

Ministero delle Infrastrutture e dei Trasporti Struttura di Vigilanza sulle Concessionarie Autostradali

AMMODERNAMENTO A N° 4 CORSIE DELLA S.S. 514 "DI CHIARAMONTE" E DELLA S.S. 194 RAGUSANA DALLO SVINCOLO CON LA S.S. 115 ALLO SVINCOLO CON LA S.S. 114.

(C.U.P. F12C03000000001)

PROGETTO DEFINITIVO

LOTTO 6 GEOLOGIA E GEOTECNICA

Piano indagini - indagini geofisiche Report sulle indagini geofisiche eseguite in novembre 2016

II Progettista					Supporto specialistico					
Responsabile di prog incaricato delle integr le varie prestazioni:	etto ed azioni	tra	SILECS.PA		Ottimizzazione dell delle opere	la cant	ierizzazione		engineering	arm & consulting
Ing. Santa Mona	co - C	ordine In	g. Torino 5760H		Ing. Gianmaria	De S	Stavola - O	rdir	ne Ing. Venezi	a 2074
			Cons	sulenze	specialistiche					
Geologo:					Geotecnica e	oper	e d'arte m	no	ri:	
Dott. Geologo Fa Ordine Geologi d	lel Laz	zio A.P.			Ing. Antonio Al				STRUTTURE E	EDTECNICA
Opere d'arte pri	ncipa	li:			Opere di mitig	azio	ne dell'im _l	oati	to ambientale):
Viadotti Ing. G. Mondello ITALCON			Ecosistemi e paesaggio Rumore, vibrazioni ed atmosfera			etran				
RIFERIMENTO ELA	BORA	-	IPLINA\OPERA DOC		OGR. ST.\REV.	FC	D.	ATA	GENNA	IO '17
D 0 1 - T 1		6-G	G010-1-R2	Z-0	1 2 - 0 A	0 1	01	CAL	A -	
REV. DAT	Α		DESCRIZIONE				REDATTO/CONSUL	ENTE	VERIFICATO	APPROVATO
A GENNAI	O '17	Emission	ne				Dott.Monac)	Salucci	Monaco
IL CONCESSIONARIO IL RESPONSABILE DEL PROCEDIMENTO IL CONCESSIONARIO SARC SRL		Autostrui Re-C		L'EN		TA' COSTRUT				

Indice

1.	PREME	ESSA	3
1	.1 Tra	AVERSA SISMICA TS03	4
	1.1.1	Dettagli acquisizione	4
	1.1.2	Interpretazione Tomografica	
	1.1.3	Interpretazione Sismostratigrafica	
1	.2 TRA	AVERSA SISMICA TS04	
	1.2.1	Dettagli acquisizione	7
	1.2.2	Interpretazione Tomografica	
	1.2.3	Interpretazione Sismostratigrafica	9
1	.3 TRA	AVERSA SISMICA TS05	
	1.3.1	Dettagli acquisizione1	
	<i>1.3.2</i>	Interpretazione Tomografica1	2
	1.3.3	Interpretazione Sismostratigrafica1	
1		AVERSA SISMICA TS06	
	1.4.1	Dettagli acquisizione1	
	<i>1.4.2</i>	Interpretazione Tomografica1	5
	<i>1.4.3</i>	Interpretazione Sismostratigrafica1	
1		AVERSA SISMICA TS07	
	1.5.1	Dettagli acquisizione1	
	1.5.2	Interpretazione Tomografica1	
	1.5.3	Interpretazione Sismostratigrafica1	
1		AVERSA SISMICA TS08	
	1.6.1	Dettagli acquisizione	
	1.6.2	Interpretazione Tomografica2	'7
	1.6.3	Interpretazione Sismostratigrafica	
7		AVERSA SISMICA TS09	
	1.7.1	Dettagli acquisizione	
	1.7.2	Interpretazione Tomografica	
4	1.7.3	Interpretazione Sismostratigrafica	
ı	.8 TRA	AVERSA SISMICA TS10	
	1.8.1 1.8.2	Dettagli acquisizione	
	1.8.2 1.8.3	Interpretazione Tomografica2 Interpretazione Sismostratigrafica2	/)7
4		AVERSA SISMICA TS112	
'	1.9.1	Dettagli acquisizione	
	1.9.1 1.9.2	Interpretazione Tomografica	
	1.9.2 1.9.3	Interpretazione Tomografica	
	1.3.3	interpretazione diarnostratigranoa	U
2	CONC	LUSIONI	31

1. PREMESSA

Nel presente documento sono illustrati i i risultati ottenuti mediante interpretazione tomografica degli stendimenti sismici a rifrazione (TS03, TS04, TS05, TS06, TS07, TS08, TS09, TS10 e TS11), effettuati all'interno del Lotto 6, con i metodi e le procedure già descritte nella "Relazione Generale delle Indagini Geofisiche Lotti 1 - 4 - 6 - 8", eseguiti in situ i giorni 28, 29 e 30 del mese di novembre 2016, nell'ambito del progetto relativo al "Collegamento autostradale Ragusa-Catania ammodernamento a n. 4 corsie della s.s. 514 "di Chiaramonte" e della s.s.194 Ragusana dallo svincolo con la s.s.115 allo svincolo con la s.s.114".

Più in particolare, sono stati eseguiti n. 09 stendimenti sismici a rifrazione con interpretazione tomografica con denominazione, caratteristiche e coordinate geografiche (Sistema WGS84), indicate nella tabella sottostante.

LOTTO	TOMOGRAFIA SISMICA	ESECUZIONE	GE	огоні	LUNGHEZZA	SCOPPI	COORDINATE	GEOGRAFICHE WGS84 (World Geodetic	System, 1984)
[n.]	[n.]	Data	[n.]	Distanza [m]	m. ^(*)	[n.]	Geofono n. 1	Geofono n. 12	Geofono n. 24
	TS03	29/11/2016	24	5	115	7	N 37° 11' 23,34" - F 14° 47' 17,75"		N 37° 11' 25,34" - F 14° 47' 21,6
	TS04	29/11/2016	24	5	115	7	N 37° 11' 26,05" - F 14° 47' 23,38"		N 37° 11' 28,41" - F 14° 47' 26,9
	TS05	30/11/2016	12	5	115	7	N 37° 11' 38,92" - F 14° 47' 55;48"	N 37° 11' 37,95" - F 14° 47' 536,57"	
	TS06	29/11/2016	24	5	115	7	N 37° 11' 43,16" - F 14° 48' 14,93"		N 37° 11' 42 14 - F 14° 48' 10 39
6	TS07	29/11/2016	12	5	55	7	N 37° 11' 43,83" - F 14° 48' 9,59"	N 37° 11' 42,15" - F 14° 48' 10,07"	
	TS08	30/11/2016	24	5	115	7	N 37° 11' 38,22" - F 14° 47' 54,42"		N 37° 11' 41,20" - F 14° 47' 51,7
	TS09	30/11/2016	24	5	115	7	N 37° 11' 36,68" - F 14° 47' 41,23"		N 37° 11' 39,65" - F 14° 47' 38,4
	TS10	28/11/2016	24	5	115	7	N 37° 11' 26,80" - F 14° 47' 28,15"		N 37° 11' 29,89'' - F 14° 47' 25,4
	TS11	28/11/2016	24	5	115	7	N 37° 11' 23.72" - F 14° 47' 22.13"		N 37° 11' 26.67" - F 14° 47' 19.3

Tab. 01 - Denominazione, caratteristiche ed ubicazione delle Indagini Geofisiche eseguite nel lotto 6.

1.1 TRAVERSA SISMICA TS03

Fig. 01 - UBICAZIONE TRAVERSA SISMICA TS03.

FIG. 02 - DOCUMENTAZIONE FOTOGRAFICA DELLA TRAVERSA SISMICA TS03.

1.1.1 <u>Dettagli acquisizione</u>

TOMOGRAFIA SISMICA TS03								
DECODIZIONE	N° DI GEOFONI	DISTANZA	LUNGHEZZA	SHOTS				
DESCRIZIONE	UTILIZZATI	GEOFONI	(m)	(n°)				
TS03	24	5.00 m	115.00	7				

TAB. 02 – CARATTERISTICHE DELLO STENDIMENTO TOMOGRAFICO TS03.

Ascissa [m] Shots (riferiti al geof. n. 1)	Nome File
-2.00	TS0301.sg2
17.50	TS0302.sg2
37.50	TS0303.sg2
57.50	TS0304.sg2
77.50	TS0305.sg2
102.50	TS0306.sg2
117.00	TS0307.sg2

TAB. 03 – POSIZIONE DEGLI SCOPPI NELLA TRAVERSA TS03

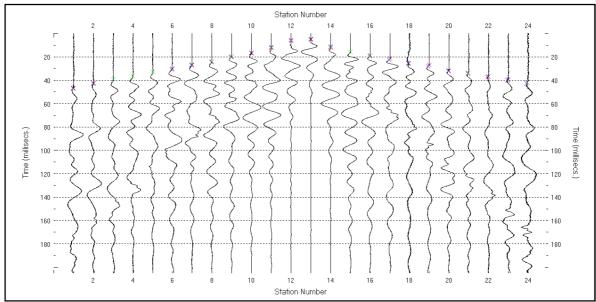


FIG. 03 – ANDAMENTO DEI PRIMI ARRIVI DOVUTI ALLO SCOPPIO "04" (TS03).

GEOFONO		_		ТЕМРІ	DI ARRIVO N	IEI VARI SCOP	PI ESEGUITI [T	S02]	
	X	Z			[microsecono	di]		
N°	[m]	[m]	1°	2 °	3 °	4 °	5°	6°	7°
1	0	0	3.82	20.86	34.859	46.924	57.298	68.384	76.491
2	5	0.15	11.108	15.95	30.858	43.027	53.574	64.693	72.936
3	10	0.3	15.828	10.808	27.149	39.425	50.047	61.314	69.663
4	15	0.45	20.795	4.942	23.855	36.315	46.973	58.441	66.92
5	20	0.6	24.772	4.784	20.351	33.204	43.898	55.527	64.218
6	25	0.75	28.523	11.338	16.292	30.395	41.145	52.827	61.897
7	30	0.9	31.636	15.866	11.134	27.253	38.106	49.832	59.311
8	35	1.05	35.051	20.255	4.873	24.074	35.141	46.911	56.674
9	40	1.2	37.969	23.655	4.868	20.291	31.736	43.539	53.522
10	45	1.35	40.887	26.764	10.76	16.495	28.788	40.63	50.827
11	50	1.5	44.165	30.147	15.942	11.967	25.939	37.864	48.098
12	55	1.65	47.427	33.479	20.712	5.661	22.834	34.946	45.201
13	60	1.8	49.731	35.846	23.547	5.101	19.126	31.557	41.842
14	65	1.95	52.503	38.699	26.578	11.627	15.473	28.643	38.976
15	70	2.1	55.037	41.306	29.296	15.898	10.378	25.241	35.672
16	75	2.25	57.532	43.897	31.956	19.293	4.324	21.849	32.503
17	80	2.4	60.298	46.801	34.91	22.575	4.507	18.709	29.83
18	85	2.5	62.881	49.506	37.652	25.477	10.338	14.523	26.599
19	90	2.6	65.516	52.254	40.429	28.337	14.401	10.205	23.681
20	95	2.7	68.866	55.766	43.988	31.957	18.753	4.825	20.65
21	100	2.8	70.953	57.863	46.26	34.261	21.589	4.049	16.486
22	105	2.9	72.973	60.123	48.672	36.689	24.2	9.257	12.642
23	110	3	109.79	107.39	105.53	95.53	75.27	35.57	25.82
24	115	3.1	117.97	115.76	113.94	104.09	84.83	49.52	7.24

TAB. 04 – TABELLA COORDINATE E TEMPI DI ARRIVO AI VARI GEOFONI IN FUNZIONE DEI VARI SCOPPI.

1.1.2 Interpretazione Tomografica

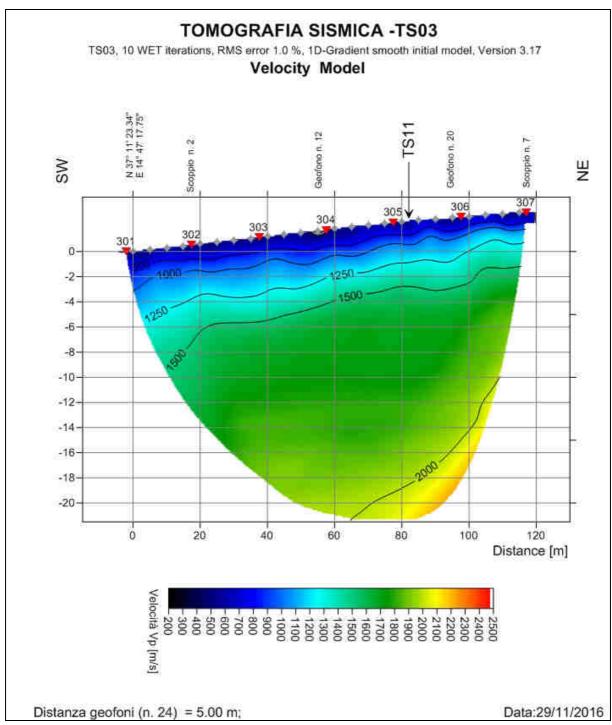


Fig. 04- Interpretazione Tomografica dello Stendimento TS03.

1.1.3 Interpretazione Sismostratigrafica

La sezione tomografica TS03, incontra tra i geofoni n.17 e n. 18 la sezione tomografica TS11.

Analizzando i dati relativi alla traversa sismica TS03, è stato possibile individuare:

a) un sismostrato con spessore di circa 20 m che rappresenta litotipi di origine vulcanica da fortemente fratturati a fratturati (500 m/s < V_P < 2000 m/s).

1.2 TRAVERSA SISMICA TS04

FIG. 05 - UBICAZIONE TRAVERSA SISMICA TS04.

Fig. 06 - Documentazione Fotografica della Traversa sismica TS04.

1.2.1 Dettagli acquisizione

TOMOGRAFIA SISMICA TS04							
DESCRIZIONE	N° DI GEOFONI	DISTANZA	LUNGHEZZA	SHOTS			
DESCRIZIONE	UTILIZZATI	GEOFONI	(m)	(n°)			
TS04	24	5.00 m	115.00	7			

 $Tab.\ 05-Caratteristiche\ dello\ stendimento\ tomografico\ TS04.$

Ascissa [m] Shots (riferiti al geof. n. 1)	Nome File
-2.00	TS0401.sg2
17.50	TS0402.sg2
37.50	TS0403.sg2
57.50	TS0404.sg2
77.50	TS0405.sg2
102.50	TS0406.sg2
117.00	TS0407.sg2

TAB. 06 – POSIZIONE DEGLI SCOPPI NELLA TRAVERSA TS04.

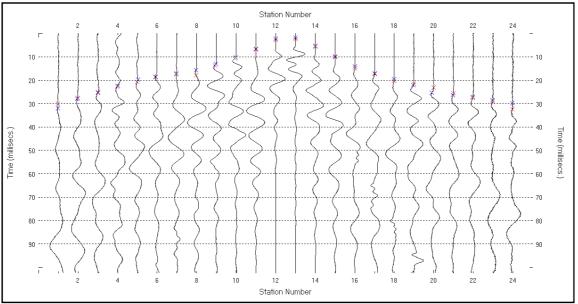


Fig. 07 – Andamento dei primi arrivi dovuti allo scoppio "04" (TS04).

GEOFONO		_		Темрі	DI ARRIVO N	IEI VARI SCO	PPI ESEGUITI [TS04]	
	X	Z				microsecon	di]		
N°	[m]	[m]	1°	2 °	3°	4 °	5°	6°	7 °
1	0	2.5	3.47	17.64	25.19	32.04	41.30	49.66	49.61
2	5	2.4	10.75	13.22	21.07	27.98	37.25	45.63	45.65
3	10	2.3	15.13	9.12	18.33	25.30	34.58	42.98	43.11
4	15	2.2	19.18	3.08	15.29	22.38	31.68	40.12	40.43
5	20	2.1	20.49	2.53	12.51	19.72	29.05	37.53	37.98
6	25	2	22.31	7.01	10.87	18.58	27.98	36.53	37.25
7	30	1.9	24.27	9.95	7.27	17.17	26.72	35.40	36.53
8	35	1.8	26.49	12.57	2.63	15.75	25.51	34.48	36.18
9	40	1.7	28.27	14.52	2.48	13.26	23.45	32.87	35.35
10	45	1.6	30.02	16.39	7.05	10.38	21.49	31.02	34.14
11	50	1.5	31.61	18.04	10.85	6.80	19.51	29.24	32.75
12	55	1.4	33.36	19.81	13.62	2.27	17.32	27.45	31.14
13	60	1.3	35.18	21.66	15.67	2.05	14.17	25.24	29.00
14	65	1.2	37.32	23.83	18.04	5.92	11.19	23.36	27.26
15	70	1.1	39.96	26.48	20.87	10.00	7.36	21.79	25.91
16	75	1	42.52	29.04	23.53	14.31	2.50	19.15	23.90
17	80	0.9	44.42	30.95	25.52	17.17	2.29	15.60	21.17
18	85	0.8	46.49	33.02	27.64	19.65	6.84	12.45	19.14
19	90	0.7	48.73	35.26	29.90	22.09	11.16	8.43	17.28
20	95	0.6	51.42	38.03	32.95	25.28	15.45	3.16	15.28
21	100	0.5	51.39	38.32	33.60	26.49	18.30	2.86	12.02
22	105	0.4	51.40	38.46	34.17	27.27	19.37	7.33	9.24
23	110	0.3	51.85	38.91	35.35	28.63	20.90	10.86	6.20
24	115	0.3	51.96	39.02	35.96	29.86	22.23	13.22	1.87

TAB. 07 – TABELLA COORDINATE E TEMPI DI ARRIVO AI VARI GEOFONI IN FUNZIONE DEI VARI SCOPPI.

1.2.2 Interpretazione Tomografica

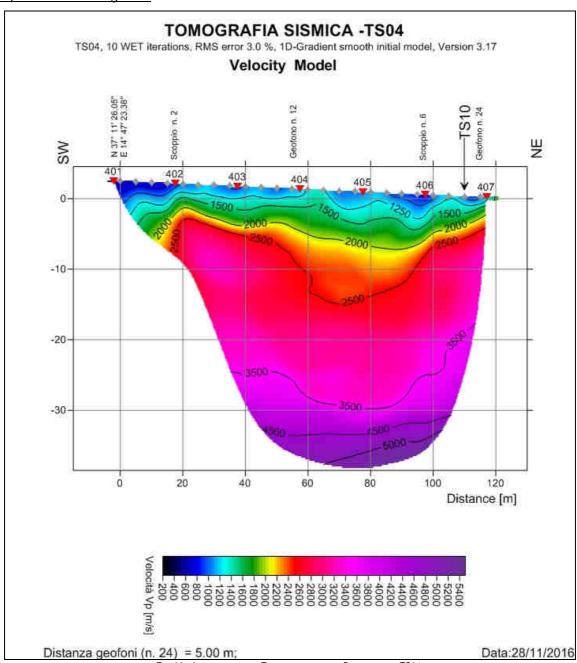


Fig. 08 – Interpretazione Tomografica dello Stendimento TS04.

1.2.3 Interpretazione Sismostratigrafica

La sezione tomografica TS04, alla progressiva di posizionamento del geofono n. 23 incontra la sezione tomografica TS10.

Analizzando i dati relativi alla traversa sismica TS04, è stato possibile individuare:

- a) un primo livello sismostratigrafico (500 m/s < V_P < 2000 m/s), con spessori valutabili da 5.0 m a 8.0 m., caratterizzato da litotipi di origine vulcanica da fortemente fratturati a fratturati.
- b) Un secondo livello sismostratigrafico più profondo, riconoscibile oltre le velocità V₂ superiori ai 2.000,00~2.200,00 m/s., e caratterizzato sempre da vulcaniti con un livello di fratturazione da poco fratturati a compatte.

1.3 TRAVERSA SISMICA TS05

Fig. 09 - UBICAZIONE TRAVERSA SISMICA TS05

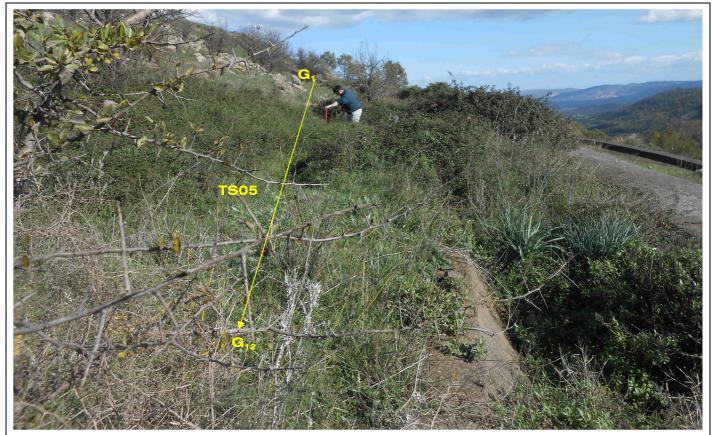


Fig. 10 - DOCUMENTAZIONE FOTOGRAFICA DELLA TRAVERSA SISMICA TS05.

1.3.1 Dettagli acquisizione

TOMOGRAFIA SISMICA TS05								
DECODIZIONE	N° DI GEOFONI	DISTANZA	LUNGHEZZA	SHOTS				
DESCRIZIONE	UTILIZZATI	GEOFONI	(m)	(n°)				
TS05	12	5.00 m	55.00	7				

TAB. 08 - CARATTERISTICHE DELLO STENDIMENTO TOMOGRAFICO TS05.

Ascissa [m] Shots (riferiti al geof. n. 1)	Nome File
-2.00	TS0501.sg2
7.50	TS0502.sg2
17.50	TS0503.sg2
27.50	TS0504.sg2
37.50	TS0505.sg2
47.50	TS0506.sg2
57.00	TS0507.sg2

TAB. 09 – POSIZIONE DEGLI SCOPPI NELLA TRAVERSA TS05.

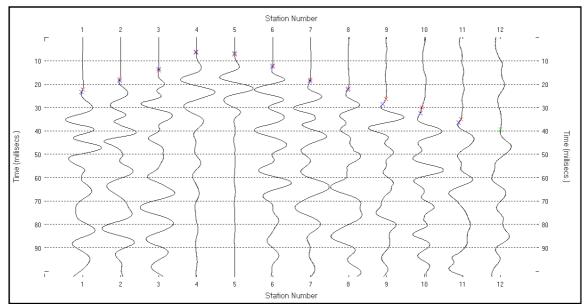


Fig. 11 – Andamento dei primi arrivi dovuti allo scoppio "03" (TS05).

GEOFONO		_		ТЕМРІ	DI ARRIVO N	EI VARI SCO	PPI ESEGUITI [TS05]	
	X	Z [m]]	microsecon	di]		
N°	[m]	Livia	1°	2 °	3°	4 °	5°	6 °	7 °
1	0	3.15	5.66	14.03	23.53	32.88	40.84	49.58	55.59
2	5	2.75	13.70	5.38	18.55	28.24	36.41	45.28	51.30
3	10	2.35	19.48	5.98	13.65	24.14	32.74	41.88	48.00
4	15	1.95	23.75	13.95	6.39	18.55	27.37	36.54	42.72
5	20	1.55	28.03	18.85	6.88	14.50	23.85	33.07	39.32
6	25	1.15	32.25	23.30	12.63	5.22	20.51	29.90	36.38
7	30	0.75	36.95	28.59	18.75	7.98	17.04	27.19	34.10
8	35	0.6	40.21	31.99	22.40	15.86	7.16	23.64	31.06
9	40	0.45	46.32	38.17	28.69	22.86	12.58	21.11	30.06
10	45	0.3	49.87	41.83	32.38	26.71	20.13	12.42	25.00
11	50	0.15	53.59	45.69	36.51	30.94	25.25	12.57	18.73
12	55	0.0	56.67	48.77	39.59	34.41	29.37	20.14	8.45

 $Tab.\ 10-Tabella\ coordinate\ e\ Tempi\ di\ arrivo\ ai\ vari \ geofoni\ in\ funzione\ dei\ vari\ scoppi.$

1.3.2 Interpretazione Tomografica

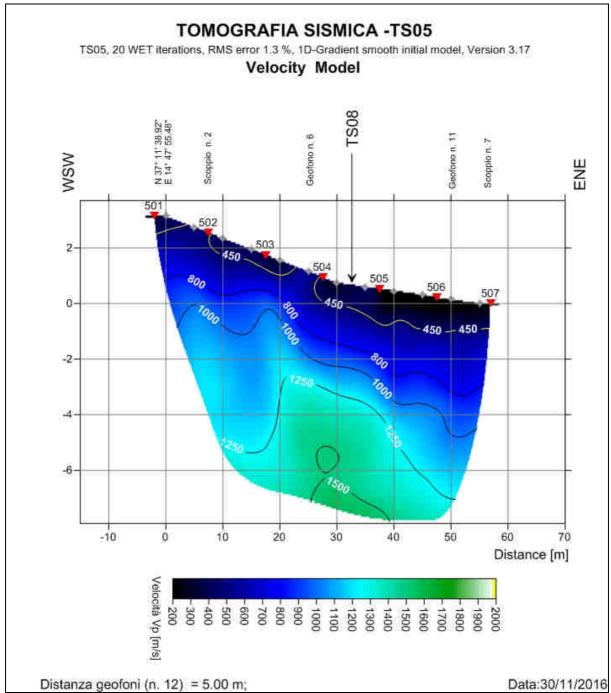


FIG. 12 - INTERPRETAZIONE TOMOGRAFICA DELLO STENDIMENTO TS05.

1.3.3 Interpretazione Sismostratigrafica

La sezione tomografica TS05, alla progressiva di posizionamento dei geofoni n. 6-7 incontra la sezione tomografica TS08.

Analizzando i dati relativi alla traversa sismica TS05, è stato possibile individuare:

- a) una zona aerata (V_P minori di 450 m/s), con livelli di spessore variabili fino a circa 2,00 m.;
- b) più in profondità (da 2.0 m circa), è presente un livello sismostratigrafico costituito da litotipi più competenti di origine vulcanica mediamente fratturati. (V_P>1200 m/s).

1.4 TRAVERSA SISMICA TS06



Fig. 13 - Ubicazione Traversa Sismica TS06

Fig. 14 - DOCUMENTAZIONE FOTOGRAFICA DELLA TRAVERSA SISMICA TS06

1.4.1 Dettagli acquisizione

TOMOGRAFIA SISMICA TS06							
DESCRIZIONE	N° DI GEOFONI	DISTANZA	LUNGHEZZA	SHOTS			
DESCRIZIONE	UTILIZZATI	GEOFONI	(m)	(n°)			
TS06	24	5.00 m	115.00	7			

TAB. 11- CARATTERISTICHE DELLO STENDIMENTO TOMOGRAFICO TS06.

Ascissa [m] Shots (riferiti al geof. n. 1)	Nome File
-2.00	TS0601.sg2
17.50	TS0602.sg2
37.50	TS0603.sg2
57.50	TS0604.sg2
77.50	TS0605.sg2
102.50	TS0606.sg2
117.00	TS0607.sg2

TAB. 12 – POSIZIONE DEGLI SCOPPI NELLA TRAVERSA TS06.

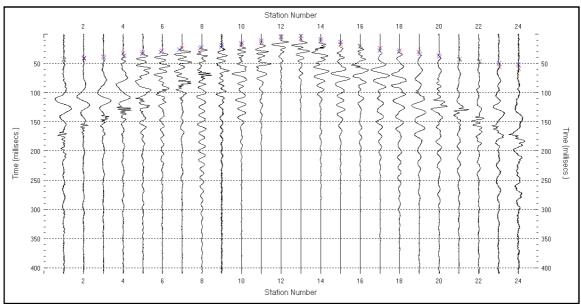


FIG. 15 – ANDAMENTO DEI PRIMI ARRIVI DOVUTI ALLO SCOPPIO "04" (TS06).

GEOFONO		-		ТЕМРІ	DI ARRIVO N	IEI VARI SCOF	PPI ESEGUITI [rso6]	
	X	Z				microsecon	di]		
N°	[m]	[m]	1°	2 °	3 °	4 °	5°	6°	7 °
1	0	0	1.77	14.61	27.70	43.82	65.20	74.51	75.57
2	5	0.75	6.00	12.49	25.69	41.82	63.70	74.68	76.05
3	10	1.3	10.13	10.29	23.95	40.09	61.97	73.06	74.92
4	15	1.57	14.21	4.10	21.45	37.62	59.50	70.62	72.64
5	20	1.64	17.30	4.03	18.13	34.36	56.25	67.39	69.42
6	25	1.71	20.89	11.17	14.41	30.82	52.72	63.92	65.96
7	30	1.78	23.53	14.28	9.96	26.81	48.72	60.05	62.11
8	35	1.85	27.04	17.94	3.78	22.93	44.87	56.45	58.56
9	40	1.92	30.44	21.39	3.81	19.49	41.48	53.56	55.77
10	45	1.99	34.59	25.56	10.10	15.69	37.88	51.45	53.83
11	50	2.06	38.50	29.49	14.43	11.10	33.76	49.22	52.47
12	55	2.13	43.02	34.01	19.14	3.90	28.74	44.33	52.18
13	60	2.2	47.05	38.05	23.26	3.72	22.50	38.56	49.82
14	65	2.27	51.13	42.13	27.37	8.91	16.98	33.44	44.73
15	70	2.34	55.87	46.87	32.11	14.01	12.02	29.54	40.85
16	75	2.41	62.81	53.82	39.06	21.23	5.35	26.80	38.20
17	80	2.48	65.71	58.67	44.55	28.36	5.56	22.50	34.25
18	85	2.55	66.43	59.47	45.36	31.04	13.50	16.19	28.81
19	90	2.62	68.76	61.84	47.73	34.03	17.29	10.78	24.68
20	95	2.69	73.18	66.28	52.18	38.81	22.27	4.21	21.08
21	100	2.76	73.97	68.48	54.50	43.86	27.48	3.86	16.35
22	105	2.83	73.57	68.29	54.32	47.06	30.78	10.64	13.11
23	110	2.9	74.43	69.48	55.50	50.27	34.06	15.74	8.78
24	115	2.95	75.13	70.35	56.38	51.87	35.91	17.95	2.42

TAB. 13 – TABELLA COORDINATE E TEMPI DI ARRIVO AI VARI GEOFONI IN FUNZIONE DEI VARI SCOPPI.

1.4.2 Interpretazione Tomografica

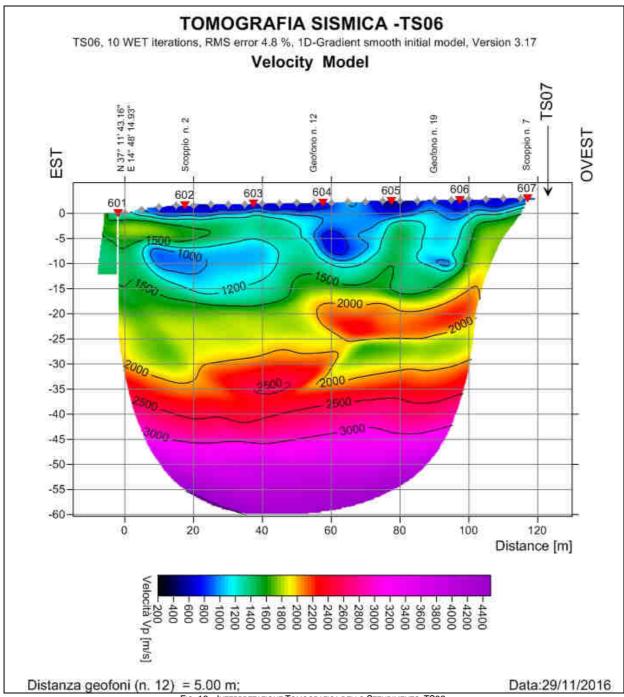


Fig. 16 – Interpretazione Tomografica dello Stendimento TS06.

1.4.3 Interpretazione Sismostratigrafica

Poco oltre la fine dello stendimento della TS06 (geofono n. 24), si colloca la sezione tomografica TS07. Analizzando i dati relativi alla traversa sismica TS06, è stato possibile individuare:

- a) un primo livello sismostratigrafico fino a circa 30 m di profondità, costituito da litotipi origine vulcanica mediamente fratturati. (V_P>1200 m/s).
- b) più in profondità, oltre le velocità V_P superiori a 2.000,00~2.200,00 m/s., sono presenti e vulcaniti con un livello basso livello di fratturazione (da poco fratturati a compatte).

1.5 Traversa Sismica TS07

FIG. 17 - UBICAZIONE TRAVERSA SISMICA TS07.

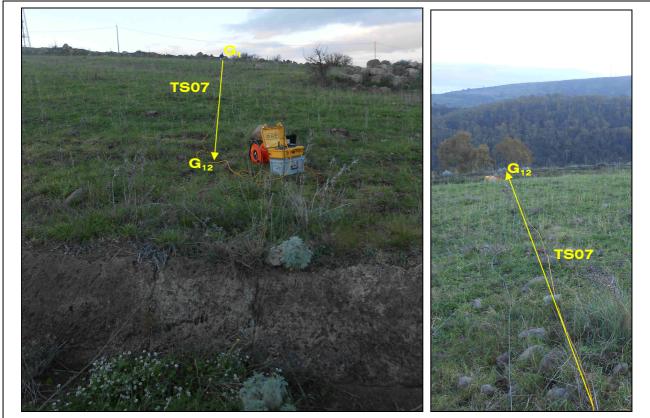


Fig. 18 - DOCUMENTAZIONE FOTOGRAFICA DELLA TRAVERSA SISMICA TS07

1.5.1 Dettagli acquisizione

TOMOGRAFIA SISMICA TS07							
DESCRIZIONE	N° DI GEOFONI	DISTANZA	LUNGHEZZA	SHOTS			
DESCRIZIONE	UTILIZZATI	GEOFONI	(m)	(n°)			
TS07	12	5.00 m	55.00	7			

TAB. 14 – CARATTERISTICHE DELLO STENDIMENTO TOMOGRAFICO TS07.

Ascissa [m] Shots (riferiti al geof. n. 1)	Nome File		
-2.00	TS0701.sg2		
7.50	TS0702.sg2		
17.50	TS0703.sg2		
27.50	TS0704.sg2		
37.50	TS0705.sg2		
47.50	TS0706.sg2		
57.00	TS0707.sg2		

TAB. 15 – POSIZIONE DEGLI SCOPPI NELLA TRAVERSA TS07.

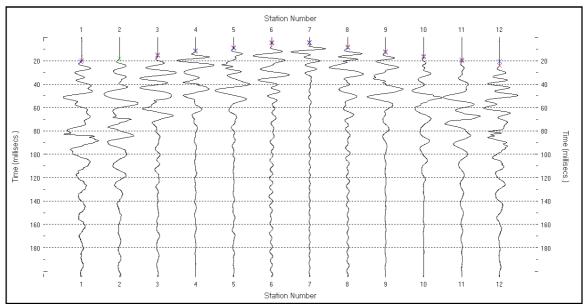
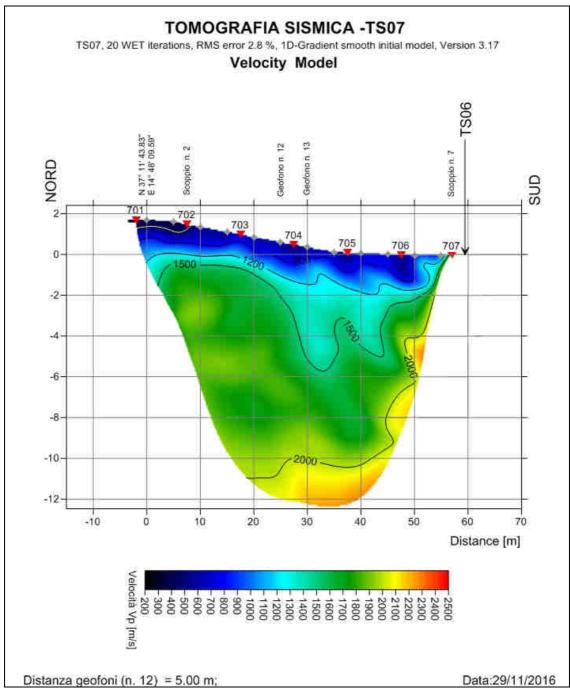



Fig. 19 – Andamento dei primi arrivi dovuti allo scoppio "04" (TS07).

GEOFONO		-		ТЕМРІ	DI ARRIVO N	EI VARI SCOI	PPI ESEGUITI [TS07]	
	X [m]	Z [m]			[1	microsecon	di]		
N°	[m]	[m]	1°	2 °	3 °	4 °	5°	6°	7°
1	0	1.7	5.11	9.57	14.30	21.21	27.80	33.59	33.83
2	5	1.6	10.25	6.04	11.48	18.45	25.11	30.93	31.31
3	10	1.35	12.47	5.00	7.77	14.98	21.78	27.74	28.29
4	15	1.1	14.98	8.44	3.67	11.63	18.58	24.84	25.57
5	20	0.85	17.76	11.40	3.66	8.75	15.90	22.53	23.46
6	25	0.6	21.08	14.79	7.94	4.54	13.07	20.29	21.80
7	30	0.35	24.36	18.11	11.48	4.43	8.79	16.54	18.22
8	35	0.1	27.36	21.22	14.72	8.86	4.20	12.94	15.16
9	40	0.05	30.79	24.74	18.47	12.98	3.99	9.07	11.77
10	45	0	33.56	27.51	21.62	16.41	9.13	4.08	8.63
11	50	-0.05	35.73	29.95	24.14	19.62	12.79	4.08	5.28
12	55	-0.05	35.78	30.00	24.47	20.48	13.98	7.84	1.34

 $Tab.\ 16-Tabella\ coordinate\ e\ Tempi\ di\ arrivo\ ai\ vari \ geofoni\ in\ funzione\ dei\ vari\ scoppi.$

1.5.2 Interpretazione Tomografica

Fig. 20 - Interpretazione Tomografica dello Stendimento TS07.

1.5.3 Interpretazione Sismostratigrafica

Poco oltre la fine dello stendimento della TS07 (geofono n. 24), si colloca la sezione tomografica TS06, Analizzando i dati relativi alla traversa sismica TS07, è stato possibile individuare:

- a) alcune aree in cui sono presenti terreni aerati (V_P minori di 450 m/s), con livelli di spessore variabili intorno ai 0,50 m.;
- b) più in profondità (~20m), livello sismostratigrafico è costituito certamente da litotipi più competenti ($V_P > 1200.00 \text{ m/s}$).

1.6 TRAVERSA SISMICA TS08

Fig. 21 - UBICAZIONE TRAVERSA SISMICA TS08.

Fig. 22 - Documentazione Fotografica della Traversa sismica TS08

1.6.1 Dettagli acquisizione

TOMOGRAFIA SISMICA TS08							
DESCRIZIONE	N° DI GEOFONI	DISTANZA LUNGHEZZA		SHOTS			
DESCRIZIONE	UTILIZZATI	GEOFONI	(m)	(n°)			
TS08	24	5.00 m	115.00	7			

TAB. 17 – CARATTERISTICHE DELLO STENDIMENTO TOMOGRAFICO TS08.

Ascissa [m] Shots (riferiti al geof. n. 1)	Nome File
-2.00	TS0801.sg2
17.50	TS0802.sg2
37.50	TS0803.sg2
57.50	TS0804.sg2
77.50	TS0805.sg2
102.50	TS0806.sg2
117.00	TS0807.sg2

TAB. 18 – POSIZIONE DEGLI SCOPPI NELLA TRAVERSA TS08.

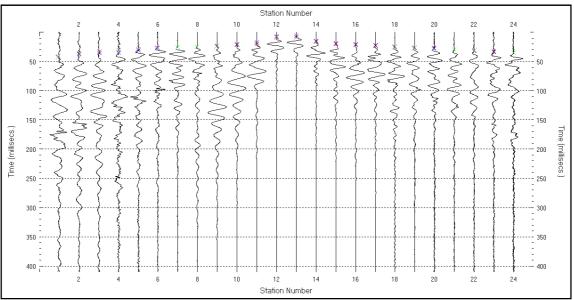


Fig. 23 – Andamento dei primi arrivi dovuti allo scoppio "04" (TS08).

GEOFONO		_		ТЕМРІ	DI ARRIVO N	IEI VARI SCOF	PPI ESEGUITI [TS08]	
	X	Z				microsecon			
N° I	[m]	[m]	1°	2 °	3°	4 °	5°	6°	7 °
1	0	0	7.10	25.36	35.22	42.51	46.86	51.93	58.59
2	5	0.25	17.10	20.12	30.23	37.70	42.05	47.12	53.84
3	10	1.15	22.23	17.09	28.22	35.82	40.17	45.24	52.02
4	15	2.05	27.39	6.14	26.71	34.57	38.94	44.01	51.03
5	20	2.95	29.61	6.26	21.16	31.40	36.01	41.08	48.47
6	25	3.85	31.24	13.60	16.91	27.66	32.36	37.43	44.83
7	30	4.75	33.52	17.45	13.35	25.98	30.81	35.90	43.29
8	35	5.65	36.41	21.35	6.80	25.15	30.20	35.30	42.69
9	40	6.55	40.17	26.37	7.61	23.96	29.80	35.02	42.41
10	45	7.45	42.73	30.17	17.24	21.25	27.78	33.30	40.70
11	50	8.35	44.57	32.38	21.87	17.80	25.75	31.46	38.88
12	55	9.25	45.45	33.41	24.56	7.65	22.97	29.00	36.50
13	60	10.15	46.01	34.00	25.50	6.45	18.97	26.07	33.90
14	65	11.95	48.39	36.39	28.37	15.23	14.64	22.87	31.39
15	70	12.85	49.62	37.63	29.81	19.27	12.06	20.82	29.87
16	75	13.02	49.83	37.84	30.12	21.18	5.43	17.57	27.28
17	80	13.19	50.96	38.97	31.28	22.68	5.69	15.29	25.30
18	85	13.36	53.13	41.14	33.48	25.19	11.44	12.65	23.04
19	90	13.53	53.88	41.89	34.24	26.57	13.88	8.72	19.93
20	95	13.7	54.29	42.30	34.66	27.17	15.25	3.48	16.94
21	100	13.87	56.74	44.74	37.10	29.73	18.09	4.45	15.72
22	105	14.04	59.04	47.05	39.40	32.15	20.77	9.46	12.30
23	110	14.21	60.83	48.84	41.20	34.00	23.14	12.55	8.53
24	115	14.38	61.86	50.17	42.52	35.33	25.48	15.23	2.34

 $Tab.\ 19-Tabella\ coordinate\ e\ Tempi\ di\ arrivo\ ai\ vari\ geofoni\ in\ funzione\ dei\ vari\ scoppi.$

1.6.2 Interpretazione Tomografica

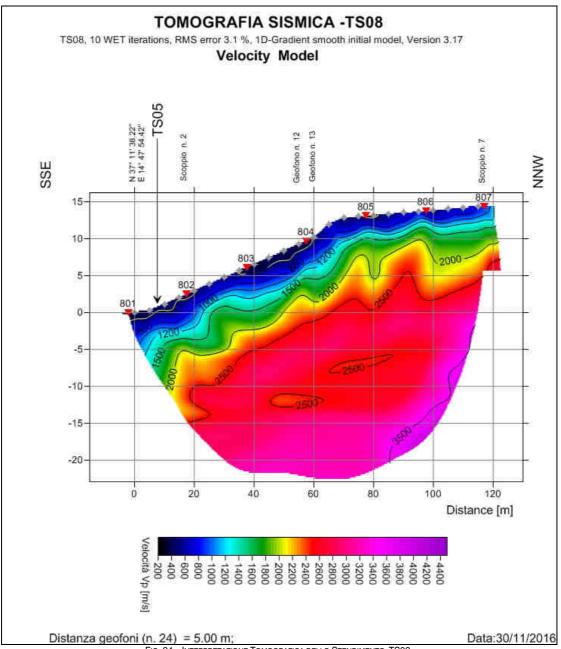


FIG. 24 - INTERPRETAZIONE TOMOGRAFICA DELLO STENDIMENTO TS08.

1.6.3 Interpretazione Sismostratigrafica

La sezione tomografica TS08, alla progressiva di posizionamento dei geofoni n. 2 e n. 3, incontra la sezione tomografica TS05.

Analizzando i dati relativi alla traversa sismica TS08, è stato possibile individuare:

- a) una zona aerata (V_P minori di 450 m/s), con livelli di spessore variabili intorno al metro.;
- b) un livello sismostratigrafico con spessore di circa 10.00 m di profondità, costituito da litotipi più competenti di origine vulcanica da fratturati a mediamente fratturati. (V_P>1200 m/s).
- c) più in profondità, oltre le velocità V_P superiori a 2.000,00~2.200,00 m/s., sono presenti e vulcaniti con un livello di fratturazione da poco fratturati a compatte.

1.7 Traversa Sismica TS09

Fig. 25 - UBICAZIONE TRAVERSA SISMICA TS09

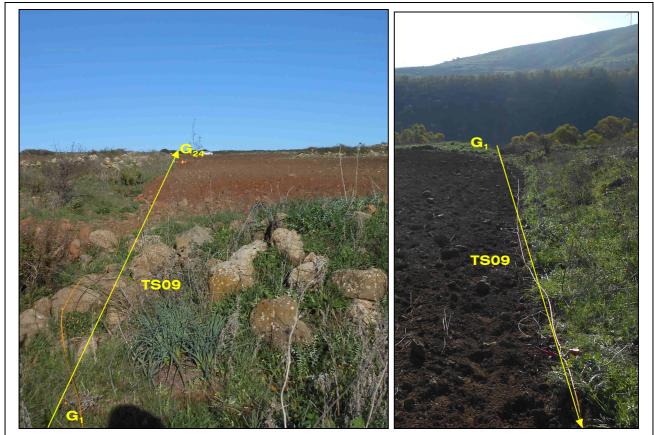


Fig. 26 - Documentazione Fotografica della Traversa sismica TS09.

1.7.1 Dettagli acquisizione

TOMOGRAFIA SISMICA TS09							
DESCRIZIONE	N° DI GEOFONI	DISTANZA	LUNGHEZZA	SHOTS			
DESCRIZIONE	UTILIZZATI	GEOFONI	(m)	(n°)			
TS09	24	5.00 m	115.00	7			

TAB. 20 – CARATTERISTICHE DELLO STENDIMENTO TOMOGRAFICO TS09.

Ascissa [m] Shots (riferiti al geof. n. 1)	Nome File
-2.00	TS0901.sg2
17.50	TS0902.sg2
37.50	TS0903.sg2
57.50	TS0904.sg2
77.50	TS0905.sg2
102.50	TS0906.sg2
117.00	TS0907.sg2

TAB. 21 – POSIZIONE DEGLI SCOPPI NELLA TRAVERSA TS09.

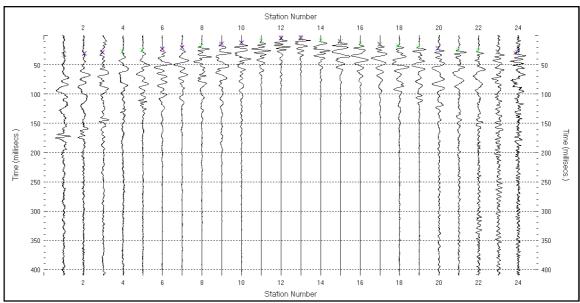


FIG. 27 – ANDAMENTO DEI PRIMI ARRIVI DOVUTI ALLO SCOPPIO "04" (TS09).

GEOFONO N°	X	_		Темрі	DI ARRIVO N	IEI VARI SCO	PPI ESEGUITI [TS0 9]	
		Z	[microsecondi]						
	[m]	[m]	1°	2 °	3°	4 °	5°	6 °	7 °
1	0	0.13	3.48	14.54	24.93	33.63	40.70	48.67	50.54
2	5	0.26	9.02	11.36	22.19	30.94	38.10	46.23	48.24
3	10	0.39	11.71	8.11	19.88	28.68	35.96	44.28	46.47
4	15	0.52	14.46	3.75	18.44	27.37	34.76	43.41	45.85
5	20	0.65	17.43	3.76	15.51	25.25	32.70	41.40	45.42
6	25	0.78	20.11	8.73	12.18	22.31	29.84	38.54	43.83
7	30	0.91	22.57	12.46	9.29	19.99	27.60	36.32	41.60
8	35	1.04	25.11	15.93	4.61	17.78	25.53	34.26	39.55
9	40	1.17	27.34	18.64	4.48	15.24	23.26	32.00	37.29
10	45	1.3	29.75	21.24	9.62	12.33	20.90	29.68	34.97
11	50	1.43	31.81	23.40	12.56	8.84	18.38	27.27	32.56
12	55	1.56	34.23	25.88	15.64	3.93	15.81	24.95	30.25
13	60	1.69	35.57	27.29	17.41	3.58	12.91	22.27	27.59
14	65	1.82	37.20	29.06	19.33	7.81	10.53	20.27	25.61
15	70	1.95	38.86	30.82	21.16	10.40	7.90	18.45	23.82
16	75	2.08	41.11	33.14	23.54	13.18	4.01	16.92	22.37
17	80	2.21	42.77	34.88	25.31	15.25	3.55	14.65	20.32
18	85	2.34	44.42	36.73	27.17	17.35	7.76	12.39	18.47
19	90	2.47	46.54	39.06	29.52	19.79	11.36	10.20	17.13
20	95	2.6	48.86	41.55	32.01	22.32	14.53	6.24	15.90
21	100	2.73	50.62	43.61	34.07	24.40	16.82	6.57	14.37
22	105	2.86	51.55	44.87	35.34	25.68	18.19	10.68	11.03
23	110	2.99	52.99	46.65	37.12	27.47	20.01	13.57	8.50
24	115	3.11	52.43	46.41	38.46	28.81	21.37	15.29	3.63

 $Tab.\ 22-Tabella\ coordinate\ e\ Tempi\ di\ arrivo\ ai\ vari\ geofoni\ in\ funzione\ dei\ vari\ scoppi.$

1.7.2 Interpretazione Tomografica

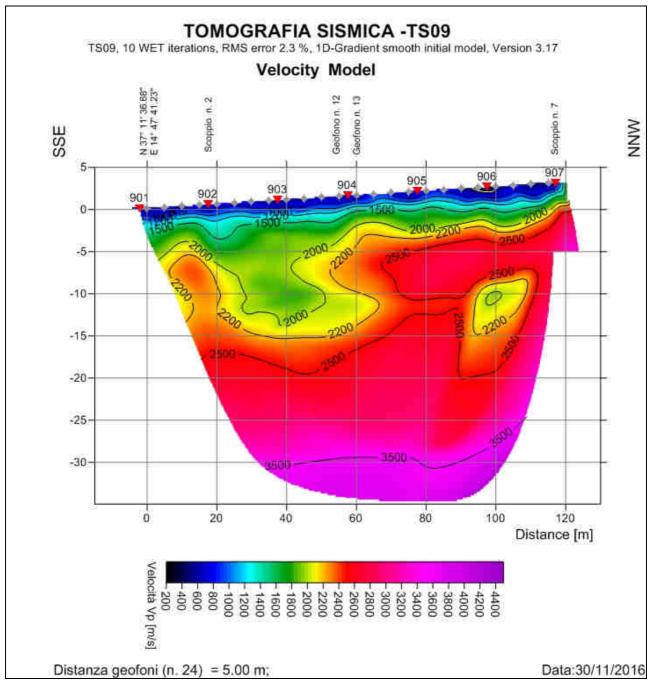


Fig. 28 – Interpretazione Tomografica dello Stendimento TS09.

1.7.3 Interpretazione Sismostratigrafica

Analizzando i dati relativi alla traversa sismica TS09, è stato possibile individuare:

- a) un piccolissimo spessore aerato (V_P minori di 450 m/s);
- b) un livello sismostratigrafico con spessore variabile da 2,5 ma 12,0 m., costituito da litotipi di origine vulcanica da fratturati a fortemente/mediamente fratturati. (V_P>1200 m/s).
- c) più in profondità, oltre le velocità V_P superiori a 2.000,00~2.200,00 m/s., sono presenti e vulcaniti con un livello di fratturazione da poco fratturati a compatte.

1.8 TRAVERSA SISMICA TS10

Fig. 29 - UBICAZIONE TRAVERSA SISMICA TS10

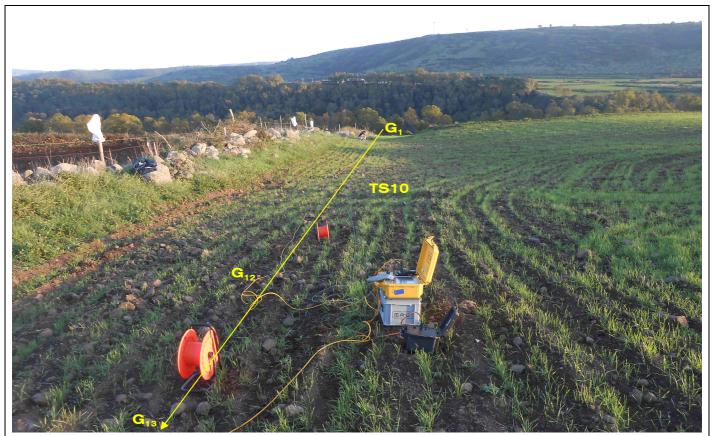


Fig. 30 - DOCUMENTAZIONE FOTOGRAFICA DELLA TRAVERSA SISMICA TS10.

1.8.1 Dettagli acquisizione

TOMOGRAFIA SISMICA TS10							
DESCRIZIONE	N° DI GEOFONI	DISTANZA	LUNGHEZZA	SHOTS			
DESCRIZIONE	UTILIZZATI	GEOFONI	(m)	(n°)			
TS10	24	5.00 m	115.00	7			

TAB. 23 – CARATTERISTICHE DELLO STENDIMENTO TOMOGRAFICO TS10.

Ascissa [m] Shots (riferiti al geof. n. 1)	Nome File		
-2.00	TS1001.sg2		
17.50	TS1002.sg2		
37.50	TS1003.sg2		
57.50	TS1004.sg2		
77.50	TS1005.sg2		
102.50	TS1006.sg2		
117.00	TS1007.sg2		

TAB. 24 – POSIZIONE DEGLI SCOPPI NELLA TRAVERSA TS10.

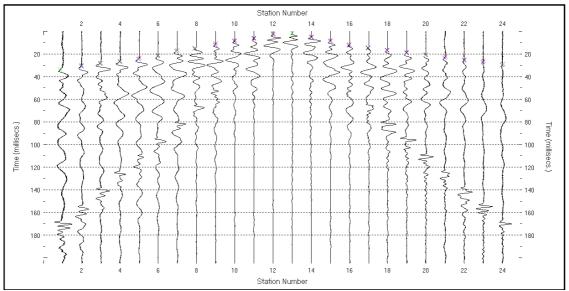


Fig. 31 – Andamento dei primi arrivi dovuti allo scoppio "04" (TS10).

GEOFONO N°	X	_	TEMPI DI ARRIVO NEI VARI SCOPPI ESEGUITI [TS10]								
		Z	[microsecondi]								
	[m]	[m]	1°	2 °	3°	4 °	5°	6 °	7 °		
1	0	0	5.35	19.79	27.80	34.01	44.51	50.61	56.08		
2	5	0.17	12.04	16.17	24.59	31.03	41.58	48.00	53.70		
3	10	0.35	15.72	12.36	22.09	28.70	39.34	45.90	52.00		
4	15	0.52	19.57	5.99	20.19	26.96	37.79	44.38	51.11		
5	20	0.7	22.61	6.41	17.50	24.49	35.70	42.38	49.86		
6	25	0.87	24.86	12.63	13.97	21.28	32.53	39.62	47.11		
7	30	1.05	26.62	15.70	9.19	17.91	29.19	36.54	44.06		
8	35	1.22	28.65	18.33	3.73	15.34	26.69	34.19	41.83		
9	40	1.4	30.22	20.28	3.42	12.30	23.92	31.55	39.30		
10	45	1.57	31.51	21.80	7.82	8.97	21.02	28.90	36.69		
11	50	1.75	33.25	23.70	10.90	6.04	18.46	26.56	34.53		
12	55	1.92	34.87	25.43	12.98	2.11	15.55	23.81	31.87		
13	60	2.1	36.53	27.17	14.83	1.72	12.86	21.30	29.41		
14	65	2.27	39.01	29.70	17.41	5.14	10.87	19.60	27.73		
15	70	2.45	42.11	32.87	20.64	8.80	8.28	17.90	26.07		
16	75	2.65	45.21	36.27	24.13	12.73	3.65	15.68	23.96		
17	80	2.8	46.67	37.83	26.09	15.05	3.01	12.32	20.81		
18	85	2.97	48.02	39.20	27.78	16.94	7.18	9.47	18.27		
19	90	3.15	49.81	41.01	29.78	19.17	10.18	6.75	16.11		
20	95	3.32	51.17	42.75	31.68	21.22	12.71	3.03	13.94		
21	100	3.5	52.96	44.86	33.92	23.57	15.26	3.15	11.83		
22	105	3.67	54.65	46.75	35.92	25.69	17.49	7.16	8.92		
23	110	3.85	56.28	48.56	37.77	27.65	19.51	9.73	5.61		
24	115	4.02	57.58	50.61	39.84	29.79	21.68	12.24	1.65		

TAB. 25 – TABELLA COORDINATE E TEMPI DI ARRIVO AI VARI GEOFONI IN FUNZIONE DEI VARI SCOPPI.

1.8.2 Interpretazione Tomografica

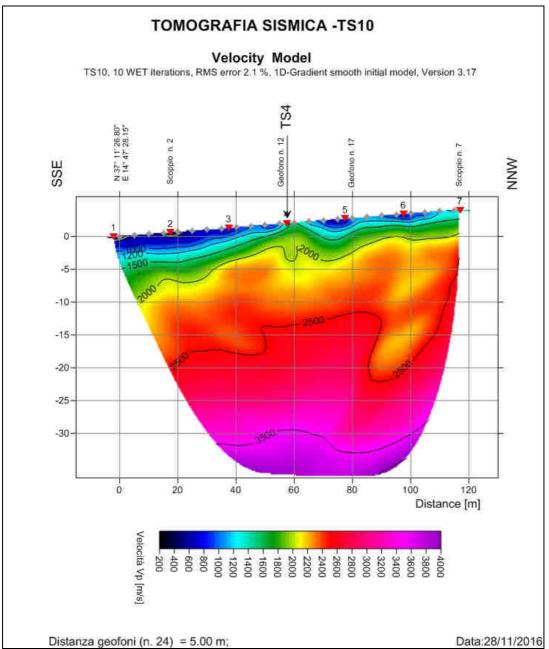


Fig. 32 – Interpretazione Tomografica dello Stendimento TS10.

1.8.3 Interpretazione Sismostratigrafica

La sezione tomografica TS10, alla progressiva di posizionamento dei geofoni n. 12 e n. 13, incontra la sezione tomografica TS04.

Analizzando i dati relativi alla traversa sismica TS10, è stato possibile individuare:

- d) un piccolissimo spessore aerato (V_P minori di 450 m/s), che ricopre a tratti le vulcaniti sottostanti;
- e) un livello sismostratigrafico con spessore variabile da 5.0 m. a 10,0 m., costituito da litotipi di origine vulcanica da fortemente a mediamente fratturati. (V_P>1200 m/s).
- f) a profondità superiori, in cui le velocità V_P sono superiori a 2.000,00~2.200,00 m/s., sono presenti vulcaniti con un livello di fratturazione da poco fratturati a compatte.

1.9 TRAVERSA SISMICA TS11

Fig. 33 - UBICAZIONE TRAVERSA SISMICA TS11

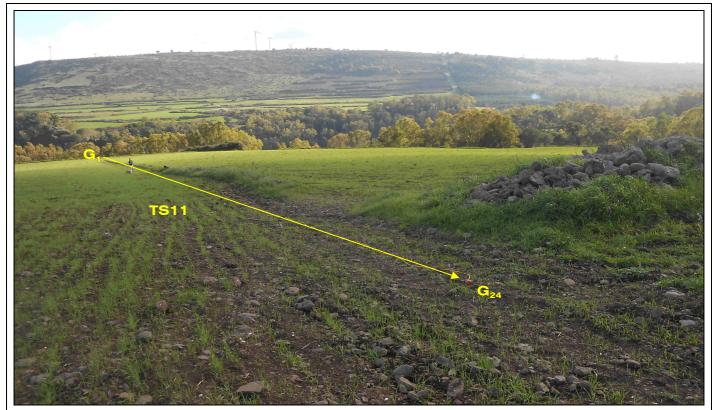


FIG. 34 - DOCUMENTAZIONE FOTOGRAFICA DELLA TRAVERSA SISMICA TS11.

1.9.1 Dettagli acquisizione

TOMOGRAFIA SISMICA TS11							
DESCRIZIONE	N° DI GEOFONI	DISTANZA LUNGHEZZA		SHOTS			
DESCRIZIONE	UTILIZZATI	GEOFONI	(m)	(n°)			
TS11	24	5.00 m	115.00	7			

TAB. 26 – CARATTERISTICHE DELLO STENDIMENTO TOMOGRAFICO TS11.

Ascissa [m] Shots (riferiti al geof. n. 1)	Nome File		
-2.00	TS1101.sg2		
17.50	TS1102.sg2		
37.50	TS1103.sg2		
57.50	TS1104.sg2		
77.50	TS1105.sg2		
102.50	TS1106.sg2		
117.00	TS1107.sg2		

TAB. 27- POSIZIONE DEGLI SCOPPI NELLA TRAVERSA TS11.

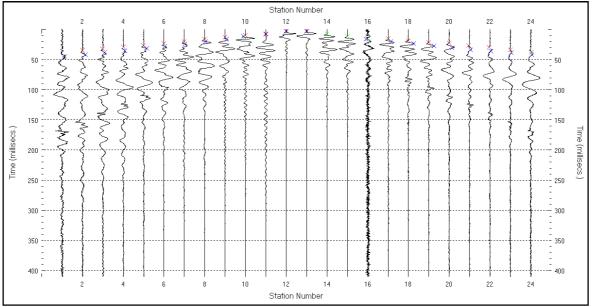


Fig. 35- Andamento dei primi arrivi dovuti allo scoppio "04" (TS11).

GEOFONO	\ \ \	T _	TEMPI DI ARRIVO NEI VARI SCOPPI ESEGUITI [TS11]							
	X	Z	[microsecondi]							
N°	[m]	[m]	1°	2 °	3°	4 °	5°	6°	7 °	
1	0	0	3.38	17.78	30.47	46.48	64.22	72.23	72.11	
2	5	0.12	9.94	13.45	26.26	42.27	60.01	70.63	70.52	
3	10	0.24	13.60	9.50	22.68	38.69	56.43	69.79	69.68	
4	15	0.36	17.34	3.83	19.42	35.44	53.19	67.57	70.37	
5	20	0.48	20.99	4.12	15.93	32.02	49.76	64.15	69.84	
6	25	0.6	24.24	9.62	11.80	28.07	45.81	60.20	66.35	
7	30	0.72	27.28	13.01	7.58	24.23	41.99	56.38	63.32	
8	35	0.84	30.29	16.12	2.52	20.23	38.01	52.40	60.89	
9	40	0.96	33.93	19.80	2.66	16.14	33.99	48.38	59.04	
10	45	1	37.60	23.48	7.16	11.53	29.58	43.98	54.64	
11	50	1.12	41.52	27.41	11.42	7.12	25.23	39.65	50.31	
12	55	1.24	45.95	31.84	16.12	2.41	20.61	35.06	45.72	
13	60	1.36	50.28	36.18	20.55	2.36	15.89	30.39	41.05	
14	65	1.48	54.84	40.73	25.13	7.04	11.32	25.87	36.54	
15	70	1.6	59.28	45.18	29.57	11.55	6.70	21.26	31.92	
16	75	1.72	63.86	49.76	34.16	16.23	2.26	16.81	27.48	
17	80	1.84	67.62	53.52	37.92	20.00	1.79	12.86	23.53	
18	85	1.96	69.84	57.00	41.40	23.49	5.29	9.75	20.45	
19	90	2.1	71.21	60.47	44.87	27.00	8.82	6.80	17.62	
20	95	2.24	72.46	64.30	48.70	30.87	12.75	2.88	14.76	
21	100	2.36	73.45	67.55	51.96	34.12	16.02	2.90	11.65	
22	105	2.48	74.59	69.75	54.15	36.32	18.21	6.16	8.47	
23	110	2.6	74.30	72.57	56.97	39.14	21.04	9.07	5.68	
24	115	2.7	73.13	71.75	60.02	42.18	24.08	12.13	1.69	

TAB. 28 – TABELLA COORDINATE E TEMPI DI ARRIVO AI VARI GEOFONI IN FUNZIONE DEI VARI SCOPPI.

1.9.2 Interpretazione Tomografica

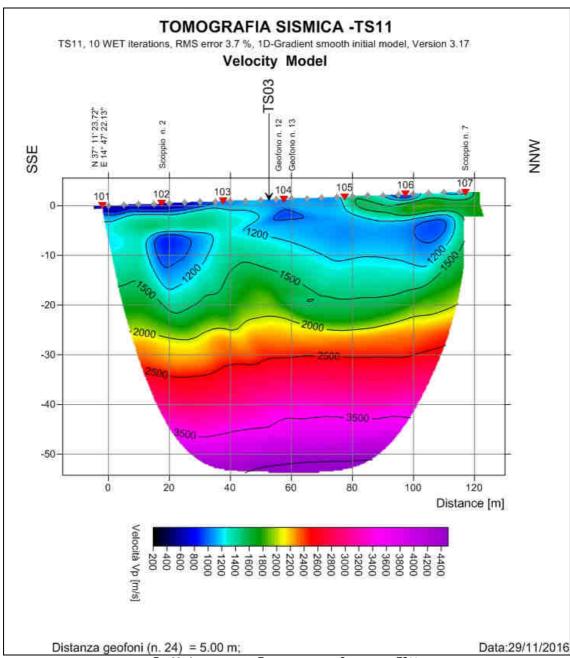


Fig. 36 – Interpretazione Tomografica dello Stendimento TS11.

1.9.3 Interpretazione Sismostratigrafica

La sezione tomografica TS11, alla progressiva di posizionamento dei geofoni n. 11 e n. 12, incontra la sezione tomografica TS03.

Analizzando i dati relativi alla traversa sismica TS02 Bis, è stato possibile individuare:

- a) un piccolissimo spessore aerato (V_P minori di 450 m/s), che ricopre a tratti le vulcaniti sottostanti;
- b) un livello sismostratigrafico con spessore variabile da 5.0 m. a 10,0 m., costituito da litotipi di origine vulcanica da fortemente a mediamente fratturati (1200 m/s < V_P<2.000~2.000 m/s).
- c) a profondità superiori, in cui le velocità V_P sono superiori a 2.000,00~2.200,00 m/s., sono presenti vulcaniti con un livello di fratturazione da poco fratturati a compatte.

2. CONCLUSIONI

Analizzando i dati relativi alle traverse sismiche mediante interpretazione tomografica, è stato possibile individuare valori della velocità V_P nei vari sismostrati fino ad una profondità massima di circa 50,00 m dal p.c., con una zona aerata individuata da valori di velocita V_P minori di 450 m/s, con spessori variabili e talora assenti. Più in particolare nei vari lotti si possono distinguere complessivamente (Lotto 6: (TS03, TS04, TS05, TS06, TS07, TS08, TS09, TS10 e TS11):

- a) una zona aerata (V_P minori di 450 m/s), con livelli generalmente assenti e se presenti variabili fino a circa 1,0 m. di spessore medio;
- b) più in profondità un'ulteriore livello sismostratigrafico è stato individuato fino al raggiungimento delle velocità V_P prossime a 2.000,00~2.200,00 m/s., che rappresentano litotipi di origine vulcanica da fortemente fratturati a fratturati;
- c) un terzo livello stratigrafico è riconoscibile oltre le velocità V_P superiori a 2.000,00~2.200,00 m/s., e caratterizzato sempre da vulcaniti con un livello di fratturazione da poco fratturati a compatte.

Messina Ii, 06 Dicembre 2016

Il tecnico

ii tecilico

Geological Engineering
P. IVA 03326600834

SOFTWARE UTILIZZATI:

[✓] **SURFER 9 Software** s.n. WS101922qqir, Copyright © è rilasciato sotto licenza da Golden Software inc.

[✓] RAYFRACT Versione 3.17 (32 bit) licenze s.n. 5431664, Copyright © 1996-2009 è rilasciato sotto licenza daIntelligent Resources INC. e distribuito da IGS.