

Ministero delle Infrastrutture e dei Trasporti Struttura di Vigilanza sulle Concessionarie Autostradali

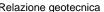
AMMODERNAMENTO A N° 4 CORSIE DELLA S.S. 514 "DI CHIARAMONTE" E DELLA S.S. 194 RAGUSANA DALLO SVINCOLO CON LA S.S. 115 ALLO SVINCOLO CON LA S.S. 114.

(C.U.P. F12C03000000001)

PROGETTO DEFINITIVO

LOTTO 1 GEOLOGIA E GEOTECNICA Relazione Geotecnica

n i rogettista			Supporto specialistico					
Responsabile di progetto ed incaricato delle integrazioni le varie prestazioni:		SILECS.p.A.	Ottimizzazione della cantierizzazione delle opere					
Ing. Santa Monaco - 0	Ordine In	g. Torino 5760H	Ing. Gianmaria De	Stavola - Ordi	ne Ing. Venezi	ia 2074		
		Consulenz	e specialistiche					
Geologo:			Geotecnica e oper	e d'arte mind	ri:			
Dott. Geologo Fabio I Ordine Geologi del La	Melchiorr azio A.P.	i n 663	Ing. Antonio Alparo	ne	STRUTTURE E	GEOTECNIDA		
Opere d'arte princip	ali:		Opere di mitigazio	ne dell'impa	to ambientale	e:		
Viadotti Ing. G. Mondello ITALCONSULT Gallerie Ing. G. Guiducci GP ingegneria			Ecosistemi e paesaggio Rumore, vibrazioni ed atmosfera					
IIALGONGG				- Indiana				
RIFERIMENTO ELABORA FASE TR\LT	ATO DISC	IPLINA\OPERA DOC F		DATA DGLIO SCAL	GENNA	IO '17		
RIFERIMENTO ELABORA	ATO			DAT/	GENNA	JO '17		
RIFERIMENTO ELABORA FASE TR\LT	ATO DISC	IPLINA\OPERA DOC F		DATA DGLIO SCAL	GENNA -	APPROVATO		
RIFERIMENTO ELABORA FASE TR\LT D 0 1 - T 1 L	ATO DISC	T 0 5 0 - 1 - R N - 0		DGLIO SCAI	GENNA -			
RIFERIMENTO ELABORA FASE TR\LT D 0 1 - T 1 L REV. DATA	DISC	T 0 5 0 - 1 - R N - 0		DGLIO SCAI	GENNA - VERIFICATO	APPROVATO		
RIFERIMENTO ELABORA FASE TR\LT D 0 1 - T 1 L REV. DATA	DISC	T 0 5 0 - 1 - R N - 0		DGLIO SCAI	GENNA - VERIFICATO	APPROVATO		
RIFERIMENTO ELABORA FASE TR\LT D 0 1 - T 1 L REV. DATA	DISC	T 0 5 0 - 1 - R N - 0		DGLIO SCAI	GENNA - VERIFICATO	APPROVATO		
RIFERIMENTO ELABORA FASE TR\LT D 0 1 - T 1 L REV. DATA	DISC	T 0 5 0 - 1 - R N - 0		DGLIO DI 0 1 REDATTO/CONSULENTI SILEC/ALISEA	GENNA - VERIFICATO	APPROVATO Monaco		



INDICE

A	GEN	ERALITÀ	4
В	NOR	MATIVA E RIFERIMENTI	5
	B.1	Normativa di riferimento	5
	B.2	Documentazione di riferimento	5
	B.3	Software utilizzati	6
С	CAR	ATTERISTICHE DEI MATERIALI	7
	C.1	Chiodi da roccia	7
	C.2	Reti in aderenza	7
	C.3	Miscela per ancoraggio chiodi	7
D	VITA	NOMINALE, CLASSE D'USO E PERIODO DI RIFERIMENTO	8
Ε	INDA	GINI PREGRESSE	9
	E.1	Campagna indagini 2004 – Fase II	9
F	INDA	GINI ESEGUITE PER IL PROGETTO DEFINITIVO	10
G	CAR	ATTERIZZAZIONE TERRENI LOTTO	16
	G.1	Terreni appartenenti alla formazione Mcm	18
	G.1.1	Analisi di laboratorio.	19
	G.1.2	Indagini geotecniche in sito	. 22
	G.1.3	Parametri geotecnici	23
	G.2	Terreni appartenenti alla formazione Mc	27
	G.2.1	Analisi di laboratorio.	28
	G.2.2	Indagini geotecniche in sito	. 33
	G.2.3	Parametri geotecnici	35
	G.3	Terreni appartenenti alla formazione Ocm	40
	G.3.1	Analisi di laboratorio.	42
	G.3.2	Indagini geotecniche in sito	. 49
	G.3.3	Parametri geotecnici	52
	G.4	Terreni appartenenti alla formazione Qm	. 62

	G.4.1	l	Analisi di laboratorio.	62
	G.4.2	2	Indagini geotecniche in sito	65
	G.4.3	3	Parametri geotecnici	66
	G.5	Terr	eni appartenenti alla formazione Conoide	67
	G.5.1	I	Analisi di laboratorio.	68
	G.5.2	2	Indagini geotecniche in sito	72
	G.5.3	3	Parametri geotecnici	73
	G.6	Terr	eni appartenenti alle formazioni ar, P, dt, Ql e R	74
	G.6.1	I	Analisi di laboratorio.	75
	G.6.2	2	Indagini geotecniche in sito	80
	G.6.3	3	Parametri geotecnici	81
Н	PAR	AME ⁻	TRI GEOTECNICI	83
	H.1	Tabe	ella riassuntiva generale	83
I	VER	IFICH	IE DI STABILITA' SCAVI A CIELO APERTO	84
	I.1	Litot	ipi formazione Ragusa (Ocm, Mcm, Mc)	86
	1.2	Litot	ipo Terrazzo Palustre pk. 5+450÷5+590	88
	1.3	Tabe	elle riassuntive pendenza della scarpate	91
	1.4	Indic	cazioni progettuali viabilità secondarie e svincoli	92
J	ANA	LISI I	DI STABILITA' FRONTI DI SCAVO IN ROCCIA	94
	J.1	Meto	odi di analisi	94
	J.1.1		Analisi di stabilità per scivolamento planare	94
	J.1.2		Analisi di stabilità per scivolamento di cunei	96
	J.2	Veri	fiche di stabilità fronti scavo in roccia asse principale	100
	J.2.1		Verifiche di stabilità tratto 7	100
	J.2.2		Verifiche di stabilità tratto 14	104
	J.2.3		Verifiche di stabilità tratto 19	108
	J.3	Veri	fiche di stabilità fronti scavo in roccia viabilità secondaria	108
	J.3.1		Verifiche di stabilità tratto 6	109
K	VER	IFICH	IE DI STABILITA' RILEVATI	113

	K.1	Meccanismo di rottura del corpo del rilevato	115
	K.2	Meccanismo di rottura generale pk 4+300	117
	K.3	Meccanismo di rottura generale pk 6+748	120
	K.4	Meccanismo di rottura generale pk 10+611	123
	K.5	Indicazioni progettuali viabilità secondarie svincoli	126
L	VERI	FICA CEDIMENTI DEI RILEVATI	127
	L.1	Criteri di verifica	127
	L.2	Risultati verifiche dei cedimenti	132
	L.2.1	Rilevato Sez. L1_M121	132
	L.2.2	Rilevato Sez. L1_338	135
	L.2.3	Rilevato Sez. L1_669	138
M	INDIC	CAZIONI SUI PIANI DI POSA DEL CORPO STRADALE	142
	M.1	Tabelle riassuntive bonifiche asse principale	142
	M.2	Indicazioni progettuali viabilità secondarie svincoli	143
N	VERI	FICA DELLA SUSCETTIBILITA' A LIQUEFAZIONE	146
	N.1	Risultati delle verifiche	146
0	PRO	BLEMATICHE GEOTECNICHE E MODALITA' COSTRUTTIVE	147
Ρ	ALLE	EGATI	150

A GENERALITÀ

La presente relazione ha per oggetto le verifiche geotecniche del corpo stradale per la progettazione del lotto 1 del "Collegamento autostradale Ragusa-Catania: ammodernamento a n° 4 corsie della s.s. 514 "di Chiaramonte" e della s.s. 194 ragusana dallo svincolo con la s.s. 115 allo svincolo con la s.s. 114".

Nella presente relazione tecnica, dopo aver esposto i criteri generali, si presenteranno le indagini geognostiche – geofisiche eseguite, la caratterizzazione dei terreni ricadenti nel lotto in oggetto, le tabelle riassuntive dei parametri geotecnici, le verifiche di stabilità globale degli scavi a cielo aperto, sia per i terreni granulari che per i terreni rocciosi, le verifiche di stabilità delle scarpate dei rilevati, le verifiche dei cedimenti dei rilevati, le indicazioni sui piani di posa del corpo stradale, le verifiche della suscettibilità a liquefazione e infine le problematiche geotecniche e modalità costruttive opere d'arte.

B NORMATIVA E RIFERIMENTI

B.1 Normativa di riferimento

La normativa cui viene fatto riferimento, nelle fasi di calcolo e progettazione, è la seguente:

- D.M. 14 gennaio 2008 pubblicato su S.O. n. 30 alla G.U. 4 febbraio 2008, n. 29 –
 "Approvazione delle nuove norme tecniche per le costruzioni";
- Circolare n° 617 del 2 Febbraio 2009 "Istruzioni per l'applicazione delle Nuove norme teniche per e costruzioni di cui al decreto ministeriale 14 gennaio 2008";
- UNI EN 1992-1-1:2005: "Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per edifici";
- UNI EN 1997-1:2005: "Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali";

B.2 Documentazione di riferimento

Si è fatto riferimento ai seguenti elaborati progettuali:

- Relazione Geologica "D01-T100-GG020-1-RJ-001-0A";
- Allegato alla relazione geologica "D01-T100-GG020-1-RJ-002-0A";
- Relazione Rilievi Geomeccanici "D01-T100-GG020-1-RJ-003-0A";
- Profili geologici asse destro "D01-T1L1-GG024-1-F6-00(1-7)-0A";
- Profili geologici asse sinistro "D01-T1L1-GG026-1-F6-00(1-7)-0A";
- Piano indagini indagini geognostiche Relazione tecnico descrittiva "D01-T100-GG010-1-RZ-001-0A";
- Piano indagini indagini geofisiche Rapporto interpretativo "D01-T100-GG010-1-RZ-012-0A";
- Piano indagini prove di laboratorio Relazione conclusiva sulle analisi eseguite "D01-T100-GG010-1-RZ-017-0A";
- Relazione Geotecnica Generale (RGG) "D01-T100-GT050-1-RN-001-0A";
- Profili geotecnici asse destro "D01-T1L1-GT051-1-P6-00(1-7)-0A";

- Profili geotecnici asse sinistro "D01-T1L1-GT054-1-P6-00(1-7)-0A";
- Relazione sismica "D01-T100-GG002-1-RZ-001-0A".

B.3 Software utilizzati

Per i calcoli e le modellazioni di cui alla presente relazione sono impiegati i codici di calcolo brevemente descritti di seguito.

- VSP Plus 2011 (modulo aggiuntivo paratie plus 2011 Ceas) per la verifica di stabilità delle trincee;
- Swedge 5.0 (Rocscience); per le analisi di stabilità dei fronti di scavo in roccia;
- CDD Win 2010 (STS); per le verifiche di stabilità globale dei rilevati;
- SLIDE vers. 5.014 (Rocscience) per le verifiche di stabilità globale;
- Codici di calcolo interni: codici di calcolo in Excel e Visual Basic, per la valutazione dei cedimenti dei rilevati e per l'analisi degli scivolamenti planari.

C CARATTERISTICHE DEI MATERIALI

Per la realizzazione delle opere in oggetto sono previsti i materiali di seguito descritti:

C.1 Chiodi da roccia

Barre tipo Gewi-Dywidag Ø 16 mm o equivalente:

modulo elastico
 Es = 200000 MPa

resistenza caratteristica a snervamento
 fyk ≥ 500 MPa

C.2 Reti in aderenza

Rete metallica a doppia torsione con maglia esagonale 8x10, avente diametro minimo del filo \emptyset =3 mm.

• Carico di rottura ftk ≥ 350 MPa

• allungamento ≥ 9%

C.3 Miscela per ancoraggio chiodi

Resistenza a compressione a 28gg di maturazione
 C 20/25

Cemento Portland II/B - LL 32.5

Rapporto acqua/cemento
 A/C=0.45

Additivo superfluidificante: 1-3% sul peso di cemento

D VITA NOMINALE, CLASSE D'USO E PERIODO DI RIFERIMENTO

La vita nominale di un'opera strutturale VN è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

La costruzione in oggetto è classificabile, secondo il DM 2008, come "Opera ordinaria, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale", per la quale viene prevista una vita nominale ≥ 50 anni.

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, la costruzione è definita di Classe IV, ossia afferente a "Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n.6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica."

Per il dimensionamento delle opere pertanto sono stati considerati i seguenti parametri di progettazione:

- Vita nominale opera V_N: 50 anni (opera di importanza ordinaria)
- Classe d'uso Opera: IV
- Coefficiente d'uso: C_U = 2
- Vita di riferimento: $V_R = V_N \cdot C_U = 100$ anni
- Stato limite di riferimento per l'azione sismica: SLV (salvaguardia della vita)
- Probabilità di superamento P_{VR}: 10%
- Tempo di ritorno T_R determinato con la seguente espressione:

$$T_R = -\frac{V_R}{\ln(1 - P_{V_0})} = -\frac{100}{\ln(1 - 0.10)} = 949 \,\mathrm{anni}$$

E INDAGINI PREGRESSE

E.1 Campagna indagini 2004 - Fase II

Nell'ambito della campagna di indagine del 2004 sono state realizzate sul lotto 1 le seguenti indagini :

- n. 13 sondaggi geognostici in buona parte attrezzati con piezometri (8) e tubi per prove
 Down Hole (2)
- n. 4 prove penetrometriche standard SPT in foro di sondaggio;
- n. 12 prelievi di campioni indisturbati in foro di sondaggio;
- n. 2 prove di permeabilità in foro;
- prove di laboratorio geotecnico e fisico sui campioni ;
- n. 2 stendimento di sismica a rifrazione
- n. 2 indagini geofisiche in foro tipo Down Hole

Elenco dei sondaggi effettuati e relative prove eseguite nel lotto 1 durante la campagna indagini 2004.

Sondaggio	Lotto	Profondità (m)	SPT	Point Load	Piezometro	Down Hole	Campioni	Prova Permeabilità
S20	L1	25.0	2				3	
S21	L1	15.0	2				3	
S22	L1	15.0				Х	2	
S23	L1	35.0		2		Х		
S24	L1	20.0			х			Prova Lugeon
S26	L1	25.0			Х			
S28	L1	25.0		2	Х			
S28bis	L1	25.0			х		2	Prova Lugeon
S29	L1	15.0			x			
S29bis	L1	15.0			x			
S30	L1	20.0		1			2	
S31	L1	10.0		2	Х			
S32	L1	10.0		2	Х			

Stese sismiche eseguite nel lotto 1 nella campagna indagini 2004.

Stesa sismica	Lotto	Lunghezza (m)
Т8	L1	500
T7	L2/L1	550

F INDAGINI ESEGUITE PER IL PROGETTO DEFINITIVO

Nell'ambito della campagna di indagine 2012-2013 sono state realizzate sul lotto 1 le seguenti indagini :

- n. 33 sondaggi geognostici in buona parte attrezzati con piezometri (17), tubi per prove
 Down Hole (7) e inclinometri (2);
- n. 76 prove penetrometriche standard SPT in foro di sondaggio;
- n. 12 prelievi di campioni indisturbati in foro di sondaggio;
- n. 37 prelievi di campioni lapidei da cassetta catalogatrice;
- n. 74 prelievi di campioni rimaneggiati da cassetta catalogatrice;
- n. 4 prove di permeabilità in foro;
- n. 1 prova pressiometrica in foro;
- n. 34 pozzetti geognostici;
- n. 7 prove di carico su piastra in pozzetto;
- n. 46 prelievi di campioni rimaneggiati in pozzetto geognostici;
- prove di laboratorio geotecnico e fisico su tutti i campioni indisturbati, rimaneggiati e litoidi prelevati;
- n. 22 stendimenti di sismica a rifrazione ;
- n. 15 indagini geofisiche tipo MASW.
- n. 7 indagini geofisiche in foro tipo DOWN HOLE
- n. 15 stazioni di rilevamento geomeccanico

- Elenco dei sondaggi eseguiti nell'ambito del lotto 1

Sondaggio	Lotto/Opera	Profondità (m)	Strumentazione: Piezometro (P) Inclinometro (I) Down Hole (DH)	Campioni Indisturbati	Campioni Rimaneggiati	Campioni Lapidei	SPT	Lugeon	Lefranc	Pressiometriche
S001	L1-Svincolo	20				3				
S002	L1-Trincea	20	Р			3				
S005	L1-Trincea	30	DH	1	5		1			
S006	L1-Linea	20		1	4		2			
S006bis	L1-Linea	20	Р	1	2		1			
S007	L1-Cavalcavia	20	Р		1	2	2			

Sondaggio	Lotto/Opera	Profondità (m)	Strumentazione: Piezometro (P) Inclinometro (I) Down Hole (DH)	Campioni Indisturbati	Campioni Rimaneggiati	Campioni Lapidei	SPT	Lugeon	Lefranc	Pressiometriche
Sone	Lottc	Profo	Strume Piezon Inclino Down I	Can Indis	Can Rima	Can La	0,	Γn	Le	Pressic
S008	L1-Detriti	20	I		2	2	3			
S009	L1-Detriti	30	I		2	1	2			
S010	L1-Detriti	20	Р			3	2			
S011	L1-Detriti	30	DH		3		4	1		
S012	L1-Rilevato	30	DH		3	1	2			
S013	L1-Rilevato	30	Р	1	2	1	1			
S014	L1-Viadotto 1	30	Р			5	2	1		
S015	L1-Viadotto 1	30	DH		4	1	5			
S017	L1-Trincea	25			5		2			
S017bis	L1	30		2	1	1	7			
S018	L1-Trincea	15	Р	1	5		3			
S021	L1-Muro di sostegno	20	Р		4		4			
S022	L1-Trincea	30	Р			4				
S024	L1-Rilevato-Muro di sostegno	20	Р		3		2			
S025	L1-Muro di sottoscarpa- Rilevato	20			1	2	3			
S029	L1-Rilevato- Trincea	30	Р		1	3	1		1	
S031	L1-Rilevato	20	Р	1	2		4			
S032	L1-Rilevato	20	Р		4		2			
S033	L1-Trincea	20		1	2		2			
S034	L1-Rilevato- Trincea	30	DH		2	1	2			
S035	L1-Muro di sostegno	15	Р		1	1	2			
S036	L1-Sottovia- Rilevato	30	DH	1	3		5		1	
S037	L1-Viabilità secondaria	20	Р		4		2			
S37bis	L1	7		2	1		2			
S039	L1-Trincea	15	Р		2	1	2			1
S041	L1-Trincea	30	DH		3	1	3			
S042	L1	20	Р		2	1	1			

- Elenco dei pozzetti eseguiti nell'ambito del lotto 1

Pozzetto	Lotto	Profondità (m)	Campioni rimaneggiati	Prove di carico su piastra
P001a	L1	3	2	1
P001b	L1	1	1	
P001c	L1	1,5	1	
P001	L1	0,7	1	
P004	L1	1	1	
P005	L1	3	2	1
P010	L1	3	1	1
P014	L1	2,2	2	
P015	L1	1,3	1	
P016	L1	1,1	2	
P017	L1	2	2	
P019	L1	0,8	1	
P021	L1	1,9	2	1
P023	L1	1	1	
P024	L1	0,6	1	
P025	L1	2	1	
P027	L1	2,5	2	
P029	L1	0,4	1	
P031	L1	0,7	1	
P032	L1	0,8	1	
P033	L1	2	2	
P038	L1	1,2	1	
P039	L1	2	2	1
P040	L1	3	1	
P042	L1	1,5	2	1
P043	L1	0,5	1	
P044	L1	1,5	1	
P050	L1	3	2	
P051	L1	2,2	1	
P052	L1	1,5		
P053	L1	1,8	1,8 1	
P054	L1	3	1	
P055	L1	0,8	1	
P055a	L1	3	2	1

- Elenco delle MASW eseguite e relativa categoria sismica secondo le NTC/08 e le Linee guida della Protezione Civile nell'ambito del lotto 1

IDENTIFICATIVO	Lotto	Vs30 (m/s)	Classe di Suolo NTC/08	Classe di Suolo Linee Guida P.C.
M001	L1	1047	А	А
M001bis	L1	974	А	А
M002	L1	437	В	В
M002bis	L1	743	В	В
M003	L1	524	S2	В
M004	L1	731	S2	В
M005	L1	682	В	В
M005bis	L1	704	S2	В
M006	L1	774	S2	В
M008	L1	885	А	A
M009	L1	461	В	В
M010	L1	603	S2	В
M011	L1	593	В	В
M012	L1	391	S2	B / C *(1)
M013	L1	720	В	В

- Elenco delle prove Down-Hole eseguite e relativa categoria sismica secondo le NTC/08 e le Linee guida della Protezione Civile nell'ambito del lotto 1

IDENTIFICATIVO	Lotto	Vs30 (m/s)	Classe di Suolo NTC/08	Classe di Suolo Linee Guida P.C.
S005	L1	718	S2	В
S011	L1	619	В	В
S012	L1	716	S2	S2 / B *(1)
S015	L1	752	S2	S2
S034	L1	818	Α	А
S036	L1	430	E	E / B *(2)
S041	L1	841	Α	А

- Elenco delle basi simiche eseguite nell'ambito del lotto 1

IDENTIFICATIVO	LUNGHEZZA SEZIONE (m)	LOTTO
BS_001	115	L1
BS_002	115	L1
BS_003	115	L1
BS_004	115	L1
BS_005	115	L1
BS_006	115	L1
BS_007	115	L1
BS_008	115	L1
BS_009	115	L1
BS_010	115	L1
BS_011	115	L1
BS_014	115	L1
BS_016	115	L1
BS_018	115	L1
BS_019	115	L1
BS_020	115	L1
BS_022	115	L1
BS_025	115	L1
BS_026	115	L1
BS_027	115	L1
BS_028	115	L1
BS_030	115	L1

- Elenco delle Stazioni geomeccaniche eseguite nell'ambito del lotto 1

Stazione (n)	Lotto
SG1	L1
SG2	L1
SG3	L1
SG4	L1
SG5	L1
SG6	L1
SG7	L1
SG8	L1
SG9	L1
SG38	L1
SG39	L1
SG40	L1
SG41	L1
SG42	L1
SG48	L1

G CARATTERIZZAZIONE TERRENI LOTTO

In questo tratto compreso fra le progressive 0+000 e 11+361 ricadono i terreni calcarenitici appartenenti alla formazione Ragusa così distinguibili:

formazione Mcm : Terreni prevalentemente calcarenitici

• formazione Mc : Alternanze di terreni calcarenitici e argille marnose

• formazione Ocm: Alternanze di calcisiltiti e marne e calcari marnosi

Nell'ambito di queste formazioni lapidee si sono riscontrati anche delle componenti sciolte.

Altri terreni sciolti, prevalentemente argilloso-limoso e ghiaioso-limosi ascrivibili a depositi palustri (P), sono stati rilevati nei sondaggi S017 e S017 bis.

Nella parte finale del lotto, in corrispondenza dei sondaggi S037 ed S037bis e dei pozzetti P053 e P054 si rinvengono i terreni sabbioso-limosi ed argilloso-limosi appartenenti ai depositi limnici (Qm).

Sono stati rilevati due conoidi di deiezione, costituiti da terreni ghiaioso-limosi in corrispondenza dei sondaggi S006 ed S006bis (il primo), e dei sondaggi da S031 ad S034 (il secondo).

Livelli di depositi pluvio-colluviali (ec) costituiti da sabbie argillose sono stati rilevati nelle vicinanze del sondaggio S002 mentre terreni detritici costituiti da sabbie argillose sono stati riscontrati in corrispondenza del pozzetto P005, e dei sondaggi S014, S022 e S037.

Terreni ghiaiosi ascrivibili a terrazzi fluviali (ar) sono stati rilevati in corrispondenza del sondaggio S013.

Nella tabella seguente sono riportate tutte le unità litotecniche individuate nel lotto in esame.

Tabella G.1 - Descrizione unità litotecniche

Sigla	Descrizione
Α	Argilla
AC	Argilla con livelli di calcarenite
AG	Argilla con ghiaia
A-G	Argilla e ghiaia
Ag-A	Argilla deb.ghiaiosa e argilla
AGS	Argilla ghiaiosa sabbiosa
AL	Argilla limosa
AL-AS	Argilla limosa e argilla sabbiosa
ALS	Argilla limosa sabbiosa
ALs	Argilla limosa deb sabbiosa

AM	Argilla marnosa
AM-AS	Argilla marnosa e argilla sabbiosa
AM-gs	Argilla marnosa e livelli di ghiaia sabbiosa
ASL	Argilla sabbiosa limosa
ATM	Argilla siltosa marnosa
С	Calcarenite
Caf	Calcarenite alterata e fratturata
Calt	Calcarenite molto alterata
Cam	Calcarenite con argilla marnosa
CA-MC	Calcarenite alterata e marna calcarea
СС	Calcare
CCb	Calcare bioclastico
CCf	Calcare fratturato
ССМ	Calcare marnoso
CF	Calcarenite fratturata
Cfa	Calcarenite fratturata alterata
Cf-gsa	Calcarenite fratturata e ghiaia sabbiosa argillosa
Cf-Ma	Calcarenite fratturata e marna argillosa
C-is	Calcarenite con intercarcalazioni sabbiose
C-AM	Calcarenite e argilla marnosa
CM	Calcarenite marnosa
CM-AM	Calcare marnosa e argilla marnosa
Ctf	Calcisiltiti frantumate
G	Ghiaia
G-Cf	Ghiaia e calcarenite fratturata
G-AM	Ghiaia e argilla marnosa
Gal-S	Ghiaia in matrice argillosa limosa e Sabbia
Gals-S	Ghiaia in matrice argillosa limosa sabbiosa e Sabbia
Gas	Ghiaia in matrice argillosa sabbiosa
GLS	Ghiaia limosa sabbiosa
Glsa	Ghiaia in matrice limosa sabbiosa argillosa
Gsa	Ghiaia in matrice sabbiosa argillosa
Gsl	Ghiaia in matrice sabbiosa limosa
Gsl-A	Ghiaia in matrice sabbiosa limosa e argilla
Gsla	Ghiaia in matrice sabbiosa limosa argillosa
LA	Limo argilloso
LA-Gs	Limo argilloso e ghiaia debolmente sabbiosa
LSa	Limo argilloso debolmente argilloso
M	Marna
MA	Marna argillosa
MCC	Marna calcarea
MA-AM	Marna argillosa e argilla marnosa
MA-MC	Marna argillosa e marna calcarea
M-MC	Marna e marna calcarea
MC-AM	Marna calcarea e argilla marnosa
SA	Sabbia argillosa
SG	Sabbia grossolana
SL	Sabbia limosa
Sla	Sabbia debolmente limosa argillosa
Tma	Siltite marnosa argillosa

Trm	Terreno rimaneggiato
TR	Terreno di riporto
TR-Gsa	Terreno di riporto e ghiaia sabbiosa argillosa
TV	Terreno vegetale

G.1 Terreni appartenenti alla formazione Mcm

Tali terreni sono stati riscontrati in tre tratti: il primo indagato dai sondaggi S001 ed S002 compreso fra le progressive 0+000 e 0+940; il secondo fra il pozzetto P005 ed il sondaggio S005, compreso fra le progressive 1+280 e 1+770 ed il terzo nella parte finale del lotto fra i sondaggio S036 e S042 compreso fra le progressive 9+410 e 11+170. Nel primo tratto (S001-S002) i terreni sono tutti lapidei. Nel secondo tratto sono ancora lapidei per come risulta dal pozzetto P005 e dal sondaggio S31P eseguito nella campagna preliminare. Nel terzo ed ultimo tratto si rilevano sia livelli lapidei che sciolti. Per questo tratto si sono acquisiti i risultati del sondaggio S20P eseguito nella campagna preliminare.

Nei terreni lapidei sono stati prelevati nel corso delle indagini ed esaminati i seguenti campioni:

- Primo tratto (S001-S002) :
 - S001 CL1 (8.30 ÷ 8.90)
 - S002 CL1 (3.00 ÷ 3.80)
- Terzo tratto (S036-S042) :
 - S039 CL1 (5.20 ÷ 5.50)
 - S041 CL1 (17.30 ÷ 17.60)
 - S042 CL1 (5.30 ÷ 5.70)

Nei terreni sciolti sono stati prelevati i seguenti campioni:

- Terzo tratto (S036-S042):
 - S036 CRC (28.75 ÷ 29.00)
 - S039 CRA (3.30 3.50)
 - S041 CRA (5.40 ÷ 5.90)
 - S041 CRB (23.20 ÷ 23.60)
 - S042 CRA (7.40 ÷ 7.90)

- S042 CRB (19.50 ÷ 20.00)

G.1.1 Analisi di laboratorio.

Terreni lapidei

Nei campioni prelevati nel primo tratto (S001 – S002) sono state eseguite sia prove fisiche, con la determinazione del peso dell'unità di volume e della porosità, sia prove meccaniche, con la determinazione dei parametri di resistenza tramite prove di compressione triassiale. Sono stati misurati i seguenti parametri:

• peso dell'unità di volume $\gamma = 20.8 \div 24.2 \text{ kN/mc}$

porosità p = 14.4 %

• coesione intercetta c = 2.89 MPa

angolo di resistenza al taglio φ = 56.4°

Un campione è stato sottoposto a prove di compressione uniassiale ed ha fornito una resistenza a rottura $\sigma_r = 2.74 \text{ MPa}$

Dalle prove di compressione triassiale sono stati determinati anche:

Modulo di elasticità secante
 E = 24.848 MPa

• Modulo di Poisson $\mu = 0.35$

Per i campioni prelevati nell'ultimo tratto (da S036 a S039) sono stati rilevate in laboratorio le seguenti caratteristiche :

peso dell'unità di volume
 γ = 23.7 ÷ 25.4 kN/mc

• porosità $p = (17.9 \div 17.6) \%$

coesione intercetta c = 4.10 MPa

angolo di resistenza al taglio φ = 43°

• pressione di rottura $\sigma_r = 18.20 \text{ MPa}$

Modulo di elasticità secante
 E = 15.571 ÷ 19.975 MPa

• Modulo di Poisson $\mu = 0.35$

I risultati delle prove di laboratorio meccaniche e di deformabilità sono riportati per singolo campione nella tabella seguente.

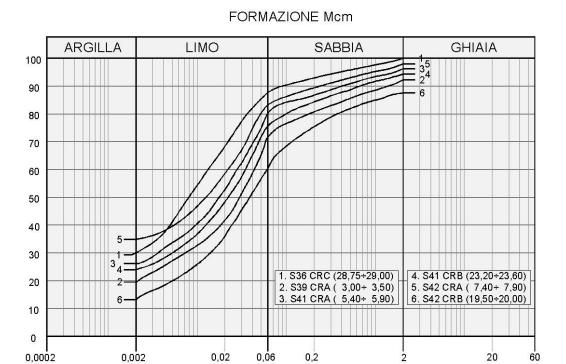
Tabella G.2 - Risultati prove di laboratorio campioni terreni lapidei formazione Mcm

								Tensione		
			Para	Parametri geotecnici da laboratorio						
			γ	γ c φ E K						
Campione	Profondità	Terreno	[kN/m³]	[MPa]	[°]	[MPa]	[cm/s]	[MPa]		
S001 CL1	8.30÷9.00	CF	20.8				-	2.74		
S002 CL1	3.00÷3.80	CF	24.8	2.89	56.4	24848	i			
S039 CL1	5.20÷5.50	CF	25.4			15571	-			
S041 CL1	17.30÷17.60	CF	23.7					18.2		
S042 CL1	5.30÷5.70	CF	23	4.1	43	19975	-			

Terreni sciolti

Per questi terreni sono stati prelevati soltanto campioni rimaneggiati. Dalle analisi eseguite si sono rilevati le seguenti caratteristiche fisiche:

contenuto naturale d'acqua
 Wn = (26.6 ÷ 35.1)%


• peso dell'unità di volume $\gamma = 16.3 \div 17.8 \text{ kN/mc}$

• indice di consistenza lc > 1

La granulometria risulta compresa nel fuso delimitato superiormente da limo con argilla sabbiosa ed inferiormente da limo con sabbia argillosa ghiaiosa per come si rileva dalla figura che segue.

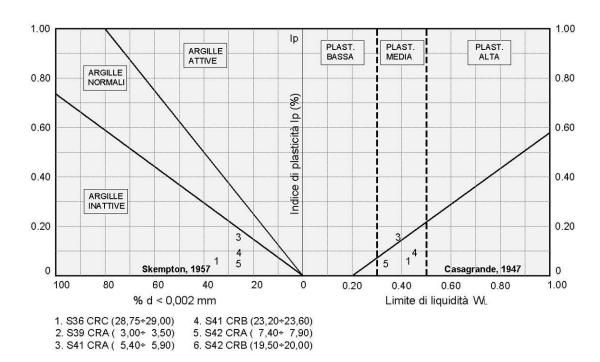


Figura G.1 - Granulometria terreni formazione Mcm

Dalle carte di attività e plasticità della figura seguente si rileva che trattasi di argille inattive e normali a plasticità media.

Figura G.2 - Attività e plasticità terreni formazioni Mcm

G.1.2 Indagini geotecniche in sito

Terreni lapidei

Alla fine delle perforazioni in alcuni sondaggi sono stati installati dei piezometri a tubo aperto. Le ultime letture eseguite dopo un arco di tempo da uno a due mesi dall'installazione hanno confermato l'assenza della falda nei sondaggi strumentati S002, S037, S039 ed S043.

Nei sondaggi S001 ed S002 è stato determinato l'indice di recupero percentuale RQD con valori variabili dal 10% al 90%. E' stato stimato un valore medio pari RQD = $60 \div 65\%$

Nelle stazioni geomeccaniche sono stati determinati i seguenti parametri :

• SG01 c = 260 KPa $\phi = 31^{\circ}$

• SG09 c = 340 KPa $\phi = 38.5^{\circ}$

Terreni sciolti

Nel corso delle perforazioni dei sondaggi sono state eseguite prove penetrometriche tipo SPT che hanno fornito i seguenti valori:

- S039:
 - N30 (5.00) = R
 - N30 (9.05) = R
- S041:
 - N30 (6.30) = R
 - N30 (12,4) = R
 - N30 (23,90) = R
- S042 :
 - N30 (18.00) = 34

Nel sondaggio S041 è stata eseguita alla profondità di 4,30 m una prova pressiometrica che ha fornito un valore del modulo di elasticità E = 101,10 MPa

Alla fine delle perforazioni in alcuni sondaggi sono stati installati dei piezometri a tubo aperto. Le ultime letture eseguite dopo un arco di tempo da uno a due mesi dall'installazione hanno confermato l'assenza della falda nei sondaggi S036 e S042.

G.1.3 Parametri geotecnici

Terreni lapidei

Adattando i risultati della stazione geomeccanica più vicina (SG01) ai terreni CF del sondaggio S001 tramite l'indice RQD = 65% e la resistenza a rottura σ_r = 2.74 MPa del campione S001 CL1, risulta un indice BMR = 43 per cui si hanno:

c = 215 KPa
$$\phi = 27^{\circ}$$

Partendo invece dai risultati delle prove di compressione triassiale del campione S002 CL1 sulla roccia intatta :

$$c_i = 2.89 \text{ MPa}$$
 $\phi = 56.4^{\circ}$

e seguendo il criterio illustrato al paragrafo G.3.3 ($c = c_i \cdot \alpha \cdot RQD$ con $\alpha = 1/8$), per si ha un valore più elevato della coesione, c = 234 kPa

L'angolo di resistenza al taglio dell'ammasso roccioso è certamente minore di quello della matrice lapidea (roccia intatta) in quanto è influenzato dalle discontinuità e dalle relative caratteristiche per cui cautelativamente per caratterizzare i terreni CF si adottano i parametri più bassi (rilevati dalle stazioni geomeccaniche)

c = 215 KPa
$$\phi = 27^{\circ}$$

Il modulo di elasticità viene determinato in funzione del modulo della roccia intatta E_i = 24.848 MPa e dell'indice RQD con la formula

$$E = E_i \cdot 0.0001 \cdot RQD^{1.94}$$

Risulta
$$E = 8.170 \text{ MPa}$$

Per quanto riguarda la caratterizzazione dei terreni lapidei CF del tratto finale (S036 – S042) si fa riferimento alla stazione geomeccanica SG09 (c = 340 KPa, ϕ = 38.5°) ed ai risultati delle prove di compressione triassiale del campione S042 CL1 (5.30 \div 5.70) sulla roccia intatta :

$$c_i = 4.10 \text{ MPa}$$
 $\phi = 43^{\circ}$

La coesione dei terreni viene stimata applicando un coefficiente α = 1/10 al valore di quella della roccia intatta e, in mancanza dell'indicazione dell'indice RQD, viene considerato un valore ancora più ridotto per cui si adotta

$$c = 130$$
 KPa

Partendo invece dai risultati della stazione geomeccanica di riferimento SG09 si otterrebbero valori più elevati della coesione ritenuti non consoni ai terreni indagati. Per l'angolo di resistenza a taglio viene assunto un valore di poco inferiore e pari a

$$\phi = 35^{\circ}$$

Il modulo di elasticità viene calcolato con la formula

$$E = E_i \left[0.5 \left(1 - \cos \frac{180 \text{ RMRa}}{100} \right) \right]$$

Essendo $E_i = 15.571$ MPa e RMRa = 37 si ottiene E = 4785 MPa. Cautelativamente viene adottata un valore ridotto di circa un terzo

$$E = 4780 \text{ MPa}$$

Sulla base dei risultati delle indagini in sito ed in laboratorio i parametri geotecnici sono riassunti nella tabella seguente.

Tabella G.3 - Parametri geotecnici terreni lapidei formazione Mcm

			Parametri geotecnici terreni lapidei formazione Mcm							
Sigla	Sondaggio	Quote	γ	С	φ	E	К			
			[kN/m³]	[kPa]	[°]	[MPa]	[cm/s]			
CF	S001	0.40÷20.00	24.5	215	27	8170				
CF	S002	0.60÷20.00	24.5	215	27	8170				
CF	S041	13.30÷22.50	23.7	130	35	4780				
CF	S042	0.30÷6.00	23.7	130	35	4780				
CF	S042	9.00÷18.20	23.7	130	35	4780				

Terreni sciolti

Dai risultati delle prove SPT si sono ottenuti valori a rifiuto, $N_{30} = R$, eccetto $N_{30} = 34$ nel sondaggio S041. Per la determinazione dell'angolo di resistenza a taglio dei terreni pertanto non risulta utilizzabile il diagramma di De Mello della figura G.2 (RGG) che mette in relazione il valore di N30 con ϕ '. Dal diagramma della Figura G.1 i terreni C-is, Calt e Tma (S039, S041, S042) sono classificabili come limi argillosi più o meno sabbiosi per cui l'angolo di resistenza a taglio, in termini di tensioni efficaci, viene valutato in funzione delle caratteristiche fisiche (consistenza, granulometria) e delle informazioni complementari acquisibili dalle colonne stratigrafiche (valori di RP, descrizione litologica) e dalla documentazione fotografica. Pertanto si attribuisce

$$\phi' = 32^{\circ}$$

Per quanto riguarda il termine coesivo della resistenza a taglio, i campioni hanno una componente argillosa media del 25% per cui anche in relazione alle condizioni del carotaggio si ritiene di attribuire un valore alla coesione intercetta pari a:

$$c' = 5 \text{ KPa}$$

In mancanza di prove ad espansione laterale libera, il valore della coesione non drenata viene stimato in base alle correlazioni empiriche statistiche di cui al paragrafo G.2.2.2 (RGG), $c_u = (5 \div 8) \cdot c'$ per cui risulta pari a

$$c_u = 30 \text{ kPa}$$

Appartiene allo stessa formazione (Mcm) un livello di marne argillose (terreni MA-AM) riscontrato alla fine del sondaggio S036. Trattasi di terreni descritti nella colonna stratigrafica molto consistenti e classificati secondo il diagramma di Figura G.1 come limi con argilla sabbiosa. La consistenza di questi terreni trova riscontro nei risultati della prova SPT (N₃₀ = R) e nella misura (qualitativa) della resistenza eseguita col penetrometro tascabile nelle carote di cui alle colonne stratigrafiche (RP > 12). Altresì nello stesso sondaggio ci sono dei livelli di terreni similari (argille marnose), appartenenti alla formazione Q per i quali sono state eseguite prove meccaniche di laboratorio. Procedendo per comparazione in base all'andamento della resistenza RP si ritiene di attribuire i seguenti valori ai parametri di resistenza al taglio

$$c' = 30 \text{ KPa}$$
 $\phi' = 25^{\circ}$

La coesione non drenata, viene assunta in base al criterio richiamato in precedenza pari a

$$c_{ij} = 180 \text{ kPa}$$

Dai risultati della campagna preliminare sono stati caratterizzati i terreni SG (S020P da 12.50 m a 15.50 m) ed i terreni AM (S020P da 15.00 m a 30.00 m).

Ai terreni SG (sabbie grossolane) in base alle poche informazioni disponibili (solo descrizione litologica senza alcuna granulometria) si attribuiscono :

$$c' = 0 \text{ KPa}$$
 $\phi' = 35^{\circ}$

Ai terreni AM (argille marnose) in base ai risultati delle relative prove di taglio consolidate drenate si attribuiscono :

$$c' = 20 \text{ KPa}$$
 $\phi' = 28^{\circ}$

Le caratteristiche di deformabilità sono state rilevate direttamente dalle prove pressiometriche per i terreni C-is del sondaggio S039 (E = 101MPa) e per gli altri terreni in funzione dei risultati delle prove SPT con la formula di Schultze e Mezembach

$$E = s_1 \cdot N_{30c} + s_2$$

dove $N_{30c} = C_N \cdot N_{30}$ è il valore di N_{30} corretto tramite il coefficiente $C_N = 1/(\sigma'_v)^n$ determinato in funzione della pressione litostatica σ'_v dal grafico della figura G.4 (RGG).

Nei terreni MA-AM (S036) e Calt e Tma (S041) i risultati delle prove SPT hanno fornito in genere valori a rifiuto ($N_{30} = R$) con avanzamento parziali bassi rispetto alla penetrazione standard (15 cm + 15 cm), per cui a questi si è attribuito un valore E = 101 MPa in analogia a terrni C-is del sondaggio S039. Per gli altri terreno sono stati determinati i seguenti moduli :

• E = 11,60 MPa per i terreni Calt (S042)

• E = 30.00 MPa per i terreni C-MA (S037)

• E = 10.9 MPa per i terreni SG (S020P)

• E = 7 MPa per il terreni AM (S020P)

Nei terreni AM del sondaggio S20P è stata eseguita una prova di compressione edometrica che ha fornito, per la pressione verticale media dello strato, un valore del relativo modulo :

$$E_d = 14.50 \text{ MPa}$$

Per quanto riguarda la permeabilità l'unico riferimento è alla prova edometrica dei campioni del sondaggio S020P della campagna preliminare dalla quale si ha un valore del coefficiente di permeabilità

$$K = 8.1 \cdot 10^{-9}$$
 [cm/s]

Dalla stessa prova risulta un coefficiente di consolidazione $Cv = 0.000245 \text{ cm}^2/\text{s}$ ed un indice di compressibilità Cc non determinato. L'indice di sovraconsolidazione calcolato secondo il metodo di Casagrande risulta $OCR \approx 1$. Tale valore, per le considerazioni formulate al paragrafo G.2.3.2 (RGG), è da considerare soltanto una stima del valore reale.

Sulla base dei risultati delle indagini in sito ed in laboratorio i parametri geotecnici sono riassunti nella tabella seguente.

Tabella G.4 Caratterizzazione terreni sciolti formazione Mcm

				Parametri geotecnici terreni sciolti formazione Mcm								
Sigla	Sond.	Quote	γ	c'	φ'	C _u	E	Ed	К	Сс	Cv	OCR
			[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[MPa]	[cm/s]	[-]	[cm ² /s]	[-]
MA-AM	S036	25.00÷30.00	19	30	25	180	101					
C-is	S039	1.00÷15.00	17.9	5	32	30	101					
Calt	S041	0.40÷13.30	17.9	5	32	30	101					
Tma	S041	22.50÷30.00	17.20	5	32	30	30					
Calt	S042	6.00÷9.00	16.3	5	32	30	11.6					
Calt	S042	18.20÷19.00	16.3	5	32	30	11.6					
SG	S020P	12.50÷15.00	19	0	35	30	10.9					
AM	S020P	15.00÷25.00	19.6	20	28	100	7	14.5	2.8x10 ⁻⁹	ND	0.000420	≈ 1

G.2 Terreni appartenenti alla formazione Mc

Tali terreni sono stati riscontrati in quattro tratti: il primo in corrispondenza della stazione geomeccanica SG01 compreso fra le progressive 0+940 e 1+280; il secondo fra i sondaggi S005 e S007 compreso fra le progressive 1+770 e 3+050; il terzo fra i sondaggi S013 e S015 compreso fra le progressive 4+020 e 5+090; e l'ultimo fra i sondaggi S021 (escluso) ed S022 compreso fra le progressive 6+110 e 6+750. Nel primo tratto SG01 i terreni sono tutti lapidei in quanto trattasi di calcareniti e calcareniti marnose. Nel secondo tratto i terreni sono lapidei e sciolti in S005, solamente sciolti in S006 e solamente lapidei S007. Nel terzo tratto sono lapidei nel sondaggio S014 e sciolti in S013 e S015. Nel quarto ed ultimo tratto si rilevano sia livelli lapidei che sciolti (solo superficialmente).

Nei terreni lapidei sono stati prelevati nel corso delle indagini ed esaminati i seguenti campioni:

- Secondo tratto (S005-S007):
 - S007 CL1 (7,70 ÷ 8.20)
 - S007 CL2 (19.00 ÷19.35)
- Terzo tratto (S013-S015):
 - S013 CL1 (17.80 ÷ 18.00)
 - S014 CL1 (1.60 ÷ 2.00)
 - S015 CL1 (8.00 ÷ 8.40)

Nei terreni sciolti sono stati prelevati i seguenti campioni:

• Secondo tratto (S005 - S007):

- S005 CI1 (13.00 ÷ 13.50)
- S005 CRB (5.30 ÷ 5.50)
- S005 SC1 (3.50 ÷ 4.10)
- S005 SC2 (9.30 ÷ 10.00)
- Terzo tratto (S013 S015)
 - S013 CRA (8.00 ÷ 8.50)
- Quarto tratto (S021 S022)
 - S021 CRB (8.60 ÷ 9.00)

G.2.1 Analisi di laboratorio.

Terreni lapidei

Nei campioni prelevati nel secondo tratto (S005 – S007) sono state eseguite sia prove fisiche, con la determinazione del peso dell'unità di volume e della porosità, sia prove meccaniche, con la determinazione dei parametri di resistenza tramite prove di compressione triassiale. Sono stati misurati i seguenti parametri:

• peso dell'unità di volume $\gamma = 25.9 \text{ kN/mc}$

• porosità $p = 4 \div 4.9\%$

• coesione intercetta c = 22.40 MPa

angolo di resistenza al taglio φ = 38.7°

Un campione è stato sottoposto a prove di compressione uniassiale ed ha fornito una resistenza a rottura $\sigma_r = 14.26 \text{ MPa}$

Dalle prove di compressione triassiale sono stati determinati anche:

Modulo di elasticità secante
 E = 28.207 MPa

• Modulo di Poisson $\mu = 0.32$

Per i campioni prelevati nel terzo tratto da (da S013 a S015) sono stati rilevate in laboratorio le seguenti caratteristiche :

• peso dell'unità di volume $\gamma = 24.9 \div 25.3 \text{ kN/mc}$

porosità p = ---

• coesione intercetta c = 10.0 MPa

angolo di resistenza al taglio φ = 35°

• pressione di rottura $\sigma_r = 37.82 \text{ MPa}$

Modulo di elasticità secante
 E = 19.737 MPa

• Modulo di Poisson $\mu = 0.31$

Per i campioni prelevati nel quarto tratto (da S021 a S022) sono stati rilevate in laboratorio le seguenti caratteristiche :

• peso dell'unità di volume $\gamma = 22.7 \div 23.0 \text{ kN/mc}$

• porosità $p = 14.20 \div 18.5 \%$

coesione intercetta
 c = 9.72 ÷ 10.84 MPa

• resistenza a rottura $\sigma_r = 37.82 \text{ MPa}$

indice di rottura puntuale
 I_{s(50)} = 0.22 MPa

Modulo di elasticità secante
 E = 10.844 ÷ 21.499 MPa

• Modulo di Poisson $\mu = 0.31$

Nella tabella che segue sono riportati per singolo campione i risultati delle prove di laboratorio. I campioni litoidi S013 CL1 e S015 CL1 sono afferenti ai terreni cf-gsa del sondaggio S013 ed ai terreni S015 che sono stati classificati come sciolti e quindi attribuiti alla componente sciolta della formazione per come si rileva dalla Tabella G.7

Tabella G.5 - Risultati prove di laboratorio campioni terreni lapidei formazione Mc

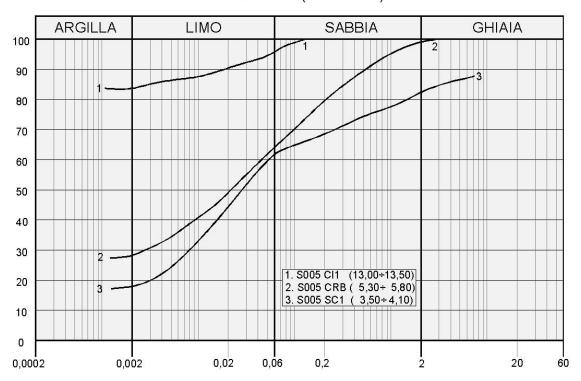
Commissions	5 (11)		Par	ametri ged	Tensione a rottura	PLT					
Campione Profondit		Terreno	γ	С	φ	E	K	σr	İs (50)		
			[kN/m ³]	[MPa]	[°]	[MPa]	[cm/s]	[MPa]	[MPa]		
S007 CL1	7.70÷8.20	Caf	25.9				-	14.26			
S007 CL2	19.00÷19.35	Caf	25.9	22.4	38.7	28207	-				
S013 CL1 (*)	17.80÷18.00	Cf-gsa	24.9				-	37.82			
S014 CL1	1.60÷2.00	Cf	24.5					46.4			
S015 CL1(*)	8.00÷-8.40	Cfa	25.3	10	35	19737					
S022 CL1	3.75÷4.30	Cf	22.7	9.72	36.9	10844					
S022 CL2	16.00÷17.00	Cf							0.22		
S022 CL4	29.40÷29.84	Cf	23	17.84	34.70	21499	-				
(*) Campione	lapideo affere	(*) Campione lapideo afferente terreni attribuiti alla componente sciolta della formazione									

Terreni sciolti

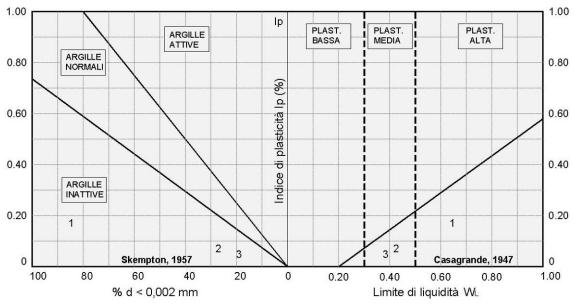
Nel secondo tratto (S005-S007) sono stati prelevati campioni indisturbati e rimaneggiati. Dalle analisi eseguite si sono rilevati le seguenti caratteristiche fisiche:

• contenuto naturale d'acqua Wn = (21.1 ÷ 45.9)%

• peso dell'unità di volume $\gamma = 17.0 \div 18.1 \text{ kN/mc}$


• indice di consistenza lc > 1

La granulometria risulta compresa nel fuso delimitato superiormente da argilla debolmente limosa debolmente ghiaiosa ed inferiormente da limo con sabbia argilloso ghiaioso per come si rileva dalla figura che segue.


Figura G.3 - Granulometria terreni formazioni Mc (Tratto S005-S007)

FORMAZIONE Mc (S005-S007)

Dalle carte di attività e plasticità (Figura G.4) si rileva che trattasi di argille inattive e normali a plasticità media ed alta.

Figura G.4 - Attività e plasticità terreni formazioni Mc (Tratto S005-S007)

- 1. S005 CI1 (13,00÷13,50)
- 2. S005 CRB (5,30÷ 5,80)
- 3. S005 SC1 (3,50÷ 4,10)

Dalle prove di taglio diretto (TD) consolidate drenate eseguite sul campione S005 CI1 si sono ricavati i seguenti parametri di resistenza in termini di tensioni efficaci :

$$c' = 13.1 \text{ KPa}$$
 $\phi' = 17.1^{\circ}$

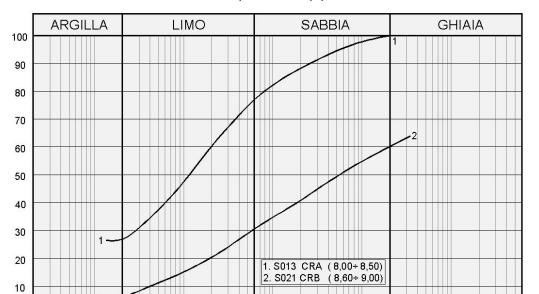
Dalle prove di compressione ad espansione laterale libera (ELL) si sono ricavati i seguenti parametri di resistenza in termini di tensioni totali :

$$c_u = 77 \text{ kPa}$$

Nel terzo tratto (S013-S017) è stato esaminato soltanto un campione rimaneggiato. Dalle analisi eseguite si sono rilevati le seguenti caratteristiche fisiche:

• peso dell'unità di volume $\gamma = 18.9 \text{ kN/mc}$

Dalla classificazione granulometrica di Figura G.3 si rileva che trattasi di limo con argilla sabbioso.


Nel quarto tratto (S021-S022) è stato esaminato soltanto un campione rimaneggiato. Dalle analisi eseguite si sono rilevati le seguenti caratteristiche fisiche:

• peso dell'unità di volume $\gamma = 21.4 \text{ kN/mc}$

Dalla classificazione granulometrica (Figura G.5) si rileva che trattasi di ghiaia con sabbia con limo debolmente argillosa.

Figura G.5 - Granulometria terreni formazioni Mc (Tratti S013-S017; S021-S022)

0,02

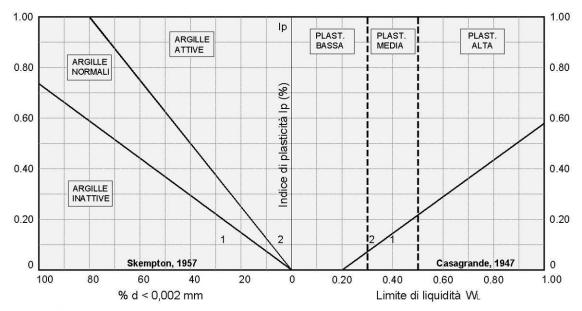
0,2

20

60

0.06

0.002


0

0.0002

Dalle carte di attività e plasticità (Figura G.6) si rileva che trattasi di argille attive e normali a plasticità bassa.

Figura G.6 - Attività e plasticità terreni formazioni Mc (Tratti S013-S017; S021-S022)

^{1.} S013 CRA (8,00÷ 8,50) 2. S021 CRB (8,60÷ 9,00)

G.2.2 Indagini geotecniche in sito

Terreni lapidei

Alla fine delle perforazioni in alcuni sondaggi sono stati installati dei piezometri a tubo aperto. Le ultime letture eseguite dopo un arco di tempo da uno a due mesi dall'installazione hanno confermato l'assenza della falda nei sondaggi S007 e S022 mentre nei seguenti sondaggi sono stati rilevati i livelli misurati dal piano di campagna:

• S013: - 27.42 m. (08/03/2013)

• S014: - 24.20 m. (04/03/2013)

• S021: - 5.58 m. (08/03/2013)

Nei sondaggi S007, S014, S015 e S022 è stato determinato l'indice di recupero percentuale RQD con valori variabili dal 10% al 100%. E' stato stimato un valore medio pari RQD = $25 \div 35\%$

Nelle stazioni geomeccaniche sono stati determinati i seguenti parametri :

•	SG02	c = 260 KPa	$\phi = 31^{\circ}$
---	------	-------------	---------------------

• SG04
$$c = 260 \text{ KPa}$$
 $\phi = 31^{\circ}$

• SG42
$$c = 230 \text{ KPa}$$
 $\phi = 28^{\circ}$

Terreni sciolti

Nel corso delle perforazioni dei sondaggi sono state eseguite prove penetrometriche tipo SPT che hanno fornito i seguenti valori:

• S005:

-
$$N_{30}$$
 (11.80) = 21

• S007:

-
$$N_{30}$$
 (3.00) = R

-
$$N_{30}$$
 (7.00) = R

• S014:

$$- N_{30} (4.00) = R$$

-
$$N_{30}$$
 (7.50) = R

• S015:

-
$$N_{30}$$
 (5.00) = R

-
$$N_{30}$$
 (9.00) = 40

• S021:

$$- N_{30} (6.00) = 57$$

-
$$N_{30}$$
 (12.00) = R

• S041:

-
$$N_{30}$$
 (6.30) = R

-
$$N_{30}$$
 (12,4) = R

-
$$N_{30}$$
 (23,90) = R

• S041:

-
$$N_{30}$$
 (6.30) = R

-
$$N_{30}$$
 (12,4) = R

$$- N_{30} (23,90) = R$$

G.2.3 Parametri geotecnici

Terreni lapidei

Per il secondo tratto (S005-S007) adattando i risultati della stazione geomeccanica SG02 al sondaggio S007, tramite l'indice RQD = 35%, ed alla pressione di rottura σ_r = 14.26 MPa del campione S007 CL1, risulta un indice BMR = 37 per cui si hanno:

c = 185 KPa
$$\phi$$
 = 23.50°

Partendo invece dai risultati delle prove di compressione triassiale incompleta (due provini) del campione S007 CL1 sulla roccia intatta :

$$c = 22.40 \text{ MPa}$$
 $\phi = 38.70^{\circ}$

e seguendo il criterio illustrato al paragrafo G.3.3 (RGG), (c = $c_i \cdot \alpha \cdot RQD$ con $\alpha = 1/10$), si ha un valore più elevato della coesione, c = 627 kPa,

L'angolo di resistenza al taglio dell'ammasso roccioso è certamente minore di quello della matrice lapidea (roccia intatta) in quanto è influenzato dalle discontinuità e dalle relative

caratteristiche per cui cautelativamente (per la parzialità della prova di laboratorio), per caratterizzare i terreni CF si sceglie un valore mediato per l'angolo di resistenza al taglio. Per la coesione si sceglie invece un valore più vicino a quello determinato con i risultati della stazione geomeccanica. Pertanto si adottano :

c = 215 KPa
$$\phi = 27^{\circ}$$

Partendo dai risultati delle prove di compressione triassiale incompleta (due provini) Il modulo di elasticità viene determinato in funzione del modulo della roccia intatta $E_i = 28.207$ MPa e dell'indice RQD e dell'indice RMRa con le formule

$$E = E_i \cdot 0.0001 \cdot RQD^{1.94}$$

$$E = E_i \left[0.5 \left(1 - \cos \frac{180 \text{ RMRa}}{100} \right) \right]$$

Mediando i risultati ottenuti con le due formule (E = 2791 MPa con la prima e E = 8502 MPa con la seconda) si ha E = 5.730 MPa

Per il terzo tratto (S013-S015) adattando i risultati della stazione geomeccanica SG04 al sondaggio S014, tramite l'indice RQD = 32%, ed alla pressione di rottura σ_r = 37.82 MPa del campione S013 CL1, risulta un indice BMR = 40 per cui si hanno:

c = 200 KPa
$$\phi = 25^{\circ}$$

Partendo invece dai risultati delle prove di compressione triassiale del campione S015 CL1 sulla roccia intatta :

$$c = 10 \text{ MPa}$$
 $\phi = 35^{\circ}$

e seguendo il criterio illustrato al paragrafo G.3.3 (RGG) ($c = c_i \cdot \alpha \cdot RQD$ con $\alpha = 1/10$), per si ha un valore più elevato della coesione, c = 300 kPa,

L'angolo di resistenza al taglio dell'ammasso roccioso è certamente minore di quello della matrice lapidea (roccia intatta) in quanto è influenzato dalle discontinuità e dalle relative caratteristiche per cui, per caratterizzare i terreni Cf del sondaggio S014 si sceglie un valore mediato per l'angolo di resistenza a taglio e per la coesione si sceglie il valore più basso.

Pertanto si adottano:

$$c = 200 \text{ KPa}$$
 $\phi = 30^{\circ}$

Il modulo di elasticità viene determinato in funzione del modulo della roccia intatta E_i = 19973 Mpa del campione S015 CL1 e dell'indice RQD = 32 e dell'indice RMRa = 25 con le formule

$$E = E_i \cdot 0.0001 \cdot RQD^{1.94}$$

$$E = E_i \quad \left[0.5 \left(1 - \cos \frac{180 \quad RMRa}{100} \right) \right]$$

Mediando i risultati ottenuti con le due formule (E = 1661 MPa con la prima e E = 2920 MPa con la seconda) si ha E = 2290 MPa

Per quanto riguarda la caratterizzazione dei terreni lapidei del tratto finale (S021 – S022) si fa riferimento alla stazione geomeccanica SG04 ed ai risultati delle prove di compressione uniassiale ed triassiale.

Adattando i risultati della stazione geomeccanica al sondaggio S022 , tramite l'indice RQD = 25%, ed alla pressione di rottura σ_r = 3.85 MPa del campione S022 CL3 (calcolata come prodotto di $I_{S(50)}$ = 0.22 MPa per l'indice C = 17.5 ricavato dalle tabelle ISRM) risulta un indice BMR = 35 per cui si hanno: c = 175 KPa $\phi = 22.50^{\circ}$

Partendo invece dai risultati delle prove di compressione triassiale dei campioni S022 CL1 e CL2:

$$c = 9.72 \text{ MPa}$$
 $\phi = 36.9^{\circ}$

е

$$c = 17.84 \text{ MPa}$$
 $\phi = 34.70^{\circ}$

e seguendo il criterio illustrato al paragrafo G.3.3 (RGG) (c = $c_i \cdot \alpha \cdot RQD$ con $\alpha = 1/10$), per si ha un valore più elevati della coesione, c = 194 - 356 kPa,

L'angolo di resistenza al taglio dell'ammasso roccioso è certamente minore di quello della matrice lapidea (roccia intatta) in quanto è influenzato dalle discontinuità e dalle relative caratteristiche per cui, per caratterizzare i terreni Cf del sondaggio S022si sceglie un valore mediato per l'angolo di resistenza a taglio e per la coesione si sceglie il valore più basso. Pertanto si adottano :

c = 175 KPa
$$\phi = 30^{\circ}$$

Il modulo di elasticità viene determinato in funzione del modulo della roccia intatta E_i e dell'indice RMRa con la formula

$$E = E_i = \begin{bmatrix} 0.5 & (1-\cos\frac{180 & RMRa}{100}) \end{bmatrix}$$

Per un modulo medio della roccia intatta $E_i \sim 15.000$ MPa risulta

Sulla base dei risultati delle indagini in sito ed in laboratorio i parametri geotecnici sono riassunti nella tabelle che segue.

Tabella G.6 - Caratterizzazione terreni lapidei formazione Mc

			Parametri geotecnici terreni lapidei formazione Mc							
Sigla	Sondaggio	Quote	γ	С	φ	E	К			
			[kN/m ³]	[kPa]	[°]	[MPa]	[cm/s]			
Cf	S005	4.40÷10.00	25.9	185	31	5730				
Cf	S005	16.50÷25.00	25.9	185	31	5730				
Caf	S006bis	17.80÷19.50	25.9	185	31	5730				
Cf	S007	1.60÷20.00	25.9	185	31	5730				
Cf	S014	1.60÷20.00	23	200	30	2290				
Cf	S022	1.60÷30.00	23	175	30	1430				

Terreni sciolti

Dai risultati delle prove di taglio diretto eseguite sul campione S005 CI1, i valori ottenuti risultano pari a :

c' = 13.1 kPa
$$\varphi' = 17.1^{\circ}$$

Dai risultati delle prove di compressione ad espansione laterale libera, i valori ottenuti, in termini di resistenza al taglio non drenata, risultano pari a:

$$c_u = 77 \text{ kPa}$$

Con tali parametri si caratterizzano i terreni AM del sondaggio S005 ed i terreni MA del sondaggio S006bis.

Ai terreni CF del sondaggio S013 si attribuiscono per comparazione con litotipi similari i seguenti parametri :

c' = 20 kPa
$$\phi' = 31^{\circ}$$

Ai terreni Cfa del sondaggio S015 in base alle informazioni disponibili (Descrizione litologica e documentazione fotografica) ed in relazione ai valori delle prove SPT ($N_{30} = 40 - R$) secondo il diagramma di De Mello della figura G.2 si possono attribuire i seguenti parametri:

$$c' = 0$$
 $\varphi' = 36^{\circ}$

I terreni Cam del sondaggio S021 dal diagramma della Figura G.5 (curva n.2) sono classificabili come ghiaia con sabbia con limo debolmente argillosa per cui in relazione ai valori delle prove SPT ($N_{30} = 57 - R$) secondo il diagramma di De Mello della figura G.2 (RGG) si possono attribuire i seguenti parametri:

$$c' = 0$$
 $\phi' = 40^{\circ}$

Ai terreni Calt del sondaggio S022, in base alle informazioni disponibili (Descrizione litologica e documentazione fotografica), si attribuiscono per comparazione con litotipi similari i seguenti parametri:

c' = 0 kPa
$$\phi' = 34^{\circ}$$

Le caratteristiche di deformabilità sono state ricavate in funzione dei risultati delle prove SPT con la formula di Schultze e Mezembach

$$E = s_1 \cdot N_{30c} + s_2$$

dove N_{30c} è il valore corretto tramite il coefficiente $C_N = N_{30c}/N_{30}$ determinato dal grafico della figura G.4 (RGG) in funzione della pressione litostatica σ'_{v}

I risultati delle prove SPT hanno fornito in genere valori a rifiuto ($N_{30} = R$) con avanzamenti parziali bassi per cui i moduli in questo caso sono stati determinati in rapporto all'avanzamento percentuale.

In definitiva si sono attribuiti i seguenti moduli:

• E = 12.6 MPa ai terreni AM (S005); MA (S006bis);

• E = 23.4 MPa ai terreni Cfa (S015)

• E = 50,0 MPa ai terreni CF (S013)

• E = 54,0 MPa ai terreni Cam (S021)

E = 101 MPa ai terreni Calt (S005).

Nei terreni AM del sondaggio S005 (Campione CI1 13.00 ÷ 13.50) è stata eseguita una prova di compressione edometrica che ha fornito, per la pressione verticale media dello strato, un valore del relativo modulo :

$$E_d = 10 MPa$$

Dalla stessa prova si ricava un valore del coefficiente di permeabilità pari a

$$K = 2.3 \cdot 10^{-9}$$
 [cm/s]

Dalla stessa prova risultano un coefficiente di consolidazione $Cv = 0.000245 \text{ cm}^2/\text{s}$ ed un indice di compressibilità Cc = 0.081. Non è stato possibile stimare l'indice di sovraconsolidazione OCR con il metodo di Casagrande per insufficienza dei risultati del diagramma pressione-indice dei vuoti.

Sulla base dei risultati delle indagini in sito ed in laboratorio i parametri geotecnici sono riassunti nella tabella che segue.

Tabella G.7 - Caratterizzazione terreni sciolti formazione Mc

				Pa	aram	etri ge	otecnici	terreni	sciolti forn	nazione	Мс	
Sigla	Sond.	Quote	γ	c'	φ'	c _u	E	Ed	K	Сс	Cv	OCR
			[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[MPa]	[cm/s]	[-]	[cm ² /s]	[-]
AM	S005	2.00÷4.40	17	13	17	77	12.6					
AM	S005	10.00÷19.50	17	13	17	77	12.6	10	2.3x 10 ⁻⁹	0.081	0.000245	ND
Calt	S005	25.00÷30.00	17.9	5	32	30	101					
MA	S006bis	2.00÷4.40	17	13	17	77	12.6					
CF	S013	7.00÷30.00	22	20	31		50					
Cfa	S015	1.40÷12.50	19	0	36		23.4					
Cam	S021	6.00÷20.00	21.4	0	40		54					
Calt	S022	0.50÷1.60	18	0	34		-					

G.3 Terreni appartenenti alla formazione Ocm

Tali terreni sono stati riscontrati in tre tratti: il primo fra i sondaggi S008 e S012 compreso fra le progressive 3+040 e 4+020; il secondo fra i sondaggi S014 e S018 compreso fra le progressive 4+490 e 5+290 e il terzo fra i sondaggi S024 e S035 compreso fra le progressive 7+150 e 9+340. Nel primo tratto i terreni sono prevalentemente lapidei mentre negli altri due tratti sono sia sciolti che lapidei. Nei terreni lapidei sono stati prelevati nel corso delle indagini ed esaminati i seguenti campioni:

- Primo tratto (S008-S012) :
 - S008 CL1 (3.60 ÷ 4.00)
 - S009 CL1 (13.40 ÷13.70)
 - S010 CL1 (2.00 ÷ 2.40)
 - S010 CL2 (5.20 ÷ 6.00)
- Secondo tratto (S014-S021):
 - S014 CL3 (18.50 ÷ 18.80)
 - S014 CL4 (20.60 ÷ 21.00)
 - S014 CL5 (29.00 ÷ 29.30)
- Terzo tratto (S024-S035):
 - S025 CL1 (11.70 ÷ 12.70)
 - S025 CL2 (18.00 ÷ 20.00)

- S029 CL1 (2.45 ÷ 3.00)
- S029 CL2 (7.20 ÷ 7.50)
- S034 CL1 (12.60 ÷ 13.00)
- S035 CL1 (3.65 ÷ 4.00)

Nei terreni sciolti sono stati prelevati i seguenti campioni:

- Primo tratto (S008 S012):
 - S009 CRA (18.60 ÷ 19.00)
 - S009 CRB (24.60 ÷ 25.00)
 - S011 CRA (4.60 ÷ 4.90)
 - S011 CRB (17.00 ÷ 17.30)
 - S011 CRC (22.00 ÷ 22.30)
 - S012 CRA (2.00 ÷ 2.30)
 - S012 CRB (11.30 ÷ 11.50)
- Secondo tratto (S014 S018)
 - S015 CRA (13.00 ÷ 13.30)
 - S015 CRB (16.50 ÷ 16.90)
 - S015 CRC (20.50 ÷ 20.90)
 - S017 CRC (18.40 ÷ 18.90)
 - S017 SC1 (16.20 ÷ 20.00)
 - S017 SC2 (24.00 ÷ 24.30)
 - S017bis CL1 (11.36 ÷ 11.78)
 - S018 CI1 (9.00 ÷ 9.50)
 - S018 SC2 (14.40 ÷ 14.50)
- Terzo tratto (S024 S035)
 - S024 CRA (2.10 ÷ 2.70)
 - S024 CRB (9.50 ÷ 10.00)

- S024 CRC (13.50 ÷ 14.00)

- S025 CRA (6.60 ÷ 5.70)

- S029 CRA (17.55 ÷ 18.00)

- S034 CRA (18.30 ÷ 18.80)

- S035 CRA (14.30 ÷ 14.70)

G.3.1 Analisi di laboratorio.

Terreni lapidei

Nei campioni prelevati nel primo tratto (S008 – S012) sono state eseguite sia prove fisiche, con la determinazione del peso dell'unità di volume e della porosità, sia prove meccaniche, con la determinazione dei parametri di resistenza tramite prove di compressione triassiale. Sono stati misurati i seguenti parametri:

• peso dell'unità di volume $\gamma = 25.2 \div 25.4 \text{ kN/mc}$

coesione intercetta c = 15.7 ÷ 20.6 MPa

• angolo di resistenza al taglio $\phi = 23.9 \div 41.1^{\circ}$

Due campioni sono stati sottoposti a prove di compressione uniassiale ed hanno fornito valori di pressione di rottura $\sigma_r = 12.88 \div 20.10 \text{ MPa}$

Dalle prove di compressione triassiale sono stati determinati anche:

Modulo di elasticità secante
 E = 15.145 ÷ 23001 MPa

• Modulo di Poisson $\mu = 0.32$

Per i campioni prelevati nel secondo terzo tratto da (da S014 a S021) sono stati rilevate in laboratorio le seguenti caratteristiche :

• peso dell'unità di volume $\gamma = 16.8 \div 25.2 \text{ kN/mc}$

porosità
 p = _____

coesione intercetta c = 1.15 MPa

angolo di resistenza al taglio φ = 32°

• pressione di rottura $\sigma_r = 17.20 \text{ MPa}$

indice di rottura percentuale
 I_{s(50)} = 1.60

Modulo di elasticità secante
 E = 1283 MPa

• Modulo di Poisson $\mu = 0.31$

Per i campioni prelevati nel quarto tratto (da S024 a S035) sono stati rilevate in laboratorio le seguenti caratteristiche :

• peso dell'unità di volume $\gamma = 22.5 \div 23.6 \text{ kN/mc}$

• porosità $p = 13.40 \div 20.2 \%$

• coesione intercetta c = 7.17 ÷ 11.52 MPa

angolo di resistenza al taglio φ = 38.5 ÷45°

• pressione di rottura $\sigma_r = 30.26 \div 110.90 \text{ MPa}$

Modulo di elasticità secante
 E = 11.032 ÷ 13.580 MPa

• Modulo di Poisson $\mu = 0.31$

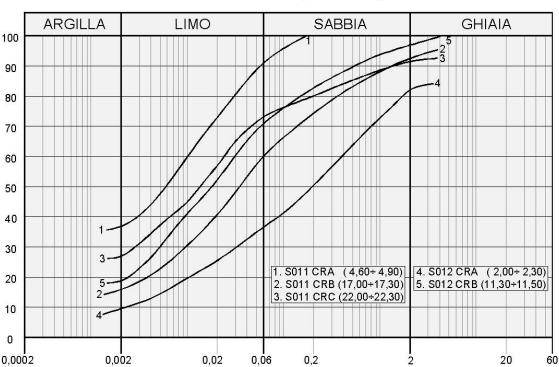
Nella tabella seguente sono riportati per singolo campione i risultati delle prove di laboratorio

Tabella G.8 Risultati prove di laboratorio campioni terreni lapidei formazione Ocm

Commissions	Dunfan disk	T.,,,,,,,,	Par	ametri ged	otecnici d	la laborato	orio	Tensione a rottura	PLT Is (50) [MPa] 1.6
Campione	Profondità	Terreno	γ	С	φ	E	К	σr	ls (50)
			[kN/m ³]	[MPa]	[°]	[MPa]	[cm/s]	[MPa]	[MPa]
S008 CL1	3.60÷4.00	CCf	25.2	20.6	23.9	15145			
S009 CL1 (*)	13.40÷13.70	AM	24.6					20.1	
S010 CL1									
S010 CL2	5.20÷6.00	CCb	24.4					12.88	
S014 CL3	18.50÷18.80	MA-MC	16.8	1.15	32	1283			
S014 CL4	20.60÷21.00	MA-MC	24.8						
S014 CL5	29.00÷29.30	MA-MC	25.2	1.15	32	1283			1.6
S017bis CL1	11.36÷11.78	CF	25.7	24.53	31.1	33700			
S025 CL1	11.70÷12.70	CM	22.70	7.17	45	13580			
S025 CL2	11.70÷12.70	CM	23.60					30.26	
S029 CL1	2.45÷3.00	CF	23.1	11.5	38.5	11032			
S029 CL2	7.20÷7.50	CF	24.5					110.9	
S034 CL1	12.60÷13.00	CF	22.5			12707			
S035 CL1 (*)	3.65÷4.00	AM	23.4					44.36	
(*) Campione	lapideo affere	nte compo	nente classi	ficata scio	ta		•		

Terreni sciolti

Nel primo tratto (S008-S0012) sono stati prelevati campioni e rimaneggiati. Dalle analisi eseguite si sono rilevati le seguenti caratteristiche fisiche:

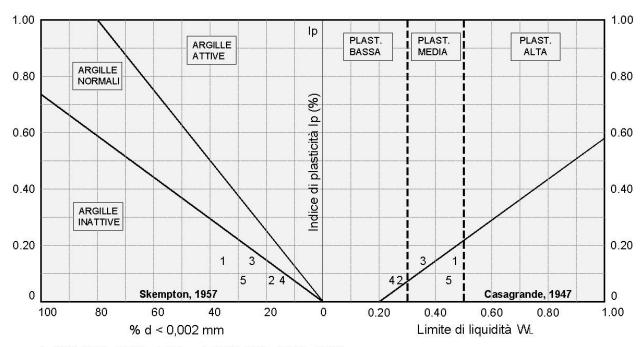

contenuto naturale d'acqua
 Wn = (12.9 ÷ 32.3)%

• peso dell'unità di volume $\gamma = 16.9 \div 21.6 \text{ kN/mc}$

• indice di consistenza lc > 1

La granulometria risulta compresa nel fuso delimitato superiormente da limo con argilla debolmente sabbiosa debolmente ghiaiosa ed inferiormente da sabbia con limo ghiaiosa argillosa per come si rileva dalla figura che segue.

Figura G.7 - Granulometria terreni formazione Ocm (Tratto S008-S012)



FORMAZIONE Ocm (S011-S012)

Dalle carte di attività e plasticità si rileva che trattasi di argille inattive a plasticità bassa e media.

Figura G.8 - Attività e plasticità terreni formazione Ocm (Tratto S008-S012)

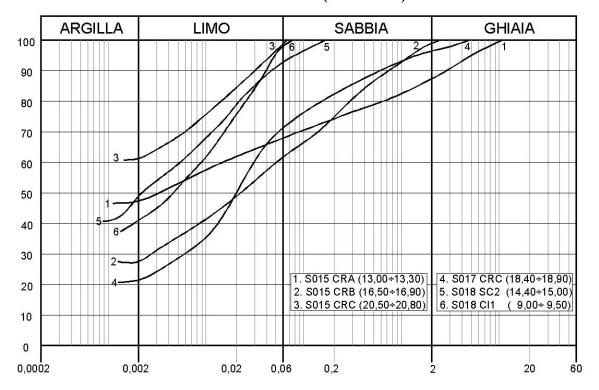
- 1. S011 CRA (4,60÷ 4,90) 4. S012 CRA (2,00÷ 2,30)
- 2. S011 CRB (17,00÷17,30) 5. S012 CRB (11,30÷11,50)
- 3. S011 CRC (22,00+22,30)

Nel secondo tratto (S014-S018) sono stati esaminati soltanto i campioni rimaneggiati ed uno indisturbato.

Dalle analisi eseguite si sono rilevati le seguenti caratteristiche fisiche:

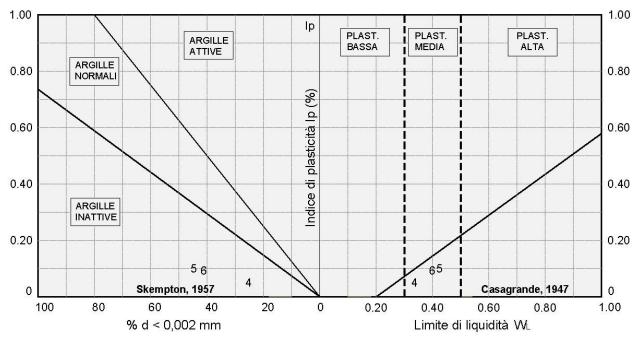
• contenuto naturale d'acqua $W_n = (22.4 \div 24.7)\%$

• peso dell'unità di volume $\gamma = 19.8 \text{ kN/mc}$


indice di consistenza lc > 1

La granulometria risulta compresa nel peso delimitato superiormente da argilla con limo sabbioso argillosa sabbioso e inferiormente da limo con argilla sabbiosa (Figura G.9).


Figura G.9 - Granulometria terreni formazione Ocm (Tratto S014-S021)


FORMAZIONE Ocm (S015-S018)

Dalle carte di attività e plasticità (Figura G.10) si rileva che trattasi di argille inattive a plasticità media.

- 1. S011 CRA (4,60÷ 4,90)
- 4. S012 CRA (2,00÷2,30)
- 2. S011 CRB (17,00÷17,30)
- 5. S012 CRB (11,30÷11,50)
- 3. S011 CRC (22,00÷22,30)

Dalle prove di taglio diretto (TD) consolidate drenate eseguite sul campione S018 Cl1 si sono ricavati i seguenti parametri di resistenza in termini di tensioni efficaci :

c' = 10.4 KPa
$$\phi' = 17.1^{\circ}$$

Dalle prove di compressione ad espansione laterale libera (ELL) si sono ricavati i seguenti parametri di resistenza in termini di tensioni totali :

$$c_{II} = 159 \text{ kPa}$$

Sempre per i terreni del sondaggio S018 (Campione CI1 9.00 ÷ 5.00) è stata eseguita una prova di compressione edometrica che ha fornito, per la pressione verticale media dello strato, un valore del relativo modulo :

$$E_d = 13.80 \text{ MPa}$$

Dalla stessa prova si ricava un valore del coefficiente di permeabilità pari a

$$K = 7.4 \cdot 10^{-9}$$
 [cm/s]

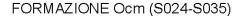
Dalla stessa prova risulta un coefficiente di consolidazione $Cv = 0.001052 \text{ cm}^2/\text{s}$ ed un indice di compressibilità Cc = 0.034. Non è stato possibile stimare l'indice di sovraconsolidazione OCR

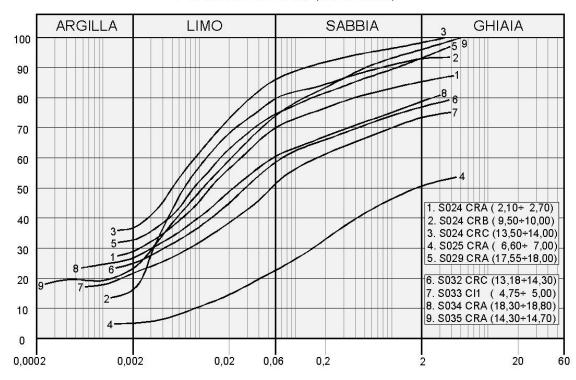
con il metodo di Casagrande per insufficienza dei risultati del diagramma pressione-indice dei vuoti.

Nella tabella seguente sono riportati per singolo campione i risultati delle prove di laboratorio.

Tabella G.9 Risultati prove di laboratorio campioni terreni sciolti formazione Ocm

Commis				P	aram	etri ged	otecnici t	erreni sc	iolti formaz	ione Oc	m	
Campio ne	Profondi tà	Terre no	γ	c'	φ'	Cu	E	Ed	К	Сс	Cv	OCR
116	ta	110	[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[MPa]	[cm/s]	[-]	[cm ² /s]	[-]
S018 CI1	9.00÷9.50	AL	19.3	10.4	33	159		13.8	7.4 • 10 ⁻⁹	0.034	0.001052	ND

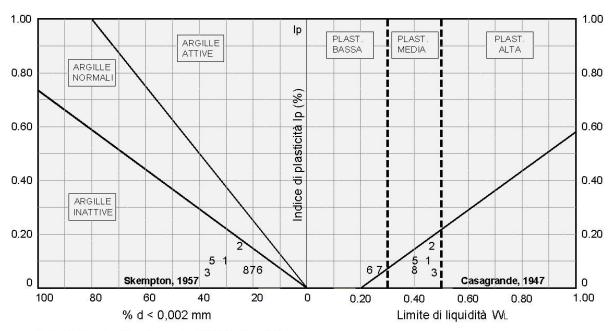

Nel terzo tratto (S024-S035) sono stati prelevati ed esaminati campioni rimaneggiati. Dalle analisi eseguite si sono rilevati le seguenti caratteristiche fisiche:


• contenuto naturale d'acqua $W_n = (10.8 \div 19.2)\%$

• peso dell'unità di volume $\gamma = 1.6 \div 22.2 \text{ kN/mc}$

La granulometria risulta compresa nell'ampio fuso determinato superiormente da limo con argilla sabbioso e inferiormente da ghiaia con sabbia limosa debolmente argillosa.

Figura G.11 - Granulometria terreni formazione Ocm (Tratto S024-S035)



Dalle carte di attività e plasticità si rileva che trattasi di argille a plasticità bassa e media.

Figura G.12 - Attività e plasticità terreni formazione Ocm (Tratto S024-S035)

- 1. S024 CRA (2,10÷ 2,70) 6. S032 CRC (13,18÷14,30)
- 2. S024 CRB (9,50÷10,00) 7. S033 Cl1 (4,75÷ 5,00)
- 3. S024 CRC (13,50÷14,00) 8. S034 CRA (18,30÷18,80)
- 4. S025 CRA (6,60÷ 7,00) 9. S035 CRA (14,30÷14,70)
- 5. S029 CRA (17,55÷18,00)

G.3.2 Indagini geotecniche in sito

Terreni lapidei

Alla fine delle perforazioni in alcuni sondaggi sono stati installati dei piezometri a tubo aperto. Le ultime letture eseguite dopo un arco di tempo da uno a due mesi dall'installazione hanno confermato l'assenza della falda nei sondaggi S007 e S022 mentre nei seguenti sondaggi sono stati rilevati i livelli misurati dal piano di campagna:

Nei seguenti sondaggi è stato determinato l'indice di recupero percentuale RQD con valori dello 0% al 100%.

• S008: $RQD = 0 \div 60\%$ RQD(medio) = 20%

• S010: RQD = 30 ÷ 70% RQD(medio) = 40%

• S012: $RQD = 0 \div 50\%$ RQD(medio) = 25%

	•	S014:	$RQD = 80 \div 100\%$	RQD(medio) = 95%
--	---	-------	-----------------------	------------------

• S017:
$$RQD = 50 \div 60\%$$
 $RQD(medio) = 53\%$

Nel sondaggio S014 è stata eseguita una prova di permeabilità Lugeon che ha fornito i seguenti risultati :

Nelle stazioni geomeccaniche sono stati determinati i seguenti parametri :

• SG03
$$c = 270 \text{ KPa}$$
 $\phi = 32^{\circ}$

• SG05
$$c = 220 \text{ KPa}$$
 $\phi = 26.5^{\circ}$

• SG38
$$c = 330 \text{ KPa}$$
 $\phi = 38^{\circ}$

• SG39
$$c = 250 \text{ KPa}$$
 $\phi = 22^{\circ}$

• SG40
$$c = 210 \text{ KPa}$$
 $\phi = 26^{\circ}$

Terreni sciolti

Nel corso delle perforazioni dei sondaggi sono state eseguite prove penetrometriche tipo SPT che hanno fornito i seguenti valori:

• S011:

$$-$$
 N30 (3.00) $=$ 30

$$-$$
 N30 (6.00) $=$ 36

$$-$$
 N30 (10.50) = 6

$$-$$
 N30 (20.00) $=$ R

• S012:

$$-$$
 N30 (3.00) $=$ R

$$-$$
 N30 (11.60) = R

• S014:

-	N30	(4.00)	= R
---	-----	--------	-----

-
$$N30(7.50) = 12$$

• S041:

$$-$$
 N30 (6.30) $=$ R

-
$$N30(12,4) = R$$

-
$$N30(23,90) = R$$

• S015:

$$-$$
 N30 (17.00) = 36

$$-$$
 N30 (27.00) = R

• S017 bis:

-
$$N30 (12.00) = R$$

-
$$N30 (17.00) = R$$

-
$$N30(24.00) = 59$$

• S018:

$$-$$
 N30 (14.00) = 25

• S024:

$$-$$
 N30 (5.00) $=$ R

-
$$N30 (10.70) = R$$

• S033:

$$-$$
 N30 (9.00) $=$ 85

-
$$N30 (15.0) = R$$

• S034:

-
$$N30(3.1) = R$$

$$-$$
 N30 (15.0) = R

• S035:

- N30 (3.30) = R

- N30 (7.00) = R

Alla fine delle perforazioni in alcuni sondaggi sono stati installati dei piezometri a tubo aperto. Le ultime letture eseguite dopo un arco di tempo da uno a due mesi dall'installazione hanno confermato l'assenza della falda nei sondaggi strumentati S029, S032 e S035 mentre nei seguenti sondaggi sono stati rilevati i livelli misurati dal piano di campagna:

• S018: - 5.58 m. (04/03/2013)

• S014: - 24.20 m. (04/03/2013)

Nel sondaggio S029 è stata eseguita una prova di permeabilità Lefranc che ha fornito i seguenti risultati :

• Sondaggio S029 (da 17.00 m a 18.00 m) $K = 2.86 \cdot 10^{-5}$ [cm/s]

Nel sondaggio S011 (in cui terreni sono stati considerati sciolti ai fini meccanici) è stata eseguita una prova di permeabilità Lugeon che ha fornito i seguenti risultati :

• Sondaggio S011 (da 20.00 m a 25.00 m) $K = 9.0 \cdot 10^{-6}$ [cm/s]

G.3.3 Parametri geotecnici

Terreni lapidei

Per il primo tratto (S008-S012) adattando i risultati della stazione geomeccanica SG03 al sondaggio S008 tramite l'indice RQD_{medio} = 20% ed alla resistenza uniassiale σ_r = 20.10 MPa del campione S009 CL1 risulta un indice BMR = 39 per cui si hanno:

c = 195 KPa
$$\phi$$
 = 24.50°

Partendo invece dai risultati delle prove di compressione triassiale del campione S008 CL1 :

$$c = 20.61 \text{ MPa}$$
 $\phi = 23.9^{\circ}$

e seguendo il criterio illustrato al paragrafo G.3.3 (RGG) ($c = c_i \cdot \alpha \cdot RQD$ con $\alpha = 1/10$), si otterrebbe un valore più elevato della coesione pari a c = 412 kPa

Sempre in questo tratto primo tratto (S008-S012) adattando i risultati della stazione geomeccanica SG03 al sondaggio S010 tramite l'indice $RQD_{medio} = 40\%$ e alla resistenza uniassiale $\sigma_r = 12.88$ MPa del campione S010 CL1 risulta un indice BMR = 41 per cui si hanno:

$$c = 205 \text{ KPa}$$
 $\phi = 25.50^{\circ}$

Partendo invece dai risultati delle prove di compressione triassiale del campione S010 CL1:

$$c = 15.5 \text{ MPa}$$
 $\phi = 41^{\circ}$

e seguendo il criterio illustrato al paragrafo G.3.3 ($c = c_i \cdot \alpha \cdot RQD$ con $\alpha = 1/10$), si ottiene un valore più elevato della coesione pari a c = 628 kPa.

In relazione alle informazioni complementari delle colonne stratigrafiche che evidenziano la presenza di argilla limosa nelle fratture dei calcari nel sondaggio S008 è opportuno adottare i valori più bassi per cui i terreni CCf dei sondaggi S008, S009, S010 si possono caratterizzare con i sequenti parametri :

c = 200 KPa
$$\phi = 25^{\circ}$$

Per i terreni dei sondaggi S008 e S009 che hanno valori RQD = 20% Il modulo di elasticità viene determinato in funzione del modulo della roccia intatta E_i = 15141 MPa mediando i valori ottenuti con le formule

$$E = E_i \quad \left[0.5 \left(1 - \cos \frac{180 \quad RMRa}{100} \right) \right]$$

$$E = E_i \cdot 0.0001 \cdot RQD^{1.94}$$

dove RMRa è determinato con i criteri di cui al paragrafo G.3.3 (RGG)

Risulta
$$E = 1450 \text{ MPa}$$

Per i terreni del sondaggio S010 che ha valori RQD = 40% II modulo di elasticità viene determinato in funzione del modulo della roccia intatta E_i = 23001 MPa con la formula

$$E = E_i \cdot 0.0001 \cdot RQD^{1.94}$$

Risulta
$$E = 2950 \text{ MPa}$$

Per il secondo tratto (S014-S021) adattando i risultati della stazione geomeccanica SG03 al sondaggio S014 tramite l'indice RQD_{medio} = 95% e alla resistenza uniassiale σ_r = 22.00 MPa del campioneS014 CL4 risulta un indice BMR = 51 per cui si hanno:

$$c = 225 \text{ KPa}$$
 $\phi = 30.5^{\circ}$

Partendo invece dai risultati delle prove di compressione triassiale sulla roccia intatta :

$$c = 1.15 \text{ MPa}$$
 $\phi = 32^{\circ}$

e seguendo il criterio illustrato al paragrafo $\,$ G.3.3 (RGG) ($c=c_i \cdot \alpha \cdot RQD \, con \, \alpha=1/10)$, si ottiene un valore coesione pari a $c=628 \, kPa$.

Cautelativamente si adotta il valore minore per la coesione. Gli angoli di resistenza al taglio risultano pressochè uguali per cui i terreni MA-CM del sondaggio S014, anche in relazione al riempimento delle fratture (materiale limoso-sabbioso) si caratterizzano con :

$$c = 180 \text{ KPa}$$
 $\phi = 31^{\circ}$

Il modulo di elasticità viene determinato in funzione del modulo della roccia intatta $E_i = 1283$ MPa con la formula

$$E = E_i \cdot 0.0001 \cdot RQD^{1.94}$$

Risulta E = 880 MPa

Sempre per il secondo tratto (S014-S021) adattando i risultati della stazione geomeccanica SG05 al sondaggio S017 bis tramite l'indice $RQD_{medio} = 52\%$, risulta un indice BMR = 40 per cui si hanno:

c = 200 KPa
$$\phi = 25^{\circ}$$

Partendo invece dai risultati delle prove di compressione triassiale del campione S017 bis CL1:

$$c = 24.53 \text{ MPa}$$
 $\phi = 31.7^{\circ}$

e seguendo il criterio illustrato al paragrafo G.3..3 (RGG), (c = c_i • α • RQD con α = 1/10), si ottiene un valore più elevato della coesione pari a c = 1300 kPa

Cautelativamente si adotta il valore minore per la coesione e per l'angolo di resistenza a taglio, in relazione alle risultanze del sondaggio (fratture molto ravvicinate), si ritiene invece di adottare il valore determinato nella prova di laboratorio per cui i terreni Cf del sondaggio S017bis si caratterizzano con :

c = 200 KPa
$$\phi = 31^{\circ}$$

Il modulo di elasticità viene determinato in funzione del modulo della roccia intatta $E_i = 33.700$ MPa con la formula

$$E = E_i \cdot 0.0001 \cdot RQD^{1.94}$$

Risulta
$$E = 4320 \text{ MPa}$$

Per il terzo tratto (S024-S035) adattando i risultati della stazione geomeccanica SG08 al sondaggio S025 tramite l'indice RQD_{medio} = 25% ed alla resistenza uniassiale σ_r = 30.26 MPa del campione S025 CL2 risulta un indice BMR = 41 per cui si hanno:

$$c = 205 \text{ KPa}$$
 $\phi = 26.5^{\circ}$

Partendo invece dai risultati delle prove di compressione triassiale del campione S025 CL2 :

$$c = 7.17 \text{ MPa}$$
 $\phi = 45^{\circ}$

e seguendo il criterio illustrato al paragrafo G.3.3 (RGG), (c = $c_i \cdot \alpha \cdot RQD$ con $\alpha = 1/10$), si ottiene un valore più elevato della coesione pari a c = 210 kPa

Cautelativamente si adotta il valore minore per la coesione e per l'angolo di resistenza a taglio, in relazione alle risultanze del sondaggio (fratture da ravvicinate con riempimento limoso argilloso), si ritiene invece di adottare un valore mediato per cui i terreni CM sondaggio S017bis si caratterizzano con :

c = 205 KPa
$$\phi = 31^{\circ}$$

Il modulo di elasticità viene determinato in funzione del modulo della roccia intatta $E_i = 13580$ MPa con la formula

$$E = E_i \cdot 0.0001 \cdot RQD^{1.94}$$

Risulta
$$E = 700 \text{ MPa}$$

Sempre per il terzo tratto (S024-S025) adattando i risultati della stazione geomeccanica SG041 al sondaggio S029 tramite l'indice RQD_{medio} = 20% ed alla resistenza uniassiale σ_r = 110.25 MPa del campione S029 CL2 risulta un indice BMR = 37 per cui si hanno:

c = 185 KPa
$$\phi$$
 = 23.50°

Partendo invece dai risultati delle prove di compressione triassiale del campione S029 CL2 :

$$c = 11.5 \text{ MPa}$$
 $\phi = 38.5^{\circ}$

e seguendo il criterio illustrato al paragrafo G.3.3 (RGG), (c = $c_i \cdot \alpha \cdot RQD$ con $\alpha = 1/10$), si ottiene un valore più elevato della coesione pari a c = 230 kPa

Cautelativamente si adottano i valori minori per cui i terreni Cf del sondaggio S028 si caratterizzano con :

c = 185 KPa
$$\phi$$
 = 23.5°

Il modulo di elasticità viene determinato in funzione del modulo della roccia intatta $E_i = 111032$ MPa con la formula

$$E = E_i = \begin{bmatrix} 0.5 & (1-\cos\frac{180 & RMRa}{100}) \end{bmatrix}$$

dove RMRa è determinato con i criteri di cui al paragrafo G.3.3

Risulta
$$E = 1230 \text{ MPa}$$

Gli altri terreni afferenti alla stessa formazione Ocm per i quali non sono stati prelevati e/o esaminati campioni sono stati caratterizzati per comparazione con litotipi similari anche in funzione delle stazioni geomeccaniche più vicine e rappresentative. Nella Tabella G.10 si riportano le relative parametrizzazioni.

Per quanto riguarda la permeabilità, è stata eseguita in sito una prova Lugeon nel sondaggio S014 che ha fornito un valore del coefficiente di parametro pari a $K = 3.4 \cdot 10^{-6}$

Sulla base dei risultati delle indagini in sito ed in laboratorio i parametri geotecnici sono riassunti nella tabella seguente.

Tabella G.10 Caratterizzazione terreni lapidei formazione Ocm

			Paramet	ri geotecn	ici terreni	lapidei forn	nazione Ocm
Sigla	Sondaggio	Quote	γ	С	φ	E	К
			[kN/m ³]	[kPa]	[°]	[MPa]	[cm/s]
CCf	S008	1.60÷12.90	25.2	200	25	1450	
CCf	S008	17.20÷19.00	25.2	200	25	1450	
CCf	S009	0.30÷10.30	25.9	200	25	5730	
CCb	S010	1.60÷20.00	25.4	200	25	2950	
Ctf	S012	3.20÷30.00	23	120	31	3600	
MA-MC	S014	15.00÷30.00	25	180	31	880	3.4x10 ⁻⁶
Cf	S017bis	11.00÷13.40	25.7	200	31	4320	
CM	S025	10.70÷20.00	22.7	205	30	700	
Cf	S029	2.80÷14.70	24.5	185	23.5	1230	
Cf	S029	20.40÷30.00	24.5	185	23.5	1230	
Cf	S032	19.15÷20.00	24.5	185	23.5	1770	
Cf	S033	14.70÷20.00	22.5	130	35	530	
Cf	S034	2.80÷15.00	22.50	130	35	1060	

Terreni sciolti

Nel primo tratto (S008 – S012) si hanno risultati di laboratorio relativi a soltanto prove fisiche e di prove penetrometriche in sito tipo SPT che hanno fornito valori di N_{30} compresi fra 22 e 64 ed anche valori a rifiuto di N_{30} = R.

Dalla Figura G.7 si rileva che la granulometria varia da limo con argilla debolmente sabbioso a limo con sabbia argilloso debolmente ghiaioso con una componente argillosa media del 23% e con un indice consistenza Ic >1 per cui i terreni relativi possono considerarsi coesivi.

L'angolo di resistenza a taglio, in termini di tensioni efficaci, è stato valutato in funzione delle caratteristiche fisiche (consistenza, granulometria) ed alle informazioni complementari acquisibili dalle colonne stratigrafiche (valori di RP, descrizione) e dalla documentazione fotografica. Pertanto ai singoli terreni sono stati attribuiti valori compresi fra 25 e 31°.

La resistenza non drenata viene valutata in funzione dei valori di N_{30} delle prove SPT secondo le correlazioni di Terzaghi (1948) e di Sowers dei cui alla figura G.3 (RGG). Per valori di N_{30} = 22-64 sono stati attribuiti ai terreni valori di c_u = 110 - 150 kPa.

La coesione efficace, ricavata come aliquota di quella non drenata secondo le correlazione $c_u = (5 \div 8) \cdot c'$ descritta al paragrafo G.2.2.2 (RGG), risulta c' = 25 - 30 kPa

Le caratteristiche di deformabilità vengono ricavate in funzione delle prove di SPT con la formula di Schultze e Mezembach.

$$E = s_1 \cdot N_{30c} + s_2$$

dove N_{30c} è il valore corretto di N_{30} tramite il coefficiente C_N determinabile dal grafico della figura G.4 in funzione della pressione litostatica $\sigma'_{v.}$ Nel caso di valori di $N_{30} = R$ il valore di E è stato determinato in base all'avanzamento percentuale rispetto a quello standard (30 cm) della stessa prova.

Le caratteristiche, come avanti determinate per i terreni CCf (S008), AL e Cf (S011) sono riportate nella Tabella G.11.

Nel secondo tratto (S014 – S021) si hanno prevalentemente risultati di laboratorio relativi a prove fisiche e prove penetrometriche in sito tipo SPT che hanno fornito valori di N_{30} compresi fra 27 e 36 ed anche valori a rifiuto di N_{30} = R.

Dalla Figura G.9 si rileva che la granulometria varia da argilla con limo a limo con sabbia argilloso ghiaioso con una componente argillosa media del 44% e con un indice consistenza Ic > 1.5 per cui i terreni relativi possono considerarsi coesivi.

Nel sondaggio S018 è stato prelevato un campione indisturbato. Dalla prova di taglio diretto (CD) si sono ottenuti

c' = 10,4 kPa
$$\phi' = 33^{\circ}$$

e dalla prova di compressione af espressione laterale libera si è ricavata una coesione non drenata pari a $c_u = 159$ Kpa.

I relativi terreni di AL possono caratterizzarsi in termini di sforzi efficaci con i parametri derivanti dalle prove di taglio mentre in termini di sforzi totali si ritiene di adottare cautelativamente in funzione delle correlazioni statistiche empiriche, $c_u = (5 \div 8) \cdot c'$, un valore ridotto della coesione non drenata pari a

$$c_u = 60 \text{ kPa}.$$

Sempre per i terreni del sondaggio S018 (Campione CI1 9.00 ÷ 5.00) è stata eseguita una prova di compressione edometrica che ha fornito, per la pressione verticale media dello strato, un valore del relativo modulo :

$$E_d = 13.80 \text{ MPa}$$

Dalla stessa prova si ricava un valore del coefficiente di permeabilità pari a

$$K = 7.49 \cdot 10^{-9}$$
 [cm/s]

. Con questi parametri si caratterizzano i terreni AL del sondaggio S018

Per gli altri terreni le caratteristiche di resistenza vengono determinate in maniera analoga ai terreni del primo tratto, avendo ora ulteriori dati di comparazione con i risultati del campione S018 Cl1. L'angolo di resistenza a taglio, in termini di tensioni efficaci, è stato valutato in funzione delle caratteristiche fisiche (consistenza, granulometria) ed alle informazioni complementari acquisibili dalle colonne stratigrafiche (valori di Rp, descrizione) e dalla documentazione fotografica. Pertanto ai singoli terreni sono stati attribuiti valori compresi fra 27° e 33°.

La resistenza non drenata viene valutata in funzione dei valori di N_{30} delle prove SPT secondo le correlazioni di Terzaghi (1948) e di Sowers dei cui alla figura G.3 (RGG). Per valori di N_{30} = 22-64 sono stati attribuiti ai terreni valori di c_u = 72 - 200 kPa.

La coesione efficace, ricavata come aliquota di quella non drenata secondo le correlazione $c_{uu} = (6 \div 8) \cdot c'$ descritta al paragrafo G.2.2.2 (RGG), risulta $c' = 20 - 40 \, \text{kPa}$

Nel sondaggio S017 è stato rilevato un livello di calcareniti intensamente alterato e frantumato (terreni Calt da 13.40 m a 16.10 m) considerato in base alle informazioni complementari

(descrizione litologica e documentazione fotografica) incoerente che è stato caratterizzato con i seguenti parametri :

$$c' = 0$$
 $\phi' = 36^{\circ}$

Le caratteristiche di deformabilità vengono determinate sempre con la formula di Schultze e Mezembach in funzione dei valori di N₃₀.

Le caratteristiche dei terreni i AL-AS e AM (S015), AM (S017), CM-AM e Lsa (S017bis) e AL e AM (S016) sono riassunte nella Tabella G.11.

Nel terzo tratto (S024 – S035) si hanno risultati di laboratorio relativi a soltanto prove fisiche e di prove penetrometriche in sito tipo SPT che hanno fornito valori di N_{30} compresi fra 36 e 85 ed anche valori a rifiuto N_{30} = R.

Dalla Figura G.11 si rileva che la granulometria varia da limo con argilla sabbioso a limo con ghiaia sabbioso argilloso con una componente argillosa di poco superiore al 20% e una ghiaiosa del 13%. Si rileva anche un livello di ghiaia con sabbia limosa debolmente argillosa nel sondaggio S025 (curva n.4 figura G.16). Nei sondaggi da S024 a S032 si ha una prevalenza di terreni coerenti mentre nei sondaggi da S033 a S035 si ha una prevalenza di terreni incoerenti.

Per i terreni coerenti la coesione intercetta e l'angolo di resistenza a taglio, in termini di tensioni efficaci, sono stati valutati in funzione delle caratteristiche fisiche (consistenza, granulometria) ed alle informazioni complementari acquisibili dalle colonne stratigrafiche (valori di RP, descrizione) e dalla documentazione fotografica. Pertanto ai terreni sono stati attribuiti i seguenti parametri:

c' = 20 kPa
$$\phi' = 36^{\circ}$$

La resistenza non drenata viene determinata secondo le correlazione $c_u = (5 \div 8)$ c', descritta al paragrafo G.2.2.2 (RGG), per cui risulta

$$c_u = 100 \text{ kPa}$$

Nei terreni incoerenti riscontrati nei sondaggi da S033 a S035 dalle prove SPT si sono ottenuti valori a rifiuto, $N_{30} = R$, eccetto $N_{30} = 34$ e 85 nel sondaggio S034. Pertanto nella maggior parte dei casi per la determinazione dell'angolo di resistenza a taglio dei terreni non risulta utilizzabile il diagramma di De Mello della figura G.2 (RGG) che mette in relazione il valore di N_{30} con l'angolo di resistenza al taglio ϕ '. Tale parametro è stato valutato in funzione delle caratteristiche fisiche (consistenza, granulometria) ed alle informazioni complementari

acquisibili dalle colonne stratigrafiche (valori di RP, descrizione) e dalla documentazione fotografica. Pertanto ai singoli terreni sono stati attribuiti valori $\phi' = 30-32^{\circ}$

Per quanto riguarda il termine coesivo della resistenza a taglio, i campioni hanno una componente argillosa media del 25% per cui anche in relazione alle condizioni del carotaggio si ritiene di attribuire valori alla coesione intercetta pari a:

$$c' = 2 - 10 \text{ KPa}$$

In mancanza di prove ad espansione laterale libera, il valore della coesione non drenata viene stimato in base alla correlazione empiriche statistica $c_u = (5 \div 8) \cdot c'$ per cui risulta pari a

$$c_u = 10 - 60 \text{ kPa}$$

Le caratteristiche di deformabilità vengono determinate sempre con la formula di Schultze e Mezembach in funzione dei valori di N_{30}

$$E = s_1 \cdot N_{30c} + s_2$$

dove N_{30c} è il valore corretto tramite il coefficiente $C_N = N_{30c}/N_{30}$ determinato dal grafico della figura G.3 (RGG) in funzione della pressione litostatica σ'_v

I risultati delle prove SPT hanno fornito in genere valori a rifiuto ($N_{30} = R$) con avanzamenti parziali bassi per cui i moduli in questo caso sono stati determinati in rapporto all'avanzamento percentuale.

Le caratteristiche dei terreni AM (S024), Gcsl (S025), Cf-MA (S029), MC-AM (S032), ATM e Calt (S033), SL (S034) e ATM (S035) sono riportate nella Tabella G.11.

Le caratteristiche di deformabilità sono state ricavate in funzione dei risultati delle prove SPT con la formula di Schultze e Mezembach

$$E = s_1 \cdot N_{30c} + s_2$$

In definitiva si sono attribuiti i seguenti moduli:

•	E = 54.3 MPa	ai terreni AM ((S024)), Gcsl ((S025))
---	--------------	-----------------	--------	-----------	--------	---

- E = 43.7 MPa ai terreni SL (S034)
- E = 100.1MPa ai terreni ATM (S035)

Nel sondaggio S011 in corrispondenza dei terreni CA-MC ($18.30 \div 24.00$) e Cfa ($24.00 \div 30.00$), considerati sciolti ai fini meccanici, è stata eseguita una prova di permeabilità Lugeon che ha fornito un valore del coefficiente di permeabilità $K = 4.1 \cdot 10^{-5}$.

Sulla base dei risultati delle indagini in sito ed in laboratorio i parametri geotecnici sono riassunti nella tabella seguente.

Tabella G.11 Caratterizzazione terreni sciolti formazione Ocm

				Pa	rame	etri geo	otecnici	terreni	sciolti form	azione (Ocm	
igla	Sond.	Quote	γ	c'	φ'	C _u	E	Ed	K	Сс	Cv	OCR
			[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[MPa]	[cm/s]	[-]	[cm ² /s]	[-]
CCf	S008	12.90÷17.20	19	25	25	150	11					
CCf	S008	19.00÷20.00	19	25	25	150	22					
AL	S011	0.00÷5.40	18.3	25	30	110	17.5					
AL	S011	5.40÷18.30	20	30	30	150	24.3					
CA-MC	S011	18.30÷24.00	20	30	31	-	224					
Cfa	S011	24.00÷30.00	20	30	27	-	80					
AL-AS	S015	12.50÷19.00	19.5	20	32	100	13					
AM	S015	19.00÷30.00	20	40	27	200	23					
AM	S017	15.00÷25.00	18.9	20	30	120	23					
Cf	S017bis	13.40÷16.10	19	0	36	-	23.4					
CM-AM	S017bis	16.10÷24.20	22.2	20	27	100	106					
Lsa	S017bis	24.20÷30.00	18.3	16	30	72	36					
AL	S018	6.00÷10.60	17.4	10	33	60	17.4	13.8	7.5 x 10 ⁻⁹	0.034	0.001052	ND
AM	S018	10.60÷15.00	19.8	20	27	150	17.4					
AM	S024	0.40-20.00	18	20	27	100	54.3					
Gcsl	S025	1.70÷10.70	20	0	36		54.3					
Cf-MA	S029	14.70÷0.40	17	20	27	100	50					
MC-CM	S032	7.50÷19.15	22.2	20	27	100	50					
ATM	S033	3.50÷5.00	19	2	30	10	20.6					
Calt	S033	5.00÷10.00	17.9	5	32	30	38.5					
ATM	S033	10.00÷14.70	15.8	2	30		100.1					
SL	S034	15.00÷30.00	16.5	10	32		43.7					
ATM	S035	0.50÷15.00	15.8	2	30		100.1					

G.4 Terreni appartenenti alla formazione Qm

Tali terreni sono stati riscontrati in due tratti: il primo in corrispondenza dei sondaggi S036 e S037, compreso fra le progressive 1+290 e 2+950, e il secondo fra i sondaggi S041 e S042, compreso fra le progressive 10+410 e 10+910.

Nel corso delle indagini sono stati prelevati i seguenti campioni:

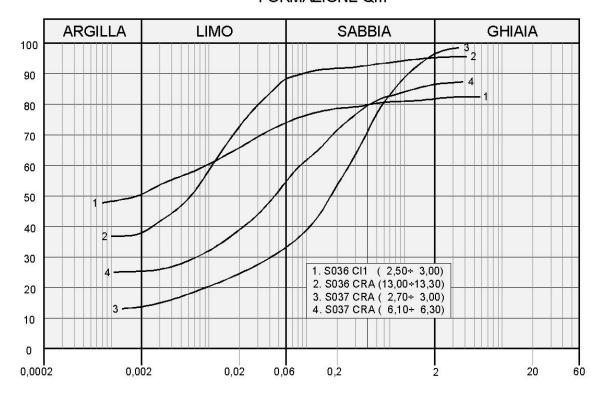
- Primo tratto (S036 S037) :
 - S036 CI1 (2.50 ÷ 3.00)
 - S036 CRA (13.00 ÷ 13.30)
 - S037 CRA (2.70 ÷ 3.00)
 - S037 CRB (6.10 ÷ 6.35)
- Secondo tratto (S041 S042) :
 - Risultati acquisiti dal sondaggio preliminare S020P

G.4.1 Analisi di laboratorio.

Nel primo tratto (S036 - S037) sono stati prelevati campioni indisturbati e rimaneggiati. Dalle analisi eseguite si sono rilevati le seguenti caratteristiche fisiche:

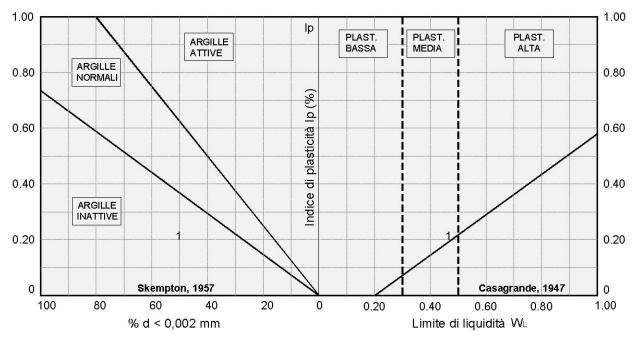
contenuto naturale d'acqua
 Wn = 27 %

• peso dell'unità di volume $\gamma = 17.3 \text{ kN/mc}$


• indice di consistenza lc > 1

Per i terreni del sondaggio S036 la granulometria risulta compresa nel fuso delimitato da argilla limosa debolmente ghiaiosa ed inferiormente da limo con argilla sabbioso mentre per i terreni del sondaggio S037 il fuso è compreso fra limo con argilla sabbioso e sabbia con limo argillosa per come si rileva dalla figura che segue.

Figura G.13 - Granulometria terreni formazione Qm (Tratto S036-S037)


FORMAZIONE Qm

Dalle carte di attività e plasticità si rileva che trattasi di argille inattive a plasticità media.

- 1. S036 Cl1 (2,50÷ 3,00)
- 2. S036 CRA (13,00÷13,30)
- 3. S037 CRA (2,70÷ 3,00)
- 4. S037 CRA (6,10÷ 6,30)

Dalle prove di taglio diretto (TD) consolidate drenate si sono ricavati i seguenti parametri di resistenza in termini di tensioni efficaci:

$$c' = 6.3 \text{ KPa}$$
 $\phi' = 27^{\circ}$

Dalle prove di compressione ad espansione laterale libera (ELL) si sono ricavati i seguenti parametri di resistenza in termini di tensioni totali :

$$c_u = 66 \text{ kPa}$$

Sempre per i terreni del sondaggio S036 (Campione CI1 2.50 ÷ 3.00) è stata eseguita una prova di compressione edometrica che ha fornito, per la pressione verticale media dello strato, un valore del relativo modulo :

$$E_d = 4.9 \text{ MPa}$$

Dalla stessa prova si ricava un valore del coefficiente di permeabilità pari a

$$K = 2.5 \cdot 10^{-8}$$
 [cms]

Sempre dalla stessa prova risulta un coefficiente di consolidazione $Cv = 0.001284 \text{ cm}^2/\text{s}$ ed un indice di compressibilità Cc = 0.0127. Non è stato possibile stimare l'indice di

sovraconsolidazione OCR con il metodo di Casagrande per insufficienza dei risultati del diagramma pressione-indice dei vuoti.

Nella tabella seguente sono riportati per singolo campione i risultati delle prove di laboratorio.

Tabella G.12 Risultati prove di laboratorio campioni terreni Qm

Camania							Param	etri geot	ecnici			
Campio ne	Profondi tà	Terre no	γ	c'	φ'	Cu	E	Ed	К	Сс	Cv	OCR
116	ta	110	[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[MPa]	[cm/s]	[-]	[cm ² /s]	[-]
S036 CI1	2.50÷3.00	AM-AS	17.3	6.3	27	66		4.9	2.5 x 10 ⁻⁸	0.0127	0.001284	ND

Nel secondo tratto (S041 - S042) in questa campagna non sono stati eseguiti sondaggi per cui si sono acquisite le informazioni della campagna preliminare. Dalle descrizioni litologiche del relativo sondaggio S20P i terreni sono costituiti da brecce calcaree con sabbie limose.

G.4.2 Indagini geotecniche in sito

Nel corso delle perforazioni dei sondaggi sono state eseguite prove penetrometriche tipo SPT che hanno fornito i seguenti valori:

• S036:

$$-$$
 N30 (5.00) $=$ 30

$$-$$
 N30 (10.00) = 40

$$-$$
 N30 (20.40) $=$ 55

S037:

$$-$$
 N30 (3.50) $=$ 50

$$-$$
 N30 (8.50) $=$ 50

• S041:

$$-$$
 N30 (6.30) $=$ R

-
$$N30(12,4) = R$$

$$-$$
 N30 (23,90) = R

Nel sondaggio S036 è stata eseguita una prova di permeabilità Lefranc che ha fornito i seguenti risultati :

• Sondaggio S036 (da 17.00 m a 18.00 m)

$$K = 1.03 \cdot 10^{-5}$$

 $\phi' = 27^{\circ}$

[cm/s]

G.4.3 Parametri geotecnici

Dalle prove di taglio diretto eseguite sul campione S036 CI1 i valori ottenuti risultano pari a:

Dalle prove di compressione ad espansione laterale libera, i valori ottenuti in termini di resistenza al taglio non drenata risultano pari a:

$$c_{11} = 66 \text{ kPa}$$

Con tali parametri si caratterizzano i terreni GsI del sondaggio S036. Gli altri terreni sono stati caratterizzati per comparazione in funzione delle caratteristiche fisiche (consistenza, granulometria) e delle informazioni complementari delle colonne stratigrafiche (valori di RP) e/o dei risultati delle prove SPT in sito. I terreni Dt del sondaggio preliminare S020P sono stati caratterizzati in base alla descrizione litologica del sondaggio preliminare S020P (brecce calcaree con sabbia limosa e ghiaia). I relativi parametri sono riportati nella. Tabella G.13

Le caratteristiche di deformabilità sono state ricavate in funzione dei risultati delle prove SPT con la formula di Schultze e Mezembach

$$E = s_1 \cdot N_{30c} + s_2$$

dove N_{30c} è il valore corretto tramite il coefficiente $C_N = N_{30c}/N_{30}$ determinato dal grafico della figura G.3 (RGG) in funzione della pressione litostatica σ'_v

I risultati delle prove SPT hanno fornito in genere valori $N_{30} = 30 \div 55$ in base ai quali è stato determinato il modulo di elasticità.

Sempre per i terreni del sondaggio S036 (Campione CI1 $2.50 \div 3.00$) è stata eseguita una prova di compressione edometrica che ha fornito, per la pressione verticale media dello strato, un valore del relativo modulo :

$$E_d = 4.9 MPa$$

Dalla stessa prova si ricava un valore del coefficiente di permeabilità pari a

$$K = 2.56 \cdot 10^{-8}$$
 [cm/s]

Dalla stessa prova risulta un coefficiente di consolidazione $Cv = 0.001052 \text{ cm}^2/\text{s}$ ed un indice di compressibilità Cc = 0.034. Non è stato possibile stimare l'indice di sovraconsolidazione OCR

con il metodo di Casagrande per insufficienza dei risultati del diagramma pressione-indice dei vuoti.

Sulla base dei risultati delle indagini in sito ed in laboratorio i parametri geotecnici come prima determinati sono riportati per ogni singolo terreno individuato nella tabella seguente.

Tabella G.13 Tabella parametri geotecnici terreni appartenenti alla formazione Qm

				Pa	ram	etri ge	otecnici	terreni	sciolti form	azione C	(m	
Sigla	Sond.	Quote	γ	c'	φ'	C _u	E	Ed	K	Сс	Cv	OCR
			[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[MPa]	[cm/s]	[-]	[cm ² /s]	[-]
AM-AS	S036	1.50÷14.50	17.5	6.3	27	66	20	4.9	2.5 x 10 ⁻⁸	0.0127	0.001284	ND
AM-gs	S036	14.50÷19.70	18.5	6.3	25	92	28.5					
AGS	S036	19.70-25.00	17.5	6.3	27	66	20					
A-G	S037	0.60÷9.00	18	10	28	60	22.6					
Dt	S020P	0.00÷10.50	18	0	34							

G.5 Terreni appartenenti alla formazione Conoide

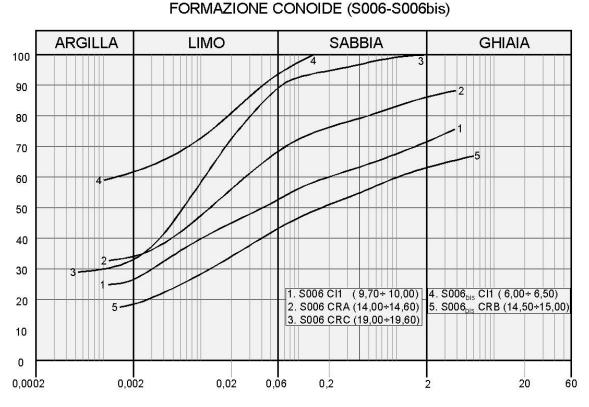
Tali terreni sono stati riscontrati in due tratti: il primo in corrispondenza dei sondaggi S006 e S006bis, compreso fra le progressive 1+920 e 2+950, il secondo in corrispondenza dei sondaggi S031, S032 e S033, compreso fra le progressive 7+790 e 8+800.

Nel corso delle indagini sono stati prelevati i seguenti campioni:

- Primo tratto (S006 S006bis):
 - S006 CI1 (0.70 ÷ 10.00)
 - S006 CRB (14.00 ÷ 14.60)
 - S006 CRC (19.00 ÷ 19.50)
 - S006bis CI1 (6.00 ÷ 6.50)
 - S006bis CRB (14.00 ÷ 14.50)
- Secondo tratto (S031 S033) :
 - S031 CI1 (12.70 ÷ 13.18)
 - S031 CRA (10.00 ÷ 10.50)
 - S032 CRB (6.50 ÷ 7.00)

G.5.1 Analisi di laboratorio.

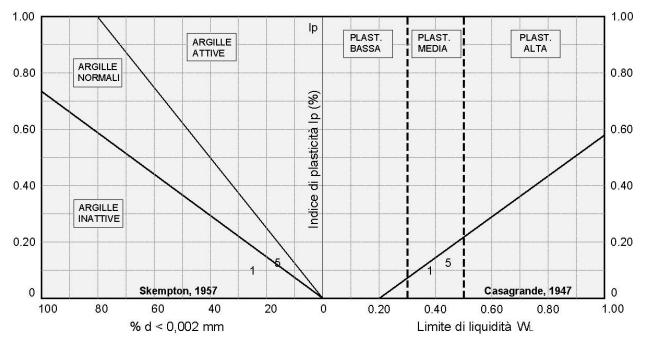
Nel primo tratto (S006 - S006bis) sono stati prelevati campioni indisturbati e rimaneggiati. Dalle analisi eseguite si sono rilevati le seguenti caratteristiche fisiche:


• contenuto naturale d'acqua Wn = 19.8 ÷ 34.3 %

• peso dell'unità di volume $\gamma = 17.4 \div 19.20 \text{ kN/mc}$

indice di consistenza lc > 1

La granulometria risulta compresa nel fuso delimitato da limo con argilla sabbioso ed inferiormente da ghiaia con limo sabbioso per come si vede nella figura che segue.


Figura G.15 - Granulometria terreni formazione Conoide (Tratto S006-S006bis)

Dalle carte di attività e plasticità si rileva che trattasi di argille inattive a plasticità media.

- 1. S006 CI1 (9,70÷ 10,00) 4. S006_{bis} CI1 (6,00÷ 6,50)
- 2. S006 CRA (14,00÷14,60) 5. S006_{bis} CRB (14,50÷15,00)
- 3. S006 CRC (19,00÷19,60)

Dalle prove di taglio diretto (TD) consolidate drenate si sono ricavati i seguenti parametri di resistenza in termini di tensioni efficaci:

$$c' = 6.8 \div 8.5 \text{ kPa}$$

$$\phi' = 25.7 \div 28^{\circ}$$

Dalle prove di compressione ad espansione laterale libera (ELL) si sono ricavati i seguenti parametri di resistenza in termini di tensioni totali :

$$c_u = 136 \div 155 \text{ kPa}$$

Nei terreni del sondaggio S006bis (Campione CI1 6.50 ÷ 6.50) è stata eseguita una prova di compressione edometrica che ha fornito, per la pressione verticale media dello strato, un valore del relativo modulo :

$$E_d = 15.9 \text{ MPa}$$

Dalla stessa prova si ricava un valore del coefficiente di permeabilità pari a

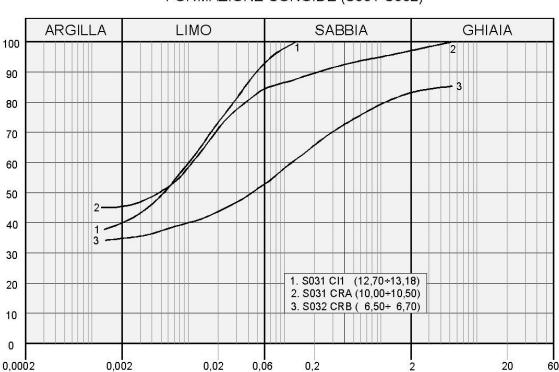
$$K = 4.1 \cdot 10^{-9}$$

Sempre dalla stessa prova risulta un coefficiente di consolidazione Cv = 0.000667 cm²/s ed un indice di compressibilità Cc = 0.071. Non è stato possibile stimare l'indice di sovraconsolidazione OCR con il metodo di Casagrande per insufficienza dei risultati del

diagramma pressione-indice dei vuoti.

Nella Tabella G.14 sono riportati i risultati per singolo campione.

Nel secondo tratto (S031 - S033) sono stati prelevati campioni indisturbati e rimaneggiati. Dalle analisi eseguite si sono rilevati le seguenti caratteristiche fisiche:


• contenuto naturale d'acqua Wn = 29.8 ÷ 30.37 %

• peso dell'unità di volume $\gamma = 17.2 \div 17.9 \text{ kN/mc}$

indice di consistenza lc > 1

La granulometria risulta compresa nel fuso delimitato da limo con argilla superiormente ed inferiormente da argilla con sabbia ghiaiosa per come si rileva dalla figura che segue.

Figura G.17 - Granulometria terreni formazione Conoide (Tratto S031-S032)



FORMAZIONE CONOIDE (S031-S032)

Dalle carte di attività e plasticità si rileva che trattasi di argille inattive a plasticità alta per come si rileva dalla figura che segue.

- 1. S031 CI1 (12,70÷13,18)
- 2. S031 CRA (10,00÷10,50)
- 3. S032 CRB (6,50÷ 6,70)

Dalle prove di taglio diretto (TD) consolidate drenate eseguite sul campione S031 Cl1 (12.70 ÷ 13.18) si sono ricavati i seguenti parametri di resistenza in termini di tensioni efficaci :

$$c' = 12.5 \text{ kPa}$$
 $\phi' = 28.9^{\circ}$

Dalle prove di compressione ad espansione laterale libera (ELL) si sono ricavati i seguenti parametri di resistenza in termini di tensioni totali :

$$c_{11} = 96 \text{ kPa}$$

Sempre nello stesso campione è stata eseguita una prova di compressione edometrica che ha fornito, per la pressione verticale media dello strato, un valore del relativo modulo :

$$E_d = 11 \text{ MPa}$$

Dalla stessa prova si ricava un valore del coefficiente di permeabilità pari a

$$K = 1.9 \cdot 10^{-8}$$
 [cm/s]

Sempre dalla stessa prova risulta un coefficiente di consolidazione $Cv = 0.001526 \text{ cm}^2/\text{s}$ ed un indice di compressibilità Cc = 0.101. L'indice di sovraconsolidazione calcolato secondo il metodo di Casagrande risulta non determinabile per il campione S006bis CI1 e OCR \approx 1 per il campione S031 CI1.

Nella tabella che segue si riportano i risultati di tutte le prove di laboratorio

Tabella G.14 Risultati prove di laboratorio campioni terreni Conoide

			Parametri geotecnici									
Campio ne	Profondi tà	Terre no	γ	c'	φ'	Cu	E	Ed	K	Cc	Cv	OCR
iie	ta	110	[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[MPa]	[cm/s]	[-]	[cm ² /s]	[-]
S006 CI1	9.70-10.00	Gsl	17.5	6.8	28	136						
S006bis												
CI1	6.00-6.50	Ag	18.1	8.5	25.7	155		15.9	4.1x10 ⁻⁹	0.071	0.000667	ND
	12.70-								_			
S031 CI1	13.18	Gas	17.5	12.5	28	96		11	1.9x10 ⁻⁸	0.101	0.001526	≈ 1

G.5.2 Indagini geotecniche in sito

Nel corso delle perforazioni dei sondaggi sono state eseguite prove penetrometriche tipo SPT che hanno fornito i seguenti valori:

- S006:
 - N30 (6.70) = R
 - N30 (13.20) = 29
- S006bis:
 - N30 (10.80) = 38
- S031:
 - N30 (10.90) = 59
 - N30 (15.00) = R
- S032:
 - N30 (6.00) = 85
- S033:
 - N30 (3.00) = 36

Alla fine delle perforazioni in alcuni sondaggi sono stati installati dei piezometri a tubo aperto. Le ultime letture eseguite dopo un arco di tempo da uno a due mesi dall'installazione hanno confermato l'assenza della falda nei sondaggi strumentati S006bis, S032 mentre nel seguente sondaggio è stato rilevato il livello misurato dal piano di campagna:

• S031: - 19.15 m. (04/03/2013)

G.5.3 Parametri geotecnici

Con i risultati delle prove di taglio diretto eseguite sul campione S006 Cl1 si caratterizzano i terreni GsI del sondaggio S006:

$$c' = 6.8 \text{ kPa}$$
 $\varphi' = 28^{\circ}$

Per la coesione non drenata, utilizzando la correlazione $c_u = (5 \div 8)$ c', si adotta invece un valore minore di quello derivante dalla prova ELL:

$$c_u = 56 \text{ kPa}$$

Con i risultati delle prove di taglio diretto eseguite sul campione S006bis CI1 si caratterizzano i terreni Ag del sondaggio S006bis:

c' = 8.5 kPa
$$\phi' = 25.7^{\circ}$$

Per la coesione non drenata si adotta, anche in questo caso un valore minore di quello derivante dalla prova ELL, utilizzando la correlazione $c_u = (6 \div 8)$ c':

$$c_u = 70 \text{ kPa}$$

Con i risultati delle prove di taglio diretto eseguite sul campione S031 Cl1 si caratterizzano i terreni Gas del sondaggio S031:

c' = 12.5 kPa
$$\phi'$$
 = 28.9°

Per la coesione non drenata si adotta il valore derivante dalla prova ELL :

$$c_u = 96 \text{ kPa}$$

che conferma la correlazione $c_u = (5 \div 8) \cdot c'$.

I terreni Trm del sondaggio S033 sono stati caratterizzati in base alla descrizione litologica ed ai risultati della prova SPT.

Gli altri terreni sono stati caratterizzati per comparazione in funzione delle caratteristiche fisiche (consistenza, granulometria) e delle informazioni complementari delle colonne stratigrafiche (valori di Rp) e/o dei risultati delle prove SPT in sito. I relativi parametri sono riportati nella tabella riassuntiva finale di cui alla Tabella G.15.

Le caratteristiche di deformabilità sono state ricavate in funzione dei risultati delle prove SPT con la formula di Schultze e Mezembach

$$E = S_1 \cdot N_{30c} + S_2$$

dove N_{30c} è il valore corretto tramite il coefficiente $C_N = N_{30c}/N_{30}$ determinato dal grafico della figura G.4, in funzione della pressione litostatica σ'_v .

I risultati delle prove SPT hanno fornito in genere valori $N_{30} = 29 \div 85$ e qualche valore $N_{30} = R$ in base ai quali è stato determinato il modulo di elasticità.

Per il campione S006bis CI1 è stata eseguita una prova di compressione edometrica dalla quale si è ricavato un modulo rappresentativo pari a

$$Ed = 15.9 MPa.$$

Dalla stessa prova si rileva un coefficiente di permeabilità

$$K = 4.10 \cdot 10^{-9}$$
 [cm/s]

Con questi parametri si caratterizzano i terreni Ag del sondaggio S006bis.

L'indice di sovraconsolidazione calcolato secondo il metodo di Casagrande risulta OCR ≈ 1 per per i terreni Gas del sondaggio S031. Tale valore, per le considerazioni formulate al paragrafo G.2.3.2 (RGG), è da considerare soltanto una stima del valore reale. Per i terreni Ag del sondaggio S006bis non risulta determinabile.

Sulla base dei risultati delle indagini in sito ed in laboratorio i parametri geotecnici come prima determinati sono riportati per ogni singolo terreno individuato nella tabella seguente.

Tabella G.15 Parametri geotecnici terreni appartenenti alla formazione Conoide

					Para	metri (geotecn	ici terre	ni sciolti Co	noide		
Sigla	Sond.	Quote	γ	c'	φ'	Cu	E	Ed	K	Сс	Cv	OCR
			[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[MPa]	[cm/s]	[-]	[cm ² /s]	[-]
Gsl	S006	5.00÷3.00	17.5	6.8	28	90	17.4					
Ag-A	S006	13.00÷20.00	19.2	15	25	75	12.1					
Ag-A	S006bis	0.50÷5.00	18.1	5	25	25	12.1					
Ag	S006bis	5.00÷13.00	18.1	8.5	25.7	25.7	12.1	15.9	4.10 •10 ⁻⁹	0.071	0.000667	ND
Gsa	S006bis	10.30÷19.40	20.3	6.8	28	60	17.4					
Gsa	S031	0.00÷6.50	18	0	35		49					
Gas	S031	8.50÷20.00	17.5	12.5	28	95	43.7	11	1.9x10 ⁻⁸	0.101	0.001526	≈ 1
Glsa	S032	3.30÷7.50	15.8	5	30	25	46.4					
Trm	S033	0.20÷3.50	19.2	0	33		20.6					

G.6 Terreni appartenenti alle formazioni ar, P, dt, QI e R

Tali terreni sono stati riscontrati soltanto in zone singole: I terreni ascrivibili alla formazione ar nel sondaggio S013 fra le progressive 4+020 e 4+305, quelli della formazione P nel sondaggio S017 fra le progressive 5+085 e 5+590, quelli della formazione Dt nel sondaggio S012 fra le

progressive 4+020 e 4+305, quelli della formazione QI nel sondaggio S031nella progressiva 7+935. Quelli della formazione TR, trattandosi di rilevati stradali si trovano un po' ovunque lungo tutto il percorso.

Nel corso delle indagini sono stati prelevati i seguenti campioni:

- S012 CRA (2.00 ÷ 2.30)
- S013 CI1 (6.00 ÷ 6.40)
- S017 CRA (6.40 ÷ 6.90)
- S017 CRB (11.00 ÷ 11.50)

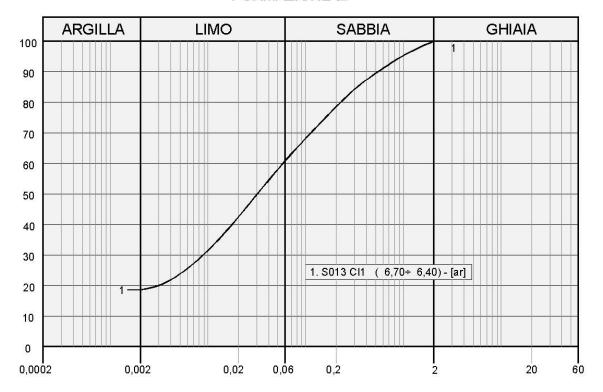
G.6.1 Analisi di laboratorio.

Terreni depositi ar

In questi terreni è stato prelevato un campione indisturbato. Dalle analisi eseguite si sono rilevati le seguenti caratteristiche fisiche:

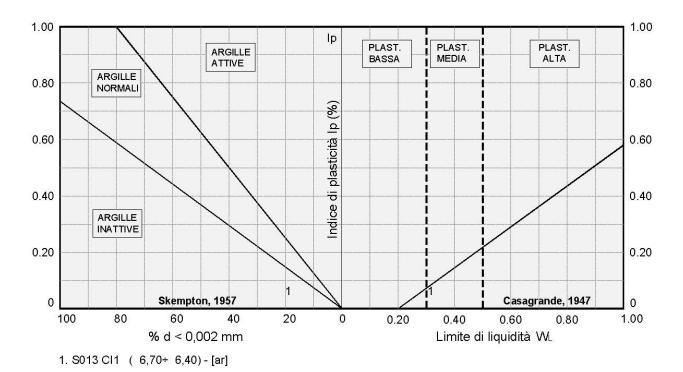
• contenuto naturale d'acqua Wn = 20.8 %

• peso dell'unità di volume $\gamma = 17.5 \text{ kN/mc}$


• indice di consistenza lc > 1

La granulometria risulta essere definita come limo con sabbia argilloso per come si rileva dalla figura che seque.

Figura G.19 - Granulometria terreni formazione ar (Tratto S013)


FORMAZIONE ar

Dalle carte di attività e plasticità della figura seguente si rileva che trattasi di argille inattive a plasticità bassa-media.

Figura G.20 - Attività e plasticità terreni formazione ar (Tratto S013)

Dalla prova di taglio diretto (TD) consolidata drenata si sono ricavati i seguenti parametri di resistenza in termini di tensioni efficaci :

$$c' = 0.00 \text{ KPa}$$
 $\phi' = 34^{\circ}$

Dalle prove di compressione ad espansione laterale libera (ELL) si sono ricavati i seguenti parametri di resistenza in termini di tensioni totali :

$$c_{II} = 97 \text{ kPa}$$

Terreni formazione P

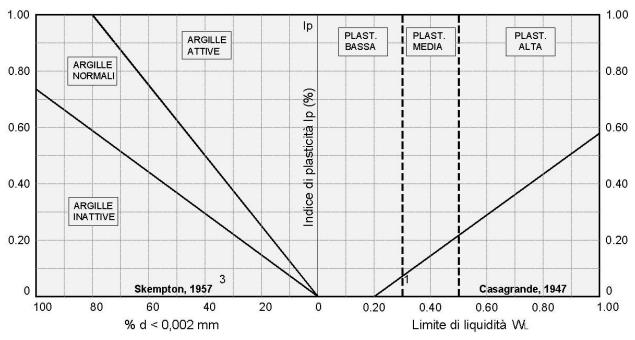
In questi terreni sono stati prelevati due campioni rimaneggiati. Dalle analisi eseguite si sono rilevati le seguenti caratteristiche fisiche:

contenuto naturale d'acqua
 Wn = 34.2.8 %

• peso dell'unità di volume $\gamma = 18.4 \text{ kN/mc}$

indice di consistenza lc > 1

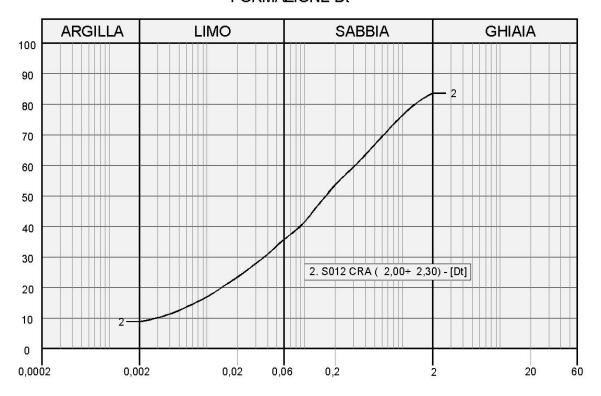
La granulometria risulta compresa nel fuso delimitato da argilla con limo sabbiosa ghiaiosa superiormente ed inferiormente da ghiaia con sabbia limosa argillosa per come si rileva dalla figura che segue.


Figura G.21 - Granulometria terreni formazione P (Tratto S017)

FORMAZIONE P **ARGILLA** SABBIA **GHIAIA** LIMO 100 90 80 70 60 50 40 3. 30 20 3. S017 CRA (6,40+ 6,90) - [P] 4. S017 CRB (11,00÷11,50) - [P] 10 0 0,0002 0,002 0,02 0,06 0,2 60 20

Dalle carte di attività e plasticità si rileva che trattasi di argille inattive a plasticità media.

- 3. S017 CRA (6,40÷ 6,90) [P]
- 4. S017 CRB (11,00÷11,50) [P]


Terreni formazione dt

In questi terreni è stato prelevato un campione rimaneggiato. La granulometria risulta essere definita come sabbia con limo ghiaiosa argillosa .

Figura G.23 - Granulometria terreni formazione Dt (Tratto S012)

FORMAZIONE Dt

G.6.2 Indagini geotecniche in sito

Nel corso delle perforazioni dei sondaggi sono state eseguite prove penetrometriche tipo SPT che hanno fornito i seguenti valori:

- S012:
 - N30 (3.00) = R
- S013:
 - N30 (4.90) = 19
- S017:
 - N30 (3.00) = 19
 - N30 (9.00) = 59
- S032:
 - N30 (2.70) = 53

Alla fine delle perforazioni in alcuni sondaggi sono stati installati dei piezometri a tubo aperto. Le ultime letture eseguite dopo un arco di tempo da uno a due mesi dall'installazione hanno confermato l'assenza della falda nel sondaggio strumentati S032 mentre nei seguenti sondaggi sono stati rilevati i livelli misurati dal piano di campagna:

• S013: - 27.42 m. (04/03/2013)

• S031: - 19.15 m. (08/03/2013)

G.6.3 Parametri geotecnici

Terreni formazione ar

Dalla prova di taglio diretto consolidata drenata e di quella di compressione ELL risultano rispettivamente

c' = 0 kPa,
$$\phi' = 34^{\circ}$$
 $c_u = 97 \text{ kPa}.$

In laboratorio è risultato un indice di consistenza $I_c = 1.55\,$ e dalla curva granulometrica si rileva una percentuale di argilla del 19% per cui anche in relazione anche alle informazioni complementari si ritiene di caratterizzare i terreni afferenti a questa formazione (GsI) con i seguenti parametri :

$$c' = 10 \text{ kPa}, \qquad \qquad \phi' = 32^{\circ} \qquad \qquad c_u = 90 \text{ kPa}.$$

Per quanto riguarda la permeabilità, non si hanno riferimenti né da prove in sito né da prove di laboratorio per cui i coefficienti di permeabilità possono essere attribuiti ai singoli terreni in base alle relative granulometrie di cui alla Figura G.19 secondo le indicazioni della figura G.5 (RGG) in cui il coefficiente di permeabilità e funzione della porosità e della granulometria.

Terreni formazione P, Dt, QI e TR

Questi terreni prevalentemente incoerenti sono stati caratterizzati per comparazione in funzione delle caratteristiche fisiche (consistenza, granulometria) e delle informazioni complementari delle colonne stratigrafiche (valori di Rp) e/o dei risultati delle prove SPT in sito. Per la caratterizzazione del livello dei terreni Calt (Calcareniti alterate) del sondaggio S031 si è proceduto mediante comparazione con i terreni calcarenitici del sondaggio S029 in base agli elementi disponibili, descrizione litologica ed alla documentazione fotografica. I relativi parametri sono riportati nella Tabella G.16.

Le caratteristiche di deformabilità sono state ricavate in funzione dei risultati delle prove SPT con la formula di Schultze e Mezembach

$$E = s_1 \cdot N_{30c} + s_2$$

dove N_{30c} è il valore corretto tramite il coefficiente $C_N = N_{30c}/N_{30}$ determinato dal grafico della figura G.3 (RGG) in funzione della pressione litostatica σ'_{ν}

Per quanto riguarda la permeabilità, non si hanno riferimenti né da prove in sito né da prove di laboratorio per cui i coefficienti di permeabilità possono essere attribuiti ai singoli terreni in base alle relative granulometrie secondo le indicazioni della figura G.5 (RGG) in cui il coefficiente di permeabilità e funzione della porosità e della granulometria.

Sulla base dei risultati delle indagini in sito ed in laboratorio i parametri geotecnici come prima determinati sono riportati per ogni singolo terreno individuato nella tabella che segue.

Tabella G.16 Caratterizzazione terreni appartenenti alle formazioni ar, P, Dt. QI e Tr

			Parametri geotecnici							
Form.	Sigla	Sondaggio	Quote	γ	c'	φ'	c _u	E	Ed	k
				[kN/m ³]	[kPa]	[°]	[kPa]	[MPa]	[MPa]	[cm/s]
ar	Gsl	S013	0.00÷5.00	17.5	0	34		11.6		
ar	Gsl	S013	5.00÷7.00	17.5	10	32	90	11.6		
Р	Gsa	S017	0.00÷2.10	17	0	35				
Р	G-AM	S017	2.10÷9.00	18.4	5	30	65	11.6		
Р	G-CF	S017	9.00÷15.00	19.9	0	38		25.8		
Dt	Gsl	S012	0.00÷3.20	21.6	0	33	30	25		
Ql	Calt	S031	6.50÷8.50	18	5	32	30	101		
TR	TR	S006	0.00÷5.00	17	0	30				
TR	TR-Gsa	S032	0.00÷3.30	18	0	35		53		

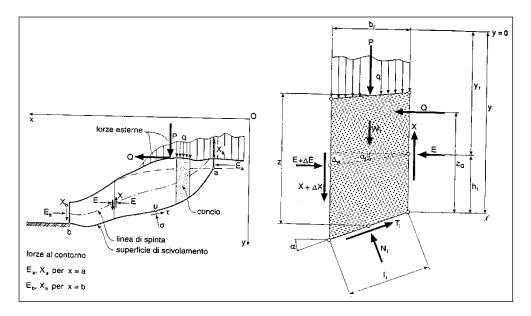
H PARAMETRI GEOTECNICI

H.1 Tabella riassuntiva generale

Nel presente paragrafo si riporta una tabella riassuntiva con i parametri di calcolo da adottare per il dimensionamento delle opere..

Tabella H.1 Tabella riassuntiva generale parametri

							Parametri	geotecnici fori	mazioni lotto 1					
Tratto num.	Progr. In.	Progr. Fin.	Lungh. Tratto [m]	Litotipo	Peso dell'unità di volume y [kN/m3]	Coesione efficace c' [kPa]	Angolo di resistenza a taglio φ' [°]	Coesione non drenata cu [kPa]	Modulo elastico E [MPa]	Modulo edometrico Ed [MPa]	Coefficiente di permeabilità k [cm/s]	Coefficiente di compressibilità Cc [-]	Coefficiente di consolidazione cv [cm²/s]	Coefficiente di Sovracons. OCR [-]
1	0	925	925	Mcm Litoide	24.5	215	27	-	8170	-	-	-	-	-
2	925	1280	355	Mc Litoide	23	260	31	-	11220	-	-	-	-	-
3	1280	1770	490	Mcm Litoide	24.5	215	27	-	8170	-	-	-	-	-
4	1770	1930	160	Mc Litoide	25.9	185	31	-	5730	-	-	-	-	-
5	1930	2100	170	Conoide	17.5	6.8	28	90	17.4	-	-	-	-	-
6	2400	2560	160	Conoide	18.1	5	25	25	12.1	15.9	4.1 x 10 ⁻⁹	0.071	0.000667	1
7	2900	3050	150	Mc Litoide	23	260	31	-	11220	-	-	-	-	-
- 8	3050	3180	130	Ocm Litoide	25.2	185	31	-	1450	-	-	-	-	-
9	3180	3380	200	Dt	21.6	0	33	-	25	-	-	-	-	-
10	3380	4100	720	Ocm Litoide	23	260	31	-	11220	-	-	-	-	-
11	4100	4300	200	Ar	17.5	0	32	-	11.6	-	-	-	-	-
12	4300	4700	400	Mc Sciolta	20	10	31	-	50	-	-	-	-	-
13	4700	5090	390	Mc Litoide Mc sciolta	23 19	230 0	28 36	-	7940 23.4	-	-	-		-
14	5090	5590	500	Р	18.4	5	30	65	11.6			-	-	
				Ocm Litoide	23	160	21	-	3550		-	-	-	-
15	5590	6050	460	Ocm Sciolta	19.3	10.4	33	-	17.4	13.8	7.4×10^{-9}	0.034	0.001052	1
16	6050	6750	700	Mc Litoide	23	240	29	-	8910	-	-	-	-	-
17	6750	7050	300	Ocm Litoide Ocm Sciolta	23 18	260 20	30.5 27	100	10590 54.3	:	-	-	-	-
18	7050	7785	735	Ocm Litoide	23	170	22	- 100	3980	-:-	-	-		-
19	7785	8780	995	Conoide	15.8	5	30	25	46.4	11	1.9 x 10 ⁻⁸	0.101	0.001526	1
20	8780	9250	470	Ocm Litoide Ocm Sciolta	22.5 15.8	130	35 30	-	1060 100.1	:	-	-	_	-
21	9250	9560	310	Dt	21.6	0	33	-	25	-	-	-	-	
				Qm	18	10	28	60	22.6	-	2.56 x 10 ⁻⁸	0.0127	0.001284	1
22	9560	9690	130	Qm	20	15	24	90	22.6	-	2.56 x 10 ⁻⁸	0.0127	0.001284	1
23	9690	10420	730	Mcm Litoide Mcm sciolta	23	340	38.5	-	26600	-	-	-	-	-
	40400	10000	540		17.9	5	34	-	101	-	-	-	-	-
24	10420		540	Qm	19	0	34	-	22.6	-	-	-	-	-
25		11150	190	Mcm Litoide	23.7	130	35 30	-	3190	-	-	-	-	-
26	11150	11360	210	Qm	19.5	0	30	-	12.7	-	-	-	-	-


I VERIFICHE DI STABILITA' SCAVI A CIELO APERTO

Le verifiche di stabilità degli scavi a cielo aperto consentono di accertare che la geometria della sezioni esaminate lungo il corpo stradale, in relazione alle caratteristiche di resistenza al taglio del materiale impiegato, assicuri un sufficiente fattore di sicurezza nei confronti della rottura.

L'analisi di stabilità è stata condotta secondo il principio dell'equilibrio limite globale; come è noto tale verifica si conduce esaminando un certo numero di possibili superfici di scivolamento per ricercare quella che rappresenta il rapporto minimo tra la resistenza a rottura disponibile e quella effettivamente mobilitata; il valore di questo rapporto costituisce il coefficiente di sicurezza del pendio.

Scelta quindi una superficie di rottura, si suddivide in conci la parte instabile, si studia poi l'equilibrio della singola striscia e infine si passa alla stabilità globale; qui di seguito sono riportate schematicamente le azioni agenti su di un singolo concio.

Figura I.1: Forze agenti sul singolo concio

Per ogni concio sono disponibili per la risoluzione del sistema le tre equazioni della statica (equilibrio traslazione verticale, orizzontale ed equilibrio dei momenti), quindi per n conci si avranno 3n equazioni linearmente indipendenti.

Per l'analisi di stabilità è stato utilizzato il metodo di calcolo di Bishop, che permette di determinare il coefficiente di sicurezza alla rottura.

Le analisi sono state condotte utilizzando superfici di rottura circolari; come prescritto dalla normativa la verifica viene effettuata secondo la "Combinazione 2": (A2+M2+R2) in condizioni statiche e (M2+R2+Sisma) in condizioni sismiche.

Il fattore di sicurezza minimo del versante è stato assunto pari a 1.10 così come indicato dalle Norme Tecniche e più precisamente al punto 6.8.2 del DM 14/01/2008. Tale fattore di sicurezza viene applicato sia per il caso statico che per il caso sismico.

Il lotto in oggetto è stato suddiviso in tratte geotecnicamente omogenee; tutte le tratte sono state esaminate; tuttavia all'interno della presente relazione si riportano solo quelle più significative.

I risultati delle verifiche saranno presentati mediante schede sintetiche per ognuna delle formazioni evidenziate.

All'interno di ogni singola scheda si riportano:

- Altezza massima piede scarpata;
- · Parametri geotecnici utilizzati;
- Parametri sismici utilizzati;
- Pendenza della scarpata verificata nel modello;
- Fattori di sicurezza delle analisi di stabilità in condizione statica e in condizione sismica.

All'interno di ogni singola scheda è altresì inserito l'output in forma grafica delle analisi di stabilità per la combinazione sismica, risultante sempre la più gravosa.

La categoria di suolo è stata scelta, in base ad una valutazione del sedime di fondazione del singolo tratto.

Nella presente relazione si forniscono pertanto i risultati delle verifiche di stabilità delle formazioni litoidi della formazione Ragusa (Ocm, Mcm e Mc), con i parametri meccanici minimi riscontrabili per le formazioni in oggetto e del litotipo Terrazzo Palustre P (terreno di natura prevalentemente limosa) ricadente tra le progressive 5+450 e 5+590.

Nel primo caso (litoidi della formazione Ragusa), si è tenuto conto anche della cinematica dei possibili blocchi generati dalle famiglie di discontinuità presenti negli ammassi rocciosi; per tali analisi si rimanda al relativo capitolo.

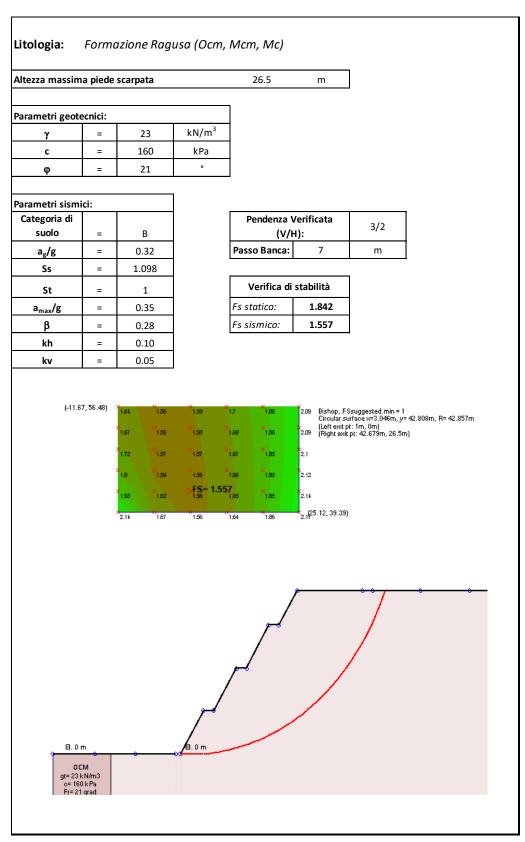
Nel secondo caso (Terrazzo Palustre P), si prevede l'intervento di protezione superficiale con specie erbacee a radicazione profonda finalizzato a realizzare un intervento di armatura

vegetale. Tale intervento consiste in un'idrosemina superficiale, in grado di rinverdire il pendio e creare delle radici nel terreno di lunghezza variabile in funzione della tipologia di terreno. Tale intervento crea un aumento di coesione localizzato che migliora le condizioni di stabilità del fronte di scavo. Tale contributo sarà considerato solamente nelle verifiche di stabilità in condizione sismiche, rappresentanti una condizione di lungo termine.

I.1 Litotipi formazione Ragusa (Ocm, Mcm, Mc)

Per la caratterizzazione geotecnica di questa formazione, sono stati considerati i dati derivanti dall'elaborazione delle stazioni geomeccaniche e le risultanze dei sondaggi. La verifica di stabilità, condotta sia in condizione statica che in condizione sismica, interessa la trincea più alta del lotto 1; i parametri meccanici indicati nella scheda sintetica risultano i peggiori di tutte le formazioni rocciose presenti nel lotto; in particolare è stata presa a riferimento la stazione geomeccanica SG048.

La pendenza di progetto delle scarpate per i tratti interessati dalle formazioni in oggetto risulta pari a 3/2 (V/H), con la realizzazione di una banca di larghezza pari a 2 m, ogni 7 m di altezza.


I risultati delle verifiche in condizioni statiche e in condizioni sismiche risultano pari rispettivamente a 1.842 e 1.557, superiori al limite previsto dalla normativa pari a 1.100.

Nella figura seguente si riporta la scheda con la sintesi dei parametri di input, pendenza di progetto e fattori di sicurezza.

Tutti i dettagli del calcolo sono riportati in allegato.

Figura I.2: Scheda di verifica trincea

I.2 Litotipo Terrazzo Palustre pk. 5+450÷5+590

Il litotipo in oggetto è stato caratterizzato con le risultanze del sondaggio S017. La verifica di stabilità è stata condotta per un'altezza massima di 14 m.

Come si evince dalla scheda allegata di seguito, la pendenza di progetto delle scarpate per il tratto in oggetto risulta pari a 2/3.5 (V/H), con la realizzazione di una banca di larghezza pari a 2 m, ogni 5 m di altezza.

Per tale tratto si prevede l'intervento superficiale di idrosemina con specie erbacee a radicazione profonda finalizzato a realizzare un intervento di armatura vegetale.; considerando tale presenza per la sola condizione sismica si è valutato nelle calcolazioni una coesione aggiuntiva media pari a 40 kPa per uno strato superficiale di larghezza cautelativamente pari a 1.4 m, valore tarato per il litotipo in oggetto.

I risultati delle verifiche in condizioni statiche e in condizioni sismiche risultano pari rispettivamente a 1.286 e 1.111, superiori al limite previsto dalla normativa pari a 1.100.

Le verifiche mostrano come per la condizione statica si raggiunge la stabilità del versante con pendenza 2/3.5 anche senza considerare la presenza dell'intervento superficiale; la presenza di tale intervento consente di considerare superfici di scivolamento più profonde, che portano a fattori di sicurezza soddisfacenti la normativa vigente.

Nelle figure seguenti si riportano la scheda con la sintesi dei parametri di input, pendenza di progetto, le indicazioni progettuali dovute all'intervento superficiale e gli output grafici delle verifiche di stabilità globale, in condizione statica e in condizione sismica.

Tutti i dettagli del calcolo sono riportati in allegato.

Figura I.3: Parametri di input modello e risultati delle verifiche

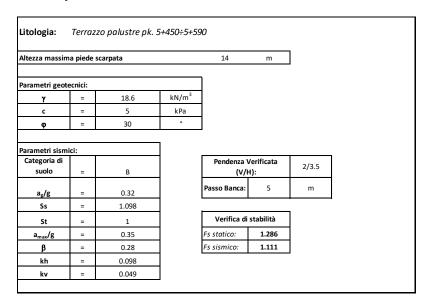
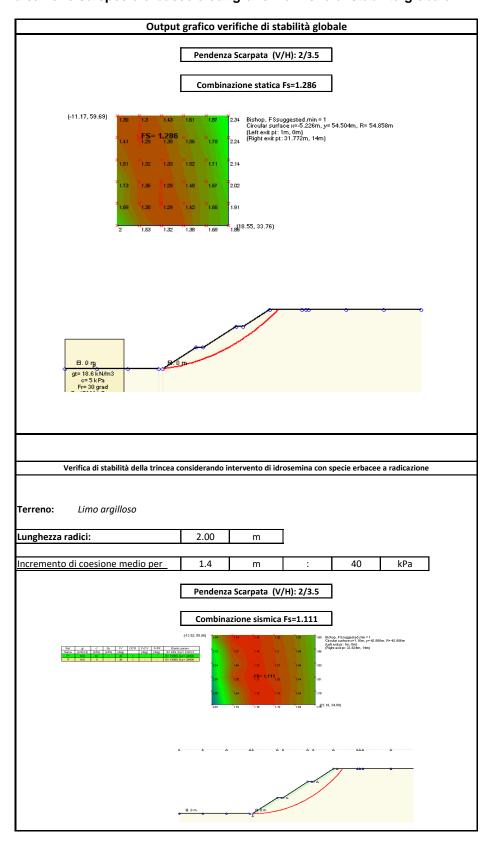



Figura I.4: Indicazione su specie erbacee e out grafici verifiche di stabilità globale

I.3 Tabelle riassuntive pendenza della scarpate

Nel presente paragrafo si riporta una tabella riassuntiva con l'indicazione progettuale per tutte le trincee all'interno del lotto, compilata sulla base di tutte le verifiche effettuate. Nell'ultima colonna si evidenziano gli eventuali interventi di consolidamento da effettuare, costituiti da specie erbacee e da Soil Nailing (sigla S.N.) nel caso di interventi di chiodatura del fronte.

Tabella I.1: Indicazioni progettuali pendenza trincee

Progr. In.	Progr. Fin.	Litotipo	Descrizione Litotipo	Pendenza (V/H)	Banca	Intervento superficiale
0	925	Mcm	Calcareniti grigio- giallastre irregolarmente alternate a marne siltose friabili	3/2	largh. = 2 m ogni 7 m di altezza	
925	1280	Мс	Alternanza di biocalcareniti cementate e calcareniti marnose	3/2	largh. = 2 m ogni 7 m di altezza	
1280	1776	Mcm	Calcareniti grigio- giallastre irregolarmente alternate a marne siltose friabili	3/2	largh. = 2 m ogni 7 m di altezza	
1776	1936	Мс	Alternanza di biocalcareniti cementate e calcareniti marnose	3/2	largh. = 2 m ogni 7 m di altezza	
2406	2566	Conoide	Detrito conoide	1/2	largh. = 2 m ogni 5 m di altezza	
2906	3056	Мс	Alternanza di biocalcareniti cementate e calcareniti marnose	3/2	largh. = 2 m ogni 7 m di altezza	S.N.
3056	3386	Dt sotto Ocm	Copertura detritica	1/2	largh. = 2 m ogni 5 m di altezza	
3386	4106	Ocm	Calcisiltiti marne e calcari marnosi	3/2	largh. = 2 m ogni 7 m di altezza	
4706	5096	Мс	Alternanza di biocalcareniti cementate e calcareniti marnose.	3/2	largh. = 2 m ogni 7 m di altezza	
5096	5456	Terrazzo palustre	Terrazzo palustre	1/2	largh. = 2 m ogni 5 m di altezza	
5456	5596	Terrazzo palustre	Terrazzo palustre	2/3,5	largh. = 2 m ogni 5 m di altezza	*1
5596	6056	Ocm	Calcisiltiti marne e calcari marnosi	3/2	largh. = 2 m ogni 7 m di altezza	
6186	6756	Мс	Alternanza di biocalcareniti cementate e calcareniti marnose.	3/2	largh. = 2 m ogni 7 m di altezza	
6756	7056	Ocm	Calcisiltiti marne e calcari marnosi	3/2	largh. = 2 m ogni 7 m di altezza	
7206	7794	Ocm	Calcisiltiti marne e calcari marnosi	3/2	largh. = 2 m ogni 7 m di altezza	
8351	8781	Conoide	Copertura detritica	2/3	largh. = 2 m ogni 5 m di altezza	
8781	9251	Ocm e Dt	Calcisiltiti marne e calcari marnosi e detrito superficiale	3/2	largh. = 2 m ogni 7 m di altezza	
9251	9301	Dt	Detrito	2/3,5	largh. = 2 m ogni 5 m di altezza	
9681	10401	Mcm	Calcareniti grigio- giallastre irregolarmente alternate a marne siltose friabili	3/2	largh. = 2 m ogni 7 m di altezza	
10401	10921	Qm	Depositi limici, silt e argille lacustri	1/2	largh. = 2 m ogni 5 m di altezza	
10921	11151	Mcm	Calcareniti grigio- giallastre irregolarmente alternate a marne siltose friabili	3/2	largh. = 2 m ogni 7 m di altezza	
11151	11361	Qm	Depositi limici, silt e argille lacustri	1/2	largh. = 2 m ogni 5 m di altezza	
*1: idros	emina a rad	dicazione p	rofonda finalizzato a realizzare	un intervento d	i armatura vegeta	ile

^{*1:} idrosemina a radicazione profonda finalizzato a realizzare un intervento di armatura vegetale [Vedi specifiche di capitolato]

S.N. = Interventi di placcaggio mediante tecniche di soil nailing

I.4 Indicazioni progettuali viabilità secondarie e svincoli

Dall'analisi dei litotipi interessanti le viabilità secondarie e gli svincoli, tutti i casi sono riconducibili a quanto visto per l'asse principale e pertanto non si riportano verifiche specifiche.

Di seguito si riporta una tabella con l'indicazione progettuale della pendenza delle scarpate per le secondarie e per gli svincoli.

Tabella I.2: Indicazioni progettuali pendenza trincee viabilità secondarie parte 1

N° Sec.	Progr. In.	Progr. Fin.	Litotipo	Pendenza (V/H)	Banca	Intervento superficiale
SEC 01	0	1633	Mcm/C	3/2	largh. = 2 m ogni 7 m di altezza	
SEC 01bis	0	252	Mc/C	3/2	largh. = 2 m ogni 7 m di altezza	
SEC 04	0	265	Mcm/C	3/2	largh. = 2 m ogni 7 m di altezza	
SEC 05	0	1382	Mcm/C	3/2	largh. = 2 m ogni 7 m di altezza	
SEC 06	0	1821	Ocm/C	3/2	largh. = 2 m ogni 7 m di altezza	
SEC 07	0	946	Mc/C	3/2	largh. = 2 m ogni 7 m di altezza	
SEC 09	0	253	dt	1/2	largh. = 2 m ogni 5 m di altezza	
SEC 10	0	215	Р	1/2	largh. = 2 m ogni 5 m di altezza	
SEC 11	0	603	Mc/Ocm	3/2	largh. = 2 m ogni 7 m di altezza	
050.40	0	356	Р	1/2	largh. = 2 m ogni 5 m di altezza	
SEC 12	356	776	Ocm	3/2	largh. = 2 m ogni 7 m di altezza	
	0	348	Мс	3/2	largh. = 2 m ogni 7 m di altezza	
SEC 13	348	410	Dt	2/3.5	largh. = 2 m ogni 5 m di altezza	
	410	498	Mc-Ocm	3/2	largh. = 2 m ogni 7 m di altezza	
SEC 14	0	209	Conoide	2/3	largh. = 2 m ogni 5 m di altezza	
SEC 15	0	308	Conoide	2/3	largh. = 2 m ogni 5 m di altezza	

Tabella I.3: Indicazioni progettuali pendenza trincee viabilità secondarie parte 2

N° Sec.	Progr. In.	Progr. Fin.	Litotipo	Pendenza (V/H)	Banca	Intervento superficiale
	0	20	Conoide	2/3	largh. = 2 m ogni 5 m di altezza	
SEC 16	20	233	Ocm	3/2	largh. = 2 m ogni 7 m di altezza	
	233	311	Conoide	2/3	largh. = 2 m ogni 5 m di altezza	
SEC 17 RAMPA 1	0	183	Qm	1/2	largh. = 2 m ogni 5 m di altezza	
SEC 17 RAMPA 2	0	52	Qm	1/2	largh. = 2 m ogni 5 m di altezza	
OFO 47 DAMDA 2	0	50	Qm	1/2	largh. = 2 m ogni 5 m di altezza	
SEC 17 RAMPA 3	50	124	Rilevato	2/3.5	largh. = 2 m ogni 5 m di altezza	
SEC 17 RAMPA 4	0	150	Rilevato	2/3.5	largh. = 2 m ogni 5 m di altezza	
SEC 17 ROT 2	0	91	Qm	1/2	largh. = 2 m ogni 5 m di altezza	
SEC 18	0	420	Mcm	3/2	largh. = 2 m ogni 7 m di altezza	
	0	78	Qm	1/2	largh. = 2 m ogni 5 m di altezza	
SEC 19	78	308	Mcm	3/2	largh. = 2 m ogni 7 m di altezza	
	308	605	Qm	1/2	largh. = 2 m ogni 5 m di altezza	
	0	20	Mcm	3/2	largh. = 2 m ogni 7 m di altezza	
SEC 20	20	316	Qm	1/2	largh. = 2 m ogni 5 m di altezza	
	316	428	Mcm	3/2	largh. = 2 m ogni 7 m di altezza	

Tabella I.4: Indicazioni progettuali pendenza trincee svincoli

N° Svincolo	Progr. In.	Progr. Fin.	Litotipo	Pendenza (V/H)	Banca	Intervento superficiale
SVINCOLO 01			Mcm	3/2	largh. = 2 m ogni 7 m di altezza	
SVINCOLO 02 - RAMPA 1	21	106	Qm	2/3	largh. = 2 m ogni 6 m di altezza	
SVINCOLO 02 - RAMPA 3	0	92	Qm	2/3	largh. = 2 m ogni 6 m di altezza	
SVINCOLO 02 - ROT 01	0	107	Qm	2/3	largh. = 2 m ogni 6 m di altezza	

J ANALISI DI STABILITA' FRONTI DI SCAVO IN ROCCIA

Nel presente capitolo, dopo aver esposto i criteri di analisi e dimensionamento dei fronti di scavo in roccia, si presentano i risultati delle verifiche.

J.1 Metodi di analisi

J.1.1 Analisi di stabilità per scivolamento planare

J.1.1.1 Introduzione

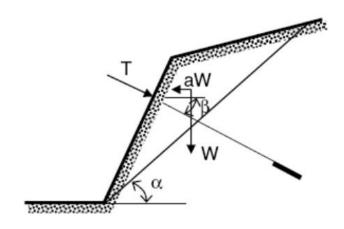
L'analisi di stabilità di pareti di scavo nei confronti di possibile scivolamento planare è stata effettuata partendo da un'attenta analisi dei dati relativi al rilievo strutturale dell'ammasso roccioso ed eseguendo successivamente un'analisi cinematica in proiezione stereografica, al fine di individuare potenziali fenomeni di instabilità.

Per l'analisi dinamica di stabilità si è invece fatto ricorso ad un codice di calcolo interno, elaborato su base Excel, il quale consente di calcolare mediante il metodo dell'equilibrio limite, il fattore di sicurezza per semplice scorrimento planare di un blocco di roccia, definito dall'intersezione di una superficie di discontinuità e dalla superficie del fronte.

Il programma esegue un'analisi bidimensionale per unità di lunghezza del pendio e tutte le forze considerate nell'analisi (ad esempio peso proprio, sisma, forze esterne, azioni del rinforzo) vengono assunte agenti nel baricentro del cuneo, pertanto eventuali momenti non vengono considerati. Questo implica che la modalità di collasso possibile da indagare sia solamente di tipo traslazionale, sicché fenomeni di instabilità rotazionale o per ribaltamento non possono essere studiati.

J.1.1.2 Determinazione del fattore di sicurezza

Il foglio di calcolo consente di determinare il fattore di sicurezza per scivolamento attraverso un semplice rapporto tra forze stabilizzanti e forze instabilizzanti definite dall'utente. Tutte le forze vengono scomposte lungo la direzione del piano di scivolamento e il calcolo si riduce al rapporto tra due risultanti, una relativa alle azioni stabilizzanti ed una relativa a quelle stabilizzanti lungo la superficie di scivolamento. Il fattore di sicurezza adottato nelle analisi si riduce in questa forma:


$$\text{FS = } \frac{\text{Forza stab.}}{\text{Forza instab.}} = \frac{(\text{W} \cos \alpha + \text{T} \sin (\alpha + \beta) - \text{kW} \sin \alpha) \tan \phi + \text{cA}}{\text{W} \sin \alpha - \text{T} \cos (\alpha + \beta) + \text{kW} \cos \alpha}$$

dove:

- α = angolo di inclinazione della superficie di scivolamento.
- β = angolo di inclinazione del tirante rispetto all'orizzontale
- W = peso proprio a metro lineare
- T = azione del rinforzo attivo a metro lineare
- k = coefficiente sismico orizzontale.

Figura J.1: Schema geometrico

J.1.1.3 Considerazioni sull'azione sismica

Per quanto riguarda l'azione sismica, l'equazione di cui sopra consente di tenere in conto dell'effetto instabilizzante del sisma sul cuneo solamente in direzione orizzontale. Per tener conto anche dell'azione sismica in direzione verticale è stato ipotizzato un incremento e/o alleggerimento del peso proprio del cuneo andando ad agire sul parametro peso per unità di volume.

J.1.1.4 Criteri di resistenza

Il foglio di calcolo permette di adottare due differenti criteri di resistenza per le discontinuità. In tutte le analisi il criterio di resistenza che è stato adottato per caratterizzare il comportamento delle discontinuità scabre e pulite, ossia senza materiale di riempimento (coesione nulla) è quello di Barton-Bandis, come riportato di seguito:

$$\tau_i = \sigma_i' tan \left[JRC_i log \left(\frac{JCS_i}{\sigma_{n,i}} \right) + \phi_{r,i}' \right]$$

dove:

- JRCi = coefficienti di scabrezza del giunto i-esimo
- JCSi = coefficiente di resistenza di parete del giunto i-esimo
- Φr,i = angolo di attrito residuo del giunto i-esimo.

In tutte le analisi il criterio di resistenza che è stato adottato per caratterizzare il comportamento delle discontinuità in presenza di significativo materiale di riempimento è quello di Mohr-Coulomb, riportato di seguito:

$$\tau_i = \sigma'_{n,i} \tan \varphi_i + c_i$$

dove:

- Φi = angolo di attrito del giunto i-esimo
- ci = coesione del giunto i-esimo

J.1.2 Analisi di stabilità per scivolamento di cunei

J.1.2.1 Introduzione

L'analisi di stabilità di pareti di scavo nei confronti di possibile scorrimento di cunei è stata effettuata partendo da un'attenta analisi dei dati provenienti dal rilievo strutturale dell'ammasso roccioso ed eseguendo successivamente un'analisi cinematica in proiezione stereografica, al fine di individuare potenziali geometrie dei cunei e modalità di rottura di quest'ultimi.

Per l'analisi dinamica di stabilità si è invece fatto ricorso al programma di calcolo Swedge v.5 della Rocscience, il quale consente di calcolare il fattore di sicurezza per semplice scorrimento di un cuneo superficiale in roccia, definito dall'intersezione di due piani di discontinuità e dalla superficie del fronte, nonché dall'eventuale presenza di un giunto di trazione.

J.1.2.2 Tipologia di analisi

L'analisi condotta per lo scivolamento di cunei adottata nella presente analisi risulta essere di tipo deterministico.

J.1.2.3 Definizione geometrica del cuneo e analisi cinematica di stabilità

In tutte le analisi di stabilità gli input utilizzati per definire la geometria del cuneo potenzialmente instabile sono i seguenti:

- Altezza del fronte di scavo;
- Giacitura del fronte di scavo;
- Giacitura dei piani di discontinuità;
- Persistenza dei piani di discontinuità (funzione Scale Swedge);

Il metodo adottato dal programma per la determinazione del potenziale cuneo è quello descritto da Goodman and Shi (1985). Il codice consente inoltre di avere una rappresentazione stereografica del potenziale cuneo di rottura.

Figura J.2: Esempio di output grafico cuneo

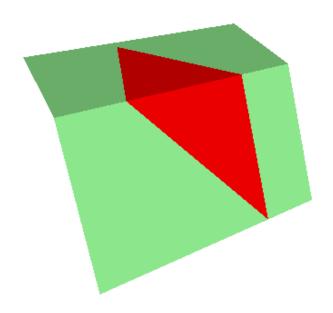
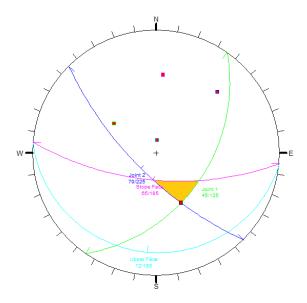



Figura J.3: Esempio di reticolo stereografico

J.1.2.4 Determinazione del fattore di sicurezza

Il programma classifica tutte le forze sul cuneo come Attive o Passive: quelle Attive rappresentano le forze instabilizzanti nel calcolo del fattore di sicurezza, mentre quelle Passive rappresentano forze stabilizzanti o resistenti ai fini della stabilità. Il programma esegue un'analisi di tipo vettoriale, calcolando i vettori di ogni singola forza (es: peso del cuneo, azione del rinforzo, azione dell'acqua, ecc), successivamente attraverso un'operazione di somma – anch'essa di tipo vettoriale - determina i vettori risultanti delle forze attive e passive.

Per ciò che attiene la direzione di scivolamento Swedge considera 4 possibili direzioni di scivolamento. Queste sono: caduta /sollevamento, scivolamento su una singola superficie di discontinuità o scivolamento lungo la linea di intersezione di due piani dii discontinuità. Il processo di calcolo della direzione di scivolamento che esegue il software si articola in due fasi:

- 1. calcola tutte le possibili direzioni di scivolamento
- 2. determina quale delle possibili direzioni di scivolamento è la direzione valida.

Definita la direzione di scivolamento e i vettori delle risultanti delle azioni, il programma calcola un fattore di sicurezza così semplificato:

$$FS = \frac{\text{forze stabilizzanti (es: resistenza al taglio, rinforzo, ecc)}}{\text{forze destabilizzanti (es: peso, sisma, acqua, ecc)}}$$

J.1.2.5 Considerazioni sull'azione sismica

Per quanto riguarda l'azione sismica, Swedge consente di tenere in conto dell'effetto instabilizzante del sisma sul cuneo solamente in direzione orizzontale. Per tener conto anche dell'azione sismica in direzione verticale è stato ipotizzato un incremento e/o alleggerimento del peso proprio del cuneo andando ad agire sul parametro peso per unità di volume.

J.1.2.6 Criteri di resistenza

I criteri di resistenza per le discontinuità adoperati nelle analisi sono:

- Mohr-Coulomb
- Barton-Bandis

In tutte le analisi il criterio di resistenza che è stato adottato per caratterizzare il comportamento delle discontinuità scabre e pulite, ossia senza materiale di riempimento (coesione nulla) è quello di Barton-Bandis, come riportato di seguito:

$$\tau_i = \sigma_i' \tan \left[\mathsf{JRC}_i \log \left(\frac{\mathsf{JCS}_i}{\sigma_{ni}} \right) + \phi_{r,i}' \right]$$

dove:

- JRCi = coefficienti di scabrezza del giunto i-esimo
- JCSi = coefficiente di resistenza di parete del giunto i-esimo
- Φr,i = angolo di attrito residuo del giunto i-esimo.

In tutte le analisi il criterio di resistenza che è stato adottato per caratterizzare il comportamento delle discontinuità in presenza di significativo materiale di riempimento è quello di Mohr-Coulomb, riportato di seguito:

$$\tau_i = \sigma'_{n,i} \tan \varphi_i + c_i$$

dove:

- Φi = angolo di attrito del giunto i-esimo
- ci = coesione del giunto i-esimo

J.2 Verifiche di stabilità fronti scavo in roccia asse principale

Nel presente paragrafo si riportano le analisi di stabilità dei fronti di scavo relativi all'asse principale.

Tutte le sezioni più gravose all'interno del lotto in oggetto sono state esaminate; tuttavia all'interno della presente relazione si riportano le più significative.

Le analisi di seguito riportate sono identificate con la numerazione dei tratti riportati all'interno della Tabella I.1 della presente relazione.

J.2.1 Verifiche di stabilità tratto 7

J.2.1.1 Sezione di studio

In questo capitolo si riportano le schede sintetiche relative alle analisi di stabilità eseguite per il fronte destro della sezione critica del tratto 7 - Lotto n.1 compreso tra le progressive chilometriche pk 2+900 e 3+050.

Tabella J.1: Caratteristiche delle sezione analizzata

SEZIONE	Progr. [m]	Tipo opera	Altezza massima Scarpata [m]	Inclinazione scarpate [v/h]	Immersione scarpata [°]
Dx_164	3+033,00	Permanente	16,05	3/2	302

J.2.1.2 Parametri geotecnici di calcolo

I parametri geotecnici impiegati nelle analisi di stabilità sono stati desunti dal rilievo della stazione geo-meccanica SG02 posta alla progressiva pk 2+950. Essi sono riferiti alla scala di sito e non di laboratorio, pertanto ritenuti valori caratteristici da utilizzare direttamente nelle analisi.

Tabella J.2: Parametri geotecnici utilizzati

	M1	M2
Unità litoide	Mc	Mc
γ	26 [kN/m³]	26 [kN/m³]
φ' res	27 (°)	22,2 (°)
JRC	10,2 (-)	8,16 (-)
JCS	703 (t/m²)	703 (t/m²)

Tabella J.3: Coefficienti riduttivi

	M1	M2
γ_{γ}	1,00	1,00
γ_{ϕ}	1,00	1,25
ΥJRC	1,00	1,25
γJCS	1,00	1,00

Per i parametri riduttivi relativi al peso di volume e all'angolo di attrito di base, si sono utilizzati quelli previsti di normativa per le terre. Per quanto riguarda i coefficienti riduttivi relativi ai parametri JRC e JCS, si è proposto di abbattere del 25% il solo parametro di scabrezza (JRC) ritenendo sufficientemente cautelativa l'assunzione qui fatta.

J.2.1.3 Parametri sismici di calcolo

Per le analisi in condizioni sismiche è stato preso a riferimento lo stato limite di salvaguardia della vita (SLV) e dunque i seguenti parametri:

Tabella J.4: Parametri sismici utilizzati

ag/g	0,336 (-)
St	1 (-)
Ss	1 (-)
amax/g	0,336 (-)
β	0,3 (-)
K_h	0,10 (-)
K_{v}	0,05 (-)

J.2.1.4 Verifiche di stabilità a scorrimento

Nella tabella seguente si riportano fattori di sicurezza relativi ciascun fenomeno di instabilità potenzialmente verificabile. Si osserva che il fattore di sicurezza minimo nei confronti della stabilità è stato assunto pari a 1.10 così come indicato dalle Norme Tecniche e più precisamente al punto 6.8.2 del DM 14/01/2008. Tale fattore di sicurezza viene applicato sia per il caso statico che per il caso sismico, rispettivamente nelle combinazioni (A2 + M2 + R2) e (M2 + R2 + SISMA).

Tabella J.5: Verifiche di stabilità

Fenomeni potenzialmente instabili	CONDIZIONI STATICHE Fattore di sicurezza minimo $(\gamma_R \ge 1,1)$	CONDIZIONI SISMICHE Fattore di sicurezza minimo (γ _R ≥ 1,1)
scivol plan F - k4	1,23	1,02
cuneo k1 - k4	NOT FORMED	NOT FORMED
cuneo k1 - k3	NOT FORMED	NOT FORMED
cuneo k3 - k4	4,29	3,22

Nella figura seguente si riporta l'output grafico di Swedge con riferimento allo scivolamento a cuneo

Figura J.4: Immagine relativo al cuneo k3-k4

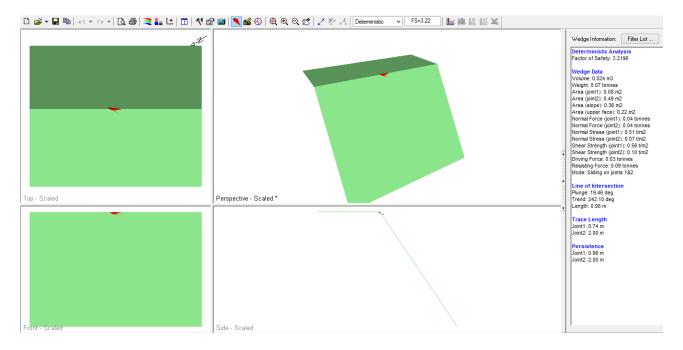


Figura J.5: Reticolo stereografico relativo al cuneo k3-k4

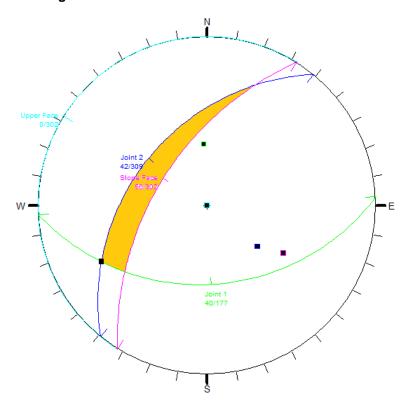


Figura J.6: Geometria di scivolamento planare F-k4

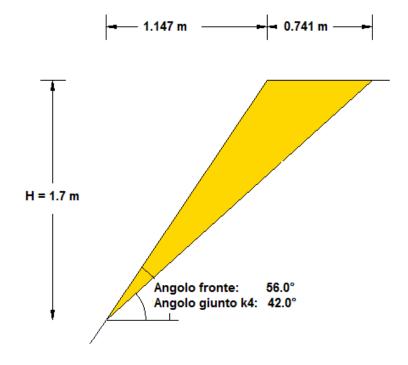


Tabella J.6: Risultati analisi di scivolamento planare

Risultante azioni instabilizzanti	1,28 t/m
Risultante azioni stabilizzanti	1,3 t/m
Peso proprio del cuneo	1,72 t/m
Volume del cuneo	0,63 m ³ /m
R_d/E_d	1,02

Tiro stabilizzante (ortogonale al fronte)

0,1 t/m

NOTA: il tiro stabilizzante è tale da garantire un fattore di sicurezza minimo ($\gamma_R = 1,10$)

J.2.1.5 Considerazioni conclusive

Dai risultati che emergono dalle analisi, e considerate le modeste dimensioni dei possibili cunei di distacco derivanti da una spaziatura dei giunti pari a 0,15 m e da una persistenza non superiore ai 2 m, sia per scivolamento planare che tridimensionale, per tale tratto non si giudica idoneo un intervento sistematico di chiodatura o di spritz armato. Si ritiene pertanto sufficiente un intervento di stabilizzazione della parete di scavo mediante reti paramassi, i cui chiodi hanno la sola funzione di ancorare tale rete alla parete.

Si propone una rete dalle seguenti caratteristiche:

pannello 3 x 6 m di rete ad alta energia di assorbimento (HEA) costituito da fune metallica (ϕ 10 mm) intrecciata a formare maglie romboidali 400x400 mm

Per l'ancoraggio della rete si prevedono bulloni L=2m ogni 6mq.

J.2.2 Verifiche di stabilità tratto 14

J.2.2.1 Sezione di studio

In questo capitolo si riportano le schede sintetiche relative alle analisi di stabilità eseguite per il fronte sinistro della sezione critica del tratto 14 - Lotto n.1 in corrispondenza tra le progressive

chilometriche pk 6+750 e 7+050. Da analisi cinematica di stabilità in proiezione stereografica si escludono potenziali instabilità per il fronte destro.

Tabella J.7: Caratteristiche delle sezione analizzata

SEZIONE	Progr.	Tipo opera	Altezza massima Scarpata	Inclinazione scarpate	Immersione scarpata
	[m]		[m]	[v/h]	[°]
D_387	6+980,00	Permanente	11,50	3/2	45

J.2.2.2 Parametri geotecnici di calcolo

I parametri geotecnici impiegati nelle analisi di stabilità sono stati desunti dal rilievo della stazione geo-meccanica SG08 posta alla progressiva pk 6+835. Essi sono riferiti alla scala di sito e non di laboratorio, pertanto ritenuti valori caratteristici da utilizzare direttamente nelle analisi.

Tabella J.8: Parametri geotecnici utilizzati

	M1	M2	
Unità litoide	Ocm	Ocm	
γ	25,9 [kN/m ³]	$25,9 [kN/m^3]$	
ϕ'_{res}	22 (°)	17,9 (°)	
JRC	10,1 (-)	8,08 (-)	
JCS	1238 (t/m²)	1238 (t/m²)	

Tabella J.9: Coefficienti riduttivi

	M1	M2
γ_{γ}	1,00	1,00
γ_{ϕ}	1,00	1,25
γJRC	1,00	1,25
γJCS	1,00	1,00

Per i parametri riduttivi relativi al peso di volume e all'angolo di attrito di base, si sono utilizzati quelli previsti di normativa per le terre. Per quanto riguarda i coefficienti riduttivi relativi ai parametri JRC e JCS, si è proposto di abbattere del 25% il solo parametro di scabrezza (JRC) ritenendo sufficientemente cautelativa l'assunzione qui fatta.

J.2.2.3 Parametri sismici di calcolo

Per le analisi in condizioni sismiche è stato preso a riferimento lo stato limite di salvaguardia della vita (SLV) e dunque i seguenti parametri:

Tabella J.10: Parametri sismici utilizzati

ag/g	0,336 (-)
St	1 (-)
Ss	1 (-)
amax/g	0,336 (-)
β	0,3 (-)
K_h	0,10 (-)
K_{v}	0,05 (-)

J.2.2.4 Verifiche di stabilità a scorrimento

Nella tabella seguente si riportano fattori di sicurezza relativi ciascun fenomeno di instabilità potenzialmente verificabile. Si osserva che il fattore di sicurezza minimo nei confronti della stabilità è stato assunto pari a 1.10 così come indicato dalle Norme Tecniche e più precisamente al punto 6.8.2 del DM 14/01/2008. Tale fattore di sicurezza viene applicato sia per il caso statico che per il caso sismico, rispettivamente nelle combinazioni (A2 + M2 + R2) e (M2 + R2 + SISMA).

Tabella J.11: Verifiche di stabilità

Cinematismi potenzialmente instabili	CONDIZIONI STATICHE Fattore di sicurezza minimo (γ _R ≥ 1,1)	CONDIZIONI SISMICHE Fattore di sicurezza minimo (γ _R ≥ 1,1)
Scivol. Cuneo k2 - k1	2,52	1,95
Scivol. Cuneo k1 - k3	91,70	13,97

Nella figura seguente si riporta l'output grafico di Swedge con riferimento allo scivolamento a cuneo

Figura J.7: Immagine relativo al cuneo k2-k1

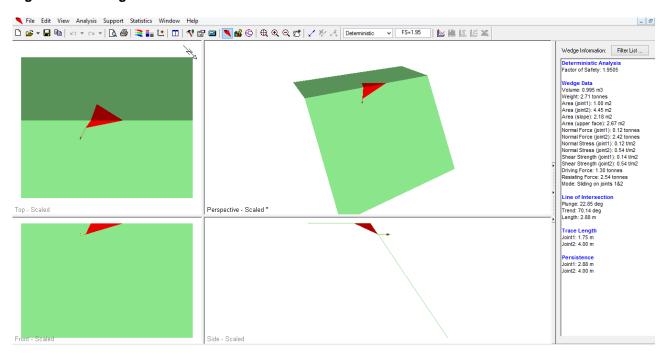
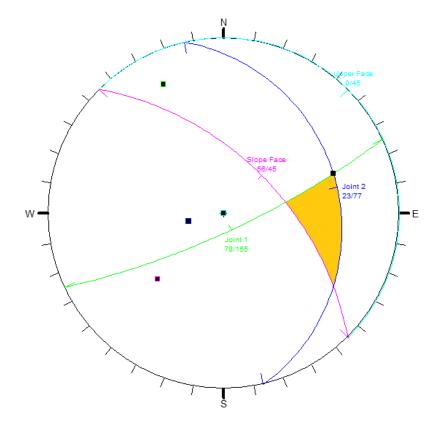



Figura J.8: Reticolo stereografico relativo al cuneo k2-k1

J.2.2.5 Considerazioni conclusive

Dai risultati che emergono dalle analisi, per tale tratto non è richiesto intervento di stabilizzazione.

J.2.3 Verifiche di stabilità tratto 19

J.2.3.1 Considerazioni conclusive

Non si riportano le schede sintetiche relative alle analisi di stabilità eseguite per il fronte destro della sezione critica del tratto 19 - Lotto n.1 in corrispondenza tra la progressiva chilometriche pk 9+680 e 10+400, in quanto da analisi cinematica di stabilità in proiezione stereografica si escludono potenziali instabilità per tale tratto. Tale ammasso, infatti, si ritiene stabile.

J.3 Verifiche di stabilità fronti scavo in roccia viabilità secondaria

Nel presente paragrafo si riportano le analisi di stabilità dei fronti di scavo relativi all'asse principale.

Tutte le sezioni più gravose all'interno del lotto in oggetto sono state esaminate; tuttavia all'interno della presente relazione si riportano le più significative.

Le analisi di seguito riportate sono identificate con la numerazione dei tratti riportati all'interno della Tabella I.2 della presente relazione.

J.3.1 Verifiche di stabilità tratto 6

J.3.1.1 Sezione di studio

In questo capitolo si riportano le schede sintetiche relative alle analisi di stabilità eseguite per il fronte destro della sezione critica del Lotto n.1 in corrispondenza della Secondaria 06.

Tabella J.12: Caratteristiche della sezione analizzata

SEZIONE	Progr.	Tipo opera	Altezza massima	Inclinazione	Immersione
	[m]		Scarpata [m]	scarpate [v/h]	scarpata [°]
n.9	+127,51	Permanente	4,00	3/2	240°
11.9	+121,31	reimanente	4,00	3/2	240

J.3.1.2 Parametri geotecnici di calcolo

I parametri geotecnici impiegati nelle analisi di stabilità sono stati desunti dal rilievo della stazione geo-meccanica SG02 posta alla progressiva pk 2+940. Essi sono riferiti alla scala di sito e non di laboratorio, pertanto ritenuti valori caratteristici da utilizzare direttamente nelle analisi.

Tabella J.13: Parametri geotecnici utilizzati

	M1	M2
Unità litoide	Mc	Mc
γ	26 [kN/m³]	26 [kN/m ³]
φ' _{res}	25 (°)	20,5 (°)
JRC	10,2 (-)	8,16 (-)
JCS	$703 (t/m^2)$	703 (t/m ²)

Tabella J.14: Coefficienti riduttivi

	M1	M2
γ_{γ}	1,00	1,00
γ_{ϕ}	1,00	1,25
γJRC	1,00	1,25
γ _{JCS}	1,00	1,00

Per i parametri riduttivi relativi al peso di volume e all'angolo di attrito di base, si sono utilizzati quelli previsti di normativa per le terre. Per quanto riguarda i coefficienti riduttivi relativi ai parametri JRC e JCS, si è proposto di abbattere del 25% il solo parametro di scabrezza (JRC) ritenendo sufficientemente cautelativa l'assunzione qui fatta.

J.3.1.3 Parametri sismici di calcolo

Per le analisi in condizioni sismiche è stato preso a riferimento lo stato limite di salvaguardia della vita (SLV) e dunque i seguenti parametri

Tabella J.15: Parametri sismici utilizzati

ag/g St	0,336 (-)
St	1 (-)
Ss	1 (-)
amax/g	0,336 (-)
β	0,3 (-)
K_h	0,10 (-)
K_{v}	0,05 (-)

J.3.1.4 Verifiche di stabilità a scorrimento

Nella tabella seguente si riportano fattori di sicurezza relativi ciascun fenomeno di instabilità potenzialmente verificabile. Si osserva che il fattore di sicurezza minimo nei confronti della stabilità è stato assunto pari a 1.10 così come indicato dalle Norme Tecniche e più precisamente al punto 6.8.2 del DM 14/01/2008. Tale fattore di sicurezza viene applicato sia per il caso statico che per il caso sismico, rispettivamente nelle combinazioni (A2 + M2 + R2) e (M2 + R2 + SISMA).

Tabella J.16: Verifiche di stabilità

Cinematismi potenzialmente instabili	CONDIZIONI STATICHE Fattore di sicurezza minimo (γ _R ≥ 1,1)	CONDIZIONI SISMICHE Fattore di sicurezza minimo (γ _R ≥ 1,1)
Scivol. Cuneo k1 - k3	2,86	2,28
Scivol. Cuneo k3 - k4	3,75	2,82

Nella figura seguente si riporta l'output grafico di Swedge con riferimento allo scivolamento a cuneo.

Figura J.9: Immagine relativo al cuneo k1-k3

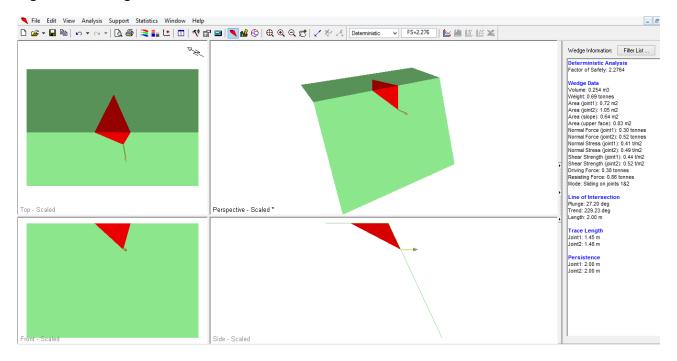
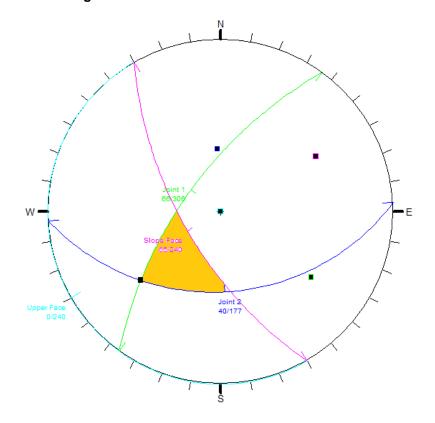



Figura J.10: Reticolo stereografico relativo al cuneo k1-k3

J.3.1.5 Considerazioni conclusive

Dai risultati che emergono dalle analisi, per tale tratto non è richiesto intervento di stabilizzazione.

K VERIFICHE DI STABILITA' RILEVATI

Le verifiche di stabilità delle pendenze dei rilevati consentono di accertare che la geometria della sezioni esaminate lungo il corpo stradale, in relazione alle caratteristiche di resistenza al taglio del materiale impiegato, assicuri un sufficiente fattore di sicurezza nei confronti della rottura.

Per l'analisi di stabilità è stato utilizzato il metodo di calcolo dell'equilibrio limite globale secondo la trattazione di Bishop, che permette di determinare il coefficiente di sicurezza alla rottura.

Per la trattazione della teoria dell'equilibrio limite si rimanda al capitolo G.

In questo capitolo si riportano le analisi di stabilità in schede sintetiche secondo i criteri di seguito esposti.

La verifiche di stabilità del rilevato, interessano due meccanismi di possibile rottura:

- Rottura del corpo del rilevato;
- Rottura generale.

La verifica di rottura del corpo del rilevato ha validità per tutti i rilevati del lotto in oggetto. La verifica di stabilità nei confronti della rottura generale invece varia da sezione a sezione in funzione del sedime di fondazione del rilevato; le verifiche di stabilità sono state eseguite per tutte le sezioni significative; all'interno della presente relazione si esporranno le situazioni geotecnicamente più gravose.

Le verifiche di stabilità interessanti il meccanismo di rottura del corpo del rilevato, sono state condotte secondo il massimo valore di intensità sismica presente nel lotto.

Nella tabella seguente si riporta la suddivisione del lotto in zone omogenee in termini di accelerazione sismica e di categoria di suolo. All'interno della tabella sono riportati, per ognuno dei tratti sopra indicati, il coefficiente di amplificazione stratigrafica Ss, il coefficiente di amplificazione stratigrafica St, il valore di a_{max}/g risultante, il valore del coefficiente β di abbattimento dell'azione sismica e infine i coefficienti kh e kv, rappresentati i coefficienti di intensità sismica orizzontale e verticale applicati nei modelli di calcolo, il valore della pendenza di progetto della scarpata e il materiale costituente il rilevato.

Tabella K.1: Tabella pendenza scarpate dei rilevati

	Tabella pendenza scarpate dei rilevati											
Lotto	Progr. In.	Progr. Fin.	Categoria di suolo	a _g /g	Ss	St	a _{max} /g	β	kh	kv	Pendenza scarpate rilevato di progetto (V/H)	Materiale costituente il rilevato
1	0+000	5+685	В	0,322	1,096	1	0,353	0,28	0,099	0,049	2/3.5	Terreno da cava o tal quale
1	5+685	11+361	В	0,334	1,085	1	0,362	0,28	0,101	0,051	2/3.5	Terreno da cava o tal quale

Le analisi di stabilità per la rottura del corpo del rilevato, sono state condotte nel caso di altezza totale del rilevato pari a 10 m con l'inserimento di una banca intermedia di larghezza pari a 2 m.

I calcoli sono condotti tenendo conto che il corpo del rilevato verrà realizzato, per il lotto in oggetto, con terreno prelevato dagli scavi dal momento che i litotipi presenti mostrano ottime qualità e caratteristiche meccaniche.

I parametri meccanici utilizzati per la caratterizzazione del corpo del rilevato sono riportati nella tabella seguente.

Tabella K.2: Tabella caratteristiche meccaniche rilevati

Corpo rilevato	γ [kN/m³]	c' [kPa]	φ' _{cv} [°]
Da cava o tal quale	20.5	0	34

Si precisa che nel caso di rilevato da cava (o tal quale) l'angolo φ ' indicato è da intendere come l'angolo a volume costante φ'_{cv} .

Nelle analisi di stabilità si è tenuto in conto dell'effetto favorevole legato alla dilatanza del materiale granulare con una compattazione minima tale da ottenere una $D_R = 70\%$; di conseguenza è stato considerato un angolo di resistenza al taglio operativo φ ' pari a 38°.

Le analisi di stabilità relative al meccanismo di rottura generale, sono state condotte per tutte le sezioni significative dei rilevati del lotto 1; nel seguito si riportano le verifiche di stabilità per i rilevati elencanti di seguito, risultanti geotecnicamente i più gravosi:

- Rilevato pk. 4+300;
- Rilevato pk. 6+748;
- Rilevato pk. 10+611.

All'interno del presente capitolo si procederà con la verifica di rottura del meccanismo relativo al corpo del rilevato e successivamente si procederà alla verifica dei meccanismi di rottura generale per i rilevati sopra elencati.

K.1 Meccanismo di rottura del corpo del rilevato

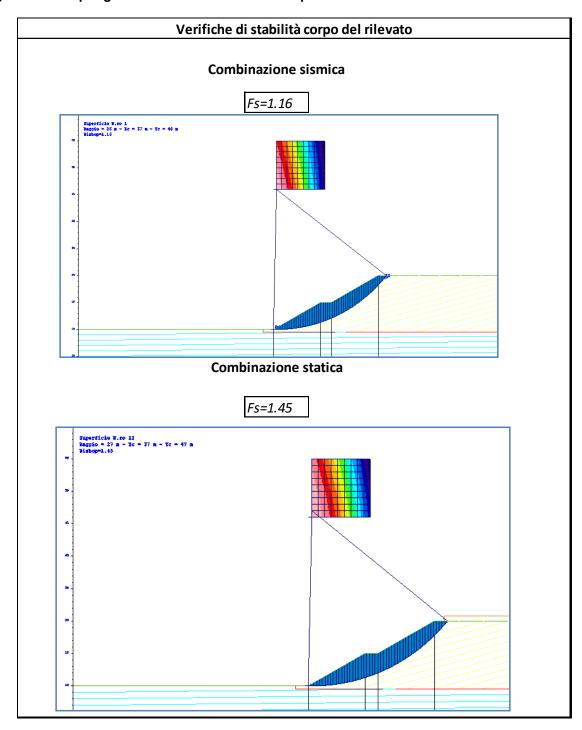

Nel presente paragrafo, si riporta la verifica di stabilità del corpo del rilevato secondo le indicazioni progettuali prima indicate. L'analisi di stabilità viene condotta imponendo il passaggio delle possibili superfici di scivolamento, dal piede del rilevato. Tutti i dettagli del calcolo si riportano in allegato.

Figura K.1: Parametri di input modello e risultati delle verifiche

H max rilevato:	10	m				
Pendenza (V/H):	2/3.5					
kh:	0.101					
Corpo rilevato:	Da cav	a o tal quo	ıle			
Parame	etri geotecn	nici rilevati]		
Ipotesi terr	reno da ca	va o tal qual				
γ	=	20.5	kN/m³			
С	=	0	kPa			
φ	=	38	۰			
Parametri sismici:]	Pendenza V		2/3,5
Categoria di suolo	=	В	4	(V/H	•	
a _g /g	=	0.334	4	Passo Banca:	5	m
Ss	=	1.085	4			
St	=	1	<u> </u>			
a _{max} /g	=	0.362				_
β	=	0.28	_	Stabilità g	globale	
kh	=	0.101	_	Fs statico:	1.45	
kv	=	0.051		Fs sismico:	1.16	

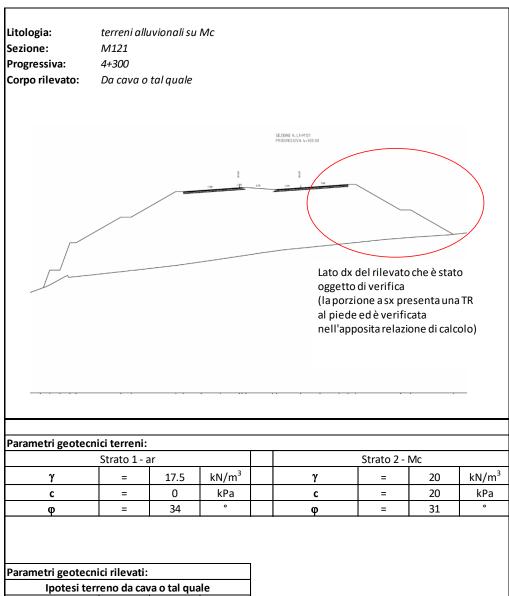
Figura K.2: Output grafico verifiche di stabilità corpo del rilevato

Come si evince dalle figure precedenti, sia in condizione statica che in condizione sismica, le verifiche risultano soddisfatte, in quanto il fattore di sicurezza risulta maggiore del valore previsto dalla normativa (1.10).

K.2 Meccanismo di rottura generale pk 4+300

Il rilevato in oggetto risulta essere un rilevato di nuova realizzazione con altezza massima pari a circa 15 m e presenta una piano di posa orizzontale sulla formazione ar (terreni prevalentemente sabbioso-ghiaiosi-limosi di alluvioni fluviali) con parametri di resistenza pari a $\phi = 34^{\circ}$ e c' = 0 kPa; al di sotto dello strato detritico è presente la formazione di base Mc (Calcareniti formazione Ragusa, con litologia sciolta); i valori di resistenza meccanica sono stati desunti dalla caratterizzazione dei sondaggi S012 e S013.

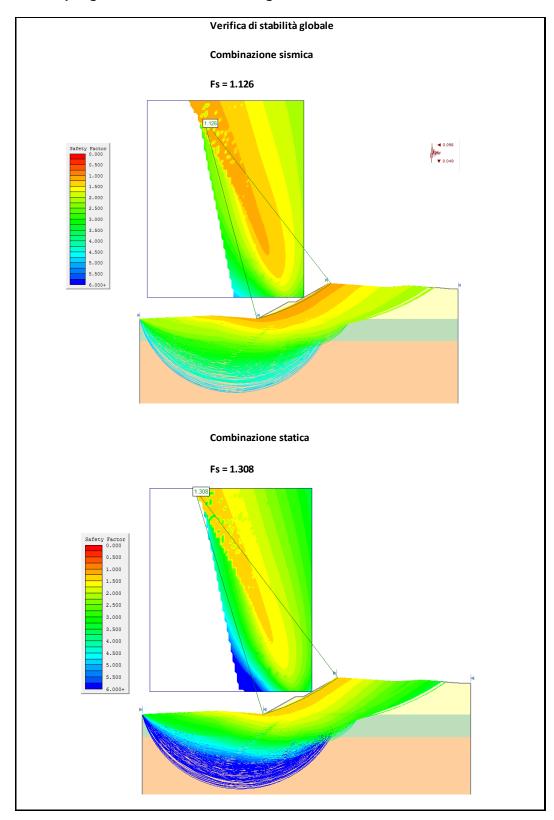
Si mette in evidenza che nel presente documento viene riportata la verifica della sola scarpata destra del rilevato, in quanto la scarpata a sinistra presenta al piede del rilevato una terra rinforzata, le cui verifiche di stabilità sono riportate nella relazione di calcolo relativa, cui si rimanda.


La condizione di stabilità più gravosa si individua con il passaggio della superficie di scorrimento circolare all'interfaccia con lo strato di bonifica (in tal caso pari a 50 cm) in quanto le superfici con passaggi più interni alla formazione portano a maggiori margini sulle condizioni di sicurezza nei confronti della stabilità.

Di seguito si riportano, mediante l'ausilio di schede sintetiche, i parametri meccanici e sismici utilizzati nel modello di calcolo e l'output grafico delle verifiche di stabilità.

Tutti i dettagli del calcolo sono riportati in allegato.

Figura K.3: Parametri di input modello e risultati delle verifiche


Parametri geotecnici rilevati:						
Ipotesi terreno da cava o tal quale						
γ	Ш	20.5	kN/m³			
С		0	kPa			
φ = 38 °						

Parametri sismici:		
Categoria di suolo	=	В
ag/g	II	0.319
S _s	Ш	1.098
S _T	=	1
a _{max} /g	=	0.35
β	"	0.28
kh	-	0.098
kv	=	0.049

Stabilità globale				
Fs statico:	1.308			
Fs sismico:	1.126			

Figura K.4: Output grafico verifiche di stabilità globale

Come si evince dalle figure precedenti, sia in condizione statica che in condizione sismica, le verifiche risultano soddisfatte, in quanto il fattore di sicurezza risulta maggiore del valore previsto dalla normativa (1.10).

K.3 Meccanismo di rottura generale pk 6+748

Il rilevato in oggetto risulta essere un allargamento del rilevato esistente e presenta una piano di posa orizzontale sulla formazione Dt_Mc sciolta (Detriti-Mc sciolta) con parametri di resistenza pari a ϕ = 34° e c' = 0; al di sotto dello strato detritico è presente la formazione di base Mc (Calcarentiti formazione ragusa); i valori di resistenza meccanica sono stati desunti dalla caratterizzazione del sondaggio S022. La condizione di stabilità più gravosa si individua con il passaggio della superficie di scorrimento circolare all'interfaccia con lo strato di bonifica (in tal caso pari a 50 cm) in quanto le superfici con passaggi più interni alla formazione portano a maggiori margini sulle condizioni di sicurezza nei confronti della stabilità.

Di seguito si riportano, mediante l'ausilio di schede sintetiche, i parametri meccanici e sismici utilizzati nel modello di calcolo e l'output grafico delle verifiche di stabilità.

Tutti i dettagli del calcolo sono riportati in allegato.

Figura K.5: Parametri di input modello e risultati delle verifiche

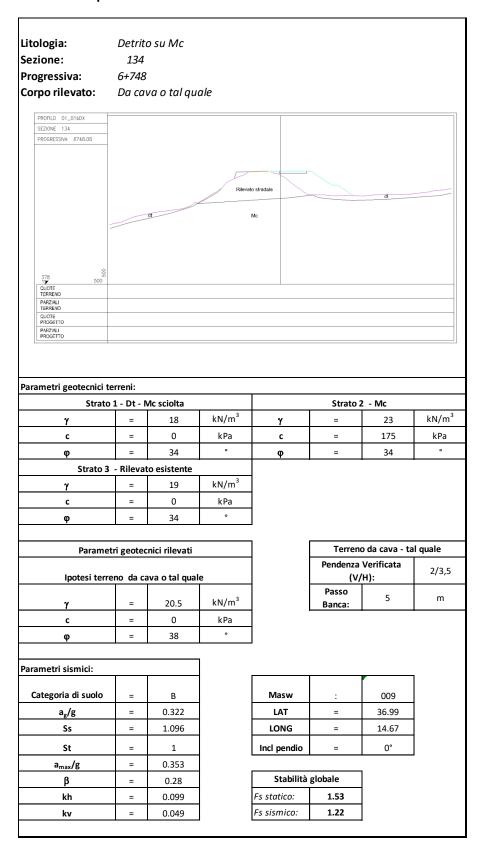
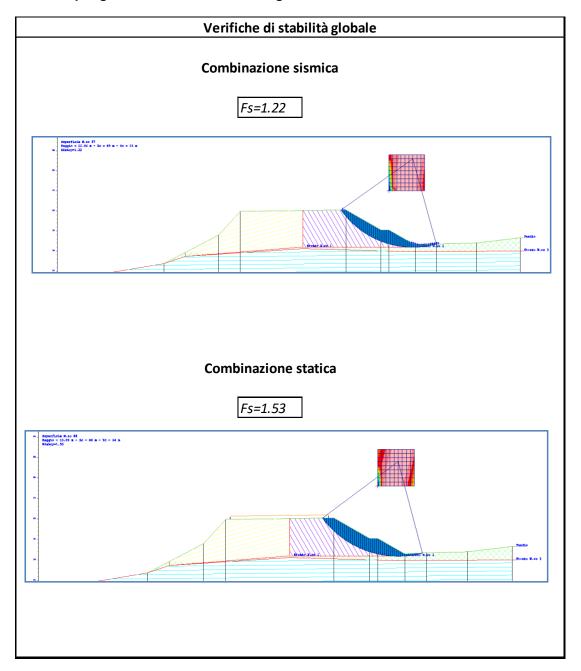



Figura K.6: Output grafico verifiche di stabilità globale

Come si evince dalle figure precedenti, sia in condizione statica che in condizione sismica, le verifiche risultano soddisfatte, in quanto il fattore di sicurezza risulta maggiore del valore previsto dalla normativa (1.10).

K.4 Meccanismo di rottura generale pk 10+611

Il rilevato in oggetto risulta essere un allargamento del rilevato esistente e presenta una piano di posa orizzontale sulla formazione Qm (depositi limnici e silt palustri) con parametri di resistenza pari a $\varphi = 34^\circ$ e c' = 0; i valori di resistenza meccanica sono stati desunti dalla caratterizzazione del sondaggio S020P, riportata al capitolo G. La condizione di stabilità più gravosa si individua con il passaggio della superficie di scorrimento circolare all'interfaccia con lo strato di bonifica (in tal caso pari a 50 cm) in quanto le superfici con passaggi più interni alla formazione portano a maggiori margini sulle condizioni di sicurezza nei confronti della stabilità.

Di seguito si riportano, mediante l'ausilio di schede sintetiche, i parametri meccanici e sismici utilizzati nel modello di calcolo e l'output grafico delle verifiche di stabilità.

Tutti i dettagli del calcolo sono riportati in allegato.

Figura K.7: Parametri di input modello e risultati delle verifiche

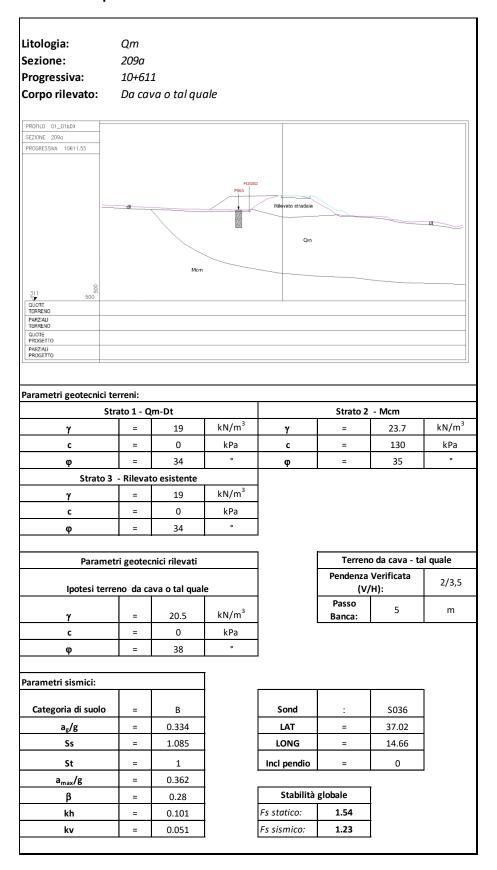
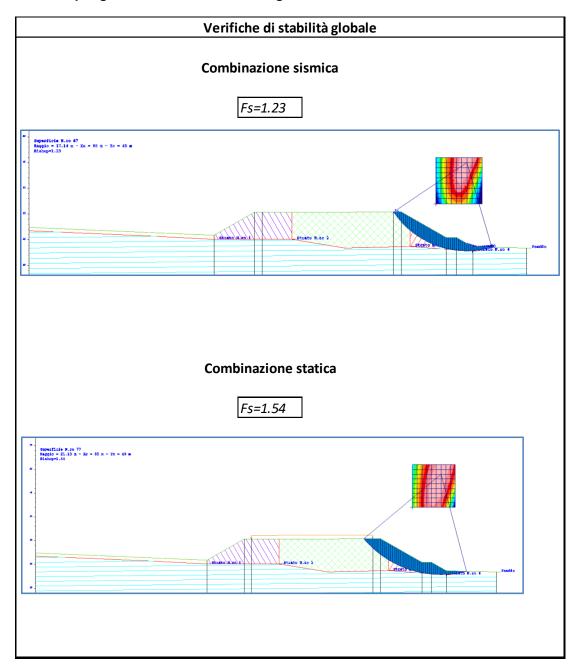



Figura K.8: Output grafico verifiche di stabilità globale

Come si evince dalle figure precedenti, sia in condizione statica che in condizione sismica, le verifiche risultano soddisfatte, in quanto il fattore di sicurezza risulta maggiore del valore previsto dalla normativa (1.10).

K.5 Indicazioni progettuali viabilità secondarie svincoli

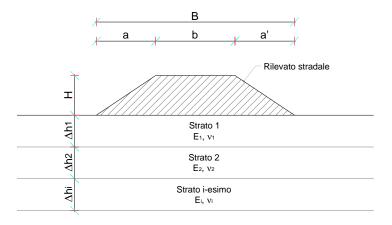
Dall'analisi delle sezioni significative relative alle viabilità secondarie e gli svincoli, tutti i casi sono riconducibili a quanto visto per l'asse principale e pertanto non si riportano verifiche specifiche. Pertanto, in analogia a quanto indicato per l'asse principale, la pendenza delle scarpate di progetto risulta pari a 2/3.5 (V/H) con materiale costituente il rilevato di tipo da cava o proveniente dagli scavi tal quale.

L VERIFICA CEDIMENTI DEI RILEVATI

Nel presente capitolo si riporta lo studio dei cedimenti dei rilevati stradali.

Tali analisi sono state condotte su tutti i rilevati presenti nel lotto in esame, in relazione sia alla diversa altezza degli stessi che alla diversa geomorfologia dei terreni di base.

Per una maggiore comprensione, si è preferito riportare soltanto lo studio delle sezioni trasversali più rappresentative, ovvero le più gravose.


L.1 Criteri di verifica

Considerato che terreni incoerenti e terreni coesivi, sotto l'azione di carichi applicati, presentano un comportamento diverso, si è preferito esporre separatamente i metodi di calcolo utilizzati per le analisi dei cedimenti dei rilevati.

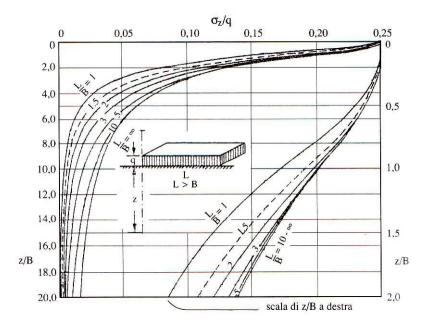
Terreni incoerenti

La valutazione dei cedimenti è stata effettuata attraverso la "Teoria dell'elasticità".

Figura L.1: Schema di calcolo del cedimento elastico in condizioni drenate

Tale teoria consiste nel suddividere il terreno di fondazione del rilevato in n strati di spessore Δ hi, quindi nel valutare il cedimento complessivo dalla somma dei cedimenti dei singoli strati secondo l'espressione seguente:

wtot =
$$\sum_{i} wi = \sum_{i} \frac{\Delta \sigma zi}{Ei} \cdot \Delta Hi$$


dove:

- Δσzi = Incremento di tensione verticale indotto dal carico alla profondità zi
- zi = Profondità media dal piano di carico dello strato i-esimo considerato
- Ei = Modulo elastico dello strato i-esimo considerato
- ΔHi = Spessore dello strato i-esimo considerato

L'incremento di tensione indotto dal carico $\Delta \sigma_z$ viene valutato mediante la teoria del semispazio elastico di Boussinesq, in particolare si fa uso dell'abaco di Steinbrenner (1934) valido per i casi generali di carico distribuito uniforme su di un'area rettangolare di lati B ed L (L>B) che consentono di valutare le tensioni lungo la verticale passante per il vertice dell'area di carico:

Figura L.2: Abaco di Steinbrenner

Da esse, con semplici operazioni di sovrapposizione degli effetti, è possibile risalire alle tensioni indotte lungo una verticale qualsiasi di un'area di carico rettangolare o comunque scomponibile in rettangoli. L'espressione analitica della tensione è la seguente:

$$\Delta \sigma z = \frac{q}{2 \cdot \pi} \cdot \left[arctan \frac{L \cdot B}{c \cdot z} + \frac{L \cdot B \cdot z}{c} \cdot \left(\frac{1}{m^2} + \frac{1}{n^2} \right) \right]$$

dove:

- q = carico distribuito uniforme:
- $m^2 = L^2 + z^2$

$$n^2 = B^2 + z^2$$

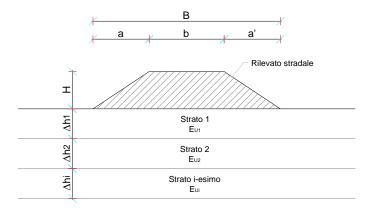
$$c = \sqrt{L^2 + B^2 + z^2}$$

Nei terreni incoerenti, per la loro elevata permeabilità, il processo di consolidazione è molto rapido per cui i cedimenti distorsionali e volumetrici avvengono contemporaneamente, all'atto di applicazione dei carichi. Per questo motivo tali cedimenti vengono definiti "immediati (w_{imm})".

Terreni coesivi

Nei terreni a grana fine soggetti all'applicazione di un carico, i cedimenti avvengono in parte all'atto stesso del carico, per deformazioni a volume costante dell'insieme scheletro solido-acqua (cedimento immediato o non drenato w₀), ed in parte gradualmente nel tempo a seguito dell'espulsione dell'acqua e della conseguente dissipazione delle sovrappressioni neutre (cedimento di consolidazione wc). In corrispondenza di un generico tempo t può porsi:

$$\mathbf{W}_{tot} = \mathbf{W}_0 + \mathbf{U} \cdot \mathbf{W}_0$$


dove U è il grado di consolidazione e varia nel tempo tra 0 e 1.

Per il calcolo di tale cedimento w_{tot} si applica la teoria della consolidazione monodimensionale di Terzaghi.

Tale teoria si basa sulle determinazioni sperimentali di una prova ad espansione laterale impedita (prova edometrica) in cui le deformazioni avvengono solo in direzione verticale senza contrazioni o espansioni orizzontali. Tale ipotesi edometrica risulta tanto migliore quanto più ridotto è il valore del rapporto tra lo spessore dello strato deformabile e la larghezza dell'area di impronta del carico. Il terreno di fondazione del rilevato viene suddiviso in n strati di spessore Δhi:

Figura L.3: Schema di calcolo del cedimento in condizioni non drenate ed edometrico

Il terreno di fondazione del rilevato viene suddiviso in n strati di spessore ∆hi ed il cedimento complessivo è pari alla somma dei cedimenti dei singoli strati:

$$wed = \sum_{i} wedi$$

La relazione si presenta in forma diversa in relazione ai parametri di deformabilità noti. In particolare, noto il modulo edometrico del terreno di fondazione, risulta:

wedi =
$$\frac{\Delta \sigma zi}{\text{Fed}} \cdot \Delta Hi$$

dove:

- $\Delta \sigma zi$ = Incremento di tensione verticale indotto dal carico alla profondità zi
- zi = Profondità media dal piano di carico dello strato i-esimo considerato
- Eed = Modulo edometrico dello strato i-esimo considerato
- ΔHi = Spessore dello strato i-esimo considerato
- wed = cedimento edometrico

L'incremento di tensione verticale indotta dal carico $\Delta \sigma zi$ viene valutato mediante gli abachi di Steinbrenner (1934), come descritto al punto precedente.

Padfield e Sharrock (1983), dopo un ampio esame delle evidenze sperimentali, forniscono le seguenti indicazioni:

per terreni sovraconsolidati:
$$w_0 = (0.5 \div 0.6) \cdot w_{ed}$$

$$W_{c} = (0.4 \div 0.5) \cdot W_{ed}$$

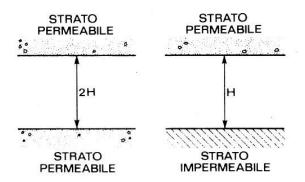
$$\mathbf{W}_{\mathrm{tot}} = \mathbf{W}_{\mathrm{ed}}$$

per terreni normalconsolidati:

$$\mathbf{W}_{_0} = 0.1 \cdot \mathbf{W}_{_{ed}}$$

$$W_c = W_{ed}$$

$$w_{tot} = 1.1 \cdot w_{ed}$$


Noto il cedimento totale w_{tot} è possibile risalire al valore del cedimento al tempo t w(t) attraverso la relazione già descritta $w_{tot} = w_0 + U \cdot w_c$.

Il grado di consolidazione è funzione del fattore di tempo adimensionale Tv, che assume la seguente espressione:

$$Tv = \frac{cv \cdot t}{H^2}$$

funzione del tempo t, del coefficiente di consolidazione primaria e del massimo percorso di drenaggio H che dipende dalle condizioni al contorno:

Figura L.4: Condizioni di drenaggio al contorno

Infatti, nel caso in cui lo strato oggetto del processo di consolidazione presenti un singolo contorno drenante, il massimo percorso di drenaggio H coincide con l'intero spessore dello strato. Nei casi, invece, in cui lo strato presenti due contorno drenanti, sia a tetto che a letto dello strato in consolidazione, allora il massimo percorso di drenaggio H è pari alla metà dello spessore dello strato.

Per valutare il valore del grado di consolidazione si fa uso della relazione di Sivaram e Swamee (1977):

$$Um = \frac{\left(4 \cdot Tv / \pi\right)^{0.5}}{\left[1 + \left(\frac{4 \cdot Tv}{\pi}\right)^{2.8}\right]^{179}}$$

dove Um è il grado di consolidazione medio.

La verifica dei cedimenti di un rilevato consiste nel valutare i cedimenti residui a partire dalla fine della fase di costruzione del rilevato, in modo da evitare in fase di esercizio abbassamenti dannosi per l'opera infrastrutturale presente.

In sede di analisi, si è stabilito un cedimento massimo totale di 5 cm. Tale limite è stato fissato per i cedimenti residui a fine costruzione del rilevato stradale, il cui periodo in fase di progettazione è stato stimato pari a 6 mesi.

Infine, quale profondità d'influenza del carico in fondazione è stata considerata quella entro la quale la tensione verticale indotta dal carico in fondazione risulta superiore a una data percentuale della tensione litostatica.

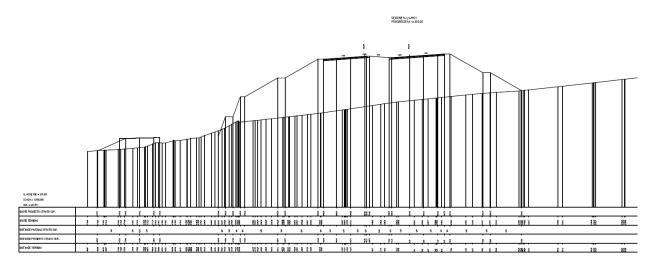
L.2 Risultati verifiche dei cedimenti

Le analisi sono state condotte su tutti i rilevati stradali presenti, in relazione sia all'altezza degli stessi che alla geomorfologia dei terreni di base; per semplicità di trattazione, di seguito sono state descritte soltanto le sezioni trasversali più rappresentative che risultano essere le più gravose in termini di cedimento.

Tabella L.1: Sezioni trasversali dei rilevati più rappresentativi

SEZIONE	PROGRESSIVA
M121	4+300
338	6+140
669	11+240

L.2.1 Rilevato Sez. L1_M121


La sezione si trova lungo l'asse principale alla progressiva 4+300.00 in cui il rilevato stradale presenta una altezza media di circa 12.8 m con la seguente successione stratigrafica:

- terreno vegetale da 0.00÷0.50 m dal p.c.
- ghiaia con sabbia di terrazzo fluviale (ar) da 0.50÷5.00 m dal p.c.
- argille marnose con consistenza lapidea (CF) da 6.00÷16.00 m dal p.c.
- marne e calcari marnosi (CtF) da 6.00÷40.00 m dal p.c.

Tali informazioni insieme ai parametri geotecnici utilizzati per il calcolo dei cedimenti sono stati ricavati dai sondaggi S012 e S013 riportato nella Relazione Geotecnica Generale e illustrati graficamente nei Profili Geotecnici.

Figura L.5: Sezione stradale L1_121

I litotipi di base sono tipo incoerente; inoltre vista l'assenza di falda è stata condotta una analisi di tipo drenata. Ciò premesso, si sono trascurati i cedimenti a fine costruzione, in quanto scontabili durante le diverse fasi costruttive. Discorso opposto nei riguardi dei cedimenti in condizione di esercizio del rilevato, per i quali è stata posta particolare attenzione, così da verificare la compatibilità dei cedimenti con la funzionalità dell'opera. A tal riguardo, il carico stradale è stato simulato per mezzo di un sovraccarico di intensità pari a 20kPa esteso per una larghezza stradale complessiva pari a 35 m.

Per il caso in esame è stato riscontrato un cedimento immediato di circa 1.11 cm, inferiore ai limiti previsti da capitolato. Pertanto gli abbassamenti indotti dal rilevato stradale non compromettono la funzionalità dell'infrastruttura.

Nelle figure seguenti si riportano gli input di calcolo del modello e le relative verifiche.

Figura L.6: Input geotecnico terreno di base rilevato stradale (sez. L1_M121)

N° Strato: 1		
Denominazione:		Bonifica
Tipologia stratigrafica:		Drenato
Profondità iniziale dal p.c.:	<i>7</i> I =	0.00 m
Profondità finale dal p.c.:	<i>Z</i> F =	0.50 m
Spessore strato:	$\Delta z =$	0.50 m
Peso specifico:	γ =	19.00 kN/m ³
Peso specifico saturo:	·	19.00 kN/m ³
Modulo elastico:	γ _{sat} = E =	30000 kN/m ²
Modulo edometrico:	Eed =	- kN/m ²
Grado di sovraconsolidazione:	OCR =	1.0
Coefficiente di Poisson:	v =	0.30
Coefficiente di l'Oisson.	v =	0.30
N° Strato: 2		
Denominazione:		Ar
Tipologia stratigrafica:		Drenato
Profondità iniziale dal p.c.:	ZI =	0.50 m
Profondità finale dal p.c.:	ZF =	5.00 m
Spessore strato:	$\Delta z =$	4.50 m
Peso specifico:	$\gamma =$	17.50 kN/m ³
Peso specifico saturo:	$\gamma_{sat} =$	17.50 kN/m ³
Modulo elastico:	E =	11600 kN/m ²
Grado di sovraconsolidazione:	OCR =	1.0
Coefficiente di Poisson:	ν =	0.30
N° Strato: 3		
<u>N° Strato:</u> 3 Denominazione:	Mo	c - sciolta
Denominazione:	Mo	c - sciolta Drenato
Denominazione: Tipologia stratigrafica:	M d Z1 =	
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.:		Drenato
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.:	ZI =	Drenato 5.00 m
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato:	ZI = ZF = Δz =	Drenato 5.00 m 16.00 m
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico:	$ZI = ZF = \Delta Z = \gamma = \gamma$	5.00 m 16.00 m 11.00 m
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo:	ZI = ZF = Δz =	5.00 m 16.00 m 11.00 m 20.00 kN/m ³ 20.00 kN/m ³
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico:	$ZI =$ $ZF =$ $\Delta Z =$ $\gamma =$ $\gamma_{sat} =$	5.00 m 16.00 m 11.00 m 20.00 kN/m ³
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo: Modulo elastico:	$ZI =$ $ZF =$ $\Delta Z =$ $\gamma =$ $\gamma_{sat} =$ $E =$	5.00 m 16.00 m 11.00 m 20.00 kN/m ³ 20.00 kN/m ³ 50000 kN/m ²
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo: Modulo elastico: Grado di sovraconsolidazione: Coefficiente di Poisson:	$ZI =$ $ZF =$ $\Delta z =$ $\gamma =$ $\gamma_{sat} =$ $E =$ $OCR =$	5.00 m 16.00 m 11.00 m 20.00 kN/m ³ 20.00 kN/m ³ 50000 kN/m ²
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo: Modulo elastico: Grado di sovraconsolidazione: Coefficiente di Poisson:	$ZI = ZF = $ $ZZ = $ $\gamma = $ $\gamma = $ $\gamma_{sat} = $ $E = $ $OCR = $ $v = $	5.00 m 16.00 m 11.00 m 20.00 kN/m ³ 20.00 kN/m ³ 50000 kN/m ² 1.0
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo: Modulo elastico: Grado di sovraconsolidazione: Coefficiente di Poisson: N° Strato: 4 Denominazione:	$ZI = ZF = $ $ZZ = $ $\gamma = $ $\gamma = $ $\gamma_{sat} = $ $E = $ $OCR = $ $v = $	5.00 m 16.00 m 11.00 m 20.00 kN/m ³ 20.00 kN/m ³ 50000 kN/m ² 1.0 0.30
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo: Modulo elastico: Grado di sovraconsolidazione: Coefficiente di Poisson: N° Strato: 4 Denominazione: Tipologia stratigrafica:	$ZI = ZF = $ $\Delta Z = $ $\gamma = $ $\gamma_{sat} = $ $E = $ $OCR = $ $v = $	Drenato 5.00 m 16.00 m 11.00 m 20.00 kN/m³ 20.00 kN/m³ 50000 kN/m² 1.0 0.30 - lapideo Drenato
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo: Modulo elastico: Grado di sovraconsolidazione: Coefficiente di Poisson: N° Strato: 4 Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.:	$ZI =$ $ZF =$ $\Delta Z =$ $\gamma =$ $\gamma =$ $\gamma_{sat} =$ $E =$ $OCR =$ $\gamma =$	5.00 m 16.00 m 11.00 m 20.00 kN/m³ 20.00 kN/m³ 50000 kN/m² 1.0 0.30 - lapideo Drenato 16.00 m
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo: Modulo elastico: Grado di sovraconsolidazione: Coefficiente di Poisson: Nº Strato: 4 Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.:	$ZI =$ $ZF =$ $\Delta Z =$ $\gamma =$ $\gamma =$ $\gamma_{sat} =$ $E =$ $OCR =$ $V =$ CCM $ZI =$ $ZF =$	5.00 m 16.00 m 11.00 m 20.00 kN/m³ 20.00 kN/m³ 50000 kN/m² 1.0 0.30 - lapideo Drenato 16.00 m 40.00 m
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo: Modulo elastico: Grado di sovaconsolidazione: Coefficiente di Poisson: Nº Strato: 4 Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato:	$ZI =$ $ZF =$ $\Delta Z =$ $\gamma =$	5.00 m 16.00 m 11.00 m 20.00 kN/m³ 20.00 kN/m³ 50000 kN/m² 1.0 0.30 - lapide o Drenato 16.00 m 40.00 m 24.00 m
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo: Modulo elastico: Grado di sovraconsolidazione: Coefficiente di Poisson: N° Strato: Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Spessore strato: Peso specifico:	$ZI = ZF = \Delta Z = \gamma = \gamma = \gamma_{sat} = E = \Omega CR = \gamma = \Delta Z = \Delta Z = \gamma = \Delta Z = \gamma = \Delta Z = \gamma = \Delta Z = \Delta Z = \Delta Z = \Delta Z = \gamma = \Delta Z = \Delta Z = \Delta Z = \gamma = \Delta Z = \Delta Z = \Delta Z = \Delta Z = \gamma = \Delta Z	5.00 m 16.00 m 11.00 m 20.00 kN/m³ 20.00 kN/m³ 50000 kN/m² 1.0 0.30 - lapideo Drenato 16.00 m 40.00 m 24.00 m 19.00 kN/m³
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo: Modulo elastico: Grado di sovraconsolidazione: Coefficiente di Poisson: N° Strato: 4 Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo:	$ZI = ZF = \Delta Z = \gamma = \gamma_{sat} = E = OCR = \nu = \Delta Z = \Delta Z = \gamma = \gamma_{sat} = \gamma_{sat} = \Delta Z = $	5.00 m 16.00 m 11.00 m 20.00 kN/m³ 20.00 kN/m³ 50000 kN/m² 1.0 0.30 - lapideo Drenato 16.00 m 40.00 m 24.00 m 19.00 kN/m³ 19.00 kN/m³
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo: Modulo elastico: Grado di sovraconsolidazione: Coefficiente di Poisson: N° Strato: 4 Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo: Modulo elastico:	$ZI = ZF = \Delta Z = \gamma = \gamma_{sat} = E = OCR = \nu = \Delta Z = \gamma = \gamma_{sat} = E = E = E = \Delta Z = \gamma = E = E = \Delta Z = \gamma = \gamma_{sat} = E = E = \Delta Z = \gamma = \gamma_{sat} = E = \Delta Z = \Delta Z = \gamma_{sat} = E = \Delta Z = \Delta Z = \Delta Z = \gamma_{sat} = E = \Delta Z = \Delta Z = \Delta Z = \Delta Z = \gamma_{sat} = E = \Delta Z $	5.00 m 16.00 m 11.00 m 20.00 kN/m³ 20.00 kN/m³ 50000 kN/m² 1.0 0.30 - lapideo Drenato 16.00 m 40.00 m 24.00 m 19.00 kN/m³ 19.00 kN/m³ 3600000 kN/m²
Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo: Modulo elastico: Grado di sovraconsolidazione: Coefficiente di Poisson: N° Strato: 4 Denominazione: Tipologia stratigrafica: Profondità iniziale dal p.c.: Profondità finale dal p.c.: Spessore strato: Peso specifico: Peso specifico saturo:	$ZI = ZF = \Delta Z = \gamma = \gamma_{sat} = E = OCR = \nu = \Delta Z = \Delta Z = \gamma = \gamma_{sat} = \gamma_{sat} = \Delta Z = $	5.00 m 16.00 m 11.00 m 20.00 kN/m³ 20.00 kN/m³ 50000 kN/m² 1.0 0.30 - lapideo Drenato 16.00 m 40.00 m 24.00 m 19.00 kN/m³ 19.00 kN/m³

Relativamente alla suddivisione dello strato di terreno compressibile in piccoli strati di modesto spessore, come profondità d'influenza del carico in fondazione è stata considerata quella entro la quale la tensione verticale indotta dal carico in fondazione risulta superiore al 15% della tensione litostatica. Tale valore della profondità di influenza nel caso in esame risulta pari a 18.5 m.

Figura L.7: Tabella di calcolo dei cedimenti rilevato stradale (sez. L1_M121)

									Drenato
N°	zfin con.	zm con.	n°	γ*	σ' _{v0}	$\Delta\sigma_z$	σ'_{v0} + $\Delta\sigma_z$	σ' _p	Δw_{imm}
tratto	dal p.p. (m)	dal p.p. (m)	strato	(kN/m³)	(kN/m ²)	(kN/m ²)	(kN/m ²)	(kN/m ²)	(cm)
1	0.93	0.46	1	19.00	8.79	19.99	28.77	8.79	0.06
2	1.85	1.39	2	17.50	24.98	19.96	44.94	24.98	0.16
3	2.78	2.31	2	17.50	41.16	19.94	61.10	41.16	0.16
4	3.70	3.24	2	17.50	57.35	19.91	77.26	57.35	0.16
5	4.63	4.16	2	17.50	73.54	19.89	93.42	73.54	0.16
6	5.55	5.09	3	20.00	92.04	19.77	111.81	92.04	0.04
7	6.48	6.01	3	20.00	110.54	19.62	130.16	110.54	0.04
8	7.40	6.94	3	20.00	129.04	19.48	148.51	129.04	0.04
9	8.33	7.86	3	20.00	147.54	19.33	166.87	147.54	0.04
10	9.25	8.79	3	20.00	166.04	19.18	185.22	166.04	0.04
11	10.18	9.71	3	20.00	184.54	18.91	203.45	184.54	0.03
12	11.10	10.64	3	20.00	203.04	18.64	221.68	203.04	0.03
13	12.03	11.56	3	20.00	221.54	18.37	239.91	221.54	0.03
14	12.95	12.49	3	20.00	240.04	18.11	258.14	240.04	0.03
15	13.88	13.41	3	20.00	258.54	17.82	276.36	258.54	0.03
16	14.80	14.34	3	20.00	277.04	17.49	294.53	277.04	0.03
17	15.73	15.26	3	20.00	295.54	17.16	312.70	295.54	0.03
18	16.65	16.19	4	19.00	313.11	16.83	329.95	313.11	0.00
19	17.58	17.11	4	19.00	330.69	16.51	347.19	330.69	0.00
20	18.50	18.04	4	19.00	348.26	16.18	364.45	348.26	0.00

Cedimento finale del terreno:

 $w_f = 1.11 cm$

Legenda:

zfin = Profondità finale del tratto dal p.p. zm = Profondità media del tratto dal p.p.

 γ^* = peso specifico effettivo del tratto

 $\Delta \sigma_z$ = Variazione di carico

 σ'_p = Tensione di preconsolidamento

 Δw_{imm} = Cedimento immediato

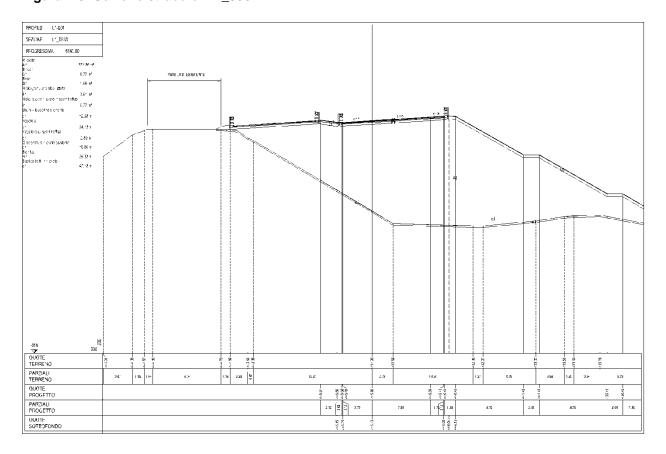
 $\Delta w_{ed} = Cedimento edometrico$

 Δw_{tot} = Cedimento totale

wf = Cedimento finale del terreno di

base del rilevato

L.2.2 Rilevato Sez. L1_338


La sezione si trova lungo l'asse principale alla progressiva 6+140.00 in cui il rilevato stradale presenta una altezza media di circa 14 m con la seguente successione stratigrafica:

- terreno vegetale da 0.00÷0.50 m dal p.c.
- ghiaia con sabbia argillosa debolmente limosa (GLS) da 0.50÷6.00 m dal p.c.
- ghiaie con sabbia con limo debolmente argilloso (CAM) da 6.00÷16.00 m dal p.c.

Tali informazioni insieme ai parametri geotecnici utilizzati per il calcolo dei cedimenti sono stati ricavati dal sondaggio S021 riportato nella Relazione Geotecnica Generale e illustrato graficamente nei Profili Geotecnici.

Figura L.8: Sezione stradale L1_338

I litotipi di base sono tipo incoerente; inoltre vista l'assenza di falda è stata condotta una analisi di tipo drenata. Ciò premesso, si sono trascurati i cedimenti a fine costruzione, in quanto scontabili durante le diverse fasi costruttive. Discorso opposto nei riguardi dei cedimenti in condizione di esercizio del rilevato, per i quali è stata posta particolare attenzione, così da verificare la compatibilità dei cedimenti con la funzionalità dell'opera. A tal riguardo, il carico stradale è stato simulato per mezzo di un sovraccarico di intensità pari a 20kPa esteso per una larghezza stradale complessiva pari a 30 m.

Per il caso in esame è stato riscontrato un cedimento immediato di circa 1.40 cm, inferiore ai limiti previsti da capitolato. Pertanto gli abbassamenti indotti dal rilevato stradale non compromettono la funzionalità dell'infrastruttura.

Nelle figure seguenti si riportano gli input di calcolo del modello e le relative verifiche.

Figura L.9: Input geotecnico terreno di base rilevato stradale (sez. L1_338)

Nº Strata: 1			
N° Strato: 1 Denominazione:		Bonifica	
Tipologia stratigrafica:		Drenato	
Profondità iniziale dal p.c.:	ZI =	0,00 m	
Profondità finale dal p.c.:	ZF =	0,50 m	
-		0,50 m	
Spessore strato: Peso specifico:	$\Delta z =$	•	
Modulo elastico:	γ = E =		
	_	COCCO KIN/III	
Grado di sovraconsolidazione:	OCR =	1,0	
N° Strato: 2			
Denominazione:		GLS	
Tipologia stratigrafica:		Drenato	
Profondità iniziale dal p.c.:	ZI =	0,50 m	
Profondità finale dal p.c.:	ZF =	6,00 m	
Spessore strato:	$\Delta z =$	5,50 m	
Peso specifico:	$\gamma =$	18,80 kN/m ³	
Modulo elastico:	E =		
Grado di sovraconsolidazione:	OCR =	1,0	
N° Strato: 3			
Denominazione:		CAM	
Tipologia stratigrafica:		Drenato	
Profondità iniziale dal p.c.:	ZI =	6,00 m	
Profondità finale dal p.c.:	ZF =	16,00 m	
Spessore strato:	$\Delta z =$	10,00 m	
Peso specifico:	γ =	21,40 kN/m ³	
Modulo elastico:	E =		
Grado di sovraconsolidazione:	OCR =	1,0	

Relativamente alla suddivisione dello strato di terreno compressibile in piccoli strati di modesto spessore, come profondità d'influenza del carico in fondazione è stata considerata quella entro la quale la tensione verticale indotta dal carico in fondazione risulta superiore al 15% della tensione litostatica. Tale valore della profondità di influenza nel caso in esame risulta pari a 16 m.

Figura L.10: Tabella di calcolo dei cedimenti rilevato stradale (sez. L1_338)

									Drenato
N°	zfin con.	zm con.	n°	γ*	σ' _{v0}	$\Delta\sigma_z$	$\sigma'_{v0}+\Delta\sigma_z$	σ' _p	Δw_{imm}
tratto	dal p.p. (m)	dal p.p. (m)	strato	(kN/m³)	(kN/m ²)	(kN/m ²)	(kN/m²)	(kN/m ²)	(cm)
1	0.80	0.40	1	19.00	7.60	19.99	27.59	7.60	0.05
2	1.60	1.20	2	18.80	22.64	19.96	42.60	22.64	0.17
3	2.40	2.00	2	18.80	37.68	19.94	57.62	37.68	0.17
4	3.20	2.80	2	18.80	52.72	19.91	72.63	52.72	0.17
5	4.00	3.60	2	18.80	67.76	19.88	87.64	67.76	0.17
6	4.80	4.40	2	18.80	82.80	19.76	102.56	82.80	0.17
7	5.60	5.20	2	18.80	97.84	19.61	117.45	97.84	0.17
8	6.40	6.00	3	21.40	114.96	19.47	134.43	114.96	0.03
9	7.20	6.80	3	21.40	132.08	19.32	151.40	132.08	0.03
10	8.00	7.60	3	21.40	149.20	19.16	168.36	149.20	0.03
11	8.80	8.40	3	21.40	166.32	18.89	185.21	166.32	0.03
12	9.60	9.20	3	21.40	183.44	18.62	202.06	183.44	0.03
13	10.40	10.00	3	21.40	200.56	18.34	218.90	200.56	0.03
14	11.20	10.80	3	21.40	217.68	18.07	235.75	217.68	0.03
15	12.00	11.60	3	21.40	234.80	17.78	252.58	234.80	0.03
16	12.80	12.40	3	21.40	251.92	17.44	269.36	251.92	0.03
17	13.60	13.20	3	21.40	269.04	17.11	286.15	269.04	0.03
18	14.40	14.00	3	21.40	286.16	16.78	302.94	286.16	0.02
19	15.20	14.80	3	21.40	303.28	16.45	319.73	303.28	0.02
20	16.00	15.60	3	21.40	320.40	16.13	336.53	320.40	0.02

Cedimento finale del terreno:

/_f = 1.40 cm

Legenda:

zfin = Profondità finale del tratto dal p.p. zm = Profondità media del tratto dal p.p.

 γ^* = peso specifico effettivo del tratto σ'_{v0} = Tensione verticale efficace

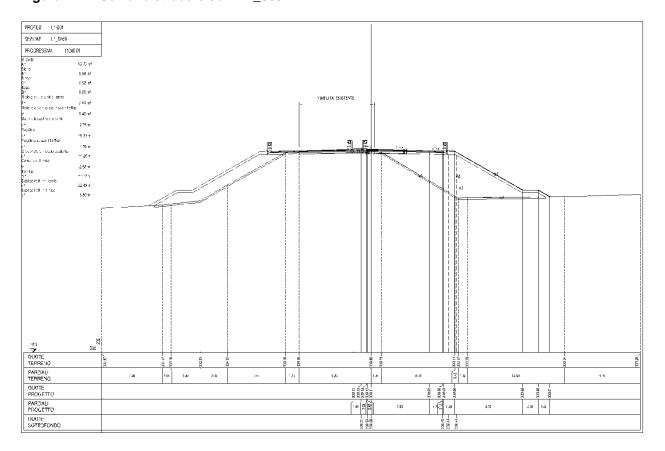
 $\Delta\sigma_z$ = Variazione di carico

 σ'_p = Tensione di preconsolidamento Δw_{imm} = Cedimento immediato

 Δw_{ed} = Cedimento edometrico Δw_{tot} = Cedimento totale

wf = Cedimento finale del terreno di base del rilevato

L.2.3 Rilevato Sez. L1_669


La sezione si trova lungo l'asse principale alla progressiva 11+240.00 in cui il rilevato stradale presenta una altezza media di circa 6.20 m con la seguente successione stratigrafica:

- terreno vegetale da 0.00÷0.80 m dal p.c.
- ghiaie sabbiose limose (Gsl) da 0.80÷8.10 m dal p.c.
- sabbia con ghiaia limosa argillosa (ALS) da 8.10÷14.00 m dal p.c.

Tali informazioni insieme ai parametri geotecnici utilizzati per il calcolo dei cedimenti sono stati ricavati dal sondaggio S043 riportato nella Relazione Geotecnica Generale e illustrato graficamente nei Profili Geotecnici.

Figura L.11: Sezione stradale sez. L1_669

I litotipi di base sono tipo incoerente, inoltre vista l'assenza di falda è stata condotta una analisi di tipo drenata. Ciò premesso, si sono trascurati i cedimenti a fine costruzione, in quanto scontabili durante le diverse fasi costruttive. Discorso opposto nei riguardi dei cedimenti in condizione di esercizio del rilevato, per i quali è stata posta particolare attenzione, così da verificare la compatibilità dei cedimenti con la funzionalità dell'opera. A tal riguardo, il carico stradale è stato simulato per mezzo di un sovraccarico di intensità pari a 20kPa esteso per una larghezza stradale complessiva pari a 25 m.

Per il caso in esame è stato riscontrato un cedimento immediato di circa 1.84 cm, inferiore ai limiti previsti da capitolato. Pertanto gli abbassamenti indotti dal rilevato stradale non compromettono la funzionalità dell'infrastruttura

Figura L.12: Input geotecnico terreno di base rilevato stradale (sez. L1_669)

<u>N° Strato:</u> 1		
Denominazione:		Bonifica
Tipologia stratigrafica:		Drenato
Profondità iniziale dal p.c.:	ZI =	0,00 m
Profondità finale dal p.c.:	ZF =	0,80 m
Spessore strato:	$\Delta z =$	0,80 m
Peso specifico:	$\gamma =$	19,00 kN/m ³
Modulo elastico:	E =	30000 kN/m ²
Grado di sovraconsolidazione:	OCR =	1,0
N° Strato: 2		
Denominazione:		Gsl
Tipologia stratigrafica:		Drenato
Profondità iniziale dal p.c.:	ZI =	0,80 m
Profondità finale dal p.c.:	ZF =	8,10 m
Spessore strato:	$\Delta z =$	7,30 m
Peso specifico:	$\gamma =$	19,50 kN/m ³
Modulo elastico:	E =	12700 kN/m ²
Grado di sovraconsolidazione:	OCR =	1,0
N° Strato: 3		
Denominazione:		ALS
Tipologia stratigrafica:		Drenato
Profondità iniziale dal p.c.:	ZI =	8,10 m
Profondità finale dal p.c.:	ZF =	14,00 m
Spessore strato:	$\Delta z =$	5,90 m
Peso specifico:	$\gamma =$	17,00 kN/m ³
Modulo elastico:	E =	14200 kN/m ²
Grado di sovraconsolidazione:	OCR =	1,0

Relativamente alla suddivisione dello strato di terreno compressibile in piccoli strati di modesto spessore, come profondità d'influenza del carico in fondazione è stata considerata quella entro la quale la tensione verticale indotta dal carico in fondazione risulta superiore al 15% della tensione litostatica. Tale valore della profondità di influenza nel caso in esame risulta pari a 13.50 m.

Figura L.13: Tabella di calcolo dei cedimenti rilevato stradale (sez. L1_669)

									Drenato	
N°	zfin con.	zm con.	n°	γ*	σ' _{v0}	$\Delta\sigma_z$	$\sigma'_{v0}+\Delta\sigma_z$	σ' _p	Δw_{imm}	
tratto	dal p.p. (m)	dal p.p. (m)	strato	(kN/m³)	(kN/m ²)	(kN/m ²)	(kN/m ²)	(kN/m ²)	(cm)	
1	0.68	0.34	1	19.00	6.41	19.99	26.40	6.41	0.04	
2	1.35	1.01	2	19.50	19.58	19.96	39.54	19.58	0.11	
3	2.03	1.69	2	19.50	32.74	19.94	52.67	32.74	0.11	
4	2.70	2.36	2	19.50	45.90	19.91	65.81	45.90	0.11	
5	3.38	3.04	2	19.50	59.06	19.88	78.95	59.06	0.11	
6	4.05	3.71	2	19.50	72.23	19.75	91.98	72.23	0.10	
7	4.73	4.39	2	19.50	85.39	19.60	104.99	85.39	0.10	
8	5.40	5.06	2	19.50	98.55	19.45	118.00	98.55	0.10	
9	6.08	5.74	2	19.50	111.71	19.30	131.02	111.71	0.10	
10	6.75	6.41	2	19.50	124.88	19.13	144.00	124.88	0.10	
11	7.43	7.09	2	19.50	138.04	18.85	156.89	138.04	0.10	
12	8.10	7.76	2	19.50	151.20	18.58	169.78	151.20	0.10	
13	8.78	8.44	3	17.00	162.68	18.30	180.98	162.68	0.09	
14	9.45	9.11	3	17.00	174.15	18.03	192.18	174.15	0.09	
15	10.13	9.79	3	17.00	185.63	17.72	203.34	185.63	0.08	
16	10.80	10.46	3	17.00	197.10	17.38	214.48	197.10	0.08	
17	11.48	11.14	3	17.00	208.58	17.04	225.62	208.58	0.08	
18	12.15	11.81	3	17.00	220.05	16.71	236.76	220.05	0.08	
19	12.83	12.49	3	17.00	231.53	16.37	247.90	231.53	0.08	
20	13.50	13.16	3	17.00	243.00	16.05	259.05	243.00	0.08	

Cedimento finale del terreno:

 $\mathbf{w}_{\mathrm{f}} =$ 1.84 cm

zfin = Profondità finale del tratto dal p.p. zm = Profondità media del tratto dal p.p. γ * = peso specifico effettivo del tratto

 σ'_{v0} = Tensione verticale efficace

 $\Delta\sigma_z$ = Variazione di carico

 σ'_p = Tensione di preconsolidamento

 Δw_{imm} = Cedimento immediato

 Δw_{ed} = Cedimento edometrico

 Δw_{tot} = Cedimento totale

wf = Cedimento finale del terreno di base del rilevato

M INDICAZIONI SUI PIANI DI POSA DEL CORPO STRADALE

Nel presente capitolo si forniscono le indicazioni per la preparazione del piano di posa dei rilevati e delle trincee e l'entità degli eventuali spessori di bonifica da realizzare al di sotto della coltre vegetale, necessari a garantire la stabilità del corpo stradale.

La determinazione della coltre vegetale si effettua valutando le risultanze dei pozzetti esplorativi e dei sondaggi eseguiti lungo il tracciato relativi alle campagne di indagine descritte nei relativi capitoli. Ciò consente di effettuare una prima suddivisione del tracciato in tratte omogenee in funzione dello spessore della coltre vegetale.

Una volta determinato lo spessore della coltre vegetale, si prescrive la rimozione dello stesso poiché le caratteristiche meccaniche del terreno vegetale non sono compatibili con quanto prescritto dal capitolato speciale di appalto, sia in termini di resistenza meccanica che in termini di caratteristiche elastiche. Per tale ragione in sostituzione viene inserito un materiale con caratteristiche da rilevato stradale e pertanto di adeguate caratteristiche meccaniche.

Suddividendo il tracciato in tratte geotecnicamente omogenee, in funzione anche della litologia di base, si procede alla verifica dei cedimenti del piano di posa dei rilevati e dei piani di posa della pavimentazione in trincea. Le modalità di verifica dei cedimenti sono eseguite secondo quanto riportato al capitolo L.

Nel caso in cui le verifiche dei cedimenti non fossero soddisfatte, si prevede una bonifica, che viene indicata caso per caso. Tale bonifica consiste nella sostituzione del terreno in sito di caratteristiche scadenti con materiale di adequate caratteristiche.

All'interno del presente capitolo si riportano le tabelle di progetto, distinte per tratti omogenei, indicanti lo spessore della coltre vegetale e l'eventuale bonifica.

M.1 Tabelle riassuntive bonifiche asse principale

Nel presente paragrafo si riporta una tabella riassuntiva con l'indicazione delle coltri vegetali da sostituire e l'eventuale ulteriore bonifica da eseguire al di sotto del piano di posa del corpo stradale, divise per tratte omogenee relative al lotto in oggetto. Come già accennato, la tabella riporta i risultati derivanti sia dalle analisi degli spessori di vegetale sia dalle verifiche geotecniche nel piano di posa dei rilevati.

Tabella M.1: Indicazioni progettuali bonifiche asse principale

Tra	atto	Spessore coltre	Danifica [m]
Progr. In.	Progr. Fin.	vegetale: S [m]	Bonifica [m]
0.00	200.00	0.50	
200.00	606.00	0.50	
606.00	1453.00	0.50	
1453.00	1756.00	0.50	
1756.00	2876.00	0.50	
2876.00	3006.00	0.30	
3006.00	3126.00	0.40	
3126.00	3256.00	0.20	
3256.00	3376.00	0.40	
3376.00	3706.00	0.30	
3706.00	4006.00	0.20	
4006.00	4106.00	0.20	0.30
4106.00	4676.00	0.20	
4676.00	5076.00	0.20	
5076.00	5556.00	0.30	
5556.00	6021.00	0.30	
6021.00	6166.00	0.40	0.10
6166.00	6506.00	0.50	
6506.00	6656.00	0.50	

Tra	atto	Spessore coltre	Danifica [m]
Progr. In.	Progr. Fin.	vegetale: S [m]	Bonifica [m]
6656.00	6706.00	0.50	
6706.00	6828.00	0.50	
6828.00	7036.00	0.40	
7036.00	7206.00	0.50	
7206.00	7804.00	0.30	
7804.00	7902.00	0.30	
7902.00	8351.00	0.40	0.10
8351.00	8731.00	0.30	
8731.00	8821.00	0.50	
8821.00	9101.00	0.40	
9101.00	9251.00	0.50	
9251.00	9501.00	0.50	
9501.00	9781.00	0.50	
9781.00	10471.00	0.80	
10471.00	10961.00	1.00	
10961.00	11161.00	0.30	
11161.00 11361.00		0.90	

M.2 Indicazioni progettuali viabilità secondarie svincoli

Nel presente paragrafo si riporta una tabella riassuntiva con l'indicazione delle coltri vegetali da sostituire e l'eventuale ulteriore bonifica da eseguire al di sotto del piano di posa del corpo stradale per le viabilità secondarie e per gli svincoli. Tale tabella è stata compilata con i medesimi criteri di quelle corrispondenti all'asse principale.

Tabella M.2: Indicazioni progettuali bonifiche viabilità secondarie

N° Sec.	Progr. In.	Progr. Fin.	Spessore coltre	Bonifica [cm]
	_		vegetale: S [cm]	
1	0.00	1633.00	50.00	
1bis	0.00	252.00	50.00	
4	0.00	265.00	50.00	
5	0.00	1280.00	50.00	
	1280.00	1382.00	30.00	
	0.00	40.00	50.00	
	40.00	220.00	30.00	
	220.00	340.00	40.00	
	340.00	515.00	20.00	
6	515.00	640.00	40.00	
	640.00	993.00	30.00	
	640.00	993.00	30.00	
	993.00	1300.00	20.00	
	1300.00	1380.00	50.00	
	1380.00	1821.00	20.00	
	0.00	140.00	40.00	
	140.00	400.00	20.00	
7	400.00	520.00	40.00	
	520.00	817.00	30.00	
	817.00	946.00	20.00	
9	0.00	253.00	20.00	
10	0.00	215.00	30.00	
11	0.00	603.00	40.00	
12	0.00	776.00	30.00	
	0.00	348.00	40.00	
13	348.00	410.00	40.00	
	410.00	498.00	40.00	
14	0.00	209.00	30.00	
15	0.00	308.00	20.00	
	0.00	20.00	20.00	
16	20.00	233.00	20.00	
10	233.00	311.00	20.00	
	200.00	011.00	20.00	
17 RAMO 01	0.00	183.00	40.00	
17 RAMO 02	0.00	52.00	40.00	
17 RAMO	0.00	50.00	40.00	
03	50.00	124.00	20.00	
	30.00	124.00	20.00	
17 RAMO 04	0.00	150.00	20.00	
17 ROT 2	0.00	91.00	20.00	
18	0.00	420.00	60.00	
	0.00	360.00	40.00	
19	360.00	605.00	80.00	
20	0.00	429.00	20.00	

Tabella M.3: Indicazioni progettuali bonifiche svincoli

N° Svincolo	Progr. In.	Progr. Fin.	Spessore coltre vegetale: S [cm]	Bonifica [cm]
SVINCOLO 01			40.00	
SVINCOLO 02	21.00	106.00	80.00	
- RAMPA 1	21.00	100.00	80.00	
SVINCOLO 02	0.00	92.00	80.00	
- RAMPA 3	0.00	92.00	80.00	
SVINCOLO 02	0.00	107.00	80.00	
- ROT 01	0.00	107.00	00.00	

N VERIFICA DELLA SUSCETTIBILITA' A LIQUEFAZIONE

Nel presente capitolo vengono riportate le verifiche della suscettibilità a liquefazione per i terreni appartenenti al lotto in oggetto.

Le modalità di verifica della suscettibilità a liquefazione sono descritte nel capitolo I della relazione geotecnica generale.

N.1 Risultati delle verifiche

Sulla base di un'analisi approfondita delle caratteristiche geotecniche dei depositi relativi al lotto 1, si può affermare che esso risulta stabile nei confronti della liquefazione. Tale affermazione scaturisce dalle considerazioni di seguito riportate.

All'interno del lotto in esame sono stati riscontrati depositi intrinsecamente non suscettibili a liquefazione, in quanto costituiti da terreni argillosi e formazioni litoidi.

In prossimità di strutture con fondazioni superficiali, in cui la profondità media stagionale della falda è superiore a 15 m dal p.c., la verifica a liquefazione è stata omessa secondo quanto riportato al §7.11.3.4.2 delle NTC 2008.

In prossimità di strutture con fondazioni profonde, non sono stati riscontrati depositi prevalentemente sabbiosi oppure sono stati riscontrati sopra il livello medio stagionale della falda, pertanto non soggetti a liquefazione.

O PROBLEMATICHE GEOTECNICHE E MODALITA' COSTRUTTIVE

Il lotto in esame presenta una varietà di litotipi che va da terreni sciolti (coesivi ed incoerenti) a terreni litoidi, e presentano pertanto problematiche geotecniche diverse e di conseguenza diverse modalità costruttive delle opere presenti.

Per quanto concerne gli scavi di sbancamento in corrispondenza delle varie opere d'arte, le pendenze degli scavi sono state via via calibrate al fine di assicurare la stabilità in fase costruttiva in relazione alla tipologia del terreno interessato.

Di seguito si riporta una tabella con le pendenze di scavo distinte per formazione.

Tabella O.1: Indicazioni progettuali pendenza scavi provvisionali lotto 1

Indicazioni progettuali so	avi provvisionali di progetto lotto 1
Formazione	Pendenza scarpate provvisionali (V/H)
Ar	2/3
Conoide	1/1
Detrito	2/3
Mc (Litoide)	5/1
Mc (Sciolta)	1/1
Mcm (Litoide)	5/1
Mcm (Sciolta)	1/1
Ocm (Litoide)	5/1
Ocm (Sciolta)	1/1
Р	2/3
Qm	2/3
Ril. Esistente	2/3

Gli scavi di sbancamento in materiale sciolto (materie di qualunque natura e consistenza, asciutte o bagnate, salvo roccia dura o trovanti di grossa cubatura) vengono condotti a mano o con mezzi meccanici di idonea capacità; gli scavi di sbancamento in terreni litoidi vengono invece eseguiti mediante l'uso di mezzi di demolizione meccanica costituiti dal tipo di attrezzatura che l'impresa riterrà opportuna adoperare (martelloni, demolitore a barre, demolizione a mano ecc.).

Le fondazioni delle opere sono state progettate con fondazioni tipo diretta o indiretta, in funzione al carico agente e al carico limite terreno-struttura. Le fondazioni di tipo indiretta è prevista con pali trivellati di grande diametro, variabile tra Ø800÷ Ø 1500.

Durante la fase realizzativa dei pali trivellati, in particolare durante la perforazione in terreni sciolti e/o con presenza di falda occorre focalizzare l'attenzione al sostegno delle pareti: nonostante l'effetto arco che si produce sulla circonferenza possono accadere, in ragione del terreno attraversato, franamenti delle pareti. Come soluzione a tale problema è stato previsto l'utilizzo di una camicia di protezione in lamierino in ferro, di spessore adeguato, da infiggere nei tratti di potenziale instabilità del foro.

Laddove la perforazione dei pali trivellati interessa terreni litoidi, è necessario prevedere una perforazione attraverso l'uso di scalpelli o di altri mezzi idonei all'ammorsamento in roccia.

Le fasi in cui è articolata la realizzazione dei pali trivellati sono le seguenti:

preparazione del piano di lavoro;

- posizionamento dell'escavatore;
- inizio della perforazione del palo;
- posizionamento dell'avanpalo e della camicia di sostegno;
- esecuzione dello scavo fino a raggiungere la profondità di progetto;
- calaggio delle gabbie d'armatura con l'ausilio dell'escavatore o della gru di servizio;
- giunzione progressiva degli spezzoni delle gabbie posizionando lo spezzone successivo ed accoppiando i ferri mediante legatura o saldatura;
- calaggio del tubo getto da parte dell'escavatore o della gru di servizio e posizionamento dello stesso a circa 30 cm dal fondo dello scavo;
- getto del calcestruzzo attraverso il tubo-getto con autobetoniere e contemporaneo recupero della camicia di protezione.

Nel caso è previsto di procedere con l'infissione del lamierino seguono ulteriori fasi esecutive:

- esecuzione dello scavo fino al raggiungimento del banco ove è previsto l'inserimento della protezione;
- infissione del lamierino, con tecnologia idonea in funzione al materiale attraversato ed all'eventuale contenimento delle vibrazioni indotte, e contestualmente continuazione con la trivellazione fino al suo totale inserimento.

Nel caso sia previsto l'ammorsamento in roccia si eseguono le seguenti ulteriori fasi esecutive:

- interruzione della perforazione;
- sostituzione della testa di perforazione con mezzi idonei all'ammorsamento in roccia;
- perforazione della roccia fino al raggiungimento della profondità di progetto.

COLLEGAMENTO AUTOSTRADALE RAGUSA-CATANIA: AMMODERNAMENTO A N° 4 CORSIE DELLA S.S. 514 "DI CHIARAMONTE" E DELLA S.S. 194 RAGUSANA DALLO SVINCOLO CON LA S.S. 115 ALLO SVINCOLO CON LA S.S. 114. PROGETTO DEFINITIVO

Relazione geotecnica - allegato

INDICE

A	VER	FICA DI STABILITA' GLOBALE TRINCEE FORMAZIONE RAGUSA	2
В	VER	FICA DI STABILITA' GLOBALE TRINCEE TERRAZZO PALUSTRE P	15
С	VER	IFICA DI STABILITA' GLOBALE MECCANISMO DI ROTTURA CORPO DEL RILEVATO .	27
	C.1	Combinazione statica	27
	C.2	Combinazione sismica	39
D	VER	IFICA DI STABILITA' GLOBALE MECCANISMO GENERALE RILEVATO PK4+300	50
	D.1	Combinazione statica	50
	D.2	Combinazione sismica	52
Ε	VER	IFICA DI STABILITA' GLOBALE MECCANISMO GENERALE RILEVATO PK 6+748	55
	E.1	Combinazione statica	55
	E.2	Combinazione sismica	66
F	VER	IFICA DI STABILITA' GLOBALE MECCANISMO GENERALE RILEVATO PK 10+611	77
	F.1	Combinazione statica	77
	F 2	Combinazione sismica	87

A VERIFICA DI STABILITA' GLOBALE TRINCEE FORMAZIONE RAGUSA

Progetto: My Project Risultati per la Design Section 1: 0: DM08_ITA: Comb. 2: A2+M2+R1

DATI TERRENO

Name	g tot	g dry	Frict	C'	Su	FRp	FRcv	Eload	Eur	kAp	kPp	kAcv	kPcv	Vary	Spring	Color
	(kN/m3)	(kN/m3)	(deg)	(kPa)	(kPa)	(deg)	(deg)	(kPa)	(kPa)	NL	NL	NL	NL		Model	
ОСМ	23	23	21	160	N/A	N/A	N/A	7500000	7500000	0.47	2.12	N/A	N/A	True	Linear	

Name	Poisson	Min Ka	Min sh	ko.NC	nOCR	aH.EXP	aV.EXP	qSkin	qNails	kS.nails	PL
	v	(clays)	(clays)	-	-	(0 to 1)	(0 to 1)	(kPa)	(kPa)	(kN/m3)	(MPa)
ОСМ	0.45	-	-	0.642	0.5	-	-	700	466.67	31430.45	-

gtot=peso gdry=peso Frict=angolo C'=coesione		specifico secco di	attr	ito	/totale del	di	terreno terreno calcolo efficace
Su = Coesione	non drenata,	parametro	attivo per	terreni	tipo CLAY	in condizioni N	ION drenate
Dilat=Dilatanza	terreno	(parametro	valido	solo	in	analisi non	lineare)
Evc=modulo	a c	ompressioen	vergir	ie	molla	equivalente	terreno
Eur=modulo	di scaric	o/ricarico	(fase	elastica)	molla	equivalente	terreno
Kap=	coefficiente	di	spir	nta	attiva	di	picco
Kpp=	coefficiente	di	spin	ta	passiva	di	picco
Kacv=	coefficiente	di	spi	nta	attiva	di	picco
Kpcv=	coefficiente	di	spin	ta	passiva	di	picco
Spring models=	modalità di	definizione	dei moduli	di rigi	dezza molle	terreno (LIN,	EXP, SIMC)
LIN=		Linear	e-Elastico-Perf	ettamente	9		plastico
EXP: espo	nenziale,	SUB:	Modulo	di	reazione	e del	sottosuolo
SIMC= Modo semp	olificato per argill	е					

STRATIGRAFIA TERRENI

TopElev=quotasuperiorestratoSoiltype=nomedelterrenoOCR=rapportodisovraconsolidazione

K0=coefficiente di spinta a riposo

Nome: Boring 1, pos: (-20, 0)

Top elev.	Soil type	OCR	Ко
0	OCM	1	0.64

Impostazioni stabilita' globale

Numero massimo di iterazioni = 100, Tolleranza = 0.001%

Larghezza massima concio = 1 m

Limiti dall'angolo in alto a sinistra della paratia

Sinistra = -15.14 m, Destra = 23.66 m, Spaziatura orizzontale = 5

Alto = 48.41 m, Basso = 35.95 m, Spaziatura verticale = 5

La ricerca del raggio parte dalla base della paratia + 0 m

La ricerca del raggio finisce alla base del modello

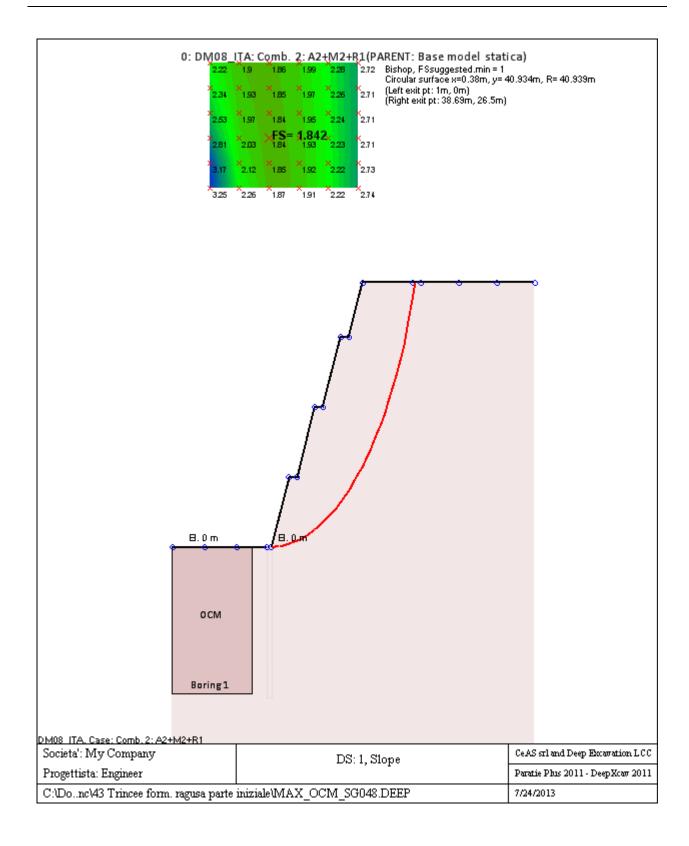
20 intervallo di raggi e' usato

Angolo limite attivo non e' usato

Angolo limite passivo non e' usato

La capacita' SLU dei supporti e' inclusa nella verifcia di stabilita' del pendio

La capacita' a taglio e' inclusa nella stabilita' delle superfici intersecanti la paratia (nota: per pali collegati = 0)


Taglio e forze laterali sulle superfici verticali iniziali e finali sono calcolate a partire dalle condizioni a riposo

Numero di intervalli sulle superfici verticali iniziali e finali = 30

FASI DI SCAVO E VERIFICA DI STABILITA' DEL PENDIO

Nel seguito sono riportati i risultati delle verifiche di stabilità del pendio per ogni fase.

ANALISI DI STABILITA' DEL PENDIO: RISULTATI DEI CONCI PER TUTTI GLI

STAGE

Analisi di stabilita' del pendio Design Section: 0: DM08_ITA: Comb. 2: A2+M2+R1

Analisi di stabilita' del pendio Stage: 0

Analisi di stabilita' del pendio eseguita per questo stage.

Punto critico a x = 0.38 z= 40.934 FS= 1.842

Slice	x1	ZsL	ZtL	x2	ZsL	ZtL	DL	an	Fr	С	Wn	ubL	ubR	tBase	Nr	EiL	EiR	TL	TR	UbF
No.	m	m	m	m	m	m	m	deg	deg	kPa	kN/m	kPa	kPa	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m
0	1	0	0	1.99	0.03	1.49	0.99	-1.56	17.07	128	16.6	0	0	71.4	14.7	0	0	0	0	0
1	1.99	0.03	1.49	2.98	0.08	2.97	0.99	-2.95	17.07	128	49.7	0	0	76.6	45.8	0	0	0	0	0
2	2.98	0.08	2.97	3.98	0.15	4.46	0.99	-4.34	17.07	128	82.1	0	0	81.8	76.2	0	0	0	0	0
3	3.98	0.15	4.46	4.97	0.25	5.95	1	-5.74	17.07	128	114.1	0	0	86.9	105.9	0	0	0	0	0
4	4.97	0.25	5.95	5.67	0.34	7	0.71	-6.93	17.07	128	99.8	0	0	64.6	92.7	0	0	0	0	0
5	5.67	0.34	7	6.95	0.53	7	1.29	-8.33	17.07	128	193.5	0	0	119.6	178.1	0	0	0	0	0
6	6.95	0.53	7	7.67	0.65	7	0.73	-9.75	17.07	128	106	0	0	66.7	96.1	0	0	0	0	0
7	7.67	0.65	7	8.93	0.9	8.9	1.29	- 11.16	17.07	128	208.7	0	0	121	188.9	0	0	0	0	0
8	8.93	0.9	8.9	9.93	1.12	10.39	1.02	- 12.77	17.07	128	196.9	0	0	100.5	179.1	0	0	0	0	0
9	9.93	1.12	10.39	10.92	1.37	11.88	1.02	-14.2	17.07	128	225.5	0	0	105.4	205.9	0	0	0	0	0
10	10.92	1.37	11.88	11.91	1.65	13.37	1.03	- 15.64	17.07	128	253.5	0	0	110.3	232.3	0	0	0	0	0
11	11.91	1.65	13.37	12.33	1.78	14	0.44	- 16.67	17.07	128	115.6	0	0	48.2	106.2	0	0	0	0	0
12	12.33	1.78	14	12.9	1.96	14	0.6	- 17.39	17.07	128	159.6	0	0	66.1	146.6	0	0	0	0	0
13	12.9	1.96	14	13.89	2.29	14	1.05	- 18.54	17.07	128	270.9	0	0	114	247.5	0	0	0	0	0
14	13.89	2.29	14	14.33	2.45	14	0.46	-19.6	17.07	128	116.7	0	0	49.9	106.1	0	0	0	0	0
15	14.33	2.45	14	14.89	2.65	14.83	0.59	- 20.34	17.07	128	151.7	0	0	64.2	138	0	0	0	0	0
16	14.89	2.65	14.83	15.88	3.04	16.32	1.07	-21.5	17.07	128	290.4	0	0	118.3	265.5	0	0	0	0	0
17	15.88	3.04	16.32	16.87	3.46	17.81	1.08	-23	17.07	128	315	0	0	123.2	290	0	0	0	0	0
18	16.87	3.46	17.81	17.86	3.92	19.29	1.09	- 24.52	17.07	128	339	0	0	128.1	314.2	0	0	0	0	0
19	17.86	3.92	19.29	19	4.47	21	1.27	- 26.17	17.07	128	417.8	0	0	153.2	390.2	0	0	0	0	0
20	19	4.47	21	19.84	4.92	21	0.95	-	17.07	128	316.8	0	0	115.8	297	0	0	0	0	0

COLLEGAMENTO AUTOSTRADALE RAGUSA-CATANIA: AMMODERNAMENTO A Nº 4 CORSIE DELLA S.S. 514 "DI CHIARAMONTE" E DELLA S.S. 194 RAGUSANA DALLO SVINCOLO CON LA S.S. 115 ALLO SVINCOLO CON LA S.S. 114. Relazione geotecnica - allegato

								27.72												
21	19.84	4.92	21	21	5.57	21	1.32	- 29.32	17.07	128	418.6	0	0	157.4	391.8	0	0	0	0	0
22	21	5.57	21	21.83	6.06	22.23	0.97	- 30.92	17.07	128	301.1	0	0	114.2	282.6	0	0	0	0	0
23	21.83	6.06	22.23	22.82	6.69	23.71	1.17	- 32.42	17.07		378.5	0	0	141.4	358.5	0	0	0	0	0
24	22.82	6.69	23.71	23.81	7.36	25.18	1.2	- 34.08	17.07	128	397.3	0	0	146.6	380.4	0	0	0	0	0
25	23.81	7.36	25.18	24.7	8	26.5	1.09	- 35.68	17.07	128	370.7	0	0	135.8	358.9	0	0	0	0	0
26	24.7	8	26.5	25.8	8.84	26.5	1.38	- 37.41	17.07	128	455.7	0	0	169.8	443.8	0	0	0	0	0
27	25.8	8.84	26.5	26.79	9.65	26.5	1.28	- 39.27	17.07	128	393.6	0	0	152.9	383.4	0	0	0	0	0
28	26.79	9.65	26.5	27.78	10.52	26.5	1.32	- 41.09	17.07	128	374.5	0	0	152.2	364.2	0	0	0	0	0
29	27.78	10.52	26.5	28.77	11.44	26.5	1.36	- 42.96	17.07	128	354.1	0	0	151.3	342.9	0	0	0	0	0
30	28.77	11.44	26.5	29.76	12.43	26.5	1.4	- 44.89	17.07		332.3	0	0	150.5	319.1	0	0	0	0	0
31	29.76	12.43	26.5	30.76	13.49	26.5	1.45	- 46.88	17.07	128	308.9	0	0	149.6	292.3	0	0	0	0	0
32	30.76	13.49	26.5	31.75	14.63	26.5	1.51	- 48.96	17.07	128	283.9	0	0	148.6	261.6	0	0	0	0	0
33	31.75	14.63	26.5	32.74	15.86	26.5	1.58	- 51.12	17.07	128	256.8	0	0	147.5	226.2	0	0	0	0	0
34	32.74	15.86	26.5	33.73	17.19	26.5	1.66	- 53.39	17.07	128	227.6	0	0	146.3	184.6	0	0	0	0	0
35	33.73	17.19	26.5	34.72	18.65	26.5	1.76	- 55.79	17.07	128	195.7	0	0	145	134.8	0	0	0	0	0
36	34.72	18.65	26.5	35.71	20.26	26.5	1.89	- 58.34	17.07	128	160.7	0	0	143.6	73.4	0	0	0	0	0
37	35.71	20.26	26.5	36.71	22.06	26.5	2.05	-61.1	17.07	128	121.9	0	0	142.6	0	0	0	0	0	0
38	36.71	22.06	26.5	38	24.79	26.5	3.02	- 64.66	17.07	128	91.6	0	0	210	0	0	0	0	0	0
39	38	24.79	26.5	38.69	26.5	26.5	1.85	- 68.06	17.07		13.6	0	0	128.3	0	0	0	0	0	0

LEGENDA							
Wall			node=numero				nodo
EL=quota							
Sht	L=pressione	terreno	orizzontale	totale	a	SX	paratia
Sht	R=pressione	terreno	orizzontale	totale	a	dx	paratia
Shs	L=pressione	terreno	orizzontale	efficace	a	SX	paratia
Shs	R=pressione	terreno	orizzontale	efficace	а	dx	paratia
q=pressioni		dovute		al			sovraccarico
U	L=pressione		acqua	a	SX		paratia
U	R=pressione		acqua	a	dx		paratia
M=momento	0	fletten	te	(per			metro)

COLLEGAMENTO AUTOSTRADALE RAGUSA-CATANIA: AMMODERNAMENTO A Nº 4 CORSIE DELLA S.S. 514 "DI CHIARAMONTE" E DELLA S.S. 194 RAGUSANA DALLO SVINCOLO CON LA S.S. 115 ALLO SVINCOLO CON LA S.S. 114.

Relazione geotecnica - allegato

V=taglio		(per		metro)
dx=spostamento				orizzontale
McapL=Momento	ultimo		lato	SX
McapR=Momento	ultimo		lato	dx
VcapL=Taglio	ultimo	resistente	lato	SX
VcapR=Taglio ultimo resistente	ato dx			

Progetto: My Project
Risultati per la Design Section 3: 2: DM08_ITA: EQK GEO

DATI TERRENO

Name	g tot	g dry	Frict	C'	Su	FRp	FRcv	Eload	Eur	kAp	kPp	kAcv	kPcv	Vary	Spring	Color
	(kN/m3)	(kN/m3)	(deg)	(kPa)	(kPa)	(deg)	(deg)	(kPa)	(kPa)	NL	NL	NL	NL		Model	
ОСМ	23	23	21	160	N/A	N/A	N/A	7500000	7500000	0.47	2.12	N/A	N/A	True	Linear	

Name	Poisson	Min Ka	Min sh	ko.NC	nOCR	aH.EXP	aV.EXP	qSkin	qNails	kS.nails	PL
	v	(clays)	(clays)	-	-	(0 to 1)	(0 to 1)	(kPa)	(kPa)	(kN/m3)	(MPa)
ОСМ	0.45	-	-	0.642	0.5	-	-	700	466.67	31430.45	-

gtot=peso gdry=peso Frict=angolo C'=coesione		specifico secco di	attr	ito	/totale del	di	terreno terreno calcolo efficace
Su = Coesione	non drenata,	parametro	attivo per	terreni	tipo CLAY	in condizioni N	ION drenate
Dilat=Dilatanza	terreno	(parametro	valido	solo	in	analisi non	lineare)
Evc=modulo	a c	ompressioen	vergir	ne	molla	equivalente	terreno
Eur=modulo	di scaric	o/ricarico	(fase	elastica)	molla	equivalente	terreno
Kap=	coefficiente	di	spii	nta	attiva	di	picco
Kpp=	coefficiente	di	spin	ta	passiva	di	picco
Kacv=	coefficiente	di	spi	nta	attiva	di	picco
Kpcv=	coefficiente	di	spir	nta	passiva	di	picco
Spring models=	modalità di	definizione	dei moduli	di rigi	dezza molle	terreno (LIN,	EXP, SIMC)
LIN=		Linear	e-Elastico-Perf	ettamente	е		plastico
EXP: espo	nenziale,	SUB:	Modulo	di	reazione	e del	sottosuolo
SIMC= Modo semp	olificato per argill	e					

STRATIGRAFIA TERRENI

TopElev=quotasuperiorestratoSoiltype=nomedelterrenoOCR=rapportodisovraconsolidazione

K0=coefficiente di spinta a riposo

Nome: Bo	ring 1, pos: (-	20, 0)	
Top elev.	Soil type	OCR	Ко
0	ОСМ	1	0.64

Impostazioni stabilita' globale

Numero massimo di iterazioni = 100, Tolleranza = 0.001%

Larghezza massima concio = 1 m

Limiti dall'angolo in alto a sinistra della paratia

Sinistra = -11.67 m, Destra = 25.12 m, Spaziatura orizzontale = 5

Alto = 56.48 m, Basso = 39.39 m, Spaziatura verticale = 5

La ricerca del raggio parte dalla base della paratia + 0 m

La ricerca del raggio finisce alla base del modello

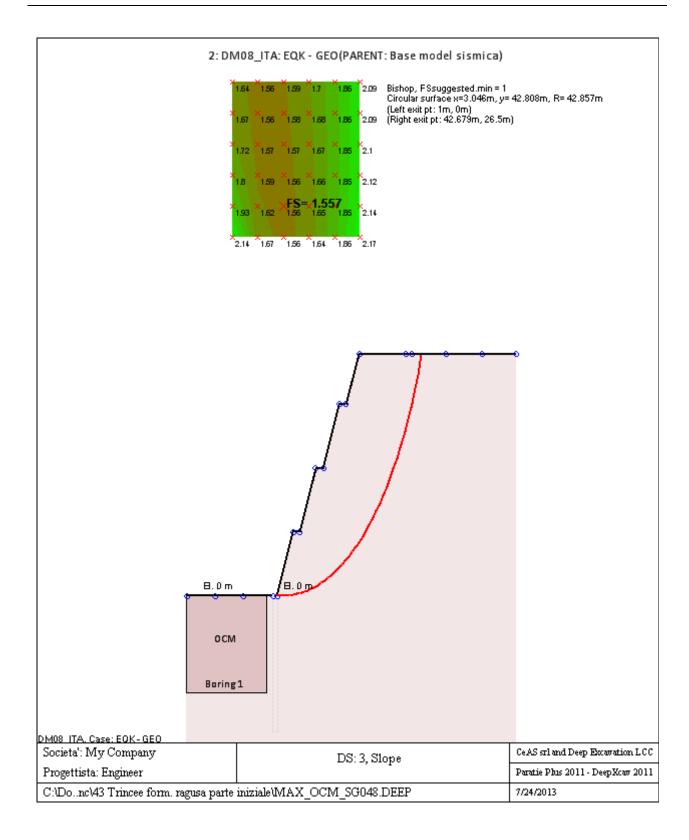
20 intervallo di raggi e' usato

Angolo limite attivo non e' usato

Angolo limite passivo non e' usato

La capacita' SLU dei supporti e' inclusa nella verifcia di stabilita' del pendio

La capacita' a taglio e' inclusa nella stabilita' delle superfici intersecanti la paratia (nota: per pali collegati = 0)


Taglio e forze laterali sulle superfici verticali iniziali e finali sono calcolate a partire dalle condizioni a riposo

Numero di intervalli sulle superfici verticali iniziali e finali = 30

FASI DI SCAVO E VERIFICA DI STABILITA' DEL PENDIO

Nel seguito sono riportati i risultati delle verifiche di stabilità del pendio per ogni fase.

ANALISI DI STABILITA' DEL PENDIO: RISULTATI DEI CONCI PER TUTTI GLI

STAGE

Analisi di stabilita' del pendio Design Section: 2: DM08_ITA: EQK - GEO

Analisi di stabilita' del pendio Stage: 0

Analisi di stabilita' del pendio eseguita per questo stage.

Punto critico a x = 3.046 z= 42.808 FS= 1.557

Slice	x1	ZsL	ZtL	x2	ZsL	ZtL	DL	an	Fr	С	Wn	ubL	ubR	tBase	Nr	EiL	EiR	TL	TR	UbF
No.	m	m	m	m	m	m	m	deg	deg	kPa	kN/m	kPa	kPa	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m
0	1	0	0	1.99	-0.04	1.49	0.99	2.07	17.07	128	17.4	0	0	85.8	21.4	0	0	0	0	0
1	1.99	-0.04	1.49	2.98	-0.05	2.97	0.99	0.75	17.07	128	51.9	0	0	92.5	55.7	0	0	0	0	0
2	2.98	-0.05	2.97	3.98	-0.04	4.46	0.99	-0.58	17.07	128	85.9	0	0	99.1	89.2	0	0	0	0	0
3	3.98	-0.04	4.46	4.97	-0.01	5.95	0.99	-1.91	17.07	128	119.3	0	0	105.6	121.8	0	0	0	0	0
4	4.97	-0.01	5.95	5.67	0.03	7	0.7	-3.04	17.07	128	104.1	0	0	78.4	105.3	0	0	0	0	0
5	5.67	0.03	7	6.95	0.13	7	1.29	-4.37	17.07	128	204.4	0	0	146.1	204	0	0	0	0	0
6	6.95	0.13	7	7.67	0.2	7	0.72	-5.71	17.07	128	112.5	0	0	80.9	110.7	0	0	0	0	0
7	7.67	0.2	7	8.94	0.36	8.91	1.28	-7.05	17.07	128	223.9	0	0	148.2	218.6	0	0	0	0	0
8	8.94	0.36	8.91	9.93	0.51	10.4	1	-8.57	17.07	128	210.4	0	0	122.9	204.9	0	0	0	0	0
9	9.93	0.51	10.4	10.92	0.68	11.89	1.01	-9.92	17.07	128	240.7	0	0	128.9	234.1	0	0	0	0	0
10	10.92	0.68	11.89	11.92	0.88	13.38	1.01	- 11.27	17.07	128	270.5	0	0	135	262.7	0	0	0	0	0
11	11.92	0.88	13.38	12.33	0.97	14	0.42	- 12.23	17.07	128	121.6	0	0	58.1	118	0	0	0	0	0
12	12.33	0.97	14	12.91	1.1	14	0.59	- 12.91	17.07	128	172.4	0	0	81.7	167	0	0	0	0	0
13	12.91	1.1	14	13.9	1.35	14	1.02	- 13.99	17.07	128	291.6	0	0	139.4	280.8	0	0	0	0	0
14	13.9	1.35	14	14.33	1.46	14	0.44	- 14.97	17.07	128	124.4	0	0	60	119.1	0	0	0	0	0
15	14.33	1.46	14	14.89	1.62	14.84	0.58	- 15.66	17.07	128	166.8	0	0	79.5	159.6	0	0	0	0	0
16	14.89	1.62	14.84	15.89	1.92	16.33	1.04	- 16.74	17.07	128	315.4	0	0	144.8	302.2	0	0	0	0	0
17	15.89	1.92	16.33	16.88	2.24	17.82	1.04	- 18.13	17.07	128	342.2	0	0	150.6	328.8	0	0	0	0	0
18	16.88	2.24	17.82	17.87	2.6	19.31	1.05	- 19.53	17.07	128	368.4	0	0	156.5	354.9	0	0	0	0	0
19	17.87	2.6	19.31	19	3.03	21	1.21	- 21.05	17.07	128	450.6	0	0	185.4	435.7	0	0	0	0	0

COLLEGAMENTO AUTOSTRADALE RAGUSA-CATANIA: AMMODERNAMENTO A N° 4 CORSIE DELLA S.S. 514 "DI CHIARAMONTE" E DELLA S.S. 194 RAGUSANA DALLO SVINCOLO CON LA S.S. 115 ALLO SVINCOLO CON LA S.S. 114. Relazione geotecnica - allegato

20	19	3.03	21	19.85	3.38	21	0.92	- 22.47	17.07	128	349.8	0	0	142.7	338.4	0	0	0	0	0
21	19.85	3.38	21	21	3.89			_	17.07			0	0	189.9	441.1	0	0	0	0	0
22	21	3.89	21	21.84	4.29	22.25	0.93	- 25.39	17.07	128	338.5	0	0	140.8	326.6	0	0	0	0	0
23	21.84	4.29	22.25	22.83	4.79	23.72	1.11	- 26.75	17.07	128	421	0	0	171.9	408.4	0	0	0	0	0
24	22.83	4.79	23.72	23.82	5.32	25.2	1.13	- 28.25	17.07	128	442.8	0	0	177.8	432.3	0	0	0	0	0
25	23.82	5.32	25.2	24.7	5.82	26.5	1.01	- 29.67	17.07	128	408.4	0	0	162	401.3	0	0	0	0	0
26	24.7	5.82	26.5	25.81	6.5	26.5	1.3	- 31.22	17.07	128	518.7	0	0	207.4	511.2	0	0	0	0	0
27	25.81	6.5	26.5	26.8	7.14	26.5	1.18	- 32.87	17.07	128	449.3	0	0	184.4	442.5	0	0	0	0	0
28	26.8	7.14	26.5	27.79	7.82	26.5	1.2	- 34.47	17.07	128	434.2	0	0	183.2	427.2	0	0	0	0	0
29	27.79	7.82	26.5	28.79	8.54	26.5	1.23	- 36.09	17.07	128	418.1	0	0	181.9	410.7	0	0	0	0	0
30	28.79	8.54	26.5	29.78	9.31	26.5	1.26	- 37.75	17.07	128	401.1	0	0	180.6	392.8	0	0	0	0	0
31	29.78	9.31	26.5	30.77	10.13	26.5	1.29	- 39.45	17.07	128	383	0	0	179.2	373.3	0	0	0	0	0
32	30.77	10.13	26.5	31.76	11	26.5	1.32	- 41.19	17.07	128	363.8	0	0	177.8	352	0	0	0	0	0
33	31.76	11	26.5	32.76	11.92	26.5	1.36	- 42.98	17.07	128	343.3	0	0	176.3	328.5	0	0	0	0	0
34	32.76	11.92	26.5	33.75	12.91	26.5	1.4	- 44.82	17.07	128	321.5	0	0	174.6	302.4	0	0	0	0	0
35	33.75	12.91	26.5	34.74	13.96	26.5	1.45	- 46.72	17.07	128	298.2	0	0	172.9	273.2	0	0	0	0	0
36	34.74	13.96	26.5	35.73	15.09	26.5	1.5	-48.7	17.07	128	273.3	0	0	170.9	240.3	0	0	0	0	0
37	35.73	15.09	26.5	36.72	16.3	26.5	1.57	- 50.75	17.07	128	246.6	0	0	168.8	202.5	0	0	0	0	0
38	36.72	16.3	26.5	38	18.01	26.5	2.13	- 53.22	17.07	128	274	0	0	213.5	195	0	0	0	0	0
39	38	18.01	26.5	38.71	19.04	26.5	1.25	- 55.48	17.07	128	130.1	0	0	116.9	71.1	0	0	0	0	0
40	38.71	19.04	26.5	40	21.1	26.5	2.43	- 57.95	17.07	128	190.8	0	0	208.6	44.3	0	0	0	0	0
41	40	21.1	26.5	40.69	22.33	26.5	1.41	- 60.51	17.07	128	76.4	0	0	115.9	0	0	0	0	0	0
42	40.69	22.33	26.5	41.69	24.27	26.5	2.18	- 62.91	17.07	128	73	0	0	179.1	0	0	0	0	0	0
43	41.69	24.27	26.5	42.68	26.5	26.5	2.44	-66	17.07	128	25.4	0	0	200.5	0	0	0	0	0	0

LEGENDA

COLLEGAMENTO AUTOSTRADALE RAGUSA-CATANIA: AMMODERNAMENTO A N° 4 CORSIE DELLA S.S. 514 "DI CHIARAMONTE" E DELLA S.S. 194 RAGUSANA DALLO SVINCOLO CON LA S.S. 115 ALLO SVINCOLO CON LA S.S. 114. Relazione geotecnica - allegato

Wall			node=numero				nodo
EL=quota							
Sht	L=pressione	terreno	orizzontale	totale	а	SX	paratia
Sht	R=pressione	terreno	orizzontale	totale	a	dx	paratia
Shs	L=pressione	terreno	orizzontale	efficace	a	SX	paratia
Shs	R=pressione	terreno	orizzontale	efficace	а	dx	paratia
q=pression	i	dovute	j	al			sovraccarico
U	L=pression	e	acqua	ua a			paratia
U	R=pression	ie	acqua	a	dx		paratia
M=momen	to	flette	ente	(per			metro)
V=taglio			(per				metro)
dx=spostan	nento						orizzontale
McapL=Mo	mento		ultimo	I	ato		SX
McapR=Mc	mento		ultimo	I	ato		dx
VcapL=Tagl	io	ultimo	resiste	ente	lato		SX
VcapR=Tag	lio ultimo resistente	e lato dx					

B VERIFICA DI STABILITA' GLOBALE TRINCEE TERRAZZO PALUSTRE P

Progetto: My Project Risultati per la Design Section 1: 0: DM08_ITA: Comb. 2: A2+M2+R1

DATI TERRENO

Name	g tot	g dry	Frict	C'	Su	FRp	FRcv	Eload	Eur	kAp	kPp	kAcv	kPcv	Vary	Spring	Color
	(kN/m3)	(kN/m3)	(deg)	(kPa)	(kPa)	(deg)	(deg)	(kPa)	(kPa)	NL	NL	NL	NL		Model	
Р	18.6	18.6	30	5	N/A	N/A	N/A	15000	24000	0.33	3	N/A	N/A	True	Linear	

Name	Poisson	Min Ka	Min sh	ko.NC	nOCR	aH.EXP	aV.EXP	qSkin	qNails	kS.nails	PL
	V	(clays)	(clays)	-	-	(0 to 1)	(0 to 1)	(kPa)	(kPa)	(kN/m3)	(MPa)
Р	0.35	-	-	0.5	0.5	-	-	50	33.33	3143.04	-

gtot=peso gdry=peso Frict=angolo C'=coesione		specifico secco di	attr	ito	/totale del	di	terreno terreno calcolo efficace
Su = Coesione	non drenata,	parametro	attivo per	terreni	tipo CLAY	in condizioni N	ION drenate
Dilat=Dilatanza	terreno	(parametro	valido	solo	in	analisi non	lineare)
Evc=modulo	a c	ompressioen	vergir	ne	molla	equivalente	terreno
Eur=modulo	di scaric	o/ricarico	(fase	elastica)	molla	equivalente	terreno
Kap=	coefficiente	di	spii	nta	attiva	di	picco
Kpp=	coefficiente	di	spin	ta	passiva	di	picco
Kacv=	coefficiente	di	spi	nta	attiva	di	picco
Kpcv=	coefficiente	di	spir	nta	passiva	di	picco
Spring models=	modalità di	definizione	dei moduli	di rigi	dezza molle	terreno (LIN,	EXP, SIMC)
LIN=		Linear	e-Elastico-Perf	ettamente	е		plastico
EXP: espo	nenziale,	SUB:	Modulo	di	reazione	e del	sottosuolo
SIMC= Modo semp	olificato per argill	e					

STRATIGRAFIA TERRENI

TopElev=quotasuperiorestratoSoiltype=nomedelterrenoOCR=rapportodisovraconsolidazione

K0=coefficiente di spinta a riposo

Nome: Boring 1, pos: (-20, 0)

Top elev.	Soil type	OCR	Ко
7	Р	1	0.5

Impostazioni stabilita' globale

Numero massimo di iterazioni = 100, Tolleranza = 0.001%

Larghezza massima concio = 1 m

Limiti dall'angolo in alto a sinistra della paratia

Sinistra = -11.17 m, Destra = 18.55 m, Spaziatura orizzontale = 5

Alto = 59.69 m, Basso = 33.76 m, Spaziatura verticale = 5

La ricerca del raggio parte dalla base della paratia + 0 m

La ricerca del raggio finisce alla base del modello

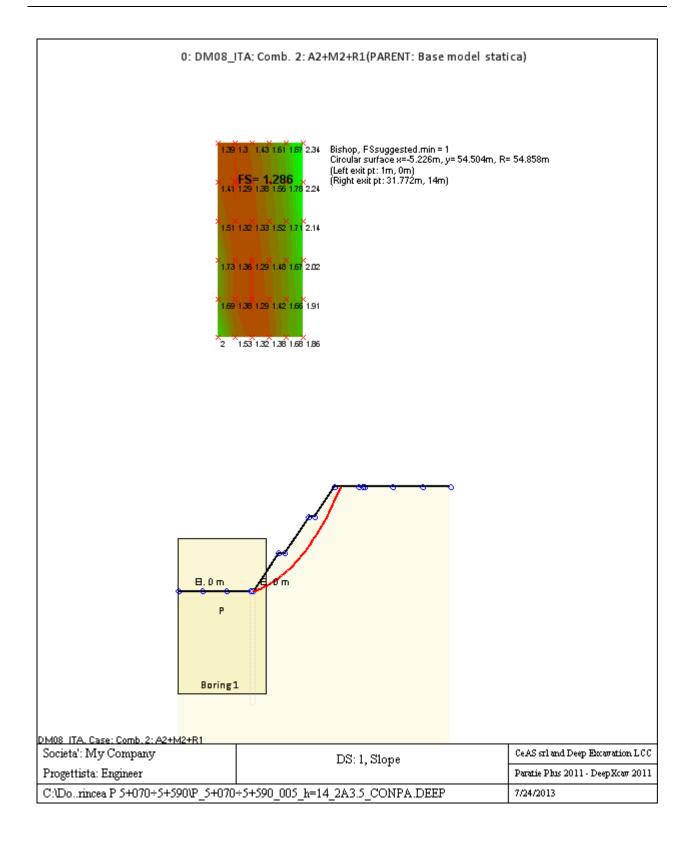
20 intervallo di raggi e' usato

Angolo limite attivo non e' usato

Angolo limite passivo non e' usato

La capacita' SLU dei supporti e' inclusa nella verifcia di stabilita' del pendio

La capacita' a taglio e' inclusa nella stabilita' delle superfici intersecanti la paratia (nota: per pali collegati = 0)


Taglio e forze laterali sulle superfici verticali iniziali e finali sono calcolate a partire dalle condizioni a riposo

Numero di intervalli sulle superfici verticali iniziali e finali = 30

FASI DI SCAVO E VERIFICA DI STABILITA' DEL PENDIO

Nel seguito sono riportati i risultati delle verifiche di stabilità del pendio per ogni fase.

ANALISI DI STABILITA' DEL PENDIO: RISULTATI DEI CONCI PER TUTTI GLI

STAGE

Analisi di stabilita' del pendio Design Section: 0: DM08_ITA: Comb. 2: A2+M2+R1

Analisi di stabilita' del pendio Stage: 0

Analisi di stabilita' del pendio eseguita per questo stage.

Punto critico a x = -5.226 z= 54.504 FS= 1.286

Slice	x1	ZsL	ZtL	x2	ZsL	ZtL	DL	an	Fr	С	Wn	ubL	ubR	tBase	Nr	EiL	EiR	TL	TR	UbF
No.	m	m	m	m	m	m	m	deg	deg	kPa	kN/m	kPa	kPa	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m
0	1	0	0	1.99	0.12	0.57	1	-7.04	24.79	4	4.1	0	0	4.4	3.6	0	0	0	0	0
1	1.99	0.12	0.57	2.99	0.26	1.13	1	-8.08	24.79	4	12.1	0	0	7.2	11.2	0	0	0	0	0
2	2.99	0.26	1.13	3.98	0.42	1.7	1.01	-9.13	24.79	4	19.8	0	0	9.8	18.5	0	0	0	0	0
3	3.98	0.42	1.7	4.97	0.6	2.27	1.01	- 10.19	24.79	4	27.2	0	0	12.3	25.4	0	0	0	0	0
4	4.97	0.6	2.27	5.96	0.8	2.84	1.01	- 11.24	24.79	4	34.2	0	0	14.6	32	0	0	0	0	0
5	5.96	0.8	2.84	6.96	1.02	3.4	1.02	-12.3	24.79	4	40.9	0	0	16.9	38.1	0	0	0	0	0
6	6.96	1.02	3.4	7.95	1.25	3.97	1.02	- 13.36	24.79	4	47.2	0	0	19	44	0	0	0	0	0
7	7.95	1.25	3.97	8.94	1.51	4.54	1.02	- 14.43	24.70	4	53.1	0	0	20.9	49.4	0	0	0	0	0
8	8.94	1.51	4.54	9.75	1.73	5	0.84	-15.4	24.79	4	47.4	0	0	18.4	44.1	0	0	0	0	0
9	9.75	1.73	5	10.93	2.08	5	1.23	- 16.48	24.79	4	67.8	0	0	26.4	62.9	0	0	0	0	0
10	10.93	2.08	5	11.75	2.34	5	0.86	- 17.58	24.79	4	42.8	0	0	16.9	39.5	0	0	0	0	0
11	11.75	2.34	5	12.91	2.73	5.66	1.23	- 18.67	24.70	4	60.5	0	0	23.8	55.8	0	0	0	0	0
12	12.91	2.73	5.66	13.9	3.09	6.23	1.06	- 19.86	24.79	4	56.1	0	0	21.9	51.7	0	0	0	0	0
13	13.9	3.09	6.23	14.9	3.47	6.8	1.06	- 20.96	24.79	4	59.7	0	0	23.1	55.1	0	0	0	0	0
14	14.9	3.47	6.8	15.89	3.87	7.37	1.07	- 22.08	24.79	4	63	0	0	24.2	58.1	0	0	0	0	0
15	15.89	3.87	7.37	16.88	4.3	7.93	1.08	-23.2	24.79	4	65.8	0	0	25.2	60.8	0	0	0	0	0
16	16.88	4.3	7.93	17.88	4.75	8.5	1.09	- 24.34	24.79	4	68.2	0	0	26	63.1	0	0	0	0	0
17	17.88	4.75	8.5	18.87	5.22	9.07	1.1	- 25.48	24.79	4	70.2	0	0	26.8	65	0	0	0	0	0
18	18.87	5.22	9.07	19.86	5.72	9.63	1.11	- 26.63	24.79	4	71.7	0	0	27.3	66.5	0	0	0	0	0
19	19.86	5.72	9.63	20.5	6.05	10	0.72	-	24.79	4	46.8	0	0	17.9	43.5	0	0	0	0	0

COLLEGAMENTO AUTOSTRADALE RAGUSA-CATANIA: AMMODERNAMENTO A N° 4 CORSIE DELLA S.S. 514 "DI CHIARAMONTE" E DELLA S.S. 194 RAGUSANA DALLO SVINCOLO CON LA S.S. 115 ALLO SVINCOLO CON LA S.S. 114. Relazione geotecnica - allegato

								27.59												
20	20.5	6.05	10	20.85	6.24	10	0.4	- 28.18	24.79	4	25.3	0	0	9.7	23.5	0	0	0	0	0
21	20.85	6.24	10	21.85	6.79	10	1.13	- 28.98	24.79	4	64.3	0	0	25	59.7	0	0	0	0	0
22	21.85	6.79	10	22.5	7.17	10	0.76	- 29.96	24.79	4	36.8	0	0	14.6	34	0	0	0	0	0
23	22.5	7.17	10	22.84	7.37	10.19	0.39	- 30.56	24.79	4	17.8	0	0	7.1	16.5	0	0	0	0	0
24	22.84	7.37	10.19	23.83	7.97	10.76	1.16	- 31.38	24.79	4	51.8	0	0	20.9	48	0	0	0	0	0
25	23.83	7.97	10.76	24.82	8.61	11.33	1.18	-32.6	24.79	4	50.8	0	0	20.6	47.2	0	0	0	0	0
26	24.82	8.61	11.33	25.82	9.27	11.9	1.2	- 33.84	24.79	4	49.3	0	0	20.2	45.8	0	0	0	0	0
27	25.82	9.27	11.9	26.81	9.97	12.46	1.21	-35.1	24.79	4	47.2	0	0	19.6	43.9	0	0	0	0	0
28	26.81	9.97	12.46	27.8	10.7	13.03	1.23	- 36.37	24.79	4	44.5	0	0	18.7	41.5	0	0	0	0	0
29	27.8	10.7	13.03	28.79	11.47	13.6	1.25	- 37.67	24.79	4	41.1	0	0	17.7	38.3	0	0	0	0	0
30	28.79	11.47	13.6	29.5	12.04	14	0.91	-38.8	24.79	4	26.9	0	0	11.8	25	0	0	0	0	0
31	29.5	12.04	14	30.78	13.12	14	1.67	- 40.15	24.79	4	33.9	0	0	16.2	30.7	0	0	0	0	0
32	30.78	13.12	14	31.77	14	14	1.33	- 41.72	24.79	4	8.2	0	0	6.1	5.5	0	0	0	0	0

LEGENDA							
Wall			node=numero				nodo
EL=quota							
Sht	L=pressione	terreno	orizzontale	totale	a	SX	paratia
Sht	R=pressione	terreno	orizzontale	totale	a	dx	paratia
Shs	L=pressione	terreno	orizzontale	efficace	а	SX	paratia
Shs	R=pressione	terreno	orizzontale	efficace	а	dx	paratia
q=pressioni		dovute		al			sovraccarico
U	L=pressione		acqua	а	SX		paratia
U	R=pressione		acqua	а	dx		paratia
M=momento	o	flette	nte	(per			metro)
V=taglio			(per				metro)
dx=spostame	ento						orizzontale
McapL=Mon	nento		ultimo	I	ato		SX
McapR=Mor	mento		ultimo	J	ato		dx
VcapL=Taglio	o	ultimo	resiste	ente	lato		SX
VcapR=Tagli	o ultimo resistente la	to dx					

Progetto: My Project Risultati per la Design Section 3: 2: DM08_ITA: EQK -GEO

DATI TERRENO

Name	g tot	g dry	Frict	C'	Su	FRp	FRcv	Eload	Eur	kAp	kPp	kAcv	kPcv	Vary	Spring	Color
	(kN/m3)	(kN/m3)	(deg)	(kPa)	(kPa)	(deg)	(deg)	(kPa)	(kPa)	NL	NL	NL	NL		Model	
P*	18.6	18.6	30	45	N/A	N/A	N/A	15000	24000	0.33	3	N/A	N/A	True	Linear	
Р	18.6	18.6	30	5	N/A	N/A	N/A	15000	24000	0.33	3	N/A	N/A	True	Linear	

Name	Poisson	Min Ka	Min sh	ko.NC	nOCR	aH.EXP	aV.EXP	qSkin	qNails	kS.nails	PL
	v	(clays)	(clays)	-	-	(0 to 1)	(0 to 1)	(kPa)	(kPa)	(kN/m3)	(MPa)
P*	0.35	-	-	0.5	0.5	-	-	50	33.33	3143.04	-
Р	0.35	-	-	0.5	0.5	-	-	50	33.33	3143.04	-

gtot=peso gdry=peso			specifico secco				•	otale Iel				terreno terreno
Frict=angolo		(ik		attri	ito			di			calcolo
C'=coesione												efficace
Su = Coesione	non	drenata,	parametro	attivo	per	terreni	tipo	CLAY	in condi	zioni I	NON	drenate
Dilat=Dilatanza	terre	no	(parametro	va	lido	solo		in	analisi	non		lineare)
Evc=modulo	a	co	mpressioen		vergin	е	mol	la	equiva	lente		terreno
Eur=modulo	di	scarico	(fase		elastica)		molla	equi	valente		terreno	
Kap=	coefficie	ente	di		spir	nta		attiva		di		picco
Kpp=	coefficie	nte	di		spin	ta		passiva		di		picco
Kacv=	coeffici	ente	di		spii	nta		attiva		di		picco
Kpcv=	coefficie	ente	di		spin	ta		passiva		di		picco
Spring models=	modali	ità di	definizione	dei m	oduli	di rigi	dezza	molle	terreno	(LIN,	EXP,	SIMC)
LIN=			Linear	e-Elastic	o-Perf	ettament	e					plastico
EXP: espo	nenziale	nziale, SUB:			0	di		reazione	(del	SC	ottosuolo
SIMC= Modo semp	olificato p	er argille	<u>:</u>									

STRATIGRAFIA TERRENI

TopElev=quotasuperiorestratoSoiltype=nomedelterrenoOCR=rapportodisovraconsolidazione

K0=coefficiente di spinta a riposo

Nome: Boring 1, pos: (-20, 0)

Top elev.	Soil type	OCR	Ко
20	P*	1	0.5
-1	Р	1	0.5

Impostazioni stabilita' globale

Numero massimo di iterazioni = 100, Tolleranza = 0.001%

Larghezza massima concio = 1 m

Limiti dall'angolo in alto a sinistra della paratia

Sinistra = -13.52 m, Destra = 23.18 m, Spaziatura orizzontale = 5

Alto = 55.88 m, Basso = 34.09 m, Spaziatura verticale = 5

La ricerca del raggio parte dalla base della paratia + 0 m

La ricerca del raggio finisce alla base del modello

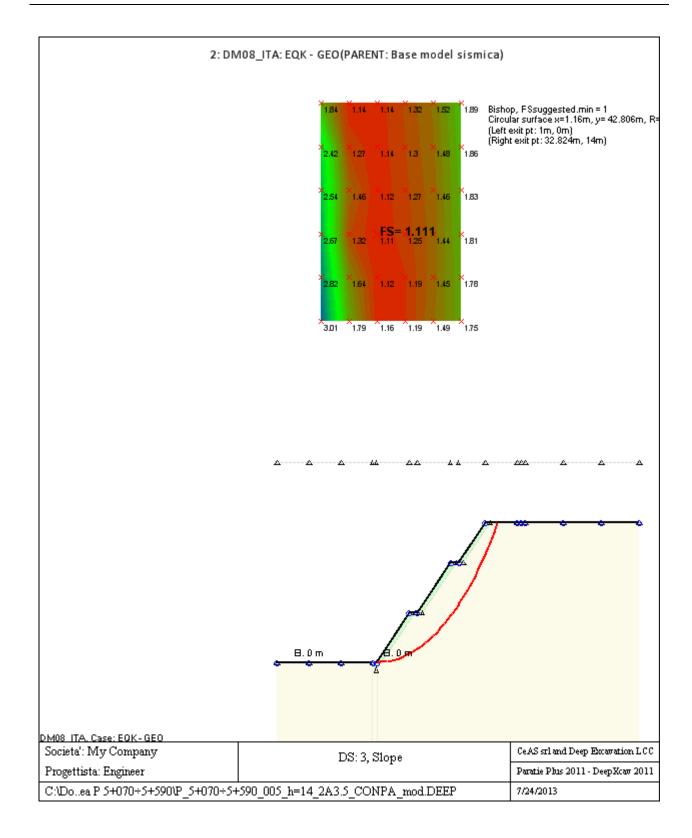
20 intervallo di raggi e' usato

Angolo limite attivo non e' usato

Angolo limite passivo non e' usato

La capacita' SLU dei supporti e' inclusa nella verifcia di stabilita' del pendio

La capacita' a taglio e' inclusa nella stabilita' delle superfici intersecanti la paratia (nota: per pali collegati = 0)


Taglio e forze laterali sulle superfici verticali iniziali e finali sono calcolate a partire dalle condizioni a riposo

Numero di intervalli sulle superfici verticali iniziali e finali = 30

FASI DI SCAVO E VERIFICA DI STABILITA' DEL PENDIO

Nel seguito sono riportati i risultati delle verifiche di stabilità del pendio per ogni fase.

ANALISI DI STABILITA' DEL PENDIO: RISULTATI DEI CONCI PER TUTTI GLI

STAGE

Analisi di stabilita' del pendio Design Section: 2: DM08_ITA: EQK - GEO

Analisi di stabilita' del pendio Stage: 0

Analisi di stabilita' del pendio eseguita per questo stage.

Punto critico a x = 1.16 z= 42.806 FS= 1.111

Slice	x1	ZsL	ZtL	x2	ZsL	ZtL	DL	an	Fr	С	Wn	ubL	ubR	tBase	Nr	EiL	EiR	TL	TR	UbF
No.	m	m	m	m	m	m	m	deg	deg	kPa	kN/m	kPa	kPa	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m
0	1	0	0	1.99	0.01	0.57	0.99	-0.45	24.79	36	5.2	0	0	34.4	5.2	0	0	0	0	0
1	1.99	0.01	0.57	2.99	0.04	1.14	0.99	-1.78	24.79	20	15.3	0	0	24.3	15.3	0	0	0	0	0
2	2.99	0.04	1.14	3.98	0.09	1.7	1	-3.12	24.79	4	25.1	0	0	14.2	25.6	0	0	0	0	0
3	3.98	0.09	1.7	4.98	0.17	2.27	1	-4.45	24.79	4	34.4	0	0	18	34.7	0	0	0	0	0
4	4.98	0.17	2.27	5.97	0.27	2.84	1	-5.79	24.79	4	43.2	0	0	21.6	43.4	0	0	0	0	0
5	5.97	0.27	2.84	6.97	0.4	3.41	1	-7.13	24.79	4	51.7	0	0	25	51.5	0	0	0	0	0
6	6.97	0.4	3.41	7.96	0.54	3.98	1.01	-8.47	24.79	4	59.6	0	0	28.2	59.1	0	0	0	0	0
7	7.96	0.54	3.98	8.96	0.72	4.55	1.01	-9.82	24.79	4	67.2	0	0	31.1	66.1	0	0	0	0	0
8	8.96	0.72	4.55	9.75	0.87	5	0.81	- 11.03	24.79	4	58.8	0	0	26.9	57.6	0	0	0	0	0
9	9.75	0.87	5	10.94	1.13	5	1.22	-12.4	24.79	4	88.9	0	0	40.4	86.6	0	0	0	0	0
10	10.94	1.13	5	11.75	1.33	5	0.83	- 13.77	24.79	4	56.4	0	0	25.7	54.6	0	0	0	0	0
11	11.75	1.33	5	12.93	1.65	5.68	1.23	- 15.14	24.79	4	84.7	0	0	38.4	81.7	0	0	0	0	0
12	12.93	1.65	5.68	13.93	1.95	6.24	1.04	- 16.66	24.79	4	77	0	0	34.5	74	0	0	0	0	0
13	13.93	1.95	6.24	14.92	2.27	6.81	1.05	- 18.05	24.79	4	81.7	0	0	36.3	78.3	0	0	0	0	0
14	14.92	2.27	6.81	15.92	2.62	7.38	1.05	- 19.46	24.79	4	86	0	0	38	82.3	0	0	0	0	0
15	15.92	2.62	7.38	16.91	3	7.95	1.06	- 20.88	24.79	4	89.7	0	0	39.5	85.7	0	0	0	0	0
16	16.91	3	7.95	17.91	3.41	8.52	1.07	- 22.31	24.79	4	93	0	0	40.7	88.7	0	0	0	0	0
17	17.91	3.41	8.52	18.9	3.85	9.09	1.09	- 23.76	24.79	4	95.7	0	0	41.8	91.2	0	0	0	0	0
18	18.9	3.85	9.09	19.9	4.32	9.65	1.1	- 25.22	24.79	4	97.8	0	0	42.7	93.3	0	0	0	0	0
19	19.9	4.32	9.65	20.5	4.62	10	0.68	- 26.41	24.79	4	60.3	0	0	26.3	57.5	0	0	0	0	0

COLLEGAMENTO AUTOSTRADALE RAGUSA-CATANIA: AMMODERNAMENTO A N° 4 CORSIE DELLA S.S. 514 "DI CHIARAMONTE" E DELLA S.S. 194 RAGUSANA DALLO SVINCOLO CON LA S.S. 115 ALLO SVINCOLO CON LA S.S. 114. Relazione geotecnica - allegato

1		Ì	l	l	l	1	1	i	1		1	1	1	l	1		1	1	Ì	1 1
20	20.5	4.62	10	20.89	4.82	10	0.44	- 27.15	24.79	4	38.3	0	0	16.8	36.6	0	0	0	0	0
21	20.89	4.82	10	21.88	5.35	10	1.13	-28.2	24.79	4	90.9	0	0	40.1	86.7	0	0	0	0	0
22	21.88	5.35	10	22.5	5.7	10	0.71	- 29.43	24.79	4	51.2	0	0	22.8	48.8	0	0	0	0	0
23	22.5	5.7	10	22.88	5.92	10.22	0.44	-30.2	24.79	4	30.3	0	0	13.6	28.9	0	0	0	0	0
24	22.88	5.92	10.22	23.87	6.52	10.78	1.16	- 31.27	24.79	4	79.2	0	0	35.6	75.5	0	0	0	0	0
25	23.87	6.52	10.78	24.87	7.16	11.35	1.18	- 32.84	24.79	4	78.2	0	0	35.3	74.8	0	0	0	0	0
26	24.87	7.16	11.35	25.86	7.85	11.92	1.21	- 34.44	24.79	4	76.4	0	0	34.8	73.3	0	0	0	0	0
27	25.86	7.85	11.92	26.86	8.57	12.49	1.23	- 36.07	24.79	4	73.9	0	0	34	71.2	0	0	0	0	0
28	26.86	8.57	12.49	27.85	9.34	13.06	1.26	- 37.73	24.79	4	70.6	0	0	32.9	68.2	0	0	0	0	0
29	27.85	9.34	13.06	28.85	10.16	13.63	1.29	- 39.44	24.79	4	66.5	0	0	31.4	64.4	0	0	0	0	0
30	28.85	10.16	13.63	29.5	10.72	14	0.87	- 40.88	24.79	4	41	0	0	19.7	39.9	0	0	0	0	0
31	29.5	10.72	14	29.84	11.03	14			24.79		19.8	0	0	9.6	19.2	0	0	0	0	0
32	29.84	11.03	14	30.83	11.95	14	1.36		24.79		46.4	0	0	23.5	44.7	0	0	0	0	0
33	30.83	11.95	14	31.83	12.94	14	1.4		24.79		28.7	0	0	16.1	26.5	0	0	0	0	0
34	31.83	12.94	14	32.82	14	14	1.45		24.79		9.8	0	0	26.1	0	0	0	0	0	0

LEGENDA							
Wall			node=numero				nodo
EL=quota							
Sht	L=pressione	terreno	orizzontale	totale	a	SX	paratia
Sht	R=pressione	terreno	orizzontale	totale	а	dx	paratia
Shs	L=pressione	terreno	orizzontale	efficace	a	SX	paratia
Shs	R=pressione	terreno	orizzontale	efficace	a	dx	paratia
q=pressioni		dovute		al			sovraccarico
U	L=pressione		acqua	а	SX		paratia
U	R=pressione		acqua	a	dx		paratia
M=moment	:0	flette	nte	(per			metro)
V=taglio			(per				metro)
dx=spostam	nento						orizzontale
McapL=Mo	mento		ultimo	I	ato		SX
McapR=Mo	mento		ultimo	I	ato		dx
VcapL=Tagli	io	ultimo	resiste	ente	lato		SX
VcapR=Tagl	io ultimo resistente l	ato dx					

C VERIFICA DI STABILITA' GLOBALE MECCANISMO DI ROTTURA CORPO DEL RILEVATO

C.1 Combinazione statica

DATI GENERALI STABILITA' PENDIO

DATI GENERALI	DI VERIFICA								
Vita Nominale (Anni)	50								
Classe d' Uso	QUARTA								
Longitudine Est (Grd)	14.680								
Latitudine Nord (Grd)	36.970								
Categoria Suolo	В								
Coeff. Condiz. Topogr.	1.000								
Probabilita' Pvr	0.100								
Periodo di Ritorno Anni	949.000								
Accelerazione Ag/g	0.310								
Fattore Stratigrafia 'S'	1.107								
Coeff. Sismico Kh	0.000								
Coeff. Sismico Kv	0.000								
Numero conci :	50								
Numero elementi rigidi:	0								
Tipo Superficie di rottura :	CIRCOLARE PASSANTE PER UN PUNTO								
COORDINATE PUNTO DI F									
Ascissa pto passaggio cerchio (m):	36.430								
Ordinata pto passaggio cerchio (m):	20.000								
PARAMETRI MAGLIA DEI CE ROTTURA CI									
Ascissa Polo (m):	37.000								
Ordinata Polo (m):	46.000								
Numero righe maglia :	10.0								
Numero colonne maglia :	10.0								
Passo direzione 'X' (m) :	1.00								
Passo direzione 'Y' (m) :	1.00								
Rotazione maglia (Grd):	0.0								
Peso specifico dell' acqua (t/mc):	1.000								
COEFFICIENTI PARZIALI GEOTECNICA TABELLA M2									

DATI GENERALI STA	ABILIT	'A' PENDIO	
DATI GENERALI	DΙ	VERIFICA	
Tangente Resist. Taglio		1.25	
Peso Specifico		1.00	
Coesione Efficace (c'k)		1.25	
Resist. a taglio NON drenata (cuk)		1.40	
Coefficiente R2		1.00	

	DA	TI GEOTE	CNICI E	STRATIO	RAFIA			
Str.	Descrizione Strato	Coesion e	Ang.attr	Densita'	D.Saturo	Vert	Ascissa	Ordinata
N.ro		t/mq	Grd	t/mc	t/mc	N.ro	(m)	(m)
	Profilo del pendio					1	0.00	20.00
						2	3.00	0.00
						3	36.44	20.00
						4	45.19	25.00
						5	47.19	25.00
						6	55.94	30.00
						7	91.94	30.00
						8	100.69	25.00
						9	102.69	25.00
						10	111.44	20.00
						11	120.00	20.00
		I	<u> </u>	I	Tr	ı	I	TI
1	RIL	0.000	38.00	2.050	2.050	1	34.44	19.50
						2	113.44	19.50
					11	li .		11
2	DT	0.000	38.00	2.050	2.050			

DATI FORZE DISTRIBUITE VERTICALI							
	Vert.	Asc. in.	Int. iniz.	Asc. fin	Int. fin.		
	N.ro	(m)	(t/ml)	(m)	(t/ml)		
	1	57.50	2.600	90.50	2.600		

				СО	EFFICIENTI	DI SICURE	ZZA DEL PEN	NDIO			
N	.ro Cerchi	io critico :	11								
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx = C	MP - Fx=sin	MP- Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)								
1	37.0	46.0	26.0	1,4599							
2	38.0	46.0	26.0	1,4829							
3	39.0	46.0	26.1	1,5275							
4	40.0	46.0	26.2	1,5881							
5	41.0	46.0	26.4	1,6619							
6	42.0	46.0	26.6	1,7474							
7	43.0	46.0	26.8	1,844							
8	44.0	46.0	27.1	1,9508							
9	45.0	46.0	27.4	2,0681							
10	46.0	46.0	27.7	2,1965			1				
11	37.0	47.0	27.0	1,4545							
12	38.0	47.0	27.0	1,4868							
13	39.0	47.0	27.1	1,5368							
14	40.0	47.0	27.2	1,6006							
15	41.0	47.0	27.4	1,6761							
16	42.0	47.0	27.6	1,7626							
17	43.0	47.0	27.8	1,8593							
18	44.0	47.0	28.0	1,9659							
19	45.0	47.0	28.3	2,0823							
20	46.0	47.0	28.6	2,209							
21	37.0	48.0	28.0	1,4549							
22	38.0	48.0	28.0	1,4941							
23 24	39.0 40.0	48.0 48.0	28.1 28.2	1,5483 1,6147							
25	41.0	48.0	28.4	1,6921							
26	42.0	48.0	28.5	1,7789							
27	43.0	48.0	28.8	1,8755							
28	44.0	48.0	29.0	1,982							
29	45.0	48.0	29.3	2,0975							
30	46.0	48.0	29.6	2,2227							
31	37.0	49.0	29.0	1,4597							
32	38.0	49.0	29.0	1,5043							
33	39.0	49.0	29.1	1,5618							
34	40.0	49.0	29.2	1,6304			1				
35	41.0	49.0	29.4	1,7087							
36	42.0	49.0	29.5	1,7965							
37	43.0	49.0	29.7	1,8929							
38	44.0	49.0	30.0	1,9985							
39	45.0	49.0	30.2	2,1135							
40	46.0	49.0	30.5	2,2375			1				
41	37.0	50.0	30.0	1,4675							
42	38.0	50.0	30.0	1,5165			1				

				co	<u>EFFICIE</u> NTI I	DI SICURE	ZZA DEL PEN	NDIO			
N	.ro Cerchi	o critico :	11								
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx = C	MP - Fx=sin	MP- Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)								
43	39.0	50.0	30.1	1,577							
44	40.0	50.0	30.2	1,6471							
45	41.0	50.0	30.3	1,7263							
46	42.0	50.0	30.5	1,8144							
47	43.0	50.0	30.7	1,9111							
48	44.0	50.0	30.9	2,0161							
49	45.0	50.0	31.2	2,1303							
50	46.0	50.0	31.5	2,253							
51	37.0	51.0	31.0	1,4783							
52	38.0	51.0	31.0	1,5307							
53	39.0	51.0	31.1	1,5932							
54	40.0	51.0	31.2	1,6648							
55	41.0	51.0	31.3	1,7448							
56	42.0	51.0	31.5	1,8328							
57	43.0	51.0	31.7	1,9297							
58	44.0	51.0	31.9	2,0344							
59	45.0	51.0	32.2	2,1474							
60	46.0	51.0	32.4	2,2692							
61	37.0	52.0	32.0	1,4909							
62	38.0	52.0	32.0	1,5461							
63 64	39.0 40.0	52.0 52.0	32.1 32.2	1,6103 1,683							
65	41.0	52.0	32.3	1,7638							
66	42.0	52.0	32.5	1,8522							
67	43.0	52.0	32.7	1,9485							
68	44.0	52.0	32.9	2,0529							
69	45.0	52.0	33.1	2,1654							
70	46.0	52.0	33.4	2,2861							
71	37.0	53.0	33.0	1,505							
72	38.0	53.0	33.0	1,5624							
73	39.0	53.0	33.1	1,6283							
74	40.0	53.0	33.2	1,7018							
75	41.0	53.0	33.3	1,7832							
76	42.0	53.0	33.5	1,8719							
77	43.0	53.0	33.6	1,9679							
78	44.0	53.0	33.9	2,0721							
79	45.0	53.0	34.1	2,1837							
80	46.0	53.0	34.4	2,3037							
81	37.0	54.0	34.0	1,5204							
82	38.0	54.0	34.0	1,5798							
83	39.0	54.0	34.1	1,6469							
84	40.0	54.0	34.2	1,7214							

				COI	EFFICIENTI	DI SICUREZ	ZA DEL PEN	IDIO			
N	.ro Cerchi	o critico :	11								
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx = C	MP - Fx=sin	MP- Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)						1 X=311/2		
85	41.0	54.0	34.3	1,8027							
86	42.0	54.0	34.5	1,8919							
87	43.0	54.0	34.6	1,9879							
88	44.0	54.0	34.8	2,0913							
89	45.0	54.0	35.1	2,2023							
90	46.0	54.0	35.3	2,3215							
91	37.0	55.0	35.0	1,5369							
92	38.0	55.0	35.0	1,5977							
93	39.0	55.0	35.1	1,666							
94	40.0	55.0	35.2	1,7412							
95	41.0	55.0	35.3	1,8231							
96	42.0	55.0	35.4	1,9119							
97	43.0	55.0	35.6	2,0078							
98	44.0	55.0	35.8	2,1109							
99	45.0	55.0	36.0	2,2214							
100	46.0	55.0	36.3	2,3396							

1				CARA	TTERIS	STICHE CON	CI			
				Superfic	e di Sco	rrimento N.ro	o: 11			
Concio	h	L	α	С	ф	W	hw	Qw	Tcn	Tgg
N.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)
1	0.12	0.43	-0.75	0.00	32.0	0.11	0.0	0.00	0.00	0.00
2	0.37	0.43	0.16	0.00	32.0	0.33	0.0	0.00	0.00	0.00
3	0.61	0.43	1.08	0.00	32.0	0.54	0.0	0.00	0.00	0.00
4	0.85	0.43	1.99	0.00	32.0	0.75	0.0	0.00	0.00	0.00
5	1.07	0.43	2.91	0.00	32.0	0.95	0.0	0.00	0.00	0.00
6	1.29	0.43	3.82	0.00	32.0	1.14	0.0	0.00	0.00	0.00
7	1.51	0.43	4.74	0.00	32.0	1.33	0.0	0.00	0.00	0.00
8	1.72	0.43	5.66	0.00	32.0	1.52	0.0	0.00	0.00	0.00
9	1.92	0.43	6.58	0.00	32.0	1.69	0.0	0.00	0.00	0.00
10	2.11	0.43	7.50	0.00	32.0	1.86	0.0	0.00	0.00	0.00
11	2.29	0.44	8.42	0.00	32.0	2.03	0.0	0.00	0.00	0.00
12	2.47	0.44	9.35	0.00	32.0	2.19	0.0	0.00	0.00	0.00
13	2.65	0.44	10.28	0.00	32.0	2.34	0.0	0.00	0.00	0.00
14	2.81	0.44	11.21	0.00	32.0	2.48	0.0	0.00	0.00	0.00
15	2.97	0.44	12.14	0.00	32.0	2.62	0.0	0.00	0.00	0.00
16	3.12	0.44	13.08	0.00	32.0	2.75	0.0	0.00	0.00	0.00
17	3.26	0.44	14.02	0.00	32.0	2.88	0.0	0.00	0.00	0.00

					CARA	TTERIS	TICHE CON	CI			
					Superfice	e di Sco	rrimento N.ro	o: 11			
Co	oncio	h	L	α	С	ф	W	hw	Qw	Tcn	Tgg
١	V.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)
	18	3.39	0.45	14.97	0.00	32.0	3.00	0.0	0.00	0.00	0.00
	19	3.52	0.45	15.91	0.00	32.0	3.11	0.0	0.00	0.00	0.00
	20	3.64	0.45	16.87	0.00	32.0	3.22	0.0	0.00	0.00	0.00
	21	3.71	0.45	17.83	0.00	32.0	3.28	0.0	0.00	0.00	0.00
	22	3.57	0.46	18.79	0.00	32.0	3.15	0.0	0.00	0.00	0.00
	23	3.42	0.46	19.76	0.00	32.0	3.02	0.0	0.00	0.00	0.00
	24	3.26	0.46	20.73	0.00	32.0	2.88	0.0	0.00	0.00	0.00
	25	3.09	0.46	21.71	0.00	32.0	2.73	0.0	0.00	0.00	0.00
	26	3.05	0.47	22.70	0.00	32.0	2.69	0.0	0.00	0.00	0.00
	27	3.11	0.47	23.70	0.00	32.0	2.75	0.0	0.00	0.00	0.00
	28	3.16	0.47	24.70	0.00	32.0	2.79	0.0	0.00	0.00	0.00
	29	3.20	0.48	25.71	0.00	32.0	2.83	0.0	0.00	0.00	0.00
	30	3.24	0.48	26.73	0.00	32.0	2.86	0.0	0.00	0.00	0.00
	31	3.26	0.49	27.76	0.00	32.0	2.88	0.0	0.00	0.00	0.00
	32	3.28	0.49	28.80	0.00	32.0	2.89	0.0	0.00	0.00	0.00
	33	3.28	0.50	29.85	0.00	32.0	2.90	0.0	0.00	0.00	0.00
	34	3.27	0.50	30.91	0.00	32.0	2.89	0.0	0.00	0.00	0.00
	35	3.26	0.51	31.98	0.00	32.0	2.88	0.0	0.00	0.00	0.00
	36	3.23	0.51	33.06	0.00	32.0	2.85	0.0	0.00	0.00	0.00
	37	3.19	0.52	34.16	0.00	32.0	2.82	0.0	0.00	0.00	0.00
	38	3.14	0.53	35.28	0.00	32.0	2.77	0.0	0.00	0.00	0.00
	39	3.07	0.54	36.40	0.00	32.0	2.71	0.0	0.00	0.00	0.00
	40	2.99	0.54	37.55	0.00	32.0	2.64	0.0	0.00	0.00	0.00
	41	2.90	0.55	38.71	0.00	32.0	2.56	0.0	0.00	0.00	0.00
	42	2.79	0.56	39.89	0.00	32.0	2.47	0.0	0.00	0.00	0.00
	43	2.67	0.57	41.10	0.00	32.0	2.36	0.0	0.00	0.00	0.00
	44	2.53	0.58	42.32	0.00	32.0	2.24	0.0	0.00	0.00	0.00
	45	2.38	0.59	43.57	0.00	32.0	2.10	0.0	0.00	0.00	0.00
	46	2.15	0.61	44.85	0.00	32.0	1.90	0.0	0.00	0.00	0.00
	47	1.71	0.62	46.15	0.00	32.0	1.51	0.0	0.00	0.00	0.00
	48	1.25	0.64	47.49	0.00	32.0	1.10	0.0	0.00	0.00	0.00
	49	0.77	0.66	48.86	0.00	32.0	0.68	0.0	0.00	0.00	0.00
	50	0.26	0.67	50.27	0.00	32.0	0.23	0.0	0.00	0.00	0.00

Superfice di Scorrimento N.ro: 11

Concio	Ff	Fq	Fr	Fs	Ftot
N.ro	(t)	(t)	(t)	(t)	(t)
1	0.00	0.00	0.00	0.00	0.11
2	0.00	0.00	0.00	0.00	0.33
3	0.00	0.00	0.00	0.00	0.54
4	0.00	0.00	0.00	0.00	0.75
5	0.00	0.00	0.00	0.00	0.95
6	0.00	0.00	0.00	0.00	1.14
7	0.00	0.00	0.00	0.00	1.33
8	0.00	0.00	0.00	0.00	1.52
9	0.00	0.00	0.00	0.00	1.69
10	0.00	0.00	0.00	0.00	1.86
11	0.00	0.00	0.00	0.00	2.03
12	0.00	0.00	0.00	0.00	2.19
13	0.00	0.00	0.00	0.00	2.34
14	0.00	0.00	0.00	0.00	2.48
15	0.00	0.00	0.00	0.00	2.62
16	0.00	0.00	0.00	0.00	2.75
17	0.00	0.00	0.00	0.00	2.88
18	0.00	0.00	0.00	0.00	3.00
19	0.00	0.00	0.00	0.00	3.11
20	0.00	0.00	0.00	0.00	3.22
21	0.00	0.00	0.00	0.00	3.28
22	0.00	0.00	0.00	0.00	3.15
23	0.00	0.00	0.00	0.00	3.02
24	0.00	0.00	0.00	0.00	2.88
25	0.00	0.00	0.00	0.00	2.73
26	0.00	0.00	0.00	0.00	2.69
27	0.00	0.00	0.00	0.00	2.75
28	0.00	0.00	0.00	0.00	2.79
29	0.00	0.00	0.00	0.00	2.83
30	0.00	0.00	0.00	0.00	2.86
31	0.00	0.00	0.00	0.00	2.88
32	0.00	0.00	0.00	0.00	2.89
33	0.00	0.00	0.00	0.00	2.90

	Su	perfice di So	corrimento N	l.ro: 11	
Concio	Ff	Fq	Fr	Fs	Ftot
N.ro	(t)	(t)	(t)	(t)	(t)
34	0.00	0.00	0.00	0.00	2.89
35	0.00	0.00	0.00	0.00	2.88
36	0.00	0.00	0.00	0.00	2.85
37	0.00	0.00	0.00	0.00	2.82
38	0.00	0.00	0.00	0.00	2.77
39	0.00	0.00	0.00	0.00	2.71
40	0.00	0.00	0.00	0.00	2.64
41	0.00	0.00	0.00	0.00	2.56
42	0.00	0.00	0.00	0.00	2.47
43	0.00	0.00	0.00	0.00	2.36
44	0.00	0.00	0.00	0.00	2.24
45	0.00	0.00	0.00	0.00	2.10
46	0.00	0.00	0.00	0.00	1.90
47	0.00	0.00	0.00	0.00	1.51
48	0.00	0.00	0.00	0.00	1.10
49	0.00	0.14	0.00	0.00	0.81
50	0.00	1.12	0.00	0.00	1.35

	S	uperfice di So	corrimento N	.ro: 11	
Concio	Hf	Hq	Hr	Htot	Hs
N.ro	(t)	(t)	(t)	(t)	(t)
1	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00

	S	uperfice di S		ro: 11	
Concio	Hf	Hq	Hr	Htot	Hs
N.ro	(t)	(t)	(t)	(t)	(t)
9	0.00	0.00	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00	0.00
12	0.00	0.00	0.00	0.00	0.00
13	0.00	0.00	0.00	0.00	0.00
14	0.00	0.00	0.00	0.00	0.00
15	0.00	0.00	0.00	0.00	0.00
16	0.00	0.00	0.00	0.00	0.00
17	0.00	0.00	0.00	0.00	0.00
18	0.00	0.00	0.00	0.00	0.00
19	0.00	0.00	0.00	0.00	0.00
20	0.00	0.00	0.00	0.00	0.00
21	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00
23	0.00	0.00	0.00	0.00	0.00
24	0.00	0.00	0.00	0.00	0.00
25	0.00	0.00	0.00	0.00	0.00
26	0.00	0.00	0.00	0.00	0.00
27	0.00	0.00	0.00	0.00	0.00
28	0.00	0.00	0.00	0.00	0.00
29	0.00	0.00	0.00	0.00	0.00
30	0.00	0.00	0.00	0.00	0.00
31	0.00	0.00	0.00	0.00	0.00
32	0.00	0.00	0.00	0.00	0.00
33	0.00	0.00	0.00	0.00	0.00
34	0.00	0.00	0.00	0.00	0.00
35	0.00	0.00	0.00	0.00	0.00
36	0.00	0.00	0.00	0.00	0.00
37	0.00	0.00	0.00	0.00	0.00
38	0.00	0.00	0.00	0.00	0.00
39	0.00	0.00	0.00	0.00	0.00

	S	uperfice di S	corrimento N	.ro: 11	
Concio	Hf	Hq	Hr	Htot	Hs
N.ro	(t)	(t)	(t)	(t)	(t)
40	0.00	0.00	0.00	0.00	0.00
41	0.00	0.00	0.00	0.00	0.00
42	0.00	0.00	0.00	0.00	0.00
43	0.00	0.00	0.00	0.00	0.00
44	0.00	0.00	0.00	0.00	0.00
45	0.00	0.00	0.00	0.00	0.00
46	0.00	0.00	0.00	0.00	0.00
47	0.00	0.00	0.00	0.00	0.00
48	0.00	0.00	0.00	0.00	0.00
49	0.00	0.00	0.00	0.00	0.00
50	0.00	0.00	0.00	0.00	0.00

						F	REAZIO	NI MU	TUE FR	A CON	ICI						
							S	Superfic	ie N.ro:	11							
		BISI	НОР	JAN	1BU	BE	LL	MP - I	Fx= C	MP -			Fx = V/2	SAF	RMA	SPE	NCER
Conc.	Conc	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert.
sx	dx	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
	1	1	0														
1	2	0	0														
2	3	.1	0														
3	4	.4	0														
4	5	.6	0														
5	6	1	0														
6	7	1.4	0														
7	8	1.9	0														
8	9	2.3	0														
9	10	2.9	0														
10 11	11	3.4	0														
11	12 13	3.9 4.5	0														
13	14	5	0														
14	15	5.6	0														
15	16	6.1	0														
16	17	6.6	0														
17	18	7.1	0														
18	19	7.6	0														

COLLEGAMENTO AUTOSTRADALE RAGUSA-CATANIA: AMMODERNAMENTO A N° 4 CORSIE DELLA S.S. 514 "DI CHIARAMONTE" E DELLA S.S. 194 RAGUSANA DALLO SVINCOLO CON LA S.S. 115 ALLO SVINCOLO CON LA S.S. 114. Relazione geotecnica - allegato

40	20	0.4	0
19		8.1	0
20	21	8.5	0
21	22	8.8	0
22	23	9.1	0
23	24	9.4	0
24	25	9.6	0
25	26	9.7	0
26	27	9.8	0
27	28	9.9	0
28	29	9.9	0
29	30	9.8	0
30	31	9.7	0
31	32	9.6	0
32	33	9.4	0
33	34	9.2	0
34	35	8.9	0
35	36	8.6	0
36	37	8.2	0
37	38	7.7	0
38	39	7.3	0
39	40	6.7	0
40	41	6.1	0
41	42	5.5	0
42	43	4.9	0
43	44	4.2	0
44	45	3.5	0
45	46	2.8	0
46	47	2.1	0
47	48	1.5	0
48	49	1	0
49	50	.6	0
50		0	0

C.2 Combinazione sismica

			TA' PENDIO
1141	(TEMERAL	INARIII	I A. PENING

DATI GENERALI	DI VERIFICA
Vita Nominale (Anni)	50
Classe d' Uso	QUARTA
Longitudine Est (Grd)	14.680
Latitudine Nord (Grd)	36.970
Categoria Suolo	В
Coeff. Condiz. Topogr.	1.000
Probabilita' Pvr	0.100
Periodo di Ritorno Anni	949.000
Accelerazione Ag/g	0.310
Fattore Stratigrafia 'S'	1.107
Coeff. Sismico Kh	0.101
Coeff. Sismico Kv	0.051
Numero conci :	50
Numero elementi rigidi:	0
Tipo Superficie di rottura :	CIRCOLARE PASSANTE PER UN PUNTO
COORDINATE PUNTO DI PASSA	GGIO CERCHI DI ROTTURA
Ascissa pto passaggio cerchio (m):	36.430
Ordinata pto passaggio cerchio (m):	20.000
PARAMETRI MAGLIA DEI CENTRI PER S	UPERFICI DI ROTTURA CIRCOLARI
Ascissa Polo (m):	37.000
Ordinata Polo (m):	46.000
Numero righe maglia :	10.0
Numero colonne maglia :	10.0
Passo direzione 'X' (m) :	1.00
Passo direzione 'Y' (m) :	1.00
Rotazione maglia (Grd):	0.0
Peso specifico dell' acqua (t/mc) :	1.000
COEFFICIENTI PARZIALI GE	OTECNICA TABELLA M2
Tangente Resist. Taglio	1.25
Peso Specifico	1.00
Coesione Efficace (c'k)	1.25
Resist. a taglio NON drenata (cuk)	1.40

DATI GENERALI STABILITA' PENDIO

	DATI	GENERALI DI	VERIFICA
Coefficiente R2			1.00

	DA	ATI GEOTE	ECNICI E	STRATIGI	RAFIA			
Str.	Descrizione Strato	Coesione	Ang.attr	Densita'	D.Saturo	Vert	Ascissa	Ordinata
N.ro		t/mq	Grd	t/mc	t/mc	N.ro	(m)	(m)
	Profilo del pendio					1	0.00	20.00
						2	3.00	0.00
						3	36.44	20.00
						4	45.19	25.00
						5	47.19	25.00
						6	55.94	30.00
						7	91.94	30.00
						8	100.69	25.00
						9	102.69	25.00
						10	111.44	20.00
						11	120.00	20.00
	Г	I			11	İ		
1	RIL	0.000	38.00	2.050	2.050	1	34.44	19.50
						2	113.44	19.50
1		1		<u> </u>	<u> </u>			
2	DT	0.000	38.00	2.050	2.050			

	COEFFICIENTI DI SICUREZZA DEL PENDIO											
N.ı	ro Cerch	io critico	: 1									
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx = C	MP - Fx=sin	MP- Fx=sin/2	Sarma	Spencer	
N.ro	(m)	(m)	(m)									
1	37.0	46.0	26.0	1,1689								
2	38.0	46.0	26.0	1,2105								
3	39.0	46.0	26.1	1,262								
4	40.0	46.0	26.2	1,3217								
5	41.0	46.0	26.4	1,3887								
6	42.0	46.0	26.6	1,4625								
7	43.0	46.0	26.8	1,5428								
8	44.0	46.0	27.1	1,629								
9	45.0	46.0	27.4	1,7213								
10	46.0	46.0	27.7	1,8197								

				COEFI	FICIENTI D	I SICURE	ZZA DEL P	ENDIO			
N.i	ro Cerch	nio critico	o : 1								
Cerchi		Yc	Rc	Bishop	Jambu	Bell	MP - Fx =	MP -	MP-	Sarma	Spencer
	, ,	, ,	()				С	Fx=sin	Fx=sin/2		
N.ro	(m)	(m)	(m)								
11	37.0	47.0	27.0	1,1759							
12	38.0	47.0 47.0	27.0	1,2202							
14	39.0 40.0	47.0	27.1 27.2	1,2732 1,3334							
15	41.0	47.0	27.4	1,4002							
16	42.0	47.0	27.6	1,4735							
17	43.0	47.0	27.8	1,5527							
18	44.0	47.0	28.0	1,6376							
19	45.0	47.0	28.3	1,7281							
20	46.0	47.0	28.6	1,8243							
21	37.0	48.0	28.0	1,1847							
22	38.0	48.0	28.0	1,231							
23	39.0	48.0	28.1	1,285							
24	40.0	48.0	28.2	1,3456							
25	41.0	48.0	28.4	1,4125							
26	42.0	48.0	28.5	1,4849							
27 28	43.0 44.0	48.0 48.0	28.8	1,563 1,6468							
29	45.0	48.0	29.3	1,7356							
30	46.0	48.0	29.6	1,8298							
31	37.0	49.0	29.0	1,1949							
32	38.0	49.0	29.0	1,2428							
33	39.0	49.0	29.1	1,2976							
34	40.0	49.0	29.2	1,3585							
35	41.0	49.0	29.4	1,425							
36	42.0	49.0	29.5	1,4969							
37	43.0	49.0	29.7	1,5739							
38	44.0	49.0	30.0	1,6561							
39	45.0	49.0	30.2	1,7437							
40	46.0 37.0	49.0 50.0	30.5 30.0	1,836 1,2061							
42	38.0	50.0	30.0	1,2554							
43	39.0	50.0	30.1	1,3108							
44	40.0	50.0	30.2	1,3715							
45	41.0	50.0	30.3	1,4376							
46	42.0	50.0	30.5	1,509							
47	43.0	50.0	30.7	1,5852							
48	44.0	50.0	30.9	1,6662							
49	45.0	50.0	31.2	1,7522							
50	46.0	50.0	31.5	1,8428							
51	37.0	51.0	31.0	1,2184							
52	38.0	51.0	31.0	1,2685							

	COEFFICIENTI DI SICUREZZA DEL PENDIO										
N.ı	ro Cerch	io critico	: 1								
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx = C	MP - Fx=sin	MP- Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)								
53	39.0	51.0	31.1	1,3241							
54	40.0	51.0	31.2	1,385							
55	41.0	51.0	31.3	1,4508							
56	42.0	51.0	31.5	1,5212							
57	43.0	51.0	31.7	1,5967							
58	44.0	51.0	31.9	1,6765							
59	45.0	51.0	32.2	1,761							
60	46.0	51.0	32.4	1,85							
61	37.0	52.0	32.0	1,2311							
62	38.0	52.0	32.0	1,2819							
63	39.0	52.0	32.1	1,3377							
64	40.0	52.0	32.2	1,3986							
65	41.0	52.0	32.3	1,464							
66	42.0	52.0	32.5	1,5338							
67	43.0	52.0	32.7	1,6082							
68	44.0	52.0	32.9	1,6871							
69	45.0	52.0	33.1	1,7702							
70	46.0	52.0	33.4	1,8578							
71	37.0	53.0	33.0	1,2443							
72	38.0	53.0	33.0	1,2955							
73	39.0	53.0	33.1	1,3517							
74	40.0	53.0	33.2	1,4121							
75	41.0	53.0	33.3	1,4773							
76	42.0	53.0	33.5	1,5466							
77	43.0	53.0	33.6	1,62							
78	44.0	53.0	33.9	1,6979							
79	45.0	53.0	34.1	1,7798							
80	46.0	53.0	34.4	1,866							
				'	l l		l l				

				COEFF	ICIENTI D	I SICURE	ZZA DEL P	ENDIO			
N.ı	o Cerch	io critico	: 1								
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx = C	MP - Fx=sin	MP- Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)								
81	37.0	54.0	34.0	1,2577							
82	38.0	54.0	34.0	1,3095							
83	39.0	54.0	34.1	1,3656							
84	40.0	54.0	34.2	1,4261							
85	41.0	54.0	34.3	1,4904							
86	42.0	54.0	34.5	1,5594							
87	43.0	54.0	34.6	1,632							
88	44.0	54.0	34.8	1,7087							
89	45.0	54.0	35.1	1,7894							
90	46.0	54.0	35.3	1,8743							
91	37.0	55.0	35.0	1,2716							
92	38.0	55.0	35.0	1,3235							
93	39.0	55.0	35.1	1,3797							
94	40.0	55.0	35.2	1,4399							
95	41.0	55.0	35.3	1,504							
96	42.0	55.0	35.4	1,572							
97	43.0	55.0	35.6	1,6439							
98	44.0	55.0	35.8	1,7197							
99	45.0	55.0	36.0	1,7993							
100	46.0	55.0	36.3	1,8829							

CARATTERISTICHE CONCI												
	Superfice di Scorrimento N.ro: 1											
Concio	h	L	α	С	ф	W	hw	Qw	Tcn	Tgg		
N.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)		
1	0.12	0.42	-0.79	0.00	32.0	0.10	0.0	0.00	0.00	0.00		
2	0.36	0.42	0.14	0.00	32.0	0.31	0.0	0.00	0.00	0.00		
3	0.60	0.42	1.07	0.00	32.0	0.52	0.0	0.00	0.00	0.00		
4	0.83	0.42	1.99	0.00	32.0	0.71	0.0	0.00	0.00	0.00		
5	1.05	0.42	2.92	0.00	32.0	0.91	0.0	0.00	0.00	0.00		
6	1.27	0.42	3.85	0.00	32.0	1.09	0.0	0.00	0.00	0.00		

	CARATTERISTICHE CONCI									
				Superf	ice di Sc	orrimento N.ro:	1			
Concio	h	L	α	С	ф	W	hw	Qw	Tcn	Tgg
N.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)
7	1.47	0.42	4.79	0.00	32.0	1.27	0.0	0.00	0.00	0.00
8	1.68	0.42	5.72	0.00	32.0	1.45	0.0	0.00	0.00	0.00
9	1.87	0.42	6.65	0.00	32.0	1.62	0.0	0.00	0.00	0.00
10	2.06	0.43	7.59	0.00	32.0	1.78	0.0	0.00	0.00	0.00
11	2.24	0.43	8.53	0.00	32.0	1.94	0.0	0.00	0.00	0.00
12	2.42	0.43	9.47	0.00	32.0	2.09	0.0	0.00	0.00	0.00
13	2.58	0.43	10.41	0.00	32.0	2.23	0.0	0.00	0.00	0.00
14	2.74	0.43	11.35	0.00	32.0	2.37	0.0	0.00	0.00	0.00
15	2.89	0.43	12.30	0.00	32.0	2.50	0.0	0.00	0.00	0.00
16	3.04	0.43	13.25	0.00	32.0	2.63	0.0	0.00	0.00	0.00
17	3.18	0.43	14.21	0.00	32.0	2.75	0.0	0.00	0.00	0.00
18	3.31	0.44	15.17	0.00	32.0	2.86	0.0	0.00	0.00	0.00
19	3.43	0.44	16.13	0.00	32.0	2.96	0.0	0.00	0.00	0.00
20	3.55	0.44	17.10	0.00	32.0	3.06	0.0	0.00	0.00	0.00
21	3.65	0.44	18.08	0.00	32.0	3.16	0.0	0.00	0.00	0.00
22	3.58	0.45	19.06	0.00	32.0	3.09	0.0	0.00	0.00	0.00
23	3.43	0.45	20.04	0.00	32.0	2.96	0.0	0.00	0.00	0.00
24	3.27	0.45	21.03	0.00	32.0	2.83	0.0	0.00	0.00	0.00
25	3.11	0.45	22.03	0.00	32.0	2.68	0.0	0.00	0.00	0.00
26	2.93	0.46	23.04	0.00	32.0	2.53	0.0	0.00	0.00	0.00
27	2.98	0.46	24.05	0.00	32.0	2.58	0.0	0.00	0.00	0.00
28	3.03	0.47	25.07	0.00	32.0	2.62	0.0	0.00	0.00	0.00
29	3.07	0.47	26.10	0.00	32.0	2.65	0.0	0.00	0.00	0.00
30	3.10	0.47	27.14	0.00	32.0	2.68	0.0	0.00	0.00	0.00
31	3.12	0.48	28.19	0.00	32.0	2.69	0.0	0.00	0.00	0.00
32	3.13	0.48	29.25	0.00	32.0	2.70	0.0	0.00	0.00	0.00
33	3.13	0.49	30.32	0.00	32.0	2.70	0.0	0.00	0.00	0.00
34	3.12	0.49	31.40	0.00	32.0	2.69	0.0	0.00	0.00	0.00
35	3.09	0.50	32.49	0.00	32.0	2.67	0.0	0.00	0.00	0.00
36	3.06	0.51	33.60	0.00	32.0	2.64	0.0	0.00	0.00	0.00
37	3.02	0.51	34.72	0.00	32.0	2.61	0.0	0.00	0.00	0.00
38	2.96	0.52	35.86	0.00	32.0	2.56	0.0	0.00	0.00	0.00
39	2.89	0.53	37.01	0.00	32.0	2.49	0.0	0.00	0.00	0.00
40	2.80	0.54	38.19	0.00	32.0	2.42	0.0	0.00	0.00	0.00
41	2.71	0.55	39.38	0.00	32.0	2.34	0.0	0.00	0.00	0.00
42	2.59	0.55	40.59	0.00	32.0	2.24	0.0	0.00	0.00	0.00
43	2.46	0.57	41.82	0.00	32.0	2.13	0.0	0.00	0.00	0.00
44	2.32	0.58	43.08	0.00	32.0	2.00	0.0	0.00	0.00	0.00
45	2.16	0.59	44.37	0.00	32.0	1.86	0.0	0.00	0.00	0.00

CARATTERISTICHE CONCI											
	Superfice di Scorrimento N.ro: 1										
Concio	h	L	α	С	ф	W	hw	Qw	Tcn	Tgg	
N.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)	
46	1.98	0.60	45.68	0.00	32.0	1.71	0.0	0.00	0.00	0.00	
47	1.73	0.62	47.03	0.00	32.0	1.49	0.0	0.00	0.00	0.00	
48	1.26	0.63	48.41	0.00	32.0	1.09	0.0	0.00	0.00	0.00	
49	0.78	0.65	49.83	0.00	32.0	0.67	0.0	0.00	0.00	0.00	
50	0.26	0.67	51.29	0.00	32.0	0.23	0.0	0.00	0.00	0.00	

			Scorrimento N.ro		
Concio	Ff	Fq	Fr	Fs	Ftot
N.ro	(t)	(t)	(t)	(t)	(t)
1	0.00	0.00	0.00	0.01	0.11
2	0.00	0.00	0.00	0.02	0.33
3	0.00	0.00	0.00	0.03	0.54
4	0.00	0.00	0.00	0.04	0.75
5	0.00	0.00	0.00	0.05	0.95
6	0.00	0.00	0.00	0.06	1.15
7	0.00	0.00	0.00	0.06	1.34
8	0.00	0.00	0.00	0.07	1.52
9	0.00	0.00	0.00	0.08	1.70
10	0.00	0.00	0.00	0.09	1.87
11	0.00	0.00	0.00	0.10	2.03
12	0.00	0.00	0.00	0.11	2.19
13	0.00	0.00	0.00	0.11	2.34
14	0.00	0.00	0.00	0.12	2.49
15	0.00	0.00	0.00	0.13	2.63
16	0.00	0.00	0.00	0.13	2.76
17	0.00	0.00	0.00	0.14	2.88
18	0.00	0.00	0.00	0.14	3.00
19	0.00	0.00	0.00	0.15	3.11
20	0.00	0.00	0.00	0.15	3.22
21	0.00	0.00	0.00	0.16	3.32
22	0.00	0.00	0.00	0.16	3.25
23	0.00	0.00	0.00	0.15	3.11
24	0.00	0.00	0.00	0.14	2.97

	Superfice di Scorrimento N.ro: 1							
Concio	Ff	Fq	Fr	Fs	Ftot			
N.ro	(t)	(t)			(t)			
25	0.00	0.00	0.00	(t) 0.14	2.82			
26	0.00	0.00	0.00	0.13	2.66			
27	0.00	0.00	0.00	0.13	2.71			
28	0.00	0.00	0.00	0.13	2.75			
29	0.00	0.00	0.00	0.13	2.78			
30	0.00	0.00	0.00	0.14	2.81			
31	0.00	0.00	0.00	0.14	2.83			
32	0.00	0.00	0.00	0.14	2.84			
33	0.00	0.00	0.00	0.14	2.84			
34	0.00	0.00	0.00	0.14	2.83			
35	0.00	0.00	0.00	0.13	2.81			
36	0.00	0.00	0.00	0.13	2.78			
37	0.00	0.00	0.00	0.13	2.74			
38	0.00	0.00	0.00	0.13	2.68			
39	0.00	0.00	0.00	0.13	2.62			
40	0.00	0.00	0.00	0.12	2.54			
41	0.00	0.00	0.00	0.12	2.46			
42	0.00	0.00	0.00	0.11	2.35			
43	0.00	0.00	0.00	0.11	2.24			
44	0.00	0.00	0.00	0.10	2.11			
45	0.00	0.00	0.00	0.09	1.96			
46	0.00	0.00	0.00	0.09	1.79			
47	0.00	0.00	0.00	0.08	1.57			
48	0.00	0.00	0.00	0.06	1.15			
49	0.00	0.00	0.00	0.03	0.70			
50	0.00	0.00	0.00	0.01	0.24			

Superfice di Scorrimento N.ro: 1									
Concio	Hf	Hq	Hr	Htot	Hs				
N.ro	(t)	(t)	(t)	(t)	(t)				
1	0.00	0.00	0.00	0.00	0.01				
2	0.00	0.00	0.00	0.00	0.03				

	Superfice di Scorrimento N.ro: 1							
Concio	Hf	Hq	Hr	Htot	Hs			
N.ro	(t)	(t)	(t)	(t)	(t)			
3	0.00	0.00	0.00	0.00	0.05			
4	0.00	0.00	0.00	0.00	0.07			
5	0.00	0.00	0.00	0.00	0.09			
6	0.00	0.00	0.00	0.00	0.11			
7	0.00	0.00	0.00	0.00	0.13			
8	0.00	0.00	0.00	0.00	0.15			
9	0.00	0.00	0.00	0.00	0.16			
10	0.00	0.00	0.00	0.00	0.18			
11	0.00	0.00	0.00	0.00	0.20			
12	0.00	0.00	0.00	0.00	0.21			
13	0.00	0.00	0.00	0.00	0.23			
14	0.00	0.00	0.00	0.00	0.24			
15	0.00	0.00	0.00	0.00	0.25			
16	0.00	0.00	0.00	0.00	0.27			
17	0.00	0.00	0.00	0.00	0.28			
18	0.00	0.00	0.00	0.00	0.29			
19	0.00	0.00	0.00	0.00	0.30			
20	0.00	0.00	0.00	0.00	0.31			
21	0.00	0.00	0.00	0.00	0.32			
22	0.00	0.00	0.00	0.00	0.31			
23	0.00	0.00	0.00	0.00	0.30			
24	0.00	0.00	0.00	0.00	0.29			
25	0.00	0.00	0.00	0.00	0.27			
26	0.00	0.00	0.00	0.00	0.26			
27	0.00	0.00	0.00	0.00	0.26			
28	0.00	0.00	0.00	0.00	0.26			
29	0.00	0.00	0.00	0.00	0.27			
30	0.00	0.00	0.00	0.00	0.27			
31	0.00	0.00	0.00	0.00	0.27			
32	0.00	0.00	0.00	0.00	0.27			
33	0.00	0.00	0.00	0.00	0.27			
34	0.00	0.00	0.00	0.00	0.27			
35	0.00	0.00	0.00	0.00	0.27			

	Superfice di Scorrimento N.ro: 1								
Concio	Hf	Hq	Hr	Htot	Hs				
N.ro	(t)	(t)	(t)	(t)	(t)				
36	0.00	0.00	0.00	0.00	0.27				
37	0.00	0.00	0.00	0.00	0.26				
38	0.00	0.00	0.00	0.00	0.26				
39	0.00	0.00	0.00	0.00	0.25				
40	0.00	0.00	0.00	0.00	0.24				
41	0.00	0.00	0.00	0.00	0.24				
42	0.00	0.00	0.00	0.00	0.23				
43	0.00	0.00	0.00	0.00	0.22				
44	0.00	0.00	0.00	0.00	0.20				
45	0.00	0.00	0.00	0.00	0.19				
46	0.00	0.00	0.00	0.00	0.17				
47	0.00	0.00	0.00	0.00	0.15				
48	0.00	0.00	0.00	0.00	0.11				
49	0.00	0.00	0.00	0.00	0.07				
50	0.00	0.00	0.00	0.00	0.02				

	REAZIONI MUTUE FRA CONCI																
	Superficie N.ro: 1																
		BIS	HOP	IOP JAMBU BELL MP - Fx= C MP - Fx = SIN MP-Fx = SIN/2 SARMA SPENCER								NCER					
Conc.	Conc.	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert.
sx	dx	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
	1	0	0														
1	2	0	0														
2	3	.1	0														
3	4	.4	0														
4	5	.7	0														
5	6	1	0														
6	7	1.4	0														
7	8	1.9	0														
8	9	2.4	0														
9	10	2.9	0														
10	11	3.4	0														
11	12	4	0														
12	13	4.5	0														
13	14	5.1	0														
14	15	5.6	0														
15	16	6.2	0														

	REAZIONI MUTUE FRA CONCI																
	Superficie N.ro: 1																
	BISHOP		BISHOP JAMBU		1BU	BE	LL	MP -	Fx= C	MP - F	x = SIN	MP-Fx	= SIN/2	SAF	RMA	SPE	NCER
Conc.	Conc.	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert.
sx	dx	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
16	17	6.7	0														
17	18	7.2	0														
18	19	7.6	0														
19	20	8	0														
20	21	8.4	0														
21	22	8.8	0														
22	23	9	0														
23	24	9.3	0														
24	25	9.4	0														
25	26	9.6	0														
26	27	9.6	0														
27	28	9.7	0														
28	29	9.6	0														
29	30	9.6	0														
30	31	9.5	0														
31	32	9.3	0														
32	33	9.1	0														
33	34	8.8	0														
34	35	8.5	0														
35	36	8.1	0														
36	37	7.7	0														
37	38	7.3	0														
38	39	6.8	0														
39	40	6.2	0														
40	41	5.6	0														
41	42	5	0														
42	43	4.3	0														
43	44	3.7	0														
44 45	45 46	3 2.3	0														
45	46	1.6	0														
47	48	.9	0														
48	49	.9	0														
49	50	.1	0														
50	50	0	0														
00		U	U														

D VERIFICA DI STABILITA' GLOBALE MECCANISMO GENERALE RILEVATO PK4+300

D.1 Combinazione statica

Slide Analysis Information

Document Name

File Name: L1-M121_pk_4+300_sx_statica.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program

Failure Direction: Right to Left Units of Measurement: SI Units Pore Fluid Unit Weight: 9.81 kN/m3 Groundwater Method: Water Surfaces

Data Output: Standard

Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Radius increment: 10

Minimum Elevation: Not Defined Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Material Properties

Material: Rilevato new

Strength Type: Mohr-Coulomb Unit Weight: 20.5 kN/m3

Cohesion: 0 kPa

Friction Angle: 32 degrees Water Surface: None

Material: ar

Strength Type: Mohr-Coulomb Unit Weight: 17.5 kN/m3

Cohesion: 0 kPa

Friction Angle: 28.35 degrees

Water Surface: None

Material: Mc sciolta

Strength Type: Mohr-Coulomb

Unit Weight: 20 kN/m3 Cohesion: 16 kPa

Friction Angle: 25.67 degrees

Water Surface: None

List of Coordinates

Material Boundary

-42.869 27.669 42.960 27.669

Material Boundary

-11.277 33.669 42.960 33.669

External Boundary

Alemai Duc	<u>iriuary</u>
42.960	-11.589
42.960	27.669
42.960	33.669
42.960	42.029
41.460	42.029
38.011	42.271
34.261	42.533
30.011	42.830
29.261	42.830
24.045	42.445
23.295	42.445
18.545	42.777
14.795	43.040
11.045	43.302
9.295	43.425
7.795	43.425
-0.955	38.425
-2.955	38.425
-11.277	33.669
-23.307	34.569
-42.869	33.669
-42.869	27.669
-42.869	-11.589

Search Grid coordinates

-40.927	39.757
1.376	39.757
1.376	93.942
-40 927	93 942

Number of intervals in x direction 80 Number of intervals in y direction 80

Global Minimums

Method: bishop simplified

FS: 1.308340

Center: -29.294, 93.942

Radius: 62.908

Left Slip Surface Endpoint: -11.277, 33.669 Right Slip Surface Endpoint: 8.195, 43.425

Resisting Moment=11301.8 kN-m Driving Moment=8638.31 kN-m

D.2 Combinazione sismica

Slide Analysis Information

Document Name

File Name: L1-M121_pk_4+300_sx_new_3.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program

Failure Direction: Right to Left
Units of Measurement: SI Units
Pore Fluid Unit Weight: 9.81 kN/m3
Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used:

Bishop simplified

GLE/Morgenstern-Price with interslice force function: Half Sine

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Radius increment: 10

Minimum Elevation: Not Defined Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Loading

Seismic Load Coefficient (Horizontal): 0.098 Seismic Load Coefficient (Vertical): 0.049

Material Properties

Material: Rilevato new

Strength Type: Mohr-Coulomb Unit Weight: 20.5 kN/m3

Cohesion: 0 kPa

Friction Angle: 32 degrees Water Surface: None

Material: ar

Strength Type: Mohr-Coulomb Unit Weight: 17.5 kN/m3

Cohesion: 0 kPa

Friction Angle: 28.35 degrees

Water Surface: None

Material: Mc sciolta

Strength Type: Mohr-Coulomb

Unit Weight: 20 kN/m3 Cohesion: 16 kPa

Friction Angle: 25.67 degrees

Water Surface: None

List of Coordinates

Material Boundary

-42.869 27.669 42.960 27.669

Material Boundary

-11.277 33.669 42.960 33.669

External Boundary

42.960	-11.589
42.960	27.669
42.960	33.669
42.960	42.029
41.460	42.029
38.011	42.271
34.261	42.533
30.011	42.830
29.261	42.830
24.045	42.445
23.295	42.445
18.545	42.777
14.795	43.040
11.045	43.302
9.295	43.425
7.795	43.425

-0.955	38.425
-2.955	38.425
-11.277	33.669
-23.307	34.569
-42.869	33.669
-42.869	27.669
-42.869	-11.589

Search Grid Coordinates

-40.927	39.757
1.376	39.757
1.376	93.942
-40.927	93.942

Number of intervals in x direction 80 Number of intervals in y direction 80

Global Minimums

Method: bishop simplified

FS: 1.125780

Center: -25.592, 88.523

Radius: 56.691

Left Slip Surface Endpoint: -11.277, 33.669 Right Slip Surface Endpoint: 8.759, 43.425

Resisting Moment=14693.8 kN-m Driving Moment=13052.1 kN-m

E VERIFICA DI STABILITA' GLOBALE MECCANISMO GENERALE RILEVATO PK 6+748

E.1 Combinazione statica

DATI GENERALI STABILITA' PENDIO						
DATI GENERALI	DI VERIFICA					
Vita Nominale (Anni)	50					
Classe d' Uso	QUARTA					
Longitudine Est (Grd)	15.000					
Latitudine Nord (Grd)	38.000					
Categoria Suolo	В					
Coeff. Condiz. Topogr.	1.000					
Probabilita' Pvr	0.100					
Periodo di Ritorno Anni	949.000					
Accelerazione Ag/g	0.248					
Fattore Stratigrafia 'S'	1.151					
Coeff. Sismico Kh	0.000					
Coeff. Sismico Kv	0.000					
Numero conci :	50					
Numero elementi rigidi:	0					
Tipo Superficie di rottura :	CIRCOLARE PASSANTE PER UN PUNTO					
COORDINATE PUNTO DI PASSA	AGGIO CERCHI DI ROTTURA					
Ascissa pto passaggio cerchio (m):	89.620					
Ordinata pto passaggio cerchio (m):	30.970					
PARAMETRI MAGLIA DEI CENTRI PER	SUPERFICI DI ROTTURA CIRCOLARI					
Ascissa Polo (m):	83.000					
Ordinata Polo (m):	48.000					
Numero righe maglia :	10.0					
Numero colonne maglia :	10.0					
Passo direzione 'X' (m) :	1.00					
Passo direzione 'Y' (m) :	1.00					
Rotazione maglia (Grd):	0.0					
Peso specifico dell' acqua (t/mc) :	1.000					
COEFFICIENTI PARZIALI GEOTECNICA TABELLA M2						

1.00

Coefficiente R2

DATI GENERALI STA	DATI GENERALI STABILITA' PENDIO								
DATI GENERALI	DI VERIFICA								
Tangente Resist. Taglio	1.25								
Peso Specifico	1.00								
Coesione Efficace (c'k)	1.25								
Resist. a taglio NON drenata (cuk)	1.40								

	DA	TI GEOTI	ECNICI E	STRATIG	RAFIA			
Str.	Descrizione Strato	Coesione	Ang.attr	Densita'	D.Saturo	Vert	Ascissa	Ordinata
N.ro		t/mq	Grd	t/mc	t/mc	N.ro	(m)	(m)
	Profilo del pendio					1	0.00	21.28
						2	9.24	23.93
						3	26.75	26.85
						4	40.43	34.00
						5	45.83	39.89
						6	72.25	40.24
						7	81.00	35.24
						8	83.00	35.24
						9	89.63	31.46
						10	94.92	31.74
						11	104.95	31.99
						12	115.83	33.31
1	RILES	0.000	34.00	1.900	1.900	1	32.06	28.65
						2	61.50	31.00
					<u> </u>			
2	RILNEW	0.000	38.00	2.050	2.050	1	61.50	31.00
					<u> </u>	2	89.63	30.96
					l			
3	DT	0.000	34.00	1.750	1.750	1	0.00	21.28
						2	9.24	23.93
						3	26.75	26.85
						4	32.06	28.65
						5	61.50	30.58
						6	87.13	29.84
						7	115.83	30.00

	DATI GEOTECNICI E STRATIGRAFIA										
Str.	Descrizione Strato	Coesione	Ang.attr	Densita'	D.Saturo	Vert	Ascissa	Ordinata			
N.ro		t/mq	Grd	t/mc	t/mc	N.ro	(m)	(m)			
4	MC	17.500	34.00	2.300	2.300						

DATI FORZE DISTRIBUITE VERTICALI										
	Vert.	Asc. in.	Int. iniz.	Asc. fin	Int. fin.					
	N.ro	(m)	(t/ml)	(m)	(t/ml)					
	1	47.00	2.600	71.00	2.600					

				COE	EFFICIENTI I	DI SICUREZ	ZA DEL PEN	NDIO			
N.	.ro Cerchi	o critico :	66								
Cerchi	Хс	Yc	Rc	Bishop	Jambu	Bell	MP - Fx = C	MP - Fx=sin	MP- Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)								
1	83.0	48.0	18.3	2,8629							
2	84.0	48.0	17.9	1,6742							
3	85.0	48.0	17.6	1,6108							
4	86.0	48.0	17.4	1,5841							
5	87.0	48.0	17.2	1,5786							
6	88.0	48.0	17.1	1,5944							
7	89.0	48.0	17.0	1,6361							
8	90.0	48.0	17.0	1,6979							
9	91.0	48.0	17.1	1,8266							
10	92.0	48.0	17.2	2,0657							
11	83.0	49.0	19.2	2,6877							
12	84.0	49.0	18.9	1,673							
13	85.0	49.0	18.6	1,6116							
14	86.0	49.0	18.4	1,5684							
15	87.0	49.0	18.2	1,5705							
16	88.0	49.0	18.1	1,573							
17	89.0	49.0	18.0	1,6143							
18	90.0	49.0	18.0	1,6748							
19	91.0	49.0	18.1	1,7973							
20	92.0	49.0	18.2	2,0343							
21	83.0	50.0	20.1	2,5108							
22	84.0	50.0	19.8	1,6844							
23	85.0	50.0	19.6	1,6123							
24	86.0	50.0	19.4	1,5683							
25	87.0	50.0	19.2	1,558							
26	88.0	50.0	19.1	1,5607			!				l

				COI	EFFICIENTI	DI SICURE	ZZA DEL PEN	IDIO			
N.	ro Cerchi	o critico :	66								
Cerchi	Хс	Yc	Rc	Bishop	Jambu	Bell	MP - Fx =	MP - Fx=sin	MP- Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)								
27	89.0	50.0	19.0	1,5958							
28	90.0	50.0	19.0	1,6503							
29	91.0	50.0	19.1	1,7691							
30	92.0	50.0	19.2	1,9932							
31	83.0	51.0	21.1	2,344							
32	84.0	51.0	20.8	1,6922							
33	85.0	51.0	20.6	1,624							
34	86.0	51.0	20.4	1,5698							
35	87.0	51.0	20.2	1,5479							
36	88.0	51.0	20.1	1,5568							
37	89.0	51.0	20.0	1,5757							
38	90.0	51.0	20.0	1,6251							
39	91.0	51.0	20.1	1,7352							
40	92.0	51.0	20.2	1,9474							
41	83.0	52.0	22.0	2,0768							
42	84.0	52.0	21.8	1,7082							
43	85.0	52.0	21.5	1,6344							
44	86.0	52.0	21.3	1,5751							
45	87.0	52.0	21.2	1,5458							
46	88.0	52.0	21.1	1,5464							
47 48	89.0 90.0	52.0 52.0	21.0 21.0	1,5654 1,6051							
49	91.0	52.0	21.0	1,7056							
50	92.0	52.0	21.1	1,8942							
51	83.0	53.0	23.0	1,8105							
52	84.0	53.0	22.7	1,7221							
53	85.0	53.0	22.5	1,6451							
54	86.0	53.0	22.3	1,5892							
55	87.0	53.0	22.2	1,5497							
56	88.0	53.0	22.1	1,5392							
57	89.0	53.0	22.0	1,5648							
58	90.0	53.0	22.0	1,5833							
59	91.0	53.0	22.1	1,6734							
60	92.0	53.0	22.2	1,8488							
61	83.0	54.0	24.0	1,8256							
62	84.0	54.0	23.7	1,7379							
63	85.0	54.0	23.5	1,6664							
64	86.0	54.0	23.3	1,6022							
65	87.0	54.0	23.2	1,558							
66	88.0	54.0	23.1	1,5391							
67	89.0	54.0	23.0	1,5505							
68	90.0	54.0	23.0	1,5727							

				COE	FFICIENTI	DI SICUREZ	ZA DEL PEN	NDIO			
N.	.ro Cerchi	o critico :	66								
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx =	MP - Fx=sin	MP- Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)								
69	91.0	54.0	23.1	1,6423							
70	92.0	54.0	23.2	1,7999							
71	83.0	55.0	24.9	1,8422							
72	84.0	55.0	24.7	1,7617							
73	85.0	55.0	24.5	1,6834							
74	86.0	55.0	24.3	1,6173							
75	87.0	55.0	24.2	1,5751							
76	88.0	55.0	24.1	1,5442							
77	89.0	55.0	24.0	1,5437							
78	90.0	55.0	24.0	1,5711							
79	91.0	55.0	24.1	1,619							
80	92.0	55.0	24.1	1,7593							
81	83.0	56.0	25.9	1,8679							
82	84.0	56.0	25.7	1,7806							
83	85.0	56.0	25.5	1,7019							
84	86.0	56.0	25.3	1,6347							
85	87.0	56.0	25.2	1,5894							
86	88.0	56.0	25.1	1,5539							
87	89.0	56.0	25.0	1,544							
88	90.0	56.0	25.0	1,5565							
89	91.0	56.0	25.1	1,6052							
90	92.0	56.0	25.1	1,7176							
91	83.0	57.0	26.9	1,8868							
92	84.0	57.0	26.6	1,8002							
93	85.0	57.0	26.4	1,7216							
94	86.0	57.0	26.3	1,6594							
95	87.0	57.0	26.2	1,6067							
96	88.0	57.0	26.1	1,5666							
97	89.0	57.0	26.0	1,5494							
98	90.0	57.0	26.0	1,5492							
99	91.0	57.0	26.1	1,6009							
100	92.0	57.0	26.1	1,6857							

CARATTERISTICHE CONCI											
	Superfice di Scorrimento N.ro: 66										
Concio	Concio h L $_{lpha}$ c $_{\phi}$ W hw Qw Tcn Tgg										
N.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)	
1	0.32	0.80	-52.31	0.00	32.0	0.32	0.0	0.00	0.00	0.00	
2	0.94	0.77	-50.37	0.00	32.0	0.94	0.0	0.00	0.00	0.00	
3	1.52	0.74	-48.50	0.00	32.0	1.52	0.0	0.00	0.00	0.00	
4	2.06	0.71	-46.70	0.00	32.0	2.06	0.0	0.00	0.00	0.00	

	CARATTERISTICHE CONCI									
				Superfic	ce di Sco	rrimento N.ro	: 66			
Concio	h	L	α	С	ф	W	hw	Qw	Tcn	Tgg
N.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)
5	2.57	0.69	-44.96	0.00	32.0	2.57	0.0	0.00	0.00	0.00
6	3.05	0.67	-43.27	0.00	32.0	3.05	0.0	0.00	0.00	0.00
7	3.26	0.65	-41.62	0.00	32.0	3.27	0.0	0.00	0.00	0.00
8	3.40	0.64	-40.02	0.00	32.0	3.41	0.0	0.00	0.00	0.00
9	3.52	0.62	-38.45	0.00	32.0	3.53	0.0	0.00	0.00	0.00
10	3.62	0.61	-36.92	0.00	32.0	3.63	0.0	0.00	0.00	0.00
11	3.70	0.60	-35.42	0.00	32.0	3.71	0.0	0.00	0.00	0.00
12	3.76	0.59	-33.94	0.00	32.0	3.76	0.0	0.00	0.00	0.00
13	3.80	0.58	-32.49	0.00	32.0	3.81	0.0	0.00	0.00	0.00
14	3.82	0.57	-31.06	0.00	32.0	3.83	0.0	0.00	0.00	0.00
15	3.83	0.56	-29.66	0.00	32.0	3.84	0.0	0.00	0.00	0.00
16	3.82	0.56	-28.27	0.00	32.0	3.83	0.0	0.00	0.00	0.00
17	3.80	0.55	-26.90	0.00	32.0	3.80	0.0	0.00	0.00	0.00
18	3.76	0.54	-25.55	0.00	32.0	3.77	0.0	0.00	0.00	0.00
19	3.70	0.54	-24.21	0.00	32.0	3.71	0.0	0.00	0.00	0.00
20	3.64	0.53	-22.89	0.00	32.0	3.65	0.0	0.00	0.00	0.00
21	3.56	0.53	-21.58	0.00	32.0	3.57	0.0	0.00	0.00	0.00
22	3.47	0.52	-20.28	0.00	32.0	3.47	0.0	0.00	0.00	0.00
23	3.36	0.52	-18.99	0.00	32.0	3.37	0.0	0.00	0.00	0.00
24	3.24	0.51	-17.71	0.00	32.0	3.25	0.0	0.00	0.00	0.00
25	3.38	0.51	-16.44	0.00	32.0	3.39	0.0	0.00	0.00	0.00
26	3.52	0.51	-15.18	0.00	32.0	3.53	0.0	0.00	0.00	0.00
27	3.65	0.50	-13.93	0.00	32.0	3.65	0.0	0.00	0.00	0.00
28	3.76	0.50	-12.68	0.00	32.0	3.77	0.0	0.00	0.00	0.00
29	3.63	0.50	-11.44	0.00	32.0	3.63	0.0	0.00	0.00	0.00
30	3.44	0.50	-10.21	0.00	32.0	3.45	0.0	0.00	0.00	0.00
31	3.25	0.49	-8.98	0.00	32.0	3.25	0.0	0.00	0.00	0.00
32	3.04	0.49	-7.75	0.00	32.0	3.05	0.0	0.00	0.00	0.00
33	2.82	0.49	-6.53	0.00	32.0	2.83	0.0	0.00	0.00	0.00
34	2.59	0.49	-5.31	0.00	32.0	2.60	0.0	0.00	0.00	0.00
35	2.36	0.49	-4.09	0.00	32.0	2.36	0.0	0.00	0.00	0.00
36	2.11	0.49	-2.88	0.00	28.4	2.11	0.0	0.00	0.00	0.00
37	1.85	0.49	-1.66	0.00	28.4	1.84	0.0	0.00	0.00	0.00
38	1.58	0.49	-0.45	0.00	28.4	1.57	0.0	0.00	0.00	0.00
39	1.30	0.49	0.77	0.00	28.4	1.29	0.0	0.00	0.00	0.00
40	1.01	0.49	1.98	0.00	28.4	1.00	0.0	0.00	0.00	0.00
41	0.71	0.49	3.19	0.00	28.4	0.71	0.0	0.00	0.00	0.00
42	0.48	0.49	4.41	0.00	28.4	0.41	0.0	0.00	0.00	0.00
43	0.47	0.49	5.63	0.00	28.4	0.40	0.0	0.00	0.00	0.00

CARATTERISTICHE CONCI											
	Superfice di Scorrimento N.ro: 66										
Concio h L α c ϕ W hw Qw Tcn Tgg											
N.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)	
44	0.44	0.49	6.85	0.00	28.4	0.38	0.0	0.00	0.00	0.00	
45	0.40	0.49	8.07	0.00	28.4	0.34	0.0	0.00	0.00	0.00	
46	0.35	0.50	9.30	0.00	28.4	0.30	0.0	0.00	0.00	0.00	
47	0.29	0.50	10.53	0.00	28.4	0.25	0.0	0.00	0.00	0.00	
48	0.22	0.50	11.77	0.00	28.4	0.19	0.0	0.00	0.00	0.00	
49	0.14	0.50	13.01	0.00	28.4	0.12	0.0	0.00	0.00	0.00	
50	0.05	0.50	14.26	0.00	28.4	0.04	0.0	0.00	0.00	0.00	

	S	Superfice di S	corrimento N.	ro: 66	
Concio	Ff	Fq	Fr	Fs	Ftot
N.ro	(t)	(t)	(t)	(t)	(t)
1	0.00	1.27	0.00	0.00	1.59
2	0.00	1.27	0.00	0.00	2.21
3	0.00	1.27	0.00	0.00	2.79
4	0.00	0.12	0.00	0.00	2.18
5	0.00	0.00	0.00	0.00	2.57
6	0.00	0.00	0.00	0.00	3.05
7	0.00	0.00	0.00	0.00	3.27
8	0.00	0.00	0.00	0.00	3.41
9	0.00	0.00	0.00	0.00	3.53
10	0.00	0.00	0.00	0.00	3.63
11	0.00	0.00	0.00	0.00	3.71
12	0.00	0.00	0.00	0.00	3.76
13	0.00	0.00	0.00	0.00	3.81
14	0.00	0.00	0.00	0.00	3.83
15	0.00	0.00	0.00	0.00	3.84
16	0.00	0.00	0.00	0.00	3.83
17	0.00	0.00	0.00	0.00	3.80
18	0.00	0.00	0.00	0.00	3.77
19	0.00	0.00	0.00	0.00	3.71
20	0.00	0.00	0.00	0.00	3.65
21	0.00	0.00	0.00	0.00	3.57
22	0.00	0.00	0.00	0.00	3.47

	S	Superfice di S	corrimento N.		
Concio	Ff	Fq	Fr	Fs	Ftot
N.ro	(t)	(t)	(t)	(t)	(t)
23	0.00	0.00	0.00	0.00	3.37
24	0.00	0.00	0.00	0.00	3.25
25	0.00	0.00	0.00	0.00	3.39
26	0.00	0.00	0.00	0.00	3.53
27	0.00	0.00	0.00	0.00	3.65
28	0.00	0.00	0.00	0.00	3.77
29	0.00	0.00	0.00	0.00	3.63
30	0.00	0.00	0.00	0.00	3.45
31	0.00	0.00	0.00	0.00	3.25
32	0.00	0.00	0.00	0.00	3.05
33	0.00	0.00	0.00	0.00	2.83
34	0.00	0.00	0.00	0.00	2.60
35	0.00	0.00	0.00	0.00	2.36
36	0.00	0.00	0.00	0.00	2.11
37	0.00	0.00	0.00	0.00	1.84
38	0.00	0.00	0.00	0.00	1.57
39	0.00	0.00	0.00	0.00	1.29
40	0.00	0.00	0.00	0.00	1.00
41	0.00	0.00	0.00	0.00	0.71
42	0.00	0.00	0.00	0.00	0.41
43	0.00	0.00	0.00	0.00	0.40
44	0.00	0.00	0.00	0.00	0.38
45	0.00	0.00	0.00	0.00	0.34
46	0.00	0.00	0.00	0.00	0.30
47	0.00	0.00	0.00	0.00	0.25
48	0.00	0.00	0.00	0.00	0.19
49	0.00	0.00	0.00	0.00	0.12
50	0.00	0.00	0.00	0.00	0.04

FORZE	ODI77	LATIAO'	I CONCI
FURZE	URIZZ	.UN I AL	.i CUNCI

Superfice di Scorrimento N.ro: 66										
Concio	Hf	Hq	Hr	Hr Htot						
N.ro	(t)	(t)	(t)	(t)	(t)					

			corrimento N.		
Concio	Hf	Hq	Hr	Htot	Hs
N.ro	(t)	(t)	(t)	(t)	(t)
1	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00
9	0.00	0.00	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00	0.00
12	0.00	0.00	0.00	0.00	0.00
13	0.00	0.00	0.00	0.00	0.00
14	0.00	0.00	0.00	0.00	0.00
15	0.00	0.00	0.00	0.00	0.00
16	0.00	0.00	0.00	0.00	0.00
17	0.00	0.00	0.00	0.00	0.00
18	0.00	0.00	0.00	0.00	0.00
19	0.00	0.00	0.00	0.00	0.00
20	0.00	0.00	0.00	0.00	0.00
21	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00
23	0.00	0.00	0.00	0.00	0.00
24	0.00	0.00	0.00	0.00	0.00
25	0.00	0.00	0.00	0.00	0.00
26	0.00	0.00	0.00	0.00	0.00
27	0.00	0.00	0.00	0.00	0.00
28	0.00	0.00	0.00	0.00	0.00
29	0.00	0.00	0.00	0.00	0.00
30	0.00	0.00	0.00	0.00	0.00
31	0.00	0.00	0.00	0.00	0.00
32	0.00	0.00	0.00	0.00	0.00
33	0.00	0.00	0.00	0.00	0.00

	Superfice di Scorrimento N.ro: 66												
Concio	Hf	Hq	Hr	Htot	Hs								
N.ro	(t)	(t)	(t)	(t)	(t)								
34	0.00	0.00	0.00	0.00	0.00								
35	0.00	0.00	0.00	0.00	0.00								
36	0.00	0.00	0.00	0.00	0.00								
37	0.00	0.00	0.00	0.00	0.00								
38	0.00	0.00	0.00	0.00	0.00								
39	0.00	0.00	0.00	0.00	0.00								
40	0.00	0.00	0.00	0.00	0.00								
41	0.00	0.00	0.00	0.00	0.00								
42	0.00	0.00	0.00	0.00	0.00								
43	0.00	0.00	0.00	0.00	0.00								
44	0.00	0.00	0.00	0.00	0.00								
45	0.00	0.00	0.00	0.00	0.00								
46	0.00	0.00	0.00	0.00	0.00								
47	0.00	0.00	0.00	0.00	0.00								
48	0.00	0.00	0.00	0.00	0.00								
49	0.00	0.00	0.00	0.00	0.00								
50	0.00	0.00	0.00	0.00	0.00								

	REAZIONI MUTUE FRA CONCI																
	Superficie N.ro: 66																
		BISI	ISHOP JAMBU		BELL		MP - Fx= C		MP - Fx = SIN		MP-Fx = SIN/2		SARMA		SPE	NCER	
Conc.	Conc.	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert.
sx	dx	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
	1	0	0														
1	2	.9	0														
2	3	2	0														
3	4	3.3	0														
4	5	4.2	0														
5	6	5.2	0														
6	7	6.2	0														
7	8	7.2	0														
8	9	8.1	0														
9	10	9	0														
10	11	9.8	0														
11	12	10.4	0														
12	13	11.1	0														

REAZIONI MUTUE FRA CONCI																	
							5	Superfic	cie N.ro:	66							
	n	BISHOP JAMBI		1BU	BELL		MP -	MP - Fx= C		MP - Fx = SIN		MP-Fx = SIN/2		SARMA		NCER	
	Conc.		F.vert		F.vert		F.vert		F.vert				F.vert		F.vert	F.or.	F.vert.
SX	dx	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
13	14	11.6	0														
14	15	12	0														
15	16	12.3	0														
16	17	12.6	0														
17	18	12.7	0														
18	19	12.8	0														
19	20	12.8	0														
20	21	12.7	0														
21	22	12.6	0														
22	23	12.4	0														
23	24	12.1	0														
24	25	11.7	0														
25	26	11.3	0														
26	27	10.8	0														
27	28	10.2	0														
28	29	9.6	0														
29	30	8.8	0														
30 31	31	8.1	0														
	32	7.3															
32 33	33 34	6.5 5.7	0														
34	35	4.9	0														
35	36	4.1	0														
36	37	3.5	0														
37	38	2.9	0														
38	39	2.4	0														
39	40	1.9	0														
40	41	1.5	0														
41	42	1.2	0														
42	43	1	0														
43	44	.8	0														
44	45	.7	0														
45	46	.5	0														
46	47	.3	0														
47	48	.2	0														
48	49	.1	0														
49	50	0	0														
50		0	0														

E.2 Combinazione sismica

DATI	OFNIED ALL	OT A DULLE	AL DENIDIO
DAII	GENERALI	STABILLI	'A' PENDIO

DATI GENERALI	DI VERIFICA
Vita Nominale (Anni)	50
Classe d' Uso	QUARTA
Longitudine Est (Grd)	15.000
Latitudine Nord (Grd)	38.000
Categoria Suolo	В
Coeff. Condiz. Topogr.	1.000
Probabilita' Pvr	0.100
Periodo di Ritorno Anni	949.000
Accelerazione Ag/g	0.248
Fattore Stratigrafia 'S'	1.151
Coeff. Sismico Kh	0.100
Coeff. Sismico Kv	0.050
Numero conci :	50
Numero elementi rigidi:	0
Tipo Superficie di rottura :	CIRCOLARE PASSANTE PER UN PUNTO
COORDINATE PUNTO DI PASSA	GGIO CERCHI DI ROTTURA
Ascissa pto passaggio cerchio (m):	89.610
Ordinata pto passaggio cerchio (m):	30.950
PARAMETRI MAGLIA DEI CENTRI PER S	UPERFICI DI ROTTURA CIRCOLARI
Ascissa Polo (m):	83.000
Ordinata Polo (m):	45.000
Numero righe maglia :	10.0
Numero colonne maglia :	10.0
Passo direzione 'X' (m):	1.00
Passo direzione 'Y' (m) :	1.00
Rotazione maglia (Grd):	0.0
Peso specifico dell' acqua (t/mc) :	1.000
COEFFICIENTI PARZIALI GE	OTECNICA TABELLA M2
Tangente Resist. Taglio	1.25
Peso Specifico	1.00
Coesione Efficace (c'k)	1.25
Resist. a taglio NON drenata (cuk)	1.40

DATI GENERALI STABILITA' PENDIO

	DATI	GENERALI	DΙ	VERIFICA	
Coefficiente R2				1.00	

	DA	TI GEOTE	ECNICI E	STRATIG	RAFIA			
Str.	Descrizione Strato	Coesione	Ang.attr	Densita'	D.Saturo	Vert	Ascissa	Ordinata
N.ro		t/mq	Grd	t/mc	t/mc	N.ro	(m)	(m)
	Profilo del pendio					1	0.00	21.28
						2	9.24	23.93
						3	26.75	26.85
						4	40.43	34.00
						5	45.83	39.89
						6	72.25	40.24
						7	81.00	35.24
						8	83.00	35.24
						9	89.63	31.46
						10	94.92	31.74
						11	104.95	31.99
						12	115.83	33.31
				<u> </u>	1	ı		Ti
1	RILES	0.000	34.00	1.900	1.900	1	32.06	28.65
						2	61.50	31.00
		<u> </u>		<u> </u>	1	ı		1
2	RILNEW	0.000	38.00	2.050	2.050	1	61.50	31.00
						2	89.63	30.96
		1			1	ı		Ti .
3	DT	0.000	34.00	1.750	1.750	1	0.00	21.28
						2	9.24	23.93
						3	26.75	26.85
						4	32.06	28.65
						5	61.50	30.58
						6	87.13	29.84
						7	115.83	30.00
					1	l		1
4	МС	17.500	34.00	2.300	2.300			

COEFFICIENTI DI SICUREZZA DEL PENDIO

N	.ro Cerchi	io critico:	87								
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx =	MP -	MP-	Sarma	Spencer
	, ,	, ,	, ,				С	Fx=sin	Fx=sin/2		
N.ro	(m)	(m)	(m)								
1 2	83.0 84.0	45.0 45.0	15.5 15.1	2,8906 1,9176							
3	85.0	45.0 45.0	14.8	1,3291							
4	86.0	45.0	14.5	1,2965							
5	87.0	45.0	14.3	1,291							
6	88.0	45.0	14.1	1,2955							
7	89.0	45.0	14.1	1,3094							
8	90.0	45.0	14.1	1,3352							
9	91.0	45.0	14.1	1,4021							
10	92.0	45.0	14.3	1,5589							
11	83.0	46.0	16.4	2,7287							
12	84.0	46.0	16.1	1,3838							
13	85.0	46.0	15.7	1,3206							
14	86.0	46.0	15.5	1,2805							
15	87.0	46.0	15.3	1,2749							
16	88.0	46.0	15.1	1,2776							
17	89.0	46.0	15.1	1,2969							
18 19	90.0 91.0	46.0 46.0	15.1 15.1	1,3342 1,4077							
20	92.0	46.0	15.1	1,5512							
21	83.0	47.0	17.4	2,5672							
22	84.0	47.0	17.0	1,3838							
23	85.0	47.0	16.7	1,3144							
24	86.0	47.0	16.5	1,2687							
25	87.0	47.0	16.3	1,2547							
26	88.0	47.0	16.1	1,2652							
27	89.0	47.0	16.1	1,2875							
28	90.0	47.0	16.1	1,3239							
29	91.0	47.0	16.1	1,4044							
30	92.0	47.0	16.2	1,5489							
31	83.0	48.0	18.3	2,4228							
32	84.0	48.0	17.9	1,3829							
33	85.0	48.0	17.7	1,3183							
34	86.0	48.0	17.4	1,2693							
35	87.0	48.0	17.2	1,2453							
36	88.0	48.0	17.1	1,2484							
37 38	89.0 90.0	48.0 48.0	17.1 17.1	1,2726 1,3123							
38	90.0	48.0	17.1	1,3123							
40	92.0	48.0	17.1	1,5385							
41	83.0	49.0	19.2	2,2756							
42	84.0	49.0	18.9	1,3907							
43	85.0	49.0	18.6	1,3263							
1				. , 1		•	• '	u		•	

				COI	EFFICIENTI I	DI SICURE	ZZA DEL PEN	NDIO			
N.	ro Cerchi	io critico :	87								
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx =	MP - Fx=sin	MP- Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)								
44	86.0	49.0	18.4	1,2694							
45	87.0	49.0	18.2	1,2397							
46	88.0	49.0	18.1	1,2326							
47	89.0	49.0	18.1	1,2572							
48	90.0	49.0	18.1	1,2979							
49	91.0	49.0	18.1	1,3741							
50	92.0	49.0	18.2	1,5188							
51	83.0	50.0	20.2	2,205							
52	84.0	50.0	19.9	1,3957							
53	85.0	50.0	19.6	1,332							
54 55	86.0 87.0	50.0 50.0	19.4 19.2	1,279 1,2398							
56	88.0	50.0	19.2	1,2396							
57	89.0	50.0	19.1	1,2421							
58	90.0	50.0	19.1	1,2814							
59	91.0	50.0	19.1	1,354							
60	92.0	50.0	19.2	1,4934							
61	83.0	51.0	21.1	2,0599							
62	84.0	51.0	20.8	1,4078							
63	85.0	51.0	20.6	1,3398							
64	86.0	51.0	20.4	1,2861							
65	87.0	51.0	20.2	1,244							
66	88.0	51.0	20.1	1,2254							
67	89.0	51.0	20.1	1,2309							
68	90.0	51.0	20.1	1,2664							
69	91.0	51.0	20.1	1,3344							
70 71	92.0	51.0	20.2	1,4629							
71 72	83.0 84.0	52.0 52.0	22.1 21.8	1,9069 1,4167							
73	85.0	52.0	21.5	1,3537							
74	86.0	52.0	21.4	1,2947							
75	87.0	52.0	21.2	1,2565							
76	88.0	52.0	21.1	1,2278							
77	89.0	52.0	21.1	1,2229							
78	90.0	52.0	21.1	1,2511							
79	91.0	52.0	21.1	1,3134							
80	92.0	52.0	21.2	1,4321							
81	83.0	53.0	23.0	1,5065							
82	84.0	53.0	22.8	1,4328							
83	85.0	53.0	22.5	1,3651							
84	86.0	53.0	22.3	1,3061							
85	87.0	53.0	22.2	1,2661	I	l	J			l	l

	COEFFICIENTI DI SICUREZZA DEL PENDIO										
N	.ro Cerchi	o critico :	87								
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx =	MP - Fx=sin	MP- Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)								
86	88.0	53.0	22.1	1,2339							
87	89.0	53.0	22.1	1,2215							
88	90.0	53.0	22.1	1,2357							
89	91.0	53.0	22.1	1,2942							
90	92.0	53.0	22.2	1,404							
91	83.0	54.0	24.0	1,5155							
92	84.0	54.0	23.7	1,4438							
93	85.0	54.0	23.5	1,3776							
94	86.0	54.0	23.3	1,3239							
95	87.0	54.0	23.2	1,2774							
96	88.0	54.0	23.1	1,2425							
97	89.0	54.0	23.1	1,2245							
98	90.0	54.0	23.1	1,2276							
99	91.0	54.0	23.1	1,2736							
100	92.0	54.0	23.2	1,3729							

CARATTERISTICHE CONCI										
Superfice di Scorrimento N.ro: 87										
Concio	h	L	α	С	ф	W	hw	Qw	Tcn	Tgg
N.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)
1	0.33	0.80	-53.56	0.00	32.0	0.32	0.0	0.00	0.00	0.00
2	0.96	0.77	-51.52	0.00	32.0	0.93	0.0	0.00	0.00	0.00
3	1.54	0.74	-49.57	0.00	32.0	1.51	0.0	0.00	0.00	0.00
4	1.83	0.71	-47.70	0.00	32.0	1.79	0.0	0.00	0.00	0.00
5	2.07	0.69	-45.89	0.00	32.0	2.02	0.0	0.00	0.00	0.00
6	2.27	0.66	-44.13	0.00	32.0	2.22	0.0	0.00	0.00	0.00
7	2.45	0.65	-42.43	0.00	32.0	2.40	0.0	0.00	0.00	0.00
8	2.60	0.63	-40.77	0.00	32.0	2.55	0.0	0.00	0.00	0.00
9	2.73	0.62	-39.15	0.00	32.0	2.67	0.0	0.00	0.00	0.00
10	2.84	0.60	-37.57	0.00	32.0	2.77	0.0	0.00	0.00	0.00
11	2.92	0.59	-36.03	0.00	32.0	2.86	0.0	0.00	0.00	0.00
12	2.98	0.58	-34.51	0.00	32.0	2.92	0.0	0.00	0.00	0.00
13	3.03	0.57	-33.02	0.00	32.0	2.96	0.0	0.00	0.00	0.00
14	3.06	0.56	-31.55	0.00	32.0	2.99	0.0	0.00	0.00	0.00
15	3.07	0.55	-30.11	0.00	32.0	3.00	0.0	0.00	0.00	0.00
16	3.07	0.54	-28.68	0.00	32.0	3.00	0.0	0.00	0.00	0.00
17	3.05	0.54	-27.28	0.00	32.0	2.98	0.0	0.00	0.00	0.00
18	3.02	0.53	-25.90	0.00	32.0	2.95	0.0	0.00	0.00	0.00
19	2.97	0.52	-24.53	0.00	32.0	2.90	0.0	0.00	0.00	0.00

				CARA	TTERIS	STICHE CONC	CI			
				Superfic	e di Sco	rrimento N.ro:	87			
Concio	h	L	α	С	ф	W	hw	Qw	Tcn	Tgg
N.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)
20	2.91	0.52	-23.17	0.00	32.0	2.84	0.0	0.00	0.00	0.00
21	2.83	0.51	-21.83	0.00	32.0	2.77	0.0	0.00	0.00	0.00
22	2.90	0.51	-20.50	0.00	32.0	2.84	0.0	0.00	0.00	0.00
23	3.07	0.51	-19.18	0.00	32.0	3.00	0.0	0.00	0.00	0.00
24	3.23	0.50	-17.88	0.00	32.0	3.16	0.0	0.00	0.00	0.00
25	3.38	0.50	-16.58	0.00	32.0	3.31	0.0	0.00	0.00	0.00
26	3.41	0.49	-15.29	0.00	32.0	3.34	0.0	0.00	0.00	0.00
27	3.26	0.49	-14.01	0.00	32.0	3.19	0.0	0.00	0.00	0.00
28	3.11	0.49	-12.73	0.00	32.0	3.04	0.0	0.00	0.00	0.00
29	2.94	0.49	-11.47	0.00	32.0	2.87	0.0	0.00	0.00	0.00
30	2.76	0.48	-10.21	0.00	32.0	2.69	0.0	0.00	0.00	0.00
31	2.56	0.48	-8.95	0.00	32.0	2.51	0.0	0.00	0.00	0.00
32	2.36	0.48	-7.70	0.00	32.0	2.31	0.0	0.00	0.00	0.00
33	2.15	0.48	-6.45	0.00	32.0	2.10	0.0	0.00	0.00	0.00
34	1.93	0.48	-5.20	0.00	32.0	1.88	0.0	0.00	0.00	0.00
35	1.69	0.48	-3.96	0.00	32.0	1.65	0.0	0.00	0.00	0.00
36	1.45	0.48	-2.72	0.00	32.0	1.42	0.0	0.00	0.00	0.00
37	1.19	0.48	-1.48	0.00	28.4	1.17	0.0	0.00	0.00	0.00
38	0.93	0.48	-0.24	0.00	28.4	0.91	0.0	0.00	0.00	0.00
39	0.65	0.48	1.00	0.00	28.4	0.64	0.0	0.00	0.00	0.00
40	0.51	0.48	2.24	0.00	28.4	0.43	0.0	0.00	0.00	0.00
41	0.51	0.48	3.48	0.00	28.4	0.43	0.0	0.00	0.00	0.00
42	0.51	0.48	4.72	0.00	28.4	0.42	0.0	0.00	0.00	0.00
43	0.49	0.48	5.97	0.00	28.4	0.41	0.0	0.00	0.00	0.00
44	0.46	0.48	7.22	0.00	28.4	0.38	0.0	0.00	0.00	0.00
45	0.42	0.48	8.47	0.00	28.4	0.35	0.0	0.00	0.00	0.00
46	0.36	0.48	9.72	0.00	28.4	0.30	0.0	0.00	0.00	0.00
47	0.30	0.49	10.98	0.00	28.4	0.25	0.0	0.00	0.00	0.00
48	0.23	0.49	12.25	0.00	28.4	0.19	0.0	0.00	0.00	0.00
49	0.15	0.49	13.52	0.00	28.4	0.12	0.0	0.00	0.00	0.00
50	0.05	0.49	14.80	0.00	28.4	0.04	0.0	0.00	0.00	0.00

		FORZE VE	RTICALI CON	NCI	
	S	Superfice di S	corrimento N.	ro: 87	
Concio	Ff	Fq	Fr	Fs	Ftot
N.ro	(t)	(t)	(t)	(t)	(t)
1	0.00	0.00	0.00	0.02	0.34

	Superfice di Scorrimento N.ro: 87										
Concio	Ff	Fq	Fr	Fs	Ftot						
N.ro	(t)	(t)	(t)	(t)	(t)						
2	0.00	0.00	0.00	0.05	0.98						
3	0.00	0.00	0.00	0.08	1.58						
4	0.00	0.00	0.00	0.09	1.88						
5	0.00	0.00	0.00	0.10	2.13						
6	0.00	0.00	0.00	0.11	2.34						
7	0.00	0.00	0.00	0.12	2.52						
8	0.00	0.00	0.00	0.13	2.67						
9	0.00	0.00	0.00	0.13	2.80						
10	0.00	0.00	0.00	0.14	2.91						
11	0.00	0.00	0.00	0.14	3.00						
12	0.00	0.00	0.00	0.15	3.06						
13	0.00	0.00	0.00	0.15	3.11						
14	0.00	0.00	0.00	0.15	3.14						
15	0.00	0.00	0.00	0.15	3.15						
16	0.00	0.00	0.00	0.15	3.15						
17	0.00	0.00	0.00	0.15	3.13						
18	0.00	0.00	0.00	0.15	3.10						
19	0.00	0.00	0.00	0.15	3.05						
20	0.00	0.00	0.00	0.14	2.98						
21	0.00	0.00	0.00	0.14	2.91						
22	0.00	0.00	0.00	0.14	2.98						
23	0.00	0.00	0.00	0.15	3.15						
24	0.00	0.00	0.00	0.16	3.32						
25	0.00	0.00	0.00	0.17	3.47						
26	0.00	0.00	0.00	0.17	3.50						
27	0.00	0.00	0.00	0.16	3.35						
28	0.00	0.00	0.00	0.15	3.19						
29	0.00	0.00	0.00	0.14	3.02						
30	0.00	0.00	0.00	0.13	2.83						
31	0.00	0.00	0.00	0.13	2.63						
32	0.00	0.00	0.00	0.12	2.43						
33	0.00	0.00	0.00	0.11	2.21						
34	0.00	0.00	0.00	0.09	1.98						

	Superfice di Scorrimento N.ro: 87										
Concio	Ff	Fq	Fr	Fs	Ftot						
N.ro	(t)	(t)	(t)	(t)	(t)						
35	0.00	0.00	0.00	0.08	1.74						
36	0.00	0.00	0.00	0.07	1.49						
37	0.00	0.00	0.00	0.06	1.22						
38	0.00	0.00	0.00	0.05	0.95						
39	0.00	0.00	0.00	0.03	0.67						
40	0.00	0.00	0.00	0.02	0.45						
41	0.00	0.00	0.00	0.02	0.45						
42	0.00	0.00	0.00	0.02	0.44						
43	0.00	0.00	0.00	0.02	0.43						
44	0.00	0.00	0.00	0.02	0.40						
45	0.00	0.00	0.00	0.02	0.36						
46	0.00	0.00	0.00	0.02	0.32						
47	0.00	0.00	0.00	0.01	0.26						
48	0.00	0.00	0.00	0.01	0.20						
49	0.00	0.00	0.00	0.01	0.13						
50	0.00	0.00	0.00	0.00	0.04						

	S	Superfice di S	corrimento N.	ro: 87	4
Concio	Hf	Hq	Hr	Htot	Hs
N.ro	(t)	(t)	(t)	(t)	(t)
1	0.00	0.00	0.00	0.00	0.03
2	0.00	0.00	0.00	0.00	0.09
3	0.00	0.00	0.00	0.00	0.15
4	0.00	0.00	0.00	0.00	0.18
5	0.00	0.00	0.00	0.00	0.20
6	0.00	0.00	0.00	0.00	0.22
7	0.00	0.00	0.00	0.00	0.24
8	0.00	0.00	0.00	0.00	0.25
9	0.00	0.00	0.00	0.00	0.27
10	0.00	0.00	0.00	0.00	0.28
11	0.00	0.00	0.00	0.00	0.29
12	0.00	0.00	0.00	0.00	0.29

			corrimento N.		
Concio	Hf	Hq	Hr	Htot	Hs
N.ro	(t)	(t)	(t)	(t)	(t)
13	0.00	0.00	0.00	0.00	0.30
14	0.00	0.00	0.00	0.00	0.30
15	0.00	0.00	0.00	0.00	0.30
16	0.00	0.00	0.00	0.00	0.30
17	0.00	0.00	0.00	0.00	0.30
18	0.00	0.00	0.00	0.00	0.29
19	0.00	0.00	0.00	0.00	0.29
20	0.00	0.00	0.00	0.00	0.28
21	0.00	0.00	0.00	0.00	0.28
22	0.00	0.00	0.00	0.00	0.28
23	0.00	0.00	0.00	0.00	0.30
24	0.00	0.00	0.00	0.00	0.32
25	0.00	0.00	0.00	0.00	0.33
26	0.00	0.00	0.00	0.00	0.33
27	0.00	0.00	0.00	0.00	0.32
28	0.00	0.00	0.00	0.00	0.30
29	0.00	0.00	0.00	0.00	0.29
30	0.00	0.00	0.00	0.00	0.27
31	0.00	0.00	0.00	0.00	0.25
32	0.00	0.00	0.00	0.00	0.23
33	0.00	0.00	0.00	0.00	0.21
34	0.00	0.00	0.00	0.00	0.19
35	0.00	0.00	0.00	0.00	0.17
36	0.00	0.00	0.00	0.00	0.14
37	0.00	0.00	0.00	0.00	0.12
38	0.00	0.00	0.00	0.00	0.09
39	0.00	0.00	0.00	0.00	0.06
40	0.00	0.00	0.00	0.00	0.04
41	0.00	0.00	0.00	0.00	0.04
42	0.00	0.00	0.00	0.00	0.04
43	0.00	0.00	0.00	0.00	0.04
44	0.00	0.00	0.00	0.00	0.04
45	0.00	0.00	0.00	0.00	0.03

	S	Superfice di S	corrimento N.	ro: 87	
Concio	Hf	Hq	Hr	Htot	Hs
N.ro	(t)	(t)	(t)	(t)	(t)
46	0.00	0.00	0.00	0.00	0.03
47	0.00	0.00	0.00	0.00	0.03
48	0.00	0.00	0.00	0.00	0.02
49	0.00	0.00	0.00	0.00	0.01
50	0.00	0.00	0.00	0.00	0.00

	REAZIONI MUTUE FRA CONCI																
							5	Superfic	ie N.ro:	87							
		BISI	НОР	JAM	1BU	BE	LL	MP - I	MP - Fx= C MP - Fx = SIN		x = SIN	MP-Fx = SIN/2		SARMA		SPENCER	
Conc.	Conc.	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert.
sx	dx	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
	1	0	0														
1	2	.1	0														
2	3	.6	0														
3	4	1.2	0														
4	5	1.9	0														
5	6	2.6	0														
6	7	3.3	0														
7	8	3.9	0														
8	9	4.5	0														
9	10	5	0														
10	11	5.5	0														
11	12	5.9	0														
12	13	6.2	0														
13	14	6.5	0														
14	15	6.8	0														
15	16	7	0														
16	17	7.1	0														
17	18	7.2	0														
18	19	7.3	0														
19	20	7.2	0														
20	21	7.2	0														
21	22	7.1	0														
22	23	7	0														
23	24	6.8	0														
24	25	6.5	0														
25	26	6.1	0														
26	27	5.6	0														
27	28	5.1	0														

COLLEGAMENTO AUTOSTRADALE RAGUSA-CATANIA: AMMODERNAMENTO A Nº 4 CORSIE DELLA S.S. 514 "DI CHIARAMONTE" E DELLA S.S. 194 RAGUSANA DALLO SVINCOLO CON LA S.S. 115 ALLO SVINCOLO CON LA S.S. 114. Relazione geotecnica - allegato

	REAZIONI MUTUE FRA CONCI																
							5	Superfic	ie N.ro:	87				0			
	1	BIS	HOP	JAN	//BU	ВЕ	LL	MP - Fx= C MP - Fx				MP-Fx = SIN/2		SARMA		NCER	
Conc.	Conc.	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert.
SX	dx	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
28	29	4.5	0														
29	30	3.9	0														
30	31	3.3	0														
31	32	2.7	0														
32	33	2.1	0														
33	34	1.6	0														
34	35	1.1	0														
35	36	.6	0														
36	37	.2	0														
37	38	0	0														
38	39	1	0														
39	40	1	0														
40	41	1	0														
41	42	0	0														
42	43	0	0														
43	44	0	0														
44	45	0	0														
45	46	0	0														
46	47	0	0														
47 48	48 49	0	0														
48	50 50	0	0														
	50																
50		1	0														

F VERIFICA DI STABILITA' GLOBALE MECCANISMO GENERALE RILEVATO PK 10+611

F.1 Combinazione statica

DATI GENERALI STABILITA' PENDIO										
DATI GENERAL	I DI VERIFICA									
Vita Nominale (Anni)	50									
Classe d' Uso	QUARTA									
Longitudine Est (Grd)	14.660									
Latitudine Nord (Grd)	37.020									
Categoria Suolo	С									
Coeff. Condiz. Topogr.	1.000									
Probabilita' Pvr	0.100									
Periodo di Ritorno Anni	949.000									
Accelerazione Ag/g	0.334									
Fattore Stratigrafia 'S'	1.228									
Coeff. Sismico Kh	0.000									
Coeff. Sismico Kv	0.000									
Numero conci :	50									
Numero elementi rigidi:	0									
Tipo Superficie di rottura :	CIRCOLARE PASSANTE PER UN PUNTO									
COORDINATE PUNTO DI PASS	SAGGIO CERCHI DI ROTTURA									
Ascissa pto passaggio cerchio (m):	86.090									
Ordinata pto passaggio cerchio (m):	27.900									
PARAMETRI MAGLIA DEI CENTRI PER	SUPERFICI DI ROTTURA CIRCOLARI									
Ascissa Polo (m):	79.000									
Ordinata Polo (m):	42.000									
Numero righe maglia :	10.0									
Numero colonne maglia :	10.0									
Passo direzione 'X' (m) :	1.00									
Passo direzione 'Y' (m) :	1.00									
Rotazione maglia (Grd):	0.0									
Peso specifico dell' acqua (t/mc) :	1.000									
COEFFICIENTI PARZIALI G	EOTECNICA TABELLA M2									

1.40

1.00

Coefficiente R2

Resist. a taglio NON drenata (cuk)

DATI GENERALI STA	ABILITA' PENDIO
DATI GENERALI	DI VERIFICA
Tangente Resist. Taglio	1.25
Peso Specifico	1.00
Coesione Efficace (c'k)	1.25

	D	ATI GEOT	ECNICI E	STRATIGR	RAFIA			
Str.	Descrizione Strato	Coesione	Ang.attr	Densita'	D.Saturo	Vert	Ascissa	Ordinata
N.ro		t/mq	Grd	t/mc	t/mc	N.ro	(m)	(m)
	Profilo del pendio					1	0.00	32.42
						2	35.93	30.89
						3	43.75	35.36
						4	45.25	35.32
						5	70.75	35.41
						6	72.25	35.45
						7	81.00	30.45
						8	83.00	30.45
						9	86.13	28.66
						10	96.61	28.40
		ı		ı	ı	1		I
1	DT	0.000	34.00	1.900	1.900	1	0.00	31.75
						2	23.30	30.75
						3	35.93	30.09
	Г	li .		1	li .	<u> </u>		
2	RILNEW	0.000	38.00	2.050	2.050	1	35.93	30.09
						2	51.05	30.09
	Г	1	T	li .	11	ı	T	
3	RILES	0.000	34.00	1.900	1.900	1	51.05	30.09
						2	61.30	28.41
						3	73.96	28.70
		1			1			
4	RILNEW	0.000	38.00	2.050	2.050	1	73.96	28.70
						2	79.71	28.26
						3	86.13	27.86
		II.		1	II.	li .		
5	QM	0.000	34.00	1.900	1.900			

	DATI GEOTECNICI E STRATIGRAFIA									
Str.	Descrizione Strato	Coesione	Ang.attr	Densita'	D.Saturo	Vert	Ascissa	Ordinata		
N.ro		t/mq	Grd	t/mc	t/mc	N.ro	(m)	(m)		
						_				

DATI FORZE DISTRIBUITE VERTICALI									
Vert.	Asc. in.	Int. iniz.	Asc. fin	Int. fin.					
N.ro	(m)	(t/ml)	(m)	(t/ml)					
1	45.25	2.600	70.75	2.600					

				CC	DEFFICIENTI	DI SICUREZ	ZA DEL PEN	DIO			
N	I.ro Cerchi	o critico :	77								
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx = C	MP - Fx=sin	MP-Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)								
1	79.0	42.0	15.8	1,9757							
2	80.0	42.0	15.4	1,817							
3	81.0	42.0	15.0	1,6826							
4	82.0	42.0	14.7	1,6227							
5	83.0	42.0	14.4	1,6056							
6	84.0	42.0	14.3	1,6066							
7	85.0	42.0	14.1	1,6433							
8	86.0	42.0	14.1	1,7904							
9	87.0	42.0	14.1	1,9748							
10	88.0	42.0	14.2	2,3451							
11	79.0	43.0	16.7	1,9685							
12	80.0	43.0	16.3	1,8128							
13	81.0	43.0	15.9	1,6787							
14	82.0	43.0	15.6	1,6084							
15	83.0	43.0	15.4	1,5822							
16	84.0	43.0	15.2	1,5978							
17	85.0	43.0	15.1	1,6123							
18	86.0	43.0	15.1	1,7385							
19	87.0	43.0	15.1	1,8978							
20	88.0	43.0	15.2	2,2196							
21	79.0	44.0	17.6	1,9673							
22	80.0	44.0	17.2	1,8117							
23	81.0	44.0	16.9	1,682							
24	82.0	44.0	16.6	1,6111							
25	83.0	44.0	16.4	1,5674							
26	84.0	44.0	16.2	1,5678							
27	85.0	44.0	16.1	1,5944							
28	86.0	44.0	16.1	1,6888							
29	87.0	44.0	16.1	1,829							
30	88.0	44.0	16.2	2,1055							
31	79.0	45.0	18.5	1,9705			J	ĺ			

				CC	DEFFICIENTI	DI SICURE	ZZA DEL PEN	DIO			
,	l ro Cerch	io critico :	77								
				Dieben	lombu	Pall	MD Fy C	MD. Ev sin	MD Ev. oin/2	Cormo	Cnangar
Cerchi	Xc (m)	Yc (m)	Rc (m)	Bishop	Jambu	Bell	IMP - FX = C	IVIP - FX=SIN	MP-Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)	1 0 1 = 0							
32	80.0	45.0	18.2	1,8176							
33	81.0	45.0	17.8	1,6898							
34	82.0	45.0	17.6	1,6106							
35	83.0	45.0	17.4	1,5661							
36	84.0	45.0	17.2	1,5488							
37	85.0	45.0	17.1	1,5913							
38	86.0	45.0	17.1	1,6451							
39	87.0	45.0	17.1	1,7652							
40	88.0 79.0	45.0 46.0	17.2 19.4	1,999							
41				1,9778							
42 43	80.0 81.0	46.0 46.0	19.1 18.8	1,8279 1,701							
43	81.0	46.0	18.6	1,701							
45	83.0	46.0	18.4	1,5642			1				
46	84.0	46.0	18.2	1,546							
47	85.0	46.0	18.1	1,5645							
48	86.0	46.0	18.1	1,6225							
49	87.0	46.0	18.1	1,7125							
50	88.0	46.0	18.2	1,9135							
51	79.0	47.0	20.4	1,99							
52	80.0	47.0	20.0	1,8409							
53	81.0	47.0	19.8	1,7116							
54	82.0	47.0	19.5	1,6349							
55	83.0	47.0	19.3	1,5763							
56	84.0	47.0	19.2	1,545							
57	85.0	47.0	19.1	1,5481							
58	86.0	47.0	19.1	1,6177							
59	87.0	47.0	19.1	1,6726							
60	88.0	47.0	19.2	1,839							
61	79.0	48.0	21.3	2,0029			1				
62	80.0	48.0	21.0	1,8563							
63	81.0	48.0	20.7	1,7284							
64	82.0	48.0	20.5	1,6418							
65	83.0	48.0	20.3	1,5852			1				
66	84.0	48.0	20.2	1,5539			1				
67	85.0	48.0	20.1	1,5413							
68	86.0	48.0	20.1	1,5911			1				
69	87.0	48.0	20.1	1,6523			1				
70	88.0	48.0	20.2	1,7697							
71	79.0	49.0	22.3	2,0173			1				
72	80.0	49.0	22.0	1,8734			1				
73	81.0	49.0	21.7	1,7466							
74	82.0	49.0	21.5	1,6598			1				
75	83.0	49.0	21.3	1,6023	l		1	I			

				CC	DEFFICIENTI	DI SICUREZ	ZA DEL PEN	DIO			
N	I.ro Cerchi	io critico :	77								
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx = C	MP - Fx=sin	MP-Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)								
76	84.0	49.0	21.2	1,562							
77	85.0	49.0	21.1	1,5411							
78	86.0	49.0	21.1	1,5675							
79	87.0	49.0	21.1	1,6448							
80	88.0	49.0	21.2	1,7224							
81	79.0	50.0	23.2	2,0337							
82	80.0	50.0	22.9	1,8919							
83	81.0	50.0	22.7	1,7665							
84	82.0	50.0	22.5	1,6725							
85	83.0	50.0	22.3	1,6153							
86	84.0	50.0	22.2	1,5724							
87	85.0	50.0	22.1	1,5458							
88	86.0	50.0	22.1	1,563							
89	87.0	50.0	22.1	1,6169							
90	88.0	50.0	22.2	1,7004							
91	79.0	51.0	24.2	2,0494							
92	80.0	51.0	23.9	1,9113							
93	81.0	51.0	23.7	1,787							
94	82.0	51.0	23.5	1,6936							
95	83.0	51.0	23.3	1,6358							
96	84.0	51.0	23.2	1,5909							
97	85.0	51.0	23.1	1,5593							
98	86.0	51.0	23.1	1,5622							
99	87.0	51.0	23.1	1,5963							
100	88.0	51.0	23.2	1,6865							

	CARATTERISTICHE CONCI												
	Superfice di Scorrimento N.ro: 77												
Concio	h	L	α	С	ф	W	hw	Qw	Tcn	Tgg			
N.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)			
1	0.25	0.66	-49.05	0.00	28.4	0.20	0.0	0.00	0.00	0.00			
2	0.73	0.63	-47.30	0.00	28.4	0.60	0.0	0.00	0.00	0.00			
3	1.19	0.61	-45.61	0.00	28.4	0.97	0.0	0.00	0.00	0.00			
4	1.61	0.60	-43.97	0.00	28.4	1.32	0.0	0.00	0.00	0.00			
5	2.02	0.58	-42.37	0.00	28.4	1.65	0.0	0.00	0.00	0.00			
6	2.41	0.57	-40.81	0.00	28.4	1.97	0.0	0.00	0.00	0.00			
7	2.79	0.56	-39.28	0.00	28.4	2.28	0.0	0.00	0.00	0.00			
8	3.14	0.54	-37.79	0.00	28.4	2.57	0.0	0.00	0.00	0.00			
9	3.34	0.53	-36.33	0.00	28.4	2.73	0.0	0.00	0.00	0.00			
10	3.40	0.52	-34.90	0.00	28.4	2.78	0.0	0.00	0.00	0.00			
11	3.45	0.52	-33.49	0.00	28.4	2.82	0.0	0.00	0.00	0.00			
12	3.48	0.51	-32.10	0.00	28.4	2.84	0.0	0.00	0.00	0.00			

CARATTERISTICHE CONCI										
				Superfic	ce di Sco	rrimento N.ro:	: 77			
Concio	h	L	α	С	ф	W	hw	Qw	Tcn	Tgg
N.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)
13	3.49	0.50	-30.73	0.00	32.0	3.08	0.0	0.00	0.00	0.00
14	3.50	0.49	-29.38	0.00	32.0	3.08	0.0	0.00	0.00	0.00
15	3.49	0.49	-28.05	0.00	32.0	3.07	0.0	0.00	0.00	0.00
16	3.46	0.48	-26.74	0.00	32.0	3.05	0.0	0.00	0.00	0.00
17	3.43	0.48	-25.44	0.00	32.0	3.02	0.0	0.00	0.00	0.00
18	3.38	0.47	-24.16	0.00	32.0	2.98	0.0	0.00	0.00	0.00
19	3.32	0.47	-22.88	0.00	32.0	2.93	0.0	0.00	0.00	0.00
20	3.25	0.46	-21.62	0.00	32.0	2.87	0.0	0.00	0.00	0.00
21	3.17	0.46	-20.37	0.00	32.0	2.80	0.0	0.00	0.00	0.00
22	3.08	0.46	-19.13	0.00	32.0	2.72	0.0	0.00	0.00	0.00
23	2.98	0.45	-17.90	0.00	32.0	2.63	0.0	0.00	0.00	0.00
24	2.87	0.45	-16.68	0.00	32.0	2.53	0.0	0.00	0.00	0.00
25	2.75	0.45	-15.47	0.00	32.0	2.42	0.0	0.00	0.00	0.00
26	2.61	0.44	-14.26	0.00	32.0	2.30	0.0	0.00	0.00	0.00
27	2.47	0.44	-13.06	0.00	32.0	2.18	0.0	0.00	0.00	0.00
28	2.32	0.44	-11.87	0.00	32.0	2.05	0.0	0.00	0.00	0.00
29	2.21	0.44	-10.68	0.00	32.0	1.95	0.0	0.00	0.00	0.00
30	2.29	0.44	-9.49	0.00	32.0	2.02	0.0	0.00	0.00	0.00
31	2.36	0.43	-8.31	0.00	28.4	2.07	0.0	0.00	0.00	0.00
32	2.41	0.43	-7.14	0.00	28.4	2.12	0.0	0.00	0.00	0.00
33	2.46	0.43	-5.96	0.00	28.4	2.17	0.0	0.00	0.00	0.00
34	2.37	0.43	-4.79	0.00	28.4	2.08	0.0	0.00	0.00	0.00
35	2.15	0.43	-3.62	0.00	28.4	1.89	0.0	0.00	0.00	0.00
36	1.93	0.43	-2.45	0.00	28.4	1.70	0.0	0.00	0.00	0.00
37	1.70	0.43	-1.29	0.00	28.4	1.49	0.0	0.00	0.00	0.00
38	1.46	0.43	-0.12	0.00	28.4	1.28	0.0	0.00	0.00	0.00
39	1.21	0.43	1.05	0.00	28.4	1.06	0.0	0.00	0.00	0.00
40	0.95	0.43	2.21	0.00	32.0	0.84	0.0	0.00	0.00	0.00
41	0.75	0.43	3.38	0.00	28.4	0.61	0.0	0.00	0.00	0.00
42 43	0.71	0.43	4.55 5.72	0.00	28.4	0.58	0.0	0.00	0.00	0.00
43 44	0.66 0.60	0.43 0.43	5.72 6.90	0.00	28.4	0.54 0.49	0.0	0.00	0.00	0.00
44 45	0.53	0.43	8.07	0.00	28.4 28.4	0.49	0.0	0.00 0.00	0.00	0.00
45 46	0.53	0.43	9.25	0.00	28.4	0.43	0.0	0.00	0.00	0.00
46 47	0.46	0.44	10.44	0.00	28.4	0.37	0.0	0.00	0.00	0.00
48	0.28	0.44	11.62	0.00	28.4	0.30	0.0	0.00	0.00	0.00
49	0.28	0.44	12.82	0.00	28.4	0.23	0.0	0.00	0.00	0.00
50	0.06	0.44	14.02	0.00	28.4	0.05	0.0	0.00	0.00	0.00

	Superfice di Scorrimento N.ro: 77												
Concio	Ff	Fq	Fr	Fs	Ftot								
N.ro	(t)	(t)	(t)	(t)	(t)								
1	0.00	1.12	0.00	0.00	1.32								
2	0.00	1.12	0.00	0.00	1.72								
3	0.00	1.12	0.00	0.00	2.09								
4	0.00	1.12	0.00	0.00	2.44								
5	0.00	0.52	0.00	0.00	2.17								
6	0.00	0.00	0.00	0.00	1.97								
7	0.00	0.00	0.00	0.00	2.28								
8	0.00	0.00	0.00	0.00	2.57								
9	0.00	0.00	0.00	0.00	2.73								
10	0.00	0.00	0.00	0.00	2.78								
11	0.00	0.00	0.00	0.00	2.82								
12	0.00	0.00	0.00	0.00	2.84								
13	0.00	0.00	0.00	0.00	3.08								
14	0.00	0.00	0.00	0.00	3.08								
15	0.00	0.00	0.00	0.00	3.07								
16	0.00	0.00	0.00	0.00	3.05								
17	0.00	0.00	0.00	0.00	3.02								
18	0.00	0.00	0.00	0.00	2.98								
19	0.00	0.00	0.00	0.00	2.93								
20	0.00	0.00	0.00	0.00	2.87								
21	0.00	0.00	0.00	0.00	2.80								
22	0.00	0.00	0.00	0.00	2.72								
23	0.00	0.00	0.00	0.00	2.63								
24	0.00	0.00	0.00	0.00	2.53								
25	0.00	0.00	0.00	0.00	2.42								
26	0.00	0.00	0.00	0.00	2.30								
27	0.00	0.00	0.00	0.00	2.18								
28	0.00	0.00	0.00	0.00	2.05								
29	0.00	0.00	0.00	0.00	1.95								
30	0.00	0.00	0.00	0.00	2.02								
31	0.00	0.00	0.00	0.00	2.07								
32	0.00	0.00	0.00	0.00	2.12								
33	0.00	0.00	0.00	0.00	2.17								

	Superfice di Scorrimento N.ro: 77													
Concio	Ff	Fq	Fr	Fs	Ftot									
N.ro	(t)	(t)	(t)	(t)	(t)									
34	0.00	0.00	0.00	0.00	2.08									
35	0.00	0.00	0.00	0.00	1.89									
36	0.00	0.00	0.00	0.00	1.70									
37	0.00	0.00	0.00	0.00	1.49									
38	0.00	0.00	0.00	0.00	1.28									
39	0.00	0.00	0.00	0.00	1.06									
40	0.00	0.00	0.00	0.00	0.84									
41	0.00	0.00	0.00	0.00	0.61									
42	0.00	0.00	0.00	0.00	0.58									
43	0.00	0.00	0.00	0.00	0.54									
44	0.00	0.00	0.00	0.00	0.49									
45	0.00	0.00	0.00	0.00	0.43									
46	0.00	0.00	0.00	0.00	0.37									
47	0.00	0.00	0.00	0.00	0.30									
48	0.00	0.00	0.00	0.00	0.23									
49	0.00	0.00	0.00	0.00	0.14									
50	0.00	0.00	0.00	0.00	0.05									

Superfice di Scorrimento N.ro: 77												
Concio	Hf	Hq	Hr	Htot	Hs							
N.ro	(t)	(t)	(t)	(t)	(t)							
1	0.00	0.00	0.00	0.00	0.00							
2	0.00	0.00	0.00	0.00	0.00							
3	0.00	0.00	0.00	0.00	0.00							
4	0.00	0.00	0.00	0.00	0.00							
5	0.00	0.00	0.00	0.00	0.00							
6	0.00	0.00	0.00	0.00	0.00							
7	0.00	0.00	0.00	0.00	0.00							
8	0.00	0.00	0.00	0.00	0.00							
9	0.00	0.00	0.00	0.00	0.00							
10	0.00	0.00	0.00	0.00	0.00							
11	0.00	0.00	0.00	0.00	0.00							

		Superfice di So			
Concio	Hf	Hq	Hr	Htot	Hs
N.ro	(t)	(t)	(t)	(t)	(t)
12	0.00	0.00	0.00	0.00	0.00
13	0.00	0.00	0.00	0.00	0.00
14	0.00	0.00	0.00	0.00	0.00
15	0.00	0.00	0.00	0.00	0.00
16	0.00	0.00	0.00	0.00	0.00
17	0.00	0.00	0.00	0.00	0.00
18	0.00	0.00	0.00	0.00	0.00
19	0.00	0.00	0.00	0.00	0.00
20	0.00	0.00	0.00	0.00	0.00
21	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00
23	0.00	0.00	0.00	0.00	0.00
24	0.00	0.00	0.00	0.00	0.00
25	0.00	0.00	0.00	0.00	0.00
26	0.00	0.00	0.00	0.00	0.00
27	0.00	0.00	0.00	0.00	0.00
28	0.00	0.00	0.00	0.00	0.00
29	0.00	0.00	0.00	0.00	0.00
30	0.00	0.00	0.00	0.00	0.00
31	0.00	0.00	0.00	0.00	0.00
32	0.00	0.00	0.00	0.00	0.00
33	0.00	0.00	0.00	0.00	0.00
34	0.00	0.00	0.00	0.00	0.00
35	0.00	0.00	0.00	0.00	0.00
36	0.00	0.00	0.00	0.00	0.00
37	0.00	0.00	0.00	0.00	0.00
38	0.00	0.00	0.00	0.00	0.00
39	0.00	0.00	0.00	0.00	0.00
40	0.00	0.00	0.00	0.00	0.00
41	0.00	0.00	0.00	0.00	0.00
42	0.00	0.00	0.00	0.00	0.00
43	0.00	0.00	0.00	0.00	0.00
44	0.00	0.00	0.00	0.00	0.00

	Superfice di Scorrimento N.ro: 77											
Concio	Hf	Hq	Hr	Htot	Hs							
N.ro	(t)	(t)	(t)	(t)	(t)							
45	0.00	0.00	0.00	0.00	0.00							
46	0.00	0.00	0.00	0.00	0.00							
47	0.00	0.00	0.00	0.00	0.00							
48	0.00	0.00	0.00	0.00	0.00							
49	0.00	0.00	0.00	0.00	0.00							
50	0.00	0.00	0.00	0.00	0.00							

	REAZIONI MUTUE FRA CONCI																
	Superficie N.ro: 77																
		BISH	НОР	JAN	JAMBU		BELL		MP - Fx= C		MP - Fx = SIN		= SIN/2	SARMA		SPE	NCER
Conc.	Conc.	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert.
sx	dx	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
	1	0	0														
1	2	.7	0														
2	3	1.6	0														
3	4	2.6	0														
4	5	3.6	0														
5	6	4.5	0														
6	7	5.1	0														
7	8	5.8	0														
8	9	6.6	0														
9	10	7.3	0														
10	11	7.9	0														
11	12	8.5	0														
12	13	9	0														
13	14	9.4	0														
14	15	9.6	0														
15	16	9.8	0														
16	17	10	0														
17	18	10	0														
18	19	10	0														
19	20	10	0														
20	21	9.9	0														
21	22	9.7	0														
22	23	9.5	0														
23	24	9.2	0														
24	25	8.9	0														
25	26	8.6	0														
26	27	8.2	0														
27	28	7.8	0														

	REAZIONI MUTUE FRA CONCI																
								Superfic	ie N.ro:	77							
		BISI	НОР	JAN	1BU	BELL		MP - Fx= C		MP - Fx = SIN		MP-Fx = SIN/2		SARMA		SPE	NCER
Conc.	Conc.	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert.
sx	dx	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
28	29	7.4	0														
29	30	7	0														
30	31	6.5	0														
31	32	6.1	0														
32	33	5.6	0														
33	34	5.1	0														
34	35	4.6	0														
35	36	4	0														
36	37	3.5	0														
37	38	3	0														
38	39	2.6	0														
39	40	2.2	0														
40	41	1.8	0														
41	42	1.5	0														
42	43	1.3	0														
43	44	1	0														
44 45	45 46	.8 .6	0														
46	46 47	.6	0														
47	48	.4	0														
48	49	.1	0														
49	50	0	0														
50		1	0														

F.2 Combinazione sismica

DATI GENERALI STABILITA' PENDIO									
DATI GENERALI	DI VERIFICA								
Vita Nominale (Anni)	50								
Classe d' Uso	QUARTA								
Longitudine Est (Grd)	14.660								
Latitudine Nord (Grd)	37.020								
Categoria Suolo	С								
Coeff. Condiz. Topogr.	1.000								
Probabilita' Pvr	0.100								
Periodo di Ritorno Anni	949.000								
Accelerazione Ag/g	0.334								

DATI GENERALI STABILITA' PENDIO

DATI GENERALI	DI VERIFICA						
Fattore Stratigrafia 'S'	1.228						
Coeff. Sismico Kh	0.101						
Coeff. Sismico Kv	0.051						
Numero conci :	50						
Numero elementi rigidi:	0						
Tipo Superficie di rottura :	CIRCOLARE PASSANTE PER UN PUNTO						
COORDINATE PUNTO DI PASSA	GGIO CERCHI DI ROTTURA						
Ascissa pto passaggio cerchio (m):	86.090						
Ordinata pto passaggio cerchio (m):	27.900						
PARAMETRI MAGLIA DEI CENTRI PER S	UPERFICI DI ROTTURA CIRCOLARI						
Ascissa Polo (m):	79.000						
Ordinata Polo (m):	37.000						
Numero righe maglia :	10.0						
Numero colonne maglia :	10.0						
Passo direzione 'X' (m) :	1.00						
Passo direzione 'Y' (m) :	1.00						
Rotazione maglia (Grd):	0.0						
Peso specifico dell' acqua (t/mc) :	1.000						
COEFFICIENTI PARZIALI GE	OTECNICA TABELLA M2						
Tangente Resist. Taglio	1.25						
Peso Specifico	1.00						
Coesione Efficace (c'k)	1.25						
Resist. a taglio NON drenata (cuk)	1.40						
Coefficiente R2	1.00						

	D	ATI GEOT	ECNICI E	STRATIGR	AFIA			
Str.	Descrizione Strato	Coesione	Ang.attr	Densita'	D.Saturo	Vert	Ascissa	Ordinata
N.ro		t/mq	Grd	t/mc	t/mc	N.ro	(m)	(m)
	Profilo del pendio					1	0.00	32.42
						2	35.93	30.89
						3	43.75	35.36
						4	45.25	35.32
						5	70.75	35.41
						6	72.25	35.45

	D	ATI GEOT	ECNICI E	STRATIGR	RAFIA			
Str.	Descrizione Strato	Coesione	Ang.attr	Densita'	D.Saturo	Vert	Ascissa	Ordinata
N.ro		t/mq	Grd	t/mc	t/mc	N.ro	(m)	(m)
						7	81.00	30.45
						8	83.00	30.45
						9	86.13	28.66
						10	96.61	28.40
		ı			li .	<u> </u>		
1	DT	0.000	34.00	1.900	1.900	1	0.00	31.75
						2	23.30	30.75
						3	35.93	30.09
		1			1	1		
2	RILNEW	0.000	38.00	2.050	2.050	1	35.93	30.09
						2	51.05	30.09
		1			1	1		
3	RILES	0.000	34.00	1.900	1.900	1	51.05	30.09
						2	61.30	28.41
						3	73.96	28.70
		ı		<u> </u>	ı			
4	RILNEW	0.000	38.00	2.050	2.050	1	73.96	28.70
						2	79.71	28.26
						3	86.13	27.86
		1						
5	QM	0.000	34.00	1.900	1.900			

				CC	DEFFICIENTI	DI SICUREZ	ZA DEL PEN	DIO			
N	I.ro Cerchi	io critico :	87								
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx = C	MP - Fx=sin	MP-Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)								
1	79.0	37.0	11.5	1,8734							
2	80.0	37.0	10.9	1,6823							
3	81.0	37.0	10.4	1,542							
4	82.0	37.0	10.0	1,4688							
5	83.0	37.0	9.6	1,4323							
6	84.0	37.0	9.3	1,4301							
7	85.0	37.0	9.2	1,481							
8	86.0	37.0	9.1	1,6195							
9	87.0	37.0	9.1	1,7227							
10	88.0	37.0	9.3	1,8779							
11	79.0	38.0	12.3	1,8091							
12	80.0	38.0	11.8	1,6313							

				C(<u>DEFFICIENTI</u>	DI SICURE	ZZA DEL PEN	DIO			
N	I.ro Cerch	io critico :	87								
Cerchi	Хс	Yc	Rc	Bishop	Jambu	Bell	MP - Fx = C	MP - Fx=sin	MP-Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)	Біспор	oabu	20				Carria	оролоо.
13	81.0	38.0	11.3	1,4918			İ				
14	82.0	38.0	10.9	1,4107							
15	83.0	38.0	10.6	1,382							
16	84.0	38.0	10.3	1,3804							
17	85.0	38.0	10.2	1,431							
18	86.0	38.0	10.1	1,5659							
19	87.0	38.0	10.1	1,7002							
20	88.0	38.0	10.3	1,8755							
21	79.0	39.0	13.2	1,7649							
22	80.0	39.0	12.7	1,595							
23	81.0	39.0	12.2	1,4554							
24	82.0	39.0	11.8	1,3728			1				
25	83.0	39.0	11.5	1,3374							
26	84.0	39.0	11.3	1,3396							
27	85.0	39.0	11.2	1,3889							
28	86.0	39.0	11.1	1,5166							
29	87.0	39.0	11.1	1,6553							
30	88.0	39.0	11.3	1,8704							
31	79.0	40.0	14.0	1,7292							
32	80.0	40.0	13.5	1,571							
33	81.0	40.0	13.1	1,4368							
34	82.0	40.0	12.8	1,3558							
35	83.0	40.0	12.5	1,304							
36	84.0	40.0	12.3	1,3051							
37	85.0	40.0	12.1	1,3454							
38	86.0	40.0	12.1	1,464							
39	87.0	40.0	12.1	1,6007							
40	88.0	40.0	12.2	1,8298							
41	79.0	41.0	14.9	1,7073							
42	80.0	41.0	14.4	1,5559			1				
43	81.0	41.0	14.1	1,4275							
44	82.0	41.0	13.7	1,3424			1				
45	83.0	41.0	13.5	1,2939							
46	84.0	41.0	13.3	1,2716			1				
47	85.0	41.0	13.1	1,3138			1				
48	86.0	41.0	13.1	1,421							
49	87.0	41.0	13.1	1,5449			1				
50	88.0	41.0	13.2	1,7664							
51	79.0	42.0	15.8	1,6915			1				
52	80.0	42.0	15.4	1,548							
53	81.0	42.0	15.0	1,4179			1				
54	82.0	42.0	14.7	1,3419							
55	83.0	42.0	14.4	1,286							
56	84.0	42.0	14.3	1,2577				J			

				C	DEFFICIENTI	DI SICUREZ	ZA DEL PEN	DIO			
N	I.ro Cerchi	io critico ·	87								
Cerchi	Xc Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx = C	MP - Fx=sin	MP-Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)	Бююр	daniba	Boil		WII 1 X=0III	VII 1 X=011 / Z	Garria	Openicer
57	85.0	42.0	14.1	1,2801							
58	86.0	42.0	14.1	1,3784							
59	87.0	42.0	14.1	1,487							
60	88.0	42.0	14.2	1,6946							
61	79.0	43.0	16.7	1,6824							
62	80.0	43.0	16.3	1,5447							
63	81.0	43.0	15.9	1,419							
64	82.0	43.0	15.6	1,3405							
65	83.0	43.0	15.4	1,2872							
66	84.0	43.0	15.2	1,2486							
67	85.0	43.0	15.1	1,2579							
68	86.0	43.0	15.1	1,344							
69	87.0	43.0	15.1	1,4392							
70	88.0	43.0	15.2	1,6244							
71	79.0	44.0	17.6	1,6775							
72	80.0	44.0	17.2	1,5425							
73	81.0	44.0	16.9	1,4239							
74	82.0	44.0	16.6	1,3499							
75	83.0	44.0	16.4	1,2892							
76	84.0	44.0	16.2	1,2495							
77	85.0	44.0	16.1	1,2433							
78	86.0	44.0	16.1	1,3102							
79	87.0	44.0	16.1	1,3955							
80	88.0	44.0	16.2	1,5587							
81	79.0	45.0	18.5	1,675							
82	80.0	45.0	18.2	1,5447							
83	81.0	45.0	17.8	1,4309							
84	82.0	45.0	17.6	1,3537							
85	83.0	45.0	17.4	1,298							
86	84.0	45.0	17.2	1,2532							
87	85.0	45.0	17.1	1,2389							
88	86.0	45.0	17.1	1,2779							
89	87.0	45.0	17.1	1,3537							
90	88.0	45.0	17.2	1,4947							
91	79.0	46.0	19.4	1,6756							
92	80.0	46.0	19.1	1,5503							
93	81.0	46.0	18.8	1,4395							
94	82.0	46.0	18.6	1,3591							
95	83.0	46.0	18.4	1,303							
96	84.0	46.0	18.2	1,2648							
97	85.0	46.0	18.1	1,2405							
98	86.0	46.0	18.1	1,2599							
99	87.0	46.0	18.1	1,3191							
100	88.0	46.0	18.2	1,4426							

				CARA	ATTERIS	TICHE CONC	CI			
	D.		1	Superfic	ce di Sco	rrimento N.ro:	87			
Concio	h	L	α	С	ф	W	hw	Qw	Tcn	Tgg
N.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)
1	0.28	0.66	-54.86	0.00	28.4	0.20	0.0	0.00	0.00	0.00
2	0.81	0.63	-52.71	0.00	28.4	0.58	0.0	0.00	0.00	0.00
3	1.30	0.60	-50.65	0.00	28.4	0.94	0.0	0.00	0.00	0.00
4	1.76	0.58	-48.68	0.00	28.4	1.27	0.0	0.00	0.00	0.00
5	2.03	0.56	-46.78	0.00	28.4	1.47	0.0	0.00	0.00	0.00
6	2.21	0.54	-44.95	0.00	28.4	1.60	0.0	0.00	0.00	0.00
7	2.36	0.52	-43.18	0.00	28.4	1.71	0.0	0.00	0.00	0.00
8	2.49	0.51	-41.45	0.00	28.4	1.80	0.0	0.00	0.00	0.00
9	2.60	0.50	-39.77	0.00	32.0	2.03	0.0	0.00	0.00	0.00
10	2.69	0.48	-38.14	0.00	32.0	2.10	0.0	0.00	0.00	0.00
11	2.76	0.47	-36.53	0.00	32.0	2.16	0.0	0.00	0.00	0.00
12	2.82	0.47	-34.96	0.00	32.0	2.20	0.0	0.00	0.00	0.00
13	2.86	0.46	-33.42	0.00	32.0	2.23	0.0	0.00	0.00	0.00
14	2.88	0.45	-31.91	0.00	32.0	2.25	0.0	0.00	0.00	0.00
15	2.90	0.44	-30.42	0.00	32.0	2.26	0.0	0.00	0.00	0.00
16	2.90	0.44	-28.95	0.00	32.0	2.26	0.0	0.00	0.00	0.00
17	2.88	0.43	-27.50	0.00	32.0	2.25	0.0	0.00	0.00	0.00
18	2.86	0.42	-26.08	0.00	32.0	2.23	0.0	0.00	0.00	0.00
19	2.82	0.42	-24.66	0.00	32.0	2.20	0.0	0.00	0.00	0.00
20	2.77	0.41	-23.27	0.00	32.0	2.17	0.0	0.00	0.00	0.00
21	2.71	0.41	-21.89	0.00	32.0	2.12	0.0	0.00	0.00	0.00
22	2.64	0.41	-20.52	0.00	32.0	2.06	0.0	0.00	0.00	0.00
23	2.56	0.40	-19.17	0.00	32.0	2.00	0.0	0.00	0.00	0.00
24	2.47	0.40	-17.82	0.00	32.0	1.93	0.0	0.00	0.00	0.00
25	2.37	0.40	-16.49	0.00	32.0	1.85	0.0	0.00	0.00	0.00
26	2.26	0.39	-15.16	0.00	32.0	1.77	0.0	0.00	0.00	0.00
27	2.14	0.39	-13.85	0.00	32.0	1.67	0.0	0.00	0.00	0.00
28	2.17	0.39	-12.54	0.00	32.0	1.70	0.0	0.00	0.00	0.00
29	2.26	0.39	-11.24	0.00	32.0	1.76	0.0	0.00	0.00	0.00
30	2.33	0.39	-9.94	0.00	32.0	1.82	0.0	0.00	0.00	0.00
31	2.39	0.39	-8.65	0.00	28.4	1.86	0.0	0.00	0.00	0.00
32	2.44	0.38	-7.36	0.00	28.4	1.90	0.0	0.00	0.00	0.00
33	2.38	0.38	-6.08	0.00	28.4	1.86	0.0	0.00	0.00	0.00
34	2.20	0.38	-4.80	0.00	28.4	1.71	0.0	0.00	0.00	0.00
35	2.01	0.38	-3.52	0.00	28.4	1.56	0.0	0.00	0.00	0.00
36	1.81	0.38	-2.24	0.00	28.4	1.41	0.0	0.00	0.00	0.00
37	1.60	0.38	-0.97	0.00	28.4	1.25	0.0	0.00	0.00	0.00
38	1.39	0.38	0.31	0.00	28.4	1.08	0.0	0.00	0.00	0.00

				CARA	ATTERIS	STICHE CONC	CI .			
				Superfic	ce di Sco	orrimento N.ro	: 87			
Concio	h	L	α	С	ф	W	hw	Qw	Tcn	Tgg
N.ro	(m)	(m)	(°)	(t/mq)	(°)	(t)	(m)	(t)	(t)	(t)
39	1.16	0.38	1.58	0.00	28.4	0.91	0.0	0.00	0.00	0.00
40	0.93	0.38	2.86	0.00	32.0	0.73	0.0	0.00	0.00	0.00
41	0.75	0.38	4.13	0.00	28.4	0.54	0.0	0.00	0.00	0.00
42	0.71	0.38	5.41	0.00	28.4	0.51	0.0	0.00	0.00	0.00
43	0.66	0.38	6.69	0.00	28.4	0.47	0.0	0.00	0.00	0.00
44	0.60	0.38	7.98	0.00	28.4	0.43	0.0	0.00	0.00	0.00
45	0.53	0.39	9.27	0.00	28.4	0.38	0.0	0.00	0.00	0.00
46	0.45	0.39	10.56	0.00	28.4	0.33	0.0	0.00	0.00	0.00
47	0.37	0.39	11.86	0.00	28.4	0.27	0.0	0.00	0.00	0.00
48	0.27	0.39	13.17	0.00	28.4	0.20	0.0	0.00	0.00	0.00
49	0.17	0.39	14.48	0.00	28.4	0.12	0.0	0.00	0.00	0.00
50	0.06	0.40	15.80	0.00	28.4	0.04	0.0	0.00	0.00	0.00

Superfice di Scorrimento N.ro: 87 Concio Ff Ftot Fq Fr Fs N.ro (t) (t) (t) (t) (t) 1 0.00 0.00 0.00 0.01 0.21 0.00 0.00 0.00 0.03 2 0.61 0.00 3 0.00 0.00 0.05 0.99 4 0.00 0.00 0.00 0.06 1.34 0.00 0.00 0.00 0.07 1.54 5 6 0.00 0.00 0.00 0.08 1.68 7 0.00 0.00 0.00 0.09 1.79 8 0.00 0.00 0.00 0.09 1.89 9 0.00 0.00 0.00 0.10 2.13 0.00 0.00 0.00 0.11 2.20 10 0.00 0.00 0.00 0.11 2.26 11 0.00 0.00 0.00 2.31 12 0.11 13 0.00 0.00 0.00 0.11 2.34 0.00 0.00 0.00 14 0.11 2.37 15 0.00 0.00 0.00 0.11 2.38 0.00 0.00 0.00 16 0.11 2.38 17 0.00 0.00 0.00 0.11 2.37

0.00

0.11

2.35

18

0.00

0.00

		Superfice di So	corrimento N.		
Concio	Ff	Fq	Fr	Fs	Ftot
N.ro	(t)	(t)	(t)	(t)	(t)
19	0.00	0.00	0.00	0.11	2.31
20	0.00	0.00	0.00	0.11	2.27
21	0.00	0.00	0.00	0.11	2.23
22	0.00	0.00	0.00	0.10	2.17
23	0.00	0.00	0.00	0.10	2.10
24	0.00	0.00	0.00	0.10	2.03
25	0.00	0.00	0.00	0.09	1.95
26	0.00	0.00	0.00	0.09	1.86
27	0.00	0.00	0.00	0.08	1.76
28	0.00	0.00	0.00	0.09	1.79
29	0.00	0.00	0.00	0.09	1.85
30	0.00	0.00	0.00	0.09	1.91
31	0.00	0.00	0.00	0.09	1.96
32	0.00	0.00	0.00	0.10	2.00
33	0.00	0.00	0.00	0.09	1.95
34	0.00	0.00	0.00	0.09	1.80
35	0.00	0.00	0.00	0.08	1.64
36	0.00	0.00	0.00	0.07	1.48
37	0.00	0.00	0.00	0.06	1.31
38	0.00	0.00	0.00	0.05	1.14
39	0.00	0.00	0.00	0.05	0.95
40	0.00	0.00	0.00	0.04	0.76
41	0.00	0.00	0.00	0.03	0.57
42	0.00	0.00	0.00	0.03	0.54
43	0.00	0.00	0.00	0.02	0.50
44	0.00	0.00	0.00	0.02	0.45
45	0.00	0.00	0.00	0.02	0.40
46	0.00	0.00	0.00	0.02	0.34
47	0.00	0.00	0.00	0.01	0.28
48	0.00	0.00	0.00	0.01	0.21
49	0.00	0.00	0.00	0.01	0.13
50	0.00	0.00	0.00	0.00	0.04

		Superfice di S			
Concio	Hf	Hq	Hr	Htot	Hs
N.ro	(t)	(t)	(t)	(t)	(t)
1	0.00	0.00	0.00	0.00	0.02
2	0.00	0.00	0.00	0.00	0.06
3	0.00	0.00	0.00	0.00	0.10
4	0.00	0.00	0.00	0.00	0.13
5	0.00	0.00	0.00	0.00	0.15
6	0.00	0.00	0.00	0.00	0.16
7	0.00	0.00	0.00	0.00	0.17
8	0.00	0.00	0.00	0.00	0.18
9	0.00	0.00	0.00	0.00	0.20
10	0.00	0.00	0.00	0.00	0.21
11	0.00	0.00	0.00	0.00	0.22
12	0.00	0.00	0.00	0.00	0.22
13	0.00	0.00	0.00	0.00	0.23
14	0.00	0.00	0.00	0.00	0.23
15	0.00	0.00	0.00	0.00	0.23
16	0.00	0.00	0.00	0.00	0.23
17	0.00	0.00	0.00	0.00	0.23
18	0.00	0.00	0.00	0.00	0.23
19	0.00	0.00	0.00	0.00	0.22
20	0.00	0.00	0.00	0.00	0.22
21	0.00	0.00	0.00	0.00	0.21
22	0.00	0.00	0.00	0.00	0.21
23	0.00	0.00	0.00	0.00	0.20
24	0.00	0.00	0.00	0.00	0.20
25	0.00	0.00	0.00	0.00	0.19
26	0.00	0.00	0.00	0.00	0.18
27	0.00	0.00	0.00	0.00	0.17
28	0.00	0.00	0.00	0.00	0.17
29	0.00	0.00	0.00	0.00	0.18
30	0.00	0.00	0.00	0.00	0.18
31	0.00	0.00	0.00	0.00	0.19
32	0.00	0.00	0.00	0.00	0.19
33	0.00	0.00	0.00	0.00	0.19

	S	Superfice di So	corrimento N.	ro: 87	
Concio	Hf	Hq	Hr	Htot	Hs
N.ro	(t)	(t)	(t)	(t)	(t)
34	0.00	0.00	0.00	0.00	0.17
35	0.00	0.00	0.00	0.00	0.16
36	0.00	0.00	0.00	0.00	0.14
37	0.00	0.00	0.00	0.00	0.13
38	0.00	0.00	0.00	0.00	0.11
39	0.00	0.00	0.00	0.00	0.09
40	0.00	0.00	0.00	0.00	0.07
41	0.00	0.00	0.00	0.00	0.05
42	0.00	0.00	0.00	0.00	0.05
43	0.00	0.00	0.00	0.00	0.05
44	0.00	0.00	0.00	0.00	0.04
45	0.00	0.00	0.00	0.00	0.04
46	0.00	0.00	0.00	0.00	0.03
47	0.00	0.00	0.00	0.00	0.03
48	0.00	0.00	0.00	0.00	0.02
49	0.00	0.00	0.00	0.00	0.01
50	0.00	0.00	0.00	0.00	0.00

							REAZI	ONI MU	TUE FR	A CONC	i .						
								Superfic	ie N.ro:	87							
		BISI	HOP	JAN	1BU	BE	LL	MP -	Fx= C	MP - F	x = SIN	MP-Fx	= SIN/2	SAF	RMA	SPE	NCER
Conc.	Conc.	F.or.	F.vert	t F.or. F.vert F.or. F.vert		F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert.		
sx	dx	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
	1	0	0														
1	2	.1	0														
2	3	.4	0														
3	4	.9	0														
4	5	1.5	0														
5	6	2.2	0														
6	7	2.8	0														
7	8	3.4	0														
8	9	4	0														
9	10	4.4	0														
10	11	4.8	0														
11	12	5.2	0														
12	13	5.5	0														
13	14	5.7	0														

							REAZI	ONI MU	TUE FR	A CON	CI						
								Superfic	cie N.ro:	87				Tr.			
		BISH	HOP	JAN	1BU	BE	LL	MP -	Fx= C	MP - F	x = SIN	MP-Fx	= SIN/2	SAF	RMA	SPEI	NCER
Conc.	Conc.	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert.
sx	dx	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
14	15	6	0						•						•		
15	16	6.2	0														
16	17	6.3	0														
17	18	6.4	0														
18	19	6.5	0														
19	20	6.5	0														
20	21	6.4	0														
21	22	6.4	0														
22	23	6.2	0														
23	24	6	0														
24	25	5.8	0														
25	26	5.6	0														
26	27	5.4	0														
27	28	5.1	0														
28	29	4.8	0														
29	30	4.5	0														
30	31	4.1	0														
31	32	3.8	0														
32	33	3.4	0														
33	34	3	0														
34	35	2.5	0														
35	36	2.2	0														
36	37	1.8	0														
37	38	1.5	0														
38 39	39 40	1.2	0														
40	41	.7	0														
41	42	.6	0														
42	43	.5	0														
43	44	.4	0														
44	45	.3	0														
45	46	.2	0														
46	47	.1	0														
47	48	.1	0														
48	49	0	0														
49	50	0	0														
50		1	0														

P ALLEGATI