COMMITTENTE:

OPERA:

Raddoppio da due a quattro corsie della variante alla S.S. 268 "del Vesuvio" dal km 0+000 al km 19+554 2° lotto - 1° e 2° stralcio dal km 0+000 al km 11+607 1° lotto - lavori di completamento dal km 11+607 al km 19+554

PARTE D'OPERA:

2° lotto - 1° e 2° stralcio dal km 0+000 al km 11+607 1° lotto - lavori di completamento dal km 11+607 al km 19+554

CONTRATTO DI APPALTO IN DATA 21.06.2006

REP. N. 59048

RACC. N. 12523

IMPRESA ESECUTRICE:

D'AGOSTINO COSTRUZIONI GENERALI S.R.L.

Via Padre Accurso s.n.c.

Montefalcione (AV)

PROGETTO:

VERIFICA DI OTTEMPERANZA

ANAS SpA		SEZIONE:					
Il Direttore dei Lavori ing. Pompeo Vallario		ELABORATI ALLEGATI					ALLEGATI
Visto: Il Responsabile del procedimento Ing. Giovanni Guarino		TITOLO:					
L'IMPRESA:		ALLEGATO I					
D'Agostino Costruzioni Generali S.r.l. Il Direttore Tecnico: ing. Mario Augusti		-Progetto definitivo - "Relazione idrologica" (Idr-2-01 - novembre 2003)					•
IL PROGETTISTA:		TAVOLE ED	EL	ABORATI DI RIFE	RIMENTO	Tav. n°	Elaborato:
S.T.E.s.r.l.							VO 2 81 01
Structure and Transport Engineering ing. F.M. La Camera		scala:			revisione:	1	data: APRILE 2015
IIIg. F.W. La Calliela	\	commessa:		S.S. 268	archivio files	S.S. 268	file: VO-2-81-01- Allegato I.pdf
		2 Aprile 20)16	Variazione Codif	ica		
		n° data		revisio	ne/descrizio	ne	sigla
PROGETTO N°	DEL			СО	DICE SIL	- N°	NANA268001PD

COMMITTENTE:

NA 13/04

ANAS S.p.A.

Compartimento della Viabilità per la Campania

OPERA:

Raddoppio da due a quattro corsie della variante alla S.S. 268 "del Vesuvio" dal km 0+000 al km 19+554

2º lotto - 1º e 2º stralcio

dal km 0+000 al km 11+607

1º lotto - lavori di completamento dal km 11+607 al km 19+554

PARTE D'OPERA:

2° lotto - 1° e 2° stralcio dal km 0+000 al km 11+607

PROGETTO:

PROGETTO DEFINITIVO

TITOLO:

ELABORATO: SEZIONE: Idr-2-01

IDROLOGIA - IDRAULICA

Progettazione:

dott. ing. Salvatore Frasca

Geologia:

dott. geol. Giampiero Contabilizzazione:

Vittorio Formisano geom. geom. Francesco Trinchille

Responsabile del procedimento: dott. arch. Revato Maria Gampaoling

Il Dirigente Tecnico N.C.:

Il Capo Compartimento dott. ing. Nicola Marzi

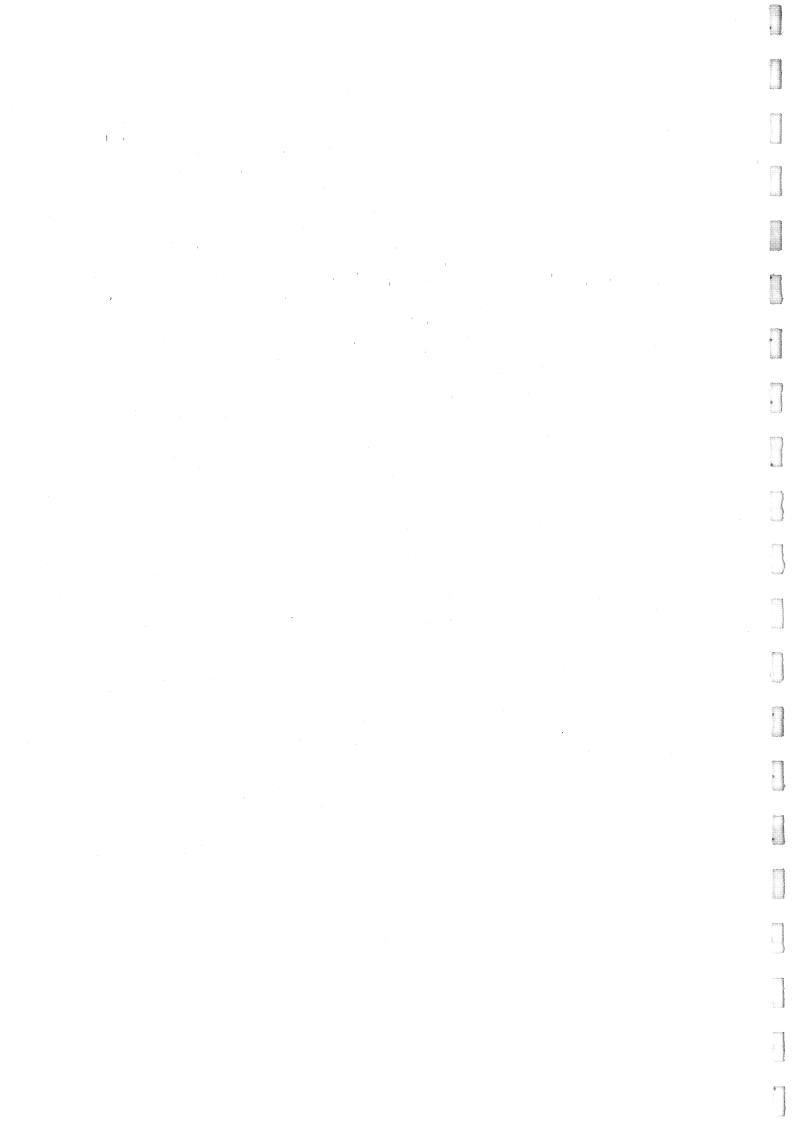
PROGETTO № 1894

DEL

24

dott. ing. Fabio

RELAZIONE IDROLOGICA


scala:			revisio	ne:		Α	data:	Novembre 2003
comme	880:	S.S. 268	archivi	o files:	s.s	S. 268	file:	
n°	data	revi	sione,	/descr	izione			sigla
-11-	03	CODI	CE	SIL	N.	NANA	26800	D1PD

ENTE NAZIONALE PER LE STRADE S.p.A. RADDOPPIO DA DUE A QUATTRO CORSIE DELLA VARIANTE ALLA S.S. 268 "DEL VESUVIO" DAL Km 0+000 AL Km 19+554

2° Lotto - 1° e 2° stralcio dal Km 0+000 al Km 11+607 1° Lotto - Lavori di completamento dal Km 11+607 al Km 19+554

PREMESSA

Per quanto concerne lo studio idrologico ed idraulico con le relative integrazioni richieste dall'Autorità di Bacino per il rilascio delle autorizzazioni di competenza, si fa riferimento integralmente alle relazioni dell'ottobre 2000 e marzo 2001 redatte dall'ing. Giulio Viparelli di seguito allegate.

25/9/2003

Ente nazionale per le strade

Compartimento della Viabilità per la Campania Napoli

RADDOPPIO DELLA VARIANTE ALLA S.S. 268 DEL VESUVIO TRONCO: CERCOLA-TORRE ANNUNZIATA DAL Km 0+000 AL Km 19+554

PROGETTO ESECUTIVO DEL 2° LOTTO DAL Km 0+000 AL Km 11+607

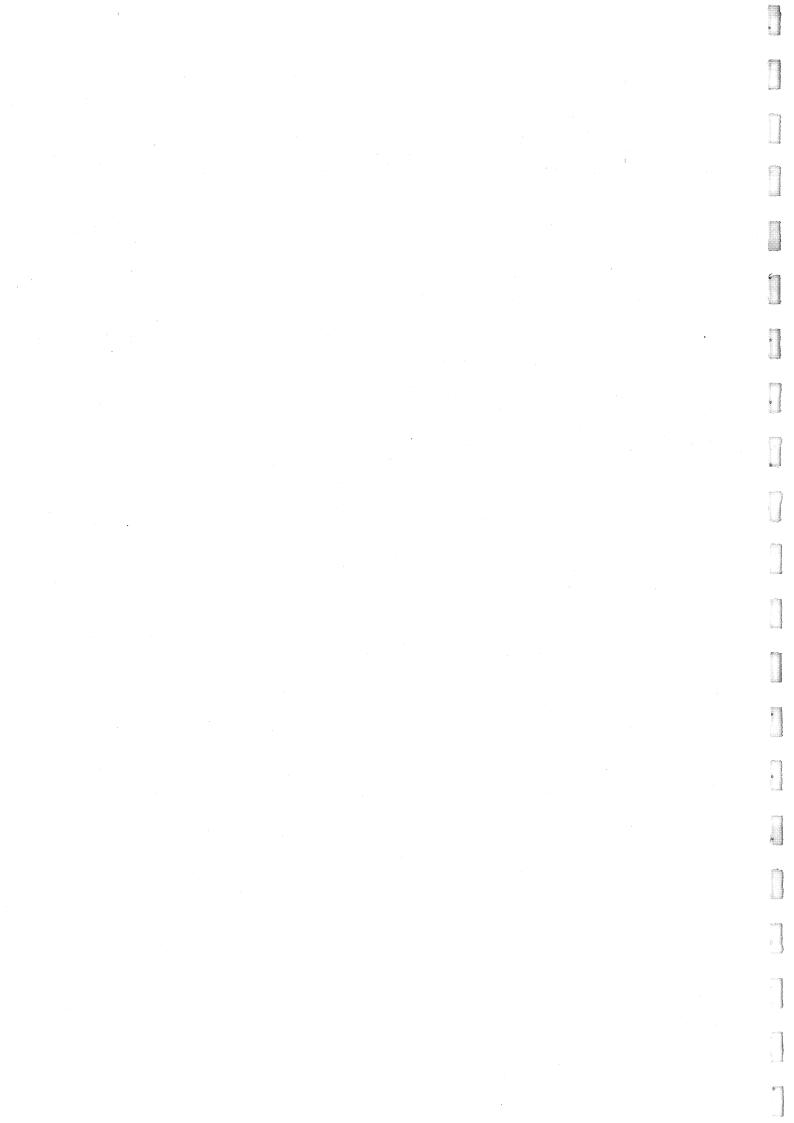
REV.	Ottobre 00	DESCRIZIONE	DIS.	APPR.
		SCALA ID	ALLEGA	TO
		SCALA		

STUDIO IDROLOGICO - IDRAULICO

STUDIO IDROLOGICO

PROGETTO STRADALE:

Dott.Ing. Sebastiano Wancolle Geam. Giovanni Ciardiello


COLLABORAZIONE:

Dott.Ing. Salvatore Frasca Dott. Geol. Italo Bani

VISTO L'INGEGNERE CAPO: Dott.lng. Carlo Valerio

STUDIO IDROLOGICO:

Dott. Ing. Giulio Vipprelli

CAPITOLO 1 - PREMESSA

Con lettera d'impegno n. 32997 del 26/07/2000 l'ANAS - Ente nazionale per le strade - Compartimento della viabilità per la Campania con sede in Napoli, ha affidato all'ing. Giulio Viparelli l'incarico di assistenza per la redazione dello studio idrologico ed idraulico relativo alla progettazione esecutiva dei lavori di "Raddoppio variante SS 268 'del Vesuvio' - Tronco Cercola-Torre Annunziata dal Km 0+000 al Km 19+554 - Progetto esecutivo II Lotto dal Km 0+000 al Km 11+607".

L'Autorità di Bacino Nord-Occidentale della Campania, considerato che l'intervento ricade in gran parte in area a rischio idraulico ha chiesto con parere n. 121 la redazione di uno studio idrologico e idraulico a supporto del progetto succitato e, tenuto conto del decreto 3590 del 17.03.99 del Ministero dell'Ambiente, l'ottemperanza delle seguenti prescrizioni:

- valutare le portate pluviali sversate nei fossi o nei lagni;
- determinare le portate massime defluente negli alvei;
- individuazione dei corsi d'acqua recettori delle acque pluviali;
- verifica idraulica degli attraversamenti di progetto.

Per la redazione dello studio succitato sono stati seguiti i seguenti criteri:

- a) individuazione dei corsi d'acqua e della tipologia degli attraversamenti;
- b) individuazione dei bacini idrografici sottesi dagli attraversamenti;
- c) individuazione dei pluviografi e calcolo delle portate massime defluenti con assegnato periodo di ritorno;
- d) verifiche idrauliche degli attraversamenti;

Gli attraversamenti idraulici di progetto sono costituiti da viadotti o da tombini scatolari ed hanno dimensioni sufficienti per la manutenzione dell'attraversamento ed il libero deflusso delle portate di massima piena.

La cartografia utilizzata è la carta in scala 1:25.000 IGM disponibile; nello stralcio planimetrico allegato sono stati riportati i bacini colanti sottesi alle sezioni relative agli attraversamenti idraulici.

I dati caratteristici del bacini e delle aste dei torrenti sono riportati nell'allegato

A.

La tipologia degli attraversamenti e le loro caratteristiche geometriche sono state fornite dall'Ente committente e come tale non sono state suscettibili di variazioni o modificazioni da parte del redattore del presente studio idrologico e idraulico.

Le caratteristiche dei corsi d'acqua (superfici parziali e totali, pendenze, ecc.) sono state rilevate dalla cartografia disponibile.

CAPITOLO 2 - STIMA DELLA PIENA DI PROGETTO

2.1. Generalità

L'analisi idrologica dei valori estremi delle precipitazioni e delle piene in Campania è stata effettuata nel Rapporto Campania attraverso una metodologia di analisi regionale di tipo gerarchico, basata sull'uso della distribuzione di probabilità del valore estremo a doppia componente (TCEV - Two Component Extreme Value). Tale procedura si basa sulla considerazione che esistono zone geografiche via via più ampie che possono considerarsi omogenee nei confronti dei parametri statistici della distribuzione, man mano che il loro ordine aumenta.

Indicando con Q il massimo annuale della portata al colmo e con T il periodo di ritorno, cioè l'intervallo di tempo durante il quale si accetta che l'evento di piena possa verificarsi mediamente una volta, la massima portata di piena Q_T corrispondente al prefissato periodo di ritorno T, può essere valutata come:

$$Q_{T} = K_{T}m(Q) \tag{1}$$

dove

- m (Q) = media della distribuzione dei massimi annuali della portata di piena (piena indice).
- K_T = fattore probabilistico di crescita, pari ai rapporto tra Q_T e la piena indice.

2.2 Valutazione del fattore regionale di crescita K_T.

Il territorio nazionale è stato suddiviso in aree ideologicamente omogenee, caratterizzate pertanto da un'unica distribuzione di probabilità delle piene annuali rapportate al valore medio (legge regionale di crescita con il periodo di ritorno).

L'indagine regionale volta alla determinazione di tale legge é stata svolta per la regione Campania nel Rapporto Campania sopra menzionato.

I risultati sono stati ottenuti sotto forma di una relazione tra K_T e T esplicitata come:

$$T = \frac{1}{1 - \exp(-13,11 \cdot 0,202^{Kr} - 0,923 \cdot 0,230^{Kr})}$$
 (2)

Questa relazione può essere valutata in prima approssimazione attraverso la seguente relazione:

$$K_T = -0.0545 + 0.680LnT$$
 (3)

con un errore inferiore al 9% per T≥20 anni, ed inferiore al 2% per T≥50 anni.

Nella tabella 1 che segue sono riportati, per diversi periodi di ritorno, i valori di K_T ottenuti dall'equazione (2).

Tabella 1 - Legge regionale di crescita per la regione Campania

T (anni)	KT
10	1.63
20	2.03
50	2.61
100	3.07
200	3.53
300	3.83

2.3 Valutazione della piena media annua m(Q).

2. 3. 1 Generalità

La piena media annua m(Q) è caratterizzata da una elevata variabilità speziale che può essere spiegata, almeno in parte, ricorrendo a fattori climatici e geomorfologici.

É dunque in genere necessario ricostruire modelli che consentano di mettere in relazione m(Q) con i valori assunti da grandezze caratteristiche del bacino.

In mancanza di dati di misura di portata nelle sezioni di interesse, l'identificazione di tali modelli può essere ottenuta sostanzialmente attraverso due diverse metodologie:

- a) approcci di tipo puramente empirico, del tipo m(Q) = aA^b (con A = superficie del bacino);
- b) approcci di tipo indiretto, che si basano su modelli in cui la piena media annua viene valutata con parametri che tengono conto delle precipitazioni massime sul bacino

e delle caratteristiche geomorfologiche (modelli geomorfoclimatici), con relazione del tipo:

$$m(Q) = \frac{C_f \cdot q \cdot m[l(t_r)]A}{3.6}$$
 (4)

in cui

- t_r = tempo di ritardo del bacino, in ore;
- C_f = coefficiente di deflusso, caratteristico del bacino;
- m[l(t_r)] = media del massimo annuale dell'intensità di pioggia di durata pari al tempo di ritardo t_r del bacino, in mm/ora;
- A = area del bacino, in km²;
- q = coefficiente di attenuazione del colmo di piena, che consente di tenere conto, tra l'altro, del fatto che in realtà la durata critica del bacino, e cioè la durata della pioggia che causa il massimo annuale del colmo di piena, non è pari a t_r.

Un caso particolare dei modelli geomorfoclimatici è rappresentato dal "metodo razionale".

Il Rapporto VAPI Campania ha provveduto alla stima dei parametri sia per modelli empirici di vario tipo che per il modello geomorfoclimatico e per il modello razionale.

I parametri dei diversi modelli sono stati stimati utilizzando i dati di 12 delle 22 stazioni idrometriche presenti in Campania, corrispondenti a bacini di estensione variabile tra 95 e 5542 Km², e quindi molto diversa, come già detto in precedenza, dalla estensione dei bacini qui in esame.

In quanto segue il calcolo della portata media annua al colmo di piena nelle sezioni di interesse, in mancanza di dati di misura di portata, può essere effettuato, in via indiretta, a partire dalle precipitazioni intense e in particolare con il "metodo razionale", basato, come detto, su criteri di similitudine idrologica che consentono di stimare m(Q) come una frazione della massima intensità di pioggia che può verificarsi sul bacino e tenendo in conto le caratteristiche geomorfologiche dello stesso.

Nell'applicazione di tale metodo:

- si stima la legge di probabilità pluviometrica che definisce la media del massimo annuale dell'altezza di pioggia di durata d. m[h(d)];
- si individua un numero per quanto è possibile ristretto di parametri che valgano a specificare, sotto forma numerica, le caratteristiche fisiche del bacino sotteso dalla generica sezione di interesse che si considera;
- in base ai valori assunti da detti parametri si definisce una durata critica d_c caratteristica del bacino, pari alla durata di pioggia che determina il massimo della piena media annua;

si stima m(Q) con il modello razionale:

$$m(Q) = \frac{f \cdot m[l(d_c)] \cdot A}{3.6} = \frac{1}{3.6} \cdot \frac{m[h(d_c)]}{d_c} \cdot A$$
 (5)

Nella precedente:

- A è la superficie del bacino, espressa in Km²;
- d_c è la durata critica del bacino, espressa in ore;
- m[h(d_c)] è il massimo annuale dell'altezza di pioggia di durata pari alla durata critica del bacino, espresso in mm/ora;
- C* è il coefficiente di piena, che consente di tenere conto dell'infiltrazione sul bacino e dell'attenuazione del colmo di piena effettuata dal reticolo idrografico.

2. 3. 2. Valutazione della legge di probabilità pluviometrica

In generale nelle applicazioni idrologiche è necessario conoscere come varia la media del massimo annuale dell'altezza di pioggia in funzione della durata d e dell'area del bacino A.

La metodologia comunemente impiegata consiste nell'ottenere la media del massimo annuale dell'altezza di pioggia areale $m[h_A(d)]$ dalla media del massimo annuale dell'altezza di pioggia puntuale m[h(d)] attraverso un fattore di ragguaglio noto come coefficiente di riduzione areale $K_A(d)$ come:

$$m [h_A(d)] = K_A(d) m[h(d)]$$
 (6)

Per aree molto piccole, come quella dei bacini di cui trattasi, $K_A(d)$ può essere chiaramente posto pari ad 1.

Di seguito si farà dunque riferimento alla media del massimo annuale dell'altezza di pioggia puntuale, m[h(d)].

Per la stima della legge di probabilità pluviometrica, che definisce appunto la variazione della media del massimo annuale dell'altezza di pioggia con la durata, il Rapporto VAPI Campania fa sostanzialmente riferimento a leggi a quattro parametri del tipo:

$$m[h(d)] = \frac{m[lo] \cdot d}{\left(1 + \frac{d}{dc}\right)}$$
(7)

in cui m[10] rappresenta il limite dell'intensità di pioggia per d che tende a 0.

Tuttavia, quando manchino dati relativi a piogge di durata molto breve, si può ricorrere ad una legge di tipo monomio:

$$m[h(d)] = m[h_1] d^n$$
 (8)

che interpola bene i dati di pioggia di durata maggiore o uguale ad 1 ora.

Per la valutazione dei parametri m[h₁] ed n della precedente formula, si è fatto ricorso ad una analisi statistica effettuata utilizzando i dati dei massimi annuali di pioggia di durata 1,3,6,12 e 24 ore relativi alle stazioni pluviografiche ricadenti nel territorio in esame; in particolare sono stati utilizzati i dati dei pluviografi di Caserta, Capodimente, Sarno e Pompei.

Tali dati, tratti dagli Annuali Idrologici pubblicati dal Compartimento di Napoli del Servizio Idrologico e Mareografico Nazionale (S.l.M.N.), sono pubblicati sullo stesso rapporto VAPI preso a riferimento.

Dall'elaborazione dei dati pluviometrici si rileva che per tutta l'area in esame, con sufficiente approssimazione può essere considerata un'unica legge di pioggia caratterizzata dall'espressione:

per d < 1 ora
$$m[h(d)] = a \cdot d^n = 22.112 \cdot d^{0,433}$$
 (9)
per d > 1 ora $m[h(d)] = a \cdot d^n = 22.112 \cdot d^{0,319}$

2 3.3 Stima dei parametri del modello razionale

Per la valutazione dei parametri del modello razionale, e cioè del coefficiente di piena e del tempo di ritardo del bacino, in mancanza di dati relativi ai bacini in esame che consentono una stima degli stessi secondo la metodologia proposta dal suddetto Rapporto VAPI Campania, si considera:

- per C* un valore che può essere, cautelativamente, assunto pari a 0,36, ovvero corrispondente al coefficiente di piena relativo ad aree impermeabili, così come stimato nel suddetto Rapporto VAPI Campania (per bacini permeabili, quale è quello in questione, il valore di C* risulta sensibilmente inferiore);
- per d_c si ammette che risulti d_c=t_c, essendo t_c il tempo di corrivazione, valutabile attraverso la formula di Giandotti:

$$t_{c} = \frac{4\sqrt{A} + 1.5L}{0.8\sqrt{Y - Y_{0}}}$$
 (10)

in cui:

- A è la superficie del bacino, espressa in Km²;
- Lè la lunghezza dell'asta principale del corso d'acqua, in Km;
- Y è l'altitudine media del bacino, in m s.l.m.m.;
- Y₀ è l'altitudine minima (quota d'alveo nella sezione di chiusura del bacino) in m s.l.m.m.

2.3.4. Le piene medie annue

In definitiva, per i bacini in esame, la stima di m(Q), come detto da considerarsi cautelativa, può essere ottenuta dalla relazione (5) esplicitata come:

$$m(Q) = \frac{1}{3.6} \bullet 0.36 \bullet a \bullet t_c^{(n-1)} \bullet A \tag{11}$$

dopo aver calcolato il valore di t_c dalla relazione (10) e a ed n dalle relazioni (9).

2.4 Risultati

I valori delle portate di massima piena valutate con i criteri innanzi indicati nelle sezioni degli attraversamenti idraulici sono riportati nella tabella dell'allegato B.

Come si evince dall'esame di tali risultati, i valori della massima portata di piena con periodo di ritorno di 100 anni corrispondono ad un coefficiente udometrico di circa 5 - 8 m³/s •km².

La massima portata di proporzionamento, per ogni manufatto, è quella corrispondente ad un tempo di ritorno di 100 anni.

I risultati ottenuti sono riportati sinteticamente nella tabella dell'allegato B.

CAPITOLO 3 - VERIFICHE IDRAULICHE

3.1. Considerazioni preliminari

Nel seguito del presente capitolo si illustrano i risultati di verifiche idrauliche condotte con riferimento a condizioni ordinarie, per le quali si dispone di specifiche metodologie di calcolo.

3.2. Verifica con le portate di massima piena

In caso di convogliamento nel canale di portate pari a quelle massime stimate per periodo di ritorno di 100 anni, utilizzando un modello idraulico ampiamente descritto nella letteratura tecnica in materia si è verificato che i manufatti sono in grado di far defluire, come voluto, l'intera portata prevista.

Le portate di progetto (Q (T=100 anni)), infatti, defluiscono nei manufatti con tiranti a cui corrispondono un grado di riempimento inferiore al 65%. E franchi non inferiori a 50 cm.

Si ritiene che tale valore sia ampiamente accettabile.

La massima portata relativa alle acque pluviali raccolte nella piattaforma stradale, da sversare nei corsi d'acqua può essere calcolata utilizzando i risultati dello studio idrologico esposto in precedenza. Dal profilo longitudinale e palle planimetrie si evince che la massima distanza tra due attraversamenti idraulici è inferiore a 2000 m.

La superficie colante è pari a $A = 2000 \times 10 = 20000 \text{ mq}$.

Utilizzando il valore massimo del contributo unitario derivante dallo studio idrologico effettuato, si ottiene la massima portata che è pari a :

 $Q_{max} = 2.00 \text{ Ha x } 100 \text{ l/s/Ha} = 200 \text{ l/s} = 0.200 \text{ mc/s}.$

Tale portata, sommata a quelle massime defluenti nei corsi d'acqua, non altera il tirante idrico perché costituisce una percentuale molto bassa del volume d'acqua totale. Ciononostante si evidenzia che i franchi idraulici, in presenza del fenomeno di piena, sono

comunque superiori ai minimi necessari alla perfetta officialità idraulica del corso d'acqua anche in presenza degli attraversamenti di progetto.

APPENDICE

Caratteristiche geometriche dei bacini.

Bacino	N. Sezione	Descrizione Attraversamento	· Hmax (m) (slmm)	Hmin (m) (slmm)	Superficie (Kmq)	Lunghezza corso d'acqua (Km)
	16	Ponte Lagno di Trocchia	696	8	6,271	5,36
	64	Ponte Lagno dei Reclusi	475	79	2,304	4,08
	110	Ponte Lagno delle Fosse	006	92	2,048	1,1
	139	Ponte Lagno Palmendola	006	94	2,432	1,44
ш	151	Ponte Lagno Sorbo	006	95	2,304	1,34
LL.	177	Sottopasso Lagno S. Spirito	1084	86	4,224	5,44
တ	247	Ponte Lagno S. Maria del Pozzo	1110	95	3,712	7,12
I	284	Ponte Lagno Fossa dei Leoni	1131	95	5,119	7,08
	319	Ponte Lagno Macedonia	827	86	2,344	4,65
	348	Ponte Lagno Costantinopoli	475	120	1,24	3,05
Σ	409	Sottopasso Lagno Somma	907	108	3,516	2,05

Note: Hmax Altezza Massima Bacino Hmin Aqltezza minima Bacino

Dati relativi a 4 stazioni pluviografiche, necessari al fine della determinazione della legge di pioggia per il calcolo delle portate confluenti nelle sezioni terminali dei bacini.

$\varepsilon = 0.5$	STAZIONE PLUVIOGRAFICA	QUOTA m.s.l.m.	ANNI DI OSSERV.	MEDIA (mm)	EPSILON	К
	CASERTA	68	11	25 ,294	15,935	1,506
	CAPODIMONTE	200	8	29,367	19,92	1,158
	SARNO	50	5	15,772	15,273	0,113
	POMPEI	25	11	21,193	13,103	1,621
	Valori medi		8,75	2 2 ,9 07	16,058	1,100

$\varepsilon = 1$	STAZIONE PLUVIOGRAFICA	QUOTA m.s.l.m.	ANNI DI OSSERV.	MEDIA (mm)	EPSILON	K
	CASERTA	68	14	28,078	24,041	0,515
	CAPODIMONTE	200	6	33,161	27,008	0,6
	SARNO	50	5	19,48	18,899	0,122
	POMPEI	25	11	25,435	18,501	1,126
	Valori medi		9	26,539	22,112	0,591

$\varepsilon = 3$	STAZIONE PLUVIOGRAFICA	QUOTA m.s.l.m.	ANNI DI OSSERV.	MEDIA (mm)	EPSILON	К
	CASERTA	68	. 14	43,084	35,927	0,696
	CAPODIMONTE	200 .	6	50,093	42,075	0,555
	SARNO	50	5	31,52	27,964	0,484
	POMPEI	25	10	35,777	26,442	1,187
	Valori medi		8,8	40,119	33,102	0,731

$\epsilon = 6$	STAZIONE PLUVIOGRAFICA	QUOTA m.s.l.m.	ANNI DI OSSERV.	MEDIA (mm)	EPSILON	K
	CASERTA	68	15	51,952	41,678	0,85
	CAPODIMONTE	200	6	60,182	49,449	0,587
	SARNO	50	. 5	36,72	32,19	0,426
,	POMPEI	25	12	43,123	32,571	1,099
	Valori medi		9,5	47,994	38,972	0,741

-

•

$\varepsilon = 12$	STAZIONE PLUVIOGRAFICA	QUOTA m.s.l.m.	ANNI DI OSSERV.	MEDIA (mm)	EPSILON	K
	CASERTA	68	15	63,003	50,019	0,839
	CAPODIMONTE	200	6	83,897	70,526	0,526
	SARNO	50	5	46,04	40,0241	0,628
	POMPEI	25	12	48,401	38,211	0,916
	Valori medi		9,5	6 0,335	49,695	0,727

ų.

$\varepsilon = 24$	STAZIONE	QUOTA	ANNI DI	MEDIA	EPSILON	K
	PLUVIOGRAFICA	m.s.l.m.	OSSERV.	(mm)		
	CASERTA	68	15	75,886	52,885	0,977
	CAPODIMONTE	200	6	102,066	83,698	0,646
	SARNO	50	5	54,48	58,536	0,437
	POMPEI	25	12	60,1	48,303	0,926
	Valori medi		9,5	73,133	60,85 6	0,747

Calcolo delle portate

	а	n
Tc < 1 h	22,112	0,433
Tc > 1h	22,112	0,319

Bacino A sez	16: Pont	e Lágno d	i Trocchia					
Suprficie	tc	a	n	С				
(Kmq)	(ore)	22,112	0,318	0,36				
6,271	1,442							
		40	20	50	100	200	300	500
T (anni)	7	10	20		3,07	3,53	3,83	4,17
Kt	1	1,63	2,03	2,69	3,01	0,00	0,00	
			04.074	10.044	F2 007	60,812	65,980	71,837
i (mm/oга)	17,227	28,080	34,971	46,341	52,887	00,012	55,500	71,001
Q (mc/sec)	10,803	17,609	21,930	29,060	33,166	38,135	41,376	45,049
U (I/sec*ha)	17,227	28,080	34,971	46,341	52,887	60,812	65,980	71,837

Bacino B (sez. 64): Ponte Lagno dei Reclusi										
Suprficie	tc	а	n	С						
(Kmq)	(ore)	22,112	0,318	0,36						
2,304	1,567									
		,			100	000	200	500		
T (anni)	1	10	20	50	100	200	300			
Kt	1	1,63	2,03	2,69	3,07	3,53	3,83	4,17		
		<u> </u>		_						
i (mm/ora)	16,278	26,5325	33,044	43,787	49,972	57,460	62,343	67,878		
Q (mc/sec)	3,750	6,113	7,613	10,088	11,514	13,239	14,364	15,639		
U (I/sec*ha)	16,278	26,533	33,044	43,787	49,972	57,460	62,343	67,878		

Bacino C (se	z. 119): Po	onte Lagno	delle Fo	sse				
Suprficie	tc	а	n	С				
(Kmq)	(ore)	22,112	0,318	0,36				
2,048	1,087							
		40	20	50	100	200	300	500
T (anni)		10				3,53	3,83	4,17
Kt	1 1	1,63	2,03	2,69	3,07	3,33	3,03	7,17
i (mm/ora)	20,889	34,0492	42,405	56,192	64,129	73,738	80,005	87,107
Q (mc/sec)	4,278	6,973	8,685	11,508	13,134	15,102	16,385	17,840
U (I/sec*ha)	20,889	34,049	42,405	56,192	64,129	73,738	80,005	87,107

Bacino D (se	z. 139): Po	onte Lagn	o Palmeno	lola		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Suprficie	tc	a	n	С				
(Kmq)	(ore)	22,112	0,433	0,36				
2,432	0,519							
-,+:				- 50	100	200	300	500
T (anni)	1	10	20	50	100			
Kt	1	1,63	2,03	2,69	3,07	3,53	3,83	4,17
	I							
i (mm/ora)	32,0722	52,2776	65,1065	86,2741	98,4615	113,215	122,8364	133,7409
Q (mc/sec)	7,589	12,370	15,406	20,415	23,299	26,790	29,066	31,647
U (I/sec*ha)	31,21	50,86	63,35	83,942	95,80	110,2	119,52	130,13

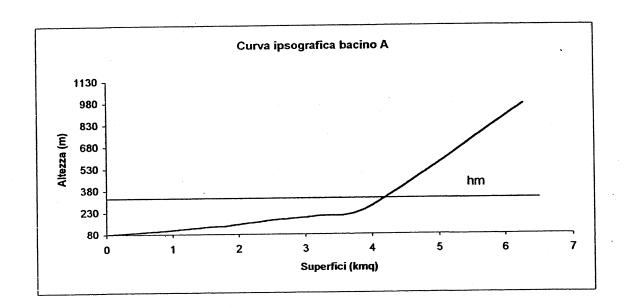
Bacino E (sez	z. 151): Po	onte Lagno	Sorbo					
Suprficie	tc	а	n	С				
(Kmq)	(ore)	22,112	0,433	0,36				
2,304	0,874							
T (anni)	1	10	20	50	100	200	300	500
Kt	1	1,63	2,03	2,69	3,07	3,53	3,83	4,17
i (mm/ora)	23,867	38,9026	48,449	64,201	73,271	84,249	91,409	99,524
Q (mc/sec)	5,499	8,963	11,163	14,792	16,882	19,411	21,061	22,930
U (I/sec*ha)	23,867	38,903	48,449	64,201	73,271	84,249	91,409	99,524

Bacino F (sez	. 177): So	ottopasso l	Lagno S. S	Spirit o			ı	
Suprficie	tc	а	n	С				
(Kmq)	(ore)	22,112	0,319	0,36				
4,224	1,067							
T (anni)	1	10	20	50	100	200	300	500
Kt	1	1,63	2,03	2,69	3,07	3,53	3,83	4,17
	L	1	<u> </u>					
i (mm/ora)	21,157	34,4854	42,948	56,912	64,951	74,683	81,030	88,223
Q (mc/sec)	8,937	14,567	18,141	24,039	27,435	31,546	34,227	37,266
U (I/sec*ha)	21,157	34,485	42,948	56,912	64,951	74,683	81,030	88,223

Bacino G (se	z. 247): P	onte Lagn	o S. Maria	del Pozzo				
Suprficie	tc	а	n	С				
(Kmg)	(ore)	22,112	0,319	0,36				
3,712	1,874							
T (10	20	50	100	200	300	500
T (anni)	1	1,63	2,03	2,69	3,07	3,53	3,83	4,17
Kt	<u> </u>	1,00	2,00	2,30				
i (mm/ora)	14,417	23,4995	29,266	38,781	44,260	50,892	55,217	60,118
Q (mc/sec)	5,352	8,723	10,864	14,396	16,429	18,891	20,496	22,316
U (I/sec*ha)	14,417	23,500	29,266	38,781	44,260	50,892	55,217	60,118

Bacino H (se	z. 284): P	onte Lagn	o Fossa c	lei Leoni				
Suprficie	tc	a	n	С				
(Kmq)	(ore)	22,112	0,319	0,36				
5,119	1,019							,
		· · · · · · · · · · · · · · · · · · ·			100	000	200	500
T (anni)	1	10	20	50	100	200	300	
Kt	1	1,63	2,03	2,69	3,07	3,53	3,83	4,17
i (mm/ora)	21,830	35,5835	44,316	58,724	67,019	77,061	83,61038	91,03271
Q (mc/sec)	11,175	18,215	22,685	30,061	34,307	39,448	42,800	46,600
U (I/sec*ha)	21,830	35,584	44,316	58,724	67,019	77,061	83,61 0	91,033

Bacino I (sez	319): Por	nte Lagno	Macedonia	a		,		
Suprficie	tc	а	n	С				!
(Kmq)	(ore)	22,112	0,319	0,36				
3,584	1,619							
		40	20	E0 1	100	200	300.	500
T (anni)	1	10	20	50				
Kt	1	1,63	2,03	2,69	3,07	3,53	3,83	4,17
a.								
i (mm/ora)	15,927	25,9608	32,3316	42,8433	48,896	56,222	61,000	66,415
Q (mc/sec)	5,708	9,304	11,588	15,355	17,524	20,150	21,862	23,803
U (l/sec*ha)	15,927	25,961	32,332	42,843	48,896	56,222	61,000	66,415

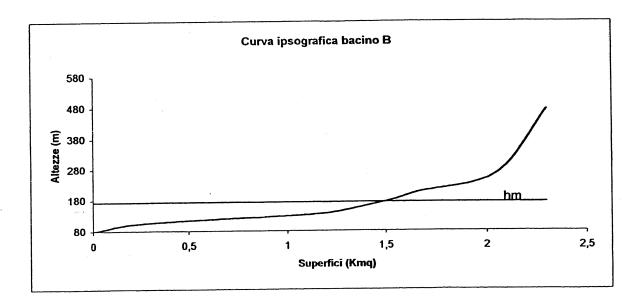

Bacino L (sez	.348): Po	nte Lagno	Costantin	opoli				
Suprficie	tc	а	n	С				:
(Kmq)	(ore)	22,112	0,319	0,36				
1,24	0,519							
								500
T (anni)	1	10	20	50	100	200	300	500
Kt	1	1,63	2,03	2,69	3,07	3,53	3,83	4,17
i (mm/ora)	34,562	56,336	70,161	92,972	106,105	122,004	132,373	144,124
Q (mc/sec)	4,286	6,986	8,700	11,529	13,157	15,128	16,414	17,871
U (i/sec*ha)	34,562	56,33 6	70,161	92,972	106,105	122,004	132,373	144,124

Bacino M (se:	z.409): Sc	ottopasso	Lagno Sor	nma				
Suprficie	tc	а	n	С				
(Kmq)	(ore)	22,112	0,319	0,36				
3,516	1,202							
T (anni)	1	10	20	50	100	200	300	500
Kt	1	1,63	2,03	2,69	3,07	3,5 3	3,83	- 4,17
i (mm/ora)	19,508	31,798	39,601	52,477	59,890	6 8,863	74,716	81,348
Q (mc/sec)	6,859	11,180	13,924	18,451	21,057	24,212	26,270	28,602
U (I/sec*ha)	19,508	31,798	39,601	52,477	59,890	68,863	74,716	81,348

Bacino A sez. 16: Ponte Lagno di Trocchia

i sezione	Hi (m) (slmm)	Superficie (Kmq) Si	$\left[\sum_{i=1}^{i} S_{i}\right]$	Hmi=(Hi+H(i-1))/2 (m) slmm	Hmi x Si
			(Kmq)		
0	80	0	0	0	0
1	105	0,896	0,896	92,5	82,870
2	130	0,640	1,536	117,5	75,191
2 3	135	0,256	1,792	132,5	33,916
4	145	0,128	1,920	140	17,918
5	180	0,640	2,560	162,5	103,988
6	205	0,640	3,200	192,5	123,186
7	265	0,768	3,968	235	180,459
8	969	2,304	6,271	617	1421,402

Totale 2038,930

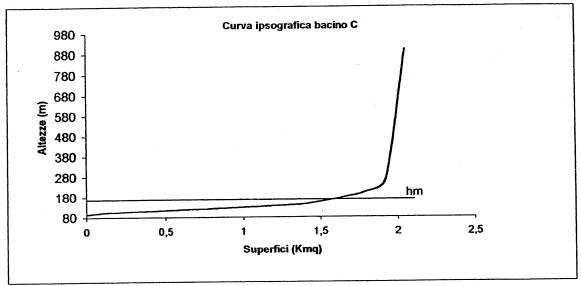


Altit.media	tempo di corrivazione	Superfici e	Lunghezza
(mslmm) hm	tc (ore)	(kmq)	asta princ. (km)
325,122	1,442	6,271	5,36

Bacino B sez. 64: Ponte Lagno dei Reclusi

i	Hmax (m)	Superficie (Kmq)	i	Hmi=(Hi+H(i-1))/2	Hmi x Si
sezione	(slmm)	Si	$\sum_{i=1}^{n} S_{ij}$	(m) slmm	
			(Kmq)		
0	79	0	0	0	0
1	105	0,256	0,256	92	23,549
2	130	0,768	1,024	117,5	90,229
3	135	0,128	1,152	132,5	16,958
4	145	0,128	1,280	140	17,918
5	180	0,256	1,536	162,5	41,595
6	205	0,128	1,664	192,5	24,637
7	265	0,384	2,048	235	90,229
8	475	0,256	2,304	370	94,709

Totale 399,825

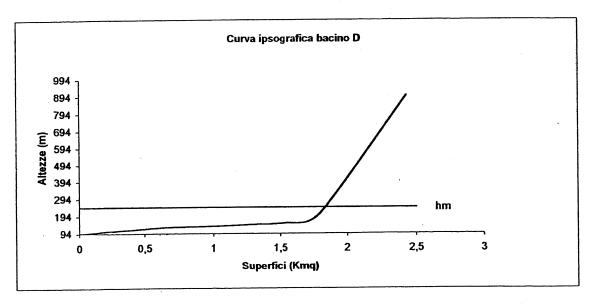


Altit.media	tempo di corrivazione	Superficie	Lunghezza
(mslmm) hm	tc (ore)	(kmq)	asta princ. (km)
173,556	1,567	2,304	4,08

Bacino C sez. 119: Ponte Lagno delle Fosse

i sezione	Hmax (m) (slmm)	Superficie (Kmq) Si	$\left[\sum_{1}^{i} {}_{j} S_{-j}\right]$	Hmi=(Hi+H(i-1))/2 (m) slmm	Hmi x Si
			(Kmq)		and the second seco
0	95	0	0	0	0
1	105	0,128	0,128	100	12,799
2	130	0,896	1,024	117,5	105,280
3	135	0,128	1,152	132,5	16,960
4	145	0,256	1,408	140	35,840
5	180	0,256	1,664	162,5	41,600
6	205	0,128	1,792	192,5	24,640
7	265	0,128	1,920	235	30,080
8	900	0,128	2,048	58 2,5	74,551

Totale 341,750



Altit.media	tempo di corrivazione	Superficie	Lunghezza
(mslmm) hm	tc (ore)	(kmq)	asta princ. (km)
166,872	1,087	2,048	1,1

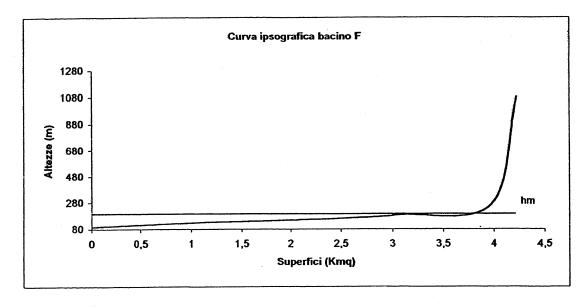
Bacino D sez. 139: Ponte Lagno Palmendola

í		'Superficie (Kmq)	i	Hmi=(Hi+H(i-1))/2	Hmi x Si
sezione	(slmm)	Si	$\left \sum_{i=1}^{n} S_{i}\right $	(m) slmm	
			(Kmq)		
0	94	0.	0	0	0
1	123	0,512	0,512	108,5	55,552
2	130	0,128	0,640	126,5	16,192
3	135	0,256	0,896	132,5	33,920
4	145	0,384	1,280	140	53,760
5	154	0,256	1,536	149,5	38,272
6	205	0,256	1,792	179,5	45,952
7	900	0,640	2,432	552,5	353,600

Totale 597,248

Altit.media	tempo di corrivazione tc (ore)	Superficie	Lunghezza
(mslmm) hm		(kmg)	asta princ. (km)
245,947	0,519	2,432	1,44

Bacino E sez. 151: Ponte Lagno Sorbo

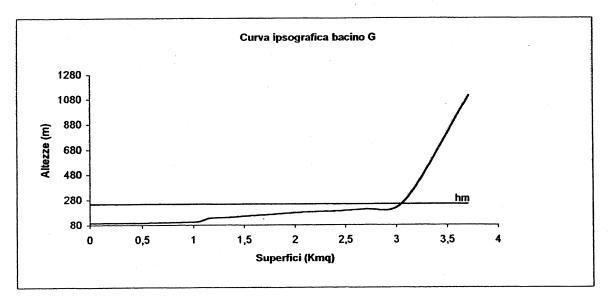

i sezione	Hmax (m) (slmm)	Superficie (Kmq) Si	Σ'	, S ,	Hmi=(Hi+H(i-1))/2 (m) slmm	Hmi x Si
				(Kmq)		
				(10114)		
0	95	0	. *	0	0	0
1	105	0,128	· E	0,128	100	12,800
2	130	0,512	ı	0,640	117,5	60,160
3	135	0,128		0,768	132,5	16,960
4	145	0,256		1,024	140	35,840
5	160	0,384	1	1,408	152,5	58,560
6	174	0,128		1,536	167	21,376
7	265	0,384		1,920	219,5	84,288
8	900	0,384	4	2,304	582,5	223,680
					Totale	513,664

Altit.media	tempo di corrivazione	Superfici e	Lunghezza
(mslmm) hm	tc (ore)	(kmq)	asta princ. (km)
228,611	0,874	2,304	1,34

Bacino F sez. 177: Sottopasso Lagno S. Spirito

i sezione	Hmax (m) (slmm)	Superficie (Kmq) Si	$\sum_{i=1}^{j} s_{i}$	Hmi=(Hi+H(i-1))/2 (m) slmm	Hmi x Si
			(Kmq)		
0	98	0	0	0	0
1	105	0,256	0,256	101,5	25,981
2	130	0,768	1,024	117,5	90,229
3	135	0,256	1,280	132,5	33,916
4	145	0,512	1,792	140	71,672
5	165	0,768	2,560	155	119,026
6	188	0,512	3,072	176,5	90,357
7	265	0,896	3,968	226,5	202,920
8	1084	0,2 56	4,224	674,5	172,652

Totale 806,754

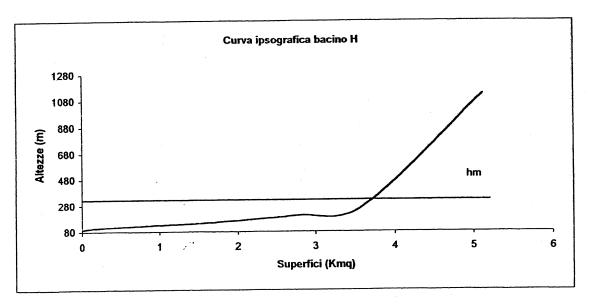


Altit.media	tempo di corrivazione	Superfici e	Lunghezza
(mslmm) hm	tc (ore)	(kmq)	asta princ. (km)
196,121	1,067	4,224	5,44

Bacino G sez. 247: Ponte Lagno S. Maria del Pozzo

i sezione	Hmax (m) (slmm)	Superficie (Kmq) Si	$\sum_{i=1}^{r} s_{i}$	Hmi=(Hi+H(i-1))/2 (m) slmm	Hmi x Si
			(Kmq)		
0	95	0	0	0	0
1	105	1,024	1,024	100	102,400
2	135	0,128	1,152	120	15,360
3	145	0,256	1,408	140	35,840
4	180	0,640	2,048	162,5	104,000
5	205	0,640	2,688	192,5	123,200
6	265	0,384	3,072	235	90,240
7	1110	0,640	3,712	687,5	440,000

Totale 911,040

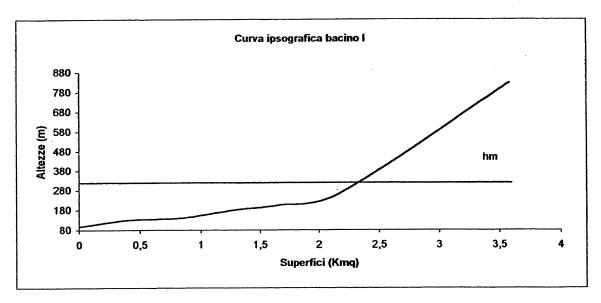


Altit.media	tempo di corrivazione	Superficie	Lunghezza
(mslmm) hm	tc (ore)	(kmq)	asta princ. (km)
245,431	1,874	3,712	7,12

Bacino H sez. 284: Ponte Lagno Fossa dei Leoni

i sezione	Hmax (m) (slmm)	Superficie (Kmq) Si	$\left[\begin{array}{cccc} \sum_{1}^{i} & j & S & j \end{array}\right]$	Hmi=(Hi+H(i-1))/2 (m) slmm	Hmi x Si
			(Kmq)		
0	95	0	0	0	0
1	105	0,128	0,128	100	12,799
2	130	0,768	0,896	117,5	90,229
3	135	0,256	1,152	132,5	33,916
4	145	0,384	1,536	140	53,754
5	180	0,768	2,304	162,5	124,785
6	205	0,512	2,816	192,5	98,548
7	265	0,768	3,584	235	180,459
8	1131	1,536	5,119	698	1072,003

Totale 1666,493

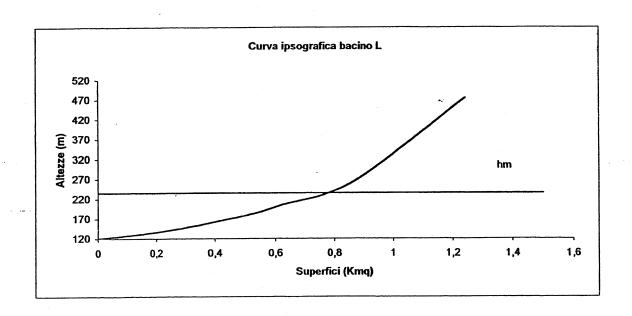


Altit.media	tempo di corrivazione	Superficie	Lunghezza
(mslmm) hm	tc (ore)	(kmq)	asta princ. (km)
325,525	1,019	5,119	7,08

Bacino I sez. 319: Ponte Lagno Macedonia

i sezione	Hmax (m) (slmm)	Superficie (Kmq) Si	$\left[\sum_{1}^{i}, S_{i}\right]$	Hmi=(Hi+H(i-1))/2 (m) slmm	Hmi x Si
			(Kmq)		
0	98	0	0	0	0
1	130	0,384	0,384	114	43,771
2	135	0,256	0,640	132,5	33,916
3	145	0,256	0,896	140	35,836
4	180	0,384	1,280	162,5	62,3 93
5	205	0,384	1,664	192,5	73,911
6	265	0,512	2,176	235	120,306
7	827	1,408	3,584	546	768,6 78

Totale 1138,811



Altit.media	tempo di corrivazione	Superficie	Lunghezza
(mslmm) hm	tc (ore)	(kmq)	asta princ. (km)
317,786	1,619	3,584	4,65

Bacino L sez. 348: Ponte Lagno Costantinopoli

i	Hmax (m)	Superficie (Kmq)		Hmi=(Hi+H(i-1))/2	Hmi x Si
sezione	(slmm)	Si	$\left[\sum_{i} \int_{S} S_{i}\right]$	(m) slmm	
			(Kmq)		
0	120	0	0	0	0
1	130	0,124	0,124	125	15,500
2	135	0,062	0,186	132,5	8,215
3	145	0,099	0,285	140	13,888
4	180	0,223	0,508	162,5	36,270
5	205	0,112	0,620	192,5	21,483
6	265	0,248	0,868	235	58,280
7	475	0,372	1,240	370	137,640

Totale 291,276

Altit.media	tempo di corrivazione	Superficie	Lunghezza
(mslmm) hm	tc (ore)	(kmq)	asta princ. (km)
234,900	0,519	1,240	3,05

Bacino M sez. 409: Sottopasso Lagno Somma

i sezione	Hmax (m) (slmm)	Superficie (Kmq) Si	\sum_{i}^{i}	, S ,	Hmi=(Hi+H(i-1))/2 (m) slmm	Hmi x Si
				(Kmq)		·
0	108	0		0	0	0
1	130	0,176		0,176	119	20,920
2	135	0,141		0,316	132,5	18,635
' 3	145	0,105		0,422	140	14,767
4	180	2,110		2,532	162,5	342,810
5	205	0,211		2,742	192,5	40,610
6	265	0,246		2,989	235	57,838
7	907	0,527		3,516	586	309,056

Totale 804,637

Altit.media	tempo di corrivazione	Superficie	Lunghezza
(mslmm) hm	tc (ore)	(kmq)	asta princ. (km)
228,850	1,202	3,516	2,05

Verifiche idrauliche

							The second name of the second na	the second name of the last name of the				The second second second second second	できない のかくに、 はないのかないのか	SOUND TO SELECT STATE OF THE PARTY OF THE PA		Control of the Contro	The state of the s	
Bacino	Bacino N. Sezione	Descrizione Attraversamento	Tipo	٩	F		T=50 (ar	luu)		a se	T=100 (ar	mi)			T=500 (ann	()	(m)	
			•	Έ	Έ	8	(mc/sec) h (m)	🗀 v (m/sec	.) franco (m)	Q (mc/sec). h (m)	v (m/sec)	ranco (m)) (mc/sed)	(E)	(desili)	Tall College	
ŀ	Į,	Octob Canadi Tropobio	oue Hor	2	5.54	ě	ľ		6.05	33,166	0,493	2,14	6,02	45,049	0,594	2,41	26'6	
∢	_	Fonte Lagrio di Troccina	ובוושוה.	7	5	5				44 644	1 605	27.6	28	15 639	1.901	2.97	09'0	
ω	49	Ponte Lagno dei Reclusi	triang.		2,5	0,0			88'n		C60'-	2 6		17 040	1 634	4.13	1.37	
ပ	119	Ponte Lagno delle Fosse	rettang.	3,5	ო	0,01			1,82	13,134	1,303	7,88	5,6	2,00	20,1	3,13	33	
۵	139	Ponte Lagno Palmendola	triang.		2,2	0,01			09'0	23,299	1,683	2,99	7c'0	31,047	000'-	2,00	. 23	
ш	151	Ponte Lagno Sorbo	rettang.	6,3	4,1	0,01	_		0,74	21,061	0,822	2,76	8 2 3 3	056,72	0,000	4,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	0,0	
ш.		Sottopasso Lagno S. Spirito	rettang.	9,4	7	0,01	_		1,11	27,435	996'0	3,02	76,0	37,266	6/1.0	טיי געני ני	(5,0	
. ტ	247	Ponte Lagno S. Maria del Pozzo	trap.	7	က	0,01			08'0	16,429	2,316	3,06	89'0	22,316	2,596	מה כ	0,402	
I	284	Ponte Lagno Fossa dei Leoni	rettang.	12,2	2	0,01	30,061 0,854	4 2,89	1,15	34,307	0,928	3,03	0,52	46,600	071,1	6 8 C) i	
_	319	Ponte Lagno Macedonia	rettang.	6,3	1,2	0,01			0,53	17,524	0,731	2,58	74,0	23,603	0,009	2, c	0.87	
_	348	Ponte Lagno Costantinopoli	rettang.	8,68	1,65	0,01			1,06	13,157	0,640	7,3/	0,1	1 /0'/1	4 463	2, 6	48	
Σ	409	Sottopasso Lagno Somma	rettang.	9'2	2	0,01	18,451 0,872	1	1,05	21,057	0,950	2,92	cn'-	700'07	1,102			

Ente nazionale per le strade

Compartimento della Viabilità per la Campania Napoli

RADDOPPIO DELLA VARIANTE ALLA S.S. 268 DEL VESUVIO TRONCO: CERCOLA-TORRE ANNUNZIATA

DAL Km 0+000 AL Km 19+554

PROGETTO ESECUTIVO DEL 2° LOTTO DAL Km 0+000 AL Km 11+607

			<u> </u>	
		DESCRIZIONE	DIS.	APPR.
REV.	Marzo 01		ALLEGA	TO
		3000		
		SCALA		

STUDIO IDROLOGICO - IDRAULICO

RELAZIONE INTEGRATIVA

anta diagno e' protetto nel termini previsti dolle ganti. Non può sesses riprodotto o comunque neo e tenzi senzo la nostra preventina cultorizzazione

PROCETTO STRADALE

Dott.Ing. Sebastiano Wancolle Geom. Giovanni Ciardiello

COLLABORAZIONE

Dott.Ing. Salvatore Frasca Dott. Geol. Italo Bani VISTO L'INCEDIETE CIPO:

Dott.Ing. Carlo Valerio

STUDIO IDROLOGIO:

Dott. Ing. Giulio Viparelli

PREMESSA

Con parere n. 292 del 24.11.2000 il Comitato Istituzionale dell'Autorità del Bacino Nord-Occidentale ha espresso parere favorevole sullo studio idrologico ed idraulico relativo ai "Lavori di raddoppio della variante alla S.S. 268 'del Vesuvio' 2° lotto, dal Km 0+000 al Km 11+607. Progetto Esecutivo", trasmesso dall'ANAS Compartimento di Napoli in data 5.12.2000.

Con il parere sopra citato l'Autorità di bacino Nord-Occidentale della Campania ha approvato lo studio in parola con la prescrizione di dettagliare in maniera più ampia la metodologia applicata, essendo quest'ultima di recente applicazione. In particolare il Comitato Istituzionale richiedeva integrazioni sui seguenti punti:

- a) Descrizione della metodologia svolta con particolare riguardo al modello di verifica adottato e conseguente interrelazione tra il tempo di ritardo ed il classico tempo di corrivazione;
- b) Il modello di verifica idraulico utilizzato per la verifica in corrispondenza degli attraversamenti e, di conseguenza, le informazioni topografiche morfologiche utilizzate:
- c) le informazioni topografiche e morfologiche alla base delle condizioni idrauliche agli attraversamenti.

In merito al primo punto, nel Capitolo 2 è riportato il calcolo delle portate di piena secondo i metodi previsti nel VAPI nonché la comparazione tra questi valori e quelli stimati nella studio idrologico sottoposto all'Autorità di Bacino Nord Occidentale della Campania.

Nei tabulati allegati al Capitolo 2 si può rilevare la relazione intercorrente tra tempo di corrivazione e tempo di ritardo.

Dal confronto dei metodi adottati e, cioè, metodo VAPI e metodo TCEV a due componenti si rileva che le portate sono confrontabili e quindi sono simili in ordine di grandezza.

Si può osservare inoltre che i parametri e coefficienti del secondo metodo e cioè il coefficiente di afflusso e il tempo di pioggia critico (pari al tempo di corrivazione), sono in rapporto con quelli del VAPI (coefficienti di piena e tempo di ritardo) mediante un coefficiente variabile tra 1,50 - 2.00. Tali valori sono stati giustificati da studi e ricerche effettuati sui bacini della Campania, di cui si riporta un breve riepilogo nelle pagine che seguono.

Come si può evincere dai tabulati, le verifiche idrauliche sono sempre soddisfatte anche considerando i valori delle portate stimate con i metodi VAPI.

Le informazioni topografiche e morfologiche utilizzate per le verifiche idrauliche dagli attraversamenti, come risulta dalla relazione già trasmessa ed oggetto di approvazione da parte dell'Autorità di bacino, sono state rilevate dalla cartografia disponibile e dagli elementi progettuali ricavati dagli elaborati forniti dall'ANAS.

In particolare, per lo studio idrologico, è stata ovviamente utilizzata, la cartografia in scala 1:25.000 IGM per la individuazione dei bacini colanti sottesi alle sezioni relative agli attraversamenti idraulici nonché per valutare le caratteristiche geometriche e geomorfologiche degli stessi.

Per le verifiche idrauliche sono stati utilizzate le normali formule dell'idraulica in moto uniforme, trattandosi di valutazioni preliminari.

2. CALCOLO DELLE PORTATE DI PIENA CON I METODI VAPI E CON-FRONTO CON I VALORI CALCOLATI NELLO STUDIO IDROLOGICO SOTTOPOSTO ALL'AUTORITA' DI BACINO.

Di seguito si descrivono sinteticamente i metodi VAPI adottati nonché i criteri alla base per la stima delle portate.

Indicando con Q il massimo annuale della portata al colmo e con T il periodo di ritorno, cioè l'intervallo di tempo durante il quale si accetta che l'evento di piena possa verificarsi mediamente una volta, la massima portata di piena Q_T corrispondente al prefissato periodo di ritorno T, può essere valutata come:

$$Q_{T} = K_{T}m(Q) \tag{1}$$

dove

- m (Q) = media della distribuzione dei massimi annuali della portata di piena (piena indice).
- K_T = fattore probabilistico di crescita, pari ai rapporto tra Q_T e la piena indice.

Valutazione del fattore regionale di crescita K_T.

Il territorio nazionale è stato suddiviso in aree ideologicamente omogenee, caratterizzate pertanto da un'unica distribuzione di probabilità delle piene annuali rapportate al valore medio (legge regionale di crescita con il periodo di ritorno).

L'indagine regionale volta alla determinazione di tale legge é stata svolta per la regione Campania nel Rapporto Campania sopra menzionato.

I risultati sono stati ottenuti sotto forma di una relazione tra K_T e T esplicitata come:

$$T = \frac{1}{1 - \exp(-13,11 \cdot 0,202^{K\tau} - 0,923 \cdot 0,230^{K\tau})}$$
 (2)

Questa relazione può essere valutata in prima approssimazione attraverso la seguente relazione:

$$K_{T} = -0.0545 + 0.680LnT$$
 (3)

con un errore inferiore al 9% per T≥20 anni, ed inferiore al 2% per T≥50 anni.

Nella tabella 1 che segue sono riportati, per diversi periodi di ritorno, i valori di K_T ottenuti dall'equazione (2).

Tabella 1 - Legge regionale di crescita per la regione Campania

The state of the s	
T (anni)	KT
10	1.63
20	2.03
50	2.61
100	3.07
200	3.53
300	3.83
500	4.17

Valutazione della piena media annua m(Q).

La piena media annua m(Q) è caratterizzata da una elevata variabilità spaziale che può essere spiegata, almeno in parte, ricorrendo a fattori climatici e geomorfologici.

É dunque in genere necessario ricostruire modelli che consentano di mettere in relazione m(Q) con i valori assunti da grandezze caratteristiche del bacino.

In mancanza di dati di misura di portata nelle sezioni di interesse, l'identificazione di tali modelli può essere ottenuta sostanzialmente attraverso approcci di tipo indiretto, che si basano su modelli in cui la piena media annua viene valutata con parametri che tengono conto delle precipitazioni massime sul bacino e delle caratteristiche geomorfologiche (modelli geomorfoclimatici), con relazione del tipo:

$$m(Q) = \frac{C_f \bullet q \bullet m[I(t_r)] \bullet A}{3,6} \tag{4}$$

in cui

- t_r = tempo di ritardo del bacino, in ore;
- C_f = coefficiente di deflusso, caratteristico del bacino;
- m[I(t_r)] = media del massimo annuale dell'intensità di pioggia di durata pari al tempo di ritardo t_r del bacino, in mm/ora;
- A = area del bacino, in km²;

 q = coefficiente di attenuazione del colmo di piena, che consente di tenere conto, tra l'altro, del fatto che in realtà la durata critica del bacino, e cioè la durata della pioggia che causa il massimo annuale del colmo di piena, non è pari a t_r.

Un caso particolare dei modelli geomorfoclimatici è rappresentato dal "metodo razionale".

Il Rapporto VAPI Campania ha provveduto alla stima dei parametri sia per modelli empirici di vario tipo che per il modello geomorfoclimatico e per il modello razionale (ed anche per il metodo empirico).

Il calcolo della portata media annua al colmo di piena, di seguito riportato, nelle sezioni di interesse, in mancanza di dati di misura di portata, può essere effettuato, in via indiretta, a partire dalle precipitazioni intense e in particolare con sia con il "metodo geomorfoclimatico" che con il "metodo razionale"; entrambi i metodi sono basati, come detto, su criteri di similitudine idrologica che consentono di stimare m(Q) come una frazione della massima intensità di pioggia che può verificarsi sul bacino e tenendo in conto le caratteristiche geomorfologiche dello stesso.

Nell'applicazione di tali metodi:

- si stima la legge di probabilità pluviometrica che definisce la media del massimo annuale dell'altezza di pioggia di durata d. m[h(d)];
- si individua un numero per quanto è possibile ristretto di parametri che valgano a specificare, sotto forma numerica, le caratteristiche fisiche del bacino sotteso dalla generica sezione di interesse che si considera;
- in base ai valori assunti da detti parametri si definisce una durata critica de caratteristica del bacino, pari alla durata di pioggia che determina il massimo della piena media annua;

si stima m(Q) con il modello razionale:

$$m(Q) = \frac{C \cdot m[I(d_c)] \cdot A}{3.6} = \frac{C \cdot m[h(d_c)]}{3.6} \cdot M[h(d_c)] \cdot A$$
 (5)

Nella precedente:

- A è la superficie del bacino, espressa in Km²;

- d_c è la durata critica del bacino, espressa in ore;
- m[h(d_c)] è il massimo annuale dell'altezza di pioggia di durata pari alla durata critica del bacino, espresso in mm/ora;
- C* è il coefficiente di piena, che consente di tenere conto dell'infiltrazione sul bacino e dell'attenuazione del colmo di piena effettuata dal reticolo idrografico.

Valutazione della legge di probabilità pluviometrica (VAPI)

In generale nelle applicazioni idrologiche è necessario conoscere come varia la media del massimo annuale dell'altezza di pioggia in funzione della durata d e dell'area del bacino A.

La metodologia comunemente impiegata consiste nell'ottenere la media del massimo annuale dell'altezza di pioggia areale $m[h_A(d)]$ dalla media del massimo annuale dell'altezza di pioggia puntuale m[h(d)] attraverso un fattore di ragguaglio noto come coefficiente di riduzione areale $K_A(d)$ come:

$$m[h_A(d)] = K_A(d) m[h(d)]$$
 (6)

Per aree molto piccole, come quella dei bacini di cui trattasi, $K_A(d)$ potrebbe essere chiaramente posto pari ad 1.

Di seguito si farà dunque riferimento alla media del massimo annuale dell'altezza di pioggia puntuale, m[h(d)].

Per la stima della legge di probabilità pluviometrica, che definisce appunto la variazione della media del massimo annuale dell'altezza di pioggia con la durata, il Rapporto VAPI Campania fa sostanzialmente riferimento a leggi a quattro parametri del tipo:

$$m[h(d)] = \frac{m[h_0] \cdot d}{\left(1 + \frac{d}{dc}\right)^{\beta}}$$
(7)

in cui $m[h_0]$ rappresenta il limite dell'intensità di pioggia per d che tende a 0 e β è funzione lineare della quota media del bacino e delle costanti C e D.

Le variabili $m[h_0]$, β , C e D sono tabellate (Tabella 5.5, pag. 173, VAPI Campania) in funzione delle 6 Aree Pluviometriche Omogenee.

Per la valutazione dei parametri del modello geomorfoclimatico e di quello razionale, e cioè della parte di bacino permeabile (frazione permeabile), del coefficiente di afflusso di piena C_f (geomorfoclimatico) o C* (razionale) e del tempo di ritardo del bacino t_s, in mancanza di dati relativi ai bacini in esame che consentono una stima degli stessi secondo la metodologia proposta dal suddetto Rapporto VAPI Campania, si considera:

- frazione permeabile pari al 40% del bacino;
- per C_f e C* sono state utilizzate rispettivamente le formule 5.38c, 5.38d, 5.39a e
 5.39b;
- per t_r sono state utilizzate le formule 5.46b e 5.47b;
- per d_c si ammette che risulti d_c=t_r.

In definitiva, per i bacini in esame, la stima di m(Q) può essere ottenuta dalla relazione (4) per il metodo geomorfoclimatico e dalla (5) per quello razionale, adottando i parametri e coefficienti succitati.

Nei tabulati allagati si riportano i calcoli delle portate di piena sulla base delle indicazioni riportate nel rapporto VAPI e secondo i tre metodo proposti (metodo geomorfoclimatico, razionale ed empirico).

2 3.3 Valutazione della legge di probabilità pluviometrica (TCEV a due componenti)

Tuttavia, quando manchino dati relativi a piogge di durata molto breve, si può ricorrere
ad una legge di tipo monomio:

$$m[h(d)] = m[h_1] d^n$$
 (8)

che interpola bene i dati di pioggia di durata maggiore o minore ad 1 ora.

Per la valutazione dei parametri m[h₁] ed n della precedente formula, si è fatto ricorso ad una analisi statistica effettuata utilizzando i dati dei massimi annuali di pioggia di durata 1,3,6,12 e 24 ore relativi alle stazioni pluviografiche ricadenti nel territorio in esame.

Tali dati sono stati tratti dagli Annuali Idrologici pubblicati dal Compartimento di Napoli del Servizio Idrologico e Mareografico Nazionale (S.l.M.N.), pubblicati sullo stesso rapporto VAPI preso a riferimento.

I risultati dell'elaborazione dei dati pluviometrici e le leggi di pioggia adottati sono esplicitati nello studio idrologico redatto dal sottoscritto.

In particolare, in tale studio, il tempo di corrivazione d_c è stato valutato attraverso la formula di Giandotti:

$$d_c = \frac{4\sqrt{A} + 1,5L}{0.8\sqrt{Y - Y_0}} \tag{10}$$

in cui:

- A è la superficie del bacino, espressa in Km²;
- L è la lunghezza dell'asta principale del corso d'acqua, in Km;
- Y è l'altitudine media del bacino, in m s.l.m.m.;
- Y₀ è l'altitudine minima (quota d'alveo nella sezione di chiusura del bacino) in m s.l.m.m.

La stima di m(Q) è stata ottenuta dalla relazione (5), esplicitata come:

$$m(Q) = \frac{1}{3.6} \bullet \varphi \bullet a \bullet dc^{(n-1)} \bullet A \tag{11}$$

dopo aver calcolato il valore di d_e dalla relazione (10) e a ed n dalle relazioni (9) dello studio idrologico ed avendo posto il coefficiente di afflusso φ variabile da 0.30 a 0.40. Tali coefficienti sono stati rilevati dalla letteratura tecnica in materia e sono relativi a bacini colanti costituiti prevalentemente da aree non urbanizzate e da terreni piroclastici con in tratti pedemontani.

Considerazioni riepilogative

Dal confronto dei metodo adottati e, cioè, metodo VAPI e metodo TCEV e due componenti si rileva che le portate sono confrontabili e quindi sono simili in ordine di grandezza.

Si può osservare, inoltre, anche che i parametri e coefficienti del secondo metodo e cioè il coefficiente di afflusso e il tempo di pioggia critico (pari al tempo di corrivazione), sono in rapporto con quelli del VAPI (coefficienti di piena e tempo di ritardo) mediante

un coefficiente pari a 1,50 - 2.00. Tali valori sono stati giustificati anche dagli studi e ricerche effettuati sui bacini della Campania.

Nei tabulati che seguono si riportano i valori delle portate di massima piena valutate con i criteri innanzi indicati nelle sezioni idrauliche considerate. Si riportano inoltre le caratteristiche del moto (tirante, velocità, franco idraulico, etc.) corrispondenti ai valori delle portate per i tempi di ritorno di progetto.

Come si può evincere dai tabulati, le verifiche idrauliche sono sempre soddisfatte anche considerando i valori delle portate stimate con i metodi VAPI.

CALCOLO DELLE PORTATE DI PIENA CON IL METODO VAPI

AREA Pluviometrica m(i) dc C D beta		Quota media (slmm) Superficie totale area permeabile (%)	modello geomorfoclimatico	area perm.s. bosco area impermeabile			
mm/ora ore		mslmm kmq	m/s m/s	K K K M A A	ore		mm/ora mc/s
			25 25 25 25 25 25 25 25 25 25 25 25 25 2	4 & A	દ્ય ઉં	G KA(tr)	mm/ora m(l(tr)) mc/s m(Q)
77.0800 0.3661 0.7995 3.6077 0.8112	A	325.00 6.2710 50%	0.1300 0.6000 0.2500 1.7000	3.1355 3.1355 6.2710	0.3650	0.6000	31.5441 11.94
	æ	174.00 2.3040 50%	0.1300 0.6000 0.2500 1.7000	1.1520 1.1520 2.3040	0.3650	0.6000	40.4018 5.64
	O	167.00 2.0480 50%	0.1300 0.6000 0.2500 1.7000	1.0240 1.0240 2.0480	0.3650	0.6000	41.4610 5.15
	٥	246.00 2.4320 50%	0.1300 0.6000 0.2500 1.7000	1.2160 1.2160 2.4320	0.3650	0.6000	39.9154 5.89
	w	228.00 2.3040 50%	0.1300 0.6000 0.2500 1.7000	1.1520 1.1520 2.3040	0.3650	0.6000	40.4018 5.64
	L	196.00 4.2240 50%	0.1300 0.6000 0.2500 1.7000	2.1120 2.1120 4.2240	0.3650	0.6000	34.9808 8.94
	ව	245.00 3.7120 50%	0.1300 0.6000 0.2500 1.7000	1.8560 1.8560 3.7120	0.3650	0.6000	36.1262 8.12
	I	325.00 5.1190 50%	0.1300 0.6000 0.2500 1.7000	2.5595 2.5595 5.1190	0.3650	0.6000	33.2952 10.30
		3.5840 50%	0.1300 0.6000 0.2500 1.7000	1.7920 1.7920 3.5840	0.3650	0.6000	36.4387
	_	235.00 1.2400 50%	0.1300 0.6000 0.2500 1.7000	0.6200 0.6200 1.2400	0.3650	0.6000	45.9309 3.46
	Σ	229.00 3,5160 50%	0.1300 0.6000 0.2500 1.7000	1.7580 1.7580 3.5160	0.3650	0.6000	36.6094 7.79

CNICAR			⋖	œ	O	Ω	ш	ш	တ	I		ר	
metodo razionale		5	0.0900	0,0900	0.0900	0.0900	0.0900	0.0900	0.0900	0.0900	0.0900	0.0900	0.0900
			0.3800	0.3800	0.3800	0.3800	0.3800	0.3800	0.3800	0.3800	0.3800	0.3800	0.3800
	9/4	, 5	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500
	s/w	5 8	1.7000	1.7000	1.7000	1.7000	1.7000	1.7000	1.7000	1.7000	1.7000	1.7000	1.7000
													1
area permis, bosco	Kma	Ā	3.1355	1.1520	1.0240	1.2160	1.1520	2.1120	1.8560	2.5595	1.7920	0.6200	1.7580
area impermeabile	X	8	3.1355	1.1520	1.0240	1.2160	1.1520	2.1120	1.8560	2.5595	1.7920	0.6200	1.7580
	Kmg	< <	6.2710	2.3040	2.0480	2.4320	2.3040	4.2240	3.7120	5.1190	3.5840	1.2400	3,5160
		.	0.2350	0.2350	0.2350	0.2350	0.2350	0.2350	0.2350	0.2350	0.2350	0.2350	0.2350
	ore	4 (0.7634	0.4627	0.4362	0.4754	0.4627	0.6265	0.5873	0.6897	0.5771	0.3394	0.5716
		KA(tr)	0.9920	0.9969	0.9972	0.9967	0.9969	0.9945	0.9951	0.9934	0.9953	0.9983	0.9954
							1			0000	7100	46 2603	25 0410
	mm/ora	m(l(tr)) m(O)	30.9054	39.7264 5.9562	40.7860 5.4374	39.2401 6.2091	39.7264 5.9562	34.3195 9.4109	35.4597 8.5503	32.6436 10.8361	35.7709 8.3293	3.6579	8,2108
	2	3											
regressions ampirica	mc/s	(O)m	11.96	5.84	5.37	6.07	5.84	9.01	8.22	10.34	8.02	3.75	7.91
											3	٠	
riepilogo													
CINICAG			٥	00	O	۵	ш	u.	g	I	_	لـ	2
	-		11 94	5.64	5.15	5.89	5.64	8.94	8.12	10.30	7.91	3.46	7.79
motodo gadinoros.			12.55	5.96	5.44	6.21	5.96	9.41	8.55	10.84 48.04	8.33	3.66	8.21
metodo empirico			11.96	5.84	5.37	6.07	5.84	9.01	8.22	10.34	8.02	3.75	7.91

RIEPILOGO DELLE PORTATE

1000	00000	ooiimotico			metodo razionale	zionale			metodo empirico	mpirico	
	2000	T 50 100	200	-	50	5	88	F	50	100	200
-	360	20.6	4 17	(C)W	2.60	3.07	4.17	m(Q)	2.60	3.07	4.17
3 6	3 6	25.96	70 77	10 55	32.67	38.59	52.33	11.96	31.14	36.77	49.86
\$ = -	000	00.70	7.00	5.5	, i	9 6	0 70	78	15.04	17.97	24 36
5.64	14.70	17.36	23.54	5.96	15.51	10.0	24.03	0.0	17:01	3	- 0
L 15	12 41	15.84	21 48	5.44	14.16	16.72	22.67	5.37	13.98	16.51	22.39
5 6	- (16.17	000	25.89	6.07	15.81	18.67	25.32
5.8g	15.32] œ.	44.04	7.0	3					1101	90 70
707	4.4.70	17.36	23.54	5.96	15.51	18.31	24.83	5.84	15.21	78.71	24.30
5) i		1 0	3	77 70	28 04	30 24	0	23.47	27.72	37.59
	23.27	27.49	3/.7/	4.	7.70	10.01	7.00			10	70.40
0 12	24.40	24 96	33 84	8.55	22.26	26.29	35.65	8.22	21.40	72.27	84.Z/
	7	20.5		700	000	22.22	45.18	10.34	26.93	31.80	43.12
10.30	26.81	31.67	47.34	40.01	707	30.00) }	5			0
7	20.50	24.24	32 97	8 33	21.69	25.61	34.73	8.02	20.8/	24.65	33.42
	20.00	1.0.1) i				100	375	0 77	11 53	15.64
3.46	00	10.63	14.42	3.66	9.52	11.25	15.25	o./o	0.0	3	
7	90.00	90 60	32 49	8.21	21.38	25.25	34.23	7.91	20.58	24.31	32.96
? -	20.23	20.00	25:12								

Comparazione	SCARTO		10.50%	50.53%	20.41%	-22.44%	2.65%	0.02%	51.68%	-7.83%	38.52%	-19.30%	13.63%
	8	4.17	45.04	15.63	17.84	31.64	22.93	37.26	22.31	46.59	23.80	17.87	28.60
MIA	\$	3.07	33.22	11.53	13.15	23.33	16.91	27.48	16.46	34.36	17.55	13.18	21.09
LEGGE MONOMIA	20	2.60	28.13	9.76	11.14	19.76	14.32	23.27	13.93	29.09	14.86	11.16	17.86
LEGG		(g) E	10.80	3.75	4.28	7.59	5.50	8.94	5.35	11.18	5.71	4.29	6.86

∢ ⊞ ∪ □ Ⅲ ⊩ □ Ⅲ − ⊣ ∑

BACINO CIP NO CI

9) CALCOLI E VERIFICHE IDRAULICHE

La tipologia degli attraversamenti e le loro caratteristiche geometriche sono state fornite dall'Ente committente e come tali, trattandosi di progetto preliminare, utilizzati dal redattore del presente studio di verifica.

Per la verifica degli attraversamenti, è stata utilizzata una delle più ricorrenti formule di moto uniforme che la letteratura ci fornisce, ovvero quella di Gaukler-Strikler. La suddetta formula si esprime, come a tutti ben noto, attraverso la relazione:

$$V = KR^{2/3} i^{1/2}$$
 (1)

Se a tale formula si associa a quella di continuità:

$$Q=V\sigma$$
 (2)

si può procedere in maniera speditiva, una volta prefissate le caratteristiche geometriche del manufatto, alla determinazione delle caratteristiche idrauliche della corrente che si instaurano al passaggio delle varie portate. Si è, inoltre, verificato, attraverso la relazione che determina il carico della corrente:

$$H=h+V^2/(2g)$$
 (3)

Se l'energia totale della corrente restava comunque entro i tronchi.

Va ricordato che nelle relazioni (1), (2) e (3), si è indicato con:

V(m/s) la verifica in moto uniforme

K il coefficiente di Gaukler-Strikler;

R(m) il raggio idraulico espresso come rapporto tra le sezione idrica e il con-

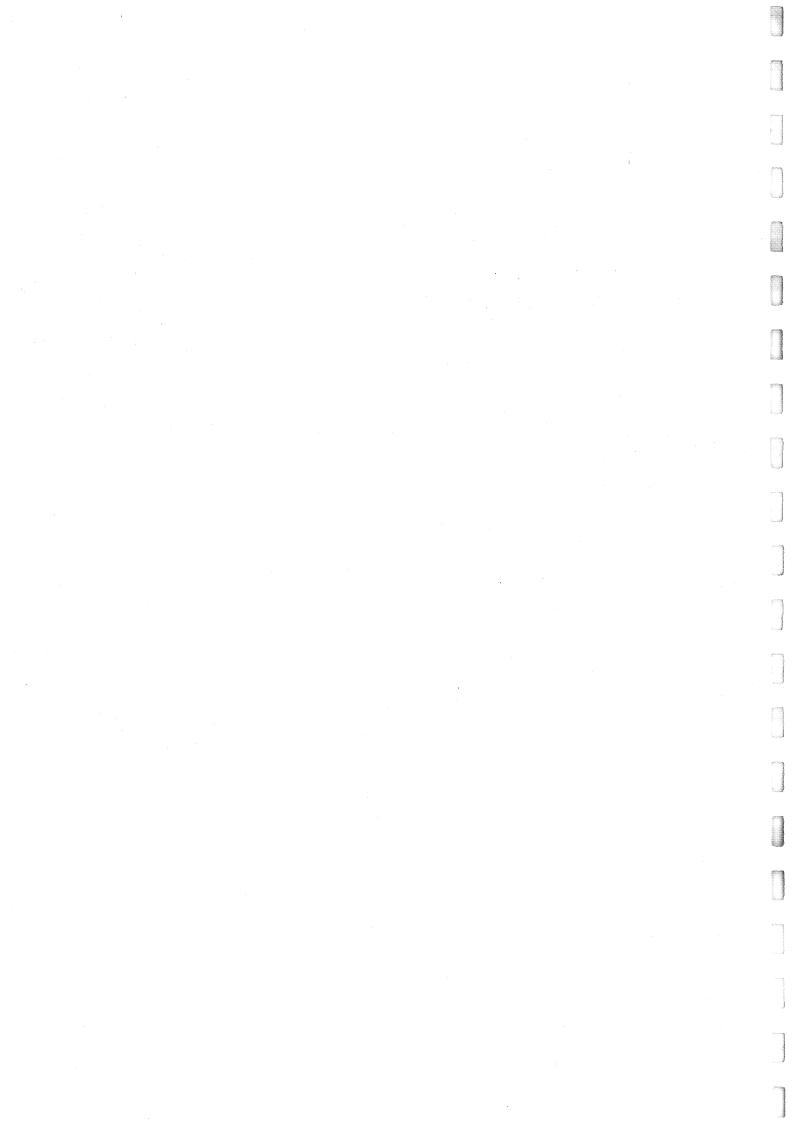
torno bagnato;

i la pendenza del collettore;

Q(mc/s) la portata;

σ(mq) la sezione idrica;

H(m) il carico idraulico della corrente;


g(m/sec) l'accelerazione di gravità.

Per quanto concerne il valore del coefficiente "K", coefficiente il cui valore dipende essenzialmente dalla natura delle pareti che costituiscono lo speco, si è ritenuto cautelativo adottare il valore 35 considerata la natura delle pareti.

Nelle verifiche delle opere si è controllato che, il massimo grado di riempimento restasse contenuto in valore di 0,75/0,80 questo per garantire il necessario franco ed evitare che eventuali innalzamenti tirante idrico possano occludere la sezione dello speco, provocando alterazione nel normale deflusso a pelo libero all'interno delle sezioni idrauliche.

VERIFICHE IDRAULICHE

																	1	(1000)			-
Backs	Bacino Descrizione Attraversamento	Tipo	۵	I	-	与	=50 (anni					00.#L	(and)		Ç		-	(111111)	franco	Q,	
		-				Ö			fance	G.		NO.			, §	्र	(E)	v (m/sec)		8	
			(E)	(E)	(%)	(mc/sec) : h (m)	٦ (m) ب	(m/8ec)	(E)	(R)	O (MCSec					t	. 1		1	10%	_
4	Ponte Lagno di Trocchia	rettang.	31.4	6.51	0.01	31.078	0.474	2.09	6.04	%	36.705				_				0.28	89%	
60	Ponte Lagno del Reclusi	triang.	0	2.5	0.01	14.697	1.857	2.93	0.64	74%	17.35/	7.8.	9 6	4.07	8.64	21.476	1874	3.27	1.13	62%	
O	Ponte Lagno delle Fosse	rettang.	3.5	က	0.01		1.322	2.90	1.68	44%	15.838								0.48	78%	
۵	Ponte Lagno Palmendola	triang.		2.2	0.0		1.439	2.70	0.76	80°	16.096								0.52	63%	
ш	Ponte Lagno Sorbo	rettang.	დ ფ	4.	0.0	14.697	0.654	2.42	0.73	% 26	17.537								0.82	28%	
u	Sottopasso Lagno S. Spirito	rettang.	9.4	0	0.0		0.870	2.85	1.13	8,54	77.400								1.79	40%	
U	Ponte Lagno S. Maria del Pozzo	trap.	7	ო	0.0		0.918	2.9	7.08	8.5	24.90								0.93	54%	
1	Ponte Lagno Fossa dei Leoni	rettang.	12.2	~	0.0		0.794	7.7	7.0	8 9	01.000								0.10	91%	
_	Ponte Lagno Macedonia	rettang.	დ დ	7.5	0.0		0.810	2.6	9.59	8 6	40.635				. •	_			0.97	41%	
	Ponte Lagno Costantinopoli	rettang.	8.68	1.65	0.0	9.005	0.504	9 6		8 6	20.03								0.74	63%	-
2	Sottopasso Lagno Somma	rettang.	9.7	2	0.01	20.291	0.928	7.99). (0.87	\$ Q	23.302	1	ı	١	١	1					i

