

Anas SpA

Direzione Centrale Progettazione

ASR 18/07

AUTOSTRADA A3 SALERNO — REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1ª DELLE NORME CNR/80 Dal km 153+400 al km 173+900 MACROLOTTO 3 — PARTE 2^

MONITORAGGIO AMBIENTALE

CONTRAENTE GENERALE

IL RESPONSABILE DEL CONTRAENTE GENERALE

ital **SARC

SOGGETTO ESECUTORE DELLE ATTIVITA' DI MONITORAGGIO AMBIENTALE

STRAGO S.p.A. [mandataria]

TECNO-BIOS S.r.I. [mandante]

PROGETTO DI MONITORAGGIO AMBIENTALE

IL RESPONSABILE AMBIENTALE

Dott. Massimiliano Bechini

VISTO: ANAS S.p.A. - IL RESPONSABILE DEL PROCEDIMENTO

Dott. Ing. Francesco Ruocco

MONITORAGGIO AMBIENTALE FASE CORSO D'OPERA

Componente Acque sotterranee — Bollettino trimestrale 5° Bollettino trimestrale

CODICE PR		TOO-MAO2-MOA-SC3	REVISIONE	SCALA:		
LO41	CODIOS CONTRACTOR OF THE CONTR				A	_
Α	EMISSI	ONE	LUG 2016	GUARINO	GUARINO	BECHINI
REV.	DESCRIZ	ZIONE	DATA	REDATTO	VERIFICATO	APPROVATO

Indice

1.	DESCRIZIONE DELLE ATTIVITA'	
1.1.	Metodiche di monitoraggio	
1.2.	Punti di monitoraggio	
1.3.	Attività di cantiere	3
2.	RISULTATI OTTENUTI	5
2.1.	Analisi chimiche	
2.2.	Monitoraggio livelli di falda	6
3.	CONCLUSIONI	20
ALLEGAT	TO 1 – SCHEDE DI RESTITUZIONE DEI DATI	28
ALLEGAT	TO 2 – CERTIFICATI DELLA STRUMENTAZIONE	29

MA	MONITORAGGIO AMBIENTALE - FASE CORSO D'OPERA	Bollettino periodico						
IVIA	COMPONENTE ACQUE SOTTERRANEE	T00	MA	01	MOA	RE01	pag. 2/29	

1. DESCRIZIONE DELLE ATTIVITA'

Per incarico della ITALSARC è stata redatta la presente relazione avente ad oggetto le misure sull'idrico profondo eseguite, in Corso d'Opera, in ottemperanza del piano di monitoraggio ambientale "componente Acque Sotterranee" riguardante i lavori di ammodernamento ed adeguamento al tipo 1° delle norme CNR/80 dal Km 153+400 al Km 173+900 Macrolotto 3 – parte 2^E dell'autostrada A3 Salerno – Reggio Calabria.

La presente relazione è riferita al trimestre Ottobre-Novembre-Dicembre 2015 - Gennaio 2016.

1.1. Metodiche di monitoraggio

Nella fase di monitoraggio Corso d'Opera, oggetto della presente relazione, sono stati eseguite misure freatimetriche, misure dei parametri chimico-fisici in situ e campionamenti di acqua in corrispondenza dei piezometri ambientali realizzati nelle aree interessate dalle principali opere di progetto, in prossimità degli scavi in sotterraneo per la realizzazione di gallerie naturali e artificiali, lungo piste di cantiere ed aree di stoccaggio (inerti e terreni).

Il monitoraggio della componente "Ambiente Idrico Sotterraneo" è stato eseguito su 18 piezometri con lo scopo di verificare che la realizzazione e l'esercizio dell'opera non producano significative variazioni sull'assetto idrogeologico e sulle caratteristiche qualitative delle acque di falda.

1.2. Punti di monitoraggio

Di seguito si propone la tabella con i punti di misura oggetto delle attività di monitoraggio, e l'ubicazione e progressiva relativamente all'opera.

PUNTO DI MISURA	Tipo indagine	ubicazione/progressiva
A_sott_1_bis	GN JANNELLO IMB NORD	DG.28 KM 0+860
A_sott_4_bis	GN JANNELLO	DG.28 KM 2+700
A_sott_5	GN LARIA IMB SUD	DG.29 KM 0+800
A_sott_6	AREA PIETRAGROSSA	DG.29 KM 1+800
A_sott_7	AREA COLLETRODO/GALLARIZZO	DG.29 KM 1+800
A_sott_8	AREA COLLETRODO/GALLARIZZO	DG.29 KM 3+500
A_sott_9	GN COLLETRODO IMB SUD	DG.29 KM 4+400
A_sott_11_bis	VIADOTTO MANCUSO	DG.30 KM 5+000
A_sott_12	EX SVINCOLO AUTOSTRADALE CAMPOTENESE	DG.31 KM 1+800
A_sott_13	GN LARIA IMB NORD	DG.29 KM 0+600
A_sott_14	VIADOTTO MEZZANA	DG.29 KM 2+300
A_sott_15	GN MORMANNO	DG.30 KM 0+700
A_sott_15v	GN MORMANNO	DG.30 KM 0+800
A_sott_17bis	GN DONNA DI MARCO IMB NORD	DG.31 KM 1+400
A_sott_18	SP241 A VALLE DELLA GN DONNA DI MARCO IMB SUD	DG.31 KM 2+200
A_sott_19	A MONTE DELLA GN DONNA DI MARCO IMB SUD	DG.28 KM 2+000
A_sott_20	A MONTE GN CAMPOTENESE IMB SUD	DG.31 KM 3+200
A_sott_21	A VALLE GN CAMPOTENESE IMB SUD	DG.31 KM 3+200

Di seguito l'elenco con i punti di monitoraggio raggruppati per aree:

- Galleria Jannello (A_sott_1bis, A_sott_4bis)
- Galleria Laria (A_sott_5, A sott_13)
- Settore Molinaro Pietragrossa (A_sott_6, A_sott_14)
- Viadotto Gallarizzo (A_sott_7, A_sott_8)
- Svincolo Mormanno e galleria Mormanno (A_sott_9, A_sott_15v, A_sott_15)
- Mancuso (A_sott_11bis)

MA

- Donna di Marco - Campotenese (A_sott_17bis, A_sott_18, A_sott_19, A_sott_20, A_sott_21)

1.3. Attività di cantiere

Di seguito sono riportate le attività di cantiere in esecuzione durante le misure di monitoraggio:

RICETTORE	DATA DI ESECUZIONE	ATTIVITA DI CANTIERE
A_SOTT_1_bis	21/01/2016	Presso Galleria Jannello posizionamento pannelli in c.a. rivestiti in pietra e getto di completamento.
A_SOTT_4_bis	21/01/2016	Presso Galleria Jannello posizionamento pannelli in c.a. rivestiti in pietra e getto di completamento.
A_SOTT_5	21/01/2016	Presso Galleria Laria scavo fronte e arco rovescio; consolidamento e getto.
A_SOTT_6	21/01/2016	Lavorazioni idrauliche (armatura, carpenteria, getto cunette) e movimentazione terra (esecuzione rilevati e sistemazione aree).
A_SOTT_7	21/01/2016	Interventi di ripristino presso viadotto Gallarizzo e scavo e consolidamenti Galleria Colle Trodo.

MONITORAGGIO AMBIENTALE - FASE CORSO D'OPERA	TORAGGIO AMBIENTALE - FASE CORSO D'OPERA Bollettino periodico					
COMPONENTE ACQUE SOTTERRANEE	T00	MA	01	MOA	RE01	pag. 4/29

A_SOTT_8	21/01/2016	Interventi di ripristino presso viadotto Gallarizzo e scavo e consolidamenti Galleria Colle Trodo.
A_SOTT_9	21/01/2016	Opere idrauliche e Posa Pali P.I. e cavi elettrici.
A_SOTT_11_bis	21/01/2016	
A_SOTT_13	21/01/2016	Presso Galleria Laria scavo fronte e arco rovescio; consolidamento e getto.
A_SOTT_14	21/01/2016	-
A_SOTT_15	21/01/2016	Presso Galleria Moramanno casseratura e getto, murette, l'ivestimento tubazioni, scavo e prerivestimento e consolidamento.
A_SOTT_15v	21/01/2016	Presso Galleria Moramanno casseratura e getto, murette, l'ivestimento tubazioni, scavo e prerivestimento e consolidamento.
A_SOTT_17_bis	21/01/2016	Presso galleria Donna di Marco Scavo - Posa Centine – Spritz, Posa in opera pannelli portale, Posa in Opera armatura metallica.
A_SOTT_18	21/01/2016	Presso galleria Donna di Marco Scavo - Posa Centine – Spritz, Posa in opera pannelli portale, Posa in Opera armatura metallica.
A_SOTT_19	28/01/2016	Nei pressi della Galleria Campotenese esecuzione di opere idrauliche mediante posa tubazioni, pozzetti e cls, e realizzazione impianti mediante posa cavi elettrici di alimentazione (in canalina) e collegamenti
A_SOTT_20	21/01/2016	Opere idrauliche (Posa tubazioni, pozzetti e cls), Rivestimento Definitivo (mediante casseratura e getto), Realizzazione lastre prefabbricate di rivestiti in pietra.
A_SOTT_21	21/01/2016	Opere idrauliche (Posa tubazioni, pozzetti e cls), Rivestimento Definitivo (mediante casseratura e getto), Realizzazione lastre prefabbricate di rivestiti in pietra.

MA

2. RISULTATI OTTENUTI

2.1. Analisi chimiche

Di seguito sono riportati gli esuberi riscontrati ed i piezometri asciutti rinvenuti nell'ultima campagna di monitoraggio confrontando i dati con le precedenti misure di CO e AO:

	Esuberi ris	contrati AO		Esub	oeri riscontra	ti CO	
RICETTORE	I campagna	II campagna	I campagna	II campagna	III campagna	IV campagna	V campagna
A_SOTT_1bis (Associato a A_SOTT_1 in AO)	nessuno	piezometro danneggiato e interrotto a -19 m da p.c ASCIUTTO	ASCIUTTO	ASCIUTTO	ASCIUTTO	ASCIUTTO	ASCIUTTO
A_SOTT_2	ASCIUTTO	ASCIUTTO	-	ASCIUTTO	-	-	-
A_SOTT_4bis (Associato a A_SOTT_4 in AO)	nessuno	ASCIUTTO	ASCIUTTO	ASCIUTTO	ASCIUTTO	ASCIUTTO	ASCIUTTO
A_SOTT_5	nessuno	nessuno	nessuno	Ferro 407µg/l (limite 200 µg/l) Alluminio 375 mg/l (limite 200 mg/l)	nessuno	nessuno	nessuno
A_SOTT_6	nessuno	nessuno	nessuno	nessuno	nessuno	nessuno	SEPPELLITO/DI SPERSO
A_SOTT_7	Manganese 1.026 μg/l (limite 50 μg/l) Solfati 754,7mg/l (limite 250 μg/l)	Manganese 832µg/l (limite 50 µg/l)	Manganese 269 µg/l (limite normativo a 50 µg/l)	Manganese 225 µg/l (limite 50 µg/l) Solfati 433mg/l (limite 250 µg/l)	Manganese 374 µg/l (limite 50 µg/l)	Solfati 324,1mg/l (limite 250 µg/l)	nessuno
A_SOTT_8	Manganese 379 µg/l (limite 50 µg/l)	Manganese 2.043µg/l (limite 50 µg/l) Solfati 1.328 mg/l (limite 250 mg/l)	nessuno	Manganese 154μg/l (limite 50 μg/l)	nessuno	Solfati 446,8,1mg/l (limite 250 µg/l)	Solfati 367 mg/l (limite 250 µg/l)
A_SOTT_9	nessuno	nessuno	nessuno	nessuno	piezometro danneggiato e interrotto a -8,40 m da p.c ASCIUTTO	piezometro danneggiato e interrotto a -8,40 m da p.c ASCIUTTO	NON PIU' RAGGIUNGIBILE
A_SOTT_11bis (Associato a A_SOTT_11 in AO)	ASCIUTTO	ASCIUTTO	nessuno	nessuno	SEPPELLITO	SEPPELLITO	SEPPELLITO
A_SOTT_12	Manganese 369 μg/l (limite 50 μg/l)	nessuno	nessuno	nessuno	nessuno	SEPPELLITO/ DISPERSO	SEPPELLITO/DI SPERSO
A_SOTT_13	Manganese 81 µg/l (limite 50 µg/l)	Manganese 279 μg/l (limite 50 μg/l)	nessuno	nessuno	nessuno	nessuno	nessuno
A_SOTT_14	Manganese 92 μg/l (limite 50 μg/l)	nessuno	nessuno	nessuno	nessuno	nessuno	nessuno
A_SOTT_15	nessuno	nessuno	nessuno	nessuno	nessuno	nessuno	nessuno
A_SOTT15v (Associato a A_SOTT_10 in AO)	ASCIUTTO	ASCIUTTO	Solfati 279 mg/l (limite 250 mg/l)	ASCIUTTO	ASCIUTTO	ASCIUTTO	ASCIUTTO

A_SOTT_17bis (Associato a A_SOTT_17 in AO)	ASCIUTTO	ASCIUTTO	ASCIUTTO	ASCIUTTO	ASCIUTTO	ASCIUTTO	ASCIUTTO
A_SOTT_18	nessuno	nessuno	ASCIUTTO	nessuno	ASCIUTTO	ASCIUTTO	ASCIUTTO
A_SOTT_19	nessuno	nessuno	ASCIUTTO	ASCIUTTO	ASCIUTTO	ASCIUTTO	SEPPELLITO/DI SPERSO
A_SOTT_20	nessuno	nessuno	nessuno	nessuno	nessuno	piezometro danneggiato e interrotto a -5,20 m da p.c ASCIUTTO	piezometro danneggiato e interrotto a - 5,20 m da p.c
A_SOTT_21	nessuno	nessuno	nessuno	nessuno	nessuno	nessuno	nessuno

2.2. Monitoraggio livelli di falda

Galleria Jannello (A_sott_1bis, A_sott_2, A_sott_3, A_sott_4)

A_sott_1bis

Il piezometro, di profondità pari a 30 metri, è stato recentemente realizzato in sostituzione della precedente verticale piezometrica A_sott_1, danneggiata al termine della fase "ant operam". E' situato a poche decine di metri dall'imbocco nord della galleria Jannello, laddove le misure piezometriche eseguite nella fase di ante operam avevano identificato una circolazione idrica sotterranea all'interno dell'ammasso dolomitico, il cui livello piezometrico era distribuito a profondità di circa 15 metri dal piano di campagna del settore dell'imbocco nord della galleria Jannello (A_SOTT_01 - lettura di aprile 2014 e piezometro Se28-30).

Nella lettura di Giugno 2014 della fase di "ante operam", il piezometro A_sott_1 non aveva evidenziato falda fino a profondità di circa 19 m da p.c. (piezometro danneggiato e interrotto a tale profondità). Un simile abbassamento si è riscontrato anche nel piezometro Se28-30 (profondo 16 m), risultato anch'esso asciutto nella lettura di giugno 2014.

La prima lettura della fase di "corso d'opera" eseguita nel nuovo piezometro A_sott_1bis, eseguita nel mese di dicembre 2014, non ha evidenziato la presenza di falda nel sottosuolo. Anche la seconda lettura della fase di "corso d'opera", di marzo 2015, non ha evidenziato la presenza di acqua nel piezometro.

Analogamente, anche la terza lettura di maggio 2015 e la IV lettura di agosto 2015 non hanno evidenziato la presenza di falda nel sottosuolo (piezometro asciutto). Piezometro asciutto anche nella lettura di gennaio 2016

A_sott_4bis

Il piezometro è stato eseguito nell'ambito del monitoraggio della fase di corso d'opera in sostituzione del piezometro ambientale A_sott.4, al fine di investigare un maggiore spessore di ammasso calcareo-dolomitico ed accertare l'eventuale esistenza di un acquifero profondo al di sotto delle quote di scavo previste per la galleria Jannello. Per tale motivo è stato spinto fino a una profondità pari a -90 m da p.c.(circa 470 m s.l.m.), tale da raggiungere una quota di circa 21 m al di sotto di quella di fondo scavo del nuovo tunnel di progetto.

Il nuovo piezometro è stato realizzato nelle adiacenze del preesistente, sulla porzione sud-orientale della dorsale calcareo-dolomitica di Morcilongo-S.Angelo su sui si imposta la galleria Jannello. Il punto di monitoraggio è ubicato in asse alla galleria, ad una quota di 560 m (+66 m circa da quota livelletta galleria). E' interamente perforato nei calcari micritici, calcari dolomitici e nelle marne della Formazione di Serra Bonangelo e di Grisolia.

La prima lettura eseguita nel piezometro nel mese di dicembre 2014 non ha evidenziato presenza di acqua all'interno del piezometro (anche le precedenti letture nel piezometro Asott_04 di aprile e giugno 2014, di minore profondità, avevano evidenziato l'assenza di una circolazione idrica sotterranea di rilievo nell'ammasso sovrastante la galleria di progetto).

Anche nella II e III lettura della fase di "corso d'opera", di marzo e maggio 2015, il piezometro è risultato asciutto. Analogo risultato ha fornito la IV lettura relativa al periodo estivo (agosto 2015) e la V lettura di gennaio 2016.

I piezometri ubicati in corrispondenza del settore di imbocco sud della galleria Jannello, spinti fino a profondità di 12-20 m al di sotto della quota di fondo scavo , e quelli che interessano le successioni calcaree e calcareo-dolomitiche presenti sul fianco destro della valle del fiume Lao, non hanno evidenziato la presenza di falda fino a profondità dell'ordine dei 30 m dal p.c.

Galleria Laria (A_sott_5, A_sott 13)

A_sott_5

L'area su cui ricade il piezometro è situata circa 90 ad ovest della carreggiata sud della galleria di progetto Laria. Il piezometro, di profondità pari a 30 m, interessa le filladi e gli argilloscisti per l'intera profondità. Il fondo piezometro si colloca ad una quota di circa 500 m s.l.m., inferiore di circa 14-15 m rispetto alla quota di fondo scavo della galleria Laria.

Entrambe le letture eseguite nella fase di "ante operam" confermano la presenza di un livello piezometrico distribuito a profondità comprese tra 9 m (aprile 2014) e 11.40 m da p.c (giugno 2014)., ovvero a quote comprese tra 519 e 521 m s.l.m., superiori alla quota di progetto della galleria Laria.

Nella lettura di novembre 2014 ("I del corso d'opera") si evidenzia un ulteriore abbassamento del livello di falda, che da -11.40 m da p.c. si approfondisce fino a -13.35 m da p.c.

Nella II lettura del "corso d"opera" (febbraio 2015) si assiste ad una risalita del livello di falda fino a profondità di -9.16 m da p.c., livello analogo a quello di aprile 2014. La III lettura del "corso d"opera" (maggio 2015) registra un nuovo abbassamento che riporta il livello piezometro a quello dello scorso aprile 2014 (-11.50 m da p.c.). Tale livello è confermato anche nella IV lettura riferita all'estate 2015 (agosto 2015 – falda a -11.78 m da p.c.) nella V lettura di gennaio 2016 (falda a -11 m da p.c.)

Le altezze di falda indicate dalle letture confermano l'interferenza tra lo scavo della galleria e la circolazione idrica sotterranea sopra indicata.

A_Sott_13

Il piezometro è situato circa 15 m ad est della carreggiata nord della galleria di progetto Laria.

Il piezometro, di profondità pari a 40 m, interessa nella parte superiore 10-15 metri di depositi fluvio-lacustri, rappresentati da sabbie da medie a fini con limo ed inclusi eterometrici, passanti inferiormente a limi argillosi debolmente sabbiosi. A maggiore profondità il substrato è costituito dalle filladi e gli argilloscisti dell'Unità Diamante Terranova.

Il fondo piezometro si colloca ad una quota di circa 495 m s.l.m., inferiore di circa 14-15 m rispetto alla quota di fondo scavo della galleria Laria (510 m s.l.m.).

Le due letture eseguite ad aprile e giugno 2014 (fase di "ante operam") indicano la presenza di un livello piezometrico rispettivamente distribuito a profondità di -3 e -9.43 m circa da piano campagna, evidenziando un abbassamento di circa -6 m nel periodo considerato.

La prima lettura della fase di "corso d'opera", di novembre 2014, conferma sostanzialmente il livello piezometrico di giugno 2014, a meno di un ulteriore e modesto abbassamento fino a circa -10 m da p.c.

I valori minimi di soggiacenza della falda si registrano in inverno, tra gennaio e aprile, con livelli di falda molto superficiali e distribuiti tra -1.50 m e -3.00 m da p.c.. In particolare, nella II lettura del "corso d'opera" (febbraio 2015) il livello di falda risale di circa 9 m, stabilizzandosi a -1.46 m da piano campagna. La III lettura di maggio 2015 il livello di falda si abbassa nuovamente collocandosi a circa -8.85 m da p.c., in accordo con il trend di generale abbassamento osservato nella primavera 2014.

Nel periodo estivo, il livello della falda si abbassa a circa -10 m da p.c. (IV lettura fase Corso d'opera – agosto 2015), analogo a quello di novembre 2014. Nel gennaio 2016 la falda risale di 8 m, collocandosi a circa -2.40 m da p.c., in sostanziale accordo con le misure di febbraio 2015 e aprile 2014.

La piezometrica si colloca rispettivamente da 13 m e 5-6 m al di sopra della calotta della galleria di progetto.

Settore Molinaro – Pietragrossa (A_sott_6 – A sott 14)

A_sott_6

L'area su cui ricade il piezometro è situata circa 130 ad ovest della carreggiata sud.

L'assetto idrogeologico generale del settore in cui ricade il piezometro, con riferimento al tratto compreso tra l'imbocco lato RC della galleria Laria e l'imbocco lato SA della galleria Colle Trodo, presenta una superficie piezometrica misurata entro gli argilloscisti (DT ed SL) ad andamento continuo (piezometri Se29_7, Se29_9, Se29_11, Se29_12, Se29_14, Se29_22 ed Se29_24), talvolta accoppiata ad una superficie rilevata solamente nei sovrastanti depositi detritici FLM (vedi piezometro Se29_9). L'andamento della superficie misurata negli argilloscisti segue l'andamento della superficie topografica esprimendo una soggiacenza variabile tra 3-4 m a circa 15 m, in quanto il settore è privo di significativi corsi d'acqua in grado di alimentare o drenare la falda

Il piezometro, di profondità pari a 30 m, interessa verosimilmente depositi di copertura sabbioso-limosi e sabbioso-limoso-ghiaiosi sovrastanti il substrato costituito da filladi e argilloscisti.

Le letture finora eseguite evidenziano un livello piezometrico molto superficiale e distribuito a profondità comprese tra -1.5 m (aprile 2014) e -4.5 m circa (giugno 2014) da p.c., verosimilmente contenuto all'interno dei depositi detritici di copertura (monitoraggio "ante operam").

La lettura di novembre 2014 ("I del corso d'opera") evidenzia un abbassamento del livello di falda fino a profondità di circa -6.40 m da p.c. (-5 metri circa rispetto ai livelli di aprile).

Nella II lettura della fase "corso d'opera" (febbraio 2015) si evidenzia una nuova risalita della falda fino a profondità di circa -2.27 m da p.c., grosso modo analogo a quello di aprile 2014.

Nella successiva misura di maggio 2015 (III della fase Corso d'opera), la posizione della falda subisce un nuovo abbassamento fino a -6 m circa da p.c.. Un ulteriore modesto abbassamento viene fornito dalla lettura di agosto 2015 (IV della fase di corso d'opera), laddove la superficie piezometrica si posiziona a -7.11 m da p.c..

In data gennaio 2016 il piezometro è stato distrutto in sede di costruzione delle opere regimazione idraulica al piede del rilevato.

A_Sott_14

Il piezometro è situato circa 30-35 metri a valle dell'autostrada A3, all'altezza del Viadotto Mezzana, sul fianco sinistro di una blanda incisione.

L'intero settore del viadotto Mezzana e delle aree adiacenti è contraddistinto dalla presenza di una falda misurata entro gli argilloscisti che segue generalmente l'andamento della superficie topografica, caratterizzata da modeste soggiacenze (i piezometri di Casagrande installati in sede di progettazione esecutiva a profondità di circa 25-30 m da p.c. nelle argilliti evidenziano risalite del livello di falda fino a profondità di 5-6 m da p.c.).

Le letture eseguite ad aprile e giugno 2014 (fase di "ante operam") confermano la presenza di una falda negli argilloscisti con superficie piezometrica distribuita a profondità di 6-7 m da p.c.

Le 5 letture finora effettuate nella fase di corso d'opera tra novembre 2014 e gennaio 2016 mostrano un livello di falda sostanzialmente stabile, con escursioni massime di circa 2.80 m. La minima soggiacenza si è registrata nel marzo 2015 (falda a -5.80 m da p.c.); la massima profondità della falda risale a novembre 2014 (-8.63 m da p.c.).

<u>Viadotto Gallarizzo (A_sott_7, A_sott_8)</u>

A_sott_7

Il piezometro è ubicato in corrispondenza della grande frana attiva che interessa l'attuale viadotto Gallarizzo e si colloca circa 50 metri a valle del tracciato dell'autostrada A3.

Nell'area su cui ricade il piezometro la superficie della falda misurata all'interno del corpo di frana è pressoché continua e segue l'andamento della superficie topografica, evidenziando una soggiacenza variabile tra 0.5-1 m e 4-6 m.

Il settore occupato dalla Frana Gallarizzo è posto a contatto per faglia con il rilievo carbonatico del Colle Trodo, rilievo che costituisce probabilmente un serbatoio in grado di alimentare la falda presente nel settore della frana. Tale ipotesi è suggerita dalla presenza della sorgente Fiumicello (sorgente per limite di permeabilità definito), posta tra gli argilloscisti SL della Frana Gallarizzo e il detrito di falda (Df) presente a ridosso della scarpata di faglia che borda verso Nord il rilievo. Detta sorgente è infatti caratterizzata da un'elevata portata media pari a 100 l/s molto superiore rispetto a quanto osservato nella restante parte argillitica del sublotto DG29.

Le due letture eseguite sul piezometro ambientale nella fase di "ante operam" ad aprile e giugno 2014 hanno evidenziato l'esistenza di una falda superficiale caratterizzata da valori di soggiacenza dell'ordine dei 2.5-3.5 m, in accordo con i dati esistenti e relativi a verticali piezometriche limitrofe.

La lettura di novembre 2014 (I corso d'opera) evidenzia un ulteriore anche se modesto abbassamento del livello di falda fino a profondità di circa -4.26 m da p.c. (-1.60 metri circa rispetto ai livelli di aprile 2014).

La II lettura del corso d'opera (marzo 2015) indica un livello di falda a circa -2.53 m da p.c., analogo a quello di aprile 2014 misurato nella fase di ante operam (-2.56 m da p.c.). La III lettura di maggio evidenzia un modesto abbassamento della falda (-3.23 m da p.c.), che si conferma anche nella successiva IV lettura di agosto 2015 (-4.30 m da p.c.) e V lettura di gennaio 2016 (-3.11 m da p.c.).

A_sott_8

Il piezometro è ubicato sul fianco sinistro della grande frana attiva che interessa principalmente l'attuale viadotto Gallarizzo e si colloca circa 50 metri a monte dell'autostrada A3, nel tratto che precede l'imbocco nord della galleria Colle Trodo.

Il piezometro ambientale si colloca sul versante subito a monte della carreggiata nord della A3, a circa 45 m dalle opere di sostegno previste nel tratto in scavo che precede il settore di allargamento del nuovo imbocco della galleria. La quota di boccaforo è di circa 641 m s.l.m., superiore di circa 10 m rispetto al livello stradale.

Le due letture eseguite sul piezometro ambientale nella fase di "ante operam" ad aprile e giugno 2014 hanno evidenziato l'esistenza di una falda superficiale caratterizzata da valori di soggiacenza dell'ordine dei 3-4 m, in accordo con i dati esistenti e raccolti in sede di monitoraggio geotecnico.

La lettura di novembre 2014 (I lettura corso d'opera) evidenzia una risalita, per quanto modesta e pari circa 1 metro, del livello di falda, che si attesta a profondità di -3.48 m da p.c., riallineandosi grosso modo con i livelli di aprile 2014.

La II lettura del corso d'opera (marzo 2015) indica un livello di falda a circa -1.72 m, superiore a quello misurato nell'aprile 2014 nella fase di ante operam (-2.82 m da p.c.). La III lettura di maggio 2015 indica un nuovo modesto abbassamento della falda, che si posiziona a circa -2.90 m da p.c., ritornando ai livelli misurati lo scorso aprile 2014. La lettura di agosto 2015 (IV lettura Corso d'opera) indica la falda a -4.20 m da p.c., livello analogo a quello misurato nel giugno 2014. Livello confermato anche nella lettura di gennaio 2016 (-4 m da p.c.).

Si conferma la presumibile interferenza tra la falda e le opere di sostegno previste lungo la carreggiata nord nei pressi dell'imbocco della galleria Colle Trodo.

Svincolo Mormanno e galleria Mormanno (A sott 9, A sott 15, A sott 15v)

A sott 9

Il piezometro è ubicato circa 55-60 m a SSW del settore di imbocco sud della carreggiata sud della galleria Colle Trodo, di cui si prevede l'allargamento di entrambe le carreggiate. L'area monitorata ricade sul basso versante sud-orientale di Colle Trodo, su cui è prevista la realizzazione in trincea della rampa di uscita della carreggiata sud del nuovo svincolo di Mormanno.

Nel settore dello svincolo di Mormanno, con riferimento al tratto compreso tra la galleria Colle Trodo e quella di Mormanno, i piezometri eseguiti in sede di progetto esecutivo (Se29_27, Se29_29, Se29_30 ed Se29_31) hanno permesso di misurare una superficie piezometrica entro i Flysch argillitici (Fy) e nei terreni detritici di copertura che caratterizzano il settore dello svincolo di Mormanno. La soggiacenza della falda, è compresa tra un minimo di 3-4 m, nella zona prospiciente l'imbocco, e un massimo di circa 7-8 m.

Nell'area su cui ricade il piezometro, ubicato ad una quota di 673 m s.l.m., la superficie della falda relativa alla lettura di aprile 2014 si posiziona a circa -9 m di profondità dal piano campagna e sembra raccordarsi a quella misurata nell'adiacente settore dello svincolo. La quota della falda appare superiore di 5-6 metri a quella di fondo scavo della galleria nella zona di imbocco sud.

Le successive letture eseguite nella fase di "ante operam" nel periodo di maggio-luglio 2014 in sede di monitoraggio ambientale evidenziano un progressivo decremento del livello della falda fino a profondità di -14.08 m da p.c., mostrando un abbassamento complessivo di circa 4-5 metri della superficie piezometrica.

La lettura di novembre 2014 ("corso d'opera"), eseguita in concomitanza all'esecuzione dei lavori di sbancamento e di realizzazione delle opere di sostegno della rampa di uscita della carreggiata sud, denota un ulteriore e modesto abbassamento della piezometrica fino a profondità di -14.93 m da p.c..

La II lettura del corso d'opera (marzo 2015) mostra una nuova risalita del livello di falda fino a circa -8.20 m, superiore a quello di aprile 2014 misurato nella fase di ante operam (-9.87 m da p.c.). Nella III e IV lettura della fase di Corso d'opera (maggio e agosto 2015) il piezometro risulta asciutto fino alla profondità di -8.40 m, laddove si è riscontrata presenza di fango all'interno del tubo.

Alla data di gennaio 2016 il piezometro non è piu raggiungibile.

A_Sott_15v

Il piezometro, recentemente eseguito nell'ambito della fase di monitoraggio in "corso d'opera" ad integrazione della rete di esistente, si colloca sul versante orientale della dorsale dolomitica Madonna della Catena - Carpineta su cui si imposta la nuova galleria Colle di Mormanno. Il punto di monitoraggio è ubicato a circa 100 m a valle dall'asse della carreggiata nord, con quota di boccaforo a circa 676 m s.l.m., inferiore di circa 10-12 m rispetto alla quota di fondo scavo del tunnel di progetto.

Il piezometro A_sott_15v è interamente perforato in dolomie molto fratturate. La quota di fondo piezometro (circa 631 m s.l.m.) appare inferiore di oltre 50 m rispetto alla quota arco-rovescio della galleria Colle di Mormanno.

La prima lettura, eseguita nella fase di corso d'opera nel dicembre 2014, non ha evidenziato la presenza di acqua all'interno del piezometro. Il dato appare in accordo con l'assenza di falda riscontrata nelle letture eseguite in sede di monitoraggio geotecnico tra gennaio e maggio 2014 nel piezometro ambientale Asott_10, ubicato sullo stesso versante, circa 380 m più a sud.

Tutte le letture finora effettuate nella fase di corso d'opera tra marzo 2015 e gennaio 2016 confermano l'assenza di acqua all'interno del piezometro.

A_Sott_15

Il piezometro si colloca in corrispondenza del fondo di un'incisione avente direzione all'incirca N-S che si sviluppa sui rilievi calcareo-dolomitici Madonna della Catena, su sui si imposta la nuova galleria Colle di Mormanno.

Il punto di monitoraggio è ubicato a circa 350 m ad ovest dei due tunnel autostradali di progetto. La quota di boccaforo è a circa 735 m s.l.m., superiore di 55-60 metri rispetto alla quota livelletta delle gallerie. Il piezometro A_sott_15 è interamente perforato in dolomie molto fratturate. La quota di fondo piezometro (circa 665 m s.l.m.) appare inferiore di circa 25 m rispetto alla quota della livelletta della galleria Colle di Mormanno.

La prima lettura effettuata ad aprile 2014 sembra evidenziare la presenza di un livello di falda distribuito a profondità di circa -34 m da p.c., che potrebbe rappresentare il tetto dell'acquifero presente nell'ammasso calcareo dolomitico fratturato, ovvero, meno verosimilmente, costituire un accumulo idrico all'interno del foro in parte legato alle infiltrazioni d'acqua provenienti dalla vicina incisione, in parte dovuto alle acque residue utilizzate in sede di perforazione.

Nella seconda lettura, del giugno 2014, si registra un abbassamento di circa 6 metri del livello idrico all'interno del piezometro.

Nella lettura di novembre 2014 (I fase del "Corso d'opera") il piezometro è risultato asciutto, con un abbassamento di oltre 30 metri rispetto alla precedente lettura.

La II lettura del corso d'opera (marzo 2015) indica nuovamente un livello di falda all'interno del foro, che si colloca alla medesima profondità assunta nell'aprile 2014, ovvero a circa -34 m da p.c..

Le successive letture eseguite a maggio e agosto 2015, nonché nel gennaio 2016, sembrano confermare la presenza di una falda, il cui livello oscilla tra -32 e -40 m da p.c., nel periodo inverno-primavera, e -58 m da p.c., in estate.

Mancuso

A_Sott_11bis

Il piezometro è di recente esecuzione in sostituzione della verticale A_sott.11 ed è posizionato al piede della dorsale carbonatica di Monte La Grada, in un settore di transizione tra la fascia pedemontana che raccorda il ripido versante calcareo/calcareo dolomitico al territorio collinare che caratterizza l'esteso fondovalle del Fosso Battendiero.

Le due letture effettuate nel periodo aprile – giugno 2014 nel piezometro ambientale A_sott_11, ubicato 35 m circa più a monte della nuova verticale (in asse con la carreggiata sud), hanno evidenziato l'assenza di falda fino a profondità di -20 da p.c.

Nell'area del viadotto, le misurazioni finora condotte in corrispondenza dei piezometri in sede di progettazione esecutiva hanno anch'esse evidenziato l'assenza di falda nell'ambito delle profondità investigate, pari a circa 30 metri (piezometri Se30_31 e Se30_32).

La lettura condotta a dicembre 2014 sul nuovo piezometro A_sott_11bis, ubicato 35 m circa più a valle, ad una quota inferiore di 2 metri rispetto al primo piezometro (I lettura della fase Corso d'opera), ha invece mostrato la presenza di un possibile livello di falda a profondità di circa -11.45 m da p.c., confermata nella successiva lettura prevista nell'ambito della fase di corso d'opera.

Anche nella II lettura del corso d'opera (febbraio 2015) è presente infatti un livello di falda a profondità di circa -9.80 m da p.c.

Le successive letture di maggio e agosto 2015, nonché quella di gennaio 2016, non sono state effettuate a causa del seppellimento del piezometro.

Donna di Marco – Campotenese (A sott 12, A sott 17, A sott 18, A sott 19, A sott 20, A sott 21)

A_Sott_17bis

Il piezometro, installato nella fase di "corso d'opera" in sostituzione della verticale A_sott.17, si colloca in adiacenza all'imbocco lato Salerno, 20-25 m a N della carreggiata nord della galleria Donna di Marco, in corrispondenza del fondo del Vallone della Castagneta, pochi metri al di sopra della quota galleria. In

corrispondenza della gallerie Donna di Marco non è stata individuata una superficie piezometrica alle quote interessate dagli scavi della galleria. Il piezometro Se 31_8 (corrispondente al piezometro ambientale A_sott_17) è risultato asciutto nelle 3 letture eseguite in sede di monitoraggio geotecnico di PE e relative ai mesi di gennaio, febbraio e giugno 2014.

Le due letture eseguite nel piezometro ambientale A_sott.17 ad aprile e giugno 2014 confermano l'assenza della falda.

La lettura effettuata sul nuovo piezometro ambientale A_sott.17bis nel dicembre 2014 (I lettura Corso d'opera), approfondito fino a profondità di circa -45 m da p.c. (circa 27 m al di sotto della quota di arco rovescio della galleria), non ha evidenziato la presenza di falda nell'ammasso roccioso calcareo-dolomitico.

Anche nelle successive letture del corso d'opera di marzo, maggio, agosto 2015 e gennaio 2016 il piezometro è risultato asciutto.

I dati ottenuti in sede di monitoraggio di PE e relativi al piezometro Se31_11, ubicato in corrispondenza dell'imbocco Reggio Calabria della galleria Donna di Marco, hanno invece individuato un possibile livello piezometrico ad una quota di circa 909 m s.l.m., inferiore di circa 15-16 metri rispetto alla quota di fondo scavo.

A_Sott_19

Il piezometro è ubicato tra l'imbocco nord della galleria Campotenese e l'imbocco sud della galleria Donna di Marco, ad una quota all'incirca corrispondente a quella di progetto (circa 928 m s.l.m.).

Con riferimento ai caratteri idrogeologici generali, si dispone dei dati di monitoraggio della progettazione esecutiva (dicembre 2013 – maggio 2014) relativi ai 3 piezometri ubicati in asse alla galleria Campotenese di progetto. La lettura di gennaio 2014 nel piezometro ubicato in corrispondenza dell'imbocco lato Sa della galleria Campotenese (Se31_15) evidenzia un livello di falda ad una quota di 929 m s.l.m., quasi coincidente con la quota di fondo scavo della galleria. Per il livello misurato si è ipotizzata la presenza di una falda impostata nel substrato roccioso di natura dolomitica (D). Le altre 4 letture, precedenti e successive al gennaio 2014, evidenziano una marcata oscillazione del livello di falda, che risulta distribuito a quote inferiori di circa 10-15 m rispetto a quella sopra indicata. Nell'ultima lettura, di fine giugno 2014, il piezometro è risultato asciutto, evidenziando un abbassamento massimo di oltre 15 m rispetto alla lettura di gennaio 2014.

La superficie individuata nel piezometro Se31_15 non è stata ulteriormente estesa lateralmente nell'ammasso dolomitico interessato dalla galleria in quanto l'assenza di dati non ha consentito di eseguire ulteriori interpretazioni.

La misura fornita dal piezometro A_sott_18, ubicato 90 m a valle della zona di imbocco, che fornisce un livello di falda a profondità di -16.7/-18.5 m circa da p.c., corrispondente ad una quota di 889.79 m s.l.m., sembrerebbe confermare la presenza di una circolazione idrica sotterranea che, dai rilievi calcareo-dolomitici entro cui si sviluppa la galleria Campotenese, è diretta verso il fondovalle del fiume Battendiero.

La lettura del piezometro A_sott_19 fornisce una quota iniziale del livello di falda di circa 913 m s.l.m. (-15 m da p.c. – lettura di aprile 2014). Tale misura si correla a quelle indicate dalle letture di febbraio e maggio 2014 nel vicino piezometro Se31_15 (sup. piezometrica tra 917 e 913 m s.l.m.).

Nella lettura di giugno 2014 il piezometro A_sott_19 è risultato asciutto. Ciò indica un abbassamento del livello di falda di oltre 15 m, in accordo con quello osservato nei pressi dell'imbocco nord della galleria Campotenese (piezometro Se31_15).

Anche le letture eseguite nella fase di corso d'opera tra novembre 2014 e agosto 2015 sembrano indicare l'assenza di falda nel sottosuolo fino a profondità di -30 m. La lettura di gennaio 2016 non è stata eseguita a causa del seppellimento del piezometro.

Con riferimento alla circolazione idrica sotterranea relativa al tratto sud della galleria naturale Campotenese, le letture eseguite nel piezometro Se31_16 tra inizio dicembre 2013 e fine giugno 2014 (piezometro ubicato nel tratto sud della galleria e approfondito fino a circa -10 m rispetto alla quota di fondo scavo) non hanno evidenziato la presenza di falda all'interno dell'ammasso roccioso alla quota interessata dallo scavo della galleria.

A_Sott_18

Il piezometro (di profondità pari a circa 20 metri) è ubicato circa 160-170 m a valle dell'imbocco lato Salerno della carreggiata sud della galleria Campotenese di progetto, ad una quota inferiore di circa 23 metri rispetto alla quota dell'attuale tunnel stradale.

Le misure fornite dal piezometro A_sott_18 nelle letture eseguite nella fase di "ante operam" (aprile e giugno 2014) hanno fornito un livello di falda a profondità di -16.7/-18.5 m circa da p.c., corrispondente ad una quota di 889-891 m s.l.m..

Nella prima lettura della fase di "corso d'opera", eseguita a novembre 2014, il piezometro è risultato invece asciutto.

La II lettura del corso d'opera (marzo 2015) indica nuovamente un livello di falda all'interno del foro, che si colloca alla medesima profondità assunta nel giugno 2014, ovvero a circa -18.28 m da p.c. (888 m s.l.m.). Le successive letture di maggio e agosto 2015, nonché la misura di gennaio 2016, sembrano evidenziare assenza di acqua nel piezometro (acqua di fondo piezometro o piezometro asciutto)

Tenendo conto dei dati di monitoraggio geotecnico forniti dal piezometro Se31_15 (ubicato subito a monte della zona di imbocco della galleria Campotenese), che hanno evidenziato un livello di falda all'interno del substrato dolomitico ad una quota di 929 m s.l.m (lettura di gennaio 2014), è verosimile ipotizzare la presenza di una circolazione idrica sotterranea che, dai rilievi calcareo-dolomitici entro cui si sviluppa la galleria Campotenese, è diretta verso il fondovalle del fiume Battendiero (anche questo piezometro è risultato asciutto nella lettura di giugno 2014). I livelli di falda misurati nel corso del monitoraggio non sembrano interessare la quota di scavo della galleria in corrispondenza del settore di imbocco lato Sa della galleria.

A_Sott_20

Il piezometro (profondità di circa 25 m) è ubicato circa 55-60 m a monte del tracciato di progetto, alcune decine di metri a ESE dell'imbocco lato RC della galleria Campotenese. Il boccaforo è ubicato sul fondo di una incisione, ad una quota di circa 952 m s.l.m.

Con riferimento alla circolazione idrica sotterranea dell'area in oggetto, si dispone dei dati di monitoraggio della progettazione esecutiva, (dicembre 2013 – maggio 2014) relativi ai piezometri ubicati in asse alla galleria Campotenese, in corrispondenza del tratto sud, nel settore di imbocco e nell'area a SE di quest'ultimo.

Le letture finora eseguite nel piezometro Se31_16 tra inizio dicembre 2013 e giugno 2014 (piezometro ubicato nel tratto sud della galleria e approfondito fino a circa -10 m rispetto alla quota di fondo scavo) non hanno evidenziato la presenza di falda all'interno dell'ammasso roccioso alla quota interessata dallo scavo della galleria.

Con riferimento al settore dove ricade il piezometro ambientale A_sott_20, i piezometri ubicati nell'area di imbocco e in corrispondenza del tratto in artificiale della galleria Campotenese, che si impostano nei depositi fluvio-lacustri, sembrano evidenziare la presenza di una falda superficiale caratterizzata da modeste soggiacenze rispetto al piano campagna, dell'ordine di 3-4 metri.

Le misure effettuate nel piezometro Se31_18 hanno infatti evidenziato un livello piezometrico a profondità di circa -2.7-3.5 m da p.c.. nel periodo compreso tra gennaio 2014 e maggio 2014. Nella lettura di giugno il piezometro è invece risultato asciutto, il che lascerebbe ipotizzare un abbassamento della falda di oltre 20 m.

Nel piezometro A_sott_20, la cui quota di boccaforo è leggermente inferiore (952.72 m s.l.m.), entrambe le letture eseguite ad aprile e giugno 2014 nella fase di "ante operam" sembrano invece confermare la presenza di una falda superficiale distribuita a profondità comprese tra 2.7 m (aprile 2014) e -3.9 m circa (giugno 2014).

La prima lettura della fase di "corso d'opera" (novembre 2014) denota un ulteriore abbassamento della falda fino a profondità di -5 m circa da p.c.

Nella II lettura del corso d'opera (marzo 2015) si assiste ad una significativa risalita del livello di falda all'interno del piezometro, che si colloca quasi a piano campagna, ovvero a circa -0.90 m da p.c.. La III lettura di maggio 2015 conferma la presenza di una falda a profondità di circa -2 m da p.c.

Nella IV e V lettura della fase Corso d'opera (agosto 2015 e gennaio 2016) il piezometro risulta interrotto a profondità di -5.00 m a causa della presenza di terreno all'interno del tubo. L'ultima lettura evidenzia acqua nel tubo a profondità di circa -1.50 m.

Nel piezometro Se 31_19, ubicato grosso modo alle medesime quote (949 m s.l.m.), anche se spostato più a valle, alla progr. Km 3+240 (carr. Nord), la soggiacenza media misurata della falda è di circa 7-8 metri nelle letture di fine giugno 2014.

In considerazione delle modeste soggiacenze osservate, si confermano interferenze con la falda in fase di scavo delle trincee di approccio all'imbocco sud della galleria Campotenese.

A_Sott_21

Il piezometro è ubicato circa 320 m a valle dell'imbocco lato RC (sud) della galleria Campotenese. Il boccaforo è ubicato quasi in corrispondenza del settore di fondovalle del fiume Battendiero, ad una quota di circa sul fondo di una incisione, ad una quota di circa 923 m s.l.m.

Con riferimento alla circolazione idrica sotterranea, si dispone dei dati di monitoraggio della progettazione esecutiva, (dicembre 2013 – maggio 2014) relativi ai piezometri ubicati in asse alla galleria Campotenese, in corrispondenza del tratto sud, nel settore di imbocco e nell'area a SE di quest'ultimo. Le letture finora eseguite nel piezometro Se31_16 tra inizio dicembre 2013 e giugno 2014 (piezometro ubicato nel tratto sud della galleria e approfondito fino a circa -10 m rispetto alla quota di fondo scavo) non hanno evidenziato la presenza di falda all'interno dell'ammasso roccioso alla quota interessata dallo scavo della galleria.

I piezometri ubicati nell'area di imbocco sud, in corrispondenza del tratto in artificiale della galleria e nell'adiacente tratto in trincea, sembrano evidenziare la presenza di una falda superficiale all'interno dei depositi fluvio-lacustri, caratterizzata da modeste soggiacenze rispetto al piano campagna, comprese tra 3-5 metri (piezometro Se31_18 a A_sott 20) e 7-8 m (piezometro Se31_19).

I dati ottenuti dal piezometro A_sott_21, che hanno fornito un livello di falda a circa -8/-9 m dal p.c. nella fase di monitoraggio "ante operam", sembrano confermare la presenza di una circolazione idrica sotterranea piuttosto superficiale che interessa il versante compreso tra il settore di imbocco della galleria di progetto e il

MA	MONITORAGGIO AMBIENTALE - FASE CORSO D'OPERA			Bollettino periodico						
IVIA	COMPONENTE ACQUE SOTTERRANEE	T00	MA	01	MOA	RE01	pag. 19/29			

fondovalle del Battendiero, verosimilmente contenuta nei depositi fluvio lacustri di copertura del bedrock carbonatico.

La I lettura eseguita a dicembre 2014 nella fase di "corso d'opera" conferma l'esistenza di una falda, il cui livello tuttavia subisce un abbassamento rispetto al dato di giugno stabilizzandosi a profondità di circa -15.40 m da p.c.

Le letture effettuate tra febbraio 2015 e agosto 2015 mostrano una risalita della falda fino a profondità minime di -10.23 m da p.c. (maggio 2015). Il dato di gennaio 2016 mostra un sensibile abbassamento della falda fino a circa -16.60 m da p.c..

MA	MONITORAGGIO AMBIENTALE - FASE CORSO D'OPERA	Bolle	ettino	perio	dico		
IVIA	COMPONENTE ACQUE SOTTERRANEE	T00	MA	01	MOA	RE01	pag. 20/29

3. CONCLUSIONI

Nel trimestre in oggetto, le attività di monitoraggio ambientale relativamente il CO e la matrice "acque sotterranee" eseguite sui piezometri ambientali hanno riscontrato:

- Il piezometro A_SOTT_5 (sopra la galleria Laria imb Sud): nel rilievo di Gennaio 2016 i valori degli analiti oggetto delle analisi di laboratorio sono tutti al di sotto dei limiti normativi. Si segnala un leggero rialzo del Ferro e dell'Alluminio rispetto alle precedenti misure di Maggio e di Agosto 2015.
- II piezometro A_SOTT_6 (nei pressi dell'area di Pietragrossa in c.da Molinaro): a causa della lavorazioni di realizzazione cunette, il piezometro risultava dispero.
- II piezometro A_SOTT_7 (nei pressi dell'area Gallarizzo/Colletrodo): nell'ultima campagna di monitoraggio di Gennaio 2016 i valori riscontrati sono tutti entro i limiti normativi. Il Manganese rilevato in AO e successivamente per le prime tre campagna di CO risultava ben oltre il limite normativo, attualmente risulta avere concentrazione estremamente basse; il Rame da sempre misura in concentrazioni <1 μ g/l, ad Agosto dello scorso anno è risultato 6,2 μ g/l mentre attualmente il suo valore è di nuovo <1 μ g/l; Calcio, Nitrati e Cloruri mantengono concentrazioni non elevate; i Solfati che nella precedente campagna di monitoraggio eseguita ad Agosto 2015 aveva riscontrato valore oltre il limite normativo (così come a Marzo 2015 e in AO), attualmente e tornato a valori ben al di sotto di quanto imposta dalla normativa vigente.
- II piezometro A_SOTT_08 (nei pressi dell'area Gallarizzo/Colletrodo): dalle analisi eseguite sui campioni relativi a mese di Gennaio 2016 risulta che i Solfati registrano ancora un superamento del limite normativo così come nella precedente misura di Agosto 2015 questa volta rilevando concentrazioni inferiori che si attestano a 367 mg/l (limite normativo imposto a 250 mg/l); tale analita risultava essere al limite già a Marzo 2015, mentre l'esubero di maggiore entità è stato riscontrato in AO (Giugno 2014). Il trend del II Manganese, che in AO e a Marzo 2015 aveva riscontrato un superamento del limite normativo, risulta essere ancora in calo con valori di concentrazioni <1 μg/l. TOC in netto aumento rispetto le precedenti misure e netto aumento anche della conducibilità elettrica.
- Il piezometro A_SOTT_09 (presso svincolo autostradale di Mormanno): non risulta più raggiungibile in quanto sono terminate le lavorazioni di realizzazione della nuova paratia del nuovo svincolo autostradale di Mormanno ed il piezometro risulta essere nell'are superiore alla porzione di versante riprofilato e dunque non più sicuro da raggiungere.

MA	MONITORAGGIO AMBIENTALE - FASE CORSO D'OPERA	Bolle	ettino	perio	dico		
IVIA	COMPONENTE ACQUE SOTTERRANEE	T00	MA	01	MOA	RE01	pag. 21/29

- I piezometri A_SOTT_19 (in adiacenza alla carreggiata nord dell'attuale A3, tra l'imbocco sud dell'esistente galleria naturale Donna di Marco e l'imb nord della nuovo galleria naturale Campotenese): nel rilievo di Gennaio 2016, a causa delle lavorazioni che hanno portato alla risagomatura dell'intero versante a seguito della realizzazione dei dreni per la raccolta delle acque, il piezometro qui presente non era più reperibile.
- Le analisi di laboratorio eseguite sui campioni di acqua prelevata dai restanti piezometri (A_SOTT_6, A_SOTT_13, A_SOTT_14, A_SOTT_15, A_SOTT_21) risultano entro i limiti normativi.
- I piezometri A_SOTT_1bis, A_SOTT_4bis, A_SOTT_15v, A_SOTT_17bis, A_SOTT_18 sono risultati anche in questo trimestre asciutti.
- Il piezometri A_SOTT_11bis risulta ancora seppellito o comunque disperso a causa dello stoccaggio di materiale per la realizzazione del viadotto. Mancuso

Per quanto riguarda gli <u>aspetti idrogeologici</u>, vengono brevemente sintetizzate le principali considerazioni ricavate dall'esame complessivo dei dati finora disponibili

Galleria Jannello

Nel settore di imbocco nord della galleria Jannello i dati piezometrici relativi alla circolazione idrica sotterranea presente all'interno dell'ammasso calcareo dolomitico evidenziano un progressivo abbassamento del livello piezometrico tra la primavera 2014 (livelli di falda a -15 m da p.c.), il mese di giugno 2014 (falda a profondità superiori a 19-20 m da p.c.) e il mese di dicembre 2014, in cui non si è evidenziata presenza di falda nel sottosuolo fino a profondità di -30 metri. Anche il monitoraggio nella fase di corso d'opera eseguito tra dicembre 2014 e agosto 2015 non ha evidenziato la presenza di falda nel sottosuolo.

Per quanto riguarda il tratto in galleria, nella fase di monitoraggio in "corso d'opera" è stato eseguito un nuovo piezometro in asse galleria nel tratto centrale del tunnel di progetto (A_sott.4bis), approfondito fino a profondità di 90 m da p.a. al fine di spingere l'indagine fino a circa 20 metri al di sotto della quota di fondo scavo della galleria.

Tutte le letture finora effettuate nella fase di "corso d'opera" tra dicembre 2014 e gennaio 2016 non hanno evidenziato presenza di acqua all'interno del piezometro.

Con riferimento ai dati di monitoraggio geotecnico, un'altro piezometro profondo ubicato in asse galleria e spinto 2-3 m oltre la quota di fondo scavo della galleria, monitorato in sede di progettazione esecutiva e fino al giugno 2014 (Se28_18 – prof. 74 m), non sembra intercettare il tetto dell'acquifero carbonatico (misurata acqua di fondo piezometro). L'assenza della falda al livello galleria appare confermata anche dalle letture eseguite sul piezometro Se28_03 nella fase di monitoraggio geotecnico tra gennaio e maggio 2014, che hanno escluso la presenza di acqua a profondità superiori di 8-9 m dalla quota di fondo scavo.

MA	MONITORAGGIO AMBIENTALE - FASE CORSO D'OPERA	Bollettino periodico				
	COMPONENTE ACQUE SOTTERRANEE	T00	MA	01	MOA	RE01

Anche nella zona di imbocco sud della galleria i piezometri Se28_23 e Se28_24 sono risultati asciutti o con acqua residua al fondo del tubo piezometrico in sede di monitoraggio di progetto esecutivo.

I dati finora ottenuti appaiono una conferma dell'assenza di falda alle quote di scavo della galleria.

Alla luce dei dati finora raccolti in sede di monitoraggio geotecnico e ambientale, appare verosimile configurare un assetto idrogeologico caratterizzato da un acquifero contenuto nell'ammasso calcareo dolomitico distribuito a profondità tali da non interessare le quote di scavo della galleria Jannello. In tale assetto idrogeologico, sussisterebbe uno spessore di ammasso insaturo al di sotto della quota di fondo scavo non inferiore ai 20 metri. Le elevate profondità del tetto dell'acquifero rispetto alle quote di progetto della galleria ipotizzate sulla base delle attuali misure fornite dal piezometro A_sott_4bis, se confermate dalle successive misure, renderebbero poco significativo l'eventuale approfondimento dei piezometri A_sott_2 e A_sott_3, ubicati a valle del tunnel di progetto.

Galleria Laria

Le letture finora eseguite nella fase di AO e Corso d'opera tra aprile 2014 e Gennaio 2016 in corrispondenza del piezometro ambientale A_sott_13, ubicato nel tratto centrale della galleria, in asse alla carreggiata nord, hanno sostanzialmente confermato la presenza della falda a quote superiori a quelle di scavo della galleria.

Nella lettura di aprile 2014 (fase di "ante operam") si è riscontrata la presenza di un livello piezometrico distribuito a modeste profondità dal p.c. (circa -3 m), evidenziando un battente idrico al di sopra della calotta dell'ordine di circa 12-13 m.

Nel periodo compreso tra giugno e novembre si assiste ad un abbassamento della piezometrica di circa 6-7 metri (falda che si attesta a circa -10 m da p.c.); la piezometrica si colloca conseguentemente intorno a 5-6 m al di sopra della calotta della galleria di progetto.

Le massime risalite della falda si hanno invece tra gennaio e aprile, laddove il livello piezometrico registra una marcata risalita fino ad una profondità minima di circa -1.46 m da p.c. (febbraio 2015 - valore di circa + 9 m rispetto a novembre 2014), confermando la presenza di una falda molto superficiale in corrispondenza dei periodi di maggiore apporto delle precipitazioni (falda tra -1.5 m e a – 3 m circa).

Le oscillazioni del livello di falda lungo il versante sono evidenziate anche dai dati di monitoraggio riferiti al piezometro Asott_5, ubicato circa 90 m a valle della galleria, che confermano la presenza di un livello piezometrico distribuito a profondità comprese tra 9 e 13 m da p.c., ovvero a quote comprese tra 517 e 521 m s.l.m., superiori alla quota di progetto della galleria Laria.

MA	MONITORAGGIO AMBIENTALE - FASE CORSO D'OPERA	Bollettino periodico					
IVIA	COMPONENTE ACQUE SOTTERRANEE	T00	MA	01	MOA	RE01	pag. 23/29

Settore Molinaro - Pietragrossa

L'assetto idrogeologico generale, con riferimento al tratto compreso tra l'imbocco lato RC della galleria Laria e l'imbocco lato SA della galleria Colle Trodo, presenta una superficie piezometrica misurata entro gli argilloscisti (DT ed SL) ad andamento continuo.

Nell'area di Pietragrossa, le letture finora eseguite mostrano un livello piezometrico molto superficiale nel periodo della primavera-inizio estate, distribuito a profondità comprese tra -1.5 m (aprile 2014) e -4.5 m circa (giugno 2014) da p.c. e verosimilmente contenuto all'interno dei depositi detritici di copertura (monitoraggio "ante operam"). La lettura di novembre 2014 ("corso d'opera") evidenzia un abbassamento del livello di falda fino a profondità di circa -6.40 m da p.c. (-5 metri circa rispetto ai livelli di aprile). La lettura di Marzo 2015 conferma l'esistenza di una falda a profondità di circa 2.30 m da p.c.

Nell'estate 2015 il livello di falda registra il massimo abbassamento finora registrato, posizionandosi a circa - 7.10 m da p.c.

Un regime piezometrico analogo contraddistingue l'area di imposta del viadotto Mezzana, dove il livello di falda si posiziona costantemente a profondità di circa 6-7 m tra aprile e giugno 2014, abbassandosi a circa -8.63 da p.c. m nel dicembre 2014. Le successive letture di maggio e agosto 2015, nonché la lettura di gennaio 2016, forniscono un livello di falda a profondità dell'ordine dei 6.50-7.70 m da p.c., complessivamente stabile e in sostanziale accordo con le precedenti letture.

Viadotto Gallarizzo

I due piezometri ambientali sono entrambi ubicati in corrispondenza della grande frana attiva che interessa l'attuale viadotto Gallarizzo.

Il piezometro A_Sott_07 si colloca circa 50 metri a valle del viadotto, mentre A_Sott_08 è ubicato circa 35-40 metri a monte dell'autostrada A3, a ridosso dell'imbocco nord della galleria Colle Trodo.

Nell'area su cui ricadono i piezometri, è più in generale in numerosi settori del versante in frana, la superficie della falda contenuta nei depositi argilloso-scistosi è pressoché continua e segue l'andamento della superficie topografica, evidenziando una soggiacenza variabile tra 0.5-1 m e 4-6 m.

Le due letture eseguite nella fase di "ante operam" ad aprile e giugno 2014 hanno evidenziato l'esistenza di una falda superficiale caratterizzata da valori di soggiacenza compresi tra 2.5/3.5-4.0 m.

Nella lettura di dicembre 2014 la profondità della superficie piezometrica resta grosso modo costante, come nel piezometro ubicato a ridosso dell'imbocco nord della galleria Colle Trodo (A_sott.8), o subisce un modesto e ulteriore abbassamento di circa 1 m, stabilizzandosi intorno a 4.30 m da p.c (A_sott.7).

Nelle due letture di marzo 2015 (II campagna Corso d'opera) il livello di falda risale nuovamente collocandosi rispettivamente a -2.5 m (Asott_7) e -1.7 m (A_sott_8) da piano campagna.

NAA	MONITORAGGIO AMBIENTALE - FASE CORSO D'OPERA	Bollettino periodico					
MA	COMPONENTE ACQUE SOTTERRANEE	T00	MA	01	MOA	RE01	pag. 24/29

Nel periodo estivo la falda subisce un modesto abbassamento, posizionandosi a profondità massime di circa -4 m da p.c. (agosto 2015).

Le successive letture del 2015, fino al gennaio 2016, non mostrano significative variazioni rispetto al trend sopra indicato.

Svincolo Mormanno e galleria Mormanno

Con riferimento al settore di <u>svincolo di Mormanno</u>, si dispone dei dati di monitoraggio forniti dal piezometro ambientale A_sott_9, che ricade ai piedi del versante sud-orientale di Colle Trodo. L'area monitorata è situata a ridosso della trincea della rampa di uscita della carreggiata sud del nuovo svincolo di Mormanno, nelle adiacenze dell'imbocco sud della galleria Colle Trodo.

La superficie della falda relativa alla lettura di aprile 2014 si posiziona a circa -9 m di profondità dal piano campagna, superiore a quella di fondo scavo della galleria Colle Trodo. Le misure relative alla fase di "ante operam" nel periodo di maggio-luglio 2014 evidenziano un progressivo abbassamento del livello della falda fino a profondità di -14.08 m da p.c.. La lettura di novembre 2014 ("I campagna corso d'opera"), eseguita in concomitanza all'esecuzione dei lavori di sbancamento e di realizzazione delle opere di sostegno della rampa di uscita della carreggiata sud, denota un ulteriore e modesto abbassamento della piezometrica fino a profondità di -14.93 m da p.c.. La lettura di marzo 2015 (II campagna Corso d'opera) indica invece una significativa risalita del livello di falda fino a circa -8 m da p.c., ritornando grosso modo sui livelli di aprile 2014.

Le misure effettuate tra la tarda primavera e l'estate 2015 hanno riguardato unicamente i primi 8 m circa di piezometro a causa dell'interruzione dello stesso per la presenza di terra all'interno del tubo. Non è stata rilevata falda fino a detta profondità. Alla data di gennaio 2016 il piezometro non è piu raggiungibile.

Per quanto riguarda l'assetto idrogeologico che caratterizza la dorsale dolomitica interessata dalla *galleria Colle di Mormanno*, si dispone dei dati di monitoraggio di n.3 piezometri ambientali raccolti nell'ambito delle fasi di monitoraggio geotecnico e ambientale (ante operam, primo, secondo, terzo e quarto trimestre della fase di corso d'opera), che hanno complessivamente interessato un periodo compreso tra gennaio 2014 e gennaio 2016

I dati finora raccolti non hanno evidenziato l'esistenza di una superficie piezometrica all'interno del rilievo dolomitico alle quote di scavo della nuova galleria.

I piezometri ambientali realizzati a valle del tunnel in progetto (A_sott_10 e A_sott_15v) non hanno intercettato acqua all'interno del foro. Le letture eseguite nel piezometro A_sott_10 non hanno evidenziato la presenza di acque all'interno del piezometro nelle letture di aprile e giugno 2014, in accordo con le precedenti letture realizzate in sede di monitoraggio geotecnico tra gennaio e maggio 2014.

NAA	MONITORAGGIO AMBIENTALE - FASE CORSO D'OPERA	Bollettino periodico					
MA	COMPONENTE ACQUE SOTTERRANEE	T00	MA	01	MOA	RE01	pag. 25/29

Nel nuovo piezometro A_sott_15 v, approfondito fino a circa 50 m al di sotto della quota della galleria, non è stata riscontrata presenza di acqua nelle 5 letture finora effettuate nella fase di corso d'opera, tra Dicembre 2014 e gennaio 2016.

Il piezometro A_sott_15, ubicato a circa 350 m ad ovest dei due tunnel, rappresenta l'unica verticale ad aver individuato un livello di falda all'interno dell'ammasso dolomitico. La quota di boccaforo è situata circa 46 m al di sopra della livelletta della nuova galleria. Il fondo del piezometro è approfondito fino a circa 22 metri al di sotto della quota di fondo scavo di quest'ultima.

La prima lettura, effettuata ad aprile 2014, ha intercettato un livello di falda distribuito a profondità di circa -34 m da p.c. Nella seconda lettura, del giugno 2014, si registra un abbassamento di circa 6 metri del livello idrico all'interno del piezometro. Nella lettura di novembre 2014 (I fase Corso d'Opera) il piezometro è risultato asciutto, con un abbassamento di oltre 30 metri rispetto alla precedente lettura.

Le successive letture eseguite a marzo e agosto 2015, nonché nel gennaio 2016, sembrano confermare la presenza di una falda, il cui livello oscilla tra -32 e -40 m da p.c., nel periodo inverno-primavera, e -58 m da p.c., in estate.

In considerazione sia della probabile direttrice di drenaggio sotterraneo diretto dall'interno della dorsale verso il fondovalle del F.Battendiero, sia dell'assenza di falda nel piezometro A_sott_15v, è verosimile ritenere che il tetto dell'acquifero sia distribuito a profondità tali da non interessare le quote di scavo della galleria.

Mancuso

Nell'area del viadotto, le misurazioni finora condotte in corrispondenza dei piezometri in sede di progettazione esecutiva posti in asse viadotto (novembre 2013 – giugno 2014) e di monitoraggio ambientale "ante operam" sulla verticale A_sott_11 (aprile-giugno 2014) hanno evidenziato l'assenza di falda nell'ambito delle profondità investigate, pari a circa 30 metri.

Le letture condotte a dicembre 2014 e febbraio 2015 sul nuovo piezometro A_sott_11bis, ubicato 35 m circa più a valle, ad una quota inferiore di 2 metri rispetto al primo piezometro, hanno invece mostrato la presenza di un livello di falda a profondità rispettivamente di -11.45 m e -9.80 m da p.c.

Non sono state eseguite ulteriori letture a causa del seppellimento del piezometro.

Donna di Marco - Campotenese

Per quanto riguarda la **galleria Donna di Marco**, in corrispondenza del settore d'**imbocco lato Sa** l'assenza di acquifero nell'ammasso calcareo dolomitico fino ad almeno 15 m al di sotto della quota di scavo della galleria è documentato dall'assenza di falda nelle letture piezometriche condotte nei piezometri A_sott_17 e

MA	MONITORAGGIO AMBIENTALE - FASE CORSO D'OPERA	Bollettino periodico				
	COMPONENTE ACQUE SOTTERRANEE	T00	MA	01	MOA	RE01

A_sott_17bis tra gennaio 2014 e gennaio 2016 (piezometro ambientale A_sott.17bis approfondito fino a profondità di circa -45 m da p.c., ovvero circa 27 m al di sotto della quota di arco rovescio della galleria).

In corrispondenza dell'**imbocco RC della galleria Donna di Marco** i primi dati di monitoraggio di PE (inverno-primavera 2014) avevano individuato un livello piezometrico ad una profondità di circa -31 m da p.c., corrispondente ad una quota inferiore di circa 15-16 metri rispetto alla quota di fondo scavo. Nella lettura eseguita a giugno 2014 il piezometro (Se31_15) è risultato invece asciutto, evidenziando un abbassamento della falda nel periodo estivo.

Un simile andamento caratterizza anche tutto il settore compreso tra l'imbocco Sa (nord) della galleria Campotenese e l'imbocco Rc (sud) della galleria Donna di Marco, laddove le letture di aprile-maggio 2014 (A_sott_19) evidenziavano un livello di falda nel substrato roccioso di natura dolomitica distribuito a profondità di circa -15 m da p.c.. Il monitoraggio eseguito tra giugno-novembre 2014 e le letture eseguite nella fase di corso d'opera tra marzo, maggio e agosto 2015 fino a gennaio 2016 non hanno mai rilevato presenza di falda, denotando un abbassamento dell'acquifero nelle dolomie di oltre 15 metri rispetto alle misure iniziali.

Con riferimento alla circolazione idrica sotterranea relativa al **tratto sud della galleria naturale Campotenese**, si dispone delle letture eseguite nel piezometro Se31_16 tra inizio dicembre 2013 e fine giugno 2014 (piezometro ubicato nel tratto sud della galleria e approfondito fino a circa -10 m rispetto alla quota di fondo scavo), che non hanno evidenziato la presenza di falda all'interno dell'ammasso roccioso alla quota interessata dallo scavo della galleria.

Nel **settore di imbocco sud della galleria Camponetese** i dati piezometrici del piezometro A_sott_20 evidenziano la presenza di una falda superficiale, rinvenuta sia nella fase di monitoraggio "ante operam" (aprile e giugno 2014), a profondità comprese tra 2.7 m (aprile 2014) e -3.9 m circa (giugno 2014), sia nelle letture della fase di "corso d'opera" (novembre 2014, marzo e maggio 2015), che mostrano dapprima un ulteriore abbassamento della superficie piezometrica fino a profondità di -5 m circa da p.c. e, a marzo e maggio 2015, una risalita fino a -1 m circa da p.c.. Le successive letture non sono state effettuate a causa dell'ostruzione del tubo piezometrico a – 5 m (è stata riscontrata acqua a 1.50 m da p.c. nel gennaio 2016).

La presenza della falda nel settore di imbocco sud trova conferma nelle venute d'acqua osservate nei dreni realizzati a diverse altezze lungo le berlinesi di imbocco della galleria Campotenese e nel tratto iniziale della galleria naturale.

Nella parte terminale del tracciato, in corrispondenza dello **Svincolo di Campotenese**, le misure effettuate in sede di progetto esecutivo non avevano evidenziato la presenza di falda nel sottosuolo nell'ambito delle profondità investigate, pari a circa 20 m. Le letture della fase "ante operam" e della fase di corso d'opera sembrano invece indicare la presenza di una falda all'interno dei depositi fluvio-lacustri, distribuita a profondità comprese tra -17 e -22 m dal p.c.. La prima lettura della fase di "corso d'opera" (novembre 2014) conferma

NAA	MONITORAGGIO AMBIENTALE - FASE CORSO D'OPERA	Bollettino periodico					
MA	COMPONENTE ACQUE SOTTERRANEE	T00	MA	01	MOA	RE01	pag. 27/29

l'esistenza di un livello di falda a profondità di circa 21.70 m da p.c., che risale fino a -17 m da p.c. nel febbraio 2015. I dati di maggio 2015 della fase di Corso d'Opera indicano la falda nuovamente a profondità di -21.50 m da p.c.. La lettura di agosto 2015 (IV lettura corso d'opera) non è stata eseguita a causa del seppellimento del piezometro.

MA	MONITORAGGIO AMBIENTALE - FASE CORSO D'OPERA	Bollettino periodico					
IVIA	COMPONENTE ACQUE SOTTERRANEE	T00	MA	01	MOA F	RE01	pag. 28/29

ALLEGATO 1 - SCHEDE DI RESTITUZIONE DEI DATI

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_01bis
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-28		
Comune	Laino Castello	Provincia	Cosenza
Distanza dal Tracciato	95 m	Progressiva di progetto	km 0+860
Codice del cantiere/sito di riferimento	A_SOTT_01 bis	Destinazione d'uso post operam del cantiere/sito di riferimento	Imbocco Nord galleria naturale Jannello
Coordinate geografiche rettilineee		Coordinate geografiche	
Long: 2600014,316	Lat: 4423116,531	Long: 15°56'12.07629"	Lat: 39°57'15.58103"

Descrizione del sito

Piezometro a tubo aperto in prossimità dell'area interessata dall'imbocco nord della galleria naturale Jannello. Area agricola con edifici privati sparsi.

Caratterizzazione sintetica del sito

Elementi antropico insediativi				
Attività agricola	√			
Attività produttiva				
Viabilità (strade comunali, provinciali, ecc) interferente	✓			
Cascina - fabbricato rurale	√			
Aree degradate				
Versante boscato				
Versante privo di vegetazione				

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
altro	
Bosco	
Corso d'acqua	

Elementi di progetto	
Cantiere	✓
Area tecnica	
Imbocco galleria naturale	✓
Imbocco galleria artificiale	✓
Trincea	
Rilevato	
Viadotto	

ital ** SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Nucleo - edificio di interesse storico	
Cimitero	

Falda	✓
Vincoli idrogeologici - rispetto pozzi idrici	

Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Dati di monitoraggio/misure

Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	539,121	-0,6	-30	0-30

NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	18/12/2014	-30	509,121	Piezometro asciutto. Presenza di fango.
2	03/03/2015	-30	509,21	Piezometro asciutto.
3	20/05/2015	-30	509,21	Piezometro asciutto.
4	04/08/2015	-30	509,21	Piezometro asciutto.
5	21/01/2016	-30	509,21	Piezometro asciutto.

ital ASARC

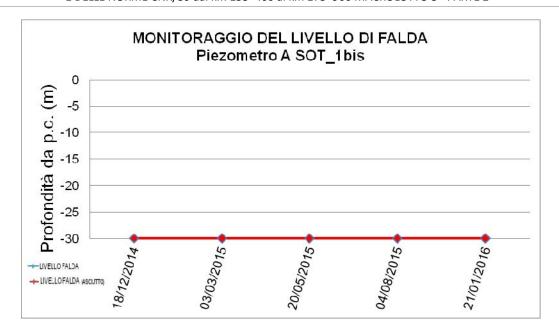
Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Rilievi fotografici

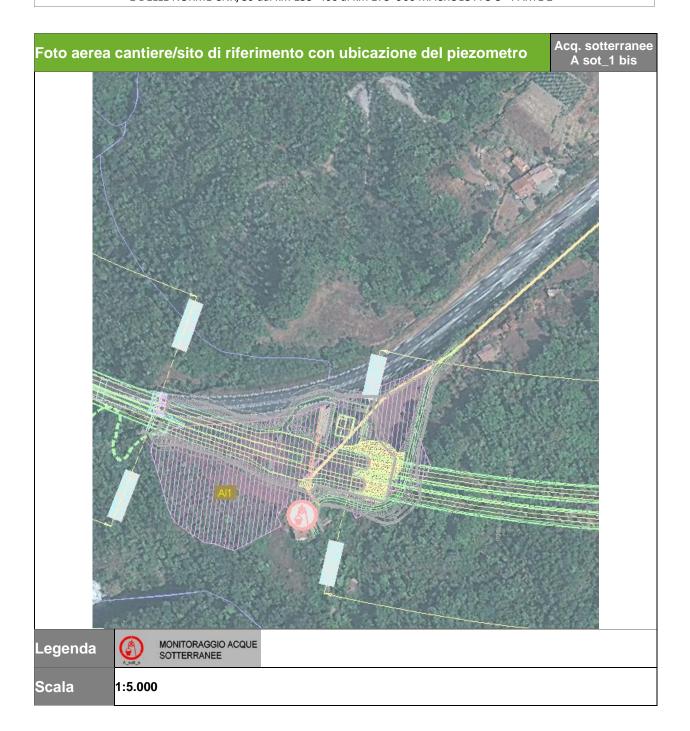
Acq. sotterranee A sot_1 bis



ital * SARC

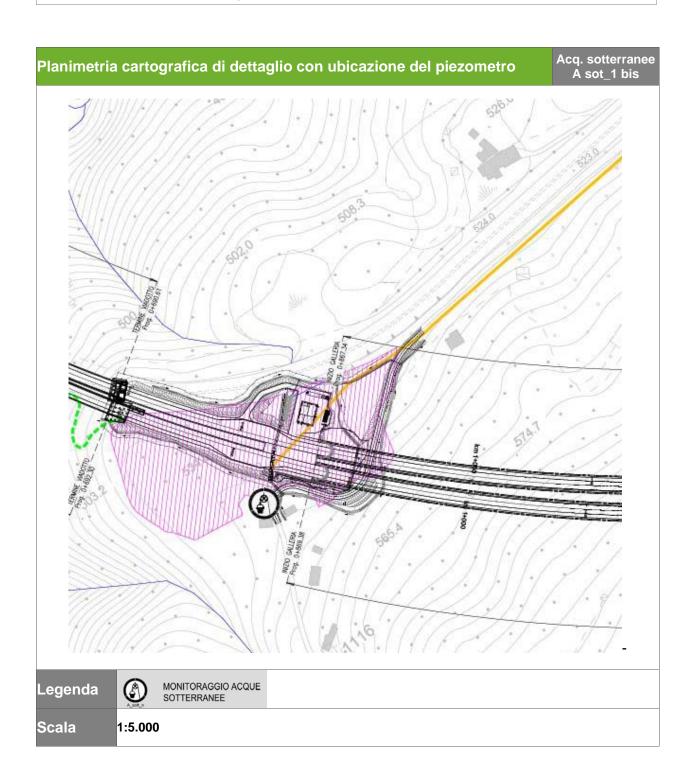
Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

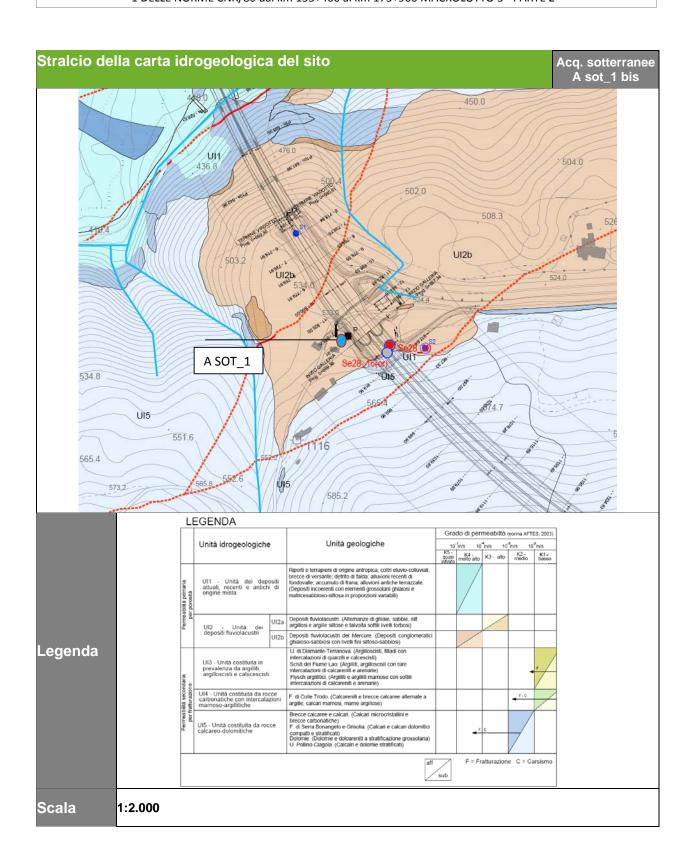


ital SARC

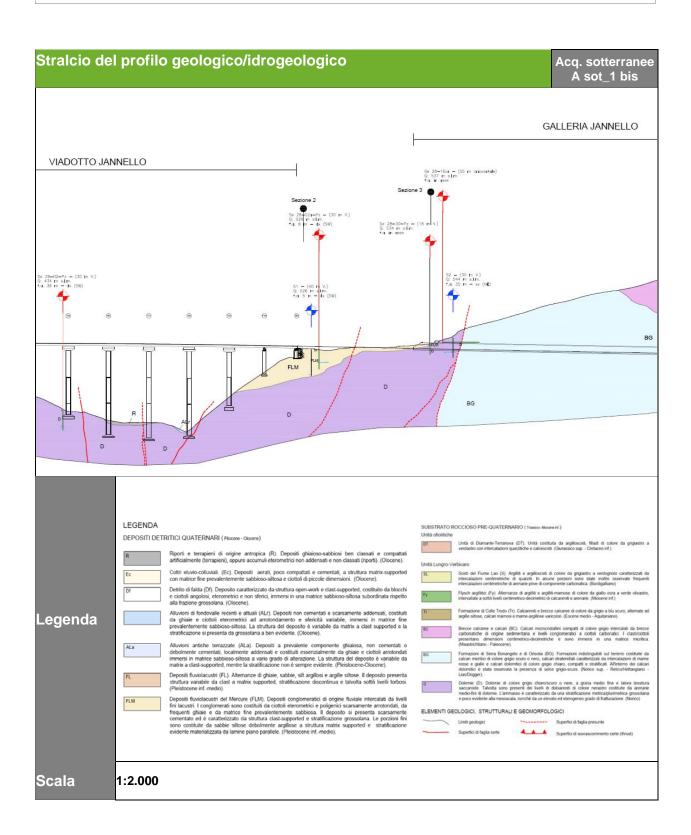
Monitoraggio Ambientale:


COMPONENTE ACQUE SOTTERRANEE

ital ASARC


Monitoraggio Ambientale:

Monitoraggio Ambientale:



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro è situato a poche decine di metri dall'imbocco nord della galleria Jannello e ricade alla base del versante calcareo-dolomitico di Morcilongo-S.Angelo, in corrispondenza di un pianoro suborizzontale posto in destra della valle dello Jannello. L'assetto geologico strutturale è dominato dalla presenza delle Unità di Lungro-Verbicaro, che formano l'ossatura del territorio costituente sia l'intera dorsale attraversata dalla galleria, sia l'intero settore di fondovalle dello Jannello. Dette Unità sono principalmente costituite da dolomie con livelli di doloareniti molto fratturate e da sequenze di calcari micritici con intercalazioni marnose e calcareo dolomitiche; le dolomie affiorano diffusamente al piede del versante su cui si imposta la galleria Jannello. Il settore terrazzato situato sul fianco destro della valle dello Jannello è invece occupato dai Depositi Fluvio-lacustri del Mercure, rappresentati da conglomerati a luoghi cementati con intercacazioni limo-sabbiose e depositi fini lacustri. Tali sedimenti ricoprono le dolomie con spessori compresi tra pochi metri e oltre 40 metri. Nell'area dove ricade il piezometro, le coperture detritiche ascrivibili ai depositi fluvio-lacustri del Mercure sono generalmente modeste e dell'ordine di 5-7 metri. A maggiore profondità sono presenti le dolomie calcaree grigie fratturate, talora a struttura vacuolare.

Dal punto di vista idrogeologico, l'ammasso calcareo dolomitico rappresenta un complesso caratterizzato da permeabilità secondaria per fratturazione, localmente aumentata a causa degli effetti carsici che tali litotipi possono facilmente sviluppare; tali caratteristiche possono quindi originare una circolazione idrica talora significativa e profonda. Nel settore di interesse è stata inizialmente riscontrata evidenza di una circolazione idrica sotterranea all'interno dell'ammasso dolomitico, il cui livello piezometrico è distribuito a profondità di circa -15 metri dal piano di campagna del settore dell'imbocco nord della galleria Jannello (A_SOTT_01 - lettura di aprile 2014 e piezometro Se28-30).

Nella lettura di Giugno 2014 nel piezometro ambientale A_SOTT_01 non è stata riscontrata falda a profondità dell'ordine dei 19 m da p.c. (piezometro danneggiato e interrotto a tale profondità). Un abbassamento si è riscontrato anche nel piezometro Se28-30 (profondo 16 m), risultato anch'esso asciutto nella lettura di giugno 2014.

Le successive letture effettuate nella fase di monitoraggio ambientale Ante Operam e Corso d'Opera nel piezometro A_SOTT_01 non hanno tuttavia evidenziato presenza di falda fino a profondità di -30 m.

Una circolazione idrica sotterranea, verosimilmente in comunicazione con quella presente nell'ammasso dolomitico, è presente all'interno dei depositi fluvio-lacustri del Mercure in corrispondenza del settore contiguo, dove ricade la spalla sud del viadotto Jannello. In particolare, in detto settore, dove le letture di gennaio 2014 indicavano la presenza di un livello piezometrico a profondità di circa -20 m da p.c., si è registrato un abbassamento complessivo di oltre 10 m del livello piezometrico (sondaggio Se28_02a - periodo gennaio 2014 - giugno 2014). Nell'ultima lettura di giugno 2014 il piezometro (z=30 m) è infatti risultato asciutto.

In corrispondenza del piezometro ambientale in oggetto (prof. 30 m), le letture di dicembre 2014, marzo, maggio e agosto 2015, nonché la successiva lettura di gennaio 2016, non hanno evidenziato la presenza di acqua nel piezometro.

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro

Campionatore manuale Bailer + Corda

Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials Spurgo piezometro

Scheda risultati

Acq. sotterranee A sot_1 bis

		l lettura	II lettura	III lettura	IV lettura	V lettura
Gruppo 1	Unità di misura	18/12/2014	23/03/2015	20/05/2015	04/08/2015	21/01/2016
Temperatura dell'aria	°C	-	ı	ı	-	•
Temperatura dell'acqua	°C	-	-	-	-	-
Ossigeno ppm	mg/l	-	-	-	-	-
Ossigeno %	%	-	-	-	-	-
Conducibilità	μ S/cm	-	-	-	-	-
pH Potenziale RedOx	mV	-	-	-	-	-
		l lettura	II lettura	III lettura	IV lettura	V lettura
Gruppo 2	Unità di misura	18/12/2014	23/03/2015	20/05/2015	04/08/2015	21/01/2016
Idrocarbuti totali	mg/l	-	-	-	-	-
TOC	mg/l	-	-	-	-	-
Tensioattivi anionici	mg/l	-	-	-	-	-
Tensioattivi non ionici	mg/l	-	-	-	-	-
Cromo totale	μ g/l	-	-	-	-	-
Cromo VI	μ g/l	-	-	-	-	-
Ferro	μ g/l	-	-	-	-	-
Alluminio	μ g/l	-	-	-		-
Gruppo 3	Unità di misura	I lettura 18/12/2014	II lettura 23/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Nichel	μ g/l	-	-	-	-	-
Zinco	μ g/l	-	-	-	-	-
Piombo	μ g/l	-	-	-	-	-
Cadmio	μ g/l	-	-	i	-	-
Arsenico	μ g/l	-	-	-	-	-
Manganese	μ g/l	-	-	-	-	-
Rame	μ g/l	-	-	-	-	-
Gruppo 4	Unità di misura	I lettura 18/12/2014	II lettura 23/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Calcio	mg/l	-	-	-	-	-
Sodio	mg/l	-	-	-	-	-
Magnesio	mg/l	-	-	-	-	-
Potassio	mg/l	-	-	-	-	-
Nitrati	mg/l	-	-	-	-	-
Cloruri	mg/l	-	-	-	-	-
Solfati	mg/l	-	-	-	-	-

ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note Acq. sotterranee
A sot_1 bis

- I MISURA CO (18/12/2014)_il freatimetro scende fino alla profondità di 30 mt senza incontrare la presenza di acqua bensì di fango. Piezometro asciutto.
- II MISURA CO (03/03/2015)_il freatimetro scende fino alla profondità di 30 mt senza incontrare la presenza di acqua bensì di fango. Piezometro asciutto.
- III MISURA CO (20/05/2015)_il freatimetro scende fino alla profondità di 30 mt senza incontrare la presenza di acqua bensi di fango. Piezometro asciutto.
- IV MISURA CO (04/08/2015)_ Piezometro asciutto.
- V MISURA CO (21/01/2016)_ Piezometro asciutto

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee	
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_04 bis	
Tipologia indagine	Corso d'Opera – GENNAIO 2016	

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-28			
Comune	Laino Castello	Provincia	Cosenza	
Distanza dal Tracciato	610 m	Progressiva di progetto	km 2+700	
Codice del cantiere/sito di riferimento	A_SOTT_04 bis	Destinazione d'uso post operam del cantiere/sito di riferimento	Asse carr sud galleria naturale Jannello	
Coordinate geografiche rettilineee		Coordinate geografiche		
Long: 2601668,929	Lat: 4422381,804	Long: 15°57'21.47049"	Lat: 39°56'51.18398"	

Descrizione del sito

Piezometro a tubo aperto in contrada S. Angelo ubicato sull'asse carr sud della neo galleria natura Jannallo. Area agricola.

Caratterizzazione sintetica del sito

Elementi antropico insediativi				
Attività agricola				
Attività produttiva				
Viabilità (strade comunali, provinciali, ecc) interferente				
Cascina - fabbricato rurale				
Aree degradate				
Versante boscato	✓			
Versante privo di vegetazione				

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
altro	
Bosco	
Corso d'acqua	

Elementi di progetto				
Cantiere	✓			
Area tecnica				
Imbocco galleria naturale				
Imbocco galleria artificiale				
Trincea				
Rilevato				
Viadotto				

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Nucleo - edificio di interesse storico	
Cimitero	

Falda	✓
Vincoli idrogeologici - rispetto pozzi idrici	

Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Dati di monitoraggio/misure

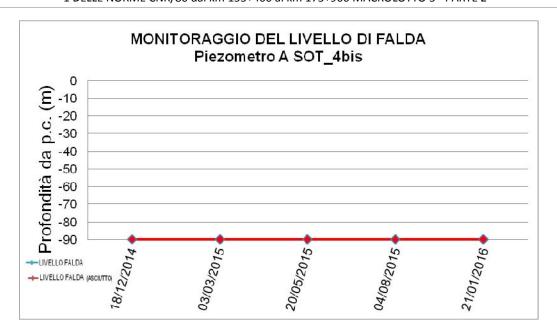
Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	559,686	-0,9	-90	0-90

NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note	
1	18/12/2014	-90	469,686	Piezometro asciutto	
2	03/03/2015	2015 -90 496,686		Piezometro asciutto	
3	20/05/2015	-90	496,686	Piezometro asciutto	
4	04/08/2015	-90	496,686	Piezometro asciutto	
5	21/01/2016	-90	496,686	Piezometro asciutto	

ital ASARC

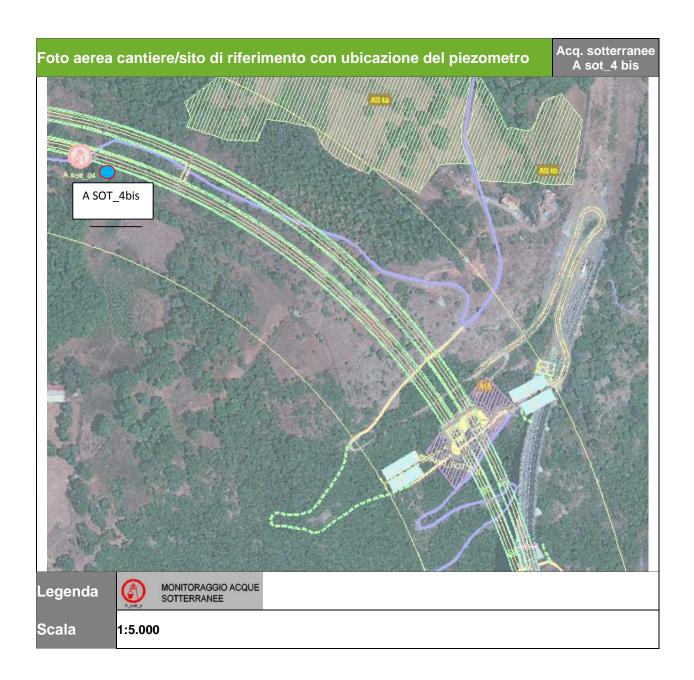
Monitoraggio Ambientale:

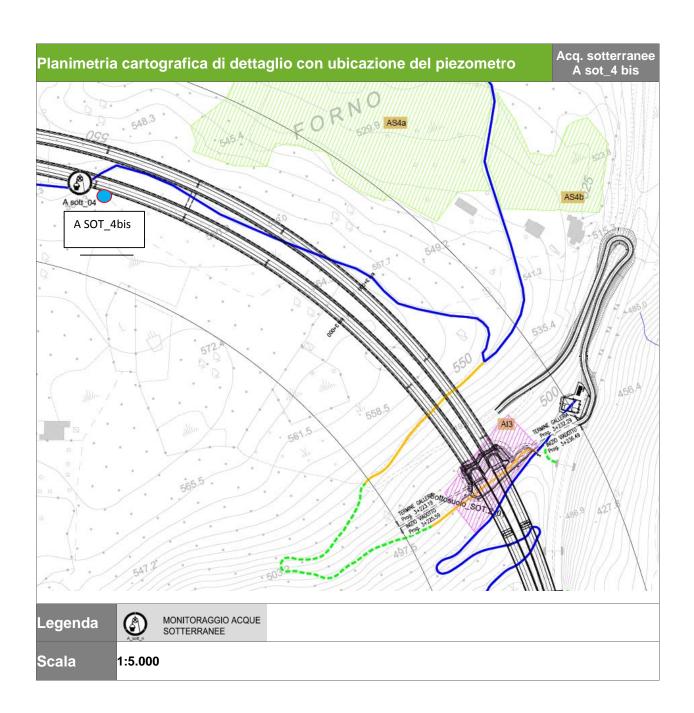
COMPONENTE ACQUE SOTTERRANEE



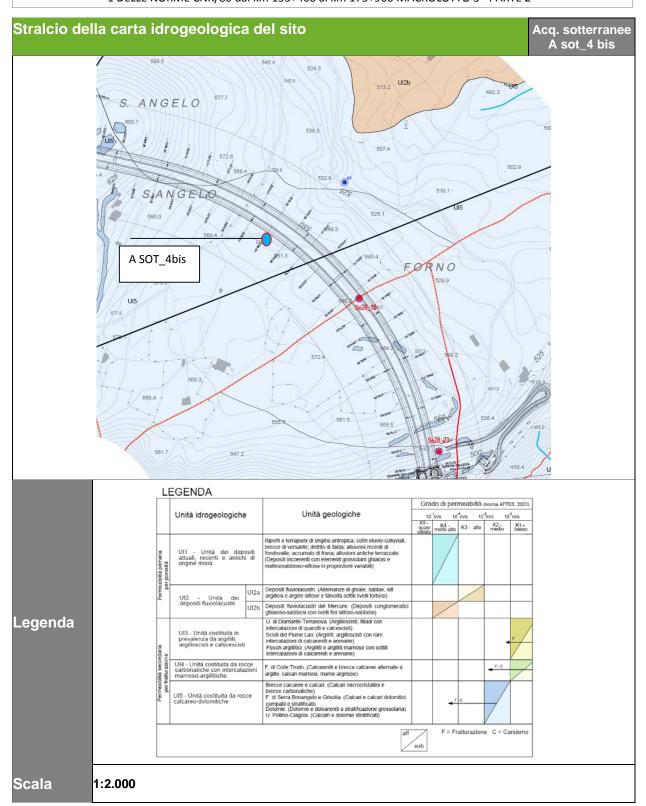
ital ASARC

Monitoraggio Ambientale:




COMPONENTE ACQUE SOTTERRANEE

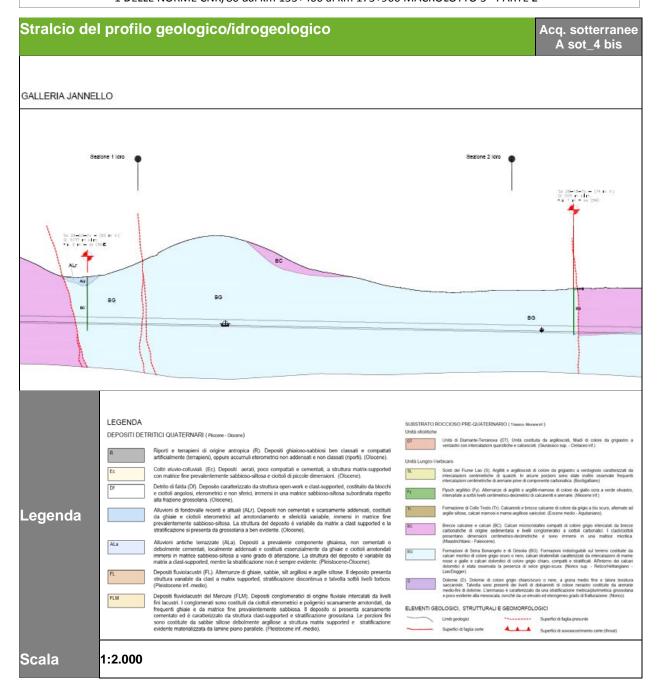
COMPONENTE ACQUE SOTTERRANEE



ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro è stato eseguito nell'ambito del monitoraggio della fase di corso d'opera in sostituzione del piezometro ambientale A_sott.4. E' stato spinto fino a una profondità pari a -90 m da p.c.(circa 470 m s.l.m.), al fine di raggiungere una quota di circa 21 m al di sotto di quella di fondo scavo del nuovo tunnel di progetto.

Il piezometro si colloca sulla porzione sud-orientale della dorsale calcareo-dolomitica di Morcilongo-S.Angelo su sui si imposta la galleria Jannello. Il punto di monitoraggio è ubicato in asse alla galleria, ad una quota di 559.68 (+66 m circa da quota livelletta galleria).

L'assetto geologico strutturale è dominato dalla presenza delle Unità di Lungro-Verbicaro, che formano l'ossatura del territorio costituente l'intera dorsale attraversata dalla galleria. Dette Unità sono principalmente costituite da dolomie con livelli di doloareniti molto fratturate e da sequenze di calcari micritici con intercalazioni marnose e calcareo dolomitiche. Il settore collinare che borda detta dorsale ad ovest e a nord e comprendente gran parte della valle dello Jannello è invece occupato dalle successioni dei Depositi Fluvio-lacustri del Mercure, rappresentati da conglomerati a luoghi cementati con intercalazioni limo-sabbiose e depositi fini lacustri.

Dal punto di vista idrogeologico, l'ammasso calcareo dolomitico rappresenta un complesso caratterizzato da permeabilità secondaria per fratturazione, localmente aumentata a causa degli effetti carsici che tali litotipi possono facilmente sviluppare; tali caratteristiche possono quindi originare una circolazione idrica talora significativa e profonda. La dorsale dolomitica e calcareo-dolomitica interessata dalla galleria Jannello non sembra interessata da una circolazione idrica sotterranea alle quote di scavo dei due tunnel stradali. L'assenza di sorgenti sul territorio concorda con le misure eseguite nel corso della progettazione esecutiva nei piezometri ubicati nel settore interessato dalla sua realizzazione.

Gran parte dei sondaggi attrezzati a piezometro in corrispondenza dell'asse della galleria hanno infatti individuato esclusivamente la presenza di acqua in corrispondenza del fondo del piezometro, acqua che potrebbe essere ricondotta a un accumulo statico in una parte non permeabile del tubo forato.

Unicamente il piezometro Se28_03, anche nell'ultima lettura di giugno 2014 sembra indicare la presenza di un possibile livello di falda a -83 m circa dal p.c. (8-10 m al di sotto della quota di fondo scavo). In considerazione dell'importanza del dato, si prevede di proseguire il monitoraggio geotecnico mediante ulteriori 2/3 letture, fino al gennaio 2015.

Anche i piezometri ubicati in corrispondenza del settore di imbocco sud della galleria Jannello e quelli che interessano le successioni calcaree e calcareo-dolomitiche presenti sul fianco destro della valle del fiume Lao non hanno finora evidenziato la presenza di falda fino a profondità dell'ordine dei 30 m dal p.c.

Il piezometro è interamente perforato dei calcari micritici, calcari dolomitici e delle marne della Formazione di Serra Bonangelo e di Grisolia.

Le letture eseguite nel piezometro Asott_04 non avevano evidenziato la presenza di circolazione idrica sotterranea di rilievo nell'ammasso sovrastante la galleria di progetto.

Per quanto riguarda il nuovo piezometro A_SOTT-04bis, le letture seguite nella fase di "corso d'opera" a dicembre 2014, marzo, maggio, agosto 2015, nonché la lettura di gennaio 2016, non hanno evidenziato la presenza di falda in corrispondenza delle quote di scavo della galleria (piezometro asciutto).

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro

Campionatore manuale Bailer + Corda

Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials

Spurgo piezometro

Scheda risultati Acq. sotterranee A sot_4 bis

Gruppo 1	Unità di misura	l lettura	II lettura	III lettura	IV lettura	V lettura
• •		18/12/2014	03/03/2015	20/05/2015	04/08/2015	21/01/2016
Temperatura dell'aria	°C	-	-	-	-	-
Temperatura dell'acqua	°C	-	-	-	-	-
Ossigeno ppm	mg/l	-	-	-	-	-
Ossigeno % Conducibilità	% μS/cm	-	-	-	-	-
РН	μ3/011	_	_		-	
Potenziale RedOx	mV	_	_	_	_	_
	Unità di misura	I lettura	II lettura	III lettura	IV lettura	V lettura
Gruppo 2		18/12/2014	03/03/2015	20/05/2015	04/08/2015	21/01/2016
Idrocarbuti totali	mg/l	-	-	-	-	-
TOC	mg/l	-	-	-	-	-
Tensioattivi anionici	mg/l	-	-	-	-	-
Tensioattivi non ionici	mg/l	-	-	-	-	-
Cromo totale	μ g/l	-	-	-	-	-
Cromo VI	μ g/l	-	-	-	-	-
Ferro	μ g/l	-	-	-	-	-
Alluminio	μ g/l	-	-	-	-	-
Gruppo 3	Unità di misura	I lettura 18/12/2014	II lettura 03/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Nichel	μ g/l	-	-	-	-	-
Zinco	μ g/l	-	-	-	-	-
Piombo	μ g/l	-	-	-	-	-
Cadmio	μ g/l	-	-	-	-	-
Arsenico	μ g/l	-	-	-	-	-
Manganese	μ g/l	-	-	-	-	-
Rame	μ g/l	-	-	-	-	-
Gruppo 4	Unità di misura	I lettura 18/12/2014	II lettura 03/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Calcio	mg/l	-	-	-	-	-
Sodio	mg/l	-	-	-	-	-
Magnesio	mg/l	-	-	-	-	-
Potassio	mg/l	-	-	-	-	-
Nitrati	mg/l	-	-	-	-	-
Cloruri	mg/l	-	-	-	-	-
Solfati	mg/l	-	-	-	-	-

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note

Acq. sotterranee
A sot_4 bis

I MISURA CO (18/12/2014)_il freatimetro scende fino alla profondità di 90,21 mt senza incontrare la presenza di acqua. Piezometro asciutto.

II MISURA CO (03/03/2015)_il freatimetro scende fino a fondoforo senza incontrare la presenza di acqua. Piezometro asciutto.

III MISURA CO (20/05/2015)_il freatimetro scende fino a fondoforo senza incontrare la presenza di acqua. Piezometro asciutto.

IV MISURA CO (04/08/2015)_ Piezometro asciutto.

V MISURA CO (21/01/2016)_ Piezometro asciutto.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_05
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-29			
Comune	Laino Borgo	Provincia	Cosenza	
Distanza dal Tracciato	38 m	Progressiva di progetto	km 0+800	
Codice del cantiere/sito di riferimento	A_SOTT_05	Destinazione d'uso post operam del cantiere/sito di	Strada pubblica	
Coordinate geografiche rettilineee		Coordinate geografiche		
Long: 2602380,727	Lat: 4420153,28	Long: 15°57'50.44852"	Lat: 39°55'38.66270"	

Descrizione del sito

Piezometro a tubo aperto in contrada Pianolaria ubicato sopra l'attuale imbocco nord della galleria Laria e circa 100 m a valle della carreggiata sud della galleria Laria di progetto. Area agricola.

Caratterizzazione sintetica del sito

Elementi antropico insediativi			
Attività agricola	√		
Attività produttiva			
Viabilità (strade comunali, provinciali, ecc) interferente	√		
Cascina - fabbricato rurale	✓		
Aree degradate			
Versante boscato			
Versante privo di vegetazione			

Elementi di valore naturalistico/ambientale		
Area di pregio paesistico - ambientale		
Parco regionale		
Riserva naturale - SIC - ZPS		
altro		
Bosco		
Corso d'acqua		

Elementi di progetto	
Cantiere	✓
Area tecnica	
Imbocco galleria naturale	
Imbocco galleria artificiale	
Trincea	
Rilevato	
Viadotto	

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Nucleo - edificio di interesse storico	
Cimitero	

Falda	✓
Vincoli idrogeologici - rispetto pozzi idrici	

Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Dati di monitoraggio/misure

Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	530,721	-0,15	-30	0-30

NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	16/04/2014	-9,52	521,201	Acqua limpida Pozzetto carrabile
2	26/06/2014	-11,40	519,321	-
3	24/11/2014	-13,35	517,317	Pozzetto danneggiato causa transito dei mezzi di cantiere
4	24/02/2015	-9,16	521,561	Transito dei mezzi di cantiere; Pozzetto in ghisa fuoriterra; Nei pressi del piezometro è presente l'area di stoccaggio terreni (AS5a)
5	19/05/2015	-11,50	519,221	-
6	04/08/2015	-11,78	518,941	-
7	21/01/2016	-10,98	519,741	-

ital ASARC

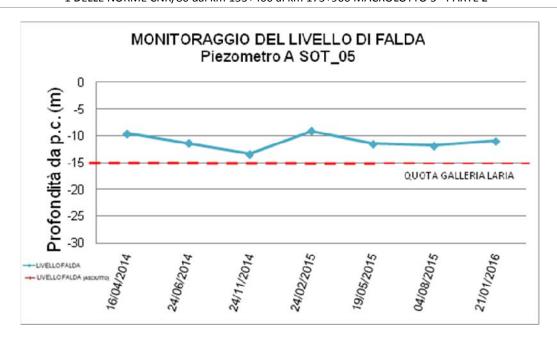
Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Rilievi fotografici

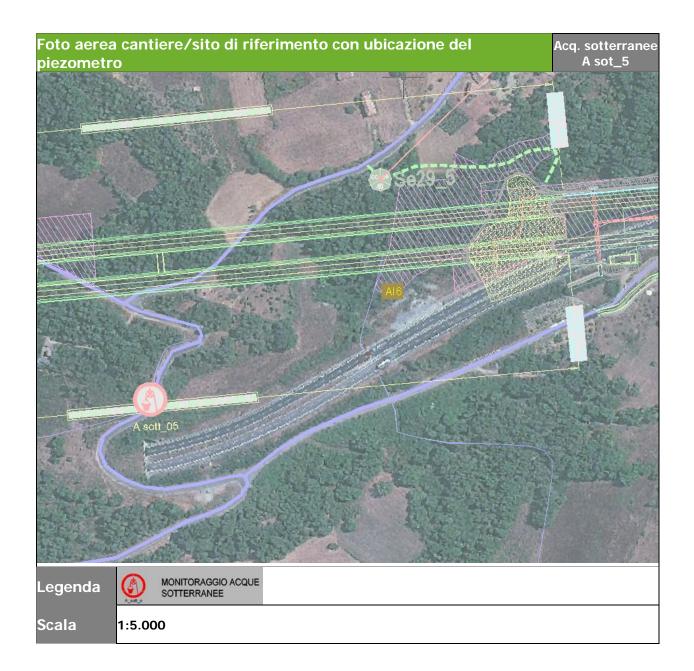
Acq. sotterranee A sot_5

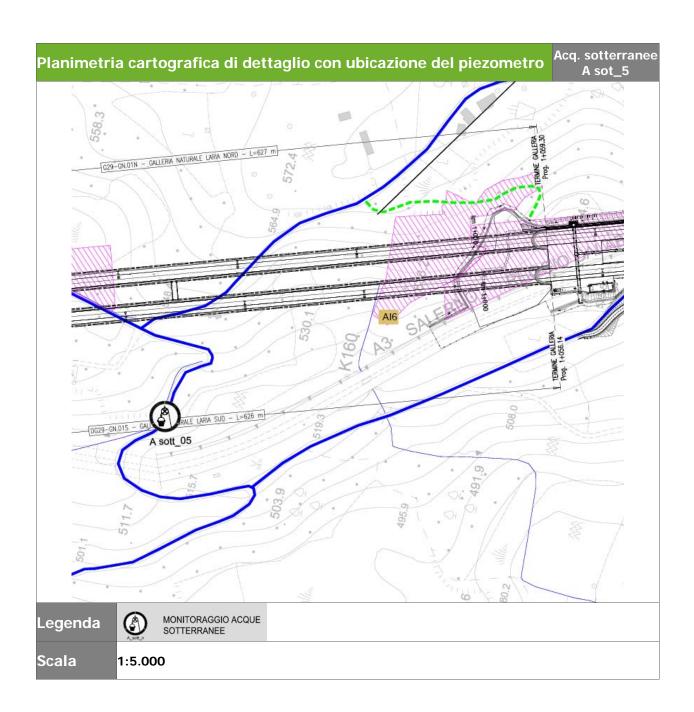


ital SARC

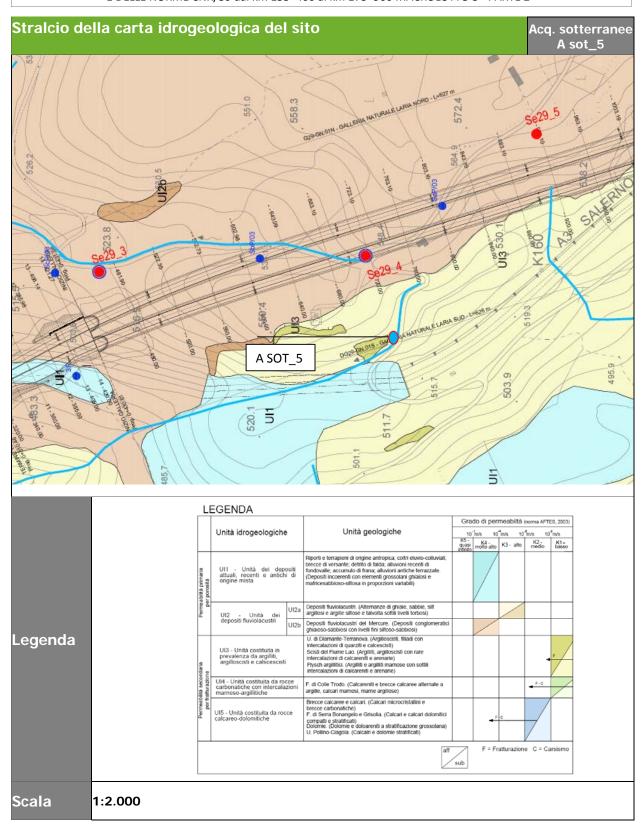
Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

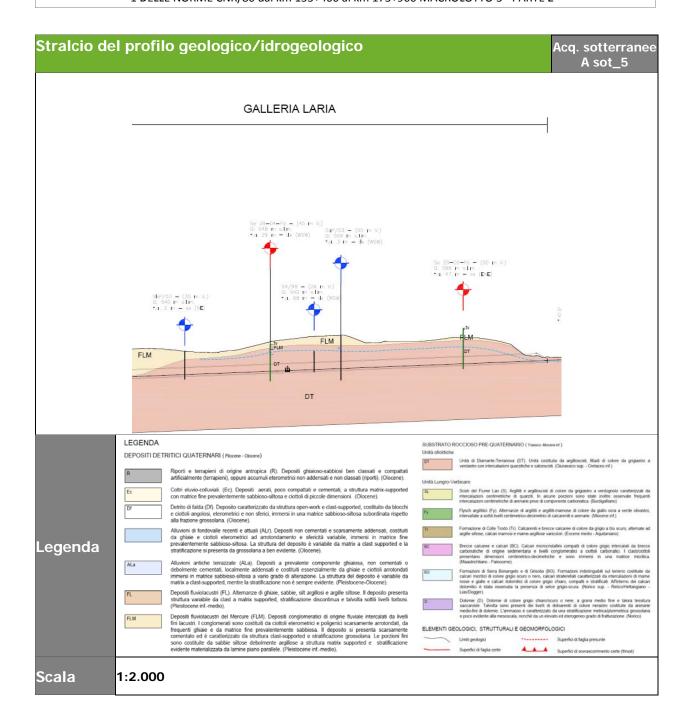



ital ASARC

Monitoraggio Ambientale:


COMPONENTE ACQUE SOTTERRANEE

Monitoraggio Ambientale:



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

L'area su cui ricade il piezometro è situata circa 90 ad ovest della carreggiata sud della galleria di progetto Laria. Il territorio è per gran parte costituito da formazioni strutturalmente complesse dell'Unità Diamante Terranova, costituite da argilloscisti, filladi grigio-verdastre scagliose con intercalazioni quarzitiche e di calcescisti. Nel settore interessato dalla galleria, alle successioni argillo-scistose si sovrappongono i Depositi Fluvio-Lacustri del Mercure, rappresentati da limi sabbiosi e sabbioso-limosi da debolmente ghiaiosi a ghiaiosi di spessore compreso tra alcuni metri e 25-30 metri.

Dal punto di vista idrogeologico, il complesso argillo-scistoso è costituito da rocce caratterizzate da un'elevata percentuale in materiale argilloso, bassa permeabilità primaria per porosità e scarsa permeabilità secondaria per fratturazione, ad eccezione delle superfici di discontinuità maggiori dove l'acqua convogliata può essere cospicua. Tali caratteristiche favoriscono principalmente la presenza di limitate falde idriche sospese alimentate principalmente da apporti di acque meteoriche.

La bassa permeabilità degli ammassi (K1) può infatti aumentare al crescere del grado di alterazione. Le porzioni più deformate e alterate presentano un grado di addensamento e di compattazione minore rispetto all'ammasso integro; tale caratteristica ne aumenta la permeabilità per fratturazione e favorisce l'accumulo locale di acqua meteorica che si infiltra attraverso le superfici di discontinuità e alimenta le falde sospese.

Nel settore di interesse è stata evidenziata la presenza di una probabile falda libera entro i depositi fluviolacustri del Mercure (FLM) alla quale se ne aggiunge una seconda, più profonda, all'interno del substrato argillitico dell'Unità Diamante-Terranova (DT). In entrambi i casi si prevede un'interferenza tra lo scavo della galleria e la circolazione idrica sotterranea sopra indicata.

Il piezometro, di profondità pari a 30 m, interessa le filladi e gli argilloscisti per l'intera profondità. Il fondo piezometro si colloca ad una quota di circa 500 m s.l.m., inferiore di circa 14-15 m rispetto alla quota di fondo scavo della galleria Laria.

Entrambe le letture eseguite confermano la presenza di un livello piezometrico distribuito a profondità comprese tra 9 e 11 m da p.c., ovvero a quote comprese tra 519 e 521 m s.l.m., superiore alla quota di progetto della galleria Laria.

Nella lettura di novembre 2014 ("corso d'opera") si evidenzia un ulteriore abbassamento del livello di falda, che da -11.40 m da p.c. si approfondisce fino a -13.35 m da p.c.

Nella II lettura del "corso d'opera" (febbraio 2015) si assiste ad una risalita del livello di falda fino a profondità di -9.16 m da p.c., livello analogo a quello di aprile 2014.

Le letture di maggio e agosto 2014, nonché quella di gennaio 2016, confermano la presenza di un livello di falda sostanzialmente stabile intorno a -11 m circa da p.c. (519 m da p.c.)

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro

Campionatore manuale Bailer + Corda

Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials Spurgo piezometro

Scheda risultati

Acq. sotterranee A sot_5

Gruppo 1	Unità di misura	I lettura	II lettura	III lettura	IV lettura	V lettura
		24/11/2014	24/02/2015	19/05/2015	04/08/2015	21/01/2016
Temperatura dell'aria	°C	13,17	11,15	21,10	24,41	11,31
Temperatura dell'acqua	°C	14,92	13,94	15,17	18,12	12,24
Ossigeno ppm	mg/l	23,84	7,08	7,07	4,22	8,03
Ossigeno % Conducibilità	% mS/cm	253,8 500	75,7 192	76,4 303	48,0 317	59,7 310
pH	- 1113/C111	7,04	7,14	6,69	7,10	7,15
Potenziale RedOx	mV	24,6	19.1	85,9	31,6	29,8
Gruppo 2	Unità di misura	I lettura	II lettura	III lettura	IV lettura	V lettura
олирро 2	Omita ai misara	24/11/2014	24/02/2015	19/05/2015	04/08/2015	21/01/2016
Idrocarbuti totali	mg/l	<0,1	<0,1	<0,1	<0,1	<0,1
TOC	mg/l	8,90	15	6,10	2,27	25
Tensioattivi anionici	mg/l	<0,01	<0,1	<0,01	<0,01	<0,1
Tensioattivi non ionici	mg/l	<0,01	<0,1	0,10	0,05	<0,1
Cromo totale	μ g/ l	<1	<0,1	<1	<1	<1
Cromo VI	μ g/ l	<1	<0,1	<1	<1	<1
Ferro	μ g/ l	<20	407	<20	<20	32
Alluminio	μ g/l	<20	375	<20	<20	33,9
Gruppo 3	Unità di misura	I lettura	II lettura	III lettura	IV lettura	V lettura
				40.400.40		
	"	24/11/2014	24/02/2015	19/05/2015	04/08/2015	21/01/2016
Nichel	μ g/l	<1	<1	<1	<1	21/01/2016 <1
Nichel Zinco	μg/l μg/l	<1 <1	<1 <1	<1 <1	<1 <1	21/01/2016 <1 <1
Nichel Zinco Piombo		<1 <1 <1	<1 <1 <1	<1 <1 <1	<1	21/01/2016 <1 <1 <1
Nichel Zinco Piombo Cadmio	μ g/l	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	21/01/2016 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico	μ g/l μ g/l	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1	21/01/2016 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio	μg/l μg/l μg/l	<1 <1 <1 <1	<1 <1 <1 <1 <1 <1 53	<1 <1 <1 <1	<1 <1 <1 <1	21/01/2016 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico	μg/I μg/I μg/I μg/I	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	21/01/2016 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4	μg/I μg/I μg/I μg/I μg/I	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 53	<1 <1 <1 <1 <1 <1 34	<1 <1 <1 <1 <1 <1	21/01/2016 <1 <1 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame	μg/l μg/l μg/l μg/l μg/l μg/l μg/l	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	21/01/2016
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4	μg/l μg/l μg/l μg/l μg/l μg/l μg/l Unità di misura	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 V lettura 21/01/2016
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio	μg/l μg/l μg/l μg/l μg/l μg/l μg/l Unità di misura mg/l mg/l	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	21/01/2016
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l unità di misura mg/l mg/l mg/l	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 <1 <5 <1 <5 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	21/01/2016
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio Magnesio	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l mg/l mg/l mg/l mg/l	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <4 <1 <1 <5 <1 <5 <1 <5 <1 <5 <1 <5 <1 <5 <1 <5 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	21/01/2016
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio Magnesio Potassio Nitrati	μg/l μg/l μg/l μg/l μg/l μg/l μg/l Unità di misura mg/l mg/l mg/l mg/l mg/l	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 <1 <1 <5 <1 <1 <5 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio Magnesio Potassio	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l mg/l mg/l mg/l mg/l	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	21/01/2016

SOTTERRANEE
LIAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note Acq. sotterranee
A sot_5

I Misura CO (24/11/2014)_Pozzetto di plastica danneggiato dal transito di automezzi di cantiere sopra il piezometro.

Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi.

II Misura CO (24/02/2015)_Sostituzione del pozzetto di plastica danneggiato con uno in ghisa fuoriterra; Le analisi di laboratorio eseguite sui campioni d'acqua prelevati sono stati riscontrati degli esuberi inerente al Ferro ed Alluminio rispettivamente di 407 $\,\mu$ g/l 8il cui limite è 200 $\,\mu$ g/l) e 375 (il cui limite è 200 $\,\mu$ g/l); risultano in evidente aumento, rispetto il precedente campionamento, anche il Sodio, Cloruri e Solfati.

III Misura CO (19/05/2015)_II Ferro e l'Alluminio che nella precedente campagna di monitoraggio avevano dato degli esuberi dei limiti normativi, in quest'ultima campagna non hanno dato riscontro di valori oltre il limite; si segnala un leggero incremento dei Nitrati rispetto le precedenti misure ma entro il limite normativo.

IV Misura CO (04/08/2015)_II Ferro e l'Alluminio confermano il valore <20 μ g/l già riscontrato nella precedente campagna; si segnala un netto decremento dei Nitrati e del Magnesio; Rame in aumento.

V Misura CO (21/01/2016)_Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_06
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-29				
Comune	Mormanno	Provincia	Cosenza		
Distanza dal Tracciato	140 m	km 1+800			
Codice del cantiere/sito di riferimento	A_SOTT_06	Destinazione d'uso post operam del cantiere/sito di	Strada pubblica C.da Molinaro		
Coordinate geografiche rettilineee		Coordinate geografiche			
Long: 2602519,114	Lat: 4419154,396	Long: 15°57'55.82282"	Lat: 39°55'06.21947"		

Descrizione del sito

Piezometro a tubo aperto in contrada Molinaro, vicino l'area di sosta di Pietragrossa. Area agricola.

Presenza di abitazioni sparse, agriturismo e vigne.

Caratterizzazione sintetica del sito

Elementi antropico insediativi		
Attività agricola	√	
Attività produttiva		
Viabilità (strade comunali, provinciali, ecc) interferente	√	
Cascina - fabbricato rurale	√	
Aree degradate		
Versante boscato		
Versante privo di vegetazione		

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
altro	
Bosco	
Corso d'acqua	

Elementi di progetto			
Cantiere	✓		
Area tecnica			
Imbocco galleria naturale			
Imbocco galleria artificiale			
Trincea			
Rilevato			
Viadotto			

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Nucleo - edificio di interesse storico	
Cimitero	

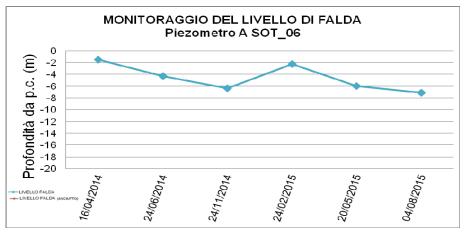
Falda	√
Vincoli idrogeologici - rispetto pozzi idrici	

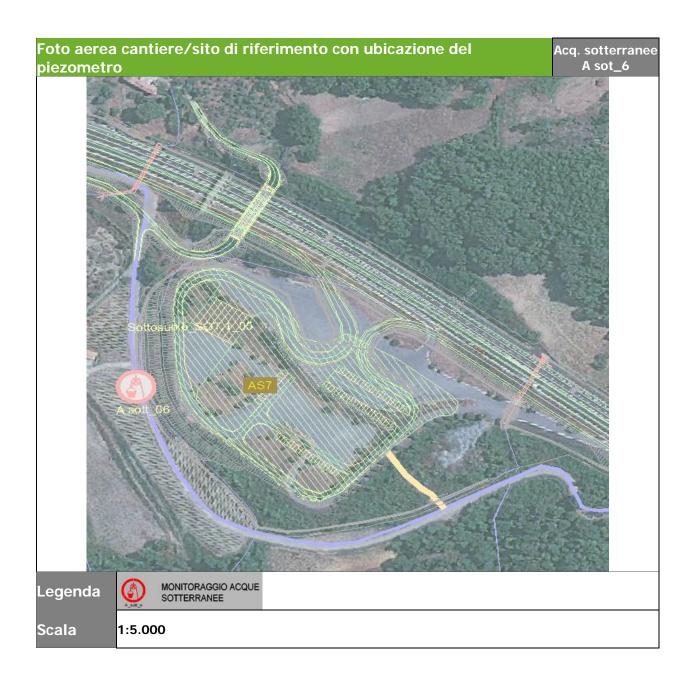
Svincolo	
Area di servizio	
Area di stoccaggio	✓
Viabilità di cantiere	

Dati di monitoraggio/misure

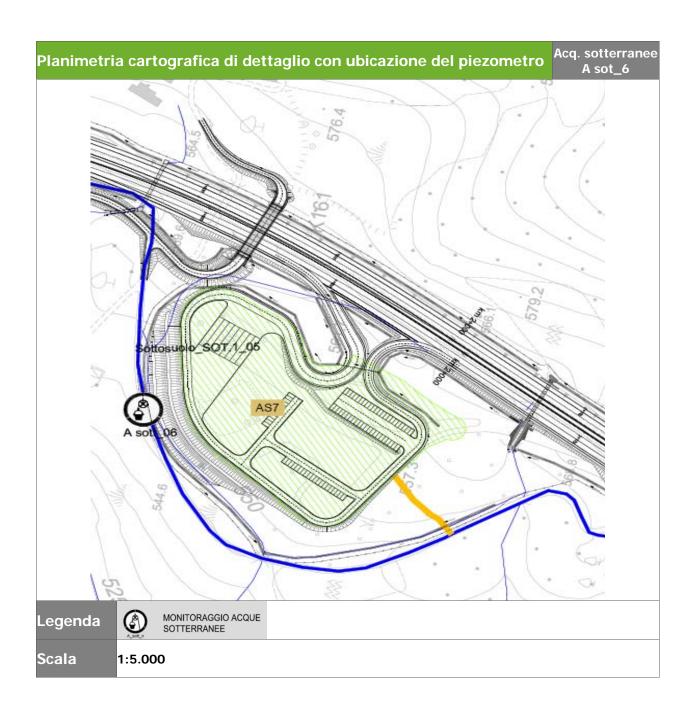
Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	546,886	+0,4	-20	0-20

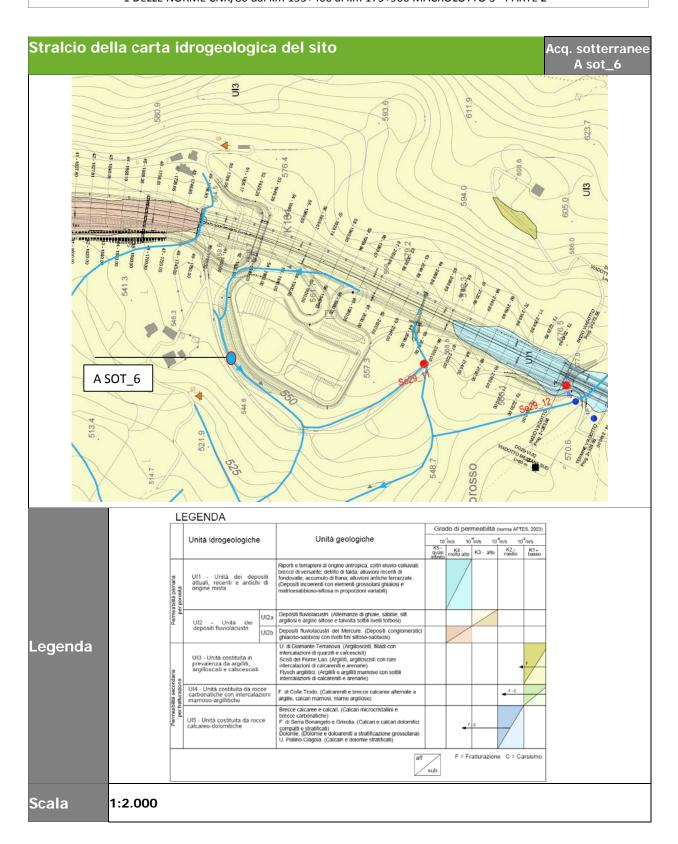
NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	16/04/2014	-1,48	545,406	Acqua limpida
2	24/06/2014	-4,30	542,586	-
3	24/11/2014	-6,40	540,486	Pozzetto danneggiato
4	24/02/2015	-2,27	544,616	Sostituzione del pozzetto in plastica e sostituzione con pozzetto in ghisa carrabile
5	20/05/2015	-5,98	540,906	-
6	04/08/2015	-7,11	539,776	-
7	21/01/2016	-	-	Piezometro disperso


ital SARC


Monitoraggio Ambientale:

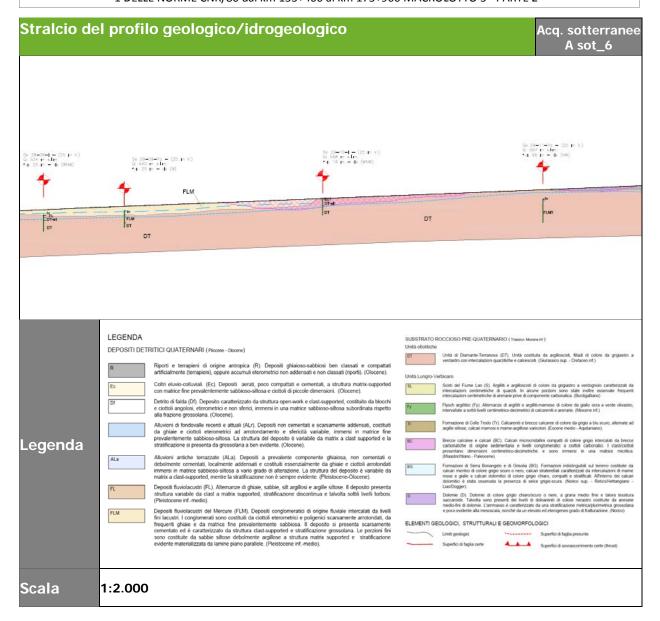
COMPONENTE ACQUE SOTTERRANEE




ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

L'area su cui ricade il piezometro è situata circa 130 ad ovest della carreggiata sud. Il territorio è interamente costituito da formazioni strutturalmente complesse dell'Unità Diamante Terranova, costituite da argilloscisti, filladi grigio-verdastre scagliose con intercalazioni quarzitiche e di calcescisti. Nel settore in esame, alle argille scagliose si sovrappongono localmente i Depositi Fluvio-Lacustri del Mercure, costituiti da 10-15 m di sabbie da debolmente limose a limose e limosabbiose talora con ghiaie eterometriche.

L'area su cui si imposta la verticale piezometrica è interessata da indizi di movimento gravitativo.

Dal punto di vista idrogeologico, il complesso argillo-scistoso è costituito da rocce caratterizzate da un'elevata percentuale in materiale argilloso, bassa permeabilità primaria per porosità e scarsa permeabilità secondaria per fratturazione, ad eccezione delle superfici di discontinuità maggiori dove l'acqua convogliata può essere cospicua. Tali caratteristiche favoriscono generalmente la presenza di limitate falde idriche sospese alimentate principalmente da apporti di acque meteoriche.

La bassa permeabilità degli ammassi (K1) può infatti aumentare al crescere del grado di alterazione. Le porzioni più deformate e alterate presentano un grado di addensamento e di compattazione minore rispetto all'ammasso integro; tale caratteristica ne aumenta la permeabilità per fratturazione e favorisce l'accumulo locale di acqua meteorica che si infiltra attraverso le superfici di discontinuità e alimenta le falde sospese.

Nel settore di interesse è stata tuttavia evidenziata la presenza di una probabile falda libera entro i depositi fluviolacustri del Mercure (FLM) alla quale se ne aggiunge una seconda, più profonda, all'interno del substrato argillitico dell'Unità Diamante-Terranova (DT).

Si può infatti notare che tutto il settore compreso tra l'imbocco lato RC della galleria Laria e l'imbocco lato SA della galleria Colle Trodo, presenta una superficie piezometrica misurata entro gli argilloscisti (DT ed SL) ad andamento continuo (piezometri Se29_7, Se29_9, Se29_11, Se29_12, Se29_14, Se29_22 ed Se29_24), talvolta accoppiata ad una superficie rilevata solamente nei sovrastanti depositi detritici FLM (vedi piezometro Se29_9). L'andamento della superficie misurata negli argilloscisti segue l'andamento della superficie topografica esprimendo una soggiacenza variabile tra 3-4 m a circa 15 m, in quanto il settore è privo di significativi corsi d'acqua in grado di alimentare o drenare la falda

Il piezometro, di profondità pari a 30 m, interessa verosimilmente depositi di copertura sabbiosolimosi e sabbioso-limoso-ghiaiosi sovrastanti il substrato costituito da filladi e argilloscisti. Le letture finora eseguite evidenziano un livello piezometrico molto superficiale e distribuito a profondità comprese tra -1.5 m (aprile 2014) e -4.5 m circa (giugno 2014) da p.c., verosimilmente contenuto all'interno dei depositi detritici di copertura. (monitoraggio "ante operam").

La lettura di novembre 2014 ("corso d'opera") evidenzia un abbassamento del livello di falda fino a profondità di circa -6.40 m da p.c. (-5 metri circa rispetto ai livelli di aprile).

Nella II lettura della fase "corso d'opera" (febbraio 2015) si evidenzia una nuova risalita della falda fino a profondità di circa -2.27 m da p.c., grosso modo analogo a quello di aprile 2014.

Le letture di maggio e agosto 2015 forniscono una profondità del livello di falda compreso tra 6-7 m da p.c..

La lettura di gennaio 2016 non è stata eseguita a causa del seppellimento del piezometro in sede di costruzione delle opere regimazione idraulica al piede del rilevato.

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro
Campionatore manuale Bailer + Corda
Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials
Spurgo piezometro

Scheda risultati	Acq. sotterranee
	A sot_6

Gruppo 1	Unità di	l lettura	II lettura	III lettura	IV lettura
Temperatura dell'aria	misura °C	24/11/2014 15,21	24/02/2015 13,15	20/05/2015 19,05	04/08/2015 23,82
Temperatura dell'alla Temperatura	°C	16,76	12,04	14,80	16,76
dell'acqua	C	10,70	12,04	14,00	10,70
Ossigeno ppm	mg/l	20,99	5,44	5,20	3,93
Ossigeno %	%	232,9	55,9	55,7	43,6
Conducibilità	mS/cm	475	524	452	409
pH	-	7,35	7,57	7,49	7,89
Potenziale RedOx Gruppo 2	m∨ Unità di	21,9 I lettura	27,1 II lettura	42,7	67,4 IV lettura
Gruppo 2	misura	24/11/2014	24/02/2015	20/05/2015	04/08/2015
Idrocarbuti totali	mg/l	<0.1	<0.1	<0.1	<0.1
TOC	mg/l	9,20	7	7,01	3,81
Tensioattivi anionici	mg/l	<0,01	<0,1	< 0,01	<0,01
Tensioattivi non ionici	mg/l	<0,01	<0,1	0,11	<0,01
Cromo totale	μ g/l	<1	<1	<1	<1
Cromo VI	μ g/l	<1	<1	<1	<1
Ferro	μ g/l	<20	28	<20	<20
Alluminio	μ g/l	<20	23,4	<20	<20
Gruppo 3	Unità di	I lettura	II lettura	III lettura	IV lettura
Nichel	misura	24/11/2014	24/02/2015	20/05/2015	04/08/2015
	μ g/l	<1	<1	<1	<1
Zinco	μ g/l	<1	<1	<1	<1
Piombo	μ g/l	<1	<1	<1	<1
Cadmio	μ g/l	<1	<1	<1	<1
Arsenico	μ g/l	<1	<1	<1	<1
Manganese	μ g/l	<1	<1	3	<1
Rame	μ g/l	<1	<1	<1	5,9
Gruppo 4	Unità di misura	I lettura 24/11/2014	II lettura 24/02/2015	111 lettura 20/05/2015	IV lettura 04/08/2015
Calcio	mg/l	95	67	52	8
Sodio	mg/l	8,2	13,6	10,5	3
Magnesio	mg/l	4	14	9	<1
Potassio	mg/l	2,80	4,10	4,40	1,3
Nitrati	mg/l	<1	<1	94,1	1,1
Cloruri	mg/l	3	12	112	15
Solfati	mg/l	5,3	21,2	59,4	24

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note Acq. sotterranee

I MISURA CO (24/11/2014)_Pozzetto di protezione del piezometro danneggiato dal transito di automezzi di servizio. Nei pressi del ricettore sono stoccati terreni e materiale vario di cantiere (ferri, casseformi, legna ecc).

Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi.

II MISURA CO (24/02/2015)_Pozzetto di protezione del piezometro danneggiato sostituito con pozzetto in ghisa carrabile. Nei pressi del ricettore sono stoccati terreni e materiale vario di cantiere (ferri, casseformi, legna ecc). Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi.

III MISURA CO (20/05/2015)_Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi. Si segnala un netto aumento dei Nitrati, Cloruri e Solfati rispetto le precedenti misure.

IV MISURA CO (04/08/2015)_Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi. Si segnala Manganese in netto calo Rame con valorie nettamente in crescita rispetto le precedenti analisi, Calcio, Magnesio, Cloruri e Solfati anch'essi in netta diminuzione.

V MISURA CO (21/01/2016)_In tale data il piezometro non veniva ritrovato a causa dell'esecuzione di lavorazioni atte alla posa del dreno a lato della strada.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_07
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-29			
Comune	Laino Castello	Provincia	Cosenza	
Distanza dal Tracciato	110-115 m	Progressiva di progetto	km 1+800	
Codice del cantiere/sito di riferimento	A_SOTT_07		Campo privato A valle del viadotto Gallarizzo	
Coordinate geografiche rettilineee		Coordinate geografiche		
Long: 2602228,213	Lat: 4417689,244	Long: 15°57'42.90584"	Lat: 39°54'18.80496"	

Descrizione del sito

Piezometro a tubo aperto in contrada Colle Trodo a valle del viadotto Gallarizzo.

Area visibilmente interessata da movimenti franosi.

Area agricola e di pascolo.

Abitazioni sparse.

Caratterizzazione sintetica del sito

Elementi antropico insediativi			
Attività agricola	✓		
Attività produttiva			
Viabilità (strade comunali, provinciali, ecc) interferente	✓		
Cascina - fabbricato rurale	✓		
Aree degradate			
Versante boscato			
Versante privo di vegetazione	√		

Elementi di valore naturalistico/ambientale		
Area di pregio paesistico - ambientale		
Parco regionale		
Riserva naturale - SIC - ZPS		
altro		
Bosco		
Corso d'acqua		

Elementi di progetto			
Cantiere	✓		
Area tecnica			
Imbocco galleria naturale			
Imbocco galleria artificiale			
Trincea			
Rilevato			
Viadotto	✓		

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

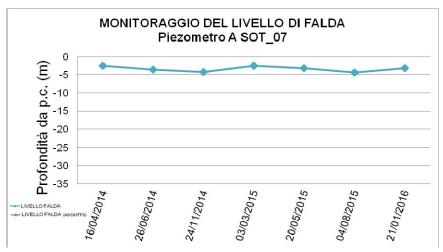
Nucleo - edificio di interesse storico	
Cimitero	

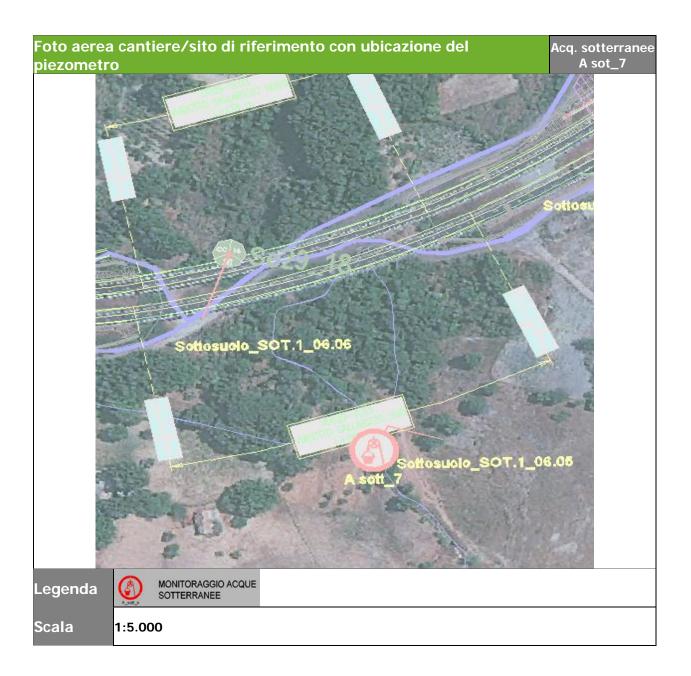
Falda	✓
Vincoli idrogeologici - rispetto pozzi idrici	

Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

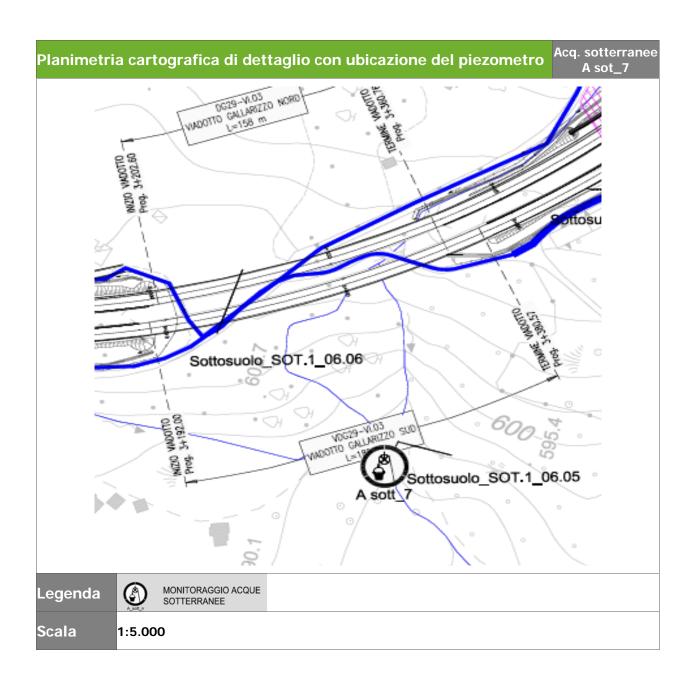
Dati di monitoraggio/misure

Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	588,774	+0,10	-35	0-35

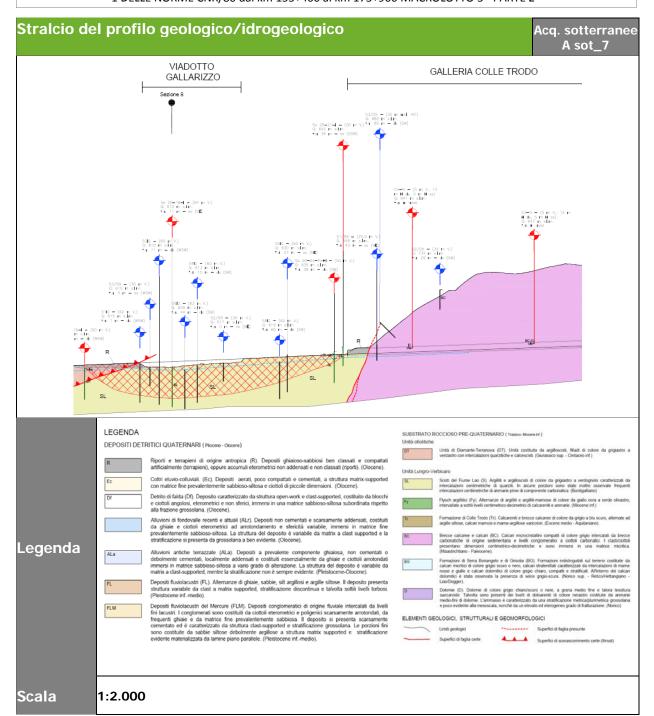

NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	16/04/2014	-2,65	586,124	Acqua leggermente torbida Pozzetto fuoriterra
2	26/06/2014	-3,58	585,194	Presenza di ovini a pascolo
3	24/11/2014	-4,26	584,514	Presenza di ovini a pascolo
4	03/03/2015	-2,53	586,244	Tracce di ovini a pascolo
5	20/05/2015	-3,23	585,544	Tracce di ovini a pascolo
6	04/08/2015	-4,30	584,474	Tracce di ovini a pascolo
7	21/01/2016	-3,11	585,664	Tracce di ovini a pascolo


Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE



Monitoraggio Ambientale:



ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro è ubicato in corrispondenza della grande frana attiva che interessa l'attuale viadotto Gallarizzo e si colloca circa 50 metri a valle del tracciato dell'autostrada A3. Il territorio si cui si imposta il movimento franoso è interamente costituito da formazioni strutturalmente complesse riconducibili agli Scisti del Fiume Lao, dell'Unità Lungro-Verbicaro. Gli Scisti del Fiume Lao rappresentano un'estesa formazione generalmente monotona in quanto costituita da estese argilliti e argilloscisti nerastri, con intercalazioni di livelli più competenti di potenza mediamente centimetrico decimetrica e natura calcareo-quarzitica. In dettaglio gli affioramenti sono caratterizzati da struttura scistosa ed elevata fissilità causata dalla presenza di una stratificazione/scistosità molto pervasiva e spaziata mediamente pochi mm; tale caratteristica attribuisce all'ammasso una scarsa competenza e resistenza all'erosione, così come chiaramente evidenziato dalla scarsa presenza di affioramenti osservati durante la campagna di rilievi di terreno e dalla presenza di deformazioni duttili

Con riferimento all'assetto geomorfologico ed alle caratteristiche della Frana Gallarizzo, i dati di monitoraggio raccolti in sede di progettazione esecutiva hanno evidenziato velocità massime di movimento dell'ordine dei 30 mm/anno, con spessori massimi coinvolti di circa 50 m.

Dal punto di vista idrogeologico, il complesso argillo-scistoso è costituito da rocce caratterizzate da un'elevata percentuale in materiale argilloso, bassa permeabilità primaria per porosità e permeabilità secondaria per fratturazione, soprattutto lungo superfici di discontinuità maggiori dove l'acqua convogliata può essere cospicua. Tali caratteristiche favoriscono generalmente la presenza di limitate falde idriche sospese alimentate principalmente da apporti di acque meteoriche.

La bassa permeabilità degli ammassi (K1) può infatti aumentare al crescere del grado di alterazione. Le porzioni più deformate e alterate presentano un grado di addensamento e di compattazione minore rispetto all'ammasso integro; tale caratteristica ne aumenta la permeabilità per fratturazione e favorisce l'accumulo locale di acqua meteorica che si infiltra attraverso le superfici di discontinuità e alimenta le falde sospese.

Nell'area su cui ricade il piezometro la superficie della falda misurata all'interno del corpo di frana è pressocchè continua e segue l'andamento della superficie topografica, evidenziando una soggiacenza variabile tra 0.5-1 m e 4-6 m.

Il settore occupato dalla Frana Gallarizzo è posto a contatto per faglia con il rilievo carbonatico del Colle Trodo, rilievo che costituisce probabilmente un serbatoio in grado di alimentare la falda presente nel settore della frana. Tale ipotesi è suggerita dalla presenza della sorgente Fiumicello (sorgente per limite di permeabilità definito), posta tra gli argilloscisti SL della Frana Gallarizzo e il detrito di falda (Df) presente a ridosso della scarpata di faglia che borda verso Nord il rilievo. Detta sorgente è infatti caratterizzata da un'elevata portata media pari a 100 l/s molto superiore rispetto a quanto osservato nella restante parte argillitica del sublotto DG29.

Le due letture eseguite sul piezometro ambientale nella fase di ante operam hanno evidenziato l'esistenza di una falda superficiale caratterizzata da valori di soggiacenza dell'ordine dei 2.5-3.5 m, in accordo con i dati esistenti e relativi a verticali piezometriche limitrofe.

La lettura di novembre 2014 (I lettura corso d'opera) evidenzia un ulteriore anche se modesto abbassamento del livello di falda fino a profondità di circa -4.26 m da p.c. (-1.60 metri circa rispetto ai livelli di aprile).

La II lettura del corso d'opera (marzo 2015) indica un livello di falda a circa -2.53 m da p.c., analogo a quello di aprile 2014 misurato nella fase di ante operam (-2.56 m da p.c.).

Le successive letture di maggio e agosto 2015, nonché il dato fornito dalla misura di gennaio 2016, mostrano un livello di falda distribuito tra -3.20 m e -4.30 m da p.c., in sostanziale accordo con le precedenti letture del 2014.

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro
Campionatore manuale Bailer + Corda
Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials
Spurgo piezometro

Scheda risultati

Acq. sotterranee
A sot_7

Gruppo 1	Unità di misura	I lettura	II lettura	III lettura	IV lettura	V lettura
огарро г	Offica di filisura	24/11/2014	03/03/2015	20/05/2015	04/08/2015	21/01/2016
Temperatura dell'aria	°C	15,21	11,17	19,21	22,40	12,21
Temperatura dell'acqua	°C	14,76	10,89	14,60	19,63	12,35
Ossigeno ppm	mg/l	4,36	9,24	2,54	2,43	8,54
Ossigeno %	%	46,7	91,0	27,2	29,0	86,7
Conducibilità	mS/cm	1247	1287	1482	1158	1136
pH Potenziale RedOx	- mV	7,57 73,4	7,19 69,3	7,53 80,7	7,57 78,8	7,22 71,5
Gruppo 2	Unità di misura	I lettura	U lettura	III lettura	/o,o IV lettura	V lettura
отирро 2	Offica di filisura	24/11/2014	03/03/2015	20/05/2015	04/08/2015	21/01/2016
Idrocarbuti totali	mg/l	<0,1	<0,1	<0,1	<0,1	<0,1
TOC	mg/l	8,60	3,70	4,00	3,00	63
Tensioattivi anionici	mg/l	<0,01	<0,01	<0,01	<0,01	<0,1
Tensioattivi non ionici	mg/l	<0,01	0,1	<0,01	<0,01	<0,1
Cromo totale	μ g/l	<1	<1	<1	<1	<1
Cromo VI	μ g/l	<1	<1	<1	<1	<1
Ferro	μ g/l	<20	<20	<20	<20	<1
Alluminio	μ g/l	<20	<20	<20	<20	<1
Gruppo 3	Unità di misura	I lettura	II lettura	III lettura	IV lettura	V lettura
Nichel		24/11/2014 <1	03/03/2015 <1	20/05/2015	04/08/2015	21/01/2016 <1
	μ g/l		• •	<1	<1	
Zinco	μ g/l	<1	<1	<1	<1	<1
Piombo	μ g/l	<1	<1	4,4	<1	<1
Cadmio	μ g/l	<1	<1	<1	<1	<1
Arsenico	μ g/l	<1	<1	<1	<1	<1
Manganese	μ g/l	269	225	374	11	<1
Rame	μ g/l	<1	<1	<1	6,2	<1
Gruppo 4	Unità di misura	I lettura 24/11/2014	II lettura 03/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Calcio	ma/l	165	143	129	17	30
Sodio	mg/l mg/l	48,4	38,3	60,1	19,5	0,6
Magnesio	mg/l	13	44	48	11	11
	•	6,60	11	7,90	3,20	<1
Potassio	1 (1/1			· ·		
Potassio Nitrati	mg/l mg/l	<1	<1	33	<0,1	14,1
	mg/l mg/l		<1 124	33 895 17,9	<0,1 46 324,1	14,1 13

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note
Acq. sotterranee
A sot_7

I MISURA CO (24/11/2014) – Le analisi di laboratorio eseguite sui campioni d'acqua prelevati hanno riscontrato nuovamente, come per l'AO, un superamento del limite normativo del Manganese, questa volta di 269 μ g/l (limite normativo a 50 μ g/l) in calo rispetto alle de precedenti misure.

II MISURA CO (03/03/2015) – Le analisi di laboratorio eseguite sui campioni d'acqua prelevati hanno riscontrato nuovamente, come per l'AO, così come riscontrato nella I campagna di monitoraggio CO un superamento del limite normativo del Manganese, questa volta di 225 μ g/l (limite normativo a 50 μ g/l) in calo rispetto alle precedenti misure.

Si segnala in questa occasione il superamento dei Solfati con un valore di 433 mg/l (limite normativo a 250 μ g/l) ed un sensibile incremento dei Cloruri che da un valore di 9 mg/l riscontrato a novembre 2014 è passato a 124 mg/l di Marzo 2015.

III MISURA CO (20/05/2015) – Le analisi di laboratorio eseguite sui campioni d'acqua prelevati hanno riscontrato nuovamente, come per l'AO, così come riscontrato nella I e nella II campagna di monitoraggio CO un superamento del limite normativo del Manganese, questa volta di 374 μ g/l (limite normativo a 50 μ g/l) in aumento rispetto alle precedenti misure.

Si segnala il valore entro il limite normativo dei Solfati che precedentemente avevano dato un con un valore di 433 mg/l (limite normativo a 250 mg/l); continua l'incremento dei Cloruri che da un valore di 9 mg/l riscontrato a novembre 2014 è passato a 124 mg/l di Marzo 2015 e ad oggi è arrivato a 895 mg/l; anche i Nitrati sono in aumento rispetto le precedenti misure.

IV MISURA CO (04/08/2015) – Le analisi di laboratorio eseguite sui campioni d'acqua prelevati hanno riscontrato il Manganese che da sempre è stato rilevato ben oltre il limite normativo (anche in AO) ora è al di sotto del suddetto limite; il Rame che da sempre è stato rilevato in concentrazioni inferiori di 1 μ g/l mentre ora è di 6,2 μ g/l; Calcio, Nitrati e Cloruri sono in notevole diminuzione; Solfati oltre il limite (come rilevato nella campagna di CO a Marzo 2015 e in AO a Aprile 2014) con valore di 324,1 mg/l (limite normativo a 250 mg/l).

V MISURA CO (21/01/2016)_I valori delle analisi di laboratorio eseguite sui campioni d'acqua prelevati sono entro i limiti normativi.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_08
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-29		
Comune	Laino Castello	Provincia	Cosenza
Distanza dal Tracciato	60 m	Progressiva di progetto	km 3+500
Codice del cantiere/sito	A SOTT 08	Destinazione d'uso post operam del	Strada pubblica Imbocco Nord Galleria
di riferimento		•	Colletrodo
Coordinate geografiche rettilineee		Coordinate geografiche	
Long: 2602531,949	Lat: 4417635,353	Long: 15°57'55.67164"	Lat: 39°54'16.95090"

Descrizione del sito

Piezometro a tubo aperto nei pressi dell'imbocco nord della galleria naturale Colle Trodo. Area visibilmente interessata da movimenti franosi. Area agricola.

Caratterizzazione sintetica del sito

Elementi antropico insediat		
Attività agricola	✓	
Attività produttiva		
Viabilità (strade comunali, provinciali, ecc) interferente	~	
Cascina - fabbricato rurale		
Aree degradate		
Versante boscato	~	

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
altro	
Bosco	
Corso d'acqua	

Elementi di progetto	
Cantiere	✓
Area tecnica	
Imbocco galleria naturale	✓
Imbocco galleria artificiale	✓
Trincea	
Rilevato	

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Versante privo di vegetazione	
Nucleo - edificio di interesse storico	
Cimitero	

Falda	✓
Vincoli idrogeologici - rispetto pozzi idrici	

Viadotto	✓
Svincolo	
Area di servizio	
Area di stoccaggio	✓
Viabilità di cantiere	

Dati di monitoraggio/misure

Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	642,52	-0,13	-20	0-20

NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	16/04/2014	-2,82	639,7	Acqua limpida Pozzetto carrabile
2	26/06/2014	-4,30	638,22	-
3	24/11/2014	-3,48	639,04	Pozzetto in ghisa
4	03/03/2015	-1,72	640,8	-
5	20/05/2015	-2,92	639,8	-
6	04/08/2015	-4,20	638,32	-
7	21/01/2016	-3,99	638,53	-

ital ASARC

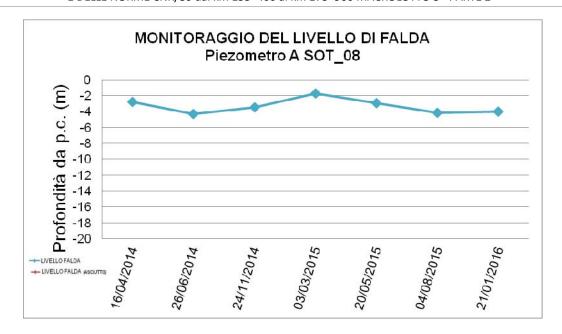
Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Rilievi fotografici

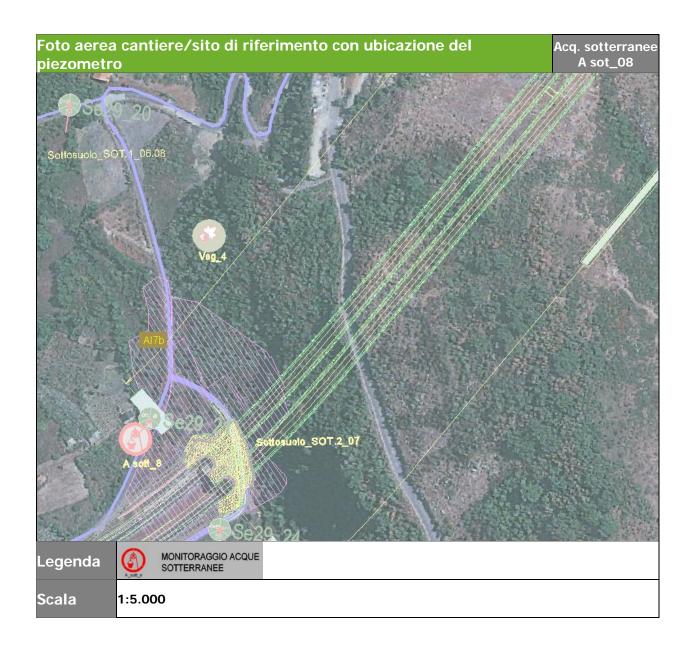
Acq. sotterranee A sot_08



ital ** SARC

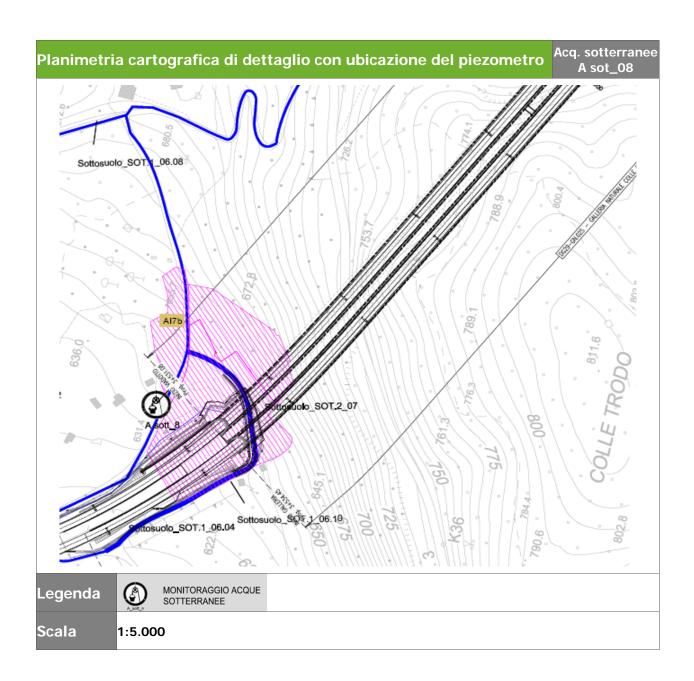
Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

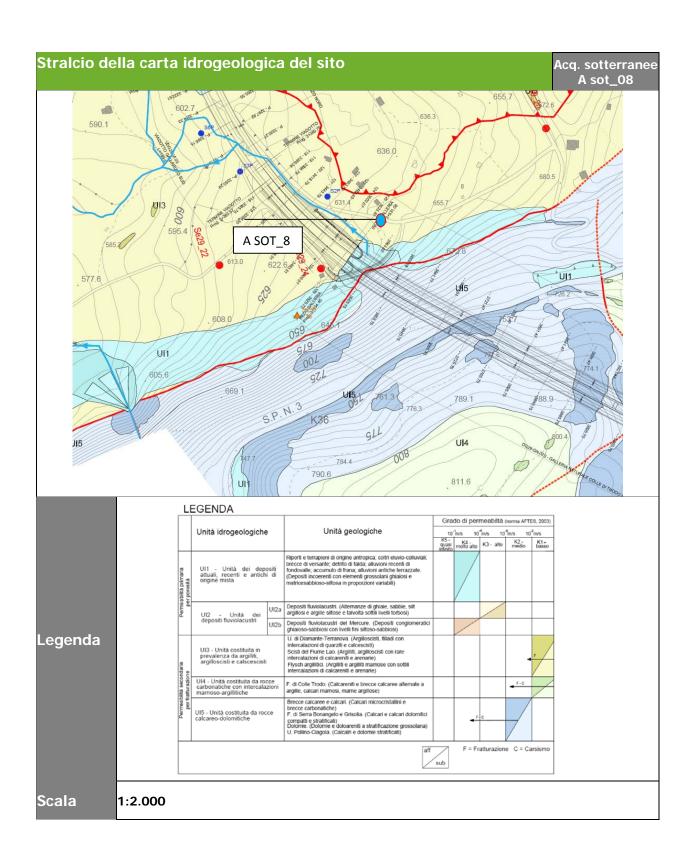


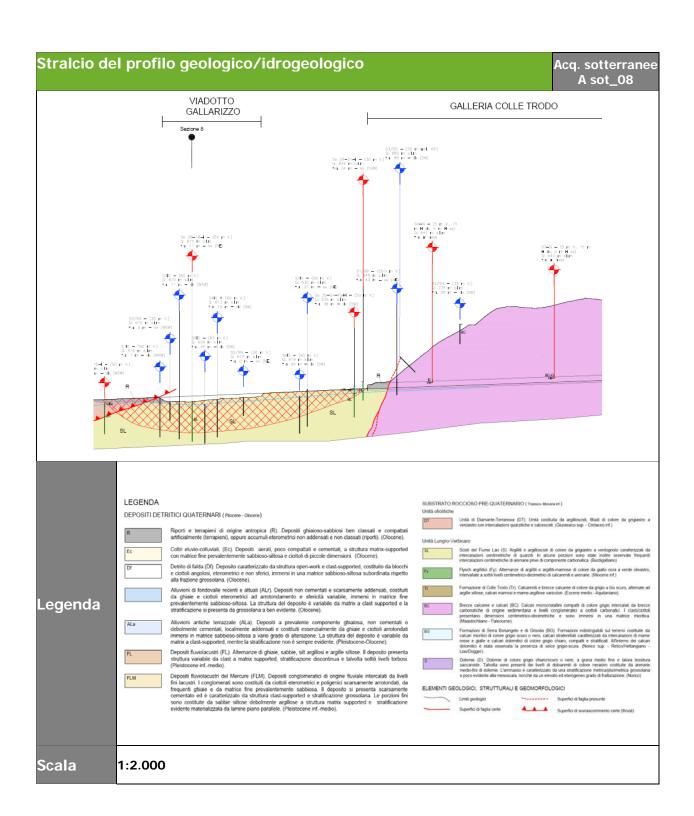
ital SARC

Monitoraggio Ambientale:



COMPONENTE ACQUE SOTTERRANEE


Monitoraggio Ambientale:



Monitoraggio Ambientale:

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro è ubicato sul fianco sinistro della grande frana attiva che interessa principalmente l'attuale viadotto Gallarizzo e si colloca circa 35-40 metri a monte dell'autostrada A3, a ridosso dell'imbocco nord della galleria Colle Trodo.

Il territorio si cui si imposta il movimento franoso è interamente costituito da formazioni strutturalmente complesse riconducibili agli Scisti del Fiume Lao, dell'Unità Lungro-Verbicaro. La verticale piezometrica è situata un centinaio di metri a NW dal piede del rilievo calcareo-dolomitico di Colle Trodo.

Gli Scisti del Fiume Lao rappresentano un'estesa formazione generalmente monotona in quanto costituita da estese argilliti e argilloscisti nerastri, con intercalazioni di livelli più competenti di potenza mediamente centimetrico decimetrica e natura calcareo-quarzitica. In dettaglio gli affioramenti sono caratterizzati da struttura scistosa ed elevata fissilità causata dalla presenza di una stratificazione/scistosità molto pervasiva e spaziata mediamente pochi mm; tale caratteristica attribuisce all'ammasso una scarsa competenza e resistenza all'erosione, così come chiaramente evidenziato dalla scarsa presenza di affioramenti osservati durante la campagna di rilievi di terreno e dalla presenza di deformazioni duttili

Con riferimento all'assetto geomorfologico ed alle caratteristiche della Frana Gallarizzo, i dati di monitoraggio raccolti in sede di progettazione esecutiva hanno evidenziato velocità massime di movimento dell'ordine dei 30 mm/anno, con spessori massimi coinvolti di circa 50 m.

Dal punto di vista idrogeologico, il complesso argillo-scistoso è costituito da rocce caratterizzate da un'elevata percentuale in materiale argilloso, bassa permeabilità primaria per porosità e permeabilità secondaria per fratturazione, soprattutto lungo superfici di discontinuità maggiori dove l'acqua convogliata può essere cospicua. Tali caratteristiche favoriscono generalmente la presenza di limitate falde idriche sospese alimentate principalmente da apporti di acque meteoriche.

La bassa permeabilità degli ammassi (K1) può infatti aumentare al crescere del grado di alterazione. Le porzioni più deformate e alterate presentano un grado di addensamento e di compattazione minore rispetto all'ammasso integro; tale caratteristica ne aumenta la permeabilità per fratturazione e favorisce l'accumulo locale di acqua meteorica che si infiltra attraverso le superfici di discontinuità e alimenta le falde sospese.

Nell'area su cui ricade il piezometro, la superficie della falda misurata all'interno del corpo di frana è pressocchè continua e segue l'andamento della superficie topografica, evidenziando una soggiacenza variabile tra 2 e 5 m.

Il settore occupato dalla Frana Gallarizzo è posto a contatto per faglia con il rilievo carbonatico del Colle Trodo, rilievo che costituisce probabilmente un serbatoio in grado di alimentare la falda presente nel settore della frana. Tale ipotesi è suggerita dalla presenza della sorgente Fiumicello (sorgente per limite di permeabilità definito), posta tra gli argilloscisti SL della Frana Gallarizzo e il detrito di falda (Df) presente a ridosso della scarpata di faglia che borda verso Nord il rilievo. Detta sorgente è infatti caratterizzata da un'elevata portata media pari a 100 l/s molto superiore rispetto a quanto osservato nella restante parte argillitica del sublotto DG29.

Il piezometro ambientale si colloca sul versante subito a monte della carreggiata nord della A3, ad una quota di circa 641 m s.l.m., superiore di circa 10 m rispetto al livello stradale. Le due letture eseguite sul piezometro ambientale nella fase di "ante operam tra aprile e giugno 2014 hanno evidenziato l'esistenza di una falda superficiale caratterizzata da valori di soggiacenza dell'ordine dei 3-4 m, in accordo con i dati esistenti e raccolti in sede di monotoraggio geotecnico.

La lettura di novembre 2014 (I lettura corso d'opera) evidenzia una risalita, per quanto modesta e pari circa 1 metro, del livello di falda, che si attesta a profondità di -3.48 m da p.c., riallineandosi grosso modo con i livelli di aprile 2014.

La II lettura del corso d'opera (marzo 2015) indica un livello di falda a circa -1.72 m, superiore a quello misurato nell'aprile 2014 nella fase di ante operam (-2.82 m da p.c.).

Le successive letture di maggio e agosto 2015, nonché il dato fornito dalla misura di gennaio 2016, mostrano un livello di falda distribuito tra -3.00 m e -4.20 m da p.c., in sostanziale accordo con le precedenti letture del 2014.

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro
Campionatore manuale Bailer + Corda
Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials
Spurgo piezometro

Scheda risultati Acq. sotterranee A sot_08

Gruppo 1	Unità di	I lettura	II lettura	III lettura	IV lettura	V lettura
	misura	24/11/2014	03/03/2015	20/05/2015	04/08/2015	21/01/2016
Temperatura dell'aria	°C	16,08	13,30	25,05	26,21	11,54
Temperatura dell'acqua	°C	15,94	12,43	23,41	16,02	12,26
Ossigeno ppm	mg/l	25,07	6,92	3,84	3,74	5,69
Ossigeno %	%	276,8	71,0	49,1	41,7	69,8
Conducibilità	mS/cm	679	1110	222	821	1003
pH	-	8,11	6,99	8,03	7,77	7,98
Potenziale RedOx	mV	35,5	98,7	22,2	98,5	86,9
Gruppo 2	Unità di misura	I lettura 24/11/2014	II lettura 03/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Idrocarbuti totali	mg/l	<0,1	<0,1	<0,1	<0,1	<0,1
TOC	mg/l	8,80	4,20	6,80	1,20	43,80
Tensioattivi anionici	mg/l	<0,01	<0,01	<0,01	<0,01	<0,1
Tensioattivi non ionici	mg/l	<0,01	0,19	<0,01	<0,01	<0,1
Cromo totale	μ g/l	<1	<1	<1	<1	<1
Cromo VI	μ g/l	<1	<1	<1	<1	<1
Ferro	μ g/l	<20	<20	<20	<20	2
Alluminio	μ g/l	<20	<20	<20	<20	<1
Gruppo 3	Unità di misura	I lettura 24/11/2014	II lettura 03/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Nichel	μ g/l	<1	<1	<1	<1	<1
Zinco	μ g/l	<1	<1	<1	<1	<1
Piombo	μ g/l	<1	<1	<1	<1	<1
Cadmio	μ g/l	<1	<1	<1	<1	<1
Arsenico	μ g/l	<1	<1	<1	<1	<1
Manganese	μ g/l	10	154	9	9	<1
Rame	μ g/l	<1	<1	4,2	8,1	<1
Gruppo 4	Unità di misura	I lettura 24/11/2014	II lettura 03/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Calcio	mg/l	139	86	48	15	33
Sodio	mg/l	10,9	56,6	16,2	10,3	1,3
Magnesio	mg/l	11	36	13	9	27
Potassio	mg/l	3,70	19	10,40	6,90	<1

ital ASARC

Monitoraggio Ambientale:

STEAGO

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Nitrati	mg/l	<1	<1	5,0	4,9	<1
Cloruri	mg/l	2	139	<1	36	15
Solfati	mg/l	32,2	247	<1	446,8	367

Note
Acq. sotterranee
A sot_08

I MISURA CO (24/11/2014) – Sostituzione del vecchio pozzetto in ghisa con uno nuovo altrettanto di ghisa anch'esso carrabile ma di dimensioni maggiori.

Dalle analisi chimiche eseguite sui campioni di acqua, il Manganese che nell'AO è sempre risultato ben oltre il limite normativo, attualmente è al di sotto di esso; per quanto riguarda i Solfati che nella II campagna di monitoraggio AO è risultato oltre il limite normativo, attualmente risulta ben al di sotto di esso.

II MISURA CO (03/03/2015) – Dalle analisi chimiche eseguite sui campioni di acqua, il Manganese con valore di 154 μ g/l (il cui limite è 50 μ g/l) è tornato a superare il limite normativo così come riscontrato già in AO; per quanto riguarda i Solfati che nella II campagna di monitoraggio AO è risultato oltre il limite normativo e nella prima campagna di monitoraggio CO è risulta ben al di sotto di esso, attualmente risulta quasi al limite infatti il valore riscontrato è di 247 μ g/l quando il limite normativo è di 250 μ g/l. Anche i Cloruri sono in evidente aumento rispetto la precedente campagna.

III MISURA CO (20/05/2015) – Dalle analisi chimiche eseguite sui campioni di acqua, il Manganese che nella precedente campagna di monitoraggio è risultato oltre il limite normativo (così come riscontrato già in AO) in quest'ultima campagna è ben al di sotto del limite di legge; il Rame è leggermente in aumento rispetto le precedenti campagne nelle quali il valore riscontrato è sempre stato <1 mg/l; Cloruri e Solfati che precedentemente erano risultati in aumento, ad oggi i valori riscontrati sono <1 mg/l.

IV MISURA CO (04/08/2015) – Dalle analisi chimiche eseguite sui campioni di acqua risulta che il TOC mantiene il trend discendente, il Rame è leggermente in crescita ma sempre al di sotto del limite normativo così come i Cloruri.

I Solfati sono oltre il limite normativo che è fissato a 250 mg/l mentre il valore riscontrato è di 446,8 mg/l; nella campagna di monitoraggio CO di Marzo 2015 risultava essere quasi al limite mentre l'esubero di maggiore entità è stato riscontrato a Giugno 2014 in AO.

V MISURA CO (21/01/2016) – Dalle analisi di laboratorio risulta che i Solfati così come nella precedente campagna sono risultati oltre il limite normativo fissato a 250 mg/l questa volta con un valore di 367 mg/l.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_09
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-29			
Comune	Mormanno	Provincia	Cosenza	
Distanza dal Tracciato	43 m Progressiva di progetto km 4+400			
Codice del cantiere/sito di riferimento	A_SOTT_09	Destinazione d'uso post operam del cantiere/sito di	Rilevato sopra galleria Colle Trodo imb sud	
Coordinate geografiche rettilineee		Coordinate geografiche		
Long: 2603222,413	Lat: 4417122,569	Long: 15°58'24.51148"	Lat: 39°54'00.07773"	

Descrizione del sito

Piezometro a tubo aperto sopra rilevato in prossimità dell'imbocco sud della galleria naturale Colle Trodo vicino lo svincolo autostradale di Mormanno.

Area agricola e presenza di abitazioni sparse.

Svincolo autostradale Mormanno.

Caratterizzazione sintetica del sito

Elementi antropico insedia	tivi
Attività agricola	✓
Attività produttiva	
Viabilità (strade comunali, provinciali, ecc) interferente	
Cascina - fabbricato rurale	✓
Aree degradate	
Versante boscato	√

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
altro	
Bosco	
Corso d'acqua	

Elementi di progetto				
Cantiere	✓			
Area tecnica				
Imbocco galleria naturale	✓			
Imbocco galleria artificiale	✓			
Trincea				
Rilevato	√			

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Versante privo di vegetazione	
Nucleo - edificio di interesse storico	
Cimitero	

Falda	√
Vincoli idrogeologici - rispetto pozzi idrici	

Viadotto	
Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Dati di monitoraggio/misure

Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	673,269	+0,23	-25	0-25

NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	18/04/2014	-9,87	663,39	Acqua limpida Pozzetto fuori terra
2	27/06/2014	-14,08	659,189	-
3	25/11/2014	-14,93	658,339	Realizzazione pali per paratia. Collo del piezometro fuori terra.
4	04/03/2015	-8,20	665,069	Realizzazione tiranti su cordolo paratia
5	20/05/2015	-	-	Piezometro con terreno alla profondità di - 8,40 mt con assenza di acqua.
6	04/08/2015	-	-	Piezometro con terreno alla profondità di - 8,40 mt con assenza di acqua.
7	22/01/2016	-	-	Piezometro impossibile da raggiungere e da leggere

ital ASARC

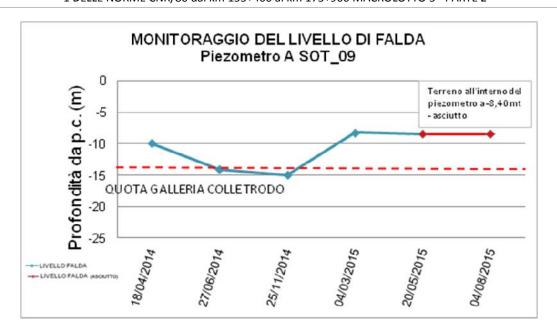
Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

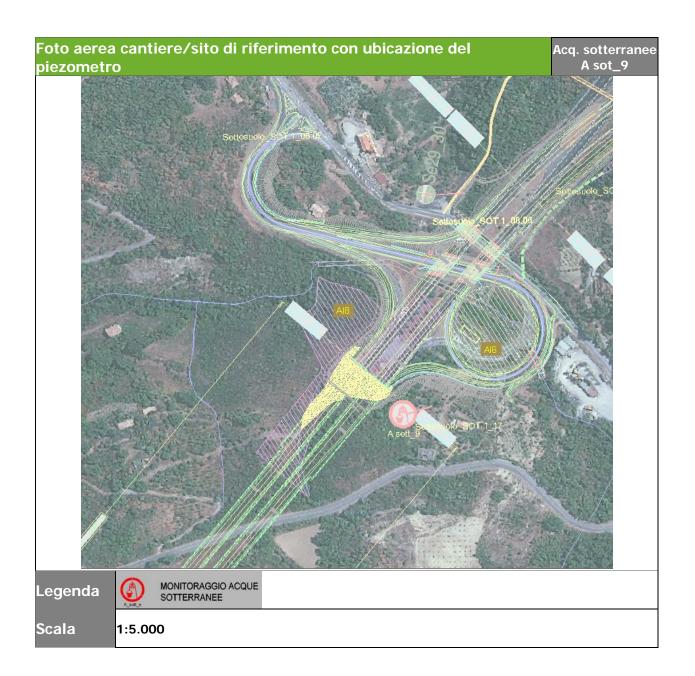
ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Rilievi fotografici

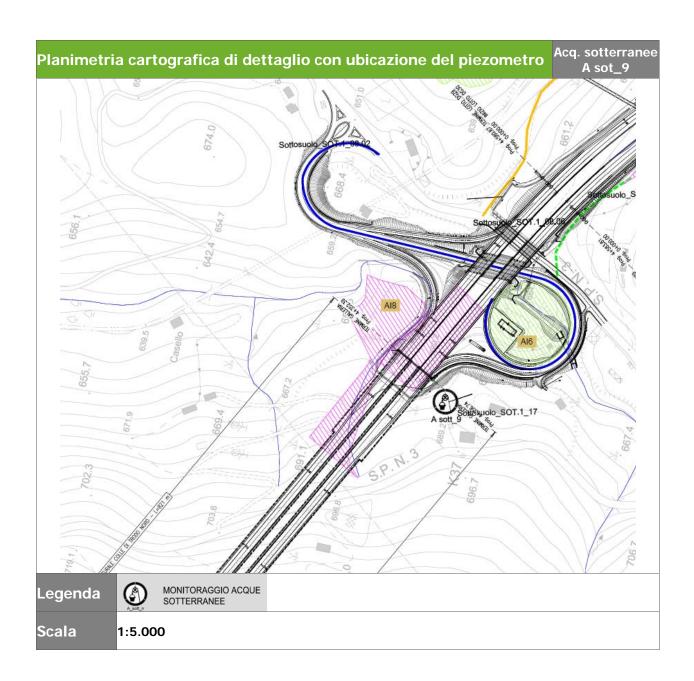
Acq. sotterranee A sot_9



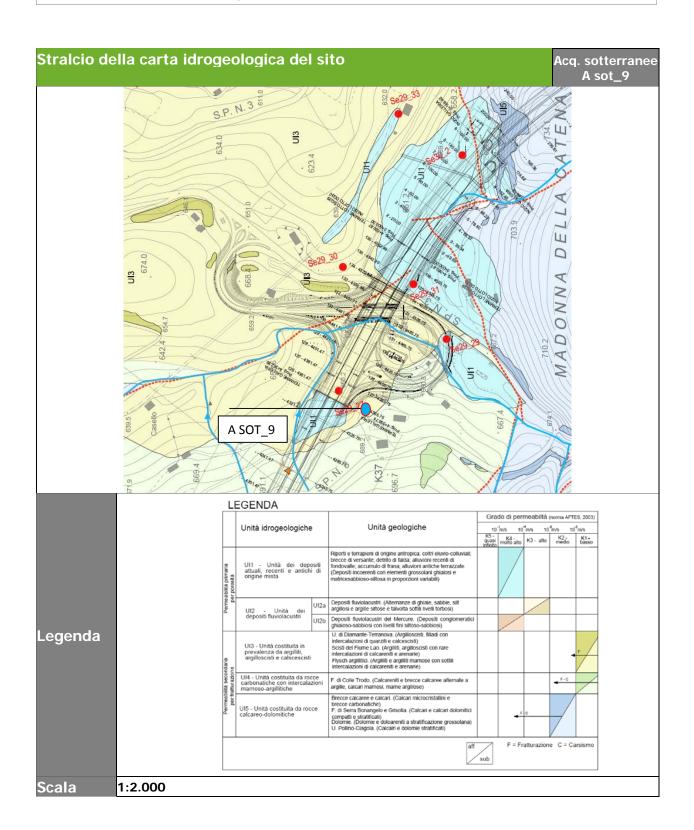
ital ASARC


Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

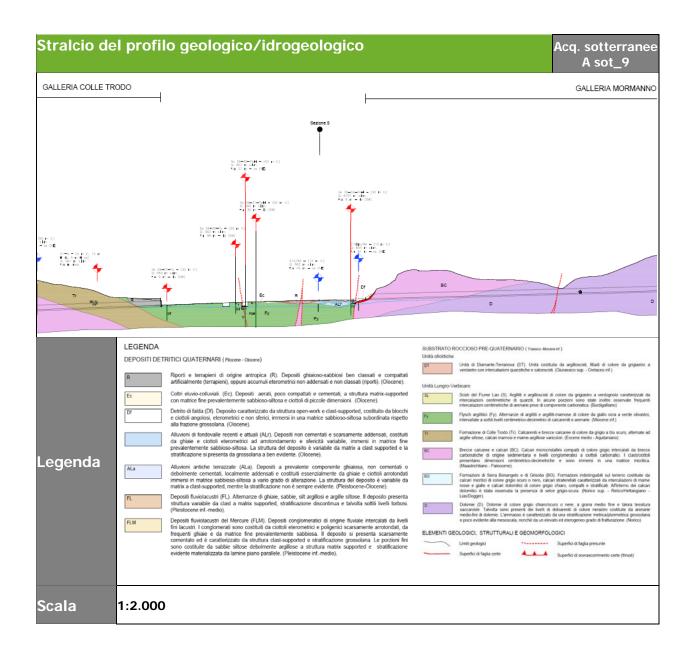

COMPONENTE ACQUE SOTTERRANEE

Monitoraggio Ambientale:



COMPONENTE ACQUE SOTTERRANEE

Monitoraggio Ambientale:



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro è ubicato in adiacenza all'imbocco sud della galleria Colle Trodo, di cui si prevede l'allargamento di entrambe le carreggiate. L'area monitorata ricade sul basso versante sud-orientale di Colle Trodo, su cui è prevista la realizzazione in trincea della rampa di uscita della carreggiata sud del nuovo svincolo di Mormanno.

I caratteri geologici del territorio sono dominati da una serie di Formazioni appartenenti all'Unità tettonica di Lungro-Verbicaro, una potente successione sedimentaria di età triassico-miocenica caratterizzata da un metamorfismo di alta pressione e bassa temperatura. Nel settore che caratterizza l'imbocco sud della galleria Colle Trodo e lo svincolo di Mormanno sono presenti tre diverse Formazioni, di età compresa tra il Cretacico superiore – Paleocene e il Miocene inferiore. L'ossatura del rilievo di Colle Trodo è infatti costituita da una potente successione dolomitica costituita da facies di margine di piattaforma e di scarpata. Le dolomie sono seguite verso l'altro, sia in continuità stratigrafica sia tramite una discordanza angolare, da brecce e calcari a selce, calcari microcristallini comptatti intercalati da brecce carbonatiche e livelli conglomeratici a ciottoli carbonatici. In seguito la presenza di una discordanza prelude al passaggio alla Formazione di Colle Trodo, che costituisce l'intera porzione inferiore del versante su cui è ubicato il piezometro. E' caratterizzata da conglomerati carbonatici grossolani di età cretacico superiore - paleocenica passanti a torbiditi calcaree e marnoso-calcaree intervallate a livelli pelitici rossi e verdi. Il settore occupato dallo svincolo di Mormanno è invece costituito dai termini più recenti della Formazione di Colle Trodo (Membro di Maierà) costituito da marne, marne argillitiche e siltiti di colore giallo ocra o verdastro, al cui interno sono presenti dei livelli di potenza centimetrica (mediamente 10 cm) costituiti da calcari grigio nerastri molto compatti e competenti. Gli affioramenti sono caratterizzati da elevata fissilità, giustificata dalla presenza di una stratificazione/scistosità pervasiva e spaziata pochi millimetri, da scarsa competenza evidenziata anche dalle numerose deformazioni duttili osservate in diversi casi e da elevata reazione all'acido cloridrico. Il contatto tra il Flysch argillitico e i sottostanti calcari e marne della Formazione di Colle Trodo è transizionale e progressivo in quanto caratterizzato da origine stratigrafica.

L'assetto idrogeologico è condizionato dalla presenza di tre diversi complessi dalle caratteristiche di permeabilità fortemente differenziate. I litotipi carbonatici e dolomitici dell'Unità Lungro-Verbicaro attraversati dalla galleria Colle Trodo, costituiti generalmente da calcari, dolomie e calcari dolomitici, sono caratterizzati da permeabilità secondaria per fratturazione localmente aumentata a causa degli effetti carsici che tali litotipi possono facilmente sviluppare; tali caratteristiche possono quindi originare una circolazione idrica significativa, che caratterizza la parte piu profonda del rilievo di Colle Trodo.

La formazione di Colle Trodo presente nel settore di imbocco sud della galleria comprende invece calcareniti e brecce calcaree alternate ad argille siltose, calcari marnosi e marne argillose. La permeabilità è complessivamente medio-bassa ed è associata prevalentemente al grado di fratturazione dell'ammasso e alla presenza di carsismo. Anche in questo caso all'aumentare della fratturazione e del carsismo si verifica un aumento della permabilità dell'ammasso.

Per quanto riguarda il complesso dei flysch argillitici che occupano il settore dello svincolo di Mormanno, si tratta di rocce caratterizzate da un'elevata percentuale in materiale argilloso, bassa permeabilità primaria per porosità e permeabilità secondaria per fratturazione, soprattutto lungo superfici di discontinuità maggiori dove l'acqua convogliata può essere cospicua. Tali caratteristiche favoriscono generalmente la presenza di limitate falde idriche sospese alimentate principalmente da apporti di acque meteoriche. La bassa permeabilità dell'ammasso può infatti aumentare al crescere del grado di alterazione. Le porzioni più deformate e alterate presentano un grado di addensamento e di compattazione minore rispetto all'ammasso integro; tale caratteristica ne aumenta la permeabilità per fratturazione e favorisce l'accumulo locale di acqua meteorica che si infiltra attraverso le superfici di discontinuità e alimenta le falde sospese.

Con riferimento alla circolazione idrica sotterranea, in corrispondenza del rilievo di Colle Trodo è stata ipotizzata una superficie piezometrica a quota inferiore rispetto alla galleria esistente, in quanto nella galleria non sono state osservate venute d'acqua drenate dal cavo esistente.

Superata la galleria Colle Trodo i piezometri eseguiti in sede di progetto esecutivo (Se29_27, Se29_29, Se29_30 ed Se29_31) hanno permesso invece di misurare una superficie piezometrica entro i Flysch argillitici (Fy) e nei terreni detritici di copertura che caratterizzano il settore dello svincolo di Mormanno. La soggiacenza della falda, è compresa tra un minimo di 3-4 m, nella zona prospiciente l'imbocco, e un massimo di circa 7-8 m.

Il settore occupato dallo svincolo, su cui si imposta un esteso movimento franoso, si colloca in adiacenza al rilievo carbonatico del Colle Trodo, rilievo che costituisce probabilmente un serbatoio in grado di alimentare parzialmente la falda rilevata nel settore dello svincolo stesso.

Nell'area su cui ricade il piezometro, ubicato ad una quota di 673 m s.l.m., la superficie della falda relativa alla lettura di aprile 2014 si posiziona a circa -9 m di profondità dal piano campagna e sembra raccordarsi a quella misurata nel settore dello svincolo. La quota della falda appare superiore di 5-6 metri a quella di fondo scavo della galleria nella zona di imbocco sud.

Le successive letture eseguite nel periodo di maggio-luglio 2014 in sede di monitoraggio ambientale evidenziano un progressivo decremento del livello della falda fino a profondità di -14.7 m da p.c., mostrando un abbassamento complessivo di circa 4-5 metri della superficie piezometrica.

La lettura di novembre 2014 ("I corso d'opera"), eseguita in concomitanza all'esecuzione dei lavori di sbancamento e di realizzazione delle opere di sostegno della rampa di uscita della carreggiata sud, denota un ulteriore e modesto abbassamento della piezometrica fino a profondità di -14.93 m da p.c..

La II lettura del corso d'opera (marzo 2015) mostra una nuova risalita del livello di falda fino a circa -8.20 m, superiore a quello di aprile 2014 misurato nella fase di ante operam (-9.87 m da p.c.).

Le successive letture di maggio e agosto 2015 hanno riscontrato la presenza di terreno nel tubo a profondità di circa -8.40 m. Non hanno evidenziato presenza di acqua fino a talel profondità.

La lettura di gennaio 2016 non è stata eseguita per l'impossibilità di raggiungere il piezometro, ubicato lungo la scarpata del rilevato.

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro
Campionatore manuale Bailer + Corda
Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials
Spurgo piezometro

Scheda risultati					Acq. Sotterranee A sot_9
Gruppo 1	Unità di misura	I lettura 25/11/2014	II lettura 04/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015
Temperatura dell'aria	°C	14,22	16,17	-	-
Temperatura dell'acqua	°C	13,41	14,99	-	-
Ossigeno ppm	mg/l	5,44	2,80	-	-
Ossigeno %	%	57,2	30,2	-	-
Conducibilità	mS/cm	356	670	-	-
рН	-	7,66	7,56	-	-
Potenziale RedOx	mV	17,7	81,4	-	-
Gruppo 2	Unità di misura	I lettura 25/11/2014	II lettura 04/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015
Idrocarbuti totali	mg/l	<0,1	<0,1	-	-
TOC	mg/l	9,40	4,10	-	-
Tensioattivi anionici	mg/l	<0,01	<0,01	-	-
Tensioattivi non ionici	mg/l	<0,01	0,08	-	-
Cromo totale	μ g/l	<1	<1	-	-
Cromo VI	μ g/l	<1	<1	-	-
Ferro	μ g/l	<20	<20	-	-
Alluminio	μ g/l	<20	<20	-	
Gruppo 3	Unità di misura	I lettura 25/11/2014	II lettura 04/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015
Nichel	μ g/l	<1	<1	-	-
Zinco	μ g/l	<1	<1	-	-
Piombo	μ g/l	<1	<1	-	-
Cadmio	μ g/l	<1	<1	-	-
Arsenico	μ g/l	<1	<1	-	-
Manganese	μ g/l	<1	15	-	-
Rame	μ g/l	<1	<1	-	-
Gruppo 4	Unità di misura	I lettura 25/11/2014	II lettura 04/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015
Calcio	mg/l	134	95	-	-
Sodio	mg/l	7,5	13,9	-	-
Magnesio	mg/l	3	8	-	-
Potassio	mg/l	1,40	4	-	-
Nitrati	mg/l	<1	1,2	-	-
Cloruri	mg/l	4	21	-	-
Solfati	mg/l	8,4	42	-	-

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note
Acq. sotterranee
A sot_9

I MISURA CO (25/11/2014) – Durante la misura all'interno del piezometro, erano in fase di esecuzione le perforazioni e la posa di armature metalliche per la realizzazione della paratia del nuovo svincolo autostradale di Mormanno.

La tesata del piezometro e di circa 1 mt al di fuori del terreno essendo stata eseguita la riprofilatura del versante dove è posto il piezometro.

Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi.

II MISURA CO (04/03/2015) – Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi.

III MISURA CO (20/05/2015) – Piezometro rinvenuto occluso da terreno alla profondità di -8,40 mt e privo d'acqua.

IV MISURA CO (04/08/2015) – Si conferma che il piezometro rinvenuto risulta essere occluso da terreno alla profondità di -8,40 mt e privo d'acqua.

V MISURA CO (21/01/2016) – Impossibile raggiungere il piezometro (e l'inclinometro associato) essendo posti su di un versante ormai riprofilato e con il piano campagna ribassato. Non sussitono le condizioni di sicurezza per il raggiungimento, e le operazioni di lettura e campionamento presso il piezometro rinvenuto peraltro nella precedente campagna di misura (quella di agosto 2015) occluso da terreno a circa -8.40 mt.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_11 bis
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-30			
Comune	Mormanno	Provincia	Cosenza	
Distanza dal Tracciato	19 m Progressiva di progetto km 5+000			
Codice del cantiere/sito di riferimento	A_SOTT_11 bis	Destinazione d'uso post operam del cantiere/sito di	Viadotto Mancuso/area di deposito	
Coordinate geografiche rettilineee		Coordinate geografiche		
Long: 2606572,281	Lat: 4415249,023	Long: 16°00'44.66834"	Lat: 39°52'58.10949"	

Descrizione del sito

Piezometro a tubo aperto circa 30-40 m a valle del viadotto Mancuso.

Caratterizzazione sintetica del sito

Elementi antropico insediativi				
Attività agricola	√			
Attività produttiva				
Viabilità (strade comunali, provinciali, ecc) interferente	✓			
Cascina - fabbricato rurale	✓			
Aree degradate				
Versante boscato				

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
altro	
Bosco	
Corso d'acqua	

Elementi di progetto				
Cantiere	✓			
Area tecnica				
Imbocco galleria naturale				
Imbocco galleria artificiale				
Trincea				
Rilevato				

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Versante privo di vegetazione	
Nucleo - edificio di interesse storico	
Cimitero	

Falda	✓
Vincoli idrogeologici - rispetto pozzi idrici	

Viadotto	✓
Svincolo	
Area di servizio	
Area di stoccaggio	✓
Viabilità di cantiere	✓

Dati di monitoraggio/misure

Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	827,686	+0,6	-20	1.5-20

NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	18/12/2014	-11,45	816,236	Pozzetto in cemento e ghisa
2	25/02/2015	-9,80	817,886	Piezometro all'interno dell'area di stoccaggio terre AS12
3	07/05/2015	-	-	Piezometro seppellito
4	04/08/2015	-	-	Piezometro seppellito
5	21/01/2016	-	-	Piezometro seppellito/disperso

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Rilievi fotografici

Acq. sotterranee A sot_11 bis

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Rilievi fotografici

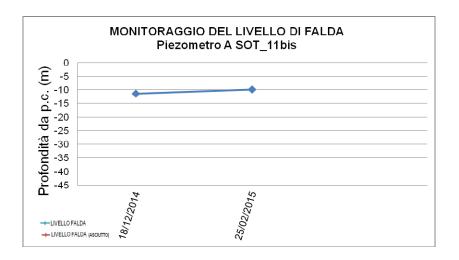
Acq. sotterranee A sot_11 bis

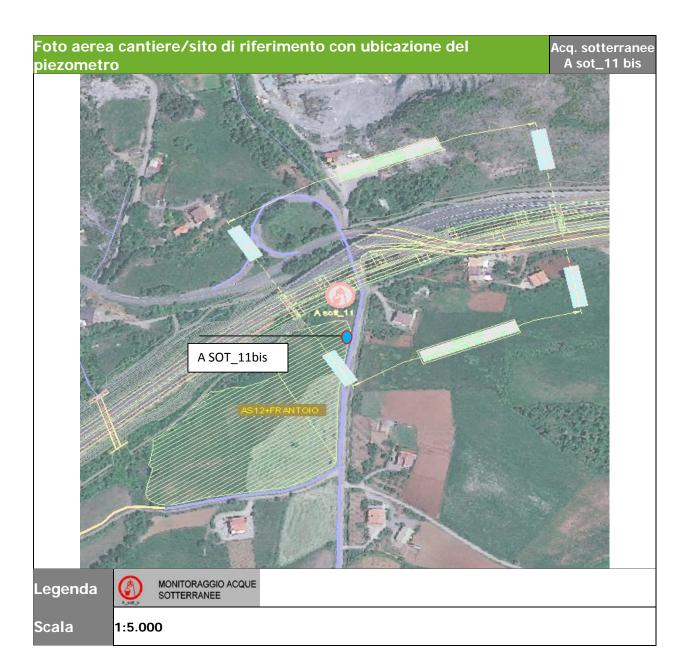
ital ASARC

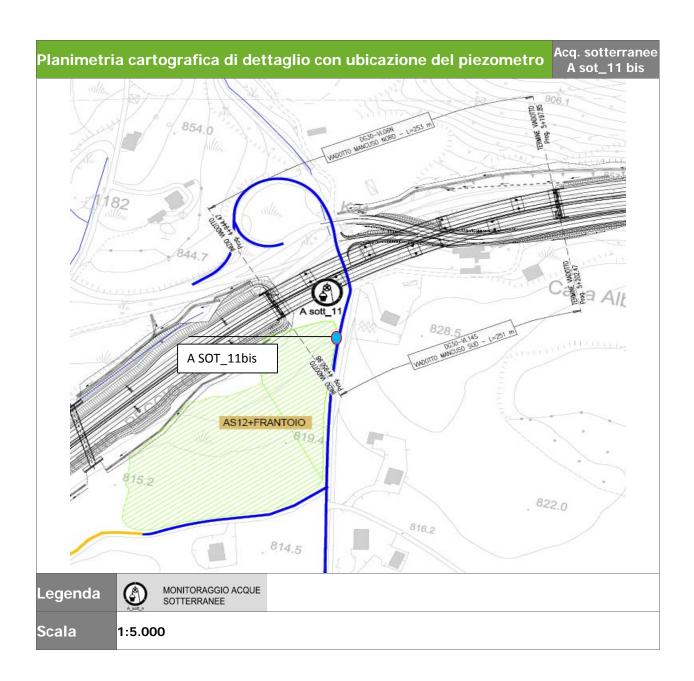
Monitoraggio Ambientale:

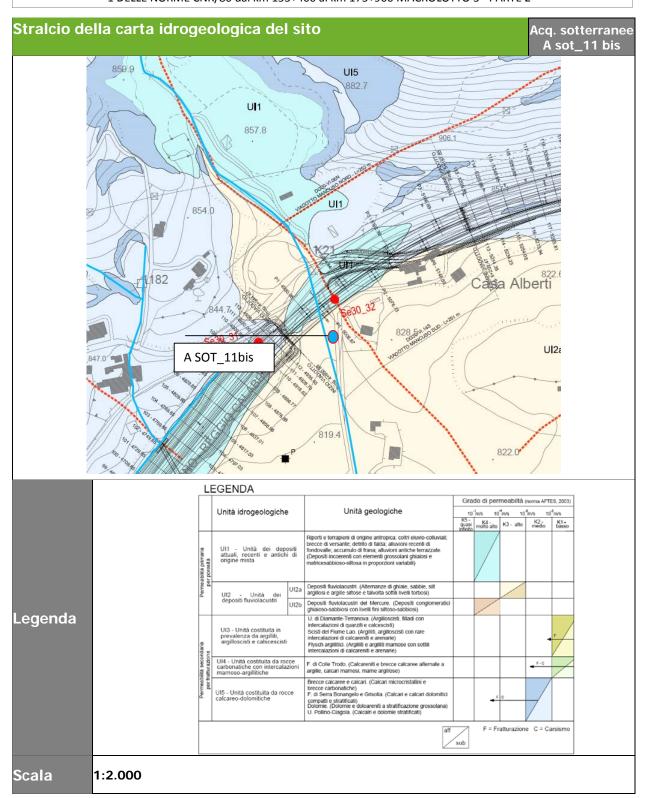
COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^


Rilievi fotografici


Acq. sotterranee
A sot_11 bis

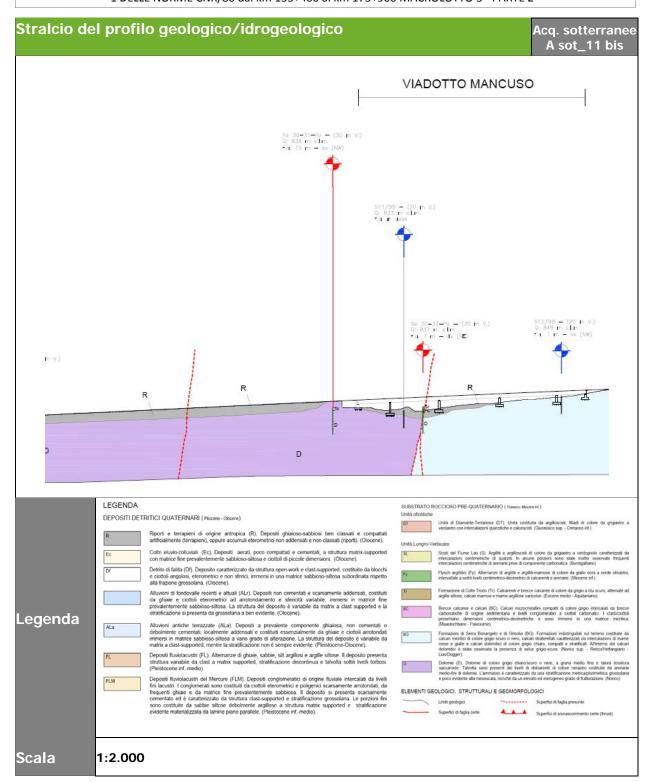




ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro è di recente esecuzione in sostituzione della verticale A_sott.11.

Il piezometro è posizionato al piede della dorsale carbonatica di Monte La Grada, in un settore di transizione tra la fascia pedemtontana che raccorda il ripido versante calcareo e calcareo dolomitico al territorio collinare che caratterizza l'esteso fondovalle del Fosso Battendiero, interamente occupato da depositi fluvio-lacustri quaternari (Pleistocene inf.-medio).

In particolare, nel settore in cui ricade il piezometro sono presenti 7-8 m di depositi di copertura costituiti da sabbia debolmente limosa, a tratti argillosa, di colore marrone-grigiastro, con ghiaia (clasti e ciottoli calcarei eterometrici, subarrotondati e subangolari, spesso carotati e brecce cementate) alternata a ghiaia (clasti eterogenei ed eterometrici, principalmente calcari e brecce cementate) in matrice sabbiosa, a tratti limosa (sondaggio Se30 32).

Il substrato è rappresentato dalle successioni carbonatiche dell'Unità Lungro-Verbicaro, rappresentate da dolomie farinose, molto alterate e in matrice sabbio-limosa marrone grigiastra. Oltre 9,00m di profondità si rinvengono in forma di ghiaia (clasti dolomitici eterometrici alterati) in matrice sabbiosa debolmente limosa di colore grigiastro e/o in sabbia debolmente limosa grigiastra con ghiaia (clasti dolomitici eterometrici). Spesso s'intercalano strati sabbiosi giallastri. La vicina dorsale di Monte La Grada è costituita dalle successioni calcaree delle Formazioni di Serra Bonangelo e di Grisolia, costituite da calcari micritici, calcari straterellati con intercalazioni di marne rosse e gialle e calcari dolomitici compatti e stratificati

Con riferimento agli aspetti idrogeologici generali, i litotipi carbonatici e dolomitici dell'Unità Lungro-Verbicaro, costituiti generalmente da calcari, dolomie e calcari dolomitici, sono caratterizzati da permeabilità secondaria per fratturazione localmente aumentata a causa degli effetti carsici che tali litotipi possono facilmente sviluppare; tali caratteristiche possono quindi originare una circolazione idrica significativa, che caratterizza verosimilmente la parte piu profonda dei rilievi di Monte La Grada.

Nell'area in esame, le misurazioni finora condotte in sede di progettazione esecutiva in corrispondenza dei piezometri non hanno evidenziato la presenza di falda nell'ambito delle profondità investigate, pari a circa 30 metri (piezometri Se30_31 e Se30_32).

Le due letture effettuate nel periodo aprile – giugno 2014 nel piezometro ambientale A_sott_11, ubicato 35 m circa piu a monte, in asse con la carreggiata sud, hanno evidenziato l'assenza di falda fino a profondità di -20 da p.c.

La lettura condotta a dicembre 2014 sul nuovo piezometro ha invece fornito la presenza di un possibile livello di falda a profondità di circa -11.45 m da p.c., confermata nella successiva lettura prevista nell'ambito della fase di corso d'opera.

Anche nella II lettura del corso d'opera (febbraio 2015) è presente infatti un livello di falda a profondità di circa -9.80 m da p.c.

Le successive letture di maggio e agosto 2015 e gennaio 2016 non sono state effettuate a causa del seppellimento del piezometro a seguito delle attività di cantiere.

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro

Campionatore manuale Bailer + Corda

Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials Spurgo piezometro

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Scheda risultati

Acq. sotterranee A sot_11 bis

Gruppo 1	Unità di misura	I lettura 18/12/2014	II lettura 25/02/2015
Temperatura dell'aria	°C	11,21	13,18
Temperatura dell'acqua	°C	12,15	12,24
Ossigeno ppm	mg/l	6,22	6,96
Ossigeno %	% ms:/am	65,2	74,6
Conducibilità pH	mS/cm	585 8,45	506 8,39
Potenziale RedOx	mV	11,9	42,8
	Unità di	I lettura	II lettura
Gruppo 2	misura	18/12/2014	25/02/2015
Idrocarbuti totali	mg/l	<0,1	<0,1
TOC	mg/l	8,20	3,70
Tensioattivi anionici	mg/l	<0,1	<0,1
Tensioattivi non ionici	mg/l	<0,1	<0,1
Cromo totale	μg/l	<1	<1
Cromo VI	μg/l	<1	<1
Ferro	μg/l	<20	<20
Alluminio	µg/l	<20	<1
Gruppo 3	Unità di misura	I lettura 18/12/2014	11 lettura 25/02/2015
Gruppo 3 Nichel	misura		
• •	misura μg/l	18/12/2014	25/02/2015
Nichel	misura μg/l μg/l	18/12/2014 <1	25/02/2015 <1
Nichel Zinco	misura μg/l μg/l μg/l	18/12/2014 <1 <1	25/02/2015 <1 <1
Nichel Zinco Piombo	misura μg/l μg/l μg/l μg/l μg/l	18/12/2014 <1 <1 <1	25/02/2015 <1 <1 <1
Nichel Zinco Piombo Cadmio	misura µg/l µg/l µg/l µg/l µg/l µg/l	18/12/2014 <1 <1 <1 <1	25/02/2015 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico	misura μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	18/12/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	25/02/2015 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese	misura µg/l µg/l µg/l µg/l µg/l µg/l	18/12/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	25/02/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame	misura µg/l	18/12/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <i tilde="color: 1em;"></i>	25/02/2015
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4	misura µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l Unità di misura	18/12/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 High representation of the second content o	25/02/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio	misura µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l misura mg/l mg/l	18/12/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 I lettura 18/12/2014	25/02/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio	misura μg/l Unità di misura mg/l	18/12/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 I lettura 18/12/2014 75 5,7	25/02/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 Il lettura 25/02/2015 51 6,6
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio Magnesio	misura μg/l misura mg/l mg	18/12/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 Illettura 18/12/2014 75 5,7 39	25/02/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 II lettura 25/02/2015 51 6,6 32
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio Magnesio Potassio	misura μg/l Unità di misura mg/l	18/12/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 Illettura 18/12/2014 75 5,7 39 0,50	25/02/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note
Acq. sotterranee
A sot_11 bis

- I MISURA CO (18/12/2014) Campionamento, misura freatimetrica e misura dei parametri chimico fisici (attività lavorative durante la misura frantumazione viadotto Mancuso con mezzi meccanici). Dalle analisi chimiche eseguite sui campioni di acqua i valori riscontrati sono entro i limiti normativi.
- II MISURA CO (25/02/2015) Dalle analisi chimiche eseguite sui campioni di acqua i valori riscontrati sono entro i limiti normativi.
- III MISURA CO (07/05/2015) Piezometro non rinvenuto a causa delle lavorazioni; probabilmente seppellito.
- IV MISURA CO (04/08/2015) Piezometro non rinvenuto a causa delle lavorazioni; probabilmente seppellito.
- V MISURA CO (21/01/2016) Piezometro disperso probabilmente seppellito.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_13
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-29			
Comune	Laino Borgo	Provincia	Cosenza	
Distanza dal Tracciato	15-20 m asse carr. N	15-20 m asse carr. N Progressiva di progetto		
Codice del cantiere/sito di riferimento	A_SOTT_13	Destinazione d'uso post operam del cantiere/sito di	Strada pubblica Contrada Fornace	
Coordinate geografiche rettilineee		Coordinate geografiche		
Long: 2602479,042	Lat: 4420325,354	Long: 15°57'54.66829"	Lat: 39°55'44.20875"	

Descrizione del sito

Piezometro a tubo aperto in contrada Pianolaria ubicato sopra la carreggiata nord della galleria Laria di progetto. Area agricola.

Caratterizzazione sintetica del sito

Elementi antropico insedia	tivi
Attività agricola	✓
Attività produttiva	
Viabilità (strade comunali, provinciali, ecc) interferente	✓
Cascina - fabbricato rurale	✓
Aree degradate	
Versante boscato	✓
Versante privo di vegetazione	

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
altro	
Bosco	
Corso d'acqua	

Elementi di progetto	
Cantiere	✓
Area tecnica	
Imbocco galleria naturale	
Imbocco galleria artificiale	
Trincea	
Rilevato	
Viadotto	

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Nucleo - edificio di interesse storico	
Cimitero	

Falda	✓
Vincoli idrogeologici - rispetto pozzi idrici	

Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Dati di monitoraggio/misure

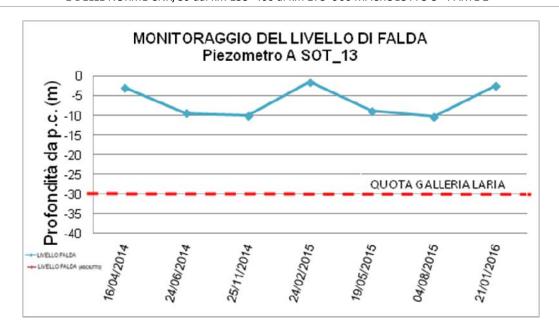
Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	535,615	+0,10	-40	0-40

NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note	
1	16/04/2014	-2,97	532,645	Acqua leggermente torbida. Pozzetto fuori terra.	
2	24/06/2014	-9,43	526,185	-	
3	25/11/2014	-10,09	525,525	Realizzato pozzetto in cemento e ghisa.	
4	24/02/2015	-1,46	534,155	-	
5	19/05/2015	-8,85	526,765	-	
6	04/08/2015	-10,23	525,385	-	
7	21/01/2016	-2,40	533,215	-	

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

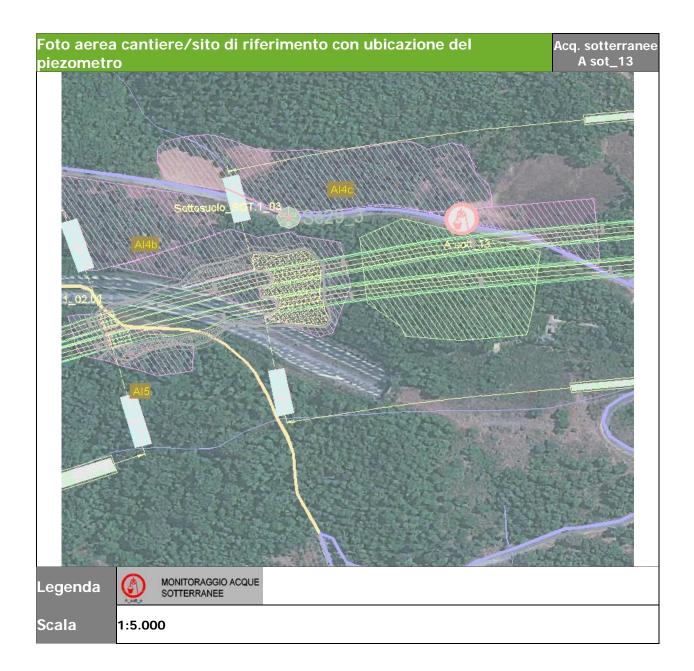
Rilievi fotografici

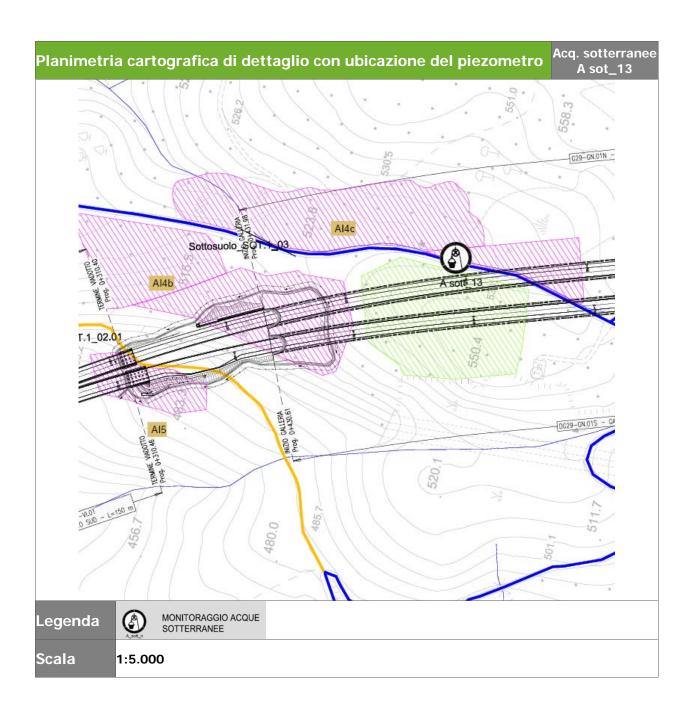
Acq. sotterranee A sot_13

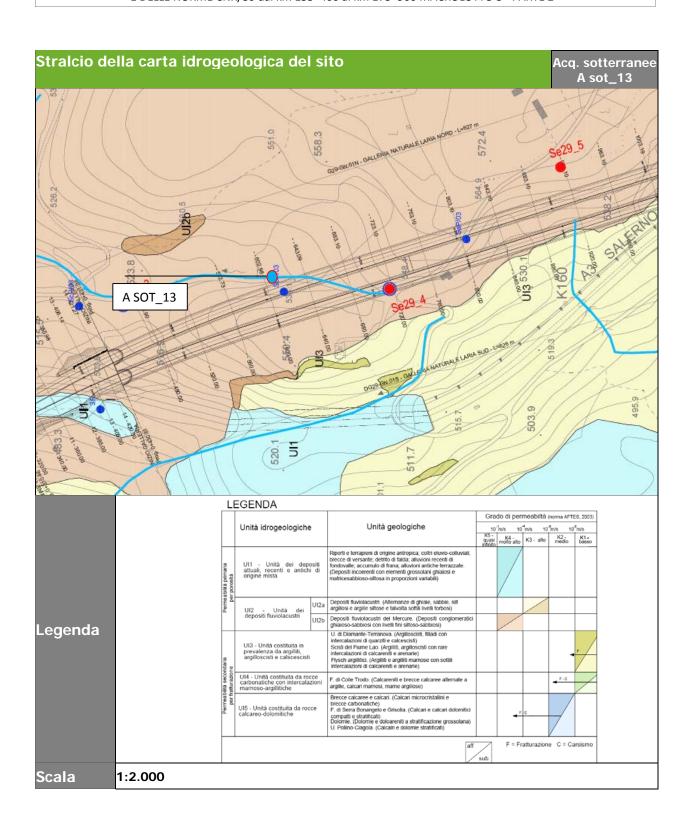


ital * SARC

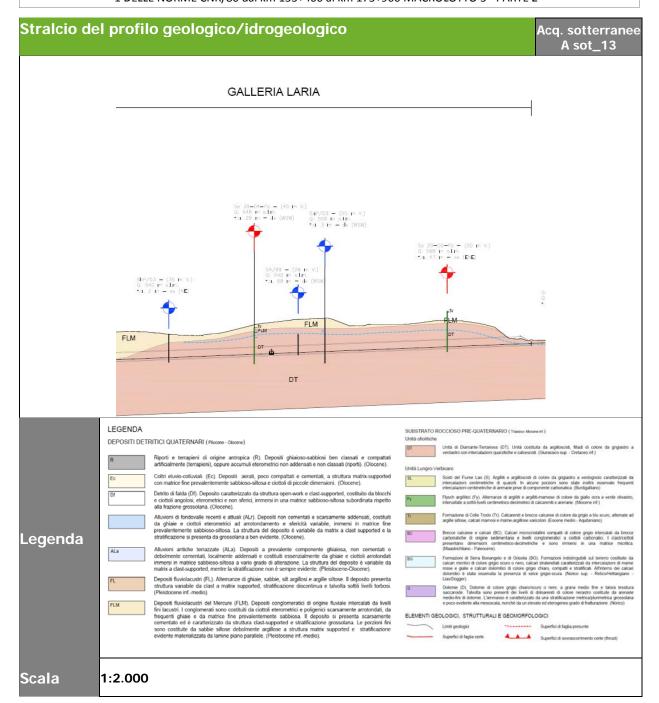
Monitoraggio Ambientale:


COMPONENTE ACQUE SOTTERRANEE




Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro è situato circa 15 m ad est della carreggiata nord della galleria di progetto Laria. Il territorio è per gran parte costituito da formazioni strutturalmente complesse dell'Unità Diamante Terranova, costituite da argilloscisti, filladi grigio-verdastre scagliose con intercalazioni quarzitiche e di calcescisti. Nel settore interessato dalla galleria, alle successioni argillo-scistose si sovrappongono i Depositi Fluvio-Lacustri del Mercure, rappresentati da limi sabbiosi e sabbioso-limosi da debolmente ghiaiosi a ghiaiosi di spessore compreso tra alcuni metri e 25-30 metri.

Dal punto di vista idrogeologico, il complesso argillo-scistoso è costituito da rocce caratterizzate da un'elevata percentuale in materiale argilloso, bassa permeabilità primaria per porosità e scarsa permeabilità secondaria per fratturazione, ad eccezione delle superfici di discontinuità maggiori dove l'acqua convogliata può essere cospicua. Tali caratteristiche favoriscono principalmente la presenza di limitate falde idriche sospese alimentate principalmente da apporti di acque meteoriche.

La bassa permeabilità degli ammassi (K1) può infatti aumentare al crescere del grado di alterazione. Le porzioni più deformate e alterate presentano un grado di addensamento e di compattazione minore rispetto all'ammasso integro; tale caratteristica ne aumenta la permeabilità per fratturazione e favorisce l'accumulo locale di acqua meteorica che si infiltra attraverso le superfici di discontinuità e alimenta le falde sospese.

Nel settore di interesse è stata evidenziata la presenza di una probabile falda libera entro i depositi fluviolacustri del Mercure (FLM) alla quale se ne aggiunge una seconda, più profonda, all'interno del substrato argillitico dell'Unità Diamante-Terranova (DT). In entrambi i casi si prevede un'interferenza tra lo scavo della galleria e la circolazione idrica sotterranea sopra indicata.

Il piezometro, di profondità pari a 40 m, interessa nella parte superiore 10-15 metri di depositi fluvio-lacustri, rappresentati da sabbie da medie a fini con limo ed inclusi eterometrici, passanti inferiormente a limi argillosi debolmente sabbiosi. A maggiore profondità il substrato è costituito dalle filladi e gli argilloscisti dell'Unità Diamante Terranova.

Il fondo piezometro si colloca ad una quota di circa 495 m s.l.m., inferiore di circa 14-15 m rispetto alla quota di fondo scavo della galleria Laria (510 m s.l.m.).

Le due letture eseguite ad aprile e giugno 2014 indicano la presenza di un livello piezometrico rispettivamente distribuito a profondità di -3 e -9 m circa da piano campagna, evidenziando un abbassamento di circa -6 m nel periodo considerato.

La piezometrica si colloca rispettivamente da 12 m e 6 m al di sopra della calotta della galleria di progetto.

La prima lettura della fase di "corso d'opera", di novembre 2014, conferma sostanzialmente il livello piezometrico di giugno 2014, a meno di un ulteriore e modesto abbassamento fino a circa - 10 m da p.c.

Nella II lettura del "corso d'opera" (febbraio 2015) il livello di falda risale di circa 9 m, stabilizzandosi a -1.46 m da piano campagna.

Le ulteriori 2 letture eseguite nel 2015 (maggio e agosto 2015) denotano nuovamente un abbassamento della falda durante il periodo primavera estate, con livello piezometrico rispettivamente a -8.85 m e -10.23 m da p.c..

Nel gennaio 2016 la falda risale di 8 m, collocandosi a circa -2.40 m da p.c., in sostanziale accordo con le misure di febbraio 2015 e aprile 2014.

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro

Campionatore manuale Bailer + Corda Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials Spurgo piezometro

Scheda risultati

Acq. sotterranee A sot_13

Gruppo 1	Unità di	I lettura	II lettura	III lettura	IV lettura	V lettura
огирро г	misura	25/11/2014	24/02/2015	19/05/2015	04/08/2015	21/01/2016
Temperatura dell'aria	°C	12,17	11,32	20,41	23,51	11,09
Temperatura	°C	13,37	10,12	15,48	18,84	11,52
dell'acqua						
Ossigeno ppm	mg/l	3,94	9,17	4,37	4,74	8,36
Ossigeno %	%	40,7	89,6	47,5	54,7	78,9
Conducibilità	mS/cm	438	213	288	317	236
pH Potenziale	mV	7,82	6,82	6,80	7,34 38,7	7,25 79,3
RedOx	IIIV	89,6	28,6	83,1	38,7	19,3
Gruppo 2	Unità di	I lettura	II lettura	III lettura	IV lettura	V lettura
	misura	25/11/2014	24/02/2015	19/05/2015	04/08/2015	21/01/2016
Idrocarbuti totali	mg/l	<0,1	<0,1	<0,1	<0,1	
TOC	mg/l	8,60	7,50	6,30	1,60	20
Tensioattivi anionici	mg/l	<0,01	<0,1	<0,01	<0,01	<0,1
Tensioattivi non ionici	mg/l	<0,01	<0,1	<0,01	0,05	<0,1
Cromo totale	μg/l	<1	<1	<1	<1	<1
Cromo VI	μg/l	<1	<1	<1	<1	<1
Ferro	μg/l	<20	<20	<20	<20	<1
Alluminio	μg/l	<20	<1	<20	<20	<1
Gruppo 3	Unità di misura	l lettura 25/11/2014	II lettura 24/02/2015	III lettura 19/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Nichel	μg/l	<1	<1	<1	<1	<1
Zinco	μg/l	<1	<1	<1	<1	<1
Piombo	μg/l	<1	<1	<1	<1	<1
Cadmio	μg/l	<1	<1	<1	<1	<1
Arsenico	μg/l	<1	<1	<1	<1	<1
Manganese	μg/l	5	8	<1	<1	<1
Rame	μg/l	<1	<1	<1	6,3	<1
Gruppo 4	Unità di misura	l lettura 25/11/2014	II lettura 24/02/2015	III lettura 19/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Calcio	mg/l	86	17	28	7	12
Sodio	mg/l	5,1	5,2	7,8	2	0,9
Magnesio	mg/l	3	10	11	<1	10
Potassio	mg/l	1,60	2,50	2,30	1	<1
Nitrati	mg/l	1,7	<1	2,2	<1	<1
Cloruri	mg/l	4	9	28	17	63
Solfati	mg/l	8,8	6,8	27,5	47,5	28

ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note
Acq. sotterranee
A sot_13

I MISURA CO (25/11/2014) – Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato alcun superamento del limite normativo; il Manganese che nell'AO è risultato oltre il limite normativo sia nella I che nella II campagna di monitoraggio, attualmente risulta ben al di sotto del limite normativo.

II MISURA CO (24/02/2015) – Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato alcun superamento del limite normativo.

III MISURA CO (19/05/2015) – Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato alcun superamento del limite normativo.

IV MISURA CO (04/08/2015) – Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato alcun superamento del limite normativo.

V MISURA CO (21/01/2016) – Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato alcun superamento del limite normativo.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_14
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-29			
Comune	Mormanno	Provincia	Cosenza	
Distanza dal Tracciato	46 m	Progressiva di progetto	km 2+300	
Codice del cantiere/sito di riferimento	A_SOTT_14	Destinazione d'uso post operam del cantiere/sito di	Strada pubblica Viadotto Mezzana	
Coordinate geografiche rettilineee		Coordinate geografiche		
Long: 2602417,583	Lat: 4418712,573	Long: 15°57'51.34555"	Lat: 39°54'51.92631"	

Descrizione del sito

Piezometro a tubo aperto nei pressi del viadotto Mezzana. Area agricola.

Caratterizzazione sintetica del sito

Elementi antropico insediativi		
Attività agricola	✓	
Attività produttiva		
Viabilità (strade comunali, provinciali, ecc) interferente	✓	
Cascina - fabbricato rurale		
Aree degradate		
Versante boscato	√	

Elementi di valore naturalistico/ambientale		
Area di pregio paesistico - ambientale		
Parco regionale		
Riserva naturale - SIC - ZPS		
altro		
Bosco		
Corso d'acqua		

Elementi di progetto			
Cantiere	✓		
Area tecnica			
Imbocco galleria naturale			
Imbocco galleria artificiale			
Trincea			
Rilevato			

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

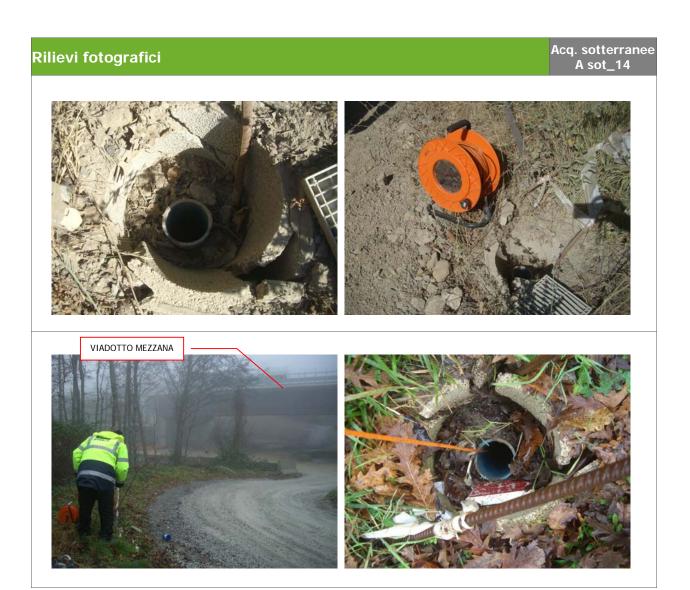
Versante privo di vegetazione	
Nucleo - edificio di interesse storico	
Cimitero	

Falda	√
Vincoli idrogeologici - rispetto pozzi idrici	

Viadotto	
Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Dati di monitoraggio/misure

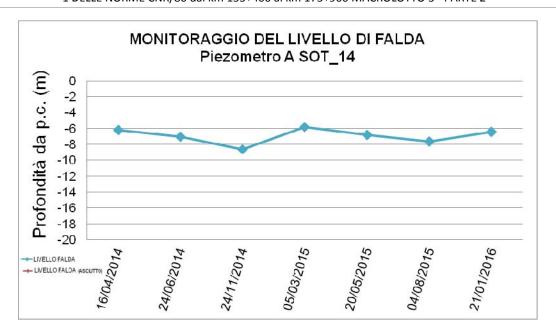
Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	572,813	0	-20	0-20


NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	16/04/2014	-6,20	566,613	Acqua leggermente torbida Pozzetto carrabile
2	24/06/2014	-7,02	565,793	-
3	24/11/2014	-8,63	564,183	-
4	05/03/2015	-5,86	566,953	Pozzetto danneggiato gravemente
5	20/05/2015	-6,82	565,993	Pozzetto danneggiato gravemente
6	04/08/2015	-7,69	565,123	Pozzetto danneggiato gravemente
7	21/01/2016	-6,43	566,383	Pozzetto danneggiato gravemente

ital ASARC

Monitoraggio Ambientale:

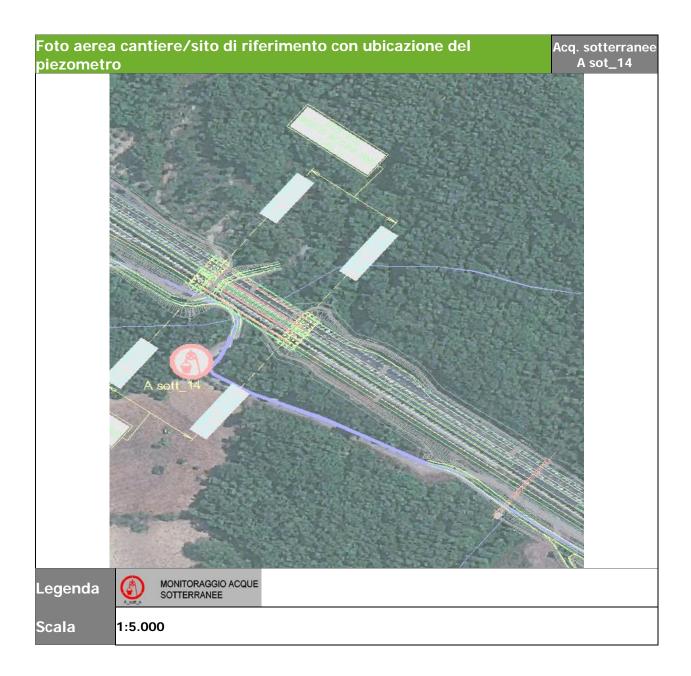
COMPONENTE ACQUE SOTTERRANEE



ital ASARC

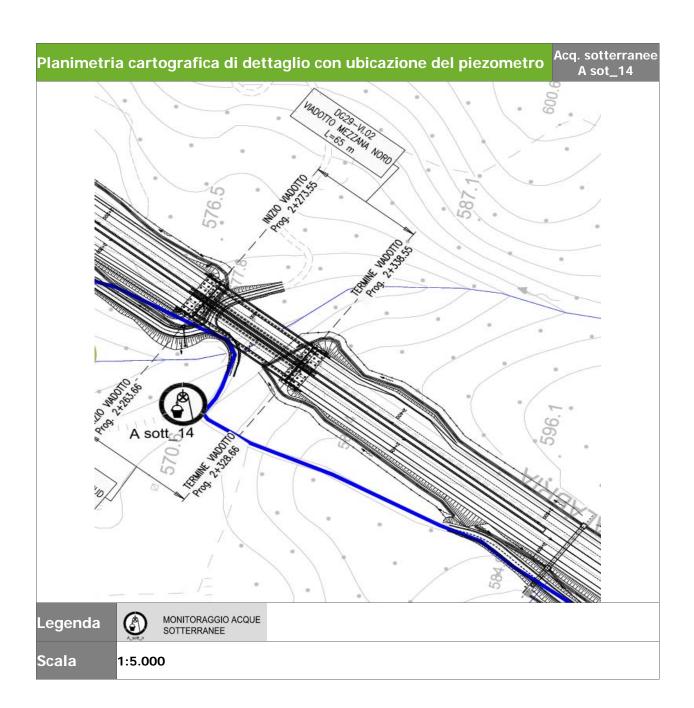
Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

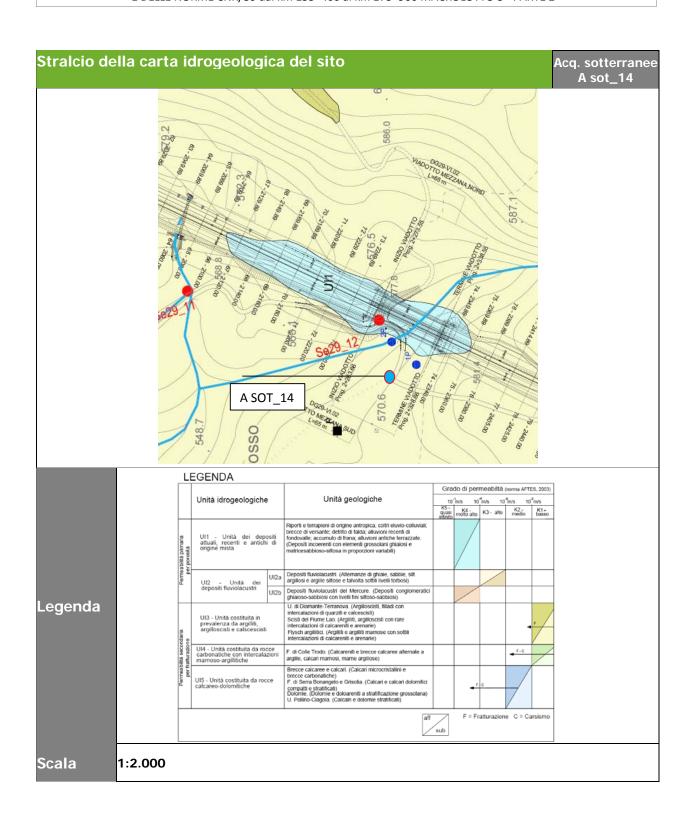


ital ASARC

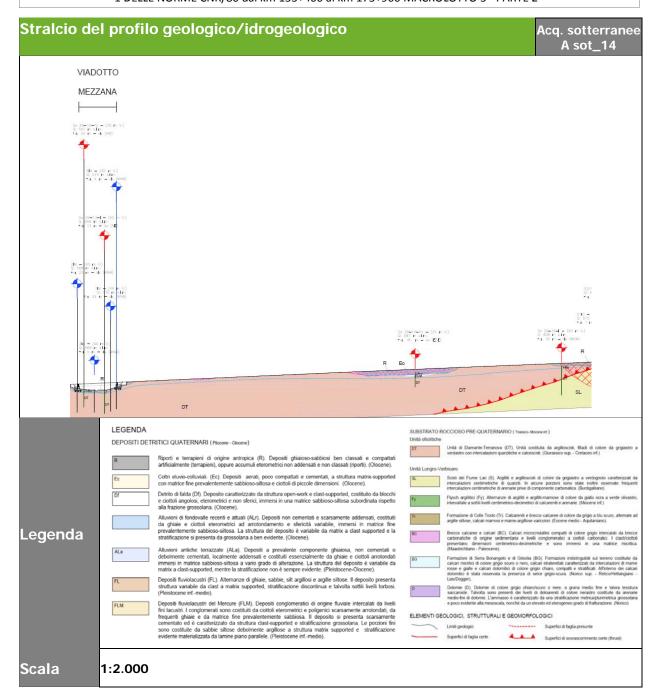
Monitoraggio Ambientale:


COMPONENTE ACQUE SOTTERRANEE

ital ASARC


Monitoraggio Ambientale:

Monitoraggio Ambientale:



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro è situato circa 30-35 metri a valle dell'autostrada A3, all'altezza del Viadotto Mezzana, sul fianco sinistro di una blanda incisione. Il territorio è per gran parte costituito da formazioni strutturalmente complesse dell'Unità Diamante Terranova, costituite da argilloscisti, filladi grigio-verdastre scagliose con intercalazioni guarzitiche e di calcescisti.

Il settore su cui si imposta il viadotto Mezzana comprendo una copertura di terreni di riporto di 3-4 m di spessore, cui segue inferiormente la porzione alterata e superficiale del substrato argillitico, rappresentato da argilliti alterate di colore che varia dal marrone al beige, con frequenti inclusi litici eterometrici a spigoli vivi, a struttura caotica. Da profondità di circa 8 m, è presente il substrato inalterato, costituito da argilliti grigie con struttura localmente laminata, sensibilmente disturbate, molto consistenti.

Dal punto di vista idrogeologico, il complesso argillo-scistoso è costituito da rocce caratterizzate da un'elevata percentuale in materiale argilloso, bassa permeabilità primaria per porosità e scarsa permeabilità secondaria per fratturazione, ad eccezione delle superfici di discontinuità maggiori dove l'acqua convogliata può essere cospicua. Tali caratteristiche favoriscono principalmente la presenza di limitate falde idriche sospese alimentate principalmente da apporti di acque meteoriche.

La bassa permeabilità degli ammassi (K1) può infatti aumentare al crescere del grado di alterazione. Le porzioni più deformate e alterate presentano un grado di addensamento e di compattazione minore rispetto all'ammasso integro; tale caratteristica ne aumenta la permeabilità per fratturazione e favorisce l'accumulo locale di acqua meteorica che si infiltra attraverso le superfici di discontinuità e alimenta le falde sospese.

Nel settore di interesse è stata evidenziata la presenza di una probabile falda libera entro i depositi fluviolacustri del Mercure (FLM), quando presenti, alla quale se ne aggiunge una seconda, più profonda, all'interno del substrato argillitico dell'Unità Diamante-Terranova (DT).

L'intero settore del viadotto Mezzana e delle aree adiacenti è contraddistinto dalla presenza di una falda misurata entro gli argilloscisti che segue generalmente l'andamento della superficie topografica, caratterizzata da soggiacenze modeste e dell'ordine dei 3-5 metri da p.c.

(i piezometri di Casagrande installati a profondità di circa 25-30 m da p.c. nelle argilliti evidenziano risalite del livello di falda fino a profondità di 5-6 m da p.c.).

Le due letture eseguite ad aprile e giugno 2014 confermano la presenza di una falda negli argilloscisti con superficie piezometrica distribuita a profondità di 6-7 m da p.c.

La lettura di novembre 2014 ("corso d'opera") evidenzia un abbassamento del livello di falda fino a profondità di circa -8.63 m da p.c. (-2.50 metri circa rispetto ai livelli di aprile).

La II lettura del corso d'opera (marzo 2015) indica un livello di falda a circa -5.90 m, all'incirca analogo a quello di aprile 2014 misurato nella fase di ante operam (-6.2 m da p.c.).

Le successive letture di maggio e agosto 2015, nonché la lettura di gennaio 2016, forniscono un livello di falda a profondità dell'ordine dei 6.50-7.70 m da p.c., complessivamente stabile e in sostanziale accordo con le precedenti letture.

Monitoraggio Ambientale:

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro

Campionatore manuale Bailer + Corda

Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials

Spurgo piezometro

Scheda risultati

Acq. sotterranee A sot_14

Gruppo 1	Unità di misura	I lettura	II lettura	III lettura	IV lettura	V lettura
		24/11/2014	05/03/2015	20/05/2015	04/08/2015	21/01/2016
Temperatura dell'aria	°C	13,24	12,55	23,41	25,44	11,23
Temperatura dell'acqua	°C	14,04	12,43	18,65	18,96	12,19
Ossigeno ppm	mg/l	22,57	3,41	6,31	2,45	5,98
Ossigeno %	%	236,9	35,4	73,2	28,6	36,4
Conducibilità	mS/cm	289	234	203	183	221
pH	-	7,07	8,10	7,91	7,82	8,05
Potenziale RedOx	mV Unità di misura	35,2 I lettura	81,5	61,1	58,9 IV lettura	77,5 V lettura
Gruppo 2	Unita di misura	24/11/2014	05/03/2015	20/05/2015	04/08/2015	21/01/2016
Idrocarbuti totali	mg/l	< 0.1	<0.1	<0.1	<0.1	<1
TOC	mg/l	8,90	3,50	5,00	1,20	25
Tensioattivi anionici	mg/l	<0,01	<0,01	<0,01	<0,01	<0,1
Tensioattivi non ionici	mg/l	<0,01	0,18	<0,01	<0,01	<0,1
Cromo totale	μg/l	<1	<1	<1	<1	<1
Cromo VI	μg/l	<1	<1	<1	<1	<1
Ferro	μg/l	<20	<20	<20	<20	24
Alluminio	μg/l	<20	<20	<20	<20	25
Gruppo 3	Unità di misura	I lettura	II lettura	III lettura	IV lettura	V lettura
						v lottulu
		24/11/2014	05/03/2015	20/05/2015	04/08/2015	21/01/2016
Nichel	μg/l	24/11/2014 <1	05/03/2015 <1	20/05/2015 <1	04/08/2015 <1	21/01/2016 <1
Nichel Zinco		24/11/2014 <1 <1	05/03/2015 <1 <1	20/05/2015 <1 <1	04/08/2015 <1 <1	21/01/2016 <1 <1
Nichel Zinco Piombo	μg/l	24/11/2014 <1 <1 <1	05/03/2015 <1 <1 <1	20/05/2015 <1 <1 <1	04/08/2015 <1 <1 <1	21/01/2016 <1 <1 <1
Nichel Zinco Piombo Cadmio	μg/l μg/l	<pre>24/11/2014 <1 <1</pre>	05/03/2015 <1 <1 <1 <1	20/05/2015 <1 <1 <1 <1	<pre>04/08/2015 <1 <1 <1 <1 <1 <1 </pre>	21/01/2016 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico	μg/l μg/l μg/l	24/11/2014 <1 <1 <1 <1 <1	<pre>05/03/2015 <1 </pre>	20/05/2015 <1 <1 <1 <1 <1 <1	04/08/2015 <1 <1 <1	21/01/2016 <1 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese	µg/l µg/l µg/l µg/l	24/11/2014 <1 <1 <1 <1 <1 <1 <1	<pre>05/03/2015 <1 </pre>	20/05/2015 <1 <1 <1 <1 <1 <1 <1	<pre></pre>	21/01/2016 <1 <1 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame	µg/I µg/I µg/I µg/I µg/I µg/I	24/11/2014 <1 <1 <1 <1 <1 <1 <1 <1	05/03/2015 <1 <1 <1 <1 <1 <1 <1	20/05/2015 <1 <1 <1 <1 <1 <1 <1 <1	<pre></pre>	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese	µg/I µg/I µg/I µg/I µg/I µg/I	24/11/2014	05/03/2015 <1 <1 <1 <1 <1 14 <1 II lettura	20/05/2015	04/08/2015 <1 <1 <1 <1 <1 <1 5,5 IV lettura	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 V lettura
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	24/11/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 I lettura 24/11/2014	05/03/2015 <1 <1 <1 <1 <1 14 <1 II lettura 05/03/2015	20/05/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	04/08/2015 <1 <1 <1 <1 <1 <1 5,5 IV lettura 04/08/2015	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 V lettura 21/01/2016
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	24/11/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 3 <1 I lettura 24/11/2014 55	05/03/2015 <1 <1 <1 <1 <1 14 <1 II lettura 05/03/2015 33	20/05/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <41 <1 <41 <4	04/08/2015 <1 <1 <1 <1 <1 <1 5,5 IV lettura 04/08/2015 4	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 V lettura 21/01/2016
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	24/11/2014 <1 <1 <1 <1 <1 <1 <1 <1 3 <1 I lettura 24/11/2014 55 3,6	05/03/2015 <1 <1 <1 <1 <1 14 <1 II lettura 05/03/2015 33 5,2	20/05/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <4 1II lettura 20/05/2015 44 6,4	04/08/2015 <1 <1 <1 <1 <1 5,5 IV lettura 04/08/2015 4	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 Viettura 21/01/2016 13 0,3
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio Magnesio	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	24/11/2014 <1 <1 <1 <1 <1 <1 <1 3 <1 I lettura 24/11/2014 55 3,6 2	05/03/2015 <1 <1 <1 <1 <1 14 <1 II lettura 05/03/2015 33 5,2 3	20/05/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 Hill lettura 20/05/2015 44 6,4 18	04/08/2015 <1 <1 <1 <1 <1 5,5 IV lettura 04/08/2015 4 1 <1	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 Vlettura 21/01/2016 13 0,3 3
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio Magnesio Potassio	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	24/11/2014 <1 <1 <1 <1 <1 <1 3 <1 I lettura 24/11/2014 55 3,6 2 2,40	05/03/2015 <1 <1 <1 <1 <1 14 <1 II lettura 05/03/2015 33 5,2 3 2,00	20/05/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	04/08/2015 <1 <1 <1 <1 <1 5,5 IV lettura 04/08/2015 4 1 <1 <1	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 Vlettura 21/01/2016 13 0,3 3 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio Magnesio Potassio Nitrati	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	24/11/2014 <1 <1 <1 <1 <1 <1 3 <1 Ilettura 24/11/2014 55 3,6 2 2,40 2,7	05/03/2015 <1 <1 <1 <1 <1 14 <1 II lettura 05/03/2015 33 5,2 3 2,00 1,6	20/05/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	04/08/2015 <1 <1 <1 <1 <1 <1 5,5 IV lettura 04/08/2015 4 1 <1 <1 <1 <1	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 Viettura 21/01/2016 13 0,3 3 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio Magnesio Potassio	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	24/11/2014 <1 <1 <1 <1 <1 <1 3 <1 I lettura 24/11/2014 55 3,6 2 2,40	05/03/2015 <1 <1 <1 <1 <1 14 <1 II lettura 05/03/2015 33 5,2 3 2,00	20/05/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	04/08/2015 <1 <1 <1 <1 <1 5,5 IV lettura 04/08/2015 4 1 <1 <1	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 Viettura 21/01/2016 13 0,3 3 <1

ital SARC

Monitoraggio Ambientale:

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note
Acq. sotterranee
A sot_14

- I Misura CO (24/11/2014)_ Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato alcun superamento.
- II Misura CO (05/03/2015)_ Si segnala il danneggiamento del pozzetto di protezione del piezometro. Dalle analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato alcun superamento.
- III Misura CO (20/05/2015)_ Si segnala ancora il danneggiamento del pozzetto di protezione del piezometro. E' alto il rischio che quest'ultimo vada perso.

Dalle analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato alcun superamento.

IV Misura CO (04/08/2015)_ Si segnala ancora il danneggiamento del pozzetto di protezione del piezometro. Continua ad essere alto il rischio che quest'ultimo vada perso o danneggiato irreparabilmente.

Dalle analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato alcun superamento.

Si evidenzia un aumento del Rame, Calcio e Sodio nettamente in calo.

V Misura CO (21/01/2016)_ Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato alcun superamento.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_15
Tipologia indagine	Corso d'Opera- GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-30				
Comune	Mormanno	Provincia	Cosenza		
Distanza dal Tracciato	395 m	Progressiva di progetto	km 0+700		
Codice del cantiere/sito di riferimento	A_SOTT_15	Destinazione d'uso post operam del cantiere/sito di	Cava		
Coordinate geografiche rettilineee		Coordinate geografiche			
Long: 2603417,186	Lat: 4416434,143	Long: 15°58'32.39611"	Lat: 39°53'37.68247"		

Descrizione del sito

Piezometro a tubo aperto all'interno dell'area di cava in località Mormanno.

Caratterizzazione sintetica del sito

Elementi antropico insediativi				
Attività agricola				
Attività produttiva	✓			
Viabilità (strade comunali, provinciali, ecc) interferente				
Cascina - fabbricato rurale				
Aree degradate				
Versante boscato				
Versante privo di vegetazione	✓			

Elementi di valore naturalistico/ambientale		
Area di pregio paesistico - ambientale		
Parco regionale		
Riserva naturale - SIC - ZPS		
altro		
Bosco		
Corso d'acqua		

Elementi di progetto			
Cantiere			
Area tecnica	✓		
Imbocco galleria naturale			
Imbocco galleria artificiale			
Trincea			
Rilevato			
Viadotto			

ital ASARC

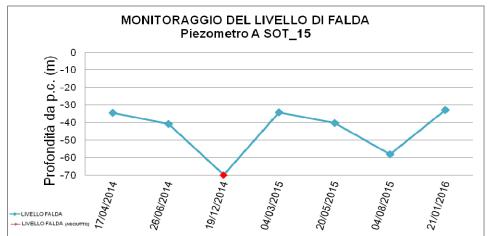
Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Nucleo - edificio di interesse storico	
Cimitero	

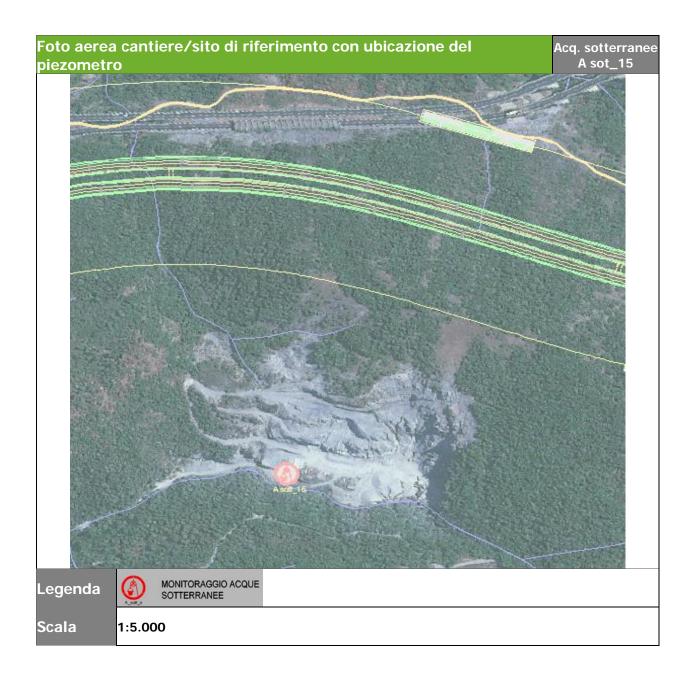
Falda	✓
Vincoli idrogeologici - rispetto pozzi idrici	


Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Dati di monitoraggio/misure

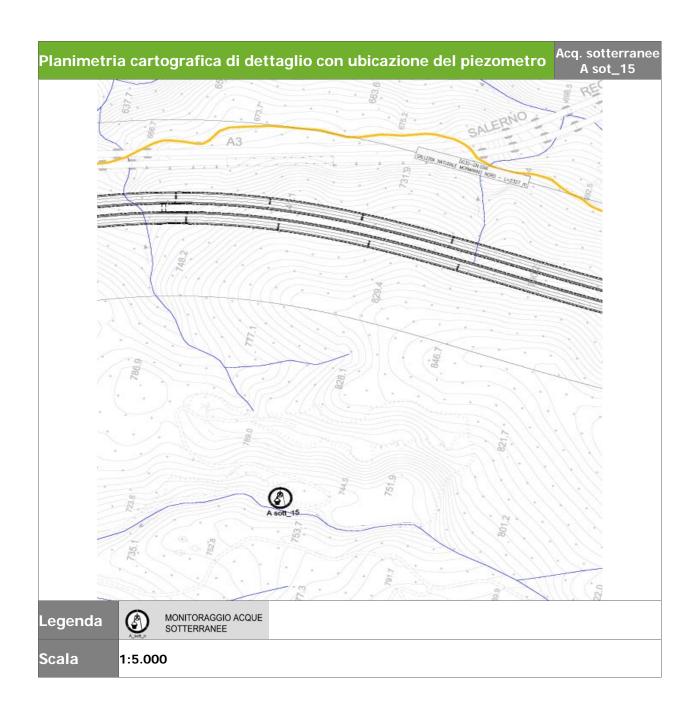
Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	735,37	+0,15	-70	0-70

NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	17/04/2014	-34,42	700,95	Acqua limpida Pozzetto fuori terra
2	26/06/2014	-40,93	694,44	-
3	25/11/2014	-70	665,37	Realizzato pozzetto in cemento e ghisa. Piezometro Asciutto
4	04/03/2015	-34,17	723,2	-
5	20/05/2015	-40,42	694,95	-
6	04/08/2015	-58,06	677,31	<u>-</u>
7	21/01/2016	-32,81	704,56	-



Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE



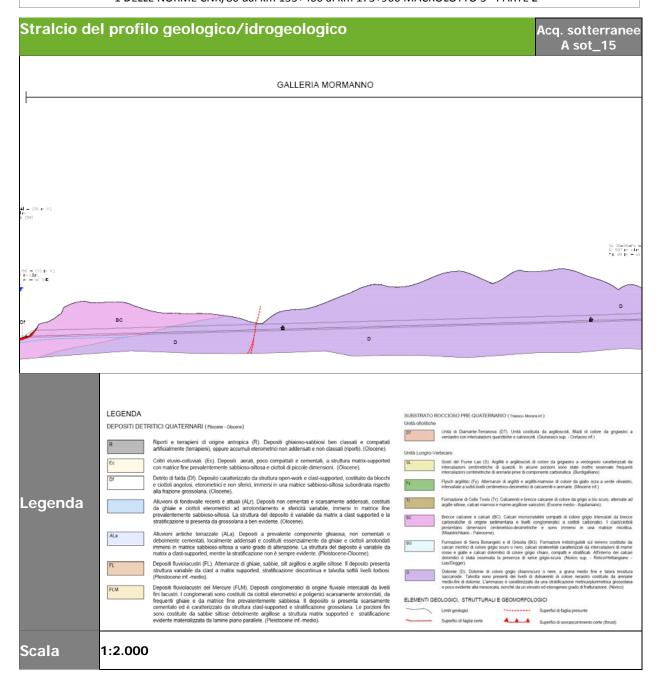
ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro si colloca in corrispondenza del fondo di un'incisione avente direzione all'incirca N-S che si sviluppa sui rilievi calcareo-dolomitici Madonna della Catena, su sui si imposta la nuova galleria Colle di Mormanno.

Il punto di monitoraggio è ubicato a circa 350 m ad ovest dei due tunnel autostradali di progetto. La quota di boccaforo è a circa 735 m s.l.m., superiore di 55-60 metri rispetto alla quota livelletta delle gallerie.

L'assetto geologico strutturale è dominato dalla presenza delle successioni carbonatiche dell'Unità di Lungro-Verbicaro, che formano l'ossatura del territorio costituente l'intera dorsale attraversata dalla galleria. Dette Unità sono principalmente costituite da dolomie di colore chiaro/scuro, a grana medio fine, con associati livelli di doloareniti di colore nerastro costtuite da arenarie medio-fini di dolomie. L'ammasso è caratterizzato da una stratificazione metrica/plurimetrica grossolana e poco evidente alla mesoscala, nonché da un elevato ed eterogeneo grado di fratturazione; diviene molto più evidente alla macroscala in quanto presenta spaziatura da metrica a plurimetrica. Il grado di fratturazione dell'ammasso è fortemente eterogeneo in quanto sono state osservate porzioni integre e molto competenti alternate ad ampi settori fortemente tettonizzati e fratturati.

Dal punto di vista idrogeologico, l'ammasso dolomitico rappresenta un complesso caratterizzato da permeabilità secondaria per fratturazione, localmente aumentata a causa degli effetti carsici che tali litotipi possono facilmente sviluppare. Sulla base dell'elevato grado di fratturazione espresso dagli ammassi rocciosi è stato attribuito all'unità un grado dei permeabilità medio (K2) variabile fino a molto alto (K4).

Il rilievo dolomitico (D) entro cui verrà scavata la galleria Mormanno non sembra evidenziare la presenza di una superficie piezometrica alle quote di scavo; tale interpretazione deriva dalle misure effettuate nel piezometro Se30_6 (eseguito in sede di progetto esecutivo) e dalla quasi totale assenza di sorgenti censite oppure osservate durante i rilievi di terreno. In tutta la dorsale dolomitica l'unica emergenza idrica segnalata si colloca infatti in corrispondenza del versante versante opposto del Fiume Battendiero e pertanto non è soggetta a influenza da parte dello scavo della Galleria.

Il piezometro A_sott_15 è interamente perforato in dolomie molto fratturate. La quota di fondo piezometro (circa 665 m s.l.m.) appare inferiore di circa 25 m rispetto alla quota della livelletta della galleria Colle di Mormanno.

La prima lettura effettuata (aprile 2014) sembra evidenziare la presenza di un livello di falda distribuito a profondità di circa -34 m da p.c., che potrebbe rappresentare il tetto dell'acquifero presente nell'ammasso calcareo dolomitico fratturato, ovvero costituire un accumulo idrico all'interno del foro in parte legato alle infiltrazioni d'acqua provenienti dalla vicina incisione, in parte dovuto alle acque residue utilizzate in sede di perforazione.

Nella seconda lettura, del giugno 2014, si conferma la presenza di una falda, il cui livello registra un abbassamento di circa 6 metri rispetto alla precedente lettura (-41 m circa da p.c.).

La profondità del tetto dell'acquifero corrisponde a una quota dell'ordine rispettivamente di 700-694 m s.l.m., superiore rispetto a quella di fondo scavo della galleria, che nel tratto più vicino al piezometro è a quote di 688 m s.l.m.

Nella prima lettura della fase di Corso d'opera, del novembre 2014, il piezometro è risultato asciutto, con un abbassamento di oltre 30 metri rispetto alla precedente lettura.

La II lettura del corso d'opera (marzo 2015) indica nuovamente un livello di falda all'interno del foro, che si colloca alla medesima profondità assunta nell'aprile 2014, ovvero a circa -34 m da p.c..

Le successive letture eseguite a maggio e agosto 2015, nonché nel gennaio 2016, sembrano confermare la presenza di una falda, il cui livello oscilla tra -32 e -40 m da p.c., nel periodo inverno-primavera, e -58 m da p.c., in estate.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro

Campionatore manuale Bailer + Corda

Bottiglie per campionamento acqua $\,+\,$ bottiglie preacidificate per metalli $\,+\,$ Vials

Spurgo piezometro

Scheda risultati

Acq. sotterranee A sot_15

Gruppo 1	Unità di	I lettura	II lettura	III lettura	IV lettura	V lettura
Tanananatuma	misura	18/12/2014	04/03/2015	20/05/2015	04/08/2015	21/01/2016
Temperatura dell'aria	°C	8,21	11,1	24,8	24,90	10,3
Temperatura	°C	5,04	10,28	19,51	15,66	11,6
delİ'acqua						
Ossigeno ppm	mg/l	7,58	8,05	5,41	6,16	9,21
Ossigeno %	%	66,1	79,6	65,4	68,8	80,3
Conducibilità	mS/cm	545	468	382	411	433
pН	-	8,36	8,72	7,93	8,45	8,29
Potenziale RedOx	mV	24,3	53,1	13,8	56,6	49,3
Gruppo 2	Unità di	I lettura	II lettura	III lettura	IV lettura	V lettura
Lalua a a ula viti da ta li	misura	18/12/2014	04/03/2015	20/05/2015	04/08/2015	21/01/2016
Idrocarbuti totali	mg/l	<0,1	<0,1	<0,1	<0,1	<0,1
TOC Tensioattivi	mg/l	6,60	3,60	1,70 <0,01	2,20	40
anionici	mg/l	<0,1	<0,01	·	<0,01	<0,1
Tensioattivi non ionici	mg/l	<0,1	0,51	<0,01	<0,01	<0,1
Cromo totale	μg/l	<1	<0,1	<1	<1	<1
Cromo VI	μg/l	<1	<0,1	<1	<1	<1
Ferro	μg/l	<20	<20	<20	<20	<1
Alluminio	μg/l	<20	<20	<20	<20	<1
Gruppo 3	Unità di	I lettura	II lettura	III lettura	IV lettura	V lettura
.	misura	18/12/2014	04/03/2015	20/05/2015	04/08/2015	21/01/2016
Nichel	μg/l	<1	<1	<1	<1	<1
Zinco	μg/l	<1	<1	<1	<1	<1
Piombo	μg/l	<1	<1	<1	<1	<1
Cadmio	μg/l	<1	<1	<1	<1	<1
Arsenico	μg/l	<1	<1	<1	<1	<1
Manganese	μg/l	<1	<1	<1	<1	<1
Rame	μg/l	<1	<1	<1	6,6	<1
Gruppo 4	Unità di misura	l lettura 18/12/2014	II lettura 04/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Calcio	mg/l	85	58	26	6	21
Sodio	mg/l	5,3	57,6	4,5	2	0,4
Magnesio	mg/l	26	19	4	<1	7
Potassio	mg/l	1,10	7	3,80	5,90	<1
Nitrati	mg/l	16,8	9,6	<1,0	18,1	10
		5	6	417	5	13
Cloruri	mg/l	3	0	417)	13

ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note

Acq. sotterranee
A sot_15

I MISURA CO (18/12/2014) – l'acqua presente all'interno del piezometro è stata ritrovata alla profondità di fondo pozzo. Dalle analisi chimiche di laboratorio sui campioni di acqua i valori riscontrati sono entro i limiti normativi.

II MISURA CO (04/03/2015) – dalle analisi eseguite sui campioni di acqua prelevati all'interno del piezometro, i valori riscontrati sono entro i limiti normativi.

III MISURA CO (20/05/2015) – dalle analisi eseguite sui campioni di acqua prelevati all'interno del piezometro, i valori riscontrati sono entro i limiti normativi. Si segnala un netto incremento dei Cloruri rispetto le precedenti misure ed un netto decremento dei Nitrati.

IV MISURA CO (04/08/2015) – dalle analisi eseguite sui campioni di acqua prelevati all'interno del piezometro, i valori riscontrati sono entro i limiti normativi.

I Cloruri che precedentemente erano stati rilevati in forte aumento, dell'ultima misura eseguita risultano essere rientrati nei valori delle prime campagne; i Nitrati che precedentemente erano stati riscontrati in netto calo ora sono ritornati a valori entro la media. Rame in aumento.

V MISURA CO (21/01/2016) – dalle analisi eseguite sui campioni di acqua prelevati all'interno del piezometro, i valori riscontrati sono entro i limiti normativi.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_15v
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-30		
Comune	Mormanno	Provincia	Cosenza
Distanza dal Tracciato	120 m	Progressiva di progetto	km 0+800
Codice del cantiere/sito di riferimento	A_SOTT_15v	Destinazione d'uso post operam del cantiere/sito di riferimento	Pista di servizio
Coordinate geografiche rettilineee		Coordinate geografiche	
Long: 583874.03 m E	Lat: 4416373.70 m N	Long: 15°58'51.82"E	Lat: 39°53'35.83"N

Descrizione del sito

Piezometro a tubo aperto ubicato lungo una pista di servizio probabilmente utilizzata durante la realizzazione della prima autostrada che permette l'accesso all'attuale viadotto Battendiero I e che si trova 60 m circa a valle del nuovo asse autostradale della nuova galleria naturale Mormanno (canna nord).

Caratterizzazione sintetica del sito

Elementi antropico insediativi		
Attività agricola		
Attività produttiva		
Viabilità (strade comunali, provinciali, ecc) interferente		
Cascina - fabbricato rurale		
Aree degradate		
Versante boscato		
Versante privo di vegetazione	✓	

Elementi di valore naturalistico/ambientale		
Area di pregio paesistico - ambientale		
Parco regionale		
Riserva naturale - SIC - ZPS		
altro		
Bosco		
Corso d'acqua		

Elementi di progetto		
Cantiere	✓	
Area tecnica		
Imbocco galleria naturale		
Imbocco galleria artificiale		
Trincea		
Rilevato		
Viadotto		

ital ASARC

Monitoraggio Ambientale:

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Nucleo - edificio di interesse storico	
Cimitero	

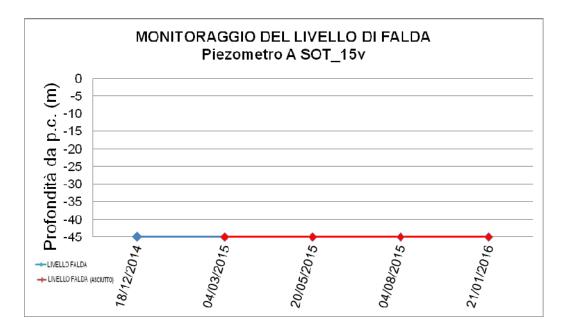
Falda	√
Vincoli idrogeologici - rispetto pozzi idrici	

Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Dati di monitoraggio/misure

Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	690,23	-0,12	-45	1.5-45

NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	18/12/2014	-44,91	645,32	Acqua di fondo pozzo.
2	04/03/2015	-45,62	644,61	Acqua di fondo pozzo.
3	20/05/2015	-45,00	645,23	Assenza di acqua.
4	04/08/2015	-45,00	645,23	Assenza di acqua.
5	21/01/2016	-45,00	645,23	Assenza di acqua.

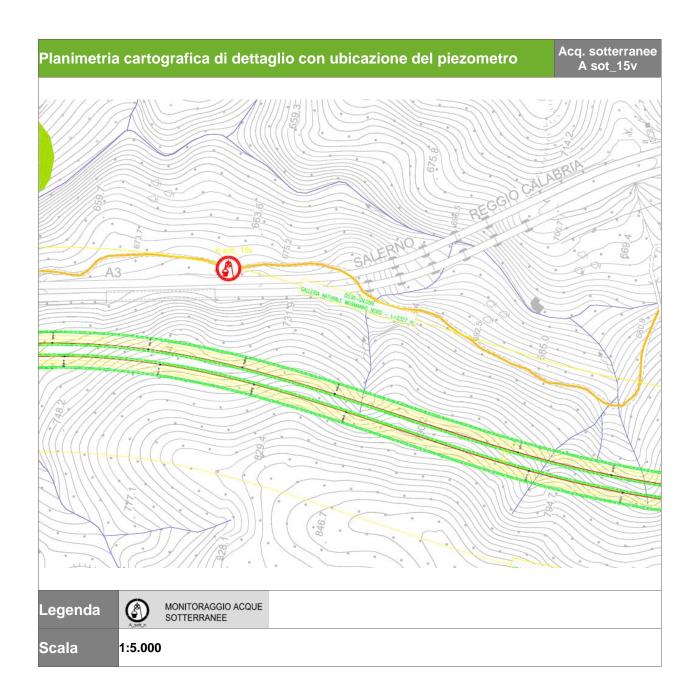

ital * SARC

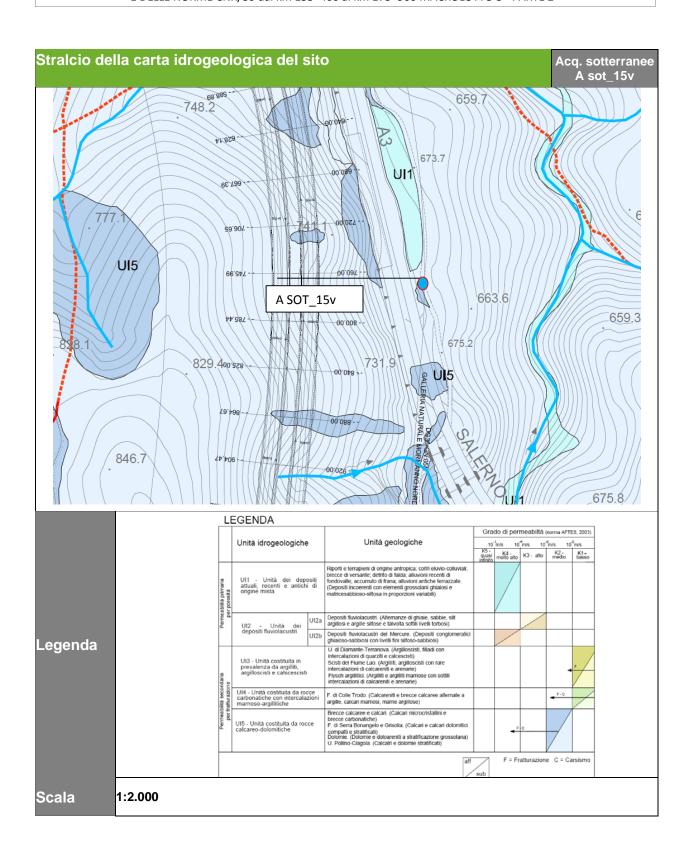
Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ital ASARC

Monitoraggio Ambientale:

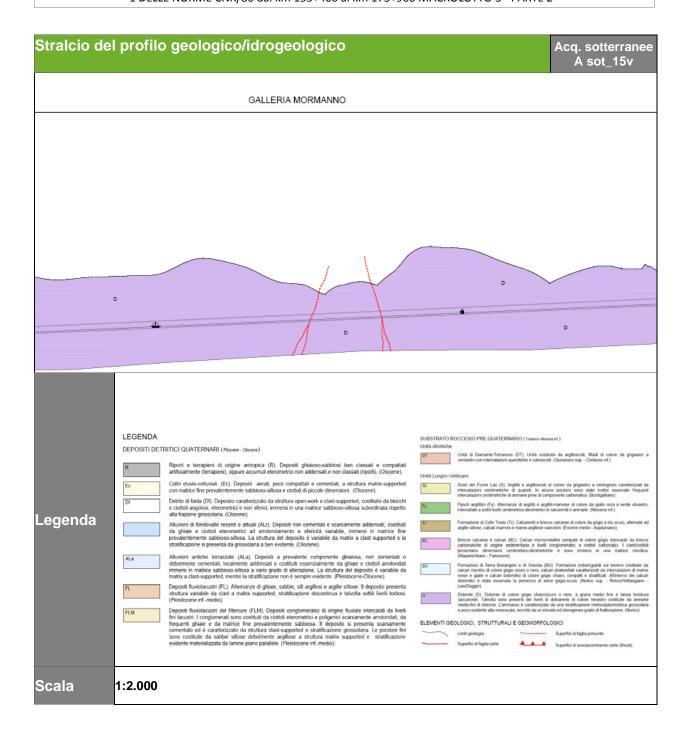

COMPONENTE ACQUE SOTTERRANEE



ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro, eseguito nell'ambito della fase di monitoraggio in "corso d'opera" ad integrazione della rete di monitoraggio esistente, si colloca in corrispondenza di un'incisione sul versante orientale della dorsale dolomitica Madonna della Catena - Carpineta su sui si imposta la nuova galleria Colle di Mormanno. Il punto di monitoraggio è ubicato a circa 60 m dall'asse della carreggiata nord, con quota di boccaforo a circa 696 m s.l.m., superiore di 4-5 metri dalla quota livelletta del tunnel di progetto.

L'assetto geologico strutturale è dominato dalla presenza delle successioni carbonatiche dell'Unità di Lungro-Verbicaro, che formano l'ossatura del territorio costituente l'intera dorsale attraversata dalla galleria. Dette Unità sono principalmente costituite da dolomie di colore chiaro/scuro, a gran amedio fine, con associati livelli di doloareniti di colore nerastro costtuite da arenarie medio-fini di dolomie. L'ammasso è caratterizzato da una stratificazione metrica/plurimetrica grossolana e poco evidente alla mesoscala, nonché da un elevato ed eterogeneo grado di fratturazione; diviene molto più evidente alla macroscala in quanto presenta spaziatura da metrica a plurimetrica. Il grado di fratturazione dell'ammasso è fortemente eterogeneo in quanto sono state osservate porzioni integre e molto competenti alternate ad ampi settori fortemente tettonizzati e fratturati.

Dal punto di vista idrogeologico, l'ammasso dolomitico rappresenta un complesso caratterizzato da permeabilità secondaria per fratturazione, localmente aumentata a causa degli effetti carsici che tali litotipi possono facilmente sviluppare. Sulla base dell'elevato grado di fratturazione espresso dagli ammassi rocciosi è stato attribuito all'unità un grado dei permeabilità medio (K2) variabile fino a molto alto (K4).

Il rilievo dolomitico (D) entro cui verrà scavata la galleria Mormanno non sembra evidenziare la presenza di una superficie piezometrica alle quote di fondo scavo; tale interpretazione deriva dalle misure effettuate nel piezometro Se30_6 (eseguito in sede di progetto esecutivo) e dalla quasi totale assenza di sorgenti censite oppure osservate durante i rilievi di terreno. In tutta la dorsale dolomitica l'unica emergenza idrica segnalata si colloca infatti in corrispondenza del versante versante opposto del Fiume Battendiero e pertanto non è soggetta a influenza da parte dello scavo della Galleria.

Il piezometro A_sott_15v, di profondità pari a 45 m, è interamente perforato in dolomie molto fratturate. La quota di fondo piezometro (circa 666 m s.l.m.) appare inferiore di circa 34 m rispetto alla quota della livelletta di progetto della galleria Colle di Mormanno.

La prima lettura, eseguita nella fase di corso d'opera nel dicembre 2014, non ha evidenziato la presenza di acqua all'interno del piezometro.

Nelle successive 3 letture del 2015, nonché nella misura effettuata a gennaio 2016, si conferma l'assenza di acqua all'interno del piezometro.

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro

Campionatore manuale Bailer + Corda

Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials Spurgo piezometro

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

I		Acq.
	Scheda risultati	sotterranee
		A sot_15v

	Unità di	I lettura	II lettura	III lettura	IV lettura	V lettura
Gruppo 1	misura	18/12/2014	04/03/2015	20/05/2015	04/08/2015	21/01/2016
Temperatura dell'aria	°C	10,12	-	-	-	-
Temperatura dell'acqua	°C	11,28	-	i	-	-
Ossigeno ppm	mg/l	4,80	-	-	-	-
Ossigeno %	%	48,5	-	-	-	-
Conducibilità pH	μ S/cm	1657 12,41	-	-	<u>-</u>	<u>-</u>
Potenziale RedOx	mV	12,41	-			<u>-</u>
	Unità di	l lettura	II lettura	III lettura	IV lettura	V lettura
Gruppo 2	misura	18/12/2014	04/03/2015	20/05/2015	04/08/2015	21/01/2016
Idrocarbuti totali	mg/l	<0,1	-	-	-	-
TOC	mg/l	4,80	-	-	-	-
Tensioattivi anionici	mg/l	<0,1	-	-	-	-
Tensioattivi non ionici	mg/l	<0,1	-	-	-	-
Cromo totale	mg/l	<1	-	ı	-	-
Cromo VI	μ g/l	<1	-	-	-	-
Ferro	μ g/l	<20	-	-	-	-
Alluminio	μ g/l	<20	-	-	-	-
Gruppo 3	Unità di misura	l lettura 18/12/2014	II lettura 04/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Nichel		<1		20/03/2013	04/06/2015	21/01/2010
	μg/l		-	-	-	-
Zinco	μ g/l	<1	-	-	-	-
Piombo	μ g/l	<1	-	-	-	-
Cadmio	μ g/l	<1	-	-	-	-
Arsenico	μ g/l	<1	-	ı	-	-
Manganese	μ g/l	<1	-	ı	-	-
Rame	μ g/l	<1	-	-	-	-
Gruppo 4	Unità di misura	l lettura 18/12/2014	II lettura 04/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Calcio	mg/l	120	-	-	-	-
Sodio	mg/l	9,2	-	-	-	-
Magnesio	mg/l	25	-	-	-	-
Potassio	mg/l	2,10	-	-	-	-
Nitrati	mg/l	9,5	-	-	-	-
Cloruri	mg/l	70	-	-	-	-
Solfati	mg/l	279,9	-	i	-	-

ital ASARC

Monitoraggio Ambientale:

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note Acq. sotterranee A sot_15v

I MISURA CO (18/12/2014) – Dalle analisi di laboratorio eseguite sui campioni di acqua raccolti, solo i Solfati sono stati trovati in esubero (valore di 279,9 mg/l con limite a 250 mg/l).

II MISURA CO (04/03/2015) – Piezometro asciutto.

III MISURA CO (20/05/2015) - Piezometro asciutto.

IV MISURA CO (04/08/2015) – Piezometro asciutto.

V MISURA CO (21/01/2016) – Presenza di poca acqua di fondoforo. Piezometro praticamente asciutto.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_17bis
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-31				
Comune	Mormanno	Provincia	Cosenza		
Distanza dal Tracciato	56 m	Progressiva di progetto	km 1+400		
Codice del cantiere/sito di riferimento	A_SOTT_17 bis	Destinazione d'uso post operam del cantiere/sito di	Imbocco Nord galleria naturale Donna di Marco		
Coordinate geografiche rettilineee		Coordinate geografiche			
Long: 2608278,951	Lat: 4415963,005	Long: 16° 1'56.32"E	Lat: 39°53'20.81"N		

Descrizione del sito

Piezometro a tubo aperto sopra l'imbocco nord della galleria naturale Donna di Marco.

Caratterizzazione sintetica del sito

Elementi antropico insediativi				
Attività agricola				
Attività produttiva				
Viabilità (strade comunali, provinciali, ecc) interferente				
Cascina - fabbricato rurale				
Aree degradate				
Versante boscato	√			
Versante privo di vegetazione				

Elementi di valore naturalistico/ambientale		
Area di pregio paesistico - ambientale		
Parco regionale		
Riserva naturale - SIC - ZPS		
altro		
Bosco		
Corso d'acqua		

Elementi di progetto				
Cantiere	✓			
Area tecnica				
Imbocco galleria naturale	✓			
Imbocco galleria artificiale	✓			
Trincea				
Rilevato				
Viadotto				

ital ASARC

Monitoraggio Ambientale:

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

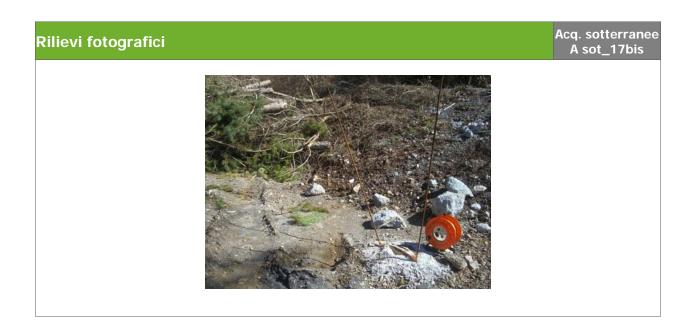
Nucleo - edificio di interesse storico	
Cimitero	

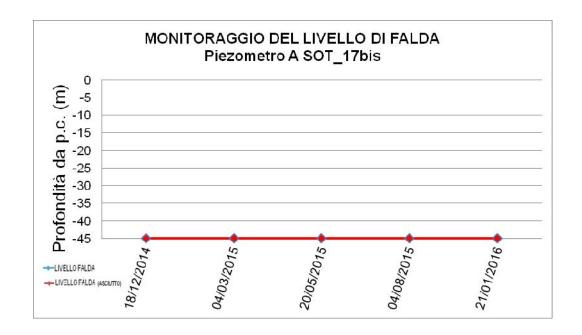
Falda	✓
Vincoli idrogeologici - rispetto pozzi idrici	

Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Dati di monitoraggio/misure

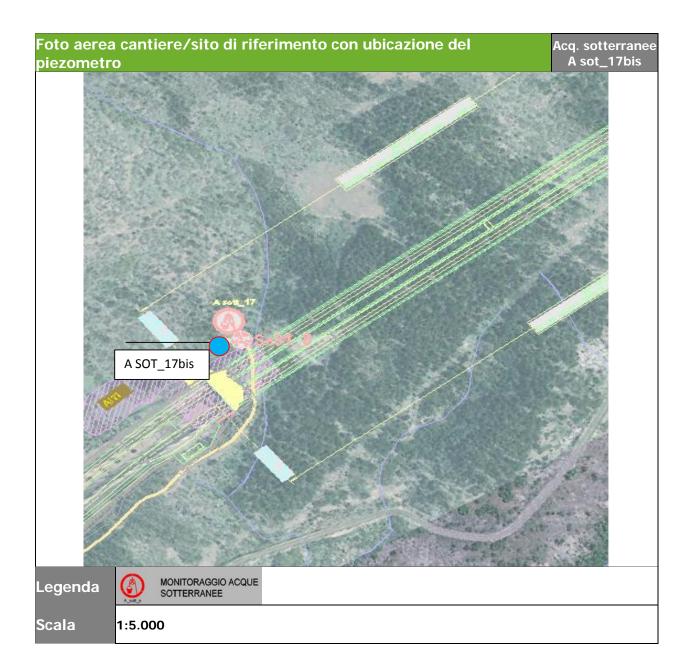
Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	931,78	-0,16	-45	0-30


NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	18/12/2014	-45	886,78	Piezometro asciutto Pozzetto fuori terra
2	04/03/2015	-45	886,78	Piezometro asciutto
3	20/05/2015	-45	886,78	Piezometro asciutto
4	04/08/2015	-45	886,78	Piezometro asciutto
5	21/01/2016	-45	886,78	Piezometro asciutto


ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

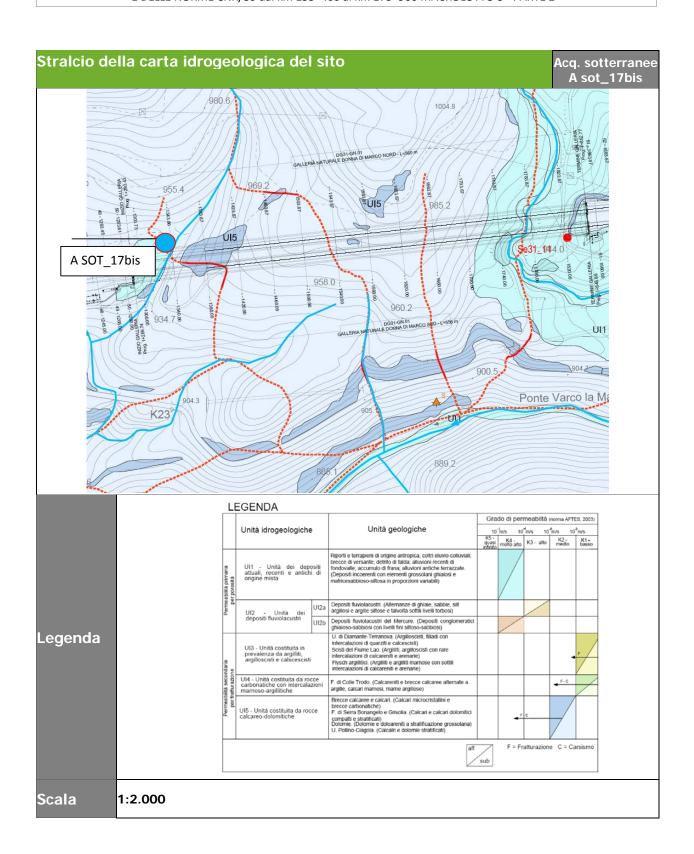


ital ASARC

Monitoraggio Ambientale:

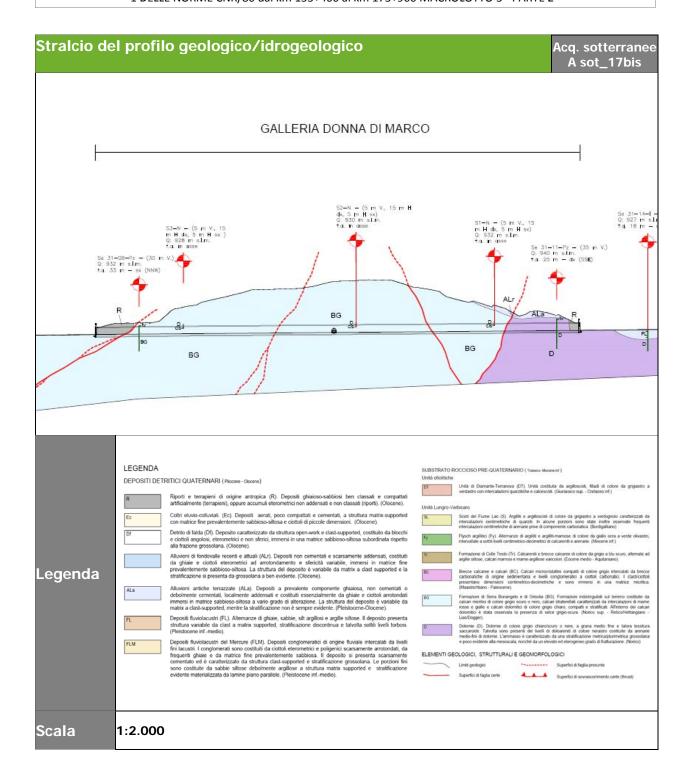
COMPONENTE ACQUE SOTTERRANEE

Monitoraggio Ambientale:



ital ASARC

Monitoraggio Ambientale:



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro, installato nella fase di "corso d'opera" in sostituzione della verticale A_sott.17, si colloca in adiacenza all'imbocco lato Salerno della carreggiata nord della galleria Donna di Marco, in corrispondenza del fondo del Vallone della Castagneta, pochi metri al di sopra della quota galleria.

Il rilievo entro cui si imposta la galleria è interamente costituito dalle successioni carbonatiche delle Formazioni di Serra Bonangelo e Grisolia, principalmente costituite da sequenze di calcari e calcari dolomitici caratterizzati da colore grigio chiaro/scuro, grana medio-fine talora micritica e stratificazione piano parallela spaziata da pochi centimetri a 1-2 m. In corrispondenza degli affioramenti di calcari dolomitici sono stati osservati dei noduli di selce di colore grigio scuro/nero inclusi all'interno della massa carbonatica. In taluni affioramenti calcarei è stato possibile osservare la presenza di sporadici livelli di marne gialle, caratterizzati da potenza centimetrica.

Si tratta di un complesso caratterizzato da permeabilità per fratturazione e carsismo. Sulla base dell'elevato grado di fratturazione espresso dagli ammassi rocciosi è stato attribuito all'unità un grado dei permeabilità medio (K2) variabile fino a molto alto (K4).

In corrispondenza della gallerie Donna di Marco non è stata individuata una superficie piezometrica alle quote interessate dagli scavi della galleria. Il piezometro Se 31_8 è risultato asciutto nelle 3 letture eseguite nei mesi di gennaio, febbraio e giugno 2014. Le due letture eseguite nel piezometro ambientale ad aprile e giugno 2014 confermano l'assenza di falda.

I dati ottenuti in sede di monitoraggio di PE e relativi al piezometro Se31_11, ubicato in corrispondenza dell'imbocco Reggio Calabria della galleria Donna di Marco, hanno individuato invece un livello piezometrico ad una quota di circa 909 m s.l.m., inferiore di circa 15-16 metri rispetto alla quota di fondo scavo.

Le due letture eseguite nel piezometro ambientale A_sott_17 ad aprile e giugno 2014 confermano l'assenza di falda (fase di ante operam).

La lettura effettuata sul nuovo piezometro ambientale A_sott.17bis nel dicembre 2014 (I lettura fase Corso d'opera), approfondito fino a profondità di circa -45 m da p.c., non ha evidenziato la presenza di falda nell'ammasso roccioso calcareo-dolomitico. Anche nelle successive 3 letture eseguite nel 2015, nonché nella lettura di gennaio 2016, il piezometro è risultato asciutto.

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro

Campionatore manuale Bailer + Corda

Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials

Spurgo piezometro

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Scheda risultati Acq. sotterranee A sot_17bis

Gruppo 1	Unità di misura	I lettura 18/12/2014	II lettura 04/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Temperatura dell'aria	°C	-	-	-	-	-
Temperatura dell'acqua	°C	-	-	-	-	-
Ossigeno ppm	mg/l	_	_	_	_	_
Ossigeno %	%	-	-	-	-	-
Conducibilità	mS/cm	-	-	-	-	-
рН	•	-	-	-	-	-
Potenziale RedOx	mV	-	-	-	-	-
Gruppo 2	Unità di misura	I lettura 18/12/2014	II lettura 04/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Idrocarbuti totali	mg/l	-	-	-	-	-
TOC	mg/l	-	-	-	-	-
Tensioattivi anionici	mg/l	-	-	-	-	-
Tensioattivi non ionici	mg/l	-	-	-	-	-
Cromo totale	mg/l	-	-	-	-	-
Cromo VI	mg/l	-	-	-	-	-
Ferro	mg/l	-	-	-	-	-
Alluminio	mg/l	-	-	-	-	-
Gruppo 3	Unità di misura	I lettura 18/12/2014	II lettura 04/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Nichel	mg/l	-	-	-	-	-
Zinco	mg/l	-	-	-	-	-
Piombo	mg/l	-	-	-	-	-
Cadmio	mg/l	-	-	-	-	-
Arsenico	mg/l	-	-	-	-	-
Manganese	mg/l	-	-	-	-	-
Rame	mg/l	-	-	-	-	-
Gruppo 4	Unità di misura	I lettura 18/12/2014	II lettura 04/03/2015	III lettura 20/05/2015	IV lettura 04/08/2015	V lettura 21/01/2016
Calcio	mg/l	-	-	-	-	-
Sodio	mg/l	-	-	-	-	-
Magnesio	mg/l	-	-	-	-	-
Potassio	mg/l	-	-	-	-	-
Nitrati	mg/l	-	-	-	-	-
Cloruri	mg/l	-	-	-	-	-
Solfati	mg/l	-	-	-	-	-

ital SARC

Monitoraggio Ambientale:

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note
Acq. sotterranee
A sot_17bis

- I MISURA CO (18/12/2014)_Dalla misura freatimetrica eseguita sul nuovo piezometro, questo risultava privo d'acqua.
- II MISURA CO (04/03/2015)_Dalla misura freatimetrica eseguita sul nuovo piezometro, questo risultava privo d'acqua.
- III MISURA CO (20/05/2015)_Dalla misura freatimetrica eseguita sul nuovo piezometro, questo risultava privo d'acqua.
- IV MISURA CO (04/08/2015)_Dalla misura freatimetrica eseguita sul nuovo piezometro, questo risultava privo d'acqua.
- V MISURA CO (21/01/2016)_Presenza di poca acqua sul fondo del foro (acqua di fondoforo no di falda); piezometro praticamente asciutto.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_18
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-31		
Comune	Mormanno	Provincia	Cosenza
Distanza dal Tracciato	105 m	Progressiva di progetto	km 2+200
Codice del cantiere/sito di riferimento	A_SOTT_18	Destinazione d'uso post operam del cantiere/sito di	Strada provinciale SP241
Coordinate geografiche rettilineee		Coordinate geografiche	
Long: 2609035,755	Lat: 4415834,891	Long: 16°02'28.65688"	Lat: 39°53'16.19122"

Descrizione del sito

Piezometro a tubo aperto in prossimità del chilometro 24 della SP241, a valle dell'imbocco nord della galleria naturale Campotenese; il piezometro è stato realizzato a bordo della strada provinciale dove sono stati rinvenuti rifiuti urbani.

Caratterizzazione sintetica del sito

Elementi antropico insediativi		
Attività agricola	✓	
Attività produttiva		
Viabilità (strade comunali, provinciali, ecc) interferente	✓	
Cascina - fabbricato rurale		
Aree degradate		
Versante boscato	√	

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
altro	
Bosco	
Corso d'acqua	

Elementi di progetto		
Cantiere	✓	
Area tecnica		
Imbocco galleria naturale	√	
Imbocco galleria artificiale		
Trincea		
Rilevato		

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Versante privo di vegetazione	
Nucleo - edificio di interesse storico	
Cimitero	

Falda	√
Vincoli idrogeologici - rispetto pozzi idrici	

Viadotto	
Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	√

Dati di monitoraggio/misure

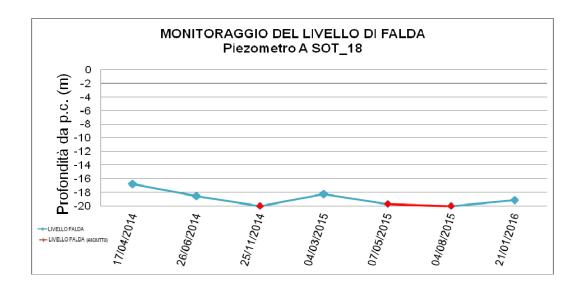
Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	906,542	-0,4	-20	0-20

NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	17/04/2014	-16,75	889,792	Acqua torbida Pozzetto carrabile
2	26/06/2014	-18,55	887,992	-
3	25/11/2014	-20	886,542	Piezometro asciutto
4	04/03/2015	-18,28	888,262	
5	07/05/2015	-19,71	886,832	Acqua di fondopozzo
6	04/08/2015	-20	886,542	Piezometro asciutto
7	21/01/2016	-19,15	887,392	Acqua di fondopozzo

ital ASARC

Monitoraggio Ambientale:

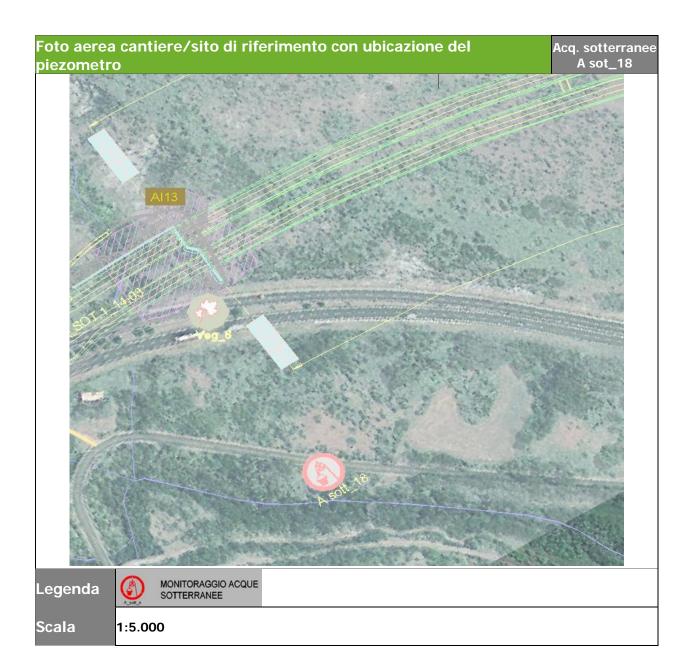
COMPONENTE ACQUE SOTTERRANEE



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE



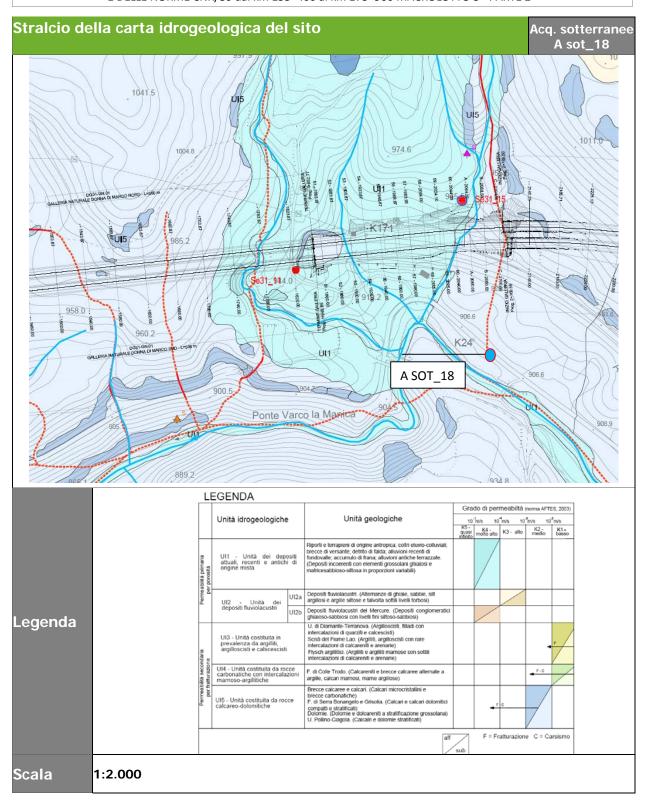
ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

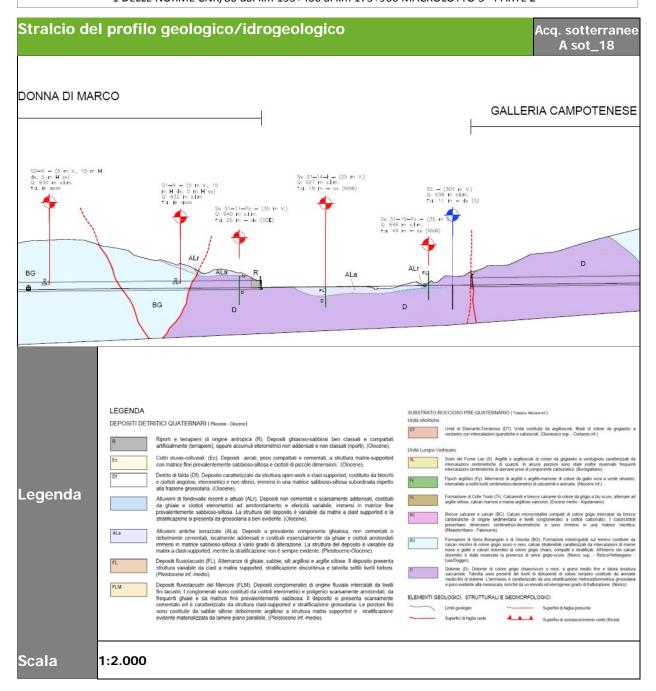
ital ASARC

Monitoraggio Ambientale:



COMPONENTE ACQUE SOTTERRANEE

Monitoraggio Ambientale:



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro è ubicato circa 90 m a valle dell'imbocco lato Salerno della carreggiata sud della galleria Campotenese di progetto, ad una quota inferiore di circa 23 metri rispetto alla quota dell'attuale tunnel stradale.

L'assetto geologico strutturale è dominato dalla presenza delle successioni carbonatiche dell'Unità di Lungro-Verbicaro, che formano l'ossatura del territorio costituente l'intera dorsale attraversata dalla galleria. Gran parte del rilievo è costituito dalle successioni carbonatiche delle Formazioni di Serra Bonangelo e Grisolia, principalmente costituite da sequenze di calcari e calcari dolomitici caratterizzati da colore grigio chiaro/scuro, grana medio-fine talora micritica e stratificazione piano parallela spaziata da pochi centimetri a 1-2 m. In corrispondenza degli affioramenti di calcari dolomitici sono stati osservati dei noduli di selce di colore grigio scuro/nero inclusi all'interno della massa carbonatica. In taluni affioramenti calcarei è stato possibile osservare la presenza di sporadici livelli di marne gialle, caratterizzati da potenza centimetrica.

Il tratto iniziale della galleria, comprendente anche il settore dove ricade il piezometro, si sviluppa nelle dolomie di colore chiaro/scuro, a grana medio fine, con associati livelli di doloareniti di colore nerastro costituite da arenarie medio-fini di dolomie.

Dal punto di vista idrogelogico, entrambe le formazioni rappresentano complessi caratterizzati da permeabilità per fratturazione e carsismo. Sulla base dell'elevato grado di fratturazione espresso dagli ammassi rocciosi è stato attribuito all'unità un grado dei permeabilità medio (K2) variabile fino a molto alto (K4).

Con riferimento alla circolazione idrica sotterranea, si dispone dei dati di monitoraggio della progettazione esecutiva, (dicembre 2013 – maggio 2014) relativi ai 3 piezometri ubicati in asse alla galleria Campotenese. La lettura di gennaio 2014 nel piezometro ubicato in corrispondenza dell'imbocco lato Sa della galleria Campotenese (Se31_15) evidenzia un livello di falda all'interno del substrato dolomitico ad una quota di 929 m s.l.m., quasi coincidente con la quota di fondo scavo della galleria. Per il livello misurato si è ipotizzata la presenza di una falda impostata nel substrato roccioso di natura dolomitica (D). Le altre 4 letture, precedenti e successive al gennaio 2014, evidenziano una marcata oscillazione del livello di falda, che risulta distribuito a quote inferiori di circa 10-15 m rispetto a quella sopra indicata. Nell'ultima lettura, di fine giugno 2014, il piezometro è risultato asciutto, evidenziando un'abbassamento massimo di oltre 15 m rispetto alla lettura di gennaio 2014.

Tali oscillazioni sembrerebbero confermate anche dai dati ottenuti dal vicino piezometro A_sott_19, ubicato in adiacenza alla carreggiata nord, tra l'imbocco Sa della galleria Campotenese e l'imbocco sud della galleria Donna di Marco, che ha fornito una quota iniziale del livello di falda di circa 913 m s.l.m. (-15 m da p.c. – lettura di aprile 2014), ed una successiva lettura in cui il piezometro è risultato asciutto a giugno 2014 (abbassamento di oltre 15 m).

La superficie individuata nel piezometro Se31_15 non è stata ulteriormente estesa lateralmente in quanto l'assenza di dati non ha consentito di eseguire ulteriori interpretazioni.

Le misure fornite dal piezometro A_sott_18 nella fase di "ante operam", che indicano un livello di falda a profondità di -16.7/-18.5 m circa da p.c., corrispondente ad una quota di 889-891 m s.l.m., sembrerebbe confermare la presenza di una circolazione idrica sotterranea che, dai rilievi calcareo-dolomitici entro cui si sviluppa la galleria Campotenese, è diretta verso il fondovalle del fiume Battendiero.

Nella prima lettura della fase di "corso d'opera", eseguita a novembre 2014, il piezometro è risultato invece asciutto. La II lettura del corso d'opera (marzo 2015) indica nuovamente un livello di falda all'interno del foro, che si colloca alla medesima profondità assunta nel giugno 2014, ovvero a circa -18.28 m da p.c..

Le successive letture di maggio e agosto 2015, nonché la misura di gennaio 2016, sembrano evidenziare assenza di acqua nel piezometro (acqua di fondo piezometro o piezometro asciutto)

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro

Campionatore manuale Bailer + Corda

Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials Spurgo piezometro

ital ** SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Scheda risultati Acq. sotterranee A sot_18

Gruppo 1	Unità di	I lettura	II lettura	III lettura	IV lettura
	misura	25/11/2014	04/03/2015	07/05/2015	21/01/2016
Temperatura dell'aria	°C	-	15,21	-	-
Temperatura	°C	-	16,68	-	-
dell'acqua			22.00		
Ossigeno ppm	mg/l %	-	23,99 277,3	-	-
Ossigeno % Conducibilità	mS/cm	-	594	-	-
pH	1113/0111	-	8,28	-	-
Potenziale RedOx	mV		14,2		
Gruppo 2	Unità di	I lettura	II lettura	III lettura	IV lettura
	misura	25/11/2014	04/03/2015	07/05/2015	21/01/2016
Idrocarbuti totali	mg/l	-	<0,1	-	-
TOC	mg/l	-	3,50	-	-
Tensioattivi anionici	mg/l	-	<0,01	-	-
Tensioattivi non ionici	mg/l	-	0,15	-	-
Cromo totale	mg/l	-	<1	-	-
Cromo VI	mg/l	-	<1	-	-
Ferro	mg/l	-	<20	-	-
Alluminio	mg/l	-	<20	-	-
Gruppo 3	Unità di misura	I lettura 25/11/2014	II lettura 04/03/2015	III lettura 07/05/2015	IV lettura 21/01/2016
Nichel	mg/l	-	<1	-	-
Zinco	mg/l	-	<1	-	-
Piombo	mg/l	-	<1	-	-
Cadmio	mg/l	-	<1	-	-
Arsenico	mg/l	-	<1	-	-
Manganese	mg/l	-	<1	-	-
Rame	mg/l	-	<1	-	-
Gruppo 4					11/ 1044
	Unità di	I lettura	II lettura	III lettura	IV lettura
Coloio	misura	25/11/2014	04/03/2015	07/05/2015	21/01/2016
Calcio	misura mg/l	25/11/2014	04/03/2015 42	07/05/2015	21/01/2016
Sodio	misura mg/l mg/l	25/11/2014	04/03/2015 42 43,4	07/05/2015 - -	
Sodio Magnesio	misura mg/l	25/11/2014	04/03/2015 42 43,4 23	07/05/2015	21/01/2016
Sodio Magnesio Potassio	misura mg/l mg/l	25/11/2014	42 43,4 23 8	07/05/2015 - -	21/01/2016
Sodio Magnesio Potassio Nitrati	misura mg/l mg/l mg/l	25/11/2014	42 43,4 23 8 12,8	07/05/2015 - - -	21/01/2016
Sodio Magnesio Potassio	misura mg/l mg/l mg/l mg/l mg/l	25/11/2014	42 43,4 23 8	07/05/2015 - - - -	21/01/2016

ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note

Acq. sotterranee
A sot_18

I MISURA CO (25/11/2014)_Dalla misura freatimetrica il piezometro risultava privo d'acqua.

- II MISURA CO (04/03/2015)_ Dalle analisi eseguite sui campioni di acqua prelevati all'interno del piezometro, i valori riscontrati sono entro i limiti normativi.
- III MISURA CO (07/05/2015)_Dalla misura freatimetrica il piezometro risultava privo d'acqua (intercettata acqua presente sul fondo del piezometro).
- IV MISURA CO (04/08/2015)_Dalla misura freatimetrica il piezometro risultava privo d'acqua (intercettata acqua presente sul fondo del piezometro).
- V MISURA CO (21/01/2016)_Dalla misura freatimetrica il piezometro risultava privo d'acqua (intercettata acqua presente sul fondo del piezometro).

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_19
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-28		
Comune	Mormanno	Provincia	Cosenza
Distanza dal Tracciato	34 m	Progressiva di progetto	km 2+000
Codice del cantiere/sito di riferimento	A_SOTT_19	Destinazione d'uso post operam del cantiere/sito di	Rilevato
Coordinate geografiche rettilineee		Coordinate geografiche	
Long: 2608925,534	Lat: 4416023,922	Long: 16°02'24.10939"	Lat: 39°53'22.36319"

Descrizione del sito

Piezometro a tubo aperto in adiacenza alla carreggiata nord dell'attuale A3, tra l'imbocco sud dell'esistente galleria naturale Donna di Marco e l'imbocco nord della nuova galleria naturale Campotenese.

Caratterizzazione sintetica del sito

Elementi antropico insediativi		
Attività agricola		
Attività produttiva		
Viabilità (strade comunali, provinciali, ecc) interferente		
Cascina - fabbricato rurale		
Aree degradate		
Versante boscato		
Versante privo di vegetazione		

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
altro	
Bosco	
Corso d'acqua	

Elementi di progetto	
Cantiere	✓
Area tecnica	
Imbocco galleria naturale	✓
Imbocco galleria artificiale	✓
Trincea	
Rilevato	✓
Viadotto	

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Nucleo - edificio di interesse storico	
Cimitero	

Falda	✓
Vincoli idrogeologici - rispetto pozzi idrici	

Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Dati di monitoraggio/misure

Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	928,688	+0,6	-30	0-30

NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	17/04/2014	15,15	913,538	Acqua torbida Pozzetto fuori terra
2	26/06/2014	-30	898,688	Piezometro asciutto
3	25/11/2014	-30	898,688	Realizzato pozzetto in cemento e ghisa. Piezometro asciutto
4	04/03/2015	-30	898,688	Piezometro asciutto
4	06/05/2015	-30	898,688	Piezometro asciutto
6	04/08/2015	-30	898,688	Piezometro asciutto
7	28/01/2016	-	-	Piezometro disperso/seppellito

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

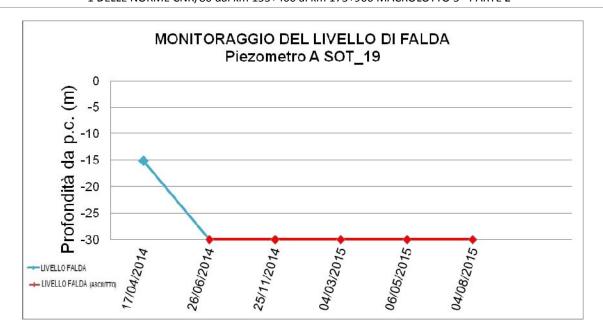
ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Rilievi fotografici

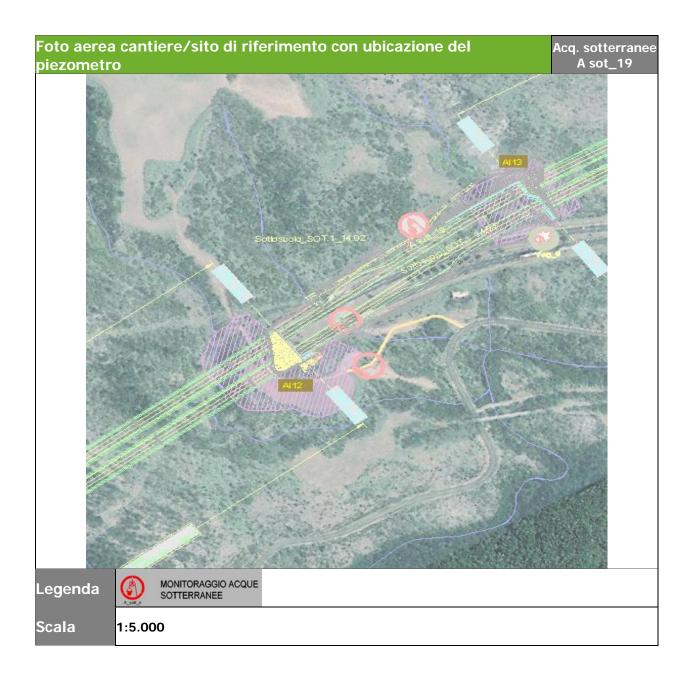
Acq. sotterranee
A sot_19

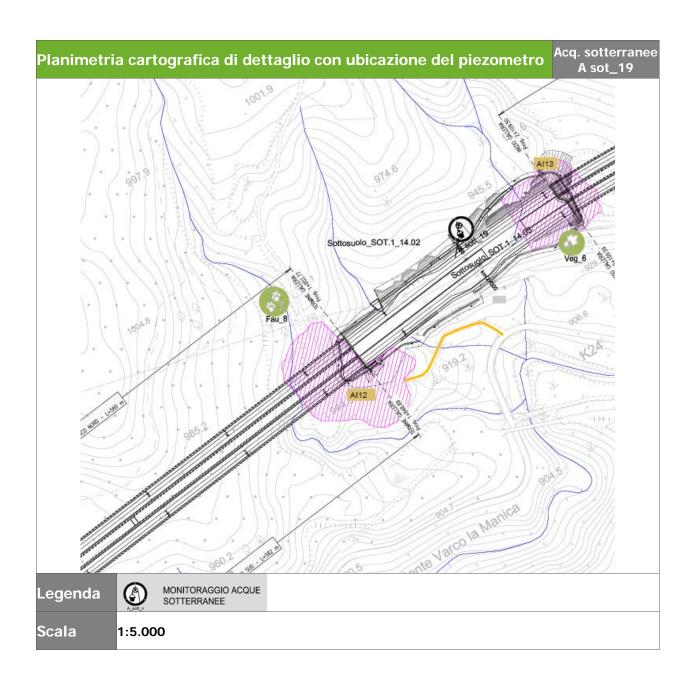
PIEZOMETRO NEL 2015

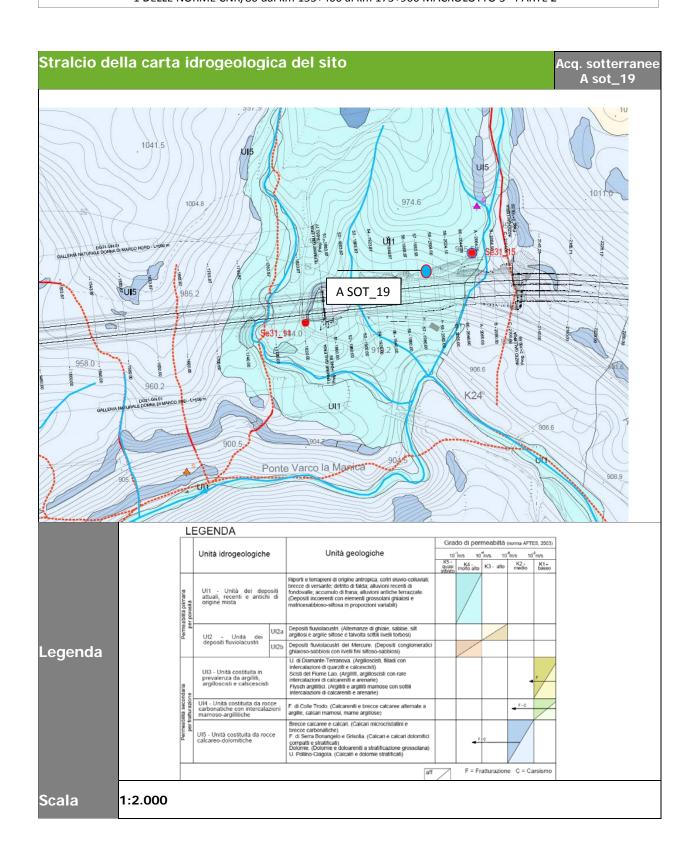
STATO DEI LUOGHI A GENNAIO 2016

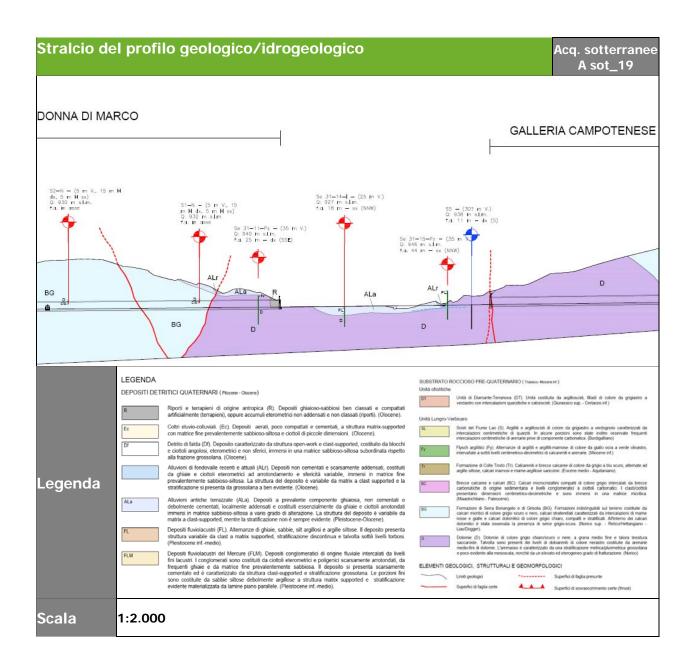


ital SARC


Monitoraggio Ambientale:


COMPONENTE ACQUE SOTTERRANEE





ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro è ubicato tra l'imbocco nord della galleria Campotenese e l'imbocco sud della galleria Donna di Marco, ad una quota all'incirca corrispondente a quella di progetto (circa 928 m s.l.m.).

L'assetto geologico strutturale è dominato dalla presenza delle successioni carbonatiche dell'Unità di Lungro-Verbicaro, che formano l'ossatura del territorio costituente l'intera dorsale attraversata dalla galleria. Gran parte del rilievo è costituito dalle successioni carbonatiche delle Formazioni di Serra Bonangelo e Grisolia, principalmente costituite da sequenze di calcari e calcari dolomitici caratterizzati da colore grigio chiaro/scuro, grana medio-fine talora micritica e stratificazione piano parallela spaziata da pochi centimetri a 1-2 m. In corrispondenza degli affioramenti di calcari dolomitici sono stati osservati dei noduli di selce di colore grigio scuro/nero inclusi all'interno della massa carbonatica. In taluni affioramenti calcarei è stato possibile osservare la presenza di sporadici livelli di marne gialle, caratterizzati da potenza centimetrica.

Il tratto iniziale della galleria, comprendente anche il settore dove ricade il piezometro, si sviluppa nelle dolomie di colore chiaro/scuro, a grana medio fine, con associati livelli di doloareniti di colore nerastro costituite da arenarie medio-fini di dolomie.

Dal punto di vista idrogelogico, entrambe le formazioni rappresentano complessi caratterizzati da permeabilità per fratturazione e carsismo. Sulla base dell'elevato grado di fratturazione espresso dagli ammassi rocciosi è stato attribuito all'unità un grado dei permeabilità medio (K2) variabile fino a molto alto (K4).

Con riferimento alla circolazione idrica sotterranea, si dispone dei dati di monitoraggio della progettazione esecutiva, (dicembre 2013 – maggio 2014) relativi ai 3 piezometri ubicati in asse alla galleria Campotenese. La lettura di gennaio 2014 nel piezometro ubicato in corrispondenza dell'imbocco lato Sa della galleria Campotenese (Se31_15) evidenzia un livello di falda all'interno del substrato dolomitico ad una quota di 929 m s.l.m., quasi coincidente con la quota di fondo scavo della galleria. Per il livello misurato si è ipotizzata la presenza di una falda impostata nel substrato roccioso di natura dolomitica (D). Le altre 4 letture, precedenti e successive al gennaio 2014, evidenziano una marcata oscillazione del livello di falda, che risulta distribuito a quote inferiori di circa 10-15 m rispetto a quella sopra indicata. Nell'ultima lettura, di fine giugno 2014, il piezometro è risultato asciutto, evidenziando un'abbassamento massimo di oltre 15 m rispetto alla lettura di gennaio 2014.

La superficie individuata nel piezometro Se31_15 non è stata ulteriormente estesa lateralmente in quanto l'assenza di dati non ha consentito di eseguire ulteriori interpretazioni.

La misura fornita dal piezometro A_sott_18, ubicato 90 m a valle della zona di imbocco, indica un livello di falda a profondità di -16.7/-18.5 m circa da p.c., corrispondente ad una quota di 889.79 m s.l.m., sembrerebbe confermare la presenza di una circolazione idrica sotterranea che, dai rilievi calcareo-dolomitici entro cui si sviluppa la galleria Campotenese, è diretta verso il fondovalle del fiume Battendiero.

La lettura del piezometro A_sott_19 fornisce una quota iniziale del livello di falda di circa 913 m s.l.m. (-15 m da p.c. – lettura di aprile 2014. Tale misura si correla a quelle indicati dalle letture di febbraio e maggio 2014 nel piezometro Se31_15 (sup. piezometrica tra 917 e 913 m s.l.m.).

Nella lettura di giugno 2014 ("ANTE OPERAM") il piezometro A_sott_19 è risultato asciutto. Ciò indica un abbassamento del livello di falda di oltre 15 m, in accordo con quello osservato nei pressi dell'imbocco nord della galleria Campotenese (piezometro Se31 15).

Anche le letture eseguite nella fase di corso d'opera tra novembre 2014 e agosto 2015 sembrano indicare l'assenza di falda nel sottosuolo fino a profondità di -30 m.

La lettura di gennaio 2016 non è stata eseguita a causa del seppellimento del piezometro.

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro

Campionatore manuale Bailer + Corda

Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials

Spurgo piezometro

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

Scheda risultati	Acq. sotterranee
ocheda Haditati	A sot_19

Gruppo 1	Unità di	I lettura	II lettura	III lettura	IV lettura
	misura	25/11/2014	04/03/2015	06/05/2015	04/08/2015
Temperatura dell'aria	°C	-	-	-	-
Temperatura	°C	-	-	-	-
dell'acqua					
Ossigeno ppm	mg/l %	-	-	-	-
Ossigeno % Conducibilità	mS/cm	-	-	-	-
pH	1113/0111	-	-	-	-
Potenziale RedOx	mV		_	_	_
Gruppo 2	Unità di	I lettura	II lettura	III lettura	IV lettura
	misura	25/11/2014	04/03/2015	06/05/2015	04/08/2015
Idrocarbuti totali	mg/l	-	-	-	-
TOC	mg/l	-	-	-	-
Tensioattivi anionici	mg/l	-	-	-	-
Tensioattivi non ionici	mg/l	-	-	-	-
Cromo totale	mg/l	-	-	-	-
Cromo VI	mg/l	-	-	-	-
Ferro	mg/l	-	-	-	-
Alluminio	mg/l	-	-	-	-
Gruppo 3	Unità di	I lettura	II lettura	III lettura	IV lettura
Nichel	misura	25/11/2014	04/03/2015	06/05/2015	04/08/2015
	mg/l	-	-	-	-
Zinco	mg/l	-	-	-	-
Piombo	mg/l	-	-	-	-
Cadmio	mg/l	-	-	-	-
Arsenico	mg/l	-	-	-	-
Manganese	mg/l	-	-	-	-
Rame	mg/l	-	-	-	-
Gruppo 4	Unità di	I lettura	II lettura	III lettura	IV lettura
Calcio	misura	25/11/2014	04/03/2015	06/05/2015	04/08/2015
	mg/l	-	-	-	-
Sodio	mg/l	-	-	-	-
Magnesio	mg/l	-	-	-	-
Potassio	mg/l	-	-	-	-
Nitrati	e. /I	_	-	_	-
	mg/l		<u> </u>		<u> </u>
Cloruri	mg/l mg/l	-	-	-	-

ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note

Acq. sotterranee
A sot_19

I MISURA CO (25/11/2014)_Dalla misura freatimetrica il piezometro risultava privo d'acqua.

II MISURA CO (04/03/2015)_Dalla misura freatimetrica il piezometro risultava privo d'acqua.

III MISURA CO (06/05/2015)_Dalla misura freatimetrica il piezometro risultava privo d'acqua.

IV MISURA CO (04/08/2015)_Dalla misura freatimetrica il piezometro risultava privo d'acqua.

V MISURA CO (28/01/2016)_Piezometro disperso/seppellito a causa della riprofilatura del versante e movimentazione terra.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_20
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-31		
Comune	Morano Calabro	Provincia	Cosenza
Distanza dal Tracciato	100 m	Progressiva di progetto	km 3+200
Codice del cantiere/sito di riferimento	A_SOTT_20	Destinazione d'uso post operam del cantiere/sito di	Impluvio
Coordinate geografiche rettilineee		Coordinate geografiche	
Long: 2610053,566	Lat: 4415615,878	Long: 16°03'11.39631"	Lat: 39°53'08.70163"

Descrizione del sito

Piezometro a tubo aperto all'interno dell'impluvio in prossimità dell'imbocco sud della nuova galleria naturale Campotenese.

Caratterizzazione sintetica del sito

Elementi antropico insediativi			
Attività agricola	✓		
Attività produttiva			
Viabilità (strade comunali, provinciali, ecc) interferente	✓		
Cascina - fabbricato rurale			
Aree degradate			
Versante boscato	✓		

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
altro	
Bosco	
Corso d'acqua	

Elementi di progetto		
Cantiere	✓	
Area tecnica		
Imbocco galleria naturale	✓	
Imbocco galleria artificiale	√	
Trincea	✓	
Rilevato		

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

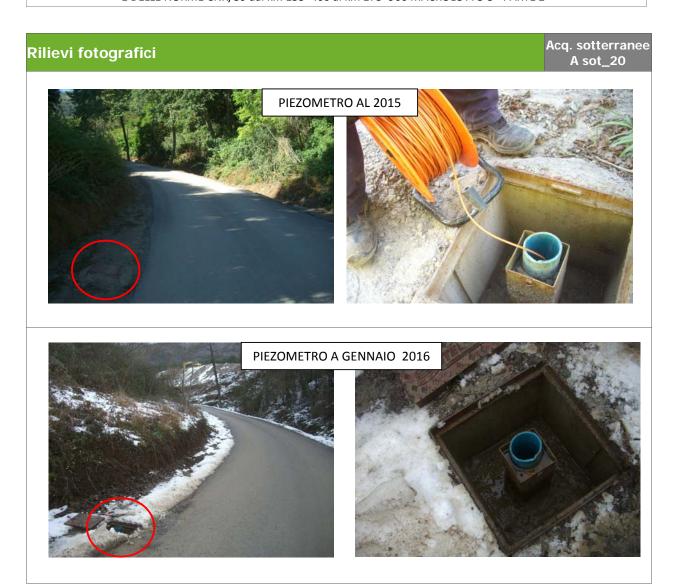
Versante privo di vegetazione	
Nucleo - edificio di interesse storico	
Cimitero	

Falda	✓
Vincoli idrogeologici - rispetto pozzi idrici	

Viadotto	
Svincolo	
Area di servizio	
Area di stoccaggio	
Viabilità di cantiere	

Dati di monitoraggio/misure

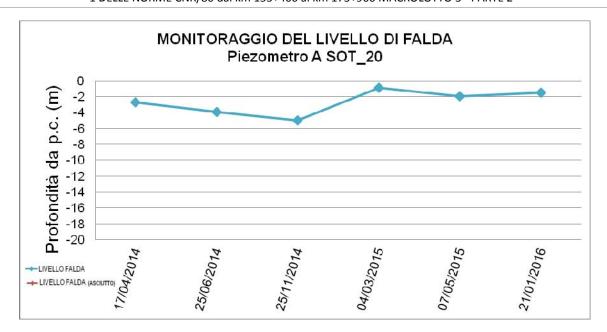
Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	952,724	+0,8	-25	0-25


NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	17/04/2014	-2,69	950,034	Acqua leggermente torbida Pozzetto fuori terra
2	25/06/2014	-3,90	919,66	Realizzata pista di servizio nei pressi del piezometro
3	25/11/2014	-4,97	947,754	
4	04/03/2015	-0,90	951,824	
5	07/05/2015	-1,97	950,754	
6	04/08/2015	-	-	Piezometro interrotto e asciutto a 5,20 mt (presenza di terreno al suo interno)
7	21/01/2016	-	-	Confermata interruzione del piezometro a 5,20 mt (presenza di terreno al suo interno). Presente acqua a 1,53 mt.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE



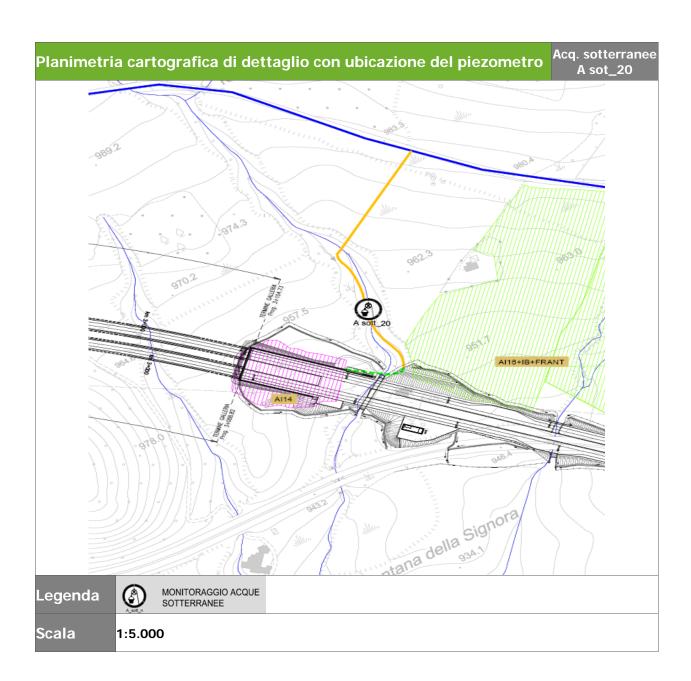
ital ASARC

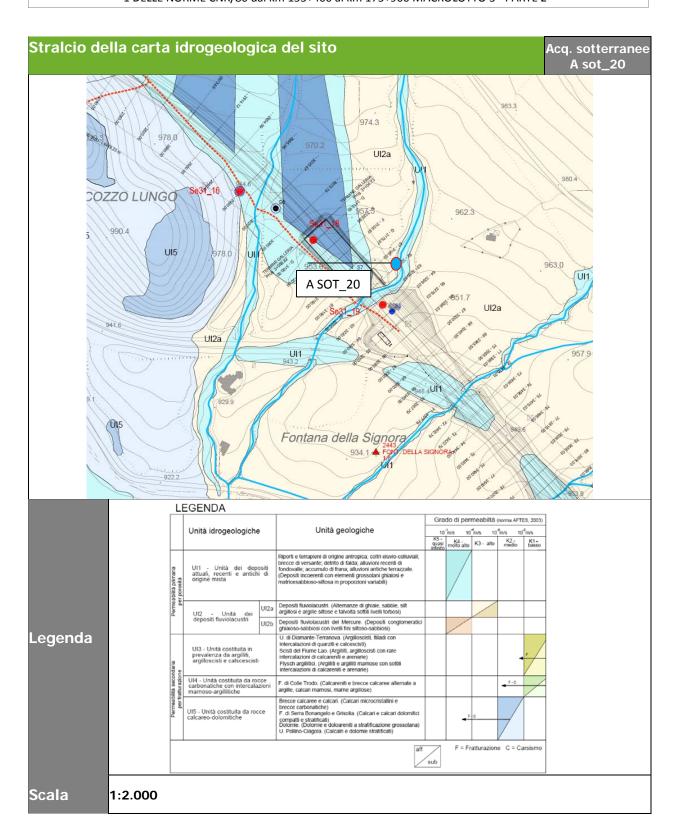
Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ital ASARC

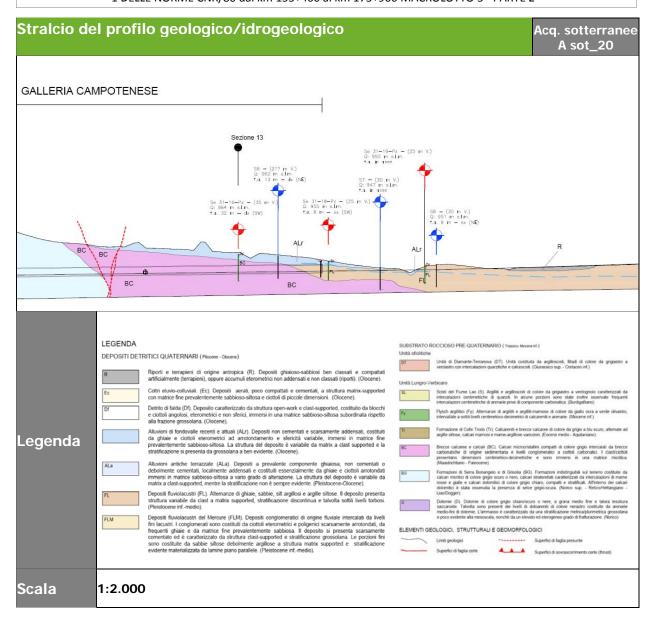
Monitoraggio Ambientale:


COMPONENTE ACQUE SOTTERRANEE


ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro è ubicato circa 55-60 m a monte del tracciato di progetto, alcune decine di metri a SE dell'imbocco lato RC della galleria Campotenese. Il boccaforo è ubicato sul fondo di una incisione, ad una quota di circa 952 m s.l.m.

L'assetto geologico strutturale è dominato dalla presenza delle successioni carbonatiche dell'Unità di Lungro-Verbicaro, che formano l'ossatura del territorio costituente l'intera dorsale attraversata dalla galleria. Gran parte del rilievo è costituito dalle successioni carbonatiche delle Formazioni di Serra Bonangelo e Grisolia, principalmente costituite da sequenze di calcari e calcari dolomitici caratterizzati da colore grigio chiaro/scuro, grana medio-fine talora micritica e stratificazione piano parallela spaziata da pochi centimetri a 1-2 m. In corrispondenza degli affioramenti di calcari dolomitici sono stati osservati dei noduli di selce di colore grigio scuro/nero inclusi all'interno della massa carbonatica. In taluni affioramenti calcarei è stato possibile osservare la presenza di sporadici livelli di marne gialle, caratterizzati da potenza centimetrica.

Il tratto sud della galleria che comprende il settore di imbocco è costituito da conglomerati e brecce a cemento carbonatico e da calcari a grana medio fine ben stratificati (Unità Br). Le facies conglomeratiche sono costituite da livelli sedimentari di conglomerati o brecce caratterizzati da clasti carbonatici angolosi o arrotondati immersi in una matrice calcarea a grana fine di colore grigio chiaro, giallo o biancastro.

Il territorio collinare che circonda a N e ad E-SE la dorsale dorsale carbonatica entro cui si sviluppa la galleria è invece occupato da coperture talora considerevoli di depositi fluvio laustri del Pleistocene inferiore e medio, rappresentati da alternanze di ghiaie, sabbie, silt argillosi e argille siltose. Il deposito presenta struttura variabile da clast a matrix supported, stratificazione discontinua, talvolta presenza di sottili livelli torbosi e colore variabile dal giallo bruno/ocra al grigio chiaro.

Tali depositi, che nel settore in esame raggiungono spessori compresi tra 15 m e oltre 30 metri, ricoprono il substrato calcareo e conlgomeratico dell'Unità BC, precedentemente descritta.

Per quanto riguarda l'assetto idrogeologico generale, i depositi fluvio-lacustri di copertura sono caratterizzati da permeabilità primaria per porosità, variabile in funzione della presenza e del quantitativo delle porzioni più fini argillososiltose. In generale essi costituiscono dei buoni acquiferi superficiali, entro cui sono stati sovente perforati dei piccoli pozzi a uso domestico ed entro i quali possono essere presenti delle emergenze idriche di modesta importanza.

Il sottostante complesso carbonatico è caratterizzato da permeabilità per fratturazione e carsismo. Sulla base dell'elevato grado di fratturazione espresso dagli ammassi rocciosi è stato attribuito all'unità un grado dei permeabilità medio (K2) variabile fino a molto alto (K4).

Con riferimento alla circolazione idrica sotterranea, si dispone dei dati di monitoraggio della progettazione esecutiva, (dicembre 2013 – maggio 2014) relativi ai piezometri ubicati in asse alla galleria Campotenese, in corrispondenza del tratto sud, nel settore di imbocco e nell'area a SE di quest'ultimo.

Le letture finora eseguite nel piezometro Se31_16 tra inizio dicembre 2013 e giugno 2014 (piezometro ubicato nel tratto sud della galleria e approfondito fino a circa -10 m rispetto alla quota di fondo scavo) non hanno evidenziato la presenza di falda all'interno dell'ammasso roccioso alla quota interessata dallo scavo della galleria.

Con riferimento al settore dove ricade il piezometro ambientale ASOTT_20, i piezometri ubicati nell'area di imbocco e in corrispondenza del tratto in artificiale della galleria Campotenese, che si impostano nei depositi fluvio-lacustri, sembrano evidenziare la presenza di una falda superficiale caratterizzata da modeste soggiacenze rispetto al piano campagna, dell'ordine di 3-4 metri.

Le misure effettuate nel piezometro Se31_18 (ubicato nel tratto iniziale della galleria Campotenese) hanno infatti evidenziato un livello piezometrico a profondità di circa -2.7-3.5 m da p.c.. nel periodo compreso tra gennaio 2014 e maggio 2014. Nella lettura di giugno 2014 il piezometro è invece risultato asciutto, il che lascerebbe ipotizzare un abbassamento della falda di oltre 20 m.

Nel piezometro Se 31_19, ubicato grosso modo alle medesime quote (949 m s.l.m.), anche se spostato leggermente verso valle, alla progr. Km 3+240 (carr. Nord), la soggiacenza media misurata della falda è di circa 7-8 metri nelle letture di fine giugno 2014.

Nel piezometro ASOTT_20, la cui quota di boccaforo è leggermente inferiore (952.72 m s.l.m.), entrambe le letture eseguite ad aprile e giugno 2014 nella fase di "ante operam" sembrano invece confermare la presenza di una falda superficiale distribuita a profondità massime dell'ordine dei 4 m da p.c. (abbassamento di circa 2 metri nell'ultima lettura di giugno).

La prima lettura della fase di "corso d'opera" (novembre 2014) denota un abbassamento della falda fino a profondità di -5 m circa da p.c. Nella II lettura del corso d'opera (marzo 2015) si assiste ad una significativa risalita del livello di falda all'interno del piezometro, che si colloca quasi a piano campagna, ovvero a circa -0.90 m da p.c.. La lettura di maggio 2015 fornisce un livello di falda a -2.0 m circa da p.c.

Nelle successive letture di agosto 2015 e gennaio 2015 si è riscontrata una interruzione del tubo a profondità di circa 5 m. A gennaio 2016 si riscontra acqua in prossimità del piano campagna (soggiacenza di -1.53 m), in sostanziale accordo con le precedenti letture.

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro
Campionatore manuale Bailer + Corda
Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials
Spurgo piezometro

Scheda risultati

Acq. sotterranee A sot_20

Gruppo 1	Unità di misura	I lettura 25/11/2014	II lettura 04/03/2015	III lettura 07/05/2015
Temperatura dell'aria	°C	12,44	13,41	20,41
Temperatura dell'acqua	°C	11,74	10,14	14,16
Ossigeno ppm	mg/l	3,14	5,74	5,47
Ossigeno %	%	33,0	62,6	59,9
Conducibilità	mS/cm	504	497	446
рН	-	7,68	8,04	7,99
Potenziale RedOx	mV	23,6	42,1	71,8

Gruppo 2	Unità di misura	l lettura 25/11/2014	II lettura 04/03/2015	III lettura 07/05/2015
Idrocarbuti totali	mg/l	<0,1	<0,1	<0,1
TOC	mg/l	10,10	3,00	1,90
Tensioattivi anionici	mg/l	<0,01	<0,01	<0,01
Tensioattivi non ionici	mg/l	<0,01	0,25	<0,01
Cromo totale	μg/l	<1	<1	<1
Cromo VI	μg/l	<1	<1	<1
Ferro	μg/l	<20	<20	<20
Alluminio	μg/l	<20	<20	<20

Gruppo 3	Unità di misura	l lettura 25/11/2014	II lettura 04/03/2015	III lettura 07/05/2015
Nichel	μg/l	<1	<1	<1
Zinco	μg/l	<1	<1	<1
Piombo	μg/l	<1	<1	<1
Cadmio	μg/l	<1	<1	<1
Arsenico	μg/l	<1	<1	<1
Manganese	μg/l	<1	39	<1
Rame	µg/l	<1	<1	<1

Gruppo 4	Unità di misura	l lettura 25/11/2014	II lettura 04/03/2015	III lettura 07/05/2015
Calcio	mg/l	122	39	38
Sodio	mg/l	3,2	6	5,5
Magnesio	mg/l	11	20	29
Potassio	mg/l	2,10	2	2,90
Nitrati	mg/l	<1	<1	<1
Cloruri	mg/l	2	6	89
Solfati	mg/l	1,8	25	4,6

ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note
Acq. sotterranee
A sot_20

I MISURA CO (25/11/2014)_Transito mezzi di servizio su pista a meno di un metro dal piezometro. Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi. Si segnala un incremento del Calcio, Sodio e TOC rispetto ai valori di AO.

II MISURA CO (04/03/2015)_Dalle analisi di laboratorio eseguite sui campioni di acqua prelevati non si riscontrano superamenti dei limiti normativi. Si segnala che Calcio è in calo mentre i Solfati sono leggermente aumentati rispetto la misura precedente.

III MISURA CO (07/05/2015)_Dalle analisi di laboratorio eseguite sui campioni di acqua prelevati non si riscontrano superamenti dei limiti normativi. Si segnala che Calcio è rimasto pressoché constante rispetto la precedente misura, i Cloruri sono leggermente in aumento; in calo sono i Solfati così come il Manganese.

IV MISURA CO (04/08/2015)_Piezometro interrotto e asciutto alla profondità di -5,20 mt.

V MISURA CO (21/01/2016)_Confermata interruzione del piezometro; presente acqua alla profondità di 1,53 mt.

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Componente Ambientale	Acque sotterranee
Codice Monitoraggio	ACQUE SOTTERRANEE A sot_21
Tipologia indagine	Corso d'Opera – GENNAIO 2016

Localizzazione del punto/areale di monitoraggio

Tratta di appartenenza	DG-31			
Comune	Morano Calabro	Provincia	Cosenza	
Distanza dal Tracciato	150 m	Progressiva di progetto	km 3+200	
Codice del cantiere/sito di riferimento	A_SOTT_21	Destinazione d'uso post operam del cantiere/sito di	Strada provinciale SP241	
Coordinate geografiche rettilineee		Coordinate geografiche		
Long: 2609787,906	Lat: 4415287,036	Long: 16° 2'59.83"E	Lat: 39°52'58.51"N	

Descrizione del sito

Piezometro a tubo aperto in prossimità del chilometro 25 della SP 241, a valle dell'imbocco sud della galleria naturale Campotenese.

Caratterizzazione sintetica del sito

Elementi antropico insediativi			
Attività agricola	✓		
Attività produttiva			
Viabilità (strade comunali, provinciali, ecc) interferente	✓		
Cascina - fabbricato rurale			
Aree degradate			
Versante boscato	✓		

Elementi di valore naturalistico/ambientale	
Area di pregio paesistico - ambientale	
Parco regionale	
Riserva naturale - SIC - ZPS	
altro	
Bosco	
Corso d'acqua	

Elementi di progetto	
Cantiere	✓
Area tecnica	
Imbocco galleria naturale	✓
Imbocco galleria artificiale	✓
Trincea	
Rilevato	

ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Versante privo di vegetazione	
Nucleo - edificio di interesse storico	
Cimitero	

Falda	√
Vincoli idrogeologici - rispetto pozzi idrici	

Viadotto	
Svincolo	
Area di servizio	
Area di stoccaggio	✓
Viabilità di cantiere	✓

Dati di monitoraggio/misure

Piezometro ambientale 3"	Quota boccapozzo (m s.l.m.)	Altezza boccapozzo (m da p.c.)	Profondità Piezometro (m)	Tratto Fenestrato (da m a m)
Tubo aperto	923,56	-0,6	-25	0-25

NUMERO MISURE	Data Misure	Misure piezometriche (m da boccapozzo)	Quote piezometriche (m s.l.m.)	Note
1	17/04/2014	-8,52	915,04	Acqua limpida Pozzetto carrabile
2	26/06/2014	-9,82	913,74	-
3	25/11/2014	-15,38	908,18	-
4	25/02/2015	-11,27	912,29	-
5	07/05/2015	-10,23	913,33	-
6	04/08/2015	-13,02	910,54	Presenza di bovini e ovini.
7	21/01/2016	-16,63	906,93	-

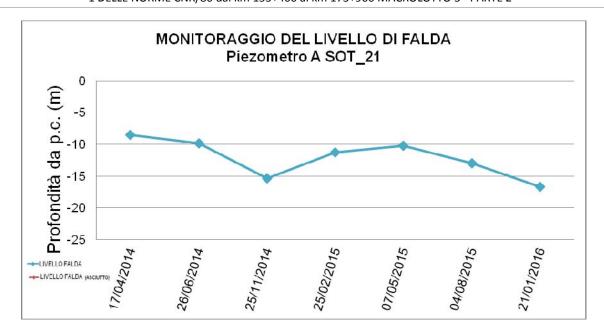
ital ASARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

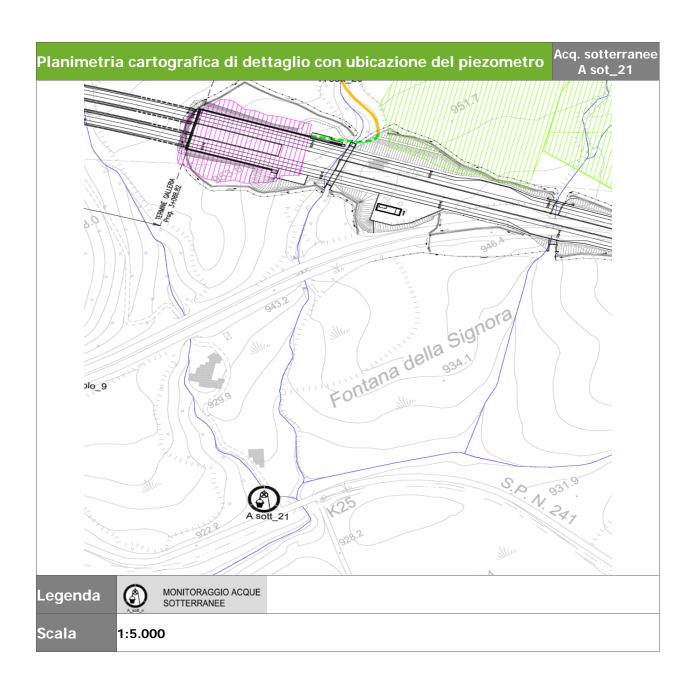
Rilievi fotografici



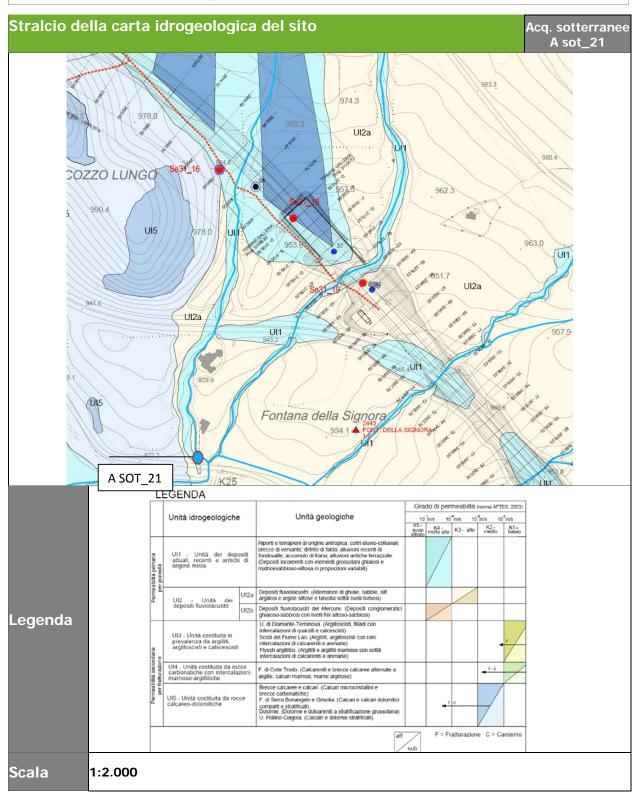
ital SARC

Monitoraggio Ambientale:

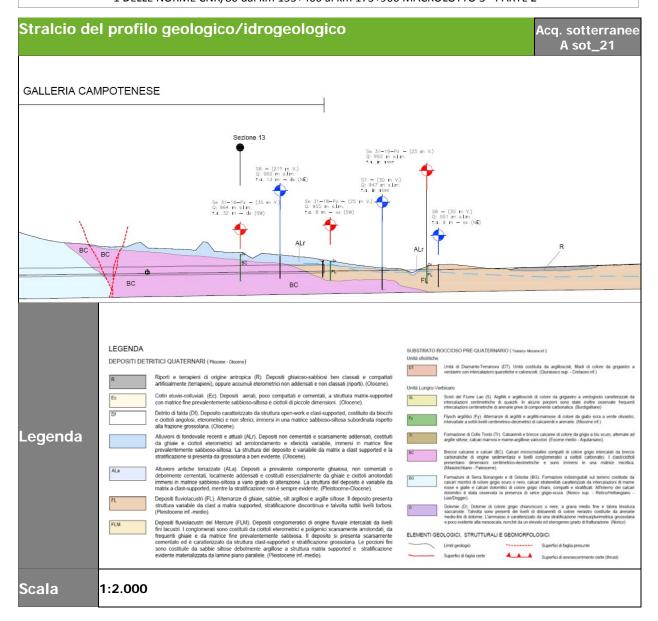
COMPONENTE ACQUE SOTTERRANEE



ital ASARC


Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE



ital SARC

Monitoraggio Ambientale:

COMPONENTE ACQUE SOTTERRANEE

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Descrizione delle caratteristiche geologiche e idrogeologiche generali e di dettaglio del sito

Il piezometro è ubicato circa 320 m a valle dell'imbocco lato RC (sud) della galleria Campotenese. Il boccaforo è ubicato quasi in corrispondenza del settore di fondovalle del fiume Battendiero, ad una quota di circa sul fondo di una incisione, ad una quota di circa 923 m s.l.m.

L'assetto geologico strutturale è dominato dalla presenza delle successioni carbonatiche dell'Unità di Lungro-Verbicaro, che formano l'ossatura del territorio costituente l'intera dorsale attraversata dalla galleria. Gran parte del rilievo è costituito dalle successioni carbonatiche delle Formazioni di Serra Bonangelo e Grisolia, principalmente costituite da sequenze di calcari e calcari dolomitici caratterizzati da colore grigio chiaro/scuro, grana medio-fine talora micritica e stratificazione piano parallela spaziata da pochi centimetri a 1-2 m. In corrispondenza degli affioramenti di calcari dolomitici sono stati osservati dei noduli di selce di colore grigio scuro/nero inclusi all'interno della massa carbonatica. In taluni affioramenti calcarei è stato possibile osservare la presenza di sporadici livelli di marne gialle, caratterizzati da potenza centimetrica.

Il tratto sud della galleria che comprende il settore di imbocco e l'area su cui ricade il piezometro, è costituito da conglomerati e brecce a cemento carbonatico e da calcari a grana medio fine ben stratificati (Unità Br). Le facies conglomeratiche sono costituite da livelli sedimentari di conglomerati o brecce caratterizzati da clasti carbonatici angolosi o arrotondati immersi in una matrice calcarea a grana fine di colore grigio chiaro, giallo o biancastro.

Il territorio collinare che circonda a N e ad E-SE la dorsale carbonatica entro cui si sviluppa la galleria è invece occupato da coperture talora considerevoli di depositi fluvio laustri del Pleistocene inferiore e medio, rappresentati da alternanze di ghiaie, sabbie, silt argillosi e argille siltose. Il deposito presenta struttura variabile da clast a matrix supported, stratificazione discontinua, talvolta presenza di sottili livelli torbosi e colore variabile dal giallo bruno/ocra al grigio chiaro.

Tali depositi, che nel settore in esame raggiungono spessori compresi tra 15 m e oltre 30 metri, ricoprono il substrato calcareo e conglomeratico dell'Unità BC, precedentemente descritta.

Per quanto riguarda l'assetto idrogeologico generale, i depositi fluvio-lacustri di copertura sono caratterizzati da permeabilità primaria per porosità, variabile in funzione della presenza e del quantitativo delle porzioni più fini argillososiltose. In generale essi costituiscono dei buoni acquiferi superficiali, entro cui sono stati sovente perforati dei piccoli pozzi a uso domestico ed entro i quali possono essere presenti delle emergenze idriche di modesta importanza.

Il sottostante complesso carbonatico è caratterizzato da permeabilità per fratturazione e carsismo. Sulla base dell'elevato grado di fratturazione espresso dagli ammassi rocciosi è stato attribuito all'unità un grado dei permeabilità medio (K2) variabile fino a molto alto (K4).

Con riferimento alla circolazione idrica sotterranea, si dispone dei dati di monitoraggio della progettazione esecutiva, (dicembre 2013 – maggio 2014) relativi ai piezometri ubicati in asse alla galleria Campotenese, in corrispondenza del tratto sud, nel settore di imbocco e nell'area a SE di quest'ultimo. Le letture finora eseguite nel piezometro Se31_16 tra inizio dicembre 2013 e giugno 2014 (piezometro ubicato nel tratto sud della galleria e approfondito fino a circa -10 m rispetto alla quota di fondo scavo) non hanno evidenziato la presenza di falda all'interno dell'ammasso roccioso alla quota interessata dallo scavo della galleria.

I piezometri ubicati nell'area di imbocco sud e in corrispondenza del tratto in artificiale della galleria sembrano evidenziare la presenza di una falda superficiale nei depositi fluvio-lacustri, caratterizzata da modeste soggiacenze rispetto al piano campagna, dell'ordine di 3-4 metri.

Le misure effettuate nel piezometro Se31_18 hanno infatti evidenziato un livello piezometrico a profondità di circa -2.7-3.5 m da p.c.. nel periodo compreso tra gennaio 2014 e maggio 2014. Nella lettura di giugno il piezometro è invece risultato asciutto, il che lascerebbe ipotizzare un abbassamento della falda di oltre 20 m.

Nel piezometro Se 31_19, ubicato grosso modo alle medesime quote (949 m s.l.m.) alla progr. Km 3+240 (carr- Nord), la soggiacenza media misurata della falda è di circa 7-8 metri anche nelle letture di fine giugno 2014.

I dati ottenuti dal piezometro A_sott_21, che hanno fornito un livello di falda a circa -8/-9 m dal p.c. nella fase di monitoraggio "ante operam", sembrano confermare la presenza di una circolazione idrica sotterranea piuttosto superficiale che interessa il versante compreso tra il settore di imbocco della galleria di progetto e il fondovalle del Battendiero, verosimilmente contenuta nei depositi fluvio lacustri di copertura del bedrock calbonatico.

La lettura eseguita a dicembre 2014 nella fase di "corso d'opera" conferma l'esistenza di una falda, il cui livello tuttavia subisce un abbassamento rispetto al dato di giugno stabilizzandosi a profondità di circa -15.40 m da p.c.

La II lettura del corso d'opera (febbraio 2015) evidenzia una risalita della falda fino a circa -11.27 m da p.c..

Le successive letture di maggio e agosto 2015, nonché la lettura di gennaio 2016, evidenziano una oscillazione del livello di falda tra -10/-13 m da p.c. e -16.60 m da p.c.

Le soggiacenze minori si osservano nel periodo della tarda primavera, laddove il livello dell'acquifero si posiziona intorno a -10 m da p.c.

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Strumentazione adottata per il monitoraggio e il prelievo dei campioni

Freatimetro
Campionatore manuale Bailer + Corda
Bottiglie per campionamento acqua + bottiglie preacidificate per metalli + Vials
Spurgo piezometro

Scheda risultati

Acq. sotterranee A sot_21

Gruppo 1	Unità di misura	I lettura	II lettura	III lettura	IV lettura	V lettura
		25/11/2014	25/02/2015	07/05/2015	04/08/2015	21/01/2016
Temperatura dell'aria	°C	9,26	10,06	21,41	22,32	8,26
Temperatura dell'acqua	°C	10,74	9,32	14,72	17,15	9,15
Ossigeno ppm	mg/l	8,40	5,64	7,47	6,62	6,02
Ossigeno %	%	85,9 770	57,0	82,6	69,5	77,4
Conducibilità	mS/cm		506	669	726	624
pH Potenziale RedOx	- mV	8,30 27,9	7,90 78,3	7,65 15,4	7,88 29,7	8,20 45,9
Gruppo 2	Unità di misura	I lettura	II lettura	III lettura	IV lettura	V lettura
Gruppo 2	Unita di misura	25/11/2014	25/02/2015	07/05/2015	04/08/2015	21/01/2016
Idrocarbuti totali	mg/l	<0,1	<0.1	<0.1	<0.1	<0,1
TOC	mg/l	12,60	4,00	2,60	2,23	84
Tensioattivi anionici	mg/l	<0,01	<0,1	<0,01	<0,01	<0,1
Tensioattivi non ionici	mg/l	<0,01	<0,1	<0,01	<0,01	<0,1
Cromo totale	μg/l	<1	<1	<1	<1	<1
Cromo VI	μg/l	<1	<1	<1	<1	<1
Ferro	μg/l	<20	<20	<20	<20	7
Alluminio	μg/l	<20	<1	<20	<20	<1
•						
Gruppo 3	Unità di misura	I lettura	II lettura	III lettura	IV lettura	V lettura
		25/11/2014	25/02/2015	07/05/2015	04/08/2015	21/01/2016
Nichel	μg/l	25/11/2014 <1	25/02/2015 <1	07/05/2015 <1	04/08/2015 <1	21/01/2016 <1
Nichel Zinco		25/11/2014 <1 <1	25/02/2015 <1 <1	07/05/2015 <1 <1	04/08/2015 <1 <1	21/01/2016 <1 <1
Nichel Zinco Piombo	μg/l	25/11/2014 <1 <1 <1	25/02/2015 <1 <1 <1	07/05/2015 <1 <1 <1	04/08/2015 <1 <1 <1	21/01/2016 <1 <1 <1
Nichel Zinco Piombo Cadmio	μg/l μg/l	25/11/2014 <1 <1 <1 <1	25/02/2015 <1 <1 <1 <1	07/05/2015 <1 <1 <1 <1	<pre>04/08/2015 <1 <1</pre>	21/01/2016 <1 <1 <1 <1
Nichel Zinco Piombo	µg/l µg/l µg/l	25/11/2014 <1 <1 <1 <1 <1	25/02/2015 <1 <1 <1 <1 <1	<pre>07/05/2015 <1 </pre>	<pre></pre>	21/01/2016 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese	µg/l µg/l µg/l µg/l	25/11/2014 <1 <1 <1 <1 <1 <1	25/02/2015 <1 <1 <1 <1 <1 <1 <1	<pre>07/05/2015 <1 <1</pre>	<pre>04/08/2015 <1 </pre>	21/01/2016 <1 <1 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame	µg/l µg/l µg/l µg/l µg/l µg/l	25/11/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	25/02/2015	<pre>07/05/2015 <1 <1</pre>	04/08/2015 <1 <1 <1 <1 <1 <1 7	21/01/2016
Nichel Zinco Piombo Cadmio Arsenico Manganese	µg/l µg/l µg/l µg/l µg/l µg/l	25/11/2014	25/02/2015	07/05/2015 <1 <1 <1 <1 <1 <1 <1 III lettura	04/08/2015 <1 <1 <1 <1 <1 <1 7 IV lettura	21/01/2016
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	25/11/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	25/02/2015	07/05/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	04/08/2015 <1 <1 <1 <1 <1 <1 7 IV lettura 04/08/2015	21/01/2016 <1 <1 <1 <1 <1 <1 <1 V lettura 21/01/2016
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	25/11/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	25/02/2015	07/05/2015	04/08/2015 <1 <1 <1 <1 <1 <1 7 IV lettura 04/08/2015	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	25/11/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 51 <1 I lettura 25/11/2014 155 15,6	25/02/2015	07/05/2015 <1	04/08/2015 <1 <1 <1 <1 <1 <1 7 IV lettura 04/08/2015 10 9,6	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 <1 Vlettura 21/01/2016 32
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio Magnesio	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	25/11/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 1 lettura 25/11/2014 155 15,6 10	25/02/2015	07/05/2015 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 61 62 16,8 24	04/08/2015 <1 <1 <1 <1 <1 7 IV lettura 04/08/2015 10 9,6 <1	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 Viettura 21/01/2016 32 1 14
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio Magnesio Potassio	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	25/11/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 1 lettura 25/11/2014 155 15,6 10 3,5	25/02/2015	07/05/2015 <1	04/08/2015 <1 <1 <1 <1 <1 7 IV lettura 04/08/2015 10 9,6 <1 2,9	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 <1 Vlettura 21/01/2016 32 1 14 <1
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio Magnesio Potassio Nitrati	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	25/11/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 1 lettura 25/11/2014 155 15,6 10 3,5 9,4	25/02/2015	07/05/2015 <1	04/08/2015 <1 <1 <1 <1 <1 7 IV lettura 04/08/2015 10 9,6 <1 2,9 5,4	21/01/2016
Nichel Zinco Piombo Cadmio Arsenico Manganese Rame Gruppo 4 Calcio Sodio Magnesio Potassio	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	25/11/2014 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 1 lettura 25/11/2014 155 15,6 10 3,5	25/02/2015	07/05/2015 <1	04/08/2015 <1 <1 <1 <1 <1 7 IV lettura 04/08/2015 10 9,6 <1 2,9	21/01/2016 <1 <1 <1 <1 <1 <1 <1 <1 <1 Vlettura 21/01/2016 32 1 14 <1

ital SARC

Monitoraggio Ambientale:

ASR 18/07 - AUTOSTRADA A3 SALERNO-REGGIO CALABRIA LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1 DELLE NORME CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Note
Acq. sotterranee
A sot_21

I MISURA CO (25/11/2014)_ Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi. Si segnala un aumento del TOC rispetto alle misure dell'AO.

II MISURA CO (25/02/2015)_ Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi. Si segnala diminuzione del TOC e il Calcio rispetto alla misura precedente.

III MISURA CO (07/05/2015)_ Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi.

IV MISURA CO (04/08/2015)_ Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi. Presenza di animali al pascolo (Bovini e Ovini) in prossimità del piezometro.

V MISURA CO (21/01/2016)_ Le analisi di laboratorio eseguite sui campioni d'acqua prelevati non hanno riscontrato superamenti dei limiti normativi.

MA	MONITORAGGIO AMBIENTALE - FASE CORSO D'OPERA	Bollettino periodico					
IVIA	COMPONENTE ACQUE SOTTERRANEE	T00	MA	01	MOA R	E01	pag. 29/29

ALLEGATO 2 – CERTIFICATI DELLA STRUMENTAZIONE

TECNO - BIOS s.r.l.

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accrediatata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160215

Identificazione campione:

A_Sott_05 Campionamento del

21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adeguamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28/01/16

Data fine analisi:

04/02/16

ANALISI CHIMICO-FISICHE

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Alcalinità	280	mg/l	IRSA - CNR n. 2010-B	Titolazione	-	
Solidi totali disciolti TDS	121	mg/l	IRSA-CNR n.2090			
Ferro	32	μg/l	IRSA - CNR n. 3020	ICP-OES	200	
Nichel	<1	μg/l	IRSA-CNR N.3020	ICP-OES	20	
Zinco	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	3000	
Cadmio	<1	µg/l	IRSA - CNR n. 3020	ICP-OES	5	
Piombo	<1	µg/l	IRSA - CNR n. 3020	ICP-OES	10	
Cromo Totale	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	50 (111	
Manganese	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	50	
Arsenico	<1	μg/l	IRSA - CNR n. 3080	HG-AAS	10	
Cromo VI	<1	μg/l	IRSA - CNR n. 3150	ETA-AAS	5	
Alluminio	33,90	μg/l	IRSA - CNR n. 3020	ICP-OES	200	
Idrocarburi totali	<0.1	mg/l	UNI EN ISO 9377 - 2 2002	GC-FID	0.35	
Grassi e olii animali e vegetali	<1	mg/l	IRSA - CNR n. 5160	IR		
T.O.C.	25,00	mg/l	IRSA- CNR n.5040	Ossidazione catalitica		
Tensioattivi non ionici	<0.1	mg/l	IRSA - CNR n. 5180	UV-Vis	-	
Tensioattivi anionici	<0.1	mg/l	IRSA - CNR n. 5170	UV-Vis	-	
Calcio	15	mg/l	IRSA - CNR n.3030	C.I.	-	
Sodio	0,8	mg/l	APAT CNR IRSA 3030 man.29/2003	IC	-	
Magnesio	6	mg/l	IRSA - CNR n.3030	C.I.	-	LZ

TECNO - BIOS s.r.l.

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160215

Identificazione campione:

A_Sott_05 Campionamento del

21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adeguamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28/01/16

Data fine analisi:

04/02/16

ANALISI CHIMICO-FISICHE

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Potassio	<1.0	mg/l	APAT CNR IRSA 3030 man.29/2003	IC	-	
Rame	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	1000	
Nitrato	<1	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.		
Cloruri	11	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.	-	
Solfati	11,0	mg/l	IRSA-CNR n.4020	C.I.	250	
COMPOSTI ORGANICI AROMATICI				GC-MS		
Benzene	<0.1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	1	
Etilbenzene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	50	
Stirene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	25	
Toluene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	15	
p-Xilene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	10	

TECNO - BIOS s.r.l.

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.ti Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160215

Identificazione campione:

A_Sott_05 Campionamento del

21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adeguamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data inizio analisi:

Data ricevimento campione: 28/01/16

28/01/16

•

Data fine analisi:

04/02/16

ANALISI CHIMICO-FISICHE

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Solventi Clorurati	<0.1	mg/l	EPA-8260 C	GC-MS		

(111 D.Lgs.n.152/06 Allegato 5 Tab.2

Giudizio professionale:

Il campione esaminato risulta conforme alle disposizioni previste dal D.Lgs. 152/06-Parte IV all.to 5

Note: I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione oggetto di analisi. Il presente rapporto di prova non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio.

Il Responsabile delle Prove (Ida Carlesimo) Il Responsabile de Laboratorio

31481

BIOLE

MIGHO AX

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160216

Identificazione campione:

A_Sott_07 Campionamento del

21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adeguamento al

tipo 1 delle norme CNR/80 dal km-153+400 al km 173+900

MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi:

28/01/16

Data fine analisi:

04/02/16

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Alcalinità	321	mg/l	IRSA - CNR n. 2010-B	Titolazione	-	
Solidi totali disciolti TDS	180	mg/l	IRSA-CNR n.2090			
Ferro	<1.0	μg/l	IRSA - CNR n. 3020	ICP-OES	200	
Nichel	<1	μg/l	IRSA-CNR N.3020	ICP-OES	20	
Zinco	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	3000	
Cadmio	<1	µg/l	IRSA - CNR n. 3020	ICP-OES	5	
Piombo	<1	µg/l	IRSA - CNR n. 3020	ICP-OES	10	
Cromo Totale	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	50 (111	
Manganese	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	50	0
Arsenico	<1	μg/l	IRSA - CNR n. 3080	HG-AAS	10	
Cromo VI	<1	μg/l	IRSA - CNR n. 3150	ETA-AAS	5	
Alluminio	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	200	
Idrocarburi totali	<0.1	mg/l	UNI EN ISO 9377 - 2 2002	GC-FID	0.35	
Grassi e olii animali e vegetali	<1	mg/l	IRSA - CNR n. 5160	IR		
T.O.C.	63,00	mg/l	IRSA- CNR n.5040	Ossidazione catalitica		
Tensioattivi non ionici	<0.1	mg/l	IRSA - CNR n. 5180	UV-Vis	-	2
Tensioattivi anionici	<0.1	mg/l	IRSA - CNR n. 5170	UV-Vis	-	
Calcio	30	mg/l	IRSA - CNR n.3030	C.I.	-	
Sodio	0,6	mg/l	APAT CNR IRSA 3030 man.29/2003	IC	-	
Magnesio	11	mg/l	IRSA - CNR n.3030	C.I.	-	

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160216

Identificazione campione:

A_Sott_07 Campionamento del 21/01/2016 - Autostrada A3

Salerno-Reggio lavori di

ammodernamento ed adeguamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28

28/01/16

Data fine analisi:

04/02/16

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Potassio	<1.0	mg/l	APAT CNR IRSA 3030 man.29/2003	IC	-	
Rame	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	1000	
Nitrato	14,1	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.		
Cloruri	13	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.	-	
Solfati	25,0	mg/l	IRSA-CNR n.4020	C.I.	250	
COMPOSTI ORGANICI AROMATICI				GC-MS		
Benzene	<0.1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	1	
Etilbenzene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	50	
Stirene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	25	
Toluene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	15	
p-Xilene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	10	

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.ti Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160216

Identificazione campione:

A_Sott_07 Campionamento del 21/01/2016 - Autostrada A3

Salerno-Reggio lavori di ammodernamento ed adeguamento al

tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28/01/16

Data fine analisi:

04/02/16

ANALISI CHIMICO-FISICHE

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Solventi Clorurati	<0.1	mg/l	EPA-8260 C	GC-MS		

(111 D.Lgs.n.152/06 Allegato 5 Tab.2

Giudizio professionale:

Il campione esaminato risulta conforme alle disposizioni previste dal D.Lgs. 152/06-Parte IV all.to 5 Tab.2.

Note:I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione oggetto di analisi. Il presente rapporto di prova non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio.

Il Responsabile delle Prove (Ida Carlesimo) Il Responsabile del Laboratorio

MOISS

DEI BIL

Sede Legale: S.S. Appia Km 256 - 82030 Apollosa (Benevento) - Centro di Ricerca: Piazza S. Giuseppe Moscati, 8 - S.S. Appia Km 254+900 - 82030 Apollosa (Benevento)
Tel. +39 0824 364090 / +39 0824 363712 - Fax +39 0824 364092

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accrediatata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160217

Identificazione campione:

A_Sott_08 Campionamento del 21/01/2016 - Autostrada A3

Salerno-Reggio lavori di

ammodernamento ed adeguamento al

tipo 1 delle norme CNR/80 dal km 153+400 al km 173+900

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28/01/16

Data fine analisi: 04/02/16

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Alcalinità	205	mg/l	IRSA - CNR n. 2010-B	Titolazione	-	
Solidi totali disciolti TDS	103	mg/l	IRSA-CNR n.2090			
Ferro	2	μg/l	IRSA - CNR n. 3020	ICP-OES	200	
Nichel	<1	μg/l	IRSA-CNR N.3020	ICP-OES	20	
Zinco	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	3000	
Cadmio	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	5	
Piombo	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	10	
Cromo Totale	<1	µg/l	IRSA - CNR n. 3020	ICP-OES	50 (111	į.
Manganese	<1	µg/l	IRSA - CNR n. 3020	ICP-OES	50	
Arsenico	<1	μg/l	IRSA - CNR n. 3080	HG-AAS	10	
Cromo VI	<1	μg/l	IRSA - CNR n. 3150	ETA-AAS	5	
Alluminio	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	200	
Idrocarburi totali	<0.1	mg/l	UNI EN ISO 9377 - 2 2002	GC-FID	0.35	*
Grassi e olii animali e vegetali	<1	mg/l	IRSA - CNR n. 5160	IR		
T.O.C.	43,80	mg/l	IRSA- CNR n.5040	Ossidazione catalitica		
Tensioattivi non ionici	<0.1	mg/l	IRSA - CNR n. 5180	UV-Vis	-	
Tensioattivi anionici	<0.1	mg/l	IRSA - CNR n. 5170	UV-Vis	-	
Calcio	33	mg/l	IRSA - CNR n.3030	C.I.	-	
Sodio	1,3	mg/l	APAT CNR IRSA 3030 man.29/2003	IC	=	
Magnesio	27	mg/l	IRSA - CNR n.3030	C.I.	-	

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane, 2 41012 Carpi (Mo)

Rapporto di Prova n. 20160217

Identificazione campione:

A_Sott_08 Campionamento del 21/01/2016 - Autostrada A3

Salerno-Reggio lavori di

ammodernamento ed adeguamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900

MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi:

28/01/16

Data fine analisi: 04/02/16

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Potassio	<1.0	mg/l	APAT CNR IRSA 3030 man.29/2003	IC	-	
Rame	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	1000	
Nitrato	<1	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.		
Cloruri	15	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.	-	
Solfati	367,0	mg/l	IRSA-CNR n.4020	C.I.	250	
COMPOSTI ORGANICI AROMATICI				GC-MS		
Benzene	<0.1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	1	
Etilbenzene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	50	
Stirene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	25	
Toluene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	15	
p-Xilene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	10	

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane, 2 41012 Carpi (Mo)

Rapporto di Prova n. 20160217

Identificazione campione:

A_Sott_08 Campionamento del

21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adeguamento al

tipo 1 delle norme CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28/01/16

Data fine analisi: 04/02/16

ANALISI CHIMICO-FISICHE

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Solventi Clorurati	<0.1	mg/l	EPA-8260 C	GC-MS		

(111 D.Lgs.n.152/06 Allegato 5 Tab.2

Giudizio professionale:

Il campione esaminato non risulta conforme alle disposizioni previste dal D.Lgs. 152/06-Parte IV all.to 5 Tab.2, relativamente ai parametri SOLFATI

Note:I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione oggetto di analisi. Il presente rapporto di prova non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio.

Il Responsabile delle Prove (Ida Carlesimo)

Il Responsabile del Laboratorio (dott. Piero Porcaro)

WAZIONALE

OFESSIO

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160218

Identificazione campione:

A_Sott_13 Campionamento del 21/01/2016 - Autostrada A3

Salerno-Reggio lavori di ammodernamento ed adeguamento al

tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data inizio analisi: 28/01/16

Data ricevimento campione:

28/01/16

Data fine analisi:

04/02/16

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consiglia
Alcalinità	188	mg/l	IRSA - CNR n. 2010-B	Titolazione	-	
Solidi totali disciolti TDS	150	mg/l	IRSA-CNR n.2090			
Ferro	<1.0	μg/l	IRSA - CNR n. 3020	ICP-OES	200	
Nichel	<1	µg/l	IRSA-CNR N.3020	ICP-OES	20	
Zinco	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	3000	
Cadmio	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	5	
Piombo	<1	µg/l	IRSA - CNR n. 3020	ICP-OES	10	
Cromo Totale	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	50 (111	
Manganese	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	50	
Arsenico	<1	μg/l	IRSA - CNR n. 3080	HG-AAS	10	
Cromo VI	<1	μg/l	IRSA - CNR n. 3150	ETA-AAS	5	
Alluminio	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	200	
Idrocarburi totali	<0.1	mg/l	UNI EN ISO 9377 - 2 2002	GC-FID	0.35	
Grassi e olii animali e vegetali	<1	mg/l	IRSA - CNR n. 5160	IR		
г.о.с.	20,00	mg/l	IRSA- CNR n.5040	Ossidazione catalitica		
Tensioattivi non ionici	<0.1	mg/l	IRSA - CNR n. 5180	UV-Vis	-	
Tensioattivi anionici	<0.1	mg/l	IRSA - CNR n. 5170	UV-Vis	-	
Calcio	12	mg/l	IRSA - CNR n.3030	C.I.	-	
odio	0,9	mg/l	APAT CNR IRSA 3030 man.29/2003	IC	-	
1agnesio	10	mg/l	IRSA - CNR n.3030	C.I.	-	

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160218

Data emissione documento 22/02/2016

Identificazione campione:

A_Sott_13 Campionamento del

21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adeguamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

MACROLOTTO

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi:

28/01/16

Data fine analisi: 04/02/16

			CHINICO-LISICHE	•		
Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Potassio	<1.0	mg/l	APAT CNR IRSA 3030 man.29/2003	IC	-	
Rame	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	1000	
Nitrato	<1	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.		
Cloruri	63	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.	-	
Solfati	28,0	mg/l	IRSA-CNR n.4020	C.I.	250	
COMPOSTI ORGANICI AROMATICI				GC-MS		
Benzene	<0.1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	1	
Etilbenzene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	50	
Stirene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	25	
Toluene	<1	µg/l	EPA 5030 C+ EPA 8260 C	GC-MS	15	
p-Xilene	<1	µg/l	EPA 5030 C+ EPA 8260 C	GC-MS	10	

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160218

Identificazione campione:

A_Sott_13 Campionamento del 21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adeguamento al

tipo 1 delle norme CNR/80 dal km 153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28/01/16

14.0

Data fine analisi:

04/02/16

ANALISI CHIMICO-FISICHE

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Solventi Clorurati	<0.1	mg/l	EPA-8260 C	GC-MS		

(111 D.Lgs.n.152/06 Allegato 5 Tab.2

Giudizio professionale:

Il campione esaminato risulta conforme alle disposizioni previste dal D.Lgs. 152/06-Parte IV all.to 5 Tab.2.

Note:I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione oggetto di analisi. Il presente rapporto di prova non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio.

Il Responsabile delle Prove (Ida Carlesimo) Il Responsabile del Laboratorio (dotte Piero Porcaro)

376MOIS

IDNALE

DEI

Sede Legale: S.S. Appia Km 256 - 82030 Apollosa (Benevento) - Centro di Ricerca: Piazza S. Giuseppe Moscati, 8 - S.S. Appia Km 254+900 - 82030 Apollosa (Benevento) Tel. +39 0824 364090 / +39 0824 363712 - Fax +39 0824 364092

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accrediatata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160219

Identificazione campione:

A_Sott_14 Campionamento del

21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adeguamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28/01/16 Data fine ana

Data fine analisi: 04/02/16

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Alcalinità	100	mg/l	IRSA - CNR n. 2010-B	Titolazione	-	
Solidi totali disciolti TDS	99	mg/l	IRSA-CNR n.2090			
Ferro	24	μg/l	IRSA - CNR n. 3020	ICP-OES	200	
Nichel	<1	μg/l	IRSA-CNR N.3020	ICP-OES	20	
Zinco	<1	µg/l	IRSA - CNR n. 3020	ICP-OES	3000	
Cadmio	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	5	
Piombo	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	10	
Cromo Totale	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	50 (111	
Manganese	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	50	
Arsenico	<1	µg/I	IRSA - CNR n. 3080	HG-AAS	10	
Cromo VI	<1	μg/l	IRSA - CNR n. 3150	ETA-AAS	5	
Alluminio	25,00	μg/l	IRSA - CNR n. 3020	ICP-OES	200	
Idrocarburi totali	<0.1	mg/l	UNI EN ISO 9377 - 2 2002	GC-FID	0.35	
Grassi e olii animali e vegetali	<1	mg/l	IRSA - CNR n. 5160	IR		
т.о.с.	20,00	mg/l	IRSA- CNR n.5040	Ossidazione catalitica		
Tensioattivi non ionici	<0.1	mg/l	IRSA - CNR n. 5180	UV-Vis	-	
Tensioattivi anionici	<0.1	mg/l	IRSA - CNR n. 5170	UV-Vis	-	
Calcio	13	mg/l	IRSA - CNR n.3030	C.I.	-	
Sodio	0,3	mg/l	APAT CNR IRSA 3030 man.29/2003	IC	-	
Magnesio	3	mg/l	IRSA - CNR n.3030	C.I.	-	

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160219

Identificazione campione:

A_Sott_14 Campionamento del

21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adeguamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28/01/16

5 Data fine analisi:

04/02/16

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Potassio	<1.0	mg/l	APAT CNR IRSA 3030 man.29/2003	IC	-	
Rame	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	1000	
Nitrato	<1.0	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.		
Cloruri	12	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.	-	
Solfati	29,0	mg/l	IRSA-CNR n.4020	C.I.	250	,
COMPOSTI ORGANICI AROMATICI				GC-MS		
Benzene	<0.1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	1	
Etilbenzene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	50	
Stirene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	25	
Toluene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	15	
p-Xilene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	10	

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160219

Identificazione campione:

A_Sott_14 Campionamento del

21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adeguamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28/01/16

Data fine analisi:

04/02/16

ANALISI CHIMICO-FISICHE

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Solventi Clorurati	<0.1	mg/l	EPA-8260 C	GC-MS		

(111 D.Lgs.n.152/06 Allegato 5 Tab.2

Giudizio professionale:

Il campione esaminato risulta conforme alle disposizioni previste dal D.Lgs. 152/06-Parte IV all.to 5

Note:I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione oggetto di analisi. Il presente rapporto di prova non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio.

Il Responsabile delle Prove (Ida Carlesimo) Il Responsabile del/Laboratorio (dott. Piero Porcaro)

MALE

Worss

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accrediatat come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160220

Identificazione campione:

A_Sott_15 Campionamento del 21/01/2016 - Autostrada A3

Salerno-Reggio lavori di

ammodernamento ed adeguamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900

MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28/01/16 Data fine analisi:

04/02/16

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Alcalinità	96	mg/l	IRSA - CNR n. 2010-B	Titolazione	-	
Solidi totali disciolti TDS	88	mg/l	IRSA-CNR n.2090			
Ferro	<1.0	μg/l	IRSA - CNR n. 3020	ICP-OES	200	
Nichel	<1	µg/l	IRSA-CNR N.3020	ICP-OES	20	
Zinco	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	3000	
Cadmio	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	5	
Piombo	<1	µg/l	IRSA - CNR n. 3020	ICP-OES	10	
Cromo Totale	<1	µg/l	IRSA - CNR n. 3020	ICP-OES	50 (111	
Manganese	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	50	
Arsenico	<1	μg/l	IRSA - CNR n. 3080	HG-AAS	10	
Cromo VI	<1	µg/l	IRSA - CNR n. 3150	ETA-AAS	5	
Alluminio	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	200	
Idrocarburi totali	<0.1	mg/l	UNI EN ISO 9377 - 2 2002	GC-FID	0.35	
Grassi e olii animali e vegetali	<1	mg/l	IRSA - CNR n. 5160	IR		
T.O.C.	40,00	mg/l	IRSA- CNR n.5040	Ossidazione catalitica		
Tensioattivi non ionici	<0.1	mg/l	IRSA - CNR n. 5180	UV-Vis	-	
Tensioattivi anionici	<0.1	mg/l	IRSA - CNR n. 5170	UV-Vis	=	
Calcio	21	mg/l	IRSA - CNR n.3030	C.I.	-	
Sodio	0,4	mg/l	APAT CNR IRSA 3030 man.29/2003	IC	-	
Magnesio	7	mg/l	IRSA - CNR n.3030	C.I.	-	

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160220

Identificazione campione:

A_Sott_15 Campionamento del

21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adeguamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28/01/16

Data fine analisi: 04/02/16

			011211200 1 2020112			
Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Potassio	<1.0	mg/l	APAT CNR IRSA 3030 man.29/2003	IC	-	
Rame	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	1000	
Nitrato	10,0	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.		
Cloruri	13	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.		
Solfati	15,4	mg/l	IRSA-CNR n.4020	C.I.	250	
COMPOSTI ORGANICI AROMATICI				GC-MS		
Benzene	<0.1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	1	
Etilbenzene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	50	
Stirene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	25	
Toluene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	15	
p-Xilene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	10	

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160220

Identificazione campione:

A_Sott_15 Campionamento del

21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adequamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione:

28/01/16

Data inizio analisi: 28/01/16

Data fine analisi:

04/02/16

ANALISI CHIMICO-FISICHE

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Solventi Clorurati	<0.1	mg/l	EPA-8260 C	GC-MS		

(111 D.Lgs.n.152/06 Allegato 5 Tab.2

Giudizio professionale:

Il campione esaminato risulta conforme alle disposizioni previste dal D.Lgs. 152/06-Parte IV all.to 5

Note: I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione oggetto di analisi. Il presente rapporto di prova non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio.

Il Responsabile delle Prove (Ida Carlesimo)

Il Responsabile del Laboratorio (dott. Piero Porcaro)

DEI

SIONALE

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accreditata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160221

Identificazione campione:

A_Sott_21 Campionamento del

21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adeguamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28/01/16

Data fine analisi:

04/02/16

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Alcalinità	85	mg/l	IRSA - CNR n. 2010-B	Titolazione	-	
Solidi totali disciolti TDS	66	mg/l	IRSA-CNR n.2090			
Ferro	7	μg/l	IRSA - CNR n. 3020	ICP-OES	200	
Nichel	<1	μg/l	IRSA-CNR N.3020	ICP-OES	20	
Zinco	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	3000	
Cadmio	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	5	
Piombo	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	10	
Cromo Totale	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	50 (111	
Manganese	<1	_∞ μg/l	IRSA - CNR n. 3020	ICP-OES	50	
Arsenico	<1	μg/l	IRSA - CNR n. 3080	HG-AAS	10	
Cromo VI	<1	µg/l	IRSA - CNR n. 3150	ETA-AAS	5	
Alluminio	<1	µg/l	IRSA - CNR n. 3020	ICP-OES	200	
Idrocarburi totali	<0.1	mg/l	UNI EN ISO 9377 - 2 2002	GC-FID	0.35	۰
Grassi e olii animali e vegetali	<1 0	mg/l	IRSA - CNR n. 5160	IR		
T.O.C.	84,00	mg/l	IRSA- CNR n.5040	Ossidazione catalitica		
Tensioattivi non ionici	<0.1	mg/l	IRSA - CNR n. 5180	UV-Vis	-	
Tensioattivi anionici	<0.1	mg/l	IRSA - CNR n. 5170	UV-Vis	-	
Calcio	32	mg/l	IRSA - CNR n.3030	C.I.	7 <u>-</u>	
Sodio	1,0	mg/l	APAT CNR IRSA 3030 man.29/2003	IC		
Magnesio	14	mg/l	IRSA - CNR n.3030	C.I.	-	

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accrediatata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160221

Identificazione campione:

A_Sott_21 Campionamento del 21/01/2016 - Autostrada A3

Salerno-Reggio lavori di

ammodernamento ed adequamento al tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900

MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 28/01/16

Data fine analisi: 04/02/16

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Potassio	<1.0	mg/l	APAT CNR IRSA 3030 man.29/2003	IC	14	
Rame	<1	μg/l	IRSA - CNR n. 3020	ICP-OES	1000	
Nitrato	7,0	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.		
Cloruri	27	mg/l	APAT CNR IRSA 4020 man 29/2003	C.I.	-	
Solfati	20,0	mg/l	IRSA-CNR n.4020	C.I.	250	
COMPOSTI ORGANICI AROMATICI				GC-MS		
Benzene	<0.1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	1	
Etilbenzene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	50	
Stirene	<1	µg/l	EPA 5030 C+ EPA 8260 C	GC-MS	25	
Toluene	<1	µg/l	EPA 5030 C+ EPA 8260 C	GC-MS	15	
p-Xilene	<1	μg/l	EPA 5030 C+ EPA 8260 C	GC-MS	10	

Centro di Ricerca accreditato con D.M. n. 560 del 13/03/03, pubblicato sulla G.U. del 25/03/03 Azienda Certificata da DNV UNI EN ISO 9001-2008 - 14000:2004 Laboratorio accreditato Accredia n. 964. Le prove accreditate possono essere visionate collegandosi al sito www.accredia.it Azienda accrediatata come Centro di Formazione per la Regione Campania con il codice 1481/01/07

Richiedente:

ITALSARC S.C.P.A. Via Carlo Pisacane,2 41012 Carpi (Mo)

Rapporto di Prova n. 20160221

Identificazione campione:

A_Sott_21 Campionamento del

21/01/2016 - Autostrada A3 Salerno-Reggio lavori di

ammodernamento ed adeguamento al

tipo 1 delle norme CNR/80 dal km

153+400 al km 173+900 MACROLOTTO 3 - PARTE 2^

Data emissione documento 22/02/2016

Tipo di campione: Acque sotterranee

Campionato da Strago SpA

Data ricevimento campione: 28/01/16

Data inizio analisi: 2

28/01/16

Data fine analisi: 0

04/02/16

ANALISI CHIMICO-FISICHE

Parametro	Risultati analitici	Unità di misura	Metodo di riferimento	Tecnica analitica	Valore limite	Valore consigliat
Solventi Clorurati	<0.1	mg/l	EPA-8260 C	GC-MS		

(111 D.Lgs.n.152/06 Allegato 5 Tab.2

Giudizio professionale:

Il campione esaminato risulta conforme alle disposizioni previste dal D.Lgs. 152/06-Parte IV all.to 5 Tab.2.

Note:I risultati contenuti nel presente rapporto di prova si riferiscono esclusivamente al campione oggetto di analisi. Il presente rapporto di prova non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio.

Il Responsabile delle Prove (Ida Carlesimo) Il Responsabile del Laboratorio

Sede Legale: S.S. Appia Km 256 - 82030 Apollosa (Benevento) - Centro di Ricerca: Piazza S. Giuseppe Moscati, 8 - S.S. Appia Km 254+900 - 82030 Apollosa (Benevento)

Tel. +39 0824 364090 / +39 0824 363712 - Fax +39 0824 364092

E-mail: info@tecnobios.com - http://www.tecnobios.com - R.I. Bn/C.F./Partita I.V.A. n. 00 872 990 627 - REA 68094 - Cap. Soc. € 1.000.000,00 i.v. Pagina 3 di 3