

AUTOSTRADA (A13) : BOLOGNA-PADOVA

TRATTO: BOLOGNA - FERRARA

AMPLIAMENTO ALLA TERZA CORSIA
TRATTO: BOLOGNA ARCOVEGGIO — FERRARA SUD

PROGETTO DEFINITIVO

AU - CORPO AUTOSTRADALE

OPERE D'ARTE MINORI

TOMBINI SCATOLARI

TOMBINI PUNTUALI TO79 – RELAZIONE DI CALCOLO

IL PROGETTISTA SPECIALISTICO

Ing. Lucio Ferretti Torricelli Ord. Ingg. Brescia N.2188 RESPONSABILE STRUTTURE

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Federica Ferrari Ord. Ingg. Milano N. 21082

IL DIRETTORE TECNICO

Ing. Orlando Mazza Ord. Ingg. Pavia N. 1496

PROGETTAZIONE NUOVE OPERE AUTOSTRADALI

CODICE IDENTIFICATIVO					
RIFERIMENTO F			RIFERIMENTO DIRETTORIO	RIFERIMENTO ELABORATO	\cap
Codice Commessa L	Lotto, Sub-Prog, Fase	Capitolo Paragrafo	tipologia progressivo PARTE D'OPERA	Tip. Disciplina Progressivo Rev.	
1113060	0.001PD	0000	000000000	0 STR0301	SCALA:

	PROJECT MANAGER:		SUPPORTO SP	ECIALISTICO:		REVISIONE
	Ing. Federica Ferrari Ord. Ingg. Milano N. 21082				n.	data
Syca						NOVEMBRE 2016
PALGINIFFRINIG	l Ora.	ingg. Milano N. 21082			1	_
ENGINEERING					2	-
A 41 4:	REDATTO:	_	VERIFICATO:	_	3	_
gruppo Atlantia	REDATIO: _	YEMI IOATO.		4	-	

VISTO DEL COMMITTENTE

autostrade per l'italia

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Antonio Tosi

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti
DIPARTIMENIO PERLE NFRASTRUTTURE, GLIAFFARI GENERALI EDIL PERSONLE
STRUTTURA DI VIGILANZA SULLE CONCESSIONARE AUTOSTRADALI

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	2 di 63

1	GE	NERALITA'	4
2	NO	RMATIVA E RIFERIMENTI	4
3	PR	OGRAMMI DI CALCOLO UTILIZZATI	4
3.	1	Pro_Sap	4
	3.1.1	Modellazione adottata	5
3.	2	VcaSlu	5
4	CR	ITERI DI CALCOLO	7
4.	1	Criteri e definizione dell'azione sismica	
4.	2	Combinazioni di carico	
	4.2.1	Combinazioni per la verifica allo SLU	
	4.2.2	1	
	4.2.3	Combinazioni per la condizione sismica	12
5	CA	LCOLO DELLE SOLLECITAZIONI	12
5.	1	Schemi di carico	12
5.	2	Condizioni di carico	19
6	CA	RATTERISTICHE DEI MATERIALI	26
6.	1	Calcestruzzo per magrone	26
6.	2	Calcestruzzo	
6.	3	Acciaio per cemento armato	
6.		Durabilità e prescrizioni sui materiali	
6.		Copriferro minimo e copriferro nominale	
7	PA	RAMETRI GEOTECNICI	28
8	GE	OMETRIA DELLA STRUTTURA	29
9	AN	ALISI DEI CARICHI	30
9.	1	Peso proprio e carichi permanenti portati	30
9.	2	Spinta del terreno	
9.	3	Carichi mobili verticali sulla soletta superiore	31
9.	4	Spinta del sovraccarico sul rilevato	
9.		Frenatura	
9.		Azioni termiche	
9.		Ritiro	
9.	8	Azione sismica : stato limite di salvaguardia della vita (SLV)	34
10	VE	RIFICHE DI RESISTENZA E A FESSURAZIONE	35
10	0.1	Criteri di verifica	35
10	0.2	Soletta superiore	
	10.2.	1 Attacco piedritto (aste 10-12)	37

TITOLO DOG	CUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR030	1.doc	STR301	02	3 di 63

38
39
41
41
42
42
43
44
46
46
48
49
51
51
51
53
55
56
57
.57
.58
.59
59
63
•

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	4 di 63

1 GENERALITA'

La presente relazione riguarda la progettazione strutturale a livello definitivo di tombini scatolari, nell'ambito dei lavori inerenti l'ampliamento alla terza corsia del tratto autostradale A13 compreso tra Bologna Arcoveggio e Ferrara sud.

Per quanto concerne gli scatolari le azioni considerate nel calcolo sono quelle tipiche di una struttura interrata, ivi incluse le azioni di tipo stradale desunte dalla normativa vigente in materia (D.M. 2008).

L'opera ricade in zona sismica, ragion per cui sono applicate le azioni previste dalla norma, così come riportato nei capitoli successivi.

Il dimensionamento delle opere è il risultato dello studio effettuato su una struttura piana che descrive una striscia larga 1,00 m.

La presente relazione, ivi inclusi i carichi gravanti e le relative combinazioni di carico, si applica nell'ambito dei seguenti limiti:

- schema statico a telaio regolare;
- assenza di spinte di natura geotecnica, oltre alla presenza del terreno di rinterro;
- luce massima dello scatolare inferiore a 10 m;
- spessore massimo del terreno di ricoprimento pari a 4 m.

In tutti i rimanenti casi, saranno formulate specifiche ipotesi supplementari a quelle evidenziate nei successivi paragrafi.

2 NORMATIVA E RIFERIMENTI

I calcoli e le disposizioni esecutive sono conformi alle norme attualmente in vigore.

I carichi, i coefficienti moltiplicativi e le combinazioni di carico sono state desunte da quanto previsto nel D.M. 14 gennaio 2008 ("*Approvazione delle nuove norme tecniche per le costruzioni*") e dalla relativa circolare n° 617 del 2 febbraio 2009 ("*Istruzioni per l'applicazione delle <<Nuove norme tecniche per le costruzioni >> di cui al decreto ministeriale 14 gennaio 2008*").

3 PROGRAMMI DI CALCOLO UTILIZZATI

3.1 Pro_Sap

Il calcolo dello scatolare viene condotto con il programma PRO_SAP (prodotto dalla 2S.I. Software e Servizi per l'Ingegneria S.r.l. P.tta Schiatti 8/b 44100 Ferrara) Ver. 8.5.0.

Gli elementi utilizzati per la modellazione dello schema statico della struttura sono i sequenti:

- elemento tipo BEAM (trave)
- elemento tipo BOUNDARY (molla)

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	5 di 63

Il codice di calcolo adottato e' ALGOR SUPERSAP prodotto dalla ALGOR INTERACTIVE SYSTEMS, Inc. Pittsburgh, PA, USA. Il programma SUPERSAP applica il metodo degli elementi finiti a strutture di forma qualunque, diversamente caricate e vincolate, nell' ambito del comportamento lineare delle stesse.

Si sottolinea che il solutore ALGOR SUPERSAP e' stato sottoposto, con esito positivo e relativa certificazione, ai test NAFEMS (test di confronto della National Agency for Finite Element Methods and Standards in Inghilterra).

Inoltre, il solutore ALGOR SUPERSAP e' soggetto ad attività di controllo ai sensi della QA (quality assurance), condizione essenziale per l' utilizzo dei codici di calcolo nell' ambito della progettazione nucleare ed off-shore.

3.1.1 MODELLAZIONE ADOTTATA

La struttura viene schematizzata attraverso un modello analitico agli elementi finiti. Si è assunto lo schema statico di telaio chiuso. La mesh è composta da 12 elementi *beam* e da 12 nodi (figure 7-1 e 7-2).

L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici.

Il suolo viene modellato facendo ricorso all'usuale artificio delle molle elastiche alla Winkler.

La caratteristica elastica della generica molla viene calcolata nel seguente modo:

- $Ws = Ks/(bt \times bl) = caratteristica elastica della generica molla dove:$
- Ks = costante di sottofondo [F/L³]
- bt = interasse trasversale di competenza della generica molla
- bl = interasse longitudinale di competenza della generica molla (= 1.00 m)

Per le aste del reticolo si assume un modulo elastico E_c pari a 32.588N/mm² o a 33.643 N/mm² a seconda che si utilizzi una resistenza caratteristica R_{ck} pari rispettivamente a 35 N/mm² o a 40 N/mm².

3.2 VcaSlu

I domini M-N e le verifiche di fessurazione sono verificati anche tramite ausilio del software VcaSlu (edito dal Prof. Piero Gelfi), con l'intento di confermare la validità dei risultati ottenuti tramite il software Pro_Sap.

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	6 di 63

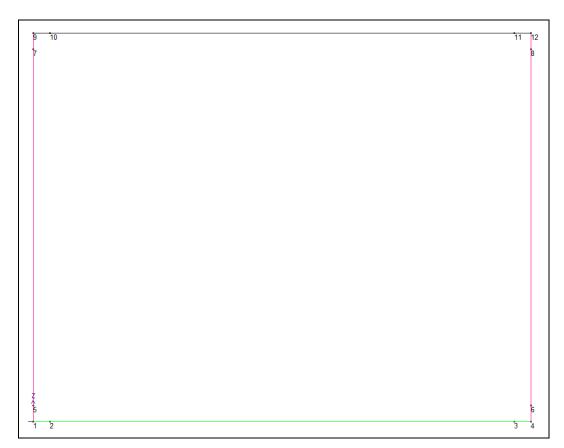


Fig. 3-1 Numerazione dei nodi

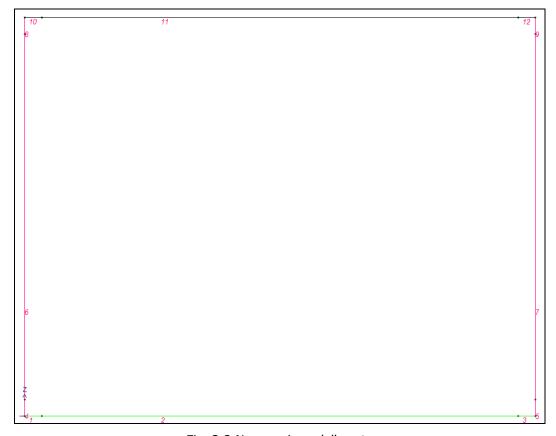


Fig. 3-2 Numerazione delle aste

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	7 di 63

4 CRITERI DI CALCOLO

In ottemperanza al D.M. del 14.01.2008 (Norme tecniche per le costruzioni), i calcoli sono condotti con il metodo semiprobabilistico agli stati limite.

4.1 Criteri e definizione dell'azione sismica

L'effetto dell'azione sismica di progetto sull'opera nel suo complesso, includendo il volume significativo di terreno, la struttura di fondazione, gli elementi strutturali e non, nonché gli impianti, deve rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, i cui requisiti di sicurezza sono indicati nel § 7.1 della norma. Il rispetto degli stati limite si considera conseguito quando:

- nei confronti degli stati limite di esercizio siano rispettate le verifiche relative al solo Stato Limite di Danno;
- nei confronti degli stati limite ultimi siano rispettate le indicazioni progettuali e costruttive riportate nel § 7 e siano soddisfatte le verifiche relative al solo Stato Limite di salvaguardia della Vita.

Per Stato Limite di Danno (SLD) s'intende che l'opera, nel suo complesso e a seguito del terremoto, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non provocare rischi agli utenti e non compromette significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali e orizzontali. Lo stato limite di esercizio comporta la verifica delle tensioni di lavoro, in conformità al § 4.1.2.2.5 (D.M. 2008).

Per Stato Limite di salvaguardia della Vita (SLV) si intende che l'opera a seguito del terremoto subisce rotture e crolli dei componenti non strutturali e impiantistici e significativi danni di componenti strutturali, cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali (creazione di cerniere plastiche secondo il criterio della gerarchia delle resistenze), mantenendo ancora un margine di sicurezza (resistenza e rigidezza) nei confronti delle azioni verticali.

Gli stati limite, sia di esercizio sia ultimi, sono individuati riferendosi alle prestazioni che l'opera a realizzarsi deve assolvere durante un evento sismico; per la funzione che l'opera deve espletare nella sua vita utile, è significativo calcolare lo Stato Limite di Danno (SLD) per l'esercizio e lo Stato Limite di Salvaguardia della Vita (SLV) per lo stato limite ultimo.

In merito alle opere scatolari di cui trattasi, nel rispetto del punto § 7.9.2., assimilando l'opera scatolare alla categoria delle spalle da ponte, rientrando tra le opere che si muovono con il terreno (§ 7.9.2.1), si può ritenere che la struttura debba mantenere sotto l'azione sismica un comportamento elastico; queste categorie di opere che si muovono con il terreno non subiscono le amplificazioni dell'accelerazione del suolo.

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	8 di 63

A riguardo del calcolo allo SLV, dovendo la struttura mantenere durante l'evento sismico un comportamento elastico, vengono eseguite le verifiche alle tensioni di esercizio (§ 4.1.2.2.5), assumendo come limite delle tensioni di esercizio quelle adottate per la combinazione caratteristica (rara) (EC2 § 7.2). Tale combinazione, in accordo al punto § 7.10.6.1. (NTC) e alla Circ. 617 § 7.10.6.1. (nella quale si afferma che il sostanziale mantenimento in campo elastico della struttura nelle verifiche allo SLU, fornisce ampie garanzie rispetto alla sicurezza nei confronti dello SLD), consente di ritenere soddisfatte anche le verifiche nei confronti dello SLD.

Per la definizione dell'azione sismica, occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato.

La vita nominale (V_N) dell'opera è stata assunta pari a **50 anni**. La classe d'uso assunta è la **IV** ($C_u = \mathbf{2,0}$). Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso vale:

$$V_R = V_N \cdot C_u = 50.2 = 100 \text{ anni}$$

I valori di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente è:

$$P_{VR}(SLV) = 10 \%$$

Il periodo di ritorno dell'azione sismica T_R espresso in anni, vale:

$$T_R(SLV) = -\frac{Vr}{\ln(1 - Pvr)} = 949 \text{ anni}$$

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma o tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di a_g, F₀, T*_c.

 $a_g \rightarrow accelerazione$ orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità [g/10];

 $F_0 \rightarrow \text{valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale [-];}$

T*_c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale [s];

 $S \rightarrow coefficiente$ che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St);

Il calcolo viene eseguito con il metodo <u>pseudostatico</u> (NTC § 7.11.6). In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	9 di 63

Nelle verifiche allo Stato Limite Ultimo i valori dei coefficienti sismici orizzontali k_h e verticale k_v possono essere valutati mediante le espressioni:

$$k_h = \beta_m * (a_{max}/g)$$

 $k_v = \pm 0.5 * k_h$

dove a_{max} è l'accelerazione orizzontale massima attesa al sito (desunta dalla latitudine e dalla longitudine che contraddistinguono l'ubicazione del'opera in oggetto), g è l'accelerazione di gravità.

Sebbene la componente verticale del sisma sia trascurabile (capitolo 7.2.1 NTC), si è optato per il suo inserimento nelle combinazioni di carico perché a favore di sicurezza.

Considerando la latitudine e la longitudine delle opere oggetto della presente relazione, è possibile definire i valori delle caratteristiche sismiche (a_g , F_0 , T^*_c) per lo Stato Limite di salvaguardia della Vita.

Tra i comuni interessati dalle opere in oggetto, è stato scelto quello caratterizzato dal valore di accelerazione orizzontale massima ag. Tale valore è stato applicato a tutti i tombini scatolari.

I comuni interessati sono i seguenti:

- Bologna ($a_g = 0.210g$; $F_0 = 2.430$; $T_c^* = 0.310 s$)
- Castel Maggiore ($a_g = 0.216g$; $F_0 = 2.470$; $T*_c = 0.290 s$)
- Bentivoglio ($a_g = 0.211g$; $F_0 = 2.520$; $T*_c = 0.280 s$)
- Malalbergo ($a_g = 0,207g$; $F_0 = 2,530$; $T*_c = 0,280 s$)
- Galliera ($a_g = 0.206g$; $F_0 = 2.540$; $T*_c = 0.280 s$)
- Poggio Renatico ($a_g = 0,205g$; $F_0 = 2,540$; $T*_c = 0,280 s$)
- Ferrara ($a_g = 0.176g$; $F_0 = 2.560$; $T^*_c = 0.280 s$)

Il valore maggiore di ag appartiene al comune di Castel Maggiore (BO). Nei calcoli, pertanto, tutti i tombini scatolari sono stati analizzati sulla base di tali parametri:

$$a_g = 0.216g$$
 $F_0 = 2.470$
 $T^*_c = 0.290 \text{ s}$

In base alla natura del terreno, il suolo presente è classificabile in Categoria D: "Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fine scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} < 15$ nei terreni a grana grossa e $c_{u,30} < 70$ kPa nei terreni a grana fina)". Da ciò si ricava il parametro $S = S_S \times S_T$ che tiene conto della categoria di sottosuolo e delle condizioni topografiche, essendo S_S il coefficiente di amplificazione stratigrafica, S_T il coefficiente di amplificazione topografica:

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	10 di 63

$$0.90 \le 2.40 - 1.50 F_0(a_q/g) \le 1.80$$
 \rightarrow $S_S = 1.60$

Poiche S_T è posto uguale all'unità (categoria topografica T1), si deduce che S_S è pari a 1,60.

Essendo lo scatolare una struttura che non ammette spostamenti relativi rispetto al terreno, il coefficiente β_m , assume il valore unitario: $\beta_m = 1$

I coefficienti di intensità sismica orizzontale e verticale risultano pertanto:

$$k_h = S*(a_g/g) = 1,60*0,216 = 0,346$$

 $k_v = 0,5*k_h = 0,5 \times 0,346 = 0,173$

Considerando lo scatolare una struttura rigida e priva di spostamenti (NTA par. 7.11.6.2.1; EC8-5 par. 7.3.2.1), durante il manifestarsi dell'evento sismico le spinte delle terre sono calcolate in condizione a riposo. Ne consegue che è possibile calcolare l'incremento dinamico di spinta ΔP_d del terreno mediante la formula di Wood:

$$\Delta P_d = S \cdot a_q / g \cdot \gamma \cdot h_{tot}^2$$

Tale incremento è applicato a metà altezza dell'elemento soggetto ad azione sismica, il che equivale ad applicare allo stesso una pressione uniforme pari a:

$$\Delta P_d = S \cdot a_q / g \cdot \gamma \cdot h_{tot}$$

Nell'analisi pseudo-statica l'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per i coefficienti sismici in precedenza definiti, di cui la componente verticale è considerata agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli. Le forze di inerzia così definite vengono applicate ai baricentri degli elementi a cui si riferiscono.

4.2 Combinazioni di carico

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto al cap. 2 delle NTC.

4.2.1 COMBINAZIONI PER LA VERIFICA ALLO SLU

Gli stati limite ultimi delle opere interrate si riferiscono allo sviluppo di meccanismi di collasso, determinati dal raggiungimento della resistenza degli elementi strutturali che compongono l'opera.

Le verifiche agli stati limite ultimi sono eseguiti in riferimento ai seguenti stati limite:

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	11 di 63

- SLU di tipo strutturale (STR) : raggiungimento della resistenza negli elementi strutturali.

Trattandosi di opere interrate, le verifiche saranno condotte secondo la combinazione 1 dell'approccio progettuale "Approccio 1", utilizzando i coefficienti parziali riportati nelle tabelle 6.2.I, 6.2.II e 5.1.V per i parametri geotecnici e le azioni.

1. combinazione $1 \rightarrow (A1+M1+R1)$

CARICHI	EFFETTO	SIMBOLO γF	EQU	(A1) STR
Permanente	favorevole	γG1	0.9	1.0
remanence	sfavorevole	791	1.1	1.35
Permanente non strutturali	favorevole	γ̃G2	0.0(0.9)	0.0
Termanence non strattaran	sfavorevole	762	1.5 (1.1)	1.35
Variabili da traffico	favorevole	2/0	0.0	0.0
variabili da d'alfico	sfavorevole	γQ	1.35	1.35
Variabili	favorevole	VO:	0.0	0.0
Variabili	sfavorevole	γQi	1.5	1.5

Tabella 4-1 Coefficienti parziali per le azioni o per l'effetto delle azioni (tab. 6.2.I D.M. 2008)

PARAMETRO	GRANDEZZA ALLA QUALE APPLICARE IL COEFF. PARZIALE	COEFFICIENTE PARZIALE γM	M ₁
Tangente dell'angolo di resistenza al taglio	tan φ' _k	γφ'	1
Coesione efficace	C'k	γς.	1
Resistenza non drenata	C' uk	γcu	1
Peso dell'unità di volume	γ	γγ	1

Tabella 4-2 Coefficienti parziali per i parametri del terreno (tab. 6.2.II D.M. 2008)

VERIFICA	COEFF. PARZIALE (R1)
Capacità portante della fondazione	$\gamma_R = 1$
Scorrimento	$\gamma_R = 1$
Resistenza terreno a valle	$\gamma_R = 1$

Tabella 4-3 Coefficienti parziali γ_R per la resistenza del sistema (tab. 6.5.I D.M. 2008)

Ai fini delle verifiche degli stati limite ultimi si definiscono le seguenti combinazioni:

SLU - STR)
$$E_d = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{Q1} \cdot Q_{k1} + \sum_{i} \psi_{0i} \cdot Q_{ki}$$

4.2.2 COMBINAZIONI PER LA VERIFICA ALLO SLE

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	12 di 63

Ai fini delle verifiche degli <u>stati limite di esercizio</u> (fessurazione / stato tensionale) si definiscono le seguenti combinazioni:

SLE - Frequente)
$$E_d = G_1 + G_2 + \psi_{11} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$$

SLE - Quasi permanente)
$$E_d = G_1 + G_2 + \psi_{21} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$$

SLE - Rara)
$$E_d = G_1 + G_2 + Q_{k1} + \sum_{i} \psi_{0i} \cdot Q_{ki}$$

4.2.3 COMBINAZIONI PER LA CONDIZIONE SISMICA

Per la <u>condizione sismica</u>, le combinazioni per gli stati limite ultimi da prendere in considerazione sono le seguenti (approccio 1):

SISMA - STR)
$$E_d = E + G_1 + G_2 + \sum_i \psi_{2i} \cdot Q_{ki}$$

Le verifiche agli stati limite ultimi § 7.11.1(NTC) devono essere effettuate ponendo pari all'unità i coefficienti parziali sulle azioni e impiegando i parametri geotecnici e le resistenze di progetto, con i valori dei coefficienti parziali indicati nel Cap. 6.

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_i \psi_{2i} \cdot Q_{ki}$$

I valori del coefficiente ψ_{2i} sono quelli riportati nella tabella 5.1.VI e § 2.5.I della norma; la stessa propone nel caso di ponti, e più in generale per opere stradali, di assumere – se rilevante – per i carichi dovuti al transito dei mezzi ψ_{2i} = 0÷0,2 (condizione cautelativa).

Per i tombini scatolari oggetto della presente relazione, si pone ψ_{2i} = 0,2.

5 CALCOLO DELLE SOLLECITAZIONI

5.1 Schemi di carico

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, vengono considerate le combinazioni riportate nella tabella IV delle NTC. A causa della natura dell'opera, il gruppo di azioni da prendere in esame risulta esclusivamente il gruppo I.

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	13 di 63

		Carich	i sulla carreggia	ita		Carichi su marciapiedi e piste ciclabili
	Carichi verticali	Carichi verticali		Carichi orizzontali		Carichi verticali
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				

^(***) Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)

(***) Da considerare solo se si considerano veicoli speciali

Tabella 5-1 Valori caratteristici delle azioni dovute al traffico

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali di sicurezza delle azioni riportati in Tab. 5.1.V e i coefficienti di combinazione Ψ in Tab. 5.1.VI (NTC).

Per le verifiche agli stati limite d'esercizio si adottano i valori dei coefficienti parziali in Tab. 5.1.VI (NTC).

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	14 di 63

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tabella 5-2 Coefficienti parziali di sicurezza per le combinazioni SLU

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ₀ di combinazione	Coefficiente \(\psi_1\) (valori frequenti)	Coefficiente \(\psi_2\) (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffica	Schema 2	0,0	0,75	0,0
Azioni da traffico (Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico			
	SLU e SLE	0,6	0,2	0,0
Vento q_5	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Nava a	SLU e SLE	0,0	0,0	0,0
Neve q_5	esecuzione	0,8	0,6	0,5
Temperatura	Tk	0,6	0,6	0,5

Tabella 5-3 Coefficienti Ψ per le azioni variabili dei ponti stradali

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna (4) 1,20 per effetti locali

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	15 di 63

Come affermato in precedenza, le combinazioni di carico agli stati limite ultimi sono eseguite con i coefficienti parziali A1; agli stati limite di esercizio sono considerate le verifiche per le combinazioni rara, frequente e quasi permanente.

SLU: 2515151515151515

SLE RARA:

SLE FREQUENTE:

SLE QUASI PERMANENTE:

SISMICA:

Complessivamente sono analizzate 101 combinazioni di carico:

SLU STR: 25 combinazioni
 SISMA: 25 combinazioni
 SLE RARA: 25 combinazioni
 SLE FREQUENTE: 25 combinazioni
 SLE QUASI PERMANENTE: 1 combinazione

Progressiva combinazione	Combinazione	Tipo di verifica	Peso proprio	Permanenti	Carlco uniforme 20 kN/mq	Carlco 600 kN a tergo	Carico 600 kN a filo pledritto	Carico 600 kN centrato	Carlco 600 kN assente	Carlco 9 kN/mq a tengo sx	Carico 9 kN/mg centrato	Carico 9 kN/mq a tergo sx e dx	Carlco 9 kN/mq a tergo sx e centrato	Carloo 9 kN/mq Indefinito	Carloo 9 kN/mq assente	Ssma
COMB. 1	A1+M1	SLU	1.35	1.35	1.35	0	0	0	0	0	0	0	0	0	0	0
COMB. 2	A1+M1	SLU	1.35	1.35	0	1.35	0	0	0	1.35	0	0	0	0	0	0
COMB. 3	A1+M1	SLU	1.35	1.35	0	1.35	0	0	0	0	1.35	0	0	0	0	0
COMB. 4	A1+M1	SLU	1.35	1.35	0	1.35	0	0	0	0	0	1.35	0	0	0	0
COMB. 5	A1+M1	SLU	1.35	1.35	0	1.35	0	0	0	0	0	0	1.35	0	0	0
COMB. 6	A1+M1	SLU	1.35	1.35	0	1.35	0	0	0	0	0	0	0	1.35	0	0
COMB. 7	A1+M1	SLU	1.35	1.35	0	1.35	0	0	0	0	0	0	0	0	1.35	0
COMB. 8	A1+M1	SLU	1.35	1.35	0	0	1.35	0	0	1.35	0	0	0	0	0	0
COMB. 9	A1+M1 A1+M1	SLU SLU	1.35	1.35	0	0	1.35	0	0	0	1.35	0	0	0	0	0
COMB. 10		SLU	1.35	1.35	0	0	1.35 1.35	0	0	0	0	1.35	1,35	0	0	0
COMB. 11	A1+M1 A1+M1	SLU	1.35	1.35 1.35	0	0	1.35	0	0	0	0	0	0	1.35	0	0
COMB. 12	A1+M1	SLU	1.35	1.35	0	0	1.35	0	0	0	0	0	0	0	1.35	0
COMB. 14	A1+M1	SLU	1.35	1.35	0	0	0	1.35	0	1.35	0	0	0	0	0	0
COMB. 15	A1+M1	SLU	1.35	1.35	0	0	0	1.35	0	0	1.35	0	0	0	0	0
COMB. 15	A1+M1	SLU	1.35	1.35	0	0	0	1.35	0	0	0	1.35	0	0	0	0
COMB. 17	A1+M1	SLU	1.35	1.35	0	0	0	1.35	0	0	0	0	1.35	0	0	0
COMB. 18	A1+M1	SLU	1.35	1.35	0	0	0	1.35	0	0	0	0	0	1.35	0	0
COMB. 19	A1+M1	SLU	1.35	1.35	0	0	0	1.35	0	0	0	0	0	0	1.35	0
COMB. 20	A1+M1	SLU	1.35	1.35	0	0	0	0	1.35	1.35	0	0	0	0	0	0
COMB. 21	A1+M1	SLU	1.35	1.35	0	0	0	0	1.35	0	1.35	0	0	0	0	0
COMB. 22	A1+M1	SLU	1.35	1.35	0	0	0	0	1.35	0	0	1.35	0	0	0	0
COMB. 23	A1+M1	SLU	1.35	1.35	0	0	0	0	1.35	0	0	0	1,35	0.00	0	0
COMB. 24	A1+M1	SLU	1.35	1.35	0	0	0	0	1.35	0	0	0	0	1.35	0	0
COMB. 25	A1+M1	SLU	1.35	1.35	0	0	0	0	1.35	0	0	0	0	0	1.35	0

Tabella 5-4 Coefficienti moltiplicativi e combinazioni di carico utilizzati - SLU

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	16 di 63

Progressiva combinazione	zione	Tipo di verifica	proprio	Đ.	Carico uniforme 20 kN/mq	600 kN a tergo	10 kN a filo piedritto	Carico 600 kN centrato	Carico 600 kN assente	Carico 9 kN/mq a tergo sx	Carico 9 kN/mq centrato	Carico 9 kN/mq a tergo sx e dx	kN/mq a tergo sx e centrato	Carico 9 kN/mg indefinito	Carico 9 kN/mq assente	
gress	Combinazione	> 0	eso pro	Permanenti	in 00	Carlco 60	Carico 600 kN) 00 00) 00 00	6 00	6 00	(co 9	Carico 9	6 00	6 00	Ssma
8	Š	₽	ă	Ģ.	Š	Ö	Ö	Ö	Ö	Š	Š	Car	Š	Š	Š	SS
COMB. 26	SISMA	SLU	1	1	0.2	0	0	0	0	0	0	0	0	0	0	1
COMB. 27	SISMA	SLU	1	1	0	0.2	0	0	0	0.2	0	0	0	0	0	1
COMB. 28	SISMA	SLU	1	1	0	0.2	0	0	0	0	0.2	0	0	0	0	1
COMB. 29	SISMA	SLU	1	1	0	0.2	0	0	0	0	0	0.2	0	0	0	1
COMB. 30	SISMA	SLU	1	1	0	0.2	0	0	0	0	0	0	0.2	0	0	1
COMB. 31	SISMA	SLU	1	1	0	0.2	0	0	0	0	0	0	0	0.2	0	1
COMB. 32	SISMA	SLU	1	1	0	0.2	0	0	0	0	0	0	0	0	0.2	1
COMB. 33	SISMA	SLU	1	1	0	0	0.2	0	0	0	0	0	0	0	0	1
COMB. 34	SISMA	SLU	1	1	0	0	0.2	0	0	0	0.2	0	0	0	0	1
COMB. 35	SISMA	SLU	1	1	0	0	0.2	0	0	0	0	0.2	0	0	0	1
COMB. 36	SISMA	SLU	1	1	0	0	0.2	0	0	0	0	0	0.2	0	0	1
COMB. 37	SISMA	SLU	1	1	0	0	0.2	0	0	0	0	0	0	0.2	0	1
COMB. 38	SISMA	SLU	1	1	0	0	0.2	0	0	0	0	0	0	0	0	1
COMB. 39	SISMA	SLU	1	1	0	0	0	0.2	0	0.2	0	0	0	0	0	1
COMB. 40	SISMA	SLU	1	1	0	0	0	0.2	0	0	0.2	0	0	0	0	1
COMB. 41	SISMA	SLU	1	1	0	0	0	0.2	0	0	0	0.2	0	0	0	1
COMB. 42	SISMA	SLU	1	1	0	0	0	0.2	0	0	0	0	0.2	0	0	1
COMB. 43	SISMA	SLU	1	1	0	0	0	0.2	0	0	0	0	0	0.2	0	1
COMB. 44	SISMA	SLU	1	1	0	0	0	0.2	0	0	0	0	0	0	0.2	1
COMB. 45	SISMA	SLU	1	1	0	0	0	0	0.2	0.2	0	0	0	0	0	1
COMB. 46	SISMA	SLU	1	1	0	0	0	0	0.2	0	0.2	0.2	0	0	0	1
COMB. 47	SISMA	SLU	1	1	0	0	0	0	0.2	0	0	0.2	0.2	0	0	1
COMB. 48	SISMA	SLU	1	1	0	0	0	0	0.2	0	0	0	0.2	0.2	0	1
COMB. 49	SISMA	SLU	1	1	0	0	0	0	0.2	0	0	0	0	0.2	0.2	1
COIVIB. 50	SISIVIA	SLU	1	1	ו ט	0	ן ט	0	0.2	0	0	U		U	0.2	1

Tabella 5-5 Coefficienti moltiplicativi e combinazioni di carico utilizzati – SISMA

Progressiva combinazione	Combinazione	Tipo di verifica	Peso proprio	Permanenti	Carico uniforme 20 kN/mq	Carico 600 KN a tergo	Carico 600 kN a filo pledritto	Carlco 600 kN centrato	Carico 600 kN assente	Carico 9 kN/mq a tergo sx	Carico 9 kN/mg centrato	Carico 9 kN/mq a tergo sx e dx	Carico 9 kN/mq a tergo sx e centrato	Carico 9 kN/mq Indefinito	Carico 9 kN/mq assente	Ssma
COMB. 51	RARA	SLE	1	1	1	0	0	0	0	0	0	0	0	0	0	0
COMB. 52	RARA	SLE	1	1	0	1	0	0	0	1	0	0	0	0	0	0
COMB. 53	RARA	SLE	1	1	0	1	0	0	0	0	1	0	0	0	0	0
COMB. 54	RARA	SLE	1	1	0	1	0	0	0	0	0	1	0	0	0	0
COMB. 55	RARA	SLE	1	1	0	1	0	0	0	0	0	0	1	0	0	0
COMB. 56	RARA	SLE	1	1	0	1	0	0	0	0	0	0	0	1	0	0
COMB. 57	RARA	SLE	1	1	0	1	0	0	0	0	0	0	0	0	1	0
COMB. 58	RARA	SLE	1	1	0	0	1	0	0	1	0	0	0	0	0	0
COMB. 59	RARA	SLE	1	1	0	0	1	0	0	0	1	0	0	0	0	0
COMB. 60	RARA	SLE	1	1	0	0	1	0	0	0	0	1	0	0	0	0
COMB. 61	RARA	SLE	1	1	0	0	1	0	0	0	0	0	1	0	0	0
COMB. 62	RARA	SLE	1	1	0	0	1	0	0	0	0	0	0	1	0	0
COMB. 63	RARA	SLE	1	1	0	0	1	0	0	0	0	0	0	0	1	0
COMB. 64	RARA	SLE	1	1	0	0	0	1	0	1	0	0	0	0	0	0
COMB. 65	RARA	SLE	1	1	0	0	0	1	0	0	1	0	0	0	0	0
COMB. 66	RARA	SLE	1	1	0	0	0	1	0	0	0	1	0	0	0	0
COMB. 67	RARA	SLE	1	1	0	0	0	1	0	0	0	0	1	0	0	0
COMB. 68	RARA	SLE	1	1	0	0	0	1	0	0	0	0	0	1	0	0
COMB. 69	RARA	SLE	1	1	0	0	0	1	0	0	0	0	0	0	1	0
COMB. 70	RARA	SLE	1	1	0	0	0	0	1	1	0	0	0	0	0	0
COMB. 71	RARA	SLE	1	1	0	0	0	0	1	0	1	0	0	0	0	0
COMB. 72	RARA	SLE	1	1	0	0	0	0	1	0	0	1	0	0	0	0
COMB. 73	RARA	SLE	1	1	0	0	0	0	1	0	0	0	1	0	0	0
COMB. 74	RARA	SLE	1	1	0	0	0	0	1	0	0	0	0	1	0	0
COMB. 75	RARA	SLE	1	1	0	0	0	0	1	0	0	0	0	0	1	0

Tabella 5-6 Coefficienti moltiplicativi e combinazioni di carico utilizzati – SLE RARA

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	17 di 63

Progressiva combinazione	Combinazione	Tipo di verifica	Peso proprio	Permanentí	Carico uniforme 20 kN/mq	Carico 600 kN a tergo	Carico 600 kN a filo pledritto	Carico 600 kN centrato	Carlco 600 kN assente	Carico 9 kN/mq a tengo sx	Carlco 9 kN/mq centrato	Carico 9 kN/mq a tengo sx e dx	Carico 9 kN/mq a tergo sx e centrato	Carico 9 kN/mq indefinito	Carlco 9 kN/mq assente	Ssma
COMB. 76	FREQ	SLE	1	1	0.75	0	0	0	0	0	0	0	0	0	0	0
COMB. 77	FREQ	SLE	1	1	0	0.75	0	0	0	0.4	0	0	0	0	0	0
COMB. 78	FREQ	SLE SLE	1	1	0	0.75 0.75	0	0	0	0	0.4	0.4	0	0	0	0
COMB. 79	FREQ FREQ		1	1	0	0.75	0	0	0	0	0	0.4	0	0	0	0
COMB. 81	FREQ	SLE SLE	1	1	0	0.75	0	0	0	0	0	0	0.4	0.4	0	0
COMB. 82	FREQ	SLE	1	1	0	0.75	0	0	0	0	0	0	0	0.4	0.4	0
COMB. 83	FREQ	SLE	1	1	0	0.75	0.75	0	0	0.4	0	0	0	0	0.4	0
COMB. 84	FREQ	SLE	1	1	0	0	0.75	0	0	0.4	0.4	0	0	0	0	0
COMB. 85	FREQ	SLE	1	1	0	0	0.75	0	0	0	0.4	0.4	0	0	0	0
COMB. 86	FREQ	SLE	1	1	0	0	0.75	0	0	0	0	0	0.4	0	0	0
COMB. 87	FREQ	SLE	1	1	0	0	0.75	0	0	0	0	0	0	0.4	0	0
COMB. 88	FREQ	SLE	1	1	0	0	0.75	0	0	0	0	0	0	0	0.4	0
COMB. 89	FREQ	SLE	1	1	0	0	0	0.75	0	0.4	0	0	0	0	0	0
COMB. 90	FREQ	SLE	1	1	0	0	0	0.75	0	0	0.4	0	0	0	0	0
COMB. 91	FREQ	SLE	1	1	0	0	0	0.75	0	0	0	0.4	0	0	0	0
COMB. 92	FREQ	SLE	1	1	0	0	0	0.75	0	0	0	0	0.4	0	0	0
COMB. 93	FREQ	SLE	1	1	0	0	0	0.75	0	0	0	0	0	0.4	0	0
COMB. 94	FREQ	SLE	1	1	0	0	0	0.75	0	0	0	0	0	0	0.4	0
COMB. 95	FREQ	SLE	1	1	0	0	0	0	0.75	0.4	0	0	0	0	0	0
COMB. 96	FREQ	SLE	1	1	0	0	0	0	0.75	0	0.4	0	0	0	0	0
COMB. 97	FREQ	SLE	1	1	0	0	0	0	0.75	0	0	0.4	0	0	0	0
COMB. 98	FREQ	SLE	1	1	0	0	0	0	0.75	0	0	0	0.4	0	0	0
COMB. 99	FREQ	SLE	1	1	0	0	0	0	0.75	0	0	0	0	0.4	0	0
COMB. 100	FREQ	SLE	1	1	0	0	0	0	0.75	0	0	0	0	0	0.4	0
COMB. 101	Q PERM	SLE	1	1	0	0	0	0	0	0	0	0	0	0	0	0

Tabella 5-7 Coefficienti moltiplicativi e combinazioni di carico utilizzati – SLE FREQUENTE E Q.PERM

Le convenzioni adottate per le sollecitazioni di segno positivo sono le seguenti.

Le condizioni di carico di partenza adottate sono le seguenti:

- 1. Peso proprio della struttura (solette e piedritti)
- 2. Carico permanente portato (rilevato e carreggiata stradale)
- 3. Carico veicoli uniforme 20 kN/m² (sovraccarico stradale sopra scatolare)
- 4. Carico Q_{1k} a tergo
- 5. Carico Q_{1k} a filo piedritto
- 6. Carico Q_{1k} centrato
- 7. Carico Q_{1k} assente
- 8. Carico veicoli tandem e 9 kN/m² a tergo del piedritto sx
- 9. Carico veicoli tandem e 9 kN/m² centrato
- 10. Carico veicoli tandem e 9 kN/m² a tergo del piedritto sx e dx
- 11. Carico veicoli tandem e 9 kN/m² a tergo del piedritto sx e centrato

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	18 di 63

- 12. Carico veicoli tandem e 9 kN/m² indefinito
- 13. Carico veicoli tandem e 9 kN/m² assente
- 14. Sisma

Per determinare le sollecitazioni più gravose nelle varie sezioni dello scatolare, sono elaborati i risultati ottenuti nel calcolo agli elementi finiti secondo le condizioni di carico suddette, opportunamente permutate e moltiplicate per i coefficienti previsti da normativa, scegliendo di volta in volta lo stato tensionale che provoca le condizioni più sfavorevoli per la verifica.

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	19 di 63

5.2 Condizioni di carico

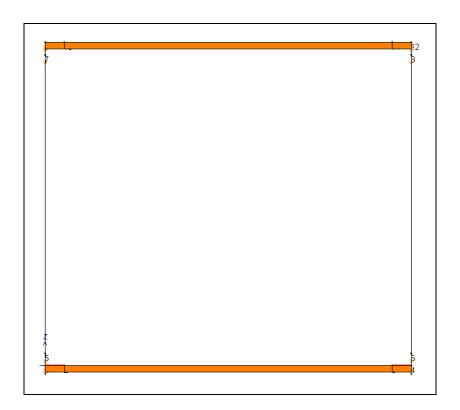


Figura 5-1 Peso proprio della struttura

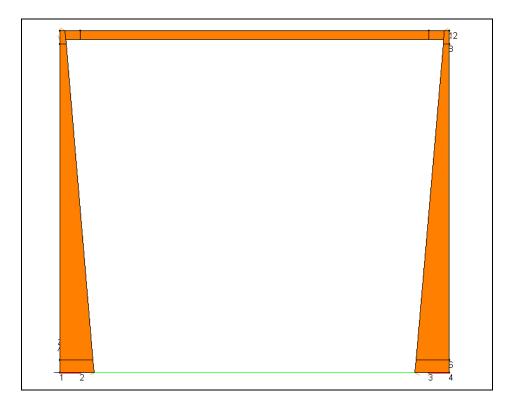


Figura 5-2 Carico permanente portato (rilevato e carreggiata stradale)

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	20 di 63

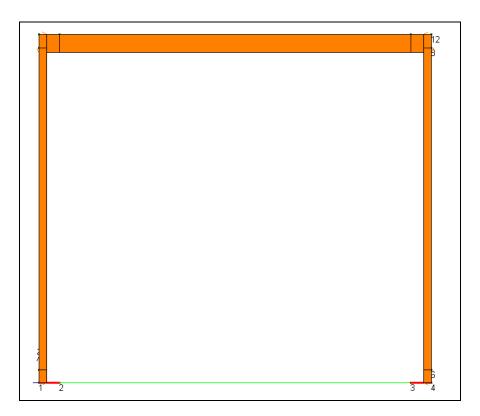


Figura 5-3 Carico veicoli uniforme 20 kN/m² (sovraccarico stradale sopra scatolare)

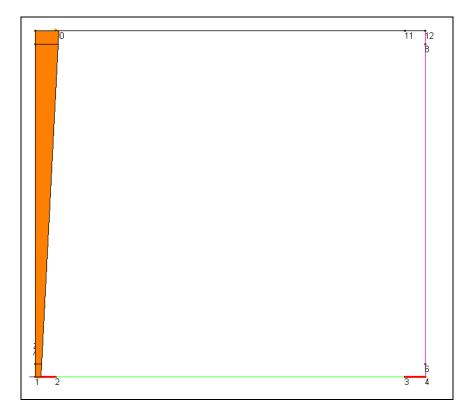


Figura 5-4 Carico Q1k a tergo

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	21 di 63

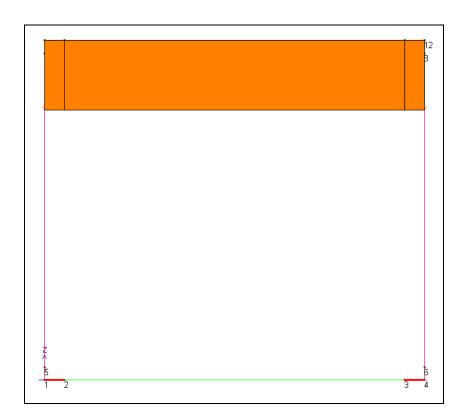


Figura 5-5 Carico Q1k a filo piedritto

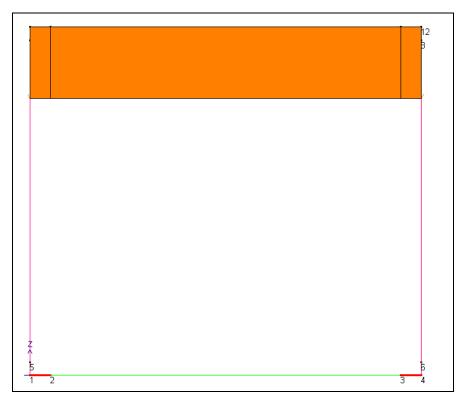


Figura 5-6 Carico Q1k centrato

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	22 di 63

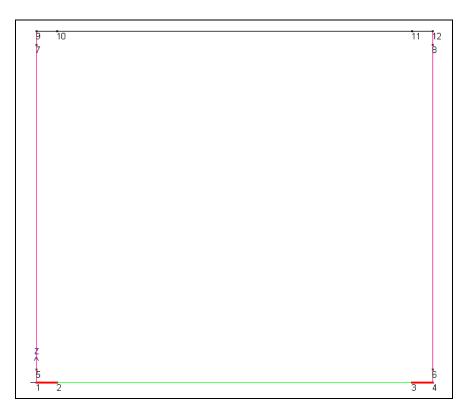


Figura 5-7 Carico Q1k centrato

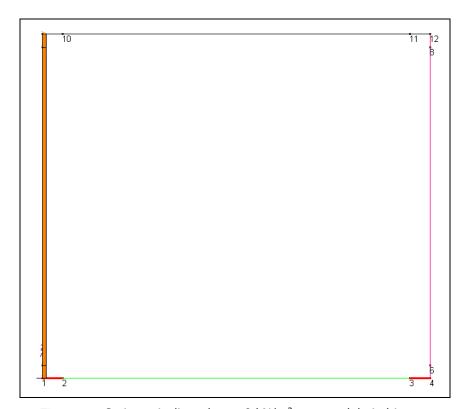


Figura 5-8 Carico veicoli tandem e 9 kN/ m^2 a tergo del piedritto sx

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	23 di 63



Figura 5-9 Carico veicoli tandem e 9 kN/m² centrato

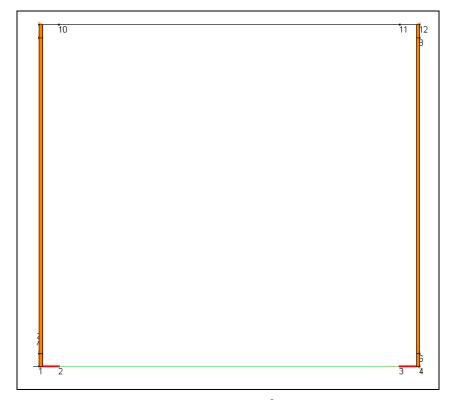


Figura 5-10 Carico veicoli tandem e 9 kN/ m^2 a tergo del piedritto sx e dx

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	24 di 63

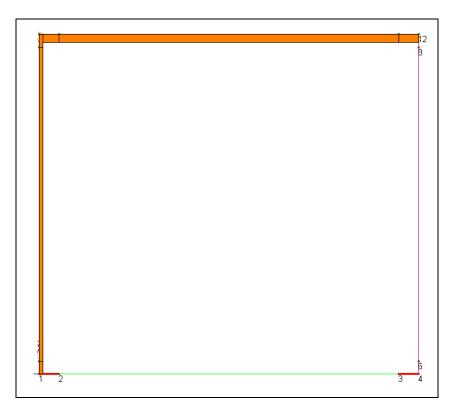


Figura 5-11 Carico veicoli tandem e 9 kN/m² a tergo del piedritto sx e centrato

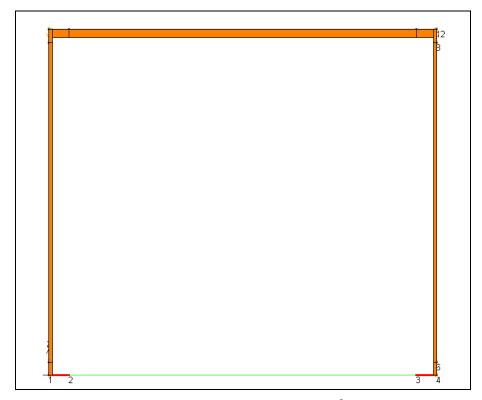


Figura 5-12 Carico veicoli tandem e 9 kN/ m^2 indefinito

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	25 di 63

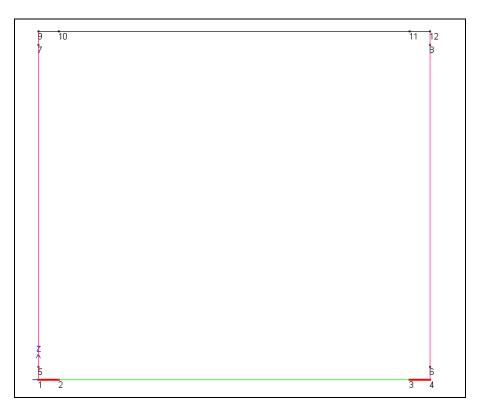


Figura 5-13 Carico veicoli tandem e 9 kN/m² assente

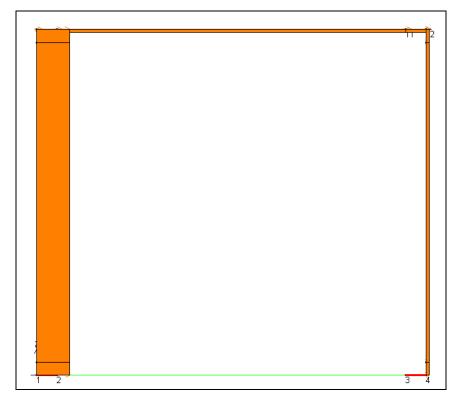


Figura 5-14 Sisma

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	26 di 63

6 CARATTERISTICHE DEI MATERIALI

Per la realizzazione dell'opera è previsto l'impiego dei materiali sotto elencati.

6.1 Calcestruzzo per magrone

Per il magrone di sottofondazione si prevede l'utilizzo di calcestruzzo di classe Rck 15, con classe di esposizione X0.

6.2 Calcestruzzo

Per la realizzazione della fondazione dello scatolare, si prevede l'utilizzo di calcestruzzo in classe Rck ≥ 35 N/mm² (classe XC2) che presenta le seguenti caratteristiche:

Resistenza a compressione (cilindrica)	$f_{ck}=0.83*R_{ck}$	$= 29.05 \text{ N/mm}^2$
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{cc} * f_{ck}/\gamma_c = 0.85 *$	f _{ck} /1.5= 16.46 N/mm ²
Resistenza di calcolo a compressione elastica	σ_c =0.60* f_{ck}	=16.80 N/mm ²
Resistenza a trazione media	$f_{ctm} = 0.30* f_{ck}^{2/3}$	$= 2.83 \text{ N/mm}^2$
Resistenza a trazione	$f_{ctk} = 0.7* f_{ctm}$	= 1.981 N/mm ²
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk} / \gamma_c$	$= 1.321 \text{ N/mm}^2$
Resistenza a compressione (comb. rara)	σ_c =0.60* f_{ck}	=16.80 N/mm ²
Resistenza a compressione (comb. quasi permanente)	σ_c =0.45* f_{ck}	=13.07 N/mm ²

2) Per la realizzazione dei piedritti e della soletta di copertura dello scatolare, si prevede l'utilizzo di calcestruzzo in classe Rck ≥ 40 N/mm² (classe XF2 per i piedritti, XF4 per la soletta superiore) che presenta le seguenti caratteristiche:

Resistenza a compressione (cilindrica)	$f_{ck} = 0.83*R_{ck}$	$= 33.20 \text{ N/mm}^2$
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{cc} * f_{ck}/\gamma_c = 0.85 *$	f _{ck} /1.5= 18.81 N/mm ²
Resistenza di calcolo a compressione elastica	σ_c =0.60* f_{ck}	=19.20 N/mm ²
Resistenza a trazione media	$f_{ctm} = 0.30* f_{ck}^{2/3}$	$= 3.10 \text{ N/mm}^2$
Resistenza a trazione	$f_{ctk} = 0.7* f_{ctm}$	$= 2.17 \text{ N/mm}^2$
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk} / \gamma_c$	$= 1.45 \text{ N/mm}^2$
Resistenza a compressione (comb. rara)	σ_c =0.60* f_{ck}	=19.92 N/mm ²
Resistenza a compressione (comb. quasi permanente)	σ_c =0.45* f_{ck}	=14.94 N/mm ²

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	27 di 63

6.3 Acciaio per cemento armato

Per le armature metalliche si adottano tondini in acciaio del tipo B450C controllato in stabilimento, che presentano le seguenti caratteristiche:

- tensione di snervamento caratteristica	f_{yk} \geq	450 N/mm ²
- tensione caratteristica a rottura	f_{tk} \geq	540 N/mm ²
- tensione in condizione di esercizio (comb. rara)	$\sigma_c =$	$0.80* f_{yk} = 360.00 N/mm^2$
- fattore di sicurezza acciaio	$\gamma_s =$	1.15
- resistenza a trazione di calcolo	$f_{yd} = f_{yk} / \gamma_s$	$= 391.30 \text{ N/mm}^2$

6.4 Durabilità e prescrizioni sui materiali

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Al fine di ottenere la prestazione richiesta in funzione delle condizioni ambientali, nonché per la definizione della relativa classe, si fa riferimento alle indicazioni contenute nelle Linee Guida sul calcestruzzo strutturale edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici ovvero alle norme UNI.

Per le opere della presente relazione si adotta quanto segue:

<u>Fondazione</u>	CLASSE DI ESPOSIZIONE	XC2
<u>Elevazione</u>	CLASSE DI ESPOSIZIONE	XF2
Copertura	CLASSE DI ESPOSIZIONE	XF4

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2 , XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2 , XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 6-1 Descrizione delle condizioni ambientali (tab. 6.2.II D.M. 2008)

Le fondazioni degli scatolari si trovano in condizioni ambientali *Ordinarie*, le elevazioni in condizioni *Aggressive*, la copertura in condizioni ambientali *Molto Aggressive*.

Nella tabella successiva sono indicati i criteri di scelta dello stato limite di fessurazione con riferimento alle condizioni ambientale e al tipo di armatura. Le armature degli scatolari appartengono entrambe al gruppo "poco sensibile".

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	28 di 63

Cuunni di	Condinioni	Combinazione di	Armatura			
Gruppi di Condizioni	Combinazione di azioni	Sensibile		Poco sensibile		
esigerize	esigenze ambientali	azioni	Stato limite	Wd	Stato limite	Wd
a Ordinarie	frequente	ap. fessure	$\leq W_2$	ap. fessure	$\leq W_3$	
	Ordinarie	quasi permanente	ap. fessure	$\leq W_2$	ap. fessure	$\leq W_2$
h	Aggressive	frequente	ap. fessure	$\leq W_2$	ap. fessure	$\leq w_2$
b Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq W_1$	
С	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
		quasi permanente	decompressione	-	ap. fessure	$\leq w_1$

Tabella 6-2 Criteri di scelta dello stato limite di fessurazione (tab. 4.1.IV D.M. 2008)

6.5 Copriferro minimo e copriferro nominale

Ai fini di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore, misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Il copriferro nominale c_{nom} è somma di due contributi, il copriferro minimo c_{min} e la tolleranza di posizionamento h. Vale pertanto: $c_{nom} = c_{min} + h$.

La tolleranza di posizionamento delle armature h, per le strutture gettate in opera, può essere assunta pari ad almeno 5 mm. Considerata la classe di esposizione ambientale dell'opera, si adotta un copriferro minimo variabile a seconda del tratto di scatolare interessato:

- pari a 35 mm, pertanto **c**_{nom} = **40 mm**, valore valido per le fondazioni della struttura;
- pari a 30 mm, pertanto **c**_{nom} = **35 mm**, valore valido per le elevazioni e la copertura della struttura.

7 PARAMETRI GEOTECNICI

I parametri necessari a definire le caratteristiche del terreno ai fini del calcolo delle strutture sono elencate di seguito:

 $\begin{array}{lll} - & \text{Peso di volume naturale del terreno:} & \gamma_t = 20 \text{ kN/m}^3; \\ - & \text{Peso di volume immerso del terreno:} & \gamma' = 11 \text{ kN/m}^3; \\ - & \text{Peso di volume dell'acqua:} & \gamma_a = 20 \text{ kN/m}^3; \end{array}$

Angolo di resistenza al taglio: $\phi = 35^{\circ}$

- Valore del coefficiente di spinta a riposo: $k_0 = 1 - \sin\phi = 0,426$

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	29 di 63

8 GEOMETRIA DELLA STRUTTURA

Per ogni scatolare viene evidenziata la sua geometria, evidenziandone le misure nette, gli spessori e il ricoprimento medio gravante sopra di esso.

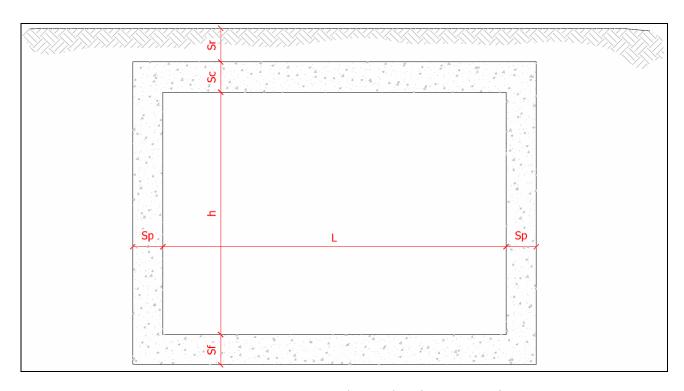


Figura 8-1 Sezione trasversale scatolare (sezione retta)

Le misure geometriche sono di seguito riassunte:

- Luce netta L = 4,00 m
- Altezza netta h = 3,63 m
- Spessore soletta superiore Sc = 0,30 m
- Spessore soletta inferiore Sf = 0.30 m
- Spessore piedritto sinistro Sp = 0,46 m
- Spessore piedritto destro Sp = 0,46 m
- Altezza ricoprimento Sr= 0,50 m

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	30 di 63

9 ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari da assumere per le verifiche di resistenza in esercizio e in presenza dell'evento sismico. I predetti carichi sono successivamente combinati secondo quanto previsto dalla normativa vigente.

Per i materiali sono assunti si assumono i seguenti pesi specifici:

conglomerato cementizio armato: 25 kN/m³
 rilevato/rinterro (peso di volume naturale): 20 kN/m³
 rilevato/rinterro (peso di volume sommerso): 11 kN/m³
 sovrastruttura stradale: 20 kN/m³

9.1 Peso proprio e carichi permanenti portati

Soletta superiore

- peso sovrastruttura stradale	0,5 m * 20 kN/m ³	10,0 kN/m²
- peso proprio	0,30 m * 25 kN/m ³	7,50 kN/m ²

totale **17,50** kN/m²

Soletta inferiore

- peso proprio $0,30 \text{ m} * 25 \text{ kN/m}^3$ **7,50** kN/m²

<u>Piedritti</u>

- peso proprio $0,46 \text{ m} * 25 \text{ kN/m}^3$ **11,50** kN/m²

9.2 Spinta del terreno

Il rinterro a ridosso dello scatolare è realizzato mediante l'utilizzo di materiale arido di buone caratteristiche meccaniche. Secondo quanto riportato nei capitoli precedenti, sono assunti alla base dei calcoli i seguenti parametri:

- rilevato/rinterro (peso di volume naturale)	$\gamma_t = 20 \text{ kN/m}^3$
- rilevato/rinterro (peso di volume sommerso)	$\gamma' = 11 \text{ kN/m}^3$
- coefficiente di spinta a riposo	$k_0 = 0,426$

La spinta delle terre è calcolata mediante il consueto diagramma trapezoidale delle pressioni orizzontali, dipendenti dalla profondità e dal peso specifico del terreno.

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	31 di 63

Tali spinte sono opportunamente combinate, utilizzando i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi. Le pressioni del terreno relative alla <u>spinta a riposo</u>, in corrispondenza dei nodi caratteristici dei piedritti, risultano essere le seguenti:

$$P_9 = P_{12} =$$
5,54 kN/m² $P_1 = P_4 =$ **39,06** kN/m²

La pressione dell'acqua risulta nulla, poiché il livello di falda non interagisce con lo scatolare in oggetto:

$$P_9 = P_{12} =$$
0,00 kN/m² $P_1 = P_4 =$ **0,00** kN/m²

9.3 Carichi mobili verticali sulla soletta superiore

Come azioni variabili da traffico gravante sulla soletta superiore, si assume lo schema di carico 1, che prevede:

- \checkmark il carico $Q_{1.k}$ costituito da un mezzo convenzionale da 600 kN a due assi da 300 kN ognuno (carico tandem) posti a un interasse di 1,20 m lungo il senso di marcia e caratterizzati da una larghezza di 2,40 m (comprese le dimensioni delle impronte)
- ✓ il carico ripartito q_{1,k} pari a **9** kN/m²

/

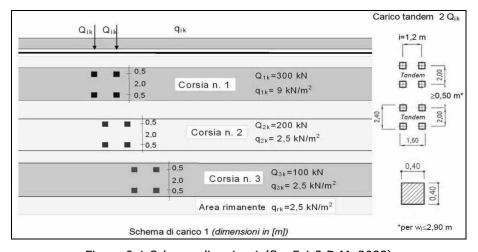


Figura 9-1 Schema di carico 1 (fig. 5.1.2 D.M. 2008)

I carichi sono posizionati ortogonalmente all'asse del sottopasso, ripartiti in direzione sia longitudinale sia trasversale. Le larghezze su cui si considera agente il carico sono la direzione longitudinale e quella trasversale alla strada.

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	32 di 63

Assumendo una diffusione a 30° attraverso il rilevato stradale e a 45° sino al piano medio della soletta superiore, la *larghezza di diffusione del carico longitudinale* L_{dl} dal piano stradale alla quota del piano medio della soletta superiore è pari a:

$$L_{dl} = 1,60 + 2*(0,5*tg30°+0,30/2) = 2,48 \text{ m}$$

Detta L_{dt} la *larghezza di diffusione del carico trasversale* dal piano stradale alla quota del piano medio della soletta superiore, assumendo che detta diffusione avvenga con angolo di diffusione di 30° attraverso il rilevato stradale e di 45° sino al piano medio della soletta superiore, risulta

$$L_{dt} = 2,40 + 2*(0,5*tg30°+0,30/2) = 3,28 \text{ m}$$

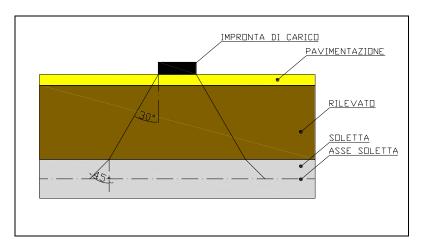


Figura 9-2 Schema di diffusione del carico

In direzione trasversale le impronte di carico possono essere distribuite su una larghezza complessiva non superiore a 3,0 m, in quanto si ipotizza la presenza di n corsie di carico ugualmente caricate lungo l'intero sviluppo dello scatolare.

Pertanto la larghezza di diffusione trasversale non può risultare superiore al valore seguente:

$$L_{dt,max} = 3,00 \text{ m}$$

La pressione dovuta al Q_{1k} risulta pertanto:

$$Q_{1k.dis} = 600/(3,00*2,48) = 80,73 \text{ kN/m}^2$$

Come ulteriore condizione di carico, qualora non siano presenti in soletta i carichi $Q_{1k.dis}$ e $q_{1,k}$, si ipotizza la medesima gravata da un carico distribuito di intensità pari a **20** kN/m².

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	33 di 63

I predetti carichi sono applicati sempre in modo ortogonale allo scatolare, a prescindere dalla sua reale inclinazione rispetto all'asse autostradale. Tale condizione risulta più cautelativa ai fini del dimensionamento strutturale.

9.4 Spinta del sovraccarico sul rilevato

In accordo con quanto riportato nella circolare nº 617 al §5.1.3.3.7.1, il sovraccarico da considerare sul terrapieno adiacente la parete dello scatolare, è quello generato dallo schema di carico 1, dove il carico tandem è sostituito da un carico uniformemente distribuito.

Il carico tandem trasformato in carico uniformemente distribuito assume il valore $600/(3*2,2) = 90,91 \text{kN/m}^2$. Il carico uniformemente distribuito sulla corsia di carco $q_{ik} = 9 \text{ kN/m}^2$ è combinato con il carico tandem uniformemente distribuito.

Tale distribuzione di carico fornisce alle pareti una spinta variabile lungo l'altezza, con intensità maggiore nei nodi superiori e minore nei nodi inferiori.

Considerando il ricoprimento della struttura con il rilevato stradale, il quale contribuisce a diffondere il carico fino al piano di estradosso soletta, il carico distribuito, a livello dell'interasse della soletta, da utilizzare per il calcolo delle spinte agenti sulle pareti dello scatolare risulta pari a:

$$q'_{acc,sup} = Q_{1.k} / ((3 + 2*(h_{ric} + 0.5*h_{sol})*tg30°))*(2,2 + (h_{ric} + 0,5*h_{sol})*tg30°)) = 26,49 \text{ kN/m}^2$$

$$q'_{acc,inf} = Q_{1.k} / ((3 + 2*(h_{ric} + h_{sol} + h_{int} + 0,5*h_{fond})*tg30°))*(2,2 + (h_{ric} + h_{sol} + h_{int} + 0,5*h_{fond})*tg30°)) = 6,37 \text{ kN/m}^2$$

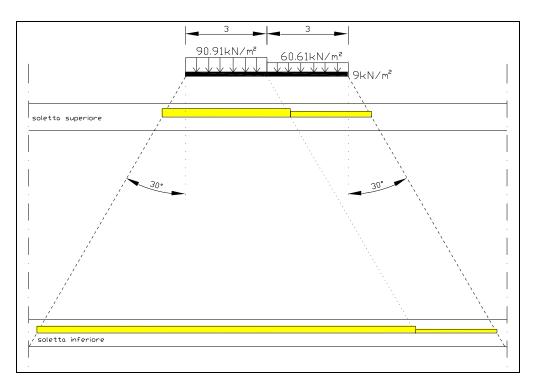


Figura 9-3 Schema diffusione sovraccarico su rilevato

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	34 di 63

9.5 Frenatura

L'azione di frenatura non è ritenuta significativa ai fini delle verifiche strutturali dello scatolare; pertanto, si fissa l'attenzione solo sui carichi del gruppo 1 della tabella 5.1.IV del D.M. 2008.

9.6 Azioni termiche

Le azioni dovute a variazioni termiche sono trascurate, perché ritenute non significative ai fini delle verifiche strutturali dello scatolare.

9.7 Ritiro

Le azioni dovute alla deformazione per ritiro sono trascurate, perché ritenute non significative ai fini delle verifiche strutturali dello scatolare.

9.8 Azione sismica: stato limite di salvaguardia della vita (SLV)

La risultante delle forze inerziali orizzontali e verticali indotte dal sisma è valutata con la seguente espressione (con P peso proprio):

$$F_h = P * k_h$$

$$F_v = P * k_v$$

$$k_h = \beta_m * (a_{max}/g) = 0.346$$

$$k_v = \pm 0.5 * k_h = 0.173$$

Nel caso di sisma orizzontale, oltre a considerare la spinta derivante dal cuneo di terreno (diagramma triangolare di pressioni, avente la risultante a 1/3 dell'altezza), si tiene conto anche di un incremento di spinta. In tal caso si fa riferimento all'EC8, in cui l'incremento di spinta sismica ΔP per la condizione a riposo viene valutato tramite la formula di Wood:

$$\Delta P_d = S \cdot a_q/q \cdot \gamma \cdot h_{tot}^2$$

La risultante di tale incremento di spinta viene applicata ad h/2 del piedritto.

1 - Ai fini delle azioni orizzontali e verticali sulla soletta superiore, si ottengono i seguenti valori:

Permanente (P1)	10,00	kN/m ²
Soletta (P2)	7,50	kN/m ²
Totale (P = P1 + P2)	17,50	kN/m ²

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	35 di 63

Inerzia orizzontale soletta + permanente (P*kh)	6,05	kN/m ²
Inerzia verticale soletta + permanente (P*kv)	3,02	kN/m ²

2 - Ai fini delle azioni orizzontali sui piedritti, sono analizzati i contributi della sovraspinta sismica dovuta al sisma oscillatorio e le spinte inerziali agenti sui piedritti:

Spinta inerziale sui piedritti:

$$P*k_h = 0,46*25*0,346=3,97 \text{ kN/m}$$

Sovraspinta sismica:

$$S*a_g/g*\gamma*h_{tot} = 1,6*0,216*20*3,93 = 27,11 \text{ kN/m}$$

Per quanto riguarda le azioni sismiche, si implementa un'apposita condizione di carico; tale condizione di carico mette in conto i pesi permanenti, l'inerzia della soletta superiore, i carichi gravanti su di essa (con ψ_{2i} = 0,2), l'inerzia dei piedritti e, infine, la sovraspinta sismica.

10 VERIFICHE DI RESISTENZA E A FESSURAZIONE

10.1 Criteri di verifica

Di seguito si riportano le verifiche delle sezioni per le aste più significative e per le combinazioni di carico risultate più critiche.

Le verifiche a flessione, a fessurazione e a taglio sono eseguite nelle sezioni di attacco soletta-piedritto.

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	36 di 63

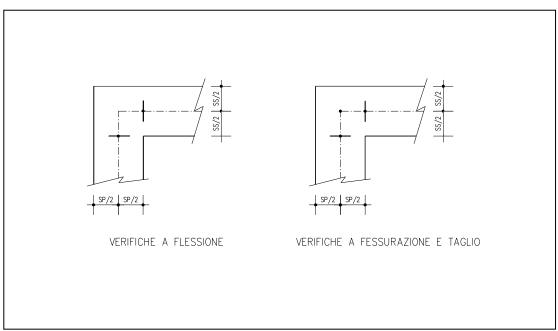


Figura 10-1 Sezioni per verifiche di resistenza e a fessurazione

I calcoli di verifica sono effettuati con il metodo degli Stati Limite, applicando il combinato D. M. 2008, coerentemente con quanto previsto dall'Eurocodice 2.

Esse sono eseguite con l'ausilio del programma agli stati limite ultimi del prof. Piero Gelfi (ver. 7.6 del 25 giugno 2010), con l'intento di fornire una bontà di quanto già eseguito con il modello Pro_Sap.

Le verifiche a fessurazione sono condotte considerando i seguenti casi:

- Verifica di formazione delle fessure: la verifica si esegue per la sezione interamente reagente e per le sollecitazioni di esercizio si determina la massima trazione nel calcestruzzo σ_{ct} , confrontandola con la resistenza caratteristica a trazione per flessione f_{cfk} : se risulta $\sigma_{ct} < f_{cfk}$ la verifica è soddisfatta, altrimenti si procede con la verifica di apertura delle fessure.
- <u>Verifica di apertura delle fessure</u>: l'apertura convenzionale delle fessure è calcolata con le modalità indicate nell'EC2, come richiesto dal D.M. 2008, valutata con le sollecitazioni relative alle Combinazioni FR o QP della normativa vigente sui ponti stradali.

La massima apertura ammissibile per le strutture in ambiente molto aggressivo (copertura) e armature poco sensibili è pari a:

caso c.1) $w_k \le w_1 = 0,20$ mm per combinazione di carico frequente;

caso c.2) $w_k \le w_1 = 0.20$ mm per combinazione di carico quasi permanente;

La massima apertura ammissibile per le strutture in ambiente aggressivo (elevazioni) e armature poco sensibili è pari a:

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	37 di 63

caso b.1) $w_k \le w_2 = 0.30$ mm per combinazione di carico frequente; caso b.2) $w_k \le w_1 = 0.20$ mm per combinazione di carico quasi permanente;

La massima apertura ammissibile per le strutture in ambiente ordinario (fondazioni) è pari a:

caso a.1) $w_k \le w_3 = 0.40$ mm per combinazione di carico frequente;

caso a.2) $w_k \le w_2 = 0.30$ mm per combinazione di carico quasi permanente.

Le verifiche delle tensioni di esercizio si eseguono per la condizione di carico *quasi permanente* e *rara,* verificando rispettivamente che le tensioni di lavoro siano inferiori ai seguenti limiti:

- per la condizione *quasi permanente* si verifica che le massime tensioni presenti nel calcestruzzo siano inferiori a σ_c < 0,45 f_{ck};
- per la condizione *rara* si verifica che le massime tensioni presenti nel calcestruzzo siano inferiori a σ_c < 0,60 f_{ck}, mentre quelle dell'acciaio rispettino la seguente disuguaglianza: σ_s < 0,80 f_{yk}.

Limite fessurazione			Limite tensioni			
	SLE_FREQ.	EQ. SLE_Q.PERM. SLE_RARA		SLE_Q.F	Q.PERM.	
	[mm]	[mm]	CLS	ACCIAIO	CLS	ACCIAIO
Soletta copertura	0.2	0.2	19.92 [MPa]	360 [MPa]	14.94 [MPa]	-
Soletta fondazione	0.3	0.2	16.8 [MPa]	361 [MPa]	13.07 [MPa]	-
Piedritti	0.4	0.3	19.92 [MPa]	362 [MPa]	14.94 [MPa]	-

Le tensioni, evidenziate nei paragrafi di loro competenza, sono visualizzate mediante mappe di colore che evidenziano il rapporto tra la massima tensione agente e la massima tensione ammissibile (fattorizzata, cioè, in base ai casi previsti dalla normativa).

La verifica, pertanto, ha esito positivo qualora il rapporto sia minore o uguale a 1.

10.2 Soletta superiore

10.2.1 ATTACCO PIEDRITTO (ASTE 10-12)

Caratteristiche geometriche della sezione

Larghezza b (cm)	100,0
Altezza h (cm)	30,0
Armatura tesa 1º strato Aa (cm²)	1Ø20/15 cm
	21,99
Copriferro 1°strato c1 (cm)	5,7

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	38 di 63

Armatura tesa 2º strato Aa (cm²)	-
	-
Copriferro 2ºstrato c2 (cm)	-
Armatura Compressa A'a (cm²)	1Ø20/15 cm
	21,99
Copriferro armatura compressa c' (cm)	5,7

10.2.1.1 VERIFICHE ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE

Sollecitazioni n. 1 : Mx = 136,45 kN m, My = 0,00 kN m, N = 38,62 kN SLU CON Mxu, Myu e Nu PROPORZIONALI.

Sollecitazioni ultime:

Mxu = 192,6 kN m, Myu = 0,00 kN m, Nu = 38,62 kN

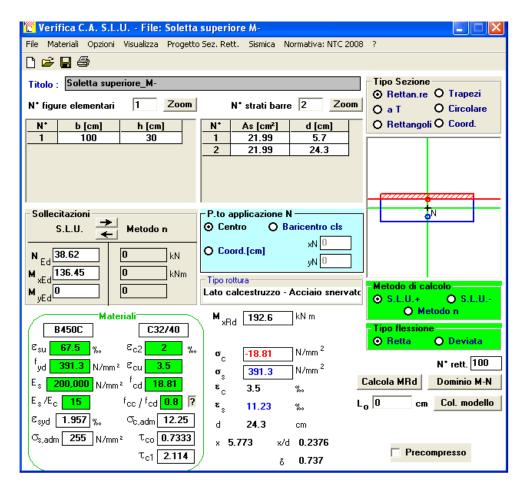


Figura 10-2 SLU pressoflessione soletta superiore M-

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	39 di 63

10.2.1.2 VERIFICHE ALLO STATO LIMITE ULTIMO PER TAGLIO

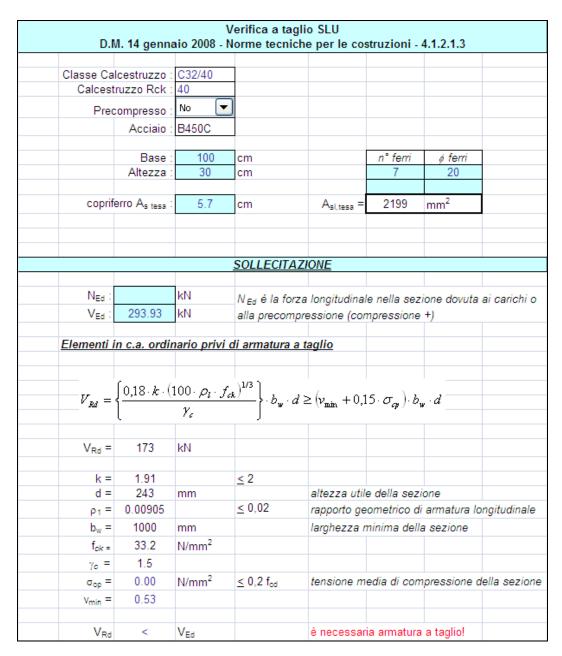


Figura 10-3 Verifica a taglio soletta superiore

Il taglio resistente è pari a 173 kN, valore che risulta insufficiente nel tratto compreso tra filo piedritto e sezione ubicata a una distanza di 0,85 m circa da esso. Per sopperire a tale mancanza, si prevedono staffe ϕ 10/10 cm su entrambi i lati della soletta superiore, sino a una distanza di 0,90 m da filo piedritto.

La tabella seguente evidenzia la sufficienza dell'armatura supplementare prevista, il tutto calcolato secondo quanto previsto dal D.M. 2008 (paragrafo 4.1.2.1.3).

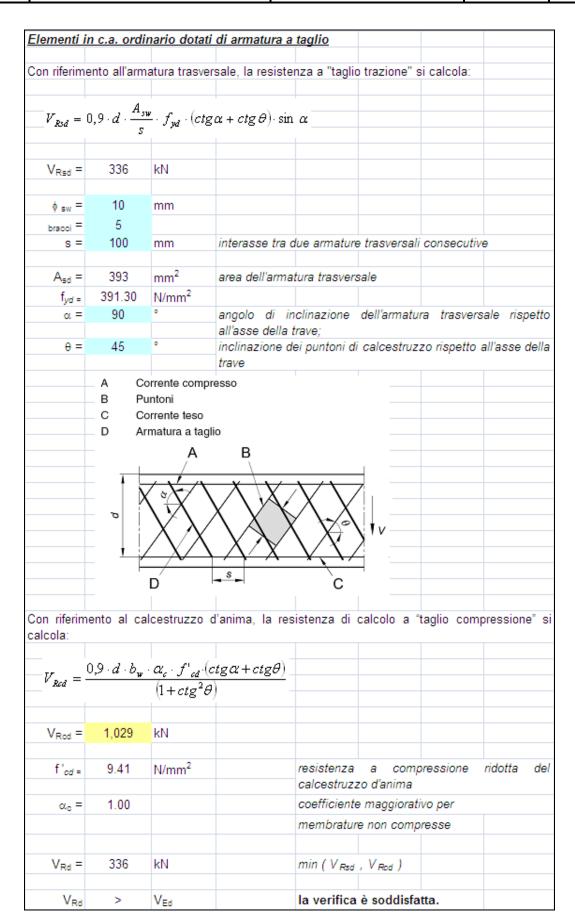


Figura 10-4 Verifica a taglio soletta superiore

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	41 di 63

10.2.2 MEZZERIA (ASTA 11)

Caratteristiche geometriche della sezione

Larghezza b (cm)	100,0
Altezza h (cm)	30,0
Armatura tesa 1º strato Aa (cm²)	1Ø20/15 cm
	21,99
Copriferro 1ºstrato c1 (cm)	5,7
Armatura tesa 2º strato Aa (cm²)	-
	-
Copriferro 2ºstrato c2 (cm)	-
Armatura Compressa A'a (cm²)	1Ø20/15 cm
	21,99
Copriferro armatura compressa c' (cm)	5,7

10.2.2.1 VERIFICHE ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE

Sollecitazioni n. 1 : $Mx = 162,55 \ kN \ m$, $My = 0,00 \ kN \ m$, $N = 33,52 \ kN$ SLU CON Mxu, Myu e Nu PROPORZIONALI.

Sollecitazioni ultime:

 $Mxu = 192,1 \text{ kN m}, \quad Myu = 0,00 \text{ kN m}, \quad Nu = 33,52 \text{ kN}$

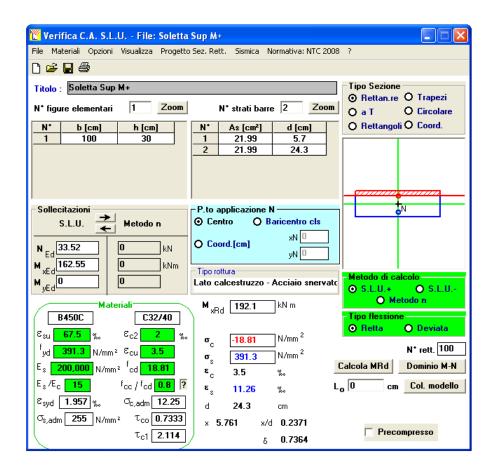


Figura 10-5 SLU pressoflessione soletta superiore M+

10.3 Soletta di fondazione

10.3.1 ATTACCO PIEDRITTO (ASTE 1-3)

Caratteristiche geometriche della sezione

Larghezza b (cm)	100,0
Altezza h (cm)	30,0
Armatura tesa 1º strato Aa (cm²)	1Ø22/15 cm
	26,61
Copriferro 1ºstrato c1 (cm)	6,3
Armatura tesa 2º strato Aa (cm²)	-
	-
Copriferro 2ºstrato c2 (cm)	-
Armatura Compressa A'a (cm²)	1Ø22/15 cm
	26,61
Copriferro armatura compressa c' (cm)	6,3

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	43 di 63

10.3.1.1 VERIFICHE ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE

Sollecitazioni n. 1 : Mx = 167,76 kN m, My = 0.00 kN m, N = 99.54 kN

SLU CON Mxu, Myu e Nu PROPORZIONALI.

Sollecitazioni ultime:

Mxu = 220,4 kN m, Myu = 0.00 kN m, Nu = 99.54 kN

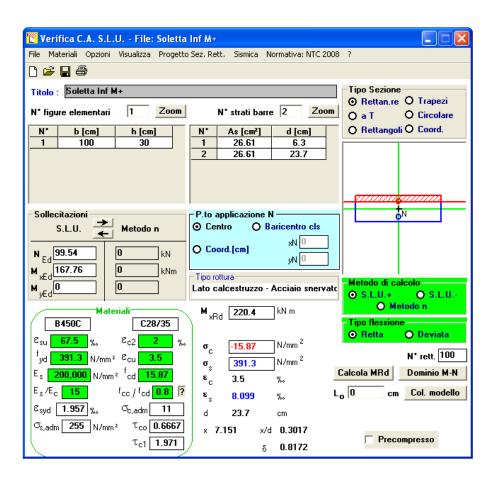


Figura 10-6 SLU pressoflessione soletta inferiore M+

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	44 di 63

10.3.1.2 VERIFICHE ALLO STATO LIMITE ULTIMO PER TAGLIO

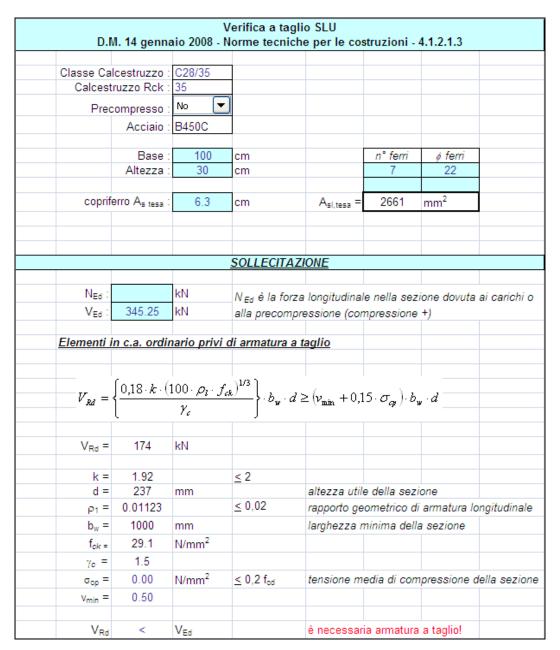


Figura 10-7 Verifica a taglio soletta inferiore

Il taglio resistente è pari a 174 kN, valore che risulta insufficiente nel tratto compreso tra filo piedritto e sezione ubicata a una distanza di 0,95 m circa da esso. Per sopperire a tale mancanza, si prevedono staffe ϕ 10/10 cm su entrambi i lati della soletta inferiore, sino a una distanza di 1,00 m da filo piedritto.

La tabella seguente evidenzia la sufficienza dell'armatura supplementare prevista, il tutto calcolato secondo quanto prevIsto dal D.M. 2008 (paragrafo 4.1.2.1.3).

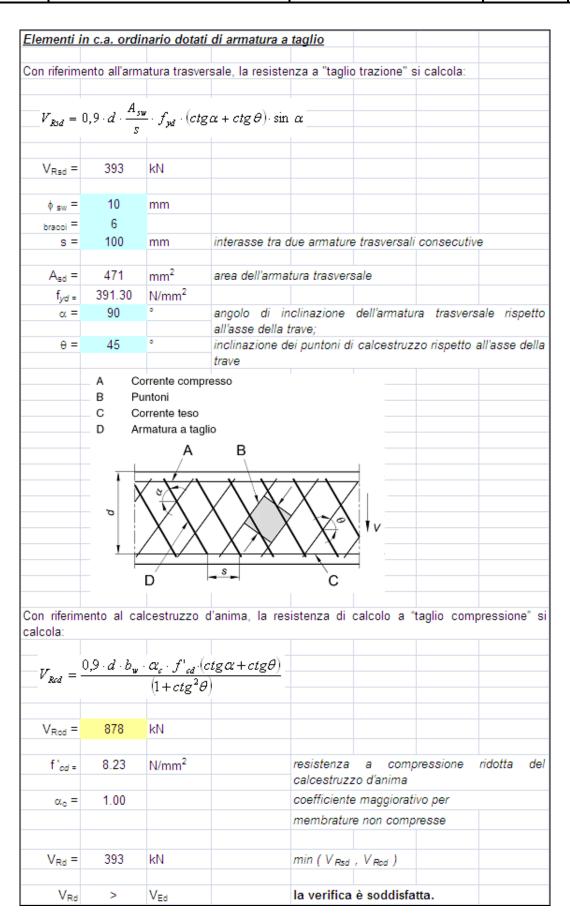


Figura 10-8 Verifica a taglio soletta inferiore

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	46 di 63

10.3.2 MEZZERIA (ASTA 3)

Caratteristiche geometriche della sezione

Larghezza b (cm)	100,0
Altezza h (cm)	30,0
Armatura tesa 1º strato Aa (cm²)	1Ø22/15 cm
	26,61
Copriferro 1ºstrato c1 (cm)	6,3
Armatura tesa 2º strato Aa (cm²)	-
	-
Copriferro 2ºstrato c2 (cm)	-
Armatura Compressa A'a (cm²)	1Ø22/15 cm
	26,61
Copriferro armatura compressa c' (cm)	6,3

10.3.2.1 VERIFICHE ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE

Sollecitazioni n. 1 : Mx = 185,25 kN m, My = 0,00 kN m, N = 84,76 kN SLU CON Mxu, Myu e Nu PROPORZIONALI.

Sollecitazioni ultime:

 $Mxu = 219,1 \text{ kN m}, \quad Myu = 0,00 \text{ kN m}, \quad Nu = 84,76 \text{ kN}$

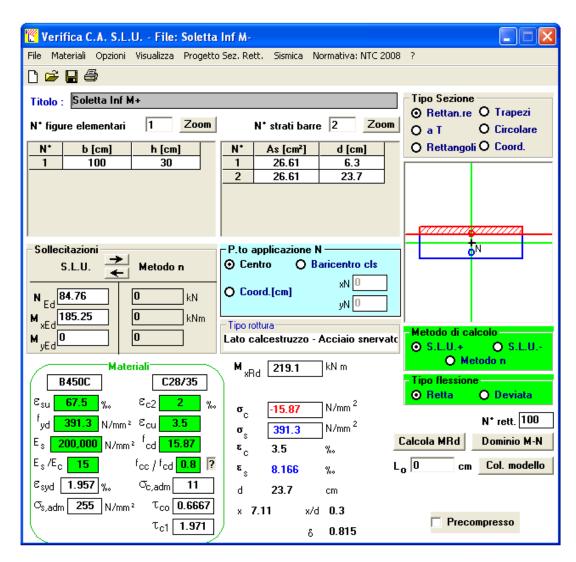


Figura 10-9 SLU pressoflessione soletta inferiore M-

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	48 di 63

10.4 Verifica a fessurazione (solette)

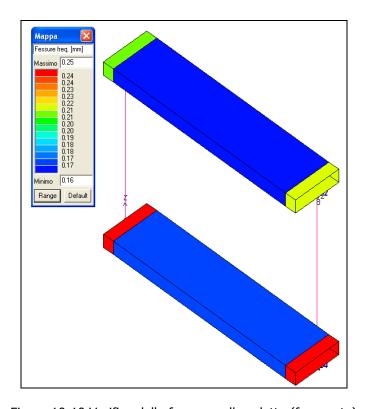


Figura 10-10 Verifica delle fessure nelle solette (frequente)

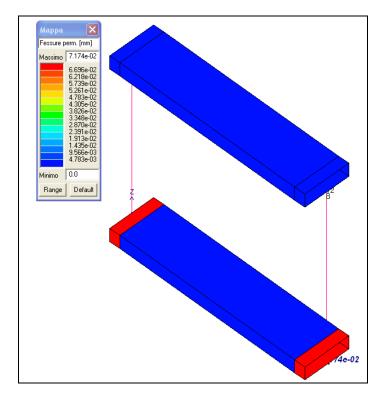


Figura 10-11 Verifica delle fessure nelle solette (quasi permanente)

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	49 di 63

10.5 Verifica delle tensioni di esercizio (solette)

Le tensioni sono visualizzate mediante mappe di colore che evidenziano il rapporto tra la massima tensione agente e la massima tensione ammissibile (fattorizzata in base ai casi previsti dalla normativa). La verifica ha esito positivo qualora il rapporto sia minore o uguale a 1.

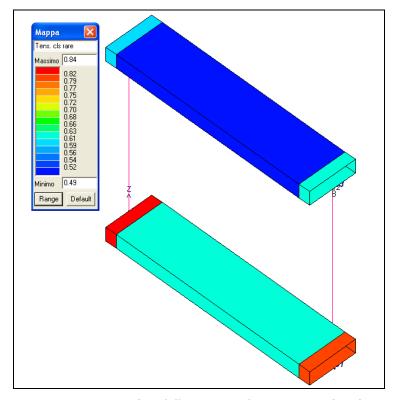


Figura 10-12 Verifica delle tensioni cls in esercizio (rara)

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	50 di 63

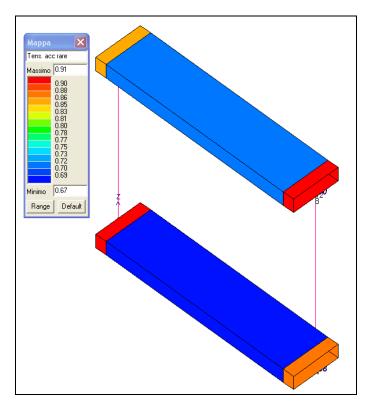


Figura 10-13 Verifica delle tensioni acciaio in esercizio (rara)

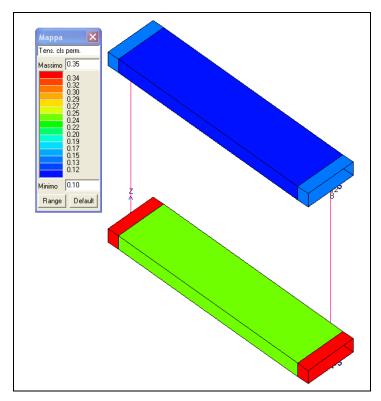


Figura 10-14 Verifica delle tensioni cls in esercizio (permanente)

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	51 di 63

10.6 Piedritto

Ogni piedritto è armato in modo uniforme, nel senso che sono posizionate aree di acciaio costanti lungo tutto il suo sviluppo; inoltre entrambi i piedritti sono armati in modo simmetrico. Sulla base di tali premesse, la verifica è svolta nel tratto di piedritto più sollecitato.

10.6.1 ATTACCO SOLETTA (ASTE 4-5-8-9)

Caratteristiche geometriche della sezione

Larghezza b (cm)	100,0
Altezza h (cm)	46,0
Armatura tesa 1º strato Aa (cm²)	1Ø16/15 cm
	14,07
Copriferro 1°strato c1 (cm)	5,5
Armatura tesa 2º strato Aa (cm²)	-
	-
Copriferro 2ºstrato c2 (cm)	-
Armatura Compressa A'a (cm²)	1Ø16/15 cm
	14,07
Copriferro armatura compressa c' (cm)	5,5

10.6.1.1 VERIFICHE ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE

Sollecitazioni n. 1 : Mx = 236,35 kN m, My = 0,00 kN m, N = 377,09 kN

SLU CON Mxu, Myu e Nu PROPORZIONALI.

Sollecitazioni ultime:

Mxu = 285,9 kN m, Myu = 0.00 kN m, Nu = 377,09 kN

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	52 di 63

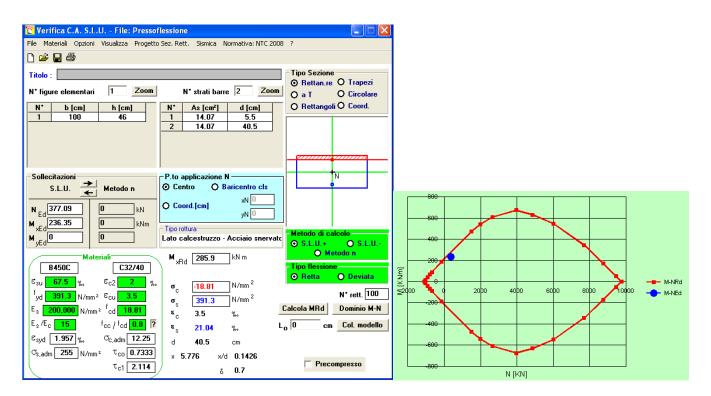


Figura 10-15 SLU pressoflessione piedritto

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	53 di 63

10.6.1.2 VERIFICHE ALLO STATO LIMITE ULTIMO PER TAGLIO

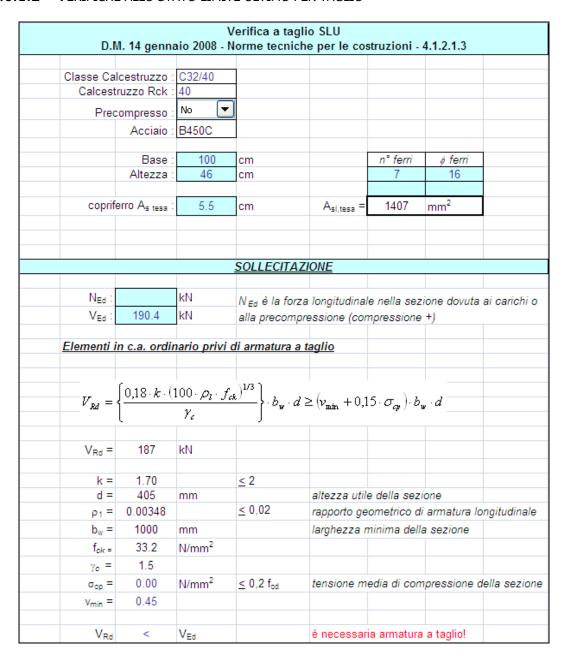


Figura 10-16 Verifica a taglio piedritto

Il taglio resistente è pari a 187 kN, valore che risulta insufficiente nel tratto compreso tra filo soletta di fondazione e sezione ubicata a una distanza di 0,1 m circa da essa. Per sopperire a tale mancanza, si prevedono staffe $\phi 10/10$ cm su entrambi i lati dei piedritti, sino a una distanza di 0,20 m da filo fondazione.

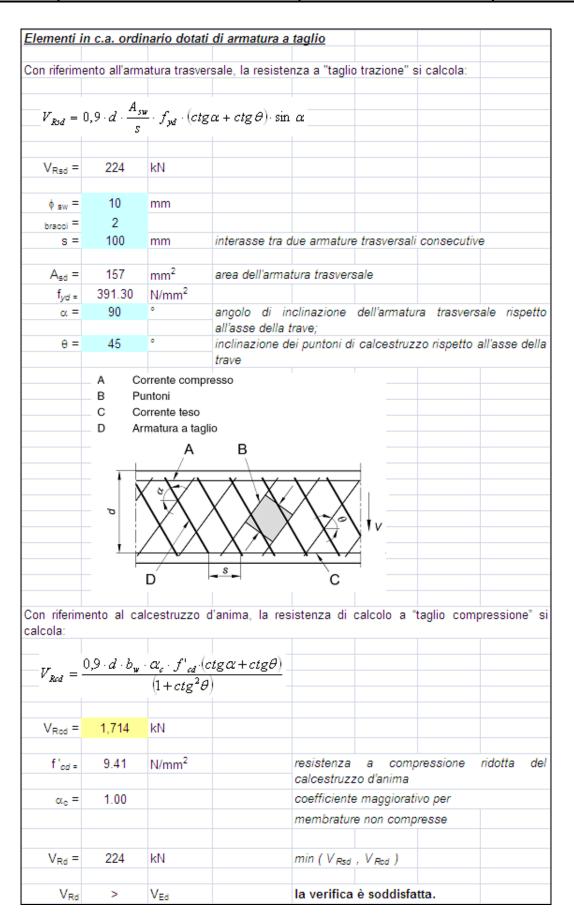


Figura 10-17 Verifica a taglio piedritto

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	55 di 63

10.6.1.3 VERIFICA A FESSURAZIONE

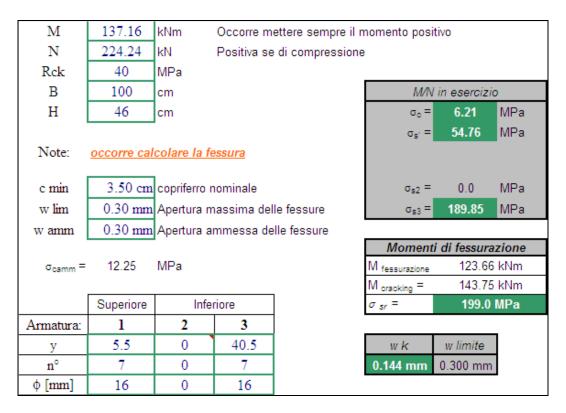


Figura 10-18 Verifica a fessurazione piedritto (comb. frequente)

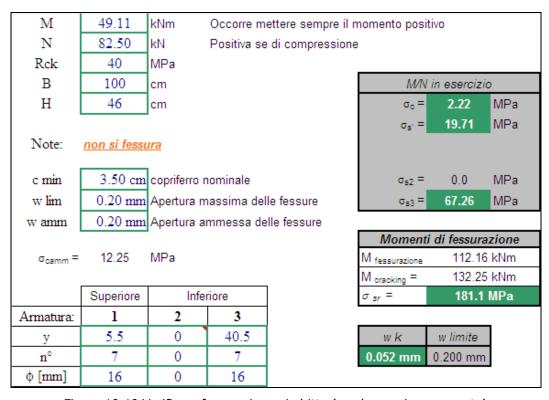


Figura 10-19 Verifica a fessurazione piedritto (comb. quasi permanente)

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	56 di 63

10.6.1.4 VERIFICA DELLE TENSIONI DI ESERCIZIO

Le tensioni sono visualizzate mediante mappe di colore che evidenziano il rapporto tra la massima tensione agente e la massima tensione ammissibile (fattorizzata in base ai casi previsti dalla normativa). La verifica ha esito positivo qualora il rapporto sia minore o uguale a 1.

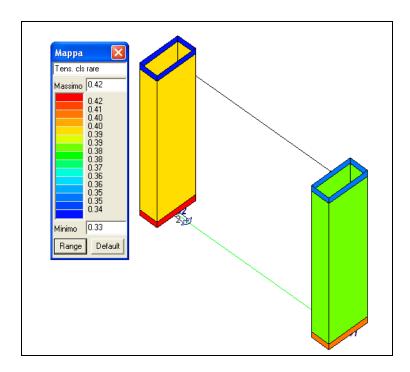


Figura 10-20 Verifica delle tensioni cls in esercizio (rara)

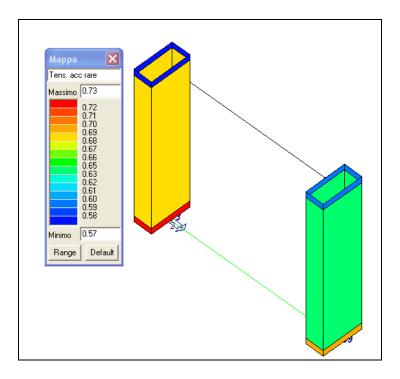


Figura 10-21 Verifica delle tensioni acciaio in esercizio (rara)

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	57 di 63

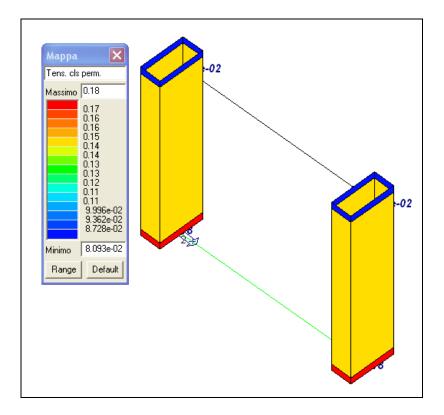


Figura 10-22 Verifica delle tensioni cls in esercizio (permanente)

10.7 Armatura di ripartizione dello scatolare

L'armatura di ripartizione nelle solette e nelle pareti dello scatolare (direzione y) viene posta in misura non inferiore al 20% dell'armatura principale (direzione x); così recita infatti l'Eurocodice 2 al paragrafo 9.3.1 (Piastre piene – armatura di flessione): "...Nelle piastre a portanza unidirezionale si raccomanda di prevedere una armatura trasversale secondaria in quantità non minore del 20% dell'armatura principale...". L'opera in oggetto prevede ripartitori ϕ 14/30 nelle solette e ϕ 10/30 nei piedritti.

11 CALCOLO INCIDENZA ARMATURA

L'opera in oggetto ha un'incidenza pari a 130.50 kg/m³, come è desumibile dai seguenti valori:

volume scatolare: 6,29 m³/m
 peso armatura: 821.08 kg/m
 incidenza: 130.50 kg/ m³

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	58 di 63

12 VERIFICA A GALLEGGIAMENTO

La verifica viene eseguita sia in condizione di costruzione sia in condizione di esercizio (ovviamente in assenza di sovraccarichi accidentali), considerando il battente idrico alla sua altezza massima.

Per la stabilità al sollevamento deve risultare che il valore di progetto dell'azione instabilizzante $V_{inst,d}$, combinazione di azioni permanenti ($G_{inst,d}$), sia non maggiore della combinazione dei valori di progetto delle azioni stabilizzanti ($G_{stb,d}$) e delle resistenze (R_d):

$$V_{inst,d} \le G_{stb,d} + R_d$$
 dove $V_{inst,d} = G_{inst,d}$

Poiché i carichi permanenti non strutturali (es. carichi permanenti portati) sono compiutamente definiti, si possono adottare gli stessi coefficienti validi per le azioni permanenti (par. 6.2.3.2. D.M. 2008).

Il livello di falda idrica non interagisco con lo scatolare in oggetto. Ne consegue che la verifica a galleggiamento è soddisfatta.

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	59 di 63

13 ALLEGATI

13.1 Sollecitazioni SLU scatolare

Sezione di verifica	Asta	Nodo	M [kNm]	N [kN]	T [kN]
Verifica a f	lessione o pr	esso-flession	е		
Mezzeria soletta superiore	11		162.55	33.52	
Incastro soletta superiore – piede ritto	10	10	136.45	38.62	
Ritto	4	5	236.35	377.09	
Incastro fondazione – piede ritto	1	2	167.76	99.54	
Mezzeria fondazione	2		185.25	84.76	
	Verifica a tag	ilio			
Incastro soletta superiore – ritto	11	10		38.62	293.93
Ritto	6	5		40.49	190.4
Incastro fondazione – piede ritto	2	2		89.85	345.25

Tabella 13-1 Massime sollecitazioni SLU

Nelle tabelle il simbolo "----" viene utilizzato per evidenziare le caratteristiche della sollecitazione il cui valore non viene applicato nella conduzione della verifica specifica.

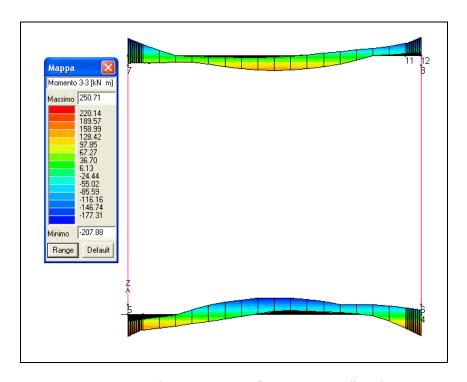


Figura 13-1 Inviluppo momento flettente SLU nelle solette

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	60 di 63

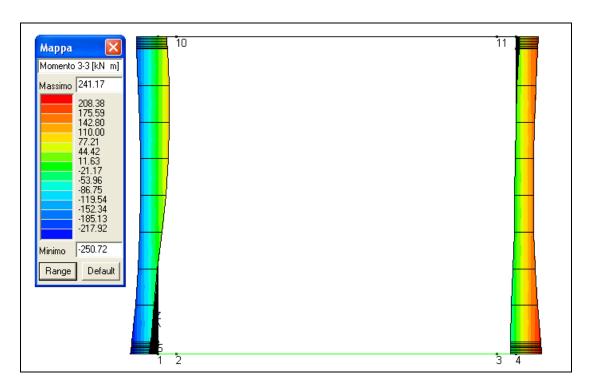


Figura 13-2 Inviluppo momento flettente SLU nei piedritti

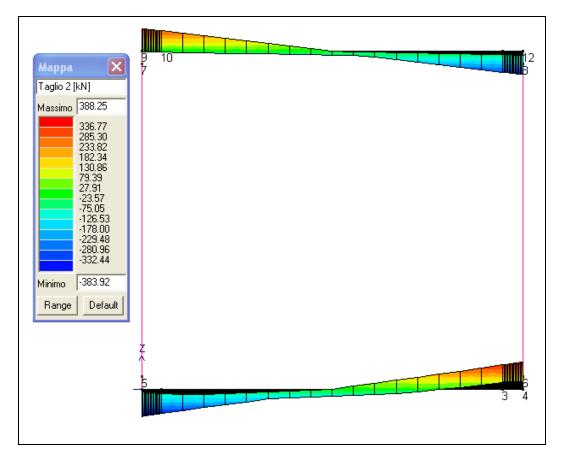


Figura 13-3 Inviluppo azione tagliante SLU nelle solette

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	61 di 63

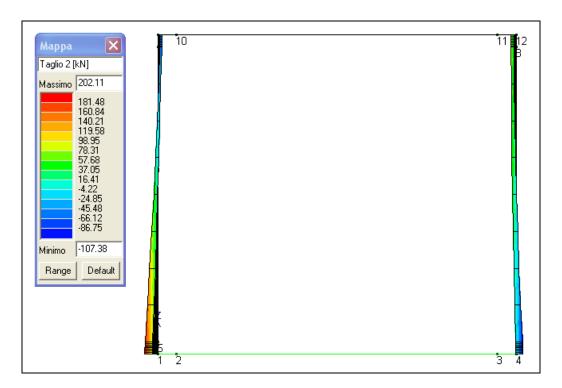


Figura 13-4 Inviluppo azione tagliante SLU nei piedritti

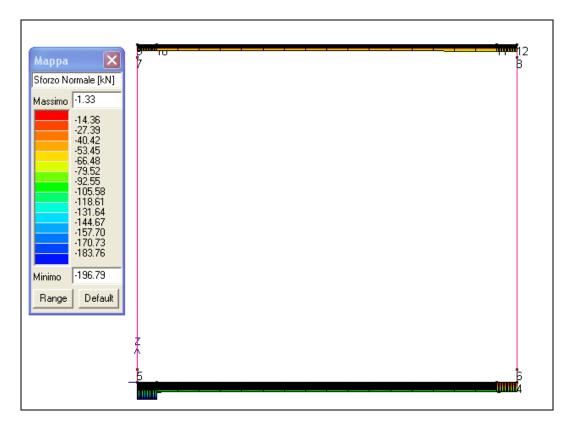


Figura 13-5 Inviluppo azione assiale SLU nelle solette

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	62 di 63

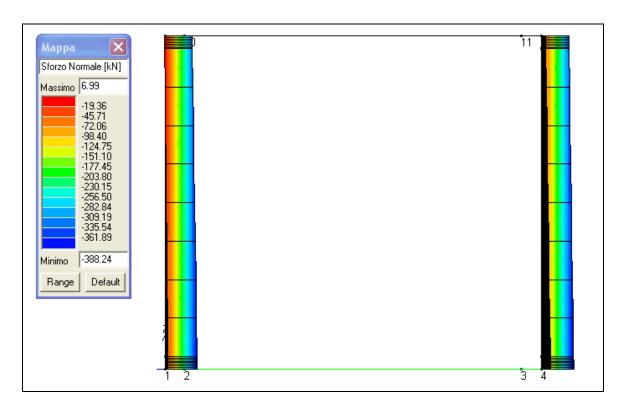


Figura 13-6 Inviluppo azione assiale SLU nei piedritti

TITOLO DOCUMENTO	CODIFICA DOCUMENTO	REVISIONE	FOGLIO
STR0301.doc	STR301	02	63 di 63

13.2 Sollecitazioni SLE scatolare

Sezione di verifica	Asta	Nodo	M [kNm]	N [kN]
Mezzeria Soletta Superiore	11		90.87	24.84
Incastro Soletta Superiore – Ritto	10	10	75.23	26.35
Incastro Testa Ritto – Soletta Superiore	8	7	111.36	185.11
Incastro Piede Ritto – Fondazione	4	5	137.16	224.24
Incastro Fondazione – Piede Ritto	1	2	97.47	67.17
Mezzeria Fondazione	2		108.16	62.78

Tabella 13-2 Massime sollecitazioni SLE (combinazione frequente)

Sezione di verifica	Asta	Nodo	M [kNm]	N [kN]
Mezzeria Soletta Superiore	11		16.81	24.85
Incastro Soletta Superiore – Ritto	10	10	18.19	24.85
Incastro Testa Ritto – Soletta Superiore	8	7	23.04	40.75
Incastro Piede Ritto – Fondazione	4	5	49.11	82.5
Incastro Fondazione – Piede Ritto	1	2	39.72	62.78
Mezzeria Fondazione	2		35.3	62.77

Tabella 13-3 Massime sollecitazioni SLE (combinazione quasi permanente)

Nelle tabelle il simbolo "----" viene utilizzato per evidenziare le caratteristiche della sollecitazione il cui valore non viene applicato nella conduzione della verifica specifica.