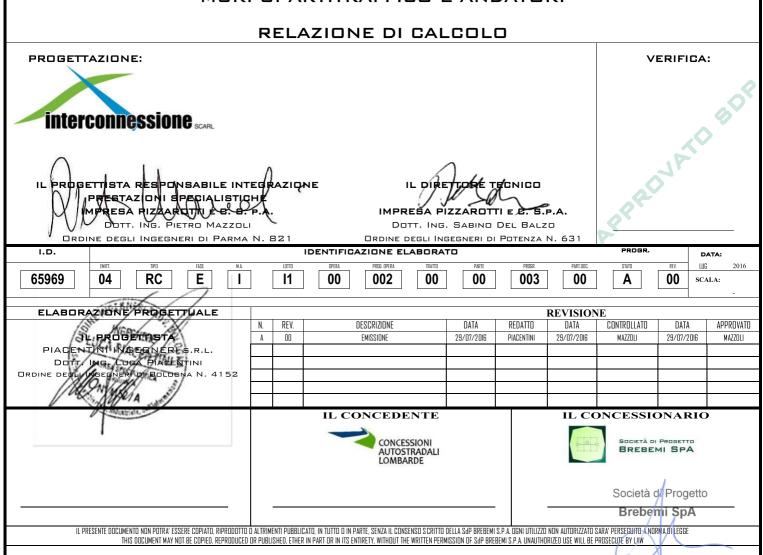


CUP E3 1 B05000390007

COLLEGAMENTO AUTOSTRADALE DI CONNESSIONE TRA LE CITTA' DI BRESCIA E MILANO

Procedura Autorizzativa D. Lgs 163/2006Delibera C.I.P.E. DI Approvazione del Progetto Definitivo n° 19/2016


INTERCONNESSIONE A35-A4 PROGETTO ESECUTIVO

O-PARTE GENERALE

OO-GENERALE

00002 - ELABORATI TIPOLOGICI

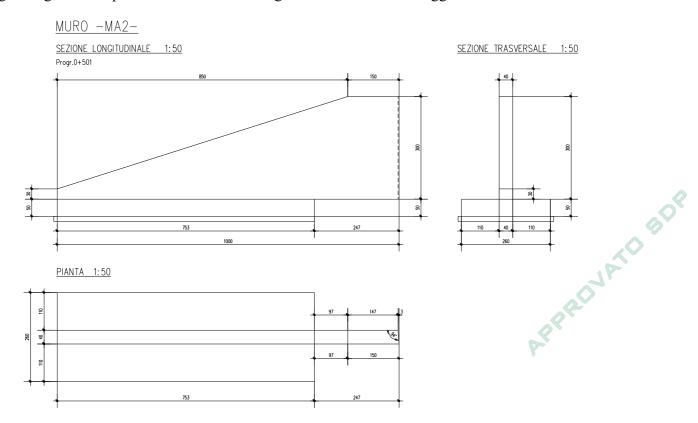
MURI SPARTITRAFFICO E ANDATORI

Doc. N. 65969-00002-A00 CODIFICA DOCUMENTO 04RCEII100002000000300 REV. A00 FOGLIO I di 26

INDICE

1.	PREMESSA	2
2.	NORMATIVA DI RIFERIMENTO	3
3.	CARATTERISTICHE DEI MATERIALI	4
3.1 3.2 3.3	CALCESTRUZZOACCIAIOCARATTERISTICHE DI PROGETTO	4
4.	CRITERI DI CALCOLO	6
4.1 4.2 4.3 4.4 4.5 4.6	STRATIGRAFIA E PARAMETRI GEOTECNICI CARATTERIZZAZIONE SISMICA ANALISI DEI CARICHI COMBINAZIONI DI CARICO VERIFICHE GEOTECNICHE VERIFICHE STRUTTURALI	6 7 8 11
5.	VERIFICHE GEOTECNICHE	15
6.	SOLLECITAZIONI SUGLI ELEMENTI STRUTTURALI	19
7.	VERIFICHE STRUTTURALI	20
7.1 7.2	ElevazioneFondazione	

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	65969-00002-A00	04RCEII100002000000300	A00	2 di 26


1. PREMESSA

In questo documento si riportano le verifiche strutturali e geotecniche dei muri spartitraffico e andatori presenti nell'ambito progetto esecutivo del raddoppio di carreggiata del lotto 0A della autostrada BreBeMi e dell'interconnessione A35 - A4.

I muri sono stati dimensionati considerando l'azione dell'urto veicolare in quanto tale azione risulta di gran lunga più onerosa rispetto a tutte le altre sollecitanti la struttura.

I muri sono caratterizzati da elevazione e fondazione in conglomerato cementizio armato gettata in opera. I muri vengono tutti fondati su una platea continua di larghezza pari a 2,60 m e altezza pari a 0,50 m. Si riportano le verifiche per il muro andatore MA2 in quanto quello dotato di minor peso in elevazione e quindi quello più gravoso ai fini delle verifiche geotecniche.

Nelle figure seguenti si riportano le caratteristiche geometriche del muro oggetto di verifica.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione 8048	65969-00002-A00	04RCEII100002000000300	A00	3 di 26

2. NORMATIVA DI RIFERIMENTO

I calcoli e le verifiche effettuate sono state condotte in accordo alle seguenti normative:

- Norme Tecniche per le Costruzioni, D.M. 14-01-2008
- Circolare n. 617 del 02-02-2009 "Istruzione per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008"

APPROVATO BOP

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione som	65969-00002-A00	04RCEII100002000000300	A00	4 di 26

3. CARATTERISTICHE DEI MATERIALI

Nel seguito si elencano le caratteristiche dei materiali utilizzati per le fondazioni dei muri in parola.

3.1 Calcestruzzo

Classe di esposizionea/c

Calcestruzzo per sottofondazione: C12/15

X0

Calcestruzzo per fondazione: C28/35

XC2 0.52

CLASSE DI CONSISTENZA S4

DIAMETRO MASSIMO INERTI 32mm (Calcestruzzo fondazione e Calcestruzzo elevazione).

3.2 Acciaio

Tipo
 Acciaio per c.a. in barre ad aderenza migliorata:
 B450C

3.3 Caratteristiche di progetto

Nel seguito si elencano le caratteristiche di progetto dei materiali utilizzati per la struttura.

3.3.1 C28/35

Classe o	di resis	stenza	=	C 28/35	P.
Rck =	=	35	MPa	Valore caratteristico resistenza cubica	
fck =	=	29.05	MPa	Valore caratteristico resistenza cilindrica	
fcm =	=	37.05	MPa	Valore medio resistenza cilindrica	
fctm =	=	2.83	MPa	Valore medio resistenza a trazione semplice	
fcfm =	=	3.40	MPa	Valore medio resistenza a trazione per flessione	
ν	=	0.2		Coefficiente di Poisson	
Ecm =	=	32588	MPa	Modulo elastico	
γc =	=	1.5		Coefficiente parziale di sicurezza	
acc =	=	0.85		Coefficiente risuttivo per resistenze di lunga durata	
fcd =	=	16.46	MPa	Resistenza di calcolo a compressione	
fctd =	=	1.32	MPa	Resistenza di calcolo a trazione	
ε cu =	=	0.0035	5	Deformazione a rottura per il calcestruzzo	
ε c0 =	=	0.002		Deformazione limite del tratto a parabola del legame costitu	utivo del calcestruzzo Società di Progetto

Brebemi SpA

3.3.2 B450C

fyk nom= 450 MPa Valore nominale della tensione caratteristica di snervamento ftk nom= 540 MPa Valore nominale della tensione caratteristica di rottura

 γ s = 1.15 Coefficiente parziale di sicurezza

Es = 210000 MPa Modulo elastico fyd = 391.3 MPa Resistenza di calcolo

 ε su = 0.01 Deformazione a rottura per l'acciaio

APPROVATO BOP

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione som	65969-00002-A00	04RCEII100002000000300	A00	6 di 26

4. CRITERI DI CALCOLO

4.1 Stratigrafia e parametri geotecnici

Il dimensionamente e le verifiche delle opere in oggetto sono state effettuate considerando i seguenti parametri geotecnici caratteristici in accordo alla Relazione Geotecnica di riferimento.

Per quanto riguarda le verifiche relative al terreno di fondazione dei muri spartitraffico e andatori si assume quanto segue:

Ghiaia sabbiosa

$\gamma_k =$	20 kN/m^3	peso specifico
$\phi'_k =$	35°	angolo di attrito
c' _k =	$0 kN/m^2$	coesione

4.2 Caratterizzazione sismica

Per la struttura in parola l'azione sismica non risulta dimensionante.

APPROVATO BOY

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione .coa	65969-00002-A00	04RCEII100002000000300	A00	7 di 26

4.3 Analisi dei carichi

4.3.1 Peso proprio

Nel calcolo della struttura in oggetto è stato considerato il peso proprio delle strutture in conglomerato cementizio armato con peso specifico:

 $\gamma = 25 \text{ kN/m}^3$

4.3.2 Urto veicolare

L'azione dell'urto veicolare è stata valutata sulla base delle indicazioni riportate nel paragrafo 3.6.3 del D.M. 2008.

Si considera quindi una forza orizzontale equivalente di collisione pari a 100 kN, applicata su una linea di 0,50 m ad una quota +1,00 m rispetto al livello del piano di marcia.

Si assumono conservativamente 4,0 m di sviluppo della fondazione del muro ai fini della collaborazione dovuta all'azione da urto.

Si ottengono le seguenti azioni ad intradosso fondazione:

 $T_{URTO} = 100 \text{ kN}$

 $M_{URTO} = T_{URTO} x (1 + 0.20 + 0.50) m = 170 \text{ kNm}$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	65969-00002-A00	04RCEII100002000000300	A00	8 di 26

4.4 Combinazioni di carico

In ottemperanza al D.M. del 14.01.2008 (Norme tecniche per le costruzioni), le verifiche sono state condotte con il metodo semi-probabilistico agli Stati Limite.

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto al cap. 2 del sovracitato *D.M.* 14/01/2008.

Le verifiche agli stati limite ultimi devono essere eseguiti in riferimento ai seguenti stati limite:

- -SLU di tipo geotecnico (GEO), di stabilità globale (STAB) e di equilibrio di corpo rigido (EQU)
 - stabilità globale del complesso opera di sostegno-terreno (STAB);
 - scorrimento sul piano di posa (GEO);
 - collasso per carico limite dell'insieme fondazione-terreno (GEO);
 - ribaltamento (EQU).
- -SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali.

Le verifiche saranno condotte secondo l'approccio progettuale "Approccio 2", che prevede, per le verifiche STR e GEO, le due seguenti combinazioni di calcolo:

Combinazione unica A1+M1+R3 STR e GEO

per la quale valgono i coefficcienti parziali di seguito riportati.

La verifica al ribaltamento viene seguita secondo la combinazione EQU, i cui coefficienti di sicurezza sono di seguito riportati, adottando per il calcolo delle spinte i coefficienti parziali del gruppo (M2).

Si omette la verifica di stabilità globale in quanto largamente soddisfatta.

Simbologia adottata

 γ_{Gsfav} Coefficiente parziale sfavorevole sulle azioni permanenti

 γ_{Gfav} Coefficiente parziale favorevole sulle azioni permanenti

 γ_{Qsfav} Coefficiente parziale sfavorevole sulle azioni variabili γ_{Qsfav} Coefficiente parziale favorevole sulle azioni variabili

 $\gamma_{tan\phi'}$ Coefficiente parziale di riduzione dell'angolo di attrito drenato

 $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione drenata

 γ_{cu} Coefficiente parziale di riduzione della coesione non drenata

 γ_{qu} Coefficiente parziale di riduzione del carico ultimo

γ_γ Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle roccecietà di Progetto

Coefficienti di partecipazione combinazioni statiche

Brebenii SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	65969-00002-A00	04RCEII100002000000300	A00	9 di 26

Coefficienti parzio		attatta dalla n	zioni:		
Carichi	ali per le azioni o per l'e Effetto	meno dene a	EQU	A1	A2
Permanenti	Favorevole	$\gamma_{ m Gfav}$	0.90	1.00	1.00
Permanenti	Sfavorevole	γGiav	1.10	1.30	1.00
Variabili	Favorevole	γGsiav γQfav	0.00	0.00	0.00
Variabili	Sfavorevole	γQiav γQsfav	1.50	1.50	1.30
Coefficienti parzia	ali per i parametri geote	cnici del terr	eno:		
Parametri				M1	M2
Tangente dell'ange	olo di attrito	γ _{tanφ'}		1.00	1.25
Coesione efficace		$\gamma_{c'}$		1.00	1.25
Resistenza non dre	enata	$\gamma_{ m cu}$		1.00	1.40
Resistenza a comp	pressione uniassiale	$\gamma_{ m qu}$		1.00	1.60
Peso dell'unità di	volume	γ_{γ}		1.00	1.00
Coefficienti di pa	rtecipazione combina	zioni sismicl	he		
Coefficienti parzis	ali ner le azioni o ner l'e	effetto delle a	zioni:		
•	ali per le azioni o per l'e Effetto	effetto delle a		A 1	A2
Carichi	Effetto		\overline{EQU}	<i>A1</i> 1.00	<i>A2</i> 1.00
Carichi Permanenti	<i>Effetto</i> Favorevole	$\gamma_{ m Gfav}$	EQU 1.00	1.00	1.00
Carichi	Effetto	γGfav γGsfav	\overline{EQU}		
Carichi Permanenti Permanenti	Effetto Favorevole Sfavorevole	$\gamma_{ m Gfav}$	EQU 1.00 1.00	1.00 1.00	1.00 1.00
Carichi Permanenti Permanenti Variabili Variabili	Effetto Favorevole Sfavorevole Favorevole Sfavorevole	YGfav YGsfav YQfav YQsfav	EQU 1.00 1.00 0.00 1.00	1.00 1.00 0.00	1.00 1.00 0.00
Carichi Permanenti Permanenti Variabili Variabili	Effetto Favorevole Sfavorevole Favorevole	YGfav YGsfav YQfav YQsfav	EQU 1.00 1.00 0.00 1.00	1.00 1.00 0.00	1.00 1.00 0.00
Carichi Permanenti Permanenti Variabili Variabili	Effetto Favorevole Sfavorevole Favorevole Sfavorevole	YGfav YGsfav YQfav YQsfav ecnici del terr	EQU 1.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00
Carichi Permanenti Permanenti Variabili Variabili Coefficienti parzia Parametri	Effetto Favorevole Sfavorevole Favorevole Sfavorevole	YGfav YGsfav YQfav YQsfav	EQU 1.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00
Carichi Permanenti Permanenti Variabili Variabili Coefficienti parzia Parametri Tangente dell'ange	Effetto Favorevole Sfavorevole Favorevole Sfavorevole ali per i parametri geote	γGfav γGsfav γQfav γQsfav ecnici del terr γ _{tanφ'}	EQU 1.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00 M2 1.25
Carichi Permanenti Permanenti Variabili Variabili Coefficienti parzia Parametri Tangente dell'ange Coesione efficace Resistenza non dre	Effetto Favorevole Sfavorevole Favorevole Sfavorevole ali per i parametri geote	YGfav YGsfav YQfav YQsfav ecnici del terr Ytanφ' Yc'	EQU 1.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00 M1 1.00 1.00	1.00 1.00 0.00 1.00 M2 1.25 1.25

 γ_{γ}

Peso dell'unità di volume

Società di Progetto Breberni SpA

1.00

1.00

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	65969-00002-A00	04RCEII100002000000300	A00	10 di 26

FONDAZIONE SUPERFICIALE

Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Coefficienti parziali		
	R1	R2	R3
Capacità portante della fondazione	1.00	1.00	1.40
Scorrimento	1.00	1.00	1.10
Resistenza del terreno a valle	1.00	1.00	1.40
Stabilità globale		1.10	

Coeff. di combinazione carichi da traffico $\Psi_0 = 0.70$ $\Psi_1 = 0.50$ $\Psi_2 = 0.20$ Coeff. di combinazione carichi da vento $\Psi_0 = 1.00$ $\Psi_1 = 1.00$ $\Psi_2 = 0.00$

Ai fini delle verifiche degli stati limite ultimi si definiscono le seguenti combinazioni:

Eccezionale \Rightarrow $G_1 + G_2 + A_d + \sum_i \psi_{2i} \cdot Q_{ki}$ (urto da svio veicolare)

Ai fini delle verifiche degli stati limite di esercizio si definiscono le seguenti combinazioni:

Rara \Rightarrow $G_1 + G_2 + Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki}$

Frequente \Rightarrow $G_1 + G_2 + \psi_{11} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$

Quasi permanente \Rightarrow $G_1 + G_2 + \psi_{21} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$

Le verifiche agli stati limite di esercizio non risultano significative.

Si riportano di seguito le verifiche relative alla sola combinazione eccezionale con urto in quanto l'unica dimensionante.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar.	65969-00002-A00	04RCEII100002000000300	A00	11 di 26

4.5 Verifiche geotecniche

4.5.1 Ribaltamento del muro

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_s) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza η_r .

Eseguendo il calcolo mediante gli eurocodici si puo impostare $\eta_r \ge 1.0$.

Deve quindi essere verificata la seguente diseguaglianza

$$\begin{array}{c} M_s \\ \hline M_r \end{array} > = \eta_r$$

Il momento ribaltante M_r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante.

Con riferimento alla combinazione EQU dell'Approccio 2, la stabilità del muro risulta accettabile se il coefficiente di sicurezza µr è maggiore o uguale a 1.0.

4.5.2 Traslazione sul piano di posa

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare $\eta_s >= 1.0$

$$F_r \longrightarrow F_s$$

componente delle forze d'inerzia parallela al piano di fondazione. Brebemi SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione «»«	65969-00002-A00	04RCEII100002000000300	A00	12 di 26

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N \operatorname{tg} \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Con riferimento alla combinazione GEO dell'Approccio 2, il coefficiente di sicurezza imposto dalla normativa deve rispettare la condizione $\mu s \ge 1.1$.

4.5.3 Carico limite fondazione terreno

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$\frac{Q_u}{R} >= \eta_q$$

Eseguendo il calcolo mediante gli Eurocodici si può impostare $\eta_q >= 1.0$ Le espressioni di Hansen per il calcolo della capacità portante si differenziano a secondo se siamo in presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale

$$q_u = cN_cs_cd_ci_cg_cb_c + qN_qs_qd_qi_qg_qb_q + 0.5B\gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

Caso di terreno puramente coesivo $\phi=0$

$$q_u = 5.14c(1+s_c+d_c-i_c-g_c-b_c) + q$$

in cui d_c , d_q , d_γ , sono i fattori di profondità; s_c , s_q , s_γ , sono i fattori di forma; i_c , i_q , i_γ , sono i fattori di inclinazione del carico; b_c , b_q , b_γ , sono i fattori di inclinazione del piano di posa; g_c , g_q , g_γ , sono i fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori N_c , N_q , N_γ sono espressi come:

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	65969-00002-A00	04RCEII100002000000300	A00	13 di 26

$$N_q = e^{\pi t g \phi} K_p$$

$$N_c = (N_q - 1)ctg\phi$$

$$N_{\gamma} = 1.5(N_{q} - 1)tg\phi$$

Con riferimento alla combinazione GEO dell'Approccio 2, il coefficiente di sicurezza imposto dalla normativa deve rispettare la condizione $\mu s \ge 1.4$.

4.5.4 Stabilità globale

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\begin{array}{c} c_{i}b_{i}+(W_{i}-u_{i}b_{i})tg\varphi_{i} \\ \Sigma_{i} \ (\begin{array}{c} \\ \\ \end{array} \end{array}) \\ \eta = \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \Sigma_{i}W_{i}sin\alpha_{i} \end{array}$$

dove il termine m è espresso da

$$m = (1 + \frac{tg\phi_i tg\alpha_i}{n})\cos\alpha_i$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima}, c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approsimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare finquando il valore calcolato coincide con il valore assunto.

Con riferimento alla combinazione A2+M2+R2 STAB, il coefficiente di sicurezza imposto dalla normativa deve rispettare la condizione μ s \geq 1.1.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	65969-00002-A00	04RCEII100002000000300	A00	14 di 26

4.6 Verifiche strutturali

In ottemperanza al D.M. del 14.01.2008, gli elementi strutturali verranno verificati per i seguenti Stati Limite:

✓ Stato Limite Ultimo (flessione e taglio)

4.6.1 Verifiche nei confronti degli stati limite ultimi (SLU)

Per ogni stato limite ultimo deve essere rispettata la condizione:

 $E_d \, \leq \, R_d$

dove Ed è il valore di progetto dell'azione o dell'effetto dell'azione:

$$\mathbf{E}_{d} = \mathbf{E} \left[\gamma_{F} \mathbf{F}_{k}; \frac{\mathbf{X}_{k}}{\gamma_{M}}; \mathbf{a}_{d} \right]$$

Ovvero

$$\mathbf{E}_{d} = \gamma_{E} \cdot \mathbf{E} \left[\mathbf{F}_{k}; \frac{\mathbf{X}_{k}}{\gamma_{M}}; \mathbf{a}_{d} \right]$$

con $\gamma_F = \gamma_F$,

e dove R_d è il valore di progetto della resistenza dell'elemento strutturale in oggetto.

APPROVATO BOP

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	65969-00002-A00	04RCEII100002000000300	A00	15 di 26

VERIFICHE GEOTECNICHE

Le verifiche geotecniche del muro vengono riassunte di seguito. Esse risultano tutte soddisfatte in quanto i coefficienti di sicurezza calcolati risultano maggiori di quelli limite imposti dalla normativa.

Brebemi SpA

Lunghezza collaborante di muro L Larghezza muro B Spessore fondazione s Peso specifico calcestruzzo ycls		4m 2,6m 0,5m 25kN/m ³
Peso fondazione P _{fond}		130,00kN
Azioni Permanenti in sommità fondazione		
Sforzo normale (Peso elevazione) Np		37,50kN
Momento in direzione trasversale Mtp		0,00kNm
Taglio in direzione trasversale Ttp		0,00kN
Momento in direzione lunghezza Mlp		0,00kNm
Taglio in direzione lunghezza Tlp		0,00kN
Azioni Eccezionali a base plinto		
Sforzo normale Nv		0,00kN
Momento in direzione trasversale Mtv		170,00kNm
Taglio in direzione trasversale Ttv		100,00kN
Momento in direzione lunghezza Mlv		0,00kNm
Taglio in direzione lunghezza Tlv		0,00kN
Peso Terreno imbarcato		
Larghezza terreno imbarcato Bt		2,20m
Lunghezza terreno imbarcato Lt		4,00m
Altezza terreno imbarcato Ht		0,20m
Peso specifico terreno yt		20kN/m^3
		,
Peso totale terreno imbarcato Pterr		35,20kN
Verifica a ribaltamento - EQU		
Coefficiente $\gamma_{\rm gl}$ - Permanente favorevole		0,90
/ gi		0,50
Momento ribaltante di design in direzione trasversale	Mr d	170,00kNm
Momento stabilizzante caratteristico in direzione trasversale	$Ms = (P+Pterr) \times B / 2$	263,51kNm
Momento stabilizzante di design in direzione trasversale	Ms $d = Ms \times \gamma_{g1}$	237,16kNm
FS rib trasv	2.23_4 1.20 A 181	1,40
ro_uasv		1,10
		Società di Progetto

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	65969-00002-A00	04RCEII100002000000300	A00	16 di 26
				İ

Azioni ad intradosso plinto - Combinazione Eccezionale URTO	
Sforzo normale totale $N' = Np + P_{fond} + P_{terr}$ Momento in direzione trasversale Mt' Taglio in direzione trasversale Tt' Momento in direzione lunghezza Ml' Taglio in direzione lunghezza Tl'	202,70kN 170,00kNm 100,00kN 0,00kNm 0,00kN
Verifica allo scivolamento	
Forza orizzontale destabilizzante H_d Carico verticale ad intradosso fondazione V_d Angolo di attrito per lo scorrimento (φ'_{cv}) Coefficiente d'attrito in fondazione α Taglio resistente in fondazione V_d . α	100,00kN 202,70kN 38,00° 0,781 158,37kN
Forza orizzontale stabilizzante V_d . α FS $_{scivolamento}$ γ_R minimo scivolamento	158,37kN 1,58 1,10
Dimensioni efficaci fondazione Larghezza efficace B' Lunghezza efficace L'	0,92m 4,00m
Pressione media sul terreno q	54,9 kPa
Affondamento da p.c. D	0,70m
Caratteristiche del terreno di fondazione Peso specifico totale del terreno di fondazione γ Profondità della falda da p.c. z_f Distanza quota di falda - piano di imposta fondazione z_w Peso specifico efficace base fondazione B γ'_{cB} Peso specifico efficace base fondazione L γ'_{cL} Angolo di attrito del terreno di fondazione φ'	20,00kN/m ³ 50,00m 49,30m 20,00kN/m ³ 20,00kN/m ³ 35,00°
Inclinazione terreno rispetto a orizzontale (dir trasv - B) ω_B Inclinazione terreno rispetto a orizzontale (dir long - L) ω_L	0,00° 0,00°
Peso specifico del terreno latistante la fondazione γ' Pressione verticale efficace a quota imposta fondazione q' ₀	20,00kN/m ³ Societàl 4 kPajetto Brebemi SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	65969-00002-A00	04RCEII100002000000300	A00	17 di 26

Coefficienti di capacità portante		
• •	$\mathbf{N}_{\mathbf{v}}$	33,92
	$\mathbf{N_q}$	33,30
	N_c	_
Coefficienti di inclinazione del carico	Ç	
	iγ _{B'}	0,12
	iq _{B'}	0,24
	iγ _L ,	1,00
	iq _{L'}	1,00
Coefficienti di forma	-41	,
	Sγ _{B'}	0,99
	sq _{B'}	1,032
	sγ _{L'}	-13,42
	sq _{L'}	3,49
	346	3,15
Coefficienti di affondamento		
Coefficient di anondamento	$d \gamma_{B'}$	1,00
	dγ _B '	1,19
	$d\gamma_{\mathrm{L}'}$	1,00
	dq _{L'}	1,04
Coefficienti per inclinazione terrone	uqլ [.]	1,04
Coefficienti per inclinazione terreno	av - aa	1,00
	$g\gamma_{B'} = gq_{B'}$	
	$g\gamma_{L'} = gq_{L'}$	1,00

Capacità portante limite di base

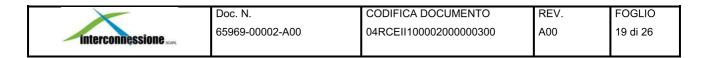
$$\begin{array}{lll} q_{lim\gamma B'} & = & & \\ q_{lim\gamma L'} & = & \\ \end{array} \qquad \begin{array}{lll} \frac{1}{2} \cdot \gamma'{}_{cB'} \cdot B' \cdot N_{\gamma} \cdot s_{\gamma B'} \cdot d_{\gamma B'} \cdot i_{\gamma B'} \cdot g_{\gamma B'} \\ & \frac{1}{2} \cdot \gamma'{}_{cL'} \cdot L' \cdot N_{\gamma} \cdot s_{\gamma L'} \cdot d_{\gamma L'} \cdot i_{\gamma L'} \cdot g_{\gamma L'} \end{array}$$

q_{limyB'} 37kPa **q**_{limyL'} -18210kPa

Capacità portante limite per sovraccarico laterale

$$\begin{array}{lll} q_{limq\,B'} & = & & q_0 \cdot N_q \cdot s_{qB'} \cdot d_{qB'} \cdot i_{qB'} \cdot g_{qB'} \\ q_{limq\,L'} & = & & q_0 \cdot N_q \cdot s_{qL'} \cdot d_{qL'} \cdot i_{qL'} \cdot g_{qL'} \end{array}$$

q_{limqB'}
 139kPa


 q_{limqL'}
 1698kPa

Nella valutazione del termine di capacità portante $q_{lim\gamma}$ viene assunto $q_{lim\gamma B}$ o $q_{lim\gamma L}$ in base al valore calcolato di s_{γ} ; si assumerà l'espressione per la quale risulta $s_{\gamma} > 0.6$.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	65969-00002-A00	04RCEII100002000000300	A00	18 di 26

Nella valutazione del termine di capacità portante q _{limq}	tra q _{limqB} , e q _{limqL} , viene scelto	quello minore.
	q limγ	37kPa
	\mathbf{q}_{limq}	139kPa
Capacità portante a rottura	q _{lim}	176kPa
γ_R minimo capacità portante		1,40
Capacità portante di design	q_{res_d}	126,1kPa
Pressione media sollecitante di design	q soll_d	54,9kPa
FS capacità portante		2,30

APPROVATO BOP

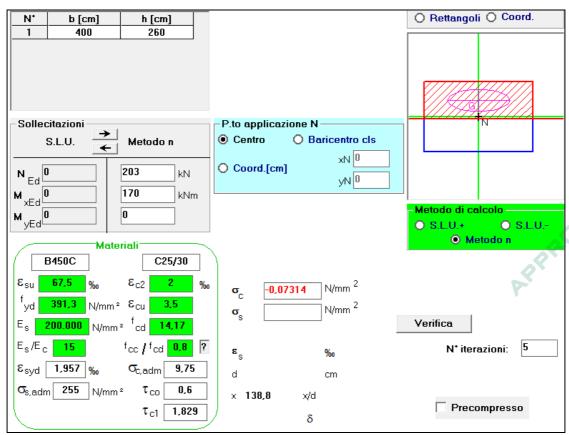
6. SOLLECITAZIONI SUGLI ELEMENTI STRUTTURALI

Di seguito si riassumono le sollecitazioni significative agenti sulla mensola in elevazione e sulla fondazione.

Mensola in elevazione

Il massimo momento SLU nella combinazione urto vale:

 $M_{SLU\ URTO} = 100 \text{ kN x } 1,20 \text{ m} / (0,50 + 1,20) \text{ m} = 70,6 \text{ kNm/m}$


 $T_{SLU\ URTO} = 100 \text{ kN} / (0.50 + 1.20) \text{ m} = 58.9 \text{ kN/m}$

Fondazione

Le azioni allo SLU agenti ad intradosso fondazione valgono:

 $M_{SLU\;URTO} = 170\;kNm$

 $N_{SLU\ URTO} = 203\ kN$

La massima tensione sul terreno risulta quindi:

 $\sigma_{max~SLU} = 74 \text{ kPa}$

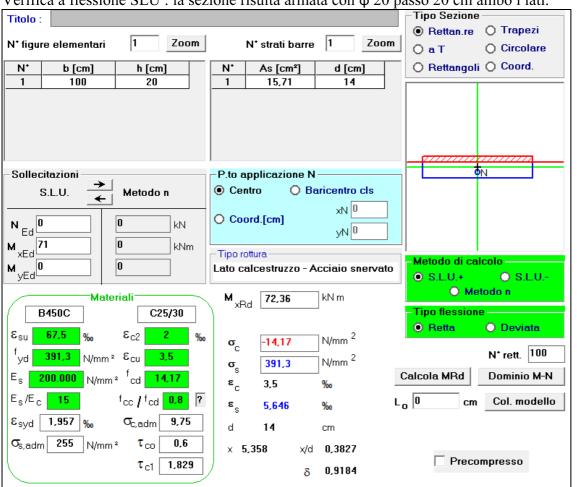
Da cui si ottengono le seguenti sollecitazioni SLU conservative sulla platea di fondazione:

 $M_{SLU\ URTO} = 74 \text{ x } 1,1^{-2}/2 = 45 \text{ kNm/m}$

 $T_{SLU\ URTO} = 74 \text{ x } 1,1 = 82 \text{ kN/m}$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	65969-00002-A00	04RCEII100002000000300	A00	20 di 26

7. VERIFICHE STRUTTURALI


Si riportano di seguito le verifiche strutturali dell'elevazione e della fondazione.

7.1 Elevazione

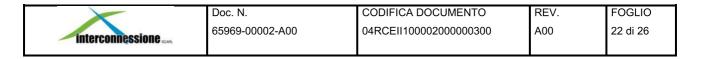
 $M_{SLU\ URTO} = 70.6\ kNm/m$ $T_{SLU\ URTO} = 58.9\ kN/m$

Mensola di spessore pari a 0,20 m

Verifica a flessione SLU: la sezione risulta armata con φ 20 passo 20 cm ambo i lati.

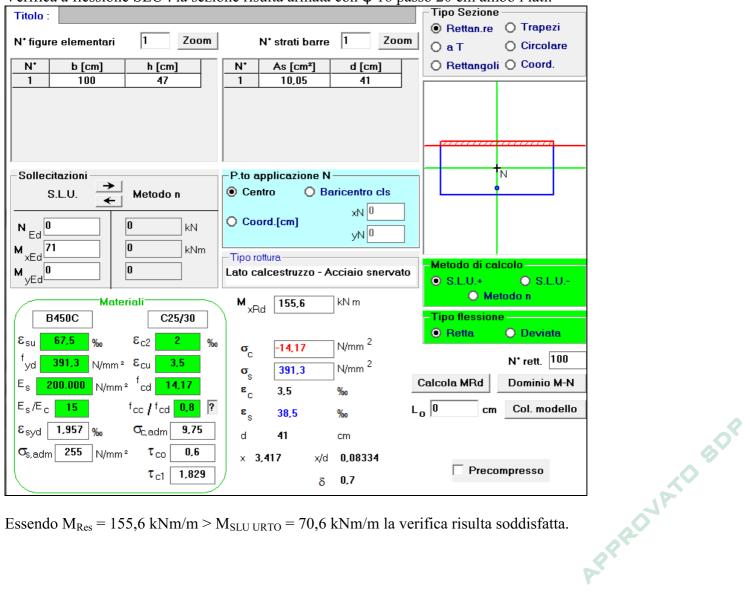
Essendo $M_{Res} = 72,4 \text{ kNm/m} > M_{SLU \, URTO} = 70,6 \text{ kNm/m}$ la verifica risulta soddisfatta.

Società di Progetto Brebenii SpA


APPROVATO GOP

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione ***	65969-00002-A00	04RCEII100002000000300	A00	21 di 26

Si riporta inoltre la verifica a taglio SLU.


U SLU.			
$V_{ m sdu}$	58,8	kN	
$ m M_{sdu}$	71	kNm	
$N_{ m sdu}$	0	kN	
R_{ck}	35	N/mm ²	
$ m f_{ck}$	28	N/mm ²	
$\gamma_{ m c} =$	1,5		
fyk	450	N/mm ²	
bw	100	cm	
d	15,00	cm	
Asl	15,71	cm ²	
c	5,00	cm	
α	90	gradi	
α	1,57	rad	
θ	0,00	gradi	
${ m ctg} heta$	#DIV/0!		
$\theta_{imposto}$	-	gradi	
Asw	0	cm ²	
passo staffe	40	cm	
$ m f_{cd}$	15,867	N/mm ²	
fctd _{0,05}	1,240	N/mm ²	
fyd	391,304	N/mm ²	
$\sigma_{ m cp}$	0,0000	N/mm ²	
verifica senza armatura resistenta a taglio			
V_{Rd}	111,015	kN	

La verifica risulta soddisfatta senza armatura a taglio.

Mensola di spessore pari a 0,47 m

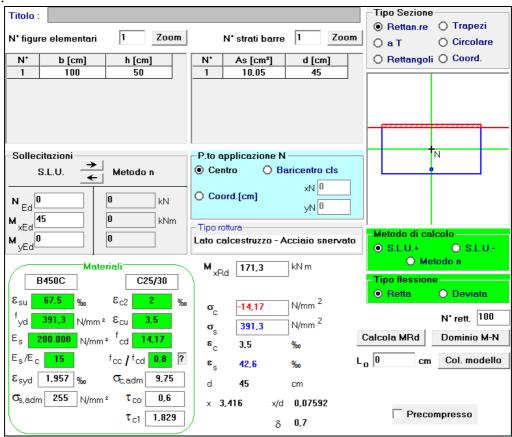
Verifica a flessione SLU: la sezione risulta armata con φ 16 passo 20 cm ambo i lati.

Essendo $M_{Res} = 155,6 \text{ kNm/m} > M_{SLU\,URTO} = 70,6 \text{ kNm/m}$ la verifica risulta soddisfatta.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione ****	65969-00002-A00	04RCEII100002000000300	A00	23 di 26

Si riporta inoltre la verifica a taglio SLU.

o SLU.			
$ m V_{sdu}$	58,8	kN	
$ m M_{ m sdu}$	71	kNm	
$ m N_{sdu}$	0	kN	
R_{ck}	35	N/mm ²	
$ m f_{ck}$	28	N/mm ²	
$\gamma_{ m c} =$	1,5		
fyk	450	N/mm ²	
bw	100	cm	
d	42,00	cm	
Asl	10	cm ²	
c	5,00	cm	
α	90	gradi	
α	1,57	rad	
θ	0,00	gradi	
${\sf ctg} \theta$	#DIV/0!		
$\theta_{ m imposto}$	-	gradi	
Asw	0	cm ²	
passo staffe	40	cm	
$ m f_{cd}$	15,867	N/mm ²	
$fctd_{0,05}$	1,240	N/mm ²	
fyd	391,304	N/mm ²	
$\sigma_{ m cp}$	0,0000	N/mm ²	
verifica senza armatura resistenta a taglio			
$ m V_{Rd}$	160,314	kN	


La verifica risulta soddisfatta senza armatura a taglio.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	65969-00002-A00	04RCEII100002000000300	A00	24 di 26

7.2 Fondazione

 $M_{SLU\ URTO} = 45\ kNm/m$ $T_{SLU\ URTO} = 82\ kN/m$

Si effettua la verifica a flessione SLU della sezione b x h = 100 x 50 cm armata con ϕ 16 passo 20 cm sia sopra che sotto.

Essendo $M_{Res} = 171 \text{ kNm/m} > M_{SLU \, URTO} = 45 \text{ kNm/m}$ la verifica risulta soddisfatta.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	65969-00002-A00	04RCEII100002000000300	A00	25 di 26

Si riporta inoltre la verifica a taglio SLU.

o SLU.			
$ m V_{sdu}$	82,0	kN	
$ m M_{sdu}$	45	kNm	
$ m N_{sdu}$	0	kN	
R_{ck}	35	N/mm ²	
$ m f_{ck}$	28	N/mm ²	
$\gamma_{ m c} =$	1,5		
fyk	450	N/mm ²	
bw	100	cm	
d	45,00	cm	
Asl	10	cm ²	
c	5,00	cm	
α	90	gradi	
α	1,57	rad	
θ	0,00	gradi	
${\sf ctg} \theta$	#DIV/0!		
$\theta_{ m imposto}$	-	gradi	
Asw	0	cm ²	
passo staffe	40	cm	
$ m f_{cd}$	15,867	N/mm ²	
fctd _{0,05}	1,240	N/mm ²	
fyd	391,304	N/mm ²	
$\sigma_{ m cp}$	0,0000	N/mm ²	
verifica senza armatura resistenta a taglio			
$ m V_{Rd}$	165,535	kN	

La verifica risulta soddisfatta senza armatura a taglio.