autostrade per l'italia

AUTOSTRADA (A13): BOLOGNA-PADOVA

AMPLIAMENTO ALLA TERZA CORSIA TRATTO: MONSELICE - PADOVA SUD

PROGETTO DEFINITIVO

AU - CORPO AUTOSTRADALE

OPERE D'ARTE MAGGIORI CAVALCAVIA TIPOLOGICI

OP5—Tipologia impalcato L=5,40m—luce singola da 38,30m

RELAZIONE DI CALCOLO

IL PROGETTISTA SPECIALISTICO

Ing. Lucio Ferretti Torricelli Ord. Ingg. Brescia N.2188 RESPONSABILE STRUTTURE IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Ilaria Lavander Ord. Ingg. Milano N. 29830 IL DIRETTORE TECNICO

Ing. Orlando Mazza Ord. Ingg. Pavia N. 1496

PROGETTAZIONE NUOVE OPERE AUTOSTRADALI

	CODICE IDENTIFICATIVO							Ordinatore:																														
	RIFERIMENTO PROGETTO RIFERIMENTO DIRETTORIO RIFERIMENTO ELABORATO																																					
	Codi	ce	Com	mess	за		Lot C	to, S	Sub-F Appal	rog, to	F	ose	Capi	Capitolo Paragrafo tipologia progressivo PARTE D'OPERA Ti			Tip. Disciplina Progressivo Rev.			ev.	_																	
1	1	1	, ,	z (7	5	\cap	\cap	\cap	2	D	D	$\mathbf{\cap}$	Λ	\cap	\cap	\cap	^	0	Λ	<u></u>	Λ	\cap	\cap	\cap	\cap	\cap	\cap	V	Т	R	1	6	5	0	\cap		SCALA:
ı	'	'	' `	7	٠ ا	۷	U	U	U	_	ı	ט	 	U	U			9	U	U	U	U			J			0	احا	'	' \	•)	U			_

	PROJECT MAN	ECIALISTICO:		REVISIONE		
spea					n.	data
opea		Ing. Ilaria Lavander			0	SETTEMBRE 2016
ENGINEERING	Ora.	Ingg. Milano N. 29830			1	_
ENGINEERING					2	_
A = 1 = = -	REDATTO:	_	VERIFICATO:	Ing. R. Stucchi — O.I. Mi n° A28579	3	_
Atlantia	KEDATTO.		VERII IOATO.	ing. K. Stacciii – O.I. Wii II A28579	4	_

VISTO DEL COMMITTENTE

autostrade per l'italia

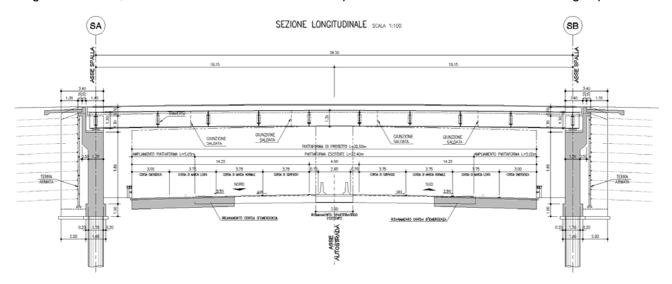
IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Antonio Tosi VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti dipartimento per le infrastrutture, gli affari generali ed il personale

1.	Introdu	ızione	5
	1.1Descri	zione generale dell'opera	5
	1.1.1	Impalcato	6
	1.1.2	Apparecchiture di vincolo	7
	1.1.3	Spalle	7
	1.2Modali	tà realizzative	8
	1.3Norma	tive di riferimento	8
	1.4Contes	stualizzazione	9
	1.4.1	Condizioni ambientali e classi di esposizione	9
	1.4.2	Sismicità	10
	1.4.3	Parametri geotecnici	10
	1.5Caratte	eristiche materiali	10
	1.5.1	Tensioni limite e proprietà di riferimento	11
	1.5.2	Coefficienti parziali di sicurezza	12
	1.6Softwa	are di calcolo	13
	1.7Conve	nzioni generali	14
2.	Impost	tazioni delle analisi e delle verifiche	16
	2.1Analisi	della struttura composta (impalcato)	16
	2.1.1	Fasi	16
	2.1.2	Coefficienti di omogeneizzazione	17
	2.1.3	Modellazione/idealizzazione della struttura	18
	2.1.4	Sintesi step di analisi	19
	2.2Analisi	sismica	20
	2.3Dati ge	enerali delle sezioni di impalcato (travi e traversi)	20
	2.3.1	Larghezze collaboranti di soletta	21
	2.3.2	Armature longitudinali	22
	2.3.3	Stiffeners d'anima	22
	2.3.4	Proprietà geometrico-statiche sezioni di impalcato	23
	2.4Sezion	ni di verifica	24
	2.5Stato f	essurativo della soletta	25
	2.6Verific	he eseguite	25
	2.6.1	Verifiche sezioni impalcato	25
	2.6.2	Verifica spalle	26
3.	Analisi	dei carichi	27
	3.1Carich	i agenti in fase 1	27
	3.1.1	Pesi propri acciaio (G _{k1} ')	27
	3.1.2	Peso proprio coppelle (G _{k1} ")	27
	3.1.3	Peso proprio soletta (G _{k1} ''')	27
	3.2Carich	i agenti in fase 2a - 2b	28

	3.2.1	Sovraccarichi permanenti (G _{k2})	28
	3.2.2	Reologia calcestruzzo (G _{sh,k})	28
	3.3Carichi	agenti in fase 3	30
	3.3.1	Variazioni termiche (T _k)	30
	3.3.2	Carichi mobili (Q _k)	31
	3.3.3	Azioni di frenatura (Q _{lk})	36
	3.3.4	Azione del vento (F _{w,k})	36
	3.4Azioni	sismiche (E _d)	38
4.	Combir	nazioni di carico	41
5.	Analisi	strutturale impalcato	44
	5.1Genera	ılità	44
	5.2Report	sollecitazioni trave esterna	45
6.	Deform	azioni e controfrecce	47
	6.1Deform	azioni massime	47
	6.2Contro	frecce	51
7.	Verifich	ne travi	53
	7.1Genera	ılità	53
	7.2S.L.U.	- resistenza delle sezioni	53
	7.2.1	Riepilogo coefficienti di sfruttamento	55
	7.2.2	Esempio esteso di verifica	58
	7.3S.L.E.	- limitazione delle tensioni	58
	7.3.1	Riepilogo coefficienti di sfruttamento	58
	7.4S.L.E.	- "web breathing"	59
	7.4.1	Riepilogo coefficienti di sfruttamento w.b.	60
	7.5Verifica	connessione trave soletta	60
	7.5.1	Generalità	60
	7.5.2	Caratteristiche piolatura corrente	64
	7.5.3	Detailing	64
	7.5.4	Riepilogo rapporti di sfruttamento verifica elastica S.L.U S.L.E.	66
	7.5.5	Verifica plastica S.L.U.	66
	7.6Verifich	ne a fatica	69
	7.6.1	Generalità	69
	7.6.2	Coefficienti λ	70
	7.6.3	Amplificazione dinamica	74
	7.6.4	Dettagli e Coefficienti di sicurezza	74
	7.6.5	Sintesi verifiche	75
	7.7Dimens	sionamento saldature di composizione	76
8.	Fessur	azione soletta in c.a. in direzione longitudinale	78
	8.1Metodo	ologia di verifica	78

8.2Sintesi dei risultati	79
9. Verifica irrigidenti	80
9.1Irrigidenti intermedi	81
9.1.1 Stabilità flesso torsionale	81
9.1.2 Rigidezza flessionale	81
9.1.3 Verifica di resistenza	82
9.2Irrigidenti d'appoggio	85
9.2.1 Stabilità flesso torsionale	85
9.2.2 Rigidezza flessionale	85
9.2.3 Verifica di resistenza	86
10. Verifica traversi	89
10.1 Azioni indotta dalla statica globale	89
10.2 Sollecitazioni di progetto e verifiche	90
11. Verifica giunti bullonati	91
11.1 Verifica a taglio S.L.U.	93
11.2 Verifica a scorrimento S.L.E.	93
12. Verifica coppella	94
13. Verifica soletta	100
13.1 Verifica in fase di esercizio	100
13.1.1 Generalità	100
13.1.2 Carichi e combinazioni di carico	100
13.2 Sollecitazioni	102
13.3 Verifiche in direzione trasversale	106
13.4 Quadro deformativo locale	110
14. Isolatori sismici e escursione giunti	111
15. Verifica spalla	112
15.1 Sollecitazioni massime e minime per i singoli elementi strutturali	113
15.2 Verifica elementi strutturali	116
15.2.1 Verifica paraghiaia	116
15.2.2 Verifica setto di elevazione o paramento	118
15.2.3 Verifica del cordolo di fondazione	119
16. Pali di fondazione	122
16.1 Verifica dei pali di fondazione	122
16.1.1 Sollecitazioni di verifica	122
16.1.2 Pali di fondazione delle spalle	125

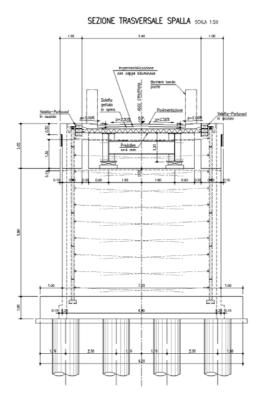

1. Introduzione

Nel presente elaborato sono riportati i calcoli statici relativi alla proposta tipologica di cavalcavia in acciaio calcestruzzo a campata singola semplicemente appoggiato.

1.1 Descrizione generale dell'opera

Lo schema statico adottato è quello di travi semplicemente appoggiate in corrispondenza delle spalle. L'impalcato è composto da due travi ad altezza costante connesse fra loro mediante traversi di tipo "l". Le travi principali verranno realizzate mediante assemblaggio a piè d'opera di conci metallici, di lunghezza non superiore a 13.50 m. Il collegamento dei singoli conci verrà realizzato mediante saldature a piena penetrazione, da effettuarsi in cantiere. Per la realizzazione del getto, si prevede l'adozione di coppelle metalliche aventi funzione di cassero a perdere.

La struttura di spalla viene realizzata mediante un setto in c.a. installato su di un allineamento di pali di grande diametro, disposti ravvicinati. Il piano appoggi è protetto a tergo da un paraghiaia, in sommità al quale viene installata la soletta di transizione, atta a garantire la continuità con il rilevato di tergo spalla. Allo scopo di minimizzare l'influenza dei significativi cedimenti verticali attesi per effetto della realizzazione/ampliamento del rilevato, esso verrà mantenuto completamente indipendente dal corpo spalla, mediante l'adozione di sistemi di ritenuta orizzontale tipo "terra armata", in grado di isolare la spalla dal rilevato di tergo. A favore di sicurezza, la paratia che compone la spalla verrà comunque calcolata considerando la spinta orizzontale del terreno insistente sulla parte sommitale del paraghiaia. La continuità del piano viabile tra spalla e rilevato è assicurata da una soletta di transizione in c.a., alloggiata su di una opportuna mensola ricavata a tergo del paraghiaia. Mediante tale soluzione è quindi possibile compensare l'evoluzione di cedimenti verticali anche di rilevante entità, procedendo ad opportune ricariche del piano stradale sul rilevato, senza intervenire sulle strutture portanti in c.a. A completamento della struttura di spalla, vengono realizzati dei muri d'ala laterali, incastrati nel setto principale, dello spessore di 20 cm e lunghezza 2.30 m, aventi la sola funzione di chiusura e protezione del vano vuoto ubicato a tergo spalla.



Profilo longitudinale.

1.1.1 Impalcato

La scheda identificativa recante i dati sintetici dell'opera è di seguito riportata, unitamente agli schemi grafici recanti sezione trasversale e longitudinale della struttura.

	Sovr	astruttur	a
Material	9		
	Acciaio/cls		
Tipologia	a		
	Grigliato di travi e traversi		
Schema			
	Ponte integrale		
Luci			
	38.3	3 m	
Travi pri	ncipali		
	Tipo	"I", in con	nposizione saldata
	Numero travi principali	2	
	Interasse trasversale travi	3.00	m
	Altezza	1.3	m
	Stiffeners verticali	piatto 260)X25 mm
	Rib longitudinali	non prese	enti
Traversi	principali		
	non presenti		
Traversi	intermedi		
	Tipo	"I", in con	nposizione saldata
	Interasse longitudinale	4.05	m (tipico)
	Altezza	0.6	m
Controve	nti orizzontali		
	Tipo	crociera c	li angolari
	Funzione	montaggi	0
Giunzion	ii travi principali		
	Saldate		
Giunzion	ii traversi		
	Bulloni attrito categoria "B"		
Soletta			
	Tipo	•	a. su predalla collaborante
	Spessore tot.	0.275	
	Larghezza	5.4	m
	Sbalzo max	1.2	
	Piano viabile	4	m
	Marciapiede sx	0.7	m
	Marciapiede sx	0.7	m
	Spessore marciapiede	0.16	m
	Predalla	4	mm
Conness	ione trave soletta		
	Tipo	pioli Nels	on
	Ripristino	completo	
	·		

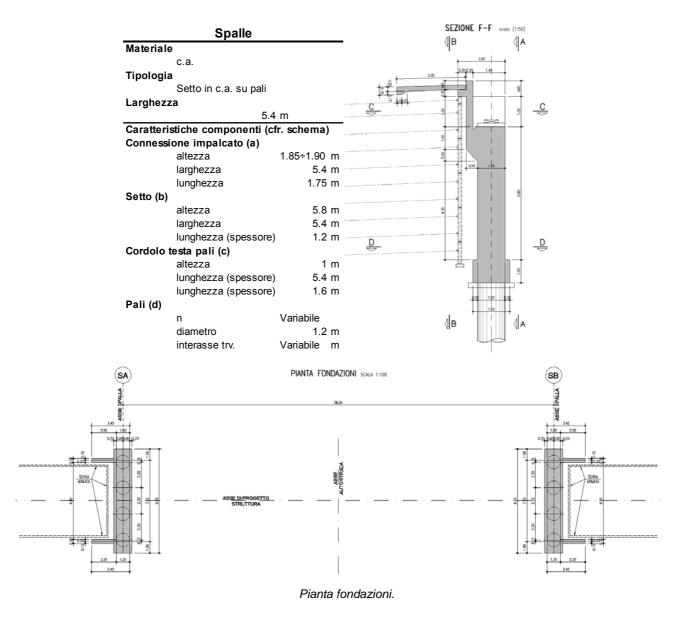
Sezione trasversale della spalla

1.1.2 Apparecchiture di vincolo

Lo schema di vincolo prevede la predisposizione di appoggi in elastomero armato ad alto smorzamento, mediante il quale è possibile ottere un favorevole disaccoppiamento del moto tra sottostrutture e sovrastruttura e la conseguente limitazione del quadro tensionale in fase sismica.

Le apparecchiature prescelte presentano le seguenit caratteristiche identificative:

rigidezza (*): 4.5kN/mm


smorzamento: 10%

Valore riferito alla condizione di massimo spostamento

Per quanto riguarda la portata e le massime deformazioni, si rimanda al prosieguo della presente relazione.

1.1.3 Spalle

Le caratteristiche identificative delle spalle sono riportate nella scheda seguente, da riferirsi alle figure esplicative allegate.

1.2 Modalità realizzative

Le fasi realizzative vengono indicate di seguito:

- a) Realizzazione palificate;
- b) Realizzazione della spalla (cordolo di testa palo, setto di elevazione e paraghiaia);
- c) Assemblaggio e posa delle travate su appositi appoggi antisismici;
- d) Getto della soletta d'impalcato, adottando coppelle metalliche premontate sulle travate principali, ed aventi funzione di cassero a perdere; il getto verrà effettuato a partire dalla zona di centro campata, proseguendo alternativamente verso le due spalle;
- e) Realizzazione terre armate e rilevato;
- f) Completamento dell'opera mediante posa delle finiture d'impalcato.

1.3 Normative di riferimento

Le analisi strutturali e le relative verifiche vengono eseguite secondo il metodo semi-probabilistico agli Stati Limite in accordo alle disposizioni normative previste dalla vigente Normativa italiana (NTC-08) e da quella europea (Eurocodici, EN). In particolare, al fine di conseguire un approccio il più unitario possibile relativamente alle prescrizioni ed alle metodologie/criteri di verifica, si è fatto diretto riferimento alle varie parti degli Eurocodici, unitamente ai relativi *National Application Documents* (NAD's), verificando puntualmente l'armonizzazione del livello di sicurezza conseguito con quello richiesto dalla vigente Normativa nazionale.

In dettaglio:

D.M. 14 gennaio 2008: Nuove norme tecniche per le costruzioni (indicate nel prosieguo "NTC-08")

• Istruzioni per l'applicazione delle Norme Tecniche per la Costruzioni di cui al D.M. 14/01/2008

• UNI EN 1990: Basi della progettazione strutturale

UNI EN 1991-1-4: Azioni sulle strutture – Azione del vento
 UNI EN 1991-1-5: Azioni sulle strutture – Azioni termiche

• UNI EN 1991-2: Azioni sulle strutture – Carichi da traffico sui ponti

• UNI EN 1992-1-1: Progettazione delle strutture di calcestruzzo - regole generali e regole per gli edifici

• UNI EN 1992-2: Progettazione delle strutture di calcestruzzo – Ponti di calcestruzzo

• UNI EN 1993-1-1: Progettazione delle strutture di acciaio – Regole generali e regole per gli edifici

UNI EN 1993-2: Progettazione delle strutture di acciaio – Ponti di acciaio

• UNI EN 1993-1-5: Progettazione delle strutture di acciaio – Elementi strutturali a lastra

UNI EN 1993-1-8: Progettazione delle strutture di acciaio – Progettazione dei collegamenti

• UNI EN 1993-1-9: Progettazione delle strutture di acciaio – Fatica

• UNI EN 1994-1-1: Progettazione delle strutture composte acciaio-calcestruzzo – Regole generali e regole per

gli edifici

UNI EN 1994-2: Progettazione delle strutture composte acciaio-calcestruzzo – Ponti

• UNI EN 1998-2: Progettazione delle strutture per la resistenza sismica – Ponti

• UNI EN 1090 - 1: Esecuzione di strutture in acciaio e di alluminio – Requisiti per la valutazione di conformità

dei componenti strutturali

• UNI EN 1090 - 2: Esecuzione di strutture in acciaio e di alluminio – Requisiti tecnici per strutture in acciaio.

1.4 Contestualizzazione

Le opere della presente tipologia vengono realizzate nell'ambito dell'intervento di ampliamento alla terza corsia, Autostrada A13 – Padova Sud – Monselice.

Nei punti seguenti vengono richiamati i temi che, in maniera più o meno significativa, necessitano di una opportuna contestualizzazione.

La particolare ubicazione delle opere richiede l'opportuna contestualizzazione dei seguenti parametri, la cui influenza è esposta dettagliatamente nei capitoli a seguire.

1.4.1 Condizioni ambientali e classi di esposizione

Per l'opera in esame si prevede l'esposizione al seguente "range" di temperature:

 $T_{min} = -11 \, ^{\circ}C$

 $T_{max} = 40 \, ^{\circ}C$

Per l'umidità ambientale si assume:

RH = 80 %

Per quanto riguarda le classi di esposizione, si prevede l'alternarsi di cicli di gelo/disgelo, in presenza di agenti disgelanti, per cui, applicheranno le seguenti classi di esposizione:

soletta: XF4
elevazione spalla: XF2
cordoli spalla: XF4
fondazione: XC2
pali: XC2

Le caratteristiche del calcestruzzo dovranno pertanto rispettare, oltre i requisiti di resistenza indicati al punto seguente, anche i criteri previsti dalla vigente Normativa (EN 11104 e EN 206) per quanto riguarda l'esposizione alle classi indicate.

1.4.2 Sismicità

L'opera viene dimensionata con riferimento ai seguenti parametri caratteristici:

Vita nominale: 50 anni

Classe d'uso: $IV \rightarrow Cu = 2.0$

Vita di riferimento: 100 anni

ag: $0.08 \text{ g} \cong 0.78 \text{ m/s}^2$

cat. topografica: T1

suolo: tipo D

1.4.3 Parametri geotecnici

Per quanto riguarda l'inquadramento di dettaglio relativo alle caratteristiche geotecniche dei terreni ricadenti nella tratta di impiego della presente tipologia si rimanda alla relazione geotecnica.

1.5 Caratteristiche materiali

Vengono di seguito elencati i materiali impiegati per la realizzazione dell'opera, unitamente ai rispettivi parametri di riferimento.

1.5.1 Tensioni limite e proprietà di riferimento

Carpenteria metallica

Tipo e grado) (*)						
S355	JO	J3	t <= 20 mm				
S355	J2	G3	20 < t ? 40 mm				
S355	K2	G3	40 < t ? 65 mm				
S355	JO		el. non saldati, profili, piastre				
Tensioni di riferimento (f _v)							
t <= 40 mm	35	5.00 Mpa					
t > 40 mm	335	5.00 Mpa					
riferimenti:							
	NTC 08	3 tab. 11.3.IX	(
	EN 100)25-1					
	EN 100)25-2					
Caratteristic	he						
E_s	210000	0.00 Modulo	di Young				
0	(0.30 Coeffici	ente di Poisson				
G،	80769	9.00 Mod. el	. Tangenziale				

riferimenti:

NTC 08 tab. 11.3.IX EN 1993-1-10 2.3.2(1) EN 10025-1 EN 10025-2

(*) Valutazione grado acciaio secondo EN 1993-1-10 tab. 2.1 lpotesi:

$$\circ T_r, \circ T_\circ, \circ T_r, \circ T_\circ, \circ T_{\circ cf} = 0$$

$$T_{ed} = T_{md} = -15 \, ^{\circ}C$$

 $\circ_{Ed} = 0.75 \text{ fy(t)}$

Connettori a piolo (tipo Nelson)

Tipo e grado S235 J2 G3 Tensioni di riferimento f_{yk} 350.00 Mpa Snervamento f_u 450.00 Mpa rottura a trazione

riferimenti:

EN 13918

Giunzioni bullonate (sistema HRC)

Tipo e clas	se
viti	cl. 10.9
Dadi	cl. 8
Rosette	Acc. C50
cl. Sup.	В
	riferimento
f _{yb}	900.00
f _{ub}	1000.00

riferimenti:

NTC 08 tab. 11.3.XIII EN 1993-1-8 3.1.1(3) EN 14399 EN 1090-2

Calcestruzzo

elemento	classe	f _{ck}	R_{bk}	f _{cm}	$f_{\sf ctm}$	E _{cm}
soletta	C35/45	35	45	43.00	3.21	34000.00
soletta spalla	C28/35	28	35	36.00	2.77	32000.00
pali	C28/35	28	35	36.00	2.77	32000.00

riferimenti:

EN 206

NTC-08 cap. 11.2.10 EN 1992-1-1 3.1.2. tab. 3.1

Accidio	:	h a ***		
Acciaio	ш	parre	ber	C.a.

tipo	B450C	
f _{yk}	450.00 Mpa	snervamento
f _{tk}	540.00 Mpa	rottura a trazione
Es	210000.00 Mpa	modulo di Young

riferimenti:

NTC-08 cap. 11.3 EN 1992-1-1 cap. 3.2 + ann. C EN 1994-2 cap. 3.2(2)

1.5.2 Coefficienti parziali di sicurezza

Relativamente ai coefficienti parziali dei materiali si fa riferimento, nell'ambito delle rispettive verifiche, a quanto contenuto in tabella.

Coefficienti di sicurezza materiali

Carpenteria metallica

Nmo	1.05 verifiche S.L.U resistenza
Nmo Nm1 Nm2	1.10 verifiche S.L.U buckling
№n2	1.25 verifiche S.L.U frattura in trazione
Nm,ser	1.00 verifiche S.L.E limitazione delle tensioni
N≑f	1.00 verifiche S.L. fatica
Km,ser K+f KMf	1.35 non fail safe (vita illimitata)

riferimenti:

NTC 08 tab. 4.2.V EN 1993-1-1 6.1.(1) + N.A.D. EN 1993-2 EN 1993-1-9 cap. 3.(8) - cap. 8.

Piolature

8	1.25 verifiche S.L.U resistenza
ks	0.60 verifiche S.L.E.
₩Mf	1.15 fail safe (vita illimitata)

riferimenti:

NTC 08 cap. 4.3.3 EN 1994-2 cap. 6.6.3.1.(1)

Bullonature

№n2	1.25 resistenza S.L.U.
№n3	1.25 scorrimento S.L.U. (bull. Cat. C)
№m3,ser	1.10 scorrimento S.L.E. (bull. Cat. B)

riferimenti:

NTC 08 tab. 4.2.XII EN 1993-1-8 2.2.(2) + N.A.D. EN 1090-2

Saldature

№n2	1.25 resistenza S.L.U.
₩	0.90 correlation factor (cord. Angolo)

riferimenti:

NTC 08 4.2.8.2.4 EN 1993-1-8 4.5.3.2.(4) + N.A.D. EN 1090-2

Calcestruzzo

Ncc	0.85 carichi di lunga durata (quando rilevante)
№	1.50 S.L.U.

riferimenti:

NTC 08 cap. 4.1.2.1.1.1 NTC 08 cap. 4.3.3 EN 1992-1-1 2.4.2.4

Acciaio in barre

№ 1.15 resistenza S.L.U.

riferimenti:

NTC 08 cap. 4.1.2.1.1.3 NTC 08 cap. 4.3.3

1.6 Software di calcolo

Per l'analisi strutturale dell'impalcato si adotta il metodo degli elementi finiti; si utilizza, a tale fine, il pacchetto software denominato "*LUSAS* (*vers. 14.5*)", fornito da F.E.A. Ltd. (U.K.) su piattaforma windows XP. Il pacchetto software comprende pre-post processore grafico interattivo destinato all'input della geometria di base e all'interpretazione dei risultati di output, ed un risolutore ad elementi finiti.

Per le verifiche delle sezioni in acciaio calcestruzzo si adotta il programma "*Ponti EC4*" sviluppato da Alhambra S.r.I. Il programma opera sulla base di un database di sezioni opportunamente sincronizzato con quello del sistema ad elementi finiti, ed effettua le verifiche di resistenza e di stabilità locale di membrature in acciaio ed acciao-cls sulla base dei criteri contenuti negli Eurocodici di riferimento (EN 1993, EN 1994), e in osservanza a quanto previsto da NTC-08.

In particolare, la procedura opera, per ciascuna sezione, le seguenti verifiche:

- calcolo proprietà geometrico - statiche delle sezioni nelle varie fasi considerate

S.L.U.:

- identificazione delle sezioni, consistente nella preclassificazione dei singoli componenti, e nella classificazione effettiva, effettuata sulla base di ciascuna combinazione di carico.
- verifica per tensioni normali (interazione N/M):
 - sezioni cl. 1 e 2: analisi e verifica plastica di ciascuna sezione e deduzione del rapporto di sfruttamento plastico;
 - sezioni classe 3: analisi tensionale elastica su sezione lorda con calcolo del rapporto di sfruttamento elastico;
 - sezioni classe 4: analisi tensionale elastica su sezione efficace con calcolo del rapporto di sfruttamento elastico;
- verifica a taglio (V)
 - calcolo taglio resistente plastico V_{pl,Rd} / verifica shear buckling, con calcolo taglio resistente V_{b,Rd} = V_{bw,Rd}+V_{bf,Rd}.
- verifica interazione pressoflessione taglio (N-M-V)
 - deduzione del rapporto di sfruttamento finale della sezione
- verifica rapporto v_{Ed}/v_{Rd} piolature (sezioni con rapporto di sfruttamento plastico a flessione ≤ 1;
- calcolo plastico piolature (sezioni con rapporto di sfruttamento plastico a flessione > 1).

S.L.E.:

- verifica elastica S.L. delle tensioni in esercizio
- verifica Web Breathing
- fessurazione soletta
- verifica elastica piolature

Fatica:

- verifica, con il metodo dei coefficienti λ, per preselezionate categorie di dettaglio;
- verifica, con il metodo dei coefficienti λ, della connessione travi/soletta

Nella presente relazione vengono riportati i risultati salienti.

Per le verifiche delle spalle ed in particolare delle sezioni in cemento armato si ricorre al programma "*RC-SEC*" sviluppato da Geostru Software S.a.s., in grado di effettuare verifiche sia tensionali che a rottura.

1.7 Convenzioni generali

Nel prosieguo del presente elaborato si adotteranno le notazioni contemplate dalle varie orme EN di riferimento.

Le unità di misura sono quelle relative al sistema internazionale, ovvero:

lunghezze: m forze - coppie: kN tensioni: MPa

Per quanto riguarda le convenzioni di segno si considerano, in generale, positive le trazioni. Convenzioni specifiche verranno riportate nel prosieguo della presente relazione.

Si farà riferimento, di norma, a sistemi di tipo cartesiano ortogonale, in cui, in generale, si ha piano x-y orizzontale, con x posto tangente al tracciato nel punto in esame ed asse z verticale.

In generale, per quanto riguarda le azioni interne nell'impalcato, salvo diversamente specificato, si indicherà con:

F_x azione assiale

F_v azione tagliante agente nel piano orizzontale

F_z azione tagliante agente nel piano verticale

M_x momento torcente

M_v momento flettente agente nel piano verticale

M_z momento flettente agente nel piano orizzontale

Le verifiche dell'impalcato verranno eseguite esclusivamente con riferimento alle caratteristiche F_x , F_z , M_x , M_y , dal momento che risultano non significativi i contributi F_y ed M_z .

In particolare, per le sollecitazioni verrà impiegata anche la seguente notazione alternativa:

M (M_f) in luogo di M_y

V in luogo di F_z

T in luogo di M_x

Nell'ambito dell'adozione del sistema di riferimento elementare, si precisa che le azioni flettenti di trave sono da intendersi:

- POSITIVE: se le fibre tese sono rivolte all'estradosso trave

- NEGATIVE: se le fibre tese sono rivolte all'intradosso trave

Ulteriori convenzioni specifiche relative alla paratia verranno indicate di volta in volta.

2. Impostazioni delle analisi e delle verifiche

2.1 Analisi della struttura composta (impalcato)

La struttura composta acciaio-calcestruzzo verrà analizzata secondo il metodo classico adottato per questi tipi di strutture, che prevede il calcolo delle caratteristiche geometrico-statiche delle varie sezioni sulla base di una sezione equivalente, in cui la porzione in calcestruzzo viene "omogeneizzata" ad acciaio in funzione del rapporto $E_s/E_{c(t)}$, essendo $E_{c(t)}$ il modulo elastico del calcestruzzo valutato in funzione del tipo di carico applicato, tenendo conto, ove opportuno, dei fenomeni a lungo termine.

Viene pertanto effettuata l'analisi separata e conseguente sovrapposizione dei quadri tensionali afferenti alle varie "fasi" attraversate dalla struttura, ciascuna delle quali si differenzia dalle altre per lo schema statico di analisi e/o per la proprietà delle sezioni.

2.1.1 Fasi

Le varie verifiche vengono effettuate con riferimento alla condizione di lungo termine (analisi "long term"), che si rivela essere la più gravosa in particolare per gli elementi in acciaio delle travi principali.

Vengono prese in esame pertanto le seguenti fasi:

- fase 1: assenza soletta (fase iniziale).
- fase 2a: presenza della soletta, con modulo elastico a lungo termine, valutato per carichi permanenti (di intensità costante nel tempo) applicati ad istante t₁ dal getto.
- fase 2b: presenza della soletta, con modulo elastico a lungo termine, valutato per carichi applicati
 ad istante t₁ immediatamente dopo il getto ed aventi sviluppo nel tempo parallelo a quello
 dei fenomeni differiti (ritiro, cedimenti vincolari "lenti");
- fase 2c: presenza della soletta, con modulo elastico a lungo termine, valutato per coazioni e/o
 cedimenti vincolari permanenti (di intensità costante nel tempo) imposti all'istante t₁ dal il
 getto.
- fase 3: presenza della soletta, con modulo elastico valutato a breve termine.
- fase "cracked": soletta fessurata (conteggio delle sole armature longitudinali presenti in soletta).

Per il caso in esame non è prevista l'applicazione di coazioni imposte, pertanto la "fase 2c" non verrà considerata.

La soletta verrà considerata "cracked" al superamento del doppio della resistenza a trazione media fctm del conglomerato, sotto l'azione della combinazione di carico S.L.E. caratteristica.

La tabella seguente riporta, fase per fase, i vari contributi di carico considerati per l'opera in esame.

	analisi long term										
fase	carico	sigla	sezione resistente	stato connessione							
	peso proprio elementi in acciaio	G _{k1} '	sezione metallica								
1	peso proprio coppelle	G _{k1} "	sezione metallica	non attiva							
	peso proprio getto soletta in c.a.	G _{k1} "	sezione metallica								
2a	carichi permanenti portati	G _{k2}	007 0m0g 000 n=n norm	attiva							
Za	effetto scavo/reinterro spalla	$G_{k,earth}$	sez. omog. con n=n _L perm.	attiva							
2b	ritiro	$G_{sh,k}$	sez. omog. con n=n _l ritiro	attiva							
20	cedimenti vincolari	G _{settl,k}	sez. omog. com n-n _L mmo	attiva							
	Variazioni termiche uniformi	$T_{k,N}$									
	Variazioni termiche lineari	$T_{k,M}$									
3	Azione del vento F _{w,k}		sez. omog. con n=n0	attiva							
	Attrito agli appoggi	$Q_{fr,k}$									

Carchi mobili gr. i (*)
(*)Azione multicomponente

La configurazione dettagliata dell'azione multicomponente Q_k è indicata nel seguito della relazione.

2.1.2 Coefficienti di omogeneizzazione

La valutazione dei coefficienti di viscosità finale, propedeutica alla valutazione dei coefficienti di omogeneizzazione, viene effettuata secondo i criteri contenuti nell'annex B della EN 1992-1-1 a partire dai seguenti dati di base:

RH = 80 % umidità relativa dell'atmosfera $f_{cm} = 35.0 \text{ MPa} \qquad \qquad \text{resistenza cil. media del calcestruzzo}$ Tipo cemento: N $A_c = 1485000 \text{ mm}^2 \qquad \qquad \text{area getto soletta calcestruzzo (escl. coppella)}$ $u = 5400 + 2 \cdot 275 + 2 \cdot 1500 = 8950 \text{ mm} \qquad \qquad \text{lato inferiore} + 2 \text{ bordi laterali} + 2 \text{ sup. marciapiedi.}$ $h_0 = 2 \cdot A_c / u = 331.84 \text{ mm} \qquad \qquad \text{spessore fittizio soletta}$

Ai fini della valutazione degli effetti del ritiro e dei cedimenti lenti (t_{01} = 1 gg, t_{∞} = 25550.0 gg) si ha pertanto:

 t_{01} = 1 gg per gli effetti dei carichi da ritiro e cedimento lento (cfr. EN 1994-2-cap. 5.4.2.2.(4)) t_{02} = 30 gg per gli effetti dei sovraccarichi permanenti

 t_{∞} = 25 550 gg

La valutazione dei coefficienti di omogeneizzazione da assegnarsi alla soletta nelle varie fasi di vita indicate al punto precedente viene effettuata secondo i criteri contenuti in EN 1994-2, cap. 5.4.2.1..

Il calcolo dei vari valori di n_{Li} (coefficiente di omogeneizzazione per carico di lunga durata, nella fase "i"), viene effettuato sulla base di:

$$\begin{split} n_{Li} &= n_0 \; (1 + \psi_L \, \phi_t) & \text{cfr. eq. 5.6 in EN 1994-2 5.4.2.2.(1)} \\ &\text{in cui:} \\ n_0 &= E_s / E_{cm(0)} \; (G_s / G_{c(0)}) & \text{coefficiente di omogeneizzazione per carichi di breve durata} \\ \psi_L &= \text{"creep multiplier"} & \text{avente valore variabile in funzione del tipo di carico, ovvero (cfr. EN 1994-2 5.4.2.2.(2)):} \end{split}$$

ψ_{L} = 1.10	per i carichi permanenti
ψ_{L} = 1.50	per i cedimenti vincolari istantanei e deformazioni imposte
$\psi_{\rm L} = 0.55$	per l'azione del ritiro e cedimenti lenti

La tabella seguente riporta i coefficienti di viscosità calcolati, unitamente ai parametri intermedi necessari al calcolo. La colonna di destra riporta il riferimento alle formule adottate, tratte dall'annex B della EN 1992-1-1.

	Valutazione coefficient	i di viscosità (ann	iex B EN 1992-1-1)					
α1	0.866		B.8c					
α2	0.960		B.8c					
α3	0.902		B.8c					
α	0		B.9					
$\beta(f_{cm})$	2.56		B.4					
β_h	962.04		B.8a / B.8b					
фкн	1.169		B.3a / B.3b					
	t ₀₁	t ₀₂	t ₀₃					
t_{0i}	30	1	50					
$t_{0i,mod}$	30	1	50	B.5				
β(t0)	0.482	0.909	0.437	B.2				
φ0	1.444	2.723	1.310	B.2				
φ (t ₀ ,t _∞)	1.428	2.693	1.296	B.1				

La tabella seguente riepiloga, per le fasi considerate, i coefficienti di omogeneizzazione adottati rispettivamente per il modulo elastico e per il modulo di deformabilità tangenziale nelle varia fasi considerate. Per uniformità con gli indici adottati nel prosieguo della relazione, il coefficiente di omogeneizzazione di base n_0 viene indicato con n_3 (il pedice indica il nome della fase cui si riferisce).

	Coefficienti di omogeneizzazione									
	mE	mG	E _{cm(t)}							
n ₁	0.00	0.00	0.00							
n _{2a}	15.84	14.63	13254.27							
n_{2b}	15.29	14.11	13733.56							
n _{2c}	18.14	28.67	11577.66							
n ₃	6.16	5.69	34077.15							

2.1.3 Modellazione/idealizzazione della struttura

Le analisi condotte considerano tre differenti sottosistemi: impalcato, spalla e pali di fondazione.

Il sistema-impalcato, detto "sistema 1", è schematizzato da 2 travi semplicemente appoggiate su 2 appoggi per spalla. I gradi di libertà di questi appoggi riguardano la rotazione, mentre per le traslazioni nelle due direzioni del piano fornisce una rigidezza che deve essere opportunamente calibrata. Ciò consente di assorbire e trasmettere alle sottostrutture le sollecitazioni orizzontali sia di natura statica sia sismica. L'impalcato verrà modellato mediante un sistema composto da una coppia di elementi monodimensionali torsiorgidi, orditi in asse a ciascun cassoncino, trasversalmente collegati dagli elementi di soletta.

Il sistema-spalla, detto "sistema 2", viene modellato ed analizzato in maniera completamente separata, considerando le azioni derivanti dall'impalcato ed agenti in corrispondenza degli appoggi con l'effettiva eccentricità, nonchè i pesi propri della spalla stessa, ed i sovraccarichi agenti a tergo. A favore di sicurezza, si considereranno inoltre le spinte derivanti dal terreno e agenti sul paraghiaia, anche se la soluzione

adottata prevede l'adozione di un sistema di terre armate interno alla struttura del corpo spalla che assolve il compito di assorbire le pressioni del terreno contenuto.

Per l'analisi delle palificate, detto "sistema 3", si rimanda alla relazione geotecnica.

Pertanto, con riferimento alle procedure di calcolo in uso, il sistema 1 (impalcato) verrà studiato in maniera a sé stante, mediante un modello elastico lineare ad elementi finiti a grigliato elaborato con il programma *LUSAS – rel. 14.5*, vincolando le estremità delle travi mediante "*joint*" in grado di riprodurre gli effettivi gradi di vincolo degli appoggi previsti.

Parallelamente, il sistema 2 (spalla) viene studiato in maniera a sé stante elaborando un opportuno foglio elettronico mediante "*Excel*" in cui vengono dedette le sollecitazioni massime agenti sulle sezioni principali della struttura:

- sezione 1: spiccato parte superiore paraghiaia;
- sezione 2: spiccato paramento;
- sezione 3: spiccato fondazione.

2.1.4 Sintesi step di analisi

Di seguito si espongono i passi principali della metodologia di analisi seguita.

a) Sollecitazioni lungo l'impalcato e verifiche

L'analisi strutturale dell'impalcato viene eseguta tramite la sovrapposizione degli effetti delle sollecitazioni derivanti diversi steps di costruzione e vita dell'opera. L'impalcato si considera appoggiato su isolatori sismici.

Dapprima si considera l'impalcato atto a simulare la fase di posa delle travi metalliche e del getto della soletta. Le caratteristiche sezionali sono quelle relative alla fase 1 (presenza di sole travi metalliche)

- fase 1: per lo studio dei carichi propri dellelle travi metalliche e del getto della soletta.

Quindi si passa a considerare l'impalcato atto a modellare il comportamento della struttura sotto l'azione di tutti i carichi di tipo "gravitazionale". Le caratteristiche sezionali impiegate sono le seguenti:

- fase 2a: per lo studio dei carichi permanenti portati.
- fase 2b: per lo studio degli effetti iperstatici del ritiro (effetti secondari) e dei cedimenti vincolari.
- fase 3: per lo studio degli effetti dei carichi variabili (traffico, temperatura) e dei permanenti portati.

Quanto indicato ai punti precedenti è sintetizzato nelle figure e nella tabella seguenti.

carico	tase	
G _{k1} i': carichi di peso proprio	1	
G _{k2} : sovraccarichi d finitura	2a	
$G_{k,sett.}$: - cedimenti vincolari	2b	permanenti
g _{sh,k} I - effetti secondari del ritiro	2b	
g _{sh,k} II - effetti primari del ritiro	2b	
Q _{k,} gr. 1	3	variabili
T _k : - inviluppo comb. termica	3	variabili

b) Sollecitazioni lungo la spalla e verifiche

Viene ricostruito l'andamento delle sollecitazioni lungo la spalla necessario alle verifiche geotecniche ed alle verifiche strutturali del corpo spalla.

Tale andamento viene ricavato mediante un foglio di calcolo ad hoc. In esso viene costruito il modello della spalla e applicate in testa le sollecitazioni rilevate in corrispondenza delle connessioni dell'impalcato dedotte dall'analisi a grigliato. Si procederà implementando, nell'ambito di ciascuno S.L. in esame, le caratteristiche di sollecitazione derivanti dalle opportune combinazioni delle azioni elementari.

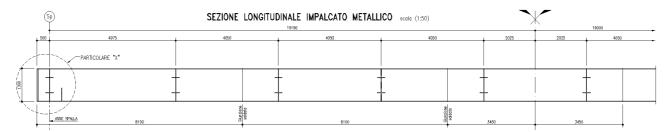
2.2 Analisi sismica

Essendo poco significativa l'influenza delle azioni sismiche sulla struttura di impalcato; l'analisi si focalizza essenzialmente sul quadro tensionale insistente sulle sottostrutture.

Ai fini dell'analisi sismica, si terrà conto dei seguenti contributi di carico:

- carichi quasi permanenti: G_k + 0.5 T_k
- azione sismica (sovraspinta terreno) agente sul corpo spalla
- azioni inerziali, concordi con il verso dell'azione sismica, agenti su masse impalcato e masse sottostrutture.

Per quanto riguarda lo S.L. sismico, si fa riferimento a:


SLC: per il dimensionamento delle apparecchiature di vincolo

SLV: per la verifica slu degli elementi strutturali e del varco giunti.

SLD: per il dimensionamento delle escursioni dei giunti (per i quali si ammette il danneggiamento allo SLV)

2.3 Dati generali delle sezioni di impalcato (travi e traversi)

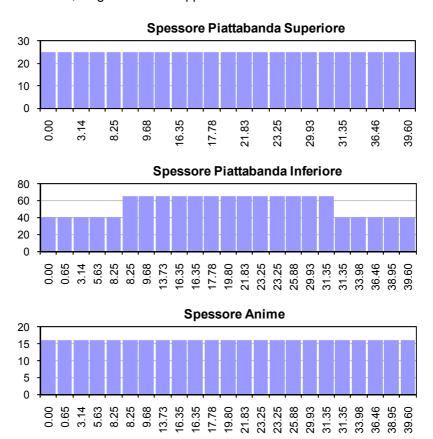
Le travi principali presentano un'altezza costante come indicato dallo schema seguente.

Ciascuna delle quatro travi è suddivisa in complessivi 3 conci raggruppati in tre tipologie principali, indicate, nel prosieguo come A, B e C, ed aventi rispettivamente lunghezza pari a:

conci A: 8.10 m

conci B: 8.10 m

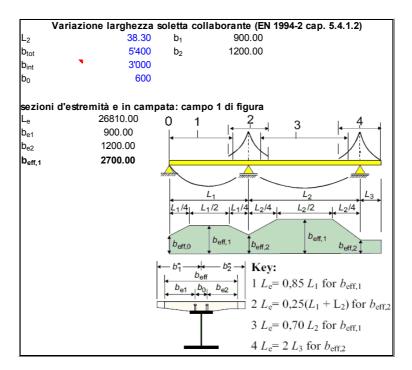
conci C: 6.90 m

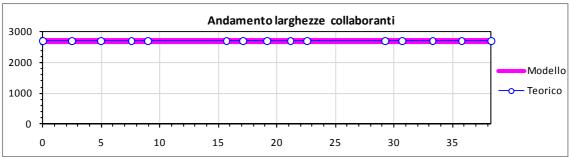

I traversi di tipo "I" sono collegati mediante giunzioni bullonate agli irrigidimenti verticali d'anima.

Per i piatti componenti le travate metalliche si prevede l'impiego di lamiere di spessore massimo pari a 70.0 mm.

Le tabelle seguenti riportano le caratteristiche dimensionali distintive dei vari conci di trave. Si indicano rispettivamente con il pedice _sez1 e _sez2 rispettivamente i dati relativi alla sezione "iniziale" e "finale" di ciascun concio.

		ConcioA_sez1	ConcioA_sez2	ConcioB_sez1	ConcioB_sez2	ConcioC_sez1	ConcioC_sez2	Traverso		Legenda
	h _{tot}	1300	1300	1300	1300	1300	1300	600.00	h _s	altezza trave metallica
<u>8</u>	b _{bot}	750	750	750	750	750	750	300.00	b _{inf}	larghezza piattabanda inferiore
metallica	t_{bot}	40	40	65	65	65	65	20.00	t _{inf}	spessore pattabanda inferiore
_	b_{top}	600	600	600	600	600	600	300.00	b _{sup}	larghezza piattabanda superiore
Sezione	t_{top}	25	25	25	25	25	25	20.00	$t_{\sf sup}$	spessore pattabanda superiore
Sezi	h _{web}	1235	1235	1210	1210	1210	1210	560.00	h _{web}	altezza anima
"	t _{web}	16	16	16	16	16	16	16.00	t _{web}	spessore anima
	h _{cls}	275	275	275	275	275	275		h _{cls}	spessore complessivo soletta
B	h _{cop}	4	4	4	4	4	4		h∞p	spessore di calcolo coppella
Soletta	t _{sol}	271	271	271	271	271	271		t _{sol}	spessore di calcolo soletta
ŭ	b _{reale}	2700	2700	2700	2700	2700	2700		b _{reale}	larghezza reale soletta
	b _{eff}	2700	2700	2700	2700	2700	2700		b_{eff}	larghezza collaborante soletta
	Ø _{sup}	20	20	20	20	20	20		J _{sup}	diametro armature superiori
۳ ا	passo _{sup}	200	200	200	200	200	200		passo _{sup}	passo armature superiori
Armatura	C _{sup}	57	57	57	57	57	57		C _{sup}	copriferro armature superiori
ΙĔ	ϕ_{inf}	20	20	20	20	20	20		Jinf	diametro armature inferiori
⁴	passo _{inf}	200	200	200	200	200	200		passo _{inf}	passo armature inferiori
	C _{inf}	22	22	22	22	22	22		C _{inf}	copriferro armature inferiori


I grafici seguenti visualizzano gli spessori impiegati, rispettivamente per la lamiera inferiore, la piattabanda superiore e l'anima, lungo l'intero sviluppo di ciascun filo di trave.



2.3.1 Larghezze collaboranti di soletta

Le larghezze collaboranti di soletta vengono valutate sulla base dei criteri contenuti in EN 1994-2, (cap. 5.4.1.2/NTC-08, cap. 4.3.2.3).

La tabella riportata al punto seguente restituisce il calcolo delle larghezze collaboranti lungo la trave.

Nell'ambito delle verifiche sezionali, a ciascuna sezione di verifica verrà assegnata l'effettiva larghezza collaborante di competenza (andamento "teorico" del diagramma precedente).

2.3.2 Armature longitudinali

Ai fini del calcolo delle proprietà geometrico statiche delle sezioni, e per le verifiche delle travi principali, s considera la presenza, in prima battuta, delle seguenti armature longitudinali:

concio A: Ø16/20 inferiori/superiori concio B: Ø16/20 inferiori/superiori concio C: Ø16/20 inferiori/superiori

2.3.3 Stiffeners d'anima

Il sistema di stiffeners è formato da piatti verticali 260 × 16 mm, disposti sul lato interno dell'anima. Le sue caratteristiche sono riportate di seguito:

 $b \times t = 260 \times 16 \text{ mm}$ piatto semplice

Si fa presente che tali dimensioni vengono assunte per motivi costruttivi, mentre ai fini delle verifiche si considererà una dimensione inferiore pari a 180x16 mm.

2.3.4 Proprietà geometrico-statiche sezioni di impalcato

Nell'ambito della modellazione adottata, le proprietà geometrico statiche delle sezioni di impalcato verranno determinate con riferimento alla singola trave metallica insieme con la relativa porzione di soletta collaborante.

Le tabelle seguenti riepilogano le caratteristiche geometriche delle sezioni impiegate per i vari conci componenti ciascun cassoncino, idealizzato come trave equivalente torsiorigida.

							Concio t	po ConcioA	_sez2			_	_
	fase_1	fase_2a	fase_2b	fase_2c	fase_3	cracked		fase_1	fase_2a	fase_2b	fase_2c	fase_3	cracked
Α	6.48E+04	1.194E+05	1.211E+05	1.136E+05	1.920E+05	7.324E+04	Α	6.476E+04	1.194E+05	1.211E+05	1.136E+05	1.920E+05	7.324E+04
yg	508.10	933.19	940.17	907.15	1124.54	613.94	Уg	508.10	933.19	940.17	907.15	1124.54	613.94
J_{xx}	1.92E+10	4.51E+10	4.56E+10	4.35E+10	5.714E+10	2.554E+10	J_{xx}	1.92E+10	4.51E+10	4.56E+10	4.35E+10	5.714E+10	2.554E+10
J_{yy}	1.86E+09	3.51E+10	3.61E+10	3.15E+10	7.91E+10	7.91E+10	J_{yy}	1.86E+09	3.51E+10	3.61E+10	3.15E+10	7.91E+10	7.91E+10
Asy	6.48E+07	1.19E+08	1.21E+08	1.14E+08	1.92E+08	7.32E+07	Asy	6.48E+07	1.19E+08	1.21E+08	1.14E+08	1.92E+08	7.32E+07
Asz	2.08E+04	2.08E+04	2.08E+04	2.08E+04	2.08E+04	2.08E+04	Asz	2.08E+04	2.08E+04	2.08E+04	2.08E+04	2.08E+04	2.08E+04
k _t	2.08E+07	1.30E+09	1.35E+09	6.74E+08	3.31E+09	3.31E+09	k_t	2.08E+07	1.30E+09	1.35E+09	6.74E+08	3.31E+09	3.31E+09
W _{xxcls}		7.03E+07	7.18E+07	6.52E+07	1.27E+08		W _{xxcls}		7.03E+07	7.18E+07	6.52E+07	1.27E+08	
$W_{xxreinf}$		9.23E+07	9.46E+07	8.45E+07	1.92E+08	3.16E+07	$W_{xxreinf}$		9.23E+07	9.46E+07	8.45E+07	1.92E+08	3.16E+07
W_{xx5}	2.427E+07	1.230E+08	1.266E+08	1.108E+08	3.257E+08	3.723E+07	W_{xx5}	2.427E+07	1.230E+08	1.266E+08	1.108E+08	3.257E+08	3.723E+07
W_{xx4}	2.51E+07	1.32E+08	1.36E+08	1.18E+08	3.80E+08	3.86E+07	W_{xx4}	2.51E+07	1.32E+08	1.36E+08	1.18E+08	3.80E+08	3.86E+07
W_{xx2}	-4.11E+07	-5.05E+07	-5.06E+07	-5.02E+07	-5.27E+07	-4.45E+07	W_{xx2}	-4.11E+07	-5.05E+07	-5.06E+07	-5.02E+07	-5.27E+07	-4.45E+07
W_{xx1}	-3.78E+07	-4.84E+07	-4.85E+07	-4.80E+07	-5.08E+07	-4.16E+07	W_{xx1}	-3.78E+07	-4.84E+07	-4.85E+07	-4.80E+07	-5.08E+07	-4.16E+07
S _{xx5}		2.75E+07	2.80E+07	2.58E+07	3.99E+07	6.85E+06	S _{xx5}		2.75E+07	2.80E+07	2.58E+07	3.99E+07	6.85E+06
S_{xx4}	1.17E+07	3.28E+07	3.32E+07	3.15E+07	4.24E+07	1.70E+07	S_{xx4}	1.17E+07	3.28E+07	3.32E+07	3.15E+07	4.24E+07	1.70E+07
S _{xx3 reale}	1.64E+07	3.38E+07	3.41E+07	3.26E+07	4.25E+07	2.05E+07	S _{xx3 reale}	1.64E+07	3.38E+07	3.41E+07	3.26E+07	4.25E+07	2.05E+07
S _{xx2}	1.46E+07	2.74E+07	2.76E+07	2.66E+07	3.31E+07	1.78E+07	S_{xx2}	1.46E+07	2.74E+07	2.76E+07	2.66E+07	3.31E+07	1.78E+07
S _{xx1}	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	S_{xx1}	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
е	792	367	360	393	175	686	е	792	367	360	393	175	686

Concio ti	po ConcioB	sez1				Concio tipo ConcioB_sez2							
	fase_1	fase_2a	fase_2b	fase_2c	fase_3	cracked		fase_1	fa se_2a	fase_2b	fa se_2c	fase_3	cracked
Α	7.944E+04	1.341E+05	1.358E+05	1.283E+05	2.067E+05	8.792E+04	Α	7.944E+04	1.341E+05	1.358E+05	1.283E+05	2.067E+05	8.792E+04
y_g	423.45	836.51	843.92	809.04	1048.21	519.78	y_g	423.45	836.51	843.92	809.04	1048.21	519.78
J_{xx}	2.17E+10	5.53E+10	5.59E+10	5.31E+10	7.289E+10	2.943E+10	J_{xx}	2.17E+10	5.53E+10	5.59E+10	5.31E+10	7.289E+10	2.943E+10
J_{yy}	2.56E+09	3.58E+10	3.68E+10	3.22E+10	7.98E+10	7.98E+10	J_{yy}	2.56E+09	3.58E+10	3.68E+10	3.22E+10	7.98E+10	7.98E+10
Asy	7.94E+07	1.34E+08	1.36E+08	1.28E+08	2.07E+08	8.79E+07	Asy	7.94E+07	1.34E+08	1.36E+08	1.28E+08	2.07E+08	8.79E+07
Asz	2.08E+04	2.08E+04	2.08E+04	2.08E+04	2.08E+04	2.08E+04	Asz	2.08E+04	2.08E+04	2.08E+04	2.08E+04	2.08E+04	2.08E+04
k _t	5.88E+07	1.34E+09	1.38E+09	7.12E+08	3.35E+09	3.35E+09	k_t	5.88E+07	1.34E+09	1.38E+09	7.12E+08	3.35E+09	3.35E+09
W _{xxcls}		7.49E+07	7.65E+07	6.93E+07	1.38E+08		W _{xxcls}		7.49E+07	7.65E+07	6.93E+07	1.38E+08	
$W_{xxreinf}$		9.45E+07	9.68E+07	8.66E+07	1.95E+08	3.26E+07	$W_{xxreinf}$		9.45E+07	9.68E+07	8.66E+07	1.95E+08	3.26E+07
W_{xx5}	2.479E+07	1.194E+08	1.226E+08	1.081E+08	2.895E+08	3.772E+07	W_{xx5}	2.479E+07	1.194E+08	1.226E+08	1.081E+08	2.895E+08	3.772E+07
W_{xx4}	2.55E+07	1.26E+08	1.30E+08	1.14E+08	3.21E+08	3.90E+07	W_{xx4}	2.55E+07	1.26E+08	1.30E+08	1.14E+08	3.21E+08	3.90E+07
W_{xx2}	-5.98E+07	-7.13E+07	-7.14E+07	-7.09E+07	-7.38E+07	-6.40E+07	W_{xx2}	-5.98E+07	-7.13E+07	-7.14E+07	-7.09E+07	-7.38E+07	-6.40E+07
W _{xx1}	-5.13E+07	-6.61E+07	-6.63E+07	-6.56E+07	-6.95E+07	-5.66E+07	W _{xx1}	-5.13E+07	-6.61E+07	-6.63E+07	-6.56E+07	-6.95E+07	-5.66E+07
S _{xx5}		3.28E+07	3.34E+07	3.06E+07	4.96E+07	7.65E+06	S _{xx5}		3.28E+07	3.34E+07	3.06E+07	4.96E+07	7.65E+06
S _{xx4}	1.30E+07	3.96E+07	4.01E+07	3.78E+07	5.32E+07	1.92E+07	S_{xx4}	1.30E+07	3.96E+07	4.01E+07	3.78E+07	5.32E+07	1.92E+07
S _{xx3 reale}	1.88E+07	4.11E+07	4.15E+07	3.95E+07	5.36E+07	2.37E+07	S _{xx3 reale}	1.88E+07	4.11E+07	4.15E+07	3.95E+07	5.36E+07	2.37E+07
S _{xx2}	1.77E+07	3.63E+07	3.66E+07	3.51E+07	4.58E+07	2.20E+07	S_{xx2}	1.77E+07	3.63E+07	3.66E+07	3.51E+07	4.58E+07	2.20E+07
S _{xx1}	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	S_{xx1}	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
е	877	463	456	491	252	780	е	877	463	456	491	252	780

Concio ti	concio tipo ConcioC_sez1				Concio tipo ConcioC_sez2								
	fase_1	fase_2a	fase_2b	fase_2c	fase_3	cracked		fase_1	fase_2a	fase_2b	fase_2c	fase_3	cracked
Α	7.944E+04	1.341E+05	1.358E+05	1.283E+05	2.067E+05	8.792E+04	Α	7.944E+04	1.341E+05	1.358E+05	1.283E+05	2.067E+05	8.792E+04
\mathbf{y}_{g}	423.45	836.51	843.92	809.04	1048.21	519.78	y_g	423.45	836.51	843.92	809.04	1048.21	519.78
J_{xx}	2.17E+10	5.53E+10	5.59E+10	5.31E+10	7.289E+10	2.943E+10	J_{xx}	2.17E+10	5.53E+10	5.59E+10	5.31E+10	7.289E+10	2.943E+10
J_{yy}	2.56E+09	3.58E+10	3.68E+10	3.22E+10	7.98E+10	7.98E+10	J_{yy}	2.56E+09	3.58E+10	3.68E+10	3.22E+10	7.98E+10	7.98E+10
Asy	7.94E+07	1.34E+08	1.36E+08	1.28E+08	2.07E+08	8.79E+07	Asy	7.94E+07	1.34E+08	1.36E+08	1.28E+08	2.07E+08	8.79E+07
Asz	2.08E+04	2.08E+04	2.08E+04	2.08E+04	2.08E+04	2.08E+04	Asz	2.08E+04	2.08E+04	2.08E+04	2.08E+04	2.08E+04	2.08E+04
k _t	5.88E+07	1.34E+09	1.38E+09	7.12E+08	3.35E+09	3.35E+09	k _t	5.88E+07	1.34E+09	1.38E+09	7.12E+08	3.35E+09	3.35E+09
W _{xxcls}		7.49E+07	7.65E+07	6.93E+07	1.38E+08		W _{xxcls}		7.49E+07	7.65E+07	6.93E+07	1.38E+08	
$W_{xxreinf}$		9.45E+07	9.68E+07	8.66E+07	1.95E+08	3.26E+07	$W_{xxreinf}$		9.45E+07	9.68E+07	8.66E+07	1.95E+08	3.26E+07
W_{xx5}	2.479E+07	1.194E+08	1.226E+08	1.081E+08	2.895E+08	3.772E+07	W_{xx5}	2.479E+07	1.194E+08	1.226E+08	1.081E+08	2.895E+08	3.772E+07
W_{xx4}	2.55E+07	1.26E+08	1.30E+08	1.14E+08	3.21E+08	3.90E+07	W_{xx4}	2.55E+07	1.26E+08	1.30E+08	1.14E+08	3.21E+08	3.90E+07
W_{xx2}	-5.98E+07	-7.13E+07	-7.14E+07	-7.09E+07	-7.38E+07	-6.40E+07	W_{xx2}	-5.98E+07	-7.13E+07	-7.14E+07	-7.09E+07	-7.38E+07	-6.40E+07
W_{xx1}	-5.13E+07	-6.61E+07	-6.63E+07	-6.56E+07	-6.95E+07	-5.66E+07	W_{xx1}	-5.13E+07	-6.61E+07	-6.63E+07	-6.56E+07	-6.95E+07	-5.66E+07
S _{xx5}		3.28E+07	3.34E+07	3.06E+07	4.96E+07	7.65E+06	S _{xx5}		3.28E+07	3.34E+07	3.06E+07	4.96E+07	7.65E+06
S_{xx4}	1.30E+07	3.96E+07	4.01E+07	3.78E+07	5.32E+07	1.92E+07	S_{xx4}	1.30E+07	3.96E+07	4.01E+07	3.78E+07	5.32E+07	1.92E+07
S _{xx3 reale}	1.88E+07	4.11E+07	4.15E+07	3.95E+07	5.36E+07	2.37E+07	S _{xx3 reale}	1.88E+07	4.11E+07	4.15E+07	3.95E+07	5.36E+07	2.37E+07
S_{xx2}	1.77E+07	3.63E+07	3.66E+07	3.51E+07	4.58E+07	2.20E+07	S_{xx2}	1.77E+07	3.63E+07	3.66E+07	3.51E+07	4.58E+07	2.20E+07
S _{xx1}	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	S _{xx1}	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
е	877	463	456	491	252	780	е	877	463	456	491	252	780

2.4 Sezioni di verifica

Al fine di facilitare l'interpretazione dei risultati in output, le sezioni di verifica verranno posizionate lungo l'intero sviluppo della trave compreso tra i fili estremi di spalla.

Ai fini delle verifiche delle travi, si prendono in esame complessivamente 19 sezioni di verifica, ubicate nei seguenti punti significativi:

- sezione a filo appoggio impalcato
- sezioni poste rispettivamente alla destra e sinistra dell'attacco traversi
- sezioni poste rispettivamente alla destra e sinistra delle giunzioni tra i conci di trave
- sezione di mezzeria

L'interasse tipico tra le sezioni di verifica varia pertanto tra 1.42 e 2.62 m, in grado pertanto di restituire un quadro pienamente esaustivo dello sfruttamento delle sezioni di impalcato.

In corrispondenza delle giunzioni, la verifica verrà effettuata considerando rispettivamente le caratteristiche del concio di arrivo e del concio di partenza, la sezione di verifica verrà pertanto sdoppiata.

La tabella seguente riepiloga la posizione delle sezioni di verifica, unitamente alla corrispondenza delle stesse con le varie tipologie di concio, la relativa altezza e larghezza collaborante di soletta (effettiva), ed il numero elemento/gauss point cui si riferisce nel modello E.F.

Nome	Posizione	Elemento	Gauss Point	Progr. [m]	h _{trave} [mm]	b _{coll} [mm]
A_S1	Appoggio	3	1	0.65	1'300	2700
A_S2	Traverso	7	1	5.625	1'300	2700
A_S3	Giunzione	11	1	8.25	1'300	2700
B_S4	Giunzione	11	1	8.251	1'300	2700
B_S5	Traverso	13	1	9.675	1'300	2700
B_S6	Traverso	17	1	13.725	1'300	2700
B_S7	Giunzione	21	1	16.35	1'300	2700
B_S8	Giunzione	21	1	16.351	1'300	2700
C_S9	Traverso	23	1	17.775	1'300	2700
C_S10	Mezzeria	25	1	19.8	1'300	2700
C_S11	Traverso	26	11	21.825	1'300	2700
B_S12	Giunzione	28	11	23.25	1'300	2700
B_S13	Giunzione	28	11	23.251	1'300	2700
B_S14	Traverso	32	11	25.875	1'300	2700
B_S15	Traverso	36	11	29.925	1'300	2700
B_S16	Giunzione	38	11	31.35	1'300	2700
A_S17	Giunzione	38	11	31.351	1'300	2700
A_S18	Traverso	42	11	33.975	1'300	2700
A_S19	Appoggio	46	11	38.95	1'300	2700

2.5 Stato fessurativo della soletta

Le caratteristiche geometriche utilizzate ai fini dell'analisi strutturale vengono selezionate in funzione dello stato fessurativo atteso per la soletta. A tale proposito si seguono i criteri contemplati da EN 1994-2 cap. 5.4.2.3(2)/ NTC 2008 4.3.2.2.1.

2.6 Verifiche eseguite

In linea generale vengono sviluppati i calcoli relativi a:

- a) trave di impalcato set completo di verifiche
- b) spalle calcolo sollecitazioni/dimensionamento armature/verifiche geotecniche

Lo S.L. sismico viene preso in esame con solo riferimento alle verifiche delle sottostrutture.

2.6.1 Verifiche sezioni impalcato

I criteri per la verifica della resistenza delle sezioni (cross section checks) sono contenuti in in Eurocodice+N.A.D. (rif. EN 1993-1-1, EN1993-1-5, EN 1993-2, EN1994-1-1, EN 1994-2) / NTC-08 cap 4.2., 4.3 e relative Istruzioni.

Nel prosieguo si farà riferimento puntuale ai contenuti dell'Eurocodice, caratterizzato da una trattazione più omogenea, e da un riferimento più puntuale relativamente alle varie regole applicative.

Nell'ambito dei vari S.L. considerati, si effettuano le seguenti verifiche sezionali:

S.L.U.

resistenza delle sezioni (incluse verifiche di local buckling)

S.L.E.

limitazione delle tensioni web breathing controllo fessurazione soletta

Fatica

verifica dell'ampiezza dei $\Delta\sigma$ (metodo dei coefficienti λ)

I medesimi S.L. verranno esaminati per la verifica della connessione trave-soletta.

Il complesso delle precedenti verifiche viene effettuato in automatico dal programma "Ponti EC4", di cui nel seguito vengono esposte in dettaglio le modalità operative.

Le verifiche vengono effettuate per la condizione di lungo termine (cumulo tensioni fasi 1, 2a, 2b e 3).

Si riportano i quadri sintetici ed i diagrammi delle tensioni lungo l'impalcato, relativamente ai vari elementi strutturali studiati, limitatamente alla condizione di lungo termine, apparsa quella in generale più gravosa ai fini delle verifiche dell'impalcato.

2.6.2 Verifica spalle

Si valuta l'andamento delle azioni flettenti nei vari S.L. agenti lungo lo sviluppo delle spalle. Vengono effettuate le verifiche delle sezioni in c.a. più significative, con riferimento, in generale, a:

S.L.U. (tensioni normali) combinazione S.L.U. Fondamentale S.L.U. tensioni taglianti combinazione S.L.U. Fondamentale

S.L.E. tensioni normali combinazioni S.L.E. Rara Caratteristica e S.L.E. Quasi Permanente

S.L.E. fessurazione combinazione S.L.E. Frequente

(se significativa anche la S.L.E. Quasi Permanente)

3. Analisi dei carichi

Di seguito si riporta la descrizione dei vari contributi di carico presi in esame ai fini dell'analisi globale dell'impalcato.

3.1 Carichi agenti in fase 1

3.1.1 Pesi propri acciaio (G_{k1})

Il peso dei vari elementi strutturali metallici è stato conteggiato con riferimento ad un peso specifico convenzionale di 78.50 kN/m³, considerato rispettivamente per travi e vestizione.

Per la valutazione del peso complessivo si è fatto riferimento alle sezioni nette dei vari elementi strutturali (conci principali di trave e traversi), aggiungendo i contributi di vestizione valutati forfetariamente secondo quanto riportato nella tabella seguente.

Su trav	i principali	kN/m	forf.	Su traversi		kN/m	forf.
1)	saldature	0.06	1%	1)	saldature		
2)	piastrame bull	0.29	5%	2)	piastrame bull.		
3)	Irr. An. pr.	0.13	2%	3)	irr. anima pr.		
4)	Irr. An. sec.	0.00		5)	pioli		
5)	pioli	0.17	2%	6)	rib		
10)	Ctrv. Mont.	0.21		9)	ctrv. montaggio		
	totale	0.86 kN	√m		totale	0.08 kN	V/m
						fo	rf 5%

Il calcolo del peso lordo, uniformemente distribuito, applicato a travi e traversi è riportato in tabella.

						P _{proprio} a trave		
concio tipo	A (mm²)	Ltot	p _{netto} (kN/m)	p _{lordo} (kN/m)	P tot (kN)	gk1' (N/m)		
concioA	64'760	33.00	5.08	5.94	196.09	5942.01		
concioB	79'440	32.40	6.24	7.09	229.86	7094.39		
concioC	79'440	13.80	6.24	7.09	97.90	7094.39		
Traverso	20'960	30.00	1.65	1.73	51.83	1727.63		
	Peso complessivo struttura in acciaio:			totale	575.68	kN		
				i. (kg/mq)	269.21	269.21 kg/m²		

3.1.2 Peso proprio coppelle (G_{k1} ")

Il peso complessivo delle coppelle in acciaio risulta:

$$g_{k1''} = 78.5 \cdot (5.4 \cdot 0.004) = 1.696 \text{ kN/m}$$
 (t = 4.0 mm)

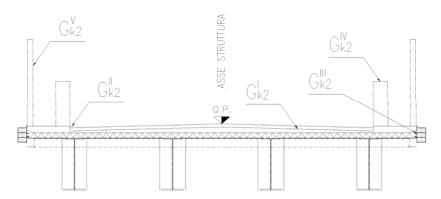
Su ciascuna trave graverà pertanto un carico distribuito pari a $g_{k1"}$ = 0.8478 kN/m.

3.1.3 Peso proprio soletta (G_{k1} ")

Il peso del getto in calcestruzzo viene valutato sulla base di uno spessore medio della soletta pari a:

$$t_{med} = 271 \text{ mm}$$

$$g_{k1'''} = 25.0 \cdot (5.4 \cdot 0.271) = 36.585 \text{ kN/m}$$


Su ciascuna trave graverà pertanto un carico distribuito pari a g_{k1} " = 18.2925 kN/m.

3.2 Carichi agenti in fase 2a - 2b

3.2.1 Sovraccarichi permanenti (G_{k2})

Per i sovraccarichi permanenti si considera quanto riportato in tabella (cfr. schema).

Sovraccarichi permanenti Gk,2									
			n	b (m)	t (m)	g (kN/m ⁱ)	gi (kN/m)	gk (kN/m)	
a)	Manto asfaltatura	g _{k2} '	1	4.00		3.00	12.00	12.00	kN/m
b)	Marciapiedi laterali	g _{k2} ""	2	0.70	0.16	25.00	2.80	5.60	kN/m
c)	Veletta laterale	g_{k2}^{IV}	2				1.56	3.12	kN/m
d)	Guardavia	g_{k2}^{V}	2				1.50	3.00	kN/m
e)	Reti protezione	g_{k2}^{VIII}	2				0.50	1.00	kN/m
	totale		24.72	kN/m					
						totale/trave		12.36	kN/m/trave

Su ciascuna trave graverà pertanto un carico distribuito pari a g_{k2} = 12.36 kN/m. L'azione dei sovraccarichi permanenti verrà considerata in fase 2a.

3.2.2 Reologia calcestruzzo (G_{sh,k})

Il calcolo delle deformazioni conseguenti alla viscosità e al ritiro viene effettuato in accordo ai criteri contenuti nel cap. 3 e nell'Appendice B della norma EN 1992-1-1.

Gli effetti del creep vengono valutati con l'ausilio di coefficienti di omogeneizzazione opportunamente modificati, come esposto ai capitoli precedenti.

La tabella seguente, compilata in automatico dal foglio che effettua il calcolo delle proprietà delle sezioni, riporta il valore finale del ritiro, ed il calcolo dei vari parametri che influenzano il fenomeno.

	Dati e parametri per valutazione ritiro
h _o	331.84 mm
t _s	2
α ds1	4 cemento tipo N
α ds2	0.12 cemento tipo N
βRH	0.7564 (1992-1-1- B.12)
Ecd (0)	2.533E-04 ϵ_{sh} essiccamento (EN1992-1-1 B.11)
εca (∞)	6.250E-05 $_{\rm Esh}$ autogeno (EN1992-1-1 - 3.11)
k _h	0.74 EN 1992-1-1 - prospett 3.3
ε _{cs} (∞)	-2.487E-04

Gli effetti del ritiro sulla struttura vengono effettuati secondo i criteri contenuti in EN 1994-2, cap. 5.4.2.2.

Vengono valutati separatamente gli effetti primari del ritiro e gli effetti secondari (dovuti all'iperstaticità della struttura). Gli effetti primari vengono valutati con la formula:

$$N_r$$
 = $\epsilon_{sh} \cdot E_s/n_{f2b} \cdot b_{eff} \cdot t_{cls}$

Il valore massimo gravante sul singolo cassone è pari a ($b_{eff} = b_{reale}$):

$$N_r = 2.487 \cdot 10^{-4} \cdot 210\ 000\ N/mm^2 / 15.29 \cdot 5400mm \cdot 271mm = -4998.63\ kN$$

Gli effetti secondari vengono calcolati assegnando al modello E.F. delle variazioni termiche (var. unif. + gradiente) valutate in funzione della larghezza effettiva b_{eff} e del braccio della soletta rispetto al baricentro della sezione omogeneizzata; per semplicità, si considera, a tale riguardo il braccio "medio" valutato con riferimento ai parametri delle sezioni di inizio e fine di ciascuna tipologia di concio.

La tabella seguente riporta il calcolo delle azioni termiche equivalenti.

Valutazione azioni termiche equivalenti al ritiro

concio tipo	∆ cls/omog	η (b _{eff} /b)	Nr (kN)	Α	J	Erunif	Ergrad	∆t uni	∆t grad
ConcioA_sez1	499.33	1.00	-2499.04	1.21E+05	4.56E+10	-9.827E-05	-1.304E-04		
ConcioA_sez2	499.33	1.00	-2499.04	1.21E+05	4.56E+10	-9.827E-05	-1.304E-04		
ConcioB_sez1	595.58	1.00	-2499.04	1.36E+05	5.59E+10	-8.765E-05	-1.267E-04		
ConcioB_sez2	595.58	1.00	-2499.04	1.36E+05	5.59E+10	-8.765E-05	-1.267E-04		
ConcioC_sez1	595.58	1.00	-2499.04	1.36E+05	5.59E+10	-8.765E-05	-1.267E-04		
ConcioC_sez2	595.58	1.00	-2499.04	1.36E+05	5.59E+10	-8.765E-05	-1.267E-04		
ConcioA						-9.827E-05	-1.304E-04	-9.83	-13.04
ConcioB						-8.765E-05	-1.267E-04	-8.76	-12.67
ConcioC						-8.765E-05	-1.267E-04	-8.76	-12.67

3.2.2.1 Cedimenti vincolari

Per tenere conto forfettariamente delle ripercussioni sulla struttura dovute ai cedimenti dei sostegni, si tiene conto di un cedimento di progetto di entità pari allo 0.2‰ delle luci concorrenti sul sostegno in esame.

Pertanto, per l'opera in oggetto, si considera quanto segue:

Sostegno	δ_{v} (m)	L ₁	L_2
Settl. Ab.A	-0.0077	38.30	38.30
Settl. Ab.B	-0.0077	38.30	38.30

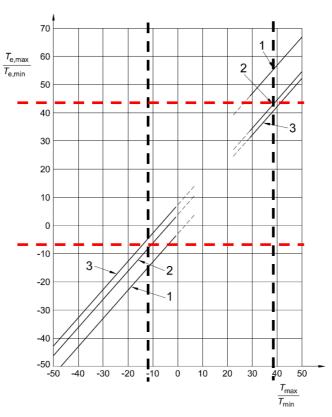
L'effetto del cedimento sui singoli sostegni verranno opportunamente combinati in modo da cogliere le situazioni più sfavorevoli per impalcato, sostegni ed appoggi.

3.3 Carichi agenti in fase 3

3.3.1 Variazioni termiche (T_k)

Per la determinazione degli effetti della temperatura si fa riferimento a EN 1991-1-5 (NTC-08, cap. 3.5).

3.3.1.1 Variazioni termiche uniformi ∆t_N


Per l'opera in esame il "range" di temperatura dell'aria all'ombra ("shade air temperature") è definito da (Cfr. N.A.D.):

Zona: Veneto

 $T_{min} = -11 \, ^{\circ}C$

 $T_{max} = +40 \, ^{\circ}C$

La temperatura della struttura risulta dalla tabella di correlazione riportata in fig. 6.1 di EN 1991-1-5, cap. 6.1.3.2(4) per ponti di gruppo 2.

$$Te_{min} = -7 °C$$

$$Te_{max}$$
 = +44.5 °C

Fissando T₀ a 15.0 °C si ottiene l'escursione termica effettiva subita dall'impalcato:

$$\Delta TN_{comp}$$
 = -22.0 °C

$$\Delta TN_{exp} = +29.5 \, ^{\circ}C$$

a cui corrisponde complessivamente un'escursione pari a:

$$\Delta T_N = 51.5$$
 °C

3.3.1.2 Variazioni termiche lineari ∆t_M

Per la valutazione della componente lineare di variazione della temperatura si fa riferimento alle metodologie contenute nell'approccio 1 (EN 1991-1-5 cap. 6.1.4.1.(1)).

Per ponti di gruppo 2, i valori caratteristici delle variazioni lineari di temperatura (gradiente tra intradosso ed estradosso) risultano:

 $\Delta T_{M,heat}$ = 15.0 °C estradosso più caldo dell'intradosso

ΔT_{M.cool} = -18.0 °C estradosso più freddo dell'intradosso

Il valore del coefficiente k_{sur} per spessore di manto pari a 100 mm assume valore unitario (EN 1991-1-5 cap. 6.1.4.1., tab. 6.2).

nome concio	h _{media}	∆TM _{pos}	∆TM _{neg}
concioA	1300	-13.85	11.54
concioB	1300	-13.85	11.54
concioC	1300	-13.85	11.54

3.3.1.3 Combinazione degli effetti uniformi e lineari

La concomitanza degli effetti uniformi e lineari verrà gestita mediante le seguenti combinazioni (EN 1991-1-5 cap. 6.1.5(1)):

 ΔT_{M} leading: $\Delta t_{M} + 0.35 \Delta t_{N}$

 ΔT_N leading: 0.75 $\Delta t_M + \Delta t_N$

Le verifiche verranno effettuate considerando sistematicamente la più sfavorevole delle due combinazioni indicate.

3.3.2 Carichi mobili (Q_k)

Si seguono le disposizioni contenute in EN 1991-2. capp.4/5/ + NAD (NTC-08 cap. 5.1.3.3.5) con riferimento a ponti di I categoria.

Nel caso in esame, la carreggiata, di larghezza utile pari a 4.00 m, è in grado di ospitare 1 corsia di carico di larghezza convenzionale pari a 3.00 m. La parte rimanente ("remaining part") risulta pari a 1.0 m.

3.3.2.1 Statica globale

Ai fini del calcolo sollecitazioni nella statica globale, si considera il Load Model 1, formato da carichi concentrati (TS) e distribuiti (UDL), posizionati su corsie convenzionali di carico di ampiezza massima pari a 3.00 m, unitamente al carico q_{fk} , posizionato rispettivamente sui marciapiedi laterali.

Nel caso in esame, la superficie utile del ponte è così configurata:

piano viabile, b = 4.00 m

marciapiede dx, b = 0.70 mmarciapiede sx, b = 0.70 m

Le corsie verranno denominate secondo le convenzioni di norma, partendo dalla più "pesante", detta "corsia 1".

Ai fini delle verifiche globali dell'impalcato si considera il carico TS e UDL, riferendo le rispettive intensità a quanto riportato in tabella.

Location	Tandem system TS	UDL system
	Axle loads Q _{ik} (kN)	q_{ik} (or q_{ik}) (kN/m ²)
Lane Number 1	300	9
Lane Number 2	200	2,5
Lane Number 3	100	2,5
Other lanes	0	2,5
Remaining area ($q_{\rm rk}$)	0	2,5

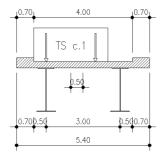
Sui marciapiedi si considera il modello di carico 5, con valore di combinazione pari a 2.5 kN/m² (cfr. NTC-08, tab. 5.I.IV, EN 1991-2 tab. 4.4.a + N.A.D.).

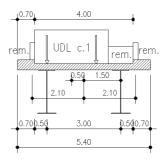
Le varie condizioni di carico mobile si differenziano per la differente disposizione trasversale delle corsie di carico, quindi per il differente posizionamento longitudinale del veicolo TS, e per la segmentazione delle stese di carico UDL, in funzione della geometria della linea di influenza oggetto dello studio.

L'analisi dei carichi mobili verrà effettuata con riferimento alle quattro disposizioni trasversali di carico:

A/max: massima azione verticale, massimo momento torcente concomitante (ecc. vs. dx)

A/min: massima azione verticale, massimo momento torcente concomitante (ecc. vs. sx)


B/max: massimo momento torcente, massima azione verticale concomitante (ecc. vs. dx)


B/min: massimo momento torcente, massima azione verticale concomitante (ecc. vs. sx)

Di seguito si riporta lo schema di carico di ciascuna condizione e le relative intensità.

Condizioni A_{max} - A_{min}

In figura si riporta la configurazione schematica della disposizione tipo A_{max} in corrispondenza della sezione tipo dell'impalcato.

La condizione A_{min} è simmetrica rispetto a quella evidenziata, attorno all'asse soletta.

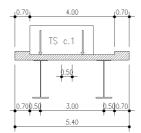
Rispetto all'asse impalcato le corsie presentano la seguente eccentricità:

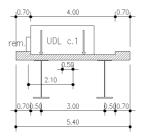
corsia 1: $e = \pm 0.50 \text{ m}$

rem. part (globale) $e = \pm 1.50 \text{ m}$ riferita al totale piano viabile + marciapiedi

Con riferimento alla disposizione evidenziata, la risultante globale in asse impalcato risulta:

 $Q_{k,(TS)} = 300 = 300.0 \text{ kN}$ carico concentrato verticale/asse


 $M_{k,(TS)}$ = 300·0.50 = ± 150.0 kNm coppia concentrata torcente/asse


 $q_{k, (UDL)} = 9.3.0+2.5 \cdot (0.2+0.2+1.0) = 30.50 \text{ kN/m}$ carico verticale distribuito

 $m_{k, (UDL)} = 27.0 \cdot 0.50 \cdot 2.5 \cdot 1.5 = 9.75 \text{ kNm/m}$ coppia torcente distribuita

Condizioni B_{max} - B_{min}

In figura si riporta la configurazione schematica della disposizione tipo B/max in corrispondenza della sezione tipo dell'impalcato.

La condizione A/min è simmetrica rispetto a quella evidenziata, attorno all'asse soletta.

Rispetto all'asse impalcato le corsie presentano la seguente eccentricità:

corsia 1: $e = \pm 0.50 \text{ m}$

rem. part (globale) $e = \pm 2.10 \text{ m}$ riferita al totale piano viabile + marciapiedi

Ai fini del calcolo delle massime azioni sulle travi, si evidenzia che la disposizione ora evidenziata risulta massimizzante rispetto a quella che prevede carico UDL sulla corsia 1, completato dalla "remaining part" compresa tra il limite della corsia 1 e mezzeria impalcato.

Con riferimento alla disposizione evidenziata, la risultante globale in asse impalcato risulta:

 $Q_{k,(TS)} = 300 = 300.0 \text{ kN}$ carico concentrato verticale/asse

 $M_{k,(TS)} = 300.0.50 = \pm 150.0 \text{ kNm}$ coppia concentrata torcente/asse

 $q_{k, (UDL)}$ = 9·3+2.5·0.2 = 27.50 kN/m carico verticale distribuito

 $m_{k, (UDL)} = 27.0 \cdot 0.50 + 2.5 \cdot 0.2 \cdot 2.10 = 14.55 \text{ kNm/m}$ coppia torcente distribuita

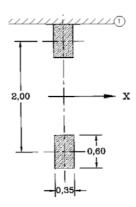
Dalle disposizione trasversali di carico esaminate discendono le seguenti reazioni verticali di trave:

		TS			V _{T1}	V _{T2}
	$Q_{k,TS,tot}$	Somma dei TS presenti su ciascun asse	300.0	kN	200.0	100.0
A _{max}	$M_{k,TS}$	Momento totale dovuto ai TS su ciascun asse	-150.0	kNm	200.0	100.0
	$Q_{k,TS,tot}$	Somma dei TS presenti su ciascun asse	300.0	kN	100.0	200.0
A _{min}	$M_{k,TS}$	Momento totale dovuto ai TS su ciascun asse	150.0	kNm	100.0	200.0
B _{max}	$Q_{k,TS,tot}$	Somma dei TS presenti su ciascun asse	300.0	kN	200.0	100.0
D _{max}	$M_{k,TS}$	Momento totale dovuto ai TS su ciascun asse	-150.0	kNm	200.0	100.0
B _{min}	$Q_{k,TS,tot}$	Somma dei TS presenti su ciascun asse	300.0	kN	100.0	200.0
	$M_{k,TS}$	Momento totale dovuto ai TS su ciascun asse	150.0	kNm	100.0	200.0

		UDL			V _{T1}	V _{T2}
A _{max}	$q_{k,UDL,tot}$	Somma dei UDL presenti su ciascun asse	30.50	kN/m	18.5	12.0
rmax	$m_{k,UDL}$	Momento totale dovuto ai UDL su ciascun asse	-9.75	kNm/m	10.5	12.0
	$q_{k,UDL,tot}$	Somma dei UDL presenti su ciascun asse	30.50	kN/m	12.0	18.5
A _{min}	$m_{k,UDL}$	Momento totale dovuto ai UDL su ciascun asse	9.75	kNm/m	12.0	10.5
	$q_{k,UDL,tot}$	Somma dei UDL presenti su ciascun asse	27.50	kN/m	18.6	8.9
B _{max}	$m_{k,UDL}$	Momento totale dovuto ai UDL su ciascun asse	-14.55	kNm/m	10.0	0.9
В.	$q_{k,UDL,tot}$	Somma dei UDL presenti su ciascun asse	27.50	kN/m	8.9	18.6
B _{min}	$m_{k,UDL}$	Momento totale dovuto ai UDL su ciascun asse	14.55	kNm/m	3	10.0

I carichi relativi alla posizione A_{min}/B_{min} discendono dai precedenti, per inversione degli indici delle travi. La disposizione di carico mobile più sfavorevole ai fini delle verifiche viene definita come specificato di seguito:

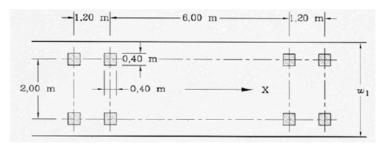
Carichi TS Viene fatto "viaggiare" lungo l'impalcato il set di azioni concentrate relativo ai due assi TS, con intervallo longitudinale pari a 1.00 m. Verrà quindi dedotto l'inviluppo delle


sollecitazioni nell'ambito di ciascuna verifica.

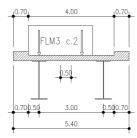
Carichi UDL Viene fatto "viaggiare" lungo l'impalcato un segmento elementare, di lunghezza pari a 1.00 m, relativo al set di azioni UDL. A valle dell'analisi, e nell'ambito di ciascuna verifica, l'effettiva segmentazione più sfavorevole verrà determinata sovrapponendo gli effetti derivanti dai soli segmenti elementari significativi.

Con riferimento alla modellazione a doppio cassone equivalente, si considera su ciascuno di essi la risultante in termini di azione verticale V e momento torcente T delle azioni sulle singole travi indicate alla tabella precedente.

3.3.2.2 Statica locale


Per le verifiche locali della soletta d'impalcato si ricorre invece al Modello di carico 2 (LM2), mostrato in figura, composto da un veicolo ad un solo asse, avente un peso complessivo pari a 400 kN. Dettagli riguardo alle posizioni più significative di tale carico vengono forniti nel paragrafo relativo alle verifiche locali della soletta.

Anche in questo caso, l'inviluppo delle sollecitazioni più sfavorevoli viene determinato inviluppando gli effetti delle "n" posizioni del veicolo LM2, transitante sull'impalcato con step pari a 1.00 m.


3.3.2.3 Verifiche a fatica

Le verifiche a fatica vengono effettuate con riferimento al metodo dei coefficienti λ . Pertanto si considera il transito sulla corsia lenta del veicolo FLM3, formato da 4 assi da 120 kN ciascuno, ed avente la configurazione planimetrica indicata in figura.

La struttura in esame è a carreggiata unica. Indipendentemente dalla destinazione finale, ed a favore di sicurezza essa verrà considerata in prima battuta a doppio senso di marcia. Il numero delle corsie lente considerate nei calcoli è pertanto pari a due (una per ogni senso di marcia). Il posizionamento trasversale delle corsie viene effettuato indipendentemente dall'organizzazione reale del piano viabile, assumendo la suddivisione proposta da EN 1992-1 in notional lanes da 3.00 m vista al punto precedente.

La figura seguente riporta la posizione trasversale delle due corsie lungo le quali viene fatto transitare il FLM3.

Le azioni equivalenti di trave relative al FLM3 sono le seguenti.

		FLM3			V _{T1}	V _{T2}
FLM3 _{max}	$Q_{k,FLM3,tot}$	Somma dei FLM3 presenti su ciascun asse	120.0	kN	80.0	40.0
	$M_{k,FLM3}$	Momento totale dovuto ai FLM3 su ciascun asse	-60.0	kNm		
FLM3 _{min}	Q _{k,FLM3,tot}	Somma dei FLM3 presenti su ciascun asse	120.0	kN	40.0	80.0
	$M_{k,FLM3}$	Momento totale dovuto ai FLM3 su ciascun asse	60.0	kNm		

L'inviluppo delle sollecitazioni più sfavorevoli viene determinato inviluppando gli effetti delle "n" posizioni del veicolo FLM3, transitante sull'impalcato con step pari a 1m.

3.3.3 Azioni di frenatura (Q_{lk})

Per l'azione di frenatura si fa rifermento a quanto indicato in EN 1991-2, 4.4.1 (NTC-08, cap. 5.1.3.5). Si ha pertanto:

$$Q_{lk} = 0.6 \cdot (2 \cdot Q_{1k}) + 0.10 \cdot q_{1k} \cdot w_1 \cdot L < 900 \text{ kN}$$
 EN 1991-2, 4.4.1.(2)

dove:

 $Q_{1k} = 300 \text{ kN}$

 $q_{1k} = 9 \text{ kN/m}^2$

 $w_1 = 3.0 \text{ m}$

L = 39.6 m

La forza di frenatura distribuita uniformemente sulla travata risulta quindi:

$$q_x = \pm 466.92 \text{ kN} / 39.60 \text{ m} / 2 \text{ travi} = \pm 5.895 \text{ kN/m}$$

L'azione di frenatura si accompagna ai carichi da traffico, presi con il relativo valore frequente, a formare i carichi di Gruppo 2a EN 1991-2, tab. 4.4.a (cfr. NTC-08, tab. 5.1.IV).

Tale azione verrà presa in esame per il solo dimensionamento delle apparecchiature di vincolo e sottostrutture.

3.3.4 Azione del vento $(F_{w,k})$

Si considera direttamente l'azione del vento agente trasversalmente all'asse dell'impalcato, insistente sulle sole superfici di prospetto dell'impalcato.

Per il calcolo della pressione del vento, si fa rifermento a quanto contenuto in EN 1991-1-4+NAD.

L'azione del vento è, in generale, fornita dalla relazione:

$$F_w = c_e(z) \cdot c_f \cdot A_{ref}$$

Di seguito si riportano le tabelle recanti il calcolo della pressione dinamica di base e dell'azione complessiva del vento sulle varie superfici di prospetto considerate.

In rosso vengono indicati i dati caratterizzanti il sito/opera in esame.

Calcolo azione del vento secondo EN

Caratteristiche de		azione dei vento secondo Liv
Categoria terreno		0 - 1 -2 - 3 - 4
Zona		UNI EN 1991-1-4
a_s	10	m - quota sito
₩ _{b0}	25	4.1.(1) P
a_0	1000	m (cfr. tab. N.A. 1 parametri nazionali)
k _a	0.01	1/s (cfr. tab. N.A. 1 paramentri nazionali)
v_{b0}	25	4.1.(1) P
V_{b}	31.8	velocità di base del vento
C _{dir}	1.00	4.2.(2) P - nota 2
C _{season}	1.00	4.2.(2) P - nota 3
c _r	1.01	Coeff. Rugosità terreno (EN 1991-1-4 §4.3.2)
C _{scd}	1.00	fattore di struttura
k_{l}	1.00	fattore di turbolenza (valore raccomandato da N.A.D.)
c _o	1.00	coeff. orografia (Annex A3)
T _r	1000	periodo di ritorno
k_1	0.14	
n	1	
αr	1.27	
z	10	m altezza dal suolo (quota stradale)
z_0	0.05	EN 1991-1-4 §4.3.2
z_{min}	2	EN 1991-1-4 §4.3.2
z_{max}	200	EN 1991-1-4 §4.3.2
k _r	0.19	fattore di terreno
v_{m}	32.0	Velocità media del vento
σ _V	6.04	scarto comp. turbolenta vel. vento (4.6)
ρ		densità aria (4.5 nota 2 e N.A.D.)
q_b		pressione dinamica di base (4.10)
C _e (Z)	2.32	
I_{v}	0.19	
q_v	846.3	N/m²
q_p	1486.9	N/m²

Caratteristiche della struttura

b _{imp}	5.4 m
quota str	10 m

	ponte scarico	ponte carico
d	2.36	4.76
b/d	2.29	1.13
C _{fx}	1.77	2.09
f _w (N/m²)	2598	3064
F _w (N/m)	6132	14583
f* _w	2105	2482
$F_{w}^{*}(N/m)$	4967	11812
Ψο	0.6	
ψ_0F_w	3679	8750
	psi0⋅Fw < F*w	psi0⋅Fw < F*w

Si evidenzia che, per l'opera in esame, l'azione del vento non risulta essere significativa ai fini delle verifiche tensionali dell'impalcato. Essa verrà considerata ai soli fini del dimensionamento delle apparecchiature di appoggio.

Considerando inoltre la risultante complessiva, pari a

$$F_{wk,tot}$$
 = 11 812 N/m · 39.60 m = 467.76 kN

3.4 Azioni sismiche (E_d)

La caratterizzazione dell'azione sismica dell'opera in esame viene effettuata ai sensi del D.M. 14 gennaio 2008 e relative istruzioni. In particolare, come introdotto in § 1.4.2, si fa riferimento ai seguenti parametri legati all'opera in sé:

• Vita utile dell'opera = 50 anni

• Classe d'uso = $IV \rightarrow Cu = 2.0$

• Vita di riferimento = 100 anni

• Ag = $0.08 \text{ g} \cong 0.78 \text{ m/s}^2$

Probabilità di superamento P_{RV} (SLD) = 63% - dimensionamento giunto

Probabilità di superamento P_{RV} (SLV) = 10% - dimensionamento sottostrutture

Probabilità di superamento P_{RV} (SLC) = 5% - dimensionamento appoggi (cfr. NTC)

I parametri legati al sito e alle caratteristiche del terreno risultano i seguenti:

Categoria di sottosuolo: D

Condizione topografica: T1

Nel seguente prospetto si riassumono i valori delle variabili dipendenti dai parametri appena individuati, utilizzati allo scopo di definire gli spettri di risposta.

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLD Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLV

Parametri indipendenti		
STATO LIMITE	SLD	
a _o	0.042 g	
F _o	2.529	
T _c *	0.290 s	
Ss	1.800	
Cc	2.319	
S _T	1.000	
q	1.500	

Parametri dinendenti

rarament dipendenti	
S	1.800
η	0.667
T _B	0.225 s
To	0.674 s
Tn	1.769 s

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \; \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_{\text{B}} = T_{\text{C}} \; / 3$	(NTC-07 Eq. 3.2.8)
$T_{\mathbb{C}} = C_{\mathbb{C}} \cdot T_{\mathbb{C}}^{\bullet}$	(NTC-07 Eq. 3.2.7)
$T_D = 4,0 \cdot a_g / g + 1,6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & \quad S_k(T) = a_g \cdot S \cdot \eta \cdot F_c \cdot \left[\frac{T}{T_g} + \frac{1}{\eta \cdot F_c} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_k(T) = a_g \cdot S \cdot \eta \cdot F_c \\ T_C \leq T < T_D & \quad S_k(T) = a_g \cdot S \cdot \eta \cdot F_c \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \quad S_k(T) = a_g \cdot S \cdot \eta \cdot F_c \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_e(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

nti d		o di risposta
	T [s]	Se [g]
L	0.000	0.076
Гв∢	0.225	0.128
Tc◀	0.674	0.128
L	0.726	0.119
L	0.778	0.111
L	0.830	0.104
L	0.882	0.098
L	0.935	0.093
L	0.987	0.088
L	1.039	0.083
L	1.091	0.079
L	1.143	0.076
L	1.195	0.072
L	1.248	0.069
-	1.300	0.067
L	1.352	0.064
L	1.404	0.062
L	1.456	0.059
L	1.508	0.057
L	1.561	0.055
-	1.613	0.054
-	1.665	0.052
	1.717	0.050
T ₀ ◀	1.769	0.049
-	1.876	0.044
-	1.982	0.039
-	2.088	0.035
-	2.194	0.032
-	2.300	0.029
-	2.407	0.026
-	2.513	0.024
-	2.619	0.022
-	2.725	0.021
-	2.832	0.019
-	2.938	0.018
ŀ	3.044	0.017
ŀ	3.150	0.015
ŀ	3.256	0.014
ŀ	3.363	0.014
ŀ	3.469	0.013
ŀ	3.575	0.012
ŀ	3.681	0.011
ŀ	3.788	0.011
ŀ	3.894	0.010
L	4.000	0.010

Punti dello spettro di risposta

Parametri indipendenti	
STATO LIMITE	SLV
a _n	0.079 g
F _o	2.792
T _c *	0.370 s
Ss	1.800
Cc	2.054
S _⊤	1.000
q	1.500

Parametri dipendenti

S	1.800
η	0.667
T _B	0.254 s
To	0.761 s
T _D	1.918 s

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \; \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_{\text{B}} = T_{\text{C}} \; / 3$	(NTC-07 Eq. 3.2.8)
$T_C = C_C \cdot T_C^*$	(NTC-07 Eq. 3.2.7)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

 $T_{D} = 4,0 \cdot a_{g} \ / \ g + 1,6 \eqno(NTC-07 \ \text{Eq. } 3.2.9)$

$0 \le T < T_B$	$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{o}} \left(1 - \frac{T}{T_{B}} \right) \right]$
$T_B \leq T < T_C$	$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o}$
	$S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T}\right)$
$T_{\!\scriptscriptstyle D} \leq T$	$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{c} T_{D}}{T^{2}}\right)$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_d(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

0.201	0.200
0.761	0.266
0.816	0.248
0.871	0.232
0.926	0.219
0.981	0.206
1.036	0.195
1.091	0.185
1.146	0.177
1.201	0.168
1.257	0.161
1.312	0.154
1.367	0.148
1.422	0.142
1.477	0.137
1.532	0.132
1.587	0.128
1.642	0.123
1.697	0.119
1.752	0.115
1.807	0.112
1.862	0.109
1.918	0.106
2.017	0.095
2.116	0.087
2.215	0.079
2.314	0.072
2.413	0.067
2.513	0.061
2.612	0.057
2.711	0.053
2.810	0.049
2.909	0.046
3.008	0.043
3.108	
	0.040
3.207 3.306	0.040 0.038 0.036
3.207	0.038
3.207 3.306	0.038 0.036
3.207 3.306 3.405	0.038 0.036 0.033
3.207 3.306 3.405 3.504	0.038 0.036 0.033 0.032
3.207 3.306 3.405 3.504 3.603	0.038 0.036 0.033 0.032 0.030
3.207 3.306 3.405 3.504 3.603 3.703	0.038 0.036 0.033 0.032 0.030 0.028

T₀◀

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLC

Danish state in all and a set

Parametri indi	pendenti
STATO LIMITE	SLC
a _o	0.098 g
F _o	2.747
T _c *	0.392 s
Ss	1.800
C _C	1.997
S _T	1.000
q	1.500

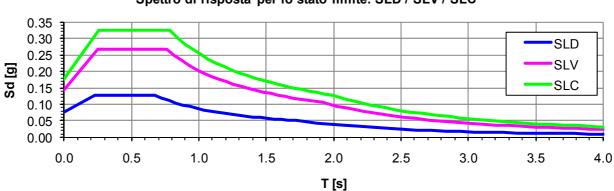
Parametri dipendenti

S	1.800
η	0.667
T _B	0.261 s
To	0.782 s
Tn	1.994 s

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \; \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_{\text{B}} = T_{\text{C}} / 3$	(NTC-07 Eq. 3.2.8)
$T_{\mathbb{C}} = C_{\mathbb{C}} \cdot T_{\mathbb{C}}^{\star}$	(NTC-07 Eq. 3.2.7)
$T_D=4,0\cdot a_g/g{+}1,6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)


$$\begin{split} 0 \leq T < T_B & \quad S_k(T) = a_g \cdot S \cdot \eta \cdot F_b \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_k(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & \quad S_k(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \quad S_k(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_d(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	0.000	0.177
Tв◀	0.261	0.325
Tc◀	0.782	0.325
	0.840	0.302
	0.898	0.283
	0.956	0.266
	1.013	0.251
	1.071	0.237
	1.129	0.225
	1.186	0.214
	1.244	0.204
	1.302	0.195
	1.359	0.187
	1.417	0.179
	1.475	0.172
	1.532	0.166
	1.590	0.160
	1.648	0.154
	1.705	0.149
	1.763	0.144
	1.821	0.140
	1.879	0.135
	1.936	0.131
T₀◀	1.994	0.127
	2.089	0.116
	2.185	0.106
	2.280	0.097
	2.376	0.090
	2.472	0.083
	2.567	0.077
	2.663	0.071
	2.758	0.067
	2.854	0.062
	2.949	0.058
	3.045	0.055
	3.140	0.051
	3.236	0.048
	3.236 3.331	0.048 0.046
	3.236 3.331 3.427	0.048 0.046 0.043
	3.236 3.331 3.427 3.522	0.048 0.046 0.043 0.041
	3.236 3.331 3.427 3.522 3.618	0.048 0.046 0.043 0.041 0.039
	3.236 3.331 3.427 3.522 3.618 3.713	0.048 0.046 0.043 0.041 0.039 0.037
	3.236 3.331 3.427 3.522 3.618 3.713 3.809	0.048 0.046 0.043 0.041 0.039 0.037 0.035
	3.236 3.331 3.427 3.522 3.618 3.713	0.048 0.046 0.043 0.041 0.039 0.037

La seguente figura mostra lo spettro di risposta utilizzato per la definizione delle componenti sismiche orizzontali nei diversi stati limite.

Spettro di risposta per lo stato limite: SLD / SLV / SLC

La valutazione delle spinte sismiche sulla struttura di sostegno si avvarrà dei seguenti parametri:

Caratteristiche	terreno	
$_{\varphi}$ rilevato (°/ rad) (M1) Attrito terra muro- $_{\delta}$ (°/rad) (M1) $_{\varphi}$ rilevato (°/rad) (M2) Attrito terra muro- $_{\delta}$ (°/rad) (M2) Incl. paramento - $_{\psi}$ (° / rad) Incl scarpata - $_{\beta}$ (° / rad)	35.00 17.50 29.26 14.63 90.00 0.00	0.61 0.31 0.51 0.26 1.57
γ _t rilevato (kN/m³)	20.00	

	Coefficienti di spinta
k ₀ statico (M1)	0.4264
ka statico (M1)	0.2461
ka din.1 (M1)	0.2567
ka din.2 (M1)	0.2565
k ₀ statico (M2)	0.511
ka statico (M2)	0.3105
ka din.1 (M2)	0.3225
ka din.2 (M2)	0.3222

4. Combinazioni di carico

Le combinazioni di carico vengono elaborate con riferimento a:

- EN 1990 tab. A.2.4.B + N.A.D./NTC-08, tab. 5.1.V per i coefficienti moltiplicativi
- EN 1990 tab. A.2.1+N.A.D./NTC-08 tab. 5.1.VI per i coefficienti di combinazione

Per la formulazione generale delle combinazioni di carico si rimanda a EN 1990-annex.A2, cap. A2.3, A2.4/.NTC-08 cap. 2.5.3.+ N.A.D..

Ai fini della verifica dell'impalcato si possono prendere in esame, nell'ambito delle azioni da traffico, i soli carichi di gruppo 1.

Le azioni variabili dominanti di interesse sono:

- carichi mobili Qk
- variazioni termiche T_k

Esse verranno considerate di volta in volta dominanti, nell'elaborazione delle combinazioni S.L.U., S.L.E. caratteristica e S.L.E. frequente.

In dettglio:

S.L.U. - STR

Si considera l'inviluppo delle seguenti combinazioni.

S.L.U. - Qk dominante

$$E_d = \gamma_{G1} G_{k1} + \gamma_{G2} G_{k2} + \gamma_{G3} G_{k,ep} + \gamma_{sh} G_{sh} + \gamma_{g,1} Q_{k,gr1} + \gamma_{g,2} 0.6 T_k$$

S.L.U. - T_k dominante

$$E_d = \gamma_{G1} G_{k1} + \gamma_{G2} G_{k2} + \gamma_{G3} G_{k,ep} + \gamma_{sh} G_{sh} + \gamma_{q,2} T_k + \gamma_{q,1} (0.75 Q_{k,TS} + 0.4 Q_{k,UDL})$$

I parametri di scelta nazionale indicati dal N.A.D. sono i seguenti:

γ _{G1}	1.00 ÷ 1.35	coefficiente moltiplicativo sovraccarichi di peso proprio
γ _{G2}	1.00 ÷ 1.35	coefficiente moltiplicativo sovraccarichi di peso permanente
γ́дз	1.00 ÷ 1.35	coefficiente moltiplicativo per l'effetto della spinta delle terre
γ_{sh}	1.20	coefficiente moltiplicativo per le azioni dovute al ritiro
γ _{Q1}	0.00 ÷ 1.35	coefficiente moltiplicativo per i carichi da traffico.
γο2	1.20	coefficiente moltiplicativo per i carichi di origine termica.

S.L.U. - GEO

Ai soli fini delle verifiche geotecniche, si considerano le medesime combinazioni viste per lo S.L.U. – STR, impiegando i seguenti coefficienti di combinazione:

- γ_{G1} 1 1 coefficiente moltiplicativo sovraccarichi di peso proprio e di pretensione stralli
- γ_{G2} 1 1 coefficiente moltiplicativo sovraccarichi di peso permanente

γ́G3	1 – 1	coefficiente moltiplicativo per l'effetto della spinta delle terre
γ_{sh}	1 - 1	coefficiente moltiplicativo per le azioni dovute al ritiro
γ _{Q1}	1.15 - 0	coefficiente moltiplicativo per i carichi da traffico.
γ _{Q2}	1.0 - 0	coefficiente moltiplicativo per i carichi di origine termica.

S.L.E. - caratteristica

Si considera l'inviluppo le seguenti combinazioni.

S.L.E. fond. - Qk dominante

$$E_d = G_{k1} + G_{k2} + G_{k,ep} + G_{sh} + Q_{k,gr1/2} + 0.6 T_k$$

S.L.E. fond. - Tk dominante

$$E_d = G_{k1} + G_{k2} + G_{k.ep} + G_{sh} + T_k + (0.75 Q_{k.TS} + 0.4 Q_{k.UDL})$$

S.L.E. - frequente

Si considera l'inviluppo le seguenti combinazioni.

S.L.E. freq. - Q_k dominante

$$E_d = G_{k1} + G_{k2} + G_{k,ep} + G_{sh} + (0.75 Q_{k,TS} + 0.4 Q_{k,UDL}) + 0.5 T_k$$

S.L.E. freq. - T_k dominante

$$E_d = G_{k1} + G_{k2} + G_{k,ep} + G_{sh} + 0.6 T_k$$

S.L.E. - quasi permanente

Si considera la seguente combinazione.

$$E_d = G_{k1} + G_{k2} + G_{ken} + G_{sh} + 0.5 T_k$$

S.L.U. - fatica

L'approccio scelto per le verifiche a fatica è quello relativo alla "vita illimitata", per i cui criteri di base si rimanda alle EN 1991-1-9 cap. 3(1)/(7)b (NTC-08 cap. C.4.2.4.1.4.6.1).

Per la modellazione della parte ciclica dei carichi si adotta il modello di carico per fatica n.3 (FLM3), unitamente al metodo dei coefficienti λ , i cui criteri generali sono contenuti in EN1993-1-8 cap. 6.3/EN1993-2 cap. 9.5.2 (istr. NTC-08 C.4.2.4.1.4.6.3).

L'elaborazione della combinazione di verifica a fatica viene effettuata con riferimento a quanto previsto in EN 1992-1-1 6.8.3(1), sovrapponendo le sollecitazioni indotte dalla parte ciclica dei carichi a quello indotto dalla parte non ciclica. Relativamente alla parte non ciclica, si fa riferimento alla combinazione S.L.E. frequente, in cui i carichi variabili sono costituiti dai contributi non dominanti significativi (T_k, F_{wk}), mentre la parte ciclica è costituita dalle sollecitazioni indotte dal transito del veicolo FLM3, alternativamente sulle corsie lente predisposte sul piano viabile.

Pertanto, l'ampiezza del Δ di tensione viene valutata sulla base di:

$$\sum G_{k,i} + G_{ken} + G_{sh} + 0.5 T_k + Q_{fat(FIM3)}$$

Si evidenzia che, come necessario, si terrà conto, nell'ambito del calcolo del massimo/minimo effetto, dell'eventuale cambio di "stato" (cracked/uncracked) della soletta.

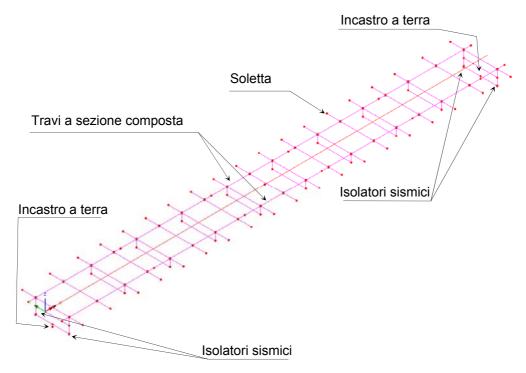
S.L.U. - sismica

Ai fini delle verifiche in fase sismica, si considera la seguente combinazione:

$$E_d = G_{k1} + G_{k2} + G_{k,ep} + G_{sh} + 0.5 T_k + E_d$$

E_d sollecitazione sismica.

Tutte le combinazioni ed inviluppi indicati vengono effettuati in automatico dal sistema ad elementi finiti Lusas, che provvede inoltre a selezionare,nell'ambito dei coefficienti di combinazione quello di volta in volta più gravoso.

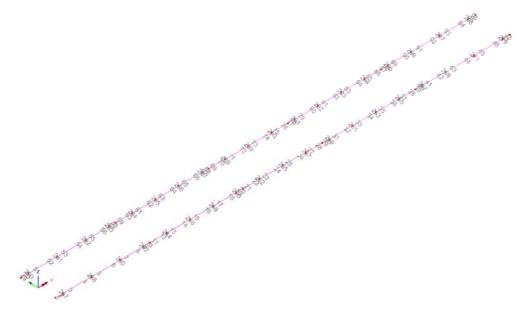

5. Analisi strutturale impalcato

5.1 Generalità

L'impalcato viene modellato mediante un grigliato di elementi "beam" lineari a due nodi, con vincoli e proprietà geometriche variabili in funzione della fase studiata e del tipo di contributo di carico, così come accennato nei capitoli introduttivi.

Il collegamento fra i due fili di trave è garantito da elementi che simulano, trasversalmente, la soletta posta sulla piattabanda superiore.

In corrispondenza della coda della singola trave, viene simulata la presenza degli isolatori sismici con l'ausilio di braccetti rigidi che li riportano nell'effettiva posizione in direzione verticale. La struttura viene poi vincolata a terra mediante elementi rigidi. La figura seguente riporta il modello della struttura.



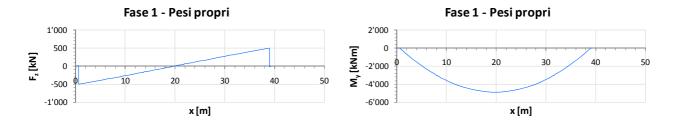
Modello della struttura impalcato

Il piano nodale dell'impalcato è modellato, per convenzione, a quota estradosso trave metallica ed ha andamento orizzontale. Tutti gli elementi strutturali (soletta e rigidi) sono modellati, nell'ambito delle specifiche fasi, considerando le effettive eccentricità dell'asse baricentrico rispetto a tale riferimento.

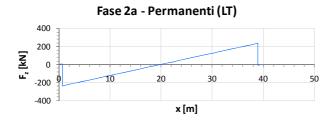
La numerazione degli elementi delle travate è sequenziale, e prevede:

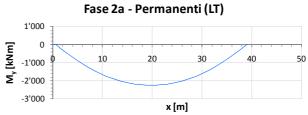
elementi da n. 1 a n. 48 per il filo "destro" elementi da n. 49 a n. 96 per il filo "sinistro"

Elementi di travi principali

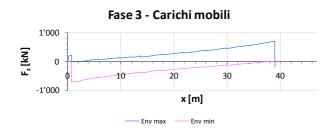

5.2 Report sollecitazioni trave esterna

A valle dell'analisi strutturale, effettuate per le singole azioni caratteristiche, vengono effettuati in automatico dal programma Lusas gli inviluppi e le combinazioni di carico pertinenti ai vari scopi, rispettivamente per $V_{max}/_{min}$ e $M_{max}/_{min}$. In fase di combinazione il programma procede in automatico a selezionare il coefficiente $\gamma_{fav}/\gamma_{unfav}$.

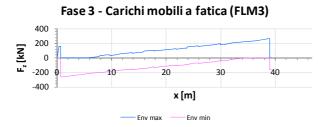

L'output delle azioni varabili viene effettuato attraverso inviluppi e combinazioni volti a massimizzare/minimizzare l'azione tagliante V ed il momento flettente M.


Nel seguito si riportano i diagrammi qualitativi delle sollecitazioni rilevate per le varie famiglie di carico, (valori caratteristici) riepilogati nella mappa seguente. Tutti i valori sono espressi in N e Nm per il singolo cassone equivalente, e sono riferiti all'intero sviluppo della travata reale relativo al filo di destra. Vengono omessi i diagrammi non significativi.

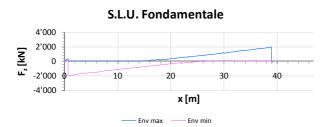
1) Pesi propri (G_{k1})

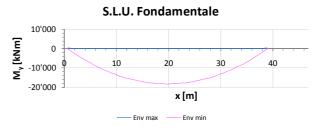


2) Sovraccarichi permanenti (G_{k2})



3) Inviluppo MOBILI gruppo 1 ($Q_{TS,k} + Q_{UDL,k}$)




4) Inviluppo carici FATICA

5) Inviluppo S.L.U.

6. Deformazioni e controfrecce

6.1 **Deformazioni massime**

Si riporta di seguito l'inviluppo della deformata delle travi di impalcato per:

- a) Carichi di fase 1
- b) Combinazione S.L.E. Quasi Permanente
- c) Combinazione S.L.E. Frequente (*)
- d) Combinazione S.L.E. Caratteristica
- e) Carichi mobili, valore caratteristico Q_k (inviluppo TS + UDL)
- f) Carichi mobili, valore "frequente" (inviluppo 0.75 TS + 0.4 UDL)

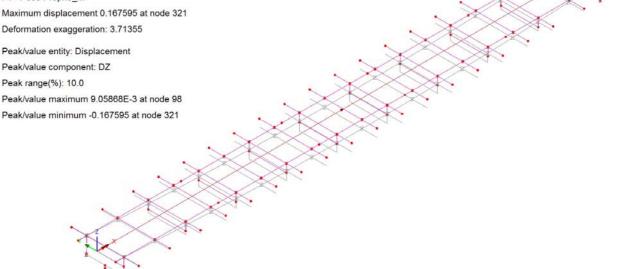
I diagrammi sono riferiti in tutti i casi alla condizione lungo termine.

(*) In accordo a EN 1993-2,7.8.1.(2), la combinazione S.L.E. frequente viene presa come riferimento per la valutazione qualitativa del comportamento deformativo dell'opera.

a) Carichi di Fase 1

Scale: 1: 100.751 Zoom: 100.0

Eye: (-0.57735, -0.57735, 0.57735)


Linear/dynamic analysis F1 - Peso Proprio_M

Maximum displacement 0.167595 at node 321

Peak/value entity: Displacement

Peak/value component: DZ Peak range(%): 10.0

Peak/value maximum 9.05868E-3 at node 98

b) S.L.E. Quasi Permanente

Scale: 1: 100.837 Zoom: 100.0

Eye: (-0.57735, -0.57735, 0.57735)

Linear/dynamic analysis Combining on: DZ SLS Q.Perm - STR (Min)

Maximum displacement 0.24274 at node 321

Deformation exaggeration: 2.56083

Peak/value entity: Displacement

Peak/value component: DZ

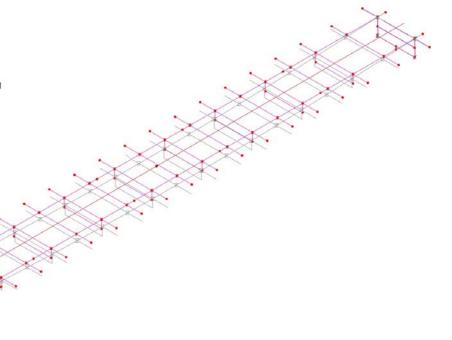
Peak range(%): 10.0

Peak/value maximum 3.83904E-3 at node 98 Peak/value minimum -0.24274 at node 321

imum -0.24274 at node 321

c) S.L.E. Frequente

Scale: 1: 100.951 Zoom: 100.0


Eye: (-0.57735, -0.57735, 0.57735)

Linear/dynamic analysis Combining on: DZ SLS Freq - STR (Min)

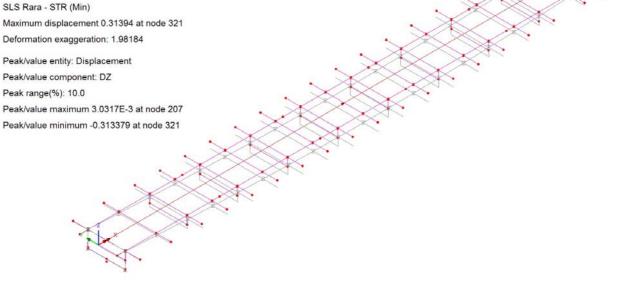
Maximum displacement 0.281922 at node 321

Deformation exaggeration: 2.20711
Peak/value entity: Displacement
Peak/value component: DZ
Peak range(%): 10.0

Peak/value maximum 3.69314E-3 at node 98 Peak/value minimum -0.280715 at node 321

d) S.L.E. Caratteristica

Scale: 1: 100.961 Zoom: 100.0


Eye: (-0.57735, -0.57735, 0.57735)

Linear/dynamic analysis Combining on: DZ SLS Rara - STR (Min)

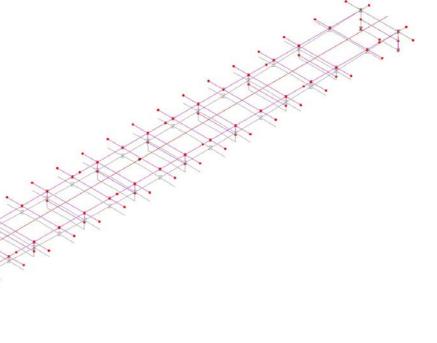
Maximum displacement 0.31394 at node 321

Peak/value entity: Displacement Peak/value component: DZ Peak range(%): 10.0

Peak/value maximum 3.0317E-3 at node 207 Peak/value minimum -0.313379 at node 321

e) Carichi mobili Qk (TS + UDL)

Scale: 1: 100.756 Zoom: 100.0


Eye: (-0.57735, -0.57735, 0.57735)

Linear/dynamic analysis Combining on: DZ F3b - Mobili dom_M (Min)

Maximum displacement 0.0671255 at node 312

Deformation exaggeration: 9.25663 Peak/value entity: Displacement Peak/value component: DZ Peak range(%): 10.0

Peak/value maximum 0.0 at node 94 Peak/value minimum -0.0671128 at node 312

f) Carichi mobili frequenti Qk (075 TS + 0.4 UDL)

Scale: 1: 102.309 Zoom: 100.0

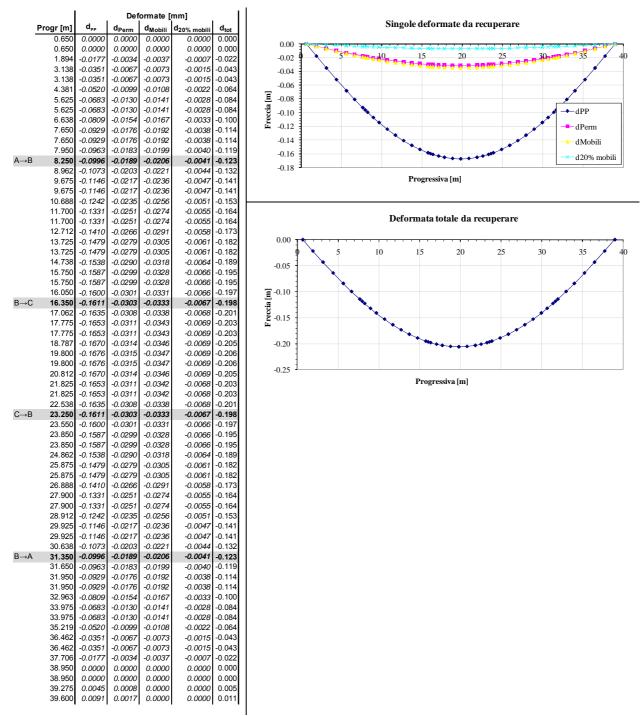
Eye: (-0.57735, -0.57735, 0.57735)

Linear/dynamic analysis Combining on: DZ F3b - Mobili conc_M (Min)

Maximum displacement 0.0460522 at node 321

Deformation exaggeration: 13.635
Peak/value entity: Displacement
Peak/value component: DZ
Peak range(%): 10.0

Peak/value maximum 0.0 at node 451 Peak/value minimum -0.0379753 at node 312

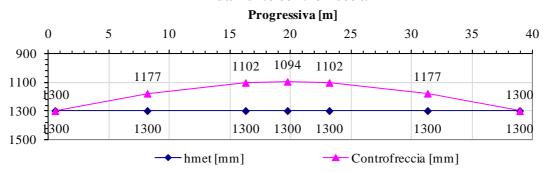


Le frecce massime sono riepilogate nella tabella seguente, unitamente al rapporto luce/freccia.

	δ [mm]	δ/L
Carichi di fase 1	168	1 / 228
S.L.E. Quasi Permanente	243	1 / 158
S.L.E. Frequente (*)	281	1 / 136
S.L.E. Caratteristica	313	1 / 122
Carichi mobili, val. car.	67	1 / 572
Carichi mobili, val. freq.	38	1 / 1008

6.2 Controfrecce

Viene fornita alle travi metalliche una contromonta determinata sulla base delle frecce dovute ai carichi di peso proprio, permanente ed un'aliquota dei carichi accidentali fissata nel 20 %.


Compatibilmente con la disposizione delle giunzioni, le contromonte verranno fornite nel seguente modo:

 δ = + 123 mm alla giunzione tra conci A-B

 δ = + 198 mm alla giunzione tra conci B-C

L'allineamento delle travi assumerà pertanto la forma diagrammata qualitativamente di seguito.

Andamento controfreccia

7. Verifiche travi

7.1 Generalità

Le verifiche vengono effettuate considerando la sezione a "l", con la relativa porzione collaborante di soletta superiore. Le sollecitazioni di verifica di ciascuna trave vengono direttamente dedotte dalle combinazioni del modello ad elementi finiti.

Si fa riferimento ai criteri per la verifica della resistenza delle sezioni (cross section checks) contenuti in EN 1993-1-1, EN1993-1-5, EN 1993-2, EN1994-1-1, EN 1994-2/NTC-08 cap 4.2., 4.3 e relative Istruzioni.

Nell'ambito dei vari S.L. considerati, si effettuano le seguenti verifiche sezionali:

S.L.U. Fondamentale

resistenza delle sezioni (incluse verifiche di local buckling)

S.L.E. Caratteristica

limitazione delle tensioni

S.L.E. Frequente

web breathing

fessurazione soletta

Fatica

verifica dell'ampiezza dei $\Delta\sigma$ (metodo dei coefficienti λ)

Il complesso delle precedenti verifiche viene effettuato in automatico, dal programma "Ponti EC4" per le sezioni di verifica individuate nei capitoli introduttivi, e per le quali si riporta di seguito il quadro identificativo.

7.2 S.L.U. - resistenza delle sezioni

La verifica S.L.U. di resistenza delle sezioni viene effettuata sistematicamente considerando le combinazioni S.L.U. – $M_{max}/M_{min}/V_{max}/V_{min}$, tenendo ovviamente conto, di volta in volta, delle rispettive caratteristiche di sollecitazione concomitanti. Si sintetizzano di seguito i passi principali della verifica:

- Preclassificazione della sezione

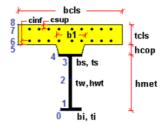
Effettuata sulla base delle caratteristiche geometriche dei singoli sottocomponenti

- Analisi plastica

Tracciamento dei domini di resistenza della sezione N/M_{rd} ed $N/M_{f,rd}$ (dominio della sezione privata dell'anima)

- Classificazione effettiva della sezione

Effettuata sulla base dell'effettivo valore di N_{Ed} , M_{Ed} per la combinazione in esame (max/min M_{Ed} , max/min V_{Ed} , con i rispettivi valori concomitanti)


- Verifica plastica a pressoflessione (sezioni cl. 1 e 2):

Valutazione del massimo rapporto di sfruttamento plastico η_1 ,; effettuata con riferimento a N_{Ed} , M_{Ed} agenti isolatamente, e per effetto combinato.

- Verifica elastica a pressoflessione (sezioni cl. 3-4)

valutazione del massimo rapporto di sfruttamento elastico η_1 , effettuata rispettivamente per le sezioni in classe 3/4 con riferimento alle caratteristiche geometriche lorde/efficaci. Le caratteristiche geometriche efficaci vengono dedotte in maniera iterativa, tenendo conto delle flessioni parassite che nascono per effetto dell'eccentricità assunta dall'azione assiale di progetto causata dallo "shift" progressivo dell'a.n.e..

Le tensioni vengono valutate in corrispondenza delle 8 fibre indicate nello schema seguente.

Nell'ambito del calcolo tensionale, la soletta viene considerata "cracked" (non reagente) all'atto dell'annullamento della tensione di compressione valutata in corrispondenza della fibra media. Contestualmente all'annullamento della soletta, si annullano anche le sollecitazioni da ritiro primario.

- Verifica a taglio - sezioni non soggette a "shear buckling"

Viene valutata la suscettibilità o meno delle sezioni allo shear buckling, procedendo quindi come segue:

sezioni non soggette a "shear buckling"

Viene effettuato il calcolo del taglio resistente plastico, ed il calcolo del rapporto di sfruttamento a taglio.

sezioni suscettibili di "shear buckling"

per sezioni soggette a "shear buckling" viene valutato il coefficiente di riduzione χ_{w_i} e successivamente valutato il taglio resistente $V_{b,Rd}$ come somma dei contributo resistenti dell'anima $V_{bw,Rd}$ e, se applicabile, delle flange $V_{bf,Rd}$.

- Verifica interazione azione assiale - flessione - taglio (tutte le classi)

Si adotta univocamente, per tutte le classi di sezione, l'approccio proposto da EN 1993-1-5, cap. 7.1, che consiste nella valutazione di un rapporto di sfruttamento modificato in funzione dei singoli rapporti di sfruttamento valutati per pressoflessione e taglio agenti separatamente. L'adozione di questa formulazione risulta a rigore solo leggermente più cautelativa di quella riservata alle sezioni di classe 1 - 2, per le quali l'interazione N-M-V si risolverebbe con la deduzione di un rapporto di

sfruttamento elastico per tensioni normali valutato con riferimento ad una anima opportunamente ridotta per tenere conto dell'influenza del taglio (cfr. EN 1994-2 cap. 6.2.2.4.(2)).

Un'ulteriore ipotesi cautelativa, riservata alla verifica di sezioni in classe 3-4, è l'utilizzo sistematico del rapporto di sfruttamento elastico η_1 in luogo di quello plastico $\overline{\eta}_1$, indipendentemente dall'andamento delle tensioni lungo l'anima (a rigore la EN 1993-1-5, cap. 7.1.(4) e (5) prevede tale accortezza solo qualora l'anima risulta interamente in compressione).

Come già evidenziato relativamente al calcolo del contributo resistente a taglio delle flange, le resistenze plastiche della sezione completa e della sezione privata dell'anima sono rilevate direttamente dai rispettivi domini di interazione, per cui:

 $M_{pl,Rd} = M_{pl(N),Rd}$ $M_{f,Rd} = M_{f(N),Rd}$

7.2.1 Riepilogo coefficienti di sfruttamento

Si riporta il riepilogo dei coefficienti di sfruttamento significativi in forma tabellare e grafica. In allegato si riporta, a titolo di esempio, lo sviluppo completo del ciclo di verifica per una delle sezioni più significativa.

Le tabelle seguenti riepilogano, per ciascuna delle quattro combinazioni base esaminate ($M_{max/min}$, $V_{max/min}$), l'esito delle verifiche S.L.U. – resistenza delle sezioni, tramite le seguenti grandezze:

a) classificazione effettiva della sezione

effettuata sulla base dell'effettiva posizione dell'a.n. el./pl., qui riportata direttamente in fase3

- b) rapporto di sfruttamento plastico $\frac{1}{1} = M_{Ed}/M_{Rd}$
 - significativo (applicabile) solo quando la classe della sezione ≤ 2; in tutti gli altri casi la casella relativa appare ombreggiata
- c) rapporto di sfruttamento elastico $\eta_1 = \sigma_{Ed}/\gamma_{mo}f_{yk}$
 - significativo solo quando la classe della sezione ≥ 2; in tutti gli altri casi la casella relativa appare ombreggiata
- d) rapporto di sfruttamento a taglio $\eta_3 = V_{Ed}/V_{Rd}$

somma dei contributi resistenti di anima e flange: V_{Rd} = V_{bw,Rd} + V_{bf,Rd}

e) rapporto di sfruttamento a taglio della sola anima V_{Ed}/V_{bw}

rapporto di sfruttamento a flessione della sezione formata dalle sole flange M_{Ed}/M_{fRd}

f) rapporto di sfruttamento assoluto (V/M/N)

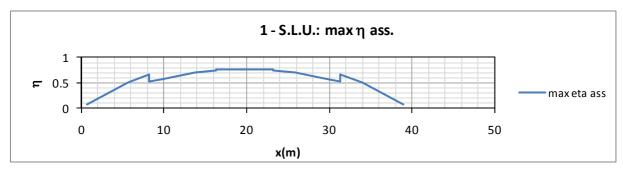
indica il rapporto di sfruttamento complessivo, in presenza di interazione taglio/tensioni normali; in assenza di interazione non risulta significativo

Sezione	Comb.	Classe	M _{Ed} /M _{Rd}	$\sigma_{\text{Ed}}/\gamma_{\text{mo}}f_{\text{yk}}$	V_{Ed}/V_{Rd}	$M_{Ed}/M_{f,Rd}$	$V_{Ed}/V_{bw,Rd}$	V/M/N	$v_{Ed}/(n \cdot P_{Rd})$	v _{Ed} /(ksn·P _{Rd})
A_S1	0.65	1	0.08		0.44	0.07	0.48	No int.	0.256	0.28
A_S2	5.625	1	0.23		0.18	0.28	0.20	No int.	0.062	0.09
A_S3	8.25	1	0.30		0.15	0.37	0.16	No int.	0.052	0.07
B_S4	8.251	1	0.24		0.14	0.27	0.16	No int.	0.067	0.10
B_S5	9.675	1	0.26		0.12	0.3	0.14	No int.	0.059	0.09
B_S6	13.725	1	0.31		0.07	0.35	0.09	No int.	0.038	0.05
B_S7	16.35	1	0.33		0.04	0.38	0.05	No int.	0.024	0.03
B_S8	17.775	1	0.34		0.03	0.38	0.03	No int.	0.016	0.02
C_S9	17.776	1	0.34		0.03	0.38	0.03	No int.	0.016	0.02
C_S10	19.8	1	0.34		0.00	0.39	0.00	No int.	0.005	0.01
C_S11	21.825	1	0.34		0.03	0.38	0.03	No int.	0.016	0.02
B_S12	21.826	1	0.34		0.03	0.38	0.03	No int.	0.016	0.02
B_S13	23.25	1	0.33		0.04	0.38	0.05	No int.	0.024	0.03
B_S14	25.875	1	0.31		0.07	0.35	0.09	No int.	0.038	0.05
B_S15	29.925	1	0.26		0.12	0.3	0.14	No int.	0.059	0.08
B_S16	31.35	1	0.24		0.14	0.27	0.16	No int.	0.067	0.10
A_S17	31.351	1	0.30		0.15	0.37	0.16	No int.	0.052	0.07
A_S18	33.975	1	0.23		0.18	0.28	0.20	No int.	0.062	0.09
A_S19	38.95	1	0.08		0.43	0.07	0.48	No int.	0.254	0.27
A_S1	0.65	1	0.08		0.23	0.1	0.26	No int.	0.079	0.12
A_S2	5.625	1	0.50		0.49	0.62	0.52	No int.	0.374	0.41
A_S3	8.25	1	0.67		0.34	0.83	0.35	No int.	0.215	0.23
B_S4	8.251	1	0.52		0.31	0.59	0.35	No int.	0.278	0.30
B_S5	9.675	1	0.58		0.36	0.66	0.40	No int.	0.383	0.42
B_S6	13.725	1	0.70		0.18	0.8	0.19	No int.	0.156	0.17
B_S7	16.35	1	0.75		0.10	0.85	0.10	No int.	0.078	0.09
B_S8	17.775	1	0.76		0.06	0.87	0.07	No int.	0.059	0.06
C_S9	17.776	1	0.76		0.06	0.87	0.07	No int.	0.059	0.06
C_S10	19.8	1	0.77		0.00	0.88	0.00	No int.	0.002	0.00
C_S11	21.825	1	0.76		0.06	0.87	0.07	No int.	0.056	0.06
B_S12	21.826	1	0.76		0.06	0.87	0.07	No int.	0.056	0.06
B_S13	23.25	1	0.75		0.09	0.86	0.10	No int.	0.075	0.08
B_S14	25.875	1	0.70		0.18	0.8	0.19	No int.	0.153	0.17
B_S15	29.925	1	0.58		0.28	0.66	0.31	No int.	0.253	0.28
B_S16	31.35	1	0.52		0.39	0.59	0.44	No int.	0.411	0.45
A_S17	31.351	1	0.67		0.43	0.83	0.44	No int.	0.318	0.35
A_S18	33.975	1	0.50		0.41	0.62	0.43	No int.	0.274	0.30
A_S19	38.95	1	0.08		0.23	0.1	0.26	No int.	0.079	0.12
A_S1	0.65	1	0.08		0.23	0.1	0.25	No int.	0.072	0.11
_ A_S2	5.625	1	0.33		0.15	0.41	0.17	No int.	0.029	0.05
A_S3	8.25	1	0.47		0.10	0.58	0.11	No int.	0.009	0.01
B_S4	8.251	1	0.37		0.09	0.42	0.11	No int.	0.012	0.01
B_S5	9.675	1	0.40		0.08	0.46	0.09	No int.	0.021	0.00
B_S6	13.725	1	0.50		0.00	0.57	0.01	No int.	0.08	0.07
B_S7	16.35	1	0.55		0.05	0.63	0.06	No int.	0.133	0.14
B_S8	17.775	1	0.58		0.07	0.66	0.08	No int.	0.142	0.15
C_S9	17.776	1	0.58		0.07	0.66	0.08	No int.	0.142	0.15
C_S10	19.8	1	0.59		0.11	0.68	0.13	No int.	0.181	0.20
C_S11	21.825	1	0.69		0.17	0.79	0.18	No int.	0.228	0.25
B_S12	21.826	1	0.69		0.17	0.79	0.18	No int.	0.228	0.25
B_S13	23.25	1	0.68		0.20	0.77	0.21	No int.	0.243	0.26
B_S14	25.875	1	0.65		0.27	0.74	0.29	No int.	0.307	0.33
B_S15	29.925	1	0.55		0.37	0.63	0.41	No int.	0.393	0.43
B_S16	31.35	1	0.50		0.40	0.57	0.45	No int.	0.42	0.46
A_S17	31.351	1	0.64		0.43	0.8	0.45	No int.	0.325	0.35
A_S18	33.975	1	0.49		0.49	0.6	0.52	No int.	0.375	0.41
A_S19	38.95	1	0.08		0.62	0.09	0.68	No int.	0.482	0.52
A_S1	0.65	1	0.08		0.62	0.09	0.68	No int.	0.485	0.53
A_S2	5.625	1	0.49		0.49	0.61	0.53	No int.	0.377	0.41
A_S3	8.25	1	0.64		0.43	0.79	0.44	No int.	0.321	0.35
B_S4	8.251	1	0.50		0.39	0.57	0.44	No int.	0.416	0.45
B_S5	9.675	1	0.55		0.37	0.63	0.41	No int.	0.395	0.43
B_S6	13.725	1	0.65		0.27	0.75	0.29	No int.	0.309	0.34
B_S7	16.35	1	0.68		0.20	0.78	0.22	No int.	0.245	0.27
B_S8	17.775	1	0.68		0.17	0.78	0.19	No int.	0.229	0.25
C_S9	17.776	1	0.68		0.17	0.78	0.19	No int.	0.229	0.25
C_S10	19.8	1	0.68		0.12	0.78	0.13	No int.	0.184	0.20
C_S11	21.825	1	0.57		0.07	0.65	0.08	No int.	0.145	0.15
B_S12	21.826	1	0.57		0.07	0.65	0.08	No int.	0.145	0.15
B_S13	23.25	1	0.55		0.05	0.62	0.05	No int.	0.128	0.13
B_S14	25.875	1	0.51		0.00	0.58	0.00	No int.	0.083	0.08
B_S15	29.925	1	0.41		0.07	0.47	0.08	No int.	0.024	0.01
B_S16	31.35	1	0.36		0.10	0.41	0.11	No int.	0.004	0.02
A_S17	31.351	1	0.46		0.11	0.57	0.11	No int.	0.003	0.02
A_S18	33.975	1	0.34		0.15	0.42	0.16	No int.	0.026	0.05
A_S19	38.95	1	0.08		0.23	0.1	0.25	No int.	0.072	0.11
Valori d	i punta		0.77		0.62	0.88	0.68	No int.	0.49	0.53
	-	•								

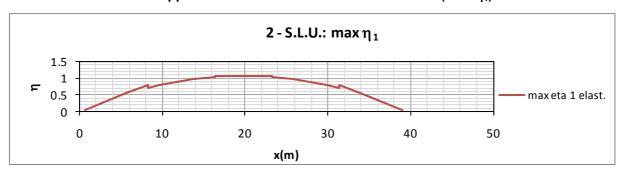
Dall'esame delle tabelle riportate poco sopra, si evince il soddisfacimento di tutte le verifiche S.L.U. - resistenza delle sezioni.

I diagrammi seguenti visualizzano, i seguenti rapporti di sfruttamento:

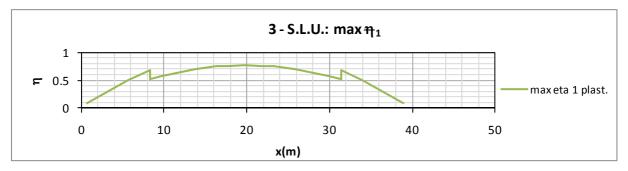
max η assoluto

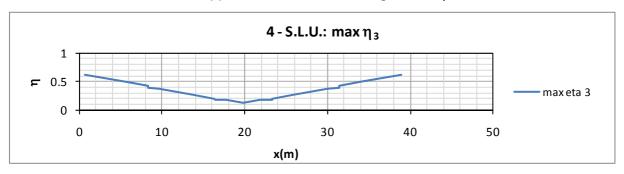

Derivante dall'interazione N/M/V (EN1993-1-5, 7.1.(1)); nei casi in cui non vi è interazione, tale valore coincide con il rapporto di sfruttamento a flessione η_1 .

max $\eta_1/\frac{\eta_1}{\eta_1}$


Rapporto di sfruttamento a flessione; nell'ambito delle condizioni di applicabilità dell'analisi plastica, esso coincide con il rapporto $\eta_1 = M_{Ed}/M_{pl}$ (rapporto di sfruttamento plastico); in tutti gli altri casi è pari a $\eta_1 = \sigma_{Ed}/(\gamma_{mo}f_{yk})$. I rapporti di sfruttamento a flessione, risp. elastici e plastici vengono tracciati indipendentemente dal campo di applicabilità; in ogni caso, il valore considerato nel calcolo del rapporto di sfruttamento assoluto considera di volta in volta il rapp. elastico/plastico in funzione degli effettivi limiti di applicabilità.

max $η_3$ Rapporto di sfruttamento a taglio $η_3 = V_{Ed}/V_{Rd}$

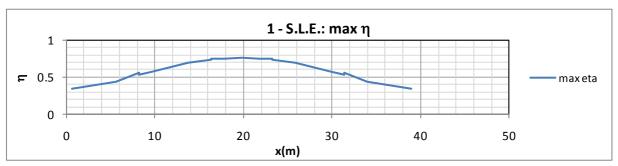

Rapporto di sfruttamento assoluto fili (max η)

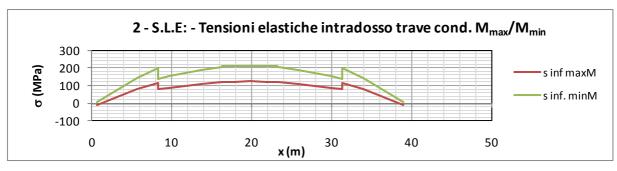

Rapporto di sfruttamento elastico a flessione (max η_1)

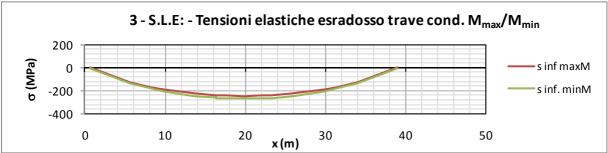
Rapporto di sfruttamento plastico a flessione (max 171)

Rapporto di sfruttamento a taglio max η₃

7.2.2 Esempio esteso di verifica


Si riporta nell' "Errore. L'origine riferimento non è stata trovata.", a titolo di esempio la verifica estesa relativa alla sezione C_S10 recante tutti i passaggi effettuati dal programma Ponti EC4


7.3 S.L.E. - limitazione delle tensioni


La verifica viene condotta con riferimento alle tensioni di Von Mises valutate sotto la combinazione fondamentale S.L.E., applicando il coefficiente di materiale $\gamma_{m,ser}$ = 1.0.

7.3.1 Riepilogo coefficienti di sfruttamento

Il diagramma seguente propone i coefficienti di sfruttamento S.L.E. rilevati lungo le sezioni di verifica, sviluppati in automatico dal programma Ponti EC4.

Come si può notare dall'esame del diagramma, i rapporti di sfruttamento S.L.E. appaiono soddisfacentemente al di sotto dell'unità.

7.4 S.L.E. - "web breathing"

La verifica è volta alla limitazione della snellezza dei singoli sottopannelli. Per i criteri di verifica, si rimanda a EN 1993-2, cap. 7.4/istr. NTC08, cap. 4.2.4.1.3.4.

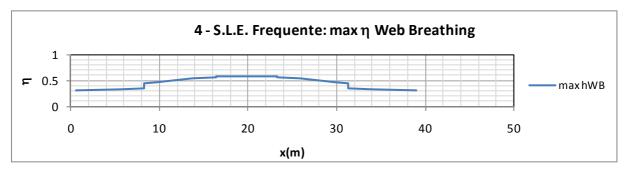
La verifica viene effettuata mediante il metodo rigoroso, consistente nella verifica diretta della stabilità dei sottopannelli con riferimento al quadro tensionale della combinazione S.L.E. frequente.

Viene pertanto confrontato il quadro tensionale indotto dalla combinazione S.L.E. frequente, rappresentato da $\sigma_{x,Ed,ser}$ (calcolate però con riferimento all'area efficace, se pertinente) e $\tau_{xy,Ed,ser}$, con le tensioni normali e tangenziali critiche del pannello, mediante la relazione (cfr. 1993-2 cap. 7.4.(3)):

$$\sqrt{\left(\frac{\sigma_{x,Ed,ser}}{k_{\sigma} \sigma_{E}}\right)^{2} + \left(\frac{1.1 \tau_{x,Ed,ser}}{k_{\tau} \sigma_{E}}\right)^{2}} \leq 1.1$$

In cui:

 $\sigma_E = 186200(t/h)^2$ tensione critica Euleriana


 k_{σ}, k_{τ} = coefficienti di imbozzamento per tensioni normali e per taglio, funzione della geometria e stato di sforzo del pannello.

La verifica viene effettuata in automatico dal programma Ponti EC4, sulla base delle combinazioni S.L.E. frequenti elaborate per tutte le sezioni di verifica, rispettivamente per Mmax/min e Vmax/min.

La tensione normale critica viene valutata a partire da quella Euleriana, tenendo conto della eventuale sovrapposizione dei fenomeni di instabilità di piastra e di colonna tramite il coefficiente ξ , seguendo i criteri contenuti in EN 1993-1-5 - 4.5.4.(1).

7.4.1 Riepilogo coefficienti di sfruttamento w.b.

Relativamente alla verifica di Web Breathing, i diagrammi seguenti riportano l'andamento del rapporto di sfruttamento (inteso come il risultato della radice quadrata della formula precedente).

Come si può notare dall'esame del diagramma, la verifica di Web Breating appare soddisfatta. La situazione più gravosa viene riscontrata in corrispondenza della sezione C_S10, nella combinazione S.L.E. freq, Vmin, con η_{WB} = 0.577 < 1.1

7.5 Verifica connessione trave soletta

7.5.1 Generalità

Si fa riferimento a quanto contenuto in EN 1994-1/EN 1994-2/NTC-08, 4.3.4.1.2 + istr. cap. C.4.3.4.

Le piolature adottate sono tutte a completo ripristino di resistenza.

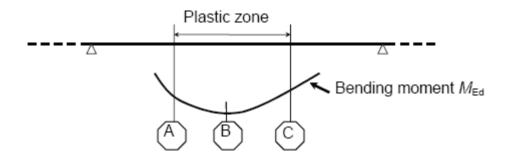
Il ciclo di verifica completo delle piolature comprende i seguenti passi:

Verifica tensioni S.L.U. (valido per sezioni con $\eta_1 \le 1$)

Deduzione del massimo scorrimento "elastico" a taglio allo S.L.U. sul singolo piolo, nell'ambito delle condizioni M_{max}/M_{min} , V_{max}/V_{min} , e confronto con la portanza del piolo allo S.L.U.:

$$v_{L,Ed}(x) = V_{Ed}(x) S/J$$

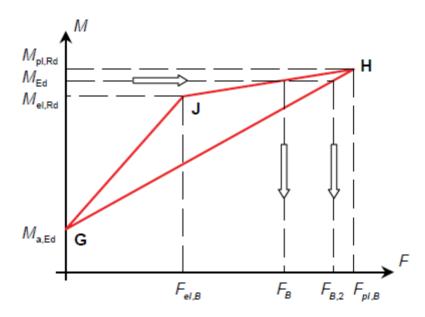
 $v_{L,Ed}^{ULS} \le 1.1 N_i/I_i P_{Rd}$


In cui S e J sono univocamente definite sulla base delle caratteristiche "uncracked"

Tale approccio risulta ovviamente valido solamente per le sezioni che non attingono alle proprie risorse extra elastiche ($\eta_1 \le 1$). Per sezioni di classe 1-2, qualora il rapporto di sfruttamento elastico η_1 risulta maggiore di 1, non risulta più valido l'approccio di calcolo dello scorrimento (v = VS/J), ed è quindi necessario tenere conto in maniera non lineare della relazione tra azione tagliante V_e scorrimento v_L mediante l'approccio non lineare indicato al punto seguente.

Verifica plastica S.L.U. (obbligatorio per sezioni con $\eta_1 > 1$)

Nelle zone plasticizzate (in generale a momento negativo) non risulta più valido l'approccio di calcolo dell'azione nei pioli basata sul flusso elastico: in questo caso, infatti, il legame fra il taglio per unità di lunghezza, le forze interne della soletta ed il momento flettente non è più lineare (EN 1994-2 cap. 6.6.2.2).


Il calcolo viene effettuato individuando, propedeuticamente, la regione entro la quale le sezioni attingono alle proprio risorse extra-elastiche. Tale regione (simmetrica nel caso in esame), è schematicamente rappresentata dai due punti di boundary A e C e dal punto di minimo momento (mezzeria) indicati nello schema seguente. I punti di boundary sono individuate dalle sezioni nelle quali la massima tensione è pari allo snervamento del materiale.

La verifica è di tipo "globale", e comprende la valutazione dello scorrimento in maniera diretta, mediante considerazioni di equilibrio del concio dei conci di soletta compresi tra la boundary ed il punto di minimo mento (concio di soletta compreso tra A e B e concio di soletta compreso tra B e C).

L'azione assiale insistente ai confini della zona plastica (punti A / B) è pari all'integrale delle tensioni rilevate lungo la soletta in calcestruzzo; a tale azione va aggiunta l'effetto del ritiro primario.

L'azione assiale N_B è la risultante delle azioni in soletta, da valutarsi con riferimento all'effettivo stato, parzialmente "plastico" della sezione. Per il calcolo, si fa riferimento ai criteri di "non linear resistance to bending" contenuti in EN 1994-2 cap. 6.2.1.4.(6), con l'ausilio della costruzione riportata nel diagramma seguente, che riporta in un sistema d'assi M/N, i possibili stati della sezione di minimo momento flettente.

Si indica con:

M_{a.Ed} momento flettente agente sulla sola trave metallica

 $M_{\text{el,Rd}}$ momento flettente elastico M_{Ed} momento flettente di progetto $M_{\text{pl,Rd}}$ momento plastico della sezione

F_{el,B} azione assiale agente nella soletta, al raggiungimento del momento elastico (N_B)

Il diagramma è caratterizzato dai seguenti punti notevoli:

- G punto corrispondente al momento flettente della trave in fase 1
- H punto che individua il raggiungimento dello stato plastico della sezione, caratterizzato da $M_{pl,Rd}$ ed $F_{pl,B}$ (azione assiale plastica in soletta).
- J punto corrispondente allo yielding del prima fibra della sezione, caratterizzato da $M_{el,Rd}$ ed $F_{El,B}$ (risultante tensioni in soletta sotto l'azione di $M_{El,Rd}$).

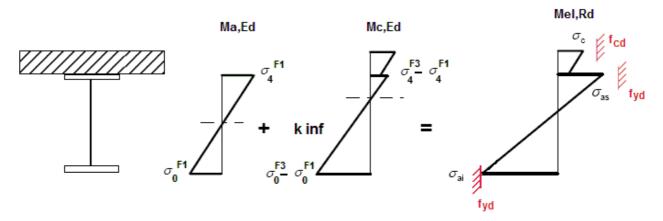
Come si nota dal diagramma, l'effettiva azione assiale F_B insistente in soletta nel reale stato della sezione è rappresentato dalla linea verticale che interseca la retta JH all'ordinata corrispondente al momento di progetto M_{Ed} . In alternativa, operando in maniera semplificata, risulta possibile stabilire un limite superiore a N_B , intercettando direttamente la retta GH.

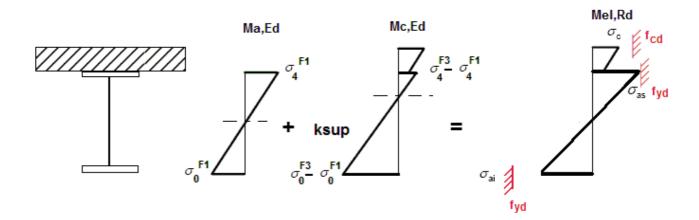
Si segue l'approccio "rigoroso" che, pur comportando la necessità di valutare $M_{el,Rd}$, comporta una stima più accurata di N_B .

Per il calcolo di $M_{el,Rd}$ ed $F_{el,B}$, viene valutato il fattore "k" (\leq 1) che, applicato al momento flettente agente sulla sezione composta $M_{c,Ed}$ (derivante da fase 2 e fase 3) comporta un quadro tensionale al limite di snervamento, e che implica pertanto l'espressione:

$$M_{el,Rd} = M_{a,Ed} + k M_{c,ED}$$

Si avrà pertanto, con riferimento alle fibre estreme della sezione:

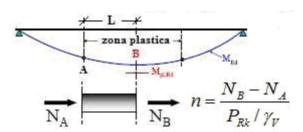

$$k = f_{yd} - \sigma_{if1} / \Delta \sigma_i$$


i = 1 o 4 (lembo inferiore/superiore trave metallica)

 σ_{if1} = tensione alla fibra "i" della sezione in fase 1

 $\Delta\sigma_i$ = variazione di tensione alla fibra "i" tra la fase 3 e la fase 1

Si utilizza uno dei due schemi di calcolo riportati nelle figure sottostanti, a seconda che la tensione di snervamento sia stata superata nella fibra inferiore oppure in quella superiore.


Quando la sezione è plasticizzata il coefficiente k risulta compreso fra 0 ed 1, e rappresenta il coefficiente moltiplicativo che riporta il diagramma di tensioni in fase 3 ad un diagramma al limite elastico.

Noto k è immediato valutare $M_{el,Ed}$ e la corrispondente azione assiale di soletta, tramite integrazione delle tensioni:

$$N_{el,Ed} = k \cdot (\sigma_5 + \sigma_8)/2 \cdot A_{soletta}$$

Essendo σ_5 e σ_8 le tensioni normali nella soletta in fase 3, calcolate a partire da Mel,Ed.

Il numero di pioli necessario nella zona plastica è infine calcolabile, con riferimento allo schema ed alla formula seguente.

Verifica tensioni S.L.E.

Deduzione del massimo scorrimento "elastico" a taglio allo S.L.E. sul singolo piolo, nell'ambito delle condizioni M_{max}/M_{min} , V_{max}/V_{min} , e confronto con la portanza del piolo allo S.L.E..

Il criterio di confronto dello scorrimento con la portanza della piolatura è identico a quello visto per la verifica delle tensioni S.L.U., con ovvia sostituzione delle grandezze.

$$v_{L,Ed}{}^{SLS}\left(x\right) \leq N_{i}/I_{i}\cdot\left(k_{s}\;P_{Rd}\right)$$

Verifica concentrazione scorrimenti per effetto del ritiro nelle zone di estremità trave

L'ammontare delle azioni di scorrimento per ritiro nelle zone di coda verrà affidato per intero ai pioli. Vengono pertanto riassunte le caratteristiche della piolatura assunta in corrispondenza delle zone di coda.

d [mm]	h [mm	α	n°/m	f_{cu} [N/mm²]	γv	f_{ck} [N/mm²]	E _{cm} [N/mm²]
19	225	1	25	450	1.25	35	34077

Tabella 1 – Riepilogo dati pioli

Le resistenze del singolo elemento di connessione sono così calcolate (cfr. EN 1994-2, 6.6.3.1.(1)):

$$P_{Rk1} = 0.8 \cdot f_u \pi d^2/4 = 0.8 \cdot 450 \text{N/mm}^2 \pi (19 \text{mm})^2/4 = 102070.3 \text{N}$$
 rottura gambo

$$P_{Rk2} = 0.29 \cdot \alpha \cdot d^2 \cdot (f_{ck} \cdot E_{cm})^{\frac{1}{2}} = 0.29 \cdot 1 \cdot 19^2 \cdot (35 \cdot 34077)^{\frac{1}{2}} = 114332.5N$$
 rottura calcestruzzo

Discende pertanto il valore di progetto della resistenza ultima, dal minimo dei valori riscontrati diviso per il coefficiente di sicurezza:

$$P_{Rd2} = min (P_{Rk1}; P_{Rk2}) / \gamma_V = 81656N$$

Il flusso di taglio derivante dal ritiro è calcolato come:

$$v_{L,Ed}(x) = -2 \cdot N_c/b_{eff} = -2 \cdot 2.42 \cdot 10^6 \cdot /2700 = 1794 \text{ N/mm}$$

Il numero minimo di pioli da prevedere è pertanto:

$$n_{min,ritiro} = v_{L,Ed} / P_{Rd} = 1794 \cdot 10^3 / 81656 = 21.97 \text{ n}^{\circ} \text{pioli/m}$$

Considerando che tale numero minimo è riferito alla sola azione di ritiro e che gli altri carichi sollecitanti contribuiscono a ridurre tale azione assiale, si ritiene sufficiente l'assunzione di n. 20 pioli/m per le zone di estremità.

7.5.2 Caratteristiche piolatura corrente

Per la trave in esame, si prevede l'adozione delle seguenti tipologie di piolatura:

Piolatura tipo 1 - concio tipo A: n. 20 pioli/m

Piolatura tipo 2 - conci tipo B e C: n. 15 pioli/m

Si adottano pioli ø19 con altezza massima pari a 225 mm.

I valori di riferimento nell'ambito delle verifiche S.L.U. e S.L.E. sono pertanto i seguenti:

$$P_{Rd,SLU} = 102.1 \text{ kN}$$

Ponendo k_s = 0.75, conformemente a quanto previsto dal N.A.D. di EN 1994-2 (cfr. Istruzioni della NTC-08) si ha

$$P_{Rd,S.L.E.} = 0.6 \cdot 102.1 = 61.3 \text{ kN}$$

7.5.3 Detailing

Per i limiti dimensionali da rispettare nel detailing delle piolature si fa riferimento ai contenuti di NTC-08 cap. 4.3.4.3.4/EN 1994-2 cap. 6.6.5.. Di seguito si evidenzia il riferimento specifico a quest'ultimo testo normativo, più puntuale.

Il massimo interasse longitudinale delle piolature dovrà rispettare le seguenti limitazioni (EN1994-2 6.6.5.5(2)):

 $e_{max}/t_f \le 22 \ \epsilon$ $e_{max}/t_f \le 22 \cdot 0.81 = 17.9$

Essendo $t_{fmax} = 25$ mm, ne consegue:

 $e_{max} = 445.5 \text{ mm}$

La distanza delle file longitudinali di pioli dal bordo dovrà rispettare le seguenti limitazioni (EN1994-2 6.6.5.5(2)):

 $e_d/t_f \le 9 \epsilon$

 $e_d/t_f \le 9 \cdot 0.81 = 7.29$

Pertanto:

 $e_{d,max} = 7.29 \cdot 25 = 182.25 \text{ mm}$

Inoltre:

 $e_{d,min} = 25.0 \text{ mm}$ (1994-2 6.6.5.6(2))

La minima distanza misurata tra la parte inferiore della testa del piolo e lo strato inferiore di armatura dovrà essere > 40 mm.

I pioli dovranno rispettare le seguenti limitazioni dimensionali:

	$h_p \ge 3d$	EN 1994-2 6.6.5.7.(1)	h _p = altezza piolo			
	$d_t \ge 1.5d$	EN 1994-2 6.6.5.7.(2)	d _t = diametro testa			
	$h_t \ge 0.4d$	EN 1994-2 6.6.5.7.(2)	h _t = altezza testa			
	d _p ≥ 1.5t _{sup}	EN 1994-2 6.6.5.7.(3)	d_p = diam. piolo, t_{sup} = spessore flangia (*)			
(*) per piattabande in tensione, soggette a fatica						
	d _p ≥ 2.5t _{sup}	EN 1994-2 6.6.5.7.(5)	d_p = diam. piolo, t_{sup} = spessore flangia (**)			
	(**) per tutte le pia	ttabande				
	d _p ≥ 1.5t _{sup}	EN 1994-2 6.6.5.7.(3)	d_p = diam. piolo, t_{sup} = spessore flangia			

L'interasse dei pioli dovrà rispettare le seguenti limitazioni dimensionali (EN1994-2 6.6.5.7.(4)):

 $s_{lg} \ge 5 d_p$ in direzione longitudinale $s_{tv} \ge 2.5 d_p$ in direzione trasversale

Nel rispetto delle limitazioni dimensionali esposte, per le tipologie previste di piolatura, la disposizione sulla piattabanda verrà organizzata come segue.

 $e_d = 60.0 \text{ mm}$

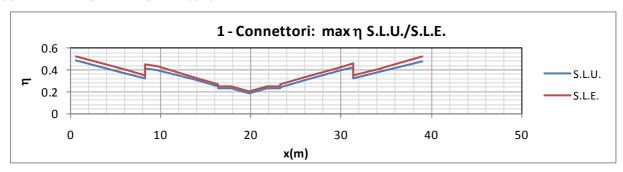
distanza dell'asse piolo dal bordo libero

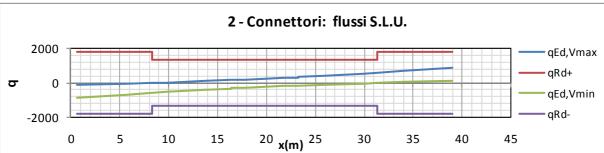
Per la **piolatura tipo 1** (20 pioli/m) si prevedono i seguenti interassi:

$$s_{lg} = 200.0 \text{ mm}$$

$$s_{tv} = (600 - 2 \cdot 60) / 3 = 160 \text{ mm}$$

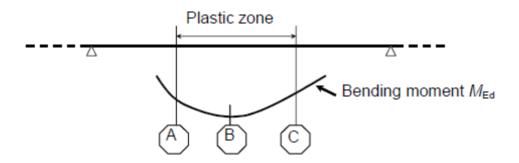
Per la piolatura tipo 2 (15 pioli/m) si prevedono i seguenti interassi:

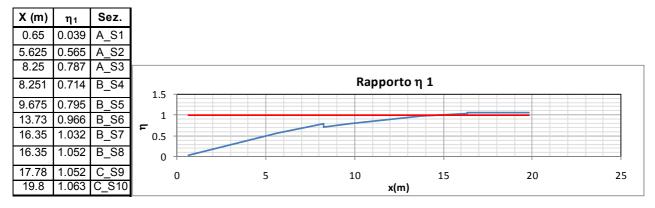

$$s_{lg} = 200.0 \text{ mm}$$


$$s_{tv} = (600 - 2 \cdot 60) / 2 = 240 \text{ mm}$$

7.5.4 Riepilogo rapporti di sfruttamento verifica elastica S.L.U. - S.L.E.

Il calcolo dello scorrimento nelle varie sezioni di verifica ed il confronto con la piolatura di progetto viene effettuato in automatico dal programma PontiEC4 nell'ambito delle condizioni considerate ($M_{max/min}$).


I diagrammi seguenti riportano l'andamento del rapporto di sfruttamento dei connettori allo S.L.U. ed allo S.L.E. e l'andamento dei flussi di taglio S.L.U. massimi e minimi (q_{Ed}) insistenti sui connettori (valori in N/m), rapportati alle rispettive capacità (q_{Rd}).



7.5.5 Verifica plastica S.L.U.

La boundary della zona plasticizzata allo S.L.U. (p. A e C) viene individuata esaminando i rapporti di sfruttamento elastici η_1 , che testimoniano valori di poco superiori all'unità a partire dalla sezione B_S7.

Il diagramma e la tabella seguente riportano l'andamento del massimo rapporto di sfruttamento elastico, valutato per la zona compresa tra l'incastro in spalla e la zona di mezzeria trave ed evidenziano l'estensione della zona plastica.

Nella sezione di estremità della zona plastica (prossimità sezione B_S7), il valore della massima azione di compressione ($N_A = N_C$ per simmetria) nella soletta nella combinazione allo S.L.U. M_{min} viene valutato con riferimento alle tensioni elastiche rilevate ai lembi della soletta ed in corrispondenza dell'armatura. Le tensioni vengono dedotte direttamente dall'output di pontiEC4 e sono richiamate in tabella.

id	F ₁	F _{2a N.F.}	F _{2a F.}	F _{2b N.F.}	F _{2b} _{F.}	F _{2c N.F.}	F _{2c F.}	F _{2 tot}	F _{3a N.F.}	F _{3a F.}	F _{3b N.F.}	F _{3b} _{F.}	F _{3 tot}	η1	id
σ8	0	-2.5	0	0.9	0	0	0	-1.6	0	0	-9.7	0	-11.4	0.57	σ_8
σ ₇	0	-37.4	-113	-43.6	0	0	0	-80.9	0	-0.6	-54	-319	-135	0.35	σ7
σ ₆	0	-26.9	-91.4	-37.3	0	0	0	-64.2	0	-0.4	-32.1	-258.3	-96.3	0.25	σ_{6}
O 5	0	-1.6	0	1.5	0	0	0	-0.1	0	0	-4.9	0	-5	0.25	σ5
σ4	-256.5	-25.9	-89.2	-36.6	0	0	0	-319	0	-0.4	-29.9	-252.2	-348.9	1.03	04
σ3	-249.3	-24.6	-86.5	-35.8	0	0	0	-309.7	0	-0.4	-27.2	-244.6	-336.9	1.00	σ_3
σ2	-0.4	-0.1	-0.2	-21.2	0	0	0	-21.7	0.1	0.2	0	0	-21.7	0.06	σ_2
σ1	97.8	38.5	43.2	2.5	0	0	0	138.8	0.3	0.5	105.5	122.8	244.7	0.72	σ1
σ_0	116.5	41.9	50.2	4.6	0	0	0	162.9	0.4	0.6	112.7	142.5	276	0.86	σ_0

$\sigma_{csup} = \sigma_8 =$	-11.4	MPa	
$\sigma_{\text{cinf}} = \sigma_{5} =$	-5	MPa	
$\sigma_{cmed} = (\sigma_{csup} + \sigma_{cinf}) / 2 =$	-8.2	MPa	
$\sigma_{0,F3 \text{ tot}} =$	276	MPa	
$k = f_y / G_{0,F3 tot} =$	1.29	MPa	
b _{eff} =	2700	mm	
h _{sol} =	275	mm	
$N_A = N_C = k \cdot \sigma_{cmed} \cdot b_{eff} \cdot h_{sol} =$	-7831.2	kN	
L/2 = 19.8 - 16.35 =	3.45	m	(metà ampiezza della zona plastica)

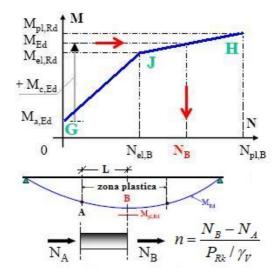


Tabella 7-2 - Dominio per schema di calcolo

Azion	e assiale sulla soletta	Momenti				
	(compressione)	(sezione interamente ragente)				
	[N]	[N m]				
N _{el,B} =	7.527E+6	M _{a,Ed} =	6.365E+6			
N _{pl,B} =	1.674E+7	M _{el,Rd} =	1.795E+7			
		M _{pl,Rd} =	-2.628E+10			

Tabella 4- Dominio per schema di calcolo

dove

$$M_{el,Rd} = M_{a,Ed} + k^* M_{c,Ed}$$

con k = 0.883 e $M_{c,Ed}$ = 1.312E+7 Nm

Dal dominio risulta che:

$$N_B = 9.223E+6 \text{ N per } M_{Ed} = 1.948E+7 \text{ Nm}$$

per cui ne consegue un numero di pioli necessari per unità di lunghezza pari a:

$$(n^{\circ}/m) = \frac{N_B - N_A}{P_{\rm Rd} \cdot L}$$
 = 17 > Pioli necessari = 4.9 N°/m

essendo N_A =-7.831E+6 N e L=3.45 m.

I pioli previsti sui conci B e C, ripettivamente pari a 15 pioli/m, soddisfano pertanto il requisito minimo.

7.6 Verifiche a fatica

7.6.1 Generalità

Le verifiche a fatica vengono effettuate con l'impiego del metodo dei coefficienti λ , associato al veicolo a fatica FLM3 (EN 1993-2 cap. 9/istr. NTC-08, cap. 4.2.4.1.4.6.3.).

In estrema sintesi, il metodo consiste nell'estrazione, per i vari punti di interesse, del range di sforzi $\Delta \sigma_p$ dovuto al singolo transito di uno specifico modello di carico (FLM3), da calibrarsi opportunamente mediante l'applicazione dei fattori equivalenti di danno, in modo da fornire il medesimo impatto del traffico reale.

Si ha pertanto:

 $\Delta \sigma_p = |\sigma_{p,max} - \sigma_{p,min}|$

ampiezza escursione tensioni, valutata dalla combinazione di progetto a fatica

(comp. non ciclica + comp. ciclica da FLM3).

 $\Delta \sigma_{E,2} = \lambda \Delta \sigma p$

ampiezza equivalente allo spettro di danneggiamento per 2E6 cicli

con:

 $\lambda = \lambda_1 \lambda_2 \lambda_3 \lambda_4$

fattore equivalente di danno

Verifica:

$$\gamma_{\rm Ff} \Delta \sigma_{\rm F,2} \leq \Delta \sigma_{\rm c} / \gamma_{\rm Mf}$$

In ottemperanza a quanto previsto dalle istruzioni e dal N.A.D. e nell'ottica del concetto "safe life", si pone:

$$\gamma_{\rm Ff} = 1$$

Si pone inoltre, per lo specifico caso:

 γ_{Mf} = 1.35 alta conseguenza a seguito della rottura del dettaglio (fail safe)

 γ_{Mf} = 1.15 bassa conseguenza a seguito della rottura del dettaglio (non fail safe)

Tutti i dettagli vengono ascritti alla categoria fail safe ad eccezione dei pioli.

7.6.2 Coefficienti λ

Il valore dei coefficienti λ_1 , λ_2 , λ_3 , λ_4 viene determinato secondo quanto previsto in EN 1993-2 cap. 9 e EN 1994-2 cap. 6.8.6.2 rispettivamente per i dettagli di carpenteria e per le piolature (in quest'ultimo caso i coefficienti λ verranno indicati con il pedice aggiuntivo "v").

Per l'individuazione delle caratteristiche distintive la tipologia di traffico ed il modello di carico, si fa riferimento a EN 1991-2 cap. 4.6 (NTC-08, cap. 5).

Con riferimento alla tabella seguente, tratta da EN 1991-2, cap. 4.6.1.(3), si assume, in mancanza di dettagli più puntuali, che la strada ospitata dalla struttura in esame sia di categoria 1 (alta densità di traffico).

	Traffic categories	$N_{ m obs}$ per year and per slow lane				
1	Roads and motorways with 2 or more lanes per direction with high flow rates of larries	2,0 × 10 ⁶				
2	Roads and motorways with medium flow rates of lorries	0.5×10^6				
3	Main roads with low flow rates of lorries	$0,\overline{125} \times 10^6$				
4	Local roads with low flow rates of	0.05×10^{6}				

Table 4.5(n) - Indicative number of heavy vehicles expected per year and per slow lane

coefficiente $\lambda_1 - \lambda_{v1}$

Il coefficiente λ_1 dipende dalla lunghezza e tipologia della linea di influenza.

Per la verifica dei dettagli di carpenteria (connettori esclusi), viene dedotto dai grafici di seguito riportati, rispettivamente per la zona di centro campata (conci B, C) e per la zona di semplice appoggio (conci A), con riferimento all'intera luce dell'opera L = 38.30 m (cfr. EN 1993-2 cap. 9.5.2.(2)).

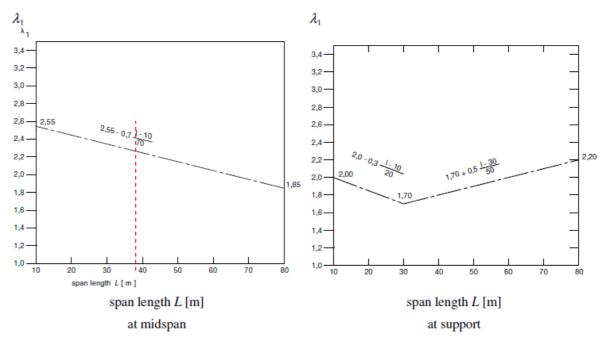


Figure 9.5: λ_1 for moments for road bridges

Per interpolazione, si ha pertanto:

 $\lambda_1 = 2.267$ conci A

 $\lambda_1 = 2.267$ conci B, C

Per la verifica del sistema di connessione (pioli), con riferimento a EN 1994-2, cap. 6.8.6.2(4), si ha invece (valore valido per tutte le sezioni):

$$\lambda_1 = \lambda_{v1} = 1.55$$

coefficiente λ_2 - λ_{v2}

Il coefficiente λ_2 dipende dalla tipologia e dal volume di traffico.

Per l'assessment dei dettagli di carpenteria, si fa riferimento a EN 1993-2 cap. 9.5.2.(3). il coefficiente λ_2 viene determinato in funzione del flusso atteso di veicoli pesanti (N_{Obs}), e dal peso medio degli stessi Q_{m1}, tramite la relazione (*):

$$\lambda_2 = \frac{Q_{m1}}{Q_0} \left(\frac{N_{Obs}}{N_0} \right)^{1/5}$$

Con:

 $N_{Obs} = 0.5 \cdot 10^6$ flusso medio veicoli pesanti/anno (strada cat 1 - cfr. tab. precedente)

 $N_0 = 0.5 \cdot 10^6$ flusso di riferimento

Q_{ml} peso medio dei veicoli, dedotto secondo la composizione di traffico dei "frequent lorries" per strade di collegamento tipo "<u>long distance</u>" (ip. cautelativa), e valutato secondo la seguente relazione:

$$Q_{m1} = \left(\frac{\sum n_i Q_i^5}{\sum n_i}\right)^{1/5}$$

Per la i valori di Q_i e n_i si adotta la tabella 4.7 di EN 1991-2 cap. 4.6.5.(1), equivalente alla tabella contenuta in NTC-08 cap. 5, e di seguito riportata.

VEHICLE TYPE TRAFFIC TYPE axle loads (kN) LORRY 4,5 70 20,0 40,0 80,0 A 130 В 4,20 70 5,0 10,0 5,0 В 1,30 120 120 В 50,0 30,0 3,20 70 5,0 В 5,20 150 1,30 90 C C 1,30 90 90 C 3,40 70 15,0 15,0 5,0 A 140 В 6,00 1,80 90 В 90 4,80 70 10,0 5,0 5,0 A 3,60 130 В 4,40 90 C 1,30 80 C C

Table 4.7 - Set of equivalent lorries

Si ottiene pertanto:

 $\lambda_2 = 0.928$

Per la verifica dei connettori, si adotta quanto previsto in EN 1994-2 6.8.6.2.(4), sostituendo l'esponente 1/5 con 1/8 nelle relazioni precedentemente esposte.

Si ha pertanto:

$$\lambda_{v2} = 0.953$$

coefficiente λ_3 - λ_{v3}

Il coefficiente λ_3 dipende dalla vita di progetto della struttura.

Per i dettagli di carpenteria, con riferimento a EN 1993-2 cap. 9.5.2.(5), mediante la relazione:

$$\lambda_3 = \left(\frac{t_{Ld}}{100}\right)^{1/5}$$

t_{Ld} = vita di progetto prevista.

Si ottengono pertanto i valori tabellari indicati di seguito.

Table 9.2: λ₃

					I		
Design life in years	50	60	70	80	90	100	120
Factor λ_3	0,871	0,903	0,931	0,956	0,979	1,00	1,037

Per la vita di progetto si considera in prima battuta il valore raccomandato di 100 anni, ribadito anche dal N.A.D., ottenendo:

$$\lambda_3 = 1.00$$

Per la verifica dei connettori, la sostituzione dell'esponente 1/5 con 1/8 porta in questo caso al medesimo valore:

$$\lambda_{v3} = 1.00$$

coefficiente λ_4 - λ_{v4}

Il coefficiente λ_4 dipende dall'organizzazione delle corsie di carico in direzione trasversale, e dalla loro posizione relativa sulla linea di influenza trasversale di ciascuna trave.

La formulazione, tratta da EN 1993-2 cap. 9.5.3.(6), prevede:

$$\lambda_{4} = \left[1 + \frac{N_{2}}{N_{1}} \left(\frac{\eta_{2} Q_{m2}}{\eta_{1} Q_{m1}}\right)^{5} + \frac{N_{3}}{N_{1}} \left(\frac{\eta_{3} Q_{m3}}{\eta_{1} Q_{m1}}\right)^{5} + \dots + \frac{N_{k}}{N_{1}} \left(\frac{\eta_{k} Q_{mk}}{\eta_{1} Q_{m1}}\right)^{5}\right]^{1/5}$$

Nel caso in esame (doppio senso di marcia) si ha:

k = 2 numero corsia

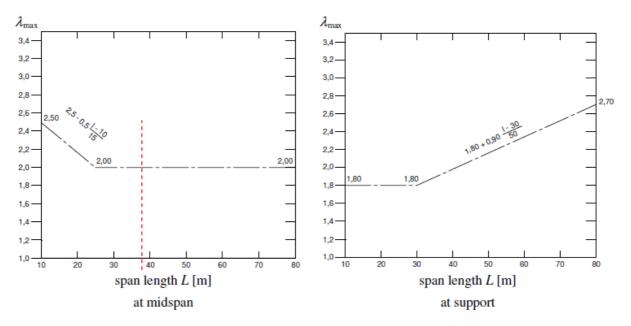
 $N_1 = N_2$ numero di veicoli viaggianti su ciascuna corsia

 $Q_{m1} = Q_{m2}$ peso medio veicoli viaggianti sulle due corsie

 $\eta_1 = \frac{1}{2}$ - $e_1/b = \frac{1}{2} + 1.5/3.0 = 1.0$ intensità carico I.d.i. carico verticale su trave esterna lane 1

 $\eta_2 = \frac{1}{2}$ - $e_2/b = \frac{1}{2}$ -1.5/3.0 = -0.0 intensità carico I.d.i. carico verticale su trave esterna lane 2

Pertanto, su ambedue le travi, si ha:


$$\lambda_4 = (1+(-0.0/1.0)^5)^{(1/5)} \cong 1$$

Per la verifica delle piolature, a seguito della sostituzione dell'esponente 5 con 8, si ottiene univocamente:

$$\lambda_{v4} = (1 + (-0.0/1.0)^5)^{(1/8)} \cong 1$$

coefficiente λ - λ_v

Il fattore equivalente di danno è limitato superiormente da fattore λ_{max} , da valutarsi secondo quanto previsto in EN 1993-2 cap. 9.5.2.(7) in funzione della posizione della sezione verificata e della luce del ponte, con riferimento ai grafici estratti dalla norma, riportati di seguito.

Per L = 38.30 m, si ha pertanto:

 λ_{max} = 2.00 sezioni si appoggio

 λ_{max} = 2.00 sezioni in campata

Con riferimento ai fattori parziali calcolati poco sopra, si ha pertanto:

 $\lambda = 2.267 \cdot 0.928 \cdot 1 \cdot 1 = 2.104$

per i conci tipo A (estremità)

si utilizza pertanto $\lambda = \lambda_{max} = 2.00$

 $\lambda = 2.267 \cdot 0.928 \cdot 1 \cdot 1 = 2.104$

per i conci B, C (zona mezzeria)

si utilizza pertanto $\lambda = \lambda_{max} = 2.000$

Per la verifica delle piolature si adotta univocamente:

$$\lambda_{v} = 1.55 \cdot 0.953 \cdot 1 \cdot 1 = 1.477$$

7.6.3 Amplificazione dinamica

Con riferimento a quanto previsto in EN 1991-2, il fattore di amplificazione dinamica è già incluso nella calibrazione del modello di carico FLM3.

Come indicato dalla norma si considera il fattore di impatto per le zone in prossimità dei giunti secondo i criteri indicati al cap. 4.6.1.(6), funzione della distanza dal giunto stesso:

$$\Phi$$
 = 1.3(1-D/26)

Essendo D < 6 m la distanza dal giunto.

7.6.4 Dettagli e Coefficienti di sicurezza

Per la verifica a fatica dei **dettagli di carpenteria**, si prendono in esame i dettagli di seguito elencati unitamente alla categoria/num. dettaglio dedotti dalle rispettive tabelle di EN 1993-1-9:

Piattabande - tensioni normali	categoria/dettaglio:	125/5	tab. 8.1 EN 1993-1-9
Anima - tensioni tangenziali	categoria/dettaglio:	125/5	tab. 8.1 EN 1993-1-9
Saldatura composizione anima-piatt.	categoria/dettaglio:	125/1	tab. 8.2 EN 1993-1-9
Saldatura di testa piatt inf. e sup.	categoria/dettaglio:	90/6(*)	tab. 8.3 EN 1993-1-9
Attacco irr. vert piattabande	categoria/dettaglio:	80/6(**)	tab. 8.4 EN 1993-1-9
Attacco irr. vert anima	categoria/dettaglio:	80/7(**)	tab. 8.4 EN 1993-1-9
	0.0		

^(*) si conteggia il size effect $k_s = (25/t)^{0.2}$

Per la verifica a fatica delle **piolature** si seguono i criteri generali contenuti in EN 1994-2. Vengono presi in esame i seguenti dettagli (EN 1993-1-9- cap. 8.):

Saldatura piolo - rottura piatt. categoria/dettaglio: 80/9 (*) tab. 8.4 EN 1993-1-9

Saldatura piolo - rottura piolo categoria/dettaglio: 90/10

Il ciclo di verifica segue quanto previsto in EN 1994-2 cap. 6.8.7.2.(2), comprendendo la verifica separata per rottura del piolo e per rottura della piattabanda.

Per le piattabande in tensione si tiene conto dell'interazione dei due fenomeni, sfruttando la relazione:

$$\begin{split} &\frac{\gamma_{Ff} \, \Delta \sigma_{E,2}}{\Delta \sigma_{c} / \gamma_{Mf}} \, + \, \frac{\gamma_{Ff} \, \Delta \tau_{E,2}}{\Delta \tau_{c} / \gamma_{Mf,s}} \leq 1.3 \\ &\frac{\gamma_{Ff} \, \Delta \sigma_{E,2}}{\Delta \sigma_{c} / \gamma_{Mf}} \leq 1.0 \quad \frac{\gamma_{Ff} \, \Delta \tau_{E,2}}{\Delta \tau_{c} / \gamma_{Mf,s}} \leq 1.0 \end{split}$$

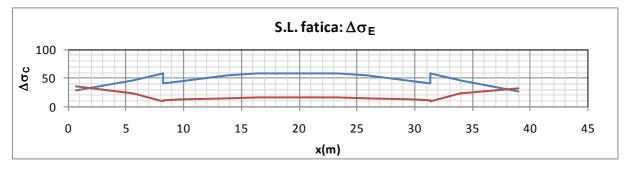
Per tutti i dettagli, nell'ambito dell'approccio "safe life", si adotteranno i seguenti coefficienti di sicurezza:

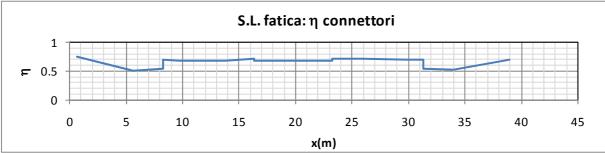
 γ_{Mf} = 1.35 per tutti i dettagli di carpenteria

 $\gamma_{\rm Mf}$ = 1.15 per la rottura del piolo

7.6.5 Sintesi verifiche

L'ampiezza dei $\Delta\sigma_p$ di tensione viene calcolata sulla base di σ_{max} e σ_{min} derivanti dalla combinazione di carico a fatica, elaborata con riferimento a EN 1992-1-1 cap. 6.8.3.(2), che prevede la sovrapposizione della componente "non ciclica" delle sollecitazioni, derivata dalla combinazione S.L.E. frequente, con la componente "ciclica", derivata dall'inviluppo delle sollecitazioni dovute al transito del veicolo FLM3.

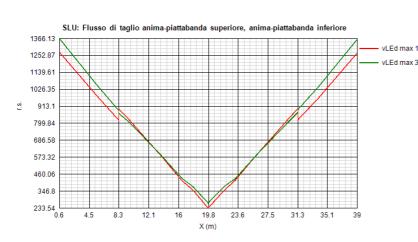

Le verifiche vengono effettuate in automatico dal programma Ponti EC4, per tutte le sezioni di verifica.


Relativamente alle sollecitazioni di input, il programma gestisce in automatico le sollecitazioni derivanti dalla combinazione S.L.E. frequente, elaborata come d'uso per Mmax/min e Vmax/min, sovrapponendole alle sollecitazioni derivanti dall'inviluppo per Mmax/min Vmax/min derivanti dal transito di FLM3, con l'obbiettivo di estrarre il massimo valore di ampiezza di $\Delta\sigma_p$. Il programma procede quindi al calcolo del range "caratteristico" $\Delta\sigma_E$, tramite applicazione dei coefficienti λ , ed al confronto del valore calcolato con i $\Delta\sigma_C$

^(**) t < 50 mm in tutti i casi

tabellari, opportunamente modificati mediante l'applicazione del size effect k_s , quando rilevante, e del coefficiente di sicurezza γ_{Mf} .

Di seguito si riporta l'ampiezza dei $\Delta\sigma_p$ e risp. $\Delta\sigma_E$ rilevati in corrispondenza della piattabanda inferiore e superiore di ciascun concio.



È immediato notare il soddisfacimento delle verifiche nell'ambito dei singoli dettagli strutturali.

7.7 Dimensionamento saldature di composizione

Si verificano le minime dimensioni da assegnare ai cordoni di composizione anima/piattabanda. Il flusso di taglio tra anima e piattabanda superiore ed inferiore è riportato nel grafico seguente.

	X (m)	v _{LEd max 1} (N/mm)	v _{LEd max 3} (N/mm)	Sezione
	0.65	1'277	1'366	A_S1
	5.63	976	1'050	A_S2
	8.25	820	885	A_S3
	8.25	895	868	B_S4
	9.68	822	804	B_S5
	13.73	583	586	B_S6
1	16.35	421	434	B_S7
3	16.35	354	378	C_S8
3	17.78	354	378	C_S9
	19.80	234	267	C_S10
	21.83	352	376	C_S11
	23.25	352	376	C_S12
	23.25	418	431	B_S13
	25.88	581	584	B_S14
	29.93	820	802	B_S15
	31.35	901	875	B_S16
	31.35	825	891	A_S17
	33.98	974	1'046	A_S18
	38.95	1'273	1'361	A_S19

Lo scorrimento complessivo risulta pertanto, come indicato:

Il criterio di resistenza è fornito da EN 1993-1-8 cap. 4.5.3/NTC-08 cap. 4.2.8.2, e risulta:

$$\begin{split} & \left[\sigma \mathbf{L}^2 + 3 \; (\tau \mathbf{L}^2 + \tau \|^2) \right]^{\; 0,5} \leq f_u \, / \; (\beta_w \, \gamma_{M2} \;) \quad \text{and} \quad \sigma \mathbf{L} \leq \; 0.9 \, f_u \, / \; \gamma_{M2} \end{split}$$
 Con:
$$\beta_w = 0.9 \qquad \text{fattore di correlazione (tab. 4.1 En 1993-1-8)}$$

$$\gamma_{m2} = 1.25$$

$$f_u = 510.0 \; \text{Mpa}$$

Essendo il cordone assoggettato a sole tensioni $\tau_{//}$, risulta indifferente la posizione di riferimento del piano considerato rispetto alla sezione di gola, pertanto si ottiene:

$$f_u / (\beta_w \cdot \gamma_{m2}) = 453.33 \text{ MPa}$$

Con riferimento, pertanto ai massimi scorrimenti rilevati sulle varie tipologie di concio, si rileva pertanto la minima ampiezza dei cordoni da garantire di volta in volta:

8. Fessurazione soletta in c.a. in direzione longitudinale

Si esegue la verifica a fessurazione della soletta, per effetto della statica globale longitudinale.

8.1 Metodologia di verifica

La massima ampiezza di progetto per le fessure viene assunta pari a:

 $w_k = 0.20 \text{ mm}.$

Per le verifiche nei confronti dello S.L. di fessurazione si seguono in criteri proposti da EN-1994-2.

L'esame dello S.L. prevede i seguenti passi:

- Verifica presenza minimi quantitativi di armatura (EN 1994-2 cap. 7.4.2.):

$$A_{\rm s} = k_{\rm s} k_{\rm c} k f_{\rm ct.eff} A_{\rm ct} / \sigma_{\rm s}$$

- Controllo dell'ampiezza delle fessure per effetto dei carichi indiretti (EN 1994-2 cap. 7.4.2.):

verifica eseguita per le sezioni in cui la tensione di trazione nel calcestruzzo per effetto della combinazione S.L.E. caratteristica supera il valore 2 f_{ctm} . Essa consiste nel confronto della tensione nelle armature per carichi indiretti σ_s con quella di riferimento prevista nelle tabelle 7.1/7.2 di EN 1994-2 (tab. C.4.1.II/C.4.1.III delle Istruzioni NTC-08), in funzione del diametro/passo delle barre e dell'ampiezza di fessura limite, e che di seguito vengono riportate.

Table 7.1: Maximum bar diameters for high bond bars

Steel stress σ_{s}	Maximum bar diai	meter ϕ^* (mm) for	design crack width	Table 7.2 Maximum bar spacing for high bond bars					
(N/mm^2)	$w_k=0.4$ mm	$w_k=0.3$ mm	w_k =0.2mm	Steel stress	teel stress Maximum bar spacing (mm) for design crack				
160	40	32	25	$\sigma_{ m s}$		width w _k			
200	32	25	16	(N/mm ²)	$w_k=0.4$ mm	$w_k=0.3$ mm	$w_k=0.2$ mm		
240	20	16	12	160	300	300	200		
280	16	12	8	200	300	250	150		
320	12	10	6	240	250	200	100		
360	10	8	5	280	200	150	50		
400	8	6	4	320	150	100	-		
450	6	5	-	360	100	50	-		

La tensione per carichi indiretti viene valutata con riferimento alla medesima formula impiegata per la deduzione del minimo quantitativo di armatura, riformulata nel seguente modo:

$$\sigma_{\rm s} = k_{\rm s} k_{\rm c} k f_{\rm ct,eff} \frac{A_{\rm ct}}{A_{\rm s}}$$

- controllo dell'ampiezza delle fessure per effetto dei carichi indiretti (EN 1994-2 cap. 7.4.3.):

viene confrontata la tensione nell'acciaio per la combinazione di carico S.L.E. frequente, incrementata del contributo del tension stiffening con il valore limite tabellare riferito all'effettivo diametro/passo delle armature ricavato dalle tabelle 7.1/7.2 del medesimo capitolo EN.

8.2 Sintesi dei risultati

Le verifiche vengono effettuate in automatico dal programma PontiEC4. La sintesi dei calcoli e dei risultati della verifica è riportata di seguito, in forma tabellare, per ciascuna sezione di verifica. L'esito finale delle verifiche è riscontrabile nell'ultima colonna più a destra della seconda tabella relativa a ciascun gruppo di sezioni.

	Tab. I											
Sezione	z0 f3	kc	Act	As,min	As,reale	Ver. (As min)	ϕ_{max}/p_{max}	σ_c rara	Stato			
A_S1	316	1	742500.00	3813.00	5429.00	SI	16\200	0.99	Non Fess.			
A_S2	316	1	742500.00	3813.00	5429.00	SI	16\200	-0.04	Non Fess.			
A_S3	316	1	742500.00	3813.00	5429.00	SI	16\200	-0.45	Non Fess.			
A_S17	316	1	742500.00	3813.00	5429.00	SI	16\200	-0.45	Non Fess.			
A_S18	316	1	742500.00	3813.00	5429.00	SI	16\200	-0.04	Non Fess.			
A_S19	316	1	742500.00	3813.00	5429.00	SI	16\200	0.93	Non Fess.			
B_S4	410	1	742500.00	3813.00	5429.00	SI	16\200	-0.35	Non Fess.			
B_S5	410	1	742500.00	3813.00	5429.00	SI	16\200	-0.52	Non Fess.			
B_S6	410	1	742500.00	3813.00	5429.00	SI	16\200	-0.88	Non Fess.			
B_S7	410	1	742500.00	3813.00	5429.00	SI	16\200	-1.02	Non Fess.			
B_S8	410	1	742500.00	3813.00	5429.00	SI	16\200	-1.06	Non Fess.			
B_S12	410	1	742500.00	3813.00	5429.00	SI	16\200	-1.06	Non Fess.			
B_S13	410	1	742500.00	3813.00	5429.00	SI	16\200	-1.02	Non Fess.			
B_S14	410	1	742500.00	3813.00	5429.00	SI	16\200	-0.88	Non Fess.			
B_S15	410	1	742500.00	3813.00	5429.00	SI	16\200	-0.52	Non Fess.			
B_S16	410	1	742500.00	3813.00	5429.00	SI	16\200	-0.35	Non Fess.			
C_S9	410	1	742500.00	3813.00	5429.00	SI	16\200	-1.06	Non Fess.			
C_S10	410	1	742500.00	3813.00	5429.00	SI	16\200	-1.09	Non Fess.			
C_S11	410	1	742500.00	3813.00	5429.00	SI	16\200	-1.06	Non Fess.			


Tab. II											
Sezione	σ_{s}	φ*	σ am(φ)	σ am (p)	Ver (c. indir-)	$\sigma\text{s},_{\text{max}}$ fr.	Tens. stiff.	σ_s + $\Delta\sigma$	Ver. (car. dir.)		
A_S1		14.45	215	160		9	133	141	SI (0.66)		
A_S2		14.45	215	160		-50					
A_S3		14.45	215	160		-56					
A_S17		14.45	215	160		-56					
A_S18		14.45	215	160		-50					
A_S19		14.45	215	160		7	133	140	SI (0.65)		
B_S4		14.45	215	160		-54					
B_S5		14.45	215	160		-57					
B_S6		14.45	215	160		-62					
B_S7		14.45	215	160		-64					
B_S8		14.45	215	160		-65					
B_S12		14.45	215	160		-65					
B_S13		14.45	215	160		-64					
B_S14		14.45	215	160		-62					
B_S15		14.45	215	160		-57					
B_S16		14.45	215	160		-54					
C_S9		14.45	215	160		-65					
C_S10		14.45	215	160		-65					
C_S11		14.45	215	160		-65					

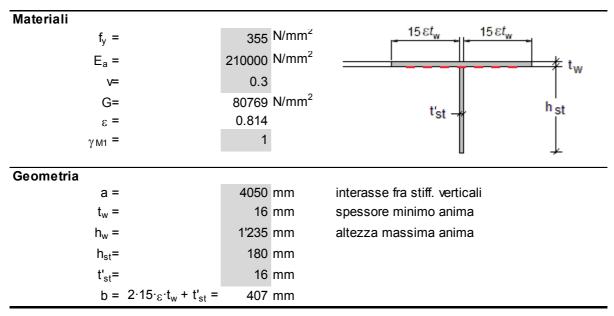
Si conferma pertanto l'armatura prevista in soletta per tutti i conci: 1Ø16/20.

9. Verifica irrigidenti

In questa sezione vengono verificati gli elementi di irrigidimento trasversale (transverse stiffeners).

Gli irrigidenti trasversali sono solitamente assunti come elementi rigidi, ciò consente di studiare i pannelli posti tra due stiffeners indipendentemente ovvero trascurando l'interazione che avrebbero con i pannelli adiacenti.

Il sistema di stiffeners verticali deve essere pertanto in grado di fornire un adeguato vincolo sufficientemente rigido nei confronti del pannello che stabilizzano, oltre a garantire il necessario ancoraggio alle bande diagonali di trazione, all'atto dell'imbozzamento dei pannelli. Le verifiche effettuate, condotte in accordo con EN1993-1-5 (cfr. Istruzioni delle NTC-08 cap. 4.2.4.1.3.4), comprendono:


- stabilità flesso torsionale
- rigidezza flessionale
- resistenza

Le tre verifiche verranno effettuate, in generale, trascurando il vincolo intermedio offerto dal traverso, e considerando l'elemento stiffener come una "colonna" incernierata alle estremità.

Nell'ambito della verifica di resistenza, mediante analisi separata, si considera anche l'adeguatezza del sistema composto da stiffeners e traversa metallica nei riguardi della stabilizzazione delle piattabande inferiori compresse, ai fini della stabilità flesso torsionale delle travi.

9.1 Irrigidenti intermedi

Si riportano di seguito le caratteristiche geometriche e di materiale necessarie alle seguenti verifiche:

9.1.1 Stabilità flesso torsionale

Relativamente alle problematiche connesse con la stabilità nei confronti del buckling torsionale, si considera quanto proposto in EN 1993-1-5 (8):

$$\frac{I_T}{I_p} \ge 5.3 \frac{f_y}{E}$$

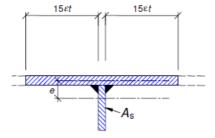
dove I_t e I_p sono rispettivamente l'inerzia polare (attorno all'asse vincolato) e l'interzia torsionale del piatto.

Si ha pertanto:

Torsional buckling (Vertical/Horizontal stiffner) EN1993-1-5, 9.2.1(8) $1/3 \cdot h_{st} \cdot t'_{st}^3 = 2.458E + 05 \text{ mm}^4$ $I_T =$ (without web contribution) $1/12 \cdot t'_{st} \cdot h_{st}^3 = 7.776E + 06 \text{ mm}^4$ $I_{Gy} =$ $h_{st} \cdot t'_{st}^3 / 12 + t'_{st} \cdot h_{st} \cdot (t'_{st} / 2)^2 = 2.458E + 05 \text{ mm}^4$ $I_{Gz} =$ $I_{Gy} + I_{Gz} = 8.022E + 06 \text{ mm}^4$ 2475 N/mm² $2 f_v = 710 \text{ N/mm}^2 \text{ c.u} = 0.29$ $G \cdot I_T / I_P =$ c.u = 0.29 $> 5.3 \cdot f_v/E_a = 0.0090$ $|_{T}/|_{P} =$ 0.0306

9.1.2 Rigidezza flessionale

Si effettua dapprima il controllo dimensionale relativo al rapporto larghezza/spessore del piatto:


Controllo dimensionale

EN 1993-1-1 tab. 5.2

$$h_{st}/t'_{st,lim} = 14 \cdot \varepsilon = 11.39$$

 $h_{st}/t'_{st} = = 11.25$

Il controllo relativo all'adeguatezza della rigidezza flessionale dello stiffener viene effettuato secondo i criteri contenuti in EN 1993-1-5 cap. 9.3.3(3).

Le caratteristiche dello stiffener vengono valutate con riferimento allo schema di figura, conteggiando una porzione di anima collaborante pari a 15 ϵ t_{web} (EN 1993-1-5 9.1.(2)).

La verifica consiste nel confrontare l'inerzia dello stiffener I_{st} con quella limite, da valutarsi secondo quanto previsto in EN 1993-1-5 cap. 9.3.3.(3):

$$a/h_{w} < \sqrt{2}$$
: $I_{st} \ge 1.5 h_{w}^{3} t^{3} / a^{2}$
 $a/h_{w} \ge \sqrt{2}$: $I_{st} \ge 0.75 h_{w} t^{3}$

Per semplicità, il controllo viene effettuato, calcolando le caratteristiche del profilo equivalente indipendentemente dalla sua reale posizione sulle varie tipologie di concio.

La tabella seguente riporta il calcolo di I_{st} effettuato per le varie tipologie di concio, ed il relativo confronto con la rilevante inerzia minima.

Verifica del requisito di rigidezza per stiffners verticali intermedi

Concio	t _w [mm]	h _w [mm]	a [mm]	a/h _w	b [mm]	I _{st,lim} [mm ⁴]	A _{st} [mm²]	S _{st} [mm³]	e [mm]	I _{st} [mm ⁴]	I _{stG} [mm ⁴]	Verifica
Α	16	1235	4050	3.28	407	3.79E+06	9384.6	357316.5986	38.1	3.17E+07	2.71E+07	VERIFICATO
В	16	1210	4050	3.35	407	3.72E+06	9384.6	357316.5986	38.1	3.17E+07	2.71E+07	VERIFICATO
С	16	1210	4050	3.35	407	3.72E+06	9384.6	357316.5986	38.1	3.17E+07	2.71E+07	VERIFICATO

La rigidezza minima è pertanto soddisfatta.

9.1.3 Verifica di resistenza

Si adotta il metodo semplificato proposto da EN 1993-1-5, cap. 9.3.3.(3). Le azioni insistenti sullo stiffener, nel caso più generale, sono quelle dovute a differenti meccanismo, quali:

a) ancoraggio bande di trazione del pannello stabilizzato.

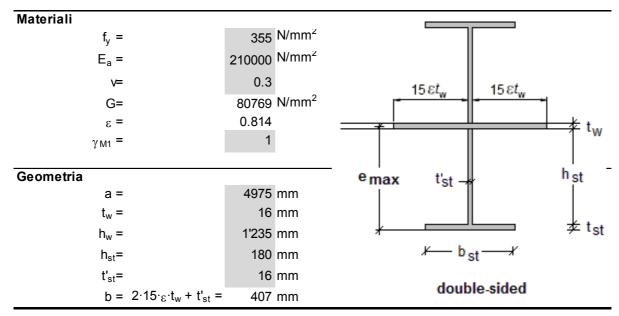
L'azione di compressione insistente sull'elemento viene valutata come differenza tra il taglio agente V_{Ed} e l'azione tagliante critica sviluppata in corrispondenza del medesimo pannello.

$$\left(V_{Ed} - \frac{1}{\overline{\lambda}_w^2} f_{y_w} h_w t / \left(\sqrt{3} \gamma_{M1}\right)\right)$$

b) contributo alla stabilità dell'anima sotto l'azione di azioni normali.

Per la valutazione dell'azione destabilizzante trasmessa dall'anima, si applica la formulazione contenuta in EN 1993-1-5 9.2.1(5). Il quadro tensionale e geometrico caratterizzante il pannello viene tratto direttamente dall'output di PontiEC4 per le sezioni esaminate, qui riportato.

	A_S2	A_S3	B_S4	B_S5	B_S6	B_S7	B_S8	C_S9	C_S10
b	1235	1235	1210	1210	1210	1210	1210	1210	1210
σ _{cr0E}	31.89	31.89	33.22	33.22	33.22	33.22	33.22	33.22	33.22
σ _{sup}	-129.89	-170.76	-169.97	-188.76	-228.09	-242.63	-247.24	-247.24	-249.45
σinf	105.83	147.09	94.72	107.42	132.62	140.83	143.45	143.45	144.5
Ψ	-0.815	-0.861	-0.557	-0.569	-0.581	-0.58	-0.58	-0.58	-0.579
Kσ	19.4	20.5	14.4	14.6	14.8	14.8	14.8	14.8	14.7
λР	0.76	0.74	0.86	0.86	0.85	0.85	0.85	0.85	0.85
b _c	680.5	663.5	777	771.2	765.1	765.6	765.7	765.7	766.2
b _{c,sup}	272.2	265.4	310.8	308.5	306	306.2	306.3	306.3	306.5
b _{c,inf}	408.3	398.1	466.2	462.7	459.1	459.4	459.4	459.4	459.7
ρloc	1	1	0.978	0.985	0.992	0.991	0.991	0.991	0.991
$b_{c,eff}$	680.5	663.5	760.3	759.6	758.9	759	759	759	759.1
$b_{c,eff,sup}$	272.2	265.4	304.1	303.8	303.6	303.6	303.6	303.6	303.6
$b_{c,eff,inf}$	408.3	398.1	456.2	455.8	455.4	455.4	455.4	455.4	455.4
Ø _{foro}	0	0	16.7	11.6	6.2	6.6	6.7	6.7	7.1


c) azione di carichi verticali di tipo diretto.

Per il caso in esame i contributi del tipo c sono assenti; inoltre, visto il passo non particolarmente fitto prescelto per gli stiffener, i contributi del tipo b) non risultano particolarmente significativi, come dimostrato dal calcolo per esteso effettuato nel seguito.

Sezione		A_S2	A_S3	B_S4	B_S5	B_S6	B_S7	B_S8	C_S9	C_S10	Rif.
a =		4050	4050	4050	4050	4050	4050	4050	4050	4050 mm	
h _w =		1235	1235	1210	1210	1210	1210	1210	1210	1210 mm	
double=2 ; single = 1		1	1	1	1	1	1	1	1	1	15 Et _w 15 Et _w 15 Et _w 15 Et _w
t _w =		16	16	16	16	16	16	16	16	16 mm	* t _w
h _{st} =		180	180	180	180	180	180	180	180	180 _{mm}	¹ * "
t'st =		16	16	16	16	16	16	16	16	16 mm	t'st hst emax t'st hst
b _{st} =		0	0	0	0	0	0	0	0	0 mm	#t _{st} #t _{st}
t _{st} =		0	0	0	0	0	0	0	0	0 mm	<i>⊱</i> b _{st} → <i>γ</i>
f _y =		355	355	355	355	355	355	355	355	355 N/mm	single-sided double-sided
E _{acc} =		210000	210000	210000	210000	210000	210000	210000	210000	210000 N/mm ²	
γ _{M1} =		1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	
3		0.814	0.814	0.814	0.814	0.814	0.814	0.814	0.814	0.814	
b =	$2 \cdot 15 \cdot \varepsilon \cdot t_w + t'_{st} =$	407	407	407	407	407	407	407	407	407 mm	
A _{st} =	$b \cdot t_w + h_{st} \cdot t'_{st} + t_{st} \cdot b_{st} =$	9385	9385	9385	9385	9385	9385	9385	9385	9385 mm²	
S _{st} =	$t'_{st} \cdot h_{st} \cdot (h_{st} + t_w)/2 + t_{st} \cdot b_{st} \cdot (t_{st}/2 + h_{st} + t_w/2) =$	282240	282240	282240	282240	282240	282240	282240	282240	282240 mm³	
e ₁ =	$S_{st}/A_{st} =$	30.1	30.1	30.1	30.1	30.1	30.1	30.1	30.1	30.1 mm	
I _{st} =	$b \cdot t_w^3 / 12 + b \cdot t_w \cdot e_1^2 + 1 / 12 \cdot t_{st}' \cdot h_{st}^3 + t_{st}' \cdot h_{st} \cdot (h_{st} / 2 + t_w / 2 - e_1)^2 + \\$	2.71E+07	2 71F+07	2.71E+07 mm ⁴							
'St	$1/12 \cdot b_{st} \cdot t_{st}^3 + t_{st} \cdot b_{st} \cdot (t_{st}/2 + h_{st} + t_{w}/2 - e_1)^2 =$	2.7.12.07	2		22		22	2.7.12.07	22	mm ⁴	
e _{max} =							-	_		mm	
V _{Ed} =		8.99E+05	7.55E+05	7.55E+05	6.92E+05	4.88E+05	3.46E+05	2.88E+05	2.88E+05	1.83E+05 N	
b _c =		680.5	663.5	777	771.2	765.1	765.6	765.7	765.7	766.2 mm	
Ψ=		0.815	0.861	0.557	0.569	0.581	0.58	0.58	0.58	0.579	
σ _{max} =		129.89	170.76	169.97	188.76	228.09	242.63	247.24	247.24	249.45 N/mm ²	
_{⊙cr,p} =		619.57	653.27	476.79	483.6	490.82	490.22	490.09	490.09	489.53 N/mm ²	EN 1993-1-5, A.1-A.2
_{⊙cr,c} =		2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96 N/mm ²	EN 1993-1-5, A.3
k _τ =	$5.34+4\cdot(a/hw)^2 =$	5.71	5.71	5.70	5.70	5.70	5.70	5.70	5.70	5.70	EN 1993-1-5, A.3(1)
τ_{cr} =	$k_{\tau} \cdot 190000 \cdot (t_{w}/h_{w})^{2} =$	182.2	182.2	189.3	189.3	189.3	189.3	189.3	189.3	189.3 N/mm ²	EN 1993-1-5, 5.3 (3)
$\lambda_{w} =$	$0.76 \cdot (f_y/\tau_{cr})^{0.5} =$	1.061	1.061	1.041	1.041	1.041	1.041	1.041	1.041	1.041	211 1000 1 0, 0.0 (0)
V _{cr} =	$1/\lambda_w^2 \cdot f_y \cdot h_w \cdot t_w / (\sqrt{3} \cdot g_{M1}) =$	3.27E+06	3.27E+06	3.33E+06	3.33E+06	3.33E+06	3.33E+06	3.33E+06	3.33E+06	3.33E+06 N	EN 1993-1-5, 9.3.3.(3)
$N_{st1,Ed} =$	$V_{Ed}-V_{cr}$ (>=0) =	0	0	0	0	0	0	0	0	0 N	axial force in the stiffner from tension field action
$N_{st2,Ed} =$	=	0	0	0	0	0	0	0	0	0 N	external force
N _{st,ten} =	$N_{st1,Ed} + N_{st2,Ed} =$	0	0	0	0	0	0	0	0	0 N	
N _{Ed} =	$\psi^{-1/2} \cdot \sigma_{sup} \cdot b_c \cdot t_w =$	5.763E+05	7.804E+05	5.885E+05	6.626E+05	8.111E+05	8.619E+05	8.784E+05	8.784E+05	8.853E+05 N	longitudinal compression force in the panel
0.5< _{Gcr,c} / _{Gcr,p} <1.0		0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	
{⊙m} =	$\sigma{cr,c}/\sigma_{cr,p}\cdot N_{Ed}/h_w\cdot [1/(a/2)+1/(a/2)] =$	0.230	0.312	0.240	0.270	0.331	0.352	0.358	0.358	0.361 N/mm ²	EN 1993-1-5, 9.2 (5)
$_{\Delta}N_{st,Ed}$ =	$_{\text{Om}} \cdot h_{\text{w}}^2 /_{\pi}^2 =$	3.561E+04	4.822E+04	3.563E+04	4.012E+04	4.911E+04	5.218E+04	5.318E+04	5.318E+04	5.360E+04 N	EN 1993-1-5, 9.2 (6)
$_{\Sigma}N_{st,Ed}$ =	$N_{st,Ed} + \Delta N_{st,Ed} =$	3.561E+04	4.822E+04	3.563E+04	4.012E+04	4.911E+04	5.218E+04	5.318E+04	5.318E+04	5.360E+04 N	
N _{cr} =	$\pi^2 \cdot E \cdot I_{st} / h_w^2 =$	3.681E+07	3.681E+07	3.834E+07 N							
w ₀ =	$min(h_w/300 ; a/300) =$	4.12	4.12	4.03	4.03	4.03	4.03	4.03	4.03	4.03 mm	
f	w + w ₀ =			_		_	_	_	_	mm	
w < h _w /300	$w_0/(N_{cr,st}/\sum N_{st,Ed}-1) =$			_		_	_	_	_	mm	double sided
$\sigma_{\text{max}} < f_y / \gamma_{M1}$	$N_{st,ten}/A_{st}+\sum N_{st,Ed}\cdot e_{max}/I_{st}\cdot f =$			_		_	_	_	_	N/mm²	
δ _m	$N_{\text{st.ten}} \cdot e_1 / (\sum N_{\text{st.Ed}} \cdot w_0) =$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 mm	
w < h _w /300	$W_0/(N_{cr}/\Sigma N_{st,Ed}-1)\cdot (1+1.25\cdot \delta_m) =$	0.00	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.01 mm	single sided
-	$N_{st,Ed}/A_{st}+\sum N_{st,Ed}\cdot e_1/I_{st}\cdot w_0/(1-\sum N_{st,Ed}/N_{cr,st})\cdot (1+1.11\cdot \delta_m)=$	0.16	0.22	0.16	0.18	0.22	0.23	0.24	0.24	0.24 N/mm²	-
Omax Ty/ f M1	31,E0 31 = 151,E0 = 1151 110 (1 2 151,E0 110,51) (1 11 1 1 011)	0.10	7.22	0.10	0.10	V.22	3.20	V.2-7	7.27		

9.2 Irrigidenti d'appoggio

Si riportano di seguito le caratteristiche geometriche e di materiale necessarie alle seguenti verifiche:

9.2.1 Stabilità flesso torsionale

Relativamente alle problematiche connesse con la stabilità nei confronti del buckling torsionale, si considera quanto proposto in EN 1993-1-5 (8):

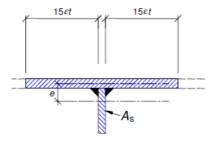
$$\frac{I_T}{I_p} \ge 5.3 \frac{f_y}{E}$$

dove I_t e I_p sono rispettivamente l'inerzia polare (attorno all'asse vincolato) e l'interzia torsionale del piatto.

Si ha pertanto:

Torsional buckling (Vertical/Horizontal stiffner) EN1993-1-5, 9.2.1(8) $1/3 \cdot h_{st} \cdot t'_{st}^3 = 2.458E + 05 \text{ mm}^4$ (without web contribution) $I_T =$ $1/12 \cdot t'_{st} \cdot h_{st}^3 = 7.776E + 06 \text{ mm}^4$ $I_{Gy} =$ $h_{st} \cdot t'_{st}^3 / 12 + t'_{st} \cdot h_{st} \cdot (t'_{st} / 2)^2 = 2.458E + 05 \text{ mm}^4$ $I_{Gz} =$ $I_{Gy} + I_{Gz} = 8.022E + 06 \text{ mm}^4$ $I_P =$ $2 f_v = 710 \text{ N/mm}^2 \text{ c.u} = 0.29$ 2475 N/mm² $G \cdot I_T / I_P =$ $\sigma_{cr} =$ c.u = 0.29 $> 5.3 \cdot f_v/E_a = 0.0090$ $I_T/I_P =$ 0.0306

9.2.2 Rigidezza flessionale


In prima battuta si effettua il controllo dimensionale relativo al rapporto larghezza/spessore del piatto:

Controllo dimensionale

$$h_{st}/t'_{st,lim} = 14 \cdot \varepsilon = 11.39$$

 $h_{st}/t'_{st} = = 11.25$

Il controllo relativo all'adeguatezza della rigidezza flessionale dello stiffener viene effettuato secondo i criteri contenuti in EN 1993-1-5 cap. 9.3.3(3).

Le caratteristiche dello stiffener vengono valutate con riferimento allo schema di figura, conteggiando una porzione di anima collaborante pari a 15 ϵ t_{web} (EN 1993-1-5 9.1.(2)).

La verifica consiste nel confrontare l'inerzia dello stiffener I_{st} con quella limite, da valutarsi secondo quanto previsto in EN 1993-1-5 cap. 9.3.3.(3):

$$a/h_{w} < \sqrt{2}$$
: $I_{st} \ge 1.5 h_{w}^{3} t^{3} / a^{2}$
 $a/h_{w} \ge \sqrt{2}$: $I_{st} \ge 0.75 h_{w} t^{3}$

Per semplicità, il controllo viene effettuato, calcolando le caratteristiche del profilo equivalente indipendentemente dalla sua reale posizione sulle varie tipologie di concio.

La tabella seguente riporta il calcolo di I_{st} effettuato per le varie tipologie di concio, ed il relativo confronto con la rilevante inerzia minima.

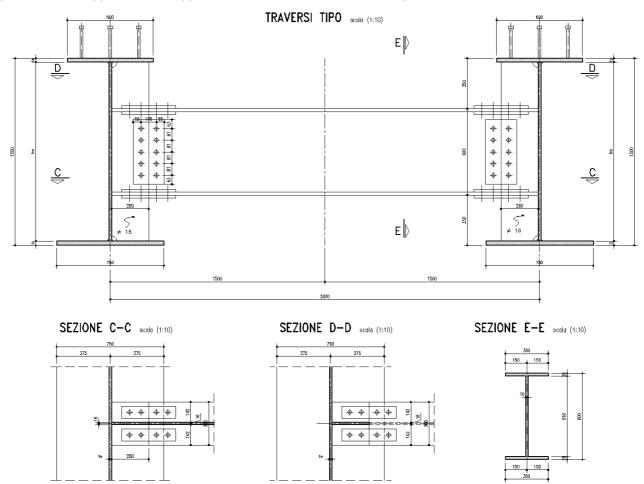
Verifica del requisito di rigidezza per stiffners verticali d'appoggio

Concio	t _w [mm]	h _w [mm]	a [mm]	a/h _w	b [mm]	I _{st,lim} [mm ⁴]	A _{st} [mm ²]	S _{st} [mm³]	e [mm]	I _{st} [mm ⁴]	Verifica
Α	16	1235	4975	4.03	407	3.79E+06	12264.6	0	0.0	7.10E+07	VERIFICATO

La rigidezza minima è pertanto soddisfatta.

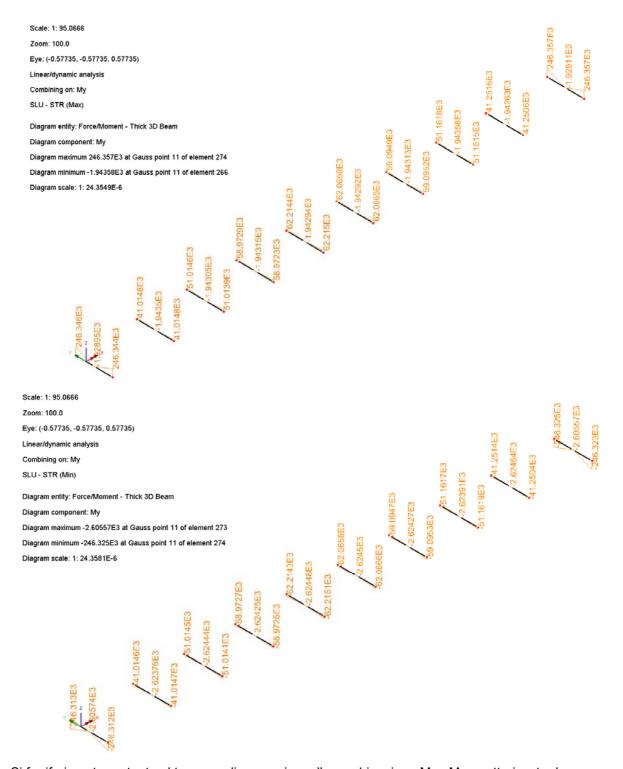
9.2.3 Verifica di resistenza

Si adotta il metodo semplificato proposto da EN 1993-1-5, cap. 9.3.3.(3). Le azioni insistenti sullo stiffener, nel caso più generale, sono quelle dovute ai tre meccanismi descritti per gli stiffeners intermedi. Il quadro tensionale e geometrico caratterizzante il pannello viene tratto direttamente dall'output di PontiEC4 per le sezioni esaminate, qui riportato.


	A_S1
b	1235
σ _{cr0E}	31.89
σ_{sup}	2.86
σ _{inf}	-5.91
Ψ	-0.484
K_{σ}	13.1
λР	0.92
b _c	832.2
$b_{c,sup}$	499.3
$b_{c,inf}$	332.9
ρloc	0.923
$\mathbf{b}_{c,eff}$	768.4
$b_{\text{c,eff,sup}}$	461
$b_{c,eff,inf}$	307.3
Ø _{foro}	63.9

Sezione		A_S1	Rif.
a =		4975 mm	
h _w =		1235 mm	
double=2 ; single = 1		2	15 Et _w 15 Et _w 15 Et _w 15 Et _w
t _w =		16 mm	
h _{st} =		180 mm	e ₁ ,
t'st =		16 mm	t'st hst emax t'st hst
b _{st} =		0 mm	# t _{st} # t _{st}
t _{st} =		0 mm	<i>×</i> — b _{st} — <i>×</i>
f _y =		355 N/mm²	single-sided double-sided
E _{acc} =		210000 N/mm ²	
γ _{M1} =		1.1	
3		0.814	
b =	$2 \cdot 15 \cdot \varepsilon \cdot t_w + t'_{st} =$	407 mm	
A _{st} =	$b \cdot t_w + h_{st} \cdot t'_{st} + t_{st} \cdot b_{st} =$	12265 mm²	
S _{st} =	$t'_{st} \cdot h_{st} \cdot (h_{st} + t_w)/2 + t_{st} \cdot b_{st} \cdot (t_{st}/2 + h_{st} + t_w/2) =$	0 mm³	
e ₁ =	$S_{st}/A_{st} =$	0.0 mm	
I _{st} =	$b \cdot t_w^3 / 12 + b \cdot t_w \cdot e_1^2 + 1 / 12 \cdot t_{st}' \cdot h_{st}^3 + t_{st}' \cdot h_{st} \cdot (h_{st} / 2 + t_w / 2 - e_1)^2 + \\$	7.10E+074	
ıst –	$1/12 \cdot b_{st} \cdot t_{st}^3 + t_{st} \cdot b_{st} \cdot (t_{st}/2 + h_{st} + t_w/2 - e_1)^2 =$	mm ⁴	
e _{max} =		188.0 mm	
V _{Ed} =		1.17E+06 N	
b _c =		832.2 mm	
ψ=		0.484	
σ _{max} =		5.91 N/mm²	
_{⊙cr,p} =		419.19 N/mm²	EN 1993-1-5, A.1-A.2
⊙cr,c =		2.96 N/mm ²	EN 1993-1-5, A.3
k _τ =	$5.34+4\cdot(a/hw)^2 =$	5.59	EN 1993-1-5, A.3(1)
τ_{cr} =	$k_{\tau} \cdot 190000 \cdot (t_{w}/h_{w})^{2} =$	178.2 N/mm²	EN 1993-1-5, 5.3 (3)
λ _w =	$0.76 \cdot (f_y/\tau_{cr})^{0.5} =$	1.073	211 1000 1 0, 0.0 (0)
V _{cr} =	$1/\lambda_w^2 \cdot f_y \cdot h_w \cdot t_w / (\sqrt{3} \cdot g_{M1}) =$	3.20E+06 N	EN 1993-1-5, 9.3.3.(3)
$N_{st1,Ed} =$	V_{Ed} - V_{cr} (>=0) =	0 N	axial force in the stiffner from tension field action
$N_{st2,Ed} =$	=	0 N	external force
N _{st,ten} =	$N_{st1,Ed}+N_{st2,Ed} =$	0 M	
N _{Ed} =	$\psi \cdot \frac{1}{2} \cdot \sigma_{sup} \cdot b_{c} \cdot t_{w} =$	1.904E+04 N	longitudinal compression force in the panel
$0.5 <_{\sigma_{cr,c}}/_{\sigma_{cr,p}} < 1.0$		0.500	
{Om} =	$\sigma{cr,c}/\sigma_{cr,p}\cdot N_{Ed}/h_w\cdot [1/(a/2)+1/(a/2)] =$	0.006 N/mm ²	EN 1993-1-5, 9.2 (5)
$_{\Delta}$ N _{st,Ed} =	$\sigma_{\rm m} \cdot h_{\rm w}^2 / \pi^2 =$	9.580E+02 N	EN 1993-1-5, 9.2 (6)
$\Sigma N_{st,Ed} =$	$N_{st,Ed} + \Delta N_{st,Ed} =$		
N _{cr} =	$\pi^2 \cdot E \cdot I_{st} / h_{w}^2 =$	9.649E+07 N	
w ₀ =	$min(h_w/300 ; a/300) =$	4.12 mm	
f	$w + w_0 =$	4.12 mm	
$w < h_w/300$	$w_0/(N_{cr,st}/\sum N_{st,Ed}-1) =$	0.00 mm	double sided
$\sigma_{\text{max}} < f_{\text{y}}/\gamma_{\text{M1}}$	$N_{st,ten}/A_{st}+\sum N_{st,Ed}\cdot e_{max}/I_{st}\cdot f =$	0.01 N/mm²	
δ_{m}	$N_{st,ten} \cdot e_1 / (\sum N_{st,Ed} \cdot w_0) =$	mm	
$w < h_w/300$	$w_0/(N_{cr}/\Sigma N_{st,Ed}-1)\cdot (1+1.25\cdot \delta_m) =$	mm	single sided
$\sigma_{\text{max}} < f_{\text{y}}/\gamma_{\text{M1}}$	$N_{st,Ed}/A_{st}+\Sigma N_{st,Ed}\cdot e_1/I_{st}\cdot w_0/(1-\Sigma N_{st,Ed}/N_{cr,st})\cdot (1+1.11\cdot \delta_m)=$	N/mm²	

10. Verifica traversi


La sezione bitrave è dotata di un numero ridotto di traversi ad I, non solidali alla soletta e saldati agli irrigidimenti verticali delle due travi principali. I traversi intermedi hanno un interasse tipico pari a 4.05m, mentre quello di spalla ha interasse 4.975m. La loro funzione è quella di irrigidimento della travata e sono posizionati a metà altezza delle travi in modo da consentire il passaggio in caso di manutenzione delle piattabande superiori.

Il quadro tensionale dei traversi è indotto dalla statica globale dell'impalcato, nell'ambito della funzione di elemento ripartitore delle azioni verticali indotte sulle travi principali. Le sollecitazioni di riferimento derivano pertanto dalla opportuna sovrapposizione, effettuata in maniera semplificata, dei due meccanismi.

10.1 Azioni indotta dalla statica globale

Le figure seguenti riportano l'inviluppo per max/min M delle azioni allo S.L.U. rilevate sui traversi intermedi. Tali azioni sono univocamente fornite dall'effetto dei carichi mobili.

Si fa riferimento pertanto al traverso di mezzeria, nella combinazione Max M, caratterizzata da:

$$N_{Ed} \cong 0$$
 V_{Ed} = 161.6 kN M_{Ed} = 246.4 kNm

10.2 Sollecitazioni di progetto e verifiche

Ai fini delle verifiche, le massime sollecitazioni rilevate dalla statica globale per il traverso d'estremità sono (Nota: allo S.L.E., per semplicità, si sono considerate le sollecitazioni allo S.L.U. fattorizzate per 1.35.):

	N _{Ed} [kN]	V _{Ed} [kN]	M _{Ed} [kNm]
S.L.U.	0.0	161.6	246.4
S.L.E.	0.0	119.7	182.5

Le verifiche vengono effettuate mediante il programma PontiEC4. I rapporti larghezza spessore delle piattabande (c/t = 7.1) classificano l'intero elemento in classe 3.

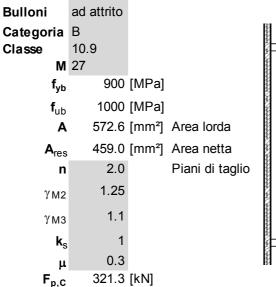
Classificazione sezione sulla base della c.c. corrente Mmax						
	c/t	zpl (mm)	α	ψ(*)	classe	
anima	35	300	0.5	-1	1	
piatt. sup.	7.1				1	
piatt. inf.	7.1				1	
classe compl.			1			

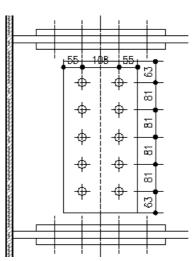
Viene pertanto effettuata una comune verifica tensionale "elastica" che restituisce le seguenti tensioni max/min.

Fibra	σ _{S.L.U.} (Mpa)	η1	σ _{S.L.E.} (Mpa)	c.u.
σ4	44	0.13	44	0.12
σ3	41.1	0.12	44.9	0.13
σ2	0	0	24.7	0.07
σ1	-41.1	0.12	44.9	0.13
σ ₀	-44	0.13	44	0.12

Il non elevato livello tensionale permette di escludere problematiche connesse ad overall buckling dell'elemento; inoltre, non appare significativo procedere ad ulteriori verifiche per conteggiare la penalizzazione dovuta alle bullonature.

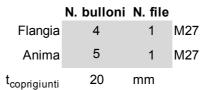
11. Verifica giunti bullonati


Vengono effettuate le seguenti verifiche:


- taglio S.L.U. $F_{V,Ed}^{SLU} \le F_{V,Rd}$

- scorrimento S.L.E. $F_{V,Edser} \le F_{V,Rd,ser}$

 $F_{V,Ed} \le F_{b,Rd}$


La giunzione è realizzata interamente con bulloneria M27 cl. 10.9 ed è così formata:

Dimensioni traverso

H_{tot}	600	[mm]
$b_{top} \\$	300	[mm]
t_{top}	20	[mm]
b _{bot}	300	[mm]
t_{bot}	20	[mm]
$h_{\text{web}} \\$	560	[mm]
t_{web}	16	[mm]

Dimensioni bullonatura anima

. •		
d_{x1}	81	[mm]
d_{y}	81	[mm]
I_p	65610.0	[mm²]
d _{max}	162.0	[mm]
W۶	405.0	[mm]

Le resistenze di progetto risultano pertanto:

Resistenza di progetto al taglio

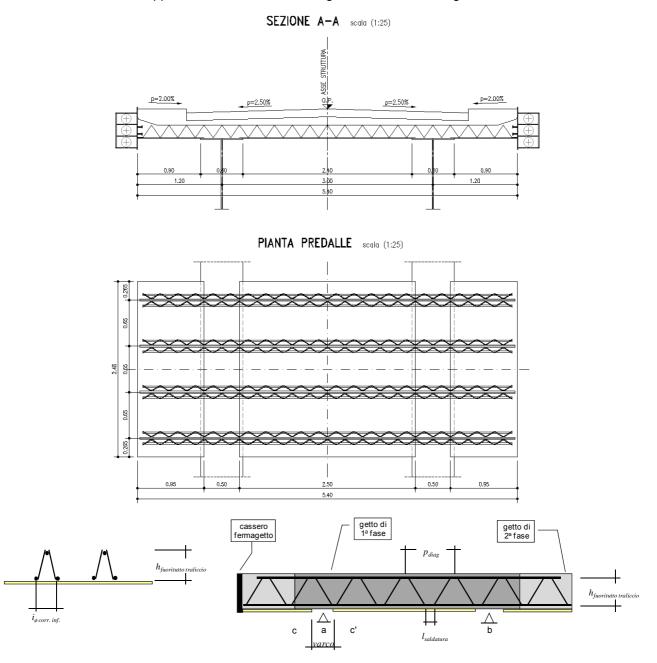
F_{v,Rd} 183.6 [kN] tab. 3.4 EN 1993-1.8

F_{v,Rd shear} 367.2 [kN]

Resistenza di progetto allo slip

 $\mathbf{F}_{s,Rd}$ 175.3 [kN] EN 1993-1-8 cap. 3.9

11.1 Verifica a taglio S.L.U.


Verifica a taglio (S.L.U.) Per la bullonatura delle flange 424.8 [kN] $V_{Ed,tot} =$ $F_{VEd} =$ 106.2 [kN] Per la bullonatura d'anima $N_{web} =$ 0.0 [kN] $M_{web} =$ 47.5 [kNm] $V_{web} =$ 161.6 [kN] $V_{h(Nweb)} =$ 0.0 [kN] $V_{v(Vweb)} =$ 32.32 [kN] $V_{h(Mweb)} =$ 117.2 [kN] $F_{VEd} =$ 121.6 [kN] $F_{v,Rd shear} = 367.2[kN]$

11.2 Verifica a scorrimento S.L.E.

	Verifica a s	corrimen	to (S.L.E.)	
Per la bullon	natura delle flange		<u> </u>	
$V_{Ed,tot} =$	266.7 [kN]			
F _{VEd} =	66.7 [kN]	<	$F_{s,Rd}$	175.3[kN]
Per la bullon	natura d'anima			
$N_{\text{web}} =$	0.0 [kN]			
$M_{web} =$	47.2 [kNm]			
V_{web} =	119.7 [kN]			
V _{h(Nweb)} =	0.0 [kN]			
$V_{v \text{(Vweb)}} =$	23.9 [kN]			
$V_{h(Mweb)} =$	116.7 [kN]			
F _{VEd} =	119.1 [kN]	<	F _{s,Rd}	175.3[kN]

12. Verifica coppella

Per la verifica della coppella si fa riferimento alle seguenti caratteristiche geometriche:

Di seguito si indicano le grandezze geometriche che caratterizzano la coppella metallica:

1.1. DATI D'INGRESSO.

Geometria:	luce tra gli appoggi "a" e "b":		=	3.00 m
	lunghezza dello sbalzo di sola coppella:		=	0.95 m
	numero degli sbalzi:		=	2
Coppella :	spessore equivalente della coppella metallica:		=	0.0126 m
	varco tra le coppelle (vedi figura):		=	0.500 m
	larghezza della coppella in campata:		=	2.480 m
	larghezza della coppella presso lo sbalzo:		=	2.480 m
Tralicci :	numero di tralicci per coppella:		=	4
	altezza fuoritutto del traliccio:		=	0.149 m
	diametro delle barre del corrente superiore:	Ø _{cor.sup}	=	16 mm
	diametro delle barre del corrente inferiore:	Ø _{cor.inf}	=	14 mm
	diametro delle barre diagonali:	$ø_{diag}$	=	10 mm
	passo degli elementi diagonali:		=	0.25 m
	lunghezza del tratto di saldatura degli elementi diagonali al corrente superiore:		=	0.03 m
	lunghezza del tratto di saldatura degli elementi diagonali al corrente inferiore:		=	0.03 m
	interasse fra le barre del corrente inferiore (vedi schema nell' immagine):		=	0.150 m
Carichi:	spessore del getto (compreso maggior spessore in fase esecutiva da livellare):		=	0.246 m
	lunghezza di getto in 1.a fase dello sbalzo da "a" a "c" (Lac=Lac'):		=	0.95 m
	sovraccarico accidentale in corso di esecuzione:		=	0.75 kN/m ²
	cassero fermagetto:		=	0.16 kN/m
				_

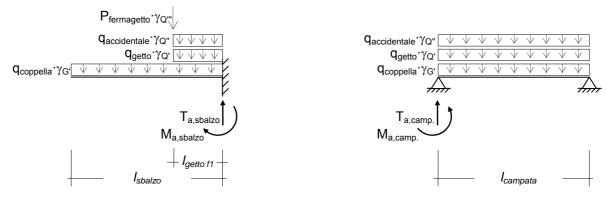
Al fine di ricavare le azioni sui singoli elementi resistenti (corrente inferiore, superiore e diagonale) si calcolano le seguenti caratteristiche geometriche del traliccio:

1.2. DATI CALCOLATI.

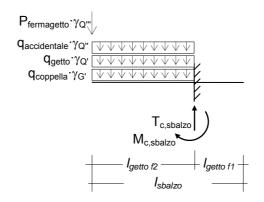
Interasse verticale fra correnti superiore e inferiore:	ic = 0.149 - (0.016 + 0.014) / 2	=	0.134 m	
Lunghezza della proiezione longitudinale sul piano della coppella del diagonale:	a = (0.25 - 0.03 - 0.03) / 2	=	0.095 m	
Inclinazione del diagonale rispetto alla verticale sul piano longitudinale:	α = arctg (a / i _c) = arctg (0.095 / 0.134)	=	35.33 °	
Lunghezza della proiezione trasversale sul piano della coppella del diagonale:	b = (0.15 + 0.014 - 0.016) / 2	=	0.074 m	
inclinazione del diagonale rispetto alla verticale sul piano trasversale:	$\beta = arctg (a / i_c) = arctg (0.074 / 0.134)$	=	28.91 °	

In particolare si considerano le sezioni di incastro dello sbalzo e di mezzeria della campata centrale. Le sollecitazioni taglianti e flettenti in queste due sezioni sono ricavate, a favore di sicurezza, assumendo rispettivamente lo schema statico di trave incastrata e trave semplicemente appoggiata per la fase 1 di getto e trave doppiamente incastrata per la fase di completamento del getto.

Si precisa che per il calcolo si sono adottati i seguenti coefficienti parziali di sicurezza:


peso proprio coppella	γ _{G'} =	1.0	
getto cls*	γ _{Q'} =	1.1	
carico accidentale	γ _{Q''} =	1.0	
carico tavola fermagetto	γQ''' =	1.0	
M e T ulteriori	γο =	1.0	

^{*} comunque non meno di 0.75kN/m² e non più di 1.5kN/m²


Pertanto i carichi utilizzati sono i seguenti:

$q_{coppella} \cdot \gamma_{G'} =$	2.48m · 0.013m · 1 · 25kN/m³	=	0.779	kN/m
$q_{getto} \cdot \gamma_{Q'} =$	$[(0.246 \text{m} \cdot 25 \text{kN/m}^3) + 0.75 \text{kN/m}^2] \cdot 2.48 \text{m}$	=	17.112	kN/m
q _{accidentale} · γ _{Q"} =	2.48m · 1 · 0.75kN/m²	=	1.860	kN/m
P _{fermagetto} · γ _{Q'''} =	2.48m · 0.16kN/m · 1	=	0.397	kN

Gli schemi di calcolo assunti per le varie fasi sono riportati di seguito:

Fase 1° di getto della soletta.

Fase 2° di getto della soletta.

Di seguito si riportano le massime sollecitazione nelle sezioni di appoggio e mezzeria della campata per la fase 1 di getto:

e 1. Taglio pro	esso l'appoggio				
dallo sbalzo :		0.779kN/m · 0.95m		=	0.74 kN/coppell
	carico accidentale :	1.860kN/m · 0.95m		=	1.77 kN/coppell
	fermagetto:	0.397kN		=	0.40 kN/coppell
	getto:	17.112kN/m · 0.95m		=	16.26 kN/coppell
	ulteriore sollecitazione dallo sbalzo di 1.a fase	0kN · 2.48m		=	0.00 kN/coppell
			T_{a_sbal}	=	19.16 kN/coppe
dalla campata :	coppella:	0.779kN/m · 3m / 2		=	1.17 kN/coppell
	getto:	17.112kN/m · 3m / 2		=	51.34 kN/coppel
	carico accidentale :	1.860kN/m · 3m / 2		=	5.58 kN/coppel
			T _{a_camp}	=	58.08 kN/coppe
	Ta = max [Ta_camp ; Ta_sbal] =	max[19.160: 58.084]		=	58.08 kN/coppe
					CO.CO KIW COPPO
e 1: Momento	presso l'appoggio				00:00 Kili coppe
e 1: Momento		0.740kN · 0.95m / 2		=	
e 1: Momento	presso l'appoggio	0.740kN · 0.95m / 2 1.767kN · 0.95m / 2		= =	0.35 kNm/copp
e 1: Momento	presso l'appoggio coppella :	0.740kN · 0.95m / 2			0.35 kNm/copp 0.84 kNm/copp
e 1: Momento	presso l'appoggio coppella : carico accidentale :	0.740kN · 0.95m / 2 1.767kN · 0.95m / 2		=	0.35 kNm/copp 0.84 kNm/copp 0.38 kNm/copp
e 1: Momento	presso l'appoggio coppella : carico accidentale : fermagetto :	0.740kN · 0.95m / 2 1.767kN · 0.95m / 2 0.397kN · 0.95m 16.256kN · 0.95m / 2		=	0.35 kNm/copp 0.84 kNm/copp 0.38 kNm/copp 7.72 kNm/copp
e 1: Momento	presso l'appoggio coppella : carico accidentale : fermagetto : getto :	0.740kN · 0.95m / 2 1.767kN · 0.95m / 2 0.397kN · 0.95m 16.256kN · 0.95m / 2	Ma	= = =	0.35 kNm/copp 0.84 kNm/copp 0.38 kNm/copp 7.72 kNm/copp 0.00 kNm/copp 9.29 kNm/copp
	presso l'appoggio coppella : carico accidentale : fermagetto : getto : ulteriore sollecitazione dallo sbalzo di 1.a fase	0.740kN · 0.95m / 2 1.767kN · 0.95m / 2 0.397kN · 0.95m 16.256kN · 0.95m / 2	Ma	=	0.35 kNm/copp 0.84 kNm/copp 0.38 kNm/copp 7.72 kNm/copp 0.00 kNm/copp
	presso l'appoggio coppella : carico accidentale : fermagetto : getto : ulteriore sollecitazione dallo sbalzo di 1.a fase	0.740kN · 0.95m / 2 1.767kN · 0.95m / 2 0.397kN · 0.95m 16.256kN · 0.95m / 2	Ma	=	0.35 kNm/copp 0.84 kNm/copp 0.38 kNm/copp 7.72 kNm/copp 0.00 kNm/copp 9.29 kNm/copp
	presso l'appoggio coppella : carico accidentale : fermagetto : getto : ulteriore sollecitazione dallo sbalzo di 1.a fase in campata	0.740kN · 0.95m / 2 1.767kN · 0.95m / 2 0.397kN · 0.95m 16.256kN · 0.95m / 2 0kN · 2.48m	Ma	= = = = =	0.35 kNm/copp 0.84 kNm/copp 0.38 kNm/copp 7.72 kNm/copp 0.00 kNm/copp 9.29 kNm/copp
	presso l'appoggio coppella : carico accidentale : fermagetto : getto : ulteriore sollecitazione dallo sbalzo di 1.a fase in campata momento dallo/dagli sbalzo/i :	0.740kN · 0.95m / 2 1.767kN · 0.95m / 2 0.397kN · 0.95m 16.256kN · 0.95m / 2 0kN · 2.48m	Ma	= -	0.35 kNm/copp 0.84 kNm/copp 0.38 kNm/copp 7.72 kNm/copp 0.00 kNm/copp 9.29 kNm/copp
e 1: Momento	presso l'appoggio coppella : carico accidentale : fermagetto : getto : ulteriore sollecitazione dallo sbalzo di 1.a fase in campata momento dallo/dagli sbalzo/i : coppella :	0.740kN · 0.95m / 2 1.767kN · 0.95m / 2 0.397kN · 0.95m 16.256kN · 0.95m / 2 0kN · 2.48m 0 · 2 · 9.289kNm 0.779kN/m · (3m)² / 8	Ma	- - - - -	0.35 kNm/copp 0.84 kNm/copp 0.38 kNm/copp 7.72 kNm/copp 0.00 kNm/copp

Si riportano le massime sollecitazione nelle sezioni di appoggio per la fase di completamento del	

FASE 2 del getto:					
Fase 2: Taglio presso l'appoggio lato sbalzo					
coppella :	0.779kN/m · (0.95m - 0.95m)		=		0.00 kN/coppella
carico accidentale :	1.860kN/m · (0.95m - 0.95m)		=		0.00 kN/coppella
fermagetto :	0kN		=		0.00 kN/coppella
getto :	17.112kN/m · (0.95m - 0.95m)		=		0.00 kN/coppella
ulteriore sollecitazione dallo sbalzo di 1.a fase	0kN · 2.48m		=		0.00 kN/coppella
		T _c	=		0.00 kN/coppella
Fase 2: Momento presso l'appoggio lato sbalzo					
coppella :	0.000kN · (0.95m - 0.95m) / 2		=		0.00 kNm/coppella
carico accidentale :	0.000kN · (0.95m - 0.95m) / 2		=		0.00 kNm/coppella
fermagetto :	0.000kN · (0.95m - 0.95m)		=	•	0.00 kNm/coppella
getto :	0.000kN · (0.95m - 0.95m) / 2		=		0.00 kNm/coppella
ulteriore sollecitazione dallo sbalzo di 1.a fase	0kNm · 2.48m		=		0.00 kNm/coppella
	ı	M _c	=		0.00 kNm/coppella

Per la verifica delle coppelle si farà riferimento alle seguenti caratteristiche meccaniche, di instabilità e ai coefficienti di sicurezza indicati:

VERIFICA DELLE COPPELLE.	
Convenzione : sforzi e tensioni > 0 se di trazione.	

MATERIALI			
f_{yk}	450 Mpa		
E	210000 MPa		
	С	Curva di instabilità (a,b,c,d)	EN 1993-1-1 Table 6.2
α	0.49	fattore di imperfezione	EN 1993-1-1 Table 6.1
γM1	1.1		NTC-08 Tab. 4.2.V
γмо	1.05		NTC-08 Tab. 4.2.V

Per le verifiche si è fatto riferimento a quanto prescritto da EN1993-1-1 cap. 6.2 e 6.3. In particolare per un'azione di trazione si prevede il calcolo dell'azione plastica resistente (EN1993-1-1 6.2.3 (6.6)), quindi si verifica che il coefficiente di sfruttamento sia inferiore all'unità (EN1993-1-1 6.2.3 (6.5)):

$$N_{pl,Rd} = \frac{Af_{yk}}{\gamma_{M0}} \qquad \frac{N_{Ed}}{N_{LRd}} \le 1$$

Nel caso di azione assiale di compressione si procede considerando anche i fenomeni di instabilità (EN1993-1-1 6.3.1.2). Pertanto la verifica prevede il calcolo delle seguenti quantità:

$$\begin{split} \overline{\lambda} = \sqrt{\frac{A \cdot f_{yk}}{N_{cr}}} & \chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} \leq 1.0 \\ N_{b,Rd} = \frac{\chi A f_{yk}}{\gamma_{M1}} & \frac{N_{Ed}}{N_{b,Rd}} \leq 1 \end{split}$$

Nella fattispecie si sono ottenuti i seguenti coefficienti di sfruttamento per i singoli elementi che compongono un traliccio della coppella considerata:

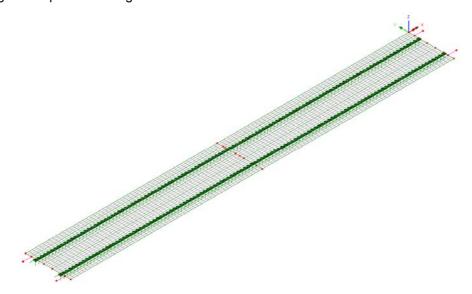
VERIFIC	CA CORRENTE SUPERIORE				
M _{camp}	=	-22.22	kNm/coppella	Compressione	
M_{app}	=	9.29	kNm/coppella	Trazione	
Ø _{corr sup}	=	16	mm		
A _{corr sup}	$= 16^2 \cdot 3.142 / 4 =$	201	mm ²	Area	
l _{min}	= 3.142 · 16 ⁴ /64 =	3217	mm ⁴	Momento d'inerzia minimo	
I ₀	= 250 - 30 =	220	mm	Lunghezza di libera inflessione	
N _{cr}	= -210000 · 3.142 ² · 3'217 / 220 ² =	-137760	N	Carico critico elastico	
λ	= (201 · 450 / 137'760)^0.5 =	0.81		Snellezza adimensionale	EN 1993-1-1 6.3.1.2 (6.49)
Φ	= $\frac{1}{2}$ · (1 + 0.49 · (0.810 - 0.2) + 0.81 ²) =	0.98			EN 1993-1-1 6.3.1.2 (6.49)
χ	$= 1 / [0.98 + (0.98^2 - 0.81^2)^0.5] =$	0.66			EN 1993-1-1 6.3.1.2 (6.49)
$N_{b,Rd}$	= - 0.66 · 201 · 450 / 1.1 =	-53.93	kN	Carico critico elastico	EN 1993-1-1 6.3.1.1 (6.47)
N _{t,Rd}	= 201 · 450 / 1.05 =	86.17	kN	Resistenza plastica della sezione lorda	EN 1993-1-1 6.2.3 (6.6)
N _{Ed}	-22.22kN / (0.134m · 4) =	-41.45	kN/barra	Verificato a compressione c.s.=0.769	
N _{Ed}	9.29kN / (0.134m · 4) =	17.33	3 kN/barra	Verificato a trazione c.s.=0.201	
VERIFIC	CA CORRENTE INFERIORE				
M _{app}	=	-9.29	kNm/coppella	Compressione	
M _{camp}	=		kNm/coppella	•	
oump					
Ø _{corr inf}		14	mm		
A _{corr inf}	= 14 ² · 3.142 / 4 =	154	mm ²	Area	
I _{min}	= 3.142 · 14 ⁴ /64 =	1886	mm ⁴	Momento d'inerzia minimo	
I ₀	= (500 + 2 · 30) / 2 =	280	mm	Lunghezza di libera inflessione	
N _{cr}	= -210000 · 3.142 ² · 1'886 / 280 ² =	-49852	N	Carico critico elastico	
λ	= (154 · 450 / 49'852)^0.5 =	1.18	14	Snellezza adimensionale	EN 1993-1-1 6.3.1.2 (6.49)
Ф	$= \frac{1}{2} \cdot (1 + 0.49 \cdot (1.179 - 0.2) + 1.18^{2}) =$	1.43		Shonozza damionoloridio	EN 1993-1-1 6.3.1.2 (6.49)
χ	= 1 / [1.43 + (1.43 ² - 1.18 ²) ⁰ 0.5] =	0.44			EN 1993-1-1 6.3.1.2 (6.49)
N _{b,Rd}	= - 0.44 · 154 · 450 / 1.1 =	-27.96	kN	Carico critico elastico	EN 1993-1-1 6.3.1.1 (6.47)
N _{t,Rd}	= 154 · 450 / 1.05 =	65.97	kN	Resistenza plastica della sezione lorda	EN 1993-1-1 6.2.3 (6.6)
N _{Ed}	-9.29kN / (0.134m · 2 · 4) =	-8.67	' kN/barra	Verificato a compressione c.s.=0.310	
N _{Ed}	22.22kN / (0.134m · 2 · 4) =	20.73	3 kN/barra	Verificato a trazione c.s.=0.314	
VEDIEI	CA DIAGONALI				
T _{max}	=	-58.08	3 kN/coppella	Compressione	
ϕ_{diag}		10	mm		
A_{diag}	$= 10^2 \cdot 3.142 / 4 =$	79	mm ²	Area	
I_{min}	= 3.142 · 10^4/64 =	491	mm ⁴	Momento d'inerzia minimo	
I_0	= 0.134 · 1000 / (cos 35.33 · cos 28.91) =	188	mm	Lunghezza di libera inflessione	
N _{cr}	= -210000 · 3.142² · 491 / 188² =	-28896	N	Carico critico elastico	
λ	= (79 · 450 / 28'896)^0.5 =	1.11		Snellezza adimensionale	EN 1993-1-1 6.3.1.2 (6.49)
Φ	= $\frac{1}{2}$ · (1 + 0.49 · (1.106 - 0.2) + 1.11 ²) =	1.33			EN 1993-1-1 6.3.1.2 (6.49)
χ	= 1 / [1.33 + (1.33 ² - 1.11 ²) ⁰ .5] =	0.48			EN 1993-1-1 6.3.1.2 (6.49)
N _{b,Rd}	= - 0.48 · 79 · 450 / 1.1 =	-15.46	kN	Carico critico elastico	EN 1993-1-1 6.3.1.1 (6.47)
N _{t,Rd}	= 79 · 450 / 1.05 =	33.66	kN	Resistenza plastica della sezione lorda	
N	- F9 09 / (oop 25 22 oop 29 04 2 4) -	40.45	7 kN/horro	Verificato a compressione c.s.=0.658	
N _{Ed}	$= -58.08 / (\cos 35.33 \cdot \cos 28.91 \cdot 2 \cdot 4) =$	-10.17	kN/barra	vermeato a compressione c.s.=0.658	

Di seguito si riportano le freccie calcolate considerando un carico uniformemente distribuito gravante su di una trave semplicemente appoggiata per la sezione di campata e di una mensola incastrata per la sezione più esterna di sbalzo. Tali schematizzazioni, non tenendo conto dei contributi dovuti alle campate laretali, conducono ad una stima della deformazione a favore di sicurezza.

Calcolo freccia massima		
$A_{cor_sup_tot}$		804.2 mm²
A _{cor_inf_tot}		1231.5 mm²
A _{coppella}		9920.0 mm²
y _{Gcor_sup}		145 mm
y _{Gcor_inf}		11 mm
y _{Gcor_copella}		2 mm
A _{tot}		11956 mm²
S_x		150002 mm³
y _{G_tot}		12.55 mm
J _{tot}		15215999.09 mm ⁴
E		210000 Mpa
q		19.751 N/mm
L _{campata}		3000 mm
L _{sbalzo}		950.00 mm
f _{campata} =	5/384·qL ⁴ /EJ =	6.5 mm
f _{sbalzo} =	qL ⁴ /8EJ =	0.6 mm

13. Verifica soletta

13.1 Verifica in fase di esercizio


13.1.1 Generalità

Si analizza il comportamento della soletta, con riferimento alla sezione corrente. A tal fine si studia la zona di mezzeria di una piastra di lunghezza complessiva pari a circa 38.3 m, vincolata rigidamente lungo i fili delle travi principali. Nell'ipotesi di "piastra indefinita", i vincoli di estremità sono liberi.

Per semplicità, l'analisi in fase di esercizio viene effettuata prescindendo dalle reali modalità realizzative (getto su coppella), ipotizzando pertanto che la soletta "nasca" direttamente con spessore pari a quello complessivo di progetto, e che il peso proprio del getto vada pertanto a gravare sul complesso delle armature predisposte lungo l'intero spessore.

Per la modellazione, effettuata mediante il programma Lusas 14.5, si adottano elementi "shell" lineari a quattro nodi, aventi dimensione caratteristica pari a 0.5 m.

La figura seguente riporta la configurazione del modello ad elementi finiti.

13.1.2 Carichi e combinazioni di carico

Si considerano i seguenti contributi di carico:

Peso proprio:

 $g_1 = 25.0 \cdot (0.271 + 0.004 \cdot 78.5 / 25) = 7089 \text{ kN/m}^2$

uniformemente distribuito sulla sezione corrente

Sovraccarichi permanenti (cfr. analisi globale)

a)	Manto asfaltatura	g _{k2} '	3.00	kN/m ²
b)	Marciapiedi	g _{k2} "	2.80	kN/m ²
c)	Coppella laterale finitura	g _{k2} ""	1.56	kN/m
d)	Guardavia	q_{k2}^{IV}	1.5	kN/m

Carichi mobili

La posizione dei carichi mobili viene definita con l'obiettivo principale di massimizzare/minimizzare il comportamento flettente trasversale e longitudinale lungo la sezione trasversale tracciata in mezzeria della piastra.

Vengono presi in esame i modelli di carico LM1.

Per il modello LM1, i carichi TS e UDL si considerano le seguenti disposizioni trasversali:

- pos.1: corsia 1, composta da veicolo TS da 600 kN e UDL, disposti in asse corsia con la massima eccentricità positiva (2.0 m)
- pos.2: veicoli TS e UDL di corsia 1, disposti in asse al campo centrale soletta.

Per il modello LM2 considerano le seguenti disposizioni trasversali:

pos.1: veicolo LM2 disposto affiancato al marciapiede (e = 2.00 m)

pos.2: veicolo LM2 disposto in asse campo centrale

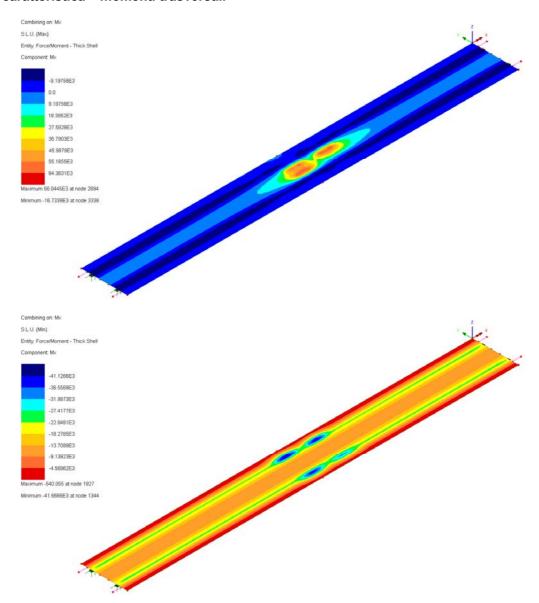
pos.3: singola ruota di LM2 disposto affiancato al marciapiede

pos.4: singola ruota di LM2 disposto sul campo centrale

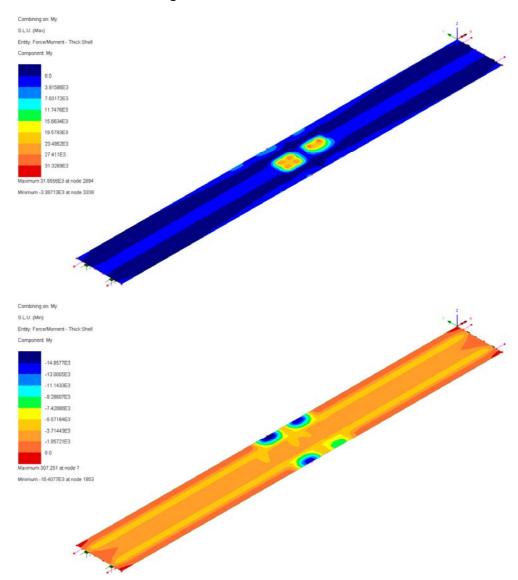
Unitamente ai precedenti, si considera il sovraccarico $q_{f,k}$ sui marciapiedi, con intensità massima pari a 2.5 kN/m², distribuito su di una ampiezza pari a 1 m. Il carico verrà disposto su uno od ambedue i marciapiedi, al fine di massimizzare/minimizzare le sollecitazioni di interesse.

Ai fini delle verifiche locali della soletta vengono prese in esame le seguenti combinazioni di carico:

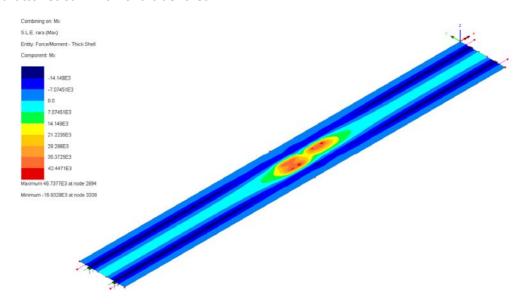
S.L.U. fondamentale ai fini delle verifiche a collasso

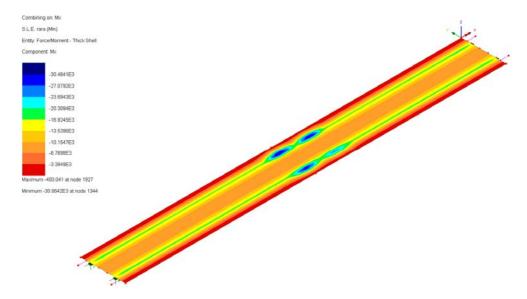

S.L.E. caratteristica ai fini delle verifiche per lo S.L. di limitazione delle tensioni

S.L.E. frequente ai fini delle verifiche allo S.L. di fessurazione

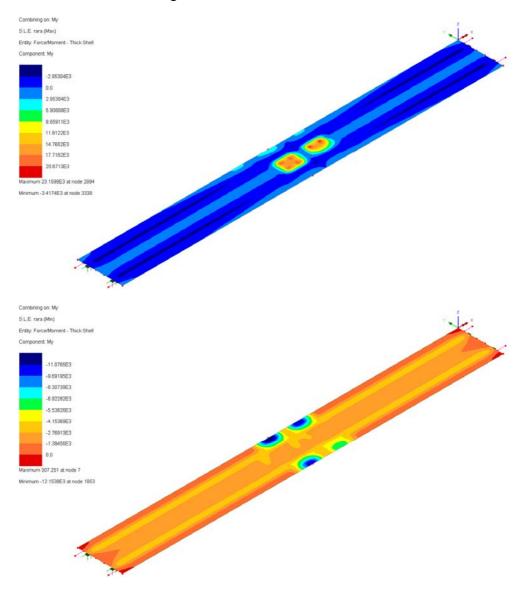

13.2 Sollecitazioni

Di seguito si riportano gli inviluppi per max/min My (trasversale), max/min Mx (longitudinale) per i tre S.L. considerati. I valori indicati sono espressi in Nm/m

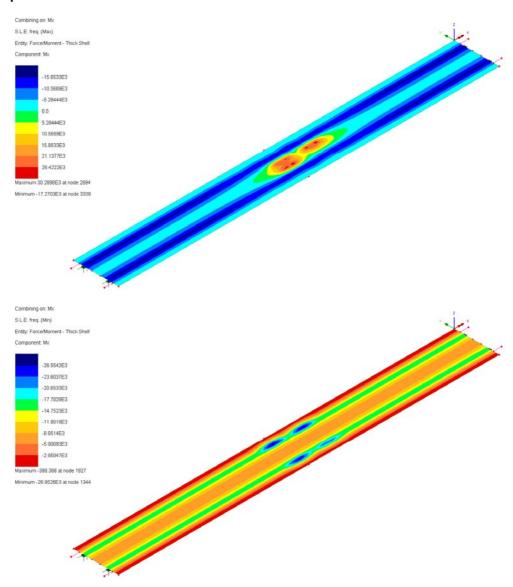

S.L.U. caratteristica - momenti trasversali

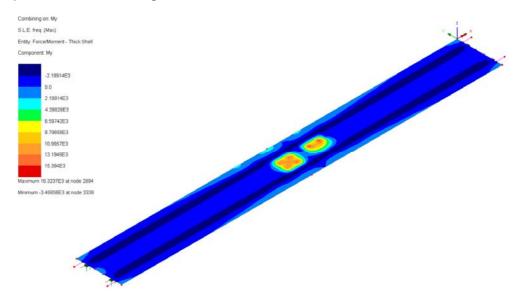


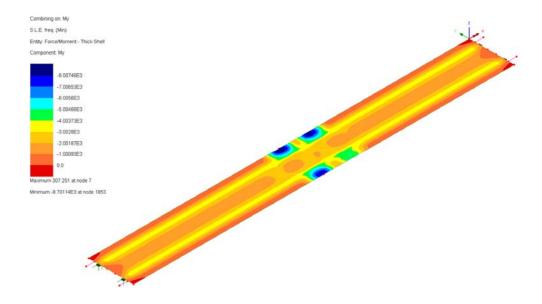
S.L.U. caratteristica – momenti longitudinali



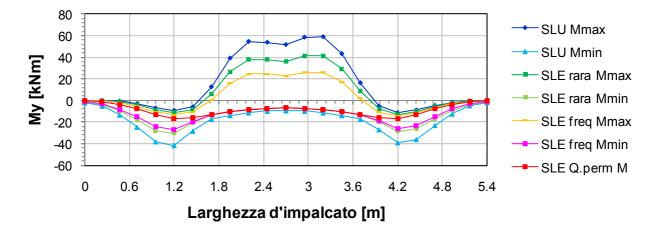
S.L.E. caratteristica – momenti trasversali

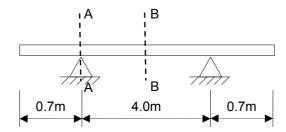



S.L.E. caratteristica – momenti longitudinali



S.L.E. frequente – momenti trasversali

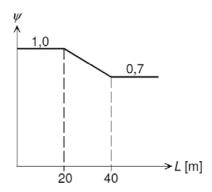

S.L.E. frequente - momenti longitudinali



13.3 Verifiche in direzione trasversale

Il grafico seguente restituisce l'inviluppo dei momenti trasversali massimi e minimi rilevati per linee di influenza disposte sulle sezioni di verifica: A e B.

In fase di verifica si considerano le sezioni indicate in figura.


L'armatura trasversale corrente viene realizzata mediante barre correnti ϕ 14/20 inferiori/superiori per le sezioni di mezzeria e per le zone di appoggio trave. Ai fini delle verifiche si considera uno spessore convenzionale resistente pari a 283.6 mm.

Le sollecitazioni considerate derivano dalla combinazione di quelle dedotte mediante lo studio della statica locale e globale (EN 1993-2 Annex E). L'eurocodice 3 prevede il calcolo di un coefficiente di combinazione ψ funzione della luce del ponte da applicare alle sollezitazioni locali o globali che andranno così a sommarsi alle restanti.

$$\sigma_{Ed} = \sigma_{loc,d} + \psi \sigma_{glob,d}$$

$$\sigma_{Ed} = \psi \sigma_{loc,d} + \sigma_{glob,d}$$

La relazione che definisce il coefficiente ψ in funzione della luce della campata è riassunta nella figura seguente.

In accordo a quanto previsto nell'appendice E dell'eurocodice 3 si sono dedotte le seguenti sollecitazioni flettenti massime per le sezioni di verifica della soletta.

Sollecitaz	zioni globa	li SLU - STR	Sollecitaz	zioni globa	II SLE RARA	Sollecitazioni globali SLE FREQUEN			
Sez A-A	M_{max}	0.00 kNm/m	Sez A-A	M_{max}	0.00 kNm/m	Sez B-B	M_{max}	0.00 kNm/m	
	M_{min}	0.00 kNm/m		M_{min}	0.00 kNm/m		M_{min}	0.00 kNm/m	
Sez B-B	M _{max}	0.00 kNm/m	Sez B-B	M _{max}	0.00 kNm/m	Sez C-C	M_{max}	0.00 kNm/m	
	M_{min}	0.00 kNm/m		M_{min}	0.00 kNm/m		M_{min}	0.00 kNm/m	
Sollecitaz	zioni locali	SLU - STR	Sollecitaz	zioni locali	SLE RARA	Sollecitaz	zioni locali	SLE FREQUENTE	
Sez A-A	M _{max}	52 kNm/m	Sez A-A	M_{max}	36 kNm/m	Sez B-B	M_{max}	23 kNm/m	
	M_{min}	-9 kNm/m		M_{min}	-7 kNm/m		M_{min}	-7 kNm/m	
Sez B-B	M_{max}	-3 kNm/m	Sez B-B	M_{max}	-4 kNm/m	Sez C-C	M_{max}	-6 kNm/m	
	M_{min}	-25 kNm/m		M_{min}	-18 kNm/m		M_{min}	-15 kNm/m	
Sollecitaz	zioni totali	SLU - STR	Sollecitaz	zioni totali	SLE RARA	Sollecitaz	zioni totali	SLE FREQUENTE	
Sez A-A	M _{max}	52 kNm/m	Sez A-A	M _{max}	36 kNm/m	Sez B-B	M_{max}	23 kNm/m	
	M_{min}	-9 kNm/m		M_{min}	-7 kNm/m		M_{min}	-7 kNm/m	
Sez B-B	M _{max}	-3 kNm/m	Sez B-B	M _{max}	-4 kNm/m	Sez C-C	M _{max}	-6 kNm/m	
	M_{min}	-25 kNm/m		M_{min}	-18 kNm/m		M_{min}	-15 kNm/m	

Verifica della sezione A-A

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x baricentrico
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x baricentrico
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult) e (N,Mx)
	Verifica positiva se tale rapporto risulta >=1.000
Yneutro	Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.

x/d C.R:		Coeff. Area e	di riduz. fficace ba	momenti p	per sola fi (per presen	lessione nza di to	esenza di so in travi co prsione)= 9. prsione)= 9.	ontinue 2 cm²	ione	(travi)		
N.Com	b. Ver	N	Mx	N ult	Mx ult	Mis.Sic	c. Yneutro	x/d	C.R	id. 		
1 2	S S	0 0	5153 -941	23 23		1.89 10.36				.70 .70		
METODO AG	METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO											
Ver Vsdr Vrd Vod bw Tet: Acw Afs:	u a t	Taglio Taglio Taglio Taglio Taglio Larghe: Angolo Coeffic Area si	agente [da resistente compressione : zza minima [gradi ses ziente magg taffe/metro	aN] uguale [daN] in one resistente [cm] sez: ssadec.] c giorativo o strettar	e al taglio n assenza o tente [daN] e [daN] ass ione misura di inclina della res mente neces	o Vy di odi staffe lato cosorbito de corbito de corbi	onglomerato dalle staffe llelam. all' i puntoni di a taglio per er taglio e	ecit. ret	tro erato sione			
1 2	S S	10 10			5621 100.0 5621 100.0).0).0				
Ver Sc t Yc t Sc t Yc t Sf t Yf t Dw l Ac o	COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI Ver S = combinazione verificata / N = combin. non verificata Sc max Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²] Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Sc min Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²] Yc min Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O) Sf min Minima tensione di trazione (-) nell'acciaio [daN/cm²] Yf min Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Dw Eff. Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre Ac eff. Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.) Af eff. Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.) D barre Distanza media in cm tra le barre tese efficaci (verifica fess.)											
1	S S	19.6	31.0 -19		.0 -227			0	0.0	0.0		
2	S	3.7			.0 -44			0	0.0	0.0		
COMBINAZIO	ONI RARE	IN ESER	CIZIO - 1	/ERIFICA /	APERTURA FI	ESSURE						
Ep2 Ep3 K2 Kt Eps Srm	Ep1 Massima deformazione di traz. unitaria nel calcestr. in sez. fessurata Ep2 Minima deformazione unitaria nel calcestruzzo in sez. fessurata Ep3 Deformazione unitaria al limite dell'area efficace di calcestruzzo K2 = (Ep1 + Ep3)/(2 Ep3) secondo la (7.13) dell'EC2											
N.Coml	b. Ver	Ep1	Ep2	Ep3	К2	Kt	Eps	Srm	Ap.	Fess.		
1 2		0.00000	0.00000			0.00	0.000000	0		0.000		
COMBINAZIO	ONI FREQ	UENTI IN	ESERCIZIO	- VERII	FICA MASSII	ME TENSIO	ONI NORMALI					
N.Coml	b. Ver S	c max Y	c max Sc m	min Yc m	in Sf min	Yf min	Dw Eff. Ac	eff. Af	eff.	Dbarre		
1 2	S S	12.4	31.0 -12 0.0 -3	2.4 31 3.7 0				0 0	0.0	0.0		
COMBINAZIO	ONI FREQ	UENTI IN	ESERCIZIO	- VERII	FICA APERT	JRA FESSU	JRE					
N.Coml	b. Ver	Ep1	Ep2	Ep3	K2	Kt	Eps	Srm	Др.	Fess.		
1 2			0.00000			0.00	0.000000	0		0.000		

Verifica della sezione B-B

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x baricentrico
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x baricentrico
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult) e (N,Mx)
	Verifica positiva se tale rapporto risulta >=1.000
Yneutro	Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.
x/d	Rapp. di duttilità a rottura misurato in presenza di sola flessione (travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue
	Area efficace barre inf. (per presenza di torsione)= 9.2 cm²
	Area efficace barre sup. (per presenza di torsione)= 9.2 cm²
N.Comb. Ver	N Mx N ult Mx ult Mis.Sic. Yneutro $ exttt{x/d}$ C.Rid.

N.Comb.	Ver	N	Mx	N ult	Mx ult	Mis.Sic.	Yneutro	x/d	C.Rid.
1	S	0	-292	23	-9755	33.406	3.0	0.11	0.70
2	S	0	-2454	23	-9755	3.975	3.0	0.11	0.70

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Ver		S = comb	verific	ata a ta	aglio-tor	s./ N	= comb.	non ve	rificata		
Vsdu		Taglio a	igente [d	aN] ugua	ale al ta	glio V	/y di co	mb. (sc	llecit. 1	retta)	
Vrd		Taglio r	resistent	e [daN]	in assen	za di	staffe				
Vcd		Taglio d	compressi	one res	istente [daN] l	lato con	glomera	ito		
Vwd		Taglio t	razione	resister	nte [daN]	assor	bito da	lle sta	iffe		
bw		Larghezz	a minima	[cm] se	ezione mi	surata	a parall	elam. a	ill'asse m	neutro	
Teta		Angolo [gradi se	ssadec.	di incl	inazio	one dei	puntoni	di congi	lomerato	
Acw		Coeffici	ente mag	giorativ	o della	resist	enza a	taglio	per comp	ressione	
Afst		Area sta	affe/metr	o strett	tamente n	ecessa	aria per	taglio	e torsi	one [cm²/	/m]
N.Comb.	Ver	Vsdu	Vrd	Vcd	Vwd	bw	Teta	Acw	Afst		

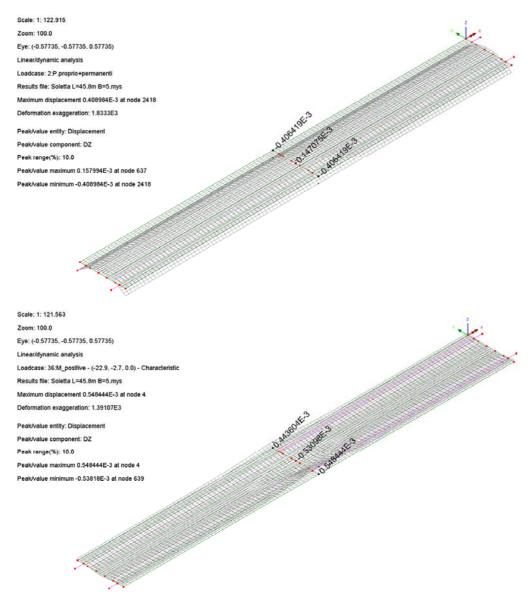
N.Comb.	Ver	Vsdu	Vrd	Vcd	Vwd	bw	Teta	Acw	Afst
1	S	10	14361	84620	76063	100.0	21.80	1.000	0.0
2	S	10	14361	84620	76063	100.0	21.80	1.000	0.0

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
Yc min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Sf min	Minima tensione di trazione (-) nell'acciaio [daN/cm²]
Yf min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Dw Eff.	Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
Ac eff.	Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
Af eff.	Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
D barre	Distanza media in cm tra le barre tese efficaci (verifica fess.)

N.Comb.	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Yf min Dw	Eff.	Ac eff. At	eff.	Dbarre
1	s	2.3	0.0	-2.3	0.0	-26	3.5	0.0	0	0.0	0.0
2	S	9.8	0.0	-9.8	0.0	-113	3.5	0.0	0	0.0	0.0

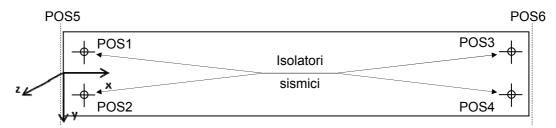
COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE


Ver	S = combinazione verificata / N = combin. non verificata
Ep1	Massima deformazione di traz. unitaria nel calcestr. in sez. fessurata
Ep2	Minima deformazione unitaria nel calcestruzzo in sez. fessurata
Ep3	Deformazione unitaria al limite dell'area efficace di calcestruzzo
K2	= (Ep1 + Ep3)/(2 Ep3) secondo la (7.13) dell'EC2
Kt	fattore di durata del carico di cui alla (7.9) dell'EC2
Eps	Deformazione media acciaio tra le fessure al netto di quella del cls.
Srm	Distanza massima in mm tra le fessure
Ap.fess.	Apertura delle fessure in mm = Eps*Srm (7.8) EC2

N.Comb.	Ver	Ep1	Ep2	Ep3	K2	Kt	Eps	Srm	Ap.Fess.
1	S	0.00000	0.00000			0.00	0.000000	0	0.000
2	S	0.00000	0.00000			0.00	0.000000	0	0.000

N.Comb.	Ver S	c max Y	c max	Sc min	Yc min	Sf min	Yf min Dv	Eff. Ac	eff. Af	eff.	Dbarre
1 2	S S	3.0		-3.0 -8.2	0.0	-35 -95	3.5 3.5		0	0.0	0.0
COMBINAZIONI	FREQ	UENTI IN	ESERCI	zio -	VERIFICA	APERTU	RA FESSURE	:			
N.Comb.	Ver	Ep1	E	p2	Ер3 	K2	Kt	Eps	Srm	Ap	.Fess.
1 2	S S	0.00000						0.000000	0		0.000

13.4 Quadro deformativo locale


Si riporta la deformata qualitativa della soletta sotto l'azione, rispettivamente, dei carichi di schema 1 e schema 2.

Come si evince dai risultati (valori espressi in m), le frecce massime appaiono soddisfacentemente limitate.

14. Isolatori sismici e escursione giunti

Di seguito si riportano le massime portate e rotazioni consentite che caratterizzano gli appoggi agli S.L. aventi una rigidezza traslazionale k=4.5kN/mm e una $\xi=10\%$:

Di seguito si riportano le tabelle riassuntive in cui vengono indicati le portate, gli spostamenti e le rotazioni massime calcolati, nonchè le massime escursioni previste per i giunti.

SOLLECITAZIONI AGLI APPOGGI S.L.E SISMICA - S.L.C S.L.U. Max F_x (kN) Max F_v (kN) Max F_z (kN) Max F_x (kN) Max F_v (kN) Max F_z (kN) Max F_x (kN) Max F_y (kN) Max F_z (kN) POS. 1-210 100 1590 270 150 2150 80 930 220 SPA-B 210 100 1590 270 150 2150 60 220

		DEFORMAZIONI AGLI APPOGGI									
			S.L	.E.	S.L	.U.	SISMICA - S.L.C.				
			$ \delta_{\text{max}}[\text{mm}] $	$ \theta_{\text{max}}\left[\text{rad}\right] $	$ \delta_{max}[mm] $	$ \theta_{max}\left[rad\right] $	$ \delta_{\text{max}}[\text{mm}] $	$ \theta_{\text{max}}\left[\text{rad}\right] $			
ſ	CDA D	POS. 1-3	47	0.0118	63	0.0202	49	0.0066			
	SPA-B	POS. 2-4	47	0.0118	63	0.0202	49	0.0066			

Valori al netto della rotazione dovuta a peso proprio acciaio e getto soletta, da compensare sui cunei metallici

Tutte le apparecchiature devono essere dotate di cunei metallici di compensazione delle pendenze e delle rotazioni per effetto dei carichi di 1° fase

	ESCURSIONI COMPLESSIVE GIUNTI (mm)												
		S.L.E. (APERTURA + CHIUSURA) SISMICA - S.L.D. (APERTURA +							ISURA) *	SISMICA - SI	LV (ape	rtura +	chiusura)
	$\max \delta_{x tot} \delta_{y conc} \delta_{x conc} \max \delta_{y tot} \max \delta_{x tot} \delta_{y conc} \delta_{x conc} \max \delta_{y tot}$					$\text{max} \delta_{x \text{tot}}$	$\delta_{\text{y conc}}$	$\delta_{x\;\text{conc}}$	$\text{max}\delta_{\text{y tot}}$				
SPA	POS. 5	91	25	44	42	28	12	18	32	30	27	18	75
SPB	POS. 6	91	25	44	42	28	12	18	32	30	27	18	75

- * In fase sismica il giunto dovrà garantire le seguenti prestazioni:
- Sisma S.L.D.: nessun danneggiamento
- Sisma S.L.V.: danneggiamento localizzato

VARCO SOLETTA-PARAGHIAIA

min 50 mn

15. Verifica spalla

Il calcolo del quadro tensionale insistente lungo la spalla viene effettuato mediante un foglio di calcolo che considera l'effettiva geometria della struttura, il sovraccarico a tergo spalla e le spinte del terreno agenti lungo la spalla, nonchè le inerzie derivanti in condizioni sismiche. Le sollecitazioni derivanti dall'impalcato con l'effettiva eccentricità degli appoggi sono quelle indicate di seguito:

Azioni t	rasmessed	da impalo	cato	Azioni trasmesse da impalcato				
	My (kNm)			Vx (kN)	N (kN)	My (kNm)		
S.L.U. Str	-217	-1266	0.00	S.L.U.	Str	125	-4289	0.00
S.L.U. Geo	-174	-1259	0.00	S.L.U.	Geo	97	-3554	0.00
S.L.U. Sisma	88	-1291	0.00	S.L.U.	Sisma	74	-1779	0.00
S.L.E. Fond.	-139	-1354	0.00	S.L.E.	Fond.	93	-3166	0.00
S.L.E. Freq.	92	-1502	0.00	S.L.E.	Freq.	0	-2444	0.00
S.L.E. Q. Per.	93	-1535	0.00	S.L.E.	Q. Per.	69	-1535	0.00

Azioni trasmesse da impalcato				Azioni trasmesse da impalcato				
	Vx (kN)	N (kN)	My (kNm)			Vx (kN)	N (kN)	My (kNm)
S.L.U. Str	-301	-2195	0.00	S.L.U.	Str	540	-3045	0.00
S.L.U. Geo	-223	-1966	0.00	S.L.U.	Geo	420	-2495	0.00
S.L.U. Sisma	39	-1445	0.00	S.L.U.	Sisma	57	-768	0.00
S.L.E. Fond.	-209	-2035	0.00	S.L.E.	Fond.	408	-2244	0.00
S.L.E. Freq.	0	-2134	0.00	S.L.E.	Freq.	0	-2145	0.00
S.L.E. Q. Per.	52	-1535	0.00	S.L.E.	Q. Per.	114	-1535	0.00

Di seguito si riportano i dati di input utilizzati per il calcolo delle sollecitazioni utili alla verifica delle sezioni principali della spalla: sezione di spiccato del paraghiaia, del setto di elevazione e del cordolo di fondazione.

Definizione carpenterie				Carichi a tergo spalla			
Largh. spalla (b _t)	7.24			Gk	3.00		
	t _i /b _i	h _i	h_{i}	Qk	20.00		
Paraghiaia (t ₁ ,h ₁)	0.30	2.30			Caratteristiche t	terreno	
Mensola parag. (t ₂ , h _{2'} h _{2''})	0.00	0.00	0.00				
Paramento (t ₃ , h ₃)	1.20	5.80		φ rilevato (°/ rad		35.00	0.6109
Fondazione (b ₄ ,h ₄)	1.60	1.00		Attrito terra mur	ro-δ (°/rad) (M1)	17.50 29.26	0.3054 0.5106
Suola esterna (b ₅)	0.20				ro-δ (°/rad) (M2)	14.63	0.2553
Suola interna (b ₆)	0.20			Incl. paramento	- ψ (° / rad)	90.00	1.5708
Piano app. impalcato (b ₇)		0.90		Incl scarpata -	β (° / rad)	0.00	0.0000
h media baggioli (h ₈)		0.30		γ _t rilevato (kN/m	1 ³)	20.00	

Coefficienti di spinta			Caratterizzazion	e sismica
k ₀ statico (M1)	0.4264	a _{max} (g)	0.08	
ka statico (M1)	0.2461	eta_{m}	0.24	
ka din.1 (M1)	0.2567	k_h	0.0192	
ka din.2 (M1)	0.2565	k_{v}	0.0096	
k ₀ statico (M2)	0.511	θ_{A}	0.0194	
ka statico (M2)	0.3105	θ_B	0.0190	
ka din.1 (M2)	0.3225			
ka din.2 (M2)	0.3222			

15.1 Sollecitazioni massime e minime per i singoli elementi strutturali

Si riportano pertanto le sollecitazioni dedotte:

- SEZIONE 1 (SPICCATO PARTE SUPERIORE PARAGHIAIA)

Azione Nmax Sezione 1 (spiccato parte superiore paraghiaia) Sollecitazioni per le singole condizioni elementari

		Vx (kN/m)	N (kN/m)	My (kNm/m)
	Pesi propri cls spalla	0.00	-17.25	0.00
	Sovraccarico acc. sbalzo par.	0.00	-6.00	0.00
	Spinta orizz. terreno (M1)	22.56	0.00	17.29
	Spinta orizz. sovr. perm. (M1)	2.94	0.00	3.38
1 €	Spinta orizz. sovr. acc. (M1)	19.62	0.00	22.56
spalla	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_{1}}$ (M1)	0.43	0.00	0.49
g	$_{\Delta}$ Sismico Sp. perm $_{\theta_1}$ (M1)	1.77	0.00	2.04
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M1)	0.68	0.00	0.78
	$_{\Delta}$ Sismico Sp. perm $_{\theta 2}$ (M1)	1.77	0.00	2.04
	Eff. inerziale elem. cls	1.38	0.00	1.59
2	S.L.U. STR min N	0.00	0.00	0.00
ca	S.L.U. Sisma min N	0.00	0.00	0.00
impalcato	S.L.E. fond. min N	0.00	0.00	0.00
.⊑	S.L.E. freq. min N	0.00	0.00	0.00
da	S.L.E. q.p. min N	0.00	0.00	0.00

Sollecitazioni complessive per le combinazioni di verifica					
		Vx (kN/m)	N (kN/m)	My (kNm/m)	
	S.L.U. STR min N	60.91	-31.39	58.37	
(m/)	S.L.U. Sisma min N (θ_1)	29.08	-17.25	24.79	
	S.L.U. Sisma min N (02)	29.33	-17.25	25.08	
totale	S.L.E. fond. min N	45.12	-23.25	43.24	
유	S.L.E. freq. min N	33.35	-19.65	29.70	
	S.L.E. a.p. min N	25.50	-17.25	20.68	

Azione Vmax
Sezione 1 (spiccato parte superiore paraghiaia)
Sollecitazioni per le singole condizioni elementari

		Vx (kN/m)	N (kN/m)	My (kNm/m)
	Pesi propri cls spalla	0.00	-17.25	0.00
	Sovraccarico acc. sbalzo par.	0.00	-6.00	0.00
	Spinta orizz. terreno (M1)	22.56	0.00	17.29
	Spinta orizz. sovr. perm. (M1)	2.94	0.00	3.38
spalla	Spinta orizz. sovr. acc. (M1)	19.62	0.00	22.56
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_1}$ (M1)	0.43	0.00	0.49
da	$_{\Delta}$ Sismico Sp. perm $_{\theta_1}$ (M1)	1.77	0.00	2.04
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M1)	0.68	0.00	0.78
	$_{\Delta}$ Sismico Sp. perm $_{\theta_2}$ (M1)	1.77	0.00	2.04
	Eff. inerziale elem. cls	1.38	0.00	1.59
2	S.L.U. STR min N	0.00	0.00	0.00
impalcato	S.L.U. Sisma min N	0.00	0.00	0.00
pa	S.L.E. fond. min N	0.00	0.00	0.00
	S.L.E. freq. min N	0.00	0.00	0.00
da	S.L.E. q.p. min N	0.00	0.00	0.00

	Sollecitazioni complessive per le combinazioni di verifica					
		Vx (kN/m)	N (kN/m)	My (kNm/m)		
	S.L.U. STR min N	60.91	-31.39	58.37		
<u>-</u>	S.L.U. Sisma min N (θ ₁)	29.08	-17.25	24.79		
(m)	S.L.U. Sisma min N (θ_2)	29.33	-17.25	25.08		
totale	S.L.E. fond. min N	45.12	-23.25	43.24		
ᅌ	S.L.E. freq. min N	33.35	-19.65	29.70		
	S.L.E. g.p. min N	25.50	-17.25	20.68		

Azione Nmin Sezione 1 (spiccato parte superiore paraghiaia) Sollecitazioni per le singole condizioni elementari

		Vx (kN/m)	N (kN/m)	My (kNm/m)
	Pesi propri cls spalla	0.00	-17.25	0.00
	Sovraccarico acc. sbalzo par.	0.00	-6.00	0.00
	Spinta orizz. terreno (M1)	22.56	0.00	17.29
	Spinta orizz. sovr. perm. (M1)	2.94	0.00	3.38
l₩	Spinta orizz. sovr. acc. (M1)	19.62	0.00	22.56
spalla	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_1}$ (M1)	0.43	0.00	0.49
da	$_{\Delta}$ Sismico Sp. perm $_{\theta_1}$ (M1)	1.77	0.00	2.04
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M1)	0.68	0.00	0.78
	$_{\Delta}$ Sismico Sp. perm $_{\theta_2}$ (M1)	1.77	0.00	2.04
	Eff. inerziale elem. cls	1.38	0.00	1.59
2	S.L.U. STR min N	0.00	0.00	0.00
ca	S.L.U. Sisma min N	0.00	0.00	0.00
da impalcato	S.L.E. fond. min N	0.00	0.00	0.00
Ĕ.	S.L.E. freq. min N	0.00	0.00	0.00
da	S.L.E. q.p. min N	0.00	0.00	0.00

	Sollecitazioni complessive per le combinazioni di verifica				
		Vx (kN/m)	N (kN/m)	My (kNm/m)	
	S.L.U. STR min N	60.91	-31.39	58.37	
(m/)	S.L.U. Sisma min N (θ_1)	29.08	-17.25	24.79	
) e	S.L.U. Sisma min N (θ ₂)	29.33	-17.25	25.08	
totale	S.L.E. fond. min N	45.12	-23.25	43.24	
ᅌ	S.L.E. freq. min N	33.35	-19.65	29.70	
	S.L.E. q.p. min N	25.50	-17.25	20.68	

Azione Vmin Sezione 1 (spiccato parte superiore paraghiaia) Sollecitazioni per le singole condizioni elementari

	·	Vx (kN/m)	N (kN/m)	My (kNm/m)
	Pesi propri cls spalla	0.00	-17.25	0.00
	Sovraccarico acc. sbalzo par.	0.00	-6.00	0.00
	Spinta orizz. terreno (M1)	22.56	0.00	17.29
	Spinta orizz. sovr. perm. (M1)	2.94	0.00	3.38
l∰	Spinta orizz. sovr. acc. (M1)	19.62	0.00	22.56
spalla	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_1}$ (M1)	0.43	0.00	0.49
da	$_{\Delta}$ Sismico Sp. perm $_{\theta_1}$ (M1)	1.77	0.00	2.04
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M1)	0.68	0.00	0.78
	$_{\Delta}$ Sismico Sp. perm $_{\theta 2}$ (M1)	1.77	0.00	2.04
	Eff. inerziale elem. cls	1.38	0.00	1.59
2	S.L.U. STR min N	0.00	0.00	0.00
Ca	S.L.U. Sisma min N	0.00	0.00	0.00
pa	S.L.E. fond. min N	0.00	0.00	0.00
da impalcato	S.L.E. freq. min N	0.00	0.00	0.00
qa	S.L.E. q.p. min N	0.00	0.00	0.00

	Sollecitazioni complessive per le combinazioni di verifica					
		Vx (kN/m)	N (kN/m)	My (kNm/m)		
	S.L.U. STR min N	60.91	-31.39	58.37		
Ê	S.L.U. Sisma min N (θ_1)	29.08	-17.25	24.79		
totale (/m)	S.L.U. Sisma min N (θ ₂)	29.33	-17.25	25.08		
tale	S.L.E. fond. min N	45.12	-23.25	43.24		
\$	S.L.E. freq. min N	33.35	-19.65	29.70		
	SIF an min N	25.50	-17 25	20.68		

- SEZIONE 2 (SPICCATO PARAMENTO)

Azione Nmax

Sezione 2 (spiccato paramento)

Sollecitazioni per le singole condizioni elementari

		Vx (kN/m)	N (kN/m)	My (kNm/m)
	Pesi propri cls spalla	0.00	-191.25	-7.76
	Sovraccarico acc. sbalzo par.	0.00	-6.00	-2.70
	Spinta orizz. terreno (M1)	22.56	0.00	60.91
_	Spinta orizz. sovr. perm. (M1)	10.36	0.00	41.97
spalla	Spinta orizz. sovr. acc. (M1)	69.08	0.00	279.78
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_{1}}$ (M1)	0.43	0.00	1.74
da	$_{\Delta}$ Sismico Sp. perm $_{\theta 1}$ (M1)	6.24	0.00	25.26
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M1)	0.68	0.00	2.75
	$_{\Delta}$ Sismico Sp. perm $_{\theta_2}$ (M1)	6.23	0.00	25.24
	Eff. inerziale elem. cls	15.30	0.00	49.96
_	S.L.U. STR min N	-29.96	-174.70	-208.98
impalcato	S.L.U. Sisma min N	-24.09	-173.77	-172.99
ac	S.L.U. GEO min N	12.18	-178.24	47.53
E E	S.L.E. fond. min N	-19.18	-186.90	-145.04
ga	S.L.E. freq. min N	12.76	-207.37	46.75
	S.L.E. q.p. min N	12.79	-211.94	46.22

Sollecitazioni complessive per le combinazioni di verifica

		Vx (kN/m)	N (kN/m)	My (kNm/m)
	S.L.U. STR min N	107.74	-440.99	293.47
Ê	S.L.U. Sisma min N (θ_1)	30.80	-365.02	-0.92
totale (/m)	S.L.U. Sisma min N (θ_2)	31.04	-365.02	0.07
tale	S.L.E. fond. min N	82.82	-384.15	227.15
ᅌ	S.L.E. freq. min N	73.32	-401.02	252.69
	S.L.E. q.p. min N	45.71	-403.19	141.33

Azione Vmax

Sezione 2 (spiccato paramento)
Sollecitazioni per le singole condizioni elementari

	VX (KIV/M)	in (kin/m)	iviy (kinm/m)
Pesi propri cls spalla	0.00	-191.25	-7.76
Sovraccarico acc. sbalzo par.	0.00	-6.00	-2.70
Spinta orizz. terreno (M1)	22.56	0.00	60.91
Spinta orizz. sovr. perm. (M1)	10.36	0.00	41.97
Spinta orizz. sovr. acc. (M1)	69.08	0.00	279.78
Δ Sismico Sp. terreno - θ_1 (M1)	0.43	0.00	1.74
$_{\Delta}$ Sismico Sp. perm $_{\theta_1}$ (M1)	6.24	0.00	25.26
$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M1)	0.68	0.00	2.75
$_{\Delta}$ Sismico Sp. perm $_{\theta_2}$ (M1)	6.23	0.00	25.24
Eff. inerziale elem. cls	15.30	0.00	49.96
S.L.U. STR min N	-41.61	-303.00	-299.29
S.L.U. Sisma min N	-30.82	-271.38	-228.70
S.L.U. GEO min N	5.43	-199.48	3.18
S.L.E. fond. min N	-28.82	-280.92	-217.93
S.L.E. freq. min N	0.00	-294.63	-44.19
S.L.E. q.p. min N	7.18	-211.94	12.01
	Sovaccarico acc. sbalzo par. Spinta orizz. terreno (M1) Spinta orizz. sovr. perm. (M1) Spinta orizz. sovr. acc. (M1) Δ Sismico Sp. terreno - θ_1 (M1) Δ Sismico Sp. terreno - θ_1 (M1) Δ Sismico Sp. terreno - θ_2 (M1) Δ Sismico Sp. perm θ_2 (M1) Δ Sismico Sp. perm θ_2 (M1) Δ Sismico Sp. perm θ_2 (M1) Eff. inerziale elem. cls S.L.U. STR min N S.L.U. Sisma min N S.L.U. GEO min N S.L.E. fond. min N S.L.E. fond. min N S.L.E. freq. min N	Pesi propri cls spalla 0.00 Sovaccarico acc. sbalzo par. 0.00 Spinta orizz. terreno (M1) 22.56 Spinta orizz. sov. perm. (M1) 10.36 Spinta orizz. sov. perm. (M1) 69.08 Δ Sismico Sp. terreno - θ_1 (M1) 0.43 Δ Sismico Sp. terreno - θ_1 (M1) 6.24 Δ Sismico Sp. terreno - θ_2 (M1) 0.68 Δ Sismico Sp. terreno - θ_2 (M1) 0.68 Δ Sismico Sp. perm θ_2 (M1) 6.23 Eff. inerziale elem. cls 15.30 S.L.U. STR min N 41.61 S.L.U. Sisma min N 30.82 S.L.U. GEO min N 5.43 S.L.E. fond. min N -28.82 S.L.E. freq. min N 0.00	Pesi propri cls spalla 0.00 -191.25 Sovaccarico acc. sbalzo par. 0.00 -6.00 Spinta orizz. terreno (M1) 22.56 0.00 Spinta orizz. sovr. perm. (M1) 10.36 0.00 Spinta orizz. sovr. acc. (M1) 69.08 0.00 Δ Sismico Sp. terreno - θ_1 (M1) 0.43 0.00 Δ Sismico Sp. perm θ_1 (M1) 6.24 0.00 Δ Sismico Sp. terreno - θ_2 (M1) 0.68 0.00 Δ Sismico Sp. perm θ_2 (M1) 6.23 0.00 Eff. inerziale elem. cls 15.30 0.00 S.L.U. STR min N -41.61 -303.00 S.L.U. Sisma min N -30.82 -271.38 S.L.U. GEO min N 5.43 -199.48 S.L.E. fond. min N -28.82 -280.92 S.L.E. freq. min N 0.00 -294.63

Sollecitazioni complessive per le combinazioni di verifica

	Odilconazioni dompicos	one per le combine	azioni di venile	nu
		Vx (kN/m)	N (kN/m)	My (kNm/m)
	S.L.U. STR min N	96.09	-569.29	203.16
(m/)	S.L.U. Sisma min N (θ_1)	24.07	-462.63	-56.64
	S.L.U. Sisma min N (θ_2)	24.31	-462.63	-55.65
totale	S.L.E. fond. min N	73.18	-478.17	154.26
ᅌ	S.L.E. freq. min N	60.55	-488.28	161.75
	S.L.E. q.p. min N	40.10	-403.19	107.12

Azione Nmin

Sezione 2 (spiccato paramento) Sollecitazioni per le singole condizioni elementari

	·	Vx (kN/m)	N (kN/m)	My (kNm/m)
	Pesi propri cls spalla	0.00	-191.25	-7.76
	Sovraccarico acc. sbalzo par.	0.00	-6.00	-2.70
	Spinta orizz. terreno (M1)	22.56	0.00	60.91
_	Spinta orizz. sovr. perm. (M1)	10.36	0.00	41.97
≡	Spinta orizz. sovr. acc. (M1)	69.08	0.00	279.78
spalla	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_1}$ (M1)	0.43	0.00	1.74
da	$_{\Delta}$ Sismico Sp. perm $_{\theta 1}$ (M1)	6.24	0.00	25.26
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M1)	0.68	0.00	2.75
	$_{\Delta}$ Sismico Sp. perm $_{\theta_2}$ (M1)	6.23	0.00	25.24
	Eff. inerziale elem. cls	15.30	0.00	49.96
	S.L.U. STR min N	17.31	-592.02	16.80
atc	S.L.U. Sisma min N	13.40	-490.65	8.15
alc	S.L.U. GEO min N	10.17	-245.63	25.22
da impalcato	S.L.E. fond. min N	12.77	-437.01	12.34
ā	S.L.E. freq. min N	0.00	-337.32	-50.60
٦	S.L.E. q.p. min N	9.56	-211.94	26.53

Sollecitazioni complessive per le combinazioni di verifica

		Vx (kN/m)	N (kN/m)	My (kNm/m)
	S.L.U. STR min N	155.01	-858.31	519.25
(m)	S.L.U. Sisma min N (θ_1)	68.29	-681.90	180.21
	S.L.U. Sisma min N (θ_2)	68.53	-681.90	181.20
totale	S.L.E. fond. min N	114.77	-634.26	384.53
\$	S.L.E. freq. min N	60.55	-530.97	155.34
	S.L.E. q.p. min N	42.48	-403.19	121.64

Azione Vmin

Sezione 2 (spiccato paramento)
Sollecitazioni per le singole condizioni elementari

		Vx (kN/m)	N (kN/m)	My (kNm/m)
	Pesi propri cls spalla	0.00	-191.25	-7.76
	Sovraccarico acc. sbalzo par.	0.00	-6.00	-2.70
	Spinta orizz. terreno (M1)	22.56	0.00	60.91
_	Spinta orizz. sovr. perm. (M1)	10.36	0.00	41.97
spalla	Spinta orizz. sovr. acc. (M1)	69.08	0.00	279.78
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_{1}}$ (M1)	0.43	0.00	1.74
da	$_{\Delta}$ Sismico Sp. perm $_{\theta 1}$ (M1)	6.24	0.00	25.26
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M1)	0.68	0.00	2.75
	$_{\Delta}$ Sismico Sp. perm $_{\theta 2}$ (M1)	6.23	0.00	25.24
	Eff. inerziale elem. cls	15.30	0.00	49.96
_	S.L.U. STR min N	74.51	-420.34	391.46
impalcato	S.L.U. Sisma min N	57.95	-344.41	301.86
ac	S.L.U. GEO min N	7.84	-105.97	31.90
ď	S.L.E. fond. min N	56.31	-309.84	296.99
dai	S.L.E. freq. min N	0.00	-296.13	-44.42
	S.L.E. q.p. min N	15.67	-211.94	63.80

Sollecitazioni complessive per le combinazioni di verifica

		Vx (kN/m)	N (kN/m)	My (kNm/m)
	S.L.U. STR min N	212.21	-686.63	893.91
(m)	S.L.U. Sisma min N (θ_1)	112.84	-535.66	473.93
	S.L.U. Sisma min N (θ ₂)	113.08	-535.66	474.92
totale	S.L.E. fond. min N	158.31	-507.09	669.18
유	S.L.E. freq. min N	60.55	-489.78	161.52
	S.L.E. q.p. min N	48.59	-403.19	158.91

- SEZIONE 3 (SPICCATO FONDAZIONE)

Azione Nmax Sezione 3 (spiccato fondazione) Sollecitazioni per le singole condizioni elementari

		Vx (kN/m)	N (kN/m)	My (kNm/m)
	Pesi propri cls spalla	0.00	-231.25	-18.00
	Sovraccarico acc. sbalzo par.	0.00	-6.00	-2.70
	Spinta orizz. terreno (M1)	22.56	0.00	68.43
	Spinta orizz. terreno (M2)	27.05	0.00	82.04
	Spinta orizz. sovr. perm. (M1)	11.64	0.00	52.97
	Spinta orizz. sovr. acc. (M1)	77.61	0.00	353.12
	Spinta orizz. sovr. perm. (M2)	13.96	0.00	63.51
	Spinta orizz. sovr. acc. (M2)	93.05	0.00	423.40
_	Peso terreno tergo spalla	0.00	-9.20	-6.44
alle	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_1}$ (M1)	0.43	0.00	1.95
da spalla	$_{\Delta}$ Sismico Sp. perm $_{\theta_1}$ (M1)	7.01	0.00	31.88
ö	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M1)	0.68	0.00	3.09
	$_{\Delta}$ Sismico Sp. perm $_{\theta_2}$ (M1)	7.00	0.00	31.86
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_1}$ (M2)	0.47	0.00	2.14
	$_{\Delta}$ Sismico Sp. perm $_{\theta 1}$ (M2)	8.80	0.00	40.06
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M2)	0.46	0.00	2.08
	$_{\Delta}$ Sismico Sp. perm $_{\theta_2}$ (M2)	8.80	0.00	40.03
	Eff. inerziale elem. cls	18.50	0.00	66.86
	Eff. inerziale terreno tergo spalla	0.74	0.00	5.85
	S.L.U. STR min N	-29.96	-174.70	-238.95
ät	S.L.U. Sisma min N	-24.09	-173.77	-197.08
da impalcato	S.L.U. GEO min N	12.18	-178.24	59.71
ΙË	S.L.E. fond. min N	-19.18	-186.90	-164.22
ga	S.L.E. freq. min N	12.76	-207.37	59.51
	S.L.E. q.p. min N	12.79	-211.94	59.01

	Sollecitazioni complessive per le combinazioni di verifica (/m)				
		Vx (kN/m)	N (kN/m)	My (kNm/m)	
	S.L.U. STR min N	120.98	-507.41	365.01	
	S.L.U. Sisma min N (θ_1)	36.79	-414.22	6.42	
_	S.L.U. Sisma min N (θ_2)	37.03	-414.22	7.53	
(m/	S.L.U. GEO min N	160.19	-425.59	664.62	
	S.L.U. (Sisma) GEO min N (θ_1)	26.93	-414.22	-27.92	
totale	S.L.U. (Sisma) GEO min N (θ_2)	45.41	-414.22	38.85	
	S.L.E. fond. min N	92.63	-433.35	283.15	
	S.L.E. freq. min N	78.01	-450.22	296.64	
	S I E a n min N	46.00	452.30	155.06	

Azione Nmin Sezione 3 (spiccato fondazione) Sollecitazioni per le singole condizioni elementari

	Sollecitazioni per le si	Vx (kN/m)	N (kN/m)	My (kNm/m)
	Pesi propri cls spalla	0.00	-231.25	-18.00
	Sovraccarico acc. sbalzo par.	0.00	-6.00	-2.70
	Spinta orizz. terreno (M1)	22.56	0.00	68.43
	Spinta orizz. terreno (M2)	27.05	0.00	82.04
	Spinta orizz. sovr. perm. (M1)	11.64	0.00	52.97
	Spinta orizz. sovr. acc. (M1)	77.61	0.00	353.12
	Spinta orizz. sovr. perm. (M2)	13.96	0.00	63.51
	Spinta orizz. sovr. acc. (M2)	93.05	0.00	423.40
	Peso terreno tergo spalla	0.00	-32.40	-22.68
a	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_1}$ (M1)	0.43	0.00	1.95
da spalla	$_{\Delta}$ Sismico Sp. perm $_{\theta_{1}}$ (M1)	7.01	0.00	31.88
ö	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M1)	0.68	0.00	3.09
	$_{\Delta}$ Sismico Sp. perm $_{\theta_2}$ (M1)	7.00	0.00	31.86
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_1}$ (M2)	0.47	0.00	2.14
	$_{\Delta}$ Sismico Sp. perm $_{\theta_1}$ (M2)	8.80	0.00	40.06
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M2)	0.46	0.00	2.08
	$_{\Delta}$ Sismico Sp. perm $_{\theta_2}$ (M2)	8.80	0.00	40.03
	Eff. inerziale elem. cls	18.50	0.00	66.86
	Eff. inerziale terreno tergo spalla	2.59	0.00	13.09
0	S.L.U. STR min N	17.31	-592.02	34.11
ate	S.L.U. Sisma min N	13.40	-490.65	21.55
da impalcato	S.L.U. GEO min N	10.17	-245.63	35.39
Ē	S.L.E. fond. min N	12.77	-437.01	25.11
da	S.L.E. freq. min N	0.00	-337.32	-50.60
	S.L.E. q.p. min N	9.56	-211.94	36.09

	O.L.L. q.p. 11111111	0.00	211.07	00.00
_	Sollecitazioni complessive	per le combinaz	ioni di verifica	(/m)
		Vx (kN/m)	N (kN/m)	My (kNm/m)
	S.L.U. STR min N	168.25	-956.05	616.14
	S.L.U. Sisma min N (θ ₁)	76.13	-754.30	216.04
	S.L.U. Sisma min N (θ ₂)	76.37	-754.30	217.15
(m/)	S.L.U. GEO min N	158.19	-516.18	624.07
totale	S.L.U. (Sisma) GEO min N (θ_1)	66.27	-754.30	181.70
ţţ	S.L.U. (Sisma) GEO min N (θ_2)	84.75	-754.30	248.47
	S.L.E. fond. min N	124.58	-706.66	456.25
	S.L.E. freq. min N	65.24	-603.37	170.28
	S.L.E. q.p. min N	43.76	-475.59	116.81

Azione Vmax
Sezione 3 (spiccato fondazione)
Sollecitazioni per le singole condizioni elementari

		Vx (kN/m)	N (kN/m)	My (kNm/m)
	Pesi propri cls spalla	0.00	-231.25	-18.00
	Sovraccarico acc. sbalzo par.	0.00	-6.00	-2.70
	Spinta orizz. terreno (M1)	22.56	0.00	68.43
	Spinta orizz. terreno (M2)	27.05	0.00	82.04
	Spinta orizz. sovr. perm. (M1)	11.64	0.00	52.97
	Spinta orizz. sovr. acc. (M1)	77.61	0.00	353.12
	Spinta orizz. sovr. perm. (M2)	13.96	0.00	63.51
	Spinta orizz. sovr. acc. (M2)	93.05	0.00	423.40
_	Peso terreno tergo spalla	0.00	-32.40	-22.68
spalla	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_1}$ (M1)	0.43	0.00	1.95
da sp	$_{\Delta}$ Sismico Sp. perm $_{\theta_1}$ (M1)	7.01	0.00	31.88
б	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M1)	0.68	0.00	3.09
	$_{\Delta}$ Sismico Sp. perm $_{\theta_2}$ (M1)	7.00	0.00	31.86
	Δ Sismico Sp. terreno - θ_1 (M2)	0.47	0.00	2.14
	$_{\Delta}$ Sismico Sp. perm $_{\theta_1}$ (M2)	8.80	0.00	40.06
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M2)	0.46	0.00	2.08
	$_{\Delta}$ Sismico Sp. perm $_{\theta_2}$ (M2)	8.80	0.00	40.03
	Eff. inerziale elem. cls	18.50	0.00	66.86
	Eff. inerziale terreno tergo spalla	2.59	0.00	13.09
0	S.L.U. STR min N	-41.61	-303.00	-340.90
atc	S.L.U. Sisma min N	-30.82	-271.38	-259.52
da impalcato	S.L.U. GEO min N	5.43	-199.48	8.61
Ξ	S.L.E. fond. min N	-28.82	-280.92	-246.74
g	S.L.E. freq. min N	0.00	-294.63	-44.19
ľ	S.L.E. q.p. min N	7.18	-211.94	19.19

	Sollecitazioni complessive	per le combinaz	ioni di verifica	(/m)
		Vx (kN/m)	N (kN/m)	My (kNm/m)
	S.L.U. STR min N	109.33	-667.03	241.13
	S.L.U. Sisma min N (θ_1)	31.91	-535.03	-65.03
_	S.L.U. Sisma min N (θ_2)	32.15	-535.03	-63.92
(m/)	S.L.U. GEO min N	153.44	-470.03	597.28
totale (S.L.U. (Sisma) GEO min N (θ_1)	22.05	-535.03	-99.37
tot	S.L.U. (Sisma) GEO min N (θ_2)	40.53	-535.03	-32.60
	S.L.E. fond. min N	82.99	-550.57	184.39
	S.L.E. freq. min N	65.24	-560.68	176.69
	S.L.E. q.p. min N	41.38	-475.59	99.90

Azione Vmin Sezione 3 (spiccato fondazione) Sollecitazioni per le singole condizioni elementari

		Vx (kN/m)	N (kN/m)	My (kNm/m)
	Pesi propri cls spalla	0.00	-231.25	-18.00
	Sovraccarico acc. sbalzo par.	0.00	-6.00	-2.70
	Spinta orizz. terreno (M1)	22.56	0.00	68.43
	Spinta orizz. terreno (M2)	27.05	0.00	82.04
	Spinta orizz. sovr. perm. (M1)	11.64	0.00	52.97
	Spinta orizz. sovr. acc. (M1)	77.61	0.00	353.12
	Spinta orizz. sovr. perm. (M2)	13.96	0.00	63.51
	Spinta orizz. sovr. acc. (M2)	93.05	0.00	423.40
, m	Peso terreno tergo spalla	0.00	-32.40	-22.68
Salls	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_1}$ (M1)	0.43	0.00	1.95
da spalla	$_{\Delta}$ Sismico Sp. perm $_{\theta_1}$ (M1)	7.01	0.00	31.88
б	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_2}$ (M1)	0.68	0.00	3.09
	$_{\Delta}$ Sismico Sp. perm $_{\theta_2}$ (M1)	7.00	0.00	31.86
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta_1}$ (M2)	0.47	0.00	2.14
	$_{\Delta}$ Sismico Sp. perm $_{\theta 1}$ (M2)	8.80	0.00	40.06
	$_{\Delta}$ Sismico Sp. terreno - $_{\theta 2}$ (M2)	0.46	0.00	2.08
	$_{\Delta}$ Sismico Sp. perm $_{\theta_2}$ (M2)	8.80	0.00	40.03
	Eff. inerziale elem. cls	18.50	0.00	66.86
	Eff. inerziale terreno tergo spalla	2.59	0.00	13.09
	S.L.U. STR min N	74.51	-420.34	465.97
ätc	S.L.U. Sisma min N	57.95	-344.41	359.81
da impalcato	S.L.U. GEO min N	7.84	-105.97	39.74
Ĭ.	S.L.E. fond. min N	56.31	-309.84	353.30
da	S.L.E. freq. min N	0.00	-296.13	-44.42
	S.L.E. q.p. min N	15.67	-211.94	79.47

	Sollecitazioni complessive	per le combinaz	ioni di verifica	(/m)
		Vx (kN/m)	N (kN/m)	My (kNm/m)
	S.L.U. STR min N	225.45	-784.37	1048.00
	S.L.U. Sisma min N (θ_1)	120.68	-608.06	554.31
	S.L.U. Sisma min N (θ_2)	120.93	-608.06	555.42
(m/)	S.L.U. GEO min N	155.85	-376.52	628.41
totale (S.L.U. (Sisma) GEO min N (θ_1)	110.82	-608.06	519.97
tot	S.L.U. (Sisma) GEO min N (θ_2)	129.31	-608.06	586.74
	S.L.E. fond. min N	168.11	-579.49	784.43
	S.L.E. freq. min N	65.24	-562.18	176.46
	S.L.E. q.p. min N	49.87	-475.59	160.18

15.2 Verifica elementi strutturali

15.2.1 Verifica paraghiaia

Il paraghiaia viene armato con barre Ø16/20 verticali correnti lato scavo e lato terreno.

Per la verifica a pressoflessione e a taglio per lo S.L.U. e di limitazione delle tensioni e fessurazione per lo S.L.E. si considera la sezione di spiccato (z = -2.30 m).

N.B.: L'armatura a taglio indicata, ove necessaria, indica il quantitativo minimo da adottare per soddisfare le verifiche.

Sezione allo spiccato

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x baricentrico
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x baricentrico
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult) e (N,Mx)
	Verifica positiva se tale rapporto risulta >=1.000
Yneutro	Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.
x/d	Rapp. di duttilità a rottura misurato in presenza di sola flessione (travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue
	Area efficace barre inf. (per presenza di torsione)= 12.1 cm²
	Area efficace barre sup. (per presenza di torsione)= 12.1 cm²
N.Comb. Ver	N Mx N ult Mx ult Mis.Sic. Yneutro x/d C.Rid.

1	S	3138	5836	3153	12265	2.102	26.5
2	S	1725	2479	1695	12094	4.879	26.6
3	S	1725	2508	1695	12094	4.822	26.6

Lo S.L.U. per tensioni normali appare pertanto verificato con margine soddisfacente.

Per la verifica a taglio, si considera in quanto proposto da EN 1992-1-1 per elementi privi di armatura a taglio.

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

```
S = comb.verificata a taglio-tors./ N = comb. non verificata
 Vsdu
              Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)
 Vrd
              Taglio resistente [daN] in assenza di staffe
              Taglio compressione resistente [daN] lato conglomerato
 Vcd
 Vwd
              Taglio trazione resistente [daN] assorbito dalle staffe
              Larghezza minima [cm] sezione misurata parallelam. all'asse neutro
 bw
 Teta
             Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato
              Coefficiente maggiorativo della resistenza a taglio per compressione
 Acw
 Afst
             Area staffe/metro strettamente necessaria per taglio e torsione [cm²/m]
N.Comb.
         Ver Vsdu
                                      Vwd
                       Vrd
                              Vcd
                                              bw Teta
                                                          Acw Afst
              6090 13819 74983 73297 100.0 21.80 1.006
  1
          S
  2
          S
               2907
                     13632 74789
                                    73297 100.0 21.80 1.003
                                                                 1.2
  3
               2932
                    13632 74789 73297 100.0 21.80 1.003
```

La verifica appare pertanto soddisfatta, senza prevedere specifiche armature a taglio.

```
COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI
```

```
Ver
                  S = combinazione verificata / N = combin. non verificata
                 Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
     Sc max
     Yc max
                 Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
     Sc min
                  Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
     Yc min
                 Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
     Sf min
                 Minima tensione di trazione (-) nell'acciaio [daN/cm²]
     Yf min
                 Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
     Dw Eff.
                Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
     Ac eff.
                 Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
                 Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
     Af eff.
     D barre
                 Distanza media in cm tra le barre tese efficaci (verifica fess.)
   N.Comb. Ver Sc max Yc max Sc min Yc min Sf min Yf min Dw Eff. Ac eff. Af eff. Dbarre
                                                              0.0
                                                                        0 0.0
                 24.5 30.0 -23.1 30.0
                                                       26.5
                                                                                      0.0
                                               -263
COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE
                  S = combinazione verificata / N = combin. non verificata
                 Massima deformazione di traz. unitaria nel calcestr. in sez. fessurata
     Ep1
     Ep2
                 Minima deformazione unitaria nel calcestruzzo in sez. fessurata
                 Deformazione unitaria al limite dell'area efficace di calcestruzzo
     Ep3
                 = (Ep1 + Ep3)/(2 Ep3) secondo la (7.13) dell'EC2
     K 2
                 fattore di durata del carico di cui alla (7.9) dell'EC2
     Κt
                 Deformazione media acciaio tra le fessure al netto di quella del cls.
     Eps
                 Distanza massima in mm tra le fessure
     Ap.fess.
                 Apertura delle fessure in mm = Eps*Srm (7.8) EC2
   N.Comb.
            Ver
                    Ep1
                             Ep2
                                      Ep3
                                               K2
                                                       Κt
                                                                  Eps
                                                                           Srm
                                                                                Ap.Fess.
              s 0.00000 0.00000
                                                      0.00
                                                             0.000000
                                                                                   0.000
COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI
   N.Comb. Ver Sc max Yc max Sc min Yc min Sf min Yf min Dw Eff. Ac eff. Af eff. Dbarre
               16.9
                      30.0 -15.7 30.0 -179
                                                       26.5
                                                             0.0 0 0.0 0.0
```

N.Comb	. Ver	Ep1	Ep2	Ep3	K2	Kt	Eps	Srm	Ap.Fess.
1	S	0.00000	0.00000			0.00	0.000000	0	0.000
COMBINAZIO	NI QUAS	I PERMANE	ENTI IN ESER	RCIZIO -	VERIFICA	MASSIME	TENSIONI	NORMALI	
N.Comb	. Ver So	c max Yo	max Sc m	in Yc min	Sf min	Yf min	Dw Eff. Ac	eff. Af	eff. Dbarre
1	S	11.9	30.0 -10	.8 30.0	-123	26.5	0.0	0	0.0 0.0
COMBINAZIO	NI QUAS	I PERMANE	ENTI IN ESER	RCIZIO -	VERIFICA	APERTUR	A FESSURE		
N.Comb	. Ver	Ep1	Ep2	Ep3	K2	Kt	Eps	Srm	Ap.Fess.
1	S	0.00000	0.00000			0.00	0.000000	0	0.000

15.2.2 Verifica setto di elevazione o paramento

Il paramento viene armato con due file di barre Ø16/20 verticali correnti lato scavo e lato terreno.

Per la verifica a pressoflessione e a taglio per lo S.L.U. e di limitazione delle tensioni e fessurazione per lo S.L.E. si considera la sezione di spiccato (z = -8.10 m).

N.B.: L'armatura a taglio indicata, ove necessaria, indica il quantitativo minimo da adottare per soddisfare le verifiche.

Sezione allo spiccato

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata								
N	Sforzo normale assegnato [in daN] (positivo se di compressione)								
Mx	Momento flettente assegnato [in daNm] riferito all'asse x baricentrico								
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)								
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x baricentrico								
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult) e (N, Mx)								
	Verifica positiva se tale rapporto risulta >=1.000								
Yneutro	Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.								
x/d	Rapp. di duttilità a rottura misurato in presenza di sola flessione (travi)								
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue								
	Area efficace barre inf. (per presenza di torsione)= 66.0 cm²								
	Area efficace barre sup. (per presenza di torsione)= 66.0 cm²								
N.Comb. Ver	N Mx Mv Nult Mxult Mvult Mis.Sic.								

N.Comb.	Ver	N	Mx	My	N ult	Mx ult	My ult	Mis.Sic.
1	S	44099	29346	0	44112	130686	0	4.453
2	S	36501	-93	0	36495	-126907	0	999.000
3	S	36501	6	0	36495	126907	0	999.000
4	S	85830	51924	0	85827	151309	0	2.914
5	S	68190	18021	0	68182	142601	0	7.913
6	S	68190	18120	0	68182	142601	0	7.870
7	S	56929	20316	0	56907	137024	0	6.745
8	S	46263	-5664	0	46254	-131747	0	23.260
9	S	46263	-5565	0	46254	-131747	0	23.674
10	S	68662	89391	0	68660	142838	0	1.598
11	S	53565	47392	0	53593	135382	0	2.857
12	S	53565	47491	0	53593	135382	0	2.851

Lo S.L.U. per tensioni normali appare pertanto verificato con margine soddisfacente.

Per la verifica a taglio, si considera in quanto proposto da EN 1992-1-1 per elementi privi di armatura a taglio.

```
METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO
```

```
Ver S = \text{comb.verificata} a taglio-tors./ N = \text{comb.} non verificata Vsdu Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)
```

Vrd Vcd Vwd bw Teta Acw Afst		Taglio Taglio Larghe Angolo Coeffi	resisten compress trazione zza minima [gradi sa ciente maa taffe/met	ione res resiste a [cm] s essadec. ggiorati	istente nte [dal ezione r] di ind vo della	[daN] l N] assor misurata clinazio a resist	ato cong bito dal paralle ne dei p enza a t	le staffe lam. all' untoni di aglio per	asse neu conglom compres	erato sione	
S.Comb.	Ver	Vsdu	Vcd	Vwd	Dmed	bw	Teta	Acw	Afst	A_Eff	OMst
1	S	10773	334390	0	116.5	100.0	21.80°	1.020	1.1	0.0(0.0)	0.082
2	S	3080	333245	0	116.5	100.0	21.80°	1.017	0.3	0.0(0.0)	0.082
3	S	3104	333245	0	116.5	100.0	21.80°	1.017	0.3	0.0(0.0)	0.082
4	S	15501	340677	0	116.5	100.0	21.80°	1.039	1.5	0.0(0.0)	0.082
5	S	6828	338019	0	116.5	100.0	21.80°	1.031	0.7	0.0(0.0)	0.082
6	S	6853	338019	0	116.5	100.0	21.80°	1.031	0.7	0.0(0.0)	0.082
7	S	9608	336323	0	116.5	100.0	21.80°	1.026	0.9	0.0(0.0)	0.082
8	S	2406	334716	0	116.5	100.0	21.80°	1.021	0.2	0.0(0.0)	0.082
9	S	2431	334716	0	116.5	100.0	21.80°	1.021	0.2	0.0(0.0)	0.082
10	S	21221	338090	0	116.5	100.0	21.80°	1.032	2.1	0.0(0.0)	0.082
11	S	11283	335816	0	116.5	100.0	21.80°	1.025	1.1	0.0(0.0)	0.082
12	S	11308	335816	0	116.5	100.0	21.80°	1.025	1.1	0.0(0.0)	0.082

La verifica appare pertanto soddisfatta, senza prevedere specifiche armature a taglio.

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

	Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff D fes K3 Ap.fes	s.	S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²] Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di conglomerato [cm²] in zona tesa considerata aderente alle barre Distanza calcolata tra le fessure espressa in mm Coeff. di normativa dipendente dalla forma del diagramma delle tensioni Apertura calcolata delle fessure espressa in mm							barre		
	N.Comb.	Ver	Sc max	Xc max	Yc max	Sf min	Xf min	Yf min	Ac eff.	D fess.	К3	Ap.Fess.
	1	S	11.4	-50.0	120.0	-73	46.5	3.5	0	0		0.000
	2	S	19.1	-50.0	120.0	-125	46.5	3.5	0	0		0.000
	3	S	9.4	-50.0	120.0	-24	46.5	3.5	0	0		0.000
	4	S	28.6	-50.0	120.0	-287	46.5	3.5	0	0		0.000
COME	BINAZIONI	FREQ	UENTI IN	ESERCIZ	IO -	MASSIME T	ENSIONI	NORMALI	ED APER	TURA FESS	URE	
	N.Comb.	Ver	Sc max	Xc max	Yc max	Sf min	Xf min	Yf min	Ac eff.	D fess.	К3	Ap.Fess.
	1	S	12.4	-50.0	120.0	-84	46.5	3.5		0		0.000
	2	S	9.9	-50.0	120.0	-18	46.5	3.5	0	0		0.000
	3	S	9.8	-50.0	120.0	-26	46.5	3.5		0		0.000
	4	S	9.8	-50.0	120.0	-26	46.5	3.5	0	0		0.000
COME	BINAZIONI	QUAS	I PERMAN	ENTI IN	ESERCIZ	IO - MA	SSIME TE	ENSIONI	NORMALI	ED APERTU	JRA F	ESSURE
	N.Comb.	Ver	Sc max	Xc max	Yc max	Sf min	Xf min	Yf min	Ac eff.	D fess.	К3	Ap.Fess.
	1	S	8.4	-50.0	120.0	-26	46.5	3.5	0	0		0.000
	2	S	7.6			-16				0		0.000
	3	S		-50.0		-8				0		0.000
	4	S	9.0	-50.0	120.0	-35	46 5	3.5	0	0		0.000

15.2.3 Verifica del cordolo di fondazione

Il paramento viene armato con due file di barre Ø16/20 verticali correnti lato scavo e lato terreno.

Per la verifica a pressoflessione e a taglio per lo S.L.U. e di limitazione delle tensioni e fessurazione per lo S.L.E. si considera la sezione di spiccato (z = -8.10 m).

N.B.: L'armatura a taglio indicata, ove necessaria, indica il quantitativo minimo da adottare per soddisfare le verifiche.

Sezione allo spiccato

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x baricentrico
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x baricentrico
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult) e (N,Mx)
	Verifica positiva se tale rapporto risulta >=1.000
Yneutro	Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.
x/d	Rapp. di duttilità a rottura misurato in presenza di sola flessione (travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue
	Area efficace barre inf. (per presenza di torsione)= 95.0 cm²
	Area efficace barre sup. (per presenza di torsione)= 95.0 cm²

N.Comb.	Ver	N	Mx	N ult	Mx ult	Mis.Sic.	Yneutro	x/d C.Rid.
1	S	50741	36500	0	50723	180270	0	4.939
2	S	41421	642	0	41428	173859	0	270.809
3	S	41421	753	0	41428	173859	0	230.889
4	S	42559	66462	0	42575	174651	0	2.628
5	S	41421	-2793	0	41428	-173859	0	62.248
6	S	41421	3885	0	41428	173859	0	44.751
7	S	95604	61613	0	95619	211118	0	3.427
8	S	75430	21604	0	75439	197282	0	9.132
9	S	75430	21715	0	75439	197282	0	9.085
10	S	51618	62406	0	51600	180875	0	2.898
11	S	75430	18170	0	75439	197282	0	10.858
12	S	75430	24847	0	75439	197282	0	7.940
13	S	66703	24112	0	66726	191292	0	7.933
14	S	53503	-6503	0	53500	-182184	0	28.015
15	S	53503	-6392	0	53500	-182184	0	28.502
16	S	47002	59727	0	47025	177721	0	2.976
17	S	53503	-9938	0	53500	-182184	0	18.332
18	S	53503	-3260	0	53500	-182184	0	55.885
19	S	78436	104800	0	78446	199348	0	1.902
20	S	60805	55430	0	60805	187217	0	3.378
21	S	60805	55542	0	60805	187217	0	3.371
22	S	37651	62840	0	37655	171257	0	2.725
23	S	60805	51996	0	60805	187217	0	3.601
24	S	60805	58674	0	60805	187217	0	3.191

Lo S.L.U. per tensioni normali appare pertanto verificato con margine soddisfacente.

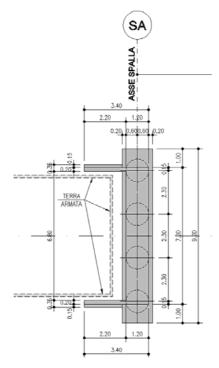
Per la verifica a taglio, si considera in quanto proposto da EN 1992-1-1 per elementi privi di armatura a taglio.

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

```
S = comb.verificata a taglio-tors./ N = comb. non verificata
Ver
            Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)
Vsdu
Vrd
            Taglio resistente [daN] in assenza di staffe
Vcd
            Taglio compressione resistente [daN] lato conglomerato
            Taglio trazione resistente [daN] assorbito dalle staffe
Vwd
bw
            Larghezza minima [cm] sezione misurata parallelam. all'asse neutro
Teta
           Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato
            Coefficiente maggiorativo della resistenza a taglio per compressione
Acw
Afst
            Area staffe/metro strettamente necessaria per taglio e torsione [cm²/m]
```

N.Comb.	Ver	Vsdu	Vcd	Vwd	Dmed	bw	Teta	Acw	Afst	A_Eff	OMst
1	N	12097	391598	0	156.0	100.0	21.80°	1.020	0.9	0.0(0.0)	0.082
2	N	3678	390188	0	156.0	100.0	21.80°	1.016	0.3	0.0(0.0)	0.082
3	N	3702	390188	0	156.0	100.0	21.80°	1.016	0.3	0.0(0.0)	0.082
4	N	16019	390360	0	156.0	100.0	21.80°	1.017	1.2	0.0(0.0)	0.082
5	N	2692	390188	0	156.0	100.0	21.80°	1.016	0.2	0.0(0.0)	0.082

6	N	4540	390188	0	156.0	100.0	21.80°	1.016	0.3	0.0(0.0) 0.082
7	N	16825	398386	0	156.0	100.0	21.80°	1.038	1.2	0.0(0.0) 0.082
8	N	7612	395333	0	156.0	100.0	21.80°	1.030	0.6	0.0(0.0) 0.082
9	N	7637	395333	0	156.0	100.0	21.80°	1.030	0.6	0.0(0.0) 0.082
10	N	15819	391731	0	156.0	100.0	21.80°	1.020	1.2	0.0(0.0) 0.082
11	N	6627	395333	0	156.0	100.0	21.80°	1.030	0.5	0.0(0.0) 0.082
12	N	8475	395333	0	156.0	100.0	21.80°	1.030	0.6	0.0(0.0) 0.082
13	N	10932	394013	0	156.0	100.0	21.80°	1.026	0.8	0.0(0.0) 0.082
14	N	3190	392016	0	156.0	100.0	21.80°	1.021	0.2	0.0(0.0) 0.082
15	N	3215	392016	0	156.0	100.0	21.80°	1.021	0.2	0.0(0.0) 0.082
16	N	15344	391032	0	156.0	100.0	21.80°	1.019	1.1	0.0(0.0) 0.082
17	N	2205	392016	0	156.0	100.0	21.80°	1.021	0.2	0.0(0.0) 0.082
18	N	4053	392016	0	156.0	100.0	21.80°	1.021	0.3	0.0(0.0) 0.082
19	N	22545	395788	0	156.0	100.0	21.80°	1.031	1.6	0.0(0.0) 0.082
20	N	12068	393121	0	156.0	100.0	21.80°	1.024	0.9	0.0(0.0) 0.082
21	N	12092	393121	0	156.0	100.0	21.80°	1.024	0.9	0.0(0.0) 0.082
22	N	15585	389618	0	156.0	100.0	21.80°	1.015	1.1	0.0(0.0) 0.082
23	N	11082	393121	0	156.0	100.0	21.80°	1.024	0.8	0.0(0.0) 0.082
24	N	12930	393121	0	156.0	100.0	21.80°	1.024	0.9	0.0(0.0) 0.082


La verifica appare pertanto soddisfatta, senza prevedere specifiche armature a taglio.

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

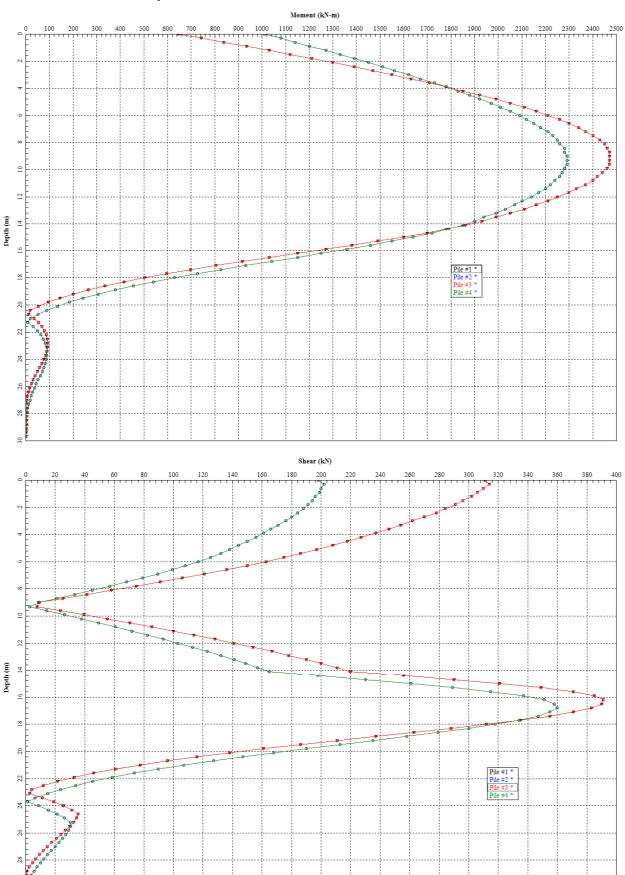
Xc max Yc max Sf min Xf min Yf min Ac eff D fes K3	Sc max Massima tensione positiva di compressione nel conglomerato [daN/cm²] Xc max Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione negativa di trazione nell'acciaio [daN/cm²] Xf min Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Yf min Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di conglomerato [cm²] in zona tesa considerata aderente alle bar D fess. Distanza calcolata tra le fessure espressa in mm								barre		
N.Comb.	Ver	Sc max	Xc max	Yc max	Sf min	Xf min	Yf min A	Ac eff. D	fess.	K3	Ap.Fess.
1 2 3 4	S S S	8.6 13.9 7.2 20.1	-50.0 -50.0	160.0 160.0 160.0 160.0		46.0 46.0	4.0 4.0 4.0 4.0	0	0 0 0 0		0.000 0.000 0.000 0.000
COMBINAZIONI	FREÇ	UENTI IN	ESERCIZ	ZIO -	MASSIME T	ENSIONI	NORMALI	ED APERT	URA FESSU	JRE	
N.Comb.	Ver	Sc max	Xc max	Yc max	Sf min	Xf min	Yf min A	Ac eff. D	fess.	К3	Ap.Fess.
1 2 3 4	S S S					46.0 46.0	4.0	0	0 0 0		0.000 0.000 0.000 0.000
COMBINAZIONI	QUAS	SI PERMAN	ENTI IN	ESERCIZ	IO - MA	SSIME TE	NSIONI N	NORMALI E	D APERTUI	RA F	ESSURE
N.Comb.	Ver	Sc max	Xc max	Yc max	Sf min	Xf min	Yf min A	Ac eff. D	fess.	К3	Ap.Fess.
1 2 3 4	S S S	6.0 5.3 5.0 6.2	-50.0 -50.0	160.0 160.0 160.0 160.0	7	46.0	4.0		0 0 0		0.000 0.000 0.000 0.000

16. Pali di fondazione

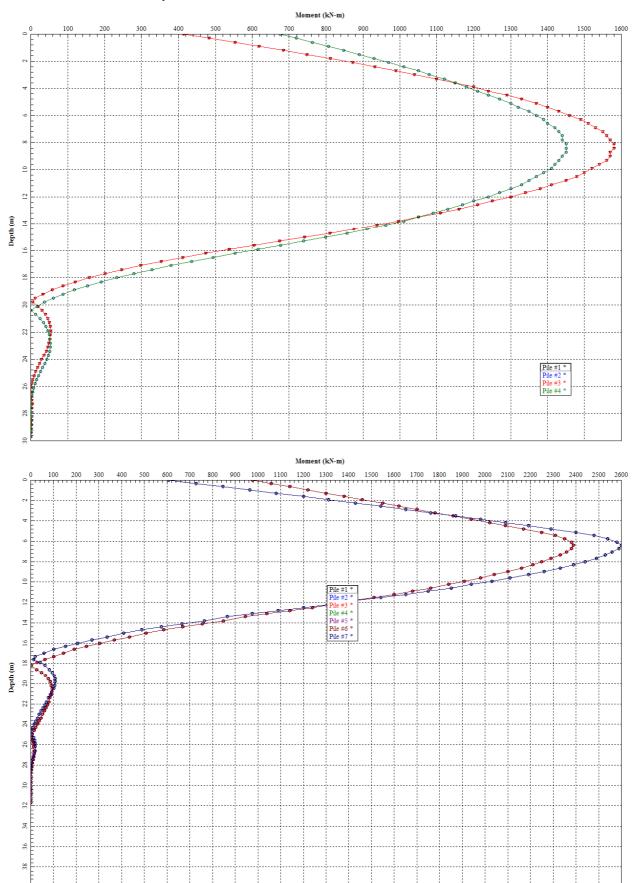
Le sotto-fondazioni previste si compongono di una fila di 4 pali ø1200mm disposti ad un interasse pari a 2.30m.

Sulla base delle verifiche geotecniche condotte (cfr. relazione geotecnica) tali pali si sviluppano per una profondità variabile riassunta in tabella.

Cavalcavia	ø _{pali} [mm]	L _{pali} [m]
Strada Campestre	1200	30


Di seguito si procede alla verifica strutturale del singolo palo nelle condiziondi di S.L.U. e S.L.E..

16.1 Verifica dei pali di fondazione


16.1.1 Sollecitazioni di verifica

Di seguito si riportano gli andamenti delle massime sollecitazioni registrati sui pali disposti sotto la fondazione di spalle e pile. Tali andamento sono ricavati con riferimento alla combinazione S.L.U. e di S.L.E..

Sottostrutture delle spalle - S.L.U.

Sottostrutture delle spalle - S.L.E.

Riassumendo le sollecitazioni di verifica ottenute sono le seguenti:

Sottostrutture		S.L.U. e SISM	ſΑ	S.L.E.				
	N _{max} [kN]	V _{max} [kN]	M _{max} [kNm]	N _{max} [kN]	V _{max} [kN]	M _{max} [kNm]		
Spalle	1250	390	2470	1030	230	1580		

16.1.2 Pali di fondazione delle spalle

Si assume come riferimento la sezione del palo posta ad una profondità di circa 8m essendo quella caratterizzata dalle massime sollecitazioni. Si assume inoltre un'armatura del palo composta da barre accoppiare 2ø20 disposte a passo 10cm, per un totale di 68ø20, e una staffatura dello stesso costituita da spirali ø12/20.

Considerando un copriferro pari a 6cm e un calcestruzzo di classe C28/35, di seguito vengono riportate le verifiche condotte per questa sezione.

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

```
S = combinazione verificata / N = combin. non verificata
  Ver
             Sforzo normale assegnato [in daN] (positivo se di compressione)
 N
            Momento flettente assegnato [in daNm] riferito all'asse x baricentrico
 N ult
             Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
            Momento flettente ultimo [in daNm] riferito all'asse x baricentrico
 Mx ult
 Mis.Sic.
             Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult) e (N, Mx)
             Verifica positiva se tale rapporto risulta >=1.000
             Ordinata [in cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.
 Yneutro
 x/d
             Rapp. di duttilità a rottura misurato in presenza di sola flessione (travi)
 C.Rid.
            Coeff. di riduz. momenti per sola flessione in travi continue
             Area efficace barre inf. (per presenza di torsione)= 213.6 cm²
                           N ult Mx ult Mis.Sic. Yneutro
            N Mx
N.Comb. Ver
       S 125000 247000 124990 400148
                                                  1.620
                                                            22.4
```

ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO PER TUTTE LE COMBINAZIONI ASSEGNATE

```
Diametro staffe: 12 mm

Passo staffe: 10.0 cm [Passo massimo di normativa = 25.0 cm]

N.Bracci staffe: 2

Area staffe/m: 22.6 cm²/m [Area Staffe Minima normativa = 2.3 cm²/m]
```

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

```
S = comb.verificata a taglio-tors./ N = comb. non verificata
Vsdu
            Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)
            Taglio resistente [daN] in assenza di staffe
Vrd
Vcd
            Taglio compressione resistente [daN] lato conglomerato
            Taglio trazione resistente [daN] assorbito dalle staffe
Vwd
            Larghezza minima [cm] sezione misurata parallelam. all'asse neutro
bw
           Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato
Teta
Acw
            Coefficiente maggiorativo della resistenza a taglio per compressione
Afst
           Area staffe/metro strettamente necessaria per taglio e torsione [cm²/m]
```

N.Comb.	Ver	Vsdu	Vrd	Vcd	Vwd	bw	Teta	Acw	Afst
1	S	39000	51163	274716	39149	107.2	21.80	1.070	4.6

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

```
S = combinazione verificata / N = combin. non verificata
Sc max
            Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
            Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Yc max
            Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
Sc min
            Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Yc min
Sf min
            Minima tensione di trazione (-) nell'acciaio [daN/cm²]
Yf min
            Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Dw Eff.
           Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
Ac eff.
            Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
           Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
Af eff.
```

```
D barre
                   Distanza media in cm tra le barre tese efficaci (verifica fess.)
    N.Comb. Ver Sc max Yc max Sc min Yc min Sf min Yf min Dw Eff. Ac eff. Af eff. Dbarre
                  94.4 -60.0 0.0 -60.0 -1881 54.0 25.8 2828 69.1 0.0
COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE
                   S = combinazione verificata / N = combin. non verificata
                  Massima tensione nel conglomerato nello STATO I non fessurato [daN/cm²]
                Massima tensione nel conglomerato nello STATO I non fessurato [dan/cm²]

Tensione al limite dello spessore efficace nello STATO I [dan/cm²]

Coeff. di normativa = 0,25 (Scmin + ScEff)/(2 Scmin)
      ScI_min
      Sc Eff
     ĸЗ
     Beta12
                 Prodotto dei Coeff. di aderenza Betal*Beta2
     Eps
                  Deformazione unitaria media tra le fessure
                 Distanza media in mm tra le fessure
     Srm
     Ap.fess. Apertura delle fessure in mm = 1,7*Eps*Srm
   N.Comb. Ver ScImax ScImin Sc Eff K3
                                                        Beta12
                                                                                Srm
                                                                                      Ap.Fess.
              S 70.9 -56.7
                                    -29.3 0.190
                                                           1.0 0.000698
       1
                                                                                199
                                                                                         0.237
```

Si osserva, inoltre, che, sulla base dell'andamento delle sollecitazioni flettenti, l'armatura della sezione di verifica (2ø20/10) viene assunta per i primi 14m di sviluppo del palo, mentre per la lunghezza rimanente si adotta un armatura che prevede 1ø20/10. Allo stesso modo si osserva che la resistenza a taglio del solo calcestruzzo è sufficiente per sostenere l'azione tagliate sollecitante almeno nelle zone in cui tale sollecitazione è massima. Tuttavia si assumono staffe ø12/20 lungo tutto lo sviluppo del palo a favore di sicurezza.