COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

TRATTA A.V. /A.C. TERZO VALICO DEI GIOVI PROGETTO ESECUTIVO

Barriere Antirumore Linea da pk. -0+333,00 a pk. 0+437,00

Barriere Antirumore – Fondazioni Barriere Antirumore

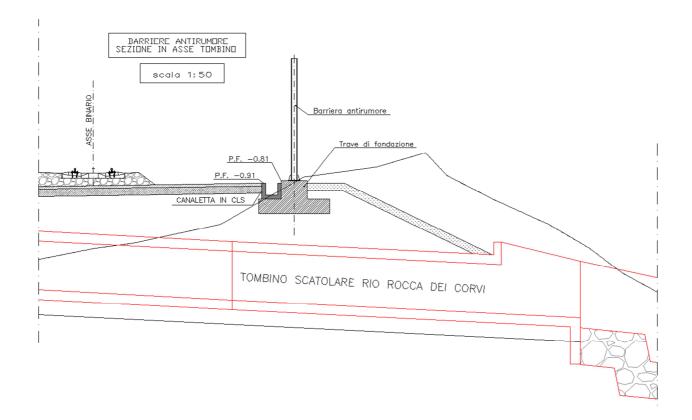
Trave di scavalco tombino Rio Rocca dei Corvi - Relazione di calcolo

GENERAL CONTRACTOR		२	DIRETTORE LAVORI						
	Consorzio Cociv Ing. E. Pagani								
			ASE EI		O DOC.	OPERA/DISCI	PLINA 0 0	PROGR. 0 0 2	REV.
Prog	gettazione :					_			
Rev	Descrizione	Redatto	Data	Verificato	Data	Progettista Integratore	Data	IL PROGET	TISTA
A00	Prima Emissione	COCIV	14/12/2015	COCIV	14/12/2015	A.Mancarella	14/12/2015	cocii	
		COCIV		COCIV		A.Mancarella		Consorzio Colle ismenti	Votegrati Veloci
A01	Modifica lotto costruttivo	00011	15/06/2016	000.1	15/06/2016	The state of the s	15/06/2016	Dott ing. Also M Ordine ingegneri	ncarella Prov. TO
								n. 6271 F	≺
		·				1			
n. Elab.: File:IG51-03-E-CV-CL-BA01-00-002							A01-00-002-A0	1.docx	
								CUP: F81H9200	8000000

Foglio 3 di 25

INDICE

1.	INTRODUZIONE	4
2.	NORMATIVE DI RIFERIMENTO	5
3.1.	Calcestruzzo cordoli	7
3.2.	Acciaio per cemento armato	7
5.	ANALISI DEI CARICHI	9
5.1.	Azioni orizzontali	9
5.2.	Azioni Verticali	9
5.3.	Combinazioni di Carico	9
6.	TRAVE DI FONDAZIONE ALLA PK 90+869 LATO PARI	10
6.1.	ANALISI DEI CARICHI	10
6.2.	VERIFICHE GEOTECNICHE	11
6.2.1.	Verifica al ribaltamento	11
6.2.2.	Verifica allo scorrimento	11
6.2.3.	Verifica a schiacciamento o capacità portante (metodo di Brich-Hansen)	12
6.3.	VERIFICHE STRUTURALI	15
6.3.1.	Verifiche armatura cordolo 1.05x0.75m	15
6.3.2.	Verifiche armatura soletta di fondazione	20



Foglio 4 di 25

1. INTRODUZIONE

La presente relazione di calcolo ha per oggetto la verifica delle travi di fondazione per barriere antirumore di altezza H = 5.00m per lo scavalco del Tombino Scatolare Rio Rocca dei Corvi, alla pk. 0+247.00 della tratta AV/AC Milano-Genova - Terzo Valico dei Giovi.

Foglio 5 di 25

2. NORMATIVE DI RIFERIMENTO

Il progetto è redatto in conformità alle Normative e Leggi vigenti:

- [NT_1]. D.M. 11.03.1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione"
- [NT_2]. Circ. Dir. Centr. Tecn. N°97/81 "Istruzioni relative alle Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegni delle terre e delle opere di fondazione".
- [NT_3]. D.M. 09.01.1996 "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento normale e precompresso e per le strutture metalliche"
- [NT_4]. D.M. 16.01.1996 "Norme Tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi
- [NT_5]. Circolare 156 del 04.07.1996 "Istruzioni per l'applicazione delle Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi"
- [NT_6]. D.M. 04/05/1990: "Aggiornamento delle norme tecniche per la progettazione, la esecuzione e il collaudo dei ponti stradali".
- [NT_7]. Ministero LL.PP. 25/02/1991: "Istruzioni relative alla normativa tecnica dei ponti stradali".
- [NT_8]. D.M. 16.01.1996 "Norme tecniche per le costruzioni in zone sismiche"
- [NT_9]. Ordinanza 3274 del 20/03/03 del Consiglio dei ministri Allegato 1 "Criteri per l'individuazione delle zone sismiche Individuazione, formazione e aggiornamento degli elenchi nelle medesime zone"
- [NT_10].Ordinanza 3274 del 20/03/03 del Consiglio dei ministri Allegato 4 "Norme Tecniche per il progetto sismico delle opere di fondazione e sostegno dei terreni"
- [NT_11].Ordinanza n.3316 Modifiche ed integrazioni all'Ordinanza del Presidente del Consiglio dei Ministri n.3274 del 20.03.03
- [NT_12].O.P.C.M. n. 3519 28 aprile 2006 "Criteri generali per l'individuazione delle zone sismiche e per la formazione e l'aggiornamento degli elenchi delle medesime zone (GU n. 108 del 11-5-2006)"
- [NT_13].Raccomandazioni AICAP "Ancoraggi nei terreni e nelle rocce" ed. Maggio 1993.
- [NT_14].lstruzioni FF.SS. n°I/SC/PS-OM/2298 "Sovraccarichi per il calcolo dei ponti ferroviari Istruzioni per la progettazione, l'esecuzione e il collaudo."
- [NT_15]. Istruzioni FF.SS. 44f "Verifica a fatica dei ponti ferroviari metallici".
- [NT_16].UNI EN 1991-1-5:2004 "Eurocodice 1 Azioni sulle strutture Azioni in generale Azioni termiche"

Foglio 6 di 25

- [NT_17].UNI EN 1992-1-1:1993 "Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 1-1 Regole generali e regole per edifici"
- [NT_18].UNI EN 1993-1-1:2005 "Eurocodice 3 Progettazione delle strutture in acciaio Parte 1-1 Regole generali e regole per edifici"
- [NT_19].UNI EN 1997-1:1997 "Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali"
- [NT_20].Raccomandazioni AGI "Raccomandazioni sui pali di fondazione" ed. dicembre 1984.
- [NT_21].Norma UNI EN 10025 2005 "Prodotti laminati a caldo di acciai per impieghi strutturali

Foglio 7 di 25

3. CARATTERISTICHE DEI MATERIALI IMPIEGATI

Con riferimento alle normative citate le strutture sono state verificate adottando i seguenti parametri di resistenza dei materiali.

3.1. Calcestruzzo cordoli

Classe di resistenza: C25/30

Classe di esposizione: XC2

Copriferro: 40mm

3.2. Acciaio per cemento armato

Acciaio per armatura lenta: B 450 C.

Foglio 8 di 25

4. PROFILO STRATIGRAFICO E STRATIGRAFIA DI PROGETTO

4.1. Inquadramento geologico

Dalla relazione geotecnica IG51-01-E-CV-RB-TR11-0X-001 si sono individuati due strati di terreni con le seguenti caratteristiche:

• Strato 1 – da p.c. a circa 5m

Tipo di terreno Copertura detritica

Peso di volume $\gamma = 21 \text{ kN/m}^3$

Angolo di attrito interno $\phi = 31.5^{\circ}$

Modulo crescente linearmente con la profondità E = 45 MPa

Coesione c'= 5 kPa

N_{SPT.media} 20

Strato 2 – da 5m

Tipo di terreno Argilloscisti destrutturati

Peso di volume $\gamma = 25 \text{ kN/m}^3$

Angolo di attrito interno $\phi = 21.5^{\circ}$

Modulo crescente linearmente con la profondità E = 200 MPa

Coesione non drenata $c_u = 75 \text{ kPa}$

N_{SPT,media} 30

Per la trave di scavalco del tombino si considera il solo strato della copertura detritica.

Si considera la falda a -8.00m da p.c.

Foglio 9 di 25

5. ANALISI DEI CARICHI

Per la trattazione dell'analisi dei carichi si rimanda alla Relazione di calcolo IG51-05-E-CV-CL-BA01-00-001-A00. In questa sede si riassumono solo carichi agenti.

5.1. Azioni orizzontali

Pressione del vento: $p = 1.91 \text{ kN/m}^2$

Effetto aereodinamico asociato al passaggio dei treni $q_{1k} = 0.15 \text{ kN/m}^2$

 $P_{tot} = 2.06 \text{ kN/m}^2$

5.2. Azioni Verticali

Nella tabella seguente si riporta per ogni altezza di barriera ad interasse standard di 3.00m l'azione verticale di compressione al netto del peso proprio del montante.

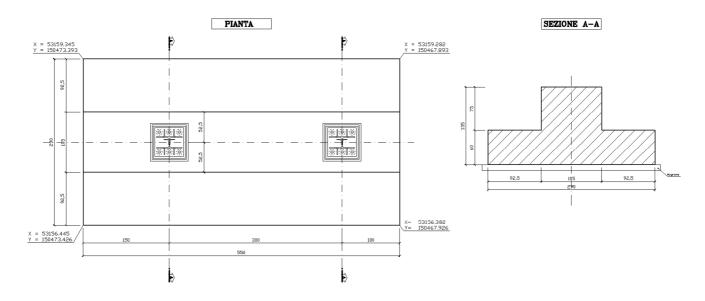
z	N
[m]	[kN]
4.0	24.00
5.0	25.50
5.5	26.25
6.0	27.00

5.3. Combinazioni di Carico

Si considerano le seguenti combinazioni di carico per le diverse verifiche:

 Per le verifiche di resistenza, di deformazione e il calcolo della lunghezza di ancoraggio dei tirafondi si utilizza la combinazione agli Stati Limite di esercizio:

(1.0 / 0) x Carichi Verticali + 1.0 x (Vento + Sovraspinta Treno)


 Per la verifica a fatica si utilizza la combinazione agli Stati Limite di esercizio considerando agente solo la Sovraspinta del treno:

(1.0 / 0) x Carichi Verticali + 1.0 x Sovraspinta Treno

Foglio 10 di 25

6. TRAVE DI FONDAZIONE ALLA PK 90+869 LATO PARI

La carpenteria della trave è riportata in figura.

$$P_{trave} = 347.53 \text{ kN};$$

Nei calcoli l'interasse tra i montanti è stato posto pari a 3.00m.

6.1. ANALISI DEI CARICHI

Per barriera di altezza H = 5.00m alla base di ciascun montante si ottengono i seguenti valori:

N = 25.50 kN;

T = 30.90 kN;

 $M_T = 77.25 \text{ kNm}.$

Le azioni agenti nella mezzeria della trave:

$$N_1 = 2 \cdot N = 51.00 \text{ kN};$$

$$T_1 = 2 \cdot T = 61.80 \text{ kN};$$

$$M_{1,T} = 2 \cdot M_T = 154.50 \text{ kNm}$$

$$M_{1,L} = N \cdot (1.75-1.25) = 12.75 \text{ kNm}$$
 (trascurabile ai fini del calcolo)

Foglio 11 di 25

Le azioni agenti all'intradosso fondazioni:

$$N_2 = N_1 + P_{trave} = 398.53 \text{ kN};$$

$$T_2 = T_1 = 61.80 \text{ kN};$$

$$M_{2,T} = M_{1,T} + T_1 \cdot 1.35 = 237.93 \text{ kNm}$$

6.2. VERIFICHE GEOTECNICHE

6.2.1. VERIFICA AL RIBALTAMENTO

Dall'equilibrio attorno allo spigolo esterno, si ottiene:

$$M_{stab} = N_2 \cdot 1.45 = 577.86 \text{ kN m}$$

$$M_{rib} = M_{2,T} = 237.93 \text{ kN m}$$

$$F_{\rm S}^{\rm rib} = \frac{M_{stab}}{M_{vib}} = 2.43 > 1.50$$

6.2.2. VERIFICA ALLO SCORRIMENTO

Assumendo $\mu = 0.85 \cdot \tan \phi = 0.33$, si ha:

$$T_{res} = N_2 \cdot \mu = 398.53 \cdot 0.33 = 131.51 \,\mathrm{kN}$$

$$F_s^{\text{trasl}} = \frac{T_{res}}{T_2} = 2.13 > 1.30$$

Foglio 12 di 25

6.2.3. VERIFICA A SCHIACCIAMENTO O CAPACITÀ PORTANTE (METODO DI BRICH-HANSEN)

La verifica della capacità portante della fondazione viene condotta con il metodo di Brinch-Hansen. A vantaggio di sicurezza l'affondamento della fondazione si considera nullo.

Per la verifica si utilizza il seguente foglio di calcolo.

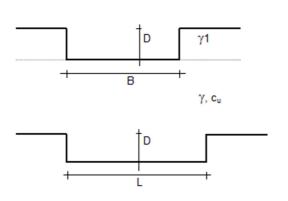
Fondazioni Dirette Verifica in tensioni totali

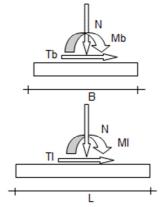
$qlim = c_{11}*Nc* sc*dc*ic*bc*qc + c$	

D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


B* = Larghezza fittizia della fondazione (B* = B - 2*e_B)


L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)

coefficienti parziali

			azi	oni	proprietà del terreno
Metodo di calcolo			permanenti	temporanee variabili	Cu
Stato limite ultimo	0		1.00	1.30	1.40
Tensioni ammissibili	•		1.00	1.00	1.00
definiti dall'utente	ГО		1.10	1.10	1.20

valori suggeriti dall'EC7

(Per fondazioni nastriformi L=100 m)

B = 2.90 (m)

L = 5.50 (m)

D = 0.00 (m)

1.71

(m)

Foglio 13 di 25

AZIONI

		valori	Valori di	
		permanenti	temporanee	calcolo
N	[kN]	398.53	0.00	398.53
Mb	[kNm]	0.00	237.93	237.93
MI	[kNm]	0.00	0.00	0.00
Tb	[kN]	0.00	61.80	61.80
TI	[kN]	0.00	0.00	0.00
Н	[kN]	0.00	61.80	61.80

Peso unità di volume del terreno

 $\gamma_1 = 21.50 \text{ (kN/mc)}$

 γ = 21.50 (kN/mc)

Valore caratteristico di resistenza del terreno

 $c_u = 75.00 \text{ (kN/mq)}$

e_B = 0.60 (m) B* =

 $e_L = 0.00$ (m) $L^* = 5.50$ (m)

q : sovraccarico alla profondità D

q = 0.00 (kN/mq)

γ: peso di volume del terreno di fondazione

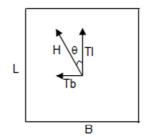
 $\gamma = 21.50 \text{ (kN/mc)}$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma


 $s_c = 1 + 0.2 B^* / L^*$

s_c = 1.06

Foglio 14 di 25

i_c: fattore di inclinazione del carico

$$\begin{split} m_b &= (2 + B^* / L^*) / (1 + B^* / L^*) &= 1.76 \\ m_l &= (2 + L^* / B^*) / (1 + L^* / B^*) &= 1.24 \\ \theta &= \operatorname{arctg}(Tb/Tl) = 90.00 \qquad (°) \\ m &= 1.76 \end{split}$$

(m=2 nel caso di fondazione nastriforme e m=(m_bsin²θ+m_lcos²θ) in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

 $i_c = 0.97$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*
per D/B*> 1; d_c = 1 + 0,4 arctan (D / B*)
d_c = 1.00

b_c : fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$
 $\beta_f + \beta_p = 15.00$ $\beta_f + \beta_p < 45^\circ$ $\beta_c = 0.97$

gc: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$
 $\beta_f + \beta_p = 15.00$ $\beta_f + \beta_p < 45^\circ$ $g_c = 0.93$

Carico limite unitario

$$q_{lim} = 357.56$$
 (kN/m²)

Pressione massima agente

$$q = N / B^* L^*$$

 $q = 42.47 (kN/m^2)$

Coefficiente di sicurezza

$$Fs = q_{lim} / q = 8.42$$

Il coefficiente di sicurezza è maggiore di 2.00. La verifica è soddisfatta.

Foglio 15 di 25

6.3. VERIFICHE STRUTURALI

6.3.1. VERIFICHE ARMATURA CORDOLO 1.05x0.75M

Per barriera di altezza H = 5.00m alla base di ciascun montante si ottengono i seguenti valori:

T = 30.90 kN;

M = 77.25 kNm.

Considerando una diffusione del carico a partire dalla piastra di base del montante fino alla sezione di base del cordolo della trave, si ottiene una sezione di verifica pari a:

$$B = 500 + 2 \times 750 = 2000 \text{mm}$$

B=2000 mm	M' = M + T · 0.75= 100.42 kNm		
H=900 mm			
Armatura= 1\phi16/20			

Di seguito si riportano i fogli di verifica per la sezione.

Foglio 16 di 25

CemArm: Programma per la verifica delle sezioni in c.a. di forma qualsiasi

Titolo:

Normativa applicata: D.M. 19-01-1996

Materiali: Cls: C25/30 Diagramma σ - ϵ : Parabola - Rettangolo

Acciaio: B450C Diagramma G-E: Elastico Perfettamente Plastico Illimitato

Sez.	N. 1: F	orma r	ettan	golare	•	
•		•		•		•
						.
			1-			
N= V		lone i	n cis.	1	1	
Nr. V.		h (cm) 105. 0			-	-
	200. 0	105. 0			1	1
	ture				1	
n _b	ø (mm)	Area (cm²)	s (cn	1)	d (cı	n)
10	16.00	20.11	20	0. 00		4. 80
10	16.00	20.11	20	0. 00	10	0. 20

Foglio 17 di 25

VERIFICHE AGLI STATI LIMITE DI ESERCIZIO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI

STATO LIMITE DI LIMITAZIONE DELLE TENSIONI: Legenda						
N _{Ed}	Valore di calcolo della Forza Normale					
M _{xEd}	Valore di calcolo del Momento flettente secondo X					
Μ _{νEd}	Valore di calcolo del Momento flettente secondo Y					
h	Altezza sezione					
x	Distanza asse di parzializzazione dal lembo compresso					
β	Angolo asse di sollecitazione rispetto all'orizzontale					
θ	Angolo di deviazione					
β+θ	Inclinazione asse di parzializzazione rispetto all'orizzontale					
σ_{c}	Tensione massima nel calcestruzzo (+ = compressione)					
σ _{c1}	Tensione minima nel calcestruzzo (+ = compressione)					
σ_{s}	Tensione massima nell'acciaio (+ = trazione)					
σ _{s1}	Tensione minima nell'acciaio (+ = trazione)					
σ _{c,lim}	Tensione limite nel calcestruzzo					
σ _{s,lim}	Tensione limite nell'acciaio					
Mappatura Colori	el 391 3313 3313 313 391 MPa)					
	.391 .313 .157 .157 .157 .157 .167 .167 .178 .188 .188 .188 .188 .188 .188 .18					
	σ ·					
	40					
	Oncrete 13 11 11 11 -3 -3 -13 (MPa)					
	8					

N° comb.		1	
Sez. N.		1	
Grafico te	ensioni		
Tipo com	binazione	Azioni Rare	
N_{Ed}	(kN)	0.000	
\mathbf{M}_{xEd}	(kNm)	100. 420	
M_{yEd}	(kNm)	0.000	
h	(cm)	105. 000	
X	(cm)	15. 090	
β	(°)	0.000	
θ	(°)	0.000	
β+θ	(°)	0.000	
σ_{c}	(N/mm^2)	0. 620	
σ _{c1}	(N/mm^2)	0. 000	
σs	(N/mm^2)	52. 465	
σ_{s1}	(N/mm ²)	-6. 343	
$\sigma_{c,lim}$	(N/mm ²)	9. 750	
$\sigma_{\text{s,lim}}$	(N/mm^2)	255. 000	
ESITO VE	RIFICA	ОК	

Foglio 18 di 25

VERIFICHE ALLO STATO LIMITE DI FESSURAZIONE

VERIFICHE ALLO STATO LIMITE DI FESSURAZIONE: Legenda				
N _{Ed}	Valore di calcolo della Forza Normale			
M _{xEd}	Valore di calcolo del Momento flettente secondo X			
M _{vEd}	Valore di calcolo del Momento flettente secondo Y			
σ _s	Tensione nell'acciaio - (*) se viene considerata, cautelativamente la tensione			
	nella barra maggiormente tesa, altrimenti è il valore medio all'interno dell'Area			
	di calcestruzzo efficace)			
σ _{ct}	Tensione di trazione nel calcestruzzo			
f _{ctd}	Resistenza a trazione nel calcestruzzo			
Es	Modulo elastico acciaio			
E _{cm}	Modulo elastico medio calcestruzzo			
$A_{c,eff}$	Area calcestruzzo efficace			
As	Area acciaio teso compreso in A _{c,eff}			
β_1	Fattore aderenza (1.0 - Barre ad aderenza migliorata; 0.5 - Barre lisce)			
β_2	Fattore durata carichi (1.0 - Breve durata; 0.5 - Lunga durata)			
$\rho_r = A_s/A_{c,eff}$				
σ _{sr}	Tensione nell'acciaio teso nella condizione di carico che induce la prima			
	fessura			
$\varepsilon_{\text{em}} = \frac{\sigma_{s}}{E_{s}} \left[1 - \beta_{1} \beta_{2} \left(\frac{\sigma_{s}}{\sigma_{s}} \right)^{2} \right] \left(\geq 0.4 \frac{\sigma_{s}}{E_{s}} \right)$	Deformazione media			
С	Copriferro			
s	Distanza fra le armature			
k ₂	Fattore aderenza (0.4 - Barre ad aderenza migliorata; 0.8 - Barre lisce)			
k ₃	Fattore forma diagramma tensioni			
ø	Diametro medio barre			
$\mathbf{s}_{\rm rm} = 2\left(\mathbf{c} + \frac{\mathbf{s}}{10}\right) + \mathbf{k}_2 \mathbf{k}_3 \frac{\phi}{\rho_r}$	Distanza media fra le fessure			
W _m	Valore medio ampiezza delle fessure			
w _k	Valore caratteristico ampiezza delle fessure			
c/c _{min}	Fattore amplificativo apertura limite (max 1.50)			
W _{lim}	Valore limite ampiezza delle fessure			
Mappatura Colori	11 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3			
	.391 -313 -235 -157 -78 78 157 235 313 391 (MPa)			
	O 0 (MPa)			
	A A A			

N° comb.		2)	
		2		
Sez. N.		1		
Grafico t	ensioni e			
Area ca	lcestruzzo			
efficace				
			_	
Tipo combinazione		Azioni Frequenti		
Tipo Ambiente		Cond. An	nb. Poco	
-		Aggressiv	е	
Sensibilità		Armature	Poco	
Armature		Sensibili		
N _{Ed}	(kN)	0. (000	
M_{xEd}	(kNm)	100.	420	
M_{yEd}	(kNm)	0.	000	
σ_{s}	(N/mm ²)	52.	465 (*)	
σ_{ct}	(N/mm ²)	-0.	256	
f _{ctd}	(N/mm ²)	2.	190	
Es	(N/mm^2)	206000.	000	

Foglio 19 di 25

E _{cm}	(N/mm^2)	0.000	
A _{c,eff}	(cm²)	3200. 000	
As	(cm²)	20. 106	
β1		1.000	
β ₂		0. 500	
ρ_r	(‰)	0. 006	
σ _{sr}	(N/mm ²)	533. 749	
ε _{sm}	(‰)	0. 102	
С	(mm)	40. 000	
s	(mm)	200. 000	
k ₂		0. 400	
k ₃		0. 125	
ø	(mm)	16. 000	
S _{rm}	(mm)	247. 324	
Wm	(mm)	0. 025	
Wk	(mm)	0. 043	
c/c _{min}		2. 000	
W _{lim}	(mm)	0. 100	
SLE Decompres.		NR	
SLE Form. Fessure		NR	
SLE Apert. Fessure		OK	
ESITO VERIFICA		ОК	

Sono previsti 6 tirafondi M20 classe 8.8. La trasmissione delle trazioni dei tirafondi (Forza di serraggio = $0.80*(0.8*f_{k,N}*A_{res})$ = 87.81 kN al calcestruzzo del plinto viene assicurata mediante 4+4 staffe a 2 bracci ϕ 16 (A=2.00cm²).

T= 6*87810 = 526860 N, TIRO COMPLESSIVO

 σ_{st} =526860/(8x2x200) = 165 MPa < 255 MPa, Sollecitazione a trazione nell'acciaio

Foglio 20 di 25

6.3.2. VERIFICHE ARMATURA SOLETTA DI FONDAZIONE

Considerando la larghezza di 3.00m di trave (P_{trave} = 189.56 kN), per barriera di altezza H=5.00m, alla base di ciascun montante si ottengono i seguenti valori:

N = 25.50 kN;

T = 30.90 kN;

M = 77.25 kNm.

All'estradosso fondazione avremo:

$$N' = 25.50 + 189.56 = 215.06 \text{ kN}$$

 $M' = 77.25 + 30.90 \cdot 1.35 = 118.96 \text{ kNm}$

Considerando una larghezza di trave unitaria:

$$N' = 215.06/3 = 71.69 \text{ kN}$$

M' = 118.96/3 = 59.48 kNm

Essendo l'eccentricità maggiore del raggio di inerzia:

$$e = \frac{M'}{N'} = 0.83m > \frac{l}{6} = 0.48m$$

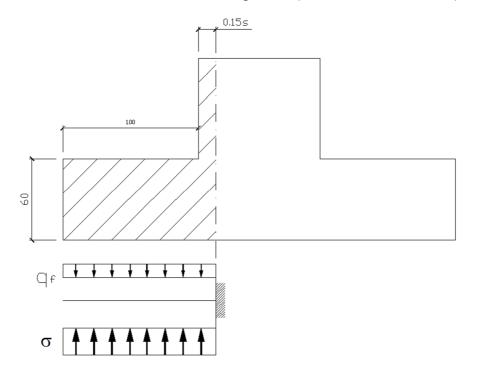
si ottiene una lunghezza ridotta della fondazione pari a:

$$B^* = B - 2e = 1.24 \text{ m}$$

Il diagramma delle pressioni agenti sul terreno sarà quindi costante e pari a:

b = 1.24m

I = 1.00m



Foglio 21 di 25

$$\sigma = N/bI = 71.69/1.24 = 57.81 \text{ kPa}$$

Per la verifica si adotta lo schema di calcolo seguente (a metro di fondazione):

$$L = 1.13m$$

$$q_f = peso \ soletta = 0.60 \ x \ 25 = 15.00 \ kN/m$$

$$\sigma = 57.81 \text{ kN/m}$$

Sezione mensola

$$M = \frac{\left(\sigma - q_f\right)}{2} \cdot L^2 = 27.33 \, kNm$$

Foglio 22 di 25

Sezione di verifica	
B=1000 mm	M = 27.33 kNm
H=600 mm	
Armatura= 1\phi16/20	

Di seguito si riportano i fogli di verifica per la sezione.

CemArm: PROGRAMMA PER LA VERIFICA DELLE SEZIONI IN C.A. DI FORMA QUALSIASI

Titolo:

Normativa applicata: D.M. 19-01-1996

Materiali: CIs: C25/30 Diagramma σ - ϵ : Parabola - Rettangolo

Acciaio: B450C Diagramma σ - ϵ : Elastico Perfettamente Plastico Illimitato

Sez. I	N. 1: Fo	orma r	ettang	olare		
	•	•	•	•		•
	Sez	zione i	n cis.			
Nr. V.	b (cm)	h (cm)				
4	100.0	60. 0				
Arma	Armature					
n _b	ø (mm)	Area (cm ²)	s (cm)	d (cm	1)
5	16.00	10.05	20	. 00		1. 80
5	16.00	10.05	20	. 00	55	5. 20

Foglio 23 di 25

VERIFICHE AGLI STATI LIMITE DI ESERCIZIO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI

OTATO LIMITE DI LIMITALIONE DELLE TENGIONI				
STATO LIMITE DI LIM	STATO LIMITE DI LIMITAZIONE DELLE TENSIONI: Legenda			
N _{Ed}	Valore di calcolo della Forza Normale			
M _{xEd}	Valore di calcolo del Momento flettente secondo X			
M _{vEd}	Valore di calcolo del Momento flettente secondo Y			
h	Altezza sezione			
x	Distanza asse di parzializzazione dal lembo compresso			
β	Angolo asse di sollecitazione rispetto all'orizzontale			
θ	Angolo di deviazione			
β+θ	Inclinazione asse di parzializzazione rispetto all'orizzontale			
σ _c	Tensione massima nel calcestruzzo (+ = compressione)			
σ _{c1}	Tensione minima nel calcestruzzo (+ = compressione)			
σ _s	Tensione massima nell'acciaio (+ = trazione)			
σ _{s1}	Tensione minima nell'acciaio (+ = trazione)			
σ _{c,lim}	Tensione limite nel calcestruzzo			
σ _{s,lim}	Tensione limite nell'acciaio			
Mappatura Colori	eel 3391 3313 3313 78 78 78 3313 3313 3313 3391 (MPa)			
	Steel 1.1 7 6 7.7 1.3 3.3 3.3 3.3 3.4 3.4 3.4 3.4 3.4 3.4 3			
	Concrete 13 11 11 11 11 11 11 11 11 11 11 11 11			
	S The state of the			

		T .		
N° comb.		1		
Sez. N.		1		
Grafico te	ensioni			
Tipo combinazione		Azioni Rare		
N _{Ed}	(kN)	0.000		
M_{xEd}	(kNm)	27. 330		
M_{yEd}	(kNm)	0.000		
h	(cm)	60.000		
Х	(cm)	10. 814		
β	(°)	0. 000		
θ	(°)	0.000		
β+θ	(°)	0.000		
σ_{c}	(N/mm ²)	0.870		
σ_{c1}	(N/mm^2)	0.000		
σs	(N/mm ²)	53. 560		
σ _{s1}	(N/mm ²)	-7. 257		
$\sigma_{c,lim}$	(N/mm ²)	9. 750		
$\sigma_{\text{s,lim}}$	(N/mm ²)	255. 000		
ESITO VERIFICA		ОК		

Foglio 24 di 25

VERIFICHE ALLO STATO LIMITE DI FESSURAZIONE

VERIFICHE ALLO STATO LIMITE DI FESSURAZIONE: Legenda			
N _{Ed}	Valore di calcolo della Forza Normale		
M _{xEd}	Valore di calcolo del Momento flettente secondo X		
M _{vEd}	Valore di calcolo del Momento flettente secondo Y		
σ _s	Tensione nell'acciaio - (*) se viene considerata, cautelativamente la tensione		
	nella barra maggiormente tesa, altrimenti è il valore medio all'interno dell'Area		
	di calcestruzzo efficace)		
σ _{ct}	Tensione di trazione nel calcestruzzo		
f _{ctd}	Resistenza a trazione nel calcestruzzo		
Es	Modulo elastico acciaio		
E _{cm}	Modulo elastico medio calcestruzzo		
A _{c,eff}	Area calcestruzzo efficace		
A _s	Area acciaio teso compreso in A _{c,eff}		
β ₁	Fattore aderenza (1.0 - Barre ad aderenza migliorata; 0.5 - Barre lisce)		
β_2	Fattore durata carichi (1.0 - Breve durata; 0.5 - Lunga durata)		
$\rho_r = A_s/A_{c,eff}$			
σ_{sr}	Tensione nell'acciaio teso nella condizione di carico che induce la prima		
	fessura		
$\varepsilon_{\text{min}} = \frac{\sigma_{\text{s}}}{E_{\text{s}}} \left[1 - \beta_1 \beta_2 \left(\frac{\sigma_{\text{s}}}{\sigma_{\text{s}}} \right)^2 \right] \left(\ge 0.4 \frac{\sigma_{\text{s}}}{E_{\text{s}}} \right)$	Deformazione media		
С	Copriferro		
s	Distanza fra le armature		
k ₂	Fattore aderenza (0.4 - Barre ad aderenza migliorata; 0.8 - Barre lisce)		
k ₃	Fattore forma diagramma tensioni		
ø	Diametro medio barre		
$\mathbf{s}_{\rm rm} = 2\left(\mathbf{c} + \frac{\mathbf{s}}{10}\right) + \mathbf{k}_2 \mathbf{k}_3 \frac{\phi}{\rho_r}$	Distanza media fra le fessure		
W _m	Valore medio ampiezza delle fessure		
W _k	Valore caratteristico ampiezza delle fessure		
c/c _{min}	Fattore amplificativo apertura limite (max 1.50)		
W _{lim}	Valore limite ampiezza delle fessure		
Mappatura Colori	11 7 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9		
	-391 -313 -235 -157 -78 78 78 157 235 313 391		
	2 * 6		
	13 11 8 8 5 5 0 0 (MPa)		
	S		

N° comb.		2		
Sez. N.		1		
Grafico tensioni e Area calcestruzzo efficace				•
Tipo combinazione		Azioni Frequenti		
Tipo Ambiente		Cond.	Amb.	Poco
-		Aggressive		
Sensibilità		Armatu		Poco
Armature		Sensib	ili	
N_{Ed}	(kN)		0.000	
M_{xEd}	(kNm)		27. 330	
M _{yEd}	(kNm)		0.000	
σs	(N/mm ²)		53. 560	(*)
σ _{ct}	(N/mm ²)		-0. 420	
f _{ctd}	(N/mm ²)		2. 190	
Es	(N/mm ²)	2060	00.000	

Foglio 25 di 25

E _{cm}	(N/mm^2)	0.000	
$A_{c,eff}$	(cm²)	1600.000	
As	(cm²)	10. 053	
β1		1.000	
β2		0. 500	
ρ_r	(‰)	0. 006	
$\sigma_{\rm sr}$	(N/mm ²)	332. 464	
$\epsilon_{\sf sm}$	(‰)	0. 104	
С	(mm)	40. 000	
S	(mm)	200. 000	
k ₂		0. 400	
k ₃		0. 125	
ø	(mm)	16. 000	
S _{rm}	(mm)	247. 324	
W _m	(mm)	0. 026	
\mathbf{W}_{k}	(mm)	0. 044	
c/c _{min}		2. 000	
W _{lim}	(mm)	0. 100	
SLE Decompres.		NR	
SLE Form. Fessure		NR	
SLE Apert. Fessure		OK	
ESITO VERIFICA		ОК	