

AMPLIAMENTO ALLA TERZA CORSIA TRATTO: MONSELICE - PADOVA SUD

PROGETTO DEFINITIVO

CORPO AUTOSTRADALE

OPERE D'ARTE MINORI BARRIERE ANTIFONICHE Relazione di calcolo fondazione su pali

IL PROGETTISTA SPECIALISTICO

Ing. Marco Pietro D'Angelantonio Ord. Ingg. Milano N.20155 RESPONSABILE GEOTECNICA ALL'APERTO

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Ilaria Lavander Ord. Ingg. Milano N. 29830

IL DIRETTORE TECNICO

Ing. Orlando Mazza Ord. Ingg. Pavia N. 1496

PROGETTAZIONE NUOVE OPERE AUTOSTRADALI

CODICE IDENTIFICATIVO					
RIFERIMENTO PROGETTO	RIFERIMENTO DIRETTORIO RIFERIMENTO ELABORATO				
Codice Commessa Lotto, Sub-Prog, Cod. Appalto Fase	Capitolo Paragrafo WBS PARTE D'OPER	A Tip. Disciplina Progressivo Rev.	_		
1113050000		00APF 120100	SCALA:		
			-		

	PROJECT MANAGER:		SUPPORTO SPECIALISTICO:			REVISIONE
snea					n.	data
Syca		Ing. Ilaria Lavander Ingg. Milano N. 29830			0	SETTEMBRE 2016
ENGINEERING	l Ora.	ingg. Milatio N. 29830			1	-
ENGINEERING					2	-
A 41 4 : -	REDATTO:	_	VERIFICATO:	<u>_</u>	3	-
gruppo Atlantia	KEDAITO.	_	VERNI ICATO:	_	4	_

VISTO DEL COMMITTENTE

autostrade per l'italia

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Antonio Tosi

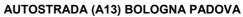
VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti dipartimento per le infrastrutture, gli affari generali ed il personale struttura di vigilanza sulle concessionarie autostradali

SPEA Engineering

AUTOSTRADA (A13) BOLOGNA PADOVA

Ampliamento alla terza corsia del tratto Monselice Padova


PROGETTO DEFINITIVO

BARRIERE ANTIFONICHE

Relazione di Calcolo
APE1201

Relazione di calcolo delle fondazioni

INDICE

	INTRODUZIONE	4
2.	DOCUMENTI DI RIFERIMENTO	6
	2.1 Normativa di riferimento	6
	2.2 Documentazione di progetto	7
	2.3 Software	7
3.	CARATTERISTICHE DEI MATERIALI	8
	3.1 Acciaio	8
	3.2 Calcestruzzo	8
4.	STRATIGRAFIA E CARATTERIZZAZIONE GEOTECNICA DI RIFERIMENTO	9
	4.1 Condizioni stratigrafiche di riferimento	9
	4.2 Livello della falda	10
	4.3 Caratterizzazione sismica del sito	10
	4.3.1 Categoria di sottosuolo	10
	4.3.2 Periodo di riferimento per l'azione sismica	10
	4.3.3 Azione sismica di riferimento	10
5.	DESCRIZIONE DELLE OPERE	12
	5.1 Fondazione di barriera semplice	12
	5.2 Particolari costruttivi	12
6.	ANALISI DEI CARICHI	16
	6.1 Azioni permanenti	16
	6.1.1 Pesi propri	16
	6.1.2 Spinta delle terre	16
	6.2 Azioni variabili	18
	6.2.1 Sovraccarico uniforme indefinito	18
	6.2.2 Carichi trasmessi dalle barriere foniche	18
	6.3 Azione sismica	19
	6.3.1 Spinta sismica del terreno a tergo del muro	19
	6.3.2 Forze d'inerzia	20
7.	CRITERI DI VERIFICA E COMBINAZIONI DI CARICO	21
	7.1 Verifiche di sicurezza statiche	24
	7.1.1 Stati limite ultimi (SLU)	24
	7.1.2 Stati limite di esercizio (SLE)	26
E	Barriere Antifoniche – Relazione di calcolo delle fondazioni	2/4

Ampliamento alla terza corsia del tratto Monselice Padova Barriere Antifoniche - Relazione di Calcolo delle fondazioni

	7.1.3	Verifiche di sicurezza in campo sismico	26
8.	VERIFICI	HE CORDOLO PORTA BARRIERA	32
	8.1 Ba	rriera di H = 3.0 metri	32
	8.1.1	Azioni di progetto	32
	8.1.2	Risultati analisi SLU – GEO	34
	8.1.3	Risultati analisi SLU – STR	35
	8.1.4	Risultati analisi SLE	37
	8.2 Ba	rriera di H = 4.0 metri	37
	8.2.1	Azioni di progetto	37
	8.2.2	Risultati analisi SLU – GEO	38
	8.2.3	Risultati analisi SLU – STR	40
	8.2.4	Risultati analisi SLE	41
	8.3 Ba	rriera di H = 5.0 e H =6.0 metri	41
	8.3.1	Azioni di progetto	41
	8.3.2	Risultati analisi SLU – GEO	43
	8.3.3	Risultati analisi SLU – STR	44
	834	Risultati analisi SI F	46

ALLEGATI

Allegato 1	Carichi trasmessi dalle barriere foniche
Allegato 2	Dimensionamento delle fondazioni delle barriere foniche - tabulati di calcolo Lpile
Allegato 3	Verifiche strutturali della sezione del palo - tabulati di calcolo

1. INTRODUZIONE

La presente relazione è finalizzata alla progettazione delle opere di fondazione delle barriere fonoassorbenti previste nell'ambito del progetto definitivo di ampliamento alla 3[^] corsia della tratta Monselice – Padova, dalla progr. km 88+600 (svincolo di Monselice) alla progr. km 100+650 (svincolo di Padova Sud) dell'Autostrada A13 Bologna Padova.

La relazione, in particolare, ha per oggetto:

- l'esposizione dei criteri generali seguiti nel dimensionamento geotecnico delle soluzioni tipologiche delle fondazioni;
- la presentazione dei risultati ottenuti in termini di dimensionamento 'interno' delle strutture (verifiche di capacità portante, valutazione degli spostamenti orizzontali, verifiche strutturali);

La presente relazione si articola come segue:

- il capitolo 2 elenca i documenti di riferimento;
- il capitolo 3 descrive i materiali (acciaio, calcestruzzo);
- il capitolo 4 esamina il quadro geotecnico in cui si inseriscono le opere, fornendo:
 - la stratigrafia ed i parametri geotecnici di progetto;
 - le indicazioni sui parametri sismici quali risultano dall'applicazione della Normativa vigente;
- il capitolo 5 riporta una descrizione sommaria delle opere in progetto e dei criteri seguiti nella definizione delle diverse soluzioni proposte;
- il capitolo 6 contiene i principi adottati nell'analisi di carichi e la descrizione dei casi di verifica analizzati;
- il capitolo 7 elenca i metodi seguiti nella verifica delle opere su fondazioni dirette.

I risultati delle analisi sono riportati negli Allegati in calce alla presente relazione.

Si richiama il fatto che come normative di riferimento sono state utilizzate le Norme Tecniche per le Costruzioni – D.M. del 14 gennaio 2008 (cfr. par. 2.1).

Ampliamento alla terza corsia del tratto Monselice Padova Barriere Antifoniche - Relazione di Calcolo delle fondazioni

Data l'estensione del tratto in esame, e le caratteristiche geotecniche dei terreni presenti lungo l'intera tratta, si è ritenuto opportuno differenziare le tipologie di fondazione come di seguito:

- altezza del rilevato Hril ≥ 3 m fondazione diretta (muretto porta FOA);
- altezza del rilevato Hril < 3 m fondazione profonda (cordolo in c.a. su pali).

Nel caso dei muretti su fondazione diretta, si è ritenuto utile procedere, per la progettazione, allo sviluppo di sezioni tipologiche organizzate per "abachi", in cui possa essere agevole associare una specifica carpenteria di muro in funzione delle condizioni stratigrafiche e della tipologia di elemento marginale. In questo senso, e come verrà meglio specificato nel seguito, i dimensionamenti interni sono stati sviluppati, per diverse classi di altezza del rilevato e per differenti stratigrafie tipologiche, con riferimento a muri porta FOA che sostengono:

- barriere foniche semplici di altezza pari a 3 m.

Per i rilevati di altezza inferiore a 3 m, vista la presenza di terreni cedevoli, si è scelta la soluzione di fondazioni profonde differenziata per le seguenti tipologie di barriere:

- barriere foniche semplici di altezza pari a 3 m;
- barriere foniche semplici di altezza pari a 4 m;
- barriere foniche semplici di altezza pari a 5 m;
- barriere foniche semplici di altezza pari a 6 m.

2. DOCUMENTI DI RIFERIMENTO

2.1 Normativa di riferimento

- [1] D.M. 11/03/1998 "Norme riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- [2] Legge 05/11/1971 n.1086 e relative istruzioni emanate con Circ. n.11951 del 4/2/1974 "Norme per la disciplina delle opere in conglomerato cementizio armato normale e precompresso ed alla struttura metallica".
- [3] D.M. Lavori Pubblici 14/02/1992 Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche".
- [4] Legge 02/02/1974 n.64 "Provvedimenti per le costruzioni con particolari provvedimenti per le zone sismiche".
- [5] D.M. Lavori Pubblici 09/01/1996 "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche".
- [6] D.M. Lavori Pubblici 16/01/1996 "Norme tecniche relative ai criteri generali di verifica della sicurezza delle costruzioni e dei carichi e sovraccarichi".
- [7] D.M. Lavori Pubblici 16/01/1996 "Norme tecniche per le costruzioni in zone sismiche".
- [8] Circolare del Ministero dei Lavori Pubblici 04/07/1996 Istruzioni per l'applicazione delle "Norme tecniche relative ai criteri generali di verifica della sicurezza delle costruzioni e dei carichi e sovraccarichi" di cui al D.M. 16/01/1996.
- [9] D.M. Lavori Pubblici 03/12/1987 "Norme tecniche per la progettazione, esecuzione e collaudo delle costruzioni prefabbricate".
- [10] Circolare del Ministero dei Lavori Pubblici n.31104 del 16/03/1989 Istruzioni in merito alle - "Norme tecniche per la progettazione, esecuzione e collaudo delle costruzioni prefabbricate".
- [11] Ordinanza P.C.M. 3431 del 03/05/05 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica".

Ampliamento alla terza corsia del tratto Monselice Padova Barriere Antifoniche - Relazione di Calcolo delle fondazioni

- [12] Decreto del Capo del Dipartimento della Protezione Civile 21/10/2003 -"Disposizioni attuative dell'art.2, commi 2,3 e 4, dell'ordinanza del Presidente del Consiglio dei Ministri n.3274 del 20/03/03".
- [13] D.M. Lavori Pubblici 14/01/2008 "Norme tecniche per le costruzioni".
- [14] Circolare 2 febbraio 2009 Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14/01/08.
- [15] UNI EN 1992-1-1. Novembre 2005 Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 1-1:Regole generali e regole per gli edifici.
- [16] UNI EN 1998-1-1. Ottobre 1997 Eurocodice 8 Indicazioni progettuali per la resistenza sismica delle strutture Parte 1-1:Regole generali Azioni sismiche e requisiti generali per le strutture.
- [17] UNI EN 1998-5. Ottobre 1994 Eurocodice 8 Indicazioni progettuali per la resistenza sismica delle strutture Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- [18] UNI ENV 1997-1. Aprile 1997 Eurocodice 7 Progettazione geotecnica Parte 1:Regole generali.

2.2 Documentazione di progetto

- [19] Relazione Geotecnica di progetto
- [20] Profili Geotecnici di progetto
- [21] Elaborati grafici relativi all'opera in progetto

2.3 Software

- [22] Foglio elettronico Excel Microsoft Office
- [23] Ministero LLPP Foglio elettronico "Spettri-NTC ver.1.0.3.xls" (http://www.cslp.it)
- [24] Lpile Plus 5.0.7

3. CARATTERISTICHE DEI MATERIALI

Il progetto strutturale, svolto secondo il metodo degli stati limite, prevede l'uso dei materiali con le caratteristiche meccaniche minime riportate nei paragrafi seguenti.

3.1 Acciaio

Acciaio per armatura strutture in c.a.

Barre ad aderenza migliorata, saldabile, tipo B450C dotato delle seguenti caratteristiche meccaniche:

modulo elastico $E_s = 2100000 \text{ kg/cmq}$ Tensione caratteristica di snervamento fyk = 4500 kg/cmqTensione caratteristica di rottura ftk = 5400 kg/cmq

3.2 Calcestruzzo

<u>Calcestruzzo prefabbricato per pannelli – C35/45</u>

resistenza caratteristica cilindrica	fck = 350 kg/cmq
resistenza caratteristica cubica	fck(c) = 450 kg/cmq
valore medio resistenza caratteristica cilindrica	fcm = 430 kg/cmq
valore medio resistenza a trazione assiale	fctm = 32.1 kg/cmq
modulo di elasticità secante	Ecm= 340771 kg/cmq

Calcestruzzo in opera per suola di stabilizzazione – C25/30

resistenza caratteristica cilindrica	fck = 249 kg/cmq
resistenza caratteristica cubica	fck(c) = 300 kg/cmq
valore medio resistenza caratteristica cilindrica	fcm = 329 kg/cmq
valore medio resistenza a trazione assiale	fctm = 25.6 kg/cmq
modulo di elasticità secante	Ecm= 314471.6 kg/cmg

Calcestruzzo in opera per piano d'appoggio - C12/15

resistenza caratteristica cilindrica	fck = 120 kg/cmq
resistenza caratteristica cubica	fck(c) = 150 kg/cmq

4. STRATIGRAFIA E CARATTERIZZAZIONE GEOTECNICA DI RIFERIMENTO

4.1 Condizioni stratigrafiche di riferimento

Le condizioni stratigrafiche di riferimento per il sottosuolo del progetto in esame sono rappresentate nei Profili Geotecnici, cui si fa rimando per maggiori dettagli.

Da un punto di vista stratigrafico sia le nuove indagini eseguite che quelle pregresse evidenziano la presenza di terreni relativamente omogenei, da un punto di vista litologico, prevalentemente costituiti da materiali coesivi (limi-argillosi con percentuali variabili di sabbia). Si rileva inoltre la frequente presenza di livelli torbosi (T) a diverse quote da piano campagna, con spessori da decimetrici a metrici anche metrici.

Lungo il tracciato autostradale sono state individuate le seguenti unità stratigrafiche principali:

- l'unità A1, costituita da terreni prevalentemente a grana fine (argille limose e limi argillosi);
- l'unità A2, costituita da terreni prevalentemente granulari (sabbie, sabbie limose e sabbie con limo).

Tali unità sono state suddivise lungo il tracciato in macrozone, omogenee dal punto di vista della sequenza litostratigrafica per maggiori dettagli si rimanda alla relazione geotecnica generale. Sulla base di quanto sopra esposto, per le opere in oggetto si è adottata la seguente stratigrafia tipologica:

TIPOLOGIA DI TERRENO - sigla	Peso di volume γ _k	Angolo di resistenza al taglio residuo φ _k	Coesione efficace	Coesione non drenata c _u
	kN/m³	o	kPa	kPa
Rilevato	19	35	0	1
Sito	9	1	1	40-60

Tabella 1 – Parametri geotecnici caratteristici adottati per lo sviluppo delle soluzioni progettuali

Ampliamento alla terza corsia del tratto Monselice Padova Barriere Antifoniche - Relazione di Calcolo delle fondazioni

4.2 Livello della falda

Per quanto riguarda la falda, le informazioni disponibili (letture dei piezometri installati

riportate nella relazione geotecnica) indicano una soggiacenza prossima al p.c.

Nel caso di fondazione di barriera fonica su rilevato di altezza superiore a 3 m, si è ritenuta

la presenza della falda trascurabile ai fini delle verifiche geotecniche delle opere in

oggetto. Nel caso di fondazione profonda su rilevato di altezza inferiore a 3 m, la falda è

stata considerata nelle condizioni stratigrafiche per la determinazione della capacità

portante dei pali.

4.3 Caratterizzazione sismica del sito

4.3.1 Categoria di sottosuolo

Sulla base di quanto evidenziato nella relazione geotecnica generale il terreno di

fondazione può essere classificato nella Categoria D.

4.3.2 Periodo di riferimento per l'azione sismica

Come stabilito nel C.S.A. la progettazione delle strutture farà riferimento a:

vita nominale

 $V_N = 50$ anni

classe d'uso / Coefficiente d'uso

 $IV / C_{U} = 2$

in base a ciò risulta:

• periodo di riferimento per l'azione sismica

 $V_R = V_N \times C_U = 100 \text{ anni}$

4.3.3 Azione sismica di riferimento

Si verifica allo stato limite di salvaguardia della vita, con una probabilità di superamento

nel periodo di riferimento V_R pari al 10%, ossia con riferimento al seguente periodo di

ritorno dell'azione sismica T_R:

$$T_R = -V_R / \ln(1-P_{VR}) = -100 / \ln(1-0.10) = 945$$
 anni

Trattandosi di zone pianeggianti, si associa al sito di riferimento una categoria topografica T1.

Le accelerazioni orizzontali massime convenzionali su suolo di categoria A, riferite ai Comuni interessati dal tracciato autostradale, sono riportate nella tabella seguente, insieme ai principali parametri di interesse necessari per la definizione dell'azione sismica.

DETERMINAZIONE DELL'AZIONE DI PROGETTO ALLO STATO LIMITE SLV (T _R = 945 ANNI)						
Comune	Sottosuolo	a _g [9]	F₀ [-]	T _c * [s]	S s [-]	S _⊤ [-]
Monselice	D	0.079	2.794	0.371	1.80	1.00
Permunia	D	0.079	2.812	0.372	1.80	1.00
Due Carrare	D	0.085	2.744	0.368	1.80	1.00
Maserà di Padova	D	0.085	2.732	0.370	1.80	1.00

Tabella 2 – Parametri di riferimento per la progettazione sismica

Per i dimensionamenti, si fa riferimento ai Comuni di Maserà di Padova e Due Carrare, che presentano i valori maggiori di a_g.

Ne derivano i sequenti valori dei parametri sismici per lo stato limite SLV:

 a_g = 0.085 g accel. orizz. max attesa al sito su suolo di cat. A

 S_S = 1.80 coefficiente di amplificazione stratigrafica

 S_T = 1.00 coefficiente di amplificazione topografica

L'accelerazione di picco risulta pertanto:

 $a_{max} = a_q \times S_S \times S_T = 0.153 g$ accelerazione massima orizzontale attesa al sito.

Per le verifiche geotecniche delle opere su fondazione profonda si assume:

 β_m = 1.00 coeff. riduttivo di a_{max} (tab.7.11.II NTC2008)

 $k_h = \beta_m x a_{max}/g = 0.153$ coeff. sismico orizzontale

 $kv = \pm 0.5 \text{ kh} = \pm 0.077$ coeff. sismico verticale

5. DESCRIZIONE DELLE OPERE

5.1 Fondazione di barriera semplice

Data la caratteristica cedevole dei terreni di fondazione presenti lungo l'intera tratta, si è scelto, di fondare le barriere su pali del diametro di 800 mm, al fine di evitare l'insorgere di cedimenti differenziali.

La soluzione adottata prevede un cordolo di dimensioni 1 m x 1 m gettato in opera, all'interno del quale annegare i tirafondi dei montanti delle barriere.

Le scelte progettuali sono state differenziate in funzione dell'altezza della barriera come di seguito riportato

- Hfoa 3 m → Pali da 800 mm lunghezza L = 8 m, interasse i = 6 m;
- Hfoa 4 m → Pali da 800 mm lunghezza L = 6 m, interasse i = 3 m;
- Hfoa 5-6 m → Pali da 800 mm lunghezza L = 8 m, interasse i = 3.

5.2 Particolari costruttivi

I dettagli ed i particolari costruttivi delle opere di fondazione sono rappresentati negli elaborati grafici di progetto.

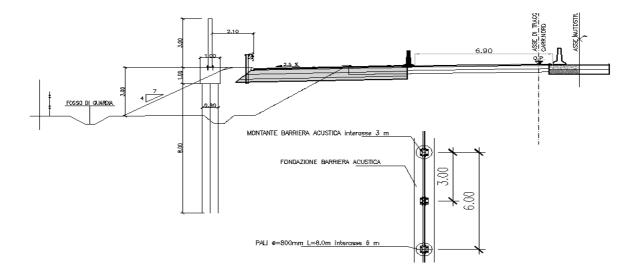


Figura 1: Soluzione progettuale per Foa da 3 m

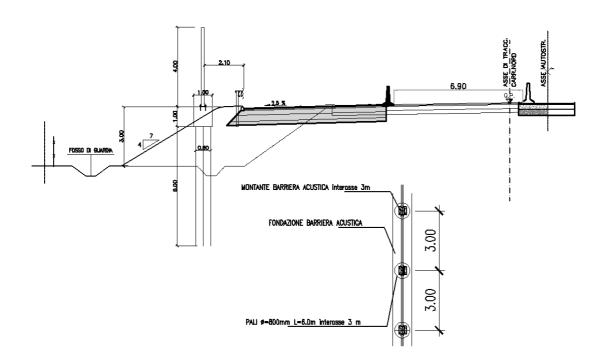


Figura 2: Soluzione progettuale per Foa da 4 m

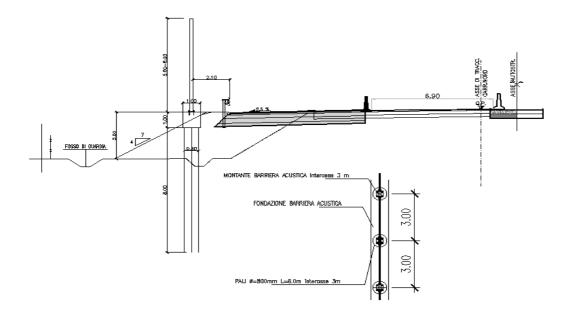


Figura 3: Soluzione progettuale per Foa da 5 e 6 m

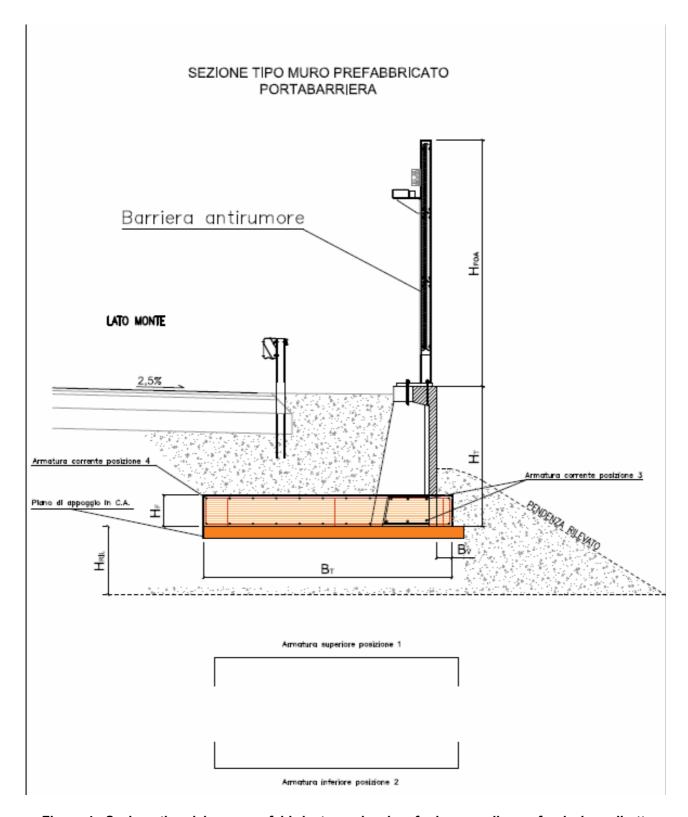


Figura 4 - Sezione tipo del muro prefabbricato per barriera fonica semplice su fondazione diretta

6. ANALISI DEI CARICHI

La valutazione delle azioni caratteristiche a intradosso cordolo viene eseguita facendo riferimento al seguente paragrafo della Normativa di riferimento - N.T.C.-08 - D.M. 14 gennaio 2008: par. 6.5.3.1.1 - Muri di Sostegno.

Nel seguito si riassumono le condizioni di carico considerate nell'analisi di verifica delle strutture.

6.1 Azioni permanenti

6.1.1 Pesi propri

Per il calcolo del peso proprio delle strutture si assumono i pesi unitari di seguito indicati:

Cordolo in c.a.

 $\gamma_1 = 25.0 \text{ kN/m}^3$;

Terreno di ritombamento:

 $\gamma_2 = 19.0 \text{ kN/m}^3$.

6.1.2 Spinta delle terre

La valutazione della spinta delle terre viene effettuata considerando il piano verticale della superficie di cordolo a contatto con il terreno. L'altezza di spinta è di un metro e le pressioni sono considerate concordi alla direzione più sfavorevole del vento.

L'angolo di attrito tra paramento verticale e terreno può essere considerato pari a 0.67ϕ ', con ϕ ' angolo di resistenza al taglio di progetto.

Il calcolo delle pressioni agenti sul muro in condizioni statiche è stato assunto di tipo K₀:

$$K_0 = 1 - sen(\varphi)$$

in cui:

φ = angolo di resistenza al taglio del terreno da rilevato pari a 35°.

Tale assunzione è giustificata dal fatto che, trattandosi cordolo su pali, gli spostamenti attesi potrebbero essere limitati, tali da non permettere il raggiungimento di un regime di spinta attiva.

In condizioni sismiche la verifica è eseguita in base alla teoria di Mononobe ed Okabe riportata di seguito (si veda Eurocodice 8 – rif.[16]):

• per $\beta \leq \phi - \theta$:

$$k_{a} = \frac{sen^{2}(\psi + \phi - \theta)}{\cos\theta sen^{2}\psi sen(\psi - \theta - \delta) \left[1 + \sqrt{\frac{sen(\phi + \delta)sen(\phi - \beta - \theta)}{sen(\psi - \theta - \delta)sen(\psi + \beta)}}\right]^{2}}$$

• per $\beta \leq \phi - \theta$:

$$k_a = \frac{sen^2(\psi + \phi - \theta)}{\cos\theta \, sen^2\psi \, sen(\psi - \theta - \delta)}$$

in cui:

- φ = angolo di resistenza al taglio del terreno
- β = inclinazione del terreno a monte del muro rispetto all'orizzontale (positivo per terreno che sale allontanandosi dal muro)
- ψ = inclinazione del muro rispetto all'orizzontale (>90° per parete inclinata verso valle)
- δ = angolo di attrito muro-terreno
- θ = angolo dipendente dalla accelerazione sismica e definito dalle seguenti espressioni:

$$\theta = tg^{-1} \left(k_h / (1 \pm k_v) \right)$$

essendo k_h e k_v rispettivamente i coefficienti di accelerazione sismica orizzontale e verticale (si veda il successivo par. § 6.4.1).

Le diverse aliquote saranno considerate distintamente in fase di combinazione dei carichi a seconda che si tratti di azioni permanenti, strutturali o non strutturali, o variabili.

6.2 Azioni variabili

6.2.1 Sovraccarico uniforme indefinito

Nel caso specifico vista la modesta altezza del cordolo, si considera che la diffusione del carico accidentale dovuto al traffico di 20 kPa non dà luogo ad alcun incremento di spinta sul cordolo di altezza 1 m.

6.2.2 Carichi trasmessi dalle barriere foniche

Le azioni dinamiche prodotte dal vento vengono trasformate in azioni statiche equivalenti valutate secondo normativa Figura 5.

Si rimanda all'**Allegato 1**, in cui sono riportati i valori caratteristici delle singole azioni alla base dei montanti, da trasformare in azioni a metro lineare, tenendo conto dei seguenti interassi:

- 3.0 m per barriere classiche
- 2.25 m per barriere integrate

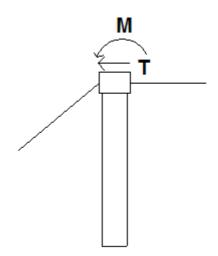


Figura 5: Azioni statiche equivalenti trasmesse dalla barriera al cordolo

Nella determinazione delle azioni trasmesse dalle barriere antifoniche in caso di sisma si è operato entrando nello spettro di Normativa con il valore del periodo proprio della struttura della barriera stessa per determinare il valore di accelerazione da applicare alla massa.

6.3 Azione sismica

Nelle verifiche sismiche le azioni generate dal sisma ed agenti sulla struttura sono considerate come segue:

- 1. spinta sismica del terreno a tergo del muro
- 2. forze d'inerzia orizzontali e verticali del muro e del terreno
- 3. forze d'inerzia orizzontali e verticali trasmesse dalle barriere foniche

6.3.1 Spinta sismica del terreno a tergo del muro

La spinta a tergo del cordolo in condizioni sismiche è stata valutata semplicemente sostituendo al coefficiente di spinta in condizioni statiche K_0 il coefficiente K_{as} (coefficiente di spinta attiva in condizioni sismiche):

$$p'_a(z) = [\sigma'_v(z) + q] \cdot K_{as} - 2c' \sqrt{K_{as}}$$

Il calcolo del coefficiente di spinta in condizioni sismiche viene effettuato come già indicato nel precedente paragrafo 6.1.2.

I coefficienti di accelerazione sismica k_h e k_v valgono rispettivamente:

$$k_h = \beta_m a_{max}/g$$

$$k_{v} = \pm 0.5 k_{h}$$

dove:

- a_{max} = accelerazione massima attesa al sito in considerazione
- g = accelerazione di gravità
- β_m = coefficiente riduttivo che tiene conto dei possibili spostamenti dell'opera

L'accelerazione massima è stata valutata come:

$$a_{max} = a_g S_S S_T$$

in cui:

- a_g = accelerazione massima attesa al sito di riferimento sul substrato rigido
- S_S = coefficiente di amplificazione stratigrafica

S_T = coefficiente di amplificazione topografica

Il coefficiente riduttivo β_m viene desunto dalla tabella 7.11.Il della normativa vigente qui di seguito riprodotta:

Intervallo	β)m	
dell'accelerazione sismica	Categoria di sottosuolo		
	Α	B, C, D, E	
$0.2 < a_g \le 0.4$	0.31	0.31	
$0.1 < a_g \le 0.2$	0.29	0.24	
a _g ≤ 0.1	0.20	0.18	

Tabella 3 – Coefficiente riduttivo β_m per gli spostamenti dell'opera

Per i muri che non siano in grado di subire spostamenti relativi rispetto al terreno il coefficiente β_m viene assunto pari all'unità.

Per il caso in analisi è stato considerato $\beta_m = 1$.

6.3.2 Forze d'inerzia

Le forze di inerzia del cordolo, del terreno direttamente poggiante su di esso e delle eventuali strutture collegate sono state valutate come:

$$F_p = k_h W_i$$

$$F_{v} = \pm k_{v} W_{i}$$

in cui k_h e k_v sono, rispettivamente, il coefficiente di accelerazione sismica orizzontale ed il coefficiente di accelerazione sismica verticale di cui al paragrafo precedente e W_i è il peso della struttura considerata. Tali azioni sono applicate nel baricentro della struttura.

SPEA ENGINEERING

Ampliamento alla terza corsia del tratto Monselice Padova Barriere Antifoniche - Relazione di Calcolo delle fondazioni

7. CRITERI DI VERIFICA E COMBINAZIONI DI CARICO

In accordo con quanto definito nel par. 6.2.3. del Doc. Rif. [13], devono essere svolte le seguenti verifiche di sicurezza e delle prestazioni attese:

- Verifiche agli stati limite ultimi (SLU);
- Verifiche agli stati limite d'esercizio (SLE).

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione

Ed \leq Rd (Eq. 6.2.1 del Doc. Rif. [13])

Dove:

- Ed = valore di progetto dell'azione o dell'effetto dell'azione;
- Rd = valore di progetto della resistenza.

La verifica della condizione (Ed ≤ Rd) deve essere svolta impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1, A2 e EQU), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3) - cfr. le Tabelle seguenti.

I diversi gruppi di coefficienti di sicurezza parziali sono scelti nell'ambito di due approcci progettuali distinti e alternativi e sono definiti specificatamente in funzione della singola verifica.

Per quanto concerne le azioni di progetto Ed, assunte per le verifiche della fondazione, tali forze vengono determinate amplificando le azioni caratteristiche per i coefficienti parziali definiti in Tabella 4. Tali valori sono da intendersi agenti nel baricentro geometrico della palificata.

Per ogni Stato Limite d'Esercizio (SLE) deve essere rispettata la condizione

Ed ≤ Cd (Eq. 6.2.7 del Doc. Rif. [13])

Dove:

- Ed = valore di progetto dell'effetto dell'azione;
- Rd = valore limite prescritto dell'effetto delle azioni (definito dal progettista strutturale).

La verifica della condizione Ed ≤ Cd deve essere effettuata impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali.

Tabella 4: Coefficienti parziali sulle azioni (A1, A2 e EQU) - (Tab. 6.2.I, Doc. Rif. [13])

CARICHI	EFFETTO	Coefficiente parziale γ_F (o γ_E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	% 0.4	0.9	1.0	1.0
remanenti	Sfavorevole	γG1	1.1	1.3	1.0
Permanenti non strutturali (1)	Favorevole	2/00	0.0	0.0	0.0
	Sfavorevole	γG2	1.5	1.5	1.3
Variabili	Favorevole	Vo:	0.0	0.0	0.0
Variabili	Sfavorevole	ΥQi	1.5	1.5	1.3

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano completamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti

Tabella 5: Coefficienti parziali sui terreni (M1 ed M2) - (Tab. 6.2.II, Doc. Rif. [13])

PARAMETRO	Coefficiente parziale	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	$\gamma_{\phi'}$	1.0	1.25
Coesione efficace	γ _{c'}	1.0	1.25
Resistenza non drenata	γCu	1.0	1.4
Peso dell'unità di volume	γ_{γ}	1.0	1.0

Tabella 6: Coefficienti parziali per le verifiche di stabilità globale (R2) - (Tab. 6.8.I, Doc. Rif. [13])

Coefficiente parziale	(R2)
γR	1.1

Tabella 7: Coefficienti parziali sulle resistenze (R1, R2 ed R3) per pali soggetti a carichi assiali (Tab. 6.4.II, Doc. Rif. [13])

		PA	LIINFI	SSI	PALI	TRIVEL	LATI	PAL	I AD EL	ICA
VERIFICA	Coefficiente parziale	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Punta	γь	1.00	1.45	1.15	1.00	1.7	1.35	1.00	1.6	1.3
Laterale in compressione	γs	1.00	1.45	1.15	1.00	1.45	1.15	1.00	1.45	1.15
Totale (1)	γt	1.00	1.45	1.15	1.00	1.6	1.30	1.00	1.55	1.25
Laterale in trazione	γs;t	1.00	1.60	1.25	1.00	1.6	1.25	1.00	1.6	1.25

Tabella 8: Coefficienti parziali sulle resistenze (R1, R2 ed R3) per pali soggetti a carichi trasversali (Tab. 6.4.VI, Doc. Rif. [13])

Coefficiente parziale	(R1)	(R2)	(R3)
γt	1.0	1.6	1.3

7.1 Verifiche di sicurezza statiche

7.1.1 Stati limite ultimi (SLU)

Come riportato al Par. 6.5.3.1.1 del Doc. Rif. [13], devono essere prese in considerazione almeno le seguenti verifiche agli stati limite ultimi:

- SLU di tipo Geotecnico (GEO), relative a condizioni di:
 - Stabilità globale del complesso opera di sostegno-terreno;
 - Scorrimento sul piano di posa;
 - Collasso per carico limite dell'insieme fondazione-terreno.
- SLU di equilibrio di corpo rigido (EQU), relative a condizioni di:
 - Ribaltamento.
- SLU di tipo strutturale (STR), relative a condizioni di:
 - Raggiungimento della resistenza negli elementi strutturali;

La verifica di stabilità globale dell'insieme opera di sostegno-terreno (Par. 6.5.3.1.1 del Doc. Rif. [13]) deve essere svolta secondo l'Approccio 1 – Combinazione 2:

- A2 + M2 + R2

tenendo conto dei coefficienti parziali riportati nelle Tabelle precedenti.

Tale verifica, come definito al Par. 6.8.2 del Doc. Rif. [13], si ritiene soddisfatta verificando che non si raggiunga una condizione di stato limite ultimo con i valori di progetto delle azioni Ed e delle resistenze Rd. Ciò viene svolto determinando la condizione di minimo per il rapporto Rd / Ed, applicando rispettivamente i coefficienti parziali A2 sulle azioni caratteristiche, ed i coefficienti M2 sui parametri geotecnici caratteristici.

Il coefficiente riduttivo R2, definito nel Par. C.6.8.6.2 del Doc. Rif. [14], va applicato sulla resistenza globale del sistema, calcolata sulla base delle azioni di progetto, dei parametri di progetto e della geometria di progetto:

$$R = R\left[\gamma_F \cdot F_k; \frac{x_k}{\gamma_m}; \alpha_d\right]$$

Pertanto, definendo:

$$R_{c\bar{c}} = \frac{1}{\nu_R} \cdot R$$

con R la resistenza globale del sistema, la verifica di stabilità globale si ritiene soddisfatta se:

$$\frac{R_d}{E_d} \ge 1 \Rightarrow \frac{\frac{1}{\gamma_R} \cdot R}{E_d} \ge 1 \Rightarrow \frac{R}{E_d} \ge \gamma_R$$

tenendo conto dei coefficienti parziali riportati nelle Tabelle precedenti.

Data la natura dell'opera, ovvero cordolo fondato su pali di fondazione, le verifiche per scorrimento, ribaltamento e collasso per carico limite dell'insieme fondazione-terreno non vengono svolte in quanto tali cinematismi sono verificati nell'ambito delle verifiche di stabilità della palificata. Analogamente, il collasso per carico limite viene verificato mediante la verifica al medesimo meccanismo di rottura per la palificata di fondazione.

In accordo a quanto definito nel Par. 6.4.3.1 del Doc. Rif. [13], per la fondazione su pali, devono essere prese in considerazione almeno le seguenti verifiche agli stati limite ultimi:

- SLU di tipo Geotecnico (GEO), relative a condizioni di:
 - Stabilità globale
 - Collasso per carico limite della palificata nei riguardi dei carichi assiali
 - Collasso per carico limite della palificata nei riguardi dei carichi trasversali
 - SLU di tipo strutturale (STRU), relative a condizioni di:
 - Raggiungimento della resistenza dei pali
 - Raggiungimento della resistenza della struttura di collegamento dei pali.

Ampliamento alla terza corsia del tratto Monselice Padova Barriere Antifoniche - Relazione di Calcolo delle fondazioni

Tutte le verifiche (GEO/STRU) di cui sopra, ad eccezione di quella relativa alla stabilità globale, devono essere svolte considerando almeno uno dei seguenti approcci (Par. 6.4.3.1 del Doc. Rif. [13]):

• Approccio 1:

Combinazione 1: A1 + M1 + R1

- Combinazione 2: A2 + M1 + R2

Approccio 2:

- Combinazione 1: A1 + M1 + R3

tenendo conto dei coefficienti parziali riportati nelle Tabella 4, Tabella 5, Tabella 7 e Tabella 8.

7.1.2 Stati limite di esercizio (SLE)

Come precisato nel Par. 6.4.3.2 del Doc. Rif. [13], deve essere verificato, mediante analisi effettuate impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali (Par. 6.2.3.3 del Doc. Rif. [13]), che l'opera in esame non subisca eccessivi spostamenti e/o eccessive rotazioni, tali da risultare non compatibili con i requisiti prestazionali della stessa e non induca deformazioni eccessive per la barriera sovrastante. L'opera, viene dimensionata nel rispetto dei requisiti prestazionali sopra citati, e in particolare verificando che gli spostamenti in testa alla barriera siano inferiori ad H/500, dove H è l'altezza della barriera.

Deve essere tenuto presente che le verifiche agli Stati Limite di Esercizio possono risultare più restrittive di quelle agli Stati Limite Ultimi qualora gli spostamenti ammissibili per la struttura siano notevolmente ridotti.

7.1.3 Verifiche di sicurezza in campo sismico

L'azione sismica di progetto, così come i parametri del terreno di progetto da considerare, deve essere valutata sulla base degli Stati Limite relativi all'opera da verificare.

Ampliamento alla terza corsia del tratto Monselice Padova Barriere Antifoniche - Relazione di Calcolo delle fondazioni

Gli Stati Limite di riferimento per verifiche in presenza di sisma, così come definiti nei Doc. Rif. [13] e [14], sono suddivisi come riportato al par. 3.2.1 del Doc. Rif. [13]:

- Stati Limite Ultimi (SLU):
 - Stato Limite di Salvaguardia della Vita umana, SLV, definito come lo stato limite in cui la struttura subisce una significativa perdita della rigidezza nei confronti dei carichi orizzontali ma non nei confronti dei carichi verticali.
 Permane un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.
 - Stato Limite di Prevenzione del Collasso, SLC, stato limite nel quale la struttura subisce gravi danni strutturali, mantenendo comunque un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza a collasso per carichi orizzontali.
- Stati limite di Esercizio (SLE):
 - Stato Limite di immediata Operatività **SLO** per le strutture ed apparecchiature che debbono restare operative a seguito dell'evento sismico. Tale stato limite non si applica per l'opera in oggetto.
 - Stato Limite di Danno **SLD** definito come lo stato limite da rispettare per garantire la sostanziale integrità dell'opera ed il suo immediato utilizzo.

La Tabella 9 riporta, in funzione della classe d'uso della struttura, lo stato limite da considerare in funzione della verifica di sicurezza appropriata per l'opera (Tabella C7.1.I del Doc. Rif. [14]).

Tabella 9: Verifiche di sicurezza in funzione della Classe d'uso (Tab. C7.1.I del Doc. Rif. [14])

Stato	Prestazione da verificare		Classe	d'uso	
Limite	Prestazione da vernicare	I	II	III	IV
SLO	Contenimento del danno degli elementi non strutturali			X	Х
OLO	Funzionalità degli impianti			X	Х
	Resistenza degli elementi strutturali			Х	Х
	Contenimento del danno degli elementi non strutturali	Х	Х		
SLD	Contenimento delle deformazioni del sistema fondazione- terreno	Х	Х	Х	Х
Contenimento degli spostamenti permanenti dei mi sostegno		Х	Х	Х	Х
	Assenza di martellamento tra strutture contigue	Х	Х	Х	Х
	Resistenza delle strutture	X	Х	Х	Х
	Duttilità delle strutture	X	Х	Х	Х
	Assenza di collasso fragile ed espulsione di elementi non strutturali	Х	Х	Х	Х
	Resistenza dei sostegni e collegamenti degli impianti	Х	Х	Х	Х
SLV	Stabilità del sito	Х	Х	X	Х
	Stabilità dei fronti di scavo e dei rilevati	Х	Х	Х	Х
	Resistenza del sistema terreno-fondazione	Х	Х	Х	Х
	Stabilità del muro di sostegno	Х	Х	Х	Х
	Stabilità delle paratie	Х	Х	Х	Х
	Resistenza e stabilità dei sistemi di contrasto e degli ancoraggi	Х	Х	Х	Х
SLC	Resistenza dei dispositivi di vincolo temporaneo tra costruzioni isolate	X	Х	X	Х
	Capacità di spostamento degli isolatori	Х	Х	Х	Х

Con riferimento all'opera in oggetto, e considerando quanto riportato al punto C7.1 del Doc. Rif. [14], le verifiche geotecniche in presenza di evento sismico richiedono la verifica ai seguenti stati limite:

 Stato Limite Ultimo: SLV – Stato Limite di Salvaguardia della Vita (cui corrisponde una probabilità di superamento Pvr =10%);

Ampliamento alla terza corsia del tratto Monselice Padova Barriere Antifoniche - Relazione di Calcolo delle fondazioni

 Stato Limite Esercizio: SLD – Stato Limite di Danno (cui corrisponde una probabilità di superamento Pvr =63%);

Le suddette probabilità, valutate nel periodo di riferimento VR per l'azione sismica, consentono di determinare, per ciascuno stato limite, il tempo di ritorno del terremoto di progetto corrispondente.

Per l'opera in oggetto, per le verifiche agli Stati Limite Ultimi, relative sia alle verifiche di stabilità globale che alla stabilità dell'opera, l'accelerazione equivalente di progetto è quella associata allo Stato Limite di Salvaguardia della Vita (SLV), mentre si omettono in questa sede le verifiche agli Stati Limite di Esercizio - Stato Limite di Danno (SLD) - anche in considerazione del livello progettuale in esame.

Tutte le verifiche riportate nel presente documento, come ammesso dalla Normativa, vengono svolte simulando l'azione sismica di progetto mediante l'uso di metodi pseudostatici.

Stati limite ultimi (SLU)

Le verifiche di sicurezza in campo sismico devono contemplare almeno le medesime verifiche definite in campo statico, in cui tuttavia i coefficienti sulle azioni sono posti pari ad uno (Par.7.11.1 del Doc. Rif. [13]).

Come indicato nel par 7.11.6.2.2 del Doc. Rif. [13] i muri di sostegno devono soddisfare le condizioni di stabilità globale con i metodi di analisi di cui al par 7.11.3.5 del Doc. Rif. [13] e le verifiche di sicurezza delle fondazioni di cui al par 7.11.5 del Doc. Rif. [13].

Come indicato al Par. 7.11.5.3, per le verifiche della fondazione su pali, inerenti al raggiungimento della resistenza del terreno, si è assunto l'Approccio 1 - Combinazione 2, assumendo i seguenti coefficienti parziali:

- Coefficienti parziali M2 per quanto concerne la valutazione dell'incremento di spinta indotto dalle azioni sismiche;
- Coefficienti parziali A2 posti pari all'unità.
- Coefficienti parziali R3 per la valutazione delle resistenze di progetto

Ampliamento alla terza corsia del tratto Monselice Padova Barriere Antifoniche - Relazione di Calcolo delle fondazioni

Per quanto concerne gli stati limite per raggiungimento della resistenza negli elementi strutturali o nei vincoli, secondo quanto riportato al Par. 7.11.5.3 del Doc. Rif. [13] le verifiche sono state svolte con l'Approccio 1 Combinazione 1, assumendo i seguenti coefficienti parziali:

- Coefficienti parziali M1 per quanto concerne la valutazione dell'incremento di spinta indotto dalle azioni sismiche;
- Coefficienti parziali A1 posti pari all'unità.
- Coefficienti parziali R1 per la valutazione delle resistenze di progetto

Stati limite di esercizio (SLE)

Con riferimento allo stato limite di esercizio, che è associato allo Stato Limite di Danno per l'opera in oggetto, deve essere verificata la compatibilità degli spostamenti permanenti indotti dal sisma con la funzionalità dell'opera o delle strutture eventualmente adiacenti, e devono essere tali da non ridurre la resistenza dell'opera.

L'azione sismica di progetto deve essere valutata sulla base degli Stati Limite relativi all'opera da verificare (vedasi Tabella 9). Per l'opera in oggetto, come definito al punto 4.2.1, le verifiche agli Stati Limite di Esercizio verranno condotte con riferimento allo Stato Limite di Danno (SLD) valutando gli spostamenti e rotazioni della palificata. Sulla base di tali componenti si calcola quindi lo spostamento orizzontale in corrispondenza dello spiccato del paramento.

In queste verifiche, analogamente al caso statico, le azioni ed i parametri dei materiali e le relative resistenze sono considerati con i loro valori caratteristici.

Combinazioni SLU:

COMBINAZIONE	PERMANENTI		ACCIDENTALI		VENTO		SISMA		URTO	
	γ	Ψ	γ	Ψ	γ	Ψ	γ	Ψ	γ	Ψ
A1+M1 - vento	1.3	1.0	1.5	1.0	1.5	0.6	0.0	0.0	0.0	0.0
A1+M1 - traffico	1.3	1.0	1.5	0.7	1.5	1.0	0.0	0.0	0.0	0.0
A2+M2 - vento	1.0	1.0	1.3	1.0	1.3	0.6	0.0	0.0	0.0	0.0
A2+M2 - traffico	1.0	1.0	1.3	0.7	1.3	1.0	0.0	0.0	0.0	0.0
EQ	1.1	1.0	1.5	1.0	1.5	0.6	0.0	0.0	0.0	0.0
EQ	1.1	1.0	1.5	0.7	1.5	1.0	0.0	0.0	0.0	0.0

Ampliamento alla terza corsia del tratto Monselice Padova Barriere Antifoniche - Relazione di Calcolo delle fondazioni

Sisma	1.0	1.0	1.0	0.2	1.0	0.0	1.0	0.0	0.0	0.0
URTO	1.0	1.0	1.0	0.2	1.0	0.0	0.0	0.0	1.0	0.0

Combinazioni SLE:

COMBINAZIONE	PERMA	RMANENTI ACCIDENT		ENTALI	VENTO		SISMA		URTO	
	γ	Ψ	γ	Ψ	γ	Ψ	γ	Ψ	γ	Ψ
RARA	1.0	1.0	1.0	1.0	1.0	0.6	0.0	0.0	0.0	0.0
FREQUENTE	1.0	1.0	1.0	0.5	1.0	0.2	0.0	0.0	0.0	0.0
Q.PERMANENTE	1.0	1.0	1.0	0.3	1.0	0.0	0.0	0.0	0.0	0.0

8. VERIFICHE CORDOLO PORTA BARRIERA

Le verifiche sono state eseguite utilizzando il programma di calcolo Lpile Plus 5.0.7 il quale analizza l'interazione terreno-struttura di un singolo palo soggetto a:

- Momento flettente M;
- Taglio H.

Alla luce dei criteri precedentemente esposti, si sono valutate le azioni agenti in testa al palo da fornire in input al programma. Considerando che l'interasse dei montanti della barriera è di 3 m, le azioni sono state moltiplicate per una lunghezza L della palificata di competenza del singolo palo come di seguito specificato:

- Hfoa =
$$3 \text{ m} \rightarrow \text{L} = 6 \text{ m}$$
:

- Hfoa =
$$4-5-6$$
 m \rightarrow L = 3 m.

Il calcolo è stato condotto considerando diverse altezze del rilevato, in particolare di 1, 2 e 3 metri. Al fine di simulare l'inclinazione del rilevato 7/4 a valle del palo per i casi di altezza 2 e 3 m, si è considerato uno scalzamento del terreno di 0.5 m dalla testa del palo.

8.1 Barriera di H = 3.0 metri

8.1.1 Azioni di progetto

Le azioni derivanti dalle combinazioni di carico sono riportate di seguito:

- H_{ril} = 1.0 m, p_{vento} = 1.0 kPa interasse pali 6m;

	,	AZIONI PER L	_pile
	N (Kn)	H (kN)	M (kNm)
slu A1+M1 sisma ↑	128,00	41,07	26,90
slu A1+M1 sisma↓	148,60	43,32	28,03
slu A2+M2 sisma ↑	128,00	45,61	29,17
slu A2+M2 sisma ↓	148,60	48,46	30,60
slu A1+M1 vento	138,30	63,46	103,96
slu A2+M2 vento	138,30	61,29	71,13
sle RARA	138,30	32,58	35,10
sle FREQ	138,30	27,91	17,10
sle QPERM	138,30	24,31	8,10
sle vento	138,30	42,31	53,10

- H_{ril} = 2.0 m, p_{vento} = 1.5 kPa interasse pali 6m;

AZIONI P	ER L	pile
----------	------	------

	N (Kn)	H (kN)	M (kNm)
slu A1+M1 sisma ↑	128,00	41,07	26,90
slu A1+M1 sisma ↓	148,60	43,32	28,03
slu A2+M2 sisma ↑	128,00	45,61	29,17
slu A2+M2 sisma ↓	148,60	48,46	30,60
slu A1+M1 vento	138,30	76,96	137,71
slu A2+M2 vento	138,30	72,99	100,38
sle RARA	138,30	41,58	48,60
sle FREQ	138,30	29,71	21,60
sle QPERM	138,30	24,31	8,10
sle vento	138,30	51,31	75,60

- H_{ril} = 3.0 m, p_{vento} = 2.0 kPa interasse pali 6m;

AZIONI PER Lpile

	N (Kn)	H (kN)	M (kNm)
slu A1+M1 sisma ↑	128,00	41,07	26,90
slu A1+M1 sisma↓	148,60	43,32	28,03
slu A2+M2 sisma ↑	128,00	45,61	29,17
slu A2+M2 sisma ↓	148,60	48,46	30,60
slu A1+M1 vento	138,30	90,46	171,46
slu A2+M2 vento	138,30	84,69	129,63
sle RARA	138,30	50,58	62,10
sle FREQ	138,30	31,51	26,10
sle QPERM	138,30	24,31	8,10
sle vento	138,30	60,31	98,10

Ampliamento alla terza corsia del tratto Monselice Padova Barriere Antifoniche - Relazione di Calcolo delle fondazioni

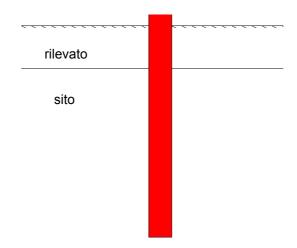


Figura 6: Schema di calcolo del palo di fondazione per i casi con H_{ril} = 2 e 3 m

8.1.2 Risultati analisi SLU - GEO

Le analisi delle combinazioni GEO sono finalizzate alla verifica di capacità portante. Il programma Lpile non considera gli effetti di gruppo della palificata, pertanto ai fini della capacità portante lo sforzo normale di progetto risulta essere pari a N ricavandolo direttamente dalle tabelle precedentemente allegate è così riassunto:

Combinazione	Nd (kN)
slu A2+M2 sisma ↑	128,00
slu A2+M2 sisma ↓	148,60
slu A2+M2 vento	138,30

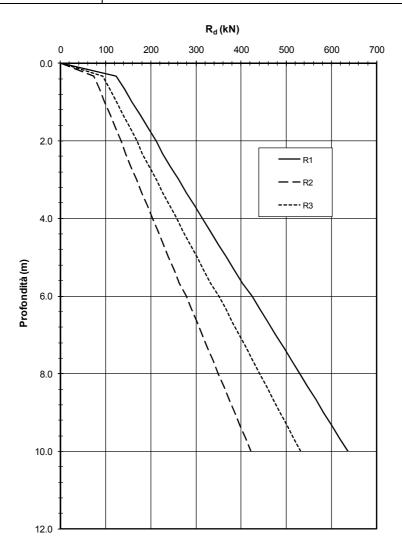


Figura 7: Capacità portante pali - Compressione

8.1.3 Risultati analisi SLU - STR

Scegliendo tra le combinazioni di carico di tipo str la più sfavorevole corrispondente alla A1+M1+vento, si riportano i diagrammi di momento e taglio per il caso di altezza del rilevato di 3 m e pvento = 2 kPa.

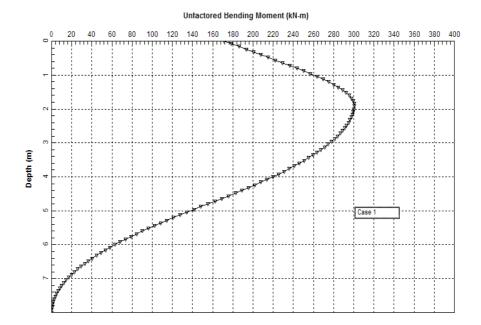


Figura 8: Momento Flettente agente sul palo

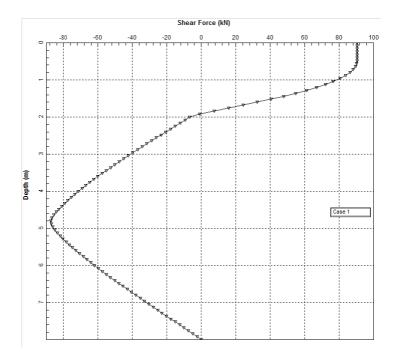


Figura 9: Taglio agente sul palo

Le verifiche di tipo strutturale condotte nella sezione del palo maggiormente sollecitata a flessione e a taglio hanno portato alla determinazione di un'armatura longitudinale a flessione composta da $20\Phi20$ e di un'armatura a taglio fatta da Φ 10 con passo 15 cm. L'incidenza determinata lungo l'intera lunghezza del palo è di 130 Kg/cm³.

8.1.4 Risultati analisi SLE

A livello prestazionale si richiede che il livello deformativo alla testa della barriera sia contenuto entro lo spostamento massimo di H / 500, dove con H si indica l'altezza totale della barriera. A tal fine si è definita una combinazione denominata sle vento, ottenuta ponendo il coefficiente di combinazione ψ_{0j} = 1. L'ipotesi che si fa è che gli spostamenti dovuti ai soli carichi permanenti si esauriscano prima del montaggio della barriera pertanto, lo spostamento determinato nella combinazione vento, viene depurato di quello permanente.

Dal punto di vista del dimensionamento tale condizione posta sugli spostamenti è risultata essere la più gravosa.

Di seguito si riportano i risultati ottenuti per lo studio dei tre tipologici.

Tabella 10: Spostamenti in testa alla barriera. N.b. le dimensioni sono espresse in m, kPa, e rad.

Hfoa	3,00	m				umax	0,006		carichi pe	rmanenti			
scalzamento	interasse pali	Lunghezza pali	Hrilevato	Pvento	uy	teta	u testa barriera		uy	teta	u testa barriera	u depurato	
0,5	6	8	1	1	0,001	0,0006	0,004	ok	0,0003	0,0002	0,0009	0,003	ok
0,5	6	8	2	1,5	0,003	0,0011	0,008	no	0,0007	0,0003	0,0018	0,006	ok
0,5	6	8	3	2	0,003	0,0013	0,008	no	0,0008	0,0003	0,0020	0,006	ok

8.2 Barriera di H = 4.0 metri

8.2.1 Azioni di progetto

Le azioni derivanti dalle combinazioni di carico sono riportate di seguito:

- H_{ril} = 1.0 m, p_{vento} = 1.0 kPa interasse pali 3m;

	F	AZIONI PER I	Lpile
	N (Kn)	H (kN)	M (kNm)
slu A1+M1 sisma ↑	65,89	20,88	15,30
slu A1+M1 sisma↓	76,43	22,01	15,86
slu A2+M2 sisma ↑	65,89	23,15	16,43

slu A2+M2 sisma ↓	76,43	24,58	17,14
slu A1+M1 vento	71,16	36,23	78,31
slu A2+M2 vento	71,16	34,54	53,11
sle RARA	71,16	19,29	25,65
sle FREQ	71,16	14,55	11,25
sle QPERM	71,16	12,15	4,05
sle vento	71,16	24,15	40,05

- H_{ril} = 2.0 m, p_{vento} = 1.5 kPa interasse pali 3m;

_		AZIONI PER L	_pile
	N (Kn)	H (kN)	M (kNm)
slu A1+M1 sisma ↑	65,89	20,88	15,30
slu A1+M1 sisma ↓	76,43	22,01	15,86
slu A2+M2 sisma ↑	65,89	23,15	16,43
slu A2+M2 sisma ↓	76,43	24,58	17,14
slu A1+M1 vento	71,16	45,23	105,31
slu A2+M2 vento	71,16	42,34	76,51
sle RARA	71,16	25,29	36,45
sle FREQ	71,16	15,75	14,85
sle QPERM	71,16	12,15	4,05
sle vento	71,16	30,15	58,05

- H_{ril} = 3.0 m, p_{vento} = 2.0 kPa interasse pali 3m;

_	A	AZIONI PER L	_pile
	N (Kn)	H (kN)	M (kNm)
slu A1+M1 sisma ↑	65,89	20,88	15,30
slu A1+M1 sisma↓	76,43	22,01	15,86
slu A2+M2 sisma ↑	65,89	23,15	16,43
slu A2+M2 sisma ↓	76,43	24,58	17,14
slu A1+M1 vento	71,16	54,23	132,31
slu A2+M2 vento	71,16	50,14	99,91
sle RARA	71,16	31,29	47,25
sle FREQ	71,16	16,95	18,45
sle QPERM	71,16	12,15	4,05
sle vento	71,16	36,15	76,05

8.2.2 Risultati analisi SLU - GEO

Le analisi delle combinazioni GEO sono finalizzate alla verifica di capacità portante. Il programma Lpile non considera gli effetti di gruppo della palificata, pertanto ai fini della

capacità portante lo sforzo normale di progetto risulta essere pari a N ricavandolo direttamente dalle tabelle precedentemente allegate è così riassunto:

Combinazione	Nd (kN)
slu A2+M2 sisma ↑	65,89
slu A2+M2 sisma ↓	76,43
slu A2+M2 vento	71,16

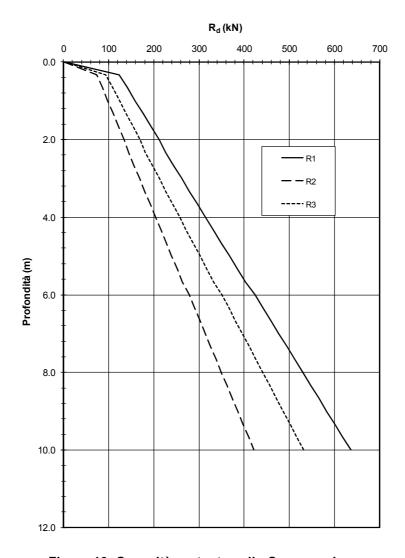


Figura 10: Capacità portante pali - Compressione

8.2.3 Risultati analisi SLU - STR

Scegliendo tra le combinazioni di carico di tipo str la più sfavorevole corrispondente alla A1+M1+vento, si riportano i diagrammi di momento e taglio per il caso di altezza del rilevato di 3 m e pvento = 2 kPa.

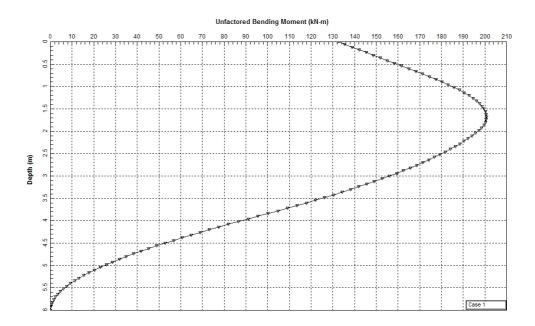


Figura 11: Momento Flettente agente sul palo

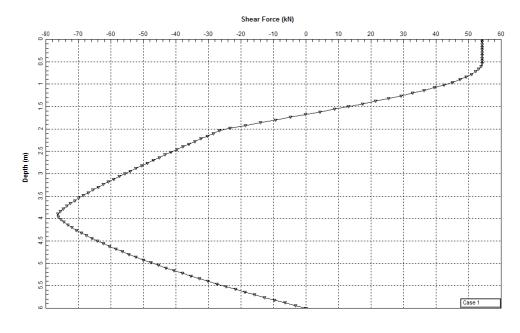


Figura 12: Taglio agente sul palo

Le verifiche di tipo strutturale condotte nella sezione del palo maggiormente sollecitata a flessione e a taglio hanno portato alla determinazione di un'armatura longitudinale a flessione composta da $20\Phi20$ e di un'armatura a taglio fatta da Φ 10 con passo 15 cm. L'incidenza determinata lungo l'intera lunghezza del palo è di 130 Kg/cm³.

8.2.4 Risultati analisi SLE

A livello prestazionale si richiede che il livello deformativo alla testa della barriera sia contenuto entro lo spostamento massimo di H / 500, dove con H si indica l'altezza totale della barriera. A tal fine si è definita una combinazione denominata sle vento, ottenuta ponendo il coefficiente di combinazione ψ_{0j} = 1. L'ipotesi che si fa è che gli spostamenti dovuti ai soli carichi permanenti si esauriscano prima del montaggio della barriera pertanto, lo spostamento determinato nella combinazione vento, viene depurato di quello permanente.

Dal punto di vista del dimensionamento tale condizione posta sugli spostamenti è risultata essere la più gravosa.

Di seguito si riportano i risultati ottenuti per lo studio dei tre tipologici.

Tabella 11: Spostamenti in testa alla barriera. N.b. le dimensioni sono espresse in m, kPa, e rad.

Hfoa	4,00	m				umax	0,008		(carichi pe	rmanenti			
scalzamento	interasse pali	Lunghezza pali	Hrilevato	Pvento	uy	teta	u testa barriera			uy	teta	u testa barriera		
0,5	3	6	1	1	0,001	0,00032	0,002	ok				0,0000	0,002	ok
0,5	3	6	2	1,5	0,002	0,00075	0,006	ok				0,0000	0,006	ok
0,5	3	6	3	2	0,002	0,00087	0,007	ok	L			0,0000	0,007	ok

8.3 Barriera di H = 5.0 e H = 6.0 metri

8.3.1 Azioni di progetto

La soluzione progettuale adottata si mantiene identica per le due differenti altezze, pertanto si riportano solamente le azioni relative al caso più svantaggioso di H = 6.0 m.

Le azioni derivanti dalle combinazioni di carico sono riportate di seguito:

- H_{ril} = 1.0 m, p_{vento} = 1.0 kPa interasse pali 3m;

AZIONI PER Lpile

	•	<u></u>	_po
	N (Kn)	H (kN)	M (kNm)
slu A1+M1 sisma ↑	70,79	21,79	20,87
slu A1+M1 sisma ↓	81,97	22,92	21,43
slu A2+M2 sisma ↑	70,79	24,06	22,01
slu A2+M2 sisma ↓	81,97	25,49	22,72
slu A1+M1 vento	76,38	45,23	144,46
slu A2+M2 vento	76,38	42,34	99,91
sle RARA	76,38	25,29	47,25
sle FREQ	76,38	15,75	18,45
sle QPERM	76,38	12,15	4,05
sle vento	76,38	30,15	76,05

- H_{ril} = 2.0 m, p_{vento} = 1.5 kPa interasse pali 3m;

AZIONI PER Lpile

	•		-pe
	N (Kn)	H (kN)	M (kNm)
slu A1+M1 sisma ↑	70,79	21,79	20,87
slu A1+M1 sisma ↓	81,97	22,92	21,43
slu A2+M2 sisma ↑	70,79	24,06	22,01
slu A2+M2 sisma ↓	81,97	25,49	22,72
slu A1+M1 vento	76,38	58,73	198,46
slu A2+M2 vento	76,38	54,04	146,71
sle RARA	76,38	34,29	68,85
sle FREQ	76,38	17,55	25,65
sle QPERM	76,38	12,15	4,05
sle vento	76,38	39,15	112,05

- H_{ril} = 3.0 m, p_{vento} = 2.0 kPa interasse pali 3m;

AZIONI PER Lpile

	N (Kn)	H (kN)	M (kNm)
slu A1+M1 sisma ↑	70,79	21,79	20,87
slu A1+M1 sisma↓	81,97	22,92	21,43
slu A2+M2 sisma ↑	70,79	24,06	22,01
slu A2+M2 sisma↓	81,97	25,49	22,72
slu A1+M1 vento	76,38	72,23	252,46
slu A2+M2 vento	76,38	65,74	193,51
sle RARA	76,38	43,29	90,45
sle FREQ	76,38	19,35	32,85
sle QPERM	76,38	12,15	4,05
sle vento	76,38	48,15	148,05

8.3.2 Risultati analisi SLU - GEO

Le analisi delle combinazioni GEO sono finalizzate alla verifica di capacità portante. Il programma Lpile non considera gli effetti di gruppo della palificata, pertanto ai fini della capacità portante lo sforzo normale di progetto risulta essere pari a N ricavandolo direttamente dalle tabelle precedentemente allegate è così riassunto:

Combinazione	Nd (kN)
slu A2+M2 sisma ↑	70,79
slu A2+M2 sisma ↓	81,97
slu A2+M2 vento	76,38

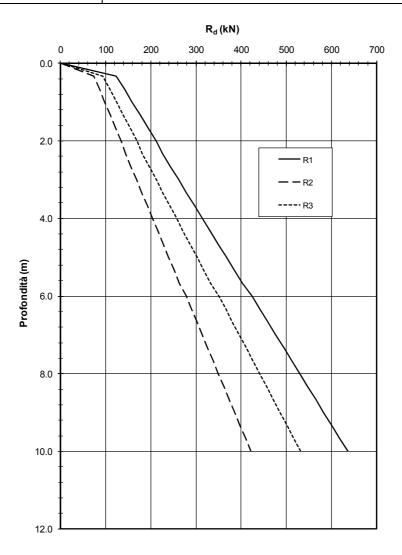


Figura 13: Capacità portante pali - Compressione

8.3.3 Risultati analisi SLU - STR

Scegliendo tra le combinazioni di carico di tipo str la più sfavorevole corrispondente alla A1+M1+vento, si riportano i diagrammi di momento e taglio per il caso di altezza del rilevato di 3 m e pvento = 2 kPa.

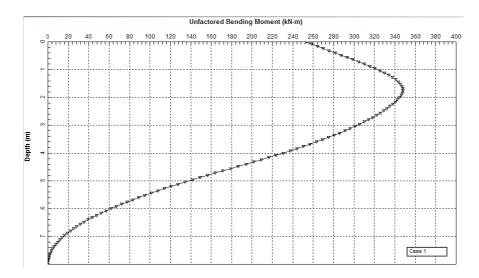


Figura 14: Momento Flettente agente sul palo

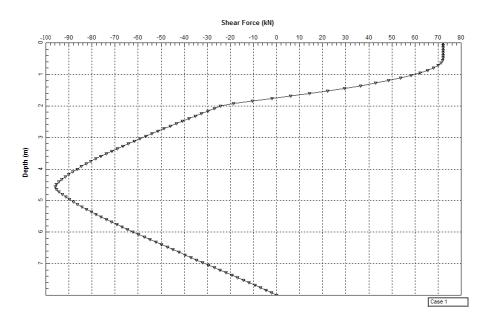


Figura 15: Taglio agente sul palo

Le verifiche di tipo strutturale condotte nella sezione del palo maggiormente sollecitata a flessione e a taglio hanno portato alla determinazione di un'armatura longitudinale a flessione composta da $20\Phi20$ e di un'armatura a taglio fatta da Φ 10 con passo 15 cm. L'incidenza determinata lungo l'intera lunghezza del palo è di 130 Kg/cm³.

8.3.4 Risultati analisi SLE

A livello prestazionale si richiede che il livello deformativo alla testa della barriera sia contenuto entro lo spostamento massimo di H / 500, dove con H si indica l'altezza totale della barriera. A tal fine si è definita una combinazione denominata sle vento, ottenuta ponendo il coefficiente di combinazione ψ_{0j} = 1. L'ipotesi che si fa è che gli spostamenti dovuti ai soli carichi permanenti si esauriscano prima del montaggio della barriera pertanto, lo spostamento determinato nella combinazione vento, viene depurato di quello permanente.

Dal punto di vista del dimensionamento tale condizione posta sugli spostamenti è risultata essere la più gravosa.

Di seguito si riportano i risultati ottenuti per lo studio dei tre tipologici.

Tabella 12: Spostamenti in testa alla barriera. N.b. le dimensioni sono espresse in m, kPa, e rad.

-Ifoa	5,00	m				umax	0,01		carichi p	ermanenti			Ì
scalzamento	interasse pali	Lunghezza pali	Hrilevato	Pvento	uy	teta	u testa barriera		uy	teta	u testa barriera		
0,5	3	8	1	1	0,000846	0,0004356	0,0035	ok			0,000000	0,0035	
0,5	3	8	2	1,5	0,002212	0,000902	0,0076	ok			0,000000	0,0076	
0,5	3	8	3	2	0,002609	0,001101	0,0092	ok			0,000000	0,0092	
													Ī
Hfoa	6,00	m				umax	0,012		carichi p	ermanenti			Ī
scalzamento	interasse pali	Lunghezza pali	Hrilevato	Pvento	uy	teta	u testa barriera		uy	teta	u testa barriera		
0,5	3	8	1	1	0,001159	0,0005796	0,0052	ok			0,000000	0,005	
0,5	3	8	2	1,5	0,002944	0,001179	0,0112	ok			0,000000	0,011	
0,5	3	8	3	2	0,003312	0,001407	0,0132	no	0,000348	0,000142	0,0013	0,012	

ALLEGATO 1

CARICHI TRASMESSI DALLE BARRIERE FONICHE

1.	Ge	eneralità	3
2.	Ve	elocità di riferimento	3
3.	Pr	ressione del vento	5
	3.1	Pressione cinetica di riferimento	5
	3.2	Coefficiente di esposizione	7
	3.3	Coefficiente di forma	11
	3.4	Coefficiente di Topografia	13
	3.5	Pressione del vento assunta nei calcoli	14
4.	Az	zioni sismiche trasmesse dalle barriere foniche	17

1. Generalità

Il vento esercita sulle superfici esposte della barriere antirumore azioni dirette che variano sia nel tempo e sia nello spazio provocando in generale effetti di tipo dinamico.

Per gli abituali approcci progettuali è possibile perseguire l'approccio "quasi statico equivalente", vale a dire l'azione dinamica del vento è ricondotta a sistemi di forze e pressioni i cui effetti siano equivalenti a quelli del vento turbolento.

Nella progettazione dei sistemi fondazionali delle barriere antirumore, è pratica comune e ad onor del vero ampiamente giustificata, non adottare approfonditi procedimenti analitici, numerici o sperimentali che tengano esplicitamente conto della reale natura dinamica dell'azione del vento e trascurare gli effetti di risonanza che possono innescarsi a seguito della vicinanza delle frequenze naturali della costruzione e delle forzanti aerodinamiche.

Generalmente la direzione del vento è assunta orizzontale e ortogonale alla superficie esposta dei pannelli delle barriere antirumore.

2. Velocità di riferimento

La determinazione dell'azione del vento sui pannelli delle barriere antirumore parte dall'individuazione della cosiddetta velocità di riferimento v_b . La velocità di riferimento è definita come il "valore caratteristico della velocità del vento a 10 m dal suolo su un terreno di categoria di esposizione II, mediata su 10 minuti e riferita ad un periodo di ritorno di 50 anni".

In mancanza di specifiche ed adeguate indagini statistiche, che tengano conto della scabrezza del sito, della topografia del terreno e della direzione dei vento, per località poste a quota inferiore di 1500 m sul livello dei mare, tale velocità non dovrà essere assunta minore del valore fornito dalla seguente espressione:

$$v_b = v_{b,0}$$
 per $a_s \le a_0$

$$v_b = v_{b,0} + k_a (a_s-a_0)$$
 per $a_0 < a_s \le 1500 \text{ m}$

 $v_{b,0}$, a_0 , k_a sono parametri legati alla regione in cui è realizzata la barriera antirumore, i cui valori sono desumibili dalla Tabella 1 ed in funzione delle zone definite in Figura 1.

a_s è l'altitudine sul livello del mare (in m) del sito ove sorge la barriera

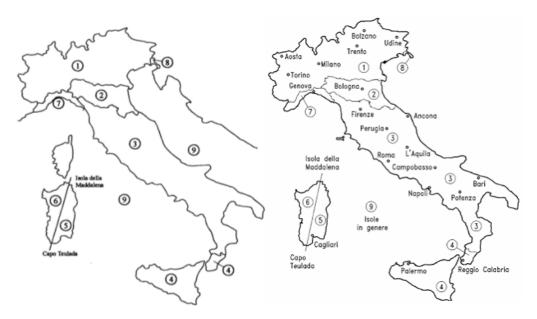


Figura 1: Mappa delle zone in cui è suddiviso il territorio italiano

Zona	Descrizione	V _{ref,0}	a _o (m)	k _a (1/s)
1	Valle d'Aosta, Piemonte, Lombardia, Trentino, Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della provincia di Trieste)	25	1000	0.010
2	Emilia Romagna	25	750	0.015
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0.020
4	Sicilia e provincia di Reggio Calabria	28	500	0.020
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0.015
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0.020
7	Liguria	28	1000	0.015
8	Provincia di Trieste	30	1500	0.010
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0.020

Tabella 1: Parametri di macrozonazione per il vento

Per altitudini superiori a 1500 m sul livello del mare, i valori della velocità di riferimento possono essere ricavati da dati supportati da opportuna documentazione o da indagini statistiche adeguatamente comprovate. Fatte salve tali valutazioni, comunque raccomandate in prossimità di vette e crinali, i valori utilizzati non dovranno essere minori di quelli previsti per 1500 m di altitudine.

3. Pressione del vento

La pressione esercitata dal vento sui pannelli delle barriere antirumore è data dall'espressione:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d$$

dove:

- q_b è la pressione cinetica di riferimento;
- c_e è il coefficiente di esposizione;
- c_p è il coofficiente di forma (o coefficiento aereodinamico), funzione della tipologia e della geometria della barriera antirumore e del suo orientamento ríspetto alla direzíone dei vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento;
- c_d è il coefficiente con cui si tiene conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali e degli effetti amplificativi dovuti alle vibrazioni strutturali.

3.1 Pressione cinetica di riferimento

La pressione cinetica di riferimento q_b (N/m²) è data dall'espressione:

$$q_b = 0.5 \rho V_b^2$$

dove:

- V_b è la velocità di riferimento del vento (in m/s);
- ρ è la densità dell'aria assunta costante e pari a 1.25 kg/m³

3.2 Coefficiente di esposizione

Il valore della velocità di riferimento del vento, legata a considerazioni di macrozonazione, va calibrato per tenere conto degli effetti locali (topografia ed esposizione) del sito dove è posta la barriera antirumore e della distanza dal suolo della barriera antirumore stessa.

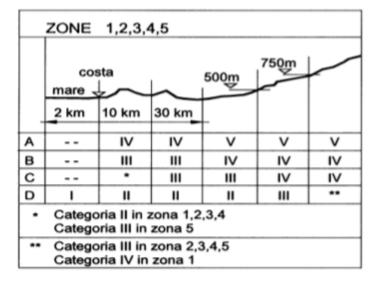
In assenza di analisi specifiche che tengano in conto la direzione di provenienza del vento e l'effettiva scabrezza e topografia del terreno che circonda la barriera, per altezze dal suolo non maggiori di 200 m, il coefficiente di esposizione ce può essere ottenuto con la formula:

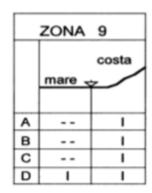
$$c_e(z) = k_r^2 \cdot c_t \cdot ln\left(\frac{z}{z_0}\right) \cdot \left[7 + c_t \cdot ln\left(\frac{z}{z_0}\right)\right]$$
 per $z \ge z_{min}$

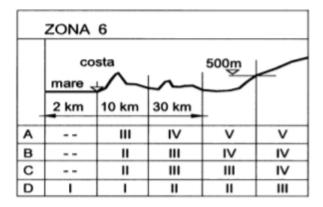
$$c_e(z) = c_e(z_{min})$$
 per $z < z_{min}$

dove:

- k_r parametro funzione della categoria di esposizione del sito ove sorge la barriera antirumore, i cui valori possono essere ottenuti dalla Tabella 2;
- z₀ parametro funzione della categoria di esposizione del sito ove sorge la barriera antirumore, i cui valori possono essere ottenuti dalla Tabella 2;
- z_{min} parametro funzione della categoria di esposizione del sito ove sorge la barriera antirumore, i cui valori possono essere ottenuti dalla Tabella 2;
- c_t il coefficiente di topografia, funzione delle caratteristiche topografiche e orografiche del sito ove sorge la barriera antirumore.




Categoria di esposizione del sito	k _r (-)	z ₀ (m)	z _{min} (m)
I	0.17	0.01	2
II	0.19	0.05	4
III	0.20	0.10	5
IV	0.22	0.30	8
V	0.23	0.70	12


Tabella 2: Parametri per la definizione del coefficiente di esposizione ce

In mancanza di analisi specifiche, la categoria di esposizione è assegnata in funzione della posizione geografica del sito ove sorge la barriera antirumore (Figura 2) e della classe di rugosità del terreno definita in Tabella 3. Nelle fasce entro i 40 km dalla costa delle zone 1, 2, 3, 4, 5 e 6, la categoria di esposizione è indipendente dall'altitudine del sito.



Figura 2: Definizione categorie di esposizione in funzione delle zone

Classe di rugosità dei terreno	Descrizione					
А	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 1 km					
В	Aree urbane (non di classe A), suburbane, industriali e boschive					
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D					
D	Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,)					

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica dei terreno. Affinché una barriera antirumore possa dirsi ubicata in classe A o B è necessario che la situazione che contraddistingue la classe permanga intorno alla struttura di mitigazione acustica per non meno di 1 km e comunque non meno di 20 volte l'altezza della barriera antirumore. Laddove sussistano dubbi sulla scelta della classe di rugosità, a meno di analisi dettagliate, verrà assegnata la classe più sfavorevole.

Tabella 3: Classi di rugosità del terreno

3.3 Coefficiente di forma

Nel capitolo 7.4.1 dell' Eurocodice e nel capitolo G.5 delle CNR-DT vengono definiti i coefficienti di pressione complessiva (coefficienti di forma) che devono essere adottati per il calcolo di muri e parapetti piani. Inoltre, il problema viene trattato considerando che la densità delle eventuali luci, presenti negli elementi soggetti all'azione del vento, non sia superiore al 20 % della relativa superficie dell'elemento esposta al vento. Nel caso delle barriere fono assorbenti in progetto, non risultando essere previste delle aperture, la metodologia indicata nei documenti considerati risulta essere applicabile.

I coefficienti di pressione complessiva $\mathbf{c_p}$ assumono valori differenti, variabili tra l'inizio della barriera e la zona considerata, per poi assumere un unico valore a partire dalla distanza pari a 4*h dal bordo libero della barriera, dove h rappresenta l'altezza della barriera. La Figura 3 che segue, riporta la suddivisione delle zone della barriera con coefficienti di pressione totale differenti.

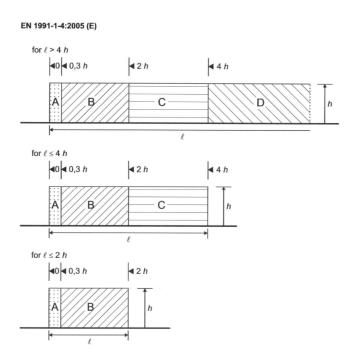


Figura 3: Suddivisione delle barriere in aree di eguale pressione complessiva

Inoltre, i coefficienti di forma sono influenzati anche dalla presenza di eventuali elementi di chiusura posti all'estremità delle barriere. In generale tale influenza porta ad una

diminuzione di tali coefficienti, ma in questa fase di progettazione tali effetti, a vantaggio di sicurezza, non verranno considerati.

La tabella 1 tratta da l'EN 1991-1-4:2005/A1:2010(E) cap. 7.4.1 e riportata nel seguito, indica i valori dei coefficienti di forma per ciascuna fascia dell'elemento, come da Figura 3, sia in assenza sia in presenza di chiusure laterali e per due valori di densità delle aperture. Nella tabella il simbolo **L** individua la lunghezza della barriera.

Table 7.9 — Recommended pressure coefficients $c_{\rm p,net}$ for free-standing walls and parapets

Solidity Zo	ne	Α	В	С	D	
φ = 1	Without	<i>ℓ/h</i> ≤ 3	2,3	1,4	1,2	1,2
	return	ℓ/h = 5	2,9	1,8	1,4	1,2
	corners	<i>ℓ/h</i> ≥ 10	3,4	2,1	1,7	1,2
		rn corners µth ≥ h a	2,1	1,8	1,4	1,2
$\varphi = 0.8$			1,2	1,2	1,2	1,2

Tabella 4: Coefficienti di pressione complessiva per le zone A-B-C-D

Per le verifiche geotecniche, l'effetto di bordo (per una lunghezza pari a 4h con h altezza della barriera) è stato "spalmato" lungo l'intera barriera facendo una media pesata, ossia

$$C_{peq} = [2*4h*C_{pA} + (L-2*4h)*C_{pD}]/L = [2*4h*2.1 + (L-2*4h)*1.2]/L$$

Nel caso in cui le barriere siano poste sui due lati della carreggiata, e considerando la sola direzione del vento che determina un'azione sfavorevole sul muro di sostegno, si potrebbe considerare un effetto vicendevole di schermatura tra le barriere, che porta ad una riduzione del coefficiente di forma. Tale riduzione, espressa dal coefficiente riduttivo Ψ s, risulta funzione del rapporto x/h, dove x rappresenta la distanza reciproca tra le due barriere parallele e h rappresenta l'altezza della barriera. La Figura 4 riporta l'andamento del coefficiente riduttivo Ψ s che tiene conto della schermatura. A vantaggio di sicurezza, e in considerazione del fatto che non sempre la disposizione delle barriere foniche è tale da rendere effettivo e continuativo il reciproco effetto di schermatura delle barriere disposte

sulle due carreggiate, per il calcolo in oggetto tale fenomeno non verrà considerato e si assumerà per il coefficiente di schermatura un valore unitario.

$$c_{pn,s} = \Psi_s * c_{pn,ns}$$

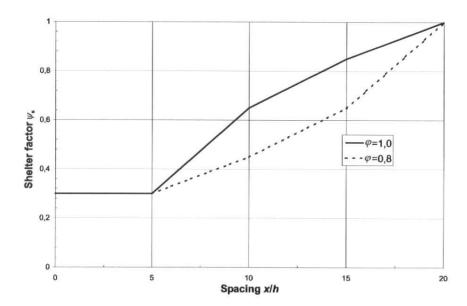


Figura 4: Coefficiente di schermatura

3.4 Coefficiente di Topografia

Nel caso di barriere antirumore poste in corrispondenza della sommità di colline o di pendii isolati, si possono riscontrare incrementi locali della velocità del vento; l'introduzione del coefficiente topografico c_t nella formula per il calcolo della pressione del vento consente appunto di conteggiare i sopra citati incrementi locali di velocità.

Il coefficiente di topografia c_t è posto di regola pari a 1.0, sia per le zone pianeggianti sia per quelle ondulate, collinose e montane. Nel caso di barriere antirumore ubicate presso la sommità di colline o pendii isolati, le formule proposte di seguito danno delle indicazioni di massima su come valutare il coefficiente di topografia c_t .

Per le verifiche geotecniche risulta dimensionante il vento proveniente dall'autostrada e quindi possiamo considerare come un terreno pianeggiante, ossia:

$$c_t = 1.0$$

3.5 Pressione del vento assunta nei calcoli

Nella definizione della pressione del vento, è stato assunto quanto riportato nelle tabelle seguenti

- 0				Caratteris	tiche int			
Intervento elementare	DA	А	Lunghezza totale micro intervento (m)	Lungh. interv. elementare [m]	Altezza FOA [m]	Rilevato [m]	Pressione kPa]	Pressione media [kPa]
FOA1-a	88+931	88+943		12.00	3	2.00	1.985	
FOA1-b	88+943	89+060	141.00	117.00	3	2.00	1.134	1.28
FOA1-a	89+060	89+072		12.00	3	2.00	1.985	
FOA2-a	89+098	89+110		12.00	3	2.00	1.985	
FOA2-b	89+110	89+269	192.00	168.00	3	2.00	1.134	1.24
FOA2-a	89+269	89+281		12.00	3	2.00	1.985	
FOA3-a	89+415	89+435	100.00	20.00	5	1.50	2.131	4.04
FOA3-b	89+435	89+604	189.00	169.00	5	1.50	1.218	1.31
FOA4-b	89+604	89+772	100.00	168.00	3	2.00	1.134	1.10
FOA4-a	89+772	89+784	180.00	12.00	3	2.00	1.985	1.19
FOA5-a	91+350	91+362		12.00	3	5.50	2.318	
FOA5-b	91+362	91+863	525.00	501.00	3	5.50	1.325	1.37
FOA5-a	91+863	91+875		12.00	3	5.50	2.318	
FOA6-a	93+034	93+046		12.00	3	6.00	2.318	
FOA6-b	93+046	93+187	165.00	141.00	3	6.00	1.325	1.47
FOA6-a	93+187	93+199		12.00	3	6.00	2.318	
FOA7-a	93+856	93+868		12.00	3	2.00	1.985	
FOA7-b	93+868	93+946	102.00	78.00	3	2.00	1.134	1.33
FOA7-a	93+946	93+958		12.00	3	2.00	1.985	
FOA8-a	93+975	93+987		12.00	3	2.00	1.985	
FOA8-b	93+987	94+035	72.00	48.00	3	2.00	1.134	1.42
FOA8-a	94+035	94+047		12.00	3	2.00	1.985	
FOA9-a	94+444	94+456		12.00	3	2.50	1.985	
FOA9-b	94+456	94+543	111.00	87.00	3	2.50	1.134	1.32
FOA9-a	94+543	94+555		12.00	3	2.00	1.985	
FOA10-a	95+381	95+397		16.00	4	2.00	2.063	
FOA10-b	95+397	95+539	174.00	142.00	4	2.00	1.179	1.34
FOA10-a	95+539	95+555		16.00	4	2.00	2.063	
FOA11-a	96+741	96+753		12.00	3	6.00	2.318	
FOA11-b	96+753	96+864	135.00	111.00	3	6.00	1.325	1.50
FOA11-a	96+864	96+876		12.00	3	6.00	2.318	
FOA12-a	97+063	97+075		12.00	3	5.00	2.219	
FOA12-b	97+075	97+273	210.00	198.00	3	4.00	1.268	1.25
FOA13-b	97+273	97+411		138.00	3	2.00	1.134	
FOA13-a	97+411	97+423	150.00	12.00	3	1.50	1.985	1.20
FOA14-a	97+585	97+597		12.00	3	2.00	1.985	
FOA14-b	97+597	97+753	180.00	156.00	3	2.00	1.134	1.25
FOA14-a	97+753	97+765		12.00	3	2.00	1.985	
FOA15-a	97+885	97+901		16.00	4	2.00	2.063	
FOA15-b	97+901	98+049	180.00	148.00	4	2.00	1.179	1.34
FOA15-a	98+049	98+065		16.00	4	2.00	2.063]
FOA16-a	98+741	98+753		12.00	3	1.50	1.985	
FOA16-b	98+753	98+810	81.00	57.00	3	1.50	1.134	1.39
FOA16-a	98+810	98+822		12.00	3	1.50	1.985	
FOA17-a	98+993	99+005		12.00	3	2.00	1.985	
FOA17-b	99+005	99+113	132.00	108.00	3	2.50	1.134	1.29
FOA17-a	99+113	99+125	<u></u>	12.00	3	2.00	1.985	
FOA18-a	99+461	99+477		16.00	4	1.50	2.063	
FOA18-b	99+477	99+577	132.00	100.00	4	1.50	1.179	1.39
FOA18-a	99+577	99+593		16.00	4	1.50	2.063	
FOA19-a	100+078	100+098		20.00	5	1.50	2.131	
FOA19-b	100+098	100+148	90.00	50.00	5	1.50	1.218	1.62
FOA19-a	100+148	100+168	<u></u>	20.00	5	1.50	2.132	
FOA20-a	90+158	90+170		12.00	3	6.00	2.318	
FOA20-b	90+170	90+308	162.00	138.00	3	6.00	1.325	1.47
FOA20-a	90+308	90+320		12.00	3	6.00	2.318]
FOA21-a	90+807	90+819		12.00	3	6.00	2.318	
FOA21-b	90+819	91+005	210.00	186.00	3	6.00	1.325	1.44
FOA21-a	91+005	91+017		12.00	3	6.00	2.318	
	FOA21-a 91+005 91+017		·					

Tabella 5: Pressioni del vento di calcolo per ciascuna barriera della tratta

. •	Lunghezza			Caratteris	tiche int	evento		
Intervento	DA	A	totale micro intervento (m)	interv. elementare [m]	Altezza FOA [m]	Rilevato [m]	kPa]	Pressione media [kPa]
FOA101-a	88+894	88+906		12.00	3	1.50	1.985	
FOA101-b	88+906	89+059	177.00	153.00	3	1.50	1.134	1.25
FOA101-a	89+059	89+071		12.00	3	1.50	1.985	
FOA102-a	89+414	89+426		12.00	3	1.50	1.985	
FOA102-b	89+426	89+543	141.00	117.00	3	2.50	1.134	1.28
FOA102-a	89+543	89+555		12.00	3	2.50	1.985	
FOA103-a	90+143	90+155		12.00	3	6.00	2.318	
FOA103-b	90+155	90+272	141.00	117.00	3	6.00	1.325	1.49
FOA103-a	90+272	90+284		12.00	3	6.00	2.319	
FOA104-a	91+420	91+432		12.00	3	6.00	2.318	
FOA104-b	91+432	91+897	489.00	465.00	3	6.00	1.325	1.37
FOA104-a	91+897	91+909		12.00	3	6.00	2.319	
FOA105-a	93+282	93+294		12.00	3	7.00	2.318	
FOA105-b	93+294	93+522	252.00	228.00	3	7.00	1.325	1.42
FOA105-a	93+522	93+534		12.00	3	7.00	2.319	
FOA106-a	93+732	93+744		12.00	3	3.00	2.219	
FOA106-b	93+744	93+945	225.00	201.00	3	3.00	1.268	1.37
FOA106-a	93+945	93+957		12.00	3	2.00	2.219	
FOA107-a	93+975	93+987		12.00	3	1.50	1.985	
FOA107-b	93+987	94+074	111.00	87.00	3	1.50	1.134	1.32
FOA107-a	94+074	94+086		12.00	3	1.50	1.985	
FOA108-a	94+321	94+333		12.00	3	1.50	1.985	
FOA108-b	94+333	94+543	234.00	210.00	3	1.50	1.134	1.22
FOA108-a	94+543	94+555		12.00	3	1.50	1.985	
FOA109-a	95+089	95+101	267.00	12.00	3	1.50	1.985	4.24
FOA109-b	95+101	95+344	267.00	243.00	3	1.50	1.134	1.21
FOA109-a	95+344	95+356		12.00	3	1.50	1.985	
FOA110-a	96+201	96+213	452.00	12.00	3	3.00	2.219	1 12
FOA110-b	96+213	96+342	153.00	129.00	3	3.00	1.268	1.42
FOA111 a	96+342	96+354		12.00	3	3.00	2.219	
FOA111-a FOA111-b	96+695	96+707	210.00	12.00 186.00	3	5.00	2.219	1 20
FOA111-a	96+707 96+893	96+893 96+905	210.00	12.00	3	5.00	1.268 2.219	1.38
FOA111-a	97+705	97+717		12.00	3	1.50	1.985	
FOA112-a	97+703	97+885	192.00	168.00	3	1.50	1.134	1.24
FOA112-a	97+885	97+897	192.00	12.00	3	1.50	1.134	1.24
FOA112-a	98+839	98+855		16.00	4	1.50	2.063	
FOA113-b	98+855	99+054	231.00	199.00	4	1.50	1.179	1.30
FOA113-a	99+054	99+070	231.00	16.00	4	1.50	2.063	1.50
FOA114-a	99+457	99+469		12.00	3	1.50	1.985	
FOA114-b	99+469	99+577	132.00	108.00	3	2.50	1.134	1.29
FOA114-a	99+577	99+589	102.00	12.00	3	1.50	1.985	1 1.23
FOA115-a	99+948	99+960		12.00	3	1.50	1.985	
FOA115-b	99+960	100+047	111.00	87.00	3	1.50	1.134	1.32
FOA115-a	100+047	100+059	1	12.00	3	1.50	1.985	1
FOA116-a	100+129	100+033		12.00	3	1.50	1.985	
FOA116-b	100+141	100+249	132.00	108.00	3	2.00	1.134	1.29
FOA116-a	100+249	100+261	1	12.00	3	1.50	1.985]

Tabella 6: Pressioni del vento di calcolo per ciascuna barriera della tratta

AUTOSTRADA (A13) BOLOGNA PADOVA Ampliamento alla terza corsia del tratto Monselice Padova Muri Prefabbricati - Allegato 1

Sulla base di tali parametri la pressione del vento assunta nei calcoli è stata ricondotta, in relazione all'altezza del rilevato e all'altezza della barriera dei tratti considerati, ai

dimensionamenti tipologici condotti per le seguenti pressioni del vento:

p ≤ 1.50 kPa

p ≤ 2.00 kPa

p ≤ 2.50 kPa

4. Azioni sismiche trasmesse dalle barriere foniche

La forza sismica trasmessa dalla barriera al suo elemento di supporto dipende dal periodo proprio della struttura in elevazione e dal conseguente valore di accelerazione da

applicare alla massa (maggiore del valore di accelerazione al suolo).

Nel caso specifico le inerzie sismiche sono state calcolate con riferimento al ramo orizzontale dello spettro (orizzontale e verticale) riferito al al Comune di Maserà di Padova.

che presenta su tutta la tratta i valori maggiori di aq.

Nelle tabelle seguenti si riporta il quadro riassuntivo delle azioni caratteristiche alla base delle barriere foniche semplici di altezza compresa fra 3 e 5 m, per le tre differenti condizioni di pressione del vento individuate.

Interasse montante = 3 m (barriera normale e barriera integrata)

Se (T_B) orizzontale = 0,174 g

Se (T_B) verticale = 0,061 g

Altezza elemento anti svio = 0,9 m

Punto di applicazione dell'urto = 0,8 m

Le azioni riportate nelle tabelle seguenti derivano dagli abachi progettuali relativi a ciascuna condizione esaminata.

Convenzioni carichi elementari:

R_z positivo verso il basso

R_x positivo verso la strada

My positivo verso la strada

Convenzione azioni base barriera:

R_z positivo verso il basso

R_x positivo dalla strada

M_v positivo dalla strada

Ва	rriera da H ≤ 3 m p ve	ento ≤ 1,5 Kpa	Н	3						
				Carichi eleme	entari		Azioni caratt	eristiche alla base	della barriera	
		Rz(kg)	Rx(kg)	My(kgm)	Rz(kN/m)	Rx (KN/m)	My(kNm/m)	Rz (KN/m)	Rx (KN/m)	My (KNm/m)
	Peso proprio	915,00	0,00	0,00	3,05			3,05	0,00	0,00
	Vento dalla strada	0,00	-1350,00	-2025,00		-4,50	-6,75	0,00	4,50	6,75
	Sisma +	0,00	-159,21	-238,82		-0,53	-0,80	0.19	0.53	0.80
		55,82	0,00	0,00	0,19			0, 19	0,55	0,00
	Sisma -	0,00	-159,21	-238,82		-0,53	-0,80	0.40	0.52	0.00

Tabella 7 - Barriere semplici - Azioni alla base con $H_{FOA} \le 3$ m e $p_{vento} \le 1.5$ kPa

Barriera da H ≤ 3 m p v	ento ≤ 2 Kpa	Н	3,00						
			Carichi eleme	entari			Azioni caratteristiche alla base della barrier		
	Rz(kg)	Rx(kg)	My(kgm)	Rz(kN/m)	Rx (KN/m)	My(kNm/m)	Rz (KN/m)	Rx (KN/m)	My (KNm/m)
Peso proprio	915,00	0,00	0,00	3,05			3,05	0,00	0,00
Vento dalla strada	0,00	-1800,00	-2700,00		-6,00	-9,00	0,00	6,00	9,00
Sisma +	0,00	-159,21	-238,82		-0,53	-0,80	0.19	0.53	0.80
	55,82	0,00	0,00	0,19			0, 19	0,55	0,00
Sisma -	0,00	-159,21	-238,82		-0,53	-0,80	-0.19	0.53	0,80
	-55,82	0,00	0,00	-0,19			-0, 19	0,55	0,60

Tabella 8 - Barriere semplici - Azioni alla base con H_{FOA} ≤ 3 m e p_{vento} ≤ 2 kPa

3amera da H ≤ 3 m p v	ento ≤ 2,5 Kpa	Н	3,00						
			Carichi eleme	entari		Azioni caratteristiche alla base della barriera			
	Rz(kg)	Rx(kg)	My(kgm)	Rz(kN/m)	Rx (KN/m)	My(kNm/m)	Rz (KN/m)	Rx (KN/m)	My (KNm/m)
Peso proprio	915,00	0,00	0,00	3,05			3,05	0,00	0,00
Vento dalla strada	0,00	-2250,00	-3375,00		-7,50	-11,25	0,00	7,50	11,25
Sisma +	0,00	-159,21	-238,82		-0,53	-0,80	0.19	0.53	0,80
	55,82	0,00	0,00	0,19			0,19	0,33	0,00
Sisma -	0,00	-159,21	-238,82		-0,53	-0,80	-0.19	0,53	0,80
	-55,82	0,00	0,00	-0,19			-0, 19	0,55	0,00

Tabella 9 - Barriere semplici - Azioni alla base con H_{FOA} ≤ 3 m e p_{vento} ≤ 2,5 kPa

sarriera da H ≤ 4 m p ve	ento ≤ 2 Kpa	Н	4,00								
	Carichi elementari						Azioni caratteristiche alla base della barriera				
	Rz(kg)	Rx(kg)	My(kgm)	Rz(kN/m)	Rx (KN/m)	My(kNm/m)	Rz (KN/m)	Rx (KN/m)	My (KNm/m)		
Peso proprio	1116,00	0,00	0,00	3,72			3,72	0,00	0,00		
Vento dalla strada	0,00	-2400,00	-4800,00		-8,00	-16,00	0,00	8,00	16,00		
Sisma +	0,00	-194,18	-388,37		-0,65	-1,29	0.23	0.65	1.29		
	68,08	0,00	0,00	0,23			0,23	0,05	1,29		
Sisma -	0,00	-194,18	-388,37		-0,65	-1,29	-0.23	0.65	1.29		
	-68,08	0,00	0,00	-0,23			-0,23	0,05	1,29		

Tabella 10 - Barriere semplici - Azioni alla base con H_{FOA} ≤ 4 m e p_{vento} ≤ 2 kPa

AUTOSTRADA (A13) BOLOGNA PADOVA Ampliamento alla terza corsia del tratto Monselice Padova Muri Prefabbricati - Allegato 1

Barriera da H \leq 5 m p vento \leq 1,5 Kpa H 5,00

			Carichi eleme	Azioni caratteristiche alla base della barriera					
	Rz(kg)	Rx(kg)	My(kgm)	Rz(kN/m)	Rx (KN/m)	My(kNm/m)	Rz (KN/m)	Rx (KN/m)	My (KNm/m)
Peso proprio	1428,00	0,00	0,00	4,76			4,76	0,00	0,00
Vento dalla strada	0,00	-2250,00	-5625,00		-7,50	-18,75	0,00	7,50	18,75
Sisma +	0,00	-248,47	-621,18		-0,83	-2,07	0,29	0,83	2,07
	87,11	0,00	0,00	0,29			0,29		
Sisma -	0,00	-248,47	-621,18		-0,83	-2,07	-0.29	0.83	2,07
	-87,11	0,00	0,00	-0,29			-0,29 0,63		2,07

Tabella 11 - Barriere semplici - Azioni alla base con $H_{FOA} \le 5$ m e $p_{vento} \le 1,5$ kPa

ALLEGATO 2

Dimensionamento delle fondazioni delle barriere foniche tabulati di calcolo

LPILE Plus fo	or Windows, Version 5.0 (5.0.7)								
Analysis of Ir	ndividual Piles and Drilled Shafts								
	Subjected to Lateral Loading Using the p-y Method								
	account forms one b 1 morned								
(c) Copyı	right ENSOFT, Inc., 1985-2004								
	All Rights Reserved								
This program is licensed to:									
spea									
Name of input data file:	Hril3 nu 2 i6 lnd								
Name of output file:	Hril3.pv.2.i6.lpo								
Name of plot output file:	Hril3.pv.2.i6.lpp								
Name of runtime file:	Hril3.pv.2.i6.lpr								
Tin	me and Date of Analysis								
Date: Februar	ry 21, 2012 Time: 15:23:52								
	Problem Title								

Program Options

Units Used in Computations - SI Units, meters, kilopascals

Basic Program Options:

Analysis Type 1:

- Computation of Lateral Pile Response Using User-specified Constant EI

Computation Options:

- Only internally-generated p-y curves used in analysis
- Analysis does not use p-y multipliers (individual pile or shaft action only)
- Analysis assumes no shear resistance at pile tip
- Analysis for fixed-length pile or shaft only
- No computation of foundation stiffness matrix elements
- Output pile response for full length of pile
- Analysis assumes no soil movements acting on pile
- No additional p-y curves to be computed at user-specified depths

Solution Control Parameters:

- Number of pile increments = 100

- Maximum number of iterations allowed = 100

- Deflection tolerance for convergence = 2.5400E-07 m

- Maximum allowable deflection = 2.5400E+00 m

Printing Options:

- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (spacing of output points) = 1

Pile Structural Properties and Geometry

Pile Length = 8.00 m

Depth of ground surface below top of pile = .50 m

Slope angle of ground surface = .00 deg.

Structural properties of pile defined using 2 points

Point	Depth	Depth Pile		Pile	Modulus of	
	Х	Diameter	Inertia	Area	Elasticity	
	m	m	m**4	Sq. m	kN/Sq. m	
1	0.0000	.80000000	.0201060	.5030000	31200000.	
2	8.0000000	.80000000	.0201060	.5030000	31200000.	

Soil and Rock Layering Information

The soil profile is modelled using 2 layers

Layer 1 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer = .500 m

Distance from top of pile to bottom of layer = 2.000 m

p-y subgrade modulus k for top of soil layer = 35000.000 kN/ m**3

p-y subgrade modulus k for bottom of layer = 35000.000 kN/ m**3

Layer $\,$ 2 is soft clay, p-y criteria by Matlock, 1970

Distance from top of pile to top of layer = 2.000 m

Distance from top of pile to bottom of layer = 12.000 m

Effective Unit Weight of Soil vs. Depth

Distribution of effective unit weight of soil with depth is defined using 4 points

Point	Depth X	Eff. Unit Weight
No.	m	kN/ m**3
1	.50	19.00000
2	2.00	19.00000
3	2.00	9.00000
4	12.00	9.00000

Shear Strength of Soils

Distribution of shear strength parameters with depth defined using 4 points

Point	Depth X	Cohesion c	Angle of Friction	E50 or	RQD
No.	m	kN/ m**2	Deg.	k_rm	%
1	.500	.00000	35.00		
2	2.000	.00000	35.00		
3	2.000	40.00000	.00	.01000	.0
4	12.000	60.00000	.00	.01000	.0

Notes	:

(1)	Cohesio	on =	uni -	laxia	al compres	ssive	stre	ength	for	rock	material	s.
(2)	Values	of	E50	are	reported	for	clay	strat	a.			

(3) Default values will be generated for ${\tt E50}$ when input values are 0.

(4) RQD and $k_{\rm rm}$ are reported only for weak rock strata.

Loading Type

Static loading criteria was used for computation of p-y curves

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load Case Number 1

Pile-head boundary conditions are Shear and Moment (BC Type 1)

Shear force at pile head = 90.460 kN

Bending moment at pile head = 171.460 m- kN

Axial load at pile head = 138.300 kN

Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1

Pile-head boundary conditions are Shear and Moment (BC Type 1)

Specified shear force at pile head = 90.460 kN

Specified moment at pile head = 171.460 m- kN

Specified axial load at pile head = 138.300 kN

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Depth	Deflect.	Moment	Shear	Slope	Total	Soil Res
X	У	М	V	S	Stress	р
m	m	kN- m	kN	Rad.	kN/ m**2	kN/ m
0.000	.005600	171.4600	90.4600	0021408	3686.0714	0.0000
.0800	.005430	178.7204	90.4600	0021184	3830.5131	0.0000
.160	.005261	185.9805	90.4600	0020952	3974.9498	0.0000
.240	.005095	193.2403	90.4600	0020710	4119.3813	0.0000
.320	.004930	200.4999	90.4600	0020459	4263.8074	0.0000
.400	.004767	207.7592	90.4600	0020199	4408.2279	0.0000
.480	.004607	215.0182	90.4600	0019929	4552.6425	0.0000
.560	.004448	222.2769	90.2512	0019650	4697.0511	-5.2192
.640	.004292	229.5019	89.5387	0019362	4840.7889	-12.5936
.720	.004139	236.6459	88.2225	0019065	4982.9168	-20.3112
.800	.003987	243.6597	86.2809	0018759	5122.4519	-28.2307
.880	.003839	250.4924	83.7031	0018444	5258.3857	-36.2137
.960	.003692	257.0930	80.4794	0018120	5389.7016	-44.3790
1.040	.003549	263.4092	76.6013	0017788	5515.3597	-52.5729
1.120	.003408	269.3885	72.0734	0017448	5634.3165	-60.6237
1.200	.003269	274.9795	66.9113	0017101	5745.5468	-68.4289

1.280	.003134	280.1322	61.1386	0016747	5848.0567	-75.8899
1.360	.003001	284.7988	54.7769	0016387	5940.8961	-83.1520
1.440	.002872	288.9328	47.8492	0016021	6023.1401	-90.0407
1.520	.002745	292.4901	40.3913	0015650	6093.9115	-96.4059
1.600	.002621	295.4300	32.4981	0015275	6152.3998	-100.9250
1.680	.002501	297.7236	24.3299	0014897	6198.0295	-103.2802
1.760	.002383	299.3557	15.9949	0014517	6230.5008	-105.0935
1.840	.002268	300.3149	7.5355	0014134	6249.5825	-106.3911
1.920	.002157	300.5927	-1.0081	0013751	6255.1096	-107.1992
2.000	.002048	300.1840	-6.6885	0013368	6246.9791	-34.8118
2.080	.001943	299.5521	-9.4738	0012985	6234.4077	-34.8217
2.160	.001841	298.6969	-12.2591	0012604	6217.3942	-34.8087
2.240	.001741	297.6186	-15.0423	0012224	6195.9404	-34.7722
2.320	.001645	296.3172	-17.8217	0011845	6170.0507	-34.7119
2.400	.001552	294.7933	-20.5952	0011468	6139.7331	-34.6272
2.480	.001462	293.0474	-23.3610	0011093	6104.9983	-34.5177
2.560	.001374	291.0801	-26.1171	0010721	6065.8603	-34.3828
2.640	.001290	288.8924	-28.8612	0010351	6022.3363	-34.2220
2.720	.001209	286.4852	-31.5915	0009984	5974.4469	-34.0346
2.800	.001130	283.8598	-34.3057	0009620	5922.2160	-33.8199
2.880	.001055	281.0176	-37.0016	0009260	5865.6709	-33.5773
2.960	.000982	277.9600	-39.6769	0008904	5804.8428	-33.3060
3.040	.000912	274.6890	-42.3294	0008551	5739.7662	-33.0051
3.120	.000845	271.2063	-44.9565	0008203	5670.4794	-32.6736
3.200	.000781	267.5141	-47.5559	0007860	5597.0249	-32.3106
3.280	.000720	263.6147	-50.1249	0007521	5519.4489	-31.9146
3.360	.000661	259.5107	-52.6608	0007188	5437.8020	-31.4845
3.440	.000605	255.2049	-55.1610	0006859	5352.1391	-31.0185
3.520	.000551	250.7002	-57.6223	0006537	5262.5195	-30.5149
3.600	.000500	245.9998	-60.0418	0006220	5169.0076	-29.9714
3.680	.000451	241.1072	-62.4160	0005909	5071.6727	-29.3856
3.760	.000405	236.0263	-64.7416	0005605	4970.5894	-28.7543
3.840	.000362	230.7610	-67.0148	0005308	4865.8384	-28.0739
3.920	.000321	225.3157	-69.2313	0005017	4757.5064	-27.3396
4.000	.000282	219.6951	-71.3867	0004733	4645.6871	-26.5456

4.080	.000245	213.9043	-73.4759	0004457	4530.4817	-25.6845
4.160	.000210	207.9488	-75.4931	0004188	4412.0000	-24.7465
4.240	.000178	201.8346	-77.4317	0003926	4290.3616	-23.7183
4.320	.000147	195.5684	-79.2837	0003673	4165.6976	-22.5813
4.400	.000119	189.1574	-81.0393	0003428	4038.1529	-21.3083
4.480	9.26E-05	182.6097	-82.6859	0003190	3907.8899	-19.8567
4.560	6.80E-05	175.9347	-84.2063	0002962	3775.0934	-18.1540
4.640	4.52E-05	169.1432	-85.5748	0002742	3639.9806	-16.0588
4.720	2.41E-05	162.2488	-86.7459	0002530	3502.8183	-13.2181
4.800	4.70E-06	155.2695	-87.4114	0002328	3363.9685	-3.4180
4.880	-1.31E-05	148.2681	-87.1618	0002134	3224.6792	9.6568
4.960	-2.94E-05	141.3283	-86.1934	0001950	3086.6152	14.5527
5.040	-4.43E-05	134.4815	-84.9352	0001774	2950.4002	16.9027
5.120	-5.78E-05	127.7426	-83.5109	0001607	2816.3335	18.7050
5.200	-7.00E-05	121.1233	-81.9553	0001448	2684.6449	20.1852
5.280	-8.10E-05	114.6330	-80.2900	0001298	2555.5230	21.4468
5.360	-9.08E-05	108.2798	-78.5302	0001156	2429.1285	22.5473
5.440	-9.95E-05	102.0707	-76.6875	0001021	2305.6019	23.5221
5.520	000107	96.0120	-74.7708	-8.9513E-05	2185.0674	24.3949
5.600	000114	90.1094	-72.7877	-7.7645E-05	2067.6362	25.1822
5.680	000120	84.3677	-70.7446	-6.6520E-05	1953.4089	25.8964
5.760	000124	78.7917	-68.6468	-5.6116E-05	1842.4765	26.5466
5.840	000129	73.3855	-66.4994	-4.6412E-05	1734.9219	27.1401
5.920	000132	68.1528	-64.3065	-3.7387E-05	1630.8208	27.6828
6.000	000135	63.0973	-62.0720	-2.9018E-05	1530.2426	28.1794
6.080	000137	58.2220	-59.7994	-2.1282E-05	1433.2505	28.6339
6.160	000138	53.5298	-57.4921	-1.4156E-05	1339.9026	29.0495
6.240	000139	49.0235	-55.1529	-7.6171E-06	1250.2519	29.4292
6.320	000139	44.7055	-52.7848	-1.6405E-06	1164.3470	29.7755
6.400	000139	40.5780	-50.3901	3.7976E-06	1082.2320	30.0906
6.480	000139	36.6430	-47.9714	8.7215E-06	1003.9471	30.3765
6.560	000138	32.9024	-45.5310	1.3156E-05	929.5289	30.6349
6.640	000136	29.3578	-43.0709	1.7126E-05	859.0103	30.8675
6.720	000135	26.0107	-40.5931	2.0657E-05	792.4211	31.0758
6.800	000133	22.8624	-38.0997	2.3773E-05	729.7880	31.2611

6.880000131	19.9142	-35.5922	2.6501E-05	671.1345	31.4249
6.960000129	17.1671	-33.0725	2.8865E-05	616.4816	31.5682
7.040000126	14.6220	-30.5421	3.0892E-05	565.8477	31.6922
7.120000124	12.2797	-28.0025	3.2607E-05	519.2486	31.7980
7.200000121	10.1408	-25.4551	3.4037E-05	476.6978	31.8866
7.280000118	8.2061	-22.9013	3.5207E-05	438.2067	31.9588
7.360000116	6.4759	-20.3423	3.6143E-05	403.7845	32.0156
7.440000113	4.9505	-17.7794	3.6872E-05	373.4385	32.0575
7.520000110	3.6303	-15.2137	3.7419E-05	347.1742	32.0854
7.600000107	2.5155	-12.6463	3.7811E-05	324.9950	32.0997
7.680000104	1.6061	-10.0836	3.8074E-05	306.9028	31.9669
7.760000101	.9012776	-7.5350	3.8234E-05	292.8808	31.7474
7.840 -9.76E-05	.3996434	-5.0044	3.8316E-05	282.9010	31.5184
7.920 -9.45E-05	.0997261	-2.4925	3.8348E-05	276.9343	31.2799
8.000 -9.14E-05	0.0000	0.0000	3.8355E-05	274.9503	31.0318

Output Verification:

Computed forces and moments are within specified convergence limits.

Output Summary for Load Case No. 1:

 Pile-head deflection
 =
 .00560027 m

 Computed slope at pile head
 =
 -.00214077

 Maximum bending moment
 =
 300.59271 kN-m

 Maximum shear force
 =
 90.46000002 kN

 Depth of maximum bending moment
 =
 1.92000000 m

 Depth of maximum shear force
 =
 .08000000 m

 Number of iterations
 =
 14

 Number of zero deflection points
 =
 1

Summary of Pile-Head Response(s)

Definition of Symbols for Pile-Head Loading Conditions:

Type 1 = Shear and Moment, y = pile-head displacment m

Type 2 = Shear and Slope, M = pile-head moment kN-m

Type 3 = Shear and Rot. Stiffness, V = pile-head shear force kN

Type 4 = Deflection and Moment, S = pile-head slope, radians

Type 5 = Deflection and Slope, R = rotational stiffness of pile-head m- kN/rad

Load	Boundary	Boundary	Axial	Pile-Head	Maximum	Maximum
Туре	Condition	Condition	Load	Deflection	Moment	Shear
	1	2	kN	m	m- kN	kN
1	V= 90.460	M= 171.460	138.3000	.0056003	300.5927	90.4600

The analysis ended normally.

LPILE Plus for Windows, Version 5.0 (5.0.7)
Analysis of Individual Piles and Drilled Shafts
Subjected to Lateral Loading Using the p-y Method
(c) Copyright ENSOFT, Inc., 1985-2004
All Rights Reserved
This program is licensed to:
This program is receibed to:
spea
Warrang 1 and 1 days 511 and 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Name of input data file: Hril3.pv.2.i3.lpd
Name of output file: Hril3.pv.2.i3.lpo
Name of plot output file: Hril3.pv.2.i3.lpp
Name of runtime file: Hril3.pv.2.i3.lpr
Time and Date of Analysis
Time and back of imaryoto
Date: February 22, 2012 Time: 9:26: 0
Problem Title

Program Options

Units Used in Computations - SI Units, meters, kilopascals

Basic Program Options:

Analysis Type 1:

- Computation of Lateral Pile Response Using User-specified Constant EI

Computation Options:

- Only internally-generated p-y curves used in analysis
- Analysis does not use p-y multipliers (individual pile or shaft action only)
- Analysis assumes no shear resistance at pile tip
- Analysis for fixed-length pile or shaft only
- No computation of foundation stiffness matrix elements
- Output pile response for full length of pile
- Analysis assumes no soil movements acting on pile
- No additional p-y curves to be computed at user-specified depths

Solution Control Parameters:

- Number of pile increments = 100

- Maximum number of iterations allowed = 100

- Deflection tolerance for convergence = 2.5400E-07 m

- Maximum allowable deflection = 2.5400E+00 m

Printing Options:

- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (spacing of output points) = 1

Pile Structural Properties and Geometry

Pile Length = 6.00 m

Depth of ground surface below top of pile = .50 m

Slope angle of ground surface = .00 deg.

Structural properties of pile defined using 2 points

Point	Depth	Pile	Moment of	Pile	Modulus of
	X	Diameter	Inertia	Area	Elasticity
	m	m	m**4	Sq. m	kN/Sq. m
1	0.0000	.80000000	.0201060	.5030000	31200000.
2	6.0000000	.80000000	.0201060	.5030000	31200000.

Soil and Rock Layering Information

The soil profile is modelled using $\ 2$ layers

Layer 1 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer = .500 m

Distance from top of pile to bottom of layer = 2.000 m

p-y subgrade modulus k for top of soil layer = 35000.000 kN/ m**3

p-y subgrade modulus k for bottom of layer = 35000.000 kN/ m**3

Layer 2 is soft clay, p-y criteria by Matlock, 1970

Distance from top of pile to top of layer = 2.000 m

Distance from top of pile to bottom of layer = 12.000 m

Effective Unit Weight of Soil vs. Depth

Distribution of effective unit weight of soil with depth is defined using 4 points

Point	Depth X	Eff. Unit Weight
No.	m	kN/ m**3
1	.50	19.00000
2	2.00	19.00000
3	2.00	9.00000
4	12.00	9.00000

Shear Strength of Soils

Distribution of shear strength parameters with depth defined using 4 points

Point	Depth X	Cohesion c	Angle of Friction	E50 or	RQD
No.	m	kN/ m**2	Deg.	k_rm	8
1	.500	.00000	35.00		
2	2.000	.00000	35.00		
3	2.000	40.00000	.00	.01000	.0
4	12.000	60.00000	.00	.01000	.0

ΤN	\circ	L	=	0	

 Cohesion = uniaxial compressive strength for rock mater 	1)	Cohesion =	uniaxial	compressive	strength	for	rock	materia
---	----	------------	----------	-------------	----------	-----	------	---------

- (2) Values of E50 are reported for clay strata.
- (3) Default values will be generated for E50 when input values are 0.
- (4) RQD and $k_{\rm rm}$ are reported only for weak rock strata.

Loading Type

Static loading criteria was used for computation of p-y curves

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load Case Number 1

Pile-head boundary conditions are Shear and Moment (BC Type 1)

Shear force at pile head = 54.230 kN

Bending moment at pile head = 132.310 m- kN

Axial load at pile head = 71.160 kN

Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1

Pile-head boundary conditions are Shear and Moment (BC Type 1)

Specified shear force at pile head = 54.230 kN

Specified moment at pile head = 132.310 m- kN

Specified axial load at pile head = 71.160 kN

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Depth	Deflect.	Moment	Shear	Slope	Total	Soil Res
X	У	M	V	S	Stress	р
m	m	kN- m	kN	Rad.	kN/ m**2	kN/ m
0.000	.004158	132.3100	54.2300	0016014	2773.7203	0.0000
.0600	.004062	135.5706	54.2300	0015886	2838.5887	0.0000
.120	.003968	138.8312	54.2300	0015755	2903.4560	0.0000
.180	.003873	142.0917	54.2300	0015620	2968.3221	0.0000
.240	.003780	145.3521	54.2300	0015483	3033.1872	0.0000
.300	.003688	148.6125	54.2300	0015342	3098.0510	0.0000
.360	.003596	151.8728	54.2300	0015199	3162.9136	0.0000
.420	.003505	155.1331	54.2300	0015052	3227.7750	0.0000
.480	.003415	158.3933	54.2300	0014902	3292.6352	0.0000
.540	.003326	161.6534	54.1344	0014749	3357.4940	-3.1876
.600	.003238	164.9020	53.7933	0014593	3422.1233	-8.1812
.660	.003151	168.1210	53.1465	0014433	3486.1652	-13.3781
.720	.003065	171.2919	52.1835	0014271	3549.2477	-18.7212
.780	.002980	174.3953	50.8973	0014106	3610.9879	-24.1539
.840	.002896	177.4116	49.2841	0013938	3670.9968	-29.6209
.900	.002813	180.3212	47.3434	0013766	3728.8828	-35.0675

.960	.002731	183.1046	45.0700	0013593	3784.2558	-40.7126
1.020	.002650	185.7413	42.4587	0013416	3836.7115	-46.3303
1.080	.002570	188.2111	39.5125	0013237	3885.8474	-51.8786
1.140	.002491	190.4941	36.2822	0013056	3931.2663	-55.7949
1.200	.002413	192.5761	32.8348	0012873	3972.6876	-59.1197
1.260	.002336	194.4452	29.1968	0012688	4009.8731	-62.1473
1.320	.002261	196.0905	25.3858	0012501	4042.6060	-64.8848
1.380	.002186	197.5022	21.4191	0012313	4070.6902	-67.3396
1.440	.002113	198.6713	17.3133	0012124	4093.9500	-69.5190
1.500	.002041	199.5901	13.0849	0011933	4112.2292	-71.4304
1.560	.001970	200.2517	8.7495	0011742	4125.3908	-73.0811
1.620	.001900	200.6501	4.3227	0011550	4133.3168	-74.4786
1.680	.001831	200.7803	1805426	0011358	4135.9069	-75.6302
1.740	.001764	200.6382	-4.7457	0011166	4133.0787	-76.5432
1.800	.001697	200.2204	-9.3588	0010974	4124.7668	-77.2247
1.860	.001632	199.5245	-14.0060	0010783	4110.9225	-77.6820
1.920	.001568	198.5488	-18.6741	0010593	4091.5129	-77.9220
1.980	.001505	197.2926	-23.3503	0010404	4066.5209	-77.9517
2.040	.001443	195.7557	-26.6264	0010216	4035.9443	-31.2525
2.100	.001382	194.1062	-28.5007	0010029	4003.1279	-31.2219
2.160	.001323	192.3442	-30.3726	0009844	3968.0737	-31.1761
2.220	.001264	190.4699	-32.2413	0009661	3930.7852	-31.1143
2.280	.001207	188.4835	-34.1058	0009480	3891.2667	-31.0360
2.340	.001150	186.3853	-35.9651	0009301	3849.5238	-30.9405
2.400	.001095	184.1756	-37.8181	0009124	3805.5634	-30.8270
2.460	.001041	181.8549	-39.6638	0008949	3759.3937	-30.6946
2.520	.000988	179.4236	-41.5009	0008776	3711.0242	-30.5424
2.580	.000936	176.8823	-43.3283	0008605	3660.4658	-30.3694
2.640	.000884	174.2315	-45.1446	0008437	3607.7308	-30.1743
2.700	.000834	171.4721	-46.9485	0008272	3552.8334	-29.9557
2.760	.000785	168.6048	-48.7385	0008110	3495.7891	-29.7123
2.820	.000737	165.6304	-50.5131	0007950	3436.6154	-29.4422
2.880	.000690	162.5500	-52.2707	0007793	3375.3317	-29.1434
2.940	.000644	159.3646	-54.0094	0007639	3311.9595	-28.8135
3.000	.000598	156.0754	-55.7273	0007488	3246.5223	-28.4500

3.060	.000554	152.6837	-57.4223	0007340	3179.0462	-28.0495
3.120	.000510	149.1910	-59.0920	0007196	3109.5600	-27.6083
3.180	.000467	145.5988	-60.7339	0007055	3038.0953	-27.1218
3.240	.000425	141.9089	-62.3451	0006917	2964.6869	-26.5844
3.300	.000384	138.1233	-63.9223	0006783	2889.3733	-25.9892
3.360	.000344	134.2440	-65.4618	0006653	2812.1973	-25.3275
3.420	.000304	130.2736	-66.9593	0006527	2733.2062	-24.5879
3.480	.000266	126.2145	-68.4096	0006404	2652.4531	-23.7554
3.540	.000228	122.0699	-69.8065	0006285	2569.9976	-22.8095
3.600	.000190	117.8431	-71.1424	0006171	2485.9075	-21.7204
3.660	.000154	113.5381	-72.4073	0006060	2400.2607	-20.4429
3.720	.000118	109.1594	-73.5877	0005953	2313.1490	-18.9018
3.780	8.21E-05	104.7126	-74.6634	0005851	2224.6826	-16.9550
3.840	4.73E-05	100.2048	-75.6000	0005753	2135.0010	-14.2658
3.900	1.31E-05	95.6455	-76.2739	0005659	2044.2969	-8.1979
3.960	-2.06E-05	91.0567	-76.1903	0005570	1953.0048	10.9852
4.020	-5.38E-05	86.5075	-75.4014	0005485	1862.4988	15.3119
4.080	-8.64E-05	82.0133	-74.3981	0005405	1773.0888	18.1295
4.140	000119	77.5843	-73.2436	0005328	1684.9765	20.3567
4.200	000150	73.2286	-71.9652	0005256	1598.3215	22.2563
4.260	000182	68.9530	-70.5791	0005188	1513.2600	23.9449
4.320	000213	64.7635	-69.0962	0005124	1429.9128	25.4857
4.380	000243	60.6658	-67.5241	0005064	1348.3904	26.9169
4.440	000273	56.6649	-65.8687	0005008	1268.7953	28.2641
4.500	000303	52.7658	-64.1344	0004956	1191.2240	29.5446
4.560	000333	48.9730	-62.3250	0004907	1115.7683	30.7715
4.620	000362	45.2910	-60.4432	0004862	1042.5161	31.9544
4.680	000391	41.7240	-58.4915	0004821	971.5520	33.1007
4.740	000420	38.2762	-56.4720	0004782	902.9584	34.2163
4.800	000449	34.9515	-54.3863	0004747	836.8150	35.3061
4.860	000477	31.7538	-52.2359	0004715	773.1999	36.3740
4.920	000505	28.6872	-50.0220	0004686	712.1898	37.4231
4.980	000533	25.7552	-47.7457	0004660	653.8596	38.4563
5.040	000561	22.9617	-45.4077	0004637	598.2835	39.4758
5.100	000589	20.3102	-43.0089	0004616	545.5345	40.4836

5.160	000617	17.8045	-40.5500	0004598	495.6847	41.4815
5.220	000644	15.4482	-38.0314	0004582	448.8058	42.4709
5.280	000671	13.2447	-35.4537	0004569	404.9685	43.4532
5.340	000699	11.1976	-32.8172	0004557	364.2432	44.4294
5.400	000726	9.3105	-30.1223	0004547	326.6999	45.4005
5.460	000753	7.5868	-27.3692	0004539	292.4081	46.3675
5.520	000781	6.0301	-24.5583	0004532	261.4371	47.3312
5.580	000808	4.6437	-21.6896	0004527	233.8559	48.2922
5.640	000835	3.4312	-18.7633	0004524	209.7334	49.2511
5.700	000862	2.3960	-15.7795	0004521	189.1383	50.2085
5.760	000889	1.5415	-12.7383	0004519	172.1391	51.1649
5.820	000916	.8712514	-9.6397	0004518	158.8043	52.1206
5.880	000943	.3886134	-6.4838	0004517	149.2025	53.0762
5.940	000971	.0970495	-3.2706	0004517	143.4019	54.0318
6.000	000998	0.0000	0.0000	0004517	141.4712	54.9878

Output Verification:

Computed forces and moments are within specified convergence limits.

Output Summary for Load Case No. 1:

Pile-head deflection = .00415818 m

Computed slope at pile head = -.00160141Maximum bending moment = 200.78031 kN- m

Maximum shear force = -76.27390922 kN

Depth of maximum bending moment = 1.68000000 m

Depth of maximum shear force = 3.90000000 m

Number of iterations = 14

Number of zero deflection points = 1

Summary of Pile-Head Response(s)

Definition of Symbols for Pile-Head Loading Conditions:

Type 1 = Shear and Moment, y = pile-head displacment m

Type 2 = Shear and Slope, M = pile-head moment kN-m

Type 3 = Shear and Rot. Stiffness, V = pile-head shear force kN

Type 4 = Deflection and Moment, S = pile-head slope, radians

Type 5 = Deflection and Slope, R = rotational stiffness of pile-head m- kN/rad

Load	Boundary	Boundary	Axial	Pile-Head	Maximum	Maximum
Туре	Condition	Condition	Load	Deflection	Moment	Shear
	1	2	kN	m	m- kN	kN
1	V= 54.230	M= 132.310	71.1600	.0041582	200.7803	-76.2739

The analysis ended normally.

LPILE Plus for Windows, Version 5.0 (5.0.7)
Analysis of Individual Piles and Drilled Shafts
Subjected to Lateral Loading Using the p-y Method
(c) Copyright ENSOFT, Inc., 1985-2004
All Rights Reserved
This program is licensed to:
spea
Name of input data file: Hril3.pv.2.i3.lpd
Name of output file: Hril3.pv.2.i3.lpo
Name of plot output file: Hril3.pv.2.i3.lpp
Name of runtime file: Hril3.pv.2.i3.lpr
Time and Date of Analysis
Date: February 22, 2012 Time: 9:53:16
Problem Title

New LPILE Plus 5.0 Data File

Program Options

Units Used in Computations - SI Units, meters, kilopascals

Basic Program Options:

Analysis Type 1:

- Computation of Lateral Pile Response Using User-specified Constant EI

Computation Options:

- Only internally-generated p-y curves used in analysis
- Analysis does not use p-y multipliers (individual pile or shaft action only)
- Analysis assumes no shear resistance at pile tip
- Analysis for fixed-length pile or shaft only
- No computation of foundation stiffness matrix elements
- Output pile response for full length of pile
- Analysis assumes no soil movements acting on pile
- No additional p-y curves to be computed at user-specified depths

Solution Control Parameters:

- Number of pile increments = 100

- Maximum number of iterations allowed = 100

- Deflection tolerance for convergence = 2.5400E-07 m

- Maximum allowable deflection = 2.5400E+00 m

Printing Options:

- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (spacing of output points) = 1

Pile Structural Properties and Geometry

Pile Length = 8.00 m

Depth of ground surface below top of pile = .50 m

Slope angle of ground surface = .00 deg.

Structural properties of pile defined using 2 points

Point	Depth	Pile	Moment of	Pile	Modulus of
	Х	Diameter	Inertia	Area	Elasticity
	m	m	m**4	Sq. m	kN/Sq. m
1	0.0000	.80000000	.0201060	.5030000	31200000.
2	8.0000000	.80000000	.0201060	.5030000	31200000.

Soil and Rock Layering Information

The soil profile is modelled using 2 layers

Layer 1 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer = .500 m

Distance from top of pile to bottom of layer = 2.000 m

p-y subgrade modulus k for top of soil layer = 35000.000 kN/ m**3

p-y subgrade modulus k for bottom of layer = 35000.000 kN/ m**3

Layer $\,$ 2 is soft clay, p-y criteria by Matlock, 1970

Distance from top of pile to top of layer = 2.000 m

Distance from top of pile to bottom of layer = 12.000 m

Effective Unit Weight of Soil vs. Depth

Distribution of effective unit weight of soil with depth is defined using 4 points

Point	Depth X	Eff. Unit Weight
No.	m	kN/ m**3
1	.50	19.00000
2	2.00	19.00000
3	2.00	9.00000
4	12.00	9.00000

Shear Strength of Soils

Distribution of shear strength parameters with depth defined using 4 points

Point	Depth X	Cohesion c	Angle of Friction	E50 or	RQD
No.	m	kN/ m**2	Deg.	k_rm	%
1	.500	.00000	35.00		
2	2.000	.00000	35.00		
3	2.000	40.00000	.00	.01000	.0
4	12.000	60.00000	.00	.01000	.0

Notes	:

(1)	Cohesio	on =	un	iaxia	al compres	ssive	stre	ength	for	rock	materia	ls.
(2)	Values	of	E50	are	reported	for	clay	strat	a.			

- (3) Default values will be generated for E50 when input values are 0.
- (4) RQD and $k_{\rm rm}$ are reported only for weak rock strata.

Loading Type

Static loading criteria was used for computation of p-y curves

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load Case Number 1

Pile-head boundary conditions are Shear and Moment (BC Type 1)

Shear force at pile head = 72.230 kN

Bending moment at pile head = 252.460 m- kN

Axial load at pile head = 76.380 kN

Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1

Pile-head boundary conditions are Shear and Moment (BC Type 1)

Specified shear force at pile head = 72.230 kN

Specified moment at pile head = 252.460 m- kN

Specified axial load at pile head = 76.380 kN

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Depth	Deflect.	Moment	Shear	Slope	Total	Soil Res
X	У	М	V	S	Stress	р
m	m	kN- m	kN	Rad.	kN/ m**2	kN/ m
0.000	.005853	252.4600	72.2300	0024059	5174.4292	0.0000
.0800	.005662	258.2530	72.2300	0023733	5289.6785	0.0000
.160	.005473	264.0458	72.2300	0023400	5404.9237	0.0000
.240	.005288	269.8384	72.2300	0023060	5520.1648	0.0000
.320	.005104	275.6308	72.2300	0022712	5635.4018	0.0000
.400	.004924	281.4230	72.2300	0022357	5750.6345	0.0000
.480	.004747	287.2149	72.2300	0021994	5865.8628	0.0000
.560	.004572	293.0066	72.0197	0021624	5981.0866	-5.2568
.640	.004401	298.7645	71.3024	0021247	6095.6366	-12.6775
.720	.004232	304.4410	69.9779	0020862	6208.5678	-20.4349
.800	.004067	309.9864	68.0250	0020470	6318.8924	-28.3857
.880	.003905	315.3500	65.4340	0020072	6425.5980	-36.3893
.960	.003746	320.4804	62.1960	0019666	6527.6655	-44.5621
1.040	.003590	325.3254	58.3035	0019254	6624.0540	-52.7494
1.120	.003438	329.8325	53.7624	0018837	6713.7212	-60.7788
1.200	.003289	333.9504	48.5894	0018413	6795.6447	-68.5471

1.280	.003143	337.6293	42.8093	0017985	6868.8351	-75.9552
1.360	.003001	340.8219	36.4451	0017553	6932.3494	-83.1482
1.440	.002862	343.4820	29.5211	0017116	6985.2715	-89.9513
1.520	.002727	345.5662	22.0745	0016677	7026.7352	-96.2145
1.600	.002595	347.0343	14.2289	0016235	7055.9430	-99.9252
1.680	.002467	347.8626	6.1559	0015792	7072.4224	-101.9014
1.760	.002343	348.0385	-2.0529	0015348	7075.9218	-103.3168
1.840	.002222	347.5529	-10.3536	0014905	7066.2611	-104.2011
1.920	.002104	346.4002	-18.7050	0014462	7043.3275	-104.5840
2.000	.001990	344.5778	-24.2675	0014022	7007.0723	-34.4800
2.080	.001880	342.5345	-27.0244	0013584	6966.4217	-34.4411
2.160	.001773	340.2705	-29.7771	0013148	6921.3805	-34.3773
2.240	.001670	337.7862	-32.5237	0012716	6871.9569	-34.2881
2.320	.001570	335.0822	-35.2622	0012287	6818.1624	-34.1729
2.400	.001473	332.1593	-37.9903	0011861	6760.0116	-34.0310
2.480	.001380	329.0183	-40.7060	0011440	6697.5226	-33.8619
2.560	.001290	325.6603	-43.4071	0011022	6630.7171	-33.6648
2.640	.001203	322.0866	-46.0913	0010609	6559.6201	-33.4388
2.720	.001120	318.2987	-48.7561	0010201	6484.2606	-33.1833
2.800	.001040	314.2981	-51.3994	0009798	6404.6710	-32.8972
2.880	.000963	310.0867	-54.0184	0009399	6320.8880	-32.5795
2.960	.000890	305.6666	-56.6108	0009007	6232.9519	-32.2290
3.040	.000819	301.0400	-59.1737	0008620	6140.9075	-31.8443
3.120	.000752	296.2094	-61.7044	0008239	6044.8039	-31.4241
3.200	.000688	291.1774	-64.2001	0007865	5944.6946	-30.9665
3.280	.000626	285.9470	-66.6575	0007497	5840.6380	-30.4695
3.360	.000568	280.5214	-69.0735	0007135	5732.6974	-29.9307
3.440	.000512	274.9039	-71.4446	0006781	5620.9415	-29.3474
3.520	.000459	269.0985	-73.7672	0006434	5505.4447	-28.7160
3.600	.000409	263.1091	-76.0371	0006095	5386.2875	-28.0326
3.680	.000362	256.9400	-78.2501	0005763	5263.5569	-27.2918
3.760	.000317	250.5961	-80.4013	0005440	5137.3474	-26.4871
3.840	.000275	244.0825	-82.4851	0005124	5007.7616	-25.6103
3.920	.000235	237.4047	-84.4956	0004817	4874.9111	-24.6501
4.000	.000197	230.5690	-86.4252	0004519	4738.9184	-23.5914

4.080	.000162	223.5822	-88.2654	0004229	4599.9183	-22.4126
4.160	.000130	216.4518	-90.0051	0003949	4458.0611	-21.0814
4.240	9.93E-05	209.1862	-91.6303	0003677	4313.5163	-19.5463
4.320	7.09E-05	201.7954	-93.1207	0003415	4166.4795	-17.7159
4.400	4.46E-05	194.2911	-94.4453	0003163	4017.1839	-15.3991
4.480	2.03E-05	186.6880	-95.5432	0002920	3865.9247	-12.0460
4.560	-2.08E-06	179.0077	-95.9667	0002687	3713.1287	1.4573
4.640	-2.27E-05	171.3366	-95.4023	0002463	3560.5156	12.6535
4.720	-4.15E-05	163.7464	-94.2673	0002250	3409.5109	15.7197
4.800	-5.87E-05	156.2566	-92.9233	0002045	3260.5051	17.8819
4.880	-7.42E-05	148.8812	-91.4243	0001851	3113.7738	19.5930
4.960	-8.83E-05	141.6310	-89.7997	0001666	2969.5348	21.0221
5.040	000101	134.5152	-88.0687	0001490	2827.9703	22.2533
5.120	000112	127.5418	-86.2451	0001322	2689.2371	23.3348
5.200	000122	120.7176	-84.3399	0001164	2553.4730	24.2974
5.280	000131	114.0489	-82.3615	0001014	2420.8007	25.1620
5.360	000138	107.5410	-80.3173	-8.7318E-05	2291.3304	25.9433
5.440	000145	101.1992	-78.2134	-7.4008E-05	2165.1617	26.6524
5.520	000150	95.0278	-76.0554	-6.1496E-05	2042.3849	27.2976
5.600	000155	89.0310	-73.8481	-4.9759E-05	1923.0823	27.8855
5.680	000158	83.2127	-71.5958	-3.8776E-05	1807.3289	28.4211
5.760	000161	77.5762	-69.3026	-2.8524E-05	1695.1929	28.9088
5.840	000163	72.1246	-66.9722	-1.8978E-05	1586.7366	29.3520
5.920	000164	66.8609	-64.6080	-1.0116E-05	1482.0163	29.7536
6.000	000164	61.7875	-62.2132	-1.9125E-06	1381.0834	30.1159
6.080	000164	56.9068	-59.7909	5.6560E-06	1283.9841	30.4411
6.160	000163	52.2209	-57.3441	1.2614E-05	1190.7598	30.7308
6.240	000162	47.7316	-54.8754	1.8988E-05	1101.4474	30.9867
6.320	000160	43.4406	-52.3875	2.4801E-05	1016.0798	31.2100
6.400	000158	39.3493	-49.8830	3.0081E-05	934.6853	31.4019
6.480	000155	35.4589	-47.3644	3.4851E-05	857.2884	31.5633
6.560	000153	31.7705	-44.8341	3.9138E-05	783.9098	31.6952
6.640	000149	28.2850	-42.2943	4.2967E-05	714.5662	31.7982
6.720	000146	25.0029	-39.7475	4.6365E-05	649.2710	31.8729
6.800	000142	21.9248	-37.1958	4.9357E-05	588.0336	31.9199

6.880	000138	19.0510	-34.6414	5.1970E-05	530.8600	31.9396
6.960	000133	16.3816	-32.0865	5.4229E-05	477.7529	31.9323
7.040	000129	13.9165	-29.5333	5.6161E-05	428.7113	31.8981
7.120	000125	11.6555	-26.9839	5.7792E-05	383.7309	31.8372
7.200	000120	9.5984	-24.4404	5.9147E-05	342.8041	31.7495
7.280	000115	7.7444	-21.9050	6.0253E-05	305.9195	31.6348
7.360	000110	6.0928	-19.3800	6.1135E-05	273.0628	31.4926
7.440	000105	4.6428	-16.8674	6.1820E-05	244.2158	31.3224
7.520	000100	3.3933	-14.3695	6.2332E-05	219.3568	31.1234
7.600	-9.53E-05	2.3429	-11.8888	6.2698E-05	198.4606	30.8945
7.680	-9.03E-05	1.4903	-9.4328	6.2942E-05	181.4980	30.5063
7.760	-8.52E-05	.8329219	-7.0118	6.3091E-05	168.4195	30.0176
7.840	-8.02E-05	.3676466	-4.6311	6.3167E-05	159.1631	29.5005
7.920	-7.51E-05	.0911744	-2.2930	6.3196E-05	153.6628	28.9528
8.000	-7.01E-05	0.0000	0.0000	6.3202E-05	151.8489	28.3713

Output Verification:

Computed forces and moments are within specified convergence limits.

Output Summary for Load Case No. 1:

Pile-head deflection = .00585315 m

Computed slope at pile head = -.00240589Maximum bending moment = 348.03853 kN- m

Maximum shear force = -95.96669926 kN

Depth of maximum bending moment = 1.76000000 m

Depth of maximum shear force = 4.56000000 m

Number of iterations = 14

Number of zero deflection points =

Summary of Pile-Head Response(s)

Definition of Symbols for Pile-Head Loading Conditions:

Type 1 = Shear and Moment, y = pile-head displacment m

Type 2 = Shear and Slope, M = pile-head moment kN-m

Type 3 = Shear and Rot. Stiffness, V = pile-head shear force kN

Type 4 = Deflection and Moment, S = pile-head slope, radians

Type 5 = Deflection and Slope, R = rotational stiffness of pile-head m- kN/rad

Load	Boundary	Boundary	Axial	Pile-Head	Maximum	Maximum
Туре	Condition	Condition	Load	Deflection	Moment	Shear
	1	2	kN	m	m- kN	kN
1	V= 72.230	M= 252.460	76.3800	.0058531	348.0385	-95.9667

The analysis ended normally.

ALLEGATO 3

VERIFICHE STRUTTURALI DELLA SEZIONE DEL PALO TABULATI DI CALCOLO

DATI GENERALI SEZIONE IN C.A.

NOME SEZIONE: Palo H3

Descrizione Sezione: Metodo di calcolo resistenza: Normativa di riferimento: Tipologia sezione: Forma della sezione: Percorso sollecitazione:

Sezione predefinita A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive Riferimento Sforzi assegnati: Assi X,Y coordinate sezione Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Classe: C25/30 CONGLOMERATO -

> Resis. compr. di calcolo fcd : 141.60 daN/cm² Resis. compr. ridotta fcd': 70.80 daN/cm²

Def.unit. max resistenza ec2 : 0.0020 Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz. : Parabola-Rettangolo

Modulo Elastico Normale Ec : 314750 daN/cm²

Coeff. di Poisson : 0.20

26.00 daN/cm² Resis. media a trazione fctm: Coeff. Omogen. S.L.E. : 15.0

Combinazioni Rare in Esercizio

Sc Limite: 150.00 daN/cm² Apert.Fess.Limite: Non prevista

Stati Limite Ultimi

N.T.C.

Circolare

ACCIAIO Tipo: B450C

> Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist. caratt. rottura ftk: 4500.0 daN/cm² Resist. snerv. di calcolo fyd: 3913.0 daN/cm² 3913.0 daN/cm² Resist. ultima di calcolo ftd:

Deform. ultima di calcolo Epu: 0.068

2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito 1.00 daN/cm² Coeff. Aderenza ist. ß1*ß2: Coeff. Aderenza diff. $\beta1*\beta2$: 0.50 daN/cm² Comb.Rare Sf Limite : 3600.0 daN/cm²

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Diametro sezione (cm): 80.0 cm Barre circonf.: 20Ø20 (62.8 cm²) Copriferro (dal baric. barre):

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nell'origine O del rifer. X,Y,O N Coppia concentrata in daNm applicata all'asse X del rifer. X,Y,O MX con verso positivo se tale da comprimere il lembo sup. della sezione Taglio [daN] baricentrico in direzione parallela all'asse Y

N.Comb.	N	Mx	Vy	MT
1	0	30000	9000	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nell'origine O del sist. rif. X,Y,O Ν Coppia concentrata in daNm applicata all'asse X del sist. rif. X,Y,OMX con verso positivo se tale da comprimere il lembo superiore della sezione

MY Coppia concentrata in daNm applicata all'asse Y del sist. rif. X,Y,O con verso positivo se tale da comprimere il lembo destro della sezione

N.Comb.	N	Mx
1	0	30000

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: $5.0~\mathrm{cm}$ Interferro netto minimo barre longitudinali: $8.6~\mathrm{cm}$

Copriferro netto minimo staffe: 4.0 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver N Mx N ul Mx ul Mis.S Yneut x/d C.Rid	t ic. ro	S = combinazione verificata / N = combin. non verificata Sforzo normale assegnato [in daN] (positivo se di compressione) Momento flettente assegnato [in daNm] riferito all'asse x baricentrico Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.) Momento flettente ultimo [in daNm] riferito all'asse x baricentrico Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult) e (N,Mx) Verifica positiva se tale rapporto risulta >=1.000 Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez. Rapp. di duttilità a rottura misurato in presenza di sola flessione (travi) Coeff. di riduz. momenti per sola flessione in travi continue Area efficace barre inf. (per presenza di torsione) = 62.8 cm²							
N.Comb C.Rid.	. Ver	N	Mx	N ult	Mx ult	Mis.Sic.	Yneutro	x/d	
1	S	0	30000	-12	71857	2.395	20.1	0.27	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max ec 3/7		Deform. unit. massima del conglomerato a compressione Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace										
Yc max		Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)										
ef min	Defor	Deform. unit. minima nell'acciaio (negativa se di trazione)										
Yf min	Ordin	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)										
ef max	Defor	Deform. unit. massima nell'acciaio (positiva se di compressione)										
Yf max	Ordin	ata in cm de	lla barra c	orrisp. a ef	max (sist	ema rif. X,Y	,0 sez.)					
N.Comb.	ec max	ec 3/7	Yc max	ef min	Yf min	ef max	Yf max					
1	0.00350	-0.00253	40.0	0.00245	34.0	-0.00950	-34.0					

ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO PER TUTTE LE COMBINAZIONI ASSEGNATE

Diametro staffe: 10 mm Passo staffe: 15.0 cm [Passo massimo di normativa = 15.4 cm] N.Bracci staffe: 2 Area staffe/m : 10.5 cm 2 /m [Area Staffe Minima normativa = 10.2 cm 2 /m]

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Ver	S = comb.verificata a taglio-tors./ N = comb. non verificata
Vsdu	Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)
Vrd	Taglio resistente [daN] in assenza di staffe
Vcd	Taglio compressione resistente [daN] lato conglomerato
Vwd	Taglio trazione resistente [daN] assorbito dalle staffe
bw	Larghezza minima [cm] sezione misurata parallelam. all'asse neutro
Teta	Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato

AUTOSTRADA (A13) BOLOGNA PADOVA Ampliamento alla terza corsia del tratto Monselice Padova Muri Prefabbricati - Allegato 3

Acw Afst			22	orativo de strettamen			_			m]
N.Comb.	Ver	Vsdu	Vrd	Vcd	Vwd	bw	Teta	Acw	Afst	
1	q	9000	1 / 9 / 1	0573/	59030	68 N	21 80	1 000	1 6	

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata $/$ N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
Yc min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Sf min	Minima tensione di trazione (-) nell'acciaio [daN/cm²]
Yf min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Dw Eff.	Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
Ac eff.	Area di congl. $[cm^2]$ in zona tesa aderente alle barre (verifica fess.)
Af eff.	Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
D barre	Distanza media in cm tra le barre tese efficaci (verifica fess.)

N.Comb. Ver Sc max $\,\,$ Yc max $\,\,$ Sc min $\,\,$ Yc min $\,\,$ Sf min $\,\,$ Yf min $\,$ Dw $\,$ Eff. Ac eff. Af eff. Dbarre

1 S 78.6 -40.0 0.0 -40.0 -2295 34.0 20.0 1489 22.0 0.0

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE

Ver ScImax ScI_min Sc Eff K3 Beta12 Eps Srm Ap.fess.	Ma Mi Te Co Pr De	nima tensi	sione nel conone nel c	conglomeratonglo	to nello Stonello STonello STonello STonello STonello STonello STonello STONELO STONEL	TATO I non ATO I non e nello ST.)/(2 Scmin a2 e	fessurato [da fessurato [daN ATO I [daN/cm²	/cm²]
N.Comb. Ap.Fess.	Ver	ScImax	ScImin	Sc Eff	К3	Beta12	Eps	Srm
1	S	47.0	-47.0	-23.5	0.188	1.0	0.000796	223

0.302

DATI GENERALI SEZIONE IN C.A.

NOME SEZIONE: Palo H4

Descrizione Sezione: Metodo di calcolo resistenza: Stati Limite Ultimi Normativa di riferimento: N.T.C. Sezione predefinita Tipologia sezione: Forma della sezione: Circolare Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive Riferimento Sforzi assegnati: Assi X,Y coordinate sezione Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -Classe: C25/30 Resis. compr. di calcolo fcd : 141.60 daN/cm^2 Resis. compr. ridotta fcd': 70.80 daN/cm² Def.unit. max resistenza ec2 : 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz. : Parabola-Rettangolo Modulo Elastico Normale Ec : 314750 daN/cm² Coeff. di Poisson 0.20 Resis. media a trazione fctm: 26.00 daN/cm² Coeff. Omogen. S.L.E. : 15.0 Combinazioni Rare in Esercizio 150.00 daN/cm² Sc Limite : Apert.Fess.Limite: Non prevista ACCIAIO Tipo: B450C 4500.0 daN/cm² Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist. caratt. rottura ftk: Resist. snerv. di calcolo fyd: 3913.0 daN/cm² 3913.0 daN/cm² Resist. ultima di calcolo ftd: Deform. ultima di calcolo Epu: 0.068 Modulo Elastico 2000000 daN/cm² Ef : Diagramma tensione-deformaz. : Bilineare finito 1.00 daN/cm² Coeff. Aderenza ist. ß1*ß2 : Coeff. Aderenza diff. 81*82: 0.50 daN/cm²

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Diametro sezione (cm):

Barre circonf.:

Copriferro (dal baric. barre):

80.0 cm

20020 (62.8 cm²)

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Comb.Rare

N Sforzo normale [daN] applicato nell'origine O del rifer. X,Y,O
MX Coppia concentrata in daNm applicata all'asse X del rifer. X,Y,O
con verso positivo se tale da comprimere il lembo sup. della sezione
VY Taglio [daN] baricentrico in direzione parallela all'asse Y

Sf Limite :

3600.0 daN/cm²

N.Comb. N Mx Vy MT

1 0 20000 7800 0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [daN] applicato nell'origine O del sist. rif. X,Y,O
MX Coppia concentrata in daNm applicata all'asse X del sist. rif. X,Y,O
con verso positivo se tale da comprimere il lembo superiore della sezione
MY Coppia concentrata in daNm applicata all'asse Y del sist. rif. X,Y,O
con verso positivo se tale da comprimere il lembo destro della sezione

N.Comb. N Mx

1 0 20000

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: $5.0~{\rm cm}$ Interferro netto minimo barre longitudinali: $8.6~{\rm cm}$ Copriferro netto minimo staffe: $4.0~{\rm cm}$

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [in daN] (positivo se di compressione)

Mx Momento flettente assegnato [in daNm] riferito all'asse x baricentrico

N ult Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)

Mx ult Momento flettente ultimo [in daNm] riferito all'asse x baricentrico

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult) e (N, Mx)

Verifica positiva se tale rapporto risulta >=1.000Yneutro Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez. x/d Rapp. di duttilità a rottura misurato in presenza di sola flessione (travi)

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue
Area efficace barre inf. (per presenza di torsione) = 62.8 cm²

N.Comb. Ver N Mx N ult Mx ult Mis.Sic. Yneutro x/d C.Rid.

1 S 0 20000 -12 71857 3.593 20.1 0.27 0.78

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del conglomerato a compressione ec 3/7 Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Deform. unit. minima nell'acciaio (negativa se di trazione) ef min Yf min Ordinata in cm della barra corrisp. a ef min (sistema rif. X, Y, O sez.) ef max Deform. unit. massima nell'acciaio (positiva se di compressione) Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.) Yf max N.Comb. ec max ec 3/7 Yc max ef min Yf min ef max

1 0.00350 -0.00253 40.0 0.00245 34.0 -0.00950 -34.0

ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO PER TUTTE LE COMBINAZIONI ASSEGNATE

Diametro staffe: 10 mm

Passo staffe: 15.0 cm [Passo massimo di normativa = 15.4 cm]

N.Bracci staffe: 2

Area staffe/m: 10.5 cm²/m [Area Staffe Minima normativa = 10.2 cm²/m]

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Ver	S	S = comb.verificata a taglio-tors./ $ ext{N}$ = comb. non verificata										
Vsdu	Τε	Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)										
Vrd	Τa	Taglio resistente [daN] in assenza di staffe										
Vcd	Τa	Taglio compressione resistente [daN] lato conglomerato										
Vwd	Τa	Taglio trazione resistente [daN] assorbito dalle staffe										
bw	La	Larghezza minima [cm] sezione misurata parallelam. all'asse neutro										
Teta	Ar	Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato										
Acw	Co	Coefficiente maggiorativo della resistenza a taglio per compressione										
Afst	Ar	ea staff	e/metro s	strettamer	nte necess	aria pe	r taglio	e torsi	one [cm²	/m]		
N.Comb.	Ver	Vsdu	Vrd	Vcd	Vwd	bw	Teta	Acw	Afst			
1	S	7800	14841	95734	59030	68.0	21.80	1.000	1.4			
	_											

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata $/$ N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
Yc min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Sf min	Minima tensione di trazione (-) nell'acciaio [daN/cm²]
Yf min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Dw Eff.	Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
Ac eff.	Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
Af eff.	Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
D barre	Distanza media in cm tra le barre tese efficaci (verifica fess.)

N.Comb. Ver Sc max $\mbox{ Yc max }\mbox{ Sc min }\mbox{ Yc min }\mbox{ Sf min }\mbox{ Yf min Dw Eff.}$ Ac eff. Af eff. Dbarre

1 S 52.4 -40.0 0.0 -40.0 -1530 34.0 20.0 1489 22.0 0.0

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE

Ver ScImax ScI_min Sc Eff K3 Beta12 Eps Srm Ap.fess.	Massima Minima Tension Coeff. Prodott Deforma Distanz	tensione tensione e al limi di normat o dei Coe zione uni a media i	nel conglonel conglonel conglonete	omerato ne merato nel pessore ef (Scmin + renza Beta a tra le f e fessure	lo STATO I r fficace nello ScEff)/(2 So 1*Beta2 fessure	non fess non fessu STATO 1	surato [daN/c urato [daN/cm	-
N.Comb. Ap.Fess.	Ver ScI	max Sc	Imin Sc 1	Eff	K3 Beta	12	Eps	Srm
1	S	31.3	-31.3	-15.7 0.116	0.188	1.0	0.000306	223

DATI GENERALI SEZIONE IN C.A.

NOME SEZIONE: Palo H_5-6

Descrizione Sezione: Stati Limite Ultimi Metodo di calcolo resistenza: Normativa di riferimento: N.T.C. Tipologia sezione: Sezione predefinita Forma della sezione: Circolare Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive Riferimento Sforzi assegnati: Assi X,Y coordinate sezione Riferimento alla sismicità: Zona non sismica Posizione sezione nell'asta: In zona critica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -Classe: C25/30 141.60 daN/cm² Resis. compr. di calcolo fcd : 70.80 daN/cm² Resis. compr. ridotta fcd': Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz. : Parabola-Rettangolo Modulo Elastico Normale Ec : 314750 daN/cm 2 Modulo Elastico Normale Ec : Coeff. di Poisson 0.20 Coeff. di Poisson . Resis. media a trazione fctm: 26.00 daN/cm² Coeff. Omogen. S.L.E. : 15.0 Combinazioni Rare in Esercizio Sc Limite: 150.00 daN/cm² Apert.Fess.Limite: Non prevista Tipo: B450C ACCIAIO Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist. caratt. rottura ftk: 4500.0 daN/cm² Resist. snerv. di calcolo fyd: 3913.0 daN/cm² Resist. ultima di calcolo ftd: 3913.0 daN/cm² Deform. ultima di calcolo Epu: 0.068 Ef : Modulo Elastico 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza ist. ß1*ß2: Coeff. Aderenza diff. ß1*ß2: 1.00 daN/cm² 0.50 daN/cm² Sf Limite : 3600.0 daN/cm² Comb.Rare

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Diametro sezione (cm): 80.0 cm Barre circonf.: $20\emptyset20 \text{ (62.8 cm}^2\text{)}$ Copriferro (dal baric. barre): 6.0 cm

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [daN] applicato nell'origine O del rifer. X,Y,O

AUTOSTRADA (A13) BOLOGNA PADOVA Ampliamento alla terza corsia del tratto Monselice Padova Muri Prefabbricati - Allegato 3

MX	1 1				del rifer. X,Y,O sup. della sezione
VY	Taglio [[daN] baricent:	rico in direzio	ne parallela	all'asse Y
N.Comb.	N	Mx	Vy	MT	
1	0	35000	9000	0	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [daN] applicato nell'origine O del sist. rif. X,Y,O
MX	Coppia concentrata in daNm applicata all'asse X del sist. rif. X,Y,O
	con verso positivo se tale da comprimere il lembo superiore della sezione
MY	Coppia concentrata in daNm applicata all'asse Y del sist. rif. X,Y,O
	con verso positivo se tale da comprimere il lembo destro della sezione

N.Comb.	N	Mx
1	0	35000

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 5.0 cm Interferro netto minimo barre longitudinali: 8.6 cm Copriferro netto minimo staffe: 4.0 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

	Ver N Mx N ult Mx ult Mis.Sic		S = combinazione verificata / N = combin. non verificata Sforzo normale assegnato [in daN] (positivo se di compressione) Momento flettente assegnato [in daNm] riferito all'asse x baricentrico Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.) Momento flettente ultimo [in daNm] riferito all'asse x baricentrico Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult) e (N, Mx) Verifica positiva se tale rapporto risulta >=1.000 Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.						
x/d C.Rid.			Coeff. di	riduz. mome	nti per sol	a flession	resenza di so e in travi co torsione)= 62	ntinue	e (travi)
C.Ric	N.Comb.	Ver	N	Mx	N ult	Mx ult	Mis.Sic.	Yneutro	x/d
0.78	1	S	0	35000	-12	71857	2.053	20.1	0.27

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max ec 3/7		m. unit. mas m. unit. del		-	-		efficace
Yc max	Ordin	ata in cm de	lla fibra c	corrisp. a ec	max (sist	ema rif. X,Y	
ef min	Defor	m. unit. min	ima nell'ac	cciaio (negat	iva se di	trazione)	
Yf min	Ordin	ata in cm de	lla barra d	corrisp. a ef	min (sist	ema rif. X,Y	,0 sez.)
ef max	Defor	m. unit. mas	sima nell'a	acciaio (posi	tiva se di	compression	e)
Yf max	Ordin	ata in cm de	lla barra d	corrisp. a ef	max (sist	ema rif. X,Y	,0 sez.)
N.Comb.	ec max	ec 3/7	Yc max	ef min	Yf min	ef max	Yf max
1	0.00350	-0.00253	40.0	0.00245	34.0	-0.00950	-34.0

ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO PER TUTTE LE COMBINAZIONI ASSEGNATE

Diametro	staffe:	10	mm

Passo staffe: 15.0 cm [Passo massimo di normativa = 15.4 cm]

N.Bracci staffe:

S

AUTOSTRADA (A13) BOLOGNA PADOVA Ampliamento alla terza corsia del tratto Monselice Padova Muri Prefabbricati - Allegato 3

1.6

Atlantia

Area staffe/m : $10.5 \text{ cm}^2/\text{m}$ [Area Staffe Minima normativa = 10.2

2

 $cm^2/m]$

1

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Ver	S	= comb.ve	erificata	a taglio-	tors./ N	= comb.	non ver	ificata	
Vsdu	Τá	aglio ager	nte [daN]	uguale al	. taglio V	y di co	omb. (sol	lecit.	retta)
Vrd	Τá	aglio res:	istente [d	laN] in as	senza di	staffe			
Vcd	Τá	aglio comp	pressione	resistent	e [daN] l	ato cor	nglomerat	0	
Vwd	Τá	aglio tra:	zione resi	stente [d	laN] assor	bito da	alle staf	fe	
bw	Larghezza minima [cm] sezione misurata parallelam. all'asse neutro								
Teta	Ar	ngolo [gra	adi sessad	lec.] di i	nclinazio	ne dei	puntoni	di cong	lomerato
Acw	Co	pefficient	te maggior	ativo del	la resist	enza a	taglio p	er comp	ressione
Afst	Aı	rea staffe	e/metro st	rettament	e necessa	ria per	taglio	e torsi	one [cm²/
N.Comb.	Ver	Vsdu	Vrd	Vcd	Vwd	bw	Teta	Acw	Afst

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
Yc min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Sf min	Minima tensione di trazione (-) nell'acciaio [daN/cm²]
Yf min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Dw Eff.	Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
Ac eff.	Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
Af eff.	Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
D barre	Distanza media in cm tra le barre tese efficaci (verifica fess.)

9000 14841 95734 59030 68.0 21.80 1.000

N.Comb. Ver Sc max $\,\,$ Yc max $\,\,$ Sc min $\,\,$ Yc min $\,\,$ Sf min $\,\,$ Yf min $\,$ Dw $\,$ Eff. Ac eff. Af eff. Dbarre

1 S 91.8 -40.0 0.0 -40.0 -2678 34.0 20.0 1489 22.0 0.0

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE

Ver ScImax ScI_min Sc Eff K3 Beta12 Eps Srm	S = combinazione verificata / N = combin. non verificata Massima tensione nel conglomerato nello STATO I non fessurato [daN/cm²] Minima tensione nel conglomerato nello STATO I non fessurato [daN/cm²] Tensione al limite dello spessore efficace nello STATO I [daN/cm²] Coeff. di normativa = 0,25 (Scmin + ScEff)/(2 Scmin) Prodotto dei Coeff. di aderenza Beta1*Beta2 Deformazione unitaria media tra le fessure Distanza media in mm tra le fessure	
Ap.fess.	Apertura delle fessure in mm = 1,7*Eps*Srm	
N.Comb. Ap.Fess.	Ver ScImax ScImin Sc Eff K3 Beta12 Eps Srm	
1	S 54.8 -54.8 -27.4 0.188 1.0 0.001037 223 0.393	