COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

GENERAL CONTRACTOR

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

TRATTA A.V. /A.C. TERZO VALICO DEI GIOVI PROGETTO DEFINITIVO

INTERCONNESSIONE DI NOVI LIGUREALTERNATIVA ALLO SHUNT BARRIERE ANTIRUMORE NUOVA INTERCONNESSIONE LINEA STORICA DA PK 106+689 A PK 113+687.220

DIRETTORE DEI LAVORI

Consor									
Coc Ing. E.	iV Pagani								
A	DMMESSA LOTTO		C	TIPO [DOC.	OPERA/DISCI		PROGR.	REV.
Prog	ettazione :	1			T	1	Ī		
Rev	Descrizione	Redatto	Data	Verificato	Data	Progettista Integratore	Data	IL PROGETTI	STA
B00	Cambio tipologia barriere	CCR Ing.	21/04/15	COCIV	23/04/15	A.Palomba	24/04/15		
	Rev.Ist.	CCR Ing.		COCIV		A. Mancarella		COCII	
C00	A30100D09ISBA00000 01A del 17/06/2015		27/07/15		29/07/15	A	30/07/15		cgrot Votest
	Rev. prot.	AIE		COCIV		A. Mancarella		Ordine Ingagneri n. 6271 F	
D00	0002131/CTVA M.A.T.T.		27/07/16		27/07/16	A	27/07/16		
	n. Elab.: File: A301-00-D-CV-CL-BAVC-00-002-D00								

Fondazioni B.A. portali in c.a AREA 3 - Relazione di calcolo	

Foglio 4 di 67

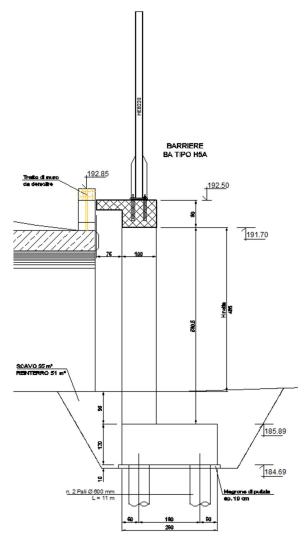
INDICE

INDIC	E	4
1.	INTRODUZIONE	6
2.	NORMATIVE DI RIFERIMENTO	8
2.1.	Normativa tecnica vigente	8
3.	METODO DI CALCOLO	10
4.	CARATTERISTICHE DEI MATERIALI IMPIEGATI	10
4.1.	Calcestruzzo Per Le Strutture	10
4.2.	Acciaio Per Le Strutture In Cemento Armato	11
4.3.	Micropali	11
5.	PARAMETRI GEOTECNICI TERRENO	12
6.	INDIVIDUAZIONE DEL CODICE DI CALCOLO	12
7.	MODELLAZIONE	13
8.	ANALISI DEI CARICHI	15
8.1.	Condizioni elementari di carico	15
8.2.	Combinazioni di carico	15
8.3.	Definizione dei carichi	16
8.4.	grafici esplicativi dei carichi	20
9.	PERICOLOSITA QSISMICA DI BASE DEL SITO E MODELLAZIONE SIS	SMICA23
9.1.	Azione sismica	23
10.	VERIFICHE GEOTECNICHE E SLU PALI Ø 600 E MICROPALI	24
10.1.	Sollecitazioni	25
10.2.	Portanza carichi verticali	29
10.3.	Calcolo del Momento di Plasticizzazione	30
10.4.	Calcolo del Carico Limite Orizzontale	31
10.5.	Sollecitazioni lungo il Palo	32
10.6.	Portanza carichi verticali micropali	38
10.1.	Capacità Portante Orizzontale Del Micropalo	39
11.	VERIFICHE STRUTTURALI	40
11.1.	Verifiche Trave di Fondazione	40
11.2.	Verifiche Trave in Elevazione	45
11.3.	Verifiche Setti	57

Foglio 5 di 67

11.4. INC	DENZA ARMATURE6	37
-----------	-----------------	----

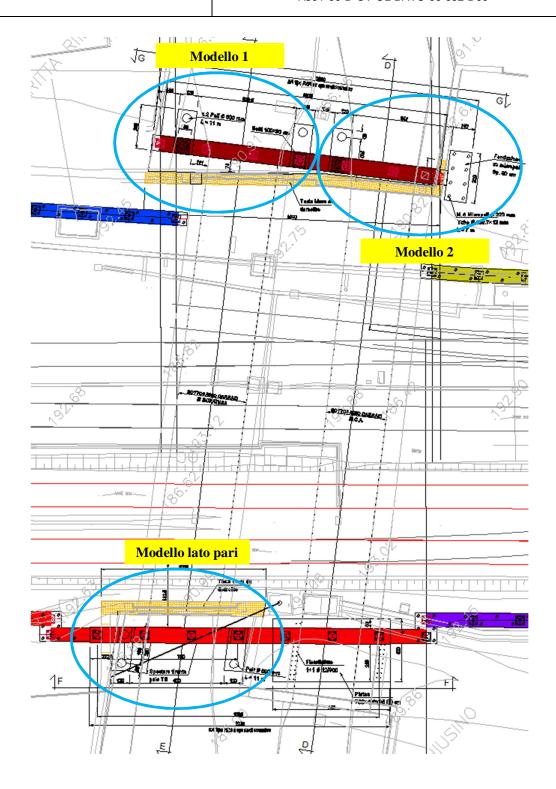
Foglio 6 di 67


1. INTRODUZIONE

Oggetto della presente relazione è il calcolo e la verifica delle strutture di fondazione BA con portali in c.a. di varia luce, da realizzare sulla tratta ferroviaria Milano-Genova, in corrispondenza del comune di Novi Ligure, per lønstallazione delle Barriere Antirumore.

Tale tipologia strutturale prevede løinstallazione delle barriere antirumore su travi in c.a. 1,00x0,80m, poggiante a sua volta su due setti 0,80x1,00m aventi interasse massimo di 7,50m. Tali setti poggiano su suole di fondazione di sezione 1,20x1,20m ciascuna avente 2 pali Ø600mm ad interasse di 1,80m.

Le suddette strutture saranno realizzate nell'area døintervento õ3ö, compresa fra le Pk111+110 e 111+128.


Al fine di identificare le strutture calcolate e verificate di seguito si riportano gli stralci degli elaborati grafici prodotti.

Foglio 7 di 67

Foglio 8 di 67

2. NORMATIVE DI RIFERIMENTO

Il progetto é redatto in conformità alle Normative e Leggi vigenti:

- [NT_1]. D.M. 11.03.1988 õNorme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazioneö
- [NT_2]. Circ. Dir. Centr. Tecn. N°97/81 õIstruzioni relative alle Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l\(\textit{e}\)esecuzione ed il collaudo delle opere di sostegni delle terre e delle opere di fondazione\(\textit{o}\).
- [NT_3]. D.M. 09.01.1996 õNorme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento normale e precompresso e per le strutture metallicheö
- [NT_4]. D.M. 16.01.1996 õNorme Tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi
- [NT_5]. Circolare 156 del 04.07.1996 õIstruzioni per l'applicazione delle Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichiö
- [NT_6]. D.M. 04/05/1990: "Aggiornamento delle norme tecniche per la progettazione, la esecuzione e il collaudo dei ponti stradali".
- [NT_7]. Ministero LL.PP. 25/02/1991: "Istruzioni relative alla normativa tecnica dei ponti stradali".
- [NT_8]. D.M. 16.01.1996 õNorme tecniche per le costruzioni in zone sismicheö
- [NT_9]. Ordinanza 3274 del 20/03/03 del Consiglio dei ministri ó Allegato 1 ó õCriteri per løindividuazione delle zone sismiche ó Individuazione, formazione e aggiornamento degli elenchi nelle medesime zoneö
- [NT_10]. Ordinanza 3274 del 20/03/03 del Consiglio dei ministri ó Allegato 4 ó õNorme Tecniche per il progetto sismico delle opere di fondazione e sostegno dei terreniö
- [NT_11]. Ordinanza n.3316 Modifiche ed integrazioni all'Ordinanza del Presidente del Consiglio dei Ministri n.3274 del 20.03.03
- [NT_12]. Raccomandazioni AICAP õAncoraggi nei terreni e nelle rocceö ed. Maggio 1993.
- [NT_13]. Istruzioni FF.SS. n°I/SC/PS-OM/2298 ó õSovraccarichi per il calcolo dei ponti ferroviari ó Istruzioni per la progettazione, løsecuzione e il collaudo.ö
- [NT_14]. Istruzioni FF.SS. 44a õCriteri generali e prescrizioni tecniche per la progettazione l\(\text{\end}\) esecuzione e il collaudo di cavalcavia e passerelle pedonali sovrastanti la sede ferroviaria\(\text{o}\).
- [NT_15]. Prescrizioni tecniche per la progettazione FF.SS. õManuale di progettazione Corpo stradaleö

2.1. NORMATIVA TECNICA VIGENTE

- [NT_16]. Norma UNI EN 206-1:2006 õCalcestruzzo. Parte 1: Specificazione, prestazione, produzione e conformitàö
- [NT_17]. UNI EN 197-1 giugno 2001 ó õCemento: composizione, specificazioni e criteri di conformità per cementi comuni

Foglio 9 di 67

- [NT_18]. UNI EN 11104 marzo 2004 ó õCalcestruzzo: specificazione, prestazione, produzione e conformitàö, Istruzioni complementari per løapplicazione delle EN 206-1
- [NT_19]. Linee guida sul calcestruzzo strutturale 5 aprile 2013- Presidenza del Consiglio Superiore dei Lavori Pubblici Servizio Tecnico Centrale
- [NT_20].UNI EN 1991-1-5:2004 õEurocodice 1 ó Azioni sulle strutture ó Azioni in generale ó Azioni termicheö
- [NT_21]. UNI EN 1992-1-1:1993 õEurocodice2 ó Progettazione delle strutture in calcestruzzo ó Parte 1-1 ó Regole generali e regole per edificiö
- [NT_22].UNI EN 1993-1-1:2005 õEurocodice 3 ó Progettazione delle strutture in acciaio ó Parte 1-1 ó Regole generali e regole per edificiö
- [NT_23]. UNI EN 1997-1:1997 õEurocodice 7 ó Progettazione geotecnica ó Parte 1: Regole generaliö
- [NT_24]. Raccomandazioni AICAP õAncoraggi nei terreni e nelle rocceö ed. giugno 2012.
- [NT_25]. Raccomandazioni AGI õRaccomandazioni sui pali di fondazione ed. dicembre 1984.
- [NT_26]. Norma UNI EN 10025 ó 2005 ó oProdotti laminati a caldo di acciai per impieghi strutturali
- [NT_27]. DM 16 Gennaio 1996 ó õNorme tecniche perle costruzioniö
- [NT_28]. Istruzioni RFI RFI/DTC/INC/PO/SP/IFS/001/A ó 21 dicembre 2011 ó õSpecifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario.ö

Foglio 10 di 67

3. METODO DI CALCOLO

Il metodo di calcolo e di verifica utilizzato è quello degli stati limite (SLU-SLE). I risultati dell'analisi strutturale condotta per le singole condizioni di carico, moltiplicati da opportuni coefficienti e combinati in casi di carico, definiscono le sollecitazioni di calcolo delle membrature da verificare.

Le opere oggetto della presente relazione sono state progettate e calcolate secondo i metodi della scienza delle costruzioni, adottando per le verifiche il criterio degli stati limite (S.L.).

I criteri generali di sicurezza e le azioni di calcolo sono stati assunti in conformità con il D.M. 16.01.96 ó õNorme tecniche per le costruzioniö.

Le caratteristiche dei materiali sono state assunte in conformità con il D.M. 14.01.2008 ó õNorme tecniche per le costruzioniö e relativa circolare esplicativa (Circolare 02.02.2009 n. 617/C.S.LL.PP.), nonché alle Istruzioni RFI/DTC/INC/PO/SP/IFS/001/A.

4. CARATTERISTICHE DEI MATERIALI IMPIEGATI

Con riferimento alle normative citate le strutture sono state verificate adottando i seguenti parametri di resistenza dei materiali.

4.1. CALCESTRUZZO PER LE STRUTTURE

CALCESTRUZZO FONDAZIONI CLASSE C25/30 (RCk≥30N/mm²)

Classe di esposizione: XC2 (UNI EN 206-1)

Copriferro nominale min. per strutture interrate = 30 mm (ricoprimento armature più esterne)

Classe di consistenza: S3 (UNI EN 206-1)

Massima dimensione aggregatiÖ32 mm

CALCESTRUZZO ELEVAZIONI CLASSE C32/40 (RCK≥40 N/MM²)

Classe di esposizione: XC4 (UNI EN 206-1)

Copriferro nominale min. per strutture in elevazione = 40mm (ricoprimento armature più esterne)

Classe di consistenza: S4 (UNI EN 206-1)

Massima dimensione aggregatiÖ32 mm

Foglio 11 di 67

CALCESTRUZZO PER MAGRONI CLASSE C12/15 (RCK≥15 N/MM²)

Resistenza media \geq 15 N/mm²

Contenuto minimo cemento: 150 kg/m³

CALCESTRUZZO PALI CLASSE C25/30 (RCK≥30 N/MM²)

Classe di esposizione: XC2 (UNI EN 206-1)

Copriferro nominale min. per strutture interrate = 60 mm

(nel caso di pali trivellati) 60 mm

Classe di consistenza: S4 (UNI EN 206-1)

Massima dimensione aggregatiÖ32 mm

4.2. ACCIAIO PER LE STRUTTURE IN CEMENTO ARMATO

Per løacciaio di armatura è stato utilizzato un acciaio B 450 C avente le seguenti caratteristiche.

f_{v,k}= 450 MPa(resistenza caratteristica di snervamento #11.3.2 ó NTC08);

 $f_{t,k} = 540 \text{ MPa}$ (resistenza caratteristica di rottura#11.3.2 ó NTC08);

 $\gamma_s = 1.15$ (coefficiente di sicurezza #4.1.2.1.1.3 ó NTC08).

4.3. MICROPALI

Rapporto A/C Max in pesoí í í í í í í í í í í ...í 0.5

Acciaio tubi S355 JR

Foglio 12 di 67

5. PARAMETRI GEOTECNICI TERRENO

Per le caratteristiche geo meccaniche del terreno si assumono i parametri dedotti dalla relazione geologica del Dott. Geologo Anselmi.

LITOLOGIA TRATTO A:

- 0,0 ÷5,00 Limo Argilloso debolmente sabbioso di colore rossiccio con abbondanti inclusi eterogenei a spigoli vivi ed arrotondati
- 5,00 Ghiaia eterogenea ed etero metrica da sub angolare a sub arrotondata in matrice limoso sabbiosa di colore nocciola

PARAMETRI GEOTECNICI:

Litologia	γ	С	Ø	Е
	(t/m^3)	(Kg/cm ²)	(°)	(Kg/cm ²)
Limo argilloso Debolmente sabbioso	1.8	0.2	25	200
Ghiaia	1.9	0.0	33	400
Argilla marnosa marne argillose	2.1	2.0	35	2000

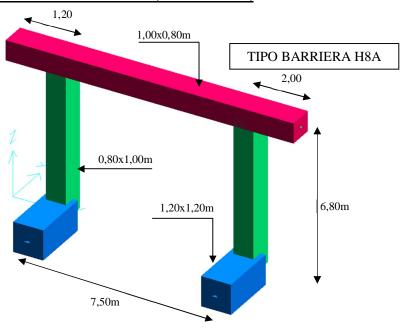
6. INDIVIDUAZIONE DEL CODICE DI CALCOLO

Norme C.N.R.-U.N.I 10024/86: informazioni sul codice di calcolo.

Codice DOLMENWIN, versione 13, prodotto, distribuito e assistito dalla Soc. CDM DOLMEN, con sede in Torino, via Drovetti 9/F.

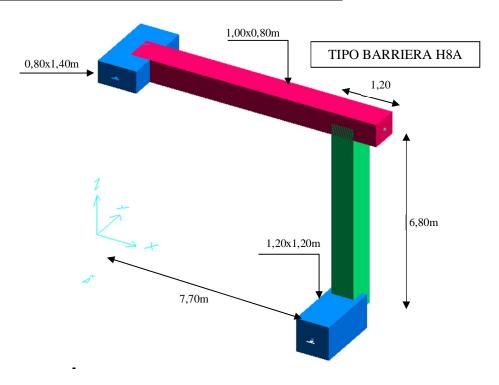
Il codice effettua l'analisi elastica lineare di strutture tridimensionali con nodi a sei gradi di libertà. Gli elementi considerati sono di tipo guscio, sia rettangolare che triangolare, aventi comportamento membrana e piastra. I carichi possono essere applicati sia ai nodi, come forze o coppie concentrate, sia sugli elementi guscio come carichi d'area. I vincoli esterni sono definiti da sei costanti di rigidezza elastica.


L'affidabilità del codice di calcolo è garantita dall'esistenza di un ampia documentazione di supporto, che riporta, per una serie di strutture significative, i confronti tra le analisi effettuate con il codice e quelle effettuate con codici di confronto (HERCULES della Soc. SOCOTEC - Parigi). La presenza di un modulo CAD per l'introduzione dei dati permette la visualizzazione dettagliata degli elementi e dei carichi introdotti. E` possibile ottenere rappresentazioni grafiche di deformate, sollecitazioni e stati di tensione della struttura.


7. MODELLAZIONE

I modelli della suddette tipologie strutturali, sono stati effettuati con elementi finiti monodimensionali (modello ad aste), ciascuno con la propria sezione reale.

MODELLO IN 3D CON GLI ELEMENTI ESTRUSI (LATO PARI)



MODELLO 1 IN 3D CON GLI ELEMENTI ESTRUSI (LATO DISPARI)

MODELLO 2 IN 3D CON GLI ELEMENTI ESTRUSI (LATO DISPARI)

Foglio 15 di 67

8. ANALISI DEI CARICHI

8.1. CONDIZIONI ELEMENTARI DI CARICO

Nella seguente tabella si riportano le condizioni di carico analizzate nel modello F.E.M.

8.2. COMBINAZIONI DI CARICO

NOME	DESCRIZIONE	VERIFICA	TIPO	CONDIZ. INSERITE CASI INSERITI
				Num. Coeff. Segno Num. Coeff.
1	1.4PP+1.4Pa+1.5S	S.L.U.	somma 	1 1.400 + 2 1.400 + 3 1.500 ±
2	1.0PP+1.0Pa+1.5S	S.L.U.	somma 	1 1.000 + 2 1.000 + 3 1.500 ±
3	SISMAX SLU	nessuna	somma	4 1.500 ±
4	SISMAY SLU	nessuna	somma	5 1.500 ±
5	SLU con SISMAX PRINC 	S.L.U.	somma 	1 1.000 + c3 1.000 2 1.000 + c4 0.300
6	SLU con SISMAY PRINC 	S.L.U.	somma 	1 1.000 + c4 1.000 2 1.000 + c3 0.300

Si riporta una breve descrizione dei casi di carico considerati:

caso 1: combinazione a Stato Limite Ultimo, che considera i pesi propri delle strutture, carichi permanenti dovuti al peso delle barriere ed i carichi variabili relativi al vento e alla sovraspinta dovuta al passaggio del treno, senza considerare l\(\textit{gazione} \) del sisma;

caso 2: combinazione a Stato Limite Ultimo, che considera i pesi propri delle strutture, carichi permanenti dovuti al peso delle barriere considerate come carichi favorevoli ed i carichi variabili relativi al vento e alla sovraspinta dovuta al passaggio del treno, senza considerare l\(\text{\text{gazione}} \) del sisma;

caso 3 e 4: combinazioni delle azioni sismiche, utilizzate nei casi di carico sismici effettivi 4 e 5;

caso 5 e 6: combinazioni a Stato Limite Ultimo, che considerano i normali carichi (pesi propri, permanenti relativi alle barriere) e le azioni sismiche, con una direzione principale del sisma.

Foglio 16 di 67

8.3. DEFINIZIONE DEI CARICHI

Di seguito vengono definiti tutti i carichi riportati al paragrafo precedente.

• õPeso_Proprioö

Il peso proprio degli elementi in elevazione ed in fondazione si è ricavato direttamente dal programma di calcolo utilizzando un valore di peso specifico del cemento armato pari a:

$$\gamma = 25 \text{ kN/m}^3$$
.

Tutti i carichi definiti õpeso proprioö partecipano al carico sismico come masse sismiche.

• õPp_pannelliö

In tale combinazione viene contemplato il peso dei pannelli sia in c.a. sia in acciaio delle barriere ed anche l'incidenza dei montanti costituiti da profili in acciaio.

Tali carichi sono stati desunti dai documenti sopra citati, di cui si riporta uno stralcio di seguito.

 $Pp_{Pannelli\ acciaio} = 50 \text{ daN/m}^2$

 $Pp_{Pannelli c.a.} = 350 da N/m^2$

 $Pp_{Profili} = 20 daN/m$

In definitiva si sono desunti i pesi dei pannelli dall'elaborato fornito da COCIV e intitolato "Montanti Metallici per Barriere Antirumore"con codifica A301-00-D-CV-CL-BAVC00-00X-A.

Barriera	z	N
Darriera	[m]	[kN]
НО	3.0	22.50
H1	3.5	23.25
H2	4.0	24.00
НЗА	4.5	24.75
H4A	5.0	25.50
H5A	5.5	26.25
H6A	6.0	27.00
H7A	6.5	27.75
H8A	7.0	19.00
H9A	7.5	19.50
H10	8.0	20.00

Estratto dalla relazione: Montanti Metallici per Barriere Antirumore

Foglio 17 di 67

Le considerazioni, i calcoli e le verifiche allegate di seguito risultano valide anche nel caso in cui i pannelli di acciaio vengano sostituiti con dei pannelli di vetro stratificato tipo 8+1.52+8 mm.

Tele sostituzione, infatti, non comporta aumenti di carico rispetto alle considerazioni citate sopra in quanto il peso dei paraventi in vetro risulta minore di quelli in acciaio come mostrato nei calcoli sotto riportati:

• õAzione del Ventoö

_Il carico del vento secondo il D.M. 16-01-1996 è il seguente:

$$p=q_{ref}\cdot Ce\cdot Cp\cdot Cd = pressione del vento$$

$$q_{ref}=v_{ref}^2/1.6=391\ N/m^2$$
, pressione cinetica di riferimento $v_{ref}=v_{ref,0}=25\ m/s$, per $a_s< a_0$, velocità di riferimento del vento $a_s=200\ m$, altitudine sul livello del mare del sito Zona 1 (Piemonte,...)

$$v_{ref.0}=25 \text{ m/s}; a_0=1000 \text{ m}; a_s < a_0$$

$$\begin{array}{c} \text{Ce}(z) = & k_r^2 \cdot \text{Ct} \cdot \ln(z/z_0) \ a [7 + \text{Ct} \cdot \ln(z/z_0)] \ \text{per} \ z > = z_{min} \\ \text{Ce}(z) = & \text{Ce}(z_{min}) \ \text{per} \ z < z_{min} \\ \end{array} \end{array} \right\} \quad \text{Coefficiente di esposizione}$$

Classe di rugosità del terreno C, Aree con ostacoli diffusi

Categoria III, sito distante oltre 30 Km dalla costa, altitudine <500m

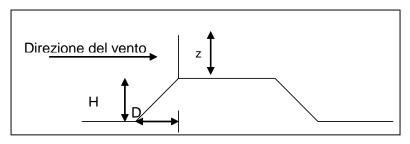
Calcolo coefficiente di topografia

$$C_t=1+\beta \gamma [1-0.1(x/H)]$$

$$\beta$$
=0.5 per z/H<=0.75

$$\beta$$
=0.8-0.4(z/H) per 0.75

$$\beta$$
=0 per z/H>2


$$\gamma = 0 \text{ per H/D} < = 0.10$$

$$\gamma = 1/0.20(H/D-0.10)$$
 per $0.10 < H/D < = 0.30$

$$\gamma = 1 \text{ per H/D} > 0.30$$

Foglio 18 di 67

- x, distanza tra ciglio rilevato e barriera
- H, altezza rilevato
- D, larghezza scarpata
- z, altezza barriera

Ipotizzando le condizioni peggiori

(H=8m, D=12m, x=0, z=6.00m), si ottiene:

$$z/H = 0.75$$
 $\rightarrow \beta = 0.5$

$$H/D = 0.66$$
 $\rightarrow \gamma = 1$

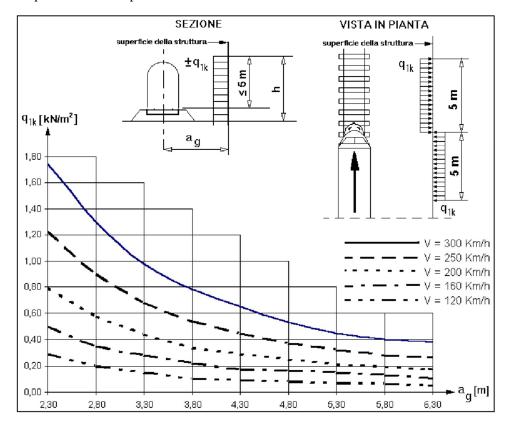
Quindi

$$C_t=1.5$$

$$Ce = 3.23$$

 $Cp = 1.2 \ coefficiente \ di \ forma \ per \ pensiline \ con \ \alpha{>}35^{\circ}$

$$Cd = 1.0$$


$$p = q_{ref}\text{-}Ce\text{-}Cp\text{-}Cd = 391\cdot3.57\cdot1.2\cdot1 = 1675 \text{ N/m}^2$$

Foglio 19 di 67

• õSovraspinta_Trenoö

In tale combinazione viene contemplata l\(eazione di sovraspinta dovuta al passaggio del treno, considerando una velocit\(\) massima dei convogli di 160 km/h.

Læffetto aerodinamico associato al passaggio del convoglio ferroviario è stato valutato ipotizzando la situazione più gravosa possibile, facendo riferimento alla seguente figura ricavata dalla struzione FS õSovraccarichi per il calcolo dei ponti ferroviariö.

Valori caratteristici delle azioni q_{1k} per superfici verticali parallele al binario

 q_{1k} = $f(a_g, v)$ = 0.20kN/m² per treni aerodinamici ETR

 $a_g = 4.30$ m, distanza asse binario-barriera minima

v = 160 Km/h, velocità massima per treni aerodinamici ETR,

 $p_a=q_{1k} \times k_1=0.20 \text{kN/m}^2$ per treni aerodinamici ETR

 $k_1 = 1.00$ per treni aerodinamici ETR,

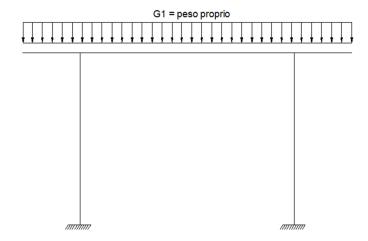
Foglio 20 di 67

• <u>Vento + sovraspinta treno</u>

La velocità del treno nel tratto considerato è $V_{max} \le 160$ km/h. Løazione orizzontale da applicare alle barriere antirumore, sia per le verifiche statiche che per le verifiche a deformazione, verrà assunta come valore statico pari al massimo tra 1.50 kN/m^2 e la somma delløazione dovuta al vento e agli effetti aerodinamici associati al passaggio dei convogli ferroviari.

$$q_h = p + p_{a,max} = 1.675 + 0.20 = 1.875 \text{ kN/m}^2$$

La pressione che si assume per le verifica statiche e di deformazione sarà pari a 1.90 kN/m².

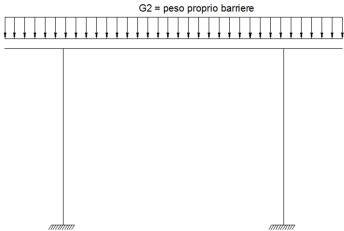

• Carichi sismici

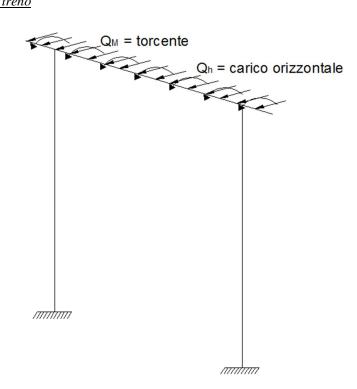
Vedi Capitolo 9 - Pericolosità sismica di base del sito e modellazione sismica

8.4. GRAFICI ESPLICATIVI DEI CARICHI

Peso proprio

Il peso proprio è stato attribuito a tutti gli elementi in c.a.

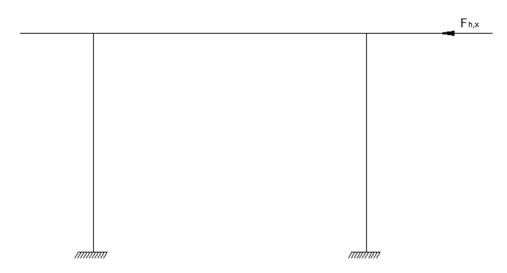


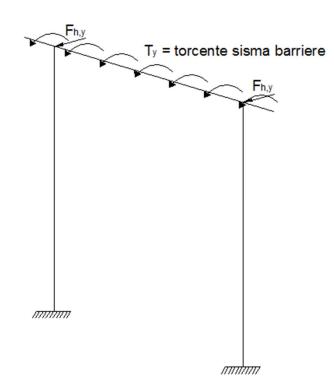


Foglio 21 di 67

• <u>Peso proprio pannelli</u>

• <u>Vento + sovraspinta treno</u>





Foglio 22 di 67

• <u>sisma x</u>

• <u>sisma y</u>

Foglio 23 di 67

9. PERICOLOSITA' SISMICA DI BASE DEL SITO E MODELLAZIONE SISMICA

9.1. AZIONE SISMICA

Le azioni sismiche sono state considerate tramite unganalisi statica con i parametri di seguito esposti.

dove:

 $\boxed{2}$ $\boxed{2}$ $\boxed{\frac{200}{1000}} = 0.04$ Coefficiente di intensità sismica

S = 6 Grado di sismicità

R = 1 Coefficiente di risposta relativo alla direzione considerata

I = 1,2 Coefficiente di protezione sismica

= 1.3 Coefficiente di fondazione
= 1 Coefficiente di struttura

 $W = P_{proprio} + Permanenti = 65566 + 10972 = 76538 daN$ Peso complessivo delle masse sismiche

 $2 \ 2 \ 0.0624 \cdot 76538 \ 2 \ 4776 \ 222$

Per il sisma in direzione Y si è calcolato il momento torcente dovuto all'effetto del sisma sulla barriera.

- MODELLO LATO PARI (barriere H5A)

W_{barriera} = 945 daN

$$F_{h,y} = W * K_h = 945 * 0.0624 = 59 \ daN$$

$$M_t = F_{h,v} * (H_{bar} + (H_{trave}/2)) / 2 = 59 * (5.5+0.4) / 2 = 174 daNm$$

- MODELLO 1 E 2 LATO DISPARI (barriere H8A)

W_{barriera} = 1053 daN

$$F_{h,y} = W * K_h = 1053 * 0.0624 = 65.7 daN$$

$$M_t = F_{h,v} * (H_{bar} + (H_{trave}/2)) / 2 = 65.7 * (7 + 0.4) / 2 = 243 daNm$$

Foglio 24 di 67

10. VERIFICHE GEOTECNICHE E SLU PALI Ø 600 E MICROPALI

Nel seguente paragrafo si riportano le verifiche di portata verticale condotte sui pali \emptyset 600 mm e sui micropali \emptyset 220mm .

Tali verifiche sono state eseguite seguendo løApproccio 2 (A1+M1+R2), secondo quanto previsto dall' UNI EN 1997 "Eurocodice 7".

Si considerano pertanto le combinazioni dei carichi a SLU (A1) e i parametri geotecnici ridotti dei coefficienti γ_M dell'insieme M1, visibili nei prospetti A.3 e A.4 dell'Eurocodice 7 riportati sotto.

prospetto A.3 Coefficienti parziali sulle azioni (γ_E) o sugli effetti delle azioni (γ_E)

Azione		Simbolo	Insieme	
			A1	A2
Permanente	Sfavorevole	γG	1,35	1,0
	Favorevole		1,0	1,0
Variabile	Sfavorevole		1,5	1,3
	Favorevole	γ ₀	0	0

prospetto A.4 Coefficienti parziali sui parametri del terreno (7M)

Parametro del terreno	Simbolo	Insie	eme			
		M1	M2			
Angolo di resistenza al taglio ^{a)}	$\gamma_{oldsymbol{arphi}'}$	1,0	1,25			
Coesione efficace	Ϋ́c'	1,0	1,25			
Resistenza al taglio non drenata	γ _{cu}	1,0	1,4			
Resistenza non confinata	γ _{qu}	1,0	1,4			
Peso dell'unità di volume	γ_{γ}	1,0	1,0			
a) Questo coefficiente si applica a tan φ '.						

I valori di calcolo della resistenza si ottengono a partire dai valori caratteristici applicando i coefficienti parziali γ_R del prospetto A.7 dell' UNI EN 1997 "Eurocodice 7" qui di seguito riportato:

 $_{
m Detto}$ A.7 Coefficienti parziali sulla resistenza ($\gamma_{
m R}$) per pali trivellati

Resistenza	Simbolo		Insieme				
		R1	R2	R3	R4		
Base	γ ₆	1,25	1,1	1,0	1,6		
Laterale (compressione)	γ_{s}	1,0	1,1	1,0	1,3		
Totale/combinata (compressione)	Ή	1,15	1,1	1,0	1,5		
Laterale in trazione	∕∕s;t	1,25	1,15	1,1	1,6		

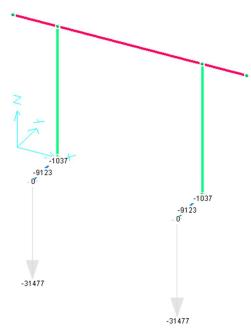
Foglio 25 di 67

La resistenza caratteristica è ottenuta con metodo empirico che prevede lαutilizzo dei risultati di prove in sito applicando alle resistenze i fattori di correlazione ξ deducibili nel prospetto A.10 qui di seguito riportato:

prospetto A.10 Fattori di correlazione ζ per ricavare i valori caratteristici da risultati di prove sul sottosuolo (n - numero di profili di prova)

ζper n =	1	2	3	4	5	7	10
<i>5</i> ₃	1,40	1,35	1,33	1,31	1,29	1,27	1,25
<u>5</u> 4	1,40	1,27	1,23	1,20	1,15	1,12	1,08

I valori delle capacità portanti di calcolo andranno confrontati con il massimo valore del carico verticale di calcolo sollecitante.

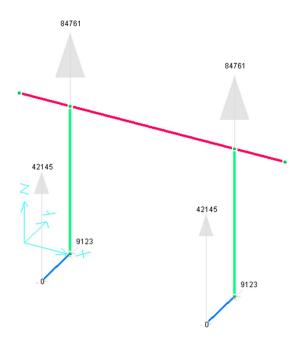

$N_{Rd} > N_{Sd}$

10.1. SOLLECITAZIONI

Si riportano le reazioni alla testa dei pali per tutti i modelli dell'Area 3 e calcolate per i casi di carico n. 1, 2, 5 e 6.

10.1.1. Modello lato pari

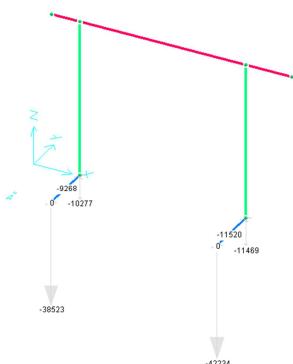
Reazioni minime


 $N_{Sd,min} = 315 \text{ kN (trazione)}$

 $H_{Sd} = 91/2pali = 45.5 \text{ kN (taglio orizzontale)}$

Foglio 26 di 67

Reazioni massime

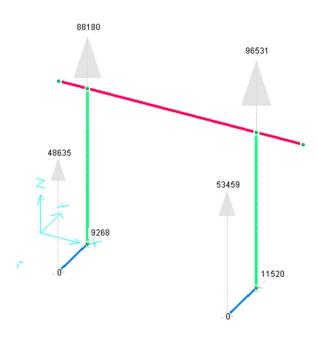


 $N_{Sd,max} = 848 \text{ kN (compressione)}$

 $H_{Sd} = 91 / 2pali = 45.5 \text{ kN (taglio orizzontale)}$

10.1.2. Modello 1 lato dispari

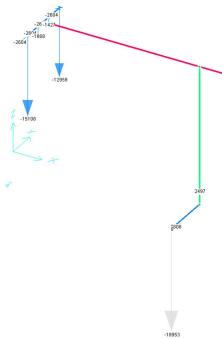
Reazioni minime


 $N_{Sd,min} = 422 \text{ kN (trazione)}$

 $H_{Sd} = 115 / 2pali = 57.5 \text{ kN (taglio orizzontale)}$

Foglio 27 di 67

Reazioni massime



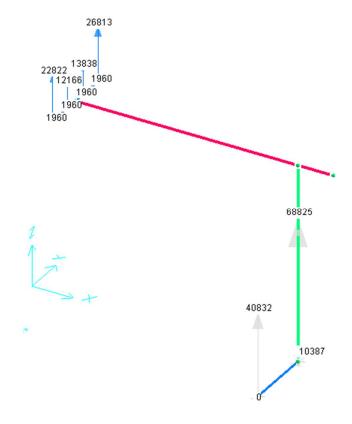
 $N_{Sd,max} = 965 \text{ kN (compressione)}$

 $H_{Sd} = 115.2 / 2 \text{ pali} = 57.5 \text{ kN (taglio orizzontale)}$

10.1.3. Modello 2 lato dispari

Reazioni minime

(Pali)


 $N_{\text{Sd,min}} = 189.5 \text{ kN (trazione)} \hspace{0.5cm} ; \hspace{0.5cm} H_{\text{Sd}} = 78 \, / \, 2 \\ \text{pali} = 39 \text{ kN (taglio orizzontale)}$

Foglio 28 di 67

 $(Micropali) \qquad N_{Sd,min} = 151.5/2pali = 75.6 \ kN \ (trazione); \qquad H_{Sd} = 26/2pali = 13 \ kN \ (taglio \ orizzontale)$

Reazioni massime

(Pali)
$$N_{Sd,max} = 408 \text{ kN (compressione)}$$
; $H_{Sd} = 104 / 2 \text{pali} = 52 \text{ kN (taglio orizzontale)}$

(Micropali)
$$N_{Sd,min} = 268/2pali = 134 \text{ kN (compressione)}; H_{Sd} = 19.6/2pali = 9.8 \text{ kN (taglio orizzontale)}$$

Foglio 29 di 67

10.2. PORTANZA CARICHI VERTICALI

Il dimensionamento dei pali trivellati 600 è stato eseguito tenendo conto delle sollecitazioni massime riferite a tutti i modelli sopra riportati. In particolare:

 $N_{Sd,max} = 965 \text{ kN (compressione)}$

 $N_{Sd,max} = 422 \text{ kN (trazione)}$

PORTANZA PER CARICHI VERTICALI DEI PALI TRIVELLATI (Teoria di Berezantzev)

Riferimento: Pali Fondaz. L = 11m d = 0.6m

Lunghezza palo	m	11.00
Diametro palo	m	0.60
Peso del palo: Pg=	daN	7'772

STRATIGRAFIA:

	tipologia:	denominazione
strato 1	coerente n.cons./mis	Limo sabbioso
strato 2	incoerente denso	Ghiaia
strato 3	incoerente sciolto	0
strato 4	coerente precon. (Cu	0
strato 5	incoerente sciolto	0

Pressione qz alla quota di testa del palo	daN/m²	2'700

PORTANZA LATERALE: PL= AI * (so + k*mu*qz)

		strato 1	strato 2	strato 3	strato 4	strato 5
lunghezza	m	3.5	7.5	0	0	0
densità	daN/m³	1800	1900	0	0	0
Angolo Attrito	(°)	25.0	33.0	0.0	0.0	0.0
Coesione	daN/cm²	0.20	0.00	0.00	0.00	0.00
so	daN/cm²	0.000	0.000	0.000	0.000	0.000
k		0.578	0.400	0.500	0.000	0.500
μ		0.466	0.649	0.000	0.000	0.000
q _z	daN/m²	5850	16125	23250	23250	23250
Portanza laterale	daN	10'390	59'149	0	0	0
	PORTANZA LATE	RALE LIMI	TE: PL	·	69'53	9daN
	PORTANZA LATE	50'57	'4daN			

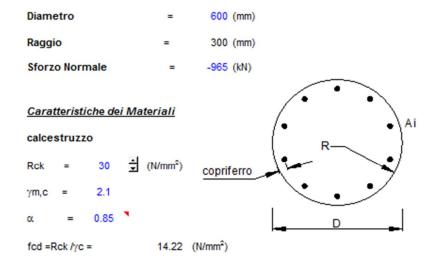
PORTANZA ALLA <u>PUNTA</u>: PP = Ap * (Nc*C+Nq*qz) (Teoria di Berezantzev)

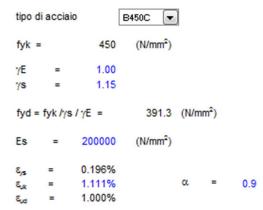
A,	PUNTA: PP = A	0 - (NC-C+NQ-	qz) (Teoria di bi	erezantzev)
	Strato 2	Ghiaia		
	densità	daN/m3	1900	
	Ang. Attrito	(°)	33.0	
	Coesione	daN/cm2	0	
	Ng		26.1	
	Nc		38.7	
	q _z	daN/m²	23250	
	PORTANZA ALLA	A PUNTA LIM	ITE: PP	171'489daN
	PORTANZA ALL	A PUNTA: PI	Pc = PP / (1.1*1.25)	124'719daN

PORTANZA TOTAL F TERRENO IN COMPRES : Ptot = PLC+ PPC	175'293daN

CARICO MAX IN COMPRES. SUL PALO:	Pc,comp = Ptot - Pg	167'522daN
CARICO MAX IN TRAZIONE SUL PALO:	Pc.traz = Pa + PL/(1.15*1.25)	56'147daN

 $N_{Rd,max} = 1675 \text{ kN} > N_{Sd,max} = 965 \text{ kN}$


 $N_{Rd,min} = 561.5 \text{ kN} > N_{Sd,min} = 422 \text{ kN}$


Foglio 30 di 67

10.3. CALCOLO DEL MOMENTO DI PLASTICIZZAZIONE

Calcolo del momento di plasticizzazione di una sezione circolare

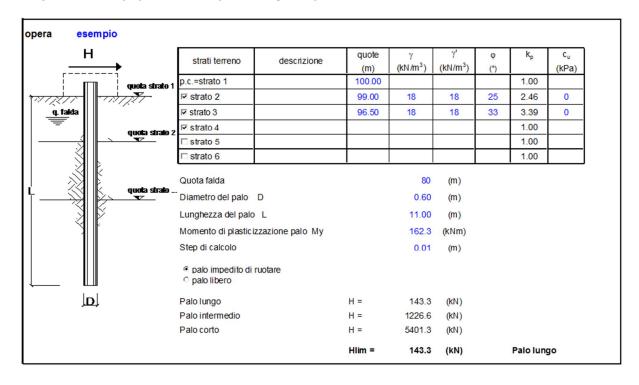
Acciaio

Armature

numero	diametro (mm)		m)	area (mm²)	copriferro (mm)	
14		φ	20	÷	4398.23	82
0		ф	18	‡	0.00	70
0	•	φ	8	‡	0.00	30

calcolo

Momento di Plasticizzazione


My = 162.3 (kN m)

Foglio 31 di 67

10.4. CALCOLO DEL CARICO LIMITE ORIZZONTALE

 $H_{Rd} = 143.3 \text{ kN} > H_{Sd,max} = 57.5 \text{ kN}$ (VERIFICATO)

Foglio 32 di 67

10.5. SOLLECITAZIONI LUNGO IL PALO

Si riporta di seguito il calcolo delle sollecitazioni lungo il palo in funzione del carico orizzontale dedotto dalla modellazione agli Elementi Finiti, ed ipotizzando la testa impedita di ruotare.

A favore di sicurezza si considera che il primo metro di terreno non collabori alla resistenza laterale.

 $\mathbb{Z}_{\mathbb{Z}}$ \mathbb{Z} \mathbb{Z} forza orizzontale applicata in testa al micropalo sporgente dal terreno di h=2 m per la presenza di uno strato superficiale assunto come non collaborante (nel caso di rilevati) oppure h=1m nei restanti casi.

$$?_{?}??\frac{\overline{4\cdot?\cdot?}}{?_{?}\cdot?_{?}}$$

dove

E modulo elastico del calcestruzzo

J_s momento døinerzia del tubo

J_c momento d\(\vec{q}\)inerzia del calcestruzzo

l'acciaio è omogeneizzato al calcestruzzo con n=6

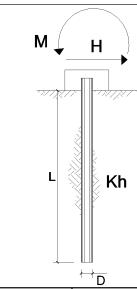
 $J = J_c + n \cdot J_s$ momento døinerzia totale

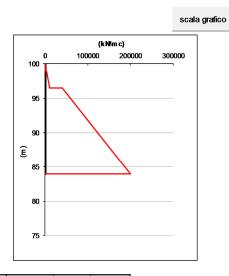
 $k_h = c_g \cdot n_h.z/d$ coefficiente di reazione orizzontale del terreno

 $c_{\rm g}$ = 0.5 coefficiente riduttivo di gruppo (dipendente dal numero di micropali)

 $n_h = a \cdot \gamma / 1.35$ dove:

a coefficiente adimensionale dipendente dallo stato di addensamento del terreno;


γ peso specifico del terreno.


z profondità media del terreno reagente, trascurando i primi 2 metri di terreno per tener conto dellascarsa resistenza laterale offerta da tale strato

 $d = D_d$

Foglio 33 ďi 67

strati terreno	descrizione	quote	k _h	n _h
Strati terreno	descrizione	(m)	(kN/m ³)	(kN/m ³)
p.c.≕strato 1		100.00	0	0
✓ strato 2		99.00	3333	2000
✓ strato 3		96.50	41049	7037
□ strato 4				
□ strato 5				
□ strato 6				

Diametro del palo 0.6 (m) (m⁴) J palo 0.00636

Lunghezza del palo **16** (m)

Forza orizzontale in testa 89.7 (kN)

Momento in testa 0 (kNm)

E cls 31476 (Mpa)

dimensione elementi 0.4 (m)

• palo impedito di ruotare

C palo impedito di traslare

C palo libero

Calcolo (ctrl+r)

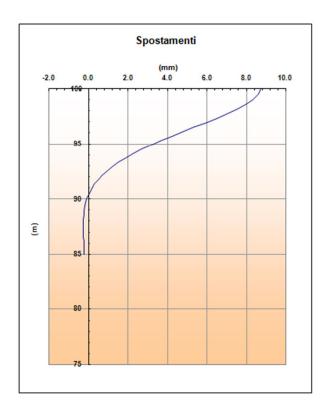
Foglio 34 di 67

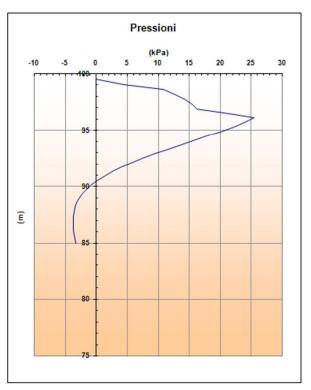
SPOSTAMENTI, ROTAZIONI, PRESSIONE

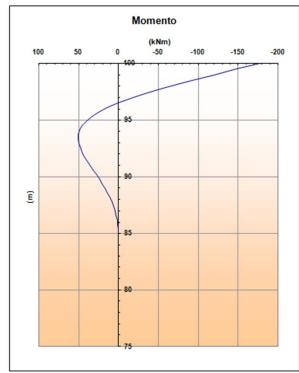
S	Spostamenti, Rotazioni, Pressione						
	Z	y(z)	α (z)	p(z)			
nodo	quota	(mm)	(rad)	(kPa)			
	(m)	` '	, ,	, ,			
1	100.00	8.75	0.00000	0.00			
2	99.50	8.65	0.00041	0.00			
3	99.00	8.36	0.00074	4.54			
4	98.58	8.00	0.00096	10.78			
5	98.17	7.56	0.00114	12.81			
6	97.75	7.06	0.00127	14.41			
7	97.33	6.51	0.00136	15.55			
8	96.92	5.93	0.00141	16.22			
9	96.50	5.34	0.00142	21.56			
10	96.10	4.78	0.00141	25.46			
11	95.71	4.22	0.00137	23.91			
12	95.31	3.69	0.00131	22.13			
13	94.91	3.19	0.00123	20.15			
14	94.52	2.72	0.00115	18.06			
15	94.12	2.28	0.00106	15.90			
16	93.72	1.88	0.00096	13.73			
17	93.33	1.52	0.00086	11.60			
18	92.93	1.20	0.00076	9.54			
19	92.53	0.91	0.00066	7.59			
20	92.14	0.67	0.00057	5.78			
21	91.74	0.46	0.00049	4.12			
22	91.34	0.28	0.00041	2.63			
23	90.95	0.14	0.00033	1.32			
24	90.55	0.02	0.00027	0.18			
25	90.16	-0.08	0.00021	-0.78			
26	89.76	-0.15	0.00016	-1.58			
27	89.36	-0.20	0.00012	-2.22			
28	88.97	-0.24	0.00008	-2.73			
29	88.57	-0.27	0.00005	-3.10			
30	88.17	-0.28	0.00003	-3.36			
31	87.78	-0.29	0.00001	-3.54			
32	87.38	-0.29	-0.00001	-3.63			
33	86.98	-0.28	-0.00002	-3.66			
34	86.59	-0.28	-0.00002	-3.65			
35	86.19	-0.26	-0.00003	-3.60			
36	85.79	-0.25	-0.00003	-3.53			
37	85.40	-0.24	-0.00003	-3.44			
38	85.00	-0.23	-0.00003	-3.33			

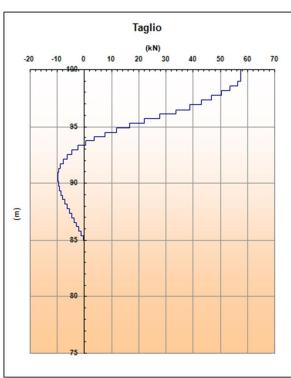
Foglio 35 di 67

SOLLECITAZIONI

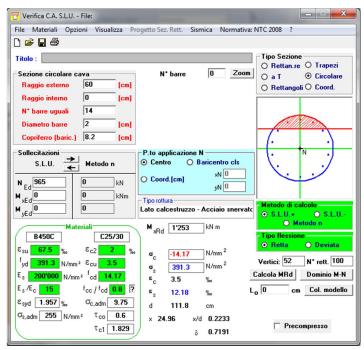

Sollecitazioni			19	92.53	47.64	-4.49 	
	z N		T(z)		92.53	47.64	-6.30
nodo	quota			20	92.14	45.14	-6.30
	(m)	(kNm)	(kN)		92.14	45.14	-7.67
1	100.00	-176.83	57.50	21	91.74	42.10	-7.67
2	99.50	-148.08	57.50		91.74	42.10	-8.65
_	99.50	-148.08	57.50	22	91.34	38.67	-8.65
3	99.00	-119.33	57.50		91.34	38.67	-9.28
	99.00	-119.33	56.36	23	90.95	34.99	-9.28
4	98.58	-95.84	56.36		90.95	34.99	-9.59
	98.58	-95.84	53.67	24	90.55	31.19	-9.59
5	98.17	-73.48	53.67		90.55	31.19	-9.64
	98.17	-73.48	50.47	25	90.16	27.36	-9.64
6	97.75	-52.45	50.47		90.16	27.36	-9.45
	97.75	-52.45	46.87	26	89.76	23.62	-9.45
7	97.33	-32.92	46.87		89.76	23.62	-9.07
	97.33	-32.92	42.98	27	89.36	20.02	-9.07
8	96.92	-15.02	42.98		89.36	20.02	-8.54
	96.92	-15.02	38.92	28	88.97	16.63	-8.54
9	96.50	1.20	38.92		88.97	16.63	-7.90
	96.50	1.20	33.70	29	88.57	13.50	-7.90
10	96.10	14.56	33.70		88.57	13.50	-7.16
	96.10	14.56	27.64	30	88.17	10.66	-7.16
11	95.71	25.52	27.64		88.17	10.66	-6.36
	95.71	25.52	21.95	31	87.78	8.14	-6.36
12	95.31	34.23	21.95		87.78	8.14	-5.52
	95.31	34.23	16.69	32	87.38	5.95	-5.52
13	94.91	40.85	16.69		87.38	5.95	-4.65
	94.91	40.85	11.89	33	86.98	4.11	-4.65
14	94.52	45.56	11.89		86.98	4.11	-3.78
	94.52	45.56	7.59	34	86.59	2.61	-3.78
15	94.12	48.57	7.59		86.59	2.61	-2.91
	94.12	48.57	3.81	35	86.19	1.45	-2.91
16	93.72	50.08	3.81		86.19	1.45	-2.06
	93.72	50.08	0.54	36	85.79	0.64	-2.06
17	93.33	50.30	0.54		85.79	0.64	-1.22
	93.33	50.30	-2.22	37	85.40	0.16	-1.22
18	92.93	49.42	-2.22		85.40	0.16	-0.40
	92.93	49.42	-4.49	38	85.00	0.00	-0.40

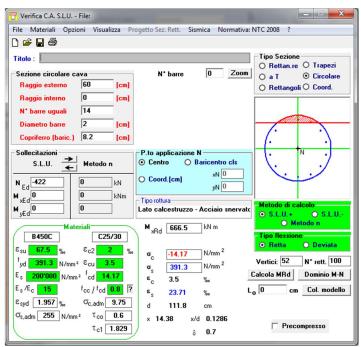

 $M_{Sd} = 176.8 \ kNm$


 $V_{Sd} = 57.5 \; kN$



Foglio 36 di 67





Foglio 37 di 67

Verifica a Presso-flessione

 $M_{Rd,Nmax} = 1253 \text{ kNm} > M_{Sd} = 176.8 \text{ kNm}$

 $M_{Rd,Nmin} = 666.5 \text{ kNm} > M_{Sd} = 176.8 \text{ kNm}$

Foglio 38 di 67

Verifica a Taglio

$$V_{Sdu} = 57.5 \text{ kN}$$

$$V_{Sdu} < V_{cd} + V_{wd} \label{eq:Vsdu}$$

A favore di sicurezza si omette il calcolo del contributo a taglio offerto dalla sezione di calcestruzzo e si affida l'intera sollecitazione alla resistenza fornita dalle staffe.

Taglio resistente per sezioni armate:

$$V_{wd} = 0.8*d*A_{Sw}/s*f_{yd}$$

dove:
$$A_{Sw} = 1 \ \emptyset \ 10 \ / \ 150 = 158 \ mm^2$$
; $d = 520 \ mm$; $f_{yd} = 391.3 \ N/mm^2$

$$V_{wd} = 171.5 \text{ kN} > V_{Sdu} = 57.5 \text{ kN}$$
 (VERIFICATO)

10.6. PORTANZA CARICHI VERTICALI MICROPALI

Nella tabella che segue vengono riportati i valori di $Q_{lim,comp}$ e $Q_{lim,traz}$ in funzione delle diverse lunghezze L_{IGU2} dei micropali.

APPROCCIO 2 - A1+M1+R2													
L _{IGU1}	L _{IGU2}	L _p	$Q_{ll,k}$	$Q_{lp,k}$	Q _{II,d comp}	Q _{II,d traz}	Q _{bl,d}	Wp	Q _{lim,comp}	Q _{lim,traz}			
[m]	[m]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]			
4	0	4	155.702	23.355	141.548	135.393	21.232	3.801	158.978	139.195			
5	0	5	194.628	29.194	176.934	169.242	26.540	4.752	198.723	173.993			
5	1	6	306.097	45.915	278.270	266.171	41.740	5.702	314.308	271.873			
5	1.5	6.5	361.831	54.275	328.937	314.636	49.341	6.177	372.101	320.813			
5	2	7	417.565	62.635	379.605	363.100	56.941	6.652	429.893	369.753			
5	3	8	529.034	79.355	480.940	460.030	72.141	7.603	545.479	467.632			
5	4	9	640.503	96.075	582.275	556.959	87.341	8.553	661.064	565.512			
5	5	10	751.972	112.796	683.611	653.888	102.542	9.503	776.649	663.392			
5	6	11	863.440	129.516	784.946	750.818	117.742	10.454	892.234	761.271			
5	7	12	974.909	146.236	886.281	847.747	132.942	11.404	1007.819	859.151			
5	8	13	1086.378	162.957	987.616	944.676	148.142	12.354	1123.404	957.031			
5	9	14	1197.847	179.677	1088.951	1041.606	163.343	13.305	1238.989	1054.910			
5	10	15	1309.315	196.397	1190.287	1138.535	178.543	14.255	1354.575	1152.790			
5	11	16	1420.784	213.118	1291.622	1235.464	193.743	15.205	1470.160	1250.670			
5	12	17	1532.253	229.838	1392.957	1332.394	208.944	16.156	1585.745	1348.549			
5	13	18	1643.721	246.558	1494.292	1429.323	224.144	17.106	1701.330	1446.429			

Pertanto si adotta una lunghezza dei micropali pari a: L = 5 + 2 = 7 m con conseguenti portanze pari a:

$$Q_{lim,comp} = 198.7 \; kN > N_{Sd,max} = 134 \; kN \; \; ; \qquad \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; \; ; \; \qquad \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 75.6 \; kN \; ; \; \qquad Q_{lim,traz} = 174 \; kN > N_{Sd,min} = 7$$

Foglio 39 di 67

10.1. CAPACITÀ PORTANTE ORIZZONTALE DEL MICROPALO

Le sollecitazioni sono pari a: $N_{Sd} = 134 \text{ kN}$; $V_{Sd} = 13 \text{ kN}$

Ī	γ_{limo}	$\gamma_{\rm ghiaia}$	k _h	Cg	n _h	а	Z	d	D _b
	[kN/m³]	[kN/m³]	[kN/m³]		[kN/m³]		[m]	[m]	[mm]
Ī	18	19	12698.41	0.5	5333.333	400	1	0.21	210

V _{Sd}	N _{pl,Rd}	N _{ed}	Α	f _{yk}	γмо	M _{pl,Rd} W _{pl}		h	Е	J
[kN]	[kN]	[kN]	[mm²]	[N/mm²]		[kNm]	[mm³]	[m]	[N/mm²]	[mm ⁴]
13	1376.048	134	4070	355	1.05	57.1381	169000	2	28500	8620000

 $M_Sd=0.5\cdot V_Sd\cdot (h+\lambda) \le M_N(N,Rd)$

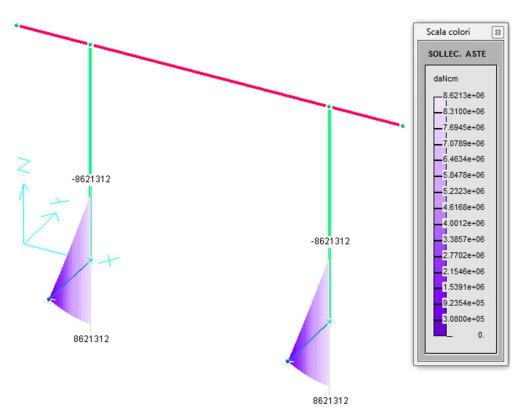
18.06436 [kNm]

 $M_{-}(N,Rd)=M_{-}(pl,Rd)\cdot(1-n^{1.7})$

56.04834 [kNm]

 $M_{N,Rd} = 56 \ kNm > M_{Sd} = 18 \ kNm \qquad \quad (VERIFICATO)$

Foglio 40 di 67

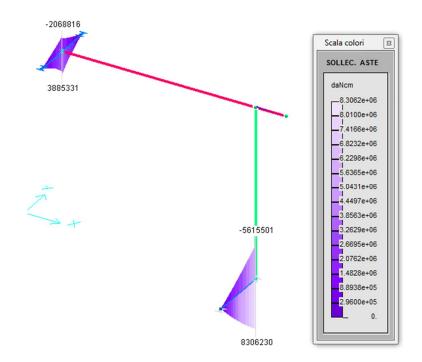

11. VERIFICHE STRUTTURALI

11.1. VERIFICHE TRAVE DI FONDAZIONE

Nel presente paragrafo si riportano le verifiche delle suole di fondazione dei sistemi strutturali "Modello lato pari" ,"Modello 1" e "Modello 2". A tal proposito si riportano i diagrammi di inviluppo delle principali sollecitazioni calcolate per i casi di carico n. 1, 2, 5 e 6.

Momento flettente - M


Modello lato pari

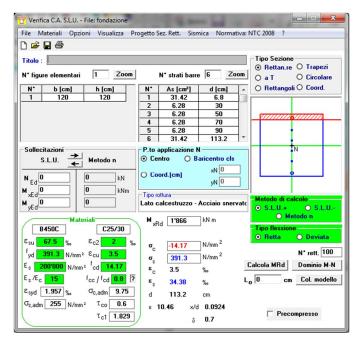

 $M_{Sd} = 862 \; kNm$

Foglio 41 di 67

Modello 1

 $M_{Sd} = 1134 \; kNm$

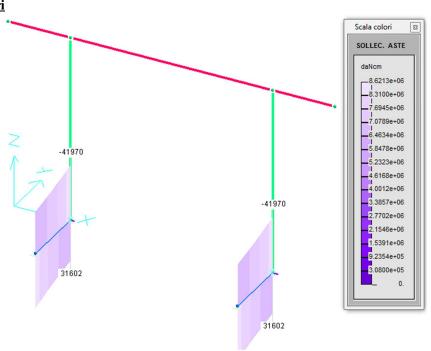
 $M_{Sd} = 830 \text{ kNm}$



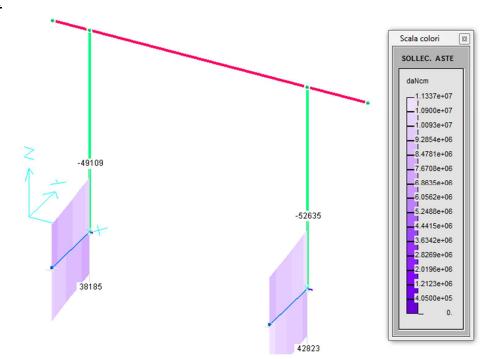
Foglio 42 di 67

Si riporta la verifica delle suole di fondazione a flessione eseguita con l\u00e3ausilio del software di calcolo GELFI.

 $A_S = A \phi_S = 10 \ \emptyset \ 20;$


 $A_{Scentrale} = 4 + 4 \not O 20.$

 $M_{Rd} = 1866kNm > M_{Sd} = 1134 kNm$


Foglio 43 di 67

Taglio - V Modello lato pari

 $V_{Sdu} = 420 \; kN$

Modello 1

 $V_{\text{Sdu}} = 526 \; kN$

Foglio 44 di 67

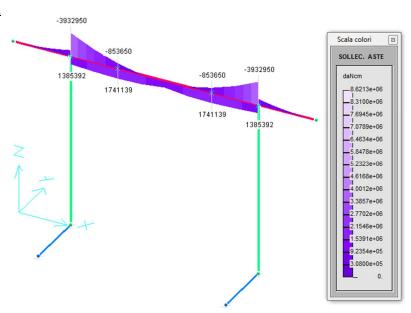
Modello 2

 $V_{Sdu} = 407 \; kN$

A favore di sicurezza si omette il calcolo del contributo a taglio offerto dalla sezione di calcestruzzo e si affida l'intera sollecitazione alla resistenza fornita dalle staffe.

Si riporta la verifica a taglio delle suole di fondazione.

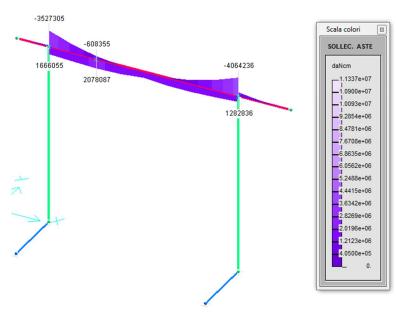
$$\begin{split} A_{Sw} &= 1 \; staffa \; \emptyset 16/150 = 402 \; mm^2 \\ V_{wd} &= 0.9*d*A_{Sw}/s*f_{yd}*(sin \; +cos \;) \\ dove: \; b_w &= 1200 \; mm \; ; \; d = 1150 \; mm \; ; \; = 90° \; ; \\ f_{yd} &= 391.3 \; N/mm^2 \; ; \\ pertanto: \\ V_{wd} &= \; 1085 \; kN > V_{Sdu} = 526 \; kN \end{split}$$


Foglio 45 di 67

11.2. VERIFICHE TRAVE IN ELEVAZIONE

Nel presente paragrafo si riportano le verifiche delle travi in elevazione dei sistemi strutturali "Modello lato pari" ,"Modello 1" e "Modello 2". A tal proposito si riportano i diagrammi di inviluppo delle principali sollecitazioni calcolate per i casi di carico n. 1, 2, 5 e 6.

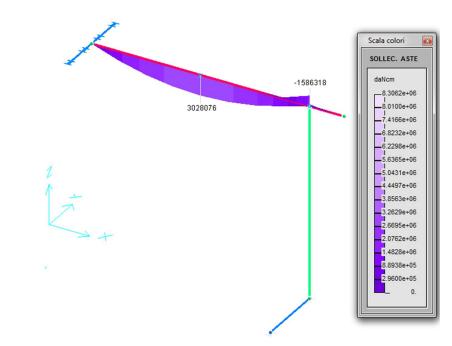
Momento flettente - M_x (flessione nel piano verticale)


Modello lato pari

 $M^{(-)}_{Sd} = 393 \text{ kNm}$

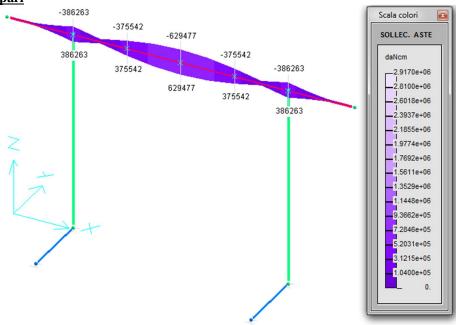
 $M^{(+)}_{Sd} = 174 \text{ kNm}$

Modello 1

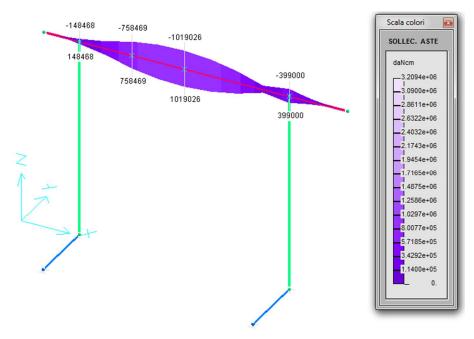

 $M^{(-)}_{Sd} = 406 \text{ kNm}$

 $M^{(+)}_{Sd} = 208 \text{ kNm}$

Foglio 46 di 67

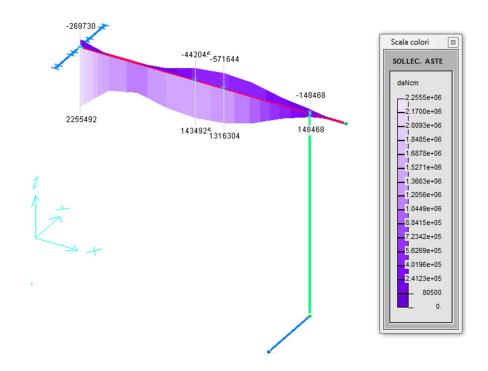


 $M^{(-)}_{Sd} = 303 \text{ kNm}$; $M^{(+)}_{Sd} = 159 \text{ kNm}$


Foglio 47 di 67

Momento flettente - M_y (flessione nel piano orizzontale)

Modello lato pari

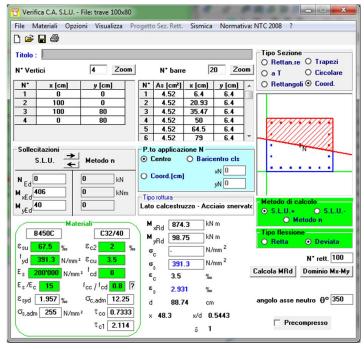


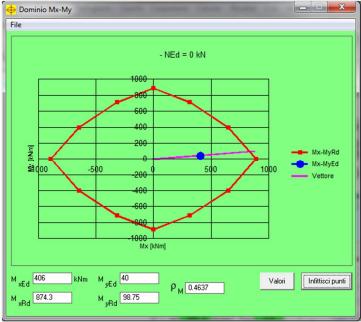
$$M^{(-)}_{Sd} = M^{(+)}_{Sd} = 63 \text{ kNm}$$

$$M^{(-)}_{Sd} = M^{(+)}_{Sd} = 102 \text{ kNm}$$

$$M^{(-)}_{Sd} = 57 \text{ kNm}$$

 $M^{(+)}_{Sd} = 226 \text{ kNm}$

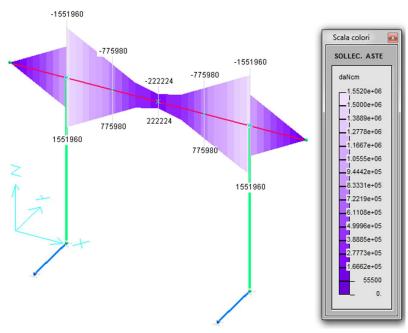



Foglio 49 di 67

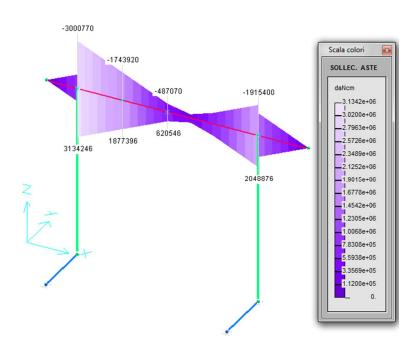
Si riporta la verifica della trave più sollecitata a presso-flessione deviata eseguita con l\u00e1ausilio del software di calcolo GELFI.

 $A_S = A \phi_S = 7 \text{ Ø } 24;$

 $A_{Scentrale} = 3+3 \text{ } \emptyset \text{ } 20.$

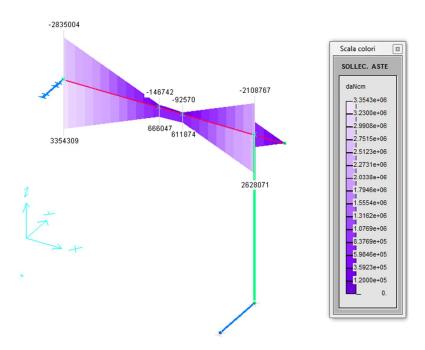


$$M_{Rd,x}=874\ kNm>M_{Sd,x}=406\ kNm$$


$$M_{Rd,y} = 98.8 \text{ kNm} > M_{Sd,y} = 40 \text{ kNm}$$

Momento torcente - T

Modello lato pari


 $T_{Sd} = 155 \ kNm$

 $T_{Sd} = 313 \; kNm$

Foglio 51 di 67

Modello 2

$$T_{Sd}=335\ kNm$$

Si riporta la verifica della trave più sollecitata a torsione.

 $T_{Sd} = 335 \text{ kNm}$

Si riporta la verifica della trave a torsione.

$$A_{SI} = 12 \ \emptyset \ 16 = 24.13 \ cm^2;$$

 $A_{Sw} = staffa \ chiusa \ \emptyset \ 10/150 = 0.79 \ cm^2$

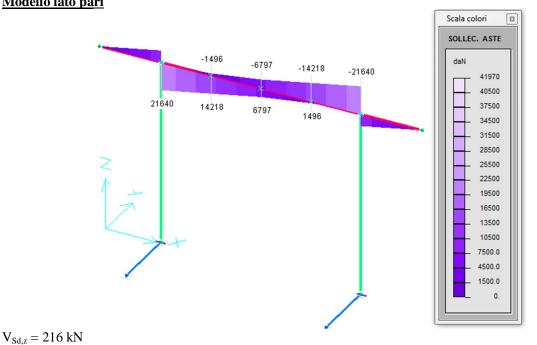
$$T_{Rcd} = 1/2*(f \phi_{cd} * B_e * h_s)$$

$$T_{Rsd} = 2*B_e*A_{Sw} / s*f_{yd}$$

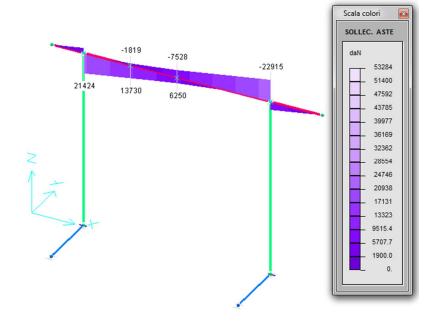
$$T_{Rld} = 2*~B_e *~A_{sl}/~u_e*f_{vd}$$

Dove:
$$B_e = 88*68 = 5984 \ cm^2$$
 ; $u_e = (88+68)*2 = 312 \ cm$; $d_e = 68 \ cm$;

$$h_s = d_e / 6 = 11.3 \text{ cm}$$
;

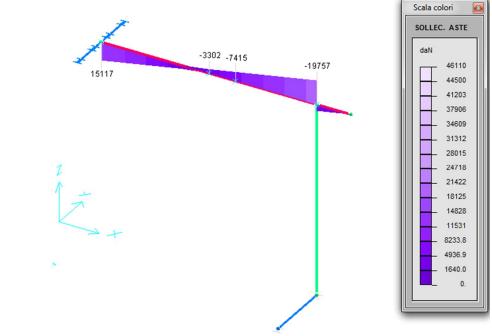

$$f \phi_{d} = 18.13 \text{ N/mm}^2$$
; $f_{vd} = 391.3 \text{ N/mm}^2$

 $T_{Rcd} = 615 \; kNm$


$$T_{Rsd} = 370 \; kNm$$

$$T_{Rld}=362\;kNm>T_{Sd}=335\;kNm$$

 $Taglio - V_z$ Modello lato pari


Modello 1

 $V_{\text{Sd},z} = 229 \; kN$

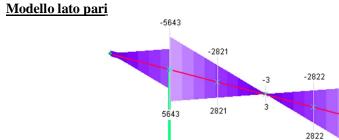
Foglio 53 di 67

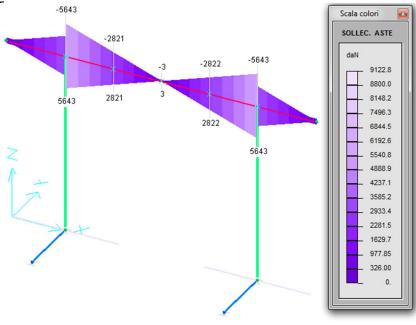
Modello 2

 $V_{Sd,z} = 198 \text{ kN}$

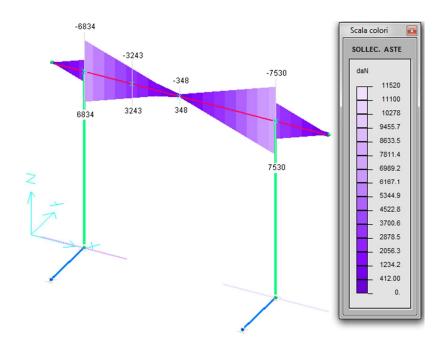
Si verifica la trave più sollecitata:

$$V_{\text{Sd},z} = 229 \; kN$$

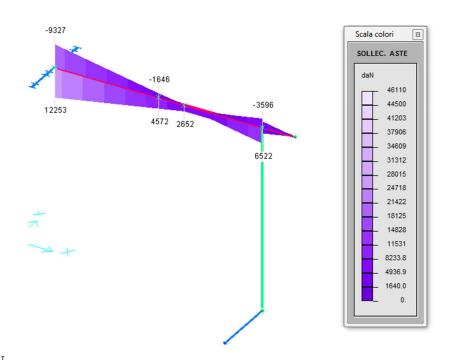

A favore di sicurezza si omette il calcolo del contributo a taglio offerto dalla sezione di calcestruzzo e si affida l'intera sollecitazione alla resistenza fornita dalle staffe.


Si riporta la verifica a taglio delle travi.

 $V_{wd} = \ 409 \ kN > V_{Sdu} = 229 \ kN$


$$\begin{split} A_{Sw} &= 1 \; staffa \; \text{$\emptyset 10/100 = 157 \; mm^2$} \\ V_{wd} &= 0.9*d*A_{Sw}/s*f_{yd}*(sin \; + cos \;) \\ dove: \; b_w &= 1000 \; mm \; ; \; d = 740 \; mm \; ; \; = 90^\circ \; ; \\ f_{yd} &= 391.3 \; N/mm^2 \; ; \\ pertanto : \end{split}$$

Taglio ó V_y


 $V_{\text{Sd},y} = 75.3 \; kN$

 $V_{\text{Sd},y} = 75.3 \text{ kN}$

Foglio 55 di 67

Modello 2

$$V_{\text{Sd},y} = 122 \text{ kN}$$

Si verifica la trave più sollecitata:

$$V_{\text{Sd},z} = 122 \text{ kN}$$

A favore di sicurezza si omette il calcolo del contributo a taglio offerto dalla sezione di calcestruzzo e si affida l'intera sollecitazione alla resistenza fornita dalle staffe.

Si riporta la verifica a taglio delle travi.

$$\begin{split} A_{Sw} &= 1 \; staffa \; \emptyset 10/100 = 157 \; mm^2 \\ V_{wd} &= 0.9*d*A_{Sw}/s*f_{yd}*(sin \; +cos \;) \\ dove: \; b_w &= 800 \; mm \; ; \; d = 940 \; mm \; ; \; = 90° \; ; \\ f_{yd} &= 391.3 \; N/mm^2 \; ; \\ pertanto: \\ V_{wd} &= \; 519 \; kN > V_{Sdu} = 122 \; kN \end{split}$$

Si riporta inoltre la verifica per le sollecitazioni composte di torsione e taglio prevista dal DM 16/01/1996 al p.to 4.2.3.1, al fine di limitare il tasso di lavoro nelle bielle compresse di calcestruzzo.

La relazione da rispettare è la seguente:

$$\frac{\mathbb{Z}_{20}}{\mathbb{Z}_{200}} \text{?} \frac{\mathbb{Z}_{20}}{\mathbb{Z}_{200}} \text{?} 1 \Rightarrow \frac{313}{615} \text{?} \frac{229}{4025} \text{?} 1 \Rightarrow 0.56 \text{?} 1$$

Foglio 56 di 67

dove:

 $V_{\text{???}} ~?~ 0.30 \cdot 2_{\text{??}} \cdot ? \cdot ?$

Armature minime secondo DM 16/01/1996

Travi

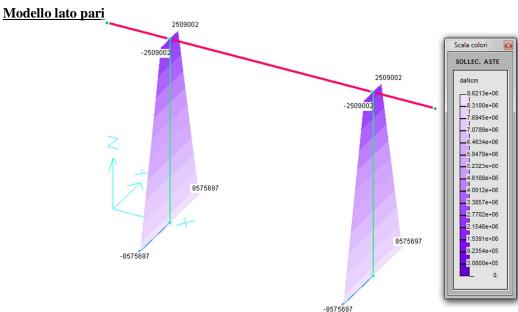
Armatura longitudinale tesa minima mmq

0.15%< 🛚 In direzione "z"

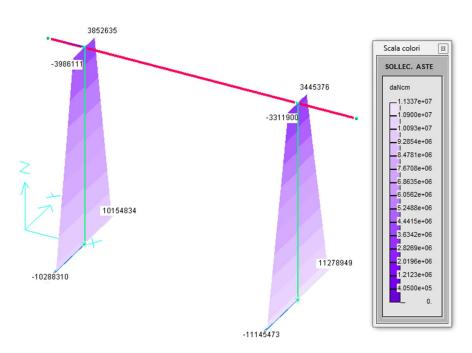
1200 < **3164**

In direzione "y"

1200 < 1846



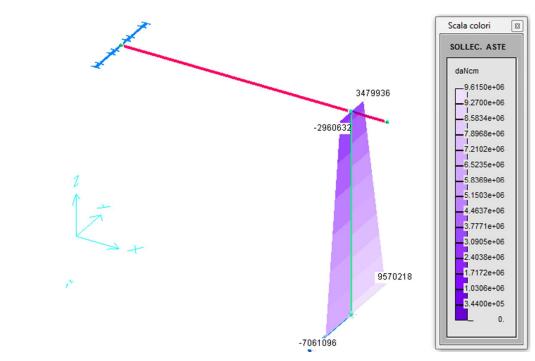
Foglio 57 di 67


11.3. VERIFICHE SETTI

Nel presente paragrafo si riportano le verifiche dei setti dei sistemi strutturali "Modello lato pari", "Modello 1" e "Modello 2". A tal proposito si riportano i diagrammi di inviluppo delle principali sollecitazioni calcolate per i casi di carico n. 1, 2, 5 e 6.

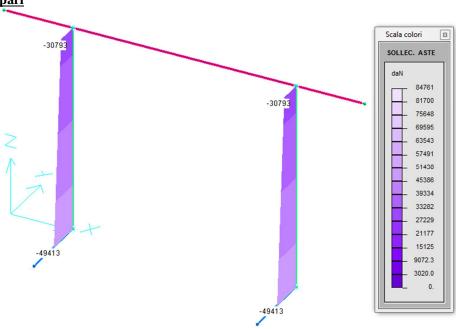
Momento flettente - M

 $M_{Sd} = 857 \; kNm$



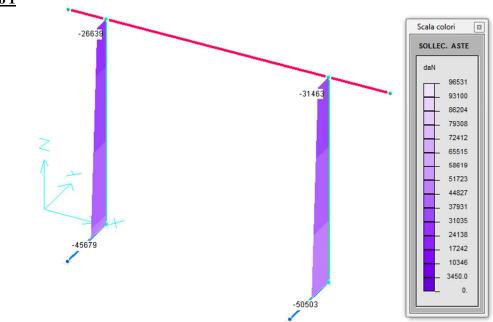
 $M_{Sd} = 1128 \; kNm$

Foglio 58 di 67



 $M_{Sd} = 957 \; kNm$

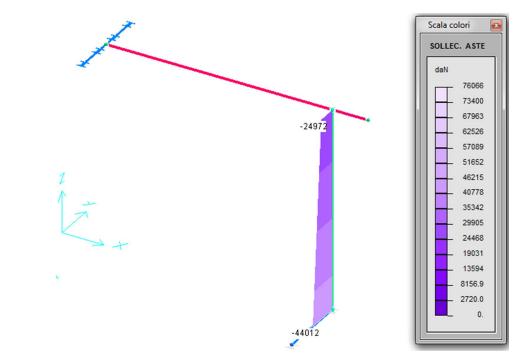
Foglio 59 di 67


$Sforzo\ Normale\ -\ N$

Modello lato pari

 $N_{Sd}=494\ kN$

Modello 1

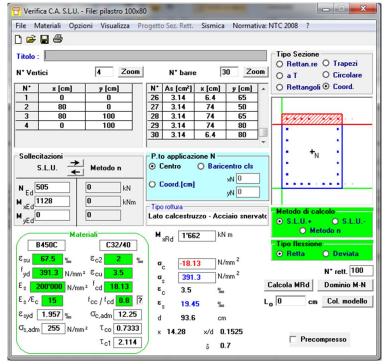


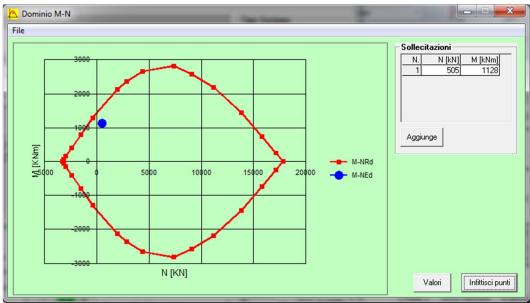
 $N_{Sd} = 505\ kN$

Foglio 60 di 67

 $N_{Sd} = 440 \; kN$

Foglio 61 di 67

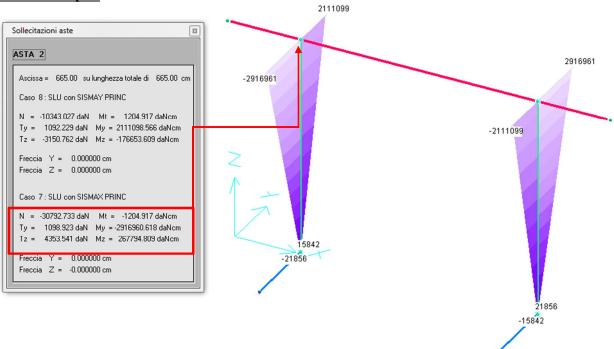

Si riporta la verifica dei setti a presso-flessione eseguita con l\(\phi\) ausilio del software di calcolo GELFI.


Nsd = 505 kN

Msd = 1128 kNm

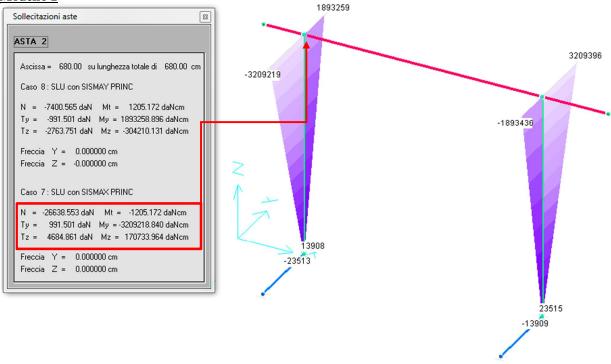
 $A_S = A \phi_S = 7 \ \emptyset \ 22;$

 $A_{Scentrale} = 5{+}5 \not O \ 20.$

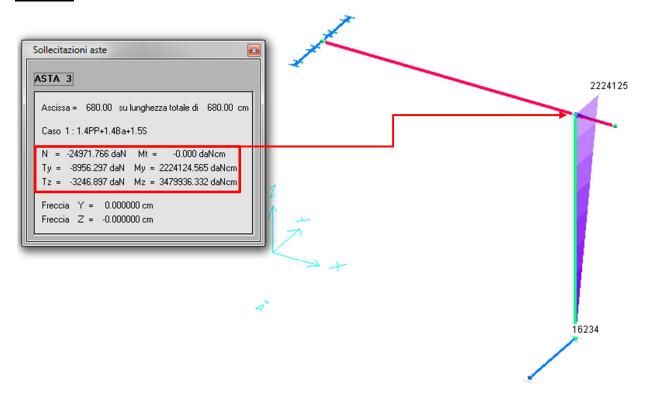


 $M_{Rd} = 1662 \text{ kNm} > M_{Sd} = 1128 \text{ kNm}$

Foglio 62 di 67


Momento flettente ó My

Modello lato pari


 $M_{Sd,y} = 291.7 \text{ kNm}$; $M_{Sd,x} = 26.8 \text{ kNm}$

Modello 1

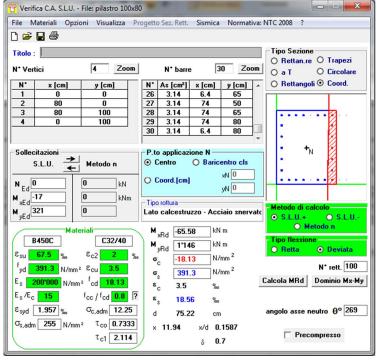
 $M_{Sd,y} = 321 \text{ kNm}$; $M_{Sd,x} = 17 \text{ kNm}$

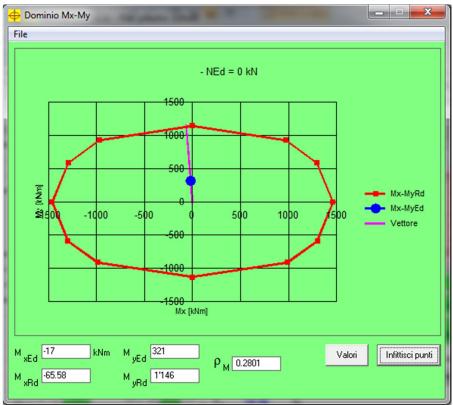
Modello 2

 $M_{Sd,y} = 222 \text{ kNm}$; $M_{Sd,x} = 348 \text{ kNm}$

Si riporta la verifica del setto a presso-flessione deviata eseguita con l\u00e3ausilio del software di calcolo GELFI.

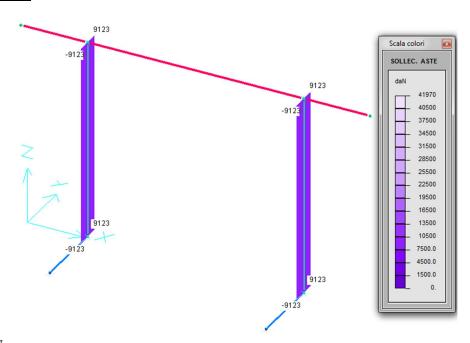
$$M_{Sd,y} = 321 \ kNm$$


$$M_{Sd,x}=17\ kNm$$

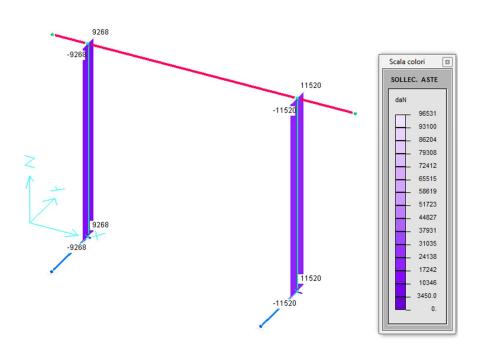

$$A_S = A \phi_S = 7 \ \emptyset \ 22;$$

 $A_{S,laterale} = 5 + 5 \not O 20.$

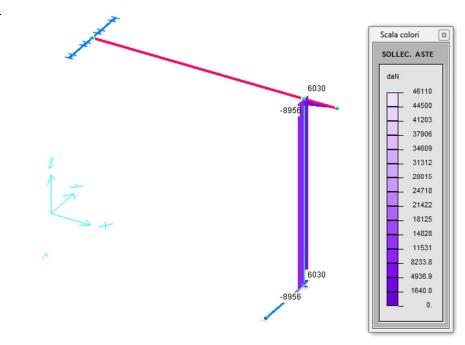
Foglio 64 di 67



 $M_{Rd,x} = 67.8 \text{kNm} > M_{Sd,x} = 17 \text{ kNm}$


$$M_{Rd,y} = 1133kNm > M_{Sd,y} = 321 kNm$$

Taglio - V Modello lato pari


 $V_{\text{Sd},z} = 91 \; kN$

 $V_{\text{Sd},z} = 115 \; kN$

Foglio 66 di 67

Modello 2

 $V_{Sd,z} = 89.6 \text{ kN}$

Si verifica il setto più sollecitato:

$$V_{\text{Sd},z} = 115 \text{ kN}$$

A favore di sicurezza si omette il calcolo del contributo a taglio offerto dalla sezione di calcestruzzo e si affida l'intera sollecitazione alla resistenza fornita dalle staffe.

Si riporta la verifica a taglio dei setti.

$$\begin{split} A_{Sw} &= 1 \; staffa \; \not\! O 10/100 = 157 \; mm^2 \\ V_{wd} &= 0.9*d*A_{Sw}/s*f_{yd}*(sin \; +cos \;) \\ dove: \; b_w &= 800 \; mm \; ; \; d = 940 \; mm \; ; \; = 90° \; ; \\ f_{yd} &= 391.3 \; N/mm^2 \; ; \\ pertanto: \\ V_{wd} &= \; 519 \; kN > V_{Sdu} = 115 \; kN \end{split}$$

Armature minime secondo DM 16/01/1996

Pilastri

Foglio 67 di 67

11.4. INCIDENZA ARMATURE

Alle armature appena calcolate vanno aggiunte staffe e staffoni nelle due direzioni delle suole di fondazione, vanno considerate delle armature aggiuntive di confinamento delle zone critiche e un incremento del 20-25% per le sovrapposizioni e i pieghi. Nel calcolo dell'incidenza delle armature nelle suole di fondazione si è tenuto in conto degli ancoraggi delle barre longitudinali dei setti.

Nel calcolo del volume delle staffe dei setti, vista la presenza di passi diversi tra la zona critica e la parte centrale del setto, si è considerato un passo medio di 20 cm.

AREA 3	sez. [cm]	В	н	Armatura fuori calcolo [kg/m³]	As=A's	As _{laterale}	As _{torsione}	Staffe torsione	Staffe taglio	V,staffe [cm³/m]	Vc [cm ³ /m]	Asl,tot [cm ²]	Vsl,tot [cm³/m]	Vs,tot [cm³/m]	ω [%]	incidenza armatura [kg/m³]
FONDAZIONI	120 X 120 (h)	120	120	39	10Ф20	4+4Ф20	//	//	Ф16/150	7035	1440000	109.9	10990	18025	1.25	137
SETTI	80 x 100 (h)	80	100	6	7Ф22	5+5Ф20	//	//	Ф10/200	1501	800000	101.5	10152	11653	1.46	120
TRAVI	100 x 80 (h)	100	80	13	7Ф24	3+3Ф20	12Ф16	Ф10/150	Ф10/100	2212	800000	127.5	12749	14961	1.87	160
PALI	Ф60				14Ф20	//	//	//	Ф10/150	742	282743	50.1	5011	5754	2.03	160

Alla luce di tali considerazioni e della tabella riassuntiva delle armature calcolate si ipotizza un'incidenza di armatura media di 137 kg/m³ di calcestruzzo per le fondazioni, 120 kg/m³ per i setti, 160 kg/m³ per le travi e 160 kg/m³ per i pali.