

CONCESSIONARIA

CUP E3 1 B05000390007

COLLEGAMENTO AUTOSTRADALE DI CONNESSIONE TRA LE CITTA' DI BRESCIA E MILANO

PROCEDURA AUTORIZZATIVA D. LGS 163/2006 Delibera C.I.P.E. DI Approvazione del Progetto Definitivo n° 19/2016

INTERCONNESSIONE A35-A4 PROGETTO ESECUTIVO

O-PARTE GENERALE

OD-GENERALE

00002 - ELABORATI TIPOLOGICI

IMPIANTI SPECIALI E TELECOMUNICAZIONE

FONI	DAZIONE PANNEL							ABILE	IN IT	INERE	- RELA	4ZI 0	I NE
PROGETT	AZIONE:										v	ERIFI	CA:
inter	connessione scarl												OBDP
ME	ETTISTA RESPONSABILE IN PRESTAZIONI SPECIALISTI MPRESA FIZZARUTIU E B. S. DOTT. ING. PIETRO MAZZOL NE DEGLI INGEGNERI DI PARMA	:H#		ΝE		IMPR Do	RESA P	IZZAROT . Sabino gegneri di	TI E D. S. DEL BALZ	:0	APPAC	ZA	<u> </u>
I.D.			ı	IDENTIF	ICAZ	IONE EI	LABORA	то			PROGR.		DATA:
66138	O4 RC E I		LOTTO I	OPERA		PROG. OPERA	00	PARTE 00	PROGR. 017	PART.DOC.	OTAT2	REV.	SCALA:
													-
ELABORA	AZIONE PROGETTUALE		T T							REVISION			
//	PROGESTA	N.	REV.			SCRIZIONE MISSIONE		DATA 29/07/2016	REDATTO PIACENTINI	DATA 29/07/2016	CONTROLLATO Mazzoli	DATA 29/07/2	
	HNITHEENERLE R.L.	А	UU		EI	41991NIE		23/0//2010	PIAGENTINI	23/0//2010	MAZZULI	29/0//2	UID MAZZULI
	IND LUCA PIADENTINI												
ORDINE DEGL	The state of the s												
//14	CNVWC 3												
	A September 2												
				IL (JOI	NCEDE	ENIE			IL CC	NCESSI	JNAF	110
	1				~	CONCE AUTOS LOMBA	SSIONI TRADALI ARDE			0-0	SOCIETÀ D BREBE		
											Società d	Proge	etto
											Breber		
IL PR	ESENTE DOCUMENTO NON POTRA' ESSERE COPIATO, RIPRODOTTO THIS DOCUMENT MAY NOT BE COPIED, REPRODUCEI					E, SENZA IL CON ETY, WITHOUT TH	SENSO SCRITTO IE WRITTEN PER				SARA' PERSEGUITO A NO PROSECUTE BY LAW	RMA DI LEGGE	

INDICE

1.	DES	CRIZION	NE GENERALE DELL'OPERA	7
2.	NOR	RMATIVA	A DI RIFERIMENTO	10
	2.1	Opere	in c.a. e strutture metalliche	10
	2.2	Altri d	ocumenti	11
3.	CAR	ATTERI	STICHE DEI MATERIALI	12
	3.1	Congl	omerato cementizio per sottofondazioni	12
	3.2	Congl	omerato cementizio per fondazioni	12
	3.3	Acciai	o per cemento armato	12
4.	DUR	RABILITÀ	À E PRESCRIZIONI SUI MATERIALI	13
	4.1	Coprif	erro minimo e copriferro nominale	13
5.	CRIT	TERI DI (CALCOLO	14
	5.1	Criteri	e definizione dell'azione sismica	14
	5.2	Combi	inazioni di carico agli stati limite	18
	5.3	Verific	che in ambito geotecnico e di equilibrio di corpo rigido	20
		5.3.1	Verifica a ribaltamento	20
		5.3.2	Verifica a scorrimento del piano di posa	20
		5.3.3	Verifica per carico limite dell'insieme fondazione-terreno	
6.	MON		TIPOLOGICO	
	6.1	Analis	si della struttura	25
		6.1.1	Geometria della struttura	25
		6.1.2	Carichi permanenti	26
		6.1.3	Spinta del rilevato	27
		6.1.4	Spinta dovuta ai sovraccarichi variabili sul rilevato	27
		6.1.5	Azioni da vento	27
		6.1.6	Azioni da neve	29
		6.1.7	Azioni sismiche	29
	6.2	Sollec	itazioni e verifiche delle strutture di fondazione	30
		6.2.1	Geometria della fondazione	30
		6.2.2	Combinazioni di carico	30
		6.2.3	Sollecitazioni sugli elementi strutturali	31
		6.2.4	Verifiche in ambito geotecnico e di equilibrio di corpo rigido	Società di Progaz
		6.2.5	Verifiche strutturali	Brebenii Sp\$6
7	MON	ΙΟΡΔΙ Ο	ALLA SEZIONE BS. BO-21	42

	7.1	Analis	i della struttura	42
		7.1.1	Geometria della struttura	42
		7.1.2	Carichi permanenti	43
		7.1.3	Spinta del rilevato	43
		7.1.4	Spinta dovuta ai sovraccarichi variabili sul rilevato	44
		7.1.5	Azioni da vento	44
		7.1.6	Azioni da neve	45
		7.1.7	Azioni sismiche	46
	7.2	Sollec	itazioni e verifiche delle strutture di fondazione	46
		7.2.1	Geometria della fondazione	46
		7.2.2	Combinazioni di carico	47
		7.2.3	Sollecitazioni sugli elementi strutturali	47
		7.2.4	Verifiche in ambito geotecnico e di equilibrio di corpo rigido	48
8.	MON	IOPALO	ALLA SEZIONE BS_BB-SV8	53
	8.1	Analis	i della struttura	53
		8.1.1	Geometria della struttura	53
		8.1.2	Carichi permanenti	54
		8.1.3	Spinta del rilevato	54
		8.1.4	Spinta dovuta ai sovraccarichi variabili sul rilevato	55
		8.1.5	Azioni da vento	55
		8.1.6	Azioni da neve	56
		8.1.7	Azioni sismiche	57
	8.2	Sollec	itazioni e verifiche delle strutture di fondazione	57
		8.2.1	Geometria della fondazione	
		8.2.2	Combinazioni di carico	58
		8.2.3	Sollecitazioni sugli elementi strutturali	
		8.2.4	Verifiche in ambito geotecnico e di equilibrio di corpo rigido	59
9.	MON	IOPALO	ALLA SEZIONE BS_BB-74	64
	9.1	Analis	i della struttura	64
		9.1.1	Geometria della struttura	64
		9.1.2	Carichi permanenti	65
		9.1.3	Spinta del rilevato	65
		9.1.4	Spinta dovuta ai sovraccarichi variabili sul rilevato	66
		9.1.5	Azioni da vento	66
		9.1.6	Azioni da neve	67
		9.1.7	Azioni sismiche	68
	9.2	Sollec	itazioni e verifiche delle strutture di fondazione	Società di Progetto
		9.2.1	Geometria della fondazione	Brebemi Sp68
		9.2.2	Combinazioni di carico	
		9.2.3	Sollecitazioni sugli elementi strutturali	69

		9.2.4	Verifiche in ambito geotecnico e di equilibrio di corpo rigido	70
10.	MON	OPALO	ALLA SEZIONE A 21B	75
	10.1	Analis	i della struttura	75
		10.1.1	Geometria della struttura	75
		10.1.2	Carichi permanenti	76
		10.1.3	Spinta del rilevato	76
		10.1.4	Spinta dovuta ai sovraccarichi variabili sul rilevato	77
		10.1.5	Azioni da vento	77
		10.1.6	Azioni da neve	78
		10.1.7	Azioni sismiche	79
	10.2	Sollec	itazioni e verifiche delle strutture di fondazione	79
		10.2.1	Geometria della fondazione	79
		10.2.2	Combinazioni di carico	80
		10.2.3	Sollecitazioni sugli elementi strutturali	80
		10.2.4	Verifiche in ambito geotecnico e di equilibrio di corpo rigido	81
11.	MON	OPALO	ALLA SEZIONE A 40	86
	11.1	Analis	i della struttura	86
		11.1.1	Geometria della struttura	86
		11.1.2	Carichi permanenti	87
		11.1.3	Spinta del rilevato	87
		11.1.4	Spinta dovuta ai sovraccarichi variabili sul rilevato	88
		11.1.5	Azioni da vento	88
		11.1.6	Azioni da neve	89
		11.1.7	Azioni sismiche	
	11.2	Sollec	itazioni e verifiche delle strutture di fondazione	90
		11.2.1	Geometria della fondazione	90
		11.2.2	Combinazioni di carico	91
		11.2.3	Sollecitazioni sugli elementi strutturali	91
		11.2.4	Verifiche in ambito geotecnico e di equilibrio di corpo rigido	92
12.	MON	OPALO	ALLA SEZIONE A 56A	97
	12.1	Analis	i della struttura	97
		12.1.1	Geometria della struttura	97
		12.1.2	Carichi permanenti	98
		12.1.3	Spinta del rilevato	98
		12.1.4	Spinta dovuta ai sovraccarichi variabili sul rilevato	
		12.1.5	Azioni da vento	Società di Procett
		12.1.6	Azioni da neve	Brebenii SpA
		12.1.7	Azioni sismiche	
	12.2	Sollec	itazioni e verifiche delle strutture di fondazione	101
		12.2.1	Geometria della fondazione	101

CODIFICA DOCUMENTO 04RCEII100002000000100 REV. A00 FOGLIO 5 di 162

		12.2.2	Combinazioni di carico	102
		12.2.3	Sollecitazioni sugli elementi strutturali	102
		12.2.4	Verifiche in ambito geotecnico e di equilibrio di corpo rigido	103
13.	MON	OPALO	ALLA SEZIONE A 170	108
	13.1	Analis	i della struttura	108
		13.1.1	Geometria della struttura	108
		13.1.2	Carichi permanenti	109
		13.1.3	Spinta del rilevato	109
		13.1.4	Spinta dovuta ai sovraccarichi variabili sul rilevato	110
		13.1.5	Azioni da vento	110
		13.1.6	Azioni da neve	111
		13.1.7	Azioni sismiche	112
	13.2	Sollec	itazioni e verifiche delle strutture di fondazione	112
		13.2.1	Geometria della fondazione	112
		13.2.2	Combinazioni di carico	113
		13.2.3	Sollecitazioni sugli elementi strutturali	113
		13.2.4	Verifiche in ambito geotecnico e di equilibrio di corpo rigido	114
14.	MON	OPALO	ALLA SEZIONE A 176	119
	14.1	Analis	i della struttura	119
		14.1.1	Geometria della struttura	119
		14.1.2	Carichi permanenti	120
		14.1.3	Spinta del rilevato	120
		14.1.4	Spinta dovuta ai sovraccarichi variabili sul rilevato	121
		14.1.5	Azioni da vento	121
		14.1.6	Azioni da neve	122
		14.1.7	Azioni sismiche	123
	14.2	Sollec	itazioni e verifiche delle strutture di fondazione	123
		14.2.1	Geometria della fondazione	123
		14.2.2	Combinazioni di carico	124
		14.2.3	Sollecitazioni sugli elementi strutturali	124
		14.2.4	Verifiche in ambito geotecnico e di equilibrio di corpo rigido	125
15.	MON	OPALO	ALLA SEZIONE A 246	130
	15.1	Analis	i della struttura	130
		15.1.1	Geometria della struttura	130
		15.1.2	Carichi permanenti	
		15.1.3	Spinta del rilevato	Società di Brosst
		15.1.4	Spinta dovuta ai sovraccarichi variabili sul rilevato	Brebemi SpA
		15.1.5	Azioni da vento	
		15.1.6	Azioni da neve	133
		15 1 7	Azioni sismiche	134

CODIFICA DOCUMENTO 04RCEII100002000000100 REV. A00 FOGLIO 6 di 162

	15.2	Sollec	itazioni e verifiche delle strutture di fondazione	134
		15.2.1	Geometria della fondazione	134
		15.2.2	Combinazioni di carico	135
		15.2.3	Sollecitazioni sugli elementi strutturali	135
		15.2.4	Verifiche in ambito geotecnico e di equilibrio di corpo rigido	136
16.	MON	OPALO	ALLA SEZIONE A 234	141
	16.1	Analis	si della struttura	141
		16.1.1	Geometria della struttura	141
		16.1.2	Carichi permanenti	142
		16.1.3	Spinta del rilevato	142
		16.1.4	Spinta dovuta ai sovraccarichi variabili sul rilevato	143
		16.1.5	Azioni da vento	143
		16.1.6	Azioni da neve	144
		16.1.7	Azioni sismiche	145
	16.2	Sollec	itazioni e verifiche delle strutture di fondazione	145
		16.2.1	Geometria della fondazione	145
		16.2.2	Combinazioni di carico	146
		16.2.3	Sollecitazioni sugli elementi strutturali	146
		16.2.4	Verifiche in ambito geotecnico e di equilibrio di corpo rigido	147
17.	MON	OPALO	ALLA SEZIONE A 60	152
	17.1	Analis	si della struttura	152
		17.1.1	Geometria della struttura	152
		17.1.2	Carichi permanenti	
		17.1.3	Spinta del rilevato	153
		17.1.4	Spinta dovuta ai sovraccarichi variabili sul rilevato	154
		17.1.5	Azioni da vento	154
		17.1.6	Azioni da neve	155
		17.1.7	Azioni sismiche	156
	17.2	Sollec	itazioni e verifiche delle strutture di fondazione	156
		17.2.1	Geometria della fondazione	156
		17.2.2	Combinazioni di carico	157
		17.2.3	Sollecitazioni sugli elementi strutturali	157
		17.2.4	Verifiche in ambito geotecnico e di equilibrio di corpo rigido	158

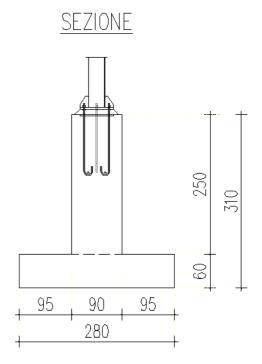
Società di Progetto Breberni SpA

CODIFICA DOCUMENTO 04RCEII100002000000100 REV. A00 FOGLIO 7 di 162

1. DESCRIZIONE GENERALE DELL'OPERA

La presente relazione, nell'ambito del Progetto Esecutivo dell'interconnessione autostradale A35-A4 e dell'adeguamento a due carreggiate del lotto 0A, riguarda il dimensionamento e la verifica dell'apparato fondale della segnaletica su monopalo.

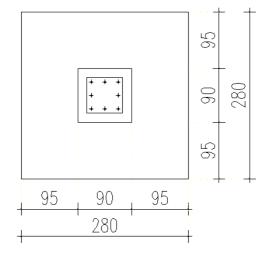
Nello specifico, il presente documento ha ad oggetto la segnaletica su monopalo identificato come tipo "A", ovvero dimensionato per il sostegno di un cartello di superficie fino a 10 m².

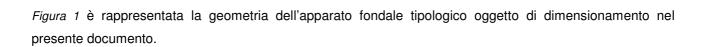

Per quanto in oggetto è stata definita una geometria di fondazione da considerarsi come "tipologica", per la quale sono state riportate le esaustive verifiche geotecniche e strutturali. Per tale fondazione si prevede un apparato fondale di tipo superficiale, costituito da una platea di fondazione di forma quadrata (lato m 2.80) e spessore m 0.60. In corrispondenza dell'ancoraggio del montante si prevede una emergenza estradossale di carpenteria costituita da un baggiolo anch'esso di forma planimetrica quadrata (lato m 0.90) ed altezza m 2.50.

APPROUNTED BOP

Società di Progetto

Brebenii SpA

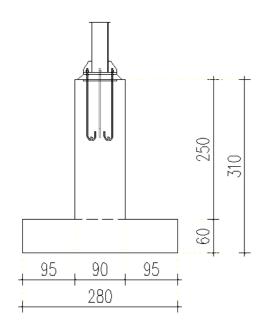



FOGLIO

8 di 162

In

PIANTA PLINTO DI FONDAZIONE



Società di Progetto
Brebemi SpA

APPRILIVATIO BOP

<u>SEZIONE</u>

PIANTA PLINTO DI FONDAZIONE

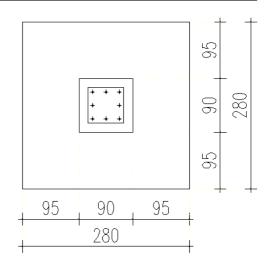


Figura 1 – Geometria dell'apparato fondale tipologico.

La fondazione assunta come tipologica è di norma assunta di geometria cautelativa, le cui verifiche strutturali e geotecniche sono assunte come garanti dell'inviluppo delle condizioni geometriche e di carico delle effettive geometrie riscontrabili fra gli elementi disposti lungo la linea.

Nei capitoli successivi sono stati esaminati casi reali effettivamente disposti nell'intervento, la cui geometria si discosta apprezzabilmente da quella tipologica per ragioni di interferenze e/o vincoli contingenti e per le quali non risulta immediato un rimando alla situazione tipologica rispetto alla quale la rispettiva effettiva geometria sia tale da garantirne implicita soddisfazione delle verifiche geotecniche.

Nella tabella sottostante sono riportati i casi particolari considerati, che riguardano sia l'intervento di allargamento sia quello di interconnessione:

Сар.		Profilo	Sezione	Progressiva
7	Interconnessione	BS_RO	BS_RO-21	300.00
8	Interconnessione	BS_BB	SV8	70.00
9	Interconnessione	BS_BB	BS_BB-74	1297.55
10	Allargamento	A (Dir. A4-Venezia)	21b	360.70
11	Allargamento	A (Dir. A4-Venezia)	40	699.81
12	Allargamento	A (Dir. A4-Venezia)	56a	1027.45
13	Allargamento	A (Dir. A4-Venezia)	170	2862.33
14	Allargamento	A (Dir. A4-Venezia)	176	2982.33
15	Allargamento	A (Dir. A4-Venezia)	246	4401.49
16	Allargamento	A (Dir. A35-Milano)	234	4162.19
17	Allargamento	A (Dir. A35-Milano)	60	1079.63

Società di Progetto

Brebemi SpA

	Doc. N.
interconnessione	66128-00002-A00.doc

CODIFICA DOCUMENTO
04RCEII100002000000100

REV. A00 FOGLIO 10 di 162

2. NORMATIVA DI RIFERIMENTO

I calcoli e le disposizioni esecutive sono conformi alle norme attualmente in vigore.

2.1 Opere in c.a. e strutture metalliche

- D. M. Min. II. TT. del 14 gennaio 2008 Norme tecniche per le costruzioni;
- CIRCOLARE 2 febbraio 2009, n.617 "Istruzione per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008;
- UNI EN 1990 (Eurocodice 0) Aprile 2006: "Criteri generali di progettazione strutturale";
- UNI EN 1991-2-4 (Eurocodice 1) Agosto 2004 Azioni in generale: "Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici";
- UNI EN 1991-1-1 (Eurocodice 1) Agosto 2004 Azioni in generale- Parte 1-1: "Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici";
- UNI EN 1991-2 (Eurocodice 1) Marzo 2005 Azioni sulle strutture- Parte 2: "Carico da traffico sui ponti";
- UNI EN 1992-1-1 (Eurocodice 2) Novembre 2005: "Progettazione delle strutture di calcestruzzo –
 Parte 1-1: "Regole generali e regole per gli edifici";
- UNI EN 1992-2 (Eurocodice 2) Gennaio 2006: "Progettazione delle strutture di calcestruzzo –
 Parte 2: "Ponti in calcestruzzo progettazione e dettagli costruttivi";
- UNI EN 1993-1-1 (Eurocodice 3) Ottobre 1993: "Progettazione delle strutture in acciaio Parte 1 1: Regole generali e regole per gli edifici";
- UNI EN 1997-1 (Eurocodice 7) Febbraio 2005: "Progettazione geotecnica Parte 1: Regole generali";
- UNI EN 1998-1 (Eurocodice 8) Marzo 2005: "Progettazione delle strutture per la resistenza sismica – Parte 1: Regole generali – Azioni sismiche e regole per gli edifici";
- UNI EN 1998-2 (Eurocodice 8) Febbraio 2006: "Progettazione delle strutture per la resistenza sismica – Parte 2: Ponti";
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2005: "Progettazione delle strutture per la resistenza sismica Parte 2: Fondazioni, strutture di contenimento ed aspetti geotecnici".
- Linee guida sul calcestruzzo strutturale Presidenza del Consiglio Superiore dei Lavori Pubblici -Servizio Tecnico Centrale;
- UNI EN 197-1 giugno 2001 "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni;
- UNI EN 11104 marzo 2004 "Calcestruzzo: specificazione, prestazione, produzione e conformità",
 Istruzioni complementari per l'applicazione delle EN 206-1;
- UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e confermità" rogetto

Brebenii SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione some	66128-00002-A00.doc	04RCEII100002000000100	A00	11 di 162

2.2 Altri documenti

- CNR 10024/86 Analisi mediante elaboratore: impostazione e redazione delle relazioni di calcolo;
- Azioni del Vento sulle Costruzioni Istruzioni CNR DT 207/2008.

APPROVATO BOP

Società di Progetto
Brebenii SpA

CODIFICA DOCUMENTO 04RCEII100002000000100 REV. A00 FOGLIO 12 di 162

3. CARATTERISTICHE DEI MATERIALI

Per la realizzazione dell'opera è previsto l'impiego dei sottoelencati materiali.

3.1 Conglomerato cementizio per sottofondazioni

Classe C12/15

Resistenza caratteristica cubica $f_{ck,cube} = 15 \text{ N/mm}^2$ Resistenza caratteristica cilindrica $f_{ck,cyl} = 12 \text{ N/mm}^2$

Classe di esposizione -

Classe di consistenza S4 / S5

Copriferro minimo -

3.2 Conglomerato cementizio per fondazioni

Classe C25/30

Resistenza caratteristica cubica $f_{ck,cube} = 30 \text{ N/mm}^2$ Resistenza caratteristica cilindrica $f_{ck,cvl} = 24.9 \text{ N/mm}^2$

Resistenza di calcolo a compressione $f_{cd} = \alpha_{cc}^{\star} \ f_{ck}/\gamma_c = 0.85^{\star} \ f_{ck}/1, \\ 5 = 14.110 \ N/mm^2$

Resistenza a trazione media $f_{ctm} = 0,30^* \ f_{ck}^{2/3} = 2.558 \ \text{N/mm}^2$ Resistenza a trazione (frattile 5%) $f_{ctk \ 0,05} = 0,7^* \ f_{ctm} = 1.791 \ \text{N/mm}^2$ Resistenza a trazione di calcolo $f_{ctd} = f_{ctk0,05} / \gamma_c = 1.194 \ \text{N/mm}^2$

Resistenza a compressione (comb. Rara) $\sigma_c = 0.60^* \, f_{ck}$ =114.94 N/mm² Resistenza a compressione (comb. Quasi Perm.) $\sigma_c = 0.45^* \, f_{ck}$ =11.21 N/mm²

Classe di esposizione XC2
Classe di consistenza S4

3.3 Acciaio per cemento armato

Per le armature metalliche si adottano tondini in acciaio del tipo *B450C* controllato in stabilimento che presentano le seguenti caratteristiche:

Tensione di snervamento caratteristica $f_{yk} \ge 450 \text{ N/mm}^2$ Tensione caratteristica a rottura $f_{tk} \ge 540 \text{ N/mm}^2$

Resistenza di calcolo $f_{yd} = f_{yk} / \gamma_s = 450/1, 15 = 391.30 \text{ N/mm}^2$

Deformazione caratteristica al carico massimo $\epsilon_{uk} = 7,5~\%$ Deformazione di progetto $\epsilon_{ud} = 6,75~\%$

Società di Progetto

Brebenii SpA

4. DURABILITÀ E PRESCRIZIONI SUI MATERIALI

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Al fine di ottenere la prestazione richiesta in funzione delle condizioni ambientali, nonché per la definizione della relativa classe, si fa riferimento alle indicazioni contenute nelle Linee Guida sul calcestruzzo strutturale edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici ovvero alle norme UNI EN 206-1:2006 ed UNI 11104:2004.

Per le opere della presente relazione si adotta: CLASSE DI ESPOSIZIONE XC2

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4.1.III: Descrizione delle condizioni ambientali

Le fondazioni dei muri si trovano in condzioni ambientali Ordinarie.

Nella tabella 4.1.IV sono indicati i criteri di scelta dello stato limite di fessurazione con riferimento alle condizioni ambientale e al tipo di armatura.

Crummi di	Conditioni	Combinazione di	Armatura				
Gruppi di	Condizioni		Sensibile		Poco sensibile		
esigenze	ambientali	azioni	Stato limite	\mathbf{w}_{d}	Stato limite	W _d	
		frequente	ap. fessure	≤ W ₂	≤w ₂ ap. fessure		
а	Ordinarie	quasi permanente	ap. fessure	≤ W ₁	ap. fessure	≤ W ₂	
h	Aggragaiya	frequente	ap. fessure	≤ w ₁	ap. fessure	$\leq W_2$	
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤ w ₁	
	Molto aggregative	frequente formazione fess		-	ap. fessure	≤ w ₁	
С	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	

1 Tabella 4.1.IV: Criteri di scelta dello stato limite di fessurazione

4.1 Copriferro minimo e copriferro nominale

Ai fini di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore, misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Il copriferro nominale c_{nom} è somma di due contributi, il copriferro minimo c_{min} e la tolleranza di posizionamento h. Vale pertanto: $c_{nom} = c_{min} + h$.

La tolleranza di posizionamento delle armature h, per le strutture gettate in opera, può essere assunta pari ad almeno 5 mm. Considerata la Classe di esposizione ambientale dell'opera, si adotta un copriferro minimo pari a 35mm, pertanto c_{nom}=40 mm, valore valido per la platea di fondazione e per il baggiolo.

Brebenii SpA

CODIFICA DOCUMENTO 04RCEII100002000000100 REV. A00 FOGLIO 14 di 162

5. CRITERI DI CALCOLO

Le verifiche sono condotte, in osservanza al *D.M. del 14.01.2008 "Norme tecniche per le costruzioni"*, attraverso il metodo semiprobabilistico agli Stati Limite.

Gli Stati Limite Ultimi delle opere di fondazione si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono le opere stesse.

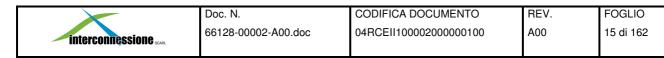
Per le strutture assimilabili alle opere di fondazione § 6.4.3 (NTC) devono essere effettuate le verifiche con riferimento almeno ai seguenti Stati Limite:

- ✓ SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU)
- ✓ SLU di tipo strutturale (STR)

Nel paragrafo "Combinazioni di carico agli stati limite" saranno esplicitati i singoli *SLU* appena citati e impiegati per le verifiche.

5.1 Criteri e definizione dell'azione sismica

L'effetto dell'azione sismica di progetto sull'opera nel suo complesso, includendo il volume significativo di terreno, la struttura di fondazione, gli elementi strutturali, deve rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1 (NTC), i cui requisiti di sicurezza sono indicati nel § 7.1 delle NTC.


Il rispetto degli Stati Limite si considera conseguito quando:

- nei confronti degli stati limite di esercizio siano rispettate le verifiche relative al solo Stato Limite di Danno;
- nei confronti degli stati limite ultimi siano rispettate le indicazioni progettuali e costruttive riportate nel § 7 delle (NTC) e siano soddisfatte le verifiche relative al solo Stato Limite di salvaguardia della Vita.

Per Stato Limite di Danno (SLD) s'intende che l'opera, nel suo complesso, a seguito del terremoto, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali. Lo stato limite di esercizio comporta la verifica delle tensioni di lavoro, in conformità al § 4.1.2.2.5 (NTC).

Per Stato Limite di salvaguardia della Vita (SLV) s'intende che l'opera a seguito del terremoto subisce rotture e crolli dei componenti non strutturali e impiantistici e significativi danni di componenti strutturali, cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.

Gli stati limite, sia di esercizio sia ultimi, sono individuati riferendosi alle prestazioni che l'opera da realizzarsi deve assolvere durante un evento sismico; per la funzione che l'opera deve espletare nella sua vita utile, è società di Progetto significativo calcolare lo Stato Limite di Danno (SLD) per l'esercizio e lo Stato Limite di Salvaguardia della Vita (SLV) per lo stato limite ultimo.

A riguardo del calcolo allo SLV, dovendo la struttura mantenere durante l'evento sismico un comportamento elastico, vengono eseguite le verifiche alle tensioni di esercizio (§ 4.1.2.2.5), assumendo come limite delle tensioni di esercizio quelle adottate per la combinazione caratteristica (rara). Tale condizione, in accordo al punto § 7.10.6.1., consente di ritenere soddisfatte anche le verifiche nei confronti dello SLD.

Per la definizione dell'azione sismica, occorre definire il periodo di riferimento (P_{VR}) in funzione dello stato limite considerato.

La vita nominale (V_N) dell'opera è stata assunta pari a 50 anni;

La classe d'uso assunta è la IV;

Dalla tabella Tab.2.4.II delle (NTC) è possibile risalire al valore del coefficiente d'uso (C_{II})

$$C_{11} = 2.0$$

Il $\underline{periodo\ di\ riferimento}\ (V_R)$ per l'azione sismica, data la vita nominale e la classe d'uso vale:

$$V_R = V_N \cdot C_u = 100 \text{ anni}$$

I valori di *probabilità di superamento* nel periodo di riferimento (P_{VR}), cui riferirsi per individuare l'azione sismica agente è:

$$P_{VR}(SLV) = 10 \%$$

Il periodo di ritorno dell'azione sismica (T_R) espresso in anni, vale:

$$T_R(SLV) = 949 \text{ anni}$$

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma o tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di a_g , F_0 , T_c^* , dove:

a_q: accelerazione orizzontale massima del terreno;

 F_0 : valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

S: coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St) di cui al § 3.2.3.2.;

I parametri spettrali per il calcolo dell'azione sismica vengono individuati sulla base del rischio sismico massimo presente sull'intero tracciato:

Parametri di pericolosità Sismica

Parametri di pericolosita Sisinica						
"Stato Limite"	T _r [anni]	a ₉ [g]	F。 [-]	T* c [s]		
Operativitá	60	0.059	2.461	0.242		
Danno	101	0.077	2.442	0.258		
Salvaguardia Vita	949	0.192	2.442	0.282		
Prevenzione Collasso	1950	0.248	2.428	0.290		

Società di Progetto

Brebenii SpA

I valori delle caratteristiche sismiche (a_g , F_0 , T^*_c) per lo Stato Limite di Salvaguardia della Vita sono:

STATO	T _R	a_g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLV	949	0.192	2.442	0.282

Il calcolo viene eseguito con i metodi <u>pseudostatici</u> (§ 7.11.6 NTC). L'analisi pseudostatica si effettua mediante i metodi dell'equilibrio limite. Nell'analisi pseudostatica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche allo Stato Limite Ultimo, i valori dei coefficienti sismici orizzontali k_h e verticale k_v possono essere valutati mediante le espressioni:

$$k_h = \beta_m * a_{max}/g$$
 $k_v = \pm 0.5 * k_h$

dove:

 a_{max} = accelerazione orizzontale massima attesa al sito;

g= accelerazione di gravità.

Vista la validità generale del presente documento, avente ad oggetto opere distribuite lungo lo sviluppo dell'intero intervento, si assume cautelativamente di classificare il sottosuolo su cui insiste l'opera nella categoria "C".

Il valore del coefficiente di amplificazione stratigrafico risulta:

$$S_S(SLV)=1.7-0.6*F_0*a_q/g=1.418$$

Il coefficiente di amplificazione topografica St viene assunto pari ad 1.

Pertanto: $a_{max}(SLV)=S^* \cdot a_g=Ss \cdot ^*St^* \ a_g=1.418 * 1.00 * 0.192g=0.272g$

I valori del coefficiente β_m sono in funzione della categoria di sottosuolo, del range di valori che può assumere l'accelerazione orizzontale massima attesa sul sito di riferimento e della possibilità o meno di subire spostamenti relativi rispetto al terreno (traslare e ruotare intorno al piede).

Il coefficiente β_m assume i valori riportati nella Tab. 7.11-II (NTC) e nel caso in esame, considerando l'impossibilità per il basamento di subire spostamenti rispetto al terreno, sittà vi ebbetto $\beta_m = 1.00$.

CODIFICA DOCUMENTO 04RCEII100002000000100 REV. A00

FOGLIO 17 di 162

Pertanto, i due coefficienti sismici orizzontali e verticali valgono:

(SLV)
$$k_h = \beta_m * a_{max}/g = 0.272$$

$$k_v = \pm 0.5^* k_h = 0.136$$

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali, date dal prodotto delle forze di gravità per i coefficienti sismici in precedenza definiti e combinata con le altre azioni in modo tale da produrre gli effetti più sfavorevoli.

L'azione sismica derivante dalla dinamica struttura in elevazione viene calcolata mediante un'analisi pseudo-statica, considerando il valore di accelerazione fornito dallo spettro di risposta di progetto. In particolare di assume a favore di sicurezza, che il periodo di oscillazione del modo di vibrare principale della struttura sia compreso tra i valori di T_B e T_C.

I valori delle accelerazioni di progetto orizzontali si calcolano come:

$$S_d = a_g * S * F_0 * 1/q$$

Dove q = 2.00 secondo quanto indicato al punto 7.5.2.2 del DM del 14 Gennaio 2008 nei riguardi APPRILYATO BOP delle "Strutture a mensola o a pendolo inverso".

Si riporta l'accelerazione di progetto considerata:

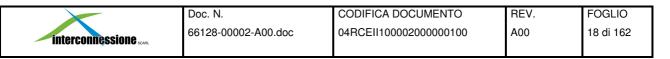
$$S_d = 0.192g * 1.418 * 2.442 * 1/2 = 0.332g$$

I valori delle accelerazioni di progetto verticali si calcolano come:

$$S_d = a_q * S * F_v * 1/q$$

Dove q = 2.00 secondo quanto indicato al punto 7.5.2.2 del DM del 14 Gennaio 2008 nei riguardi delle "Strutture a mensola o a pendolo inverso".

$$F_v = 1.35^* F_o * (a_o/g)^{1/2}$$


Si riporta l'accelerazione di progetto considerata:

$$S_d = 0.192g * 1.418 * 1.445 * 1/2 = 0.197g$$

Dove:

$$F_v = 1.35^* 2.442^* (0.192)^{1/2} = 1.445$$

Società di Progetto Brebemi SpA

5.2 Combinazioni di carico agli stati limite

Le combinazioni di carico agli stati limite considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto nel Cap. 2 delle (NTC).

Per le opere di fondazione su pali § 6.4.3.1 (NTC) devono essere effettuate le verifiche con riferimento almeno ai seguenti Stati Limite:

- ✓ SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU)
 - Collasso per carico limite della palificata nei riguardi dei carichi assiali;
 - Collasso per carico limite della palificata nei riguardi dei carichi trasversali;
 - Stabilità globale;
- ✓ SLU di tipo strutturale (STR)
 - Raggiungimento della resistenza dei pali
 - Raggiungimento della resistenza della struttura di collegamento dei pali,

accertando che la condizione (6.2.1 delle NTC) sia soddisfatta per ogni stato limite preso in considerazione.

Le verifiche saranno condotte secondo l'approccio progettuale "Approccio 1", utilizzando i PPROVATO coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II, 6.4.II, rispettivamente per le azioni e i parametri geotecnici.

- combinazione 1 \rightarrow (A1+M1+R1) \rightarrow STR
- combinazione 2 \rightarrow $(A2+M1+R2) \rightarrow$ GEO (carico limite)

Tabella 6.2.1 - Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	SIMBOLO	EQU	A1	A2
		γF		(STR)	(GEO)
Permanenti	favorevole	γ G1 −	0.9	1.0	1.0
	sfavorevole		1.1	1.3	1.0
Permanenti non strutturali	favorevole	YG2	0.0	0.0	0.0
	sfavorevole	/G2	1.5	1.5	1.3
Variabili	favorevole	YQi	0.0	0.0	0.0
v ariabili	sfavorevole	/QI	1.5	1.5	1.3
Variabili da traffico	favorevole	γΩ	0.0	0.0	0.0
(da Tab. 5.1.V NTC)	sfavorevole	, α	1.35	1.35	1.15 Società di Progetto

Brebemi SpA

Tabella 6.2.II - Coefficienti parziali per i parametri del terreno.

PARAMETRO	GRANDEZZA ALLA QUALE APPLICARE IL COEFF. PARZIALE	COEFFICIENTE PARZIALE γ _M	M1	M2
Tangente dell'angolo di resistenza al taglio	tan φ' _k	γ_{ϕ}	1	1.25
Coesione efficace	C'k	γ _c ,	1	1.25
Resistenza non drenata	C' _{uk}	γси	1	1.4
Peso dell'unità di volume	γ	γ_{γ}	1	1

Ai fini delle verifiche degli stati limite ultimi si definiscono le seguenti combinazioni:

$$\mathsf{STR}) \Rightarrow \qquad \qquad \gamma_{\mathsf{G1}} \cdot \mathsf{G_1} + \gamma_{\mathsf{G2}} \cdot \mathsf{G_2} + \gamma_{\mathsf{Q1}} \cdot \mathsf{Q_{k1}} + \sum_{i} \psi_{0i} \cdot \mathsf{Q_{ki}} \qquad \qquad \Rightarrow (\Phi_\mathsf{d}{}' = \Phi_\mathsf{k}{}')$$

$$\mathsf{GEO}) \Rightarrow \qquad \qquad \gamma_{\mathsf{G1}} \cdot \mathsf{G_1} + \gamma_{\mathsf{G2}} \cdot \mathsf{G_2} + \gamma_{\mathsf{Q1}} \cdot \mathsf{Q_{k1}} + \sum_{i} \psi_{0i} \cdot \mathsf{Q_{ki}} \qquad \qquad \Rightarrow \quad (\mathsf{spinte} \quad \Phi_{\mathsf{d}}' = \mathsf{tan}^{-1} (\mathsf{tan} \Phi_{\mathsf{k}}' / \gamma_{\Phi}))$$

Ai fini delle verifiche degli stati limite di esercizio si definiscono le seguenti combinazioni:

Rara)
$$\Rightarrow$$
 $G_1 + G_2 + Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki}$

Frequente)
$$\Rightarrow$$
 $G_1 + G_2 + \psi_{11} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$

Quasi permanente)
$$\Rightarrow$$
 $G_1 + G_2 + \psi_{21} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$

Per la <u>condizione sismica</u>, le combinazioni per gli stati limite ultimi da prendere in considerazione sono le seguenti:

$$\mathsf{STR}) \Rightarrow \qquad \mathsf{E} + \mathsf{G}_1 + \mathsf{G}_2 + \sum_i \psi_{2i} \cdot \mathsf{Q}_{ki} \qquad \Rightarrow (\Phi_{\mathsf{d}}' = \Phi_{\mathsf{k}}')$$

$$\mathsf{GEO}) \Rightarrow \qquad \qquad \mathsf{E} + \mathsf{G}_1 + \mathsf{G}_2 + \sum_i \psi_{2i} \cdot \mathsf{Q}_{ki} \qquad \qquad \Rightarrow (\mathsf{spinte} \ \Phi_{\mathsf{d}} = \mathsf{tan}^{-1}(\mathsf{tan}\Phi_{\mathsf{k}} ' / \gamma_{\Phi}))$$

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1+G_2+\sum_i \psi_{2i}\cdot Q_{ki}$$

Ai fini delle verifiche per gli SLU connessi alle <u>azioni eccezionali di progetto A_d </u> si definisce la seguente combinazione:

$$G_1 + G_2 + A_d + \sum_i \psi_{2i} \cdot Q_{ki}$$

I valori del coefficiente ψ_{2i} sono quelli riportati nella tabella 2.5.I della norma.

Società di Progetto Brebenii SpA

3 BDF

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione some	66128-00002-A00.doc	04RCEII100002000000100	A00	20 di 162

5.3 Verifiche in ambito geotecnico e di equilibrio di corpo rigido

5.3.1 Verifica a ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il plinto (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il plinto (momento stabilizzante M_s) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza η_r .

Eseguendo il calcolo mediante gli eurocodici si puo impostare $\eta_r >= 1.0$.

Deve quindi essere verificata la seguente diseguaglianza

$$M_s$$
 \longrightarrow $>= \eta_r$

Il momento ribaltante M_r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del plinto (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del plinto (applicato nel baricentro) ed il peso della struttura di elevazione. Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

5.3.2 Verifica a scorrimento del piano di posa

Per la verifica a scorrimento del plinto lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il plinto deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento risulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_s>=1.0

Le forze che intervengono nella F_s sono: le forze d'inerzia parallela al piano di fondazione, la spinta dovuta al carico da vento.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante società di Progetto in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesigne terreno-fondazione e con e_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del plinto. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Nel caso in oggetto verrà assunto un angolo $\delta_f = \phi$ ed una spinta a valle nulla.

5.3.3 Verifica per carico limite dell'insieme fondazione-terreno

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_α. Cioè, detto Q_u, il carico limite ed *R* la risultante verticale dei carichi in fondazione, deve essere:

$$Q_u$$
 \longrightarrow >= η_q

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_α>=1.0

Le espressioni di Hansen per il calcolo della capacità portante si differenziano a seconda se siamo $q_u = c^*N_c^*s_c^*d_c^*i_c^*g_c^*b_c + q^*N_q^*s_q^*d_q^*i_q^*g_q^*b_q + 0.5^*B\gamma^*N_\gamma^*s_\gamma^*d_\gamma^*i_\gamma^*g_\gamma^*b_\gamma$ o puramente coesivo ϕ =0 in presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale

$$q_{u} = c^{*}N_{c}^{*}s_{c}^{*}d_{c}^{*}i_{c}^{*}g_{c}^{*}b_{c} + q^{*}N_{q}^{*}s_{q}^{*}d_{q}^{*}i_{q}^{*}g_{q}^{*}b_{q} + 0.5^{*}B\gamma*N_{\gamma}*s_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*b_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*i_{\gamma}*g_{\gamma}*d_{\gamma}*g_{\gamma}*d_{\gamma}*g_{\gamma}*d_{\gamma}*g_$$

Caso di terreno puramente coesivo φ=0

$$q_u = 5.14 c^* (1+s_c+d_c-i_c-q_c-b_c) + q$$

in cui d_c, d_q, d_{γ}, sono i fattori di profondità; s_c, s_q, s_{γ}, sono i fattori di forma; i_c, i_q, i_{γ}, sono i fattori di inclinazione del carico; b_c, b_q, b_y, sono i fattori di inclinazione del piano di posa; g_c, g_q, g_y, sono i fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori N_c , N_q , N_γ sono espressi come:

$$\begin{split} N_{q} &= e^{\pi t g \phi} K_{p} \\ N_{c} &= (N_{q} - 1)^{*} c t g \phi \\ N_{\gamma} &= 1.5 (N_{q} - 1)^{*} t g \phi \end{split}$$

Società di Progetto Brebemi SpA

Vediamo ora come si esprimono i vari fattori che compaiono nella espressione del carico ultimo.

Fattori di forma

$$per \, \phi{=}0 \qquad s_c = 0.2 \frac{B}{L}$$

$$per \, \phi{>}0 \qquad s_c = 1 + \frac{N_q}{N_c} \frac{B}{L}$$

$$s_q = 1 + \frac{B}{L} tg\phi$$

$$s_{\gamma} = 1 - 0.4 \frac{B}{L}$$

Fattori di profondità

Si definisce il parametro *k* come

$$k = \frac{D}{B}$$
 se $\frac{D}{B} <= 1$

$$k = arctg \frac{D}{B}$$
 se $\frac{D}{B} > 1$

I vari coefficienti si esprimono come

per
$$\phi = 0$$
 $d_c = 0.4k$

per
$$\phi > 0$$
 $d_c = 1 + 0.4k$

$$d_q = 1 + 2tg\phi(1-\sin\phi)^2k$$

$$d_{\gamma} = 1$$

Fattori di inclinazione del carico

Indichiamo con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con A_f l'area efficace della fondazione ottenuta come A_f = B'xL' (B' e L' sono legate alle dimensioni effettive della fondazione B, L e all'eccentricità del carico e_B , e_L dalle relazioni B'=B-2 e_B L'=L-2 e_L) e con η l'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale).

APPROUNT BOP

Brebemi SpA

I fattori di inclinazione del carico si esprimono come:

$$per \ \varphi = 0 \qquad \qquad i_c = 1/2 (1 - \sqrt{[1 - \frac{H}{A_f c_a}]})$$

per
$$\phi > 0$$
 $i_c = i_q - \frac{1 - i_q}{N_q - 1}$

$$i_q = (1 - \frac{0.5H}{V + A_f c_a ctg\phi})^5$$

$$per \ \eta = 0 \qquad \qquad i_{\gamma} = (1 - \frac{0.7H}{V + A_f c_a ctg \varphi})^5 \label{eq:eta-gamma}$$

per
$$\eta > 0$$
 $i_{\gamma} = (1 - \frac{(0.7 - \eta \, ^{9} 450 \, ^{\circ})H}{V + A_{f}c_{a}ctg\phi})^{5}$

Fattori di inclinazione del piano di posa della fondazione

per
$$\phi$$
=0 $b_c = \frac{\eta^{\circ}}{147^{\circ}}$

per
$$\phi > 0$$
 $b_c = 1 - \frac{\eta^{\circ}}{147^{\circ}}$

$$b_q = e^{\text{-}2\eta t g \varphi}$$

$$b_{\gamma}=e^{\text{-}2.7\eta tg\varphi}$$

Fattori di inclinazione del terreno

Indicando con β la pendenza del pendio i fattori g si ottengono dalle espressioni seguenti:

per
$$\phi > 0$$
 $g_c = 1 - \frac{\beta^{\circ}}{147^{\circ}}$

$$g_q = g_{\gamma} = (1-0.05tg\beta)^5$$

Per poter applicare la formula di Hansen devono risultare verificate le seguenti condizioni:

$$H < Vtg\delta + A_fc_a$$

 $\beta \ll \phi$

Società di Progetto

APPACHATOSOP

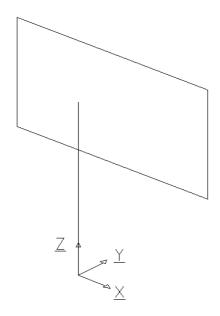
Brebemi SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	24 di 162

 $i_q,\;i_\gamma>0$

β + η <= 90°

APPROVATO BOP


Società di Progetto Breberni SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII100002000000100	A00	25 di 162

6. MONOPALO TIPOLOGICO

6.1 Analisi della struttura

Nell'analisi dei carichi e nel calcolo delle sollecitazioni si fa riferimento al seguente riferimento di coordinate e contestuale convenzione sui segni:

6.1.1 Geometria della struttura

Piedritto

lato1

lato2

spessore

Si riportano le geometrie dei diversi elementi della struttura:

Altezza testata fondazione	Ht =	2.500	m
Larghezza testata in direz. longitudinale	Bt =	0.900	m
Larghezza testata in direz. trasversale	Lt =	0.900	m
Eccentricità testata in direzione trasversale	e,trasv =	0.000	m
Altezza zattera fondazione	Hz =	0.600	m
Larghezza zattera in direz. longitudinale	Bz =	2.800	m
Larghezza zattera in direz. trasversale	Lz =	2.800	m
Larghezza cartello	D1 =	4.000	m
Altezza cartello	D2 =	2.500	m
Spessore cartello	s,cartello =	0.005	m
			Soci

0.220

0.220

0.006

m

m

m

I1,piedritto =

I1,piedritto =

I1,piedritto =

Società di Progetto
Brebenii SpA

interco	onnessione _{scar} .	Doc. N. 66128-00002-A00.doc		A DOCUMENTO 00002000000100	REV. A00	FOGLIO 26 di 162
Travata	lato1 lato2 spessore	I1,travata = I2,travata = s,travata =	0.150 0.200 0.006	m m m		
Dima	lato1 lato2 spessore	I1,dima = I2,dima = s,dima =	0.500 0.500 0.020	m m m		
Traverse	numero diametro spessore	n,traverse = ø,traverse = s,traverse =	5 0.090 0.004	m m		

6.1.2 Carichi permanenti

Si riportano i pesi permanenti dei diversi elementi della struttura:

Per il peso proprio struttura si è fatto riferimento alla Tabella 3.1.I delle NTC2008. In particolare per l'acciaio è riportato un peso per unita di volume pari a 78.50 kN/m³ e per l'alluminio è riportato un peso per unita di volume pari a 27.00 kN/m³.

Peso proprio fondazione

Peso specifico calcestruzzo armato	γcls =	25.00	kN/m3
Peso prioprio testata	Ptest =	50.63	kN
Peso proprio zattera	Pzatt =	117.60	kN
Peso totale fondazione	Pt,fond =	168.23	kN
Momento trasversale fondazione	Mtrasv,fond =	0.00	kNm
			OP.
Peso proprio segnaletica metallica			PP
Peso specifico acciaio	γacciaio =	78.50	kN/m3
Peso proprio traverse	Ptraverse =	1.11	kN
Peso proprio travata	Ptravata =	1.32	kN
Peso proprio piedritto	Ppiedritto =	1.26	kN
Peso proprio dima	Pdima =	0.79	kN
Peso proprio cartello	Pcartello =	3.93	kN
Peso totale segnaletica metallica	Pt,segn =	8.40	kN
Eccentricità limite cartello, travata e traverse	elim=	1.05	m
Momento trasversale segnaletica	Mtrasv,segn =	6.67	kNm

Sovraccarico del terreno

Si considera il seguente sovraccarico dovuto al terreno:

Peso specifico terreno	γt =	20.00
Altezza media rinterro	hmedia =	1.25
Eccentricità rinterro		0.00

Società di Progetto Brebenni SpA kN/m3

	Doc. N.	CODIFICA DOCUME	NTO	REV.	FOGLIO
interconnessione scas	66128-00002-A00.doc	04RCEII100002000000100		A00	27 di 162
inter configsatorie scar.					
Peso totale rinterro		Pt,rint =	175.75	5 1	kn
Momento trasversale rinterro		Mtrasv,rint =	0.00	kl	Nm

6.1.3 Spinta del rilevato

Si considera l'azione della spinta delle terre sulla superficie verticale del pinto di fondazione lato strada.

Per tenere conto dell'effetiva geometria del rilevato si utilizza un coefficiente moltiplicativo che assur

Per tenere conto dell'effetiva geometria del rilevato si utilizza un coefficiente moltiplicativo che assume i seguenti valori:

- 0 se la quota del terreno a valle e a monte dell'opera è la medesima e pari alla quota di piano campagna;
- 1 se il terreno a monte dell'opera presenta estradosso piano a partire dalla quota di sommità dell'emergenza estradossale del pinto;
- 2.16 nel caso di pendio indefinito a monte (situazione di strada in trincea) tale valore è pari al coefficiente di incremento di spinta attiva determinato con la formula di Muller-Breslau, con riferimento ai parametri di progetto in termini di angolo di attrito interno del terreno e di pendenza della scarpata.

Tale assunzione è da estendersi anche ai casi reali di seguito trattati singolarmente.

Risulta:

Angolo di attrito interno del terreno	ø'k =	35.00	
Tangente angolo di attrito interno	tanø'k =	0.70	
Coefficiente di spinta attiva	ka =	0.27	
Spinta totale rilevato	Sril =	40.74	kN
Momento trasversale rilevato	Mtrasv,ril =	29.50	kNm
Coefficiente moltiplicativo spinta rilevato		1.00	

6.1.4 Spinta dovuta ai sovraccarichi variabili sul rilevato

Si considera l'azione di spinta dovuta ai sovraccarichi variabili sul rilevato sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Carico accidentale rilevato	qaccid =	20.00	kN/m2
Spinta accidentale rilevato totale	Sacc =	21.30	kN
Momento accidentale trasversale	Mtrasv,acc =	25.29	kNm

6.1.5 Azioni da vento

Il D.M. del 14 Gennaio 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fagiferimento al vento nella sola direzione parallela all'asse stradale.

Doc. N.
66128-00002-A00.doc

CODIFICA DOCUMENTO
04RCEII100002000000100

REV.
A00

FOGLIO 28 di 162

La pressione del vento è data dall'espressione:

$$p = q_b * c_e * c_p * c_d$$

dove:

q_b pressione cinetica di riferimento

c_e coefficiente di esposizione

c_p coefficiente di forma (o coefficiente aerodinamico)

c_d coefficiente dinamico

La pressione cinetica di riferimento è data dall'espressione:

$$q_b = 0.5 * \rho * V_b^2$$

dove ρ è la densità dell'aria e vale 1,25 kg/m³.

Il coefficiente di esposizione dipende dall'altezza z dal piano di campagna (rilevato compreso, se presente) del punto considerato, dalla topografia e dalla categoria di esposizione.

Risulta:

Zona geografica	1		
	$V_{b,0} =$	25.00	m/s
	a ₀ =	1000.00	m
	k _a =	0.010	1/s
Categoria di esposizione del sito	II		
	$k_r =$	0.19	
	$z_0 =$	0.05	m
	z _{min} =	4.00	m
Densità dell'aria	ro =	1.25	kg/m³
Altitudine slm dove sorge l'opera	as =	150.00	m
Velocità di riferimento	$V_b =$	25.00	m/sec
Pressione cinetica di riferimento	qb =	390.63	N/m2
Altezza dal piano di campagna	Z =	10.00	m
Coefficiente topografico	ct =	1.00	
Coefficiente di esposizione	$c_e(z)max =$	2.35	
Coefficiente dinamico	cd =	1.00	
Coeff. di forma per pressione normale sui pannelli	$c_p =$	1.80	
Coeff. di forma per pressione normale sul montante	c _{px} =	2.15	
Pressione del vento pannelli	Pvnt1 =	1.65	
Pressione del vento montante	Pvnt2 =	1.98	

Si assume

Pressione normale esercitata dal vento sui pannelli: $p_{max} = 1.65 \text{ kPa}$

Pressione normale esercitata dal vento sul montante: $p_{max} = 1.98 \text{ kPa}$

Società di Progetto Brebemi SpA

La pressione di calcolo viene applicata come pressione uniforme rispettivamente sulle superfici di esposizione identificate dalla struttura orizzontale e verticale.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar	66128-00002-A00.doc	04RCEII100002000000100	A00	29 di 162

Pertanto:

Azione esercitata sul cartello	Fl,vnt1 =	16.54	kN
Azione esercitata sul piedritto	FI,vnt2 =	0.78	kN
Azione totale del vento	FI,vnt =	17.32	kN
Distanza estradosso testata/base cartello	Hc =	1.80	m
Momento longitudinale vento	Mlong,vnt =	104.85	kNm
Momento torcente	Mtorc,vnt =	17.37	kNm

6.1.6 Azioni da neve

La pressione della neve è data dall'espressione:

 $q_s = \mu_i * q_{ek} * C_E * C_t$

dove:

q_s carico da neve

 μ_i coefficiente di forma

C_E coefficiente di esposizione

Ct coefficiente termico

Risulta:

Zona geografica	Zona	1	
Coefficiente di esposizione al vento	Ce =	0.90	
Valore caratteristico carico al suolo	qsk =	1.50	kN/m2
Angolo di inclinazione profilo	α =	0.00	0
Coefficienti di forma	μ1 =	0.80	
Coefficiente termico	Ct =	1.00	P
Carico uniformemente distribuito	q2k =	0.22	kN/m
Azione della neve	Pneve =	0.86	kN
Momento trasversale neve	Mtrasv,neve =	0.91	kNm

6.1.7 Azioni sismiche

L'azione sismica dovuta alla struttura in elevazione si ottiene mediante la relazione:

 $F_h = S_d * W / g$

Dove:

W = peso della struttura in elevazione

Mentre l'azione sismica dovuta all'inerzia della fondazione si ottiene mediante la relazione:

 $F_h = k_h * W / g$

Dove:

W = peso del plinto di fondazione

Società di Progetto Brebemi SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione SCAR.	66128-00002-A00.doc	04RCEII100002000000100	A00	30 di 162

La forza orizzontale ottenuta dall'analisi, distribuita sull'altezza della struttura, segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.

Con riferimento ai valori determinati al paragrafo 5.1, l'azione orizzontale dovuta al sisma risulta largamente inferiore all'azione dovuta al vento e pertanto non dimensionante.

6.2 Sollecitazioni e verifiche delle strutture di fondazione

Si riporta l'analisi del plinto di fondazione.

6.2.1 Geometria della fondazione

La geometria della fondazione viene riportata nell'immagine seguente.

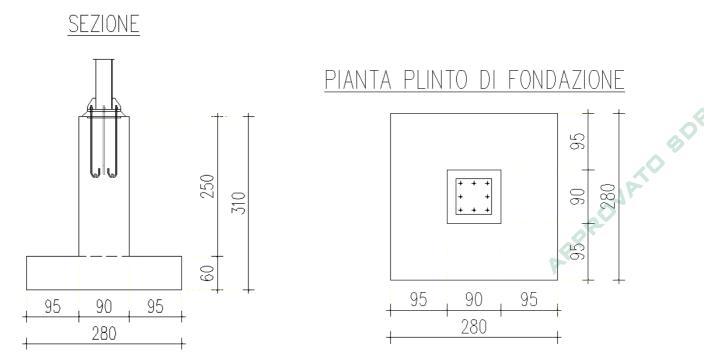


Figura 2 – Geometria delle strutture di fondazione

Per maggiori dettagli sulla geometria della fondazione si rimanda agli elaborati grafici.

6.2.2 Combinazioni di carico

Le combinazioni di carico sono state determinate in riferimento al par. 2.5.3 del D.M. 14/01/2008. Progetto Brebeni SpA
I carichi variabili sono stati suddivisi in carichi da neve e vento; di conseguenza, le combinazioni sono state generate assumendo alternativamente ciascuno dei due suddetti carichi come azione variabile di base.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII100002000000100	A00	31 di 162

Di seguito si riporta la tabella riepilogativa delle combinazioni di carico prese in considerazione per le verifiche degli elementi della struttura:

	Permanenti	Neve	Vento
C1 SLU-STR (Vento)	1.30	0.75	1.50
C2 SLU-STR (Neve)	1.30	1.50	0.90
C3 SLE-Rara	1.00	0.50	1.00
C4 SLE-Freq	1.00	0.00	0.20
C5 SLE-Q.Perm	1.00	0.00	0.00
C6 SLU-GEO (Vento)	1.00	0.65	1.30
C7 SLU-GEO (Neve)	1.00	1.30	0.78

6.2.3 Sollecitazioni sugli elementi strutturali

Nelle tabelle successive vengono riportati, per ciascuna delle combinazioni di carico descritte, i valori assunti dalle componenti di sollecitazione, calcolati secondo il procedimento descritto nel paragrafo "Criteri di calcolo".

Azioni risultanti a spiccato montante

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	10.92	0.00	25.98	76.72	8.67	26.05
SLU - STR (neve)	10.92	0.00	15.59	46.03	8.67	15.63
SLU - GEO (vento)	8.40	0.00	22.52	66.49	6.67	22.58
SLU - GEO (neve)	8.40	0.00	13.51	39.90	6.67	13.55
SLE - RARA	8.40	0.00	17.32	51.15	6.67	17.37
SLE - FREQUENTE	8.40	0.00	3.46	10.23	6.67	3.47
SLE - QUASI PERM.	8.40	0.00	0.00	0.00	6.67	0.00

Azioni risultanti a spiccato baggiolo estradossale di raccordo

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	76.74	38.11	25.98	141.68	48.05	26.05
SLU - STR (neve)	76.74	30.79	15.59	85.01	38.90	15.63
SLU - GEO (vento)	59.03	31.10	22.52	122.79	39.19	22.58
SLU - GEO (neve)	59.03	24.75	13.51	73.67	31.26	13.55
SLE - RARA	59.03	27.44	17.32	94.4	34.62	17.37
SLE - FREQUENTE	59.03	17.68	3.46	18.89	22.42	3.47
SLE - QUASI PERM.	59.03	15.24	0.00	0.00	19.37	0.00

Azioni risultanti ad intradosso fondazione

Azioni risultanti ad intradosso fondazione					Società di Progetto
	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm) _{rebe} Mz(kNm)
SLU - STR (vento)	458.74	84.91	25.98	157.27	85.64 26.05
SLU - STR (neve)	459.39	72.13	15.59	94.36	71.14 15.63
SLU - GEO (vento)	352.94	68.43	22.52	136.30	69.64 22.58

interconnessione some	Doc. N. 66128-0000	02-A00.doc	04RCEII100002		A00	FOGLIO 32 di 162
SLU - GEO (neve)	353.50	57.35	13.51	81.78	57.07	13.55
SLE - RARA	352.81	62.04	17.32	104.85	61.91	17.37
SLE - FREQUENTE	352.38	45.00	3.46	20.97	41.23	3.47
SLE - QUASI PERM.	352.38	40.74	0.00	0.00	36.17	0.00

6.2.4 Verifiche in ambito geotecnico e di equilibrio di corpo rigido

I parametri necessari a definire le caratteristiche del terreno ai fini del calcolo delle strutture sono ricavati dalla Relazione Geotecnica Generale.

Le verifiche eseguite sono le seguenti:

- Ribaltamento;
- Scorrimento del piano di posa;

Coefficiente γ_{g1} - Permanente favorevole

- Collasso per carico limite dell'insieme fondazione-terreno;

Di seguito si riporta un quadro riassuntivo delle verifiche eseguite, e per ciascuna di esse sarà esplicitata quella con il coefficiente di sicurezza minore.

Verifica a ribaltamento

Si riportano in seguito i valori dei momenti ribaltanti in direzione trasversale e longitudinale nelle combinazioni relative alla verifica in oggetto:

0.90

• 6-				~ ~ ~ ~
Coefficiente γ_{g1} - Permanente sfavorevole	1.10		APPRO	2
Coefficiente γ_{Q1} - Variabile favorevole	0.00		6	,
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50		OP.	
			P	
Direzione longitudinale:			V *	
Momento stabilizzante fondazione	Mstab,fond =	235.52	kNm	
Momento stabilizzante rinterro	Mstab,rint =	246.05	kNm	
Momento stabilizzante segnaletica	Mstab,segn =	11.76	kNm	
Momento stabilizzante di progetto	MRd =	444.00	kNm	
Momento instabilizzante vento	Minstab,vnt =	104.85	kNm	
Momento instabilizzante di progetto	MRd =	157.27	kNm	
	FSrib,long =	2.82		
	i onb,iong =	2.02		
Direzione trasversale:			,	
Momento stabilizzante fondazione	Mstab,fond =	235.52	Società di F	rogetto
Momento stabilizzante rinterro	Mstab,rint =	246.05	kNm Brebemi kNm	SpA
Momento stabilizzante rinierro Momento stabilizzante spinte (cautelativamente)	Minstab,vnt =	5.09	kNm	
	Mrd =	437.99		
Momento stabilizzante di progetto	ivii u =	407.99	kNm	

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	33 di 162

Momento instabilizzante neve	Minstab,neve =	0.91	
Momento instabilizzante spinte	Minstab,vnt =	54.79	kNm
Momento instabilizzante di progetto	Msd =	71.74	kNm
	FSrib,trasv =	6.10	

Le verifiche risultano soddisfatte

Verifica a scorrimento del piano di posa

Poiché, nel caso in oggetto, le sollecitazioni di scorrimento sul piano di posa sono duvuti agli effetti delle azioni taglianti agenti nelle due direzioni principali, abbinate alle sollecitazioni di momento torcente, la verifica di scorrimento viene conservativamente condotta in termini tensionali anziché in termini di sollecitazioni globali.

Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

Coefficiente γ_{g1} - Permanente favorevole	1.00
Coefficiente γ_{g1} - Permanente sfavorevole	1.30
Coefficiente γ_{Q1} - Variabile favorevole	0.00
Coefficiente y _{O1} - Variabile sfavorevole	1.50

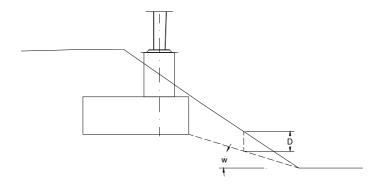
Sollecitazioni di progetto:

Sforzo normale totale	N' =	352.34	kN
Momento in direzione trasversale	Mt' =	86.32	kNm
Taglio in direzione trasversale	Tt' =	84.91	kN
Momento in direzione longitudinale	MI' =	157.27	kNm
Taglio in direzione longitudinale	TI' =	25.98	kN

Risulta pertanto:

Azione totale di taglio in fondazione	Vris =	88.80	kN
Tensione tangenziale dovuta al taglio	τ(V) =	11.33	kN/mq
Tensione tangenziale (massima) dovuta al momento torcente	τ ,max(T) =	5.70	kN/mq
Tensione tangenziale totale	τ,tot =	17.02	kN/mq
Sforzo normale unitario di progetto	σ=	44.95	kN/mq
	FS,scorr	1.85	> 1.10

Le verifiche risultano soddisfatte


Società di Progetto Brebemi SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	34 di 162

Verifica per carico limite dell'insieme fondazione-terreno

Si riportano in seguito le verifiche per carico limite dell'insieme fondazione-terreno.

Nel valutare il contributo alla capacità portante, si considera una (eventuale) inclinazione w del terreno rispetto all'orizzontale determinata dalla retta congiungente tra spigolo del plinto lato valle e piede del rilevato. La quota D di affondamento rispetto al piano campagna viene prudenzialmente assunta pari all'altezza media del cuneo di risprimento sviluppantesi lungo lo sviluppo planimemerico dell'(eventuale) rilevato e delimitato inferiormente dalla suddetta retta.

Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

Coefficiente γ _{α1} - Permanente favorevole	1.00	
Coefficiente γ _{q1} - Permanente sfavorevole	1.30	
Coefficiente γ _{Q1} - Variabile favorevole	0.00	
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50	
Coefficiente y _{Q1} - variabile stavorevole	1.50	
Eccentricità direzione longitudinale	e,L' =	0.24 m
Eccentricità direzione trasversale	e,L = e,B' =	0.24 m 0.45 m
Locertificità dil ezione trasversale	6,0 –	0.45
Dimensioni efficaci fondazione		20
Dimensione trasversale efficace	B' =	1.91 m
Dimensione longitudinale efficace	L' =	2.31 m
		,
Dim. minore della fondazione efficace equivalente	B' =	1.91 m
Dim. maggiore della fondazione efficace equivalente	L' =	2.31 m
Pressione media sul terreno	q =	103.97 kPa
Afficial designation of the second se	5	0.00
Affondamento da piano campagna	D =	0.83 m
Caratteristiche del terreno di fondazione		
Peso specifico totale del terreno di fondazione	yt =	20.00 kN/m ³
Profondità della falda da p.c.	zf =	50.00 m
Distanza quota di falda - piano di imposta fondazione	zw =	49.18 m _/
Peso specifico efficace base fondazione B	γ'cB =	Società di Progetto 20.00 kN/m
Peso specifico efficace base fondazione L	γ'cL =	20.00_ kN/m ³
Angolo di attrito del terreno di fondazione	φ' =	35.00
•	•	

	Doc. N.	CODIFICA DOCUMENTO	REV. FOGLIO
	66128-00002-A00.doc	04RCEII100002000000100	A00 35 di 162
interconnessione scar.	00120 00002 A00.000	04110211100002000000100	700 05 di 102
Inclinaz. terreno risp. orizzontale (dir trasv)		ωB' =	18.50 °
Inclinaz. terreno risp. orizzontale (dir long)		ωL' =	0.00 °
Peso specifico del terreno latistante la fondazione			20.00 kN/m ³
γ' Pressione verticale efficace a quota imposta fondazione		q'0 =	16.50 kPa
1 100010110 VOITIOGIO CITIOGOO	a quota imposta foridazior	40 -	10.00 Ki u
Fattori di capacità portant	e		
		Ny =	33.92
		Nq =	33.30
		Nc =	68.16
Coefficienti di inclinazione	e del carico		
		iγ,Β' _' =	0.40
		iq,B' =	0.53
		iγ,L'=	0.77
		iq,L' =	0.83
Coefficienti di forma			
		sγ,B' =	0.83
		sq,B' =	1.25
		sγ,L' =	0.06
		sq,L' =	1.58
.			
Coefficienti di affondamen	110	du D'	1.00
		dγ,B' =	1.00
		dq,B' = dy, L' =	1.11 1.00
		dq,L' =	1.09
Coefficienti per inclinazion	ne terreno	uq,L –	1.03
Coomolona por momuzion		$g\gamma,B'=gq,B'$	0.40
		$g\gamma,L' = gq,L'$	1.00
Capacità portante limite di	i hase		
	i Dudo	$\frac{1}{2} \times q_{cB'}^2 \times B' \times N_c \times s_{cB'}$	×
q _{limgB'}		$= \begin{array}{c} \frac{1}{2} \times g'_{cB'} \times B' \times N_g \times s_{gB'} \\ d_{gB'} \times i_{gB'} \times g_{gB'} \end{array}$	
q _{limgL} ,		$= \frac{\sqrt[3]{2} \times g'_{cL'} \times L' \times N_g \times s_{gL'} \times g_{gL'} \times g_{gL'} \times g_{gL'}}{d_{gL'} \times i_{gL'} \times g_{gL'}}$	
-		$u_{gL'} \times \iota_{gL'} \times y_{gL'}$	

Capacità portante limite per sovraccarico laterale

 $= \begin{array}{l} q_0' \times N_q \times s_{qB'} \times d_{qB'} \times i_{qB'} \times \\ g_{qB'} \\ = q_0' \times N_q \times s_{qL'} \times d_{qL'} \times i_{qL'} \times \\ g_{qL'} \end{array}$ $q_{limq\;B'}$ $q_{limq\;L^{\prime}}$

Società di Progetto Brebemi SpA

kPa

kPa

160.54 kPa q_{limqB} 782.69 kPa $\mathbf{q}_{\text{limqL}}$

85.27

38.43

 $q_{\text{lim}_{Y}B'}$

 $q_{\text{lim}\gamma L^{,}}$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	36 di 162

Nella valutazione del termine di capacità portante $q_{lim\gamma}$ viene assunto $q_{lim\gamma B'}$ o $q_{lim\gamma L'}$ in base al valore calcolato di s_{ν} ; si assumerà l'espressione per la quale risulta $s_{\nu} > 0.6$. Nella valutazione del termine di capacità portante q_{limq} tra $q_{limqB'}$ e $q_{limqL'}$ viene scelto quello minore.

	q _{limy}	85.27	kPa
	q _{limq}	160.54	kPa
Capacità portante a rottura γ _R minimo capacità portante	\mathbf{q}_{lim}	245.81 2.30	kPa
Capacità portante di design Pressione media sollecitante di design	q _{res_d}	106.87	kPa
	q _{soll_d}	103.97	kPa
FS capacità portante		1.03	

Le verifiche risultano soddisfatte

6.2.5 Verifiche strutturali

Elemento fondale del plinto di fondazione

Si tratta di una struttura tozza nella quale, come è noto, si formano flussi di tensioni di compressione nel calcestruzzo e flussi di tensioni di trazione localizzate nelle armature. Il dimensionamento viene pertanto effettuato con il metodo delle bielle.

Si esegue il dimensionamento facendo prudenzialmente riferimento alle massime pressioni che la struttura scarica sul terreno, depurate del solo peso proprio del plinto.

Società di Progetto

Brebenii SpA

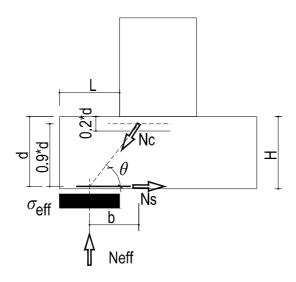


Figura 3 – Meccanismo di verifica del plinto di fondazione

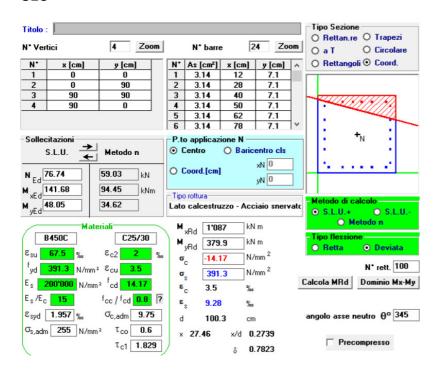
Con riferimento alle dimensioni indicate in Figura 3, risulta:

Altezza plinto	H =	600.00	mm
Copriferro	C =	64.00	mm
Altezza utile	d =	536.00	mm
Braccio coppia interna	0.9*d =	482.40	mm
Altezza corrente superiore cls Lunghezza della mensola	0.2*d =	107.20	mm
(cautelativamente)	L, =	1050.00	mm
Braccio efficace della mensola	b =	825.00	mm
Inclinazione della biella	θ =	30.32	0
Area armatura tesa (5 □ 16)	As =	1'005.31	mmq/m
Area biella compressa di calcestruzzo	Ac =	92'540.90	mmq/m

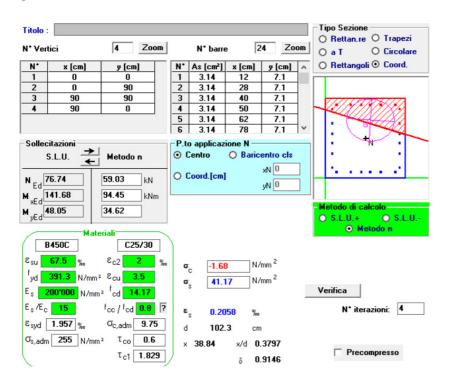
Le sollecitazioni ed i tassi di lavoro nei materiali risultano pertanto:

	σeff (kPa)	Neff (kN/m)	Ns (kN/m)	Nc (kN/m)	σs (MPa)	σc (MPa)
SLU - STR (vento)	105.41	110.68	189.28	219.26	188.28	2.37
SLU - STR (neve)	84.33	88.55	151.43	175.42	150.64	1.90
SLE - RARA	75.58	79.36	135.72	157.22	135.00	1.70
SLE - FREQUENTE	46.95	49.29	84.30	97.65	83.86	1.06
SLE - QUASI PERM.	39.83	41.82	71.53	82.86	71.15	0.90

Le tensioni di trazione nelle armature soddisfano sia i tassi massimi di lavoro previsti per le verifiche alle tensioni, sia i tassi massimi di lavoro funzioni del diametro, della spaziatura delle barre e dell'apertura ammissibile delle fessure, per le quali la verifica di fessurazione per via



indiretta risulta implicitamente soddisfatta (rif. tabb. C4.1.II e C4.1.III, p.to C.4.1.2.2.4 della Circolare 2 febbraio 2009 n. 617).


Sezione di spiccato baggiolo estradossale di raccordo

Verifica a presso-flessione

SLU

SLE

Società di Progetto **Brebenii SpA**

APPRILIVATIO BOP

	Doc. N.
interconnessione som	66128-00002-A00.doc

CODIFICA DOCUMENTO
04RCEII100002000000100

REV. A00

FOGLIO 39 di 162

Le tensioni di trazione nelle armature, peraltro cautelativamente determinate in concomitanza con le Combinazioni di Carico SLE Rare, soddisfano sia i tassi massimi di lavoro previsti per le verifiche alle tensioni, sia i tassi massimi di lavoro funzioni del diametro, della spaziatura delle barre e dell'apertura ammissibile delle fessure, per le quali la verifica di fessurazione per via indiretta risulta implicitamente soddisfatta (rif. tabb. C4.1.II e C4.1.III, p.to C.4.1.2.2.4 della Circolare 2 febbraio 2009 n. 617).

• Verifica a taglio/torsione

Area dell'armatura trasversale a torsione

Coeff. di resistenza a taglio-trazione (lato cls)

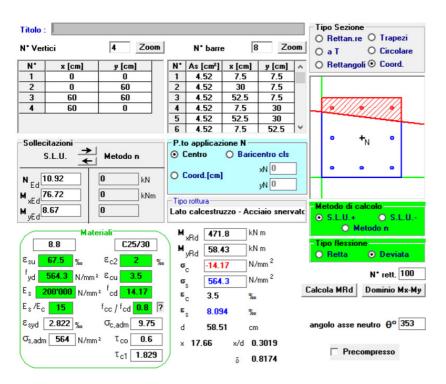
Base	B =	900.00	mm	
Altezza	H =	900.00	mm	
Copriferro baricentro armatura tesa	C =	70.00	mm	
Area sezione in calcestruzzo	Ac =	810'000.00	mmq	
Perimetro sezione in calcestruzzo	u =	3'600.00	mm	
Ferri lembo teso	As =	1'884.96	mmq	[6Ф20]
Area totale armatura nella sezione	Astot =	1'884.96	mmq	
Area armatura tesa resistente a flessione	Asl =	1'884.96	mmq	
Sforzo normale (minimo) di progetto	NEd =	0.00	kN	
Taglio (massimo) di progetto	VEd =	25.98		
Tensione media di compressione nella sezione	σ cp =	0.00	N/mmq	
Tensione di compressione di riferimento	σcp rif =	0.00	N/mmg	
Altezza utile della sezione	d =	830.00	mm	<2 ROYATO
Coefficiente $k = 1+(200/d)^0,5$	u = k =	1.4909	111111	<2
Coefficiente $\square \min = 0.035 \text{ k}^{-1}.5 \text{ fck}^{-0}.5$	vmin =	0.3179		-2
Rapporto geometrico di armatura longitudinale	ρl =	0.0025		<0,02
Larghezza (minima) della sezione	bw =	900.00	mm	,
Resistenza a taglio di calcolo	VRd =	246.46	kN	<vrd min<="" td=""></vrd>
Resistenza a taglio minima di calcolo	VRd =	237.49		>VEd
nesistenza a tagno minima di calcolo	vna IIIII =	201110	KIN	
Non occorre procedere alla disposizione di armatura a taglio				
Torsione (massima) di progetto	TEd =	26.05	kNm	
Coprifetto baricentro armatura long. res. a taglio	c(T) =	70.00	mm	
Spessore della sezione cava	t =	225.00	mm	
Area racchiusa dalla linea media pareti connesse	Ak =	455'625.00	mmq	
Perimetro medio del nucleo resistente	um =	2'700.00	mm	
Inclinazione dei puntoni di cls rispetto asse trave	θ =	45.00	0	
•				Società di Progetto
Momento torcente resistente lato cls	TRcd =	723.25	kNm	Brebemi SpA
Coeff. di resistenza a trazione (lato cls)	FS,T,cls =	0.036		$A\Lambda$

FS,VT,cls=

As =

0.047

201.06 mmg


	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII100002000000100	A00	40 di 162
-				

Interasse tra due armature trasv. consecutive	S =	200.00	mm	
Momento torcente res. lato armatura trasv.	TRsd =	358.47	kNm	
Area dell'armatura longitudinale a torsione	AI =	7'539.82	mmq	$(24 \Phi 20)$
Momento torcente res. lato armatura long.	TRId =	995.75	kNm	
Resistenza a torsione di calcolo	TRd =	358.47	kN	>TEd

Sezione di ancoraggio strutture in elevazione

Verifica a presso-flessione

La sezione di verifica ha le dimensioni della piastra di ancoraggio ovvero pari a B×H = 60x60 cm mentre l'armatura adottata nella verifica, costituita dagli inghisaggi, è pari a complessivi 8M24. Il coefficiente di sicurezza minimo si ottiene con il minimo sforzo assiale di compressione:

Verifica a taglio/scorrimento

Le massime sollecitazioni tangenziali allo *SLU* risultano pari a:

Taglio massimo di progetto VSd = 25.98 kN

Momento torcente massimo di progetto TSd = 26.05 kNm

La verifica a taglio/scorrimento viene condotta con duplice criterio:

- a) Facendo affidamento alla resistenza a tranciamento dei tirafondi, valutati come $F_{V.Rd} = 0.6 \times (f_{tb} \times A_{res}) / \gamma_{M2}$
- b) considerando come stato limite lo scorrimento dell'unione con tirafondi opportunamente presollecitati ovvero lo scorrimento tra la piastra di acciaio ed il calcestruzzo del baggiolo. Lo sforzo trasmi scibile per attrito dal sistema dagli 8 tirafondi è pertanto pari a:

 Brebenii SpA

APPACT VATO BOP

$$F_{v,Cd} = \mu \times F_{p,Cd}$$
 con

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	41 di 162

 μ = 0.45 - coefficiente di attrito piastra di base in acciaio e baggiolo in calcestruzzo (*cfr § 2.2.8.1 della CNR 10016-85*);

Risulta:

Numero tirafondi	nt =	8.00	
Minimo modulo di resistenza sistema di tirafondi	Wmin =	1.91	m
Massimo taglio sul singolo tirafondo	VEdmax,t =	16.11	kN
Diametro tirafondi	Φt =	24.00	mm
Area resistente dei tirafondi	Ares =	353.00	mmq
	ftb =	800.00	Мра
Coefficiente parziale di sicurezza	γM2 =	1.25	
Res. a tranciamento singolo tirafondo	Fv,Rd =	135.55	kN
Azione di precarico singolo tirafondo	Fp,Cd =	158.14	kN
Coefficiente di attrito	μ =	0.45	
Res. a scorrimento piastra di acciaio	Fv,Cd =	71.16	kN

Entrambe le verifiche risultano pertanto soddisfatte.

APPROVATO BOP

Società di Progetto Breberni SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	42 di 162

7. MONOPALO ALLA SEZIONE BS_RO-21

7.1 Analisi della struttura

Il monopalo oggetto di questo paragrafo è situato alla progressiva 300.00 e corrisponde alla sezione BS_RO-21.

7.1.1 Geometria della struttura

Si riportano le geometrie dei diversi elementi della struttura:

Altezza testa	ta fondazione		Ht =		1.600	
Larghezza te	stata in direz. Ion	gitudinale	Bt =		0.900	
Larghezza te	stata in direz. tra	sversale	Lt =	:	0.900	
Eccentricità to	estata in direzion	e trasversale	e,trasv	/ =	0.300	
-	one di pulizia		Hz0 =		0.800	
Altezza zatte	ra fondazione		Hz =	:	0.600	
Larghezza za	attera in direz. Ion	Bz =	:	2.800		
Larghezza zattera in direz. trasversale			Lz =		2.400	
			_			
Larghezza cartello			D1 =		3.000	
Altezza cartello			D2 =		2.000	
Spessore cartello			s,cartell	lo =	0.005	
Dia delita	lakad	let on the admittage	0.000			
Piedritto	lato1	I1,piedritto =	0.220	m		
	lato2	I1,piedritto =	0.220	m		•
	spessore	I1,piedritto =	0.006	m		P
Travata	lato1	I1,travata =	0.150	m		
	lato2	l2,travata =	0.200	m		
	spessore	s,travata =	0.006	m		
	•					
Dima	lato1	I1,dima =	0.500	m		
	lato2	I2,dima =	0.500	m		
	spessore	s,dima =	0.020	m		
Traverse	numero	n,traverse =	5			
	diametro	ø,traverse =	0.090	m		
	spessore	s,traverse =	0.004	m		

Società di Progetto
Brebenii SpA

m m m m

m m m m

7.1.2 Carichi permanenti

Si riportano i pesi permanenti dei diversi elementi della struttura:

Per il peso proprio struttura si è fatto riferimento alla Tabella 3.1.I delle NTC2008. In particolare per l'acciaio è riportato un peso per unita di volume pari a 78.50 kN/m³ e per l'alluminio è riportato un peso per unita di volume pari a 27.00 kN/m³.

Peso proprio fondazione

Peso specifico calcestruzzo armato	γcls =	25.00	kN/m3
Peso prioprio testata	Ptest =	32.40	kN
Peso proprio zattera	Pzatt =	235.20	kN
Peso totale fondazione	Pt,fond =	267.60	kN
Momento trasversale fondazione	Mtrasv,fond =	9.72	kNm

Peso proprio segnaletica metallica

Peso specifico acciaio	γacciaio =	78.50	kN/m3	
Peso proprio traverse	Ptraverse =	0.89	kN	
Peso proprio travata	Ptravata =	0.99	kN	
Peso proprio piedritto	Ppiedritto =	1.34	kN	
Peso proprio dima	Pdima =	0.79	kN	
Peso proprio cartello	Pcartello =	2.36	kN	
Peso totale segnaletica metallica	Pt,segn =	6.36	kN	-8
Eccentricità limite cartello, travata e traverse	elim=	1.05	m	20.
Momento trasversale segnaletica	Mtrasv,segn =	1.91	kNm	
			OPPOVATO	
Sovraccarico del terreno			ARC .	
Si considera il seguente sovraccarico dovuto al ter	rreno:		PK	
Peso specifico terreno	yt =	20.00	kN/m3	

Sovraccarico del terreno

Peso specifico terreno	γt =	20.00	kN/m3
Altezza media rinterro	hmedia =	0.30	m
Eccentricità rinterro		0.00	m
Peso totale rinterro	Pt,rint =	35.46	kn
Momento trasversale rinterro	Mtrasv,rint =	0.00	kNm

7.1.3 Spinta del rilevato

Si considera l'azione della spinta delle terre sulla superficie verticale del pinto di fondazione lato strada. Risulta:

Angolo di attrito interno del terreno	ø'k =	35.00	
Tangente angolo di attrito interno	tanø'k =	0.70	
Coefficiente di spinta attiva	ka =	0.27	
Coefficiente moltiplicativo spinta rilevato		1.00	

Società di Progetto Brebemi SpA

	Doc. N.	CODIFICA DO	CUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII10000	2000000100	A00	44 di 162
•					
Spinta totale rilevato	5	Sril =	23.54	kN	
Momento trasversale rilevato	Mtra	asv,ril =	31.10	kNm	

7.1.4 Spinta dovuta ai sovraccarichi variabili sul rilevato

Si considera l'azione di spinta dovuta ai sovraccarichi variabili sul rilevato sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Carico accidentale rilevato	qaccid =	20.00	kN/m2
Spinta accidentale rilevato totale	Sacc =	16.91	kN
Momento accidentale trasversale	Mtrasv,acc =	27.19	kNm

7.1.5 Azioni da vento

Il D.M. del 14 Gennaio 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fa riferimento al vento nella sola direzione parallela all'asse stradale.

La pressione del vento è data dall'espressione:

$$p = q_b * c_e * c_p * c_d$$

dove:

q_b pressione cinetica di riferimento

c_e coefficiente di esposizione

c_p coefficiente di forma (o coefficiente aerodinamico)

c_d coefficiente dinamico

La pressione cinetica di riferimento è data dall'espressione:

$$q_b = 0.5 * \rho * V_b^2$$

dove ρ è la densità dell'aria e vale 1,25 kg/m³.

Il coefficiente di esposizione dipende dall'altezza z dal piano di campagna (rilevato compreso, se presente) del punto considerato, dalla topografia e dalla categoria di esposizione.

Risulta:

Zona geografica	I		
	$V_{b,0} =$	25.00	m/s
	$a_0 =$	1000.00	m
	k _a =	0.010	1/s Società di Progetto
Categoria di esposizione del sito	11		Brebenii SpA
	$k_r =$	0.19	
	z ₀ =	0.05	m

Do	oc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar. 66	6128-00002-A00.doc	04RCEII100002000000100	A00	45 di 162

	z _{min} =	4.00	m
Densità dell'aria	ro =	1.25	kg/m³
Altitudine slm dove sorge l'opera	as =	150.00	m
Velocità di riferimento	$V_b =$	25.00	m/sec
Pressione cinetica di riferimento	qb =	390.63	N/m2
Altezza dal piano di campagna	Z =	10.00	m
Coefficiente topografico	ct =	1.00	
Coefficiente di esposizione	$c_e(z)max =$	2.35	
Coefficiente dinamico	cd =	1.00	
Coeff. di forma per pressione normale sui pannelli	c _p =	1.80	
Coeff. di forma per pressione normale sul montante	$c_{px} =$	2.15	
Pressione del vento pannelli	Pvnt1 =	1.65	
Pressione del vento montante	Pvnt2 =	1.98	

Si assume

Pressione normale esercitata dal vento sui pannelli: $p_{max} = 1.65 \text{ kPa}$ Pressione normale esercitata dal vento sul montante: $p_{max} = 1.98 \text{ kPa}$

La pressione di calcolo viene applicata come pressione uniforme rispettivamente sulle superfici di esposizione identificate dalla struttura orizzontale e verticale.

Pertanto:

Azione esercitata sul cartello	Fl,vnt1 =	9.92	kN
Azione esercitata sul piedritto	FI,vnt2 =	0.97	kN
Azione totale del vento	FI,vnt =	10.89	kN
Distanza estradosso testata/base cartello	Hc =	2.23	m
Momento longitudinale vento	Mlong,vnt =	65.81	kNm
Momento torcente	Mtorc,vnt =	3.27	kNm

7.1.6 Azioni da neve

La pressione della neve è data dall'espressione:

$$q_{\text{s}} = \mu_{\text{i}} * q_{\text{ek}} * C_{\text{E}} * C_{\text{t}}$$

dove:

q_s carico da neve

 μ_i coefficiente di forma

C_E coefficiente di esposizione

Ct coefficiente termico

Brebemi SpA

Società di Progetto

Risulta:

Zona geografica Zona I

	Doc. N.	CODIFICA DOCUM	MENTO	REV.	FOGLIO
interconnessione SAR	66128-00002-A00.doc	04RCEII100002000	0000100	A00	46 di 162
Coefficiente di esposizione	al vento	Ce =	0.90		
Valore caratteristico carico		qsk =	1.50	k	kN/m2
Angolo di inclinazione profi	lo	α =	0.00		0
Coefficienti di forma		µ1 =	0.80		
Coefficiente termico		Ct =	1.00		
Carico uniformemente distr	ribuito	q2k =	0.22		kN/m
Azione della neve		Pneve =	0.65		kN
Momento trasversale neve		Mtrasv,neve =	0.00		kNm

7.1.7 Azioni sismiche

L'azione sismica dovuta alla struttura in elevazione si ottiene mediante la relazione:

 $F_h = S_d * W / g$

Dove:

W = peso della struttura in elevazione

Mentre l'azione sismica dovuta all'inerzia della fondazione si ottiene mediante la relazione:

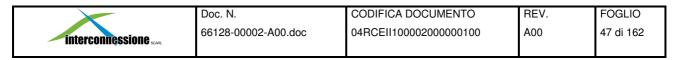
 $F_h = k_h * W / g$

Dove:

W = peso del plinto di fondazione

La forza orizzontale ottenuta dall'analisi, distribuita sull'altezza della struttura, segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.

Con riferimento ai valori determinati al paragrafo 5.1, l'azione orizzontale dovuta al sisma risulta largamente inferiore all'azione dovuta al vento e pertanto non dimensionante.


7.2 Sollecitazioni e verifiche delle strutture di fondazione

Si riporta l'analisi del plinto di fondazione.

7.2.1 Geometria della fondazione

Per la geometria della fondazione, si rimanda agli elaborati grafici di pertinenza.

Società di Progetto
Brebenii SpA

7.2.2 Combinazioni di carico

Per le combinazioni di carico si rimanda al paragrafo 6.2.2.

7.2.3 Sollecitazioni sugli elementi strutturali

Nelle tabelle successive vengono riportati, per ciascuna delle combinazioni di carico descritte, i valori assunti dalle componenti di sollecitazione, calcolati secondo il procedimento descritto nel paragrafo "Criteri di calcolo".

Azioni risultanti a spiccato montante

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	8.26	0.00	16.34	49.70	2.48	4.90
SLU - STR (neve)	8.26	0.00	9.80	29.82	2.48	2.94
SLU - GEO (vento)	6.36	0.00	14.16	43.07	1.91	4.25
SLU - GEO (neve)	6.36	0.00	8.50	25.84	1.91	2.55
SLE - RARA	6.36	0.00	10.89	33.13	1.91	3.27
SLE - FREQUENTE	6.36	0.00	2.18	6.63	1.91	0.65
SLE - QUASI PERM.	6.36	0.00	0.00	0.00	1.91	0.00

Azioni risultanti a spiccato baggiolo estradossale di raccordo

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	50.38	19.82	16.34	75.84	16.17	4.90
SLU - STR (neve)	50.38	15.14	9.80	45.51	12.43	2.94
SLU - GEO (vento)	38.76	16.39	14.16	65.73	13.35	4.25
SLU - GEO (neve)	38.76	12.33	8.50	39.44	10.11	2.55
SLE - RARA	38.76	14.05	10.89	50.56	11.48	3.27
SLE - FREQUENTE	38.76	7.80	2.18	10.11	6.49	0.65
SLE - QUASI PERM.	38.76	6.24	0.00	0.00	5.24	0.00

Azioni risultanti ad intradosso fondazione

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	402.73	55.97	16.34	85.65	83.69	4.90
SLU - STR (neve)	403.21	45.83	9.80	51.39	67.38	2.94
SLU - GEO (vento)	309.84	45.53	14.16	74.23	68.35	4.25
SLU - GEO (neve)	310.26	36.73	8.50	44.54	54.21	2.55
SLE - RARA	309.74	40.45	10.89	57.10	60.19	3.27 tà di Progetto
SLE - FREQUENTE	309.42	26.93	2.18	11.42	38.44 Bre	0.65 bemi SpA
SLE - QUASI PERM.	309.42	23.54	0.00	0.00	33.01	0.00

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar	66128-00002-A00.doc	04RCEII100002000000100	A00	48 di 162
III CO CO III GOOD II O SCANL				

7.2.4 Verifiche in ambito geotecnico e di equilibrio di corpo rigido

Verifica a ribaltamento

Si riportano in seguito i valori dei momenti ribaltanti in direzione trasversale e longitudinale nelle combinazioni relative alla verifica in oggetto:

Coefficiente γ_{g1} - Permanente favorevole	0.90
Coefficiente γ_{g1} - Permanente sfavorevole	1.10
Coefficiente γ_{Q1} - Variabile favorevole	0.00
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50
Direzione longitudinale:	
Momento stabilizzante fondazione	Mstab,fond =

Womento Stabilizzante fondazione	Mistab, Toria =	074.04	IXI VIII
Momento stabilizzante rinterro	Mstab,rint =	49.64	kNm
Momento stabilizzante segnaletica	Mstab,segn =	8.90	kNm
Momento stabilizzante di progetto	MRd =	389.86	kNm
Momento instabilizzante vento	Minstab,vnt =	65.81	kNm
Momento instabilizzante di progetto	MRd =	98.72	kNm
	FSrib,long =	3.95	
Direzione trasversale:			
Momento stabilizzante fondazione	Mstab,fond =	321.12	kNm
Momento stabilizzante rinterro	Mstab,rint =	42.55	kNm
Momento stabilizzante spinte (cautelativamente)	Minstab,vnt =	7.63	kNm
Momento stabilizzante di progetto	Mrd =	334.17	kNm
Momento instabilizzante neve	Minstab,neve =	0.00	
Momento instabilizzante spinte	Minstab,vnt =	58.29	kNm
Momento motabilizzante opinte	wiii istab, viit =		IXI VIII

FSrib,trasv = 4.46

Msd =

74.99

kNm

374.64

kNm

Le verifiche risultano soddisfatte

Momento instabilizzante di progetto

Verifica a scorrimento del piano di posa

Società di Progetto

Poiché, nel caso in oggetto, le sollecitazioni di scorrimento sul piano di posa sono duvuti agli reffetti delle azioni taglianti agenti nelle due direzioni principali, abbinate alle sollecitazioni di momento torcente, la verifica di scorrimento viene conservativamente condotta in termini tensionali anziché in termini di sollecitazioni globali.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione CAMA	66128-00002-A00.doc	04RCEII100002000000100	A00	49 di 162

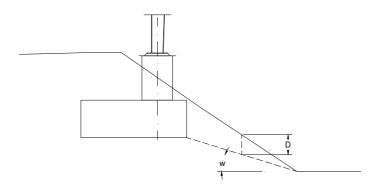
Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

Coefficiente γ_{g1} - Permanente favorevole	1.00
Coefficiente γ_{g1} - Permanente sfavorevole	1.30
Coefficiente γ _{Q1} - Variabile favorevole	0.00
Coefficiente γ _{Q1} - Variabile sfavorevole	1.50

Sollecitazioni di progetto:

Sforzo normale totale	N' =	309.42	kN
Momento in direzione trasversale	Mt' =	96.32	kNm
Taglio in direzione trasversale	Tt' =	55.97	kN
Momento in direzione longitudinale	MI' =	98.72	kNm
Taglio in direzione longitudinale	TI' =	16.34	kN

Risulta pertanto:


Azione totale di taglio in fondazione	Vris =	58.31	kN
Tensione tangenziale dovuta al taglio	τ(V) =	8.68	kN/mq
Tensione tangenziale (massima) dovuta al momento torcente	τ ,max(T) =	1.38	kN/mq
Tensione tangenziale totale	τ,tot =	10.06	kN/mq
Sforzo normale unitario di progetto	σ=	46.04	kN/mq
	FS scorr	3 21	> 1 10

Le verifiche risultano soddisfatte

Verifica per carico limite dell'insieme fondazione-terreno

Si riportano in seguito le verifiche per carico limite dell'insieme fondazione-terreno.

Nel valutare il contributo alla capacità portante, si considera una (eventuale) inclinazione w del terreno rispetto all'orizzontale determinata dalla retta congiungente tra spigolo del plinto lato valle e piede del rilevato. La quota D di affondamento rispetto al piano campagna viene prudenzialmente assunta pari all'altezza media del cuneo di risprimento sviluppantesi lungo lo sviluppo planimemerico dell'(eventuale) rilevato e delimitato inferiormente dalla suddetta retta.

Società di Progetto

Brebenii SpA

Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

Doc.	N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar. 6612	28-00002-A00.doc	04RCEII100002000000100	A00	50 di 162
Coefficiente γ _{g1} - Permane	ente favorevole	1.00		
Coefficiente γ _{g1} - Permane	ente sfavorevole	1.30		
Coefficiente γ _{Q1} - Variabile	favorevole	0.00		
Coefficiente γ_{Q1} - Variabile	sfavorevole	1.50		
Eccentricità direzione longitudinale	9	e,L' =	0.32	m
Eccentricità direzione trasversale		e,B' =	0.31	m
Dimensioni efficaci fondazione				
Dimensione trasversale efficace		B' =	1.78	m
Dimensione longitudinale efficace		L' =	2.16	m
Dim. minore della fondazione effic	ace equivalente	B' =	1.78	m
Dim. maggiore della fondazione ef	ficace equivalente	L' =	2.16	m
Pressione media sul terreno		q =	104.68	kPa
Affondamento da piano campag	ına	D =	1.19	m
Caratteristiche del terreno di fo	ndazione			
Peso specifico totale del terreno d	i fondazione	γt =	20.00	kN/m ³
Profondità della falda da p.c.		zf =	50.00	m
Distanza quota di falda - piano di i	-	zw =	48.81	m
Peso specifico efficace base fonda	azione B	γ'cB =	20.00	kN/m ³
Peso specifico efficace base fonda	azione L	γ'cL =	20.00	kN/m ³
Angolo di attrito del terreno di fond	lazione	φ' =	35.00	
nclinaz. terreno risp. orizzontale (dir trasv)	ωB' =	0.00	0
nclinaz. terreno risp. orizzontale (dir long)	ωL' =	0.00	0
Peso specifico del terreno latistan	te la fondazione		20.00	kN/m³
v' Pressione verticale efficace a quo	ta imposta fondazion	e q'0 =	23.80	kPa
attori di capacità portante				
		Nγ =	33.92	
		Nq =	33.30	
		Nc =	68.16	
Coefficienti di inclinazione del c	arico			
		iγ,B' _· =	0.51	
		iq,B' =	0.62 Socie	età di Progetto e bemi SpA
		iγ,L'=	0.83 0.83	ebemi SpA
		iq,L' =	0.87	$\forall N$
Coefficienti di forma		_		X
		sγ,B' =	0.80	

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII100002000000100	A00	51 di 162
		sq,B' =	1.29)
		sγ,L' =	0.21	
		sq,L' =	1.61	
Coefficienti di affondament	0			
		dγ,B' =	1.00)
		dq,B' =	1.17	7
		dγ, L' =	1.00)
		dq,L' =	1.14	ļ.
Coefficienti per inclinazione	e terreno			
		$g\gamma,B' = gq,B'$	1.00)
		$g\gamma,L' = gq,L'$	1.00)

Capacità portante limite di base

$$\begin{array}{ll} q_{limgB'} \\ q_{limgL'} \end{array} \hspace{2cm} = \begin{array}{ll} \frac{1/2 \times g'_{cB'} \times B' \times N_g \times s_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gC'} \times L' \times N_g \times s_{gC'} \times g_{gC'} \times g'_{cL'} \times L' \times N_g \times g_{gC'} \times g_{g$$

q_{limγL'} 244.56 kPa **q**_{limγL'} 125.69 kPa

Capacità portante limite per sovraccarico laterale

$$q_{\text{limq B'}}$$

$$= \begin{array}{c} q_0' \times N_q \times s_{qB'} \times d_{qB'} \times i_{qB'} \times g_{qB'} \times g_{qB'}$$

q_{limqB'} 746.90 kPa **q**_{limqL'} 1272.74 kPa

Nella valutazione del termine di capacità portante $q_{lim\gamma}$ viene assunto $q_{lim\gamma E'}$ o $q_{lim\gamma E'}$ in base al valore calcolato di s_{γ} ; si assumerà l'espressione per la quale risulta $s_{\gamma} > 0.6$.

Nella valutazione del termine di capacità portante q_{limq} tra $q_{limqB'}$ e $q_{limqL'}$ viene scelto quello minore.

	q _{limy} q _{limq}	244.56 746.90	kPa kPa
Capacità portante a rottura γ _R minimo capacità portante	q _{lim}	991.46 2.30	kPa
Capacità portante di design Pressione media sollecitante di design	q _{res_d} q _{soll_d}		à diPaogetto DenniPapA

FS capacità portante 4.12

Doc. N. 66128-00002-A00.doc CODIFICA DOCUMENTO 04RCEII100002000000100 REV. A00 FOGLIO 52 di 162

Le verifiche risultano soddisfatte

APPROVATO BOP

Società di Progetto Breberni SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	53 di 162

8. MONOPALO ALLA SEZIONE BS_BB-SV8

8.1 Analisi della struttura

Il monopalo oggetto di questo paragrafo è situato alla progressiva 70.00 e corrisponde alla sezione BS_BB-SV8.

8.1.1 Geometria della struttura

Si riportano le geometrie dei diversi elementi della struttura:

Altezza testat	a fondazione		Ht =		2.400	
Larghezza tes	stata in direz. Ion	gitudinale	Bt =		0.900	
Larghezza tes	stata in direz. tra:	sversale	Lt =		0.900	
Eccentricità te	stata in direzion	e trasversale	e,trasv	′ =	0.300	
Altezza magro	one di pulizia		Hz0 =	=	0.100	
Altezza zattera fondazione		Hz =	:	0.600		
Larghezza za	ttera in direz. Ion	gitudinale	Bz =	:	2.800	
Larghezza za	ttera in direz. tra	sversale	Lz =		2.400	
Larghezza cartello		D1 =		3.000		
Altezza cartello		D2 =		2.500		
Spessore cartello		s,cartell	0 =	0.005		
Disable :	la La d	Marchael 2005	0.000			
Piedritto	lato1	I1,piedritto =	0.220	m		
	lato2	I1,piedritto =	0.220	m		
	spessore	I1,piedritto =	0.006	m		P
Travata	lato1	I1,travata =	0.150	m		
	lato2	l2,travata =	0.200	m		
	spessore	s,travata =	0.006	m		
	•	•				
Dima	lato1	I1,dima =	0.500	m		
	lato2	12,dima =	0.500	m		
	spessore	s,dima =	0.020	m		
Traverse	numero	n,traverse =	5			
	diametro	ø,traverse =	0.090	m		
	spessore	s,traverse =	0.004	m		

Società di Progetto
Brebenii SpA

m m m m

m m m m

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione some	66128-00002-A00.doc	04RCEII100002000000100	A00	54 di 162

8.1.2 Carichi permanenti

Si riportano i pesi permanenti dei diversi elementi della struttura:

Per il peso proprio struttura si è fatto riferimento alla Tabella 3.1.I delle NTC2008. In particolare per l'acciaio è riportato un peso per unita di volume pari a 78.50 kN/m³ e per l'alluminio è riportato un peso per unita di volume pari a 27.00 kN/m³.

Peso proprio fondazione

Peso specifico calcestruzzo armato	γcls =	25.00	kN/m3
Peso prioprio testata	Ptest =	48.60	kN
Peso proprio zattera	Pzatt =	117.60	kN
Peso totale fondazione	Pt,fond =	166.20	kN
Momento trasversale fondazione	Mtrasv,fond =	14.58	kNm

Peso proprio segnaletica metallica

Peso specifico acciaio	yacciaio =	78.50	kN/m3	
Peso proprio traverse	Ptraverse =	1.11	kN	
Peso proprio travata	Ptravata =	0.99	kN	
Peso proprio piedritto	Ppiedritto =	1.44	kN	
Peso proprio dima	Pdima =	0.79	kN	
Peso proprio cartello	Pcartello =	2.94	kN	0
Peso totale segnaletica metallica	Pt,segn =	7.27	kN) *
Eccentricità limite cartello, travata e traverse	elim=	0.00	m	
Momento trasversale segnaletica	Mtrasv,segn =	2.18	kNm	
			APPROT	
Sovraccarico del terreno			Ph	
Si considera il seguente sovraccarico dovuto al te	rreno:		Y	

Sovraccarico del terreno

Peso specifico terreno	γt =	20.00	kN/m3
Altezza media rinterro	hmedia =	0.58	m
Eccentricità rinterro		0.00	m
Peso totale rinterro	Pt,rint =	68.56	kn
Momento trasversale rinterro	Mtrasv,rint =	0.00	kNm

8.1.3 Spinta del rilevato

Si considera l'azione della spinta delle terre sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Angolo di attrito interno del terreno ø'k = 35.00 Tangente angolo di attrito interno tanø'k = 0.70

Società di Progetto

interconnessione .car.	Doc. N. 66128-00002-A00.doc	CODIFICA DOCUMEN 04RCEII100002000000		REV. A00	FOGLIO 55 di 162
Coefficiente di spinta attiva Coefficiente moltiplicativo spi	ka nta rilevato		0.27 1.00		
Spinta totale rilevato Momento trasversale rilevato	Sri Mtras		38.63 30.91	kN kNm	

8.1.4 Spinta dovuta ai sovraccarichi variabili sul rilevato

Si considera l'azione di spinta dovuta ai sovraccarichi variabili sul rilevato sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Carico accidentale rilevato	qaccid =	20.00	kN/m2
Spinta accidentale rilevato totale	Sacc =	20.81	kN
Momento accidentale trasversale	Mtrasv,acc =	25.88	kNm

8.1.5 Azioni da vento

Il D.M. del 14 Gennaio 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo APPROVATO BOP stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fa riferimento al vento nella sola direzione parallela all'asse stradale.

La pressione del vento è data dall'espressione:

$$p = q_b * c_e * c_p * c_d$$

dove:

pressione cinetica di riferimento q_b

coefficiente di esposizione c_{e}

coefficiente di forma (o coefficiente aerodinamico) C_p

coefficiente dinamico C_{d}

La pressione cinetica di riferimento è data dall'espressione:

$$q_b = 0.5 * \rho * V_b^2$$

dove ρ è la densità dell'aria e vale 1,25 kg/m³.

Il coefficiente di esposizione dipende dall'altezza z dal piano di campagna (rilevato compreso, se presente) del punto considerato, dalla topografia e dalla categoria di esposizione.

Risulta:

Zona geografica	I		Società di Progetto
	v _{b,0} =	25.00	mÆsreberni SpA
	a ₀ =	1000.00	m
	k ₂ =	0.010	1/s

	Doc. N.	CODIFICA DOCUME	ENTO	REV.	FOGLIO
interconnessione scar	66128-00002-A00.doc	04RCEII1000020000	000100	A00	56 di 162
	<u> </u>				
Categoria di esposizione del	sito	II			
		$k_r =$	0.19		
		$z_0 =$	0.05	m	
		z _{min} =	4.00	m	
Densità dell'aria		ro =	1.25	kg/m	3
Altitudine slm dove sorge l'op	pera	as =	150.00	m	
Velocità di riferimento		$V_b =$	25.00	m/se	С
Pressione cinetica di riferime	nto	qb =	390.63	N/m2	2
Altezza dal piano di campagr	าล	Z =	10.00	m	
Coefficiente topografico		ct =	1.00		
Coefficiente di esposizione		$c_e(z)max =$	2.35		
Coefficiente dinamico		cd =	1.00		
Coeff. di forma per pressione	normale sui pannelli	$c_p =$	1.80		
Coeff. di forma per pressione	normale sul montante	$c_{px} =$	2.15		
Pressione del vento pannelli		Pvnt1 =	1.65		

Si assume

Pressione del vento montante

Pressione normale esercitata dal vento sui pannelli: $p_{max} = 1.65 \text{ kPa}$ Pressione normale esercitata dal vento sul montante: $p_{max} = 1.98 \text{ kPa}$

La pressione di calcolo viene applicata come pressione uniforme rispettivamente sulle superfici di esposizione identificate dalla struttura orizzontale e verticale.

Pvnt2 =

1.98

Pertanto:

Azione esercitata sul cartello	Fl,vnt1 =	12.40	kN
Azione esercitata sul piedritto	Fl,vnt2 =	0.97	kN
Azione totale del vento	FI,vnt =	13.37	kN
Distanza estradosso testata/base cartello	Hc =	2.23	m
Momento longitudinale vento	Mlong,vnt =	85.71	kNm
Momento torcente	Mtorc,vnt =	4.01	kNm

8.1.6 Azioni da neve

La pressione della neve è data dall'espressione:

$$q_{\text{s}} = \mu_{\text{i}} * q_{\text{ek}} * C_{\text{E}} * C_{\text{t}}$$

dove:

q_s carico da neve

 μ_i coefficiente di forma

C_E coefficiente di esposizione

Ct coefficiente termico

Società di Progetto **Brebenii SpA**

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	57 di 162

Risulta:

Zona geografica	Zona	1	
Coefficiente di esposizione al vento	Ce =	0.90	
Valore caratteristico carico al suolo	qsk =	1.50	kN/m2
Angolo di inclinazione profilo	α =	0.00	0
Coefficienti di forma	μ1 =	0.80	
Coefficiente termico	Ct =	1.00	
Carico uniformemente distribuito	q2k =	0.22	kN/m
Azione della neve	Pneve =	0.65	kN
Momento trasversale neve	Mtrasv,neve =	0.00	kNm

8.1.7 Azioni sismiche

L'azione sismica dovuta alla struttura in elevazione si ottiene mediante la relazione:

 $F_h = S_d * W / g$

Dove:

W = peso della struttura in elevazione

Mentre l'azione sismica dovuta all'inerzia della fondazione si ottiene mediante la relazione:

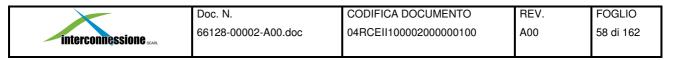
 $F_h = k_h * W / g$

Dove:

W = peso del plinto di fondazione

La forza orizzontale ottenuta dall'analisi, distribuita sull'altezza della struttura, segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.

Con riferimento ai valori determinati al paragrafo 5.1, l'azione orizzontale dovuta al sisma risulta largamente inferiore all'azione dovuta al vento e pertanto non dimensionante.


8.2 Sollecitazioni e verifiche delle strutture di fondazione

Si riporta l'analisi del plinto di fondazione.

8.2.1 Geometria della fondazione

Per la geometria della fondazione, si rimanda agli elaborati grafici di pertinenza.

Società di Progetto **Brebenii SpA**

8.2.2 Combinazioni di carico

Per le combinazioni di carico si rimanda al paragrafo 6.2.2.

8.2.3 Sollecitazioni sugli elementi strutturali

Nelle tabelle successive vengono riportati, per ciascuna delle combinazioni di carico descritte, i valori assunti dalle componenti di sollecitazione, calcolati secondo il procedimento descritto nel paragrafo "Criteri di calcolo".

Azioni risultanti a spiccato montante

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	9.45	0.00	20.06	66.37	2.84	6.02
SLU - STR (neve)	9.45	0.00	12.04	39.82	2.84	3.61
SLU - GEO (vento)	7.27	0.00	17.39	57.52	2.18	5.22
SLU - GEO (neve)	7.27	0.00	10.43	34.51	2.18	3.13
SLE - RARA	7.27	0.00	13.37	44.25	2.18	4.01
SLE - FREQUENTE	7.27	0.00	2.67	8.85	2.18	0.80
SLE - QUASI PERM.	7.27	0.00	0.00	0.00	2.18	0.00

Azioni risultanti a spiccato baggiolo estradossale di raccordo

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	72.63	35.82	20.06	114.52	38.52	6.02
SLU - STR (neve)	72.63	28.80	12.04	68.71	30.09	3.61
SLU - GEO (vento)	55.87	29.27	17.39	99.25	31.68	5.22
SLU - GEO (neve)	55.87	23.18	10.43	59.55	24.38	3.13
SLE - RARA	55.87	25.75	13.37	76.35	27.47	4.01
SLE - FREQUENTE	55.87	16.39	2.67	15.27	16.23	0.80
SLE - QUASI PERM.	55.87	14.05	0.00	0.00	13.42	0.00

Azioni risultanti ad intradosso fondazione

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	315.12	81.44	20.06	126.56	81.84	6.02
SLU - STR (neve)	315.61	68.95	12.04	75.93	66.31	3.61
SLU - GEO (vento)	242.45	65.69	17.39	109.68	66.74	5.22
SLU - GEO (neve)	242.87	54.87	10.43	65.81	53.28	3.13
SLE - RARA	242.35	59.44	13.37	84.37	58.97	4.01 tà di Progetto
SLE - FREQUENTE	242.03	42.79	2.67	16.87	38 26	pemi SpA
SLE - QUASI PERM.	242.03	38.63	0.00	0.00	33.09	0.00

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	59 di 162

8.2.4 Verifiche in ambito geotecnico e di equilibrio di corpo rigido

Verifica a ribaltamento

Si riportano in seguito i valori dei momenti ribaltanti in direzione trasversale e longitudinale nelle combinazioni relative alla verifica in oggetto:

Coefficiente γ_{g1} - Permanente favorevole	0.90
Coefficiente γ_{g1} - Permanente sfavorevole	1.10
Coefficiente γ_{Q1} - Variabile favorevole	0.00
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50

Direzione longitudinale:

Direzione longitudinale.			
Momento stabilizzante fondazione Momento stabilizzante rinterro Momento stabilizzante segnaletica Momento stabilizzante di progetto	Mstab,fond = Mstab,rint = Mstab,segn = MRd =	232.68 95.98 10.18 304.95	kNm kNm kNm kNm
Momento instabilizzante vento Momento instabilizzante di progetto	Minstab,vnt = MRd =	85.71 128.56	kNm kNm
Direzione trasversale: Momento stabilizzante fondazione Momento stabilizzante rinterro	FSrib,long = Mstab,fond = Mstab,rint =	2.37 199.44 82.27	kNm kNm
Momento stabilizzante spinte (cautelativamente) Momento stabilizzante di progetto	Minstab,vnt = Mrd =	8.72 261.39	kNm kNm
Momento instabilizzante neve Momento instabilizzante spinte Momento instabilizzante di progetto	Minstab,neve = Minstab,vnt = Msd =	0.00 56.79 72.82	kNm kNm

Le verifiche risultano soddisfatte

Verifica a scorrimento del piano di posa

Società di Progetto

3.59

FSrib,trasv =

Poiché, nel caso in oggetto, le sollecitazioni di scorrimento sul piano di posa sono duvuti agli reffetti delle azioni taglianti agenti nelle due direzioni principali, abbinate alle sollecitazioni di momento torcente, la verifica di scorrimento viene conservativamente condotta in termini tensionali anziché in termini di sollecitazioni globali.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione our	66128-00002-A00.doc	04RCEII100002000000100	A00	60 di 162

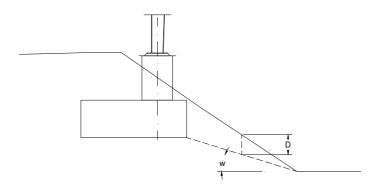
Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

Coefficiente γ_{g1} - Permanente favorevole	1.00
Coefficiente γ_{g1} - Permanente sfavorevole	1.30
Coefficiente γ_{Q1} - Variabile favorevole	0.00
Coefficiente γ _{Q1} - Variabile sfavorevole	1.50

Sollecitazioni di progetto:

Sforzo normale totale	N' =	242.03	kN
Momento in direzione trasversale	Mt' =	100.79	kNm
Taglio in direzione trasversale	Tt' =	81.44	kN
Momento in direzione longitudinale	MI' =	128.56	kNm
Taglio in direzione longitudinale	TI' =	20.06	kN

Risulta pertanto:


Azione totale di taglio in fondazione	Vris =	83.87	kN
Tensione tangenziale dovuta al taglio	τ(V) =	12.48	kN/mq
Tensione tangenziale (massima) dovuta al momento torcente	τ,max(T) =	1.70	kN/mq
Tensione tangenziale totale	τ,tot =	14.18	kN/mq
Sforzo normale unitario di progetto	σ=	36.02	kN/mq
	FS.scorr	1.78	> 1.10

Le verifiche risultano soddisfatte

Verifica per carico limite dell'insieme fondazione-terreno

Si riportano in seguito le verifiche per carico limite dell'insieme fondazione-terreno.

Nel valutare il contributo alla capacità portante, si considera una (eventuale) inclinazione w del terreno rispetto all'orizzontale determinata dalla retta congiungente tra spigolo del plinto lato valle e piede del rilevato. La quota D di affondamento rispetto al piano campagna viene prudenzialmente assunta pari all'altezza media del cuneo di risprimento sviluppantesi lungo lo sviluppo planimemerico dell'(eventuale) rilevato e delimitato inferiormente dalla suddetta retta.

Società di Progetto

Brebenii SpA

Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione some	66128-00002-A00.doc	04RCEII100002000000100	A00	61 di 162
Coefficiente γ_{g1} - Pern	nanente favorevole	1.00		
Coefficiente γ _{g1} - Pern	nanente sfavorevole	1.30		
Coefficiente γ_{Q1} - Variabile favorevole		0.00		
Coefficiente γ _{Q1} - Vari	abile sfavorevole	1.50		
Eccentricità direzione longitud	linale	e,L' =	0.53	m
Eccentricità direzione trasvers		e,B' =	0.42	m
Dimensioni efficaci fondazio	one			
Dimensione trasversale effica	ce	B' =	1.57	m
Dimensione longitudinale effic	ace	L' =	1.74	m
Dim. minore della fondazione	efficace equivalente	B' =	1.57	m
Dim. maggiore della fondazior	ne efficace equivalente	L' =	1.74	m
Pressione media sul terrend)	q =	115.55	kPa
Affondamento da piano cam	npagna	D =	0.60	m
Caratteristiche del terreno d	li fondazione			
Peso specifico totale del terre	no di fondazione	γt =	20.00	kN/m ³
Profondità della falda da p.c.		zf =	50.00	m
Distanza quota di falda - piano	o di imposta fondazione	zw =	49.40	m
Peso specifico efficace base f	ondazione B	γ'cB =	20.00	kN/m ³
Peso specifico efficace base f	ondazione L	γ'cL =	20.00	kN/m ³
Angolo di attrito del terreno di	fondazione	φ' =	35.00	O P
nclinaz. terreno risp. orizzonta	ale (dir trasv)	ωB' =	0.00	0
nclinaz. terreno risp. orizzonta	,	ωL' =	0.00	0
Peso specifico del terreno lati	stante la fondazione		20.00	kN/m ³
/' Pressione verticale efficace a	quota imposta fondazione	e q'0 =	12.00	kPa
Fattori di capacità portante				
-		Nγ =	33.92	
		Nq =	33.30	
		Nc =	68.16	
Coefficienti di inclinazione d	del carico			
		iγ,Β' ₋ =	0.26	
		iq,B' =	0.40 Socie	età di Progetto
		iγ,L'=	0.74 Bre	bemi SpA
		iq,L' =	0.81	$\forall N$
Coefficienti di forma				X
		sγ,B' =	0.87	/ 1

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione some	66128-00002-A00.doc	04RCEII100002000000100	A00	62 di 162
	•			
		sq,B' =	1.21	
		sγ,L' =	-0.26	3
		sq,L' =	1.51	
Coefficienti di affondament	0			
		dγ,B' =	1.00)
		dq,B' =	1.10)
		dγ, L' =	1.00)
		dq,L' =	1.09)
Coefficienti per inclinazion	e terreno			
		$g\gamma,B' = gq,B'$	1.00)
		$g\gamma,L' = gq,L'$	1.00)

Capacità portante limite di base

$$\begin{array}{ll} q_{limgB'} \\ q_{limgL'} \end{array} \hspace{2cm} = \begin{array}{ll} \frac{1/2 \times g'_{cB'} \times B' \times N_g \times s_{gB'} \times g_{gB'} \times g_{gB'}$$

 $\mathbf{q}_{\text{limyB}'}$ 121.15 kPa $\mathbf{q}_{\text{limyL}'}$ -113.66 kPa

Capacità portante limite per sovraccarico laterale

$$q_{\text{limq L'}}$$

$$= \begin{array}{c} q_0' \times N_q \times s_{qB'} \times d_{qB'} \times i_{qB'} \times g_{qB'} \times g_{qB'}$$

q_{limqB'} 210.51 kPa **q**_{limqL'} 532.83 kPa

Nella valutazione del termine di capacità portante $q_{lim\gamma}$ viene assunto $q_{lim\gamma E'}$ o $q_{lim\gamma E'}$ in base al valore calcolato di s_{γ} ; si assumerà l'espressione per la quale risulta $s_{\gamma} > 0.6$.

Nella valutazione del termine di capacità portante q_{limq} tra $q_{limqB'}$ e $q_{limqL'}$ viene scelto quello minore.

	q _{limy} q _{limq}	121.15 210.51	kPa kPa
Capacità portante a rottura γ _R minimo capacità portante	q _{lim}	331.66 2.30	kPa
Capacità portante di design Pressione media sollecitante di design	q _{res_d} q _{soll_d}		à diPaogetto pendPapA

FS capacità portante

Doc. N. 66128-00002-A00.doc CODIFICA DOCUMENTO 04RCEII100002000000100 REV. A00 FOGLIO 63 di 162

Le verifiche risultano soddisfatte

APPROVATO BOP

Società di Progetto Breberni SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione SCARL	66128-00002-A00.doc	04RCEII100002000000100	A00	64 di 162

9. MONOPALO ALLA SEZIONE BS_BB-74

9.1 Analisi della struttura

Il monopalo oggetto di questo paragrafo è situato alla progressiva 1297.55 e corrisponde alla sezione BS_BB-74.

9.1.1 Geometria della struttura

Si riportano le geometrie dei diversi elementi della struttura:

Altezza testat	a fondazione		Ht =		1.200	
Larghezza te	stata in direz. Ion	gitudinale	Bt =		0.900	
Larghezza tes	stata in direz. tra	sversale	Lt =	:	0.900	
Eccentricità te	estata in direzion	e trasversale	e,trasv	/ =	0.300	
Altezza magr	one di pulizia		Hz0 :	=	0.100	
Altezza zattera fondazione		Hz =	:	0.600		
Larghezza za	ttera in direz. Ion	gitudinale	Bz =	:	2.800	
Larghezza zattera in direz. trasversale		Lz =		2.400		
Larghezza ca			D1 =		3.000	
Altezza cartello		D2 =		3.000		
Spessore car	tello		s,cartell	lo =	0.005	
Districtions	lata d	Marie de Merca	0.000			
Piedritto	lato1	I1,piedritto =	0.220	m		
	lato2	I1,piedritto =	0.220	m		
	spessore	I1,piedritto =	0.006	m		P
Travata	lato1	I1,travata =	0.150	m		
	lato2	l2,travata =	0.200	m		
	spessore	s,travata =	0.006	m		
	•	•				
Dima	lato1	I1,dima =	0.500	m		
	lato2	12,dima =	0.500	m		
	spessore	s,dima =	0.020	m		
Traverse	numero	n,traverse =	5			
	diametro	ø,traverse =	0.090	m		
	spessore	s,traverse =	0.004	m		

Società di Progetto
Brebenii SpA

m m m m

m m m m

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione some	66128-00002-A00.doc	04RCEII100002000000100	A00	65 di 162

9.1.2 Carichi permanenti

Si riportano i pesi permanenti dei diversi elementi della struttura:

Per il peso proprio struttura si è fatto riferimento alla Tabella 3.1.I delle NTC2008. In particolare per l'acciaio è riportato un peso per unita di volume pari a 78.50 kN/m³ e per l'alluminio è riportato un peso per unita di volume pari a 27.00 kN/m³.

Peso proprio fondazione

Peso specifico calcestruzzo armato	γcls =	25.00	kN/m3
Peso prioprio testata	Ptest =	24.30	kN
Peso proprio zattera	Pzatt =	117.60	kN
Peso totale fondazione	Pt,fond =	141.90	kN
Momento trasversale fondazione	Mtrasv,fond =	7.29	kNm

Peso proprio segnaletica metallica

Peso specifico acciaio	yacciaio =	78.50	kN/m3	
Peso proprio traverse	Ptraverse =	1.33	kN	
Peso proprio travata	Ptravata =	0.99	kN	
Peso proprio piedritto	Ppiedritto =	1.39	kN	
Peso proprio dima	Pdima =	0.79	kN	
Peso proprio cartello	Pcartello =	3.53	kN	
Peso totale segnaletica metallica	Pt,segn =	8.03	kN	
Eccentricità limite cartello, travata e traverse	elim=	0.00	m	
Momento trasversale segnaletica	Mtrasv,segn =	2.41	kNm	
			APPROV.	
Sovraccarico del terreno			P	
Si considera il seguente sovraccarico dovuto al te	rreno:		V	

Sovraccarico del terreno

Peso specifico terreno	γt =	20.00	kN/m3
Altezza media rinterro	hmedia =	1.13	m
Eccentricità rinterro		0.00	m
Peso totale rinterro	Pt,rint =	133.57	kn
Momento trasversale rinterro	Mtrasv,rint =	0.00	kNm

9.1.3 Spinta del rilevato

Si considera l'azione della spinta delle terre sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Angolo di attrito interno del terreno ø'k = 35.00 Tangente angolo di attrito interno tanø'k = 0.70

Società di Progetto

Brebemi SpA

	Doc. N.	CODIFICA DOCUMEN	ITO	REV.	FOGLIO
interconnessione scare	66128-00002-A00.doc	04RCEII100002000000	0100	A00	66 di 162
- IIILOI OOIIIIQƏƏIUIIO SCAR.					
Coefficiente di spinta attiva	ka	A =	0.27		
Coefficiente moltiplicativo spi	nta rilevato		0.00		
·					
Spinta totale rilevato	Sri	il =	0.00	kN	
•		-	0.00		
Momento trasversale rilevato	ivitras	sv,ril =	0.00	kNm	

9.1.4 Spinta dovuta ai sovraccarichi variabili sul rilevato

Si considera l'azione di spinta dovuta ai sovraccarichi variabili sul rilevato sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Carico accidentale rilevato	qaccid =	20.00	kN/m2
Spinta accidentale rilevato totale	Sacc =	14.96	kN
Momento accidentale trasversale	Mtrasv,acc =	11.25	kNm

9.1.5 Azioni da vento

Il D.M. del 14 Gennaio 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo APPROVATO BOP stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fa riferimento al vento nella sola direzione parallela all'asse stradale.

La pressione del vento è data dall'espressione:

$$p = q_b * c_e * c_p * c_d$$

dove:

pressione cinetica di riferimento q_b

coefficiente di esposizione c_{e}

coefficiente di forma (o coefficiente aerodinamico) C_p

coefficiente dinamico C_{d}

La pressione cinetica di riferimento è data dall'espressione:

$$q_b = 0.5 * \rho * V_b^2$$

dove ρ è la densità dell'aria e vale 1,25 kg/m³.

Il coefficiente di esposizione dipende dall'altezza z dal piano di campagna (rilevato compreso, se presente) del punto considerato, dalla topografia e dalla categoria di esposizione.

Risulta:

Zona geografica	1		Società di Progetto
	V _{b,0} =	25.00	mÆsreberni SpA
	$a_0 =$	1000.00	m
	k ₂ =	0.010	1/s

	Doc. N.	CODIFICA DOCUME	ENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII100002000000100		A00	67 di 162
				•	
Categoria di esposizione del sit	to	II .			
		$k_r =$	0.19		
		$z_0 =$	0.05	m	
		z _{min} =	4.00	m	
Densità dell'aria		ro =	1.25	kg/m	3
Altitudine slm dove sorge l'oper	a	as =	150.00	m	
Velocità di riferimento		$V_b =$	25.00	m/se	С
Pressione cinetica di riferimento	0	qb =	390.63	N/m	2
Altezza dal piano di campagna		Z =	10.00	m	
Coefficiente topografico		ct =	1.00		
Coefficiente di esposizione		$c_e(z)max =$	2.35		
Coefficiente dinamico		cd =	1.00		
Coeff. di forma per pressione n	ormale sui pannelli	C _p =	1.80		
Coeff. di forma per pressione n	ormale sul montante	c _{px} =	2.15		

Si assume

Pressione del vento pannelli

Pressione del vento montante

Pressione normale esercitata dal vento sui pannelli: $p_{max} = 1.65 \text{ kPa}$ Pressione normale esercitata dal vento sul montante: $p_{max} = 1.98 \text{ kPa}$

La pressione di calcolo viene applicata come pressione uniforme rispettivamente sulle superfici di esposizione identificate dalla struttura orizzontale e verticale.

Pvnt1 =

Pvnt2 =

1.65

1.98

Pertanto:

Azione esercitata sul cartello	FI,vnt1 =	14.89	kN
Azione esercitata sul piedritto	FI,vnt2 =	0.80	kN
Azione totale del vento	FI,vnt =	15.69	kN
Distanza estradosso testata/base cartello	Hc =	1.85	m
Momento longitudinale vento	Mlong,vnt =	80.42	kNm
Momento torcente	Mtorc,vnt =	4.71	kNm

9.1.6 Azioni da neve

La pressione della neve è data dall'espressione:

$$q_{s} = \mu_{i} * q_{ek} * C_{E} * C_{t}$$

dove:

q_s carico da neve

 μ_i coefficiente di forma

C_E coefficiente di esposizione

Ct coefficiente termico

Società di Progetto **Brebenii SpA**

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	68 di 162

Risulta:

Zona geografica	Zona	1	
Coefficiente di esposizione al vento	Ce =	0.90	
Valore caratteristico carico al suolo	qsk =	1.50	kN/m2
Angolo di inclinazione profilo	α =	0.00	0
Coefficienti di forma	μ1 =	0.80	
Coefficiente termico	Ct =	1.00	
Carico uniformemente distribuito	q2k =	0.22	kN/m
Azione della neve	Pneve =	0.65	kN
Momento trasversale neve	Mtrasv,neve =	0.00	kNm

9.1.7 Azioni sismiche

L'azione sismica dovuta alla struttura in elevazione si ottiene mediante la relazione:

 $F_h = S_d * W / g$

Dove:

W = peso della struttura in elevazione

Mentre l'azione sismica dovuta all'inerzia della fondazione si ottiene mediante la relazione:

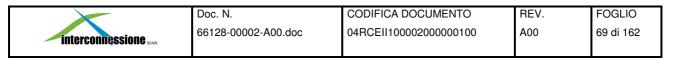
 $F_h = k_h * W / g$

Dove:

W = peso del plinto di fondazione

La forza orizzontale ottenuta dall'analisi, distribuita sull'altezza della struttura, segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.

Con riferimento ai valori determinati al paragrafo 5.1, l'azione orizzontale dovuta al sisma risulta largamente inferiore all'azione dovuta al vento e pertanto non dimensionante.


9.2 Sollecitazioni e verifiche delle strutture di fondazione

Si riporta l'analisi del plinto di fondazione.

9.2.1 Geometria della fondazione

Per la geometria della fondazione, si rimanda agli elaborati grafici di pertinenza.

Società di Progetto **Brebenii SpA**

9.2.2 Combinazioni di carico

Per le combinazioni di carico si rimanda al paragrafo 6.2.2.

9.2.3 Sollecitazioni sugli elementi strutturali

Nelle tabelle successive vengono riportati, per ciascuna delle combinazioni di carico descritte, i valori assunti dalle componenti di sollecitazione, calcolati secondo il procedimento descritto nel paragrafo "Criteri di calcolo".

Azioni risultanti a spiccato montante

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	10.43	0.00	23.53	75.92	3.13	7.06
SLU - STR (neve)	10.43	0.00	14.12	45.55	3.13	4.24
SLU - GEO (vento)	8.03	0.00	20.40	65.79	2.41	6.12
SLU - GEO (neve)	8.03	0.00	12.24	39.48	2.41	3.67
SLE - RARA	8.03	0.00	15.69	50.61	2.41	4.71
SLE - FREQUENTE	8.03	0.00	3.14	10.12	2.41	0.94
SLE - QUASI PERM.	8.03	0.00	0.00	0.00	2.41	0.00

Azioni risultanti a spiccato baggiolo estradossale di raccordo

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	42.02	13.35	23.53	104.16	10.22	7.06
SLU - STR (neve)	42.02	9.83	14.12	62.49	8.12	4.24
SLU - GEO (vento)	32.33	11.12	20.40	90.27	8.38	6.12
SLU - GEO (neve)	32.33	8.08	12.24	54.16	6.55	3.67
SLE - RARA	32.33	9.37	15.69	69.44	7.32	4.71
SLE - FREQUENTE	32.33	4.68	3.14	13.89	4.52	0.94
SLE - QUASI PERM.	32.33	3.51	0.00	0.00	3.81	0.00

Azioni risultanti ad intradosso fondazione

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	369.03	22.44	23.53	118.28	20.01	7.06
SLU - STR (neve)	369.51	13.46	14.12	70.97	13.26	4.24
SLU - GEO (vento)	283.91	19.45	20.40	102.51	17.04	6.12
SLU - GEO (neve)	284.34	11.67	12.24	61.50	11.18	3.67
SLE - RARA	283.82	14.96	15.69	78.85	13.66	4.71 tà di Progetto
SLE - FREQUENTE	283.49	2.99	3.14	15.77	4.66 Bre	bemi SpA
SLE - QUASI PERM.	283.49	0.00	0.00	0.00	2.41	0.00

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	70 di 162

9.2.4 Verifiche in ambito geotecnico e di equilibrio di corpo rigido

Verifica a ribaltamento

Coefficiente γ_{g1} - Permanente favorevole

Si riportano in seguito i valori dei momenti ribaltanti in direzione trasversale e longitudinale nelle combinazioni relative alla verifica in oggetto:

0.90

16-			
Coefficiente γ_{g1} - Permanente sfavorevole	1.10		
Coefficiente γ_{Q1} - Variabile favorevole	0.00		
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50		
Direzione longitudinale:			
Momento stabilizzante fondazione	Mstab,fond =	198.66	kNm
Momento stabilizzante rinterro	Mstab,rint =	186.99	kNm
Momento stabilizzante segnaletica	Mstab,segn =	11.24	kNm
Momento stabilizzante di progetto	MRd =	357.20	kNm
Momento instabilizzante vento	Minstab,vnt =	80.42	kNm
Momento instabilizzante di progetto	MRd =	120.63	kNm
	FSrib,long =	2.96	
Direzione trasversale:			
Momento stabilizzante fondazione	Mstab,fond =	170.28	kNm
Momento stabilizzante rinterro	Mstab,rint =	160.28	kNm
Momento stabilizzante spinte (cautelativamente)	Minstab,vnt =	9.63	kNm
Momento stabilizzante di progetto	Mrd =	306.17	kNm
Momento instabilizzante neve	Minstab,neve =	0.00	
Momento instabilizzante spinte	Minstab,vnt =	11.25	kNm

Le verifiche risultano soddisfatte

Momento instabilizzante di progetto

Verifica a scorrimento del piano di posa

Società di Progetto

16.88

18.14

kNm

Msd =

FSrib,trasv =

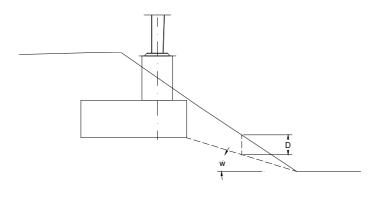
Poiché, nel caso in oggetto, le sollecitazioni di scorrimento sul piano di posa sono duvuti agli reffetti delle azioni taglianti agenti nelle due direzioni principali, abbinate alle sollecitazioni di momento torcente, la verifica di scorrimento viene conservativamente condotta in termini tensionali anziché in termini di sollecitazioni globali.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione som	66128-00002-A00.doc	04RCEII100002000000100	A00	71 di 162

Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

Coefficiente γ_{g1} - Permanente favorevole		1.00		
Coefficiente γ_{g1} - Permanente sfavorevole		1.30		
Coefficiente γ _{Q1} - Variabile favorevole		0.00		
Coefficiente γ_{Q1} - Variabile sfavorevole		1.50		
Sollecitazioni di progetto:				
Sforzo normale totale	N' =	283.49	kN	
Momento in direzione trasversale	Mt' =	29.48	kNm	
Taglio in direzione trasversale	Tt' =	22.44	kN	
Momento in direzione longitudinale	MI' =	120.63	kNm	
Taglio in direzione longitudinale	TI' =	23.53	kN	
Risulta pertanto:				
Azione totale di taglio in fondazione		Vris =	32.52	kN
Tensione tangenziale dovuta al taglio		τ(V) =	4.84	kN
Tensione tangenziale (massima) dovuta al moment	to torcente	τ,max(T) =	1.99	kN/mq
Tensione tangenziale totale		τ,tot =	6.83	kN/mq
Sforzo normale unitario di progetto		σ=	42.19	kN/mq

Le verifiche risultano soddisfatte


Verifica per carico limite dell'insieme fondazione-terreno

Si riportano in seguito le verifiche per carico limite dell'insieme fondazione-terreno.

Nel valutare il contributo alla capacità portante, si considera una (eventuale) inclinazione w del terreno rispetto all'orizzontale determinata dalla retta congiungente tra spigolo del plinto lato valle e piede del rilevato. La quota D di affondamento rispetto al piano campagna viene prudenzialmente assunta pari all'altezza media del cuneo di risprimento sviluppantesi lungo lo sviluppo planimemerico dell'(eventuale) rilevato e delimitato inferiormente dalla suddetta retta.

FS,scorr

4.33

Società di Progetto **Brebemi SpA**

IIItoi ooliiligoolollo saat					
Si esegue la verifica conformemente all'	appoccio 2 del	D.M. 14 gennaio	2008:		
Coefficiente γ _{g1} - Permanente fa	avorevole		1.00		
Coefficiente γ _{g1} - Permanente s	favorevole		1.30		
Coefficiente γ_{Q1} - Variabile favorevole			0.00		
Coefficiente γ _{Q1} - Variabile sfavorevole			1.50		
Eccentricità direzione longitudinale Eccentricità direzione trasversale			e,L' = e,B' =	0.43 0.10	m
Eccentricità direzione trasversale			е,ь =	0.10	m
Dimensioni efficaci fondazione					
Dimensione trasversale efficace			B' =	2.19	m
Dimensione longitudinale efficace			L' =	1.95	m
Dim. minore della fondazione efficace e	quivalente		B' =	1.95	m
Dim. maggiore della fondazione efficace	e equivalente		L' =	2.19	m
Pressione media sul terreno			q =	86.27	kPa
Affondamento da piano campagna			D =	1.83	m
Caratteristiche del terreno di fondazi	one				
Peso specifico totale del terreno di fond	azione		γt =	20.00	kN/m ³
Profondità della falda da p.c.			zf =	50.00	m
Distanza quota di falda - piano di impos	ta fondazione		zw =	48.17	m
Peso specifico efficace base fondazione	e В		γ'cB =	20.00	kN/m ³
Peso specifico efficace base fondazione	e L		γ'cL =	20.00	kN/m ³
Angolo di attrito del terreno di fondazion	ne		φ' =	35.00	0
Inclinaz. terreno risp. orizzontale (dir tra	sv)		ωB' =	0.00	0
Inclinaz. terreno risp. orizzontale (dir lor			ωL' =	0.00	0
Peso specifico del terreno latistante la f	ondazione			20.00	kN/m³
Y Pressione verticale efficace a quota imp	oosta fondazion	е	q'0 =	36.60	kPa
Fattori di capacità portante					
			Nγ =	33.92	
			Nq =	33.30	
			Nc =	68.16	
Coefficienti di inclinazione del carico					
			$i\gamma$,B'- =	0.75 Socie	età di Progetto
			iq,B' =	0.82	bemi SpA
			iγ,L'=	0.74	XIV.
			iq,L' =	0.81	X

CODIFICA DOCUMENTO

04RCEII100002000000100

REV.

A00

FOGLIO

72 di 162

Doc. N.

interconnessione s.a.e.

Coefficienti di forma

66128-00002-A00.doc

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione .c.a.	66128-00002-A00.doc	04RCEII100002000000100	A00	73 di 162
		sγ,B' =	0.6	4
		sq,B' =	1.4	2
		sγ,L' =	0.50	6
		sq,L' =	1.5	2
Coefficienti di affondamen	to			
		$d\gamma$,B' =	1.00)
		dq,B' =	1.2	4
		dγ, L' =	1.00)
		dq,L' =	1.2	1
Coefficienti per inclinazion	e terreno			
		$g\gamma,B' = gq,B'$	1.00	0
		$g\gamma,L' = gq,L'$	1.00	0
Capacità portante limite di	base			

$$\begin{array}{ll} q_{limgB'} \\ q_{limgL'} \end{array} \hspace{2cm} = \begin{array}{ll} \frac{1/2 \times g'_{cB'} \times B' \times N_g \times s_{gB'} \times g'_{gB'} \times g'_{gB'} \times g'_{gB'} \times g'_{gB'} \times g'_{gL'} \times L' \times N_g \times s_{gL'} \times g'_{gL'} \times$$

357.42 kPa q_{limyB} 272.75 kPa $q_{lim\gamma L}$

Capacità portante limite per sovraccarico laterale

$$\begin{array}{ll} \textbf{q}_{\text{limq B'}} \\ \textbf{q}_{\text{limq L'}} \end{array} \hspace{2cm} = \begin{array}{ll} \textbf{q}_{0} \times \textbf{N}_{q} \times \textbf{s}_{qB'} \times \textbf{d}_{qB'} \times \textbf{i}_{qB'} \times \textbf{g}_{qB'} \times \textbf{g}_{qB'}$$

1748.21 kPa q_{limqB} 1819.33 kPa $q_{limqL^{,}}$

Nella valutazione del termine di capacità portante q_{limy} viene assunto q_{limyB'}o q_{limyL'} in base al valore calcolato di s_{γ} ; si assumerà l'espressione per la quale risulta $s_{\gamma} > 0.6$.

Nella valutazione del termine di capacità portante q_{limq} tra $q_{limqB'}$ e $q_{limqL'}$ viene scelto quello minore.

	q _{limy} q _{limq}	357.42 kPa 1748.21 _{kPa}
Capacità portante a rottura γ _R minimo capacità portante	\mathbf{q}_{lim}	2105.63 kPa 2.30
Capacità portante di design Pressione media sollecitante di design	q _{res_d} q _{soll_d}	Società di Progetto 915 :49: berkP3pA 86.27 kPa

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione some	66128-00002-A00.doc	04RCEII100002000000100	A00	74 di 162

FS capacità portante 10.61

Le verifiche risultano soddisfatte

APPROVATIO BOP

Società di Progetto Breberni SpA

10. MONOPALO ALLA SEZIONE A 21B

10.1 Analisi della struttura

Il monopalo oggetto di questo paragrafo è situato alla progressiva 360.70 e corrisponde alla sezione A 21b.

10.1.1 Geometria della struttura

Si riportano le geometrie dei diversi elementi della struttura:

Altezza testata fondazione Larghezza testata in direz. longitudinale Larghezza testata in direz. trasversale Eccentricità testata in direzione trasversale		ersale	Ht = Bt = Lt = e,trasv =		1.200 0.900 0.900 0.300
Altezza magrone di pulizia Altezza zattera fondazione Larghezza zattera in direz. longitudinale Larghezza zattera in direz. trasversale			Hz0 = Hz = Bz = Lz =		0.800 0.800 2.800 2.400
Larghezza cartello Altezza cartello Spessore cartello			D1 = D2 = s,cartello :	=	3.000 2.750 0.005
Piedritto	lato1 lato2 spessore	I1,piedritto = I1,piedritto = I1,piedritto =	0.220 0.220 0.006	m m m	
Travata	lato1 lato2 spessore	I1,travata = I2,travata = s,travata =	0.150 0.200 0.006	m m m	
Dima	lato1 lato2 spessore	I1,dima = I2,dima = s,dima =	0.500 0.500 0.020	m m m	
Traverse	numero diametro spessore	n,traverse = ø,traverse = s,traverse =	5 0.090 0.004	m m	

Società di Progetto **Brebenii SpA**

m m m m

m m m m

10.1.2 Carichi permanenti

Si riportano i pesi permanenti dei diversi elementi della struttura:

Per il peso proprio struttura si è fatto riferimento alla Tabella 3.1.I delle NTC2008. In particolare per l'acciaio è riportato un peso per unita di volume pari a 78.50 kN/m³ e per l'alluminio è riportato un peso per unita di volume pari a 27.00 kN/m³.

Peso proprio fondazione

Peso specifico calcestruzzo armato	γcls =	25.00	kN/m3
Peso prioprio testata	Ptest =	24.30	kN
Peso proprio zattera	Pzatt =	235.20	kN
Peso totale fondazione	Pt,fond =	259.50	kN
Momento trasversale fondazione	Mtrasv,fond =	7.29	kNm

Peso proprio segnaletica metallica

Peso specifico acciaio Peso proprio traverse Peso proprio travata Peso proprio piedritto Peso proprio dima Peso proprio cartello Peso totale segnaletica metallica Eccentricità limite cartello, travata e traverse Momento trasversale segnaletica	γacciaio = Ptraverse = Ptravata = Ppiedritto = Pdima = Pcartello = Pt,segn = elim=	78.50 1.22 0.99 1.46 0.79 3.24 7.69 0.00 2.31	kN/m3 kN kN kN kN kN kN kN kN
Momento trasversale segnaletica Sovraccarico del terreno Si considera il seguente sovraccarico dovuto al ter	Mtrasv,segn =	2.31	kNm

Sovraccarico del terreno

Peso specifico terreno	γt =	20.00	kN/m3
Altezza media rinterro	hmedia =	0.52	m
Eccentricità rinterro		0.00	m
Peso totale rinterro	Pt,rint =	61.46	kn
Momento trasversale rinterro	Mtrasv,rint =	0.00	kNm

10.1.3 Spinta del rilevato

Si considera l'azione della spinta delle terre sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Angolo di attrito interno del terreno 35.00 ø'k = Tangente angolo di attrito interno 0.70 tanø'k =

Società di Progetto Brebemi SpA

interconnessione scan	Doc. N. 66128-00002-A00.doc	CODIFICA DOCUMEN 04RCEII10000200000	_	REV. A00	FOGLIO 77 di 162
Coefficiente di spinta attiva Coefficiente moltiplicativo spi	ka nta rilevato	1 =	0.27 1.00		
Spinta totale rilevato Momento trasversale rilevato	Sri Mtras	_	17.17 21.35	kN kNm	

10.1.4 Spinta dovuta ai sovraccarichi variabili sul rilevato

Si considera l'azione di spinta dovuta ai sovraccarichi variabili sul rilevato sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Carico accidentale rilevato	qaccid =	20.00	kN/m2
Spinta accidentale rilevato totale	Sacc =	14.96	kN
Momento accidentale trasversale	Mtrasv,acc =	21.72	kNm

10.1.5 Azioni da vento

Il D.M. del 14 Gennaio 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo APPROVATO BOP stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fa riferimento al vento nella sola direzione parallela all'asse stradale.

La pressione del vento è data dall'espressione:

$$p = q_b * c_e * c_p * c_d$$

dove:

pressione cinetica di riferimento q_b

coefficiente di esposizione c_{e}

coefficiente di forma (o coefficiente aerodinamico) C_p

coefficiente dinamico C_{d}

La pressione cinetica di riferimento è data dall'espressione:

$$q_b = 0.5 * \rho * V_b^2$$

dove ρ è la densità dell'aria e vale 1,25 kg/m³.

Il coefficiente di esposizione dipende dall'altezza z dal piano di campagna (rilevato compreso, se presente) del punto considerato, dalla topografia e dalla categoria di esposizione.

Risulta:

Zona geografica	I		Società di Progetto
	V _{b,0} =	25.00	mÆrebemi SpA
	a ₀ =	1000.00	m /
	k _a =	0.010	1/s

	Doc. N.	CODIFICA DOCUME	ENTO	REV.	FOGLIO
interconnessione SAR	66128-00002-A00.doc	04RCEII1000020000	000100	A00	78 di 162
		<u>.</u>		•	•
Categoria di esposizione del	sito	II			
		$k_r =$	0.19		
		$z_0 =$	0.05	m	
		z _{min} =	4.00	m	
D 22 1 11 2			4.0=		3
Densità dell'aria		ro =	1.25	kg/m	١
Altitudine slm dove sorge l'op	oera	as =	150.00	m	
Velocità di riferimento		$v_b =$	25.00	m/se	С
Pressione cinetica di riferime	ento	qb =	390.63	N/m	2
Altezza dal piano di campagi	na	z =	10.00	m	
Coefficiente topografico		ct =	1.00		
Coefficiente di esposizione		$c_e(z)max =$	2.35		
Coefficiente dinamico		cd =	1.00		
Coeff. di forma per pressione normale sui pannelli		c _p =	1.80		
Coeff. di forma per pressione	e normale sul montante	c _{px} =	2.15		
Pressione del vento pannelli		Pvnt1 =	1.65		
Pressione del vento montante		Pvnt2 =	1.98		

Si assume

Pressione normale esercitata dal vento sui pannelli: $p_{max} = 1.65 \text{ kPa}$ Pressione normale esercitata dal vento sul montante: $p_{max} = 1.98 \text{ kPa}$

La pressione di calcolo viene applicata come pressione uniforme rispettivamente sulle superfici di esposizione identificate dalla struttura orizzontale e verticale.

Pertanto:

A 1	- 1	40.05	
Azione esercitata sul cartello	FI,vnt1 =	13.65	kN
Azione esercitata sul piedritto	FI,vnt2 =	0.93	kN
Azione totale del vento	FI,vnt =	14.58	kN
Distanza estradosso testata/base cartello	Hc =	2.15	m
Momento longitudinale vento	Mlong,vnt =	87.01	kNm
Momento torcente	Mtorc,vnt =	4.37	kNm

10.1.6 Azioni da neve

La pressione della neve è data dall'espressione:

$$q_{\text{s}} = \mu_{\text{i}} * q_{\text{ek}} * C_{\text{E}} * C_{\text{t}}$$

dove:

q_s carico da neve

 μ_i coefficiente di forma

C_E coefficiente di esposizione

Ct coefficiente termico

Società di Progetto Brebenni SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione sam	66128-00002-A00.doc	04RCEII100002000000100	A00	79 di 162

Risulta:

Zona geografica	Zona	I	
Coefficiente di esposizione al vento	Ce =	0.90	
Valore caratteristico carico al suolo	qsk =	1.50	kN/m2
Angolo di inclinazione profilo	α =	0.00	0
Coefficienti di forma	μ1 =	0.80	
Coefficiente termico	Ct =	1.00	
Carico uniformemente distribuito	q2k =	0.22	kN/m
Azione della neve	Pneve =	0.65	kN
Momento trasversale neve	Mtrasv,neve =	0.00	kNm

10.1.7 Azioni sismiche

L'azione sismica dovuta alla struttura in elevazione si ottiene mediante la relazione:

 $F_h = S_d * W / g$

Dove:

W = peso della struttura in elevazione

Mentre l'azione sismica dovuta all'inerzia della fondazione si ottiene mediante la relazione:

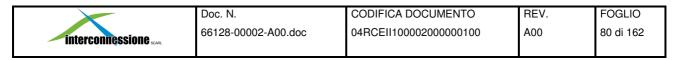
 $F_h = k_h * W / g$

Dove:

W = peso del plinto di fondazione

La forza orizzontale ottenuta dall'analisi, distribuita sull'altezza della struttura, segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.

Con riferimento ai valori determinati al paragrafo 5.1, l'azione orizzontale dovuta al sisma risulta largamente inferiore all'azione dovuta al vento e pertanto non dimensionante.


10.2 Sollecitazioni e verifiche delle strutture di fondazione

Si riporta l'analisi del plinto di fondazione.

10.2.1 Geometria della fondazione

Per la geometria della fondazione, si rimanda agli elaborati grafici di pertinenza.

Società di Progetto **Brebenii SpA**

10.2.2 Combinazioni di carico

Per le combinazioni di carico si rimanda al paragrafo 6.2.2.

10.2.3 Sollecitazioni sugli elementi strutturali

Nelle tabelle successive vengono riportati, per ciascuna delle combinazioni di carico descritte, i valori assunti dalle componenti di sollecitazione, calcolati secondo il procedimento descritto nel paragrafo "Criteri di calcolo".

Azioni risultanti a spiccato montante

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	10.00	0.00	21.87	73.66	3.00	6.56
SLU - STR (neve)	10.00	0.00	13.12	44.19	3.00	3.94
SLU - GEO (vento)	7.69	0.00	18.95	63.83	2.31	5.69
SLU - GEO (neve)	7.69	0.00	11.37	38.30	2.31	3.41
SLE - RARA	7.69	0.00	14.58	49.10	2.31	4.37
SLE - FREQUENTE	7.69	0.00	2.92	9.82	2.31	0.87
SLE - QUASI PERM.	7.69	0.00	0.00	0.00	2.31	0.00

Azioni risultanti a spiccato baggiolo estradossale di raccordo

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	41.59	13.35	21.87	99.90	10.09	6.56
SLU - STR (neve)	41.59	9.83	13.12	59.94	7.99	3.94
SLU - GEO (vento)	31.99	11.12	18.95	86.58	8.28	5.69
SLU - GEO (neve)	31.99	8.08	11.37	51.95	6.45	3.41
SLE - RARA	31.99	9.37	14.58	66.60	7.23	4.37
SLE - FREQUENTE	31.99	4.68	2.92	13.32	4.42	0.87
SLE - QUASI PERM.	31.99	3.51	0.00	0.00	3.71	0.00

Azioni risultanti ad intradosso fondazione

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	427.74	44.76	21.87	113.02	63.33	6.56
SLU - STR (neve)	428.23	35.78	13.12	67.81	50.30	3.94
SLU - GEO (vento)	329.08	36.62	18.95	97.95	51.89	5.69
SLU - GEO (neve)	329.50	28.84	11.37	58.77	40.60	3.41
SLE - RARA	328.98	32.13	14.58	75.35	45.38	4.37 tà di Progetto
SLE - FREQUENTE	328.66	20.16	2.92	15.07	28.00 Bre	bemii SpA
SLE - QUASI PERM.	328.66	17.17	0.00	0.00	23.65	0.00

	Doc. N.	CODIFICA DOCUMENTO	REV.
interconnessione same	66128-00002-A00.doc	04RCEII100002000000100	A00

10.2.4 Verifiche in ambito geotecnico e di equilibrio di corpo rigido

Verifica a ribaltamento

Coefficiente γ_{g1} - Permanente favorevole

Si riportano in seguito i valori dei momenti ribaltanti in direzione trasversale e longitudinale nelle combinazioni relative alla verifica in oggetto:

0.90

FOGLIO

81 di 162

•			
Coefficiente γ_{g1} - Permanente sfavorevole	1.10		
Coefficiente γ_{Q1} - Variabile favorevole	0.00		
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50		
Direzione longitudinale:			
Momento stabilizzante fondazione	Mstab,fond =	363.30	kNm
Momento stabilizzante rinterro	Mstab,rint =	86.05	kNm
Momento stabilizzante segnaletica	Mstab,segn =	10.77	kNm
Momento stabilizzante di progetto	MRd =	414.11	kNm
Momento instabilizzante vento	Minstab,vnt =	87.01	kNm
Momento instabilizzante di progetto	MRd =	130.52	kNm
	FSrib,long =	3.17	
Direzione trasversale:			
Momento stabilizzante fondazione	Mstab,fond =	311.40	kNm
Momento stabilizzante rinterro	Mstab,rint =	73.76	kNm
Momento stabilizzante spinte (cautelativamente)	Minstab,vnt =	9.23	kNm
Momento stabilizzante di progetto	Mrd =	354.95	kNm
Momento instabilizzante neve	Minstab,neve =	0.00	
Momento instabilizzante spinte	Minstab,vnt =	43.07	kNm
Momento instabilizzante di progetto	Msd =	56.06	kNm
	FSrib,trasv =	6.33	

Le verifiche risultano soddisfatte

Verifica a scorrimento del piano di posa

Poiché, nel caso in oggetto, le sollecitazioni di scorrimento sul piano di posa sono duvuti agli effetti delle azioni taglianti agenti nelle due direzioni principali, abbinate alle sollecitazioni di momento torcente la verifica di scorrimento viene conservativamente condotta in termini tensionali anziché in termini di sollecitazioni globali.

interconnessione som	Doc. N. 66128-00002-A00.doc	04RCEII1000		A00	FOGLIO 82 di 162		
Si esegue la verifica conforme	mente all'appoccio 2 de	el D.M. 14 gen	naio 2008:				
Coefficiente γ_{g1} - Perr	manente favorevole	1.00					
Coefficiente γ_{g1} - Perr	1.30						
Coefficiente γ _{Q1} - Vari	0.00						
Coefficiente γ _{Q1} - Vari	abile sfavorevole		1.50				
Sollecitazioni di progetto:							
Sforzo normale totale	N' =	328.66	kN				
Momento in direzione trasvers	Mt' =	72.81	kNm				
Taglio in direzione trasversale	Tt' =	44.76	kN				

MI' =

TI' =

130.52

21.87

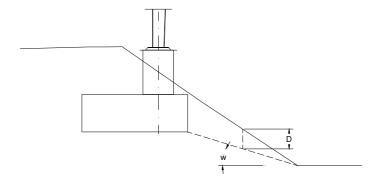
kNm

kΝ

Risulta pertanto:

Azione totale di taglio in fondazione	Vris =	49.82	kN
Tensione tangenziale dovuta al taglio	τ(V) =	7.41	kN
Tensione tangenziale (massima) dovuta al momento torcente	τ,max(T) =	1.85	kN/mq
Tensione tangenziale totale	τ,tot =	9.26	kN/mq
Sforzo normale unitario di progetto	σ =	48.91	kN/mq
	FS,scorr	3.70	> 1.10

Le verifiche risultano soddisfatte


Momento in direzione longitudinale

Taglio in direzione longitudinale

Verifica per carico limite dell'insieme fondazione-terreno

Si riportano in seguito le verifiche per carico limite dell'insieme fondazione-terreno.

Nel valutare il contributo alla capacità portante, si considera una (eventuale) inclinazione w del terreno rispetto all'orizzontale determinata dalla retta congiungente tra spigolo del plinto lato valle e piede del rilevato. La quota D di affondamento rispetto al piano campagna viene prudenzialmente assunta pari all'altezza media del cuneo di risprimento sviluppantesi lungo lo sviluppo planimemerico dell'(eventuale) rilevato e delimitato inferiormente dalla suddetta retta.

Società di Progetto

Brebenii SpA

Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

Coefficiente V _{p1} · Permanente favorevole Coefficiente V _{p1} · Permanente favorevole Coefficiente V _{p1} · Permanente favorevole Coefficiente V _{p1} · Variabile favorevole Coefficiente V _{p1} · Variabile favorevole Coefficiente V _{p1} · Variabile stavorevole Coefficiente Coeff		Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
Coefficiente V _{g1} - Permanente sfavorevole Coefficiente V _{G1} - Variabile favorevole Coefficiente V _{G1} - Variabile favorevole 1,50 Coefficiente V _{G1} - Variabile sfavorevole 1,50 Coefficienti di inclinazione longitudinale e,L' = 0,40 m e,B' = 0,22 m Coefficienti di fondazione B' = 1,96 m Coefficienti di fondazione efficace equivalente B' = 1,96 m Coefficienti di fondazione efficace equivalente B' = 1,96 m Coefficienti di fondazione efficace equivalente C' = 2,01 m Coefficienti di fondazione efficace equivalente C' = 2,01 m Coefficienti di inclinazione di fondazione V† = 2,00 kN/m³ Coefficienti di inclinazione di fondazione V† = 2,00 kN/m³ Coefficienti di inclinazione del carico Iv, B' = 0,00 kN/m³ Coefficienti di inclinazione del carico Coefficienti di inclinazione del carico Coefficienti di forma	interconnessione sam				
Coefficiente V _{g1} - Permanente sfavorevole Coefficiente V _{G1} - Variabile favorevole Coefficiente V _{G1} - Variabile favorevole 1,50 Coefficiente V _{G1} - Variabile sfavorevole 1,50 Coefficienti di inclinazione longitudinale e,L' = 0,40 m e,B' = 0,22 m Coefficienti di fondazione B' = 1,96 m Coefficienti di fondazione efficace equivalente B' = 1,96 m Coefficienti di fondazione efficace equivalente B' = 1,96 m Coefficienti di fondazione efficace equivalente C' = 2,01 m Coefficienti di fondazione efficace equivalente C' = 2,01 m Coefficienti di inclinazione di fondazione V† = 2,00 kN/m³ Coefficienti di inclinazione di fondazione V† = 2,00 kN/m³ Coefficienti di inclinazione del carico Iv, B' = 0,00 kN/m³ Coefficienti di inclinazione del carico Coefficienti di inclinazione del carico Coefficienti di forma					
Coefficiente V _{G1} - Variabile favorevole Coefficiente V _{G1} - Variabile sfavorevole 1.50 Eccentricità direzione longitudinale Eccentricità direzione trasversale Dimensioni efficaci fondazione Dimensioni efficaci fondazione Dimensioni en trasversale efficace Dimensione longitudinale efficace Dimensione longitudinale efficace Elle 1.96 m Elle 1.96 m Elle 2.01 m Elle 2	Coefficiente γ_{g1} - Pe	ermanente favorevole	1.00		
Coefficiente you - Variabile sfavorevole 1.50 Coefficienti di direzione longitudinale 2.01 M Coefficienti di direzione trasversale efficace B' = 1.96 M	Coefficiente γ _{g1} - Pe	ermanente sfavorevole	1.30		
Eccentricità direzione longitudinale contricità direzione trasversale Dimensioni efficaci fondazione Dimensione trasversale efficace Dimensione longitudinale efficace equivalente Dimensione longitudinale efficace equivalente B' = 1.96 m Dimensione della fondazione efficace equivalente L' = 2.01 m Dressione media sul terreno q = 108.85 kPa Affondamento da piano campagna D = 0.96 m Dressione media sul terreno di fondazione Perosportità della falda da p.c. Z' = 50.00 m Distanza quota di falda - piano di imposta fondazione Perosportità della falda da p.c. Z' = 50.00 m Perosportità della falda da p.c. Z' = 50.00 m Perosportità della falda piano di imposta fondazione Z' = 35.00 kN/m³ Peros specifico efficace base fondazione B y cB = 20.00 kN/m³ Perosportità della terreno di fondazione Perosportità della terreno di fondazione Perosportità della terreno di fondazione Perosportità della falda piano di imposta fondazione Perosportità della falda piano di imposta fondazione Perosportità della falda piano di imposta fondazione Q' = 35.00 kN/m³ Perosportità della terreno di fondazione Perosportità della terreno di fondazione Q' = 35.00 kN/m³ Perosportità della terreno di fondazione Perosportità della terreno di fondazione Q' = 35.00 kN/m³ Perosportità della terreno di fondazione Perosportità della terreno di fondazione Q' = 33.30 kn/m³ No = 68.16 Coefficienti di inclinazione del carico	Coefficiente γ _{Q1} - V	ariabile favorevole	0.00		
Eccentricità direzione trasversale Pimensioni efficaci fondazione Dimensioni efficace e B' = 1.96 m Dimensione trasversale efficace Dimensione longitudinale efficace Dimensione longitudinale efficace equivalente Dimensione della fondazione equivalente Dimensione efficace efficace equivalente Dimensione efficace equivalente Dimens	Coefficiente γ_{Q1} - V	ariabile sfavorevole	1.50		
Eccentricità direzione trasversale Pimensioni efficaci fondazione Dimensioni efficace e B' = 1.96 m Dimensione trasversale efficace Dimensione longitudinale efficace Dimensione longitudinale efficace equivalente Dimensione della fondazione equivalente Dimensione efficace efficace equivalente Dimensione efficace equivalente Dimens	Eccentricità direzione longit	tudinale	e.L' =	0.40	m
Dimensione trasversale efficace Dimensione longitudinale efficace Dim. minore della fondazione efficace equivalente Dim. minore della fondazione efficace equivalente Dim. maggiore della fondazione Distanza quota di fondazione Dim. differente del terreno di fondazione Distanza quota di falda - piano di imposta fondazione Distanza quota di falda - piano di imposta fondazione Distanza quota di falda - piano di imposta fondazione Distanza quota di falda - piano di imposta fondazione Distanza quota di falda - piano di imposta fondazione Distanza postalità della falda da p.c. Distanza quota di falda - piano di imposta fondazione Distanza postalità della falda da p.c. Distanza quota di falda - piano di imposta fondazione Dim. minore della fondazione Dim. minore del fondazione Dim. minore del fondazione Dim. minore del fondazione Dim. minore del f	-				
Dimensione trasversale efficace Dimensione longitudinale efficace Dim. minore della fondazione efficace equivalente Dim. minore della fondazione efficace equivalente Dim. maggiore della fondazione Distanza quota di fondazione Dim. differente del terreno di fondazione Distanza quota di falda - piano di imposta fondazione Distanza quota di falda - piano di imposta fondazione Distanza quota di falda - piano di imposta fondazione Distanza quota di falda - piano di imposta fondazione Distanza quota di falda - piano di imposta fondazione Distanza postalità della falda da p.c. Distanza quota di falda - piano di imposta fondazione Distanza postalità della falda da p.c. Distanza quota di falda - piano di imposta fondazione Dim. minore della fondazione Dim. minore del fondazione Dim. minore del fondazione Dim. minore del fondazione Dim. minore del f	Dimensioni efficaci fonda	zione			
Dim. minore della fondazione efficace equivalente Dim. maggiore della fondazione efficace equivalente Q = 108.85 kPa Affondamento da piano campagna D = 0.96 m Caratteristiche del terreno di fondazione Pesos specifico totale del terreno di fondazione Pesos specifico totale del terreno di fondazione Pesos specifico efficace base fondazione Pesos specifico efficace base fondazione B Pesos specifico efficace base fondazione L Posos specifico efficace base fondazione L Posos specifico efficace del terreno di fondazione Pesos specifico efficace base fondazione B Posos specifico efficace base fondazione L Posos specifico efficace del terreno di fondazione Posos specifico efficace base fondazione Q' = 35.00 kN/m³ Angolo di attrito del terreno di fondazione Posos specifico del terreno latistante la fondazione Posos specifico del terreno di fondazione Posos specifico del t			B' =	1.96	m
Pressione media sul terreno Q = 108.85 kPa Affondamento da piano campagna D = 0.96 m Caratteristiche del terreno di fondazione Peso specifico totale del terreno di fondazione Peso specifico totale del terreno di imposta fondazione Peso specifico efficace base fondazione B Peso specifico efficace base fondazione L Angolo di attrito del terreno di fondazione Peso specifico del terreno di imposta fondazione Peso specifico efficace base fondazione B Peso specifico efficace base fondazione L Angolo di attrito del terreno di fondazione Peso specifico del terreno di fondazione Peso specifico del terreno latistante la fondazione Q angolo di terreno di fondazione Q angolo di terreno di fondazione Q angolo di terreno di fondazione Q angolo di attrito del terreno di fondazione Q an	Dimensione longitudinale e	fficace	L' =	2.01	m
Pressione media sul terreno Q = 108.85 kPa Affondamento da piano campagna D = 0.96 m Caratteristiche del terreno di fondazione Peso specifico totale del terreno di fondazione Peso specifico totale del terreno di imposta fondazione Peso specifico efficace base fondazione B Peso specifico efficace base fondazione L Angolo di attrito del terreno di fondazione Peso specifico del terreno di imposta fondazione Peso specifico efficace base fondazione B Peso specifico efficace base fondazione L Angolo di attrito del terreno di fondazione Peso specifico del terreno di fondazione Peso specifico del terreno latistante la fondazione Q angolo di terreno di fondazione Q angolo di terreno di fondazione Q angolo di terreno di fondazione Q angolo di attrito del terreno di fondazione Q an	Dim. minore della fondazio:	ne efficace equivalente	B' =	1.96	m
Affondamento da piano campagna D = 0.96 m Caratteristiche del terreno di fondazione Peso specifico totale del terreno di fondazione Profondità della falda da p.c. Distanza quota di falda - piano di imposta fondazione Peso specifico efficace base fondazione B Peso specifico efficace base fondazione L Angolo di attrito del terreno di fondazione profondità della falda - piano di imposta fondazione Peso specifico efficace base fondazione B Peso specifico efficace base fondazione L Angolo di attrito del terreno di fondazione profondità della falda - piano di imposta fondazione preso specifico del terreno di fondazione Peso specifico del terreno risp. orizzontale (dir trasv) profondità della falda da p.c. profondità della falda p.c. profondità della falda da p.c. profondità della falda p.c. profondità della		•			
Caratteristiche del terreno di fondazione Peso specifico totale del terreno di fondazione Peso specifico totale del terreno di fondazione Perofondità della falda da p.c. Distanza quota di falda - piano di imposta fondazione Peso specifico efficace base fondazione B Peso specifico efficace base fondazione L Angolo di attrito del terreno di fondazione Peso specifico efficace base fondazione L Angolo di attrito del terreno di fondazione Peso specifico efficace base fondazione Peso specifico del terreno risp. orizzontale (dir trasv) Peso specifico del terreno risp. orizzontale (dir long) Peso specifico del terreno latistante la fondazione Peso specif	Pressione media sul terre	eno	q =	108.85	5 kPa
Peso specifico totale del terreno di fondazione Profondità della falda da p.c. Profondità della falda da p.c. Distanza quota di falda - piano di imposta fondazione Peso specifico efficace base fondazione B Peso specifico efficace base fondazione B Peso specifico efficace base fondazione L Profondità della falda da p.c. Peso specifico efficace base fondazione B Profondità della falda da p.c. Peso specifico efficace base fondazione L Profondità della falda da p.c. Profondità della p.c. Profondità d	Affondamento da piano c	ampagna	D =	0.96	m
Profondità della falda da p.c. Distanza quota di falda - piano di imposta fondazione Peso specifico efficace base fondazione B Peso specifico efficace base fondazione B Peso specifico efficace base fondazione L Angolo di attrito del terreno di fondazione Poso specifico efficace base fondazione L Angolo di attrito del terreno di fondazione Poso specifico efficace base fondazione Poso specifico efficace del terreno di fondazione Poso specifico del terreno risp. orizzontale (dir long) Poso specifico del terreno latistante la fondazione Poso specif	Caratteristiche del terreno	o di fondazione			
Distanza quota di falda - piano di imposta fondazione Zw = 49.04 m Peso specifico efficace base fondazione B Peso specifico efficace base fondazione L Angolo di attrito del terreno di fondazione nclinaz. terreno risp. orizzontale (dir trasv) nclinaz. terreno risp. orizzontale (dir long) Peso specifico del terreno latistante la fondazione Pressione verticale efficace a quota imposta fondazione Q'0 = 19.2 kPa Eattori di capacità portante Ny = 33.92 Nq = 33.30 Nc = 68.16 Coefficienti di inclinazione del carico iy,B' = 0.61 iq,B' = 0.70 Società di Proge iy,L' = 0.84 iy,L' = 0.84 iy,L' = 0.84 iq,L' = 0.84 Coefficienti di forma	Peso specifico totale del ter	rreno di fondazione	γt =	20.00) kN/m ³
Peso specifico efficace base fondazione B Peso specifico efficace base fondazione B Peso specifico efficace base fondazione L Peso specifico efficace base fondazione L Peso specifico efficace base fondazione L Peso specifico efficace base fondazione P Peso specifico del terreno di fondazione P Peso specifico del terreno risp. orizzontale (dir long) Peso specifico del terreno latistante la fondazione P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non concentrato P Peso specifico del terreno risp. O non c	Profondità della falda da p.o	C.	zf =	50.00	m
Peso specifico efficace base fondazione L Angolo di attrito del terreno di fondazione nclinaz. terreno risp. orizzontale (dir trasv) nclinaz. terreno risp. orizzontale (dir long) Peso specifico del terreno latistante la fondazione Piso speci	Distanza quota di falda - pia	ano di imposta fondazione	zw =	49.04	m
Angolo di attrito del terreno di fondazione Angolo di attrito del terreno di fondazione nclinaz. terreno risp. orizzontale (dir trasv) nclinaz. terreno risp. orizzontale (dir long) Peso specifico del terreno latistante la fondazione (Peso specifico del terreno latistante la fondazione (Peressione verticale efficace a quota imposta fondazione (Peressione verticale efficace a quota impo	Peso specifico efficace bas	e fondazione B	γ'cB =	20.00) kN/m ³
nclinaz. terreno risp. orizzontale (dir trasv) nclinaz. terreno risp. orizzontale (dir long) Peso specifico del terreno latistante la fondazione Pressione verticale efficace a quota imposta fondazione Pressione verticale efficace a quota imposta fondazione Ny = 33.92 Nq = 33.30 Nc = 68.16 Coefficienti di inclinazione del carico iv, B' = 0.61 iq, B' = 0.70 società di Proge iy, L' = 0.79 iq, L' = 0.84 Coefficienti di forma	Peso specifico efficace bas	e fondazione L	γ'cL =	20.00) kN/m ³
nclinaz. terreno risp. orizzontale (dir long) Peso specifico del terreno latistante la fondazione Pressione verticale efficace a quota imposta fondazione Pressione verticale efficace a quota imposta fondazione Ny = 19.2 kPa Ny = 33.92 Nq = 33.30 Nc = 68.16 Coefficienti di inclinazione del carico iγ,B' = 0.61 iq,B' = 0.70 Società di Proge iγ,L' = 0.84 Coefficienti di forma	Angolo di attrito del terreno	di fondazione	φ' =	35.00	
Peso specifico del terreno latistante la fondazione 20.00 kN/m³ Pressione verticale efficace a quota imposta fondazione q'0 = 19.2 kPa Pattori di capacità portante Ny = 33.92 Nq = 33.30 Nc = 68.16 Coefficienti di inclinazione del carico iy,B' = 0.61 iq,B' = 0.70 società di Proge iy,L' = 0.79 iq,L' = 0.84 Coefficienti di forma	Inclinaz. terreno risp. orizzo	ontale (dir trasv)	ωB' =	16.00	°
Pressione verticale efficace a quota imposta fondazione q'0 = 19.2 kPa Fattori di capacità portante Ny = 33.92 Nq = 33.30 Nc = 68.16 Coefficienti di inclinazione del carico iy,B' = 0.61 iq,B' = 0.70 Società di Proge iy,L' = 0.79 Brebenii SPA Coefficienti di forma	Inclinaz. terreno risp. orizzo	ontale (dir long)	ωL' =	0.00) °
Pressione verticale efficace a quota imposta fondazione q'0 = 19.2 kPa Ny = 33.92 Nq = 33.30 Nc = 68.16 Coefficienti di inclinazione del carico iy,B' = 0.61 iq,B' = 0.70 società di Proge iy,L' = 0.84 Coefficienti di forma		atistante la fondazione		20.00	kN/m³
$N\gamma = 33.92$ $Nq = 33.30$ $Nc = 68.16$ $i\gamma, B' = 0.61$ $iq, B' = 0.70$ $iq, B' = 0.70$ $i\gamma, L' = 0.79$ $iq, L' = 0.84$ Coefficienti di forma		e a quota imposta fondazione	e q'0 =	19.2	kPa
$N\gamma = 33.92$ $Nq = 33.30$ $Nc = 68.16$ $i\gamma, B' = 0.61$ $iq, B' = 0.70$ $iq, B' = 0.70$ $i\gamma, L' = 0.79$ $iq, L' = 0.84$ Coefficienti di forma	Fattori di capacità portan	te			
Nq = 33.30 Nc = 68.16 Coefficienti di inclinazione del carico $i\gamma,B'= 0.61 \\ iq,B'= 0.70 \\ società di Proge i \gamma,L'= 0.79 \\ iq,L'= 0.84$ Coefficienti di forma	capacita poitair		Ny =	33.92	2
Coefficienti di inclinazione del carico $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			·	33.30)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Nc =	68.16	6
iq,B' = 0.70 Società di Proge iγ,L'= 0.79 Brebemi SpA iq,L' = 0.84	Coefficienti di inclinazion	e del carico			
Coefficienti di forma			iγ,Β'· =	0.61	
Coefficienti di forma			iq,B' =	0.70	età di Progett
Coefficienti di forma			iγ,L'=	0.79	ebemi SnA
	Coofficienti di forma		iq,L' =	0.84	
1	Coemicienti di forma		sγ,B' =	0.70	

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII100002000000100	A00	84 di 162
			•	
		sq,B' =	1.3	89
		sγ,L' =	0.4	17
		sq,L' =	1.5	50
Coefficienti di affondament	10			
		$d\gamma,B'=$	1.0	00
		dq,B' =	1.1	2
		dγ, L' =	1.0	00
		dq,L' =	1.1	2
Coefficienti per inclinazion	e terreno			
		$g\gamma,B' = gq,B$	' 0.4	ŀ6
		$g\gamma,L' = gq,L'$	1.0	00

Capacità portante limite di base

$$\begin{array}{ll} q_{\text{limgB'}} \\ q_{\text{limgL'}} \end{array} \hspace{2cm} = \begin{array}{ll} \frac{1/2 \times g'_{cB'} \times B' \times N_g \times s_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gL'} \times L' \times N_g \times s_{gL'} \times g_{gL'} \times$$

 $\mathbf{q}_{\text{limyB}'}$ 129.85 kPa $\mathbf{q}_{\text{limyL}'}$ 250.31 kPa

Capacità portante limite per sovraccarico laterale

Q limq B'	=	$q_0' \times N_q \times s_{qB'} \times d_{qB'} \times i_{qB'} \times g_{qB'}$
Q _{limq} L'	=	q_0 '× N_q × $s_{qL'}$ × $d_{qL'}$ × $i_{qL'}$ × $g_{qL'}$

q_{limqB'} 324.85 kPa **q**_{limqL'} 906.17 kPa

Nella valutazione del termine di capacità portante $q_{lim\gamma}$ viene assunto $q_{lim\gamma E'}$ o $q_{lim\gamma E'}$ in base al valore calcolato di s_{γ} ; si assumerà l'espressione per la quale risulta $s_{\gamma} > 0.6$.

Nella valutazione del termine di capacità portante q_{limq} tra $q_{limqB'}$ e $q_{limqL'}$ viene scelto quello minore.

	q _{limy} q _{limg}	129.85 324.85	kPa kPa
Consoità portente a vettura	·	454.70	kPa
Capacità portante a rottura γ _R minimo capacità portante	q _{lim}	2.30	кга
Capacità portante di design	q _{res_d}	197 ₅ 70 _{eta}	à de Pagetto
Pressione media sollecitante di design	\mathbf{q}_{soll_d}	108 /85 :b	enkPapA

FS capacità portante

Doc. N. 66128-00002-A00.doc CODIFICA DOCUMENTO 04RCEII100002000000100 REV. A00 FOGLIO 85 di 162

Le verifiche risultano soddisfatte

APPROVATO BOP

Società di Progetto Breberni SpA

11. MONOPALO ALLA SEZIONE A 40

11.1 Analisi della struttura

Il monopalo oggetto di questo paragrafo è situato alla progressiva 699.81 e corrisponde alla sezione A 40.

11.1.1 Geometria della struttura

Si riportano le geometrie dei diversi elementi della struttura:

Altezza testata fondazione Larghezza testata in direz. longitudinale Larghezza testata in direz. trasversale Eccentricità testata in direzione trasversale		Ht = Bt = Lt = e,trasv =		1.600 0.900 0.900 0.300	
Altezza magrone di pulizia Altezza zattera fondazione Larghezza zattera in direz. longitudinale Larghezza zattera in direz. trasversale		Hz0 = Hz = Bz = Lz =		0.100 0.600 2.800 2.400	
Larghezza cartello Altezza cartello Spessore cartello		D1 = D2 = s,cartello	O =	3.000 2.750 0.005	
Piedritto	lato1 lato2 spessore	I1,piedritto = I1,piedritto = I1,piedritto =	0.220 0.220 0.006	m m m	
Travata	lato1 lato2 spessore	I1,travata = I2,travata = s,travata =	0.150 0.200 0.006	m m m	
Dima	lato1 lato2 spessore	1,dima	0.500 0.500 0.020	m m m	
Traverse	numero diametro spessore	n,traverse = ø,traverse = s,traverse =	5 0.090 0.004	m m	

Società di Progetto **Brebenii SpA**

m m m m

m m m m

11.1.2 Carichi permanenti

Si riportano i pesi permanenti dei diversi elementi della struttura:

Per il peso proprio struttura si è fatto riferimento alla Tabella 3.1.I delle NTC2008. In particolare per l'acciaio è riportato un peso per unita di volume pari a 78.50 kN/m³ e per l'alluminio è riportato un peso per unita di volume pari a 27.00 kN/m³.

Peso proprio fondazione

Peso specifico calcestruzzo armato	γcls =	25.00	kN/m3
Peso prioprio testata	Ptest =	32.40	kN
Peso proprio zattera	Pzatt =	117.60	kN
Peso totale fondazione	Pt,fond =	150.00	kN
Momento trasversale fondazione	Mtrasv,fond =	9.72	kNm

Peso proprio segnaletica metallica

Peso specifico acciaio	vacciaio =	78.50	kN/m3
Peso proprio traverse	Ptraverse =	1.22	kN
Peso proprio travata	Ptravata =	0.99	kN
Peso proprio piedritto	Ppiedritto =	1.03	kN
Peso proprio dima	Pdima =	0.79	kN
Peso proprio cartello	Pcartello =	3.24	kN
Peso totale segnaletica metallica	Pt,segn =	7.26	kN
Eccentricità limite cartello, travata e traverse	elim=	0.40	m
Momento trasversale segnaletica	Mtrasv,segn =	4.36	kNm
Sovraccarico del terreno Si considera il seguente sovraccarico dovuto al te	erreno:		APPROVI
ŭ			

Sovraccarico del terreno

Peso specifico terreno	γt =	20.00	kN/m3
Altezza media rinterro	hmedia =	0.30	m
Eccentricità rinterro		0.00	m
Peso totale rinterro	Pt,rint =	35.46	kn
Momento trasversale rinterro	Mtrasv,rint =	0.00	kNm

11.1.3 Spinta del rilevato

Si considera l'azione della spinta delle terre sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Angolo di attrito interno del terreno 35.00 ø'k = Tangente angolo di attrito interno 0.70 tanø'k =

Società di Progetto Brebemi SpA

interconnessione scar.	Doc. N. 66128-00002-A00.doc	CODIFICA DOCUMENTO 04RCEII10000200000001		FOGLIO 88 di 162
Coefficiente di spinta attiva Coefficiente moltiplicativo spi			27 16	
Spinta totale rilevato Momento trasversale rilevato			.85 kl .58 kN	

11.1.4 Spinta dovuta ai sovraccarichi variabili sul rilevato

Si considera l'azione di spinta dovuta ai sovraccarichi variabili sul rilevato sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Carico accidentale rilevato	qaccid =	20.00	kN/m2
Spinta accidentale rilevato totale	Sacc =	16.91	kN
Momento accidentale trasversale	Mtrasv,acc =	15.35	kNm

11.1.5 Azioni da vento

Il D.M. del 14 Gennaio 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo APPROVATO BOP stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fa riferimento al vento nella sola direzione parallela all'asse stradale.

La pressione del vento è data dall'espressione:

$$p = q_b * c_e * c_p * c_d$$

dove:

pressione cinetica di riferimento q_b

coefficiente di esposizione c_{e}

coefficiente di forma (o coefficiente aerodinamico) C_p

coefficiente dinamico C_{d}

La pressione cinetica di riferimento è data dall'espressione:

$$q_b = 0.5 * \rho * V_b^2$$

dove ρ è la densità dell'aria e vale 1,25 kg/m³.

Il coefficiente di esposizione dipende dall'altezza z dal piano di campagna (rilevato compreso, se presente) del punto considerato, dalla topografia e dalla categoria di esposizione.

Risulta:

Zona geografica	1		Società di Progetto
	V _{b,0} =	25.00	mÆsrebemi SpA
	a ₀ =	1000.00	m
	k _a =	0.010	1/s

	Doc. N.	CODIFICA DOCUME	ENTO	REV.	FOGLIO
interconnessione same	66128-00002-A00.doc	04RCEII1000020000	04RCEII100002000000100		89 di 162
	ı	1		<u> </u>	
Categoria di esposizione del	sito	II			
		$k_r =$	0.19		
		$z_0 =$	0.05	m	
		z _{min} =	4.00	m	
Densità dell'aria		ro =	1.25	kg/m	3
Altitudine slm dove sorge l'or	pera	as =	150.00	m	
Velocità di riferimento		$V_b =$	25.00	m/se	С
Pressione cinetica di riferime	ento	qb =	390.63	N/m2	2
Altezza dal piano di campag	na	Z =	10.00	m	
Coefficiente topografico		ct =	1.00		
Coefficiente di esposizione		$c_e(z)max =$	2.35		
Coefficiente dinamico		cd =	1.00		
Coeff. di forma per pressione	e normale sui pannelli	$c_p =$	1.80		
Coeff. di forma per pressione	e normale sul montante	$c_{px} =$	2.15		
Pressione del vento pannelli		Pvnt1 =	1.65		
Pressione del vento montant	е	Pvnt2 =	1.98		

Si assume

Pressione normale esercitata dal vento sui pannelli: $p_{max} = 1.65 \text{ kPa}$ Pressione normale esercitata dal vento sul montante: $p_{max} = 1.98 \text{ kPa}$

La pressione di calcolo viene applicata come pressione uniforme rispettivamente sulle superfici di esposizione identificate dalla struttura orizzontale e verticale.

Pertanto:

Azione esercitata sul cartello	Fl,vnt1 =	13.65	kN
Azione esercitata sul piedritto	Fl,vnt2 =	0.48	kN
Azione totale del vento	FI,vnt =	14.12	kN
Distanza estradosso testata/base cartello	Hc =	1.10	m
Momento longitudinale vento	Mlong,vnt =	66.52	kNm
Momento torcente	Mtorc,vnt =	9.70	kNm

11.1.6 Azioni da neve

La pressione della neve è data dall'espressione:

$$q_{\text{s}} = \mu_{\text{i}} * q_{\text{ek}} * C_{\text{E}} * C_{\text{t}}$$

dove:

q_s carico da neve

 μ_i coefficiente di forma

C_E coefficiente di esposizione

Ct coefficiente termico

Società di Progetto **Brebenii SpA**

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione sam	66128-00002-A00.doc	04RCEII100002000000100	A00	90 di 162

Risulta:

Zona geografica	Zona	1	
Coefficiente di esposizione al vento	Ce =	0.90	
Valore caratteristico carico al suolo	qsk =	1.50	kN/m2
Angolo di inclinazione profilo	α =	0.00	0
Coefficienti di forma	μ1 =	0.80	
Coefficiente termico	Ct =	1.00	
Carico uniformemente distribuito	q2k =	0.22	kN/m
Azione della neve	Pneve =	0.65	kN
Momento trasversale neve	Mtrasv,neve =	0.00	kNm

11.1.7 Azioni sismiche

L'azione sismica dovuta alla struttura in elevazione si ottiene mediante la relazione:

 $F_h = S_d * W / g$

Dove:

W = peso della struttura in elevazione

Mentre l'azione sismica dovuta all'inerzia della fondazione si ottiene mediante la relazione:

 $F_h = k_h * W / g$

Dove:

W = peso del plinto di fondazione

La forza orizzontale ottenuta dall'analisi, distribuita sull'altezza della struttura, segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.

Con riferimento ai valori determinati al paragrafo 5.1, l'azione orizzontale dovuta al sisma risulta largamente inferiore all'azione dovuta al vento e pertanto non dimensionante.

11.2 Sollecitazioni e verifiche delle strutture di fondazione

Si riporta l'analisi del plinto di fondazione.

11.2.1 Geometria della fondazione

Per la geometria della fondazione, si rimanda agli elaborati grafici di pertinenza.

Società di Progetto **Brebenii SpA**

11.2.2 Combinazioni di carico

Per le combinazioni di carico si rimanda al paragrafo 6.2.2.

11.2.3 Sollecitazioni sugli elementi strutturali

Nelle tabelle successive vengono riportati, per ciascuna delle combinazioni di carico descritte, i valori assunti dalle componenti di sollecitazione, calcolati secondo il procedimento descritto nel paragrafo "Criteri di calcolo".

Azioni risultanti a spiccato montante

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	9.44	0.00	21.18	51.05	5.66	14.54
SLU - STR (neve)	9.44	0.00	12.71	30.63	5.66	8.73
SLU - GEO (vento)	7.26	0.00	18.36	44.25	4.36	12.60
SLU - GEO (neve)	7.26	0.00	11.02	26.55	4.36	7.56
SLE - RARA	7.26	0.00	14.12	34.03	4.36	9.70
SLE - FREQUENTE	7.26	0.00	2.82	6.81	4.36	1.94
SLE - QUASI PERM.	7.26	0.00	0.00	0.00	4.36	0.00

Azioni risultanti a spiccato baggiolo estradossale di raccordo

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	51.56	19.82	21.18	84.95	19.36	14.54
SLU - STR (neve)	51.56	15.14	12.71	50.97	15.61	8.73
SLU - GEO (vento)	39.66	16.39	18.36	73.62	15.80	12.60
SLU - GEO (neve)	39.66	12.33	11.02	44.17	12.56	7.56
SLE - RARA	39.66	14.05	14.12	56.63	13.93	9.70
SLE - FREQUENTE	39.66	7.80	2.82	11.33	8.94	1.94
SLE - QUASI PERM.	39.66	6.24	0.00	0.00	7.69	0.00

Azioni risultanti ad intradosso fondazione

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	251.02	91.48	21.18	97.66	69.94	14.54
SLU - STR (neve)	251.51	81.33	12.71	58.60	60.92	8.73
SLU - GEO (vento)	193.14	72.84	18.36	84.64	56.06	12.60
SLU - GEO (neve)	193.56	64.04	11.02	50.78	48.25	7.56
SLE - RARA	193.04	67.76	14.12	65.11	51.42	9.70 tà di Progetto
SLE - FREQUENTE	192.72	54.24	2.82	13.02	39.01 Bre	pemi SpA
SLE - QUASI PERM.	192.72	50.85	0.00	0.00	35.94	0.00

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	92 di 162

11.2.4 Verifiche in ambito geotecnico e di equilibrio di corpo rigido

Verifica a ribaltamento

Coefficiente γ_{g1} - Permanente favorevole

Si riportano in seguito i valori dei momenti ribaltanti in direzione trasversale e longitudinale nelle combinazioni relative alla verifica in oggetto:

0.90

16-			
Coefficiente γ_{g1} - Permanente sfavorevole	1.10		
Coefficiente γ_{Q1} - Variabile favorevole	0.00		
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50		
Direzione longitudinale:			
Momento stabilizzante fondazione	Mstab,fond =	210.00	kNm
Momento stabilizzante rinterro	Mstab,rint =	49.64	kNm
	•	10.16	kNm
Momento stabilizzante segnaletica	Mstab,segn =	242.83	
Momento stabilizzante di progetto	MRd =	242.00	kNm
Momento instabilizzante vento	Minstab,vnt =	66.52	kNm
Momento instabilizzante di progetto	MRd =	99.78	kNm
	FSrib,long =	2.43	
Direzione trasversale:			
Momento stabilizzante fondazione	Mstab,fond =	180.00	kNm
Momento stabilizzante rinterro	Mstab,rint =	42.55	kNm
Momento stabilizzante spinte (cautelativamente)	Minstab,vnt =	6.53	kNm
Momento stabilizzante di progetto	Mrd =	206.18	kNm
Momento instabilizzante neve	Minstab,neve =	0.26	
Momento instabilizzante spinte	Minstab,vnt =	46.93	kNm
Momento instabilizzante di progetto	Msd =	58.15	kNm
	FSrib,trasv =	3.55	
	1 0110,000 -		

Le verifiche risultano soddisfatte

Verifica a scorrimento del piano di posa

Poiché, nel caso in oggetto, le sollecitazioni di scorrimento sul piano di posa sono duvuti agli effetti delle azioni taglianti agenti nelle due direzioni principali, abbinate alle sollecitazioni di momento torcente la verifica di scorrimento viene conservativamente condotta in termini tensionali anziché in termini di sollecitazioni globali.

	interconnessione	Doc. N. 66128-00002-A00.doc	04RCEII1000		A00	93 di 162
Si	esegue la verifica conforme	emente all'appoccio 2 de	el D.M. 14 gen	naio 2008:		I
	Coefficiente γ _{g1} - Perr	manente favorevole		1.00		
	Coefficiente γ _{g1} - Perr	nanente sfavorevole		1.30		
Coefficiente γ_{Q1} - Variabile favorevole			0.00			
	Coefficiente γ_{Q1} - Vari	abile sfavorevole		1.50		
S	ollecitazioni di progetto:					
St	forzo normale totale		N' =	192.72	kN	
М	lomento in direzione trasvers	sale	Mt' =	82.77	kNm	
Ta	aglio in direzione trasversale	9	Tt' =	91.48	kN	
М	lomento in direzione longitud	dinale	Ml' =	99.78	kNm	

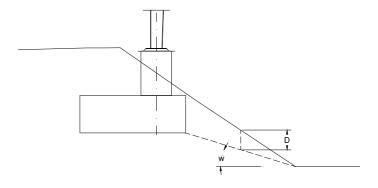
Risulta pertanto:

Azione totale di taglio in fondazione Tensione tangenziale dovuta al taglio	Vris = τ(V) =	93.90 13.97	kN kN
Tensione tangenziale (massima) dovuta al momento torcente	τ,max(T) =	4.10	kN/mq
Tensione tangenziale totale	τ,tot =	18.07	kN/mq
Sforzo normale unitario di progetto	σ=	28.68	kN/mq
	FS,scorr	1.11	> 1.10

TI' =

21.18

kΝ


Le verifiche risultano soddisfatte

Taglio in direzione longitudinale

Verifica per carico limite dell'insieme fondazione-terreno

Si riportano in seguito le verifiche per carico limite dell'insieme fondazione-terreno.

Nel valutare il contributo alla capacità portante, si considera una (eventuale) inclinazione w del terreno rispetto all'orizzontale determinata dalla retta congiungente tra spigolo del plinto lato valle e piede del rilevato. La quota D di affondamento rispetto al piano campagna viene prudenzialmente assunta pari all'altezza media del cuneo di risprimento sviluppantesi lungo lo sviluppo planimemerico dell'(eventuale) rilevato e delimitato inferiormente dalla suddetta retta.

Società di Progetto

Brebenii SpA

Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scare	66128-00002-A00.doc	04RCEII100002000000100	A00	94 di 162
		<u> </u>		
Coefficiente y _{a1} - Pe	rmanente favorevole	1.00		
- 0	rmanente sfavorevole	1.30		
Coefficiente y _{Q1} - Va		0.00		
Coefficiente γ _{Q1} - Va		1.50		
14.				
Eccentricità direzione longiti	udinale	e,L' =	0.52	m
Eccentricità direzione trasve	ersale	e,B' =	0.43	m
Dimensioni efficaci fondaz	zione			
Dimensione trasversale effic		B' =	1.54	m
Dimensione longitudinale ef		L' =	1.76	m
-				
Dim. minore della fondazion	e efficace equivalente	B' =	1.54	m
Dim. maggiore della fondazi	one efficace equivalente	L' =	1.76	m
Pressione media sul terre	no	q =	92.13	3 kPa
Affondamento da piano ca	ampagna	D =	1.00	m
Caratteristiche del terreno	di fondazione			
Peso specifico totale del ter	reno di fondazione	γt =	20.00) kN/m ³
Profondità della falda da p.c		zf =	50.00	m
Distanza quota di falda - pia	•	ZW =	49.00	m 3
Peso specifico efficace base		γ'cB =	20.00	
Peso specifico efficace base		γ'cL =	20.00	4 5
Angolo di attrito del terreno	di fondazione	φ' =	35.00	
Inclinaz. terreno risp. orizzo	ntale (dir trasv)	ωB' =	0.00	0 0
Inclinaz. terreno risp. orizzo		ωL' =	0.00) °
Daga appaifias dal tarrapa la	stiatanta la fandaziona		•	
Peso specifico del terreno la y'	distante la londazione		20.00	kN/m ³
Pressione verticale efficace	a quota imposta fondazion	e q'0 =	20	kPa
Fattori di capacità portant	e			
-		Ny =	33.92	2
		Nq =	33.30	
		Nc =	68.16	6
Coefficienti di inclinazione	e del carico			
		iγ,Β'- =	0.13	
		iq,B' =		ietà di Progetto
		iγ,L'=	0.67 _{Br}	ebemi SpA
		iq,L' =	0.75	$\forall N$
Coefficienti di forma		·		\mathcal{A}

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII100002000000100	A00	95 di 162
		av Di	0.00	
		sγ,B' =	0.93 1.13	
		sq,B' =		
		sγ,L' =	-1.31	
		sq,L' =	1.50	
Coefficienti di affondamer	nto			
		dγ,B' =	1.00	
		dq,B' =	1.17	
		dγ, L' =	1.00	
		dq,L' =	1.14	
Coefficienti per inclinazio	ne terreno			
		$g\gamma,B' = gq,B'$	1.0	0
		$g\gamma,L' = gq,L'$	1.0	0
Canacità nortanto limito d	i haca			
Capacità portante limite d	i Dase	$= \frac{1/2 \times g'_{cB'} \times B' \times N_g \times s_{gB'} \times S_{gB'}}{2}$:	

$$q_{limgB'} = \begin{cases} \frac{1/2 \times g'_{cB'} \times B' \times N_g \times s_{gB'} \times d_{gB'} \times j_{gB'} \times g_{gB'} \times d_{gB'} \times j_{gB'} \times g_{gB'} \times$$

$q_{lim\gamma B'}$	64.59	kPa
$q_{lim\gamma L'}$	-526.15	kPa

Capacità portante limite per sovraccarico laterale

$$\begin{array}{ll} \text{Capacità portante limite per sovraccarico laterale} \\ q_{\text{limq B'}} & = \begin{array}{ll} q_0\text{'} \times N_q \times s_{qB'} \times d_{qB'} \times i_{qB'} \times g_{qB'} \times g$$

226.11 kPa q_{limqB} 858.75 kPa q_{limqL},

Nella valutazione del termine di capacità portante q_{limy} viene assunto q_{limyB'}o q_{limyL'} in base al valore calcolato di s_{γ} ; si assumerà l'espressione per la quale risulta $s_{\gamma} > 0.6$.

Nella valutazione del termine di capacità portante q_{limq} tra q_{limqB'} e q_{limqL'} viene scelto quello minore.

	q _{limγ} q _{limq}	64.59 kPa 226.11 kPa
Capacità portante a rottura γ _R minimo capacità portante	q _{lim}	290.70 kPa 2.30 Società di Progetto Brebemi SpA
Capacità portante di design Pressione media sollecitante di design	q _{res_d} q _{soll_d}	126.39 kPa 92.13 kPa

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione som	66128-00002-A00.doc	04RCEII100002000000100	A00	96 di 162

FS capacità portante 1.37

Le verifiche risultano soddisfatte

APPRILIVATIO BOP

Società di Progetto Breberni SpA

12. MONOPALO ALLA SEZIONE A 56A

12.1 Analisi della struttura

Il monopalo oggetto di questo paragrafo è situato alla progressiva 1027.45 e corrisponde alla sezione A 56a.

12.1.1 Geometria della struttura

Si riportano le geometrie dei diversi elementi della struttura:


Larghezza tes	Altezza testata fondazione Larghezza testata in direz. longitudinale Larghezza testata in direz. trasversale				1.200 0.900
ŭ			Lt =		0.900
Eccentricità te	stata in direzione	trasversale	e,trasv	=	0.300
Altezza magro	ne di pulizia		Hz0 =	:	0.100
Altezza zattera	a fondazione		Hz =		0.600
Larghezza zat	tera in direz. long	itudinale	Bz =		2.800
Larghezza zat	tera in direz. trasv	/ersale	Lz =		2.400
Larghezza car	tello		D1 =		4.000
Altezza cartelle	0		D2 =		2.000
Spessore carte	ello		s,cartello	O =	0.005
Piedritto	lato1	I1,piedritto =	0.220	m	
	lato2	I1,piedritto =	0.220	m	
	spessore	I1,piedritto =	0.006	m	
Travata	lato1	l1,travata =	0.150	m	
	lato2	l2,travata =	0.200	m	
	spessore	s,travata =	0.006	m	
Dima	lato1	I1,dima =	0.500	m	
	lato2	I2,dima =	0.500	m	
	spessore	s,dima =	0.020	m	
Traverse	numero	n,traverse =	5		
	diametro	ø,traverse =	0.090	m	
	spessore	s,traverse =	0.004	m	

Società di Progetto

Breberni SpA

m m m m

m m m m

12.1.2 Carichi permanenti

Si riportano i pesi permanenti dei diversi elementi della struttura:

Per il peso proprio struttura si è fatto riferimento alla Tabella 3.1.I delle NTC2008. In particolare per l'acciaio è riportato un peso per unita di volume pari a 78.50 kN/m³ e per l'alluminio è riportato un peso per unita di volume pari a 27.00 kN/m³.

Peso proprio fondazione

Peso specifico calcestruzzo armato	γcls =	25.00	kN/m3
Peso prioprio testata	Ptest =	24.30	kN
Peso proprio zattera	Pzatt =	117.60	kN
Peso totale fondazione	Pt,fond =	141.90	kN
Momento trasversale fondazione	Mtrasv,fond =	7.29	kNm

Peso proprio segnaletica metallica

Peso specifico acciaio Peso proprio traverse Peso proprio travata Peso proprio piedritto Peso proprio dima Peso proprio cartello	γacciaio = Ptraverse = Ptravata = Ppiedritto = Pdima = Pcartello =	78.50 0.89 1.32 1.16 0.79 3.14	kN/m3 kN kN kN kN
Peso totale segnaletica metallica Eccentricità limite cartello, travata e traverse Momento trasversale segnaletica	Pt,segn = elim= Mtrasv,segn =	7.29 0.50 4.86	kN m kNm
Sovraccarico del terreno Si considera il seguente sovraccarico dovuto al ter	reno:		APPROT

Sovraccarico del terreno

Peso specifico terreno	yt =	20.00	kN/m3
Altezza media rinterro	hmedia =	0.80	m
Eccentricità rinterro		0.00	m
Peso totale rinterro	Pt,rint =	94.56	kn
Momento trasversale rinterro	Mtrasv,rint =	0.00	kNm

12.1.3 Spinta del rilevato

Si considera l'azione della spinta delle terre sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Angolo di attrito interno del terreno ø'k =35.00 Tangente angolo di attrito interno tanø'k = 0.70

Società di Progetto

interconnessione some	Doc. N. 66128-00002-A00.doc	CODIFICA DOCUMENTO 04RCEII100002000000100	REV. A00	FOGLIO 99 di 162
Coefficiente di spinta attiva Coefficiente moltiplicativo spi		a = 0.27 0.00		
Spinta totale rilevato Momento trasversale rilevato	Sr	il = 0.00 sv,ril = 0.00	kN kNm	

12.1.4 Spinta dovuta ai sovraccarichi variabili sul rilevato

Si considera l'azione di spinta dovuta ai sovraccarichi variabili sul rilevato sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Carico accidentale rilevato	qaccid =	20.00	kN/m2
Spinta accidentale rilevato totale	Sacc =	14.96	kN
Momento accidentale trasversale	Mtrasv.acc =	11.25	kNm

12.1.5 Azioni da vento

Il D.M. del 14 Gennaio 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo APPROVATO BOP stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fa riferimento al vento nella sola direzione parallela all'asse stradale.

La pressione del vento è data dall'espressione:

$$p = q_b * c_e * c_p * c_d$$

dove:

pressione cinetica di riferimento q_b

coefficiente di esposizione c_{e}

coefficiente di forma (o coefficiente aerodinamico) C_p

coefficiente dinamico C_{d}

La pressione cinetica di riferimento è data dall'espressione:

$$q_b = 0.5 * \rho * V_b^2$$

dove ρ è la densità dell'aria e vale 1,25 kg/m³.

Il coefficiente di esposizione dipende dall'altezza z dal piano di campagna (rilevato compreso, se presente) del punto considerato, dalla topografia e dalla categoria di esposizione.

Risulta:

Zona geografica	1		Società di Progetto
	v _{b,0} =	25.00	mÆrebemi SpA
	$a_0 =$	1000.00	m
	$k_a =$	0.010	1/s

	Doc. N.	CODIFICA DOCUME	ENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII1000020000	000100	A00	100 di 162
	<u>-</u>				
Categoria di esposizione del	sito	II			
		$k_r =$	0.19		
		$z_0 =$	0.05	m	
		z _{min} =	4.00	m	
Densità dell'aria		ro =	1.25	kg/m	3
Altitudine slm dove sorge l'or	pera	as =	150.00	m	
Velocità di riferimento		v _b =	25.00	m/se	С
Pressione cinetica di riferime	ento	qb =	390.63	N/m2	2
Altezza dal piano di campagi	na	z =	10.00	m	
Coefficiente topografico		ct =	1.00		
Coefficiente di esposizione		$c_e(z)max =$	2.35		
Coefficiente dinamico		cd =	1.00		
Coeff. di forma per pressione normale sui pannelli		c _p =	1.80		
Coeff. di forma per pressione normale sul montante		c _{px} =	2.15		
Pressione del vento pannelli		Pvnt1 =	1.65		
Pressione del vento montant		Pvnt2 =	1.98		

Si assume

Pressione normale esercitata dal vento sui pannelli: $p_{max} = 1.65 \text{ kPa}$ Pressione normale esercitata dal vento sul montante: $p_{max} = 1.98 \text{ kPa}$

La pressione di calcolo viene applicata come pressione uniforme rispettivamente sulle superfici di esposizione identificate dalla struttura orizzontale e verticale.

Pertanto:

Azione esercitata sul cartello	FI,vnt1 =	13.23	kN
Azione esercitata sul piedritto	FI,vnt2 =	0.78	kN
Azione totale del vento	FI,vnt =	14.01	kN
Distanza estradosso testata/base cartello	Hc =	1.80	m
Momento longitudinale vento	Mlong,vnt =	64.38	kNm
Momento torcente	Mtorc,vnt =	10.82	kNm

12.1.6 Azioni da neve

La pressione della neve è data dall'espressione:

$$q_{\text{s}} = \mu_{\text{i}} * q_{\text{ek}} * C_{\text{E}} * C_{\text{t}}$$

dove:

q_s carico da neve

 μ_i coefficiente di forma

C_E coefficiente di esposizione

Ct coefficiente termico

Società di Progetto **Brebenii SpA**

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	101 di 162

Risulta:

Zona geografica	Zona	I	
Coefficiente di esposizione al vento	Ce =	0.90	
Valore caratteristico carico al suolo	qsk =	1.50	kN/m2
Angolo di inclinazione profilo	α =	0.00	0
Coefficienti di forma	μ1 =	0.80	
Coefficiente termico	Ct =	1.00	
Carico uniformemente distribuito	q2k =	0.22	kN/m
Azione della neve	Pneve =	0.86	kN
Momento trasversale neve	Mtrasv,neve =	0.43	kNm

12.1.7 Azioni sismiche

L'azione sismica dovuta alla struttura in elevazione si ottiene mediante la relazione:

 $F_h = S_d * W / g$

Dove:

W = peso della struttura in elevazione

Mentre l'azione sismica dovuta all'inerzia della fondazione si ottiene mediante la relazione:

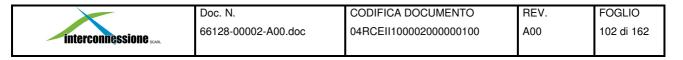
 $F_h = k_h * W / g$

Dove:

W = peso del plinto di fondazione

La forza orizzontale ottenuta dall'analisi, distribuita sull'altezza della struttura, segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.

Con riferimento ai valori determinati al paragrafo 5.1, l'azione orizzontale dovuta al sisma risulta largamente inferiore all'azione dovuta al vento e pertanto non dimensionante.


12.2 Sollecitazioni e verifiche delle strutture di fondazione

Si riporta l'analisi del plinto di fondazione.

12.2.1 Geometria della fondazione

Per la geometria della fondazione, si rimanda agli elaborati grafici di pertinenza.

Società di Progetto Brebenni SpA

12.2.2 Combinazioni di carico

Per le combinazioni di carico si rimanda al paragrafo 6.2.2.

12.2.3 Sollecitazioni sugli elementi strutturali

Nelle tabelle successive vengono riportati, per ciascuna delle combinazioni di carico descritte, i valori assunti dalle componenti di sollecitazione, calcolati secondo il procedimento descritto nel paragrafo "Criteri di calcolo".

Azioni risultanti a spiccato montante

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	9.48	0.00	21.02	56.63	6.32	16.23
SLU - STR (neve)	9.48	0.00	12.61	33.98	6.32	9.74
SLU - GEO (vento)	7.29	0.00	18.22	49.08	4.86	14.07
SLU - GEO (neve)	7.29	0.00	10.93	29.45	4.86	8.44
SLE - RARA	7.29	0.00	14.01	37.75	4.86	10.82
SLE - FREQUENTE	7.29	0.00	2.80	7.55	4.86	2.16
SLE - QUASI PERM.	7.29	0.00	0.00	0.00	4.86	0.00

Azioni risultanti a spiccato baggiolo estradossale di raccordo

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	41.07	13.35	21.02	81.85	13.41	16.23
SLU - STR (neve)	41.07	9.83	12.61	49.11	11.31	9.74
SLU - GEO (vento)	31.59	11.12	18.22	70.94	10.83	14.07
SLU - GEO (neve)	31.59	8.08	10.93	42.56	9.01	8.44
SLE - RARA	31.59	9.37	14.01	54.57	9.78	10.82
SLE - FREQUENTE	31.59	4.68	2.80	10.91	6.97	2.16
SLE - QUASI PERM.	31.59	3.51	0.00	0.00	6.27	0.00

Azioni risultanti ad intradosso fondazione

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	317.53	22.44	21.02	94.47	23.52	16.23
SLU - STR (neve)	318.17	13.46	12.61	56.68	17.09	9.74
SLU - GEO (vento)	244.31	19.45	18.22	81.87	19.77	14.07
SLU - GEO (neve)	244.88	11.67	10.93	49.12	14.20	8.44
SLE - RARA	244.18	14.96	14.01	62.98	16.33	10.82 tà di Progetto
SLE - FREQUENTE	243.75	2.99	2.80	12.60		bemi SpA
SLE - QUASI PERM.	243.75	0.00	0.00	0.00	4.86	0.00

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	103 di 162

12.2.4 Verifiche in ambito geotecnico e di equilibrio di corpo rigido

Verifica a ribaltamento

Coefficiente γ_{g1} - Permanente favorevole

Si riportano in seguito i valori dei momenti ribaltanti in direzione trasversale e longitudinale nelle combinazioni relative alla verifica in oggetto:

0.90

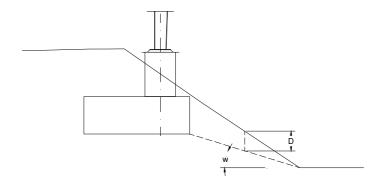
esemelente (gr. 1 ermanente l'avoi evoie	0.50		
Coefficiente γ_{g1} - Permanente sfavorevole	1.10		
Coefficiente γ_{Q1} - Variabile favorevole	0.00		
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50		
Direzione longitudinale:			
Momento stabilizzante fondazione	Mstab,fond =	198.66	kNm
Momento stabilizzante rinterro	Mstab,rint =	132.38	kNm
Momento stabilizzante segnaletica	Mstab,segn =	10.21	kNm
Momento stabilizzante di progetto	MRd =	307.13	kNm
Momento instabilizzante vento	Minstab,vnt =	64.38	kNm
Momento instabilizzante di progetto	MRd =	96.57	kNm
	FSrib,long =	3.18	
Direzione trasversale:			
Momento stabilizzante fondazione	Mstab,fond =	170.28	kNm
Momento stabilizzante rinterro	Mstab,rint =	113.47	kNm
Momento stabilizzante spinte (cautelativamente)	Minstab,vnt =	6.08	kNm
Momento stabilizzante di progetto	Mrd =	260.85	kNm
Momento instabilizzante neve	Minstab,neve =	0.43	
Momento instabilizzante spinte	Minstab,vnt =	11.25	kNm
Momento instabilizzante di progetto	Msd =	17.53	kNm
	FSrib,trasv =	14.88	

Le verifiche risultano soddisfatte

Verifica a scorrimento del piano di posa

Poiché, nel caso in oggetto, le sollecitazioni di scorrimento sul piano di posa sono duvuti agli effetti delle azioni taglianti agenti nelle due direzioni principali, abbinate alle sollecitazioni di momento torcente la verifica di scorrimento viene conservativamente condotta in termini tensionali anziché in termini di sollecitazioni globali.

	Doc. N.	CODIFICA DO	OCUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII1000	0200000100	A00	104 di 162
Si esegue la verifica conforme	emente all'appoccio 2 de	l D.M. 14 gen	naio 2008:		
Coefficiente γ _{g1} - Peri		1.00			
Coefficiente γ _{g1} - Peri	manente sfavorevole		1.30		
Coefficiente γ_{Q1} - Var		0.00			
Coefficiente γ_{Q1} - Var	iabile sfavorevole		1.50		
Sollecitazioni di progetto:					
Sforzo normale totale		N' =	243.75	kN	
Momento in direzione trasver	sale	Mt' =	33.32	kNm	
Taglio in direzione trasversale	Э	Tt' =	22.44	kN	
Momento in direzione longitudinale		MI' =	96.57	kNm	
Taglio in direzione longitudinale		TI' =	21.02	kN	
Risulta pertanto:					


Azione totale di taglio in fondazione	Vris =	30.75	kN
Tensione tangenziale dovuta al taglio	τ(V) =	4.58	kN
Tensione tangenziale (massima) dovuta al momento torcente	τ,max(T) =	4.57	kN/mq
Tensione tangenziale totale	τ,tot =	9.15	kN/mq
Sforzo normale unitario di progetto	σ=	36.27	kN/mq
	FS scorr	2 78	> 1 10

Le verifiche risultano soddisfatte

Verifica per carico limite dell'insieme fondazione-terreno

Si riportano in seguito le verifiche per carico limite dell'insieme fondazione-terreno.

Nel valutare il contributo alla capacità portante, si considera una (eventuale) inclinazione w del terreno rispetto all'orizzontale determinata dalla retta congiungente tra spigolo del plinto lato valle e piede del rilevato. La quota D di affondamento rispetto al piano campagna viene prudenzialmente assunta pari all'altezza media del cuneo di risprimento sviluppantesi lungo lo sviluppo planimemerico dell'(eventuale) rilevato e delimitato inferiormente dalla suddetta retta.

Società di Progetto Brebemi SpA

Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione SCAPE.	66128-00002-A00.doc	04RCEII100002000000100	A00	105 di 162
				<u> </u>
Coefficiente γ _{g1} - Pe	rmanente favorevole	1.00		
Coefficiente γ _{g1} - Pe	rmanente sfavorevole	1.30		
Coefficiente γ _{Q1} - Va	ariabile favorevole	0.00		
Coefficiente γ_{Q1} - Va	ariabile sfavorevole	1.50		
Eccentricità direzione longiti		e,L' =	0.40	m
Eccentricità direzione trasve	ersale	e,B' =	0.14	m
Dimensioni efficaci fondaz	zione			
Dimensione trasversale effic	cace	B' =	2.13	m
Dimensione longitudinale ef	ficace	L' =	2.01	m
Dim. minore della fondazion	e efficace equivalente	B' =	2.01	m
Dim. maggiore della fondazi	•	L' =	2.13	m
Pressione media sul terre	no	q =	74.22	2 kPa
Affondamento da piano ca	ampagna	D =	1.50	m
Caratteristiche del terreno	di fondazione			
Peso specifico totale del ter	reno di fondazione	γt =	20.00	0 kN/m ³
Profondità della falda da p.o	·.	zf =	50.00	m
Distanza quota di falda - pia	no di imposta fondazione	ZW =	48.50	m
Peso specifico efficace base	e fondazione B	γ'cB =	20.00	
Peso specifico efficace base	e fondazione L	γ'cL =	20.00	0 kN/m ³
Angolo di attrito del terreno	di fondazione	φ' =	35.00	0
Inclinaz. terreno risp. orizzo	ntale (dir trasv)	ωB' =	0.0	°
Inclinaz. terreno risp. orizzo		ωL' =	0.00	o °
Peso specifico del terreno la	atistante la fondazione		20.00	kN/m³
γ' Pressione verticale efficace	a quota imposta fondazion	e q'0 =	30	kPa
Fattori di capacità portant	e			
p		Nγ =	33.92	2
		Nq =	33.30	0
		Nc =	68.16	6
Coefficienti di inclinazione	e del carico			
		iγ,B' _' =	0.72	
		iq,B' =		ietà di Progetto
		iγ,L'=	0.73 _{Br}	ebemi SpA
		iq,L' =	0.80	$\forall M$
Coefficienti di forma		·	(-	\mathcal{A}

	I Dec. N	CODIFICA DOCUMENTO	DEV.	F00110
	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	106 di 162
		au Di	0.00	
		sγ,B' =	0.63	
		sq,B' =	1.43	
		sγ,L' =	0.57	
		sq,L' =	1.49	
Coefficienti di affondame	nto			
		dγ,B' =	1.00	
		dq,B' =	1.19	
		dγ, L' =	1.00	
		dq,L' =	1.18	
Coefficienti per inclinazio	ne terreno			
		$g\gamma,B' = gq,B'$	1.0	0
		$g\gamma,L' = gq,L'$	1.0	0
Capacità portante limite d	li base			
q _{limgB'}		$= \frac{1/2 \times g'_{cB'} \times B' \times N_g \times s_{gB'}}{d_{cB'} \times i_{cB'} \times g_{cB'}} \times q_{cB'}$	‹	

$$q_{limgB'} = \begin{cases} \frac{1}{2} \times g'_{cB'} \times B' \times N_g \times s_{gB'} \times d_{gB'} \times i_{gB'} \times g_{gB'} \times d_{gB'} \times i_{gB'} \times g_{gB'} \times d_{gB'} \times g_{gB'} \times g_{gB'}$$

$q_{lim\gamma B}$	325.98	kPa
q _{limvL} ,	282.84	kPa

Capacità portante limite per sovraccarico laterale

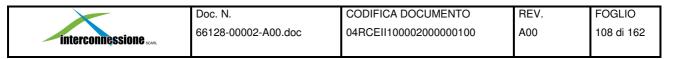
Capacità portante limite per sovraccarico laterale
$$q_{\text{limq B'}} \\ q_{\text{limq L'}} \\ = \begin{array}{l} q_0' \times N_q \times s_{qB'} \times d_{qB'} \times i_{qB'} \times g_{qB'} \times$$

kPa 1341.27 q_{limqB} 1405.95 kPa q_{limqL},

Nella valutazione del termine di capacità portante q_{limy} viene assunto q_{limyB'}o q_{limyL'} in base al valore calcolato di s_{γ} ; si assumerà l'espressione per la quale risulta $s_{\gamma} > 0.6$.

Nella valutazione del termine di capacità portante q_{limq} tra q_{limqB'} e q_{limqL'} viene scelto quello minore.

	q _{limy} q _{limq}	325.98 kPa 1341.27 kPa
Capacità portante a rottura γ _R minimo capacità portante	q _{lim}	1667.25 kPa 2.30 Società di Progetto Brebemi SpA
Capacità portante di design Pressione media sollecitante di design	q _{res_d} q _{soll_d}	724.89 kPa 74.22 kPa


	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII100002000000100	A00	107 di 162

FS capacità portante 9.77

Le verifiche risultano soddisfatte

APPRILIVATIO BOP

Società di Progetto Breberni SpA

13. MONOPALO ALLA SEZIONE A 170

13.1 Analisi della struttura

Il monopalo oggetto di questo paragrafo è situato alla progressiva 2862.33 e corrisponde alla sezione A 170.

13.1.1 Geometria della struttura

Si riportano le geometrie dei diversi elementi della struttura:

Altezza testata	Altezza testata fondazione		Ht =		1.600	
Larghezza test	ata in direz. longit	tudinale	Bt =		0.900	
Larghezza test	ata in direz. trasv	ersale	Lt =		0.900	
Eccentricità tes	stata in direzione t	trasversale	e,trasv =		0.300	
Altezza magror	ne di pulizia		Hz0 =		0.100	
Altezza zattera fondazione			Hz =		0.600	
Larghezza zatt	era in direz. longi	tudinale	Bz =		2.800	
Larghezza zatt	era in direz. trasv	ersale	Lz =		2.400	
Larghezza cartello			D1 =		3.000	
Altezza cartello			D2 =		2.250	
Spessore cartello		s,cartello	=	0.005		
Piedritto	lato1	I1,piedritto =	0.220	m		
	lato2	I1,piedritto =	0.220	m		
	spessore	I1,piedritto =	0.006	m		
Travata	lato1	I1,travata =	0.150	m		
	lato2	I2,travata =	0.200	m		
	spessore	s,travata =	0.006	m		
Dima	lato1	11,dima =	0.500	m		
	lato2	l2,dima =	0.500	m		
	spessore	s,dima =	0.020	m		
T			-			
Traverse	numero	n,traverse =	5			
	diametro	ø,traverse =	0.090	m		
	spessore	s,traverse =	0.004	m		

Società di Progetto **Brebenii SpA**

m m m m

m m m m

13.1.2 Carichi permanenti

Si riportano i pesi permanenti dei diversi elementi della struttura:

Per il peso proprio struttura si è fatto riferimento alla Tabella 3.1.I delle NTC2008. In particolare per l'acciaio è riportato un peso per unita di volume pari a 78.50 kN/m³ e per l'alluminio è riportato un peso per unita di volume pari a 27.00 kN/m³.

Peso proprio fondazione

Peso specifico calcestruzzo armato	γcls =	25.00	kN/m3
Peso prioprio testata	Ptest =	32.40	kN
Peso proprio zattera	Pzatt =	117.60	kN
Peso totale fondazione	Pt,fond =	150.00	kN
Momento trasversale fondazione	Mtrasv,fond =	9.72	kNm

Peso proprio segnaletica metallica

Peso specifico acciaio Peso proprio traverse	γacciaio = Ptraverse =	78.50 1.00	kN/m3 kN
Peso proprio travata	Ptravata =	0.99	kN
Peso proprio piedritto	Ppiedritto =	1.42	kN
Peso proprio dima	Pdima =	0.79	kN
Peso proprio cartello	Pcartello =	2.65	kN
Peso totale segnaletica metallica	Pt,segn =	6.84	kN
Eccentricità limite cartello, travata e traverse	elim=	0.10	m
Momento trasversale segnaletica	Mtrasv,segn =	2.52	kNm
			APPROD
Sovraccarico del terreno			P
Si considera il seguente sovraccarico dovuto al te	rreno:		Y

Sovraccarico del terreno

Peso specifico terreno	yt =	20.00	kN/m3
Altezza media rinterro	hmedia =	0.00	m
Eccentricità rinterro		0.00	m
Peso totale rinterro	Pt,rint =	0.00	kn
Momento trasversale rinterro	Mtrasv,rint =	0.00	kNm

13.1.3 Spinta del rilevato

Si considera l'azione della spinta delle terre sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Angolo di attrito interno del terreno ø'k =35.00 Tangente angolo di attrito interno tanø'k = 0.70

Società di Progetto

	Doc. N.	CODIFICA DOCUME	_	REV.	FOGLIO
interconnessione scarl	66128-00002-A00.doc	04RCEII1000020000	00100	A00	110 di 162
		<u> </u>			
Coefficiente di spinta attiva	ka	A =	0.27		
Coefficiente moltiplicativo spir		•	1.00		
2 2 2			1.00		
Spinta totale rilevato	Sr	il =	23.54	kN	
Momento trasversale rilevato	Mtras	sv,ril =	14.62	kNm	

13.1.4 Spinta dovuta ai sovraccarichi variabili sul rilevato

Si considera l'azione di spinta dovuta ai sovraccarichi variabili sul rilevato sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Carico accidentale rilevato	qaccid =	20.00	kN/m2
Spinta accidentale rilevato totale	Sacc =	16.91	kN
Momento accidentale trasversale	Mtrasv,acc =	15.35	kNm

13.1.5 Azioni da vento

Il D.M. del 14 Gennaio 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo APPROVATO BOP stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fa riferimento al vento nella sola direzione parallela all'asse stradale.

La pressione del vento è data dall'espressione:

$$p = q_b * c_e * c_p * c_d$$

dove:

pressione cinetica di riferimento q_b

coefficiente di esposizione c_{e}

coefficiente di forma (o coefficiente aerodinamico) C_p

coefficiente dinamico C_{d}

La pressione cinetica di riferimento è data dall'espressione:

$$q_b = 0.5 * \rho * V_b^2$$

dove ρ è la densità dell'aria e vale 1,25 kg/m³.

Il coefficiente di esposizione dipende dall'altezza z dal piano di campagna (rilevato compreso, se presente) del punto considerato, dalla topografia e dalla categoria di esposizione.

Risulta:

Zona geografica	I		Società di Progetto
	V _{b,0} =	25.00	mÆrebemi SpA
	a ₀ =	1000.00	m /
	k _a =	0.010	1/s

	Doc. N. CODIFICA DOCUMENTO		NTO	REV.	FOGLIO
interconnessione scar	66128-00002-A00.doc	04RCEII100002000000100		A00	111 di 162
	<u> </u>	1		<u> </u>	1
Categoria di esposizione del	sito	II			
		$k_r =$	0.19		
		z ₀ =	0.05	m	
		z _{min} =	4.00	m	
Densità dell'aria		ro =	1.25	kg/m	3
Altitudine slm dove sorge l'op	era	as =	150.00	m n	
Velocità di riferimento		$V_b =$	25.00	m/se	С
Pressione cinetica di riferime	nto	qb =	390.63	N/m2	2
Altezza dal piano di campagr	na	Z =	10.00	m	
Coefficiente topografico		ct =	1.00		
Coefficiente di esposizione		$c_e(z)max =$	2.35		
Coefficiente dinamico		cd =	1.00		
Coeff. di forma per pressione normale sui pannelli		C _p =	1.80		
Coeff. di forma per pressione	normale sul montante	c _{px} =	2.15		
Pressione del vento pannelli		Pvnt1 =	1.65		
Pressione del vento montante	Э	Pvnt2 =	1.98		

Si assume

Pressione normale esercitata dal vento sui pannelli: $p_{max} = 1.65 \text{ kPa}$ Pressione normale esercitata dal vento sul montante: $p_{max} = 1.98 \text{ kPa}$

La pressione di calcolo viene applicata come pressione uniforme rispettivamente sulle superfici di esposizione identificate dalla struttura orizzontale e verticale.

Pertanto:

Azione esercitata sul cartello	FI,vnt1 =	11.16	kN
Azione esercitata sul piedritto	FI,vnt2 =	1.00	kN
Azione totale del vento	FI,vnt =	12.16	kN
Distanza estradosso testata/base cartello	Hc =	2.30	m
Momento longitudinale vento	Mlong,vnt =	67.36	kNm
Momento torcente	Mtorc,vnt =	4.77	kNm

13.1.6 Azioni da neve

La pressione della neve è data dall'espressione:

$$q_{\text{s}} = \mu_{\text{i}} * q_{\text{ek}} * C_{\text{E}} * C_{\text{t}}$$

dove:

q_s carico da neve

 μ_i coefficiente di forma

C_E coefficiente di esposizione

Ct coefficiente termico

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione sam	66128-00002-A00.doc	04RCEII100002000000100	A00	112 di 162

Risulta:

Zona geografica	Zona	I	
Coefficiente di esposizione al vento	Ce =	0.90	
Valore caratteristico carico al suolo	qsk =	1.50	kN/m2
Angolo di inclinazione profilo	α =	0.00	0
Coefficienti di forma	μ1 =	0.80	
Coefficiente termico	Ct =	1.00	
Carico uniformemente distribuito	q2k =	0.22	kN/m
Azione della neve	Pneve =	0.65	kN
Momento trasversale neve	Mtrasv,neve =	0.06	kNm

13.1.7 Azioni sismiche

L'azione sismica dovuta alla struttura in elevazione si ottiene mediante la relazione:

 $F_h = S_d * W / g$

Dove:

W = peso della struttura in elevazione

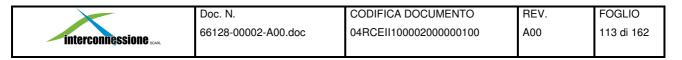
Mentre l'azione sismica dovuta all'inerzia della fondazione si ottiene mediante la relazione:

 $F_h = k_h * W / g$

Dove:

W = peso del plinto di fondazione

La forza orizzontale ottenuta dall'analisi, distribuita sull'altezza della struttura, segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.


Con riferimento ai valori determinati al paragrafo 5.1, l'azione orizzontale dovuta al sisma risulta largamente inferiore all'azione dovuta al vento e pertanto non dimensionante.

13.2 Sollecitazioni e verifiche delle strutture di fondazione

Si riporta l'analisi del plinto di fondazione.

13.2.1 Geometria della fondazione

Per la geometria della fondazione, si rimanda agli elaborati grafici di pertinenza.

13.2.2 Combinazioni di carico

Per le combinazioni di carico si rimanda al paragrafo 6.2.2.

13.2.3 Sollecitazioni sugli elementi strutturali

Nelle tabelle successive vengono riportati, per ciascuna delle combinazioni di carico descritte, i valori assunti dalle componenti di sollecitazione, calcolati secondo il procedimento descritto nel paragrafo "Criteri di calcolo".

Azioni risultanti a spiccato montante

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	8.89	0.00	18.25	59.08	3.27	7.15
SLU - STR (neve)	8.89	0.00	10.95	35.45	3.27	4.29
SLU - GEO (vento)	6.84	0.00	15.81	51.20	2.52	6.20
SLU - GEO (neve)	6.84	0.00	9.49	30.72	2.52	3.72
SLE - RARA	6.84	0.00	12.16	39.39	2.52	4.77
SLE - FREQUENTE	6.84	0.00	2.43	7.88	2.52	0.95
SLE - QUASI PERM.	6.84	0.00	0.00	0.00	2.52	0.00

Azioni risultanti a spiccato baggiolo estradossale di raccordo

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	51.01	19.82	18.25	88.27	16.97	7.15
SLU - STR (neve)	51.01	15.14	10.95	52.96	13.22	4.29
SLU - GEO (vento)	39.24	16.39	15.81	76.50	13.96	6.20
SLU - GEO (neve)	39.24	12.33	9.49	45.90	10.72	3.72
SLE - RARA	39.24	14.05	12.16	58.85	12.09	4.77
SLE - FREQUENTE	39.24	7.80	2.43	11.77	7.09	0.95
SLE - QUASI PERM.	39.24	6.24	0.00	0.00	5.85	0.00

Azioni risultanti ad intradosso fondazione

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	204.38	55.97	18.25	99.22	45.35	7.15
SLU - STR (neve)	204.87	45.83	10.95	59.53	36.19	4.29
SLU - GEO (vento)	157.26	45.53	15.81	85.99	37.13	6.20
SLU - GEO (neve)	157.68	36.73	9.49	51.59	29.19	3.72
SLE - RARA	157.17	40.45	12.16	66.15	32.52	4.77 tà di Progetto
SLE - FREQUENTE	156.84	26.93	2.43	13.23	20.21 Bre	0.95 bemi SpA
SLE - QUASI PERM.	156.84	23.54	0.00	0.00	17.14	0.00

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	114 di 162

13.2.4 Verifiche in ambito geotecnico e di equilibrio di corpo rigido

Verifica a ribaltamento

Coefficiente γ_{g1} - Permanente favorevole

Si riportano in seguito i valori dei momenti ribaltanti in direzione trasversale e longitudinale nelle combinazioni relative alla verifica in oggetto:

0.90

Coefficiente γ_{g1} - Permanente sfavorevole	1.10		
Coefficiente γ_{Q1} - Variabile favorevole	0.00		
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50		
Direzione longitudinale:			
Momento stabilizzante fondazione Momento stabilizzante rinterro Momento stabilizzante segnaletica Momento stabilizzante di progetto Momento instabilizzante vento Momento instabilizzante di progetto	Mstab,fond = Mstab,rint = Mstab,segn = MRd = Minstab,vnt = MRd = FSrib,long =	210.00 0.00 9.58 197.62 67.36 101.05	kNm kNm kNm kNm kNm
Direzione trasversale:			
Momento stabilizzante fondazione Momento stabilizzante rinterro Momento stabilizzante spinte (cautelativamente) Momento stabilizzante di progetto	Mstab,fond = Mstab,rint = Minstab,vnt = Mrd =	180.00 0.00 7.75 168.97	kNm kNm kNm kNm
Momento instabilizzante neve Momento instabilizzante spinte Momento instabilizzante di progetto	Minstab,neve = Minstab,vnt = Msd =	0.06 29.97 39.20 4.31	kNm kNm
	FSrib,trasv =	4.01	

Le verifiche risultano soddisfatte

Verifica a scorrimento del piano di posa

Poiché, nel caso in oggetto, le sollecitazioni di scorrimento sul piano di posa sono duvuti agli effetti delle azioni taglianti agenti nelle due direzioni principali, abbinate alle sollecitazioni di momento torcente la verifica di scorrimento viene conservativamente condotta in termini tensionali anziché in termini di sollecitazioni globali.

INTERCONNESSIONE SAR	interconnessione	Doc. N. 66128-00002-A00.doc	CODIFICA DOCUMENTO 04RCEII100002000000100	REV. A00	FOGLIO 115 di 162
----------------------	------------------	--------------------------------	---	-------------	----------------------

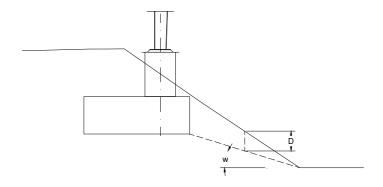
Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

Coefficiente γ_{g1} - Permanente favorevole	1.00
Coefficiente γ_{g1} - Permanente sfavorevole	1.30
Coefficiente γ _{Q1} - Variabile favorevole	0.00
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50

Sollecitazioni di progetto:

Sforzo normale totale	N' =	156.84	kN
Momento in direzione trasversale	Mt' =	58.03	kNm
Taglio in direzione trasversale	Tt' =	55.97	kN
Momento in direzione longitudinale	MI' =	101.05	kNm
Taglio in direzione longitudinale	Tl' =	18.25	kN

Risulta pertanto:


Azione totale di taglio in fondazione Tensione tangenziale dovuta al taglio	Vris =	58.87	kN
	τ(V) =	8.76	kN
Tensione tangenziale (massima) dovuta al momento torcente	τ,max(T) =	2.01	kN/mq
Tensione tangenziale totale	τ,tot =	10.77	kN/mq
Sforzo normale unitario di progetto	σ =	23.34	kN/mq
	FS,scorr	1.52	> 1.10

Le verifiche risultano soddisfatte

Verifica per carico limite dell'insieme fondazione-terreno

Si riportano in seguito le verifiche per carico limite dell'insieme fondazione-terreno.

Nel valutare il contributo alla capacità portante, si considera una (eventuale) inclinazione w del terreno rispetto all'orizzontale determinata dalla retta congiungente tra spigolo del plinto lato valle e piede del rilevato. La quota D di affondamento rispetto al piano campagna viene prudenzialmente assunta pari all'altezza media del cuneo di risprimento sviluppantesi lungo lo sviluppo planimemerico dell'(eventuale) rilevato e delimitato inferiormente dalla suddetta retta.

Società di Progetto

Brebenii SpA

Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII100002000000100	A00	116 di 162
Coefficiente v _{a1} - Pe	ermanente favorevole	1.00		
Coefficiente γ _{g1} - Permanente sfavorevole		1.30		
Coefficiente γ_{Q1} - V		0.00		
	ariabile sfavorevole	1.50		
Coemciente y _{Q1} - v	ariabile stavorevole	1.50		
Eccentricità direzione longit	tudinale	e,L' =	0.64	m
Eccentricità direzione trasv		e,B' =	0.37	m
		-,		
Dimensioni efficaci fonda	zione			
Dimensione trasversale effi	cace	B' =	1.66	m
Dimensione longitudinale e	fficace	L' =	1.51	m
D				
Dim. minore della fondazione efficace equivalente		B' =	1.51	m
Dim. maggiore della fondaz	tione efficace equivalente	L' =	1.66	m
Pressione media sul terre	uno.	q =	81.26	6 kPa
i ressione media sui terre	:11 0	ч-	01.20) KI a
Affondamento da piano c	ampagna	D =	0.60	m
Caratteristiche del terreno	o di fondazione			
Peso specifico totale del ter	rreno di fondazione	yt =	20.00) kN/m ³
Profondità della falda da p.	C.	zf =	50.00	m
Distanza quota di falda - pia		zw =	49.40	m
Peso specifico efficace bas		γ'cB =	20.00) kN/m ³
Peso specifico efficace bas	e fondazione L	v'cL =	20.00) kN/m ³
Angolo di attrito del terreno		φ' =	35.00	4
		·		20
Inclinaz. terreno risp. orizzo	ontale (dir trasv)	ωB' =	0.00	°
Inclinaz. terreno risp. orizzo	ontale (dir long)	ωL' =	0.00) °
Peso specifico del terreno I	atistante la fondazione			3
γ'			20.00	kN/m ³
Pressione verticale efficace	a quota imposta fondazion	e q'0 =	12	kPa
Fattori di capacità portan	te			
ration di capacità portan		Nγ =	33.92	2
		Nq =	33.30	
		Nc =	68.16	
Coefficienti di inclinazion	e del carico			
		iγ,B' _' =	0.24	
		iq,B' =	0.37 Soc	ietà di Progetto
		iγ,L'=	0.03Br	ebemi SpA
		iq,L' =	0.74	XV
0 " 1 " " "			<i>(</i>)	/ N

Coefficienti di forma

interconnessione	Doc. N. 66128-00002-A00.doc	CODIFICA DOCUMENTO 04RCEII100002000000100	REV. A00	FOGLIO 117 di 162
		sγ,B' = sq,B' =	0.87 1.20	
		sγ,L' = sq,L' =	-0.21 1.47	
Coefficienti di affondamen	ıto		4.00	
		$d\gamma,B' = dq,B' =$	1.00	
		dγ, L' = dq,L' =	1.00 1.09	
Coefficienti per inclinazion	ne terreno	$g\gamma,B'=gq,B'$	1.00	
		$g\gamma,L' = gq,L'$	1.00	
Capacità portante limite d	i base			

$q_{\text{limgB'}}$	$= \frac{\sqrt{2} \times g'_{cB'} \times B' \times N_g \times s_{gB'} \times d_{gB'} \times i_{gB'} \times g_{gB'}}{d_{gB'} \times i_{gB'} \times g_{gB'}}$
Q limgL'	$= \frac{1/2 \times g'_{cL'} \times L' \times N_g \times s_{gL'} \times}{d_{gL'} \times i_{gL'} \times g_{gL'}}$

$q_{\text{lim}\gamma B^{\prime}}$	116.09	kPa
q _{limvL} ,	-70.09	kPa

Capacità portante limite per sovraccarico laterale

Capacita portante limite per sovraccarico laterale
$$q_{limq~B'} = \begin{array}{l} q_0' \times N_q \times s_{qB'} \times d_{qB'} \times i_{qB'} \times g_{qB'} \times g$$

kPa 196.86 $q_{\text{limqB}^{\prime}}$ 474.31 kPa q_{limqL}

Nella valutazione del termine di capacità portante $q_{lim\gamma}$ viene assunto $q_{lim\gamma B'}$ o $q_{lim\gamma L'}$ in base al valore calcolato di s_{γ} ; si assumerà l'espressione per la quale risulta $s_{\gamma} > 0.6$.

Nella valutazione del termine di capacità portante q_{limq} tra q_{limqB'} e q_{limqL'} viene scelto quello minore.

	q _{limy} q _{limq}	116.09 kPa 196.86 _{kPa}
Capacità portante a rottura γ _R minimo capacità portante	q _{lim}	312.95 kPa 2.30 Società di Progetto
Capacità portante di design Pressione media sollecitante di design	Q _{res_d} Q _{soll_d}	Brebemi SpA 136.06 kPa 81.26 kPa

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione som	66128-00002-A00.doc	04RCEII100002000000100	A00	118 di 162

FS capacità portante 1.67

Le verifiche risultano soddisfatte

APPRILYATO BOP

14. MONOPALO ALLA SEZIONE A 176

14.1 Analisi della struttura

Il monopalo oggetto di questo paragrafo è situato alla progressiva 2982.33 e corrisponde alla sezione A 176.

14.1.1 Geometria della struttura

Si riportano le geometrie dei diversi elementi della struttura:

Altezza testata fondazione Larghezza testata in direz. longitudinale Larghezza testata in direz. trasversale Eccentricità testata in direzione trasversale		Ht = Bt = Lt = e,trasv =		1.200 0.900 0.900 0.300	
Altezza magrone di pulizia Altezza zattera fondazione Larghezza zattera in direz. longitudinale Larghezza zattera in direz. trasversale		Hz0 = Hz = Bz = Lz =		0.800 0.600 2.800 2.400	
Larghezza cartello Altezza cartello Spessore carte)		D1 = D2 = s,cartello =		4.000 2.000 0.005
Piedritto	lato1 lato2 spessore	I1,piedritto = I1,piedritto = I1,piedritto =	0.220 0.220 0.006	m m m	
Travata	lato1 lato2 spessore	I1,travata = I2,travata = s,travata =	0.150 0.200 0.006	m m m	
Dima	lato1 lato2 spessore	I1,dima = I2,dima = s,dima =	0.500 0.500 0.020	m m m	
Traverse	numero diametro spessore	n,traverse = ø,traverse = s,traverse =	5 0.090 0.004	m m	

Società di Progetto

Brebenii SpA

m m m m

m m m m

14.1.2 Carichi permanenti

Si riportano i pesi permanenti dei diversi elementi della struttura:

Per il peso proprio struttura si è fatto riferimento alla Tabella 3.1.I delle NTC2008. In particolare per l'acciaio è riportato un peso per unita di volume pari a 78.50 kN/m³ e per l'alluminio è riportato un peso per unita di volume pari a 27.00 kN/m³.

Peso proprio fondazione

Peso specifico calcestruzzo armato	γcls =	25.00	kN/m3
Peso prioprio testata	Ptest =	24.30	kN
Peso proprio zattera	Pzatt =	235.20	kN
Peso totale fondazione	Pt,fond =	259.50	kN
Momento trasversale fondazione	Mtrasv,fond =	7.29	kNm

Peso proprio segnaletica metallica

Peso specifico acciaio	γacciaio =	78.50	kN/m3	
Peso proprio traverse	Ptraverse =	0.89	kN	
Peso proprio travata	Ptravata =	1.32	kN	
Peso proprio piedritto	Ppiedritto =	1.37	kN	
Peso proprio dima	Pdima =	0.79	kN	
Peso proprio cartello	Pcartello =	3.14	kN	-8
Peso totale segnaletica metallica	Pt,segn =	7.50	kN	OQ.
Eccentricità limite cartello, travata e traverse	elim=	0.45	m	>
Momento trasversale segnaletica	Mtrasv,segn =	4.66	kNm	
			APPROV	
Sovraccarico del terreno			PA	
Si considera il seguente sovraccarico dovuto al te	rreno:		Y	

Sovraccarico del terreno

Peso specifico terreno	yt =	20.00	kN/m3
Altezza media rinterro	hmedia =	0.30	m
Eccentricità rinterro		0.00	m
Peso totale rinterro	Pt,rint =	35.46	kn
Momento trasversale rinterro	Mtrasv,rint =	0.00	kNm

14.1.3 Spinta del rilevato

Si considera l'azione della spinta delle terre sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Angolo di attrito interno del terreno ø'k =35.00 Tangente angolo di attrito interno tanø'k = 0.70

interconnessione scar.	Doc. N. 66128-00002-A00.doc	CODIFICA DOCUME 04RCEII1000020000		REV. A00	FOGLIO 121 di 162
Coefficiente di spinta attiva Coefficiente moltiplicativo spi	ka nta rilevato	! =	0.27 1.00		
Spinta totale rilevato Momento trasversale rilevato	Sri Mtras		17.17 21.35	kN kNm	

14.1.4 Spinta dovuta ai sovraccarichi variabili sul rilevato

Si considera l'azione di spinta dovuta ai sovraccarichi variabili sul rilevato sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Carico accidentale rilevato	qaccid =	20.00	kN/m2
Spinta accidentale rilevato totale	Sacc =	14.96	kN
Momento accidentale trasversale	Mtrasv,acc =	21.72	kNm

14.1.5 Azioni da vento

Il D.M. del 14 Gennaio 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo APPROVATO BOP stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fa riferimento al vento nella sola direzione parallela all'asse stradale.

La pressione del vento è data dall'espressione:

$$p = q_b * c_e * c_p * c_d$$

dove:

pressione cinetica di riferimento q_b

coefficiente di esposizione c_{e}

coefficiente di forma (o coefficiente aerodinamico) C_p

coefficiente dinamico C_{d}

La pressione cinetica di riferimento è data dall'espressione:

$$q_b = 0.5 * \rho * V_b^2$$

dove ρ è la densità dell'aria e vale 1,25 kg/m³.

Il coefficiente di esposizione dipende dall'altezza z dal piano di campagna (rilevato compreso, se presente) del punto considerato, dalla topografia e dalla categoria di esposizione.

Risulta:

Zona geografica	1		Società di Progetto
	v _{b,0} =	25.00	mÆrebemi SpA
	$a_0 =$	1000.00	m
	$k_a =$	0.010	1/s

	Doc. N.	CODIFICA DOCUME	ENTO	REV.	FOGLIO
interconnessione SCARL	66128-00002-A00.doc	04RCEII1000020000	000100	A00	122 di 162
	•	•		•	•
Categoria di esposizione del	sito	II			
		$k_r =$	0.19		
		z ₀ =	0.05	m	
		z _{min} =	4.00	m	
Densità dell'aria		ro =	1.25	kg/m	3
Altitudine slm dove sorge l'or	nera	as =	150.00	m Kg/III	
Velocità di riferimento	σια	v _b =	25.00	m/se	C
Pressione cinetica di riferime	nto	qb =	390.63	N/m	
		·	10.00		<u> </u>
Altezza dal piano di campagr	ıa	Z =		m	
Coefficiente topografico		ct =	1.00		
Coefficiente di esposizione		$c_e(z)max =$	2.35		
Coefficiente dinamico		cd =	1.00		
Coeff. di forma per pressione	normale sui pannelli	$c_p =$	1.80		
Coeff. di forma per pressione	normale sul montante	$c_{px} =$	2.15		
Pressione del vento pannelli		Pvnt1 =	1.65		
Pressione del vento montant	e	Pvnt2 =	1.98		

Si assume

Pressione normale esercitata dal vento sui pannelli: $p_{max} = 1.65 \text{ kPa}$ Pressione normale esercitata dal vento sul montante: $p_{max} = 1.98 \text{ kPa}$

La pressione di calcolo viene applicata come pressione uniforme rispettivamente sulle superfici di esposizione identificate dalla struttura orizzontale e verticale.

Pertanto:

Azione esercitata sul cartello	FI,vnt1 =	13.23	kN
Azione esercitata sul piedritto	FI,vnt2 =	1.00	kN
Azione totale del vento	FI,vnt =	14.23	kN
Distanza estradosso testata/base cartello	Hc =	2.30	m
Momento longitudinale vento	Mlong,vnt =	81.82	kNm
Momento torcente	Mtorc,vnt =	10.22	kNm

14.1.6 Azioni da neve

La pressione della neve è data dall'espressione:

$$q_{\text{s}} = \mu_{\text{i}} * q_{\text{ek}} * C_{\text{E}} * C_{\text{t}}$$

dove:

q_s carico da neve

 μ_i coefficiente di forma

C_E coefficiente di esposizione

Ct coefficiente termico

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII100002000000100	A00	123 di 162

Risulta:

Zona geografica	Zona	I	
Coefficiente di esposizione al vento	Ce =	0.90	
Valore caratteristico carico al suolo	qsk =	1.50	kN/m2
Angolo di inclinazione profilo	α =	0.00	0
Coefficienti di forma	μ1 =	0.80	
Coefficiente termico	Ct =	1.00	
Carico uniformemente distribuito	q2k =	0.22	kN/m
Azione della neve	Pneve =	0.86	kN
Momento trasversale neve	Mtrasv,neve =	0.39	kNm

14.1.7 Azioni sismiche

L'azione sismica dovuta alla struttura in elevazione si ottiene mediante la relazione:

 $F_h = S_d * W / g$

Dove:

W = peso della struttura in elevazione

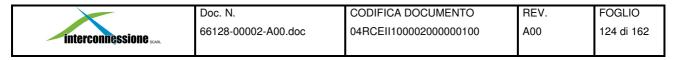
Mentre l'azione sismica dovuta all'inerzia della fondazione si ottiene mediante la relazione:

 $F_h = k_h * W / g$

Dove:

W = peso del plinto di fondazione

La forza orizzontale ottenuta dall'analisi, distribuita sull'altezza della struttura, segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.


Con riferimento ai valori determinati al paragrafo 5.1, l'azione orizzontale dovuta al sisma risulta largamente inferiore all'azione dovuta al vento e pertanto non dimensionante.

14.2 Sollecitazioni e verifiche delle strutture di fondazione

Si riporta l'analisi del plinto di fondazione.

14.2.1 Geometria della fondazione

Per la geometria della fondazione, si rimanda agli elaborati grafici di pertinenza.

14.2.2 Combinazioni di carico

Per le combinazioni di carico si rimanda al paragrafo 6.2.2.

14.2.3 Sollecitazioni sugli elementi strutturali

Nelle tabelle successive vengono riportati, per ciascuna delle combinazioni di carico descritte, i valori assunti dalle componenti di sollecitazione, calcolati secondo il procedimento descritto nel paragrafo "Criteri di calcolo".

Azioni risultanti a spiccato montante

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	9.75	0.00	21.35	67.22	6.05	15.34
SLU - STR (neve)	9.75	0.00	12.81	40.33	6.05	9.20
SLU - GEO (vento)	7.50	0.00	18.50	58.26	4.66	13.29
SLU - GEO (neve)	7.50	0.00	11.10	34.95	4.66	7.97
SLE - RARA	7.50	0.00	14.23	44.81	4.66	10.22
SLE - FREQUENTE	7.50	0.00	2.85	8.96	4.66	2.04
SLE - QUASI PERM.	7.50	0.00	0.00	0.00	4.66	0.00

Azioni risultanti a spiccato baggiolo estradossale di raccordo

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	41.34	13.35	21.35	92.84	13.15	15.34
SLU - STR (neve)	41.34	9.83	12.81	55.70	11.04	9.20
SLU - GEO (vento)	31.80	11.12	18.50	80.46	10.63	13.29
SLU - GEO (neve)	31.80	8.08	11.10	48.28	8.80	7.97
SLE - RARA	31.80	9.37	14.23	61.89	9.57	10.22
SLE - FREQUENTE	31.80	4.68	2.85	12.38	6.76	2.04
SLE - QUASI PERM.	31.80	3.51	0.00	0.00	6.06	0.00

Azioni risultanti ad intradosso fondazione

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	393.85	44.76	21.35	105.65	66.68	15.34
SLU - STR (neve)	394.49	35.78	12.81	63.39	53.93	9.20
SLU - GEO (vento)	303.02	36.62	18.50	91.56	54.49	13.29
SLU - GEO (neve)	303.58	28.84	11.10	54.94	43.45	7.97
SLE - RARA	302.89	32.13	14.23	70.43	47.92	10.22 tà di Progetto
SLE - FREQUENTE	302.46	20.16	2.85	14.09		bemi SpA
SLE - QUASI PERM.	302.46	17.17	0.00	0.00	26.00	0.00

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	125 di 162

14.2.4 Verifiche in ambito geotecnico e di equilibrio di corpo rigido

Verifica a ribaltamento

Si riportano in seguito i valori dei momenti ribaltanti in direzione trasversale e longitudinale nelle combinazioni relative alla verifica in oggetto:

Coefficiente γ_{g1} - Permanente favorevole	0.90		
Coefficiente γ_{g1} - Permanente sfavorevole	1.10		
Coefficiente γ_{Q1} - Variabile favorevole	0.00		
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50		
Direzione longitudinale:			
Momento stabilizzante fondazione	Mstab,fond =	363.30	kNm
Momento stabilizzante rinterro	Mstab,rint =	49.64	kNm
Momento stabilizzante segnaletica	Mstab,segn =	10.50	kNm
Momento stabilizzante di progetto	MRd =	381.10	kNm
Momento instabilizzante vento	Minstab,vnt =	81.82	kNm
Momento instabilizzante di progetto	MRd =	122.72	kNm
	FSrib,long =	3.11	
Direzione trasversale:			
Momento stabilizzante fondazione	Mstab,fond =	311.40	kNm
Momento stabilizzante rinterro	Mstab,rint =	42.55	kNm
Momento stabilizzante spinte (cautelativamente)	Minstab,vnt =	6.59	kNm
Momento stabilizzante di progetto	Mrd =	324.49	kNm
Momento instabilizzante neve	Minstab,neve =	0.39	
Momento instabilizzante spinte	Minstab,vnt =	43.07	kNm
Momento instabilizzante di progetto	Msd =	56.65	kNm
	FSrib,trasv =	5.73	

Le verifiche risultano soddisfatte

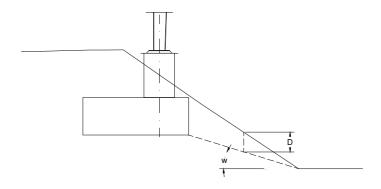
Verifica a scorrimento del piano di posa

Poiché, nel caso in oggetto, le sollecitazioni di scorrimento sul piano di posa sono duvuti agli effetti delle azioni taglianti agenti nelle due direzioni principali, abbinate alle sollecitazioni di momento torcente, la verifica di scorrimento viene conservativamente condotta in termini tensionali anziché in termini di sollecitazioni globali.

	interconnessione	Doc. N. 66128-00002-A00.doc	04RCEII1000		REV. A00	FOGLIO 126 di 162
	Si esegue la verifica conforme	emente all'appoccio 2 del	D.M. 14 gen	naio 2008:	<u> </u>	
	Coefficiente γ _{g1} - Perr		3	1.00		
Coefficiente γ_{g1} - Permanente sfavorevole		nanente sfavorevole		1.30		
Coefficiente γ_{Q1} - Variabile favorevole		abile favorevole		0.00		
Coefficiente γ_{Q1} - Variabile sfavorevole		abile sfavorevole		1.50		
	Sollecitazioni di progetto:					
	Sforzo normale totale		N' =	302.46	kN	
	Momento in direzione trasvers	sale	Mt' =	76.45	kNm	
	Taglio in direzione trasversale	;	Tt' =	44.76	kN	
	Momento in direzione longituo	dinale	MI' =	122.72	kNm	
	Taglio in direzione longitudina	ıle	TI' =	21.35	kN	

Risulta pertanto:

Azione totale di taglio in fondazione	Vris =	49.59	kN
Tensione tangenziale dovuta al taglio	τ(V) =	7.38	kN
Tensione tangenziale (massima) dovuta al momento torcente	τ,max(T) =	4.32	kN/mq
Tensione tangenziale totale	τ,tot =	11.70	kN/mq
Sforzo normale unitario di progetto	σ =	45.01	kN/mq
	FS,scorr	2.69	> 1.10


Le verifiche risultano soddisfatte

Taglio in direzione longitudinale

Verifica per carico limite dell'insieme fondazione-terreno

Si riportano in seguito le verifiche per carico limite dell'insieme fondazione-terreno.

Nel valutare il contributo alla capacità portante, si considera una (eventuale) inclinazione w del terreno rispetto all'orizzontale determinata dalla retta congiungente tra spigolo del plinto lato valle e piede del rilevato. La quota D di affondamento rispetto al piano campagna viene prudenzialmente assunta pari all'altezza media del cuneo di risprimento sviluppantesi lungo lo sviluppo planimemerico dell'(eventuale) rilevato e delimitato inferiormente dalla suddetta retta.

Società di Progetto Brebemi SpA

Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scarl	66128-00002-A00.doc	04RCEII100002000000100	A00	127 di 162
	<u> </u>	<u> </u>		
Coefficiente y _{a1} - Pe	rmanente favorevole	1.00		
• •	rmanente sfavorevole	1.30		
Coefficiente γ _{Q1} - Va		0.00		
Coefficiente γ _{Q1} - Va		1.50		
14.				
Eccentricità direzione longitu	efficaci fondazione trasversale efficace longitudinale efficace della fondazione efficace equivalente re della fondazione efficace equivalente	e,L' =	0.41	m
Eccentricità direzione trasve	rsale	e,B' =	0.25	m
Dimensioni efficaci fondaz	vione			
Dimensione trasversale effic		B' =	1.89	m
Dimensione longitudinale eff		L' =	1.99	m
G		_		
Dim. minore della fondazion	e efficace equivalente	B' =	1.89	m
Dim. maggiore della fondazi	one efficace equivalente	L' =	1.99	m
Pressione media sul terrer	10	q =	104.37	7 kPa
		٦		
Affondamento da piano ca	mpagna	D =	0.00	m
Caratteristiche del terreno	di fondazione			
Peso specifico totale del terr	eno di fondazione	γt =	20.00	0 kN/m ³
Profondità della falda da p.c		zf =	50.00	m
Distanza quota di falda - pia	•	ZW =	50.00	m 3
Peso specifico efficace base		γ'cB =	20.00	
Peso specifico efficace base		γ'cL =	20.00	1
Angolo di attrito del terreno d	di fondazione	φ' =	35.00	
Inclinaz. terreno risp. orizzor	ntale (dir trasv)	ωB' =	0.00	°
Inclinaz. terreno risp. orizzor		ωL' =	0.00	o °
Peso specifico del terreno la	tistante la fondazione		·	0
γ'			20.00	kN/m ³
Pressione verticale efficace	a quota imposta fondazion	e q'0 =	0	kPa
Fattori di capacità portante	e			
		Ny =	33.92	
		Nq =	33.30	
		Nc =	68.16	5
Coefficienti di inclinazione	e del carico			
		iγ,B'· =	0.58	
		iq,B' =	0.68	ietà di Progetto
		iγ,L'=	0.78 _{Br}	ebemi SpA
		iq,L' =	0.84	$\forall N$
Coefficienti di forma				\mathcal{I}

interconnessione some	Doc. N. 66128-00002-A00.doc		REV. A00	FOGLIO 128 di 162
		sγ,B' =	0.72	
		sq,B' =	1.37	
		sγ,L' =	0.44	
		sq,L' =	1.50	
Coefficienti di affondame	nto			
		dγ,B' =	1.00	
		dq,B' =	1.00	
		dγ, L' =	1.00	
		dq,L' =	1.00	
Coefficienti per inclinazio	ne terreno			
		$g\gamma,B' = gq,B'$	1.00	
		$g\gamma,L' = gq,L'$	1.00	
Capacità portante limite d	i hase			

$$\begin{array}{ll} q_{limgB'} \\ q_{limgL'} \end{array} \hspace{2cm} = \begin{array}{ll} \frac{1/2 \times g'_{cB'} \times B' \times N_g \times s_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gB'} \times g_{gC'} \times g'_{cL'} \times L' \times N_g \times s_{gL'} \times g_{gC'} \times g'_{gL'} \times g_{gC'} \times g'_{gC'} \times g_{gC'} \times g'_{gC'} \times$$

$q_{\text{lim}\gamma B'}$	266.26	kPa
q _{limyL} ,	228.78	kPa

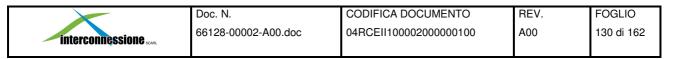
Capacità portante limite per sovraccarico laterale

Capacita portante limite per sovraccarico laterale
$$q_{limq~B'} = \begin{array}{l} q_0' \times N_q \times s_{qB'} \times d_{qB'} \times i_{qB'} \times g_{qB'} \times g$$

0.00 kPa q_{limqB} 0.00 kPa $q_{limqL^{\prime}}$

Nella valutazione del termine di capacità portante $q_{lim\gamma}$ viene assunto $q_{lim\gamma B'}$ o $q_{lim\gamma L'}$ in base al valore calcolato di s_{γ} ; si assumerà l'espressione per la quale risulta $s_{\gamma} > 0.6$.

Nella valutazione del termine di capacità portante q_{limq} tra $q_{limqB'}$ e $q_{limqL'}$ viene scelto quello minore.


	q _{limy} q _{limq}	266.26 kPa 0.00 kPa
Capacità portante a rottura γ _R minimo capacità portante	q _{lim}	266.26 kPa 2.30 Società di Progetto Brebenni SpA
Capacità portante di design	\mathbf{q}_{res_d}	115.77 kPa
Pressione media sollecitante di design	\mathbf{q}_{soll_d}	104.37 kPa

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII100002000000100	A00	129 di 162

FS capacità portante 1.11

Le verifiche risultano soddisfatte

APPRILIVATO BOP

15. MONOPALO ALLA SEZIONE A 246

15.1 Analisi della struttura

Il monopalo oggetto di questo paragrafo è situato alla progressiva 4401.49 e corrisponde alla sezione A 246.

15.1.1 Geometria della struttura

Si riportano le geometrie dei diversi elementi della struttura:

Altezza testata fondazione Larghezza testata in direz. longitudinale Larghezza testata in direz. trasversale Eccentricità testata in direzione trasversale		ersale	Ht = Bt = Lt = e,trasv	=	2.000 0.900 0.900 0.300
Altezza magroi Altezza zattera Larghezza zatt	•	tudinale	Hz0 = Hz = Bz =		0.800 0.600 2.800
•	Larghezza zattera in direz. trasversale		Lz =		2.400
Larghezza cart Altezza cartello Spessore carte)		D1 = D2 = s,cartello) =	4.000 2.000 0.005
Piedritto	lato1 lato2 spessore	I1,piedritto = I1,piedritto = I1,piedritto =	0.220 0.220 0.006	m m m	
Travata	lato1 lato2 spessore	I1,travata = I2,travata = s,travata =	0.150 0.200 0.006	m m m	
Dima	lato1 lato2 spessore	11,dima = 12,dima = s,dima =	0.500 0.500 0.020	m m m	
Traverse	numero diametro spessore	n,traverse = Ø,traverse = s,traverse =	5 0.090 0.004	m m	

Società di Progetto **Brebenii SpA**

m m m m

m m m m

15.1.2 Carichi permanenti

Si riportano i pesi permanenti dei diversi elementi della struttura:

Per il peso proprio struttura si è fatto riferimento alla Tabella 3.1.I delle NTC2008. In particolare per l'acciaio è riportato un peso per unita di volume pari a 78.50 kN/m³ e per l'alluminio è riportato un peso per unita di volume pari a 27.00 kN/m³.

Peso proprio fondazione

Peso specifico calcestruzzo armato	γcls =	25.00	kN/m3
Peso prioprio testata	Ptest =	40.50	kN
Peso proprio zattera	Pzatt =	235.20	kN
Peso totale fondazione	Pt,fond =	275.70	kN
Momento trasversale fondazione	Mtrasv,fond =	12.15	kNm

Peso proprio segnaletica metallica

Peso specifico acciaio Peso proprio traverse Peso proprio travata	γacciaio = Ptraverse = Ptravata =	78.50 0.89 1.32 1.37	kN/m3 kN kN
Peso proprio piedritto Peso proprio dima Peso proprio cartello	Ppiedritto = Pdima = Pcartello =	0.79 3.14	kN kN kN
Peso totale segnaletica metallica Eccentricità limite cartello, travata e traverse	Pt,segn = elim=	7.50 0.10	kN m
Momento trasversale segnaletica	Mtrasv,segn =	2.78	kNm
Sovraccarico del terreno Si considera il seguente sovraccarico dovuto al te	rreno:		APPROD

Sovraccarico del terreno

Peso specifico terreno	γt =	20.00	kN/m3
Altezza media rinterro	hmedia =	0.45	m
Eccentricità rinterro		0.00	m
Peso totale rinterro	Pt,rint =	53.19	kn
Momento trasversale rinterro	Mtrasv,rint =	0.00	kNm

15.1.3 Spinta del rilevato

Si considera l'azione della spinta delle terre sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Angolo di attrito interno del terreno ø'k = 35.00 Tangente angolo di attrito interno tanø'k = 0.70

Società di Progetto

Brebemi SpA

	Doc. N.	CODIFICA DOCUME	ENTO	REV.	FOGLIO
interconnessione scare	66128-00002-A00.doc	04RCEII1000020000	000100	A00	132 di 162
- IIILOI OOMIIIQƏƏIUNO SCAR.					
Coefficiente di spinta attiva	ka	a =	0.27		
Coefficiente moltiplicativo spinta rilevato			1.00		
Spinta totale rilevato	Sr	il =	30.70	kN	
•			43.20		
Momento trasversale rilevato	Mtras	sv,ril =	43.20	kNm	

15.1.4 Spinta dovuta ai sovraccarichi variabili sul rilevato

Si considera l'azione di spinta dovuta ai sovraccarichi variabili sul rilevato sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Carico accidentale rilevato	qaccid =	20.00	kN/m2
Spinta accidentale rilevato totale	Sacc =	18.86	kN
Momento accidentale trasversale	Mtrasv,acc =	33.43	kNm

15.1.5 Azioni da vento

Il D.M. del 14 Gennaio 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo APPROVATO BOP stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fa riferimento al vento nella sola direzione parallela all'asse stradale.

La pressione del vento è data dall'espressione:

$$p = q_b * c_e * c_p * c_d$$

dove:

pressione cinetica di riferimento q_b

coefficiente di esposizione c_{e}

coefficiente di forma (o coefficiente aerodinamico) C_p

coefficiente dinamico C_{d}

La pressione cinetica di riferimento è data dall'espressione:

$$q_b = 0.5 * \rho * V_b^2$$

dove ρ è la densità dell'aria e vale 1,25 kg/m³.

Il coefficiente di esposizione dipende dall'altezza z dal piano di campagna (rilevato compreso, se presente) del punto considerato, dalla topografia e dalla categoria di esposizione.

Risulta:

Zona geografica	1		Società di Progetto
	V _{b,0} =	25.00	mÆsreberni SpA
	$a_0 =$	1000.00	m
	k _a =	0.010	1/s

	Doc. N.	CODIFICA DOCUMENTO		REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII1000020000	000100	A00	133 di 162
	I	L		<u> </u>	
Categoria di esposizione del	sito	II			
		$k_r =$	0.19		
		z ₀ =	0.05	m	
		z _{min} =	4.00	m	
Densità dell'aria		ro =	1.25	kg/m	3
Altitudine slm dove sorge l'opera		as =	150.00	m	
Velocità di riferimento		V _b =	25.00	m/se	C
Pressione cinetica di riferime	nto	qb =	390.63	N/m2	2
Altezza dal piano di campagr	na	z =	10.00	m	
Coefficiente topografico		ct =	1.00		
Coefficiente di esposizione		$c_e(z)max =$	2.35		
Coefficiente dinamico		cd =	1.00		
Coeff. di forma per pressione normale sui pannelli		c _p =	1.80		
Coeff. di forma per pressione	normale sul montante	c _{px} =	2.15		
Pressione del vento pannelli		Pvnt1 =	1.65		

Si assume

Pressione del vento montante

Pressione normale esercitata dal vento sui pannelli: $p_{max} = 1.65 \text{ kPa}$ Pressione normale esercitata dal vento sul montante: $p_{max} = 1.98 \text{ kPa}$

La pressione di calcolo viene applicata come pressione uniforme rispettivamente sulle superfici di esposizione identificate dalla struttura orizzontale e verticale.

Pvnt2 =

1.98

Pertanto:

Azione esercitata sul cartello	FI,vnt1 =	13.23	kN
Azione esercitata sul piedritto	FI,vnt2 =	1.00	kN
Azione totale del vento	FI,vnt =	14.23	kN
Distanza estradosso testata/base cartello	Hc =	2.30	m
Momento longitudinale vento	Mlong,vnt =	93.20	kNm
Momento torcente	Mtorc,vnt =	5.59	kNm

15.1.6 Azioni da neve

La pressione della neve è data dall'espressione:

$$q_{\text{s}} = \mu_{\text{i}} * q_{\text{ek}} * C_{\text{E}} * C_{\text{t}}$$

dove:

q_s carico da neve

 μ_i coefficiente di forma

C_E coefficiente di esposizione

Ct coefficiente termico

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione som	66128-00002-A00.doc	04RCEII100002000000100	A00	134 di 162

Risulta:

Zona geografica	Zona	I	
Coefficiente di esposizione al vento	Ce =	0.90	
Valore caratteristico carico al suolo	qsk =	1.50	kN/m2
Angolo di inclinazione profilo	α =	0.00	0
Coefficienti di forma	μ1 =	0.80	
Coefficiente termico	Ct =	1.00	
Carico uniformemente distribuito	q2k =	0.22	kN/m
Azione della neve	Pneve =	0.86	kN
Momento trasversale neve	Mtrasv,neve =	0.09	kNm

15.1.7 Azioni sismiche

L'azione sismica dovuta alla struttura in elevazione si ottiene mediante la relazione:

 $F_h = S_d * W / g$

Dove:

W = peso della struttura in elevazione

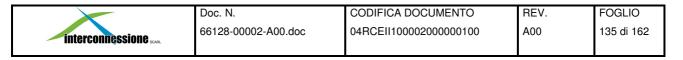
Mentre l'azione sismica dovuta all'inerzia della fondazione si ottiene mediante la relazione:

 $F_h = k_h * W / g$

Dove:

W = peso del plinto di fondazione

La forza orizzontale ottenuta dall'analisi, distribuita sull'altezza della struttura, segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.


Con riferimento ai valori determinati al paragrafo 5.1, l'azione orizzontale dovuta al sisma risulta largamente inferiore all'azione dovuta al vento e pertanto non dimensionante.

15.2 Sollecitazioni e verifiche delle strutture di fondazione

Si riporta l'analisi del plinto di fondazione.

15.2.1 Geometria della fondazione

Per la geometria della fondazione, si rimanda agli elaborati grafici di pertinenza.

15.2.2 Combinazioni di carico

Per le combinazioni di carico si rimanda al paragrafo 6.2.2.

15.2.3 Sollecitazioni sugli elementi strutturali

Nelle tabelle successive vengono riportati, per ciascuna delle combinazioni di carico descritte, i valori assunti dalle componenti di sollecitazione, calcolati secondo il procedimento descritto nel paragrafo "Criteri di calcolo".

Azioni risultanti a spiccato montante

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	9.75	0.00	21.35	67.22	3.62	8.39
SLU - STR (neve)	9.75	0.00	12.81	40.33	3.62	5.03
SLU - GEO (vento)	7.50	0.00	18.50	58.26	2.78	7.27
SLU - GEO (neve)	7.50	0.00	11.10	34.95	2.78	4.36
SLE - RARA	7.50	0.00	14.23	44.81	2.78	5.59
SLE - FREQUENTE	7.50	0.00	2.85	8.96	2.78	1.12
SLE - QUASI PERM.	7.50	0.00	0.00	0.00	2.78	0.00

Azioni risultanti a spiccato baggiolo estradossale di raccordo

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	62.40	27.32	21.35	109.91	26.71	8.39
SLU - STR (neve)	62.40	21.46	12.81	65.95	20.85	5.03
SLU - GEO (vento)	48.00	22.44	18.50	95.26	21.97	7.27
SLU - GEO (neve)	48.00	17.37	11.10	57.16	16.90	4.36
SLE - RARA	48.00	19.51	14.23	73.28	19.04	5.59
SLE - FREQUENTE	48.00	11.71	2.85	14.66	11.24	1.12
SLE - QUASI PERM.	48.00	9.76	0.00	0.00	9.29	0.00

Azioni risultanti ad intradosso fondazione

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	437.95	68.20	21.35	122.72	109.99	8.39
SLU - STR (neve)	438.60	56.88	12.81	73.63	89.99	5.03
SLU - GEO (vento)	336.95	55.22	18.50	106.36	89.50	7.27
SLU - GEO (neve)	337.51	45.41	11.10	63.82	72.17	4.36
SLE - RARA	336.82	49.56	14.23	81.82	79.45	5.59 tà di Progetto
SLE - FREQUENTE	336.39	34.47	2.85	16.36	52.67 Bre	bemi SpA
SLE - QUASI PERM.	336.39	30.70	0.00	0.00	45.98	0.00

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar	66128-00002-A00.doc	04RCEII100002000000100	A00	136 di 162

15.2.4 Verifiche in ambito geotecnico e di equilibrio di corpo rigido

Verifica a ribaltamento

Coefficiente γ_{g1} - Permanente favorevole

Si riportano in seguito i valori dei momenti ribaltanti in direzione trasversale e longitudinale nelle combinazioni relative alla verifica in oggetto:

0.90

18-			
Coefficiente γ_{g1} - Permanente sfavorevole	1.10		
Coefficiente γ_{Q1} - Variabile favorevole	0.00		
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50		
Direzione longitudinale:			
Momento stabilizzante fondazione	Mstab,fond =	385.98	kNm
Momento stabilizzante ioridazione Momento stabilizzante rinterro	Mstab,rint =	363.96 74.47	kNm
	•	10.50	
Momento stabilizzante segnaletica	Mstab,segn =	423.85	kNm
Momento stabilizzante di progetto	MRd =	423.00	kNm
Momento instabilizzante vento	Minstab,vnt =	93.20	kNm
Momento instabilizzante di progetto	MRd =	139.80	kNm
	FSrib,long =	3.03	
Direzione trasversale:			
Momento stabilizzante fondazione	Mstab,fond =	330.84	kNm
Momento stabilizzante rinterro	Mstab,rint =	63.83	kNm
Momento stabilizzante spinte (cautelativamente)	Minstab,vnt =	8.46	kNm
Momento stabilizzante di progetto	Mrd =	362.82	kNm
		0.00	•
Momento instabilizzante neve	Minstab,neve =	0.09	
Momento instabilizzante spinte	Minstab,vnt =	76.63	kNm
Momento instabilizzante di progetto	Msd =	97.79	kNm
	FSrib,trasv =	3.71	

Le verifiche risultano soddisfatte

Verifica a scorrimento del piano di posa

Poiché, nel caso in oggetto, le sollecitazioni di scorrimento sul piano di posa sono duvuti agli effetti delle azioni taglianti agenti nelle due direzioni principali, abbinate alle sollecitazioni di momento torcente, la verifica di scorrimento viene conservativamente condotta in termini tensionali anziché in termini di sollecitazioni globali.

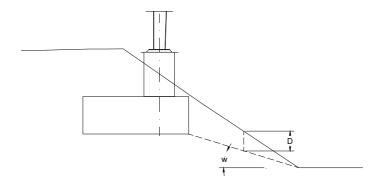
interconnessione 5048.	Doc. N. 66128-00002-A00.doc	04RCEII1000	02000000100	A00	137 di 162
Si esegue la verifica conforme	emente all'appoccio 2 de	el D.M. 14 gen	naio 2008:		
Coefficiente γ_{g1} - Per	manente favorevole		1.00		
Coefficiente γ_{g1} - Per	manente sfavorevole		1.30		
Coefficiente γ _{Q1} - Va		0.00			
Coefficiente γ _{Q1} - Va		1.50			
Sollecitazioni di progetto:					
Sforzo normale totale		N' =	336.39	kN	
Momento in direzione trasver	sale	Mt' =	125.85	kNm	
Taglio in direzione trasversal	е	Tt' =	68.20	kN	
Momento in direzione longitu	dinale	MI' =	139.80	kNm	
Taglio in direzione longitudin	ale	Tl' =	21.35	kN	

CODIEICA DOCUMENTO

DEV

EOGLIO

Risulta pertanto:


Azione totale di taglio in fondazione	Vris =	71.46	kN
Tensione tangenziale dovuta al taglio	τ(V) =	10.63	kN
Tensione tangenziale (massima) dovuta al momento torcente	τ,max(T) =	2.36	kN/mq
Tensione tangenziale totale	τ,tot =	13.00	kN/mq
Sforzo normale unitario di progetto	σ =	50.06	kN/mq
	FS.scorr	2.70	> 1.10

Le verifiche risultano soddisfatte

Verifica per carico limite dell'insieme fondazione-terreno

Si riportano in seguito le verifiche per carico limite dell'insieme fondazione-terreno.

Nel valutare il contributo alla capacità portante, si considera una (eventuale) inclinazione w del terreno rispetto all'orizzontale determinata dalla retta congiungente tra spigolo del plinto lato valle e piede del rilevato. La quota D di affondamento rispetto al piano campagna viene prudenzialmente assunta pari all'altezza media del cuneo di risprimento sviluppantesi lungo lo sviluppo planimemerico dell'(eventuale) rilevato e delimitato inferiormente dalla suddetta retta.

Società di Progetto

Brebenii SpA

Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII100002000000100	A00	138 di 162
		l		
Coefficiente v _{a1} - Pe	rmanente favorevole	1.00		
• •	rmanente sfavorevole	1.30		
Coefficiente γ _{Q1} - Va		0.00		
Coefficiente γ _{Q1} - Va		1.50		
Eccentricità direzione longitu	udinale	e,L' =	0.42	m
Eccentricità direzione trasve	rsale	e,B' =	0.37	m
Dimensioni efficaci fondaz	iono			
Dimensioni emcaci fondazi Dimensione trasversale effici		B' =	1.65	m
Dimensione longitudinale eff		L' =	1.97	m
		_		
Dim. minore della fondazion	e efficace equivalente	B' =	1.65	m
Dim. maggiore della fondazi	one efficace equivalente	L' =	1.97	m
Pressione media sul terrer	20	~	134.47	7 kPa
Pressione media sur terrei	10	q =	104.47	Kra
Affondamento da piano ca	mpagna	D =	0.93	m
Caratteristiche del terreno	di fondazione			
Peso specifico totale del terr	reno di fondazione	γt =	20.00) kN/m ³
Profondità della falda da p.c		zf =	50.00	m
Distanza quota di falda - pia	•	ZW =	49.08	m
Peso specifico efficace base		γ'cB =	20.00	
Peso specifico efficace base		γ'cL =	20.00	4
Angolo di attrito del terreno d	di fondazione	φ' =	35.00	
Inclinaz. terreno risp. orizzor	ntale (dir trasv)	ωB' =	0.00)
Inclinaz. terreno risp. orizzor		ωL' =	0.00	
5 "			•	
Peso specifico del terreno la γ'	itistante la fondazione		20.00	kN/m ³
Pressione verticale efficace	a quota imposta fondazion	e q'0 =	18.5	kPa
Fattori di capacità portanto	e			
-		Nγ =	33.92	2
		Nq =	33.30	
		Nc =	68.16	6
Coefficienti di inclinazione	e del carico			
		iγ,B' _· =	0.47	
		iq,B' =	0.59	ietà di Progetto
		iγ,L'=	0.80 _{Br}	ebemii SpA
		iq,L' =	0.85	$\forall N$
Coefficienti di forma		•		\mathcal{A}

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	139 di 162
		Di .	0.80	
		sγ,B' =		
		sq,B' =	1.28	
		sγ,L' =	0.18	
		sq,L' =	1.58	
Coefficienti di affondamen	nto			
		dγ,B' =	1.00	
		dq,B' =	1.14	
		dγ, L' =	1.00	
		dq,L' =	1.12	
Coefficienti per inclinazion	ne terreno			
		$g\gamma,B' = gq,B'$	1.00	
		$g\gamma,L' = gq,L'$	1.00	
Capacità portante limite di	i base			
q _{limgB'}		$= \frac{\frac{1}{2} \times g'_{cB'} \times B' \times N_g \times s_{gB'} \times}{d_{gB'} \times i_{gB'} \times g_{gB'}}$:	
q _{limgL'}		$= \frac{\frac{1}{2} \times g_{cL'}^{'} \times L' \times N_g \times s_{gL'} \times}{d_{gL'} \times i_{gL'} \times g_{gL'}}$		

Capacità portante limite per sovraccarico laterale

Capacita portante limite per sovraccarico laterale
$$q_{limq~B'} \\ q_{limq~L'} \\ = \begin{array}{l} q_0' \times N_q \times s_{qB'} \times d_{qB'} \times i_{qB'} \times g_{qB'} \times g_{qB$$

q_{limqB'} 528.76 kPa **q**_{limqL'} 928.53 kPa

209.58

97.60

 q_{limyB}

 $q_{lim\gamma L}$

kPa

kPa

Nella valutazione del termine di capacità portante $q_{lim\gamma}$ viene assunto $q_{lim\gamma E'}$ o $q_{lim\gamma E'}$ in base al valore calcolato di s_{γ} ; si assumerà l'espressione per la quale risulta $s_{\gamma} > 0.6$.

Nella valutazione del termine di capacità portante q_{limq} tra $q_{limqB'}$ e $q_{limqL'}$ viene scelto quello minore.

	q _{limy} q _{limq}	209.58 kPa 528.76 kPa
Capacità portante a rottura γ _R minimo capacità portante	q _{lim}	738.34 kPa 2.30 Società di Progetto Brebemii SpA
Capacità portante di design	\mathbf{q}_{res_d}	321.02 kPa
Pressione media sollecitante di design	\mathbf{q}_{soll_d}	134.47 kPa

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione som	66128-00002-A00.doc	04RCEII100002000000100	A00	140 di 162

FS capacità portante 2.39

Le verifiche risultano soddisfatte

APPRUVATO BOP

16. MONOPALO ALLA SEZIONE A 234

16.1 Analisi della struttura

Il monopalo oggetto di questo paragrafo è situato alla progressiva 4162.19 e corrisponde alla sezione A 234.

16.1.1 Geometria della struttura

Si riportano le geometrie dei diversi elementi della struttura:

Altezza testata fondazione Larghezza testata in direz. longitudinale Larghezza testata in direz. trasversale Eccentricità testata in direzione trasversale			Ht = Bt = Lt = e,trasv	=	1.600 0.900 0.900 0.300
Altezza magrone di pulizia Altezza zattera fondazione Larghezza zattera in direz. longitudinale Larghezza zattera in direz. trasversale			Hz0 = Hz = Bz = Lz =		0.100 0.600 2.800 2.400
Larghezza cartello Altezza cartello Spessore cartello			D1 = D2 = s,cartello		3.000 2.250 0.005
Piedritto	lato1 lato2 spessore	I1,piedritto = I1,piedritto = I1,piedritto =	0.220 0.220 0.006	m m m	
Travata	lato1 lato2 spessore	I1,travata = I2,travata = s,travata =	0.150 0.200 0.006	m m m	
Dima	lato1 lato2 spessore	11,dima = 12,dima = s,dima =	0.500 0.500 0.020	m m m	
Traverse	numero diametro spessore	n,traverse = ø,traverse = s,traverse =	5 0.090 0.004	m m	

Società di Progetto **Brebenii SpA**

m m m m

m m m m

16.1.2 Carichi permanenti

Si riportano i pesi permanenti dei diversi elementi della struttura:

Per il peso proprio struttura si è fatto riferimento alla Tabella 3.1.I delle NTC2008. In particolare per l'acciaio è riportato un peso per unita di volume pari a 78.50 kN/m³ e per l'alluminio è riportato un peso per unita di volume pari a 27.00 kN/m³.

Peso proprio fondazione

Peso specifico calcestruzzo armato	γcls =	25.00	kN/m3
Peso proprio testata	Ptest =	32.40	kN
Peso proprio zattera	Pzatt =	117.60	kN
Peso totale fondazione	Pt,fond =	150.00	kN
Momento trasversale fondazione	Mtrasv,fond =	9.72	kNm

Peso proprio segnaletica metallica

Peso specifico acciaio	γacciaio =	78.50	kN/m3	
Peso proprio traverse	Ptraverse =	1.00	kN	
Peso proprio travata	Ptravata =	0.99	kN	
Peso proprio piedritto	Ppiedritto =	1.42	kN	
Peso proprio dima	Pdima =	0.79	kN	
Peso proprio cartello	Pcartello =	2.65	kN	
Peso totale segnaletica metallica	Pt,segn =	6.84	kN	
Eccentricità limite cartello, travata e traverse	elim=	0.10	m	
Momento trasversale segnaletica	Mtrasv,segn =	2.52	kNm	
			APPROD	
Sovraccarico del terreno			P	
Si considera il seguente sovraccarico dovuto al te	rreno:		Y	

Sovraccarico del terreno

Peso specifico terreno	γt =	20.00	kN/m3
Altezza media rinterro	hmedia =	0.50	m
Eccentricità rinterro		0.00	m
Peso totale rinterro	Pt,rint =	59.10	kn
Momento trasversale rinterro	Mtrasv,rint =	0.00	kNm

16.1.3 Spinta del rilevato

Si considera l'azione della spinta delle terre sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Angolo di attrito interno del terreno ø'k = 35.00 Tangente angolo di attrito interno tanø'k = 0.70

Società di Progetto

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scal	66128-00002-A00.doc	04RCEII100002000000100	A00	143 di 162
THE STATE STATE				
Coefficiente di spinta attiva	ka	0.27	7	
Coefficiente moltiplicativo spi	nta rilevato	1.00)	
·				
Spinta totale rilevato	Sri	l = 23.5	4 kN	J
Momento trasversale rilevato	Mtras	v,ril = 14.63	2 kN	m

16.1.4 Spinta dovuta ai sovraccarichi variabili sul rilevato

Si considera l'azione di spinta dovuta ai sovraccarichi variabili sul rilevato sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Carico accidentale rilevato	qaccid =	20.00	kN/m2
Spinta accidentale rilevato totale	Sacc =	16.91	kN
Momento accidentale trasversale	Mtrasv,acc =	15.35	kNm

16.1.5 Azioni da vento

Il D.M. del 14 Gennaio 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo APPROVATO BOP stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fa riferimento al vento nella sola direzione parallela all'asse stradale.

La pressione del vento è data dall'espressione:

$$p = q_b * c_e * c_p * c_d$$

dove:

pressione cinetica di riferimento q_b

coefficiente di esposizione c_{e}

coefficiente di forma (o coefficiente aerodinamico) C_p

coefficiente dinamico C_{d}

La pressione cinetica di riferimento è data dall'espressione:

$$q_b = 0.5 * \rho * V_b^2$$

dove ρ è la densità dell'aria e vale 1,25 kg/m³.

Il coefficiente di esposizione dipende dall'altezza z dal piano di campagna (rilevato compreso, se presente) del punto considerato, dalla topografia e dalla categoria di esposizione.

Risulta:

Zona geografica	1		Società di Progetto
	v _{b,0} =	25.00	mÆsreberni SpA
	a ₀ =	1000.00	m
	k ₂ =	0.010	1/s

	Doc. N.	CODIFICA DOCUMENTO 04RCEII100002000000100		REV.	FOGLIO
interconnessione scar	66128-00002-A00.doc			A00	144 di 162
		1		<u> </u>	<u> </u>
Categoria di esposizione del	sito	II			
		$k_r =$	0.19		
		z ₀ =	0.05	m	
		z _{min} =	4.00	m	
Densità dell'aria		ro =	1.25	kg/m	3
Altitudine slm dove sorge l'op	era	as =	150.00	m ng/iii	
Velocità di riferimento		$V_b =$	25.00	m/se	С
Pressione cinetica di riferime	nto	qb =	390.63	N/m2	2
Altezza dal piano di campagn	ıa	z =	10.00	m	
Coefficiente topografico		ct =	1.00		
Coefficiente di esposizione		$c_e(z)max =$	2.35		
Coefficiente dinamico		cd =	1.00		
Coeff. di forma per pressione normale sui pannelli		C _p =	1.80		
Coeff. di forma per pressione	normale sul montante	c _{px} =	2.15		
Pressione del vento pannelli		Pvnt1 =	1.65		
Pressione del vento montante	e	Pvnt2 =	1.98		

Si assume

Pressione normale esercitata dal vento sui pannelli: $p_{max} = 1.65 \text{ kPa}$ Pressione normale esercitata dal vento sul montante: $p_{max} = 1.98 \text{ kPa}$

La pressione di calcolo viene applicata come pressione uniforme rispettivamente sulle superfici di esposizione identificate dalla struttura orizzontale e verticale.

Pertanto:

Azione esercitata sul cartello	FI,vnt1 =	11.16	kN
Azione esercitata sul piedritto	FI,vnt2 =	1.00	kN
Azione totale del vento	FI,vnt =	12.16	kN
Distanza estradosso testata/base cartello	Hc =	2.30	m
Momento longitudinale vento	Mlong,vnt =	67.36	kNm
Momento torcente	Mtorc,vnt =	4.77	kNm

16.1.6 Azioni da neve

La pressione della neve è data dall'espressione:

$$q_{\text{s}} = \mu_{\text{i}} * q_{\text{ek}} * C_{\text{E}} * C_{\text{t}}$$

dove:

q_s carico da neve

 μ_i coefficiente di forma

C_E coefficiente di esposizione

Ct coefficiente termico

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione sam	66128-00002-A00.doc	04RCEII100002000000100	A00	145 di 162

Risulta:

Zona geografica	Zona	1	
Coefficiente di esposizione al vento	Ce =	0.90	
Valore caratteristico carico al suolo	qsk =	1.50	kN/m2
Angolo di inclinazione profilo	α =	0.00	•
Coefficienti di forma	μ1 =	0.80	
Coefficiente termico	Ct =	1.00	
Carico uniformemente distribuito	q2k =	0.22	kN/m
Azione della neve	Pneve =	0.65	kN
Momento trasversale neve	Mtrasv,neve =	0.06	kNm

16.1.7 Azioni sismiche

L'azione sismica dovuta alla struttura in elevazione si ottiene mediante la relazione:

 $F_h = S_d * W / g$

Dove:

W = peso della struttura in elevazione

Mentre l'azione sismica dovuta all'inerzia della fondazione si ottiene mediante la relazione:

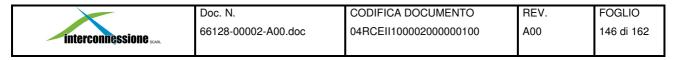
 $F_h = k_h * W / g$

Dove:

W = peso del plinto di fondazione

La forza orizzontale ottenuta dall'analisi, distribuita sull'altezza della struttura, segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.

Con riferimento ai valori determinati al paragrafo 5.1, l'azione orizzontale dovuta al sisma risulta largamente inferiore all'azione dovuta al vento e pertanto non dimensionante.


16.2 Sollecitazioni e verifiche delle strutture di fondazione

Si riporta l'analisi del plinto di fondazione.

16.2.1 Geometria della fondazione

Per la geometria della fondazione, si rimanda agli elaborati grafici di pertinenza.

Società di Progetto **Brebenii SpA**

16.2.2 Combinazioni di carico

Per le combinazioni di carico si rimanda al paragrafo 6.2.2.

16.2.3 Sollecitazioni sugli elementi strutturali

Nelle tabelle successive vengono riportati, per ciascuna delle combinazioni di carico descritte, i valori assunti dalle componenti di sollecitazione, calcolati secondo il procedimento descritto nel paragrafo "Criteri di calcolo".

Azioni risultanti a spiccato montante

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	8.89	0.00	18.25	59.08	3.27	7.15
SLU - STR (neve)	8.89	0.00	10.95	35.45	3.27	4.29
SLU - GEO (vento)	6.84	0.00	15.81	51.20	2.52	6.20
SLU - GEO (neve)	6.84	0.00	9.49	30.72	2.52	3.72
SLE - RARA	6.84	0.00	12.16	39.39	2.52	4.77
SLE - FREQUENTE	6.84	0.00	2.43	7.88	2.52	0.95
SLE - QUASI PERM.	6.84	0.00	0.00	0.00	2.52	0.00

Azioni risultanti a spiccato baggiolo estradossale di raccordo

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	51.01	19.82	18.25	88.27	16.97	7.15
SLU - STR (neve)	51.01	15.14	10.95	52.96	13.22	4.29
SLU - GEO (vento)	39.24	16.39	15.81	76.50	13.96	6.20
SLU - GEO (neve)	39.24	12.33	9.49	45.90	10.72	3.72
SLE - RARA	39.24	14.05	12.16	58.85	12.09	4.77
SLE - FREQUENTE	39.24	7.80	2.43	11.77	7.09	0.95
SLE - QUASI PERM.	39.24	6.24	0.00	0.00	5.85	0.00

Azioni risultanti ad intradosso fondazione

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	281.21	55.97	18.25	99.22	45.35	7.15
SLU - STR (neve)	281.70	45.83	10.95	59.53	36.19	4.29
SLU - GEO (vento)	216.36	45.53	15.81	85.99	37.13	6.20
SLU - GEO (neve)	216.78	36.73	9.49	51.59	29.19	3.72
SLE - RARA	216.27	40.45	12.16	66.15	32.52	4.77 tà di Progetto
SLE - FREQUENTE	215.94	26.93	2.43	13.23	20.21 Bre	0.95 bemi SpA
SLE - QUASI PERM.	215.94	23.54	0.00	0.00	17.14	0.00

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	147 di 162

16.2.4 Verifiche in ambito geotecnico e di equilibrio di corpo rigido

Verifica a ribaltamento

Coefficiente γ_{g1} - Permanente favorevole

Si riportano in seguito i valori dei momenti ribaltanti in direzione trasversale e longitudinale nelle combinazioni relative alla verifica in oggetto:

0.90

•			
Coefficiente γ_{g1} - Permanente sfavorevole	1.10		
Coefficiente γ_{Q1} - Variabile favorevole	0.00		
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50		
Direzione longitudinale:			
Momento stabilizzante fondazione	Mstab,fond =	210.00	kNm
Momento stabilizzante rinterro	Mstab,rint =	82.74	kNm
Momento stabilizzante segnaletica	Mstab,segn =	9.58	kNm
Momento stabilizzante di progetto	MRd =	272.09	kNm
Momento instabilizzante vento	Minstab,vnt =	67.36	kNm
Momento instabilizzante di progetto	MRd =	101.05	kNm
	FSrib,long =	2.69	
Direzione trasversale:			
Momento stabilizzante fondazione	Mstab,fond =	180.00	kNm
Momento stabilizzante rinterro	Mstab,rint =	70.92	kNm
Momento stabilizzante spinte (cautelativamente)	Minstab,vnt =	7.75	kNm
Momento stabilizzante di progetto	Mrd =	232.80	kNm
Momento instabilizzante neve	Minstab,neve =	0.06	
Momento instabilizzante spinte	Minstab,vnt =	29.97	kNm
Momento instabilizzante di progetto	Msd =	39.20	kNm
	FSrib,trasv =	5.94	

Le verifiche risultano soddisfatte

Verifica a scorrimento del piano di posa

Poiché, nel caso in oggetto, le sollecitazioni di scorrimento sul piano di posa sono duvuti agli effetti delle azioni taglianti agenti nelle due direzioni principali, abbinate alle sollecitazioni di momento torcente la verifica di scorrimento viene conservativamente condotta in termini tensionali anziché in termini di sollecitazioni globali.

interconnessione some	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
	66128-00002-A00.doc	04RCEII100002200000100	A00	148 di 162
				I

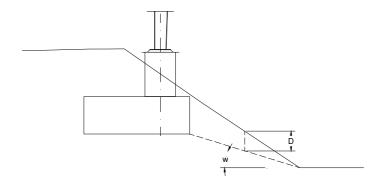
Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

Coefficiente γ_{g1} - Permanente favorevole	1.00
Coefficiente γ_{g1} - Permanente sfavorevole	1.30
Coefficiente γ_{Q1} - Variabile favorevole	0.00
Coefficiente γ _{Q1} - Variabile sfavorevole	1.50

Sollecitazioni di progetto:

Sforzo normale totale	N' =	215.94	kN
Momento in direzione trasversale	Mt' =	58.03	kNm
Taglio in direzione trasversale	Tt' =	55.97	kN
Momento in direzione longitudinale	MI' =	101.05	kNm
Taglio in direzione longitudinale	Tl' =	18.25	kN

Risulta pertanto:


Azione totale di taglio in fondazione Tensione tangenziale dovuta al taglio	Vris =	58.87	kN
	τ(V) =	8.76	kN
Tensione tangenziale (massima) dovuta al momento torcente	τ,max(T) =	2.01	kN/mq
Tensione tangenziale totale	τ,tot =	10.77	kN/mq
Sforzo normale unitario di progetto	σ =	32.13	kN/mq
	FS,scorr	2.09	> 1.10

Le verifiche risultano soddisfatte

Verifica per carico limite dell'insieme fondazione-terreno

Si riportano in seguito le verifiche per carico limite dell'insieme fondazione-terreno.

Nel valutare il contributo alla capacità portante, si considera una (eventuale) inclinazione w del terreno rispetto all'orizzontale determinata dalla retta congiungente tra spigolo del plinto lato valle e piede del rilevato. La quota D di affondamento rispetto al piano campagna viene prudenzialmente assunta pari all'altezza media del cuneo di risprimento sviluppantesi lungo lo sviluppo planimemerico dell'(eventuale) rilevato e delimitato inferiormente dalla suddetta retta.

Società di Progetto

Brebenii SpA

Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar	66128-00002-A00.doc	04RCEII100002000000100	A00	149 di 162
		<u> </u>		
Coefficiente v _{a1} - Pe	ermanente favorevole	1.00		
· ·	ermanente sfavorevole	1.30		
Coefficiente γ_{Q1} - V		0.00		
	ariabile sfavorevole	1.50		
Occinciente you	anablic stavorevoic	1.50		
Eccentricità direzione longit	tudinale	e,L' =	0.47	m
Eccentricità direzione trasv		e,B' =	0.27	m
		,		
Dimensioni efficaci fonda	zione			
Dimensione trasversale effi	cace	B' =	1.86	m
Dimensione longitudinale e	fficace	L' =	1.86	m
D				
Dim. minore della fondazion	·	B' =	1.86	m
Dim. maggiore della fondaz	none etticace equivalente	L' =	1.86	m
Pressione media sul terre	uno.	a –	80.8	5 kPa
riessione media sui terre	:IIO	q =	00.00) KFa
Affondamento da piano campagna		D =	0.6	m
•				
Caratteristiche del terreno			00.04	N 1 N1/ 3
Peso specifico totale del ter		γt =	20.00	
Profondità della falda da p.o		zf =	50.00	m m
Distanza quota di falda - pia		ZW =	49.40	m) kN/m³ _
Peso specifico efficace bas		γ'cB =	20.00	
Peso specifico efficace bas		γ'cL =	20.00	4 5
Angolo di attrito del terreno	di iondazione	φ' =	35.00	
Inclinaz. terreno risp. orizzo	ontale (dir trasv)	ωB' =	8.00	° .
Inclinaz. terreno risp. orizzo		ωL' =	0.00	
·	, Θ,		Y	
Peso specifico del terreno l	atistante la fondazione		20.00	kN/m³
γ' Pressione verticale efficace	a quota imposta fondazion	q'0 =	12	kPa
		·		
Fattori di capacità portant	te			
		Νγ =	33.92	
		Nq =	33.30	
		Nc =	68.16	5
Coefficienti di inclinazion	e del carico			
		iγ,B'· =	0.37	
		iq,B' =		ietà di Progetto
		iγ,L'=		ietà di Progetto ebemi SpA
			0.81	enemii Shw
Ocaticis at at t		iq,L' =	5.5	

Coefficienti di forma

	T		T==::	
	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione scar.	66128-00002-A00.doc	04RCEII100002000000100	A00	150 di 162
		D.	0.80	
		sγ,B' =		
		sq,B' =	1.29	
		sγ,L' =	0.20	
		sq,L' =	1.46	
Coefficienti di affondamen	to			
		dγ,B' =	1.00	
		dq,B' =	1.08	
		dγ, L' =	1.00	
		dq,L' =	1.08	
Coefficienti per inclinazion	e terreno			
		$g\gamma,B' = gq,B'$	0.69	
		$g\gamma,L' = gq,L'$	1.00	
Capacità portante limite di	base			
q _{limgB} ,		$= \frac{\frac{1}{2} \times g'_{cB'} \times B' \times N_g \times s_{gB'}}{d_{gB'} \times i_{gB'} \times g_{gB'}}$	<	
$q_{limgL'}$		$= \frac{\frac{1}{2} \times g_{cL'} \times L' \times N_g \times s_{gL'} \times}{d_{gL'} \times i_{gL'} \times g_{gL'}}$		

Capacità portante limite per sovraccarico laterale

Q _{limq B'}	=	$q_0' \times N_q \times s_{qB'} \times d_{qB'} \times i_{qB'} \times g_{qB'}$
q _{limq L'}	=	q_0 '× N_q × $s_{qL'}$ × $d_{qL'}$ × $i_{qL'}$ × $g_{qL'}$

kPa 192.99 q_{limqB} 509.56 kPa $q_{limqL^{\prime}}$

129.16

91.77

 $q_{\text{lim}\gamma B^{\prime}}$

 $q_{\text{lim}\gamma L^{,}}$

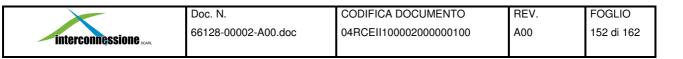
kPa

kPa

Nella valutazione del termine di capacità portante $q_{lim\gamma}$ viene assunto $q_{lim\gamma B'}$ o $q_{lim\gamma L'}$ in base al valore calcolato di s_{γ} ; si assumerà l'espressione per la quale risulta $s_{\gamma} > 0.6$.

Nella valutazione del termine di capacità portante q_{limq} tra $q_{limqB'}$ e $q_{limqL'}$ viene scelto quello minore.

	q _{limγ} q _{limq}	129.16 kPa 192.99 kPa
Capacità portante a rottura γ _R minimo capacità portante	\mathbf{q}_{lim}	322.15 kPa 2.30 Società di Progetto Brebemi SpA
Capacità portante di design	\mathbf{q}_{res_d}	140.06 kPa
Pressione media sollecitante di design	\mathbf{q}_{soll_d}	80.85 kPa


	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione som	66128-00002-A00.doc	04RCEII100002000000100	A00	151 di 162

FS capacità portante 1.73

Le verifiche risultano soddisfatte

APPRILIVATIO BOP

Società di Progetto Breberni SpA

17. MONOPALO ALLA SEZIONE A 60

17.1 Analisi della struttura

Il monopalo oggetto di questo paragrafo è situato alla progressiva 1079.63 e corrisponde alla sezione A 60.

17.1.1 Geometria della struttura

Si riportano le geometrie dei diversi elementi della struttura:

Altezza testata fondazione Larghezza testata in direz. longitudinale Larghezza testata in direz. trasversale Eccentricità testata in direzione trasversale		Ht = Bt = Lt = e,trasv =		2.000 0.900 0.900 0.300	
Altezza magrone di pulizia Altezza zattera fondazione Larghezza zattera in direz. longitudinale Larghezza zattera in direz. trasversale		Hz0 = Hz = Bz = Lz =		0.800 0.600 2.800 2.400	
Larghezza cartello Altezza cartello Spessore carte)		D1 = D2 = s,cartello =		3.000 2.750 0.005
Piedritto	lato1 lato2 spessore	I1,piedritto = I1,piedritto = I1,piedritto =	0.220 0.220 0.006	m m m	
Travata	lato1 lato2 spessore	I1,travata = I2,travata = s,travata =	0.150 0.200 0.006	m m m	
Dima	lato1 lato2 spessore	I1,dima = I2,dima = s,dima =	0.500 0.500 0.020	m m m	
Traverse	numero diametro spessore	n,traverse = Ø,traverse = s,traverse =	5 0.090 0.004	m m	

Società di Progetto

Brebenii SpA

m m m m

m m m m

17.1.2 Carichi permanenti

Si riportano i pesi permanenti dei diversi elementi della struttura:

Per il peso proprio struttura si è fatto riferimento alla Tabella 3.1.I delle NTC2008. In particolare per l'acciaio è riportato un peso per unita di volume pari a 78.50 kN/m³ e per l'alluminio è riportato un peso per unita di volume pari a 27.00 kN/m³.

Peso proprio fondazione

Peso specifico calcestruzzo armato	γcls =	25.00	kN/m3
Peso proprio testata	Ptest =	40.50	kN
Peso proprio zattera	Pzatt =	235.20	kN
Peso totale fondazione	Pt,fond =	275.70	kN
Momento trasversale fondazione	Mtrasv,fond =	12.15	kNm

Peso proprio segnaletica metallica

γacciaio =	78.50	kN/m3
Piraverse =		kN
Ptravata =	0.99	kN
Ppiedritto =	1.52	kN
Pdima =	0.79	kN
Pcartello =	3.24	kN
Pt,segn =	7.76	kN
elim=		m
Mtrasv,segn =	2.87	kNm
		APPROV
		AP.
reno:		V
	Ptraverse = Ptravata = Ppiedritto = Pdima = Pcartello = Pt,segn = elim= Mtrasv,segn =	Ptraverse = 1.22 Ptravata = 0.99 Ppiedritto = 1.52 Pdima = 0.79 Pcartello = 3.24 Pt,segn = 7.76 elim = 0.10 Mtrasv,segn = 2.87

Sovraccarico del terreno

Peso specifico terreno	yt =	20.00	kN/m3
Altezza media rinterro	hmedia =	0.70	m
Eccentricità rinterro		0.00	m
Peso totale rinterro	Pt,rint =	82.74	kn
Momento trasversale rinterro	Mtrasv,rint =	0.00	kNm

17.1.3 Spinta del rilevato

Si considera l'azione della spinta delle terre sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Angolo di attrito interno del terreno ø'k = 35.00 Tangente angolo di attrito interno tanø'k = 0.70

Società di Progetto

	Doc. N.	CODIFICA DOCUME	INTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII1000020000	00100	A00	154 di 162
		<u> </u>			
Coefficiente di cointe attiva	- ا		0.07		
Coefficiente di spinta attiva		l =	0.27		
Coefficiente moltiplicativo spir	nta rilevato		1.00		
Spinta totale rilevato	Sri	il =	30.70	kN	
Momento trasversale rilevato	Mtras	sv,ril =	43.20	kNm	

17.1.4 Spinta dovuta ai sovraccarichi variabili sul rilevato

Si considera l'azione di spinta dovuta ai sovraccarichi variabili sul rilevato sulla superficie verticale del pinto di fondazione lato strada.

Risulta:

Carico accidentale rilevato	qaccid =	20.00	kN/m2
Spinta accidentale rilevato totale	Sacc =	18.86	kN
Momento accidentale trasversale	Mtrasv,acc =	33.43	kNm

17.1.5 Azioni da vento

Il D.M. del 14 Gennaio 2008 al punto 3.3, fornisce indicazioni per il calcolo della velocità di riferimento e della velocità media del vento. L'azione statica equivalente del vento è ricavabile, secondo quanto indicato dallo APPROVATO BOP stesso documento, in funzione della velocità calcolata. Ai fini del calcolo delle sollecitazioni si fa riferimento al vento nella sola direzione parallela all'asse stradale.

La pressione del vento è data dall'espressione:

$$p = q_b * c_e * c_p * c_d$$

dove:

pressione cinetica di riferimento q_b

coefficiente di esposizione c_{e}

coefficiente di forma (o coefficiente aerodinamico) C_p

coefficiente dinamico C_{d}

La pressione cinetica di riferimento è data dall'espressione:

$$q_b = 0.5 * \rho * V_b^2$$

dove ρ è la densità dell'aria e vale 1,25 kg/m³.

Il coefficiente di esposizione dipende dall'altezza z dal piano di campagna (rilevato compreso, se presente) del punto considerato, dalla topografia e dalla categoria di esposizione.

Risulta:

Zona geografica	I		Società di Progetto
	V _{b,0} =	25.00	mÆrebemi SpA
	a ₀ =	1000.00	m /
	k _a =	0.010	1/s

	Doc. N.	CODIFICA DOCUME	ENTO	REV.	FOGLIO
interconnessione same	66128-00002-A00.doc	04RCEII1000020000	000100	A00	155 di 162
	•	1		•	•
Categoria di esposizione del	sito	II			
		$k_r =$	0.19		
		z ₀ =	0.05	m	
		z _{min} =	4.00	m	
Densità dell'aria		ro =	1.25	kg/m	3
Altitudine slm dove sorge l'op	oera	as =	150.00	m	
Velocità di riferimento		$V_b =$	25.00	m/se	С
Pressione cinetica di riferime	ento	qb =	390.63	N/m²	
Altezza dal piano di campag	na	z =	10.00	m	
Coefficiente topografico		ct =	1.00		
Coefficiente di esposizione		$c_e(z)max =$	2.35		
Coefficiente dinamico		cd =	1.00		
Coeff. di forma per pressione	e normale sui pannelli	c _p =	1.80		
Coeff. di forma per pressione	e normale sul montante	C _{px} =	2.15		
Pressione del vento pannelli		Pvnt1 =	1.65		
Pressione del vento montant		Pvnt2 =	1.98		

Si assume

Pressione normale esercitata dal vento sui pannelli: $p_{max} = 1.65 \text{ kPa}$ Pressione normale esercitata dal vento sul montante: $p_{max} = 1.98 \text{ kPa}$

La pressione di calcolo viene applicata come pressione uniforme rispettivamente sulle superfici di esposizione identificate dalla struttura orizzontale e verticale.

Pertanto:

Azione esercitata sul cartello	FI,vnt1 =	13.65	kN
Azione esercitata sul piedritto	FI,vnt2 =	1.00	kN
Azione totale del vento	FI,vnt =	14.64	kN
Distanza estradosso testata/base cartello	Hc =	2.30	m
Momento longitudinale vento	Mlong,vnt =	101.09	kNm
Momento torcente	Mtorc,vnt =	5.76	kNm

17.1.6 Azioni da neve

La pressione della neve è data dall'espressione:

$$q_{\text{s}} = \mu_{\text{i}} * q_{\text{ek}} * C_{\text{E}} * C_{\text{t}}$$

dove:

q_s carico da neve

 μ_i coefficiente di forma

C_E coefficiente di esposizione

Ct coefficiente termico

Società di Progetto

Brebenii SpA

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione som	66128-00002-A00.doc	04RCEII100002000000100	A00	156 di 162

Risulta:

Zona geografica	Zona	1	
Coefficiente di esposizione al vento	Ce =	0.90	
Valore caratteristico carico al suolo	qsk =	1.50	kN/m2
Angolo di inclinazione profilo	α =	0.00	•
Coefficienti di forma	μ1 =	0.80	
Coefficiente termico	Ct =	1.00	
Carico uniformemente distribuito	q2k =	0.22	kN/m
Azione della neve	Pneve =	0.65	kN
Momento trasversale neve	Mtrasv,neve =	0.06	kNm

17.1.7 Azioni sismiche

L'azione sismica dovuta alla struttura in elevazione si ottiene mediante la relazione:

 $F_h = S_d * W / g$

Dove:

W = peso della struttura in elevazione

Mentre l'azione sismica dovuta all'inerzia della fondazione si ottiene mediante la relazione:

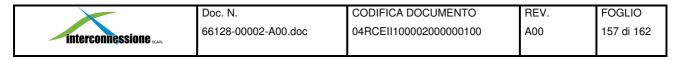
 $F_h = k_h * W / g$

Dove:

W = peso del plinto di fondazione

La forza orizzontale ottenuta dall'analisi, distribuita sull'altezza della struttura, segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.

Con riferimento ai valori determinati al paragrafo 5.1, l'azione orizzontale dovuta al sisma risulta largamente inferiore all'azione dovuta al vento e pertanto non dimensionante.


17.2 Sollecitazioni e verifiche delle strutture di fondazione

Si riporta l'analisi del plinto di fondazione.

17.2.1 Geometria della fondazione

Per la geometria della fondazione, si rimanda agli elaborati grafici di pertinenza.

Società di Progetto Brebenii SpA

17.2.2 Combinazioni di carico

Per le combinazioni di carico si rimanda al paragrafo 6.2.2.

17.2.3 Sollecitazioni sugli elementi strutturali

Nelle tabelle successive vengono riportati, per ciascuna delle combinazioni di carico descritte, i valori assunti dalle componenti di sollecitazione, calcolati secondo il procedimento descritto nel paragrafo "Criteri di calcolo".

Azioni risultanti a spiccato montante

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	10.08	0.00	21.97	76.94	3.73	8.64
SLU - STR (neve)	10.08	0.00	13.18	46.17	3.73	5.18
SLU - GEO (vento)	7.76	0.00	19.04	66.68	2.87	7.49
SLU - GEO (neve)	7.76	0.00	11.42	40.01	2.87	4.49
SLE - RARA	7.76	0.00	14.64	51.30	2.87	5.76
SLE - FREQUENTE	7.76	0.00	2.93	10.26	2.87	1.15
SLE - QUASI PERM.	7.76	0.00	0.00	0.00	2.87	0.00

Azioni risultanti a spiccato baggiolo estradossale di raccordo

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	62.73	27.32	21.97	120.88	26.82	8.64
SLU - STR (neve)	62.73	21.46	13.18	72.53	20.97	5.18
SLU - GEO (vento)	48.26	22.44	19.04	104.76	22.06	7.49
SLU - GEO (neve)	48.26	17.37	11.42	62.86	16.98	4.49
SLE - RARA	48.26	19.51	14.64	80.58	19.13	5.76
SLE - FREQUENTE	48.26	11.71	2.93	16.12	11.33	1.15
SLE - QUASI PERM.	48.26	9.76	0.00	0.00	9.38	0.00

Azioni risultanti ad intradosso fondazione

	N (kN)	Tx (kN)	Ty (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
SLU - STR (vento)	476.54	68.20	21.97	134.06	110.08	8.64
SLU - STR (neve)	477.03	56.88	13.18	80.43	90.07	5.18
SLU - GEO (vento)	366.62	55.22	19.04	116.18	89.57	7.49
SLU - GEO (neve)	367.04	45.41	11.42	69.71	72.23	4.49
SLE - RARA	366.52	49.56	14.64	89.37	79.53	5.76 tà di Progetto
SLE - FREQUENTE	366.20	34.47	2.93	17.87	52.76 Bre	bemi SpA
SLE - QUASI PERM.	366.20	30.70	0.00	0.00	46.07	0.00

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione	66128-00002-A00.doc	04RCEII100002000000100	A00	158 di 162

17.2.4 Verifiche in ambito geotecnico e di equilibrio di corpo rigido

Verifica a ribaltamento

Coefficiente γ_{g1} - Permanente favorevole

Si riportano in seguito i valori dei momenti ribaltanti in direzione trasversale e longitudinale nelle combinazioni relative alla verifica in oggetto:

0.90

esemente (gr. 1 ermanente lavorevoie	0.50		
Coefficiente γ_{g1} - Permanente sfavorevole	1.10		
Coefficiente γ_{Q1} - Variabile favorevole	0.00		
Coefficiente γ_{Q1} - Variabile sfavorevole	1.50		
Direzione longitudinale:			
Momento stabilizzante fondazione	Mstab,fond =	385.98	kNm
Momento stabilizzante rinterro	Mstab,rint =	115.84	kNm
Momento stabilizzante segnaletica	Mstab,segn =	10.86	kNm
Momento stabilizzante di progetto	MRd =	461.41	kNm
Momento instabilizzante vento	Minstab,vnt =	101.09	kNm
Momento instabilizzante di progetto	MRd =	151.63	kNm
	FSrib,long =	3.04	
Direzione trasversale:			
Momento stabilizzante fondazione	Mstab,fond =	330.84	kNm
Momento stabilizzante rinterro	Mstab,rint =	99.29	kNm
Momento stabilizzante spinte (cautelativamente)	Minstab,vnt =	8.76	kNm
Momento stabilizzante di progetto	Mrd =	395.00	kNm
Momento instabilizzante neve	Minstab,neve =	0.06	
Momento instabilizzante spinte	Minstab,vnt =	76.63	kNm
Momento instabilizzante di progetto	Msd =	97.76	kNm
	FSrib,trasv =	4.04	

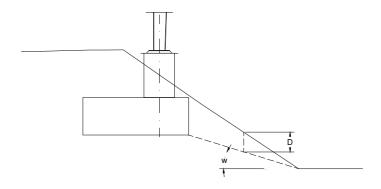
Le verifiche risultano soddisfatte

Verifica a scorrimento del piano di posa

Poiché, nel caso in oggetto, le sollecitazioni di scorrimento sul piano di posa sono duvuti agli effetti delle azioni taglianti agenti nelle due direzioni principali, abbinate alle sollecitazioni di momento torcente la verifica di scorrimento viene conservativamente condotta in termini tensionali anziché in termini di sollecitazioni globali.

	Doc. N.	CODIFICA DO	OCUMENTO	REV.	FOGLIO
interconnessione same	66128-00002-A00.doc	04RCEII1000	0200000100	A00	159 di 162
Si esegue la verifica conforme	mente all'appoccio 2 de	I D.M. 14 gen	naio 2008:		
Coefficiente γ _{g1} - Pern	nanente favorevole		1.00		
Coefficiente γ _{g1} - Pern	nanente sfavorevole		1.30		
Coefficiente γ _{Q1} - Varia	abile favorevole		0.00		
Coefficiente γ _{Q1} - Varia	abile sfavorevole		1.50		
Sollecitazioni di progetto:					
Sforzo normale totale		N' =	366.20	kN	
Momento in direzione trasvers	sale	Mt' =	125.93	kNm	
Taglio in direzione trasversale		Tt' =	68.20	kN	
Momento in direzione longitud	linale	MI' =	151.63	kNm	
Taglio in direzione longitudina	le	TI' =	21.97	kN	

Risulta pertanto:


Azione totale di taglio in fondazione	Vris =	71.65	kN
Tensione tangenziale dovuta al taglio	τ(V) =	10.66	kN
Tensione tangenziale (massima) dovuta al momento torcente	τ,max(T) =	2.43	kN/mq
Tensione tangenziale totale	τ,tot =	13.09	kN/mq
Sforzo normale unitario di progetto	σ=	54.49	kN/mq
	FS.scorr	2.91	> 1.10

Le verifiche risultano soddisfatte

Verifica per carico limite dell'insieme fondazione-terreno

Si riportano in seguito le verifiche per carico limite dell'insieme fondazione-terreno.

Nel valutare il contributo alla capacità portante, si considera una (eventuale) inclinazione w del terreno rispetto all'orizzontale determinata dalla retta congiungente tra spigolo del plinto lato valle e piede del rilevato. La quota D di affondamento rispetto al piano campagna viene prudenzialmente assunta pari all'altezza media del cuneo di risprimento sviluppantesi lungo lo sviluppo planimemerico dell'(eventuale) rilevato e delimitato inferiormente dalla suddetta retta.

Società di Progetto

Brebenii SpA

Si esegue la verifica conformemente all'appoccio 2 del D.M. 14 gennaio 2008:

Doc. N.		CODIFICA DOCUMENTO	REV.	FOGLIO	
interconnessione same	66128-00002-A00.doc	04RCEII100002000000100	A00	160 di 162	
	<u> </u>	1			
Coefficiente γ _{g1} - Per	rmanente favorevole	1.00			
- 0	rmanente sfavorevole	1.30			
Coefficiente γ _{Q1} - Va		0.00			
Coefficiente γ _{Q1} - Va		1.50			
Toomsons TQ1					
Eccentricità direzione longitu	dinale	e,L' =	0.41	m	
Eccentricità direzione trasve	rsale	e,B' =	0.34	m	
Dimensioni efficaci fondaz	ione				
Dimensione trasversale effic		B' =	1.71	m	
Dimensione longitudinale eff	icace	L' =	1.97	m	
Dim. minore della fondazione	•	B' =	1.71	m	
Dim. maggiore della fondazio	one efficace equivalente	L' =	1.97	m	
Pressione media sul terren	10	q =	141.00) kPa	
		·			
Affondamento da piano ca	mpagna	D =	1.05	m	
Caratteristiche del terreno	di fondazione				
Peso specifico totale del terr	eno di fondazione	γt =	20.00) kN/m ³	
Profondità della falda da p.c.		zf =	50.00	m	
Distanza quota di falda - piar	•	ZW =	48.95	m	
Peso specifico efficace base		γ'cB =	20.00		
Peso specifico efficace base		γ'cL =	20.00	4	
Angolo di attrito del terreno d	di fondazione	φ' =	35.00		
Inclinaz. terreno risp. orizzon	ntale (dir trasv)	ωB' =	1.00	0	
Inclinaz. terreno risp. orizzon	· · · · · · · · · · · · · · · · · · ·	ωL' =	0.00	° °	
Dono appoifice del terrene le	tiatanta la fanda-ia-a		•		
Peso specifico del terreno la y'	ustante la londazione		20.00	kN/m ³	
Pressione verticale efficace a	a quota imposta fondazion	q'0 =	21	kPa	
Fattori di capacità portante	•				
-		Nγ =	33.92	2	
		Nq =	33.30		
		Nc =	68.16	5	
Coefficienti di inclinazione	del carico				
		iγ,B' _· =	0.50		
		iq,B' =		ietà di Progetto	
		iγ,L'=	0.81 _{Br}	ebemii SpA	
		iq,L' =	0.86	$\forall N$	
Coefficienti di forma		·		\mathcal{A}	

	T- ··		T = =	1
	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione same	66128-00002-A00.doc	04RCEII100002000000100	A00	161 di 162
			0.79	
		sγ,B' =		
		sq,B' =	1.31	
		sγ,L' =	0.25	
		sq,L' =	1.57	
Coefficienti di affondamen	to			
		dγ,B' =	1.00	
		dq,B' =	1.16	
		dγ, L' =	1.00	
		dq,L' =	1.14	
Coefficienti per inclinazion	e terreno			
		$g\gamma,B' = gq,B'$	0.96	
		$g\gamma,L' = gq,L'$	1.00	
Capacità portante limite di	base			
q _{limgB'}		$= \frac{\frac{1}{2} \times g'_{cB'} \times B' \times N_g \times s_{gB'}}{d_{gB'} \times i_{gB'} \times g_{gB'}}$	•	
$q_{limgL'}$		$= \frac{\frac{1}{2} \times g_{cL'}^2 \times L' \times N_g \times s_{gL'} \times}{d_{gL'} \times i_{gL} \times g_{gL'}}$		

Capacità portante limite per sovraccarico laterale

q _{limq B'}	_	$q_0' \times N_q \times s_{qB'} \times d_{qB'} \times i_{qB'} \times g_{qB'}$
Q _{limq L'}	=	q_0 '× N_q × $s_{qL'}$ × $d_{qL'}$ × $i_{qL'}$ × $g_{qL'}$

kPa 619.63 q_{limqB} 1068.68 kPa $q_{limqL^{\prime}}$

217.30

136.36

 $q_{\text{lim}\gamma B^{\prime}}$

 $q_{\text{lim}\gamma L^{,}}$

kPa

kPa

Nella valutazione del termine di capacità portante $q_{lim\gamma}$ viene assunto $q_{lim\gamma B'}$ o $q_{lim\gamma L'}$ in base al valore calcolato di s_{γ} ; si assumerà l'espressione per la quale risulta $s_{\gamma} > 0.6$.

Nella valutazione del termine di capacità portante q_{limq} tra $q_{limqB'}$ e $q_{limqL'}$ viene scelto quello minore.

	զ _{limγ} વ _{limq}	217.30 kPa 619.63 kPa
Capacità portante a rottura γ _R minimo capacità portante	\mathbf{q}_{lim}	836.93 kPa 2.30 Società di Progetto Brebenni SpA
Capacità portante di design	\mathbf{q}_{res_d}	363.88 kPa
Pressione media sollecitante di design	\mathbf{q}_{soll_d}	141.00 kPa

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
interconnessione som	66128-00002-A00.doc	04RCEII100002000000100	A00	162 di 162

FS capacità portante 2.58

Le verifiche risultano soddisfatte

APPRILIVATO BOP

Società di Progetto Breberni SpA