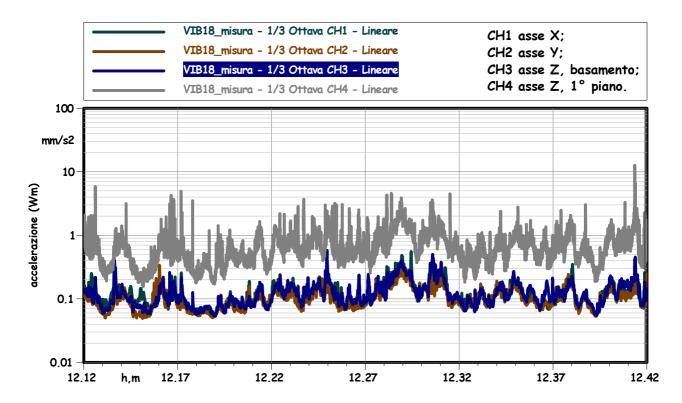


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

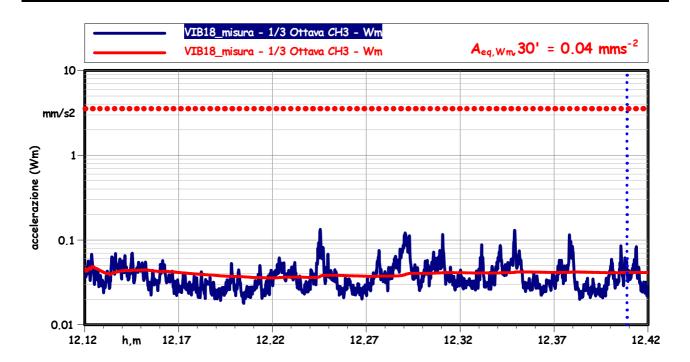


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno (basamento)

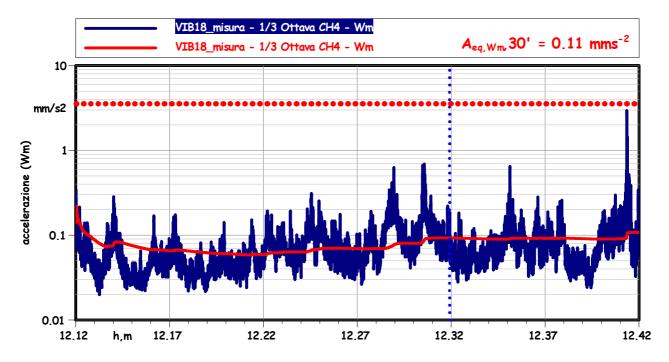


Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno (primo piano)

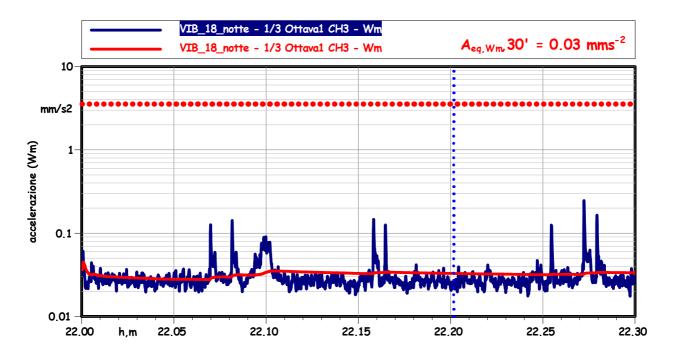
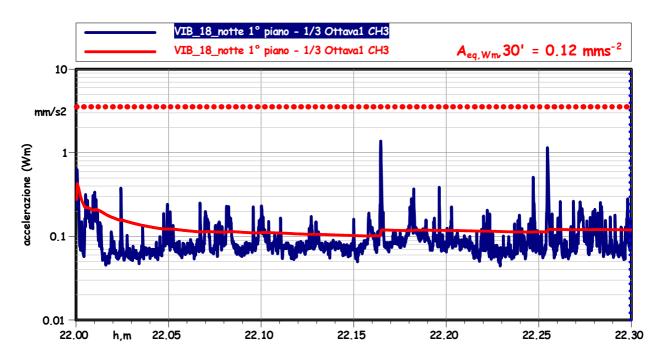
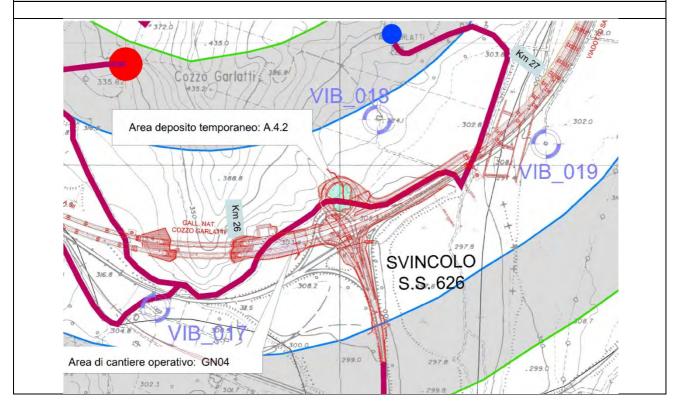


Figura 4 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno (basamento)




Figura 5 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno (primo piano)

Il Tecnico Competente:	DATA	ORA
	12/04/12	12:12
Ing. Umberto Giglio	Firma:	1. To Godo

VIB_19

Stralcio cartografico

UBICAZIONE PUNTO	COORDINATE	
Contrada Imera	37°32′21.97″N	14°8′4.76″E
DESCRIZIONE RECETTORE E CONTESTO		
Manufatto a copertura di un pozzo, posto a circa 60 mt dal tracciato		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

	TIPOLOGIA EDIFICIO	
Manufatto rurale		

	TIPOLOGIA DELLA SORGENTE	
SS 640 e strade vicinali		
Misura di Ante Operam		

LIVELLO RMS, MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA		
accelerazione ponderata (Wm) asse z - periodo diurno 0.10 mm/s ⁻²		
accelerazione ponderata (Wm) asse z - periodo notturno	0.03 mm/s ⁻²	

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	/

NOTE

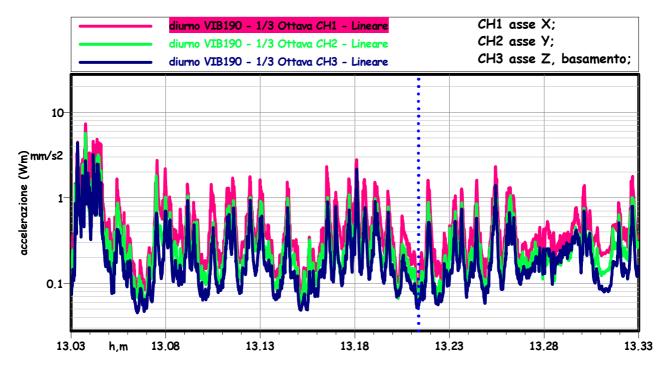


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

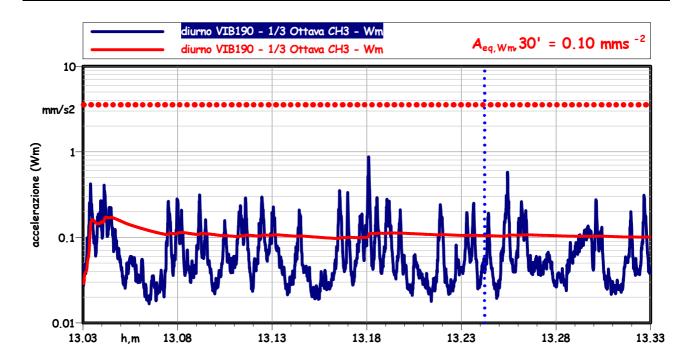


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno

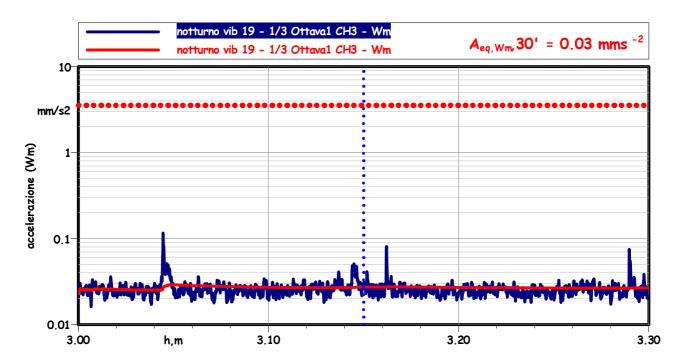
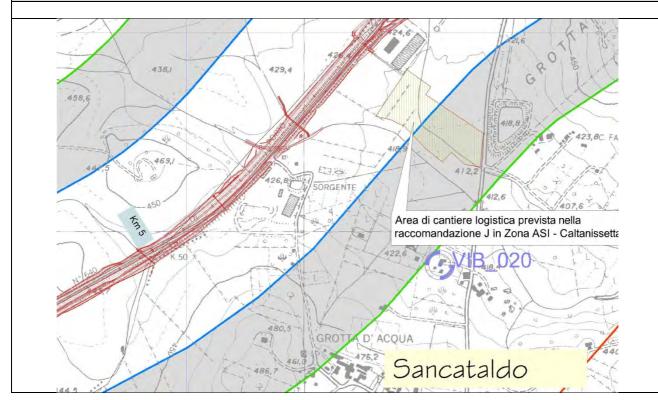


Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno


Il Tecnico Competente:	DATA	ORA
	12/04/12	13:03
Ing. Umberto Giglio	Firma:	1. Grafo

VIB_20

Stralcio cartografico

	•	
UBICAZIONE PUNTO	COORDINATE	
Località Grotta d'Acqua	37°26′14.82″N	13°57′11.28″E
DESCRIZIONE RECETTORE E CONTESTO		
Abitazione rurale posta a 250 mt dal tracciato		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

	TIDOLOGIA EDIFICIO	
	TIPOLOGIA EDIFICIO	
Abitazione rurale con un unico piano		

	TIPOLOGIA DELLA SORGENTE	
SS640 e strade vicinali		
Misura di Ante Operam		

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA		
accelerazione ponderata (Wm) asse z - periodo diurno 0.02 mm/s ⁻²		
accelerazione ponderata (Wm) asse z - periodo notturno	0.03 mm/s ⁻²	

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	/
--	---

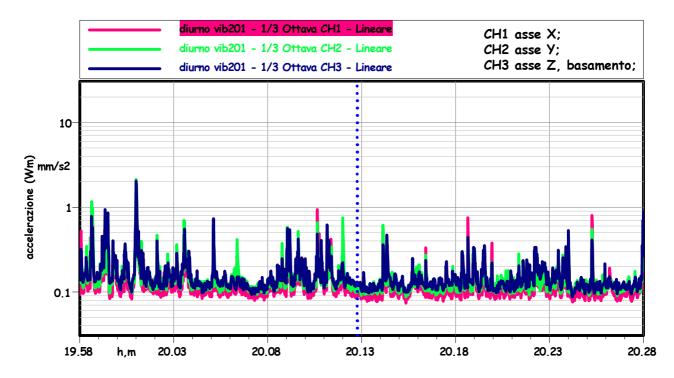


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

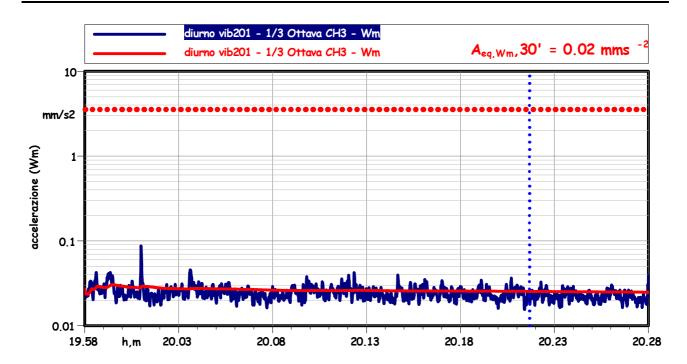


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno

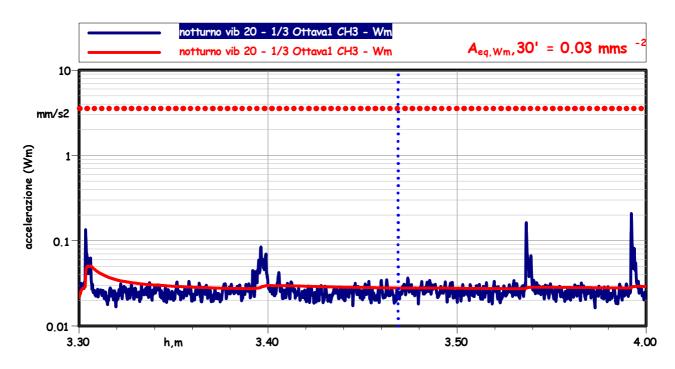
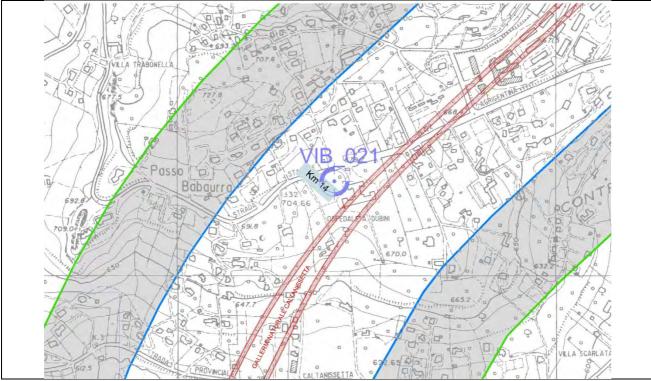


Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno


Il Tecnico Competente:	DATA	ORA
	13/04/12	20:05
Ing. Umberto Giglio	Firma:	1. Grafo

VIB_21

Stralcio planimetrico

UBICAZIONE PUNTO	COORDINATE		
Struttura Sanitaria ASP 2 Caltanissetta 37°29′26.47″N		14°1′58.38″E	
DESCRIZIONE RECETTORE E CONTESTO			
Struttura Sanitaria posta a 250 m dal tracciato			

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110 e
			4108

TIPOLOGIA EDIFICIO

Edificio Sanitario composta da piano terra più due piani

	TIPOLOGIA DELLA SORGENTE
Traffico veicolare urbano	
Misura di Ante Operam	

LIVELLO RMS , MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA		
accelerazione ponderata (Wm) asse z - periodo diurno (basamento) 0.15 mm/s ⁻²		
accelerazione ponderata (Wm) asse z - periodo diurno (secondo piano)	0.36 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno (basamento)	0.04 mm/s ⁻²	
accelerazione ponderata (Wm) asse z - periodo notturno (secondo piano) 0.15 mm/s		

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	1
--	---

NOTE

Frequente calpestio dei pazienti e del personale sanitario.

La misura delle vibrazioni all'ultimo piano nel periodo notturno è stata ottenuta mediante opportuno algoritmo di calcolo.

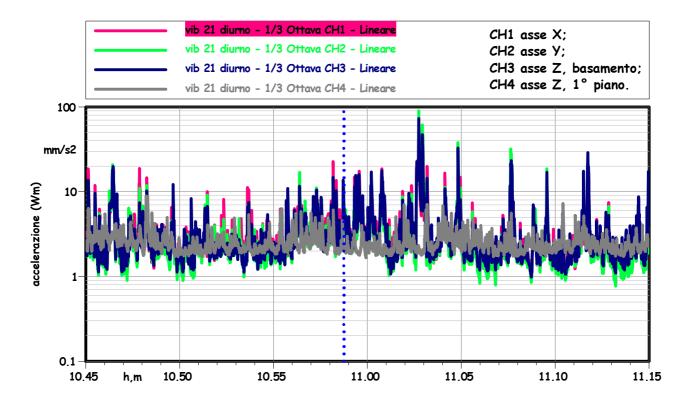


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

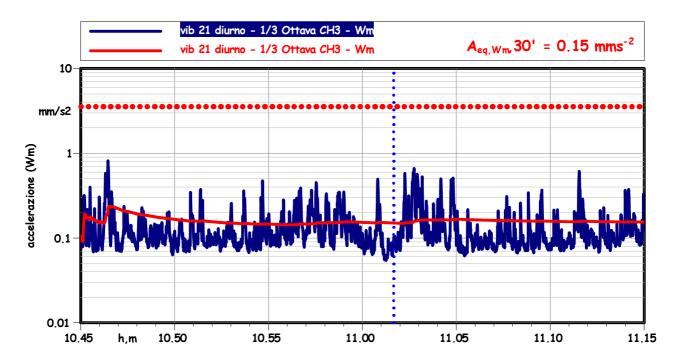


Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno (basamento)

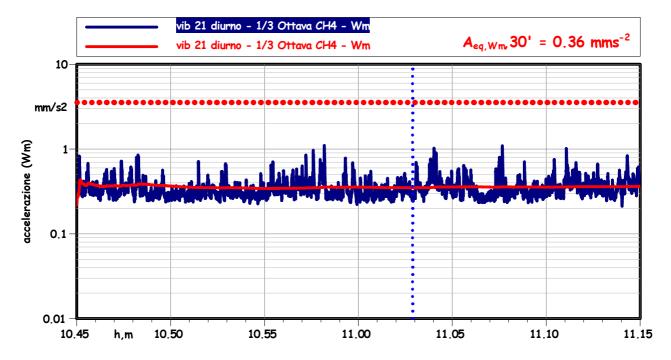


Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno (secondo piano)

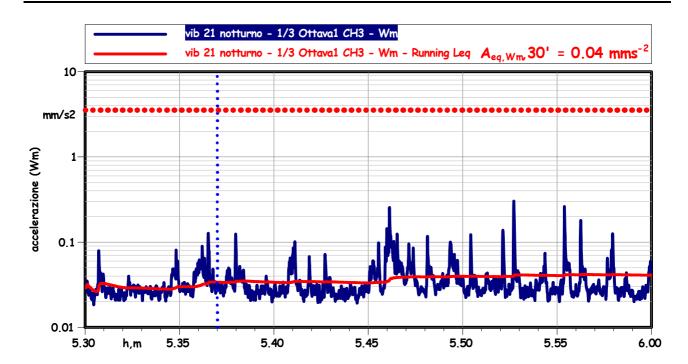


Figura 4 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno (basamento)

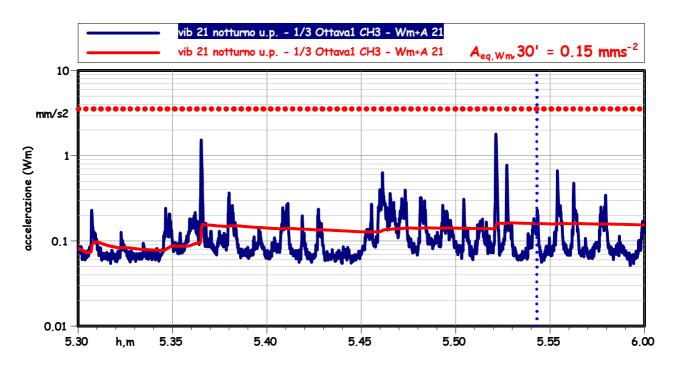
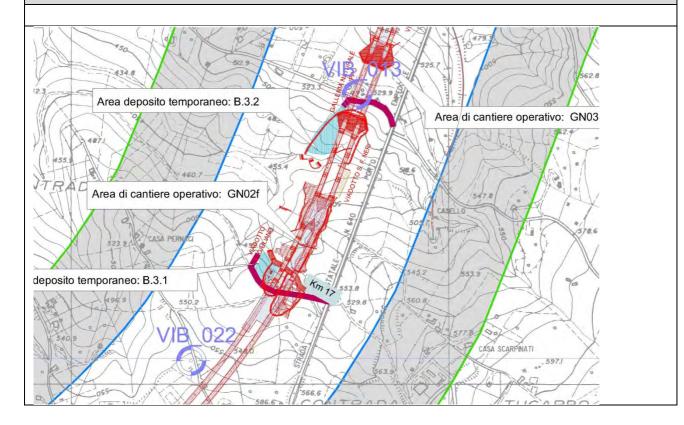


Figura 5 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno (secondo piano)


Il Tecnico Competente:	DATA	ORA
	13/04/12	10:45
Ing. Umberto Giglio	Firma:	to GIA.

VIB_22

Stralcio cartografico

UBICAZIONE PUNTO	COORDINATE	
	37°30′7.90″N	14°2′32.07″E
DESCRIZIONE RECETTORE E CONTESTO		·
Abitazione ubicata a 250 m dal tracciato		

STRUMENTO	Sonda Asse X	Sonda Asse Y	Sonda Asse Z
Soundbook	PCB 393A03 s.n. 4112	PCB 393A03 s.n. 4111	PCB 393A03 s.n. 4110

	TIPOLOGIA EDIFICIO
Abitazione residenziale ad un unico piano	

	TIPOLOGIA DELLA SORGENTE	
SS 640 e strade vicinali		
Misura di Ante Operam		

LIVELLO RMS, MEDIA SUL PERIODO DI RIFERIMENTO, PONDERAZIONE UNI 9614 POSTURA MISTA		
accelerazione ponderata (Wm) asse z - periodo diurno 0.05 mm/s ⁻²		
accelerazione ponderata (Wm) asse z - periodo notturno	0.03 mm/s ⁻²	

ATTIVITA' DI COSTRUZIONE (SOLO IN CORSO D'OPERA)	/

NOTE

Relativamente alla misura diurna, tra le 18.27 e le 18.32 è stata adottata una mascheratura a causa di una alterazione del rilevamento dovuta alla presenza di un animale domestico.

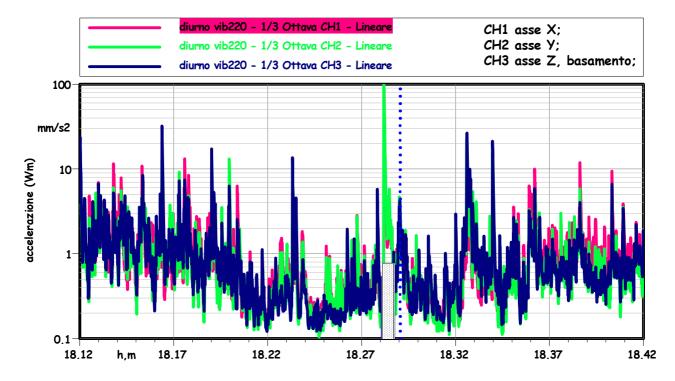


Figura 1 - Time history delle accelerazioni lineari assi x, y, z (basamento)

Figura 2 - Time history delle accelerazioni ponderate (Wm) asse z - periodo diurno

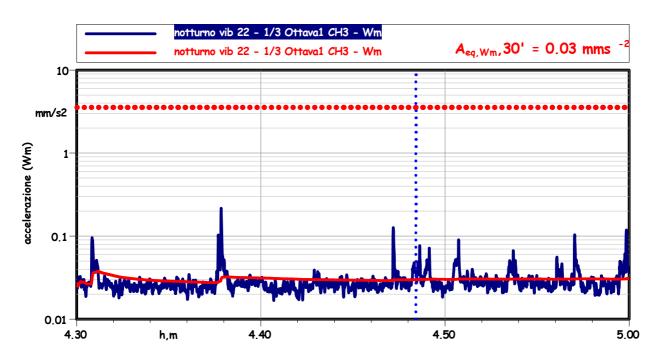


Figura 3 - Time history delle accelerazioni ponderate (Wm) asse z - periodo notturno

Il Tecnico Competente:	DATA ORA	
	13/04/12	18:25
Ing. Umberto Giglio	Firma:	1.7. Grafo
