

Codifica EEFR06003BGL02018

Rev. 00 del 13/10/2010

Pag. 1 di 138

Razionalizzazione rete in alta tensione nel territorio di Castrovillari Parti a 150 kV in Semplice Terna

PIANO TECNICO DELLE OPERE – PARTE PRIMA CARATTERISTICHE COMPONENTI

Storia d	lelle revisioni	
Rev. 00	del 13/10/2010	PRIMA EMISSIONE

Elaborato		Verificato			Approvato
M. De Marco	M. Longobardi	N. Speranza			Paternò P.
SRI-PRI-NA	SRI-PRI-NA	SRI-PRI-NA			SRI-PRI-NA

Codifica EEFR06003BGL02018

Rev. 00 del 13/10/2010

Pag. 2 di 138

1. CONDUTTORI ED ARMAMENTI

CODIFICA	DATA	OGGETTO
RQUT0000C2	LUG. 2002	Conduttore di energia Alluminio - Acciaio Ø 31,5 mm
LC51	GEN. 1995	Corda di guardia di acciaio rivestito di allumino Ø 11,5 mm
UX LC59	OTT. 2007	Corda di guardia con 48 fibre ottiche Ø 11,5 mm
UX LJ 1	MAR. 2009	Isolatori cappa e perno Tipo normale in vetro temperato
LJ 2	LUG. 1989	Isolatori cappa e perno Tipo antisale in vetro temperato Conduttori AllAcc Ø 31,5 mm tiro pieno
LM 21 GIU. 2007		Armamento per sospensione semplice
		Conduttori AllAcc Ø 31,5 mm tiro pieno
LM 22	GIU. 2007	Armamento per sospensione doppia
1.14.00	0111 0007	Conduttori AllAcc Ø 31,5 mm tiro pieno
LM 23	GIU. 2007	Armamento per sospensione doppia con doppio morsetto
1.04	0111 0007	Conduttori AllAcc Ø 31,5 mm tiro pieno
LM 24	GIU. 2007	Armamento per sospensione con contrappeso
	GIU. 2007	Conduttori AllAcc Ø 31,5 mm tiro pieno
LM 121		Armamento per amarro semplice
1.14.400	GIU. 2007	Conduttori AllAcc Ø 31,5 mm tiro pieno
LM 122		Armamento per amarro doppio
	LUG. 1994	Conduttori AllAcc Ø 31,5 mm tiro pieno
LM 133		Dispositivo per amarro bilaterale singolo per equipaggiamenti di
		sospensione ad "I"
LM201	LUG. 1994	Armamento per sospensione della corda di guardia
		Armamento per amarro della corda di guardia di acciaio rivestito di
LM252	LUG. 1994	alluminio (alumoweld) Ø 11,5 mm
		Armamento di sospensione della fune di guardia Ø 11,5 mm incorporante
DM205	LUG. 1996	fibre ottiche
		Armamento di amarro capolinea della fune di guardia Ø 11,5 mm
DM270	LUG. 1996	incorporante fibre ottiche
DM271	LUG. 1996	Armamento di amarro della fune di guardia Ø 11,5 mm incorporante fibre ottiche
DM272	LUG. 1996	Armamento di amarro con isolamento della fune di guardia Ø 11,5 mm incorporante fibre ottiche
DM273	LUG. 1996	Armamento di amarro passante per fune di guardia Ø 11,5 mm incorporante fibre ottiche

Codifica EEFR06003BGL02018

Rev. 00 del 13/10/2010

Pag. 3 di 138

2. TIPOLOGIA SOSTEGNI

CODIFICA	DATA	OGGETTO
		Conduttore singolo Ø 31,5mm tiro pieno
UXLS702	DIC. 2007	Sostegno tipo N
UXLS703	DIC. 2007	Conduttore singolo Ø 31,5mm tiro pieno
UXL3703	DIC. 2007	Sostegno tipo M
UXLS704	DIC. 2007	Conduttore singolo Ø 31,5mm tiro pieno
	2.0.200	Sostegno tipo P
UXLS705	DIC. 2007	Conduttore singolo Ø 31,5mm tiro pieno
		Sostegno tipo V
UXLS706	DIC. 2007	Conduttore singolo Ø 31,5mm tiro pieno
		Sostegno tipo C
LIVI CZOZ	DIC 2007	Conduttore singolo Ø 31,5mm tiro pieno
UXLS707	DIC. 2007	Sostegno tipo E
	DIC. 2007	Conduttore singolo Ø 31,5mm tiro pieno
UXLS708		Sostegno tipo E*
_	SET. 2007	Conduttore singolo Ø 31,5mm tiro pieno
P005UN001		Utilizzazione del sostegno N
	SET. 2007	Conduttore singolo Ø 31,5mm tiro pieno
P005UM001		Utilizzazione del sostegno M
	01 SET. 2007	Conduttore singolo Ø 31,5mm tiro pieno
P005UP001		Utilizzazione del sostegno P
		Conduttore singolo Ø 31,5mm tiro pieno
P005UV001	SET. 2007	Utilizzazione del sostegno V
500-110004	057 0007	Conduttore singolo Ø 31,5mm tiro pieno
P005UC001	SET. 2007	Utilizzazione del sostegno C
		Conduttore singolo Ø 31,5mm tiro pieno
P005UE001	SET. 2007	Utilizzazione del sostegno E
B00511505	057 005-	Conduttore singolo Ø 31,5mm tiro pieno
P005UES01	SET. 2007	Utilizzazione del sostegno E*

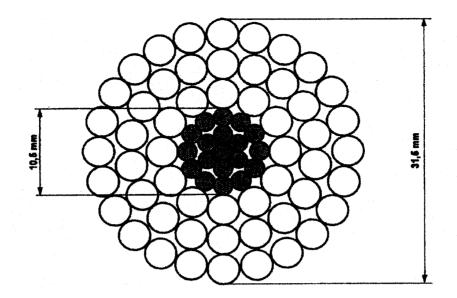
Codifica EEFR06003BGL02018

Rev. 00 del 13/10/2010

Pag. 4 di 138

3. FONDAZIONI

CODIFICA	DATA	OGGETTO
150STINFON	SET. 2010	Fondazioni CR: Tabella delle corrispondenze Sostegni – Monconi - Fondazioni



LINEE AEREE A.T. CONDUTTORE A CORDA DI ALLUMINIO - ACCIAIO DIAMETRO 31,5

RQ UT 0000C2

Revisione: 01

Pagina: 1/2

TIPO COMPUTTORE		C 2/1	C 2/2 (*)
TIPO CONDUTTORE		NORMALE	INGRASSATO
FORMAZIONE	Alluminio	54 x 3,50	54 x 3,50
	Acciaio	19 x 2,10	19 x 2,10
SEZIONI TEORICHE (mm²)	Alluminio	519,5	519,5
	Acciaio	65,80	65,80
	Totale	585,30	585,30
TIPO DI ZINCATURA DELL'A	ACCIAIO	Normale	Maggiorata
MASSA TEORICA (Kg/m)		1,953	2,071(**)
RESISTENZA ELETTR. TEC	PRICA A 20°C (ohm/km)	0,05564	0,05564
CARICO DI ROTTURA (daN)	16852	16516
MODULO ELASTICO FINAL	E (N/mm²)	68000	68000
COEFFICIENTE DI DILATAZ		19,4 x 10 ⁻⁶	19,4 x 10 ⁻⁶

- (*) Per zone ad alto inquinamento salino
- (**) Compresa massa grasso pari a 103,39 gr/m.

1. Materiale:

Mantello esterno in Alluminio ALP E 99,5 UNI 3950

Anima in acciaio a zincatura normale tipo 170 (CEI 7-2), zincato a caldo

Anima in acciaio a zincatura maggiorata tipo 3 secondo prescrizioni ENEL DC 3905 Appendice A

2. Prescrizioni:

Per la costruzione ed il collaudo: DC 3905

Per le caratteristiche dei prodotti di protezione: prEN50326

Per le modalità di ingrassaggio: EN50182

3. Imballo e pezzature:

Bobine da 2.000 m (salvo diversa prescrizione in sede di ordinazione)

Rev.	Data	Descrizione della revisione	Elaborato	Verificato	Collaborazioni	Approvato
			G-D'Ambrosa	A. Posati		R. Rendina
			A	Am		order
01	25-07-2002	Aggiornata massa conduttore ingrassato				······································
00	21-01-2002	PRIMA EMISSIONE	RIS/IML	RIS/IML		RIS/IML

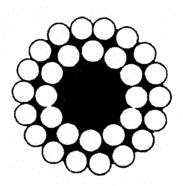
LINEE AEREE A.T. CONDUTTORE A CORDA DI ALLUMINIO - ACCIAIO DIAMETRO 31,5

RQ UT 0000C2

Revisione: 01

Pagina: 2/2

4. Unità di misura:


L'unità di misura con la quale deve essere espressa la quantità del materiale è la massa in chilogrammi (Kg)

5. Modalità di applicazione dei prodotti di protezione:

Il conduttore C 2/2 dovrà essere completamente ingrassato, ad eccezione della superficie esterna dei fili elementari del mantello esterno.

Le modalità di ingrassaggio devono essere rispondenti alla norma EN 50182 del Maggio 2001 Caso 4 Figura B.1, annesso B.

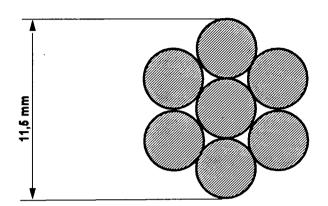
La massa teorica di grasso espressa in gr/m, con una densità di 0,87 gr/cm³, calcolata secondo la norma EN 50182 dovrà essere pari a 103,39 gr/m.

Cfr. Norma EN 50182 Maggio 2001 Caso 4 Figura B.1, annesso B

6. Caratteristiche dei prodotti di protezione:

Il grasso utilizzato dovrà essere conforme alla norma prEN 50326 Ottobre 2001 tipo 20A180 ovvero 20B180.

Il Fornitore del conduttore, dovrà consegnare la documentazione di conformità del grasso utilizzato.


ENEL

CORDA DI GUARDIA DI ACCIAIO RIVESTITO DI ALLUMINIO Ø 11,5

31 75 A

LC 51

Gennaio 1995 Ed. 7 - 1/1

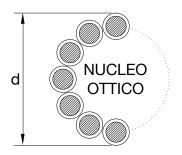
N. MATRICOLA 31 75 03

FORMAZIONE	7 x 3,83
SEZIONE TEORICA (mm²)	80,65
MASSA TEORICA (kg/m)	0,537
RESISTENZA ELETTR. TEORICA A 20 °C (Ω/km)	1,062
CARICO DI ROTTURA (daN)	9000
MODULO ELASTICO FINALE (N/mm²)	155000
COEFFICENTE DI DILATAZIONE (1/°C)	13 x 10 ⁻⁶

- 1 Materiale: acciaio rivestito di alluminio (CEI 7-11)
- 2 Prescrizioni per la costruzione ed il collaudo: DC 3908
- 3 Prescrizioni per la fornitura: DC 3911
- 4 Imballo e pezzature: bobine da 2.000 m (salvo diversa prescrizione in sede di ordinazione)
- 5 L'unità di misura con la quale deve essere espressa la quantità del materiale è la massa in chilogrammi (Kg)

Descrizione ridotta:

CORDA ACC RIV ALL DIAM 1	1 . 5	UE


Tabella dati CORDA DI GUARDIA CON 48 FIBRE OTTICHE Ø11,5 mm

Codifica:

UX LC59

M Rev. 00
del 08/10/2007

Pag. 1 di 1

DIAMETRO NOMINALE ES	STERNO	(mm)	≤ 11,5		
MASSA UNITARIA TEORIO	UNITARIA TEORICA (Eventuale grasso compreso) (kg/m)		≤ 0,6		
RESISTENZA ELETTRICA TEORICA A 20 °C			TENZA ELETTRICA TEORICA A 20 °C (ohm/km)		
CARICO DI ROTTURA	(daN)	≥ 7450			
MODULO ELASTICO FINA	(daN/mm²)	≥ 10000			
COEFFICIENTE DI DILATAZIONE TERMICA			(1/°C)	≤ 16,0E-6	
MAX CORRENTE C.TO C.TO DURATA 0,5 s			(kA)	≥ 10	
	NUMERO		(n°)	48	
	ATTENUAZIONE	a 1310 nm	(dB/km)	≤ 0,36	
FIBRE OTTICHE SM-R (Single Mode Reduced)		a 1550 nm	(dB/km)	≤ 0,22	
(Onligic Wode Nedded)	DISPERSIONE	a 1310 nm	(ps/nm · km)	≤ 3,5	
	CROMATICA	a 1550 nm	(ps/nm · km)	≤ 20	

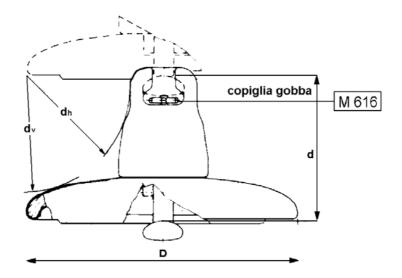
- 1. Prescrizioni per la costruzione ed il collaudo: C3907.
- 2. Prescrizioni per la fornitura: C3911.
- 3. Imballo e pezzature: bobine da 4000 m (salvo diversa prescrizione in sede di ordinazione).
- 4. Unità di misura: la quantità del materiale deve essere espressa in m.
- 5. Sigillatura: eseguita mediante materiale termoresistente e autovulcanizzante.

Descrizione ridotta:

COR GUAR	ACS	4 8 x	F I B R	OTT	1 1 , 5
Matricola SAP:					
1 0 1 1 9 1 6					

Storia de	lle revisioni	
Rev. 00	del 08/10/2007	Prima emissione.

Elaborato	Verificato	Approvato
S. Tricoli	A. Posati	R. Rendina
ING-ILC	ING-ILC	ING-ILC


Isolatori Cappa e Perno di Tipo Normale in Vetro Temprato

Codifica:

UX LJ1

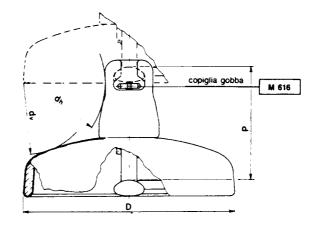
Rev. 00
del 03/04/2009

Pag. 1 di 1

	TIPO	1/1	1/2	1/3	1/4	1/5	1/6
Carico di Rottura (kN)	70	120	160	210	400	300
Diametro Nominale P	arte Isolante (mm)	255	255	280	280	360	320
Passo (mm)		146	146	146	170	205	195
Accoppiamento CEI 3	36-10 (grandezza)	16	16	20	20	28	24
Linea di Fuga Nominale Minima (mm)		295	295	315	370	525	425
Dh Nominale Minimo	(mm)	85	85	85	95	115	100
Dv Nominale Minimo	(mm)	102	102	102	114	150	140
Condizioni di Prova in Nebbia Salina	Numero di Isolatori Costituenti la Catena	9	13	21	18	15	16
	Tensione (kV)	98	142	243	243	243	243
Salinità di Tenuta (**)	(kg/ m³)	14	14	14	14	14	14
Matricola SAP.		1004120	1004122	1004124	1004126	1004128	01012241

- (**) La salinità di tenuta, verificata su una catena, viene convenzionalmente assunta come caratteristica propria del tipo di elemento isolante.
 - 1. Materiale: parte isolante in vetro sodocalcico temprato; cappa in ghisa malleabile (UNI EN 1562) zincata a caldo; perno in acciaio al carbonio (UNI EN 10083-1) zincato a caldo; copiglia in acciaio inossidabile.
 - 2. Tolleranze:
 - sul valore nominale del passo: secondo la pubblicazione IEC 305 par. 3
 - sugli altri valori nominali: secondo la Norma CEI 36-5 par. 24.
 - Su ciascun esemplare deve essere marcata la sigla U seguita dal carico di rottura dell'isolatore, il marchio di fabbrica del costruttore e l'anno di fabbricazione
 - 4. Prescrizioni per la costruzione ed il collaudo: J 3900.
 - 5. Prescrizioni per la fornitura: J 3901 per quanto applicabile.
 - 6. Tensione di tenuta alla perforazione elettrica f.i.: in olio, 80 kV eff. (J1/1, J1/2); 100 kV eff. (J1/3, J1/4, J1/5, J1/6).
 - 7. Tensione di tenuta alla perforazione elettrica ad impulso in aria: 2,5 p.u. (per unità della tensione di scarica 50% a impulso atmosferico standard di polarità negativa).
 - 8. L'unità di misura con la quale deve essere espressa la quantità di materiale è il numero di esemplari: n.

Storia de	lle revisioni	
Rev. 00	del 03/04/2009	Prima emissione. Sostituisce la J1 Rev.07.


Elaborato		Verificato			Approvato		
	M. Meloni		A.Posati			R.Rendina	1
	ING-ILC-COL		ING-ILC-COL			ING-ILC	

ISOLATORI CAPPA E PERNO DI TIPO ANTISALE IN VETRO TEMPRATO

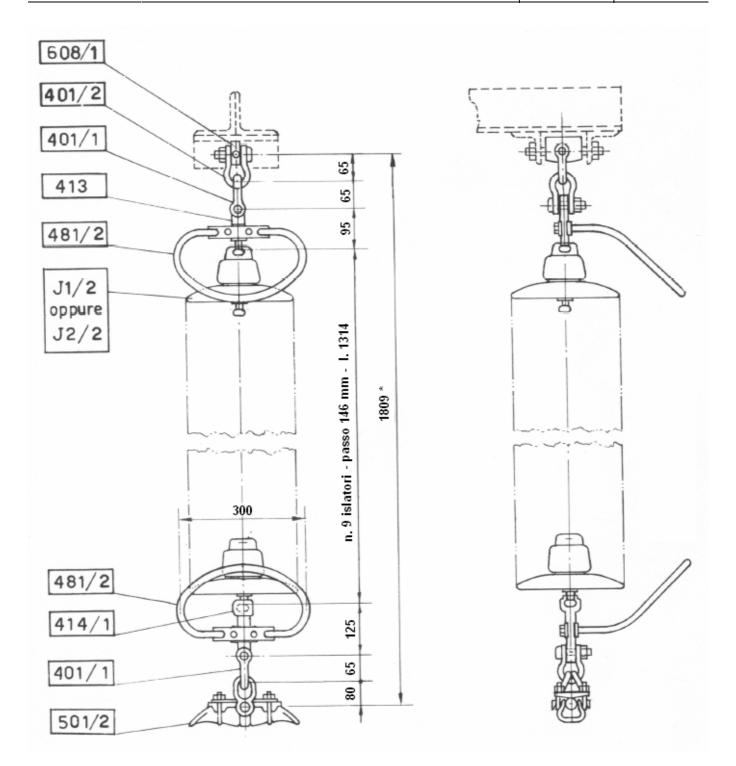
30 24 B

LJ 2

Luglio 1989 Ed. 6 - 1/1

MATRICOLA			30 24 21	30 24 25	30 24 53	30 24 55
	TIPO					2/4
Carico di rottura		(kN)	70	120	160	210
Diametro nominale della	a parte isolante	(mm)	280	280	320	320
Passo (mm)			146	146	170	170
Accoppiamento CEI-UNEL 39161 e 39162 (grandezza)			16	16	20	20
Linea di fuga nominale minima (mm)			430	425	525	520
d _h nominale minimo (mm)			75	75	90	90
d _√ nominale minimo (mm)			85	85	100	100
Condizioni di prova	Numero di isolatori costituenti la catena	1	9	13	18	18
in nebbia salina	Tensione di prova	(kV)	98	142	243	243
Salinità di tenuta (**) (Kg/m³)			56	56	56	56

- (*) In alternativa a questo tipo può essere impiegato il tipo J 4 in porcellana.
- 1. Materiale: parte isolante in vetro sodocalcico temprato; cappa in ghisa malleabile (UNI ISO 5922) zincata a caldo; perno in acciaio al carbonio (UNI 7845-7874) zincato a caldo; copiglia in acciaio inossidabile.
- 2. Tolleranze:
 - sul valore nominale del passo: secondo la pubblicazione IEC 305 (1974) par. 3
 - sugli altri valori nominali: secondo la Norma CEI 36-5 (1979) par. 24.
- Su ciascun esemplare deve essere marcata la sigla U seguita dal carico di rottura dell'isolatore, il marchio di fabbrica del costruttore e l'anno di fabbricazione.
- 4. Prescrizioni per la costruzione ed il collaudo: DJ 3900.
- 5. Prescrizioni per la fornitura: DJ 3901.
- 6. Tensione di tenuta alla perforazione elettrica a f.i.: in olio, 80 kV eff. (J 2/1, J 2/2); 100 kV eff. (J 2/3, J 2/4).
- 7. Tensione di tenuta alla perforazione elettrica ad impulso in aria: 2,5 p.u. (per unità della tensione di scarica 50% a impulso atmosferico standard di polarità negativa).
- 8. L'unità di misura con la quale deve essere espressa la quantità di materiale è il numero di esemplari: n.
- (**) La salinità di tenuta, verificata su una catena, viene convenzionalmente assunta come caratteristica propria del tipo di elemento isolante. Esempio di designazione abbreviata:


ISOLATORE	ANTIS	VETRO	CAPERNO	2 1 0 K N	UE

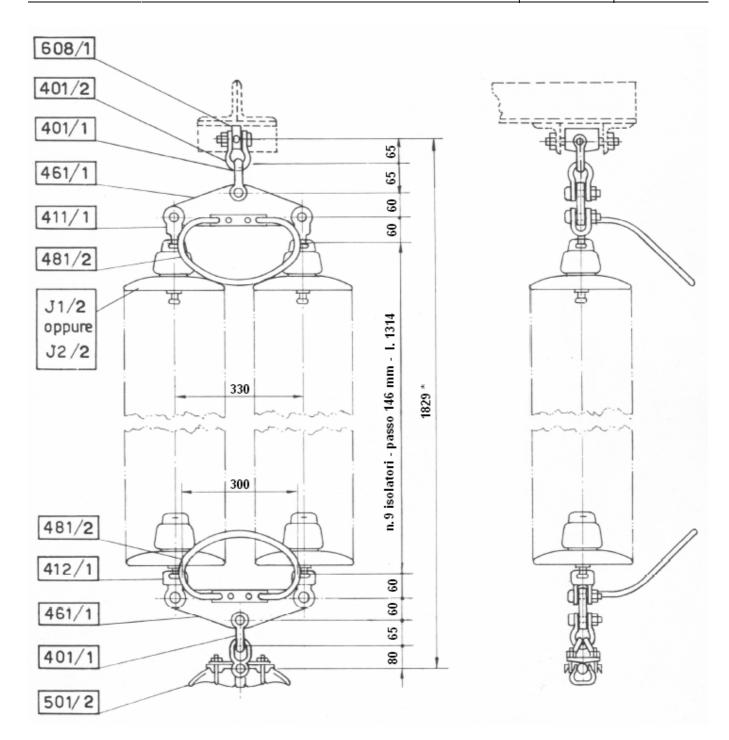
LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER SOSPENSIONE SEMPLICE

Codifica: **LM21**Rev. 00
del 29/06/2007

Rev. 1 di 1

^{*} La quota aumentata di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121)

Storia de	lle revisioni	
Rev. 00	del 29/06/2007	Prima emissione.


Elaborato		Verificato			Approvato	l	
	G. Lavecchia		A. Posati	S. Tricoli		R. Rendina	
	ING-ILC-COL		ING-ILC-COL	ING-ILC-COL		ING-ILC	

LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER SOSPENSIONE DOPPIA

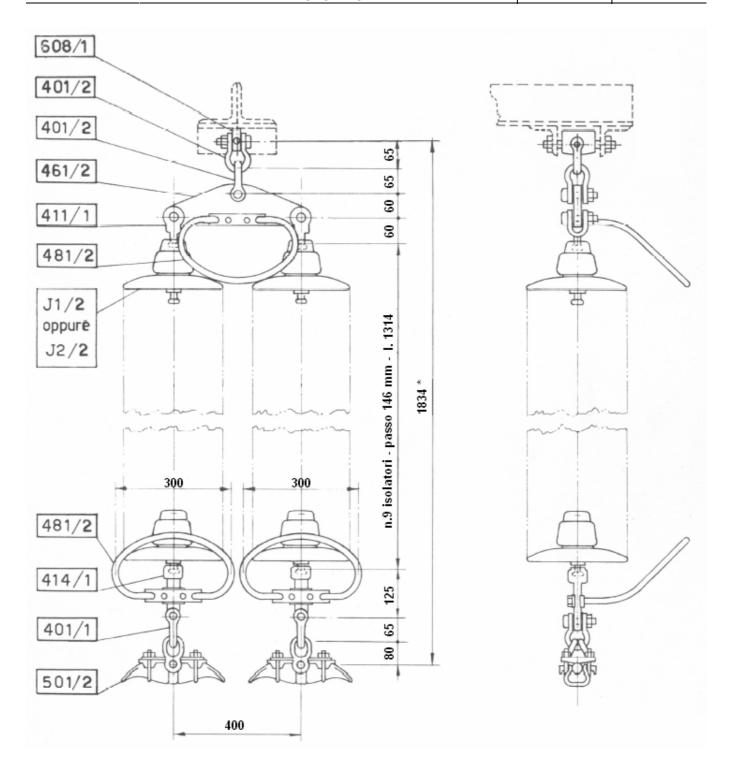
Codifica: **LM22**Rev. 00
del 29/06/2007

Rev. 1 di 1

^{*} La quota aumenta di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121)

Storia de	lle revisioni	
Rev. 00	del 29/06/2007	Prima emissione.

Elaborato		Verificato			Approvato	
G. Lavecchia		A. Posati	S. Tricoli		R. Rendina	Ī
ING-ILC-COL		ING-ILC-COL	ING-ILC-COL		ING-ILC	



LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER SOSPENSIONE DOPPIA CON DOPPIO MORSETTO

Codifica: LM23

Rev. 00
del 29/06/2007

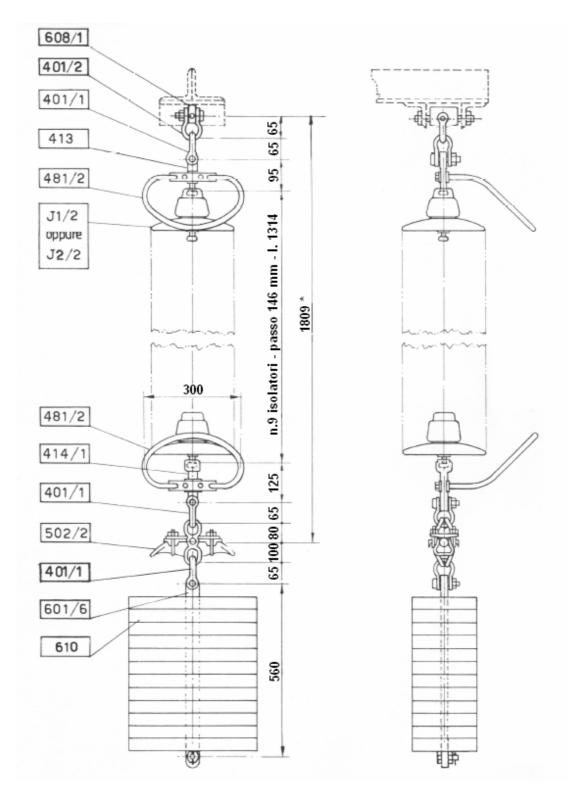
Pag. 1 di 1

* La quota aumentata di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121)

Storia de	lle revisioni	
Rev. 00	del 29/06/2007	Prima emissione.

Elaborato		Verificato			Approvato	l	
	G. Lavecchia		A. Posati	S. Tricoli		R. Rendina	
	ING-ILC-COL		ING-ILC-COL	ING-ILC-COL		ING-ILC	

LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER SOSPENSIONE CON CONTRAPPESO


Codifica: LM24

Rev. 00
del 29/06/2007

Rev. 01

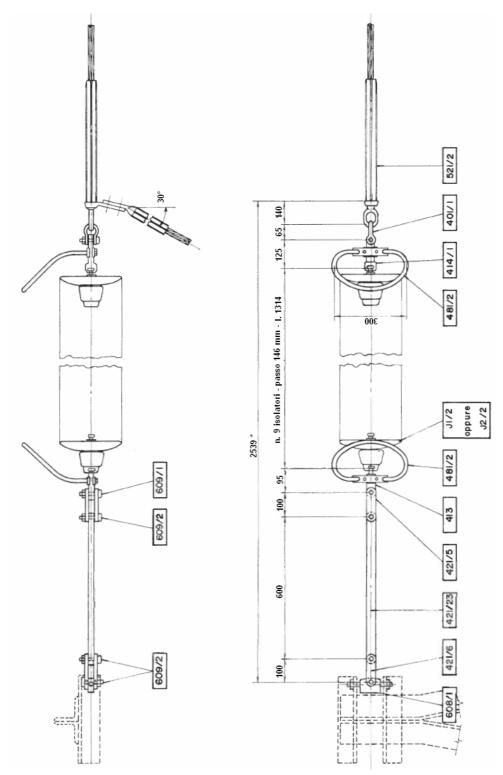
Rev. 01

Rev. 01

^{*} La quota aumenta di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121)

Storia delle revisioni						
Rev. 00	del 29/06/2007	Prima emissione.				

Elaborato		Verificato					
	A. Posati ING-ILC-COL	S. Tricoli ING-ILC-COL		R. Rendina ING-ILC			
			A. Posati S. Tricoli	A. Posati S. Tricoli			



LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER AMARRO SEMPLICE

Codifica: LM121

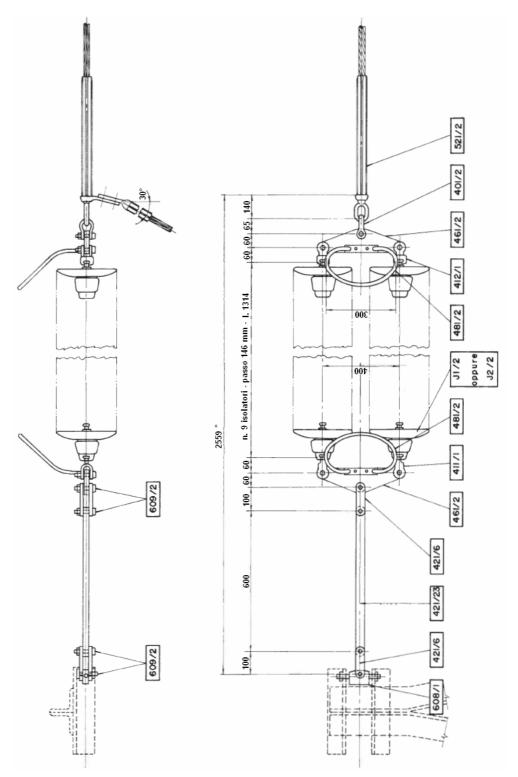
Rev. 00
del 29/06/2007

Rev. 00 Pag. 1 di 1

^{*} La quota aumenta di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121)

Storia delle revisioni								
Rev. 00	del 29/06/2007	Prima emissione.						

Elaborato		Verificato	Approvato			
G. Lavecchia ING-ILC-COL		A. Posati ING-ILC-COL	S. Tricoli ING-ILC-COL		R. Rendina ING-ILC	



LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER AMARRO DOPPIO

Codifica: LM122

Rev. 00
del 29/06/2007

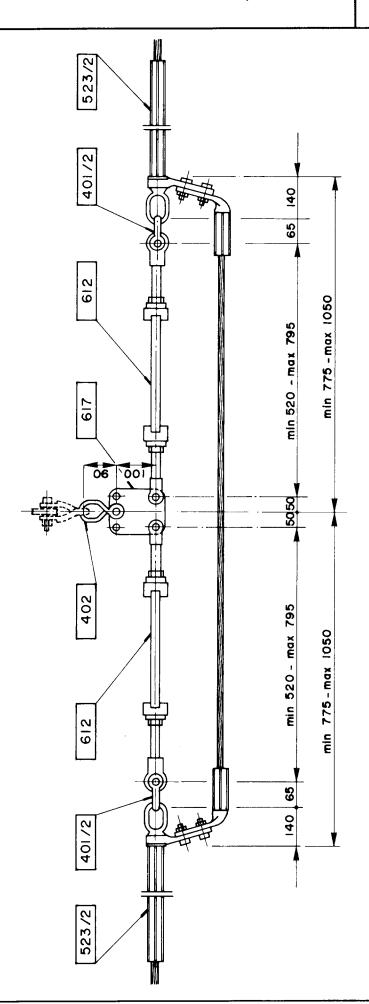
Pag. 1 di 1

* La quota aumenta di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121) Riferimento C2

Storia delle revisioni							
Rev. 00	del 29/06/2007	Prima emissione.					

Elaborato		Verificato	Approvato			
G. Lavecchia ING-ILC-COL		A. Posati ING-ILC-COL	S. Tricoli ING-ILC-COL		R. Rendina ING-ILC	

UNIFICAZIONE


ENEL

DISPOSITIVO PER AMARRO BILATERALE SINGOLO PER EQUIPAGGIAMENTI DI SOSPENSIONE A "I" CONDUTTORE IN ALL. - ACC. Ø 31,5

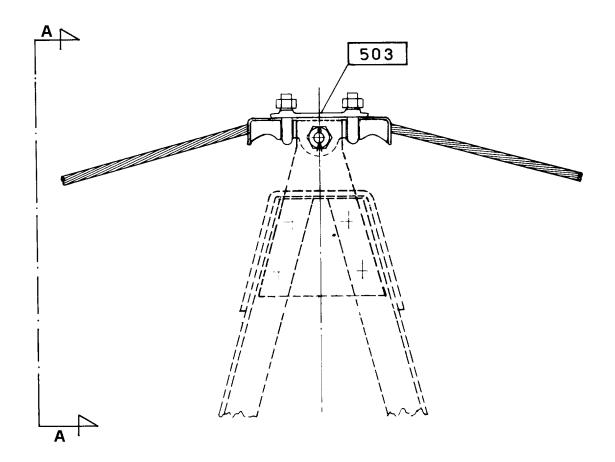
25 XX AQ

LM 133

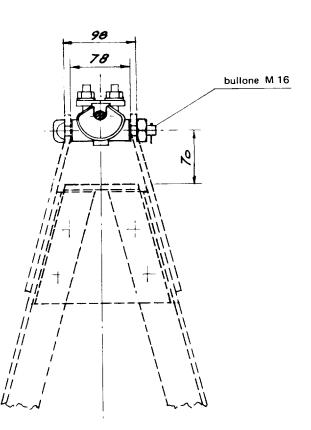
Luglio 1994 Ed.3 - 1/1

DCO - AITC - UNITA' INGEGNERIA IMPIANTISTICA 2 - DDI - VICE DIREZIONE TECNICA

UNIFICAZIONE



LINEE A 132 - 150 - 220 kV ARMAMENTO PER SOSPENSIONE DELLA CORDA DI GUARDIA

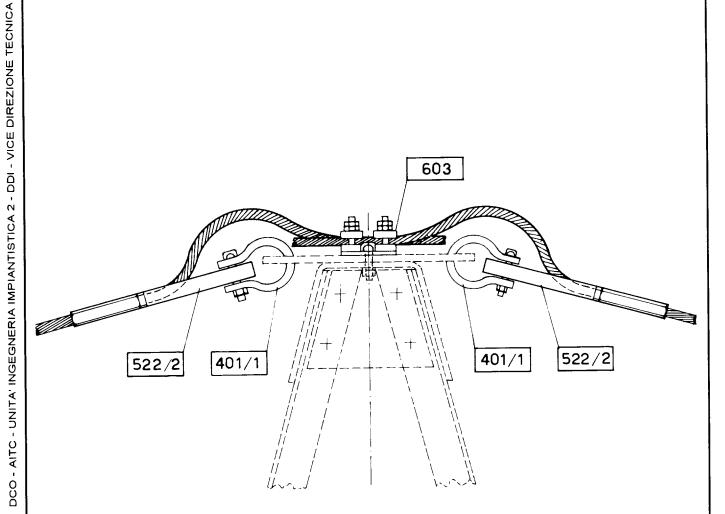

25 XX BB

LM 201

Luglio 1994 Ed. 4 - 1/1

VISTA A-A

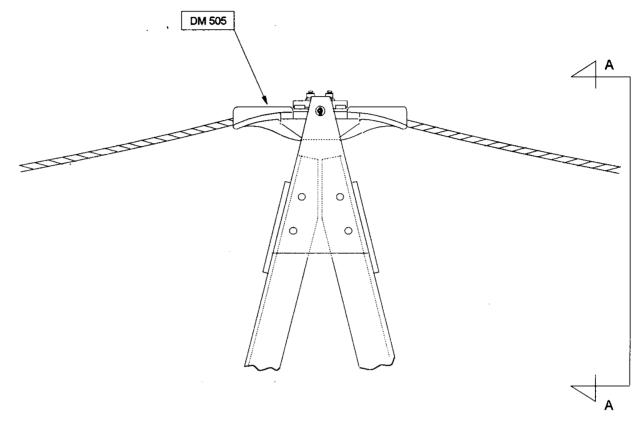
Riferimenti: C21, C23, C51

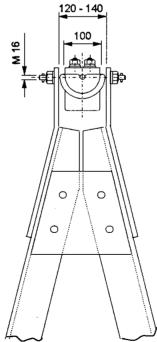

UNIFICAZIONE

LINEE A 132 - 150 - 220 kV - ARMAMENTO PER AMARRO DELLA CORDA DI GUARDIA DI ACCIAIO O DI ACCIAIO RIVESTITO DI ALLUMINIO (ALUMOWELD) Ø 11,5 **25 XX BE**

LM 252

Luglio 1994 Ed. 4 - 1/1

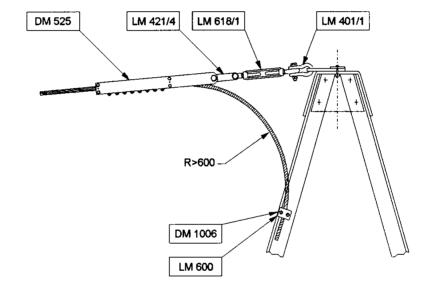

Riferimenti: C23, C51


ENEL

LINEE A 132+150 kV ARMAMENTO DI SOSPENSIONE DELLA FUNE DI GUARDIA Ø 11.5 mm INCORPORANTE FIBRE OTTICHE

DM 205

Luglio 1996 Ed. 1 - 1/1


VISTA A - A

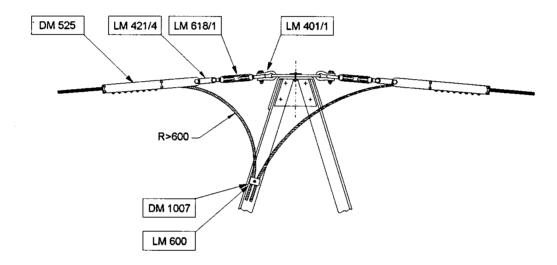
ENEL

LINEE A 132+150 kV ARMAMENTO DI AMARRO CAPOLINEA DELLA FUNE DI GUARDIA Ø 11.5 mm INCORPORANTE FIBRE OTTICHE

DM 270

Luglio 1996 Ed. 1 - 1/1

Nota:

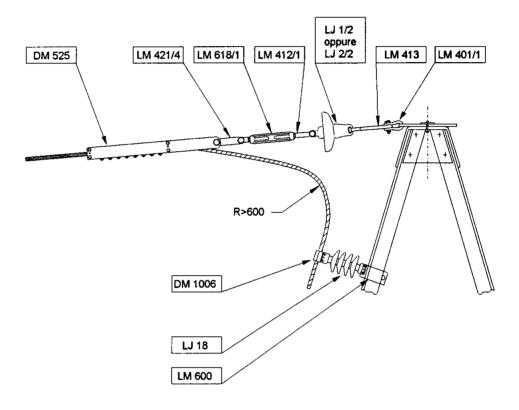

Le quantità dei morsetti unifilari DM 1006 e delle staffe di fissaggio LM 600 per la discesa della fune di guardia alla scatola di giunzione sono riportate negli schemi di montaggio dei sostegni unificati.

LINEE A 132+150 kV ARMAMENTO DI AMARRO DELLA FUNE DI GUARDIA Ø 11.5 mm INCORPORANTE FIBRE OTTICHE

DM 271

Luglio 1996 Ed. 1 - 1/1

Nota:

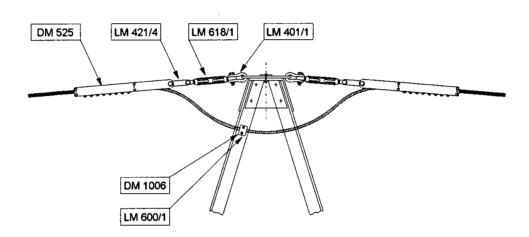

Le quantità dei morsetti bifilari DM 1007 e delle staffe di fissaggio LM 600 per la discesa della fune di guardia alla scatola di giunzione sono riportate negli schemi di montaggio dei sostegni unificati.

ENEL

LINEE A 132+150 kV ARMAMENTO DI AMARRO CON ISOLAMENTO DELLA FUNE DI GUARDIA Ø 11.5 mm INCORPORANTE FIBRE OTTICHE

DM 272

Luglio 1996 Ed. 1 - 1/1



Nota: Le quantità dei morsetti unifilari DM 1006, degli isolatori LJ 18 e delle staffe di fissaggio LM 600 per la discesa della fune di guardia alla scatola di giunzione devono essere specificate in funzione del tipo ed altezza del sostegno sul quale viene realizzata la discesa isolata.

LINEE A 132+150 kV ARMAMENTO DI AMARRO PASSANTE PER FUNE DI GUARDIA Ø 11.5 mm INCORPORANTE FIBRE OTTICHE

DM 273

Luglio 1996 Ed. 1 - 1/1

Codifica: **UX LS702**

Rev. 00 del 31/12/2007

Pag. **1** di 7

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOST	ΓEGNI	Parte comune Montante					TRO	NCHI					Piedi	Fondazione		
TIPO	RIF.	Parte comune	ausiliario	ı	II	III	IV	V	VI	VII	VIII	Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	RIF.				ELEMENTI STRUTTURALI LS (*)									RIF. LF.		
N9	702/1	TN 19 (1296)	-	-	-	-	-	-	-	-	-	TN 7 (237)	TN 16 (691)	LF 102 /295	LF 43/2	2224
N12	702/2	TN 19 (1296)	TN 20 (283)	-	-	-	-	-	-	-	-	TN 8 (661)	TN 16 (691)	LF 102 /295	LF 43/2	2931
N15	702/3	TN 19 (1296)	-	TN 21 (892)	-	-	-	-	-	-	-	TN 9 (332)	TN 35 (693)	LF 102 /295	LF 44/3	3213
N18	702/4	TN 19 (1296)	TN 20 (283)	TN 21 (892)	-	-	-	-	-	-	-	TN 10 (757)	TN 35 (693)	LF 102 /295	LF 44/3	3921
N21	702/5	TN 19 (1296)	-	TN 21 (892)	TN 40 (948)	-	-	-	-	-	-	TN 11 (646)	TN 35 (693)	LF 103 /275	LF 44/1	4475
N24	702/6	TN 19 (1296)	TN 20 (283)	TN 21 (892)	TN 40 (948)	-	-	-	-	-	-	TN 12 (936)	TN 35 (693)	LF 103 /285	LF 44/2	5048
N27	702/7	TN 19 (1296)	-	TN 21 (892)	TN 40 (948)	TN 23 (998)	-	-	-	-	-	TN 13 (660)	TN 36 (785)	LF 103 /285	LF 44/2	5579
N30	702/8	TN 19 (1296)	TN 20 (283)	TN 21 (892)	TN 40 (948)	TN 23 (998)	-	-	-	-	-	TN 14 (1146)	TN 36 (785)	LF 103 /285	LF 44/2	6348
N33	702/9	TN 19 (1296)	-	TN 21 (892)	TN 40 (948)	TN 23 (998)	TN 24 (1096)	-	-	-	-	TN 15 (979)	TN 36 (785)	LF 103 /285	LF 44/2	6994
N36	702/10	TN 19 (1296)	TN 20 (283)	TN 21 (892)	TN 40 (948)	TN 23 (998)	TN 24 (1096)	-	-	-	-	TN 37 (1351)	TN 36 (785)	LF 103 /285	LF 44/2	7649
N39	702/11	TN 19 (1296)	-	TN 21 (892)	TN 40 (948)	TN 23 (998)	TN 24 (1096)	TN 25 (1174)	-	-	-	TN 38 (1167)	TN 36 (785)	LF 103 /285	LF 44/2	8356
N42	702/12	TN 19 (1296)	TN 20 (283)	TN 21 (892)	TN 40 (948)	TN 23 (998)	TN 24 (1096)	TN 25 (1174)	-	-	-	TN 39 (1574)	TN 36 (785)	LF 103 /295	LF 44/3	9046

^(*) Il peso totale (escluso i monconi) e dei singoli elementi strutturali (indicati tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

Storia de	lle revisioni	
Rev. 00	del 31/12/2007	Prima emissione.

Elaborato	Verificato	Approvato		
L. Alario	L. Alario	A. Posati		R. Rendina
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL		ING-ILC

^(**) fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

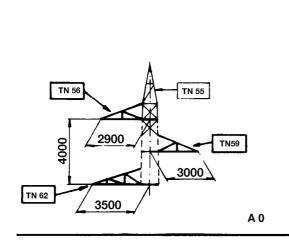
Codifica: **UX LS702** Rev. 00 Pag. **2** di 7

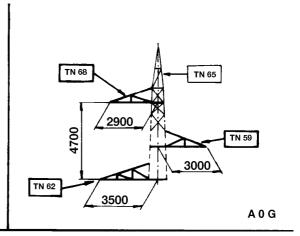
del 31/12/2007

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO A

GRUPPI N	MENSOLE	ELEMENTI STRUTTURALI (*)									
TIPO	RIF.	Cimino	Mensola alta	Mensola	Mensola	Pen	PESO				
TIPO	RIF.	Cimino	Mensola alla	media	bassa	tipo	n. pezzi				
A0	702/20	TN 55 (348)	TN 56 (115)	TN 59 (111)	TN 62 (134)	-	-	708			
A1	702/21	TN 55 (348)	TN 57 (95)	TN 60 (150)	TN 63 (98)	TN 66 (30)	1	721			
A2	702/22	TN 55 (348)	TN 58 (145)	TN 61 (98)	TN 64 (145)	TN 66 (30)	2	796			
A1*	702/23	TN 55 (348)	TN 57 (95)	TN 60 (150)	TN 63 (98)	TN 67 (30)	1	721			
A2*	702/24	TN 55 (348)	TN 58 (145)	TN 61 (98)	TN 64 (145)	TN 67 (30)	2	796			
A0G	702/25	TN 65 (436)	TN 68 (119)	TN 59 (111)	TN 62 (134)	-	-	800			
A1G	702/26	TN 65 (436)	TN 69 (97)	TN 60 (150)	TN 63 (98)	TN 66 (30)	1	811			
A2G	702/27	TN 65 (436)	TN 70 (147)	TN 61 (98)	TN 64 (145)	TN 66 (30)	2	886			
A1*G	702/28	TN 65 (436)	TN 69 (97)	TN 60 (150)	TN 63 (98)	TN 67 (30)	1	811			
A2*G	702/29	TN 65 (436)	TN 70 (147)	TN 61 (98)	TN 64 (145)	TN 67 (30)	2	886			

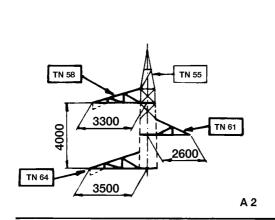
^(*) il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in Kg.

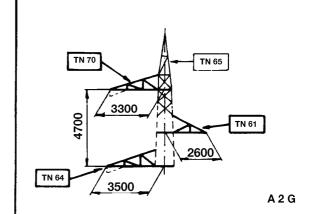

Codifica: **UX LS702** Rev. 00 Pag. **3** di 7

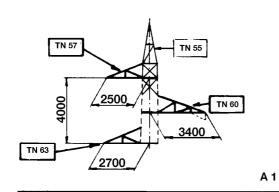

del 31/12/2007

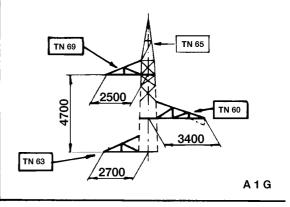
PER CAMPATE NORMALI

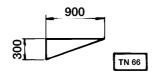
PER GRANDI CAMPATE

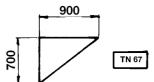

GRUPPI MENSOLE NORMALI

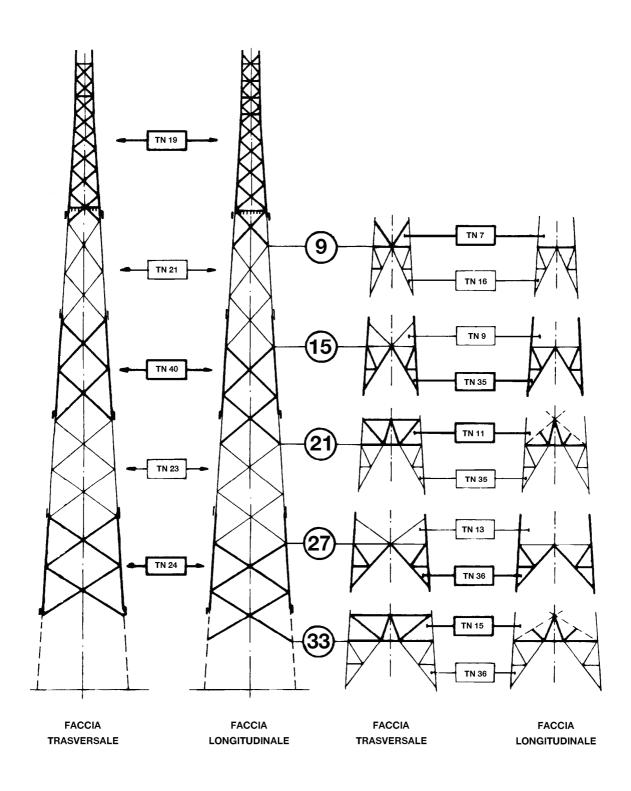





GRUPPI MENSOLE CON PENDINO


PENDINI



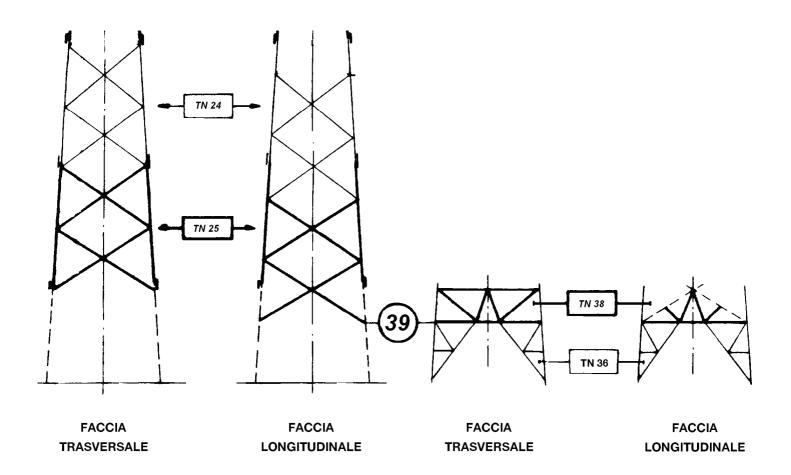

Codifica:

UX LS702

Rev. 00
del 31/12/2007

Pag. 4 di 7

SCHEMA SOSTEGNI CON ALTEZZE DISPARI

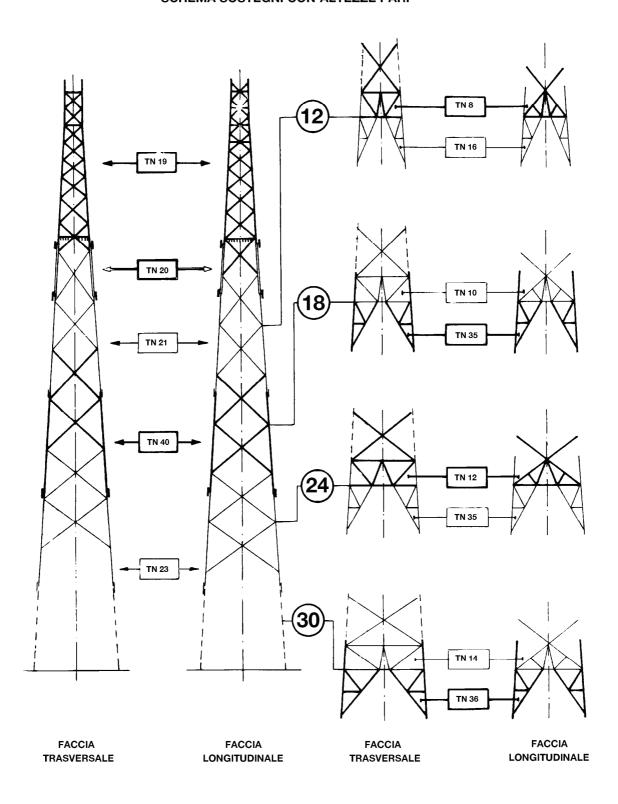

Codifica:

UX LS702

Rev. 00
del 31/12/2007

Pag. **5** di 7

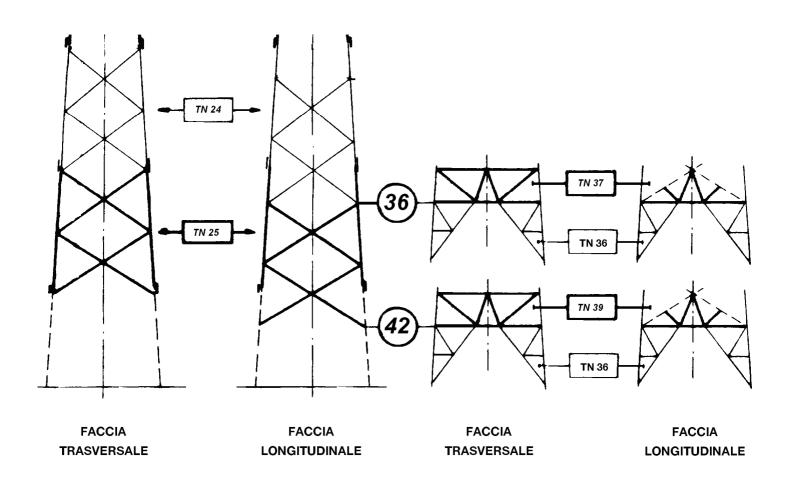
SCHEMA SOSTEGNI CON ALTEZZE DISPARI



del 31/12/2007

Pag. **6** di 7

SCHEMA SOSTEGNI CON ALTEZZE PARI


Codifica:

UX LS702

Rev. 00
del 31/12/2007

Pag. 7 di 7

SCHEMA SOSTEGNI CON ALTEZZE PARI

Codifica:

UX LS703

Rev. 00 del 31/12/2007 Pag. **1** di 5

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOST	ΓEGNI	Parta comuna	Montante				TRO	NCHI				Base Piedi		Fondazione Moncone (**)		
TIPO	RIF.	- Parte comune	ausiliario	I	II	III	IV	V	VI	VII	VIII	Base	(n.4 pezzi)	normale (**)	()	Peso (Kg) (*)
TIFO	KIF.		ELEMENTI STRUTTURALI LS (*)											RIF. LF.		
M9	703/1	TM 37 (1301)	-	-	-	-	-	-	-	-	-	TM 7 (234)	TM 16 (765)	LF 102 /295 LF 103/275	LF 44/3 LF 44/1	2300
M12	703/2	TM 37 (1301)	TM 38 (336)	-	-	-	-	-	-	-	-	TM 8 (662)	TM 16 (765)	LF 103 /275	LF 44/1	3064
M15	703/3	TM 37 (1301)	-	TM 39 (1006)	-	-	-	-	-	-	-	TM 9 (330)	TM 35 (754)	LF 103 /285	LF 44/2	3391
M18	703/4	TM 37 (1301)	TM 38 (336)	TM 39 (1006)	-	-	-	-	-	-	-	TM 10 (754)	TM 35 (754)	LF 103 /285	LF 44/2	4151
M21	703/5	TM 37 (1301)	-	TM 39 (1006)	TM 40 (1009)	-	-	-	-	-	-	TM 11 (647)	TM 35 (754)	LF 103 /285	LF 44/2	4717
M24	703/6	TM 37 (1301)	TM 38 (336)	TM 39 (1006)	TM 40 (1009)	-	-	-	-	-	-	TM 12 (929)	TM 35 (754)	LF 103 /295	LF 44/3	5335
M27	703/7	TM 37 (1301)	-	TM 39 (1006)	TM 40 (1009)	TM 41 (1117)	-	-	-	-	-	TM 13 (597)	TM 54 (813)	LF 103 /295	LF 44/3	5843
M30	703/8	TM 37 (1301)	TM 38 (336)	TM 39 (1006)	TM 40 (1009)	TM 41 (1117)	-	-	-	-	-	TM 14 (1095)	TM 54 (813)	LF 103 /295	LF 44/3	6677
M33	703/9	TM 37 (1301)	-	TM 39 (1006)	TM 40 (1009)	TM 41 (1117)	TM 42 (1171)	-	-	-	-	TM 15 (937)	TM 54 (813)	LF 103 /295	LF 44/3	7354

^(*) Il peso totale (escluso i monconi) e dei singoli elementi strutturali (indicati tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

Storia de	Storia delle revisioni						
Rev. 00	del 31/12/2007	Prima emissione.					

Elaborato		Verificato			Approvato	
L. Alario		L. Alario	A. Posati		R. Rendina	
ING-ILC-COL		ING-ILC-COL	ING-ILC-COL		ING-ILC	

^(**) fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

Codifica: **UX LS703** Rev. 00 Pag. **2** di 5

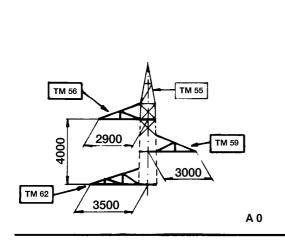
del 31/12/2007

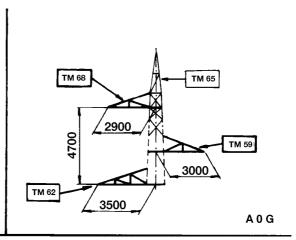
ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO A

GRUPPI MENSOLE		ELEMENTI STRUTTURALI (*)						
TIPO	RIF.	Cimino	Mensola alta	Mensola media	Mensola bassa	Pendino		PESO
	RIF.	Cimino				tipo	n. pezzi	
A0	703/20	TM 55 (367)	TM 56 (111)	TM 59 (111)	TM 62 (131)	-	-	720
A1	703/21	TM 55 (367)	TM 57 (94)	TM 60 (146)	TM 63 (98)	TM 66 (30)	1	735
A2	703/22	TM 55 (367)	TM 58 (146)	TM 61 (98)	TM 64 (140)	TM 66 (30)	2	811
A1*	703/23	TM 55 (367)	TM 57 (94)	TM 60 (146)	TM 63 (98)	TM 67 (35)	1	740
A2*	703/24	TM 55 (367)	TM 58 (146)	TM 61 (98)	TM 64 (140)	TM 67 (35)	2	821
A0G	703/25	TM 65 (430)	TM 68 (113)	TM 59 (111)	TM 62 (131)	-	-	785
A1G	703/26	TM 65 (430)	TM 69 (98)	TM 60 (146)	TM 63 (98)	TM 66 (30)	1	802
A2G	703/27	TM 65 (430)	TM 70 (147)	TM 61 (98)	TM 64 (140)	TM 66 (30)	2	875
A1*G	703/28	TM 65 (430)	TM 69 (98)	TM 60 (146)	TM 63 (98)	TM 67 (35)	1	807
A2*G	703/29	TM 65 (430)	TM 70 (147)	TM 61 (98)	TM 64 (140)	TM 67 (35)	2	885

^(*) il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in Kg.

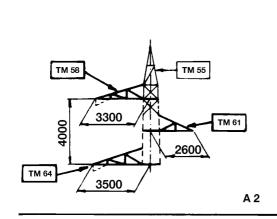
Codifica:

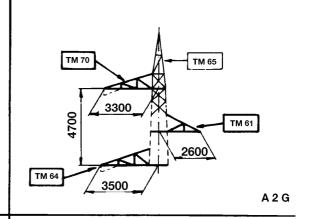

UX LS703

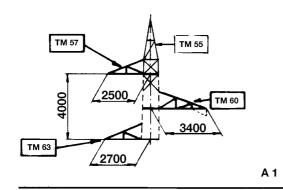

Rev. 00 del 31/12/2007 Pag. **3** di 5

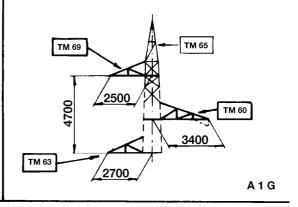
PER CAMPATE NORMALI

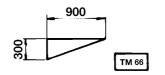
PER GRANDI CAMPATE

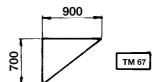

GRUPPI MENSOLE NORMALI

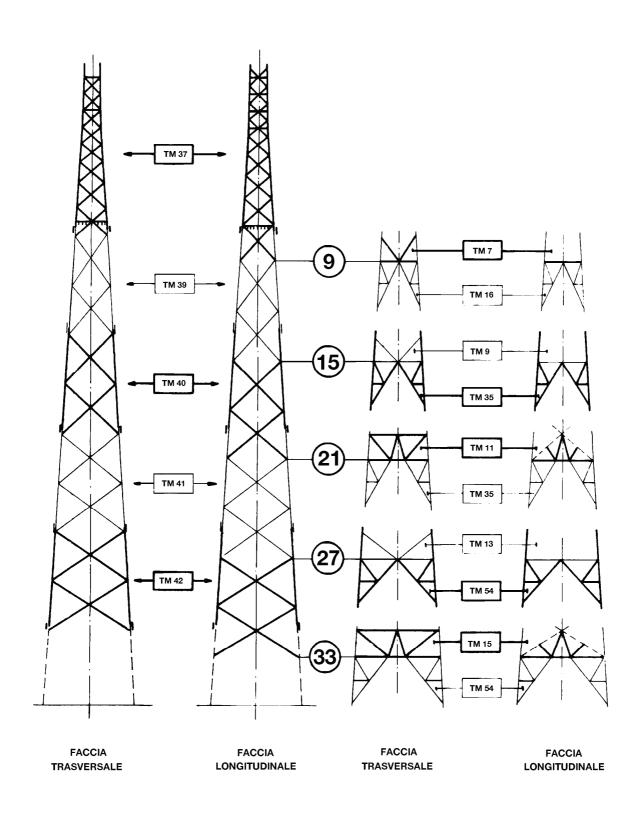





GRUPPI MENSOLE CON PENDINO


PENDINI

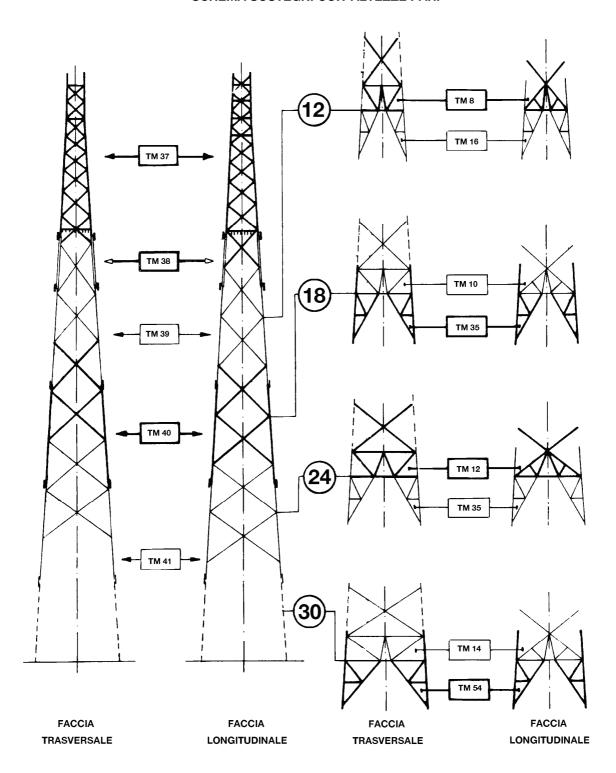




Codifica: *UX LS703*Rev. 00
del 31/12/2007

Pag. **4** di 5

SCHEMA SOSTEGNI CON ALTEZZE DISPARI


Codifica: UX LS703

Rev. 00 _ _ _ _ _ _ _

del 31/12/2007

Pag. **5** di 5

SCHEMA SOSTEGNI CON ALTEZZE PARI

Codifica:

UX LS704

Rev. 00 del 31/12/2007

Pag. **1** di 7

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOS	TEGNI	D. d	Montante				TRO	NCHI					Piedi	Fondazione	(44)	
TIDO	DIE	Parte comune	ausiliario	ı	II	III	IV	V	VI	VII	VIII	Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	RIF.			ELEMENTI STRUTTURALI LS (*)										RIF. LF.		
P9	704/1	TP 81 (1427)	-	-	-	-	-	-	-	-	-	TP 87 (255)	TP 96 (758)	LF103 /275 LF103 /285	LF 44/1	2440
P12	704/2	TP 81 (1427)	TP 82 (347)	-	-	-	-	-	-	-	-	TP 88 (754)	TP 96 (758)	LF103 /285	LF 44/2	3286
P15	704/3	TP 81 (1427)	-	TP 83 (1070)	-	-	-	-	-	-	-	TP 89 (364)	TP 97 (816)	LF103 /295	LF 44/3	3677
P18	704/4	TP 81 (1427)	TP 82 (347)	TP 83 (1070)	-	-	-	-	-	-	-	TP 90 (833)	TP 97 (816)	LF103 /295	LF 44/3	4493
P21	704/5	TP 81 (1427)	-	TP 83 (1070)	TP 84 (1153)	-	-	-	-	-	-	TP 91 (676)	TP 97 (816)	LF103 /295	LF 44/3	5142
P24	704/6	TP 81 (1427)	TP 82 (347)	TP 83 (1070)	TP 84 (1153)	-	-	-	-	-	-	TP 92 (960)	TP 97 (816)	LF103 /305	LF 44/4	5773
P27	704/7	TP 81 (1427)	-	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	-	-	-	-	-	TP 93 (650)	TP 98 (971)	LF103 /305	LF 48/1	6479
P30	704/8	TP 81 (1427)	TP 82 (347)	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	-	-	-	-	-	TP 94 (1201)	TP 98 (971)	LF103 /305	LF 48/1	7377
P33	704/9	TP 81 (1427)	-	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	TP 86 (1318)	-	-	-	-	TP 95 (1043)	TP 98 (971)	LF103 /305	LF 48/1	8190
P36	704/10	TP 81 (1427)	TP 82 (347)	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	TP 86 (1318)	-	-	-	-	TP 32 (1469)	TP 98 (971)	LF103 /305	LF 48/1	8963
P39	704/11	TP 81 (1427)	-	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	TP 86 (1318)	TP 192 (1503)	-	-	-	TP 33 (1227)	TP 98 (971)	LF103 /325	LF 48/2	9877
P42	704/12	TP 81 (1427)	TP 82 (347)	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	TP 86 (1318)	TP 192 (1503)	-	-	-	TP 194 (1903)	TP 98 (971)	LF103 /325	LF 48/2	10900
P45	704/13	TP 81 (1427)	-	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	TP 86 (1318)	TP 192 (1503)	TP 193 (1831)	-	-	TP 199 (1110)	TP 201 (1302)	LF103 /325	LF 48/2	11922
P48	704/14	TP 81 (1427)	TP 82 (347)	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	TP 86 (1318)	TP192 (1503)	TP193 (1831)	-	-	TP 200 (2598)	TP 201 (1302)	LF103 /325	LF 48/2	13757

^(*) Il peso totale (escluso i monconi) e dei singoli elementi strutturali (indicati tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

Storia de	lle revisioni	
Rev. 00	del 31/12/2007	Prima emissione.

Elaborato	Verificato	Approvato		
L. Alario ING-ILC-COL	L. Alario ING-ILC-COL	A. Posati ING-ILC-COL		R. Rendina ING-ILC

^(**) fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

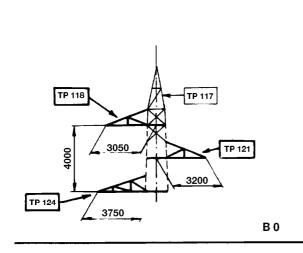
Codifica: **UX LS704** Rev. 00 Pag. **2** di 7

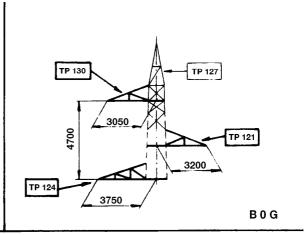
del 31/12/2007

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO B

GRUPPI N	MENSOLE			ELEMENTI STI	RUTTURALI (*)			
TIPO	RIF.	Cimino	Mensola alta	Mensola	Mensola	Pen	dino	PESO
TIPO	KIF.	Cillino	Wellsold alla	media	bassa	tipo	n. pezzi	
В0	704/20	TP 117 (380)	TP 118 (106)	TP 121 (112)	TP 124 (134)	-	-	732
B1	704/21	TP 117 (380)	TP 119 (91)	TP 122 (194)	TP 125 (96)	TP 128 (31)	1	792
B2	704/22	TP 117 (380)	TP 120 (186)	TP 123 (94)	TP 126 (198)	TP 128 (31)	2	920
B1*	704/23	TP 117 (380)	TP 119 (91)	TP 122 (194)	TP 125 (96)	TP 129 (33)	1	794
B2*	704/24	TP 117 (380)	TP 120 (186)	TP 123 (94)	TP 126 (198)	TP 129 (33)	2	924
B0G	704/25	TP 127 (432)	TP 130 (110)	TP 121 (112)	TP 124 (134)	-	-	788
B1G	704/26	TP 127 (432)	TP 131 (90)	TP 122 (194)	TP 125 (96)	TP 128 (31)	1	843
B2G	704/27	TP 127 (432)	TP 132 (187)	TP 123 (94)	TP 126 (198)	TP 128 (31)	2	973
B1*G	704/28	TP 127 (432)	TP 131 (90)	TP 122 (194)	TP 125 (96)	TP 129 (33)	1	845
B2*G	704/29	TP 127 (432)	TP 132 (187)	TP 123 (94)	TP 126 (198)	TP 129 (33)	2	977

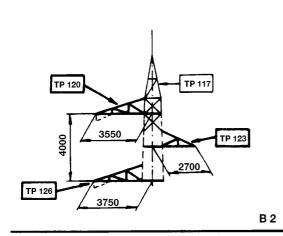
^(*) il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in Kg.

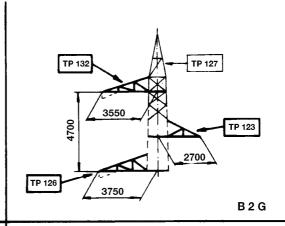

Codifica: **UX LS704** Rev. 00 Pag. **3** di 7

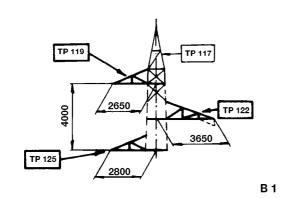

del 31/12/2007

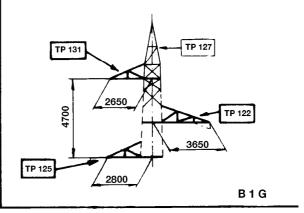
PER CAMPATE NORMALI

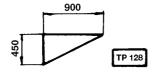
PER GRANDI CAMPATE

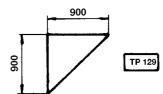

GRUPPI MENSOLE NORMALI

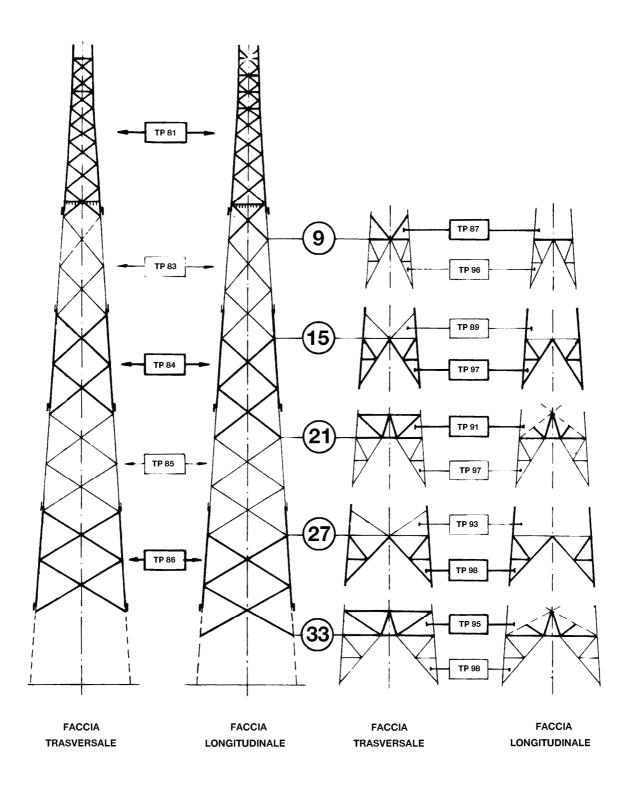





GRUPPI MENSOLE CON PENDINO


PENDINI



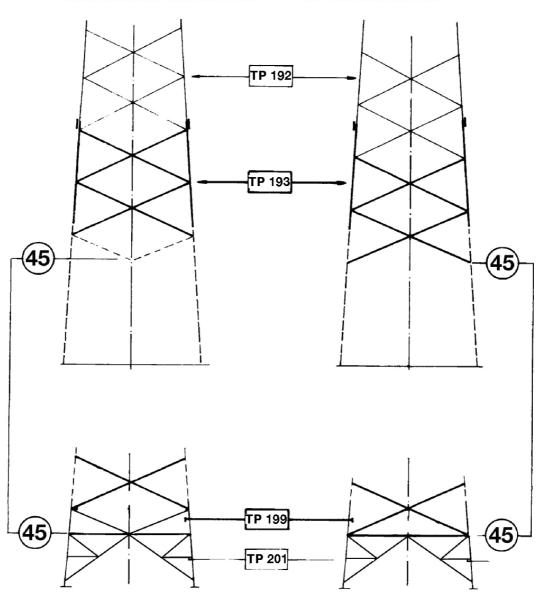


Codifica: UX LS704

Rev. 00
del 31/12/2007

Rev. 00 Pag. 4 di 7

SCHEMA SOSTEGNI CON ALTEZZE DISPARI



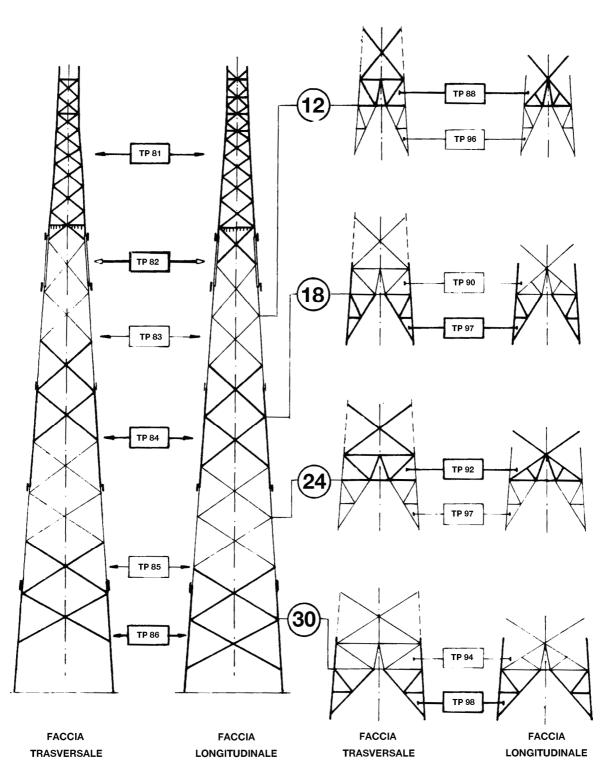
Codifica: UX LS704

Rev. 00
del 31/12/2007

Pag. **5** di 7

SCHEMA SOSTEGNI CON ALTEZZE ECCEZIONALI DISPARI

FACCIA TRASVERSALE FACCIA LONGITUDINALE

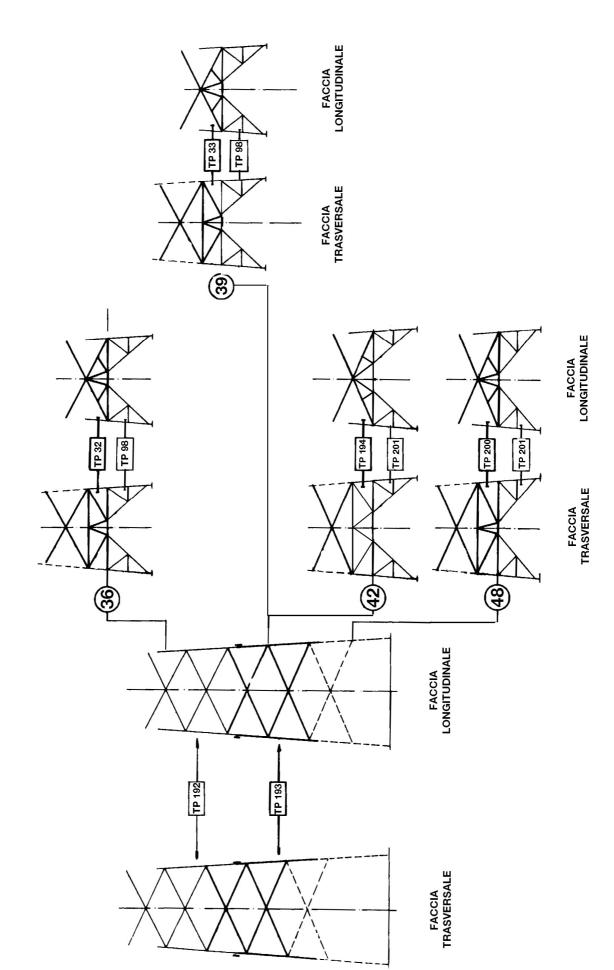


Codifica: UX LS704

Pag. **6** di 7

del 31/12/2007

SCHEMA SOSTEGNI CON ALTEZZE PARI



SCHEMA SOSTEGNI CON ALTEZZE ECCEZIONALI PARI

Linee 150 kV Semplice terna a triangolo Conduttore singolo Ø 31,5 - Tiro pieno Sostegno tipo P

Codifica: **UX LS704** Rev. 00 Pag. **7** di 7

del 31/12/2007

Codifica: **UX LS705**

Rev. 00 del 31/12/2007

Pag. **1** di 7

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOST	TEGNI		Montante				TRO	NCHI					Piedi	Fondazione		
TIDO	DIE	- Parte comune	ausiliario	1	II	III	IV	V	VI	VII	VIII	Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	RIF.						ELEMENTI STR	UTTURALI LS (*)						RIF. LF.		
V9	705/1	TV 99 (1781)	-	-	-	-	-	-	-	-	-	TV 87 (268)	TV 114 (957)	LF 103 /325	LF 45/2	3006
V12	705/2	TV 99 (1781)	TV 100 (487)	-	-	-	-	-	-	-	-	TV 88 (811)	TV 114 (957)	LF 103 /325	LF 45/2	4035
V15	705/3	TV 99 (1781)	-	TV 101 (1388)	-	-	-	-	-	-	-	TV 89 (396)	TV 115 (1069)	LF 103 /325	LF 45/2	4634
V18	705/4	TV 99 (1781)	TV 100 (487)	TV 101 (1388)	-	-	-	-	-	-	-	TV 90 (910)	TV 115 (1069)	LF 103 /325	LF 45/2	5635
V21	705/5	TV 99 (1781)	-	TV 101 (1388)	TV 102 (1541)	-	-	-	-	-	-	TV 91 (702)	TV 115 (1069)	LF 104 /305	LF 45/1	6481
V24	705/6	TV 99 (1781)	TV 100 (487)	TV 101 (1388)	TV 102 (1541)	-	-	-	-	-	-	TV 92 (1069)	TV 115 (1069)	LF 104 /305	LF 45/1	7335
V27	705/7	TV 99 (1781)	-	TV 101 (1388)	TV 102 (1541)	TV 103 (1645)	-	-	-	-	-	TV 93 (685)	TV 116 (1310)	LF 104 /305	LF 46/1	8350
V30	705/8	TV 99 (1781)	TV 100 (487)	TV 101 (1388)	TV 102 (1541)	TV 103 (1645)	-	-	-	-	-	TV 94 (1287)	TV 116 (1310)	LF 104 /305	LF 46/1	9439
V33	705/9	TV 99 (1781)	-	TV 101 (1388)	TV 102 (1541)	TV 103 (1645)	TV 104 (1828)	-	-	-	-	TV 95 (1047)	TV 116 (1310)	LF 104 /315	LF 46/2	10540
V36	705/10	TV 99 (1781)	TV 100 (487)	TV 101 (1388)	TV 102 (1541)	TV 103 (1645)	TV 104 (1828)	-	-	-	-	TV 96 (1534)	TV 116 (1310)	LF 104 /315	LF 46/2	11514
V39	705/11	TV 99 (1781)	-	TV 101 (1388)	TV 102 (1541)	TV 103 (1645)	TV 104 (1828)	TV 105 (1956)	-	-	-	TV 97 (1258)	TV 116 (1310)	LF 104 /315	LF 46/2	12707
V42	705/12	TV 99 (1781)	TV 100 (487)	TV 101 (1388)	TV 102 (1541)	TV 103 (1645)	TV 104 (1828)	TV 105 (1956)	-	-	-	TV 98 (1863)	TV 116 (1310)	LF 104 /315	LF 46/2	13799

^(*) Il peso totale (escluso i monconi) e dei singoli elementi strutturali (indicati tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

Storia de	lle revisioni	
Rev. 00	del 31/12/2007	Prima emissione.

Elaborato	Verificato	Approvato		
L. Alario		A. Posati		R. Rendina
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL		ING-ILC

^(**) fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

Codifica:

UX LS705

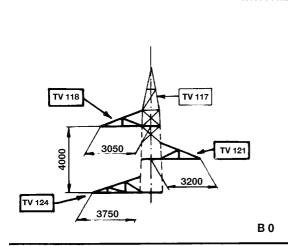
Rev. 00
del 31/12/2007

Pag. 2 di 7

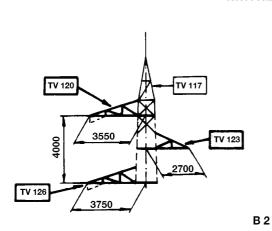
ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO B

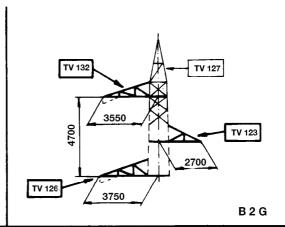
GRUPPI N	MENSOLE			ELEMENTI ST	RUTTURALI (*)			
TIPO	RIF.	Cimino	Mensola alta	Mensola	Mensola	Pen	dino	PESO
TIPO	RIF.	Cimino	Mensola alla	media	bassa	tipo	n. pezzi	
В0	705/20	TV 117 (392)	TV 118 (110)	TV 121 (122)	TV 124 (146)	-	-	770
B1	705/21	TV 117 (392)	TV 119 (96)	TV 122 (208)	TV 125 (99)	TV 128 (31)	1	826
B2	705/22	TV 117 (392)	TV 120 (198)	TV 123 (97)	TV 126 (212)	TV 128 (31)	2	961
B1*	705/23	TV 117 (392)	TV 119 (96)	TV 122 (208)	TV 125 (99)	TV 129 (38)	1	833
B2*	705/24	TV 117 (392)	TV 120 (198)	TV 123 (97)	TV 126 (212)	TV 129 (38)	2	975
B0G	705/25	TV 127 (497)	TV 130 (115)	TV 121 (122)	TV 124 (146)	-	-	880
B1G	705/26	TV 127 (497)	TV 131 (98)	TV 122 (208)	TV 125 (99)	TV 128 (31)	1	933
B2G	705/27	TV 127 (497)	TV 132 (200)	TV 123 (97)	TV 126 (212)	TV 128 (31)	2	1068
B1*G	705/28	TV 127 (497)	TV 131 (98)	TV 122 (208)	TV 125 (99)	TV 129 (38)	1	940
B2*G	705/29	TV 127 (497)	TV 132 (200)	TV 123 (97)	TV 126 (212)	TV 129 (38)	2	1082

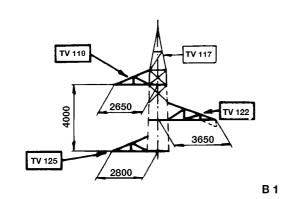
^(*) il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in Kg.

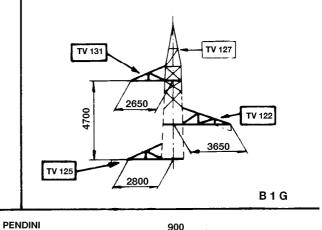

Codifica: **UX LS705** Rev. 00 Pag. **3** di 7

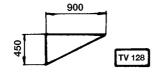
del 31/12/2007

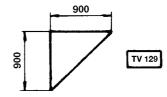

PER GRANDI CAMPATE

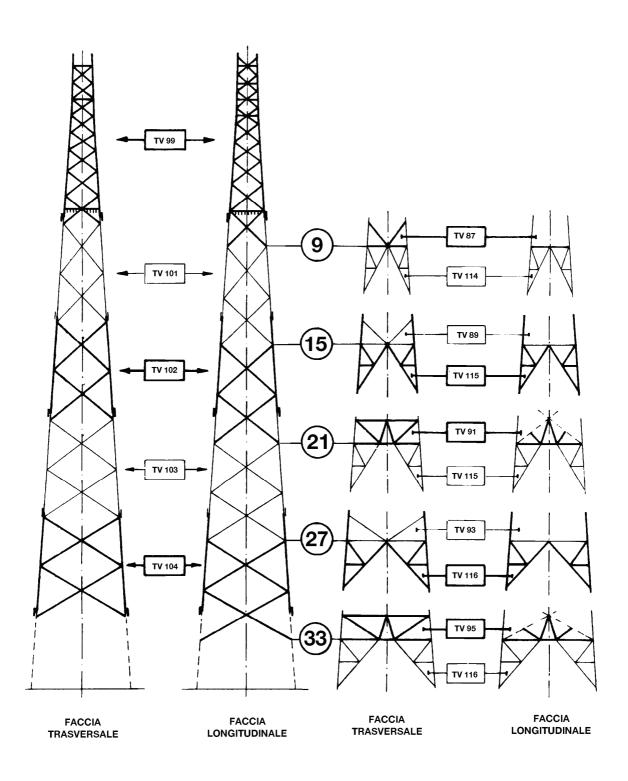

GRUPPI MENSOLE NORMALI






GRUPPI MENSOLE CON PENDINO

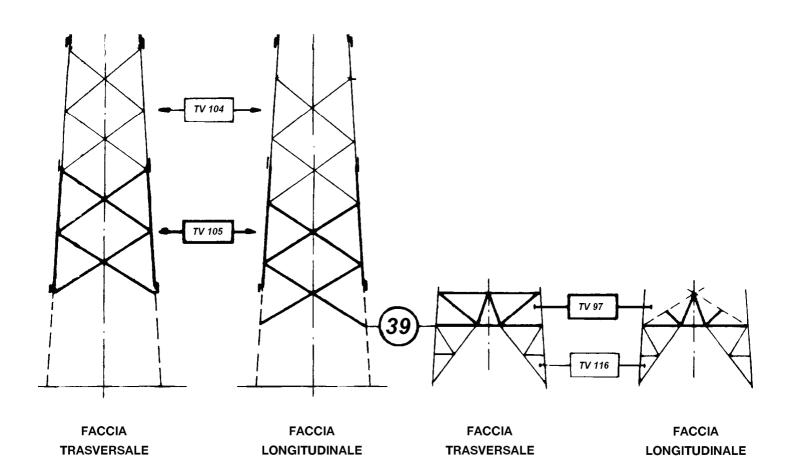




Codifica: *UX LS705*Rev. 00
del 31/12/2007

Pag. **4** di 7

SCHEMA SOSTEGNI CON ALTEZZE DISPARI

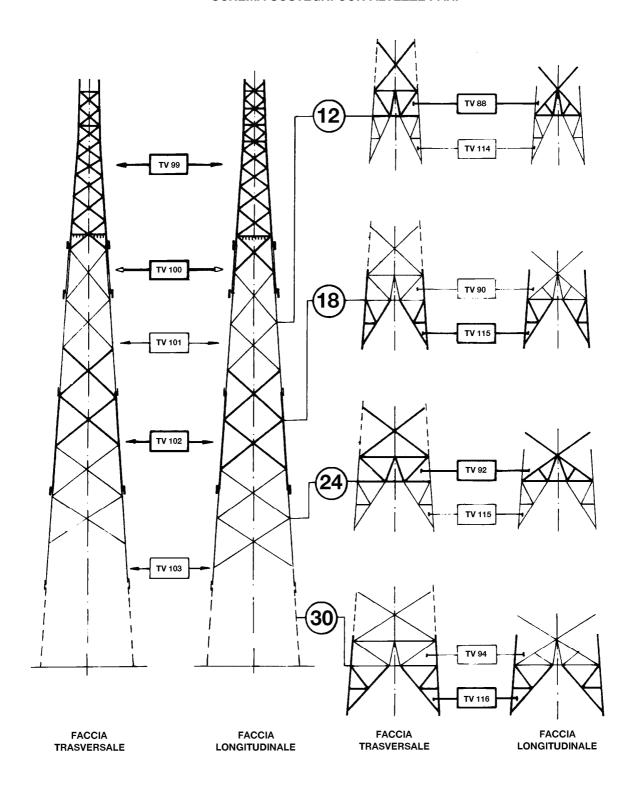


Codifica: UX LS705

Rev. 00
del 31/12/2007

Pag. 5 di 7

SCHEMA SOSTEGNI CON ALTEZZE DISPARI

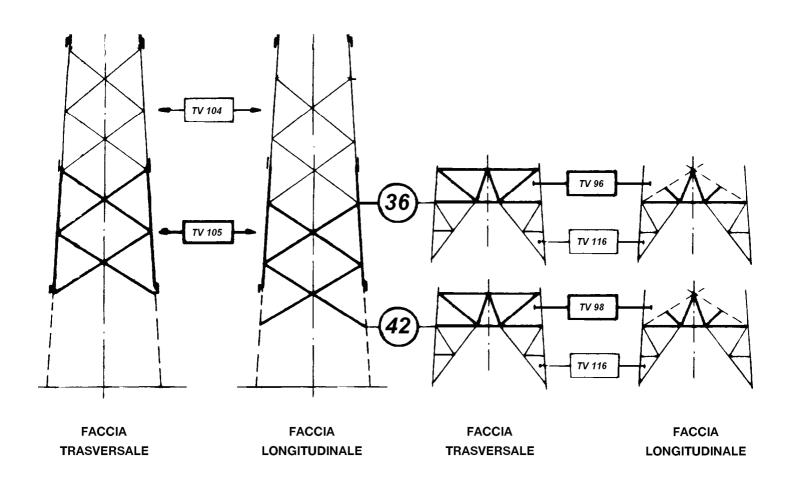

Codifica: UX LS705

Rev. 00

del 31/12/2007

Pag. **6** di 7

SCHEMA SOSTEGNI CON ALTEZZE PARI



Codifica: *UX LS705*Rev. 00
del 31/12/2007

Pag. **7** di 7

SCHEMA SOSTEGNI CON ALTEZZE PARI

Codifica: **UX LS706**

Rev. 00 del 31/12/2007

Pag. **1** di 6

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOST	ΓEGNI	D. d	Montante				TRO	NCHI					Piedi	Fondazione	(44)	
TIPO	DIE	Parte comune	ausiliario	ı	II	III	IV	V	VI	VII	VIII	Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	RIF.						ELEMENTI STR	UTTURALI LS (*)						RIF. LF.		
C9	706/1	TC 143 (1992)	-	-	-	-	-	-	-	-	-	TC 149 (381)	TC 158 (1514)	LF 104 /315	LF 49/1	3887
C12	706/2	TC 143 (1992)	TC 144 (750)	-	-	-	-	-	-	-	-	TC 150 (1092)	TC 158 (1514)	LF 104 /315	LF 49/1	5348
C15	706/3	TC 143 (1992)	-	TC 145 (1979)	-	-	-	-	-	-	-	TC 151 (518)	TC 159 (1605)	LF 105 /325	LF 49/2	6094
C18	706/4	TC 143 (1992)	TC 144 (750)	TC 145 (1979)	-	-	-	-	-	-	-	TC 152 (1138)	TC 159 (1605)	LF 105 /325	LF 49/2	7464
C21	706/5	TC 143 (1992)	-	TC 145 (1979)	TC 146 (2070)	-	-	-	-	-	-	TC 153 (980)	TC 159 (1605)	LF 105 /325	LF 49/2	8626
C24	706/6	TC 143 (1992)	TC 144 (750)	TC 145 (1979)	TC 146 (2070)	-	-	-	-	-	-	TC 154 (1733)	TC 159 (1605)	LF 105 /335	LF 49/3	10129
C27	706/7	TC 143 (1992)	-	TC 145 (1979)	TC 146 (2070)	TC 147 (2181)	-	-	-	-	-	TC 155 (769)	TC 160 (1666)	LF 105 /335	LF 49/3	10657
C30	706/8	TC 143 (1992)	TC 144 (750)	TC 145 (1979)	TC 146 (2070)	TC 147 (2181)	-	-	-	-	-	TC 156 (1550)	TC 160 (1666)	LF 105 /335	LF 49/3	12188
C33	706/9	TC 143 (1992)	-	TC 145 (1979)	TC 146 (2070)	TC 147 (2181)	TC 148 (2283)	-	-	-	-	TC 157 (1430)	TC 160 (1666)	LF 105 /335	LF 49/3	13601

^(*) Il peso totale (escluso i monconi) e dei singoli elementi strutturali (indicati tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

Storia de	lle revisioni	
Rev. 00	del 31/12/2007	Prima emissione.

Elaborato	Verificato	Approvato		
L. Alario ING-ILC-COL	L. Alario ING-ILC-COL	A. Posati ING-ILC-COL		R. Rendina ING-ILC

^(**) fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

Codifica: **UX LS706** Rev. 00 Pag. **2** di 6

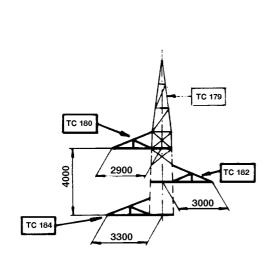
del 31/12/2007

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO D

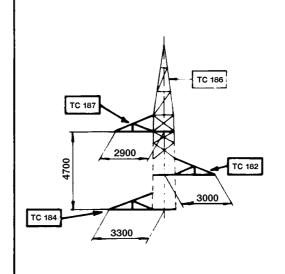
GRUPPI	MENSOLE				ELEMENTI ST	RUTTURALI (*)				
TIPO	RIF.	Cimino	Mensola	Mensola	Mensola		Mensole di giro)	n. Pezzi	PESO
TIPO	KIF.	Cimino	alta	media	bassa	alta	media	bassa	n. Pezzi	
D00	706/20	TC 179 (624)	TC 180 (142)	TC 182 (144)	TC 184 (166)	-	-	-		1076
D01	706/21	TC 179 (624)	TC 180 (142)	TC 182 (144)	TC 184 (166)	-	TC 204 (**)	-		1076
D02	706/22	TC 179 (624)	TC 180 (142)	TC 182 (144)	TC 184 (166)	TC 203 (**)	-	TC 205(**)		1076
D00G	706/23	TC 186 (737)	TC 187 (145)	TC 182 (144)	TC 184 (166)	-	-	-		1192
D01G	706/24	TC 186 (737)	TC 187 (145)	TC 182 (144)	TC 184 (166)	-	TC 204(**)	-		1192
D02G	706/25	TC 186 (737)	TC 187 (145)	TC 182 (144)	TC 184 (166)	TC 206(**)	-	TC 205(**)		1192
DQ0	706/26	TC 179 (624)	TC 181 (303)	TC 183 (315)	TC 185 (331)	-	-	-		1573
DQ1	706/27	TC 179 (624)	TC 181 (303)	TC 183 (315)	TC 185 (331)	-	TC 208(**)	-		1573
DQ2	706/28	TC 179 (624)	TC 181 (303)	TC 183 (315)	TC 185 (331)	TC 207	-	TC 209(**)		1573
DQ0G	706/29	TC 186 (737)	TC 188 (301)	TC 183 (315)	TC 185 (331)	-	-	-		1684
DQ1G	706/30	TC 186 (737)	TC 188 (301)	TC 183 (315)	TC 185 (331)	-	TC 208(**)	-		1684
DQ2G	706/31	TC 186 (737)	TC 188 (301)	TC 183 (315)	TC 185 (331)	TC 210(**)	-	TC 209(**)		1684

^(*)il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in Kg.

^(**) Le mensole di giro TC 203 - TC 204 - TC 205 - TC 206 - TC 207 - TC 208 - TC209 - TC 210 non sono disponibili

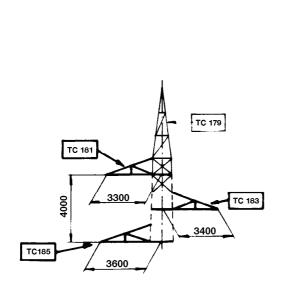

Codifica: **UX LS706** Rev. 00 Pag. **3** di 6

del 31/12/2007

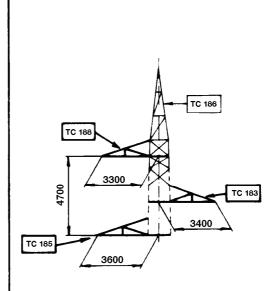

PER CAMPATE NORMALI

PER GRANDI CAMPATE

GRUPPI MENSOLE NORMALI



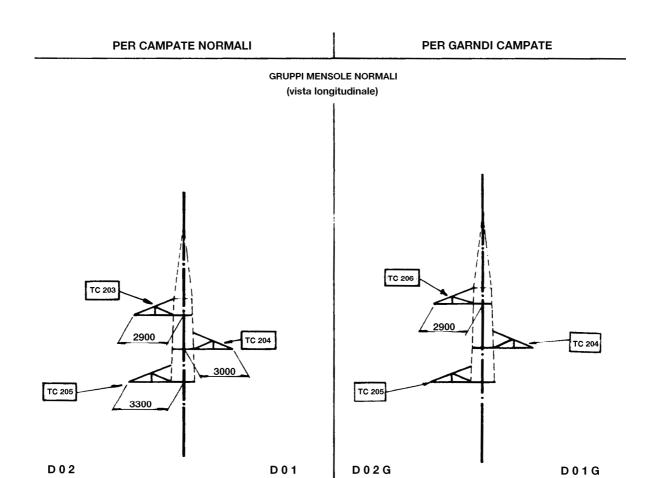
D00-D01-D02

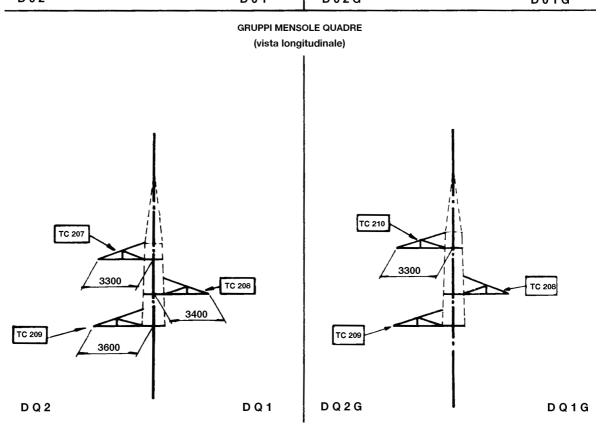


D00G-D01G-D02G

GRUPPI MENSOLE QUADRE

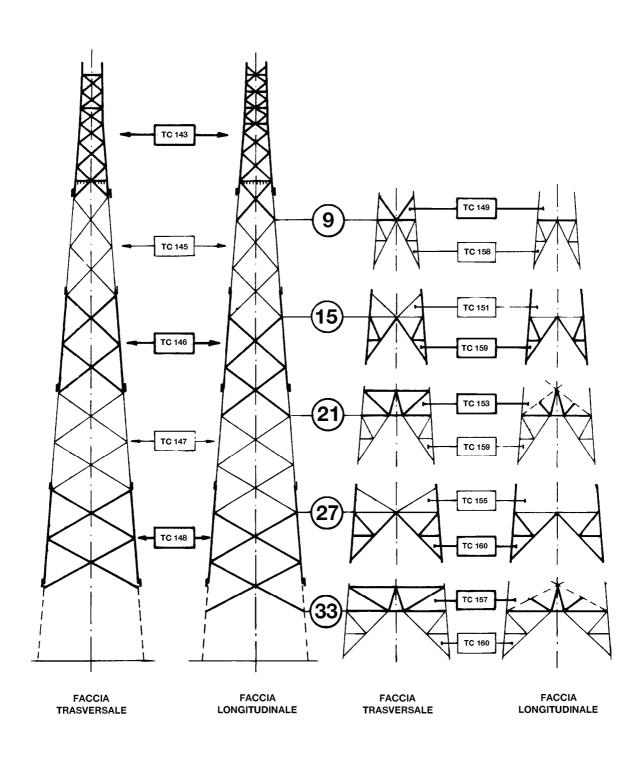
DQ0-DQ1-DQ2




DQ0G-DQ1G-DQ2G

Codifica: *UX LS706*Rev. 00
del 31/12/2007

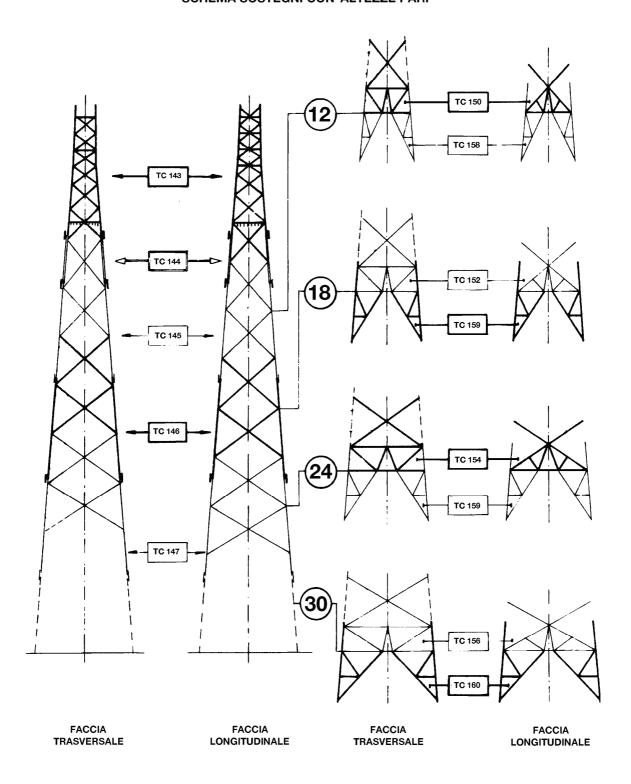
Pag. **4** di 6



Codifica: *UX LS706*Rev. 00
del 31/12/2007

Pag. **5** di 6

SCHEMA SOSTEGNI CON ALTEZZE DISPARI


Codifica: UX LS706

Rev. 00 - 0 - 0

del 31/12/2007

Pag. **6** di 6

SCHEMA SOSTEGNI CON ALTEZZE PARI

Rev. 00 del 31/12/2007 Pag. **1** di 6

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOST	ΓEGNI	D. d	Montante				TRO	NCHI				D	Piedi	Fondazione	Moncone (**)	
TIDO	DIE	Parte comune	ausiliario	ı	II	III	IV	V	VI	VII	VIII	Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	RIF.	ELEMENTI STRUTTURALI LS (*)								RIF. LF.						
E9	707/1	TE 161 (2656)	-	-	-	-	-	-	-	-	-	TE 167 (400)	TE 176 (1820)	LF 109 /335	LF 50/2	4876
E12	707/2	TE 161 (2656)	TE 162 (919)	-	-	-	-	-	-	-	-	TE 168 (1119)	TE 176 (1820)	LF 109 /335	LF 50/2	6514
E15	707/3	TE 161 (2656)	-	TE 163 (2367)	-	-	-	-	-	-	-	TE 169 (531)	TE 177 (1943)	LF 109 /335	LF 50/2	7497
E18	707/4	TE 161 (2656)	TE 162 (919)	TE 163 (2367)	-	-	-	-	-	-	-	TE 170 (1254)	TE 177 (1943)	LF 109 /335	LF 50/2	9139
E21	707/5	TE 161 (2656)	-	TE 163 (2367)	TE 164 (2473)	-	-	-	-	-	-	TE 171 (1032)	TE 177 (1943)	LF 105 /345	LF 50/3	10471
E24	707/6	TE 161 (2656)	TE 162 (919)	TE 163 (2367)	TE 164 (2473)	-	-	-	-	-	-	TE 172 (1140)	TE 177 (1943)	LF 105 /345	LF 50/3	11498
E27	707/7	TE 161 (2656)	-	TE 163 (2367)	TE 164 (2473)	TE 165 (2554)	-	-	-	-	-	TE 173 (825)	TE 178 (2121)	LF 105 /345	LF 50/3	12996
E30	707/8	TE 161 (2656)	TE 162 (919)	TE 163 (2367)	TE 164 (2473)	TE 165 (2554)	-	-	-	-	-	TE 174 (1668)	TE 178 (2121)	LF 107 /305	LF 50/1	14758
E33	707/9	TE 161 (2656)	-	TE 163 (2367)	TE 164 (2473)	TE 165 (2554)	TE 166 (2837)	-	-	-	-	TE 175 (1505)	TE 178 (2121)	LF 107 /305	LF 50/1	16513

^(*) Il peso totale (escluso i monconi) e dei singoli elementi strutturali (indicati tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

Storia de	lle revisioni	
Rev. 00	del 31/12/2007	Prima emissione.

Elaborato	Verificato	Approvato		
L. Alario		A. Posati		R. Rendina
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL		ING-ILC

^(**) fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

Codifica: **UX LS707** Rev. 00 Pag. **2** di 6

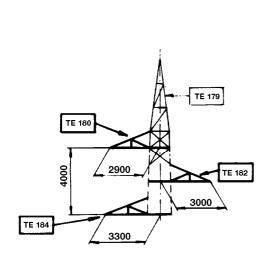
del 31/12/2007

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO D

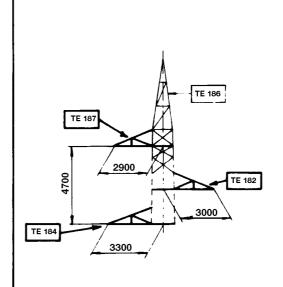
GRUPPI	MENSOLE		ELEMENTI STRUTTURALI (*)							
TIPO	RIF.	Oinnin -	Mensola	Mensola	Mensola		Mensole di giro)	n. Pezzi	PESO
TIPO	KIF.	Cimino	alta	media	bassa	alta	media	bassa	11. F6221	
D00	707/20	TE 179 (704)	TE 180 (143)	TE 182 (155)	TE 184 (167)	-	-	-		1169
D01	707/21	TE 179 (704)	TE 180 (143)	TE 182 (155)	TE 184 (167)	-	TE 204 (**)	-		1169
D02	707/22	TE 179 (704)	TE 180 (143)	TE 182 (155)	TE 184 (167)	TE 203 (**)	-	TE 205(**)		1169
D00G	707/23	TE 186 (884)	TE 187 (154)	TE 182 (155)	TE 184 (167)	-	-	-		1360
D01G	707/24	TE 186 (884)	TE 187 (154)	TE 182 (155)	TE 184 (167)	-	TE 204(**)	-		1360
D02G	707/25	TE 186 (884)	TE 187 (154)	TE 182 (155)	TE 184 (167)	TE 206(**)	-	TE 205(**)		1360
DQ0	707/26	TE 179 (704)	TE 181 (317)	TE 183 (320)	TE 185 (337)	-	-	-		1678
DQ1	707/27	TE 179 (704)	TE 181 (317)	TE 183 (320)	TE 185 (337)	-	TE 208(**)	-		1678
DQ2	707/28	TE 179 (704)	TE 181 (317)	TE 183 (320)	TE 185 (337)	TE 207	-	TE 209(**)		1678
DQ0G	707/29	TE 186 (884)	TE 188 (328)	TE 183 (320)	TE 185 (337)	-	-	-		1869
DQ1G	707/30	TE 186 (884)	TE 188 (328)	TE 183 (320)	TE 185 (337)	-	TE 208(**)	-		1869
DQ2G	707/31	TE 186 (884)	TE 188 (328)	TE 183 (320)	TE 185 (337)	TE 210(**)	-	TE 209(**)		1869

^(*)il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in Kg.

^(**) Le mensole di giro TE 203 - TE 204 - TE 205 - TE 206 - TE 207 - TE 208 - TE 209 - TE 210 non sono disponibili

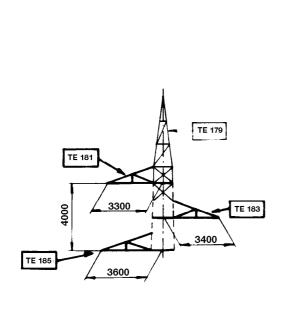

Codifica: **UX LS707** Rev. 00 Pag. **3** di 6

del 31/12/2007

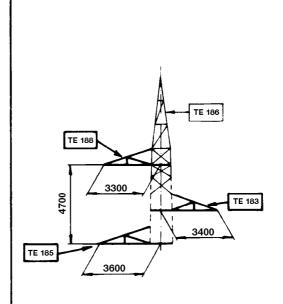


PER GRANDI CAMPATE

GRUPPI MENSOLE NORMALI



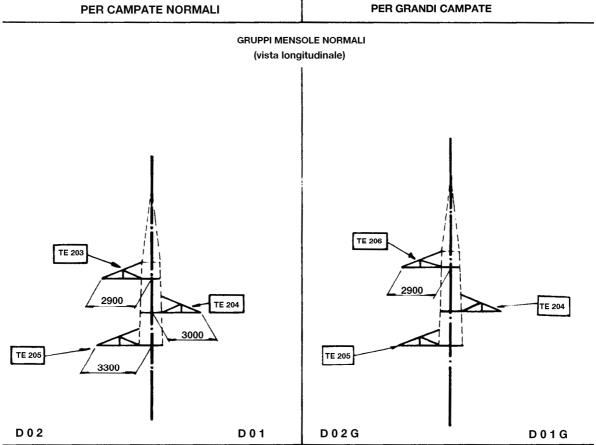
D00-D01-D02

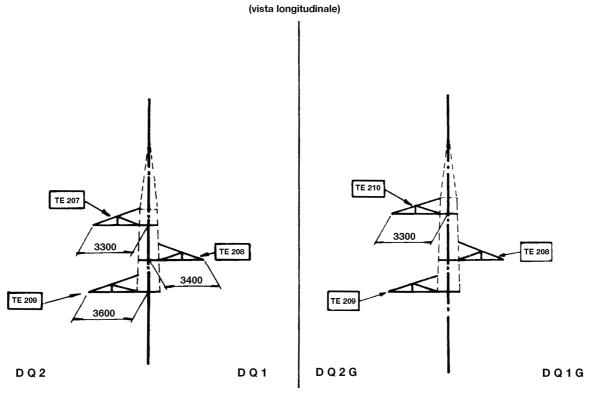


D00G-D01G-D02G

GRUPPI MENSOLE QUADRE

DQ0-DQ1-DQ2

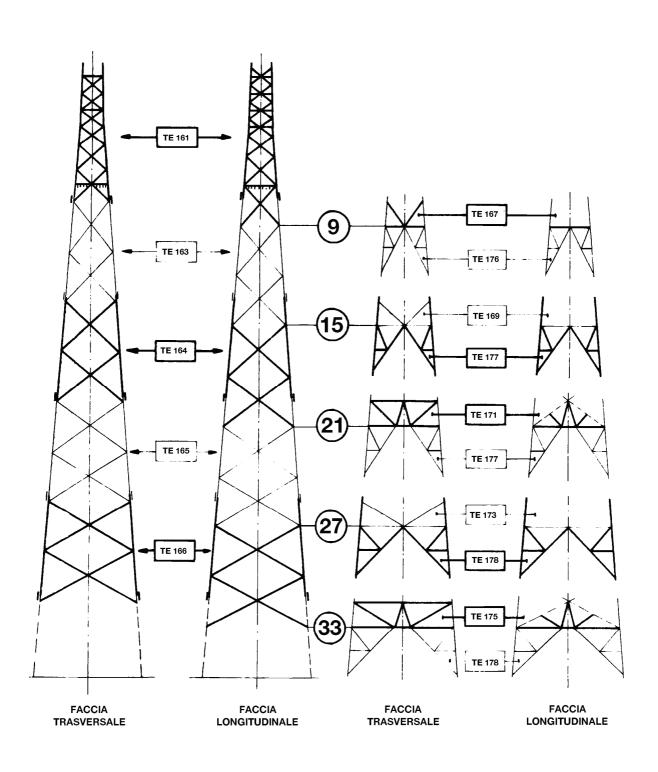

DQ0G-DQ1G-DQ2G


Codifica: **UX LS707** Rev. 00 Pag. **4** di 6

del 31/12/2007

PER GRANDI CAMPATE

GRUPPI MENSOLE QUADRE

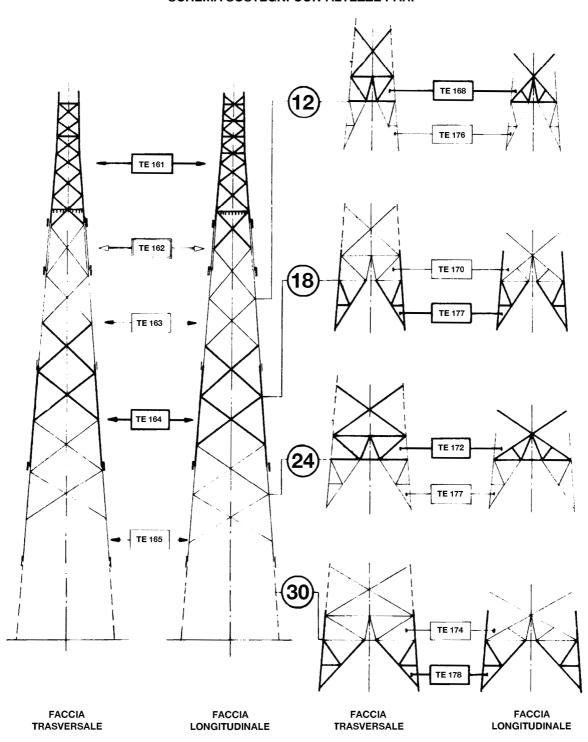

Codifica:

UX LS707

Rev. 00
del 31/12/2007

Pag. **5** di 6

SCHEMA SOSTEGNI CON ALTEZZE DISPARI


Codifica: UX LS707

Rev. 00 - 0 - 0

del 31/12/2007

Pag. **6** di 6

SCHEMA SOSTEGNI CON ALTEZZE PARI

Codifica:

UX LS708

Rev. 00 del 31/12/2007 Pag. **1** di 6

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOST	SOSTEGNI		ve Bracci	Montante				TRONCHI				_	Piedi	Fondazione		
TIDO	RIF.	Trave	Bracci	ausiliario	ı	II	III	IV	V	VI	VII	- Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	RIF.	ELEMENTI STRUTTURALI LS (*)											RIF. LF.			
E*9	708/1	TE* 75 (979)	TE* 76 (3440)	-	-	-	-	-	-	-	-	-	TE* 202 (592)	LF109 /325	LF46/3	5011
E*12	708/2	TE* 75 (979)	TE* 76 (3440)	-	-	-	-	-	-	-	-	TE* 189 (433)	TE* 190 (1583)	LF109 /335	LF54/1	6435
E*15	708/3	TE* 75 (979)	TE* 76 (3440)	-	TE* 191 (1057)	-	-	-	-	-	-	TE* 169 (547)	TE* 177 (2262)	LF107 /305	LF50/1	8285
E*18	708/4	TE* 75 (979)	TE* 76 (3440)	TE* 79 (1022)	TE* 191 (1057)	-	-	-	-	-	-	TE* 170 (1242)	TE* 177 (2262)	LF107 /305	LF50/1	10002
E*21	708/5	TE* 75 (979)	TE* 76 (3440)	-	TE* 191 (1057)	TE* 164 (2549)	-	-	-	-	-	TE* 171 (970)	TE* 177 (2262)	LF107 /305	LF50/1	11257
E*24	708/6	TE* 75 (979)	TE* 76 (3440)	TE* 79 (1022)	TE* 191 (1057)	TE* 164 (2549)	-	-	-	-	-	TE* 172 (1481)	TE* 177 (2262)	LF107 /305	LF50/1	12790
E*27	708/7	TE* 75 (979)	TE* 76 (3440)	-	TE* 191 (1057)	TE* 164 (2549)	TE* 165 (2768)	-	-	-	-	TE* 173 (765)	TE* 178 (2243)	LF107 /305	LF53/1	13801
E*30	708/8	TE* 75 (979)	TE* 76 (3440)	TE* 79 (1022)	TE* 191 (1057)	TE* 164 (2549)	TE* 165 (2768)	-	-	-	-	TE* 174 (1711)	TE* 178 (2243)	LF107 /305	LF53/1	15769
E*33	708/9	TE* 75 (979)	TE* 76 (3440)	-	TE* 191 (1057)	TE* 164 (2549)	TE* 165 (2768)	TE* 166 (3019)	-	-	-	TE* 175 (1511)	TE* 178 (2243)	LF107 /305	LF53/1	17566

Storia de	elle revisioni	
Rev. 00	del 31/12/2007	Prima emissione.

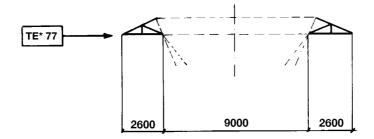
Elaborato	Verificato	Approvato		
L. Alario	L. Alario	A. Posati		R. Rendina
ING-ILC-COL	 ING-ILC-COL	ING-ILC-COL		ING-ILC

Codifica:	
UX	LS708
Rev. 00	Dog 2 di 6
del 31/12/2007	Pag. 2 di 6

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO D

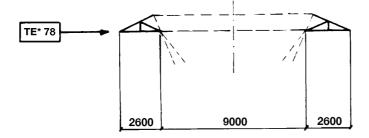
GRUPPI N	MENSOLE	ELEMENTI STRUTTURALI (*)						
TIPO	RIF.	Mensole		Mensole di giro	n. Pezzi	PESO		
	KIF.	wensole	alta	media	bassa	ii. Pezzi		
D0Y	708/20	TE* 77 (173)	-	-	-	2	346	
D0Q	708/21	TE* 78 (287)	-	-	-	2	574	

^(*) il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in Kg.



Codifica: UX LS708

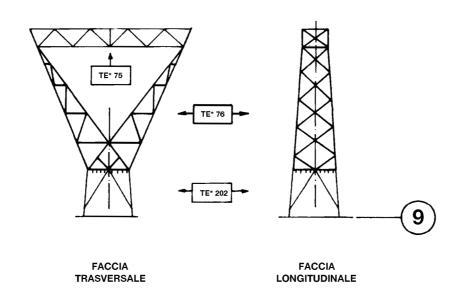
Rev. 00
del 31/12/2007


Pag. 3 di 6

GRUPPI MENSOLE NORMALI

D 0 Y

GRUPPI MENSOLE QUADRE

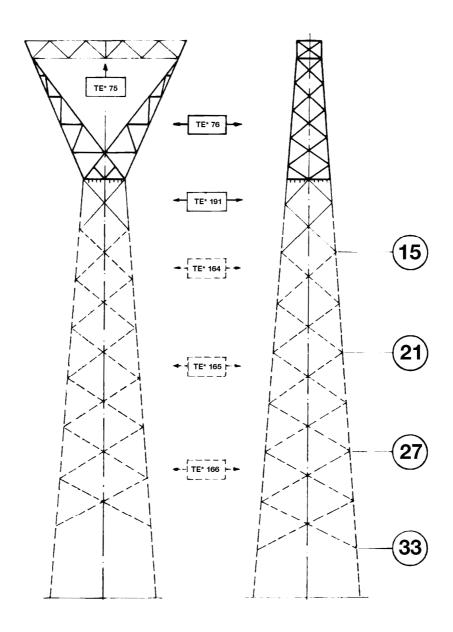

Codifica: UX LS708

Rev. 00 ______

del 31/12/2007

Pag. **4** di 6

SCHEMA SOSTEGNO TE* 9



Codifica: UX LS708

Rev. 00
del 31/12/2007

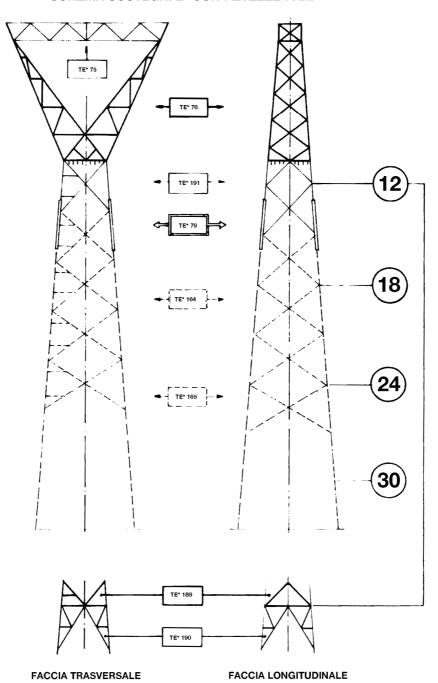
Pag. 5 di 6

SCHEMA SOSTEGNI E* CON ALTEZZE DISPARI

FACCIA TRASVERSALE

FACCIA LONGITUDINALE

Per le altezze 15, 21, 27, 33 vedi foglio 3



Codifica: UX LS708

Rev. 00
del 31/12/2007

Pag. 6 di 6

SCHEMA SOSTEGNI E* CON ALTEZZE PARI

Per le altezze 18, 24, 30 vedi foglio 4

132-150 kV Semplice terna a triangolo Conduttore singolo Ø 31,5 – Tiro pieno UTILIZZAZIONE DEL SOSTEGNO "N" CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Codifica	
P00	5UN001
Rev. 00 del 13/09/2007	Pagina 1 di 8

LINEA ELETTRICA AEREA A 132-150 kV SEMPLICE TERNA A TRIANGOLO – TIRO PIENO CONDUTTORI \varnothing 31,5 mm – EDS 21% - ZONA "A"

UTILIZZAZIONE DEL SOSTEGNO "N"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia delle revisioni								
Rev. 00	del 13/09/2007	Prima emissione						

Elaborato		Verificato	Approvato	
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

132-150 kV Semplice terna a triangolo Conduttore singolo Ø 31,5 – Tiro pieno UTILIZZAZIONE DEL SOSTEGNO "N" CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

P005UN001

Rev. 00
Pagina 2 di 8

del 30/05/2007

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014914 – Rev.0 – Settembre 2007**

132-150 kV Semplice terna a triangolo Conduttore singolo Ø 31,5 − Tiro pieno UTILIZZAZIONE DEL SOSTEGNO "N" CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Codifica P005UN001 Rev. 00 Pagina 3 di 8 del 30/05/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

0.4. CARATTERICTICHE PRINCIPALI		CONDUTTORE	CORDA DI GUARDIA			
2.1 CARATTERISTICHE PRINCIPALI			RQUT0000C2	LC 23	LC 51	LC 50
MATERIALE			All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio
DIAMETRO CIRCOSCRITTO (mm)		31,5	11,5	11,5	17,9	
SEZIONI TEORICHE	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASSA UNITARIA (Kg/m)		1,953	0,621	0,537	0,820	
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000	
COEFFICIENTE DI DILATAZIONE (1/°C)		19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶	
CARICO DI ROTTURA (daN)		16852	12231	9000	10600	

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA		
	RQUT0000C2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

132-150 kV Semplice terna a triangolo Conduttore singolo Ø 31,5 – Tiro pieno UTILIZZAZIONE DEL SOSTEGNO "N" CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

P005UN001

Rev. 00
del 30/05/2007

Rev. 00
Pagina 4 di 8

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	CORDA DI GUARDIA (**)		
		RQUT0000C2	LC 23	LC 51	LC 50
CONDIZIONE EDS	V (daN/m)	0	0	0	0
	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
CONDIZIONE MSA	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr \hat{I}

Codifica P0	05UN001
Rev. 00 del 30/05/2007	Pagina 5 di 8

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

 p^* = peso di isolatori e morsetteria T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

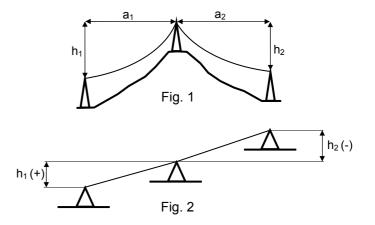
	CONDUTTORE			CORDA DI GUARDIA (**)					
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLA ⁻ MORSE	TORI E TTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)	
MSA	5450	100	150	2120 (2745)	2077 (2711)	2985 (3580)	0	0	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

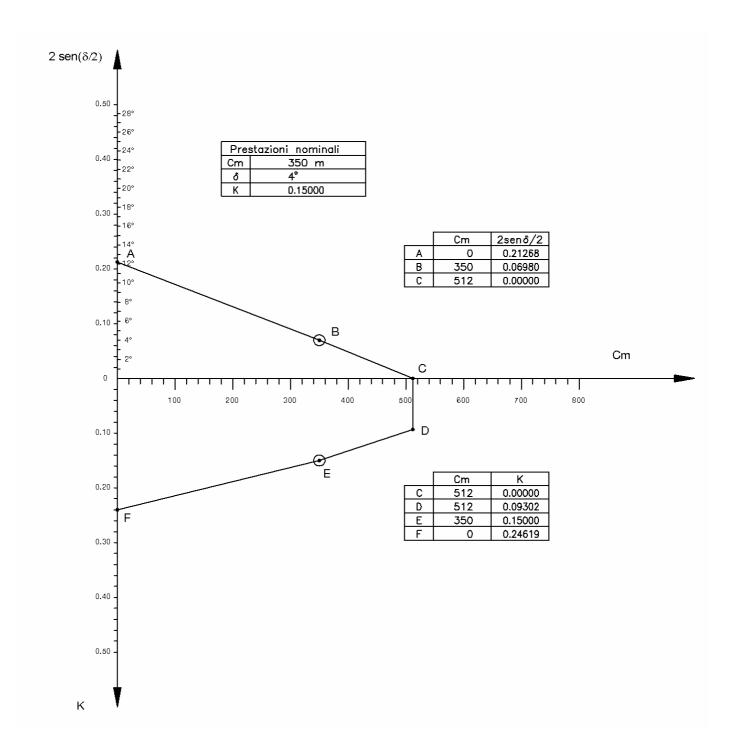

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UN001

Rev. 00
del 30/05/2007

Rev. 00
Pagina 6 di 8

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UN001

Rev. 00 del 30/05/2007

Pagina 7 di 8

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, δ_i) è necessario che i punti (Cm_i, δ_i) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

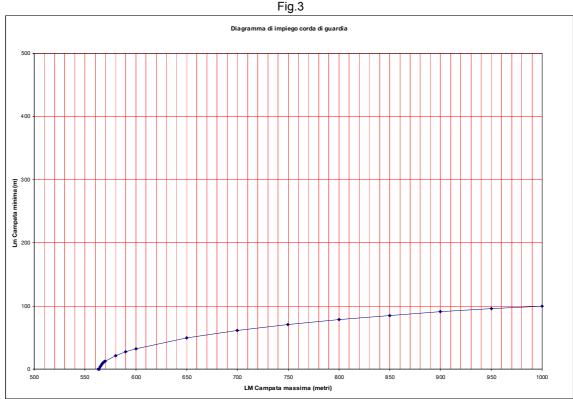
3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

- Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)


- Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3 , che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_m) tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Codifica P005UN001

Rev. 00 del 30/05/2007

Pagina 8 di 8

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		C	ONDUTTOR	E	CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)			
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	Napr	1260	1639	0	(790)	(882)	(1200)	
	NORMALE	1260	0	0	(790)	(0)	(1200)	
MSA	MSA	680	895	5450	(395)	(441)	(3580)	
	ECCEZIONALE (**)	680	0	5450	(395)	(0)	(3580)	

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P005	5UM001
Rev. 00 del 13/09/2007	Pagina 1 di 8

LINEA ELETTRICA AEREA A 132-150 kV SEMPLICE TERNA A TRIANGOLO – TIRO PIENO CONDUTTORI \varnothing 31,5 mm – EDS 21% - ZONA "A"

UTILIZZAZIONE DEL SOSTEGNO "M"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia delle revisioni				
Rev. 00	del 13/09/2007	Prima emissione		

Elaborato		Verificato	Approvato	
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

P005UM001

Rev. 00
Pagina 2 di 8

del 30/05/2007

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014912 – Rev.0 – Settembre 2007**

Codifica P005UM001 Rev. 00 Pagina 3 di 8 del 30/05/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

0.4 CADATTED	ICTICLIE DDING!	2411	CONDUTTORE		CORDA DI GUARDIA		
2.1 CARATTERISTICHE PRINCIPALI			RQUT0000C2	LC 23	LC 51	LC 50	
	MA	TERIALE	All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio	
DIAM	ETRO CIRCOSCRITTO	O (mm)	31,5	11,5	11,5	17,9	
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)	
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70	
	TOTALE	(mm²)	583,30	78,94	80,65	176,60	
MASS	A UNITARIA	(Kg/m)	1,953	0,621	0,537	0,820	
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000		
COEFFICIENTE DI DILATAZIONE (1/°C)		19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶		
CARICO DI RO	TTURA	(daN)	16852	12231	9000	10600	

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA			
	RQUT0000C2	LC 23	LC 51	LC 50	
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643	

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UM001

Rev. 00
del 30/05/2007

Rev. 00
Pagina 4 di 8

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	CORDA DI GUARDIA (**)			
		RQUT0000C2	LC 23	LC 51	LC 50	
	V (daN/m)	0	0	0	0	
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044	
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044	
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)	
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)	
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarri

P005UM001

Rev. 00
del 30/05/2007

Rev. 00
Pagina 5 di 8

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)					
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLATORI E MORSETTERIA		
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)	
MSA	5450	100	150	2120 (2745)	2077 (2711)	2985 (3580)	0	0	

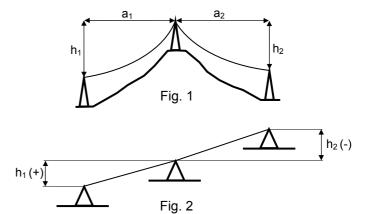
(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

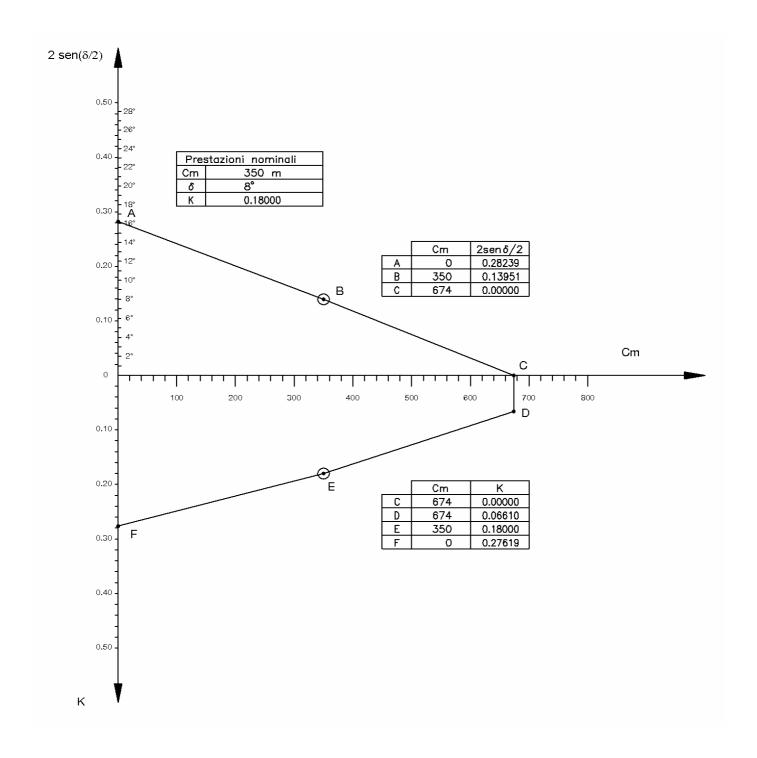

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

 $\begin{array}{lll} \mathsf{Cm} &=& \mathsf{campata\ media} \\ \delta &=& \mathsf{angolo\ di\ deviazione} \\ \mathsf{K} &=& \mathsf{costante\ altimetrica\ (*)} \end{array}$

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UM001

Rev. 00
del 30/05/2007

Rev. 00
del 30/05/2007

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UM001

Rev. 00 del 30/05/2007

Pagina 7 di 8

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, δ_i) è necessario che i punti (Cm_i, δ_i) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

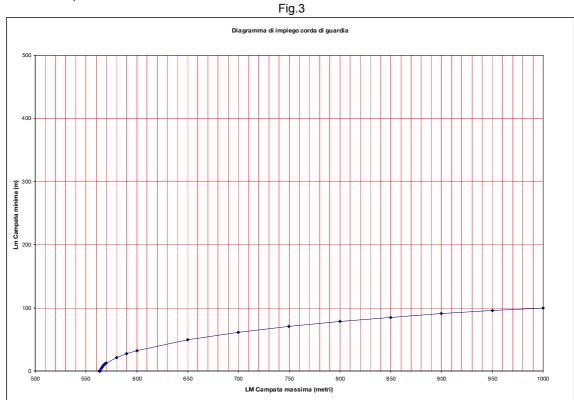
3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)


- Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3 , che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_m) tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Codifica P005UM001

Rev. 00 del 30/05/2007

Pagina 8 di 8

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

			ONDUTTOR	Е	CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)			
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
		1640	1802	0	(1040)	(989)	(1200)	
MSA ECCEZIONALE (*	NORWIALE	1640	0	0	(1040)	(0)	(1200)	
		870	976	5450	(520)	(495)	(3580)	
	ECCEZIONALE (**)	870	0	5450	(520)	(0)	(3580)	

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P00	5UP001
Rev. 00 del 13/09/2007	Pagina 1 di 8

LINEA ELETTRICA AEREA A 132-150 kV	SEMPLICE TERNA	A TRIANGOLO –	TIRO PIENO
CONDUTTORI Ø 31	,5 mm – EDS 21% - 2	ZONA "A"	

UTILIZZAZIONE DEL SOSTEGNO "P"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 13/09/2007	Prima emissione

Elaborato		Verificato			Approvato
L. Alario		L. Alario			R. Rendina
ING-ILC-COL		ING-ILC-COL			ING-ILC

P005UP001

Rev. 00

del 13/09/2007

Pagina 2 di 8

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014916 – Rev.0 – Settembre 2007**

Codifica P005UP001 Rev. 00 Pagina 3 di 8 del 13/09/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

2.1 CARATTERISTICHE PRINCIPALI			CONDUTTORE		CORDA DI GUARDIA		
			RQUT0000C2	LC 23	LC 51	LC 50	
	MA	TERIALE	All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio	
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9	
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)	
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70	
	TOTALE	(mm²)	583,30	78,94	80,65	176,60	
MASS	A UNITARIA	(Kg/m)	1,953	0,621	0,537	0,820	
MODU	ILO DI ELASTICITA'	(N/mm ²)	68000	175000	155000	88000	
COEFFICIENTE	E DI DILATAZIONE	(1/°C)	19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶	
CARICO DI RO	TTURA	(daN)	16852	12231	9000	10600	

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA		
	RQUT0000C2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UP001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 4 di 8

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	CORDA DI GUARDIA (**)		
		RQUT0000C2	LC 23	LC 51	LC 50	
	V (daN/m)	0	0	0	0	
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044	
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044	
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)	
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)	
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr \hat{I}

P005UP001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 5 di 8

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

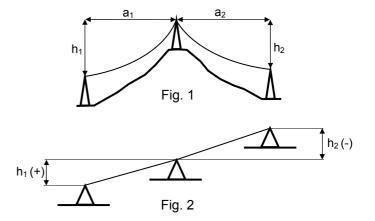
	CONDUTTORE				COR	DA DI GUARDIA	A (**)	
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLA ⁻ MORSE	TORI E TTERIA
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	5450	100	150	2120 (2745)	2077 (2711)	2985 (3580)	0	0

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

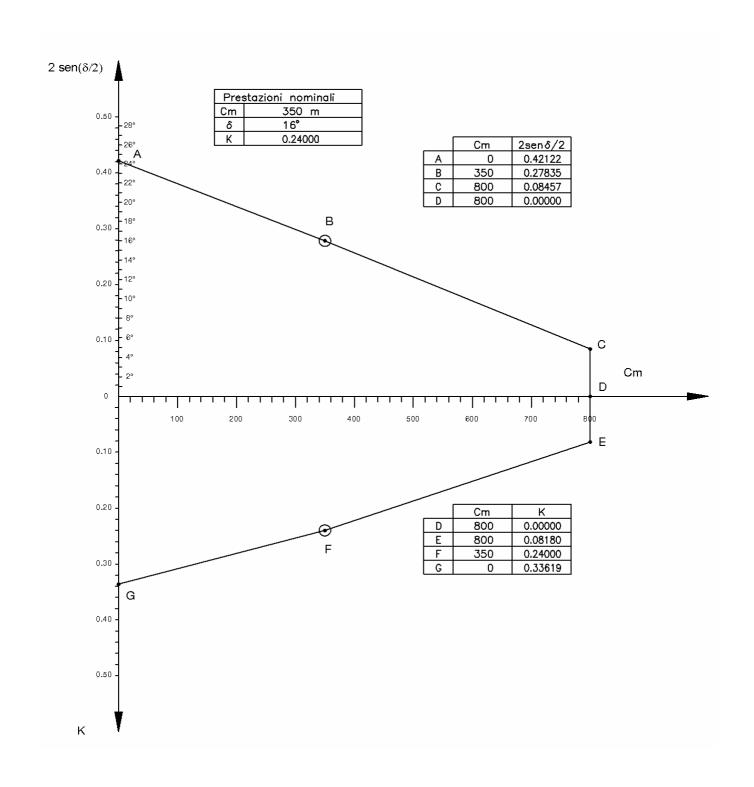

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UP001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 6 di 8

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica P005UP001

Rev. 00 del 13/09/2007

Pagina 7 di 8

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, δ_i) è necessario che i punti (Cm_i, δ_i) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

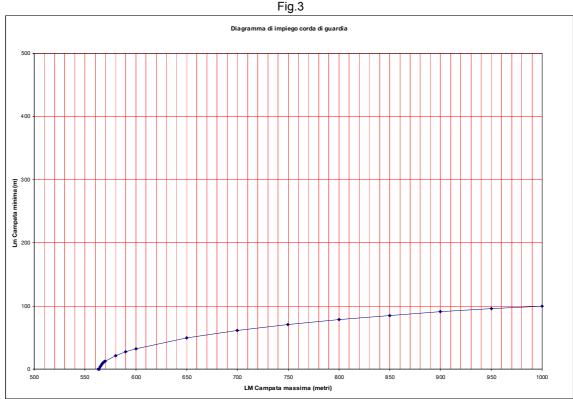
3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

- Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)


- Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3 , che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_m) tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Codifica P005UP001

Rev. 00 del 13/09/2007

Pagina 8 di 8

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

Azioni longitudinali:

sono state assunte pari al tiro T₀

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		C	ONDUTTOR	Е	CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	MSA ECCEZIONALE (**)	2396	2129	0	(1537)	(1204)	(1200)
MSA -		2396	0	0	(1537)	(0)	(1200)
		1248	1140	5450	(769)	(602)	(3580)
		1248	0	5450	(769)	(0)	(3580)

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P00	5UV001
Rev. 00	Pagina 1 di 10
del 15/09/2007	l agilla i ul 10

LINEA ELETTRICA AEREA A 132-150 kV	SEMPLICE TERNA	A TRIANGOLO –	TIRO PIENO
CONDUTTORI Ø 31	,5 mm – EDS 21% - 2	ZONA "A"	

UTILIZZAZIONE DEL SOSTEGNO "V"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia delle revisioni			
Rev. 00	del 15/09/2007	Prima emissione	

Elaborato		Verificato	Approvato	
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

P005UV001

Rev. 00

del 15/09/2007

Pagina 2 di 10

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014919 – Rev.0 – Settembre 2007**

Codifica P005UV001 Rev. 00 Pagina 3 di 10 del 15/09/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

0.4 CADATTED	ICTICLIE DDING!	2411	CONDUTTORE		CORDA DI GUARDIA			
2.1 CARATTER	ISTICHE PRINCIF	ALI	RQUT0000C2	LC 23	LC 51	LC 50		
	MA	TERIALE	All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio		
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9		
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)		
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70		
	TOTALE	(mm²)	583,30	78,94	80,65	176,60		
MASS	A UNITARIA	(Kg/m)	1,953	0,621	0,537	0,820		
MODULO DI ELASTICITA' (N/mm²)			68000	175000	155000	88000		
COEFFICIENTE DI DILATAZIONE (1/°C)			19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶		
CARICO DI RO	TTURA	(daN)	16852	12231	9000	10600		

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA			
	RQUT0000C2	LC 23	LC 51	LC 50	
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643	

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UV001

Rev. 00
del 15/09/2007

Rev. 00

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	*)	
		RQUT0000C2	LC 23	LC 51	LC 50
	V (daN/m)	0	0	0	0
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarri

P005UV001

Rev. 00
del 15/09/2007

Rev. 00
Pagina 5 di 10

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)				
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLATORI E MORSETTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	5450	100	150	2120 (2745)	2077 (2711)	2985 (3580)	0	0

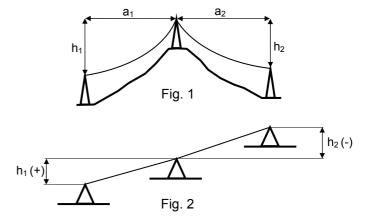
(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

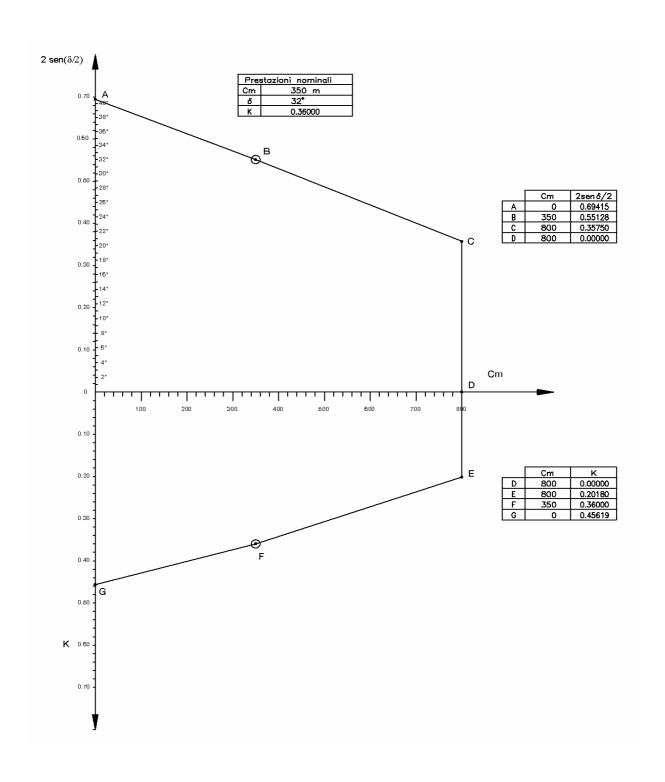

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

 $\begin{array}{lll} \mathsf{Cm} &=& \mathsf{campata\ media} \\ \delta &=& \mathsf{angolo\ di\ deviazione} \\ \mathsf{K} &=& \mathsf{costante\ altimetrica\ (*)} \end{array}$

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UV001

Rev. 00
del 15/09/2007

Rev. 00
Pagina 6 di 10

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UV001

Rev. 00 del 15/09/2007

Pagina 7 di 10

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, δ_i) è necessario che i punti (Cm_i, δ_i) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

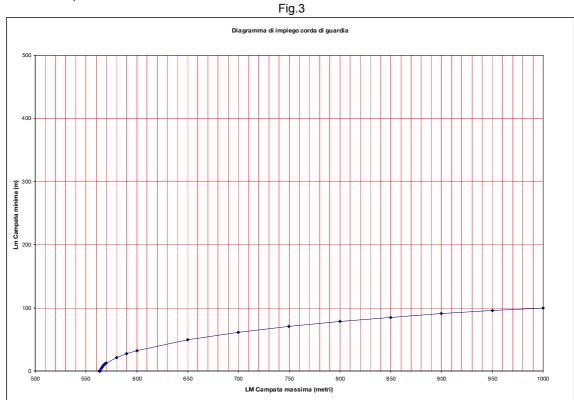
3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)


- Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3 , che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_m) tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Codifica **P005UV001**

Rev. 00 del 15/09/2007

Pagina 8 di 10

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
MSA -	NORMALE	3884	2783	0	(2514)	(1634)	(1200)
		3884	0	0	(2514)	(0)	(1200)
	ECCEZIONALE (**)	1992	1467	5450	(1257)	(817)	(3580)
		1992	0	5450	(1257)	(0)	(3580)

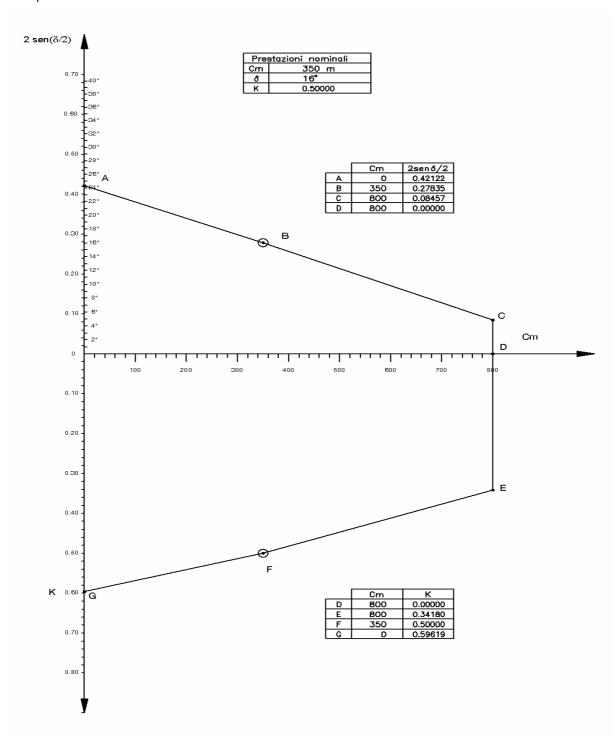
- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

P005UV001

Rev. 00
del 15/09/2007


Rev. 00
Pagina 9 di 10

3.4 UTILIZZAZIONE DEL SOSTEGNO IN CORRISPONDENZA DI PRESTAZIONI VERTICALI PARTICOLARMENTE ELEVATE

Al sostegno V è affidato anche il compito di raccogliere i casi nei quali il carico verticale risulta particolarmente elevato, cioè si hanno valori di Cm e K esterni ai limiti del diagramma riportato al punto 3.2 .

Al tal fine il sostegno è stato verificato anche con azioni verticali maggiorate, concomitanti però con azioni trasversali ridotte.

Si è ottenuto in tal modo il diagramma riportato nella pagina seguente, da adoperarsi in alternativa con il precedente

P005UV001

Rev. 00

Pagina 10 di 10

del 15/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
MSA	NORMALE	2396	3546	0	(1537)	(2135)	(1200)
		2396	0	0	(1537)	(0)	(1200)
	ECCEZIONALE (**)	1248	1848	5450	(769)	(1068)	(3580)
		1248	0	5450	(769)	(0)	(3580)

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P00	5UC001
Rev. 00	Pagina 1 di 12
del 13/09/2007	

LINEA ELETTRICA AEREA A 132-150 kV	SEMPLICE TERNA	A TRIANGOLO –	TIRO PIENO
CONDUTTORI Ø 31	,5 mm – EDS 21% - 2	ZONA "A"	

UTILIZZAZIONE DEL SOSTEGNO "C"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 13/09/2007	Prima emissione

Elaborato		Verificato	Approvato	
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

P005UC001

Rev. 00

del 13/09/2007

Pagina 2 di 12

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014920 – Rev.0 – Settembre 2007**

P005UC001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 3 di 12

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

0.4 0.4 0.4 T.T.E.D	IOTIONE BRINGI	CONDUTTORE	CORDA DI GUARDIA			
2.1 CARATTERISTICHE PRINCIPALI			RQUT0000C2	LC 23	LC 51	LC 50
	MA	TERIALE	All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9
	ALLUMINIO	(mm ²)	519,50	0	0	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASSA UNITARIA (Kg/m)		1,953	0,621	0,537	0,820	
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000	
COEFFICIENTE DI DILATAZIONE (1/°C)		19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶	
CARICO DI ROTTURA (daN)			16852	12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

EDS: (Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA			
	RQUT0000C2	LC 23	LC 51	LC 50	
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643	

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

(*) Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UC001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 4 di 12

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha (\Theta_d - \Theta_b) + \frac{1}{SE} (T_d - T_b) = \frac{p'_d^2 L^2}{24 T_d^2} - \frac{p'_b^2 L^2}{24 T_b^2}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	CORDA DI GUARDIA (**)			
		RQUT0000C2	LC 23	LC 51	LC 50	
	V (daN/m)	0	0	0	0	
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044	
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044	
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)	
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)	
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum Li^3}{\sum Li}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr i

P005UC001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 5 di 12

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

•

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

 p^* = peso di isolatori e morsetteria T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

Ove:

	CONDUTTORE			CORDA DI GUARDIA (**)				
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLA MORSE	TORI E TTERIA
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	5450	120	170	2120 (2745)	2077 (2711)	2985 (3580)	0	0

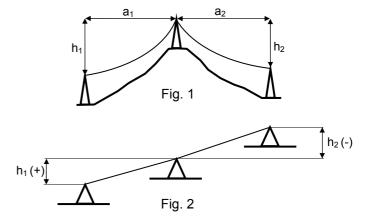
(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

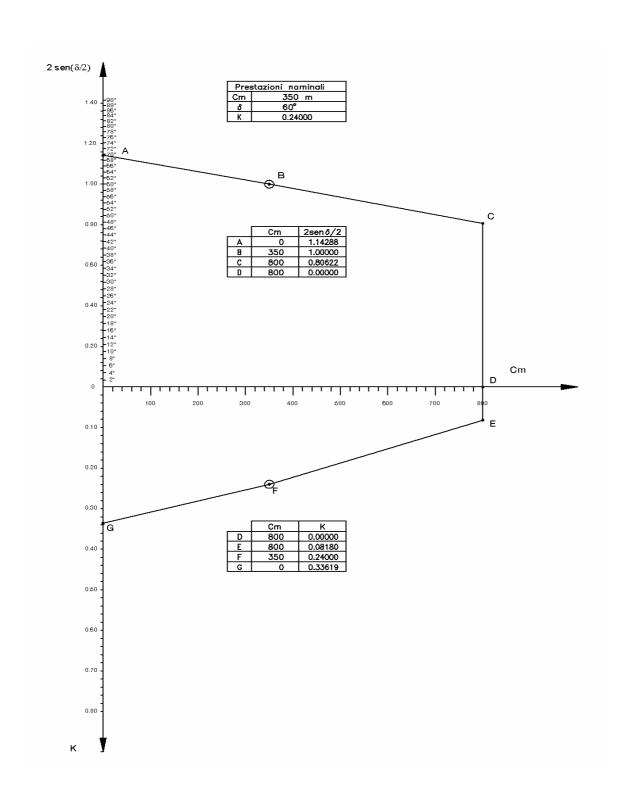

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

 $\begin{array}{lll} \mathsf{Cm} &=& \mathsf{campata\ media} \\ \delta &=& \mathsf{angolo\ di\ deviazione} \\ \mathsf{K} &=& \mathsf{costante\ altimetrica\ (*)} \end{array}$

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UC001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 6 di 12

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UC001

Rev. 00 del 13/09/2007

Pagina 7 di 12

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i , δ_i) è necessario che i punti (Cm_i , δ_i) e (Cm_i , K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

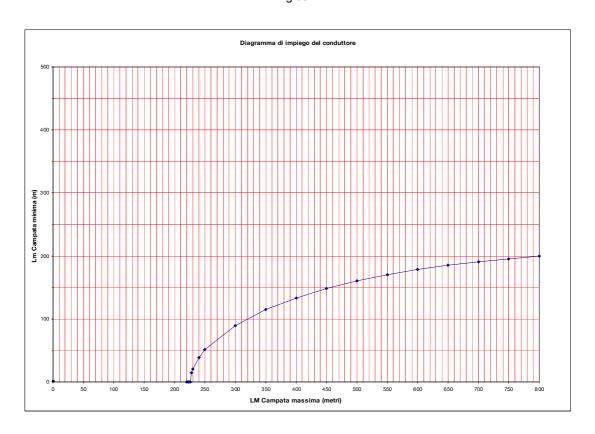
Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

-Azioni longitudinali:

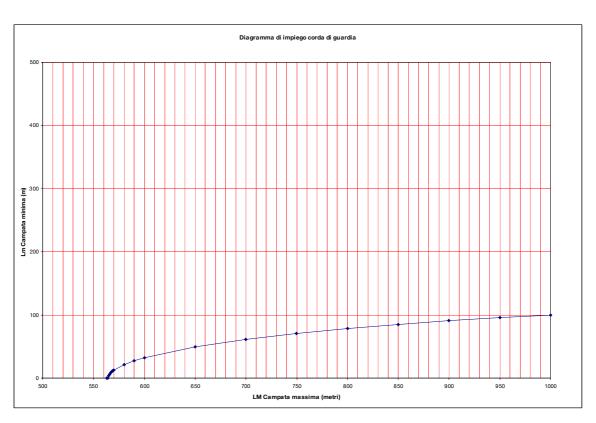

Sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tener conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, sia minore o eguale dei valori di squilibrio considerato per il calcolo del sostegno.

Per un' indagine rapida sono stati costruiti i diagrammi riportati in fig. 3, che tiene conto dei massimi squilibri relativi al conduttore fig. 3a e alla corda di guardia calcolato con l'impiego delle sfere di segnalazione fig 3b.

Riportando in ascisse la campata maggiore (L_M) [campata equivalente per i conduttori fig.3a – campata reale per la corda di guardia fig.3b] tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3a



Codifica P005UC001

Rev. 00 del 13/09/2007

Pagina 8 di 12

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

P005UC001

Rev. 00
Pagina 9 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	R	RQUT0000C2			LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NORMALE -	6349	2149	220	(4120)	(1204)	(1200)	
MSA		6349	0	220	(4120)	(0)	(1200)	
		3235	1160	5450	(2060)	(602)	(3580)	
	ECCEZIONALE (**)	3235	0	5450	(2060)	(0)	(3580)	

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

4) UTILIZZAZIONE MECCANICA DEL SOSTEGNO IMPIEGATO COME CAPOLINEA

Il sostegno C viene impiegato anche come capolinea, qui di seguito viene riportato il diagramma di utilizzazione relativo a tale impiego.

In esso si è indicato con α l'angolo di deviazione della linea rispetto al piano di simmetria longitudinale del sostegno (vedi Fig.4)

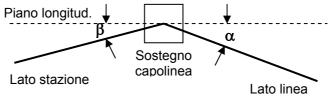
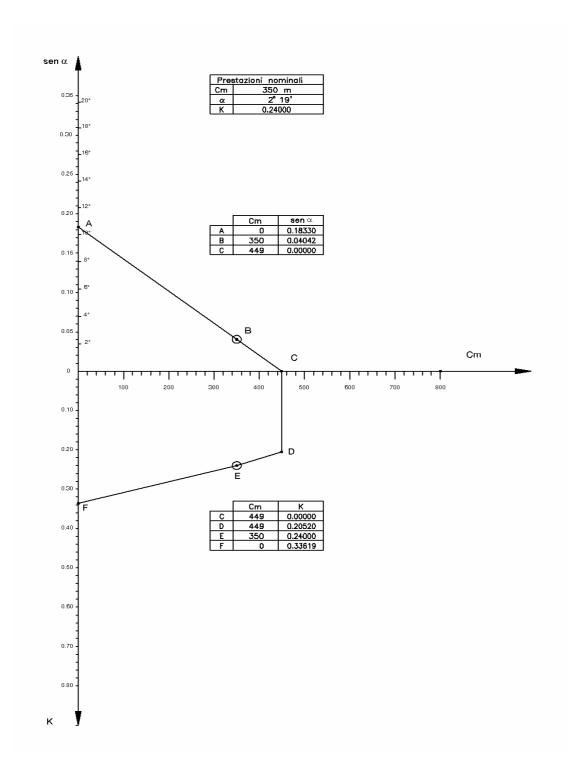


Fig. 4



P005UC001

Rev. 00

del 13/09/2007

Pagina 10 di 12

P005UC001

Rev. 00
Pagina 11 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	R	RQUT0000C2			LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NORMALE	1119	2149	5450	(1740)	(1204)	(3580)	
MSA	NORMALE	1119	0	5450	(1740)	(0)	(3580)	
		0	0	0	(0)	(0)	(0)	
	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)	

Per quanto riguarda le prestazioni orizzontali i valori di T e di L sono stati determinati in base alla condizione di uguaglianza della loro somma T + L nelle condizioni di amarro e di capolinea, ed assunto per L il valore massimo di To.

In una generica condizione di impiego del sostegno capolinea le azioni trasversali e longitudinali sono espresse dalle seguenti relazioni:

Conduttori
$$\begin{cases} & \text{Azione trasversale} & \text{T = v Cm + T}_0 \text{ sen } \alpha \text{ + t* (2')} \\ & \text{Azione longitudinale} & \text{L = T}_0 \cos \alpha \text{ + t*} \end{cases}$$

Si può verificare che per tutte le prestazioni geometriche (Cm, α) comprese nel "campo di utilizzazione trasversale" la somma dei valori T ed L ricavati mediante la (2') e (3') (sia per i conduttori che per la corda di guardia in entrambe le condizioni MSA) risulti inferiore od eguale alla somma dei valori T ed L riportati in tabella e relativi alla condizione di impiego α = 0 cui corrisponde il massimo valore della azione longitudinale.

Per quanto riguarda le prestazioni verticali, esse sono rimaste invariate rispetto a quelle stabilite per il sostegno impiegato come amarro.

Si noti ancora che il sostegno è stato calcolato considerato nullo il tiro della campata di collegamento al portale di stazione.

N.B. Nella realtà tale tiro avrà un valore non nullo, benché modesto, ma ciò è a favore della sicurezza, purche l'angolo β (vedi Fig.4) non superi il valore di 45°.
 Infatti se T'o ≠ 0 è il tiro ridotto, le espressioni 2' e 3' diventano:

Conduttori
$$\begin{cases} &\text{Azione trasversale} &\text{T = v Cm} + T_0 sen α + T'_0 sen β + t^* \\ &\text{Azione longitudinale} &\text{L = T}_0 cos α - T_0 cos β \end{cases}$$

E quindi la somma T + L non supera il valore del calcolo finche rimanga:

sen $\beta \le \cos \beta$ ossia $\beta \le 45^{\circ}$

P005UC001

Rev. 00

Pagina 12 di 12

del 13/09/2007

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P00	5UE001
 Rev. 00 del 13/09/2007	Pagina 1 di 12

LINEA ELETTRICA AEREA A 132-150 kV	SEMPLICE TERNA	A TRIANGOLO –	TIRO PIENO
CONDUTTORI Ø 31	,5 mm – EDS 21% - 2	ZONA "A"	

UTILIZZAZIONE DEL SOSTEGNO "E"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 13/09/2007	Prima emissione

Elaborato		Verificato	Approvato	
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

P005UE001

Rev. 00

del 13/09/2007

Pagina 2 di 12

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014921 – Rev.0 – Settembre 2007**

Codifica P005UE001 Rev. 00 Pagina 3 di 12 del 13/09/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

0.4 CADATTED	ICTICLIE DDING!	2411	CONDUTTORE		CORDA DI GUAR	ARDIA	
2.1 CARATTER	2.1 CARATTERISTICHE PRINCIPALI			LC 23	LC 51	LC 50	
MATERIALE			All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio	
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9	
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)	
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70	
	TOTALE	(mm²)	583,30	78,94	80,65	176,60	
MASS	A UNITARIA	(Kg/m)	1,953	0,621	0,537	0,820	
MODU	ILO DI ELASTICITA'	(N/mm ²)	68000	175000	155000	88000	
COEFFICIENTE	E DI DILATAZIONE	(1/°C)	19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶	
CARICO DI RO	TTURA	(daN)	16852	12231	9000	10600	

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE CORDA DI GUARDIA				
	RQUT0000C2	C2 LC 23 LC 51 LC 50			
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643	

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UE001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 4 di 12

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

			С	*)	
		RQUT0000C2	LC 23	LC 51	LC 50
CONDIZIONE EDS	V (daN/m)	0	0	0	0
	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr \hat{I}

Codifica P	005UE001
Rev. 00 del 13/09/200	Pagina 5 di 12

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

 p^* = peso di isolatori e morsetteria T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

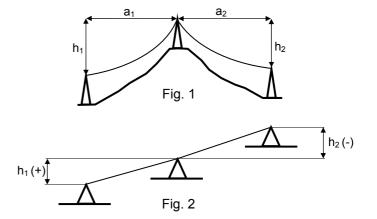
	CONDUTTORE				CORDA DI GUARDIA (**)				
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLATORI E MORSETTERIA		
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)	
MSA	5450	120	170	2120 (2745)	2077 (2711)	2985 (3580)	0	0	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

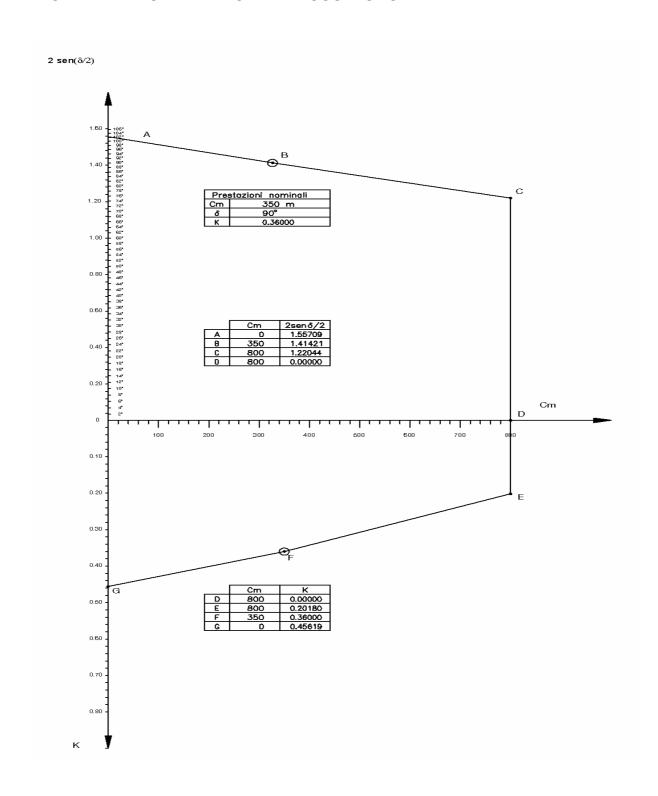

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UE001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 6 di 12

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UE001

Rev. 00 del 13/09/2007

Pagina 7 di 12

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i , δ_i) è necessario che i punti (Cm_i , δ_i) e (Cm_i , K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

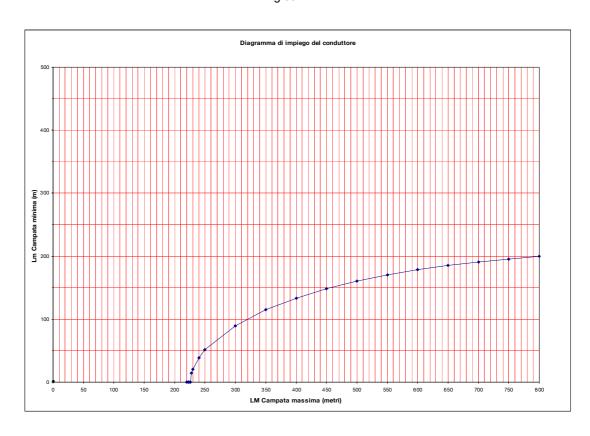
Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

- Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

- Azioni longitudinali:


Sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tener conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, sia minore o eguale dei valori di squilibrio considerato per il calcolo del sostegno.

Per un' indagine rapida sono stati costruiti i diagrammi riportati in fig. 3, che tiene conto dei massimi squilibri relativi al conduttore fig. 3a e alla corda di guardia calcolato con l'impiego delle sfere di segnalazione fig 3b.

Riportando in ascisse la campata maggiore (L_M) [campata equivalente per i conduttori fig.3a – campata reale per la corda di guardia fig.3b] tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3a



Codifica P005UE001

Rev. 00 del 13/09/2007

Pagina 8 di 12

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

P005UE001

Rev. 00

Pagina 9 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella sequente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	R	RQUT0000C2			LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NORMALE -	8607	2803	220	(5603)	(1634)	(1200)	
MSA		8607	0	220	(5603)	(0)	(1200)	
	ECCEZIONALE (**)	4364	1487	5450	(2802)	(817)	(3580)	
		4364	0	5450	(2802)	(0)	(3580)	

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

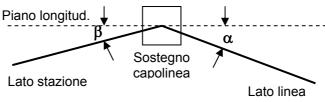
Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

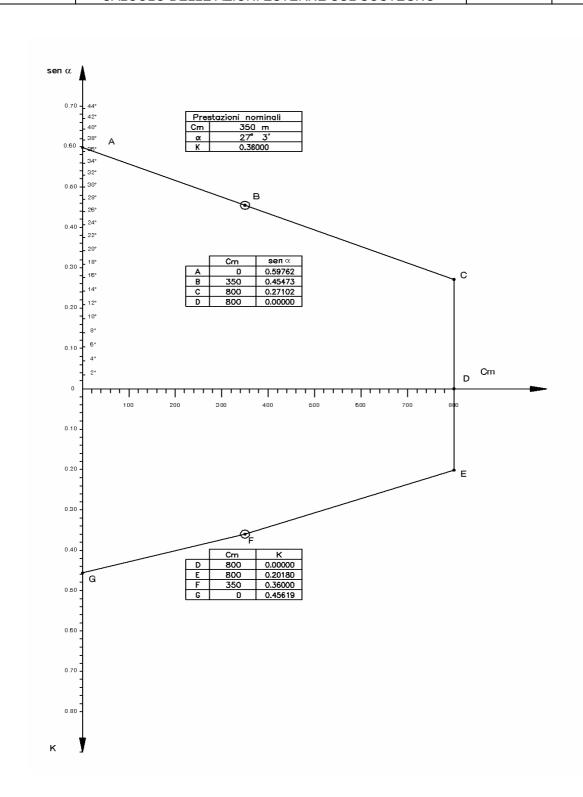
(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P . L. indicati.

4) UTILIZZAZIONE MECCANICA DEL SOSTEGNO IMPIEGATO COME CAPOLINEA

Il sostegno E viene impiegato anche come capolinea, qui di seguito viene riportato il diagramma di utilizzazione relativo a tale impiego.

In esso si è indicato con α l'angolo di deviazione della linea rispetto al piano di simmetria longitudinale del sostegno (vedi Fig.4)




Fig. 4

P005UE001

Rev. 00
Pagina 10 di 12

del 13/09/2007

P005UE001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 11 di 12

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	R	RQUT0000C2			LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NORMALE -	3377	2803	5450	(3223)	(1634)	(3580)	
MSA		3377	0	5450	(3223)	(0)	(3580)	
	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)	
		0	0	0	(0)	(0)	(0)	

Per quanto riguarda le prestazioni orizzontali i valori di T e di L sono stati determinati in base alla condizione di uguaglianza della loro somma T + L nelle condizioni di amarro e di capolinea, ed assunto per L il valore massimo di To.

In una generica condizione di impiego del sostegno capolinea le azioni trasversali e longitudinali sono espresse dalle seguenti relazioni:

Si può verificare che per tutte le prestazioni geometriche (Cm, α) comprese nel "campo di utilizzazione trasversale" la somma dei valori T ed L ricavati mediante la (2') e (3') (sia per i conduttori che per la corda di guardia in entrambe le condizioni MSA) risulti inferiore od eguale alla somma dei valori T ed L riportati in tabella e relativi alla condizione di impiego α = 0 cui corrisponde il massimo valore della azione longitudinale.

Per quanto riguarda le prestazioni verticali, esse sono rimaste invariate rispetto a quelle stabilite per il sostegno impiegato come amarro.

Si noti ancora che il sostegno è stato calcolato considerato nullo il tiro della campata di collegamento al portale di stazione.

N.B. Nella realtà tale tiro avrà un valore non nullo, benché modesto, ma ciò è a favore della sicurezza, purche l'angolo β (vedi Fig.4) non superi il valore di 45°.
 Infatti se T'o ≠ 0 è il tiro ridotto, le espressioni 2' e 3' diventano:

Conduttori
$$\begin{cases} &\text{Azione trasversale} &\text{T = v Cm} + T_0 sen α + T'_0 sen β + t^* \\ &\text{Azione longitudinale} &\text{L = T}_0 cos α - T_0 cos β \end{cases}$$

E quindi la somma T + L non supera il valore del calcolo finche rimanga:

sen $\beta \le \cos \beta$ ossia $\beta \le 45^{\circ}$

P005UE001

Rev. 00

Pagina 12 di 12

del 13/09/2007

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P005	SUES01
	Pagina 1 di 12

LINEA ELETTRICA AEREA A 132-150 kV	SEMPLICE TERNA	A TRIANGOLO –	TIRO PIENO
CONDUTTORI Ø 31	,5 mm – EDS 21% - 2	ZONA "A"	

UTILIZZAZIONE DEL SOSTEGNO "E*"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	elle revisioni	
Rev. 00	del 14/09/2007	Prima emissione

Elaborato		Verificato		Verificato Approvato		Approvato
L. Alario		L. Alario			R. Rendina	
ING-ILC-COL		ING-ILC-COL			ING-ILC	

P005UES01

Rev. 00

del 14/09/2007

Pagina 2 di 12

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014922 – Rev.0 – Settembre 2007**

P005UES01

Rev. 00
del 14/09/2007

Rev. 00
Pagina 3 di 12

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

0.4 CADATTED	ICTICLIE DDING!	2411	CONDUTTORE		CORDA DI GUAR	DIA
2.1 CARATTER	2.1 CARATTERISTICHE PRINCIPALI			LC 23	LC 51	LC 50
MATERIALE			All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASS	A UNITARIA	(Kg/m)	1,953	0,621	0,537	0,820
MODU	ILO DI ELASTICITA'	(N/mm ²)	68000	175000	155000	88000
COEFFICIENTE	E DI DILATAZIONE	(1/°C)	19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶
CARICO DI RO	TTURA	(daN)	16852	12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

EDS: (Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE		CORDA DI GUARDIA	
	RQUT0000C2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

(*) Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UES01

Rev. 00
del 14/09/2007

Rev. 00
Pagina 4 di 12

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	*)	
		RQUT0000C2	LC 23	LC 51	LC 50
CONDIZIONE EDS	V (daN/m)	0	0	0	0
	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr \hat{I}

Codifica P00	5UES01
Rev. 00 del 14/09/2007	Pagina 5 di 12

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

 p^* = peso di isolatori e morsetteria T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)				
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLATORI E MORSETTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	5450	120	170	2120 (2745)	2077 (2711)	2985 (3580)	0	0

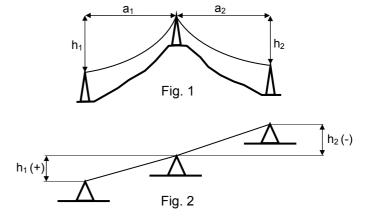
(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

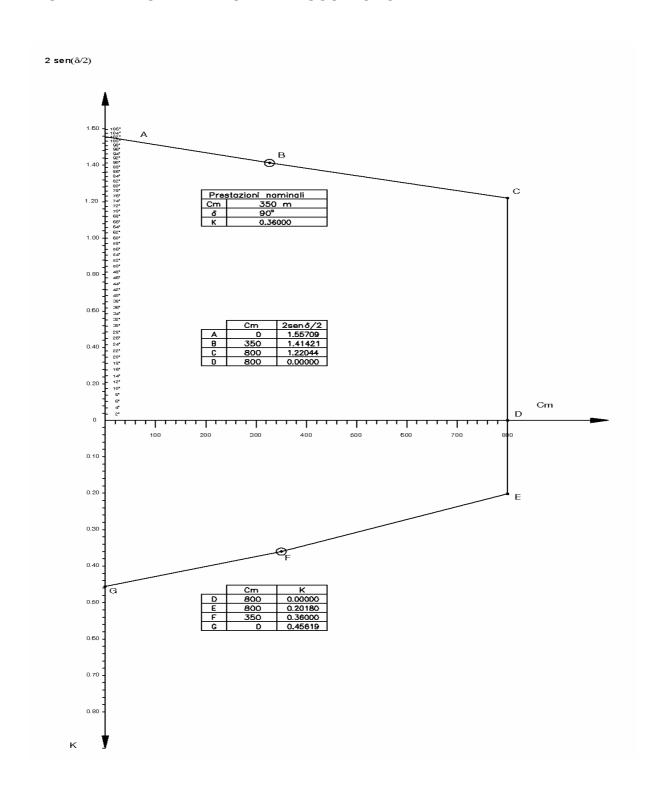

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

 $\begin{array}{lll} \mathsf{Cm} & = \mathsf{campata} \; \mathsf{media} \\ \delta & = \mathsf{angolo} \; \mathsf{di} \; \mathsf{deviazione} \\ \mathsf{K} & = \mathsf{costante} \; \mathsf{altimetrica} \; (*) \end{array}$

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UES01

Rev. 00
del 14/09/2007

Rev. 00
Pagina 6 di 12

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UES01

Rev. 00 del 14/09/2007

Pagina 7 di 12

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i , δ_i) è necessario che i punti (Cm_i , δ_i) e (Cm_i , K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

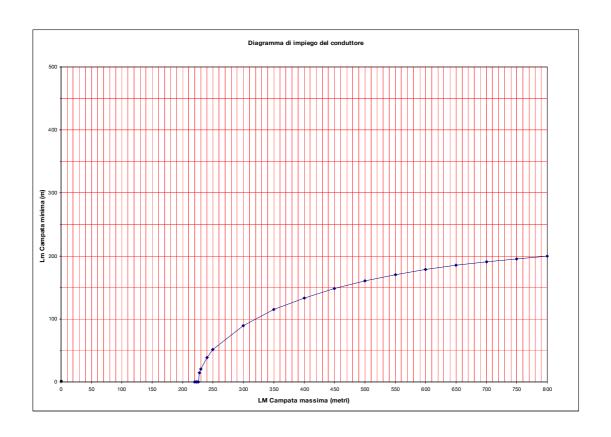
Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

-Azioni longitudinali:

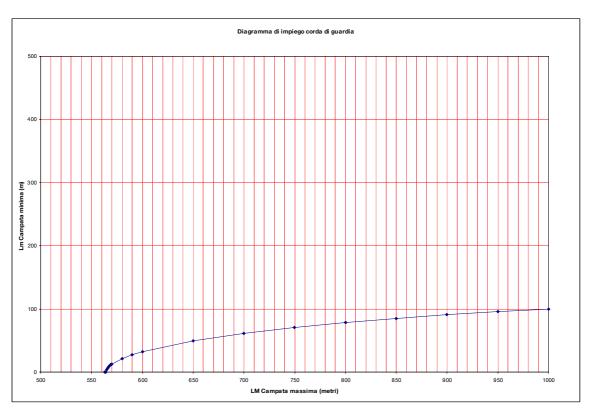

Sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tener conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, sia minore o eguale dei valori di squilibrio considerato per il calcolo del sostegno.

Per un' indagine rapida sono stati costruiti i diagrammi riportati in fig. 3, che tiene conto dei massimi squilibri relativi al conduttore fig. 3a e alla corda di guardia calcolato con l'impiego delle sfere di segnalazione fig 3b.

Riportando in ascisse la campata maggiore (L_M) [campata equivalente per i conduttori fig.3a – campata reale per la corda di guardia fig.3b] tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3a


P005UES01

Rev. 00

del 14/09/2007

Pagina 8 di 12

Fig. 3b

IPOTESI ECCEZIONALE:

- Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T_0

P005UES01

Rev. 00

Pagina 9 di 12

del 14/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

STATO DEI CONDUTTORI	IPOTESI	CONDUTTORE			CORDA DI GUARDIA (*)		
		RQUT0000C2			LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
MSA	NORMALE	8607	2803	220	(5603)	(1634)	(1200)
		8607	0	220	(5603)	(0)	(1200)
	ECCEZIONALE (**)	4364	1487	5450	(2802)	(817)	(3580)
		4364	0	5450	(2802)	(0)	(3580)

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

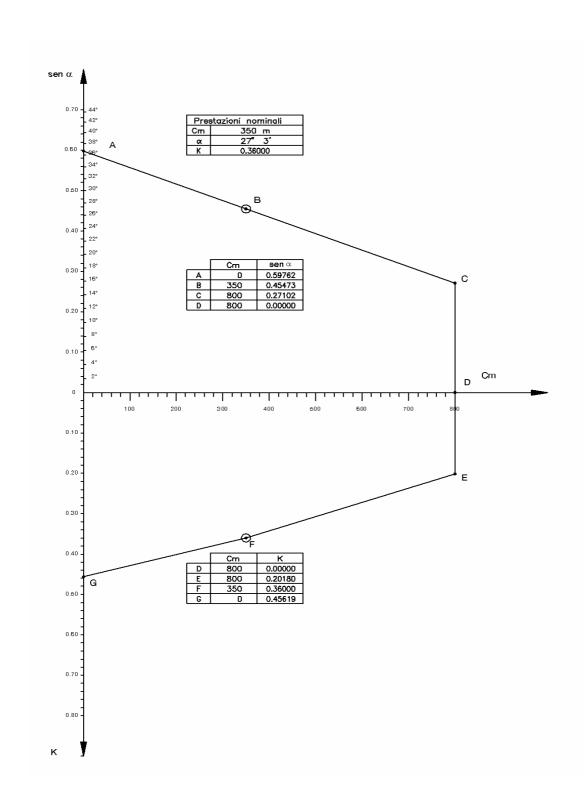
Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

4) UTILIZZAZIONE MECCANICA DEL SOSTEGNO IMPIEGATO COME CAPOLINEA

Il sostegno E* viene impiegato anche come capolinea, qui di seguito viene riportato il diagramma di utilizzazione relativo a tale impiego.

In esso si è indicato con α l'angolo di deviazione della linea rispetto al piano di simmetria longitudinale del sostegno (vedi Fig.4)


Fig. 4

P005UES01

Rev. 00
Pagina 10 di 12

del 14/09/2007

P005UES01

Rev. 00
del 14/09/2007

Rev. 00
Pagina 11 di 12

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

STATO DEI CONDUTTORI	IPOTESI	CONDUTTORE			CORDA DI GUARDIA (*)		
		RQUT0000C2			LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
MSA	NORMALE	3377	2803	5450	(3223)	(1634)	(3580)
		3377	0	5450	(3223)	(0)	(3580)
	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)
		0	0	0	(0)	(0)	(0)

Per quanto riguarda le prestazioni orizzontali i valori di T e di L sono stati determinati in base alla condizione di uguaglianza della loro somma T + L nelle condizioni di amarro e di capolinea, ed assunto per L il valore massimo di To.

In una generica condizione di impiego del sostegno capolinea le azioni trasversali e longitudinali sono espresse dalle seguenti relazioni:

Conduttori
$$\begin{cases} & \text{Azione trasversale} & \text{T = v Cm + T}_0 \text{ sen } \alpha \text{ + t* (2')} \\ & \text{Azione longitudinale} & \text{L = T}_0 \cos \alpha \text{ + t*} \end{cases}$$

Si può verificare che per tutte le prestazioni geometriche (Cm, α) comprese nel "campo di utilizzazione trasversale" la somma dei valori T ed L ricavati mediante la (2') e (3') (sia per i conduttori che per la corda di guardia in entrambe le condizioni MSA) risulti inferiore od eguale alla somma dei valori T ed L riportati in tabella e relativi alla condizione di impiego α = 0 cui corrisponde il massimo valore della azione longitudinale.

Per quanto riguarda le prestazioni verticali, esse sono rimaste invariate rispetto a quelle stabilite per il sostegno impiegato come amarro.

Si noti ancora che il sostegno è stato calcolato considerato nullo il tiro della campata di collegamento al portale di stazione.

N.B. Nella realtà tale tiro avrà un valore non nullo, benché modesto, ma ciò è a favore della sicurezza, purche l'angolo β (vedi Fig.4) non superi il valore di 45°.
 Infatti se T'o ≠ 0 è il tiro ridotto, le espressioni 2' e 3' diventano:

Conduttori
$$\begin{cases} &\text{Azione trasversale} &\text{T = v Cm} + T_0 sen α + T'_0 sen β + t^* \\ &\text{Azione longitudinale} &\text{L = T}_0 cos α - T_0 cos β \end{cases}$$

E quindi la somma T + L non supera il valore del calcolo finche rimanga:

sen $\beta \le \cos \beta$ ossia $\beta \le 45^{\circ}$

P005UES01

Rev. 00
Pagina 12 di 12

del 14/09/2007

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.