COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

TRATTA A.V. /A.C. TERZO VALICO DEI GIOVI PROGETTO ESECUTIVO

RAMPA EST CAVALCAVIA KM 37+407 Relazione geologico geotecnica

GENERAL CONTRACTOR	DIRETTORE DEI LAVORI	
Consorzio		
Cociv Ing. E. Pagani		
Ing. E. Pagani		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV.
I G 5 1	0 3	Е	CV	R O	I R 1 H 0 X	0 0 3	Α

Prog	gettazione:							
Rev	Descrizione	Redatto	Data	Verificato	Data	Progettista Integratore	Data	IL PROGETTISTA
		D. Fanti		S.Fuoco		A. Mancarella		
A00	Prima Emissione	Ø	16/06/2016	4	16/06/2016	A	16/06/2016	COCIK-
								Dott, ing. Alto Mancarella Ordine Ingegneri Prov. TO
								n. 6271 R

n.Elab.: File:IG51-03-E-CV-RO-IR1H-0X-003-A00

CUP: F81H92000000008

Foglio 3 di 75

INDICE

1.	INTRODUZIONE	7
2.	PROFILO STRATIGRAFICO E STRATIGRAFIA DI PROGETTO	8
2.1.	Contesto geologico	8
2.2.	Contesto idrogeologico	8
2.3.	Indagini in sito considerate	12
2.4.	Stratigrafia nella zona di realizzazione delle opere	12
2.5.	Livello piezometrico	13
3.	CARATTERIZZAZIONE GEOTECNICA DEL SITO	14
4.	VALUTAZIONE DELLA STABILITA' DEI PENDII	16
5.	CALCOLO DEI CEDIMENTI	20
5.1.	Metodologia per il calcolo dei cedimenti	20
5.1.1.	. Cedimenti immediati	21
5.1.2.	. Cedimenti indotti dalla consolidazione primaria	22
5.1.3.	. Cedimenti indotti dalla consolidazione secondaria	23
5.2.	Analisi condotte	25
5.2.1.	. Valutazione dei cedimenti per la sezione 08	25
6.	MURODI SOSTTOSCARPA 1	29
6.1.	Materiali impiegati	31
6.2.	Criteri di verifica	32
6.3.	Verifiche geotecniche (GEO)	32
6.3.1.	. Verifica allo scorrimento sul piano di posa	32
6.3.2.	. Verifica al ribaltamento	32
6.3.3.	. Verifica di capacità portante	33
6.4.	Verifiche strutturali (STR)	34
6.4.1.	. Verifiche SLU	34
6.4.2.	. Verifiche SLE	35
6.5.	Risultati verifiche geotecniche	35
6.5.1.	. GEO – sezione A	36
6.5.2.	. verifica capacità portante argilla	41
6.5.3.	. GEO – sezione B	43
6.5.4.	. verifica capacità portante argilla	48
6.6.	Verifiche di stabilità globale	50
6.6.1.	. GEO – sezione A	50
6.6.2.	GEO – sezione B	51

Foglio 4 di 75

6.7.	Verifiche strutturali	53
6.7.1.	STR – sezione B	53
7. M	URODI SOSTTOSCARPA 2	54
7.1.	Materiali impiegati	56
7.2.	Criteri di verifica	56
7.3.	Risultati verifiche geotecniche	56
7.3.1.	GEO – sezione A	56
7.3.2.	GEO – sezione B	64
7.4.	Verifiche di stabilità globale	70
7.4.1.	GEO – sezione A	70
7.4.2.	GEO – sezione B	71
7.5.	Verifiche strutturali	73
7.5.1.	STR – sezione A	73
752	STR – sezione B	74

Foglio 5 di 75

INDICE FIGURE

Figura 1 – Inquadramento rampa Est e opere minori oggetto della relazione	7
Figura 2 - Profilo geologico in prossimità della rampa ovest del cavalcaferrovia con indicazioni dei sondagg	
ed indicazione dei valori di permeabilità (i valori di permeabilità sono espressi in m/s)	
Figura 3 - Grafico dei risultati delle prove di permeabilità eseguite in prossimità dell'area di realizzazione del	
rampa sud del cavalcaferrovia IV14	
Figura 4 – Dipendenza dell'angolo di resistenza al taglio dalla tensione agente sul piano di rottura (Bolton,	
1986)	. 16
Figura 5 Dipendenza dell'angolo di resistenza al taglio dalla tensione agente sul piano di rottura (Bellotti et A	۹I.,
1985)	. 17
Figura 6 - Sez. pk175. Analisi di stabilità in condizioni statiche, metodo di Bishop. Mezzo attritivo. Fattori di	
sicurezza e superficie di scivolamento analizzate	
Figura 7 - Sez. pk175. Analisi di stabilità in condizioni sismiche, metodo di Bishop. Mezzo attritivo. Fattori di	
sicurezza e superficie di scivolamento analizzate	
Figura 10.Schema di riferimento la soluzione di Boussinesq	
Figura 10.Schema di riferimento per il calcolo dei cedimenti per strati successivi	
Figura 10.Schema di riferimento per il calcolo dei cedimenti per consolidazione secondaria	23
Figura 10.Schema di riferimento per la sezione 08	
Figura 10.Geometria del modello di calcolo	
Figura 10.Risultati delle analisi (cedimento in superficie in sezione trasversale)	
Figura 10.Risultati delle analisi (cedimento al variare della profondità)	
Figura 8 - Ubicazione planimetrica del muro di sottoscarpa	
Figura 9 – Geometrie tipo del muro di sottoscarpa	
Figura 10 - Analisi di stabilità – SLU GEO	
Figura 11 - Analisi di stabilità – SLU SISMA	
Figura 12 - Analisi di stabilità – SLU GEO	
Figura 13 - Analisi di stabilità – SLU SISMA	
Figura 14 - Ubicazione planimetrica del muro di sottoscarpa	
Figura 15 – Geometrie tipo del muro di sottoscarpa a) primo tratto da sez. MS2-1 a sez. MS2-5. b) secondo	1
tratto da sez. MS2-5 a sez. MS2-7	
Figura 16 - Analisi di stabilità – SLU GEO	
Figura 17 - Analisi di stabilità – SLU SISMA	
Figura 18 - Analisi di stabilità – SLU GEO	
Figura 19 - Analisi di stabilità – SLU SISMA	
Figura 20 – schema statico considerato per il calcolo della sezione	
Figura 21 – dimensioni schema statico considerato per il calcolo della sezione	75

Foglio 6 di 75

INDICE TABELLE

Tabella -1. Sondaggi nell'area di realizzazione della rampa	12
Tabella -2. Dettaglio risultanze delle prove SPT in foro nell'area della rampa	
Tabella -3. Stratigrafia di progetto per l'area in esame	
Tabella -4. Caratteristiche di base dei materiali geotecnici	14
Tabella-5. Caratteristiche di progetto dei materiali geotecnici per la zona della rampa ovest	
Tabella -6. Valori dell'angolo d'attrito di picco in funzione della densità relativa e della tensione effica	ce agente
	18
Tabella-7 Sollecitazioni e verifiche	53
Tabella-8 Sollecitazioni e verifiche	73
Tabella-9 Sollecitazioni e verifiche	74
Tabella-10 Sollecitazioni e verifiche	74

IG51-03-E-CV-RO-IR1H-0X-003-A00	Foglio
Relazione geologico geotecnica	7 di 75

1. INTRODUZIONE

Nell'ambito del progetto della linea ferroviaria Alta Capacità Milano - Genova "Terzo Valico dei Giovi" e delle viabilità interferenti o di compensazione, la seguente relazione è relativa agli aspetti geotecnici della rampa Est di approccio al sovrappasso della Strada Provinciale 153 (Categoria F1 extraurbana D.M. 05/11/2001). L'opera in oggetto ricade a pk. Km 37+407 della linea AC suddetta.

La caratterizzazione geotecnica è stata definita sulla base dei dati ottenuti dalle varie campagne di indagini eseguite. Di seguito viene riportato un breve inquadramento geologico e poi la caratterizzazione geotecnica con la presentazione dei parametri da utilizzare in fase progettuale.

Come mostrato in Figura 1all'interno di tale WBS sono presenti le seguenti opere minori:

- muro di sottoscarpa 1
- muro di di sottoscarpa 2

_

All'interno di questa relazione vengono riportate le verifiche e il dimensionamento di tale opere secondarie.

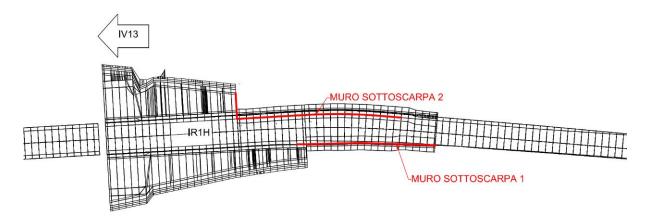


Figura 1 – Inquadramento rampa Est e opere minori oggetto della relazione.

Foglio 8 di 75

2. PROFILO STRATIGRAFICO E STRATIGRAFIA DI PROGETTO

2.1. Contesto geologico

L'opera oggetto del presente rapporto è situata in un settore di pianura, caratterizzato dalla successione di depositi alluvionali del Bacino di Alessandria (Pleistocene inf - Olocene) che poggiano in discontinuità sulla successione sedimentaria post-messiniana, rappresentata in questo settore dalla Formazione delle argille Azzurre (Zancleano), dalle Sabbie d'Asti I.s. e dal Villafranchiano" p.p. auct.

Dal punto di vista geologico l'area d'intervento ricade interamente nell'ambito dei depositi alluvionali del bacino alessandrino ed in particolare nell'unità dei depositi alluvionali recenti (FL3). I depositi alluvionali recenti sono posizionati in aree prossime all'alveo del T. Scrivia e sono delimitati a est dallo stesso corso d'acqua e ad ovest dall'orlo di terrazzo di Novi Ligure - Formigaro ad orientazione nord ovest-sud est. Terrazzo alla cui base doveva posizionarsi un paleo-alveo dello Scrivia che dalla zona di Serravalle raggiungeva e attraversava l'attuale centro di Pozzolo e da qui proseguiva verso ovest secondo un tracciato corrispondente all'attuale Rio di Castel Gazzo. Lo spostamento successivo dell'alveo a est di Pozzolo e poi ancora verso est sino al raggiungimento della posizione attuale ha conformato questo tratto di pianura che viene attribuito al fluviale recente. Fluviale recente che si eleva, rispetto all'alveo attuale dello Scrivia, di 20 m nel tratto di monte (zona di Serravalle-Novi) e di 5 metri nel tratto di valle (tra Rivalta Scrivia e Tortona).

Il fluviale recente (FL3) comprende terreni a granulometria grossolana con ghiaie nettamente prevalenti (70-80%) sulle sabbie (10-20%) e sulle parti più fini (limo+argilla) 10-20%.

La litofacies è distribuita su gran parte dell'area di pianura interessata dal tracciato del III Valico. Nel tratto meridionale, a ridosso dell'imbocco nord della Galleria di Serravalle, si evidenziano modesti spessori (circa 4 m) di ghiaie sabbioso-limose che ricoprono la formazione delle Argille Azzurre. Verso nord, in corrispondenza della progressiva 37+500 ca., si osserva un rapido incremento dello spessore dei sedimenti, che passa da 3-4 m a oltre 30 m; tale spessore aumenta ulteriormente verso nord.

2.2. Contesto idrogeologico

Dal punto di vista idrogeologico, il settore in cui ricade la rampa Ovest del cavalcaferrovia (WBS IR1G) è caratterizzato dalla presenza di un acquifero superficiale a falda libera costituito da depositi alluvionali di pianura. Il substrato impermeabile o poco permeabile è invece costituito dalle Argille di Lugagnano. I depositi sono di tipo fluviale recente (fl3) e sono costituiti da ghiaie sabbioso-limose con percentuali variabili di matrice fine. Al tetto dei depositi è presente un suolo agricolo dello spessore di ca. 1÷2 m che ha scarsa rilevanza ai fini idrogeologici.

La rampa sud del cavalcaferrovia si inserisce in un contesto generale in cui si è visto che la permeabilità dei terreni è sensibilmente variabile sia in senso orizzontale sia verticale. In particolare, i terreni ubicati nell'orizzonte superiore ed inferiore dei depositi alluvionali hanno permeabilità differenti, con il primo orizzonte che presenta valori generalmente superiori al

Foglio 9 di 75

secondo. Un'indicazione sui valori di permeabilità dell'orizzonte superiore dei depositi fl3 deriva dalle prove idrauliche eseguite per il Progetto Definitivo sui pozzi esplorativi eseguiti tra Pozzolo Formigaro e Tortona, Tali prove sono state effettuate in trincee scavate fino ad una profondità di 1.5 m da pc. Le prove realizzate indicano una permeabilità compresa tra 2x10⁻⁴ m/s e 8x10⁻⁴ m/s.

Per quanto riguarda il livello inferiore dei depositi fl3, le prove Lefranc eseguite nell'ambito del Progetto Definitivo definiscono un intervallo piuttosto ampio di valori, compresi tra 1x10⁻⁶ e 1x10⁻³ m/s. Ulteriori indicazioni sulle permeabilità di tali depositi derivano dai test di pompaggio a lunga durata eseguiti nell'ambito del Progetto Definitivo. Una prova su pozzo eseguita alla periferia Sud di Pozzolo Formigaro (ca. 100 m da tracciato ferroviario, in un settore compreso tra la ferrovia Novi Tortona e il Rio Gnavole) ha permesso di definire una permeabilità di 5.0x10⁻⁵ m/s ed un coefficiente di immagazzinamento di 1.6x10-3. Un'altra prova effettuata nella cava dismessa di Cascina S. Maria ha restituito valori di permeabilità compresi tra 2.0x10⁻⁴ e 3.0x10⁻⁴ m/s. Un'altra prova eseguita simultaneamente su 4 pozzi a Pozzolo Formigaro ha restituito un valore di 4.0x10⁻⁶ m/s. Infine, un'ulteriore prova di pompaggio a lunga durata eseguita in periferia Sud di Pozzolo Formigaro (Loc. Cascina Valle) ha restituito valori di 3.3x10⁻⁶ m/s e 1.1x10⁻⁵ m/s in regime transitorio e di 2.2x10⁻⁶ m/s e 9.5x10⁻⁶ m/s in regime stazionario, con un coefficiente di immagazzinamento di S = 7.8x10⁻⁴. La prova di pompaggio eseguita per la campagna indagini del 2014 presso Cascina Capri ha visto l'esecuzione di prove di spurgo del pozzo le quali hanno restituito valori di permeabilità variabili tra 8.47x10⁻⁶ m/s e 9.11x10⁻⁶ m/s. Son state poi realizzate, sempre in prossimità di Cascina Capri, prove di portata a gradini le quali hanno fornito valori di permeabilità di 2.54x10⁻⁴ m/s e 6.38x10⁻⁴ m/s.

Dal punto di vista della rappresentatività dei valori, si rimarca che i risultati ottenuti attraverso le prove di pompaggio sono maggiormente significativi di quelli ottenuti dai test in foro, in quanto le prime permettono di valutare la permeabilità in un intorno esteso attorno al pozzo, mentre le seconde indagano la permeabilità solamente in un intorno localizzato attorno al sondaggio. Pertanto, i test in foro risentono maggiormente di effetti locali (es. eterogeneità locali, disturbi del terreno indotti dalla perforazione.

Si sono poi riportati sul profilo geologico tutti i risultati delle prove di pompaggio e di permeabilità eseguite nelle varie campagne di indagine (Figura 2).

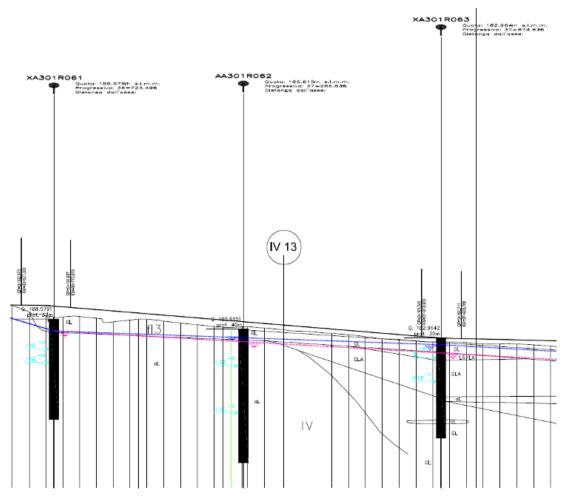


Figura 2 - Profilo geologico in prossimità della rampa ovest del cavalcaferrovia con indicazioni dei sondaggi ed indicazione dei valori di permeabilità (i valori di permeabilità sono espressi in m/s).

Foglio 11 di 75

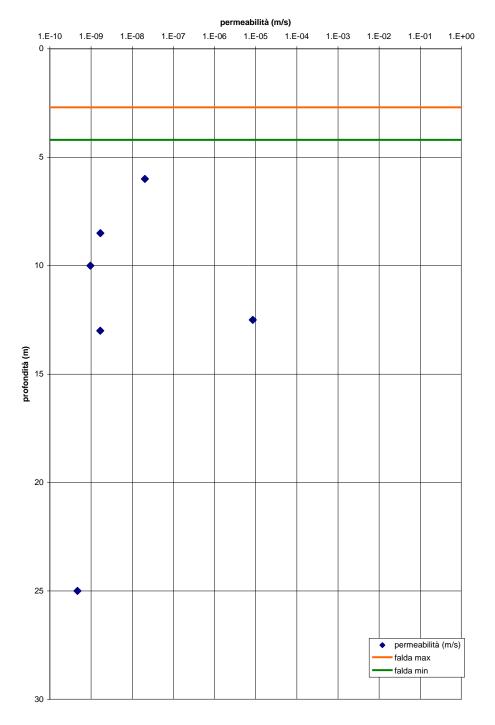


Figura 3 - Grafico dei risultati delle prove di permeabilità eseguite in prossimità dell'area di realizzazione della rampa sud del cavalcaferrovia IV14.

Sulla base dell'analisi dei risultati delle prove (Figura 3) e del profilo riportato in Figura 2 è possibile affermare che la permeabilità di riferimento è piuttosto bassa con valori medi compresi tra 8.5x10⁻⁶m/s e 4.6x10⁻¹⁰ m/s.

G51-03-E-CV-RO-IR1H-0X-003-A00	Foglio
Relazione geologico geotecnica	12 di 75

2.3. Indagini in sito considerate

Nella zona della rampa in oggetto, sono stati eseguiti una serie di indagini geotecniche. La denominazione delle indagini di cui sopra, nonché le rispettive profondità raggiunte, sono riportate nella tabella seguente.

Sondaggi a carotaggio			
Denominazione	Lunghezza (m)		
XA301B061	30		
AA301B062	40		
XA301B063	30		

Tabella -1. Sondaggi nell'area di realizzazione della rampa.

Le campagne hanno visto la realizzazione di una serie di sondaggi geognostici, prove in sito in corrispondenza degli stessi (SPT e prove Lefranc, principalmente) ed il prelievo di campioni per prove di laboratorio.

2.4. Stratigrafia nella zona di realizzazione delle opere

Sulla base dei dati disponibili, la situazione stratigrafica del sito può essere così schematizzata:

A partire dal piano campagna locale si può incontrare uno strato superficiale di terreno di riporto/agricolo costituito da limo sabbioso marrone scuro di spessore pari a 1.00m circa, localmente inglobante elementi lapidei sparsi (Formazione LS).

Al di sotto della Formazione **LS/LA** è presente uno strato di circa 3.00m di origine alluvionale postglaciale (Olocene) **FL3** costituito da ghiaia medio grossa in matrice limo-sabbiosa (Formazione FL3 – GL/GLA) localmente argillosa.

A partire da 3.50/4.00m rispetto il piano campagna, si estende fino agli strati più profondi indagati un deposito di argilla limosa molto consistente (Formazione FL3 – AL).

Le risultanze delle prove SPT mostrano i seguenti andamenti per le varie zone presenti nell'area.

XA301B063			
prof. [m]	N		
3	42		
7.6	68		
10.6	rif.		
13.5	65		
16	70		
21	73		
24	82		

Tabella -2. Dettaglio risultanze delle prove SPT in foro nell'area della rampa.

Alla luce di quanto sopra la stratigrafia di progetto da utilizzarsi nelle verifiche geotecniche viene prevista come di seguito indicato.

Stratigrafia di calcolo	Da (m da p.c.)	A (m da p.c.)	Tipo di terreno
LS/LA	p.c.	- 1.00	Limo sabbioso
GLA	- 1.00	-4.00	Ghiaia medio grossa in matrice argillosa limosa
AL	-4.00	In poi	argilla limosa

Tabella -3. Stratigrafia di progetto per l'area in esame

2.5. Livello piezometrico

Il livello di falda rilevato dai piezometri installati nei sondaggi, varia in base al periodo dell'anno e mostra un livello di soggiacenza compreso tra – 2.5 m da p.c e – 4.20 m da p.c..

Foglio 14 di 75

3. CARATTERIZZAZIONE GEOTECNICA DEL SITO

Di seguito si forniscono i parametri di base per i materiali geotecnici nell'area in esame, coerentemente con quanto previsto in PD. Per la caratterizzazione geotecnica si è tenuto conto anche di altri sondaggi presenti nelle aree adiacenti che presentano caratteristiche dei materiali simili a quelli nell'area della rampa.

Parametri	Formazione LS/LA	Formazione GL	Formazione AL
Peso di volume γ (kN/m³)	18	19	19 ÷ 20 (1)
Densità relativa D _r (%)	-	73 ÷ 95	-
Coesione drenata c' (kPa)	5	-	25
Angolo di resistenza al taglio operativo φ' (°)	26	38	28
Resistenza al taglio non drenata c _U (kPa) (2)	-	-	100+3.25·z (3)
Velocità delle onde di taglio V _s (m/s)(4)	-	185 + 3.9·z (3)	-
Modulo di taglio a piccole deformazioni G ₀ per materiali granulari (MPa)	-	75 + 3.85·z (3)	-
Modulo di Young a piccole deformazioni E₀ per materiali granulari (MPa)	-	190 + 10·z (3)	-
Modulo di Young drenato E' per terreni coesivi (kPa) - Per il calcolo dei cedimenti	-	-	8600
Modulo di Young drenato E' per terreni coesivi (kPa) – Per il dimensionamento delle opere di sostegno	-	-	16200
Modulo di Young non drenato E _u per terreni coesivi (kPa) (5)	-	-	20000+650·z (3)
Coefficiente di consolidazione primaria C _V (cm ² /s) – Tratto OC (6)	-	-	2.5·10 ⁻³ (6)
Coefficiente di consolidazione primaria C _V (cm ² /s) – Tratto NC (6)	-	-	2.5·10 ⁻⁴ (6)
Coefficiente di consolidazione secondaria c_{α} (%) – Tratto OC (7)	-	-	0.1 (7)
Coefficiente di consolidazione secondaria c_{α} (%) – Tratto NC (7)	-	-	0.5 (7)

- (1) Valori crescenti con la profondità.
- (2) Valori decrescenti con la profondità.
- (3) Z = Profondità da piano campagna in m.
- (4) Valori delle velocità delle onde di taglio ricavate dai dati SPT secondo la correlazione di Ohta e Goto.
- (5) $E_u=200 c_u$.
- (6) Valori valutati in base alla descrizione stratigrafica e dalle prove di laboratorio
- (7) Ricavabile dalla curva deformazione (□) tempo (t).

Tabella -4. Caratteristiche di base dei materiali geotecnici

Foglio 15 di 75

Le indagini e le prove di laboratorio a disposizione hanno consentito una caratterizzazione del comportamento meccanico della formazione presente nell'area secondo una suddivisione in base all'approfondimento. Conservativamente, le caratteristiche geotecniche per l'area dello scavo sono di seguito definite tenendo in maggior conto le risultanze delle analisi di laboratorio. Nel calcolo delle opere di sostegno si adotteranno valori del modulo di deformabilità pari a circa 1/3÷1/5 di quelli iniziali a piccole deformazioni. Nel calcolo dei cedimenti si adotteranno valori del modulo di deformabilità pari a circa 1/10 di quelli iniziali a piccole deformazioni. Sulla base dei valori delle velocità delle onde di taglio ricavate dai dati SPT (considerando anche gli altri sondaggi presenti nelle aree adiacenti che presentano caratteristiche dei materiali simili a quelli nell'area della rampa) secondo la correlazione di Ohta e Goto, per i dati della campagna 2000-2002, si sono stabilite velocità sismiche per profondità rappresentative, da cui sono stati ricavati i parametri di deformabilità di riferimento.

I seguenti parametri si giudicano ragionevoli e rappresentavi del comportamento del terreno.

Parametri	Formazione LS/LA	Formazione GLA	Formazione AL
Profondità da p.c.	0-1m	1-4	>4
Peso di volume γ (kN/m³)	18	19	20
Angolo di resistenza al taglio operativo	28	38	28
Modulo di deformabilità operativo E per materiali granulari (MPa), calcolati con riferimento al valore medio di Eo ed un fattore di riduzione pari a 5	20	51	60
Modulo di deformabilità operativo E per materiali granulari (MPa), calcolati con riferimento al valore medio di Eo ed un fattore di riduzione pari a 10	10	25	30

Tabella-5. Caratteristiche di progetto dei materiali geotecnici per la zona della rampa ovest.

Per le zone a matrice limoso/argillosa è possibile tenere in conto che la componente coesiva possa fornire un valore di coesione stimabile in 5 kPa, ottenuti dalle indicazioni ricavate da prove di laboratorio eseguite su questo tipo di materiale.

IG51-03-E-CV-RO-IR1H-0X-003-A00	Foglio
Relazione geologico geotecnica	16 di 75

75

4. VALUTAZIONE DELLA STABILITA' DEI PENDII

Lo sviluppo della resistenza al taglio per materiali sabbiosi è caratterizzato dai seguenti elementi:

- L'inviluppo di rottura risulta curvilineo;
- Lo sviluppo della resistenza dipende principalmente dalla densità relativa (DR) e della tensione efficacie agente (σ ');
- La storia dello stato tensionale non influenza il valore dell'angolo d'attrito (φ');
- il valore dell'angolo d'attrito (φ') non è influenzato dal percorso di sollecitazione;
- il valore dell'angolo d'attrito (ϕ ') è indipendente dal grado di saturazione.

Risultano numerosi gli studi relativi alla dipendenza dell'angolo di resistenza a taglio dalla tensione agente sul piano di rottura (Bellotti et Al, 1985; Bolton, 1986).

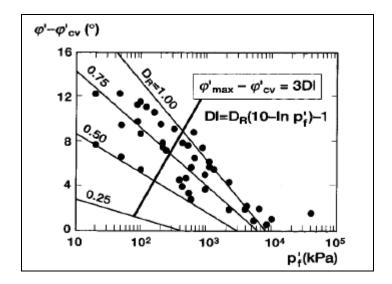


Figura 4 – Dipendenza dell'angolo di resistenza al taglio dalla tensione agente sul piano di rottura (Bolton, 1986)

Foglio 17 di 75

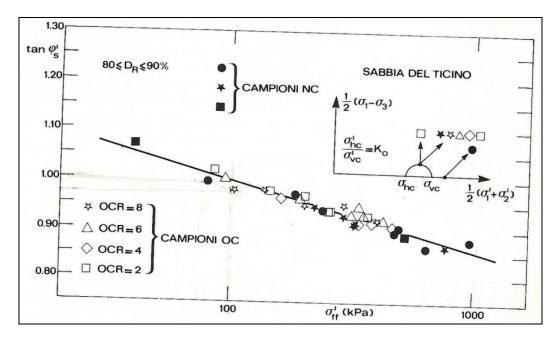


Figura 5 Dipendenza dell'angolo di resistenza al taglio dalla tensione agente sul piano di rottura (Bellotti et Al., 1985)

La valutazione della non linearità dell'inviluppo di rottura può essere definita in maniera discreta attraverso la definizione delle caratteristiche attritive in funzione della profondità attraverso la formulazione di Bolton che ha definito una relazione che lega la tensione efficace all'effetto di dilatanza:

 $\phi'_p - \phi'_{cv} = m DI$

dove:

- m = 5 in condizioni di deformazione piane;

- $DI=Dr[10-ln(p'_f)]-1$ dove p'_f è la tensione media efficace a rottura.

- Dr = densità relativa

- ϕ'_p = angolo d'attrito di picco

- ϕ'_{cv} = angolo d'attrito a volume costante

E' dunque possibile definire i valori delle resistenze attritive al variare della tensione agente. Nel seguito sono riportati i valori dell'angolo d'attrito del materiale costituente la rampa calcolati attraverso la formulazione di Bolton considerando un angolo di attrito di 35° e una densità relativa pari a 0.6.

Foglio 18 di 75

		tensione e	efficace media	a rottura					
φ'cv	profondità	p'f	In(p'f)	10-ln(p'f)	DR	DI	m	φ'p-φ'cv	φ'p
[°]	[m]	[kPa]					[-]	[°]	[°]
35	0.5	10	2.302585	7.697414907	0.6	3.618	5	18.09	53.09
35	1	20	2.995732	7.004267726	0.6	3.203	5	16.01	51.01
35	1.5	30	3.401197	6.598802618	0.6	2.959	5	14.80	49.80
35	2	40	3.688879	6.311120546	0.6	2.787	5	13.93	48.93
35	2.5	50	3.912023	6.087976995	0.6	2.653	5	13.26	48.26
35	3	60	4.094345	5.905655438	0.6	2.543	5	12.72	47.72
35	3.5	70	4.248495	5.751504758	0.6	2.451	5	12.25	47.25
35	4	80	4.382027	5.617973365	0.6	2.371	5	11.85	46.85
35	4.5	90	4.49981	5.50019033	0.6	2.300	5	11.50	46.50
35	5	100	4.60517	5.394829814	0.6	2.237	5	11.18	46.18
35	5.5	110	4.70048	5.299519634	0.6	2.180	5	10.90	45.90
35	6	120	4.787492	5.212508257	0.6	2.128	5	10.64	45.64

Tabella -6. Valori dell'angolo d'attrito di picco in funzione della densità relativa e della tensione efficace agente

Sulla base di tali indicazioni, sono state condotte le valutazioni di stabilità per le condizioni di progetto.

Attraverso l'utilizzo dei valori afferenti alla prima teoria, il calcolo ha fornito i fattori di sicurezza (metodo di Bishop semplificato) sulla base delle seguenti caratteristiche di resistenza:

- Peso unità di volume 19 kN/m³;
- angolo d'attrito da 0.00m di profondità a 1.00m: 51°;
- angolo d'attrito da 1.00m di profondità a 2.00m: 48.9°;
- angolo attrito pari a 35° per la zona a profondità oltre i 2.00m.

La realizzazione della rampa presenta le seguenti caratteristiche:

- scarificazione del terreno superficiale (circa 2m, in questo modo si va oltre lo strato di terreno LS) e sistemazione con pendio inclinato 2/3 intervallato da una eventuale berma di 2m.

La verifica viene effettuata applicando in sommità un sovraccarico pari a 20kPa in condizioni statiche e 10kPa per le verifiche in condizioni sismiche.

Per la rampa oggetto della relazione si è analizzata la sezione più critica alla progressiva pk 175. Inoltre per le sezioni di rampa in cui sono presenti i muri di si rimanda alle verifiche di stabilità globale riportate nei paragrafi specifici di tali opere.

I risultati sono di seguito riportati.

Come visibile, i fattori di sicurezza risultano superiori a 1.3 e le verifiche risultano quindi soddisfatte.

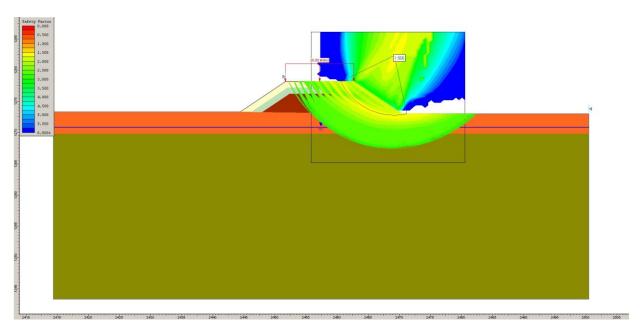


Figura 6 - Sez. pk175. Analisi di stabilità in condizioni statiche, metodo di Bishop. Mezzo attritivo. Fattori di sicurezza e superficie di scivolamento analizzate.

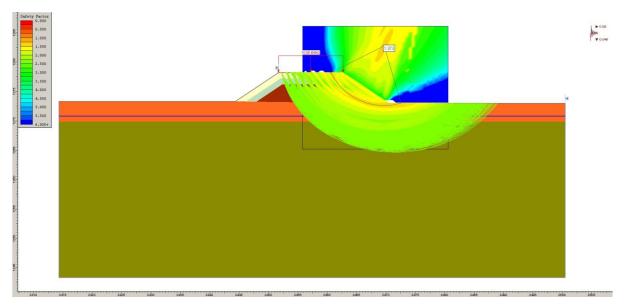


Figura 7 - Sez. pk175. Analisi di stabilità in condizioni sismiche, metodo di Bishop. Mezzo attritivo. Fattori di sicurezza e superficie di scivolamento analizzate.

IG51-03-E-CV-RO-IR1H-0X-003-A00	Foglio
Relazione geologico geotecnica	20 di 75

5. CALCOLO DEI CEDIMENTI

Vengono di seguito riepilogati i risultati ottenuti relativamente al calcolo dei cedimenti per le condizioni giudicate maggiormente rappresentative per le opere in progetto.

5.1. Metodologia per il calcolo dei cedimenti

Il cambiamento di stato tensionale derivante dall'applicazione (carichi stradali, ferroviari, rilevati, modificazione nella quota del livello di falda) o rimozione di carichi (scavi, modifiche quota di falda) determinano lo sviluppo di deformazioni, con caratteristiche differenti in funzione della magnitudo e della geometria del carico agente.

Il calcolo della variazione dello stato tensionale viene condotto attraverso il metodo di Boussinesq, che si basa sulla teoria dell'elasticità al fine di determinare il calcolo della tensione verticale in un semispazio infinito ed omogeneo.

$$\sigma_L = \frac{3Q}{2\pi z^2} \cos^5 \theta$$

dove:

- Q: tensione verticale risultante alla posizione di calcolo;
- σ_L: tensione verticale risultante alla posizione di calcolo definita dai parametro z e θ.

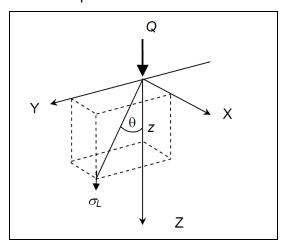


Figura 8. Schema di riferimento la soluzione di Boussinesq

Integrando tale soluzione su aree si ottengono i risultati relativi ai carichi applicati di progetto.

Le analisi dei cedimenti sono state eseguite con analisi tri-dimensionali che tengono conto dell'effettiva forma del rilevato e degli effetti di bordo che si generano.

I cedimenti generati possono essere divisi in due categorie:

IG51-03-E-CV-RO-IR1H-0X-003-A00	Foglio
Relazione geologico geotecnica	21 di 75

- Cedimenti immediati
- Cedimenti indotti dai fenomeni di consolidazione primaria;
- Cedimenti indotti dai fenomeni di consolidazione secondaria.

5.1.1. Cedimenti immediati

Il cedimento istantaneo si verifica subito dopo l'applicazione del carico ed è un cedimento di tipo lineare elastico.

La deformazione di ogni elemento di terreno può essere facilmente calcolata partendo dal modulo elastico monodimensionale. La relazione tra il modulo 3D e quello 1D è la seguente:

$$E_{ed} = E \frac{(1+v)(1-2v)}{(1-v)}$$

dove:

- Eod: modulo edometrico;

E: modulo di deformabilità;

- v: coefficiente di Poisson.

La deformazione verticale di ogni strato di terreno è calcolata secondo l'espressione:

$$\varepsilon = \frac{\Delta \sigma}{E}$$

dove:

- ε: deformazione verticale;

- E: modulo di deformabilità;

- $\Delta \sigma$: variazione della tensione totale verticale.

Il cedimento iniziale è calcolato a partire da quello ricavato nell'equazione precedente. Per ogni porzione di terreno analizzata, il punto più inferiore dello strato è ipotizzato fisso. Il punto immediatamente superiore si sposta di una quantità δ :

$$\delta = \Delta z = \varepsilon \cdot h$$

dove:

δ: cedimento iniziale;

- h: spessore iniziale dello strato di terreno;

- $\Delta \sigma$: variazione della tensione totale verticale.

Il cedimento dell'i-esimo punto è quindi pari al cedimento del punto al di sotto (i+1) più il cedimento dello strato i:

$$\delta_{i} = \delta_{i+1} + \varepsilon_{i} \cdot h_{i}$$

IG51-03-E-CV-RO-IR1H-0X-003-A00	
Relazione geologico geotecnica	

Foglio 22 di 75

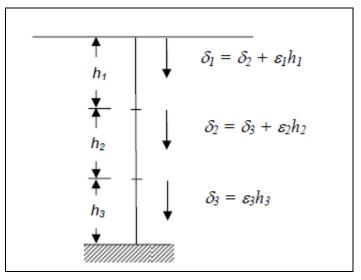


Figura 9. Schema di riferimento per il calcolo dei cedimenti per strati successivi

5.1.2. Cedimenti indotti dalla consolidazione primaria

I cedimenti derivanti dalla consolidazione primaria si generano mano a mano che la pressione interstiziale in eccesso di dissipa portando ad un aumento degli sforzi efficaci.

I cedimenti sono calcolati per ogni stato di terreno come per il caso elastico lineare, ma il calcolo delle deformazioni varia in base a come vien schematizzato il terreno.

Nel caso si assuma un materiale elastico lineare, la variazione di deformazione per ogni elemento indotta da una variazione di sforzo è la seguente:

$$\Delta \varepsilon = m_v \cdot \Delta \sigma'$$

dove:

- Δε: variazione della deformazione verticale;
- m_v: coefficiente di compressibilità verticale in caso di espansione laterale impedita;
- $\Delta \sigma'$: variazione della tensione efficace verticale.

L'effetto di dissipazione della pressione neutra, si basa sull'ipotesi che l'effetto dell'applicazione di un carico determini una uguale variazione nel valore della pressione neutra:

$$\Delta u = \Delta \sigma$$

derivante dall'espressione di Skempton (1954) posto B=1

L'eccesso di pressione neutra non risulta altro che la pression.e neutra attuale sottratta della pressione neutra dovuta alla gravità.

$$\Delta u_{e} = u - u_{i}$$

Il processo di consolidazione legata al flusso verticale del fluido è simulato in accordo al metodo di consolidazione monodimensionale di Terzaghi:

IG51-03-E-CV-RO-IR1H-0X-003-A00	
Relazione geologico geotecnica	

Foglio 23 di 75

$$\frac{\partial u}{\partial t} = c_v \frac{\partial^2 u_e}{\partial^2 z}$$

dove:

c_v: coefficiente di consolidazione;

- z: distanza dalla superificie;

- u_e: eccesso di pressione neutra.

L'equazione differenziale viene risulta in maniera analitica per ogni singolo strato con comportamento lineare.

La risoluzione del calcolo legato alla pressione neutra richiede la conoscenza dei valori di permeabilità (k) e del coefficiente di consolidazione primaria (c_v). Tali quantità risultano legate secondo l'espressione (valida per materiali elastico-lineari):

$$k = c_v \cdot m_v \cdot \gamma_w$$

5.1.3. Cedimenti indotti dalla consolidazione secondaria

I cedimenti derivanti dalla consolidazione secondaria (o creep) generano variazioni di deformazione a parità di stato tensionale efficace.

La valutazione dell'entità del cedimento viene condotta attraverso il cosiddetto metodo standard, che prevede la variazione dell'entità del cedimento in funzione del logaritmo del tempo.

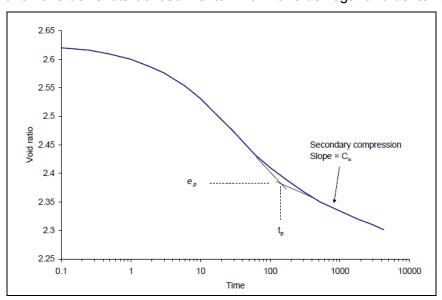


Figura 10. Schema di riferimento per il calcolo dei cedimenti per consolidazione secondaria

Il cambiamento nella deformazione verticale in funzione del tempo è calcolato attraverso la seguente espressione

$$\Delta \varepsilon_s = \frac{C_\alpha}{1 + e_p} \log \left(\frac{t_2}{t_1} \right)$$

IG51-03-E-CV-RO-IR1H-0X-003-A00	Foglio
Relazione geologico geotecnica	24 di 75

dove:

- Δε_s: variazione della deformazione verticale secondaria;
- t₁,t₂: tempo iniziale e finale del periodo di osservazione;
- e_p: indice dei vuoti al termine della fase di consolidazione primaria.

ed il cedimento complessivo è ricavato attraverso le espressioni per la successione degli strati di calcolo:

$$\delta = \Delta z = \varepsilon \cdot h$$

$$\delta_i = \delta_{i+1} + \varepsilon_i \cdot h_i$$

IG51-03-E-CV-RO-IR1H-0X-003-A00	
Relazione geologico geotecnica	

Foglio 25 di 75

5.2. Analisi condotte

Il calcolo dei cedimenti viene condotto $S_T = S_i + S_c + S_s$

dove:

- S_T: cedimento totale
- S_i: cedimento immediato;
- Sc: cedimento per consolidazione primaria
- Ss: cedimento per consolidazione primaria o creep

Nel proseguo verranno effettuate le seguenti assunzioni:

- I materiali con componente sabbiosa rilevante (LS, GL) presentano un calcolo dei cedimenti che comprende il cedimento immediato e di consolidazione primaria;
- I materiali con componente argillosa rilevante (AL) presentano un calcolo dei cedimenti che comprende il cedimento di consolidazione primaria e secondaria.

Lambe e Whitman (1979) affermano come per il caso di suoli reali, il rapporto fra E_{undrained}/E_{drained} risulta tipicamente maggiore rispetto ai valori teorici, e rapporti pari a 3-4 non sono atipici per argille NC, e Poulos (2000) ha mostrato come il valore del cedimento immediato per tali materiali risulti trascurabile rispetto ai cedimenti per consolidazione.

Lungo il tracciato sono stati identificati due sezioni rappresentative delle condizioni più gravose con riferimento agli aspetti relativi ai cedimenti indotti dal terreno.

- sezione 08, nella zona di rilevato in terra;

5.2.1. Valutazione dei cedimenti per la sezione 08

La sezione 08 mostra la presenza un rilevato stradale di altezza rilevante (quasi 5m), cui si sommano i carichi stradali, valutati sinteticamente in 20 kPa

Si considera agente tale pressione su di una larghezza di riferimento pari a 9m in cima al rilevato.

IG51-03-E-CV-RO-IR1H-0X-003-A00	
Relazione geologico geotecnica	

Foglio 26 di 75

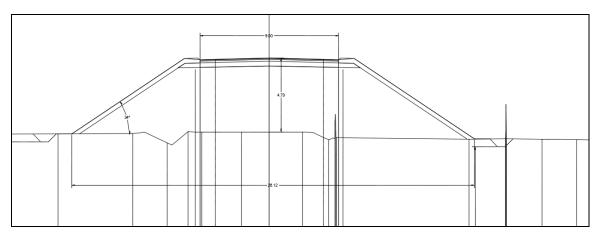


Figura 11. Schema di riferimento per la sezione 08

La stratigrafia di riferimento è riportata nella tabella seguente:

z tetto	z letto	hi	materiale		γ	Eo	Eis	Eoperativo	mv	fi	c'	k	Cv	Cα
(m)	(m)	(m)		descrizione	(kN/m3)	(kPa)	(kPa)	(kPa)		(°)	(kPa)	(m/s)	(cm2/s)	(%)
			RIL	materiale da rilevato	20	400000	133333	40000	0.000025	35	0	1.00E-04		
0	1	1	LS	limo con matrice sabbi	19	100000	33333	10000	0.000100	28	0	1.00E-04		
1	3.5	2.5	GL	sabbie e ghiaie in matri	19	225000	75000	22500	0.000044	38	0	1.00E-05		
													2.5*10 ⁻³ -	
12	50	38	AL	argilla molto consisten	20	86000	28667	8600	0.000116	28	25	1.00E-07	2.5*10 ⁻⁴	0.1-0.5

Tabella 7. Caratteristiche geotecniche di riferimento per l'area in esame

La profondità della falda è posta a 2.0m da p.c.

Si considerano i seguenti aspetti legati alla definizione dei cedimenti:

- Per le formazioni LS e GL: cedimento immediato (rif. Eis) e consolidazione primaria (mv, k);
- Per la formazione AL: consolidazione primaria (mv, Cv) e consolidazione secondaria ($C\alpha$), considerati i valori di riferimento per il materiale NC (assunzione conservativa).

Il modello ha previsto la simulazione delle seguenti fasi:

Fase	tempo (gg)	Descrizione
1	0	Stage 1- Rilevato
2	30	Stage 2- Sovraccarico
3	60	Stage 3- secondo mese
4	90	Stage 4- 3 mesi
5	150	Stage 5- 6mesi
6	360	Stage 6- 12mesi
7	720	Stage 7- 24mesi

Tabella 8. Fasi di simulazione per la definizione del comportamento deformativo sotto l'azione dei carichi di progetto

E' stato realizzato un modello geometrico di dimensioni 220x200m, con un'estensione longitudinale del carico di circa 100m, al fine di poter simulare le condizioni di deformazioni piane a cui può essere assimilata la struttura sotto carico.

Foglio 27 di 75

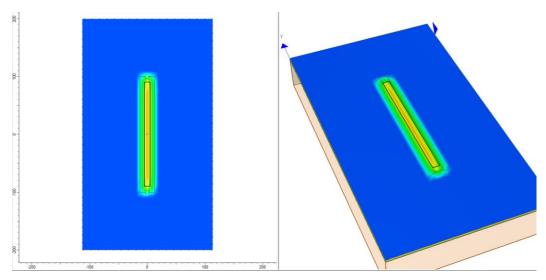


Figura 12.Geometria del modello di calcolo

I risultati sono di seguito riportati in forma grafica relativamente al cedimento in superficie in sezione trasversale alla linea (centro del grafico= asse del tracciato) e sezione verticale in asse all'opera

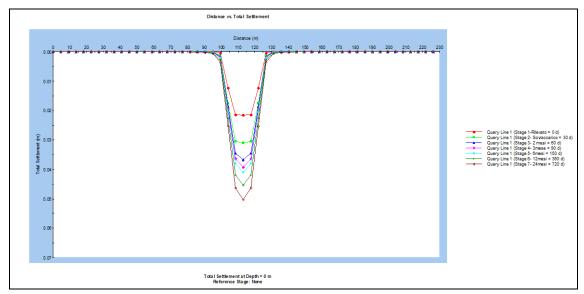


Figura 13. Risultati delle analisi (cedimento in superficie in sezione trasversale).

Foglio 28 di 75

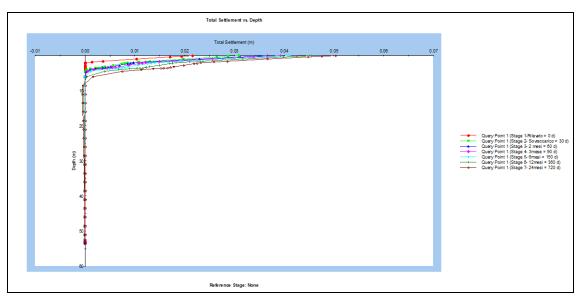


Figura 14. Risultati delle analisi (cedimento al variare della profondità)

Si assiste ai seguenti fenomeni:

- Il rilevato ferroviario determina un cedimento dell'ordine di 2cm;
- L'applicazione del carico ferroviario incrementa istantaneamente il valore del cedimento massimo a circa 3.1cm;
- Al mese successivo, l'entità del sovraccarico risulta dell'ordine di 3.7cm
- I cedimenti differiti nel tempo (a parità di carico) determinano l'incremento del valore totale di cedimento a 5.5cm (rif. 2 anni), con un differenziale di circa 2cm rispetto al cedimento immediato all'applicazione del sovraccarico stradale.

La sezione in esame, dunque, manifesta cedimenti limitati e compatibili con la funzionalità della struttura.

IG51-03-E-CV-RO-IR1H-0X-003-A00	_
Relazione geologico geotecnica	

Foglio 29 di 75

6. MURODI SOSTTOSCARPA 1

Il muro di sottoscapra MS1 (Figura 15) presenta uno sviluppo di circa 40 m ed un'altezza massima di 2.85m (altezza dell'elevazione). L'altezza del tratto in elevazione varia in funzione della quota del piano stradale; infatti la testa del muro deve trovarsi 5cm sopra la quota del piano viabile per permettere il corretto posizionamento delle barriere. Questa condizione implica che i primi 70cm dalla testa del muro dovranno avere una larghezza di 70cm; per il rimanente tratto di elevazione invece, la sezione avrà larghezza pari a 40 cm (Figura 16, a)). Altro vincolo progettuale si ha nel tratto iniziale del muro (dove sono presenti i tratti in elevazione più bassi) in cui ha la presenza di una canaletta idraulica. Per evitare interferenze con tale opera, i primi 9.5 metri della struttura di sostegno prevedono la mancanza della scarpa esterna inferiore (Figura 16, b)).

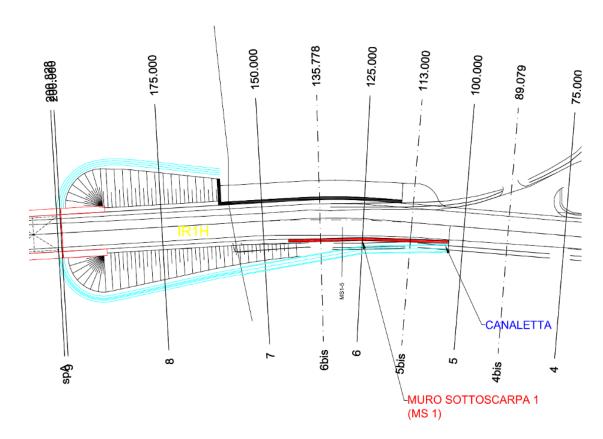


Figura 15 - Ubicazione planimetrica del muro di sottoscarpa.

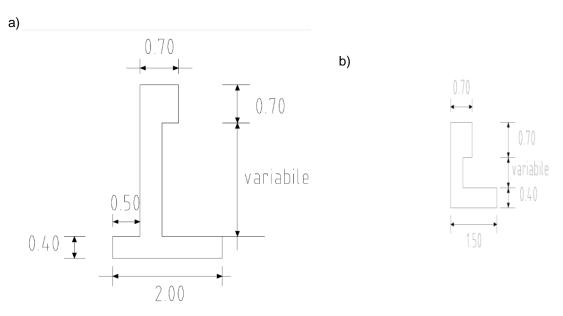


Figura 16 – Geometrie tipo del muro di sottoscarpa.

IG51-03-E-CV-RO-IR1H-0X-003-A00	Foglio
Relazione geologico geotecnica	31 di 75

6.1. Materiali impiegati

I materiali utilizzati nella costruzione dovranno essere oggetto di prove certificanti la rispondenza fra i valori di progetto delle resistenze adottate nel calcolo e le caratteristiche meccaniche dei prodotti posti in opera. In particolare valgono le indicazioni di seguito presentate.

Calcestruzzo C25/30:

resistenza caratteristica cubica di calcolo: R_{ck} = 30 MPa

resistenza caratteristica cilindrica a 28gg: f_{ck} = R_{ck} x 0.83 = 24.90 MPa

➤ modulo di elasticità:
E_{ck} = 31220 MPa

ightharpoonup rapporto E_s/E_c per calcolo tensioni in esercizio: $E_a/E_c = 15$

rapporto E_s/E_c per calcolo ampiezza fessure: $E_a/E_c = 7$

ightharpoonup Resistenza di calcolo calcestruzzo $f_{cd} = f_{ck}/\gamma_c = R_{ck} \times 0.83/\gamma_c$

con: $\gamma_c = 1.6 \text{ per SLU}$ $\gamma_c = 1.0 \text{ per SLE}$

Stati limite:

resistenza caratteristica di calcolo SLU: $f_{cd} = R_{ck} \times 0.83 \times 0.85/\gamma_c =$

13.23 MPa

ightharpoonup resistenza a trazione di calcolo: $f_{ctd} = 1.14 \text{ MPa}$

resistenza a trazione per flessione di calcolo: f_{ctfd} = 1.37 MPa

Acciaio per armature

Barre in acciaio tipo FeB44k ad aderenza migliorata, controllato in stabilimento:

 \triangleright tensione caratteristica di rottura: $f_{tk} = 540 \text{ MPa}$

 \triangleright tensione caratteristica di snervamento: $f_{vk} = 430 \text{ MPa}$

rapporto tensione di rottura/ tensione di snervamento: $1.15 \le f_{tk}/f_{yk} \le 1.35$

► limite sup. tensione caratteristica di snervamento: $f_{yk}/(450 \text{ MPa}) \le 1.15$

Resistenza di calcolo calcestruzzo $f_{yd} = f_{yk}/\gamma_s$

con: $\gamma_s = 1.15 \text{ per SLU}$

 $\gamma_s = 1.0 \text{ per SLE}$

Stati limite:

resistenza caratteristica di calcolo SLU:
f_{vd} = 373.91 MPa

IG51-03-E-CV-RO-IR1H-0X-003-A00	
Relazione geologico geotecnica	

Foglio 32 di 75

6.2. Criteri di verifica

Il progetto e la verifica della struttura in questione è stata eseguita mediante il metodo degli "Stati Limite", verificando:

SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU):

- > scorrimento sul piano di posa (FS≥1.3);
- yerifica al ribaltamento (FS≥1.5);
- collasso per carico limite dell'insieme fondazione-terreno (FS≥2.0);
- yerifica di stabilità globale (FS≥1.3).

SLU di tipo strutturale (STR):

resistenza negli elementi strutturali.

SLE di tipo strutturale (STR):

- verifica allo stato limite di fessurazione (w1 < 0.150 [mm] lato terreno);</p>
- verifica delle tensioni massime lato calcestruzzo ed acciaio.

Nelle verifiche allo scorrimento è stata del tutto trascurata la presenza di reazione passiva da parte del terreno a valle dell'opera.

Nel seguito si riporta una breve descrizione dei criteri di verifica sia con riferimento alle condizioni statiche che sismiche.

6.3. Verifiche geotecniche (GEO)

6.3.1. Verifica allo scorrimento sul piano di posa

Il rapporto fra la somma delle forze resistenti nella direzione dello slittamento e la somma delle componenti nella stessa direzione delle azioni sul muro deve risultare non inferiore a 1,3.

In condizioni sismiche si è tenuto conto, oltre che dell'incremento di spinta del terreno, anche delle forze di inerzia delle masse del muro e/o ad esso collegate.

6.3.2. Verifica al ribaltamento

Il rapporto tra il momento delle forze stabilizzanti e quello delle forze ribaltanti riapetto al lembo anteriore della base non deve risultare minore di 1,5.

In condizioni sismiche si è tenuto conto, oltre che dell'incremento di spinta del terreno, anche delle forze di inerzia delle masse del muro e/o ad esso collegate.

Foglio 33 di 75

6.3.3. Verifica di capacità portante

Il coefficiente di sicurezza per la verifica di capacità portante non deve risultare minore di 2.

La capacità portante limite viene valutata, secondo il criterio di Meyerhof, con riferimento alla fondazione equivalente, definita come la parte della fondazione reale rispetto alla quale la risultante dei carichi é baricentrica.

Per fondazioni rettangolari di dimensioni in pianta B ed L, indicate rispettivamente con eB ed eL le due componenti in direzione di B e di L della eccentricità del carico, le dimensioni efficaci Be ed Le sono espresse da:

$$Be = B - 2 eB$$
 $Le = L - 2 eL$

Verifiche in termini di sforzi efficaci (terreni di tipo non coesivo o terreno coesivo a lungo termine)

La pressione limite della fondazione è stata valutata in base alla soluzione di Prandtl (1921) e successive generalizzazioni. Per tenere conto della geometria reale e della presenza della scarpata immediatamente a valle della fondazione si è fatto riferimento alla espressione nella forma più generale di seguito riportata:

$$q_u = \frac{1}{2} \gamma' B N_{\gamma} s_{\gamma} d_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma} + \sigma'_{vo} N_a s_a d_a i_a b_a g_a + c' N_c s_c d_c i_c b_c g_c$$

in cui:

B = dimensione efficace minore della fondazione ;

Ny, N q, N c = fattori di capacità portante, funzioni dell'angolo di attrito φ' ;

s γ , s q, s c, = fattori correttivi che tengono conto della forma della fondazione;

 $d\gamma$, dq, ic, = fattori correttivi che tengono conto della profondità del piano di imposta;

 $i \gamma$, i q, i c, = fattori correttivi che tengono conto della inclinazione del carico;

b γ , b q, b c, = fattori correttivi che tengono conto della inclinazione della base della fondazione;

g γ , g q, g c, = fattori correttivi che tengono conto della inclinazione del piano campagna circostante la fondazione:

 σ' vo = pressione verticale efficace agente nelle adiacenze della fondazione alla quota del piano di imposta;

I coefficienti di capacità portante Ng, Nq ed Nc sono ricavati dalle seguenti espressioni (Vesic 1973):

$$N_{q} = \frac{1 + sen\varphi}{1 - sen\varphi} e^{\pi \tan \varphi}$$

$$N_{\gamma} = 2 \times (N_{q} + 1) \times \tan(\varphi)$$

$$N_{c} = (N_{q} - 1) / \tan(\varphi)$$

I coefficienti correttivi possono essere valutati mediante le espressioni:

$$s \gamma = sq$$
 = 1 + 0.1 (B /L) (1+sen ϕ)/(1-sen ϕ)
 $s c$ = 1 + 0.2 (B /L) (1+sen ϕ)/(1-sen ϕ)
 $i \gamma$ = (1 - H/(N + B L c'/ tan ϕ)(m+1)

IG51-03-E-CV-RO-IR1H-0X-003-A00	Foglio
Relazione geologico geotecnica	34 di 75

di 75

```
= (1 - H/(N + B L c'/tan \phi)m
i q
                  i q - (1 - iq)/(Nc tan \phi)
iс
         = (2 + B/L)/(1+B/L)
m
dγ
d q
                   1 + 2 tan \varphi' (1 - sen \varphi') 2 arctan (z f/B)
         =
                  dq - (1 - dq)/(N c tan \phi')
d c
bγ
        =
                  b q
                  (1 - \alpha \tan \varphi')2
b q
        =
                  b q - (1 - b q)/(N c tan \phi')
b c
gγ
        =
                 g q
                 (1 - \tan \omega)2
g q
                 g q - (1 - g q)/(N c tan \varphi')
gс
```

I simboli utilizzati nelle espressioni precedenti rappresentano:

z f = profondità del piano di imposta misurata dal tetto dello strato portante ;

= componente della risultante dei carichi perpendicolare al piano di imposta (risultante dei Ν carichi verticali nel caso più comune di piano di imposta orizzontale);

= inclinazione, in radianti, del piano di imposta, positiva per piano di imposta pendente verso "monte", cioè in direzione opposta a quella verso cui si presume si sviluppi la rottura;

= inclinazione, in radianti, del piano campagna, positiva per piano campagna pendente verso "valle", cioè nella direzione verso cui si presume si sviluppi la rottura.

6.4. Verifiche strutturali (STR)

Alle azioni del terreno si applicano i coefficienti parziali propri delle verifiche STR per le verifiche allo SLU, mentre si considerano coefficienti parziali unitari sulle azioni ed i parametri caratteristici del terreno per le verifiche allo SLE.

Carichi	Effetto	Coeff. Parziale	STR	SISMA
Permanenti	Favorevole	γ _{G1}	1.0	1.0
remanenti	Sfavorevole		1.4	1.0
Permanenti	Favorevole	γ _{G2}	0.0	0.0
portati	Sfavorevole		1.5	1.0
Variabili	Favorevole		0.0	0.0
Variabili	Sfavorevole	γQ1	1.5	1.0

6.4.1. Verifiche SLU

E' stata condotta la verifica in assenza ed in presenza di sisma per le membrature maggiormente sollecitate: il fusto del muro in corrispondenza dell'incastro e nella platea di fondazione, in corrispondenza delle sezioni di incastro lato monte e lato valle.

Foglio 35 di 75

6.4.2. Verifiche SLE

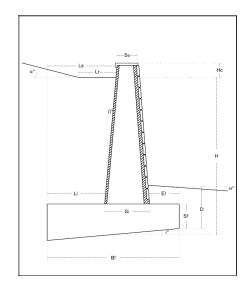
In corrispondenza delle medesime sezioni sono state effettuate le verifiche sulla massima ampiezza delle fessure (verifica allo stato limite di fessurazione) e sulle massime tensioni nel calcestruzzo e nelle armature (verifica delle tensioni in esercizio).

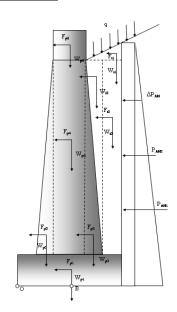
6.5. Risultati verifiche geotecniche

Sono riportati di seguito i risultati delle verifiche condotte in presenza ed in assenza di sisma per le diverse sezioni tipo.

Si sono verificate le due sezioni più critiche per i due tratti di muro, quello iniziale senza la scarpa esterna inferiore (sez A) della ciabatta di fondazione e il secondo tratto di opera (sez B).

Sono riportati di seguito i risultati delle verifiche condotte in presenza ed in assenza di sisma per le diverse sezioni tipo.





Foglio 36 di 75

6.5.1. GEO - sezione A

Dati di carattere generale				
Definire tipologia muro (Ordinario [1] o Prefabb/Contraff [2])	1			
H = altezza [m]	1.67			
H _c = altezza cordolo [m]	0.05			
S _s = spessore superiore [m]	0.40			
S _i = spessore inferiore [m]	0.40			
L _i = scarpa interna inferiore [m]	1.10			
L _s = scarpa interna superiore [m]	1.10			
E _i = scarpa esterna inferiore [m]	0.000			
B _i = base fondazione [m]	1.50			
S _i = spessore fondazione [m]	0.40			
L, = lunghezza tratto rettilineo su ciabatta [m]	0.00			
γ_c = Peso di volume calcestruzzo [kN/m³]	25			
Inclinazione del paramento interno β (°)	0.0			
Inclinazione della fondazione del paramento i (°)	0.0			
Inclinazione piano campagna a tergo dell'opera α (°)	0.0			
Parametri terreno di riempimento				
γ_d = Peso di volume [kN/m ³]	19			
φ' _k = angolo di attrito terreno di riempimento [°]	35			
c' _k = coesione [kPa]	0			
Parametri terreno di fondazione				
d _w = Dislivello tra base fondazione e falda [m]	0			
γ_d = Peso di volume [kN/m ³]	19			
φ' _k = angolo di attrito terreno di fondazione [°]	38			
c' _k = coesione [kPa]	0			
c _u = coesione non drenata [kPa]	0			

Foglio 37 di 75

Sabilità globale e dimensionamento fondazione		Calcolo	On hill shall be all many in a many to found a single						
			0.0						
(i/q) = attition nunci-terronic (per munit all = 1)									
Local environmental a targo muro (PR) Local environmental a targo muro (PR) Local environmental	,	,		,	,				
The control of the properties	ermanente a tergo del muro [kPa]	q _{perm1} = s	0.0	accarico permanente a tergo del muro [kPa]	a _{perm1} = sovra				
Curron Service condition permanente su ciabatata [kPa] 0.0 queries = sovarcocarioo permanente su ciabatata [kPa] Quero E sovarcocarioo conderiale su ciabatata (kPa) 0.0 quero = sovarcocarioo conderiale su ciabatata [kPa] Quero Service Service (kPa) 0.0 quero estrate sovarcocarioo conderiale a tergo muro con stansifiche) Presenza Guard-Rati (SPNo) no no Particular a dabata (kPa) Strutture a dabata (kPa) 0.0 Strutture a dabata (kPa) V _a a rangol od attrito terreno di reimprimento [] 35.0 0.1 angolo di attrito terreno di reimprimento [] S _a a rangolo di attrito Muro-Terreno di reimprimento [] 35.0 0.5 a nagolo di attrito Muro-Terreno di reimprimento [] S _a a sangolo di attrito Muro-Terreno di reimprimento [] 35.0 0.5 a nagolo di attrito Muro-Terreno di reimprimento [] S _a a sangolo di attrito Muro-Terreno di reimprimento [] 35.0 0.5 a nagolo di attrito Muro-Terreno di reimprimento [] S _a a sangolo di attrito Muro-Terreno di reimprimento [] 35.0 0.5 a nagolo di attrito Muro-Terreno di reimprimento [] S _a a sangolo di attrito Muro-Terreno di reimprimento [] 35.0 0.5 a nagolo di attrito Muro-Terreno di reimprimento [] <				• • •	1400				
The province of the control of the									
Quantity									
Presenza Guard-Rail (S/No) no Presenza Guard-Rail (S/No)									
Struture frangivento [m] 7. = peso di volume terreno [kN/m²] 7. = peso di volume terreno [kN/m²] 8. = angolo di attrito terreno di riempimento [¹] 8. = angolo di attrito terreno di riempimento [²] 8. = angolo di attrito terreno di riempimento [²] 8. = angolo di attrito terreno di riempimento [²] 9. = coesione [kPa] 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.									
Strutture a shalzo [m]	NO)			,					
k_{ij} = angolo di attrito terreno di riempimento [*] k_{ij} = angolo di attrito terreno di rempimento [*] k_{ij} = angolo di attrito terreno [*] k_{ij} = angolo di attrito terreno [*] k_{ij} = angolo di attrito terreno									
	eno [kN/m3] 1	t = peso	19.0	olume terreno [kN/m³]	t = peso di vo				
$S_1 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_2 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_3 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_4 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_4 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno di riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno de riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno de riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno de riempimento } [?]$ $S_5 = \text{angolo di attrito Muro-Terreno de signita attiva } [N r]$ $S_5 = \text{angolo di attrito Muro-Terreno } [N r]$ $S_5 = $	rreno di riempimento [°] 3	þ' _k = ango	35.0	di attrito terreno di riempimento [°]	p' _k = angolo o				
$S_{\mu} = \operatorname{angolo di attrio Muro-Terreno di riempimento ["]}$ $S_{\mu} = \operatorname{angolo di attrio Muro-Terreno di riempimento ["]}$ $S_{\mu} = \operatorname{coesione [kPa]}$ $S_{\mu} = \operatorname{coesione [kPa]}$ $S_{\mu} = \operatorname{coesione [kPa]}$ $S_{\mu} = \operatorname{coefficiente di spinta attiva}$ $S_{\mu} = \operatorname{coefficiente sismico orizzontale}$ $S_{\mu} = \operatorname{coefficiente di spinta attiva}$ $S_{\mu} = coefficiente di s$	rreno di riempimento [°] 3	þ' _d = ango	35.0	di attrito terreno di riempimento [°]	o' _d = angolo o				
$C_i = \operatorname{coesione} [kRa]$									
	()	-							
Categoria di sottosuolo $S_{(Coefficiente di suolo = S_{KS})}$ 1.25 $S_{(Coefficiente di suolo = S_{KS})}$ 1.71 (flattore di di suolo = S_{KS}) 1.71 (flattore di duzione accelerazione) 1.25 $S_{(Coefficiente di suolo = S_{KS})}$ 1.71 (flattore di duzione accelerazione) 1.25 $S_{(Coefficiente di suolo = S_{KS})}$ 1.71 (flattore di duzione accelerazione) 1.71 1.71 (flattore induzione accelerazione) 1.71 $1.$		-(1 -)							
S(coefficiente di surolo = S _A S ₂) 1,25 S(coefficiente di surolo = S _A S ₂) 1/r (fattore riduzione accelerazione) N ₁ (coefficiente sismico orizzontale) 0.094 N ₂ (coefficiente sismico orizzontale) 0.094 N ₃ (coefficiente sismico orizzontale) 0.094 N ₄ (coefficiente sismico orizzontale) 0.094 N ₄ (coefficiente sismico verticale) 0.094 N ₄ (coefficiente sismico verticale) 0.094 N ₄ (coefficiente sismico verticale) 0.097 N ₆ (coefficiente di spirita attiva sismica 0.327 N ₆ coefficiente di spirita attiva sismica 0.007 N ₆ (coefficiente sismico verticale mattiva sismica 0.007 N ₆ (coefficiente sismico verticale mattiva sismica 0.007 N ₆ (coefficiente sismico verticale N ₆ (coefficiente sismico verticale 0.007 N ₆ (coefficiente sismico verticale 0.007 N ₆ (coefficiente sismico verticale 0.007 N ₆ (coefficiente sismico verticale N ₆ (coefficiente sismico verticale 0.007 N ₆ (coefficiente sismico verticale N ₆ (fill of the print situal situal situal verticale 0.007 N ₆ (coefficiente sismico verticale N ₆ (fill of the print situal situal verticale N ₆ (fill of the print situal N ₆ (fill of the print situal verticale N ₆ (fill of the pr		J • 1			9				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	0 · 1/								
θ _{max} = rotazione addizionale muio-terreno (evento sismico) 5.618 θ _{max} = rotazione addizionale muio-terreno (evento sismico) K _{ss} = coefficiente di spinta attiva sismica 0.327 K _{ss} = coefficiente di spinta attiva sismica Spinta passiva presa in considerazione (%) 0 9 spinta passiva presa in considerazione (%) Rsultante spinta passiva (kN/m) 0.00 Rsultante spinta passiva (kN/m) Z _s (STR) = altezza di autosostegno (m) 0.00 Z _s (STR) = altezza di autosostegno (m) P _k (SED) = altezza di autosostegno (m) 0.00 Z _s (STR) = altezza di autosostegno (m) P _k (SED) = Rsultante spinta attiva (kN/m) 21.77 P _k (SED) = altezza di autosostegno (m) P _k (SED) = Rsultante spinta attiva (kN/m) 14.96 P _k (SED) = Rsultante spinta attiva (kN/m) P _k (SED) = Sultante spinta attiva (kN/m) 14.96 P _k (SED) = Rsultante spinta attiva (kN/m) P _k (SED) = Sultante verticale (kN/m) 12.49 Condizioni (kN/m) P _k (SED) = Rsultante spinta attiva (kN/m) P _k (SED) = Spinta orizzontale terreno (kN/m) 7.59 P _k (SED) = Spinta orizzontale terreno (kN/m) P _k (SED) = Spinta orizzontale terreno (kN/m) P _k (SER) = Spinta orizzontale sovaccacio (kN/m) 7.79 P _k (SED) = Spinta orizzontale sovacac				,	•				
$ \begin{array}{c} \overline{K_{ab}} = \text{coefficiente di spinta attiva sismica} \\ Spinta passiva presa in considerazione [\%] \\ Sultante spinta passiva presa in considerazione [\%] \\ Sultante spinta passiva [kW/m] \\ \hline \\ Rsultante spinta passiva [kW/m] \\ \hline \\ Z_0 (STR) = altezza di autosostegno [m] \\ Z_0 (STR) = altezza di autosostegno [m] \\ P_A (STR) = Rsultante spinta attiva [kW/m] \\ P_A (STR) = Rsultante spinta attiva [kW/m] \\ P_A (STR) = Rsultante spinta attiva [kW/m] \\ P_A (STR) = Componente verticale [kW/m] \\ P_A (STR) = Spinta orizzontale terreno [kW/m] \\ P_A (STR) = Spinta orizzontale terreno [kW/m] \\ P_A (STR) = Spinta orizzontale terreno [kW/m] \\ P_A (STR) = Spinta orizzontale spinta sp$				te sismico verticale)	(coefficient				
Spinta passiva presa in considerazione [%] O Spinta passiva presa in considerazione [%] Risultante spinta passiva [kN/m] O.00 Z ₀ (GEO) = altezza di autosostegno [m] O.00 Z ₀ (GEO) = altezza di autosostegno [m] O.00 Z ₀ (GEO) = Risultante spinta attiva [kN/m] O.00 Z ₀ (GEO) = Risultante spinta attiva [kN/m] O.00 Z ₀ (GEO) = Risultante spinta attiva [kN/m] O.00 Z ₀ (GEO) = Risultante spinta attiva [kN/m] O.00 Z ₀ (GEO) = Risultante spinta attiva [kN/m] O.00 Z ₀ (GEO) = Risultante spinta attiva [kN/m] O.00 Z ₀ (GEO) = Componente verticale [kN/m] O.00 Z ₀ (GEO) = Componente verticale [kN/m] O.00 Z ₀ (GEO) = Spinta orizzontale terreno [kN/m] O.00 Z ₀ (GEO) = Spinta orizzontale terreno [kN/m] O.00 Z ₀ (GEO) = Spinta orizzontale sovraccarico [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica sovrac. [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta attiva sismica terreno [kN/m] O.00 Z ₀ (GEO) = Spinta orizz terreno [kN/m] O.00 Z ₀ (GEO) = Spinta orizz terre			5.618	ne addizionale muro-terreno (evento sismico)	_{max} = rotazio				
Risultante spinta passiva [kN/m]	nta attiva sismica 0.	$K_{as} = coe$	0.327	ente di spinta attiva sismica	Cas = coefficie				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c} z_0 \text{ (STR)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ Alteza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ Alteza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ Alteza di autosostegno [m]} \\ z_0 \text{ (GEO)} = \text{ Spinta orizzontale terreno [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta orizzontale terreno [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta attiva sismica erreno [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta attiva sismica sovrac. [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta attiva sismica sovrac. [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta attiva sismica sovrac. [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta attiva sismica sovrac. [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta attiva sismica sovrac. [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta attiva sismica sovrac. [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta attiva sismica sovrac. [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta attiva sismica sovrac. [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta attiva sismica sovrac. [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta attiva sismica sovrac. [kN/m]} \\ z_0 \text{ (GEO)} = \text{ Spinta attiva sismica sovrac. [kN/m]} \\ $		Risultante	0.00		₹sultante spin				
$\frac{Z_0 \text{ (GEO)} = \text{ altezza di autosostegno [m]}}{P_A \text{ (SIR)} = \text{ Rsultante spinta attiva [kN/m]}} = 0.00$ $P_A \text{ (SIR)} = \text{ Rsultante spinta attiva [kN/m]} = 21.77$ $P_A \text{ (GEO)} = \text{ Rsultante spinta attiva [kN/m]} = 14.96$ $P_A \text{ (SIR)} = \text{ Componente verticale [kN/m]} = 14.96$ $P_{AV} \text{ (SIR)} = \text{ Componente verticale [kN/m]} = 12.49$ $P_{AV} \text{ (SIR)} = \text{ Componente verticale [kN/m]} = 12.49$ $P_{AV} \text{ (SIR)} = \text{ Componente verticale [kN/m]} = 8.58$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale terreno [kN/m]} = 8.58$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale terreno [kN/m]} = 5.42$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale terreno [kN/m]} = 5.42$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale terreno [kN/m]} = 5.42$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale terreno [kN/m]} = 5.42$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale terreno [kN/m]} = 7.79$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale terreno [kN/m]} = 7.79$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale terreno [kN/m]} = 7.79$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale terreno [kN/m]} = 7.79$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale terreno [kN/m]} = 7.79$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale sovraccarico [kN/m]} = 7.79$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale sovraccarico [kN/m]} = 7.79$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale sovraccarico [kN/m]} = 7.79$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale sovraccarico [kN/m]} = 7.79$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale sovraccarico [kN/m]} = 7.79$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale sovraccarico [kN/m]} = 7.79$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale sovraccarico [kN/m]} = 7.79$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale sovraccarico [kN/m]} = 9.06$ $P_{AV} \text{ (SIR)} = \text{ Spinta orizontale sovraccarico [kN/m]} = 9.06$ $P_{AV} \text{ (SIR)} = \text{ Spinta attiva sismica sovrac. [kN/m]} = 9.06$ $P_{AV} \text{ (SIR)} = \text{ Spinta attiva sismica sovrac. [kN/m]} = 9.06$ $P_{AV} \text{ (SIR)} = \text{ Spinta attiva sismica sovrac. [kN/m]} = 9.06$ $P_{AV} \text{ (SIR)} = \text{ Spinta attiva sismica sovrac. [kN/m]} = 9.06$ $P_{AV} (SIR$			0.00						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0 1 1			0 1 1					
$\begin{array}{llllllllllllllllllllllllllllllllllll$				* ' ' '					
Condizioni statiche $P_{AV}(SIR)$ e Componente verticale [kN/m] $P_{AV}(SIR)$ e Spinta orizzontale terreno [kN/m] $P_{AV}(SIR)$ e Spinta orizzontale sovraccarico [kN/m] $P_{AV}(SIR)$ e Spinta orizzontale terreno [kN/m] $P_{AV}(SIR)$ e Spinta orizzontale sovraccarico [kN/m] $P_{AV}(SIR)$ e Spinta orizzontale terreno [kN									
Condizioni statiche $P_{AV}(GEO) = Componente verticale [kN/m]$ 8.58 condizioni statiche $P_{AV}(GEO) = Componente verticale [kN/m]$ 8.58 is statiche $P_{AV}(GEO) = Componente verticale [kN/m]$ 5.59 is statiche $P_{AV}(GEO) = Spinta orizzontale terreno [kN/m]$ 7.59 $P_{AH1}(GEO) = Spinta orizzontale terreno [kN/m]$ 5.42 $P_{AH1}(GEO) = Spinta orizzontale terreno [kN/m]$ 5.42 $P_{AH1}(GEO) = Spinta orizzontale terreno [kN/m]$ 7.79 $P_{AH2}(GEO) = Spinta orizzontale sovraccarico [kN/m]$ 7.80 $P_{AH3}(GEO) = Spinta or$			14.96	7					
statiche $P_{AV}(SLE) = Componente verticale [kN/m]$ 8.58 i statiche $P_{AV}(SLE) = Componente verticale [kN/m]$ 7.59 $P_{AH1}(SIR) = Spinta orizzontale terreno [kN/m]$ 7.59 $P_{AH1}(SIR) = Spinta orizzontale terreno [kN/m]$ 5.42 $P_{AH1}(SLE) = Spinta orizzontale terreno [kN/m]$ 5.42 $P_{AH1}(SLE) = Spinta orizzontale terreno [kN/m]$ 11.68 $P_{AH2}(SIR) = Spinta orizzontale sovraccarico [kN/m]$ 7.79 $P_{AH2}(SLE) = Spinta orizzontale sovraccarico [kN/m]$ 7.10 $P_{AH3}(SLE) = Spinta orizzontale sovraccarico [kN/m]$ 7.11 $P_{AH3}(SLE) = Spinta orizzontale sovraccarico [kN/m]$ 7.12 $P_{AH3}(SLE) = Spinta orizzontale sovraccarico [kN/m]$ 7.13 $P_{AH3}(SLE) = Spinta orizzontale sovraccarico [kN/m]$ 7.14 $P_{AH3}(SLE) = Spinta orizzontale sovraccarico [kN/m]$ 7.15 $P_{AH3}(SLE) = Spinta orizzontale sovraccarico [kN/m]$ 7.18 $P_{AH3}(SLE) = Spinta orizzontale sovraccarico [kN/m]$ 7.18 $P_{AH3}(SLE) = Spinta orizzontale sovraccarico [kN/m]$ 7.18 $P_{AH3}(SLE) = Spinta orizzontale sovraccarico [kN/m]$	omponente verticale [kN/m] 8		12.49	P _{AV} (STR)= Componente verticale [kN/m]					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Componente verticale [kN/m] 5	Condizior	8.58	P _{AV} (GEO)= Componente verticale [kN/m]	Condizioni				
$\begin{array}{c} P_{AH1} (\text{SEO}) = \text{Spinta orizzontale terreno [kN/m]} \\ P_{AH1} (\text{SEF}) = \text{Spinta orizzontale terreno [kN/m]} \\ P_{AH2} (\text{SIR}) = \text{Spinta orizzontale terreno [kN/m]} \\ P_{AH2} (\text{SIR}) = \text{Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} (\text{SED}) = \text{Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} (\text{SED}) = \text{Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} (\text{SEF}) = \text{Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH3} (\text{SEF}) = Spinta orizzontal$		i statiche		P _{AV} (SLE) = Componente verticale [kN/m]	statiche				
$\begin{array}{c} P_{AH1} \text{ (SLE)} = \text{ Spinta orizzontale terreno [kN/m]} \\ P_{AH2} \text{ (SIR)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIR)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIR)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = \text{ Spinta orizzontale sovraccarico [kN/m]} \\ P_{AH2} \text{ (SIE)} = Spinta$									
$\begin{array}{c} P_{AH2}\left(\text{SIR}\right) = \text{Spinta orizzontale sovraccarico } \left[\text{kN/m}\right] & 11.68 \\ P_{AH2}\left(\text{GEO}\right) = \text{Spinta orizzontale sovraccarico } \left[\text{kN/m}\right] & 7.79 \\ P_{AH2}\left(\text{GEO}\right) = \text{Spinta orizzontale sovraccarico } \left[\text{kN/m}\right] & 7.79 \\ P_{AH2}\left(\text{GEO}\right) = \text{Spinta orizzontale sovraccarico } \left(\text{kN/m}\right] & 7.79 \\ P_{AH2}\left(\text{GEO}\right) = \text{Spinta orizzontale sovraccarico } \left(\text{kN/m}\right] & 7.79 \\ P_{AH2}\left(\text{GEO}\right) = \text{Spinta orizzontale sovraccarico } \left(\text{kN/m}\right] & 7.79 \\ P_{AH2}\left(\text{GEO}\right) = \text{Spinta orizzontale sovraccarico } \left(\text{kN/m}\right] & 7.79 \\ P_{AH2}\left(\text{GEO}\right) = \text{Spinta orizzontale sovraccarico } \left(\text{kN/m}\right] & 7.79 \\ P_{AH2}\left(\text{GEO}\right) = \text{Spinta orizzontale sovraccarico } \left(\text{kN/m}\right] & 7.79 \\ P_{AH2}\left(\text{GEO}\right) = \text{Spinta orizzontale sovraccarico } \left(\text{kN/m}\right] & 7.99 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica terreno } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica terreno } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{GEO}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & 9.06 \\ P_{AH3}\left(\text{SIR}\right) = \text{Spinta attiva sizmica sovrac. } \left(\text{kN/m}\right) & $	Spinta orizzontale terreno [kN/m] 3			P _{AH1} (GEO) = Spinta orizzontale terreno [kN/m]					
$\begin{array}{c} P_{AH2}\left(\text{GEO}\right) = \text{Spinta orizzontale sovraccarico}\left[\text{kN/m}\right] & 7.79 \\ P_{AH2}\left(\text{SLE}\right) = \text{Spinta orizzontale sovraccarico}\left[\text{kN/m}\right] & 7.79 \\ P_{AH3}\left(\text{SLE}\right) = \text{Spinta orizzontale sovraccarico}\left[\text{kN/m}\right] & 7.00 \\ P_{AH3}\left(SLE$									
$\begin{array}{c} P_{AH2} (\text{SLE}) = \text{Spinta orizzontale sovraccarico [kN/m]} & 7.79 \\ P_{AH2} (\text{SLE}) = \text{Spinta orizzontale sovraccarico [kN/m]} \\ Z_{0ss} (\text{STR}) = \text{altezza di autosostegno [m]} & 0.00 \\ Z_{0ss} (\text{GEO}) = \text{altezza di autosostegno [m]} & 0.00 \\ P_{Asss} (\text{STR}) = \text{Spinta attiva sismica terreno [kN/m]} & 9.06 \\ P_{Asss} (\text{STR}) = \text{Spinta attiva sismica terreno [kN/m]} & 9.06 \\ P_{Asss} (\text{STR}) = \text{Spinta attiva sismica terreno [kN/m]} & 9.06 \\ P_{Asss} (\text{STR}) = \text{Spinta attiva sismica terreno [kN/m]} & 5.46 \\ P_{Asss} (\text{GEO}) = \text{Spinta attiva sismica sovrac. [kN/m]} & 5.46 \\ P_{Asss} (\text{GEO}) = \text{Spinta attiva sismica sovrac. [kN/m]} & 5.46 \\ P_{Asss} (\text{GEO}) = \text{Spinta attiva sismica sovrac. [kN/m]} & 7.18 \\ P_{AH1(N\phi=0)} (\text{STR}) = \text{Spinta orizz. terreno [kN/m]} & 7.18 \\ P_{AH2(N\phi=0)} (\text{STR}) = \text{Spinta orizz. terreno [kN/m]} & 7.18 \\ P_{AH2(N\phi=0)} (\text{STR}) = \text{Spinta orizz. terreno [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = \text{Spinta orizz. sovraccarico [kN/m]} & 4.53 \\ P_{AH2(N\phi=0)} (\text{GEO}) = Spinta orizz. s$									
$ \begin{array}{c} Z_{0ss}(STR) = \ altezza \ di \ autosostegno \ [m] \\ Z_{0ss}(GEO) = \ altezza$									
$ \begin{array}{c} Z_{038}\left(\text{GEO} \right) = \text{attezza di autosostegno}\left[\text{m} \right] & 0.00 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta attiva sismica terreno}\left[\text{kN/m} \right] & 9.06 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta attiva sismica terreno}\left[\text{kN/m} \right] & 9.06 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta attiva sismica sovrac.}\left[\text{kN/m} \right] & 5.46 \\ P_{Au36}\left(\text{GEO} \right) = \text{Spinta attiva sismica sovrac.}\left[\text{kN/m} \right] & 5.46 \\ P_{Au36}\left(\text{GEO} \right) = \text{Spinta attiva sismica sovrac.}\left[\text{kN/m} \right] & 5.46 \\ P_{Au36}\left(\text{GEO} \right) = \text{Spinta attiva sismica sovrac.}\left[\text{kN/m} \right] & 7.18 \\ P_{Au16(\delta + 0)}\left(\text{STR} \right) = \text{Spinta orizz. terreno}\left[\text{kN/m} \right] & 7.18 \\ P_{Au16(\delta + 0)}\left(\text{STR} \right) = \text{Spinta orizz. terreno}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{SEO} \right) = \text{Spinta orizz. terreno}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{GEO} \right) = \text{Spinta attiva sismica sovrac.}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{GEO} \right) = \text{Spinta attiva sismica sovrac.}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta orizz. terreno}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta attiva sismica sovrac.}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta attiva sismica sovrac.}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta attiva sismica sovrac.}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta attiva sismica sovrac.}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta attiva sismica sovrac.}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta attiva sismica sovrac.}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta attiva sismica sovrac.}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta orizz. terreno}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta orizz. sovraccarico}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta orizz. sovraccarico}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta orizz. sovraccarico}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta orizz. sovraccarico}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta orizz. sovraccarico}\left[\text{kN/m} \right] & 7.18 \\ P_{Au36}\left(\text{STR} \right) = \text{Spinta orizz. sovraccarico}\left[kN/m$									
$\begin{array}{c} P_{Atss}\left(SIR\right) = \text{ Spinta attiva sismica terreno } \left[kN/m\right] & 9.06 \\ P_{Atss}\left(SEO\right) = \text{ Spinta attiva sismica terreno } \left[kN/m\right] & 9.06 \\ P_{Atss}\left(SEO\right) = \text{ Spinta attiva sismica terreno } \left[kN/m\right] & 9.06 \\ P_{Atss}\left(SIR\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 5.46 \\ P_{Atss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 5.46 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 5.46 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 7.18 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 7.18 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 7.18 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 4.53 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica sovrac. } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica terreno } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica terreno } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica terreno } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica terreno } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica terreno } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica terreno } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica terreno } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica terreno } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica terreno } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = \text{ Spinta attiva sismica terreno } \left[kN/m\right] & 1.88 \\ P_{Attss}\left(SEO\right) = Spinta$									
$\begin{array}{c} P_{Atss.}(GEO) = \text{ Spinta attiva sismica terreno } [kN/m] & 9.06 \\ P_{Agss.}(STR) = \text{ Spinta attiva sismica sovrac. } [kN/m] & 5.46 \\ P_{Agss.}(GEO) = \text{ Spinta attiva sismica sovrac. } [kN/m] & 5.46 \\ P_{Agss.}(GEO) = \text{ Spinta attiva sismica sovrac. } [kN/m] & 5.46 \\ P_{AHIG/4=0}) (STR) = \text{ Spinta orizz. terreno } [kN/m] & 7.18 \\ P_{AHIG/4=0}) (GEO) = \text{ Spinta orizz. terreno } [kN/m] & 7.18 \\ P_{AHIG/4=0}) (STR) = \text{ Spinta orizz. terreno } [kN/m] & 7.18 \\ P_{AHIG/4=0}) (STR) = \text{ Spinta orizz. terreno } [kN/m] & 4.53 \\ P_{AHIG/4=0}) (GEO) = \text{ Spinta orizz. sovraccarico } [kN/m] & 4.53 \\ P_{AHISS}(STR) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [kN/m] & 1.88 \\ P_{AHISS}(GEO) = \text{ Componente dinamica terreno } [$									
$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Condizion i sismiche $ \begin{cases} P_{Aglss}\left(\text{GEO}\right) = \text{ Spinta attiva sismica sovrac. } \left[\text{kN/m}\right] & 5.46 \\ P_{AH1(\delta/\phi=0)}\left(\text{SIR}\right) = \text{ Spinta orizz. terreno } \left[\text{kN/m}\right] & 7.18 \\ P_{AH1(\delta/\phi=0)}\left(\text{GEO}\right) = \text{ Spinta orizz. terreno } \left[\text{kN/m}\right] & 7.18 \\ P_{AH1(\delta/\phi=0)}\left(\text{SIR}\right) = \text{ Spinta orizz. terreno } \left[\text{kN/m}\right] & 4.53 \\ P_{AH2(\delta/\phi=0)}\left(\text{GEO}\right) = \text{ Spinta orizz. sovraccarico } \left[\text{kN/m}\right] & 4.53 \\ P_{AH1ss}\left(\text{SIR}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = \text{ Componente dinamica terreno } \left[\text{kN/m}\right] & 1.88 \\ P_{AH1ss}\left(\text{GEO}\right) = Componente dinam$									
Condizioni sismiche $P_{AH1(ii/\psi=0)}^{AH1(ii/\psi=0)}(SITR) = Spinta orizz terreno [kN/m]$ 7.18 Condizioni participation orizz terreno [kN/m] 7.18 Condizioni par									
sismiche $P_{AH1(S/4=0)}$ (GEO) = Spinta orizz terreno [kN/m] 7.18 i sismiche $P_{AH1(S/4=0)}$ (GEO) = Spinta orizz terreno [kN/m] 4.53 $P_{AH2(S/4=0)}$ (GEO) = Spinta orizz sovraccarico [kN/m] 4.53 ΔP_{AH3is} (STR)= Componente dinamica terreno [kN/m] 1.88 ΔP_{AH3is} (GEO)= Componente dinamica terreno [kN/m] 1.88 ΔP_{AH3is} (GEO)= Componente dinamica terreno [kN/m] 1.88	R)= Spinta orizz. terreno [kN/m] 4				Condizioni				
$\begin{array}{lll} P_{AH2(S/\psi=0)} \text{ (STR)} = \text{ Spinta orizz sovraccarico [kN/m]} & 4.53 \\ P_{AH2(S/\psi=0)} \text{ (GEO)} = \text{ Spinta orizz sovraccarico [kN/m]} & 4.53 \\ \Delta P_{AH3is} \text{ (STR)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} \text{ (GEO)} = \text{ Componente dinamica terreno [kN/m]} & 1.88 \\ \Delta P_{AH3is} (GEO$									
ΔP_{AHsis} (STR)= Componente dinamica terreno [kN/m] 1.88 ΔP_{AHsis} (GEO)= Componente dinamica terreno [kN/m] 1.88 ΔP_{AHsis} (GEO)= Componente dinamica terreno [kN/m]			4.53	$P_{AH2(\delta/\phi=0)}$ (STR) = Spinta orizz. sovraccarico [kN/m]					
ΔP_{AHsis} (GEO)= Componente dinamica terreno [kN/m] 1.88 ΔP_{AHsis} (GEO)= Componente dinamica terreno [kN/m]									
ΔP _{AHqsis} (STR) = Componente dinamica sovrac. [kN/m] 0.93 ΔP _{AHqsis} (STR) = Componente dinamica sovrac. [kN/m]									
(D. (070) 0				74 iquo (
ΔP_{AHgss} (GEO) = Componente dinamica sovrac. [kN/m] 0.93 ΔP_{AHgss} (GEO) = Componente dinamica sovrac. [kN/m] Azioni dovute all'turto Azioni dovute all'turto	,		0.93						
Azioni dovute all'urto Condizioni T ₁ = Reazione orizzontale [kN/m] O.000 Condizion T ₁ = Reazione orizzontale [kN/m]		Condizion	0.000		Condizioni				
statiche M _{III} = Nomento flettente [kNm/m] statiche M _{III} = Nomento flettente [kNm/m] 0.00 i statiche M _{III} = Momento flettente [kNm/m]									
Azioni dovute alle strutture frangivento Azioni dovute alle strutture frangivento			2.50						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Condizior	0.00						
statiche $M_f = Momento flettente [kNm/m]$ 0.00 i statiche $M_f = Momento flettente [kNm/m]$		i statiche	0.00		statiche				
Azioni dovute alle strutture a sbalzo Azioni dovute alle strutture a sbalzo									
Condizioni $N_{ab} = Carico assiale [kN/m]$ 0.00 Condizion $N_{ab} = Carico assiale [kN/m]$									
statiche M _{sb} = Momento flettente [kNm/m] 0.00 i statiche M _{sb} = Momento flettente [kNm/m]		ı statiche			statiche				
Condizioni $N_{sb} = \text{Carico assiale [kN/m]}$ 0.00 Condizioni $N_{sb} = \text{Carico assiale [kN/m]}$ Condizioni $N_{sb} = \text{Carico assiale [kN/m]}$		Condizion			Condizioni				
symiche M _{sb} = Momento flettente [kNm/m] 0.00 i symiche M _{sb} = Momento flettente [kNm/m]									
$T_{sb} = Forza orizzontale sismica [kN/m]$ Numero di corsie [-] 0.00 $T_{sb} = Forza orizzontale sismica [kN/m]$ Numero di corsie [m]		Numoro d			Numero di co				
Numero di corsie [-] $W_{sh} = \text{Peso proprio [kN/m]}$ 0.0 Numero di corsie [m] $W_{sh} = \text{Peso proprio [kN/m]}$	(m)								
				agente sulla struttura [kN/m]					

Foglio 38 di 75

Forze verticali statiche [kN/m]					Analisi d	lei carichi e v	erifiche globali (Gl	50)		
Mag. 0.00 Dag. 0.00 Dag. 0.01 Dag. 0.75 Partinity 0.35 Force ordinated standards Market Market Market Market Dag. 0.20 Dag. 0.55 Fg. 0.00 Dag. 0.20 Dag. 0.55 Fg. 0.00 Dag. 0.02 Dag. 0.05 Dag. 0.00 Dag. 0.02 Dag. 0.05 Dag. 0.00 Da		Forze v	erticali s						atiche [kN/m]	
Mag. 0.00 Dags 0.40 Dags 0.75 Pacces 7.79 Dags 0.84	W _{p1}	15.00	b _{p1o}	0.75	b _{p1B}	0.00	P _{AH1}	5.42	b _{AH1}	0.56
Mag. 0.00 Doc 0.40 0.60 0.35 Force crizzontal stanche (PMV m)	W _{p2}	0.00	b _{p2o}	0.00	b _{p2B}	0.75	P _{AH2(q1)}	7.79	b _{AH2}	0.84
Water 0.50 Dage 0.20 Dent 0.55 Fe2 0.00 Dage 0.32		0.00		0.40	b _{p3B}	0.35	Forz	ze orizzontali sis	miche [kN/m]	
W _c	W _{p4}	12.70	b _{p4o}	0.20	b _{p4B}	0.55		1.41	b _{p1}	0.20
		0.50	b _{p5o}	0.20	b _{p5B}	0.55	F_{p2}	0.00	b _{p2}	0.82
Wagnetis 0.00 0.00 0.95 0.			b _{t1o}	1.13	b _{t1B}	-0.38		0.00	b _{p3}	0.82
	W _{t2}	26.54	b _{t20}	0.95	b _{t2B}		F_{p4}	1.19	b _{p4}	1.04
Part	W _{t3}	0.00			b _{t3B}				b _{p5}	1.70
Part	W _{q2statico}		b _{q2stato}		b _{q2statB}				b _{t1}	
Fig. 0.70 0.50 0.75 0.76 0.75 0.76	P _{AV}					-0.75				
Figs			erticali si		N/m]					
Fig. 0.00 D ₂₀₀ 0.20 D ₂₀₀ 0.25 D ₂₀₀ 0.25 D ₂₀₀ 0.25 D ₂₀₀ 0.26 D ₂₀₀ D ₂₀₀ 0.26 D ₂₀₀ D ₂₀							P _{AH1(δ= 0)}			
Fig. 0.60 D _{bas} 0.20 D _{bas} 0.55 AP _{Alleration} 0.93 D _{bas} 0.94 0.95							P _{AH2(δ= 0)(q1)}			
Fig. 0.02 Disco 0.20 Disco 0.20 Disco 0.20 Disco Force vertical or contraction statistic (EU) (IN/m) 1.50 1.50 Fig. 0.00 Disco 0.04 Disco 0.020 Part (EU) 5.42 District 0.084 Disco 0.00 Disco 0.0										
Fat 0.00 0							ΔP _{AHqsis(q1)}			
Fig. 1.24 bgs 0.95 bgs 0.20 Pet (EQU) 5.42 bgs 0.56									· · · · · · · · ·	
Fig.										
Werlifica in carbolamento Werlifica al ribalamento Werlifica al ribalamento Werlifica al ribalamento Werlifica al ribalamento Salulizzante (kNm/m) S.1.97 Momento stabilizzante (kNm/m) 12.51										
Momento stabilizzante (RNm/m)	F _{vt3}					0.35				0.84
Momento stabilizzante (kNm/m)							ve			
Momento ribaltante [kNm/m]	Momento stabil			Sanai (ICI)		51.97	Momento stabilizzante		nancilo	37.27
Resultante carichi orizzontali (RV/m)								<u> </u>		
Resiliante carichi orizzontali (RV/m)	_									2.98 > 1.5
Resultante carichi verticali [RV/m] 52.18 38.0 Angolo d'attrito terreno [**] 38.0 Coefficiente d'attrito 1.00 1.00		Ver	rifica a s	corriment	0	,		Verifica a sco	rrimento	
Angolo d'attrito terreno [*] 38.0 Angolo d'attrito terreno [*] 38.0 Coefficiente d'attrito 1.00 Carico llimite										
1.00 Coefficiente d'attirito Sollecitazione in baricentro fondazione Rsultante delle azioni normali al piano [kN] 63.32 Rsultante delle azioni normali al piano [kN] 19.65 Coefficienti di capacità portante Rsultante delle azioni parallele al piano [kN] 19.57.31 Rsultante delle azioni parallele al piano [kN] 19.65 Coefficienti di capacità portante Sollecitazione in baricentro fondazione Rsultante delle azioni normali al piano [kN] 19.65 Coefficienti di capacità portante Sollecitazione in baricentro fondazione Rsultante delle azioni normali al piano [kN] 19.65 Coefficienti di capacità portante										
Sultante delle azion i normali al piano [kN] 63.32 Rsultante delle azion i parallele al piano [kN] 13.21 Rsultante delle azion i parallele al piano [kN] 19.55 Rsultante delle azion paralle) ["]		
Sollectazione in baricentro fondazione Sollectazione in ormali al piano [NI] S7.31 Rsultante delle azioni parallele al piano [NI] 19.65 Solutione fondazione Solutione										
Rsultante delle azioni normali al piano [kN] 63.32 Rsultante delle azioni normali al piano [kN] 57.31								taziono in baria	ontro fondaziono	2.074 > 1.3
Rsultante delle azioni parallele al piano [kN] 13.21 Rsultante delle azioni parallele al piano [kN] 19.65										57.31
Momento baricentrico [kNm/m] 5.04 Momento baricentrico [kNm/m] 15.81								•		
B/6 [m]									- 1	
La sezione non è parzializzata La sezione è parzializzata Distribuzione tensioni con smax a valle Oistribuzione canax a valle Oistribuzione tensioni con smax a valle Oistribuzione canax a valle Oistribuzione tensioni con smax a valle Oistribuzione tensioni con smax a valle Oistribuzione canax a valle Oistribuzione tensioni con smax a valle Oistribuzione canax a valle Oistribuzione tensioni con smax a valle Oistribuzione canax a valle Oistribuzione tensioni con smax a valle Oistribuzione canax a valle Oistribuzione tensioni con smax a valle Oistribuzione tensioni con smax a valle Oistribuzione canax a valle Oistribuzione tensioni con smax a valle Oistribuzione canax a valle Oistribuzione canacia val terreno) [kPa] Oistribuzione canacia val terreno (lifta) Oistribuzione canacia val terreno (lifta) Oistribuzione canacia val terreno di fondazione [m] Oistribuzione canazione canax a valle Oistribuzione ca	Eccentricità [m]					0.08	Eccentricità [m]			0.28
Distribuzione tensioni con smax a valle						0.25				0.25
G _{max} (smax scaricata sul terreno) [kPa] 55.64 σ _{max} (smax scaricata sul terreno) [kPa] 80.59 σ _{min} (smin scaricata sul terreno) [kPa] 28.79 σ _{min} (smin scaricata sul terreno) [kPa] 0.00 Lunghezza tratto compresso [m] 1.50 Lunghezza tratto compresso [m] 1.42 Verifica al carico limite (a charica partico limite Verifica al carico limite No.00 La condicia portante				.0.=						
σ _{min} (smin scaricata sul terreno) [kPa] 28.79 σ _{min} (smin scaricata sul terreno) [kPa] 0.00 Lunghezza tratto compresso [m] 1.50 Lunghezza tratto compresso [m] 1.42 Verifica al carico limite Unidadoria prina carica limite Verifica al carico limite Verifica al carico limite						FF.C4			9	00.50
Lunghezza tratto compresso [m] 1.50 Lunghezza tratto compresso [m] 1.42 Verifica al carico limite Verifica al carico limite γ _e = Peso di volume equivalente [kN/m³] 9.00 γ _e = Peso di volume equivalente [kN/m³] 9.00 Φ terreno di fondazione [¹] 38.00 Φ terreno di fondazione [τ] 38.00 C terreno di fondazione [kPa] 0.00 C' terreno di fondazione [kPa] 0.00 D Profondità piano fondazione [m] 1.40 D Profondità piano fondazione [m] 1.40 Inclinazione piano campagna ω [τ] 0.00 Inclinazione piano campagna ω [τ] 0.00 B _{ordazione} [m] 1.50 B _{tordazione} [m] 1.50 BECENTICITÀ [m] 0.08 BECENTICITÀ [m] 0.28 B = B-2e [m] 1.34 B = B-2e [m] 0.95 B'6 [m] 0.25 B'6 [m] 0.25 H _w = Altezza del cuneo bac [m] 1.37 H _w = Altezza del cuneo bac [m] 0.97 N _e 661.35 N _q 48.93 d _q 1.19 d _e 1.19 d _e 1.19 d _e 1.19 d _e 1.10 V _γ 1.00 V										
Verifica al carico limite				4]						
γ _e = Peso di volume equivalente [kN/m³] 9.00 γ _e = Peso di volume equivalente [kN/m³] 9.00 φ terreno di fondazione [r] 38.00 φ terreno di fondazione [r] 38.00 c' terreno di fondazione [kPa] 0.00 c' terreno di fondazione [kPa] 0.00 D Profondità piano fondazione [m] 1.40 D Profondità piano fondazione [m] 1.40 Inclinazione piano campagna ω [r] 0.00 Inclinazione piano campagna ω [r] 0.00 Bordazione [m] 1.50 Bordazione [m] 1.50 Eccentricità [m] 0.08 Eccentricità [m] 0.28 Es B-2e [m] 1.34 B= B-2e [m] 0.95 B'6 [m] 0.25 B'6 [m] 0.25 H _w = Altezza del cuneo bac [m] 1.37 H _w = Altezza del cuneo bac [m] N _γ 78.02 N _γ 78.02 N _γ 61.35 N _γ N _γ 0.28 N _q 48.93 d _q 1.19 0.50 N _γ 0.62 N _γ N _γ 0.28 N _γ N _γ 0.28 N _γ 0.28 N _γ	Dangriozza tratte			arico limi	te	1.00	Langhozza tratto comp	1.12		
φ terreno di fondazione [°] 38.00 φ terreno di fondazione [°] 38.00 c' terreno di fondazione [RPa] 0.00 c' terreno di fondazione [RPa] 0.00 D Profondità piano fondazione [m] 1.40 D Profondità piano fondazione [m] 1.40 Inclinazione piano campagna ω [°] 0.00 Inclinazione piano campagna ω [°] 0.00 B _{condazione} [m] 1.50 B _{condazione} [m] 1.50 Eccentricità [m] 0.08 Eccentricità [m] 0.28 ES-B-2e [m] 0.25 B° [m] 0.95 B° [m] 0.25 B° [m] 0.25 H _w = Altezza del cuneo bac [m] 1.37 H _w = Altezza del cuneo bac [m] 0.97 N _c 61.35 N _c 61.35 N _q 48.93 d _q 1.19 i _q 0.62 N _q 48.93 d _q 1.10 N _q 48.93 d _q 1.00 N _q 1.00 b _q 1.00 N _q 1.00 b _q 1.00 N _q 1.00	γ _a = Peso di vol			_		9.00	γ _e = Peso di volume e	9.00		
C' terreno di fondazione [kPa] 0.00 C' terreno di fondazione [kPa] 0.00 D Profondità piano fondazione [m] 1.40 D Profondità piano fondazione [m] 1.40 Inclinazione piano campagna ω [¹] 0.00 Inclinazione piano campagna ω [¹] 0.00 Bondazione [m] 1.50 Bondazione [m] 1.50 Eccentricità [m] 0.08 Eccentricità [m] 0.28 B= B-2e [m] 0.25 B'6 [m] 0.25 B'6 [m] 0.25 B'6 [m] 0.25 H _w = Altezza del cuneo bac [m] 1.37 H _w = Altezza del cuneo bac [m] 0.97 N _c 61.35 N _q 48.93 N _q 48.93 d _q 1.19 N _q 48.93 N _q 48.93 d _q 1.19 N _q 0.62 N _q 0.28 b _γ 1.00 N _q 0.28 N _q 0.28 i _q 0.62 N _q 0.28 N _q N _q 0.28 b _γ 1.00 N _q 1.00 N _q			<u> </u>			38.00	1.0	38.00		
Inclinazione piano campagna ω [*] 0.00 Inclinazione piano campagna ω [*] 0.00	c' terreno di fon	dazione [kP	a]			0.00	c' terreno di fondazione		0.00	
Bondazione [m]										
Coefficienti di capacità portante Coefficienti di capacità por		no campag	na ω [°]							
B=B-2e [m]										
B/6 [m]										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \text{Coefficienti di capacità portante } \begin{array}{ c c c c }\hline N_{\gamma} & 78.02 \\ N_{c} & 61.35 \\ \hline N_{q} & 48.93 \\ d_{q} & 1.19 \\ d_{c} & 1.19 \\ \hline i_{\gamma} & 0.50 \\ \hline i_{q} & 0.63 \\ \hline i_{c} & 0.62 \\ \hline b_{\gamma} & 1.00 \\ \hline b_{q} & 1.00 \\ \hline b_{\gamma} & 1.00 \\ \hline v_{\gamma} & 1.00 \\ \hline carico limite [kPa] & 691.54 & Carico limite [kPa] & 420.62 \\ \hline Carico sul piano di posa [kPa] & 60.44 \\ \hline $		el cuneo <i>ba</i>	c [m]					o bac [m]		
$ \text{Coefficienti di capacità portante } \begin{array}{c ccccccccccccccccccccccccccccccccccc$					N.,		17		N.,	
$ \text{Coefficienti di capacità portante } \begin{cases} $					_ ′					
$ \text{Coefficienti di capacità portante } \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \text{Coefficienti di capacità portante } \begin{cases} $										
$ \text{Coefficienti di capacità portante } \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					i,				i,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	4: -1:			ia		0	-143	ia	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Coefficie	nu ai capac	na porta	rite	i _c		Coefficienti di capa	icita portante	i _c	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					b _γ				b _γ	1.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1.00				1.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1.00				1.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1.00				1.00
γ _c 1.00 γ _c 1.00 Carico limite [kPa] 691.54 Carico limite [kPa] 420.62 Carico sul piano di posa [kPa] 47.22 Carico sul piano di posa [kPa] 60.44						1.00				1.00
Carico limite [kPa] 691.54 Carico limite [kPa] 420.62 Carico sul piano di posa [kPa] 47.22 Carico sul piano di posa [kPa] 60.44						1.00				
								n P 1		
$ \Gamma_{\rm S} $		o di posa [k	Pa]					sa [kPa]		
	r _s					14.64 > 2.0	S			6.96 > 2.0

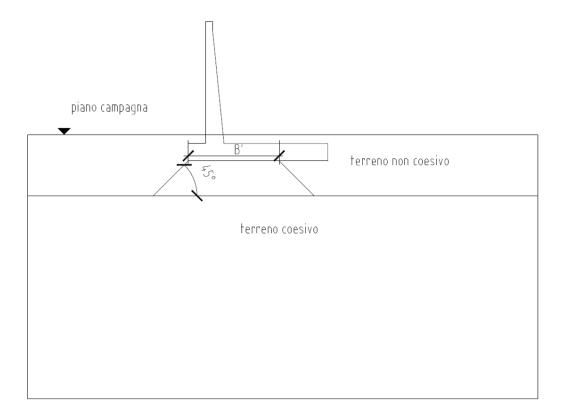
Foglio 39 di 75

W _{p2}	For				onico e sun	la suola di f	OI IGGZIOI I	•		
W_{n2}	rui	ze verticali s	statiche [kN/					statiche [kN	/m]	
	0.00	b _{p2o}	0.00	b _{p2B}	0.75	P _{AH1}	4.39	b _{AH1}	0.42	
W _{p3}	0.00	b_{p3o}	0.40	b _{p3B}	0.35	P _{AH2}	8.88	b _{AH2}	0.64	
W _{p4}	12.70	b _{p4o}	0.20	b _{p4B}	0.55		orizzontali :	sismiche [kN	/m]	
W _{p5}	0.50	b _{p50}	0.20	b _{p5B}	0.55	F_{p2}	0.00	b _{p2}	0.42	
W _{t1}	0.00	b _{t1o}	1.13	b _{t1B}	-0.38	F_{p3}	0.00	b _{p3}	0.42	
W _{t2}	26.54	b _{t20}	0.95	b _{t2B}	-0.20	F _{p4}	1.19	b _{p4}	0.64	
W _{t3}		b _{t30}	0.40	b _{t3B}		F _{p5}	0.05	b _{p5}	1.30	
P _{AV}	8.53	b _{AVo}	1.50	b _{AVB}	-0.75	F _{t1}	0.00	b _{t1}	1.27	
W _{q2statico}		b _{qo}	0.95	b _{qB}	-0.20	F_{t2}	2.49	b _{t2}	0.64	
W _{q2sis}	0.00	b _{qo}	0.95	b _{qB}	-0.20	F _{t3}	0.00	b_{t3}	0.85	
v q2sis		ze <i>verticali</i> s			0.20		4.15	b _{AH1}	0.42	
F	0.00		0.00	- <u>-</u>	0.75	P _{AH1(d= 0)}			0.42	
F _{vp2}		b _{p20}	0.40	b _{p2B}	0.75	P _{AH2(d=0)}	1.09	b _{AH2}	0.85	
F _{vp3}	0.60	b _{p3o}	0.40	b _{p3B}	0.55	∆P _{AHtsis}		b _{∆AHt}	0.64	
F _{vp4}		b _{p40}		b _{p4B}	0.55	ΔP_{AHqsis}	0.71	$b_{\scriptscriptstyle\DeltaAHq}$	0.04	
F _{vp5}		b _{p50}	0.20	b _{p5B}						
F _{vt1}	0.00	b _{t1o}	1.13	b _{t1B}	-0.38					
F _{vt2}	1.24	b _{t20}	0.95	b _{t2B}	-0.20					
F _{vt3}	0.00	b_{t30}	0.40	b _{t3B}	0.35	_				
Sollecitazioni agenti sull'elevazione Verifiche in condizioni statiche Verifiche in condizioni sismiche										
		asso di calco				verifiche ii	n conaizioni 10	sismicne		
Altezza	Г	asso ui caico	Azione		Altezza		10	Azione		
paramento	Altezza	Momento	assiale	Taglio	paramento	Altezza	Momento	assiale	Taglio	
[m]	sezione [m]	[kNm/m]	[kN/m]	[kN/m]	[m]	sezione [m]	[kNm/m]	[kN/m]	[kN/m]	
0.70	0.40	1.26	10.50	6.23	0.70	0.40	1.99	7.85	5.95	
0.25	0.40	0.06	4.06	1.95	0.25	0.40	0.23	3.18	1.82	
0.38	0.40	0.20	6.03	3.06	0.38	0.40	0.54	4.51	2.87	
0.51	0.40	0.48	7.81	4.26	0.51	0.40	0.99	5.84	4.02	
0.64	0.40	0.94	9.59	5.54	0.64	0.40	1.61	7.17	5.27	
0.76	0.40	1.62	11.37	6.91	0.76	0.40	2.41	8.50	6.63	
0.89	0.40	2.57	13.15	8.37	0.89	0.40	3.40	9.83	8.10	
1.02	0.40	3.84	14.92	9.91	1.02	0.40	4.60	11.16	9.66	
1.14	0.40	5.47	16.70	11.55	1.14	0.40	6.03	12.49	11.34	
1.27	0.40	7.50	18.48	13.27	1.27	0.40	7.71	13.82	13.12	
	ollecitazione	alla base d	lell'elevazioi			Sollecitazione	alla base de	ell'elevazion		
Azione assi				18.48 13.27	Azione assi				13.82 13.12	
Taglio [kN/	oaricentrico [kNlm/ml		7.50	Taglio [kN/	aricentrico [kl	Nm/ml		7.71	
MOTHERIO L	Jancentinco [ecitazioni a			ndazione di v			7.71	
	Verifiche	in condizior		goria salia U			n condizioni	sismiche		
	- Carrioric	Tratto				TOTALION II	Tratto			
σ_1	σ_2	compresso	Momento	Taglio	σ_1	σ_2	compresso	Momento	Taglio	
[kPa]	[kPa]	[m]	[kNm/m]	[kN/m]	[kPa]	[kPa]		[kNm/m]	[kN/m]	
07.04	07.04		0.00	0.00	90.50	90.50	[m]	0.00	0.00	
97.31 97.31 0.00 0.00 0.00 80.59 80.59 0.00 0.00 0.00 Sollecitazioni agenti sulla ciabatta di fondazione di monte										
	Verificha	in condizior		ciju Sulia Ci	avaua ui i0i		n condizioni	gigmiche		
	TOTITIONE	Tratto				VOIMORE II	Tratto			
_	σ_2	compresso	Momento	Taglio	σ_1	σ_2	compresso	Momento	Taglio	
σ_1	[LDa1	-	[kNm/m]	[kN/m]	[kPa]	[kPa]	[m]	[kNm/m]	[kN/m]	
o₁ [kPa]	[kPa]	Imi								
	77.10	[m] 1.10	-4.68	16.70	0.00	57.92	1.02	-11.24	-9.18	
[kPa] 21.52		1.10			0.00	57.92		-11.24	-9.18	

Foglio 40 di 75

Sollecitazioni (SLE) sul paramento e sulla suola di fondazione										
		ze verticali s						statiche [kN	/ml	
W_{p2}		b_{p20}	0.00	b _{p2B}	0.75	P _{AH1}	3.13	b _{AH1}	0.42	
W_{p3}	0.00	b _{p30}	0.40	b _{p3B}	0.35	P _{AH2}	5.92	b _{AH2}	0.64	
W _{p4}	12.70	b _{p40}	0.20	b _{p4B}	0.55			sismiche [kN		
W_{p5}	0.50		0.20	b _{p5B}	0.55	F _{p2}		b _{p2}	0.42	
W _{t1}	0.00	b _{p50} b _{t10}	1.13		-0.38	F _{p3}	0.00	b_{p3}	0.42	
	26.54		0.95	b _{t1B}	-0.20		1.19		0.42	
W _{t2}		b _{t20}		b _{t2B}		F _{p4}		b _{p4}		
W _{t3}	0.00 5.83	b _{t30}	0.40 1.50	b _{t3B}	0.35 -0.75	F _{p5}	0.05	b _{p5}	1.30	
P _{AV}		b _{AVo}		b _{AVB}		F _{t1}		b _{t1}		
W _{q2statico}	0.00	b _{qo}	0.95	b _{qB}	-0.20	F _{t2}	2.49	b _{t2}	0.64	
W _{q2sis}	0.00	b _{qo}	0.95	b _{qB}	-0.20	F _{t3}	0.00	b _{t3}	0.85	
_		ze verticali s				P _{AH1 (d= 0)}	4.15	b _{AH1}	0.42	
F_{vp2}	0.00	b_{p20}	0.00	b _{p2B}	0.75	P _{AH2(d= 0)}	3.44	b _{AH2}	0.64	
F _{vp3}	0.00	b_{p3o}	0.40	b _{p3B}	0.35	ΔP_{AHtsis}	1.09	$b_{\Delta AHt}$	0.85	
F_{vp4}	0.60	b_{p4o}	0.20	b _{p4B}	0.55	ΔP_{AHqsis}	0.71	$b_{\Delta AHq}$	0.64	
F_{vp5}	0.02	b_{p50}	0.20	b _{p5B}	0.55					
F _{vt1}	0.00	b _{t1o}	1.13	b _{t1B}	-0.38					
F _{vt2}	1.24	b_{t2o}	0.95	b _{t2B}	-0.20					
F _{vt3}	0.00	b _{t3o}	0.40	b _{t3B}	0.35					
Sollecitazioni agenti sull'elevazione										
		in condizion				Verifiche i	n condizioni	sismiche		
	Pa	asso di calco					10			
Altezza	Altezza	Momento	Azione	Taglio	Altezza	Altezza	Momento	Azione	Taglio	
paramento	sezione [m]		assiale	[kN/m]	paramento	sezione [m]	[kNm/m]	assiale	[kN/m]	
[m]			[kN/m]	_	[m]			[kN/m]		
0.70	0.40	0.85	7.50	4.22	0.70	0.40	1.99	7.85	5.95	
0.25	0.40	0.04	3.04	1.31	0.25	0.40	0.23	3.18	1.82	
0.38	0.40	0.14	4.31	2.06	0.38	0.40	0.54	4.51	2.87	
0.51	0.40	0.33	5.58	2.87	0.51	0.40	0.99	5.84	4.02	
0.64	0.40	0.64 1.10	6.85 8.12	3.74 4.68	0.64 0.76	0.40 0.40	1.61 2.41	7.17 8.50	5.27 6.63	
0.76	0.40	1.74	9.39	5.68	0.78	0.40	3.40	9.83	8.10	
1.02	0.40	2.60	10.66	6.74	1.02	0.40	4.60	11.16	9.66	
1.14	0.40	3.71	11.93	7.87	1.14	0.40	6.03	12.49	11.34	
1.27	0.40	5.09	13.20	9.06	1.27	0.40	7.71	13.82	13.12	
		alla base d				Sollecitazione				
Azione assi	ale [kN/m]			13.20	Azione assia		13.82			
Taglio [kN/	m]			9.06	Taglio [kN/				13.12	
Momento b	aricentrico [5.09		aricentrico (kl			7.71	
				genti sulla d	iabatta di fo	ndazione di v				
	Verifiche	in condizior	ni statiche			Verifiche i	n condizioni	sismiche		
_		Tratto	Momento	Taglio		_	Tratto	Momento	Taglia	
σ ₁	σ ₂	compresso	[kNm/m]	Taglio [kN/m]	σ ₁	σ ₂	compresso	[kNm/m]	Taglio [kN/m]	
[kPa]	[kPa]	[m]	[[[[]]]]	[[[] [] []	[kPa]	[kPa]	[m]		[[[]]	
68.23	68.23	0.00	0.00	0.00	80.59	80.59	0.00	0.00	0.00	
						ndazione di m				
	Verifiche	in condizion					n condizioni	sismiche		
G.	C.	Tratto	Momento	Taglio	C .	C.	Tratto	Momento	Taglio	
σ ₁ [kPa]	σ ₂ [kPa]	compresso	[kNm/m]	[kN/m]	σ ₁ [kPa]	σ ₂ [kPa]	compresso	[kNm/m]	[kN/m]	
		[m]	-				[m]	-		
16.20	54.35	1.10	-3.15	1.26	0.00	57.92	1.02	-11.24	-9.18	
NB: σ_2 è il	valore di ter	sione sulla s	sezione di in	castro						

NB: Il momeno negativo tende le fibre di estradosso della fondazione



Foglio 41 di 75

6.5.2. verifica capacità portante argilla

Sotto lo strato di terreno granulare su cui viene posata la fondazione del muro di sostegno oggetto della relazione è presente un profondo strato di argilla. Si esegue quindi una verifica a capacità portante di tale strato di terreno ipotizzando una diffusione a 45° del carico distribuito che scarica la ciabatta di fondazione.

carico sul piano di posa della fondazione q=420.62 kPa B'= 0.95 m

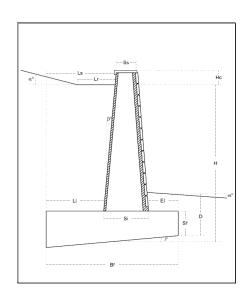
carico agente su terreno coesivo q= 19 kPa

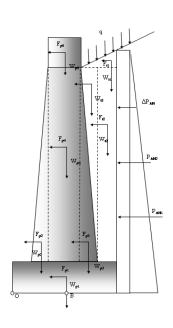
 $q=19 < q_{amm}=525 \text{ kPa}$

Verifica soddisfatta

Foglio 42 di 75

γ _w	DI INGRESSO peso di volume acqua		9.807	(kN/m ³)
γn	peso di volume naturale terreno		20.0	(kN/m ³)
γ _{sat}	peso di volume saturo del terreno		20.0	(kN/m ³)
cu	coesione non drenata		100.0	(kPa)
B'	larghezza della fondazione equivalente		5.15	(m)
Ľ	lunghezza della fondazione equivalente		1.00	(m)
D	profondità della fondazione da p.c. (può risultare opportuno essere conservativi, in relazione al "contributo del sovraccarico"; a tal fine si introduce il coefficiente " δ ")		1.40	(m)
δ	percentuale dell'approfondimento D adottata nel calcolo		50	(%)
\mathbf{z}_{w}	profondità falda da p.c.		2.50	(m)
α	inclinazione della fondazione			
	(valore positivo: vedi foglio "figura")		0.0	(°)
ω	pendenza piano campagna			
	(valore positivo: vedi foglio "figura")		0.0	(°)
H/N	rapporto tra carico orizzontale e carico verticale		0.10	(-)
FS	coefficiente di sicurezza		2.00	(-)
fattori d	li capacità portante	N _c	5.14	
		N_{γ}	0.00	
fattori d	li forma	S _c	2.03	
		S_γ	-1.06	
	li approfondimento	d _c	1.11	
	li inclinazione dell'acrico	i _c	0.88	
	li inclinazione della fondazione Ii inclinazione del piano campagna	b _c g _c	1.00	
iation 0	ii iioiiiuzione doi piano campagna	9 c	1.00	
RISUL	TATI			
capaci	tà portante limite:			
compor	nente dovuta a N_γ		0	(kPa)
•	nente dovuta alla coesione		1023	(kPa)
contribu	uto del sovraccarico		14	(kPa)
		q _{lim} =	1037	kPa
			525	





Foglio 43 di 75

6.5.3. GEO – sezione B

Dati di carattere generale									
Definire tipologia muro (Ordinario [1] o Prefabb/Contraff [2])	1								
H = altezza [m]	3.25								
H _c = altezza cordolo [m]	0.05								
S _s = spessore superiore [m]	0.40								
S = spessore inferiore [m]	0.40								
L _i = scarpa interna inferiore [m]	1.10								
L _s = scarpa interna superiore [m]	1.10								
E _i = scarpa esterna inferiore [m]	0.500								
B _i = base fondazione [m]	2.00								
S _i = spessore fondazione [m]	0.40								
L _r = lunghezza tratto rettilineo su ciabatta [m]	0.00								
γ_c = Peso di volume calcestruzzo [kN/m³]	25								
Inclinazione del paramento interno β (°)	0.0								
Inclinazione della fondazione del paramento i (°)	0.0								
Inclinazione piano campagna a tergo dell'opera α (°)	0.0								
Parametri terreno di riempimento									
$\gamma_{\rm d} = {\rm Peso} \ {\rm di} \ {\rm volume} \ [{\rm kN/m^3}]$	19								
φ' _k = angolo di attrito terreno di riempimento [°]	35								
c' _k = coesione [kPa]	0								
Parametri terreno di fondazione									
d _w = Dislivello tra base fondazione e falda [m]	0								
γ_d = Peso di volume [kN/m ³]	19								
φ' _k = angolo di attrito terreno di fondazione [°]	38								
c' _k = coesione [kPa]	0								
c _u = coesione non drenata [kPa]	0								

Foglio 44 di 75

		Calcolo	o spinta	
inelinesi	Stabilità globale e dimensionamento fondazione	0.0	Dimensionamento elevazione	0.0
	one del terrapieno [°] one paramento [°]	0.0	 α = inclinazione del terrapieno [°] β = inclinazione paramento [°] 	0.0
	muro-terreno (per muri a T = 1)	1.00	(δ/ϕ) = attrito muro-terreno (per muri a T = 1)	1.00
(δ/ϕ) = attrito	muro-terreno (tra terreno ed elevazione)	0.60	(δ/ϕ) = attrito muro-terreno (tra terreno ed elevazione)	0.60
$q_{perm1} = sovra$	accarico permanente a tergo del muro [kPa]	0.0	q _{perm1} = sovraccarico permanente a tergo del muro [kPa]	0.0
	carico accidentale a tergo muro [kPa]	20.0	q _{acc1} = sovraccarico accidentale a tergo muro [kPa]	20.0
	vraccarico accidentale a tergo muro con sisma [kPa]	10.0	q _{acc sisma} = sovraccarico accidentale a tergo muro con sisma[kPa]	10.0
	accarico permanente su ciabatta [kPa]	0.0	q _{perm2} = sovraccarico permanente su ciabatta [kPa]	0.0
	carico accidentale su ciabatta [kPa]	0.0	q _{acc2} = sovraccarico accidentale su ciabatta [kPa]	0.0
	vraccarico accidentale su ciabatta con sisma[kPa]	0.0	qacc sisma= sovraccarico accidentale a tergo muro con sisma[kPa]	0.0
	ard-Rail (S/No)	0.0	Presenza Guard-Rail (S/No) Strutture frangivento [m]	no 0.0
Strutture france		0.0	Strutture a sbalzo [m]	0.0
	volume terreno [kN/m³]	19.0	γ, = peso di volume terreno [kN/m3]	19.0
	di attrito terreno di riempimento [°]	35.0	φ' _k = angolo di attrito terreno di riempimento [°]	35.0
	di attrito terreno di riempimento [°]	35.0	φ' _d = angolo di attrito terreno di riempimento [°]	35.0
	di attrito Muro-Terreno di riempimento [°]	35.0	δ' _k = angolo di attrito Muro-Terreno di riempimento [°]	35.0
$\delta'_d = \text{angolo}$	di attrito Muro-Terreno di riempimento [°]	35.0	δ' _d = angolo di attrito Muro-Terreno di riempimento [°]	35.0
c' _k = coesione		0.0	c' _k = coesione [kPa]	0.0
c' _d = coesion		0.0	c' _d = coesione [kPa]	0.0
-	ente di spinta attiva	0.250	K _a = coefficiente di spinta attiva	0.250
	pefficiente di spinta attiva (δ/φ= 0)	0.271	$K_{a(\delta/\phi=0)} = \text{coefficiente di spinta attiva } (\delta/\phi=0)$	0.271
. (] /	mica associabile)	0.150	a _g /g (acc. sismica associabile)	0.150
Categoria di	· · · · · · · · · · · · · · · · · · ·	С	γI (fattore di importanza)	1.30
,	e di suolo = $S_{SX}S_T$)	1.25	S (coefficiente di suolo = $S_{SX}S_T$)	1.25
1/r (fattore ric	duzione accelerazione)	0.50	1/r (fattore riduzione accelerazione)	0.50
k _h (coefficien	te sismico orizzontale)	0.094	k _h (coefficiente sismico orizzontale)	0.094
k _v (coefficien	te sismico verticale)	-0.047	k, (coefficiente sismico verticale)	0.047
$\theta_{\text{max}} = \text{rotazio}$	one addizionale muro-terreno (evento sismico)	5.618	θ_{max} = rotazione addizionale muro-terreno (evento sismico)	5.618
K _{as} = coeffici	iente di spinta attiva sismica	0.327	K _{as} = coefficiente di spinta attiva sismica	0.327
	a presa in considerazione [%]	0	Spinta passiva presa in considerazione [%]	0
Risultante spir	nta passiva [kN/m]	0.00	Risultante spinta passiva [kN/m]	0.00
	Calcolo delle spinte z ₁ (STR) = altezza di autosostegno [m]	0.00	Calcolo delle spinte sull'elevazione	0.00
	z ₀ (GEO) = altezza di autosostegno [m]	0.00	z ₀ (STR) = altezza di autosostegno [m] z ₀ (GEO) = altezza di autosostegno [m]	0.00
	P _A (STR) = Risultante spinta attiva [kN/m]	59.43	P _A (STR) = Risultante spinta attiva [kN/m]	48.33
	P _Δ (GEO) = Risultante spinta attiva [kN/m]	41.29	P _A (GEO) = Risultante spinta attiva [kN/m]	33.50
	P _△ (SLE) = Risultante spinta attiva [kN/m]	41.29	P_{Δ} (SLE) = Risultante spinta attiva [kN/m]	33.50
	P _{AV} (STR)= Componente verticale [kN/m]	34.09	P _{AV} (STR)= Componente verticale [kN/m]	27.72
Condizioni	P _{AV} (GEO)= Componente verticale [kN/m]	23.68	Condizion P _{AV} (GEO)= Componente verticale [kN/m]	19.22
statiche	P _{AV} (SLE) = Componente verticale [kN/m]	23.68	i statiche P _{AV} (SLE) = Componente verticale [kN/m]	19.22
	P _{AH1} (STR) = Spinta orizzontale terreno [kN/m]	28.74	P _{AH1} (STR) = Spinta orizzontale terreno [kN/m]	22.10
	P _{AH1} (GEO) = Spinta orizzontale terreno [kN/m]	20.53	P _{AH1} (GEO) = Spinta orizzontale terreno [kN/m]	15.78
	P _{AH1} (SLE) = Spinta orizzontale terreno [kN/m]	20.53	P _{AH1} (SLE) = Spinta orizzontale terreno [kN/m]	15.78
	P _{AH2} (STR) = Spinta orizzontale sovraccarico [kN/m]	22.73	P _{AH2} (STR) = Spinta orizzontale sovraccarico [kN/m]	19.93
	P _{AH2} (GEO) = Spinta orizzontale sovraccarico [kN/m]	15.15	P _{AH2} (GEO) = Spinta orizzontale sovraccarico [kN/m]	13.29
	P _{AH2} (SLE) = Spinta orizzontale sovraccarico [kN/m]	15.15	P _{AH2} (SLE) = Spinta orizzontale sovraccarico [kN/m]	13.29
	z _{osis} (STR) = altezza di autosostegno [m]	0.00	z _{osis} (STR) = altezza di autosostegno [m]	0.00
	z _{osis} (GEO) = altezza di autosostegno [m]	0.00	z _{0sis} (GEO) = altezza di autosostegno [m]	0.00
	P _{Atsis} (STR) = Spinta attiva sismica terreno [kN/m]	34.32	P _{Atsis} (STR)= Spinta attiva sismica terreno [kN/m]	26.39
	P _{Atsis} (GEO) = Spinta attiva sismica terreno [kN/m]	34.32	P _{Atsis} (GEO) = Spinta attiva sismica terreno [kN/m]	26.39
	P _{Aqsis} (STR) = Spinta attiva sismica sovrac. [kN/m]	10.62	P _{Aqsis} (STR)= Spinta attiva sismica sovrac. [kN/m]	9.31
	P _{Aqsis} (GEO) = Spinta attiva sismica sovrac. [kN/m]	10.62	P _{Aqsis} (GEO) = Spinta attiva sismica sovrac. [kN/m]	9.31
Condizioni	$P_{AH1(\delta/\phi=0)}$ (STR) = Spinta orizz. terreno [kN/m]	27.19	Condizion P _{AH1(\(\delta/\phi=0\)} (STR)= Spinta orizz terreno [kN/m]	20.91
sismiche	$P_{AH1(\delta/\phi=0)}$ (GEO) = Spinta orizz. terreno [kN/m]	27.19	i sismiche $P_{AH1(\delta/\phi=0)}$ (GEO) = Spinta orizz. terreno [kN/m]	20.91
	$P_{AH2(\delta/\phi=0)}$ (STR) = Spinta orizz. sovraccarico [kN/m]	8.81	P _{AH2(\(\delta/\phi=0\)} (STR)= Spinta orizz. sovraccarico [kN/m]	7.72
	$P_{AH2(\delta/\phi=0)}$ (GEO) = Spinta orizz. sovraccarico [kN/m]	8.81	P _{AH2(i\/) (= 0)} (GEO) = Spinta orizz sovraccarico [kN/m]	7.72
	ΔP _{AHtsis} (STR)= Componente dinamica terreno [kN/m]	7.13	ΔP _{AHtsis} (STR)= Componente dinamica terreno [kN/m]	5.48
	ΔP _{AHtsis} (GEO)= Componente dinamica terreno [kN/m]	7.13	ΔP _{AHtsis} (GEO)= Componente dinamica terreno [kN/m]	5.48
	ΔP _{AHqsis} (STR) = Componente dinamica sovrac. [kN/m]	1.81	ΔP _{AHqsis} (STR)= Componente dinamica sovrac. [kN/m]	1.59
	ΔP _{AHqsis} (GEO) = Componente dinamica sovrac. [kN/m]	1.81	$\Delta P_{AHqsis}(GEO) = Componente dinamica sovrac. [kN/m]$	1.59
Condizioni	Azioni dovute all'urto T _{ii} = Reazione orizzontale [kN/m]	0.000	Azioni dovute all'urto Condizion T _{II} = Reazione orizzontale [kN/m]	0.00
statiche	M _{II} = Momento flettente [kNm/m]	0.000	i statiche M _{ii} = Momento flettente [kNm/m]	0.00
GGGGG	Azioni dovute alle strutture frangivento	0.00	Azioni dovute alle strutture frangivento	0.00
Condizioni	T _f = Reazione orizzontale [kN/m]	0.00	Condizion T _f = Reazione orizzontale [kN/m]	0.00
statiche	M _f = Momento flettente [kNm/m]	0.00	i statiche M _f = Momento flettente [kNm/m]	0.00
	Azioni dovute alle strutture a sbalzo	-	Azioni dovute alle strutture a sbalzo	•
Condizioni	N _{sb} = Carico assiale [kN/m]	0.00	Condizion N _{sb} = Carico assiale [kN/m]	0.00
statiche	M _{sb} = Momento flettente [kNm/m]	0.00	i statiche M _{sb} = Momento flettente [kNm/m]	0.00
Condinioni	N _{sb} = Carico assiale [kN/m]	0.00	N = Carico assiale [kN/m]	0.00
	M _{sb} = Momento flettente [kNm/m]	0.00	CONDIZION M Momento flettente [kNm/m]	0.00
Condizioni				
sismiche	T _{sb} = Forza orizzontale sismica [kN/m]	0.00	i sismiche T _{sb} = Forza orizzontale sismica [kN/m]	0.00
sismiche Numero di co	orsie [-]	0.00	T _{sb} = Forza orizzontale sismica [kN/m] Numero di corsie [m]	0.0
sismiche Numero di co W _{sb} = Peso p			T _{sb} = Forza orizzontale sismica [kN/m]	

Foglio 45 di 75

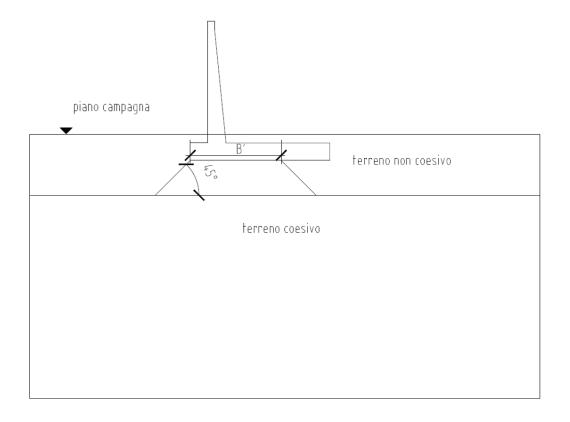
			-	Analisi d	lei carichi e v	erifiche globali (Gl	50)		
	Forze ve	erticali s	tatiche [k				ze orizzontali st	atiche [kN/m]	
W _{p1}	20.00	b _{p1o}	1.00	b _{p1B}	0.00	P _{AH1}	1.08		
W _{p2}	0.00	b _{p2o}	0.50	b _{p2B}	0.50	P _{AH2(q1)}	15.15	b _{AH2}	1.63
W_{p3}		b_{p3o}	0.90	b _{p3B}	0.10	For	ze orizzontali sis	miche [kN/m]	
W _{p4}	28.50	b _{p4o}	0.70	b _{p4B}	0.30	F _{p1}	1.88	b _{p1}	0.20
W _{p5}	0.50	b_{p50}	0.70	b _{p5B}	0.30	F _{p2}	0.00	b _{p2}	1.35
W _{t1}	0.00	b _{t1o}	1.63	b _{t1B}	-0.63	F _{p3}	0.00	b _{p3}	1.35
W _{t2}	59.57	b _{t20}	1.45	b _{t2B}	-0.45	F _{p4}	2.67	b _{p4}	1.83
W _{t3}	0.00	b _{t30}	0.90	b _{t3B}	0.10	F _{p5}	0.05	b _{p5}	3.28
W _{q2statico}	0.00	b _{q2stato}	1.45	b _{q2statB}	-0.45	F _{t1}	0.00	b _{t1}	3.25
P _{AV}	23.68	b _{AVo}	2.00	b _{AVB}	-1.00	F _{t2}	5.58	b _{t2}	1.83
· AV			smiche [l		1.00	F _{t3}	0.00	b _{t3}	2.30
F	0.94		1.00		0.00		27.19		1.08
F _{vp1}	0.00	b _{p1o}	0.50	b _{p1B}	0.50	P _{AH1(δ= 0)}	8.81	b _{AH1}	1.63
F _{vp2}		b _{p2o}		b _{p2B}		P _{AH2(δ= 0)(q1)}		b _{AH2}	
F _{vp3}		b _{p3o}	0.90	b _{p3B}	0.10	ΔP _{AHtsis}	7.13	b _{∆AH}	1.08
F _{vp4}	1.34	b _{p4o}	0.70	b _{p4B}	0.30	ΔP _{AHqsis(q1)}	1.81	b _{ΔAH}	1.63
F _{vp5}	0.02	b _{p5o}	0.70	b _{p5B}	0.30			statiche (EQU) [kN	
F _{vt1}	0.00	b _{t1o}	1.63	b _{t1B}	-0.63	P _{AV} (EQ U)	23.68	b _{AVo}	2.00
F _{vt2}	2.79	b _{t20}	1.45	b _{t2B}	-0.45	P _{AH1} (EQU)	20.53	b _{AH1}	1.08
F _{vt3}	0.00	b _{t3o}	0.90	b _{t3B}	0.10	P _{AH2(q1)} (EQ U)	15.15	b _{AH2}	1.63
	Verifiche	e in con	dizioni sta			Ve	rifiche in condiz		
			baltamen	to			Verifica al riba	Itamento	
Momento stabil					174.03	Momento stabilizzante			120.73
Momento ribalta	ante [kNm/n	n]			46.86	Momento ribaltante [k	Nm/m]		65.26
F _s					3.71 > 1.5	F _s	17 40		1.85 > 1.5
D. I			corriment	0	05.00	D. 1	Verifica a sco	rrimento	55.40
Risultante carich					35.68	Risultante carichi orizza			55.12
Risultante carich		N/mJ			132.25	Risultante carichi vertic			103.48
Angolo d'attrito terreno [°] Coefficiente d'attrito					38.0 1.00	Angolo d'attrito terreno Coefficiente d'attrito	0[3		38.0 1.00
					2.8959 > 1.3				
F _s						F _s	taniana in bania	antra fandariana	1.467 > 1.3
Sollecitazione in baricentro fondazione Risultante delle azioni normali al piano [kN]					132.25	Risultante delle azioni		entro fondazione	113.65
Risultante delle azioni parallele al piano [kN]					35.68		•		55.12
Momento baricentrico [kNm/m]					5.07	Risultante delle azioni Momento baricentrico		IO [KIN]	51.08
·					0.04	Eccentricità [m]	[KINIII/III]		0.45
B/6 [m]	Eccentricità [m]					B/6 [m]			0.43
La sezione non	è parzializza	ta			0.33	La sezione è parzializza	ata		0.00
Distribuzione ter			alle			Distribuzione tensioni		<u> </u>	
σ _{max} (smax scari					73.74	σ _{max} (smax scaricata s			137.62
σ _{min} (smin scario					58.51	σ _{min} (smin scaricata su			0.00
Lunghezza tratto			~1		2.00	Lunghezza tratto comp			1.65
Langriczza tratte			arico limi	te.	2.00	Langriczza tratto comp	ico limite	1.00	
γ_e = Peso di vol					9.00	γ _e = Peso di volume e	9.00		
φ terreno di fone		iente [Ki	w/ III]		38.00	φ terreno di fondazione	38.00		
c' terreno di fon		al			0.00	c' terreno di fondazion	0.00		
D Profondità pia					1.40	D Profondità piano for	1.40		
Inclinazione pia					0.00	Inclinazione piano can	0.00		
B _{fondazione} [m]	upugi	- 0[]			2.00	B _{fondazione} [m]	2.00		
Eccentricità [m]					0.04	Eccentricità [m]			0.45
B'= B-2e [m]					1.92	B'= B-2e [m]			1.10
					0.33	B/6 [m]			0.33
B/6 [m]					1.97	H _w = Altezza del cune	o bac [m]		1.13
	el cuneo <i>bac</i>	H _w = Altezza del cuneo <i>bac</i> [m]						N.,	78.02
	el cuneo <i>bac</i>	, firil	N_{γ}					N _c	61.35
	el cuneo <i>bac</i>	, [111]		N.	01.35				
	el cuneo <i>bac</i>	, [iii]		N _c	61.35 48.93				
	el cuneo <i>bac</i>	, [iii]		N_q	48.93			N_q	48.93
	el cuneo <i>bac</i>	, [iii]		N _q d _q	48.93 1.17			N_q d_q	48.93 1.21
	el cuneo <i>bac</i>	, [111]		N_q	48.93 1.17 1.17			N_q	48.93 1.21 1.21
	el cuneo <i>bac</i>	, [111]		N _q d _q	48.93 1.17 1.17 0.39			N_q d_q	48.93 1.21 1.21 0.14
H _w = Áltezza de	el cuneo <i>bac</i>		nte	N _q d _q	48.93 1.17 1.17 0.39 0.53	Coefficienti di capa	acità portante	N_q d_q d_c i_γ	48.93 1.21 1.21 0.14 0.27
H _w = Áltezza de			nte	N _q d _q d _c i _γ i _q	48.93 1.17 1.17 0.39 0.53 0.52	Coefficienti di capa	acità portante	$\begin{array}{c} N_q \\ d_q \\ d_c \\ \vdots_{\gamma} \\ \vdots_{q} \\ \vdots_{c} \end{array}$	48.93 1.21 1.21 0.14 0.27 0.25
H _w = Áltezza de			nte	N_q d_q d_c i_γ i_q i_c b_γ	48.93 1.17 1.17 0.39 0.53 0.52 1.00	Coefficienti di capa	acità portante	$\begin{aligned} & N_q \\ & d_q \\ & d_c \\ & i_\gamma \\ & i_q \\ & i_c \\ & b_\gamma \end{aligned}$	48.93 1.21 1.21 0.14 0.27 0.25 1.00
H _w = Áltezza de			nte	$\begin{array}{c} N_q \\ d_q \\ d_c \\ i_\gamma \\ i_q \\ i_c \\ b_\gamma \\ \end{array}$	48.93 1.17 1.17 0.39 0.53 0.52 1.00 1.00	Coefficienti di capa	acità portante	$\begin{array}{c} N_q \\ d_q \\ d_c \\ i_\gamma \\ i_q \\ i_c \\ b_\gamma \\ b_q \end{array}$	48.93 1.21 1.21 0.14 0.27 0.25 1.00
H _w = Áltezza de			nte	N_q d_q d_c i_γ i_q i_c b_γ	48.93 1.17 1.17 0.39 0.53 0.52 1.00	Coefficienti di capa	acità portante	$\begin{aligned} & N_q \\ & d_q \\ & d_c \\ & i_\gamma \\ & i_q \\ & i_c \\ & b_\gamma \end{aligned}$	48.93 1.21 1.21 0.14 0.27 0.25 1.00
H _w = Áltezza de			nte	$\begin{array}{c} N_q \\ d_q \\ d_c \\ i_\gamma \\ i_q \\ i_c \\ b_\gamma \\ \end{array}$	48.93 1.17 1.17 0.39 0.53 0.52 1.00 1.00	Coefficienti di capa	acità portante	$\begin{array}{c} N_q \\ d_q \\ d_c \\ i_\gamma \\ i_q \\ i_c \\ b_\gamma \\ b_q \end{array}$	48.93 1.21 1.21 0.14 0.27 0.25 1.00
H _w = Altezza de			nte	$\begin{array}{c} N_q \\ d_q \\ d_c \\ i_\gamma \\ i_q \\ i_c \\ b_\gamma \\ b_q \\ b_c \\ \gamma_\gamma \end{array}$	48.93 1.17 1.17 0.39 0.53 0.52 1.00 1.00	Coefficienti di capa	acità portante	$\begin{array}{c} N_{q} \\ d_{q} \\ d_{c} \\ i_{\gamma} \\ i_{q} \\ i_{c} \\ b_{\gamma} \\ b_{q} \\ b_{c} \\ \gamma_{\gamma} \end{array}$	48.93 1.21 1.21 0.14 0.27 0.25 1.00 1.00
H _w = Altezza de			nte	$\begin{array}{c} N_q \\ d_q \\ d_c \\ i_\gamma \\ i_q \\ i_c \\ b_\gamma \\ b_q \\ b_c \\ \gamma_\gamma \\ \gamma_q \end{array}$	48.93 1.17 1.17 0.39 0.53 0.52 1.00 1.00 1.00	Coefficienti di capa	acità portante	$\begin{array}{c} N_q \\ d_q \\ d_c \\ i_\gamma \\ i_q \\ i_c \\ b_\gamma \\ b_q \\ b_c \\ \gamma_\gamma \\ \gamma_q \end{array}$	48.93 1.21 1.21 0.14 0.27 0.25 1.00 1.00 1.00
H _w = Altezza de	enti di capaci		nte	$\begin{array}{c} N_q \\ d_q \\ d_c \\ i_\gamma \\ i_q \\ i_c \\ b_\gamma \\ b_q \\ b_c \\ \gamma_\gamma \end{array}$	48.93 1.17 1.17 0.39 0.53 0.52 1.00 1.00 1.00 1.00	Coefficienti di capa	acità portante	$\begin{array}{c} N_{q} \\ d_{q} \\ d_{c} \\ i_{\gamma} \\ i_{q} \\ i_{c} \\ b_{\gamma} \\ b_{q} \\ b_{c} \\ \gamma_{\gamma} \end{array}$	48.93 1.21 1.21 0.14 0.27 0.25 1.00 1.00 1.00 1.00
H _w = Altezza de	enti di capaci	tà porta	nte	$\begin{array}{c} N_q \\ d_q \\ d_c \\ i_\gamma \\ i_q \\ i_c \\ b_\gamma \\ b_q \\ b_c \\ \gamma_\gamma \\ \gamma_q \end{array}$	48.93 1.17 1.17 0.39 0.53 0.52 1.00 1.00 1.00 1.00 1.00 1.00			$\begin{array}{c} N_q \\ d_q \\ d_c \\ i_\gamma \\ i_q \\ i_c \\ b_\gamma \\ b_q \\ b_c \\ \gamma_\gamma \\ \gamma_q \end{array}$	48.93 1.21 1.21 0.14 0.27 0.25 1.00 1.00 1.00 1.00 1.00 1.00

Foglio 46 di 75

			<u> </u>	-	<u>ento e sull</u>	la suola di 1			
		ze verticali s		/m]				statiche [kN/	
N_{p2}	0.00	b_{p20}	0.50	b _{p2B}	0.50	P _{AH1}	22.10	b _{AH1}	0.95
N_{p3}		b _{p3o}	0.90	b _{p3B}	0.10	P_{AH2}	19.93	b _{AH2}	1.43
$N_{\rm p4}$	28.50	b _{p4o}	0.70	b _{p4B}	0.30		orizzontali :	sismiche [kN	/m]
N_{p5}	0.50	b _{p50}	0.70	b _{p5B}	0.30	F_{p2}	0.00	b _{p2}	0.95
N_{t1}	0.00	b _{t1o}	1.63	b _{t1B}	-0.63	F _{p3}	0.00	b_{p3}	0.95
W_{t2}	59.57	b _{t20}	1.45	b _{t2B}	-0.45	F _{p4}	2.67	b _{p4}	1.43
W _{t3}	0.00	b _{t30}	0.90	b _{t3B}	0.10	F _{p5}	0.05	b _{p5}	2.88
P _{AV}	27.72	b _{AVo}	2.00	b _{AVB}	-1.00	F _{t1}	0.00	b _{t1}	2.85
W _{q2statico}		b _{qo}	1.45	b _{qB}	-0.45	F _{t2}		b_{t2}	1.43
W _{q2sis}	0.00		1.45	b _{qB}	-0.45	F _{t3}	0.00	b_{t2}	1.90
v v q2sis		b _{qo} ze verticali s			-0.40		20.91		0.95
			0.50	<u> </u>	0.50	P _{AH1(d= 0)}	7.72	b _{AH1}	1.43
F _{vp2}	0.00	b _{p2o}		b _{p2B}		P _{AH2(d= 0)}		b _{AH2}	
F _{vp3}	0.00	b _{p30}	0.90	b _{p3B}	0.10	∆P _{AHtsis}	5.48	b _{∆AHt}	1.90
F _{vp4}	1.34	b _{p4o}	0.70	b _{p4B}	0.30	ΔP_{AHqsis}	1.59	b_{\DeltaAHq}	1.43
F _{vp5}	0.02	b _{p50}	0.70	b _{p5B}	0.30				
F _{vt1}	0.00	b _{t1o}	1.63	b _{t1B}	-0.63				
F_{vt2}	2.79	b _{t2o}	1.45	b _{t2B}	-0.45				
F_{vt3}	0.00	b_{t30}	0.90	b _{t3B}	0.10				
				citazioni ag	enti sull'elev				
		in condizior				Verifiche i	n condizioni	sismiche	
	Pa	asso di calco		ı			10		
Altezza	Altezza	Momento	Azione	Taglio	Altezza	Altezza	Momento	Azione	Taglio
paramento	sezione [m]		assiale	[kN/m]	paramento	sezione [m]	[kNm/m]	assiale	[kN/m]
[m]		-	[kN/m]		[m]		-	[kN/m]	
0.70	0.40	0.73	10.50	6.23	0.70	0.40	1.99	7.85	5.95
0.57	0.40	0.40	8.48	4.87	0.57	0.40	1.27	6.49	4.62
0.86	0.40	1.33	12.67	7.97	0.86	0.40	3.11	9.47	7.69
1.14	0.40	3.16	16.66	11.51	1.14	0.40	6.00	12.46	11.30
1.43 1.71	0.40 0.40	6.17 10.67	20.65 24.64	15.49 19.92	1.43 1.71	0.40 0.40	10.11 15.63	15.44 18.43	15.43 20.09
2.00	0.40	16.94	28.63	24.78	2.00	0.40	22.75	21.41	25.28
2.28	0.40	25.29	32.62	30.09	2.28	0.40	31.64	24.39	30.99
2.57	0.40	36.01	36.61	35.84	2.57	0.40	42.48	27.38	37.24
2.85	0.40	49.40	40.60	42.03	2.85	0.40	55.45	30.36	44.01
		alla base o				Sollecitazione			
Azione assia				40.60	Azione assi				30.36
Taglio [kN/				42.03	Taglio [kN/	m]			44.01
	aricentrico [kNm/m]		49.40		paricentrico [kl	Nm/m]		55.45
		Soll	ecitazioni a	genti sulla d	iabatta di fo	ondazione di v	alle	•	
	Verifiche	in condizior	ni statiche			Verifiche i	n condizioni	sismiche	
		Tratto	Marray	T!'			Tratto	Marra	Teath
σ ₁	σ_2	compresso	Momento	Taglio	σ ₁	σ_2	compresso	Momento	Taglio
[kPa]	[kPa]	[m]	[kNm/m]	[kN/m]	[kPa]	[kPa]	[m]	[kNm/m]	[kN/m]
134.11	113.58	0.50	15.91	61.92	137.62	95.96	0.50	15.47	58.40
				enti sulla ci	abatta di foi	ndazione di m			
	Verifiche	in condizior	ni statiche		Verifiche i	n condizioni	sismiche		
	σ_2	Tratto	Momento	Taglio	σ_1	σ_2	Tratto	Momento	Taglio
σ 1	0.)	compresso		_			compresso	[kNm/m]	[kN/m]
σ ₁ [kPa]			IKNm/ml	I KIN/ MI	I IKPai	I IKPai			[KIN/1111
σ ₁ [kPa] 51.96	[kPa]	[m]	[kNm/m] -13.79	[kN/m] 11.45	[kPa] 0.00	[kPa] 62.63	[m] 0.75	-34.45	-49.82

Foglio 47 di 75

Forze vertical staticle [NV m]			Sollecitazio	oni (SLE) s	sul parame	ento e sull	a suola di f	ondazion	e			
Was 0.00 Date 0.50										/ml		
Mag	W _{n2}					0.50						
Verifiche in condizioni statiche Normal	W ₋₀					0.10	Paulo					
W ₁₀ 0.50 0.50 0.50 0.70 0.668 0.30 0.52 0.00 0.52 0.95 W ₁₁ 0.00 0.00 0.00 0.95 0.90 0												
M ₁₁ 0.00 b ₁₁₀ 1.63 b ₁₁₈ -0.63 F _{p3} 0.00 b _{p3} 0.95 M ₂ 59.57 b ₂₀ 1.45 b ₂₈ -0.45 F _{p4} 2.67 b _{p4} 1.43 M ₂ 0.00 b ₂₀ 0.90 b ₂₈ 0.10 F _{p5} 0.05 b _{p5} 2.88 P _{AV} 19.22 b _{ANb} 2.00 b ₂₀ 1.45 b ₂₈ -0.45 F ₀ 5.58 b ₂ 1.43 M ₂₂₈₈ 0.00 b ₂₀ 1.45 b ₂₈ -0.45 F ₀ 5.58 b ₂ 1.43 M ₂₂₈₉ 0.00 b ₂₀ 0.50 b ₂₈₈ -0.45 F ₀ 5.58 b ₂ 1.43 M ₂₂₉₉ 0.00 b ₂₀₀ 0.50 b ₂₈₈ -0.45 F ₀ 5.58 b ₂ 1.43 M ₂₂₉₉ 0.00 b ₂₀₀ 0.50 b ₂₈₈ 0.10 P _{A+16+0} 0.00 b ₁₄ 1.90 F _{Q2} 0.00 b ₂₀₀ 0.50 b ₂₈₈ 0.10 A _{Pa+16+0} 0.00 b ₂₈₁ 1.43 F ₁₀₃ 0.00 b ₂₀₀ 0.70 b ₂₈₈ 0.10 A _{Pa+16+0} 0.77 b ₂₄₈ 1.43 F ₁₆ 0.02 b ₂₆₀ 0.70 b ₂₆₈ 0.30 A _{Pa+16+0} 1.59 b ₂₄₄₄ 1.43 F ₁₆ 0.00 b ₁₀ 0.163 b ₁₁₈ 0.63 F ₁₆ 0.00 b ₂₀₀ 0.90 b ₂₀₀ 0.30 F ₁₆ 0.00 b ₂₀₀ 0.90 b ₂₀₀ 0.10 Altezza												
W ₁₂ 59.57 b ₂₀ 1.45 b ₂₆ 0.45 F _{pd} 2.67 b _{pd} 1.43					ь,							
W _{Q2}												
P _N 19.22 D _{NAD} 2.00 D _{NAS} -1.00 F _I 0.00 D _I 2.85			-									
Magasaloo 0.00 bqo 1.45 bqB -0.45 Fg 5.58 bg2 1.43 1.90												
Fig. 2 0.00 b b b b b b b b b	VV _{q2statico}											
Fig. 2 0.00 b b b b b b b b b	W _{q2sis}					-0.45						
F ₁₀₂ 0.00 b ₂₀₀ 0.50 b ₂₀₀ 0.50 b _{20B} 0.50 p _{20B} 0.50 p _{20B} 0.77 b _{20B} 1.43 b _{20B} 1.39 b _{20B} 1.49 0.70 b _{20B} 0.30 AP _{Altegis} 1.59 b _{20B} 1.43 F _{10B} 1.43 b _{20B} 0.70 b _{20B} 0.30 AP _{Altegis} 1.59 b _{20B} 1.43 b _{20B} 0.70 b _{20B} 0.30 AP _{Altegis} 1.59 b _{20B} 1.43 b _{20B} 0.40 b _{10B} 0.40 b _{10B} 0.40 b _{10B} 0.40 b _{10B} 1.63 b _{10B} 0.40 b _{10B} 0							P _{AH1(d=0)}		-			
1.90	F_{vp2}	0.00	b_{p2o}	0.50	b _{p2B}	0.50	$P_{AH2(d=0)}$	7.72	b_{AH2}	1.43		
1.34 bpto 0.70 bpts 0.30 ΔP _{Artiguis} 1.59 bΔAktq 1.43	F_{vp3}	0.00	b_{p3o}	0.90	b _{p3B}	0.10	ΔP_{AHtsis}	5.48	$b_{\Delta AHt}$	1.90		
Registration Reg	F_{vp4}	1.34	b_{p4o}	0.70	b _{p4B}	0.30	ΔP_{AHqsis}	1.59	$b_{\Delta AHq}$	1.43		
		0.02		0.70		0.30						
F _{v2} 2.79 b _{L20} 1.45 b _{L2B} -0.45 Sollecitazioni agenti sull'elevazione Verifiche in condizioni statiche Passo di calcolo 10 Altezza paramento [m] Altezza Momento assiale [kN/m] Azione assiale [kN/m] Altezza paramento [kN/m/m] Adrezza paramento [m] Momento assiale [kN/m] Altezza paramento [m] Altezza paramento [m] Altezza paramento [m] Momento assiale [kN/m] Taglio paramento [m] Altezza paramento [m] Momento assiale [kN/m] Taglio paramento [m] Altezza paramento [m] Momento assiale [kN/m] Adrezza paramento [m] Momento assiale [kN/m] Altezza paramento [m] Altezza p		0.00		1.63	b _{t1B}	-0.63						
Verifiche in condizioni statiche Verifiche in c		2.79		1.45		-0.45						
Sollecitazioni agenti sull'elevazione Verifiche in condizioni statiche Passo di calcolo 10	F _{vt3}			0.90		0.10						
Verifiche in condizioni statiche Passo di calcolo Taglio paramento Azione assiale [kN/m] Azione assiale Azione Azione assiale Azione Azione assiale [kN/m] Azione assiale Azione Azione assiale Azione assiale Azione Azione Azione assiale Azione Azione Azione assiale Azione	VIO											
Altezza paramento Altezza paramento Azione assiale paramento Riknim		Verifiche	in condizion					n condizioni	sismiche			
Paramento Ritezza Sezione [m] Rinm/m] Sezione [m] Rinm/m] Sezione [m] Rinm/m] Sozione [m] Rinm/m] R		Pa	asso di calco	lo								
Sezione [m] [kNm/m]	Altezza	Altozza	Momento	Azione	Taglio	Altezza	Altozza	Momento	Azione	Taglio		
(RN/m)	paramento			assiale		paramento	1.5		assiale	~		
0.57	[m]	Sezione [m]	[KINIII/III]	[kN/m]	[KIN/III]	[m]	Sezione [m]	[KINIII/III]	[kN/m]	[KIN/III]		
0.86												
1.14												
1.43												
1.71												
2.00												
2.28												
2.57												
2.85												
Sollecitazione alla base dell'elevazione Sollecitazione alla base dell'elevazione												
Azione assiale [kN/m] 29.00 Azione assiale [kN/m] 30.36 Taglio [kN/m] 29.07 Taglio [kN/m] 44.01 Momento baricentrico [kNm/m] 33.93 Momento baricentrico [kNm/m] 55.45 Sollecitazioni agenti sulla ciabatta di fondazione di valle Verifiche in condizioni statiche Verifiche in condizioni sismiche Verifiche in condizioni sismiche π1 [kPa] [kPa] [kPa] [kPa] [kPa] [kPa] Momento [kNm/m] [kN/m] Taglio [kN/m] Momento [kN/m] Taglio [kN/m												
Taglio [kN/m] 29.07 Taglio [kN/m] 44.01						_				-		
Momento baricentrico [kNm/m] 33.93 Momento baricentrico [kNm/m] 55.45												
Verifiche in condizioni statiche Verifiche in condizioni sismiche σ1 [kPa] σ2 [kPa] Tratto compresso [m] Momento [kNm/m] Taglio [kN/m] σ1 [kPa] σ2 [kPa] Tratto compresso [kNm/m] Momento [kNm/m] Taglio [kN/m] 93.27 79.70 0.50 11.09 43.24 137.62 95.96 0.50 15.47 58.40 Sollecitazioni agenti sulla ciabatta di fondazione di monte Verifiche in condizioni statiche Verifiche in condizioni sismiche σ1 [kPa] σ2 [kPa] Tratto compresso [kNm/m] [kN/m] [kPa] Tratto compresso [kNm/m]										55.45		
Tratto compresso Momento Taglio (kN/m) (kN/m					genti sulla c	iabatta di fo						
Tratto Compresso Momento Laglio Compresso Momento Laglio Compresso Compr		Verifiche	in condizior	i statiche			Verifiche ii	n condizioni	sismiche			
[kPa] [kPa] [kPa] [kNm/m] [kNm] [kNm] [kPa] [kPa] [kPa] [compresso [m] [kNm/m] [kN/m] [kN/m] [striction of the compresso [m] [kNm/m] [kN/m] [kN/m] [striction of the compresso [m] [striction of the compresso [striction of t			Tratto	Momente	Taglio			Tratto	Momento	Taclic		
93.27 79.70 0.50 11.09 43.24 137.62 95.96 0.50 15.47 58.40 Sollecitazioni agenti sulla ciabatta di fondazione di monte Verifiche in condizioni statiche Verifiche in condizioni statiche Tratto [kPa] [kPa] [kPa] [m] Momento [kNm/m] [kNm/m] [kPa] [kPa] [m] Momento [kNm/m] [kNm/m] [kNm/m] [kNm/m] [kNm/m] [kNm/m] [m] 38.97 68.84 1.10 -9.21 -11.27 0.00 62.63 0.75 -34.45 -49.82 NB: σ₂ è il valore di tensione sulla sezione di incastro			compresso					compresso				
	[KFa]	[KFa]	[m]	[[[]]]	[[[]] [[]]	[KFa]	[KFd]	[m]		[[[]]		
	93.27	79.70	0.50	11.09	43.24	137.62	95.96	0.50	15.47	58.40		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					enti sulla ci	abatta di foi	ndazione di m					
Taglio Compresso Momento Taglio Compresso KNm/m KNm/m KPa KPa Compresso KNm/m		Verifiche		ni statiche			Verifiche in		sismiche			
[kPa] [kPa] [kNm/m] [kNm/m] [kNm/m] [kNm/m] [kPa] [kPa] [compresso [m] [kNm/m] [kNm/m] [kNm/m] [kNm/m] [kNm/m] [kNm/m] [kNm/m] [m] 38.97 68.84 1.10 -9.21 -11.27 0.00 62.63 0.75 -34.45 -49.82 NB: σ_2 è il valore di tensione sulla sezione di incastro	Ω4	<u></u>		Momento	Taglio	04	(To		Momento	Taglio		
38.97 68.84 1.10 -9.21 -11.27 0.00 62.63 0.75 -34.45 -49.82 NB: σ ₂ è il valore di tensione sulla sezione di incastro			compresso		_			compresso		-		
NB: σ_2 è il valore di tensione sulla sezione di incastro									-			
						0.00	62.63	0.75	-34.45	-49.82		
NB: Il momeno negativo tende le fibre di estradosso della fondazione	INR: II mom	eno negativo	o tende le fil	ore di estrad	iosso della f	ondazione						



Foglio 48 di 75

6.5.4. verifica capacità portante argilla

Sotto lo strato di terreno granulare su cui viene posata la fondazione del muro di sostegno oggetto della relazione è presente un profondo strato di argilla. Si esegue quindi una verifica a capacità portante di tale strato di terreno ipotizzando una diffusione a 45° del carico distribuito che scarica la ciabatta di fondazione.

carico sul piano di posa della fondazione q=250.49 kPa B'= 1.10m

carico agente su terreno coesivo q= 30 kPa

 $q=30 < q_{amm}=539 \text{ kPa}$

Verifica soddisfatta

Foglio 49 di 75

γ _w	DI INGRESSO peso di volume acqua		9.807	(kN/m ³)
γn	peso di volume naturale terreno		20.0	(kN/m ³)
γ _{sat}	peso di volume saturo del terreno		20.0	(kN/m ³)
CU	coesione non drenata		100.0	(kPa)
B'	larghezza della fondazione equivalente		5.66	(m)
Ľ'	lunghezza della fondazione equivalente		1.00	(m)
D	profondità della fondazione da p.c. (può risultare opportuno essere conservativi, in relazione al "contributo del sovraccarico"; a tal fine si introduce il coefficiente " δ ")		1.22	(m)
δ	percentuale dell'approfondimento D adottata nel calcolo		50	(%)
Z w	profondità falda da p.c.		2.50	(m)
α	inclinazione della fondazione			
	(valore positivo: vedi foglio "figura")		0.0	(°)
ω	pendenza piano campagna			
	(valore positivo: vedi foglio "figura")		0.0	(°)
H/N	rapporto tra carico orizzontale e carico verticale		0.10	(-)
FS	coefficiente di sicurezza		2.00	(-)
fattori d	li capacità portante	N _c	5.14	
		N_{γ}	0.00	
fattori d	li forma	S _c	2.13	
		S_γ	-1.26	
	li approfondimento	d _c	1.09	
	li inclinazione del carico	i _c	0.88	
	li inclinazione della fondazione	b _c	1.00	
rattori c	li inclinazione del piano campagna	g _c	1.00	
RISUL	-TATI			
capaci	tà portante limite:			
	nente dovuta a N _γ		0	(kPa)
	nente dovuta alla coesione		1054	(kPa)
contribu	uto del sovraccarico		12	(kPa)
		q _{lim} =	1066	kPa
		q _{amm} =	539	kPa

IG51-03-E-CV-RO-IR1H-0X-003-A00	
Relazione geologico geotecnica	

Foglio 50 di 75

6.6. Verifiche di stabilità globale

L'analisi delle condizioni di equilibrio sia nel caso statico che sismico, viene svolta con ricorso al codice di calcolo SLIDE vers. 5.0 (Rocsience s.r.l.).

E' stato utilizzato un modello semplificato basato sulla nota teoria dell'equilibrio limite nell'ambito della quale i terreni sono stati caratterizzati mediante un legame costitutivo rigido-plastico con criterio di rottura di Mohr-Coulomb (analisi in termini di sforzi efficaci).

Nel caso sismico, le forze di inerzia, orizzontali e verticali, applicati alle masse in condizioni sismiche sono valutate mediante i coefficienti k_h e k_v che valgono rispettivamente:

$$k_h = \frac{S\left(\frac{a_g}{g}\right)}{r}$$

$$k_v = 0.5 k_h$$

Con riferimento alla componente verticale, è stata applicata in entrambe le direzioni valutando la più sfavorevole.

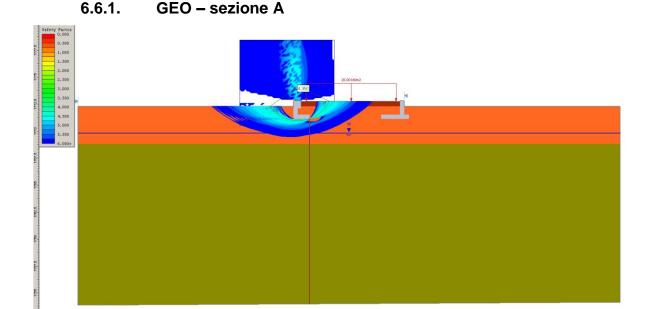


Figura 17 - Analisi di stabilità - SLU GEO

Come si può notare dalla figura soprastante, l'analisi statica svolta in Slide mostra come la verifica di stabilità globale della sezione di calcolo sia verificata, con un fattore di sicurezza minimo i 4.35.

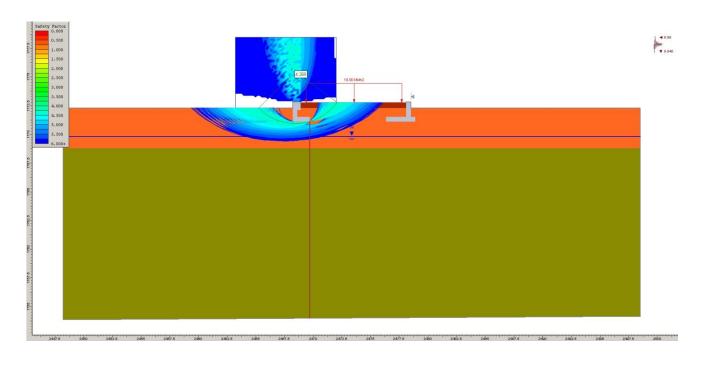


Figura 18 - Analisi di stabilità - SLU SISMA

Come si può notare dalla figura soprastante, l'analisi statica svolta in Slide mostra come la verifica di stabilità globale della sezione di calcolo sia verificata, con un fattore di sicurezza minimo i 4.26.

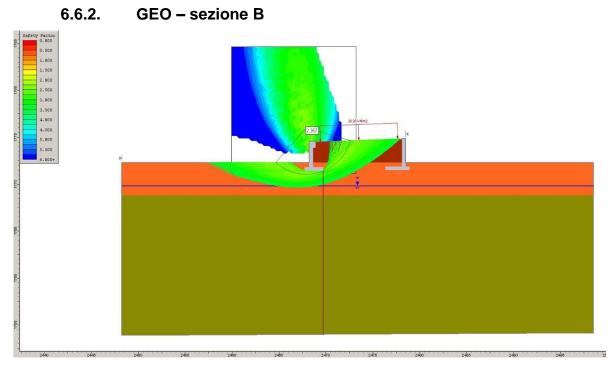


Figura 19 - Analisi di stabilità - SLU GEO

Come si può notare dalla figura soprastante, l'analisi statica svolta in Slide mostra come la verifica di stabilità globale della sezione di calcolo sia verificata, con un fattore di sicurezza minimo i 2.35.

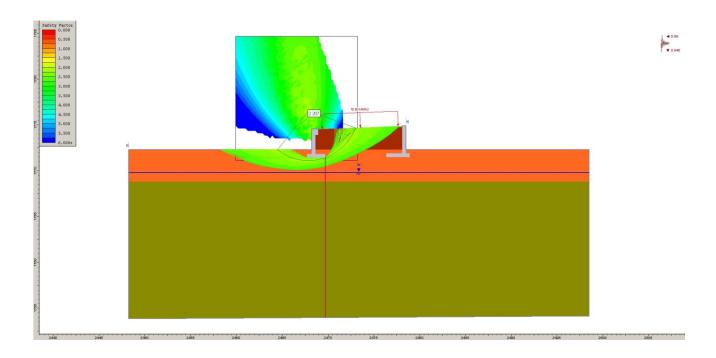


Figura 20 - Analisi di stabilità - SLU SISMA

Come si può notare dalla figura soprastante, l'analisi statica svolta in Slide mostra come la verifica di stabilità globale della sezione di calcolo sia verificata, con un fattore di sicurezza minimo i 2.20.

IG51-03-E-CV-RO-IR1H-0X-003-A00	
Relazione geologico geotecnica	

Foglio 53 di 75

6.7. Verifiche strutturali

Le verifiche strutturali di deformazione e fessurazione sono state svolte secondo il metodo degli stati limite.

Di seguito, per le sezioni esaminate, sono forniti i risultati delle analisi eseguite che indicano le armature necessarie da applicare al fine di garantire la stabilità strutturale dell'opera.

L'elevazione e la fondazione sono state verificate su una sezione rettangolare di base B=1.00 m ed altezza S_{Fsez} variabile a seconda della casistica in esame.

Le verifiche strutturali son state effettuate solo per la sezione B che è la più sollecitata. I risultati vengono poi estesi a tutta l'opera.

6.7.1. STR – sezione B

		Veri	fiche STR: \$	Sezione tipo B -	-S _{Fsez} = 0	.40 m – B =	1.0 m			
SL	Sezione di verifica	M _{max} [kNm/m]	N _{max} [kN/m]	Armatura	Fs	V _{max} [kN/m]	N _{max} [kN/m]	Fs		
SLU	Fondazione (monte)	-34.45	-	1Ø12/20cm 1Ø12/20cm	2.09	49.82	-	2.88	-	
SLU	Fondazione (valle)	15.91	-	1Ø12/20cm 1Ø12/20cm	4.61	61.92	-	2.32	-	
SLU	Elevazione (incastro)	55.45	30.36	1Ø12/10cm 1Ø12/20cm	2.63	44.01	30.36	3.35	-	
SL	Sezione di	\mathbf{M}_{max}	N _{max}	Armatura	Tensioni massime		Fessurazione			
3L	verifica	[kNm/m]	[kN/m]	Ailliatura	σ _{c,max} [MPa]	, ,	w, [mr	-	w₁ [mm]	
	Fondazione (monte)	-9.21	-	1Ø12/20cm 1Ø16/20cm	0.78	59.4	Sez	zione nor	n fessurata	
SLE	Fondazione (valle)	11.09	-	1Ø12/20cm 1Ø12/20cm	0.93	49.9	Sezione non		n fessurata	
	Elevazione (incastro)	33.93	29	1Ø12/10cm 1Ø12/20cm	2.1	80.7	Sezione non fessurata		n fessurata	
	Armatura diffusa			Correnti Ø10/20cm Spilli Ø10/6 al m²						

Tabella-9 Sollecitazioni e verifiche

Foglio 54 di 75

7. MURODI SOSTTOSCARPA 2

Il muro di sottoscapra MS2 (Figura 15) presenta uno sviluppo di circa 55 m. Il muro è stato suddiviso per ottimizzare la soluzione progettuale in due tratte. La prima va dalla sezione MS2-1 alla MS2-5 ha uno sviluppo di circa 36 m e presenta un'altezza massima del tratto in elevazione di 3.5m, Il secondo tratto dalla sezione MS2-5 in poi a causa dell'interferenza con un tombino idraulico vedrà la quota di posa della fondazione dipendente dal livello della quota di fondo del tombino, quest'ultimo è stato progettato in modo tale che vada ad appoggiarsi alla ciabatta del muro di fondazione. Lo sviluppo di questo secondo tratto di muro è di 19m e la massima altezza del tratto in elevazione è pari a 5.45m. L'altezza del tratto in elevazione dei due tratti di muro varia comunque in funzione della quota del piano stradale; infatti la testa del muro deve trovarsi 5cm sopra la quota del piano viabile per permettere il corretto posizionamento delle barriere. Questa condizione implica che i primi 70cm dalla testa del muro dovranno avere una larghezza di 70cm; per il rimanente tratto di elevazione invece, la sezione avrà larghezza pari a 40 cm per il primo tratto del muro mentre per il secondo tratto presenterà larghezze variabili in quanto il tratto in elevazione presenta una pendenza 1/10. In figura. (Figura 16, a)). vengono mostrati gli schemi delle geometrie dei due tratti di muro oggetto della relazione.

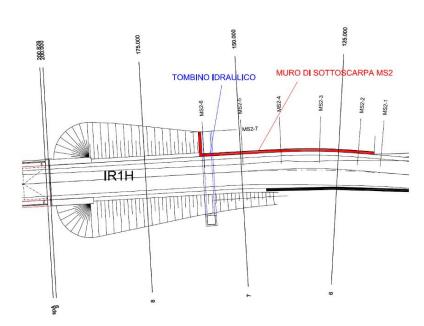


Figura 21 - Ubicazione planimetrica del muro di sottoscarpa.

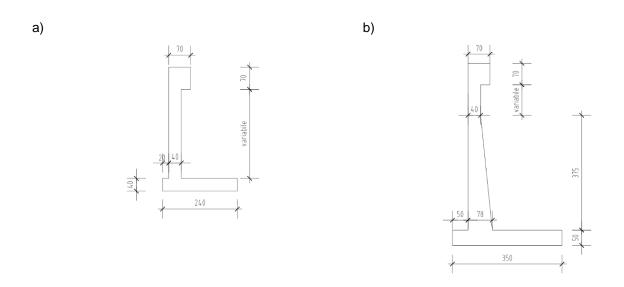


Figura 22 – Geometrie tipo del muro di sottoscarpa a) primo tratto da sez. MS2-1 a sez. MS2-5. b) secondo tratto da sez. MS2-5 a sez. MS2-7.

Foglio 56 di 75

7.1. Materiali impiegati

Per quanto rigurada i materiali impiegati per la realizzazione dell'opera si faccia riferimento al paragrafo 6.1.

7.2. Criteri di verifica

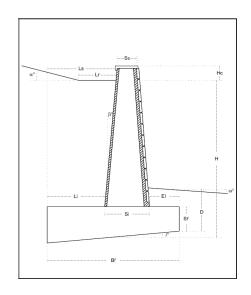
Si rimanda a quanto già descritto per il muro di sottoscarpa 1 al paragrafo 6.2

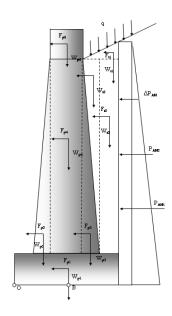
7.3. Risultati verifiche geotecniche

Sono riportati di seguito i risultati delle verifiche condotte in presenza ed in assenza di sisma per le diverse sezioni tipo.

Si sono verificate le due sezioni più critiche per i due tratti di muro, quello iniziale da MS2-1 a MS2-5 (sez A) e per il secondo tratto di opera da MS2-5 a MS2-7 (sez B).

Sono riportati di seguito i risultati delle verifiche condotte in presenza ed in assenza di sisma per le diverse sezioni tipo.


7.3.1. **GEO – sezione A**


Dati di carattere generale	
Definire tipologia muro (Ordinario [1] o Prefabb/Contraff [2])	1
H = altezza [m]	3.90
H _c = altezza cordolo [m]	0.05
S _s = spessore superiore [m]	0.40
S _i = spessore inferiore [m]	0.40
L _i = scarpa interna inferiore [m]	1.80
L _s = scarpa interna superiore [m]	1.80
E _i = scarpa esterna inferiore [m]	0.200
B _i = base fondazione [m]	2.40
S _i = spessore fondazione [m]	0.40
L _r = lunghezza tratto rettilineo su ciabatta [m]	0.00
γ _c = Peso di volume calcestruzzo [kN/m³]	25
Inclinazione del paramento interno β (°)	0.0
Inclinazione della fondazione del paramento i (°)	0.0
Inclinazione piano campagna a tergo dell'opera α (°)	0.0
Parametri terreno di riempimento	
γ_d = Peso di volume [kN/m ³]	19
φ' _k = angolo di attrito terreno di riempimento [°]	35
c' _k = coesione [kPa]	0
Parametri terreno di fondazione	•
d _w = Dislivello tra base fondazione e falda [m]	0
γ_d = Peso di volume [kN/m ³]	19
φ' _k = angolo di attrito terreno di fondazione [°]	38
c' _k = coesione [kPa]	0
c _u = coesione non drenata [kPa]	0

Foglio 57 di 75

Foglio 58 di 75

		Calcolo	o spinta T	
inelinesi	Stabilità globale e dimensionamento fondazione	0.0	Dimensionamento elevazione	0.0
	one del terrapieno [°] one paramento [°]	0.0	 α = inclinazione del terrapieno [°] β = inclinazione paramento [°] 	0.0
	muro-terreno (per muri a T = 1)	1.00	(δ/ϕ) = attrito muro-terreno (per muri a T = 1)	1.00
(δ/ϕ) = attrito	muro-terreno (tra terreno ed elevazione)	0.60	(δ/ϕ) = attrito muro-terreno (tra terreno ed elevazione)	0.60
$q_{perm1} = sovra$	accarico permanente a tergo del muro [kPa]	0.0	q _{perm1} = sovraccarico permanente a tergo del muro [kPa]	0.0
	carico accidentale a tergo muro [kPa]	20.0	q _{acc1} = sovraccarico accidentale a tergo muro [kPa]	20.0
	vraccarico accidentale a tergo muro con sisma [kPa]	10.0	q _{acc sisma} = sovraccarico accidentale a tergo muro con sisma[kPa]	10.0
	accarico permanente su ciabatta [kPa]	0.0	q _{perm2} = sovraccarico permanente su ciabatta [kPa]	0.0
	carico accidentale su ciabatta [kPa]	0.0	q _{acc2} = sovraccarico accidentale su ciabatta [kPa]	0.0
	vraccarico accidentale su ciabatta con sisma[kPa]	0.0	qacc sisma= sovraccarico accidentale a tergo muro con sisma[kPa]	0.0
	ard-Rail (S/No)	0.0	Presenza Guard-Rail (S/No)	0.0
Strutture france		0.0	Strutture frangivento [m] Strutture a sbalzo [m]	0.0
	volume terreno [kN/m³]	19.0	γ, = peso di volume terreno [kN/m3]	19.0
	di attrito terreno di riempimento [°]	35.0	φ' _k = angolo di attrito terreno di riempimento [°]	35.0
	di attrito terreno di riempimento [°]	35.0	φ' _d = angolo di attrito terreno di riempimento [°]	35.0
	di attrito Muro-Terreno di riempimento [°]	35.0	δ' _k = angolo di attrito Muro-Terreno di riempimento [°]	35.0
	di attrito Muro-Terreno di riempimento [°]	35.0	δ' _d = angolo di attrito Muro-Terreno di riempimento [°]	35.0
c' _k = coesione	e [kPa]	0.0	c' _k = coesione [kPa]	0.0
c' _d = coesion		0.0	C' _d = coesione [kPa]	0.0
_	ente di spinta attiva	0.250	K _a = coefficiente di spinta attiva	0.250
$K_{a(\delta/\phi=0)} = cc$	pefficiente di spinta attiva (δ/ φ= 0)	0.271	$K_{a(\delta/\phi=0)} = \text{coefficiente di spinta attiva } (\delta/\phi=0)$	0.271
a _g /g (acc. sis	mica associabile)	0.150	a _g /g (acc. sismica associabile)	0.150
Categoria di		С	γI (fattore di importanza)	1.30
,	e di suolo = $S_{SX}S_T$)	1.25	S (coefficiente di suolo = $S_{SX}S_T$)	1.25
1/r (fattore ric	duzione accelerazione)	0.50	1/r (fattore riduzione accelerazione)	0.50
k _h (coefficien	te sismico orizzontale)	0.094	k _h (coefficiente sismico orizzontale)	0.094
	te sismico verticale)	-0.047	k _v (coefficiente sismico verticale)	0.047
	one addizionale muro-terreno (evento sismico)	5.618	θ_{max} = rotazione addizionale muro-terreno (evento sismico)	5.618
	iente di spinta attiva sismica	0.327	K _{as} = coefficiente di spinta attiva sismica	0.327
	a presa in considerazione [%]	0	Spinta passiva presa in considerazione [%]	0
Hisultante spir	nta passiva [kN/m]	0.00	Risultante spinta passiva [kN/m] Calcolo delle spinte sull'elevazione	0.00
	Z _n (STR) = altezza di autosostegno [m]	0.00	z ₀ (STR) = altezza di autosostegno [m]	0.00
	z ₀ (GEO) = altezza di autosostegno [m]	0.00	z ₀ (GEO) = altezza di autosostegno [m]	0.00
	P _A (STR) = Risultante spinta attiva [kN/m]	79.73	P _A (STR) = Risultante spinta attiva [kN/m]	66.91
	P _A (GEO) = Risultante spinta attiva [kN/m]	55.56	P _Δ (GEO) = Risultante spinta attiva [kN/m]	46.54
	P _△ (SLE) = Risultante spinta attiva [kN/m]	55.56	P _△ (SLE) = Risultante spinta attiva [kN/m]	46.54
	P _{AV} (STR)= Componente verticale [kN/m]	45.73	P _{AV} (STR)= Componente verticale [kN/m]	38.38
Condizioni	P _{AV} (GEO)= Componente verticale [kN/m]	31.87	Condizion P _{AV} (GEO)= Componente verticale [kN/m]	26.70
statiche	P _{AV} (SLE) = Componente verticale [kN/m]	31.87	i statiche P _{AV} (SLE) = Componente verticale [kN/m]	26.70
	P _{AH1} (STR) = Spinta orizzontale terreno [kN/m]	41.38	P _{AH1} (STR) = Spinta orizzontale terreno [kN/m]	33.33
	P _{AH1} (GEO) = Spinta orizzontale terreno [kN/m]	29.56	P _{AH1} (GEO) = Spinta orizzontale terreno [kN/m]	23.81
	P _{AH1} (SLE) = Spinta orizzontale terreno [kN/m]	29.56	P _{AH1} (SLE) = Spinta orizzontale terreno [kN/m]	23.81
	P _{AH2} (STR) = Spinta orizzontale sovraccarico [kN/m]	27.28	P _{AH2} (STR) = Spinta orizzontale sovraccarico [kN/m]	24.48
	P _{AH2} (GEO) = Spinta orizzontale sovraccarico [kN/m]	18.18	P _{AH2} (GEO) = Spinta orizzontale sovraccarico [kN/m]	16.32
	P _{AH2} (SLE) = Spinta orizzontale sovraccarico [kN/m]	18.18	P _{AH2} (SLE) = Spinta orizzontale sovraccarico [kN/m]	16.32
	z _{0sis} (STR) = altezza di autosostegno [m]	0.00	z _{osis} (STR) = altezza di autosostegno [m]	0.00
	z _{0sis} (GEO) = altezza di autosostegno [m]	0.00	z _{osis} (GEO) = altezza di autosostegno [m]	0.00
	P _{Atsis} (STR) = Spinta attiva sismica terreno [kN/m]	49.42	P _{Atsis} (STR)= Spinta attiva sismica terreno [kN/m]	39.81
	P _{Atsis} (GEO) = Spinta attiva sismica terreno [kN/m]	49.42	P _{Atsis} (GEO) = Spinta attiva sismica terreno [kN/m]	39.81
	P _{Aqsis} (STR) = Spinta attiva sismica sovrac. [kN/m]	12.74	P _{Aqsis} (STR)= Spinta attiva sismica sovrac. [kN/m]	11.44
	P _{Aqsis} (GEO) = Spinta attiva sismica sovrac. [kN/m]	12.74	P _{Aqsis} (GEO) = Spinta attiva sismica sovrac. [kN/m]	11.44
Condizioni	$P_{AH1(\delta/\phi=0)}$ (STR) = Spinta orizz. terreno [kN/m]	39.16	Condizion P _{AH1(\(\(\delta\/\phi=0\))} (STR)= Spinta orizz. terreno [kN/m]	31.54
sismiche	$P_{AH1(\delta/\phi=0)}$ (GEO) = Spinta orizz. terreno [kN/m]	39.16	i sismiche $P_{AH1(\delta/\phi=0)}$ (GEO) = Spinta orizz. terreno [kN/m]	31.54
	$P_{AH2(\delta/\phi=0)}$ (STR) = Spinta orizz. sovraccarico [kN/m]	10.57	P _{AH2(δ/φ=0)} (STR)= Spinta orizz sovraccarico [kN/m]	9.48
	$P_{AH2(\delta/\phi=0)}$ (GEO) = Spinta orizz sovraccarico [kN/m]	10.57	P _{AH2(\(\delta/\phi=0\)} (GEO) = Spinta orizz sovraccarico [kN/m]	9.48
	ΔP _{A-Htsis} (STR)= Componente dinamica terreno [kN/m]	10.27	ΔP _{AHtsis} (STR)= Componente dinamica terreno [kN/m]	8.27
	ΔP _{AHtsis} (GEO)= Componente dinamica terreno [kN/m]	10.27	ΔP _{AHtsis} (GEO)= Componente dinamica terreno [kN/m]	8.27
	ΔP _{AHqsis} (STR) = Componente dinamica sovrac. [kN/m]	2.17	ΔP _{AHqsis} (STR)= Componente dinamica sovrac. [kN/m]	1.95
	ΔP _{AHqsis} (GEO) = Componente dinamica sovrac. [kN/m]	2.17	$\Delta P_{AHqsis}(GEO) = Componente dinamica sovrac. [kN/m]$	1.95
Condizioni	Azioni dovute all'urto T _{ii} = Reazione orizzontale [kN/m]	0.000	Azioni dovute all'urto Condizion T _{II} = Reazione orizzontale [kN/m]	0.00
statiche	M _{II} = Momento flettente [kNm/m]	0.00	i statiche M _{ii} = Momento flettente [kNm/m]	0.00
GGGGG	Azioni dovute alle strutture frangivento	0.00	Azioni dovute alle strutture frangivento	0.00
Condizioni	T _f = Reazione orizzontale [kN/m]	0.00	Condizion T _f = Reazione orizzontale [kN/m]	0.00
statiche	M _f = Momento flettente [kNm/m]	0.00	i statiche M _f = Momento flettente [kNm/m]	0.00
	Azioni dovute alle strutture a sbalzo		Azioni dovute alle strutture a sbalzo	
Condizioni	N _{sb} = Carico assiale [kN/m]	0.00	Condizion N _{sb} = Carico assiale [kN/m]	0.00
statiche	M _{sb} = Momento flettente [kNm/m]	0.00	i statiche M _{sb} = Momento flettente [kNm/m]	0.00
	N _{sb} = Carico assiale [kN/m]	0.00	N = Carico assiale [kN/m]	0.00
	M _{sb} = Momento flettente [kNm/m]	0.00	CONDIZION M Momento flettente [kNm/m]	0.00
Condizioni				
Condizioni sismiche	T _{sb} = Forza orizzontale sismica [kN/m]	0.00	i sismiche T _{sb} = Forza orizzontale sismica [kN/m]	0.00
sismiche Numero di co	orsie [-]	0.00	T _{sb} = Forza orizzontale sismica [kN/m] Numero di corsie [m]	0.0
sismiche Numero di co W _{sb} = Peso p			T _{sb} = Forza orizzontale sismica [kN/m]	

Foglio 59 di 75

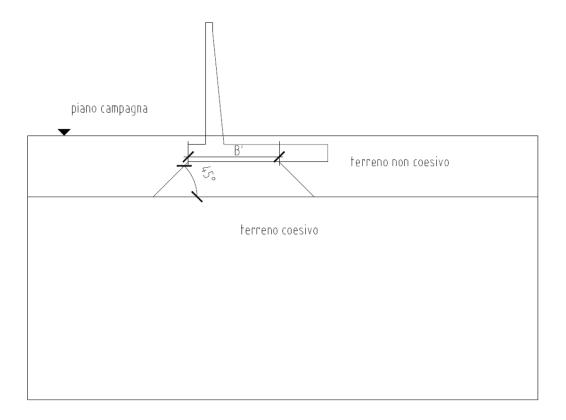
				Analisi d	lei carichi e v	verifiche globali (GEO)				
	Forze ve	erticali s	tatiche [ki	N/m]		Forze orizzontali statiche [kN/m]				
W _{p1}	24.00	b _{p1o}	1.20	b _{p1B}	0.00	P _{AH1}	29.56	b _{AH1}	1.30	
W _{p2}	0.00	b _{p2o}	0.20	b _{p2B}	1.00	P _{AH2(q1)}	18.18	b _{AH2}	1.95	
W_{p3}	0.00	b _{p3o}	0.60	b _{p3B}	0.60		ze orizzontali si	smiche [kN/m]		
W _{p4}	35.00	b _{p4o}	0.40	b _{p4B}	0.80	F_{p1}	2.25	b _{p1}	0.20	
W_{p5}	0.50	b _{p50}	0.40	b _{p5B}	0.80	F_{p2}	0.00	b _{p2}	1.57	
W _{t1}	0.00	b _{t1o}	1.80	b _{t1B}	-0.60	F_{p3}	b _{p3}	1.57		
W _{t2}	119.70	b _{t20}	1.50	b _{t2B}	-0.30	F_{p4}	3.28	b _{p4}	2.15	
W _{t3}	0.00	b _{t3o}	0.60	b _{t3B}	0.60	F_{p5}	0.05	b _{p5}	3.93	
W _{q2statico}	0.00	b _{q2stato}	1.50	b _{q2statB}	-0.30	F _{t1}	0.00	b _{t1}	3.90	
P _{AV}	31.87	b _{AVo}	2.40	b _{AVB}	-1.20	F ₁₂	11.22	b _{t2}	2.15	
	Forze ve	erticali si	ismiche [k	N/m]		F _{t3}	0.00	b _{t3}	2.73	
F _{vp1}	1.13	b _{p1o}	1.20	b _{p1B}	0.00	$P_{AH1(\delta=0)}$	39.16	b _{AH1}	1.30	
F_{vp2}	0.00	b _{p2o}	0.20	b _{p2B}	1.00	$P_{AH2(\delta=0)(q1)}$	10.57	b _{AH2}	1.95	
F _{vp3}	0.00	b _{p3o}	0.60	b _{p3B}	0.60	ΔP_{AHtsis}	10.27	$b_{\Delta AH}$	1.30	
F _{vp4}	1.64	b _{p4o}	0.40	b _{p4B}	0.80	$\Delta P_{AHqsis(q1)}$	2.17	$b_{\Delta AH}$	1.95	
F_{vp5}	0.02	b _{p5o}	0.40	b _{p5B}	0.80	Forze vertica	ali e orizzontali	statiche (EQU) [kl	[/m]	
F _{vt1}	0.00	b _{t1o}	1.80	b _{t1B}	-0.60	P _{AV} (EQ U)	31.87	b _{AVo}	2.40	
F _{vt2}	5.61	b _{t2o}	1.50	b _{t2B}	-0.30	P _{AH1} (EQU)	29.56	b _{AH1}	1.30	
F _{vt3}	0.00	b _{t3o}	0.60	b _{t3B}	0.60	P _{AH2(q1)} (EQU)	18.18	b _{AH2}	1.95	
		e in con	dizioni sta		· ·		rifiche in condi			
			baltamen	to	-		Verifica al riba	altamento	0.10 :-	
Momento stabil					299.03	Momento stabilizzante			212.12	
Momento ribalta	ante [kNm/r	nj			73.88	Momento ribaltante [k	INITN/ MJ		114.05	
F _s	1/	·c		_	4.05 > 1.5	F _s	\/ifi		1.86 > 1.5	
Risultante carich			corriment	0	47.74	Risultante carichi orizza	Verifica a sco	orrimento	78.97	
Risultante carich		<u> </u>			211.07	Risultante carichi vertic			170.80	
Angolo d'attrito		. 4/ 111]			38.0	Angolo d'attrito terreno			38.0	
Coefficiente d'a					1.00	Coefficiente d'attrito	1.00			
Fs					3.4541 > 1.3	F _s			1.69 > 1.3	
	Sollecitazion	ne in bai	ricentro fo	ndazione			itazione in bario	centro fondazione	•	
Risultante delle	azioni norm	ali al pia	ano [kN]		211.07	Risultante delle azioni	normali al pian	o [kN]	187.60	
Risultante delle			iano [kN]		47.74	Risultante delle azioni		no [kN]	78.97	
Momento barice	entrico (kNm	n/m]			28.13	Momento baricentrico	[kNm/m]		113.05	
Eccentricità [m]					0.13	Eccentricità [m]			0.60	
B/6 [m]	à parzializza	ıto.			0.40	B/6 [m]	oto		0.40	
La sezione non Distribuzione ter			عالم			La sezione è parzializza Distribuzione tensioni d		۵		
σ _{max} (smax scari					117.25	σ _{max} (smax scaricata s			209.36	
σ _{min} (smin scario					58.64	σ_{min} (smin scaricata su	0.00			
Lunghezza tratto			^]		2.40	Lunghezza tratto comp			1.79	
24.19.10224 1.4110			arico limi	te	2	angrioza dado comp	Verifica al cai	rico limite		
γ_e = Peso di vol					9.00	γ_e = Peso di volume e			9.00	
					38.00		<u> </u>	-	38.00	
c' terreno di fon		a]			0.00	c' terreno di fondazion			0.00	
D Profondità pia	ano fondazio	one [m]			1.40	D Profondità piano for	ndazione [m]		1.40	
Inclinazione pia	no campagi	na ω [°]			0.00	Inclinazione piano can	npagna ω [°]		0.00	
B _{fondazione} [m]					2.40	B _{fondazione} [m]			2.40	
Eccentricità [m]					0.13	Eccentricità [m]			0.60	
B'= B-2e [m]					2.13	B'= B-2e [m]			1.19	
B/6 [m]	ol oupos b	_ [m]			0.40	B/6 [m]	o hac [m]		0.40	
H _w = Altezza de	si curieo <i>ba</i> o	, [m]		l N I	2.19 78.02	H _w = Altezza del cune	o bac [m]	IN	1.22	
				N _γ				N _γ	78.02	
				N _c	61.35			N _c	61.35	
				N _q	48.93			N _q	48.93	
				d _q	1.15	-		d _q	1.20	
				d _c	1.15			d _c	1.20	
				γ	0.46			l _γ	0.19	
Coefficie	nti di capaci	ità porta	inte	q	0.60 0.59	Coefficienti di capa	acità portante	lq :	0.34	
	i _c b _y b _q b _c							l _C	0.32	
								b _γ	1.00	
								b _q	1.00	
								b _c	1.00	
γ_{γ}					1.00 1.00			γ_{γ}	1.00	
	$\gamma_{ m q}$							γ _q	1.00	
Corios Essits III	De 1			γс	1.00	Carias limit- II-D-1		γс	1.00	
Carico limite [kl		Pal		γс	772.18	Carico limite [kPa]	sea [kPa]	γς	329.44	
Carico limite [kl Carico sul piano F _s		Pa]		γс		Carico limite [kPa] Carico sul piano di po	sa [kPa]	γε		

Foglio 60 di 75

	9	Sollecitazio	oni (STR) s	sul parame	ento e sull	la suola di t	fondazion	е	
	For	ze verticali s	statiche [kN/	/m]	Forze orizzontali statiche [kN/m]				
W _{p2}	0.00	b _{p2o}	0.20	b _{p2B}	1.00	P _{AH1}	33.33	b _{AH1}	1.17
W_{p3}	0.00	b_{p30}	0.60	b _{p3B}	0.60	P _{AH2}	24.48	b _{AH2}	1.75
W _{p4}	35.00	b _{p40}	0.40	b _{p4B}	0.80		orizzontali :	sismiche [kN	/ml
W _{p5}	0.50	b _{p50}	0.40	b _{p5B}	0.80	F_{p2}	0.00	b _{p2}	1.17
W _{t1}		b _{t10}	1.80	b _{t1B}	-0.60	F_{p3}	0.00	b _{p3}	1.17
W _{t2}	119.70		1.50		-0.30		3.28		1.75
	0.00	b _{t20}	0.60	b _{t2B}	0.60	F _{p4}	0.05	b _{p4}	3.53
W _{t3}		b _{t30}		b _{t3B}	-1.20	F _{p5}	0.00	b _{p5}	
P _{AV}		b _{AVo}	2.40	b _{AVB}		F _{t1}		b _{t1}	3.50
W _{q2statico}	0.00	b _{qo}	1.50	b _{qB}	-0.30	F _{t2}	11.22	b _{t2}	1.75
W _{q2sis}	0.00	b _{qo}	1.50	b _{qB}	-0.30	F _{t3}	0.00	b _{t3}	2.33
		ze verticali s				P _{AH1(d= 0)}	31.54	b _{AH1}	1.17
F_{vp2}	0.00	b_{p2o}	0.20	b_{p2B}	1.00	$P_{AH2(d=0)}$	9.48	b _{AH2}	1.75
F_{vp3}	0.00	b _{p3o}	0.60	b _{p3B}	0.60	ΔP_{AHtsis}	8.27	$b_{\Delta AHt}$	2.33
F_{vp4}	1.64	b _{p4o}	0.40	b _{p4B}	0.80	ΔP_{AHqsis}	1.95	$b_{\Delta AHq}$	1.75
F _{vp5}	0.02	b _{p50}	0.40	b _{p5B}	0.80				
F _{vt1}	0.00	b _{t1o}	1.80	b _{t1B}	-0.60				
F _{vt2}	5.61	b _{t20}	1.50	b _{t2B}	-0.30				
F _{vt3}	0.00	b _{t30}	0.60	b _{t3B}	0.60				
* Vt3	0.00	~130		citazioni ag		azione			
	Verifiche	in condizior		orazorn ag	oria dan didi		n condizioni	sismiche	
		asso di calco				701111011011	10	441110110	
Altezza			Azione		Altezza			Azione	
paramento	Altezza	Momento	assiale	Taglio	paramento	Altezza	Momento	assiale	Taglio
[m]	sezione [m]	[kNm/m]	[kN/m]	[kN/m]	[m]	sezione [m]	[kNm/m]	[kN/m]	[kN/m]
0.70	0.40	0.65	10.50	6.23	0.70	0.40	2.30	7.85	6.83
0.70	0.40	0.65	10.30	6.23	0.70	0.40	2.30	7.85	6.83
1.05	0.40	2.21	15.40	10.34	1.05	0.40	5.65	11.52	11.41
1.40	0.40	5.23	20.30	15.12	1.40	0.40	10.92	15.18	16.79
1.75	0.40	10.22	25.20	20.57	1.75	0.40	18.44	18.84	22.97
2.10	0.40	17.65	30.10	26.69	2.10	0.40	28.56	22.51	29.94
2.45	0.40	28.03	35.00	33.47	2.45	0.40	41.60	26.17	37.71
2.80	0.40	41.84	39.90	40.91	2.80	0.40	57.90	29.84	46.27
3.15	0.40	59.57	44.80	49.03	3.15	0.40	77.81	33.50	55.63
3.50	0.40	81.72	49.70	57.81	3.50	0.40	101.65	37.16	65.79
		alla base d	ell'elevazioi			Sollecitazione	alla base de	ell'elevazione	
Azione assi				49.70	Azione assi				37.16
Taglio [kN/		Ish Iron/res1		57.81	Taglio [kN/		Mm/m1		65.79
iviornento b	aricentrico [ooitozioni o	81.72		aricentrico [kl <i>ndazione di</i> v			101.65
	Varifiaha	in condizior		yenu suna c	เสมสแล (11 TO		ane n condizioni	ciemicho	
	verilicile		ıı sıaucı ie			vernicie ii		aaniidie	
σ_1	σ_2	Tratto	Momento	Taglio	σ_1	σ_2	Tratto	Momento	Taglio
[kPa]	[kPa]	compresso	[kNm/m]	[kN/m]	[kPa]	[kPa]	compresso	[kNm/m]	[kN/m]
		[m]	1				[m]	-	
209.79	195.42	0.20	4.10	40.52	209.36	186.00	0.20	4.03	39.54
				enti sulla ci	abatta di foi	ndazione di m			
	Verifiche	in condizion	n statiche			Verifiche ii	n condizioni	sismiche	
σ_1	σ_2	Tratto	Momento	Taglio	σ_1	σ_2	Tratto	Momento	Taglio
[kPa]	[kPa]	compresso	[kNm/m]	[kN/m]	[kPa]	[kPa]	compresso	[kNm/m]	[kN/m]
		[m]	-				[m]	_	
37.39	166.69	1.80	-43.11	45.97	0.00	139.27	1.19	-95.99	-60.30
_		sione sulla s							
INR. II WOW	iento negativ	<i>r</i> o tende le fi	ore di estrad	dosso della f	ondazione				

Foglio 61 di 75

		Sollecitazio	oni (SLE) s	sul parame	ento e sull	a suola di f	ondazion		
		ze verticali s			Forze orizzontali statiche [kN/m]				
W_{p2}		b_{p20}	0.20	b _{p2B}	1.00	P _{AH1}	23.81	b _{AH1}	1.17
W_{p3}	0.00	b _{p30}	0.60	b _{p3B}	0.60	P _{AH2}	16.32	b _{AH2}	1.75
W_{p4}	35.00	b _{p40}	0.40	b _{p4B}	0.80			sismiche [kN	
W_{p5}		b _{p50}	0.40		0.80	F _{p2}	0.00	b _{p2}	1.17
W_{t1}	0.00		1.80	b _{p5B}	-0.60	F _{p3}	0.00		1.17
		b _{t1o}	1.50	b _{t1B}	-0.30		3.28	b _{p3}	1.75
W _{t2}		b _{t20}		b _{t2B}		F _{p4}		b _{p4}	
W _{t3}		b _{t3o}	0.60	b _{t3B}	0.60	F _{p5}	0.05	b _{p5}	3.53
P _{AV}	26.70	b _{AVo}	2.40	b _{AVB}	-1.20	F _{t1}	0.00	b _{t1}	3.50
W _{q2statico}		b _{qo}	1.50	b _{qB}	-0.30	F _{t2}	11.22	b _{t2}	1.75
W _{q2sis}	0.00	b_{qo}	1.50	b_{qB}	-0.30	F_{t3}	0.00	b _{t3}	2.33
	Forz	ze verticali s	ismiche [kN	/m]		P _{AH1(d=0)}	31.54	b _{AH1}	1.17
F _{vp2}	0.00	b_{p2o}	0.20	b _{p2B}	1.00	P _{AH2(d= 0)}	9.48	b _{AH2}	1.75
F_{vp3}	0.00	b_{p3o}	0.60	b _{p3B}	0.60	ΔP_{AHtsis}	8.27	$b_{\Delta AHt}$	2.33
F _{vp4}	1.64	b_{p40}	0.40	b _{p4B}	0.80	ΔP_{AHqsis}	1.95	$b_{\Delta AHq}$	1.75
F _{vp5}	0.02	b _{p50}	0.40	b _{p5B}	0.80				
F _{vt1}	0.00	b _{t10}	1.80	b _{t1B}	-0.60				
F _{vt2}		b _{t20}	1.50	b _{t2B}	-0.30				
F _{vt3}		b _{t30}		b _{t3B}	0.60	1			
' vt3	0.00	℃ t30	Solle	citazioni ad	enti sull'elev	azione			
	Verifiche	in condizion		orazioni ag			n condizioni	sismiche	
		asso di calco					10	44.110.10	
Altezza			Azione		Altezza			Azione	
paramento	Altezza	Momento	assiale	Taglio	paramento	Altezza	Momento	assiale	Taglio
[m]	sezione [m]	[kNm/m]	[kN/m]	[kN/m]	[m]	sezione [m]	[kNm/m]	[kN/m]	[kN/m]
0.70	0.40	0.45	7.50	4.22	0.70	0.40	2.30	7.85	6.83
0.70	0.40	0.45	7.50	4.22	0.70	0.40	2.30	7.85	6.83
1.05	0.40	1.52	11.00	7.04	1.05	0.40	5.65	11.52	11.41
1.40	0.40	3.61	14.50	10.34	1.40	0.40	10.92	15.18	16.79
1.75	0.40	7.04	18.00	14.11	1.75	0.40	18.44	18.84	22.97
2.10	0.40	12.17	21.50	18.36	2.10	0.40	28.56	22.51	29.94
2.45	0.40	19.32	25.00	23.09	2.45	0.40	41.60	26.17	37.71
2.80	0.40	28.84	28.50	28.29	2.80	0.40	57.90	29.84	46.27
3.15	0.40	41.07	32.00	33.97	3.15	0.40	77.81	33.50	55.63
3.50	0.40	56.33	35.50	40.12	3.50	0.40	101.65	37.16	65.79
		alla base d	ell'elevazioi			Sollecitazione	alla base d	ell'elevazion	
Azione assi				35.50	Azione assi				37.16
Taglio [kN/		Ich I no / no 1		40.12	Taglio [kN/		Nimo/res1		65.79
iviornento b	aricentrico [56.33		aricentrico [kl			101.65
	Varifiaha	in condizion		yenu suna c	iapatta di 10	ndazione di v	raue n condizioni	ciomicho	
	verniche		ıı saucrie			verniche li		aariidie	
σ_1	σ_2	Tratto	Momento	Taglio	σ_1	σ_2	Tratto	Momento	Taglio
[kPa]	[kPa]	compresso	[kNm/m]	[kN/m]	[kPa]	[kPa]	compresso	[kNm/m]	[kN/m]
		[m]					[m]		
147.13	137.26	0.20	2.88	28.44	209.36	186.00	0.20	4.03	39.54
				enti sulla ci	abatta di foi	ndazione di m			
	Verifiche	in condizion	i statiche			Verifiche ii	n condizioni	sismiche	
σ_1	σ_2	Tratto	Momento	Taglio	σ_1	σ_2	Tratto	Momento	Taglio
[kPa]	[kPa]	compresso	[kNm/m]	[kN/m]	[kPa]	[kPa]	compresso	[kNm/m]	[kN/m]
		[m]					[m]	-	
28.76	117.54	1.80	-29.40	-6.03	0.00	139.27	1.19	-95.99	-60.30
		sione sulla s							
mom וו .סויון	eno negativ	o tende le fil	ne di estrad	ussu della f	uluazone				



Foglio 62 di 75

· verifica capacità portante argilla

Sotto lo strato di terreno granulare su cui viene posata la fondazione del muro di sostegno oggetto della relazione è presente un profondo strato di argilla. Si esegue quindi una verifica a capacità portante di tale strato di terreno ipotizzando una diffusione a 45° del carico distribuito che scarica la ciabatta di fondazione.

carico sul piano di posa della fondazione q=157.02 kPa

B'= 1.19 m

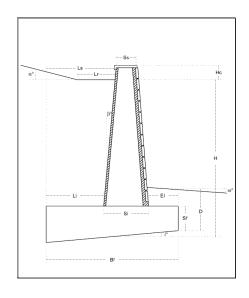
carico agente su terreno coesivo q= 36 kPa

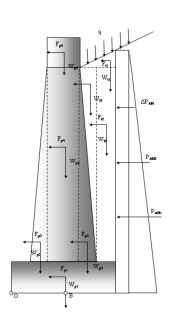
 $q=19 < q_{amm}=570kPa$

Verifica soddisfatta

Foglio 63 di 75

γ_{w}	peso di volume acqua		9.807	(kN/m^3)
γn	peso di volume naturale terreno		19.0	(kN/m ³)
γ _{sat}	peso di volume saturo del terreno		19.0	(kN/m ³)
cu	coesione non drenata		100.0	(kPa)
B'	larghezza della fondazione equivalente		6.59	(m)
Ľ	lunghezza della fondazione equivalente		1.00	(m)
D	profondità della fondazione da p.c. (può risultare opportuno essere conservativi, in relazione al "contributo del sovraccarico"; a tal fine si introduce il coefficiente " δ ")	l ÷	1.00	(m)
δ	percentuale dell'approfondimento D adottata nel calcolo		50	(%)
Z _W	profondità falda da p.c.		2.50	(m)
α	inclinazione della fondazione			
	(valore positivo: vedi foglio "figura")		0.0	(°)
ω	pendenza piano campagna			
	(valore positivo: vedi foglio "figura")		0.0	(°)
H/N	rapporto tra carico orizzontale e carico verticale		0.10	(-)
FS	coefficiente di sicurezza		2.00	(-)
fattori d	li capacità portante	N _c	5.14	
fattani d	li farma	N _γ	0.00	
fattori d	ii ioiilia	S _c	-1.64	
fattori d	li approfondimento	$s_{\scriptscriptstyle{\gamma}} \ d_{\scriptscriptstyle{c}}$	1.06	
	li inclinazione del carico	i _c	0.89	
	li inclinazione della fondazione	b _c	1.00	
	li inclinazione del piano campagna	g _c	1.00	
iation c	i iliolinazione dai piane campagna	9 c	1.00	
RISUL	TATI			
capaci	tà portante limite:			
compor	nente dovuta a N_γ		0	(kPa)
compor	nente dovuta alla coesione		1121	(kPa)
contribu	uto del sovraccarico		10	(kPa)
		q _{lim} =	1131	kPa
		4 111111 =		





Foglio 64 di 75

7.3.2. **GEO – sezione B**

Dati di carattere generale							
Definire tipologia muro (Ordinario [1] o Prefabb/Contraff [2])	1						
H = altezza [m]	5.95						
H _c = altezza cordolo [m]	0.05						
S _s = spessore superiore [m]	0.40						
S = spessore inferiore [m]	0.775						
L _i = scarpa interna inferiore [m]	2.23						
L _s = scarpa interna superiore [m]	2.23						
E _i = scarpa esterna inferiore [m]	0.500						
B _i = base fondazione [m]	3.50						
S _i = spessore fondazione [m]	0.50						
L _r = lunghezza tratto rettilineo su ciabatta [m]	0.00						
γ _c = Peso di volume calcestruzzo [kN/m³]	25						
Inclinazione del paramento interno β (°)	4.0						
Inclinazione della fondazione del paramento i (°)	0.0						
Inclinazione piano campagna a tergo dell'opera α (°)	0.0						
Parametri terreno di riempimento							
$\gamma_{\rm d}$ = Peso di volume [kN/m ³]	19						
φ' _k = angolo di attrito terreno di riempimento [°]	35						
c' _k = coesione [kPa]	0						
Parametri terreno di fondazione							
d _w = Dislivello tra base fondazione e falda [m]	0						
γ_d = Peso di volume [kN/m ³]	19						
ϕ'_{k} = angolo di attrito terreno di fondazione [°]	38						
c' _k = coesione [kPa]	0						
c _u = coesione non drenata [kPa]	0						

Foglio 65 di 75

Calcolo spinta

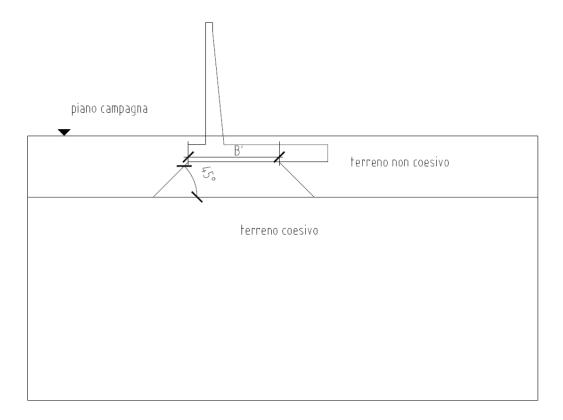
		Calcolo	lo spinta	
	Stabilità globale e dimensionamento fondazione		Dimensionamento elevazione	
	one del terrapieno [°]	0.0		0.0
	ne paramento [°] muro-terreno (per muri a T = 1)	1.00	β = inclinazione paramento [°] (δ/φ) = attrito muro-terreno (per muri a T = 1)	1.00
	muro-terreno (tra terreno ed elevazione)	0.60		0.60
	accarico permanente a tergo del muro [kPa]	0.0	q _{perm1} = sovraccarico permanente a tergo del muro [kPa]	0.0
	carico accidentale a tergo muro [kPa]	20.0		20.0
q _{acc sisma} = sov	raccarico accidentale a tergo muro con sisma [kPa]	10.0	q _{acc sisma} = sovraccarico accidentale a tergo muro con sisma[kPa]	10.0
$q_{perm2} = sovra$	accarico permanente su ciabatta [kPa]	0.0	q _{perm2} = sovraccarico permanente su ciabatta [kPa]	0.0
	carico accidentale su ciabatta [kPa]	0.0	q _{acc2} = sovraccarico accidentale su ciabatta [kPa]	0.0
	rraccarico accidentale su ciabatta con sisma[kPa]	0.0	qacc sisma= sovraccarico accidentale a tergo muro con sisma[kPa]	0.0
	rd-Rail (S/No)	no	Presenza Guard-Rail (S/No)	no
Strutture france		0.0	Strutture frangivento [m] Strutture a sbalzo [m]	0.0
	olume terreno [kN/m³]	19.0		19.0
	di attrito terreno di riempimento [°]	35.0	n 1	35.0
	di attrito terreno di riempimento [°]	35.0		35.0
	di attrito Muro-Terreno di riempimento [°]	35.0		35.0
δ'_d = angolo	di attrito Muro-Terreno di riempimento [°]	35.0	δ' _d = angolo di attrito Muro-Terreno di riempimento [°]	35.0
c' _k = coesione	e [kPa]	0.0	c' _k = coesione [kPa]	0.0
c' _d = coesion	e [kPa]	0.0	c' _d = coesione [kPa]	0.0
	ente di spinta attiva	0.283	a v ,	0.283
	efficiente di spinta attiva (δ/φ= 0)	0.298	4(4)	0.298
3 - ·	mica associabile)	0.150	93 (**** *******************************	0.150
Categoria di		C	7 (1.30
	di suolo = S _{SX} S _T)	1.25	, and an	1.25
	luzione accelerazione)	0.50		0.50
	te sismico orizzontale)	-0.047	II (Comments of the comments)	0.094
• (te sismico verticale)		V (Cara Cara Cara Cara Cara Cara Cara Car	
	one addizionale muro-terreno (evento sismico)	5.618	Tillax	5.618 0.300
uo	iente di spinta attiva sismica a presa in considerazione [%]	0.300	K _{as} = coefficiente di spinta attiva sismica Spinta passiva presa in considerazione [%]	0.300
	n presa in considerazione [79] nta passiva [kN/m]	0.00		0.00
r tourianto opii	Calcolo delle spinte	0.00	Calcolo delle spinte sull'elevazione	0.00
	z ₀ (STR) = altezza di autosostegno [m]	0.00		0.00
	z ₀ (GEO) = altezza di autosostegno [m]	0.00	z ₀ (GEO) = altezza di autosostegno [m]	0.00
	P _A (STR) = Risultante spinta attiva [kN/m]	183.45	PA (STR) = Risultante spinta attiva [kN/m]	57.80
	P _A (GEO) = Risultante spinta attiva [kN/m]	128.63	P _A (GEO) = Risultante spinta attiva [kN/m]	10.51
	P _A (SLE) = Risultante spinta attiva [kN/m]	128.63	P _A (SLE) = Risultante spinta attiva [kN/m]	10.51
	P _{AV} (STR)= Componente verticale [kN/m]	115.45	PAV (STR)= Componente verticale [kN/m]	99.30
Condizioni	P _{AV} (GEO)= Componente verticale [kN/m]	80.95	Condizion P _{AV} (GEO)= Componente verticale [kN/m]	69.55
statiche	P _{AV} (SLE) = Componente verticale [kN/m]	80.95	i statiche P _{AV} (SLE) = Componente verticale [kN/m]	69.55
	P _{AH1} (STR) = Spinta orizzontale terreno [kN/m]	103.38	PAH1 (STR) = Spinta orizzontale terreno [kN/m]	86.73
	P _{AH1} (GEO) = Spinta orizzontale terreno [kN/m]	73.84	P _{AH1} (GEO) = Spinta orizzontale terreno [kN/m]	61.95
	P _{AH1} (SLE) = Spinta orizzontale terreno [kN/m]	73.84	P _{AH1} (SLE) = Spinta orizzontale terreno [kN/m]	61.95
	P _{AH2} (STR) = Spinta orizzontale sovraccarico [kN/m]	45.70	() [41.86
	P _{AH2} (GEO) = Spinta orizzontale sovraccarico [kN/m]	30.47	ALZ 1 / 1	27.91
	P _{AH2} (SLE) = Spinta orizzontale sovraccarico [kN/m]	30.47	ALZ V	27.91
	z _{0sis} (STR) = altezza di autosostegno [m]	0.00	, , , , , , , , , , , , , , , , , , ,	0.00
	z _{Osis} (GEO) = altezza di autosostegno [m]	0.00	033 (0.00
	PAtsis (STR) = Spinta attiva sismica terreno [kN/m]	105.76	Alas (/ I	88.74
	P _{Atsis} (GEO) = Spinta attiva sismica terreno [kN/m]	105.76		88.74
	PAqsis (STR) = Spinta attiva sismica sovrac. [kN/m] P. (GEO) = Spinta attiva sismica sovrac. [kN/m]	17.87 17.87		16.37 16.37
Condizioni	P _{Aqsis} (GEO) = Spinta attiva sismica sovrac. [kN/m] PAH1(d/f= 0) (STR) = Spinta orizz. terreno [kN/m]	100.11	71,00	83.99
sismiche	$P_{AH1(B/b=0)}$ (GEO) = Spinta orizz. terreno [kN/m]	100.11		83.99
GG.110110	PAH2(d/f= 0) (STR) = Spinta orizz. sovraccarico [kN/m]	17.71		16.22
	$P_{AH2(B/\phi=0)}$ (GEO) = Spinta orizz. sovraccarico [kN/m]	17.71		16.22
	ΔP_{AHIsis} (STR)= Componente dinamica terreno [kN/m]	5.66		4.75
	ΔP _{Δ+Hois} (GEO)= Componente dinamica terreno [kN/m]	5.66		4.75
	ΔP_{AHosis} (STR) = Componente dinamica sovrac. [kN/m]	0.16		0.15
	ΔP _{AHosis} (GEO) = Componente dinamica sovrac. [kN/m]	0.16		0.15
	Azioni dovute all'urto		Azioni dovute all'urto	
Condizioni	T _u = Reazione orizzontale [kN/m]	0.000	i i	0.00
statiche	M _u = Momento flettente [kNm/m]	0.00		0.00
	Azioni dovute alle strutture frangivento	0.00	Azioni dovute alle strutture frangivento	0.00
Condizioni	T _f = Reazione orizzontale [kN/m]	0.00		0.00
statiche	M _f = Momento flettente [kNm/m]	0.00		0.00
Condition	Azioni dovute alle strutture a sbalzo	0.00	Azioni dovute alle strutture a sbalzo	0.00
Condizioni statiche	N _{sb} = Carico assiale [kN/m]	0.00	30 1 1	0.00
Saudie	M _{sb} = Momento flettente [kNm/m] N _{sb} = Carico assiale [kN/m]	0.00		0.00
Condizioni		0.00	Condizion M. – Momento flettente [kNm/m]	0.00
sismiche	M _{sb} = Momento flettente [kNm/m] T _{sb} = Forza orizzontale sismica [kN/m]	0.00	i sismiche $\frac{M_{sb} = \text{Niomento flettente [kNrn/m]}}{T_{sh} = \text{Forza orizzontale sismica [kN/m]}}$	0.00
Numero di co		0.00		0.00
	roprio [kN/m]	0.0	W _{sh} = Peso proprio [kN/m]	0.0
	agente sulla struttura [kN/m]	0.0	q _{sb} = Carico agente sulla struttura [kN/m]	0.0
		0.0	180	0.0

Foglio 66 di 75

Analisi dei carichi e verifiche globali (GEO)											
	Forze v	erticali s	tatiche [kl				ze orizzontali st	atiche [kN/m]			
W _{p1}	43.75	b _{p1o}	1.75	b _{p1B}	0.00	P _{AH1}	73.84	b _{AH1}	1.98		
W_{p2}	25.55	b _{p2o}	0.75	b _{p2B}	1.00	P _{AH2(q1)}	30.47	b _{AH2}	2.98		
W_{p3}	0.00	b _{p3o}	1.28	b _{p3B}	0.48	For	ze orizzontali sis	smiche [kN/m]			
W_{p4}	54.50	b _{p4o}	1.08	b _{p4B}	0.68	F _{p1}	4.10	b _{p1}	0.25		
W_{p5}	0.50	b _{p5o}	1.08	b _{p5B}	0.68	F_{p2}	2.40	b _{p2}	2.32		
W _{t1}	0.00	b _{t1o}	2.76	b _{t1B}	-1.01	F_{p3}	0.00	b_{p3}	2.32		
W _{t2}	230.40	b _{t20}	2.39	b _{t2B}	-0.64	F_{p4}	5.11	b _{p4}	3.23		
W _{t3}	0.00	b _{t3o}	1.28	b _{t3B}	0.48	F_{p5}	0.05	b _{p5}	5.98		
W _{q2statico}	0.00	b _{q2stato}	2.39	b _{q2statB}	-0.64	F _{t1}	0.00	b _{t1}	5.95		
P _{AV}	80.95	b _{AVo}	3.50	b _{AVB}	-1.75	F _{t2}	21.60	b _{t2}	3.23		
		erticali si	smiche [k	N/m]		F _{t3}	0.00	b _{t3}	4.13		
F _{vp1}	2.05	b _{p1o}	1.75	b _{p1B}	0.00	$P_{AH1(\delta=0)}$	100.11	b _{AH1}	1.98		
F _{vp2}	1.20	b _{p2o}		b _{p2B}	1.00	P _{AH2(δ= 0)(q1)}	17.71	b _{AH2}	2.98		
F _{vp3}	0.00	b _{p3o}	1.28	b _{p3B}	0.48	ΔP _{AHtsis}	5.66	b _{∆AH}	1.98		
F_{vp4}	2.55	b _{p4o}		b _{p4B}	0.68	$\Delta P_{AHqsis(q1)}$	0.16	$b_{\Delta AH}$	2.98		
F _{vp5}	0.02	b _{p5o}	1.08	b _{p5B}	0.68			statiche (EQU) [kN			
F _{vt1}	0.00	b _{t1o}	2.76	b _{t1B}	-1.01	P _{AV} (EQ U)	80.95	b _{AVo}	3.50		
F _{vt2}	10.80	b _{t20}	2.39	b _{t2B}	-0.64	P _{AH1} (EQU)	73.84	b _{AH1}	1.98		
F _{vt3}	0.00	b _{t3o}	1.28	b _{t3B}	0.48	P _{AH2(q1)} (EQU)	30.47	b _{AH2}	2.98		
			dizioni sta			Ve	rifiche in condiz				
Momento stabili			baltamen	iU	988.26	Momento stabilizzante	Verifica al riba	inamento	671.88		
Momento ribalta					237.10	Momento ribaltante [k			338.37		
F _s	anto parinti				4.17 > 1.5	F _s	***********		1.99 > 1.5		
· s	Ver	ifica a s	corrimente	0		· §	Verifica a sco	rrimento	1100 1 110		
Risultante carich				<u>- </u>	104.31	Risultante carichi orizzo			156.89		
Risultante carich	ni verticali [k	N/m]			435.65	Risultante carichi vertic	ali [kN/m]		338.07		
Angolo d'attrito					38.0	Angolo d'attrito terreno) [°]		38.0		
Coefficiente d'at	ttrito				1.00	Coefficiente d'attrito	1.00				
F _s					3.263 > 1.3	F _s			1.684 > 1.3		
	Sollecitazion			ndazione				entro fondazione	274.22		
Risultante delle					435.65 104.31	Risultante delle azioni Risultante delle azioni	•		371.32 156.89		
Momento barice			iano [Kiv]		11.22	Momento baricentrico		IO [KIV]	267.77		
Eccentricità [m]	oritioo [iu tii	vg			0.03	Eccentricità [m]	[ra viiv iii]		0.72		
B/6 [m]					0.58	B/6 [m]			0.58		
La sezione non	è parzializza	ıta				La sezione è parzializza	ata				
Distribuzione ter						Distribuzione tensioni o		9			
σ _{max} (smax scari					129.97	σ _{max} (smax scaricata s			240.60		
σ _{min} (smin scario			3]		118.97	σ _{min} (smin scaricata su	0.00				
Lunghezza tratto				-	3.50	Lunghezza tratto comp		IIII-	3.09		
Door di vol			arico limit	ie	0.00	Dogo di valuase e	Verifica al car		0.00		
γ _e = Peso di vol		iente [Ki	v/m²j		9.00	γ _e = Peso di volume e		n-j	9.00		
φ terreno di fono c' terreno di fono		2]			38.00 0.00	 φ terreno di fondazione c' terreno di fondazion 			38.00 0.00		
D Profondità pia					1.50	D Profondità piano for	<u> </u>		1.50		
Inclinazione pia					0.00	Inclinazione piano can			0.00		
B _{fondazione} [m]					3.50	B _{fondazione} [m]			3.50		
Eccentricità [m]					0.03	Eccentricità [m]			0.72		
B'= B-2e [m]					3.45	B'= B-2e [m]			2.06		
B/6 [m]		, ,			0.58	B/6 [m]	, , ,		0.58		
H _w = Altezza de	el cuneo <i>bac</i>	c [m]			3.54	H _w = Altezza del cune	o <i>bac</i> [m]	I	2.11		
				N _γ	78.02			N _γ	78.02		
				N _c	61.35			N _c	61.35		
				N _q	48.93			N _q	48.93		
				d _q	1.10			d _q	1.17		
				d _c	1.10			d _c	1.17		
				l _y	0.44			I _γ	0.19		
Coefficie	nti di capaci	ità porta	nte	lq :	0.58	Coefficienti di capa	acità portante	lq :	0.33		
				l _c	0.57 1.00			I _C	0.32		
	b _y					b _y			1.00		
				b _q	1.00			b _q	1.00		
	<u>b_c </u>							b _c	1.00		
				γ_{γ}	1.00			γ_{γ}	1.00		
				γ _q	1.00			γ _q	1.00		
Carico limite [kl	Pal			γс	953.18	Carico limite [kPa]		γ _c	396.51		
Carico sul piano		Pa]			126.33	Carico sul piano di po	sa [kPa]		180.45		
F _s	,				7.55 > 2.0	F _s			2.2 > 2.0		

Foglio 67 di 75

		Sollecitazio	oni (SLE) s	sul parame	ento e sull	la suola di t	fondazion	e	
	For	ze verticali s	statiche [kN/	/m]		Forze	/m]		
W_{p2}	25.55	b _{p2o}	0.75	b _{p2B}	1.00	P _{AH1}	61.95	b _{AH1}	1.82
W_{p3}	0.00	b _{p3o}	1.28	b _{p3B}	0.48	P _{AH2}	27.91	b _{AH2}	2.73
W_{p4}	54.50	b _{p4o}	1.08	b _{p4B}	0.68		orizzontali :	sismiche [kN	l/m]
W_{p5}	0.50	b _{p50}	1.08	b _{p5B}	0.68	F _{p2}	2.40	b _{p2}	1.82
W _{t1}	0.00	b _{t1o}	2.76	b _{t1B}	-1.01	F _{p3}	0.00	b _{p3}	1.82
W _{t2}	230.40	b _{t20}	2.39	b _{t2B}	-0.64	F _{p4}	5.11	b _{p4}	2.73
W _{t3}	0.00	b _{t30}	1.28	b _{t3B}	0.48	F _{p5}	0.05	b _{p5}	5.48
P _{AV}	69.55	b _{AVo}	3.50	b _{AVB}	-1.75	F _{t1}	0.00	b _{t1}	5.50
W _{q2statico}	0.00	b _{qo}	2.39	b _{qB}	-0.64	F _{t2}	21.60	b _{t2}	2.73
W _{q2sis}	0.00	b _{qo}	2.39	b _{qB}	-0.64	F _{t3}	0.00	b _{t3}	3.63
- · qzsis		ze verticali s			0.0 .		83.99	b _{AH1}	1.82
F _{vp2}			0.75	b _{p2B}	1.00	P _{AH1(d= 0)}	16.22	b _{AH2}	2.73
		b _{p20}	1.28		0.48	P _{AH2(d= 0)}	4.75		3.63
F _{vp3}	2.55	b _{p3o}	1.08	b _{p3B}	0.48	ΔP _{AHtsis}	0.15	b _{∆AHt}	2.73
F _{vp4}	0.02	b _{p40}	1.08	b _{p4B}	0.68	ΔP_{AHqsis}	0.10	$b_{\Delta AHq}$	2.13
F _{vp5}	0.02	b _{p5o}	2.76	b _{p5B}	-1.01				
F _{vt1}	10.80	b _{t1o}	2.70	b _{t1B}	-0.64				
F _{vt2}	0.00	b _{t20}	1.28	b _{t2B}	0.48				
F _{vt3}	0.00	b _{t3o}		b _{t3B}	enti sull'elev	n zi ono			
	Verifiche	in condizior		ciazioni ag	eriu suireiev 		n condizioni	sismiche	
		asso di calco				vermore n	10	GGIROIC	
Altezza			Azione	l	Altezza			Azione	
paramento	Altezza	Momento	assiale	Taglio	paramento	Altezza	Momento	assiale	Taglio
[m]	sezione [m]	[kNm/m]	[kN/m]	[kN/m]	[m]	sezione [m]	[kNm/m]	[kN/m]	[kN/m]
0.70	0.45	0.40	7.92	4.61	0.70	0.45	2.34	8.29	7.08
1.09	0.48	1.51	12.42	8.06	1.09	0.48	6.14	13.00	12.31
1.64	0.51	5.09	19.15	13.95	1.64	0.51	15.35	20.05	21.17
2.18	0.55	12.07	26.39	21.08	2.18	0.55	30.03	27.62	31.86
2.73	0.59	23.57	34.14	29.44	2.73	0.59	51.25	35.74	44.37
3.27	0.63	40.74	42.40	39.05	3.27	0.63	80.04	44.38	58.70
3.82 4.36	0.66 0.70	64.69 96.56	51.17 60.45	49.89 61.98	3.82 4.36	0.66 0.70	117.45 164.52	53.57 63.28	74.86 92.83
4.91	0.74	137.49	70.24	75.30	4.91	0.74	222.30	73.54	112.63
5.45	0.78	188.60	80.55	89.86	5.45	0.78	291.83	84.32	134.26
	ollecitazione					Sollecitazione			
Azione assi				80.55	Azione assi				84.32
Taglio [kN/				89.86	Taglio [kN/				134.26
Momento b	aricentrico [188.60		aricentrico [kl			291.83
	17 15: :			genti sulla c	iabatta di fo	ondazione di v			
	Verifiche	in condizior	n statiche	l		Verifiche i	n condizioni	sismiche	
σ_1	σ_2	Tratto	Momento	Taglio	σ_1	σ_2	Tratto	Momento	Taglio
[kPa]	[kPa]	compresso	[kNm/m]	[kN/m]	[kPa]	[kPa]	compresso	[kNm/m]	[kN/m]
		[m]					[m]		
174.08	159.91	0.50	21.17	83.50	240.60	201.63	0.50	28.45	110.56
	1/2.251			jenti sulla ci	abatta di foi	ndazione di m		alamat - I -	
	veritiche	in condizior Tratto	ıı statiche			veritiche ii	n condizioni Tratto	sismiche	
σ_1	σ_2		Momento	Taglio	σ_1	σ_2		Momento	Taglio
[kPa]	[kPa]	compresso	[kNm/m]	[kN/m]	[kPa]	[kPa]	compresso	[kNm/m]	[kN/m]
74.86	137.94	[m] 2.23	-49.91	-21.47	0.00	141.22	[m] 1.81	-222.03	-141.10
	valore di ten				0.00	111122	1.01	222.00	
	eno negativ				ondazione				



Foglio 68 di 75

· verifica capacità portante argilla

Sotto lo strato di terreno granulare su cui viene posata la fondazione del muro di sostegno oggetto della relazione è presente un profondo strato di argilla. Si esegue quindi una verifica a capacità portante di tale strato di terreno ipotizzando una diffusione a 45° del carico distribuito che scarica la ciabatta di fondazione.

carico sul piano di posa della fondazione q=180.45 kPa B'= 2.06

carico agente su terreno coesivo q= 68 kPa

 $q=68 < q_{amm}=568 \text{ kPa}$

Verifica soddisfatta

Foglio 69 di 75

γ _w	DI INGRESSO peso di volume acqua		9.807	(kN/m ³)
γn	peso di volume naturale terreno		19.0	(kN/m ³)
γ _{sat}	peso di volume saturo del terreno		19.0	(kN/m ³)
CU	coesione non drenata		100.0	(kPa)
B'	larghezza della fondazione equivalente		6.06	(m)
Ľ'	lunghezza della fondazione equivalente		1.00	(m)
D	profondità della fondazione da p.c. (può risultare opportuno essere conservativi, in relazione al "contributo del sovraccarico"; a tal fine si introduce il coefficiente " δ ")		1.50	(m)
δ	percentuale dell'approfondimento D adottata nel calcolo		50	(%)
\mathbf{z}_{w}	profondità falda da p.c.		22.50	(m)
α	inclinazione della fondazione			
	(valore positivo: vedi foglio "figura")		0.0	(°)
ω	pendenza piano campagna			
	(valore positivo: vedi foglio "figura")		0.0	(°)
H/N	rapporto tra carico orizzontale e carico verticale		0.10	(-)
FS	coefficiente di sicurezza		2.00	(-)
fattori d	di capacità portante	N _c	5.14	
		N_{γ}	0.00	
fattori d	di forma	S _c	2.21	
		S_γ	-1.42	
	di approfondimento	d _c	1.10	
	di inclinazione del carico	i _c	0.89	
	di inclinazione della fondazione	b _c	1.00	
rattori c	li inclinazione del piano campagna	g _c	1.00	
RISUL	-TATI			
capaci	tà portante limite:			
	nente dovuta a N _γ		0	(kPa)
	nente dovuta alla coesione		1107	(kPa)
contribu	uto del sovraccarico		14	(kPa)
		q _{lim} =	1121	kPa
		q _{amm} =	568	kPa

IG51-03-E-CV-RO-IR1H-0X-003-A00	
Relazione geologico geotecnica	

Foglio 70 di 75

7.4. Verifiche di stabilità globale

L'analisi delle condizioni di equilibrio sia nel caso statico che sismico, viene svolta con ricorso al codice di calcolo SLIDE vers. 5.0 (Rocsience s.r.l.).

E' stato utilizzato un modello semplificato basato sulla nota teoria dell'equilibrio limite nell'ambito della quale i terreni sono stati caratterizzati mediante un legame costitutivo rigido-plastico con criterio di rottura di Mohr-Coulomb (analisi in termini di sforzi efficaci).

Nel caso sismico, le forze di inerzia, orizzontali e verticali, applicati alle masse in condizioni sismiche sono valutate mediante i coefficienti k_h e k_v che valgono rispettivamente:

$$k_h = \frac{S\left(\frac{a_g}{g}\right)}{r}$$

$$k_{v} = 0.5 k_{h}$$

Con riferimento alla componente verticale, è stata applicata in entrambe le direzioni valutando la più sfavorevole.

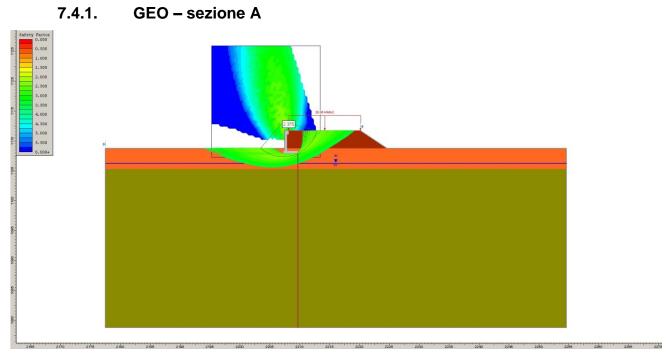


Figura 23 - Analisi di stabilità - SLU GEO

Come si può notare dalla figura soprastante, l'analisi statica svolta in Slide mostra come la verifica di stabilità globale della sezione di calcolo sia verificata, con un fattore di sicurezza minimo i 2.37.

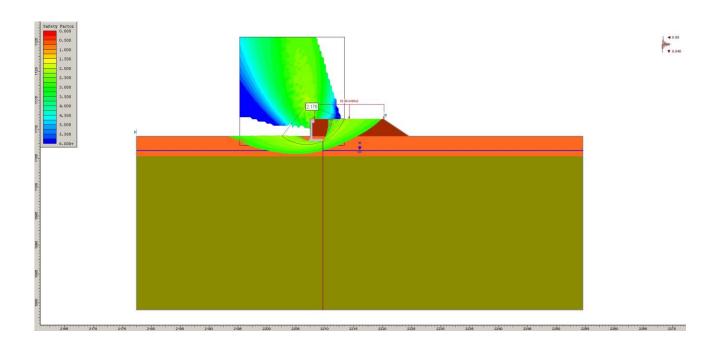


Figura 24 - Analisi di stabilità – SLU SISMA

Come si può notare dalla figura soprastante, l'analisi statica svolta in Slide mostra come la verifica di stabilità globale della sezione di calcolo sia verificata, con un fattore di sicurezza minimo i 2.17.

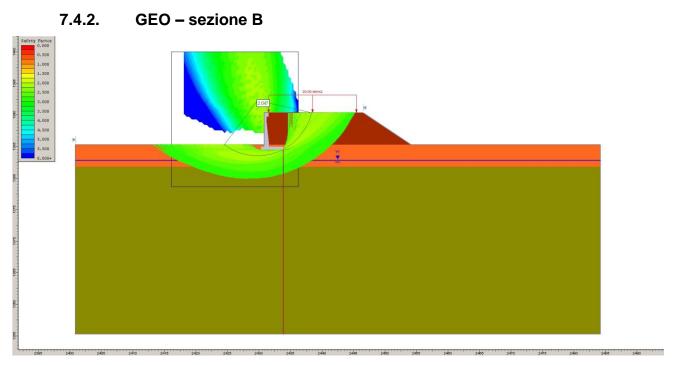


Figura 25 - Analisi di stabilità - SLU GEO

Come si può notare dalla figura soprastante, l'analisi statica svolta in Slide mostra come la verifica di stabilità globale della sezione di calcolo sia verificata, con un fattore di sicurezza minimo i 2.04.

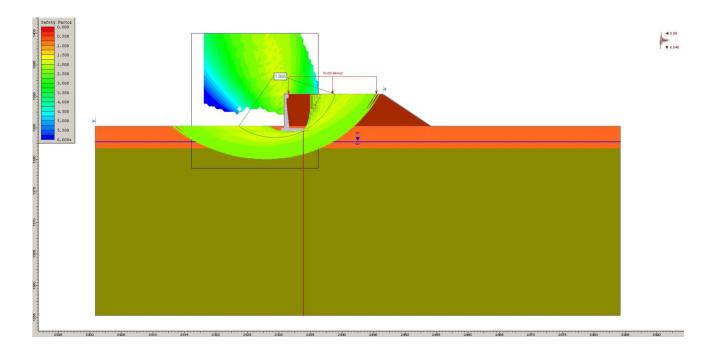


Figura 26 - Analisi di stabilità - SLU SISMA

Come si può notare dalla figura soprastante, l'analisi statica svolta in Slide mostra come la verifica di stabilità globale della sezione di calcolo sia verificata, con un fattore di sicurezza minimo i 1.85.

IG51-03-E-CV-RO-IR1H-0X-003-A00	Foglio
Relazione geologico geotecnica	73 di 75

7.5. Verifiche strutturali

Le verifiche strutturali di deformazione e fessurazione sono state svolte secondo il metodo degli stati limite.

Di seguito, per le sezioni esaminate, sono forniti i risultati delle analisi eseguite che indicano le armature necessarie da applicare al fine di garantire la stabilità strutturale dell'opera.

L'elevazione e la fondazione sono state verificate su una sezione rettangolare di base B=1.00 m ed altezza S_{Fsez} variabile a seconda della casistica in esame.

7.5.1. STR – sezione A

	Verifiche STR: Sezione tipo A –S _{Fsez} = 0.40 m – B = 1.0 m									
SL	Sezione di verifica	M _{max} [kNm/m]	N _{max} [kN/m]	Armatura	Fs	V _{max} [kN/m]	N _{max} [kN/m]	Fs	Armatura addizionale	
SLU	Fondazione (monte)	-95.99	-	1Ø12/10cm 1Ø12/20cm	1.47	60.30	-	2.44	-	
SLU	Fondazione (valle)	4.10	-	1Ø12/10cm 1Ø12/20cm	17.9	40.52	-	3.63	-	
SLU	Elevazione (incastro)	101.65	37.16	1Ø12/10cm 1Ø12/20cm	1.45	65.79	37.16	2.24	-	
SL	Sezione di	M _{max}	N _{max}	Armatura		Tensioni massime		Fessurazione		
02	verifica	[kNm/m]	[kN/m]	Amatara	$\sigma_{c,max}$	$\sigma_{f,max}$	\mathbf{w}_{d} \mathbf{w}_{1}			
					[MPa]	[MPa]	[mn	n]	[mm]	
	Fondazione (monte)	-29.40	-	1Ø12/10cm 1Ø12/20cm	1.8	80.6	Sez	Sezione non fessurata		
SLE	Fondazione (valle)	2.88	-	1Ø12/10cm 1Ø12/20cm	0.2	15.4	Sezione non fessurata		n fessurata	
	Elevazione (incastro)	56.33	35.50	1Ø12/10cm 1Ø12/20cm	3.5	139.3	Sezione non fessurata		n fessurata	
Armatura diffusa						renti Ø12/20 villi Ø10/6 al				

Tabella-10 Sollecitazioni e verifiche

IG51-03-E-CV-RO-IR1H-0X-003-A00
Relazione geologico geotecnica

Foglio 74 di 75

7.5.2. STR – sezione B

Verifiche STR: Sezione tipo B −S _{Fsez} = 0.775 m − B = 1.0 m										
SL	Sezione di verifica	M _{max} [kNm/m]	N _{max} [kN/m]	Armatura	Fs	V _{max} [kN/m]	N _{max} [kN/m]	Fs	Armatura addizionale	
SLU	Elevazione (incastro)	291.38	84.32	1Ø14/10cm 1Ø14/20cm	1.47	134.24	84.32	1.72	-	
	Sezione di	M_{max}	N _{max} [kN/m]	Armatura	Tensioni massime		Fessurazione			
SL	verifica	[kNm/m]			Aimatura	$\sigma_{c,max}$	$\sigma_{f,max}$	W	-	W ₁
					[MPa]	[MPa]	[mn	n]	[mm]	
	Elevazione	188.60	80.55	1Ø14/10cm	3 3	3.3	157.0	Sez	ione nor	n fessurata
	(incastro)	. 23.00	20.00	1Ø14/20cm	0.0	.07.0				
Armatura diffusa			Correnti Ø12/20cm Spilli Ø10/6 al m²							

Tabella-11 Sollecitazioni e verifiche

Verifiche STR: Sezione tipo B −S _{Fsez} = 0.50 m − B = 1.0 m									
SL	Sezione di verifica	M _{max} [kNm/m]	N _{max} [kN/m]	Armatura	Fs	V _{max} [kN/m]	N _{max} [kN/m]	Fs	Armatura addizionale
SLU	Fondazione (monte)	-222.03	-	1Ø14/10cm 1Ø14/20cm	1.10	141.10	-	1.24	-
SLU	Fondazione (valle)	30.14	-	1Ø14/10cm 1Ø14/20cm	4.16	118.82	-	1.47	-
SL	Sezione di	\mathbf{M}_{max}	N _{max}	Armatura	Tensioni massime		Fessurazione		azione
JL	verifica	[kNm/m]	[kN/m]	Aimatura	σ _{c,max} [MPa]	, .	w _o [mr	_	w₁ [mm]
SLE	Fondazione (monte)	-49.91	-	1Ø14/10cm 1Ø14/20cm	1.8	78.5	Sezione non fessurata		n fessurata
<u> </u>	Fondazione (valle)	21.17	-	1Ø142/10cm 1Ø14/20cm	0.97	65.2	Sezione non fessurata		n fessurata
Armatura diffusa Correnti Ø12/20cm Spilli Ø10/6 al m²									

Tabella-12 Sollecitazioni e verifiche

IG51-03-E-CV-RO-IR1H-0X-003-A00	Foglio
Relazione geologico geotecnica	75 di 75

- sezione in corrispondenza del tombino idraulico.

In corrispondenza della sezione in cui è presente il tombino idraulico di dimensioni 2.8m x 1.5m viene verificata la soletta superiore del muro di sostegno (di altezza residua pari a 3.25m) calcolando le spinte del terreno agenti su di essa e considerando uno schema statico appoggio-appoggio con lunghezza pari a 2.8m più 2m di franco. Si è dimensionata l'armatura sulla base del valore di momento massimo risultante.

Per la disposizione delle armature si rimanda agli elaborati grafici di riferimento.

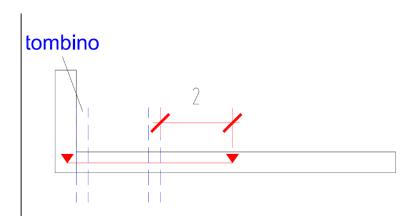


Figura 27 – schema statico considerato per il calcolo della sezione

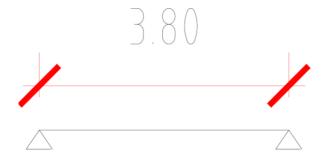


Figura 28 – dimensioni schema statico considerato per il calcolo della sezione

Verifiche STR: Sezione tipo B' –S _{Fsez} = 1.00 m – B = 0.4 m								
SL	Sezione di verifica	M _{max} [kNm/m]	N _{max} [kN/m]	Armatura				
SLU	mezzeria	-140	-	1Ø14/10cm 1Ø14/10cm	1.34			