COMMITTENTE:

DIREZIONE INVESTIMENTI DIREZIONE PROGRAMMI INVESTIMENTI DIRETTRICE SUD – PROGETTO ADRIATICA

PROGETTAZIONE:

DIREZIONE TECNICA U.O. STRUTTURE

PROGETTO DEFINITIVO

LINEA PESCARA - BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA Infrastrutture strategiche legge n. 443/2001)

Lotto 1: Ripalta- Lesina

EMISSIONE

File: LI0001D09CLVI0100001A.doc

ESECUTIVA

VIADOTTO RIPALTA

RELAZIONE	DI CALCO	LO IMPALCATO)					SCALA:
COMMESSA	LOTTO	FASE ENTE	TIPO DOC.	OPERA /	DISCIPLINA	A PROGR	. REV.	8
L I 0 0	0 1	D 09	$\mathbf{C} \mathbf{L}$	VI (1 0 0	0 0	1 A	e c
Revis.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzató/Data

06/2016

06/2016

G. GRIMALDI

06/2016

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

PROGETTO DEFINITIVO

01

LIOO

COMMESSA LOTTO CODIFICA

D 09CL

DOCUMENTO

REV.

FOGLIO

VI0100 001 A 2 di 123

INDICE

1	PR	EMESSA	4
2	NC	PRMATIVA DI RIFERIMENTO	6
3	CA	RATTERISTICHE DEI MATERIALI	8
4	FA	SI COSTRUTTIVE	12
5	CA	LCOLO ELETTRONICO DELL'IMPALCATO	13
	5.1	ARMATURA DI PRECOMPRESSIONE	21
6	AN	ALISI DEI CARICHI	23
	6.1	PESI PROPRI	23
	6.2	CARICHI PERMANENTI PORTATI	29
	6.3	BALLAST	34
	6.4	CARICHI ACCIDENTALI	38
	6.4.	1 Effetti dinamici	38
	6.4.	2 Carichi verticali	38
	6.5	VENTO	47
	6.6	CARICHI SUI MARCIAPIEDI	51
	6.7	DERAGLIAMENTO	51
	6.8	AZIONI SISMICHE	51
	6.9	EFFETTI DI INTERAZIONE STATICA TRENO – BINARIO - STRUTTURA	52
	6.10	AVVIAMENTO E FRENATURA	52
	6.11	RESISTENZE PARASSITE NEI VINCOLI	54
7	CO	MBINAZIONI	55
3	CAI	LCOLO DELLE SOLLECITAZIONI	59

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m
RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LIOO	01	D 09CL	VI0100 001	Α	3 di 123

)	TRA	VE	63
(9.1	Travi principali - Sezione in mezzeria (M+)	64
	9.1.1		
	9.1.2	Verifica SLU-STR	76
	9.2	TRAVI PRINCIPALI - SEZIONE A 2.55 METRI DALL'APPOGGIO	78
	9.2.1	Verifica SLE- tensionale	78
	9.2.2	Verifica SLU-STR	90
	9.3	TRAVI PRINCIPALI - VERIFICA FESSURAZIONE SEZIONE DI MEZZERIA	92
	9.4	TAGLIO E TORSIONE IN SEZIONE CORRENTE	93
	9.5	TAGLIO E TORSIONE IN SEZIONE DI APPOGGIO	101
	9.6	ARMATURA DI CONNESSIONE TRAVE-SOLETTA IN SEZIONE CORRENTE DI APPOGGIO	109
10	GIU	NTI DI DILATAZIONE	111
	10.1	CORSA DEGLI APPARECCHI D'APPOGGIO MOBILI	111
	10.2	ESCURSIONE DEI GIUNTI	111
	10.3	Ampiezza dei Varchi	112
11	VER	LIFICA AL SOLLEVAMENTO	113
12	SOL	ETTA	114
	12.1	Inviluppo sollecitazioni	114
13	AZIO	ONI SUGLI APPOGGI	121
14	INC	IDENZE DI ARMATURA	123

	LINEA PESO	LINEA PESCARA – BARI						
ITALFERR	RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:							
GRUPPO FERROVIE DELLO STATO ITALIANE	Lotto 1: Rip	Lotto 1: Ripalta - Lesina						
	PROGETTO	DEFINITI	VO					
IMPALCATO DB A 4 CASSONCINI L=25 m	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
	LI00	01	D 09CL	VI0100 001	Α	4 di 123		
RELAZIONE DI CALCOLO								

1 PREMESSA

Oggetto del presente documento è il dimensionamento di un impalcato tipo avente luce di 25 m (22,60 m misurata in asse appoggi) per il viadotto a doppio binario con larghezza dell'impalcato di 13,70 m previsto nel progetto definitivo del raddoppio della tratta Termoli – Lesina, linea ferroviaria Pescara – Bari,

L'impalcato è costituito da 4 travi in C.A.P. a cassoncino prefabbricate (precompressione a fili aderenti) solidarizzate da 4 traversi (2 sull'asse-appoggi e 2 in campata), prefabbricati insieme alle travi e da una soletta superiore in c.a. gettata in opera con una larghezza complessiva pari a 13.70 m su cui gravano 2 binari posti ad interasse pari a 4 m, in maniera simmetrica rispetto alla mezzeria del viadotto.

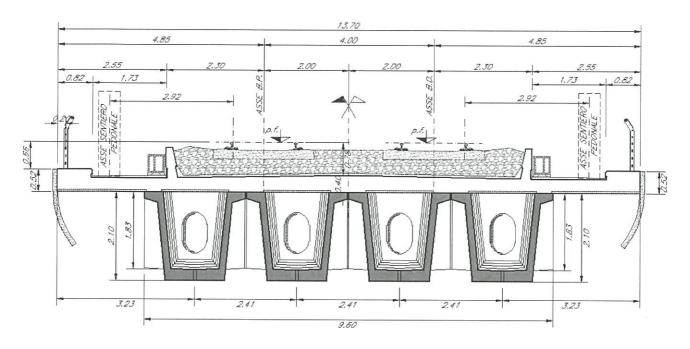


Figura 1: Sezione trasversale impalcato tipo

Lo schema dei vincoli prevede per ogni campata:

- Due appoggi fissi a rigidezza variabile e due multidirezionali su un lato;
- Un appoggio unidirezionale (scorrevoli in senso longitudinale) e tre multidirezionali sul lato opposto.

→ Appoggio fisso a rigidezza variabile

◆─→ Appoggio unidirezionale

◆→ Appoggio multidirezionale



Figura 2: Schema appoggi

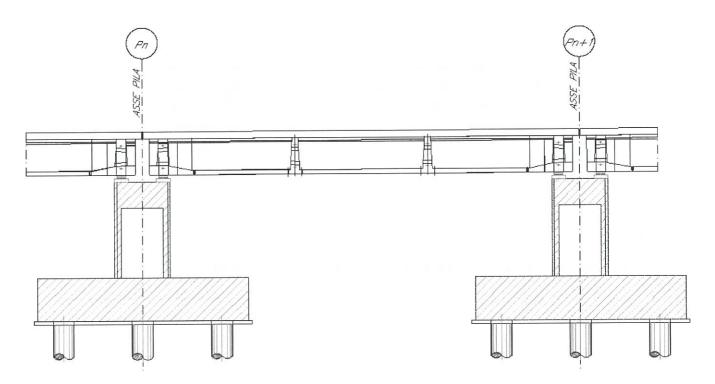


Figura 3: Sezione longitudinale impalcato tipo

			RA		

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA 1.100

01 D 09CI DOCUMENTO VI0100 001

REV. A

FOGLIO 6 di 123

2 NORMATIVA DI RIFERIMENTO

I calcoli sono svolti in ottemperanza alla Normativa vigente:

- NTC 2008 D.M. Infrastrutture 14 gennaio 2008.
- Circolare del 02.02.2009 n. 617: Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al DM 14.01.2008.
- RFI DTC INC CS LG IFS 001 A 29122011 Linee guida per il collaudo statico delle opere in terra. Emissione per applicazione del 21/12/2011
- RFI DTC INC CS SP IFS 001 A 29122011 Specifica per la progettazione geotecnica delle opere civili ferroviarie. Emissione per applicazione del 21/12/2011
- RFI DTC INC PO SP IFS 001 A 27122011 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario. Emissione per applicazione del 21/12/2011
- RFI DTC INC PO SP IFS 002 A 27122011 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria. Emissione per applicazione del 21/12/2011
- RFI DTC INC PO SP IFS 003 A 27122011 Specifica per la verifica a fatica dei ponti ferroviari. Emissione per applicazione del 21/12/2011
- RFI DTC INC PO SP IFS 004 A 28122011 Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo. Emissione per applicazione del 21/12/2011
- RFI DTC INC PO SP IFS 005 A 28122011 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia. Emissione per applicazione del 21/12/2011

Nella redazione dei progetti e nelle verifiche strutturali si è inoltre fatto riferimento alla normativa Europea di seguito specificata:

- UNI EN 1992-1-1: EUROCODICE 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- EC8 Strutture in zone sismiche parte 1 (generale ed edifici) e parte 2 (ponti).
- STI 2014 REGOLAMENTO (UE) n. 1299/2014 della commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

LIOO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA LOTTO

01

CODIFICA

D 09CL

DOCUMENTO VI0100 001

FOGLIO

REV. Α 8 di 123

CARATTERISTICHE DEI MATERIALI

Si riporta nel seguito la tabella dei materiali utilizzati:

0/	ALUE	STRUZZ	U					
	ipo struzzo	Rapporta a/c max (UNI EN 208)	Classe di lavarabilità	Tipo di cemento	Classe di resistenza minima C(fek/Rek)en	Classe di esposizione ambientale (UN EN 206)	Dmax inarti (mm)	Campi di Impiago
A	1	0.45	S4-S5	CEM I4V	045/55	XC3	20	- Impalcati ed Elementi în c.a.p. prefabbricati
	1	0.45	54-55	CEM IeV	C35/45	XC3	25	- Bernenti prefabbricati in c.a. per strutture fuori terra
В	1	0.45	S4-S5	CEM IeV	C35/45	XC3	20	- Predalles con funzioni strutturali
	3	0.50	S4-S5	CEM III+V	C30/37	XC4	20	- Velette prefabbricate
	3	0.55	54-55	CEM IIIeV	030/37	XC3	20	- Predallee senza funzioni strutturali
	3	0.55	S3-S4	CEM III4V	030/37	XA1	25	 Canalette portacavi ed altri elementi prefabbricati senza funzioni strutturali
	1	0.50	S4-S5	CEM leV	C30/37	XC4	25	- Impalenti in e.a. ordinari
С	2	0.50	S3-S4	CEM I+V	030/37	XC4	25	Solette in c.a. gettate in opera in elevazione Pile e spalle Baggioli e pulvini Struttura in c.a. in elevazione
	E	0.55	53-54	CEM HIeV	C30/37	XA1	25	- Tombini a struttura scatolare e circolare
	1	0.50	53-54	CEM IIIeV	030/37	XC4	25	- Muri di controripa/sottoscarpa
	2	0.60	S3-S4	CEM III±V	C25/30	XC2	25	- Solettoni di fondazione - Fandazioni armata
	2	0.50	53-54	CEM INEV	030/37	XC4	25	- Cordoli di fondazione barriere antirumore
C	3	0.60	53-54	CEM NI÷V	C25/30	XC2	40	- Fandazioni non armate (pozzi, sottoplinti, ecc)
	4	0.60	S3-S4	CEM III+V	C25/30	XC2	25	- Cunstta, canalatta e cordoli
н	1	0.60	54-55	CEM III÷V	C25/30	XC2	32	Pali (di paratie a opere di sostagno), diaframmi e relativi cordo di collegamento gettati in opera
	2	0.60	54-55	CEM INEV	C25/30	XC2	32	- Pali/diaframmi di fondazione gellati in opera
				CEM I+V	C12/15	ЖО		– Magrone di riempimento e livellamento
ACC		N BARRE P LETTROSALD						B450C fyk ≥ 450Mpa ftk ≥ 540Mpa 1.15 ≤ ftk/fyk < 1.35 fyk= tensione caratteristica di snervamento ftk= tensione caratteristica di rottura
		RMONICO D			276 (S), ASIS AND 475			Trefoli 40,6° fptk 1860 MPa - fp(1)k 1670 MPa a trave
Jenan		PER CARPEN			000100100000000000000000000000000000000			S355J2 (ex FE 510 D1)
-		PER CARPEN		ALLICA STRU	ITTURE SEC	ONDARIE		S275JR (ex FE 430 B)
		PER UNIONI						VITE Classe 8.8; DADO Classe B
//2		PER UNIONI						VITE Classe 10.9; DADO Classe 10
		ER ARMATU	RA MICROP	ALI				S275JR (ex FE 430 B)
	DATUR	E	4				- 11-1	In accordo con istruzione FS 44/S
PIGL	.1							Acciaio S235 J2G3 + C450 fu/fy ≥1.2 fy ≥350 Mpa fu ≥ 450 Mpa Allungamento ≥12% Strizione ≥50%

PRESCRIZIONI	
COPRIFERRO NETTO	
PALI DI FONDAZIONE E PER PARATIE, DIAFRAMMI	

Le caratteristiche dei materiali sono ricavate con riferimento alle indicazioni contenute nei capitoli 4 e 11 del D.M. 14 gennaio 2008. Nelle tabelle che seguono sono indicate le principali caratteristiche e i riferimenti dei paragrafi del D.M. citato.

CALCESTRUZZO PER TRAVI C.A.P. E TRAVERSI

CALCES	STRUZZO	classe	C45/55	N/mm2
Rck >=	55	N/mm2		
fck =	45	N/mm2	§11.2.1	
fcd =	25.50	N/mm2	§4.1.4	αcc fck/γc
fcm =	53	N/mm2	§11.2.2	fck + 8 (Mpa)
fctm =	3.80	N/mm2	§11.2.3	0.3* fck ^{2/3}
fctk =	2.66	N/mm2	§11.2.10.2	0.7*fctm
fctd =	1.77	N/mm2	§4.1.5	fctk/γc
Ecm =	36283	N/mm2	§11.2.5	22000*(fcm/10)^0.3

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA

LI00 01 D 09CL

DOCUMENTO

VI0100 001

REV. Α FOGLIO

10 di 123

CALCESTRUZZO PER SOLETTA

CALCES	STRUZZO	classe	C30/37	N/mm2
Rck >=	37	N/mm2		
fck =	30	N/mm2	§11.2.1	
fcd =	17.00	N/mm2	§4.1.4	αcc fck/γc
fcm =	38	N/mm2	§11.2.2	fck + 8 (Mpa)
fctm =	2.90	N/mm2	§11.2.3	0.3* fck ^{2/3}
fctk =	2.03	N/mm2	§11.2.10.2	0.7*fctm
fctd =	1.35	N/mm2	§4.1.5	fctk/γc
Ecm =	32837	N/mm2	§11.2.5	22000*(fcm/10)^0.3

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

CODIFICA

D 09CL

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

COMMESSA LOTTO

LIOO

01

DOCUMENTO

VI0100 001

FOGLIO 11 di 123

REV

Α

RELAZIONE DI CALCOLO

ACCIAIO PER ARMATURE ORDINARIE

ACCIAIO

TIPO	B450C			
fy nom	450	N/mm2	11.3.2.1	tensione di snervamento
ft nom	540	N/mm2	11.3.2.1	tensione di rottura
fyd	391,3	N/mm2	4.1.6	tensione snerv. di calcolo

 f_y / $f_{yk} \le 1.35$ $f_y = singolo valore della tensione snervamento rilevato sperimentalmente$

 $(f_t / f_y)_{medio} \ge 1.13$ $f_t = singolo valore della tensione di rottura rilevato sperimentalmente$

ACCIAIO DA PRECOMPRESSIONE

trefoli φ 0.6" stabilizzati

(travi e traversi)

 $\geq 1860 \text{ N/mm}^2$ f_{ptk}

tensione caratteristica di rottura

 $f_{p(1)k} \, \geq \, 1670 \; N/mm^2$

tensione caratteristica all'1% di deformazione totale

 $E_s = 195000 \text{ N/mm}^2$

modulo elastico

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

LIOO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA

01

LOTTO CODIFICA

D 09CI

DOCUMENTO VI0100 001

REV. FOGLIO Α

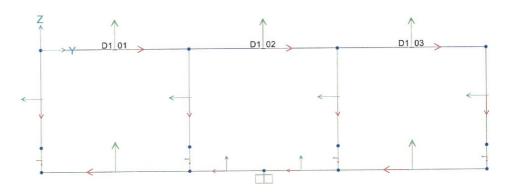
12 di 123

FASI COSTRUTTIVE

Sono previste le seguenti fasi di costruzione:

- fase 1: posizionamento apparecchi di appoggio;
- fase 2.1: varo delle travi centrali stabilizzate mediante ritegni verticali da posizionarsi sotto i traversi (2+2 per ogni trave);
- fase 2.2: varo delle travi di bordo stabilizzate ognuna mediante 2+2 ritegni verticali da posizionarsi sotto i traversi sia internamente che esternamente all'asse appoggi;
- fase 3: inserimento tubi in gomma nelle guaine dei traversi e loro gonfiaggio;
- sigillatura dei traversi, sgonfiaggio tubi in gomma e loro sfilaggio; fase 4:
- inserimento cavi di precompressione nei traversi: fase 5:
 - tesatura al 10% dei cavi nei traversi e sbloccaggio degli apparecchi di appoggio;
 - completamento tesatura contemporanea dei 2 cavi dei traversi di testata;
 - completamento tesatura contemporanea dei 2 cavi dei traversi di campata;
 - iniezione delle guaine sotto vuoto;
- fase 6: inghisaggio zanche inferiori appoggi e loro bloccaggio;
- posa in opera delle predalles e sigillatura elementi contigui con mastice; fase 7:
- fase 8: getto soletta non oltre 150 giorni dal getto della trave;
- fase 9: getto cordoli e muretto paraballast e posizionamento scala di accesso al pulvino;
- fase 10 : opere di finitura.

5 CALCOLO ELETTRONICO DELL'IMPALCATO


Per il calcolo delle sollecitazioni sulle sottostrutture si è ricorsi all'impiego di modelli agli elementi finiti, messi a punto e risolti con software SAP2000 della Computers and Structures.

Le travi sono state modellate come elementi "frame" rappresentando la soletta ed effettuando automaticamente l'omogeneizzazione dei materiali tramite il section designer di SAP2000.

I vincoli esterni disposti alla altezza dei baggioli della struttura sono stati modellati mediante con degli incastri. Il collegamento agli elementi che simulano il comportamento dei vari appoggi è effettuato mediante elementi link infinitamente rigidi.

TABLE: Lin	DOF	Fixed	TransKE	RotKE	TransCE	RotCE	DJ
Text	Text	Yes/No	KN/m	KN-m/rad	KN-s/m	KN-m-s/rad	m
FISSO	U1	No	100000000000.00		0.00		
FISSO	U2	No	100000000000.00		0.00		0.00
FISSO	U3	No	100000000000.00		0.00		0.00
MULTIDIR	U1	No	100000000000.00		0.00		
Rigid Link	U1	No	1000000000.00		0.00		
Rigid Link	U2	No	1000000000.00		0.00		0.00
Rigid Link	U3	No	1000000000.00		0.00		0.00
Rigid Link	R1	No		1000000000.00		0.00	
Rigid Link	R2	No		1000000000.00		0.00	
Rigid Link	R3	No		1000000000.00		0.00	
UNIDIREZ	U1	No	100000000000.00		0.00		
UNIDIREZ	U3	No	100000000000.00		0.00		0.00

Gli appoggi, siano essi fissi, unidirezionali o multidirezionali sono stati modellati mediante link opportunamente vincolati

Nel seguito del presente capitolo, s'indicherà con "X" la direzione parallela all'asse del viadotto principale, con "Y" la retta di giacitura orizzontale ortogonale a "X" e con "Z" la direzione verticale.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 14 di 123

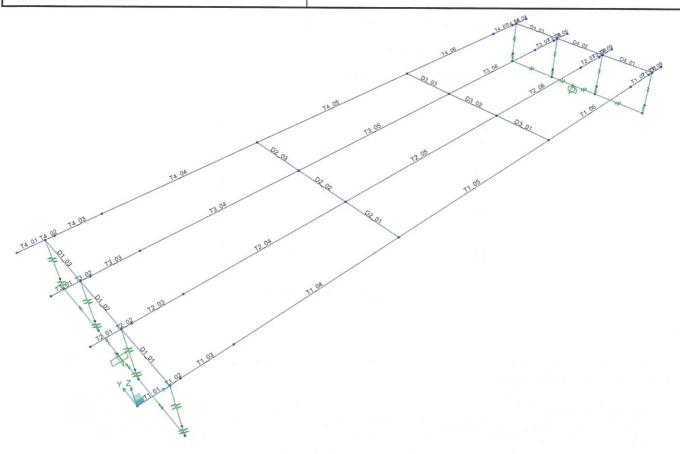


Figura 4 – rappresentazione assonometrica del modello viadotto

Numero di nodi: 58

Numero di elementi *frame*: 48

Numero di elementi *link*: 24

I vincoli esterni sono definiti in modo da riprodurre l'effettivo comportamento degli apparecchi d'appoggio che s'intende utilizzare nell'opera, all'oggetto si ha pertanto quanto segue:

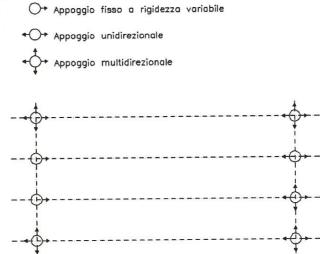


Figura 5 - Schema apparecchi di appoggio

FASE I

Si riportano le proprietà geometriche e meccaniche della sezione caratteristica corrente della trave, le cui dimensioni sono indicate di seguito.

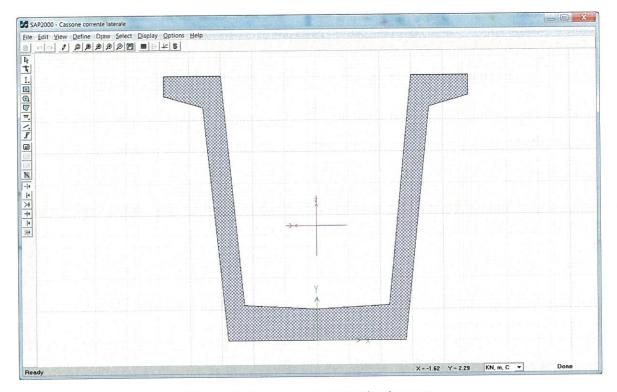


Figura 6 - Sezione tipo cassoncino in c.a.p.

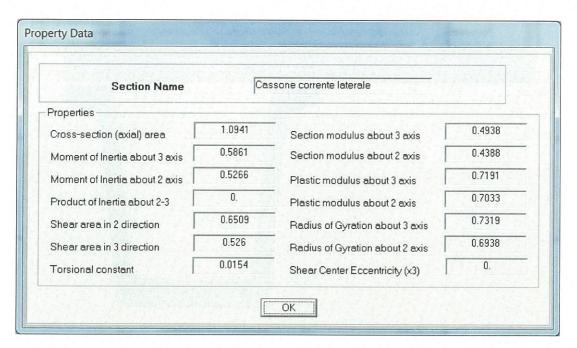


Figura 7 - Caratteristiche meccaniche sezione tipo cassoncino in c.a.p.

FASE II

Per la trave di verifica (trave di bordo) si riportano le proprietà geometriche e meccaniche della sezione caratteristica corrente della trave, le cui dimensioni sono indicate di seguito.

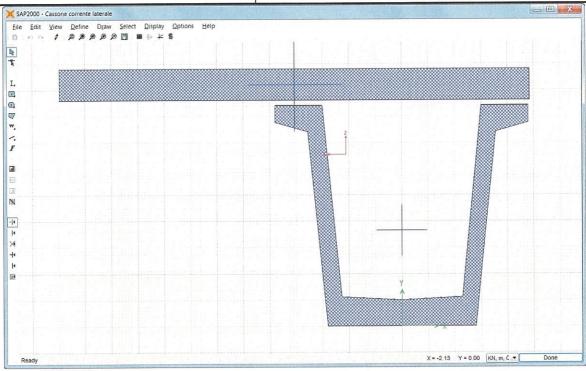


Figura 8 – Sezione tipo cassoncino esterno in c.a.p. con soletta collaborante superiore

Section Name	G	Cassone corrente laterale_	
Properties			
Cross-section (axial) area	2.2888	Section modulus about 3 axis	1.0346
Moment of Inertia about 3 axis	1.6936	Section modulus about 2 axis	1.1388
Moment of Inertia about 2 axis	3.0864	Plastic modulus about 3 axis	1.5503
Product of Inertia about 2-3	0.8039	Plastic modulus about 2 axis	2.3318
Shear area in 2 direction	0.8806	Radius of Gyration about 3 axis	0.8602
Shear area in 3 direction	1.5873	Radius of Gyration about 2 axis	1.1612
Torsional constant	0.0499	Shear Center Eccentricity (x3)	0.

Figura 9 — Caratteristiche meccaniche sezione tipo cassoncino in c.a.p. con soletta collaborante superiore

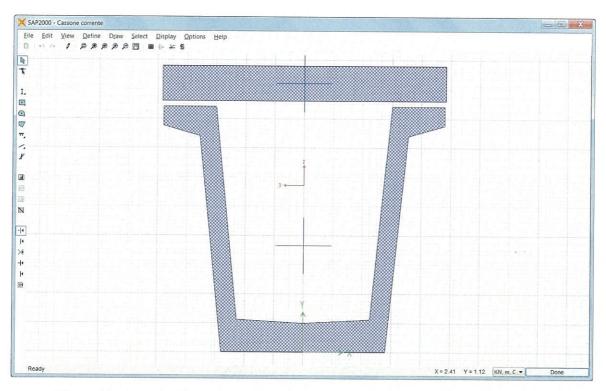


Figura 10 - Sezione tipo cassoncino interno in c.a.p. con soletta collaborante superiore

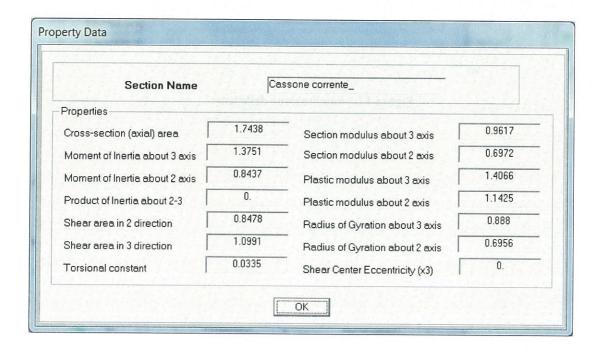


Figura 11 - Caratteristiche meccaniche sezione tipo cassoncino interno in c.a.p. con soletta collaborante superiore

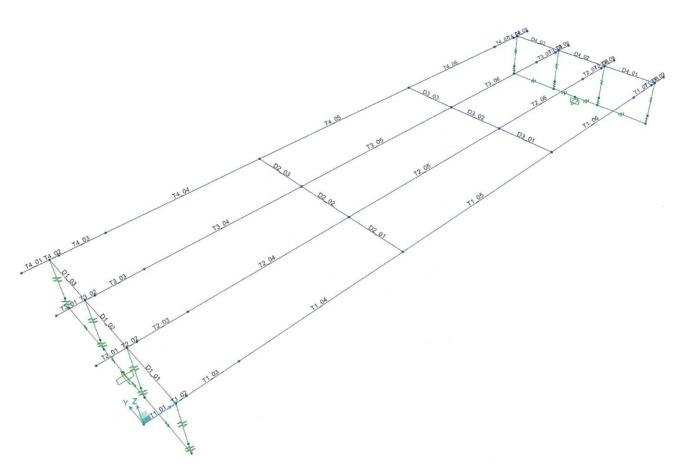


Figura 12 - numerazione delle aste

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 20 di 123

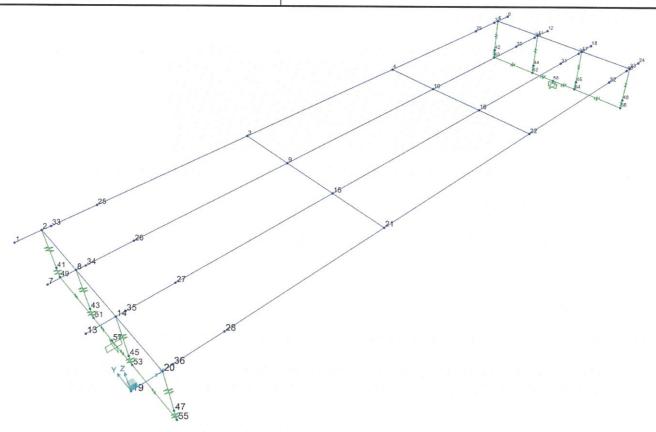


Figura 13 - numerazione dei nodi

5.1 Armatura di precompressione

Si descrive lo schema di precompressione, ottenuto con l'impiego di 72 trefoli con diametro Ø pari a 0,6".

Posizione n°	Area trefolo (cm2)	N° trefoli	d (m)
1	1,39	36	0,095
2	1,39	16	0,17
3	1,39	18	0,98
4	1,39	2	2,04

Nella tabella la colonna "d" indica la distanza dei trefoli del livello considerato dal lembo inferiore della trave.

La tensione di tiro è di 1350 MPa.

I limiti tensionali sono ricavati dal paragrafo 4.1.8.1.5 del D.M. 14/01/2008:

$$\sigma_{\rm spi}$$
 < 0.90 $f_{\rm p(1)k}$ = 1503 MPa

$$\sigma_{spi} < 0.80 \, f_{ptk} = 1488 \, MPa$$

Il coefficiente di omogeneizzazione è pari al rapporto tra i moduli elastici e vale pertanto 5,35.

Di seguito sono riportate le caratteristiche del cavo risultante, con riferimento a area, momento statico (S), distanza dal lembo superiore della trave (d sup) e l'eccentricità rispetto al baricentro della sezione omogeneizzata (e).

	cavo risulta	ante	
Area	S	d sup	е
cm ²	m ³	m	m
94,52 cm ²	0,086	1,696	0,479

La lunghezza di trasferimento della precompressione l_{pt} è valutata seguendo le indicazioni dell'UNI EN 1992-1-1:2005 (punto 8.10.2.2)

$l_{pt} =$	$\alpha_1 \alpha_2 \phi \sigma_{pm0} / f_{bpt}$ lunghezza di trasmissione	m	1.10
$\alpha_1 =$	rilascio: graduale=1 improvviso=1.25		1.25
$\alpha_2 =$	barre=0.25 trefoli=0.19		0.19
$\phi =$	diametro nominale armatura di precompressione	cm	1.524
$\sigma_{sp,t0} =$	tensione CR al tempo t ₀	MPa	1339
$f_{bpt} =$	$\eta_{p1} \eta_1 f_{ctd}(t_0)$ tensione di aderenza uniforme nel cls	MPa	4.4

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

DOCUMENTO

REV.

FOGLIO

22 di 123

Lotto 1: Ripalta - Lesina

LOTTO

PROGETTO DEFINITIVO

COMMESSA

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

LI00	01	D 09CL	VI0100 001	Α

CODIFICA

$\eta_{\mathfrak{pl}} =$	fili indentati=2.7 trefoli=3.2		3.2
$\eta_1 =$	buona aderenza=1 altrimenti=0.7		1
$f_{ctd}(t_0) =$	resistenza a trazione di progetto all'istante del rilascio	MPa	1.38

Il valore di progetto della lunghezza di trasmissione è assunto pari a quello meno favorevole tra:

- lpt1 = 0.8 lpt (verifiche locali delle tensioni all'atto del rilascio);
- lpt2 = 1.2lpt (verifiche a taglio allo stato limite ultimo).

6 ANALISI DEI CARICHI

6.1 Pesi propri

Assumendo un peso del calcestruzzo per unità di volume γ_{cls} =25 kN/mc si ha.

a) Peso proprio della trave prefabbricata

Si riporta di seguito lo schema di calcolo della trave, considerando il peso della sezione corrente, nonché di quello dei ringrossi e dei traversi, che globalmente vale 35 KN/ml (per ciascuna trave); si riporta di seguito lo schema statico del calcolo della trave nella condizione di appoggio – appoggio, prima del getto della soletta con i traversi che gravano direttamente su di essi:

Figura 14 - Schema statico trave appoggiata - appoggiata

peso della sezione corrente per metro lineare = 25.0 x 1.10 = 27.50 KN/m:

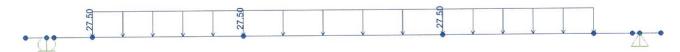
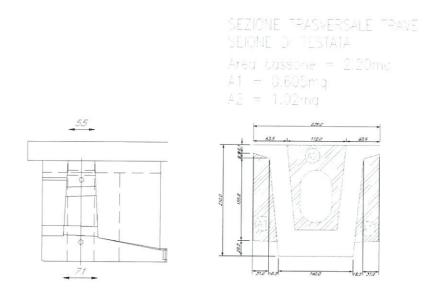


Figura 15 - peso della sezione corrente

peso della sezione di testata metro lineare = 25.0 x 2.00 = 50.00 KN/m:

Figura 16 – peso della sezione di testata


peso della sezione variabile compresa tra la sezione di testata e la sezione corrente:

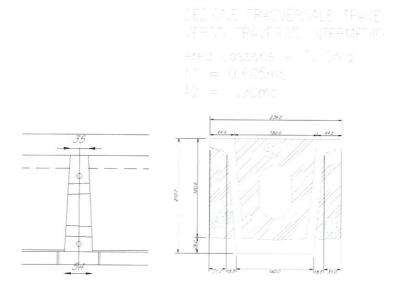


Figura 17 – peso della sezione variabile

Facendo riferimento alla geometria riportata nelle figure sottostanti, si ricavano i seguenti contributi dei pesi dei traversi, come forze concentrate:

Peso dei trasversi di testata = 25.0 x (1.02 + 0.605 + 0.605) x (0.55 + 0.71)/2 = 35.00 KN

Peso dei trasversi centrali = 25.0 x (1.90 + 0.605 + 0.605) x (0.35 + 0.54)/2 = 35.00 KN

Figura 18 – peso dei traversi

Si riportano di seguito le sollecitazioni del cassone:

• momento in mezzeria:

2016 kNm

- momento a 1.75 m dall'asse appoggi (inizio sezione corrente):561 kNm
- taglio a 1.75 dall'asse appoggi (inizio sezione corrente):

298 kN

momento nella sezione di appoggio:

-16 kNm

• taglio nella sezione di appoggio:

369 kN



Figura 19 - momento sulla trave

Figura 20 - taglio sulla trave

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m $\,$

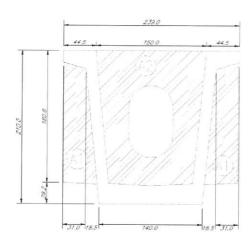
RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA

D 09CL

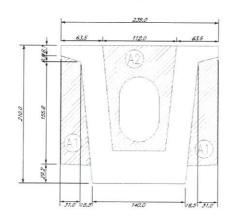
DOCUMENTO VI0100 001 REV.

FOGLIO 26 di 123


SEZIONE TRASVERSALE TRAVE

01

VERSO TRAVERSO INTERVEDIO


LIOO

Area cassone = 1.10mc AT = 0.605ma

SEZIONE TRASVERSALE TRAVE SEIONE DI TESTATA

Area cassone = 2.20mq A1 = 0.605mq A2 = 1.02mq

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA PESCARA – BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO			SINA:		
IMPALCATO DB A 4 CASSONCINI L=25 m	COMMESSA LI00	LOTTO 01	CODIFICA D 09CL	DOCUMENTO VI0100 001	REV.	FOGLIO 27 di 123
RELAZIONE DI CALCOLO						

b)Peso proprio soletta in opera + prédalles

Il getto della soletta dell'impalcato ferroviario sulle prédalles a perdere, avviene dopo aver effettuato la precompressione trasversale dei traversi. Il carico derivante dal getto della soletta opera sul sistema solidarizzato; pertanto il carico globale della soletta di impalcato può ritenersi equamente distribuito sui 4 cassoni. Si segnala che in questa fase non si considerano tutti gli elementi complementari quali i cordoli che verranno realizzati in seconda fase.

Peso proprio della soletta sulle travi:

Il peso proprio della soletta per metro lineare di impalcato, comprensivo delle lastre prefabbricate, è di seguito determinato:

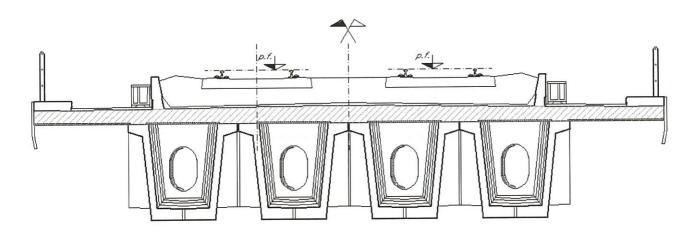


Figura 21 - soletta in cemento armato

La porzione di soletta portata dalle travi ha un'area pari a:

$$A_{\text{soletta}} = 4.90 \text{ m}^2$$
;

Il suo contributo per metro lineare di impalcato su ciascun cassone è pari a:

$$p_{soletta} = 4.90 \text{ x } 25.00/4 = 30.62 \text{ KN/m}$$

Figura 22: peso soletta sulla trave di bordo

Le sollecitazioni di progetto indotte sui cassoni (esterni ed interni) risultano:

• momento in mezzeria: 1945 kNm

momento a 1.75 m dall'asse appoggi (inizio sezione corrente): 549 kNm

taglio a 1.75 dall'asse appoggi (inizio sezione corrente):
 293 kN

momento nella sezione di appoggio:
 -91 kNm

• taglio nella sezione di appoggio: 346 kN

Figura 23: momento sulla trave

Figura 24: taglio sulla trave

	LINEA PESCARA – BARI						
	RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:						
GRUPPO FERROVIE DELLO STATO ITALIANE	Lotto 1: Rip	alta - Les	ina				
OROTTO TERROVIE BEEEG STATE TIMES AT	PROGETTO	DEFINITI	VO				
IMPALCATO DB A 4 CASSONCINI L=25 m	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IMPAECATO DE A 4 GAGGONOTIVI E-23 III	L100	01	D 09CL	VI0100 001	Α	29 di 123	
RELAZIONE DI CALCOLO							

6.2 Carichi permanenti portati

Nella tabella seguente sono riportati i carichi permanenti portati dalle travi laterali:

Cordoli	$p_{cor} =$	$25.0 \times (0.17) =$	4.25 KN/m
Muretti paraballast	$p_{mpa}=$	$25.0 \times (0.16) =$	4.00 KN/m
veletta	$p_{pca}=$		1.5 KN/m
Canaletta per impianti	$p_{can}=$		3.00 KN/m
Massetto	$p_{imp} =$	$(1.73+1.65) \times 0.05 \times 25=$	4.30 KN/m
Barriere antirumore	$p_{bant} =$		15.00 KN/m

^(*) si considera un carico per ciascuna barriera di 15KN/ml, con altezza di 4,44 m rispetto al piano del ferro.

Nella tabella seguente sono riportati i carichi permanenti portati dalle travi centrali:

Massetto $p_{imp} = 2.40 \times 0.05 \times 25 = 3.00 \text{ KN/m}$

RIPARTIZIONE DEI CARICHI PERMANENTI PORTATI

	Bar antirumor e	Can portacavi	Mur paraballast	cordolo	massetto	veletta	Tot
carico dist.	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m
Trav_lat sx	15.00	3.00	4.00	4.25	4.30	1.50	32.10
Trav_cent sx	0.00	0.00	0.00	0.00	3.00	0.00	3.00
Trav_cent dx	0.00	0.00	0.00	0.00	3.00	0.00	3.00
Trav_lat dx	15.00	3.00	4.00	4.25	4.30	1.50	32.10
mom torc.	kNm/m	kNm/m	kNm/m	kNm/m	kNm/m	kNm/m	kNm/m
Trav_lat sx	45.90	2.76	2.50	12.00	4.80	4.90	73.00
Trav_cent sx	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Trav_cent dx	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Trav_lat dx	45.90	2.76	2.50	12.00	4.80	4.90	73.00

Vengono riportate di seguito le schematizzazioni dei carichi con le relative sollecitazioni:

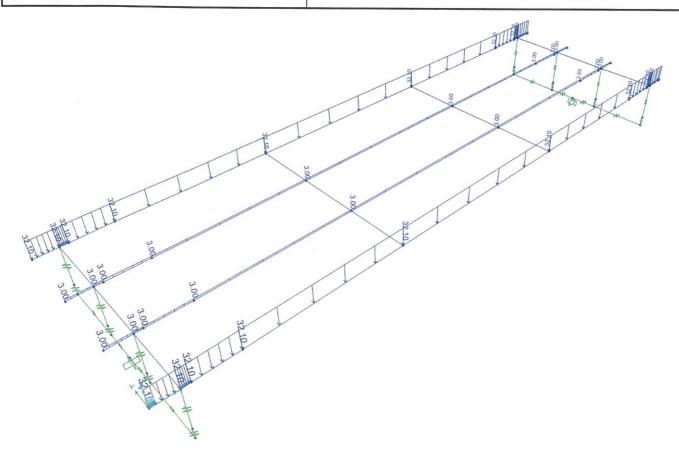


Figura 25 – carichi permanenti portati

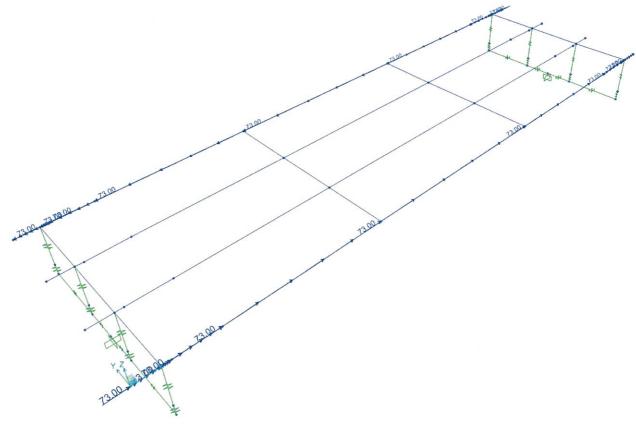


Figura 26 – momento torcente carichi permanenti portati

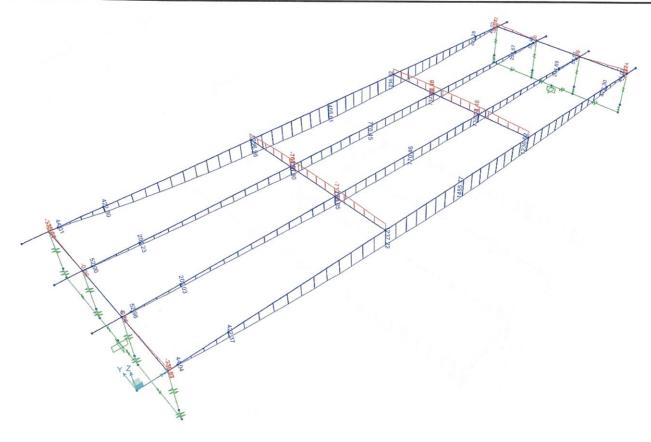


Figura 27 – momento flettente permanenti portati

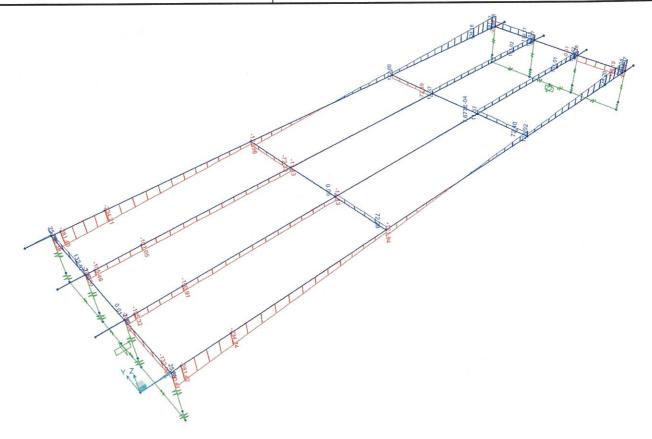


Figura 28 – taglio permanenti portati

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 LI00
 01
 D 09CL
 VI0100 001

THE PRESENTE BY ON LEGGE

6.3 Ballast

Nella tabella seguente è riportato il carico del ballast portato dalle travi laterali:

Massicciata +armam+imperm

 $p_{b,ret} =$

 $(8.60 \times 0.8 \times 18.0)/4 =$

31.00 KN/m

REV.

Α

FOGLIO

34 di 123

Nella tabella seguente è riportato il carico del ballast portato dalle travi centrali:

Massicciata +armam+imperm

 $p_{b,ret} =$

 $(8.60 \times 0.8 \times 18.0)/4 =$

31.00 KN/m

RIPARTIZIONE DEI CARICHI PERMANENTI PORTATI

	Peso
	mas+arm+i
	mp.
carico dist.	kN/m
Trav_lat sx	31.00
Trav_cent sx	31.00
Trav_cent dx	31.00
Trav_lat dx	31.00
mom torc.	kNm/m
Trav_lat sx	0.00
Trav_cent sx	0.00
Trav_cent dx	0.00
Trav_lat dx	0.00

Vengono riportate di seguito le schematizzazioni dei carichi con le relative sollecitazioni:

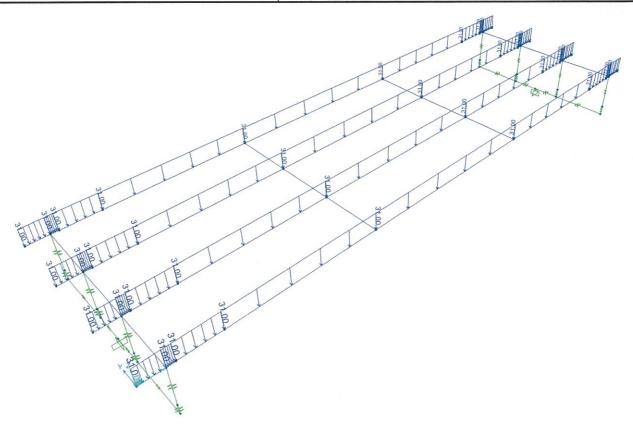


Figura 29 – carico ballast

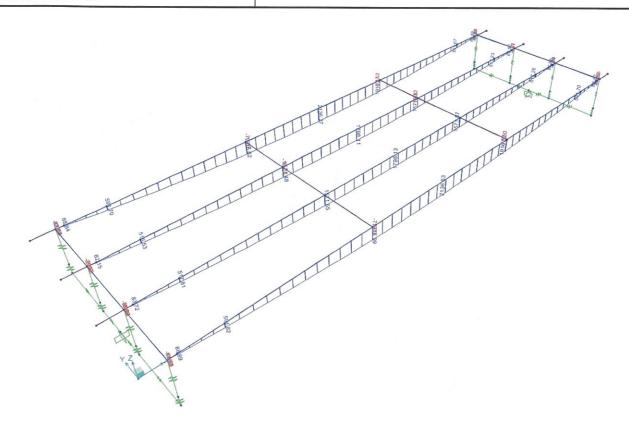


Figura 30 – momento flettente carico ballast

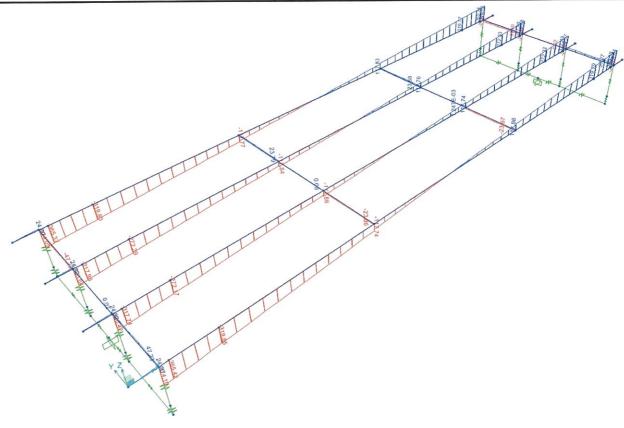


Figura 31 – taglio carico ballast

6.4 carichi accidentali

I carichi in esame operano successivamente alla solidarizzazione trasversale dell'impalcato.

Così come evidenziato in fase di progetto definitivo risulta che le sollecitazioni indotte dai treni reali amplificate dai rispettivi coefficienti dinamici ϕ reali, risultano sensibilmente inferiori alle sollecitazioni indotte dai treni di progetto, amplificate dal coefficiente dinamico di progetto ϕ_3 . Pertanto si opererà con quest' ultimo approccio.

6.4.1 Effetti dinamici

Secondo quanto riportato al paragrafo 1.4.2.5.2 della *Specifica per la progettazione e l'esecuzione dei ponti* ferroviari e di altre opere minori sotto binario, che riprende il par. 5.2.2.3.3 del DM 14.1.2008, il coefficiente dinamico adottato è

$$\Phi_3 = \frac{2.16}{\sqrt{L_{\Phi}} - 0.2} + 0.73 = 1.204$$

essendo L_{ϕ} = 22.6 m, come indicato nella tabella 1.4.2.5.3-1 per il caso 5.1: Travi e solette semplicemente appoggiate L_{ϕ} = luce nella direzione delle travi principali.

6.4.2 Carichi verticali

Le azioni variabili verticali sono state definite in accordo con il par. 1.4.1. della *Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario*.

Eccentricità dei carichi accidentali

L'applicazione dei carichi accidentali sugli elementi strutturali dell'impalcato dipende trasversalmente dalle eccentricità di questi rispetto all'asse dell'impalcato. Le eccentricità dei carichi possono essere di diverso tipo:

- eccentricità dovuta al tracciato: distanza asse tracciato-asse impalcato;
- eccentricità dovuta al sopralzo;
- eccentricità propria del modello carico.

Nel caso in esame si è tenuto conto della sola eccentricità propria del modello di carico, avendo potuto trascurare l'eccentricità dovuta al tracciato e al sopralzo.

Il solo modello di carico LM71 ha un'eccentricità pari a $e_3 = 143.5/18 = 7.97$ cm ≈ 8.0 cm (da considerare nella direzione più sfavorevole), essendo 143.5 cm l'asse interno dell'armamento.-

Pertanto, sull'asse in cui circola il treno SW/2 non si considera alcuna eccentricità, mentre sull'asse in cui circola il treno LM71 si considera un'eccentricità pari a 8.00cm verso l'asse dove circola l'SW/2 per avere la condizione più sfavorevole ai fini delle verifiche sui cassoni.

6.4.2.1 Treno LM71

• Distribuzione longitudinale dei carichi assiali Q_{vk}

 $q_{vk} = 80 \text{ kN/m}$

 $Q_{vk} = 250 \text{ kN}$

 $\alpha = 1.1$ (coefficiente di adattamento)

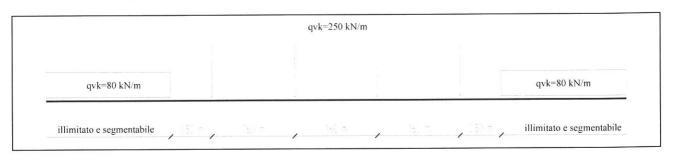


Figura 32 - Treno di carico LM71

Per massimizzare gli effetti sono previste 4 distribuzioni con i carichi concentrati posizionati in corrispondenza della mezzeria, in asse al traverso intermedio ed a ridosso del traverso di testata e ad 1.75 dall'asse dell'appoggio.

	LINEA PES	CARA – B	ARI			
ITALFERR	RADDOPPI	O DELLA	TRATTA FER	RROVIARIA TERI	MOLI-LES	SINA:
GRUPPO FERROVIE DELLO STATO ITALIANE	Lotto 1: Rip	alta - Les	ina			
	PROGETTO	DEFINITI	VO			
IMPALCATO DB A 4 CASSONCINI L=25 m	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	LIOO	01	D 09CL	VI0100 001	Α	40 di 123
RELAZIONE DI CALCOLO						

6.4.2.2 <u>Treno SW / 2</u>

• Distribuzione longitudinale dei carichi

 $q_{vk} = 150 \text{ kN/m}$

 $\alpha = 1.0$ (coefficiente di adattamento)

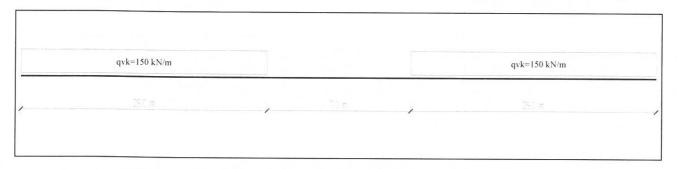
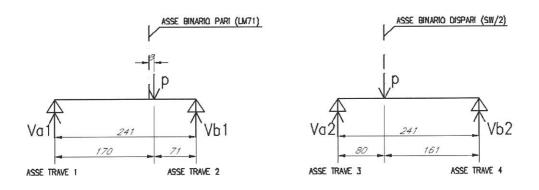


Figura 33 – Treno di carico SW/2



6.4.2.3 Distribuzione dei carichi da traffico

Il modello di calcolo utilizzato è implementato nel programma di analisi strutturale agli elementi finiti Sap2000®; tale codice di calcolo, tramite l'utility Moving Load Case, permette di costruire le linee di influenza relative alle distinte sollecitazioni per ciascun punto della struttura (inteso come ciascuna delle stazioni di output definite nell'ambito della descrizione del modello di calcolo), procedendo automaticamente nell'individuazione delle disposizioni longitudinali del carico mobile.

Nel viadotto in esame lo schema di calcolo adottato ed implementato nel codice di calcolo Sap2000 è quello a graticcio (sistema di travi e trasversi). Tale modellazione spaziale del viadotto porta a dover effettuare un ragionamento riguardo al ruolo che giocano le rigidezze delle travi per ovviare al fatto che la linea di carico definita nel modello deve essere legata ad elementi frame. Tali elementi che rappresentano le travi sono disposti in una posizione spaziale diversa rispetto alle linee di carico definite dalla normativa e ciò comporta l'impossibilità di applicare le linee di carico così come definite dalla normativa.

Si è dovuto pertanto tener conto della ripartizione di ciascun carico sulle travi, studiando ciascuna porzione di soletta compresa tra due travi successive, con schema statico appoggio – appoggio, definendo così i coefficienti di ripartizione su ciascuna trave:

I carichi da traffico sono stati introdotti considerando come condizione più gravosa quella che prevede la contemporaneità dei treni LM71 e SW/2 (traffico pesante). La ripartizione del modello di carico sulle due travi del modello avviene secondo la schematizzazione di trave appoggiata riportata nella figura sopra: distribuzione del carico LM71:

Impalcato in rettilineo: e3 (modello di carico LM71 sul bimario di sinistra e SW/2 su quello di destra)

Reazion Trave S	ii di trave appoggiata X			$L=$ $d_A=$ $d_B=$	241.0 cm 170.0 cm 71.0 cm
1)	$R_A + R_B = P$				
2)	$R_BxL=Pxd_A$				
	R	$_{\rm B}={\rm P}_{\rm X}$	$d_A/L =$	Рх	0.70
	R	_ A= P-	$R_B =$	Рх	0.30

Valori effettivi

p =	105.95 KN/m	$P_{conc} =$	331.10 KN	
R _B =	74.17 KN/m	R _B =	231.77 KN	gty
R _A =	31.78 KN/m	R _A =	99.33 KN	

distribuzione del carico SW/2:

Reazioni di tra	ve appoggiat	ta					
Trave DX				L=	241.0	cm	
				$d_A=$	80	cm	
				$d_B=$	161.0	cm	
1) I	$R_A + R_B = P$						
2) I	$R_{BX}L = P_{X}d_{A}$						
		$R_B = P_X$	$d_A/L =$	Px	0.33		
		$R_A = P$ -	$R_B =$	P x	0.67		
Valori effettivi							
		p =	180.	6 KN/m		$P_{conc} =$	0.00 KN
		R _B =	59.6	0 KN/m		$R_B=$	0.00 KN
		$R_A=$	121.00	0 KN/m		R _A =	0.00 KN

Con questo procedimento, è possibile assegnare le linee di carico a ciascuna frame rappresentativo delle travi:

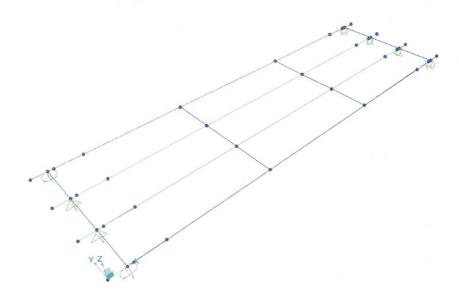
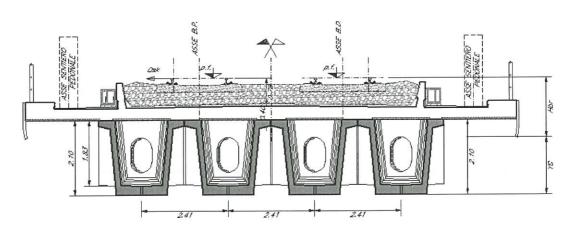


Figura 34 – Lanes assegnati ai telai travi per carichi modello


6.4.2.4 Serpeggio

L'azione laterale associata al serpeggio è definita al par. 1.4.3.2 della *Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario*, che riprende il par. 5.2.2.4.2 del DM 14.1.2008, ed equivale ad una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario, del valore di 100 kN.

L'azione orizzontale in esame è stata considerata ai soli fini del calcolo delle azioni sugli apparecchi di appoggio.

Carichi agenti sulle travi.

L'azione del serpeggio viene riportata nel modello di analisi nel baricentro delle travi (sezione omogeneizzata, condizioni di breve termine), come forza orizzontale e coppia concentrata. La forza orizzontale, diretta verso l'esterno, viene ripartita in parti uguali sulle quattro travi, la coppia concentrata invece viene assegnata alle due travi interessate dalla sollecitazione, sotto forma di forze verticali, determinate da un meccanismo di tira e spingi.

Ouindi, considerando un solo binario caricato:

$$y_G = 1.60 \text{ m}$$

$$H_{br} = 1.68 \text{ m}$$

$$M = Q_{sk} \times H_{br} = 100 \times 1.68 = 168.00 \text{ KNm}$$

$$R_{iv} = -R_{iv} = M/2.60 = 168.0 / 2.41 = 69.70 \text{ KN}$$

$$R_{io} = R_{io} = Q_{sk}/2 = 50.00 \text{ KN}$$

Il tira e spingi fornito dalle reazioni R_{iv}, viene applicato come carico uniformemente distribuito longitudinalmente su una lunghezza di 2.00m, pertanto si ha:

treno LM71:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m $\,$

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 44 di 123

 $r_{iv} = -r_{jv} = (M/2.41)*\alpha/2.00 = (168.0 / 2.41)*1.10/2.00 = 38.35 \text{ KN/m}$

treno SW/2:

 $r_{iv} = -r_{jv} = (M/2.41) *\alpha /2.00 = (168.0 / 2.41)*1.00/2.00 = 34.85 \text{ KN/m}$

6.4.2.5 Forza centrifuga

Nel caso in esame la forza centrifuga non viene tenuta in considerazione, in quanto, l'eccentricità propria del modello di carico è superiore ad essa.

ı	INIEA	DECC	ADA	- BARI
L	INEA	PESU	AKA	- BARI

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LI00	01	D 09CL	VI0100 001	Α	46 di 123

6.4.2.6 Effetti aerodinamici associati al passaggio dei treni

Gli effetti aerodinamici associati al passaggio dei treni sono analoghi a quelli del vento (carichi equivalenti statici sulle barriere anti-rumore). L'intensità della pressione da considerare viene determinata secondo quanto indicato nel punto 1.4.6. delle Istruzioni, che riportano la figura 5.2.8 del DM 14 gennaio 2008. Nel caso in esame la distanza delle barriere dai binari è pari a 4,65 m, e per una velocità di linea pari a 160km/h, si ottine:

$$q_{1k} = \pm 0.19 \text{ kN/m}^2$$

Poiché la barriera ha un'altezza dal piano del ferro di 4,44 m e la distanza del piano del ferro dalla sommità del cordolo su cui è ancorata la barriera è pari a 0,66 m, le sollecitazioni relative agli effetti aerodinamici risultano:

$$F_{wk} = 0.19 \text{ kN/m}^2 \cdot (4,44 \text{ m} + 0,66 \text{ m}) = 0.19 \text{ kN/m}^2 \cdot 5.10 \text{ m} = 0.97 \text{ kN/m}$$

Il momento valutato rispetto al baricentro della soletta vale:

$$M = 0.97 \text{ kN/m} \cdot 2.9 \text{ m} = 2.82 \text{ kNm/m}$$

LINEA	PESCARA	- BARI
-------	----------------	--------

CODIFICA

D 09CL

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

COMMESSA LOTTO

DOCUMENTO VI0100 001 REV. FO

FOGLIO 47 di 123

RELAZIONE DI CALCOLO

6.5 Vento

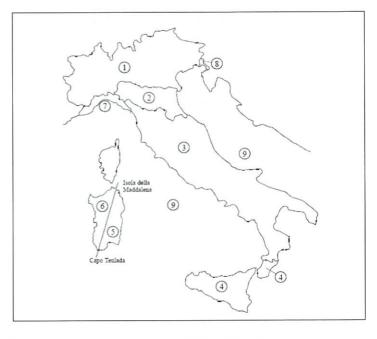
Il calcolo dell'azione del vento è stato condotto secondo quanto riportato al par. 3.3 del DM 2008 e si riportano di seguito i principali parametri di calcolo:

LIOO

CALCOLO DELL'AZIONE DEL VENTO

4) Sicilia e provincia di Reggio Calabria

Zona	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]
4	28	500	0.02
a _s (altitud	ine sul livello del	mare [m])	115
T _F	(Tempo di ritorr	10)	112.5
	$v_b = v_{b,0}$	per a _s ≤ a ₀	
$v_b = v_b$	$b_{0,0} + k_a (a_s - a_0)$	per a₀ < a₅ ≤	1500 m
	$v_b (T_R = 50 [m/s]$)	28.000
	$\alpha_R(T_R)$		1.04562
V _b	$(T_R) = v_b \times \alpha_R [m]$	/s])	29.277


p (pressione del vento [N/mq]) = $q_b \cdot c_e \cdot c_p \cdot c_d$

q_b (pressione cinetica di riferimento [N/mq])

c_e (coefficiente di esposizione)

cp (coefficiente di forma)

c_d (coefficiente dinamico)

Pressione cinetica di riferimento

$$q_b = 1/2 \cdot \rho \cdot v_b^2$$
 ($\rho = 1,25 \text{ kg/mc}$)

q _b [N/mq]	456.29

Coefficiente di forma

E' il coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento.

Coefficiente dinamico

Esso può essere assunto autelativamente pari ad 1 nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, oppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

CODIFICA

D 09CL

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

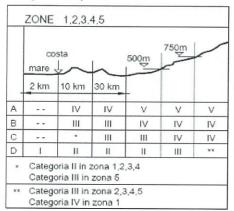
COMMESSA LOTTO

01

LIOO

DOCUMENTO VI0100 001

REV. Α


FOGLIO 48 di 123

Coefficiente di esposizione

Classe di rugosità del terreno

C) Aree con ostacoli diffusi (alberi, case, muri, recinzioni,....); aree con rugosità non riconducibile alle classi A, B, D

Categoria di esposizione

	ZONA				
	mare	osta	اما	500m	
	2 km	10 km	30 km		
Α		111	IV	V	V
В		- 11	111	IV	IV
С		- 11	III	111	IV
D	I	1	11	II	111

Zona

3

	mare	cost	a
	1.5 km	0.5 km	
A			IV
В			IV
C			111
D	1	11	*

_	ZONA	-
		costa
	mare 😽	_
Α		1
В		1
С		1
D	1	1

a_s [m]

0

$\begin{aligned} c_e(z) &= k_r^{\ 2} \cdot c_t \cdot \ln(z/z_0) \left[7 + c_t \cdot \ln(z/z_0) \right] \\ c_e(z) &= c_e(z_{min}) \end{aligned}$	per z≥z _{min}
$c_e(z) = c_e(z_{min})$	per z < z _{min}

Cat. Esposiz.	k _r	z ₀ [m]	z _{min} [m]	Ct
II	0.19	0.05	4	1

Classe di rugosità

C

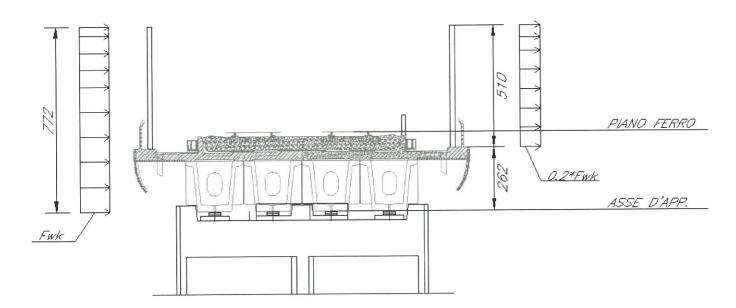
La pressione cinetica di riferimento è pari a:

$$q_b = 0.5 \cdot \rho \cdot v_b^2 = 456.29 \text{ N/m}^2$$

Con riferimento alla seguente figura si calcola la pressione del vento alle tre diverse quote della superficie totale investita dal vento; in particolare si approssima l'andamento della curva logaritmica ad una curva ad andamento bilineare avente un valore minimo, uno intermedio e uno massimo. Dal calcolo dei tre valori di pressione si ricava successivamente una pressione media agente sull'intera superficie:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina


PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 49 di 123

Calcolo di q_v

$$c_e = k_r^2 \cdot c_t \cdot \ln(z/z_0) [7 + \ln(z/z_0)] = 2.53$$
 (classe di rugosità C, cat. di esposizione II)

dove:
$$\begin{cases} k_r = 0.19 \\ c_t = 1.0 \\ z = 8.68 - 3.28 + 3.86 + 3.86 = 13.12 \text{ m} \end{cases}$$

 $c_n = 1.4$ (secondo quanto riportato al §3.3.10.4.1, per $\phi = 1$)

$$\mathbf{q_v} = \mathbf{q_b} \cdot \mathbf{c_e} \cdot \mathbf{c_p} \cdot \mathbf{c_d} = 456.29 \cdot 2,53 \cdot 1,4 \cdot 1 \approx 1.61 \text{ kN/m}^2$$

Sul lato direttamente esposto all'azione del vento si ha pertanto:

$$F_{wk} = 1.61 \text{ kN/m}^2 \cdot (5.10 \text{ m} + 2.62 \text{ m}) = 1.61 \text{ kN/m}^2 \cdot 7,72 \text{ m} = 12.43 \text{ kN/m}$$

Tale forza agisce interamente in corrispondenza della trave direttamente esposta all'azione del vento rimanenti travi .

200			
	INFA	PESCAR.	A - RARI

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 50 di 123

Il momento valutato rispetto al baricentro dell'impalcato vale:

$$M = 12.5 \text{ kN/m} \cdot (3.86 \text{-y}_{\text{G}}) = 12.43 * 2.26 \text{ m} = 28.1 \text{ kNm/m}$$

Sull'altro lato, a seguito dell'azione agente sulla sola barriera antirumore il valore è pari allo 0.2 di F_{wk} come riportato in normativa:

$$F_{wk} = 0.2 \cdot 1.61 \text{ kN/m}^2 \cdot 5.10 \text{ m} = 1.64 \text{ kN/m}$$

Il momento valutato rispetto al baricentro dell'impalcato vale:

$$M = 1.64 \text{ kN/m}^2 \cdot (5.10/2 + 0.5 + 2.1 - y_G) = 1.64 \cdot 3.57 = 5.86 \text{ kNm/m}$$

LINEA	PESCARA	- BARI
-------	---------	--------

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LI00	01	D 09CL	VI0100 001	Α	51 di 123

6.6 Carichi sui marciapiedi

Il carico sui marciapiedi è definito in accordo a quanto precisato al par. 1.4.1.6 della *Specifica per la progettazione* e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario.

 $q_{vk} = 10.0 \text{ kN/m}^2$

Per questo tipo di carico, che non deve considerarsi contemporaneo al transito dei convogli ferroviari, non deve applicarsi l'incremento dinamico.

Essendo la larghezza del marciapiede pari a 1.30m si ha un carico verticale di:

10*1.3 = 13 kN/m

Sulle travi esterne, viene esercitato un momento dovuto al carico sul marciapiede pari a:

13*b = 13*1.77 = 23.00 kNm/m

6.7 Deragliamento

Il deragliamento è un'azione derivante dall'esercizio ferroviario che deve essere considerata quale azione eccezionale, secondo quanto indicato al par. 1.5 della Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario.

• Caso 1

Si devono considerare due carichi verticali lineari $q_{A1d} = 60\,$ kN/m ciascuno, posizionati longitudinalmente su una lunghezza di 6,40 m, ad una distanza trasversale pari allo scartamento S. Il carico più eccentrico tra i due deve essere posto ad una distanza massima di 1,5S dall'asse dei binari.

Caso 2

Si deve considerare un unico carico lineare $q_{A2d}=80x1.4\,$ kN/m esteso per 20 m e disposto con una eccentricità massima, lato esterno, di 1,5 S rispetto all'asse del binario.

Nel caso in esame la forza del deragliamento non è stata considerata ai fini del dimensionamento in quanto con la geometria in esame non può pregiudicare la stabilità globale dell'opera.

6.8 Azioni sismiche

L'azione sismica risulta non essere dimensionante per l'impalcato. Pertanto verrà trattata in modo dettagliato nella relazione di calcolo inerente le sottostrutture.

INIEA	PESCARA -	DADI
LINEA	PESCARA -	- BARI

Lotto 1: Ripalta - Lesina
PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

OMMESSA LOTTO		CODIFICA	DOCUMENTO	REV.	FOGLIO
LI00	01	D 09CL	VI0100 001	Α	52 di 123

6.9 Effetti di interazione statica treno – binario - struttura

Con riferimento alla valutazione degli effetti di Interazione Statica Treno-Binario-Struttura si rimanda ai documenti di calcolo delle opere specifiche in cui l'impalcato in esame viene adottato.

6.10 Avviamento e frenatura

L'azione di frenatura ed avviamento dei treni è definita secondo quanto riportato nel par. 1.4.3.3 della Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario.

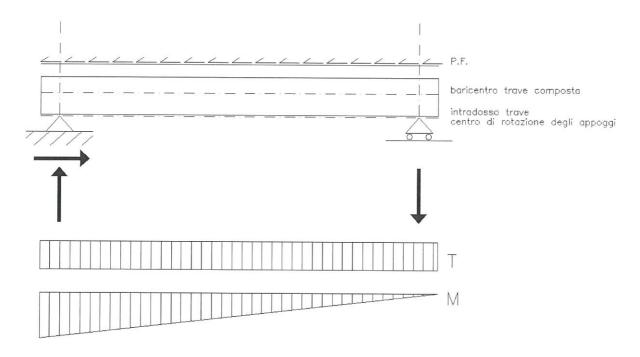


Figura 35 – Sollecitazioni indotte da frenatura e avviamento dei treni

• Treno SW/2 in frenatura:

$$\begin{array}{ll} Q_{l,k} & = 35 \text{ kN/m} \cdot 25 \text{ m} = 875 \text{ kN} \\ \\ F_{o \text{ (fisso)}} & = 875 \text{ kN} \\ \\ F_{v \text{ (fisso)}} = F_{v \text{ (mobile)}} & = 875 \text{ kN} \cdot 3.38 \text{ m} / 22.60 \text{ m} = 131 \text{ kN} \\ \\ V & = 131 \text{ kN} \\ \\ M & = 875 \text{ kN} \cdot (1.35 \text{ m} + 0.1 \text{ m}) = \pm 1269 \text{ kNm} \end{array}$$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LIOO	01	D 09CL	VI0100 001	Α	53 di 123

Il momento è valutato come effetto flettente applicato nel baricentro della trave composta, che dista 1,35 m dall'intradosso della trave, a cui si aggiungono 0,10 m fino all'asse di rotazione degli appoggi.

Treno LM71 in avviamento :

$$Q_{1k}$$
 = 33 kN/m· 25 m = 825 kN

$$F_{o \text{ (fisso)}} = 825 \text{ kN}$$

$$F_{v \text{ (fisso)}} = F_{v \text{ (mobile)}}$$
 = 825 kN · 3.38 m / 22.60 m = 123 kN

$$V = 123 \text{ kN}$$

M =
$$825 \text{ kN} \cdot (1.35 \text{ m} + 0.1 \text{ m}) = \pm 1196 \text{ kNm}$$

Il momento è valutato come effetto flettente applicato nel baricentro della trave composta, che dista 1,35 m dall'intradosso della trave, a cui si aggiungono 0,10 m fino all'asse di rotazione degli appoggi.

Momento complessivo sull'impalcato dovuto alla frenatura e all'avviamento in mezzeria:

a) M_{SW2} in frenatura: 1269 kNm/2 = 634.5 kNm

b) M_{LM71} in avviamento: 1196 kNm/2 = 598 kNm

Su ogni trave, considerando una ripartizione uniforme, si ha:

a) M_{SW2} in frenatura = 158.625 kNm

b) $M_{1,M71}$ in avviamento = 149.500 kNm

Momento complessivo sull'impalcato dovuto alla frenatura e all'avviamento a 1.75m dall'appoggio:

c) M_{SW2} in frenatura: 1269 kNm x (22,60 – 1,75)/22,60 = 1170 kNm

d) $M_{1,M71}$ in avviamento: 1196 kNm x (22,60-1,75)/22,60 = 1078 kNm

Su ogni trave, considerando una ripartizione uniforme, si ha:

c) M_{SW2} in frenatura = 292,50 kNm

d) M_{LM71} in avviamento = 269,50 kNm

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA LOTTO

LIOO

CODIFICA

DOCUMENTO

REV.

FOGLIO

01 D 09CL VI0100 001 Α 54 di 123

6.11 Resistenze parassite nei vincoli

Si considerano le resistenze parassite nei vincoli in condizioni di spostamento relativo incipiente prodotto dalle variazioni di temperatura.

$$f \cdot (V_g + V_q)$$

(5592+4048.52)*0.03 = 290 kN

con f = 0.03

Su ciascun fisso agisce una resistenza parassita pari a:

$$f/2 \cdot = 290/2 = 145 \text{ kN}$$

L'azione in esame è stata considerata ai soli fini del calcolo delle azioni sugli apparecchi di appoggio.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 55 di 123

7 COMBINAZIONI

Si riportano le tabelle delle varie combinazioni di carico indicate dalla normativa in merito ai sovraccarichi per il calcolo dei ponti ferroviari.

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella seguente tabella:

TIPO DI CARICO	Azioni v	erticali	A	Azioni orizzontali				
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti		
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale		
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale		
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale		
Gruppo 4 0,8 (0,6; 0,4)		-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione		

Azione dominante

Includendo tutti i fattori ad essi relativi (Φ,α, ecc..)

Tabella 1 - Valutazione dei carichi da traffico (da "Istruzioni per la progettazione e l'esecuzione dei font ferroviari")

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LI00	01	D 09CL	VI0100 001	Α	56 di 123

Nel seguito si riportano le combinazioni delle azioni da utilizzare.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (S.L.U.):

•
$$\gamma G1 \times G1 + \gamma G2 \times G2 + \gamma P \times P + \gamma Q1 \times Qk1 + \gamma Q2 \times \psi 02 \times Qk2 + \gamma Q3 \times \psi 03 \times Qk3 + \dots (2.5.1)$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (S.L.E.) irreversibili:

•
$$G1 + G2 + P + Qk1 + \psi 02 \times Qk2 + \psi 03 \times Qk3 + \dots (2.5.2)$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (S.L.E.) reversibili:

•
$$G1 + G2 + P + \psi 11 \times Qk1 + \psi 22 \times Qk2 + \psi 23 \times Qk3 + \dots (2.5.3)$$

Combinazione quasi permanente (S.L.E.), generalmente impiegata per gli effetti a lungo termine:

•
$$G1 + G2 + P + \psi 21 \times Qk1 + \psi 22 \times Qk2 + \psi 23 \times Qk3 + \dots (2.5.4)$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2 D.M. 14/01/08):

• E + G1 + G2 + P +
$$\psi$$
 21×Qk1 + ψ 22×Qk2 + ... (2.5.5)

Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto Ad (v. § 3.6 D.M. 14/01/08):

•
$$G1 + G2 + P + Ad + \psi 21 \times Qk1 + \psi 22 \times Qk2 + ... (2.5.6)$$

Pertanto, si ottengono le seguenti combinazioni ai diversi stati limite (si riportano i coefficienti moltiplicativi del valore caratteristico dell'azione, pari in generale a $\gamma \cdot \psi_{ij}$).

Azioni permanenti

g1 = peso proprio delle strutture

g2 = carichi permanenti portati

g3 = Ballast

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

THE STATE OF THE STATE SHOWS AN EMPERORMAN CONTRACTOR OF CONTRACTOR CONTRACTO

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 57 di 123

q1 = treno

q2 = treno scarico

q3 = frenatura e avviamento

q4 = centrifuga

q5 = serpeggio

q6 = vento

q7 = sisma

q8 = resistenze parassite dei vincoli

q9 = deragliamento

Distorsioni

 $\epsilon 1 = precompressione$

ε2 = effetti reologici (ritiro, viscosità e rilassamento)

ε3 = variazioni termiche

STATO LIMITE ESERCIZIO

COMBINAZIONE CARATTERISTICA

	g1	g2	g3	q1	q2	q3	q4	q5	q6	q 7	q8	q9	ε1	ε2	ε3
K1	1	1	1	1	0	0.5	1	1	0.6	0	1	0	1	1	0.6
K2	1	1	1		1		1	1	0.6	0	1	0	1	1	0.6
К3	1	1	1	1	0	1	0.5	0.5	0.6	0	1	0	1	1	0.6
K4	1	1	1	0.8	0	0.4	0.8	0.8	1	0	1	0	1	1	0.6
K5	1	1	1	0.8	0	0.4	0.8	0.8	0.6	0	1	0	1	1	1

COMBINAZIONE FREQUENTE

	g1	g2	g3	q1	q2	q3	q4	q5	q6	q 7	q8	q9	ε1	ε2	ε3
F1	1	1	1	0.8	0	0.8	0.8	0.8	0	0	1	0	1	1	0.5
F2	1	1	1	0	0.8	0	0.8	0.8	0	0	1	0	1	1	0.5
F3	1	1	1	0.8	0	0.8	0.4	0.4	0	0	1	0	1	1	0.5
F4	1	1	1	0	0	0	0	0	0.5	0	1	0	1	1	0.5
F5	1	1	1	0	0	0	0	0	0	0	1	0	1	1	0.6

COMBINAZIONE QUASI PERMANENTE

	g1	g2	g3	q1	q2	q3	q4	q5	q6	q 7	q8	q9	ε1	ε2	ε3
QP1	1	1	1	0	0	0	0	0	0	0	1	0	1	1	0.5

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO

REV.

FOGLIO

00 01 D 09CL VI0100 001

58 di 123

STATO LIMITE ULTIMO

COMBINA	ZIONE	FOND	AMENTAL	\mathbf{E}

	g1	g2	g3	q1	q2	q3	q4	q5	q6	q 7	q8	q9	ε1	ε2	ε3
U1	1.35	1.35	1.5	1.45	0	0.725	1.45	1.45	0.9	0	1.35	0	1	1.2	0.72
U2	1.35					0									
U3	1.35	1.35	1.5	1.45	0	1.45	0.73	0.73	0.9	0	1.35	0	1	1.2	0.72
U4	1.35	1.35	1.5	1.16	0	0.58	1.16	1.16	1.5	0	1.35	0	1	1.2	0.72
U5	1.35	1.35	1.5	1.16	0	0.58	1.16	1.16	0.9	0	1.35	0	1	1.2	1.2

COMBINAZIONE SISMICA

	g1	g2	g3	q1	q2	q3	q4	q5	q6	q 7	q8	q9	ε1	ε2	ε3
S1	1	1	1	0.2	0	0	0	0	0	1	0	0	1	1	0.5

COMBINAZIONE ECCEZIONALE

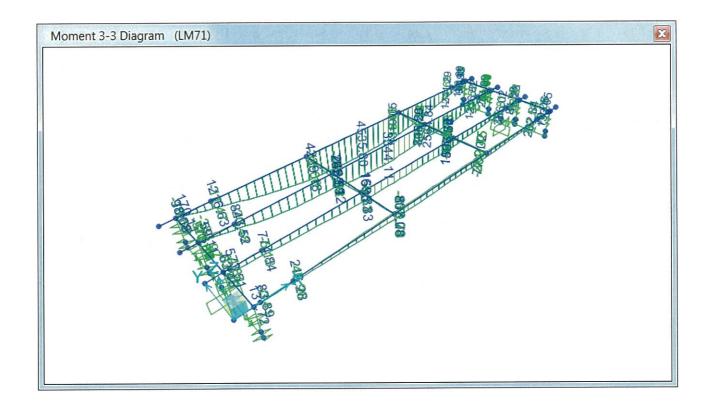
	g1	g2	g3	q1	q2	q3	q4	q5	q6	q 7	q8	q9	ε1	ε2	ε3
E1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	0.5

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m


RELAZIONE DI CALCOLO

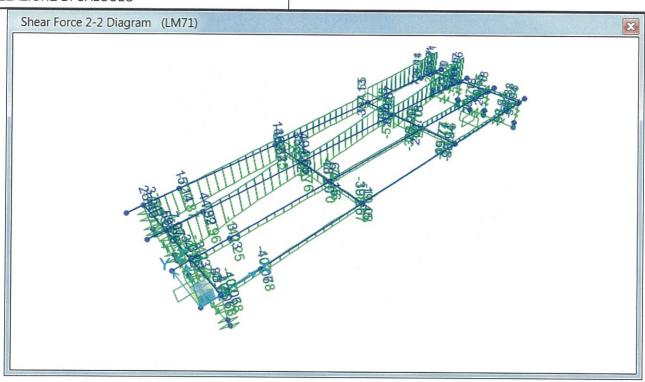
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

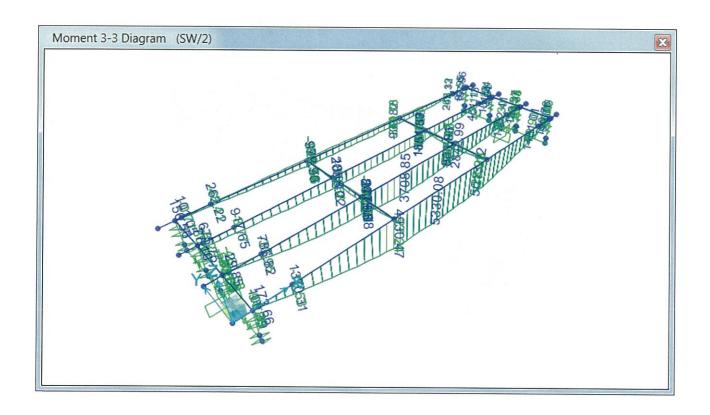
 LI00
 01
 D 09CL
 VI0100 001
 A
 59 di 123

8 CALCOLO DELLE SOLLECITAZIONI

Si riportano di seguito alcune sollecitazioni ottenuta dal modello di calcolo, relative alle condizioni di carico elementari:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:


Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

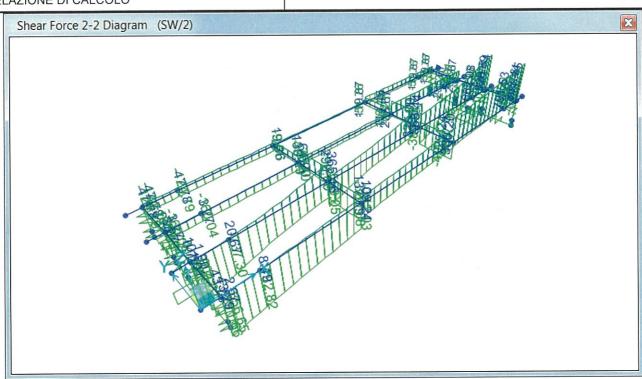

IMPALCATO DB A 4 CASSONCINI L=25 m

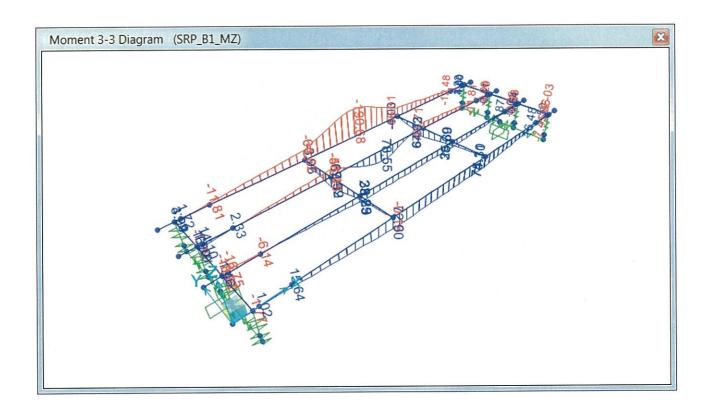
RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 60 di 123

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:


Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO


IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 61 di 123

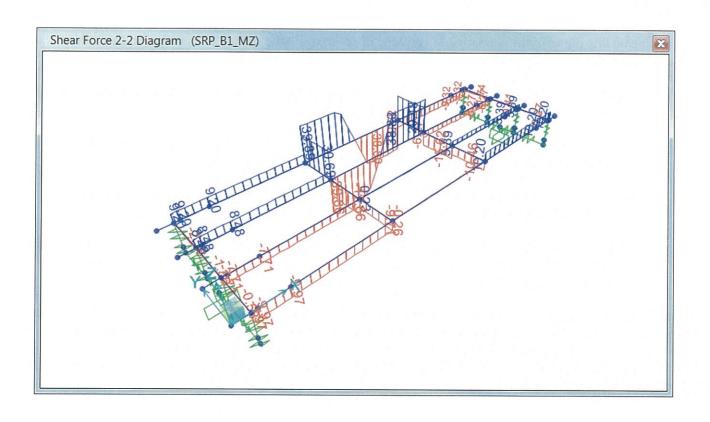
RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

PROGETTO DEFINITIVO


COMMESSA LOTTO CODIFICA

DOCUMENTO

REV.

FOGLIO

LIOO 01 D 09CL VI0100 001 Α 62 di 123

LINEA PESCARA - BARI

Lotto 1: Ripalta - Lesina
PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LI00	01	D 09CL	VI0100 001	Α	63 di 123

9 TRAVE

Conformemente alle prescrizioni normative le verifiche di resistenza delle sezioni in esame sono condotte tenendo conto delle seguenti fasi costruttive:

- **Fase 0** condizione a vuoto: peso proprio (G_1) + precompressione iniziale a cadute istantanee avvenute (P) (sezione resistente solo trave in c.a.p. $-S_1$);
- **Fase 1** getto della soletta su predalles (G₁) gravanti sulle travi in c.a.p. + precompressione a cadute lente avvenute (P) (sezione resistente solo trave in c.a.p. S₁);
- Fase 2 sovraccarichi permanenti (G_2) + precompressione a cadute lente avvenute (P), (sezione resistente omogeneizzata composta da trave in c.a.p. + soletta collaborante S_2);
- Fase 3 condizione di servizio: carichi mobili (Q) + precompressione finale a cadute lente avvenute (P) + ritiro del calcestruzzo (ϵ_2) (sezione resistente omogeneizzata composta da trave in c.a.p. + soletta collaborante $-S_2$).

Per ogni fase sono verificate le tensioni ai lembi superiore ed inferiore della trave e, una volta che la soletta diventa collaborante, anche la tensione al lembo superiore della soletta stessa. I limiti tensionali per l'acciaio da precompressione e per il calcestruzzo nelle varie fasi, sono definiti nel D.M. 14 Gennaio 2008 al §4.1.8.1. Tali verifiche sono state effettuate in corrispondenza della mezzeria dove sono presenti 72 cavi e nella sezione a 1.75 metri dell'appoggio dove i cavi sono 48.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 64 di 123

9.1 Travi principali - Sezione in mezzeria (M+)

9.1.1 Verifica SLE- tensionale

Verifica al tiro e in servizio trave in c.a.p a fili aderenti

Caratteristiche dei materiali

Calcestruzzo travi		STATE OF STA	Calcestruzzo soletta
Tipo di calcestruzzo		C45/55	Tipo di cls C30/37
	R _{ck}	55.00 N/mm ²	R _{ck} 35 N/mm ²
	f _{ck}	45.65 N/mm ²	f _{ck} 29.05 N/mm ²
	f _{cm}	53.65 N/mm ²	f _{cm} 37.05 N/mm ²
	f _{ctm}	-3.83 N/mm ²	f _{ctm} -2.83 N/mm ²
	E _{cm}	36416.11 N/mm ²	E _{cm} 32588.11 N/mm ²
Caratteristiche cls al tras	ferimento dell	la precompressione	
	ť	14 giorni	momento di trasferimento della precompressione
	f _{cm} (t)	49.38 N/mm ²	
	f _{ck} (t)	41.38 N/mm ²	
	0.7 f _{ck} (t)	28.97 N/mm ²	valore limite della tensione all'atto della precompressione (p. 4.1.8.1.4)
	0.6 f _{ck} (t)	24.83 N/mm ²	valore limite della tensione di esercizio a cadute avvenute (p. 4.1.8.1.3)
	f _{ctm} (t)	-3.53 N/mm ²	
	k	1.00 N/mm ²	valore di riduzione della resistenza a trazione del cls per le verifiche del conglomera
	f _{ctm} (t)·k	-3.53 N/mm ²	de la constante de la constant

Tipo di cavo	3
Classe di armatura	classe 2
f _{ptk}	1860 N/mm ²
fp(1)k	1670 N/mm ²
f _{pk}	1670 N/mm ²
f _{pk} E _p	195 GPa

Scrivere (1) Barre, (2) Fili, (3) Trefoli, (4) Trefoli a fili sagomati, (5) Trecce p. 11.3.3.2 (Classe 1: Trecce, filo o trefolo ordinario; Classe 2: Trecce, filo o trefolo stabilizzato; Classe 3: barra laminata p.11.3.3.3)

Limiti tension	i massime iniziali all'atto	della tesatura	
	$\sigma_{spi} = 0.9 f_{pk}$	1503.00 N/mm ²	
	$\sigma_{spi} = 0.8 f_{ptk}$	1488.00 N/mm ²	Condizione più restrittiva

<u>Predimensionamento</u>		
N _{p0} Diametro nominale	13510.80 kN 0.6"	forza di precompressione iniziale
A _{nom}	139.00 mm²	Area nominale
numero minimo di cavi	66	$num.min.cavi = int \left(\frac{N_{p0}}{\sigma_{xpi} \cdot A_{nom}} \right) + 1$

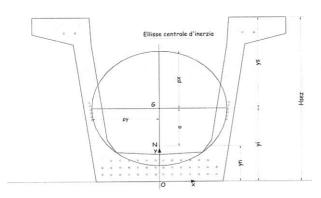
RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LI00	01	D 09CL	VI0100 001	Α	65 di 123


ollecitazioni al tiro			
M _p	p,trave	2016.00	kNm
Luce	trave -		m
Peso proprio trave+trasvers	i pref -	25.00	kN/m
	g cls	25.00	kN/m ³

momento massimo sollecitante dovuto al peso proprio della trave

coefficiente di omogenizzazione n		(acciaio e cls
A _{cls}	10863.60	cm ²
A _{resTref}	1.39	cm ²
numero di trefoli scelto nº	72	
A _{tr}	100.08	cm ²
A*	11299.43	cm ²
H _{sez}	210.00	cm
y_i	89.10	cm
$y_s = H_{sez} - y_i$	120.90	cm
I _o *	58237667	cm ⁴
$W_s*=I_q*/y_s$	481716.44	cm ³
$W_i = I_q / y_i$	653593.21	cm ³
y _n	46.72	cm
e	42.38	cm

area totale dell'armatura di precompressione

punto di applicazione dello sforzo normale (coincide con il baricentro delle armature) eccentricità tra il punto di applicazione del tiro e il baricentro della sezione omogenizzata

RO INIZIALE		
	N _p ⁰	13511 kN
	$\sigma_{pi} = N_p^0/A_{tr}$	1350.00 N/mm ²

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

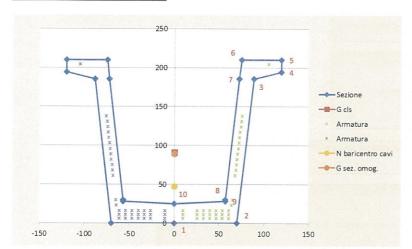
IMPALCATO DB A 4 CASSONCINI L=25 m

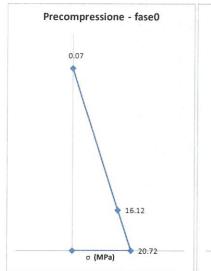
RELAZIONE DI CALCOLO

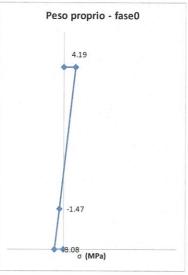
COMMESSA LOTTO

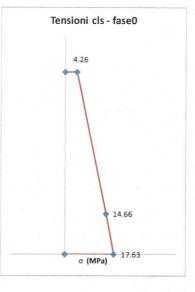
01

CODIFICA


D 09CL


DOCUMENTO VI0100 001 REV.


FOGLIO 66 di 123


THE REPORT OF COURSE

RILASCIO DEL CAVO: fase 0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

CODIFICA

D 09CL

Lotto 1: Ripalta - Lesina

IMPALCATO DB A 4 CASSONCINI L=25 m

PROGETTO DEFINITIVO

LOTTO

01

DOCUMENTO REV. VI0100 001 Α

FOGLIO 67 di 123

RELAZIONE DI CALCOLO

Tensione cls a	livello del	cavo al tiro

$$\sigma_{cc}^{\prime} = \frac{N_{p0}}{A^*} + \frac{N_{p0} \cdot e}{I_{\cdot}^*} \cdot e$$

16.12 MPa

Compressione

COMMESSA

L100

Perdite di tensione istantanee

- Tensione nel cavo

Tensione nel cavo dopo le perdite di tensione dovute alla deformazione istantanea del cls

1263.66 MPa

Precompressione dopo le perdite di tensione dovute alla deformazione istantanea del cls

$$N_p^0 = N_{p0} - \Delta N_i$$

- Tensione cls lembo superiore

$$\sigma_{cs}^{\circ} = \frac{N_p^0}{A^*} - \frac{N_p^0 \cdot e - M_g}{W^*}$$

4.26 MPa

Compressione Verificata

Verifica: $\sigma < 0.7$ fck(t)

0.7 fck(t)

28,97 MPa

6.81 coefficiente di sicurezza

- Tensione cls lembo inferiore

$$\sigma_{ci}^{\circ} = \frac{N_p^0}{\Lambda^*} + \frac{N_p^0 \cdot e - M_g}{W_i^*}$$

17.63 MPa

Compressione Verificata

Verifica: $\sigma < 0.7$ fck(t)

0.7 fck(t)

28.97 MPa 1.64 coefficiente di sicurezza

- Tensione cls a livello del cavo

$$\sigma_{cc}^0 = \frac{N_p^0}{A^*} + \frac{N_p^0 \cdot e - M_g}{I_i^*} \cdot e$$

14.66 MPa

Compressione Verificata

Verifica: $\sigma < 0.7$ fck(t)

0.7 fck(t) 28.97 MPa

1.98 coefficiente di sicurezza Coeff. di sicurezza

Tensione nel cavo

Tensione nel cavo dopo le cadute di tensione dovute al peso proprio

$$\sigma_{sp}^{0} = \sigma_{sp}^{t} + n \cdot \frac{M_{g}}{I_{i}^{*}} \cdot e =$$

1271.51 MPa

GETTO IN OPERA DELLA SOLETTA: fase 1

(Sezione resistente formata dalla sola trave, soletta considerata solo come carico)

Sollecitazioni al getto della soletta

 $M_{max} = M_{pp,soletta}$

1945.00 kNm

momento massimo sollecitante dovuto al solo peso proprio della soletta

Variazioni di tensione dovute a Mmas

$$\begin{split} \Delta\sigma_{cs}^1 &= \frac{M_{max}}{I_g^*} \cdot y_s \\ \Delta\sigma_{ci}^1 &= \frac{M_{max}}{I_g^*} \cdot y_i \end{split}$$

4.0376 MPa

Compressione

variazione di tensione nel cls al lembo superiore

$$\Delta o_{ci}^{1} - \frac{M_{max}}{I^{*}} \cdot y_{i}$$

-2.98 MPa

Trazione

variazione di tensione nel cls al lembo inferiore

$$\Delta \sigma_{cc}^1 = \frac{M_{max}}{I_a^*} \cdot e$$

-1.42 MPa

Trazione

variazione di tensione nel cls al livello del baricentro dei cavi

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO REV FOGLIO D 09CL VI0100 001 Α 68 di 123

A favore di sicurezza si è considerato che il getto della soletta avvenga dopo molto tempo rispetto al tiro delle travi in precompresso, in modo da poter considerare in questa fase tutte le perdite di tensione lente riguardo la precompressione.

Perdite di tensione lente a tempo finito

termine maturazione t_{s} 7 giorni 14 giorni RH 80 %

età del cls all'inizio del ritiro per essiccamento età del cls al momento di applicazione della precompressione umidità ambientale relativa

Deformazione per ritiro

 $\varepsilon_{cs} = \varepsilon_{cd}(t) + \varepsilon_{ca}$ -0.0002880 56.1522000 MPa $\Delta \sigma_{cs} = -E_s \varepsilon_{cs}$ €cd≠ -0.0001988 $\varepsilon_{cd}(t)$ -0.0001988 $\beta_{ds}(t,t_s)$ ш 11771.24 mm h_0 184.6 mm 0.87 UR 80 %

deformazione totale per ritiro perdita di precompressione per ritiro

deformazione per ritiro da essiccamento a tempo x deformazione per ritiro da essiccamento a tempo t

-0.000228 εco

perimetro di cls esposto all'aria

dimensione fittizia pari a 2A_c/u Ac è l'area della sezione in cls e u il perimetro

umidità relativa

-0.0000891 E ca

ritiro autogeno

Deformazione per viscosità

$$\varepsilon_v = \frac{\sigma_{cc}^0}{E_c} \varphi(t, t_0) + \frac{\Delta \sigma_{cc}^1}{E_c} \varphi(t, t_1)$$

-0.0006359

deformazione per viscosità

 $\varphi(t, t_0)$ 0.00 $\varphi(t, t_1)$ 124.01 N/mm² $\Delta \sigma_v = -E_s \epsilon_v$

perdita di precompressione per viscosità

Cadute di tensione per rilassamento dell'acciaio

 $\Delta \sigma_r^1$

85.21 N/mm²

perdita di precompressione per rilassamento

Perdita di precompressione totale in fase 1

$$\Delta \sigma tot := \frac{\Delta \sigma v + \Delta \sigma rit + 0.8 \cdot \Delta \sigma pr}{1 + \frac{Ep}{Ec} \cdot \frac{Ap}{AI} \cdot \left(1 + \frac{AI}{II} \cdot ec^2\right) \cdot (1 + 0.8 \cdot \Phi)}$$

 $\Delta N_i = \Delta \sigma_{nr}^1 \cdot A_{rr}$

2162.77 kN

ariazioni di tensione dovute a $\Delta N_i = \Delta N_i \cdot e$			
$\Delta \sigma_{prcs}^1 = -\frac{\Delta V_f}{A^*} + \frac{\Delta V_f}{W_a^*}$		-0.0112 MPa	Trazione
$\Delta \sigma_{prci}^{1} = -\frac{\Delta N_{l}}{A^{*}} - \frac{\Delta N_{l}^{S} \cdot e}{W_{S}^{*}}$	•	-3.3165 MPa	Trazione
$\Delta \sigma_{prec}^{1} = -\frac{\Delta N_{l}}{l^{*}} - \frac{\Delta N_{l} \cdot e^{2}}{l^{*}}$		-2.5811 MPa	Trazione

variazione di tensione nel cls al lembo superiore

variazione di tensione nel cls al lembo inferiore

variazione di tensione nel cls al livello del baricentro dei cavi

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

CODIFICA

D 09CL

Lotto 1: Ripalta - Lesina

IMPALCATO DB A 4 CASSONCINI L=25 m

PROGETTO DEFINITIVO

COMMESSA LOTTO

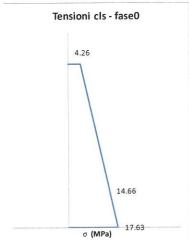
01

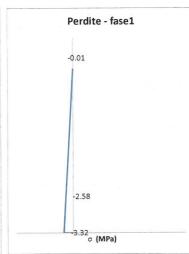
LIOO

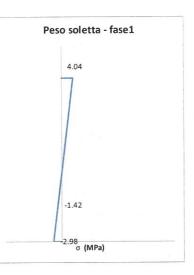
DOCUMENTO

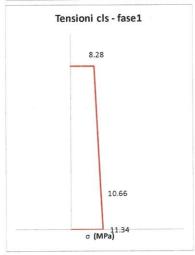
VI0100 001

REV.


FOGLIO 69 di 123


RELAZIONE DI CALCOLO


Tensione cls lembo superiore			
$\sigma_{cs}^{1} = \sigma_{cs}^{0} + \Delta \sigma_{cs}^{1} + \Delta \sigma_{pres}^{1}$	8.28 MPa	Compressione Verificata	Verifica: $\sigma < 0.6$ fck(t)
0,6xfck	27.39 MPa 3.31		


Tensione cls lembo inferiore			
$\sigma_{cl}^{1} = \sigma_{cl}^{0} + \Delta \sigma_{cl}^{1} + \Delta \sigma_{prel}^{1}$	11.34 MPa	Compressione Verificata	Verifica: $\sigma < 0.6 \text{fck}(t)$
0,6xfck	27.39 MPa		
Coeff. di sicurezza	2.42		

Tensione cls a livello del cavo			
$\sigma_{cc}^{1} = \sigma_{cc}^{0} + \Delta \sigma_{cc}^{1} + \Delta \sigma_{prec}^{1}$	10.66 MPa	Compressione Verificata	Verifica: $\sigma < 0.6 fck(t)$
0,6xfck	27.39 MPa		
Coeff. di sicurezza	2.57		La carried and the same of the

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

CODIFICA

D 09CL

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

ROGETTO DEFINITIVO

01

COMMESSA LOTTO

LIOO

DOCUMENTO VI0100 001 REV.

Α

FOGLIO 70 di 123

RELAZIONE DI CALCOLO

Tensione nel cavo
Tensione nel cavo dopo le perdite in fase 1 e le cadute di tensione dovute al peso della soletta

 $\sigma_{sp}^{1} = \sigma_{sp}^{0} - n \cdot \Delta \sigma_{prec}^{1} + n \cdot \Delta \sigma_{ee}^{1} = 1265.27 \text{ MPa}$

AZIONE DEI PERMANENTI PORTATI : fase 2

(Soletta indurita e collaborante con le travi)

Caratteristiche sezione omogeneizzata 2

(si omogenizza rispetto al cls di CAP)

n₂ 1.117 coefficiente omogenizzazione (rapporto tra i due moduli elastici, soletta e CAP)

 A_{cls} 18595.38 cm² $A_{resTref}$ 1.39 cm²

n° 72.00 numero di trefoli scelto

A_{tr} 100.08 cm² area totale dell'armatura di precompressione

 $\begin{array}{cccccc} A^{*=} & 19031.20 \text{ cm}^2 \\ H_{\text{sez1}} = & 246.00 \text{ cm} \\ y_{i1} = & 145.78 \text{ cm} \\ y_{\text{s,soletta}} = H_{\text{sez1}} - y_{i1} = & 100.22 \text{ cm} \\ y_{\text{s,trave}} = H_{\text{sez}} - y_{i1} = & 64.22 \text{ cm} \\ Hsol = & 36.00 \text{ cm} \\ e_1 = & 82.22 \text{ cm} \end{array}$

(utile per le azioni differenziali soletta - trave)

 $\begin{array}{ll} I_g{}^*{}{}= & 146274605 \text{ cm}^4 \\ W_s{}^*{}{}=I_g{}^*{}/y_s{}= & 1459511.53 \text{ cm}^3 \\ W_i{}^*{}=I_g{}^*{}/y_i{}= & 1003403.94 \text{ cm}^3 \end{array}$

y_n 46.72 cm e= 99.06 cm punto di applicazione dello sforzo normale (coincide con il baricentro delle armature) eccentricità tra il punto di applicazione del tiro e il baricentro della sezione omogenizzata

Sollecitazioni

 $M_{perm,portati} = M_{max}$ 3593.00 kNm

momento massimo sollecitante dovuto ai permanenti portati (pavimentazione, cordolo, sicur via,barriera antirumore)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

D 09CL

Lotto 1: Ripalta - Lesina

IMPALCATO DB A 4 CASSONCINI L=25 m

PROGETTO DEFINITIVO

LOTTO CODIFICA COMMESSA

01

DOCUMENTO

RFV **FOGLIO**

71 di 123 VI0100 001 Α

RELAZIONE DI CALCOLO

Variazioni	di	tensi	ione	dovu	te a	Mmax

limite compr cls 0.6fck no 0.7 fck a cadute avvenute

LIOO

variazione di tensione nel cls al lembo superiore della soletta

1.41 MPa variazione di tensione nel cls al lembo inferiore della soletta

2.20 MPa

-3.58 MPa

0.00 MPa

0.0000000

-0.0001677

-0.0000476

 $\Delta\sigma_{\text{cs,trave}}^2 = \frac{M_{\text{max}}}{I_{\text{g}}^*} \cdot y_{\text{s,trave}}$ variazione di tensione nel cls al lembo superiore della trave 1.58 MPa

variazione di tensione nel cls al livello del baricentro dei cavi -2.43 MPa

Perdite di tensione lente a tempo infinito Deformazione per ritiro nella trave

-0.0001988 $\epsilon_{cd}(t)$ -0.0001988

εcd - εcd(t)

11

 $\Delta \sigma_{\rm ritiro} = -E_s(\epsilon_{cs} - \epsilon_{cd}(t))$

deformazione per ritiro da essiccamento a tempo x

variazione di tensione nel cls al lembo inferiore della trave

ritiro avvenuto nelle fasi precedenti

ritiro depurato da quello avvenuto nelle fasi precedenti

perdita di precompressione per ritiro a t ∞

11771.24 mm perimetro di cls esposto all'aria

dimensione fittizia pari a 2A_c/u Ac è l'area della sezione in cls e u il perimetro 184.6 mm ho 0.87 k_h

UR 80 % umidità relativa -0.000228 εςο

0.0000000 ritiro autogeno (già scontato)

Deformazione per ritiro nella soletta

deformazione per ritiro da essiccamento a tempo

% ritiro trave esaurito 100% 0.0000000 Percentuale di ritiro esaurito dalla trave al momento del getto della soletta

ritiro della trave ancora da scontare $\epsilon_{cd}(t)$ ritiro totale depurato da quello delle fasi precedenti (ritiro differenziale) -0.0002153

 $\Delta\epsilon_{cd^{\sigma}}$ 8640 cm² Area sola soletta

Ac u 4920.00 mm perimetro di cls esposto all'aria dimensione fittizia pari a 2A_c/u Ac è l'area della sezione in cls e u il perimetro ho 351.2 mm K, 0.74

80 % umidità relativa UR

ritiro autogeno soletta

-0.000228

Deformazione per viscosità

-0.0001189 $\varepsilon_{\nu}(x, t_2) = \Phi(x, t_2)\sigma_{cc}/E_c$

Ec0

perdita di precompressione per viscosità a t ∞ 2.32 Mpa $\Delta\sigma_{\rm v}(\infty,\,{\rm t_2})$

UR 75.00 scrivere 55 o 75 fissato 61_momento della mess max 60gg in tab 61.00 giorni

t₂ $\Phi(x, t_0)$

Effetto del ritiro differenziale tra trave e soletta

1172234.09 N/cm² modulo elastico del cls scontato degli effetti viscosi Ecv Δσ soletta trazione iniziale nella soletta

-2.52 **MPa** 2181.08 kN 1793.32 kNm Δσ sup soletta -0.79 MPa Δσ inf soletta 1.93 MPa -0.64 MPa Δσ sup trave

-0.07 MPa

Cadute di tensione per rilassamento dell'acciaio

0.00 N/mm² perdita di precompressione per rilassamento a t ∞ $\Delta\sigma_r^{-1}$

Perdita di precompressione totale in fase 2

 $\Delta \sigma_{pr}^2 = \Delta \sigma_{ritiro}^2 + \Delta \sigma_v^2 + \Delta \sigma_r^2$ 2.32 MPa

Δσ inf trave

 $\Delta N_l = \Delta \sigma_{pr}^2 \cdot A_{tr}$ 23 21 kN

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

IMPALCATO DB A 4 CASSONCINI L=25 m

PROGETTO DEFINITIVO

01

INII AEOATO DE A 4 CASSONOINI E-2

COMMESSA LOTTO CODIFICA

LIOO

CODIFICA D 09CL DOCUMENTO VI0100 001 REV.

FOGLIO 72 di 123

RELAZIONE DI CALCOLO

	<u>tensione dovute alle perdite d</u>	precompressione		
$\Delta\sigma^2_{pressoletta} =$	$= -\frac{\Delta N_l}{A^* n} + \frac{\Delta N_l \cdot e}{n I_g^*} \cdot \mathcal{Y}_{s,soletta}$	0.0032 MPa	Compressione	variazione di tensione nella soletta al lembo superiore
$\Delta\sigma^2_{prei,soletta} = -$	$-\frac{\Delta N_l}{A^* n} + \frac{\Delta N_l \cdot e}{n I_g^*} \cdot y_{l,soletta}$	-0.0019 MPa	Trazione	variazione di tensione nella soletta al lembo inferiore
$\Delta\sigma_{prcs,trave}^2 = -$	$-\frac{\Delta N_l}{A^*} + \frac{\Delta N_l \cdot e}{I_s^*} \cdot y_{s,trave}$	-0.0021 MPa	Trazione	variazione di tensione nel cls al lembo superiore
$\Delta \sigma_{prci,trave}^2 = -$	$-\frac{\Delta N_{l}}{A^{*}} - \frac{\Delta N_{l}^{*} \cdot e}{I_{g}^{*}} \cdot y_{l,trave}$ $\Delta N_{l} \Delta N_{l} \cdot e^{2}$	-0.0351 MPa	Trazione	variazione di tensione nel cls al lembo inferiore
$\Delta\sigma_{precentrave}^2 = -$	$\frac{\Delta N_l}{A^*} - \frac{\Delta N_l \cdot \hat{e}^2}{I_g^*}$	-0.0278 MPa	Trazione	variazione di tensione nel cls al livello del baricentro dei cavi

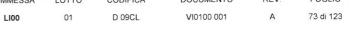
Tensione cls lembo superiore soletta

$\sigma_{cs,soletta}^2 = \Delta \sigma_{rdcs,soletta}^2 + \Delta \sigma_{cs,soletta}^2 + \Delta \sigma_{prcs,soletta}^2$	1.81 MPa	Compressione	Verificat <i>Verifica</i> : σ < 0.6 fck(t)
0,6xfck Coeff. di sicurezza	17.43 MPa 9.65		
Tensione cls lembo superiore soletta			
$\sigma_{ci,soletta}^2 = \Delta \sigma_{rdci,soletta}^2 + \Delta \sigma_{ci,soletta}^2 + \Delta \sigma_{prci,soletta}^2$	0.62 MPa	Compressione	Verificat <i>Verifica</i> : σ < 0.6 fck(t)
0,6xfck Coeff. di sicurezza	17.43 MPa 28.32		
Tensione cls lembo superiore trave			
$\sigma_{cs,lrave}^2 = \sigma_{cs,lrave}^1 + \Delta \sigma_{rdcs,lrave}^2 + \Delta \sigma_{cs,lrave}^2 + \Delta \sigma_{prcs,lrave}^2$	11.79 MPa	Compressione	Verificat <i>Verifica:</i> σ < 0.6 fck(t)
0,6xfck Coeff. di sicurezza	27.39 MPa 2.32		
Tensione cls lembo inferiore trave			
$\sigma_{\it ci,trave}^{2} = \sigma_{\it ci,trave}^{1} + \Delta \sigma_{\it rdci,trave}^{2} + \Delta \sigma_{\it ci,trave}^{2} + \Delta \sigma_{\it prci,trave}^{2}$	7.08 MPa	Compressione	Verificat <i>Verifica:</i> σ < 0.6 <i>fck(t)</i>
0,6xfck Coeff. di sicurezza	27.39 MPa 3.87		
Tensione cls a livello del cavo			
$\sigma_{cc,trave}^{2} = \sigma_{cc,trave}^{1} + \Delta \sigma_{rdcc,trave}^{2} + \Delta \sigma_{cc,trave}^{2} + \Delta \sigma_{prcc,trave}^{2}$	8.13 MPa	Compressione	Verificat <i>Verifica:</i> σ < 0.6 fck(t)
0,6xfck Coeff. di sicurezza	27.39 MPa 3.37		

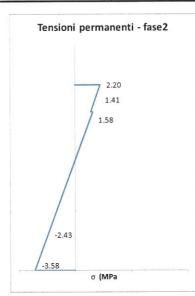
RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

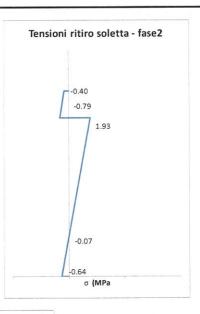
Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

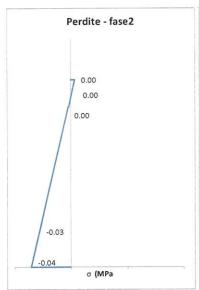
IMPALCATO DB A 4 CASSONCINI L=25 m

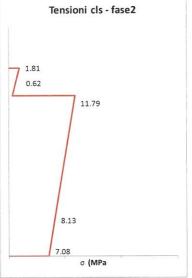

RELAZIONE DI CALCOLO

CODIFICA COMMESSA LOTTO


DOCUMENTO


REV.


FOGLIO



Tensione nel cavo

Tensione nel cavo dopo le perdite in fase 2 e le cadute di tensione dovute a permanenti e ritiro differenziale

$$\sigma_{sp}^2 = \sigma_{sp}^1 - n \cdot \Delta \sigma_{\textit{prec,trave}}^2 + n \cdot \Delta \sigma_{cc}^2 + n \cdot \Delta \sigma_{\textit{rdec,trave}}^2 = \\ \text{1278.52 MPa}$$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

CODIFICA

D 09CL

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA LOTTO

01

LIOO

DOCUMENTO

VI0100 001

REV. Α

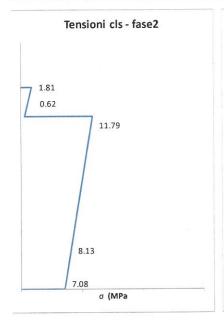
FOGLIO 74 di 123

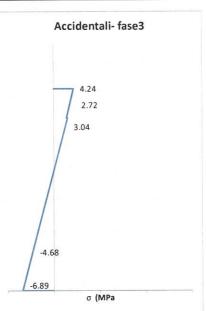
ESERCIZIO: fase 3 (Soletta indurita e collaborante con le travi)

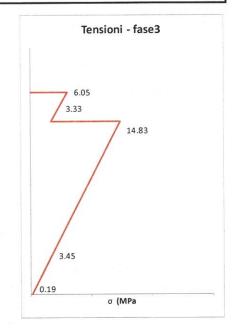
Sollecitazioni

M_{max}	6913.00 kNm	momento massimo sollecita	nte dovuto ai variabili da traffico
Variazioni di tensione dovute a Mmax			
$\Delta \sigma_{cs,soletta}^{3} = \frac{M_{\text{max}}}{nI_{g}^{*}} \cdot y_{s,soletta}$	4.239 MPa	limite compr cls 0.6fck no 0 variazione di tensione nel cl	.7 fck a cadute avvenute s al lembo superiore della soletta
$\Delta \sigma_{ci,soletta}^{3} = \frac{M_{\text{max}}}{nI_{*}^{*}} \cdot y_{i,soletta}$	2.716 MPa	variazione di tensione nel cl	s al lembo inferiore della soletta
$\Delta \sigma_{cs,trave}^{3} = \frac{M_{\text{max}}^{g}}{M_{\text{max}}^{g}} \cdot y_{s,trave}$ $\Delta \sigma_{ct,trave}^{3} = \frac{M_{\text{max}}^{g}}{I_{g}^{*}} \cdot y_{t,trave}$	3.035 MPa	variazione di tensione nel cl	s al lembo superiore della trave
	-6.890 MPa	variazione di tensione nel cl	s al lembo inferiore della trave
$\Delta\sigma_{cc}^{3} = \frac{M_{\text{max}}}{I_{g}^{*}} \cdot e^{-\frac{1}{2}}$	-4.681 MPa	variazione di tensione nel cl	s al livello del baricentro dei cavi
Tensione cls lembo superiore soletta			
$\sigma_{cs,solettu}^{3} = \sigma_{cs,solettu}^{2} + \Lambda \sigma_{cs,solettu}^{3}$	6.05 MPa	Compressione Verificata	Verifica: $\sigma < 0.6$ fck(t)
0,6xfck Coeff. di sicurezza	17.43 MPa 2.88		
Tensione cls lembo inferiore soletta			
$\sigma_{ci,soletta}^3 = \sigma_{ci,soletta}^2 + \Delta \sigma_{ci,soletta}^3$	3.33 MPa	Compressione Verificata	Verifica: σ < 0.6 fck(t)
0,6xfck Coeff. di sicurezza	17.43 MPa 5.23		
Tensione cls lembo superiore trave			
$\sigma_{cs,trave}^{3} - \sigma_{cs,trave}^{2} + \Delta \sigma_{cs,trave}^{3}$	14.83 MPa	Compressione Verificata	Verifica: σ < 0.6 fck(t)
0,6xfck Coeff. di sicurezza	27.39 MPa 1.85		
Tensione cls lembo inferiore trave			
$\sigma_{\mathit{cl.trave}}^3 = \sigma_{\mathit{cl,trave}}^2 + \Delta \sigma_{\mathit{cl,trave}}^3$	0.19 MPa	Compressione Verificata	Verifica: $\sigma < 0.6$ fck(t)
0,6xfck Coeff. di sicurezza	27.39 MPa 140.79		
Tensione cls a livello del cavo			
$\sigma_{ev}^3 = \sigma_{ev}^2 + \Lambda \sigma_{ev}^3$	3.45 MPa	Compressione Verificata	Verifica: σ < 0.6 fck(t)
0,6xfck Coeff. di sicurezza	27.39 MPa 7.94		

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:


Lotto 1: Ripalta - Lesina


PROGETTO DEFINITIVO


IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
LI00	01	D 09CL	VI0100 001	Α	75 di 123	

Tensione nel cavo
Tensione nel cavo dopo le cadute di tensione dovute agli accidentali

 $\sigma_{sp}^{3} = \sigma_{sp}^{2} + n \cdot \Delta \sigma_{cc}^{3} = 1303.59 \text{ MPa}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA LIOO 01 D 09CL

DOCUMENTO VI0100 001

FOGLIO 76 di 123

9.1.2 Verifica SLU-STR

Si riportano le verifiche nei confronti delle azioni flettenti allo stato limite ultimo

Si individua la configurazione di equilibrio limite di deformazione della sezione.

Resistenza a compressione a S.L.U. della trave Resistenza a compressione a S.L.U. della soletta

16.46 MPa f_{cd,sol}

REV.

Α

Tensioni limite nel l'acciaio:

Tensione di rottura a S.L.U. dell'acciaio armonico

 $f_{sptd} = f_{sptk}/\gamma_s$

 $f_{cd,tr}$

Espy

1617 MPa

25.87 MPa

Deformazioni limite:

Deformazione di compressione massima a S.L.U. nel cls Deformazione di trazione massima a S.L.U. nell'acciaio armonico Deformazione di trazione a snervamento nell'acciaio armonico

0.0035 -Есц -0.0350 - ϵ_{spu}

DEFORMAZIONI NELLA CONFIGURAZIONE LIMITE

0.002845678

-0.0074 -

Nel calcestruzzo:

Deformazione di compressione massima nel cls

0.0028460 -

Nell'armatura ordinaria:

Deformazione di trazione max nell'acciaio ordinario

Deformazione di trazione max nell'acciaio armonico

-0.0065400 -

Nell'armatura di precompressione:

ε iniziale al tiro € perdite

-0.0069231 -0.0005144 -

E pp+perm

-0.0001478 -

E Finale

-0.0065565 -

-0.0049151 -E Limite € Totale -0.0114716 -

Altezza massima sezione composta

246.0 cm

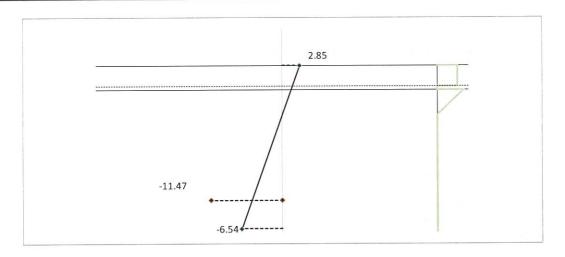
h 46.7222222 cm

Posizione del baricentro dei cavi dall'intradosso della trave Posizione dell'asse neutro dall'intradosso della trave

 d_0

172.9 cm

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:


Lotto 1: Ripalta - Lesina
PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 77 di 123

TENSIONI NELLA CONFIGURAZIONE LIMITE

	Tensione di snervamento dell'acciaio armonico		$f_{p(1)k}/\gamma_s$	1452 MPa
	Tensione nell'armatura di precompressione		σ_{spi}	1476 MPa
RISULTANTI DEGLI SFOR	RZI NELLA CONFIGURAZIONE DI EQUILIBRIO LIMITE			
Nell'armatura di precon	npressione:			
	Risultante nell'armatura di precompressione		R _{spi}	-14769.8 kN
Nel calcestruzzo:				
Wer careestrazzo.	Risultante degli sforzi nel calcestruzzo compresso		R_c	14771 kN
				×
Scarto tra le risultanti d	trazione e di compressione	ΔR_c	=	1 kN
MOMENTI RESISTENTI	NELLA CONFIGURAZIONE DI EQUILIBRIO LIMITE			
Nell'armatura di precon	npressione:			
	Momento resistente dell'armatura di precompressione		M_{spi}	-6901 kNm
Nel calcestruzzo:	Momento resistente nel calcestruzzo compresso		Mc	33216 kNm
	Montento resistente nei calcesti uzzo compresso		1110	33213 M.VIII
	MOMENTO RESISTENTE TOTALE		M_{rd}	26315 kNm

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 78 di 123

9.2 Travi principali - Sezione a 2.55 metri dall'appoggio

9.2.1 Verifica SLE- tensionale

Verifica al tiro e in servizio trave in c.a.p a fili aderenti

Caratteristiche dei materiali

55 00 N/mm²	Tipo di cls C30/37
00 N/mm ²	
65 N/mm ² 65 N/mm ² 83 N/mm ² 11 N/mm ²	R _{ck} 35 N/mm ² f _{ck} 29.05 N/mm ² f _{cm} 37.05 N/mm ² f _{ctm} -2.83 N/mm ² E _{cm} 32588.11 N/mm ²
pressione 14 giorni 38 N/mm ² 38 N/mm ²	momento di trasferimento della precompressione
97 N/mm ² 83 N/mm ² 53 N/mm ²	valore limite della tensione all'atto della precompressione (p. 4.1.8.1.4) valore limite della tensione di esercizio a cadute avvenute (p. 4.1.8.1.3) valore di riduzione della resistenza a trazione del cls per le verifiche del conglomera
10 To	

Tipo di cavo	3
Classe di armatura	classe 2
f _{ptk}	1860 N/mm ²
fp(1)k	1670 N/mm ²
f _{pk}	1670 N/mm ²
f _{pk} E _p	195 GPa

Scrivere (1) Barre, (2) Fili, (3) Trefoli, (4) Trefoli a fili sagomati, (5) Trecce p. 11.3.3.2 (Classe 1: Trecce, filo o trefolo ordinario; Classe 2: Trecce, filo o trefolo stabilizzato; Classe 3: barra laminata p.11.3.3.3)

Limiti tensioni massime iniziali all'atto	o della tesatura	
$\sigma_{\rm spi} = 0.9 f_{\rm pk}$	1503.00 N/mm ²	
$\sigma_{spi} = 0.8 f_{ptk}$	1488.00 N/mm ²	Condizione più restrittiva

<u>Predimensionamento</u>		
N _{p0} Diametro nominale	9007.20 kN 0.6"	forza di precompressione iniziale
A _{nom}	139.00 mm ²	Area nominale
numero minimo di cavi	44	$num.min.cavi = int\left(\frac{N_{p0}}{\sigma_{ppi} \cdot A_{nom}}\right) + 1$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

IMPALCATO DB A 4 CASSONCINI L=25 m

PROGETTO DEFINITIVO

01

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

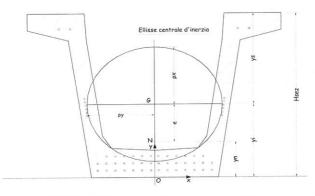
LIOO

D 09CL

VI0100 001

A 79 di 123

RELAZIONE DI CALCOLO


ollecitazioni al tiro	
Mpp,trave	561.00 kNm
Luce trave	e - m
Peso proprio trave+trasversi pref	f - kN/m 25.00 kN/m
9 cli	25.00 kN/m ³

momento massimo sollecitante dovuto al peso proprio della trave

coefficiente di omogenizzazione n	5	(acciaio e cls
A _{cls}	10863.60	cm ²
A _{resTref}	1.39	cm ²
numero di trefoli scelto nº	48	
Atr	66.72	cm ²
A*	11154.15	cm ²
H _{sez}	210.00	cm
y _i	90.12	cm
$y_s = H_{sez} - y_i$	119.88	cm
I _o *	59195271	cm⁴
$W_s*=I_q*/y_s$	493792.21	cm ³
$W_i = I_q / y_i$	656841.47	cm ³
y _n	64.58	cm
e	25.54	cm

area totale dell'armatura di precompressione

punto di applicazione dello sforzo normale (coincide con il baricentro delle armature) eccentricità tra il punto di applicazione del tiro e il baricentro della sezione omogenizzata

IRO INIZIALE		
25 THE PROPERTY OF	N _p ⁰	9007 kN
	$\sigma_{\rm pi} = N_{\rm p}^{0}/A_{\rm tr}$	1350.00 N/mm ²

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

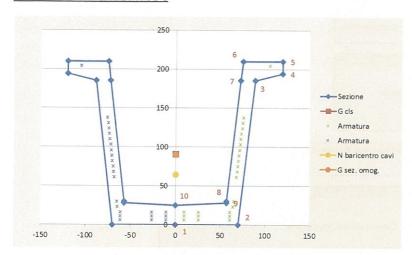
COMMESSA

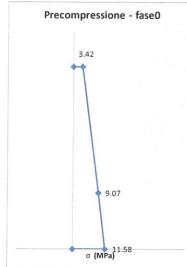
LIOO

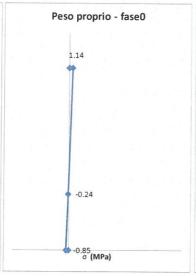
LOTTO

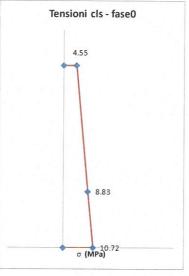
01

CODIFICA D 09CL


DOCUMENTO VI0100 001


REV. Α


FOGLIO


80 di 123

RILASCIO DEL CAVO: fase 0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

D 09CL

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

CODIFICA

01

COMMESSA LOTTO

DOCUMENTO VI0100 001

FOGLIO

81 di 123

REV

Α

RELAZIONE DI CALCOLO

- Tensione cls a livello del cavo al tiro

$$\sigma_{cc}^{t} = \frac{N_{p0}}{A^{*}} + \frac{N_{p0} \cdot e}{I_{\cdot}^{*}} \cdot e$$

9.07 MPa

Compressione

LIOO

Perdite di tensione istantanee

- Tensione nel cavo

Tensione nel cavo dopo le perdite di tensione dovute alla deformazione istantanea del cls

1301.45 MPa

Precompressione dopo le perdite di tensione dovute alla deformazione istantanea del cls

 $N_p^0 = N_{p0} - \Delta N_i$

8683.24 kN

- Tensione cls lembo superiore

$$\sigma_{cs}^{\circ} = \frac{N_p^0}{A^*} - \frac{N_p^0 \cdot e - M_g}{W_c^*}$$

4.55 MPa

Compressione Verificata

Verifica: $\sigma < 0.7 \text{ fck}(t)$

28.97 MPa

6.36 coefficiente di sicurezza

- Tensione cls lembo inferiore

$$\sigma_{ci} = \frac{N_p^0}{4c} + \frac{N_p^0 \cdot e - M_g}{4c}$$

10.72 MPa 28.97 MPa

Compressione Verificata

Verifica: $\sigma < 0.7$ fck(t)

0.7 fck(t)

Coeff. di sicurezza

2.70 coefficiente di sicurezza

- Tensione cls a livello del cavo

$$\sigma_{cc}^{0} = \frac{N_p^0}{A^*} + \frac{N_p^0 \cdot e - M_g}{I_i^*} \cdot e$$

8.83 MPa

Compressione Verificata

Verifica: $\sigma < 0.7 \text{ fck}(t)$

Coeff. di sicurezza

28.97 MPa

3.28 coefficiente di sicurezza

Tensione nel cavo

Tensione nel cavo dopo le cadute di tensione dovute al peso proprio

$$\sigma_{sp}^0 = \sigma_{sp}^t + n \cdot \frac{M_g}{I_i^*} \cdot e =$$

1302.74 MPa

GETTO IN OPERA DELLA SOLETTA: fase 1

(Sezione resistente formata dalla sola trave, soletta considerata solo come carico)

Sollecitazioni al getto della soletta

 $M_{max} = M_{pp,soletta}$

549.00 kNm

momento massimo sollecitante dovuto al solo peso proprio della soletta

Variazioni di tensione dovute a Mmax

 $\Delta \sigma_{cs}^{1} = \frac{M_{max}}{I_{g}^{*}} \cdot y_{s}$ $\Delta \sigma_{ci}^{1} - \frac{M_{max}}{I_{g}^{*}} \cdot y_{i}$ Compressione variazione di tensione nel cls al lembo superiore

-0.84 MPa Trazione variazione di tensione nel cls al lembo inferiore

 $\Delta \sigma_{cc}^1 = \frac{M_{max}}{I_c^*} \cdot e$

-0.24 MPa

Trazione

variazione di tensione nel cls al livello del baricentro dei cavi

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina
PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 82 di 123

A favore di sicurezza si è considerato che il getto della soletta avvenga dopo molto tempo rispetto al tiro delle travi in precompresso, in modo da poter considerare in questa fase tutte le perdite di tensione lente riguardo la precompressione.

Perdite di tensione lente a tempo finito

 $\begin{array}{ccc} \text{termine maturazione } t_s & 7 \text{ giorni} \\ t_0 & 14 \text{ giorni} \\ \text{RH} & 80 \text{ \%} \\ \end{array}$

età del cls all'inizio del ritiro per essiccamento età del cls al momento di applicazione della precompressione umidità ambientale relativa

Deformazione per ritiro

$$\epsilon_{cs} = \epsilon_{cd}(t) + \epsilon_{ca} -0.0002880$$

$$\Delta \sigma_{cs} = -E_a \epsilon_{cs} 56.1522000 \text{ MPa}$$

$$\epsilon_{cd} \epsilon_{cd} -0.0001988$$

$$\epsilon_{cd}(t) -0.0001988$$

$$\beta_{ds}(t,t_s) 1.00$$

E ca

deformazione totale per ritiro perdita di precompressione per ritiro

deformazione per ritiro da essiccamento a tempo $_{x}$ deformazione per ritiro da essiccamento a tempo $_{t}$

 $\begin{array}{cccc} u & 1.00 \\ u & 11771.24 \text{ mm} \\ h_0 & 184.6 \text{ mm} \\ k_h & 0.87 \\ \text{UR} & 80 \% \\ \epsilon_{c0} & -0.000228 \end{array}$

perimetro di cls esposto all'aria dimensione fittizia pari a $2A_{\rm c}/u$ Ac è l'area della sezione in cls e u il perimetro

8

ritiro autogeno

Deformazione per viscosità

$$\varepsilon_v = \frac{\sigma_{cc}^0}{E_c} \varphi(t, t_0) + \frac{\Delta \sigma_{cc}^1}{E_c} \varphi(t, t_1)$$

-0.0003829

-0.0000891

deformazione per viscosità

perdita di precompressione per viscosità

Cadute di tensione per rilassamento dell'acciaio

 $\Delta \sigma_r^1$

85.21 N/mm²

perdita di precompressione per rilassamento

Perdita di precompressione totale in fase 1

$$\Delta \sigma tot := \frac{\Delta \sigma v + \Delta \sigma rit + 0.8 \cdot \Delta \sigma pr}{1 + \frac{Ep}{Ec} \cdot \frac{Ap}{AI} \cdot \left(1 + \frac{AI}{JI} \cdot ec^2\right) \cdot (1 + 0.8 \cdot \Phi)}$$

$$\Delta N_I = \Delta \sigma_{pr}^1 \cdot A_{tr}$$
1225.49 kN

ΔN , ΔN , e		
$\Delta \sigma_{pres}^{1} = -\frac{1}{A^{*}} + \frac{1}{W_{c}^{*}}$	-0.4649 MPa	Trazione
$\Delta N_i = \Delta N_i = \Delta N_i^{S} \cdot e$		
$\Delta \sigma_{prci}^{i} = -\frac{i}{A^{*}} - \frac{i}{W_{s}^{*}}$	-1.5751 MPa	Trazione
$\Delta N_i \Delta N_i \cdot e^2$		
$\Delta \sigma_{prec} = -\frac{1}{4^*} - \frac{1}{4^*}$	-1.2337 MPa	Trazione

variazione di tensione nel cls al lembo superiore

variazione di tensione nel cls al lembo inferiore

variazione di tensione nel cls al livello del baricentro dei cavi

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

CODIFICA

D 09CL

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

COMMESSA LOTTO

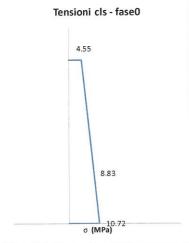
LIOO

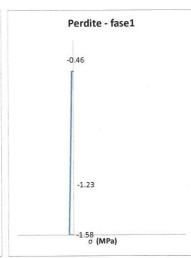
01

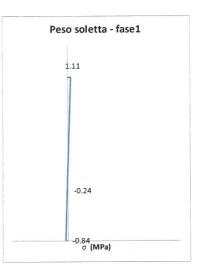
DOCUMENTO REV.

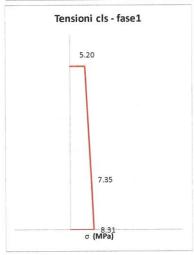
Α

VI0100 001


FOGLIO 83 di 123


RELAZIONE DI CALCOLO


Tensione cls lembo superiore				
$\sigma_{cs}^{1} = \sigma_{cs}^{0} + \Delta \sigma_{cs}^{1} + \Delta \sigma_{pres}^{1}$	5.20 MPa	Compressione	Verificata	Verifica: $\sigma < 0.6$ fck(t)
0,6xfck Coeff, di sicurezza	27.39 MPa 5.27			


Tensione cls lembo inferiore			
$\sigma_{ci}^{1} = \sigma_{ci}^{0} + \Delta \sigma_{ci}^{1} + \Delta \sigma_{prei}^{1}$	8.31 MPa	Compressione Verificata	Verifica: $\sigma < 0.6$ fck(t)
0,6xfck	27.39 MPa		

Tensione cls a livello del cavo			
$\sigma_{cc}^{1} = \sigma_{cc}^{0} + \Delta \sigma_{cc}^{1} + \Delta \sigma_{prcc}^{1}$	7.35 MPa	Compressione Verificata	Verifica: σ < 0.6fck(t)
0,6xfck	27.39 MPa		

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

IMPALCATO DB A 4 CASSONCINI L=25 m

PROGETTO DEFINITIVO

LIOO

COMMESSA LOTTO

01

LOTTO CODIFICA

D 09CL

DOCUMENTO

REV. FOGLIO

VI0100 001 A 84 di 123

RELAZIONE DI CALCOLO

Tensione nel cavo

Tensione nel cavo dopo le perdite in fase 1 e le cadute di tensione dovute al peso della soletta

n₂

 $\sigma_{sp}^{1} = \sigma_{sp}^{0} - n \cdot \Delta \sigma_{prec}^{1} + n \cdot \Delta \sigma_{ee}^{1} = 1297.40 \text{ MPa}$

AZIONE DEI PERMANENTI PORTATI : fase 2

(Soletta indurita e collaborante con le travi)

Caratteristiche sezione omogeneizzata 2

(si omogenizza rispetto al cls di CAP)

1.117 coefficiente omogenizzazione (rapporto tra i due moduli elastici, soletta e CAP)

A_{cls} 18595.38 cm² A_{resTref} 1.39 cm²

n° 48.00 numero di trefoli scelto

A_{tr} 66.72 cm²

area totale dell'armatura di precompressione

(utile per le azioni differenziali soletta - trave)

 $\begin{array}{ll} I_g *= & 145578449 \text{ cm}^4 \\ W_s *= I_g */y_s = & 1467461.10 \text{ cm}^3 \\ W_i *= I_g */y_i = & 991707.85 \text{ cm}^3 \end{array}$

y_n 64.58 cm e= 82.21 cm punto di applicazione dello sforzo normale (coincide con il baricentro delle armature) eccentricità tra il punto di applicazione del tiro e il baricentro della sezione omogenizzata

Sollecitazioni

 $M_{perm,portati} = M_{max}$ 1014.00 kNm

momento massimo sollecitante dovuto ai permanenti portati (pavimentazione, cordolo, sicur via,barriera antirumore)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

CODIFICA

D 09CL

Lotto 1: Ripalta - Lesina

IMPALCATO DB A 4 CASSONCINI L=25 m

PROGETTO DEFINITIVO

COMMESSA LOTTO

LI00

DOCUMENTO VI0100 001

RFV A

FOGLIO 85 di 123

RELAZIONE DI CALCOLO Variazioni di tensione dovute a Mmax

$\Delta \sigma_{cs,soletta}^2 = \frac{M_{max}}{n J_{\perp}^2} \cdot y_{s,soletta}$	0.62 MPa

variazione di tensione nel cls al lembo superiore della soletta

01

limite compr cls 0.6fck no 0.7 fck a cadute avvenute

$$\Delta \sigma_{ci,soletta}^2 = \frac{M_{\text{max}}}{nI_g^*} \cdot y_{i,soletta}$$

variazione di tensione nel cls al lembo inferiore della soletta 0.39 MPa

$$\Delta\sigma_{\text{cs,trave}}^2 = \frac{M_{\text{max}}}{I_{\text{g}}^4} \cdot y_{\text{s,trave}}$$

0.44 MPa variazione di tensione nel cls al lembo superiore della trave

$$\Delta \sigma_{\text{ci,trave}}^2 = \frac{M_{\text{max}}}{I_{\text{g}}^*} \cdot y_{\text{i,trave}}$$

variazione di tensione nel cls al lembo inferiore della trave

$$\Delta\sigma_{ee}^{2} = \frac{M_{max}}{I_{g}^{*}} \cdot e \qquad \qquad \text{-0.57 MPa}$$

variazione di tensione nel cls al livello del baricentro dei cavi

Perdite di tensione lente a tempo infinito

Deformazione per ritiro nella trave

deformazione per ritiro da essiccamento a tempo «

-0.0001988 -0.0001988

-1.02 MPa

ritiro avvenuto nelle fasi precedenti ritiro depurato da quello avvenuto nelle fasi precedenti

 $\epsilon_{cd}(t)$ ε_{cd} - $\varepsilon_{cd}(t)$ 0.0000000 $\Delta \sigma_{\rm ritiro} = -E_{\rm s}(\epsilon_{\rm csz} - \epsilon_{\rm cd}(t))$ 0.00 MPa

perdita di precompressione per ritiro a t ∞

11771.24 mm u 184.6 mm h₀ 0.87 k, HR 80 % -0.000228 €0

perimetro di cls esposto all'aria dimensione fittizia pari a 2A_c/u Ac è l'area della sezione in cls e u il perimetro

umidità relativa

0.0000000 E ca

ritiro autogeno (già scontato)

Deformazione per ritiro nella soletta

ε _{cd} .	-0.0001677
% ritiro trave esaurito	100%
$\varepsilon_{ed}(t)$	0.0000000

deformazione per ritiro da essiccamento a tempo «

Percentuale di ritiro esaurito dalla trave al momento del getto della soletta ritiro della trave ancora da scontare ritiro totale depurato da quello delle fasi precedenti (ritiro differenziale)

-0.0002153 $\Delta\epsilon_{cd'}$ 8640 cm² 4920.00 mm

u

Area sola soletta perimetro di cls esposto all'aria dimensione fittizia pari a 2A_c/u Ac è l'area della sezione in cls e u il perimetro

351.2 mm ho 0.74 UR 80 % -0.000228

umidità relativa

-0.0000476 E ca

ritiro autogeno soletta

Deformazione per viscosità

$$\varepsilon_{v}(x, t_{2}) = \Phi(x, t_{2})\sigma_{cc}/E_{c}$$

 $\Delta\sigma_{v}(x, t_{2})$

-0.0000280

perdita di precompressione per viscosità a t ∞

UR t2

75.00 scrivere 55 o 75 fissato 61_momento della mess max 60gg in tab

 $\Phi(x, t_0)$

61.00 giorni

0.55 Mpa

Effetto del ritiro differenziale tra trave e soletta

Ecv	1172234.09	N/cm ²
Δσ soletta	-2.52	MPa
N	2181.08	kN
M	1771.13	kNm
Δσ sup soletta	-0.41	MPa
Δσ inf soletta	-0.80	MPa

modulo elastico del cls scontato degli effetti viscosi

trazione iniziale nella soletta

Cadute di tensione per rilassamento dell'acciaio

Δσ sup trave Δσ inf trave Δσ cavi trave

 $\Delta \sigma_r^{1}$

0.00 N/mm²

1.92 MPa -0.63 MPa

0.15 MPa

perdita di precompressione per rilassamento a t ∞

Perdita di precompressione totale in fase 2

$$\Delta \sigma_{pr}^2 = \Delta \sigma_{ritiro}^2 + \Delta \sigma_{v}^2 + \Delta \sigma_{r}^2$$

0.55 MPa

$$\Delta N_l = \Delta \sigma_{pr}^2 \cdot A_{tr}$$

3.64 kN

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

D 09CL

Lotto 1: Ripalta - Lesina

IMPALCATO DB A 4 CASSONCINI L=25 m

PROGETTO DEFINITIVO

IMPALCATO DE A 4 CASSONCINI L-25 I

COMMESSA LOTTO CODIFICA

01

LIOO

DOCUMENTO VI0100 001 FOGLIO

86 di 123

REV.

RELAZIONE DI CALCOLO

Variazioni di	tensione dovute alle perdit	e di precompression	e
$\Delta\sigma^2_{pres,soletta}$ =	$= -\frac{\Delta N_l}{A^* n} + \frac{\Delta N_l \cdot e}{n I_g^*} \cdot y_{s, soletta}$	0.0001 MPa	Compressione
$\Delta\sigma^2_{preisoletta} =$	$-\frac{\Delta N_l}{A^* n} + \frac{\Delta N_l \cdot e}{n I_g^*} \cdot y_{l,soletta}$	-0.0006 MPa	Trazione
prcs,trave	$-\frac{\Delta N_l}{A_s^*} + \frac{\Delta N_l^* \cdot e}{I_g^*} \cdot y_{s,trave}$	-0.0006 MPa	Trazione
$\Delta \sigma_{prci,trave}^2 =$	$-\frac{\Delta N_l}{A^*} - \frac{\Delta N_l \cdot e}{I_s^*} \cdot y_{l,trave}$ $\Delta N_l - \Delta N_l \cdot e^2$	-0.0049 MPa	Trazione
$\Delta \sigma_{prectrave}^2 = -$	$\frac{\Delta I_f}{A^*} - \frac{\Delta I_f}{I_g^*}$	-0.0036 MPa	Trazione

variazione di tensione nella soletta al lembo superiore

variazione di tensione nella soletta al lembo inferiore

variazione di tensione nel cls al lembo superiore

variazione di tensione nel cls al lembo inferiore

variazione di tensione nel cls al livello del baricentro dei cavi

Tensione cls lembo superiore soletta

$\sigma_{cs,soletta}^2$ =	$=\Delta\sigma_{rdcs,soletta}^2+$	$\Delta\sigma_{cs,soletta}^2$ +	$\Delta\sigma^2_{prcs, soletta}$	
cs,soletta	rdcs,soletta	cs,soletta	pres,soletta	

0.21 MPa Compressione

Verificat *Verifica*: σ < 0.6 fck(t)

0,6xfck Coeff. di sicurezza 17.43 MPa 83.96

Tensione cls lembo superiore soletta

$$\sigma_{ci,soletta}^2 = \Delta \sigma_{rdci,soletta}^2 + \Delta \sigma_{ci,soletta}^2 + \Delta \sigma_{prci,soletta}^2$$

-0.41 MPa

Verificat $\sigma > k$ fctm(t)

fctm/1,2 -2.36 MPa Coeff. di sicurezza 5.77

Tensione cls lembo superiore trave

$$\sigma_{cs,lrave}^{2} = \sigma_{cs,lrave}^{1} + \Delta \sigma_{rdcs,lrave}^{2} + \Delta \sigma_{cs,lrave}^{2} + \Delta \sigma_{prcs,lrave}^{2}$$

Compressione

Trazione

Verificat *Verifica*: σ < 0.6 fck(t)

0,6xfck Coeff. di sicurezza **7.56 MPa** 27.39 MPa

Tensione cls lembo inferiore trave

$$\sigma_{ci,trave}^2 = \sigma_{ci,trave}^1 + \Delta \sigma_{rdci,trave}^2 + \Delta \sigma_{ci,trave}^2 + \Delta \sigma_{prci,trave}^2$$

6.65 MPa Compressione

Verificat *Verifica:* σ < 0.6 fck(t)

0,6xfck 27.39 MPa Coeff. di sicurezza 4.12

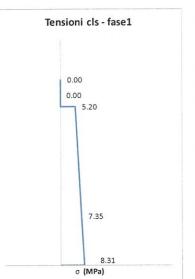
Tensione cls a livello del cavo

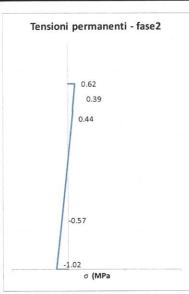
$$\sigma_{\it cc,trave}^{\,2} \,=\, \sigma_{\it cc,trave}^{\,1} \,+\, \Delta\,\sigma_{\it rdcc,trave}^{\,2} \,+\, \Delta\,\sigma_{\it cc,trave}^{\,2} \,+\, \Delta\,\sigma_{\it prcc,trave}^{\,2}$$

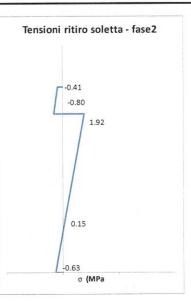
6.93 MPa Compressione

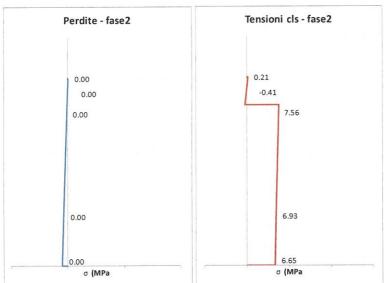
Verificat Verifica: $\sigma < 0.6$ fck(t)

0,6xfck 27.39 MPa Coeff. di sicurezza 3.95


RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:


Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO


IMPALCATO DB A 4 CASSONCINI L=25 m


RELAZIONE DI CALCOLO

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 87 di 123 VI0100 001 Α LI00 01 D 09CL

Tensione nel cavo
Tensione nel cavo dopo le perdite in fase 2 e le cadute di tensione dovute a permanenti e ritiro differenziale

$$\sigma_{sp}^2 = \sigma_{sp}^1 - n \cdot \Delta \sigma_{prec,trave}^2 + n \cdot \Delta \sigma_{cc}^2 + n \cdot \Delta \sigma_{rdec,trave}^2 =$$
 1299.62 MPa

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

D 09CL

Lotto 1: Ripalta - Lesina

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

PROGETTO DEFINITIVO

COMMESSA LOTTO CODIFICA

01

LIOO

DOCUMENTO VI0100 001

REV.

Α

FOGLIO 88 di 123

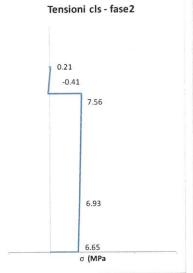
ESERCIZIO: fase 3

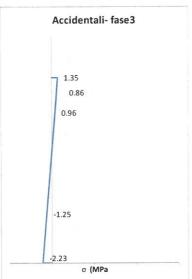
(Soletta indurita e collaborante con le travi)

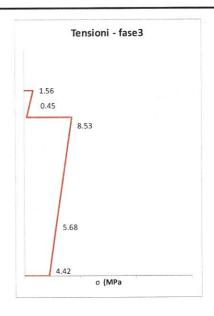
Sollecitazioni

M_{max}	2216.00 kNm	momento massimo sollecitan	te dovuto ai variabili da traffico
Variazioni di tensione dovute a Mmax	'= (==		
$\Delta \sigma_{cs,soletta}^{3} = \frac{M_{\text{max}}}{n I_{g}^{*}} \cdot y_{s,soletta}$	1.351 MPa	limite compr cls 0.6fck no 0. variazione di tensione nel cls	7 fck a cadute avvenute al lembo superiore della soletta
$\Delta \sigma_{ci,soletia}^{3} = \frac{M_{\max}^{g}}{nI_{g}^{*}} \cdot y_{i,soletia}$ $\Delta \sigma_{cs,trave}^{3} = \frac{M_{\max}^{g}}{M_{\max}^{g}} \cdot y_{s,trave}$ $\Delta \sigma_{ci,trave}^{3} = \frac{M_{\max}^{g}}{I_{g}^{*}} \cdot y_{i,trave}$	0.861 MPa	variazione di tensione nel cls	al lembo inferiore della soletta
$\Delta \sigma_{cs,trave}^{3} = \frac{M_{\text{max}}}{M_{g}^{*}} \cdot y_{s,trave}$	0.962 MPa	variazione di tensione nel cls	al lembo superiore della trave
$\Delta \sigma_{ci,trave}^{3} = \frac{M_{\text{max}}^{2}}{I_{g}^{*}} \cdot y_{i,trave}$	-2.235 MPa	variazione di tensione nel cls	al lembo inferiore della trave
$\Delta\sigma_{ec}^3 = \frac{M_{\text{max}}}{I_g^*} \cdot e^{g}$	-1.251 MPa	variazione di tensione nel cls	al livello del baricentro dei cavi
Tensione cls lembo superiore soletta			
$\sigma_{cs,solettu}^3 = \sigma_{cs,solettu}^2 + \Lambda \sigma_{cs,solettu}^3$	1.56 MPa	Compressione Verificata	Verifica: $\sigma < 0.6$ fck(t)
0,6xfck Coeff. di sicurezza	17.43 MPa 11.18		
Tensione cls lembo inferiore soletta			
$\sigma_{ci,soletta}^3 = \sigma_{ci,soletta}^2 + \Delta \sigma_{ci,soletta}^3$	0.45 MPa	Compressione Verificata	Verifica: $\sigma < 0.6$ fck(t)
0,6xfck Coeff. di sicurezza	17.43 MPa 38.60		
Tensione cls lembo superiore trave			
$\sigma_{cs,trave}^{3} - \sigma_{cs,travs}^{2} + \Delta \sigma_{cs,trave}^{3}$	8.53 MPa	Compressione Verificata	Verifica: $\sigma < 0.6$ fck(t)
0,6xfck Coeff. di sicurezza	27.39 MPa 3.21		
Tensione cls lembo inferiore trave			
$\sigma_{\mathit{cl,trave}}^3 = \sigma_{\mathit{cl,trave}}^2 + \Delta \sigma_{\mathit{cl,trave}}^3$	4.42 MPa	Compressione Verificata	Verifica: $\sigma < 0.6$ fck(t)
0,6xfck Coeff. di sicurezza	27.39 MPa 6.20		
Tensione cls a livello del cavo			
$\sigma_{ee}^3 = \sigma_{ee}^2 + \Lambda \sigma_{ee}^3$	5.68 MPa	Compressione Verificata	Verifica: $\sigma < 0.6$ fck(t)
0,6xfck Coeff. di sicurezza	27.39 MPa 4.82		

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:


Lotto 1: Ripalta - Lesina


PROGETTO DEFINITIVO


IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
L100	01	D 09CL	VI0100 001	Α	89 di 123	

Tensione nel cavo
Tensione nel cavo dopo le cadute di tensione dovute agli accidentali

 $\sigma_{sp}^{3} = \sigma_{sp}^{2} + n \cdot \Delta \sigma_{cc}^{3} = 1306.32 \text{ MPa}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

IMPALCATO DB A 4 CASSONCINI L=25 m

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 90 di 123

207.6 cm

9.2.2 Verifica SLU-STR

Si riportano le verifiche nei confronti delle azioni flettenti allo stato limite ultimo

Posizione dell'asse neutro dall'intradosso della trave

Si individua la configurazione di equilibrio limite di deformazione della sezione.

		V4 8	
Lensioni	limita	no ca	lcestruzzo:

Resistenza a compressione a S.L.U. della trave	$f_{cd,tr}$	25.87 MPa
Resistenza a compressione a S.L.U. della soletta	$f_{cd,sol}$	16.46 MPa
Tensioni limite nel l'acciaio:		
Tensione di rottura a S.L.U. dell'acciaio armonico	$f_{sptd} = f_{sptk}/\gamma_s$	1617 MPa

Deformazioni limite:

Deformazione di compressione massima a S.L.U. nel cls	Еси	0.0035 -
Deformazione di trazione massima a S.L.U. nell'acciaio armonico	Espu	-0.0350 -
Deformazione di trazione a snervamento nell'acciaio armonico	Espy	-0.0074 -

DEFORMAZIONI NELLA CONFIGURAZIONE LIMITE

	0.002845678
ZZO:	

Nel calcestruzzo:

	19000	
Deformazione di compressione massima nel cls	23	0.0028435 -
		010020100

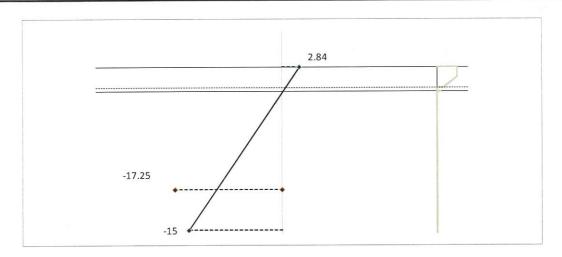
Nell'armatura ordinaria:

Deformazione di trazione max nell'acciaio ordinario	EaoLimite	-0.0150000 -
---	-----------	--------------

Nell'armatura di precompressione:

	ε iniziale al tiro	-0.0069231 -
Deformazione di trazione max nell'acciaio armonico	€ perdite	0.0002830 -
	ε _{pp+perm}	-0.0000246 -
	€ Finale	-0.0066647 -
	€ Limite	-0.0105885 -
	€ Totale	-0.0172532 -
Altezza massima sezione composta	H	246.0 cm
Posizione del baricentro dei cavi dall'intradosso della trave	h	64.58333333 cm

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:


Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 91 di 123

TENSIONI NELLA CONFIGURAZIONE LIMITE

	Tensione di snervamento dell'acciaio armonico		$f_{p(1)k}/\gamma_s$	1452 MPa
	Tensione nell'armatura di precompressione		σ_{spi}	1510 MPa
RISULTANTI DEGLI SFO	RZI NELLA CONFIGURAZIONE DI EQUILIBRIO LIMITE			
Nell'armatura di precon	Sale Proposition Annual Control			10072.0 LN
	Risultante nell'armatura di precompressione		R_{spi}	-10073.0 kN
Nel calcestruzzo:				
	Risultante degli sforzi nel calcestruzzo compresso		R₀	10074 kN
Scarto tra le risultanti d	trazione e di compressione	ΔR_c	=	1 kN
MOMENTI RESISTENTI	NELLA CONFIGURAZIONE DI EQUILIBRIO LIMITE			
Nell'armatura di precon	npressione:			
	Momento resistente dell'armatura di precompressione		M_{spi}	-6505 kNm
Nel calcestruzzo:	Momento resistente nel calcestruzzo compresso		Mc	23491 kNm
	MOMENTO RESISTENTE TOTALE		M_{rd}	16986 kNm

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 92 di 123

9.3 Travi principali - Verifica fessurazione sezione di mezzeria

Le combinazioni SLE Frequenti presentano sollecitazioni inferiori a quelle delle combinazioni Rare analizzate nelle verifiche tensionali sopra riportate.

Secondo il §4.1.2.2.4.1 delle Norme Tecniche lo stato limite di formazione delle fessure si ha quando la tensioni massima di trazione della sezione supera

$$\frac{f_{ctm}}{1.2} = 3.16 \text{ MPa}$$

Si ha quindi che le combinazioni frequenti non portano mai alla formazione di fessure in quanto già nelle combinazioni RARE la tensione massima non supera il valore sopra riportato.

	 -	PES	A	- 0	\Box	nı

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LIOO	01	D 09CL	VI0100 001	Α	93 di 123

9.4 Taglio e torsione in sezione corrente

Si effettua la verifica a taglio in corrispondenza della sezione corrente prossima all'appoggio (x = 1.75 m dall'asse appoggi, coincidente con l'inizio del ringrosso).

La disposizione dei carichi accidentali è tale da massimizzare il valore delle azioni in oggetto.

VERIFICA A TAGLIO-TORSIONE

La verifica viene condotta con riferimento a due combinazioni distinte, una per massimizzare l'effetto del taglio, valutando il valore di momento torcente concomitante, l'altra per massimizzare l'effetto torcente, considerando altresì l'effetto del taglio concomitante.

La prima combinazione prevede che entrambi i binari siano caricati, con i treni di carico disposti in modo da massimizzare gli effetti sull'appoggio.

La seconda combinazione prevede un solo binario caricato.

Per effetto dei carichi considerati si hanno quindi i seguenti valori di taglio massimo sulla trave più caricata:

 $T_{G1} = 590 \text{ kN}$

 $T_{G2} = 234 \text{ kN}$

 $T_{G3} = 320 \text{ kN}$

 $T_{SW2+LM71} = 886 \text{ kN}$

 $T_{avviamento SW2} = 134 \text{ kN}/4 \text{ travi} = 33.50 \text{ kN}$

 $T_{\text{frenatura LM71}} = 126 \text{ kN} / 4 \text{ travi } = 31.50 \text{ kN}$

 $T_{vento} = 64 \text{ kN}$

I valori di taglio sopra descritti vanno incrementati mediante i coefficienti di combinazione allo stato limite ultimo:

$$T_{G1} = 1.35 \cdot 590 = 797 \text{ kN}$$

$$T_{G2} = 1.35 \cdot 234 \text{ kN} = 316 \text{ kN}$$

$$T_{G3} = 1.50 \cdot 320 \text{ kN} = 480 \text{ kN}$$

$$T_{SW2+LM71} = 1.45 \cdot 886 \text{ kN} = 1285 \text{ kN}$$

$$T_{avviamento SW2} = 1.45 \cdot 33.50 \text{ kN} = 48.575 \text{ kN}$$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 94 di 123

 $T_{frenatura\ LM71} = 1.45 \cdot 31.50\ kN = 45.675\ kN$

 $T_{vento} = 0.9 \cdot 64 \text{ kN} = 58 \text{ kN}$

 $T_{Sd SLU} = 3030 \text{ kN}$

Il valore del momento torcente concomitante è pari a 84.00 kNm. Infatti, considerando il caso di massimo taglio, ovvero con entrambi i binari caricati, la torsione è dovuta alla differenza di momento torcente dato dal treno tipo SW2 e quello dato dal treno tipo LM71 più il contributo del vento.

Per la combinazione di massimo momento torcente, si considerano i medesimi valori di calcolo sopra descritti, esclusi quelli relativi al treno di carico tipo LM71 (valori dovuti al carico da traffico verticale e alla frenatura).

Riassumendo si hanno i seguenti valori di sollecitazione per le due combinazioni descritte:

Sollecitazioni allo SLU Combinazione di massimo taglio

 V_{Ed} = valore di calcolo dello sforzo di taglio agente kN 3030

 T_{Ed} = valore di calcolo del momento torcente agente kNm 84

Sollecitazioni allo SLU Combinazione di massima torsione

 V_{Ed} = valore di calcolo dello sforzo di taglio agente kN 2834

 T_{Ed} = valore di calcolo del momento torcente agente kNm 148

Si riporta nel seguito il dettaglio del calcolo per le due combinazioni considerate sopra descritte.

	LINEA PESC	LINEA PESCARA – BARI						
	RADDOPPIO	DELLA	TRATTA FER	ROVIARIA TERI	MOLI-LES	INA:		
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Lotto 1: Ripa	alta - Les	ina					
GROFFO FERROVIE BELLO SIATO HALIANE	PROGETTO	DEFINITI	VO					
IMPALCATO DB A 4 CASSONCINI L=25 m	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	FOGLIO		
INFACCATO DE A 4 CASSONOINT E-25 III	LI00	01	D 09CL	VI0100 001	Α	95 di 123		
RELAZIONE DI CALCOLO								

Combinazione di massimo taglio

Verifica a taglio

Dati di progetto:

	T =	3027.0	KN	azione di calcolo
sezione e materiali:	R _{ck} = B450C	55.0 450	N/mm²	resistenza caratteristica cubica tipologia barre d'acciaio
	B = H =	32.0 210.0	cm cm	base sezione rettangolare altezza sezione rettangolare
	c =	5.0	cm	copriferro
staffe:	α =	90.0	0	inclinazione staffe
	$\phi_{st} = n_b =$	16.0 4	mm	diametro staffe numero di bracci
	$A_{sw} = s = s$	804.2 15	mm² cm	area armatura trasversale passo armatura trasversale

armatura a taglio rialzata N (inserire S per si o N per no)

armatura long. a trazione:

	ф	n
I° strato	0	0
II° strato	0	0

 A_{sl} = 0.0 mm 2 area armatura longitudinale a trazione 1+(200/d) $^{0.5}$ = 1.3123

Verifica a taglio sezione senza armatura resistente a taglio

b _w =	32.0	cm	larghezza sezione resistente a taglio
H =	210.0	cm	altezza sezione
d = H-c =	205.0	cm	altezza utile della sezione
k =	1.312		k deve essere ≤ 2
Asl =	0.0	mm^2	armature di trazione
$\rho_{l} = A_{sl}/(b_{w} \cdot d) \le 0.02 =$	0.00000		
Nsd =	0.0	N	
Ac =	672000.0	mm^2	
$\sigma_{ extsf{cp}} =$	0.0	N/mm²	
$v_{min} =$	0.4		
$V_{Rd} \ge (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w \cdot d =$	233.2	KN	
$V_{Rd} {=} [(0.18 {\cdot} k {\cdot} (100 {\cdot} \rho_l {\cdot} f_{ck})^{1/3}) / \gamma_c {+} 0.15 {\cdot} \sigma_{cp}] {\cdot} b_w {\cdot} d {=}$	233.22	KN	c.s.= 0.08 no!

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina
PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 96 di 123

Verifica a taglio sezione con armatura resistente a taglio

Verifica biella di conglomerato compressa:

$f_{cd} =$	25.9	N/mm²	
b _w =	32.0	cm	larghezza sezione resistente a taglio
H =	210.0	cm	altezza sezione
d = H-c =	205.0	cm	altezza utile della sezione
z =	184.5	cm	braccio della coppia interna
$\alpha_{\sf CW} =$	1.0		da definire in funzione della compressione presente
$\alpha =$	1.571	rad	inclinazione armatura trasversale
$\theta =$	0.785	rad	inclinazione biella compressa
$\cot\theta + \tan\theta =$	2.0		
$1+\cot\alpha =$	1.0	$\cot \alpha = 0$	per staffe verticali o combinate
$v= 0.6 \cdot (1-fck/200) =$	0.49		
$ot\alpha + cot\theta)/(1 + cotg^2\theta) =$	3818.2	KN	

 $V_{\text{Rcd}} = 0.9 \cdot d \cdot \alpha_{\text{C}} \cdot f'_{\text{cd}} \cdot b_{\text{w}} (\cot \alpha + \cot \theta) / (1 + \cot \theta^{2} \theta)$

Verifica armatura trasversale d'anima:

$f_{ctd} =$	1.8	N/mm ²	
$f_{ywd} =$	391.3	N/mm ²	
$b_w =$	32.0	cm	larghezza sezione resistente a taglio
d =	205.0	cm	altezza utile della sezione
$A_{sw} =$	804.2	mm^2	area armatura trasversale
s =	15.0	cm	passo armatura trasversale
$\alpha =$	1.571	rad	inclinazione armatura trasversale
δ =	1.0		coefficiente per la presenza di sforzo normale
)sen $\alpha =$	3870.9	KN	

 $V_{Rsd} = (0.9 \cdot d \cdot A_{sw} \cdot f_{yd}/s) \cdot (\cot \alpha + \cot \theta) sen \alpha =$ 3870.

Verifica complessiva:

 $V_{Rd} = min (V_{Rcd}; V_{Rsd}) =$ 3818.2 kN c.s.= 1.26 >1 verifica soddisfatta

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 97 di 123

Verifica a torsione

TORSIONE SEMPLICE DI SEZIONE POLIGONALE

NOME SEZIONE: torsione

Descrizione Sezione:

Metodo di calcolo resistenza: Normativa di riferimento: Stati Limite Ultimi

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: C45/55

Resis. compr. di calcolo fcd: 255.00 daN/cm² Resis. compr. ridotta fcd: 127.50 daN/cm²

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist. snerv. di calcolo fyd: 3913.0 daN/cm²

COORDINATE DEI VERTICI DELLA SEZIONE POLIGONALE

N.vertice	Ascissa X,	cm	Ordinata	Υ,	CM
1	-16.0		0.0		
2	-16.0		210.0		
3	16.0		210.0		
4	16.0		0.0		

RISULTATI DEL CALCOLO A TORSIONE SEMPLICE

Momento Torcente	Tsdu di calcolo:	84	daNm
	sist. Trdu sez. tubolare conglom.:	50314	daNm
	sist. Trsd sviluppato dalle staffe:	33881	daNm
	sist. Trld delle barre longitudinali:	3568	daNm
	Secretary Company of the Company of		

Sezione verificata a torsione semplice

Area Ac del perimetro esterno sezione:	6720	CM ²
Misura Pc del Perimetro esterno sezione:	484	cm
Spessore sez. anulare resistente (=Ac/Pc):	13.9	cm
Area resistente (racchiusa dal perimetro medio):	3553	Cm ²
Misura del Perimetro medio sez. tubolare resist.:	428	Cm ²

Area Staffe di calcolo:			0.0	cm^2/m
Staffe progettate:	1	Staffa Ø 16	/33.0	(6.1)
Area barre longitudinali calcolate:			0.3	cm ²
Barre longitudinali progettate:		14 Ø 10	(11.0	cm ²)

N.B. Le armature sopra definite come 'calcolate' sono quelle ottenute con riferimento al momento agente ed alle resistenze dei materiali impiegati. Le armature sopra definite come 'progettate' oltre a tener conto del diametro effettivo scelto per le barre considerano anche le minime quantità di normativa. Il numero delle barre longitudinali progettate è tale da consentirne la

disposizione lungo il perimetro con interasse non superiore a 35 cm.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA PESCARA – BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA: Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO					
IMPALCATO DB A 4 CASSONCINI L=25 m	COMMESSA LOTTO CODIFICA DOCUMENTO REV.	FOGLIO				
RELAZIONE DI CALCOLO	LI00 01 D 09CL VI0100 001 A	98 di 123				

Combinazione di massima torsione

Verifica a taglio

Dati di progetto: 2834.0 KN azione di calcolo sezione e materiali: $R_{ck} =$ 55.0 N/mm² resistenza caratteristica cubica B450C 450 tipologia barre d'acciaio B =32.0 base sezione rettangolare cm H =210.0 cm altezza sezione rettangolare c =5.0 cm copriferro staffe: 0 90.0 inclinazione staffe $\alpha =$ 16.0 $\phi_{st} =$ mm diametro staffe $n_b =$ numero di bracci 804.2 $A_{sw} =$ mm^2 area armatura trasversale cm passo armatura trasversale armatura a taglio rialzata N (inserire S per si o N per no) armatura long. a trazione:

	ф	n
I° strato	0	0
II° strato	0	0

A_{sl} = $\,mm^2\,$ 0.0 area armatura longitudinale a trazione $1+(200/d)^{0.5}=$ **1.3123**

Verifica a taglio sezione senza armatura resistente a taglio

b _w =	32.0	cm	larghezza sezione resistente a taglio
H =	210.0	cm	altezza sezione
d = H-c =	205.0	cm	altezza utile della sezione
k =	1.312		k deve essere ≤ 2
AsI =	0.0	mm^2	armature di trazione
$\rho_I = A_{si}/(b_w \cdot d) \le 0.02 =$	0.00000		
Nsd =	0.0	N	
Ac =	672000.0	mm^2	
$\sigma_{ t cp} =$	0.0	N/mm²	
$v_{min} =$	0.4		
$V_{Rd} \ge (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w \cdot d =$	233.2	KN	
$V_{Rd} = [(0.18 \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{1/3})/\gamma_c + 0.15 \cdot \sigma_{cp}] \cdot b_w \cdot d =$	233.22	KN	c.s.= 0.08 no!

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	FOGLIO
LI00	01	D 09CL	VI0100 001	А	99 di 123

Verifica a taglio sezione con armatura resistente a taglio

Verifica biella di conglomerato compressa:

$f_{cd} =$	25.9	N/mm²	
$b_{\mathbf{w}} =$	32.0	cm	larghezza sezione resistente a taglio
H =	210.0	cm	altezza sezione
d = H-c =	205.0	cm	altezza utile della sezione
z =	184.5	cm	braccio della coppia interna
$\alpha_{\sf CW} = 0$	1.0		da definire in funzione della compressione presente
$\alpha =$	1.571	rad	inclinazione armatura trasversale
$\theta = 0$	0.785	rad	inclinazione biella compressa
$\cot\theta + \tan\theta =$	2.0		
$1+\cot\alpha =$	1.0	$\cot \alpha = 0$	per staffe verticali o combinate
$v = 0.6 \cdot (1 - fck/200) =$	0.49		
$f'_{cd} \cdot b_w(\cot \alpha + \cot \theta)/(1 + \cot \theta^2 \theta) =$	3818.2	KN	
West Proposition (1997) 1997 (

 $V_{Rcd} = 0.9 \cdot d \cdot \alpha_C \cdot f'$

Verifica armatura trasversale d'anima:

	f_{ctd} =	1.8	N/mm ²	
	$f_{ywd} =$	391.3	N/mm²	
	$b_w =$	32.0	cm	larghezza sezione resistente a taglio
	d =	205.0	cm	altezza utile della sezione
	$A_{sw} =$	804.2	mm^2	area armatura trasversale
	s =	15.0	cm	passo armatura trasversale
a = ==================================	$\alpha =$	1.571	rad	inclinazione armatura trasversale
	δ =	1.0		coefficiente per la presenza di sforzo normale
$V_{Rsd} = (0.9 \cdot d \cdot A_{sw} \cdot f_{yd}/s) \cdot (\cot \alpha + \cot \alpha)$	tθ)senα =	3870.9	KN	

Verifica complessiva:

1.35 >1 verifica soddisfatta $V_{Rd} = min (V_{Rcd}; V_{Rsd}) =$ 3818.2 kN

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO LIOO 01 D 09CL VI0100 001 100 di 123

Verifica a torsione

TORSIONE SEMPLICE DI SEZIONE POLIGONALE

NOME SEZIONE: torsione

Descrizione Sezione:

Metodo di calcolo resistenza: Normativa di riferimento:

Stati Limite Ultimi

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -Classe: C45/55

> Resis. compr. di calcolo fcd : 255.00 daN/cm² Resis. compr. ridotta fcd': 127.50 daN/cm²

ACCIAIO Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist. snerv. di calcolo fyd: 3913.0 daN/cm²

COORDINATE DEI VERTICI DELLA SEZIONE POLIGONALE

N.vertice	Ascissa X,	cm Ordinata Y, cm
1	-16.0	0.0
2	-16.0	210.0
3	16.0	210.0
4	16.0	0.0

RISULTATI DEL CALCOLO A TORSIONE SEMPLICE

Momento Torcente Tsdu d	di calcolo:	148	daNm
Momento Torc. Resist. I	Irdu sez. tubolare conglom.:	50314	daNm
Momento Torc. Resist. I	Trsd sviluppato dalle staffe:	33881	daNm
Momento Torc. Resist. I	Irld delle barre longitudinali:	3568	daNm
Sezione verificata a to	reiono complico		

Sezione verificata a torsione semplice

Area Ac del perimetro esterno sezione:	6720	cm ²
Misura Pc del Perimetro esterno sezione:	484	cm
Spessore sez. anulare resistente (=Ac/Pc):	13.9	cm
Area resistente (racchiusa dal perimetro medio):	3553	cm ²
Misura del Perimetro medio sez. tubolare resist.:	428	Cm ²

Area Staffe di calcolo:						0.0	cm ² /m
Staffe progettate:		1	Staffa	Ø	16	/33.0	(6.1)
Area barre longitudinali calcolate:	-					0.5	cm ²
Barre longitudinali progettate:			14 9	Ø 1	0	(11.0)	cm ²)

N.B. Le armature sopra definite come 'calcolate' sono quelle ottenute con riferimento al momento agente ed alle resistenze dei materiali impiegati. Le armature sopra definite come 'progettate' oltre a tener conto del diametro effettivo scelto per le barre considerano anche le minime quantità di normativa. Il numero delle barre longitudinali progettate è tale da consentirne la

disposizione lungo il perimetro con interasse non superiore a 35 cm.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

		4.5			
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LI00	01	D 09CL	VI0100 001	Α	101 di 123

9.5 Taglio e torsione in sezione di appoggio

Si effettua la verifica a taglio in corrispondenza della sezione di appoggio.

La disposizione dei carichi accidentali è tale da massimizzare il valore delle azioni in oggetto.

VERIFICA A TAGLIO-TORSIONE

La verifica viene condotta con riferimento a due combinazioni distinte, una per massimizzare l'effetto del taglio, valutando il valore di momento torcente concomitante, l'altra per massimizzare l'effetto torcente, considerando altresì l'effetto del taglio concomitante.

La prima combinazione prevede che entrambi i binari siano caricati, con i treni di carico disposti in modo da massimizzare gli effetti sull'appoggio.

La seconda combinazione prevede un solo binario caricato.

Per effetto dei carichi considerati si hanno quindi i seguenti valori di taglio massimo sulla trave più caricata:

 $T_{G1} = 715 \text{ kN}$

 $T_{G2} = 291 \text{ kN}$

 $T_{G3} = 374 \text{ kN}$

 $T_{SW2+LM71} = 975 \text{ kN}$

 $T_{avviamento SW2} = 134 \text{ kN}/4 \text{ travi} = 33.50 \text{ kN}$

 $T_{frenatura\ LM71} = 126\ kN/4\ travi\ = 31.50\ kN$

 $T_{vento} = 64 \text{ kN}$

I valori di taglio sopra descritti vanno incrementati mediante i coefficienti di combinazione allo stato limite ultimo:

$$T_{G1} = 1.35 \cdot 715 = 965 \text{ kN}$$

$$T_{G2} = 1.35 \cdot 291 \text{ kN} = 393 \text{ kN}$$

$$T_{G3} = 1.50 \cdot 374 \text{ kN} = 561 \text{ kN}$$

$$T_{SW2+LM71} = 1.45 \cdot 975 \text{ kN} = 1414 \text{ kN}$$

$$T_{avviamento SW2} = 1.45 \cdot 33.50 \text{ kN} = 48.575 \text{ kN}$$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 102 di 123

 $T_{\text{frenatura LM71}} = 1.45 \cdot 31.50 \text{ kN} = 45.675 \text{ kN}$

 $T_{vento} = 0.9 \cdot 64 \text{ kN} = 58 \text{ kN}$

 $T_{Sd SLU} = 3485 \text{ kN}$

Il valore del momento torcente concomitante è pari a 84.00 kNm. Infatti, considerando il caso di massimo taglio, ovvero con entrambi i binari caricati, la torsione è dovuta alla differenza di momento torcente dato dal treno tipo SW2 e quello dato dal treno tipo LM71 più il contributo del vento.

Per la combinazione di massimo momento torcente, si considerano i medesimi valori di calcolo sopra descritti, esclusi quelli relativi al treno di carico tipo LM71 (valori dovuti al carico da traffico verticale e alla frenatura).

Riassumendo si hanno i seguenti valori di sollecitazione per le due combinazioni descritte:

Sollecitazioni allo SLU Combinazione di massimo taglio

 V_{Ed} = valore di calcolo dello sforzo di taglio agente kN 3485

 T_{Ed} = valore di calcolo del momento torcente agente kNm 239

Sollecitazioni allo SLU Combinazione di massima torsione

 V_{Ed} = valore di calcolo dello sforzo di taglio agente kN 3290

 T_{Ed} = valore di calcolo del momento torcente agente kNm 336

Si riporta nel seguito il dettaglio del calcolo per le due combinazioni considerate sopra descritte.

	LINEA PESO	LINEA PESCARA – BARI							
GRUPPO FERROVIE DELLO STATO ITALIANE	.	RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA: Lotto 1: Ripalta - Lesina							
	PROGETTO	DEFINITI	VO						
IMPALCATO DB A 4 CASSONCINI L=25 m	COMMESSA LI00	LOTTO 01	CODIFICA D 09CL	DOCUMENTO VI0100 001	REV.	FOGLIO 103 di 123			
RELAZIONE DI CALCOLO									

Combinazione di massimo taglio

Verifica a taglio

Dati di progetto:

	T =	3485.0	KN	azione di calcolo
sezione e materiali:	$R_{ck} =$	55.0	N/mm^2	resistenza caratteristica cubica
	B450C	450		tipologia barre d'acciaio
	B =	70.0	cm	base sezione rettangolare
	H =	210.0	cm	altezza sezione rettangolare
	c =	5.0	cm	copriferro
staffe:	α =	90.0	0	inclinazione staffe
	$\phi_{st} =$	16.0	mm	diametro staffe
	$n_b =$	6		numero di bracci
(40)	A _{sw} =	1206.4	mm^2	area armatura trasversale
	s =	13	cm	passo armatura trasversale

armatura a taglio rialzata N (inserire S per si o N per no)

armatura long. a trazione:

	ф	n
I° strato	0	0
IIº strato	0	0

Verifica a taglio sezione senza armatura resistente a taglio

$b_w =$	70.0	cm	larghezza sezi	one resis	tente a taglio
H =	210.0	cm	altezza sezion	е	
d = H-c =	205.0	cm	altezza utile d	lella sezio	one
k =	1.312		k deve essere	≤ 2	
AsI =	0.0	mm^2	armature di tr	azione	
$\rho_{l} = A_{sl}/(b_{w} \cdot d) \leq 0.02 =$	0.00000		*		
Nsd =	0.0	N			
Ac =	1470000.0	mm^2			
$\sigma_{\text{cp}} =$	0.0	N/mm²			w
v _{min} =	0.4				we store of the
$V_{Rd} \ge (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w \cdot d =$	510.2	KN			
$V_{Rd} \!=\! [(0.18 \!\cdot\! k \!\cdot\! (100 \!\cdot\! p_{l} \!\cdot\! f_{ck})^{1/3})/\gamma_{c} \!+\! 0.15.\sigma_{cp}] \!\cdot\! b_{w} \!\cdot\! d \!=\!$	510.17	KN	c.s.=	0.15	no!

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 104 di 123

Verifica a taglio sezione con armatura resistente a taglio

Verifica biella di conglomerato compressa:

	$f_{cd} =$	25.9	N/mm ²	
	$b_w =$	70.0	cm	larghezza sezione resistente a taglio
	H =	210.0	cm	altezza sezione
	d = H-c =	205.0	cm	altezza utile della sezione
	z =	184.5	cm	braccio della coppia interna
	$\alpha_{CW} =$	1.0		da definire in funzione della compressione presente
	$\alpha =$	1,571	rad	inclinazione armatura trasversale
	$\theta_{\cdot} =$	0.785	rad	inclinazione biella compressa
	$\cot\theta + \tan\theta =$	2.0		
	$1+\cot\alpha =$	1.0	$\cot \alpha = 0$	per staffe verticali o combinate
	$v = 0.6 \cdot (1 - fck/200) =$	0.49		
$V_{Rcd} = 0.9 \cdot d \cdot \alpha_C \cdot f'_{cd} \cdot b_w(cc)$	$\cot \alpha + \cot \theta$)/(1+ $\cot g^2 \theta$)=	8352.2	KN	

Verifica armatura trasversale d'anima:

$f_{ctd} =$	1.8	N/mm ²	
$f_{ywd} =$	391.3	N/mm ²	
$b_w = 0$	70.0	cm	larghezza sezione resistente a taglio
d =	205.0	cm	altezza utile della sezione
A _{sw} =	1206.4	mm^2	area armatura trasversale
s =	12.5	cm	passo armatura trasversale
$\alpha =$	1.571	rad	inclinazione armatura trasversale
δ =	1.0		coefficiente per la presenza di sforzo normale
$V_{Rsd} = (0.9 \cdot d \cdot A_{sw} \cdot f_{yd}/s) \cdot (\cot \alpha + \cot \theta) sen \alpha =$	6967.6	KN	

Verifica complessiva:

 $V_{Rd} = min (V_{Rcd}; V_{Rsd}) = 6967.6$ kN c.s.= 2.00 >1 verifica soddisfatta

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LI00	01	D 09CL	VI0100 001	Α	105 di 123

Verifica a torsione

TORSIONE SEMPLICE DI SEZIONE POLIGONALE NOME SEZIONE: torsione app

Descrizione Sezione:

Metodo di calcolo resistenza: Normativa di riferimento: Stati Limite Ultimi

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: C45/55

Resis. compr. di calcolo fcd : 255.00 daN/cm² Resis. compr. ridotta fcd': 127.50 daN/cm²

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist. snerv. di calcolo fyd: 3913.0 daN/cm²

COORDINATE DEI VERTICI DELLA SEZIONE POLIGONALE

N.vertice	Ascissa X	cm	Ordinata	Υ,	cm
1	-35.0		0.0		
2	-35.0		210.0		
3	35.0		210.0		
4	35.0		0.0		

RISULTATI DEL CALCOLO A TORSIONE SEMPLICE

Momento Torcente Tsdu	di calcolo:	239	daNm
Momento Torc. Resist.	Trdu sez. tubolare conglom.:	215246	daNm
Momento Torc. Resist.	Trsd sviluppato dalle staffe:	76664	daNm
Momento Torc. Resist.	Trld delle barre longitudinali:	8688	daNm

Sezione verificata a torsione semplice

Area Ac del perimetro esterno sezione:	14700	Cm ²
Misura Pc del Perimetro esterno sezione:	560	cm
Spessore sez. anulare resistente (=Ac/Pc):	26.3	cm
Area resistente (racchiusa dal perimetro medio):	8039	Cm ²
Misura del Perimetro medio sez. tubolare resist.:	455	cm ²

Area Staffe di calcolo:			0.0	cm^2/m
Staffe progettate:	1	Staffa Ø 1	6 /33.0	(6.1)
Area barre longitudinali calcolate:			0.3	Cm ²
Barre longitudinali progettate:		16 Ø 10	(12.6	cm2)

N.B. Le armature sopra definite come 'calcolate' sono quelle ottenute con riferimento al momento agente ed alle resistenze dei materiali impiegati. Le armature sopra definite come 'progettate' oltre a tener conto del diametro effettivo scelto per le barre considerano anche le minime quantità di normativa. Il numero delle barre longitudinali progettate è tale da consentirne la

disposizione lungo il perimetro con interasse non superiore a 35 cm.

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO	LINEA PESCARA – BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA: Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO					
IMPALCATO DB A 4 CASSONCINI L=25 m	COMMESSA LI00	LOTTO 01	CODIFICA D 09CL	DOCUMENTO VI0100 001	REV.	FOGLIO	
RELAZIONE DI CALCOLO	Liou	01	DOSCE	VIO 100 001	Α	106 di 123	

Combinazione di massima torsione

Verifica a taglio

Dati di progetto:				
	T =	3290.0	KŇ	azione di calcolo
sezione e materiali:	R _{ck} =	55.0	N/mm²	resistenza caratteristica cubica
	B450C	450		tipologia barre d'acciaio
	B = H =	70.0 210.0	cm cm	base sezione rettangolare altezza sezione rettangolare
	C =	5.0	cm	copriferro
staffe:	α =	90.0	0	inclinazione staffe
	$\phi_{st} =$	16.0	mm	diametro staffe
	$n_b =$	6		numero di bracci
	A _{sw} =	1206.4	mm^2	area armatura trasversale
	s =	13	cm	passo armatura trasversale
armatur	a a taglio rialzata [N	(inserire S	5 per si o N per no)
armatura long. a trazione:		ф	n	1
	I° strato	0	0	
	II° strato	0	0	
	$A_{sl} = 1 + (200/d)^{0.5} =$	0.0 1.3123	mm^2	area armatura longitudinale a trazione

Verifica a taglio sezione senza armatura resistente a taglio

	b _w =	70.0	cm	larghozza sozione veristrata a ta alia
427	180.00		cm	larghezza sezione resistente a taglio
	H =	210.0	cm	altezza sezione
	d = H-c =	205.0	cm	altezza utile della sezione
	k =	1.312		k deve essere ≤ 2
	AsI =	0.0	mm^2	armature di trazione
	$\rho_I = A_{si}/(b_w \cdot d) \le 0.02 =$	0.00000		
	Nsd =	0.0	N	14
	Ac =	1470000.0	mm^2	27 B
	$\sigma_{\text{cp}} =$	0.0	N/mm²	
	$v_{min} =$	0.4		
	$V_{Rd} \ge (V_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w \cdot d =$	510.2	KN	
$V_{Rd} = [(0.18 \cdot k \cdot (1$	$00 \cdot \rho_l \cdot f_{ck})^{1/3})/\gamma_c + 0.15 \cdot \sigma_{cp}] \cdot b_w \cdot d =$	510.17	KN	c.s.= 0.16 no!

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LIOO	01	D 09CL	VI0100 001	Α	107 di 123

Verifica a taglio sezione con armatura resistente a taglio

Verifica biella di conglomerato compressa:

$f_{cd} =$	25.9	N/mm²	
$b_w =$	70.0	cm	larghezza sezione resistente a taglio
H =	210.0	cm	altezza sezione
d = H-c =	205.0	cm	altezza utile della sezione
z =	184.5	cm	braccio della coppia interna
$\alpha_{\sf CW} =$	1.0		da definire in funzione della compressione presente
α =	1.571	rad	inclinazione armatura trasversale
$\theta =$	0.785	rad	inclinazione biella compressa
$\cot\theta + \tan\theta =$	2.0		
$1+\cot \alpha =$	1.0	$\cot \alpha = 0$	per staffe verticali o combinate
$v = 0.6 \cdot (1 - fck/200) =$	0.49		
$V_{Rcd} = 0.9 \cdot d \cdot \alpha_C \cdot f'_{cd} \cdot b_w (\cot \alpha + \cot \theta) / (1 + \cot \theta^2 \theta) =$	8352.2	KN	

Verifica armatura trasversale d'anima:

$f_{ctd} =$	1.8	N/mm ²	
$f_{ywd} =$	391.3	N/mm²	
b _w =	70.0	cm	larghezza sezione resistente a taglio
d =	205.0	cm	altezza utile della sezione
A _{sw} =	1206.4	mm^2	area armatura trasversale
s =	12.5	cm	passo armatura trasversale
$\alpha =$	1.571	rad	inclinazione armatura trasversale
δ =	1.0		coefficiente per la presenza di sforzo normale
$V_{Rsd} = (0.9 \cdot d \cdot A_{sw} \cdot f_{yd}/s) \cdot (\cot \alpha + \cot \theta) sen \alpha =$	6967.6	KN	

Verifica complessiva:

 $V_{Rd} = min (V_{Rcd}; V_{Rsd}) =$ 6967.6 kN c.s.= 2.12 >1 verifica soddisfatta

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 108 di 123

Verifica a torsione

TORSIONE SEMPLICE DI SEZIONE POLIGONALE NOME SEZIONE: torsione_app

Descrizione Sezione:

Metodo di calcolo resistenza: Normativa di riferimento:

Stati Limite Ultimi

NTC

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - Classe: C45/55

Resis. compr. di calcolo fcd : 255.00 daN/cm² Resis. compr. ridotta fcd': 127.50 daN/cm²

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist. snerv. di calcolo fyd: 3913.0 daN/cm²

COORDINATE DEI VERTICI DELLA SEZIONE POLIGONALE

N.vertice	Ascissa X,	cm Ordinata Y, cm
1	-35.0	0.0
2	-35.0	210.0
3	35.0	210.0
4	35.0	0.0

RISULTATI DEL CALCOLO A TORSIONE SEMPLICE

Momento Torcente Tsdu		336	daNm
Momento Torc. Resist.	Trdu sez. tubolare conglom.:	215246	daNm
	Trsd sviluppato dalle staffe:	76664	daNm
Momento Torc. Resist.	Trld delle barre longitudinali:	8688	daNm
Sezione verificata a t	orsione semplice		

Sezione verificata a torsione semplice

Area Ac del perimetro esterno sezione:	14700	cm ²
Misura Pc del Perimetro esterno sezione:	560	cm
Spessore sez. anulare resistente (=Ac/Pc):	26.3	cm
Area resistente (racchiusa dal perimetro medio):	8039	Cm ²
Misura del Perimetro medio sez. tubolare resist.:	455	Cm ²

Area Staffe di calcolo:	$0.0 \text{ cm}^2/\text{m}$
Staffe progettate:	1 Staffa Ø 16 /33.0 (6.1)
Area barre longitudinali calcolate:	0.5 cm^2
Barre longitudinali progettate:	16 Ø 10 (12.6 cm ²)

N.B. Le armature sopra definite come 'calcolate' sono quelle ottenute con riferimento al momento agente ed alle resistenze dei materiali impiegati. Le armature sopra definite come 'progettate' oltre a tener conto del diametro effettivo scelto per le barre considerano anche le minime quantità di normativa. Il numero delle barre longitudinali progettate è tale da consentirne la disposizione lungo il perimetro con interasse non superiore a 35 cm.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
L100	01	D 09CL	VI0100 001	Α	109 di 123

9.6 Armatura di connessione trave-soletta in sezione corrente di appoggio

Per la verifica dell'armatura di connessione tra trave e soletta si adotta la formula contenuta in UNI EN 1992-1-1 al punto 6.2.5, di seguito riportata.

Si considera il valore dello scorrimento all'interfaccia, dovuto ai carichi permanenti portati e ai carichi accidentali. Il calcolo dello scorrimento non tiene conto del taglio dovuto ai pesi propri (sia della trave prefabbricata che della soletta), poiché tali carichi agiscono in una fase in cui il collegamento tra trave e soletta non è ancora funzionante.

Per effetto dei carichi considerati si hanno quindi i seguenti valori di taglio sulla trave più caricata ottenuti dal modello di calcolo:

 $T_{G2} = 290 \text{ kN}$

 $T_{G3} = 374 \text{ kN}$

 $T_{SW2} = 871 \text{ kN}$

 $T_{LM71} = 103 \text{ kN}$

 $T_{\text{avviamento SW2}} = 131 \text{ kN}/4 \text{ travi} = 32.75 \text{ kN}$

 $T_{frenatura\ LM71} = 123\ kN/4\ travi = 30.75\ kN$

I valori di taglio sopra descritti vanno incrementati mediante i coefficienti di combinazione allo stato limite ultimo:

 $T_{G2} = 1.35 \cdot 290 \text{ kN} = 391.5 \text{ kN}$

 $T_{G3} = 1.50 \cdot 374 \text{ kN} = 561 \text{ kN}$

 $T_{SW2} = 1.45 \cdot 871 \text{ kN} = 1262.95 \text{ kN}$

 $T_{LM71} = 1.45 \cdot 103 \text{ kN} = 149.35 \text{ kN}$

 $T_{avviamento SW2} = 1.45 \cdot 32.75 \text{ kN} = 47.50 \text{ kN}$

 $T_{frenatura\ LM71} = 1.45 \cdot 30.75\ kN = 44.70\ kN$.

 $T_{Sd SLU} = 2457 \text{ kN}$

Lo sforzo di scorrimento per metro lineare è pari a:

 $q_B = \tau * b = T_{max} * S_{sol}/J$

 $con S_{sol} = 710381 cm^3$ momento statico della soletta rispetto all'asse neutro della sezione omogeneizzata.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 110 di 123

J = 1.462 cm⁴ momento di inerzia della sezione omogeneizzata

$$q_B = 245700 * 710381/146274605 = 1190 \text{ Kg/cm} = 119000 \text{ Kg/m}$$

vengono posizionate staffe ϕ 18 a 4 braccia con passo 10cm $A_s = 4*2.54 = 10.16$ cm²

$$\tau = q_B/(n*A_s) = 119000/(10*10.16) = 1171.25 \text{ Kg/cm}^2 < f_{yd}/(3)^{0.5} = 3987/(3)^{0.5} = 2301 \text{ Kg/cm}^2$$

In cui f yd è la resistenza di calcolo dell'acciaio riferita alla tensione di snervamento ed il suo valore è dato da:

$$f_{yd} = f_{yk} / \gamma_S$$

con:

 γ_S è il coefficiente parziale di sicurezza relativo all'acciaio pari a 1.15

fyk per armatura ordinaria è la tensione caratteristica di snervamento dell'acciaio pari a 450 Mpa

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

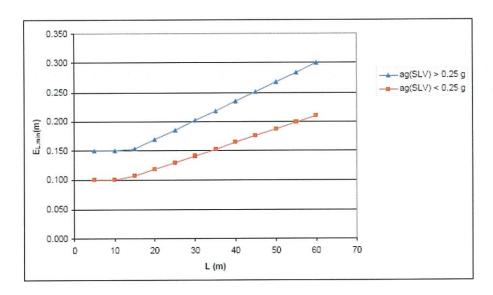
IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 OMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 111 di 123

10 GIUNTI DI DILATAZIONE


Viene di seguito riportata il calcolo dell'escursione dei giunti e degli apparecchi di appoggio secondo quanto riportato al §2.1.5 della "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario".

Accelerazione orizzontale massima al sito $a_g = 0.372g > 0.25g$

$$E_L \ge 3.3*L/1000+0.1 = 0.1825 \text{ m}$$

L = lunghezza del ponte 25.00 m

 $E_{Lmin} = 19.00 \text{ cm}$

10.1 Corsa degli apparecchi d'appoggio mobili

La corsa degli apparecchi d'appoggio mobili deve essere non inferiore a \pm ($E_L/2 + E_L/8$) con un minimo di \pm ($E_L/2 + 15$ mm). La grandezza EL è definita nel punto 2.1.5.1 della "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario".

$$\pm (E_L/2 + E_L/8) = \pm 11.88 \text{ cm} \approx 12 \text{ cm}$$

$$\pm (E_1/2 + 15 \text{ mm}) = \pm 11 \text{ cm}$$

10.2 Escursione dei giunti

Il giunto fra le testate di due travi adiacenti dovrà consentire una escursione totale pari a: $\pm (E_1/2 + 10 \text{ mm})$ calcolata in accordo con il punto 2.1.5.1.

$$\pm (E_1/2 + 10 \text{ mm}) = \pm 10.50 \text{ cm}$$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 112 di 123

10.3 Ampiezza dei varchi

Il varco da prevedere fra le testate degli impalcati adiacenti, a temperatura media ambiente, dovrà essere non inferiore a:

 $V \ge E_L/2 + V_o$ ove $V_o = 20$ mm

 $E_L/2 + 20$ mm = 11.5 cm

Si adotta un varcho da 12cm.

In corrispondenza della spalla fissa è previsto un giunto tipo beta 60/100, tutti gli altri giunti sono tipo 60/200

1	INFA	PESCARA	- BARI
_	.IINEA	PESCARA	- DANI

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

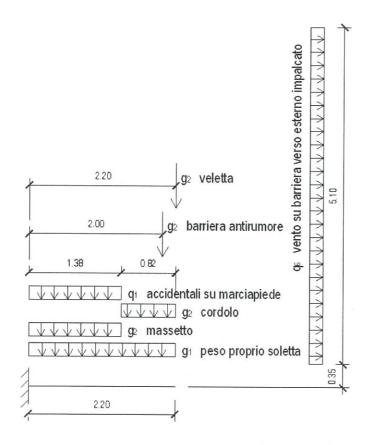
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LI00	01	D 09CL	VI0100 001	Α	113 di 123

11 VERIFICA AL SOLLEVAMENTO

Con riferimento alla disposizione dei martinetti di sollevamento, lo schema statico e la posizione dei vincoli coincide praticamente con la configurazione di esercizio, pertanto si omettono le verifiche.

12 SOLETTA

Nelle verifiche della soletta le predalles non sono state considerate reagenti.


Per le verifiche in esercizio non è stata considerata l'azione di peso proprio della soletta, in quanto agente sulle predalles in fase di getto.

Il limite di apertura delle fessure, calcolate nella soletta in combinazione caratteristica delle azioni, è stato considerato pari a 0.20 mm.

12.1 Inviluppo sollecitazioni

Si riporta nel seguito l'analisi in dettaglio della sezione di incastro in corrispondenza dello sbalzo terminale, che rappresenta la situazione gravosa.

Lo schema statico è rappresentato nella seguente figura, dove sono riportati anche i carichi agenti considerati nelle verifiche.

Si riportano di seguito i contributi dei singoli carichi in termini di momento flettente negativo all'incastro:

ITALEEDE
ITALFERR

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

D 09CL

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

LOTTO

01

IMPALCATO DB A 4 CASSONCINI L=25 m

ONCINI L=25 m

CODIFICA DOCUMENTO

VI0100 001

REV. FOGLIO
A 115 di 123

RELAZIONE DI CALCOLO

Peso Proprio M= -18,15 kN m

Permanenti (cordolo e massetto) M= -10,37 kN m

Barriera antirumore M=-30 kN m

Veletta M=-3.30 kN m

Totale permanenti portati M = 43.67 kN m

Carico accidentale su marciapiede q_1 M= -9.53 kN m

Vento sulla barriera antirumore q_6 M= 37 kN m

Calcolo delle sollecitazioni per le verifiche delle tensioni in esercizio e di fessurazione:

Data la presenza di due carichi accidentali (carico sul marciapiede e vento) le possibili combinazioni da considerare sono due, in ciascuna delle quali uno dei due carichi è considerato come dominante.

In particolare per la combinazione caratteristica (rara) si hanno le seguenti due possibili combinazioni:

1)
$$1 \cdot g1 + 1 \cdot g2 + 1 \cdot q1 + 0.60 \cdot q6$$

2)
$$1 \cdot g1 + 1 \cdot g2 + 0.80 \cdot q6 + 1 \cdot q6$$

Per la combinazione quasi permanente invece esiste solo la seguente combinazione:

1)
$$1 \cdot g1 + 1 \cdot g2$$

Per le verifiche in esercizio non è stata considerata l'azione di peso proprio della soletta, in quanto agente sulle predalles in fase di getto.

Si hanno le seguenti caratteristiche geometriche:

Larghezza soletta considerata B= 1.00 m

Altezza H = 0.25 m

Armatura al lembo superiore $(1 \phi 18/10) = 25.45 \text{ cm}^2/\text{m};$

$$(c+\phi/2)=3.5+1.8/2=4.40$$
 cm

$$\phi_{\text{equivalente}} = 18 \text{ mm}$$

Armatura al lembo inferiore $(1 \phi 16/20) = 10.05 \text{ cm}^2/\text{m};$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 116 di 123

 $(c+\phi/2) = [(2.0+1.6/2)=2.80cm]$

 $\phi_{equivalente} = 16 \text{ mm}$

Determinate le caratteristiche geometriche della sezione omogeneizzata con n=15 si ricava il valore dell'asse neutro per le sollecitazioni inviluppate e il conseguente stato pensionale.

Combinazione caratteristica rara

Nel caso in esame si ricava che:

Momento in esercizio negativo =-88.30 kN m (ottenuto per la combinazione caratteristica 2 di cui sopra)

Azione normale: -12.75 kN (trazione) azione del vento sulla barriera

Combinazione quasi permanente

Nel caso in esame si ricava che:

Momento in esercizio negativo =-43.67 kN m (ottenuto per la combinazione q. perm. 1 di cui sopra)

Azione normale: -12.75 kN (trazione) azione del vento sulla barriera

Momento di fessurazione negativo = -80.30 kN m

Calcolo delle sollecitazioni per le verifiche allo stato limite ultimo per flessione:

Il momento massimo allo SLU negativo si ottiene con riferimento alla seguente combinazione delle azioni:

$$1.35 \cdot g_1 + 1.35 \cdot g_2 + 1.16 \cdot q_1 + 1.50 \cdot q_6$$

e vale pertanto M= -150 KN m

azione assiale di trazione di 1.5 x 12.75 kN = 19.13 kN, dovuta all'azione del vento.

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: solettone

Descrizione Sezione:
Metodo di calcolo resistenza:
Tipologia sezione:
Normativa di riferimento:
Percorso sollecitazione:
Condizioni Ambientali:
Riferimento Sforzi assegnati:

Stati Limite Ultimi
Sezione generica
N.T.C.
A Sforzo Norm. costante
Moderat. aggressive
Assi x,y principali d'inerzia

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

D 09CL

DOCUMENTO

VI0100 001

FOGLIO

117 di 123

REV

A

Lotto 1: Ripalta - Lesina

IMPALCATO DB A 4 CASSONCINI L=25 m

PROGETTO DEFINITIVO COMMESSA LOTTO CODIFICA

RELAZIONE DI CALCOLO

Riferimento alla sismicità: Posizione sezione nell'asta: Zona non sismica In zona critica

01

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Classe: C30/37 CONGLOMERATO -

Resis. compr. di calcolo fcd : 170.00 daN/cm² Resis. compr. ridotta fcd': 85.00 daN/cm²

0.0020 Def.unit. max resistenza ec2 : Def.unit. ultima ecu : 0.0035

Diagramma tensione-deformaz. : Parabola-Rettangolo 328366 daN/cm²

LIOO

Modulo Elastico Normale Ec : 0.20

Coeff. di Poisson :

Resis. media a trazione fctm: 28.96 daN/cm² 15.0

Coeff. Omogen. S.L.E. : 15.0 Combinazioni Rare in Esercizio (Tens.Limite):

Sc Limite : 180.00 daN/cm²

Apert.Fess.Limite: Non prevista

Combinazioni Frequenti in Esercizio (Tens.Limite):

Sc Limite: 180.00 daN/cm²

Apert.Fess.Limite: 0.300 mm

Combinazioni Quasi Permanenti in Esercizio (Tens.Limite):

Sc Limite: 135.00 daN/cm² 0.200 mm

Apert.Fess.Limite :

Tipo: B450C ACCTATO

4500.0 daN/cm² Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: 4500.0 daN/cm² Resist. snerv. di calcolo fyd: 3913.0 daN/cm² 3913.0 daN/cm² Resist. ultima di calcolo ftd: Deform. ultima di calcolo Epu: 0.068 2000000 daN/cm² Bilineare finito

Modulo Elastico Ef:
Diagramma tensione-deformaz.:
Coeff. Aderenza ist. 81*82: 1.00 daN/cm² Coeff. Aderenza diff. \$1*\$2: 0.50 daN/cm² 3600.0 daN/cm² Comb.Rare Sf Limite :

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO N° 1 Forma del Dominio: Poligonale Classe Conglomerato: C30/37

N.vertice	Ascissa X,	cm	Ordinata	Υ,	cm
1	-50.00		0.00		
2	-50.00		25.00		
3	50.00		25.00		
4	50.00		0.00		

DATI BARRE ISOLATE

Numero assegnato alle singole barre isolate e nei vertici dei domini N.Barra Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Ascissa X Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Ordinata Y Diametro in mm della barra Diam.

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	-47.20	2.80	16
2	-47.20	20.60	18
3	47.20	20.60	18

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

COMMESSA LOTTO CODIFICA

01

DOCUMENTO VI0100 001

REV **FOGLIO**

RELAZIONE DI CALCOLO

2.80

LIOO

118 di 123

4

47.20

16

D 09CL

DATI GENERAZIONI LINEARI DI BARRE

N.Gen. Numero assegnato alla singola generazione lineare di barre N.Barra In. Numero della barra iniziale cui si riferisce la gener. N.Barra Fin. Numero della barra finale cui si riferisce la gener.

N.Barre Numero di barre generate equidist. inserite tra la barra iniz. e fin. Diam.

Diametro in mm della singola barra generata

N.Gen.	N.Barra In.	N.Barra Fin.	N.Barre	Diam.Ø,mm
1	1	4	3	16
2	2	3	8	1.8

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
MX	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Comb. Mx MV Vy Vx 1 -1913-15000 10 0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo superiore della sez. My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.

N.Comb. Mx Му 1 -1275-8830

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo superiore della sez. Му Coppia concentrata in daNm applicata all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.

N.Comb. Mx Му 1 0 -8030 0

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo superiore della sez. Coppia concentrata in daNm applicata all'asse y princ. d'inerzia My con verso positivo se tale da comprimere il lembo destro della sez.

N.Comb.	N	Mx	Му	
1	-1275	-4367	0	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LI00	01	D 09CL	VI0100 001	Α	119 di 123

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 1.9 cm Interferro netto minimo barre longitudinali: 8.7 cm

Copriferro netto minimo staffe: 1.1 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S= combinazione verificata / $N=$ combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia
My	Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
My ult	Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My) Verifica positiva se tale rapporto risulta $>=1.000$

N.Comb.	Ver	N	Mx	Му	N ult	Mx ult	My ult	Mis.Sic.
1	S	-1913	-15000	0	-1922	-18048	0	1.204

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xf min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
Yf min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xf max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
Yf max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
N.Comb.	ec max ec 3/7 Xc max Yc max ef min Xf min Yf min ef max Xf max Yf max

1 0.00350 -0.00415 -50.0 0.0 0.00150 -47.2 2.8 -0.01122 47.2 20.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

N.Comb.	a	b	С	x/d	C.Rid.
x/d C.Rid.	Rapp. di duttilità Coeff. di riduz. mo	a rottura in pre	senza di sola fl	Less.(travi)	
C	Coeff. c nell'eq. c	ell'asse neutro	aX+bY+c=0 nel ri	f. X,Y,O gen.	
b	Coeff. b nell'eq. c				
a	Coeff. a nell'eq. d	ell'asse neutro	aX+bY+c=0 nel ri	f. X,Y,O gen.	

^{1 0.00000000 -0.000714377 0.003500000}

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver		S = combinazione verificata / N = combin. non verificata
Sc	max	Massima tensione positiva di compressione nel conglomerato [daN/cm²]
Xc	max	Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
YC		Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sf	min	Minima tensione negativa di trazione nell'acciaio [daN/cm²]
Xf	min	Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Yf	min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac		Area di conglomerato [cm²] in zona tesa considerata aderente alle barre
D	fess.	Distanza calcolata tra le fessure espressa in mm

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

DOCUMENTO

VI0100 001

REV

Α

FOGLIO

120 di 123

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

COMMESSA LOTTO CODIFICA

01

RELAZIONE DI CALCOLO

D 09CL

Coeff.(§ B.6.6.2 Istruz.DM96) dipendente dalla forma del diagramma tensioni Apertura fessure in mm. Calcolo secondo §4.1.2.2.4.6 NTC.

N.Comb. Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess.

93.1 50.0 0.0 -1980 -15.7 S 119 20.6 800 COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess. N.Comb. Ver Sc max Xc max Yc max

LIOO

1 50.0 0.0 85.1 -1778 -47.2 20.6 800 87 0.125 0.115

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N.Comb. Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess.

45.9 50.0 0.0 1 S -992 -5.2 20.6 850 121 0.125 0.059

LINEA PESCA	ARA – BA	ARI		
RADDOPPIO	DELLA	TRATTA	FERROVIARIA	TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m
RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
LI00	01	D 09CL	VI0100 001	Α	121 di 123

13 AZIONI SUGLI APPOGGI

Nel seguito si riepilogano i valori delle azioni sugli appoggi per effetto dei carichi descritti in precedenza. Per la determinazione dei valori complessivi delle azioni sugli appoggi si rimanda alla relazione di calcolo delle sottostrutture.

Nelle tabelle che seguono si fa riferimento alla figura sopra riportata, dove la spalla 1 è quella a sinistra, e gli appoggi sono numerati a partire dall'alto.

Control of the Contro	APPOGGIO 1 (MULTIDIR.)			APPOGGIO 2 (FISSO)			APPOGGIO 3 (FISSO)			APPOGGIO 4 (MULTIDIR.)		
SPALLA 1 (MULTI/FISSO/FISSO/MULTI)	V	Ht	HI	V	Ht	HI	V	Ht	HI	٧	Ht	н
	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
G1 (PESO PROPRIO TRAVE+TRAVERSI	444.00	0.00	0.00	444.00	0.00	0.00	444.00	0.00	0.00	444.00	0.00	0.00
G1 (PESO PROPRIO SOLETTA)	454.00	0.00	0.00	278.50	0.00	0.00	278.50	0.00	0.00	454.00	0.00	0.00
G2 (CARICHI PERMANENTI)	463.00	0.00	0.00	-38.00	0.00	0.00	-38.00	0.00	0.00	463.00	0.00	0.00
G3 (BALLAST)	374.00	0.00	0.00	376.50	0.00	0.00	376.50	0.00	0.00	374.00	0.00	0.00
Q1 (TRAFFICO FERROVIARIO)	867.00	0.00	0.00	1238.00	0.00	0.00	1238.00	0.00	0.00	853.00	0.00	0.00
CENTRIFUGA	0.00	0.00	0.00	0.00	39.30	0.00	0.00	39.20	0.00	0.00	0.00	0.00
SERPEGGIO	0.00	0.00	0.00	0.00	105.00	0.00	0.00	105.00	0.00	0.00	0.00	0.00
VENTO	0.00	0.00	0.00	0.00	113.00	0.00	0.00	63.00	0.00	0.00	0.00	0.00
FRENATURA/AVVIAM	0.00	0.00	0.00	0.00	0.00	850.00	0.00	0.00	850.00	0.00	0.00	0.00
RESISTENZE PARASSITE	0.00	0.00	0.00	0.00	0.00	145.00	0.00	0.00	145.00	0.00	0.00	0.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 LI00
 01
 D 09CL
 VI0100 001
 A
 122 di 123

SPALLA 2 (MULTI/UNIDIR/MULTI/MULTI)	APPOGGIO 5 (MULTIDIR.)			APPOGGIO 6 (UNIDIR.)			APPOGGIO 7 (MULTIDIR.)			APPOGGIO 8 (MULTIDIR.)		
	V	Ht	HI	V	Ht	HI	V	Ht	HI	V	Ht	HI
	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
G1 (PESO PROPRIO TRAVE+TRAVERSI	444.00	0.00	0.00	444.00	0.00	0.00	444.00	0.00	0.00	444.00	0.00	0.00
G1 (PESO PROPRIO SOLETTA)	454.00	0.00	0.00	278.50	0.00	0.00	278.50	0.00	0.00	454.00	0.00	0.00
G2 (CARICHI PERMANENTI)	463.00	0.00	0.00	-38.00	0.00	0.00	-38.00	0.00	0.00	463.00	0.00	0.00
G3 (BALLAST)	374.00	0.00	0.00	376.50	0.00	0.00	376.50	0.00	0.00	374.00	0.00	0.00
Q1 (TRAFFICO FERROVIARIO)	867.00	0.00	0.00	1238.00	0.00	0.00	1238.00	0.00	0.00	853.00	0.00	0.00
CENTRIFUGA	0.00	0.00	0.00	0.00	78.45	0.00	0.00		0.00	0.00	0.00	0.00
SERPEGGIO	0.00	0.00	0.00	0.00	210.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
VENTO	0.00	0.00	0.00	0.00	176.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FRENATURA/AVVIAM	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RESISTENZE PARASSITE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

I valori

Il significato dei simboli utilizzati è il seguente:

V: forza normale

Ht: forza orizzontale di taglio agente in dir. Trasversale

HL: forza orizzontale di taglio agente in dir. Longitudinale

Tabella Caratteristiche appoggi

	Vmax (KN)	Ht (KN)	HL (KN)
FISSO	3400	1900	1800
UNIDIREZIONALE LONG	3400	1900	_
MULTIDIREZIONALE	4000		-

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA:

Lotto 1: Ripalta - Lesina

PROGETTO DEFINITIVO

IMPALCATO DB A 4 CASSONCINI L=25 m

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA

LIOO 01 D 09CL

DOCUMENTO VI0100 001 REV.

FOGLIO 123 di 123

14 INCIDENZE DI ARMATURA

I valori delle incidenze di armatura lenta:

Travi - i = 160 kg/mc

Soletta – i = 140 kg/mc

Per quanto riguarda l'armatura di precompressione per ciascuna trave prefabbricata sono previsti 72 trefoli ϕ 0.6" stabilizzati in direzione longitudinale. Di questi, 24 trefoli vengono neutralizzati per una lunghezza di 2.55 m.

Per ciascun traverso, è previsto 1 cavo di precompressione superiore da 9 trefoli ϕ 0.6" e 1 cavo di precompressione inferiore da 5 trefoli ϕ 0.6".