autostrade per l'italia

AUTOSTRADA (A13): BOLOGNA-PADOVA

TRATTO: BOLOGNA - FERRARA

AMPLIAMENTO ALLA TERZA CORSIA TRATTO: BOLOGNA ARCOVEGGIO — FERRARA SUD

PROGETTODEFINITIVO

IN-VIABILITA' INTERFERITE

str.com. CHIAVICONE - Prog. 020+209

Rifacimento fuori sede

Relazione descrittiva e di calcolo TA391 e TA392

IL PROGETTISTA SPECIALISTICO

Ing. Marco Pietro D'Angelantonio Ord. Ingg. Milano N.20155

RESPONSABILE GEOTECNICA ALL'APERTO

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Federica Ferrari Ord. Ingg. Milano N. 21082

IL DIRETTORE TECNICO

Ing. Orlando Mazza Ord. Ingg. Pavia N. 1496

PROGETTAZIONE NUOVE OPERE AUTOSTRADALI

	CODICE IDENTIFICATIVO												Ordinatore:																								
	RIFERIMENTO PROGETTO RIFERIMENTO DIRETTORIO RIFERIMENTO ELABORATO																																				
	Codio	ce C	omm	essa		Lot	to, S	Sub-F Appal	rog, to	Fo	ose	Сар	itolo	P	aragr	ifo	tipo	logia	WBS	gres	sivo		PART	E D'O	DPER/	`	Tip.	Di	scipli	na	Р	rogre	ssivo	•	R	ev.	_
		_				_)))		•			_						SCALA:
1	1	1	3	0	6	O	O	0	1	P	D	0	0	0	O	O	0	0	0	0	0	0	U	U	U	U	0	Α	Р	E	1	1	8	0	 -	_	Varie

	PROJECT MAN	AGER:	SUPPORTO SP	ECIALISTICO:		REVISIONE	
spea	l .	- · · · · · ·			n.	data	
opea		ng. Federica Ferrari			0	NOVEMBRE 2016	
ENCINIFEDING	ora.	Ingg. Milano N. 21082			1	-	
ENGINEERING					2	-	
A . 7	REDATTO:	_	VERIFICATO:	_	3	_	
Atlantia Atlantia	REDATIO:		VENITIONIO.			_	

VISTO DEL COMMITTENTE

autostrade per l'italia

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Antonio Tosi

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti
dipartimentoperleinfrastrutture, gliaffarigeneraliedil personale
strutturadivigilanzasulleconcessionarieautostradali

SPEA Ingegneria Europea

AUTOSTRADA (A13) BOLOGNA-PADOVA

Ampliamento alla terza corsia del tratto Bologna Arcoveggio – Ferrara Sud

PROGETTO DEFINITIVO

VIABILITÀ INTERFERITE strada comunale CHIAVICONE – progr. km 020+209

Muri in terra armata TA391 e TA392 Relazione descrittiva e di calcolo

APE1180

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

INDICE

1.	P	REMESSA	3
2.	N	ORMATIVA E DOCUMENTI DI RIFERIMENTO	4
	2.1	Normativa di riferimento	4
	2.2	DOCUMENTI DI RIFERIMENTO	5
	2.3	Bibliografia	5
	2.4	SOFTWARE	5
3.	N	IATERIALI	6
	3.1	Materiali per terre armate	6
4.	C	ARATTERIZZAZIONE GEOTECNICA	8
	4.1	Premessa	8
	4.2	INDAGINI E PROVE DI LABORATORIO DI RIFERIMENTO	8
	4.3	STRATIGRAFIA DI RIFERIMENTO E PARAMETRI GEOTECNICI CARATTERISTICI	8
	4.4	MISURE PIEZOMETRICHE E LIVELLI DI FALDA	9
	4.5	DETERMINAZIONE DELLA CATEGORIA DI SUOLO	9
5.	T	ERRE ARMATE	11
	5.1	Premessa	11
	5.2	GENERALITÀ DELLA TERRA ARMATA	12
	5.3	CRITERI DI PROGETTAZIONE: NORMATIVA E COMBINAZIONI DI CARICO	13
	5.4	IPOTESI DI CALCOLO	15
	5.5	Muri di sostegno in Terra Armata – Tabulati di calcolo	26
6.	A	PPENDICE: SPECIFICHE TECNICHE PER STRUTTURE IN TERRA ARMATA	32
	6.1	PARAMENTO ESTERNO	32
	6.2	CALCESTRUZZO DI LIVELLAMENTO	33
	6.3	RINFORZI IN ACCIAIO ZINCATO AD ADERENZA MIGLIORATA	34
	6.4	BULLONI DI FISSAGGIO	34
	6.5	GIUNTI PER PANNELLI	35
	6.6	RILEVATO	35
	6.7	Preparazione del piano di posa	38
	6.8	Montaggio	38
	6.9	COSTRUZIONE DEL RILEVATO	38

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Bologna Arcoveggio-Ferrara Sud
strada comunale CHIAVICONE – progr. km 020+209

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

1. PREMESSA

Nella presente relazione vengono illustrate le verifiche geotecniche relative alla realizzazione dei muri in Terra Armata TA391 e TA3192, previsti nell'ambito della progettazione definitiva dell' "Autostrada A13 (Bologna-Padova), Ampliamento alla terza corsia del tratto tra Bologna Arcoveggio – Ferrara Sud".

I muri in oggetto sono previsti a sostegno dei rilevati di approccio del Cavalcavia Chiavicone, lungo la viabilità interferita omonima.

In presenza di terreni molto compressibili, le scelte progettuali effettuate derivano dalla necessità di minimizzare i cedimenti dei rilevati. A tal fine il nuovo cavalcavia verrà realizzato con spalle "a setto" indipendenti dalle rampe (spinte del terreno trascurabili) e le rampe di approccio volumetricamente contenute con muri di sostegno in terra armata, anche in corrispondenza della spalla, e ulteriormente alleggerite con argilla espansa di riempimento.

Nel documento verranno affrontati i seguenti aspetti:

- richiamo delle condizioni geotecniche: stratigrafia, parametri di progetto, falda;
- dimensionamento e verifiche muri in TA.

Le verifiche sono state condotte ai sensi della Normativa vigente (NTC 2008).

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

2. NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 NORMATIVA DI RIFERIMENTO

- Decreto Ministeriale dei Lavori Pubblici n. 47 del 11 marzo 1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e del le scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- Normativa francese: AFNOR A 05 252 luglio 1990 "Aciers galvanisés ou non mis au contact des materiaux naturels de ramblais (sols)".
- Normativa francese: AFNOR NF P 94-220 luglio 1992 e successive integrazioni "Renforcement des sols. Ouvrages en sols rapportés renforcés par armatures ou nappes peu extensibles et souples".
- Normativa francese: AFNOR NF P 94-270 luglio 2009 "Calcul géotechnique –
 Ouvrages de soutènement Remblais renforcés et massifs en sol cloué".
- AASHTO "Design Method for Reinforced Earth Structures Subject to Seismic Forces" Technical Bulletin MSE9 January 1995.
- UNI ENV 1997-1 Eurocodice 7: "Progettazione geotecnica" Parte 1.
- UNI ENV 1998-5 Eurocodice 8: "Design of structures for earthquake resistence Part
 5: Foundation, retaining structures and geotecnical aspects".
- UNI 10006-2002 Costruzione e manutenzione delle strade Tecniche di impiego delle terre.
- UNI 14475-2006 Esecuzione di lavori geotecnica speciali Terra rinforzata.
- Decreto del Ministero delle Infrastrutture del 14/01/2008 "Norme Tecniche per le Costruzioni" pubblicate sulla G.U. n. 29 del 04/02/2008.
- Circolare esplicativa CSLP del 02-02-09: "Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni di cui al D.M. 14 /01/08".

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

2.2 DOCUMENTI DI RIFERIMENTO

- APE0001 Relazione geotecnica generale
- Appendice 3 APE 0001 Schede Geotecniche delle opere.
- APE0002-APE0009 Planimetrie e Profili Geotecnici.
- APE1181 Carpenterie Planimetria, prospetti e sezioni TA391.
- APE1182 Carpenterie Planimetria, prospetti e sezioni TA392.
- APE1183 Scavi Pianta e sezioni TA391.
- APE1184 Scavi Pianta e sezioni TA392.

2.3 BIBLIOGRAFIA

- Seed H.B. and Whitman R.V. "Design of earth retaining structures for dynamics loads". Proceeding of the 1970 Specialty Conference on Lateral Stresses and Design of Earth Retaining Structures – Cornell University 22-24 giugno 1970.
- Richardson G.N. et al. "Seismic Design of Reinforced Earth Walls" Journal of Geotechnical Engineering Division – ASCE, Vol 101 October 1975 e ASCE Vol 103 January 1977.
- Whitman R.V. and Liao S. (1985) "Seismic design of retaining walls".

2.4 SOFTWARE

 Valdez - Ver. 5.1 – Taisoft. Per il calcolo delle strutture in terra armata a paramento verticale. Il calcolo è condotto seguendo le linee guida delle Norme Francesi AFNOR NF P 94-270 "Calcul geotechnique – Ouvrages de soutenment – Remblais renforces et massifs en sol clouè".

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

3. MATERIALI

3.1 MATERIALI PER TERRE ARMATE

Nella redazione del presente progetto è stato previsto l'impiego dei seguenti materiali:

Calcestruzzo:

Pannelli in calcestruzzo armato o meno, Classe C32/40:

- resistenza caratteristica a compressione R_{ck} > 40 N/mm²

La classe di resistenza sopra indicata è stata determinata considerando una classe di esposizione XC4 (ciclicamente asciutto e bagnato) + XF2 (moderata saturazione d'acqua in presenza di agente disgelante).

Il cordolo di livellamento è gettato in opera a cura dell'Impresa ed è in magrone di classe superiore alla C12/15 ($R_{ck} > 15 \text{ N/mm}^2$).

Acciaio:

Armatura lenta pannelli in calcestruzzo (ove presente), acciaio Tipo B450C:

tensione di rottura a trazione: ≥ 540 MPa
 tensione di snervamento: ≥ 450 MPa

- allungamento percentuale a rottura: ≥ 22%

Armature metalliche di rinforzo del terreno, sez. 50x4 mm e/o 45x5 mm, tipo S355J0:

- tensione di rottura a trazione: $\geq 510 \text{ MPa}$ - tensione di snervamento: $\geq 355 \text{ MPa}$

- allungamento percentuale a rottura: ≥ 22%

Bulloni di fissaggio:

- tensione di rottura a trazione: \geq 1000 MPa - tensione di snervamento: \geq 900 MPa

- allungamento percentuale a rottura: ≥ 9%

Per le caratteristiche dei rilevati, vedasi Appendice.

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Bologna Arcoveggio-Ferrara Sud strada comunale CHIAVICONE – progr. km 020+209 Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

Per maggiori dettagli relativi a caratteristiche e requisiti di materiali e componenti si rimanda alle Specifiche Tecniche, nonché ai disegni di progetto.

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

4. CARATTERIZZAZIONE GEOTECNICA

4.1 PREMESSA

Di seguito si riporta la caratterizzazione geotecnica e la stratigrafia di riferimento utilizzata nei calcoli per la verifica/dimensionamento dei muri.

I valori caratteristici dei parametri geotecnici e la stratigrafia di riferimento sono stati ottenuti a partire dai risultati delle indagini a disposizione per l'opera in esame, mediante l'interpretazione di prove e misure effettuate in sito.

Per eventuali approfondimenti, si rimanda alla Relazione Geotecnica allegata al progetto e alle Schede Geotecniche.

4.2 INDAGINI E PROVE DI LABORATORIO DI RIFERIMENTO

In corrispondenza dell'opera in esame sono disponibili i risultati delle indagini riassunte nella Tabella 1.

Tabella 1: Indagini geognostiche di riferimento

sigla indagine	campagna di indagine	pk (km)	quota p.c. (m s.l.m.)	lunghezza (m)	strumentazione installata
CPTU – BF18 – C	Tecno-in C-2011	20+246	8.41	35.15	-
S– BF19 – C	Tecno-in C-2011	20+450	8.42	40.00	-

4.3 STRATIGRAFIA DI RIFERIMENTO E PARAMETRI GEOTECNICI CARATTERISTICI

Le tabelle sottostanti riportano le unità litostratigrafiche individuate in corrispondenza dell'opera in esame (Tabella 2), la stratigrafia di riferimento valutata a partire dal piano campagna riferito alla quota +8.41 m s.l.m. ed i parametri geotecnici di progetto (Tabella 3).

Tabella 2: Unità litostratigrafiche individuate in corrisponza dell'opera in esame

Unità	Descrizione
R/V	Terreno di riporto e terreno vegetale
1a	Intercalazioni di sabbia limosa o sabbia di color nocciola /ocra
2	Argilla limosa o Debolmente limosa / Limo argilloso o debolmente argilloso – sabbioso di color grigio
2a	Intercalazioni di sabbia limosa o sabbia di color grigio

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

Tabella 3: Caratterizzazione stratigrafico – geotecnica

Profondità	Unità	Zw	γn	Dr	ф' (*)	c' (*)	Cu (*)	E ₂₅	М
(Q _{ref} p.c: +8.41 m s.l.m.)	(-)	(m)	(kN/m³)	(%)	(°)	(kPa)	(kPa)	(MPa)	(MPa)
0.00-10.00	1	0	18.5-20.5	-	22-25	0-5	40-80	-	4-7.5
10.00-12.00	1a	0	19.0-21.0	40-70	33-38	0	-	10-25	-
12.00-15.50	2	0	18.0-19.5	-	20-25	0-5	60-100	-	6-10
15.50-17.50	2a	0	18.5-21.0	30-70	32-38	0	-	8-26	-
17.00-30.00	2	0	18.0-19.5	-	20-25	0-5	60-130	-	6-13
30.00-31.00	2a	0	18.5-21.0	35-70	33-39	0	-	10-35	-
31.00-35.00	2	0	18.0-19.5	-	20-25	0-5	60-110	-	6-11

dove:

- intervallo di valori (min max);
- ÷ linearmente variabile (da ÷ a).

 $Q_{\text{ref}} \qquad \text{ = quota assoluta inizio caratterizzazione (m slm);} \\$

z_w = profondità falda da p.c. (m);

 γ_n = peso di volume naturale (kN/m³);

D_r = densità relativa (%);

- (*) = il valore caratteristico di tale parametro viene determinato come segue:
 - valori prossimi al valore medio dovranno essere assunti per verifiche che coinvolgono un volume di terreno tale da compensare eventuali eterogeneità e/o quando la struttura a contatto con il terreno presenta una rigidezza tale da consentire il trasferimento delle azioni dalle zone più resistenti a quelle meno resistenti;
 - valori prossimi al valore minimo di tale parametro dovranno essere adottati per verifiche che
 coinvolgono modesti volumi di terreno e/o quando la struttura a contatto con il terreno non
 è in grado di garantire il trasferimento delle azioni dalle zone più resistenti a quelle meno
 resistenti a causa della sua scarsa rigidezza;
- φ' = angolo di resistenza al taglio (°);
- c' = coesione efficace (kPa);
- c_u = resistenza al taglio in condizioni non drenate (kPa);
- E₂₅ = modulo di deformazione elastico operativo E₂₅ corrispondente ad un grado di mobilitazione della resistenza ultima pari al 25% (MPa);
- M = modulo edometrico (MPa).

4.4 MISURE PIEZOMETRICHE E LIVELLI DI FALDA

Per quanto riguarda la falda, si considera coincidente al p.c. come da indagine S-BF19-C.

4.5 DETERMINAZIONE DELLA CATEGORIA DI SUOLO

La determinazione della categoria di suolo, in accordo con le prescrizioni della Normativa NTC 2008, è basata sulla stima dei valori della velocità media di propagazione delle onde di taglio $V_{S,30}$ o alternativamente sui valori della resistenza penetrometrica dinamica equivalente $N_{SPT,30}$ entro i primi 30 m di profondità (per terreni a grana grossa), o sulla

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Bologna Arcoveggio-Ferrara Sud strada comunale CHIAVICONE – progr. km 020+209 Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

resistenza non drenata equivalente media sempre entro i primi 30 m di profondità $c_{u,30}$ (per terreni a grana fina).

Analizzando i primi 30 m al di sotto dello strato di terreno vegetale e riporto, e sulla base della definizione delle categorie di suolo di cui al par. 3.2.2 del Doc. NTC'08, l'area di intervento risulta caratterizzabile come sito di **categoria C**, ossia "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti, con spessori superiori a 30 m".

La categoria di sottosuolo è stata definita sulla base dei dati ottenuti dalla prova Cross Hole CH BF19-C, eseguita a 300 m di distanza dall'opera in esame, in corrispondenza della pk 20+500, in termini di $V_{s,30}$ ($V_{s,30}$ = 195 m/s). Tale risultato è confermato da $c_{u,30}$ calcolato per la CPTU BF18-C ($c_{u,30}$ = 81 kPa).

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

5. TERRE ARMATE

5.1 PREMESSA

Il presente paragrafo riguarda il dimensionamento interno dei massicci in terra armata a paramento verticale in calcestruzzo inseriti nel progetto dell'adeguamento dell'Autostrada A13 nel tratto Bologna Arcoveggio – Ferrara Sud.

In particolare, l'opera oggetto di questa relazione è il Cavalcavia Strada Comunale CHIAVICONE alla progr. 020+209.

Le opere predisposte in terra armata consistono in tre muri di sostegno, formanti in pianta una "C", con funzione di contenimento del terreno a tergo di ciascuna delle 2 spalle in cemento armato del cavalcavia; allontanandosi dalle spalle, i quattro andatori sono ancora in terra armata con funzione di sostegno diretto della sede stradale.

Il paramento di tutti i muri è verticale con pannelli prefabbricati cruciformi in calcestruzzo.

Nella redazione della presente nota di calcolo si è esaminata nel dettaglio la Sezione 16 (H = 8.73 m.), considerata la più rappresentativa.

La stratigrafia ed i parametri geotecnici di progetto dei terreni in sito sono presenti nel Capitolo 4.

Il prosieguo della relazione è composto di tre sezioni principali:

- la prima illustra le ipotesi di calcolo;
- la seconda descrive il metodo di calcolo in maniera discorsiva e tramite le formule usate;
- la terza riporta l'output del calcolatore con le verifiche del numero e della lunghezza delle armature per le sezioni più significative.

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

5.2 GENERALITÀ DELLA TERRA ARMATA

La tecnologia della terra armata permette di realizzare opere di sostegno a gravità con un materiale da costruzione composito, costituito appunto da terra ed armature di rinforzo. L'attrito fra le armature, piattine ad aderenza migliorata in acciaio, zincato o meno, ed il rilevato viene sfruttato per trattenere un paramento esterno la cui funzione è di contenere il terreno immediatamente a tergo di esso. La restante parte del riempimento, grazie alle armature, è resa monolitica ed è assimilabile ad un muro a gravità dotato di grande flessibilità e capacità di adattarsi a differenti condizioni di esercizio. Visto il principio di funzionamento, sono importanti nel dimensionamento le caratteristiche fisiche del rilevato: angolo di attrito, coesione e peso specifico. Le armature sono calcolate in base agli sforzi di trazione trasmessi dal terreno grazie all'aderenza. Lunghezza, sezione e densità di armature sono valutate in funzione della spinta della terra e dei carichi esterni.

La verifica della stabilità di un'opera in terra armata non differisce molto da quella di un muro a gravità. Il dimensionamento interno lo si esegue a partire da una classificazione della struttura in termini di tempo (opera temporanea o permanente), di durata di servizio o vita nominale (5, 30, 70, 100, 120 anni), di tipologia o classe d'uso e livello di sicurezza (spalle di ponte, muri di sostegno etc.). A ciascuno di questi dati di progetto, il metodo di calcolo agli Stati Limite Ultimi associa fattori di sicurezza parziali differenziati in base alla situazione specifica.

Particolarmente importante è il concetto di *durata di servizio o vita nominale*, che serve a tenere conto del fenomeno della corrosione delle armature. Infatti il calcolo delle armature viene eseguito effettuando un sovradimensionamento iniziale della sezione di acciaio considerando cioè per questa uno spessore ridotto rispetto a quello reale per tener conto della corrosione nel tempo. Tale riduzione, detta "spessore di sacrificio delle armature" è pari alla quantità di acciaio che andrà persa durante la vita di servizio dell'opera. In sostanza le armature vengono calcolate oggi nelle condizioni in cui si troveranno al termine di tale periodo.

Il calcolo è condotto seguendo le linee guida delle Norme Francesi AFNOR NF P 94-270: "Calcul géotechnique – Ouvrages de soutènement – Remblais renforcés et massifs en sol cloué". Ogni riferimento alle normative, se non altrimenti specificato, è da intendersi alla NF P 94-270.

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

5.3 CRITERI DI PROGETTAZIONE: NORMATIVA E COMBINAZIONI DI CARICO

Per la valutazione della sicurezza delle opere in terra armata si adottano i criteri del metodo semiprobabilistico agli stati limite basati sull'impiego di coefficienti parziali di sicurezza.

Le verifiche di sicurezza, sia esterne che interne alla struttura in terra armata, sono condotte nel rispetto della condizione generale del metodo agli Stati Limite Ultimi:

$$E_d \ll R_d$$

dove E_d è il valore di progetto dell'*effetto* prodotto dalle combinazioni di *azioni* di progetto, mentre R_d è il valore della *resistenza* di progetto dei materiali valutata in base ai valori nominali delle grandezze geometriche interessate.

Le *azioni* di calcolo vanno determinate applicando i coefficienti parziali relativi alle azioni ed alle grandezze interessate, secondo determinate combinazioni, delle quali si riporta la "fondamentale":

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_p \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \Psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \Psi_{03} \cdot Q_{k3} \dots$$

e quella "sismica": E +
$$G_1$$
 + G_2 + Ψ_{21} Q_{k1} + Ψ_{22} Q_{k2} + ...

Secondo i principi generali delle N.T.C., la progettazione geotecnica dei muri in terra armata si basa sulle verifiche agli stati ultimi (EQU; STR; GEO); a tutti questi stati sono associati gruppi di coefficienti parziali (A1, A2; M1, M2; R1, R2, R3) che possono essere diversamente raggruppati e combinati tra loro in funzione del tipo e delle finalità delle verifiche.

Le verifiche strutturali e geotecniche dei muri sono condotte secondo approccio progettuale n.1 (Approccio 1, Combinazione 2) che prevede un'unica combinazione di gruppi di coefficienti (A2+M2+R2) mentre la verifica al ribaltamento considera i coefficienti dello stato limite di equilibrio del corpo rigido (EQU) con i coefficienti parziali del gruppo (M2) per il calcolo delle spinte.

In virtù della maggiore completezza della normativa francese per questo tipo di opere, ed in relazione anche all'esperienza pluridecennale maturata in tutto il mondo dal gruppo T.A.I. (Terre Armée Internationale) che adotta questa metodologia di calcolo da quaranta anni, il calcolo delle strutture viene effettuato seguendo le linee guida della vigente normativa francese AFNOR NF P 94-270 luglio 2009 "Calcul géotechnique – Ouvrages de soutènement – Remblais renforcés et massifs en sol cloué".

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

Riepilogando, nella successiva tabella sono rappresentati i diversi coefficienti parziali presi in considerazione per le verifiche dei muri in terra armata.

Tabella 4: Coefficienti parziali considerati per le verifiche dei muri in terra armata

		EFFETTO	GRUPPO COEFF.	Simbolo N.T.C.	Simbolo T.A.	VALORE
	CARICHI	Favreovole			LEw	1.0
AZIONI	PERMANENTI	Sfavorevole	A2	γG	LFw	1.0
γF	CARICHI	Favorevole	AZ		LFa	0.0
	VARIABILI	Sfavorevole		γο	LFq	1.3
	Tangente dell'angolo taglio	di resistenza al tan φ'		γ _φ ,		1.25
PARAMETRI TERRENO	Coesione efficace	c'	M2	γс'		1.25
γм	Coesione non drena	ta c _u		γcu		1.4
	Peso dell'unità di vol	ume γ		γγ		1.0
RESISTENZE	Capacità portante de	ella fondazione	R2		FSc	1.0
γR	Scorrimento		NZ	γR	FSg	1.0
	TRAZIONE NEI	- D'ACCIAIO (*)			FSt	1.15
COEFFICIENTI DI SICUREZZA	RINFORZI		M2	γs	FSI	
PARZIALI	ATTRITO TERRI	ENO/RINFORZO	1 IVIZ		FSf	1.0
	RIBALTA	MENTO			FSr	1.50

^(*) La resistenza dei rinforzi in acciaio viene valutata a partire dal valore limite elastico di snervamento diviso per il coefficiente parziale sull'acciaio γ_S (simbolo T.A.: FSt) secondo l'espressione: $f_{yd} = f_{yk} / \gamma_S$. Si ha quindi: $f_{yd} = 355 / 1.15 = 308$ MPa

In caso di calcolo sismico, i coefficienti parziali per le azioni γ_F (γ_G e γ_Q) sono pari ad 1.00.

Ad integrazione di quanto sopra, il programma di calcolo utilizzato per le verifiche dei muri considera tre combinazioni di carico:

- <u>La combinazione 1</u> prevede il carico variabile solo dietro il terreno rinforzato, col valore minimo del peso di volume del terreno rinforzato: tale condizione risulta determinante ai fini della verifica esterna a scorrimento e ribaltamento, oltre che alla verifica interna a sfilamento dei rinforzi.
- <u>La combinazione 2</u> prevede il carico variabile sia dietro che sopra il muro, col valore massimo del peso di volume dei terreni: tale condizione risulta determinante per la

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Bologna Arcoveggio-Ferrara Sud
strada comunale CHIAVICONE – progr. km 020+209

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

valutazione dei carichi massimi in fondazione ai fini della capacità portante del terreno di fondazione, oltre che per la verifica interna alla rottura dei rinforzi;

- <u>La combinazione 3</u> non prevede carico variabile e considera pari all'unità i coefficienti parziali dei carichi permanenti, col valore massimo del peso di volume dei terreni: tale condizione risulta determinante per la valutazione dei cedimenti del terre no di fondazione a lungo termine.

Sempre secondo la Normativa Francese AFNOR NF P 94-270, il programma di calcolo adottato per le verifiche dei muri prevede la possibilità di considerare due diversi pesi di volume per il terreno rinforzato e per quello spingente e di considerare anche la tipologia di sovraccarico (stradale, ferroviario, sovrastrutture, etc), oltre alla già citata possibilità di differenziare la presenza del carico variabile sul terreno rinforzato e/o sul rilevato retrostante.

Si vuole evidenziare che la verifica al <u>ribaltamento</u> di un muro in terra armata, considerato come corpo rigido secondo gli stati limite ultimi EQU, anche se riportata in questa relazione per rispetto della Normativa, perde di significato in quanto il meccanismo di rottura non avviene per rotazione rigida attorno al piede del muro, ma per progressiva deformazione dello stesso con superfici di scorrimento interne al muro; la verifica al ribaltamento fornisce piuttosto indicazioni sulla deformabilità e sulla snellezza dell'opera.

Il programma di calcolo adottato nelle verifiche delle sezioni dei muri in terra armata (VALDEZ Vers. 5.1) effettua le verifiche di ribaltamento, scorrimento sul piano di posa, rottura ed aderenza degli elementi di rinforzo del terreno.

5.4 IPOTESI DI CALCOLO

Il dimensionamento delle strutture in progetto è stato eseguito con riferimento a quanto riportato nella seguente tabella ed eventualmente integrato e dettagliato nel proseguo del paragrafo. Per le altezze delle sezioni di calcolo si rimanda ai relativi tabulati ed agli eventuali disegni acclusi alla presente nota oltre che alle tavole di progetto.

Spea ingegneria europea

Adeguamento alla terza corsia nel tratto Bologna Arcoveggio-Ferrara Sud strada comunale CHIAVICONE – progr. km 020+209

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

Tabella 5: Dati di calcolo per i muri in terra armata

	VITA NOM	INALE V _N	_	O ANNI PERMANENTE				
CLASSIFICAZIONE DELL'OPERA	SOTTOCLASS Livello di s		ORI	DINARIO				
	AMBIENTE DI	ESERCIZIO	A SECCO					
	TIPO DI PAI	RAMENTO	PANNELLI CLS					
CARATTERISTICHE	INCLINAZ. PA	ARAMENTO	90°					
DEI COMPONENTI STRUTTURALI	TIPO DI AR	RMATURE	HA 5	50 x 4 mm				
	SPESS. DI S	ACRIFICIO	1.50 mm					
AZIONI	TERRA AR	MATA (*)	$\gamma_1 = 8-10 \text{ kN/m}^3$	φ ₁ = 34°	c ₁ = 0 kPa			
PERMANENTI (G)	RILEVATO A	TERGO (*)	$\gamma_2 = 12 \text{ kN/m}^3$	φ ₂ = 34°	c ₂ = 0 kPa			
(Dati geotecnici)	FONDAZ	IONE (*)	$\gamma_3 = 19.5 \text{ kN/m}^3$	φ ₃ = 24°	c ₃ = 0 kPa			
AZIONII	(ADIADILL(O)		Sovraccarico stradale	q = 20 kPa (Ca	aso Statico)			
AZIONI	/ARIABILI (Q)		Sovraccarico stradale q = 4 kPa (Caso Sismico)					
	CLASSE	D'USO	CLASSE IV Coefficiente d'uso $C_U = 2.0$					
	PERIODO D	I RIFERIM.	$V_R = V_N x$	C _U = 100 anni				
			Stato Limite	e: ULTIMO: SL	V			
AZIONE SISMICA (E)	PERICOLOSIT			sottosuolo e tope = 0.347 · g	ografico:			
		1	Coefficiente di	riduzione $\beta_{\rm m} =$	0.31			
	COEFFIC. SISMICO (***) Verticale		$\mathbf{k}_{h} = \mathbf{a}_{max}/\mathbf{g} \cdot \boldsymbol{\beta}_{m}$	= 0.347 · 0.31 =	0.11			
			$k_v = 0.5 \cdot k_h = 0.5 \cdot 0.11 = 0.06$					

- (*) Valori caratteristici senza l'applicazione ancora del fattore di riduzione.
- (**) Poiché in valore complessivo la differenza di pericolosità sismica tra le diverse opere del tratto autostradale in argomento è modesta, e modesti sono in genere gli effetti sismici sulle strutture in terra armata, a scopo di semplificare le relazioni di calcolo pur a vantaggio di sicurezza, si è adottato il valore massimo di azione sismica, applicandolo uguale a tutte le opere considerate.
- (***) Per tener conto dell'amplificazione dell'azione sismica in funzione dell'altezza del muro, il programma di calcolo incrementa globalmente l'accelerazione sismica di calcolo che, secondo la teoria di Seed e Whitman (per $0.05 < a_g/g < 0.45$), diventa pari a: $a_g/g = a_g/g (1.45 a_g/g)$.

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

5.4.1 Dati generali

5.4.1.1 Classificazione della struttura

La durata di servizio e l'ubicazione dell'opera, cioè la presenza o meno d'acqua dolce, determinano lo spessore sacrificato per corrosione dell'acciaio utilizzato. (tabella tratta dalle Norme AFNOR NF A 05-252).

Tabella 6: Spessori di sacrificio (in millimetri)

		Durata di servizio										
	5 a	ınni	30	anni	70 a	nni	100 anni					
Metallo	Nero	Zincato	Nero	Zincato	Nero	Zincato	Nero	Zincato				
Ubicazione:												
A secco	0.5	0	1.5	0.5	3	1.0	4	1.5				
In acqua dolce	0.5	0	2.0	1.0	4	1.5	5	2.0				

Nero = acciaio non zincato;

Zincato = acciaio zincato a caldo, con un rivestimento minimo in zinco di 500 g/m², pari ad uno spessore minimo di 70 μ .

La distinzione tra livello di sicurezza "ordinario" per le opere "correnti" (ad es. muri semplici in terra armata) ed "alto" per strutture "sensibili" (ad esempio per spalle da ponte e muri ferroviari) non viene operata, in accordo con le N.T.C..

5.4.1.2 Rinforzi

Il materiale impiegato è l'acciaio, generalmente zincato.

Per ogni tipo di rinforzo utilizzato nella costruzione della struttura, sono qui indicate la larghezza b, lo spessore iniziale e₀, lo spessore di sacrificio e_s, precedentemente definito, di cui si è tenuto conto nei calcoli, nonché il tipo di acciaio costituente il rinforzo stesso.

Sono inoltre indicate le tensioni ammissibili T_r e T_{r0} del singolo rinforzo, rispettivamente nella sezione corrente e nella sezione all'attacco:

$$T_r = f_{yk} (b - b_t) (e_O - e_t - e_S) / \gamma_S$$

in cui f_{yk} è il limite elastico relativo al tipo di acciaio utilizzato.

Le dimensioni sono tutte in mm, "b_t" ed "e_t" sono le tolleranze di fabbricazione rispettivamente sulla larghezza e sullo spessore dei rinforzi.

Il coefficiente parziale sulla resistenza dell'acciaio vale γ_S = 1.15.

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

 T_{rO} è calcolato allo stesso modo, tenendo conto della riduzione della sezione resistente dell'armatura dovuta al foro per il bullone e della metà dello spessore di corrosione grazie alla presenza dell'attacco a stretto contatto con la zona di rinforzo vicina al foro del bullone.

5.4.1.3 Paramento

Viene specificato il tipo di paramento utilizzato.

I pannelli standard sono cruciformi, prefabbricati in calcestruzzo, con uno spessore di 14 cm.

5.4.1.4 Dati relativi alle azioni sismiche (se presenti)

Per tener conto dell'aumento dell'accelerazione sismica al suolo $\mathbf{a_g}$ con l'altezza del muro all'interno dello stesso, il programma di calcolo provvede automaticamente ad applicare un'accelerazione sismica di calcolo maggiorata rispetto al valore di calcolo al suolo e che, secondo la teoria di Seed e Whitman (per $0.05 < a_g/g < 0.45$) è pari a:

$$a_d/g = a_g/g (1.45 - a_g/g)$$

Il fattore di riduzione dell'azione sismica in senso verticale $m=a_{vg}/a_g$ è una frazione dell'azione sismica orizzontale, variabile da 0.00 a 1.00. Con il segno "+" si intende una variazione dinamica delle masse coinvolte verso il basso, mentre con il segno "-" la variazione delle masse è verso l'alto del muro.

Gli altri parametri che compaiono sono validi per diversi Paesi esteri, e pertanto verranno posti uguali a 1.00 se non utilizzati; nel valore di calcolo dell'azione sismica già si è tenuto conto dei parametri citati dalla vigente Normativa Italiana (N.T.C.).

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

5.4.2 Caratteristiche della sezione

5.4.2.1 Sezione (seguita dalla sigla d'identificazione della sezione stessa)

5.4.2.1.1 Dati sezione

5.4.2.1.1.1 Geometria della sezione

STRUTTURA IN T.A.: La figura seguente esplicita il significato dei simboli per l'input dei dati:

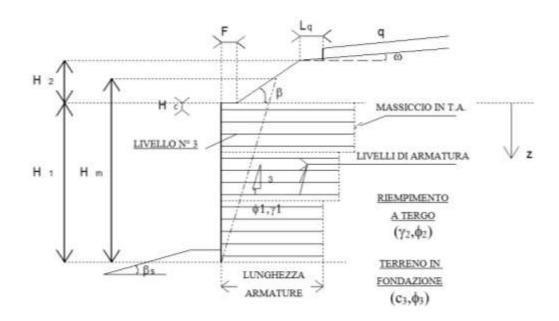


Figura 1: Sezione trasversale di un muro in terra armata (es. sez. trapezoidale)

Nel caso di sezione rettangolare, che corrisponde ad una sezione con la lunghezza delle armature costante, la Nota di Calcolo indica una sola lunghezza delle armature.

SOVRACCARICHI: Vengono indicati entità e posizione dei carichi variabili applicati.

5.4.2.1.1.2 Caratteristiche dei terreni

- MASSICCIO IN T.A. (terreno 1): sono indicati la densità massima e minima (γ_1) e l'angolo di attrito interno (ϕ_1).
- TERRENO A TERGO DELLA STRUTTURA (terreno 2): sono indicati la densità (γ_2) e l'angolo di attrito interno (ϕ_2).

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

- TERRENO DI FONDAZIONE (terreno 3): sono indicati l'angolo di attrito interno (ϕ_3) e la coesione (c_3) .

Per il significato dei simboli, vedi la precedente Figura 1.

5.4.2.1.1.3 Spinta delle terre

Il diagramma della spinta delle terre applicata a tergo del muro dipende dalla geometria del terrapieno soprastante e dal carico variabile.

La spinta delle terre è inclinata sull'orizzontale di un angolo δ il cui valore dipende dalla flessibilità della struttura. Tale angolo viene computato come di seguito:

$$\delta = 0.8(1 - 0.7 \frac{L'}{H})\Phi_I + [\beta_e - 0.8(1 - 0.7 \frac{L'}{H})\Phi_I]\sqrt{\frac{X}{H}}$$

in cui:

$$L' = rac{S}{H} = rac{W}{\gamma_1 H} \; ; \qquad \qquad eta_e = rac{3eta + \Phi_2}{4} \qquad \qquad \mathbf{e} \qquad \qquad X = rac{K_{2y}}{K_{2x} - K_{2y}} D an eta$$

I coefficienti di spinta in condizioni statiche, K_{2x} e K_{2y}, sono dati da:

$$K_{2x} = \frac{(\cos^2 \Phi_2/\cos \delta)}{[I + \sqrt{\frac{\sin(\Phi_2 + \delta)\sin(\Phi_2 - \beta)}{\cos \delta \cos \beta}}]^2} \qquad K_{2y} = \frac{(\cos^2 \Phi_2/\cos \delta)}{[I + \sqrt{\frac{\sin(\Phi_2 + \delta)\sin(\Phi_2 - \omega)}{\cos \delta \cos \omega}}]^2}$$

La spinta dovuta al terrapieno è calcolata come: $P = \frac{1}{2} K_{2x} \gamma_2 X^2 + K_{2x} \gamma_2 XY + \frac{1}{2} K_{2y} \gamma_2 Y^2$

Nel caso di calcolo in zona sismica, due ulteriori coefficienti di spinta in condizioni dinamiche, K_{aex} e K_{aey} , compaiono nei calcoli. Tali coefficienti sono calcolati seguendo le formule proposte da Mononobe-Okabe:

$$K_{aex} = \left[\frac{(\cos\Phi_2 - \zeta)}{\cos\zeta \left[1 + \sqrt{\frac{\sin\Phi_2 \sin(\Phi_2 - \zeta - \beta)}{\cos\zeta \cos\beta}}\right]^2}\right]^2 \qquad K_{aey} = \left[\frac{(\cos\Phi_2 - \zeta)}{\cos\zeta \left[1 + \sqrt{\frac{\sin\Phi_2 \sin(\Phi_2 - \zeta - \omega)}{\cos\zeta \cos\omega}}\right]^2}\right]^2$$

in cui
$$\zeta = \arctan(0.5 \text{ x a}_{\text{n}}/\text{g})$$
 (per $\zeta = 0 \rightarrow \text{K}_{\text{aex}} = \text{K}_{0x}$ e $\text{K}_{\text{aey}} = \text{K}_{0y}$)

Le azioni sismiche dinamiche (o pseudo statiche) dovute al terrapieno sono dunque:

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

- a) incremento dinamico della spinta dovuta al terrapieno Eae
- b) sforzi d'inerzia globale: $E_i = E_{im}$ (massiccio) + E_{ir} (terreno sopra il massiccio)
- c) variazioni dinamiche: dW = dW_m (massiccio) + dW_r (terreno sopra il massiccio)

5.4.3 Combinazioni di carico e livelli di sicurezza

La tabella seguente presenta i coefficienti parziali sulle azioni per le tre combinazioni di carico statiche e le due sismiche esaminate.

Tabella 7: Combinaizoni di carico e coefficienti parziali

Combinazioni di carico	LFw = γ _{G1} Pesi propri della struttura	LFp = γ _{G2} Spinta del terreno a tergo della struttura	LFq1 = γ_{Q1} Sovraccarico sopra la struttura	LFq2 = γ_{Q2} Spinta dovuta al sovraccarico	Densità del terreno costituente il muro in T.A.
CASO STATICO					
1	1.00	1.00	0.00	1.30	Min.
2	1.00	1.00	1.30	1.30	Max.
3	1.00	1.00	0.00	0.00	Max.
CASO SISMICO					
1s	1.00	1.00	0.00	1.00	Min.
2s	1.00	1.00	1.00	1.00	Max.

La combinazione 1s è per la stabilità esterna, la combinazione 2s è per la stabilità interna. Ad ognuna delle combinazioni di carico studiate nel caso sismico corrispondono due

+ dW: accelerazione verticale diretta in basso:

- dW: accelerazione verticale diretta in alto.

5.4.4 Stabilità esterna

sottocasi:

I calcoli sono eseguiti sulla larghezza di 1 metro.

5.4.4.1 Capacità portante

Per ogni combinazione di carico considerata, il programma calcola:

- R_V ed R_h Risultanti delle forze verticali ed orizzontali (in kN/m);

 - M_S ed M_r Momento stabilizzante e momento ribaltante (in kNm/m) rispetto al punto esterno alla base del paramento;

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

- qref pressione di riferimento di Meyerhof esercitata sulla base (in kPa);

 $qref = Rv/2x = Rv^2/2M$

- 2x larghezza su cui si applica la pressione

(2x = L - 2e con e = eccentricità baricentrica)

Il valore della pressione massima applicata al terreno di fondazione $q_{max} = q_{ref} / LFw_1 = q_{ref} / \gamma_{G1}$ va confrontata con la capacità portante del terreno, rispettando i coefficienti di sicurezza di Normativa.

La profondità minima di infissione della struttura nel terreno è calcolata in funzione di q_{ref} e della pendenza della scarpata su cui poggia il muro; generalmente è maggiore o uguale a 0.40 m.

5.4.4.2 Slittamento e ribaltamento

Per ogni combinazione di carico (la combinazione 3 non viene considerata poiché utilizzata solo per la valutazione dei cedimenti), il programma calcola il coefficiente di sovradimensionamento nei confronti dello slittamento sul piano di fondazione, Γ, dato da:

$$\Gamma = \frac{R_{v} \times \frac{\tan \phi}{FSg} + \frac{c}{FSgc} \times L}{\gamma_{FSg} \times R_{b}}$$

in cui ϕ e c sono alternativamente l'angolo di attrito interno e la coesione del materiale costituente il massiccio in terra armata (per garantirsi contro lo slittamento all' interno della struttura) o del terreno costituente la fondazione (per garantirsi contro lo slittamento all'interno di quest'ultimo). Il coefficiente di sicurezza introdotto $\gamma_{F3} = FS_g$ è pari a 1.00.

Il programma calcola anche, per ogni combinazione di carico considerata, i valori minimi dell'angolo di attrito interno e della coesione al contatto tra terreno costituente la fondazione e massiccio in terra armata (entrambi considerati o puramente attritivi o puramente coesivi).

Il Fattore di sovradimensionamento nei confronti del <u>ribaltamento</u> per un'opera in terra armata non ha il classico senso fisico ma fornisce un'indicazione sulla entità delle deformazioni che potrà subire il muro.

La verifica viene condotta calcolando la somma dei momenti stabilizzanti Ms e la somma di quelli ribaltanti Mr, rispetto al piede esterno del muro. Dovrà essere soddisfatta la seguente disuguaglianza: Ms > Mr · FSr con FSr = 1.50.

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

I valori riportati dal tabulato sono già divisi per FSr, ovvero è sufficiente che siano uguali o superiori a 1.00 perché la sicurezza al ribaltamento sia verificata.

5.4.5 Stabilità interna

La larghezza di calcolo dipende dalla tipologia del paramento.

5.4.5.1 Rottura dei rinforzi: trazione vicino al paramento

Il programma di calcolo, per ogni livello di rinforzi e per ogni condizione di carico, calcola la tensione massima **Tmax** agente, e la tensione all'attacco tra rinforzo e paramento **To**, ottenuta come percentuale di Tmax in funzione della flessibilità del paramento stesso, e le confronta con la resistenza a trazione dei rinforzi del terreno, ottenendo i fattori di sovradimensionamento nei confronti della rottura.

Il tabulato fornisce i risultati del calcolo, per ogni livello di rinforzo:

- Colonna 1: il numero di riferimento del livello di rinforzi considerato.
- Colonna 2: la sua profondità z (in m) rispetto alla testa del muro.
- Colonna 3: deltah = la porzione di paramento di competenza di ciascun livello di rinforzi.
- Colonna 4: il valore di k, coefficiente di spinta, calcolato secondo la seguente espressione:

$$\begin{aligned} k &= k_0 \; (6\text{-}z)/6 + k_a \, (z/6) & \text{per } 0 < z < 6,0 \; \text{m} & [k_0 = 1 - \text{sen } \phi_1] \\ k &= k_a & \text{per } z > 6,0 \; \text{m} & [k_a = tg^2 \, (45^\circ \text{-} \; \phi_1/2)] \end{aligned}$$

- Colonna 5: type = il tipo di rinforzo.
- Colonna 6: Num = il numero di rinforzi presenti al livello considerato, ne lla larghezza di calcolo.
- Colonna 7: case = la combinazione di carico considerata.
- Colonna 8: sigmh = la tensione orizzontale = $K \cdot \sigma_V$ (σ_V è la pressione verticale calcolata secondo Meyerhof, considerando il momento ribaltante)
- Colonna 9: Tmax (in kN) = valore della trazione massima in un rinforzo dello strato.
- Colonna 10: To (in kN) = valore della trazione in un rinforzo all' attacco col paramento.
- Colonna 11: Tr/Tm = valore del coefficiente di sovradimensionamento nei confronti della trazione massima nella sezione corrente dell'armatura.
- Colonna 12: Tro/To = valore del coefficiente di sovradimensionamento nei confronti della trazione massima nella sezione all'attacco col pannello.

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

L'ultima colonna, infine, definisce il tipo di pannello necessario.

5.4.5.2 Slittamento delle armature

Il programma, per ogni livello di rinforzi e per ogni condizione di carico, calcola la tensione massima Tmax agente e la resistenza massima Tf che l'attrito tra armatura e terreno circostante può mobilitare, e le divide tra di loro.

Il tabulato fornisce i risultati del calcolo, per ogni livello di rinforzo:

- Colonna 1: il numero di riferimento del livello di rinforzo considerato.
- Colonna 2: la sua profondità z (in m), rispetto alla testa del muro.
- Colonna 3: f^* = coefficiente di attrito apparente tra terreno e armature, con la seg. espressione:

$$f^* = f_0^* (6 - z)/6 + tg \phi_1 (z/6)$$
 per $0 < z < 6.0 m$
 $f^* = tg \phi_1$ per $z > 6.0 m$

con generalmente $f_0^* = 1,5$ oppure, ove applicabile, $f_0^* = 1,2 + \log(D_{60}/D_{10})$

- Colonna 4: L (in m) = lunghezza totale dei rinforzi.
- Colonna 5: La (in m) = lunghezza di aderenza.
- Colonna 6: Za (in m) = altezza di terreno che contribuisce all'aderenza sul rinforzo.
- Colonna 7: type = tipo di rinforzo.
- Colonna 8: Num.= il numero di rinforzi presenti al livello considerato, nella larghezza di calcolo.
- Colonna 9: case = la combinazione di carico considerata.
- Colonna 10: Tmax (in kN) = valore della trazione massima in un rinforzo dello strato.
- Colonna 11: Tf (in kN) = valore della resistenza d'attrito mobilizzata da un rinforzo.
- Colonna 12: Tf/Tm = valore del coefficiente di sovradimensionamento nei confronti dell'aderenza.

Infine, vengono riportate le quantità di rinforzi per una porzione di muro larga 3 metri.

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

5.4.6 Dati complementari

5.4.6.1 Scheda di standardizzazione

E' il nome della scheda contenente i parametri utilizzati dal programma per effettuare il calcolo delle sezioni, come indicato di seguito.

5.4.6.2 Metodo di calcolo

E' il metodo di calcolo utilizzato (per es.: Stati Limite oppure Tensioni Ammissibili).

5.4.6.3 Factors = Coefficienti

Sono riportati sinteticamente in tabella i coefficienti parziali utilizzati nelle verifiche delle sezioni di calcolo e citati nella presente nota.

5.4.6.4 Strips = Rinforzi

In questo punto sono riassunti, per ogni tipo di rinforzo utilizzato, le caratteristiche tecniche e geometriche dei rinforzi e del loro eventuale rivestimento.

5.4.6.5 Facing = Paramento

In questo paragrafo si precisano alcuni dati aggiuntivi relativi al tipo di paramento utilizzato.

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

5.5 MURI DI SOSTEGNO IN TERRA ARMATA – TABULATI DI CALCOLO

Job number : 2900

Run number : 07

Structure : A13 BOLOGNA-FERRARA SUD

========

CAVALCAVIA STRADA COMUNALE CHIAVICONE SEZ. 16

1 . 1 STRUCTURE CLASS:

Service life : 100 years
Site : No water

1 . 2 R.E. STRIPS :

protection : Galvanized

Type 1: HA 50X4

grade : 355.0 MPa width b : 50.0 mm thickness eo : 4.0 mm sacrif. thick. es : 1.500 mm

Allowable tensile strength:

full section Tr : 37.43 kN connection Tro : 27.40 kN

1 . 3 FACING: TERRACLASS

1. 4 SEISMIC DATA:

Maximal horizontal acceleration ao/g : 0.11
Reduction factor of live loads : 0.20
Dynamic variation factor : 1

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

********* * 2 . SECTION 07 *********

2 . 1 SECTION DATA:

2 . 1 . 1 GEOMETRY:

R.E MASS

Facing height Hf: 8.605 m R.E.backfill height H1: 8.730 m Coping height Hc: 0.125 m Free board Ht: 0.000 m Slope height H2: 0.00 m Mechanical height Hm: 8.730 m Slope angle Beta: 0.00 deg. Terrace angle Omega: 0.00

deg.

Setback F: 0.00 m Angle at toe Beta s: 0.000

Strip Length: 7.00 m

SURCHARGES

Load q : 20.00 kPa Position Lq: 0.00 m

: Road traffic Type

2 . 1 . 2 SOIL PROPERTIES:

R.E. BACKFILL

gamma1 maxi : 10.00 kN/m3 Friction phi1 : 28.35 deg. Density

gamma1 mini : 8.00 kN/m3

GENERAL BACKFILL

Density gamma2 : 10.00 kN/m3 Friction phi2 : 28.35 deg.

FOUNDATION

Cohesion C3 : 0.00 kPa Friction phi3 : 19.60 deg.

2 . 1 . 3 EARTH PRESSURE:

Inclination of earth pressure at back of R.E. mass delta = 9.95 deg.

Earth pressure coefficients:

k2x = 0.000 k2y = 0.329 (Static) x = 0.000 m y = 8.730 m

= 0.000 m y

 $kaex = 0.000 \quad kaey = 0.403 \quad (Dynamic)$

= 0.000 m y= 8.730 m

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

2 . 2 EXTERNAL STABILITY

2 . 2 . 1 EXTERNAL STABILITY:

case		Rv kN/m	Rh kN/m	M kNm/m	qref kPa	2.x m
1		715.20	196.88	2009.45	127.27	5.62
2		839.86	196.88	2454.50	143.69	5.85
3		644.97	123.38	2020.76	102.93	6.27
1s	+dW	568.66	191.01	1445.10	111.89	5.08
	-dW	531.91	191.01	1313.90	107.67	4.94
2s	+dW	697.92	200.20	1866.45	130.49	5.35
	-dW	651.98	200.20	1702.44	124.84	5.22

Minimum embedment depth = 0.40 m

2 . 2 . 2 SLIDING ON THE BASE - OVERTURNING:

______ SLIDING ON THE BASE OVERTURNING Overdesign factor minimal value Overdesign factor case slip in R.E. slip in found. $phi(\emptyset)$ Cohesion(kPa) 1.96 1.29 15.39 2.64 27.57 2 2.30 1.52 13.19 3.07 27.57 19.75 1s 1.50 1.01 _ 1.97 26.75

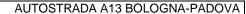
2 . 3 INTERNAL STABILITY

Calculation width : 3.00 m

2.3.1 STRIP RUPTURE - TENSILE LOAD AT FACING: Overdesign factors

layer	z m	deltah m		rip Num.	Ties	case	 k	sigmah kPa	Tmax kN	To kN	Tr/Tm	Tro/To
1	0.490	0.677	1	4	4	2 1s	.511 .511 .511	15.32 15.82 4.05 4.56	7.79 8.04 2.89 3.34	6.62 6.83 2.46 2.84	4.81 4.66 12.94 11.22	4.14 UR4 4.01 11.14 9.66
2	0.865	0.562	1	4	4	2 1s	.501 .501 .501	16.56 17.42 5.49 6.35	6.98 7.35 3.16 3.72	5.94 6.25 2.68 3.16	5.36 5.09 11.85 10.07	4.61 UR4 4.38 10.21 8.67

AUTOSTRADA A13 BOLOGNA-PADOVA


Adeguamento alla terza corsia nel tratto Bologna Arcoveggio-Ferrara Sud strada comunale CHIAVICONE – progr. km 020+209

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

3	1.615	0.750	1	4	4	2 1s	.480 .480 .480	18.93 20.48 8.19 9.74	10.65 11.52 5.48 6.55	9.05 9.79 4.65 5.56	3.52 3.25 6.84 5.72	3.03 UR4 2.80 5.89 4.92
4	2.365	0.750	1	4	4	2 1s	.458 .458 .458	21.17 23.34 10.71 12.88	11.91 13.13 6.91 8.34	10.12 11.16 5.88 7.09	3.14 2.85 5.41 4.49	2.71 UR4 2.45 4.66 3.87
5	3.115	0.750	1	4	4	2 1s	.437 .437 .437	23.31 26.03 13.05 15.78	13.11 14.64 8.26 10.00	11.14 12.44 7.02 8.50	2.86 2.56 4.53 3.74	2.46 UR4 2.20 3.90 3.22
6	3.865	0.750	1	4	4	2 1s	.416 .416 .416	25.33 28.54 15.24 18.45	14.25 16.06 9.51 11.53	12.11 13.65 8.08 9.80	2.63 2.33 3.94 3.25	2.26 UR4 2.01 3.39 2.79
7	4.615	0.750	1	4	4	2 1s	.395 .395 .395 .395	27.26 30.90 17.27 20.92	15.34 17.38 10.68 12.94	13.04 14.77 9.08 11.00	2.44 2.15 3.51 2.89	2.10 UR4 1.85 3.02 2.49
8	5.365	0.750	1	4	4	2 1s	.374 .374 .374	29.10 33.09 19.17 23.17	16.37 18.61 11.77 14.25	14.00 15.92 10.07 12.19	2.29 2.01 3.18 2.63	1.96 UR4 1.72 2.72 2.25
9 R4+6	6.115	0.750	1	5	5	2 1s	.356 .356 .356	31.14 35.44 21.12 25.45	14.01 15.95 10.56 12.76	12.44 14.16 9.38 11.32	2.67 2.35 3.54 2.93	2.20 1.94 2.92 2.42
10	6.865	0.750	1	6	6	2 1s	.356 .356 .356	34.93 39.70 24.21 29.05	13.10 14.89 10.21 12.28	12.05 13.70 9.39 11.30	2.86 2.51 3.67 3.05	2.27 R6 2.00 2.92 2.42
11	7.615	0.750	1	6	6	2 1s	.356 .356 .356	39.13 44.36 27.58 32.91	14.67 16.63 11.54 13.82	13.97 15.84 10.99 13.15	2.55 2.25 3.24 2.71	1.96 R6 1.73 2.49 2.08
12	8.365	0.740	1	6	6	2 1s	.356 .356 .356	43.86 49.48 31.27 37.07	16.23 18.31 12.84 15.28	15.97 18.02 12.64 15.04	2.31 2.04 2.91 2.45	1.72 R6 1.52 2.17 1.82

2 . 3 . 2 ADHERENCE : Overdesign factor

layer	z m	L m	La m	type	Num.	Ties	case	e f*	Za m	Tmax kN	Tf kN	Tf/Tm
 1	0.490	7.00	4.46	1	4	4	2 1s	1.422 1.422	0.490	8.04 2.89	19.01	2.37 1.35

ingegneria europea

Adeguamento alla terza corsia nel tratto Bologna Arcoveggio-Ferrara Sud strada comunale CHIAVICONE – progr. km 020+209

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

2	0.865	7.00	4.53	1	4	4	1 2 1s 2s	1.362 1.362 1.362 1.362	0.865 0.865 0.865 0.865	6.98 7.35 3.16 3.72	19.67 20.71 5.22 6.05	2.82 2.82 1.65 1.63
3	1.615	7.00	4.65	1	4	4	1 2 1s 2s	1.241 1.241 1.241 1.241	1.615 1.615 1.615 1.615	10.65 11.52 5.48 6.55	21.79 23.60 7.58 9.03	2.05 2.05 1.38 1.38
4	2.365	7.00	4.78	1	4	4	1 2 1s 2s	1.121 1.121 1.121 1.121	2.365 2.365 2.365 2.365	11.91 13.13 6.91 8.34	23.33 25.79 9.52 11.49	1.96 1.96 1.38 1.38
5	3.115	7.00	4.90	1	4	4	1 2 1s 2s	1.001 1.001 1.001 1.001	3.115 3.115 3.115 3.115	13.11 14.64 8.26 10.00	24.24 27.20 11.01 13.38	1.85 1.86 1.33 1.34
6	3.865	7.00	5.03	1	4	4	1 2 1s 2s	0.881 0.881 0.881 0.881	3.865 3.865 3.865 3.865	14.25 16.06 9.51 11.53	24.45 27.77 12.00 14.66	1.72 1.73 1.26 1.27
7	4.615	7.00	5.15	1	4	4	1 2 1s 2s	0.761 0.761 0.761 0.761	4.615 4.615 4.615 4.615	15.34 17.38 10.68 12.94	23.93 27.44 12.45 15.26	1.56 1.58 1.17 1.18
8	5.365	7.00	5.32	1	4	4	1 2 1s 2s	0.641 0.641 0.641 0.641	5.365 5.365 5.365 5.365	16.37 18.61 11.77 14.25	22.79 26.34 12.41 15.25	1.39 1.42 1.05 1.07
9	6.115	7.00	5.69	1	5	5	1 2 1s 2s	0.540 0.540 0.540 0.540	6.115 6.115 6.115 6.115	14.01 15.95 10.56 12.76	22.32 25.97 12.61 15.53	1.59 1.63 1.19 1.22
10	6.865	7.00	6.07	1	6	6	1 2 1s 2s	0.540 0.540 0.540 0.540	6.865 6.865 6.865 6.865	13.10 14.89 10.21 12.28	25.70 30.06 14.97 18.46	1.96 2.02 1.47 1.50
11	7.615	7.00	6.44	1	6	6	1 2 1s 2s	0.540 0.540 0.540 0.540	7.615 7.615 7.615 7.615	14.67 16.63 11.54 13.82	29.31 34.44 17.51 21.62	2.00 2.07 1.52 1.56
12	8.365	7.00	6.82	1	6	6	1 2 1s 2s	0.540 0.540 0.540 0.540	8.365 8.365 8.365 8.365	16.23 18.31 12.84 15.28	33.16 39.12 20.24 25.02	2.04 2.14 1.58 1.64

Strips type 1 : HA 50X4

Strips type 1:385.0 meters for 3.0 m width of wall

1 STANDARDISATION FILE: N.T.C. A2+M2+R2

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

2 CALCULATION METHOD : Limit state

3 FACTORS:

		Load f	actors		R.E	_
load	LFw	LFp	LFq1	LFq2	density	
cases						
1	1.00	1.00	0.00	1.30	1	
2	1.00	1.00	1.30	1.30	2	
3	1.00	1.00	0.00	0.00	2	
1s	1.00	1.00	0.00	1.00	1	
2s	1.00	1.00	1.00	1.00	2	

R.E density: 1 = min - 2 = max

Safet	y factors	FSg	FSgc	FSr	FSc	FSt	FSf
S	tatic	1.00	1.00	1.50	1.00	1.15	1.00
l S	eismic	1.00	1.00	1.50	1.00	1.15	1.00
Metho	d factors						1
l S	tatic	1.000		1.000	1.000	1.000	1.000
l S	eismic	1.000		1.000	1.000	1.000	1.000
							1

4 STRIPS:

Strip type 1

Width tolerance : 1.50 mm Thickness tolerance: 0.00 mm

Hole diameter : 12.70 mm -> tolerance : 0.30 mm

5 FACING:

Vertical strip spacing : 0.750 mm bottom height : 0.365 mm Facing flexibility : 2

Flexibility: 1 = rigid (ex: full height facing)
2 = descrete (ex: std panels)

3 = flexible (ex: steel facing)

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

6. APPENDICE: SPECIFICHE TECNICHE PER STRUTTURE IN TERRA ARMATA

MATERIALI

6.1 PARAMENTO ESTERNO

Il paramento in c.a. sarà realizzato con pannelli prefabbricati prodotti con calcestruzzo opportunamente vibrato, confezionato con inerti di dimensione massima ≤ 25 mm.

Il calcestruzzo avrà una resistenza caratteristica a compressione R_{ck} > 40 MPa.

Il ferro di armatura, quando previsto, sarà ad aderenza migliorata del tipo B 450 C.

• Prefabbricazione

La prefabbricazione dei pannelli sarà eseguita con casseri metallici opportunamente disposti su superficie piana con la faccia vista in basso e le estremità degli attacchi in alto.

La posizione degli attacchi dovrà essere esclusivamente quella indicata sui disegni come pure quella degli altri inserti previsti per il montaggio e la movimentazione.

Il getto di ogni elemento dovrà essere eseguito senza interruzioni ed adeguatamente vibrato per evitare che la faccia vista presenti bolle d'aria e/o struttura a nido d'ape e/o struttura aperta.

Particolare cura sarà usata nella scelta degli inerti, nel confezionamento del calcestruzzo e nell'uso di disarmanti, per ottenere una colorazione quanto più possibile uniforme della superficie a faccia vista.

Tolleranze

Tutte le quote sia parziali che progressive dovranno essere rispettate.

Saranno ammesse sul singolo pannello le seguenti tolleranze:

- planarità della superficie a faccia vista: ± 5 mm. su 1.5 m.

- dimensioni: ± 5 mm.

differenza tra le lunghezze delle diagonali: ± 10 mm.

- interasse tubo perno: ± 4 mm.

• Elementi incorporati nei pannelli

Gli inserti previsti dai disegni di progetto sono:

- attacchi per armature: in acciaio zincato a caldo in ragione di 5 g/dm²;

Adeguamento alla terza corsia nel tratto Bologna Arcoveggio-Ferrara Sud strada comunale CHIAVICONE – progr. km 020+209 Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

- manicotto in materia plastica: diametro interno 30 mm, diametro esterno 32 mm, lunghezza 730 mm (per i pannelli tradizionali)
- barra in materia plastica diametro 20 mm: lunghezza 890 mm (per i pannelli tradizionali)
- bulloni o perni asolati di sollevamento in acciaio, portata superiore a 1 t.

Marcatura

Su ogni pannello sarà indicato: tipo di pannello e data di produzione.

• Ispezione e collaudo

L'accettabilità dei manufatti sarà determinata in base alla verifica dei requisiti precedentemente descritti, con particolare riferimento alle verifiche di:

- caratteristiche geometriche
- resistenza del calcestruzzo a 28 gg.
- grado di finitura della faccia vista.

• Movimentazione, immagazzinamento, trasporto

I pannelli dovranno essere movimentati ed immagazzinati in modo da eliminare il pericolo di rotture, fratture ed eccessiva flessione. In particolare lo stoccaggio sarà fatto in pile di non oltre 6 elementi; essi saranno disposti con la faccia vista verso il basso e distanziati mediante tacchi in legno o altro materiale di dimensioni e caratteristiche tali da sopportare il peso trasmesso dai pannelli soprastanti.

6.2 CALCESTRUZZO DI LIVELLAMENTO

Il getto di livellamento ed appoggio dei pannelli sarà eseguito con calcestruzzo di resistenza minima a 28 giorni di 15 N/mm² e sarà lasciato maturare per 12 ore prima di porre in opera i pannelli.

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

6.3 RINFORZI IN ACCIAIO ZINCATO AD ADERENZA MIGLIORATA

6.3.1 Tipo di acciaio

L'acciaio laminato a caldo, senza alcun trattamento a freddo, del tipo S355J0 avrà le seguenti caratteristiche meccaniche:

- tensione di rottura a trazione: ≥ 510 MPa

- tensione di snervamento: ≥ 355 MPa

- allungamento percentuale a rottura: ≥ 22%

6.3.2 Caratteristiche geometriche

- Armature (= rinforzi) tipo 45x5 rinforzate:

Spessore nominale: sezione corrente e = 5 mm + 0.3/-0.2 mm

: rinforzo all'attacco E = (e+3) mm +0.3/-0.1 mm

Larghezza nominale: sezione corrente b = 45 mm +1, 5mm/-0.5 mm

: rinforzo all'attacco B = b - 4 mm (max)

Lunghezza da progetto: tolleranze L = Lnom + 300/- 200 mm

Armature (= rinforzi) tipo 50x4:

Spessore nominale: e = 4 mm - 0/+0.5 mmLarghezza nominale: b = 50 mm -1.5/+1.5 mmLunghezza da progetto: tolleranze L = L nom +/-160 mm

L'aderenza è migliorata mediante rilievi trasversali di altezza 3 mm.

6.3.3 Trattamento superficiale

Zincatura a caldo in ragione di 5 gr/dm² di rivestimento e spessore garantito 70 μ, circa.

6.4 BULLONI DI FISSAGGIO

Rinforzi tipo 50 x 4 e 45 x 5

La connessione tra i rinforzi e gli attacchi dei pannelli sarà assicurata da bulloni classe 10.9 a testa esagonale zincati a caldo conforme a norme UNI 3740/6 con le seguenti caratteristiche meccaniche:

- tensione di rottura a trazione: ≥ 1000 MPa

- tensione di snervamento: ≥ 900 MPa

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Bologna Arcoveggio-Ferrara Sud strada comunale CHIAVICONE – progr. km 020+209

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

- allungamento percentuale a rottura: ≥ 9 %

6.5 GIUNTI PER PANNELLI

6.5.1 Giunti orizzontali

Saranno realizzati mediante tacchi speciali in gomma opportunamente sagomati per l'assorbimento delle deformazioni della struttura.

6.5.2 Giunti verticali

Il materiale di riempimento dei giunti verticali sarà costituito da strisce di poliuretano a cellula aperta di sezione 4 x 4 cm². Per strutture dove il riempimento è costituito da sabbia, per opere inondabili, e per i pannelli di tipo semplificato, si utilizzeranno delle strisce di tessuto non tessuto da porre all'interno dei pannelli, fornito in rotoli di altezza 40 cm e grammatura 200 g/mq.

6.6 RILEVATO

Di seguito si riporta uno stralcio delle Specifiche Tecniche che formano parte integrante del progetto cui si rimanda per ulteriori indicazioni.

6.6.1 Caratteristiche dei terreni

Caratteristiche fisiche

Per il terreno del rilevato in terra armata devono essere impiegate terre appartenenti ai gruppi: A1-a, A1-b, A3, A2-4, A2-5 della classifica C.N.R. - U.N.I. 10006/1963.

In ogni caso dovranno essere rispettate le seguenti condizioni:

- a) Il terreno di riempimento sarà idoneo quando la percentuale passante al setaccio da 80 $\,\mu$ (0.08 mm.), secondo l'analisi granulometrica, è inferiore del 15%.
- b) I terreni con percentuale passante al vaglio da 80 μ superiore al 15%, saranno uqualmente validi quando:
 - b-1) la percentuale del campione esaminato per sedimentazione passante al vaglio di 15 μ (0.015 mm), è inferiore al 10%;
 - b-2) la percentuale del campione esaminato per sedimentazione passante al vaglio di 15 μ (0.015 mm) rimane compresa tra il 10% e 20% e l'angolo di attrito

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

interno, misurato con prove di taglio su campioni saturi del materiale passante al setaccio da 4.76 mm, con velocità di taglio di 1 mm/min, è superiore a 25°.

c) Il terreno di riempimento non dovrà contenere nessun elemento superiore a 250 mm.

Per diminuire il peso complessivo del muro, il rilevato può essere alleggerito con argilla espansa interposta a strati di misto granulare o sabbia separati da un geosintetico, con modalità indicate nei disegni costruttivi.

L'inerte leggero avrà le seguenti caratteristiche:

- granulometria minore di 25 mm,
- peso di volume compreso tra 7 e 8 kN/mc.

Resistività

Il valore di resistività del terreno da rilevato, saturato dopo un'ora di contatto terra-acqua alla temperatura di 20°C, sarà superiore a 1.000 Ohm*cm per opere a secco e 3.000 Ohm*cm per opere inondabili.

Attività ioni idrogeno

Il valore di attività degli ioni (pH) misurato sull'acqua del campione di terra saturato sarà compreso tra 5 e 10.

Contenuto in sali solubili

Il contenuto di cloruri e solfati dovrà essere determinato soltanto per i materiali la cui resistività sia compresa tra 1.000 e 5.000 Ohm*cm e non dovrà eccedere i seguenti valori:

	Opere a secco	Opere in acqua dolce
[CI-]	200 mg/kg	100 mg/kg
[SO4]	1000 mg/kg	500 mg/kg

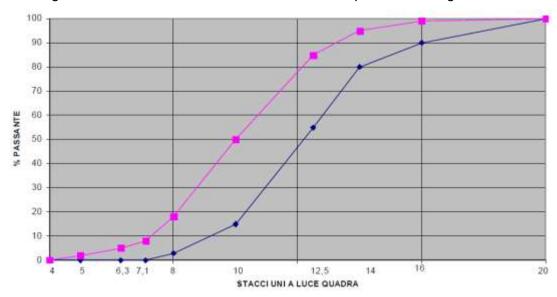
Prove e controlli

Per la determinazione dell'idoneità del materiale da porre in opera in un rilevato in T.A. si effettuerà un'analisi granulometrica, con relativa classificazione CNR-UNI 10006, la determinazione del valore della resistività e del pH per ogni campione della stessa provenienza.

Per il contenuto in sali vedasi punto precedente.

Per la verifica durante la posa in opera vedasi Tabella 8.

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo


Materiali non conformi alle specifiche

I materiali non conformi alle specifiche precedenti potranno essere usati solo su autorizzazione scritta del progettista ed approvate dalla D.L. dopo verifica da parte della società Terra Armata sul loro eventuale utilizzo.

6.6.2 Caratteristiche argilla espansa

La miscela da utilizzare, classe granulometrica 8-20, deve essere conforme ai seguenti requisiti:

1. il fuso granulometrico secondo UNI EN 13055-2 compreso nella seguente tabella:

- 2. la massa volumica del materiale in mucchio a secco (UNI EN 13055-2) = 320 kg/m³ ± 15%
- 3. la massa volumica dei granuli (UNI EN 13055-2) ≤ 0.70 g/cm³
- 4. il peso specifico assoluto del materiale (UNI EN 13055-2) ≤ 2500 kg/m³
- 5. la resistenza dei granuli allo schiacciamento (UNI EN 13055-2) ≥ 7 kg/cm²
- 6. assorbimento di H2O (UNI EN 13055-2) ≤ 20% a 24 ore
- 7. l'angolo d'attrito > 35°
- 8. il modulo di deformazione Md ≥ 150 kg/cm² misurato su almeno 15 cm di misto

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

POSA IN OPERA

6.7 Preparazione del piano di posa

Il piano di fondazione della struttura sarà livellato per una larghezza uguale o maggiore alla lunghezza dei rinforzi, o comunque come indicato sui disegni costruttivi.

Prima della posa in opera della struttura, il piano di posa sarà opportunamente compattato con un rullo vibrante.

Terreni di fondazione non rispondenti ai valori di progetto, saranno rimossi e sostituiti.

6.8 Montaggio

I pannelli prefabbricati saranno messi in opera verticalmente a mezzo di gru leggera utilizzando esclusivamente i perni di sollevamento all'uopo incorporati nei pannelli.

I pannelli saranno montati in file orizzontali successive secondo la sequenza indicata dai disegni e contemporaneamente alla formazione del rilevato.

Fintanto che il rilevato ed i rinforzi non saranno completamente posati, i pannelli saranno mantenuti in posizione verticale mediante dei morsetti che li bloccano provvisoriamente alla fila inferiore. Per la posa della prima fila di pannelli sarà inoltre necessaria una opportuna puntellatura esterna.

La tolleranza di montaggio in direzione verticale non dovrà superare i 15 mm misurata lungo una retta di 3.0 m di lunghezza.

In qualsiasi altra direzione sul piano verticale del muro la tolleranza ammessa è di 20 mm sempre su 3.0 m di lunghezza.

Le armature saranno posate perpendicolarmente al paramento o come indicato nei disegni.

6.9 COSTRUZIONE DEL RILEVATO

La posa del materiale di riempimento seguirà strettamente il montaggio di ciascuna fila di pannelli; in corrispondenza di ogni livello di rinforzi il materiale sarà steso e compattato prima della posa e del fissaggio degli stessi.

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

6.9.1 Stesa dei materiali

La stesa del materiale dovrà essere eseguita sistematicamente per strati di spessore costante e con modalità e attrezzature atte ad evitare segregazione, brusche variazioni granulometriche e del contenuto d'acqua.

Durante le fasi di lavoro, e ad opera ultimata, si dovrà garantire il rapido deflusso delle acque meteoriche conferendo sagomature aventi pendenza trasversale non inferiore al 4%. La pendenza sarà contrapposta al paramento.

Lo spessore allo stato sciolto di ogni singolo strato di rilevato non dovrà risultare superiore a 40 cm.

Sarà tassativo che la stesa avvenga sempre parallelamente al paramento esterno.

6.9.2 Compattazione

Il grado di compattazione sugli strati finiti del corpo del rilevato dovrà risultare \geq 90% della densità massima ottenuta con la prova di costipamento AASHTO T 180 modificata (CNR-B.U. n. 69), salvo per l'ultimo strato di 30 cm costituente il piano di posa della fondazione della pavimentazione in cui dovrà risultare una densità \geq 95% della prova citata, oppure seguire quanto indicato sui disegni costruttivi.

La compattazione potrà aver luogo soltanto dopo aver accertato che il contenuto d'acqua delle terre sia prossimo (± 1.5% ca) a quello ottimale determinato mediante la prova AASHTO mod. T 180.

Se tale contenuto dovesse risultare superiore, il materiale dovrà essere essiccato per aerazione. Se inferiore l'aumento sarà conseguito per umidificazione e con modalità tali da garantire una distribuzione uniforme entro l'intero spessore dello strato.

Il tipo, le caratteristiche e il numero dei mezzi di compattazione nonché le modalità esecutive di dettaglio (numero di passate, velocità operativa, frequenza), dovranno essere sottoposte alla preventiva approvazione della Direzione Lavori.

La compattazione a tergo delle opere in cemento armato dovrà essere tale da escludere una riduzione nell'addensamento.

In particolare si dovrà evitare che i grossi rulli vibranti operino entro una distanza inferiore a 1.5 m dai paramenti della terra armata.

A tergo dei manufatti si useranno mezzi di compattazione leggeri quali piastre vibranti, piccoli rulli vibranti, badando a garantire i valori di densità richiesti, anche a costo di operare su strati di spessore ridotto.

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

Gli strati realizzati con argilla espansa non saranno compattati in senso tradizionale, ma dovranno essere addensati garantendo l'integrità dei granuli pur riducendo l'indice dei vuoti. Tale addensamento sarà raggiunto utilizzando rulli vibranti leggeri.

L'operazione dovrà essere svolta previa collocazione di circa 20 cm di sabbia o di stabilizzato.

Qualora si dovessero manifestare erosioni di sorta sul terreno già steso, l'Impresa dovrà provvedere al ripristino delle zone danneggiate a sua cura e spese, secondo le disposizioni impartite di volta in volta dalla Direzione Lavori.

6.9.3 Posa in opera del rilevato alleggerito

Dopo aver completato lo scavo di sbancamento dal piano di campagna, alle quote previste dal progetto, verrà steso sul fondo del piano di scavo un geotessile, con funzione di separazione anticontaminante tra il terreno naturale e il materiale di riempimento. Il piano di posa dovrà risultare regolare, con il geotessile ben steso ed aderente al piano di imposta, e con teli di geotessile integri e regolarmente sovrapposti.

L'argilla espansa verrà posta in più strati, con interposizione di uno strato di misto granulare il cui spessore dopo compattazione, dovrà risultare non inferiore a 15 cm.

Lo spessore degli strati di argilla espansa è pari a 60 cm.

La posa dei diversi strati di argilla espansa dovrà avvenire spingendo il materiale in avanzamento con un mezzo cingolato attrezzato per muoversi su terreni di caratteristiche analoghe a quelle dell'argilla espansa.

La sequenza di lavoro è la seguente:

- scavo di sbancamento;
- posa geotessile non tessuto;
- posa del primo strato di argilla espansa (60 cm);
- posa dello strato di misto granulare di interposizione (15 cm);
- compattazione;
- controlli;
- posa del secondo strato di argilla espansa (60 cm);
- posa del secondo strato di misto granulare (15 cm);
- compattazione;
- controlli;
- a ripetere secondo altezza rilevato;

Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

- lo strato finale di misto granulare dovrà essere di spessore non inferiore a 30 cm.

6.9.4 Condizioni climatiche

La costruzione dei rilevati in presenza di gelo o di pioggia persistenti non sarà consentita in linea generale, tranne per quei materiali meno suscettibili all'azione del gelo e delle acque meteoriche (es. ghiaia). Nella esecuzione dei rilevati con terre ad elevato contenuto della frazione coesiva dovranno essere tenuti a disposizione anche dei rulli gommati che consentano di chiudere la superficie dell'ultimo strato in caso di pioggia.

6.9.5 Rilevati di prova

Quando prescritto dalla Direzione Lavori, l'Impresa procederà alla esecuzione dei rilevati di prova. In particolare si potrà fare ricorso ai rilevati di prova per verificare l'idoneità di materiali diversi da quelli specificati nei precedenti capitoli.

Il rilevato di prova consentirà di individuare le caratteristiche fisico-meccaniche dei materiali messi in opera, le caratteristiche dei mezzi di compattazione (tipo, peso, energie vibranti) e le modalità esecutive più idonee (numero di passate, velocità del rullo, spessore degli strati, ecc.), le procedure di lavoro e di controllo cui attenersi nel corso della formazione dei rilevati.

6.9.6 Prove di controllo sui rilevati

Prima che venga messo in opera uno strato di terreno, quello precedente dovrà essere sottoposto alle prove di controllo e possedere i requisiti di costipamento richiesti.

La procedura delle prove di seguito specificata, deve ritenersi come minima e dovrà essere infittita in ragione della discontinuità granulometrica dei materiali portati a rilevato e della variabilità nelle procedure di compattazione.

L'Impresa dovrà eseguire le prove di controllo nei punti indicati dalla Direzione Lavo ri ed in contraddittorio con la stessa. L'Impresa potrà eseguire le prove di controllo o in proprio o tramite un laboratorio esterno comunque approvato dalla Direzione Lavori.

Prima di iniziare i lavori l'Impresa dovrà sottoporre alla Direzione Lavori l'elenco del personale, delle attrezzature di prova nonché i certificati di calibrazione e taratura delle apparecchiature: durante i lavori l'esito delle prove dovrà essere trasmesso tempestivamente su appositi moduli.

Muri in terra armata TA391 e TA392 - Relazione descrittiva e di calcolo

La serie di prove sui primi 5000 mc verrà effettuata una volta tanto a condizione che i materiali mantengano caratteristiche omogenee e siano costanti le modalità di compattazione.

In caso contrario la Direzione Lavori potrà prescrivere la ripetizione della serie.

Le prove successive devono intendersi riferite a quantitativi appartenenti allo stesso strato di rilevato.

Tabella 8: Frequenza delle prove di controllo (almeno 1 ogni mc)

TIPO DI PROVA	PRIMI 5000 mc	SUCCESSIVI mc
Classif. CNR - UNI 10006	500	5000
Resistività	500	5000
рН	500	5000
Contenuto in cloruri e solfati per valori di resistività tra 1000/5000 Ohm cm	500	5000
Costip. AASHTO Mod. CNR	500	5000
Densità in sito CNR 22	250	1000
Carico su piastra CNR 9 - 70317	1000	5000
Controllo umidità	(*)	(*)

^(*) Frequenti e rapportate alle condizioni meteorologiche locali ed alle caratteristiche di omogeneità dei materiali portati a rilevato.

6.9.7 Prove di controllo sull'argilla espansa

Nel seguito si indicano i controlli da eseguire sulla fornitura del materiale:

- determinazione della massa volumica del materiale in mucchio a secco (UNI EN 13055 -2) = 320 kg/m³ ± 15%
- 2. determinazione della massa volumica media del granulo (UNI EN 13055-2) \leq 0.70 g/cm 3
- 3. determinazione della massa volumica assoluta del materiale (UNI EN 13055-2) \leq 2500 kg/m³
- 4. analisi granulometrica
- 5. determinazione del coefficiente d'imbibizione (UNI EN 13055-2) ≤ 20% a 24 ore

Sarà facoltà della D.L. richiedere, in qualsiasi fase dell'intervento, la ripetizione di tali prove, motivando le ragioni di tale richiesta.

AUTOSTRADA A13 BOLOGNA-PADOVA

Adeguamento alla terza corsia nel tratto Bologna Arcoveggio-Ferrara Sud strada comunale CHIAVICONE – progr. km 020+209 Muri in terra armata TA391 e TA392 – Relazione descrittiva e di calcolo

In corso d'opera verranno effettuati controlli della composizione granulometrica, del peso di volume in mucchio, della densità e del contenuto di acqua libera, al fine di verificare la rispondenza dei materiali ai requisiti prescritti.