

CONCESSIONARIA

CUP E3 1 B05000390007

COLLEGAMENTO AUTOSTRADALE DI CONNESSIONE TRA LE CITTA' DI BRESCIA E MILANO

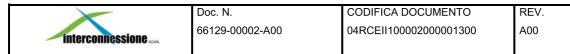
Procedura Autorizzativa D. Lgs 163/2006 Delibera C.I.P.E. DI Approvazione del Progetto Definitivo n° 19/2016

INTERCONNESSIONE A35-A4 PROGETTO ESECUTIVO

O-PARTE GENERALE

OO-GENERALE

00002 - ELABORATI TIPOLOGICI

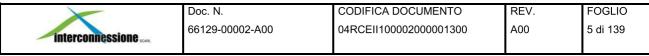

INTERVENTI DI MITIGAZIONE ACUSTICA – STUDIO ACUSTICO E VIBRAZIONALE

BARRIERE A	NTIRUMO	RE - RELA	ZIONI	E DI I	CALC	OLO		
PROGETTAZIONE:						٧	ERIFICA	:
interconnessione scarl							OJAK,	OBO
IL PROBETTISTA RESPONSABILE INT PRESTAZIONI SPECIALISTIC MPRESA PIZZARUTILE E. S. DOTT. ING. PIETRO MAZZOL ORDINE DEGLI INGEGNERI DI PARMA	ЭНР Р. А.	IMPRESA P	. SABINO I	TED. S.I DEL BALZ	0	PUPI	OVA	
I.D.		ICAZIONE ELABORA				PROGR.		ATA:
66129 04 RC E I	I1 OO	PROG. OPERA TRATTO 002 000	PARTE 00	013	OO	A DIAIZ	00 sc	2016 ALA: -
ELABORAZIONE PROGETTUALE					REVISION	F		
IL PROGETTISTA PIACENTHAL INGEGNERI S.R.L. DOTT: ING. LUCA PIACENEINI ORDINE DEGLI INGEGNERI SI BOLOGNA N. 4152	N. REV. A DD	DESCRIZIONE Emissione	DATA 29/07/2016	REDATTO PIACENTINI	DATA 29/07/2016	CONTROLLATO Mazzoli	DATA 29/07/2016	APPROVATO Mazzoli
A solvenien better		CONCEDENTE CONCESSIONI AUTOSTRADALI LOMBARDE			IL CO	Societa	PROGETTO	tto
IL PRESENTE DOCUMENTO NON POTRA' ESSERE COPIATO, RIPRODOTTO This document may not be copied. Reproduced							MA DI LEGGE	
THE DESCRIPTION OF THE STATE OF	O ON T GOLDHED, ETHEN IN T ANT DIN IN II	o connect, minious inc matters ear	MINISTER OF THE STREET	Cent O.T. A. UNAUTHU	MAZEO DUE MILE DE I	INSCRIPTION OF THE PROPERTY OF		

INDICE

1.	PRE	MESSA	5
2.	NOR	RMATIVA E RIFERIMENTI	7
	2.1	Barriere Antirumore	7
	2.2	Opere in c.a. e strutture metalliche	7
	2.3	Altri documenti	8
3.	CRIT	TERI DI CALCOLO	9
	3.1	Criteri e definizione dell'azione sismica	9
	3.2	Combinazioni di carico	
		3.2.1 Combinazioni per la verifica allo SLU	
		3.2.2 Combinazioni per la condizione sismica	12
4.	CAR	ATTERISTICHE DEI MATERIALI	14
	4.1	Conglomerati cementizi	14
		4.1.1 Conglomerato cementizio per sottofondazioni	14
		4.1.2 Conglomerato cementizio per pali di fondazione	14
		4.1.3 Conglomerato cementizio per fondazioni	14
	4.2	Acciai	
		4.2.1 Acciaio per cemento armato	
		4.2.2 Acciaio per profilati metallici	
	4.3	Durabilità e prescrizioni sui materiali	
		4.3.1 Copriferro minimo e copriferro nominale	
5.	PAR	AMETRI GEOTECNICI PER IL CALCOLO DELLE STRUTTURE	17
6.	GEO	METRIA DELLA STRUTTURA	18
7.	ANA	LISI DEI CARICHI	20
	7.1	Pesi propri	20
	7.2	Spinta del terreno	20
	7.3	Carichi da vento	21
	7.4	Carico da rimozione della neve	23
	7.5	Azione sismica	23
8.	CAL	COLO DELLE SOLLECITAZIONI	26
	8.1	Barriera su opera d'arte	26
	8.2	Barriera su fondazione poggiante su pali ad elica	Società di Progetti
9.	VER	IFICHE DI SICUREZZA	//
	9.1	Verifica dei montanti	32
		9.1.1 Verifica di resistenza	32
			1

		9.1.2	Verifica di deformabilità	33
	9.2	Verifica	a dei tirafondi	34
		9.2.1	Tirafondi di ancoraggio a nuovi cordoli di progetto	34
		9.2.2	Tirafondi di ancoraggio su paratia esistente di approccio a GA03	35
	9.3	Verifica	a dei pali di fondazione	44
		9.3.1	Verifica strutturale	44
		9.3.2	Verifica di portanza dei pali	46
	9.4	Travi d	i scavalco	48
10.	ANAI	LISI DEL	LA PARATIA ESISTENTE DI APPROCCIO A GAA03	50
	10.1	Geom	etria della struttura	50
	10.2	Caratt	eristiche dei materiali	50
		10.2.1	Calcestruzzo	50
		10.2.2	Acciaio	51
		10.2.3	Caratteristiche di progetto	51
	10.3	Caratt	eristiche geotecniche del terreno	52
	10.4	Analis	i dei carichi	53
	10.5	Analis	i della struttura	53
		10.5.1	Fasi	54
	10.6	Sollec	itazioni e verifiche	58
		10.6.1	Sollecitazioni assiali sui tiranti	58
		10.6.2	Sollecitazioni sul diaframma	58
11.	ANAI	LISI DEL	. MURO ESISTENTE ESISTENTE DI RISVOLTO R1	62
	11.1	Geom	etria della struttura	62
	11.2	Analis	i della struttura	63
	11.3	Metod	o di Calcolo della spinta sul muro e delle verifiche di stabilità	66
		11.3.1	Valori caratteristici e valori di calcolo	66
		11.3.2	Metodo di Mononobe-Okabe	66
		11.3.3	Spinta in presenza di sisma	67
		11.3.4	Verifica a ribaltamento	69
		11.3.5	Verifica a scorrimento	69
		11.3.6	Verifica al carico limite	70
		11.3.7	Verifica alla stabilità globale	73
	11.4	Geom	etria profilo terreno	74
		11.4.1	Terreno a monte del muro	74
		11.4.2	Terreno a valle del muro	75
		11.4.3	Stratigrafia	75
	11.5	Condi	zioni di caricosociet	à di Progetto
		11.5.1	NormativaBreb	
		11.5.2	Descrizione combinazioni di carico	78
	11 6	Ouadr	o riassuntivo coeff di sicurezza calcolati	85


11.7	Analis	i della spinta e verifiche86
	11.7.1	Verifiche geotecniche86

APPROVATO BOP

FOGLIO

4 di 139

Società di Progetto Breberni SpA

1. PREMESSA

Nel presente documento verranno riportate le verifiche strutturali relative agli elementi costituenti le opere di mitigazione acustica da collocare nell'ambito dei lavori inerenti la realizzazione dell'interconnessione tra le autostrade A4 e A35 "BreBeMi".

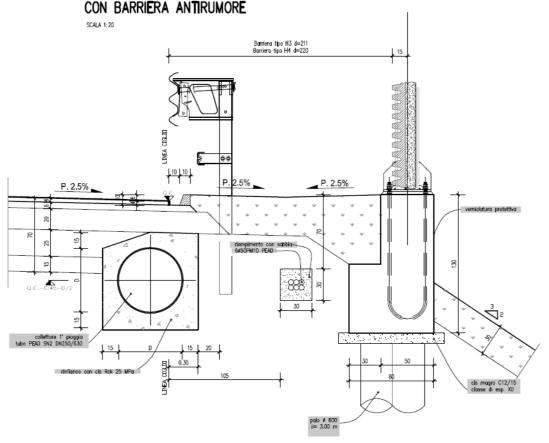
Con lo scopo di coprire l'intero sviluppo autostradale sia in termini di tipologia geometrica delle barriere, di posizionamento/tipo di supporto (su rilevato ovvero su opera) e di eventuale altezza del rilevato stradale, verranno sviluppate delle serie di tipologici.

In particolar modo, per quanto concerne le strutture in elevazione, verranno distinte le barriere in funzione dell'altezza del pannello antirumore: m 3.00, m 3.50 e m 4.00.

Con riferimento al loro posizionamento, le barriere vengono distinte in quanto ubicate:

- sulla sommità delle paratie esistenti di approccio alla GAA03;
- sulla sommità di nuovi muri di sostegno di progetto o su muri esistenti di analoghe caratteristiche;
- al di fuori di opere d'arte esistenti e/o di progetto, nel qual caso verranno realizzate nuove fondazioni all'uopo preposte, costituite da un cordolo continuo in c.c.a. gravante su pali ad elica di diametro 600 mm ed interasse pari a m 3.00.

Nel caso di barriera posizionata di opera esistente o di progetto, verranno dimensionate le strutture in elevazione della barriera e gli elementi di ancoraggio di queste alla sottostruttura, oltre a vericare quest'ultima soggetta alle sollecitazioni aggiuntive dovute alle azioni dovute alla presenza della barriera.


Nel caso di barriera posizionata su nuove fondazioni su pali, verranno dimensionale le strutture in elevazione della barriera, i tirafondi e le strutture di fondazione. La figura seguente è riferita a quast'ultimo caso tipologico.

Società di Progetto

Brebenii SpA

interconnessione

SEZIONE CORRENTE IN RILEVATO CON BARRIERA ANTIRUMORE

Si riporta il riepilogo delle barriere antirumore oggetto della presente relazione di calcolo:

Codice barriera	Progr. Inizio/fine	Lungh [m]	Interferenze	H barriera [m]	H min/max muro/rilevato [m]	Posizione
BAAX2 - BA6	0+342 - 0+624	282		3.50	$1.52 / 3.15$ ($\Delta q \max = m 1.80$)	sopra muro
BAAX1 - BA5	4+720 - 4+848	128		4.00	4.25 / 5.20 (∆q max = m 4.50)	sopra muro
BAAX6 - BA4	4+180 - 4+362	181	tombino scatolare IDAY5 a pk 4+292	4.00	1.50 / 2.00	fondazione su pali
BAAX5 - BA3	3+615 - 3+816	200	tombino scatolare IDA12- IDA13 a pk 3+732	4.00	1.60 / 2.00	fondazione su pali
				4.00	 (trincea al piede)	fondazione su pali
BAAX4 -	S 1+994 -			3.00	0.00 / 1.00	sopra muro
BA2	2+229	247		3.00	0.00 / 1.00 (carreggiata fra muri ad "U")	su opera d'arte esistente (paratia di approccio GAA03)
BAAX3 - BA1	N 2+139- 2+229	90		3.00	0.00 / 1.00 (carreggiata fra muri ad "U")	su opera d'arte sp esistente (paratia di approccio GAA03)

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione 5044	66129-00002-A00	04RCEII100002000001300	A00	7 di 139

2. NORMATIVA E RIFERIMENTI

I calcoli e le disposizioni esecutive sono conformi alle norme attualmente in vigore.

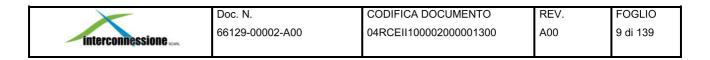
2.1 Barriere Antirumore

- UNI EN 1794-1 Agosto 2004 Dispositivi per la riduzione del rumore da traffico stradale Prestazioni non acustiche Parte 1: Prestazioni meccaniche e requisiti di stabilità
- UNI 11160 Settembre 2005 Linee uida per la progettazione, l'esecuzione e il collaudo di sistemi antirumore per infrastrutture di trasporto via terra

2.2 Opere in c.a. e strutture metalliche

- Legge 5 novembre 1971 n. 1086 Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica;
- Circ. Min. LL.PP.14 Febbraio 1974, n. 11951 Applicazione della L. 5 novembre 1971, n. 1086";
- Legge 2 febbario 1974 n. 64, recante provvedimenti per le costruzioni co particolari prescrizioni per le zone sismiche;
- D. M. Min. II. TT. del 14 gennaio 2008 Norme tecniche per le costruzioni;
- CIRCOLARE 2 febbraio 2009, n.617 "Istruzione per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008;
- UNI EN 1990 (Eurocodice 0) Aprile 2006: "Criteri generali di progettazione strutturale";
- UNI EN 1991-2-4 (Eurocodice 1) Agosto 2004 Azioni in generale: "Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici";
- UNI EN 1991-1-1 (Eurocodice 1) Agosto 2004 Azioni in generale- Parte 1-1: "Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici";
- UNI EN 1991-2 (Eurocodice 1) Marzo 2005 Azioni sulle strutture- Parte 2: "Carico da traffico sui ponti";
- UNI EN 1992-1-1 (Eurocodice 2) Novembre 2005: "Progettazione delle strutture di calcestruzzo Parte 1-1: "Regole generali e regole per gli edifici";
- UNI EN 1992-2 (Eurocodice 2) Gennaio 2006: "Progettazione delle strutture di calcestruzzo Parte 2: "Ponti in calcestruzzo progettazione e dettagli costruttivi";
- UNI EN 1993-1-1 (Eurocodice 3) Ottobre 1993: "Progettazione delle strutture in acciaio Parte 1-1: Regole generali e regole per gli edifici";
- UNI EN 1997-1 (Eurocodice 7) Febbraio 2005: "Progettazione geotecnica Parte 1: Regole generali";
- UNI EN 1998-1 (Eurocodice 8) Marzo 2005: "Progettazione delle strutture per la resistenza sismica
 Parte 1: Regole generali Azioni sismiche e regole per gli edifici";

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione ****	66129-00002-A00	04RCEII100002000001300	A00	8 di 139


- UNI EN 1998-2 (Eurocodice 8) Febbraio 2006: "Progettazione delle strutture per la resistenza sismica – Parte 2: Ponti";
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2005: "Progettazione delle strutture per la resistenza sismica Parte 2: Fondazioni, strutture di contenimento ed aspetti geotecnici".
- Linee guida sul calcestruzzo strutturale Presidenza del Consiglio Superiore dei Lavori Pubblici -Servizio Tecnico Centrale;
- UNI EN 197-1 giugno 2001 "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni;
- UNI EN 11104 marzo 2004 "Calcestruzzo: specificazione, prestazione, produzione e conformità",
 Istruzioni complementari per l'applicazione delle EN 206-1;
- UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e conformità".

2.3 Altri documenti

• CNR 10024/86 – Analisi mediante elaboratore: impostazione e redazione delle relazioni di calcolo

APPROVATORY

Società di Progetto Brebemii SpA

3. CRITERI DI CALCOLO

In ottemperanza al D.M. del 14.01.2008 (Norme tecniche per le costruzioni), i calcoli sono condotti con il metodo semiprobabilistico agli stati limite.

La totalità delle barriere previste in progetto sono riconducibili a tre tipologie caratterizzate da tre differenti altezze:

Tipo	А	В	С
Altezza barriera	4.00 m	3.50 m	3.00 m

Per ognuna delle suddette tipologie si è eseguita l'analisi strutturale per le condizioni di vento predominante e di sisma. Per definire le sollecitazioni nella condizione di vento predominante è stata scelta la barriera che presenta massima altezza di rilevato essendo l'altezza di calcolo del coefficiente di esposizione comprensiva del rilevato; per la condizione sismica si è presa in considerazione la barriera che presenta l'accelerazione sismica massima.

In quanto di pertinenza, sulla base delle terne di sollecitazione in testa palo, tramite il codice di calcolo LPile Plus 6.0 per Windows prodotto da Ensoft, Inc. è stata eseguita l'analisi delle sollecitazioni lungo lo sviluppo del palo stesso. L'analisi è stata implementata con riferimento all'altezza massima di rilevato.

3.1 Criteri e definizione dell'azione sismica

L'effetto dell'azione sismica di progetto sull'opera nel suo complesso, includendo il volume significativo di terreno, la struttura di fondazione, gli elementi strutturali e non, nonché gli impianti, deve rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, i cui requisiti di sicurezza sono indicati nel § 7.1 della norma. Il rispetto degli stati limite si considera conseguito quando:

- nei confronti degli stati limite di esercizio siano rispettate le verifiche relative al solo Stato Limite di Danno;
- nei confronti degli stati limite ultimi siano rispettate le indicazioni progettuali e costruttive riportate nel §
 7 e siano soddisfatte le verifiche relative al solo Stato Limite di salvaguardia della Vita.

Per Stato Limite di Danno (SLD) s'intende che l'opera, nel suo complesso, a seguito del terremoto, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non provocare rischi agli utenti e non compromette significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali e orizzontali. Lo stato limite di esercizio comporta la verifica delle tensioni di lavoro, in conformità al § 4.1.2.2.5 (NT).

Brebemi SpA

Per Stato Limite di salvaguardia della Vita (SLV) si intende che l'opera a seguito del terremoto subisce rotture e crolli dei componenti non strutturali e impiantistici e significativi danni di componenti strutturali, cui si

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	10 di 139

associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali (creazione di cerniere plastiche secondo il criterio della gerarchia delle resistenze), mantenendo ancora un margine di sicurezza (resistenza e rigidezza) nei confronti delle azioni verticali.

Gli stati limite, sia di esercizio sia ultimi, sono individuati riferendosi alle prestazioni che l'opera a realizzarsi deve assolvere durante un evento sismico; per la funzione che l'opera deve espletare nella sua vita utile, è significativo calcolare lo Stato Limite di Danno (SLD) per l'esercizio e lo Stato Limite di Salvaguardia della Vita (SLV) per lo stato limite ultimo.

Per la definizione dell'azione sismica, occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato.

La vita nominale (V_N) dell'opera è stata assunta pari a 100 anni.

La classe d'uso assunta è la IV.

Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso vale:

V_R= V_N⋅C_u= 200anni

I valori di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente è:

P_{VR}(SLV)=10%

Il periodo di ritorno dell'azione sismica T_R espresso in anni, vale:

$$T_{R}(SLV) = -\frac{Vr}{\ln(1 - Pvr)} = 1898 \text{ anni}$$

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma o tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di a_q , F_0 , T^*_c .

 $a_g \rightarrow accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;$

F₀ → valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*_c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

 $S \rightarrow \text{coefficiente}$ che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St);

Il calcolo viene eseguito con il metodo <u>pseudostatico</u> (NT § 7.11.6). In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche allo Stato Limite Ultimo i valori dei coefficienti sismici orizzontali k_h e verticale k_v possono essere valutati mediante le espressioni:

$$k_h = \beta_m \cdot \frac{a \max}{g}$$

$$k_v = \pm 0.5^* k_h$$

Brebemi SpA

dove

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	11 di 139

a_{max} = accelerazione orizzontale massima attesa al sito

g = accelerazione di gravità

Per i valori dei parametri per la definizione dell'azione sismica lungo il tracciato di riferimento si rimanda alla Relazione Sismica di cui al rif [1].

L'accelerazione massima è valutata con la relazione:

$$a_{max}(SLV) = S \cdot a_g = Ss * S_T * a_g$$

Parametri di pericolosità Sismica del sito:

"Stato Limite"	T _r [anni]	a_g [g]	F。 [-]	T* c [s]
Operativitá	120	0.081	2.411	0.256
Danno	201	0.102	2.419	0.264
Salvaguardia Vita	1898	0.226	2.473	0.299
Prevenzione Collasso	2475	0.246	2.486	0.303

Si assume

(suolo tipo B).

Risulta pertanto:

$$a_{max}(SLV) = S \cdot a_g = 1.176 * 1.00 * 0.226g = 0.266g$$

Il calcolo delle spinte in condizione sismica vengono calcolate non con la formula di cui sopra (k_h; k_v), ma con l'incremento dinamico di spinta del terreno calcolato secondo la formula di Wood:

$$\Delta P_d = S \cdot a_g / g \cdot \gamma \cdot h_{cord}^2$$

Il punto di applicazione della spinta che interessa il cordolo è posto h_{cord}/2, con h_{cord} l'altezza del cordolo.

3.2 Combinazioni di carico

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto al cap. 2 delle NT.

3.2.1 Combinazioni per la verifica allo SLU

Le verifiche agli stati limite ultimi sono eseguiti in riferimento ai seguenti stati limite:

- -SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU)
 - collasso per carico limite dell'insieme fondazione-terreno;
- -SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali.

Società di Progetto
Brebenii SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	12 di 139

Le verifiche saranno condotte secondo l'approccio progettuale "Approccio 1", utilizzando i coefficienti parziali riportati nelle Tabelle 6.2.I e 5.1.V per i parametri geotecnici e le azioni.

1. combinazione $1 \rightarrow (A1+M1+R1) \rightarrow STR$

2. combinazione 2 \rightarrow (A2+M2+R2) \rightarrow GEO

Tabella 6.2.II - Coefficienti parziali per i parametri del terreno

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE PARZIALE	M_1	M_2
	APPLICARE IL COEFF. PARZIALE	γм		
Tangente dell'angolo di	ton w'	γ _φ ,	1	1.25
resistenza al taglio	tan φ' _k			
Coesione efficace	C' _k	γ _{c'}	1	1.25
Resistenza non drenata	c' _{uk}	γcu	1	1.4
Peso dell'unità di volume	γ	γ_{γ}	1	1

Tabella 6.2.l/5.1.V - Coefficienti parziali per le azioni o per l'effetto delle azioni

CARICHI	EFFETTO	SIMBOLO	EQU	(A1)	(A2)
		γF		STR	GEO
Permanente	favorevole	γ̃G1	0.9	1.0	1.0
	sfavorevole	7G1	1.1	1.35	1.0
Permanente	favorevole	γ̈G2	0.0(0.9)	0.0	0.0
non strutturali	sfavorevole	γG2	1.5 (1.1)	1.35	1.0/1.3
Variabili da	favorevole	γα	0.0	0.0	0.0
traffico	sfavorevole	7Q	1.35	1.35	1.15
Variabili	favorevole	γQi	0.0	0.0	0.0
	sfavorevole	701	1.5	1.5	1.30

2

Ai fini delle verifiche degli <u>stati limite ultimi</u> si definiscono le seguenti combinazioni:

$$\mathsf{STR}) \Rightarrow \qquad \qquad \gamma_{\mathsf{G1}} \cdot \mathsf{G_1} + \gamma_{\mathsf{G2}} \cdot \mathsf{G_2} + \gamma_{\mathsf{Q1}} \cdot \mathsf{Q_{k1}} + \sum_{\mathsf{i}} \psi_{\mathsf{0}\mathsf{i}} \cdot \mathsf{Q_{k\mathsf{i}}} \qquad \qquad \Rightarrow (\Phi_\mathsf{d}' = \Phi_\mathsf{k}')$$

3

$$\text{GEO}) \Rightarrow \qquad \qquad \gamma_{\text{G1}} \cdot G_1 + \gamma_{\text{G2}} \cdot G_2 + \gamma_{\text{Q1}} \cdot Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki} \\ \qquad \Rightarrow (\text{spinte } \Phi_d\text{'=tan'}^1(\text{tan}\Phi_k\text{'}/\gamma_\Phi))$$

3.2.2 Combinazioni per la condizione sismica

Per la <u>condizione sismica</u>, le combinazioni per gli stati limite ultimi da prendere in considerazione sono le seguenti (approccio 1):

Brebemi SpA

$$\mathsf{STR}) \Rightarrow \qquad \mathsf{E} + \mathsf{G}_1 + \mathsf{G}_2 + \sum_{\mathsf{i}} \psi_{2\mathsf{i}} \cdot \mathsf{Q}_{\mathsf{k}\mathsf{i}} \qquad \Rightarrow (\Phi_\mathsf{d}' = \Phi_\mathsf{k}')$$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	13 di 139

GEO)
$$\Rightarrow$$
 E+G₁+G₂+ $\sum_i \psi_{2i}$ ·Q_{ki} \Rightarrow (spinte Φ_d '=tan⁻¹(tan Φ_k '/ γ_{Φ}))

Le verifiche agli stati limite ultimi § 7.11.1(NTC) devono essere effettuate ponendo pari all'unità i coefficienti parziali sulle azioni e impiegando i parametri geotecnici e le resistenze di progetto, con i valori dei coefficienti parziali indicati nel Cap. 6.

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1+G_2+\sum_i\psi_{2i}\cdot Q_{ki}$$

APPRIL ATO BOP

Società di Progetto Breberni SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	14 di 139

4. CARATTERISTICHE DEI MATERIALI

Per la realizzazione dell'opera è previsto l'impiego dei sottoelencati materiali.

4.1 Conglomerati cementizi

4.1.1 Conglomerato cementizio per sottofondazioni

Classe	C12/15
Resistenza caratteristica cubica	$f_{ck,cube} = 15 \text{ N/mm}^2$
Resistenza caratteristica cilindrica	$f_{ck,cyl} = 12 \text{ N/mm}^2$
Classe di esposizione	-
Classe di consistenza	S4 / S5
Copriferro minimo	-

4.1.2 Conglomerato cementizio per pali di fondazione

Classe	C25/30	
Resistenza caratteristica cubica	$f_{ck,cube} = 30 \text{ N/mm}^2$	
Resistenza caratteristica cilindrica	$f_{ck,cyl} = 25 \text{ N/mm}^2$	
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{cc}^* f_{ck}/\gamma_c = 0.85^* f_{cl}$	/1,5= 14,167 N/mm ²
Resistenza a trazione media	$f_{ctm} = 0.30* f_{ck}^{2/3}$	= 2,565 N/mm ²
Resistenza a trazione (frattile 5%)	$f_{\text{ctk }0,05} = 0,7* f_{\text{ctm}}$	= 1,795 N/mm ²
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk0,05} / \gamma_c$	= 1,197 N/mm ²
Resistenza a compressione (comb. Rara)	σ_c =0.60* f_{ck}	=15.00 N/mm ²
Resistenza a compressione (comb. Quasi permanente	$\sigma_{c}=0.45^{*} f_{ck}$	=11.25 N/mm ²
Classe di esposizione	XC2	P
Classe di consistenza	S4	

4.1.3 Conglomerato cementizio per fondazioni

Classe	C28/35	
Resistenza caratteristica cubica	$f_{ck,cube} = 35 \text{ N/mm}^2$	
Resistenza caratteristica cilindrica	$f_{ck,cyl} = 28 \text{ N/mm}^2$	
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{cc}^* f_{ck}/\gamma_c = 0.85^* f_c$	_k /1,5= 15,867 N/mm ²
Resistenza a trazione media	$f_{ctm} = 0.30* f_{ck}^{2/3}$	= 2,766 N/mm ²
Resistenza a trazione (frattile 5%)	$f_{\text{ctk }0,05} = 0,7^* f_{\text{ctm}}$	= 1,9360Nemm ² Progetto
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk0,05} / \gamma_c$	= 1,291 <mark>91%/%imi²SpA</mark>
Resistenza a compressione (comb. Rara)	σ_c =0.60* f_{ck}	=16.80 N/mm ²
Resistenza a compressione (comb. Quasi permanente	$(\sigma_c=0.45^* f_{ck})$	=13.07 N/mm ²

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione .c.,	66129-00002-A00	04RCEII100002000001300	A00	15 di 139

Classe di esposizione XC2
Classe di consistenza S4

4.2 Acciai

4.2.1 Acciaio per cemento armato

Per le armature metalliche si adottano tondini in acciaio del tipo B450C controllato in stabilimento che presentano le seguenti caratteristiche:

Tensione di snervamento caratteristica $f_{yk} \ge 450 \text{ N/mm}^2$ Tensione caratteristica a rottura $f_{tk} \ge 540 \text{ N/mm}^2$

Resistenza di calcolo $f_{yd} = f_{yk} / \gamma_s = 450/1,15 = 391,30 \text{ N/mm}^2$

Deformazione caratteristica al carico massimo $\epsilon_{uk} = 7,5 \%$ Deformazione di progetto $\epsilon_{ud} = 6,75 \%$

4.2.2 Acciaio per profilati metallici

Si adotta acciaio per carpenteria metallica d'impalcato: S275 (ex Fe430)

Per spessori ≤ 40 mm, S275:

tensione di rottura a trazione $f_t \geq 430 \text{ N/mm}^2$ tensione di snervamento caratteristico $f_{vk} \geq 275 \text{ N/mm}^2$

tensione di snervamento di progetto $f_{yd} \geq f_{yk} \ / \ \gamma_{M} = 275 \ / \ 1.05 = 261 \ N/mm^{2}$

Modulo di elasticità E = 210000 MPa

Per spessori > 40 mm, S275:

tensione di rottura a trazione $f_t \geq 410 \; \text{N/mm}^2$ tensione di snervamento $f_v \geq 255 \; \text{N/mm}^2$

tensione di snervamento di progetto $f_{vd} \ge f_{vk} / \gamma_M = 255 / 1.05 = 242 \text{ N/mm}^2$

Modulo di elasticità E = 210000 MPa

4.3 Durabilità e prescrizioni sui materiali

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambientegato devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	16 di 139

Al fine di ottenere la prestazione richiesta in funzione delle condizioni ambientali, nonché per la definizione della relativa classe, si fa riferimento alle indicazioni contenute nelle Linee Guida sul calcestruzzo strutturale edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici ovvero alle norme UNI EN 206-1:2006 ed UNI 11104:2004.

Per le opere della presente relazione si adotta quanto segue:

Fondazione	CLASSE DI ESPOSIZIONE	XC2
1 Olidaziolio	01/1001 DI 101 001210111	/\\\

<u>Elevazione</u> CLASSE DI ESPOSIZIONE XC4-XD1-XF1

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4.1.III: Descrizione delle condizioni ambientali

Le fondazioni dei muri si trovano in condizioni ambientali Ordinarie, le elevazioni in condizioni Aggressive.

Nella tabella 4.1.IV sono indicati i criteri di scelta dello stato limite di fessurazione con riferimento alle condizioni ambientale e al tipo di armatura.

Cummi di	Candiniani	Cambinazione di	Armatura			
Gruppi di		Condizioni Combinazione di Sensibile			Poco sensi	bile
esigenze	ambientali	azioni	Stato limite	W _d	Stato limite	W _d
	Ordinarie	frequente	ap. fessure	$\leq W_2$	ap. fessure	\leq W ₃
а	Ordinarie	quasi permanente	ap. fessure	$\leq W_2$	ap. fessure	$\leq W_2$
h	Aggregative	frequente	ap. fessure	$\leq W_2$	ap. fessure	$\leq W_2$
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq W_1$
n National and a single	frequente	formazione fessure	-	ap. fessure	$\leq W_1$	
С	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq W_1$

Tabella 4.1.IV: Criteri di scelta dello stato limite di fessurazione

In grigio chiaro sono indicate gli stati limite di fessurazione da utilizzare per le verifiche delle fondazioni in grigio scuro sono indicati quelli per le elevazioni.

4.3.1 Copriferro minimo e copriferro nominale

Ai fini di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore, misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Il copriferro nominale c_{nom} è somma di due contributi, il copriferro minimo c_{min} e la tolleranza di posizionamento h. Vale pertanto: $c_{nom} = c_{min} + h$.

La tolleranza di posizionamento delle armature h, per le strutture gettate in opera, può essere assunta pari ad almeno 5 mm. Considerata la Classe di esposizione ambientale dell'opera, si adotta un copriferro minimo pari a 35mm, pertanto c_{nom} =40 mm.

Brebemi SpA

Doc. N. 66129-00002-A00 CODIFICA DOCUMENTO 04RCEII100002000001300 REV. A00 FOGLIO 17 di 139

5. PARAMETRI GEOTECNICI PER IL CALCOLO DELLE STRUTTURE

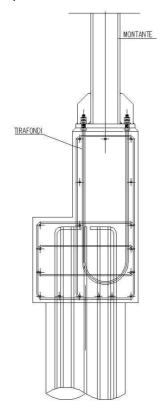
I parametri necessari a definire le caratteristiche del terreno ai fini del calcolo delle strutture sono ricavati dalla Relazione Geotecnica Generale.

- I parametri geotecnici necessari al calcolo sono:

	Carratterizzazione materiali da rilevato/reinterri															
Para	metri ir	n condi	zioni dr	enate	Spir	nta a rip	oso	Sp	inta atti	va	Spi	nta Pas:	siva	Peso o	li volume	Permeabilità
φ' _k	ф' _{dM1}	ф' _{dM2}	E' ₂₅	Eur	K _{0k}	K _{OM1}	K _{0M2}	K _{Ak}	K _{AM1}	K _{AM2}	K _{Pk}	K _{PM1}	K _{PM2}	naturale γ _n	sommerso γ'	k
()	(9	()	(Mpa)	(Mpa)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(kN/m ³)	(kN/m ³)	(m/s)
38	38	32	40	120	0.380	0.380	0.470	0.238	0.238	0.307	4.200	4.200	3.250	20	11	1×E ⁻³ ÷E ⁻⁵

I coefficienti di spinta sono calcolati secondo la teoria di Caquot - Kerisel ipotizzando angolo d'attrito tra terreno e struttura di sostegno δ = 0 ed ipotizzando che il terreno a monte/valle del sostegno (rispettivamente per il calcolo di K_A e K_P) sia orizzontale (β = 0°). Nel caso in cui tali ipotesi iniziali non siano rappresentative del problema in oggetto, i valori delle spinte dovranno essere calcolati nuovamente utilizzando la stessa teoria.

φ ' k	Angolo di resistenza al taglio caratteristico;	
Ф'ам1	Angolo di resistenza al taglio di progetto secondo coefficienti parziali M1 come da NTC2008;	1
φ' _{dM2}	Angolo di resistenza al taglio di progetto secondo coefficienti parziali M2 come da NTC2008;	1
E' ₂₅	Modulo elastico secante corrispondente alla mobilizzazione del 25% della resistenza del terreno;	1
Eur	Modulo elastico secante in ricarico;	
K _{0k}	Valore caratteristico del coefficiente di spinta a riposo;	1
K _{OM1}	Valore di progetto del coefficiente di spinta a riposo secondo coefficienti parziali M1 come da NTC2008;	1
K _{0M2}	Valore di progetto del coefficiente di spinta a riposo secondo coefficienti parziali M2 come da NTC2008;	
K _{Ak}	Valore caratteristico del coefficiente di spinta attiva;	1
K _{AM1}	Valore di progetto del coefficiente di spinta attiva secondo coefficienti parziali M1 come da NTC2008;	
K _{AM2}	Valore di progetto del coefficiente di spinta attiva secondo coefficienti parziali M2 come da NTC2008;	1
K _{Pk}	Valore caratteristico del coefficiente di spinta passiva;	1
K _{PM1}	Valore di progetto del coefficiente di spinta passiva secondo coefficienti parziali M1 come da NTC2008;	
K _{PM2}	Valore di progetto del coefficiente di spinta passiva secondo coefficienti parziali M2 come da NTC2008;	9
γn	Peso di volume naturale;	
γ'	Peso di volume sommerso;	
k	Permeabilità;	


Società di Progetto Brebemi SpA

6. GEOMETRIA DELLA STRUTTURA

Tutte le tipologie di barriere sono costituite da pannelli in calcestruzzo alleggerito sorretti da montanti costituiti da profilati commerciali di acciaio. I montanti sono fissati ad un cordolo in c.c.a. che collega la barriera alle sottostrutture.

Nel caso di barriere fondate su pali trivellati (diametro mm 600, lunghezza m 9.00), il cordolo in c.c.a. costituisce elemento di collegamento fra i pali:

Nella tabella seguente si riporta l'indicazione dei profilati ed i tirafondi utilizzati.

Tipo	А	В	С
Altezza barriera	4.00m	3.50m	3.00m
Montante	HE 180A	HE 180A	HE 160A
Tirafondi	3 Ø 20	3 Ø 20	3 Ø 20

La geometria del cordolo è riportata nella figura seguente:

Società di Progetto Breberni SpA

FOGLIO

18 di 139

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
nnessione .c.a.	66129-00002-A00	04RCEII100002000001300	A00	19 di 139

Per maggiori informazioni sulla geometria della struttura si rimanda alle tavole grafiche

APPACTUATORY

Società di Progetto
Brebenni SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	20 di 139

7. ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari da assumere per le verifiche di resistenza in esercizio ed in presenza dell'evento sismico.

I carichi riportati si riferiscono ad una porzione di barriera antirumore pari ad un interasse dei pali pari a 3.00m.

Tali Combinazioni Elementari saranno opportunamente combinate secondo quanto previsto dalla normativa vigente.

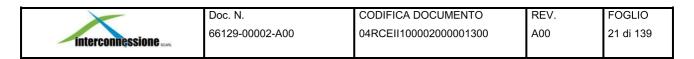
Per i materiali si assumono i seguenti pesi specifici:

calcestruzzo armato	γ_{cls}	=	25.00	kN/m ³
rilevato	Yril	=	20.00	kN/m ³
sovrastruttura stradale	Ysovr	=	22.00	kN/m ³

Pesi propri

Barriera fonoassorbente

	(H barr = 4.00)	3.40 *	4.00 * 3.00	=	40.80 kN
	(H barr = 3.50)	3.40 *	3.50 * 3.00	=	35.70 kN
	(H barr = 3.00)	3.40 *	3.00 * 3.00	=	30.40 kN
Montanti:					
	He 180A (H barr = 4.00)	0.355 *	4.00	=	1.42 kN
	He 180A (H barr = 3.50)	0.355 *	3.50	=	1.24 kN
	He 160A (H barr = 3.50)	0.304 *	3.00	=	0.91 kN
Cordolo di collegamento fra	ı pali				OP"
		25.00 *	0.845 * 3.00	=	63.38 kN


7.2 Spinta del terreno

Il reinterro a ridosso del cordolo verrà realizzato tramite materiale arido di buone caratteristiche meccaniche. Secondo quanto riportato al cap. 5, si assumono, per la tratta di interesse, i seguenti parametri:

 $\gamma_{terr} = 20,00 \text{ kN/m}^3$ = 38,00 ° ko = 0.384ka = 0,238

Si applicano, di conseguenza, i valori delle spinte secondo la profondità con

Società di Progetto Brebemi SpA

$$p_h = \lambda_a \gamma_t z$$

e con il consueto diagramma triangolare delle pressioni orizzontali.

Naturalmente queste spinte saranno opportunamente combinate, utilizzando i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi.

7.3 Carichi da vento

Il D.M. del 14 Gennaio 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fa riferimento al vento nella sola direzione perpendicolare all'asse stradale.

La pressione del vento è data dall'espressione:

$$p = q_b * c_e * c_p * c_d$$

dove:

pressione cinetica di riferimento q_b

coefficiente di esposizione C_{e}

coefficiente di forma (o coefficiente aerodinamico) C_p

coefficiente dinamico C_d

I dati di ingresso sono i seguenti:

pressione cinetica di riferimento coefficiente di esposizione				
coefficiente di forma (o coefficier	nte aerodinamico)			a O'Y
coefficiente dinamico				
li ingresso sono i seguenti: - Regione:			PPR	WATC BOP
- Regione.			P.	
	v _{b,o} (m/s)	a _o	k _a	
		(m)	(1/s)	
Zona 1 = Regione Lombardia.	25	1000	0.010	

Si assumono inoltre i seguenti parametri:

Classe di rugosità : D Aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aree agricole, ...)

Altezza s.l.m. di ubicazione dell'opera e corrispondente categoria di classificazione del luogo oggetto dell'intervento in funzione della rugosità < 500 m Società di Progetto

Brebemi SpA

La Categoria di esposizione risulta in funzione della rugosità:

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione 8248	66129-00002-A00	04RCEII100002000001300	A00	22 di 139

Altitudine	Classe di Rugosità	Categoria di
		esposizione
fino a 500 m	D	II

Da cui:

Categoria	kr	z ₀ (m)	z _{min} (m)
II	0,19	0,05	4

- La pressione cinetica di riferimento è data dall'espressione:

$$q_b = 0.5 * \rho * V_b^2 = 390.63 \text{ N/m}^2$$

dove ρ è la densità dell'aria e vale 1,25 kg/m³.

- Il coefficiente di esposizione dipende dall'altezza z dal piano di campagna (rilevato compreso, se presente) del punto considerato, dalla topografia e dalla categoria di esposizione. Si calcola il coefficiente di esposizione $c_{\rm e}$ in funzione dell'altezza z sul suolo considerando a favore di sicurezza l'altezza di rilevato massima che si verifica sul tracciato e con coefficiente di topografia $c_{\rm t}$ = 1:

$$c_e(z) = k_r^2 \ln \left(\frac{z}{z_0}\right) \left[7 + \ln \left(\frac{z}{z_0}\right)\right]$$

per $z \ge z_{min}$

per z < z_{min} si calcola con z = z_{min} .

I valori di $c_{\rm e}$ per la categorie di esposizione II, assumono i seguenti valori:

Barriera antirumore di altezza $h_{bar} = 4.00m$:

$$c_{e,max}(z = 8.50 \text{ m}) = 2.25$$
 $(h_{muro} = 4.50 \text{ m})$

Barriera antirumore di altezza h_{bar} = 3.50m:

cautelativamente assunto lo stesso valotre c_{e.max} = 2.25 proprio della barriera di altezza pari a 4.00 m

Barriera antirumore di altezza h_{bar} = 3.00m:

$$c_{e,max}(z = 4.00 \text{ m}) = 1.80$$
 $(h_{muro/parapetto} = 1.00 \text{ m})$

Coefficiente dinamico c_d

Società di Progetto

Brebenii SpA

Facendo riferimento a quanto riportato nel D.M. 2008, per l'opera in oggetto si assume un valore di cd =1.

- Coefficiente di forma cp

Il coefficiente di forma c_p viene assunto:

$$c_F = 1.20$$

Da quanto sopra riportato si ha:

Barriera antirumore di altezza $h_{bar} = 4.00m$:

$$p_{\text{max}} = q_b * c_e * c_p * c_d = 390.63 * 2.25 * 1.20 = 1.08 \text{ kPa}$$

Barriera antirumore di altezza h_{bar} = 3.50 m:

Assunto parimenti p_{max} = 1.08 kPa

Barriera antirumore di altezza $h_{bar} = 3.00m$:

$$p_{\text{max}} = q_b * c_e * c_p * c_d = 390.63 * 1.80 * 1.20 = 0.86 \text{ kPa}$$

L'analisi dell'azione da vento è stata eseguita tenendo conto degli effettivi andamenti dei diagrammi di pressione dei quali si sono riportati i valori di pressione massima.

7.4 Carico da rimozione della neve

La norma UNI EN 1794-1 all'appendice B definisce il carico dinamico causato dalla rimozione della neve. Il carico è costituito da una forza orizzontale valutabile in 15.00kN secondo quanto indicato al punto E.3 della norma stessa.

Il carico viene assunto uniformemente distribuito su di un'area di 2.00m x 2.00m e la forza risultante viene localizzata a 1.50m al di sopra del livello stradale.

7.5 Azione sismica

La risultante delle forze inerziali orizzontali indotte dal sisma viene valutata con la seguente espressione:

$$F_h = P^* k_h$$

$$k_h = \beta_m \cdot \frac{a \max}{g}$$

Società di Progetto

Essendo la palificata una struttura che non ammette spostamenti relativi rispetto al terreno, il coefficiente par assume il valore:

$$\beta_{\rm m} = 1$$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	24 di 139

Pertanto, i coefficienti sismici valgono:

$$k_h = \beta_m \cdot \frac{a \max}{g} = 0.329$$

Nel caso di sisma orizzontale si considera la spinta derivante dall'oscillazione del cuneo di terreno spingente con l'applicazione del diagramma di pressioni, avente la risultante a 1/2 dell'altezza. Per tener conto dell'incremento di spinta del terreno dovuta al sisma si fa riferimento all'EC8, in cui l'incremento di spinta sismica ΔP per la condizione a riposo viene valutato:

$$\Delta P_d = S \cdot a_g / g \cdot \gamma \cdot h_{tot}^2$$

La risultante di tale incremento di spinta viene applicata ad h/2 del cordolo.

L'azione sismica derivante dalla dinamica della barriera in elevazione viene calcolata mediante un'analisi pseudo-statica, considerando il valore di accelerazione fornito dallo spettro di risposta. In particolare di assume a favore di sicurezza che il periodo di oscillazione del modo di vibrare principale di tutte e quattro le tipologie di barriere sia compreso tra i valori di T_B e T_C.

I valori delle accelerazioni di progetto si calcolano come:

$$S_d = a_g * S * F_0 * 1/q$$

Dove q = 2.00 secondo quanto indicato al punto 7.5.2.2 del DM del 14 Gennaio 2008 nei riguardi delle "Strutture a mensola o a pendolo inverso".

Si riporta l'accerelazione di progetto considerata:

$$S_d = 1.176 * 1.00 * 0.226g*2.473/2 = 0.329$$

L'azione sismica dovuta alla barriera in elevazione si ottiene mediante la relazione:

$$F_h = S_d * W / g$$

Dove:

W = peso della quota di barriera afferente al montante ed al palo in esame

La forza orizzontale ottenuta dall'analisi, distribuita sull'altezza della struttura, segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.

Brebemi SpA
In quanto di pertinenza, fini della determinazione delle azioni orizzontali attinenti la testa dei pali, si
considera inoltre il contributo delle spinte inerziali relative al cordolo.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione 5044	66129-00002-A00	04RCEII100002000001300	A00	25 di 139

Per quanto riguarda le azioni sismiche, si implementa un'apposita condizione di carico; tale condizione di carico che mette in conto i pesi permanenti, l'inerzia del cordolo ed infine la sovraspinta sismica.

APPROUNT BOP

Società di Progetto
Brebenii SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione som	66129-00002-A00	04RCEII100002000001300	A00	26 di 139

8. CALCOLO DELLE SOLLECITAZIONI

8.1 Barriera su opera d'arte

Le barriere in oggetto presentano altezza pari a

- m 3.00
- m 3.50
- m 4.00

Per il dimensionamento delle strutture in elevazione di altezza par a m 3.50 e m 4.00 si fa riferimento alle sollecitazioni determinate con riferimento alle barriere ubicate su fondazione poggiante su pali ad elica, di altezza pari alla massima delle altezze riscontrabili per dette barriere su opera d'arte e per il cui dimensionamento si fatto riferimento all'inviluppo delle massime altezze totali di manufatto riscontrabili su tutte le opere dell'intervento (ovvero all'inviluppo delle massime altezze riscontrate fra i sottostanti muri di sostegno o rilevati).

Gli inghisaggi alla base e le sottostanti opere d'arte vengono dimensionate con riferimento alle sollecitazioni determinate alla base dei montanti.

Si procede alla determinazione delle sollecitazioni a base montante attinenti alle barriere di altezza netta m 3.00.

H _{barr} =	3.00 m	$\gamma_{\text{terr}} =$	20.00 kN/mc	C _{p,pann} =	3.400	kN/mq
H _{cord} =	1.30 m	$\gamma_{cls} =$	25.00 kN/mc	P _{cord} =	21.125	kN/m
B _{sup} =	0.50 m	$\gamma_{\rm cls,legg} =$	18.00 kN/mc	P _{Profilato} =	0.613	kN/m
B _{inf} =	0.80 m	$\gamma_s =$	78.50	A _{Profilato} =	78.08	cmq
H _{palo,lib} =	1.50 m	k _a =	0.24	F _{spaz-nev} =	15.00	kN
H _{tot,mensola} =	5.80 m	$a_g/g =$	0.226	b _{spaz-nev} =	2.00	m
H _{ril} =	1.00 m	F ₀ =	2.473	h _{spaz-nev} =	2.00	m
H _{tot} =	4.00 m	$S=S_s*S_t=$	1.176	H _{spaz-nev} =	1.50	m
i _{mont} =	3.00 m	S _{d (barr)} =	0.329	q _{v,max} =	0.86	kN/mq
e _{heb-cord} =	0.15 m	Ø _{palo} =	0.600 m	q _{v,min} =	0.86	kN/mq
e _{heb-palo} =	0.15 m	_		q _{aero-veic} =	0.80	kN/mq

Si riporta il riepilogo delle sollecitazioni alla base del montante nelle combinazioni di calcolo considerate; tali sollecitazioni nascono dall'inviluppo dei valori ottenuti nelle condizioni descritte in precedenza:

Ris. base montante	Н	N	М
	[kN]	[kN]	[kNm]
C1 SLU (Vento)	11.63	43.80	17.45
C2 SLU (Neve)	22.50	43.80	33.75
C3 SLE (q.perm)	0.00	32.44	0.00
C4 SLE (freq) (Vento)	1.55	32.44	2.33
C5 SLE (freq) (Neve)	3.00	32.44	4.50
C4 SLE (rara) (Vento)	7.75	32.44	11.63

Società di Progetto Brebenii SpA

interconnessione	Doc. N. 66129-00002-A00		ICA DOCUME II1000020000		REV. A00	FOGLIO 27 di 139
C5 SLE (rara) (Nev	e)	15.00	32.44	22.50		
C6 SLV (Sisma)	,	10.67	32.44	21.33		
C7 SLU-GEO (Ven	ro)	10.08	32.44	15.12		
C8 SLU-GEO (Nev	a).	19 50	32 44	29 25		

8.2 Barriera su fondazione poggiante su pali ad elica

Si sono calcolate le sollecitazioni alla base del montante e le terne sollecitanti in testa palo per le condizioni di vento predominante e di sisma. La condizione di vento predominante si verifica nei casi di massima altezza di rilevato (o di muro, per quanto detto al paragrafo precedente), essendo l'altezza di calcolo del coefficiente di esposizione comprensiva dell'altezza del rilevato (o del muro); per la condizione sismica si è preso in considerazione il caso di accelerazione sismica massima.

Le sollecitazioni sono state calcolate facendo riferimento ad uno schema statico di mensola incastrata alla base sottoposta alle azioni orizzontali e verticali di progetto.

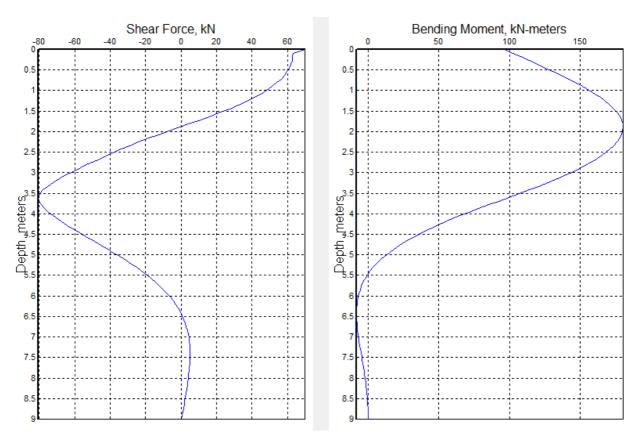
Nei paragrafi seguenti si riporta il riepilogo dei parametri utilizzati nel calcolo e le sollecitazioni di verifica:

H _{barr} =	4.00 m	$\gamma_{terr} =$	20.00 kN/mc	C _{p,pann} =	3.400 kN/mq
H _{cord} =	1.30 m	$\gamma_{cls} =$	25.00 kN/mc	P _{cord} =	21.125 kN/m
B _{sup} =	0.50 m	$\gamma_{\rm cls,legg} =$	18.00 kN/mc	P _{Profilato} =	0.613 kN/m
B _{inf} =	0.80 m	$\gamma_s =$	78.50	A _{Profilato} =	78.08 cmq
H _{palo,lib} =	1.50 m	k _a =	0.24	F _{spaz-nev} =	15.00 kN
H _{tot,mensola} =	6.80 m	$a_g/g =$	0.226	b _{spaz-nev} =	2.00 m
H _{ril} =	4.51 m	F _o =	2.473	h _{spaz-nev} =	2.00 m
H _{tot} =	8.51 m	$S=S_s*S_t=$	1.176	H _{spaz-nev} =	1:50ietad Progetto
i _{mont} =	3.00 m	S _{d (barr)} =	0.329 m	$q_{v,max} =$	1.08° kWihapA
e _{heb-cord} =	0.15 m	Ø _{palo} =	0.600	q _{v,min} =	0.89 kN/mq
e _{heb-palo} =	0.15 m	_		q _{aero-veic} =	0.80 kN/mq

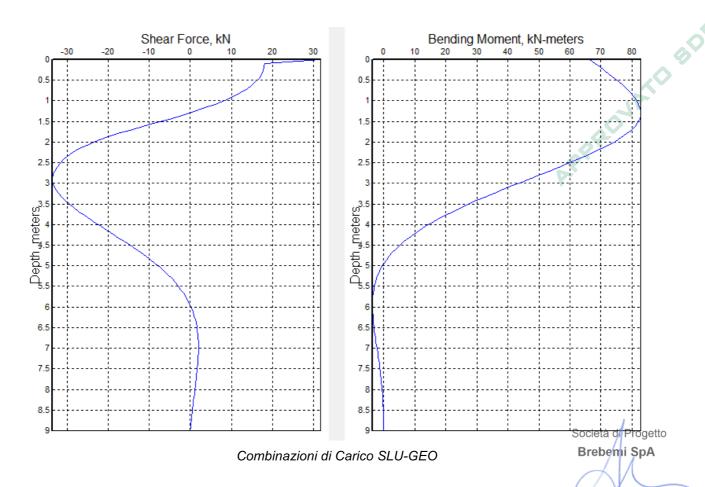
Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
66129-00002-A00	04RCEII100002000001300	A00	28 di 139

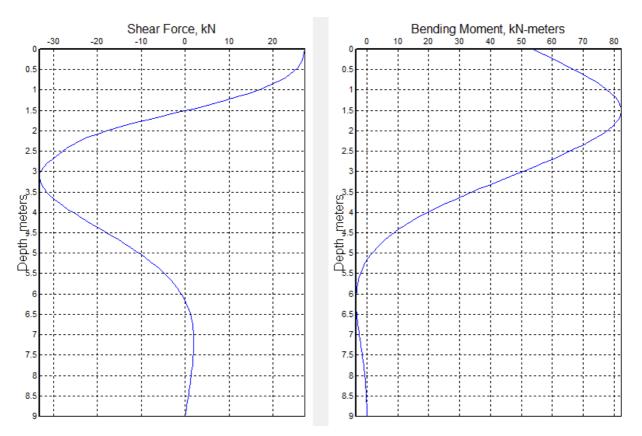
Si riporta il riepilogo delle sollecitazioni alla base del montante e delle terne in testa palo nelle combinazioni di calcolo considerate; tali sollecitazioni nascono dall'inviluppo dei valori ottenuti nelle condizioni descritte in precedenza:

Ris. base montante acciaio;	Н	N	М
(sez.1-1):	[kN]	[kN]	[kNm]
C1 SLU (Vento)	17.93	58.40	36.83
C2 SLU (Neve)	22.50	58.40	33.75
C3 SLE (q.perm)	0.00	43.26	0.00
C4 SLE (freq) (Vento)	2.39	43.26	4.91
C5 SLE (freq) (Neve)	3.00	43.26	4.50
C4 SLE (rara) (Vento)	11.95	43.26	24.55
C5 SLE (rara) (Neve)	15.00	43.26	22.50
C6 SLV (Sisma)	14.22	43.26	37.92
C7 SLU-GEO (Vento)	15.54	43.26	31.92
C8 SLU-GEO (Neve)	19.50	43.26	29.25
Ris. base cordolo c.a.:	Н	Ν	M
(sez.2-2)	[kN]	[kN]	[kNm]
C1 SLU (Vento)	34.36	143.95	76.02
C2 SLU (Neve)	38.93	143.95	78.88
C3 SLE (q.perm)	12.17	106.63	11.76
C4 SLE (freq) (Vento)	14.56	106.63	19.78
C5 SLE (freq) (Neve)	15.17	106.63	20.16
C4 SLE (rara) (Vento)	24.12	106.63	51.85
C5 SLE (rara) (Neve)	27.17	106.63	53.76
C6 SLV (Sisma)	70.20	106.63	96.65
C7 SLU-GEO (Vento)	27.71	106.63	63.88
C8 SLU-GEO (Neve)	31.67	106.63	66.36

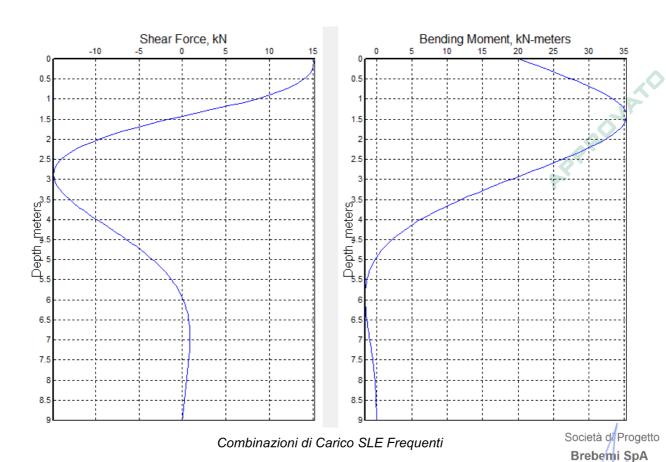

interconnessione

Sulla base delle terne di sollecitazione in testa palo, tramite il codice di calcolo LPile Plus 6.0 per Windows prodotto da Ensoft, Inc. è stata eseguita l'analisi delle sollecitazioni lungo lo sviluppo del palo stesso. Si ottengono le curve di spostamento, taglio, momento flettente e reazione del terreno in funzione del carico orizzontale applicato in testa al palo.

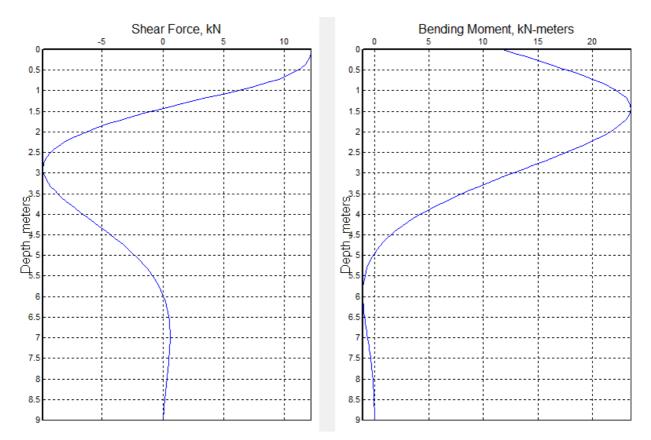

Si riportano di seguito i diagrammi delle sollecitazioni flessionali e taglianti nelle Combinazioni di Carico dimensionanti:


Società di Progetto

Brebenii SpA



Combinazioni di Carico SLV / SLU-STR



Combinazioni di Carico SLE Rare

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione 8048	66129-00002-A00	04RCEII100002000001300	A00	31 di 139
interconnessione scal				

Combinazioni di Carico SLE Quasi Permanenti

APPROVATO BOP Le sollecitazioni massime riscontrate nello sviluppo del palo ed oggetto di verifica risultano pertanto:

Sollecitazioni massime	Н	N	М
(sullo sviluppo del palo	[kN]	[kN]	[kNm]
C3 SLE (q.perm)	12.20	106.63	23.50
C5 SLE (freq) (Neve)	15.20	106.63	35.50
C5 SLE (rara) (Neve)	32.60	106.63	82.50
C6 SLV (Sisma)	81.50	106.63	180.80
C8 SLU-GEO (Neve)	33.60	106.63	82.80

Società di Progetto Brebemi SpA

9. VERIFICHE DI SICUREZZA

9.1 Verifica dei montanti

Lungo lo sviluppo del tracciato delle barriere antirumore si prevede di utilizzare montanti costituiti da profilati tipo HeA. La distinzione dei profilati viene effettuata in base all'altezza della barriera stessa.

Altezza barriera	4.00m	3.50m	3.00m
Montante	HE 180A	HE 180A	HE 160A

Per ciascuna di queste tipologie nel seguito verranno riportate verifiche di resistenza allo Stato Limite Ultimo e verifiche di deformabilità allo Stato Limite di Esercizio. Per la verifica della barriera di altezza 3.50 m si fa riferimento a quanto ottenuto per la barriera di altezza 4.00 m.

9.1.1 Verifica di resistenza

Si esegue la verifica a flessione della base del montante per la condizione più gravosa fra SLU e SLV. La verifica risulta soddisfatta se è soddisfatta la disuguaglianza seguente:

$$M_{Ed} < M_{pl,Rd}$$

Il momento resistente della sezione risulta:

$$M_{pl,Rd} = W_{pl} * f_{yk} / \gamma_{M0}$$

Si assume:

 $f_{yk} = 275 \text{ N/mm}^2$

 $y_{MO} = 1.05$

Con riferimento alle altezze di barriere prese in considerazione:

altezza barriera (m)	3.00
Profilato	HE 160A
Peso profilato (kg/m)	30.40
q _v max (kN/m ²)	1.16
J (cm ⁴)	1673
A (cm ²)	38.80
h (mm)	171
Interasse montanti (m)	3.00

M _{slu} (kNm)	33.75
N _{slu} (kN)	43.80
V _{slu} (kN)	22.50
M _{pl,Rd} (kNm)	64.19

Società di Progetto

Brebenii SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	33 di 139

altezza barriera (m)	4.00
Profilato	HE 180A
Peso profilato (kg/m)	35.50
q _v max (kN/m ²)	1.08
J (cm ⁴)	2510
A (cm ²)	45.30
h (mm)	171
Interasse montanti (m)	3.00

M _{slu} (kNm)	37.95
N _{slu} (kN)	43.26
V _{slu} (kN)	14.23
M _{pl,Rd} (kNm)	85.09

9.1.2 Verifica di deformabilità

In base a quanto indicato nella norma UNI-EN-1794-1, la verifica si ritiene soddisfatta se per la combinazione di esercizio la deflessione δ risulta inferiore alla deformazione massima δ_{max} , ovvero:

$$\delta < \delta_{max}$$

con:

 $\delta = q_{v,max} *i* H^4$

 δ_{max} =H/150

H: altezza della barriera

i: interasse montanti

q_{v,max}: pressione del vento

Nelle tabelle seguenti viene riportata la verifica di deformabilità per ciascuna tipologia di profilato prevista.

altezza barriera (m)	3.00
Profilato	HE 160A
q _v max (kN/m ²)	1.16
J (cm ⁴)	1673
A (cm ²)	38.80
h (mm)	171
Interasse montanti (m)	3.00
Deformazione max (mm)	20.00
Deflessione (mm)	7.44
Verifica	OK

altezza barriera (m)	4.00
Profilato	HE 180A
q _v max (kN/m ²)	1.08
J (cm ⁴)	2510

Società di Progetto
Breberni SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	34 di 139

A (cm ²)	45.30
h (mm)	171
Interasse montanti (m)	3.00
Deformazione max (mm)	26.67
Deflessione (mm)	19.67
Verifica	OK

9.2 Verifica dei tirafondi

9.2.1 Tirafondi di ancoraggio a nuovi cordoli di progetto

Lungo lo sviluppo del tracciato si prevede di utilizzare una unica tipologia di tirafondi:

Altezza barriera	4.00m / 3.50m
Tirafondi	3 Ø 20
Piastra	280 x 350

Per ciascuna delle due tipologie di tirafondi e piastra di collegamento nel seguito verranno riportate verifiche di resistenza allo Stato Limite Ultimo, prendendo in considerazione le sollecitazioni a base montante più gravose.

La condizione di carico più gravosa fra quelle analizzate risulta quella relativa a: barriera H = 4.00m, combinazione SLV-(SISMA):

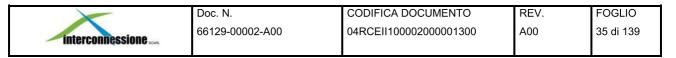
$$M_{Sd} = 37.95 \text{ kNm}$$

$$N_{Sd} = 43.26 \text{ kN}$$

$$V_{Sd} = 14.23 \text{ kN}$$

La tensione normale sui tirafondi risultano:

$$\sigma_{s} = 139.45 \text{ MPa}$$


Dal taglio sollecitante si ricava la τ sulla sezione di verifica:

$$\tau_s$$
 = 4/3 *Vsd/A = 4/3 * 14230/6/245 = 12.91 MPa

La tensione di confronto allo S.L.U. risulta:

$$\sigma_{id} = \sqrt{\sigma^2 + 3 \cdot \tau^2} = (139.45^2 + 3*12.91^2)^{0.5} = 141.23 \text{ MPa}$$

Eventuali muri di sostegno prefabbricati, in progetto di prevista realizzazione sottostante i cordoli correnti delle barriere, nonché i ferri di ripresa/ancoraggio tra cordolo ed elemento prefabbricato, verranno dimensionati sulla base delle sollecitazioni trasmesse dalla barriera di sicurezza (rif. risultanti a base montante precedentemente determinate).

9.2.2 Tirafondi di ancoraggio su paratia esistente di approccio a GA03

Si dimensionano i tirafondi dei montanti della barriera sulla paratia esistente di approccio alla Galleria Artificiale GA03. Il dimensionamento viene condotto con riferimento.

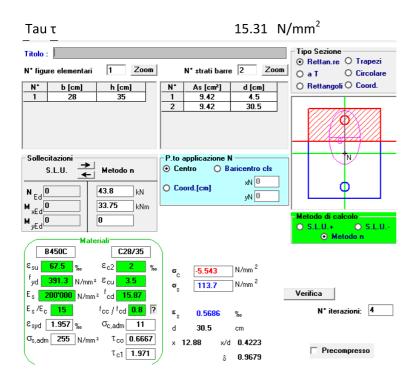
Il criterio di verifica adottato in questa sede, in assenza di riferimenti normativi cogenti, è quello redatto dall'Istituto Europeo "E.O.T.A." (European Organisation for Technical Approvals) con il nome di "TR 029 – Design of Bonded Anchors – Edition June 2007, amended September 2010".

La procedura dell'E.O.T.A. consente di individuare la resistenza caratteristica dell'ancorante (singolo o inserito in un gruppo di ancoranti, come nel caso in esame) nei confronti delle sollecitazioni di trazione e di taglio, considerando differenti ipotesi di rottura lato acciaio o lato calcestruzzo. La verifica è effettuata secondo il metodo degli stati limite, conformemente alle raccomandazioni del D. M. 18.1.2008. Nel caso in esame è stata considerata la verifica agli stati limite ultimi.

9.2.2.1 Dati di base

Diametro φ		20.00	mm
Lunghezza cautelativa effic. hef		400.00	mm
Interasse ancoranti		100.00	mm
Distanza dal bordo libero	c_{1}	120.00	mm
Distanza dal bordo esterno	C_2	280.00	mm
Tensione tang. Aderenza $\tau_{\mbox{\tiny Rkucr}}$	da ETA	15.00	N/mm ²
Tensione tang. Aderenza $\tau_{\mbox{\tiny Rkcr}}$	da ETA	6.24	N/mm²
Num. ancoranti in zona tesa		3	
Altezza trave di cls		2900	mm
Diametro foro		24	mm
f_{yk}		640	N/mm ²
f_{uk}		800	N/mm ²

Coefficienti di sicurezza:


γ c	safety factor CLS	1.50
γ ₂		1.20
$\gamma_{Mp};\gamma_{Mc}$		1.80
Y Ms	trazione (>=1.4)	1.40
Y Ms	taglio (>=1.25)	1.25
Sallacitazion	Si C111.	

Sollecitazioni SLU:

N_{SLU}	43.8	kN
T_{SLU}	22.50	kN
M_{SLU}	33.75	kNm
Sigma σ	113.70	N/mm ²

Società di Progetto Brebenii SpA

APPROVATO BOP

9.2.2.2 Verifica ancoraggi soggetti a trazione

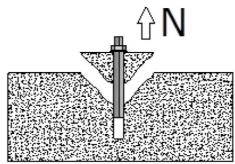
- Resistenza a trazione dell'acciaio (Steel failure)

$N_{Rk,s}$	$N_{Rk,s} = A_s \cdot f_{uk}$	[N]	196.0	kN
$N_{Rd,s}$			140.0	kN
N_{Sd}			35.7	kN
Esito:	$N_{Sd} \leq N_{Rk,s} / \gamma_{Ms}$		Verif	ficato
β_{s}			0.2551	

PROVATO BOP Resistenza combinata a sfilamento ed a rottura conica del calcestruzzo (Combined pull-out and concrete cone failure)

Tale verifica procede tramite il calcolo della resistenza caratteristica a trazione del gruppo di ancoranti soggetti a carico assiale $(N_{Rk,p}^g)$ a partire dalla resistenza offerta dal singolo ancorante isolato $(N_{Rk,p}^0)$ funzione della lunghezza dell'ancorante e della resistenza caratteristica a compressione del calcestruzzo, moltiplicata per una serie di coefficienti correttivi che tengono conto di:

- Incremento di dimensioni della superficie del cono di rottura dovuto alla presenza di altri ancoranti in adiacenza $(A_{p,N} e A_{p,N}^0)$;
- Distanza dell'ancorante dal bordo ($\psi_{s,Np}$);
- Interazione ancoranti ($\psi_{g,Np}$);


Società di Progetto Brebemi SpA

Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
66129-00002-A00	04RCEII100002000001300	A00	37 di 139

Eventuale eccentricità del carico (ψ_{ec,Np});

interconnessione

Eventuale presenza di armatura (\(\psi_{\text{re,Np}}\)).

Stato del calcestruzzo: Non fessurato 15 N/mm² su ETA-04/0027 accena al coeff. per il CLS ψ_c k 3.2 dipende dallo statto del CLS 35 N/mm² R_{ck} $N_{Rk,p}^0$ $N_{Rkp}^0 = \pi \cdot d \cdot h_{ef} \cdot \tau_{Rk}$ 377.0 kN $S_{cr,Np}$ $s_{cr,Np} = 20 \cdot d \cdot \left(\frac{\tau_{Rk,ucr}}{7.5}\right)^{0.5} \le 3 \cdot h_{ef}$ 565.7 mm $C_{cr,Np} = \frac{s_{cr,Np}}{2}$ $C_{\text{cr,Np}}$ 282.8 mm $A_{p,N}^0 = S_{cr,Np} \cdot S_{cr,Np}$ A^0_{nN} 320000 mm² 306274 mm² $A_{n,N}$ dipende dalla configurazione degli inghisaggi $A_{p,N}/A_{p,N}^0$ 0.96 $\psi_{s,Np} = 0.7 + 0.3 \cdot \frac{C}{C_{cr,Np}} \le 1$ $\psi_{s,Np}$ 0.83 $\Psi^{0}_{g,Np} \qquad \qquad \psi^{0}_{g,Np} = \sqrt{n} - \left(\sqrt{n} - 1\right) \cdot \left(\frac{d \cdot \tau_{Rk}}{k \cdot \sqrt{h_{ef} \cdot f_{ck,cube}}}\right)^{1.5} \ge 1,0$ 1.22 $\psi_{g,Np} = \psi_{g,Np}^{o} - \left(\frac{s}{s_{cr,Np}}\right)^{0,5} \cdot (\psi_{g,Np}^{o} - 1) \ge 1,0$ $\psi_{\mathsf{g},\mathsf{Np}}$ 1.13 $\psi_{\text{ec,Np}} = \frac{1}{1 + 2e_N/s_{\text{crNp}}} \le 1$ 1.00 $\psi_{\text{re,Np}} = 0.5 + \frac{h_{\text{ef}}}{200} \le 1$ $\psi_{\text{re,Np}}$ 1.00

 $N_{Rk,p} = N_{Rk,p}^{0} \cdot \frac{A_{p,N}}{A_{p,N}^{0}} \cdot \psi_{s,Np} \cdot \psi_{g,Np} \cdot \psi_{ec,Np} \cdot \psi_{re,Np}$

divido per il safety factor

 $N_{Sd} \leq N_{Rk,p} / \gamma_{Mp}$

 $N_{Rk,p}$

 $N_{\text{Rd,p}}$

 $N_{Sd,p}$

Esito:

Società di Progetto Brebenii SpA

336 kN

186.6 kN

107.2 kN

Verificato

APPRILIVATO BOP

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	38 di 139

 β_{Np} 0.5744

Note: Verifica eseguita sul gruppo di ancoranti

- Rottura di fessurazione del calcestruzzo (splitting failure)

Necessità	a di verifica:	Verifica nec	essaria
k_1	dipende dallo stato del CLS	10.1	
$N^0_{rk,c}$	$N_{Rk,c}^0 = k_1 \cdot \sqrt{f_{ck,cube}}$. $h_{ef}^{1.5}$	478.0	kN
$C_{cr,\underline{S}p}$	dipende dal rapporto h/h _{ef} ; vedi ETA-04/0027	400	mm
$S_{cr,Sp}$	$2 \cdot C_{cr,Sp}$	800	mm
$A^0_{c,N}$	$A_{c,N}^0 = s_{cr,N} \cdot s_{cr,N}$	640000	mm ²
$A_{c,N}$	dipende dalla configurazione degli inghisaggi	400000	mm ²
$A_{c,N}/A_{c,N}^0$		0.63	
$\psi_{s,N}$	$\psi_{s,N} = 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}} \le 1$	0.79	
	$\psi_{\text{re,N}} = 0.5 + \frac{h_{ef}}{200} \le 1$	1.00	
$\psi_{ec,N}$	$ \psi_{\text{ec,N}} = \frac{1}{1 + 2e_{N} / s_{\text{cr,N}}} \le 1 $	1.00	
h_{min}	$h_{min} = h_{ef} \cdot 2d$	448	mm
$\psi_{\text{h,Sp}}$	$\Psi_{h,sp} = \left(\frac{h}{h_{min}}\right)^{2/3} \qquad 1 \le \Psi_{h,sp} \le \left(\frac{2 \cdot h_{ef}}{h_{min}}\right)^{2/3}$	1.47	kN kN kN ato
$N_{Rk,Sp}$	$N_{\text{Rk,sp}} = N_{\text{Rk,c}}^0 \cdot \frac{A_{\text{c,N}}}{A_{\text{c,N}}^0} \cdot \psi_{\text{s,N}} \cdot \psi_{\text{re,N}} \cdot \psi_{\text{ec,N}} \cdot \psi_{\text{h,sp}}$	347.3	kN
$N_{Rd,Sp}$		192.9	kN
$N_{Sd,Sp}$		107.2	kN
Esito:	$N_{Sd} \leq N_{Rk,sp} / \gamma_{Msp}$	Verifica	ato
β_{Sp}		0.5554	V
Note:	Verifica eseguita sul gruppo di ancoranti		

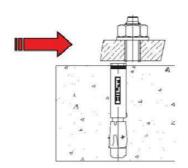
9.2.2.3 Verifica ancoraggi soggetti a taglio

- Resistenza a taglio dell'acciaio (Steel failure)

La resistenza caratteristica dell'acciaio è individuata come prodotto tra l'area della sezione resistente e la tensione di rottura dell'acciaio.

La resistenza così ottenuta va moltiplicata per il numero di ancoranti sollecitati a trazione.

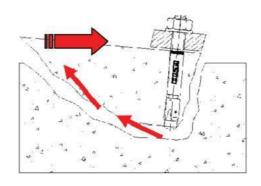
Società di Progetto Brebenii SpA


	Doc. N.	CODIFICA DOCUMENTO
interconnessione	66129-00002-A00	04RCEII100002000001300

REV.

A00

FOGLIO


39 di 139

$V_{Rk,s}$	$V_{Rk,s} = 0.5 \cdot A_s \cdot f_{uk}$	98.0 kN
$V_{Rd,s}$		78.4 kN
V_{Sd}		3.8 kN
Esito:	$V_{Sd} \leq V_{Rk,s} / \gamma_{Ms}$	Verificato
β_{s}		0.0478

Resistenza allo strappo del calcestruzzo (Concrete Pry-out Failure)

Tale verifica individua la resistenza caratteristica del calcestruzzo a rottura di pry-out (conseguente al carico di taglio) nella misura di "k" volte la resistenza a rottura conica (o combinata a sfilamento/rottura conica) del calcestruzzo ($N_{Rk,c}$). Il valore di "k" è stato assunto pari a 2, essendo APPROVATO BOP la lunghezza degli ancoranti superiore ai 60 mm (v. ETAG 001).

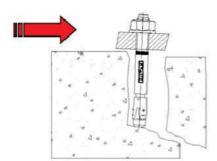
k	dipende da h _{ef} ; vedi ETA-04/0027	2
$V_{Rk,cp}$	min ($V_{Rk,cp} = k \cdot N_{Rk,p}$; $V_{Rk,cp} = k \cdot N_{Rk,c}$)	671.6 kN
$V_{Rd,cp}$		373.1 kN
$V_{Sd,cp}$		22.5 kN
Esito:	$V_{Sd} \leq V_{Rk,cp} / \gamma_{Mc}$	Verificato
β_{cp}		0.0603
Note:	Verifica eseguita sul gruppo di ancoranti	

Resistenza alla rottura del bordo del calcestruzzo (Concrete edge Failure)

Società di Progetto Brebemi SpA

Tale verifica viene condotta a partire dal calcolo della resistenza caratteristica a taglio per un ancorante isolato ($V^0_{Rk,c}$, funzione del diametro esterno dell'ancorante, della sua lunghezza, della

8				
	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	40 di 139


distanza dal bordo e della resistenza caratteristica a compressione del calcestruzzo), moltiplicata poi per una serie di coefficienti correttivi che tengono conto di:

Incremento di dimensioni della superficie del cono di rottura dovuto alla presenza di altri ancoranti in adiacenza $(A_{c,V}/A_{c,V}^0)$

- Spessore dell'elemento in calcestruzzo ($\psi_{h,V}$);
- Direzione e verso di applicazione del carico di taglio rispetto alla direzione ortogonale al bordo $(\psi_{\alpha,V})$;
- Eventuale eccentricità del carico (ψ_{ec,sp}).

 $\psi_{re,V}$ = 1 per CLS non fessurato

 $\mathsf{V}_{\mathsf{Rk,c}} \; = \; \mathsf{V}_{\mathsf{Rk,c}}^0 \; \cdot \; \frac{A_{c,\mathcal{V}}}{A_{c,\mathcal{V}}^0} \; \cdot \; \psi_{\mathsf{s},\mathsf{V}} \; \cdot \; \psi_{\mathsf{h},\mathsf{V}} \; \cdot \; \psi_{\mathsf{\alpha},\mathsf{V}} \; \cdot \; \psi_{\mathsf{ec},\mathsf{V}} \; \cdot \; \psi_{\mathsf{re},\mathsf{V}}$

k_1	dipende dallo stato del CLS	2.4		
c_{1}		120	mm	OP
α	$\alpha = 0.1 \cdot \left(\frac{h_{\rm ef}}{c_{\rm 1}}\right)^{0.5}$	0.183		APPRILIVATO BOP
β	$\beta = 0.1 \cdot \left(\frac{d}{c_1}\right)^{0.2}$	0.070		all A.
$V^0_{Rk,c}$	$V_{Rk,c}^{0} = k_1 \cdot d^{\alpha} \cdot h_{ef}^{\beta} \cdot \sqrt{f_{ck,cube}} \cdot c_1^{1.5}$	49.0	kN	OPT
$A^0_{c,V}$	$A_{c,v}^0 = (2 \cdot 1.5c_1) \cdot 1.5c_1$	64800	mm^2	P
$A_{c,V}$	dipende dalla configurazione degli inghisaggi	82800		
$A_{c,V}/A_{c,V}^0$		1.28		
$\psi_{s,V}$	$\psi_{s,V} = 0.7 + 0.3 \cdot \frac{c_2}{1.5 c_1} \le 1$	1.00		
$\psi_{\text{h,V}}$	$ \psi_{h,V} = \left(\frac{1.5c_1}{h}\right)^{1/2} \ge 1 $	1.00		
$\psi_{\alpha,V}$	$\psi_{\alpha,V} = \sqrt{\frac{1}{(\cos \alpha_V)^2 + \left(\frac{\sin \alpha_V}{2.5}\right)^2}} \ge 1.0$	1.00		
$\psi_{ec,V}$	$ \psi_{\text{ec,V}} = \frac{1}{1 + 2e_V / (3c_1)} \le 1 $	1.00		Società di Progetto

Società di Progetto Brebemi SpA

1.00

62.6 kN

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	41 di 139

Note: Verifica eseguita sul gruppo di ancoranti

9.2.2.4 Sollecitazione combinata di trazione e taglio

Per tale verifica deve essere soddisfatta la seguente diseguaglianza:

$$\beta_N + \beta_V \le 1.2$$

Per le verifiche combinate che interessano il calcestruzzo si assume per β_N e β_V il maggiore dei valori ottenuti dalle singole verifiche a trazione e taglio.

Resistenza combinata taglio e Trazione - Rottura calcestruzzo

Rapporto massimo tra azioni di trazione di progetto e resistenti

 $\beta_{N} = 0.5755$

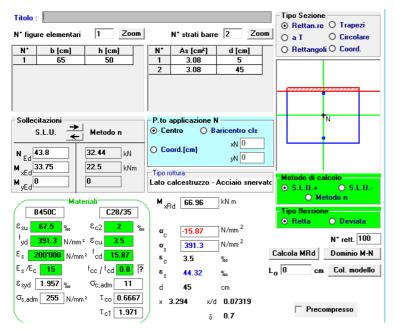
Rapporto massimo tra azioni di taglio di progetto e resistenti

 $\beta_{V} = 0.3233$

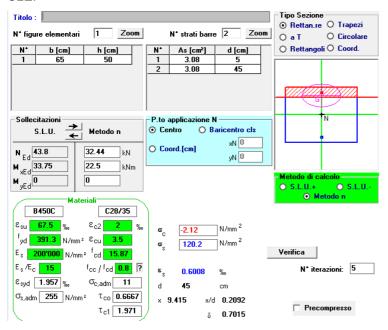
Verifica Azioni Composte su ancoranti lato urto soggetti a trazione e taglio

$$\beta_N + \beta_V = 0.8977 < 1.20$$

9.2.2.5 Verifica sezione parapetto esistente


Il parapetto esistente risulta armato con barre verticali correnti ø14/20'. Si eseguono le verifiche a pressoflessione per effetto dell'azione aggiuntiva dovuta alla presenza della barriera antirumore.

- Sezione di sommità


Si esegue la verifica della sezione di sommità. Le sollecitazioni agenti sono quelle determinate a spiccato montante. Cautelativamente si considera una sezione resistente pari all'impronta della piastra di base (armatura tesa assunta pari a 2ø14).

Società di Progetto Brebenii SpA

SLU:

SLE:

I tassi di lavoro nelle armature nelle Combinazioni di Carico agli Stati Limite di Esercizio (Combinazioni Frequente e Quasi Permanente) permangono inferiori ai limiti riportati nelle tabelle C4.1.II e C4.1.III della Circolare 2 febbraio 2009 n. 617 (punto C4.1.2.2.4.6). La verifica dell'ampiezza di fessurazione è da intendersi pertanto svolta per via indiretta ed implicitamente soddisfatta in ragione dei tassi di lavoro di progetto sulle armature precedentemente determinati.

APPRILIVATIO BOP

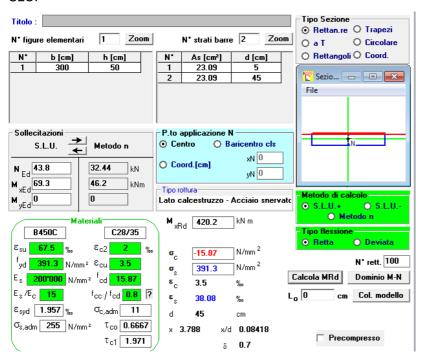
- Sezione a spiccato parapetto

Si esegue la verifica della sezione di spiccato. Le sollecitazioni agenti sono quelle determinate di assisticcato montante e quelle dovute alla spinta delle terre e del sovraccarico a tergo. Si considera una sezione resistente pari all'interasse dei montanti.

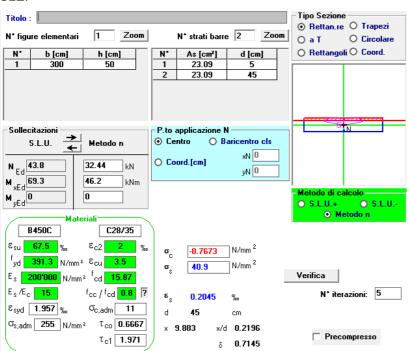
 $M_k = 3*(1/6*\gamma*h^2*\lambda a+1/2*p*h*\lambda a) + M_{W,SLE}$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione ****	66129-00002-A00	04RCEII100002000001300	A00	43 di 139

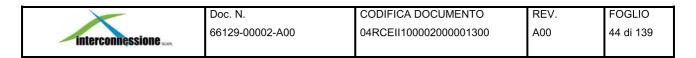
= $3*(1/6*20*2.00^2*0.237+1/2*20.00*2.00*0.237) + 22.50 = 46.20 \text{ kNm}$


 $M_d = 1.5*3*(1/6*\gamma*h^2*\lambda a+1/2*p*h*\lambda a) + M_{W,SLU}$

= $1.5*3*(1/6*20*2.00^2*0.237+1/2*20.00*2.00*0.237) + 33.75 = 69.30 \text{ kNm}$


APPRITUATIO BOP

Cautelativamente si assume lo stesso valore di sforzo normale riscontrato a base montante.


SLU:

SLE:

I tassi di lavoro nelle armature nelle Combinazioni di Carico agli Stati Limite di Esercizio (Combinazioni Frequente e Quasi Permanente) permangono inferiori ai limiti riportati nelle tabelle C4.1.II e **C4.1.II**

intendersi pertanto svolta per via indiretta ed implicitamente soddisfatta in ragione dei tassi di lavoro di progetto sulle armature precedentemente determinati.

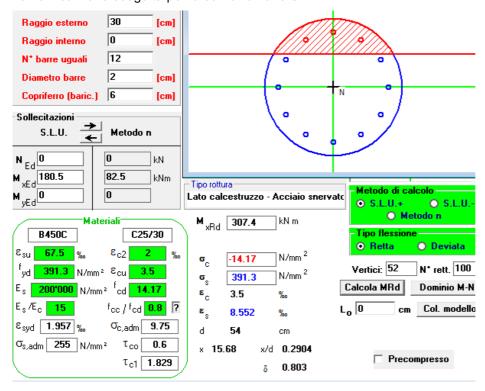
9.3 Verifica dei pali di fondazione

9.3.1 Verifica strutturale

Nelle verifiche strutturali dei pali di fondazione viene cautelativamente trascurato il beneficio connesso allo sforzo normale di compressione.

Caratteristiche geometrico-inerziali dei pali

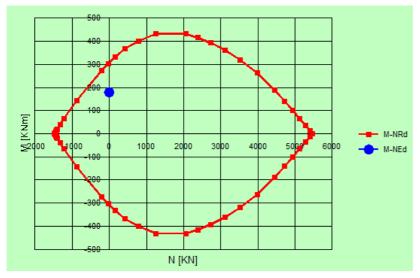
Diametro palo	фр	= 600 mm	
Area palo	A_{p}	$= \pi * \phi_0^2/4 =$	2827.43 cm ²


Armatura corrente del palo	A _a	= 12 _{\phi} 20=	37.68cm ² >1% A _p
Copriferro	С	= 6 mm	
Staffe	As	= \phi 10/20=	

Le verifiche vengono eseguite considerando la condizione di carico più gravosa fra quelle analizzate.

Verifiche agli stati limite ultimi

Verifica a pressoflessione:


La verifica viene eseguita per la combinazione SLV.

Società di Progetto
Brebemi SpA

oc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
6129-00002-A00	04RCEII100002000001300	A00	45 di 139
-			

Si riporta il dominio di rottura della sezione:

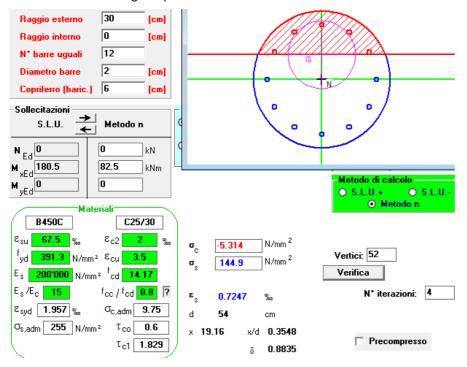
La verifica risulta soddisfatta.

Verifica a taglio:

La verifica viene eseguita per la combinazione SLV.

$V_{\sf sdu}$	81.50	kN
$M_{\sf sdu}$	0.00	kNm
$N_{\sf sdu}$	0.00	kN
φcirc	60	
bw	54	cm
d	36.38	cm
r_	1.236	m
A corone circolari	37.7	cm ²
A sl	18.85	cm ²
ф ferri	2.0	cm
C _{ric}	6	cm
α	90	gradi
α	1.57	rad
θ	-	gradi
ctgθ	-	
Asw	0	cm ²
passo staffe	0	cm
f _{cd}	16.667	N/mm ²
fctd _{0,05}	1.119	N/mm ²
fyd	391.304	N/mm ²
ρ	0.0096	
verifica senza a	armatura resisten	ta a taglio
V_{Rd}	88.44	kN

Non è necessaria armatura a taglio.


Società di Progetto Brebenii SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	46 di 139

Verifiche agli stati limite di esercizio

Verifica alle tensioni di esercizio:

La verifica viene eseguita per la combinazione SLE Rara.

Verifica di fessurazione:

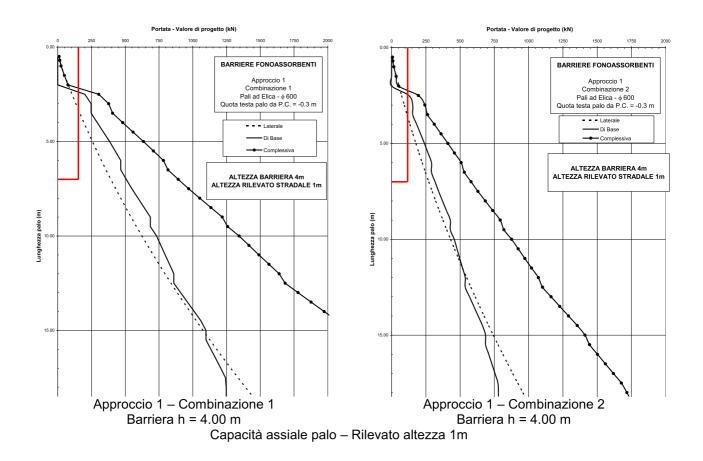
I tassi di lavoro nelle armature nelle Combinazioni di Carico agli Stati Limite di Esercizio (cautelativamente determinate con riferimento alle Combinazioni Rare) permangono inferiori ai limiti riportati nelle tabelle C4.1.II e C4.1.III della Circolare 2 febbraio 2009 n. 617 (punto C4.1.2.2.4.6). La verifica dell'ampiezza di fessurazione è da intendersi pertanto svolta per via indiretta ed implicitamente soddisfatta in ragione dei tassi di lavoro di progetto sulle armature precedentemente determinati.

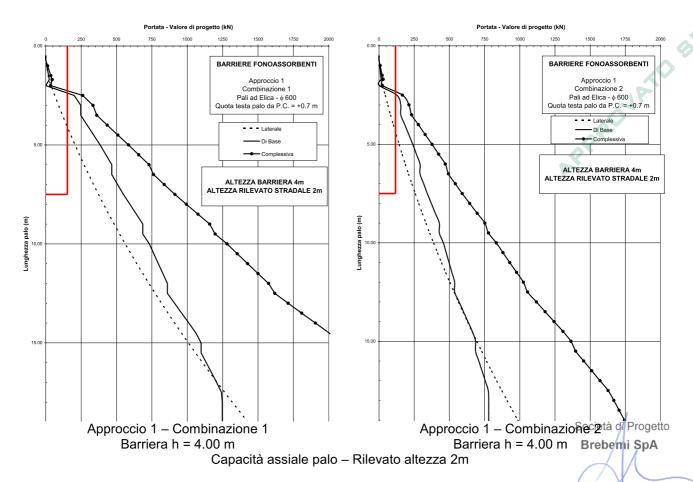
9.3.2 Verifica di portanza dei pali

Il Testo Unico al paragrafo 6.4.3.1 richiede l'esecuzione di verifiche di sicurezza con riferimento al "collasso per carico limite della palificata nei riguardi dei carichi assiali".

Le verifiche geotecniche sono state condotte in relazione alla stratigrafia di progetto secondo l'Approccio 1, il quale prevede due distinte combinazioni di carico:

- Combinazione 1: A1+M1+R1
- Combinazione 2: A2+M1+R2


Società di Progetto


Brebenii SpA

Si eseguono inoltre le verifiche per la combinazione di carico sismica; anche in questo caso si fa riferimento alle curve M1+R2.

FOGLIO

47 di 139

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	48 di 139

Dalle curve di capacità assiale relative ai pali di fondazione per le combinazioni M1-R1 e M1-R2, si ricava che i valori della portata di progetto complessiva (*laterale + di base*) sono sempre superiori ai massimi carichi agenti sul palo per le diverse combinazioni di carico prese in considerazione: le verifiche di portanza risultano soddisfatte.

Come si può dedurre dai grafici suddetti, inoltre, la verifica per carichi verticali non risulta mai dimensionante nei riguardi della lunghezza dei pali.

9.4 Travi di scavalco

Le barriere BA3 e BA4 risultano interferenti con tombini idraulici, in corrispondenza dei quali è risultato necessario spostare e/o eliminare localmente i pali di fondazione. I tratti di scavalco delle interferenze risultano:

Barriera	Tombino/i interferente/i	Sezione tarve di scavalco BxH [cm]	Luce massima [cm]
ваз	IDA12 – IDA13	80x50 (sezione sollecitata a taglio/torsione analoga alla sezione tipica di cordolo)	470
BA4	IDA 05	50x96	600

Si esegue la verifica a taglio/torsione della trave di scavalco della BA4, di sezione reagente minore e di maggiore luce

Le sollecitazioni oggetto di verifica risultano dovute al peso proprio della barriera (cautelativamente assunto come carico distribuito sulla trave di scavalco) ed al momento massimo alla base del montante:

Taglio: $V_{Ed} = \gamma_G^* p_{pan}^* h_{pan}^* L/2 = 1.5^* 3.40^* 4.00^* 6.00/2 = 61.20 \text{ kN}$

Momento torcente: $T_{Ed} = M_{W,SLU} = 37.95 \text{ kNm}$

Risulta:

Base	B =	500.00	mm
Altezza	H =	960.00	mm
Copriferro baricento armatura tesa	c =	58.00	mm
Area sezione in calcestruzzo	Ac =	480'000.00	mmq
Perimetro sezione in calcestruzzo	u =	2'920.00	mm
Ferri lembo teso (3 Φ 16)	As =	603.19	mmq
Area totale armatura nella sezione	Astot =	603.19	
Area armatura tesa resistente a flessione	Asl =	603.19	mmq Società di Progetto Brebemii SpA
Sforzo normale (minimo) di progetto Taglio (massimo) di progetto	NEd = VEd =	0.00 61.20	X

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	49 di 139

σср =

σcp rif =

Tensione media di compressione nella sezione

Tensione di compressione di riferimento

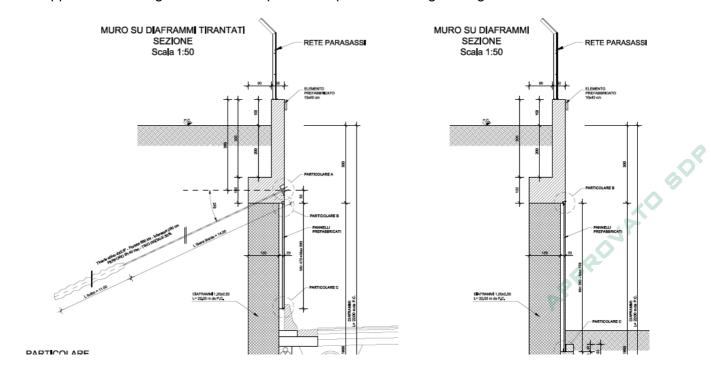
0.00 N/mmq

0.00 N/mmq

Altezza utile de	lla sezione	d =	902.00	mm
Coefficiente	k = 1+(200/d)^0,5	k =	1.4709	
Coefficiente	vmin = 0,035*k^1,5*fck^0,5	νmin =	0.3816	
Rapporto geom	etrico di armatura longitudinale	ρl =	0.0013	
Larghezza (min	ima) della sezione	bw =	500.00	mm
Resistenza a ta	glio di calcolo	VRd =	136.01	kN
Resistenza a ta	glio minima di calcolo	VRd min =	172.09	kN
Non occorre dis	sporre di armatura a taglio			
Coefficiente di	resistenza a taglio (lato calcestruzzo)	FS,V,cls =	0.356	
Torsiono (mass	ima) di progotto	TEd =	37.95	kNim
·	ima) di progetto		58.00	
•	centro armatura long. a torsione	c(T) =	164.38	mm
Spessore della		t =		mm
	dalla linea media delle pareti connesse	Ak =	267'021.96	mmq
	io del nucleo resistente	um =	2'262.47	mm
inclinazione de	i puntoni di cls rispetto asse trave	θ =	45.00	0
Momento torce	ente resistente lato calcestruzzo	TRcd =	464.51	kNm
Coefficiente di	resistenza a trazione (lato cls)	FS,T,cls =	0.082	
Coefficiente di	resistenza a taglio-trazione (lato cls)	FS,VT,cls =	0.437	
Area dell'armat	cura trasversale a torsione (1 Φ 10)	As =	78.54	mmq
Interasse tra du	ue armature trasversali consecutive	s =	200.00	mm
Momento torce	ente resistente lato armatura trasversale	TRsd =	82.06	kNm
Area dell'armat	tura longitudinale a torsione (3 Φ 16)	AI =	603.19	mmq
Momento torce	ente resistente lato armatura long.	TRId =	55.71	kNm
Resistenza a to	rsione di calcolo	TRd =	55.71	kN
				D.F

Società di Progetto Breberni SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	50 di 139


10. ANALISI DELLA PARATIA ESISTENTE DI APPROCCIO A GAA03

10.1 Geometria della struttura

Nel presente paragrafo vengono verificate le strutture della paratia di approccio alla Galleria Artificiale GAA03. Si tratta un manufatto esistente, inizialmente non dimensionato per sostenere le azioni derivanti dalle prevista superiore installazione della Barriera Antirumore BA2. Nel presente paragrafo vengono riproposte le verifiche di stabilità del manufatto in oggetto, soggetto a dette azioni aggiuntive.

Si riportano nel seguito le caratteristiche principali della paratia in oggetto. I diaframmi in oggetto hanno spessore 120 cm e hanno lunghezza di 19 metri essendo la loro testa a quota -3.00 m dal piano campagna. Essi sono sormontati da un cordolo gettato in opera, avente sezione ad L, affiorante per 1 m dal piano campagna.

Una rappresentazione geometrica della paratia è riportata nella figura seguente:

10.2 Caratteristiche dei materiali

Nel seguito si elencano le caratteristiche dei materiali utilizzati per le diverse parti costituenti la struttura.

10.2.1 Calcestruzzo

Classe di esposizione Tipo

Rapporto a/c

Società di Progetto Brebemi SpA

Calcestruzzo diaframmi di fondazione:

C25/30

XC2

0.56

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione .com	66129-00002-A00	04RCEII100002000001300	A00	51 di 139

Calcestruzzo per elevazioni: C32/40 XC4 0.47

10.2.2 Acciaio

Tipo

• Acciaio per c.a. in barre ad aderenza migliorata: B450C

10.2.3 Caratteristiche di progetto

Nel seguito si elencano le caratteristiche di progetto dei materiali utilizzati per la struttura.

C25/30

Classe	di resist	tenza	=	C 25/30
Rck	=	30	MPa	Valore caratteristico resistenza cubica
fck	=	24.9	MPa	Valore caratteristico resistenza cilindrica
fcm	=	32.9	MPa	Valore medio resistenza cilindrica
fctm	=	2.56	MPa	Valore medio resistenza a trazione semplice
fcfm	=	3.07	MPa	Valore medio resistenza a trazione per flessione
V	=	0.2		Coefficiente di Poisson
Ecm	=	31447	MPa	Modulo elastico
γс	=	1.5		Coefficiente parziale di sicurezza
αcc	=	0.85		Coefficiente risuttivo per resistenze di lunga durata
fcd	=	14.11	MPa	Resistenza di calcolo a compressione Resistenza di calcolo a trazione
fctd	=	1.19	MPa	Resistenza di calcolo a trazione
εcu	=	0.0035		Deformazione a rottura per il calcestruzzo
ε c0	=	0.002		Deformazione limite del tratto a parabola del legame costitutivo del
calcest	ruzzo			

C32/40

Classe	di resis	tenza	=	C32/40
Rck	=	40	MPa	Valore caratteristico resistenza cubica
fck	=	33.2	MPa	Valore caratteristico resistenza cilindrica
fcm	=	41.2	MPa	Valore medio resistenza cilindrica
fctm	=	3.10	MPa	Valore medio resistenza a trazione semplice
fcfm	=	3.72	MPa	Valore medio resistenza a trazione per flessione
٧	=	0.2		Coefficiente di Poisson
Ecm	=	33643	MPa	Modulo elastico
γс	=	1.5		Coefficiente parziale di sicurezza

Società di Progetto
Brebenii SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	52 di 139

αcc = 0.85 Coefficiente risuttivo per resistenze di lunga durata

fcd = 18.81 MPa Resistenza di calcolo a compressione

fctd = 1.45 MPa Resistenza di calcolo a trazione

 ϵ cu = 0.0035 Deformazione a rottura per il calcestruzzo

 $\epsilon c0 = 0.002$ Deformazione limite del tratto a parabola del legame costitutivo del

calcestruzzo

B450C

fyk nom= 450 MPa Valore nominale della tensione caratteristica di snervamento

ftk nom= 540 MPa Valore nominale della tensione caratteristica di rottura

ys = 1.15 Coefficiente parziale di sicurezza

Es = 210000 MPa Modulo elastico

fyd = 391.3 MPa Resistenza di calcolo

 ε su = 0.01 Deformazione a rottura per l'acciaio

10.3 Caratteristiche geotecniche del terreno

Le caratteristiche del terreno sul quale sorge l'opera vedono la presenza di una matrice sabbioso-ghiaiosa. Le caratteristiche meccaniche del terreno sono riassunte nel seguito.

	BreBeMi - Lotto 0A - Galleria artificiale GAA03																								
Quota	da P.C								Param	etri in c	ondizio	i drenate	1					Para	metri in	condizion	i non dre	enate	Peso c	li volume	Permeabilità'
da	а	Descrizione	Unità	Φ' _{k_SPT}	φ' _{k_CONTROLLO}	φ' _k	φ' _{ам1}	φ' _{dM2}	c' _k	C' _{dM1}	C' _{dM2}	da E	01 a	da E	25 a	da E	.T a	C_{uk}	Cu _{dM1}	Cu _{dM2}	da E	≣ _u a	naturale γ _n	sommerso γ'	k
(n	n)	(-)	(-)	(°)	(°)	(°)	(°)	(°)	(kPa)	(kPa)	(kPa)	(M	Pa)	(M	Pa)	(Mi	Pa)	(kPa)	(kPa)	(kPa)	(M	IPa)	(kN/m ³)	(kN/m ³)	(m/s)
0.0	2.0	Ricoprimento di origine antropica	0	-	-	35	35	29	0	0	0	30	30	10	10	-			-	-	-	-	20	11	1×E ⁻⁴ ÷E ⁻⁶
2.0	18.0	Ghiaia sabbiosa / Sabbia ghiaiosa / Sabbia limosa	II / III / IV	40	35	38	38	32	0	0	0	30	110	10	28	-	-	-	-	-	-	-	20	11	1×E ⁻⁴ ∘E ⁻⁶
18.0	20.5	Limo	v	-	-	30	30	25	0	0	0	-	-	-	-	9	9	75	75	54	30	30	20	11	1×E*+E*
20.5	35.0	Ghiaia sabbiosa / Sabbia ghiaiosa / Sabbia limosa	11 / 111 / IV	40	35	38	38	32	0	0	0	120	120	30	30	-	-		-	-	-	-6	20	11	1×E ⁻⁴ +E ⁻⁶
35.0	40.0	Limo	V	-	-	30	30	25	0	0	0	-	-	-	-	15	15	125	125	89	50	50	20	11	1×E-8+E-9

La permeabilità è stimata sulla base della granulometria / descrizione stratigrafica e, quando disponibili, su prove di permeabilità in sito

	LEGENDA PARAMETRI
Ф'к_SPT	Angolo di resistenza al taglio di picco ricavato a partire dai valori di Nspt;
φ'k_controllo	Angolo di resistenza al taglio di controllo ricavato a partire dalla densità relativa e dal peso di volume del materiale granulare;
φ ' _k	Angolo di resistenza al taglio caratteristico;
ф' _{dM1}	Angolo di resistenza al taglio di progetto secondo coefficienti parziali M1 come da NTC2008;
Ф'дм2	Angolo di resistenza al taglio di progetto secondo coefficienti parziali M2 come da NTC2008;
C' _k	Coesione efficace caratteristica;
C' _{dM1}	Coesione efficace di progetto secondo coefficenti parziali M1 come da NTC2008;
C' _{dM2}	Coesione efficace di progetto secondo coefficenti parziali M2 come da NTC2008;
E'01	Modulo elastico secante per livello di deformazione del terreno dello 0.1%;
E' ₂₅	Modulo elastico secante corrispondente alla mobilizzazione del 25% della resistenza del terreno;
E _{LT}	Modulo elastico a lungo termine per materiali coesivi;
C_{uk}	Resistenza non drenata caratteristica;
C _{UdM1}	Resistenza non drenata di progetto secondo coefficienti parziali M1 come da NTC2008;
C _{UdM2}	Resistenza non drenata di progetto secondo coefficienti parziali M2 come da NTC2008; Società di Progett
Eυ	Modulo elastico a breve termine per materiali coesivi; Brebemi SpA
γn	Peso di volume naturale;
γ	Peso di volume sommerso;
k	Permeabilità;

10.4 Analisi dei carichi

Nel seguente paragrafo si descrivono i carichi elementari impiegati nel modello.

Per i materiali si assumono i seguenti pesi specifici:

calcestruzzo armato: 25 kN/m³

terreno 21 kN/m³ (vedi paragrafo precedente)

Vento

Si considerano i carichi da vento determinati al punto 7.3.

Sovraccarico sul terreno dovuto al traffico

Si considera un sovraccarico p = 20 kN/m³ dovuto al traffico agente sul terreno a monte della paratia.

Azione sismica

La risultante delle forze inerziali orizzontali indotte dal sisma viene valutata con la seguente espressione:

$$F_h = P^* k_h$$

$$k_h = \alpha \beta \cdot a_{max}$$

I coefficienti α e β , in accordo con le NTC , valgono:

$$\alpha = 0.95$$

$$\beta = 0.4$$

Pertanto, i coefficienti sismici valgono:

$$k_h = \alpha \beta \cdot a_{max} = 0.0869$$

$$k_v = 0.5 k_h = 0.0435$$

Il calcolo delle spinte in condizione sismica viene eseguito attraverso l'incremento dinamico di spinta del terreno calcolato secondo la formula di Mononobe e Okabe:

$$\Delta P_d = \frac{1}{2} k_{AE} \cdot \gamma \cdot h^2$$

dove l'altezza h è definita come l'altezza massima dello scavo a cui vengono cautelativamente aggiunti 2m. Il coeffieciente di spinta k_{AE} viene calcolato automaticamente dal programma di calcolo.

10.5 Analisi della struttura

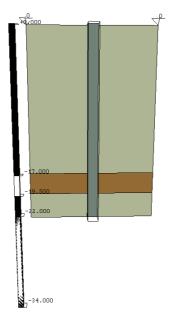
L'analisi della struttura è stata condotta con l'ausilio del software PARATIE 7.0 prodotto e distribuito da HARPACEAS – Viale Richard 1 Milano.

Brebenii SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione som	66129-00002-A00	04RCEII100002000001300	A00	54 di 139

Per modellare correttamente le spinte del terreno partendo dalla quota di piano campagna, il diaframma è stato modellato come avente testa allineata a livello del piano campagna ossia di lunghezza totale pari a 22 metri, di cui 10 m fuori terra e 12 m infissi.

I diaframmi di imbocco all'opera principale sono tirantati con tiranti attivi definitivi, costituiti da n.4 trefoli da 0,6", di portata 600 KN, interasse 2.50 m e tesati inizialmente al 50% della loro portata.

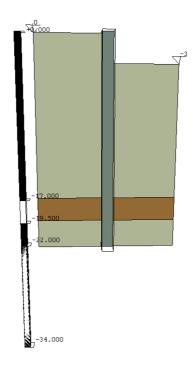

La quota di imposta è situata a -2.50 m dal piano campagna e l'inclinazione di 24g, la lunghezza libera è di 14 m mentre la lunghezza fissa di ancoraggio è di 11 m.

Per maggiori dettagli si rimanda alla carpenteria ed armatura riportata negli elaborati di progetto.

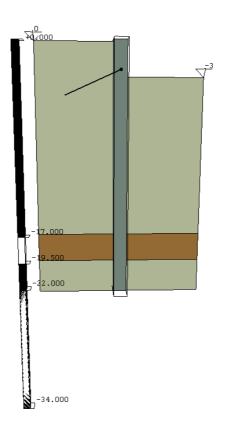
10.5.1 Fasi

Il progetto e la verifica dei diaframmi è stato condotto secondo uno schema a fasi come meglio identificato nelle figure seguenti:

1) realizzazione della paratia di diaframmi


Società di Progetto

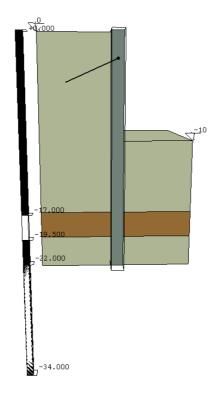
Brebemi SpA


APPROUNT BOP

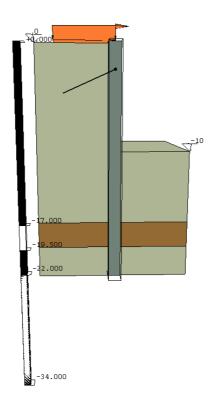
	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
rconnessione .c.a.	66129-00002-A00	04RCEII100002000001300	A00	55 di 139

2) scavo a valle fino a quota -3.0 m da piano campagna

3) realizzazione del primo ordine di tiranti a quota -2.5 m da piano campagna


Società di Progetto
Brebenii SpA

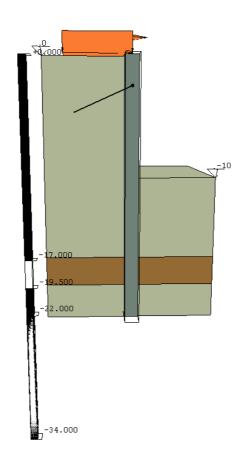
APPROVATO BOP


Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
66129-00002-A00	04RCEII100002000001300	A00	56 di 139

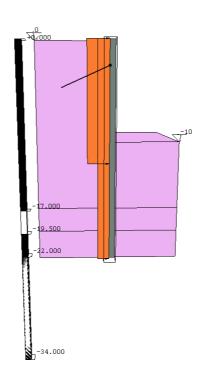
4) scavo a valle fino alla quota di massimo scavo ossia -10.0 m da piano campagna

interconnessione

APPROVATO BOP 5) applicazione del sovraccarico variabile: Vento carico principale, Traffico carico secondario



Società di Progetto


Brebemi SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	57 di 139

6) applicazione del sovraccarico variabile: Traffico carico principale, Vento carico secondario

7) applicazione del sisma:

Società di Progetto Breberni SpA

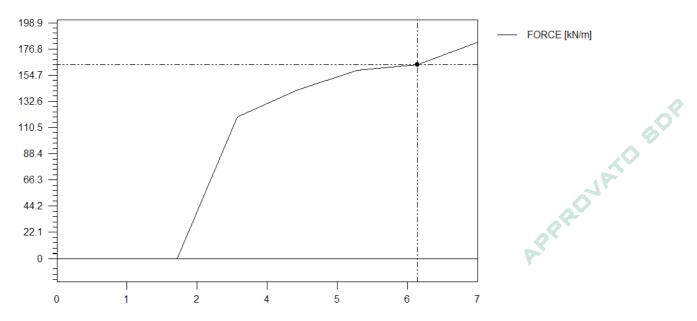
APPROVATO BOP

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	58 di 139

10.6 Sollecitazioni e verifiche

In questo paragrafo vengono eseguite le verifiche riguardanti i tiranti e la paratia.

Per la resistenza dei vari elementi si fa riferimento alla Relazione di Calcolo dell'opera (rif. documento 40360-GAA03-A01.


10.6.1 Sollecitazioni assiali sui tiranti

La sollecitazione massima che i tiranti sono in grado di sopportare è pari a 881.46 kN (rif. documento 40360-GAA03-A01).

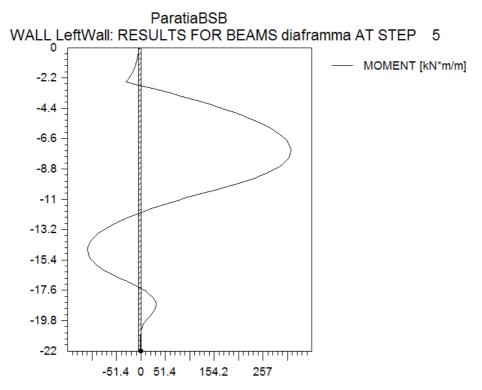
Nel nostro caso (figura sottostante) lo sforzo assiale massimo sui tiranti attinente alle fasi 5 e 6 risulta essere pari a:

NEd = 163.78*2.5*1.5=614.175 kN < 881.46 kN

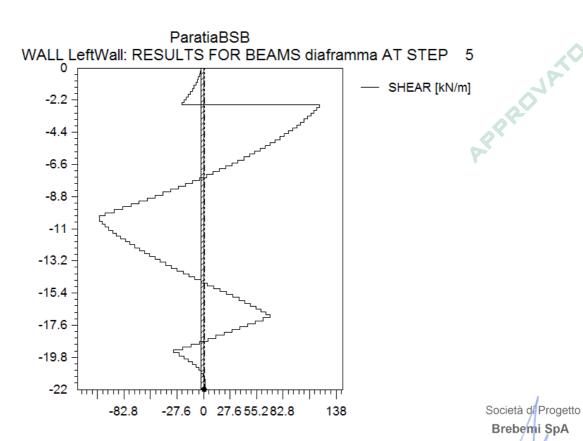
dove 2,5 m è l'interasse tra i tiranti e 1,5 è il coefficiente parziale di sicurezza.

Pertanto la verifica risulta soddisfatta.

10.6.2 Sollecitazioni sul diaframma


Nelle figure sottostanti vengono riportati gli andamenti del momento flettente e del taglio rispettivamente allo step 5 (vento carico principale, traffico carico secondario) e allo step 6 (traffico carico principale e vento carico secondario):

Società di Progetto
Brebenii SpA


FOGLIO

59 di 139

Diagramma del momento flettente STEP 5:

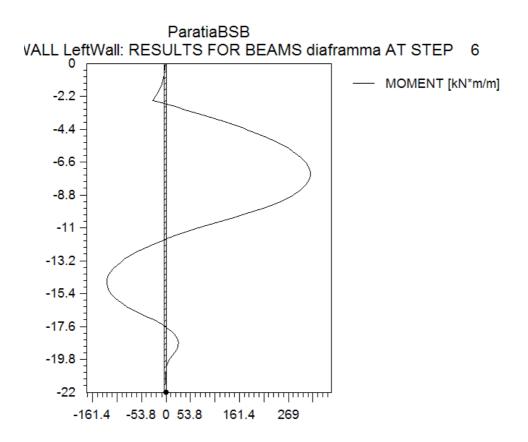
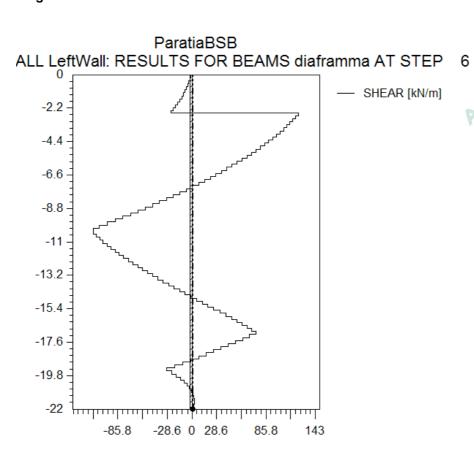


Diagramma del taglio STEP 5:



	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	60 di 139

Diagramma del momento flettente STEP 6:

Diagramma del taglio STEP 6:

Società di Progetto

Brebemi SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	61 di 139

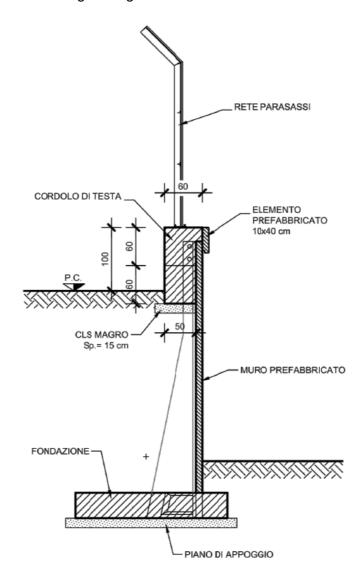
Il taglio e il momento resistente della paratia sono forniti dal documento 40360-GAA03-A01. Nel caso in esame le verifiche risultano:

$$M_{Ed} \cong 300*1.5 = 450 \text{ KNm/m} < M_{Rd} = 1066.7 \text{ KNm/m}$$
 $V_{Ed} \cong 130*1.5 = 195 \text{ KN/m} < V_{Rd} = 261.55 \text{ KN/m}$

tutte le verifiche risultano pertanto soddisfatte.

APPROVATO BOP

Società di Progetto
Brebenii SpA



11. ANALISI DEL MURO ESISTENTE ESISTENTE DI RISVOLTO R1

11.1 Geometria della struttura

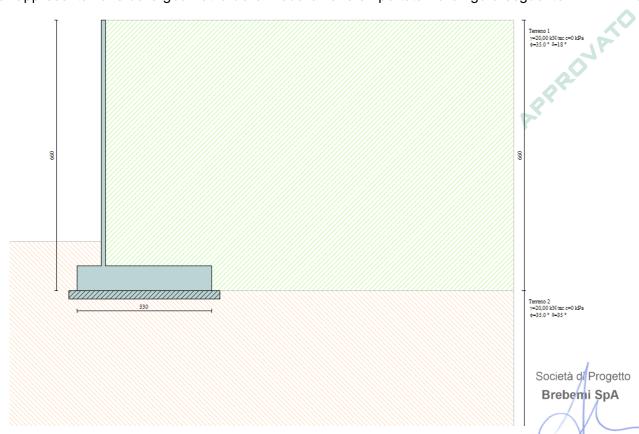
Nel presente paragrafo vengono verificati i muri di risvolto R1. Si tratta di muri esistenti, inizialmente non dimensionati per sostenere le azioni derivanti dalle prevista superiore installazione della Barriera Antirumore BA2. Nel presente paragrafo vengono riproposte le verifiche di stabilità del muro in oggetto, soggetto a dette azioni aggiuntive.

In particolare viene svolta, a favore di sicurezza, l'analisi del concio di muro 424 (massimo sviluppo in elevazione) che presenta la seguente geometria:

L'opera è costituita da un muro di altezza complessiva pari a 6.600 m. Di seguito si riepilogano le caratteristiche geometriche dell'opera:

Altezza del paramento Spessore in sommità 6.00 [m]

0.10 [m]


APPROUNT GOP

interconnessione .com.	Doc. N. 66129-00002-A00	CODIFICA DOCUMENTO 04RCEII100002000001300	REV. A00	FOGLIO 63 di 139
Spessore all'attacco con la	fondazione	0.10 [m]		
Inclinazione paramento este	erno	0.00 [°]		
Inclinazione paramento inte	rno	0.00 [°]		
Fondazione Lunghezza mensola fondaz	ione di valle	0.60 [m]		
Lunghezza mensola fondaz		2.60 [m]		
Lunghezza totale fondazion	е	3.30 [m]		
Inclinazione piano di posa d	lella fondazione	0.00 [°]		
Spessore estremità fondazione	one di valle	0.60 [m]		
Spessore all'incastro fondaz	zione di valle	0.60 [m]		
Spessore all'incastro fondaz	zione di monte	0.60 [m]		
Spessore estremità fondazione	one di monte	0.60 [m]		
Spessore magrone		0.20 [m]		

11.2 Analisi della struttura

L'analisi della struttura è stata condotta con l'ausilio di una modellazione numerica agli elementi finiti condotta con il codice di calcolo MAX10.10 di Aztec Informatica.

Una rappresentazione della geometria della modellazione è riportata nella figura seguente:

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione con	66129-00002-A00	04RCEII100002000001300	A00	64 di 139

Analisi dei carichi

Nel seguente paragrafo si descrivono i carichi elementari da assumere per le verifiche di resistenza, in esercizio ed in presenza dell'evento sismico.

Vengono prese in considerazione n°5 Condizioni Elementari di carico, di seguito determinate.

Tali Combinazioni Elementari saranno opportunamente combinate secondo quanto previsto dalla normativa vigente.

Per i materiali si assumono i seguenti pesi specifici:

calcestruzzo armato: 25 kN/m³

rilevato 20 kN/m³

CdC 1: Peso proprio

Il peso proprio è calcolato automaticamente dal programma di calcolo.

CdC 2: Spinta del terreno

Secondo quanto riportato in precedenza, si assumono i seguenti parametri:

 $\gamma_t = 20 \text{ kN/m}^3$

 $k_0 = 0.4264$

 $k_a = 0.2461$

CdC 3: Sovraccarico sul terreno

Si considera un sovraccarico $p = 20 \text{ kN/m}^3$ agente sul terreno a monte del muro.

CdC 4: Azione sismica

La vita nominale V_N dell'opera è stata assunta pari a 100 anni.

La classe d'uso assunta è la IV da cui si ricava $C_u = 2$.

Società di Progetto

Il periodo di riferimento per l'azione sismica, data la vita nominale e la classe d'uso vale: V_R =200 anni.

I parametri sismici di progetto assunti sono riportati in tabella:

STATO LIMITE	a _g	F ₀	T _c *
	(g)	(-)	
SALVAGUARDIA VITA	0.183	2.452	0.287

Con riferimento allo SLV la componente orizzontale dell'accelerazione sismica equivalente da applicare per metodi di calcolo pseudo-statici risulta pari a:

$$S_S = 1.43$$
 (terreno categoria tipo C)

$$a_{max} = S_S * S_T * a_g = 1.43 * 1.00 * 0.183 g = 0.262 g$$

Dove:

S_s: coefficiente che comprende l'effetto dell'amplificazione stratigrafica (par.3.2.3.2.1 Norme Tecniche per le Costruzioni);

S_T: coefficiente che comprende l'effetto dell'amplificazione topografica (par.3.2.3.2.1 Norme Tecniche per le Costruzioni).

ROVATO BOY In virtù di quanto sopra esposto si ricava il coefficiente sismico orizzontale, considerando un β_m pari a 0.24 come indicato nelle NTC:

$$k_h = \beta_m^* a_{max} / g = 0.0628$$

Il coefficiente sismico verticale risulta invece:

$$k_v = 0.5 k_h = 0.0314$$

Nel caso di sisma orizzontale si considera, oltre alle componenti inerziali, l'incremento di spinta del terreno ΔP_d dovuta al sisma utilizzando la teoria di Mononobe-Okabe.

CdC 5: Azione del vento

I coefficienti e la pressione del vento vengono calcolati in accordo con il paragrafo 7.3.

Si ottiene pertanto una pressione p_{max} pari a:

$$p_{\text{max}} = q_b * c_e * c_p * c_d = 390.63 * 1.80 * 1.20 = 0.86 \text{ kPa}$$

Il vento è considerato agente sulla barriera antirumore presente in sommità del muro di risvolto L'azione del vento è tenuta in conto nel programma di calcolo applicando il taglio e il momento risultante sulla barriera:

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	66 di 139

T=pmax*h=0.86kPa*3m=2.58 kN/m M=T*h/2=2.58*3/2=3.87 kNm/m Dove h=3m è l'altezza della barriera.

11.3 Metodo di Calcolo della spinta sul muro e delle verifiche di stabilità

11.3.1 Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ. In particolare si distinguono combinazioni di carico di tipo A1-M1 nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo A2-M2 nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

11.3.2 Metodo di Mononobe-Okabe

Il metodo di Mononobe-Okabe adotta le stesse ipotesi della teoria di Coulomb: un cuneo di spinta a monte del muro che si muove rigidamente lungo una superficie di rottura rettilinea. Mette in conto inoltre l'inerzia sismica del cuneo in direzione orizzontale e verticale. Dall'equilibrio del cuneo si ricava la spinta che il terreno esercita sull'opera di sostegno in condizioni sismiche. Viene messo in conto, come nella teoria di Coulomb, l'esistenza dell' attrito fra il terreno e il paramento del muro, e quindi la retta di spinta risulta inclinata rispetto alla normale al paramento stesso di un angolo di attrito terra-muro.

L'espressione della spinta totale (statica più sismica) esercitata da un terrapieno, di peso di volume γ , su una parete di altezza H, risulta espressa secondo la teoria di Mononobe-Okabe dalla seguente relazione

$$S = 1/2(1\pm k_v)\gamma H^2 K_a$$

Ka rappresenta il coefficiente di spinta attiva espresso da

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	67 di 139

L'angolo θ è legato al coefficiente sismico dalla seguente espressione

$$tan(\theta)=k_h/(1\pm k_v)$$

dove k_h e k_v rappresentano in coefficiente di intensità sismica orizzontale e verticale.

Nel caso in cui il terrapieno sia gravato di un sovraccarico uniforme Q l'espressione della pressione e della spinta diventano

$$\sigma_a = (\gamma z + Q)K_a$$

$$S = (1/2\gamma H^2 + QH)K_a$$

Al carico Q corrisponde un diagramma delle pressioni rettangolare con risultante applicata a 1/2H. Nel caso di terreno dotato di coesione c l'espressione della pressione esercitata sulla parete, alla generica profondità z, diventa

$$\sigma_a = \gamma z K_a - 2c(K_a)^{1/2}$$

Al diagramma triangolare, espresso dal termine $\gamma z K_a$, si sottrae il diagramma rettangolare legato al termine con la coesione. La pressione σ_a risulta negativa per valori di z minori di

$$h_{c} = \frac{2c}{\gamma (K_{a})^{1/2}}$$

La grandezza h_c è detta altezza critica e rappresenta la profondità di potenziale frattura del terreno. E' chiaro che se l'altezza della parete è inferiore ad h_c non abbiamo nessuna spinta sulla parete.

11.3.3 Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ε l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

	Doc. N.	CODIFICA DOCUMENTO	REV.
interconnessione	66129-00002-A00	04RCEII100002000001300	A00

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove θ = arctg(k_h /(1± k_v)) essendo k_h il coefficiente sismico orizzontale e k_v il coefficiente sismico verticale, definito in funzione di k_h .

In presenza di falda a monte, θ assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = arctg[(\gamma_{sat}/(\gamma_{sat}-\gamma_{w}))^{*}(k_{h}/(1\pm k_{v}))]$$

Terreno a permeabilità elevata

$$\theta = arctg[(\gamma/(\gamma_{sat}-\gamma_w))^*(k_h/(1\pm k_v))]$$

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta \cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ .

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W$$
 $F_{iV} = \pm k_v W$

Società di Progetto

FOGLIO 68 di 139

dove *W* è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccamenti e va applicata nel baricentro dei pesi.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione .c.a.	66129-00002-A00	04RCEII100002000001300	A00	69 di 139

11.3.4 Verifica a ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_s) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza η_r .

Eseguendo il calcolo mediante gli eurocodici si puo impostare $\eta_r >= 1.0$.

Deve quindi essere verificata la seguente diseguaglianza

Il momento ribaltante M_r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante.

Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

11.3.5 Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_s>=1.0

Brebemi SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	70 di 139

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

11.3.6 Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$Q_u$$
 $\Rightarrow= \eta_q$ R

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_q >=1.0

Le espressioni di Hansen per il calcolo della capacità portante si differenziano a secondo se siamo in presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale

Brebemi SpA

Società di Progetto

 $q_u = cN_cs_cd_ci_cg_cb_c + qN_qs_qd_qi_qg_qb_q + 0.5B\gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$

Caso di terreno puramente coesivo φ=0

$$q_u = 5.14c(1+s_c+d_c-i_c-g_c-b_c) + q$$

in cui d_c , d_q , d_γ , sono i fattori di profondità; s_c , s_q , s_γ , sono i fattori di forma; i_c , i_q , i_γ , sono i fattori di inclinazione del carico; b_c , b_q , b_γ , sono i fattori di inclinazione del piano di posa; g_c , g_q , g_γ , sono i fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori N_c , N_q , N_γ sono espressi come:

$$N_q = e^{\pi t g \phi} K_p$$

$$N_c = (N_q - 1)ctg\phi$$

$$N_{\gamma} = 1.5(N_{q} - 1)tg\phi$$

Vediamo ora come si esprimono i vari fattori che compaiono nella espressione del carico ultimo.

Fattori di forma

$$per \ \phi = 0 \qquad \qquad s_c = 0.2 \frac{B}{L}$$

per
$$\phi > 0$$
 $s_c = 1 + \frac{N_q}{N_c} \frac{B}{L}$

$$s_q = 1 + \frac{B}{L} tg\phi$$

$$s_{\gamma} = 1 - 0.4 \frac{B}{L}$$

Fattori di profondità

Si definisce il parametro k come

$$k = \frac{D}{R}$$
 se $\frac{D}{R} <= 1$

APPROVATO BOP

$$k = arctg \frac{D}{B}$$
 se $\frac{D}{B} > 1$

I vari coefficienti si esprimono come

per
$$\phi = 0$$
 $d_c = 0.4k$

per
$$\phi > 0$$
 $d_c = 1 + 0.4k$

$$d_a = 1 + 2tg\phi(1-\sin\phi)^2k$$

$$_{\gamma} = 1$$

Fattori di inclinazione del carico

Indichiamo con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con A_f l'area efficace della fondazione ottenuta come A_f = B'xL' (B' e L' sono legate alle dimensioni effettive della fondazione B, L e all'eccentricità del carico e_B, e_L dalle relazioni $B' = B-2e_B$ $L' = L-2e_L)$ e con η l'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale). APPRILYATO GOP

I fattori di inclinazione del carico si esprimono come:

per
$$\phi = 0$$
 $i_c = 1/2(1 - \sqrt{[1 - \frac{H}{A_f c_a}]})$

per
$$\phi > 0$$
 $i_c = i_q - \frac{1 - i_q}{N_q - 1}$

$$i_q = (1 - \frac{0.5H}{V + A_f c_a ctg\phi})^5$$

$$\label{eq:eta_eq} \text{per } \eta = 0 \qquad \quad i_{\gamma} = (1 \text{ - } \frac{0.7H}{V + A_f c_a ctg \varphi})^5$$

$$\label{eq:continuous} \text{per } \eta \geq 0 \qquad \quad i_{\gamma} = (1 \text{ - } \frac{(0.7 \text{-} \eta^{\circ} / 450^{\circ}) H}{V + A_f c_a ctg \varphi})^5$$

Fattori di inclinazione del piano di posa della fondazione

Società di Progetto Brebemi SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione ****	66129-00002-A00	04RCEII100002000001300	A00	73 di 139

$$per \ \phi\!\!=\!\!0 \qquad \quad b_c = \frac{\eta^\circ}{147^\circ}$$

$$per \ \phi {\gt} 0 \qquad \quad b_c = 1 \ - \frac{\eta^\circ}{147^\circ}$$

$$b_q = e^{-2\eta t g \phi}$$

$$b_{\gamma}=e^{\text{-}2.7\eta tg\varphi}$$

Fattori di inclinazione del terreno

$$per \ \phi = 0 \qquad \qquad g_c = \frac{\beta^\circ}{147^\circ}$$

per
$$\phi > 0$$
 $g_c = 1 - \frac{\beta^{\circ}}{147^{\circ}}$

$$g_q = g_{\gamma} = (1-0.05 \text{tg}\beta)^5$$

APPROUNT BOP Per poter applicare la formula di Hansen devono risultare verificate le seguenti condizioni:

$$H < Vtg\delta + A_fc_a$$

$$\beta \le \phi$$

$$i_q, i_\gamma > 0$$

$$\beta + \eta \le 90^{\circ}$$

11.3.7 Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a η_α

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_q >=1.0

Società di Progetto

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	74 di 139

del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

dove il termine m è espresso da

$$m = (1 + \frac{tg\phi_i tg\alpha_i}{\eta}) \cos\alpha_i$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima}, c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approsimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare finquando il valore calcolato coincide con il valore assunto.

11.4 Geometria profilo terreno

11.4.1 Terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

Brebenii SpA

N numero ordine del punto

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	75 di 139

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	X	Υ	Α
1	2,00	0,00	0,00
2	10,00	0,00	0,00

11.4.2 Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0,00 [°]

Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0,60 [m]

Descrizione terreni

Simbologia adottata

Nr.	Indice del terreno
Descrizione	Descrizione terreno
γ	Peso di volume del terreno espresso in [kN/mc]
γs	Peso di volume saturo del terreno espresso in [kN/mc]
ϕ	Angolo d'attrito interno espresso in [°]
δ	Angolo d'attrito terra-muro espresso in [°]
С	Coesione espressa in [kPa]
Ca	Adesione terra-muro espressa in [kPa]

Descrizione	γ	γs	ф	δ	С	Ca
Terreno 1	20,00	20,00	35.00	17.50	0,0	0,0
Terreno 2	20,00	20,00	35.00	35.00	0,0	0,0

11.4.3 Stratigrafia

Simbologia adottata

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	76 di 139

N Indice dello strato

H Spessore dello strato espresso in [m]

a Inclinazione espressa in [°]

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta
Terreno Terreno dello strato

Nr.	Н	а	Kw	Ks	Terreno
1	6,60	0,00	0,00	0,00	Terreno 1
2	10,00	0,00	9,01	0,00	Terreno 2

11.5 Condizioni di carico

11.5.1 Normativa

Le verifiche geotecniche vengono condotte secondo quanto disposto dall'Approccio 2 previsto dal D.M. 14 gennaio 2008.

Simbologia adottata

Coefficiente parziale sfavorevole sulle azioni permanenti γGsfav Coefficiente parziale favorevole sulle azioni permanenti γGfav Coefficiente parziale sfavorevole sulle azioni variabili γQsfav Coefficiente parziale favorevole sulle azioni variabili γQfav Coefficiente parziale di riduzione dell'angolo di attrito drenato γtan_φ' Coefficiente parziale di riduzione della coesione drenata γ_{c'} Coefficiente parziale di riduzione della coesione non drenata γ_{cu} Coefficiente parziale di riduzione del carico ultimo γ_{qu} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce γ_{γ}

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	γ̈Gfav	1,00	1,00	0,90	0,90
Permanenti	Sfavorevole	γ̈Gsfav	1,30	1,00	1,10	1,30 Società di Progetto
Variabili	Favorevole	γ̈Qfav	0,00	0,00	0,00	Brebenn SpA
Variabili	Sfavorevole	γQsfav	1,50	1,30	1,50	1,50

interconnessione	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
	66129-00002-A00	04RCEII100002000001300	A00	77 di 139

Coefficienti parziali per i parametri geotecnio	ci del terreno:				
Parametri		M1	M2	M2	M1
Tangente dell'angolo di attrito	γ̃tanφ'	1,00	1,25	1,25	1,00
Coesione efficace	γ _{c'}	1,00	1,25	1,25	1,00
Resistenza non drenata	γcu	1,00	1,40	1,40	1,00
Resistenza a compressione uniassiale	$\gamma_{ m qu}$	1,00	1,60	1,60	1,00
Peso dell'unità di volume	γ_{γ}	1,00	1,00	1,00	1,00

Coefficienti di partecipazione combinazioni sismiche

Coefficienti par	ziali per le	azioni o per	l'effetto delle a	azioni:

Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	γGfav	1,00	1,00	1,00	0,90
Permanenti	Sfavorevole	γ̃Gsfav	1,00	1,00	1,00	1,30
Variabili	Favorevole	γQfav	0,00	0,00	0,00	0,00
Variabili	Sfavorevole	γ̈Qsfav	1,00	1,00	1,00	1,50
Coefficienti nonciali		a: dal 4a				IP
•	per i parametri geotecni	<u>ci dei terreno:</u>				07
Parametri			M1	M2	M2	M1
Tangente dell'ango	lo di attrito	γtanφ'	1,00	1,25	1,25	1,00
Coesione efficace		γс'	1,00	1,25	1,25	1,00
Resistenza non dre	enata	γ _{cu}	1,00	1,40	1,40	1,00
Resistenza a comp	ressione uniassiale	γ_{qu}	1,00	1,60	1,60	1,00
Peso dell'unità di v	olume	γ_{γ}	1,00	1,00	1,00	1,00

FONDAZIONE SUPERFICIALE

Coefficienti parziali γ_{R} per le verifiche agli stati limite ultimi STR e GEO

Verifica	Coe	efficienti parz	ziali
	R1	R2	R3
Capacità portante della fondazione	1,00	1,00	1,40
Scorrimento	1,00	1,00	1,10
Resistenza del terreno a valle	1,00	1,00	1,40
Stabilità globale		1,10	

11.5.2 Descrizione combinazioni di carico

Simbologia adottata

F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

- Coefficiente di partecipazione della condizione γ
- Ψ Coefficiente di combinazione della condizione

Combinazione n° 1 - Caso A1-I	<u> M1 (STR)</u>			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Combinazione n° 2 - Caso A1-I	<u> M1 (STR)</u>			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,30	1.00	1,30
Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Spinta terreno	SFAV	1,30	1.00	1,30
Combinazione n° 3 - Caso A1-I	<u> M1 (STR)</u>			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,30	1.00	1,30
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Combinazione n° 4 - Caso A1-I				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Spinta terreno	SFAV	1,30	1.00	1,30
Combinazione n° 5 - Caso EQU	1 (8111)			
Combinazione ii 3 - Caso EQC)T(*)T(
Daga nyanyia water	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	0,90	1.00	0,90
Peso proprio terrapieno	FAV	0,90	1.00	0,90

	Doc. N.		CODIFICA DOC	JMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	0	04RCEII1000020	000001300	A00	79 di 139
Spinta terreno	SFAV	1,10	1.00	1,10		
Combinazione n° 6 - Caso	A2-M2 (GEO-STA	<u>\B)</u>				
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	SFAV	1,00	1.00	1,00		
Peso proprio terrapieno	SFAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,00	1.00	1,00		
Combinazione n° 7 - Caso	A1-M1 (STR) - Sis	sma Vert.	<u>negativo</u>			
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	SFAV	1,00	1.00	1,00		
Peso proprio terrapieno	SFAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,00	1.00	1,00		
Combinazione n° 8 - Caso	A1-M1 (STR) - Sis	sma Vert.	<u>positivo</u>			
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	SFAV	1,00	1.00	1,00		
Peso proprio terrapieno	SFAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,00	1.00	1,00		
Combinazione n° 9 - Caso	EQU (SLU) - Sism	na Vert. ne	<u>egativo</u>			
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	FAV	1,00	1.00	1,00		
Peso proprio terrapieno	FAV	1,00	1.00	1,00		JA
Spinta terreno	SFAV	1,00	1.00	1,00		ORCI .
Combinazione n° 10 - Caso	EQU (SLU) - Sis	ma Vert. <u>r</u>	<u>oositivo</u>		A	PROJA
	S/F	γ	Ψ	γ*Ψ	•	
Peso proprio muro	FAV	1,00	1.00	1,00		
Peso proprio terrapieno	FAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,00	1.00	1,00		
Combinazione n° 11 - Caso) A2-M2 (GEO-ST	AB) - Sisr	ma Vert. positivo	<u>)</u>		
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	SFAV	1,00	1.00	1,00		
B	05417	4.00	4.00	4.00		

SFAV

SFAV

S/F

SFAV

Combinazione n° 12 - Caso A2-M2 (GEO-STAB) - Sisma Vert. negativo

Peso proprio terrapieno

Spinta terreno

Peso proprio muro

1,00

1,00

γ

1,00

1.00

1.00

Ψ

1.00

1,00

1,00

γ*Ψ

1,00

Società di Progetto

Brebemi SpA

	Doc. N.		CODIFICA DOC		REV.	FOGLIO
interconnessione	66129-00002-A00)	04RCEII1000020	000001300	A00	80 di 139
Peso proprio terrapieno	SFAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,00	1.00	1,00		
<u>Combinazione n° 13 - Caso</u>	A1-M1 (STR)					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	SFAV	1,30	1.00	1,30		
Peso proprio terrapieno	FAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,30	1.00	1,30		
traffico	SFAV	1.50	1.00	1.50		
Combinazione n° 14 - Caso	A1-M1 (STR)					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	FAV	1,00	1.00	1,00		
Peso proprio terrapieno	SFAV	1,30	1.00	1,30		
Spinta terreno	SFAV	1,30	1.00	1,30		
traffico	SFAV	1.50	1.00	1.50		
Combinazione n° 15 - Caso	A1-M1 (STR)					
	S/F	γ	Ψ	γ * Ψ		
Peso proprio muro	FAV	1,00	1.00	1,00		
Peso proprio terrapieno	FAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,30	1.00	1,30		
traffico	SFAV	1.50	1.00	1.50		_
Combinazione n° 16 - Caso	A1-M1 (STR)					PRETIVAT
	S/F	γ	Ψ	γ*Ψ		OP
Peso proprio muro	SFAV	1,30	1.00	. 1,30		? `
Peso proprio terrapieno	SFAV	1,30	1.00	1,30	Y	
Spinta terreno	SFAV	1,30	1.00	1,30		
traffico	SFAV	1.50	1.00	1.50		
Combinazione n° 17 - Caso	EQU (SLU)					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	FAV	0,90	1.00	0,90		
Peso proprio terrapieno	FAV	0,90	1.00	0,90		
Spinta terreno	SFAV	1,10	1.00	1,10		
traffico	SFAV	1.50	1.00	1.50		
Combinazione n° 18 - Caso	Δ2-M2 (GEO ST	ΔR)			;	Società di Proge
COMBINAZIONE II 10 - Caso	1112 (OLO-OT	<u>, (ט)</u>				Brebemi SpA

S/F

SFAV

Peso proprio muro

γ

1,00

γ*Ψ

1,00

Ψ

1.00

	Doc. N. 66129-00002-A00		CODIFICA DOCI		REV. A00	FOGLIO 81 di 139
interconnessione .c.a.						
Peso proprio terrapieno	SFAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,00	1.00	1,00		
traffico	SFAV	1.30	1.00	1.30		
Combinazione n° 19 - Caso	o A1-M1 (STR)					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	FAV	1,00	1.00	1,00		
Peso proprio terrapieno	SFAV	1,30	1.00	1,30		
Spinta terreno	SFAV	1,30	1.00	1,30		
traffico	SFAV	1.50	1.00	1.50		
vento	SFAV	1.50	0.60	0.90		
Combinazione n° 20 - Caso	o A1-M1 (STR)					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	FAV	1,00	1.00	1,00		
Peso proprio terrapieno	FAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,30	1.00	1,30		
traffico	SFAV	1.50	1.00	1.50		
vento	SFAV	1.50	0.60	0.90		
Combinazione n° 21 - Caso) A1-M1 (STR)					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	SFAV	1,30	1.00	1,30		
Peso proprio terrapieno	SFAV	1,30	1.00	1,30		IP
Spinta terreno	SFAV	1,30	1.00	1,30		0
traffico	SFAV	1.50	1.00	1.50		OP
vento	SFAV	1.50	0.60	0.90	P	APROVAT
Combinazione n° 22 - Caso) A1-M1 (STR)					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	SFAV	1,30	1.00	1,30		
Peso proprio terrapieno	FAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,30	1.00	1,30		
traffico	SFAV	1.50	1.00	1.50		
vento	SFAV	1.50	0.60	0.90		
Combinazione n° 23 - Caso	EQU (SLU)					
	S/F	γ	Ψ	γ*Ψ		Società di Proget
Peso proprio muro	FAV	0,90	1.00	0,90		Brebenii SpA
Peso proprio terrapieno	FAV	0,90	1.00	0,90		AM
Spinta terreno	SFAV	1,10	1.00	1,10		(/X)

	Doc. N.		CODIFICA DOC	UMENTO	REV.	V. FOGLIO	
interconnessione 8004	66129-00002-A00)	04RCEII1000020	000001300	A00	82 di 139	
traffico	SFAV	1.50	1.00	1.50			
vento	SFAV	1.50	0.60	0.90			
Combinazione n° 24 - Casc) A2-M2 (GEO-ST	<u>AB)</u>					
	S/F	γ	Ψ	γ*Ψ			
Peso proprio muro	SFAV	1,00	1.00	1,00			
Peso proprio terrapieno	SFAV	1,00	1.00	1,00			
Spinta terreno	SFAV	1,00	1.00	1,00			
traffico	SFAV	1.30	1.00	1.30			
vento	SFAV	1.30	0.60	0.78			
Combinazione n° 25 - Casc	A1-M1 (STR)						
	S/F	γ	Ψ	γ*Ψ			
Peso proprio muro	SFAV	1,30	1.00	1,30			
Peso proprio terrapieno	SFAV	1,30	1.00	1,30			
Spinta terreno	SFAV	1,30	1.00	1,30			
vento	SFAV	1.50	1.00	1.50			
Combinazione n° 26 - Casc	A1-M1 (STR)						
	S/F	γ	Ψ	γ*Ψ			
Peso proprio muro	SFAV	1,30	1.00	1,30			
Peso proprio terrapieno	FAV	1,00	1.00	1,00			
Spinta terreno	SFAV	1,30	1.00	1,30			
vento	SFAV	1.50	1.00	1.50		JA	
Combinazione n° 27 - Casc	A1-M1 (STR)					PREUNA'	
	S/F	γ	Ψ	γ*Ψ		? *	
Peso proprio muro	FAV	1,00	1.00	1,00	V		
Peso proprio terrapieno	SFAV	1,30	1.00	1,30			
Spinta terreno	SFAV	1,30	1.00	1,30			
vento	SFAV	1.50	1.00	1.50			
Combinazione n° 28 - Casc	<u> A1-M1 (STR)</u>						
	S/F	γ	Ψ	γ*Ψ			
Peso proprio muro	FAV	1,00	1.00	1,00			
Peso proprio terrapieno	FAV	1,00	1.00	1,00			
Spinta terreno	SFAV	1,30	1.00	1,30			
vento	SFAV	1.50	1.00	1.50		Società di Proge Breberni SpA	

Combinazione n° 29 - Caso EQU (SLU)

S/F

γ

Ψ

Brebemi SpA

	Doc. N.		CODIFICA DOC	JMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00)	04RCEII1000020	00001300	A00	83 di 139
	1		1		l	ı
Peso proprio muro	FAV	0,90	1.00	0,90		
Peso proprio terrapieno	FAV	0,90	1.00	0,90		
Spinta terreno	SFAV	1,10	1.00	1,10		
rento	SFAV	1.50	1.00	1.50		
Combinazione n° 30 - Caso	A2-M2 (GEO-ST	<u>AB)</u>				
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	SFAV	1,00	1.00	1,00		
Peso proprio terrapieno	SFAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,00	1.00	1,00		
rento	SFAV	1.30	1.00	1.30		
Combinazione n° 31 - Caso	A1-M1 (STR)					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	FAV	1,00	1.00	1,00		
Peso proprio terrapieno	SFAV	1,30	1.00	1,30		
Spinta terreno	SFAV	1,30	1.00	1,30		
raffico	SFAV	1.50	0.75	1.12		
ento	SFAV	1.50	1.00	1.50		
Combinazione n° 32 - Caso) A1-M1 (STR)					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	FAV	1,00	1.00	1,00		
Peso proprio terrapieno	FAV	1,00	1.00	1,00		, P
Spinta terreno	SFAV	1,30	1.00	1,30		.07'
raffico	SFAV	1.50	0.75	1.12		OP
rento	SFAV	1.50	1.00	1.50	P	PROVAT
Combinazione n° 33 - Caso) A1-M1 (STR)				¥	
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	SFAV	1,30	1.00	1,30		
Peso proprio terrapieno	SFAV	1,30	1.00	1,30		
Spinta terreno	SFAV	1,30	1.00	1,30		
raffico	SFAV	1,50	0.75	1,30		
ento	SFAV	1.50	1.00	1.50		
Combinazione n° 34 - Caso	λ Δ1-Μ1 (STR)					
Johnshazione II 34 - Caso	S/F	•	Ψ	γ*Ψ		1
laga propria mura		γ 1.20		•		Società di Proget
Peso proprio muro	SFAV	1,30	1.00	1,30		Brebenii SpA
Peso proprio terrapieno	FAV	1,00	1.00	1,00		

SFAV

1,30

1.00

Spinta terreno

1,30

	Doc. N.		CODIFICA DOCUMENTO		REV.	FOGLIO
interconnessione	66129-00002-A00)	04RCEII1000020	000001300	A00	84 di 139
traffico	SFAV	1.50	0.75	1.12		
vento	SFAV	1.50	1.00	1.50		
<u> Combinazione n° 35 - Caso</u>	EQU (SLU)					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	FAV	0,90	1.00	0,90		
Peso proprio terrapieno	FAV	0,90	1.00	0,90		
Spinta terreno	SFAV	1,10	1.00	1,10		
traffico	SFAV	1.50	0.75	1.12		
vento	SFAV	1.50	1.00	1.50		
Combinazione n° 36 - Caso	A2-M2 (GEO-ST	<u>AB)</u>				
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	SFAV	1,00	1.00	1,00		
Peso proprio terrapieno	SFAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,00	1.00	1,00		
raffico	SFAV	1.30	0.75	0.98		
vento	SFAV	1.30	1.00	1.30		
Combinazione n° 37 - Quas	i Permanente (SL	<u>.E)</u>				
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro		1,00	1.00	1,00		
Peso proprio terrapieno		1,00	1.00	1,00		
Spinta terreno		1,00	1.00	1,00		JA
Combinazione n° 38 - Frequ	<u>iente (SLE)</u>					PROVA
	S/F	γ	Ψ	γ*Ψ		,
Peso proprio muro		1,00	1.00	1,00	V	
Peso proprio terrapieno		1,00	1.00	1,00		
Spinta terreno		1,00	1.00	1,00		
traffico	SFAV	1.00	0.75	0.75		
Combinazione n° 39 - Frequ	<u>iente (SLE)</u>					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro		1,00	1.00	1,00		
Peso proprio terrapieno		1,00	1.00	1,00		
Spinta terreno		1,00	1.00	1,00		
vento	SFAV	1.00	0.20	0.20		Società di Prog

Combinazione n° 40 - Rara (SLE)

S/F

γ

interconnessione scan	Doc. N. 66129-00002-A00		CODIFICA DOCUMENTO 04RCEII100002000001300		REV. A00	FOGLIO 85 di 139
Peso proprio muro		1,00	1.00	1,00		
Peso proprio terrapieno		1,00	1.00	1,00		
Spinta terreno		1,00	1.00	1,00		
traffico	SFAV	1.00	1.00	1.00		
vento	SFAV	1.00	0.60	0.60		
Combinazione n° 41 - Rara (S	SLE)					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro		1,00	1.00	1,00		
Peso proprio terrapieno		1,00	1.00	1,00		
Spinta terreno		1,00	1.00	1,00		
vento	SFAV	1.00	1.00	1.00		
traffico	SFAV	1.00	0.75	0.75		

11.6 Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione

Sisma Combinazione sismica

CS_{SCO} Coeff. di sicurezza allo scorrimento

 CS_{RIB} Coeff. di sicurezza al ribaltamento

CS_{QLIM} Coeff. di sicurezza a carico limite

CS_{STAR} Coeff, di sicurezza a stabilità globale

CSST	_{TAB} Coett. al sicurez	za a stabilita globale				
С	Tipo	Sisma	cs sco	cs _{rib}	cs _{qlim}	CS _{stab}
1	A1-M1 - [1]		2,24		4,35	
2	A1-M1 - [1]		2,84		4,74	
3	A1-M1 - [1]		2,74		4,76	
4	A1-M1 - [1]		2,34		4,39	
5	EQU - [1]			2,40		
6	STAB - [1]					1,69
7	A1-M1 - [2]	Orizzontale + Verticale negativo	2,06		3,62	
8	A1-M1 - [2]	Orizzontale + Verticale positivo	2,10		3,48	
9	EQU - [2]	Orizzontale + Verticale negativo		1,95		
10	EQU - [2]	Orizzontale + Verticale positivo		1,99		
11	STAB - [2]	Orizzontale + Verticale positivo				1,51
12	STAB - [2]	Orizzontale + Verticale negativo				Sopj sje di Progetto
13	A1-M1 - [3]		2,39		3,20	Brebenii SpA
14	A1-M1 - [3]		2,09		2,87	(/
15	A1-M1 - [3]		2,02		2,82	

		Doc. N.	CODIFICA D	OCUMEN	ITO	REV.	FOGLIO
	interconnessione .c.a.	66129-00002-A00	04RCEII100	00200000	1300	A00	86 di 139
16	A1-M1 - [3]			2,47		3,22	
17	EQU - [3]				1,88		
18	STAB - [3]						1,53
19	A1-M1 - [4]			2,10		2,73	
20	A1-M1 - [4]			2,03		2,68	
21	A1-M1 - [4]			2,47		3,08	
22	A1-M1 - [4]			2,40		3,07	
23	EQU - [4]				1,83		
24	STAB - [4]						1,54
25	A1-M1 - [5]			2,83		4,35	
26	A1-M1 - [5]			2,74		4,37	
27	A1-M1 - [5]			2,34		3,97	
28	A1-M1 - [5]			2,25		3,93	
29	EQU - [5]				2,22		
30	STAB - [5]						1,71
31	A1-M1 - [6]			2,15		2,90	
32	A1-M1 - [6]			2,07		2,85	
33	A1-M1 - [6]			2,54		3,27	
34	A1-M1 - [6]			2,47		3,25	
35	EQU - [6]				1,87		
36	STAB - [6]						1,57
37	SLEQ - [1]			2,84		6,16	
38	SLEF - [1]			2,57		4,74	
39	SLEF - [1]			2,84		6,07	CANA
40	SLER - [1]			2,51		4,22	- 07'
41	SLER - [1]			2,57		4,44	DP-

11.7 Analisi della spinta e verifiche

11.7.1 Verifiche geotecniche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle

Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Doc. N. 66129-00002-A00 CODIFICA DOCUMENTO 04RCEII100002000001300 REV. A00 FOGLIO 87 di 139

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta metodo di Mononobe-Okabe

Calcolo del carico limite metodo di Hansen
Calcolo della stabilità globale metodo di Bishop
Calcolo della spinta in condizioni di Spinta attiva

<u>Sisma</u>

Combinazioni SLU

Accelerazione al suolo a_q 1.79 [m/s^2]

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.43

Coefficiente di amplificazione topografica (St) 1.00

Coefficiente riduzione (β_m) 0.24

Rapporto intensità sismica verticale/orizzontale 0.50

Coefficiente di intensità sismica orizzontale (percento) $k_h=(a_g/g^*\beta_m^*St^*S)=6.28$ Coefficiente di intensità sismica verticale (percento) $k_v=0.50 * k_h=3.14$

Combinazioni SLE

Accelerazione al suolo a_q 0.00 [m/s^2]

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.50

Coefficiente di amplificazione topografica (St) 1.00

Coefficiente riduzione (β_m) 0.18

Rapporto intensità sismica verticale/orizzontale 0.50

 $\label{eq:coefficiente} \mbox{Coefficiente di intensità sismica orizzontale (percento)} \qquad \qquad k_h = (a_g/g^*\beta_m^*St^*S) = 0.00$ $\mbox{Coefficiente di intensità sismica verticale (percento)} \qquad \qquad k_v = 0.50 \ ^*k_h = 0.00$

Forma diagramma incremento sismico Rettangolare

Partecipazione spinta passiva (percento) 0,0

Lunghezza del muro 2,50 [m]

Peso muro 63,2539 [kN]

Baricentro del muro X=0,72 Y=-5,53

Punto inferiore superficie di spinta X = 2,60 Y = -6,60

Società di Progetto

Brebenii SpA

Superficie di spinta

Brebemi SpA

Г		Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
	interconnessione .c.a.	66129-00002-A00	04RCEII100002000001300	A00	88 di 139

Punto superiore superficie di spinta		0	Y = 0.00
Altezza della superficie di spinta	6,60	[m]	
Inclinazione superficie di spinta(rispetto alla verticale)	0,00	[°]	

COMBINAZIONE n° 1

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica	139,3745	[kN]		
Componente orizzontale della spinta statica	132,9238	[kN]		
Componente verticale della spinta statica	41,9107	[kN]		
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]		
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]		
Peso terrapieno gravante sulla fondazione a monte	312,0000	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00	[m]
<u>Risultanti</u>				
Risultante dei carichi applicati in dir. orizzontale	132,9238	[kN]		
Risultante dei carichi applicati in dir. verticale	424,3646	[kN]		
Sforzo normale sul piano di posa della fondazione	424,3646	[kN]		
Sforzo tangenziale sul piano di posa della fondazione	132,9238	[kN]		
Eccentricità rispetto al baricentro della fondazione	0,33	[m]		0
Lunghezza fondazione reagente	3.30	[m]		P

Sforzo normale sul piano di posa della fondazione	424,3646	[kN]
Sforzo tangenziale sul piano di posa della fondazione	132,9238	[kN]
Eccentricità rispetto al baricentro della fondazione	0,33	[m]
Lunghezza fondazione reagente	3,30	[m]
Risultante in fondazione	444,6955	[kN]
Inclinazione della risultante (rispetto alla normale)	17,39	[°]
Momento rispetto al baricentro della fondazione	138,5099	[kNm]
Carico ultimo della fondazione	1845,8479	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	3,30	[m]
Tensione terreno allo spigolo di valle	204,91	[kPa]
Tensione terreno allo spigolo di monte	52,28	[kPa]

Fattori per il calcolo della capacità portante

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	89 di 139
			ı	
Fattori inclinazione	$i_c = 0.41$	$i_q = 0.43$	i	$_{\gamma} = 0.29$
Fattori profondità	$d_{c} = 1,15$	$d_{q} = 1,09$	d	_y = 1,00
Fattori inclinazione piano pos	$b_c = 1,00$	$b_{q} = 1,00$	b	_y = 1,00
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	g	_y = 1,00
I coefficienti N' tengono conto o	dei fattori di forma, pro	fondità, inclinazione carico,	inclinazione p	oiano di pos
inalinazione nondio				

inclinazione pendio.

$$N'_{c} = 21.61$$

$$N'_{c} = 21.61$$
 $N'_{q} = 15.52$

$$N'_{\gamma} = 9.84$$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.24
Coefficiente di sicurezza a carico ultimo	4.35

COMBINAZIONE n° 2

Peso muro sfavorevole e Peso terrapieno sfavorevole

Valore della spinta statica	139,3745	[kN]	
Componente orizzontale della spinta statica	132,9238	[kN]	
Componente verticale della spinta statica	41,9107	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40 [m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	√¢.
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	Y = -3.00 [m]
			20
Peso terrapieno gravante sulla fondazione a monte	405,6000	[kN]	OP.
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00 [m]
Risultanti			
Risultante dei carichi applicati in dir. orizzontale	132,9238	[kN]	
Risultante dei carichi applicati in dir. verticale	539,1008	[kN]	
Sforzo normale sul piano di posa della fondazione	539,1008	[kN]	
Sforzo tangenziale sul piano di posa della fondazione	132,9238	[kN]	
Eccentricità rispetto al baricentro della fondazione	0,21	[m]	
Lunghezza fondazione reagente	3,30	[m]	
Risultante in fondazione	555,2463	[kN]	
Inclinazione della risultante (rispetto alla normale)	13,85	[°]	
Momento rispetto al baricentro della fondazione	113,0790	[kNm]	Società di Progetto
Carico ultimo della fondazione	2553,0175	[kN]	Brebemi SpA

Tensioni sul terreno

interconnessione	66129-00002-A00	04RCEII10000200000		A00	90 di 139
Lunghezza fondazione reagente		3,30	[m]		
Tensione terreno allo spigolo di valle		225,67	[kPa]		
Tensione terreno allo spigolo di monte		101,06	[kPa]		

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,50$	$i_{q} = 0,52$	$i_{\gamma} = 0.39$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 26.58$$

$$N'_{q} = 18.84$$

139,3745

[kN]

$$N'_{\gamma} = 13.15$$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.84
Coefficiente di sicurezza a carico ultimo	4.74

COMBINAZIONE n° 3

Valore della spinta statica

Peso muro favorevole e Peso terrapieno sfavorevole

·	,			
Componente orizzontale della spinta statica	132,9238	[kN]		
Componente verticale della spinta statica	41,9107	[kN]		
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]		
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]		
Peso terrapieno gravante sulla fondazione a monte	405,6000	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00	[m]

<u>Risultanti</u>		
Risultante dei carichi applicati in dir. orizzontale	132,9238	[kN]
Risultante dei carichi applicati in dir. verticale	520,1246	[kN]
Sforzo normale sul piano di posa della fondazione	520 1246	[kN]

interconnessione	Doc. N. 66129-00002-A00	CODIFICA DOCUMENT 04RCEII100002000001		REV. A00	FOGLIO 91 di 139
Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione		132,9238 0,21 3,30 536,8411 14,34 108,6659	[kN] [m] [m] [kN] [°] [kNm]		
Carico ultimo della fondazione Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		2474,5111 3,30 217,48 97,74	[kN] [m] [kPa] [kPa]		

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0.49$	$i_{q} = 0,50$	$i_{\gamma} = 0.37$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$N'_{c} = 25.86$	$N'_{g} = 18.36$	$N'_{\gamma} = 12.66$
		,

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.74
Coefficiente di sicurezza a carico ultimo	4.76

COMBINAZIONE n° 4

Peso muro sfavorevole e Peso terrapieno favorevole

Valore della spinta statica	139,3745	[kN]	Società di Progetto
Componente orizzontale della spinta statica	132,9238	[kN]	Brebemi SpA
Componente verticale della spinta statica	41,9107	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40 [m]

	Doc. N.	CODIFICA DOCUMEN	ТО	REV.	FOGLIO
interconnessione ****	66129-00002-A00	04RCEII100002000001	300	A00	92 di 139
Inclinaz. della spinta rispetto	o alla normale alla superficie	17,50	[°]		
Coefficiente di spinta attiva	in condizioni statiche	0,2461	[°]		
Peso terrapieno gravante su	ulla fondazione a monte	312,0000	[kN]		
Baricentro terrapieno graval	nte sulla fondazione a monte	x = 1,30	[m]	Y = -3,00	[m]
<u>Risultanti</u>					
Risultante dei carichi applica	ati in dir. orizzontale	132,9238	[kN]		
Risultante dei carichi applica	ati in dir. verticale	443,3408	[kN]		
Sforzo normale sul piano di	posa della fondazione	443,3408	[kN]		
Sforzo tangenziale sul piano	o di posa della fondazione	132,9238	[kN]		
Eccentricità rispetto al baric	entro della fondazione	0,32	[m]		
Lunghezza fondazione reag	ente	3,30	[m]		
Risultante in fondazione		462,8388	[kN]		
Inclinazione della risultante	(rispetto alla normale)	16,69	[°]		
Momento rispetto al baricen	tro della fondazione	142,9230	[kNm]		
Carico ultimo della fondazio	ne	1944,4757	[kN]		
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reag	ente	3,30	[m]		
Tensione terreno allo spigol	o di valle	213,09	[kPa]		
Tensione terreno allo spigol	o di monte	55,60	[kPa]		
					JURTH
Fattori per il calcolo della ca					P
Coeff. capacità portante	$N_c = 46.12$	$N_{q} = 33.3$	30	$N_{\gamma} =$	33.92
Fattori forma	$s_c = 1.00$	$s_{c} = 1.0$	00	S., =	= 1.00

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0.43$	$i_{q} = 0,44$	$i_{\gamma} = 0.31$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 22.54$

N'_q = 16.15

 $N'_{\gamma} = 10.45$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.34 Coefficiente di sicurezza a carico ultimo 4.39

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	93 di 139

COMBINAZIONE n° 5

Valore della spinta statica	149,0559	[kN]		
Componente orizzontale della spinta statica	144,5290	[kN]		
Componente verticale della spinta statica	36,4558	[kN]		
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	14,16	[°]		
Coefficiente di spinta attiva in condizioni statiche	0,3111	[°]		
Peso terrapieno gravante sulla fondazione a monte	280,8000	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00	[m]
<u>Risultanti</u>				
Risultante dei carichi applicati in dir. orizzontale	144,5290	[kN]		
Risultante dei carichi applicati in dir. verticale	380,6644	[kN]		
Momento ribaltante rispetto allo spigolo a valle	317,9637	[kNm]		
Momento stabilizzante rispetto allo spigolo a valle	764,5411	[kNm]		
Sforzo normale sul piano di posa della fondazione	380,6644	[kN]		
Sforzo tangenziale sul piano di posa della fondazione	144,5290	[kN]		

[m]

[m]

[kN]

[kNm]

[°]

0,48

3,30

20,79

407,1781

181,5188

COEFFICIENTI DI SICUREZZA

Lunghezza fondazione reagente

Risultante in fondazione

Coefficiente di sicurezza a ribaltamento 2.40

Stabilità globale muro + terreno

Combinazione n° 6

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

Eccentricità rispetto al baricentro della fondazione

Inclinazione della risultante (rispetto alla normale)

Momento rispetto al baricentro della fondazione

W peso della striscia espresso in [kN]

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) α

angolo d'attrito del terreno lungo la base della striscia φ

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	94 di 139

- c coesione del terreno lungo la base della striscia espressa in [kPa]
- b larghezza della striscia espressa in [m]
- *u* pressione neutra lungo la base della striscia espressa in [kPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]=-1,07 Y[m]=1,07

Raggio del cerchio R[m]= 8,50

Ascissa a valle del cerchio Xi[m]= -6,60 Ascissa a monte del cerchio Xs[m]= 7,37

Larghezza della striscia dx[m]= 0,56

Coefficiente di sicurezza C= 1.69

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

22

13,8580

-24.86

-5,8251

0,0060

29.26

Striscia	W	α(°)	$\text{Wsin}\alpha$	b/cosα	ф	С	u
1	11,8161	75.20	11,4239	0,0214	29.26	0	0
2	29,9626	63.75	26,8716	0,0124	29.26	0	0
3	40,9409	56.11	33,9843	0,0098	29.26	0	0
4	49,2850	49.81	37,6492	0,0085	29.26	0	0
5	56,0241	44.26	39,1010	0,0077	29.26	0	0
6	61,6137	39.20	38,9425	0,0071	29.26	0	0
7	66,3052	34.49	37,5422	0,0066	29.26	0	0
8	70,2547	30.03	35,1549	0,0063	29.26	0	0
9	74,2609	25.76	32,2737	0,0061	29.26	0	0
10	77,8262	21.64	28,7038	0,0059	29.26	0	0
11	80,0580	17.64	24,2613	0,0058	29.26	0	0
12	81,8136	13.73	19,4128	0,0056	29.26	0	0
13	83,1199	9.88	14,2567	0,0056	29.26	0	0
14	48,8716	6.07	5,1687	0,0055	29.26	0	0
15	23,2661	2.29	0,9307	0,0055	29.26	0	0
16	22,6339	-1.48	-0,5829	0,0055	29.26	0	0
17	22,2665	-5.25	-2,0377	0,0055	29.26	0	0
18	21,4823	-9.05	-3,3786	0,0055	29.26	0	0
19	20,2707	-12.89	-4,5210	0,0056	29.26	0	0 5
20	18,6144	-16.79	-5,3758	0,0057	29.26	0	0
21	16,4885	-20.77	-5,8463	0,0059	29.26	0	0 (

	interconnessione	Doc. N. 66129-0	0002-A00		CODIFICA DOCUMENT 04RCEII100002000001	_	REV. A00	FOGLIO 95 di 139
23	10,6745	-29.09	-5,1893	0,006	63 29.26	0	0	
24	6,8708	-33.50	-3,7923	0,006	66 29.26	0	0	
25	2,3511	-38.15	-1,4524	0,007	70 29.26	0	0	

 ΣW_i = 1010,9293 [kN]

 $\Sigma W_i \sin \alpha_i = 347,6759 \text{ [kN]}$

 $\Sigma W_i tan \phi_i = 566,2883 [kN]$

 $\Sigma \tan \alpha_i \tan \phi_i = 5.40$

COMBINAZIONE n° 7

Valore della spinta statica	107,2112	[kN]		
Componente orizzontale della spinta statica	102,2491	[kN]		
Componente verticale della spinta statica	32,2390	[kN]		
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]		
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]		
Incremento sismico della spinta	12,2884	[kN]		~
Punto d'applicazione dell'incremento sismico di spinta	X = 2,60	[m]	Y = -3,30	[m]
Coefficiente di spinta attiva in condizioni sismiche	0,2832	[°]		[m]
Peso terrapieno gravante sulla fondazione a monte	312,0000	[kN]	P	
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00	[m]
Inerzia del muro	3,9744	[kN]		
Inerzia verticale del muro	-1,9872	[kN]		
Inerzia del terrapieno fondazione di monte	19,6039	[kN]		
Inerzia verticale del terrapieno fondazione di monte	-9,8019	[kN]		
Risultanti				
Risultante dei carichi applicati in dir. orizzontale	137,9994	[kN]		
Risultante dei carichi applicati in dir. verticale	406,5990	[kN]		
Sforzo normale sul piano di posa della fondazione	406,5990	[kN]		
Sforzo tangenziale sul piano di posa della fondazione	137,9994	[kN]	Soo	ietà di Progetto
Eccentricità rispetto al baricentro della fondazione	0,49	[m]		rebemi SpA
Lunghezza fondazione reagente	3,30	[m]		AM
Risultante in fondazione	429,3793	[kN]	()	$/\chi$

	Doc. N.	CODIFICA DOCUMENTO 04RCEII100002000001300		REV.	FOGLIO
interconnessione	66129-00002-A00			A00	96 di 139
INTO CONTINUOSIONO SCAR					
Inclinazione della risultante (ris	spetto alla normale)	18,75	[°]		
Momento rispetto al baricentro della fondazione		197,7536	[kNm]		
Carico ultimo della fondazione	1472,9687	[kN]			
Tensioni sul terreno					
Lunghezza fondazione reagente		3,30	[m]		
Tensione terreno allo spigolo di valle		232,17	[kPa]		
Tensione terreno allo spigolo	di monte	14,26	[kPa]		

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0.38$	$i_{q} = 0.39$	$i_{\gamma} = 0,26$
Fattori profondità	$d_{c} = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$N'_{c} = 19.86$	$N'_{\alpha} = 14.36$	$N'_{y} = 8.74$
11 c 10.00	119 11.00	. τη σ

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.06
Coefficiente di sicurezza a carico ultimo	3.62

COMBINAZIONE n° 8

Valore della spinta statica	107,2112	[kN]	
Componente orizzontale della spinta statica	102,2491	[kN]	
Componente verticale della spinta statica	32,2390	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40 [m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	Società di Progetto
			Brebemi SpA
Incremento sismico della spinta	18,9580	[kN]	$\Delta \Lambda$

Punto d'applicazione dell'incremento sismico di spinta X = 2,60 [m] Y = -3,30 [m]

	Doc. N.	CODIFICA DOCUMEN	ΓΟ	REV.	FOGLIO
interconnessione 2004.	66129-00002-A00	04RCEII100002000001300		A00	97 di 139
Coefficiente di spinta attiva ir	n condizioni sismiche	0,2808	[°]		
Peso terrapieno gravante sul	la fondazione a monte	312,0000	[kN]		
Baricentro terrapieno gravan	te sulla fondazione a monte	x = 1,30	[m]	Y = -3,00	[m]
Inerzia del muro		3,9744	[kN]		
Inerzia verticale del muro		1,9872	[kN]		
Inerzia del terrapieno fondaz	ione di monte	19,6039	[kN]		
Inerzia verticale del terrapien	o fondazione di monte	9,8019	[kN]		
<u>Risultanti</u>					
Risultante dei carichi applica	ti in dir. orizzontale	144,3604	[kN]		
Risultante dei carichi applica	ti in dir. verticale	432,1829	[kN]		
Sforzo normale sul piano di p	oosa della fondazione	432,1829	[kN]		
Sforzo tangenziale sul piano	di posa della fondazione	144,3604	[kN]		
Eccentricità rispetto al barice	ntro della fondazione	0,48	[m]		
Lunghezza fondazione reage	ente	3,30	[m]		
Risultante in fondazione		455,6555	[kN]		
Inclinazione della risultante (rispetto alla normale)	18,47	[°]		
Momento rispetto al baricent	ro della fondazione	209,4986	[kNm]		
Carico ultimo della fondazion	e	1504,8294	[kN]		
Tensioni sul terreno					
Lunghezza fondazione reage	ente	3,30	[m]		_<
Tensione terreno allo spigolo	di valle	246,39	[kPa]		, AT
Tensione terreno allo spigolo	di monte	15,54	[kPa]		07

Coeff. capacità portante	$N_c = 46.12$	$N_{q} = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0.38$	$i_q = 0.40$	$i_{\gamma} = 0,26$
Fattori profondità	$d_{c} = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 20.21$

 $N'_{q} = 14.59$

Ngoci&a96 Progetto Brebemi SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	98 di 139
into confidence sat				

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.10
Coefficiente di sicurezza a carico ultimo	3.48

COMBINAZIONE n° 9

Valore della spinta statica	135,5053	[kN]		
Componente orizzontale della spinta statica	131,3900	[kN]		
Componente verticale della spinta statica	33,1417	[kN]		
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	14,16	[°]		
Coefficiente di spinta attiva in condizioni statiche	0,3111	[°]		
la consente alconica della aninta	40 4700	FL-N 17		
Incremento sismico della spinta	13,4736	[kN]		
Punto d'applicazione dell'incremento sismico di spinta	X = 2,60	[m]	Y = -3,30	[m]
Coefficiente di spinta attiva in condizioni sismiche	0,3531	[°]		
Peso terrapieno gravante sulla fondazione a monte	312,0000	[kN]		
			٧, ٥,٥٥	
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00	[m]
Inerzia del muro	3,9744	[kN]		
Inerzia verticale del muro	-1,9872	[kN]		
Inerzia del terrapieno fondazione di monte	19,6039	[kN]		
Inerzia verticale del terrapieno fondazione di monte	-9,8019	[kN]		_1
D: 1/2 1/2				PU
<u>Risultanti</u>			~	
Risultante dei carichi applicati in dir. orizzontale	168,4851	[kN]		
Risultante dei carichi applicati in dir. verticale	407,1018	[kN]	•	
Momento ribaltante rispetto allo spigolo a valle	429,8146	[kNm]		
Momento stabilizzante rispetto allo spigolo a valle	836,0609	[kNm]		

407,1018

168,4851

440,5895

265,4716

0,65

2,99

22,48

[kN]

[kN]

[m]

[m]

[kN]

[kNm]

[°]

COEFFICIENTI DI SICUREZZA

Lunghezza fondazione reagente

Risultante in fondazione

Sforzo normale sul piano di posa della fondazione

Eccentricità rispetto al baricentro della fondazione

Inclinazione della risultante (rispetto alla normale)

Momento rispetto al baricentro della fondazione

Sforzo tangenziale sul piano di posa della fondazione

Coefficiente di sicurezza a ribaltamento 1.95

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	99 di 139

COMBINAZIONE n° 10

Valore della spinta statica	135,5053	[kN]		
Componente orizzontale della spinta statica	131,3900	[kN]		
Componente verticale della spinta statica	33,1417	[kN]		
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	14,16	[°]		
Coefficiente di spinta attiva in condizioni statiche	0,3111	[°]		
Incremento sismico della spinta	21,9092	[kN]		
Punto d'applicazione dell'incremento sismico di spinta	X = 2,60	[m]	Y = -3,30	[m]
Coefficiente di spinta attiva in condizioni sismiche	0,3504	[°]		
Peso terrapieno gravante sulla fondazione a monte	312,0000	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00	[m]
Inerzia del muro	3,9744	[kN]		
Inerzia verticale del muro	1,9872	[kN]		
Inerzia del terrapieno fondazione di monte	19,6039	[kN]		
Inerzia verticale del terrapieno fondazione di monte	9,8019	[kN]		

<u>Risultanti</u>

Risultante dei carichi applicati in dir. orizzontale	176,6644	[kN]
Risultante dei carichi applicati in dir. verticale	432,7432	[kN]
Momento ribaltante rispetto allo spigolo a valle	434,3860	[kNm]
Momento stabilizzante rispetto allo spigolo a valle	865,2900	[kNm]
Sforzo normale sul piano di posa della fondazione	432,7432	[kN]
Sforzo tangenziale sul piano di posa della fondazione	176,6644	[kN]
Eccentricità rispetto al baricentro della fondazione	0,65	[m]
Lunghezza fondazione reagente	2,99	[m]
Risultante in fondazione	467,4153	[kN]
Inclinazione della risultante (rispetto alla normale)	22,21	[°]
Momento rispetto al baricentro della fondazione	283,1223	[kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 1.99

Stabilità globale muro + terreno

Combinazione n° 11

Le ascisse X sono considerate positive verso monte

Doc. N. 66129-00002-A00 CODIFICA DOCUMENTO 04RCEII100002000001300 REV. A00

FOGLIO 100 di 139

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) α
- angolo d'attrito del terreno lungo la base della striscia φ
- coesione del terreno lungo la base della striscia espressa in [kPa] С
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [kPa] и

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -1.07Y[m] = 2,14

Raggio del cerchio R[m] = 9,48

Xi[m] = -6.83Ascissa a valle del cerchio

Ascissa a monte del cerchio Xs[m] = 8,17

Larghezza della striscia dx[m]= 0,60

23,2141

-0.35

Caratteristiche delle strisce

16

Coefficiente di sicurezza C= 1.51										
Le strisce so	no numerate d	a monte ve	erso valle				u 0 0 0			
							4			
Caratteristiche delle strisce										
							IP"			
Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u 🗘			
1	10,5065	71.08	9,9389	0,0182	29.26	0	0			
2	27,7608	61.91	24,4916	0,0125	29.26	0	0			
3	39,6326	54.90	32,4264	0,0102	29.26	0	0			
4	48,8964	48.98	36,8924	0,0090	29.26	0	0			
5	56,4781	43.71	39,0251	0,0081	29.26	0	0			
6	62,8224	38.87	39,4225	0,0076	29.26	0	0			
7	68,1847	34.34	38,4637	0,0071	29.26	0	0			
8	72,7278	30.05	36,4163	0,0068	29.26	0	0			
9	76,5620	25.93	33,4842	0,0065	29.26	0	0			
10	80,9224	21.96	30,2637	0,0063	29.26	0	0			
11	84,0204	18.10	26,0992	0,0062	29.26	0	0			
12	86,1162	14.32	21,2948	0,0061	29.26	0	0			
13	87,7090	10.60	16,1326	0,0060	29.26	0	O Società di Progetto			
14	77,7871	6.93	9,3803	0,0059	29.26	0	O Brebemi SpA			
15	24,3108	3.28	1,3917	0,0059	29.26	0	0			

-0,1415

0,0059

29.26

0

	Doc. N.			CODIFICA DOCUMENTO		REV.	FOGLIO		
	interconnessione	66129-0	66129-00002-A00			EII1000020000013	A00	101 di 139	
17	22,9415	-3.98	-1,5929	0,0	059	29.26	0	0	
18	22,2084	-7.63	-2,9488	0,00	059	29.26	0	0	
19	21,0058	-11.31	-4,1197	0,00	060	29.26	0	0	
20	19,3182	-15.04	-5,0125	0,00	061	29.26	0	0	
21	17,1225	-18.83	-5,5275	0,00	062	29.26	0	0	
22	14,3868	-22.72	-5,5558	0,0	064	29.26	0	0	
23	11,0671	-26.71	-4,9751	0,0	066	29.26	0	0	
24	7,1033	-30.86	-3,6434	0,00	069	29.26	0	0	
25	2,4124	-35.19	-1,3903	0,00	072	29.26	0	0	

 $\Sigma W_i = 1065,2173 [kN]$

 $\Sigma W_i \sin \alpha_i = 360,2160 [kN]$

 $\Sigma W_i \tan \phi_i = 596,6985 [kN]$

 $\Sigma \tan \alpha_i \tan \phi_i = 5.03$

Stabilità globale muro + terreno

Combinazione n° 12

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kPa]
- b larghezza della striscia espressa in [m]
- *u* pressione neutra lungo la base della striscia espressa in [kPa]

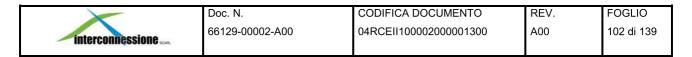
Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -1,07 Y[m]= 2,14


Raggio del cerchio R[m]= 9,48

Ascissa a valle del cerchio Xi[m]= -6,83

Ascissa a monte del cerchio Xs[m]= 8,17

Larghezza della striscia dx[m]= 0,60

Coefficiente di sicurezza C= 1.50

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	$\text{Wsin}\alpha$	b/cosα	ф	С	u
1	10,5065	71.08	9,9389	0,0182	29.26	0	0
2	27,7608	61.91	24,4916	0,0125	29.26	0	0
3	39,6326	54.90	32,4264	0,0102	29.26	0	0
4	48,8964	48.98	36,8924	0,0090	29.26	0	0
5	56,4781	43.71	39,0251	0,0081	29.26	0	0
6	62,8224	38.87	39,4225	0,0076	29.26	0	0
7	68,1847	34.34	38,4637	0,0071	29.26	0	0
8	72,7278	30.05	36,4163	0,0068	29.26	0	0
9	76,5620	25.93	33,4842	0,0065	29.26	0	0
10	80,9224	21.96	30,2637	0,0063	29.26	0	0
11	84,0204	18.10	26,0992	0,0062	29.26	0	0
12	86,1162	14.32	21,2948	0,0061	29.26	0	0
13	87,7090	10.60	16,1326	0,0060	29.26	0	0
14	77,7871	6.93	9,3803	0,0059	29.26	0	0
15	24,3108	3.28	1,3917	0,0059	29.26	0	0
16	23,2141	-0.35	-0,1415	0,0059	29.26	0	0
17	22,9415	-3.98	-1,5929	0,0059	29.26	0	0
18	22,2084	-7.63	-2,9488	0,0059	29.26	0	0
19	21,0058	-11.31	-4,1197	0,0060	29.26	0	0
20	19,3182	-15.04	-5,0125	0,0061	29.26	0	0
21	17,1225	-18.83	-5,5275	0,0062	29.26	0	0
22	14,3868	-22.72	-5,5558	0,0064	29.26	0	0
23	11,0671	-26.71	-4,9751	0,0066	29.26	0	0
24	7,1033	-30.86	-3,6434	0,0069	29.26	0	0
25	2,4124	-35.19	-1,3903	0,0072	29.26	0	0

 $\Sigma W_i = 1065,2173 [kN]$

 Σ W_isin α _i= 360,2160 [kN]

 Σ W_itan ϕ _i= 596,6985 [kN]

 $\Sigma tan\alpha_i tan\phi_i = 5.03$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	103 di 139

Peso muro favorevole e Peso terrapieno sfavorevole

Valore della spinta statica	188,1068	[kN]		
Componente orizzontale della spinta statica	179,4007	[kN]		
Componente verticale della spinta statica	56,5648	[kN]		
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,12	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]		
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]		
Peso terrapieno gravante sulla fondazione a monte	483,6000	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00	[m]
<u>Risultanti</u>				
Risultante dei carichi applicati in dir. orizzontale	179,4007	[kN]		
Risultante dei carichi applicati in dir. verticale	612,7787	[kN]		
Sforzo normale sul piano di posa della fondazione	612,7787	[kN]		
Sforzo tangenziale sul piano di posa della fondazione	179,4007	[kN]		
Eccentricità rispetto al baricentro della fondazione	0,34	[m]		
Lunghezza fondazione reagente	3,30	[m]		
Risultante in fondazione	638,5001	[kN]		
Inclinazione della risultante (rispetto alla normale)	16,32	[°]		
Momento rispetto al baricentro della fondazione	210,5603	[kNm]		
Carico ultimo della fondazione	1963,0732	[kN]		
Tensioni sul terreno				7
Lunghezza fondazione reagente	3,30	[m]	<u> </u>	P

Fattori per il calcolo della capacità portante

Tensione terreno allo spigolo di valle

Tensione terreno allo spigolo di monte

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,44$	$i_{q} = 0,45$	$i_{\gamma} = 0,32$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	g = 1,00 Proge

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 23.05$$

301,70

69,68

[kPa]

[kPa]

interconnessione	SCAR

Doc. N. 66129-00002-A00 CODIFICA DOCUMENTO 04RCEII100002000001300 REV. A00 FOGLIO 104 di 139

[m]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.39
Coefficiente di sicurezza a carico ultimo	3.20

COMBINAZIONE n° 14

Peso muro sfavorevole e Peso terrapieno favorevole

Valore della spinta statica	188,1068	[kN]	
Componente orizzontale della spinta statica	179,4007	[kN]	
Componente verticale della spinta statica	56,5648	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,12
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	
Peso terrapieno gravante sulla fondazione a monte	390,0000	[kN]	
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00
<u>Risultanti</u>			
Risultante dei carichi applicati in dir. orizzontale	179,4007	[kN]	
Risultante dei carichi applicati in dir. verticale	535,9949	[kN]	
Sforzo normale sul piano di posa della fondazione	535,9949	[kN]	OR
Sforzo tangenziale sul piano di posa della fondazione	179,4007	[kN]	SP.
Eccentricità rispetto al baricentro della fondazione	0,46	[m]	V
Lunghezza fondazione reagente	3,30	[m]	
Risultante in fondazione	565,2213	[kN]	
Inclinazione della risultante (rispetto alla normale)	18,51	[°]	
Momento rispetto al baricentro della fondazione	244,8174	[kNm]	

1537,0877 [kN]

Tensioni sul terreno

Carico ultimo della fondazione

Lunghezza fondazione reagente	3,30	[m]
Tensione terreno allo spigolo di valle	297,31	[kPa]
Tensione terreno allo spigolo di monte	27,54	[kPa]

	Doc. N. 66129-00002-A00	CODIFICA DOCUMENTO 04RCEII100002000001300	REV. FOGLIO A00 105 di 13	
Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$	
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$	
Fattori inclinazione	$i_c = 0.38$	$i_q = 0.40$	$i_{\gamma} = 0,26$	
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$	
Fattori inclinazione piano po	sa b _c = 1,00	$b_{q} = 1,00$	$b_{\gamma} = 1,00$	
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$	
I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa,				

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$N'_{c} = 20.16$	N' _q = 14.56	$N'_{\gamma} = 8.93$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.09
Coefficiente di sicurezza a carico ultimo	2.87

COMBINAZIONE n° 15

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica	188,1068	[kN]	
Componente orizzontale della spinta statica	179,4007	[kN]	X
Componente verticale della spinta statica	56,5648	[kN]	JA
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,12 [m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	OP.
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	P
Peso terrapieno gravante sulla fondazione a monte	390,0000	[kN]	
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00 [m]
<u>Risultanti</u>			
Risultante dei carichi applicati in dir. orizzontale	179,4007	[kN]	
Risultante dei carichi applicati in dir. verticale	517,0187	[kN]	
Sforzo normale sul piano di posa della fondazione	517,0187	[kN]	
Sforzo tangenziale sul piano di posa della fondazione	179,4007	[kN]	
Eccentricità rispetto al baricentro della fondazione	0,46	[m]	
Lunghezza fondazione reagente	3,30	[m]	Società di Progetto
Risultante in fondazione	547,2595	[kN]	Brebemi SpA
Inclinazione della risultante (rispetto alla normale)	19,14	[°]	
Momento rispetto al baricentro della fondazione	240,4043	[kNm]	

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione ,	66129-00002-A00	04RCEII100002000001300	A00	106 di 139

Carico ultimo della fondazione	1458,0471	[kN]
Carico ditirro della fortuazione	1450,0471	IVIAL

Tensioni sul terreno

Lunghezza fondazione reagente	3,30	[m]
Tensione terreno allo spigolo di valle	289,13	[kPa]
Tensione terreno allo spigolo di monte	24,22	[kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0.37$	$i_{q} = 0.39$	$i_{\gamma} = 0,25$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 19.37$$
 $N'_{q} = 14.03$ $N'_{\gamma} = 8.44$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.02
Coefficiente di sicurezza a carico ultimo	2 82

COMBINAZIONE n° 16

Peso muro sfavorevole e Peso terrapieno sfavorevole

Valore della spinta statica	188,1068	[kN]	
Componente orizzontale della spinta statica	179,4007	[kN]	
Componente verticale della spinta statica	56,5648	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,12 [m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	
			Società di Progetto
Peso terrapieno gravante sulla fondazione a monte	483,6000	[kN]	Brebemi SpA
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00 [m]

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	107 di 139

<u>Risultanti</u>

Risultante dei carichi applicati in dir. orizzontale	179,4007	[kN]
Risultante dei carichi applicati in dir. verticale	631,7549	[kN]
Sforzo normale sul piano di posa della fondazione	631,7549	[kN]
Sforzo tangenziale sul piano di posa della fondazione	179,4007	[kN]
Eccentricità rispetto al baricentro della fondazione	0,34	[m]
Lunghezza fondazione reagente	3,30	[m]
Risultante in fondazione	656,7335	[kN]
Inclinazione della risultante (rispetto alla normale)	15,85	[°]
Momento rispetto al baricentro della fondazione	214,9734	[kNm]
Carico ultimo della fondazione	2031,6829	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	3,30	[m]
Tensione terreno allo spigolo di valle	309,88	[kPa]
Tensione terreno allo spigolo di monte	73,00	[kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,45$	$i_{q} = 0,47$	$i_{\gamma} = 0.33$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

N' = 23.69	N' = 16.92	N' = 11.20

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.47
Coefficiente di sicurezza a carico ultimo	3.22

COMBINAZIONE n° 17

Valore della spinta statica 210,6492 [kN]
Componente orizzontale della spinta statica 204,2517 [kN]

	Doc. N.	CODIFICA DOCUMENTO 04RCEII100002000001300		REV.	FOGLIO 108 di 139	
interconnessione ****	66129-00002-A00			A00		
Componente verticale della s	spinta statica	51,5202	[kN]			
Punto d'applicazione della sp	·	X = 2,60	[m]	Y = -4,08	[m]	
Inclinaz. della spinta rispetto		14,16	[°]			
Coefficiente di spinta attiva i	n condizioni statiche	0,3111	[°]			
Peso terrapieno gravante su	lla fondazione a monte	358,8000	[kN]			
Baricentro terrapieno gravan	te sulla fondazione a monte	x = 1,30	[m]	Y = -3,00	[m]	
<u>Risultanti</u>						
Risultante dei carichi applicati in dir. orizzontale		204,2517	[kN]			
Risultante dei carichi applicati in dir. verticale		473,7288	[kN]			
Momento ribaltante rispetto a	allo spigolo a valle	515,0487	[kNm]			
Momento stabilizzante rispetto allo spigolo a valle		970,2537	[kNm]			
Sforzo normale sul piano di posa della fondazione		473,7288	[kN]			
Sforzo tangenziale sul piano di posa della fondazione		204,2517	[kN]			
Eccentricità rispetto al baricentro della fondazione		0,69	[m]			
Lunghezza fondazione reagente		2,88	[m]			
Risultante in fondazione		515,8853	[kN]			
Inclinazione della risultante (rispetto alla normale)	23,32	[°]			
Momento rispetto al baricent	ro della fondazione	326,4474	[kNm]			
COEFFICIENTI DI SICUREZ	<u> </u>					
Coefficiente di sicurezza a ril	baltamento	1.88			4	
					PETVAT	
Stabilità globale muro + terr	eno				P	
				PL		
Combinaziono nº 18						

COEFFICIENTI DI SICUREZZA

Combinazione n° 18

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) α
- angolo d'attrito del terreno lungo la base della striscia φ
- coesione del terreno lungo la base della striscia espressa in [kPa] С
- larghezza della striscia espressa in [m] b
- и pressione neutra lungo la base della striscia espressa in [kPa]

Metodo di Bishop

Numero di cerchi analizzati 36

25 Numero di strisce

Società di Progetto

Brebemi SpA

Cerchio critico

Coordinate del centro X[m]= -1,07 Y[m]= 1,07

Raggio del cerchio R[m]= 8,50

Ascissa a valle del cerchio Xi[m]=-6,60Ascissa a monte del cerchio Xs[m]=7,37

Larghezza della striscia dx[m]= 0,56

Coefficiente di sicurezza C= 1.53

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	26,3445	75.20	25,4702	0,0214	29.26	0	0
2	44,4910	63.75	39,9013	0,0124	29.26	0	0
3	55,4693	56.11	46,0441	0,0098	29.26	0	0
4	63,8134	49.81	48,7476	0,0085	29.26	0	0
5	70,5525	44.26	49,2408	0,0077	29.26	0	0
6	76,1421	39.20	48,1251	0,0071	29.26	0	0
7	80,8337	34.49	45,7683	0,0066	29.26	0	0
8	84,7831	30.03	42,4248	0,0063	29.26	0	0
9	88,7893	25.76	38,5878	0,0061	29.26	0	0
10	92,3546	21.64	34,0621	0,0059	29.26	0	0
11	94,5865	17.64	28,6641	0,0058	29.26	0	0
12	96,3421	13.73	22,8601	0,0056	29.26	0	0
13	97,6484	9.88	16,7486	0,0056	29.26	0	0
14	51,6918	6.07	5,4669	0,0055	29.26	0	0
15	23,2661	2.29	0,9307	0,0055	29.26	0	0
16	22,6339	-1.48	-0,5829	0,0055	29.26	0	0
17	22,2665	-5.25	-2,0377	0,0055	29.26	0	0
18	21,4823	-9.05	-3,3786	0,0055	29.26	0	0
19	20,2707	-12.89	-4,5210	0,0056	29.26	0	0
20	18,6144	-16.79	-5,3758	0,0057	29.26	0	0
21	16,4885	-20.77	-5,8463	0,0059	29.26	0	0
22	13,8580	-24.86	-5,8251	0,0060	29.26	0	0
23	10,6745	-29.09	-5,1893	0,0063	29.26	0	0
24	6,8708	-33.50	-3,7923	0,0066	29.26	0	0
25	2,3511	-38.15	-1,4524	0,0070	29.26	0	0
							Sc

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	110 di 139

 Σ W_i= 1202,6193 [kN] Σ W_isin α _i= 455,0412 [kN] Σ W_itan ϕ _i= 673,6665 [kN] Σ tan α _itan ϕ _i= 5.40

COMBINAZIONE n° 19

Peso muro sfavorevole e Peso terrapieno favorevole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie	188,1068 179,4007 56,5648 X = 2,60 17,50	[kN] [kN] [kN] [m]	Y = -4,12
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	390,0000 X = 1,30	[kN] [m]	Y = -3,00
Risultanti carichi esterni			
Componente dir. X	2,32	[kN]	
Componente dir. Y	8,83	[kN]	
Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	181,7227 544,8210 544,8210 181,7227 0,50 3,30 574,3284 18,45 272,4517 1487,6869	[kN] [kN] [kN] [m] [m] [kN] [s] [kNm] [kNm]	APP
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	3,30 315,21 14,99	[m] [kPa] [kPa]	Soc Br

Società di Progetto Brebenii SpA

[m]

[m]

APPRILIVATIO GOP

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	111 di 139

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0.38$	$i_{q} = 0,40$	$i_{\gamma} = 0,26$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 20.24$$
 $N'_{q} = 14.61$ $N'_{\gamma} = 8.98$

$$N'_{y} = 8.98$$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.10
Coefficiente di sicurezza a carico ultimo	2.73

COMBINAZIONE n° 20

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica	188,1068	[kN]		
Componente orizzontale della spinta statica	179,4007	[kN]		
Componente verticale della spinta statica	56,5648	[kN]	4	20
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,12	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	P	
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]		
Peso terrapieno gravante sulla fondazione a monte	390,0000	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00	[m]
Risultanti carichi esterni				
Componente dir. X	2,32	[kN]		
Componente dir. Y	8,83	[kN]		

<u>Risultanti</u>

Risultante dei carichi applicati in dir. orizzontale	181,7227	[kN]
Risultante dei carichi applicati in dir. verticale	525,8448	[kN]
Sforzo normale sul piano di posa della fondazione	525,8448	[kN]
Sforzo tangenziale sul piano di posa della fondazione	181,7227	[kN]

	Doc. N.	CODIFICA DOCUMENT		REV.	FOGLIO
interconnessione som	66129-00002-A00	04RCEII100002000001	300	A00	112 di 139
Eccentricità rispetto al baricen	tro della fondazione	0,51	[m]		
Lunghezza fondazione reagen	nte	3,30	[m]		
Risultante in fondazione		556,3595	[kN]		
Inclinazione della risultante (ris	spetto alla normale)	19,06	[°]		
Momento rispetto al baricentro	della fondazione	268,0386	[kNm]		
Carico ultimo della fondazione	•	1410,4120	[kN]		
Tensioni sul terreno					
Lunghezza fondazione reagen	3,30	[m]			
Tensione terreno allo spigolo di valle		307,03	[kPa]		
Tensione terreno allo spigolo	di monte	11,67	[kPa]		

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0.37$	$i_{q} = 0.39$	$i_{\gamma} = 0,25$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

i attori inclinazione pendio $g_c = 1{,}00$ $g_q = 1{,}00$ $g_{\gamma} = 1{,}00$ I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio. $N'_c = 19.46 \qquad N'_q = 14.09 \qquad N'_{\gamma} = 8.49$

Coefficiente di sicurezza a scorrimento	2.03
Coefficiente di sicurezza a carico ultimo	2.68

COMBINAZIONE n° 21

Peso muro sfavorevole e Peso terrapieno sfavorevole

Valore della spinta statica	188,1068	[kN]	
Componente orizzontale della spinta statica	179,4007	[kN]	
Componente verticale della spinta statica	56,5648	[kN]	Società di Progetto
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,12Brel[m]ii SpA
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	113 di 139

Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	483,6000 X = 1,30	[kN] [m]	Y = -3,00	[m]
Risultanti carichi esterni				
Componente dir. X	2,32	[kN]		
Componente dir. Y	8,83	[kN]		
<u>Risultanti</u>				
Risultante dei carichi applicati in dir. orizzontale	181,7227	[kN]		
Risultante dei carichi applicati in dir. verticale	640,5810	[kN]		
Sforzo normale sul piano di posa della fondazione	640,5810	[kN]		
Sforzo tangenziale sul piano di posa della fondazione	181,7227	[kN]		
Eccentricità rispetto al baricentro della fondazione	0,38	[m]		
Lunghezza fondazione reagente	3,30	[m]		
Risultante in fondazione	665,8582	[kN]		
Inclinazione della risultante (rispetto alla normale)	15,84	[°]		
Momento rispetto al baricentro della fondazione	242,6077	[kNm]		
Carico ultimo della fondazione	1974,0846	[kN]		
<u>Tensioni sul terreno</u>				
Lunghezza fondazione reagente	3,30	[m]		

Tensione terreno allo spigolo di valle

Tensione terreno allo spigolo di monte

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0.45$	$i_{q} = 0,47$	$i_{\gamma} = 0.33$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{y} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 23.71$

 $N'_{q} = 16.93$

327,78

60,45

[kPa]

[kPa]

 $N'_{\gamma} = 11.21$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione 8048	66129-00002-A00	04RCEII100002000001300	A00	114 di 139

Coefficiente di sicurezza a scorrimento	2.47
Coefficiente di sicurezza a carico ultimo	3.08

COMBINAZIONE n° 22

Peso muro favorevole e Peso terrapieno sfavorevole

Valore della spinta statica	188,1068	[kN]	
Componente orizzontale della spinta statica	179,4007	[kN]	
Componente verticale della spinta statica	56,5648	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,12
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	
Peso terrapieno gravante sulla fondazione a monte	483,6000	[kN]	
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00
Risultanti carichi esterni			
Componente dir. X	2,32	[kN]	
Componente dir. Y	8,83	[kN]	
<u>Risultanti</u>			
Risultante dei carichi applicati in dir. orizzontale	181,7227	[kN]	
Risultante dei carichi applicati in dir. verticale	621,6048	[kN]	
Sforzo normale sul piano di posa della fondazione	621,6048	[kN]	
Sforzo tangenziale sul piano di posa della fondazione	181,7227	[kN]	
Eccentricità rispetto al baricentro della fondazione	0,38	[m]	SP"
Lunghezza fondazione reagente	3,30	[m]	V
Risultante in fondazione	647,6231	[kN]	
Inclinazione della risultante (rispetto alla normale)	16,30	[°]	
Momento rispetto al baricentro della fondazione	238,1946	[kNm]	
Carico ultimo della fondazione	1906,5123	[kN]	
Tensioni sul terreno			

Tensioni sul terreno

Lunghezza fondazione reagente	3,30	[m]
Tensione terreno allo spigolo di valle	319,60	[kPa]
Tensione terreno allo spigolo di monte	57,13	[kPa]

Società di Progetto Brebenni SpA

[m]

[m]

Fattori per il calcolo della capacità portante

Coeff. capacità portante $N_c = 46.12$ $N_q = 33.30$ $N_\gamma = 33.92$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione som	66129-00002-A00	04RCEII100002000001300	A00	115 di 139
		•		I
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	8	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,44$	$i_{q} = 0.45$		$i_{\gamma} = 0.32$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	c	$J_{\gamma} = 1,00$
Fattori inclinazione piano po	b _c = 1,00	$b_{q} = 1,00$	b	$p_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	g	$g_{\gamma} = 1,00$
I coefficienti N' tengono conto	dei fattori di forma, pro	fondità, inclinazione carico,	inclinazione	piano di posa
inclinazione pendio.				

$$N'_{\gamma} = 10.80$$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.40
Coefficiente di sicurezza a carico ultimo	3.07

Eccentricità rispetto al baricentro della fondazione

COMBINAZIONE n° 23

Valore della spinta statica	210,6492	[kN]	
Componente orizzontale della spinta statica	204,2517	[kN]	
Componente verticale della spinta statica	51,5202	[kN]	Y = -4,08 [m]
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,08 [m]
Inclinaz. della spinta rispetto alla normale alla superficie	14,16	[°]	JA
Coefficiente di spinta attiva in condizioni statiche	0,3111	[°]	20
			OP"
Peso terrapieno gravante sulla fondazione a monte	358,8000	[kN]	P
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00 [m]
Risultanti carichi esterni			
Componente dir. X	2,32	[kN]	
Componente dir. Y	8,83	[kN]	
<u>Risultanti</u>			
Risultante dei carichi applicati in dir. orizzontale	206,5737	[kN]	
Risultante dei carichi applicati in dir. verticale	482,5549	[kN]	
Momento ribaltante rispetto allo spigolo a valle	533,8569	[kNm]	
Momento stabilizzante rispetto allo spigolo a valle	975,9906	[kNm]	Società di Progetto
Sforzo normale sul piano di posa della fondazione	482,5549	[kN]	Brebemii SpA
Sforzo tangenziale sul piano di posa della fondazione	206,5737	[kN]	

0,73

[m]

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	116 di 139

Lunghezza fondazione reagente	2,75	[m]
Risultante in fondazione	524,9113	[kN]
Inclinazione della risultante (rispetto alla normale)	23,17	[°]
Momento rispetto al baricentro della fondazione	354,0818	[kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 1.83

Stabilità globale muro + terreno

Combinazione n° 24

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kPa]
- b larghezza della striscia espressa in [m]
- *u* pressione neutra lungo la base della striscia espressa in [kPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -1,07 Y[m]= 1,60

Raggio del cerchio R[m]= 8,99

Ascissa a valle del cerchio Xi[m]= -6,71

Ascissa a monte del cerchio Xs[m]= 7,78

Larghezza della striscia dx[m]= 0,58

Coefficiente di sicurezza C= 1.54

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	w	α(°)	Wsin $lpha$	b/cosα	ф	С	Società di Progetto U Brebemi SpA
1	26,1390	73.10	25,0098	0,0196	29.26	0	0
2	43,7808	62.93	38,9847	0,0125	29.26	0	0

		Doc. N.		CODIF	FICA DOCUMEN	ΓΟ	REV.	FOGLIO
	interconnessione	66129-0	00002-A00	04RCE	EII100002000001	300	A00	117 di 139
3	55,2677	55.59	45,5983	0,0101	29.26	0	0	
4	64,1091	49.48	48,7309	0,0088	29.26	0	0	
5	71,2950	44.06	49,5768	0,0079	29.26	0	0	
6	77,2804	39.10	48,7413	0,0073	29.26	0	0	
7	82,3214	34.48	46,6008	0,0069	29.26	0	0	
8	86,5787	30.10	43,4180	0,0066	29.26	0	0	
9	90,2559	25.91	39,4334	0,0063	29.26	0	0	
10	94,7134	21.86	35,2654	0,0061	29.26	0	0	
11	97,1497	17.93	29,9005	0,0060	29.26	0	0	
12	99,0802	14.08	24,0986	0,0059	29.26	0	0	
13	100,5337	10.29	17,9626	0,0058	29.26	0	0	
14	77,8849	6.55	8,8886	0,0057	29.26	0	0	
15	23,8073	2.84	1,1803	0,0057	29.26	0	0	
16	22,9329	-0.86	-0,3433	0,0057	29.26	0	0	
17	22,6144	-4.56	-1,7982	0,0057	29.26	0	0	
18	21,8568	-8.28	-3,1487	0,0057	29.26	0	0	
19	20,6503	-12.04	-4,3079	0,0058	29.26	0	0	
20	18,9785	-15.85	-5,1842	0,0059	29.26	0	0	
21	16,8176	-19.74	-5,6796	0,0060	29.26	0	0	
22	14,1342	-23.72	-5,6859	0,0062	29.26	0	0	
23	10,8821	-27.83	-5,0804	0,0064	29.26	0	0	
24	6,9981	-32.10	-3,7191	0,0067	29.26	0	0	
25	2,3933	-36.59	-1,4266	0,0071	29.26	0	0	40
ΣW_i sino	248,4553 [kN] α _i = 467,0162 [kN]						AP	PROVATO
Σvv _i tan	φ _i = 699,3422 [kN]							

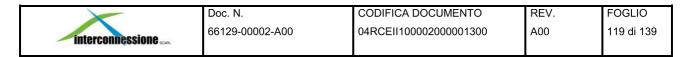
 Σ tanα_itan ϕ _i= 5.21

COMBINAZIONE n° 25

Peso muro sfavorevole e Peso terrapieno sfavorevole

Valore della spinta statica	139,3745	[kN]	
Componente orizzontale della spinta statica	132,9238	[kN]	
Componente verticale della spinta statica	41,9107	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40 [m]/ Societa di Progetto
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	Brebemi SpA
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	\mathcal{A}

	Doc. N.	CODIFICA DOCUMEN	ТО	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001	EII100002000001300		118 di 139
Describeration and a second		405.0000	FL-N IZ	•	I
Peso terrapieno gravante sull		405,6000	[kN]		
Baricentro terrapieno gravant	e sulla fondazione a mon	te $X = 1,30$	[m]	Y = -3,00	[m]
Risultanti carichi esterni					
Componente dir. X		3,87	[kN]		
Componente dir. Y		14,71	[kN]		
<u>Risultanti</u>					
Risultante dei carichi applicat	136,7938	[kN]			
Risultante dei carichi applicat	i in dir. verticale	553,8110	[kN]		
Sforzo normale sul piano di p	osa della fondazione	553,8110	[kN]		
Sforzo tangenziale sul piano	di posa della fondazione	136,7938	[kN]		
Eccentricità rispetto al barice	ntro della fondazione	0,29	[m]		
Lunghezza fondazione reage	nte	3,30	[m]		
Risultante in fondazione		570,4552	[kN]		
Inclinazione della risultante (r	ispetto alla normale)	13,87	[°]		
Momento rispetto al baricentr	o della fondazione	159,1362	[kNm]		
Carico ultimo della fondazione		2411,7398	[kN]		
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente		3,30	[m]		
Tensione terreno allo spigolo	di valle	255,50	[kPa]		
Tensione terreno allo spigolo	di monte	80,14	[kPa]		


Coeff. capacità portante	$N_c = 46.12$	$N_{q} = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,50$	$i_q = 0,52$	$i_{\gamma} = 0.39$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 26.54$

 $N'_q = 18.82$

 $N'_{\gamma} = 13.13$

O (C)			
Coefficiente	di ciciirazza	a carico Liltin	\sim

4.35

COMBINAZIONE n° 26

Peso muro favorevole e Peso terrapieno sfavorevole

Valore della spinta statica	139,3745	[kN]	
Componente orizzontale della spinta statica	132,9238	[kN]	
Componente verticale della spinta statica	41,9107	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	
Peso terrapieno gravante sulla fondazione a monte	405,6000	[kN]	
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00
Barroentro terrapierio gravante salla fortazzione a monte	7 1,00	[,,,]	1 0,00
Risultanti carichi esterni			
Componente dir. X	3,87	[kN]	
Componente dir. Y	14,71	[kN]	
Risultanti			
Risultante dei carichi applicati in dir. orizzontale	136,7938	[kN]	
Risultante dei carichi applicati in dir. verticale	534,8348	[kN]	
Sforzo normale sul piano di posa della fondazione	534,8348	[kN]	
Sforzo tangenziale sul piano di posa della fondazione	136,7938	[kN]	
Eccentricità rispetto al baricentro della fondazione	0,29	 [m]	
Lunghezza fondazione reagente	3,30	[m]	Pr
Risultante in fondazione	552,0515	[kN]	Y
Inclinazione della risultante (rispetto alla normale)	14,35	[°]	
Momento rispetto al baricentro della fondazione	154,7231	[kNm]	
Carico ultimo della fondazione	2334,7949	[kN]	

Tensioni sul terreno

Lunghezza fondazione reagente	3,30	[m]
Tensione terreno allo spigolo di valle	247,32	[kPa]
Tensione terreno allo spigolo di monte	76,82	[kPa]

Società di Progetto

Brebenii SpA

[m]

[m]

Fattori per il calcolo della capacità portante

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione .com	66129-00002-A00	04RCEII100002000001300	A00	120 di 139
		•		
Fattori inclinazione	$i_c = 0.49$	$i_{q} = 0,50$	į.	, = 0,37
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	d.	, = 1,00
Fattori inclinazione piano posa $b_c = 1,00$		$b_{q} = 1,00$	$b_{\gamma} = 1,00$	
Fattori inclinazione pendio $g_c = 1,00$		$g_q = 1,00$ $g_{\gamma} = 1,00$, = 1,00
I coefficienti N' tengono conto o	dei fattori di forma, pro	fondità, inclinazione carico,	inclinazione p	oiano di posa
inclinazione pendio				

inclinazione pendio.

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.74
Coefficiente di sicurezza a carico ultimo	4.37

COMBINAZIONE n° 27

Peso muro sfavorevole e Peso terrapieno favorevole

Valore della spinta statica	139,3745	[kN]	
Componente orizzontale della spinta statica	132,9238	[kN]	
Componente verticale della spinta statica	41,9107	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40 [m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	JA
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	PPROVA
			OP
Peso terrapieno gravante sulla fondazione a monte	312,0000	[kN]	P
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00 [m]
Risultanti carichi esterni			
Componente dir. X	3,87	[kN]	
Componente dir. Y	14,71	[kN]	
<u>Risultanti</u>			
Risultante dei carichi applicati in dir. orizzontale	136,7938	[kN]	
Risultante dei carichi applicati in dir. verticale	458,0510	[kN]	
Sforzo normale sul piano di posa della fondazione	458,0510	[kN]	
Sforzo tangenziale sul piano di posa della fondazione	136,7938	[kN]	Società di Progetto
Eccentricità rispetto al baricentro della fondazione	0,41	[m]	Brebemi SpA
Lunghezza fondazione reagente	3,30	[m]	
Risultante in fondazione	478,0411	[kN]	

	Doc. N. 66129-00002-A00	CODIFICA DOCUMENTO		REV. A00	FOGLIO 121 di 139
interconnessione	66129-00002-A00	04RCEII100002000001	300	A00	121 di 139
Inclinazione della risultante (ri	spetto alla normale)	16,63	[°]		
Momento rispetto al baricentro	della fondazione	188,9802	[kNm]		
Carico ultimo della fondazione)	1820,1715	[kN]		
Tensioni sul terreno					
Lunghezza fondazione reager	nte	3,30	[m]		
Tensione terreno allo spigolo	di valle	242,92	[kPa]		
Tensione terreno allo spigolo	di monte	34,68	[kPa]		

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0.43$	$i_q = 0.45$	$i_{\gamma} = 0.31$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 22.63$$
 $N'_{q} = 16.21$ $N'_{\gamma} = 10.50$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.34
Coefficiente di sicurezza a carico ultimo	3.97

COMBINAZIONE n° 28

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica	139,3745	[kN]	
Componente orizzontale della spinta statica	132,9238	[kN]	
Componente verticale della spinta statica	41,9107	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40 [m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	Società di Progetto
			Brebemi SpA
Peso terrapieno gravante sulla fondazione a monte	312,0000	[kN]	\wedge

Raricentro terranieno gravante sulla fondazione a monte X = 1.30 [m]

Baricentro terrapieno gravante sulla fondazione a monte X = 1,30 [m] Y = -3,00 [m]

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	122 di 139

Risultanti	carichi	esterni
i libuitariti	carioni	COLUITI

Componente dir. X	3,87	[kN]
Componente dir. Y	14,71	[kN]

<u>Risultanti</u>

Risultante dei carichi applicati in dir. orizzontale	136,7938	[kN]
Risultante dei carichi applicati in dir. verticale	439,0748	[kN]
Sforzo normale sul piano di posa della fondazione	439,0748	[kN]
Sforzo tangenziale sul piano di posa della fondazione	136,7938	[kN]
Eccentricità rispetto al baricentro della fondazione	0,42	[m]
Lunghezza fondazione reagente	3,30	[m]
Risultante in fondazione	459,8905	[kN]
Inclinazione della risultante (rispetto alla normale)	17,30	[°]
Momento rispetto al baricentro della fondazione	184,5671	[kNm]
Carico ultimo della fondazione	1725,4187	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	3,30	[m]
Tensione terreno allo spigolo di valle	234,74	[kPa]
Tensione terreno allo spigolo di monte	31,36	[kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,41$	$i_{q} = 0.43$	$i_{\gamma} = 0,29$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 21.72$$
 $N'_{q} = 15.60$ $N'_{\gamma} = 9.91$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.25
Coefficiente di sicurezza a carico ultimo	3.93

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione ***	66129-00002-A00	04RCEII100002000001300	A00	123 di 139

COMBINAZIONE n° 29

Valore della spinta statica	149,0559	[kN]		
Componente orizzontale della spinta statica	144,5290	[kN]		
Componente verticale della spinta statica	36,4558	[kN]		
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	14,16	[°]		
Coefficiente di spinta attiva in condizioni statiche	0,3111	[°]		
Dece townsians analysis and substantians a monte	200 0000	FL-N 17		
Peso terrapieno gravante sulla fondazione a monte	280,8000	[kN]	.,	
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00	[m]
Risultanti carichi esterni				
Componente dir. X	3,87	[kN]		
Componente dir. Y	14,71	[kN]		
<u>Risultanti</u>				
Risultante dei carichi applicati in dir. orizzontale	148,3990	[kN]		
Risultante dei carichi applicati in dir. verticale	395,3746	[kN]		
Momento ribaltante rispetto allo spigolo a valle	349,3107	[kNm]		
Momento stabilizzante rispetto allo spigolo a valle	774,1028	[kNm]		
Sforzo normale sul piano di posa della fondazione	395,3746	[kN]		
Sforzo tangenziale sul piano di posa della fondazione	148,3990	[kN]		
Eccentricità rispetto al baricentro della fondazione	0,58	[m]		0
Lunghezza fondazione reagente	3,22	[m]	0	P
Risultante in fondazione	422,3071	[kN]	CP"	
Inclinazione della risultante (rispetto alla normale)	20,57	[°]	Y	

227,5760

[kNm]

COEFFICIENTI DI SICUREZZA

Momento rispetto al baricentro della fondazione

Coefficiente di sicurezza a ribaltamento 2.22

Stabilità globale muro + terreno

Combinazione n° 30

Le ascisse X sono considerate positive verso monte
Le ordinate Y sono considerate positive verso l'alto
Origine in testa al muro (spigolo contro terra)
W peso della striscia espresso in [kN]

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	124 di 139

- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kPa]
- b larghezza della striscia espressa in [m]
- *u* pressione neutra lungo la base della striscia espressa in [kPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -1,07 Y[m]= 1,07

Raggio del cerchio R[m]= 8,50

Ascissa a valle del cerchio Xi[m]= -6,60
Ascissa a monte del cerchio Xs[m]= 7,37

Larghezza della striscia dx[m]= 0,56

Coefficiente di sicurezza C= 1.71

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

19

20,2707

-12.89

-4,5210

0,0056

Striscia	W	α(°)	Wsin α	b/cosα	ф	С	u
1	11,8161	75.20	11,4239	0,0214	29.26	0	0
2	29,9626	63.75	26,8716	0,0124	29.26	0	0
3	40,9409	56.11	33,9843	0,0098	29.26	0	0
4	49,2850	49.81	37,6492	0,0085	29.26	0	0
5	56,0241	44.26	39,1010	0,0077	29.26	0	0
6	61,6137	39.20	38,9425	0,0071	29.26	0	0
7	66,3052	34.49	37,5422	0,0066	29.26	0	0
8	70,2547	30.03	35,1549	0,0063	29.26	0	0
9	74,2609	25.76	32,2737	0,0061	29.26	0	0
10	77,8262	21.64	28,7038	0,0059	29.26	0	0
11	80,0580	17.64	24,2613	0,0058	29.26	0	0
12	81,8136	13.73	19,4128	0,0056	29.26	0	0
13	83,1199	9.88	14,2567	0,0056	29.26	0	0
14	61,6204	6.07	6,5170	0,0055	29.26	0	0
15	23,2661	2.29	0,9307	0,0055	29.26	0	0
16	22,6339	-1.48	-0,5829	0,0055	29.26	0	0
17	22,2665	-5.25	-2,0377	0,0055	29.26	0	0
18	21,4823	-9.05	-3,3786	0,0055	29.26	0	0

29.26

0

	interconnessione	Doc. N. 66129-0	0002-A00		FICA DOCUMEN EII100002000001		REV. A00	FOGLIO 125 di 139
20	18,6144	-16.79	-5,3758	0,0057	29.26	0	0	
21	16,4885	-20.77	-5,8463	0,0059	29.26	0	0	
22	13,8580	-24.86	-5,8251	0,0060	29.26	0	0	
23	10,6745	-29.09	-5,1893	0,0063	29.26	0	0	
24	6,8708	-33.50	-3,7923	0,0066	29.26	0	0	
25	2,3511	-38.15	-1,4524	0,0070	29.26	0	0	

 $\Sigma W_i = 1023,6782 [kN]$

 $\Sigma W_i \sin \alpha_i = 349,0242 \text{ [kN]}$

 $\Sigma W_i \tan \phi_i = 573,4298 \text{ [kN]}$

 $\Sigma tan\alpha_i tan\phi_i$ = 5.40

COMBINAZIONE n° 31

Peso muro sfavorevole e Peso terrapieno favorevole

Valera della aninta atatica	175 0000	FL-N IT	
Valore della spinta statica	175,9238	[kN]	
Componente orizzontale della spinta statica	167,7815	[kN]	
Componente verticale della spinta statica	52,9013	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,17 [m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	XQ.
			JP
Peso terrapieno gravante sulla fondazione a monte	370,5000	[kN]	
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00 [m]
Risultanti carichi esterni			•
Componente dir. X	3,87	[kN]	
Componente dir. Y	14,71	[kN]	
<u>Risultanti</u>			
Risultante dei carichi applicati in dir. orizzontale	171,6515	[kN]	
Risultante dei carichi applicati in dir. verticale	527,5416	[kN]	
Sforzo normale sul piano di posa della fondazione	527,5416	[kN]	
Sforzo tangenziale sul piano di posa della fondazione	171,6515	[kN]	
Eccentricità rispetto al baricentro della fondazione	0,50	[m]	
Lunghezza fondazione reagente	3,30	[m]	Società di Progetto
Risultante in fondazione	554,7651	[kN]	Brebemi SpA
Inclinazione della risultante (rispetto alla normale)	18,02	[°]	
Momento rispetto al baricentro della fondazione	265,4010	[kNm]	(/)
	,		

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	126 di 139

Carico ultimo della fondazione	1529,4013	[kN]
Odiloo diliillo dolla loridaziorio	1020, 1010	11/1/4

Tensioni sul terreno

Lunghezza fondazione reagente	3,30	[m]
Tensione terreno allo spigolo di valle	306,09	[kPa]
Tensione terreno allo spigolo di monte	13,63	[kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0.39$	$i_{q} = 0,41$	$i_{\gamma} = 0,27$
Fattori profondità	$d_{c} = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 20.78$$
 $N'_{q} = 14.97$ $N'_{\gamma} = 9.32$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.15
Coefficiente di sicurezza a carico ultimo	2.90

COMBINAZIONE n° 32

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica	175,9238	[kN]	
Componente orizzontale della spinta statica	167,7815	[kN]	
Componente verticale della spinta statica	52,9013	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,17 [m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	
			Società di Progetto
Peso terrapieno gravante sulla fondazione a monte	370,5000	[kN]	Brebemi SpA
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00 [m]

interconnessione	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
	66129-00002-A00	04RCEII100002000001300	A00	127 di 139
Risultanti carichi esterni Componente dir. X		3,87 [kN]		

Risultanti carichi esterni		
Componente dir. X	3,87	[kN]
Componente dir. Y	14,71	[kN]
Risultanti		
Risultante dei carichi applicati in dir. orizzontale	171,6515	[kN]
Risultante dei carichi applicati in dir. verticale	508,5654	[kN]
Sforzo normale sul piano di posa della fondazione	508,5654	[kN]
Sforzo tangenziale sul piano di posa della fondazione	171,6515	[kN]
Eccentricità rispetto al baricentro della fondazione	0,51	[m]
Lunghezza fondazione reagente	3,30	[m]
Risultante in fondazione	536,7523	[kN]
Inclinazione della risultante (rispetto alla normale)	18,65	[°]
Momento rispetto al baricentro della fondazione	260,9879	[kNm]
Carico ultimo della fondazione	1449,1275	[kN]
<u>Tensioni sul terreno</u>		

3,30	[m]
297,91	[kPa]
10,32	[kPa]
	297,91

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0.38$	$i_{q} = 0,40$	$i_{\gamma} = 0,26$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$N'_{c} = 19.98$	$N'_{0} = 14.44$	N' _v = 8.81

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.07
Coefficiente di sicurezza a carico ultimo	2.85

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione ROAR	66129-00002-A00	04RCEII100002000001300	A00	128 di 139

COMBINAZIONE n° 33

Peso muro sfavorevole e Peso terrapieno sfavorevole

Valore della spinta statica	175,9238	[kN]	
Componente orizzontale della spinta statica	167,7815	[kN]	
Componente verticale della spinta statica	52,9013	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,17
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	
Peso terrapieno gravante sulla fondazione a monte	464,1000	[kN]	
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00
Risultanti carichi esterni			
Componente dir. X	3,87	[kN]	
Componente dir. Y	14,71	[kN]	
<u>Risultanti</u>			
Risultante dei carichi applicati in dir. orizzontale	171,6515	[kN]	
Risultante dei carichi applicati in dir. verticale	623,3016	[kN]	
Sforzo normale sul piano di posa della fondazione	623,3016	[kN]	
Sforzo tangenziale sul piano di posa della fondazione	171,6515	[kN]	
Eccentricità rispetto al baricentro della fondazione	0,38	[m]	
Lunghezza fondazione reagente	3,30	[m]	
Risultante in fondazione	646,5053	[kN]	
Inclinazione della risultante (rispetto alla normale)	15,40	[°]	
Momento rispetto al baricentro della fondazione	235,5570	[kNm]	SP.
Carico ultimo della fondazione	2035,1657	[kN]	V
<u>Tensioni sul terreno</u>			
Lunghezza fondazione reagente	3,30	[m]	

318,66

59,10

[kPa]

[kPa]

Fattori per il calcolo della capacità portante

Tensione terreno allo spigolo di valle

Tensione terreno allo spigolo di monte

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$
Fattori inclinazione	$i_c = 0.46$	$i_{q} = 0,48$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$

N _γ = 33.92 Società di Progetto
Società di Progetto
s = 1.00 Brebenii SpA
$i_{\gamma} = 0.34$

[m]

[m]

interconnessione (66129-00002-A00)	CODIFICA DOCUMENTO	REV.	FOGLIO
	04RCEII100002000001300	A00	129 di 139

Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 24.33$$
 $N'_{q} = 17.34$ $N'_{\gamma} = 11.63$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.54
Coefficiente di sicurezza a carico ultimo	3.27

COMBINAZIONE n° 34

Peso muro favorevole e Peso terrapieno sfavorevole

Eccentricità rispetto al baricentro della fondazione

Inclinazione della risultante (rispetto alla normale)

Momento rispetto al baricentro della fondazione

Lunghezza fondazione reagente

Risultante in fondazione

Valore della spinta statica	175,9238	[kN]	
Componente orizzontale della spinta statica	167,7815	[kN]	
Componente verticale della spinta statica	52,9013	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,17 [m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]	
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]	
Peso terrapieno gravante sulla fondazione a monte	464,1000	[kN]	
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00 [m]
			A.P.
Risultanti carichi esterni			•
Componente dir. X	3,87	[kN]	
Componente dir. Y	14,71	[kN]	
<u>Risultanti</u>			
Risultante dei carichi applicati in dir. orizzontale	171,6515	[kN]	
Risultante dei carichi applicati in dir. verticale	604,3254	[kN]	
Sforzo normale sul piano di posa della fondazione	604,3254	[kN]	
Sforzo tangenziale sul piano di posa della fondazione	171,6515	[kN]	

0,38

3,30

15,86

628,2304

231,1439

[m]

[m]

[kN]

[kNm]

[°]

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	130 di 139

Carico ultimo della fondazione	1965,7472 [kN]
--------------------------------	----------------

Tensioni sul terreno

Lunghezza fondazione reagente	3,30	[m]
Tensione terreno allo spigolo di valle	310,48	[kPa]
Tensione terreno allo spigolo di monte	55,78	[kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 46.12$	$N_{q} = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,45$	$i_q = 0,46$	$i_{\gamma} = 0.33$
Fattori profondità	$d_{c} = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 23.69$$

$$N'_{q} = 16.91$$

$$N'_{\gamma} = 11.20$$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.47
Coefficiente di sicurezza a carico ultimo	3.25

COMBINAZIONE n° 35

Valore della spinta statica	195,2509	[kN]	
Componente orizzontale della spinta statica	189,3210	[kN]	
Componente verticale della spinta statica	47,7541	[kN]	
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,14 [m]
Inclinaz. della spinta rispetto alla normale alla superficie	14,16	[°]	
Coefficiente di spinta attiva in condizioni statiche	0,3111	[°]	
Peso terrapieno gravante sulla fondazione a monte	339,3000	[kN]	
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00ociet[m] Progetto
			Brebemi SpA

Risultanti carichi esterni

Componente dir. X 3,87 [kN]

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	131 di 139

1.87

Componente dir. Y	14,71	[kN]
<u>Risultanti</u>		
Risultante dei carichi applicati in dir. orizzontale	193,1910	[kN]
Risultante dei carichi applicati in dir. verticale	465,1729	[kN]
Momento ribaltante rispetto allo spigolo a valle	497,1244	[kNm]
Momento stabilizzante rispetto allo spigolo a valle	928,3872	[kNm]
Sforzo normale sul piano di posa della fondazione	465,1729	[kN]
Sforzo tangenziale sul piano di posa della fondazione	193,1910	[kN]
Eccentricità rispetto al baricentro della fondazione	0,72	[m]
Lunghezza fondazione reagente	2,78	[m]
Risultante in fondazione	503,6949	[kN]
Inclinazione della risultante (rispetto alla normale)	22,55	[°]
Momento rispetto al baricentro della fondazione	336,2725	[kNm]
COEFFICIENTI DI SICUREZZA		

Stabilità globale muro + terreno

Coefficiente di sicurezza a ribaltamento

Combinazione n° 36

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kPa]
- b larghezza della striscia espressa in [m]
- *u* pressione neutra lungo la base della striscia espressa in [kPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -1,07 Y[m] = 1,60

Raggio del cerchio R[m]= 8,99

Ascissa a valle del cerchio Xi[m]= -6,71 Ascissa a monte del cerchio Xs[m]= 7,78

Larghezza della striscia dx[m]= 0,58

Coefficiente di sicurezza C= 1.

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	$\text{Wsin}\alpha$	b/cosα	ф	С	u
1	22,3701	73.10	21,4038	0,0196	29.26	0	0
2	40,0120	62.93	35,6287	0,0125	29.26	0	0
3	51,4988	55.59	42,4888	0,0101	29.26	0	0
4	60,3403	49.48	45,8661	0,0088	29.26	0	0
5	67,5261	44.06	46,9560	0,0079	29.26	0	0
6	73,5115	39.10	46,3643	0,0073	29.26	0	0
7	78,5525	34.48	44,4673	0,0069	29.26	0	0
8	82,8099	30.10	41,5280	0,0066	29.26	0	0
9	86,4871	25.91	37,7868	0,0063	29.26	0	0
10	90,9446	21.86	33,8622	0,0061	29.26	0	0
11	93,3808	17.93	28,7406	0,0060	29.26	0	0
12	95,3114	14.08	23,1820	0,0059	29.26	0	0
13	96,7649	10.29	17,2892	0,0058	29.26	0	0
14	81,3890	6.55	9,2885	0,0057	29.26	0	
15	23,8073	2.84	1,1803	0,0057	29.26	0	0
16	22,9329	-0.86	-0,3433	0,0057	29.26	0	0
17	22,6144	-4.56	-1,7982	0,0057	29.26	0	0
18	21,8568	-8.28	-3,1487	0,0057	29.26	0	0
19	20,6503	-12.04	-4,3079	0,0058	29.26	0	0 0
20	18,9785	-15.85	-5,1842	0,0059	29.26	0	0
21	16,8176	-19.74	-5,6796	0,0060	29.26	0	0
22	14,1342	-23.72	-5,6859	0,0062	29.26	0	0
23	10,8821	-27.83	-5,0804	0,0064	29.26	0	0
24	6,9981	-32.10	-3,7191	0,0067	29.26	0	0
25	2,3933	-36.59	-1,4266	0,0071	29.26	0	0

 $\Sigma W_i = 1202,9647 [kN]$

 $\Sigma W_{i} \sin \alpha_{i} = 439,6587 [kN]$

 Σ W_itan ϕ _i= 673,8600 [kN]

 Σ tanα_itan ϕ _i= 5.21

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	133 di 139

COMBINAZIONE n° 37

Valore della spinta statica	107,2112	[kN]		
Componente orizzontale della spinta statica	102,2491	[kN]		
Componente verticale della spinta statica	32,2390	[kN]		
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,40	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]		
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]		
Peso terrapieno gravante sulla fondazione a monte	312,0000	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00	[m]
<u>Risultanti</u>				
Risultante dei carichi applicati in dir. orizzontale	102,2491	[kN]		
Risultante dei carichi applicati in dir. verticale	414,6929	[kN]		
Sforzo normale sul piano di posa della fondazione	414,6929	[kN]		
Sforzo tangenziale sul piano di posa della fondazione	102,2491	[kN]		
Eccentricità rispetto al baricentro della fondazione	0,21	[m]		
Lunghezza fondazione reagente	3,30	[m]		
Risultante in fondazione	427,1125	[kN]		
Inclinazione della risultante (rispetto alla normale)	13,85	[°]		
Momento rispetto al baricentro della fondazione	86,9838	[kNm]		
Carico ultimo della fondazione	2553,0175	[kN]		
<u>Tensioni sul terreno</u>				01
Lunghezza fondazione reagente	3,30	[m]	0	6

Lunghezza fondazione reagente	3,30	[m]
Tensione terreno allo spigolo di valle	173,59	[kPa]
Tensione terreno allo spigolo di monte	77,74	[kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,50$	$i_{q} = 0.52$	$i_{\gamma} = 0.39$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	go=1,00 Proge

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione para di posa, inclinazione pendio.

$$N'_{c} = 26.58$$

Doc. N.
66129-00002-A00

CODIFICA DOCUMENTO
04RCEII100002000001300

	REV
ı	A00

FOGLIO 134 di 139

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.84
Coefficiente di sicurezza a carico ultimo	6.16

COMBINAZIONE n° 38

Valore della spinta statica	131,5773	[kN]		
Componente orizzontale della spinta statica	125,4875	[kN]		
Componente verticale della spinta statica	39,5661	[kN]		
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,20	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]		
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]		
Peso terrapieno gravante sulla fondazione a monte	351,0000	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00	[m]

<u>Risultanti</u>

Risultante dei carichi applicati in dir. orizzontale	125,4875	[kN]
Risultante dei carichi applicati in dir. verticale	461,0200	[kN]
Sforzo normale sul piano di posa della fondazione	461,0200	[kN]
Sforzo tangenziale sul piano di posa della fondazione	125,4875	[kN]
Eccentricità rispetto al baricentro della fondazione	0,30	[m]
Lunghezza fondazione reagente	3,30	[m]
Risultante in fondazione	477,7934	[kN]
Inclinazione della risultante (rispetto alla normale)	15,23	[°]
Momento rispetto al baricentro della fondazione	137,9310	[kNm]
Carico ultimo della fondazione	2186,0228	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	3,30	[m]
Tensione terreno allo spigolo di valle	215,70	[kPa]
Tensione terreno allo spigolo di monte	63,71	[kPa]

Società di Progetto Brebenii SpA

APPRILVATO BOP

Fattori per il calcolo della capacità portante

 $N_{\gamma} = 33.92$

	Doc. N.	CODIFICA DOCUMEN	TO	REV.	FOGLIO
interconnessione .com	66129-00002-A00	04RCEII100002000000		A00	135 di 139
	1	l		1	<u> </u>
Fattori inclinazione	$i_c = 0.47$	$i_q = 0,$	48	i _γ =	= 0,35
Fattori profondità	$d_{c} = 1,15$	$d_{q} = 1,0$	09	d_{γ} =	= 1,00
Fattori inclinazione piano p	osa $b_c = 1,00$	$b_{q} = 1,0$	00	b _γ =	= 1,00
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,0$	00	g_{γ} =	= 1,00
I coefficienti N' tengono conto	o dei fattori di forma, profo	ondità, inclinazione	carico, in	clinazione pia	ano di posa,
inclinazione pendio.					
	N' _c = 24.57	$N'_{q} = 17.5$	51	Ν', =	11.79
COEFFICIENTI DI SICUREZ	ZA				
Coefficiente di sicurezza a sc		2.57			
Coefficiente di sicurezza a ca		4.74			
COMBINAZIONE n° 39					
Valore della spinta statica		107,2112	[kN]		
Componente orizzontale della	a spinta statica	102,2491	[kN]		
Componente verticale della s	pinta statica	32,2390	[kN]		
Punto d'applicazione della sp	inta	X = 2,60	[m]	Y = -4,40	[m]
Inclinaz. della spinta rispetto	alla normale alla superficie	e 17,50	[°]		
Coefficiente di spinta attiva in	condizioni statiche	0,2461	[°]		
			F1 A 17		[m]
Peso terrapieno gravante sull		312,0000	[kN]	V = 0.00	77,
Baricentro terrapieno gravant	e sulla fondazione a mont	e X = 1,30	[m]	Y = -3,00	[m]
Risultanti carichi esterni				Y = -3,00	
Componente dir. X		0,52	[kN]	Y -	
Componente dir. Y		1,96	[kN]		
<u>Risultanti</u>					
Risultante dei carichi applicat	i in dir. orizzontale	102,7651	[kN]		
Risultante dei carichi applicat	i in dir. verticale	416,6543	[kN]		
Sforzo normale sul piano di p	osa della fondazione	416,6543	[kN]		
Sforzo tangenziale sul piano	di posa della fondazione	102,7651	[kN]		
Eccentricità rispetto al baricer		0,22	[m]		
Lunghezza fondazione reage	nte	3,30	[m]		_
Risultante in fondazione		429,1404	[kN]		cietà di Proget
Inclinazione della risultante (r	•	13,86	[°]	В	rebemi SpA
Momento rispetto al baricentr	o della fondazione	93,1248	[kNm]		$\Delta \Lambda$

Carico ultimo della fondazione

2527,9482 [kN]

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	136 di 139

Tensioni sul terreno

Lunghezza fondazione reagente	3,30	[m]
Tensione terreno allo spigolo di valle	177,57	[kPa]
Tensione terreno allo spigolo di monte	74,95	[kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,50$	$i_{q} = 0.52$	$i_{\gamma} = 0.39$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 26.57$$
 $N'_{q} = 18.84$ $N'_{\gamma} = 13.15$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.84
Coefficiente di sicurezza a carico ultimo	6.07

COMBINAZIONE n° 40

Valore della spinta statica	139,6994	[kN]		
Componente orizzontale della spinta statica	133,2337	[kN]		
Componente verticale della spinta statica	42,0084	[kN]		
Punto d'applicazione della spinta	X = 2,60	[m]	Y = -4,14	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	17,50	[°]		
Coefficiente di spinta attiva in condizioni statiche	0,2461	[°]		
Peso terrapieno gravante sulla fondazione a monte	364,0000	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 1,30	[m]	Y = -3,00	[m]
			Soc	ietà di P
			_	. / / .

Progetto Brebemi SpA Risultanti carichi esterni

Componente dir. X 1,55 [kN]

Componente dir. Y 5,88 [kN]

<u>Risultanti</u>

Risultante dei carichi applicati in dir. orizzontale	134,7817	[kN]
Risultante dei carichi applicati in dir. verticale	482,3464	[kN]
Sforzo normale sul piano di posa della fondazione	482,3464	[kN]
Sforzo tangenziale sul piano di posa della fondazione	134,7817	[kN]
Eccentricità rispetto al baricentro della fondazione	0,36	[m]
Lunghezza fondazione reagente	3,30	[m]
Risultante in fondazione	500,8235	[kN]
Inclinazione della risultante (rispetto alla normale)	15,61	[°]
Momento rispetto al baricentro della fondazione	173,3363	[kNm]
Carico ultimo della fondazione	2035,1132	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	3,30	[m]
Tensione terreno allo spigolo di valle	241,67	[kPa]
Tensione terreno allo spigolo di monte	50,66	[kPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 46.12$	$N_q = 33.30$	$N_{\gamma} = 33.92$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,45$	$i_{q} = 0,47$	$i_{\gamma} = 0,34$
Fattori profondità	$d_c = 1,15$	$d_{q} = 1,09$	$d_{\gamma} = 1,00$
Fattori inclinazione piano posa	$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$N'_{c} = 24.03$	$N'_{a} = 17.14$	N' _v = 11.42
N c - 24.00	IN a - 17.14	IN , - 11.42

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.51
Coefficiente di sicurezza a carico ultimo	4.22

	Doc. N.	CODIFICA DOCUMEN	ГО	REV.	FOGLIO
interconnessione .com	66129-00002-A00	04RCEII100002000001	300	A00	138 di 139
Valore della eninte etation		121 5772	[LN]		•
Valore della spinta statica	oninto etatico	131,5773	[kN]		
Componente verticale della spi		125,4875 39,5661	[kN]		
Componente verticale della spin			[kN]	Y = -4,20	[m]
Punto d'applicazione della spini		X = 2,60	[m]	Y = -4,20	[m]
Inclinaz. della spinta rispetto all	·		[°]		
Coefficiente di spinta attiva in c	ondizioni staticne	0,2461	[°]		
Peso terrapieno gravante sulla	fondazione a monte	351,0000	[kN]		
Baricentro terrapieno gravante	sulla fondazione a monte	x = 1,30	[m]	Y = -3,00	[m]
<u>Risultanti carichi esterni</u>					
Componente dir. X		2,58	[kN]		
Componente dir. Y		9,81	[kN]		
Risultanti					
Risultante dei carichi applicati i	n dir. orizzontale	128,0675	[kN]		
Risultante dei carichi applicati i		470,8268	[kN]		
Sforzo normale sul piano di pos		470,8268	[kN]		
Sforzo tangenziale sul piano di		128,0675	[kN]		
Eccentricità rispetto al baricenti	•	0,36	[m]		
Lunghezza fondazione reagent		3,30	[m]		
Risultante in fondazione	•	487,9335	[kN]		
Inclinazione della risultante (ris	netto alla normale)	15,22	[°]		
Momento rispetto al baricentro	,	168,6358	[kNm]		
Carico ultimo della fondazione	della fortaaziorie	2091,9922	[kN]		MA
Canco ditimo della fondazione		2031,9322	נגואן		PC.
Tensioni sul terreno				PR	ROVAT
Lunghezza fondazione reagent	е	3,30	[m]	Y	
Tensione terreno allo spigolo di	i valle	235,59	[kPa]		
Tensione terreno allo spigolo di	i monte	49,76	[kPa]		
Fattori per il calcolo della capad	•				
Coeff. capacità portante	$N_c = 46.12$	$N_{q} = 33.3$		$N_{\gamma} = 3$	
Fattori forma	$s_c = 1,00$	$s_{q} = 1,0$	0	$s_{\gamma} =$	1,00
Fattori inclinazione	$i_c = 0.47$	$i_{q} = 0,4$	8	•	0,35
Fattori profondità	$d_c = 1,15$	$d_{q} = 1.0$	9	d, =	1,00/ ietà di Proge
Fattori inclinazione piano pos	$b_c = 1,00$	$b_{q} = 1.0$	0		eb00i SpA
Fattori inclinazione pendio	$g_c = 1,00$	$g_{q} = 1,0$	0	g _y =	1,00
-		- ,			✓ K \

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66129-00002-A00	04RCEII100002000001300	A00	139 di 139

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 24.59$$

$$N'_{\gamma} = 11.80$$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.57
Coefficiente di sicurezza a carico ultimo	4.44

APPRILIVATO BOP