

AMPLIAMENTO ALLA TERZA CORSIA TRATTO: MONSELICE - PADOVA SUD

PROGETTO DEFINITIVO

CORPO AUTOSTRADALE

OPERE D'ARTE MAGGIORI PONTI E VIADOTTI

Ampliamento Ponte sul Canale Vigenzone (op n°543 — km 93+438) Relazione di Calcolo delle Fondazioni

IL PROGETTISTA SPECIALISTICO

Ing. Marco Pietro D'Angelantonio Ord. Ingg. Milano N.20155 RESPONSABILE GEOTECNICA ALL'APERTO

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Ilaria Lavander Ord. Ingg. Milano N. 29830

IL DIRETTORE TECNICO

Ing. Orlando Mazza Ord. Ingg. Pavia N. 1496

PROGETTAZIONE NUOVE OPERE AUTOSTRADALI

CODICE IDENTIFICATIVO						
RIFERIMENTO PROGETTO		RIFERIMENTO DIRETTORIO RIFERIMENTO ELABORATO				
Codice Commessa Lotto, Sub-Prog, Cod. Appalto Fase	Capitolo Paragrafo	pitolo Paragrafo WBS PARTE D'OPERA Tip. Disciplina Progressiv				_
1 1 1 7 0 5 0 0 0 0 0				OADEOSO3		SCALA:
						-

	PROJECT MAN	AGER:	SUPPORTO SPECIALISTICO:			REVISIONE
soea					n.	data
		Ing. Ilaria Lavander			0	SETTEMBRE 2016
FAIGUAIFFRIAIG	ora.	lngg. Milano N. 29830			1	-
ENGINEERING					2	-
A.1 9	REDATTO:		VERIFICATO:		3	-
gruppo Atlantia	REDATIO:	_	VERIFICATO:	_	4	-

VISTO DEL COMMITTENTE

autostrade per l'italia

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Antonio Tosi

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti dipartimento per le infrastrutture, gli affari generali ed il personale struttura di vigilanza sulle concessionarie autostradali

SPEA Engineering

AUTOSTRADA (A13) BOLOGNA-PADOVA

Ampliamento alla terza corsia del tratto Monselice - Padova Sud

PROGETTO DEFINITIVO

PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

APE0503

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Indice

1.	P	REMESSA	4
2.	D	OCUMENTI DI RIFERIMENTO	6
	2.1	Normativa	6
	2.2	DOCUMENTAZIONE DI PROGETTO	6
	2.3	Bibliografia	6
	2.4	SOFTWARE DI CALCOLO	7
3.	N	1ATERIALI	8
4.	C	CARATTERIZZAZIONE GEOTECNICA	9
	4.1	Premessa	g
	4.2	INDAGINI E PROVE DI LABORATORIO DI RIFERIMENTO	
	4.3	STRATIGRAFIA DI RIFERIMENTO E PARAMETRI GEOTECNICI CARATTERISTICI	10
	4.4	MISURE PIEZOMETRICHE E LIVELLI DI FALDA	12
	4.5	DETERMINAZIONE DELLA CATEGORIA DI SUOLO	12
5.	C	CRITERI DI VERIFICA E DI CALCOLO	13
	5.1	Premessa	13
	5.2	Criteri di Progettazione agli Stati Limite	13
	5.3	FONDAZIONI SU PALI	15
	5	.3.1 Verifiche di sicurezza	
	5	.3.2 Resistenza caratteristica (R_k) di pali soggetti a carichi assiali	
		5.3.2.1 Stima della resistenza di pali soggetti a carichi assiali	20
		5.3.2.2 Pali trivellati	20
		5.3.2.2.1 Portata di base	
		5.3.2.2.2 Attrito laterale	
		5.3.2.3 Pali battuti	
		5.3.2.3.1 Portata di base	
	5	5.3.2.3.2 Attrito laterale	
		.3.4 Analisi della palificata	
	5	5.3.4.1 Comportamento non lineare del palo	
6		METODI PER LA VALUTAZIONE DEGLI INTERVENTI DI CONSOLIDAMEN	
6.		E SPALLEE SPALLE	
	6.1	VALUTAZIONE DEL TIRO DI LAVORO NEL SISTEMA DI RITEGNO SISMICO	
7.	D	DESCRIZIONE DELLE OPERE	45
8.		ZIONI DI CALCOLO IN FONDAZIONE	
Ade	guar	nento alla terza corsia nel tratto Monselice-Padova Sud – Opere d'arte maggiori	2/112

Spea

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

8.1	CONSIDE	ERAZIONI GENERALI E SISTEMA DI RIFERIMENTO	51
8.2	AZIONI I	DI CALCOLO – SPALLE	53
8.3	AZIONI I	DI CALCOLO – PILE	58
9. P.	ARAME	TRI DEL MODELLO GEOTECNICO DELLE PALIFICATE	60
10. F	ONDAZI	IONI SPALLE	62
10.1	STIM	A DELLA RESISTENZA DEI PALI SOGGETTI A CARICHI ASSIALI	62
10.2	Anai	LISI DELLO STATO DI FATTO DELLA FONDAZIONE	71
10.3	Anai	LISI DI INTERAZIONE FRA STRUTTURA ESISTENTE E RITEGNO SISMICO	71
10.4	RISU	LTATI ANALISI PALIFICATA E VERIFICHE	74
10	0.4.1	Risultati delle analisi	75
10	0.4.2	Verifiche geotecniche	76
10	0.4.3	Verifiche strutturali del palo	76
11. F	ONDAZI	IONI PILE	84
11.1	STIM	A DELLA RESISTENZA DEI PALI SOGGETTI A CARICHI ASSIALI	84
11.2	RISU	LTATI ANALISI PALIFICATA E VERIFICHE	89
1.	1.2.1	Risultati delle analisi	91
1.	1.2.2	Verifiche geotecniche	91
1.	1.2.3	Verifiche strutturali del palo	91
12. V	ERIFICA	A DEI REQUISITI PRESTAZIONALI DELLE OPERE	96
13. O	PERE P	ROVVISIONALI	98
13.1	PREM	MESSA	98
13.2	STRA	TIGRAFIA E PARAMETRI GEOTECNICI DI PROGETTO	98
13.3	CRITI	ERI DI VERIFICA	99
1.	3.3.1	Paratie	99
	13.3.1.1	Verifica dei tubi di armatura dei micropali	102
1.	3.3.2	Ancoraggi	103
	13.3.2.1	Verifica dell'armatura dei tiranti	103
	13.3.2.2	Verifica a sfilamento dei micropali inclinati	105
13.4		FICHE ESEGUITE E RISULTATI	106
13.5	VERI	FICA DEL TUBLDI ARMATURA DEL MICROPALI	112

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud

PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

1. PREMESSA

Oggetto della presente Relazione sono le verifiche geotecniche delle fondazioni del

Ponte sul Canale Vigenzone (VI004) previste nell'ambito della progettazione

definitiva dell'Autostrada A13 (Bologna - Padova), Ampliamento alla terza corsia del

tratto tra Monselice - Padova Sud.

Le verifiche sono state condotte ai sensi della Normativa vigente (Doc. Rif. [1] e [2]).

In particolare vengono analizzate e progettate le fondazioni delle spalle e delle pile

della parte in allargamento dell'opera e vengono verificate le fondazioni della

struttura esistente.

Le strutture esistenti sono realizzate con fondazioni profonde su pali battuti di tipo

"SCAC". Le fondazioni delle spalle e delle pile in ampliamento sono state previste

profonde su pali trivellati di grande diametro. Tale tipologia è stata scelta in funzione

dell'entità dei carichi e delle caratteristiche dei terreni di fondazione presenti.

Le spalle esistenti saranno rafforzate mediante un sistema passivo costituito da una

coppia in serie di pali collegati a tergo della spalla.

Per le fondazioni in ampliamento si ha:

Spalla A:

n°8 (Nord) + 8 (Sud) pali Ø1000 di L=30.0 m

Adequamento Sismico n°4 cavalletti di n°2 pali Ø1000 di L=15.0 m

Spalla B:

n°8 (Nord) + 8 (Sud) pali Ø1000 di L=30.0 m

Adeguamento Sismico n°4 cavalletti di n°2 pali Ø1000 di L=15.0 m

Pile:

n°**6x2** pali Ø1000 di L=30m

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Per la definizione dell'azione sismica di progetto si fa riferimento alla Relazione Geotecnica Generale. Il sito è caratterizzato da un'accelerazione di progetto su suolo di categoria D, associata ad un tempo di ritorno di 949 anni e periodo di riferimento di 100 anni, pari a 0.152g ⁽¹⁾. Per quanto riguarda le informazioni relative alla vita nominale, classe d'uso, corrispondente coefficiente d'uso e periodo di riferimento per l'azione sismica della struttura in esame si rimanda alla Relazione STR di calcolo strutturale.

(1) Fonte: Allegato B alle Nuove Norme Tecniche per le Costruzioni – Tabelle dei parametri che definiscono l'azione sismica.

Tazione sismica.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

2. DOCUMENTI DI RIFERIMENTO

2.1 NORMATIVA

- [1] Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni", G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30.
- [2] Circolare 2 febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008.
- [3] UNI EN 1997-1: Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali.
- [4] UNI EN 1998-5: Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

2.2 DOCUMENTAZIONE DI PROGETTO

- [5] Relazione Geotecnica Generale APE0001
- [6] Schede Geotecniche delle opere APE0010
- [7] Planimetrie e Profili Geotecnici APE0002÷APE0009
- [8] Tavole di Progetto STR0501- STR0506

2.3 BIBLIOGRAFIA

- [9] ASSOCIAZIONE GEOTECNICA ITALIANA [1984] "Raccomandazioni sui pali di fondazione"
- [10] BUSTAMANTE M. & DOIX B. (1985) "Une méthode pour le calcul des tirants et des micropieux injectés" Bulletin Laboratoire Central des Ponts et Chaussées, n°140, nov.-déc., ref. 3047
- [11] COLLOTTA T., MORETTI P.C. (1985) "I pali trivellati di grande diametro in terreni granulari", Rivista Autostrade, n.5, maggio, 34-4.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

- [12] JAMIOLKOWSKI M. et al. (1983) "Scale effects of ultimate pile capacity", Discussion, JGED, ASCE.
- [13] Matlock, H., Reese, L.C. (1960). "Generalized Solutions for Laterally Loaded Piles". Journal of Soil Mechanics and Foundations Division. ASCE, Vol.86, No.SM5, pp.63-91.
- [14] Meyerhof G.G. (1976) "Bearing capacity and settlement of pile foundation" Journal of Geotechnical Engineering Division, ASCE, vol.102, March.
- [15] MEYERHOF G.G., SASTRY V.V.R.N. (1978) "Bearing capacity of piles in layered soils. Part 1. Clay overlying sand", Canadian Geotechnical Journal, 15,171-182.
- [16] Nordlund R.L. (1963) "Bearing capacity of piles in cohesionless soils" JSMFE, ASCE, SM3
- [17] Reese L.C., Cox W.R., Koop F.D. (1975) "Field testing and analysis of laterally loaded piles in stiff clay" Proc. VII Offshore Technology Conference, OTC 2313, Houston, Texas.
- [18] Reese L.C., Wright S.J. (1977) "Drilled shaft manual" U.S. Department of Transportation, Office of Research and Development, Div. HDV 2, Washington.
- [19] Tomlinson M.J. (1977) "Pile design and construction practice" View Point Publication

2.4 SOFTWARE DI CALCOLO

- [20] Group for Windows Version 6, Ensoft Inc (1985-2003)
- [21] Ministero LLPP Foglio elettronico "Spettri-NTC ver.1.0.3.xls" (http://www.cslp.it)

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

3. MATERIALI

Acciaio per armature ordinarie dei pali di fondazione:

Barre nervate tipo B450C

fyk > 450 Mpa

ftk > 540 Mpa

copriferro: 60 mm.

Calcestruzzo per pali di fondazione:

- Classe resistenza minima C25/30;
- Classe di esposizione XC2;
- Eventuali additivi secondo NTA.

Acciaio per micropali (acciaio in profili a sezione cava):

Tipo EN 10210-1 S355 J0H+N

Calcestruzzo per cordolo paratie:

Caratteristica di resistenza minima
 C25/30

Classe di esposizione XC2

Acciaio in profili a sezione aperta laminati a caldo saldati:

- Tipo EN 10025-2 S355 J2+N per spessori nominali t ≤ 40mm
- Tipo EN 10025-2 S355 K2+N per spessori nominali t > 40 mm

Acciaio in profili a sezione aperta laminati a caldo non saldati:

Tipo EN 10025-2 S355 J0+N

Acciaio in profili a sezione cava:

Tipo EN 10210-1 S355 J0H+N

Malta e Miscela cementizia per micropali

 Secondo NTA - soggetto ad approvazione della Direzione Lavori Caratteristica di resistenza minima C25/30

Classe di esposizione XC2 - Eventuali additivi secondo NTA

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

4. CARATTERIZZAZIONE GEOTECNICA

4.1 PREMESSA

Di seguito si riporta la caratterizzazione geotecnica e la stratigrafia di riferimento utilizzata nei calcoli per la verifica/dimensionamento delle fondazioni.

I valori caratteristici dei parametri geotecnici e la stratigrafia di riferimento sono stati ottenuti a partire dai risultati delle indagini a disposizione per l'opera in esame, mediante l'interpretazione di prove e misure effettuate in sito.

Per eventuali approfondimenti, soprattutto per quanto riguarda le indagini storicobibliografiche, si rimanda alla Relazione Geotecnica allegata al progetto (Doc. Rif.[5]) e alle Schede Geotecniche (Doc. Rif.[6]).

4.2 INDAGINI E PROVE DI LABORATORIO DI RIFERIMENTO

In corrispondenza dell'opera in esame sono disponibili i risultati delle indagini riassunte nella Tabella 4-1.

Tabella 4-1:Indagini geognostiche disponibili

sigla sond./pozz./prova	campagna di indagine	progressiva (km)	quota p.c. (m s.l.m.)	lunghezza (m)	strumentazione installata
SD6 – SD6bis	2011	93+390	+5.60	60	СН
SD6ter	2011	93+465	+8.81	45	-
SD7	2011	93+500	+5.27	40	C (19.8) – C (27.5)
DPSH-D2	2011	93+305	+12.53	15	-

C (....) = cella piezometrica Casagrande (profondità cella);

TA (....) = piezometro a tubo aperto (tratto filtrante);

CH = tubo per misure Cross-hole

⁽¹⁾ per la definizione della stratigrafia al di sotto dei 40 m da p.c.

Spea ENGINEERING Atlantia

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

4.3 STRATIGRAFIA DI RIFERIMENTO E PARAMETRI GEOTECNICI CARATTERISTICI

Le tabelle sottostanti riportano la stratigrafia di riferimento valutata a partire dal piano campagna (riferito alla quota 5.1 m s.l.m. per quanto riguarda le spalle - corrispondente alla quota di boccaforo del sondaggio SD6 - ed alla quota 6.9 m s.l.m. per quanto riguarda le pile). I parametri geotecnici delle unità litostratigrafiche presenti sono riassunti nella Tabella 4-5 e Tabella 4-6.

Tabella 4-2: Stratigrafia di riferimento – Spalla lato Bologna

Quota p.c.	Profondità da p.c.		Spessore	Unità	Descrizione
(m s.l.m.m.)	da (m)	a (m)	(m)		
+ 5.1	0	11.6	11.6	A1	Argille limose e limi argillosi
	11.6	12.9	1.3	A2	Sabbie, sabbie limose e sabbie con limo
	12.9	15.4	2.5	A1	Argille limose e limi argillosi
	15.4	21.2	5.8	A2	Sabbie, sabbie limose e sabbie con limo
	21.2	22.8	1.6	A1	Argille limose e limi argillosi
	22.8	24.0	1.2	A2	Sabbie, sabbie limose e sabbie con limo
	24.0	25.5	1.5	A1	Argille limose e limi argillosi
	25.5	29.5	4.0	A2	Sabbie, sabbie limose e sabbie con limo

Tabella 4-3: Stratigrafia di riferimento - Spalla lato Padova

Quota p.c.	Profondità da p.c.		Spessore Un	Unità	Descrizione
(m s.l.m.m.)	da (m)	a (m)	(m)		
+ 5.1	0	7.5	7.5	A1	Argille limose e limi argillosi
	7.5	9.0	1.5	A2	Sabbie, sabbie limose e sabbie con limo
	9.0	16.4	7.4	A1	Argille limose e limi argillosi
	16.4	17.0	0.6	A2	Sabbie, sabbie limose e sabbie con limo
	17.0	19.5	2.5	A1	Argille limose e limi argillosi
	19.5	21.0	1.5	A2	Sabbie, sabbie limose e sabbie con limo
	21.4	22.5	1.1	A1	Argille limose e limi argillosi
	22.5	23.5	1.0	A2	Sabbie, sabbie limose e sabbie con limo
	23.5	25.1	1.6	A1	Argille limose e limi argillosi
	25.1	28.5	3.4	A2	Sabbie, sabbie limose e sabbie con limo

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Tabella 4-4: Stratigrafia di riferimento - Pile

Quota p.c.	Profondità da p.c.		Spessore	Unità	Descrizione
(m s.l.m.m.)	da (m)	a (m)	(m)		
+ 6.9	0	17.9	17.9	A1	Argille limose e limi argillosi
	17.9	18.9	1.0	A2	Sabbie, sabbie limose e sabbie con limo
	18.9	19.9	1.0	A1	Argille limose e limi argillosi
	19.9	22.4	2.5	A2	Sabbie, sabbie limose e sabbie con limo
	22.4	23.5	1.1	A1	Argille limose e limi argillosi
	23.5	24.4	0.9	A2	Sabbie, sabbie limose e sabbie con limo
	24.4	26.9	2.5	A1	Argille limose e limi argillosi
	26.9	29.6	2.7	A2	Sabbie, sabbie limose e sabbie con limo
	29.6	38.9	9.3	A1	Argille limose e limi argillosi

Tabella 4-5: Parametri medi caratteristici dei materiali argillosi e limosi (A1)

γ_n (kN/m ³)	19 ÷ 20 18 ÷ 19.5	
c _u (kPa)	20 ÷ 45 20+2.5·(z-15) ÷ 45+4.0·(z-15)	
GSC= $\sigma'_{vp}/\sigma_{v0}'$	7.38·z ^{-0.8} ≥ 1.1	

dove: γ_0 = peso di volume naturale;

c_u = resistenza al taglio non drenata;

GSC = grado di sovraconsolidazione.

Tabella 4-6: Parametri medi caratteristici dei materiali sabbiosi e sabbioso-limosi (A2)

γ_n (kN/m ³)	18 ÷ 20
N _{SPT} (colpi/30 cm)	3÷ 20 z<13m 8 ÷ 32 z≥13m
φ' (°)	34 ÷ 37
q _c (MPa)	min 5 ÷ 7 max 10 ÷ 20
D (%)	min 40 ÷ 60
D _r (%)	max 60 ÷ 80

dove: N_{SPT} = resistenza penetrometrica dinamica con prova SPT

 φ' = angolo di attrito operativo;

q_c = resistenza alla punta;

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

D_r = densità relativa.

4.4 MISURE PIEZOMETRICHE E LIVELLI DI FALDA

Per quanto riguarda la falda, si fa riferimento alle letture nelle verticali d'indagine SD6 e SD7, che si trovano in prossimità dell'opera, le quali indicano una soggiacenza minima che si attesta a circa 0.5÷1 m da p.c.; si veda in proposito la tabella seguente. Nelle verifiche riportate in questo documento, la falda in ogni caso è stata assunta, cautelativamente, al piano di posa delle fondazioni.

Tabella 4-7: Letture in foro

Verticali d'indagine	Quota boccaforo (m s.l.m.)	Livello di falda (m da p.c.)
SD6 – SD6bis	5.60	0.20
SD6ter	8.81	-
SD7	5.27	0.70

4.5 DETERMINAZIONE DELLA CATEGORIA DI SUOLO

La determinazione della categoria di suolo, in accordo con le prescrizioni della Normativa (Doc. Rif. [1]), è basata sulla stima dei valori della velocità media di propagazione delle onde di taglio $V_{S,30}$ o alternativamente sui valori della resistenza penetrometrica dinamica equivalente $N_{SPT,30}$ entro i primi 30m di profondità (per terreni a grana grossa), o sulla resistenza non drenata equivalente media sempre entro i primi 30m di profondità $C_{U,30}$ (per terreni a grana fina).

Sulla base della definizione delle categorie di suolo di cui al par. 3.2.2 del Doc. Rif. [1], l'area di intervento risulta caratterizzabile come sito di **categoria D**, ossia "Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fine scarsamente consistenti, con spessori superiori a 30m".

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

5. CRITERI DI VERIFICA E DI CALCOLO

5.1 PREMESSA

Le verifiche contenute nel presente documento fanno riferimento a quanto descritto per le fondazioni nel Doc. Rif [1] e successiva circolare esplicativa (doc. rif. [2]).

Le verifiche, sia per il caso statico e sia per quello sismico, sono state eseguite adottando l'Approccio 1 delle NTC (Doc. rif. [1]) nei confronti degli stati limiti ultimi (SLU), riferiti allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione, e degli stati limite di esercizio (SLE), in modo da verificare la compatibilità tra requisiti prestazionali dell'opera e gli spostamenti e distorsioni previste.

5.2 CRITERI DI PROGETTAZIONE AGLI STATI LIMITE

In accordo con quanto definito nel par. 6.2.3. del Doc. Rif. [1], devono essere svolte le seguenti verifiche di sicurezza e delle prestazioni attese:

- Verifiche agli stati limite ultimi (SLU);
- Verifiche agli stati limite d'esercizio (SLE).

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione

 $E_d \le R_d$

(Eq. 6.2.1 del Doc. Rif.[1])

dove

E_d è il valore di progetto dell'azione o dell'effetto dell'azione;

R_d è il valore di progetto della resistenza.

Per quanto concerne le azioni di progetto E_d , tali forze possono essere determinate applicando i coefficienti parziali sulle azioni caratteristiche, oppure, successivamente, sulle sollecitazioni prodotte dalle azioni caratteristiche, quest'ultima relativamente a verifiche strutturali.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

La verifica della condizione (Ed ≤ Rd) deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2 - Tabella 5-1), per i parametri geotecnici (M1 e M2 - Tabella 5-2) e per le resistenze (R1, R2 e R3 - Tabella 5-3).

Tabella 5-1: Coefficienti parziali sulle azioni

CARICHI	EFFETTO	Coefficiente parziale γ_F (o γ_E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	γ̃G1	0.9	1.0	1.0
T Cimanonii	Sfavorevole	∤G1	1.1	1.3	1.0
Permanenti non strutturali (1)	Favorevole	γ̃G2	0.0	0.0	0.0
T Simulation of attacks (1)	Sfavorevole	162	1.5	1.5	1.3
Variabili	Favorevole	Vo:	0.0	0.0	0.0
Variabili	Sfavorevole	γQi	1.5	1.5	1.3

^{(1) =} Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano completamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Tabella 5-2: Coefficienti parziali sulle caratteristiche meccaniche dei terreni

PARAMETRO	Coefficiente parziale	(M1)	(M2)	
Tangente dell'angolo di resistenza al taglio	γ_{ϕ}	1.0	1.25	
Coesione efficace	γ _{c'}	1.0	1.25	
Resistenza non drenata	γcu	1.0	1.4	
Peso dell'unità di volume	γ_{γ}	1.0	1.0	

Tabella 5-3: Coefficienti parziali sulle resistenze (R1, R2 ed R3) (Tab. 6.4.1 Doc. Rif. [1])

VERIFICA	Coefficiente parziale	(R1)	(R2)	(R3)
Capacità portante	γR	1.0	1.8	2.3
Scorrimento	γR	1.0	1.1	1.1

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Le verifiche di sicurezza in campo sismico devono contemplare le medesime verifiche definite in campo statico, in cui tuttavia i coefficienti sulle azioni sono posti pari ad uno (Par.7.11.1 del Doc. Rif.[1]).

Per ogni Stato Limite d'Esercizio (SLE) deve essere rispettata la condizione

 $E_d \le C_d$

(Eq. 6.2.7 del Doc. Rif.[1])

dove

 E_d è il valore di progetto dell'effetto dell'azione, e C_d è il valore limite prescritto dell'effetto delle azioni.

All'interno del progetto devono essere quindi definite le prescrizioni relative agli spostamenti compatibili per l'opera e le prestazioni attese.

5.3 FONDAZIONI SU PALI

Per l'approccio progettuale adottato (*Approccio 1*) sono previste due diverse combinazioni di gruppi di coefficienti:

- la prima combinazione (STR), per la quale si adottano i coefficienti parziali sulle azioni del gruppo (A1), è generalmente più severa nei confronti del dimensionamento strutturale delle opere che interagiscono con il terreno,
- la seconda combinazione (GEO), per la quale si adottano i coefficienti parziali sulle azioni del gruppo (A2), è generalmente più severa nei riguardi del dimensionamento geotecnico.

Per entrambe le combinazioni i coefficienti parziali sui materiali (M1) sono identici, mentre sulle resistenze (R1) e (R2) sono definiti specificatamente in funzione della differente combinazione.

Sinteticamente le verifiche di cui sopra devono essere svolte considerando:

Approccio 1:

<u>Combinazione 1 (STR)</u>: A1 + M1 + R1

Combinazione 2 (GEO): A2 + M1 + R2

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

tenendo conto dei coefficienti parziali estratti dalle NTC (Doc. rif. [1]) e riportati nella Tabella 5-5.

5.3.1 Verifiche di sicurezza

Come riportato al par. 6.4.3.1 della Normativa di riferimento (Doc. Rif.[1]), per le opere di fondazione su pali, sono state prese in considerazione le seguenti verifiche agli stati limite ultimi in campo statico e in campo sismico (SLU) e agli stati limite di esercizio (SLE):

- SLU di tipo Geotecnico (Comb. GEO), relative a condizioni di:
 - collasso per carico limite della palificata nei riguardi dei carichi assiali di compressione (la verifica del collasso per carico limite nei confronti dei carichi assiali è condotta confrontando la massima azione di compressione agente in testa al palo E_d con la resistenza di progetto a compressione del palo singolo R_{c,d}; la massima azione E_d agente sui singoli pali è determinata mediante un'analisi di gruppo della palificata con il codice di calcolo Group a partire dalle combinazioni di carico definite dal Progettista Strutturale);
 - collasso per carico limite di sfilamento nei riguardi dei carichi assiali di trazione (la verifica del collasso per carico limite nei confronti dei carichi assiali di trazione è condotta confrontando la massima azione di trazione agente in testa al palo E_d con la resistenza di progetto a trazione del palo singolo R_{t,d}; la massima azione E_d agente sui singoli pali è determinata mediante un'analisi di gruppo con il codice di calcolo Group a partire dalle combinazioni di carico definite dal Progettista Strutturale);
- SLU di tipo strutturale (Comb. STR), relative a condizioni di:
 - Verifica della resistenza strutturale dei pali (valutata confrontando le resistenze strutturali di progetto con la massima azione agente sui singoli pali tramite l'analisi del comportamento in gruppo dei pali a partire dalle combinazioni di carico definite dal Progettista Strutturale);
- SLE relative a condizioni statiche e sismiche:

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

 verifica dei requisiti prestazionali della fondazione (valutata mediante l'analisi del comportamento in gruppo dei pali con il codice di calcolo Group sempre a partire dalle combinazioni di carico definite dal Progettista Strutturale).

5.3.2 Resistenza caratteristica (R_k) di pali soggetti a carichi assiali

I calcoli della capacità portante dei pali con riferimento ad una analisi agli stati limite sono state condotte come previsto dalle Norme Tecniche per le Costruzioni del gennaio 2008.

La resistenza caratteristica (R_k) del palo singolo può essere determinata mediante tre approcci distinti secondo quanto indicato nelle (NTC):

- a) da risultati di prove di carico statico di progetto su pali pilota;
- b) da <u>metodi di calcolo analitici</u> a partire da valori caratteristici dei parametri geotecnici oppure con relazioni empiriche che utilizzino direttamente i risultati di prove in sito (CPT, SPT, pressiometriche, ecc.);
- c) da risultati da prove dinamiche di progetto su pali pilota.

Nelle verifiche condotte nel presente documento la resistenza caratteristica (R_k) è stata stimata adottando l'approccio "b".

Si è proceduto come di seguito descritto.

<u>Caso</u> <u>b</u>) con riferimento alle procedure analitiche di seguito illustrate, il valore caratteristico della resistenza a compressione e a trazione è ottenuto come:

$$R_k = \min\left\{\frac{R_{MEDIA}}{\xi_3}; \frac{R_{MIN}}{\xi_4}\right\}$$

con: R_{MEDIA} e R_{MIN} le resistenze calcolate e i fattori di correlazione ξ in funzione del numero di verticali indagate.

Qualora si abbiano a disposizione prove in sito continue (prova tipo CPT o DMT) o discontinue (SPT, pressiometriche, ecc.), ma con passi di campionamenti sufficientemente fitti da considerare una misura continua con la profondità, la stima della resistenza caratteristica è condotta secondo i seguenti passi:

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

- 1 per ogni verticale di indagine si calcola il profilo di resistenza con la profondità in funzione delle prove in sito e di laboratorio assumendo i valori medi a disposizione nella singola verticale
- 2 stima, tra quelli calcolati, del profilo di resistenza medio (R_{MEDIA}) e di resistenza minimo (R_{MIN});
- 3 la resistenza caratteristica R_k , a compressione o a trazione, sarà il minore dei valori ottenuti:

$$R_k = \min \left\{ \frac{R_{MEDIA}}{\xi_3}; \frac{R_{MIN}}{\xi_4} \right\}$$

con ξ_3 e ξ_4 fattori di correlazione funzione del numero di verticali indagate (Tabella 5-4).

Qualora, invece, si abbiano a disposizione prove in sito o di laboratorio discrete si procederà secondo il seguente schema:

- 1 per ogni strato vengono scelti il valore medio e minimo tra tutti i valori a disposizione necessari per il calcolo del profilo di resistenza con la profondità;
- 2 stima del profilo di resistenza medio (R_{MEDIA}) e di resistenza minimo (R_{MIN}) adottando i parametri medi e minimi ottenuti al punto precedente;
- 3 la resistenza caratteristica (R_k), a compressione o a trazione, sarà il minore dei valori ottenuti:

$$R_k = \min \left\{ \frac{R_{MEDIA}}{\xi_3}; \frac{R_{MIN}}{\xi_4} \right\}$$

con ξ_3 e ξ_4 fattori di correlazione funzione del numero di verticali indagate (Tabella 5-4).

Tabella 5-4: Fattori di correlazione ξ (vedi tab. 6.4.IV NTC)

Numero prove di indagine	1	2	3	4	5	7	≥10
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40
ξ ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21

Spea ENGINEERING

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

La resistenza di progetto R_d si ottiene applicando alla resistenza caratteristica R_k i coefficienti parziali γ_R indicati Tabella 5-5.

In seguito la resistenza di progetto R_d viene confrontata con le azioni assiali, di compressione o di trazione, provenienti dall'analisi della fondazione di pali al variare delle combinazioni di carico.

I criteri utilizzati per la stima delle curve di capacità portante a compressione e a trazione sono illustrati nei successivi paragrafi §5.3.2.2 e §5.3.2.3.

Tabella 5-5: Coefficienti parziali da applicare alle resistenze caratteristiche di pali soggetti a carichi assiali (vedi tab. 6.4.II NTC)

Resistenza		Pali infissi			Pali trivellati			Pali ad elica continua		
	γR	R1	R2	R3	R1	R2	R3	R1	R2	R3
Base	γь	1.0	1.45	1.15	1.0	1.7	1.35	1.0	1.6	1.3
Laterale (compressione)	γs	1.0	1.45	1.15	1.0	1.45	1.15	1.0	1.45	1.15
Totale (3)	γт	1.0	1.45	1.15	1.0	1.6	1.30	1.0	1.55	1.25
Laterale (trazione)	γst	1.0	1.6	1.25	1.0	1.6	1.25	1.0	1.6	1.25

^{(3) –} da applicare alle resistenze caratteristiche dedotte da risultati di prove di carico di progetto.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

5.3.2.1 Stima della resistenza di pali soggetti a carichi assiali

La portata limite (Q_{LIM}) del palo viene calcolata con riferimento all'equazione:

$$Q_{LIM} = Q_{B,LIM} + Q_{L,LIM} = q_b \cdot A_B + \sum_i \pi \cdot D_i \cdot \Delta H_i \cdot \tau_{LIM,i}$$

compressione

$$Q_{LIM} = Q_{L,LIM} = \gamma'_{cls} \left(\sum_{i} \Delta H_{i} \right) \cdot A_{B} + \sum_{i} \pi \cdot D_{i} \cdot \Delta H_{i} \cdot \tau_{LIM,i}$$

trazione

dove:

Q_{B,LIM} = portata limite di base;

Q_{L,LIM} = portata limite laterale;

q_b = portata unitaria di base;

 γ'_{cls} = peso di volume sommerso del calcestruzzo armato

 A_B = area di base;

D_i = diametro del concio i^{mo} di palo;

 ΔH_i = altezza del concio i^{mo} di palo;

 $\tau_{\text{LIM.i}}$ = attrito laterale unitario limite del concio i^{mo} di palo.

Nel seguito vengono illustrati i criteri di dimensionamento convenzionale per i pali battuti (fondazioni strutture esistenti), e per i trivellati (fondazioni in ampliamento).

5.3.2.2 Pali trivellati

5.3.2.2.1 Portata di base

Per <u>terreni coesivi</u>, la valutazione della capacità limite di base viene calcolata in base all'equazione:

$$q_b = 9 \cdot c_u + \sigma_V$$

dove:

c_U = coesione non drenata (kPa)

 σ_v = tensione geostatica verticale totale (kPa)

Spea ENGINEERING

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

I valori di q_b sono interamente mobilizzati ad una profondità critica z_c (Meyerhof, Sastry [1978]), secondo l'espressione $z_c = m * D$, con D pari al diametro del palo e m variabile tra 4 e 8.

In accordo con le più recenti metodologie di calcolo, la valutazione della capacità limite di base per <u>terreni granulari</u> è condotta facendo riferimento non più alle condizioni di rottura bensì riferendosi ad una "portata critica", corrispondente ad una "condizione di servizio limite" basata su considerazioni di cedimenti ammissibili, ed in genere riferita all'insorgere di deformazioni plastiche nei terreni di fondazione. Pertanto, si porrà $q_b = q_{cr}$, dove

q_{cr}= portata critica unitaria di base;

la portata critica è valutata in accordo con le indicazioni di Reese-Wright et al. [1978]:

$$q_{Cr} = 0.0667 \cdot N_{SPT} \le 4MPa$$

I valori di q_{cr} sono interamente mobilitati ad una "profondità critica" z_c come descritto sopra, con m variabile fra 4 e 21 secondo la Figura 5-1.

La costruzione dell'andamento della portata di base con la profondità in condizioni stratigrafiche particolari (pali che attraversano uno strato di terreno sciolto fino a immorsarsi in uno strato compatto di base di notevole spessore, piuttosto che pali immorsati in uno strato compatto di base di modesto spessore sovrastante uno strato di terreno sciolto) è condotta in accordo alle indicazioni riportate in Figura 5-2.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Figura 5-1: $z_c/D = f(D_r)$ (Meyerhof [1976])

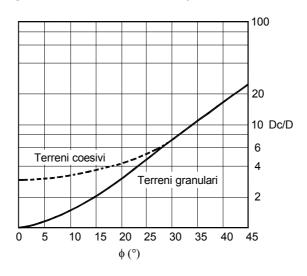
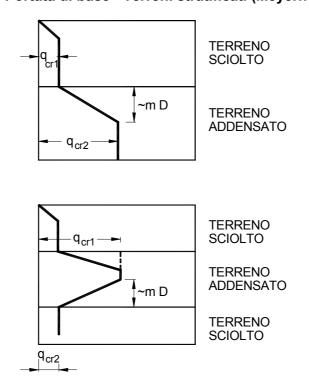



Figura 5-2: Portata di base - Terreni stratificati (Meyerhof [1976])

5.3.2.2.2 Attrito laterale

Per terreni coesivi, si utilizza l'equazione:

$$\tau_{LIM} = \alpha \cdot c_U \le 100 kPa$$

dove:

 α = coefficiente riduttivo (AGI [1984]) = 0.9 per c_U \leq 25 kPa,

 $0.8 \text{ per } 25 < c_U \le 50 \text{ kPa},$

 $0.6 \text{ per } 50 < cU \le 75 \text{ kPa},$

0.4 per $c_U > 75 \text{ kPa}$;

 c_U = coesione non drenata (kPa).

I valori dell'attrito laterale limite in <u>terreni granulari</u> sono valutati mediante l'espressione:

$$\tau_{LIM} = K \cdot \sigma'_{v} \cdot \tan (\phi')$$

dove:

K = rapporto tra pressione orizzontale e pressione verticale efficace;

 σ'_{v} = pressione geostatica verticale efficace;

φ' = angolo d'attrito efficace.

Per pali trivellati si adotta [Reese – Wright (1977)]:

K = 0.7 in compressione

K = 0.5 in trazione

Deve essere comunque soddisfatta anche la seguente verifica:

$$\tau \lim \le \tau = f(N_{SPT})$$

dove:

 N_{SPT} = numero di colpi/piede in prova SPT.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

In Figura 5-3 è illustrata la correlazione proposta da Wright e Reese tra il valore della τ_{lim} ed il valore di N_{SPT} .

250 200 200 150 50 0 0 20 40 80 100 N_{SPT} (Colpi/Plede)

Figura 5-3: Terreni granulari - τ_{LIM} = f (N_{SPT}) (Wright-Reese [1977])

5.3.2.3 Pali battuti

5.3.2.3.1 Portata di base

La portata unitaria limite di base $(q_{b,lim})$ è valutata in accordo alle indicazioni del Metodo Olandese [NEN 6743], a partire dai valori di resistenza alla punta (q_c) ottenuti da prove penetrometriche statiche (CPT). I dati di ingresso sono rappresentati dai valori di q_c medi per ogni singolo strato, dedotti direttamente dalle prove CPT o ricavati indirettamente dal numero di colpi/piede (N_{SPT}) in prova penetrometrica dinamica; in quest'ultimo caso, i valori delle resistenze alla punta q_c sono ottenuti attraverso l'introduzione di un opportuno coefficiente di correlazione.

In accordo al "metodo olandese", il valore di $q_{b,lim}$ è ottenuto mediante l'espressione seguente:

$$q_{b,\text{lim}} = 0.5 \cdot \left(\frac{q_{c1} + q_{c2}}{2} + q_{c3} \right)$$

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

dove

q_{c1} minimo valore risultante dall'espressione seguente

$$q_{c1} = \frac{\Sigma \; q_c \; \cdot \Delta h}{\Sigma \; \Lambda h}$$

estesa ad una profondità sotto la base del palo variabile tra $0.7D_e$ e $4D_e$, dove D_e è il diametro del palo;

- q_{c2} valore medio di q_c nel tratto compreso fra la base del palo e la profondità
 7D_e sotto la base del palo; tale valore non può superare q_{c1};
- q_{c3} valore medio di q_c in un tratto di 8D_e al di sopra della base del palo, trascurando tutti i valori superiori a q_{c2};
- D_e diametro della sezione del palo in corrispondenza della base.

5.3.2.3.2 Attrito laterale

Terreni granulari

Sono state adottate le correlazioni proposte da Nordlund [1963], Tomlinson [1977] e da Meyerhof [1976]:

Nordlund [1963] - Tomlinson [1977] :

$$\tau_{\text{LIM}} = K_{\delta} \cdot C_{f} \cdot \sigma'_{v} \cdot tq\delta <= f_{L}$$

dove:

- K_{δ} rapporto tra pressione orizzontale e verticale efficace in prossimità del palo (Figura 5-4), e funzione di:
 - angolo di attrito del terreno,
 - volume di terreno spostato dal palo durante l'infissione,
 - forma del fusto del palo (cilindrico, troncoconico);
- C_f fattore di correzione per K_δ per δ diverso da ϕ (Figura 5-5);
- σ'_v pressione geostatica verticale efficace (è limitata al valore corrispondente alla profondità z=25D_e ; D_e, diametro del palo);
- δ angolo di attrito tra palo e terreno = 0,75 φ ' ÷ 1,00 φ ' (pali infissi, pali infissi esistenti);

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

f_L valore limite dell'attrito laterale unitario limite.

Meyerhof-a [1976]:

$$\tau_{LIM} = \mathbf{K} \cdot \mathbf{\sigma'_v} \cdot \mathbf{tg} \delta \leq \mathbf{f_L}$$

dove:

- K rapporto tra pressione orizzontale e verticale efficace in prossimità del palo (Figura 5-6), funzione di:
 - angolo di attrito del terreno,
 - volume di terreno spostato dal palo durante l'infissione,
 - forma del fusto del palo (cilindrico, troncoconico).

I valori di τ_{lim} e f_L ottenuti dalle correlazioni sopra riportate, facendo riferimento alla Figura 5-4÷Figura 5-8 relative a pali "a compressione", sono stati ridotti del 30% in accordo alle indicazioni di Meyerhof [1976] per i pali "a trazione".

Il valore di f_L è stato ottenuto mediando i valori proposti da Tomlinson (Figura 5-7), da Meyerhof-a (Figura 5-8) e quelli ottenuti dall'applicazione delle correlazioni sotto riportate. Considerato che ai valori di f_L proposti da Tomlinson sono associati valori del coeff. di sicurezza F_S =2, i valori di f_L di Figura 5-7 sono stati decrementati del rapporto 1/2, per omogeneità con le altre correlazioni e i coefficienti di sicurezza qui proposti.

Per tutte le correlazioni si è posto $f_{L,max}$ pari a 150 kPa in compressione, e a 107 kPa in trazione.

Meyerhof-b [1976]:

$$f_L = N_{SPT}/50 \text{ (MPa)}$$

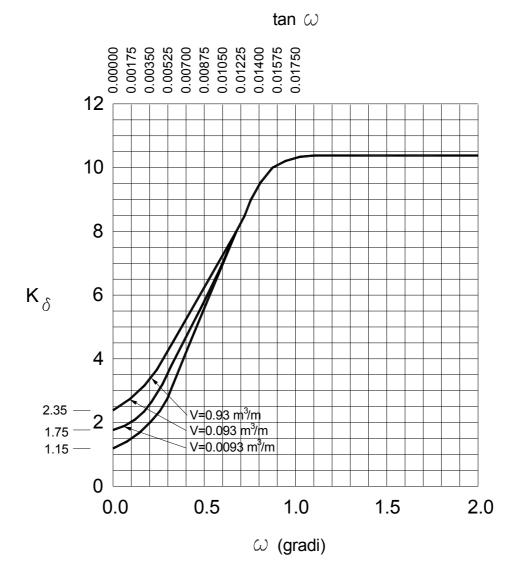
Vesic [1977]:

$$f_1 = 14.4 \cdot 10^{\beta} \text{ (kPa)}$$

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

$$\beta = 1.8 \cdot D_R^4$$


D_R = densità relativa (decimali)

De Beer [1985]:

 $f_L = q_c/200$ (MPa)

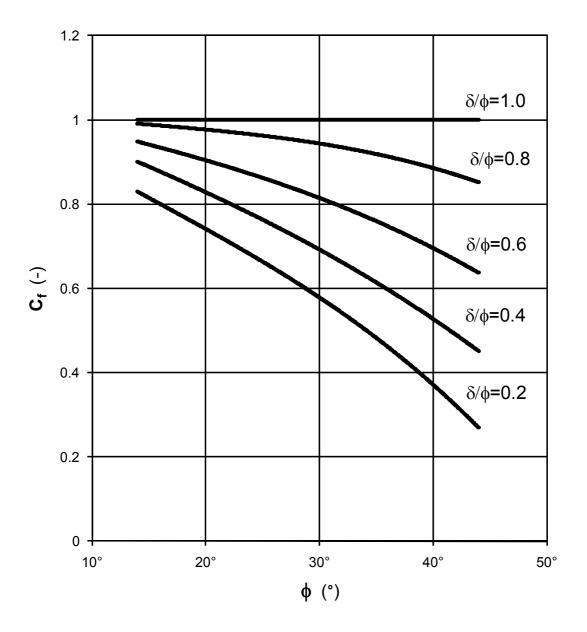
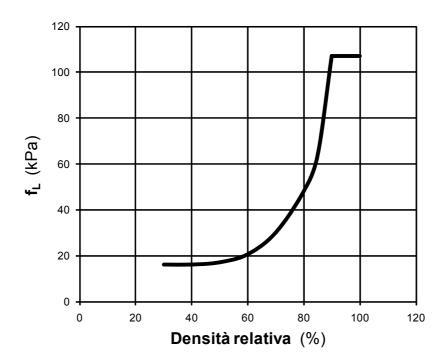

q_c = resistenza alla punta in prova penetrometrica statica (MPa)

Figura 5-4: ϕ = 35° - valori di K_{δ} in funzione della conicità del palo e del volume di terreno spostato durante l'infissione

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Figura 5-5: Valore del fattore correttivo C_f in funzione del rapporto δ/ϕ' e ϕ' .



Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

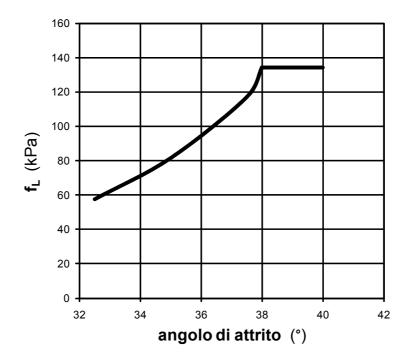


Figura 5-7: f_L in accordo a Tomlinson [1977]

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Figura 5-8: f_L in accordo a Meyerhof [1976]

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Terreni coesivi:

 $\tau_{\text{LIM}} = \alpha \cdot \mathbf{c}_{\text{u}}$

dove:

α coefficiente moltiplicativo

c_u coesione non drenata (kPa)

Pali soggetti a compressione

 τ_{LIM} <= 120 kPa

 α = 1.28 per c_u <=25 kPa,

= 1.13 per 25<cu<=50 kPa,

= 0.85 per 50 < cu < = 75 kPa,

= 0.57 per cu>75 kPa.

In alternativa sono stati utilizzati i coefficienti α delle norme API:

 α = 1.00 per c_u <=25 kPa,

 $= 1.00 \div 0.50 \text{ per } 25 < \text{cu} < = 75 \text{ kPa},$

= 0.50 per cu>75 kPa.

Pali soggetti a trazione

 τ_{LIM} <= 100 kPa

 α = 0.9 per cu<=25 kPa,

= 0.8 per 25<cu<=50 kPa,

= 0.6 per 50<cu<=75 kPa,

= 0.4 per cu > 75 kPa.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

5.3.3 Comportamento di pali in gruppo soggetti a carichi trasversali

Il comportamento di pali in gruppo soggetti a carichi trasversali è stata effettuata mediante il programma di calcolo GROUP. Il programma di calcolo permette di analizzare il comportamento di una palificata sottoposta a carichi orizzontali e verticali modellando l'interazione terreno struttura mediante curve p-y. Le curve p-y, che esprimono la resistenza del terreno in funzione della profondità e dello spostamento del palo, possono essere ricavate in relazione alla tipologia di terreni e alle proprietà meccaniche che li caratterizzano, in accordo alle procedure proposte da:

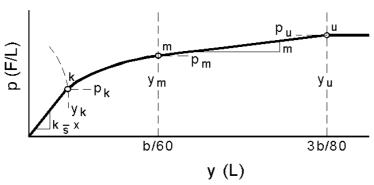
Reese, Cox e Koop (1975) per sabbie

Welch e Reese (1975) per argille tenere sotto falda

Reese, Cox e Koop (1975) per argille dure sotto falda

Reese–Welch (1972) per argille dure sopra falda

Il programma permette di scegliere tra uno dei modelli sopra esposti.


I metodi di calcolo sono descritti sinteticamente nelle pagine seguenti con riferimento sia a carichi statici sia a carichi ciclici.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud

PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Modello per sabbie Cox e Reese (1975)

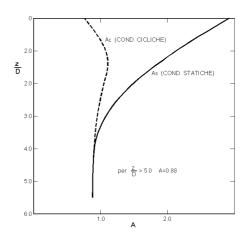
1- calcolo di p = $min(p_{u1}; p_{u2})$

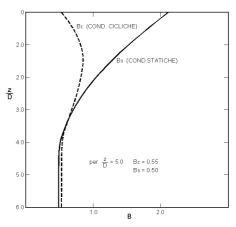
$$\begin{aligned} \text{pu}_1 &= \gamma \cdot z \cdot \frac{\mathsf{K}_0 \cdot z \cdot \tan \phi \cdot \sin \beta}{\tan (\beta - \phi) \cdot \cos \alpha} \cdot \mathsf{A}_1 + \frac{\tan \beta}{\tan (\beta - \phi)} \cdot \left(\mathsf{D} \cdot \mathsf{A}_3 + z \cdot \tan \beta \cdot \tan \alpha \cdot \mathsf{A}_3^2 \right) + \\ &+ \gamma \cdot z \cdot \left[+ \mathsf{K}_0 \cdot z \cdot \tan \beta \cdot \left(\tan \phi \cdot \sin \beta - \tan \alpha \right) \cdot \mathsf{A}_1 - \mathsf{K}_a \cdot \mathsf{D} \right] \\ \text{pu}_2 &= \mathsf{K}_a \cdot \mathsf{D} \cdot \gamma \cdot z \cdot \left(\tan \beta - 1 \right) + \mathsf{K}_0 \cdot \mathsf{D} \cdot \tan \phi \cdot \tan^4 \beta \\ &= \mathsf{A}_1 = \left(4 \cdot \mathsf{A}_2^3 - 3 \cdot \mathsf{A}_2^2 + 1 \right) \end{aligned}$$

$$A_2 = (\tan \beta \cdot \tan \delta) I(\tan \beta \cdot \tan \delta + 1)$$

$$A_3 = 1 - A_2$$

dove:

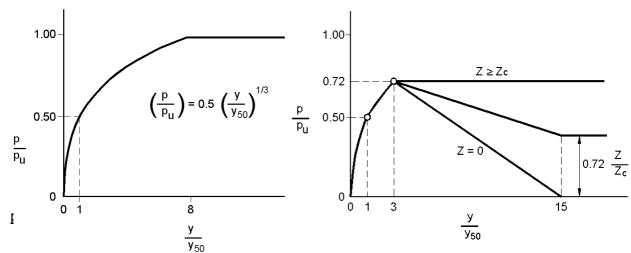

- p_u resistenza laterale unitaria ultima
- y spostamento orizzontale
- γ peso di volume efficace
- z profondità da p.c.
- K₀ coefficiente di spinta a riposo
- angolo di attrito
- β 45+ φ/2
- $\alpha \phi/2$
- D diametro del palo
- $K_a = \tan^2(45 + \phi/2)$
- δ inclinazione del piano campagna rispetto all'orizzontale
- 2- calcolo di $p_u = A_i$. p
- 3- calcolo di $p_m = B_i$. p
- 4- definizione del tratto iniziale della curva p-y
- 5- definizione del tratto parabolico della curva p-y


$$p = C \cdot y^{1/n}$$

dove:

$$n = p_m/my_m$$

$$C = p_m/(y_m)^{1/n}$$



Adeguamento alla terza corsia nel tratto Monselice - Padova Sud

PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Modello Welch e Reese (1975) per argille tenere sotto falda

 $p_{u2} = 9 c_u D \alpha$

 $\alpha = 1/(1 + \tan \delta)$

 $p_u = \min (p_{u1}; p_{u2})$

 $p/p_u = 0.5 (y/y_{50})^{1/3}$

 $y_{50} = 2.5 \epsilon_{50} D$

dove:

p_u resistenza laterale unitaria ultima

σ' pressione geostatica verticale efficace alla quota z

c_u coesione non drenata

z profondità da p.c.

D diametro del palo

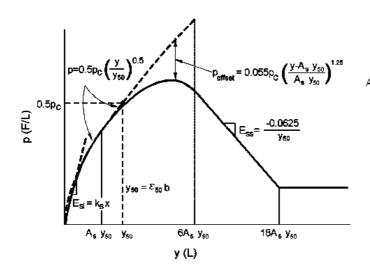
δ inclinazione del piano campagna rispetto all'orizzontale

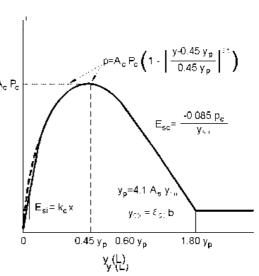
y spostamento orizzontale

y₅₀ spostamento orizzontale per p=0.5 p_u

 ϵ_{50} deformazione unitaria corrispondente ad una mobilitazione delle tensioni tangenziali pari al 50% della resistenza al taglio

per carichi ciclici


$$z_c = [6 c_u D] / [\gamma' D + 0.5 c_u] \alpha$$


 γ' = peso di volume efficace

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Modello Reese, Cox e Koop (1975) per argille dure sotto falda

Carichi ciclici

Carichi statici

$$p_{u1} = (3 c_u D + \sigma' D + 2.83 c_u z)$$

$$p_{u2}$$
 = 11 c_u D α

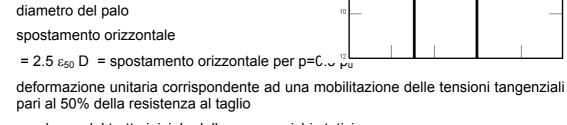
$$\alpha = 1/(1+\tan\delta)$$

£50

$$p_u = min (p_{u1}; p_{u2})$$

resistenza laterale unitaria ultima p_{u}

z profondità da p.c.


pressione geostatica verticale efficace alla σ profondità z

coesione non drenata \mathbf{C}_{u}

D

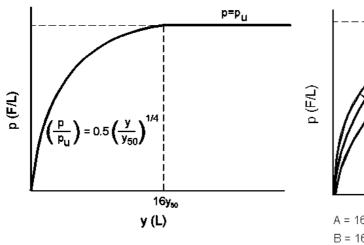
У

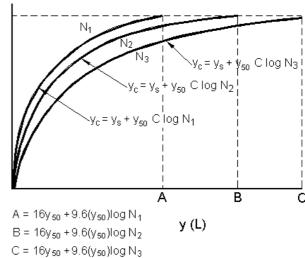
y₅₀

౼

pendenza del tratto iniziale della curva carichi statici K_s K_c pendenza del tratto iniziale della curva carichi ciclici

parametro empirico A_c


Adeguamento alla terza corsia nel tratto Monselice - Padova Sud


PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Carichi ciclici

Modello Welch-Reese (1972) e Reese-Welch () per argille dure sopra falda

Carichi statici

 $p_{u1} = [3c_u D + \gamma' D z + 2.83c_u z] \alpha$

$$p_{u2}$$
 = 9 c_u D α

$$\alpha = 1/(1+\tan\delta)$$

$$p_u = \min (p_{u1}; p_{u2})$$

dove:

p_u resistenza laterale unitaria ultima

γ' peso di volume unitario

c_u coesione non drenata

z profondità da p.c.

D diametro del palo

 δ inclinazione del piano campagna rispetto all'orizzontale

y spostamento orizzontale

y₅₀ spostamento orizzontale per p=0.5 p_u (= 2.5 ϵ_{50} D)

 ϵ_{50} deformazione unitaria corrispondente ad una mobilitazione delle tensioni

tangenziali pari al 50% della resistenza al taglio

K_s pendenza del tratto iniziale della curva

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

5.3.4 Analisi della palificata

L'analisi della palificata è stata condotta con il programma di calcolo GROUP 6.0, prodotto da Ensoft Inc, che consente di analizzare il comportamento di un gruppo di pali sottoposto a sollecitazioni assiali, di taglio e momento.

Il programma consente di definire sia un modello bidimensionale, utilizzabile dove tale semplificazione risulti accettabile, sia tridimensionale. E' possibile schematizzare pali verticali o inclinati, e si possono assumere vincoli del tipo a incastro, a cerniera o elastici tra la testa del palo e la fondazione. Il calcolo della palificata viene condotto ipotizzando che il plinto di fondazione sia infinitamente rigido.

Dove non diversamente specificato dall'utente, il programma è in grado di generare internamente curve di risposta non lineare del terreno, carico – cedimento (curve t-z) per condizioni di carico assiale, torsione – rotazione (M – θ) per condizioni di carico torsionali, e carico orizzontale – spostamento orizzontale (curve p-y) per carichi orizzontali.

In particolare, per le curve p-y relative a carichi orizzontali, vengono utilizzate le correlazioni riportate nel paragrafo precedente.

Per quanto riguarda le curve carico – cedimento relative a condizioni di carico assiale, il programma genera internamente, in base alla natura del terreno, le curve di trasferimento del carico assiale in funzione dello spostamento verticale del palo; tali curve sono implementate sulla base di dati ricavati da numerosi studi effettuati su pali strumentati, realizzati in terreni di diversa natura.

L'effetto gruppo può essere simulato dal programma mediante la definizione di coefficienti riduttivi che intervengono sia sulle curve carico cedimento del palo, sia sulle curve p-y.

Spea ENGINEERING

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

5.3.4.1 Comportamento non lineare del palo

Quando specificato, è possibile assegnare alle proprietà del palo di fondazione delle caratteristiche flessionali non lineari, in termini di legge/andamento momento-curvatura.

Per ogni sezione armata, sulla base delle azioni assiali assegnate e agenti sui singoli pali, viene determinato, secondo le leggi costitutive dei materiali costituenti il palo, un corrispondente andamento dei momenti in funzione delle curvature o distorsioni angolari.

Tale legge quindi descrive il comportamento del palo, in presenza di carichi flessionali variabili, fino al raggiungimento limite della plasticizzazione della sezione di lavoro.

In particolare questo criterio è stato impiegato nei pali esistenti delle opere d'arte (pali battuti tipo SCAC), dove la sezione del palo e i materiali componenti esigui (calcestruzzo e armature) ne identificano univocamente e limitano il comportamento.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

6. METODI PER LA VALUTAZIONE DEGLI INTERVENTI DI CONSOLIDAMENTO SISMICO DELLE SPALLE.

L'applicazione della Normativa vigente (riferimento [1] e successivo [2]) evidenzia, spesso, l'inadeguatezza delle fondazioni esistenti a sostenere sollecitazioni sismiche di verifica. Questo può accadere per motivi "geotecnici", per esempio per inadeguata capacità portante di pali o fondazioni dirette, eccessiva eccentricità di carico, fino al ribaltamento o inadeguato margine di sicurezza allo scivolamento di fondazioni dirette; più spesso ciò accade per motivi "strutturali", per esempio a causa dell'inadeguatezza dell'armatura nei pali.

Un caso particolare è fornito dalle spalle di ponte, a causa della preponderanza dei carichi orizzontali asimmetrici dovuti alle spinte delle terre, ma anche grazie alla possibilità di potere intervenire con rinforzi o consolidamenti a monte e/o valle della struttura stessa.

Nel caso in cui le fondazioni delle spalle esistenti siano soggette, durante la fase sismica, ad elevati sollecitazioni, è possibile infatti prevedere un intervento di consolidamento mediante la messa in opera di un sistema passivo costituito da setto disposto lungo l'asse autostradale (direzione spinta terreno) e collegato per mezzo di una trave, a tergo, al paramento della spalla sotto lo spiccato paraghiaia. Il setto è generalmente costituito da pali trivellati o, quando fattibile, ricavato dalle berlinesi provvisionali realizzate per gli scavi necessari all'ampliamento delle strutture delle spalle.

Tale sistema, "assorbendo" con la propria resistenza parte della spinta orizzontale agente sulla spalla in fase sismica, consente un "alleggerimento" dei carichi agenti in fondazione. I minori carichi che giungono in tal modo in fondazione consentono un miglioramento sia per quanto riguarda le verifiche strutturali, sia per quanto riguarda il fattore di sicurezza F_S nei confronti dei carichi applicati alle fondazioni nelle varie condizioni di carico.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Dove necessario, è possibile estendere l'efficacia di questo tipo di intervento anche ai carichi variabili legati all'esercizio, purché si abbia cura di solidarizzare il ritegno alla spalla in presenza dei soli carichi permanenti.

Nel seguito vengono indicate le modalità utilizzate per determinare l'azione di tiro agente sul sistema di pali nelle diverse combinazioni di carico, in funzione della rigidezza sia del ritegno stesso, che della spalla e della sua fondazione.

Dove il calcolo di verifica strutturale della fondazione (pali esistenti) evidenzia la necessità di tarare correttamente il contributo del sistema/ritegno passivo mediante l'adozione di un comportamento non lineare dei pali di fondazione (esistenti), il calcolo è condotto considerando il comportamento non lineare della sezioni in c.a. del palo, in modo da cogliere l'effettivo comportamento della struttura più deformativo.

6.1 VALUTAZIONE DEL TIRO DI LAVORO NEL SISTEMA DI RITEGNO SISMICO.

La previsione del comportamento d'interazione del sistema, nelle varie combinazioni di carico, viene eseguita applicando un metodo del tipo "a curve caratteristiche", tenendo conto dell'effettiva interazione tra spalla e ritegno sismico (pali o micropali), assicurando la congruenza degli spostamenti attesi.

Più nel dettaglio, ipotizzando di intervenire sulla spalla solidarizzando a tergo una serie di micropali (o pali tipo trivellati) disposti allineati lungo l'asse autostradale, note:

- la tipologia, geometria e la tecnica di esecuzione dell'intervento di consolidamento;
- la natura e la caratterizzazione geotecnica dei terreni;

è possibile tracciare una curva di rigidezza dell' ancoraggio (soggetto a carichi orizzontali) sul piano δ_h , T, dove:

 δ_h = spostamento orizzontale della testa dei pali (considerato orizzontale);

T = tiro unico del cavalletto, al m di paramento.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

In particolare, al variare di T, mediante il codice di calcolo GROUP, in grado di generare internamente curve di risposta non lineare del terreno carico orizzontale – spostamento orizzontale (curve p-y) per carichi orizzontali (correlazioni riportate nel paragrafo 5.3.3) si ricavano gli spostamenti δ_h , entro i limiti del comportamento elastico, propri della coppia di pali di diametro "D", lunghezza "L" e interasse interno "i".

A seguito del calcolo, le verifiche di resistenza dei singoli elementi del ritegno, nei confronti delle azioni di carico assiali generatesi, sono condotte secondo quanto indicato nelle (NTC) ed esposto nel capitolo 5 Criteri di Verifica e di calcolo.

Successivamente, note le sollecitazioni agenti in fondazione per ogni combinazione di carico, è possibile determinare una curva di rigidezza della struttura nel modo di seguito descritto.

La spalla esistente, per effetto dei soli carichi permanenti, subisce una traslazione rigida orizzontale (δ_0) ed una rotazione rigida (θ_0); in questo caso, indicando con h_{rit} la distanza verticale tra l'intradosso della fondazione e la quota della trave di collegamento ritegno/spalla (*spiccato del paraghiaia*), lo spostamento orizzontale della spalla in corrispondenza del punto di applicazione del tiro risulta:

$$\delta_{o,htir} = \delta_o + h_{rit} \tan (\theta_o)$$

Ipotizzando di solidarizzare il ritegno quando sulla struttura agiscono i soli carichi permanenti, per diverse combinazioni di carico di progetto (stato limite di esercizio, stato limite ultimo o sisma), è possibile costruire per punti le curve di rigidezza della fondazione in presenza di una generica azione di tiro di consolidamento, agente alla specificata altezza da intradosso fondazione (h_{rit}).

Considerando infatti il caso in cui la spalla sia soggetta, ad esempio, alle sollecitazioni derivanti dal sisma, si possono calcolare i valori di sollecitazioni di taglio e momento agenti in fondazione, per ciascun i-esimo ipotetico valore T_i dell'azione agente nei ritegni disposti ad altezza h_{rit} .

Si avrà infatti:

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

 $N_i = N$

 $H_i = H - T_i$

$$M_i = M - (h_{rit} \cdot T_i)$$

dove N_i, H_i, M_i sono, per la condizione di carico in esame, i carichi effettivi per ogni metro di fondazione nella i-esima ipotesi di efficacia di tiro del sistemo, mentre N, H ed M sono, per la condizione di carico in esame, i carichi effettivi per ogni metro di fondazione in assenza di consolidamento.

Tali sollecitazioni (N_i , H_i , M_i) danno luogo ad uno spostamento orizzontale (δ_i) e ad una rotazione della fondazione (θ_i). Per effetto di tali spostamenti, in corrispondenza del punto di applicazione dei tiranti, lo spostamento orizzontale della spalla risulterà pari a:

$$\delta_{i,htir} = \delta_i + h_{rit} \tan (\theta_i)$$

Sottraendo a tale valore dello spostamento il valore corrispondente alle condizioni di carico permanente, si ottiene:

$$\Delta \delta_{h,i} = \delta_{o,htir} - \delta_{i,htir}$$

Le Figura 6-1 Figura 6-2 mostrano gli esempi del metodo ora illustrato; il punto di intersezione tra le curve di rigidezza del ritegno, e la curva di rigidezza della fondazione, determinato come descritto sopra, verifica la congruenza degli spostamenti ed indica il tiro a cui è soggetto il ritegno nella specifica condizioni di carico analizzata.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

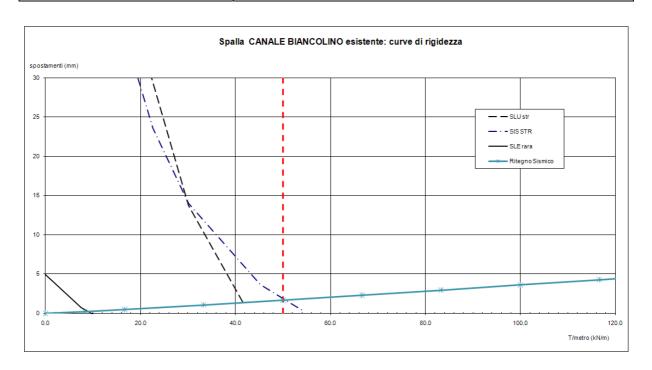
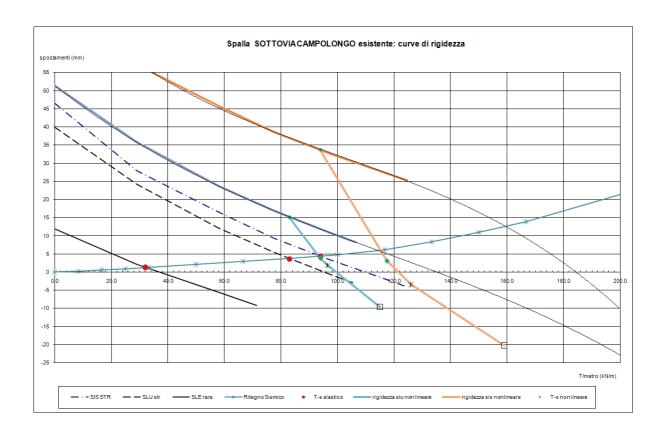



Figura 6-1. Curva di interazione tra spalla e micropali passivi – comportamento fondazione spalla lineare

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Figura 6-2. Curva di interazione tra spalla e micropali passivi – comportamento fondazione spalla non-lineare

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

7. DESCRIZIONE DELLE OPERE

Il Ponte sul Canale Vigenzone è un'opera a tre campate sostenuta da spalle passanti e due pile, con fondazioni profonde. L'opera è disposta con una obliquità rispetto l'asse longitudinale autostradale pari a ca. 29.2°.

Le fondazioni esistenti delle spalle e delle pile sono realizzate con pali battuti di tipo SCAC (pali di fondazione prefabbricati centrifugati) di diametro ∅480mm e lunghezza pari a 16m.

Nelle spalle, costituite da setti passanti, i pali sono disposti in gruppi di otto su ogni setto, così come illustrato nella Figura 7-1, per un totale di n°64 pali. La geometria in pianta dei pali è costituita da una maglia rettangolare con interasse dei pali pari a 1.30 x 1.35 m, mentre l'interasse dei setti è 3,40 m.

Le fondazioni delle pile sono costituite da un unico plinto fondato su n°74 pali SCAC disposti a quinconce, come illustrato nella Figura 7-1.

Le fondazioni delle spalle e delle pile in ampliamento saranno profonde su pali trivellati di grande diametro (Ø1000 mm).

Le spalle in ampliamento sono state previste passanti, analogamente al disegno dell'esistente.

Le lavorazioni di ampliamento delle spalle esistenti prevedono di operare in modo da lasciare il corpo spalla esistente e la parte nuova, strutturalmente e fisicamente indipendenti, per quanto riguarda i carichi permanenti. La solidarizzazione dei due corpi spalla avverrà solo dopo il montaggio dell'impalcato e la realizzazione del rinterro. Operando in tale modo si garantisce che la spalla esistente non venga sovraccaricata da eventuali distorsioni della spalla di nuova realizzazione (dovuti a cedimenti / rotazioni / traslazioni) durante le operazioni di rinterro e posa dell'impalcato.

Nei confronti dei carichi accidentali, si assume che i due corpi spalla siano strutturalmente indipendenti (nonostante la solidarizzazione tramite giunto) a seguito delle rigidezze comparabili.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Le spalle esistenti saranno rafforzate mediante un sistema passivo costituito da n.2 pali trivellati disposti in serie e collegati a tergo, mediante trave, al paramento della spalla.

Razionalizzando le fasi esecutive e le deviazioni di traffico necessarie alle operazione di adeguamento degli appoggi dell'impalcato e di rifacimento del paraghiaia, il rinforzo sismico verrà eseguito direttamente dal piano autostradale.

Tale adeguamento, assorbendo già in fase di esercizio parte della spinta orizzontale, consente un alleggerimento dei carichi agenti in fondazione.

La posizione dei ritegni è stabilita in modo da avere un contributo uniforme lungo tutta l'estensione della spalla. In particolare sono necessari n°4 cavalletti costituiti ognuno da n°2 pali di diametro ∅=1000 mm, di lunghezza L=15m e interasse i=3,0 m.

Riepilogando quindi, per la parte in allargamento si ha:

Spalla A: n°8 (Nord) + 8 (Sud) pali Ø1000 di L=30.0 m

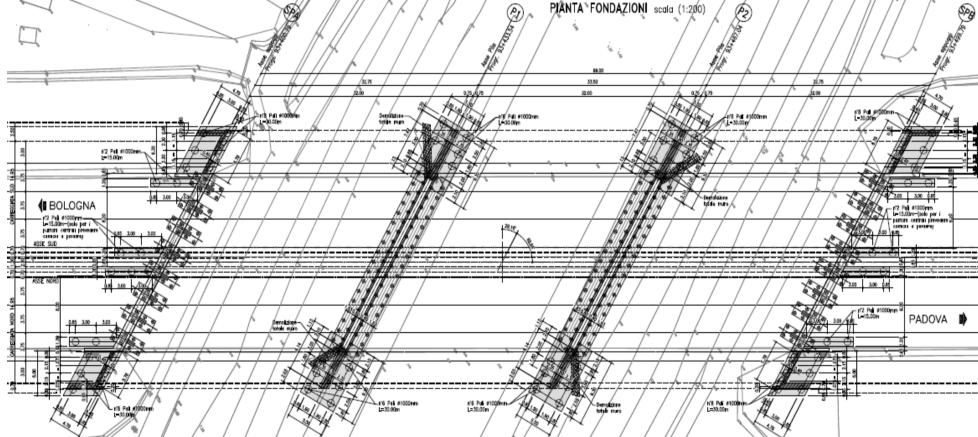
Adeguamento Sismico n°4 cavalletti di n°2 pali Ø1000 di L=15.0 m

Spalla B: n°8 (Nord) + 8 (Sud) pali Ø1000 di L=30.0 m

Adeguamento Sismico n°4 cavalletti di n°2 pali Ø1000 di L=15.0 m

Pile: n°**6x2** pali Ø1000 di L=30 m

Mentre per le fondazioni esistenti:


Spalle: n°64 (8 fondazioni indipendenti di 8 pali ciascuna) Ø480mm di L=16m

Pile: n°**74** Ø480 di L=16.0m

Nelle figure sottostanti si riportano gli schemi dell'opera (pianta e profilo) e delle fondazioni, desunti dagli elaborati strutturali.

PONTE SUL CANALE VIGENZONE (VI004)

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud

PONTE SUL CANALE VIGENZONE (VI004)

Figura 7-2: Profilo esistente

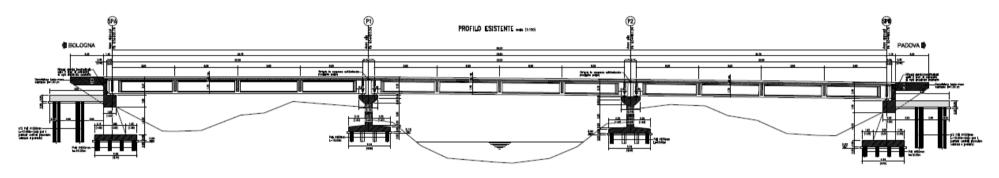
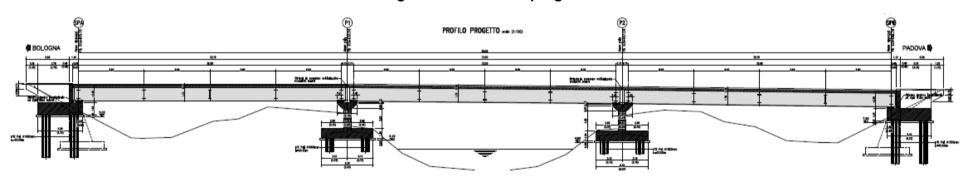
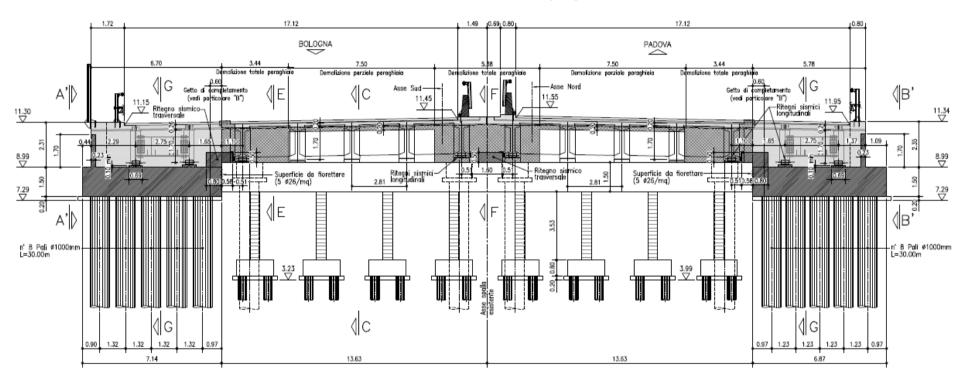



Figura 7-3: Profilo di progetto

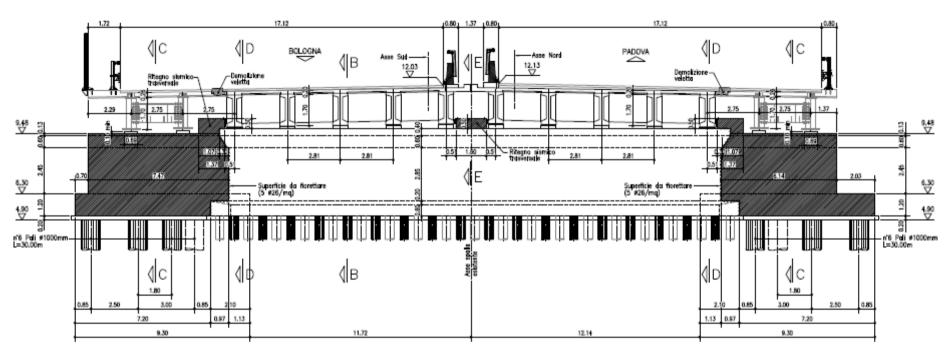

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud

PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Figura 7-4: Sezione spalla

SEZIONE H-H scala (1:100)


Adeguamento alla terza corsia nel tratto Monselice - Padova Sud

PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

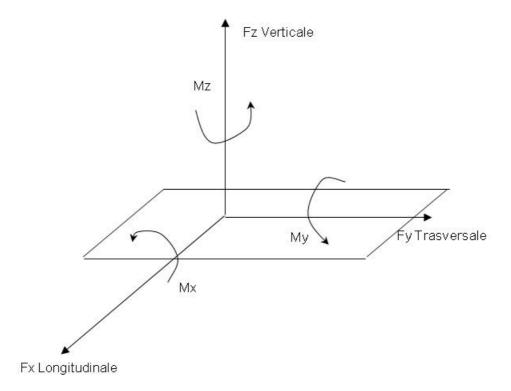
Figura 7-5: Sezione pila

SEZIONE A-A scala (1:100)

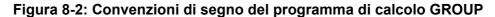
Relazione di calcolo delle fondazioni

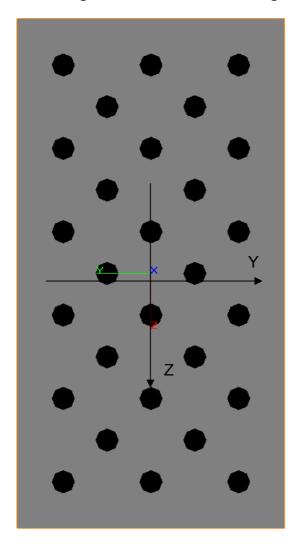
8. AZIONI DI CALCOLO IN FONDAZIONE

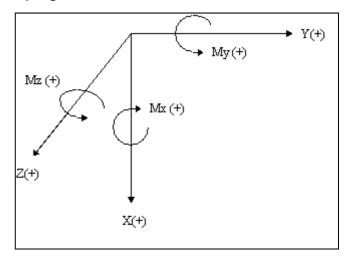
8.1 CONSIDERAZIONI GENERALI E SISTEMA DI RIFERIMENTO


Nel presente capitolo si riportano i carichi sulle strutture forniti dal Progettista Strutturale, a cui si rimanda per l'analisi in dettaglio.

I segni convenzionali imposti nell'analisi dei carichi sono rappresentati nelle seguenti figure.


Le sollecitazioni sono valutate nel baricentro della fondazione all'intradosso plinto.


Gli assi di riferimento (x, y) sono orientati solidali alla geometria di fondazione delle spalla e pile. Qualora la struttura risulta obliqua rispetto l'asse stradale, per il calcolo della fondazione della spalla e taratura del ritegno sismico, le azioni di taglio e i momenti sono stati proiettati lungo le direttrici principali autostradali (dividendo per il cos [90°-angolo di obliquità]).


Figura 8-1: Convenzioni di segno dei carichi forniti dal progettista strutturale

Relazione di calcolo delle fondazioni

Schema di riferimento dei carichi

L'asse Y coincide con la direzione longitudinale dell'opera

L'asse Z coincide con la direzione trasversale dell'opera

L'asse X coincide con la direzione verticale della palificata

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

8.2 AZIONI DI CALCOLO - SPALLE

Nelle Tabelle seguenti vengono riportati i carichi trasmessi dal Progettista Strutturale nelle diverse combinazioni così come previsto dall'attuale normativa (Doc. Rif. [1]), in cui l'asse 'x' è coincidente con l'asse longitudinale dell'opera (convenzioni di segno di Figura 8-1).

Le sollecitazioni sono state valutate nel baricentro della fondazione ad intradosso del plinto di fondazione, considerando separatamente la parte esistente e quella in ampliamento.

Come si può vedere dal profilo longitudinale del Viadotto (Figura 7-1), le spalle sono di tipo passante. Una volta realizzata la fondazione su pali e la spalla, con conseguente riempimento a tergo della stessa, si raggiunge la quota di progetto della piattaforma autostradale, andando a scavare, secondo le pendenze definitive di progetto, davanti ai pali (lato valle) per un'altezza di circa 3.5m.

Per tenere conto del comportamento dei pali nei confronti dei carichi trasversali, l'interazione terreno-struttura viene modellata mediante le curve 'p-y' (par. 5.3.3).

Nel presente caso di pendenza di scarpata di valle, è stato introdotto nel modello di calcolo geotecnico un angolo di attrito *equivalente* (φ '=26°) la cui curva d'interazione 'p-y' corrisponde al caso di scarpata inclinata con materiale da rilevato (sabbie).

In termini di azioni è stata ipotizzata una condizione di scalzamento sui pali lato valle e sono stati applicati, lungo il fusto dei pali, dei carichi che simulano, nelle varie combinazioni esaminate, l'effetto della spinta del terreno.

Tale spinta, espressa in termini di diagramma di pressione a forma trapezia, è stata calcolata per le combinazioni:

- SLE
- SLU A1 M1
- SLU A2 M2
- SISMA A1 M1

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

SISMA A2 – M2

tenendo conto dei coefficienti parziali sulle azioni e sui parametri del terreno in funzione delle condizioni esaminate.

In direzione longitudinale (parallelamente all'autostrada) la lunghezza di applicazione del carico è stata posta, per i pali lato scarpata, pari all'interasse dei pali, che sono disposti ravvicinati, a costruire una paratia; viceversa, per i pali interni è stata considerata una lunghezza di (1.6 volte il diametro del palo).

La valutazione di tali spinte è stata condotta considerando i seguenti parametri del terreno spingente:

 γ = peso di volume naturale = 20 kN/m³

 φ '= angolo di attrito efficace = 35°

c'= coesione efficace = 0 kPa

Combiazione SLE

Diagramma da applicare ai pali - SLE	H (kN/m)		Htot ((kN/m)
	pali lato Aut.	pali interni	pali lato Aut.	pali interni
spinta terra p.to 1 (t.p.)	22.7	30.8	22.7	38.7
spinta terra p.to 2 (-5.0 da t.p.)	44.8	60.8	44.8	68.7
spinta sovracc. p.to 1 (t.p.)	0.0	7.9		
spinta sovracc. p.to 2 (-5.0 da t.p.)	0.0	7.9		

Combiazione SLU STR e SISMA STR

			SLU A	1- M1	SISMA	A1 - M1
Diagramma da applicare ai pali - A1-M1	H (kN/m)		Htot (kN/m)		Htot (kN/m)	
	pali lato Aut.	pali interni	pali lato Aut.	pali interni	pali lato Aut.	pali interni
spinta terra p.to 1 (t.p.)	29.6	40.1	29.6	51.9	39.4	53.4
spinta terra p.to 2 (-5.0 da t.p.)	58.3	79.0	58.3	90.9	77.6	105.2
spinta sovracc. p.to 1 (t.p.)	0.0	11.8				
spinta sovracc. p.to 2 (-5.0 da t.p.)	0.0	11.8				

Combiazione SLU GEO e SISMA GEO

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

			SLU A	12 - M2	SISMA	A2 - M2
Diagramma da applicare ai pali - A2-M2	H (kN/m)		H (kN/m) Htot (kN/		Htot (kN/m)
	pali lato Aut.	pali interni	pali lato Aut.	pali interni	pali lato Aut.	pali interni
spinta terra p.to 1 (t.p.)	28.7	38.9	28.7	51.7	40.0	54.3
spinta terra p.to 2 (-5.0 da t.p.)	56.5	76.6	56.5	89.5	78.9	107.0
spinta sovracc. p.to 1 (t.p.)	0.0	12.9				
spinta sovracc. p.to 2 (-5.0 da t.p.)	0.0	12.9				

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

		Fx [kN]	Fz [kN]	My [kNm]
SLE_Rara	max Fx	2745.1	417.3	-247.4
	min Fz	3038.3	286.1	427.6
	max Fz	2745.1	417.3	-247.4
	min My	3038.3	286.1	427.6
	max My	2745.1	417.3	-247.4
SLU_STR	max Fx	3427.0	597.1	-622.2
	min Fz	4101.7	388.5	564.2
	max Fz	3427.0	597.1	-622.2
	min My	4101.7	388.5	564.2
	max My	3427.0	597.1	-622.2
SLU_GEO	max Fx	2598.9	574.4	-517.6
	min Fz	3092.5	367.4	185.9
	max Fz	2598.9	574.4	-517.6
	min My	3092.5	367.4	185.9
	max My	2598.9	574.4	-517.6
Sisma STR	max Fx	2677.1	779.0	-1750.6
	min Fz	2677.1	7.0	1411.7
	max Fz	2677.1	779.0	-1750.6
	min My	2677.1	7.0	1411.7
	max My	2677.1	779.0	-1750.6
Sisma GEO	max Fx	2677.1	875.5	-2072.7
	min Fz	2677.1	88.3	1152.2
	max Fz	2677.1	875.5	-2072.7
	min My	2677.1	88.3	1152.2
	max My	2677.1	875.5	-2072.7
Permanenti	max Fx	2677.1	301.1	221.4
	min Fz	2677.1	301.1	221.4
	max Fz	2677.1	301.1	221.4
	min My	2677.1	301.1	221.4
	max My	2677.1	301.1	221.4
SLE_PLUS	max Fx	2774.2	467.1	-448.3
	min Fz	3193.1	301.1	516.0
	max Fz	2774.2	467.1	-448.3
	min My	3193.1	301.1	516.0
	max My	2774.2	467.1	-448.3

Tabella 8-1: Valori di calcolo delle azioni sulla fondazione esistente

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

		Fx [kN]	Fz [kN]	My [kNm]
SLE_Rara	max Fx	3651.8	539.6	-2560.4
	min Fz	3889.2	300.1	-3641.0
	max Fz	3651.8	539.6	-2560.4
	min My	3889.2	300.1	-3641.0
	max My	3651.8	539.6	-2560.4
SLU_STR	max Fx	4481.6	786.4	-2669.6
	min Fz	5250.4	409.0	-4921.1
	max Fz	4481.6	786.4	-2669.6
	min My	5250.4	409.0	-4921.1
	max My	4481.6	786.4	-2669.6
SLU_GEO	max Fx	2814.6	726.9	-697.7
	min Fz	3983.2	365.0	-3902.1
	max Fz	2814.6	726.9	-697.7
	min My	3983.2	365.0	-3902.1
	max My	2814.6	726.9	-697.7
Sisma STR	max Fx	3262.4	903.5	-3377.7
	min Fz	3262.4	-60.7	-1975.1
	max Fz	3262.4	903.5	-3377.7
	min My	3262.4	-60.7	-1975.1
	max My	3262.4	903.5	-3377.7
Sisma GEO	max Fx	3262.4	978.6	-3474.0
	min Fz	3262.4	4.2	-2052.9
	max Fz	3262.4	978.6	-3474.0
	min My	3262.4	4.2	-2052.9
	max My	3262.4	978.6	-3474.0
Permanenti	max Fx	3262.4	325.9	-2457.9
	min Fz	3262.4	325.9	-2457.9
	max Fz	3262.4	325.9	-2457.9
	min My	3262.4	325.9	-2457.9
	max My	3262.4	325.9	-2457.9

Tabella 8-2: Valori di calcolo delle azioni sulla fondazione in ampliamento

Relazione di calcolo delle fondazioni

8.3 AZIONI DI CALCOLO - PILE

Nelle Tabelle seguenti vengono riportati i carichi trasmessi dal Progettista Strutturale nelle diverse combinazioni SLU e SLE, in cui l'asse x è coincidente con l'asse longitudinale dell'autostrada (convenzioni di segno di Figura 8-1).

Le sollecitazioni sono state valutate nel baricentro della fondazione (intesa come esistente più ampliamento) ad intradosso del plinto di fondazione.

Tabella 8-3: Valori di calcolo delle azioni sulla fondazione (esistente ed ampliamento) - Combinazioni SLU

		Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]
	max Fx	1,374.40	154.63	-23,819.23	649.43	10,101.87
SLU STR	min Fx	-1,474.92	154.63	-38,941.79	649.43	-10,840.68
SLU SIK	max Fz	1,374.40	154.63	-23,819.23	649.43	10,101.87
	min Fz	-417.30	154.63	-43,554.27	649.43	-3,067.18
	max Fx	1,164.92	134.01	-23,819.23	562.84	8,562.18
SLII CEO	min Fx	-1,248.69	134.01	-29,599.76	562.84	-9,177.85
	max Fz	1,164.92	134.01	-23,819.23	562.84	8,562.18
	min Fz	-347.75	134.01	-33,528.90	562.84	-2,555.98

Tabella 8-4: Valori di calcolo delle azioni sulla fondazione (esistente ed ampliamento) - Combinazioni SIS

		Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]
	max Fx	7,549.00	872.58	-23,819.23	3,795.73	32,460.00
Sisma STR	min Fx	7,549.00	872.58	-23,819.23	3,795.73	32,460.00
Sisilia STK	max Fz	7,549.00	872.58	-23,819.23	3,795.73	32,460.00
	min Fz	7,549.00	872.58	-23,819.23	3,795.73	32,460.00
	max Fx	7,549.00	872.58	-23,819.23	3,795.73	32,460.00
Sisma GEO	min Fx	7,549.00	872.58	-23,819.23	3,795.73	32,460.00
	max Fz	7,549.00	872.58	-23,819.23	3,795.73	32,460.00
	min Fz	7,549.00	872.58	-23,819.23	3,795.73	32,460.00

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Tabella 8-5: Valori di calcolo delle azioni sulla fondazione (esistente ed ampliamento) - Combinazioni SLE

		Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]
	max Fx	439.98	103.08	-23,819.23	432.95	3,233.85
SLE Rara	min Fx	-579.59	103.08	-28,845.77	432.95	-4,259.97
JLL Kara	max Fz	439.98	103.08	-23,819.23	432.95	3,233.85
	min Fz	-347.75	103.08	-32,262.42	432.95	-2,555.98
	max Fx	0.00	0.00	-23,819.23	0.00	0.00
Permanenti	min Fx	0.00	0.00	-23,819.23	0.00	0.00
remanenti	max Fz	0.00	0.00	-23,819.23	0.00	0.00
	min Fz	0.00	0.00	-23,819.23	0.00	0.00
	max Fx	439.98	103.08	0.00	432.95	3,233.85
SLE Plus	min Fx	-579.59	103.08	-5,026.55	432.95	-4,259.97
SLE Plus	max Fz	439.98	103.08	0.00	432.95	3,233.85
	min Fz	-347.75	103.08	-8,443.20	432.95	-2,555.98

Relazione di calcolo delle fondazioni

9. PARAMETRI DEL MODELLO GEOTECNICO DELLE PALIFICATE

Secondo le NTC'08, nel modello di calcolo dei pali, i coefficienti parziali vengono applicati direttamente alle resistenze laterali e di base (conservando quindi l'impostazione dei metodi di calcolo tradizionali), e non ai parametri geotecnici caratteristici del terreno, per tener conto dei numerosi fattori che concorrono alla portanza del palo legati alle modalità ed alle incertezze esecutive.

Per le analisi di gruppo della palificata, i parametri di input (parametri caratteristici) introdotti nel modello di calcolo Group sono i seguenti:

Tabella 9-1: Valori caratteristici dei parametri geotecnici – spalle esistenti

Profondità (da intradosso fondazione)	γ	τ _{lim}	ф	Cu	q _b	К
da 0 a 6.6 m	20	20	-	20	0→200	10000
da 6.6 a 8.1 m	19	100	35	-	1000	15000
da 8.1 a 15.5 m	20	30	-	35	350	15000
da 15.5 a 16.1 m	19	120	36	-	1200	20000
da 16.1 a 18.6 m	19	37	-	45	400	20000
da 18.6 a 20.0 m	19	150	37	-	1500	30000

γ	\Rightarrow	Peso di volume (kN/mc)
τ_{lim}	\Rightarrow	Attrito unitario laterale limite (kPa)
q_b	\Rightarrow	Resistenza ultima alla punta (kPa)
ф	\Rightarrow	Angolo di resistenza al taglio (°)
C _u	\Rightarrow	Coesione non drenata (kPa)
K	\Rightarrow	Modulo di reazione iniziale (kN/mc)

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Tabella 9-2: Valori caratteristici dei parametri geotecnici –spalle ampliamento

Profondità (da intradosso fondazione)	γ	τ _{lim}	ф	Cu	$q_{\rm b}$	К
da 0 a 3.5 m	20	12	26	-	0	25000
da 3.5 a 18.8 m	19	30	ı	35	320	15000
da 18.8 a 24.6 m	19	70	35	ı	1000	20000
da 24.6 a 26.2 m	19	40	ı	65	600	20000
da 26.2 a 27.4 m	19	100	36	-	1500	30000
da 27.4 a 28.9 m	16	40	-	65	500	20000
da 28.9 a 33 m	19	120	37	-	1500	40000

Tabella 9-3: Valori caratteristici dei parametri geotecnici – pile

Profondità (da intradosso fondazione)	γ	τ _{lim}	ф	Cu	q _b	К
da 0 a 15.9 m	20	36	-	45	405	15000
da 15.9 a 16.9 m	19	83	35	-	867	15000
da 16.9 a 17.9 m	19	36	-	45	405	15000
da 17.9 a 20.4 m	19	95	35	-	867	15000
da 20.4 a 21.5 m	19	40	-	50	450	20000
da 21.5 a 22.4 m	19	110	35	-	1809	20000
da 22.4 a 24.9 m	19	34	-	57	513	30000
da 24.9 a 27.6 m	19	130	36	-	536	30000
da 27.6 a 36.9 m	19	44	-	74	666	40000

Per ottenere i parametri di progetto, i parametri caratteristici sono stati fattorizzati con i coefficienti parziali pari all'unità:

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

10. FONDAZIONI SPALLE

10.1 STIMA DELLA RESISTENZA DEI PALI SOGGETTI A CARICHI ASSIALI

In accordo a quanto descritto nel paragrafo 5, di seguito è condotta la stima della resistenza di progetto dei pali R_d , in funzione della profondità.

Utilizzando le formulazioni indicate al par. 5.3.2.1 è possibile ottenere i profili di resistenza di progetto.

La resistenza caratteristica è stimata secondo quanto descritto al par. 5.3.2 adottando i coefficienti parziali ξ_3 e ξ_4 relativi a n.4 verticali di indagini a disposizione.

I valori delle resistenze di progetto così trovati (cfr. le Figure seguenti) sono poi confrontati con i valori delle sollecitazioni assiali risultanti dai calcoli secondo l'approccio 1, combinazione 2 (A2+M1+R2 in campo statico e A2+M1+R3 in campo sismico).

Nelle figure di seguito riportate si illustrano gli andamenti del valore della capacità portante dei pali di fondazione (a compressione e a trazione) per i seguenti casi:

- Capacità portante dei pali esistenti (battuti) con i valori medi e minimi per la combinazione 'A2+M1+R2' (SLU) (cfr. par.6.4.3.1.1 delle NTC'08)
- Capacità portante dei pali esistenti (battuti) con i valori medi e minimi per la combinazione 'A2+M1+R3' (SIS) (cfr. par.6.4.3.1.1 – par.7.11.5.3.2 delle NTC'08)
- Capacità portante dei pali dell'ampliamento (trivellati) con i valori medi e minimi per la combinazione 'A2+M1+R2' (SLU) (cfr. par.6.4.3.1.1 delle NTC'08)
- Capacità portante dei pali dell'ampliamento (trivellati) con i valori medi e minimi per la combinazione 'A2+M1+R3' (SIS) (cfr. par.6.4.3.1.1 – par.7.11.5.3.2 delle NTC'08)

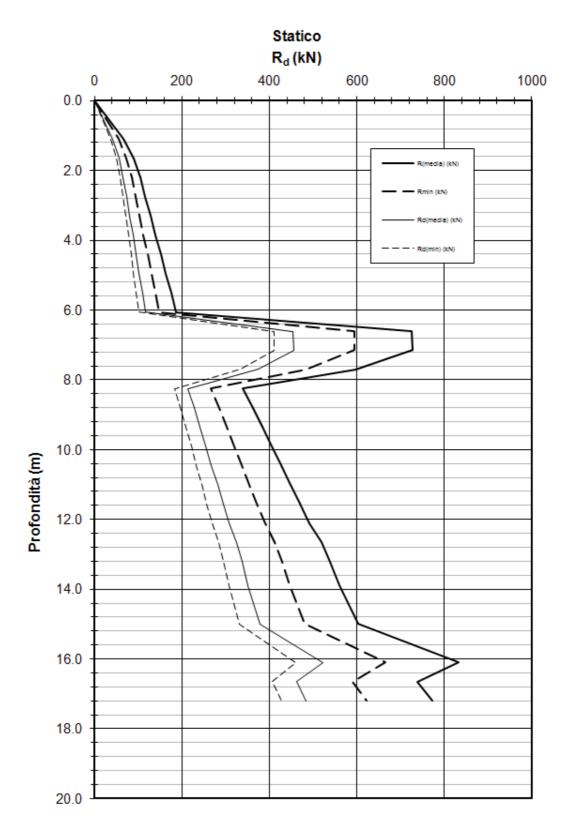


Figura 10-1: Pali battuti - Resistenza del palo a compressione - combinazione SLU

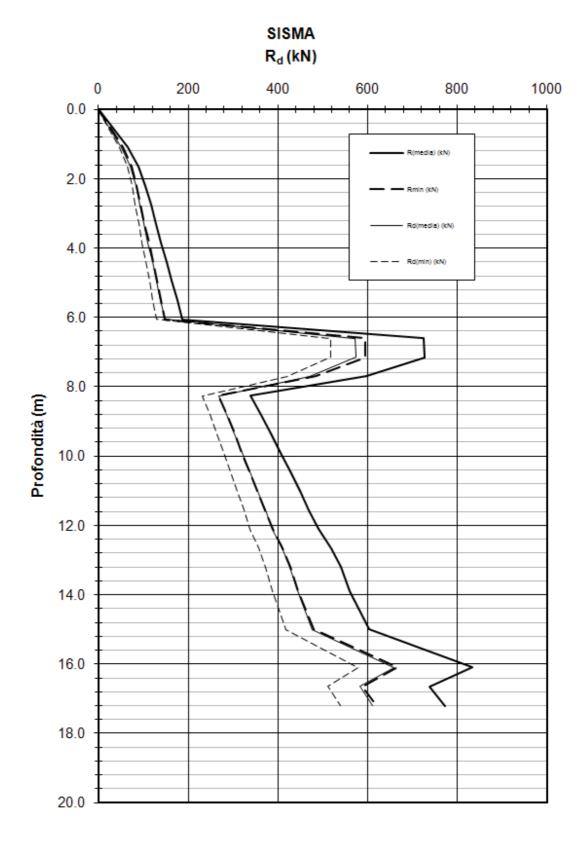


Figura 10-2: Pali battuti - Resistenza del palo a compressione – combinazione SIS

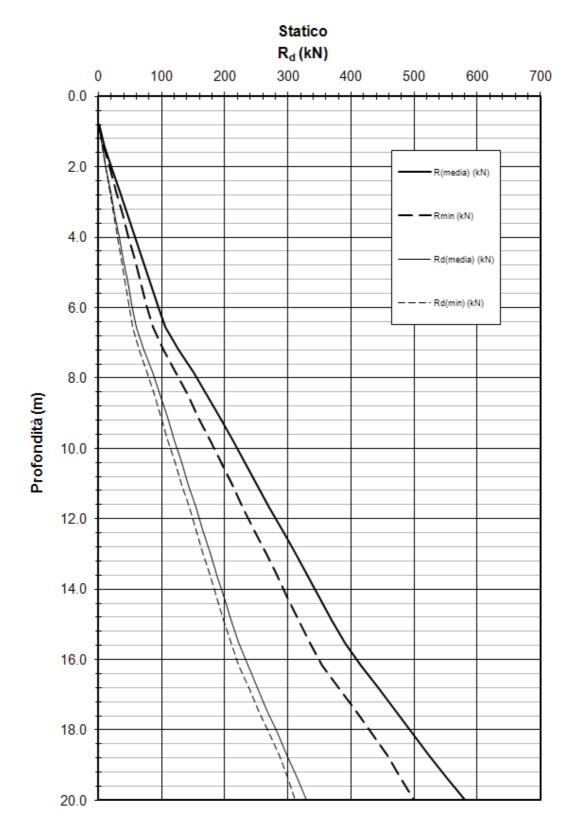


Figura 10-3: Pali battuti - Resistenza del palo a trazione - combinazione SLU

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

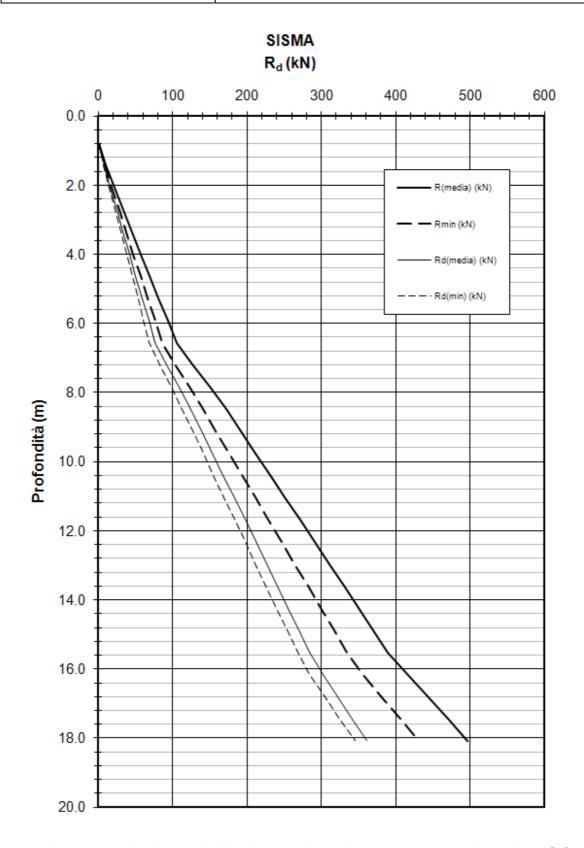


Figura 10-4: Pali battuti - Resistenza del palo a trazione - combinazione SIS

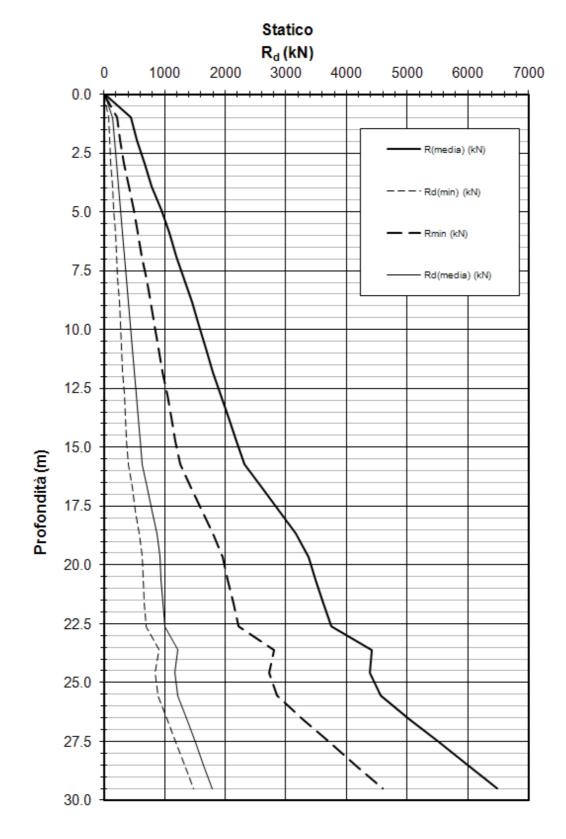


Figura 10-5: Pali trivellati - Resistenza del palo a compressione - combinazione SLU

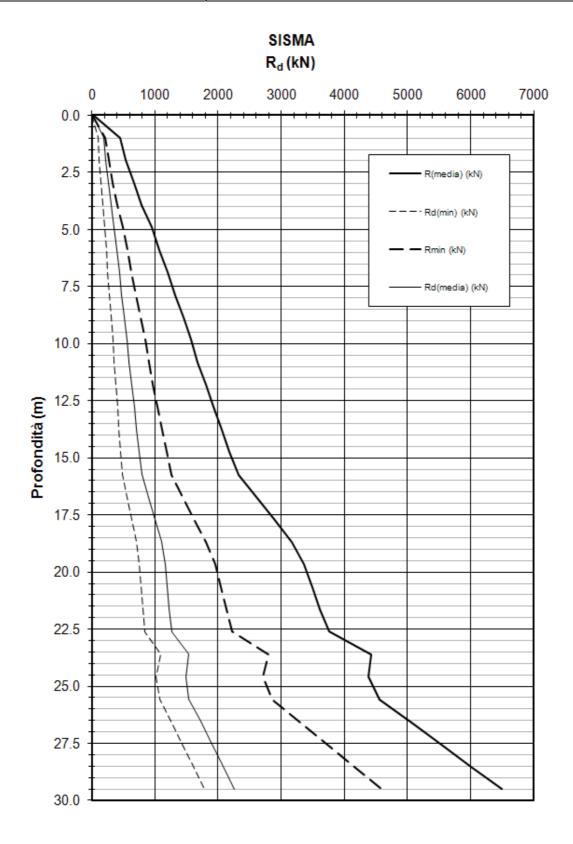


Figura 10-6: Pali trivellati - Resistenza del palo a compressione - combinazione SIS

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

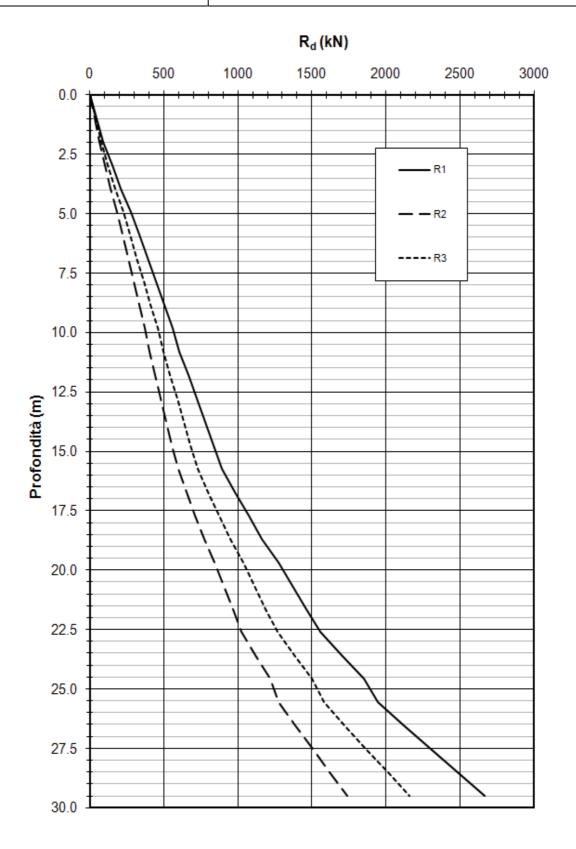


Figura 10-7: Pali trivellati - Resistenza del palo a trazione - combinazione SLU-SIS

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Dall'esame delle figure risulta:

Pali battuti di lunghezza L=14m

 $R_d \cong 450 \text{ kN}$ a compressione statico (R2)

 $R_d \cong 220 \ KN$ a trazione statico (R2)

 $R_d \simeq 580 \text{ kN}$ a compressione sismico (R3)

 $R_d \cong 280 \text{ kN}$ a trazione e sismico (R3)

Pali trivellati di lunghezza L=15m (pali dell'Adeguamento Sismico)

 $R_d \cong 520 \text{ kN}$ a compressione statico (R2)

 $R_d \cong 400 \text{ KN}$ a trazione statico (R2)

 $R_d \cong 660 \text{ kN}$ a compressione sismico (R3)

 $R_d \cong 520 \text{ kN}$ a trazione e sismico (R3)

Pali trivellati di lunghezza L=30m

 $R_d \cong 1040 \text{ kN}$ a compressione statico (R2) (ridotta al 58%) (*)

 $R_d \cong 1380 \text{ KN}$ a trazione statico (R2)

 $R_d \cong 1250 \text{ kN}$ a compressione sismico (R3) (ridotta al 58%) (*)

 $R_d \cong 1700 \text{ kN}$ a trazione e sismico (R3)

(*) La riduzione è dovuta ai pali accostati con interasse minore di tre volte il diametro.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

10.2 Analisi dello stato di fatto della fondazione

In tale analisi si valuta il livello di sicurezza che la fondazione, nelle condizioni geometriche attuali (approfondimento, dimensioni, ecc. ...), possiede.

Tale analisi torna utile anche per tarare i parametri di resistenza del terreno da utilizzare, consentendo di individuare il valore caratteristico rappresentativo nell'ambito del range di variazione fornito dalla caratterizzazione geotecnica (backanalysis).

Nella Figura 10-11 seguente sono riportati i risultati dell'analisi dello stato di fatto – considerando i carichi della combinazione SLE-Plus ai sensi delle N.T.C. 2008 ($\xi_1 = 1,10, \, \xi_2 = 1,00 \, \text{e} \, \gamma_{\text{R2,base}} = 1,70, \, \gamma_{\text{R2,laterale}} = 1,45$):

• combinazione SLE PLUS N = 594.0 kN.

10.3 Analisi di interazione fra struttura esistente e ritegno sismico

Le lavorazioni di ampliamento delle spalle esistenti prevedono di operare in modo da lasciare il corpo spalla esistente e la parte nuova, strutturalmente e fisicamente indipendenti, per quanto riguarda i carichi permanenti. La solidarizzazione dei due corpi spalla avverrà solo dopo il montaggio dell'impalcato e la realizzazione del rinterro. Operando in tale modo si garantisce che la spalla esistente non venga sovraccaricata da eventuali distorsioni della spalla di nuova realizzazione (dovuti a cedimenti / rotazioni / traslazioni) durante le operazioni di rinterro e posa dell'impalcato.

Nei confronti dei carichi accidentali, si assume che i due corpi spalla siano strutturalmente indipendenti (nonostante la solidarizzazione tramite giunto) a seguito delle rigidezze comparabili.

Per l'adeguamento della struttura esistente in condizioni sismiche è necessario intervenire con un consolidamento della spalla. Il sistema di rinforzo è di tipo passivo, costituito da un cavalletto di pali trivellati disposti in serie lungo l'asse autostradale (direzione spinta terreno). Tale adeguamento, assorbendo già in fase di esercizio

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

parte della spinta orizzontale, consente un alleggerimento dei carichi agenti in fondazione.

La posizione dei ritegni è stabilita in modo da avere un contributo uniforme lungo tutta l'estensione della spalla. In particolare sono necessari n°4 cavalletti, due simmetrici per corpo spalla, costituiti ognuno da n°2 pali trivellati di diametro \emptyset = 1000 mm, di lunghezza L=15m e interasse i=3,0 m.

Il rinforzo sismico verrà eseguito direttamente dal piano autostradale. La testa pali viene collegata per mezzo di una trave, a tergo, al paramento della spalla sotto lo spiccato paraghiaia (altezza ritegno dall'intradosso del plinto di 6.0 m).

Le curve di rigidezza dei cavalletti passivi descritti e delle due fondazioni delle spalle sono indicate nella Figura 10-8.

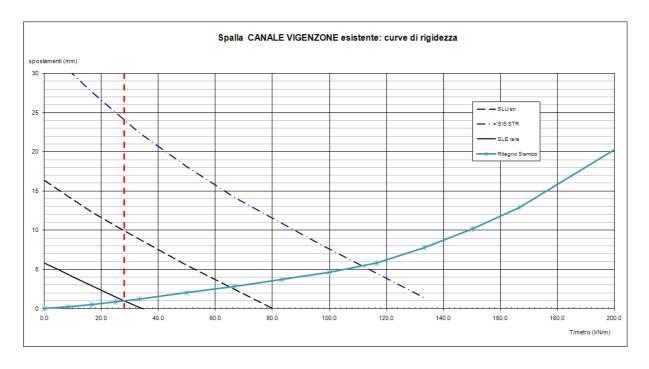


Figura 10-8: Curva di Rigidezza Spalla Esistente – Ritegno Sismico

Il punto di intersezione delle curve definisce il valore d'azione che agisce sul singolo ritegno, come segue:

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

- combinazione SLE RARA T = 28.0 kN/m

- combinazione SLU STR T = 65.0 kN/m

- combinazione SIS STR T = 111.5 kN/m

Tali valori scontano gli effetti delle sollecitazioni di taglio e momento risultanti in fondazione e, determinano i nuovi N, T ed M.

I risultati ottenuti per le condizioni STR vengono applicati anche per le condizioni GEO (in quanto le azioni agenti sono di entità confrontabile a quelle GEO e sono più realistiche, in quanto non sono ottenute da parameri del terreno fattorizzati).

Nell'ipotesi di congruenza del sistema le sollecitazioni nuove agenti al piede del plinto di fondazione saranno (Tabella 10-1):

Tabella 10-1: Spalla esistente: sollecitazioni intradosso fondazione in presenza di tiranti

COMBINAZIONI DI CARICO con rinforzo	cavalletto	Fx vert	Fy trasv	Mz trasv	Fz long	My long	Mz trasv
intradosso fondazione	[kN]	[kN]	[kN]	[kNm]	[kN]	[kNm]	[kNm]
SLE	168	2745.0	333.0	257.0	0	0	0
SLU STR	390	3427.0	402.0	548.0	0	0	0
SLU GEO	390	2599.0	379.0	652.0	0	0	0
SISMA STR	669	2677.0	445.0	-256.0	0	0	0
SISMA GEO	669	2677.0	541.0	-66.0	0	0	0

Relazione di calcolo delle fondazioni

10.4 RISULTATI ANALISI PALIFICATA E VERIFICHE

Nelle seguenti Figure sono illustrate le fondazioni utilizzate nei calcoli, con la numerazione dei pali utilizzata.

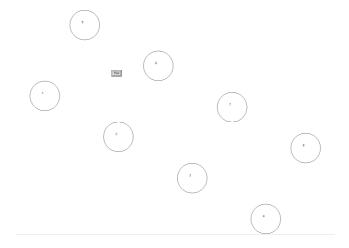


Figura 10-9: Schema Group della palificata - fondazione esistente su pali battuti

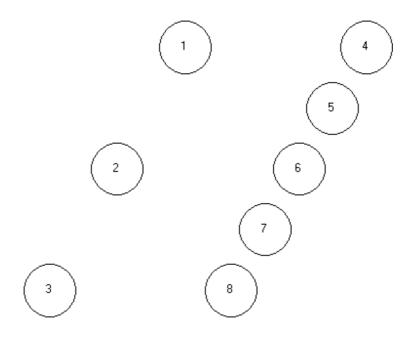


Figura 10-10: Schema Group della palificata - ampliamento fondazione su pali trivellati Spalla A

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

10.4.1 Risultati delle analisi

I risultati delle analisi eseguite con il programma GROUP in termini di sollecitazioni massime agenti sui pali, sono riportati nella Tabella 10-2 e Tabella 10-3.

Spalla		SLE	SLU STR	SLU GEO	SIS-STR	SIS-GEO
N.	Pali battuti Ø450	413	479	347	455	553
N _{max}	Pali trivellati Ø1000	772	1070	868	979	1010
Pali battuti Ø450	273	377	303	211	90.9	
IN _{min}	Pali trivellati Ø1000	-14.3	-96.9	-152	-519	-575
	Pali battuti Ø450	92.3	119.1	111	133	169
M _{max}	Pali trivellati Ø1000	640	992	944	1231	983
т	Pali battuti Ø450	51.5	62.2	58.6	68.7	83.3
T _{max}	Pali trivellati Ø1000	171	242	231	283	297

Tabella 10-2: Sollecitazioni massime agenti sui pali di fondazione delle spalle esistenti e in ampliamento

Ritegno Sismico		SLU	SISMA
N_{max}	Pali trivellati Ø1000	270	426
N_{min}	Pali trivellati Ø1000	-170	-326
M _{max}	Pali trivellati Ø1000	359	614
T _{max}	Pali trivellati Ø1000	215	369

Tabella 10-3: Sollecitazioni massime agenti sui pali del ritegno sismico

Spea ingegneria europea

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

10.4.2 Verifiche geotecniche

Nelle Figura 10-11 \div Figura 10-17 le azioni assiali massime agenti sui pali sono messe a confronto con le resistenze di progetto R_d : in tali grafici si evidenziano i valori delle sollecitazioni sui pali di fondazione in presenza del ritegno sismico (riportato con il suffisso 'T' – valore assunto per le verifiche). Come si evince da tali figure le verifiche di capacità portante sono soddisfatte sia per i pali battuti sia per i pali trivellati.

10.4.3 Verifiche strutturali del palo

Per questa verifica si rimanda alla Relazione STR di calcolo dell'opera.

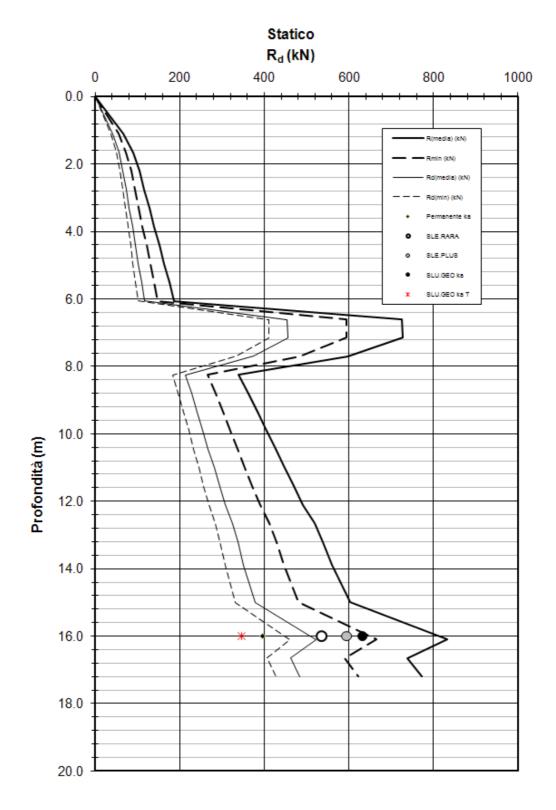


Figura 10-11: Azioni assiali massime a confronto con le resistenze di progetto R_{d} per i pali battuti soggetti a compressione – combinazione SLU

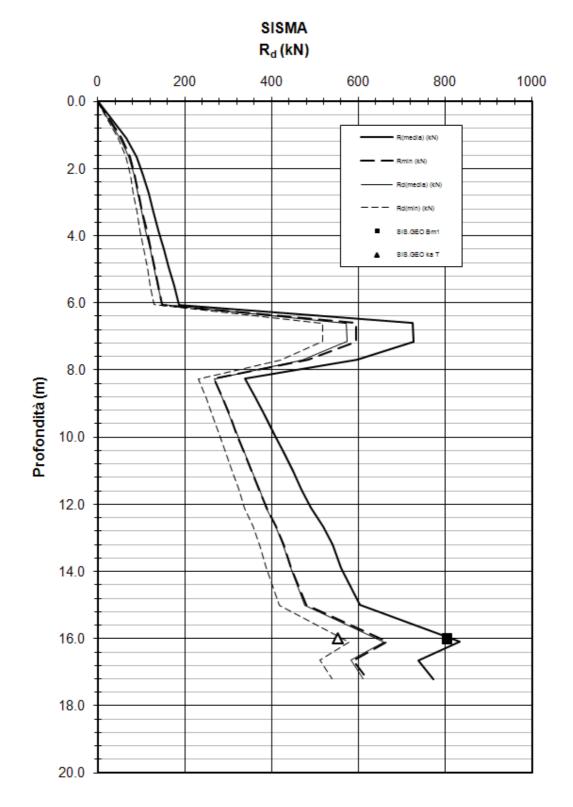


Figura 10-12: Pali battuti - Azioni assiali massime a confronto con le resistenze di progetto $R_{\rm d}$ per i pali battuti soggetti a compressione – combinazione SIS

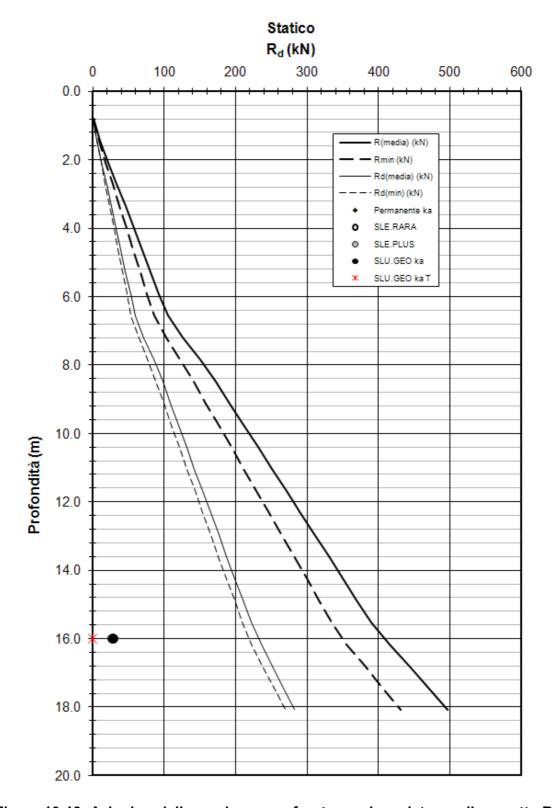


Figura 10-13: Azioni assiali massime a confronto con le resistenze di progetto R_{d} per i pali battuti soggetti a trazione – combinazione SLU

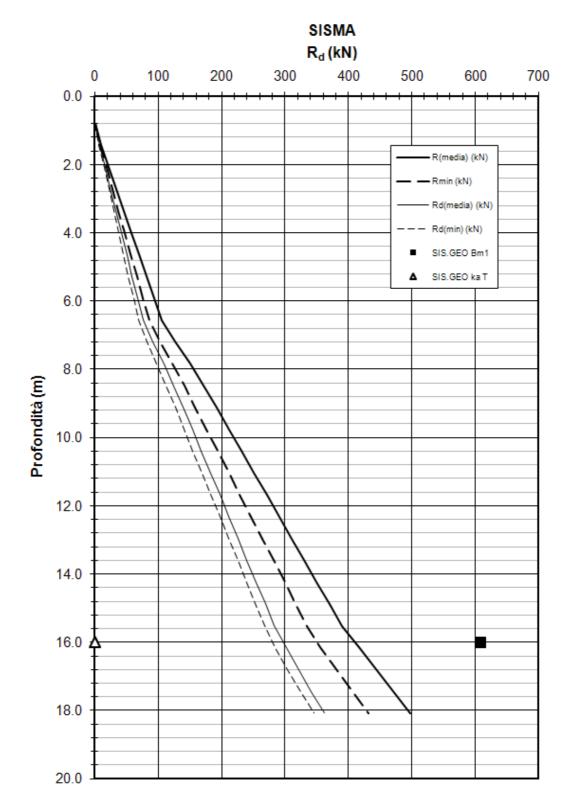


Figura 10-14: Azioni assiali massime a confronto con le resistenze di progetto R_d per i pali battuti soggetti a trazione – combinazione SIS

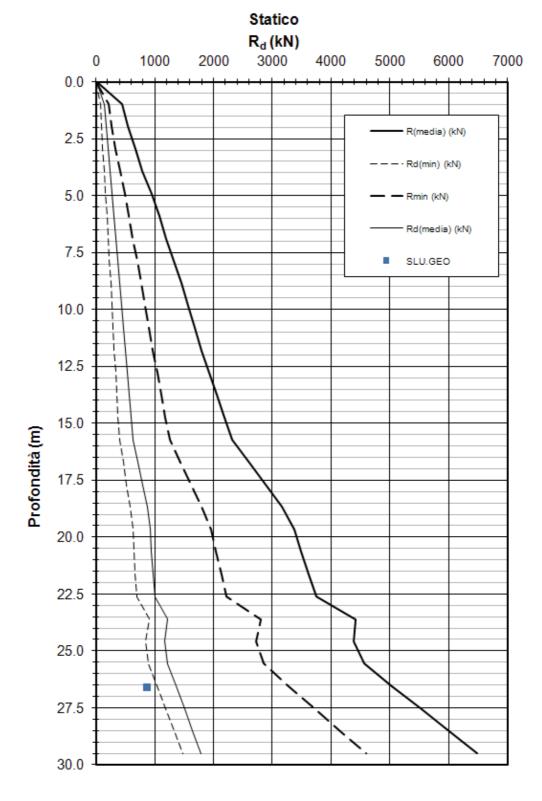


Figura 10-15: Azioni assiali massime a confronto con le resistenze di progetto R_d per i pali trivellati soggetti a compressione – combinazione SLU

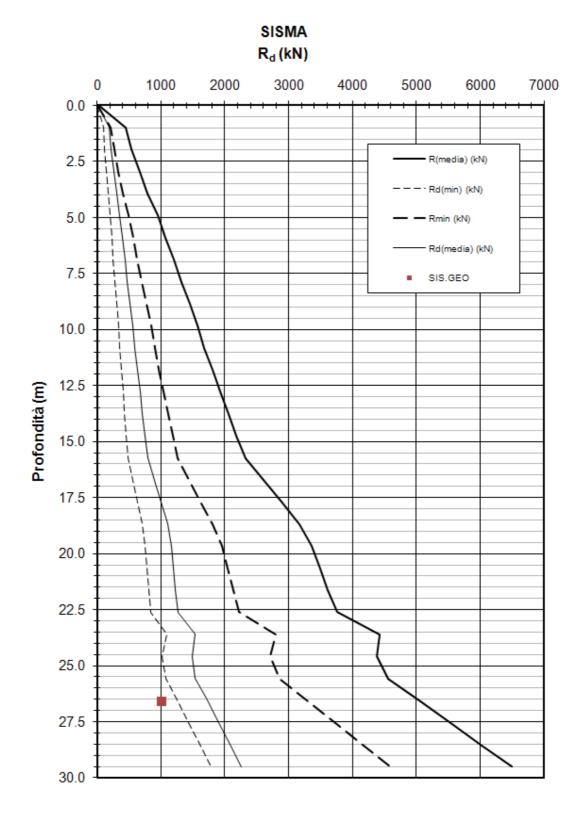


Figura 10-16: Azioni assiali massime a confronto con le resistenze di progetto R_d per i pali trivellati soggetti a compressione – combinazione SIS

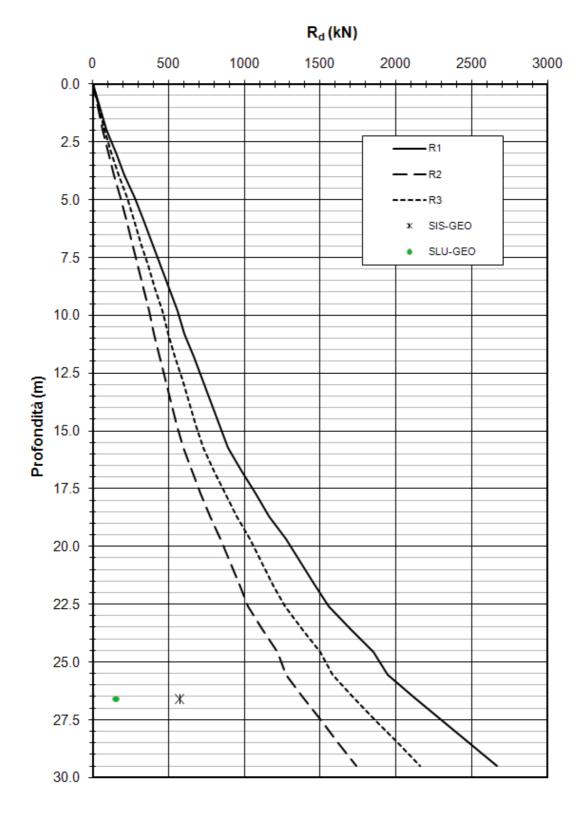


Figura 10-17: Azioni assiali massime a confronto con le resistenze di progetto R_d per i pali trivellati soggetti a trazione – combinazione SLU-SIS

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

11. FONDAZIONI PILE

11.1 STIMA DELLA RESISTENZA DEI PALI SOGGETTI A CARICHI ASSIALI

In accordo a quanto descritto nel paragrafo 5, di seguito è condotta la stima della resistenza di progetto dei pali R_{d} , in funzione della profondità.

Utilizzando le formulazioni indicate al par. 5.3.2.1 è possibile ottenere i profili di resistenza di progetto.

La resistenza caratteristica è stimata secondo quanto descritto al par. 5.3.2 adottando i coefficienti parziali ξ_3 e ξ_4 relativi a n.4 verticali di indagini a disposizione.

I valori delle resistenze di progetto così trovati (cfr. le Figure seguenti) sono poi confrontati con i valori delle sollecitazioni assiali risultanti dai calcoli secondo l'approccio 1, combinazione 2 (A2+M1+R2 in campo statico e A2+M1+R3 in campo sismico).

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

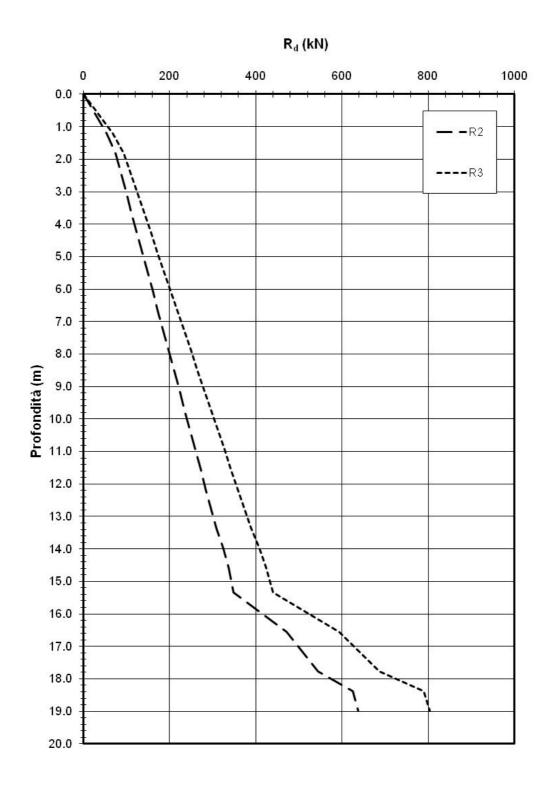


Figura 11-1: Pali battuti - Resistenza del palo a compressione

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

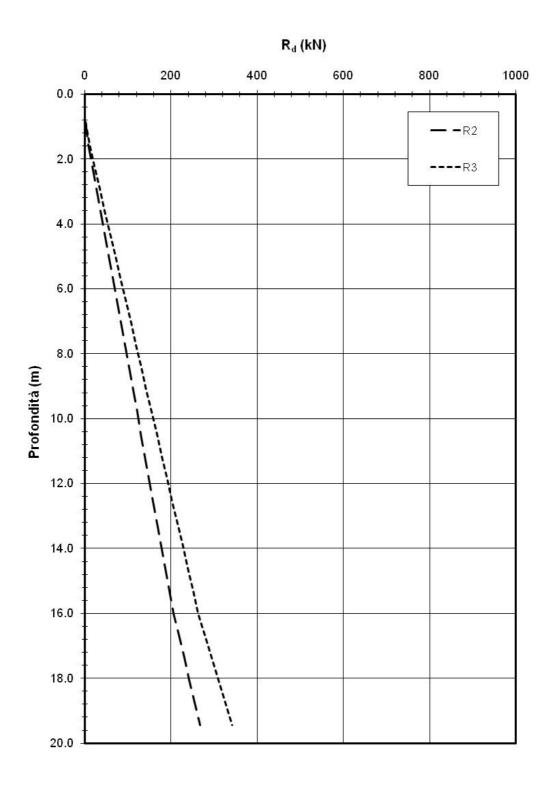


Figura 11-2: Pali battuti - Resistenza del palo a trazione

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

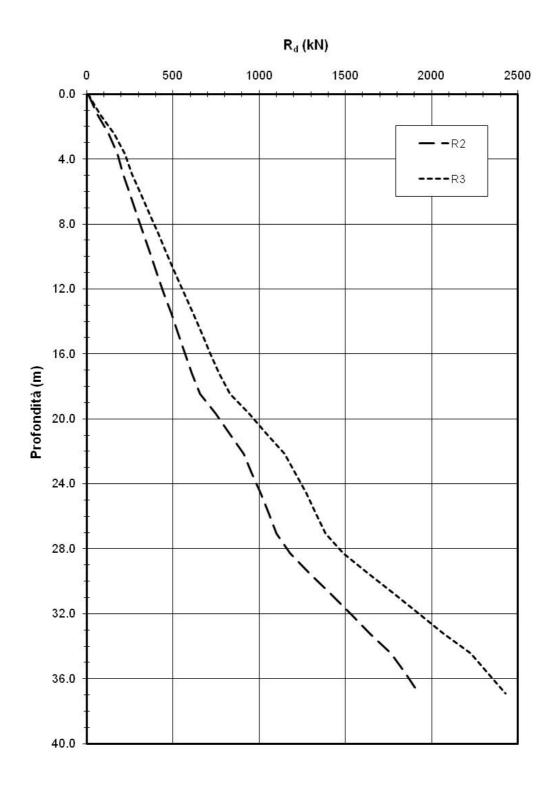


Figura 11-3: Pali trivellati - Resistenza del palo a compressione

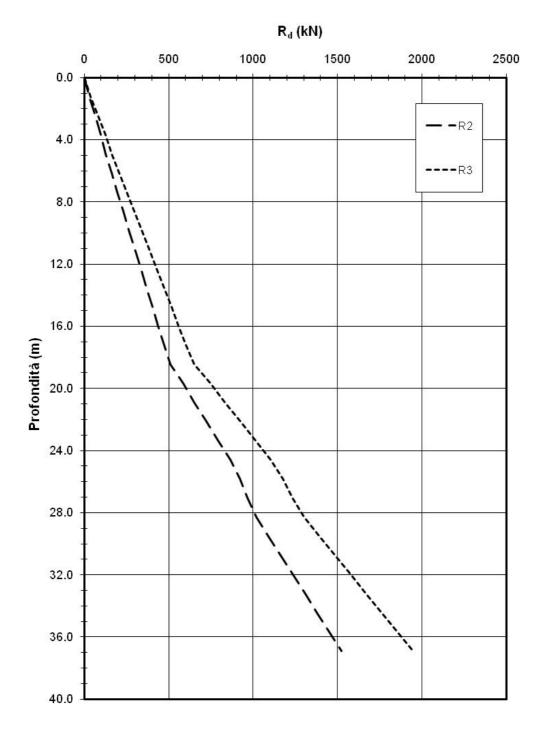


Figura 11-4: Pali trivellati - Resistenza del palo a trazione

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Dall'esame delle figure risulta:

Pali battuti di lunghezza L=16m

 $R_d \cong 415 \, kN$ a compressione statico (R2)

 $R_d \cong 206 \ KN$ a trazione statico (R2)

 $R_d \cong 523 \text{ kN}$ a compressione sismico (R3)

 $R_d \cong 264 \text{ kN}$ a trazione e sismico (R3)

Pali trivellati di lunghezza L=32m

 $R_d \cong 1340$ kN a compressione statico (R2)

 $R_d \cong 1119 \text{ KN}$ a trazione statico (R2)

 $R_d \cong 1689 \text{ kN}$ a compressione sismico (R3)

 $R_d \cong 1429 \text{ kN}$ a trazione e sismico (R3)

11.2 RISULTATI ANALISI PALIFICATA E VERIFICHE

Nella Figura 11-5 è illustrato lo schema della palificata, con il sistema di riferimento globale e la numerazione dei pali utilizzata nei calcoli.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

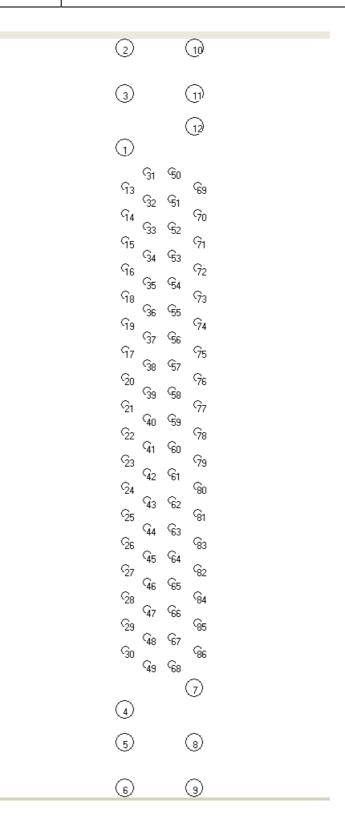


Figura 11-5: Schema Group della palificata

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

11.2.1 Risultati delle analisi

I risultati delle analisi eseguite con il programma GROUP in termini di sollecitazioni massime agenti sui pali, sono riportati nella Tabella 11-1.

Spalla		SLE	SLU STR	SLU GEO	SIS	
N	Pali battuti Ø480	322.0	447.0	344.0	528.0	
N _{max}	Pali trivellati Ø1000	913.0	1260.0	976.0	1420.0	
N	Pali battuti Ø480	-22.2	152.0	344.0 528 976.0 1420 165.0 -84. 444.0 -257 8.6 102 45.9 487 16.0 84.	-84.9	
N _{min}	Pali trivellati Ø1000	-64.6	410.0	444.0	-257.0	
M	Pali battuti Ø480	3.1	10.7	165.0 444.0 8.6 45.9	102.8	
M _{max}	Pali trivellati Ø1000	26.3	57.8	45.9	487.3	
т	Pali battuti Ø480	8.1	18.9	16.0	84.0	
T _{max}	Pali trivellati Ø1000	16.4	42.8	36.4	260.0	

Tabella 11-1: Sollecitazioni massime agenti sui pali

11.2.2 Verifiche geotecniche

Nella Figura 11-6÷Figura 11-9 le azioni assiali massime agenti sui pali sono messe a confronto con le resistenze di progetto R_d: come si evince da tali figure le verifiche di capacità portante sono soddisfatte sia per i pali battuti che per i pali trivellati.

11.2.3 Verifiche strutturali del palo

Per questa verifica si rimanda alla Relazione STR di calcolo dell'opera.

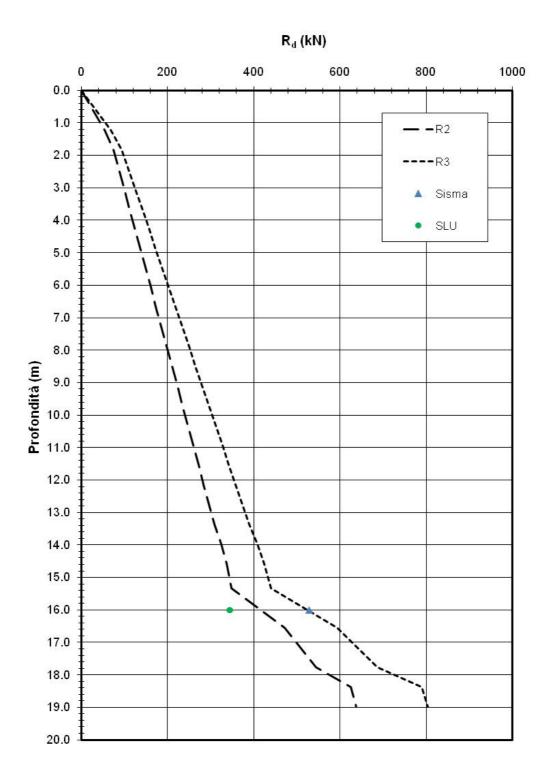


Figura 11-6: Azioni assiali massime a confronto con le resistenze di progetto R_d per i pali battuti soggetti a compressione

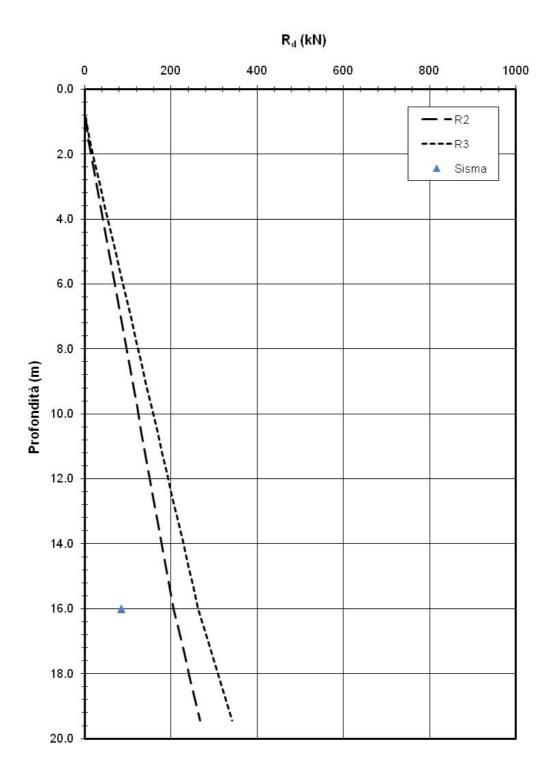


Figura 11-7: Azioni assiali massime a confronto con le resistenze di progetto R_d per i pali battuti soggetti a trazione

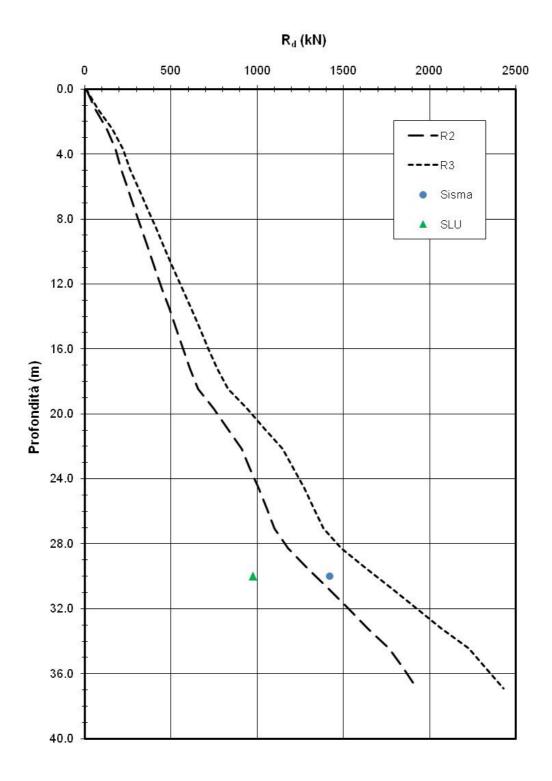


Figura 11-8: Azioni assiali massime a confronto con le resistenze di progetto R_d per i pali trivellati soggetti a compressione

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

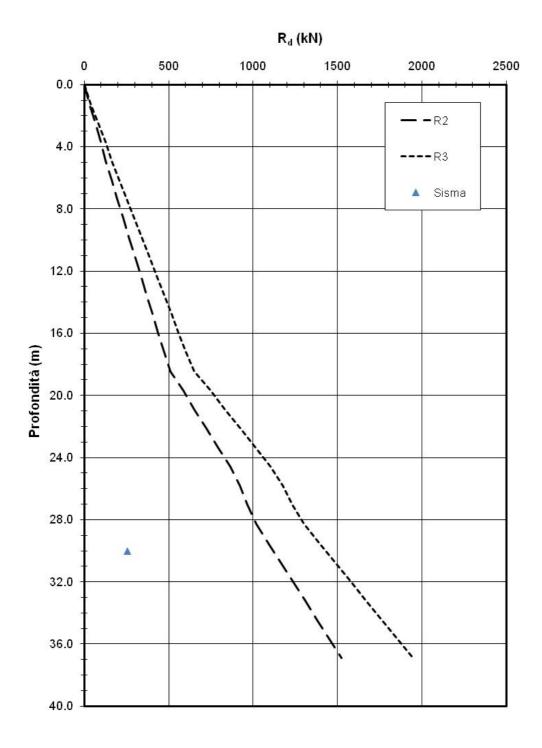


Figura 11-9: Azioni assiali massime a confronto con le resistenze di progetto R_d per i pali trivellati soggetti a trazione

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

12. VERIFICA DEI REQUISITI PRESTAZIONALI DELLE OPERE

La valutazione della compatibilità degli spostamenti dell'opera e del terreno circostante avviene attraverso l'esame degli spostamenti risultanti dalle analisi eseguite.

Nelle <u>combinazioni SLE</u>, in cui sono posti pari all'unità tutti i coefficienti parziali (analisi condotte adottando per le strutture e per i terreni i parametri caratteristici), si sono valutati gli spostamenti dell'opera mediante l'analisi eseguita con il programma Group. Si riportano di seguito i risultati relativi alla combinazione rara (la combinazione SLE in cui si sono avuti gli spostamenti di maggiore entità).

SPALLE (esistente)

spostamento verticale = $1.08 ext{ } 10^{-03} ext{ m}$ spostamento orizzontale = $5.22 ext{ } 10^{-03} ext{ m}$ rotazione = $-1.55 ext{ } 10^{-04} ext{ rad}$

SPALLE (ampliamento)

spostamento verticale = $3.55 ext{ } 10^{-04} ext{ m}$ spostamento orizzontale = $7.23 ext{ } 10^{-03} ext{ m}$ rotazione = $-2.05 ext{ } 10^{-04} ext{ rad}$

PILE (esistente ed ampliamento)

spostamento verticale = $7.48 ext{ } 10^{-04} ext{ m}$ spostamento orizzontale = $-8.70 ext{ } 10^{-05} ext{ m}$ rotazione = $5.11 ext{ } 10^{-05} ext{ rad}$

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Tali spostamenti si ritengono compatibili con la funzionalità dell'opera.

Relazione di calcolo delle fondazioni

13. OPERE PROVVISIONALI

13.1 PREMESSA

In questo capitolo vengono esposte le verifiche geotecniche delle opere provvisionali necessarie per il sostegno degli scavi, per la realizzazione dei ritegni sismici posizionati a tergo spalla a partire dal piano autostradale.

Si tratta di opere provvisionali costituite da paratie di micropali, di tipo a cavalletto.

Tali opere devono inoltre sostenere le barriere bordo-ponte, posizionate in funzione delle fasi esecutive stabilite e deviazioni di traffico conseguentemente necessarie.

Nella verifica/progettazione di tali opere si è fatto riferimento alle indicazioni riportate nelle NTC '08 e successiva circolare esplicativa, al capitolo 6.5.

13.2 STRATIGRAFIA E PARAMETRI GEOTECNICI DI PROGETTO

I calcoli sono stati redatti tenendo conto della stratigrafia riportata nella seguente tabella; la quota di riferimento testa cordolo coincide con il piano autostradale:

Tabella 13-1: Parametri geotecnici di progetto

Profond	lità da p.c.	Spessor e	Unità	Descrizione	γ	φ'	C'	E _{vc}	Eur
da (m)	a (m)	(m)	Unita	Descrizione	[kN/m ³]	[°]	[kPa]	[kPa]	[kPa]
0	5	5	R	Terreno da Rilevato	20	35	0	30000	45000
5	10	5	A1	Argille limose e limi argillosi	20	24	0	12000	18000

La quota di falda è stata assunta un metro sotto quella del terreno in sito.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

13.3 CRITERI DI VERIFICA

13.3.1 Paratie

Le paratie provvisionali vengono progettate in accordo a quanto previsto dalle NTC '08, con riferimento, in particolare, al paragrafo 6.5.3.1.2 "Paratie" e al paragrafo 3.6.3.3.2 "Traffico veicolare sopra i ponti".

Le azioni considerate nelle verifiche sono le seguenti:

- Peso proprio del terreno
- Pressione dell'acqua (funzione della quota di falda per ciascun cavalcavia)
- Sovraccarichi accidentali da traffico
- Pretensione degli ancoraggi (se presenti) e relative variazioni nelle varie fasi di costruzione
- Sovraccarichi permanenti (se presenti) equivalenti al peso del terreno da rilevato a tergo della berlinese.
- Azioni eccezionali: urto da traffico veicolare sulla barriera bordoponte posizionata sul cordolo della berlinese.

Vengono esaminate sia le condizioni di stato limite ultimo (SLU), che quelle di stato limite di esercizio (SLE). Vengono omesse le verifiche sismiche in quanto trattasi di opere provvisionali, quindi con vita utile inferiore ai 2 anni.

Per le condizioni statiche, nel particolare caso dello SLU, le analisi sono state svolte utilizzando la Combinazione 1, Approccio 1 e Approccio 2:

• Combinazione A1+M1+R1

Tenendo conto del fatto che gli effetti delle azioni, in termini di sollecitazioni risultanti nella paratia e negli ancoraggi (risultati del *programma PARATIE*) vengono

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

moltiplicati, per eseguire le verifiche delle armature dei micropali e degli ancoraggi, per un fattore 1.3, si adottano coefficienti parziali γ_F riferiti alle azioni (set A1) come segue, proprio per tenere conto, come detto, del coefficiente moltiplicativo globale γ_E che viene applicato alle sollecitazioni risultanti:

I carichi permanenti vengono moltiplicati per il rapporto tra il coefficiente parziale γ_G applicabile ed 1.3:

Sfavorevole \rightarrow 1.3/1.3

Favorevole \rightarrow 1.0

I sovraccarichi accidentali, per lo stesso motivo, vengono anch'essi moltiplicati per il rapporto tra il coefficiente parziale γ_Q applicabile ed 1.3:

Sfavorevole \rightarrow 1.5/1.3

Favorevole \rightarrow 0.0/1.3

L'eventuale pretiro degli ancoraggi viene moltiplicato per un coefficiente parziale γ_F pari a 1.0. I coefficienti parziali sui parametri geotecnici caratteristici γ_M (set M1) sono pari ad 1.0. I coefficienti parziali γ_R per il set R1 sono pari ad 1.0.

• Combinazione A2+M2+R1

I carichi permanenti vengono moltiplicati per un coefficiente parziale γ_G (set **A2**) pari a:

Sfavorevole \rightarrow 1.0

Favorevole \rightarrow 1.0

I sovraccarichi accidentali vengono moltiplicati per un coefficiente parziale γ_Q (set A2) pari a:

Sfavorevole \rightarrow 1.3

Favorevole \rightarrow 0.0

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

L'eventuale pretiro degli ancoraggi viene moltiplicato per un coefficiente parziale γ_F pari a 1.0. I coefficienti parziali sui parametri geotecnici caratteristici γ_M (set M2) sono quelli indicati nella tabella 6.2.II delle NTC '08, ovvero:

tan
$$\phi'_k$$
 1.25 tan dell'angolo di resistenza al taglio

c'_k 1.25 coesione efficace

c_{uk} 1.4 coesione non drenata

 γ 1.0 peso di volume

I coefficienti parziali γ_R per il set **R1** sono pari ad 1.0.

• Combinazione Eccezionale: Urto da traffico veicolare

In assenza di specifiche prescrizioni, nel progetto strutturale delle barriere bordoponte è stata seguita la linea progettuale riferita ai ponti (par. 3.6.3.3.2 e par. 5.1.3.10 delle NTC'08). Si può tenere conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di 100 kN; essa deve essere considerata agente trasversalmente ed orizzontalmente 100 mm sotto la sommità dell'elemento o 1.0 m sopra il livello del piano di marcia, a seconda di quale valore sia più piccolo. Questa forza deve essere applicata su una linea lunga 0.5 m.

La forza di collisione è stata applicata all'altezza dal piano stradale secondo le indicazioni di Normativa, e diffusa per 1.5 m lungo il cordolo di testa dell'opera di sostegno, pari all'interasse dei montanti della barriera.

Ai fini delle verifiche degli stati limiti con carico eccezionale da urto, è stata definita la seguente combinazione delle azioni:

$$G_1 + G_2 + P + A_d + (Q_{k1} \cdot \psi_{21}) + (Q_{k2} \cdot \psi_{22}) + \dots$$

Con

- A_d: urto

- Q: azioni variabili

Spea ingegneria europea

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

- ψ_{21} , ψ_{22} : coefficienti di combinazione; nel caso di carico eccezionale la norma pone pari a zero i coefficienti di combinazione (Tab. 5.1.VI delle NTC'08)

Nel caso particolare, è comunque considerata una quota parte dell'azione accidentale da traffico (q = 20 kPa) pari al 20%.

I risultati di queste analisi vengono utilizzati per eseguire le seguenti verifiche:

- assenza di fenomeni di collasso dell'opera;
- verifica della resistenza strutturale della paratia (armature dei micropali);
- verifica a sfilamento dei micropali inclinati;
- verifica della resistenza strutturale degli ancoraggi.

13.3.1.1 Verifica dei tubi di armatura dei micropali

La verifica dei tubi di armatura dei micropali, sia verticali che inclinati, viene eseguita secondo il criterio valido per sezioni tubolari compatte (classe 1 o 2) con il metodo plastico – par. 4.2 – Costruzioni in Acciaio – NTC '08, adottando per il materiale f_{tk} = 510 MPa (tensione caratteristica di rottura) e f_{yk} = 355 MPa (tensione caratteristica di snervamento) – acciaio S355 - par. 11.3.4 – Acciai per Strutture Metalliche e per Strutture Composte - NTC '08.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

13.3.2 Ancoraggi

In accordo al punto 6.6.2. delle NTC '08, le verifiche geotecniche dello stato limite di sfilamento della fondazione dell'ancoraggio vengono eseguite con riferimento alla combinazione A1+M1+R3, utilizzando, per il set R3, i seguenti valori dei coefficienti parziali γ_R :

 $\gamma_R = 1.1$ per gli ancoraggi temporanei

 γ_R = 1.2 per gli ancoraggi permanenti

Il valore di resistenza caratteristica dei tiranti per le verifiche allo sfilamento viene determinato sulla base dei risultati delle prove geotecniche disponibili, applicando i coefficienti correttivi ξ_a di cui alla tabella 6.6.III delle NTC '08, in funzione del numero di profili di indagine disponibili.

Si verifica inoltre la condizione, richiesta dal punto 6.6.2. delle NTC '08, per la quale è necessario che, nel rispetto della gerarchia delle resistenze, la resistenza caratteristica al limite di snervamento del tratto libero sia sempre maggiore della resistenza a sfilamento della fondazione dell'ancoraggio.

13.3.2.1 Verifica dell'armatura dei tiranti

Si prevede di armare i tiranti passivi mediante tubolare $\varnothing 168.3$ mm spessore 12.5 mm di acciaio tipo "S355" avente tensione caratteristica di rottura " f_{tk} = 510 MPa" e tensione caratteristica di snervamento " f_{yk} = 355 MPa" - par. 11.3.4 – Acciai per Strutture Metalliche e per Strutture Composte - NTC '08.

La verifica viene svolta secondo quanto riportato al par. 4.2.4.1.2 delle NTC'08 per le membrature in acciaio. L'azione assiale di calcolo N_{Ed} deve rispettare la seguente condizione:

$$\frac{N_{Ed}}{N_{pl,Rd}} \le 1$$

dove la resistenza di calcolo a trazione è definita come

Relazione di calcolo delle fondazioni

$$N_{pl,Rd} = \frac{A \cdot f_{yk}}{\gamma_{M0}}$$

con A = sezione del tubolare

f_{yk} = tensione caratteristica di snervamento del tubolare

 $\gamma_{\rm M0}$ = fattore parziale globale relativo al modello di resistenza adottato

Per ogni singolo tubolare si ha:

$$N_{pl,Rd} = 2069 \text{ kN}$$

Oltre a verificare che la resistenza dell'armatura sia superiore alla massima azione di progetto, si verifica anche che sia superiore alla resistenza a sfilamento della fondazione dell'ancoraggio - par. 6.6 - NTC '08.

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

13.3.2.2 Verifica a sfilamento dei micropali inclinati

La lunghezza del bulbo di fondazione è ottenuta in modo tale che venga rispettata la condizione - par. 6.6 - NTC '08:

$$P_{d\,TIR} \le R_{ad\,TIR}$$
 con $R_{ad\,TIR} = \frac{R_{ak\,TIR}}{\gamma_{R\,TIR}}$

dove:

P_{dTIR} = valore massimo di progetto della trazione nell'ancoraggio

R_{akTIR} = valore caratteristico della resistenza allo sfilamento dell'ancoraggio

R_{adTIR} = valore di progetto della resistenza allo sfilamento dell'ancoraggio

 γ_{RTIR} = coefficiente parziale

1.1 tiranti temporanei

1.2 tiranti definitivi

Il calcolo di R_{akTIR} viene svolto assumendo il valore minimo fra i risultati delle seguentie formule:

$$R_{ak\,TIR} = \frac{\pi \cdot D_{perf} \cdot L_{bulbo} \cdot \alpha \cdot \tau_{medio}}{\xi_{a3}} \; ; \quad R_{ak\,TIR} = \frac{\pi \cdot D_{perf} \cdot L_{bulbo} \cdot \alpha \cdot \tau_{\min}}{\xi_{a4}}$$

in cui: D_{perf} = diametro di perforazione

L_{bulbo} = lunghezza del bulbo di ancoraggio

 α = coefficiente empirico correlato con la metodologia di esecuzionedelle iniezioni del tratto di fondazione

 $au_{\text{medio}}, \, au_{\text{min}}$ aderenza limite caratteristica bulbo-terreno, da valutare a partire dai risultati delle prove geotecniche

 ξ_{a3} , ξ_{a4} fattori di correlazione, da stimare in funzione del numero dei profili di indagine disponibili

Come valori di aderenza limite palo-terreno complessiva (α x τ) si assumono valori differenti in base alla stratigrafia ove ricade il bulbo del tirante.

Relazione di calcolo delle fondazioni

13.4 VERIFICHE ESEGUITE E RISULTATI

Nel seguito si riportano le verifiche e i risultati dei calcoli eseguiti con il programma "Paratie 6.2 - Ceas", in termini di sollecitazioni massime per le diverse combinazioni esaminate e in funzione delle fasi di calcolo:

fase 1 condizione geostatica in presenza di tirante passivo

fase 2 fondo scavo

fase 3 urto (*)

(*) la fase 3 è presente solo nella Combinazione Eccezionale

Tali fasi verranno riportate in modo dettagliato nei tabulati di calcolo allegati.

Si riportano qui di seguito i risultati delle analisi eseguite per la berlinese provvisionale con altezza scavo pari a 3.0 m:

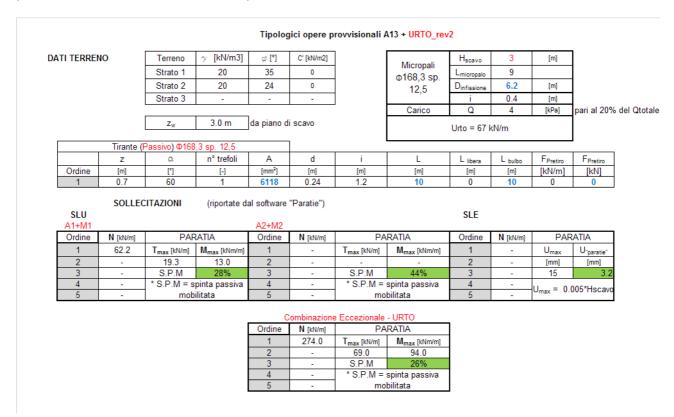


Figura 13-1: Risultati dell'opera provvisionale di H_{SCAVO} = 3.0 m

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

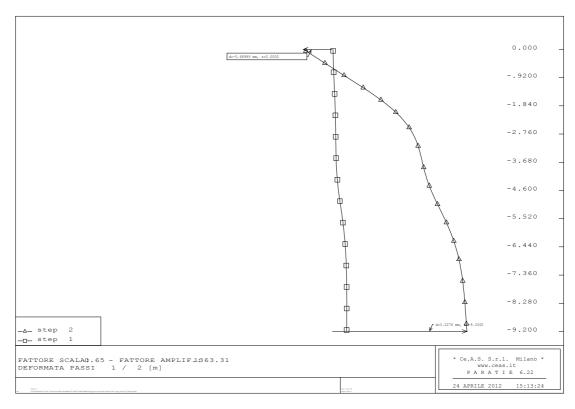
Come si può desumere dalla Figura 13-1, le geometrie dell'opera provvisionale sono:

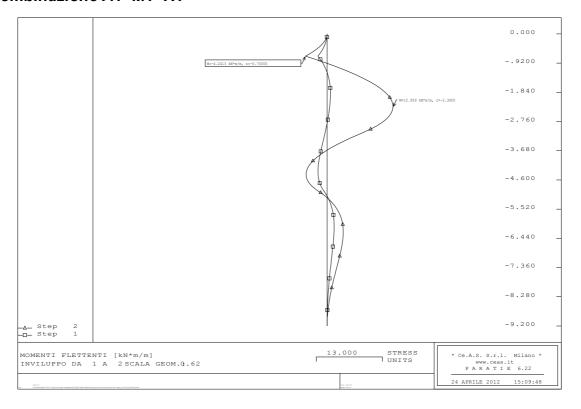
- micropali verticali L = 9.0 m;

tubolare Ø168.3 mm spessore 12.5 mm

- tirante passivo L = 10.0 m

tubolare Ø168.3 mm spessore 12.5 mm

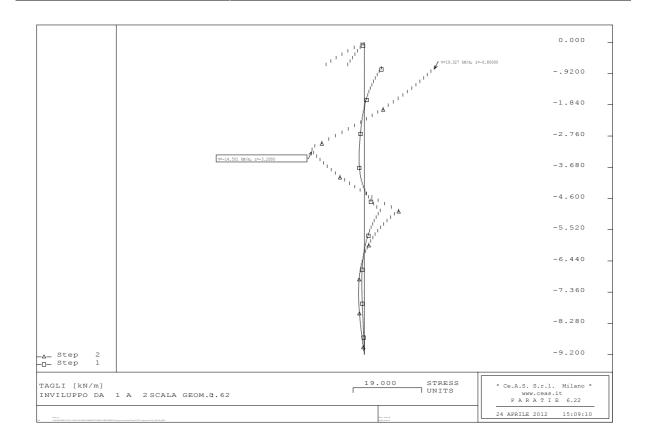

Di seguito si riportano i diagrammi delle sollecitazioni e le deformate come output del programma Paratie:

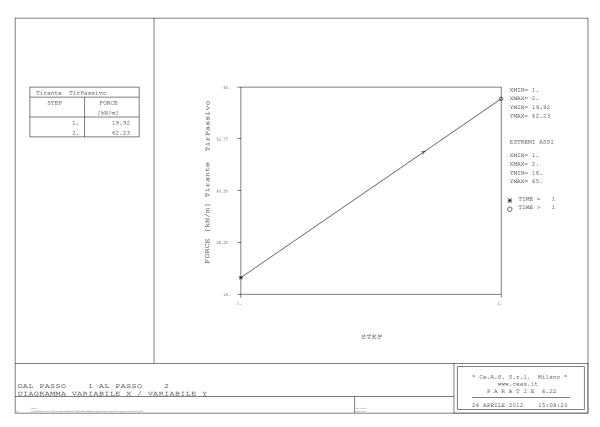

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

Combinazione SLE

Combinazione A1+M1+R1

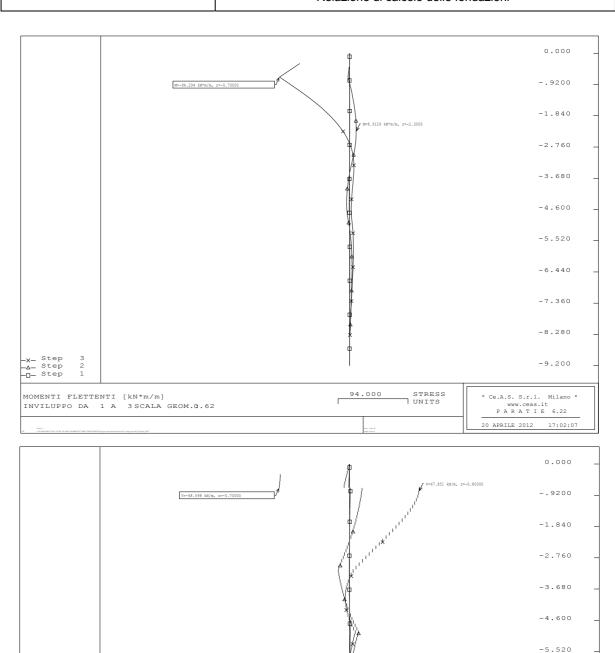



Spea ingegneria europea

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni



Combinazione Eccezionale – URTO

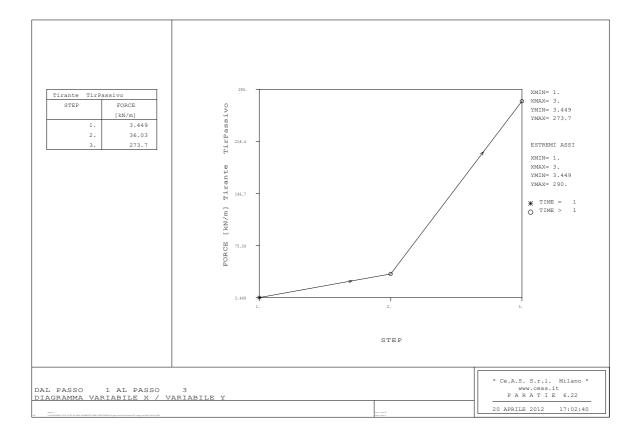
Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

69.000

-x- Step -∆- Step -O- Step

TAGLI [kN/m] INVILUPPO DA 1 A 3 SCALA GEOM.0.62 -6.440


-7.360

-8.280

-9.200

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud PONTE SUL CANALE VIGENZONE (VI004)

Adeguamento alla terza corsia nel tratto Monselice - Padova Sud
PONTE SUL CANALE VIGENZONE (VI004)

Relazione di calcolo delle fondazioni

13.5 VERIFICA DEI TUBI DI ARMATURA DEI MICROPALI

Si riportano nella seguente tabella le verifiche strutturali della sezione dei micropali verticali costituenti la paratia, così come indicato nel par. 13.3.1.1, nella combinazione dimensionante che è l'URTO:

Tabella 13-2: Verifiche dei tubi di armatura dei micropali

NTC - DM 14 GENNAIC	2008 - 4.2	2 Costruzi	oni di ACCI	AIO - Verifica di SEZIONI TU	JBOLARI	COMPAT	TE (CLAS	SE 1 o 2) o	on il MET	ODO PLA	STICO
Materiale				Azioni di ca	Azioni di calcolo			A1-M1-R1	A1-M1-R1	A2-M2-R2	A2-SISMA
Acciaio	classe	S 355	-	Azione assiale	n₅	kN/m	0				
Coefficiente di sicurezza	Υмо	1.05	-	Taglio	V _S	kN/m	69				
Tensione di snervamento	f _{yk}	355	MPa	Momento	m _s	kNm/m	94				
Tensione di calcolo	f_{yd}	338	MPa	Combinazioni (di carico		A1-M1-R1	A2-M2-R2	SISMA+	SISMA-	URTO
Sezione (UNI	EN 10219	-2:2006)		Coefficiente di sicurezza	γ	-	1.3				
Diametro esterno	D	168.3	mm	Interasse	i	m	0.4				
Spessore (s <= 40 mm)	s	12.5	mm	Azioni di pro	getto		A1-M1-R1	A2-M2-R2	SISMA+	SISMA-	URTO
Diametro interno	d	143.3	mm	Azione assiale	N _{sd}	kN	0	0	0	0	0
Momento d'inerzia	I	2.99E-04	m ⁴	Taglio	$V_{\sf sd}$	kN	36	0	0	0	0
Area sezione trasversale	Α	6.12E-03	m ²	Momento	M _{sd}	kNm	49	0	0	0	0
Modulo resistente a flessione	W _{pl}	3.04E-04	m ³	Effetto delle azioni con	nbinate (l	N, V, M)	A1-M1-R1	A2-M2-R2	SISMA+	SISMA-	URTO
Modulo resistente a taglio	A _v =2Α/π	3.90E-03	m²	[(2·V _{sd} /V _{pl,Rd})-1] ²	ρ	-	0.000	0.000	0.000	0.000	0.000
Area resistente a taglio	A* _v =A	6.12E-03	m²	N _{sd} /[A·(1-ρ·a _v)·f _{yd}]	n	-	0.000	0.000	0.000	0.000	0.000
A* _v /A	a _v	1.000	-	Momento resistente ridotto	M _{pl,Rd,V,N}	kN∙m	103	103	103	103	103
Azioni resistenti elementari		Verifiche		A1-M1-R1	A2-M2-R2	SISMA+	SISMA-	URTO			
Azione assiale resistente	$N_{pl,Rd}$	2069	kN	Azione assiale	N _{sd} <	=N _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Taglio resistente	$V_{pl,Rd}$	760	kN	Taglio	V _{sd} <	=V _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Momento resistente	$M_{pl,Rd}$	103	kN-m	Presso(Tenso)-Flessione	M _{sd} <=I	M _{pl,Rd,V,N}	O.K.	O.K.	O.K.	O.K.	O.K.

La verifica del tubolare risulta soddisfatta.