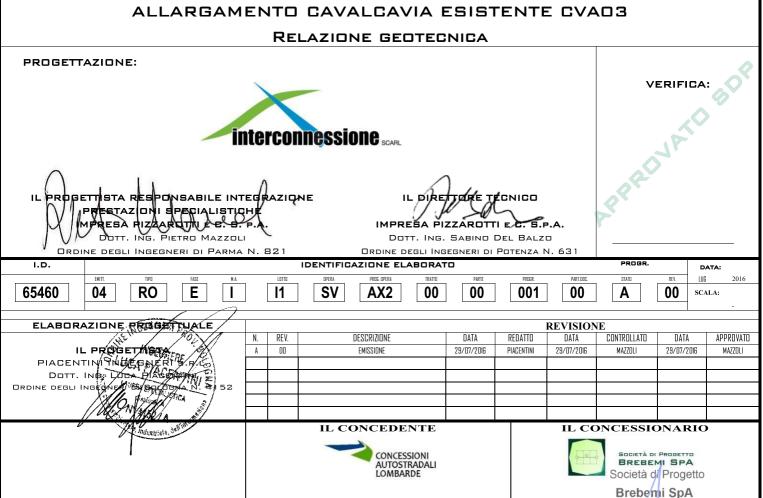


CUP E3 1 B05000390007

COLLEGAMENTO AUTOSTRADALE DI CONNESSIONE TRA LE CITTA' DI BRESCIA E MILANO

PROCEDURA AUTORIZZATIVA D. LGS 163/2006 Delibera C.I.P.E. DI Approvazione del Progetto Definitivo n° 19/2016


INTERCONNESSIONE A35-A4 PROGETTO ESECUTIVO

I-INTERCONNESSIONE

I-INTERCONNESSIONE-A35-A4

SVAX2 - ADEGUAMENTO SVINCOLO DI TRAVAGLIATO EST SVAO3

ALLARGAMENTO CAVALCAVIA ESISTENTE CVAO3

IL PRESENTE DOCUMENTO NON POTRA' ESSERE COPIATO. RIPRODOTTO D ALTRIMENTI PUBBLICATO. IN TUTTO O IN PARTE. SENZA IL CONSENSO SCRITTO DELLA SAP BREBEMI S.P.A. OGNI UTILIZZO NON AUTORIZZATO SARA' PERSEGUITO A NORMA DI LEGGE THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED OR PUBLISHED, ETHER IN PART OR IN ITS ENTIRETY, WITHOUT THE WRITTEN PERMISSION OF SAP BREBEMI S.P.A. UNAUTHORIZED USE WILL BE PROSECUTE BY LAW

CODIFICA DOCUMENTO 04ROEII1SVAX2000000100

REV. A00 FOGLIO I di 38

INDICE

1.	PREMESSA2	
1.1	GEOMETRIA OPERA	
2.	CAMPAGNA DI INDAGINE GEOGNOSTICA3	
2.1 2.2 2.3 2.4 2.5 2.6	PROVE DI PERMEABILITÀ	
3.	DEFINIZIONE DELLE STRATIGRAFIE E DEI PARAMETRI GEOTECNI	CI DI PROGETTO
	10	
3.1 3.2 3.3 3.4 3.5	FALDA DI PROGETTO	
4.	OPERE DI FONDAZIONE18	
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	SLU – Stabilità globale del complesso opera di sostegno – terreno19 SLU – Collasso per carico limite nei riguardi dei carichi assiali19 SLU – Collasso per carico limite nei riguardi dei carichi trasversali 19 SLU – Sollevamento e sifonamento	APPRIVATOR
5.	BIBLIOGRAFIA E DOCUMENTAZIONE DI RIFERIMENTO36	P.
5.1 5.2 5.3 5.4	NORMATIVE E RACCOMANDAZIONI	

Società di Progetto Breberni SpA

CODIFICA DOCUMENTO 04ROEII1SVAX2000000100 REV. A00 FOGLIO 2 di 38

1. PREMESSA

Il presente documento è relativo all'allargamento del Cavalcavia esistente CVA03, nell'ambito dell'adeguamento dello svincolo di Travagliato Est dell'Interconnessione A35-A4.

Nei capitoli seguenti sono riportate la caratterizzazione geotecnica di progetto e le verifiche geotecniche di sicurezza e funzionalità delle opere di fondazione del cavalcavia.

1.1 Geometria opera

L'allargamento in oggetto di 2,85 m totali comporta un ampliamento di uguale entità della spalla e della fondazione e l'aggiunta all'impalcato esistente di numero 1 travi prefabbricate in c.a.p. ad interasse 1.96 m dalla trave di bordo del cavalcavia esistente.

La trave che viene adoperata per l'ampliamento, come quelle dell'impalcato esistente, ha una lunghezza di 24.5 m, con luce netta fra gli appoggi di 23.5 m. L'impalcato ha altezza complessiva di 155 cm di cui 130 cm di travi e 25 cm di soletta.

Nella carreggiata Milano – Brescia, la sezione trasversale accoglie per 12.20 m la carreggiata stradale e per 205 cm due cordoli laterali, quello di destra da 80 cm e quello di sinistra da 125 cm, su cui trovano sede i guardiavia.

Nella carreggiata Brescia – Milano, la sezione trasversale accoglie per 14.55 m la carreggiata stradale e per 205 cm due cordoli laterali, quello di destra da 80 cm e quello di sinistra da 125 cm, su cui trovano sede i guardiavia.

L'allargamento della spalla sottostante è in calcestruzzo armato con paraghiaia di spessore costante 40 cm. L'elevazione della spalla è pari a 5.80 m calcolata dall'estradosso della piastra del basamento alla base del paraghiaia. Il basamento dell'allargamento della spalla ha dimensioni 6.00 m x 2.85 m x 1.5 m.

Per i dettagli della configurazione finale della struttura si rimanda agli elaborati di progetto quali carpenterie e relazione di calcolo.

Società di Progetto

Brebenii SpA

CODIFICA DOCUMENTO 04ROEII1SVAX2000000100 REV. A00 FOGLIO 3 di 38

JATO BOP

2. CAMPAGNA DI INDAGINE GEOGNOSTICA

Per la definizione del profilo geotecnico di progetto e dei relativi parametri sono stati considerati i risultati ottenuti dalle indagini geognostiche eseguite nell'ambito del progetto definitivo di BreBeMi, integrate dalle ulteriori indagini eseguite in fase di progetto esecutivo di BreBeMi stessa.

In particolare, per l'area in oggetto, sono state considerate le seguenti indagini:

- 1 sondaggio a carotaggio continuo (S.009 di PD);
- prove penetrometriche dinamiche (S.P.T.) eseguite nei fori di sondaggio ad intervalli costanti;
- prove granulometriche eseguite su campioni rimaneggiati raccolti dai fori di sondaggio;
- 1 Prova geofisica tipo cross-hole (SE11Ac-h);

L'elenco completo dei risultati forniti dalla campagna di indagine geognostica è riassunto nel documento:

- Addendum 1 - Relazione Geotecnica / Indagini Geognostiche in sito / Prove di laboratorio (Rif. 5.2.2)

2.1 Sondaggi geognostici

Il sondaggio considerato è stato eseguito in corrispondenza circa della PK 4+940 e ha raggiunto una profondità di 20m da P.C. In Figura 2.1 è riportata l'ubicazione del sondaggio stesso.

Ad eccezione di uno strato superficiale limoso, che verrà trascurato nel seguito, le stratigrafie incontrate sono piuttosto omogenee, caratterizzate da un primo strato di sabbie con ghiaie aventi spessore di 8.5 metri, seguito da uno strato di ghiaie aventi uno spessore di circa 3.5 m, al di sotto dei quali infine è stato riscontrato un secondo strato di sabbie con ghiaie, fino alla profondità massima investigata.

2.2 Prove SPT

Prove penetrometriche dinamiche sono state eseguite ad intervalli costanti in corrispondenza del sondaggio considerato per l'area in oggetto.

In particolare le prove sono state eseguite ad intervalli di 1.5 metri fino ad una profondità di 19.5 metri da testa sondaggio.

I valori di N_{SPT} in funzione della profondità da testa foro sono riportati in Figura 2.2.

I valori ottenuti risultano compresi per la maggior parte tra 30 e 85 colpi, evidenziando in generale un buon grado di addensamento dei materiali di sottofondo.

In Figura 2.3 sono riportati i valori di densità relativa stimati di Progetto attraverso la formula di Skempton (Rif. 5.3.3) basata sui valori di Nepreni SpA

CODIFICA DOCUMENTO 04ROEII1SVAX2000000100 REV. A00 FOGLIO 4 di 38

corretti in funzione della profondità e dell'efficienza dello strumento utilizzato.

2.3 Prove di permeabilità

Non sono disponibili prove di permeabilità in sito eseguite in prossimità dell'area considerata.

Sulla base delle prove eseguite lungo la tratta autostradale è stato in ogni caso stimato un coefficiente di permeabilità per la matrice ghiaioso-sabbiosa di 10⁻⁴÷10⁻⁶ m/s. Tali valori sono giustificati dalla presenza di percentuali significative di materiale fine, dell'ordine del 20%.

2.4 Prova cross-hole

Ai fini della determinazione della categoria sismica dei terreni di fondazione si è fatto riferimento alla prova geofisica tipo cross-hole, in corrispondenza del foro SE11Ac-h.

I valori ottenuti per le velocità delle onde di taglio sono riportati in Figura 2.4.

Dai valori di velocità delle onde di taglio misurati a partire dal P.C. originario, si è dedotta la categoria sismica B per la stratigrafia in oggetto (cfr Relazione Sismica, Rif. 5.2.3).

Inoltre, come richiesto dalle NTC 2008 (Rif. 5.1.1) il calcolo del valore di $V_{s,30}$ è qui eseguito anche a partire dalla quota delle teste dei pali, che ai fini della verifica è stata fissata a 5m dal P.C. originario. Anche per questa seconda verifica si ottiene per il terreno di fondazione la categoria B.

La categoria sismica di sottosuolo risultante è quindi la B.

2.5 Piezometri

Il sondaggio S009 non risulta attrezzato con piezometro. Inoltre, non risultano disponibili letture del livello di falda eseguite durante le operazioni di perforazione e esecuzione del sondaggio.

La falda di progetto è definita comunque al § 3.3, sulla base dell'interpretazione delle letture disponibili per i tratti adiacenti.

2.6 Prove di laboratorio

Dai fori di sondaggio sono stati estratti campioni rimaneggiati di materiale successivamente sottoposti alle seguenti prove di laboratorio:

- apertura e descrizione geotecnica;
- analisi granulometriche.

In Figura 2.5 è riportato l'andamento delle frazioni granulometriche in funzione della quota da p.c.

Le prove di laboratorio hanno confermato la caratterizzazione stratigrafica definita dalle schede dei sondaggi, e hanno consentito di verificare la presenza di una percentuale di materiale fine significativa (circa 20%).

Brebemi SpA

JATO BOP

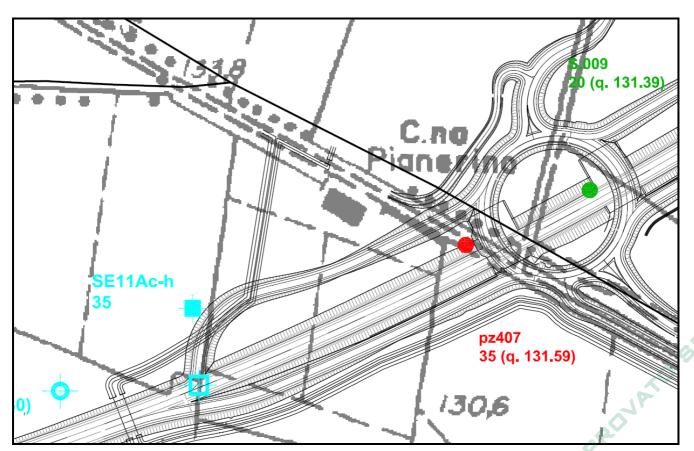
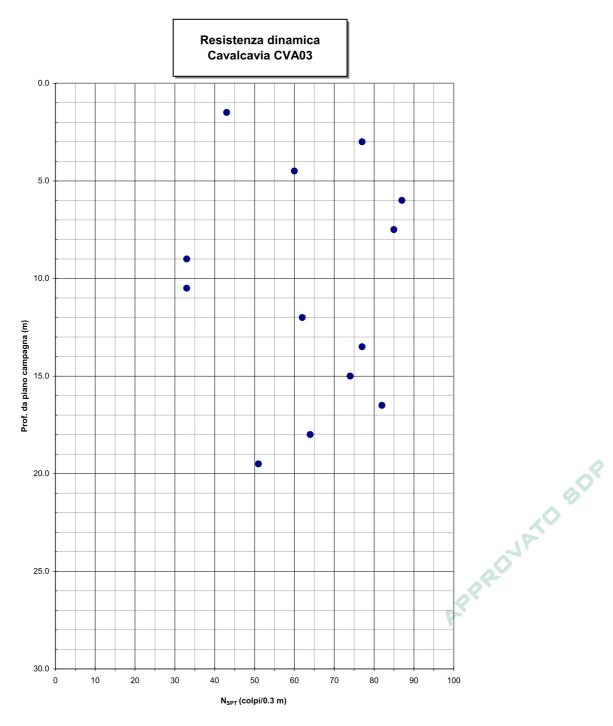
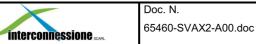
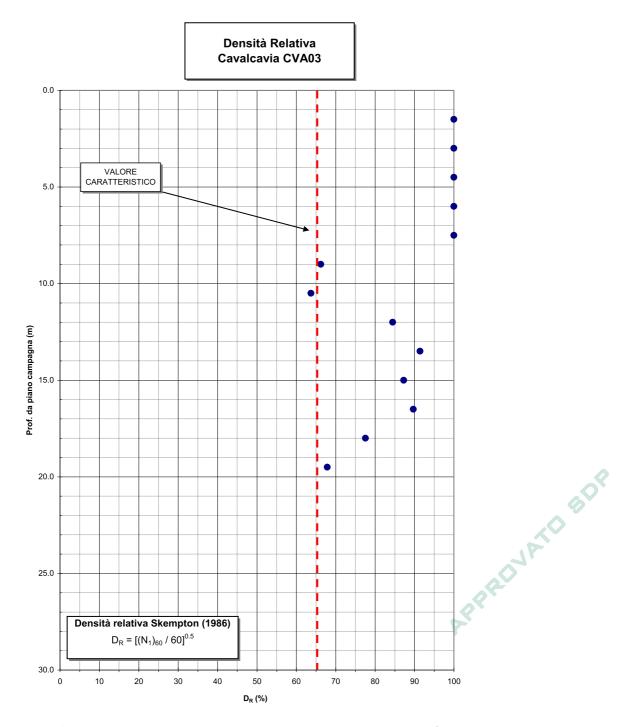



Figura 2.1 - Ubicazione sondaggi geognostici.

Società di Progetto Brebenii SpA



CODIFICA DOCUMENTO 04ROEII1SVAX2000000100 REV. A00 FOGLIO 6 di 38


Figura 2.2 – Valori di N_{SPT} registrati in funzione della profondità da piano campagna.

Società di Progetto
Brebenii SpA

CODIFICA DOCUMENTO
04ROEII1SVAX2000000100

REV. A00 FOGLIO 7 di 38

Figura 2.3 – Valori di D_R calcolati a partire dai valori di N_{spt} registrati in funzione della profondità da piano campagna.

Società di Progetto

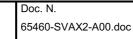
Brebemi SpA

CODIFICA DOCUMENTO 04ROEII1SVAX2000000100

REV. A00 FOGLIO 8 di 38

PROVA n° 11A

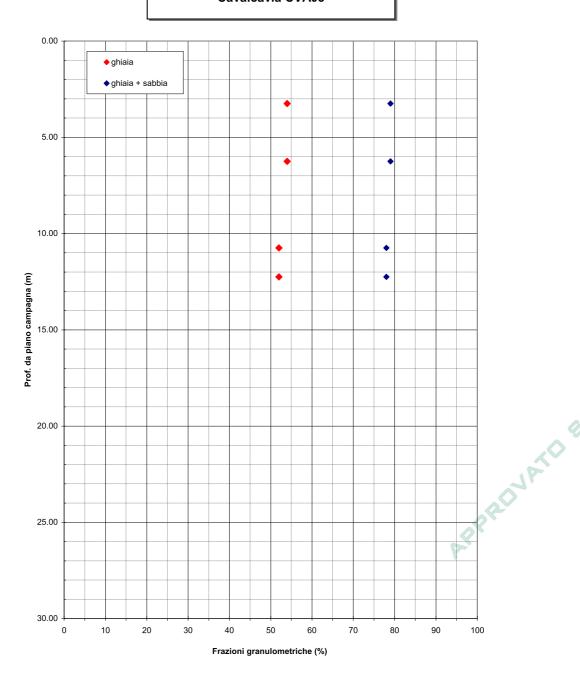
1 266 1 0.0 2 294 1 0.0 3 320 1 0.0 4 331 1 0.0 5 376 1 0.0 6 423 1 0.0 7 415 1 0.0 8 440 1 0.0 9 370 1 0.0 10 400 1 0.0 11 495 1 0.0 12 510 1 0.0 13 522 1 0.0 14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	$/V_{si}$
2 294 1 0.0 3 320 1 0.0 4 331 1 0.0 5 376 1 0.0 6 423 1 0.0 7 415 1 0.0 8 440 1 0.0 9 370 1 0.0 10 400 1 0.0 11 495 1 0.0 12 510 1 0.0 13 522 1 0.0 14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	sec
3 320 1 0.0 4 331 1 0.0 5 376 1 0.0 6 423 1 0.0 7 415 1 0.0 8 440 1 0.0 9 370 1 0.0 10 400 1 0.0 11 495 1 0.0 12 510 1 0.0 13 522 1 0.0 14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 21 680 1 0.0 22 751 1 0.0	00376
4 331 1 0.0 5 376 1 0.0 6 423 1 0.0 7 415 1 0.0 8 440 1 0.0 9 370 1 0.0 10 400 1 0.0 11 495 1 0.0 12 510 1 0.0 13 522 1 0.0 14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00340
5 376 1 0.0 6 423 1 0.0 7 415 1 0.0 8 440 1 0.0 9 370 1 0.0 10 400 1 0.0 11 495 1 0.0 12 510 1 0.0 13 522 1 0.0 14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00313
6 423 1 0.0 7 415 1 0.0 8 440 1 0.0 9 370 1 0.0 10 400 1 0.0 11 495 1 0.0 12 510 1 0.0 13 522 1 0.0 14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00302
7 415 1 0.0 8 440 1 0.0 9 370 1 0.0 10 400 1 0.0 11 495 1 0.0 12 510 1 0.0 13 522 1 0.0 14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00266
8 440 1 0.0 9 370 1 0.0 10 400 1 0.0 11 495 1 0.0 12 510 1 0.0 13 522 1 0.0 14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00236
9 370 1 0.0 10 400 1 0.0 11 495 1 0.0 12 510 1 0.0 13 522 1 0.0 14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00241
10 400 1 0.0 11 495 1 0.0 12 510 1 0.0 13 522 1 0.0 14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00227
11 495 1 0.0 12 510 1 0.0 13 522 1 0.0 14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00270
12 510 1 0.0 13 522 1 0.0 14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00250
13 522 1 0.0 14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00202
14 533 1 0.0 15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00196
15 509 1 0.0 16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00192
16 523 1 0.0 17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00188
17 550 1 0.0 18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00196
18 680 1 0.0 19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00191
19 594 1 0.0 20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	0182
20 579 1 0.0 21 680 1 0.0 22 751 1 0.0	00147
21 680 1 0.0 22 751 1 0.0	00168
22 751 1 0.0	00173
	00147
23 696 1 0.0	00133
	00144
24 662 1 0.0	00151
25 779 1 0.0	00128
	00145
27 <u>535</u> 1 0.0	00187
	00188
	00157
	00144
	00147
	00165
	00156
	00175
35 <u>597</u> 1 0.0	00168


V_{s30, da p.c.} = V_{s30, 5m p.c.} =

485.41 m/sec **556.24** m/sec

B B

Figura 2.4 – Valori delle velocità delle onde di taglio alle varie profondità misurate dalla prova cross-hole n. SE11Ac-h, ai fini della determinazione della categoria di sottosuolo.


Società di Progetto
Brebenii SpA

interconnessione some

CODIFICA DOCUMENTO 04ROEII1SVAX2000000100 REV. A00 FOGLIO 9 di 38

Frazioni granulometriche Cavalcavia CVA03

Figura 2.5 – Andamento delle frazioni granulometriche in funzione della quota da p.c.

Società di Progetto

Brebemi SpA

CODIFICA DOCUMENTO 04ROEII1SVAX2000000100 REV. A00 FOGLIO 10 di 38

JATO BOP

3. DEFINIZIONE DELLE STRATIGRAFIE E DEI PARAMETRI GEOTECNICI DI PROGETTO

Il profilo ed i parametri geotecnici di progetto adottati sono riportati in Tabella 3.1 in cui:

	LEGENDA PARAMETRI					
ф'к_SPT	Angolo di resistenza al taglio di picco ricavato a partire dai valori di Nspt;					
φ' _{k_} controllo	Angolo di resistenza al taglio di controllo ricavato a partire dalla densità relativa e dal peso di volume del materiale granulare;					
φ' _k	Angolo di resistenza al taglio caratteristico;					
ф' _{ам1}	Angolo di resistenza al taglio di progetto secondo coefficienti parziali M1 come da NTC2008;					
φ' _{dM2}	Angolo di resistenza al taglio di progetto secondo coefficienti parziali M2 come da NTC2008;					
c' _k	Coesione efficace caratteristica;					
C' _{dM1}	Coesione efficace di progetto secondo coefficenti parziali M1 come da NTC2008;					
C' _{dM2}	Coesione efficace di progetto secondo coefficenti parziali M2 come da NTC2008;					
E' ₀₁	Modulo elastico secante per livello di deformazione del terreno pari allo 0.1%;					
E' ₂₅	Modulo elastico secante corrispondente alla mobilizzazione del 25% della resistenza del terreno;					
E _{LT}	Modulo elastico a lungo termine per materiali coesivi;					
C_{uk}	Resistenza non drenata caratteristica;					
C _{UdM1}	Resistenza non drenata di progetto secondo coefficienti parziali M1 come da NTC2008;					
C _{UdM2}	Resistenza non drenata di progetto secondo coefficienti parziali M2 come da NTC2008;					
Ε _υ	Modulo elastico a breve termine per materiali coesivi;					
γ _n	Peso di volume naturale;					
γ'	Peso di volume sommerso;					
k	Permeabilità;					

Il profilo geotecnico di progetto è riportato anche in una tavola di dettaglio (Rif. 5.2.6).

Nei paragrafi seguenti si descrivono le scelte progettuali che hanno portato alla definizione di tali profili.

3.1 Stratigrafie di progetto

Sulla base delle indagini descritte al §2, si è evidenziato come la stratigrafia indagata risulti sostanzialmente omogenea, con presenza prevalente di terreni granulari a matrice ghiaiosa con buon grado di addensamento.

Il profilo di progetto è stato quindi definito considerando la presenza costante di materiale granulare. Il profilo risulta comunque suddiviso in due sottostrati, per permettere una descrizione più accurata delle caratteristiche di rigidezza dei terreni di fondazione (§ 3.2.2).

Il profilo di progetto è esteso sino a 25m da P.C.

3.2 Determinazione dei parametri geotecnici

3.2.1 Angolo di resistenza al taglio

Sulla base dei valori di N_{SPT} registrati durante le prove penetrometriche è stata innanzitutto stimata la densità relativa del materiale secondo la relazione di Skempton (1986, Rif.5.3.3).

Sulla base di tali valori, utilizzando la correlazione empirica di progetto Schmertmann (1975, Rif.5.3.5), si sono stimati i valori di angolo ribeni SpA

CODIFICA DOCUMENTO 04ROEII1SVAX2000000100 REV. A00 FOGLIO 11 di 38

JATO BOP

resistenza al taglio di picco. Tali valori risultano compresi tra un minimo di 41° e un massimo di circa 44°.

Sulla base di tali valori è stato definito un angolo di resistenza al taglio caratteristico da N_{SPT} (ϕ'_k $_{SPT}$).

Sulla base del valore di densità relativa caratteristico (Figura 2.3) e sulla base della granulometria dei materiali, è stato valutato inoltre un angolo di resistenza al taglio caratteristico di controllo ($\phi'_{k_CONTROLLO}$), definito in funzione di correlazioni empiriche di carattere più generale (Rif. 5.3.7).

Il valore di angolo di resistenza al taglio caratteristico è stato infine definito sulla base dei due valori di cui sopra.

Nel caso in esame si è assunto un valore di angolo di resistenza al taglio caratteristico costante con la profondità pari a 39°.

In Figura 3.1 sono riportati i valori di angolo di resistenza al taglio caratteristici definiti sopra ed i valori puntuali ricavati in funzione della profondità da piano campagna sulla base della correlazione con i valori di N_{SPT} .

3.2.2 Modulo elastico-materiali granulari

Dato il comportamento fortemente non lineare dei terreni, per poter utilizzare un modello di calcolo semplificato basato su un legame costitutivo elastico è necessario definire il modulo elastico secante E in corrispondenza del valore di deformazione del materiale atteso in sito.

Si è proceduto alla definizione di due diversi valori del modulo elastico:

- E_{01} , corrispondente al modulo elastico secante per valori di deformazione pari allo 0,1%;
- E₂₅, corrispondente al modulo elastico secante per un grado di mobilitazione della resistenza pari al 25% di quella ultima.

Entrambi i moduli sono stati stimati a partire dai valori di N_{SPT} registrati durante le prove penetrometriche dinamiche; in particolare si è utilizzata la correlazione proposta da Berardi e Lancellotta (1991, Rif.5.3.1 e Rif.5.3.2) per stimare il modulo E_{01} , mentre si è fatto riferimento alla correlazione proposta da Jamiolkowsky (1988, Rif.5.3.4) per stimare il modulo E_{25} .

I valori di E_{01} e E_{25} stimati sono riportati rispettivamente in Figura 3.2 e Figura 3.3.

Per entrambi i casi gli andamenti ottenuti sono caratterizzati da una considerevole variabilità del modulo. I profili caratteristici sono stati definiti considerando un andamento lineare crescente nei primi 15m di profondità ed un modulo costante con la profondità nei successivi ultimi 10m del profilo.

3.3 Falda di progetto

Sulla base delle considerazioni riportate in relazione di Progetto idrogeologica (Rif.5.2.4) e sulla base del profilo idrogeologico di progetto (Rif.5.2.5), sono state definite la falda di cantiere e di progetto:

CODIFICA DOCUMENTO 04ROEII1SVAX2000000100 REV. A00 FOGLIO 12 di 38

APPROUNT GOP

Falda di cantiere: 116.57m s.l.m.m; Falda di progetto: 117.57m s.l.m.m.

3.4 Caratterizzazione sismica ed accelerazione di progetto

Si assume per l'opera:

Vita nominale della costruzione: $V_N = 50$ anni;

Classe d'uso: 4ª;

Coefficiente d'uso della costruzione $C_U = 2$;

Periodo di riferimento per la costruzione V_R = 100 anni (cfr.

§3.5).

Con riferimento al periodo di riferimento definito sopra e sulla base dei dati riportati in relazione sismica (Rif.5.2.3), si assumono per la Pk di riferimento (4+900) del cavalcavia CVA03 i seguenti dati di progetto:

SLV ($P_{VR} = 10\%$):

 $a_g/g = 0.183$

 $F_0 = 2.450$

T*c = 0.287 s

Classe Sottosuolo = B

 $S_S = 1.2$

St = 1.0

 $a_{max}/g = 0.220$

<u>SLD ($P_{VR} = 63\%$):</u>

 $a_g/g = 0.076$

 $F_0 = 2.407$

T*c = 0.254 s

Classe Sottosuolo = B

 $S_S = 1.2$

St = 1.0

 $a_{\text{max}}/g = 0.091$

3.5 Stabilità nei confronti della liquefazione

Sulla base delle analisi di disaggregazione del contributo delle possibili coppie di valori magnitudo-distanza alla pericolosità del nodo disponibili sul sito INGV (Rif.5.3.6), è possibile definire il valore di magnitudo da associare alle accelerazioni di progetto assunte per l'opera in esame in funzione del tempo di ritorno:

$$T_R = \frac{-V_R}{\ln(1 - P_{VR})}$$

In cui:

V_R è il periodo di riferimento dell'opera;

P_{VR} è la probabilità di superamento nel periodo di riferimento

 V_R e la probabilità di superamento nel periodo di riferimento V_R .

In particolare, il periodo di riferimento viene calcolato come:

Brebemi SpA

RL

Doc. N.	
65460-SVAX2-A00.doc	

CODIFICA DOCUMENTO
04ROEII1SVAX2000000100

	REV.
ı	A00

FOGLIO 13 di 38

 $V_R = V_N \cdot C_U$

In cui:

 V_N è la vita nominale dell'opera, assunta pari a 50 anni come da Tab.2.4.I delle NTC2008;

 C_{U} è il coefficiente d'uso assunto pari a 2 come da Tab.2.4.II delle NTC 2008.

In definitiva quindi $V_R = 100$ anni.

Per lo stato limite di vita, SLV, la probabilità di superamento nel periodo di riferimento V_R è pari al 10%, di conseguenza il tempo di ritorno del fenomeno sismico di riferimento è pari a:

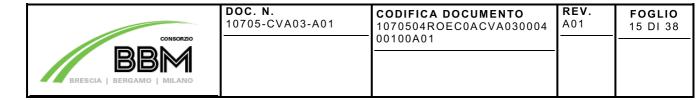
$$T_R = \frac{-V_R}{\ln(1 - P_{VR})} = 949 \, \text{anni}$$

A tale tempo di ritorno, nell'area dell'opera in oggetto, l'evento di riferimento è caratterizzato da una magnitudo inferiore a 5 (si veda la relazione sismica per dettagli, Rif.5.2.3).

Di conseguenza, come chiarito al punto 1 del §7.11.3.4.2 delle NTC (Rif.5.1.1), la verifica a liquefazione può essere omessa in quanto per il valore sopra definito di magnitudo, per i terreni di fondazione delle opere qui di interesse, il fenomeno può essere escluso a priori.

APPROVATOROP

Società di Progetto


Brebenii SpA

	ı
FOGLIO 14 DI 38	
REV . A01	
DOCUMENTO DECOACVA030004	00100A01
DOC. N. 10705-CVA03-A01	
	CONSORTO BBB BBB BERGAMO MILANO

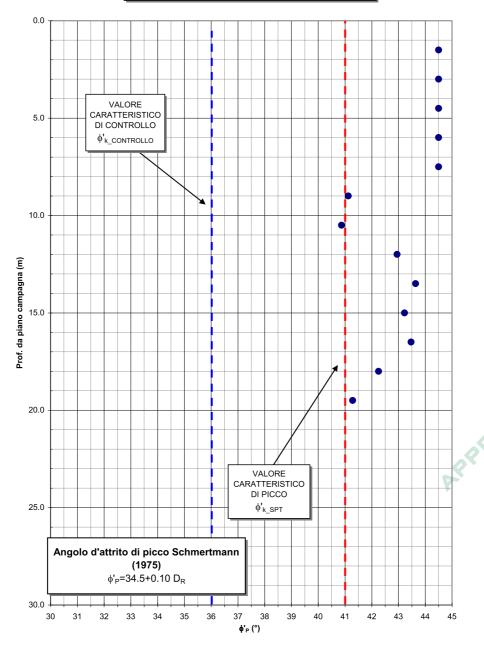

Quota	Quota da P.C				1	Picpelli - Lotto OA - CV		ع اع	arametri	Parametri in condizioni drenate	lizioni d	renate	NOS - Cavalcavia Ovest Rotatoria Havagilato Est ri in condizioni drenate	Jatori	a	gliato	 - -	Parame	tri in cor	dizioni r	Parametri in condizioni non drenate	_	Peso di volume	e Permeabilità*
- ep	а	Descrizione	Unità	φ' _{k_SPT}	φ' _{k_SPT} φ' _{k_CONTROLLO} φ' _k φ' _{dM1} φ' _{dM2}	- -	ф'фм1 6	b'dM2	- ,	C'dM1 C'dM2	,'dM2	da E'		E' ₂₅		da Er	О		Cuk Cu _{dM1} Cu _{dM2}	Cu _{dM2}	da —_⊩		naturale sommerso γ_n	rso
(m)	(ر	(-)	(-)	(°)	(,)	(°)	(°)	(3) (4	(kPa) (l	(kPa) (kPa)	(Pa)	(MPa)	((MPa)		(MPa)		(Pa) ((kPa) (kPa) (kPa)	kPa)	(MPa)		(kN/m³) (kN/m³)	(m/s)
0.0	15.0	Ghiaia sabbiosa / Sabbia ghiaiosa / Sabbia limosa	11/111/1V 41	41	98	39	39	33	0	0	0	20	120	10	35			,	,		-	-	20 11	1×E ⁻⁴ ÷E ⁻⁶
15.0	25.0	Ghiaia sabbiosa / Sabbia ghiaiosa / Sabbia limosa	II / III / IV 41	41	36	39	39	33	0	0	0	120	120	35	35			-					20 11	1×E-4÷E-6

Tabella 3.1 – Profilo geotecnico di progetto.

Società di Progetto Breberni SpA NOME FILE: 10705-CVA03-A01

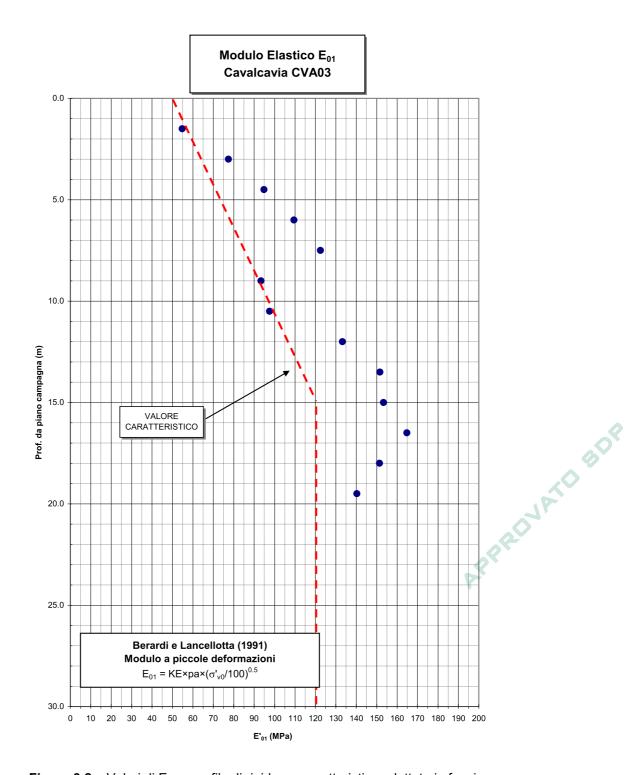

Angolo d'attrito di picco e operativo Cavalcavia CVA03

Figura 3.1 - Andamento con la profondità dell'angolo di resistenza al taglio caratteristico di picco stimato a partire dalle N_{SPT} e angolo di resistenza al taglio caratteristico di controllo definito a partire da D_R e dalla granulometria.

Società di Progetto
Brebemi SpA

CONSORZIO	DOC. N. 10705-CVA03-A01	CODIFICA DOCUMENTO 1070504ROEC0ACVA030004 00100A01	REV . A01	FOGLIO 16 DI 38
BBM BRESCIA BERGAMO MILANO				

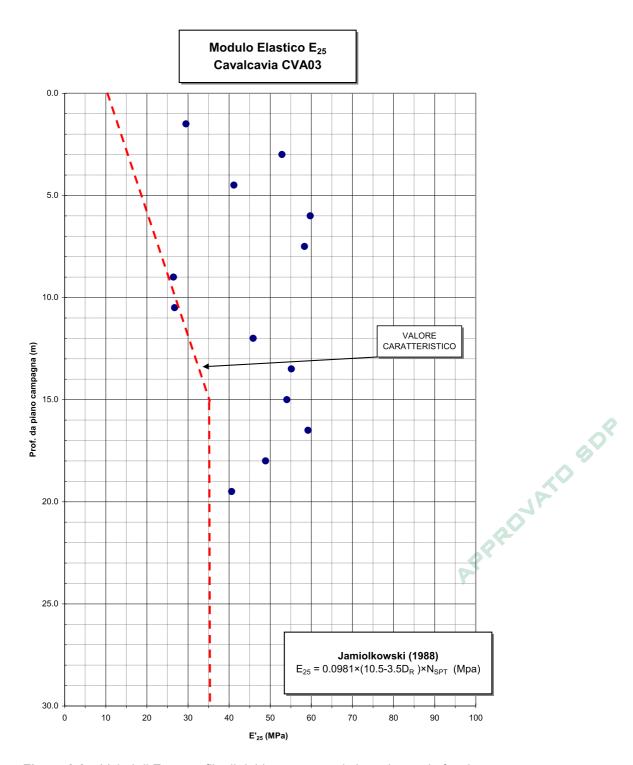


Figura 3.2 – Valori di E₀₁ e profilo di rigidezza caratteristico adottato in funzione della profondità da piano campagna, stimato a partire dai risultati delle prove penetrometriche dinamiche.

Società di Progetto Breberni SpA

NOME FILE: 10705-CVA03-A01

consorzio	DOC. N. 10705-CVA03-A01	CODIFICA DOCUMENTO 1070504ROEC0ACVA030004 00100A01	A01	FOGLIO 17 DI 38
BBM BRESCIA BERGAMO MILANO				

Figura 3.3 – Valori di E₂₅ e profilo di rigidezza caratteristico adottato in funzione della profondità da piano campagna, stimato a partire dai risultati delle prove penetrometriche dinamiche.

Società di Progetto Brebenii SpA

NOME FILE: 10705-CVA03-A01

CONSORZIO	DOC. N. 10705-CVA03-A01	CODIFICA DOCUMENTO 1070504ROEC0ACVA030004 00100A01	REV. A01	FOGLIO 18 DI 38
BBM BRESCIA BERGAMO MILANO				

4. OPERE DI FONDAZIONE

4.1 Geometria

L'elevazione della spalla è pari a 5.80 m calcolata dall'estradosso della piastra del basamento alla base del paraghiaia. Il basamento dell'allargamento della spalla ha dimensioni 6.00 m x 2.85 m x 1.50 m.

Sulla base della stratigrafia e dei carichi di progetto, si è deciso di adottare fondazioni profonde su pali.

Per i dettagli della configurazione finale della struttura si rimanda agli elaborati di progetto quali carpenterie e relazione di calcolo (rif.5.2.6).

4.2 Metodologia di calcolo

La presente relazione è stata elaborata ai sensi del D.M. 2008 (Testo Unico), che prevede l'utilizzo dell'approccio agli Stati Limite per la progettazione delle strutture.

In particolare, devono essere verificate:

- la sicurezza dell'opera, mediante la verifica degli Stati Limite Ultimi interessati:
- le prestazioni dell'opera, mediante la verifica degli Stati Limite di Esercizio.

Con riferimento allo stesso decreto, § 2.2.1, esempi di Stati Limite Ultimi sono:

- la perdita di equilibrio della struttura o di una sua parte;
- il raggiungimento della massima capacità di resistenza di parti di strutture, collegamenti, fondazioni;
- il raggiungimento di meccanismi di collasso nei terreni.

Con riferimento invece al § 2.2.2, esempi di Stati Limite di Esercizio sono:

- spostamenti e deformazioni che possano limitare l'uso della costruzione, la sua efficienza e il suo aspetto:
- spostamenti e deformazioni che possano compromettere l'efficienza e l'aspetto di elementi non strutturali, impianti, macchinari.

La normativa stabilisce anche le modalità per la progettazione della struttura nei confronti delle azioni sismiche. Anche in questo caso, la progettazione deve essere eseguita con riferimento a Stati Limite Ultimi e di Esercizio coerenti con le caratteristiche e le condizioni della struttura considerata.

Per il caso dell'Allargamento del Cavalcavia CVA03, si farà riferimento al § 6.4.3 del Testo Unico, riguardante le fondazioni su pali.

Società di Progetto

Brebenii SpA

	DOC. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
	10705-CVA03-A01	1070504ROEC0ACVA030004	A01	19 DI 38
BBM BRESCIA BERGAMO MILANO		00100A01		

4.3 SLU – Stabilità globale del complesso opera di sostegno – terreno

Il Testo Unico al § 6.4.3.1 richiede verifiche di stabilità globale solo nel caso di "fondazioni posizionate su o in prossimità di pendii naturali o artificiali".

In accordo con quanto riportato dalle tavole di progetto, in prossimità delle spalle dell'Allargamento del Cavalcavia CVA03 non si presentano variazioni della quota altimetrica del piano campagna significative ai fini della stabilità globale.

Per questo motivo, non si procederà all'esecuzione della verifica di stabilità globale, che si assume soddisfatta in ogni caso.

4.4 SLU – Collasso per carico limite nei riguardi dei carichi assiali

Il Testo Unico al § 6.4.3.1 richiede l'esecuzione di verifiche di sicurezza con riferimento al "collasso per carico limite della palificata nei riguardi dei carichi assiali".

Le modalità di verifica e i metodi di calcolo sono riportati in dettaglio nella Relazione Metodologica al rif. 5.2.1.

Per il caso particolare dell'Allargamento del Cavalcavia CVA03 vale inoltre quanto segue:

- Approccio adottato: Approccio 1
- Numero di verticali indagate: 1 (quindi ξ_3 = 1.7, ξ_4 = 1.7).

In accordo con quanto anticipato al § 3.1 e visto il profilo geotecnico in corrispondenza dell'Allargamento del Cavalcavia CVA03 definito al rif. 5.2.6, la verifica di capacità assiale verrà articolata secondo un unico profilo, per il quale sono stati fissati:

- la stratigrafia di progetto (riportata nella Tabella 3.1);
- la profondità di imposta dei plinti di fondazione (uguale alla profondità della testa palo rispetto al piano campagna di progetto), pari a 2.5m.

In Figura 4.1 e in Figura 4.2 sono riportate le curve di capacità assiale rispettivamente per la Combinazione 1 e la Combinazione 2 dell'Approccio 1. Nelle stesse figure sono riportate, oltre alla capacità assiale totale, le due capacità componenti, laterale e di base. Le tabelle di calcolo corrispondenti sono riportate in Tabella 4.1 e in Tabella 4.2.

4.5 SLU – Collasso per carico limite nei riguardi dei carichi trasversali

Il Testo Unico al § 6.4.3.1 richiede l'esecuzione di verifiche di sicurezza con riferimento al "collasso per carico limite della palificata nei riguardi dei carichi trasversali".

Le modalità di verifica e i metodi di calcolo sono riportati in dettaglio nel documento al rif. 5.2.1. In sintesi sarà utilizzato a questo scopo il "metodo delle curve p-y", implementato nel codice di calcolo di Progetto LPILE® (rif. 5.4.1).

19

JATO BOP

	DOC. N.	CODIFICA DOCUMENTO	REV .	FOGLIO
	10705-CVA03-A01	1070504ROEC0ACVA030004	A01	20 DI 38
BBM BRESCIA BERGAMO MILANO		00100A01		

Per il caso particolare dell'Allargamento del Cavalcavia CAV03 vale inoltre quanto segue:

- Approccio adottato: Approccio 1
- Numero di verticali indagate: 1 (quindi $\xi_3 = 1.7$, $\xi_4 = 1.7$).

Ai fini della riduzione delle resistenze richiesta dall'Approccio 1 – Combinazione 2, i valori caratteristici delle curve p-y saranno opportunamente scalati secondo il coefficiente parziale γ_T .

La stratigrafia di progetto adottata è la stessa già utilizzata per le verifiche di sicurezza per carichi assiali (cfr. § 3.1).

Per la stratigrafia adottata sono state ricavate le seguenti coppie di diagrammi, rispettivamente per i casi M1-R1 e M2-R2:

- deformata del palo (Figura 4.3 e Figura 4.4);
- azione di taglio indotta nel palo (Figura 4.5 e Figura 4.6);
- momenti flettenti indotti nel palo (Figura 4.7 e Figura 4.8);

ciascuno per valori del carico orizzontale applicato a testa palo pari a 100 kN, 250 kN, 500 kN, 1000 kN, 1500 kN.

In Figura 4.9 e in Figura 4.10 sono riportati i diagrammi che mostrano per entrambe le combinazioni la dipendenza del momento in testa palo dal carico orizzontale applicato.

Sono state inoltre calcolate le curve p-y in corrispondenza di diverse profondità dal piano campagna (Figura 4.11 e Figura 4.12).

4.6 SLU – Sollevamento e sifonamento

Il Testo Unico al § 6.2.3.2 richiede l'esecuzione di verifiche di sicurezza nei confronti degli Stati Limite Ultimi idraulici, più in particolare per quanto riguarda i fenomeni di sollevamento e sifonamento.

Viste le caratteristiche e la geometria delle fondazioni dell'Allargamento del Cavalcavia CVA03 e le caratteristiche della falda nel tratto considerato, le verifiche al sollevamento e al sifonamento non sono applicabili, rispettivamente perché:

- non saranno realizzati orizzonti impermeabili al di sotto del livello di falda;
- la configurazione finale dell'opera non instaurerà fenomeni di filtrazione.

4.7 SLE – Valutazione degli spostamenti indotti

Il Testo Unico al § 6.4.3.2 richiede l'esecuzione di verifiche di esercizio nei confronti di:

- "eccessivi cedimenti o sollevamenti",
- "eccessivi spostamenti trasversali".

Società di Progetto

Brebemi SpA

	DOC. N. 10705-CVA03-A01	CODIFICA DOCUMENTO 1070504ROEC0ACVA030004	REV. A01	FOGLIO 21 DI 38
BBM BRESCIA BERGAMO MILANO		00100A01		
DRESCIA BERGAINO MIEARO				

4.7.1 Spostamenti verticali

Il calcolo della componente verticale degli spostamenti sarà eseguito in accordo con quanto definito dalla Relazione Metodologica al rif. 5.2.1. In sintesi è stato utilizzato il "metodo monodimensionale" esteso al caso di una palificata, che permette di calcolare il cedimento massimo, ottenuto in corrispondenza del centro della fondazione.

Alla luce delle caratteristiche del materiale di sottofondo, si può assumere che i cedimenti delle fondazioni si esauriranno in tempi brevi, comparabili con quelli di realizzazione dell'opera stessa.

I valori degli spostamenti verticali dipendono dal valore della lunghezza palo considerato. A questo scopo, è stato considerato il valore della lunghezza palo fornito dalla verifica di capacità assiale, pari a 13 m. Inoltre per entrambi i casi si è considerata una quota d'imposta della fondazione pari a circa 126 m s.l.m.m.

Ai fini del calcolo dei cedimenti, si sommano gli effetti dei carichi agenti sulle due parti componenti di ciascuna spalla (una per ciascun impalcato/senso di marcia). Per ciascuna combinazione di carico si assume quindi un carico assiale dato dalla somma dei due carichi agenti sulle due parti componenti e una base appoggio equivalente alla geometria di base risultante.

La geometria risultante ha quindi forma rettangolare, con lati $5 \text{ m} \times 28.1 \text{ m}$.

Il carico totale agente sulla fondazione è stato distinto in due contributi: ricarico e carico vergine. Si è assunto che la quota di carico necessaria a ristabilire lo stato di sforzo iniziale presente nel terreno prima della realizzazione degli scavi (ricarico) provochi cedimenti in ragione di una rigidezza del terreno tripla, per tale quota di carico. A questo fine, è stata cautelativamente considerata una profondità della di imposta delle spalle rispetto al P.C. originario pari a 3 m.

In Tabella 4.3 e Tabella 4.4 sono riportati i valori calcolati per gli spostamenti verticali delle spalle, per le combinazioni di carico quasi permanente e frequente.

Nelle tabelle sopra citate è stato fatto riferimento alla seguente simbologia:

B è la larghezza del plinto di fondazione;

è la lunghezza del plinto di fondazione;

D' è l'altezza del plinto di fondazione;

H_{terra} è la quota da P.C. dell'estradosso della fondazione;

L_{pali} è la lunghezza dei pali di fondazione;

Z_{imposta} è la quota d'imposta da P.C. della fondazione;

Società di Progetto

Brebenii SpA

20100770	DOC. N.	CODIFICA DOCUMENTO	REV .	FOGLIO
	10705-CVA03-A01	1070504ROEC0ACVA030004	A01	22 DI 38
BBM BRESCIA BERGAMO MILANO		00100A01		

Z_{imposta}* è la quota d'imposta da P.C. della fondazione equivalente;

Z_{calcolo} è la quota a cui vengono stimati i cedimenti indotti dalla

costruzione del rilevato;

B* è la larghezza della fondazione equivalente;

L* è la lunghezza della fondazione equivalente;

N è il carico assiale agente sulla fondazione;

P_{tot} è la pressione totale trasmessa dalla fondazione equivalente al

terreno;

P_{ric} è la pressione di ricarico trasmessa dalla fondazione

equivalente al terreno;

P_{car} è la pressione di carico vergine trasmessa dalla fondazione

equivalente al terreno;

ŝ_{1_ric} è il cedimento della fondazione per la parte di ricarico;

ŝ_{1 car} è il cedimento della fondazione per la parte di carico vergine;

\$1_tot è il cedimento totale, somma dei due contributi di cui sopra.

Il massimo cedimento per le opere di fondazione delle spalle ad opera ultimata in condizione SLE risulta dell'ordine dei 3 mm.

Per il calcolo dei cedimenti totali delle spalle è stato anche considerato il cedimento indotto sulle spalle dalla realizzazione del rilevato d'accesso.

Il carico dovuto al rilevato d'accesso è stato schematizzato come una pressione uniforme di 110 KPa (rilevato di altezza massima pari a 5.5m da P.C. originario) estesa per un'area lunga 100 m e larga 40 m. Si è quindi calcolato il cedimento indotto da tale carico sulle spalle (Tabella 4.5), che risulta pari a circa 9.5 mm.

Il cedimento totale (rilevato + carichi da struttura) è quindi pari a 12.5 mm.

Al fine di stimare i cedimenti differenziali massimi attesi, dalla Figura 3.2 si può notare come, fissato un valore di profondità, l'intervallo di variazione del modulo di elasticità è mediamente inferiore al 50% del valore caratteristico. Quindi, ipotizzando che, nel peggiore dei casi, una spalla si trovi su materiale caratterizzato dal valore di rigidezza caratteristico definito al §3 mentre l'altra si trovi su materiale avente rigidezza superiore del 50%, essendo il calcolo lineare, si avrà che la seconda spalla avrà un cedimento pari al 66% del cedimento della prima (1/1.5 = 66%). Di conseguenza il massimo cedimento differenziale può essere stimato come differenza tra il cedimento delle due spalle nell'ipotesi di cui sopra, pari quindi a (100-66)% = 33% del cedimento totale della prima spalla.

In definitiva si ha che il massimo cedimento differenziale totale a di Progetto atteso ad opera ultimata è dell'ordine dei 4mm.

Brebeni SpA

	DOC. N.	CODIFICA DOCUMENTO	REV .	FOGLIO
	10705-CVA03-A01	1070504ROEC0ACVA030004	A01	23 DI 38
BBM BRESCIA BERGAMO MILANO		<u>00100A01</u>		

4.7.2 Spostamenti orizzontali

Il calcolo dello spostamento orizzontale della testa del palo è stato eseguito utilizzando il metodo delle "curve p-y" (vedere anche § 4.5).

Ai fini del calcolo degli spostamenti trasversali della testa del palo, possono essere utilizzati direttamente i risultati forniti dalla Combinazione 1, nella quale si fa riferimento alle resistenze caratteristiche del terreno.

Per la stima degli spostamenti a testa palo potranno quindi essere utilizzate direttamente le curve rappresentate in Figura 4.3.

4.8 Verifiche per azioni sismiche

4.8.1 Stati Limite Ultimi

Il Testo Unico al § 7.11.5.3.2 richiede l'esecuzione di verifiche agli Stati Limite Ultimi per:

- "collasso per carico limite verticale del complesso pali-terreno";
- "collasso per carico limite orizzontale del complesso pali-terreno";
- "liquefazione del terreno di fondazione";
- "spostamenti o rotazioni eccessive che possano indurre il raggiungimento di uno stato limite ultimo nella struttura in elevazione";
- "rottura di uno degli elementi strutturali della palificata (pali o struttura di collegamento)".

Per quanto riguarda le verifiche a rottura per carichi limite verticali e orizzontali, possono essere utilizzati direttamente gli abachi ottenuti ai §§ 4.4 e 4.5. Gli abachi dovranno essere impiegati con riferimento alle combinazioni di carico sismico per lo stato limite ultimo considerato.

Per le verifiche di capacità assiale, il progettista ha ritenuto di adottare i coefficienti parziali γ_R relativi al caso R2, che risultano più cautelativi rispetto a quelli R3, minimi richiesti da normativa. Tale scelta consente da un lato una notevole semplificazione in termini di dimensionamento e verifica delle opere (dato che di fatto riduce il numero di abachi necessari), senza per altro necessariamente causare un sovradimensionamento delle stesse.

Tale approccio è stato inoltre adottato in quanto consente empiricamente di soddisfare quanto richiesto dalla normativa in riferimento alla valutazione della eventuale riduzione della resistenza del terreno per effetto dell'azione sismica ciclica, non direttamente valutabile attraverso le indagini geognostiche abitualmente realizzate per opere di questo genere.

In accordo con quanto riportato al § 3.5, risulta soddisfatta per l'allargamento del Cavalcavia CVA03 la verifica dello Stato Limite liquefazione del terreno di fondazione.

Brebemi SpA

23

JATO BOP

	DOC. N.	CODIFICA DOCUMENTO	REV .	FOGLIO
	10705-CVA03-A01	1070504ROEC0ACVA030004	A01	24 DI 38
BBM BRESCIA BERGAMO MILANO		00100A01		

Per la verifica dei rimanenti Stati Limite, "spostamenti o rotazioni eccessive" e "rottura di uno degli elementi strutturali della palificata" si rimanda alla Relazione di Calcolo Strutturale al rif. 5.2.6.

4.8.2 Stato Limite di Danno

In accordo con quanto previsto dal Testo Unico al § 7.11.5.3.2, devono essere condotte le verifiche nei confronti dello Stato Limite di Danno.

Visto il valore relativamente ridotto atteso per l'accelerazione massima su sito di riferimento rigido (0.103 g, calcolato per una probabilità di non superamento corrispondente allo Stato Limite di Danno SLD pari al 37%) e visto che sono eseguite le verifiche di sicurezza per le azioni sismiche calcolate per lo Stato Limite Ultimo di Salvaguardia della Vita (SLV), sono da attendersi deformazioni permanenti minime a seguito dell'evento sismico di progetto.

Per questi motivi, nel seguito la verifica dello Stato Limite di Danno sarà ricondotta alla verifica dello Stato Limite di Esercizio in condizioni statiche, presentata precedentemente al § 4.7.

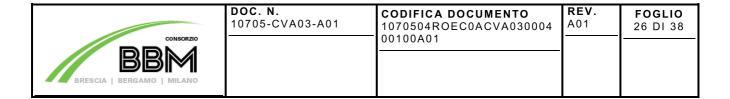
4.9 Verifiche strutturali

NOME FILE: 10705-CVA03-A01

Per guanto riguarda le modalità di esecuzione delle verifiche resistenza della struttura di collegamento dei si faccia riferimento alla Relazione di Calcolo Strutturale al agli Stati Limite Ultimi di tipo strutturale previste dal Testo Unico al § 6.4.3.1 per le condizioni:

- "raggiungimento della resistenza dei pali",
- "raggiungimento della resistenza della struttura di collegamento dei pali",

rif. 5.2.6.


Società di Progetto Brebemi SpA

										L _{palo}	ΔW _{palo}	Q _{I-PROGETTO}	Q _{b-PROGETTO}	Q _{PROGETTO}
f _{s calcolo}	$\Delta\text{-P}_{\text{lat}}$	P_{lat}	$P_{\text{lat,CARATTERISTICC}}$	P _{lat,PROGETTO}	B_k	q_{ub}	Q_b	↓,CARATTERISTIC	Q _{b,PROGETTO}	m	kN	kN	kN	kN
										-		Laterale	Di Base	Complessiva
9.00					0	0.00	0	0	0	0.00	0	0	0	0
27.00					0	0.00	0	0	0	0.00	0	0	0	0
45.00					0	0.00	0	0	0	0.00	0	0	0	0
62.01					0	0.00	0	0	0	0.00	0	0	0	0
77.60					0	0.00	0	0	0	0.00	0	0	0	0
92.38	145	145	85	85	0	0.00	0	0	0	0.50	2	85	0	83
105.60	166	311	183	183	0	0.00	0	0	0	1.00	4	183	0	179
108.00	170	481	283	283	0	0.00	0	0	0	1.50	6	283	0	277
110.40	173	654	385	385	0	0.00	0	0	0	2.00	8	385	0	377
112.80	177	831	489	489	0	0.00	0	0	0	2.50	10	489	0	479
115.20	181	1,012	595	595	0	0.00	0	0	0	3.00	12	595	0	584
117.60	185	1,197	704	704	0	0.00	0	0	0	3.50	14	704	0	690
120.00	188	1,385	815	815	183	1833.33	1440	847	847	4.00	16	815	847	1,646
122.40	192	1,578	928	928	183	1833.33	1440	847	847	4.50	18	928	847	1,757
124.80	196	1,774	1,043	1,043	225	2250.00	1767	1039	1039	5.00	20	1,043	1,039	2,063
127.20	200	1,974	1,161	1,161	225	2250.00	1767	1039	1039	5.50	22	1,161	1,039	2,179
129.60	204	2,177	1,281	1,281	267	2666.67	2094	1232	1232	6.00	24	1,281	1,232	2,489
132.00	207	2,384	1,403	1,403	267	2666.67	2094	1232	1232	6.50	26	1,403	1,232	2,609
134.40	211	2,596	1,527	1,527	308	3083.33	2422	1424	1424	7.00	27	1,527	1,424	2,924
136.80	215	2,810	1,653	1,653	308	3083.33	2422	1424	1424	7.50	29	1,653	1,424	3,048
139.20	219	3,029	1,782	1,782	350	3500.00	2749	1617	1617	8.00	31	1,782	1,617	3,367
141.60	222	3,252	1,913	1,913	350	3500.00	2749	1617	1617	8.50	33	1,913	1,617	3,496
144.00	226	3,478	2,046	2,046	387	3875.00	3043	1790	1790	9.00	35	2,046	1,790	3,801
146.40	230	3,708	2,181	2,181	387	3875.00	3043	1790	1790	9.50	37	2,181	1,790	3,934
148.80	234	3,941	2,318	2,318	425	4250.00	3338	1963	1963	10.00	39	2,318	1,963	4,243
151.20	238	4,179	2,458	2,458	425	4250.00	3338	1963	1963	10.50	41	2,458	1,963	4,380
153.60	241	4,420	2,600	2,600	462	4625.00	3632	2137	2137	11.00	43	2,600	2,137	4,694
156.00	245	4,665	2,744	2,744	462	4625.00	3632	2137	2137	11.50	45	2,744	2,137	4,836
158.40	249	4,914	2,891	2,891	500	5000.00	3927	2310	2310	12.00	47	2,891	2,310	5,153
159.15	250	5,164	3,038	3,038	500	5000.00	3927	2310	2310	12.50	49	3,038	2,310	5,299
159.41	250	5,414	3,185	3,185	542	5416.67	4254	2502	2502	13.00	51	3,185	2,502	5,636
159.66	251	5,665	3,332	3,332	542	5416.67	4254	2502	2502	13.50	53	3,332	2,502	5,782
159.92	251	5,916	3,480	3,480	583	5833.33	4581	2695	2695	14.00	55	3,480	2,695	6,120
160.18	252	6,168	3,628	3,628	583	5833.33	4581	2695	2695	14.50	57	3,628	2,695	6,266
160.43	252	6,420	3,777	3,777	625	6250.00	4909	2887	2887	15.00	59	3,777	2,887	6,605
160.69	252	6,672	3,925	3,925	625	6250.00	4909	2887	2887	15.50	61	3,925	2,887	6,752
160.94	253	6,925	4,074	4,074	667	6666.67	5236	3080	3080	16.00	63	4,074	3,080	7,091
161.20	253	7,178	4,223	4,223	667	6666.67	5236	3080	3080	16.50	65	4,223	3,080	7,238
161.46	254	7,432	4,372	4,372	696	6958.33	5465	3215	3215	17.00	67	4,372	3,215	7,520
161.71	254	7,686	4,521	4,521	696	6958.33	5465	3215	3215	17.50	69	4,521	3,215	7,667
161.97	254	7,941	4,671	4,671	725	7250.00	5694	3349	3349	18.00	71	4,671	3,349	7,950
162.22	255	8,195	4,821	4,821	725	7250.00	5694	3349	3349	18.50	73	4,821	3,349	8,098
161.06	253	8,448	4,970	4,970	754	7500.00	5890	3465	3465	19.00	75	4,970	3,465	8,360
155.34	244	8,692	5,113	5,113	754	7500.00	5890	3465	3465	19.50	77	5,113	3,465	8,502
149.41	235	8,927	5,251	5,251	783	7500.00	5890	3465	3465	20.00	79	5,251	3,465	8,638
143.27	225	9,152	5,384	5,384	783	7500.00	5890	3465	3465	20.50	81	5,384	3,465	8,768
136.92	215	9,367	5,510	5,510	829	7500.00	5890	3465	3465	21.00	82	5,510	3,465	8,893
130.36	205	9,572	5,631	5,631	829	7500.00	5890	3465	3465	21.50	84	5,631	3,465	9,011
123.58	194	9,766	5,745	5,745	875	7500.00	5890	3465	3465	22.00	86	5,745	3,465	9,123
116.60	183	9,949	5,852	5,852	875	7500.00	5890	3465	3465	22.50	88	5,852	3,465	9,229
113.03	-	9,949	5,852	5,852	875	7500.00	5890	3465	3465	22.50	88	5,852	3,465	9,229

Tabella 4.1 – Allargamento Cavalcavia CVA03 – Capacità assiale palo – Caso Approccio 1 Combinazione 1

Società di Progetto
Brebenii SpA

										L palo	ΔW _{palo}	Q _{I-PROGETTO}	Q _{b-PROGETTC}	$Q_{PROGETTO}$
f _{s calcolo}	Δ - P_{lat}	P_{lat}	P _{iat,CARATTERISTICO}	P _{lat,PROGETTO}	B_k	q_{ub}	Q_b	Q _{b,CARATTERISTICO}	Q _{b,PROGETTO}	m	kN	kN	kN	kN
												Laterale	Di Base	Complessiva
9.00					0	0.00	0	0	0	0.00	0	0	0	0
27.00					0	0.00	0	0	0	0.00	0	0	0	0
45.00					0	0.00	0	0	0	0.00	0	0	0	0
62.01					0	0.00	0	0	0	0.00	0	0	0	0
77.60					0	0.00	0	0	0	0.00	0	0	0	0
92.38	145	145	85	59	0	0.00	0	0	0	0.50	2	59	0	57
105.60	166	311	183	126	0	0.00	0	0	0	1.00	4	126	0	122
108.00	170	481	283	195	0	0.00	0	0	0	1.50	6	195	0	189
110.40	173	654	385	265	0	0.00	0	0	0	2.00	8	265	0	257
112.80	177	831	489	337	0	0.00	0	0	0	2.50	10	337	0	327
115.20	181	1,012	595	411	0	0.00	0	0	0	3.00	12	411	0	399
117.60	185	1,197	704	486	0	0.00	0	0	0	3.50	14	486	0	472
120.00	188	1,385	815	562	183	1833.33	1440	847	498	4.00	16	562	498	1,045
122.40	192	1,578	928	640	183	1833.33	1440	847	498	4.50	18	640	498	1,121
124.80	196	1,774	1,043	720	225	2250.00	1767	1039	611	5.00	20	720	611	1,311
127.20	200	1,974	1,161	801	225	2250.00	1767	1039	611	5.50	22	801	611	1,390
129.60	204	2,177	1,281	883	267	2666.67	2094	1232	725	6.00	24	883	725	1,584
132.00	207	2,384	1,403	967	267	2666.67	2094	1232	725	6.50	26	967	725	1,666
134.40	211	2,596	1,527	1,053	308	3083.33	2422	1424	838	7.00	27	1,053	838	1,863
136.80	215	2,810	1,653	1,140	308	3083.33	2422	1424	838	7.50	29	1,140	838	1,949
139.20	219	3,029	1,782	1,229	350	3500.00	2749	1617	951	8.00	31	1,229	951	2,149
141.60	222	3,252	1,913	1,319	350	3500.00	2749	1617	951	8.50	33	1,319	951	2,237
144.00	226	3,478	2,046	1,411	387	3875.00	3043	1790	1053	9.00	35	1,411	1,053	2,429
146.40	230	3,708	2,181	1,504	387	3875.00	3043	1790	1053	9.50	37	1,504	1,053	2,520
148.80	234	3,941	2,318	1,599	425	4250.00	3338	1963	1155	10.00	39	1,599	1,155	2,715
151.20	238	4,179	2,458	1,695	425	4250.00	3338	1963	1155	10.50	41	1,695	1,155	2,809
153.60	241	4,420	2,600	1,793	462	4625.00	3632	2137	1257	11.00	43	1,793	1,257	3,007
156.00	245	4,665	2,744	1,893	462	4625.00	3632	2137	1257	11.50	45	1,893	1,257	3,104
158.40	249	4,914	2,891	1,994	500	5000.00	3927	2310	1359	12.00	47	1,994	1,359	3,305
159.15	250	5,164	3,038	2,095	500	5000.00	3927	2310	1359	12.50	49	2,095	1,359	3,405
159.41	250	5,414	3,185	2,197	542	5416.67	4254	2502	1472	13.00	51	2,197	1,472	3,618
159.66	251	5,665	3,332	2,298	542	5416.67	4254	2502	1472	13.50	53	2,298	1,472	3,717
159.92	251	5,916	3,480	2,400	583	5833.33	4581	2695	1585	14.00	55	2,400	1,585	3,930
160.18	252	6,168	3,628	2,502	583	5833.33	4581	2695	1585	14.50	57	2,502	1,585	4,031
160.43	252	6,420	3,777	2,604	625	6250.00	4909	2887	1699	15.00	59	2,604	1,699	4,244
160.69	252	6,672	3,925	2,707	625	6250.00	4909	2887	1699	15.50	61	2,707	1,699	4,345
160.94	253	6,925	4,074	2,809	667	6666.67	5236	3080	1812	16.00	63	2,809	1,812	4,558
161.20	253	7,178	4,223	2,912	667	6666.67	5236	3080	1812	16.50	65	2,912	1,812	4,659
161.46	254	7,432	4,372	3,015	696	6958.33	5465	3215	1891	17.00	67	3,015	1,891	4,839
161.71	254	7,686	4,521	3,118	696	6958.33	5465	3215	1891	17.50	69	3,118	1,891	4,940
161.97	254	7,941	4,671	3,221	725	7250.00	5694	3349	1970	18.00	71	3,221	1,970	5,121
162.22	255	8,195	4,821	3,325	725	7250.00	5694	3349	1970	18.50	73	3,325	1,970	5,222
161.06	253	8,448	4,970	3,427	754	7500.00	5890	3465	2038	19.00	75	3,427	2,038	5,391
155.34	244	8,692	5,113	3,526	754	7500.00	5890	3465	2038	19.50	77	3,526	2,038	5,488
149.41	235	8,927	5,251	3,622	783	7500.00	5890	3465	2038	20.00	79	3,622	2,038	5,581
143.27	225	9,152	5,384	3,713	783	7500.00	5890	3465	2038	20.50	81	3,713	2,038	5,671
136.92	215	9,367	5,510	3,800	829	7500.00	5890	3465	2038	21.00	82	3,800	2,038	5,756
130.36	205	9,572	5,631	3,883	829	7500.00	5890	3465	2038	21.50	84	3,883	2,038	5,837
123.58	194	9,766	5,745	3,962	875	7500.00	5890	3465	2038	22.00	86	3,962	2,038	5,914
116.60	183	9,949	5,852	4,036	875	7500.00	5890	3465	2038	22.50	88	4,036	2,038	5,986
113.03		9,949	5,852	4,036	875	7500.00	5890	3465	2038	22.50	88	4,036	2,038	5,986
										-				•

Tabella 4.2 – Allargamento Cavalcavia CVA03 – Capacità assiale palo – Caso Approccio 1 Combinazione 2

DM 2008 - CALCOLO CEDIMENTI TOTALI

11.67

CARICHI				SLE -	COME	BINAZIOI	NE QUAS	I PERMA	NENTE							
-											•			CI	EDIMEN	TI
N° Spalla	В	L	D'	H _{terra}	L_{pali}	$Z_{imposta}$	Z _{imposta} *	B*	L*	N	P_{tot}	P_{ric}	P _{car}	Ŝ_ric	ŝ_car	ŝ_ _{tot}
-	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(kN)	(kPa)	(kPa)	(kPa)	(mm)	(mm)	(mm)

32.43

31410

103.76

Tabella 4.3 – Allargamento Cavalcavia CVA03 – Cedimenti verticali spalla combinazione SLE-QUASI PERMANENTE

9.33

Società di Progetto

Brebemi SpA

70.7623

26

28.1 1.5 1.5 13

METODO

CONSORZIO	DOC. N. 10705-CVA03-A01	CODIFICA DOCUMENTO 1070504ROEC0ACVA030004 00100A01	REV . A01	FOGLIO 27 DI 38
BBM BRESCIA BERGAMO MILANO				

METODO				DM	2008 -	CALCO	LO CEDIN	ΛΕΝΤΙ ΤΟ	OTALI							
CARICHI		SLE - COMBINAZIONE FREQUENTE														
														CI	EDIMEN	TI
N° Spalla	В	L	D'	H _{terra}	L_{pali}	Z _{imposta}	Z _{imposta} *	В*	L*	N	P_{tot}	P_{ric}	P_{car}	ŝ_ _{ric}	ŝ_car	ŝ_ _{tot}
N° Spalla -	(m)	(m)	(m)	H _{terra}	L _{pali} (m)	Z _{imposta} (m)	Z _{imposta} * (m)	B *	L *	N (kN)	P _{tot} (kPa)	P _{ric} (kPa)		\$_ _{ric}	ŝ _car (mm)	ŝ _tot (mm)

Tabella 4.4 – Allargamento Cavalcavia CVA03 – Cedimenti verticali spalla combinazione SLE-FREQUENTE

METODO											
CARICHI	CARICHI								TOTALI		
											TOTAL
N° Spalla	B _{SPALLA}	B _{RILEVATO}	L _{RILEVATO}	H _{tratt}	\mathbf{D}_{tot}	Z _{imposta}	Z _{calcolo}	В*	L*	P _{tot}	ŝ_ril
N° Spalla -	B _{SPALLA} (m)	B _{RILEVATO} (m)	L _{RILEVATO} (m)	H _{tratt}	D _{tot}	Z _{imposta} (m)	Z _{calcolo} (m)	B * (m)		P _{tot} (kPa)	â

Tabella 4.5 – Allargamento Cavalcavia CVA03 – Cedimenti verticali spalla – Componente cedimento indotta da rilevato

Società di Progetto Brebenni SpA

NOME FILE: 10705-CVA03-A01

consorzio	DOC. N. 10705-CVA03-A01	CODIFICA DOCUMENTO 1070504ROEC0ACVA030004 00100A01	REV . A01	FOGLIO 28 DI 38
BBM BRESCIA BERGAMO MILANO				

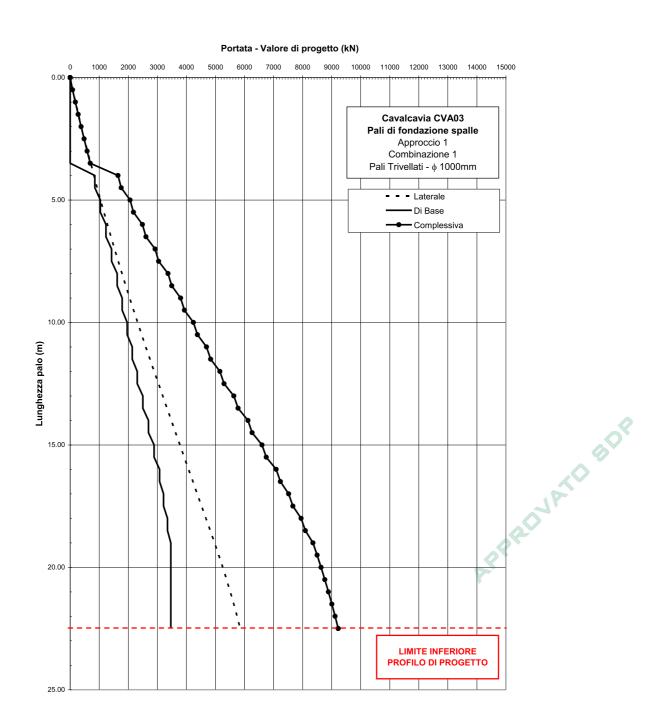


Figura 4.1 – Allargamento Cavalcavia CVA03 – Capacità assiale palo – Caso Approccio 1 Combinazione 1

Società di Progetto Brebenii SpA

NOME FILE: 10705-CVA03-A01

CONSORZIO	DOC. N. 10705-CVA03-A01	CODIFICA DOCUMENTO 1070504ROEC0ACVA030004 00100A01	REV . A01	FOGLIO 29 DI 38
BBM BRESCIA BERGAMO MILANO				

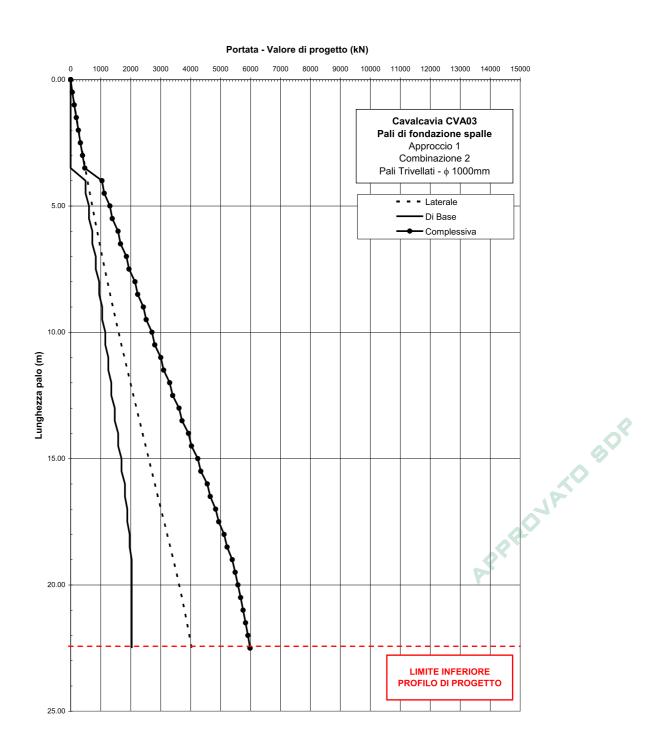
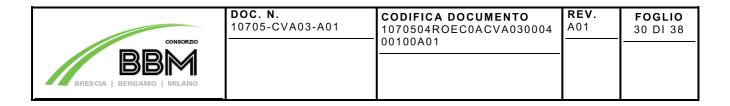
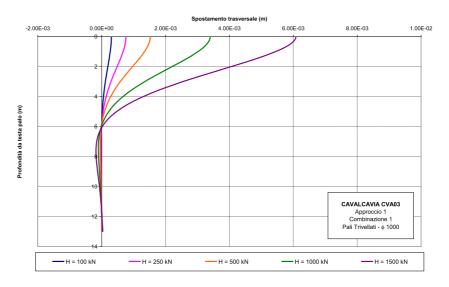
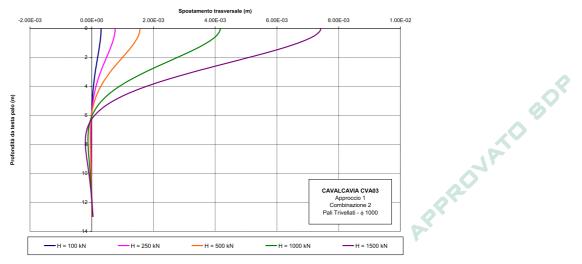
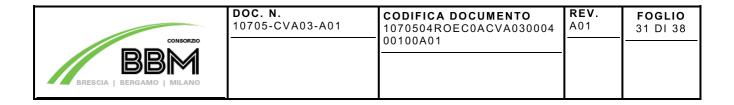
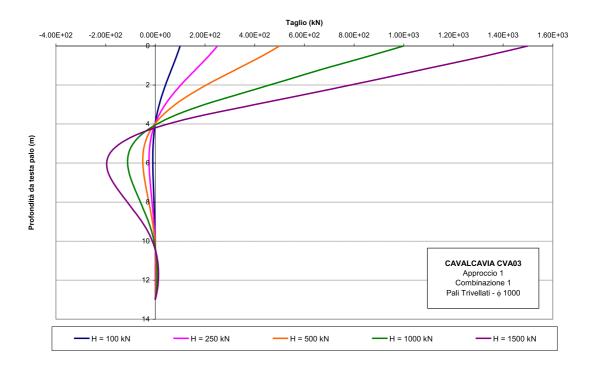
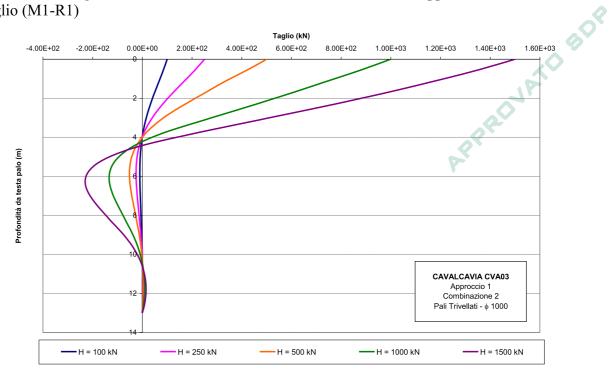



Figura 4.2 – Allargamento Cavalcavia CVA03 – Capacità assiale palo – Caso Approccio 1 Combinazione 2

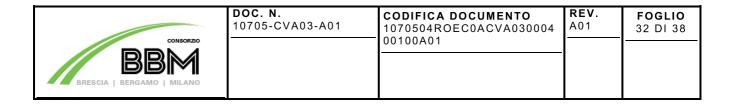
Società di Progetto Breberni SpA


Figura 4.3 – Allargamento Cavalcavia CVA03 – Carico orizzontale H applicato in testa – Deformata palo (M1-R1)


Figura 4.4 – Allargamento Cavalcavia CVA03 – Carico orizzontale H applicato in testa – Deformata palo (M1-R2)

Società di Progetto Brebenii SpA


Figura 4.5 – Allargamento Cavalcavia CVA03 – Carico orizzontale H applicato in testa – Taglio (M1-R1)

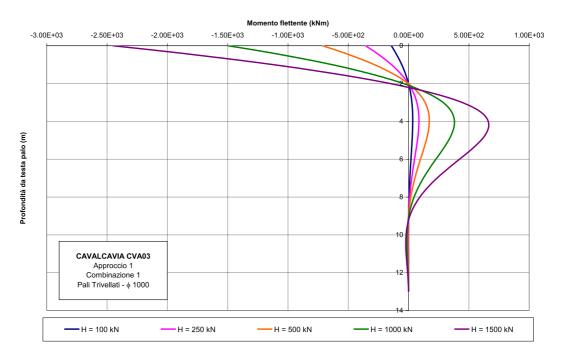
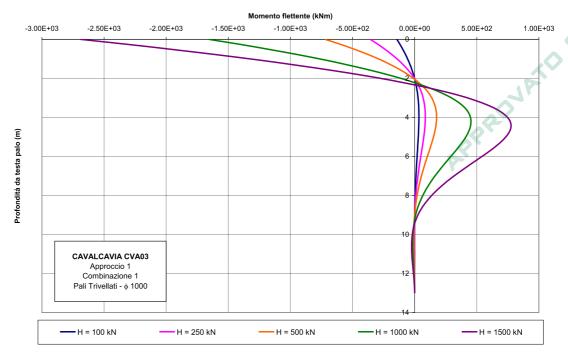
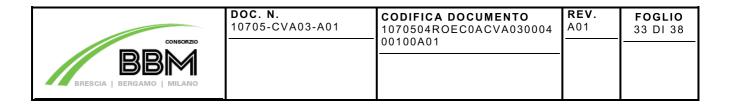


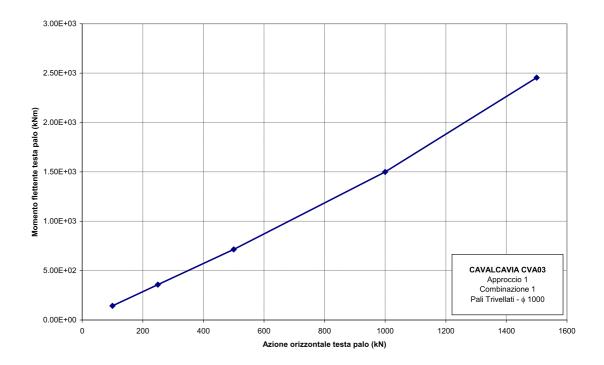
Figura 4.6 – Allargamento Cavalcavia CVA03 – Carico orizzontale H applicato in testa – Taglio (M1-R2)


X -

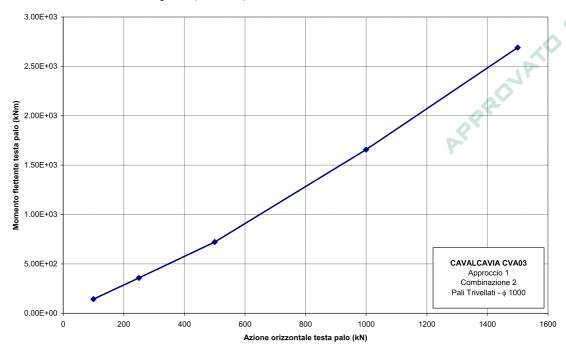
Brebemi SpA

Figura 4.7 – Allargamento Cavalcavia CVA03 – Carico orizzontale H applicato in testa – Momenti flettenti (M1-R1)


Figura 4.8 – Allargamento Cavalcavia CVA03 – Carico orizzontale H applicato in testa – Momenti flettenti (M1-R2)


Società di Progetto

Breberni SpA


32

NOME FILE: 10705-CVA03-A01

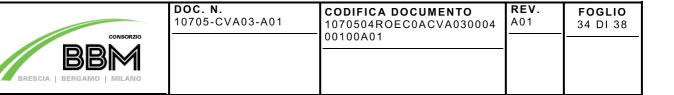

Figura 4.9 – Allargamento Cavalcavia CVA03 – Diagramma carico orizzontale testa palo – momento flettente testa palo (M1-R1)

Figura 4.10 – Allargamento Cavalcavia CVA03 – Diagramma carico orizzontale testa palo – momento flettente testa palo (M1-R2)

33

Brebemi SpA

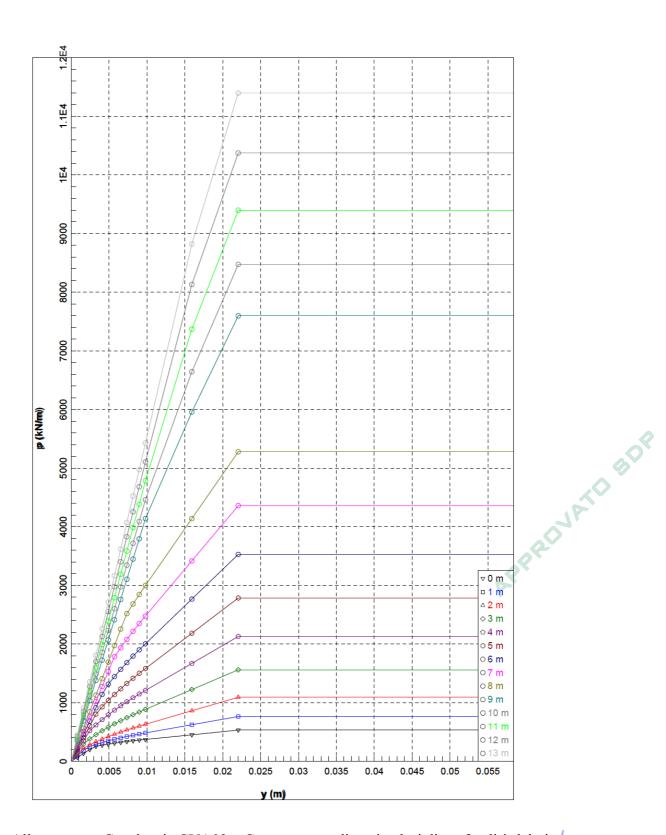
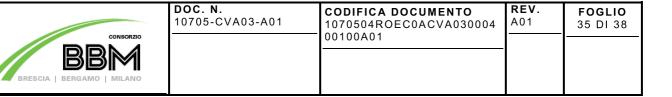



Figura 4.11 – Allargamento Cavalcavia CVA03 – Curve p-y per diversi valori di profondità dal piano campagna (M1-R1)

Brebeni SpA

NOME FILE: 10705-CVA03-A01 34

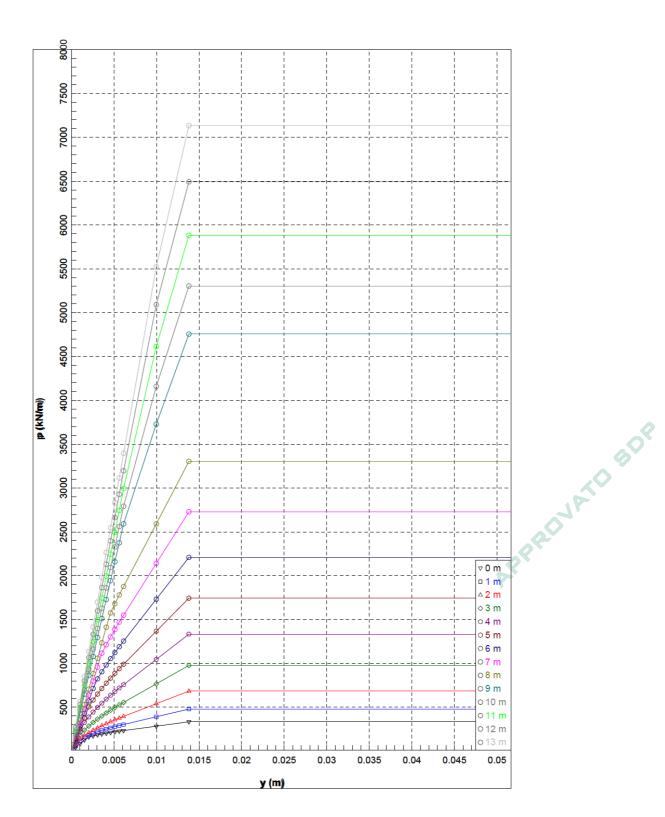


Figura 4.12 – Allargamento Cavalcavia CVA03 – Curve p-y per diversi valori di profondità dal piano campagna (M1-R2)

Brebenii SpA

35

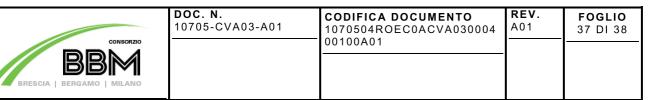
NOME FILE: 10705-CVA03-A01

	40-0- 01/400 404	CODIFICA DOCUMENTO 1070504ROEC0ACVA030004	REV . A01	FOGLIO 36 DI 38
BBM BRESCIA BERGAMO MILANO		00100A01		

5. BIBLIOGRAFIA E DOCUMENTAZIONE DI RIFERIMENTO

5.1 Normative e raccomandazioni

5.1.1 D.M. 14/1/08 - "Norme tecniche per le costruzioni – Testo Unico";


5.2 Documentazione di progetto

- 5.2.1 Consorzio B.B.M. Progetto Esecutivo Opere connesse Raccordo SP19-Tang. Sud di Brescia Geotecnica Relazione Metodologica Doc. N. 0012504ROEC0A00010000400300
- 5.2.2 Consorzio B.B.M. Progetto Esecutivo Parte Generale Geotecnica –Addendum Relazione Geotecnica / Indagini Geognostiche in sito / Prove di laboratorio Doc. N. 0051104ROEC0A00010000401000
- 5.2.3 Consorzio B.B.M. Progetto Esecutivo Parte Generale Geologia Idrogeologia e Geomorfologia Relazione Sismica Raccordo SP19-Tang. Sud di Brescia Doc. N. 0193104ROEC0A00009000401800
- 5.2.4 Consorzio B.B.M. Progetto Esecutivo Parte Generale Geologia Idrogeologia e Geomorfologia Relazione Idrogeologica Raccordo SP19-Tang. Sud di Brescia Doc. N. 0193204ROEC0A00009000401900
- 5.2.5 Consorzio B.B.M. Progetto Esecutivo Parte Generale Geologia Idrogeologia e Geomorfologia Profilo Idrogeologico Longitudinale con nuovo Asse Stradale Raccordo SP19-Tang. Sud di Brescia dal Km 3+900 al Km 7+912.84 Tav 2/2 Doc. N. 0192804PREC0A00009000404500
- 5.2.6 Consorzio B.B.M. Progetto Esecutivo Opere Connesse Raccordo SP19 Tang. Sud di Brescia Cavalcavia CVA03 Relazione di calcolo doc. N. 1186404RCEC0ACVA03000000200
- 5.2.7 Consorzio B.B.M. Progetto Esecutivo Opere connesse Raccordo SP19-Tang. Sud di Brescia Opere d'arte minori Cavalcavia CVA03 Profilo geotecnico locale doc . N. 0940704PREC0ACVA03000400100

5.3 Riferimenti bibliografici

- 5.3.1 Berardi R., Lancellotta R., "Stiffness of Granular Soils from Field Performance"; 1991, Geotechnique
- 5.3.2 Berardi R., "Non linear elastic approaches in foundation design"; 1999, Pre-Failure Deformation Characteristics of Geomaterials, Torino, Balkema
- 5.3.3 Skempton, A. W. (1986), "Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation". Geotechnique 36, n°2

 Brebeni SpA

- 5.3.4 Jamiolkowski M., Ghionna V.N., Lancellotta R., Pasqualini E. (1988) "New correlations of penetration tests for design practice", Proceedings of I International Symposium on Penetration Testing, ISOPT I, Orlando
- 5.3.5 Schmertmann, J.H. (1975), "Measurement of in situ shear strength, keynote lecture, Proceedings of the conference on in-situ measurement of soil properties", June 1-4, 1975, vol. II, American Society of Civil Engineers.
- 5.3.6 www.ingv.it Sito Istituto Nazionale Geofisica e Vulcanologia
- 5.3.7 EPRI EL-6800, "Manual on estimate Soil properties for foundation design" 1990

5.4 Software di calcolo

5.4.1 LPILE PLUS for Windows - Copyright ENSOFT, INC., October 2000.

APPROVATO BOP

Società di Progetto Breberni SpA