	Tra lı	ns /	۔ Adr gin	TAP riati e A	c P	ipe °oo	eline do	5
00	23-08-2012	Emissione	finale		MTR/\		FP	GMM
00 0A	28-05-2012	Emesso pe	r revisione	e (IFR)	VD	/PRA	EP	GMM
Rev.No.	Data	Descrizion	e		Prepara	ato	Controllato	Approvato
Autore	Trans Adriatic Pipeli	ine	Titolo de Rappo Approc	I Documento rto Interj do Italiar	o: Dretativo 10	o – Ind	agine Ge	otecnica,
Autore:			Contratti	sta:	no per II	11-50	23-H10 KEV.	1
DAPPOLONIA		Numero del Documento: OPL00-DAP-160-Y-TRE-0010		Rev.: 00				
Contratto No.: 4502294618			Codice Progetto OPL00	Codice Autore DAP	Sistema 160	Codice Disciplir Y	Codice tipo na Documento TRE	Sequenziale No. 0010

Г

Doc. No. 11-503-H16 Rev. 1 - AGOSTO 2012

Trans Adriatic Pipeline (TAP) Baar, Svizzera

Indagine Geotecnica Trans Adriatic Pipeline (TAP) Approdo Italiano Rapporto di Interpretazione

Doc. No. 11-503-H16 Rev. 1 - AGOSTO 2012

Trans Adriatic Pipeline (TAP) Baar, Svizzera

Indagine Geotecnica Trans Adriatic Pipeline (TAP) Approdo Italiano

Rapporto di Interpretazione

Preparato da Firma		Data
Matteo Bisi	Martin La Company and Company	_23 Agosto 2012
Vito Dimichino	Ito Dudro	23 Agosto 2012
Controllato da	Firma	Data
Paolo Ravaschio	Val han	23 Agosto 2012
Approvato da	Firma	Data
Eric J. Parker	En JPL	23 Agosto 2012
Sottoscritto da	Firma	Data
Gian Maria Manfredini	Company in	_23 Agosto 2012
Rev. Descrizione	Preparato da Controllato da Approvato da Sott	oscritto da Data
1 Finale emissione	MTB/VD PRA EP	GMM Agosto 2012
0 Prima emissione	VD PRA EP	GMM Maggio 2012

Tutti i diritti, traduzione inclusa, sono riservati. Nessuna parte di questo documento può essere divulgata a terzi, per scopi diversi da quelli originali, senza il permesso scritto della D'Appolonia SpA.

INDICE

		<u>Pagina</u>
ELE	ENCO DELLE TABELLE	111
ELE	ENCO DELLE FIGURE	IV
ELE	ENCO DELLE TAVOLE	IV
1	INTRODUZIONE	1
2	SCOPO DEL LAVORO	2
	2.1 GENERALITA	2
	2.2 INDAGINI IN SITO	2
	2.3 PROVE DI LABORATORIO	3
	2.4 STRUTTURA DEL RAPPORTO	4
3	INQUADRAMENTO GEOLOGICO	5
	3.1 GEOLOGIA E TETTONICA DELLA ZONA	5
	3.2 GEOLOGIA LOCALE	6
	3.3 RISULTATI DELL'INDAGINE GEOFISICA	6
4	CARATTERIZZAZIONE DEL SITO	7
	4.1 STRATIGRAFIA	7
	4.2 PROPRIETÀ DELLE UNITÀ STRATIGRAFICHE	8
	4.2.1 Unità A	8
	4.2.2 Unità B	9
	4.2.3 Unità C	10
	4.2.4 Unità D	11
5	PARAMETRI GEOTECNICI DI PROGETTO	13
	5.1 PARAMETRI DEL TERRENO	13
	5.1.1 Peso di volume sommerso	13
	5.1.2 Densità relativa per terreni granulari	13
	5.1.3 Parametri di resistenza	13
	5.1.4 Conducibilità idraulica	13
	5.1.5 Abrasività del terreno	13
	5.1.6 Mineralogia	14
	5.2 PARAMETRI DELLA ROCCIA	14
	5.2.1 Qualità della roccia	14
	5.2.2 Resistenza della roccia	14
6	INTEGRAZIONE DEI DATI GEOFISICI	15
	6.1 INDAGINE GEOFISICA	15
	6.2 RISULTATI DELLE INDAGINI GEOFISICHE	15
7	RACCOMANDAZIONI GEOTECNICHE	16
8	CONCLUSIONI	18

INDICE (CONTINUA)

TABELLE FIGURE TAVOLE APPENDICE A: RIASSUNTO DEI DATI GEOTECNICI APPENDICE B: INTERPRETAZIONE DELLE PROVE PENETROMETRICHE STATICHE

ELENCO DELLE TABELLE

<u>Tabella N.</u>

Tabella 1: Posizione dei sondaggi combinati

Tabella 2: Posizioni delle prove PCPT

Tabella 3: Riassunto dei dati sismici

Tabella 4: Riassunto della stratigrafia nella posizione TAP_IT_1008

Tabella 5: Riassunto della stratigrafia nella posizione TAP_IT_1011

Tabella 6: Riassunto della stratigrafia nella posizione TAP_IT_1013 Tabella 7: Riassunto della stratigrafia nella posizione TAP_IT_1022

 Tabella 7: Riassunto della stratigrafia nella posizione TAP_IT_1022

 Tabella 8: Riassunto della stratigrafia nella posizione TAP_IT_1024

Tabella 8: Riassunto della stratigrafia nella posizione TAP_IT_1024 Tabella 9: Riassunto generale della stratigrafia

Tabella 10:Parametri geotecnici di progetto

ELENCO DELLE FIGURE

Figura N.

- Figura 1: Mappa del sito
- Figura 2: Posizione dei sondaggi ed elementi caratteristici del fondale
- Figura 3: Inquadramento tettonico del Mediterraneo Centrale
- Figura 4: Mappa geologica della Regione Puglia e della Penisola Salentina
- Interpretazione dei dati CPT, Posizioni TAP_IT_1008/1009 Interpretazione dei dati CPT, posizioni TAP_IT_1011/1012 Interpretazione dei dati CPT, posizione TAP_IT_1013 Figura 5:
- Figura 6:
- Figura 7:
- Figura 8: Interpretazione dei dati CPT, posizione TAP_IT_1022 Figura 9: Interpretazione dei dati CPT, posizione TAP_IT_1024
- Figura 10: Dati geotecnici di base, posizione TAP_IT_1008
- Figura 11: Dati geotecnici di base, posizione TAP_IT_1011
- Figura 12: Dati geotecnici di base, posizione TAP_IT_1022
- Figura 13: Dati geotecnici di base, posizione TAP_IT_1024
- Figura 14: Risultati della prova dei limiti di Atterberg
- Figura 15: Distribuzione granulometrica
- Figura 16: Proprietà geotecniche di base, Unità A
- Figura 17: Proprietà geotecniche di base, Unità C
- Figura 18: Proprietà geotecniche di base, Unità B e Unità D
- Figura 19: Proprietà geotecniche di base, tutte le Unità

ELENCO DELLE TAVOLE

- Tavola 1: Sezione Geologica A-A'
- Tavola 2: Sezione Geologica B-B'

RAPPORTO DI INTERPRETAZIONE INDAGINE GEOTECNICA TRANS ADRIATIC PIPELINE (TAP) - APPRODO IN ITALIA

1 INTRODUZIONE

Questo rapporto presenta le valutazioni e le interpretazioni geotecniche di un'indagine sotto costa effettuata in corrispondenza del punto di approdo Italiano (Figura 1) della condotta Trans Adriatic Pipeline (TAP). Le indagini sono state effettuate da D'Appolonia per conto di Statoil ASA/TAP ai sensi del Contratto N. 4502294618 (Statoil ASA, 2011)^{*}. Il sito è stato oggetto di precedenti indagini geofisiche e ambientali (D'Appolonia 2012a, b).

Le valutazioni ingegneristiche si basano sui risultati dell'indagine geotecnica effettuata tra il 28 Gennaio e il 25 Febbraio 2012 (D'Appolonia, 2012c) dal pontone auto-sollevante Skate IV. La società D'Appolonia S.p.A. di Genova ha operato in qualità di titolare dell'appalto per le indagini ed era incaricata della gestione dell'appalto, della supervisione delle attività in sito, delle attività di ingegneria geotecnica, delle prove di laboratorio e della stesura dei rapporti. Fugro Seacore Ltd, Falmouth, Regno Unito, era responsabile di perforazioni, campionamenti, prove in sito e operazioni marittime.

Lo scopo delle indagini era il reperimento dei dati stratigrafici e geotecnici per il progetto e la realizzazione dell'approdo in Italia della condotta TAP.

Si prevede che la condotta raggiunga il punto di approdo attraverso un micro-tunnel con partenza al largo, a circa 25 m di profondità (KP 1km), fino a terra a circa 800 m dalla linea di costa.

Il presente rapporto dovrebbe essere letto congiuntamente al rapporto di presentazione dei dati geotecnici (D'Appolonia, 2012d) e al rapporto sulle indagini geofisiche (D'Appolonia, 2012a).

I riferimenti sono riportati alla fine del testo.

2 SCOPO DEL LAVORO

2.1 GENERALITÀ

Le indagini hanno comportato due sondaggi geotecnici combinati (si intende sondaggi composti da alternanza di carotaggio per campionamento e prove PCPT) e tre prove penetrometriche con piezocono (PCPT) continue lungo la linea centrale del corridoio e due sondaggi geotecnici combinati lungo le linee laterali.

- Linea centrale:
 - sondaggi combinati TAP_IT_1008 e 1011 rispettivamente fino a una penetrazione di 20.5 e 29.2 m;
 - prove PCPT TAP_IT_1009, 1012 e 1013 rispettivamente fino a una penetrazione di 3.9, 8.9 e 19.9 m.
- Linee laterali:
 - Sondaggi combinati TAP_IT_1022 e 1024 rispettivamente fino a una penetrazione di 20.0 e 19.8 m.

Nella posizioni dei sondaggi la profondità del fondale varia da 13.4 m a 17.4 m. Le coordinate, la profondità e la penetrazione finale dei sondaggi e delle prove PCPT sono riportate nelle Tabelle 1 e 2. La mappa con la posizione dei sondaggi è riportata nella Figura 2.

Su richiesta del Committente, durante le indagini è stato ridotto lo scopo del lavoro originario. Le posizioni dei sondaggi eliminati si trovano in acque poco profonde, dove sono stati rilevati affioramenti rocciosi durante le indagini geofisiche, e nella zona di corridoio con profondità superiore ai 18 m. Dallo scopo del lavoro originario è stato eliminato un totale di 18 sondaggi (13 prove PCPT e 5 sondaggi combinati).

2.2 INDAGINI IN SITO

Le indagini in sito, comprendenti sondaggi con prelievo di campioni indisturbati e prove in sito, sono state effettuate dal pontone auto-sollevante Skate IV, appositamente attrezzato.

I sondaggi sono stati realizzati mediante colonne di aste perforazione da 5 ½ pollici API con alla base una corona dentata. La perforazione è stata effettuata utilizzando acqua di mare.

Il campionamento è stato eseguito con un campionatore a pressione a fondo foro wireline. In genere sono stati utilizzati tubi di campionamento a parete sottile con diametro interno 72 mm (3").

Le prove PCPT sono state eseguite con un sistema a spinta dall'alto (top push system) azionato dal piano di perforazione della piattaforma. È stato utilizzato un piezocono con superficie 10 cm^2 con elemento per la misurazione della pressione interstiziale montato a lato (tipo u2).

2.3 PROVE DI LABORATORIO

Sui campioni di terreno prelevati durante le indagini sono state eseguite prove di laboratorio sia a bordo che a terra.

Le prove di laboratorio a bordo prevedevano:

- esame visivo;
- contenuto d'acqua;
- densità;
- contenuto di carbonati;
- contenuto di frazione fine;
- point load.

Le prove di laboratorio a terra prevedevano:

- Prove di classificazione:
 - peso di volume;
 - analisi granulometrica;
 - aerometria;
 - limiti di Atterberg;
 - peso specifico dei grani;
 - densità minima e massima;
 - contenuto di carbonati;
 - contenuto di sostanze organiche.
- Prove di resistenza:
 - prove triassiali non consolidate non drenate (UU);
 - prove triassiali consolidate non drenate (CU);
 - prove triassiali consolidate drenate (CD);
 - prove di taglio diretto.
- Prove sulla roccia:
 - peso di volume;
 - contenuto di carbonati;
 - point load;
 - prove di compressione non confinata;
 - velocità del suono.
- Analisi chimiche:
 - pH;
 - contenuto di cloruri;
 - contenuto di solfati.
- Altre prove:

- esame al microscopio;
- permeabilità;
- prove di abrasione.

I certificati originali di tutte le prove eseguite sono riportati nel rapporto di presentazione dei dati (D'Appolonia, 2012 d).

2.4 STRUTTURA DEL RAPPORTO

Il presente rapporto fornisce le valutazioni e le interpretazioni geotecniche delle indagini. Il rapporto si articola come segue. L'inquadramento geologico è illustrato nel Capitolo 3. La caratterizzazione del sito, comprendente una descrizione dettagliata del terreno e delle proprietà delle rocce è riportata al Capitolo 4. Il Capitolo 5 fornisce un confronto e un'integrazione tra i dati geofisici e geotecnici. Il Capitolo 6 contiene le raccomandazioni geotecniche per il progetto. Il Capitolo 7 presenta le conclusioni del rapporto. I risultati delle indagini sono riassunti nelle tabelle e nelle figure alla fine del rapporto. Un riassunto dei dati geotecnici, compresi i boring logs, i grafici dei dati PCPT e un riassunto delle prove di laboratorio sono forniti nell'Appendice A. L'Appendice B presenta la metodologia per l'interpretazione dei dati PCPT.

3 INQUADRAMENTO GEOLOGICO

3.1 GEOLOGIA E TETTONICA DELLA ZONA

Il lato italiano del tracciato proposto della condotta si trova sulla relativamente stabile Placca Apula o Adria (Figura 3), relativamente stabile. Questa placca è un blocco di litosfera continentale che si estende al di sotto degli Appennini in Italia e, ad est, delle Dinaridi, Albanidi ed Ellenidi, da nord verso sud. Essa sembra essere un'estensione della crosta Africana ed è stata interpretata come una "penisola" che si estende verso l'Europa continentale (Channell e Horvath, 1976). Oggi invece la maggior parte dei ricercatori ritiene che si tratti di un blocco continentale, che si comporta come una micro-placca indipendente tra l'Europa e l'Africa (Dercourt et al., 1986). Adria si è formata e continua a muoversi in reazione ai movimenti combinati della Placca Africana, della Placca Eurasiatica, del Blocco Anatolico e dell'Arco Ellenico.

Anderson e Jackson (1987) e Anderson (1987) considerano lo Stretto di Otranto come il confine attuale tra Adria e Africa, anche se la maggior parte dell'attività sismica nell'ambito di Adria si trova nel Mare Adriatico centrale (Chiarabba et al., 2005; Pondrelli et al., 2006). Scisciani e Calamita (2009) hanno localizzato un confine in questa zona all'interno della Placca di Adria ("Dorsale Medio-Adriatica"), che divide la crosta in due blocchi diversi. Westaway (1990) ha localizzato un confine interno che corre dal promontorio del Gargano in direzione nord-orientale verso Dubrovnik. Anche Oldow et al. (2002) sono giunti alla conclusione che Adria è divisa in due blocchi tettonici, nord-occidentale e sud-orientale, in base alle misurazioni della velocità di spostamento del sito mediante GPS e alla sismicità.

La piattaforma Adriatica è un bacino poco profondo semichiuso, che corrisponde al bacino più recente dell'avampaese Appenninico. Questa zona di avampaese è segmentata in domini, che presentano spessori della litosfera, stati di deformazione e velocità di subduzione diversi. In particolare, l'avampaese Apulo corrisponde a un'ampia struttura antiformale, con disposizione ONO-ESE, suddivisa in blocchi da faglie (blocchi del Gargano, delle Murge e del Salento), che ha subito sollevamenti diversi durante il Plio-Quaternario (Pieri et al., 1997; Figura 4a).

La regione del Salento è la parte più meridionale dell'avampaese Apulo ed è costituita da uno spesso basamento carbonatico, che comprende diverse unità, la cui età varia dal Cretaceo Superiore al Pleistocene Inferiore. Queste unità sono ricoperte da strati sottili di sedimenti marini terrigeni diffusi, risalenti al Pleistocene Medio-Superiore (Selleri, 2007; Figura 4a). Questi sedimenti formatisi nel corso di numerose trasgressioni marine, raggiungono i 15-20 metri di spessore e sono indicati come terrazzi deposizionali marini (Selleri, 2007).

La struttura stratigrafica della piattaforma continentale del Salento presenta cunei progradazionali di sedimenti sovragiacenti in modo non conforme un'unità di base costituita da sabbie e calcareniti del Pleistocene. L'organizzazione interna dei cunei è caratterizzata da parasequenze progradazionali e retrogradazionali, separate da superfici transgressive (Aiello et al., 1996; Emery et al., 1996). Le spesse sequenze progradazionali sono segno di un abbassamento significativo e continuo del livello del mare, verificatosi durante il Medio

Pleistocene. Le grandi quantità di sedimenti apportate sono collegate alla recente fase di sollevamento tettonico che ha coinvolto l'avampaese Apulo (Doglioni et al., 1994).

3.2 GEOLOGIA LOCALE

L'approdo della condotta in Italia è previsto vicino a S. Foca, circa 30 km a sud-est di Lecce. La geologia degli affioramenti nella zona è caratterizzata dalla presenza di sedimenti del Pliocene della formazione "Uggiano la Chiesa", che ricoprono i depositi del Miocene di "Pietra Leccese" e "Calcarenite di Andrano" (Figura 4b). La formazione "Uggiano la Chiesa" è costituita da sedimenti detritici e carbonatici e affiora lungo la costa, con uno spessore massimo di appena superiore a 50 m (Margiotta e Negri, 2005).

I profili stratigrafici del sito sono caratterizzati da una sequenza di sabbia addensata sovrastante sabbia limosa mediamente addensata leggermente cementata e calcareniti, probabilmente attribuibile ai sedimenti del Pliocene della formazione "Uggiano La Chiesa".

3.3 RISULTATI DELL'INDAGINE GEOFISICA

Indagini geofisiche e ambientali (D'Appolonia, 2012a, b) sono state effettuate lungo un corridoio centrato sull'allineamento del tracciato della condotta TAP in corrispondenza del suo punto di approdo in Italia. Il corridoio è largo 500 m e lungo circa 1300 m.

La profondità massima lungo il tracciato oggetto di indagine è di 32 m (KP 1.300), il gradiente medio rilevato è di 1.5° (2.6%).

La zona di acque poco profonde lungo il corridoio, tra KP 0.062 e KP 0.740, è caratterizzata da affioramenti rocciosi superficiali (Figura 2) con un gradiente spesso superiore a 6°. Da KP 0.260 fino alla fine del corridoio sono presenti sedimenti sabbiosi. Un pendio ripido è stato rilevato tra KP 0.920 (profondità 18.8 m) e KP 1.096 (profondità 28.4 m).

La Tabella 3 descrive i principali riflettori poco profondi identificati durante le indagini geofisiche. L'Unità A è delimitata dal Riflettore R1 ed è costituita da sabbia. Il Riflettore R1 è una superficie di erosione. R1 non è presente dall'approdo fino a KP 0.5 poiché sul fondale affiora l'Unità B.

Lungo il tracciato previsto non sono stati riscontrati ostacoli o infrastrutture pre-esistenti.

4 CARATTERIZZAZIONE DEL SITO

Il presente capitolo esamina le condizioni del terreno e la stratigrafia di progetto. Le unità riscontrate sono descritte nel Paragrafo 4.1. I parametri di progetto del terreno sono riportati nel Paragrafo 4.2.

I boring logs, i risultati dettagliati delle prove PCPT e un riassunto dei risultati delle prove di laboratorio sono riportati nell'Appendice A.

I dati rilevanti del terreno sono presentati graficamente; le Figure da 5 a 19 mostrano i limiti di Atterberg, le distribuzioni granulometriche, le interpretazioni delle prove CPT e i dati geotecnici di base.

Le Tabelle da 4 a 8 riassumono la stratigrafia per ciascun sondaggio, con un riassunto della stratigrafia generale nella Tabella 9. I parametri geotecnici di progetto per le diverse unità sono presentati nella Tabella 10.

4.1 STRATIGRAFIA

Le condizioni in corrispondenza dell'approdo in Italia sono generalmente caratterizzate da spesse sequenze di terreno non coesivo. In tutti i sondaggi è stata riscontrata la presenza di roccia, tranne che per il sondaggio combinato TAP_IT_1011 e la prova PCPT continua TAP_IT_1013, a conferma che il sito presenta una variabilità laterale.

I sondaggi geotecnici e le prove PCPT sono stati eseguiti nella parte dell'area di indagine compresa tra KP 0.7 e KP 0.95.

Nei tre sondaggi più vicini a terra sono stati riscontrati diversi metri di sabbia da addensata a molto addensata, sovrastanti uno strato spesso 1-2 m di calcarenite, con resistenza da molto bassa ad alta, seguito a sua volta da sabbia limosa moderatamente addensata. In uno dei sondaggi (TAP_IT_1008/1009), negli ultimi metri è stata riscontrata calcarenite con resistenza estremamente/molto bassa. I sondaggi in acque più profonde (TAP_IT_1011/1012 e TAP_IT_1013) presentano formazioni granulari simili, ma senza la presenza degli strati di calcarenite.

Nelle tavole delle sezioni geologiche la stratigrafia è stata estesa lungo il tracciato. Questa estrapolazione si basa sulla correlazione tra i dati geotecnici e geofisici.

Si può ipotizzare che le sabbie addensate tendano a scomparire spostandosi dalla posizione dei sondaggi verso terra, dove affiora sul fondale la prima formazione di calcarenite. La presenza di questo strato di sabbia sembra continuare verso il largo rispetto alla posizione dei sondaggi, probabilmente sovrastante la formazione moderatamente addensata.

I materiali individuati durante le indagini in sito in corrispondenza dell'approdo in Italia possono essere raggruppati nelle seguenti Unità:

- Unità A Sabbia da addensata a molto addensata;
- Unità B Calcarenite con resistenza da molto bassa ad alta;
- Unità C Sabbia limosa moderatamente addensata, localmente cementata;
- Unità D Calcarenite con resistenza da estremamente bassa a molto bassa.

Le caratteristiche principali per ciascuna unità sono descritte nel seguente paragrafo.

4.2 PROPRIETÀ DELLE UNITÀ STRATIGRAFICHE

4.2.1 Unità A

Sabbia fine da addensata a molto addensata con tracce di limo

Contenuto d'acqua:	da 22 a 35%, in aumento con la profondità
Peso di volume sommerso:	da 8.0 a 10 kN/m ³
Contenuto di CaCO ₃ : a 80%	da 20% a 40%, all'estremità inferiore da 50%
Contenuto di fini (< 75 µm):	da 3% a 17%
Peso specifico dei grani:	da 2.65 a 2.70
Densità minima :	da 11.7 a 12.2 kN/m ³
Densità massima:	da 14.4 a 15.2 kN/m ³
Classificazione USCS:	SP o SP-SM
Resistenza media alla punta del cono:	da 8a18 MPa, inferiore alla sommità
Densità relativa:	da70% a 100%
Angolo d'attrito:	da 32° a 34° nelle prove di taglio diretto e CD
Conducibilità idraulica:	da 6.7E-04 a 8.9E-04 cm/sec
Ph:	8.6 (eseguita una analisi)
Contenuto di cloruri:	8746 mg/kg (eseguita una analisi)
Contenuto di solfati:	1350 mg/kg (eseguita una analisi)
Prova di abrasione:	14.5 SAT
Contenuto di minerali:	quarzo, albite, calcite, ortoclasio, diopside

L'Unità A è stata riscontrata in tutti i sondaggi dal fondale fino a profondità di penetrazione variabili tra 2.9 (TAP_IT_1008) e 10.5 (TAP_IT_1013). L'Unità A è composta prevalentemente da sabbia fine siliceo calcarea da addensata a molto addensata con un contenuto di fini tra 3% e 17% (Figura 16).

L'andamento delle curve di resistenza alla punta del cono è simile per tutti i sondaggi. La resistenza alla punta del cono aumenta con la profondità dal fondale e raggiunge un picco

massimo di 15-20 MPa in corrispondenza della parte centrale dell'Unità, per poi diminuire fino alla fine dell'Unità.

La densità relativa del terreno riflette l'andamento della curva della resistenza alla punta del cono e raggiunge valori tra 80% e 100% (Figure da 5 a 9) nella parte superiore dell'Unità. L'angolo d'attrito misurato con le prove triassiali consolidate drenate e il taglio diretto sono inferiori a quanto stimato in base alle prove CPT.

Il peso specifico ricavato dal contenuto d'acqua registra valori superiori a quelli ricavati dal calcolo della massa volumetrica (da 7 a 9 kN/m³ contro 9 - 10.5 kN/m³).

Il valore massimo di resistenza alla punta del cono è stato rilevato nel sondaggio TAP_IT_1013 con valori da 20 a 45 MPa tra 0.5 m e 1.5 m sotto al fondale.

La parte inferiore dell'Unità A nel sondaggio TAP_IT_1011 è caratterizzata da uno strato di sabbia ghiaiosa moderatamente cementata con contenuto di carbonati che raggiunge valori da 50% a 80%.

4.2.2 Unità B

Calcarenite con resistenza da molto bassa ad alta

Percentuale di recupero della carota (SCR):	da 0 a 38 %
Rock Quality Designation (RQD):	da 0 a 13%
Peso di volume sommerso:	da 10.5 a 14.5 kN/m ³
Contenuto di CaCO ₃ :	da 60% a 95%
Indice Point Load:	da 0.033 a 6.27 MPa
Resistenza alla compressione non confinata:	4.0 MPa (eseguita una sola prova)
Velocità del suono:	2895 m/sec (eseguita una sola prova)
Peso di volume sommerso: Contenuto di CaCO ₃ : Indice Point Load: Resistenza alla compressione non confinata: Velocità del suono:	da 10.5 a 14.5 kN/m ³ da 60% a 95% da 0.033 a 6.27 MPa 4.0 MPa (eseguita una sola prova) 2895 m/sec (eseguita una sola prova

Questa unità è stata individuata nei sondaggi TAP_IT_1008, 1022 e 1024 ed è caratterizzata da calcarenite con resistenza da molto bassa ad alta. La calcarenite è stata riscontrata a partire da 2.9 m nel sondaggio TAP_IT_1008 e da 6.5 m nel sondaggio TAP_IT_1022. Lo spessore dell'Unità varia da 1 m a 2.1 m.

La calcarenite sembra molto eterogenea con presenza di strati di calcarenite ad alta resistenza leggermente disgregata con stratificazioni da molto sottili a sottili e di calcarenite con resistenza estremamente bassa, da fortemente a completamente disgregata con ciottoli. A causa di questa alternanza e della presenza di discontinuità, la percentuale di recupero della carota (SCR) e la rock quality designation (RQD) sono molto scarse (Figura 18).

La parte inferiore dell'unità è caratterizzata da materiali di transizione tra l'Unità B e l'Unità C, costituiti da calcarenite con resistenza estremamente bassa e fortemente disgregata fino a sabbia limosa ben cementata.

A causa dei dati RQD scarsi e dello spessore limitato dell'Unità sono state eseguite solo poche prove. Le prove hanno fornito risultati caratterizzati da forte dispersione. Sono state eseguite quattro prove Point Load con risultati variabili (rispettivamente 0.033, 0.95, 2.79 e 6.27 MPa), a conferma dell'estrema variabilità della roccia. È stata eseguita una sola prova di compressione non confinata, che ha fornito un valore di resistenza di 4.0 MPa (roccia con resistenza da molto bassa a bassa).

Nella struttura della roccia è stata osservata la presenza di vuoti. La dispersione dei valori di resistenza misurati con la prova Point Load e di compressione non confinata è correlata alla distribuzione non omogenea dei vuoti nei campioni. Nei campioni con scarsa presenza di vuoti si riscontrano valori elevati di resistenza, mentre i campioni porosi sono più deboli.

La presenza di vuoti è confermata anche dai valori bassi misurati di peso di volume e velocità del suono ed è correlata ai valori di RQD prossimi allo zero.

4.2.3 Unità C

Sabbia limosa moderatamente addensata, localmente leggermente cementata

Contenuto d'acqua:	da 25% a 40%
Contenuto u acqua.	da 2570 a 4070
Peso di volume sommerso:	da 7.5 a 9.5 kN/m ³
Contenuto di CaCO ₃ :	da 60% a 100%
Contenuto di fini (< 75 µm):	da 30% a 65%, all'estremità inferiore da 25% a 45%
Peso specifico dei grani:	da 2.65 a 2.79
Densità minima :	da 11.4 a 12.9 kN/m ³
Densità massima:	da 14.3 a 15.4 kN/m ³
Classificazione USCS:	SM
Resistenza media alla punta del cono:	da 5 a 12 MPa
Densità relativa:	da 35% a 70%
Angolo d'attrito:	da 31.5° a 34° nelle prove di taglio diretto e triassiali
Conducibilità idraulica:	da 4E-04 a 8E-04 cm/sec
Ph:	da 8.6 a 8.9
Contenuto di cloruri:	da 6700 a 14000 mg/kg
Contenuto di solfati:	da 909 a 1430 mg/kg
Prova di abrasione:	0.5 SAT
Contenuto di minerali:	calcite, aragonite

L'Unità C è stata riscontrata in tutti i sondaggi a profondità tra 5.0 m (TAP_IT_1008) e 10.5 (TAP_IT_1013) m fino alla penetrazione finale. L'unica eccezione è rappresentata da TAP_IT_1008, dove gli ultimi quattro metri (da 16.4 m a 20.5 m) sono caratterizzati dalla presenza dell'Unità D.

L'Unità C è prevalentemente una formazione granulare costituita da uno strato spesso di sabbia limosa carbonatica moderatamente addensata. Localmente l'Unità presenta strati da leggermente a moderatamente cementati.

Questa unità è caratterizzata da contenuti di fini variabili. Il contenuto di fini è generalmente compreso tra 30% e 70% nella parte superiore dell'Unità (da 6 a 14 m sotto il fondale) e un po' più bassa (da 25% a 45%) nella parte inferiore dell'Unità.

Nei sondaggi 1008 (9.9 m - 14.2 m, USCS = ML), PCPT 1013 (13.5 m - 16.7 m) e 1024 (6.8 m - 13.5 m) sono stati identificati strati di limo sabbioso mediamente addensato. Anche questi strati di limo sabbioso sono caratterizzati da valori di pressione interstiziale molto bassi (da 3 a 5 MPa) e da un indice plastico molto basso (Figura 17).

L'unico strato coesivo (USCS = CL-ML) identificato in sito è uno strato sottile di limo/argilla sabbioso consistente tra 13.5 m e 15.7 m, riscontrato in corrispondenza di TAP_IT_1024. La prova triassiale UU eseguita in questo strato ha rilevato una resistenza a taglio non drenata di 117 kPa.

Anche la parte più profonda dell'Unità C presenta un grado di cementazione. In questa parte la classificazione USCS per tre campioni è stata GM, a causa della presenza nei campioni di numerosi noduli di sabbia cementata dalla dimensione di ghiaia.

Un'altra anomalia riscontrata in questa Unità è lo strato di sabbia moderatamente addensata tra 20.5 m e 25.3 m sotto il fondale in corrispondenza di TAP_IT_1011. Per questo strato non sono disponibili campioni, ma i valori molto bassi di pressione interstiziale indicano una sabbia pulita.

4.2.4 Unità D

Calcarenite con resistenza da estremamente bassa a molto bassa

Percentuale di recupero della carota (SCR):	da 78% a 97 %
Rock Quality Designation (RQD):	da 69% a 88%
Peso di volume sommerso:	da 7.5 a 10.5 kN/m ³
Contenuto di CaCO ₃ :	da 65% a 85%
Indice Point Load:	da 0.018 a 0.21 MPa, media 0.05 MPa
Resistenza alla compressione non confinata:	da 0.5 a 1.6 MPa
Velocità del suono:	da 1526 a 1704 m/sec

L'Unità D è stata identificata solo all'estremità inferiore del sondaggio TAP_IT_1008 ed è costituita da calcarenite con resistenza da estremamente bassa a molto bassa con stratificazioni medie. La resistenza è confermata dai valori molto bassi dell'indice Point Load e della resistenza a compressione non confinata (Figura 18).

La calcarenite si presenta inalterata e sono stati ottenuti valori molto buoni di SCR e RQD (rispettivamente da 80% a 100% e da 70% a 90%).

5 PARAMETRI GEOTECNICI DI PROGETTO

I parametri geotecnici di progetto elaborati per il sito si basano sulla valutazione dei dati delle prove in sito e di laboratorio. I parametri di progetto sono riassunti nella Tabella 10. La definizione dei singoli parametri è analizzata nei paragrafi che seguono.

5.1 PARAMETRI DEL TERRENO

5.1.1 Peso di volume sommerso

Il profilo del peso di volume sommerso di progetto è stato definito in base alle misurazioni dirette e all'esperienza su materiali simili. Inoltre è stato fatto riferimento anche ai valori stimati in base alle prove PCPT. I valori misurati del peso di volume sommerso e il profilo di progetto sono riportati nelle Figure da 10 a 13 e da 16 a 19.

5.1.2 Densità relativa per terreni granulari

La densità relativa (D_r) delle formazioni granulari è stata valutata in base ai dati misurati con le prove CPT. La D_r a partire dai dati CPT è stata valutata applicando il metodo di Jamiolkowski (1988).

5.1.3 Parametri di resistenza

La resistenza del terreno viene presentata sotto forma di angolo d'attrito drenato (ϕ') per i depositi granulari e resistenza a taglio non drenata (S_u) per i depositi coesivi.

Resistenza a taglio non drenata

In considerazione della quantità limitata di terreno coesivo nel sito, per le unità identificate in sito è stato considerato un comportamento drenato. Pertanto, alle unità del terreno non è stata attribuita resistenza a taglio non drenata.

Angolo d'attrito drenato

Per ciascuna formazione granulare è stato definito un angolo d'attrito drenato (ϕ'). L'angolo d'attrito è stato definito considerando la densità del terreno e la granulometria, oltre alle misurazioni di laboratorio (CD e taglio diretto). Si noti che dalle valutazioni basate sulle interpretazioni delle prove PCPT risultano angoli d'attrito maggiori di quelli misurati nelle prove di laboratorio. Si ritiene che ciò sia dovuto agli effetti della cementazione. Nella scelta dei parametri di progetto è stato dato un peso maggiore ai dati di laboratorio.

5.1.4 Conducibilità idraulica

Per ciascuna formazione granulare è stato definito un coefficiente di permeabilità medio (k). La media delle velocità (cm/sec) di permeazione di fluido attraverso i campioni è stata calcolata con il metodo a carico costante e i risultati sono stati collegati alla composizione dei terreni oggetto di indagine.

5.1.5 Abrasività del terreno

L'abrasività dei campioni di terreno è stata misurata con il Soil Abrasion Test (SATtm), un ulteriore sviluppo rispetto al precedente Abrasion Value (AV) e Abrasion Value Cutter Steel (AVS). Il valore SAT è stato calcolato come media della perdita di peso misurata in mg

generata da un anello tagliente d'acciaio. I valori SAT sono stati definiti per ciascuna unità sabbiosa e concordano con la composizione mineralogica di queste unità.

5.1.6 Mineralogia

Sono state eseguite prove mineralogiche e XRPD (diffrazione dei raggi X su polveri) per analizzare la composizione mineralogica dei terreni. È stata riscontrata una composizione principalmente silicea per l'unità di sabbia superiore e una composizione carbonatica per l'unità inferiore di sabbia limosa.

5.2 PARAMETRI DELLA ROCCIA

5.2.1 Qualità della roccia

Le definizioni della qualità della roccia si basano su RQD e sul sistema di classificazione RMR (rock mass rating) (Bieniawski, 1978, citato in USACE, 1994).

5.2.2 Resistenza della roccia

Per ciascuna formazione rocciosa sono stati definiti valori rappresentativi di resistenza a compressione non confinata (UCS). I valori di progetto sono stati scelti considerando sia le misurazioni dirette di resistenza non confinata che i valori di resistenza point load normalizzati a un diametro della carota di 50 mm, $I_{s(50)}$.

Una correlazione generale tra l'indice point load normalizzato e la resistenza a compressione non confinata è UCS = $\alpha \cdot I_{s(50)}$. Il valore tipico di α per rocce da medie a resistenti è intorno a 24, mentre per le rocce a bassa resistenza si devono sviluppare correlazioni specifiche per ciascun sito (Goodman, 1980). Per il sito in questione il valore medio di UCS e $I_{s(50)}$ concordano con un valore di α di circa 20.

In generale i valori di progetto sono stati scelti in modo da rappresentare valori medi cautelativi nelle parti solide delle formazioni. Nelle parti delle formazioni maggiormente litificate si prevedono valori di resistenza maggiori.

6 INTEGRAZIONE DEI DATI GEOFISICI

6.1 INDAGINE GEOFISICA

Indagini geofisiche e ambientali (D'Appolonia, 2012a e b) sono state effettuate lungo un corridoio centrato sull'allineamento del tracciato della condotta TAP in corrispondenza del suo punto di approdo in Italia. Il corridoio è largo 500 m e lungo circa 1300 m.

Le indagini geofisiche prevedevano:

- batimetria con ecoscandaglio multi-fascio e a fascio singolo;
- indagine geomorfologica con sonar a scansione laterale;
- indagine stratigrafica superficiale con sub bottom profiler.

6.2 RISULTATI DELLE INDAGINI GEOFISICHE

La profondità massima lungo il tracciato oggetto di indagine è di 32 m (KP 1.300), mentre il gradiente medio rilevato è di 1.5° (2.6%).

La zona di acque poco profonde lungo il corridoio, tra KP 0.062 e KP 0.740, è caratterizzata da affioramenti rocciosi superficiali (Figura 2 e Tavole 1 e 2) con un gradiente spesso superiore a 6°. Da KP 0.260 fino alla fine del corridoio sono presenti sedimenti sabbiosi. Un pendio ripido è stato rilevato tra KP 0.920 (profondità 18.8 m) e KP 1.096 (profondità 28.4 m).

Lungo il tracciato previsto non sono stati riscontrati ostacoli o infrastrutture pre-esistenti

La batimetria e gli elementi caratteristici del fondale sono riportati nelle Tavole 1 e 2.

La Tabella 3 e le sezioni geologiche A-A' e B-B' descrivono i principali riflettori poco profondi identificati durante le indagini geofisiche mediante sub bottom profiler.

Il Riflettore R1 corrisponde al confine tra l'Unità A superiore sabbiosa e la sottostante Unità C (sabbia limosa) o Unità B (calcarenite con resistenza da molto bassa ad alta). Questo riflettore è stato individuato dalla fine del corridoio di indagine in corrispondenza di KP 1.3 fino a KP 0.5, dove la calcarenite affiora sul fondale marino. La profondità massima raggiunta da R1 è di circa 10 metri in corrispondenza della sommità del pendio a KP 0.9, vicino al sondaggio TAP_IT_1011/1012 (Tavola 1).

Due riflettori secondari, denominati $R1_A e R1_B$ sono stati identificati in corrispondenza della transizione rispettivamente tra l'Unità A e l'Unità C e tra l'Unità C e l'Unità D (sezione geologica B-B' della Tavola 2). Questi due riflettori non sono stati individuati chiaramente nei dati geofisici, ma sono caratterizzati da differenza di impedenza acustica tra gli strati.

7 RACCOMANDAZIONI GEOTECNICHE

Lo scopo delle indagini era la raccolta di dati geotecnici per un micro-tunnel proposto in corrispondenza del punto di approdo della condotta. Il micro-tunnel avrà inizio alla base del pendio presente vicino a KP1.0-KP1.2, a una profondità dell'ordine di 25 m. Il tracciato del tunnel sfrutterà il pendio e manterrà un angolo da 6 a 10 gradi nel tratto di avvicinamento a terra. L'uscita del tunnel si troverà a circa 800 m dalla costa, con un possibile punto di uscita intermedio a 200 - 300 m dalla costa.

Le considerazioni geotecniche principali per le opere comprendono:

- unità di terreno/roccia riscontrate lungo il tracciato;
- resistenza dei materiali di scavo, con particolare accento sulla variabilità;
- permeabilità delle formazioni;
- abrasività;
- composizione minerale.

Le sezioni geologiche riportate nelle Tavole 1 e 2 mostrano una stratigrafia preliminare lungo il tracciato del tunnel. Si prevede che l'ingresso del tunnel si trovi in sabbie da addensate a molto addensate, con una transizione verso sabbie limose mediamente addensate. Nel corso dei sondaggi sono state riscontrare due formazioni rocciose (Unità B e D); è probabile che il tunnel debba attraversare almeno l'Unità B e potrebbe incontrare alcune sezioni limitate dell'Unità D.

È importante notare che le condizioni del terreno riportate per la sezione da KP 0.5 a terra sono state estrapolate e che il terreno/la roccia effettivamente presenti potrebbero essere diversi da quelli riportati nella sezione stessa. In particolare non è possibile determinare se in questa zona il micro-tunnel dovrà essere scavato in roccia o terreno. In corrispondenza dell'approdo e nei punti di uscita a terra dovrebbero essere effettuati ulteriori sondaggi per migliorare le conoscenze delle condizioni del terreno.

I parametri di progetto per le unità di terreno/roccia identificate durante le indagini sono riportati nella Tabella 10. Come osservato in precedenza, sono stati ricuperati pochi campioni per l'unità rocciosa superiore B. Questa formazione è una calcarenite porosa; la resistenza non confinata della roccia è molto variabile a seconda della porosità locale.

Si prevede che la maggior parte del tracciato si trovi nelle due formazioni sabbiose (Unità A e C). Lo strato superiore di sabbia ha un basso contenuto di fini, mentre la formazione più profonda contiene quantità apprezzabili di limo. Le misurazioni della permeabilità di questi materiali effettuate in laboratorio confermano una sabbia mediamente addensata. Si prevede che la macrostruttura aumenti la permeabilità in sito rispetto alle misurazioni di laboratorio.

Sono state effettuate prove di abrasione su campioni provenienti dalle due unità sabbiose. Le sabbie superiori (Unità A) presentano un'abrasività media, mentre la formazione inferiore (Unità C) è significativamente meno abrasiva.

Le analisi al microscopio e della diffrazione dei raggi X su polveri (XRPD) delle Unità A e C indicano una differenza significativa della composizione minerale. L'Unità A è composta principalmente da una serie di minerali silicei (quarzo, albite, diopside, ortoclasio). L'Unità C è caratterizzata principalmente dalla presenza di minerali carbonatici quali calcite e aragonite.

Queste differenze della composizione minerale influiscono sul valore di abrasività nelle Unità A e C.

La minore abrasività nella formazione più profonda può essere associata al suo maggiore contenuto carbonatico, mentre il valore più elevato dell'abrasività nell'unità superiore è dovuto alla presenza di contenuto siliceo.

8 CONCLUSIONI

Il presente rapporto illustra l'integrazione tra le indagini geofisiche, ambientali e geotecniche effettuate per conto di Statoil ASA per il progetto Trans Adriatic Pipeline (TAP), punto di approdo in Italia, S. Foca (LE). Lo scopo delle indagini era costituito dal reperimento dei dati necessari per il progetto di un micro-tunnel per l'approdo della condotta. Le conclusioni principali delle indagini sono le seguenti:

- I materiali individuati durante le indagini in sito in corrispondenza dell'approdo in Italia possono essere raggruppati nelle seguenti Unità:
 - Unità A Sabbia da addensata a molto addensata;
 - Unità B Calcarenite con resistenza da molto bassa ad alta;
 - Unità C Sabbia limosa mediamente addensata;
 - Unità D Calcarenite con resistenza da estremamente bassa a molto bassa.
- I dati geotecnici per le singole formazioni sono riassunti nelle figure riportate alla fine del testo. I parametri di progetto suggeriti sono riportati nella Tabella 10.
- Le raccomandazioni geotecniche si trovano nel capitolo 7.

È importante sottolineare i limiti dei dati geotecnici/geofisici disponibili. La portata delle indagini in sito è stata considerevolmente ridotta su richiesta del Committente. Di conseguenza sono disponibili dati geotecnici solo per la parte di tracciato tra KP 0.7 e 0.95, a profondità tra 13.4 m e 17.4 m. La stratigrafia è stata estrapolata con i dati disponibili per il resto della zona. Si raccomanda l'esecuzione di ulteriori sondaggi in corrispondenza dell'approdo della condotta. Si dovranno eseguire indagini anche sulla parte a terra.

MTB/VD/PRA/EP/GMM:tds

RIFERIMENTI

Aiello, G., Bravi, S., Budillon, F., Cristofalo, G. C., D'Argenio, B., De Lauro, M., Ferraro, L., Marsella, E., Molisso, F., Pelosi, N., Tramontano, M. A., 1996, "Marine Geology of the Salento (Apulia, South Italy). Preliminary Results of a Multidisciplinary Study", <u>Giornale di Geologia</u>, Vol. 57, No. 1.2, 17-40.

Anderson, H., 1987, "Is the Adriatic an African Promontory?" Geology 15, 212–215.

Anderson, H., e J. Jackson, 1987, "Active Tectonics of the Adriatic Region," <u>Geophys. J. R. Astron.</u> <u>Soc. 91</u>, 937–983.

Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowsky, M., e D. C. F. Lo Presti, 1989, "Modulus of sands from CPT's and DMT's", <u>Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering</u>, Rio de Janeiro, Brasile, Vol. 1, pp. 165-170.

Bieniawski, Z. T., 1978, "Determining Rock Mass Deformability: Experience from Case Histories", International Journal of Rock Mechanics and Mining Sciences, Vol. 15, pp. 237-248.

Channell, J. E. T., e F. Horvath, 1976, "The African-Adriatic Promontory as a Paleogeographical Premise for Alpine Orogeny and Plate Movements in the Carpatho-Balkan Region", <u>Tectonophysics</u>, Vol. 35, pp. 71–110.

Chiarabba, C., L. Jovane, R. Di Stefano, 2005, "A New View to the Italian Seismicity Using 20 Years of Instrumental Recordings," <u>Tectonophysics</u> 395, 251–268.

D'Appolonia, 2012a, Report, Geophysical Investigation, Trans Adriatic Pipeline, Italian Landfall, Doc. No. 11-503-H10 Rev.1, Marzo.

D'Appolonia, 2012b, Report, Environmental Investigation, Trans Adriatic Pipeline, Italian Landfall, Doc. No. 11-503-H10 Rev.1, Gennaio.

D'Appolonia, 2012c, Final Report, Geotechnical Investigation, Trans Adriatic Pipeline, Italian Landfall, Doc. No. 11-503-H13 Rev.0, Marzo.

D'Appolonia, 2012d, Factual Report, Geotechnical Investigation, Trans Adriatic Pipeline, Italian Landfall, Doc. No. 11-503-H14 Rev.0, Maggio.

Dercourt, J., L. P. Zonenshain, L. E. Ricou, V. G. Kazmin, X. Le Pichon, A. L. Knipper., C. Grandjacquet, I. M. Sbortshikov, J. Geyssant, C. Lepvrier, D. H. Pechersky, J. Boulin, J. C. Sibuet, L. A. Savostin, O. Sorokhtin, M. Westphal, M. L. Bazhenov, J. P. Lauer, e B. Biju-Duval, 1986, "Geological Evolution of the Tethys Belt from the Atlantic to the Pamirs since the Liassic", <u>Tectonophysics</u>, Vol. 123, pp. 241–315.

Doglioni C., Mongelli F. e Pieri P., 1994, "The Apulia Uplift (SE Italy): An Anomaly in the Foreland of the Apenninic Subduction due to Buckling of a Thick Continental Lithosphere", <u>Tectonics</u>, Vol. 13, No. 5, pp. 1309-1321.

Emery, D. e Myers, K. J., 1996, Sequence Stratigraphy, <u>Blackwell Science Ltd.</u>, pp. 297.

Lunne, T. e H. P. Christoffersen, 1983, "Interpretation of Cone Penetrometer Data for Offshore Sands", 15th Annual Offshore Technology Conference, OTC 4464, pp. 181-188, Houston, Texas.

Jamiolkowsky, M., Ghionna, V. N., Lancellotta, R., e E. Pasqualini, 1988, "New Correlations of Penetration Tests for Design Practice", in De Ruiter, J. (Ed.), Penetration Testing 1988: <u>Proceedings</u> of the First International Symposium on Penetration Testing, ISOPT-1, Orlando, 20-24 Marzo 1988, Vol. 1, A.A. Balkema, Rotterdam, pp. 263-296.

RIFERIMENTI (CONTINUA)

Kulhawy, F. H., e P. W. Mayne, 1990, <u>Manual on Estimating Soil Properties for Foundation Design</u>, Electric Power Research Institute (EPRI), Palo Alto, Calif. Report EL-6800.

Mantovani, E., M. Viti, D. Babbucci, N. Cenni, C. Tamburelli e A. Vannucchi, 2012, "Middle Term Prediction of Earthquakes in Italy: Some Remarks on Empirical and Deterministic Approaches", <u>Bollettino di Geofisica Teorica ed Applicata</u>, Vol. 53, No. 1, pp. 89-111, Marzo.

Mayne, P. W., e G. J. Rix, 1995, "Correlations between Shear Wave Velocity and Cone Tip resistance in Natural Clays", <u>Soils and Foundations</u>, Vol. 35, No. 2, pp. 107-110.

Margiotta, S. e Negri, S., 2005, Geophysical and Stratigraphical Research into Deep Groundwater and Intruding Seawater in the Mediterranean Area (the Salento Peninsula, Italy), <u>Natural Hazards and Earth System Sciences</u>, Vol. 5, pp. 127–136.

Oldow, J. S., L. Ferranti, D. S. Lewis, J. K. Campbell, B. D'Argenio, R. Catalano, G. Pappone, L. Carmignani, P. Conti e C. L. V. Aiken, 2002, "Active Fragmentation of Adria, the North African Promontory", Central Mediterranean Orogen, <u>Geology</u>, Vol. 30, No. 9, pp. 779 – 782.

Pieri, P., Festa, V., Moretti, M. Tropeano, M., 1997, Quaternary Tectonic Activity of the Murge Area (Apulian foreland - Southern Italy), <u>Annali di Geofisica</u>, Vol. XL, No. 5, Ottobre, pp. 1395-1404.

Pondrelli, S., S. Salimbeni, G. Ekström, A. Morelli, P. Gasperini, e G. Vannucci, 2006, "The Italian CMT Dataset from 1977 to the Present," <u>Physical Earth Planet International 159</u>, pp. 286–303.

Robertson, P. K. and K. L. Cabal, 2010, "Estimating Soil Unit Weight from CPT", <u>Proceeding of the</u> 2nd International Symposium on Cone Penetration Testing, Huntington Beach, California, USA, 9-11 Marzo 2010.

Robertson, P. K., 2009, "Interpretation of Cone Penetration Tests – A Unified Approach", <u>Canadian</u> <u>Geotechnical Journal</u>, Vol. 46, No. 11, pp. 1337-1355.

Robertson, P. K., e C. E. Wride, 1998, "Evaluating Cyclic Liquefaction Potential Using the Cone Penetration Test", <u>Canadian Geotechnical Journal</u>, Vol. 35, No. 3, pp. 442-459.

Robertson, P. K. e R. G. Campanella, 1983, "Interpretation of Cone Penetration Tests. Parte I: Sand", Canadian Geotechnical Journal <u>Geotechnical Journal</u>, Vol. 20, pp. 718-733

Scisciani, V. e F. Calamita, 2009, "Active Intraplate Deformation within Adria: Examples from the Adriatic Region," <u>Tectonophysics</u> 476, pp. 57–72.

Selleri, G., 2007, "Karstic Landscape Evolution of Southern Apulia Foreland during the Pleistocene", <u>Geografia Fisica e Dinamica Quaternaria</u>, Vol. 30, pp. 77-86.

Statoil ASA, 2011, "Trans Adriatic Pipeline – TSP Project – Contract No. 4502294618 – Geophysical and Geotechnical Survey", Agosto.

United States Army Corps of Engineers (USACE), 1994, <u>Rock Foundations</u>, Engineering Manual 1110-1-2908, Department of the Army, Washington, DC.

Westaway, R., 1990, "Present-day Kinematics of the Plate Boundary Zone between Africa and Europe, from Azores to the Aegean," <u>Earth Planet Sciences Letter</u> 96, pp. 393–406.

TABLE 1 COMBINED BOREHOLE LOCATIONS

DODING	LOCAL COO	RDINATES (m)	WGS84 CO	ORDINATES	WATER ⁽¹⁾	DATE	FINAL
DUKING	Easting	Northing	Latitude	Longitude	DEPTH (m)	(d/m/y)	PEN. (m)
TAP_IT_1008	278533.52	4466238.02	40° 19' 02.3481''	18° 23' 36.7215''	13.6	28/01/2012	20.50
TAP_IT_1011	278668.14	4466358.02	40° 19' 06.3646''	18° 23' 42.2700''	16.1	13/02/2012	29.20
TAP_IT_1022	278437.63	4466486.32	40° 19' 10.3016''	18° 23' 32.3530''	15.4	19/02/2012	20.00
TAP_IT_1024	278776.79	4466114.68	40° 18' 58.5840''	18° 23' 47.1719''	15.9	15/02/2012	19.80

TABLE 2

PCPT LOCATIONS

DCDT	LOCAL COO	RDINATES (m)	WGS84 COORDINATES		WATER ⁽¹⁾	DATE	FINAL
rtri	Easting	Northing	Latitude	Longitude	DEPTH (m)	(d/m/y)	PEN. (m)
TAP_IT_1009	278540.07	4466243.62	40° 19' 02.5357''	18° 23' 36.9916''	13.4	24/01/2012	3.38
TAP_IT_1012	278672.73	4466361.46	40° 19' 06.4803''	18° 23' 42.4601''	16.9	12/02/2012	8.90
TAP_IT_1013	278731.15	4466404.27	40° 19' 07.9232''	18° 23' 44.8793''	17.4	25/02/2012	20.00

Notes:

⁽¹⁾ Water depth measured by drill string at the start of boring.

GEODETIC PARAMETERS:

COORDINATE SYSTEM	WGS 84
Ellipsoid	WGS 84
Datum	WGS 84
Semi-major axis	6 378 137.000 m
Inverse Flattening	298.257223563
Projection Method	Universal Transversal Mercator,
	Northern Emisphere
UTM Zone	34 N
Latitude origin	0° N
Longitude origin	21° East
Central Meridian	21° East
Hemisphere	North
False Easting	500 000 m
False Northing	0 m
Scale Factor on C.M.	0.9996

REFLECTOR	DEPTH ⁽²⁾	DESCRIPTION	INTERPRETATION	SEISMIC UNIT
ID ⁽¹⁾	(m)			
Seabed (MBES)	0	None	Present seafloor	
R1 and R1 _A	0 - 10.5	R1: Medium to high amplitude and continuity	Erosional surface that could	A and B
(SBP)		reflector.	have formed during	
		R1 _A : change of acoustic impedance	Pliostocene sea fall	
	R1 to end of	Medium to high amplitude and continuity,	Erosional surface probably	С
	data	becoming steeper in the distal part	related to sub-aerial exposure	
			and subsequent reworking	
			during sea level rise	
$R1_B(SBP)$	14.0	Change of acoustic impedance	Transition to harder layer	D

TABLE 3SUMMARY OF SEISMIC DATA

Notes:

- (1) MBES = Multibeam Echo Sounder, SBP = Sub-Bottom Profiler,
- (2) Depth below see floor.

Reference: D'Appolonia (2012a)

TABLE 4
SUMMARY OF STRATIGRAPHY
TAP_IT_1008 LOCATION

UNIT	DEPTH (m)			TYPICAL
	FROM	TO	SIMPLIFIED DESCRIPTION	q_{c}
				(MPa)
А	0.0	2.9	Dense to very dense sand trace silt	6-20
В	2.9	4.3	Weak to strong calcarenite	N.A.
	4.3	5.0	Extremely weak calcarenite	N.A.
С	5.0	9.9	Medium dense to dense silty sand	6-18
	9.9	14.2	Medium dense sandy silt	6-14, peaks to 22-26
	14.2	16.4	Medium dense moderately cemented sand some silt	7-14
D	16.4	20.5	Extremely weak to very weak calcarenite	N.A.

TABLE 5 SUMMARY OF STRATIGRAPHY TAP_IT_1011 LOCATION

UNIT	DEPTH (m)			TYPICAL
	FROM	TO	SIMPLIFIED DESCRIPTION	q _c (MPa)
А	0.0	7.0	Dense sand trace silt	4-16
	7.0	9.1	Medium dense to very dense slightly cemented to moderately cemented gravelly sand trace to some silt	2-10, peak to refusal
С	9.1	20.5	Medium dense fine silty sand, locally slightly cemented	4-20
	20.5	25.3	Medium dense sand	7-22, peak to 40
	25.3	29.2	Medium dense sandy silty to silty sand	6-20

TABLE 6
SUMMARY OF STRATIGRAPHY
TAP_IT_1013 LOCATION ⁽¹⁾

UNIT	DEPTH (m)			TYPICAL
	FROM	ТО	SIMPLIFIED DESCRIPTION	q_{c}
				(MPa)
А	0.0	1.5	Very dense sand	28-34,
				peak to 45
	1.5	8.5	Dense sand	8-16
	85	10.5	Medium dense sand	4-8, peak
	0.5	10.5		to 44
С	10.5	13.5	Medium dense silty sand	4-10
	12.5 16.7 Loose to med		Loose to medium dense sandy silt	4-12, peak
	13.5	10.7		to 24
	16.7	20	Loose to medium dense silty sand	5-10

Notes:

⁽¹⁾ Inferred from CPT data

TABLE 7 SUMMARY OF STRATIGRAPHY TAP_IT_1022 LOCATION

UNIT	DEPT	H (m)		TYPICAL
	FROM	ТО	SIMPLIFIED DESCRIPTION	q_c
				(MPa)
А	0.0	6.5	Dense sand trace silt	2-15
В	6.5	7.0	Weak to medium strong calcarenite	N.A.
	7.0	7.5	Extremely weak calcarenite to well cemented sand	N.A.
С			Medium dense silty sand, locally slighty cemented	4-16,
	7.5	20		peaks to
				24-60

TABLE 8
SUMMARY OF STRATIGRAPHY
TAP_IT_1024 LOCATION

UNIT	DEPT	'H (m)		TYPICAL
	FROM	ТО	SIMPLIFIED DESCRIPTION	q_c
				(MPa)
А	0.0	5.8	Dense to very dense sand trace silt	4-22
В	5.8	6.8	Weak calcarenite	N.A.
С	6.8	13.5	Medium dense sandy silt, locally slightly cemented	5-12
_	13.5	15.7	Very stiff sandy silty clay	4-7
	157	10.8	Loose to medium dense silty sand, locally slightly	6-9, peak
	13.7	19.0	to moderately cemented	to 18

UNIT	SIMPLIFIED DESCRIPTION	TAP_IT	_1008	TAP_IT	_1011	TAP_IT	_1013	TAP_IT_	1022	TAP_IT	_1024
		FROM	ТО	FROM	ТО	FROM	ТО	FROM	ТО	FROM	ТО
Α	Dense to very dense sand trace silt	0.0	2.9	0.0	9.1	0.0	10.5	0.0	6.5	0.0	5.8
В	Very weak to	2.9	5.0	-	-	-	-	6.5	7.5	5.8	6.8
	strong calcarenite										
C	Medium dense silty sand	5.0	16.4	9.1	29.2	10.5	20	7.5	20	6.8	19.8
_	locally slighty cemented										
D	Extremely weak to	16.4	20.5	-	-	-	-	-	-	-	-
	very weak calcarenite										

TABLE 9GENERAL SUMMARY OF STRATIGRAPHY

TABLE 10								
GEOTECHNICAL DESIGN PARAMETERS								

UNIT	MATERIAL	γ'			SOIL (n	ı)	ROCK		
		(kN/m^3)	S _u (kPa)	D _r	φ' (deg)	K (T= 20°C)	SAT TM	Quality	UCS (MPa)
А	Sand	9.0	-	85	33	7.81E-04	14.5		
В	Calcarenite	12.5	-	-	-	-	-	Poor	4-80
С	Sand/Silt	8.5	-	50	32	5.97E-04	0.5		
D	Calcarenite	8.5	-	-	-	-	-	Fair	1

Notes:

(1) γ' is submerged unit weight.

(2) S_u is undrained shear strength.

(3) D_r is relative density.

(4) ϕ' is drained friction angle.

(5) K is hydraulic conductivity

(6) SAT is Soil Abrasion Test

(7) UCS is unconfined compression strength.

(8) Unit B presents variable porous structure. Higher strength values are associated with the less porous, more strongly lithified portions

DAPPOLONIA

KEY MAP

SCALE

FIGURE 1

SITE LOCATION MAP

PREPARED FOR

Doc. No. 11-503-H16 Rev. 1 - August 2012

Legend

Kilometre Post indicating distance from Italian landfall Landfall Route Corridor

Coastline

Bathymetric contours at 0.5 metre intervals

Topographic contours at 0.5 metre intervals
 Break of slope
 Erosional scar
 Relict dunes

Bioturbated seafloor

Area with depressions

Rocky outcrop Bioconstructions

Combined boreholes

PCPTs

SAND

FIGURE 2

BOREHOLE LOCATION MAP AND SEABED FEATURES

PREPARED FOR

TRANS ADRIATIC PIPELINE (TAP) BAAR, SWITZERLAND

NOTES

Black arrows indicate the kinematics of the African and Adria plates with respect to Eurasia White arrows indicate the kinematics of the Apennine wedges carried by Adria

- 1) African continental domain
- 2) Adriatic continental domain
- 3) Ionian oceanic domain
- 4) Apennine orogenic wedges carried by Adria
- 5) Quaternary volcanism
- 6,7,8) compressional extensional and transcurrent features
- Aq=Aquila transtensional fault system
- Be=Benevento normal fault system
- Ce=Cephalonia transpressional fault system
- ELA =Eastern sector of the Latium-Abruzzi platform
- Fu=Fucino transtensional fault system
- Ir=Irpinia normal fault system
- LI=Ligurian units
- Mo=Montenegro
- MS=Molise-Sannio units
- Mt=Matese normal fault system
- RMU=Romagna-Marche-Umbria units
- SV=Sangro-Volturno transpressional fault system
- Sy=Siracuse escarpment
- VT=Val Tiberina trough

REFERENCE

TECTONIC SKETCH OF CENTRAL MEDITERRANEAN BY MANTOVANI ET AL. (2012)

DAPPOLONIA

FIGURE 3

TECTONIC SETTING OF CENTRAL MEDITERRANEAN

PREPARED FOR

Figure 4a: Schematic geological map of Puglia region and Salento peninsula (modified from Pieri et al., 1997 and Selleri, 2007).

Legend:

1 Pre-Neogene dolomite-limestone units

2 Middle-Upper Miocene limestones and calcarenites (Pietra leccese, Calcareniti di Andrai, Novaglie formations)

3 Upper-Middle Pliocene calcarenites, breccia and calcareous marls (Uggiano la Chiesa and Leuca formations)

4 Lower Pleistocene calcarenites (Calcarenite di Gravina formation)

5 Middle-Upper Pleistocene terrigenous deposits (Marine terraced deposits)

6 Recent and present marsh and beach deposits

7 Main coastal localities: a - Taranto, b - Brindisi, c - Otranto, d - Gallipoli, e - Santa Maria di Leuca. (L.P.) Italian Landfall Point

Figure 4b: Geological Map of Salento Region (Doglioni et al., 1994)

FIGURE 4

DAPPOLONIA

GEOLOGICAL MAPS OF PUGLIA REGION AND SALENTO PENINSULA

PREPARED FOR

NOTE: WATER DEPTH : 13.4 m - 13.6 m

TAP_IT_1008/1009 LOCATIONS

PREPARED FOR

q _c (MI	Pa)	u ₂ (MPa)	В _q (-)	F _r (-)	l _c (-)	UNIT WEIGHT ((kN/m³)	JNDRAINED SHEAF S _u (kPa)	R STRENGTH)	STRESS HISTORY (kPa)	RELATIVE DENSI D _r (%)
	30		-2 -1 0 1	2 0 4 8 12		6 14 16 18 20 22 24	0 100 200	300 400 C	0 1000 2000 3000 0	20 40 60 80
					V					TAN
6										
8										
10		_								
12										
14	-			hund	WARAN	Parta				
16				2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3						
18		And Mary		A .	- Wort	A Market				
20		Ma		3						
22	-									
24	-				July V					
26			LA AAmin	Mahran	Mr. Mar					
28					Acriv					
30 + + + + + + + + + + + + + + + + + + +	0.6 0.8 Pa)	1 — u ₂	— B _q	F _r : normalized - friction ratio 0 1 2 2 2 3	$ I_{C}: Robertson & Wride (1998) I.00 < I_{c} < 1.31 Gravelly sand .31 < I_{c} < 2.05 Sands - clean to silt .05 < I_{c} < 2.60 Sand mixtures .60 < I_{c} < 2.95 Silt mixtures .95 < I_{c} < 3.60 Clays .60 < I_{c} < 6.00 Organic soils - peat .05 < I_{c} < 6.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic soils - peat .05 < I_{c} < 0.00 Organic $	Robertson & Cabal (20	10) — N _k =15 — N _k =20		σ'_p : Preconsolidation Pressure (Robertson, 2008) σ'_v : Vertical effective stress	D _r : Jamiołkowsky et al. (198 K _o : Lunne & Christophersen
				Ū	, source pour					

NOTE: WATER DEPTH : 16.1 m - 16.9 m

CPT DATA INTERPRETATION TAP_IT_1011/1012 LOCATIONS

PREPARED FOR TRANS ADRIATIC PIPELINE BAAR, SWITZERLAND

NOTE: WATER DEPTH : 17.4 m

TAP_IT_10013 LOCATION

PREPARED FOR

q _c (MPa)	u ₂ (MPa)	B _q (-) F _r (-)	І _с (-)	UNIT WEIGHT UN (kN/m³)	DRAINED SHEAR STRE S _u (kPa)	NGTH STRESS HISTORY (kPa)	RELATIVE DENS D _r (%)
	40 -1 0 1 2 3 4 5 -2	-1 0 1 2 0 4 8		16 18 20 22 24 0	100 200 300	400 0 500 1000 1500	0 20 40 60 80
			}				
6							
8							
10			{ { }				Production of the second secon
12	A A A A A A A A A A A A A A A A A A A						NV MWM
14	May ha						
16							
18							
20 0 0 0 0 0 0 0 0 0 0 0 0 0	1 — u ₂	- B _q - F _r : normalized friction ratio	$I_{c}: Robertson \& Wride (1998) \\ 0.00 < I_{c} < 1.31 Gravelly sand \\ 1.31 < I_{c} < 2.05 Sands - clean to silth 2.05 < I_{c} < 2.60 Sand mixtures \\ 2.60 < I_{c} < 2.95 Silt mixtures \\ 2.95 < I_{c} < 3.60 Clays \\ 3.60 < I_{c} < 6.00 Organic soils - peats \\ 0.00 < 0.00 Clays \\ 0.00 < 0.00 < 0.00 < 0.00 Clays \\ 0.00 < 0.00 < 0.00 < 0.00 < 0.00 Clays \\ 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < $	Robertson & Cabal (2010) y	- N _k =15 - N _k =20	 o^r_p: Preconsolidation Pressure (Robertson, 2008) o^r_v: Vertical effective stress 	D, : Jamiolkowsky et al. (198 K ₀ : Lunne & Christophersen

NOTE: WATER DEPTH : 15.4 m

FIGURE 8

CPT DATA INTERPRETATION TAP_IT_1022 LOCATION

PREPARED FOR

q _c (MPa)	u ₂ (MPa)	В _q (-)	F _r (-) I _c (-)	UNIT WEIGHT UNDRAINED SHEAR (kN/m ³) S _u (kPa)	STRENGTH STRESS HISTORY (kPa)	RELATIVE DENS D _r (%)
	0 -1 0 1 2 3 4 5 -2				300 400 0 500 1000 1500 0	20 40 60 80
2						
6			5			
8	- M					
	- Am					Mr. M.
12		, marine				- Mrwv /
16						
18						Monday
20 0 0 0 0 0.2 0.4 0.6 0.8 1 f_s (MPa) $- q_c$ $\dots f_s$	1 — U ₂ —	– B _q _ F _i : n frid	ormalized tion ratio I_c : Robertson & Wride (1998) 0.00 < I_c < 1.31 Gravelly sand 1.31 < I_c < 2.05 Sands - clean to silty 2.05 < I_c < 2.60 Sand mixtures 2.60 < I_c < 2.95 Silt mixtures 2.95 < I_c < 3.60 Clays 3.60 < I_c < 6.00 Organic soils - peats	- Robertson & Cabal (2010) - N _k =15 - N _k =20	 σ'_p: Preconsolidation Pressure (Robertson, 2008) σ'_v: Vertical effective stress 	D, : Jamiołkowsky et al. (194 K _o : Lunne & Christopherser

NOTE: WATER DEPTH : 15.9 m

FIGURE 9

CPT DATA INTERPRETATION TAP_IT_1024 LOCATION

PREPARED FOR

Doc. No. 11-503-H16 Rev.1 - August 2012

BASIC PHYSICAL DATA TAP_IT_1008 LOCATION

PREPARED FOR

Doc. No. 11-503-H16 Rev.1 - August 2012

NOTE: WATER DEPTH : 16.1 m

DAPPOLONIA

TAP_IT_1011 LOCATION

PREPARED FOR

Doc. No. 11-503-H16 Rev.1 - August 2012

BASIC PHYSICAL DATA TAP_IT_1022 LOCATION

PREPARED FOR

Doc. No. 11-503-H16 Rev.1 - August 2012

BASIC PHYSICAL DATA TAP_IT_1024 LOCATION

PREPARED FOR

TAP_IT_1008

TAP_IT_1011

TAP_IT_1022

TAP_IT_1024

Location	Depth (m)	Liquid Limit (%)	Plastic Limit	Plasticity Index	Unit
			(%)	(%)	
TAP_IT_1008	9.30	20	16	4	С
TAP_IT_1008	12.90	20	18	2	С
TAP_IT_1011	14.00	20	18	2	С
TAP_IT_1022	17.10	19	18	1	С
TAP_IT_1024	7.35	28	20	8	С
TAP_IT_1024	14.45	27	22	5	С
TAP_IT_1024	16.50	N.A.	N.P.	-	С
TAP IT 1024	19.40	N.A.	N.P.	-	С

NA = Not Applicable NP = Not Plastic

FIGURE 14

ATTERBERG LIMITS TEST RESULTS

PREPARED FOR

FIGURE 15

PARTICLE SIZE DISTRIBUTION

PREPARED FOR

DESCRIPTION
Dense to very dense sand trace silt

FIGURE 16

BASIC PHYSICAL PROPERTIES UN**I**T A

PREPARED FOR TRANS ADRIATIC PIPELINE BAAR, SWITZERLAND

UNIT	DESCRIPTION				
С	Medium dense silty Sand locally cemented				

FIGURE 17 BASIC PHYSICAL PROPERTIES UNIT C

PREPARED FOR TRANS ADRIATIC PIPELINE BAAR, SWITZERLAND

UNIT	DESCRIPTION
B	Very weak to strong
Б	Calcarenite
L L	Extremely weak to very
D	weak Calcarenite

BASIC PHYSICAL PROPERTIES UNIT B AND UNIT D

TRANS ADRIATIC PIPELINE

LEGEND Unit A Unit B

- Unit C
- Unit D
- ----- Design

FIGURE 19

BASIC PHYSICAL PROPERTIES, ALL UNITS

PREPARED FOR

GPS SATELLITE DATUM:	WGS84	Central meridian (CM):	21° E
Spheroid:	WGS84	Latitude of Origin:	0° N
Semi maior axis (a):	6378137.000 m	False Easting:	500 000 m
Inverse Flattening:	298.257223563	False Northing:	0 m
Projection:	Universal Transverse	Scale factor on CM:	0.9996

HORIZONTAL SCALE 1 : 2,000. VERTICAL SCALE 1 : 200 (x10 VERTICAL EXAGGERATION)									
	0	25	50	100	150	200	25	0 metres	
	0	50		250	500		750 feet		
Vessel: MV IC	ROSF	ERA AND	SKATE IV	Survey Date:	January - February 2012	Project	Ref:	11-5	03
Issue No	Date		Description		Interpr	Drawn	Chkd	Appr	
0		25-05-	25-05-12 IN		INTERPRETATIVE REPORT		AGB	PRA	EP
1	22-08-12		INTERPRETATIVE REPORT		VD	AGB	PRA	EP	
Client Ref:				File Name:		Chart:	01	of	02

GPS SATELLITE DATUM:	WGS84	Central meridian (CM):	21° E
Spheroid:	WGS84	Latitude of Origin:	0° N
Semi major axis (a):	6378137.000 m	False Easting:	500 000 m
Inverse Flattening:	298.257223563	False Northing:	0 m
Projection:	Universal Transverse Mercator	Scale factor on CM:	0.9996

HORI	ZONTAL SCA	LE 1 : 2,	000. VERTICAL	SCALE 1 : 200 (x10 \	/ERTICAL	EXAGG	ERATION	۷)
	0 25	50	100	150	200	25	0 metres	
	0 50		250	500		750 feet	•	
Vessel: MV IC	ROSFERA AND	SKATE IV	Survey Date: J	January - February 2012	Project	Project Ref: 11-503		
Issue No	Date		Description		Interpr	Drawn	Chkd	Appr
0	25-05-	12	INTERPRETATIVE REPORT		VD	AGB	PRA	EP
1	22-08-	12	INTERPRETATIVE REPORT		VD	AGB	PRA	EP
Client Ref:			File Name:		Chart:	02	of (02

APPENDICE A RIASSUNTO DEI DATI GEOTECNICI

- Boring Logs
- Grafici dei dati PCPT
- Riassunto dei risultati delle prove di laboratorio

SOIL DESCRIPTION

DENSITY **COARSE GRAINED SOILS**

DENSITY	RELATIVE DENSITY [%]
Very Loose	< 15 15 - 35
Medium Dense	35 - 65
Dense Very Dense	65 - 85 > 85

CONSISTENCY **FINE GRAINED SOILS**

CONSISTENCY	UNDRAINED SHEAR STRENGTH [kPa]
Very Soft	< 12
Soft	12 - 25
Medium Stiff	25 - 50
Stiff	50 - 100
Very Stiff	100 - 200
Hard	> 200

SOIL DESCRIPTION

1. DENSITY/CONSISTENCY

- 2. COLOR
- 3. SECONDARY SOIL TYPE indicates presence of 30 to 45 percent by weight
- 4. PRIMARY SOIL TYPE
- 5. DESCRIPTIVE TERMS

Trace:

indicates presence of 5 to 12 percent by weight

Some:

indicates presence of 12 to 30 percent by weight

And:

indicates approximately equal portions by weight

Lenses:

intervals of soil less than 2.5 cm thick

Layers:

intervals of soil more than 2.5 cm thick

Interbedded:

alternating lenses or layers of different soil types

6. MOISTURE (onshore works only)

CLASSIFICATION FINE GRAINED SOILS

The terms "clayey" and "silty" are used to describe soils falling near the "A" line.

ROCK DESCRIPTION

DAPPOLONIA

SYMBOLS

CLASSIFICATION

CONGLOMERATE

╶┛╍╗╍╗╍╋╍╖╍┠╍╗╍╉╍╖ │
1 1 1 1 1 1 1 1 1 1

SANDSTONE

CLAYSTONE AND SILTSTONE

LIMESTONE

METAMORPHIC

IGNEOUS

+

0.0001

mm

SOILS (ASTM, 1992) COBBLES GRAVEL SAND SILT AND CLAY 0.001 1000 111111 2. 100 <u>;</u> ₽ 111111 шш ÌIII ROCK (Wentworth, 1922) CONGLOMERATE SANDSTONE /ERY FINE GRANULE VERY COARSE MEDIUM COARSE FINE SILTSTONE CLAYSTONE AND SHALE BOULDER COBBLE PEBBLE

ROCK MASS (ISRM, 1981)

	INTACT STRENGTH			WEATHERING
TERM	DESCRIPTION	Unconfined Compressive Strength (MPa)	TERM	DESCRIPTION
Extremely Weak	Indented by thumbnail.	0.25 - 1.0	Fresh	No visible sign of material weathering.
Very Weak	Crumbles under hammer blows. Peeled by a pocket knife.	1.0 - 5.0	Slightly Weathered	Discolouration of rock material and discontinuity surfaces.
Weak	Peeled by knife with difficulty, shallow indentations made by blow with point of hammer.	5.0 - 25	Moderately Weathered	Less than half of rock material is decomposed and/or
Medium Strong	Cannot be scraped or peeled by knife, fractured with single blow of hammer.	25 - 50	Highly	More than half of rock material is decomposed and/or
Strong	Fractures under more than one blow of hammer.	50 - 100	Weathered	disintegrated to soil.
Very Strong	Fractures under many blows of hammer.	100 - 250	Completely Weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.
Extremely Strong	Can only be chipped with hammer.	> 250	Residual Soil	All rock material is converted to soil. The mass structure and material fabric are destroyed.

DISCONTINUITIES (ISRM, 1981)

	SPAC	NG	A	PERTURE			ROUGHNESS
BEDDING	SPACING (m)	DISCONTINUITIES	APERTURE	DESCRIPTION	TYPE	CLASSIFICATION	DESCRIPTION
Very Thickly Bedded	> 2	Very Widely Fractured or Jointed	> 1 m	Cavernous		Smooth	Appears smooth and is smooth to the touch.
Thickly Bedded	0.6 – 2	Widely Fractured or Jointed	10 - 100 cm 1 - 10 cm	Extremely Wide Very Wide	Open	Slightly Smooth	Asperities on the fracture surfaces are visible and can be distinctly felt.
Medium Bedded	0.2 - 0.6	Medium Fractured or Jointed	> 10 mm	Wide		Medium Rough	Asperities are clearly visible and fracture surface feels abrasive.
Thinly Bedded	0.05 - 0.2	Closely Fractured or Jointed	2.5 - 10 mm 0.5 - 2.5 mm	Moderately Wide Open	Gapped	Rough	Large angular asperities can be seen. Some ridge and angle steps are evident.
Very Thinly Bedded	0.02 - 0.05	Very Closely fractured or jointed	0 25 - 0 5 mm	Partly Open		Very Rough	New vertical steps and ridges occur on the fracture surface.
Laminated	0.005 - 0.02	Extremely Close	0.1 - 0.25 mm	Tight	Closed	DOD	Σ Length of Core Pieces > 10 cm
Thinly Laminated	< 0.005	Extremely Close	< 0.1 mm	Very Tight		KQD =	Core Run

CLASSIFICATION SYSTEM FOR CALCAREOUS SOIL

										TO	TAL CARI	BON	ATE (CONTENT	[%]			
				Ē		0	20	1010	00			1	0			2	Cr r	3
	PISOLITES	(Inorganic)		л 09 	AVEL	E GRAVEL	iravel		ngl. or breccia)	IRUDITE	MERATE	BRECCIA	MESTONE	STONE	MERATE	BRECCIA		
	ELL CORAL ALGAL	(organic)	eposits —		CARBONATE GR	ceous CARBONATI	Calcareous Silica G	Silica GRAVE	LCIRUDITE (carb. col	onglomeratic CALC	alcareous CONGLC	NGLOMERATE OR	DNGLOMERATE LIN	Conglomerate LIME	alcareous CONGLO	DNGLOMERATE or		
onstituent particles	OOLITE SH	(Inorganic)	barticulate d	2 mm 	TE SAND	SONATE SAND Sili	Silica SAND	SAND	E (carb. sandst.) CA	CARENITE	ANDSTONE	STONE CC	AESTONE CC	Detrital	ANDSTONE	STONE	ARBLE	ies in this Section
sed on origin of c	BIOCLASTIC	(organic)	in size of p	6 mm 	CARBONA	Siliceous CARB	Calcareous S	Silica (CALCARENIT	Siliceous CAI	Calcareous S.	SANDS	Detrital LIN	Siliceous LIMES	Calcareous S	SANDS	1ESTONE OR M	omenclature Appl
dditional descriptive terms ba			Increasing gra	2 mm0.0	CARBONATE SILT	Siliceous CARBONATE SILT	Calcareous Silica SILT	Silica SILT	CALCISILTITE	Siliceous CALCISILTITE	Calcareous SILTSTONE	SILTSTONE	LIMESTONE	Fine-Grained Siliceous LIMESTONE	Calcareous SILTSTONE	SILTSTONE	CRYSTALLINE LIN	Conventional Metamorphic No
Ac				0.002	CARBONATE MUD	Clayey CARBONATE MUD	Calcareous CLAY	CLAY	CALCILUTITE	Clayey CALCILUTITE	Calcareous CLAYSTONE	CLAYSTONE	Fine-Grained	Fine-Grained Argillaceous LIMESTONE	Calcareous CLAYSTONE	CLAYSTONE		0
					· · · · ·		1			Increa	sina l	ith	ific	ation				

	SOIL TO W	EAK ROCK		RO	ск
Uniaxial Strength σ_c	5	MPa 12.	.5 N	/IPa 100 N	ЛРа
Rock Strength	Very Weak to Weak	Moderately Weak		Moderately Strong to Strong	Very Strong to Extremely Strong
Degree of Cementation	Non Cemented to Moderately Cemented	Well Cemented		(Well Cemented) Increasing Cementation Decreasing Porosity	Recrystallization
Cone Resistance q₀	35	MPa 8	35 N	ИРа	

Modified after Clark and Walker, 1977 (Technical Note, Geotechnique, vol. XXVII, No. 1, March, pp. 93-99) Form 5.21 (GTC eng) - Rev. 1.0 – September 2006

Project Number: 11-503

BORING LOG AND TEST RESULTS

Project: TAP Geotechnical Investigation

Location: Italian Landfall

Boring Number: TAP_IT_1008

Start Date: 29 gen 12

End Date: 10 feb 12

12 Co

Coordinates (WGS84): E 278533.52 m N 4466238.02 m

Water Depth: 13.6 m

Sampler Type: PI = Piston, PU = Push

Remarks: Skate IV - Adriatic Sea

Sampler ID: 102 mm

	(u	ורב		.o.	ŕΡΕ	INT			0.01/15					C	LASSIF	ICATIO	N TEST	rs	UN S	DRAINE TRENG	ED SHE TH (kPa	AR a)	ROCK	TESTS
	DEPTH (r	SOIL PROF	DESCRIPTION	SAMPLE	SAMPLE T	BLOW COL	COR RECOV (%)	E ERY	CORE RECOVER (%)	RY .	RQD (%)	5	DISCONTINUITIES	nscs	WATER CONTENT (%)	SUBMERGED UNIT WEIGHT (KN/m ³)	CARBONATE CONTENT (%)	FINES CONTENT (%)	POCKET PENETROMETER	TORVANE	HAND VANE	UU TRIAXIAL	POINT LOAD INDEX - I _{Sso} (MPa)	UNCONFINED COMPRESSION (MPa)
012	0		Dense to very dense dark grey (N4) calcareous silica fine to medium SAND	01	PU										24.9	6.9								
maggio 2			trace silt, with few to some shell fragments.	02	НА										24.1	8.4	25	5						
Date: 26	- 1 -					-									24.2	8.2								
GDT	· -			03	НА									SP	25.4 25.9	8.8 7.9	34 20	2 16						
CORING			From 1.7 to 2.3 m: very dark grey (N3)			-									27.4	7.9 7.9								
PLING-C	- 2 -		From 2.0 to 2.1 m: with many shell fragments	04	НА	_									23.6	8.3 8.4	25	4						
SK SAM	· -		From 2.6 to 2.9 m: moderately cemented	05	НА									SW-SN	26.3	5.8	41	8 12						
- & ROC	- 3 -		to well cemented gravelly sand trace silt, with presence of pebbles of well			-							2.9 m From 2.9 to 5.0 m: closely to			10.0	96						0.05	4.0
RE_SOII			fragments 2.9 m	C01	RC								medium spaced joints, planar rough, clean.			10.9	88						0.33	4.0
FSHOF	· -		Weak to strong very thinly bedded pale yellow (2.5Y-8/2) fresh to slightly													14.5							2.79	
plate: OI	4 -		weathered CALCARENITE.	C02	RC								4.3 m				82							
ata Tem			Extremely weak pale yellow (2.5Y-8/6) highly to completed weathered			_																		
PJ Då	. 5 -		CALCARENITE. Recovered as sandy coarse gravel and cobbles	C03	RC								5.0 m				89							
STING.G	0	5 5	5.0 m	C04 06	RC PU										35.0	7.8		18						
AB TES	· -	5	(2.5Y-8/6) to light grey (2.5Y-7/2) siliceous carbonate to carbonate fine to medium silty SAND			-																		
3 TAP_L	6 -	\$ -/-/	From 5.0 to 5.5 m: dark greenish grey (10Y-4/1), with some shell fragments																					
: 11_50			From 6.1 to 6.6 m: stiff clay																					
atabase		<u>,</u> ,	From 6.8 to 7.7 m: with lenses of			-									20.7	77								
UDNG	- 7 -	5	moderately cemented sand	07	PU									SM	40.5 32.4	3.7 8.3	97	66 39						
G&COR	· -	s s													45.5	4.3	54							
AMPLIN	- 8 -	\$ \$ \$																						
CCK S/		s 																						
SOIL&R		5.5																						
SHORE	9 -	Х С																						
ate: OFF:	· -	ç ç		08	PU	1								SM	38.5	5.5		41						
Templa		<u>,</u> , ,	9.9 m										9.9 m		72.4	7.0	51							

DAPPOLO)N	IA
---------	----	----

Project Number: 11-503

BORING LOG AND TEST RESULTS

Project: TAP Geotechnical Investigation

Location: Italian Landfall

Boring Number: TAP_IT_1008

Start Date: 29 gen 12

End Date: 10 feb 12

Coordinates (WGS84): E 278533.52 m N 4466238.02 m

Water Depth: 13.6 m

Sampler Type: PI = Piston, PU = Push

Remarks: Skate IV - Adriatic Sea

Sampler ID: 102 mm

ſ	n)	ILE		40.	ŕΡΕ	JNT	TOTAL SOLID							С	LASSIF	ICATIO	N TEST	ſS	UN S	DRAINE TRENG	ED SHE STH (kPa	AR a)	ROCK	TESTS
	DEPTH (r	SOIL PROF	DESCRIPTION	SAMPLE	SAMPLE T	BLOW COL	CORE RECOVEI (%)	RY	SOLID CORE RECOVERY (%)	R(('	QD %)	DISCONTINUITIES		nscs	WATER CONTENT (%)	SUBMERGED UNIT WEIGHT (KN/m ³)	CARBONATE CONTENT (%)	FINES CONTENT (%)	POCKET PENETROMETER	TORVANE	HAND VANE	UU TRIAXIAL	POINT LOAD INDEX - I _{SSO} (MPa)	UNCONFINED COMPRESSION (MPa)
igio 2012	10	s <u>s</u> s s <u>s</u> s	Medium dense pale yellow (2.5Y-7/3) to light olive brown (2.5Y-5/3) carbonate sandy SILT.(<i>continued</i>)												22.6	9.5		77						
Date: 26 mag	· 11 -																							
NG.GDT	_																							
-ING-CORI	12 -	>	From 11.8 to 12.0 m: light olive brown (2.5Y-5/3) clayey silt some sand	09	PU										18.3			71						
DCK SAMPI	_	s <u>s</u> s s s s		10	PU	-									26.7 33.3 30.9	8.6 7.8 8.7	94 90	50 41						
SOIL & R	13 -													ML				50						
OFFSHORE	-	\$`.; \$`.; \$`.;																						
emplate: (• 14 -	> > I <u>s</u>	14.2 m Medium dense light olive brown			-						14	4.2 m		34.1									
J Data T	-	S I I S S I	carbonate medium SAND some silt.	11	PU									SM	40.6 34.8		91 95	18 22						
STING.GP	15 -	I I I V																						
AP_LAB TE	- 16 -	┘IJ IJ																						
11_503 T	10	1 7	16.4 m			-			×××××××			10	6.4 m											
Database	· 17 -		bedded to medium bedded light grey (2.5Y-7/2) to light olive brown (2.5Y-5/3) fresh CALCARENITE.													10.8	80						0.053	1.6
CORING	_			C05	RC											10.0 7.8	71						0.03 0.023	0.5
AMPLING8	- 18 -															7.8 10.9 6.8	00						0.06 0.018	
L&ROCK S	-			12	НА																			
HORE-SO	19 -		From 18.9 to 19.2 m: moderately weathered to highly weathered																					
olate: OFFS	-			C06	RC											8.4	77						0.018	0.8
Tem											\otimes					8.6							0.021	

Project Number: 11-503

BORING LOG AND TEST RESULTS

Project: TAP Geotechnical Investigation

Location: Italian Landfall

Start Date: 29 gen 12

Coordinates (WGS84): E 278533.52 m N 4466238.02 m

Water Depth: 13.6 m

Sampler ID: 102 mm

Sampler Type: PI = Piston, PU = Push

Boring Number: TAP_IT_1008

End Date: 10 feb 12

Remarks: Skate IV - Adriatic Sea

Ê	:ILE							С	LASSIF	ICATIO	N TEST	rs	UN S	DRAINE	ED SHE TH (kPa	AR a)	ROCK	TESTS	-					
DEPTH (r	SOIL PROF	DESCRIPTION	SAMPLE	SAMPLE T	BLOW COL	CORI RECOVI (%)	E ERY F	CORE CORE RECOVER (%)	RY	RQE (%)	75	DISCONTINUITIES	nscs	WATER CONTENT (%)	SUBMERGED UNIT WEIGHT (kN/m ³)	CARBONATE CONTENT (%)	FINES CONTENT (%)	POCKET PENETROMETER	TORVANE	HAND VANE	UU TRIAXIAL	POINT LOAD INDEX - I _{SS0} (MPa)	UNCONFINED COMPRESSION (MPa)	0
20		20.5 r	n									20.5 m			7.8 9.2 9.1							0.16 0.024 0.024	0.9	
		End of borehole at 20.5 meters.													8.3									
21																								
- 22																								
	-																							
- 23	_																							
	-																							
- 24	-																							
	-																							
- 25	-																							
	-																							
2- 26	-																							
	-																							
- 27	-																							
	-																							
- 28																								
29																								

				DA	JPI	PØ	\bigcirc		O	N		A
			Boring I	Numbe	r: TAP	_IT_	100	8				
sh			ocation	n: Italia	n Land	fall						
		5	Sheet:	3 of:	3							
		- SLE	EVE FR	ICTION	(MPa)		E	EXCE	SS F	PORE	=	
)	0.2	<u> </u>		. <u>6 0</u>	. <u>8 1</u>			PRES (SSUF MPa	RË u ₂)	2	
	12				= (IVIPa)	-1 () <i>'</i>	1 2	2 3	3 4	4 (56
,		. 2										
	+											
	+											
	+											

Project Number: 11-503

BORING LOG AND TEST RESULTS

Project: TAP Geotechnical Investigation

Location: Italian Landfall

Boring Number: TAP_IT_1011

Start Date: 13 feb 12

End Date: 15 feb 12

Coordinates (WGS84): E 278,668.14 m N 4,466,358.02 m

Water Depth: 16.1 m

Sampler ID: 102 mm

Sampler Type: PI = Piston, PU = Push

Remarks: Skate IV - Adriatic Sea

(ر	ILE		lo.	PE	INT								C	LASSIF	ICATIO	N TEST	ſS	UN	IDRAINI TRENG	ED SHE TH (kPa	AR a)	ROCK	TESTS	
DEPTH (n	SOIL PROF	DESCRIPTION	SAMPLE N	SAMPLE TY	BLOW COL	COR RECOV (%)	AL E ERY	CC CC RECC (⁴	DLID DRE DVERY %)	RQ (%	(D))	DISCONTINUITIES	nscs	WATER CONTENT (%)	SUBMERGED UNIT WEIGHT (kN/m ³)	CARBONATE CONTENT (%)	FINES CONTENT (%)	POCKET PENETROMETER	TORVANE	HAND VANE	UU TRIAXIAL	POINT LOAD INDEX - I _{Sso} (MPa)	UNCONFINED COMPRESSION (MPa)	<u>)</u>
0		Dense dark greenish grey (4/1 5GY) to very dark greenish grey (3/1 10Y) calcareous silica fine SAND trace silt, with some shell fragments and with presence of algas at top	01	НА		23 30	/5		50 75	25 50) /5		SM	22.2 21.6 17.9	8.8 9.1 9.1	26	10 13							
1		From 0.7 to 2.0 m: Medium dense	02	PU										24.2 23.1	9.4 8.1	21	3							
2			03	PU										28.6 27.8 26.7 28.7	9.1 8.9 9.0 10.0	24	8						-	
2			04	PU									SP-SM	27.2 26.7 26.1	8.4 8.1 8.5	29	2 9							
5														23.9 29.1	9.5 9.5 8.1									
4			05	PU									SP	41.0 29.8 23.9 27.5	7.2 8.4 9.3 8.3	37 26 30	6 17 4						-	
5														27.2	8.3 7.6								-	
6			07	PU										31.3 31.8 30.9	7.0 7.5 8.5	34	5							
0		From 6.0 to 7.0 m: Medium dense	08	PU									SP-SM	38.5 36.2 33.8	6.4 7.3	54	7 5							\
7	I T	7.0 m Medium dense to very dense dark greenish grey (5GY 4/1) slighty to moderately cemented siliceous carbonate										7.0 m		28.4		65	6						5	} / / /
8	i I I I	fine to coarse gravelly SAND trace to some silt, with some shells and shell fragments.	09	PU									SM	36.3 37.8 33.3	8.5	72 87	12 19						/ 	Ę
	I I I		10	PU										24.6 33.7 26.4		73	22							Jone J
9	I S S S	9.1 m Medium dense pale yellow (2.5Y 8/4) siliceous carbonate to carbonate fine silty SAND, locally slightly cemented (gravel	11	PU								9.1 m		40.5 41.4	7.9	68	23							
	5	size nodules).	12	PU										35.9 37.2	7.5	72	35							

Project Number: 11-503

BORING LOG AND TEST RESULTS

Project: TAP Geotechnical Investigation

Location: Italian Landfall

Boring Number: TAP_IT_1011

Start Date: 13 feb 12

End Date: 15 feb 12

Coordinates (WGS84): E 278,668.14 m N 4,466,358.02 m

Water Depth: 16.1 m

Sampler ID: 102 mm

Sampler Type: PI = Piston, PU = Push

Remarks: Skate IV - Adriatic Sea

UNDRAINED SHEAR CLASSIFICATION TESTS ROCK TESTS PROFILE SAMPLE TYPE BLOW COUNT STRENGTH (kPa) SAMPLE No. DEPTH (m) TOTAL SOLID CORE CORE RQD POCKET INETROMETER DESCRIPTION DISCONTINUITIES UNCONFINED COMPRESSION (MPa) POINT LOAD INDEX - I_{SSO} (MPa) UU TRIAXIAL ECOVERY RECOVERY (%) HAND VANE WATER CONTENT (%) CARBONATE CONTENT (%) FINES CONTENT (%) TORVANE BMERGE UNIT VEIGHT (kN/m³) nscs SOIL (%) (%) Ē 25 50 75 50 75 50 75 Medium dense pale yellow (2.5Y 8/4) 10 siliceous carbonate to carbonate fine silty SAND, locally slightly cemented (gravel size nodules). (continued) 11 GM 34 40 37.9 8.4 23.5 13 PU 12 10.0 23.6 82 25.0 49 13 From 13.3 to 15.0 m: Sandy silt, locally , s^s slighty cemented 14 SM 9.0 99 49 8.5 8.1 33.7 27.1 PU 14 9.2 8.1 6.7 35.5 75 61 15 AB AP-16 18.9 39.3 41.8 37.9 38.6 9.7 7.7 7.9 8.0 8.1 73 45 PU 15 17 33.2 8.6 18 19 5. 500 22.7 88 38 From 19.1 to 19.2 m: Fine sandy gravel 27.0 29.4 35.7 32.7 some silt SM 58 40 8.3 PU 16 8.0 7.7 89 42

Project Number: 11-503

BORING LOG AND TEST RESULTS

Project: TAP Geotechnical Investigation

Location: Italian Landfall

Coordinates (WGS84): E 278,668.14 m N 4,466,358.02 m

Water Depth: 16.1 m

Sampler Type: PI = Piston, PU = Push

Remarks: Skate IV - Adriatic Sea

Boring Number: TAP_IT_1011

End Date: 15 feb 12

Sampler ID: 102 mm

	(u	ורב		O	ΥΡΕ	INT		OTAL								(CLASSIF	ICATIO	N TEST	rs	UN S	DRAINE TRENG	ED SHE STH (kP	AR a)	ROCK	TESTS
	DEPTH (r	SOIL PROF	DESCRIPTION	SAMPLE N	SAMPLE T	BLOW COL	C REC	OTAL ORE OVERY (%)	(((RE(CORE COVE (%)	RY	R (QD %)		DISCONTINUITIES	nscs	WATER CONTENT (%)	SUBMERGED UNIT WEIGHT (KN/m ³)	CARBONATE CONTENT (%)	FINES CONTENT (%)	POCKET PENETROMETER	TORVANE	HAND VANE	UU TRIAXIAL	POINT LOAD INDEX - I _{S80} (MPa)	UNCONFINED COMPRESSION (MPa)
2012	20	s s	20.5 m												20.5 m											
: 4 maggio	-		Medium dense to dense SAND (inferred by CPT data).																							
UI Date	21 -																									
	-																									
	22 -																									
KUCK S/	22 -																									
	25																									
: OFFSHO	24 -																									
a lemplate																										
GPJ Dat	25 -																									
IESIING.	-	<u>،</u> ډر ډ	25.3 m Medium dense sandy SILT to silty SAND, with some layers of clay, loose at top											-	25.3 m											
IAP_LAB	26 -		(inferred by CPT data).																							
ie: 11_503	-	۶: ۲۰ ۲۰ ۲۰																								
Databas	27 -	s s s s																								
SUNKING 8000KING	-	s . s s . s																								
SAMPLING	28 -	5 5 5 5 5 5																								
	-	ς, ? \$																								
HURE-SO	29 -	ه کې د رو	29.2 m												29.2 m											
Diate: UFFS	-		End of borehole at 29.2 meters.																							
l em																										

Start Date: 13 feb 12

Project Number: 11-503

BORING LOG AND TEST RESULTS

Project: TAP Geotechnical Investigation

Location: Italian Landfall

Boring Number: TAP_IT_1022

Start Date: 19 feb 12

End Date: 20 feb 12

Coordinates (WGS84): E 278,437.63 m N 4,466,486.32 m

Water Depth: 15.4 m

Sampler Type: PI = Piston, PU = Pus

Remarks: Skate IV - Adriatic Sea

Sampler ID: 102 mm

	ILE '		oj.	ΡE	INT								c	LASSIF	ICATIO	N TEST	rs	UN S	DRAINE TRENG	ED SHE TH (kP	AR a)	ROCK	TESTS	;
	SOIL PROF	DESCRIPTION	SAMPLE N	SAMPLE TY	BLOW COL	TOTAL CORE RECOVER (%)	YRE	SOLID CORE COVER` (%)	Y	RQD (%)		DISCONTINUITIES	nscs	WATER CONTENT (%)	SUBMERGED UNIT WEIGHT (kN/m ³)	CARBONATE CONTENT (%)	FINES CONTENT (%)	POCKET PENETROMETER	TORVANE	HAND VANE	UU TRIAXIAL	POINT LOAD INDEX - I _{SS0} (MPa)	UNCONFINED COMPRESSION (MPa)	0
		Dense greenish grey (5GY 4/1) to very dark greenish grey (5GY 3/1) fine to medium calcareous silica SAND trace silt, with few shell fragments.				23 30 73		5 50 75																N I I
1 - 1																								1
			01	PU	_								SP	26.9 30.5 30.1 31.1 25.5	9.1 8.5 8.6 8.4 9.3	26	5							
																								1/
			02	PU									SP-SM	28.6 28.3 28.3	7.2 8.6 8.6	33 34	7 3							-
														30.3 30.4 29.6	7.3 7.6 8.2									ę
																								(
5		6.5 m					×					6.5 m			14.2								<u> </u>	: -
JalaDas		grey (2.5Y 6/2) slighty weathered CALCARENITE.	C01	RC								7.0 m			17.2	91								
		7.0 m / Extremely weak light grey (5Y 7/2) highly to completely weathered CAL CARENITE	C02	RC								7.5 ~				82								
00000		to well cemented SAND.			1						╞	m c. y				<u> </u>								-
- 8	-	Medium dense pale yellow (2.5Y 7/3) siliceous carbonate to carbonate fine to medium silty SAND, locally slightly																						
		cemented (gravel size nodules). From 7.5 to 9.0 m: Sand (inferred by CPT data)																						
													SM				38							< }
	s s s		03	PU										31.3	8.1									
	s s													35.6 32.2	8.2 8.3	74	46							

	DA	P	24	DI	L	D		I	4	
Boring I	Numbe	r: TAP_	_IT_	102	2					
Locatio	n: Italia	n Land	fall							
Sheet:	1 of:	2								
SLEEVE FR	ICTION	(MPa)		-	VCE	<u> </u>		-		
0.4 0	.6 0.	.8 1		F	RES (I	SSUF MPaj	RE u ₂)	1		
CONE RESI	STANCE	E (MPa)								
16 2	4 3	2 40	-1 0	1	2	: 3	5 4		0 6	
}										
2										
ξ										
			1							
			3							
•										
•			{							
				,						
	Boring N Location Sheet: SLEEVE FR 0.4 0 CONE RESI 16 2 16 2	Boring Numbe Location: Italia Sheet: 1 of: O.4 O.6 O CONE RESISTANCE 16 24 3 CONE RESISTANCE	Boring Number: TAP Location: Italian Land Sheet: 1 of: 2	Boring Number: TAP_IT_ Location: Italian Landfall Sheet: 1 of: 2 SLEEVE FRICTION (MPa) 04 0.6 0.8 1 CONE RESISTANCE (MPa) 16 24 32 40 1 0 16 24 32 40 1 0 17 4 17 4 18 4	DAPPO	Boring Number: TAP_IT_1022 Location: Italian Landfall SLEEVE FRICTION (MPa) 04 0.6 0.8 1 CONE RESISTANCE (MPa) 16 24 32 40 1 0 1 2 CONE RESISTANCE (MPa) 16 24 32 40 1 0 1 2 17 20 1 2 18 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DAPPOLO	Boring Number: TAP_IT_1022 Location: Italian Landfall Sheet: 1 of: 2 SLEEVE FRICTION (MPa) 04 06 08 CONE RESISTANCE (MPa) 16 24 32 40 1 0 1 2 3 16 24 32 40 1 0 1 2 3 4 10 1 2 3 40 1 0 1 2 3 4 10 1 2 3 40 1 0 1 2 3 4 10 1	Boring Number: TAP_IT_1022 Location: Italian Landfall Sheet: 1 of: 2 SLEEVE FRICTION (MPa) 0 08 10 08 24 32 01 0 10 24 32 01 0 2 4 10 24 32 01 0 2 4 1 10 24 32 01 0 1 2 3 4 1 10 24 32 40 1 0 1 1 1 1 1 10 10 1 <td< td=""><td>BORING NUMBER: TAP_IT_1022 Location: Italian Landfall Sheet: 1 of: 2 SLEEVE FRICTION (MPa) 04 0.8 10 2.4 32 40 1 0 1 2 3 4 5 6 10 24 32 40 1 0 1 2 3 4 5 6</td></td<>	BORING NUMBER: TAP_IT_1022 Location: Italian Landfall Sheet: 1 of: 2 SLEEVE FRICTION (MPa) 04 0.8 10 2.4 32 40 1 0 1 2 3 4 5 6 10 24 32 40 1 0 1 2 3 4 5 6

Project Number: 11-503

BORING LOG AND TEST RESULTS

Project: TAP Geotechnical Investigation

Location: Italian Landfall

Boring Number: TAP_IT_1022

Start Date: 19 feb 12

End Date: 20 feb 12

Coordinates (WGS84): E 278,437.63 m N 4,466,486.32 m

Water Depth: 15.4 m

Sampler ID: 102 mm

Sampler Type: PI = Piston, PU = Push

Remarks: Skate IV - Adriatic Sea

	n)	=ILE		.oV	YPE	JNT		N1	80						С	LASSIF	ICATIO	N TES	тs	UN S	DRAINE TRENG	ED SHE TH (kPa	AR a)	ROCK	TESTS
	DEPTH (r	SOIL PROF	DESCRIPTION	SAMPLE	SAMPLE T	BLOW COL	CORI RECOVI (%)	AL E ERY	CC RECC (%	DRE DVERY %)	/ F	RQD (%)	DISCONTINUITI	IES	nscs	WATER CONTENT (%)	SUBMERGED UNIT WEIGHT (KN/m ³)	CARBONATE CONTENT (%)	FINES CONTENT (%)	POCKET PENETROMETER	TORVANE	HAND VANE	UU TRIAXIAL	POINT LOAD INDEX - I _{Sso} (MPa)	UNCONFINED COMPRESSION (MPa)
DT Date: 4 maggio 2012	10 - 11 -	5 5 5 5 5 5	Medium dense pale yellow (2.5Y 7/3) siliceous carbonate to carbonate fine to medium silty SAND, locally slightly cemented (gravel size nodules).(continued)				25 50	75			23	30 73				32.3	7.7								
CK SAMPLING-CORING.G	12 -	5 5 5 5 5		04	PU	-									SM	23.9 32.8 21.9 33.5 33.1	8.7 9.5 9.7	63 70	40 60						
	13 -	5 5 5 5 5 5	From 12.8 to 13.5 m: Loose to medium dense																						-
6.GPJ Data Template: (14 - - 15 -	5 5 5 5 5	From 15.0 to 16.5 m: Dense sand	05	PU	-									GM	39.7 39.2 40.6 33.8	6.4	97 85	30 39						
503 TAP_LAB TESTING	- 16		(inferred by CPT data)																						
&CORING Database: 11	- 17 -	5 5 5 5		06 07	PU PU	-									SM	25.5 24.8 25.3	9.7 9.5	77 96	43 47						
E-SOIL&ROCK SAMPLING	18 -	* * * * * *																							
Template: OFFSHORE	19 -	I I I I I	From 19.0 to 20.0 m: Locally moderately cemented sand 20.0 m	08	PU	-								20.0 m	SM	25.9 38.0 38.7 28.7		98 70	31 38						

End of borehole at 20.0 meters.

5

£

Project Number: 11-503

BORING LOG AND TEST RESULTS

Project: TAP Geotechnical Investigation

Location: Italian Landfall

Boring Number: TAP_IT_1024

Start Date: 15 feb 12

End Date: 19 feb 12

Coordinates (WGS84): E 278776.79 m N 4466114.68 m

Water Depth: 15.9 m

Sampler Type: PI = Piston, PU = Push

Remarks: Skate IV - Adriatic Sea

Sampler ID: 102 mm

	(r	Ш		Jo.	ΡE	INT		~~							с	LASSIF	ICATIO	N TEST	ſS	UN S	DRAINI TRENG	ED SHE STH (kPa	AR a)	ROCK	TESTS	3.
	DEPTH (r	SOIL PROF	DESCRIPTION	SAMPLE N	SAMPLE TY	BLOW COL	REC 25	OTAL ORE OVERY (%)	REC 25	OLID ORE OVER (%)	Y	RQD (%)	75	DISCONTINUITIES	nscs	WATER CONTENT (%)	SUBMERGED UNIT WEIGHT (KN/m ³)	CARBONATE CONTENT (%)	FINES CONTENT (%)	POCKET PENETROMETER	TORVANE	HAND VANE	UU TRIAXIAL	POINT LOAD INDEX - I _{S50} (MPa)	UNCONFINED COMPRESSION (MPa)	0
: 11 maggio 2012	0		Dense to very dense dark gray (5Y-4/1) to greenish gray (10Y-5/1) calcareous silica fine to medium SAND trace silt, with some shell fragments.																							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DT Date	1 -																									
	- - -			01	PU										CD CM	24.5	8.7	24	2							
OCK SAMPLING-	2			02	PU	-									57-510	28.9 31.0 28.3 27.0	8.2 8.6 8.3	29	4							(
SHORE_SOIL & R	3 -																									7
ata Template: OFF	4 -			03	PU	-									SP-SM	32.9 33.0 34.8	5.3	39	11 5							
ESTING.GPJ D8	5 -					_										29.5	4.4	38	4							
AP_LAB TE			5.8 m Weak greenish gray (10Y-6/1) to light	-										5.8 m			10.9	50						0.022		-
ase: 11_503 T/			gray (5Y-7/1) Slightly Weathered to moderately weathered CALCARENITE. Presence of layers of extremely weak calcarenite.	C01	RC									6 8 m			13.1	78						0.055		
DRING Datab	7 -	s., S. S. S.	Medium dense light gray (2.5Y-7/2) to light olive brown (2.5Y-5/4) siliceous carbonate to carbonate sandy SILT, locally slightly cemented. Slightly to moderately cemented at top	C02	RC	-									CL	35.5	7.8 7.7	88 49	62 66							-
	8 -		Presence of clay layers at top.													01.1										
-SHORE-SOIL&R	9 -	> > > > > > > > > > > > > > > > > > >	From 9.0 to 10.0 m: medium dense light gray (2.5Y-7/2) fine sand and silt			-										28.9 30.4	8.4 8.8		52							
l emplate: UFI		x 5 5 5 5 5 5		04	PU	_										40.5 40.6 38.5	7.7 7.4 7.9	73	46							

DAPPOL	ON.	I A
--------	-----	------------

h		E	Boring I Location Sheet:	Numbe n: Italia 1 of:	r: TAP <u></u> n Land 2	_IT_ fall	102	4				
	S 2 — C	0. 0.	EVE FR 4 0 NE RESI 4 3	ICTION .6 0. STANCE 6 4	(MPa) <u>8 1</u> E (MPa) 8 60	-1 (E	EXCE PRES (SS F SSUF MPa	PORE RE u ₂)	-	5 6
		<u>}</u>										
						5						
1		-				ş						
									A .			
مريكر بالملم							mmm					

Project Number: 11-503

BORING LOG AND TEST RESULTS

Project: TAP Geotechnical Investigation

Location: Italian Landfall

Boring Number: TAP_IT_1024

Start Date: 15 feb 12

Coordinates (WGS84): E 278776.79 m N 4466114.68 m

Water Depth: 15.9 m

Sampler ID: 102 mm

Sampler Type: PI = Piston, PU = Push

Remarks: Skate IV - Adriatic Sea

End Date: 19 feb 12

	(ت	ГE		O	ΡE	INT					c	LASSIF	ICATIO	N TEST	ſS	UN S	DRAINE TRENG	ED SHE TH (kP	EAR 'a)	ROCK	TESTS
	DEPTH (n	SOIL PROF	DESCRIPTION	SAMPLE N	SAMPLE TY	BLOW COL	TOTAL CORE RECOVERY (%)	SOLID CORE RECOVERY (%)	RQD (%)	DISCONTINUITIES	nscs	WATER CONTENT (%)	SUBMERGED UNIT WEIGHT (kN/m ³)	CARBONATE CONTENT (%)	FINES CONTENT (%)	POCKET PENETROMETER	TORVANE	HAND VANE	UU TRIAXIAL	POINT LOAD INDEX - I _{Sso} (MPa)	UNCONFINED COMPRESSION (MPa)
	10 5 5 11 5	, , , , , , , , , , , , , , , , , , ,	Medium dense light gray (2.5Y-7/2) to light olive brown (2.5Y-5/4) siliceous carbonate to carbonate sandy SILT, locally slightly cemented. Slightly to moderately cemented at top. Presence of clay layers at top.(continued)																		
	12 ->	\$		05	PU	-					SM	31.5 38.4 39.2 36.9	8.2 7.3 7.7 8.2	93 63	40 69						-
	13	\$ \$ \$ \$ \$ \$	13.5 m Very stiff olive (5Y-5/3) calcareous sandy silty CLAY, locally slightly to							13.5 m											
	14 -	8) 83 83	moderately cemented, with lenses of silt, with traces of shell fragments.	06	PU	-					CL-ML	33.9 33.3 33.5 34.5	8.5 8.3 8.6 8.2	68 51	63 66				176.8		
			15.7 m							15.7 m			0.2								
ase: 11_203 IAF	16 - S	s S	(5Y-6/3) siliceous carbonate to carbonate fine to medium silty SAND, locally slightly to moderately cemented (gravel size nodules), with traces of shell fragments.			_					GM	40.6		74	25						-
	17 - \$ \$	5 5 5		07	PU	-						42.5 35.4 37.5	8.1	86	32						-
	18 - S	\$											8.3								
FSHORE-SUIL&R	19 - <u>S</u>	\$ \$ \$											8.8 8.4								-
emplate: UF	2	<u>، د</u>	19.8 m End of borehole at 19.8 meters.	08	PU					19.8 m	GM	35.6 32.5 36.2		94 80	24 40						

CPT PARAMETERS

DAPPOLONIA

BASIC PARAMETERS

PARAMETER	DESCRIPTION
$q_c = \frac{F_c}{A_{\tau}}$	Cone resistance
$f_s = \frac{F_s}{A_s}$	Sleeve friction relative to the corresponding cone depth
u	Excess pore pressure for the corresponding cone depth (see nomenclature for definition of u_1 , u_2 and u_3)

DERIVED PARAMETERS

PARAMETER	DESCRIPTION
$R_{f} = \frac{f_{s}}{q_{c}}$	Friction ratio
$q_{c} = q_{c} + (1 - \alpha) u_{2} + u_{0i}$ or $q_{t} = q_{c} + (1 - \alpha) [\beta(u_{1} + u_{0i} - u_{0}) + u_{0}] + \alpha u_{0i}$	Total cone resistance
$q_{net} = q_t - \sigma_{v0}$	Net cone resistance
$B_q = \frac{u_2 - u_0}{q_t - \sigma_{v0}}$	Pore pressure ratio

ADDITIONAL PARAMETERS

PARAMETER	DESCRIPTION
u _o	Hydrostatic pore pressure at the cone depth relative to seafloor (computed)
σ_{v0}	Total in-situ vertical stress at the cone base, relative to seabed (computed)
U _{0i}	Hydrostatic pore pressure at the bottom of the borehole (computed; equal to zero for seabed mode)
$\alpha = \frac{A_{N}}{A_{T}}$	Net area ratio
$\beta = \frac{(u_2 + u_{0i} - u_0)}{(u_1 + u_{0i} - u_0)}$	Ratio of pore pressure at the cylindrical extension above the base of the cone to pore pressure on the cone face (u_2/u_1) pore pressure adjustment factor)

Note: values of β are selected on the basis of soil properties. Refer to text for details.

Plate B-1

Coordinates [m] : E278534

TAP GEOTECHNICAL INVESTIGATION - SKATE IV - ITALIAN LANDFALL, ADRIATIC SEA

UNIPLOT 05.15.nl / Wison QaQc zero load - landscape.cmd / 2012-03-01 14:50:12

Borehole/	Test No.	Z	Zero Reading	g		Zero Drift		Probe	Net Area	Net Area
Location		a	t Start of Te	st					Ratio	Ratio
		۹ _C	f _s	u	۹ _C	f _s	u		Cone	Friction
		[MPa]	Pa] [MPa] [MPa] [MF			[MPa]	[MPa]		Tip [-]	Sleeve [-]
TAP_IT_1008	CPT1	0.424	0.424 0.001 0.024 -0.00		-0.001	0.000	-0.001	F5CKE2HAW ₂ /B P10 1706-2008	0.750	0.00000
TAP_IT_1008	CPT2	0.404	0.001	0.024	0.013	0.000	-0.001	F5CKE2HAW ₂ /B P10 1706-2008	0.750	0.00000
TAP_IT_1008	CPT3	0.413	0.001	0.026	-0.054	0.003	-0.002	F5CKE2HAW ₂ /B P10 1706-2008	0.750	0.00000
TAP_IT_1008	CPT4	0.461	0.461 0.002 0.025 0.02		0.027	-0.001	-0.001	F5CKE2HAW ₂ /B P10 1706-2008	0.750	0.00000
TAP_IT_1008	CPT5	0.499	0.499 0.000 0.026 -0.0		-0.057	0.003	-0.001	F5CKE2HAW ₂ /B P10 1706-2008	0.750	0.00000

Key:

Note:

q_c : cone resistance

Zero Drift is the difference between the zero output at the start of the test and the zero output at the end of the test. Offshore tests may show Reference Readings. The Zero Reading or Reference Reading at Start of Test is a value presented in units of measurement result. The value itself is a conversion from system output, usually in mV or in digital counts. It has no explicit physical meaning. ----: Zero Drift was not monitored. The drift can be assessed from the start values of successive tests. 1. 2.

u : pore water pressure

Plate

UNIPLOT 05.15.nl / Wison QaQc zero load - landscape.cmd / 2012-05-07 15:43:40

Borehole/	Test No.	Z	Zero Reading	9		Zero Drift		Probe	Net Area	Net Area
Location		a	t Start of Te	st					Ratio	Ratio
		9 _C	q _c f _s u			fs	u		Cone	Friction
		[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]		Tip [-]	Sleeve [-]
TAP_IT_1009	CPT1	0.375	0.375 0.002 0.027 -			-0.001	-0.003	F5CKE2HAW ₂ /B P10 1706-2008	0.750	0.00000

CONE PENETRATION TEST - ZERO DRIFT TAP GEOTECHNICAL INVESTIGATION - SKATE IV - ITALIAN LANDFALL, ADRIATIC

SEA

Key:

q_c : cone resistance

Note: Zero Drift is the difference between the zero output at the start of the test and the zero output at the end of the test. Offshore tests may show Reference Readings. The Zero Reading or Reference Reading at Start of Test is a value presented in units of measurement result. The value itself is a conversion from system output, usually in mV or in digital counts. It has no explicit physical meaning.
---: Zero Drift was not monitored. The drift can be assessed from the start values of successive tests.

u : pore water pressure

TAP GEOTECHNICAL INVESTIGATION - SKATE IV - ITALIAN LANDFALL, ADRIATIC SEA

UNIPLOT 05.15.nl / Wison QaQc zero load - landscape.cmd / 2012-03-01 14:57:22

ſ	Borehole/	Test No.	Z	Zero Reading	g		Zero Drift		Probe	Net Area	Net Area
	Location		a	t Start of Te	st					Ratio	Ratio
			۹ _c	fs	u	۹ _C	fs	u		Cone	Friction
			[MPa]	Pa] [MPa] [MPa] [MF			[MPa]	[MPa]		Tip [-]	Sleeve [-]
	TAP_IT_1011	CPT 1	-0.007	.007 0.004 0.007 0.0			-0.002	0.002	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
	TAP_IT_1011	CPT2	0.039	0.004	0.011	-0.010	0.000	-0.002	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
	TAP_IT_1011	CPT3	0.025	0.005	0.009	0.007	-0.001	0.000	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
	TAP_IT_1011	CPT4	0.002	0.002 0.005 0.006 0.0		0.026	-0.001	0.002	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
	TAP_IT_1011	CPT5	-0.023	0.023 0.005 0.007 0.			-0.001	0.002	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
				0.005 0.007 0.0							

Key: q_c : cone resistance

Note: Zero Drift is the difference between the zero output at the start of the test and the zero output at the end of the test. Offshore tests may show Reference Readings. The Zero Reading or Reference Reading at Start of Test is a value presented in units of measurement result. The value itself is a conversion from system output, usually in mV or in digital counts. It has no explicit physical meaning. ----: Zero Drift was not monitored. The drift can be assessed from the start values of successive tests. 1.

u : pore water pressure

2.

D'Appolonia No. 11-503

UNIPLOT 05.15.nl / Wison QaQc zero load - landscape.cmd / 2012-03-01 14:59:55

Borehole/	Test No.	Z	Zero Reading	g		Zero Drift		Probe	Net Area	Net Area
Location		a	t Start of Te	st					Ratio	Ratio
		۹ _c	a _c f _s u			fs	u		Cone	Friction
		[MPa]	[MPa] [MPa] [MPa]			[MPa]	[MPa]		Tip [-]	Sleeve [-]
TAP_IT_1012	CPT1	-0.005	-0.005 0.007 0.007 0		0.007	-0.004	0.002	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000

Key:

q_c : cone resistance Note:

Zero Drift is the difference between the zero output at the start of the test and the zero output at the end of the test. Offshore tests may show Reference Readings. The Zero Reading or Reference Reading at Start of Test is a value presented in units of measurement result. The value itself is a conversion from system output, usually in mV or in digital counts. It has no explicit physical meaning. ----: Zero Drift was not monitored. The drift can be assessed from the start values of successive tests. 1.

u : pore water pressure

2.

TAP GEOTECHNICAL INVESTIGATION - SKATE IV - ITALIAN LANDFALL, ADRIATIC SEA

N4466404

UNIPLOT 05.15.nl / Wison QaQc zero load - landscape.cmd / 2012-03-01 15:03:29

Borehole/	Test No.	Z	Zero Reading	g		Zero Drift		Probe	Net Area	Net Area
Location		а	t Start of Te	st					Ratio	Ratio
		۹ _c	A _c f _s u			f _s	u		Cone	Friction
		[MPa]	[MPa] [MPa] [MPa]			[MPa]	[MPa]		Tip [-]	Sleeve [-]
TAP_IT_1013	CPT1	0.125	0.125 0.001 0.011 -0		-0.035	0.000	-0.001	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000

D'Appolonia No. 11-503

Key:

Note:

q_c : cone resistance

Zero Drift is the difference between the zero output at the start of the test and the zero output at the end of the test. Offshore tests may show Reference Readings. The Zero Reading or Reference Reading at Start of Test is a value presented in units of measurement result. The value itself is a conversion from system output, usually in mV or in digital counts. It has no explicit physical meaning. ----: Zero Drift was not monitored. The drift can be assessed from the start values of successive tests. 1. 2.

u : pore water pressure

UNIPLOT 05.15.nl / Wison QaQc zero load - landscape.cmd / 2012-03-01 15:06:25

Borehole/	Test No.	Z	Zero Reading	g		Zero Drift		Probe	Net Area	Net Area
Location		а	t Start of Te	st					Ratio	Ratio
		۹ _C	f _s	u	9 _C	fs	u		Cone	Friction
		[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]		Tip [-]	Sleeve [-]
TAP_IT_1022	CPT1	0.033	33 0.005 0.008 0.01			-0.001	0.001	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1022	CPT2	0.084	0.002 0.012 -0.04			0.002	-0.002	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1022	CPT3	0.082	082 0.002 0.012 -0.0			0.001	-0.002	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1022	CPT4	0.068	0.003	0.012	-0.021	0.001	-0.001	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1022	CPT5	0.075	0.003	0.013	-0.013	0.001	-0.002	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1022	CPT6	0.052	0.005	0.011	0.001	0.000	0.000	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1022	CPT7	0.060	0.004	0.011	0.000	0.003	0.000	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1022	CPT8	0.081	0.081 0.001 0.011 0.0			0.000	0.000	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000

D'Appolonia No. 11-503

Key:

Note:

q_c : cone resistance

Zero Drift is the difference between the zero output at the start of the test and the zero output at the end of the test. Offshore tests may show Reference Readings. The Zero Reading or Reference Reading at Start of Test is a value presented in units of measurement result. The value itself is a conversion from system output, usually in mV or in digital counts. It has no explicit physical meaning. ----: Zero Drift was not monitored. The drift can be assessed from the start values of successive tests. 1. 2.

u : pore water pressure

Coordinates [m] : E278777

TAP GEOTECHNICAL INVESTIGATION - SKATE IV - ITALIAN LANDFALL, ADRIATIC SEA

UNIPLOT 05.15.nl / Wison QaQc zero load - landscape.cmd / 2012-03-01 15:35:58

Borehole/	Test No.	Z	Zero Reading			Zero Drift		Probe	Net Area	Net Area
Location		a	t Start of Te	st					Ratio	Ratio
		9 _C	fs	u	9 _C	fs	u		Cone	Friction
		[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]		Tip [-]	Sleeve [-]
TAP_IT_1024	CPT1	-0.012	0.006	0.008	0.070	-0.005	0.000	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1024	CPT1	-0.014	14 0.006 0.006 0.03			-0.001	0.002	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1024	CPT3	-0.023	023 0.007 0.005 0.05			-0.004	0.002	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1024	CPT4	0.106	0.002	0.014	-0.034	0.000	-0.004	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1024	CPT5	0.097	0.001	0.013	-0.033	0.000	-0.002	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1024	CPT6	0.074	0.001	0.012	-0.028	0.001	-0.002	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1024	CPT7	0.017	0.004	0.009	0.013	0.000	0.001	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000
TAP_IT_1024	CPT8	0.016	0.016 0.005 0.008 0.0			-0.002	0.002	F5CKE2HAW ₂ /B P10 1706-1997	0.750	0.00000

Key:

Note:

q_c : cone resistance

Zero Drift is the difference between the zero output at the start of the test and the zero output at the end of the test. Offshore tests may show Reference Readings. The Zero Reading or Reference Reading at Start of Test is a value presented in units of measurement result. The value itself is a conversion from system output, usually in mV or in digital counts. It has no explicit physical meaning. ----: Zero Drift was not monitored. The drift can be assessed from the start values of successive tests. 1. 2.

u : pore water pressure

PROJECT NAME _ TAP Geotechnical Investigation

PROJECT LOCATION Italian Landfall

PROJECT NUMBER 11-503

			CL	ASSIF	ICATI	ON								SOIL	STRE	NGTH				CC	NSOL			
			H H				(Tc	ant	Ę	(sɛ			PP	TV	UU	C	U	С	D	DIRECT	SHEAR	e ₀)		
BOREHOLE ID	SAMPLE ID	TEST DEPTH (m)	Total Unit Weigh (kN/m³)	Water Content (%)	Fines Content (%)	Liquid Limit (LL (%)	Plasticity Index (F (%)	Carbonate Conte (%)	Organic Conten (%)	Specific Gravity (((-)	Min Density (kN/m³)	Max Density (kN/m³)	Undrained Shear Strength (kPa)	Undrained Shear Strength (kPa)	Undrained Shear Strength (kPa)	Cohesion (kPa)	Friction Angle (deg)	Cohesion (kPa)	Friction Angle (deg)	Cohesion (kPa)	Friction Angle (deg)	Initial Void Ratio ((-)	Preconsolidatio Pressure (kPa)	Compression Index (C _c)
TAP_IT_1008	02	0.10	16.9	24.9																				
TAP_IT_1008	02	0.40	18.4	24.1	5			25																
TAP_IT_1008	02	0.80	18.2	24.2																				
TAP_IT_1008	03	1.10	17.4	25.2																				
TAP_IT_1008	03	1.20			2			34																
TAP_IT_1008	03	1.21	18.8	25.4														15	34					
TAP_IT_1008	03	1.50	17.9	25.9	16			20																
TAP_IT_1008	03	1.65	17.9	27.4																				
TAP_IT_1008	04	1.85	17.9	24.7																				
TAP_IT_1008	04	1.95	18.3	23.6																				
TAP_IT_1008	04	2.20	18.4	26.1	4			25																
TAP_IT_1008	05	2.40			8					2.70														
TAP_IT_1008	05	2.50	15.8	26.3	12			41																
TAP_IT_1008		3.10	20.9					96																
TAP_IT_1008		3.10																						
TAP_IT_1008		3.12	20.9																					
TAP_IT_1008		3.20						88																
TAP_IT_1008		3.50	24.5																					
TAP_IT_1008		3.70																						
TAP_IT_1008		4.00						82																
TAP_IT_1008		4.75						89																
TAP_IT_1008		5.00	17.8	35.0																			<u> </u>	
TAP_IT_1008		5.20			18																		<u> </u>	
TAP_IT_1008	07	6.90	17.7	20.7																			<u> </u>	
TAP_IT_1008	07	7.10	13.7	40.5	66																		<u> </u>	<u> </u>
TAP_IT_1008	07	7.20			39			97															<u> </u>	<u> </u>
TAP_IT_1008	07	7.22	18.3	32.4														7	32				<u> </u>	
TAP_IT_1008	07	7.60	14.3	45.5				54															<u> </u>	
TAP_IT_1008	08	9.30			41	20	4				11	14											<u> </u>	
TAP_IT_1008	08	9.45	15.5	38.5																				
TAP_IT_1008	08	9.75	17.0	72.4				51							-								<u> </u>	
TAP_IT_1008	08	9.95	19.5	22.6	77																		<u> </u>	
TAP_IT_1008	09	11.85		18.3																				
TAP_IT_1008	09	11.90			71																		<u> </u>	
	10	12.30	40.0	0																			<u> </u>	
TAP_11_1008	10	12.35	18.6	26.7	50			94															<u> </u>	
TAP_11_1008	10	12.60	47.0	22.2	50			90															<u> </u>	
	10	12.65	17.8	33.3	41																		<u> </u>	
BAG: Disturbe	ed Soil Sample	WAX: Und	isturbed S	Soil Samp	ble	SPT: S	Standard I	Penetratio	on Test S	ample		SS: Split	Spoon S	ample		Fines C	ontent: Pe	ercentage	finer tha	n 63 µm.		TV: Torva	ane Test	
OS: Osterberg Sample SH: Shelby Sample					PI / DI	J. Piston /	Push Sa	mnle			RC Roo	k Core Sa	amnle		PP. Poo	ket Penet	rometer T	est	•	1		onsolidate	d l Indr	
	OS: Osterberg Sample SH: Sheiby Sample							1 1011 00	u uhie			T.O. F.UC		anpie		11. 100			GOL				JISUIUALE	

DAPPOLONIA

PAGE	1	OF	6

ГІ	ON	RO	CK ST	RENG	STH	CH	IEMIC	AL
(-)	Recompression Index (C,) (-)	Sonic Pulse Velocity (m/s)	Point Load Index I s(50) (MPa)	Unconfined Compressive Strength (MPa)	Indirect Tensile Strength (MPa)	Hq (-)	Chlorides (mg/l)	Sulphates (mg/l)
		2895.0		4.0				
			0.95					
			6 27					
			2.79					
						8.8	14000.0	1430.0
						8.6	7030.0	927.0

CU: Consolidated Undrained Triaxial Test.

PROJECT NUMBER 11-503

					CL	ASSIF	ICATI	ON	1							SOIL	STRE	NGTH		1		CC	ONSOL	
			Ŧ				,	ut	t t	(sc			PP	TV	UU	0	U	C	D	DIRECT	SHEAR	e ₀)	L C	
BOREHOLE ID	SAMPLE ID	TEST DEPTH (m)	Total Unit Weigh (kN/m³)	Water Content (%)	Fines Content (%)	Liquid Limit (LL (%)	Plasticity Index (F	Carbonate Conte (%)	Organic Conten (%)	Specific Gravity (((-)	Min Density (kN/m³)	Max Density (kN/m³)	Undrained Shear Strength (kPa)	Undrained Shear Strength (kPa)	Undrained Shear Strength (kPa)	Cohesion (kPa)	Friction Angle (deg)	Cohesion (kPa)	Friction Angle (deg)	Cohesion (kPa)	Friction Angle (deg)	Initial Void Ratio ((-)	Preconsolidatio Pressure (kPa)	Compression Index (C _c)
TAP_IT_1008		12.70	18.7	30.9						2.65										18	32			
TAP_IT_1008		12.90			50	20	2																	
TAP_IT_1008	11	14.30		34.1																				
TAP_IT_1008	11	14.60		40.6				91																
TAP_IT_1008	11	14.70		34.8	18																			
TAP_IT_1008	11	14.80			22			95																
TAP_IT_1008		17.00	20.8					80																
TAP_IT_1008		17.12	20.0																					
TAP_IT_1008		17.20																						
TAP_IT_1008		17.45	17.8					71																
TAP_IT_1008		17.47	17.6																					
TAP_IT_1008		17.50						86														L		
TAP_IT_1008		17.60	17.8																			L		
TAP_IT_1008		17.65																				L		
TAP_IT_1008		17.70	20.9																					
TAP_IT_1008		17.80	16.8																			L		
TAP_IT_1008		19.70	18.4					77														L		
TAP_IT_1008		19.72	18.6																			L		
TAP_IT_1008		19.90	17.8																			L		
TAP_IT_1008		20.10	19.2																			L		ļ
TAP_IT_1008		20.12	19.1																			L	<u> </u>	
TAP_IT_1008		20.30																				<u> </u>		<u> </u>
TAP_IT_1008		20.35	18.3																			 		
TAP_IT_1011	01	0.10	18.8	22.2		-																		
TAP_IT_1011	01	0.20	19.1	21.6	10			26														<u> </u>		
TAP_IT_1011	01	0.30			13																	<u> </u>		
TAP_IT_1011	01	0.40	19.1	17.9																				
	02	1.10	19.4	24.2	3			21																
	02	1.30	18.1	23.1																		<u> </u>		
	03	1.70	19.1	28.6																				
TAP_II_1011	03	1.80	18.9	27.8	0																	<u> </u>		
	03	1.90	19.0	26.7	8			24																
	03	2.00	20.0	28.7																				
$\frac{\text{TAP}_{\text{II}} \text{IUII}}{\text{TAP}_{\text{II}} \text{IUII}}$	04	2.55	10.4	21.2	2			20															+	
TAP_IT_1011	04	2.05	10.1	20.7	2			29							-								+	
TAP_IT_1011	04	2.75	10.5	20.1	3																			
	04	2.50	10.5	22.0																		<u> </u>	+	
	00	0.00	19.5 23.9																			L	L	<u> </u>
BAG [.] Disturbe	d Soil Sample	WAX·Lind	listurbed s	Soil Samr	ble	SPT	Standard	Penetratio	on Test S	ample		SS [.] Snlit	Spoon S	ample		Fines C	ontent [.] Pe	ercentage	finer tha	in 63 um		TV [.] Tory	ane Test	
	Comple		v Comele			יייייום	I. Diotor							melo			kot Deset	romot 7				1111.11	oncolidat	- ا ا ا م
US: Usterberg	OS: Osterberg Sample SH: Shelby		y Sample			PI/PL	J: Piston	rush Sa	unple			KU: K00	k Core Sa	ample		FF: 600	ket Penet	rometer	est				onsolidate	u Undra

ΓI	ON	RO	CK ST	RENG	CHEMICAL							
(-)	Recompression Index (C _r) (-)	Sonic Pulse Velocity (m/s)	Point Load Index I s(50) (MPa)	Unconfined Compressive Strength (MPa)	Indirect Tensile Strength (MPa)	(-)	Chlorides (mg/l)	Sulphates (mg/l)				
		1704.0	0.053	1.6								
			0.03									
		1526.0	0.023	0.5								
		0	0.06 0.018	3								
		1532.0	0.018	0.8								
			0.021									
			0.16									
		1534.0	0.024	0.9								
			0.024									
_												
_												
						8.6	8746.0	1350.0				

CU: Consolidated Undrained Triaxial Test.

PROJECT NUMBER 11-503

					CL	ASSIF	ICATI	ON		1					,	SOIL	STRE	NGTH		,		CONSOLIDA		
			E E				(To	IJ	+	(se			PP	TV	UU	C	U	c	D	DIRECT	SHEAR	e_)	_	
BOREHOLE ID	SAMPLE ID	TEST DEPTH (m)	Total Unit Weigh (kN/m³)	Water Content (%)	Fines Content (%)	Liquid Limit (LL (%)	Plasticity Index (F (%)	Carbonate Conte (%)	Organic Conten (%)	Specific Gravity (((-)	Min Density (kN/m³)	Max Density (kN/m³)	Undrained Shear Strength (kPa)	Undrained Shear Strength (kPa)	Undrained Shear Strength (kPa)	Cohesion (kPa)	Friction Angle (deg)	Cohesion (kPa)	Friction Angle (deg)	Cohesion (kPa)	Friction Angle (deg)	Initial Void Ratio ((-)	Preconsolidatio Pressure (kPa)	Compression Index (C _c)
TAP_IT_1011	05	3.70	18.1	29.1																				
TAP_IT_1011	05	3.90	17.2	41.0	6			37																
TAP_IT_1011	05	4.05	18.4	29.8																				
TAP_IT_1011	06	4.25	19.3	23.9	17			26																
TAP_IT_1011	06	4.30			4			30		2.67														
TAP_IT_1011	06	4.32	18.3	27.5														19	33					
TAP_IT_1011	06	4.75	18.3	27.2																				
TAP_IT_1011	07	5.20	17.6	28.2																				
TAP_IT_1011	07	5.30	17.0	31.3																				
TAP_IT_1011	07	5.40	17.5	31.8	5			34																
TAP_IT_1011	07	5.80	18.5	30.9																				
TAP_IT_1011	08	6.10									12	14												
TAP_IT_1011	08	6.20		38.5																				
TAP_IT_1011	08	6.30			7																			
TAP_IT_1011	08	6.50	16.4	36.2	5			54																
TAP_IT_1011	08	6.70	17.3	33.8																				
TAP_IT_1011	09	7.20		28.4	6			65																
TAP_IT_1011	09	7.45		40.2																				
TAP_IT_1011	09	7.70		36.3																				
TAP_IT_1011	09	7.90		37.8	12			72																
TAP_IT_1011	10	8.10	18.5	33.3	19			87												20	32			
TAP_IT_1011	10	8.30		24.6																				
TAP_IT_1011	10	8.50		33.7	22			73																
TAP_IT_1011	10	8.65		26.4																				
TAP_IT_1011	11	9.20		40.5																				
TAP_IT_1011	11	9.25		41.4																				
TAP_IT_1011	11	9.30	17.9		23			68																
TAP_IT_1011	12	9.65		35.9																				
TAP_IT_1011	12	9.70	17.5		35																		<u> </u>	<u> </u>
TAP_IT_1011	12	9.75		37.2				72															<u> </u>	\vdash
TAP_IT_1011	13	11.50			34																		<u> </u>	<u> </u>
TAP_IT_1011	13	11.55		37.9																			<u> </u>	
TAP_IT_1011	13	11.60	18.4		40																		<u> </u>	<u> </u>
TAP_IT_1011	13	11.70																						
TAP_IT_1011	13	11.80		23.5																		 	<u> </u>	<u> </u>
TAP_IT_1011	13	12.00	20.0																			ļ	<u> </u>	<u> </u>
TAP_IT_1011	13	12.05		23.6																			<u> </u>	
TAP_IT_1011	13	12.20		25.0	49			82														L		
LEGEND						6		_	_				_ ·						. ·			.	_	
BAG: Disturbe	d Soil Sample	WAX: Und	isturbed S	Soil Samp	le	SPT: S	Standard I	Penetratio	on Test S	ample		SS: Split	Spoon Sa	ample		Fines Co	ontent: Pe	ercentage	finer tha	n 63 µm.		IV: Torva	ane Test	
OS: Osterberg	Sample	SH: Shelby	y Sample			PI / PL	J: Piston /	/ Push Sa	mple			RC: Rocl	k Core Sa	ample		PP: Poc	ket Penet	rometer T	est		I	JU: Unc	onsolidate	ed Undr

ГIС	N	RO	CK ST	RENG	CHEMICAL							
(-)	Kecompression Index (C,) (-)	Sonic Pulse Velocity (m/s)	Point Load Index I s(50) (MPa)	Unconfined Compressive Strength (MPa)	Indirect Tensile Strength (MPa)	(-)	Chlorides (mg/l)	Sulphates (mg/l)				
_												
-												
_												
+												
+												
_												
_												
+												
+												
_												
_												
-												
+												
_												
_												
+												
+												
+						89	6700.0	909 0				
+		<u> </u>				0.0	0.00.0					

CU: Consolidated Undrained Triaxial Test.

PROJECT NUMBER 11-503

	CL	ASSIF	ICATI	ON	1	1	1		SOIL STRENGTH									CONSOLIDAT						
			Ħ				Ē	ant	t l	(sc			PP	TV	UU	C	U	C	D	DIRECT	SHEAR	(e ₀)	c	
BOREHOLE ID	SAMPLE ID	TEST DEPTH (m)	Total Unit Weig (kN/m³)	Water Content (%)	Fines Content (%)	Liquid Limit (LL (%)	Plasticity Index (((%)	Carbonate Conte (%)	Organic Conter (%)	Specific Gravity ((Min Density (kN/m³)	Max Density (kN/m³)	Undrained Shear Strength (kPa)	Undrained Shear Strength (kPa)	Undrained Shear Strength (kPa)	Cohesion (kPa)	Friction Angle (deg)	Cohesion (kPa)	Friction Angle (deg)	Cohesion (kPa)	Friction Angle (deg)	Initial Void Ratio ((-)	Preconsolidatio Pressure (kPa)	Compression Index (C _c)
TAP_IT_1011	14	14.00	19.0		49	20	2	99																
TAP_IT_1011	14	14.20	18.5																					
TAP_IT_1011	14	14.22	18.1	33.7														26	33					
TAP_IT_1011	14	14.23	19.2	27.1												32	33							
TAP_IT_1011	14	14.40	18.1							2.70														
TAP_IT_1011	14	14.70	16.7	35.5	61			75																
TAP_IT_1011	15	16.60	19.7	18.9																				
TAP_IT_1011	15	16.70	17.7	39.3																				
TAP_IT_1011	15	16.80	17.9	41.8	45			73																
TAP_IT_1011	15	16.90	18.0	37.9																				
TAP_IT_1011	15	17.00	18.1	38.6																				
TAP_IT_1011	15	17.10	18.6	33.2																				
TAP_IT_1011	16	19.10		22.7	38			88																
TAP_IT_1011	16	19.30		27.0																				
TAP_IT_1011	16	19.35	18.3	29.4	40			58												15	32			
TAP_IT_1011	16	19.40	18.0																					
TAP_IT_1011	16	19.55									12	15												
TAP_IT_1011	16	19.60		35.7																				
TAP_IT_1011	16	19.70	17.7																					
TAP_IT_1011	16	19.75		32.7	42			89																
TAP_IT_1022	01	1.60	19.1	26.9																			<u> </u>	
TAP_IT_1022	01	1.70	18.5	30.5																			<u> </u>	
	01	1.80	18.6	30.1	5			26																<u> </u>
TAP_IT_1022	01	1.90	18.4	31.1																				
TAP_IT_1022	01	2.00	19.3	25.5																				
TAP_IT_1022	02	4.00									12	15												
TAP_IT_1022	02	4.20	17.2	28.6																			<u> </u>	<u> </u>
TAP_IT_1022	02	4.30	18.6	28.3	7			33															<u> </u>	
TAP_IT_1022	02	4.32	18.6	28.3																7	34		<u> </u>	<u> </u>
TAP_IT_1022	02	4.35	17.3	27.4																				
TAP_IT_1022	02	4.40	17.3	30.3	3			34																
TAP_IT_1022	02	4.50	17.6	30.4																				
TAP_IT_1022	02	4.60	18.2	29.6																				
TAP_IT_1022		6.55	24.2																				<u> </u>	
TAP_II_1022		6.60						91															<u> </u>	
		7.25			00			82																
	03	9.10	40.4	01.0	38																		<u> </u>	
IAP_II_1022	03	9.25	18.1	31.3																				
LEGEND									_				_											
والع المعن المعنية المع المعنية المعنية						Standard	Penetratio	on Test S	ample		SS: Split	Split Spoon Sample Fines Content: Percentage finer than 63 µm.						·	TV: Torvane Test					
OS: Osterberg	Sample	SH: Shelby	/ Sample			PI / Pl	J: Piston	/ Push Sa	ample			RC: Rocl	k Core Sa	ample		PP: Poc	ket Penet	rometer 1	est			UU: Unc	onsolidate	ed Undra

ΓΙ	ON	RO	CK ST	RENG	CHEMICAL							
(-)	Recompression Index (C,) (-)	Sonic Pulse Velocity (m/s)	Point Load Index I s(50) (MPa)	Unconfined Compressive Strength (MPa)	Indirect Tensile Strength (MPa)	(-)	Chlorides (mg/l)	Sulphates (mg/l)				
_												
_												
_												
_												
								-				

CU: Consolidated Undrained Triaxial Test.

PROJECT NUMBER 11-503

			CL	ASSIF	ICATI	ON					SOIL STRENGTH									CONSOLIDATION				
			t I				(c	ut	t I	(se			PP	TV	UU	C	U	C	D	DIRECT	ſ SHEAR	e ₀)	c	
BOREHOLE ID	SAMPLE ID	TEST DEPTH (m)	Total Unit Weigh (kN/m³)	Water Content (%)	Fines Content (%)	Liquid Limit (LL (%)	Plasticity Index (F (%)	Carbonate Conte (%)	Organic Conten (%)	Specific Gravity (((-)	Min Density (kN/m³)	Max Density (kN/m³)	Undrained Shear Strength (kPa)	Undrained Shear Strength (kPa)	Undrained Shear Strength (kPa)	Cohesion (kPa)	Friction Angle (deg)	Cohesion (kPa)	Friction Angle (deg)	Cohesion (kPa)	Friction Angle (deg)	Initial Void Ratio ((-)	Preconsolidatio Pressure (kPa)	Compression Index (C _c) (-) Recompression
TAP_IT_1022	03	9.65	18.2	35.6	46			74																
TAP_IT_1022	03	9.80	18.3	32.2																-				
TAP_IT_1022	03	9.95	17.7	32.3																				
TAP_IT_1022	04	11.75		23.9																				
TAP_IT_1022	04	11.80			40			63																
TAP_IT_1022	04	11.82	18.7	32.8														19	33					
TAP_IT_1022	04	12.00	19.5	21.9	60			70																
TAP_IT_1022	04	12.20	19.7	33.5							13	15												
TAP_IT_1022	04	12.45		33.1																				
TAP_IT_1022	05	14.30		39.7																				
TAP_IT_1022	05	14.40									12	15												
TAP_IT_1022	05	14.60			30			97		2.79									<u> </u>					
TAP_IT_1022	05	14.65		39.2	39			85											<u> </u>					
TAP_IT_1022	05	14.80		40.6															<u> </u>			<u> </u>		
TAP_IT_1022	05	15.00	16.4	33.8															<u> </u>					
TAP_IT_1022	07	16.80		25.5															<u> </u>			L		
TAP_IT_1022	07	17.00	19.7	24.8	43			77											<u> </u>					
TAP_IT_1022	07	17.10			47	19	1	96											<u> </u>				<u> </u>	
TAP_IT_1022	07	17.30	19.5	25.3															<u> </u>	9	34			
TAP_IT_1022	08	19.30		25.9															<u> </u>					
TAP_IT_1022	08	19.50			31			98					-											
TAP_IT_1022	08	19.55		38.0	38			70											<u> </u>			<u> </u>		
	08	19.70		38.7																		<u> </u>		
TAP_II_1022	08	19.90	40.7	28.7	0			04														<u> </u>		
TAP_II_1024	01	1.70	18.7	24.5	2			24		0.05									──					
TAP_II_1024	02	2.00	18.2	28.9	0			35		2.05											33			
TAP_I1_1024	02	2.20	18.2	31.0	4			29			10	15										<u> </u>		
TAP_IT_1024	02	2.25	19.6	20.2							12	15								+		<u> </u>		
TAP_IT_1024	02	2.35	10.0	20.3																+		<u> </u>	+	
TAP IT 1024	02	4 10	10.5	32.0	11			30											+	+		<u> </u>	+	
TAL_IT_1024	03	4.10		33.0				55																
TAP IT 1024	03	4.30		33.0	5															+		<u> </u>		
TAP IT 1024	03	4 50	15.3	34.8															<u> </u>			<u> </u>		
$\frac{17.1 - 1024}{1024}$	03	4 70	14.4	29.5	4			38											+	+	+	<u> </u>	+	
TAP IT 1024		6.00	20.8		· ·			59					-						+	+	+	<u> </u>	+	+
TAP IT 1024		6.20						78											+	+	+	<u> </u>	+	+
TAP IT 1024		6.50	23.1																<u> </u>	+	+	<u> </u>	+	+
	I		1		1		1	1	1	1	I	1	I		1	1	I		1		<u> </u>	I	<u> </u>	
BAG: Disturbe	d Soil Sample	WAX: Und	listurbed \$	Soil Sam	ble	SPT: S	Standard	Penetratio	on Test S	ample		SS: Split	Spoon S	ample		Fines Co	ontent: Pe	ercentage	e finer tha	an 63 μm.		TV: Torv	ane Test	
OS: Osterberg	Sample	SH: Shelb	y Sample			PI / Pl	J: Piston	/ Push Sa	ample			RC: Roc	k Core Sa	ample		PP: Poc	ket Penet	rometer 7	Fest			UU: Unc	onsolidate	ed Undrained

PAGE 5 OF 6

					T									
ON	RO	CK ST	RENG	ЭTH	CHEMICAL									
Recompression Index (C,) (-)	Sonic Pulse Velocity (m/s)	Point Load Index I s(50) (MPa)	Unconfined Compressive Strength (MPa)	Indirect Tensile Strength (MPa)	(-) Hd	Chlorides (mg/l)	Sulphates (mg/l)							
					L	L								
		0.033												

CU: Consolidated Undrained Triaxial Test.

APPENDICE B INTERPRETAZIONE DELLE PROVE PENETROMETRICHE STATICHE

• Prove penetrometriche, prove in sito e interpretazione dei dati (Doc. No. P-OFF-P19 Rev.0).

Doc. No. P-OFF-P19 Rev. 0 - MARCH 2011

D'Appolonia S.p.A. Genoa, Italy

Cone Penetration Test In-situ Testing and Data Interpretation **Technical Procedure**
IDAIPPOLONIA

Doc. No. P-OFF-P19 Rev. 0 - MARCH 2011

D'Appolonia S.p.A., Genoa, Italy

~ .

Cone Penetration Test In-situ Testing and Data Interpretation

. .

Technical Procedure

Prepared by	Signature	Date
Aurelio Marchesini	Ameloo Morcherm.	March 22, 2011
Matteo Sottile	Matter Latile	March 22, 2011
Verified by	Signature	Date
Eric J. Parker	E. JPC	March 22, 2011
Approved by	Signature	Date
Andrea Del Grosso	Aushers Jelpons	March 22, 2011
Rev. Description 0 First Issue	Prepared by Verified by Approved by ARM/MTS EP AED	Date March 2011

All rights, including translation, reserved. No part of this document may be disclosed to any third party, for purposes other than the original, without written consent of D'Appolonia.

TABLE OF CONTENTS

Page

LIST	LIST OF TABLES			
LIST	LIST OF FIGURES			
1 INTRODUCTION			1	
2 PCPT RESULTS				
3	PCF	PT DATA INTERPRETATION	4	
	3.1	BASIC SOIL PARAMETERS	4	
		3.1.1 Soil behavior Type Index	4	
		3.1.2 Soil Density	6	
	3.2	INTERPRETATION IN FINE-GRAINED SOILS	6	
		3.2.1 In-situ Stress State	6	
		3.2.2 Undrained Shear Strength	7	
		3.2.3 Clay Sensitivity	8	
		3.2.4 Effective Shear Strength Parameters	8	
		3.2.5 Compressibility	9	
		3.2.6 Dynamic Soil Properties	9	
	3.3	INTERPRETATION IN COARSE-GRAINED SOILS	10	
		3.3.1 Relative Density	10	
		3.3.2 Angle of Internal Friction	10	
		3.3.3 Compressibility	11	
		3.3.4 Constrained Modulus	11	
		3.3.5 Dynamic Soil Properties	11	
DEE				

REFERENCES

APPENDIX A: REFERENCE MATERIALS

LIST OF TABLES

<u>Tables</u> <u>No.</u>	<u>Page</u>
Table 3.1: Soil Classification based on I_c	6
LIST OF FIGURES	
Figure No.	<u>Page</u>
Figure 3.1: Soil Classification Chart	

9

TECHNICAL PROCEDURE CONE PENETRATION TEST IN-SITU TESTING AND DATA INTERPRETATION

1 INTRODUCTION

The Cone Penetration Test (CPT) is widely used for in-situ geotechnical characterization of soil. The test comprises the measurement of both tip resistance and lateral sleeve friction of a cone which penetrates into the soil at a constant rate. The cone can be also equipped with a filter stone for measuring the excess pore pressure developed during the penetration phase (Piezo Cone Penetration Test).

The advantage of using CPT test in the site investigations is to determine a continuous stratigraphic profile of the site and evaluate geotechnical soil parameters which are the basis for direct geotechnical design.

This technical procedure discusses the main data derived from the test, and the interpretation of the CPT results to derive geotechnical engineering parameters.

2 PCPT RESULTS

The presentation of results from cone penetration tests consists of graphs showing q_c , f_s and F_r versus depth below seabed, while u_1 or u_2 , q_t , q_{net} and B_q may be presented additionally for tests with pore pressure measurements. The reference level is the bottom of the borehole in downhole mode, or the seabed in wheeldrive mode. The above terms are defined as follows:

 q_c = cone resistance relative to the reference level of the test;

- f_s = sleeve friction relative to the reference level of the test. A depth correction is applied so that sleeve friction is presented for the corresponding cone depth;
- F_r = ratio of sleeve friction to cone resistance (f_s/q_c) . This calculated ratio is for the cone depth;
- u_1 = pore pressure at the face of the cone, relative to the reference level of the test;
- u₂ = pore pressure at the cylindrical extension above the base of the cone, relative to the reference level of the test;
- $q_t = total cone resistance$. This includes corrections for hydrostatic and transient pore pressures, and cone construction. The total cone resistance is calculated relative to seabed:

$$q_{t} = q_{c} + (1 - \alpha) u_{2} + u_{oi}$$

or

$$q_{t} = q_{c} + (1-\alpha) \left[\beta (u_{1} + u_{oi} - u_{o}) + u_{o} \right] + \alpha u_{oi}$$

where:

- α = net area ratio of the cross-sectional steel area at the groove between cone and friction sleeve to the cone base area. This ratio is penetrometer-type dependent and typically ranges between 0.45 and 0.75. The α -factor indicates the effect of pore pressure on unequal cross-sectional areas of the cone;
- β = ratio of pore pressure at the cylindrical extension above the base of the cone to pore pressure on the cone face. The β -factor depends on factors such as soil fabric, overconsolidation ratio, compressibility, and crushability of a soil;

$$\beta = \frac{(u_2 + u_{oi} - u_o)}{(u_1 + u_{oi} - u_o)}$$
(2)

The term $(u_2 + u_{oi} - u_o)$ refers to excess pore pressure (with respect to hydrostatic pore pressure). Excess pore pressure is commonly denoted du_2 or Δu_2 . Similarly, the term $(u_1 + u_{oi} - u_o)$ is commonly expressed as du_1 or Δu_1 .

The β -factor is selected in accordance with the following guidelines:

(1)

Soil Behavior Type	β
Normally consolidated clay	0.6 - 0.8
Slightly overconsolidated sensitive clay	0.5 - 0.7
Heavily overconsolidated clay	0.0 - 0.3
Loose, compressible silt	0.5 - 0.6
Dense, dilatant silt	0.0 - 0.2
Loose silty sand	0.2 - 0.4

 $u_0 =$ hydrostatic pore pressure at the cone, relative to seabed. This value is calculated;

u_{oi} = hydrostatic pore pressure at the bottom of the borehole, relative to seabed. This value is calculated;

 $q_{net} = q_t - \sigma_{vo}$ = net cone resistance. This includes corrections for hydrostatic and transient pore pressures, in-situ stress, and cone construction;

where:

 σ_{vo} = total in-situ vertical stress at the cone base, relative to seabed. This value is calculated;

 B_q = pore pressure ratio:

$$B_{q} = \frac{\beta (u_{1} + u_{oi} - u_{o})}{q_{net}}$$

or

(3)

$$B_q = \frac{(u_2 + u_{oi} - u_o)}{q_{net}}$$

3 PCPT DATA INTERPRETATION

This section discusses the correlations used to derive engineering parameters from the CPT data.

3.1 BASIC SOIL PARAMETERS

3.1.1 Soil Behavior Type Index

One of the most important issues for CPT testing is the identification of soil type. The determination of soil behavior is an essential step in data interpretation and should be performed prior evaluation of geotechnical design soil parameters.

This procedure considers the normalized soil behavior classification index I_c , in accordance with the Robertson (2009) unified approach. The method recalls the early soil classification charts developed in terms of cone tip resistance and friction ratio (e.g. Robertson et al., 1986, Robertson and Wride, 1998). The soil behavior zones on the Qc-Fr chart are divided into a set of concentric circles in terms of normalized cone point resistance and friction ratio. The radius of the circles (I_c) is then correlated to soil type. The chart of normalized soil behavior and corresponding I_c values are shown in Figure 3.1.

Figure 3.1: Soil Classification Chart

A modification of the Robertson soil behavior type proposed by Zhang et al. (2002) is used:

$$I_{c} = \left[\left(3.47 - \log Q_{tn} \right)^{2} + \left(\log F_{r} + 1.22 \right)^{2} \right]^{0.5}$$
(4)

where

$$Q_{tn} = [(q_t - \sigma_{v0})/p_a](p_a / \sigma'_{v0})^n$$
(5)

$$F_{f} = [f_{s}/(q_{t} - \sigma_{v0})] 100\%$$
(6)

$$n = 0.381(I_c) + 0.05 (\sigma'_{v0}/p_a) - 0.15$$
(7)

and

p_a reference pressure taken as 100 kPa

The categories of soil types as a function of I_c are presented in Table 3.1.

I _c		SOIL TVDE	
FROM	ТО	SOIL TYPE	
0.00	1.31	Gravelly sand	
1.31	2.05	Sands – clean to silty	
2.05	2.60	Sand mixtures	
2.60	2.95	Silt mixtures	
2.95	3.60	Clays	
3.60	6.00	Organic soils - peats	

Table 3.1: Soil Classification based on I_c

For basic data assessments, soils with I_c less than 2.6 are considered to exhibit drained behavior.

3.1.2 Soil Density

There are existing methods to estimate soil unit weight based on soil behavior type. Robertson and Cabal (2010) proposed a correlation to estimate soil unit weight based directly on CPT results (q_t and f_s).

$$\gamma/\gamma_{\rm w} = \left[0.27 \cdot \log R_{\rm f} + 0.36 \cdot \log(q_{\rm t}/p_{\rm a}) + 1.236\right] \cdot G_{\rm s}/2.65 \tag{8}$$

where

G_s specific gravity (assumed 2.65 for routine calculations)

R_f friction ratio.

3.2 INTERPRETATION IN FINE-GRAINED SOILS

Fine grained soils are generally considered to exhibit undrained behavior, and their related parameters are primarily derived based on undrained shear strength. Correlations applied to derive the main geotechnical parameters are summarized below.

3.2.1 In-situ Stress State

The in-situ stress state of fine-grained soils is generally defined in terms of the over consolidation ratio (OCR). By definition, the OCR is the ratio between the maximum past effective consolidation stress and the present effective overburden stress.

$$OCR = \frac{\sigma_p}{\sigma_{v0}}$$
(9)

One of the most common methods to derive OCR in fine-grained soils was proposed by Kulhawy and Mayne (1990).

$$OCR = k \left(\frac{q_t - \sigma_{v_0}}{\sigma'_{v_0}} \right)$$
(10)

or, equivalently:

$$\sigma'_{p} = k(q_{t} - \sigma_{v0}) \tag{11}$$

where

k preconsolidation cone factor

 σ'_{p} preconsolidation stress.

According to Robertson (2009), an average value of k=0.33 can be assumed within a range of values of 0.2 to 0.5. The higher values of k are recommended in aged, heavily overconsolidated clays.

3.2.2 Undrained Shear Strength

The in-situ undrained shear strength S_u varies depending on a number of factors including stress history, anisotropy, strain rate, failure mode and temperature. Several theoretical and empirical methods are proposed in the technical literature to estimate S_u based on measured CPT data.

If excess pore pressure data is not available, the widely used empirical correlation given by Battaglio (1986) for soft to stiff clays can be used:

$$S_{u} = \frac{q_{c} - \sigma_{v0}}{N_{c}}$$
(12)

where S_u , σ_{v0} and q_c are in kPa. N_c is an empirical factor ranging between 10 (high plasticity index) and 25 (low plasticity index). The reference undrained shear strength comes from insitu vane test results. The total in-situ vertical stress (σ_{v0}) can be neglected for stiff clays at shallow depth.

If excess pore pressure data is available, the empirical correlation between piezo-cone test and CIU results derived by Rad and Lunne (1988) can be used as follows:

$$S_u = \frac{q_n}{N_{kt}}$$
(13)

where N_k is an empirical factor ranging between 8 (normally consolidated clays) and 30 (overconsolidated clays). The values of q_n used for developing this correlation are generally limited to 2.5 MPa.

A recent joint industry project (Low et al., 2010) utilized a world wide database of high quality test data to establish cone factors for deepwater soils. Results of that study suggest N_{kt} values ranging from 10.5 to 15.5 for soft, normally to lightly overconsolidated deepwater clays.

3.2.3 Clay Sensitivity

Sensitivity is defined as the ratio between the undisturbed and remolded undrained shear strength. Lunne et al. (1997) and others suggest that the sleeve friction values are often similar to the remolded undrained shear strength of fine-grained soils. Based on the assumption that the remolded shear strength of the soil equals the sleeve friction value, soil sensitivity can be estimated as:

$$S_{t} = \frac{S_{u}}{S_{u(r)}} = \frac{7.1}{F_{r}}$$
(14)

where the coefficient 7.1 is an average within a range from about 5 to 10. This value is similar to other values found in the literature, such as a value of 7.5 suggested by Rad and Lunne (1986) and 7.3 suggested by Mayne (2007).

3.2.4 Effective Shear Strength Parameters

The interpretation of the effective strength parameters is generally based on soil behavior type classification. As a general note, values of the drained friction angle (ϕ ') will be increased by an increase of the coarse grained component of the soil (silts or sands), while lower values of ϕ ' are expected if this component is negligible.

Mayne (2001) provides the following correlation to estimate friction angle of cohesive soils based on the sleeve friction and the total effective stress:

$$\varphi' = 30.8 \cdot \left[\log \left(\frac{f_s}{\sigma_{v0}} \right) + 1.26 \right]$$
(15)

3.2.5 Compressibility

Correlations between undrained Young's modulus E_u and undrained shear strength S_u are based on triaxial testing on undisturbed clay samples. For stress ratios of the order of 0.3, E_u/S_u typically ranges from 300 to 900 for normally consolidated clays and from 100 to 300 for heavily overconsolidated clays.

The constrained modulus M (or coefficient of volume compressibility m_v , where $M=1/m_v$) was evaluated by Mitchell and Gardner (1976). The ratio M/q_c typically ranges from 1 to 8 for silts and clays. This correlation was derived from the results of standard oedometer tests on silt and clay samples.

Laboratory soil stiffness may differ from in-situ stiffness values due to possible soil sample disturbance. This implies that laboratory measurements of stiffness will be usually lower than the in-situ stiffness.

One of the most used formulae for evaluation of the constrained modulus from CPT data is the correlation given by Kulhawy and Mayne (1990) for clays. This relationship was derived from a data review of 12 different sites, with constrained moduli up to 60 MPa.

$$\mathbf{M} = 8.25 \cdot \mathbf{q}_{\mathrm{n}} \tag{16}$$

3.2.6 Dynamic Soil Properties

Soil shear stiffness at small strain is a basic input required for dynamic analyses and earthquake engineering. The parameter can be expressed either as the small strain shear modulus (G_{max}), or alternatively the shear wave velocity (V_s). From the theory of elasticity these two parameters are related as:

$$G_{max} = \rho V_s^2 \tag{17}$$

where

ρ soil bulk density

For fine grained soils shear stiffness is a function of soil density, void ratio and effective stress. The parameter may also be influenced by the age of the deposit, cementation, and stress history.

A number of authors have studied the relationship of CPT data and in-situ small strain shear modulus (e.g Hegazy and Mayne, 1995). One of the more reliable correlations for fine grained soils was developed by Mayne and Rix (1993). These researchers studied data sets from 31 sites world wide to determine the following correlation:

$$G_{max} = 2.78 \cdot q_c^{1.335}$$
(18)

where G_{max} and q_c are in kPa.

Mayne and Rix (1995) propose the following correlation for shear wave velocity:

$$\mathbf{V}_{s} = 1.75 \cdot \mathbf{q}_{t}^{0.627} \tag{19}$$

where V_s is in m/s and q_t is in kPa.

3.3 INTERPRETATION IN COARSE-GRAINED SOILS

Coarse grained soils generally exhibit drained behavior, and the main related parameters characterize these aspects. A summary of correlations utilized to estimate geotechnical parameters for coarse grained soils is given in the following section.

3.3.1 Relative Density

A commonly used correlation to estimate relative density D_r was proposed by Jamiolkowsky et al. (1988), as a result of studies carried out on Ticino sands.

$$D_{\rm r} = \frac{1}{2.93} \cdot \ln \left[\frac{q_{\rm c}}{205({\rm p'})^{0.51}} \right]$$
(20)

where

$$p' = \frac{\sigma_{v0} + 2\sigma_{h0}}{3} [kPa]$$
(21)

$$D_{r} = \frac{1}{2.93} \cdot \ln \left[\frac{q_{c}}{205 \left(\sigma_{v0}^{\prime} \left(\frac{1+2K_{0}}{3} \right) \right)^{0.51}} \right]$$
(22)

where relative density D_r is a fraction, while q_c and σ'_{v0} are in kPa.

3.3.2 Angle of Internal Friction

The correlation between CPT cone resistance and angle of internal friction depends on a number of factors including density, stress level and mineralogy. OCR, depositional environment and in-situ stress anisotropy are of lesser importance for this parameter.

Kulhawy and Mayne (1990) proposed the following correlation based on calibration chamber tests. The equation involves q_c and σ_{v0} , both in kPa.

$$\varphi' = 17.6 + 11.0 \cdot \log\left(\frac{q_c / 100}{(\sigma'_{v0})^{0.5}}\right)$$
 (23)

3.3.3 Compressibility

A widely used guideline for evaluation of sand compressibility is the correlation by Baldi (1989). This correlation is based on studies on silica-sands and considers cone resistance q_c , in-situ stress conditions and secant drained Young's modulus E'. The correlation is based on CPT tests in a calibration chamber and triaxial tests on reconstituted samples.

According to Baldi, the ratio of E'/q_c ranges from about 3 to 5 for normally consolidated sands, while for overconsolidated sands it has values ranging from 6 to 25.

3.3.4 Constrained Modulus

The constrained modulus can be calculated by the equations of Kulhawy and Mayne (1990) for both normally consolidated and overconsolidated sands. The constrained modulus is considered as a function of relative density in % and cone resistance in kPa.

For normally consolidated sands:

$$\mathbf{M} = \mathbf{q}_{c} \cdot 10^{1.09 - 0.0075 \cdot \mathbf{D}_{r}} \tag{24}$$

For overconsolidated sands:

$$M = q_c \cdot 10^{1.78 - 0.0122 \cdot D_r}$$
(25)

3.3.5 Dynamic Soil Properties

The small strain shear modulus can be evaluated considering the modified correlation proposed by Rix and Stokoe (1991), in which G_{max} , q_c and σ_{v0} are in kPa.

$$G_{max} = 1634 \cdot (q_c)^{0.25} \cdot (\sigma_{v0})^{0.375}$$
(26)

A widely used correlation for shear wave velocity was proposed by Baldi (1989).

$$\mathbf{V}_{s} = 277 \cdot \mathbf{q}_{t}^{0.13} \cdot \sigma_{v0}^{0.27} \tag{27}$$

A more recent approach cited by Robertson (2009) takes into account the total cone resistance q_t , the in-situ stress conditions and the soil classification index I_c .

$$\mathbf{V}_{\mathrm{s}} = \left(\boldsymbol{\alpha}_{\mathrm{vs}} \cdot \mathbf{Q}_{\mathrm{tn}}\right)^{0.5} \tag{28}$$

where

$$\alpha_{vs} = 10^{(0.55 \cdot I_c + 1.68)}$$
(29)

Q_{tn} is as defined in 3.1.1.

ARM/MTS/EP/AED:tds

REFERENCES

Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowsky, M., and D. C. F. Lo Presti, 1989, "Modulus of sands from CPT's and DMT's", <u>Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering</u>, Rio de Janeiro, Brazil, Vol. 1, pp. 165-170.

Battaglio, M., Bruzzi, D., Jamiolkowsky, M., and R. Lancellotta, 1986, "Interpretation of CPT's and CPTU's, 1st Part: Undrained Penetration of Saturated Clays", in Field Instrumentation and In-situ Measurements: <u>Proceedings of the 4th International Geotechnical Seminar</u>, 25-27 November 1986, Singapore, Nanyang Technological Institute, Singapore, pp. 143-156.

Hegazy, Y. A., and P. W. Mayne, 1995, "Statistical correlations between V_s and cone penetration data for different soil types", <u>Proceedings of the International Symposium on Cone Penetration Testing</u>, CPT' 95, Linköping, Sweden, Vol. 2, pp. 173-178.

Jamiolkowsky, M., Ghionna, V. N., Lancellotta, R., and E. Pasqualini, 1988, "New Correlations of Penetration Tests for Design Practice", in De Ruiter, J. (Ed.), <u>Penetration Testing 1988: Proceedings</u> of the First International Symposium on Penetration Testing, ISOPT-1, Orlando, 20-24 March 1988, Vol. 1, A.A. Balkema, Rotterdam, pp. 263-296.

Kulhawy, F. H., and P. W. Mayne, 1990, <u>Manual on estimating soil properties for foundation design</u>, Electric Power Research Institute (EPRI), Palo Alto, Calif. Report EL-6800.

Low, H. E., Lunne, T., Andersen, K. H., Sjursen, M. A., Li, X. and M. F. Randolph, 2010, "Estimation of intact and remolded undrained shear strengths from penetration tests in soft clays", <u>Geotechnique</u>, Vol. 60, No. 11, pp. 843-859.

Lunne, T., Robertson, P. K., and J. J. M. Powell, 1997, <u>Cone penetration testing in geotechnical practice</u>, Blackie Academic, EF Spon/Routledge, New York.

Mayne, P. W., 2001, "Geotechnical Site Characterization Using Cone, Piezocone, SCPTu, and VST", Georgia Institute of Technology, Atlanta.

Mayne, P. W., 2007, <u>Cone penetration testing: A synthesis of highway practice</u>, Project 20-5, Transportation Research Board, NCHRP Synthesis 368, Washington, D.C.

Mayne, P. W., and G. J. Rix, 1993, "G_{max}-q_c Relationships for Clays", <u>Geotechnical Testing Journal</u>, Vol. 16, No. 1, pp. 54-60.

Mayne, P. W., and G. J. Rix, 1995, "Correlations between Shear Wave Velocity and Cone Tip resistance in Natural Clays", <u>Soils and Foundations</u>, Vol. 35, No. 2, pp. 107-110.

Mitchell, J. K., and W. S. Gardner, 1976, "In-situ Measurement of Volume Change Characteristics", in <u>Proceedings of the Conference on In Situ Measurement of Soil properties</u>, June 1-4, 1975, Raleigh, North Carolina: Specialty Conference of the Geotechnical Engineering Division, ASCE, Vol. II, American Society of Civil Engineers, New York, pp. 279-345.

Rad, N. S. and T. Lunne, 1998, "Direct Correlations between Piezocone Test Results and Undrained Shear Strength of Clay", in De Ruiter, J. (Ed.), Penetration Testing 1988: <u>Proceedings of the First International Symposium on Penetration Testing</u>, ISOPT-1, Orlando, 20-24 March 1988, Vol. 2, A.A. Balkema, Rotterdam, pp. 911-917.

Rad, N. S., and T. Lunne, 1986, "Correlations between piezocone results and laboratory soil properties", Norwegian Geotechnical Institute, Oslo, Norway, pp. 306-317, Report 52155.

Rix, G. J. and K. H. Stokoe, 1991, "Correlation of initial tangent modulus and cone resistance", <u>Calibration Chamber Testing</u>, Elsevier, New York, pp. 351-362.

REFERENCES (CONTINUED)

Robertson, P. K. and K. L. Cabal, 2010, "Estimating soil unit weight from CPT", <u>Proceeding of the 2nd</u> <u>International Symposium on Cone Penetration Testing</u>, Huntington Beach, California, USA, 9-11 March 2010.

Robertson, P. K., 2009, "Interpretation of cone penetration tests – a unified approach", <u>Canadian</u> <u>Geotechnical Journal</u>, Vol. 46, No. 11, pp. 1337-1355.

Robertson, P. K., and C. E. Wride, 1998, "Evaluating cyclic liquefaction potential using the cone penetration test", <u>Canadian Geotechnical Journal</u>, Vol. 35, No. 3, pp. 442-459.

Robertson, P. K., Campanella, R. G., Gillespie, D. and J. Greig, 1986, "Use of piezometer cone data", in <u>Proceedings of ASCE Specialty Conference In Situ'86, Use of In Situ Tests in Geotechnical Engineering</u>, Blacksburg, Va., 23-25 June 1986, Geotechnical Special Publication No. 6, Edited by S. P. Clemence, ASCE, New York, pp. 1263-1280.

Zhang, G., Robertson, P. K. and R. W. I. Brachman, 2002, Estimating liquefaction-induced ground settlements from CPT for level ground", <u>Canadian Geotechnical Journal</u>, Vol. 39, No. 5, pp. 1168-1180.

APPENDIX A REFERENCE MATERIALS

(Not included)