

DIREZIONE REGIONALE PER LA SICILIA

PA 12/09

CORRIDOIO PLURIMODALE TIRRENICO - NORD EUROPA ITINERARIO AGRIGENTO - CALTANISSETTA - A19 S.S. N° 640 "DI PORTO EMPEDOCLE" AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001 Dal km 44+000 allo svincolo con l'A19

MONITORAGGIO AMBIENTALI INTEGRATIVI

CONTRAENTE GENERALE mpedocle

DIREZIONE LAVORI

ITALCONSULT

Report periodico afferente ai monitoraggi ambientali integrativi Monitoraggio Corso D'Opera periodo Novembre 2016 - Aprile 2017

C_{00}	Codice Unico Progetto (CUP): F91B09000070001																							
<u> </u>	iice Offico	FIOG	Jem	<i>J</i> (C	JUI	·) ·	ו פ	יטו	Jec		070		ı								، ا∟	ና'	224-20	
Codice Elaborato:									224-20															
PA	12_09 -	С	0	0	0	G	Е	2	2	4	Р	Т	0	8	X	R	Н	1	8	7	P	1	Scala:	
F					·																			_
E																								
D																								
С																								
В																								_
Α	Maggio 2017				EMI	ISSIO	NE					C. F	ERO	NE	C.	FERG	ONE	1	A. AN	TON	ELLI		P. PAGLINI	
REV.	DATA				DES	CRIZI	ONE					RE	DATT	ГО	VE	RIFIC	ATO		APPF	ROVA	OTA		AUTORIZZATO	_

Il Responsabile del PMA:

II Geologo:

Il Coordinatore per la sicurezza II Direttore dei Lavori: in fase di esecuzione: RRCC

Responsabile del procedimento: Ing.ETTORE DE CESBRON DE LA GRENNELAIS

Sommario

1	Pre	messa	3
2	Atr	nosfera	6
	2.1	Monitoraggio qualità dell'aria - PdU GN Caltanissetta	6
	2.1.1	Riferimenti normativi	7
	2.1.2	Strumentazione di misura	8
	2.1.3	Stazioni di monitoraggio	10
	2.1.4	Risultati dei monitoraggi	12
	2.1.5	Conclusioni	40
	2.2	Monitoraggio qualità dell'aria - Stabilizzazione a calce	41
	2.2.1	Strumentazione di misura	42
	2.2.2	Stazioni di monitoraggio	42
	2.2.3	Risultati dei monitoraggi	43
3	Ru	more	45
	3.1	Riferimenti normativi	46
	3.2	Strumentazione impiegata per le misurazioni	48
	3.3	Stazioni di monitoraggio	49
	3.4	Sintesi monitoraggio Corso d'Opera	54
	3.5	Conclusioni	54
4	An	biente idrico superficiale	56
	4.1	Riferimenti normativi	57
	4.2	Attività svolte	57
	4.3	Stazioni indagate	58
	4.4	Parametri monitorati nel Fosso Mumia	60
	4.5	Parametri monitorati nel Fosso Mumia e Fiume Salso	64
	4.6	Risultati delle indagini	70
	4.6.1	Misure di portata - sezioni IDR_25 e IDR_26	70
	4.6.2	Indagini in situ - sezioni IDR_25 e IDR_26	71
	4.5.2.	Analisi di laboratorio – sezioni IDR_25 e IDR_26	76
	4.5.3.	Indagini biotiche e di funzionalità fluviale- Fiume Salso e Fosso Mumia	96
	4.5.4.	Conclusioni	99

5 Ac	que sotterranee	101
5.1	Monitoraggio pozzi emungimento acque TBM - GN Caltanissetta	101
5.1.1	Stazioni indagate	101
5.1.2	Risultati indagini	102
5.2. Mo	onitoraggio piezometro PdU_PZM_02 (ARPA SICILIA)	111
5.2.1.	Stazioni indagate	111
5.2.2.	Risultati indagini	112
6 Vi	brazioni	115
6.1	Riferimenti normativi	115
6.2	Parametri del monitoraggio	122
6.3	Stazioni di monitoraggio	123
6.4	Risultati dei monitoraggi	124
6.5	Conclusioni	124

1 Premessa

Scopo del presente documento è quello di descrivere nel dettaglio le attività di monitoraggio ambientale eseguite nel periodo di riferimento novembre 2016 – aprile 2017 e scaturite dai nuovi provvedimenti amministrativi intervenuti durante l'esecuzione dei lavori. Tali interventi hanno determinato l'esigenza di integrare le indagini previste nel PMA del Progetto Esecutivo Approvato (PEA) afferente ai lavori di ammodernamento del Corridoio Plurimodale Tirrenico - Nord Europa/Itinerario Agrigento – Caltanissetta - A19 / S.S. n° 640 "di Porto Empedocle" Ammodernamento e adeguamento alla Cat. B del D.M. 5.11.2001 dal km 44+000 allo svincolo con l'A19.

Il report in questione tiene conto di tutte le attività di monitoraggio eseguite da novembre 2016 ad aprile 2017 ed integra tutti i monitoraggi ambientali aggiuntivi scaturiti dai provvedimenti di seguito elencati:

- a) <u>Parere n. 1029 del 03/08/2012 della CTVIA</u>, con il quale, sulla base degli esiti istruttori della Commissione si determina la positiva conclusione dell'istruttoria di Verifica di Attuazione, subordinandola al rispetto delle prescrizioni n. 3, 6, 7, 9.
 - Per ottemperare alle prescrizioni citate, sono stati individuati i potenziali impatti generati dalle lavorazioni e sono stati definiti gli opportuni monitoraggi.
 - Prescrizione n.3 "Verificare che le opere provvisionali e le attività di cantiere non alterino in maniera significativa e permanente l'ecosistema fluviale; gli eventuali fenomeni transitori di alterazione delle condizioni idrobiologiche dovranno essere oggetto di monitoraggio e dovranno essere mitigate nel corso della realizzazione dell'opera.
 - Al fine di verificare la compatibilità idrobiologica delle opere provvisionali e delle attività di cantiere, il monitoraggio già previsto nel PMA dei corsi d'acqua Salso e Fosso Mumia è stato ulteriormente integrato con i seguenti indicatori: I.F.F. (indice di Funzionalità Fluviale), ICMi (indice diatomico) e STAR_ICMi (analisi della struttura della comunità di macroinverterati bentonici).
 - Prescrizione n.6 Inserire nel piano di monitoraggio tutti i pozzi presenti nell'area d'influenza dell'opera utilizzati a scopi idropotabili e irrigui con l'obiettivo di evidenziare, attraverso tale controllo, le eventuali modifiche significative, in quantità e/o qualità.
 Per controllare l'impatto delle attività dei cantieri sul sistema idrogeologico profondo e al fine di prevenire alterazioni di tipo quali-quantitativo delle acque, sono state condotte indagini chimico-fisiche e biologiche mirate al controllo di tutti i pozzi, irrigui e potabili, presenti nell'area di influenza dell'infrastruttura viaria.
 - Prescrizione n.7 In corrispondenza del cantiere relativo alla Galleria Caltanissetta, dove è prevista la realizzazione di una sottostazione elettrica per l'alimentazione degli impianti TBM, il piano di monitoraggio dovrà essere esteso alla componente radiazioni non ionizzanti.
 - Per valutare i livelli di campo elettrico e campo magnetico su aree di cantiere ubicate in corrispondenza di sottostazioni elettriche e cavidotti per l'alta tensione, l'estensione del monitoraggio, rispetto al vigente PMA, ha previsto l'integrazione di ulteriori punti di indagine posti in corrispondenza della sottostazione elettrica che alimenta gli impianti della TBM.

- Prescrizione n.9 In corrispondenza delle aree sottopassate dalla Galleria Caltanissetta il piano di monitoraggio dovrà essere integrato e intensificato relativamente alle componenti vibrazioni e suolo per prevenire eventuali effetti di subsidenza.
 - Al fine di valutare possibili fenomeni di subsidenza indotti dallo scavo della GN Caltanissetta la variante al piano di monitoraggio approvato ha previsto l'implementazione di misurazioni atte a rilevare l'intensità dei moti vibrazionali su punti individuati lungo la direttrice di scavo della TBM.
- b) <u>Piano di Utilizzo delle Terre e Rocce da Scavo della GN Caltanissetta</u>: a partire dai contenuti del Piano di Utilizzo delle Terre e Rocce da Scavo della GN Caltanissetta e in relazione ai successivi interventi di recupero ambientale di cava dismesse e di rimodellamento morfologico di aree fondiarie, è stato previsto un monitoraggio ambientale suppletivo che ha riguardato alcune componenti ambientali sia durante la fase di Ante Operam che in Corso d'Opera, nel dettaglio: atmosfera, rumore e ambiente idrico sotterraneo
- c) <u>Parere n. 1503 del 23/05/2014 della CTVIA</u>: da un'attenta disamina delle prescrizioni riportate nel citato parere in relazione all'approvazione del Piano di Utilizzo del materiale da scavo proveniente dalla GN Caltanissetta, sono stati individuati i potenziali impatti generati dalle operazioni di scavo definendo opportuni monitoraggi ambientali di seguito descritti:
 - Prescrizione n.10 Il Proponente, nel tratto di galleria dove si intercetteranno i calcari, provvederà ad utilizzare i pozzi realizzati per l'emungimento della falda al fine di monitorare la stessa, sia in corso d'opera che in post operam per almeno tre mesi dalla conclusione dei lavori.
 - In ottemperanza alla prescrizione in esame è stato costantemente monitorato il livello di falda dei pozzi di emungimento e verificato che l'utilizzo di additivi durante la fase di scavo con TBM non alteri la qualità delle acque profonde.
 - Prescrizione n.12 Il Proponente dovrà realizzare, inoltre, per il tratto in cui intercetterà i calcari e la falda un piezometro di monitoraggio, di profondità adeguata al raggiungimento della falda profonda interessata dagli scavi, alla distanza di non oltre 100 metri dall'asse della galleria in direzione del flusso sotterraneo della falda (l'ubicazione deve essere concordata con ARPA Sicilia, S.T. Caltanissetta).
 - In adempimento alla suddetta prescrizione, è stato individuato un piezometro denominato PZ_02 per il quale è stato previsto il monitoraggio della qualità delle acque con frequenza quindicinale, da effettuarsi in corrispondenza dell'attraversamento della TBM nel banco dei calcari. Come prescritto da ARPA Sicilia S.T. Caltanissetta. Detto monitoraggio sarà ripetuto quando la TBM ritornerà sul piezometro PZ_02 in occasione dello scavo della seconda canna.
- d) <u>Tavoli tecnici del 20 e 25 marzo 2014 con la Struttura Territoriale ARPA Sicilia di Caltanissetta</u> (giusta nota Arpa Caltanissetta prot. 21741 del 02.04.2013) viene definito il monitoraggio delle polveri aerodisperse generate dalle operazioni di "stabilizzazione a calce". Con il presente monitoraggio si ottempera anche alla prescrizione n. 4 della Determina Direttoriale DVA-2014-0029822 del 18/09/2014 di approvazione del Piano di Utilizzo relativo

all'intero tracciato con esclusione della GN Caltanissetta e alla prescrizione n. 2 della DL giusta nota prot. 04/DTA/176/14 del 09/05/2014.

e) Infine, relativamente alla componente "Acque superficiali", in ottemperanza alle richieste dell'AS-ANAS di estendere il monitoraggio ambientale a tutti i ricettori posti a valle dello scarico delle acque del cantiere della GN Caltanissetta (cfr. nota prot. CPA-0019080-P del 27/03/2015, in esito alla riunione tenutasi in data 26.03.2015), è stato proposto dal RA con nota prot. FER2015/0015 del 20/04/2015, il monitoraggio integrativo per la verifica della qualità del corpo idrico interferito dalle acque di scarico del cantiere GN Caltanissetta. Il corpo idrico individuato è il Fosso Mumia e le stazioni di misura sono ubicate a monte e a valle rispetto all'affluente Niscima.

Sulla base di quanto esposto e, come ampiamente descritto nei paragrafi che seguono, le componenti ambientali a cui il presente elaborato si riferisce, sono:

- ➤ Atmosfera;
- Rumore;
- Ambiente idrico sotterraneo;
- Ambiente idrico superficiale;
- Vibrazioni.

2 Atmosfera

2.1 Monitoraggio qualità dell'aria - PdU GN Caltanissetta

A partire dai contenuti del Piano di Utilizzo del materiale da scavo proveniente dalla GN Caltanissetta è stata predisposta un'indagine integrativa che ha previsto il monitoraggio della qualità dell'aria sui recettori ubicati nelle vicinanze di aree sottoposte a rimodellamento morfologico e lungo la viabilità di servizio dei mezzi d'opera. Le finalità delle diverse fasi di monitoraggio sono così distinte:

- a) Monitoraggio Ante Operam (MAO): definire le caratteristiche dell'ambiente, relativamente a ciascuna componente naturale ed antropica, esistenti prima dell'inizio delle attività. Si pone come termine di questa fase l'inizio di attività interferenti con la componente ambientale atmosfera;
- b) Monitoraggio in Corso d'Opera (MCO): analizzare l'evoluzione degli indicatori ambientali, rilevati in assenza di lavorazioni rappresentativi di fenomeni soggetti a modifiche indotte dalla realizzazione degli interventi di recupero ambientale e di rimodellamento morfologico; controllare situazioni specifiche, al fine di adeguare la conduzione dei lavori e di identificare le criticità ambientali, non individuate nella fase AO, che richiedono ulteriori esigenze di monitoraggio e l'eventuale adozione di azioni correttive e mitigative.

Le attività di monitoraggio, in riferimento alla componente in esame, sono state attuate tramite postazioni mobili per campagne di misura periodiche della durata complessiva di 14 giorni.

Gli ambiti territoriali da sottoporre ad indagine sono stati individuati ponendo particolare attenzione ai recettori ubicati nelle vicinanze delle aree di intervento e lungo la viabilità a servizio dei mezzi d'opera, prendendo in considerazione anche le problematiche legate all'inquinamento prodotto dagli autoveicoli che verranno impiegati per il trasporto del materiale terrigeno sulle aree di conferimento finale ed intermedio. In tal caso sono da considerare, come ricettori sensibili, quelli situati a ridosso di tali strade con particolare attenzione ai centri abitati. Nel caso di modifiche della viabilità di cantiere, le attività di monitoraggio saranno adeguate secondo criteri coerenti.

I principali ricettori oggetto di monitoraggio sono abitazioni residenziali che, date le caratteristiche del territorio prevalentemente agricolo e con aggregati insediativi sparsi, possono far parte anche di insediamenti costituiti da fabbricati adibiti alla conduzione delle attività lavorative.

In particolare, i rilievi hanno riguardato le concentrazioni degli inquinanti atmosferici rilevanti, i cui valori limite sono definiti nel D.Lgs. 155/2010, che costituisce il riferimento normativo per caratterizzare lo stato della qualità dell'aria.

2.1.1 Riferimenti normativi

La norma quadro in materia di controllo dell'inquinamento atmosferico è rappresentata dal Decreto Legislativo n. 155/2010 che ha abrogato il precedente Decreto Legislativo n. 351/99 e i rispettivi decreti attuativi (il DM 60/02, il Decreto Legislativo n.183/2004 e il DM 261/2002). Il Decreto individua l'elenco degli inquinanti per i quali è obbligatorio il monitoraggio della qualità dell'aria ambiente (NO2, NOx, SO2, CO, O3, PM10, PM2.5, Benzene, Benzo(a)pirene, Piombo, Arsenico, Cadmio, Nichel), fissando i limiti di riferimento con cui confrontare le misurazioni effettuate sul territorio nazionale. Il Decreto Legislativo n. 155/2010 è stato oggetto di un correttivo, rappresentato dal successivo Decreto Legislativo n. 250/2012, che tra le varie modifiche ed integrazioni stabilisce la nuova definizione di "valore limite", fissato sulla base delle conoscenze scientifiche e non più anche con riferimento alle migliori tecnologie disponibili.

Per ciascuna sostanza monitorata, la normativa definisce uno o più valori limite, intendendo col termine valore limite un livello fissato in base alle conoscenze scientifiche al fine di evitare, prevenire o ridurre gli effetti nocivi per la salute umana e/o per l'ambiente nel suo complesso. Si riportano nelle seguenti tabelle i limiti normativi vigenti.

Inquinante	Tipo protezione	Indice statistico	Unità di misura	Soglia Allarme	Limite	Numero sup./anno
PM10	salute umana	media 24ore	μg/m³		50	35/anno
LIMITO	salute umana	media annuale	μg/m³		40	

Inquinante	Tipo protezione	Indice statistico	Unità di misura	Soglia Allarme	Limite	Numero sup./anno
NOx	vegetazione	media annuale	μg/m³		30	
NO2	salute umana	media oraria	μg/m³	400 per 3h	200	18/anno
NO2	salute umana	media annuale	μg/m³		40	

Inquinante	Tipo protezione	Indice statistico	Unità di misura	Livello di attenzione	Livello di allarme
Particelle sospese (PTS)	salute umana	media 24ore	μg/m³	150	300

Inquinante	Tipo	Indice	Unità di	Valore bersaglio		Ob. lungo	Soglia	Soglia	
inquinance	protezione	statistico	misura	Livello	sup.	termine	informazione	allarme	
Ozono	salute umana	massimo giornaliero della media mobile 8h	μg/m³	120	25/anno media su 3 anni	120			
O_3		media oraria	μg/m³				180	240	
	vegetazione	AOT40 da maggio a luglio	μg/m³·h	18000	media su 5 anni	6000			

Inquinante	Tipo protezione	Indice statistico	Unità di misura	Soglia Allarme	Limite	Numero sup./anno
Monossido di Carbonio - CO	salute umana	massimo su 24 ore della media mobile 8h	mg/m³		10	

Inquinante	Tipo protezione	Indice statistico	Unità di misura	Soglia Allarme	Limite	Numero sup./anno
	salute umana	media oraria	μg/m³	500 per 3h	350	24/anno
60	salute umana	media 24ore	μg/m³	-	125	3/anno
SO_2	ecosistemi	media annuale	μg/m³	-	20	-
	ecosistemi	media invernale	μg/m³	-	20	-

Inquinante	Tipo protezione	Indice statistico	Unità di misura	Soglia Allarme	Limite	Numero sup./anno
Benzene	salute umana	media annuale	μg/m³		5	

Inquinante	Tipo protezione	Indice statistico	Unità di misura	Valore obiettivo
Benzo(a)pirene	salute umana	media annuale	ng/m³	1,0

Inquinante	Tipo protezione	Indice statistico	Unità di misura	Valore obiettivo
Cadmio	salute umana	media annuale	ng/m³	5,0
Arsenico	salute umana	media annuale	ng/m³	6,0
Nichel	salute umana	media annuale	ng/m³	20,0
Piombo	salute umana	media annuale	μg/m³	0,5

2.1.2 Strumentazione di misura

La strumentazione utilizzata per il monitoraggio in corso d'opera è la medesima di quella adottata per il monitoraggio nella fase ante operam e si compone di laboratori mobili dotati di adeguato sistema di condizionamento per garantire una continua ed ottimale distribuzione della temperatura al suo interno. Le stazioni di rilevamento sono organizzate in tre blocchi principali:

- Analizzatori/campionatori automatici per la valutazione degli inquinanti aerodispersi;
- Centralina per la valutazione dei parametri meteorologici;
- Unità di acquisizione ed elaborazione dati.

Analizzatori automatici

Tutti gli analizzatori con i quali sono equipaggiate le stazioni mobili di rilevamento, sono in grado di funzionare 24 ore su 24 e sono conformi a quanto previsto dalla normativa di riferimento in materia.

Analizzatore per monossido di carbonio, conforme alle specifiche del DPCM 28 marzo 1983. Utilizza il principio della correlazione all'Infrarosso. Il campione viene aspirato attraverso una cella di lettura mantenuta a 40°C; la cella è attraversata da una radiazione con lunghezza d'onda appartenente alla regione dell'Infrarosso di cui viene misurata l'estinzione in presenza di Monossido di Carbonio. Per assicurare che i valori rilevati rientrino nell'intervallo previsto di misura, la radiazione viene attraversata da un disco (Chopper) suddiviso in tre sezioni, una completamente opaca, una completamente trasparente, ed una contenente una "bolla" di Monossido di Carbonio ad alta concentrazione (circa 500 ppm). In questo modo ad ogni giro del disco, sono rilevate le tre misure di "zero" (sezione opaca), lettura del campione (sezione trasparente), e saturazione (bolla di Monossido di Carbonio).

➤ *Analizzatore di biossido di zolfo*, conforme alle specifiche del DPCM 28 marzo 1983 Utilizza il principio della Fluorescenza pulsata UV (350 nm).

> Analizzatore per ossidi di azoto, conforme alle specifiche del DPCM 28 marzo 1983

Utilizza il principio della Chemiluminescenza. Il campione è aspirato attraverso una cella di lettura divisa in due camere buie e messo in contatto con Ozono; l'eventuale Monossido di Azoto presente (NO) reagisce con l'Ozono causando l'emissione di fotoni (chemiluminescenza), in quantità proporzionale all' NO presente. La misura del Biossido di Azoto (NO2), è invece effettuata mediante riduzione a NO e lettura dopo reazione con Ozono. Più dettagliatamente, il campione aspirato viene diviso in due parti, una è inviata direttamente in una delle camere e fatto reagire con l'Ozono, per misurare la concentrazione di NO, l'altra parte è fatta passare attraverso un convertitore che riduce l'NO2 presente ad NO e poi inviata nell'altra camera di lettura. In questo modo nella camera 1 viene letto solamente l'NO, mentre nella camera 2 la somma dell'NO e dell'NO2 ridotto ad NO. La differenza di questi due valori fornisce la concentrazione dell'NO2.

Analizzatore di ozono, conforme alle specifiche del dpcm 28 marzo 1983

Utilizza il principio della Fluorescenza UV. Mediante una lampada a vapori di mercurio, sita nell'analizzatore, del campione viene monitorato l'assorbimento di una radiazione ad una lunghezza d'onda di 254 nm, specifica per la determinazione dell'Ozono.

Campionatore per polveri, conforme alle specifiche del dpr 203/88.

Campionamento: per filtrazione su supporti filtranti in fibra di vetro (diametro 47mm). Analisi: gravimetria.

> Campionatore per PM10

Il metodo di riferimento per il campionamento e la misurazione del PM10 è indicato nella norma EN 12341. Il campionamento avviene per accumulo su supporto filtrante ma con l'accorgimento che le sonde per il prelievo del materiale particellare siano dotate di uno speciale preselettore o ciclone in grado di eliminare, prima che queste raggiungano il filtro, le particelle con diametri superiori ai $10~\mu m$.

Analisi: gravimetria.

> Analizzatore IPA.

Il metodo di riferimento è indicato nel DM 25/11/94 all. VII.

Campionamento: una quantità nota di materiale particolato atmosferico viene raccolta, mediante aspirazione, sul filtro in fibra di vetro.

Analisi: Il materiale raccolto viene sottoposto ad estrazione con cicloesano mediante ultrasuoni; l'estratto viene poi purificato mediante cromatografia su strato sottile (TLC) di gel di silice. L'identificazione ed il dosaggio dei singoli IPA vengono effettuate mediante gascromatografia (GC) con colonna capillare e rivelatore a ionizzazione di fiamma. L'identificazione degli IPA viene confermata mediante gascromatografia-spettrometrica di massa su campioni selezionati.

> Analizzatore benzene

Il metodo di riferimento è indicato all'allegato VI del Decreto del Ministero dell'Ambiente 25 novembre 1994, come ribadito all'allegato XI del D.M. n. 60/2002.

> Centralina metereologica

Tutti i sensori della centralina meteo sono collegati con l'unità di raccolta ed elaborazione dati, in modo da poter correlare in ogni momento i valori forniti dagli analizzatori degli inquinanti con le condizioni meteorologiche.

Nella tabella seguente sono indicati i livelli di sensibilità strumentale caratteristici.

Parametro	Accuratezza/Sensibilità/Risoluzione
Temperatura	A = 0,2 °C
Umidità relativa	A = 3% [10÷95 %]
Pressione atmosferica	S = 0,5 [850÷1100 mbar]
Precipitazioni	R = 0,2 mm
Radiazione globale	S = 2.5 mV/Joule x cmq x m-1
Velocità del vento	S = 0.3 m/s

Il software adottato è in grado di fornire una media dei valori acquisiti da ogni analizzatore/sensore, ogni ora, 24 ore su 24.

2.1.3 Stazioni di monitoraggio

Nella tabella seguente vengono riportati nel dettaglio la localizzazione dei punti di misura e il periodo in cui sono state effettuate le misurazioni, sia per la fase di ante operam che per il corso d'opera.

Nel semestre **novembre 2016 / aprile 2017** è stato monitorato il punto PdU_ATM_03 durante i periodi 22 novembre 2016 – 06 dicembre 2017 e 22 marzo – 05 aprile 2017.

		CAMPAGNA IN ANTE OPERAM		CAMPAG	NA IN CORSO	D'OPERA					
Id_punto	Ubicazione	Data di monitoraggio	Data di monitoraggio								
		inizio - fine	inizio - fine	inizio - fine	inizio - fine	inizio - fine	inizio - fine				
PdU_ATM_01	Cava Torrettella - C.da Torretta	accesso negato dal proprietario		accesso	negato dal prop	prietario					
PdU_ATM_02	Giardino della Legalità - Via Michelangelo, Caltanissetta	18/05/15 - 01/06/15	13/09/16 - 27/09/16								
PdU_ATM_03	Piazzole di Caratterizzazione - Imbocco GN Caltanissetta Sud	04/05/15 - 18/05/15	01/06/15 - 15/06/15	24/08/15 - 07/09/15	29/07/16 - 12/08/16	22/11/16 - 06/12/16	22/03/17 - 05/04/2017				
PdU_ATM_04	Piazzole di Caratterizzazione - SS 640 - Svincolo Caltanissetta Sud	10/09/15 - 24/09/15	08/07/15 - 22/07/15	27/09/16 - 11/10/16							
PdU_ATM_05	Viabilità per cave Giulfo Milia, Pizzo Candele e Grottarossa Primacava e aree di rimodellamento	15/06/15 - 29/06/15	07/09/15 - 21/09/15								

		CAMPAGNA IN ANTE OPERAM		CAMPAG	NA IN CORSO	D'OPERA	
Id_punto	Ubicazione	Data di monitoraggio		Da	ta di monitorag	gio	
		inizio - fine	inizio - fine	inizio - fine	inizio - fine	inizio - fine	inizio - fine
	Dell'Aiera e Alaimo La China - SS 640 - Svincolo Delia Sommatino						
PdU_ATM_06	Viabilità per area di rimodellamento Lo Iacono e area di deposito intermedio B.4.2 - SS 640 - Hotel Ventura	10/08/15 - 24/08/15					
PdU_ATM_07	Cava Giulfo Milia - SP 133, Masseria Giulfo	30/12/14 - 13/01/15					
PdU_ATM_08	Area di rimodellamento Dell'Aiera - SS 640, Viadotto Giulfo	29/06/15 - 13/07/15	26/08/15 - 09/09/15				
PdU_ATM_09	Cava Pizzo Candele - SS 133, Viabilità per Serradifalco	10/02/15 - 24/02/15	25/02/15 - 11/03/15				
PdU_ATM_10	Grottarossa Primacava - SS 640, Svincolo Serradifalco	28/02/15 - 14/03/15	29/07/15 - 12/08/15	30/08/16 - 13/09/16			
PdU_ATM_11	Area di rimodellamento Alaimo La China - SP 133, Viabilità per Delia	27/01/15 - 10/02/15	28/05/15 - 11/06/15				
PdU_ATM_12	Area di deposito intermedio B.4.2 - SS 640 - Svincolo Caltanissetta Nord	12/08/15 - 26/08/15					
PdU_ATM_13	Area di rimodellamento Lo Iacono - SS 122-bis -	11/07/15 - 25/07/15					
PdU_ATM_14	Borgo Petilia Area di rimodellamento Lo Iacono - Stazione	27/07/15 - 10/08/15		17/11/15 - 01/12/15			

Stazioni di misura monitorate

I parametri oggetto dei rilevamenti sono i seguenti:

Per gli inquinanti gassosi:

- > ossidi di azoto (NOx, NO, NO2);
- > monossido di carbonio (CO);
- > benzene, toluene e xilene (BTX);
- > ozono (O3);
- > biossido di zolfo (SO2).

Per gli inquinanti particellari:

- > polveri totali sospese (PTS);
- > polveri sottili (PM10).

MONITORAGGI AMBIENTALI INTEGRATIVI

Per i dati meteorologici:

- direzione e velocità del vento;
- > temperatura;
- > umidità;
- > pressione atmosferica;
- radiazione netta e globale;
- > pioggia.

Saranno inoltre analizzati i metalli e gli IPA (espressi come IPA totali e benzo(a)pirene) contenuti sui filtri acquisiti con metodo gravimetrico per il monitoraggio delle PM10. I metalli da monitorare sono:

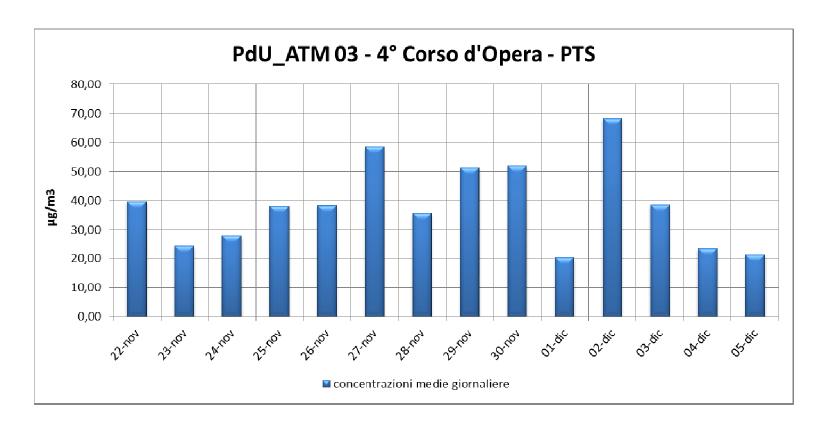
- > rame;
- > zinco;
- > piombo;
- > alluminio;
- > ferro;
- > nichel;
- > vanadio;
- > cromo;
- > manganese;
- > titanio;
- > potassio;
- > silicio;
- > arsenico;
- > cadmio;
- > IPA.

Vi è da ricordare che la scelta del periodo in cui effettuare le campagne di misura è stata fatta per evidenziare eventuali variazioni del carico inquinante durante le lavorazioni dell'opera in oggetto rispetto a quello in assenza di lavorazioni.

2.1.4 Risultati dei monitoraggi

Le risultanze del monitoraggio ambientale consentono di verificare gli eventuali incrementi dei livelli di concentrazione delle polveri e dei principali inquinanti gassosi, in funzione sia delle lavorazioni effettuate nei cantieri, che delle eventuali modificazioni al regime del traffico indotto dalla cantierizzazione.

Polveri atmosferiche

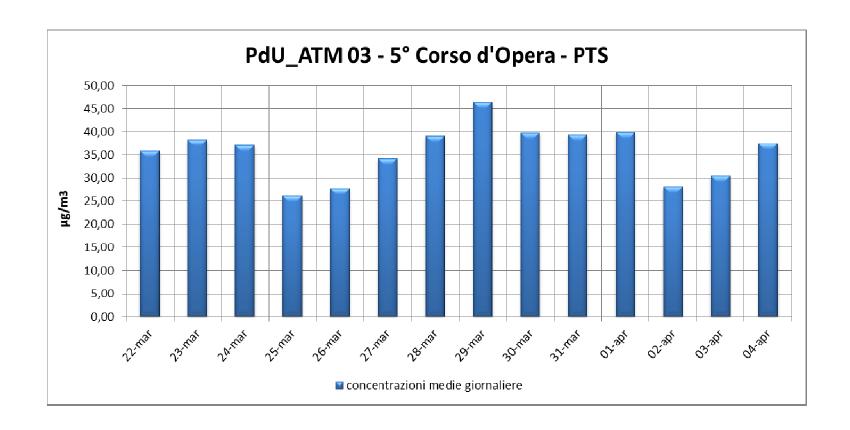

Parte delle particelle che costituiscono le polveri atmosferiche sono emesse come tali da diverse sorgenti naturali ed antropiche (cd. "particelle primarie"); parte invece derivano da una serie di reazioni chimiche e fisiche che avvengono nell'atmosfera (cd. "particelle secondarie"). Le **polveri**

totali sospese (PTS) vengono identificate come l'insieme delle sostanze sospese in aria (fibre, particelle carboniose, metalli, silice, inquinanti liquidi o solidi).

Il particolato è l'inquinante che oggi è considerato di maggiore impatto nelle aree urbane, ed è composto da tutte quelle particelle solide e liquide disperse nell'atmosfera, con un diametro che va da pochi nanometri fino ai 500 micron e oltre (cioè da miliardesimi di metro a mezzo millimetro). Gli elementi che concorrono alla formazione di questi aggregati sospesi nell'aria sono numerosi e comprendono fattori sia naturali che antropici. La quantità totale di polveri sospese è in genere misurata in maniera quantitativa (peso / volume).

Le dimensioni delle particelle sospese variano in un intervallo che abbraccia ben quattro ordini di grandezza: da qualche nanometro a decine di micrometri. La sigla PM_{10} , identifica una delle numerose frazioni in cui viene classificato il particolato, il cui diametro aerodinamico (ovvero corrispondente al diametro di un'ipotetica sferetta di densità uguale a 1 g/cm3 ugualmente veicolata dall'aria) è uguale o inferiore a $10~\mu m$, ovvero 10~millesimi di millimetro.

Nelle tabelle che seguono vengono riportati i valori giornalieri della concentrazione delle polveri totali aereodisperse misurate per i punti monitorati nel periodo **novembre 2016 – aprile 2017**, oltre che i valori giornalieri delle PTS misurate nella fase di Ante Operam e nelle precedenti campagne in Corso d'Opera.



Polveri Totali Sospese (PTS): Trend delle concentrazioni medie giornaliere registrate per il punto PdU_ATM03 in Corso D'Opera

(22 novembre - 05 dicembre 2016)

MONITORAGGI AMBIENTALI INTEGRATIVI

Report periodico Monitoraggio Ante e Corso d'Opera - periodo novembre 2016 – aprile 2017

Polveri Totali Sospese (PTS): Trend delle concentrazioni medie giornaliere registrate per il punto PdU_ATM03 in Corso D'Opera

(22 marzo - 04 aprile 2017)

MONITORAGGI AMBIENTALI INTEGRATIVI

Report periodico Monitoraggio Ante e Corso d'Opera - periodo novembre 2016 – aprile 2017

						ANTE OPE	RAM						
PDU_ATM_02	PTS	PDU_ATM_03	PTS	PDU ATM 04	PTS	PDU ATM 05	PTS	PDU_ATM_06	PTS	PDU ATM 07	PTS	PDU_ATM_08	PTS
1 DU_ATM_02	μg/m³	1 DO_ATM_03	μg/m³	1 DO_ATWI_04	μg/m³	1DU_ATWI_03	μg/m³	1 DU_ATM_00	μg/m³	I DO_ATWI_07	μg/m³	TDU_ATM_08	μg/m³
18-mag-15	31,95	04-mag-15	44,72	10-set-15	40,89	15-giu-15	55,49	10-ago-15	29,21	30-dic-14	36,14	29-giu-15	28,11
19-mag-15	82,51	05-mag-15	72,11	11-set-15	45,09	16-giu-15	31,95	11-ago-15	40,34	31-dic-14	32,49	30-giu-15	27,75
20-mag-15	79,04	06-mag-15	73,38	12-set-15	35,41	17-giu-15	24,64	12-ago-15	29,39	01-gen-15	37,24	01-lug-15	38,15
21-mag-15	23,73	07-mag-15	59,15	13-set-15	39,61	18-giu-15	28,66	13-ago-15	32,31	02-gen-15	34,50	02-lug-15	19,35
22-mag-15	52,03	08-mag-15	54,40	14-set-15	67,73	19-giu-15	36,69	14-ago-15	29,03	03-gen-15	33,41	03-lug-15	21,91
23-mag-15	45,82	09-mag-15	48,92	15-set-15	55,68	20-giu-15	24,46	15-ago-15	24,10	04-gen-15	42,35	04-lug-15	21,54
24-mag-15	54,95	10-mag-15	58,60	16-set-15	49,11	21-giu-15	46,55	16-ago-15	22,09	05-gen-15	34,32	05-lug-15	32,86
25-mag-15	83,42	11-mag-15	67,00	17-set-15	58,42	22-giu-15	75,03	17-ago-15	30,85	06-gen-15	32,31	06-lug-15	26,65
26-mag-15	37,42	12-mag-15	55,68	18-set-15	64,07	23-giu-15	37,60	18-ago-15	24,83	07-gen-15	60,06	07-lug-15	25,01
27-mag-15	38,15	13-mag-15	58,23	19-set-15	44,05	24-giu-15	41,99	19-ago-15	29,94	08-gen-15	50,75	08-lug-15	26,10
28-mag-15	45,09	14-mag-15	94,01	20-set-15	36,14	25-giu-15	31,03	20-ago-15	28,84	09-gen-15	61,70	09-lug-15	102,96
29-mag-15	36,69	15-mag-15	75,58	21-set-15	50,20	26-giu-15	20,81	21-ago-15	34,68	10-gen-15	19,17	10-lug-15	39,25
30-mag-15	22,27	16-mag-15	47,83	22-set-15	51,84	27-giu-15	20,26	22-ago-15	28,48	11-gen-15	20,99	11-lug-15	45,09
31-mag-15	31,58	17-mag-15	69,73	23-set-15	56,04	28-giu-15	28,29	23-ago-15	20,99	12-gen-15	27,93	12-lug-15	26,65
media	47,48	media	62,81	media	49,59	media	35,96	media	28,93	media	37,38	media	34,38

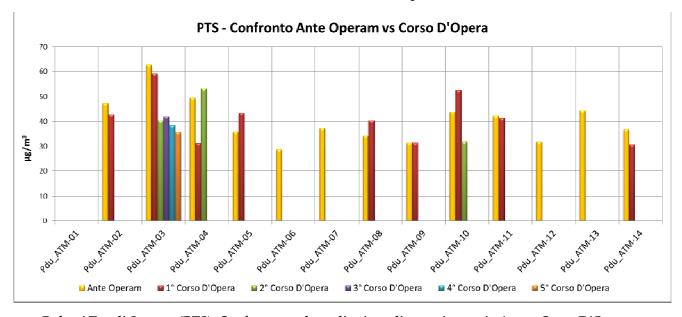
Corridoio Plurimodale Tirrenico - Nord Europa / Itinerario Agrigento – Caltanissetta - A19 / S.S. n° 640 "di Porto Empedocle" Ammodernamento e adeguamento alla Cat. B del D.M. 5.11.2001 dal km 44+000 allo svincolo con l'A19

					ANTE C	PERAM					
PDU ATM 09	PTS	PDU_ATM_10	PTS	PDU_ATM_11	PTS	PDU ATM 12	PTS	PDU_ATM_13	PTS	PDU ATM 14	PTS
TDO_ATM_09	μg/m³	TDO_ATM_TO	μg/m³	TDO_ATW_TT	μg/m³	TDO_ATW_12	μg/m³	1 DO_A1W_13	μg/m³	1 DO_A1W_14	μg/m³
10-feb-15	26,65	28-feb-15	25,56	27-gen-15	39,98	12-ago-15	23,91	11-lug-15	37,79	27-lug-15	29,94
11-feb-15	99,85	01-mar-15	36,87	28-gen-15	38,70	13-ago-15	33,41	12-lug-15	36,33	28-lug-15	20,26
12-feb-15	31,40	02-mar-15	69,00	29-gen-15	29,94	14-ago-15	36,33	13-lug-15	48,56	29-lug-15	18,25
13-feb-15	16,43	03-mar-15	43,99	30-gen-15	25,92	15-ago-15	33,04	14-lug-15	51,84	30-lug-15	34,87
14-feb-15	26,65	04-mar-15	21,54	31-gen-15	30,49	16-ago-15	33,59	15-lug-15	43,45	31-lug-15	30,67
15-feb-15	17,16	05-mar-15	27,20	01-feb-15	37,60	17-ago-15	24,46	16-lug-15	50,38	01-ago-15	27,38
16-feb-15	22,27	06-mar-15	19,35	02-feb-15	26,65	18-ago-15	26,83	17-lug-15	41,80	02-ago-15	41,80
17-feb-15	28,84	07-mar-15	26,54	03-feb-15	70,83	19-ago-15	24,83	18-lug-15	35,60	03-ago-15	35,60
18-feb-15	16,25	08-mar-15	24,28	04-feb-15	94,74	20-ago-15	40,34	19-lug-15	33,77	04-ago-15	33,73
19-feb-15	29,39	09-mar-15	51,66	05-feb-15	42,53	21-ago-15	30,49	20-lug-15	42,90	05-ago-15	42,90
20-feb-15	21,18	10-mar-15	100,22	06-feb-15	45,09	22-ago-15	27,20	21-lug-15	53,85	06-ago-15	53,65
21-feb-15	33,04	11-mar-15	40,71	07-feb-15	39,98	23-ago-15	40,34	22-lug-15	58,60	07-ago-15	58,60
22-feb-15	36,33	12-mar-15	84,70	08-feb-15	32,31	24-ago-15	29,39	23-lug-15	48,92	08-ago-15	48,92
23-feb-15	34,50	13-mar-15	42,17	09-feb-15	37,60	25-ago-15	42,35	24-lug-15	40,16	09-ago-15	40,15
media	31,42	media	43,84	media	42,31	media	31,89	media	44,57	media	36,91

								CORSO D'O	PERA								
PDU ATM 03	PTS	PDU_ATM_03_II	PTS	PDU ATM 04	PTS	PDU_ATM_05	PTS	PDU ATM 08	PTS	PDU ATM 09	PTS	PDU_ATM_10	PTS	PDU ATM 11	PTS	PDU_ATM_14	PTS
FDU_ATM_03	μg/m³	FDU_ATM_05_II	μg/m³	FDU_ATM_04	μg/m³	TDU_ATM_03	μg/m³	FDU_ATM_08	μg/m³	FDU_ATM_09	μg/m³	FDU_ATM_10	μg/m³	FDU_ATM_TT	μg/m³	FDU_ATM_14	μg/m³
01-giu-15	41,26	24-ago-15	32,86	08-lug-15	26,38	07-set-15	39,43	26-ago-15	32,86	25-feb-15	26,65	29-lug-15	32,49	28-mag-15	41,26	17-nov-15	37,06
02-giu-15	38,15	25-ago-15	34,14	09-lug-15	19,53	08-set-15	34,14	27-ago-15	34,14	26-feb-15	99,85	30-lug-15	50,38	29-mag-15	43,08	18-nov-15	28,29
03-giu-15	49,11	26-ago-15	19,90	10-lug-15	24,28	09-set-15	41,26	28-ago-15	19,90	27-feb-15	31,40	31-lug-15	100,40	30-mag-15	39,98	19-nov-15	41,26
04-giu-15	61,88	27-ago-15	24,28	11-lug-15	33,41	10-set-15	34,68	29-ago-15	24,28	28-feb-15	16,43	01-ago-15	78,86	31-mag-15	47,10	20-nov-15	32,31
05-giu-15	68,09	28-ago-15	21,18	12-lug-15	29,57	11-set-15	29,76	30-ago-15	21,18	01-mar-15	26,65	02-ago-15	78,13	01-giu-15	47,28	21-nov-15	31,22
06-giu-15	49,65	29-ago-15	36,69	13-lug-15	20,63	12-set-15	30,12	31-ago-15	36,69	02-mar-15	17,16	03-ago-15	50,02	02-giu-15	34,50	22-nov-15	26,65
07-giu-15	39,80	30-ago-15	51,66	14-lug-15	26,47	13-set-15	41,44	01-set-15	51,66	03-mar-15	22,27	04-ago-15	40,53	03-giu-15	37,06	23-nov-15	25,56
08-giu-15	72,84	31-ago-15	46,37	15-lug-15	50,79	14-set-15	65,17	02-set-15	46,37	04-mar-15	28,84	05-ago-15	42,35	04-giu-15	48,74	24-nov-15	35,23
09-giu-15	84,52	01-set-15	44,36	16-lug-15	34,50	15-set-15	60,06	03-set-15	44,36	05-mar-15	16,25	06-ago-15	49,11	05-giu-15	46,00	25-nov-15	21,36
10-giu-15	31,22	02-set-15	115,92	17-lug-15	36,10	16-set-15	96,75	04-set-15	115,92	06-mar-15	29,39	07-ago-15	62,07	06-giu-15	27,20	26-nov-15	22,45
11-giu-15	147,68	03-set-15	53,49	18-lug-15	31,08	17-set-15	39,98	05-set-15	53,49	07-mar-15	21,18	08-ago-15	40,53	07-giu-15	45,45	27-nov-15	22,64
12-giu-15	37,60	04-set-15	18,44	19-lug-15	35,13	18-set-15	34,32	06-set-15	18,44	08-mar-15	33,04	09-ago-15	37,97	08-giu-15	47,10	28-nov-15	34,50
13-giu-15	63,71	05-set-15	30,67	20-lug-15	37,29	19-set-15	28,11	07-set-15	30,67	09-mar-15	36,33	10-ago-15	44,36	09-giu-15	43,26	29-nov-15	31,22
14-giu-15	41,62	06-set-15	35,41	21-lug-15	32,52	20-set-15	32,68	08-set-15	35,41	10-mar-15	34,50	11-ago-15	28,29	10-giu-15	29,21	30-nov-15	38,15
media	59,08	media	40,38	media	31,26	media	43,42	media	40,38	media	31,42	media	52,53	media	41,23	media	30,56

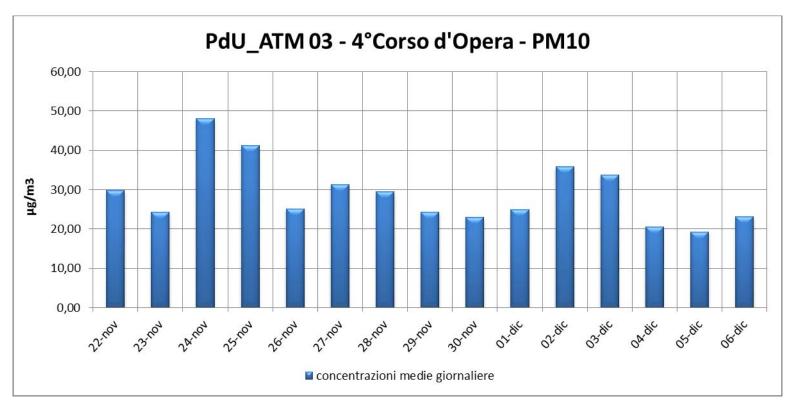
MONITORAGGI AMBIENTALI INTEGRATIVI

			CORSO	D'OPERA			
PDU ATM 02	PTS	PDU ATM 03	PTS	PDU ATM 04	PTS	PDU ATM 10	PTS
FDU_ATM_02	μg/m³	FDU_ATM_03	μg/m³	FDU_ATM_04	μg/m³	FDO_ATM_10	μg/m³
13-set-16	51,10	29-lug-16	49,64	27-set-16	42,87	30-ago-16	33,70
14-set-16	51,30	30-lug-16	30,68	28-set-16	56,96	31-ago-16	37,44
15-set-16	37,20	31-lug-16	27,89	29-set-16	70,83	01-set-16	39,23
16-set-16	42,00	01-ago-16	45,53	30-set-16	68,70	02-set-16	30,11
17-set-16	29,00	02-ago-16	54,21	01-ott-16	34,68	03-set-16	21,23
18-set-16	31,60	03-ago-16	40,67	02-ott-16	29,21	04-set-16	24,12
19-set-16	52,00	04-ago-16	48,89	03-ott-16	82,15	05-set-16	39,56
20-set-16	53,70	05-ago-16	53,26	04-ott-16	51,11	06-set-16	36,27
21-set-16	44,90	06-ago-16	34,48	05-ott-16	74,84	07-set-16	32,77
22-set-16	47,30	07-ago-16	33,04	06-ott-16	64,99	08-set-16	32,33
23-set-16	42,70	08-ago-16	40,61	07-ott-16	48,56	09-set-16	35,22
24-set-16	27,60	09-ago-16	42,01	08-ott-16	31,03	10-set-16	22,80
25-set-16	35,10	10-ago-16	43,30	09-ott-16	27,75	11-set-16	23,44
26-set-16	53,10	11-ago-16	43,45	10-ott-16	60,61	12-set-16	37,01
media	42,76	media	41,98	media	53,16	media	31,80


	CORSO	D'OPERA	
PDU ATM 03	PTS	PDU_ATM_03_II	PTS
FDU_ATM_03	μg/m³	FDU_ATM_03_II	μg/m³
22-nov	39,61	22-mar	35,78
23-nov	24,28	23-mar	38,34
24-nov	27,75	24-mar	37,06
25-nov	37,97	25-mar	26,10
26-nov	38,15	26-mar	27,75
27-nov	58,42	27-mar	34,14
28-nov	35,60	28-mar	39,07
29-nov	51,30	29-mar	46,37
30-nov	52,03	30-mar	39,80
01-dic	20,40	31-mar	39,43
02-dic	68,27	01-apr	39,98
03-dic	38,52	02-apr	28,11
04-dic	23,37	03-apr	30,49
05-dic	21,36	04-apr	37,42
media	38,36	media	35,70

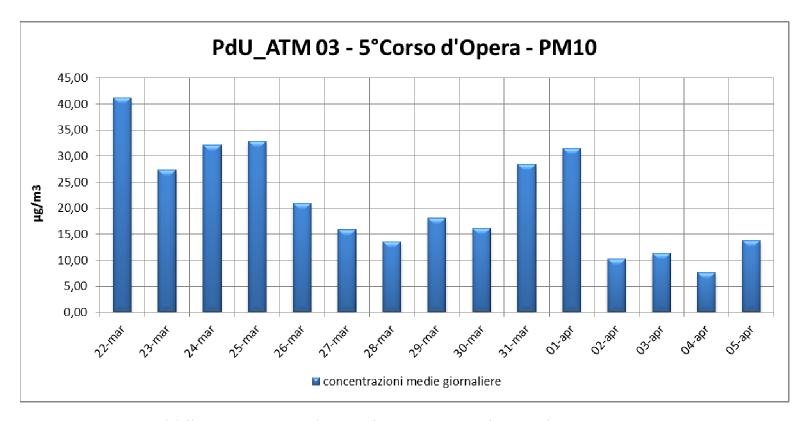
Polveri Totali Sospese (PTS): Concentrazioni medie giornaliere registrate in Ante e Corso D'Opera

MONITORAGGI AMBIENTALI INTEGRATIVI


Al fine di poter effettuare una valutazione dello stato della qualità dell'aria, si è ritenuto, in maniera del tutto indicativa, confrontare i risultati acquisiti delle Polveri Totali Sospese (PTS) con i livelli di attenzione di cui al DM 25/11/94 (abrogato dal DM 60/2002, che a sua volta è abrogato dal D.Lgs 155/2010, attualmente vigente) pari a 150 μ g/m³.

Dal confronto con la campagna eseguita in ante operam e le successive eseguite in CO, si denota un andamento dei valori confrontabili tra di loro, ed inoltre il livello di attenzione, pur se costituisce un mero riferimento indicativo, non è mai stato superato nel corso delle misurazioni.

Polveri Totali Sospese (PTS): Confronto tra le medie giornaliere registrate in Ante e Corso D'Opera


Per quanto riguarda il PM10, tale inquinante trova il proprio valore limite giornaliero di riferimento nel D.Lgs 155/2010 che è pari a $50~\mu g/m^3$ da non superare più di 35 volte nell'anno. Nelle tabelle che seguono vengono riportate le concentrazioni medie giornaliere del PM10 monitorate per i punti monitorati nel periodo **novembre 2016 / aprile 2017**, oltre che le concentrazioni medie giornaliere del PM10 misurate nella fase di Ante Operam e nelle precedenti campagne in Corso d'Opera.

PM10: Trend delle concentrazioni medie giornaliere registrate per il punto PdU_ATM03 in Corso D'Opera

Periodo novembre - dicembre 2016

MONITORAGGI AMBIENTALI INTEGRATIVI

PM10: Trend delle concentrazioni medie giornaliere registrate per il punto PdU_ATM03 in Corso D'Opera

Periodo marzo - aprile 2016

MONITORAGGI AMBIENTALI INTEGRATIVI

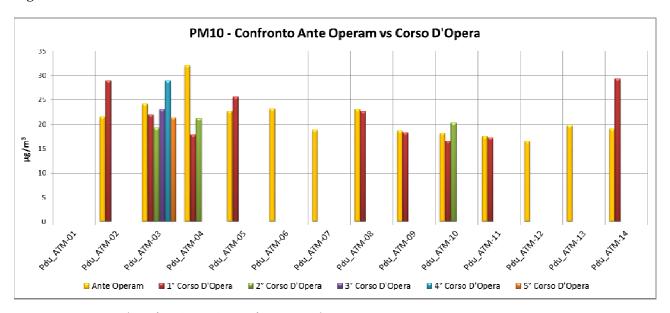
Corridoio Plurimodale Tirrenico - Nord Europa / Itinerario Agrigento – Caltanissetta - A19 / S.S. n° 640 "di Porto Empedocle" Ammodernamento e adeguamento alla Cat. B del D.M. 5.11.2001 dal km 44+000 allo svincolo con l'A19

						ANTE OPE	RAM						
PDU_ATM_02	PM10	PDU_ATM_03	PM10	PDU ATM 04	PM10	PDU_ATM_05	PM10	PDU_ATM_06	PM10	PDU ATM 07	PM10	PDU ATM 08	PM10
1 DO_A1W_02	μg/m³	TDO_ATM_03	μg/m³	1 DO_A1W_04	μg/m³	TDO_ATM_03	μg/m³	TDO_ATWI_00	μg/m³	TDO_ATM_07	μg/m³	TDC_ATW_08	μg/m³
18-mag-15	19,99	04-mag-15	19,19	10-set-15	32,46	15-giu-15	19,39	10-ago-15	22,32	30-dic-14	16,04	29-giu-15	19,28
19-mag-15	31,58	05-mag-15	27,98	11-set-15	31,00	16-giu-15	20,23	11-ago-15	17,25	31-dic-14	17,66	30-giu-15	25,27
20-mag-15	26,26	06-mag-15	32,18	12-set-15	32,12	17-giu-15	21,66	12-ago-15	23,13	01-gen-15	16,74	01-lug-15	25,97
21-mag-15	14,94	07-mag-15	25,82	13-set-15	32,44	18-giu-15	22,97	13-ago-15	21,10	02-gen-15	17,02	02-lug-15	22,47
22-mag-15	17,71	08-mag-15	23,13	14-set-15	29,87	19-giu-15	20,12	14-ago-15	23,59	03-gen-15	15,55	03-lug-15	22,59
23-mag-15	19,58	09-mag-15	18,31	15-set-15	33,32	20-giu-15	23,85	15-ago-15	20,78	04-gen-15	16,22	04-lug-15	29,81
24-mag-15	20,27	10-mag-15	21,53	16-set-15	33,47	21-giu-15	23,06	16-ago-15	23,44	05-gen-15	20,95	05-lug-15	23,62
25-mag-15	21,53	11-mag-15	24,83	17-set-15	33,51	22-giu-15	26,07	17-ago-15	24,81	06-gen-15	23,37	06-lug-15	25,17
26-mag-15	24,05	12-mag-15	23,64	18-set-15	32,53	23-giu-15	25,05	18-ago-15	24,28	07-gen-15	23,73	07-lug-15	24,33
27-mag-15	26,52	13-mag-15	22,32	19-set-15	32,52	24-giu-15	22,47	19-ago-15	24,40	08-gen-15	21,15	08-lug-15	17,95
28-mag-15	19,69	14-mag-15	28,75	20-set-15	31,30	25-giu-15	20,42	20-ago-15	23,95	09-gen-15	19,82	09-lug-15	25,07
29-mag-15	18,83	15-mag-15	26,25	21-set-15	31,46	26-giu-15	21,38	21-ago-15	24,53	10-gen-15	14,65	10-lug-15	16,72
30-mag-15	21,30	16-mag-15	22,12	22-set-15	32,35	27-giu-15	22,53	22-ago-15	25,60	11-gen-15	1 <i>7,7</i> 1	11-lug-15	24,66
31-mag-15	20,70	17-mag-15	24,39	23-set-15	31,36	28-giu-15	25,51	23-ago-15	23,01	12-gen-15	22,85	12-lug-15	25,19
01-giu-15	20,59	18-mag-15	22,65	24-set-15	31,41	29-giu-15	26,79	24-ago-15	25,69	13-gen-15	18,98	13-lug-15	18,90
media	21,57	media	24,21	media	32,07	media	22,77	media	23,19	media	18,83	media	23,13

					ANTE C	PERAM					
PDU ATM 09	PM10	PDU ATM 10	PM10	PDU ATM 11	PM10	PDU ATM 12	PM10	PDU ATM 13	PM10	PDU ATM 14	PM10
1 DU_A1WI_09	μg/m³	1DO_AIW_IO	μg/m³	IDO_AIW_II	μg/m³	1DO_ATM_12	μg/m³	1DU_ATWI_13	μg/m³	1 DO_A1W_14	μg/m³
10-feb-15	20,37	28-feb-15	16,59	27-gen-15	17,58	12-ago-15	16,52	11-lug-15	14,49	27-lug-15	19,21
11-feb-15	19,66	01-mar-15	16,48	28-gen-15	15,29	13-ago-15	16,66	12-lug-15	13,78	28-lug-15	23,00
12-feb-15	21,66	02-mar-15	15,59	29-gen-15	16,85	14-ago-15	16,66	13-lug-15	17,96	29-lug-15	22,53
13-feb-15	17,60	03-mar-15	16,64	30-gen-15	10,27	15-ago-15	16,66	14-lug-15	21,79	30-lug-15	21,39
14-feb-15	16,01	04-mar-15	16,60	31-gen-15	14,98	16-ago-15	16,66	15-lug-15	17,25	31-lug-15	15,14
15-feb-15	16,50	05-mar-15	11,82	01-feb-15	18,77	17-ago-15	16,66	16-lug-15	21,97	01-ago-15	14,07
16-feb-15	17,74	06-mar-15	12,84	02-feb-15	21,97	18-ago-15	16,66	17-lug-15	17,61	02-ago-15	15,69
17-feb-15	16,67	07-mar-15	15,56	03-feb-15	22,34	19-ago-15	16,65	18-lug-15	20,31	03-ago-15	17,11
18-feb-15	17,51	08-mar-15	17,85	04-feb-15	12,71	20-ago-15	16,66	19-lug-15	23,74	04-ago-15	16,10
19-feb-15	18,99	09-mar-15	22,45	05-feb-15	19,14	21-ago-15	16,66	20-lug-15	21,81	05-ago-15	16,96
20-feb-15	17,02	10-mar-15	24,84	06-feb-15	18,20	22-ago-15	16,65	21-lug-15	20,75	06-ago-15	14,31
21-feb-15	16,53	11-mar-15	16,92	07-feb-15	17,33	23-ago-15	16,64	22-lug-15	24,30	07-ago-15	16,71
22-feb-15	22,87	12-mar-15	31,27	08-feb-15	16,23	24-ago-15	16,43	23-lug-15	16,40	08-ago-15	25,79
23-feb-15	24,37	13-mar-15	18,43	09-feb-15	24,58	25-ago-15	16,42	24-lug-15	20,42	09-ago-15	25,82
24-feb-15	17,45	14-mar-15	20,36	10-feb-15	16,40	26-ago-15	16,37	25-lug-15	24,05	10-ago-15	23,25
media	18,73	media	18,28	media	17,51	media	16,60	media	19,78	media	19,14

MONITORAGGI AMBIENTALI INTEGRATIVI

								CORSO D'OPER	A								
PDU ATM 03	PM10	PDU ATM 03 II	PM10	PDU ATM 04	PM10	PDU ATM 05	PM10	PDU ATM 08	PM10	PDU ATM 09	PM10	PDU ATM 10	PM10	PDU ATM 11	PM10	PDU ATM 14	PM10
TDC_ATM_03	μg/m³	T DO_ATM_05_H	μg/m³	TDC_ATM_04	μg/m³	TDC_ATM_05	μg/m³	TDO_ATM_08	μg/m³	TDO_ATM_09	μg/m³	TDC_ATM_10	μg/m³	TDC_ATM_II	μg/m³	1 DO_A1W_14	μg/m³
01-giu-15	24,24	24-ago-15	20,35	08-lug-15	18,38	07-set-15	23,22	26-ago-15	18,97	25-feb-15	11,63	29-lug-15	17,04	28-mag-15	14,15	17-nov-15	30,72
02-giu-15	22,93	25-ago-15	20,15	09-lug-15	17,85	08-set-15	27,12	27-ago-15	22,64	26-feb-15	15,44	30-lug-15	16,67	29-mag-15	13,46	18-nov-15	29,25
03-giu-15	19,49	26-ago-15	20,32	10-lug-15	17,66	09-set-15	14,82	28-ago-15	24,35	27-feb-15	19,14	31-lug-15	16,67	30-mag-15	14,20	19-nov-15	30,60
04-giu-15	26,50	27-ago-15	20,23	11-lug-15	18,52	10-set-15	28,05	29-ago-15	25,35	28-feb-15	15,78	01-ago-15	16,65	31-mag-15	17,14	20-nov-15	28,50
05-giu-15	27,65	28-ago-15	17,65	12-lug-15	14,59	11-set-15	35,32	30-ago-15	21,13	01-mar-15	28,84	02-ago-15	16,66	01-giu-15	13,88	21-nov-15	31,07
06-giu-15	21,13	29-ago-15	17,78	13-lug-15	14,10	12-set-15	28,37	31-ago-15	24,71	02-mar-15	18,44	03-ago-15	16,66	02-giu-15	13,28	22-nov-15	28,51
07-giu-15	19,60	30-ago-15	17,66	14-lug-15	21,76	13-set-15	21,98	01-set-15	23,77	03-mar-15	17,53	04-ago-15	16,58	03-giu-15	15,00	23-nov-15	29,97
08-giu-15	26,81	31-ago-15	19,36	15-lug-15	19,18	14-set-15	29,12	02-set-15	22,74	04-mar-15	21,69	05-ago-15	16,60	04-giu-15	19,37	24-nov-15	29,85
09-giu-15	28,91	01-set-15	16,48	16-lug-15	20,28	15-set-15	26,11	03-set-15	24,67	05-mar-15	15,57	06-ago-15	16,65	05-giu-15	23,18	25-nov-15	28,76
10-giu-15	15,58	02-set-15	23,24	17-lug-15	16,55	16-set-15	28,16	04-set-15	22,57	06-mar-15	15,79	07-ago-15	16,66	06-giu-15	21,08	26-nov-15	29,16
11-giu-15	40,30	03-set-15	17,45	18-lug-15	15,01	17-set-15	30,22	05-set-15	19,83	07-mar-15	20,73	08-ago-15	16,66	07-giu-15	15,38	27-nov-15	29,36
12-giu-15	28,01	04-set-15	19,95	19-lug-15	13,18	18-set-15	30,98	06-set-15	21,41	08-mar-15	18,27	09-ago-15	16,67	08-giu-15	19,05	28-nov-15	28,31
13-giu-15	9,96	05-set-15	18,49	20-lug-15	17,93	19-set-15	20,89	07-set-15	23,18	09-mar-15	21,68	10-ago-15	16,66	09-giu-15	16,01	29-nov-15	27,49
14-giu-15	7,67	06-set-15	19,40	21-lug-15	19,62	20-set-15	20,27	08-set-15	22,06	10-mar-15	16,63	11-ago-15	16,25	10-giu-15	19,95	30-nov-15	27,92
15-giu-15	9,71	07-set-15	20,14	22-lug-15	22,67	21-set-15	20,27	09-set-15	23,47	11-mar-15	16,80	12-ago-15	15,21	11-giu-15	23,49	01-dic-15	30,52
media	21,90	media	19,24	media	17,82	media	25,66	media	22,72	media	18,26	media	16,55	media	17,24	media	29,33


			CORSO	D'OPERA			
PDU ATM 02	PM10	PDU ATM 03	PM10	PDU ATM 04	PM10	PDU ATM 10	PM10
TDO_ATWI_02	μg/m³	TDU_ATM_03	μg/m³	1D0_A1W_04	μg/m³	1DO_AIWI_IO	μg/m³
13-set-16	22,23	29-lug-16	14,25	27-set-16	18,47	30-ago-16	16,47
14-set-16	28,05	30-lug-16	32,12	28-set-16	21,52	31-ago-16	16,14
15-set-16	31,49	31-lug-16	17,91	29-set-16	14,37	01-set-16	20,27
16-set-16	31,93	01-ago-16	30,02	30-set-16	11,99	02-set-16	20,30
17-set-16	31,96	02-ago-16	27,11	01-ott-16	22,76	03-set-16	20,78
18-set-16	31,68	03-ago-16	27,39	02-ott-16	23,82	04-set-16	20,46
19-set-16	19,62	04-ago-16	39,58	03-ott-16	34,47	05-set-16	17,04
20-set-16	17,64	05-ago-16	28,88	04-ott-16	30,01	06-set-16	19,21
21-set-16	23,55	06-ago-16	19,44	05-ott-16	24,05	07-set-16	19,63
22-set-16	37,47	07-ago-16	13,73	06-ott-16	18,95	08-set-16	24,60
23-set-16	39,32	08-ago-16	20,29	07-ott-16	24,33	09-set-16	26,07
24-set-16	33,24	09-ago-16	17,81	08-ott-16	18,64	10-set-16	17,53
25-set-16	29,21	10-ago-16	18,40	09-ott-16	15,21	11-set-16	24,66
26-set-16	29,56	11-ago-16	17,89	10-ott-16	17,56	12-set-16	19,87
27-set-16	27,54	12-ago-16	22,28	11-ott-16	22,43	13-set-16	21,50
media	28,97	media	23,14	media	21,24	media	20,30

	CORSO	D'OPERA	
PDU ATM 03	PM10	PDU ATM 03 II	PM10
TDC_ATM_03	μg/m³	1 DC_A1W_05_II	μg/m³
22-nov	29,81	22-mar	41,30
23-nov	24,30	23-mar	27,36
24-nov	48,09	24-mar	32,10
25-nov	41,18	25-mar	32,83
26-nov	25,13	26-mar	20,88
27-nov	31,30	27-mar	15,84
28-nov	29,44	28-mar	13,60
29-nov	24,32	29-mar	18,08
30-nov	22,90	30-mar	16,20
01-dic	24,91	31-mar	28,44
02-dic	35,84	01-apr	31,48
03-dic	33,80	02-apr	10,26
04-dic	20,56	03-apr	11,38
05-dic	19,27	04-apr	7,59
06-dic	23,14	05-apr	13,78
media	28,93	media	21,41

PM10: Concentrazioni medie giornaliere registrate in Ante e Corso D'Opera

Come si può osservare, i risultati registrati durante i periodi di osservazione mostrano, per ognuna delle postazioni monitorate, livelli inferiori ai limiti vigenti ($50 \mu g/m^3$).

Il confronto con la situazione indisturbata (ante operam), che rappresenta il "bianco" di riferimento, mette in evidenzia una situazione non critica, infatti, i valori registrati in CO risultano confrontabili con quelli rilevati in AO e rimangono sensibilmente inferiori ai limiti normativi vigenti.

Particolato fine (PM10): Confronto con le campagne in Ante Operam e Corso D'Opera

Inquinanti gassosi

Le specie chimiche presenti in aria come inquinanti naturali ed antropogenici e che destano maggiori preoccupazioni in termini di inquinamento atmosferico, sono essenzialmente costituiti dall'ossido e dal biossido di azoto (NO ed NO₂). Il primo è un gas tossico incolore, insapore e inodore, mentre il secondo è un gas tossico e irritante di colore giallo-rosso, dall'odore forte e pungente.

Gli ossidi di azoto hanno origine naturale (eruzioni vulcaniche, incendi, processi biologici), ma soprattutto antropica con le combustioni ad alta temperatura, come quelle che avvengono all'interno delle camere di combustione dei motori degli autoveicoli. Altre fonti che generano gli ossidi di azoto sono le centrali termoelettriche e in genere tutti gli impianti di combustione di tipo industriale. L'aumento del traffico veicolare degli ultimi anni ha generato un livello crescente delle concentrazioni di ossidi di azoto, specialmente nelle aree urbane. In caso di inquinamento fortuito da monossido di azoto, la concentrazione decade in 2-5 giorni, ma nel caso di emissioni continue (ad esempio in aree urbane a forte traffico veicolare), si assiste all'attivazione di un ciclo giornaliero che porta alla produzione di inquinanti secondari, quali il biossido di azoto. Il picco si registra nelle ore a traffico più intenso, per poi scendere nelle ore notturne. Nel monitoraggio in esame si è rilevato il NO_2 e il NO_X . Il D.Lgs 155/2010 stabilisce per gli ossidi di azoto (NO_X) un valore limite, come media annua, pari a $30~\mu g/m^3$.

Un altro inquinante gassoso oggetto di questo documento è il monossido di carbonio (CO). Si tratta di un gas tossico inodore, incolore e insapore che viene prodotto dalla combustione incompleta degli idrocarburi presenti in carburanti e combustibili. È un inquinante primario con un tempo di permanenza in atmosfera relativamente lungo (circa quattro mesi) e con una bassa reattività chimica. Le concentrazioni in aria di questo inquinante possono essere ben correlate all'intensità del traffico in vicinanza del punto di rilevamento. Inoltre, la concentrazione spaziale su piccola scala del CO risente in modo rilevante dell'interazione tra le condizioni micrometeorologiche e la struttura topografica delle strade (effetto Canyon).

Nelle aree urbane il monossido di carbonio è emesso in prevalenza dal traffico autoveicolare ed è considerato, pertanto, come il tracciante di riferimento durante tutto il corso dell'anno per questo tipo di inquinamento. Il D.Lgs 155/2010 stabilisce per il monossido di carbonio un valore limite pari a 10 mg/m3 a protezione della salute umana, calcolato come media mobile di 8h sulle 24 ore giornaliere.

Un altro parametro da tenere in considerazione è l'ozono (O₃), un gas dotato di un elevato potere ossidante, di colore azzurro e dall'odore pungente. Si forma in atmosfera per effetto di reazioni favorite dalla radiazione solare, in presenza dei cosiddetti inquinanti precursori, soprattutto ossidi di azoto (NO_X) e Sostanze Organiche Volatili (COV) che portano alla formazione di molecole costituite da tre atomi di ossigeno (O₃). La sua presenza al livello del suolo dipende fortemente dalle condizioni meteoclimatiche e pertanto è variabile sia nel corso della giornata che delle stagioni. Le concentrazioni di Ozono nei bassi strati dell'atmosfera sono di norma relativamente basse e tali da non creare problemi alla salute delle persone. In alcune occasioni si hanno invece dei fenomeni che portano alla formazione del cosiddetto smog fotochimico, costituito da una miscela di più sostanze in cui l'Ozono è una delle più importanti. Questi fenomeni si manifestano generalmente su aree geografiche ampie, in periodi di forte irraggiamento solare e bassa umidità, prevalentemente in ore pomeridiane.

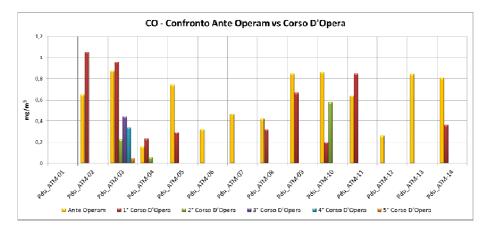
Le concentrazioni di Ozono più elevate si registrano normalmente nelle zone distanti dai centri abitati ove minore è la presenza di sostanze inquinanti con le quali, a causa del suo elevato potere ossidante, può reagire. In ambienti interni la concentrazione di ozono è notevolmente inferiore per questa sua elevata reattività che ne consente la rapida distruzione.

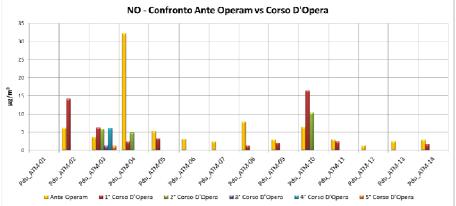
Il benzene rappresenta il primo termine della serie degli idrocarburi ciclici a carattere aromatico, è un liquido molto volatile derivato dalla distillazione del petrolio, usato come solvente e come materia prima per la preparazione di composti aromatici. Il benzene è presente nelle benzine in concentrazioni variabili fino a qualche punto percentuale, e a causa della sua volatilità può disperdersi nell'aria per evaporazione dai serbatoi o durante il rifornimento; tuttavia la massima parte del benzene che è emesso dagli autoveicoli deriva sia dalla combustione incompleta di questa sostanza nel motore, sia dalla produzione della stessa per sintesi, a partire da altri composti organici costituenti la benzina, durante il processo di combustione.

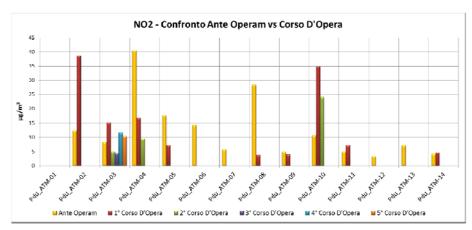
Nelle tabelle che seguono vengono riportate le concentrazioni medie giornaliere degli inquinanti gassosi oggetto di monitoraggio e, a seguire, si riporta in forma grafica l'andamento medio dei

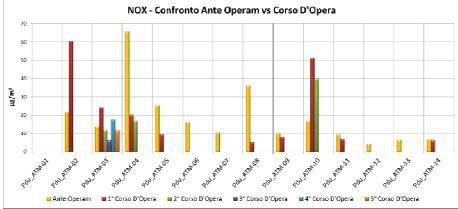
Ammodernamento e adeguamento alla Cat. B del D.M. 5.11.2001 dal km 44+000 allo svincolo con l'A19
parametri monitorati nel periodo di osservazione, raffrontati con i valori registrati nella campagna in Ante Operam e Corso d'Opera.

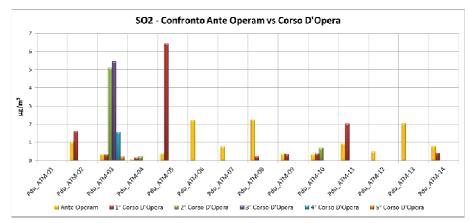
Corridoio Plurimodale Tirrenico - Nord Europa / Itinerario Agrigento – Caltanissetta - A19 / S.S. n° 640 "di Porto Empedocle"

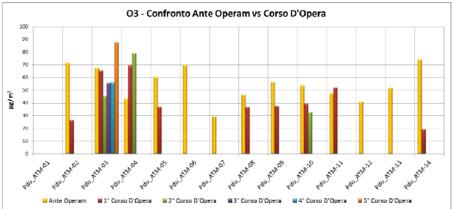

	INQUINANTI GASSOSI - AO														
	Pdu ATM-02	Pdu ATM-03	Pdu ATM-04	Pdu ATM-05	Pdu ATM-06	Pdu ATM-07	Pdu ATM-08	Pdu ATM-09	Pdu ATM-10	Pdu ATM-11	Pdu ATM-12	Pdu ATM-13	Pdu ATM-14		
СО	0,65	0,87	0,16	0,74	0,32	0,47	0,42	0,85	0,86	0,64	0,26	0,85	0,81		
NO	6,24	3,67	32,29	5,29	3,16	2,43	7,82	3,03	6,50	3,02	1,27	2,49	2,87		
NO2	12,27	8,27	40,52	17,71	14,29	5,76	28,37	4,88	10,62	4,91	3,26	7,13	4,11		
NOX	21,82	13,84	65,77	25,26	16,38	10,55	36,18	10,42	16,97	9,53	4,52	6,77	6,87		
03	71,45	67,81	43,58	60,57	69,94	29,50	46,45	56,80	53,85	47,52	41,02	52,27	74,49		
SO2	1,03	0,34	0,06	0,41	2,22	0,78	2,26	0,40	0,34	0,94	0,51	2,05	0,78		
BENZENE	0,52	0,42	0,00	0,79	0,59	0,16	0,17	0,03	0,22	0,02	0,08	0,03	0,47		
TOLUENE	0,31	0,33	0,00	0,60	0,79	0,13	0,18	0,02	0,19	0,03	0,08	0,03	0,18		
XILENI	0,33	0,30	0,00	0,99	0,32	0,11	0,17	0,02	0,18	0,03	0,08	0,02	0,15		
						INQUINANTI GASSO	OSI - 1° CO								
	Pdu_ATM-02	Pdu_ATM-03	Pdu_ATM-04	Pdu_ATM-05	Pdu_ATM-06	Pdu_ATM-07	Pdu_ATM-08	Pdu_ATM-09	Pdu_ATM-10	Pdu_ATM-11	Pdu_ATM-12	Pdu_ATM-13	Pdu_ATM-14		
СО	1,05	0,96	0,23	0,29			0,32	0,66	0,20	0,85			0,36		
NO	14,18	6,28	2,37	3,26			1,32	2,06	16,46	2,49			1,69		
NO2	38,62	15,20	16,74	7,16			3,77	3,97	34,90	7,13			4,65		
NOX	60,29	24,17	20,01	9,62			5,10	8,06	51,36	6,77			6,34		
03	26,59	65,67	69,33	37,04			36,71	37,60	39,18	52,27			19,20		
SO2	1,61	0,31	0,17	6,44			0,22	0,35	0,40	2,05			0,43		
BENZENE	0,43	0,63	0,19	0,15			0,22	0,02	0,06	0,03			0,00		
TOLUENE	0,37	0,37	0,18	0,16			0,22	0,02	0,07	0,03			0,00		
XILENI	0,44	0,36	0,18	0,18			0,22	0,02	0,07	0,02			0,00		
	Pdu_ATM-02	Pdu_ATM-03	Pdu_ATM-04	Pdu_ATM-05	Pdu_ATM-06	INQUINANTI GASSO Pdu_ATM-07	Pdu_ATM-08	Pdu_ATM-09	Pdu_ATM-10	Pdu_ATM-11	Pdu_ATM-12	Pdu_ATM-13	Pdu_ATM-14		
со	Fuu_ATIVI-02	0,23	0,06	ruu_ATM-03	Fuu_ATM-00	ruu_ATM-07	ruu_ATW-00	ruu_Anvi-05	0,58	ruu_Alivi-11	Fuu_ATIVI-12	Fuu_ATM-13	Fuu_ATM-14		
NO		5,87	4,92						10,36						
NO2		4,85	9,38						24,10						
NOX		11,92	16,74						39,91						
03		45,29	79,21						33,00						
SO2		5,11	0,23						0,70						
BENZENE		0,15	0,00						0,27						
TOLUENE		0,16	0,00						0,25						
XILENI		0,20	0,00						0,24						
						INQUINANTI GASSO									
	Pdu_ATM-02	Pdu_ATM-03	Pdu_ATM-04	Pdu_ATM-05	Pdu_ATM-06	Pdu_ATM-07	Pdu_ATM-08	Pdu_ATM-09	Pdu_ATM-10	Pdu_ATM-11	Pdu_ATM-12	Pdu_ATM-13	Pdu_ATM-14		
CO		0,44													
NO NO3		1,26		-								-	 		
NO2 NOX		4,33 6,25		 					1			 	 		
O3		55,69											 		
SO2		55,69											 		
		0,15							1			1			
BENZENE															
BENZENE TOLUENE		0,16													

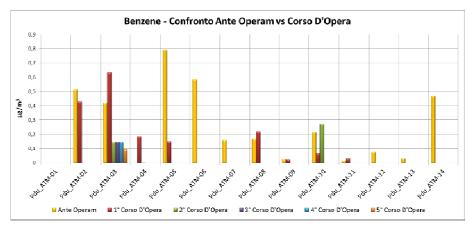

Corridoio Plurimodale Tirrenico - Nord Europa / Itinerario Agrigento – Caltanissetta - A19 / S.S. n° 640 "di Porto Empedocle" Ammodernamento e adeguamento alla Cat. B del D.M. 5.11.2001 dal km 44+000 allo svincolo con l'A19

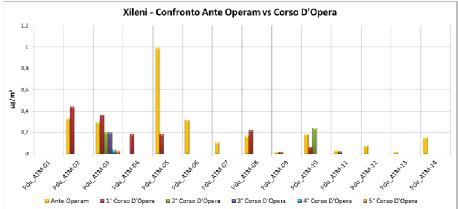

	INQUINANTI GASSOSI - 4° CO														
	Pdu_ATM-02	Pdu_ATM-03	Pdu_ATM-04	Pdu_ATM-05	Pdu_ATM-06	Pdu_ATM-07	Pdu_ATM-08	Pdu_ATM-09	Pdu_ATM-10	Pdu_ATM-11	Pdu_ATM-12	Pdu_ATM-13	Pdu_ATM-14		
СО		0,34													
NO		6,12													
NO2		11,60													
NOX		17,61													
03		55,99													
SO2		1,56													
BENZENE		0,15													
TOLUENE		0,08													
XILENI		0,04													
						NQUINANTI GASSO	OSI - 5° CO								
	Pdu_ATM-02	Pdu_ATM-03	Pdu_ATM-04	Pdu_ATM-05	Pdu_ATM-06	Pdu_ATM-07	Pdu_ATM-08	Pdu_ATM-09	Pdu_ATM-10	Pdu_ATM-11	Pdu_ATM-12	Pdu_ATM-13	Pdu_ATM-14		
СО		0,05													
NO		1,16													
NO2		10,28													
NOX		11,64													
03		87,86													
SO2		0,21													
BENZENE		0,09													
TOLUENE		0,05													
XILENI		0,03													

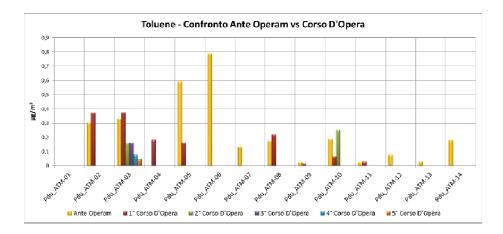

Inquinanti gassosi: Concentrazioni medie giornaliere rilevate in Ante e Corso D'Opera


MONITORAGGI AMBIENTALI INTEGRATIVI









Inquinanti gassosi: Trend delle concentrazioni medie giornaliere rilevate- confronto Ante e Corso D'Opera

Come mostrano le tabelle sopra riportate, gli inquinanti gassosi (CO, NO, NO₂, NO_X, O₃, BTX) presentano, in ogni stazione monitorata, concentrazioni inferiori ai limiti normativi vigenti. Le oscillazioni dei parametri rientrano nel loro campo di variabilità tipica, funzione anche delle condizioni meteoclimatiche.

In taluni casi, i valori registrati in CO sono addirittura più bassi rispetto a quelli rilevati durante la campagna eseguita in assenza di lavorazioni.

<u>Metalli pesanti</u>

Il termine **metallo pesante** si riferisce a tutti gli elementi chimici metallici che hanno una densità relativamente alta e sono tossici in basse concentrazioni. Alla categoria dei metalli pesanti appartengono circa 70 elementi (con densità >5 g/cm³), anche se quelli rilevanti da un punto di vista ambientale sono solo una ventina. La normativa nazionale con il D.Lgs 155/2010, che ha sostituito la normativa preesistente, ha stabilito gli obiettivi di miglioramento della qualità dell'aria per alcuni metalli: il Piombo (Pb), l'Arsenico (Ar), il Cadmio (Cd) e il Nichel (Ni).

Si riporta di seguito, in forma tabellare, le concentrazioni medie giornaliere dei metalli pesanti monitorati per ogni punto oggetto di monitoraggio.

Corridoio Plurimodale Tirrenico - Nord Europa / Itinerario Agrigento — Caltanissetta - A19 / S.S. n° 640 "di Porto Empedocle" Ammodernamento e adeguamento alla Cat. B del D.M. 5.11.2001 dal km 44+000 allo svincolo con l'A19

							ATMO	02 PDU														ATMO	03 PDII						
	18-mag-15	19-mag-15	20-mag-15	21-mag-15	22-mag-15	23-mag-15		25-mag-15	26-mag-15	27-mag-15	28-mag-15	29-mag-15	30-mag-15	31-mag-15		05-mag-15	06-mag-15	07-mag-15	08-mag-15	09-mag-15	10-mag-15			13-mag-15	14-mag-15	15-mag-15	16-mag-15	17-mag-15	18-mag-15
Parametro/U.M.	ug/m³	ug/m ³	ug/m³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	μg/m ³	μg/m ³	ug/m ³	ug/m³	ug/m ³	ug/m³	ug/m³	Parametro/U.M.	ug/m ³	μg/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m³	ug/m ³	цg/m³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m³	ug/m ³
Nichel	0,005	0,007	0,005	0,003	0,004	0,006	0,006	0,013	0,005	0,002	0,011	0,004	0,008	0,005	Nichel	0,011	0,003	0,009	0,006	0,004	0,029	0,008	0,004	0,005	0,004	0,006	0,009	0,006	0,005
rvicitei	0,032	0,039	0,003	0,003	0,024	0,029	0,020	0,026	0,003	0,016	0,011	0,016	0,007	0,009	TVICTIET	0,011	0,010	0,013	0,021	0,009	0,014	0,015	0,012	0,011	0,009	0,045	0,039	0,024	0,029
Manganese Cromo	< 0,001	< 0,001	< 0,029	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,021	< 0,001	< 0,007	0,005	Manganese Cromo	0,009	< 0,010	0,013	0,006	< 0,009	0,032	0,010	0,012	0,008	0,004	0,002	0,002	0,024	0,029
Cronio	\ 0,001	₹ 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,037	< 0,001	< 0,001	0,003	Cronio	0,009	< 0,001	0,001	0,000	₹0,001	0,032	0,010	0,040	0,000	0,004	0,002	0,002	0,003	0,002
Arsenico	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Arsenico	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Cadmio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Cadmio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	0,001	< 0,001	< 0,001
Rame	0,035	0,029	0,026	0,006	0,022	0,019	0,016	0,019	0,014	0,016	0,023	0,017	0,007	0,005	Rame	0,008	0,004	0,006	0,021	0,010	0,012	0,007	0,008	0,012	0,004	0,018	0,011	0,019	0,013
Silicio	0,268	0,311	0,259	0,146	0,265	0,316	0,285	0,399	0,295	0,210	0,398	0,235	0,180	0,209	Silicio	0,133	0,129	0,125	0,000	0,117	0,155	0,118	0,166	0,145	0,126	2,088	2,087	2,143	2,026
Titanio	0,009	0,013	0,002	0,001	0,015	0,004	< 0,001	< 0,001	< 0,001	< 0,001	0,006	< 0,001	< 0,001	< 0,001	Titanio	0,005	0,003	0,003	0,013	0,003	0,004	0,012	0,003	0,001	0,003	0,017	0,014	0,009	0,011
Zinco	0,095	0,089	0,076	0,058	0,073	0,098	0,083	0,090	0,092	0,056	0,073	0,050	0,055	0,064	Zinco	0,404	0,149	0,188	3,313	0,114	0,154	2,012	0,223	0,095	0,081	0,071	0,059	0,062	0,055
Piombo	0,004	0,005	0,003	0,000	0,002	0,003	0,002	0,002	0,001	0,001	0,002	0,002	< 0,001	< 0,001	Piombo	0,002	< 0,001	0,002	0,006	0,001	0,002	0,004	< 0,001	< 0,001	< 0,001	0,004	0,003	0,003	0,004
Vanadio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Vanadio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,002	0,002	< 0,001	0,001
Potassio	0,782	0,675	0,603	0,559	0,800	0,551	0,472	0,566	0,379	0,400	0,658	0,514	0,359	0,524	Potassio	0,700	0,422	0,445	3,211	0,384	0,549	2,465	0,444	0,344	0,290	0,806	0,825	0,462	0,426
Alluminio	0,710	0,753	0,405	0,357	0,478	0,493	0,243	0,436	0,215	0,191	0,540	0,196	0,109	0,106	Alluminio	0,452	0,175	0,211	1,133	0,158	0,255	2,209	0,214	0,120	0,241	0,696	0,664	0,335	0,424
Ferro	1,154	1,571	1,064	0,379	0,968	1,011	0,699	0,988	0,687	0,641	1,155	0,618	0,277	0,473	Ferro	0,437	0,426	0,395	0,699	0,319	0,507	0.604	0,687	0,419	0,384	1,623	1,514	1,044	0,896
	1,134	1,571	1,004	0,313	0,500	1,011	ATMO		0,007	0,011	1,133	0,010	0,217	0,173		0,407	0,120	0,000	0,000	0,017	0,507	ATMO		0,117	0,004	1,020	1,014	1,011	0,000
	10-set-15	11-set-15	12-set-15	13-set-15	14-set-15	15-set-15	16-set-15	17-set-15	18-set-15	19-set-15	20-set-15	21-set-15	22-set-15	23-set-15		15-ein-15	16-giu-15	17-giu-15	18-cin-15	19-giu-15	20-giu-15		22-giu-15	23-giu-15	24-gin-15	25-giu-15	26-gin-15	27-giu-15	28-giu-15
Parametro/U.M.	μg/m ³				. 1	μg/m ³	μg/m ³					ug/m ³			Parametro/U.M.			ug/m ³	μg/m ³	μg/m ³	μg/m ³	μg/m ³							μg/m ³
		μg/m ³	μg/m ³	μg/m ³	μg/m ³			μg/m³	μg/m ³	μg/m ³	μg/m ³	1.0	μg/m³	μg/m³		μg/m³	μg/m ³	10					μg/m ³	μg/m³					
Nichel	0,007	0,007	0,007	0,003	0,003	0,003	0,003	0,008	0,008	0,005	0,003	0,007	0,001	0,006	Nichel	0,006	0,010	0,011	0,012	0,014	0,006	0,006	0,005	0,005	0,013	0,011	0,007	0,007	0,009
Manganese	0,021	0,024	0,025	0,011	0,010	0,008	0,013	0,012	0,012	0,012	0,024	0,028	0,005	0,014	Manganese	0,020	0,023	0,022	0,053	0,029	0,018	0,017	0,026	0,016	0,021	0,019	0,065	0,062	0,021
Cromo	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,004	0,004	< 0,001	< 0,001	0,079	< 0,001	< 0,001	Cromo	0,006	0,008	0,012	0,010	0,017	0,009	0,006	0,006	0,005	0,010	0,005	0,008	0,006	0,005
Arsenico	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Arsenico	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	< 0,001	< 0,001
Cadmio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Cadmio	0,001	0,002	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001
Rame	0,010	0,014	0,015	0,003	0,004	0,004	0,021	0,007	0,007	0,006	0,004	0,005	< 0,001	0,063	Rame	0,016	0,014	0,017	0,026	0,025	0,016	0,017	0,014	0,014	0,014	0,013	0,016	0,016	0,015
Silicio	0,102	0,122	0,120	0,216	0,247	0,073	0,088	0,166	0,161	0,039	0,167	0,165	< 0,001	0,122	Silicio	3,438	1,146	3,461	3,703	3,487	3,412	3,515	3,414	3,320	3,199	3,189	3,320	3,733	3,268
Titanio	0,013	0,014	0,014	0,009	0,005	0,003	0,009	0,006	0,006	0,006	0,005	0,015	0,008	0,002	Titanio	0,013	0,014	0,015	0,042	0,017	0,012	0,013	0,015	0,010	0,013	0,012	0,027	0,029	0,012
Zinco	5,593	5,922	6,004	0,051	0,062	0,108	0,036	0,055	0,104	2,788	0,055	1,046	0,817	0,071	Zinco	5,501	9,109	6,608	5,396	5,997	4,586	6,398	4,489	3,944	6,441	7,325	4,804	3,117	3,977
Piombo	0,022	0,022	0,022	< 0,001	< 0,001	< 0,001	0,002	0,003	0,003	0,006	0,001	0,004	< 0,001	0,009	Piombo	0,017	0,025	0,020	0,018	0,019	0,014	0,018	0,018	0,012	0,018	0,025	0,025	0,024	0,014
Vanadio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Vanadio	0,001	0,001	0,001	0,003	0,001	< 0,001	0,001	0,002	0,001	0,001	0,001	0,005	0,005	0,001
Potassio	5,666	6,081	6,139	0,318	0,315	0,277	0,296	0,288	0,331	2,835	0,380	1,585	1,028	0,634	Potassio	5,787	7,886	6,596	5,933	6,200	4,877	6,184	4,705	4,267	6,452	7,503	5,717	4,391	4,231
Alluminio	4,096	4,109	4,147	0,306	0,200	0,141	0,265	0,277	0,306	1,796	0,272	0,678	0,335	0,170	Alluminio	4,486	5,530	4,550	5,105	4,543	3,849	4,673	3,603	3,378	4,977	4,959	4,319	3,843	3,215
Ferro	0,070	0,086	0,088	0,045	0,040	0,035	0,061	0,060	0,059	0,033	0,042	0,107	0,021	0,028	Ferro	0,816	0,551	0,658	2,397	0,941	0,762	0,590	0,902	0,709	0,756	0,559	2,264	2,110	0,713
			-				ATMO	06 PDU														PDU - A	TMO 07						
	10-ago-15	11-ago-15	12-ago-15	13-ago-15	14-ago-15	15-ago-15	16-ago-15	17-ago-15	18-ago-15	19-ago-15	20-ago-15	21-ago-15	22-ago-15	23-ago-15		30-dic-14	31-dic-14	01-gen-15	02-gen-15	03-gen-15	04-gen-15	05-gen-15	06-gen-15	07-gen-15	08-gen-15	09-gen-15	10-gen-15	11-gen-15	12-gen-15
Parametro/U.M.	μg/m ³	ug/m³	ug/m ³	ug/m³	μg/m ³	ug/m³	μg/m ³	ug/m ³	μg/m ³	Parametro/U.M.	μg/m ³	ug/m³	μg/m ³	μg/m ³	ug/m³	μg/m ³	ug/m ³	цg/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	μg/m³	ug/m³					
Nichel	0,013	0,011	0,019	0,019	0,011	0,012	0,023	0,008	0,009	0,010	0,010	0,008	0,010	0,012	Nichel	0,012	0,011	0,029	0,010	0,007	0,011	0,015	0,019	0,019	0,020	0,019	0,020	0,019	0,020
Manganese	0.024	0.017	0.021	0.020	0.027	0.034	0.043	0.020	0.026	0.019	0.024	0.017	0.021	0.022	Manganese	0.015	0.009	0.010	0,009	0.006	0,009	0.004	0.013	0.006	0.009	0.010	0.012	0.011	0.020
Cromo	0.012	0,017	0,021	0,020	0.017	0.018	0,028	0.016	0.019	0,019	0.014	0.008	0.040	0.019	Cromo	0,013	0.010	0.053	0,011	0.005	0,009	0.002	0,013	0.005	0,003	0.006	0.008	0.006	0,020
Arsenico	< 0,012	< 0,007	< 0,007	< 0,000	< 0,001	< 0,001	< 0,028	< 0,010	< 0,019	< 0,007	< 0,014	< 0,000	< 0,040	< 0,019	Arsenico	< 0,011	< 0,010	< 0,001	< 0,011	< 0,003	< 0,009	< 0,002	< 0,011	< 0,003	< 0,003	< 0,000	< 0,000	< 0,000	< 0,000
Cadmio	< 0.001	< 0.001	< 0,001	< 0,001	< 0.001	< 0,001	< 0,001	< 0,001	< 0.001	< 0,001	< 0.001	< 0.001	< 0.001	< 0.001	Cadmio	< 0.001	< 0.001	< 0.001	< 0,001	< 0,001	< 0.001	< 0.001	< 0.001	< 0.001	< 0,001	< 0.001	< 0,001	< 0.001	0,001
Rame	0.001	-,			-,		<u> </u>		-,		-,	0.004	-,	-,	Rame	-,	-,	-,			-,	-,	-,	-,		.,		-,	
	0,001	0,003	0,014	0,007	0,008	0,007	0,012	0,005	0,009	0,005	0,005	-,	0,006	0,004		0,009	0,010	0,007	0,009	0,007	0,006	0,005	0,006	0,004	0,005	0,018	0,005	0,010	0,010
Silicio	0,280	0,216	0,196	0,187	0,219	0,145	0,181	0,037	0,158	0,081	0,066	0,135	0,147	0,090	Silicio	0,425	0,185	0,297	0,141	0,237	0,175	0,017	0,320	0,118	0,217	0,135	0,157	0,233	0,301
Titanio	0,008	0,003	0,013	0,003	0,005	0,004	0,003	0,001	0,002	0,003	0,001	0,001	0,001	0,002	Titanio	0,004	0,003	0,003	0,002	0,003	0,002	0,001	0,003	0,002	0,002	0,002	0,003	0,003	0,012
Zinco	0,183	0,170	2,913	0,237	0,167	0,192	0,476	0,239	0,264	0,204	0,563	0,282	0,208	0,431	Zinco	0,114	0,115	0,070	0,078	0,104	0,078	0,069	0,196	0,092	0,094	0,099	0,136	0,105	6,705
Piombo	< 0,001	< 0,001	0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Piombo	0,006	0,005	0,012	0,005	0,002	0,005	0,001	0,004	0,003	0,004	0,004	0,004	0,005	0,024
Vanadio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Vanadio	< 0,001	< 0,001	0,001	0,001	0,001	< 0,001	< 0,001	0,001	0,002	0,002	0,001	0,001	0,002	0,001
Potassio	0,523	0,869	3,488	0,657	0,819	0,592	0,912	0,484	0,756	0,471	0,683	0,520	0,632	0,892	Potassio	0,211	0,217	0,247	0,295	0,351	0,188	0,191	0,387	0,329	0,354	0,359	0,412	0,372	6,246
Alluminio	0,534	0,862	1,566	0,263	0,344	0,393	0,434	0,238	0,322	0,253	0,231	0,175	0,215	0,278	Alluminio	0,201	0,150	0,129	0,111	0,135	0,119	0,052	0,591	0,356	0,215	0,164	0,226	0,157	4,724
Ferro	0,228	0,236	0,288	0,377	0,376	0,398	0,522	0,119	0,305	0,207	0,237	0,210	0,375	0,370	Ferro	0,410	0,290	0,461	0,204	0,189	0,215	-0,021	0,242	0,179	0,222	0,260	0,307	0,369	0,510
		•——		•								•						•				•							

MONITORAGGI AMBIENTALI INTEGRATIVI

Corridoio Plurimodale Tirrenico - Nord Europa / Itinerario Agrigento — Caltanissetta - A19 / S.S. n° 640 "di Porto Empedocle" Ammodernamento e adeguamento alla Cat. B del D.M. 5.11.2001 dal km 44+000 allo svincolo con l'A19

	ATMO 08 PDU																		ATMO	09 PDU									
	30-giu-15	01-lug-15	02-lug-15	03-lug-15	04-lug-15	05-lug-15	06-lug-15	07-lug-15	08-lug-15	09-lug-15	10-lug-15	11-lug-15	12-lug-15	13-lug-15		25-feb-15	26-feb-15	27-feb-15	28-feb-15	01-mar-15	02-mar-15	03-mar-15	04-mar-15	05-mar-15	06-mar-15	07-mar-15	08-mar-15	09-mar-15	10-mar-15
Parametro/U.M.	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m ³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m ³	$\mu g/m^3$	μg/m ³	$\mu g/m^3$	$\mu g/m^3$	μg/m³	Parametro/U.M.	$\mu g/m^3$	μg/m ³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m ³	$\mu g/m^3$	μg/m ³						
Nichel	0,005	0,003	0,005	0,003	0,003	0,005	0,009	0,004	0,004	0,005	0,009	0,005	0,011	0,019	Nichel	0,013	0,008	0,012	0,008	0,011	0,015	0,005	0,016	0,010	0,008	0,006	0,010	0,010	0,013
Manganese	0,020	0,026	0,024	0,018	0,022	0,021	0,023	0,023	0,026	0,026	0,060	0,010	0,023	0,024	Manganese	0,008	0,008	0,014	0,012	0,011	0,014	0,004	0,009	0,010	0,012	0,010	0,008	0,012	0,010
Cromo	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Cromo	0,006	0,005	0,006	0,006	0,006	0,007	0,003	0,004	0,004	0,003	0,004	0,005	0,006	0,004
Arsenico	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Arsenico	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Cadmio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Cadmio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Rame	0,029	0,014	0,013	0,010	0,012	0,211	0,020	0,059	0,013	0,014	0,085	0,015	0,024	0,012	Rame	0,002	0,001	0,003	0,003	0,007	0,010	0,000	0,000	0,001	0,001	0,000	0,001	0,003	0,000
Silicio	0,179	0,447	0,289	0,224	0,247	0,235	0,221	0,214	0,298	0,309	0,438	0,194	0,258	0,154	Silicio	0,414	0,311	0,663	0,520	0,545	0,457	0,264	0,184	0,207	0,210	0,295	0,356	0,585	0,193
Titanio	0,008	0,009	0,012	0,009	0,011	0,011	0,011	0,009	0,011	0,011	0,021	0,004	0,013	0,005	Titanio	0,003	0,002	0,006	0,004	0,002	0,004	0,002	0,004	0,001	0,002	0,001	0,002	0,005	0,003
Zinco	0,200	1,765	3,667	3,753	3,410	3,467	3,008	0,066	3,753	3,655	0,048	0,080	0,072	0,069	Zinco	0,046	0,066	0,095	0,077	0,065	0,067	0,040	0,059	0,059	0,058	0,067	0,059	0,094	0,061
Piombo	0,003	0,002	0,003	0,004	0,003	0,004	0,004	0,004	0,004	0,004	0,008	0,001	0,005	0,002	Piombo	0,002	0,002	0,002	0,003	0,004	0,003	0,002	0,001	0,002	0,003	0,001	0,002	0,003	0,002
Vanadio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Vanadio	< 0,001	0,001	0,001	0,002	0,005	0,001	0,003	< 0,001	< 0,001	< 0,001	< 0,001	0,001	0,001	< 0,001
Potassio	0,655	2,861	4,350	4,414	4,102	4,248	3,773	0,795	4,648	4,555	1,174	0,522	1,678	0,833	Potassio	0,288	0,305	0,368	0,357	0,369	0,329	0,180	0,258	0,324	0,362	0,229	0,306	0,362	0,290
Alluminio	0,313	1,341	2,377	2,397	2,251	2,284	2,087	0,270	2,481	2,455	0,947	0,105	0,460	0,112	Alluminio	0,164	0,213	0,155	0,134	0,132	0,208	0,102	0,147	0,125	0,123	0,141	0,196	0,144	0,134
Ferro	0,547	0,799	0,689	0,545	0,705	0,641	0,691	0,655	0,728	0,774	1,920	0,313	0,772	0,439	Ferro	0,415	0,390	0,459	0,427	0,414	0,464	0,346	0,356	0,384	0,398	0,372	0,395	0,444	0,357
							ATM	IO 10														ATMO	PDU 11						
	28-feb-15	01-mar-15	02-mar-15	03-mar-15	04-mar-15	05-mar-15	06-mar-15	07-mar-15	08-mar-15	09-mar-15	10-mar-15	11-mar-15	12-mar-15	13-mar-15		27-gen-15	28-gen-15	29-gen-15	30-gen-15	31-gen-15	01-feb-15	02-feb-15	03-feb-15	04-feb-15	05-feb-15	06-feb-15	07-feb-15	08-feb-15	09-feb-15
Parametro/U.M.	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	Parametro/U.M.	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$
Nichel	0,020	0,019	0,018	0,009	0,011	0,017	0,011	0,008	0,007	0,006	0,011	0,003	0,007	0,005	Nichel	0,005	0,009	0,008	0,005	0,020	0,008	0,008	0,010	0,011	0,009	0,007	0,005	0,008	0,004
Manganese	0,032	0,023	0,046	0,031	0,017	0,013	0,018	0,019	0,011	0,026	0,045	0,007	0,022	0,007	Manganese	0,018	0,018	0,011	0,014	0,012	0,021	0,035	0,068	0,024	0,016	0,010	0,009	0,010	0,008
Cromo	0,010	0,012	0,007	0,008	0,007	0,031	0,010	0,009	0,011	0,009	0,013	0,004	0,006	0,003	Cromo	0,005	0,005	0,004	0,004	0,009	0,005	0,005	0,013	0,009	0,007	0,006	0,006	0,007	0,003
Arsenico	0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Arsenico	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Cadmio	0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Cadmio	0,001	0,001	< 0,001	< 0,001	< 0,001	0,001	< 0,001	0,001	0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Rame	0,028	0,027	0,022	0,009	0,011	0,007	0,004	0,015	0,011	0,005	0,012	0,003	0,008	0,000	Rame	0,009	0,007	0,003	0,002	0,014	0,018	0,013	0,020	0,008	0,004	0,004	0,019	0,016	0,017
Silicio	0,436	0,291	0,604	0,466	0,426	0,169	0,415	0,444	0,137	0,425	0,593	0,269	0,400	0,304	Silicio	0,399	0,291	0,297	0,260	3,996	3,802	4,249	4,222	0,375	0,320	0,536	3,635	3,965	4,705
Titanio	0,020	0,009	0,017	0,010	0,006	0,005	0,008	0,009	0,004	0,009	0,016	0,001	0,008	0,001	Titanio	0,012	0,011	0,002	0,004	0,003	0,013	0,016	0,042	0,014	0,007	0,001	0,003	0,003	0,003
Zinco	5,696	0,071	0,057	0,043	0,058	0,072	0,045	0,045	0,041	0,044	0,053	0,052	0,057	0,033	Zinco	6,195	5,611	0,071	0,049	0,113	6,531	0,086	5,419	6,549	0,069	0,062	0,531	0,065	0,031
Piombo	0,018	0,002	0,006	0,002	0,003	0,001	0,002	0,002	0,001	0,002	0,006	0,001	0,006	0,001	Piombo	0,017	0,016	0,003	0,001	0,001	0,019	0,003	0,020	0,019	0,005	0,003	0,001	0,003	0,001
Vanadio	0,002	0,001	0,006	0,001	0,003	0,001	0,001	0,001	< 0,001	0,001	0,004	< 0,001	0,003	< 0,001	Vanadio	0,001	0,001	0,001	0,001	< 0,001	0,001	0,004	0,006	0,002	0,002	0,001	< 0,001	0,001	< 0,001
Potassio	5,456	0,352	0,423	0,373	0,386	0,517	0,278	0,244	0,281	0,427	0,558	0,258	1,549	0,183	Potassio	5,899	5,259	0,320	0,278	0,253	6,860	0,657	6,385	6,167	0,316	0,208	0,193	0,199	0,169
Alluminio	4,058	0,337	0,559	0,380	0,423	0,222	0,285	0,264	0,174	0,350	0,639	0,084	0,332	0,086	Alluminio	4,275	3,923	0,171	0,278	0,187	5,280	1,152	5,807	4,537	0,452	0,141	0,173	0,158	0,187
Ferro	0,823	0,597	0,942	0,779	0,596	0,599	0,520	0,635	0,493	0,724	1,116	0,327	0,837	0,391	Ferro	0,552	0,467	0,313	0,442	0,611	0,781	1,538	2,536	0,692	0,567	0,232	0,252	0,258	0,227
							ATMO	12 PDU														ATMO	13 PDU						
	12-ago-15	13-ago-15	14-ago-15	15-ago-15	16-ago-15	17-ago-15	18-ago-15	19-ago-15	20-ago-15	21-ago-15	22-ago-15	23-ago-15	24-ago-15	25-ago-15		11-lug-15	12-lug-15	13-lug-15	14-lug-15	15-lug-15	16-lug-15	17-lug-15	18-lug-15	19-lug-15	20-lug-15	21-lug-15	22-lug-15	23-lug-15	24-lug-15
Parametro/U.M.	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	Parametro/U.M.	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$
Nichel	0,013	0,011	0,025	0,017	0,016	0,009	0,006	0,007	0,021	0,005	0,006	0,010	0,011	0,006	Nichel	0,004	0,004	0,005	0,012	0,005	0,006	0,003	0,003	0,002	0,003	0,004	0,003	0,004	0,002
Manganese	0,023	0,021	0,040	0,034	0,016	0,016	0,013	0,030	0,030	0,012	0,015	0,024	0,033	0,043	Manganese	0,016	0,022	0,016	0,016	0,027	0,011	0,015	0,013	0,011	0,016	0,021	0,014	0,015	0,011
Cromo	0,014	0,007	0,020	0,010	0,007	0,010	0,001	0,007	0,014	< 0,001	0,002	0,006	0,012	0,009	Cromo	0,004	0,002	0,005	0,004	0,007	0,008	0,002	0,008	0,002	0,003	0,002	< 0,001	< 0,001	< 0,001
Arsenico	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Arsenico	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Cadmio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Cadmio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Rame	0,010	0,002	0,017	0,005	0,005	-0,001	0,001	0,004	0,004	< 0,001	< 0,001	0,004	0,004	0,034	Rame	0,039	0,048	0,044	0,032	0,047	0,021	0,022	0,016	0,022	0,047	0,055	0,029	0,010	0,006
Silicio	0,224	0,099	0,128	0,075	0,046	0,050	0,038	0,074	0,119	0,087	0,097	0,073	0,194	0,404	Silicio	0,666	0,692	0,603	0,638	0,713	0,522	0,630	0,590	0,615	0,594	0,589	0,509	0,465	0,412
Titanio	0,002	0,004	0,007	0,005	0,001	0,001	< 0,001	0,003	0,005	0,000	0,001	0,004	0,005	0,037	Titanio	0,009	0,015	0,008	0,009	0,018	0,006	0,009	0,007	0,006	0,010	0,015	0,008	0,008	0,006
Zinco	0,147	0,169	0,197	0,282	0,177	0,458	0,122	0,178	0,406	0,162	0,161	0,254	0,212	3,686	Zinco	0,035	0,034	0,102	0,059	0,063	0,043	0,058	0,045	0,026	0,038	0,040	0,029	0,026	0,017
Piombo	< 0,001	< 0,001	< 0,001	0,004	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,005	Piombo	0,002	0,004	0,001	0,002	0,007	0,001	0,003	0,002	0,006	0,003	0,004	0,002	0,001	< 0,001
Vanadio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	< 0,001	0,002	Vanadio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Potassio	0,571	0,540	0,723	0,594	0,397	0,633	0,458	0,363	0,713	0,333	0,358	0,962	0,675	5,314	Potassio	1,202	0,749	0,921	0,705	0,976	0,427	0,690	0,595	0,997	0,925	0,751	0,587	0,506	0,349
Alluminio	0,239	0,420	0,548	0,543	0,435	0,247	0,169	0,272	0,399	0,126	0,211	0,348	0,426	3,213	Alluminio	0,177	0,341	0,169	0,237	0,446	0,137	0,210	0,149	0,127	0,229	0,405	0,183	0,274	0,116
Ferro	0,382	0,685	0,586	0,462	0,402	0,429	0,350	0,467	0,422	0,256	0,210	0,565	0,513	0,400	Ferro	1,273	1,325	1,280	0,766	1,288	0,711	0,768	0,569	0,683	0,998	1,260	0,712	0,883	0,648
			•		•		•						•					•	•	•		•		•	•	•			

MONITORAGGI AMBIENTALI INTEGRATIVI

							ATMO	14 PDU						
	27-lug-15	28-lug-15	29-lug-15	30-lug-15	31-lug-15	01-ago-15	02-ago-15	03-ago-15	04-ago-15	05-ago-15	06-ago-15	07-ago-15	08-ago-15	09-ago-15
Parametro/U.M.	$\mu g/m^3$													
Nichel	0,019	0,009	0,015	0,007	0,012	0,010	0,003	0,003	0,002	0,003	0,004	0,003	0,004	0,002
Manganese	0,031	0,021	0,029	0,019	0,061	0,022	0,015	0,013	0,011	0,016	0,021	0,014	0,015	0,011
Cromo	0,044	0,141	0,060	0,354	0,116	0,028	0,002	0,008	0,002	0,003	0,002	< 0,001	< 0,001	< 0,001
Arsenico	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Cadmio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Rame	0,004	0,008	0,008	0,009	0,008	0,006	0,022	0,016	0,022	0,047	0,055	0,029	0,010	0,006
Silicio	0,102	0,215	0,319	0,302	0,290	0,328	0,630	0,590	0,615	0,594	0,589	0,509	0,465	0,412
Titanio	< 0,001	< 0,001	0,002	< 0,001	< 0,001	< 0,001	0,009	0,007	0,006	0,010	0,015	0,008	0,008	0,006
Zinco	0,588	1,545	0,766	3,702	0,683	0,120	0,058	0,045	0,026	0,038	0,040	0,029	0,026	0,017
Piombo	0,004	0,015	0,006	0,038	0,007	0,001	0,003	0,002	0,006	0,003	0,004	0,002	0,001	< 0,001
Vanadio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Potassio	0,518	0,608	0,564	0,837	0,590	0,379	0,690	0,595	0,997	0,925	0,751	0,587	0,506	0,349
Alluminio	0,211	0,236	0,463	0,458	0,432	0,310	0,210	0,149	0,127	0,229	0,405	0,183	0,274	0,116
Ferro	0,487	0,584	1,043	0,761	1,003	0,573	0,768	0,569	0,683	0,998	1,260	0,712	0,883	0,648

Metalli pesanti: Concentrazioni medie giornaliere registrate in Ante Operam

MONITORAGGI AMBIENTALI INTEGRATIVI

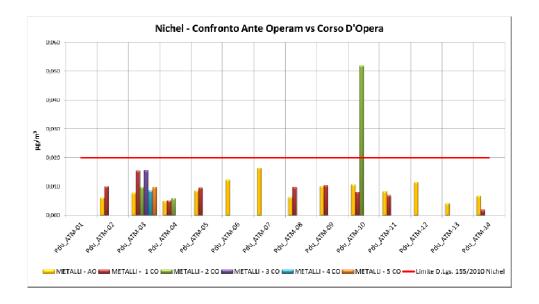
							ATMO	03 PDU														ATMO	04 PDU						
	01-giu-15	02-giu-15	03-giu-15	04-giu-15	05-giu-15	06-giu-15	07-giu-15	08-giu-15	09-giu-15	10-giu-15	11-giu-15	12-giu-15	13-giu-15	14-giu-15	1	08-lug-15	09-lug-15	10-lug-15	11-lug-15	12-lug-15	13-lug-15	14-lug-15	15-lug-15	16-lug-15	17-lug-15	18-lug-15	19-lug-15	20-lug-15	21-lug-15
Parametro/U.M.	$\mu g/m^3$	μg/m ³	μg/m ³	$\mu g/m^3$	μg/m ³	μg/m ³	μg/m ³	$\mu g/m^3$	$\mu g/m^3$	μg/m ³	$\mu g/m^3$	μg/m ³	μg/m ³	μg/m ³	Parametro/U.M.	$\mu g/m^3$	μg/m ³	μg/m ³	μg/m ³	$\mu g/m^3$	μg/m ³	μg/m ³	$\mu g/m^3$	μg/m ³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m ³	$\mu g/m^3$
Nichel	0,013	0,026	0,012	0,018	0,014	0,009	0,020	0,024	0,013	0,013	0,015	0,010	0,021	0,009	Nichel	0,004	0,006	0,002	0,005	0,009	0,003	0,003	0,005	0,003	0,006	0,004	0,006	0,011	0,006
Manganese	0,022	0,029	0,039	0,039	0,059	0,039	0,030	0,042	0,060	0,021	0,153	0,027	0,090	0,022	Manganese	0,020	0,042	0,020	0,019	0,012	0,012	0,022	0,026	0,022	0,022	0,025	0,033	0,074	0,012
Cromo	0,011	0,021	0,009	0,018	0,015	0,006	0,013	0,014	0,008	0,012	0,009	0,007	0,011	0,005	Cromo	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Arsenico	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Arsenico	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Cadmio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Cadmio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Rame	0,013	0,011	0,011	0,016	0,017	0,013	0,015	0,023	0,025	0,007	0,036	0,009	0,022	0,007	Rame	0,011	0,014	0,012	0,015	0,022	0,011	0,012	0,014	0,012	0,226	0,024	0,015	0,105	0,018
Silicio	0,433	0,439	0,602	0,409	0,641	0,513	0,608	0,627	0,651	0,421	1,391	0,517	0,754	0,390	Silicio	0,252	0,310	0,269	0,284	0,137	0,170	0,247	0,317	0,247	0,251	0,150	0,240	0,536	0,232
Titanio	< 0,001	0,012	0,003	0,002	0,020	0,003	0,002	0,019	0,014	< 0,001	0,045	< 0,001	0,024	0,011	Titanio	0,004	0,014	0,011	0,009	0,003	0,003	0,013	0,013	0,011	0,011	0,004	0,004	0,026	0,005
Zinco	0,090	1,999	0,189	0,164	3,488	0,294	0,134	3,660	0,329	0,135	0,162	0,095	0,196	3,739	Zinco	0,091	0,057	2,028	0,059	0,055	0,040	0,072	5,328	3,410	3,706	0,060	0,057	0,058	0,096
Piombo	0,002	0,005	0,002	0,002	0,010	0,003	0,002	0,009	0,003	< 0,001	0,008	< 0,001	0,008	0,007	Piombo	0,001	0,003	0,003	0,003	0,002	0,001	0,005	0,004	0,002	0,004	0,004	0,004	0,005	0,005
Vanadio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	0,001	< 0,001	0,008	< 0,001	0,008	< 0,001	Vanadio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Potassio	0,557	3,123	0,746	0,720	4,697	0,917	0,645	4,587	1,048	0,471	1,419	0,525	1,212	4,524	Potassio	0,589	0,639	2,746	0,493	0,598	0,612	1,678	0,930	2,861	4,651	4,319	5,193	5,197	4,511
Alluminio	0,314	1,547	0,519	0,485	2,428	0,520	0,420	2,466	0,896	0,256	1,975	0,307	1,301	2,167	Alluminio	0,118	0,570	1,462	0,295	0,096	0,083	0,460	0,444	1,341	2,541	2,345	2,850	2,794	2,495
Ferro	0,947	1,419	1,225	1,187	1,763	1,120	1,166	1,562	1,743	0,688	3,715	2,707	2,413	0,766	Ferro	0,616	1,135	0,627	0,618	0,338	0,318	0,705	0,776	0,799	0,737	0,534	0,893	0,785	0,826
							ATMO																08 PDU						
	07-set-15	08-set-15	09-set-15	10-set-15	11-set-15	12-set-15	13-set-15	14-set-15	15-set-15	16-set-15	17-set-15	18-set-15	19-set-15	20-set-15		26-ago-15	25-ago-15	26-ago-15	27-ago-15	28-ago-15	29-ago-15	30-ago-15	31-ago-15	01-set-15	02-set-15	03-set-15	04-set-15	05-set-15	06-set-15
Parametro/U.M.	ug/m ³	ug/m³	ug/m ³	ug/m ³	ug/m ³	μg/m ³	ug/m³	ug/m³	ug/m ³	цg/m ³	μg/m ³	ug/m ³	ug/m ³	μg/m³	Parametro/U.M.	ug/m³	ug/m³	ug/m ³	ug/m³	ug/m ³	μg/m ³	ug/m³	цg/m ³	μg/m ³	ug/m ³	μg/m ³	ug/m³	$\mu g/m^3$	ug/m ³
Nichel	0,008	0,010	0,007	0,010	0,009	0,010	0,010	0,009	0,014	0,009	0,006	0,011	0,012	0,007	Nichel	0,010	0,033	0,014	0,006	0,011	0,012	0,007	0,004	0,003	0,007	0,007	0,005	0,006	0,012
Manganese	0.029	0.039	0,030	0.027	0.034	0,047	0,047	0.082	0.088	0.082	0.028	0.041	0,050	0,043	Manganese	0.020	0.020	0.014	0,011	0,013	0.018	0.029	0.023	0.025	0.051	0,021	0.023	0.024	0,021
Cromo	0,002	0,005	< 0,001	< 0,001	< 0,001	< 0,001	0,002	0,003	0,009	0,005	< 0,001	< 0,001	0,003	< 0,001	Cromo	0,006	0,054	0,011	0,002	0,005	0,010	0,001	< 0,001	< 0,001	< 0,001	0,005	0,005	0,004	0,016
Arsenico	< 0,001	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Arsenico	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Cadmio	< 0,001	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0.001	Cadmio	< 0.001	< 0,001	< 0,001	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0.001	< 0,001
Rame	0.051	0.048	0.061	0,033	0.042	0.043	0,039	0.044	0.055	0.048	0,021	0.027	0.055	0.028	Rame	0.013	0,010	0.008	0,007	0,009	0.011	0.020	0,019	0.020	0.025	0,033	0.032	0.034	0,031
Silicio	0,609	0,617	0,545	0,577	0,589	0,611	0,582	0,708	0,624	0,671	0,622	0,622	0,808	0,636	Silicio	0,157	0,160	0,171	0,102	0,103	0,103	0,510	0,488	0,528	0,540	0,729	0,704	0,737	0,734
Titanio	0,007	0.011	0.002	0,004	0.004	0.011	0,013	0.042	0.041	0,039	0.002	0.015	0.016	0.013	Titanio	0.008	0.007	0.005	0,005	0,005	0,007	0.009	0.008	0,010	0.022	0.013	0.012	0.014	0.011
Zinco	0,071	5,279	0,095	0,053	0,073	4,830	0,090	5,097	5,108	0,078	0,064	0,065	3,135	0,166	Zinco	2,023	2,085	1,948	2,234	2,596	2,526	2,393	2,550	2,249	2,306	1,675	0,608	1,679	2,384
Piombo	< 0,001	0,001	< 0,001	< 0,001	0,009	< 0,001	0,001	< 0,001	0,003	0,004	< 0,001	0,001	0,003	< 0,001	Piombo	0.003	< 0,001	< 0,001	0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,005	0,003	0,003	0.004	0,003
Vanadio	< 0.001	< 0.001	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0.001	< 0,001	< 0,001	< 0,001	Vanadio	0.001	0,002	0.001	0,000	< 0,001	< 0,001	< 0.001	< 0,001	< 0.001	0,005	0,001	0.001	< 0,001	0.001
Potassio	0.914	7,996	1.136	1,177	1.166	8,865	1,484	9,398	9,744	1,696	0,806	1.107	5,633	1,244	Potassio	3,430	3,238	3,266	3,164	3,614	3,697	3,410	3,324	3,218	4.042	2,733	1,483	3,100	3,715
Alluminio	0,478	4,721	0,323	0,316	0,420	4,250	0,966	6,535	5,801	2,392	0,321	0,969	3,114	0,989	Alluminio	1,614	1,533	1,471	1,545	1,700	1,751	1,789	1,691	1,758	2,402	1,168	0,923	1,203	1,829
Ferro	0.135	0.180	0,093	0,123	0,144	0,223	0,215	0,405	0,375	0,371	0,152	0,188	0,219	0,214	Ferro	0.090	0,101	0,079	0,055	0,051	0,073	0,095	0,071	0,088	0,184	0,094	0,110	0,099	0,103
	.,	-,	-,			.,,		1O 09		-7-		-,				.,			.,	-	-7-	ATMO		.,	-7 -	.,	,		.,
	25-feb-15	26-feb-15	27-feb-15	28-feb-15	01-mar-15	02-mar-15		04-mar-15	05-mar-15	06-mar-15	07-mar-15	08-mar-15	09-mar-15	10-mar-15		29-lug-15	30-lug-15	31-lug-15	01-ago-15	02-ago-15	03-ago-15		05-ago-15	06-ago-15	07-ago-15	08-ago-15	09-ago-15	10-ago-15	11-ago-15
Parametro/U.M.	ug/m³	ug/m³	ug/m³	ug/m³	μg/m³	ug/m³	ug/m³	μg/m³	ug/m ³	ug/m³	ug/m³	ug/m³	ug/m³	μg/m³	Parametro/U.M.	μg/m ³	ug/m ³	ug/m³	ug/m³	ug/m ³	ug/m³	μg/m ³	ug/m ³	μg/m ³	ug/m ³	μg/m ³	ug/m³	ug/m ³	μg/m ³
Nichel	0,013	0,008	0,012	0,008	0,011	0,015	0,005	0.016	0,010	0,008	0,006	0.010	0,010	0,013	Nichel	0.007	0,016	0,007	0,008	0,006	0,006	0,010	0,006	0,006	0,005	0,006	0,005	0.006	0,019
Manganese	0.008	0.008	0.014	0,012	0.011	0.014	0.004	0.009	0.010	0.012	0.010	0.008	0.012	0.010	Manganese	0.013	0.029	0.030	0,043	0.022	0.028	0.040	0.030	0.031	0.026	0.015	0.020	0.015	0,035
Cromo	0,006	0,005	0,006	0,006	0,006	0.007	0,003	0.004	0,004	0,003	0,004	0,005	0,006	0.004	Cromo	0.031	0,015	0,006	0,015	0,005	0,006	0,021	0,007	0,009	0,002	0,008	0,004	0,010	0,101
Arsenico	< 0.001	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Arsenico	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Cadmio	< 0,001	< 0.001	< 0.001	< 0,001	< 0,001	< 0,001	< 0.001	< 0,001	< 0,001	< 0,001	< 0.001	< 0,001	< 0,001	< 0.001	Cadmio	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0.001
Rame	0,002	0.001	0.003	0,003	0.007	0.010	0.000	0.000	0.001	0,001	0,000	0.001	0,003	0.000	Rame	0.004	0.006	0.014	0,010	0,030	0.013	0.018	0,019	0,017	0.020	0,004	0.025	0.027	0,013
Silicio	0,414	0,311	0,663	0,520	0,545	0,457	0,264	0,184	0,207	0,210	0,295	0,356	0,585	0,193	Silicio	0,160	0,138	2,091	0,637	1,731	1,480	2,222	2,500	2,133	0,356	0,249	4,759	4,675	0,162
Titanio	0,003	0.002	0,006	0,004	0.002	0.004	0.002	0.004	0,001	0,002	0.001	0.002	0,005	0.003	Titanio	< 0.001	0.004	0.004	0.010	0.000	0.002	0.003	0.002	0.004	0,004	< 0.001	0.001	< 0.001	0,009
Zinco	0,046	0,066	0,095	0,077	0,065	0,067	0,040	0,059	0,059	0,058	0,067	0,059	0,094	0,061	Zinco	4,285	0,262	0,092	0,160	0,038	0,116	0,253	0,073	0,076	0,088	0,106	0,059	0,085	1,571
Piombo	0,002	0.002	0,002	0,003	0.004	0.003	0,002	0,001	0,002	0,003	0,001	0.002	0,003	0,002	Piombo	0.005	0,003	0,003	0,006	0,001	0,002	0,002	0,002	0,002	0,005	< 0,001	0,002	0.001	0,015
Vanadio	< 0.001	0.001	0.001	0,002	0.005	0.001	0,002	< 0,001	< 0,002	< 0,003	< 0.001	0.001	0,003	< 0.001	Vanadio	< 0.001	0,003	0.000	0,002	< 0,001	0,001	< 0.001	< 0,002	< 0,002	< 0.001	< 0,001	< 0.001	< 0.001	< 0.001
Potassio	0.288	0,305	0,368	0,357	0,369	0,329	0,180	0.258	0,324	0,362	0,229	0,306	0,362	0,290	Potassio	3,865	0,548	0.674	1,076	0,507	0,511	0,594	0,603	0,665	0,773	0,492	0,590	0,712	0,888
Alluminio	0,164	0,213	0,155	0,134	0,132	0,208	0,102	0,147	0,125	0,123	0,141	0,196	0,144	0,134	Alluminio	2,039	0,511	0,689	0,940	0,375	0,446	0,502	0,449	0,485	0,403	0,120	0,252	0,161	0,592
Ferro	0,415	0,390	0,459	0,427	0,414	0,464	0,346	0,356	0,384	0,398	0.372	0,395	0,444	0,357	Ferro	0.293	0.810	1.033	1.576	0,623	0.830	0,929	0.938	1.072	0,787	0,319	0.618	0,502	1,080
1000	0,110	0,000	0,103	0,12.	0,112	0,101	0,010	0,000	0,001	0,050	0,0.2	0,000	0,111	0,007		0,2 ,0	0,010	1,000	1,0.0	0,020	0,000	0,5=5	0,550	1,0.2	0,, 0,	0,010	5,010	3,00=	1,000

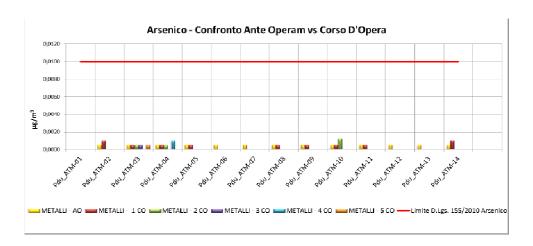
MONITORAGGI AMBIENTALI INTEGRATIVI

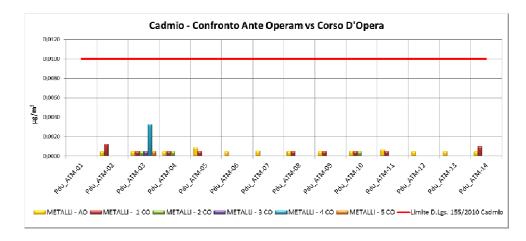
							ATMO	11 PDU														ATMO	14 PDU						
	28-mag-15	29-mag-15	30-mag-15	31-mag-15	01-giu-15	02-giu-15	03-giu-15	04-giu-15	05-giu-15	06-giu-15	07-giu-15	08-giu-15	09-giu-15	10-giu-15		17-nov-15	18-nov-15	19-nov-15	20-nov-15	21-nov-15	22-nov-15	23-nov-15	24-nov-15	25-nov-15	26-nov-15	27-nov-15	28-nov-15	29-nov-15	30-nov-15
Parametro/U.M.	ug/m ³	μg/m ³	ug/m ³	μσ/m³	μg/m ³	ug/m ³	μg/m ³	ug/m ³	μg/m ³	μg/m ³	Parametro/U.M.	ug/m ³	μg/m ³	ug/m³	ug/m ³	μg/m ³													
Nichel	0.006	0,011	0,012	0.009	0,006	0,006	0,013	0,005	0,003	0,005	0.004	0,005	0,006	0.005	Nichel	0.003	0,002	0.003	0,002	0,001	< 0,001	0,001	0.004	< 0,001	0,001	< 0,001	0,002	0,003	0,001
Manganese	0.021	0.014	0.011	0.017	0.015	0.018	0.022	0.009	0,009	0.009	0,006	0.008	0,006	0.013	Manganese	0.017	0.014	0.020	0.014	0.006	0.005	0,006	0.008	0.010	0.005	0.003	0.007	0.019	0.007
Cromo	0,004	0,007	0,011	0.007	0,000	0,003	0,012	0,001	0,000	0,001	< 0,001	0,001	0,002	< 0,001	Cromo	< 0,001	< 0,001	< 0,001	0,018	0,010	0,007	0,010	< 0,001	0,010	0,013	< 0,001	< 0,001	< 0,001	0,013
Arsenico	< 0.001	< 0.001	< 0.001	< 0,001	< 0.001	< 0,001	< 0,001	< 0.001	< 0.001	< 0,001	< 0.001	< 0,001	< 0,001	< 0.001	Arsenico	< 0.001	< 0.001	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0.001	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Cadmio	0.001	< 0,001	< 0.001	< 0,001	< 0.001	< 0.001	< 0,001	< 0.001	< 0.001	< 0,001	< 0.001	< 0.001	< 0,001	< 0.001	Cadmio	< 0.001	< 0.001	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0.001	< 0,001	< 0,001	< 0.001	< 0,001	< 0,001
Rame	0,007	0,005	0,012	0,008	0,011	0,008	0,011	0,010	0,006	0,004	0,004	0,005	0,005	0,009	Rame	0,010	0,009	0,015	0,006	0,008	0,006	0,003	0,004	0,001	< 0,001	< 0,001	0,003	0,014	0,008
Silicio	0,614	0,658	0,347	0,481	0,395	0,340	0,311	0,512	0,521	0,368	0,338	0,699	0,475	0,326	Silicio	0,467	0,314	0,523	0,332	0,314	0,275	0,334	0,392	0,587	0,313	0,124	< 0,001	1,036	0,834
Titanio	0,023	< 0,001	< 0,001	0,017	< 0,001	0,009	0,011	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Titanio	0,003	0,003	0,008	0,004	< 0,001	< 0,001	< 0,001	0,003	0,025	0,006	0,000	0,003	0,008	0,001
Zinco	6,440	0,135	0,778	5,270	0,405	2,877	5,084	0,243	0,319	0,679	0,145	0,179	0,116	0,076	Zinco	0,031	0,030	0,037	0,049	0,022	0,016	0,020	0,027	0,028	0,031	0,014	0,040	0,035	0,023
Piombo	0,013	0,001	0,002	0,011	0,002	0,006	0,011	0,001	0,001	0,002	0,001	0,001	0,001	0,001	Piombo	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Vanadio	< 0,001	< 0,001	< 0,001	0,001	0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	Vanadio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Potassio	7,545	0,384	1,089	6,530	0,793	3,777	5,911	0,553	0,693	1,013	0,345	0,562	0,446	0,399	Potassio	0,732	0,503	0,757	0,504	0,586	0,440	0,458	0,533	0,661	0,354	0,245	0,813	0,685	0,503
Alluminio	6,130	0,283	0,725	4,943	0,425	1,840	4,253	0,284	0,479	0,942	0,170	0,927	0,365	0,143	Alluminio	0,407	0,328	0,484	0,355	0,185	0,154	0,197	0,315	0,394	0,229	0,146	0,244	0,451	0,190
Ferro	0,976	0,929	0,757	0,952	0,580	0,725	1,005	0,792	0,829	0,631	0,480	0,877	0,809	0,486	Ferro	0,072	0,058	0,087	0,065	0,038	0,029	0,034	0,045	0,058	0,029	0,009	0,033	0,081	0,039
							ATMO	02 PDU														ATMO	03 PDU						
	13-set-16	14-set-16	15-set-16	16-set-16	17-set-16	18-set-16	19-set-16	20-set-16	21-set-16	22-set-16	23-set-16	24-set-16	25-set-16	26-set-16		29-lug-16	30-lug-16	31-lug-16	01-ago-16	02-ago-16	03-ago-16	04-ago-16	05-ago-16	06-ago-16	07-ago-16	08-ago-16	09-ago-16	10-ago-16	11-ago-16
Parametro/U.M.	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	μg/m ³	Parametro/U.M.	$\mu g/m^3$	μg/m ³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$								
Nichel	0,015	0,020	0,004	0,017	0,008	0,011	0,005	0,007	0,005	0,006	0,009	0,005	0,017	0,012	Nichel	0,013	0,020	0,019	0,018	0,016	0,019	0,011	0,014	0,008	0,008	0,017	0,020	0,019	0,016
Manganese	0,019	0,027	0,032	0,019	0,036	0,022	0,013	0,032	0,037	0,040	0,021	0,016	0,024	0,032	Manganese	0,019	0,028	0,021	0,016	0,019	0,018	0,015	0,022	0,008	0,012	0,017	0,020	0,020	0,019
Cromo	0,023	0,056	0,003	0,037	0,032	0,269	0,000	0,032	< 0.001	0,001	0,029	0,064	0,044	0,029	Cromo	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Arsenico	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	Arsenico	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cadmio	0,002	0,001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0,001	< 0.001	0,001	< 0.001	Cadmio	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Rame	0,007	0,009	0,009	0,006	0,022	0,007	0,009	0,022	0,009	0,011	0,007	0,006	0,008	0,023	Rame	0,005	0,008	0,006	0,004	0,005	0,005	0,004	0,006	0,003	0,003	0,004	0,006	0,006	0,005
Silicio	0,595	0,695	0,407	0,354	0,989	0,557	0,513	0,927	0,456	0,495	0,657	0,562	0,656	0,835	Silicio	0,323	0,233	0,276	0,272	0,271	0,335	0,252	0,320	0,176	0,230	0,280	0,265	0,189	0,268
Titanio	< 0.001	0,004	< 0.001	< 0.001	0,026	< 0.001	< 0.001	0,015	< 0.001	< 0.001	< 0.001	< 0.001	0,002	0,009	Titanio	0,013	0,019	0,018	0,011	0,013	0,010	0,010	0,016	0,003	0,006	0,012	0,018	0,014	0,015
Zinco	0,034	0,046	0,047	0,032	1,161	0,024	0,051	1,606	0,095	0,043	0,028	1,800	0,038	1,507	Zinco	0,027	0,037	0,036	0,025	0,026	0,022	0,023	0,031	0,025	0,023	0,024	0,037	0,028	0,029
Piombo	0,002	0,004	0,003	0,003	0,007	0,002	0,004	0,006	0,004	0,003	0,002	0,002	0,003	0,010	Piombo	0,001	0,002	0,001	0,001	0,002	0,002	0,001	0,002	0,002	0,002	0,001	0,001	0,002	0,001
Vanadio	< 0.001	0,002	< 0.001	< 0.001	0,001	< 0.001	< 0.001	0,003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0,003	Vanadio	0,002	0,003	0,002	0,001	0,002	0,002	0,002	0,003	0,001	0,002	0,002	0,002	0,003	0,002
Potassio	0,516	0,669	0,253	0,445	1,037	0,285	0,455	1,369	0,446	0,336	0,478	1,620	0,585	1,218	Potassio	0,358	1,133	0,350	0,276	0,373	0,325	0,304	0,413	0,256	0,278	0,308	0,315	0,362	0,333
Alluminio	0,219	0,611	0,267	0,432	0,823	0,153	0,206	1,070	0,249	0,290	0,381	1,234	0,519	1,084	Alluminio	0,667	1,108	0,748	0,457	0,709	0,689	0,497	0,837	0,105	0,352	0,675	0,705	0,633	0,682
Ferro	0,494	1,137	0,617	0,786	1,361	2,145	0,392	1,144	0,919	0,965	0,689	0,772	0,949	0,951	Ferro	1,004	1,683	1,295	0,782	1,071	1,211	0,733	1,288	0,214	0,525	1,085	1,263	1,052	1,072
								04 PDU														ATMO							
	27-set-16	28-set-16	29-set-16	30-set-16	01-ott-16	02-ott-16	03-ott-16	04-ott-16	05-ott-16	06-ott-16	07-ott-16	08-ott-16	09-ott-16	10-ott-16		30-ago-16	31-ago-16	01-set-16	02-set-16	03-set-16	04-set-16	05-set-16	06-set-16	07-set-16	08-set-16	09-set-16	10-set-16	11-set-16	12-set-16
Parametro/U.M.	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	μg/m³	Parametro/U.M.	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$										
Nichel	0,002	0,011	0,007	0,005	0,005	0,002	0,002	0,012	0,006	0,007	0,005	0,005	0,007	0,007	Nichel	0,200	0,180	0,180	0,020	0,011	0,014	0,012	0,010	0,017	0,018	0,019	0,020	0,016	0,011
Manganese	0,007	0,034	0,028	0,023	0,023	0,010	0,010	0,033	0,023	0,023	0,021	0,023	0,030	0,027	Manganese	0,042	0,047	0,045	0,050	0,031	0,034	0,053	0,039	0,024	0,036	0,042	0,035	0,038	0,025
Cromo	0,018	0,029	0,019	0,015	0,013	0,007	0,007	0,031	0,016	0,019	0,015	0,018	0,020	0,019	Cromo	0,110	0,138	0,151	0,144	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	0,132	< 0.100	0,110	< 0.100	< 0.100
Arsenico	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0,001	0,001	< 0.001	0,001	0,001	0,001	Arsenico	0,001	0,002	0,001	0,002	< 0.001	< 0.001	0,002	0,001	< 0.001	< 0.001	0,001	< 0.001	0,001	< 0.001
Cadmio	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	Cadmio	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Rame	0,013	0,036	0,157	0,036	0,027	0,052	0,025	0,137	0,039	0,222	0,032	0,046	0,155	0,130	Rame	0,010	0,012	0,010	0,014	0,008	0,009	0,010	0,009	0,007	0,008	0,009	0,009	0,009	0,007
Silicio	0,201	0,792	1,190	0,605	0,511	0,224	0,193	1,554	0,511	0,591	0,382	0,385	1,074	0,998	Silicio	0,535	0,611	0,679	0,620	0,625	0,497	0,695	0,531	0,481	0,576	0,476	0,375	0,525	0,252
Titanio	0,004	0,014	0,038	0,012	0,012	0,031	0,011	0,032	0,013	0,149	0,009	0,012	0,037	0,032	Titanio	0,030	0,037	0,031	0,040	0,019	0,022	0,043	0,029	0,011	0,024	0,030	0,022	0,031	0,013
Zinco	0,037	0,217	0,091	0,066	0,096	0,030	0,028	0,106	0,120	0,068	0,106	0,088	0,102	0,104	Zinco	0,057	0,072	0,053	0,075	0,044	0,047	0,062	0,068	0,037	0,051	0,053	0,045	0,057	0,038
Piombo	0,009	0,047	0,014	0,011	0,021	0,005	0,005	0,012	0,011	0,010	0,014	0,032	0,019	0,019	Piombo	0,004	0,003	0,004	0,004	0,003	0,003	0,004	0,005	0,003	0,004	0,003	0,003	0,003	0,003
Vanadio	< 0.001	0,002	< 0.001	0,001	0,002	< 0.001	< 0.001	0,001	0,002	0,001	0,001	0,001	0,001	0,001	Vanadio	0,006	0,006	0,006	0,006	0,004	0,004	0,008	0,005	0,003	0,005	0,006	0,005	0,005	0,003
Potassio	0,154	0,649	0,493	0,456	0,439	0,203	0,190	0,539	0,428	0,536	0,380	0,391	0,467	0,443	Potassio	0,788	0,779	0,800	0,862	0,648	0,672	1,023	0,921	0,564	0,764	0,775	0,657	0,691	0,530
Alluminio	0,140	0,568	0,655	0,466	0,451	0,225	0,174	0,804	0,415	0,709	0,348	0,440	0,663	0,585	Alluminio	1,511	1,691	1,724	1,566	1,013	1,149	2,444	1,448	0,489	1,336	1,581	1,216	1,459	0,642
Ferro	1,425	1,457	1,276	1,085	0,852	1,032	0,952	0,785	0,963	1,025	0,748	0,695	0,985	0,978	Ferro	2,360	2,818	2,697	2,685	1,573	1,818	3,659	2,183	0,748	2,204	2,456	1,981	2,369	1,092

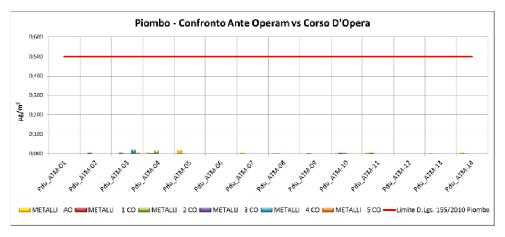
MONITORAGGI AMBIENTALI INTEGRATIVI

							ATMO	03 PDU														ATMO 03	PDU_II						
	22-nov-16	23-nov-16	24-nov-16	25-nov-16	26-nov-16	27-nov-16	28-nov-16	29-nov-16	30-nov-16	01-dic-16	02-dic-16	03-dic-16	04-dic-16	05-dic-16		22-mar-17	23-mar-17	24-mar-17	25-mar-17	26-mar-17	27-mar-17	28-mar-17	29-mar-17	30-mar-17	31-mar-17	01-apr-17	02-apr-17	03-apr-17	04-apr-17
Parametro/U.M.	$\mu g/m^3$	Parametro/U.M.	$\mu g/m^3$																										
Nichel	0,019	0,006	0,010	0,006	0,011	0,011	0,009	0,009	0,009	0,006	0,006	0,011	0,006	0,004	Nichel	0,007	0,005	0,005	0,013	0,009	0,005	0,009	0,004	0,012	0,009	0,012	0,019	0,018	0,011
Manganese	0,070	0,032	0,041	0,044	0,041	0,087	0,059	0,043	0,061	0,037	0,052	0,071	0,036	0,020	Manganese	0,013	0,013	0,018	0,020	0,019	0,012	0,017	0,011	0,018	0,012	0,013	0,008	0,018	0,013
Cromo	0,033	0,019	0,018	0,012	0,016	0,017	0,016	0,019	0,014	0,012	0,009	0,016	0,011	0,007	Cromo	0,023	0,010	0,019	0,039	0,015	0,011	0,016	0,029	0,039	0,018	0,104	0,039	0,086	0,045
Arsenico	< 0,001	0,002	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	Arsenico	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Cadmio	0,006	< 0,001	0,001	< 0,001	< 0,001	0,005	0,006	< 0,001	0,001	0,002	0,002	< 0,001	< 0,001	< 0,001	Cadmio	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Rame	0,057	0,058	0,066	0,106	0,059	0,095	0,046	0,079	0,105	0,081	0,056	0,463	0,063	0,067	Rame	0,015	0,016	0,033	0,033	0,026	0,020	0,024	0,006	0,010	0,007	0,014	0,010	0,016	0,014
Silicio	0,549	0,412	0,084	0,853	0,739	0,933	0,763	0,459	1,109	0,751	0,166	0,569	0,646	0,616	Silicio	0,165	0,113	0,101	0,161	0,104	0,050	0,132	0,092	0,116	0,052	0,047	0,100	0,216	0,123
Titanio	0,064	0,025	0,067	0,039	0,027	0,148	0,065	0,047	0,096	0,067	0,057	0,116	0,030	0,028	Titanio	0,005	0,005	0,010	0,008	0,009	0,006	0,007	0,004	0,005	0,002	0,002	0,002	0,005	0,003
Zinco	35,605	24,317	12,476	8,276	0,171	27,936	34,071	5,313	10,986	17,137	14,621	0,182	0,160	0,092	Zinco	0,482	0,297	0,296	0,607	0,346	0,145	0,344	0,124	0,347	0,176	0,186	0,174	0,267	0,125
Piombo	0,056	0,007	0,020	0,014	0,003	0,044	0,052	0,010	0,016	0,028	0,026	0,004	0,002	0,001	Piombo	0,004	0,003	0,006	0,007	0,010	0,004	0,005	0,002	0,003	0,003	0,002	0,001	0,003	0,003
Vanadio	0,005	0,002	0,001	0,001	0,002	0,004	0,003	0,001	0,002	< 0,001	0,004	0,002	0,001	< 0,001	Vanadio	0,001	0,001	0,001	0,002	0,002	0,003	0,003	0,001	0,001	0,001	0,001	0,001	0,001	0,001
Potassio	30,144	20,369	10,849	7,827	1,599	24,228	28,926	6,267	9,957	14,347	13,798	3,530	1,003	0,817	Potassio	0,295	0,348	0,480	0,493	0,445	0,326	0,389	0,292	0,373	0,512	0,401	0,171	0,356	0,291
Alluminio	28,393	18,322	5,223	7,015	0,978	24,063	29,164	3,549	8,979	12,051	9,180	1,557	0,655	0,775	Alluminio	0,023	0,010	0,019	0,039	0,015	0,011	0,016	0,029	0,039	0,018	0,104	0,039	0,086	0,045
Ferro	2,196	0,867	1,290	1,181	1,124	2,713	1,845	1,336	1,871	1,274	1,896	1,862	0,966	0,551	Ferro	0,361	0,345	0,674	0,657	0,561	0,542	0,532	0,338	0,415	0,282	0,677	0,395	0,533	0,357


Metalli pesanti: Concentrazioni medie giornaliere registrate in Corso D'opera


MONITORAGGI AMBIENTALI INTEGRATIVI


Il D.Lgs 155/2010 stabilisce limiti di riferimento mediati su un periodo pari ad un anno, pertanto, i risultati delle misure eseguite, non possono essere confrontati con suddetti limiti normativi ma sono indicativi del periodo di monitoraggio. Nel periodo indagato, per ciascun metallo monitorato e in tutte le stazioni di indagine, il limite tabellare non viene mai superato a fronte dei relativi limiti normativi.


Lo stato attuale evidenzia, quindi, un quadro complessivo positivo.

Di seguito sono messi a confronto, in forma grafica, i valori riscontrati nelle campagne in corso d'opera e quelli in assenza di lavorazioni. Si riportano in maniera esemplificativa i soli metalli indicati nel D.Lgs 155/2010 come rappresentativi della qualità dell'aria (Piombo, Arsenico, Cadmio e Nichel).

Metalli pesanti: Concentrazioni medie del periodo di osservazione - confronto tra AO e CO

Da un confronto tra le campagne di misura effettuate in Corso d'Opera e la condizione indisturbata in assenza di lavorazioni, si può osservare che i valori riscontrati risultano essere tutti inferiori ai limiti normativi vigenti, pur registrando in alcuni casi dei leggeri incrementi di concentrazione, rispetto alla campagna di AO, come per il Cadmio nel punto PdU_RUM_03 periodo novembre – dicembre 2016 (0,003 μ g/m³, a fronte di un limite stabilito dal D. Lgs. 155/2010 pari a 0,01 μ g/m³). Tale valore, si precisa, risulta aver registrato un decremento nella successiva campagna, eseguita durante il periodo marzo – aprile 2017 a 0,001 μ g/m³.

Idrocarburi policiclici aromatici

Anche per quanto concerne gli idrocarburi policiclici aromatici, le concentrazioni medie giornaliere sono risultate sempre inferiori ai limiti di rilevabilità strumentale, dunque inferiori ai limiti normativi, sia nelle campagne eseguite in Ante Operam che in Corso D'Opera.

2.1.5 Conclusioni

Nel presente report sono stati illustrati i risultati emersi dall'indagine integrativa predisposta a seguito del sopraggiunto Piano di Utilizzo del materiale da scavo proveniente dalla GN Caltanissetta. Tale indagine ha previsto il monitoraggio della qualità dell'aria sui recettori ubicati

nelle vicinanze delle aree di rimodellamento morfologico e lungo la viabilità di servizio dei mezzi d'opera. Il periodo di riferimento a cui il presente documento fa riferimento riguarda le attività eseguite dal mese di **novembre 2016 al mese di aprile 2017**: in tale periodo è stato eseguito il monitoraggio del punto PdU_ATM03 nei periodi 22 novembre – 06 dicembre 2016 e 22 marzo – 05 aprile 2017.

Sono stati monitorati i principali inquinanti gassosi, gli IPA, gli inquinanti particellari (PTS e PM10) ed i metalli pesanti aerodispersi in atmosfera.

Le concentrazioni di tutti gli inquinanti gassosi e particellari ricercati sono risultati sensibilmente inferiori ai limiti normativi di riferimento e confrontabili con i dati acquisiti nelle precedenti campagne e in particolare con la condizione di bianco registrata durante la fase ante operam.

Su tutte le stazioni indagate, le concentrazioni riscontrate per i metalli pesanti, in particolare per il piombo, il cadmio e l'arsenico, rimangono sensibilmente inferiori ai limiti normativi vigenti. Anche per gli idrocarburi policiclici aromatici le concentrazioni medie giornaliere sono risultate sempre inferiori ai limiti di rilevabilità strumentale.

Non si segnalano pertanto situazioni di criticità legate alle presenza delle attività di cantiere riconducibili alla movimentazione del materiale da scavo proveniente dalla GN Caltanissetta.

2.2 Monitoraggio qualità dell'aria - Stabilizzazione a calce

Nei paragrafi che seguono sono descritte nel dettaglio le attività di monitoraggio previste in relazione ai lavori di stabilizzazione a calce del materiale da scavo. Lo svolgimento di suddetta attività di monitoraggio muove a partire dai contenuti di cui al Piano di Utilizzo dei materiali da scavo della GN Caltanissetta approvato con Determina Direttoriale del MATTM prot. DVA-2014-0019853 del 19/06/2014, all'ulteriore Piano di Utilizzo afferente all'intero tracciato (con l'esclusione della GN Caltanissetta), anch'esso approvato con Determina Direttoriale del MATTM prot. DVA-2014- 0029822 del 18/09/2014, alle indicazioni rilasciate dalla Struttura Territoriale ARPA Sicilia di Caltanissetta durante i tavoli tecnici del 20 e 25 marzo 2013 (giusta nota Arpa Caltanissetta prot. 21741 del 02.04.2013), alla prescrizione n. 2 rilasciata dalla Direzione Lavori con nota prot. n. 04/DTA/176/14 del 09/05/2014 e, infine, ai contenuti di cui agli elaborati riguardanti gli studi preliminari e tipologici costruttivi della sede stradale, realizzata sia in rilevato che in trincea, impiegando, anche o prevalentemente, terre stabilizzate con calce.

In ottemperanza alle sopraggiunte prescrizioni e procedure ministeriali approvate e in riferimento ai potenziali impatti derivanti dalle attività di stabilizzazione a calce per la formazione dei rilevati, il monitoraggio ambientale della componente atmosfera ha interessato il controllo delle polveri aerodisperse PM10 e Polveri Totali Sospese.

I ricettori monitorati sono stati scelti in relazione all'esposizione e/o alla minima distanza dalle sorgenti. La durata della singola misura è pari a 24 ore, in considerazione del fatto che nell'arco della singola giornata lavorativa si esaurisce un ciclo completo del processo di stabilizzazione a calce.

2.2.1 Strumentazione di misura

La norma tecnica di riferimento per il campionamento in esame è richiamata dall'allegato VI del D.lgs 155/2010 - Metodo di riferimento per il campionamento e la misurazione del PM10. Tale metodo di riferimento, disciplinato dalla norma UNI EN 12341:1999 "Qualità dell'aria. Determinazione del particolato in sospensione PM10" è di seguito descritto. Il metodo di riferimento per la determinazione del materiale particolato PTS e PM10 si basa sulla raccolta delle frazioni particellari in esame su apposito filtro e successiva determinazione della massa per via gravimetrica, in laboratorio, in condizioni controllate di temperatura (20° C \pm 1) e di umidità (50 \pm 5%).

Il campionamento viene effettuato con strumenti costituiti da pompe che aspirano l'aria ambiente attraverso teste di prelievo, la cui geometria, normata a livello internazionale, è in grado di selezionare le polveri con diametro aerodinamico inferiore ai 10 µm.

La componente del particolato selezionata dalla testa viene, quindi, fatta passare attraverso una membrana filtrante di opportuna porosità dipendente dal tipo di analisi richiesta sul filtro. La membrana viene poi pesata in laboratorio e per differenza con la tara (filtro bianco) si ha la massa del particolato.

Il campionatore contiene anche un contatore volumetrico in grado di registrare il volume di aria aspirata, corretto in modo continuo mediante vari sensori di temperatura e pressione interni ed esterni, per ricondurlo alle condizioni ambientali. Dalla conoscenza quindi del volume di aria campionata e della massa del particolato si calcolano le concentrazioni delle PTS e del PM10 in $\mu g/m^3$.

2.2.2 Stazioni di monitoraggio

Si riporta di seguito l'elenco dei punti indagati nel periodo di riferimento del seguente Report, con le relative risultanze. Si precisa che la stabilizzazione a calce dei materiali da scavo, utilizzati per la formazione dei rilevati stradali, procede per tratte limitate dell'intero tracciato e che l'iter operativo di stabilizzazione è quello di realizzare aree di interesse contenute all'interno di singole WBS per ambiti temporali confinati.

Id_punto	Coordinate	geografiche	Sessione di misura
	Nord	Est	
SC06	37°25′33.64″N	13°55′40.60″E	01/03/2017

Stazione di misura monitorata nel periodo di riferimento

Stralcio cartografico punti di monitoraggio stabilizzazione a calce

2.2.3 Risultati dei monitoraggi

Nelle tabelle che seguono vengono riportati i valori giornalieri della concentrazione delle polveri aereodisperse (PM10 e PTS) misurate nel periodo **novembre 2016/aprile 2017**.

STABILIZZAZIONE A CALCE											
PARAMETRO	TIM	SC06									
FARAWEIRO	UM	01/03/2017									
POLVERI TOTALI SOSPESE	μg/m³	128,76									
PM10	μg/m³	41,0									

Concentrazioni delle polveri totali aereo disperse e PM₁₀

Il monitoraggio degli impatti sulla componente atmosfera legati al trattamento o stabilizzazione a calce dei materiali da scavo è stato previsto al fine di ottenere informazioni necessarie alla predisposizione di idonei strumenti di mitigazione da applicare direttamente in fase di cantiere; anche se gli impatti dovuti alle polveri sono tollerabili, è conveniente predisporre una serie di misure che riducano il problema al fine di continuare ad utilizzare la tecnica senza compromettere l'ambiente. Le polveri prodotte possono causare nelle zone adiacenti ai cantieri degli impatti ambientali la cui importanza è funzione della sensibilità specifica della zona.

Le misurazioni effettuate in corrispondenza dell'attività legata alla formazione dei rilevati mediante stabilizzazione a calce, hanno evidenziato concentrazioni di PM10 abbastanza contenute. Il valore è risultato pari a 41,00 μ g/m³, registrato il giorno 01/03/2017 per il punto SC_06. Le polveri totali sospese hanno registrato valori di concentrazione pari a 128,67 μ g/m³ relativamente allo stesso punto di monitoraggio.

Dato che la normativa italiana non regolamenta emissioni di questo tipo (limitate ad ambiti spaziali ridotti e brevi periodi di esecuzione), per la definizione di metodi di protezione adeguati si potrà far riferimento al testo "*Traitement des sol a la chaux et/ou aux liants hydrauliques*" (Trattamento delle terre a calce e/o leganti idraulici) edito dal Ministero dei Trasporti Francese e riconosciuto come il miglior testo europeo di riferimento per le operazioni di stabilizzazione delle terre a calce e per le regole di protezione ambientale. In particolare, detto documento invita all'osservanza di alcuni punti che potranno essere applicati, per i futuri utilizzi della su citata tecnica, al fine di ridurne gli impatti:

- ➤ lo spargimento dei prodotti del trattamento a calce dovrà essere interrotto qualora si rilevasse un trasporto eolico che superi l'area di cantiere di circa 50 metri;
- > in presenza di condizioni meteo climatiche avverse, caratterizzate dalla presenza insistente di vento, ridurre l'estensione del tratto da stabilizzare;
- > ridurre al minimo consentito i tempi durante i quali il prodotto di trattamento resta sparso sul terreno;
- nessuna macchina operatrice o veicolo dovrà essere autorizzato a circolare sulla superficie ricoperta dal prodotto di trattamento. La regola vale anche per la spargitrice che dovrà spargere, nel limite del possibile, in unica passata la totalità dei quantitativi occorrenti alla superficie.

Alla luce di quanto esposto, il monitoraggio delle polveri aerodisperse è volto a controllare il più possibile le emissioni diffuse in atmosfera, segnalando eventuali impatti sulle aree limitrofe circostanti.

3 Rumore

A partire dai contenuti del Piano di Utilizzo del materiale da scavo proveniente dalla GN Caltanissetta è stata predisposta un'indagine integrativa che ha previsto il monitoraggio del clima acustico in prossimità dei recettori ubicati nelle vicinanze delle aree di rimodellamento morfologico e lungo la viabilità di servizio dei mezzi d'opera. Le misurazioni effettuate, consentono di determinare se dette variazioni sono imputabili, o meno, alle attività in progetto ed eventualmente ricercare i correttivi che meglio possano ricondurre gli effetti rilevati a dimensioni accettabili. Le finalità delle diverse fasi di monitoraggio sono così distinte:

- a) Monitoraggio Ante Operam (MAO): definire le caratteristiche dell'ambiente, relativamente a ciascuna componente naturale ed antropica, esistenti prima dell'inizio delle attività. Si pone come termine di questa fase l'inizio di attività interferenti con la componente ambientale atmosfera;
- b) Monitoraggio in Corso d'Opera (MCO): analizzare l'evoluzione degli indicatori ambientali, rilevati in assenza di lavorazioni rappresentativi di fenomeni soggetti a modifiche indotte dalla realizzazione degli interventi di recupero ambientale e di rimodellamento morfologico; controllare situazioni specifiche, al fine di adeguare la conduzione dei lavori e di identificare le criticità ambientali, non individuate nella fase AO, che richiedono ulteriori esigenze di monitoraggio e l'eventuale adozione di azioni correttive e mitigative.

Il presente monitoraggio, nelle sue diverse fasi, è stato programmato al fine di tutelare il territorio e la popolazione residente dalle possibili modificazioni che le attività afferenti alla realizzazione della GN Caltanissetta possono comportare. In fase di esecuzione degli interventi, il sistema di accertamenti predisposto funge anche da sensore di allarme. Si è quindi previsto di rilevare sia il rumore emesso direttamente dal fronte di avanzamento lavori, che il rumore indotto, sulla viabilità esistente, dal traffico dovuto al trasporto del materiale terrigeno della GN Caltanissetta verso i siti di conferimento definitivi o verso l'area di deposito intermedia. Sulla base di tali considerazioni è stata, quindi, effettuata una valutazione preventiva dei luoghi e dei momenti caratterizzati da un rischio di impatto particolarmente elevato (intollerabile cioè per entità e/o durata) nei riguardi dei ricettori presenti, che ha consentito di individuare i punti maggiormente significativi in corrispondenza dei quali è stato previsto di realizzare il monitoraggio.

Per quanto concerne, invece, il monitoraggio del rumore indotto dal traffico dei mezzi di cantiere, le rilevazioni previste saranno effettuate allo scopo di controllare la rumorosità del traffico indotto dalle attività di cantiere. I punti di misura sono stati previsti principalmente nei centri abitati attraversati dai mezzi di cantiere, e in corrispondenza dei recettori limitrofi alle aree di conferimento definitivo; ciò consentirà di quantificare l'incremento della rumorosità ambientale dovuta al traffico degli automezzi a servizio della GN Caltanissetta in via di realizzazione, e di identificare gli interventi di mitigazione da applicare nel caso dovessero essere evidenziate delle situazioni di criticità.

Le attività di monitoraggio della componente ambientale "RUMORE", eseguite nel periodo **novembre 2016 / aprile 2017**, ha riguardato le misure eseguite in Corso d'Opera esclusivamente per i punti: PdU_RUM_03, PdU_RUM_04, PdU_RUM_06 e PdU_RUM_11.

3.1 Riferimenti normativi

Ai fini della caratterizzazione del clima acustico, la campagna di monitoraggio, oggetto della presente relazione, è stata condotta sulla base degli strumenti normativi e legislativi attualmente vigenti. Tali norme forniscono indicazioni su: grandezze e parametri da rilevare, sistemi di rilevazione, caratteristiche della strumentazione impiegata, criteri spaziali e temporali di campionamento, condizioni meteorologiche, modalità di raccolta e presentazione dei dati.

Il principale riferimento legislativo in materia acustica ambientale cui si è fatto riferimento è la Legge Quadro sull'Inquinamento Acustico n. 447 del 26/10/95, che stabilisce i principi fondamentali in materia di tutela dell'ambiente esterno e dell'ambiente abitativo dall'inquinamento acustico. Lo strumento legislativo applicativo della citata Legge Quadro è il D.P.C.M. del 14 novembre 1997: in particolare, i valori limite assoluti di immissione sono quelli relativi alla Tabella di seguito riportata.

		TEMPI DI RIF	ERIMENTO
	CLASSI DI DESTINAZIONE D'USO DEL TERRITORIO	DIURNO	NOTTURNO
		(06.00-22.00)	(22.00-06.00)
I	aree particolarmente protette	50	40
II	aree prevalentemente residenziali	55	45
III	aree di tipo misto	60	50
IV	aree di intensa attività umana	65	55
V	aree prevalentemente industriali	70	60
VI	aree esclusivamente industriali	70	70

Legge Quadro D.P.C.M. del 14/11/1997 - Tab. C valori limite assoluti di immissione - Leq in dB (A)

In caso di mancata individuazione delle aree di zonizzazione acustica da parte delle Amministrazioni Comunali, si deve fare riferimento al D.P.C.M. 01/03/1991 - "Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno" che stabilisce i "limiti di accettabilità dei livelli di rumore validi su tutto il territorio nazionale, quali misure immediate ed urgenti di salvaguardia della qualità ambientale e della esposizione urbana al rumore, in attesa dell'approvazione dei decreti attuativi della Legge Quadro". La tabella 1 del DPCM riporta i valori limite di livello di rumore diurno e notturno espressi in termini di livello equivalente continuo misurato con curva di ponderazione A (LeqA).

LIMITI DI IMMISSIONE DI	DESTINAZIONE D'USO TERRITORIALE	DIURNO	NOTTURNO
RUMORE	DESTINAZIONE D'USO TERRITORIALE	6:00÷22:00	22:00÷6:00
	Territorio nazionale	70	60
per Comuni con PRG	Zona urbanistica A	65	55
per Contum con FKG	Zona urbanistica B	60	50
	Zona esclusivamente industriale	70	70
per Comuni senza PRG	Zona esclusivamente industriale	70	70
(art. 6)	Tutto il resto del territorio	70	60

D.P.C.M. del 01/03/1991 - Tab. 1 - Limiti di immissione di rumore per comuni con PRG e senza PRG

Altro strumento legislativo applicato nella valutazione della Componente Rumore in questa fase è il DPR n° 142 del 30 marzo 2004: "Disposizioni per il contenimento e la prevenzione dell'inquinamento

acustico derivante dal traffico veicolare, a norma dell'articolo 11 della legge 26 ottobre 1995, n. 447" nel quale vengono regolamentati i seguenti aspetti:

- definizione del concetto di ricettore;
- classificazione delle infrastrutture stradali;
- > diversificazione dei limiti acustici fra le infrastrutture esistenti e quelle di nuova realizzazione;
- diversificazione delle fasce territoriali di pertinenza dell'infrastruttura, in relazione alla tipologia della strada;
- interventi di mitigazione acustica da adottare in caso di superamento dei limiti.

Con tale decreto in sostanza vengono individuate delle fasce territoriali di pertinenza all'interno delle quali il rumore prodotto dall'infrastruttura è normato esclusivamente dal decreto stesso. Inoltre, il rumore prodotto dalle strade non è soggetto ai vincoli del criterio differenziale.

Fuori dalle fasce di pertinenza il rumore stradale contribuisce (insieme al rumore prodotto da altre sorgenti) alla determinazione del livello d'immissione acustica, che è sottoposto ai limiti previsti dalla classificazione comunale di riferimento. Le tabelle che seguono individuano i limiti acustici all'interno delle suddette fasce indicate dal decreto.

Fasce di pertinenza acu	stica e valori limite di	immissio	ne di stra	de di nuo	va
	realizzazione				
TIPO DI STRADA	AMPIEZZA FASCIA PERTINENZA ACUSTICA	SCUOLE, C CASE DI C RIPO	CURA E DI		TRI TTORI
(SECONDO CODICE DELLA STRADA)	(METRI DAL CIGLIO DELLA STRADA)	Diurno (dBA)	Nott. (dBA)	Diurno (dBA)	Nott. (dBA)
A – Autostrada	250	50	40	65	55
B – Extraurbana principale	250	50	40	65	55
C – Extraurbana secondaria	250	50	40	65	55
Ca → a carreggiate separate e IV CNR1980 Cb → tutte le altre	150	50	40	65	55
D – Strada urbana di scorrimento	100	50	40	65	55
E – Strada urbana di quartiere	30	Definit	i dai Comur	ni, nel rispet	to della
F - Strada locale	30			4/11/1997 (ica (Legge Ç	
Fasce di pertinenza acust	ica e valori limite di i				
	i (ampliamenti, affia				
TIPO DI STRADA	AMPIEZZA FASCIA PERTINENZA ACUSTICA	SCUOLE, C CASE D E DI R	I CURA		TRI I'TORI
(SECONDO CODICE DELLA STRADA)	(METRI DAL CIGLIO DELLA STRADA)	DIURNO (DBA)	Nott. (dBA)	Diurno (dBA)	Nott. (dBA)
A Autostrada	100 (A)	50	40	70	60
A – Autostrada	150 (B)	50	40	65	55
P. Fratus valence and size 1	100 (A)	FO	40	70	60
B – Extraurbana principale	150 (B)	50	40	65	55

Fasce di pertinenza acu	stica e valori limite di realizzazione		ne di stra	ide di nuo	va
TIPO DI STRADA	AMPIEZZA FASCIA PERTINENZA ACUSTICA	SCUOLE, C CASE DI C RIPO	CURA E DI		TRI TTORI
(SECONDO CODICE DELLA STRADA)	(METRI DAL CIGLIO DELLA STRADA)	Diurno (dBA)	Nott. (dBA)	Diurno (dBA)	Nott. (dBA)
C – Extraurbana secondaria	100 (A)	50	40	70	60
Ca → a carreggiate separate e IV	150 (B)	30	40	65	55
CNR1980	100 (A)	50	40	70	60
Cb → tutte le altre	50 (B)	30	40	65	55
D - Strada urbana di scorrimento	100	50	40	70	60
Da→ a carreggiate separate e interquartiere Db→ tutte le altre	100	50	40	65	55
E – Strada urbana di quartiere	30	Definit	i dai Comur	ni, nel rispet	to della
F - Strada locale	30			4/11/1997 (ica (Legge Ç	

DPR n° 142 del 30 marzo 2004

Per quanto riguarda invece le tecniche di misura utilizzate, si è fatto riferimento al Decreto del 16 Marzo 1998, che stabilisce le "*Tecniche di rilevamento e di misurazione dell'inquinamento acustico*".

In accordo con quanto ormai accettato, le normative internazionali esaminate prescrivono che la misura della rumorosità ambientale venga effettuata attraverso la valutazione del livello equivalente (Leq) ponderato secondo la curva "A" espresso in decibel. Ulteriori dettagli esplicativi sul Leq A sono riportati nelle pagine che seguono.

3.2 Strumentazione impiegata per le misurazioni

Le attività di monitoraggio per la campagna svolta nel semestre maggio - ottobre 2016 sono state eseguite impiegando strumentazione conforme ai requisiti richiesti dal D.M. 16 marzo 1998. In particolare sono state impiegate postazioni semifisse costituite da fonometri integratori, ubicati con le relative batterie di alimentazione in contenitori stagni, collegati a microfoni - muniti di cuffia antipioggia-antivento – posti in sommità ad aste posizionate.

Le centraline di monitoraggio, come è possibile vedere dalle foto incluse nei report di misura allegati, sono state collocate in corrispondenza dei ricettori maggiormente esposti al rumore e comunque più sensibili all'impatto acustico, ad una distanza non inferiore ad 1,5 metri dalle superfici fonoriflettenti.

Prima e dopo le operazioni di misura, si è proceduto al controllo della calibrazione - della catena di misura sopra descritta - con calibratori verificando che le calibrazioni effettuate prima e dopo ogni ciclo di misura differissero al massimo di 0.5 dB.

In conclusione si precisa che tutta la strumentazione di misura è provvista di certificato di taratura ed è controllata almeno ogni due anni per la verifica della conformità alle specifiche tecniche. Il

controllo periodico è eseguito presso laboratori accreditati dal Dipartimento Laboratori di taratura di ACCREDIA.

Si ricorda che sono da considerarsi tarati gli strumenti acquistati da meno di due anni se corredati da certificato di conformità alla classe 1 delle norme EN 60651/1994 e EN 60804/1994.

3.3 Stazioni di monitoraggio

Di seguito si riporta un riepilogo delle misurazioni eseguite per i punti oggetto del seguente report, sia nella fase di Ante Operam che in quella di Corso d'Opera, oltre che le relative informazioni sul punto, quali coordinate, ubicazione, tipologia di misura, periodo di monitoraggio e limiti normativi vigenti.

			RIEF	PILOGO MISU	JRAZIONI I	N ANTE OPE	RAM			
Codice	Coord	linata	Ubicazione	Tipologia di	Limiti 1	normativi	Valori r	nisurati	Periodo di n	nonitoraggio
punto	Coordinate		Obicazione	Misura	Leq Diurno	Leq Notturno	Leq Diurno	Leq Notturno	Data inizio	Data fine
PdU_RUM 03	37°28'35.86"N	14°3'3.63"E	Viabilità per Cava Torrettelle e Giardino della Legalità	Valutazione clima acustico esistente (misura settimanale)	70	60	64,4	57,7	02/02/2015	09/02/2015

Riepilogo misurazioni giornaliere PdU_RUM 03 eseguite in Ante Operam

	RIEPILOGO MISURAZIONI IN CORSO D'OPERA												
Codice	Ubicazione			7	/alori 1	nisurati							
punto	Obicazione	Leq Diurno	Leq Nottur	no Leq I	Diurno	Leq Notturi	no Le	eq Diurno	Leq Notturno				
		61,8	55,0	6	0,7	54,7		61,1	54,6				
	Viabilità per Cava	Campa	agna 1		Camp	agna 2		Cam	pagna 3				
PdU_RUM 03	Torrettelle e Giardino della	inizio	fine	in	izio	fine		inizio	fine				
	Legalità												
	Legania	05/12/16	12/12/16	23/0	03/17	30/03/15]	19/04/17	26/04/17				

Riepilogo misurazioni giornaliere PdU_RUM 03 eseguite in Corso D'Opera

MONITORAGGI AMBIENTALI INTEGRATIVI

			RIEI	PILOGO MISU	JRAZIONI I	IN ANTE OPE	RAM			
Codice	Coord	linate	Ubicazione	Tipologia di	Limiti 1	normativi	Valori r	nisurati	Periodo di n	nonitoraggio
punto	Coordinate		Obicazione	Misura	Leq Diurno	Leq Notturno	Leq Diurno	Leq Notturno	Data inizio	Data fine
PdU_RUM 04	37°28'30.06"N	14° 0'46.87"E	Aree di Caratterizzazione - Imbocco GN Caltanissetta Sud	Valutazione clima acustico esistente (misura da 24h)	70	60	60,3	59,4	20/10/2014	21/10/2014

Riepilogo misurazioni giornaliere PdU_RUM 04 eseguite in Ante Operam

	RIEPILOGO MISURAZIONI IN CORSO D'OPERA														
Codice punto	Codice punto Ubicazione		Valori misurati												
Cource punto	Colcazione	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN
		59,3	57,8	60,6	59,0	60,6	59,0	61,7	58,3	57,4	54,8	55,2	51,8	61,5	54,1
		Campa	agna 1	Camp	agna 2	Camp	agna 3	Camp	agna 4	Camp	agna 5	Camp	agna 6	Camp	agna 7
	inizio	fine	inizio	fine	inizio	fine	inizio	inizio	fine	inizio	fine	inizio	fine	inizio	
	12/11/2014	13/11/2014	08/01/2015	09/01/2015	19/02/2015	20/02/2015	03/06/2015	04/06/2015	01/07/2015	02/07/2015	01/09/2015	02/09/2015	21/04/2016	21/04/2016	
	Aree di									1					
PdU_RUM_04	Caratterizzazione - Imbocco GN	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN
	Caltanissetta Sud	60,8	58,8	58,8	55,5	62,1	59,1	61,2	55,6	58,8	56,5	58,8	55,6		
		Camp	agna 8	Camp	agna 9	Campa	agna 10	Campa	igna 11	Campa	igna 12	Campa	agna 13		
		fine	inizio	fine	inizio	fine	inizio	fine	inizio	fine	inizio	fine	inizio	fine	inizio
		30/05/2016	31/05/2016	27/09/2016	28/09/2016	18/11/2016	19/11/2016	20/12/2016	21/12/2016	21/02/2017	22/02/2017	19/04/2017	20/04/2017		
			Limiti n	ormativi]	Leq Diurn	0	7	0	L	eq Notturi	10	6	0

Riepilogo misurazioni giornaliere PdU_RUM 04 eseguite in Corso D'Opera

MONITORAGGI AMBIENTALI INTEGRATIVI

	RIEPILOGO MISURAZIONI IN ANTE OPERAM									
Codice	Coord	linate	Ubicazione	Tipologia di Limiti normativ		normativi	Valori r	nisurati	Periodo di monitoraggio	
punto	C0010	inute	Colcuzione	Misura	Leq Diurno	Leq Notturno	Leq Diurno	Leq Notturno	Data inizio	Data fine
PdU_RUM_06	37°28'30.06"N	14°0'46.87"E	Viabilità per cave Giulfo Milia, Pizzo Candele e Grottarossa Primacava e aree di rimodellamento Alaimo La China e Dell'Aiera	Valutazione clima acustico esistente (misura settimanale)	70	60	60,4	54,8	13/05/2015	20/05/2015

Riepilogo misurazioni giornaliere PdU_RUM 06 eseguite in Ante Operam

	RIEPILOGO MISURAZIONI IN CORSO D'OPERA										
Codice	Ubicazione	Valori misurati									
punto	Obicazione	Leq Diurno	Leq Notturno	Leq Diurno	Leq Notturno	Leq Diurno	Leq Notturno	Leq Diurno	Leq Notturno	Leq Diurno	Leq Notturno
		60,3	57,3	60,4	56,2	67,8	62,8	59,5	55,7	68,4	64,7
		Campagna 1		Campagna 2		Campagna 3		Campagna 4		Campagna 5	
	inizio	fine	inizio	fine	inizio	fine	inizio	inizio	inizio	inizio	
	Viabilità per cave Giulfo	31/10/2014	09/11/2014	18/03/2015	25/03/2015	06/06/2015	13/06/2015	07/07/2015	14/07/2015	01/09/2015	08/09/2015
PdU_RUM_06	Milia, Pizzo Candele e Grottarossa Primacava e	Leq Diurno	Leq Notturno	Leq Diurno	Leq Notturno	Leq Diurno	Leq Notturno	Leq Diurno	Leq Notturno	LeqD	LeqN
1 40_110111_00	aree di rimodellamento Alaimo La China e	66,1	65,7	67,5	61,7	63,7	54,4	60,8	55,4		
	Dell'Aiera	Camp	agna 6	Camp	agna 7	Camp	agna 8	Camp	agna 9		
		inizio	inizio	inizio	inizio	inizio	inizio	inizio	inizio	fine	inizio
		26/09/2016	03/10/2016	21/11/2016	28/11/2016	23/01/2017	30/01/2017	12/04/2017	19/04/2017		
		Limiti n	ormativi	Leq D	Diurno	7	0	Leq No	otturno	6	0

Riepilogo misurazioni giornaliere PdU_RUM 06 eseguite in Corso D'Opera

MONITORAGGI AMBIENTALI INTEGRATIVI

	RIEPILOGO MISURAZIONI IN ANTE OPERAM									
Codice	Codice Coordinate		Ubicazione	Tipologia di	Limiti normativi		Valori misurati		Periodo di monitoraggio	
punto	Coort	amate	Obicazione	Misura	Leq Diurno	Leq Notturno	Leq Diurno	Leq Notturno	Data inizio	Data fine
PdU_RUM_11	37°25'11.27"N	13°54'33.49"E	Aree titolari – Cava Grottarossa Primacava – SS 640, Svincolo Serradifalco	Valutazione clima acustico esistente (misura da 24h)	70	60	63,5	59,5	29/01/2015	30/01/2015

Riepilogo misurazioni giornaliere PdU_RUM 11 eseguite in Ante Operam

	RIEPILOGO MISURAZIONI IN CORSO D'OPERA														
Calliananta	Ubicazione	Valori misurati													
Codice punto	Ubicazione	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN	LeqD	LeqN
	Aree titolari	64,2	57,6	60,5	55,7	60,4	52,2	64,3	56,8	61,5	56,4	61,5	56,3	62,5	54,9
	- Cava Grottarossa	Campa	agna 1	Camp	agna 2	Camp	agna 3	Camp	agna 4	Campa	igna 5	Camp	agna 6	Camp	agna 7
PdU_RUM_11	Primacava -	inizio	fine	inizio	fine	inizio	fine	inizio	inizio	fine	inizio	fine	inizio	fine	inizio
	SS 640, Svincolo	03/06/2015	04/06/2015	01/07/2015	02/07/2015	02/09/2015	03/09/2015	30/05/2016	31/05/2016	21/12/2016	22/12/2016	27/03/2017	28/03/2017	19/04/2017	20/04/2017
	Serradifalco		Limiti n	ormativi]	Leq Diurn	0	7	0	Le	eq Nottur	no	6	0

Riepilogo misurazioni giornaliere PdU_RUM 11 eseguite in Corso D'Opera

MONITORAGGI AMBIENTALI INTEGRATIVI

3.4 Sintesi monitoraggio Corso d'Opera

Le tabelle summenzionate riportano in forma riassuntiva i riscontri delle rilevazioni fonometriche effettuate sui punti oggetto di monitoraggio nel periodo oggetto del seguente report, riportando i Leq in dB suddivisi per periodo diurno (6.00-22.00) e notturno (22.00-6.00). Le attività di misura eseguite durante le fasi di Ante Operam e di Corso D'Opera hanno permesso di esaminare le eventuali variazioni che intervengono nell'ambiente a seguito della realizzazione della GN Caltanissetta, con particolare riferimento alla movimentazione di terreno dal sito di produzione fino ai siti di conferimento finale.

Le risultanze dei monitoraggi eseguiti in Corso d'Opera hanno evidenziato il rispetto dei limiti normativi relativamente al Leq diurno e al Leq notturno per tutti i ricettori monitorati, per i quali pertanto non si segnalano particolari criticità, eccetto che per il punto di monitoraggio PdU_RUM_06, relativamente alla campagna 7 eseguita durante il periodo 21-28/11/2016. In particolare si segnala il superamento del limite Leq notturno, riscontrando un valore pari a 61.7±0.58.

Si ritiene che tale superamento sia legato solo parzialmente al transito dei mezzi d'opera che trasportano il materiale di scavo della GN Caltanissetta fino alla cava Grottarossa Primacava, poiché un impatto acustico significativo è sicuramente riconducibile anche al traffico veicolare ordinario sulla SS640, posta in corrispondenza del ricettore monitorato. Si suggerisce, in ogni caso, di adottare opportuni interventi per limitare impatti sul clima acustico da parte dei mezzi d'opera, come la riduzione della velocità di transito dei camion lungo la viabilità per la Cava e la programmazione delle movimentazioni in maniera adeguata al rispetto dei limiti normativi vigenti.

Si evidenzia comunque che il suddetto punto PdU_RUM_06 è stato successivamente monitorato durante il semestre, precisamente nei periodi 23-30/01/2017 e 12-19/04/2017, restituendo valori di Leq notturni pari rispettivamente a 54,4 e 55,4, inferiori al limite normativo.

3.5 Conclusioni

Nel presente report sono stati illustrati i risultati emersi dall'indagine integrativa predisposta a seguito del sopraggiunto Piano di Utilizzo del materiale da scavo proveniente dalla GN Caltanissetta. Durante il periodo novembre 2016/aprile 2017 è stato previsto il monitoraggio del clima acustico di quattro ricettori, nello specifico i punti PdU_RUM 03, PdU_RUM 04, PdU_RUM 6 e PdU_RUM 11, ubicati lungo la viabilità di servizio dei mezzi d'opera. Le misurazioni effettuate, consentono di determinare se dette variazioni sono imputabili, o meno, alle attività in progetto ed eventualmente ricercare i correttivi che meglio possano ricondurre gli effetti rilevati a dimensioni accettabili.

Le indagini eseguite durante la fase di Ante Operam non hanno evidenziato superamenti né per quanto concerne le misure del Leq Notturno che in quello Diurno. Non sono state pertanto riscontrate criticità.

Per quanto riguarda le indagini eseguite in Corso d'Opera si evince che in tutte le misure giornaliere i livelli sonori sono risultati tutti inferiori ai limiti imposti dalla normativa vigente, ad eccezione della campagna 7 del punto PdU_RUM_06, limitatamente al valore di LEq notturno (61.7±0.58). Tale punto è stato monitorato successivamente in altre 2 campagne, entro il semestre, che hanno registrato valori di Leq notturno pari a 54,4 e 55,4, rispettivamente durante la campagna 8 e la campagna 9, inferiori al limite normativo pari a 60.0.

4 Ambiente idrico superficiale

Nel periodo di riferimento del presente report sono stati eseguiti i monitoraggi integrativi che hanno interessato due corsi d'acqua: il Fosso Mumia e il Fiume Salso. Detti monitoraggi sono stati eseguiti in ottemperanza alla prescrizione n.3 del parere n. 1029 della CTVIA, tale prescrizione dispone che il monitoraggio ambientale debba verificare che le opere provvisionali e le attività di cantiere non alterino in maniera significativa e permanente l'ecosistema fluviale. A tal riguardo, il monitoraggio integrativo è stato esteso alle stazioni IDR_13, IDR_14, IDR_23 e IDR_24.

Inoltre, In ossequio alla richiesta dall'AS-ANAS di estendere il monitoraggio ambientale a tutti i ricettori posti a valle dello scarico delle acque del cantiere della galleria Caltanissetta, sono state monitorate due sezioni idriche ubicate nel corpo idrico denominato Fosso Mumia, a monte e a valle rispetto all'affluente Niscima, denominati IDR_25 e IDR_26.

In riferimento ai suddetti punti, il CG (cfr - PEC del 24/10/2016) ha reso noto che nel corso dello scavo meccanizzato della galleria naturale Caltanissetta, alla progressiva pk 15.258,81, è stata riscontrata una venuta d'acqua di falda non prevista, correlata alla presenza di una particolare struttura geologica che, associata alle diverse permeabilità delle formazioni coinvolte, hanno determinato il formarsi di una lente acquifera con acque in pressione. In seguito all'accaduto sono state adottate tutte le misure di prevenzione del rischio di allagamento della galleria e del piazzale di lavorazione necessarie, oltre a misure atte a ridurre il sovraccarico idraulico dell'impianto di depurazione. Ciò nonostante si è reso necessario il trasferimento temporaneo delle acque di falda direttamente al recapito idrologico, in corrispondenza del canalone adiacente all'imbocco della galleria, che recapita nel fosso Mumia, ovvero in corrispondenza dei punti di monitoraggio IDR_25 e IDR_26. La campagna afferente al periodo a cui fa riferimento l'accaduto, su tali ricettori, come da cronoprogramma è stata eseguita il 21/10/16. In questa occasione, in particolare sul punto IDR_26 posto a valle dell'intersezione del torrente Niscima con il fosso Mumia, sono subito state riscontrare delle anomalie in quanto le acque si presentavano particolarmente torbide, con una colorazione grigio chiaro e leggermente schiumose, il letto dell'alveo risultava ricoperto da un deposito a consistenza limoso-argillosa e di colore grigio chiaro ed inoltre sono state riscontrate delle evidenti variazioni su alcuni parametri speditivi quali pH e potenziale redox.

In seguito al riscontro sul campo di tali anomalie e soprattutto alla ricezione della comunicazione summenzionata, si è reso necessario programmare un ulteriore e tempestivo campionamento, eseguito il 27/10/16, per verificare l'evolversi della situazione ambientale del corpo idrico. I risultati delle 2 campagne di ottobre 2016 eseguite sui punti IDR_25 e IDR_26 fanno, quindi, riferimento alla suddetta circostanza non prevista. Pertanto, si terrà conto del problema riscontrato nella fase di interpretazione e confronto dei dati rilevati.

4.1 Riferimenti normativi

Di seguito vengono elencati i principali riferimenti normativi vigenti, nonché alcuni articoli tecnici di settore inerenti all'argomento:

Leggi di tutela ambientale generale:

✓ Decreto Legislativo 3 aprile 2006, n. 152 "Norme in materia ambientale" e s.m.i.

Analisi di laboratorio delle acque, parametri descrittori:

- ✓ Deliberazione Comitato Interministeriale 4 febbraio 1977 "Criteri generali e metodologie per il rilevamento delle caratteristiche qualitative dei corpi idrici e per la formazione del catasto degli scarichi";
- ✓ DPR 236 del 1988 e successive modifiche ed integrazioni sulla Qualità delle acque destinate al consumo umano contenente in allegato 1 "Requisiti di qualità elenco parametri", ed in allegato 2 "metodi analitici di riferimento".

Standard per gli accertamenti:

- ✓ UNI EN 25667-1 Guida alla definizione di programmi di campionamento;
- ✓ UNI EN 2566-7 Guida alle tecniche di campionamento;
- ✓ ISO 5667-3:1994 Guidance on the preservation and handling of samples;
- ✓ ISO 5667-14:1998 Guidance on quality assurance of environmental water sampling and handling;
- ✓ ISO 4363:1993 Measurement of liquid flow in open channels Method for measurement of suspended sediments;
- ✓ ISO/DIS 5667-17 Guidance on sampling of suspended sediments;
- ✓ ISO/TR 13530:1997 Guide to analytical quality control for water analysis;
- ✓ ISO 9001 "Sistemi di gestione per la qualità Requisiti"
- ✓ UNI EN ISO 10005:1996 "Linee guida per fornitori e committenti per la preparazione, il riesame, l'accettazione, e la revisione di piani di qualità";
- ✓ UNI CEI EN ISO/IEC 17025 "Requisiti generali per la competenza di laboratori di prova e taratura".

4.2 Attività svolte

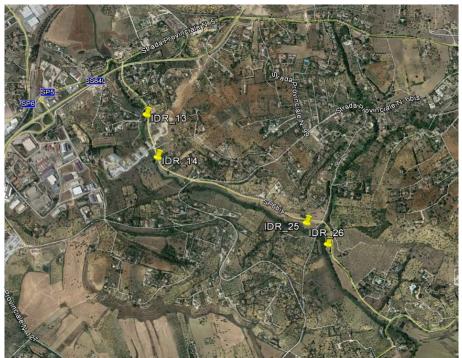
Nel periodo novembre 2016 / aprile 2017 sono state condotte analisi di tipo chimico-fisico, chimico-batteriologico ed ecotossicologico, al fine di verificare eventuali sovrapposizioni tra i lavori di adeguamento e ammodernamento del secondo lotto della S.S. n.º 640 e i corpi idrici interferenti. Nel dettaglio, sono state eseguite le seguenti tipologie di indagine:

- ➤ analisi di laboratorio: determinazione dei parametri chimico-fisici, microbiologici ed ecotossicologici per i punti IDR_25 e IDR_26;
- ➤ monitoraggio Macroinvertebrati attraverso l'applicazione dell'indice STAR-ICMi e Diatomee (IDR_13, IDR_14, IDR_23 e IDR_24);

MONITORAGGI AMBIENTALI INTEGRATIVI

➤ applicazione dell'indice di funzionalità fluviale (I.F.F.) alle sezioni IDR_13, IDR_14, IDR_23 e IDR_24.

4.3 Stazioni indagate


Nella tabella seguente sono indicate le stazioni di monitoraggio monitorate nel periodo del presente report, con la loro localizzazione e le date in cui sono stati eseguiti tutti i campionamenti e i rilievi in situ, sia nella fase di Ante Operam che in quella di corso d'opera.

Punto di monitoraggio	Corso d'acqua	Coordinate §	geografiche	Data di campionamento			
monitoraggio		Nord	Est	AO	СО		
IDR_13	Fosso Mumia	37°27'54" N	14°0'18,6" E		luglio 2015 / giugno 2016/ settembre 2016/aprile 2017		
IDR_14	rosso Munna	37°27'49,3" N	14°0′ 22,2″ E		luglio 2015 / giugno 2016/ settembre 2016/aprile 2017		
IDR_23	Fiume Salso	37°32'26,6" N	14°8′ 2,5″ E		luglio 2015 / giugno 2016/ settembre 2016/aprile 2017		
IDR_24	Fiume Saiso	37°32'15,8" N	14°7' 57,5" E		luglio 2015 / giugno 2016/ settembre 2016/aprile 2017		
Monitoraggio rich	iesto dall'AS-ANAS con p	ropria nota CPA	-0019080-P del	27/03/2015			
IDR_25	Fosso Mumia a monte dell'affluente Niscima	37°27'35.54" N	14° 0'57.37" E	aprile 2015	maggio-agosto 2015/aprile 2016/ giugno-ottobre 2016/novembre 2016-febbraio 2017/ aprile 2017		
IDR_26	Fosso Mumia a valle dell'affluente Niscima	37°27'30.84" N	14° 1'2.63" E	aprile 2015	maggio-agosto 2015/aprile 2016/ giugno-ottobre 2016/novembre 2016-febbraio 2017/ aprile 2017		

Punti interessati dal monitoraggio

Segue uno stralcio fotografico dell'ubicazione delle stazioni di monitoraggio.

Stralcio fotografico dei punti oggetto di monitoraggio

MONITORAGGI AMBIENTALI INTEGRATIVI

4.4 Parametri monitorati nel Fosso Mumia

I parametri chimico-batteriologici rilevati nei punti di monitoraggio IDR_25 e IDR_26, sono i seguenti:

PARAMETRI	TIPOLOGIA PA	ARAMETRI
Parametro	Unità di misura	
Portata	m³/s	Parametro Idrologico (solo nell'ante operam)
Temp. aria	°C	
Temp. acqua	°C	
Ossigeno disciolto	mg/l	B
Conducibilità	μS/cm	Parametri in situ
pН	Unità di pH	
Potenziale Redox	mV	
Azoto ammoniacale	mg/l	
Azoto totale	mg/l	
Nitrati	mg/l	
Azoto nitroso	mg/l	
Ortofosfato	mg/l	
Fosforo totale	mg/l	
BOD5	mg/l	
COD	mg/l	Parametri di laboratorio
Durezza	°F	
Solidi sospesi totali	mg/l	
Torbidità	NTU	
Colore	Tasso diluizione	
Tensioattivi anionici e non ionici	mg/l	
Solfati	mg/l	
Cloruri	mg/1	
Nichel	μg/l	
Cromo	μg/l	
Cromo VI	μg/l	
Rame	μg/l	
Zinco	μg/l	
Piombo	μg/l	
Cadmio	μg/l	Metalli
Ferro	μg/l	
Vanadio	μg/l	
Berillio	μg/l	
Antimonio	μg/l	
Selenio	μg/1 μg/l	
Idrocarburi totali	μg/1 μg/l	
Fenoli	μg/1 μg/l	
Cloroalcani C10-C13		
2-clorofenolo	μg/l	
2,4-diclorofenolo	μg/l	
	μg/l	
2,4,6-triclorofenolo	μg/l	
2-metilfenolo	μg/l	
3-metilfenolo	μg/l	Composti organici mirati
4-metilfenolo	μg/l	
Antracene	μg/l	
Fluorantene	μg/l	
Naftalene	μg/l	
Benzo(a)pirene	μg/l	
Benzo(b)fluorantene	μg/l	
Benzo(k)fluorantene	μg/l	
Benzo(g,h,i)perylene	μg/l	

MONITORAGGI AMBIENTALI INTEGRATIVI

PARAMETRI	TIPOLOGIA PARAM	IETRI
Parametro	Unità di misura	
Indeno(1,2,3c,d)pyrene	μg/l	
1,2-Dicloroetano	μg/l	
Clorometano	μg/l	
1,1-Dicloroetilene	μg/l	
Diclorometano	μg/l	
Tetracloruro di carbonio	μg/l	
Tetracloroetilene	μg/1	
Tricloroetilene	μg/l	
Triclorometano	μg/l	
Cloruro di vinile	μg/l	
Esaclorobutadiene	μg/l	
Pentaclorofenolo	μg/l	
4-Nonilfenolo	μg/l	
Ottilfenolo	μg/l	
Streptococchi fecali ed enterococchi	UFC/100 ml	
Salmonelle	presente/assente in 1000 mL	
Coliformi totali	UFC/100 ml	Parametri microbiologici
Coliformi fecali	UFC/100 ml	
Escherichia Coli	UFC/100 ml	
Saggio di tossicità acuta (Daphnia Magna)	% immobili (24 h)	
Saggio di tossicità acuta con batteri bioluminescenti (Vibrio fischeri)	% inibizione bioluminescenza (dopo 15 minuti)	Saggi di tossicità
ÎBE	Classe di qualità	Indice biotico esteso

Parametri chimico fisici e biologici misurati

Nel corso del periodo di monitoraggio in esame, le metodologie di analisi utilizzate per la determinazione dei parametri chimico-fisici sono riportate nella tabella seguente.

	Parametri di labor	atorio generali
Parametro	Metodo di prova	Principio del metodo
Azoto ammoniacale	APAT CNR IRSA 4030 A2 Man 29 2003	Determinazione con elettrodo specifico
Nitrati	APAT CNR IRSA 4020 Man 29 2003	Determinazione colorimetrica del composto ottenuto per reazione tra nitrati e salicilato di sodio
Azoto nitroso	APAT CNR IRSA 4050 Man 29 2003	Determinazione con cromatografo ionico
Fosforo totale	APAT CNR IRSA 4110 A2 Man 29 2003	Determinazione tramite spettrofotometria a raggi UV
BOD5	APAT CNR IRSA 5120 Man 29 2003	Determinazione dell'ossigeno disciolto nel campione da analizzare prima e dopo incubazione di 5 giorni
COD	ISO 15705:2002	Determinazione per retrotitolazione delle sostanze ossidabili in una soluzione bollente di dicromato di potassio e acido solforico
Solidi sospesi totali	APAT CNR IRSA 2090 B Man 29 2003	Determinazione gravimetrica del residuo da filtrazione su membrana di porosità 0,45 μm
Durezza totale	APAT CNR ISRA 3030 Man 29 2003 + APAT CNR IRSA 2040 A Man 29 2003	Determinazione tramite cromatografia ionica
Torbidità	APAT CNR IRSA 2110 Man 29 2003	Determinazione per confronto visuale con le sospensioni di confronto (NTU o SiO2) o determinazione strumentale (spettrofotometrico o nefelometrico)
Tensioattivi anionici	APAT CNR IRSA 5170 Man 29 2003	Determinazione colorimetrica del sale di colore blu formato per reazione con blu di metilene ed estratto in cloroformio.

MONITORAGGI AMBIENTALI INTEGRATIVI

Parametri di laboratorio generali								
Parametro	Metodo di prova	Principio del metodo						
Tensioattivi non ionici	APAT CNR IRSA 5180 Man 29 2003	I tensioattivi non ionici sono fatti precipitare con il reattivo di Dragendorff (KBiI4 + BaCl2 in acido acetico glaciale).Il precipitato viene disciolto e il bismuto presente viene titolato per via potenziometrica con pirrolidinditiocarbammato di sodio (NaPDC) che lo complessa nel rapporto 3:1 (3 NaPDC:1 Bi).						
Cloruri	APAT CNR IRSA 4020 Man 29 2003	Determinazione con cromatografo ionico						
Solfati	APAT CNR IRSA 4020 Man 29 2003	Determinazione con cromatografo ionico						
Cloro residuo totale	APAT CNR IRSA 4080 Man 29 2003	Ossidazione con una soluzione di N,N-dietil-p-fenilendiammina (DPD) a pH 6,2-6,5 con formazione di un composto colorato in rosso la cui assorbanza viene misurata alla lunghezza d'onda di 510 nm.						
Metalli e specie metalliche								
Parametro	Metodo di prova	Principio del metodo						
Nichel	EPA 6020B 2014	Determinazione con ICP-Massa						
Cromo totale	EPA 6020B 2014	Determinazione con ICP-Massa						
Cromo VI	APAT CNR IRSA 3150 C Man 29 2003	Determinazione in HPLC (cromatografia liquida ad alte prestazioni)						
Rame	EPA 6020B 2014	Determinazione con ICP-Massa						
7.		Determinazione con ICF-Massa						
Zinco	EPA 6020B 2014	Determinazione con ICP-Massa Determinazione con ICP-Massa						
Piombo	EPA 6020B 2014 EPA 6020B 2014							
		Determinazione con ICP-Massa						
Piombo	EPA 6020B 2014	Determinazione con ICP-Massa Determinazione con ICP-Massa						
Piombo Cadmio	EPA 6020B 2014 EPA 6020B 2014	Determinazione con ICP-Massa Determinazione con ICP-Massa Determinazione con ICP-Massa						
Piombo Cadmio Ferro	EPA 6020B 2014 EPA 6020B 2014 EPA 6020B 2014	Determinazione con ICP-Massa Determinazione con ICP-Massa Determinazione con ICP-Massa Determinazione con ICP-Massa						
Piombo Cadmio Ferro Vanadio	EPA 6020B 2014 EPA 6020B 2014 EPA 6020B 2014 EPA 6020B 2014	Determinazione con ICP-Massa						

	Composti org	ganici mirati
Parametro	Metodo di prova	Principio del metodo
Idrocarburi totali	UNI EN ISO 9377-2 2002	Determinazione in GC (gas cromatografia) delle sostanze estratte con diclorometano e non trattenute da florisil
Fenoli	EPA 3510C 1996 + EPA 8270D 2014	Estrazione con diclorometano, purifica zione in GPC (cromatografia su permeazione di gel) e determinazione in GC-Massa
Benzene	EPA 3510C 1996 + EPA 3630C 2006 (Elimina) + EPA 8270D 2007 (diventa 2014)	Estrazione per spazio di testa e determinazione in GC-Massa
Cloroalcani C10-C13	EPA 3510C 1996 + EPA 8015D 2003	Estrazione con diclorometano, purifica zione in GPC (cromatografia su permeazione di gel) e determinazione in GC-Massa
Antracene	EPA 3510C 1996 + EPA 8270D 2014	Estrazione con diclorometano, purifica zione in GPC (cromatografia su permeazione di gel) e determinazione in GC-Massa
Fluorantene	EPA 3510C 1996 + + EPA 8270D 2014	Estrazione con diclorometano, purifica zione in GPC (cromatografia su permeazione di gel) e determinazione in GC-

MONITORAGGI AMBIENTALI INTEGRATIVI

	Composti or	ganici mirati
Parametro	Metodo di prova	Principio del metodo
		Massa
Naftalene	EPA 3510C 1996 + + EPA 8270D 2014	Estrazione con diclorometano, purifica zione in GPC (cromatografia su permeazione di gel) e determinazione in GC-Massa
Benzo(a)pirene	EPA 3510C 1996 + + EPA 8270D 2014	Estrazione con diclorometano, purifica zione in GPC (cromatografia su permeazione di gel) e determinazione in GC-Massa
Benzo(b)fluorantene	EPA 3510C 1996 + + EPA 8270D 2014	Estrazione con diclorometano, purifica zione in GPC (cromatografia su permeazione di gel) e determinazione in GC-Massa
Benzo(k)fluoranthene	EPA 3510C 1996 + + EPA 8270D 2014	Estrazione con diclorometano, purifica zione in GPC (cromatografia su permeazione di gel) e determinazione in GC-Massa
Benzo(g,h,i)perylene	EPA 3510C 1996 + + EPA 8270D 2014	Estrazione con diclorometano, purifica zione in GPC (cromatografia su permeazione di gel) e determinazione in GC-Massa
Indeno(1,2,3cd)pyrene	EPA 3510C 1996 + + EPA 8270D 2014	Estrazione con diclorometano, purifica zione in GPC (cromatografia su permeazione di gel) e determinazione in GC-Massa
1,2-Dicloroetano	EPA 5030C 2003 + EPA 8260C 2006	Estrazione per spazio di testa e determinazione in GC-Massa
Clorometano	EPA 5030C 2003 + EPA 8260C 2006	Estrazione per spazio di testa e determinazione in GC-Massa
1,1Dicloroetilene	EPA 5030C 2003 + EPA 8260C 2006	Estrazione per spazio di testa e determinazione in GC-Massa
Diclorometano	EPA 5030C 2003 + EPA 8260C 2006	Estrazione per spazio di testa e determinazione in GC-Massa
Tetracloruro di carbonio	EPA 5030C 2003 + EPA 8260C 2006	Estrazione per spazio di testa e determinazione in GC-Massa
Tetracloroetilene	EPA 5030C 2003 + EPA 8260C 2006	Estrazione per spazio di testa e determinazione in GC-Massa
Tricloroetilene	EPA 5030C 2003 + EPA 8260C 2006	Estrazione per spazio di testa e determinazione in GC-Massa
Triclorometano	EPA 5030C 2003 + EPA 8260C 2006	Estrazione per spazio di testa e determinazione in GC-Massa
Cloruro di vinile	EPA 5030C 2003 + EPA 8260C 2006	Estrazione per spazio di testa e determinazione in GC-Massa
Esaclorobutadiene	EPA 5030C 2003 + EPA 8260C 2006	Estrazione per spazio di testa e determinazione in GC-Massa
Pentaclorofenolo	EPA 3510C 1996 + EPA 8270D 2014	Estrazione con diclorometano, purifica zione in GPC (cromatografia su permeazione di gel) e determinazione in GC-Massa
4-Nonilfenolo	EPA 3510C 1996 + EPA 8270D 2007	Estrazione con diclorometano, purifica zione in GPC (cromatografia su permeazione di gel) e determinazione in GC-Massa
Ottilfenolo	EPA 3510C 1996 + EPA 8270D 2014	Estrazione con diclorometano, purifica zione in GPC (cromatografia su permeazione di gel) e determinazione in GC-Massa

Le metodologie di analisi utilizzate per la determinazione dei parametri batteriologici, sono riportate nella tabella seguente.

MONITORAGGI AMBIENTALI INTEGRATIVI

Parametri microbiologici				
Parametro	Metodo	Principio del metodo		
Streptococchi fecali ed enterococchi	APAT CNR IRSA 7040 A Man 29 2003	Colture di colonie batteriche su terreni specifici e conta diretta		
Salmonelle	APAT CNR IRSA 7080 Man 29 2003	Prearricchimento e arricchimento in terreni liquidi e successiva valutazione della presenza di colonie batteriche specifiche su idonei terreni di coltura		
Coliformi totali	APAT CNR IRSA 7010 C Man 29 2003	Colture di colonie batteriche su terreni specifici e conta diretta		
Coliformi fecali	APAT CNR IRSA 7020 B Man 29 2003	Colture di colonie batteriche su terreni specifici e conta diretta		
Escherichia Coli	APAT CNR IRSA 7030 D Man 29 2003	Colture di colonie batteriche su terreni specifici e conta diretta		

4.5 Parametri monitorati nel Fosso Mumia e Fiume Salso

Il monitoraggio presso i punti IDR_13, IDR_14, IDR_23 e IDR_24 ha previsto la determinazione di alcuni indicatori biologici, volti a verificare eventuali variazioni che potrebbero sopraggiungere nei corpi idrici in seguito alla stretta vicinanza con aree di cantiere. Si precisa che le indagini di cui alla presente relazione, vanno ad integrare le indagini già presenti nel precedente PMA del PEA.

Si riporta di seguito una descrizione delle indagini previste nel presente monitoraggio integrativo.

Diatomee e indice ICMi

Descrizione delle comunità:

Le diatomee sono alghe brune, unicellulari, eucariote e autotrofe, appartenenti alla Classe delle Bacillariophyceae, generalmente delle dimensioni di pochi µm. Possono vivere isolate o formare colonie. Sono caratterizzate da una parete cellulare silicea chiamata frustulo costituito da due metà che si incastrano l'una nell'altra come una scatola e il suo coperchio. Esse sono le principali componenti del perifiton.

Le diatomee sono in grado di colonizzare qualsiasi tipo di ambiente umido, dai sistemi lotici a quelli più lentici, permettendo una valutazione della qualità di diverse tipologie ecosistemiche, sia fluviali, che sorgenti, torbiere o prati umidi. In base all'habitat possono essere suddivise in bentoniche, che vivono aderenti al substrato e possiedono meccanismi per l'adesione ad esso e planctoniche che non sono ancorate a substrati e sono trascinate liberamente dalla corrente. A seconda che vivano su ciottoli, su altri elementi vegetali macroscopici o su depositi di limo si parla rispettivamente di diatomee epilitiche, epifitiche e epipeliche.

Le diatomee, sia bentoniche che planctoniche, sono influenzate da numerose variabili fisicochimiche quali, innanzi tutto, la luce, essendo organismi fotosintetizzanti, la temperatura, il pH, la salinità e la velocità di corrente dell'acqua, ma anche le concentrazioni di ossigeno, di silice, di

MONITORAGGI AMBIENTALI INTEGRATIVI

sostanza organica, di nutrienti ed eventualmente di metalli pesanti. Le comunità sono quindi capaci di rispondere efficacemente alle variazioni di questi fattori variando le specie che le compongono. Le diatomee sono considerate buone indicatrici dello stato di qualità delle acque per numerosi motivi: presentano differenti sensibilità agli inquinanti e sono molto reattive al variare delle condizioni ambientali; hanno una vasta distribuzione geografica; sono in grado di accumulare metalli pesanti e possono essere fissate in preparati permanenti grazie allo scheletro siliceo.

In Italia, prima del recepimento della Direttiva 2000/60/CE, l'utilizzo della comunità diatomica per la valutazione della qualità dei corsi d'acqua, non era previsto, a livello normativo. Con il D.Lgs 152/2006 e successivi decreti attuativi è stato introdotto per la prima volta lo studio di un metodo in grado di soddisfare le richieste della direttiva europea.

Il decreto attuativo 8 novembre 2010 n. 260 recante "criteri tecnici per la classificazione dei corpi idrici superficiali per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006 n. 152, recante norme in materia ambientale" prevede l'applicazione dell'indice ICMi per definire uno stato di qualità dei corpi idrici in funzione della comunità diatomica rilevata.

Descrizione del campionamento e calcolo dell'indice ICMi:

Il metodo di campionamento utilizzato è quello pubblicato sul manuale APAT (2007) - Protocollo di campionamento ed analisi per le diatomee bentoniche dei corsi d'acqua italiani, al quale si rimanda per una descrizione dettagliata.

Presso ogni stazione di monitoraggio, viene scelto innanzitutto il substrato idoneo per il campionamento: nell'ambito della rete di monitoraggio di ARPA, i campioni raccolti sono stati sempre prelevati su ciottoli. I ciottoli sono i substrati naturali mobili migliori per la raccolta di diatomee; sono preferibili in quanto consentono un agevole prelievo e sono abbastanza stabili da permettere l'insediamento di una comunità rappresentativa.

La scelta dei ciottoli viene effettuata tenendo conto della velocità della corrente, evitando zone con acqua troppo lenta, dell'ombreggiatura, non troppo elevata, e della profondità dell'acqua. I substrati devono essere raccolti in aree sempre sommerse, o sommerse da almeno 4 settimane. Se si campiona in corsi d'acqua profondi è necessario rimanere nella zona eufotica. I ciottoli complessivamente devono essere almeno 5.

L'operazione di raccolta viene fatta con uno spazzolino che deve essere sciacquato in un barattolo contenente per metà acqua del torrente oggetto di campionamento. Per la restante metà viene aggiunto etanolo in modo da fissare e conservare il campione.

I campioni sono trasportati in laboratorio dove vengono trattati per essere conservati per un tempo illimitato. Successivamente i campioni sono montati e letti al microscopio ottico. Per l'applicazione degli indici diatomici, devono essere identificati almeno 400 individui per ogni campione, come

MONITORAGGI AMBIENTALI INTEGRATIVI

previsto dalla norma standard (UNI EN 14407:2004). Per l'identificazione degli organismi sono utilizzate differenti chiavi dicotomiche.

I dati sono archiviati grazie anche al supporto di specifici software che oltre a creare un data-base floristico calcolano anche gli indici relativi alle diatomee. L'indice ICMi, indicato dalla normativa italiana, viene espresso come Rapporto di Qualità Ecologica, RQE tra i valori ricavati dal monitoraggio e quelli attesi per siti di tipologia analoga in condizioni di riferimento.

Indice IFF

L'Indice di Funzionalità Fluviale permette di studiare il grado di funzionalità di un fiume o di parte di questo, attraverso la descrizione dei parametri morfometrici e biotici dell'ecosistema in studio. Diventa perciò uno strumento usato per la pianificazione nell'uso delle risorse idriche e nel riassetto idraulico del territorio.

La considerazione preliminare e necessaria per questo strumento è la conoscenza del potere autodepurante dei fiumi e il concetto di susseguibilità di ecosistemi nell'ecologia fluviale. Sebbene sia uno strumento piuttosto recente sta ottenendo una notevole considerazione per la sua capacità di fornire una conoscenza approfondita dell'ambiente fluviale.

Questo strumento è stato creato da un gruppo di lavoro nato nell'Agenzia Nazionale per la Protezione dell'Ambiente (ANPA) riunito nel 1998 e che ha lavorato fino al 2000 per la realizzazione del questionario finale.

L'IFF è strutturato in 14 domande raggruppabili in 4 gruppi funzionali:

- condizione vegetazionale delle rive e del territorio circostante al corso d'acqua;
- > ampiezza relativa dell'alveo bagnato e struttura morfo-fisica delle rive;
- > struttura dell'alveo;
- caratteristiche biologiche.

Il punteggio complessivo (valore minimo di 14, massimo di 300) viene tradotto in 5 livelli ai quali corrispondono 5 livelli di funzionalità.

La scheda deve essere compilata in campo dopo aver acquisito notevoli informazioni preliminari sulla zona in studio, avendo cura di selezionare delle tempistiche comprese fra il regime idraulico di morbida e di piena ma comunque in periodo di stadio vegetativo.

Macroinvertebrati e Indice STAR_ICMi

Descrizione delle comunità e del metodo:

I macroinvertebrati bentonici sono popolamenti che vivono, per almeno una parte del loro ciclo vitale, su substrati disponibili dei corsi d'acqua utilizzando meccanismi di adattamento in grado di

MONITORAGGI AMBIENTALI INTEGRATIVI

resistere alla corrente. Hanno dimensione generalmente superiore al millimetro di lunghezza e sono quindi visibili ad occhio nudo.

I gruppi faunistici più frequenti sono: insetti (coleotteri, tricotteri, ditteri, efemerotteri, plecotteri) crostacei (gamberi, gammaridi), molluschi (bivalvi e gasteropodi), anellidi (vermi e sanguisughe), platelminti (planarie), più raramente celenterati, poriferi (spugne), briozoi e nematomorfi (Fenoglio, 2009).

Il ruolo trofico dei macroinvertebrati nei corsi d'acqua è quello di consumatori a tutti i livelli. Si ritrovano ad esempio organismi detritivori (es. chironomidi) fitofagi e predatori (es. odonati, eterotteri) ed anche parassiti (es. sanguisughe). A loro volta essi rappresentano l'alimento preferenziale dei pesci.

I macroinvertebrati bentonici sono considerati buoni indicatori dello stato di qualità delle acque per numerosi motivi. I diversi gruppi presentano differenti sensibilità all'inquinamento, oltre che diversi ruoli trofici. Essendo difficilmente movibili indicano con immediatezza le eventuali alterazioni dell'ambiente; hanno un ciclo vitale lungo che permette di rilevare impatti minimi protratti nel tempo e sono facilmente determinabili e campionabili. Esistono numerosi metodi di bioindicazione basati sulla componente macrobentonica.

In Italia fino all'abrogazione del D.Lgs 152/1999, il metodo di riferimento è stato l'Indice Biotico Esteso (I.B.E.) (Ghetti, 1997). Tale metodo si basa sulla diversa sensibilità agli inquinanti di alcuni gruppi faunistici e sulla ricchezza in taxa della comunità complessiva. Non prevede però una valutazione numerica dell'abbondanza di ogni singolo taxa rilevato.

La Direttiva 2000/60/CE ha introdotto una definizione dello stato di qualità dei corsi d'acqua basato su composizione e abbondanza delle comunità biologiche tra cui i macroinvertebrati bentonici. È' stato quindi introdotto nella normativa italiana di riferimento con il D.Lgs 152/2006 un metodo in grado di soddisfare le richieste della direttiva europea. Il decreto attuativo 8 novembre 2010 n. 260 recante "criteri tecnici per la classificazione dei corpi idrici superficiali per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006 n. 152, recante norme in materia ambientale" prevede, relativamente alla comunità macrobentonica, l'utilizzo del sistema di classificazione MacrOper, basato sul calcolo dell'indice multimetrico STAR di intercalibrazione.

Descrizione del campionamento di macroinvertebrati e calcolo dell'indice STAR_ICMi:

Il metodo di campionamento utilizzato è di tipo multihabitat proporzionale (Buffagni et al. 2007). Il prelievo quantitativo di macroinvertebrati viene effettuato su una superficie nota in maniera proporzionale alla percentuale di microhabitat presenti nel tratto campionato.

MONITORAGGI AMBIENTALI INTEGRATIVI

Report periodico Monitoraggio Ante e Corso d'Opera - periodo novembre 2016 – aprile 2017

Microhabitat	Codice	Descrizione	
Limo/Argilla < 6 μm	ARG	Substrati limosi, anche con importante componente organica, e/o substrati argillosi composti da materiale di granulometria molto fine	
Sabbia 6 μm - 2 mm	SAB	Sabbia fine e grossolana	
Ghiaia 0,2 - 2 cm	GHI	Ghiaia e sabbia molto grossolana	
Microlithal 2-6 cm	MIC	Pietre piccole	
Mesolithal 6-20 cm	MES	Pietre di medie dimensioni	
Macrolithal 20-40 cm	MAC	Pietre grossolane	
Megalithal > 40 cm	MGL	Pietre di grosse dimensioni, massi, substrati rocciosi di cui viene campionata la superficie	
Artificiale	ART	Calcestruzzo e tutti i substrati solidi non granulari immessi artificialmente nel fiume	
Igropetrico	IGR	Sottile strato d'acqua su substrato solido, spesso ricoperto da muschi	

Il campionamento prevede l'individuazione, nel tratto di corso d'acqua monitorato, della sequenza riffle/pool riconoscibile dalla presenza di due aree contigue con caratteristiche di turbolenza, profondità, granulometria del substrato e carattere deposizionale/erosionale diversi. L'area di pool è caratterizzata da minor turbolenza e substrato costituito principalmente da materiale meno grossolano rispetto all'area di riffle; si presenta spesso come un'area relativamente profonda. L'area di riffle è caratterizzata da turbolenza più elevata rispetto all'area di pool e da una granulometria del substrato di dimensioni maggiori rispetto alla pool, dalla minor profondità e dalla minor presenza di depositi di detrito organico (Buffagni et al. 2007).

In relazione al tipo fluviale, il campione biologico deve essere raccolto nella sola area di pool o nella solo area di riffle. Qualora fosse impossibile individuare la sequenza riffle/pool, il campionamento viene effettuato in un tratto di torrente definito generico.

Lo strumento utilizzato per il campionamento è un retino immanicato modificato. La superficie di campionamento è di 0,1 m2. Ogni campione prelevato è costituito da 10 repliche distribuite proporzionalmente tra i microhabitat e le tipologie di flusso, con una superficie totale di campionamento di 1 m².

Il principale criterio per il riconoscimento delle tipologie di flusso è la modalità di increspatura della superficie dell'acqua. Seguono i principali tipi di flusso rinvenibili nei fiumi italiani.

MONITORAGGI AMBIENTALI INTEGRATIVI
Report periodico Monitoraggio Ante e Corso d'Opera - periodo novembre 2016 – aprile 2017

Tipo di flusso	Codice	Definizione	
Asciutto/no flow	DR	Assenza di acqua	
Non percettibile/no perceptible flow	NP	É caratterizzato da assenza di movimento dell'acqua	
Liscio/smooth	SM	Si tratta di un flusso laminare, con superficie dell'acqua priva di turbolenze	
Increspato/Rippled	RP	La superficie dell'acqua mostra delle piccole increspature simmetriche, generalmente non più alte di un centimetro	
Unbroken standing waves	UW	La superficie dell'acqua appare disturbata. Il fronte dell'onda non è rotto, anche se a volte le creste mostrano la presenza di schiuma bianca	
Broken standing waves	BW	L'acqua sembra scorrere verso monte, contro corrente. Perché le onde possano essere definite "rotte" è necessario che ad esse siano associate creste bianche e disordinate	
Chute	СН	L'acqua scorre aderente al substrato	
Upwelling	UP	Questo flusso è caratterizzato da acqua che sembra in ebollizione con "bolle che arrivano in superficie da porzioni più profonde di fiume	
Flusso caotico/chaotic flow*	CF	È un misto dei flussi più veloci in cui nessuno è predominante	
Cascata/Free fall*	FF	L'acqua cade verticalmente, ed è visibilmente separata dal substrato sottostante	

Sul materiale raccolto si procede in campo ad un primo riconoscimento e conteggio. La determinazione viene effettuata a livello di famiglia e in alcuni casi a livello di genere e completata in laboratorio tramite microscopio stereoscopico o microscopio ottico qualora ritenuto necessario. Per l'identificazione degli organismi vengono utilizzate differenti chiavi dicotomiche. Vengono compilati elenchi faunistici e riportate le abbondanze dei taxa rinvenuti.

Gli elenchi faunistici e le relative abbondanze sono elaborati secondo le indicazioni fornite dal D.M. 260/2010. Viene calcolato l'indice STAR_ICM-i (Buffagni A., ErbaS., 2007; 2008): un indice multimetrico composto da 6 metriche che descrivono i principali aspetti su cui la 2000/60/CE pone l'attenzione (abbondanza, tolleranza/sensibilità, ricchezza/diversità).

Tipo di informazione	Tipo di metrica	Nome della metrica	Taxa considerati nella metrica	Rif. bibliografico	Peso
Tolleranza	Indice	ASPT	Intera comunità (livello di famiglia)	Armitage et al. 1983	0,333
Abbondanza/ Habitat	Abbondanza	Log ₁₀ (Sel_EPTD+1)	Log ₁₀ (somma di Heptagenidae, Ephemeridae, Leptophlebidae,	Buffagni et al. 2004; Buffagni & Erba, 2004	0,266
Ricchezza/	Abbondanza	1-GOLD	1-(Abbondanza relativa di Gastropoda, Oligochaeta e Diptera)	Pinto et al. 2004	0,067
Diversità	Numero taxa	Numero totale di famiglie	Somma di tutte le famiglie presenti nel sito	Ofenböck et al. 2004	0,167

MONITORAGGI AMBIENTALI INTEGRATIVI

Tipo di informazione	Tipo di metrica	Nome della metrica	Taxa considerati nella metrica	Rif. bibliografico	Peso
	Numero taxa	Numero di famiglie EPT	Somma delle famiglie di Ephemeroptera, Plecoptera e Trichoptera	Böhmer et al. 2004	0,083
	Indice diversità	Indice di diversità di Shannon-Wiener	$D_{S-W} = -\Sigma(n_i/A).ln(n_i/A)$	Hering et al. 2004; Böhmer et al. 2004	0,083

Per una descrizione dettagliata delle metriche si rimanda alla bibliografia.

Le metriche, una volta calcolate, devono essere normalizzate, ovvero, il valore osservato deve essere suddiviso per il valore della metrica che rappresenta le condizioni di riferimento (fornito dal D.M. 260/2010). Il risultato, espresso tra 0 e 1, è chiamato RQE (Rapporto di Qualità Ecologica) e deve essere moltiplicato per il peso attribuito ad ogni metrica. L'indice multimetrico finale è ottenuto dalla somma delle sei metriche normalizzate e moltiplicate per il proprio peso. Dopo il calcolo della media ponderata, il valore risultante viene nuovamente normalizzato con il valore proposto dal decreto, ottenendo così lo STAR_ICMi.

4.6 Risultati delle indagini

4.6.1 Misure di portata – sezioni IDR_25 e IDR_26

Nella campagna in ante opera e nella campagna in CO eseguita a Novembre 2016, nelle sezioni IDR_25 e IDR_26, sono state eseguite misure di portate mediante rilevamento a guado di verticali progressive di velocità della corrente, integrate da opportuni rilievi batimetrici. Di seguito si riporta quanto rilevato nelle campagne in AO di luglio 2015 e in CO di Novembre 2016.

Misure di portata				
Punto di	Campagna AO Luglio 2015 CO - Giugno 2016 CO - Nov		CO - Novembre 2016	
misura	U.M. [<i>m</i> ³ /s]	U.M. [<i>m³/s</i>]	U.M. [<i>m</i> ³ / <i>s</i>]	
IDR_25	0,011	0,004	0,0035	
IDR_26	0,009	0,003	0,0033	

Misure di portata rilevate durante l' Ante Operam di luglio 2015 e il Corso d'Opera di Giugno 2016

Come si evince dai valori, non sono riscontrabili differenze tra il valore di portata di monte rispetto a quello di valle, mentre nella campagna di CO i valori di portata risultano più bassi rispetto a quelli riscontrati in AO.

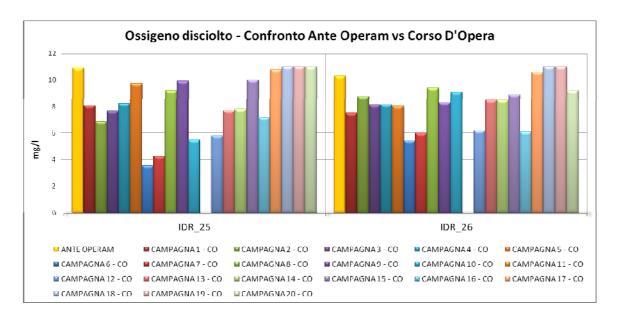
4.6.2 Indagini in situ - sezioni IDR_25 e IDR_26

Si riporta di seguito l'elenco dei parametri rilevati in situ durante le campagne di monitoraggio e le relative risultanze, raggruppate sia in forma tabellare che grafica per periodo di osservazione e per punto di campionamento, sia per la fase in Ante Operam che per il Corso d'opera:

- ➤ Temperatura dell'acqua;
- ➤ Temperatura dell'aria;
- ➤ Conducibilità elettrica;
- **>** pH;
- ➤ Ossigeno disciolto;
- ➤ Potenziale redox.

		ANTE C	PERAM	CAMPAG	NA 1 - CO	CAMPAG	NA2-CO	CAMPAG	NA 3 - CO	CAMPAG	NA 4 - CO	CAMPAG	NA 5 - CO	CAMPAG	NA 6 - CO	CAMPAG	NA7-CO	CAMPAG	NA 8 - CO	CAMPAG	NA 9 - CO	CAMPAG	NA 10 - CO
PARAMETRO	UM	21/04/15	21/04/15	20/05/15	20/05/15	04/06/15	04/06/15	19/06/15	19/06/15	06/07/15	06/07/15	21/07/15	21/07/15	11/08/15	11/08/15	26/08/15	26/08/15	27/04/16	27/04/16	09/06/16	09/06/16	28/07/16	28/07/16
	0.112	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26
TEMPERATURA ARIA	°C	21	22	21	22	25	25	30	30	33	33	37	37	25	23	32	32	19,7	19,6	26,2	27,8	35,2	35,3
TEMPERATURA	°C	10,2	15,4	20	21	18,6	18,4	21,5	21	22,7	23	24,2	25,3	22,7	22,6	23,2	25,1	13,0	12,8	19,6	16,9	23,1	21,0
OSSIGENO DISCIOLTO	mg/l	10,9	10,3	8,07	7,5	6,88	8,76	7,68	8,12	8,23	8,14	9,74	8,05	3,56	5,44	4,26	6	9,2	9,4	9,9	8,3	5,5	9,1
POTENZIALE REDOX	mV	106	47,4	43,8	78,9	194	232	83,7	88,6	84	86,4	76,5	79,6	79,9	50	65,2	56,8	57,9	68,5	147,9	84,5	54,5	65,1
pH	Unità di pH	8,2	8,3	7,8	7,8	7,6	7,6	7,5	7,9	8	8,2	8,3	8,4	7,7	8	7,8	8,2	7,9	7,8	7,7	7,7	7,6	7,9
CONDUTTIVITA' ELETTRICA	μS/cm	2850	3110	1911	2320	1303	1910	2720	3030	2410	2980	2490	2800	862	3510	1591	2760	2770	2600	3050	2650	2490	4310

		ANTE C	PERAM	CAMPAGI	NA 11 - CO	CAMPAGI	NA 12 - CO	CAMPAG	NA 13 - CO	CAMPAG	NA 14 - CO	CAMPAGI	NA 15 - CO	CAMPAG:	NA 16 - CO	CAMPAGI	NA 17 - CO	CAMPAGI	NA 18 - CO	CAMPAGI	NA 19 - CO	CAMPAG	NA 20 - CO
PARAMETRO	UM	21/04/15	21/04/15	08/08/16	08/08/16	08/09/16	08/09/16	21/10/16	21/10/16	27/10/16	27/10/16	01/12/16	01/12/16	17/12/16	17/12/16	20/01/17	20/01/17	07/02/17	07/02/17	20/02/17	20/02/17	21/04/17	21/04/17
		IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26
TEMPERATURA ARIA	°C	21	22			27,3	26,4	23,8	24,5	19,1	19,3	12,8	12,6	9	9	12	12	10	10	1	10	12	12
TEMPERATURA	°C	10,2	15,4			20,5	20,0	18,4	17,9	18,4	18,4	10,7	10,9	8,5	8,5	8,2	7,9	9,4	9,5	9,4	12,0	13	13,0
OSSIGENO DISCIOLTO	mg/l	10,9	10,3	.68		5,8	6,2	7,7	8,5	7,8	8,5	10	8,9	7,2	6,1	10,8	10,6	11	11	11	11	11	9,2
POTENZIALE REDOX	mV	106	47,4	Z.C	AC.	64,4	61,0	32,2	-134,9	67,8	154,8	94,7	95,6	33,1	58,9	34,6	48,9	86	96,0	86	74,5	82,3	87,8
pН	Unità di pH	8,2	8,3	7	7	7,6	7,8	7,6	11,1	7,4	8,8	8	8,4	7,1	7,6	8	8,2	8,3	8,2	8,1	8,3	8,1	7,9
CONDUTTIVITA' ELETTRICA	μS/cm	2850	3110			1206	2550	840	2420	979	2670	2720	4660	865	2120	2640	2620	1308	1047	3080	3060	1294	988


Riepilogo misure speditive registrate per i punti di monitoraggio IDR_25 e IDR_26, sia in AO che in CO

MONITORAGGI AMBIENTALI INTEGRATIVI

Per quanto riguarda l'**ossigeno disciolto**, i rilievi mostrano una leggera variabilità del parametro tra la sezione di monte, IDR_25, e quella di valle, IDR_26. I valori massimi sono stati registrati nella fase di ante operam, mentre quelli minimi sono registrati dalla stazione di monitoraggio IDR_25 e sono pari a 3,56 e 4,26 mg/l, rispettivamente nelle campagne in Corso d'Opera n. 6 e n. 7.

Relativamente al semestre in oggetto sono stati monitorati valori dell'ossigeno disciolto compresi tra 7,2 e 11 mg/l in corrispondenza del punto IDR_25, e compresi tra 6,1 e 11 mg/l per quanto riguarda la sezione IDR_26.

L'oscillazione dell'ossigeno disciolto sta ad indicare processi in atto di decomposizione della sostanza organica ad opera di batteri e protozoi.

I controlli eseguiti sul parametro **potenziale redox** hanno fornito valori comparabili tra la stazione di monte IDR_25 e quella di valle IDR_26.

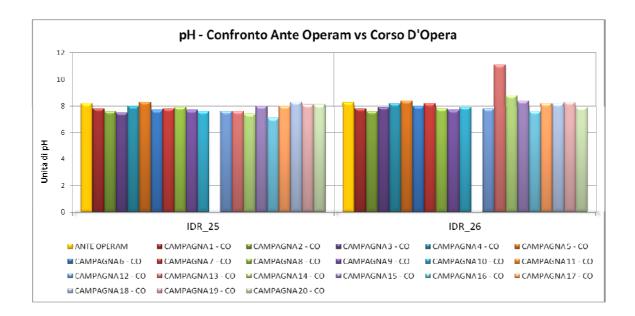
In merito all'accaduto esposto in premessa, è stato rilevato nella stazione di valle IDR_26, durante la campagna del 21/10/2016, un valore negativo del potenziale redox pari a -134,9 mV, rispetto al valore rilevato nel punto di monte pari a 32.2 mV.

Come anticipato nell'introduzione, tale anomalia risulta essere un riscontro effettivo delle condizioni sopraggiunte nel corpo idrico in seguito al trasferimento delle acque provenienti dalla galleria Caltanissetta direttamente nel canalone che sfocia dapprima nel Niscima e successivamente nel Fosso Mumia.

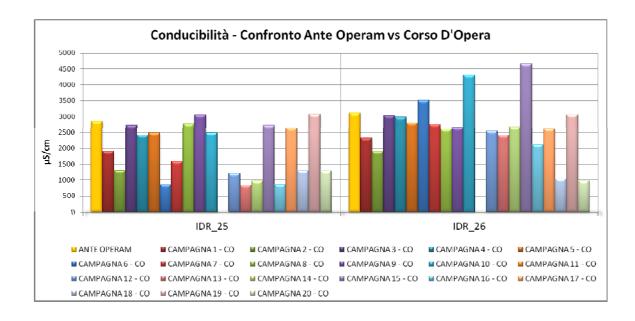
Successivamente a questo evento, il punto IDR_26, insieme al punto IDR_25, è stato monitorato per altre 7 campagne, fino al 21/04/2017: si può affermare che i valori misurati in campo del potenziale redox rientrano in un campo di variabilità standard, confrontabili con i valori storici in CO, come evidente dal grafico successivo.

Si evidenzia pertanto che in tutte le campagne eseguite nel corso del semestre novembre 2016 – aprile 2017 non sono state riscontrate situazioni anomale.

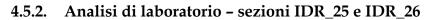
Il **pH**, pari all'inverso del logaritmo della concentrazione di ioni idrogeno, è una misura dell'acidità dell'acqua: l'acqua pura (priva di ioni) ha pH pari a 7, l'acqua potabile ha generalmente valori compresi tra 6,5 e 8,5.


Nella campagna 13 del 21/10/16 si riscontra un valore pari a 11,1 unità di pH, più alto rispetto ai valori medi riscontrati nelle precedenti campagne, le acque risultano, quindi, molto alcaline. Come precedentemente commentato per il potenziale redox, anche in questo caso tali variazioni sono da imputare allo sversamento delle acque della galleria nel fosso Mumia.

Nella successiva campagna del 27/10/16 il pH è sceso ad un valore pari a 8,8 unità di pH, andando verso valori più prossimi a quelli medi rilevati nelle precedenti campagne di CO e, quindi, verso una stabilizzazione delle condizioni chimico-fisiche delle acque.


Nel semestre in oggetto, come già illustrato relativamente al potenziale redox, sono state eseguite 7 campagne, relativamente alle quali i valori di pH misurati in campo in corrispondenza della sezione IDR_26 sono risultati oscillanti tra 7,6 e 8,4, valori confrontabili con le misure di AO e di CO eseguite in precedenza.

Le misure di pH eseguite durante il semestre in oggetto per il punto IDR_25 sono comprese tra 7,1 e 8,3.


In conclusione, nelle campagne di misura eseguite non si segnalano eventi significativi, il pH rientra nel range di variabilità tipico dei corsi d'acqua.

La **conducibilità elettrica** fornisce una misura della quantità di sali disciolti nell'acqua. Essa costituisce un buon indicatore del grado di mineralizzazione di un'acqua e viene espressa in μ S/cm; maggiori sono le impurità contenute e maggiore è la conducibilità elettrica. Il valore massimo di conducibilità misurato è stato riscontrato al punto IDR_26, nella campagna 15 in Corso d'Opera, ed è pari a 4660 μ S/cm. Alla luce di ciò, si può ragionevolmente ritenere che, essendo suddetti valori elevati, oltre alle sostanze normalmente disciolte in acqua, certamente sono presenti ulteriori sostanze inquinanti, presumibilmente legate alle attività agricole locali.

"Corridoio Plurimodale Tirrenico - Nord Europa / Itinerario Agrigento – Caltanissetta - A19 / S.S. n° 640 "di Porto Empedocle
Ammodernamento e adeauamento alla Cat. B del D.M. 5.11.2001 dal km 44+000 allo svincolo con l'A19

Si riportano di seguito le indagini di laboratorio eseguite sulle sezioni IDR_25 e IDR_26.

		ANTE C	PERAM	CAMPAG	NA 1 - CO	CAMPAG	NA 2 - CO	CAMPAG	NA 3 - CO	CAMPAG	NA 4 - CO	CAMPAG	SNA 5 - CO	CAMPAG	NA 6 - CO	CAMPAG	NA 7 - CO	CAMPAG	NA 8 - CO	*
PARAMETRI	U.M.	21/04/15	21/04/15	20/05/15	20/05/15	04/06/15	04/06/15	19/06/15	19/06/15	06/07/15	06/07/15	21/07/15	21/07/15	11/08/15	11/08/15	26/08/15	26/08/15	27/04/16	27/04/16	Limiti*
		IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	Ë
COLORE	tasso diluiz.	2	2	0	0	3	3	4	4	0	1	0	0	4	2	0	0	0	0	
CLORO RESIDUO TOTALE	mg/l	<0.05	0,38	0,48	1,94	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
TORBIDITA'	NTU	< 0.4	<0.4	<0.4	<0.4	3,13	2,09	1,61	1,36	1,16	0,59	0,98	1,02	4,41	3,4	2,76	0,51	1,7	4,5	
SOLIDI SOSPESI TOTALI (SOLIDI INDISCIOLTI)	mg/l	12,1	4,7	7,58	9,6	0,42	0,6	1,5	21,6	0,9	2	<0,1	<0,1	<0.1	<0.01	1	3,8	11,6	82,9	
BOD5 (come O2)	mg/l	<1	<1	5	5	12,4	10	<1	<1	5,2	5	4,5	78,1	12	13	<1	<1	5	5	
RICHIESTA CHIMICA DI OSSIGENO (COD)	mg/l	<10	<10	21,4	15	35,7	35,1	24	23,8	15,1	13,4	11,7	244	30	37,5	<10	<10	12	11	
DUREZZA	°F	87	73	94,4	94,4	77,1	89,6	121	118	102	104	105	105	34,6	52,8	77,5	80,9	132	126	
AZOTO AMMONIACALE (NH4)	mg/l	0,63	0,92	2,92	3,35	7,29	5,43	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3,74	3,77	<0.5	<0.5	<0.5	<0.5	
NITRATI	mg/l	40	29	12	10	1,4	2,7	20	17	34	26	34	30	1,8	4,9	29	40	12	18	
AZOTO NITROSO	mg/l	0,608	0,805	2,07	1,77	1,01	1,21	0,57	0,2	0,029	<0.015	<0.05	<0.05	0,08	0,236	2,63	1,61	0,16	0,115	
CLORURI	mg/l	230	240	150	110	100	140	260	220	180	190	180	200	43	600	120	250	296	278	
ORTOFOSFATO	mg/l	<0.5	<0.5	<1	<1	0,901	0,704	0,282	0,237	0,448	0,322	0,98	0,87	2,9	2,52	0,622	0,485	0,827	0,564	
SOLFATI	mg/l	1100	1200	730	790	420	670	870	900	670	930	780	1000	150	640	400	760	1065	997	
AZOTO TOTALE	mg/l	12,3	9,93	7,65	7,26	7,54	6,17	5,6	4,6	40,8	31,2	9	8,1	4,3	5,2	38	49,9	2,75	4,2	
FOSFORO TOTALE	mg/l	0,51	0,31	<1	<1	1,1	0,9	0,32	0,27	0,45	0,29	0,33	0,29	1,2	0,89	0,66	0,67	0,3	0,2	
TENSIOATTIVI ANIONICI	mg/l	<0.05	<0.05	0,067	0,077	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	4,2	3,9	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	
TENSIOATTIVI NON IONICI	mg/l	<0.2	<0.2	0,761	0,488	0,504	<0.2	<0.2	<0.2	<0.2	<0.2	2,9	5,5	<0.2	<0.2	0,221	0,395	<0.2	<0.2	
ANTIMONIO	μg/l	1,29	1,93	1,71	1,76	< 1	< 1	1,18	2,66	1,4	1,8	< 1	1,48	< 1	1,91	< 1	< 1	< 1	< 1	
BERILLIO	μg/l	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	
CADMIO	μg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	
CROMO TOTALE	μg/l	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	
CROMO ESAVALENTE	mg/l	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	< 0,0025	< 0,0025	< 0,0025	< 0,0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	
FERRO	μg/l	< 20	< 20	32,1	36,5	283	268	32	51	< 20	< 20	< 20	25,3	273	181	48,2	< 20	79	67	
NICHEL	μg/1	9,87	6,2	10,1	9,08	2,64	6,22	12,3	10,1	22,2	16,9	11,9	10,1	5,56	5,36	8,1	7,53	8,9	6,9	
PIOMBO	μg/l	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	
RAME	μg/l	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 3	< 3	
SELENIO	μg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	

MONITORAGGI AMBIENTALI INTEGRATIVI

		ANTE C	PERAM	CAMPAG	NA 1 - CO	CAMPAG	NA 2 - CO	CAMPAG	NA 3 - CO	CAMPAG	NA 4 - CO	CAMPAG	NA 5 - CO	CAMPAG	NA 6 - CO	CAMPAG	NA 7 - CO	CAMPAG	NA 8 - CO	*
PARAMETRI	U.M.	21/04/15	21/04/15	20/05/15	20/05/15	04/06/15	04/06/15	19/06/15	19/06/15	06/07/15	06/07/15	21/07/15	21/07/15	11/08/15	11/08/15	26/08/15	26/08/15	27/04/16	27/04/16	Limiti*
		IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	E
VANADIO	μg/l	< 2,5	4,03	< 2,5	2,86	< 2,5	2,68	2,65	11,1	2,6	6,7	< 2,5	9,86	< 2,5	17,2	2,55	8,23	< 2,5	< 2,5	
ZINCO	μg/1	< 10	< 10	12,7	11,3	25,9	14	13,6	12,8	53,5	37,3	17,9	12,1	10,7	13,6	10,4	11,8	11	17	
ESACLOROBUTADIENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,5
1,1-DICLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
1,2-DICLOROETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
CLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
CLORURO DI VINILE	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
DICLOROMETANO	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
TETRACLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,16	< 0,05	< 0,05	< 0,05	
TETRACLORURO DI CARBONIO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
TRICLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
TRICLOROMETANO	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,11	< 0,05	< 0,05	< 0,05	
CLOROALCANI C10-C13	μg/1	<50	<50	< 0,5	< 0,5	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	1,4
2-CLOROFENOLO	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	<0,01	<0,01	
2,4-DICLOROFENOLO	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	<0,01	<0,01	
PENTACLOROFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	<0,01	<0,01	1
2,4,6-TRICLOROFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	<0,01	<0,01	
2-METILFENOLO	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	<0,01	<0,01	
3-METILFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	<0,01	<0,01	
4-METILFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	<0,01	<0,01	
FENOLO	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	<0,01	<0,01	
4-NONILFENOLO	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	<0,01	2
OTTILFENOLO	μg/l	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	<0,01	
ANTRACENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	<0,01	0,4
BENZO(a)PIRENE	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	<0,01	<0,01	0,1
BENZO(b)FLUORANTENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	<0,01	
BENZO(k)FLUORANTENE	μg/l	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	

MONITORAGGI AMBIENTALI INTEGRATIVI

		ANTE C	PERAM	CAMPAG	NA1-CO	CAMPAG	NA 2 - CO	CAMPAG	NA 3 - CO	CAMPAG	NA 4 - CO	CAMPAG	NA 5 - CO	CAMPAG	NA 6 - CO	CAMPAG	NA 7 - CO	CAMPAG	NA 8 - CO	*
PARAMETRI	U.M.	21/04/15	21/04/15	20/05/15	20/05/15	04/06/15	04/06/15	19/06/15	19/06/15	06/07/15	06/07/15	21/07/15	21/07/15	11/08/15	11/08/15	26/08/15	26/08/15	27/04/16	27/04/16	Limiti*
		IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	1
BENZO(g,h,i)PERILENE	μg/l	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	<0,01	<0,01	
FLUORANTENE	μg/l	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	<0,01	1
INDENO(1,2,3-c,d)PIRENE	μg/l	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	<0,01	
NAFTALENE	μg/l	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	<0,01	
COLIFORMI FECALI	UFC/100 ml	480	780	900	830	730	260	54	245	700	1800	2100	2500	5100	4700	400	2100	12	79	
COLIFORMI TOTALI	UFC/100 ml	1200	2800	6400	5700	2300	1800	180	2100	2200	2800	3500	4400	10200	8300	3000	4000	230	310	
ESCHERICHIA COLI	UFC/100 ml	410	560	720	670	640	200	36	200	300	600	1300	1900	100	200	27	790	4	37	
SAGGIO DI TOSSICITA' ACUTA (DAPHNIA MAGNA)	% immobili (24 h)	10	20	0	10	0	0	0	0	0	10	10	20	0	0	20	0	0	0	
SAGGIO DI TOSSICITA' ACUTA CON BATTERI BIOLUMINESCENTI (VIBRIO FISHERI)	% inibizione bioluminesce nza (dopo 15 minuti)	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	<0	<0	< 0	< 0	<0	<0	<0	<0	
SALMONELLA spp	presente/ assente in 1000 mL	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Presente	Presente	Assente	Assente	Assente	Assente	Presente	Presente	Assente	Assente	
STREPTOCOCCHI FECALI ED ENTEROCOCCHI	UFC/100 ml	220	330	170	120	900	52	72	27	600	300	800	0	1100	8800	2000	200	17	54	
IDROCARBURI C>12 (C12-C40)	μg/l	-	-	< 50	< 50	< 50	157	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 0,05	< 0,05	
IDROCARBURI TOTALI (espressi come n-esano)	μg/1	74	< 50	< 50	< 50	< 50	157	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	
ACIDO ACRILICO	μg/l	-	-	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0.1	< 0.1	< 0,05	< 0,05	-	-	

^{*}Limiti Tab.2 All.5 Parte IV - D.Lgs 152/06

Risultanze dei parametri chimico fisico e biologici ricercati per i punti di monitoraggio IDR_25 e IDR_26, sia in AO che in CO

MONITORAGGI AMBIENTALI INTEGRATIVI

		ANTE	OPERAM	CAMPAG	NA1-CO	CAMPA	GNA 2 - CO	CAMPAG	NA 3 - CO	CAMPAG	NA 4 - CO	CAMPAG	SNA 5 - CO	CAMPAG	NA 6 - CO	CAMPAG	NA 7 - CO	
		21/04/15	21/04/15	20/05/15	20/05/15	04/06/15	04/06/15	19/06/15	19/06/15	06/07/15	06/07/15	21/07/15	21/07/15	11/08/15	11/08/15	26/08/15	26/08/15	*#
PARAMETRI	U.M.	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	Limiti*
COLORE	tasso diluiz.	2	2	0	0	3	3	4	4	0	1	0	0	4	2	0	0	
CLORO RESIDUO TOTALE	mg/l	<0.05	0,38	0,48	1,94	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
TORBIDITA'	NTU	<0.4	<0.4	<0.4	<0.4	3,13	2,09	1,61	1,36	1,16	0,59	0,98	1,02	4,41	3,4	2,76	0,51	
SOLIDI SOSPESI TOTALI (SOLIDI INDISCIOLTI)	mg/l	12,1	4,7	7,58	9,6	0,42	0,6	1,5	21,6	0,9	2	<0,1	<0,1	<0.1	<0.01	1	3,8	
BOD5 (come O2)	mg/l	<1	<1	5	5	12,4	10	<1	<1	5,2	5	4,5	78,1	12	13	<1	<1	
RICHIESTA CHIMICA DI OSSIGENO (COD)	mg/l	<10	<10	21,4	15	35,7	35,1	24	23,8	15,1	13,4	11,7	244	30	37,5	<10	<10	
DUREZZA	°F	87	73	94,4	94,4	77,1	89,6	121	118	102	104	105	105	34,6	52,8	77,5	80,9	
AZOTO AMMONIACALE (NH4)	mg/l	0,63	0,92	2,92	3,35	7,29	5,43	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3,74	3,77	<0.5	<0.5	
NITRATI	mg/l	40	29	12	10	1,4	2,7	20	17	34	26	34	30	1,8	4,9	29	40	
AZOTO NITROSO	mg/l	0,608	0,805	2,07	1,77	1,01	1,21	0,57	0,2	0,029	<0.015	<0.05	<0.05	0,08	0,236	2,63	1,61	
CLORURI	mg/l	230	240	150	110	100	140	260	220	180	190	180	200	43	600	120	250	
ORTOFOSFATO	mg/l	<0.5	<0.5	<1	<1	0,901	0,704	0,282	0,237	0,448	0,322	0,98	0,87	2,9	2,52	0,622	0,485	
SOLFATI	mg/l	1100	1200	730	790	420	670	870	900	670	930	780	1000	150	640	400	760	
AZOTO TOTALE	mg/l	12,3	9,93	7,65	7,26	7,54	6,17	5,6	4,6	40,8	31,2	9	8,1	4,3	5,2	38	49,9	
FOSFORO TOTALE	mg/l	0,51	0,31	<1	<1	1,1	0,9	0,32	0,27	0,45	0,29	0,33	0,29	1,2	0,89	0,66	0,67	
TENSIOATTIVI ANIONICI	mg/l	<0.05	<0.05	0,067	0,077	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	4,2	3,9	<0.05	<0.05	<0.05	<0.05	
TENSIOATTIVI NON IONICI	mg/l	<0.2	<0.2	0,761	0,488	0,504	<0.2	<0.2	<0.2	<0.2	<0.2	2,9	5,5	<0.2	<0.2	0,221	0,395	
ANTIMONIO	μg/l	1,29	1,93	1,71	1,76	< 1	<1	1,18	2,66	1,4	1,8	< 1	1,48	<1	1,91	<1	< 1	
BERILLIO	μg/1	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	
CADMIO	μg/1	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 1	<1	< 1	< 1	< 1	< 1	<1	< 1	< 1	
CROMO TOTALE	μg/1	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	
CROMO ESAVALENTE	mg/l	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	< 0,0025	< 0,0025	< 0,0025	< 0,0025	<0.0025	<0.0025	<0.0025	<0.0025	
FERRO	μg/1	< 20	< 20	32,1	36,5	283	268	32	51	< 20	< 20	< 20	25,3	273	181	48,2	< 20	
NICHEL	μg/1	9,87	6,2	10,1	9,08	2,64	6,22	12,3	10,1	22,2	16,9	11,9	10,1	5,56	5,36	8,1	7,53	
PIOMBO	μg/1	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	
RAME	μg/1	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	

MONITORAGGI AMBIENTALI INTEGRATIVI

		ANTE	OPERAM	CAMPAG	NA 1 - CO	CAMPA	GNA 2 - CO	CAMPAG	NA 3 - CO	CAMPAG	NA 4 - CO	CAMPAG	NA 5 - CO	CAMPAG	NA 6 - CO	CAMPAG	NA 7 - CO	
		21/04/15	21/04/15	20/05/15	20/05/15	04/06/15	04/06/15	19/06/15	19/06/15	06/07/15	06/07/15	21/07/15	21/07/15	11/08/15	11/08/15	26/08/15	26/08/15	*±
PARAMETRI	U.M.	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	Limiti*
SELENIO	μg/1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
VANADIO	μg/1	< 2,5	4,03	< 2,5	2,86	< 2,5	2,68	2,65	11,1	2,6	6,7	< 2,5	9,86	< 2,5	17,2	2,55	8,23	
ZINCO	μg/l	< 10	< 10	12,7	11,3	25,9	14	13,6	12,8	53,5	37,3	17,9	12,1	10,7	13,6	10,4	11,8	
ESACLOROBUTADIENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,5
1,1-DICLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
1,2-DICLOROETANO	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
CLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
CLORURO DI VINILE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
DICLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
TETRACLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,16	< 0,05	
TETRACLORURO DI CARBONIO	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
TRICLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
TRICLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,11	< 0,05	
CLOROALCANI C10-C13	μg/1	<50	<50	< 0,5	< 0,5	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	1,4
2-CLOROFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
2,4-DICLOROFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
PENTACLOROFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	1
2,4,6-TRICLOROFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
2-METILFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
3-METILFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
4-METILFENOLO	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
FENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
4-NONILFENOLO	μg/l	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	2
OTTILFENOLO	μg/l	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	
ANTRACENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,4
BENZO(a)PIRENE	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	0,1

MONITORAGGI AMBIENTALI INTEGRATIVI

		ANTE	OPERAM	CAMPAG	NA 1 - CO	CAMPA	GNA 2 - CO	CAMPAG	NA 3 - CO	CAMPAG	NA 4 - CO	CAMPAG	NA 5 - CO	CAMPAG	NA 6 - CO	CAMPAG	NA 7 - CO	
PARAMETRI	U.M.	21/04/15	21/04/15	20/05/15	20/05/15	04/06/15	04/06/15	19/06/15	19/06/15	06/07/15	06/07/15	21/07/15	21/07/15	11/08/15	11/08/15	26/08/15	26/08/15	Limiti*
FARAMETRI	U.M.	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	Lim
BENZO(b)FLUORANTENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	
BENZO(k)FLUORANTENE	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
BENZO(g,h,i)PERILENE	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
FLUORANTENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	1
INDENO(1,2,3-c,d)PIRENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	
NAFTALENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	
COLIFORMI FECALI	UFC/100 ml	480	780	900	830	730	260	54	245	700	1800	2100	2500	5100	4700	400	2100	
COLIFORMI TOTALI	UFC/100 ml	1200	2800	6400	5700	2300	1800	180	2100	2200	2800	3500	4400	10200	8300	3000	4000	
ESCHERICHIA COLI	UFC/100 ml	410	560	720	670	640	200	36	200	300	600	1300	1900	100	200	27	790	
SAGGIO DI TOSSICITA' ACUTA (DAPHNIA MAGNA)	% immobili (24 h)	10	20	0	10	0	0	0	0	0	10	10	20	0	0	20	0	
SAGGIO DI TOSSICITA' ACUTA CON BATTERI BIOLUMINESCENTI (VIBRIO FISHERI)	% inibizione bioluminescenza (dopo 15 minuti)	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	<0	<0	< 0	< 0	<0	<0	
SALMONELLA spp	presente/assente in 1000 mL	assente	assente	assente	assente	assente	assente	assente	assente	presente	presente	assente	assente	assente	assente	presente	presente	
STREPTOCOCCHI FECALI ED ENTEROCOCCHI	UFC/100 ml	220	330	170	120	900	52	72	27	600	300	800	0	1100	8800	2000	200	
IDROCARBURI C>12 (C12- C40)	μg/l	-	-	< 50	< 50	< 50	157	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	
IDROCARBURI TOTALI (espressi come n-esano)	μg/l	74	< 50	< 50	< 50	< 50	157	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	
ACIDO ACRILICO	μg/1	-	-	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0.1	< 0.1	< 0,05	< 0,05	

*Limiti Tab.2 All.5 Parte IV - D.Lgs 152/06

MONITORAGGI AMBIENTALI INTEGRATIVI

		ANTE O	PERAM	CAMPAG	NA 8 - CO	CAMPAG	NA 9 - CO	CAMPAG	NA 10 - CO	CAMPAG	NA 12 - CO	CAMPAG	NA 13 - CO	CAMPAG	NA 14 - CO	
PARAMETRI	U.M.	21/04/15	21/04/15	27/04/16	27/04/16	09/06/16	09/06/16	28/07/16	28/07/16	08/09/16	08/09/16	21/10/16	21/10/16	27/10/16	27/10/16	Limiti*
FARAMETRI	U.M.	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	Limiu
COLORE	tasso diluiz.	2	2	0	0	1	1	0	0	0	0	0	2	1	1	
CLORO RESIDUO TOTALE	mg/l	<0.05	0,38	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
TORBIDITA'	NTU	<0.4	< 0.4	1,7	4,5	<0,4	<0,4	<0,4	<0,4	14,0	9,9	75,0	32,0	50,0	47,0	
SOLIDI SOSPESI TOTALI (SOLIDI INDISCIOLTI)	mg/l	12,1	4,7	11,6	82,9	11,8	215,8	49,2	79,9	146,2	5,6	129,6	2054,0	529,0	559,0	
BOD5 (come O2)	mg/l	<1	<1	5	5	5	5	4,0	3,0	6,0	< 1	5,0	11,0	12,0	8,0	
RICHIESTA CHIMICA DI OSSIGENO (COD)	mg/l	<10	<10	12	11	19	13	14,0	10,0	28,0	16,0	17,0	34,0	40,0	28,0	
DUREZZA	°F	87	73	132	126	119	105	93,0	127,0	50,0	83,0	47,0	46,0	61,0	65,0	
AZOTO AMMONIACALE (NH4)	mg/l	0,63	0,92	<0.5	<0.5	<0.5	<0.5	1,2	<0.5	4,6	1,5	2,4	1,8	3,8	3,3	
NITRATI	mg/l	40	29	12	18	5,8	28	3,9	11,0	< 5	5,3	13,0	< 5	< 5	< 5	
AZOTO NITROSO	mg/l	0,608	0,805	0,16	0,115	0,028	<0,015	0,496	<0,015	0,736	1,63	1,28	0,332	0,49	0,384	
CLORURI	mg/l	230	240	296	278	382	211	230,0	123,0	91,0	109,0	50,0	54,0	62,0	63,0	
ORTOFOSFATO	mg/l	<0.5	<0.5	0,827	0,564	< 5	<5	1,402	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	
SOLFATI	mg/l	1100	1200	1065	997	1329	1161	908,0	2183,0	308,0	1173,0	239,0	827,0	1109,0	1334,0	
AZOTO TOTALE	mg/l	12,3	9,93	2,75	4,2	<0,5	0,7	2,33	3,0	5,1	3,3	6,0	1,8	3,9	3,5	
FOSFORO TOTALE	mg/l	0,51	0,31	0,3	0,2	0,2	<0,1	0,2	0,2	0,1	< 0,1	0,2	0,4	0,1	0,4	
TENSIOATTIVI ANIONICI	mg/l	<0.05	<0.05	<0.05	<0.05	0,06	0,09	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
TENSIOATTIVI NON IONICI	mg/l	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
ANTIMONIO	μg/l	1,29	1,93	<1	<1	< 1	<1	<1	1,0	<1	1,7	<1	1,0	1,1	2,7	
BERILLIO	μg/1	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	
CADMIO	μg/l	<1	< 1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
CROMO TOTALE	μg/1	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	3,4	< 2,5	< 2,5	< 2,5	46	< 2,5	4,3	
CROMO ESAVALENTE	mg/l	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.003	0,02	<0.003	<0.003	
FERRO	μg/1	< 20	< 20	79	67	84	< 20	121,0	< 20	95	133	31	39	142	<20	
NICHEL	μg/1	9,87	6,2	8,9	6,9	9,1	< 2,5	6,9	< 2,5	5,5	3,8	3,4	4,1	4,5	4,1	
PIOMBO	μg/l	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	

MONITORAGGI AMBIENTALI INTEGRATIVI

		ANTE O	PERAM	CAMPAG	NA 8 - CO	CAMPAG	NA 9 - CO	CAMPAG	NA 10 - CO	CAMPAG	NA 12 - CO	CAMPAG	NA 13 - CO	CAMPAG	NA 14 - CO	
PARAMETRI	U.M.	21/04/15	21/04/15	27/04/16	27/04/16	09/06/16	09/06/16	28/07/16	28/07/16	08/09/16	08/09/16	21/10/16	21/10/16	27/10/16	27/10/16	Limiti*
PARAMETRI	U.IVI.	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	Limiti
RAME	μg/1	< 2,5	< 2,5	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	4,00	< 3	< 3	
SELENIO	μg/1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
VANADIO	μg/l	< 2,5	4,03	< 2,5	< 2,5	< 5	< 2,5	< 2,5	4,2	< 2,5	3,7	< 2,5	62	2,6	60	
ZINCO	μg/1	< 10	< 10	11	17	14	28	26,0	<10	28	15	32	55	43	<10	
ESACLOROBUTADIENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,5
1,1-DICLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,15	< 0,05	< 0,05	< 0,05	
1,2-DICLOROETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
CLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
CLORURO DI VINILE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
DICLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
TETRACLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
TETRACLORURO DI CARBONIO	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
TRICLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
TRICLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
CLOROALCANI C10-C13	μg/1	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	1,4
2-CLOROFENOLO	μg/l	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	0,02	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	
2,4-DICLOROFENOLO	μg/1	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	
PENTACLOROFENOLO	μg/1	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	1
2,4,6-TRICLOROFENOLO	μg/1	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	
2-METILFENOLO	μg/1	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	
3-METILFENOLO	μg/1	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	
4-METILFENOLO	μg/1	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	
FENOLO	μg/l	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	
4-NONILFENOLO	μg/1	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	2
OTTILFENOLO	μg/1	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	
ANTRACENE	μg/1	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,4

MONITORAGGI AMBIENTALI INTEGRATIVI

		ANTE O	PERAM	CAMPAG	NA 8 - CO	CAMPAG	NA 9 - CO	CAMPAGI	NA 10 - CO	CAMPAG	NA 12 - CO	CAMPAG	NA 13 - CO	CAMPAG	NA 14 - CO	
PARAMETRI	U.M.	21/04/15	21/04/15	27/04/16	27/04/16	09/06/16	09/06/16	28/07/16	28/07/16	08/09/16	08/09/16	21/10/16	21/10/16	27/10/16	27/10/16	Limiti*
FARAMETRI	U.IVI.	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	Limiti
BENZO(a)PIRENE	μg/1	< 0,005	< 0,005	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	0,1
BENZO(b)FLUORANTENE	μg/1	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	
BENZO(k)FLUORANTENE	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
BENZO(g,h,i)PERILENE	μg/1	< 0,005	< 0,005	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
FLUORANTENE	μg/l	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	1
INDENO(1,2,3-c,d)PIRENE	μg/1	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	
NAFTALENE	μg/1	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	
COLIFORMI FECALI	UFC/100 ml	480	780	12	79	29	390	270,0	490,0	80,0	120,0	28,0	30,0	500,0	100,0	
COLIFORMI TOTALI	UFC/100 ml	1200	2800	230	310	400	1800	1100,0	2700,0	320,0	380,0	80,0	70,0	1000,0	300,0	
ESCHERICHIA COLI	UFC/100 ml	410	560	4	37	20	210	200,0	410,0	98,0	110,0	22,0	28,0	400,0	90,0	
SAGGIO DI TOSSICITA' ACUTA (DAPHNIA MAGNA)	% immobili (24 h)	10	20	0	0	0	3	0	0	0	60	20	100	30	20	
SAGGIO DI TOSSICITA' ACUTA CON BATTERI BIOLUMINESCENTI (VIBRIO FISHERI)	% inibizione bioluminescenza (dopo 15 minuti)	< 0	< 0	<0	<0	<0	<0	<0	2,00	0	99,00	0	99,00	0	0	
SALMONELLA spp	presente/assente in 1000 mL	assente	assente	assente	assente	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	
STREPTOCOCCHI FECALI ED ENTEROCOCCHI	UFC/100 ml	220	330	17	54	60	420	40,0	510,0	82,0	120,0	30,0	40,0	700,0	500,0	
IDROCARBURI C>12 (C12-C40)	μg/1	-	-	< 0,05	< 0,05	0,06	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,14	< 0,05	
IDROCARBURI TOTALI (espressi come n-esano)	μg/l	74	< 50	< 50	< 50	56	< 50	< 50	< 50	< 50	< 50	< 50	< 50	141	< 50	
ACIDO ACRILICO	μg/1	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	

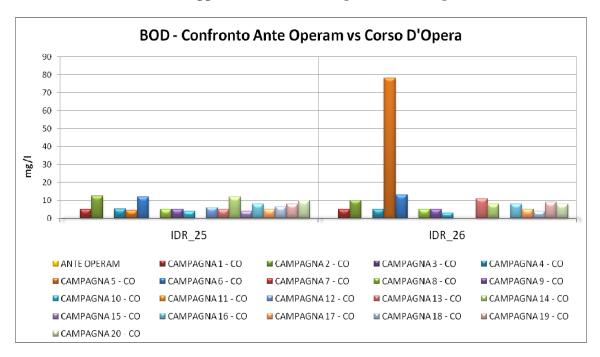
^{*}Limiti Tab.2 All.5 Parte IV - D.Lgs 152/06

MONITORAGGI AMBIENTALI INTEGRATIVI

		ANTE O	PERAM	CAMPAG	NA 15 - CO	CAMPAG	NA 16 - CO	CAMPAG	NA 17 - CO	CAMPAG	NA 18 - CO	CAMPAG	NA 19 - CO	CAMPAGI	NA 20 - CO	
DAD AMEETIN	77.26	21/04/15	21/04/15	01/12/16	01/12/16	17/12/16	17/12/16	20/01/17	20/01/17	07/02/17	07/02/17	20/02/17	20/02/17	21/04/17	21/04/17	T. 1,1%
PARAMETRI	U.M.	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	· Limiti*
COLORE	tasso diluiz.	2	2	0	0	0	0	0	0	5	5	0	0	0	0	
CLORO RESIDUO TOTALE	mg/l	<0.05	0,38	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
TORBIDITA'	NTU	<0.4	<0.4	4,0	0,8	3,5	8,7	2,3	0,86	71,0	23,0	1,6	<0,1	<0,1	<0,1	
SOLIDI SOSPESI TOTALI (SOLIDI INDISCIOLTI)	mg/l	12,1	4,7	52,5	29,6	9,5	3,7	35,7	10	1483	1135,0	24,0	8,2	5,0	11,0	
BOD5 (come O2)	mg/l	<1	<1	4,0	<1	8,0	8,0	5,0	5,0	6,5	3,8	7,8	8,9	10,0	8,0	
RICHIESTA CHIMICA DI OSSIGENO (COD)	mg/l	<10	<10	12,0	< 10	26,0	24,0	15,0	14,0	21,0	14,0	21,0	24,0	31,0	26,0	
DUREZZA	°F	87	73	132,0	46,0	58,0	65,0	122,0	110,0	60,0	49,0	188,0	152,0	106,0	81,0	
AZOTO AMMONIACALE (NH4)	mg/l	0,63	0,92	2,4	< 0,5	4,2	3,2	1	1,2	2,1	4,9	<0,5	1,5	<0,5	<0,5	
NITRATI	mg/l	40	29	12,0	7,0	6,4	8,2	23,0	21,0	7,3	6,2	13,0	18,0	7,1	7,9	
AZOTO NITROSO	mg/l	0,608	0,805	0,22	0,312	0,157	0,178	0,542	0,526	0,35	0,28	0,2	0,62	0,45	0,49	
CLORURI	mg/l	230	240	263,0	301,0	119,0	120,0	153,0	150,0	76,0	53,0	213,0	254,0	185,0	182,0	
ORTOFOSFATO	mg/l	<0.5	<0.5	<2	<2	<0,5	<0,5	0,521	<0,5	<2	1,3	<2	<2	< 0,1	<0,1	
SOLFATI	mg/l	1100	1200	1257,0	2243,0	517,0	863,0	1199,0	1117,0	522,0	437,0	1497,0	1145,0	905,0	1029,0	
AZOTO TOTALE	mg/l	12,3	9,93	5,5	2,0	4,7	4,5	7,3	7,0	4,1	6,3	3,6	6,5	4,2	4,6	
FOSFORO TOTALE	mg/l	0,51	0,31	< 0,1	< 0,1	0,3	0,2	0,5	0,2	0,4	0,8	<0,1	<0,1	<0,1	<0,1	
TENSIOATTIVI ANIONICI	mg/l	<0.05	<0.05	0,06	0,14	0,15	0,25	<0,05	<0,05	0,72	0,51	0,45	0,14	< 0,05	< 0,05	
TENSIOATTIVI NON IONICI	mg/l	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	
ANTIMONIO	μg/1	1,29	1,93	<1	1,9	<1	1,1	<1	<1	<1	<1	<1	<1	<1	<1	
BERILLIO	μg/1	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	
CADMIO	μg/1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
CROMO TOTALE	μg/1	< 2,5	< 2,5	< 2,5	175	< 2,5	2,9	< 2,5	8,1	< 2,5	<2,5	< 2,5	<1	< 2,5	28	
CROMO ESAVALENTE	mg/l	< 0.0025	<0.0025	<0.0025	0,131	<0.0025	<0.0025	<0.003	<0.003	<0.0025	<0.0025	<0,0025	<0,0025	<0,0025	0,016	
FERRO	μg/1	< 20	< 20	67	167	281	379	80	29	1408	616	26	36	91	89	
NICHEL	μg/l	9,87	6,2	9,5	< 2,5	5,3	4,4	5,9	5,1	3,2	4,5	8,7	7,8	8,9	7,6	
PIOMBO	μg/l	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	
RAME	μg/1	< 2,5	< 2,5	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	

MONITORAGGI AMBIENTALI INTEGRATIVI

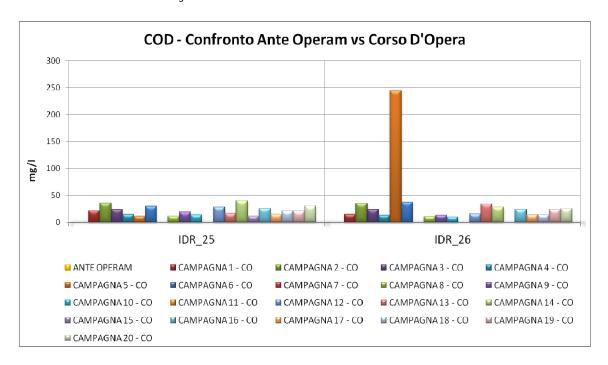
		ANTE O	PERAM	CAMPAG	NA 15 - CO	CAMPAG	NA 16 - CO	CAMPAG	NA 17 - CO	CAMPAG	NA 18 - CO	CAMPAG	NA 19 - CO	CAMPAG	NA 20 - CO	
		21/04/15	21/04/15	01/12/16	01/12/16	17/12/16	17/12/16	20/01/17	20/01/17	07/02/17	07/02/17	20/02/17	20/02/17	21/04/17	21/04/17	
PARAMETRI	U.M.	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	Limiti*
SELENIO	μg/1	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
VANADIO	μg/1	< 2,5	4,03	< 2,5	108	< 2,5	9,4	< 2,5	9,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	
ZINCO	μg/1	< 10	< 10	18	11	<10	<10	16	16	14	40	16	16	15	21	
ESACLOROBUTADIENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,5
1,1-DICLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
1,2-DICLOROETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
CLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
CLORURO DI VINILE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
DICLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
TETRACLOROETILENE	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
TETRACLORURO DI CARBONIO	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	<0,01	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	< 0,05	< 0,05	
TRICLOROETILENE	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
TRICLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	
CLOROALCANI C10-C13	μg/1	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	1,4
2-CLOROFENOLO	μg/1	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	
2,4-DICLOROFENOLO	μg/1	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	
PENTACLOROFENOLO	μg/l	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	1
2,4,6-TRICLOROFENOLO	μg/1	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	
2-METILFENOLO	μg/1	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	
3-METILFENOLO	μg/1	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	
4-METILFENOLO	μg/1	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	
FENOLO	μg/1	< 0,05	< 0,05	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	
4-NONILFENOLO	μg/1	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	2
OTTILFENOLO	μg/1	< 0,01	< 0,01	<0,01	0,03	<0,01	<0,01	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	
ANTRACENE	μg/1	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,05	<0,01	<0,01	0,4
BENZO(a)PIRENE	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	0,1

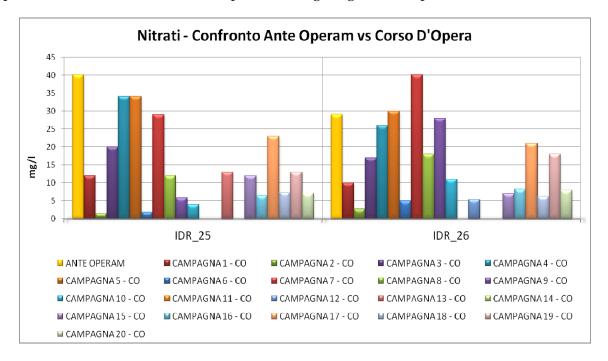

MONITORAGGI AMBIENTALI INTEGRATIVI

		ANTE O	PERAM	CAMPAGI	NA 15 - CO	CAMPAG	NA 16 - CO	CAMPAG	NA 17 - CO	CAMPAG	NA 18 - CO	CAMPAG	NA 19 - CO	CAMPAG	NA 20 - CO	
PARAMETRI	U.M.	21/04/15	21/04/15	01/12/16	01/12/16	17/12/16	17/12/16	20/01/17	20/01/17	07/02/17	07/02/17	20/02/17	20/02/17	21/04/17	21/04/17	Limiti*
FARAMETRI	U.IVI.	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	IDR_25	IDR_26	Limiti
BENZO(b)FLUORANTENE	μg/1	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	
BENZO(k)FLUORANTENE	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
BENZO(g,h,i)PERILENE	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
FLUORANTENE	μg/1	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	1
INDENO(1,2,3-c,d)PIRENE	μg/1	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	
NAFTALENE	μg/1	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,02	<0,01	<0,01	<0,01	<0,01	<0,01	
COLIFORMI FECALI	UFC/100 ml	480	780	1400,0	500,0	400,0	250,0	1800,0	900,0	>300000	>300000	0,0	0,0	0,0	0,0	
COLIFORMI TOTALI	UFC/100 ml	1200	2800	4000,0	1100,0	600,0	700,0	2200,0	2000,0	>300000	>300000	1300,0	1500,0	40,0	130,0	
ESCHERICHIA COLI	UFC/100 ml	410	560	1630,0	70,0	380,0	130,0	140,0	660,0	>300000	>300000	20,0	200,0	0,0	0,0	
SAGGIO DI TOSSICITA' ACUTA (DAPHNIA MAGNA)	% immobili (24 h)	10	20	0	0	0	0	0	0	0	0	10	13	7	3	
SAGGIO DI TOSSICITA' ACUTA CON BATTERI BIOLUMINESCENTI (VIBRIO FISHERI)	% inibizione bioluminescenza (dopo 15 minuti)	< 0	< 0	< 0	< 0	< 0	< 0	<0	<0	<0	<0	<0	0	<0	<0	
SALMONELLA spp	presente/assente in 1000 mL	assente	assente	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	ASSENTE	
STREPTOCOCCHI FECALI ED ENTEROCOCCHI	UFC/100 ml	220	330	550,0	10,0	100,0	120,0	1300,0	1020,0	>300000	>300000	950,0	100,0	0,0	0,0	
IDROCARBURI C>12 (C12- C40)	μg/l	-	-	< 0,05	0,07	< 0,05	< 0,05	< 0,05	< 0,05	0,09	< 0,05	< 0,05	0,2	< 0,05	< 0,05	
IDROCARBURI TOTALI (espressi come n-esano)	μg/1	74	< 50	< 50	67	< 50	< 50	< 50	< 50	92	< 50	<50	195	<50	<50	
ACIDO ACRILICO	μg/1	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	

^{*}Limiti Tab.2 All.5 Parte IV - D.Lgs 152/06

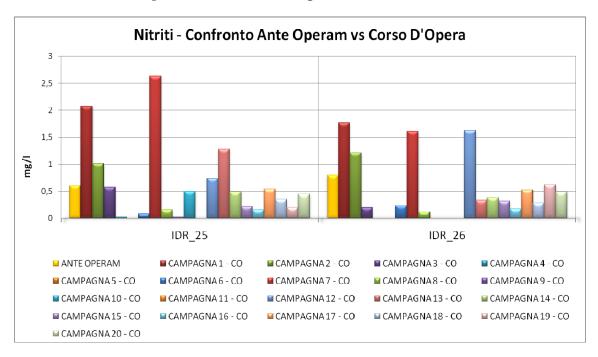
MONITORAGGI AMBIENTALI INTEGRATIVI


Di seguito si riportano gli istogrammi del confronto, tra le fasi Ante Operam e Corso d'Opera, delle concentrazioni riferite ai maggiori indicatori della qualità delle acque.

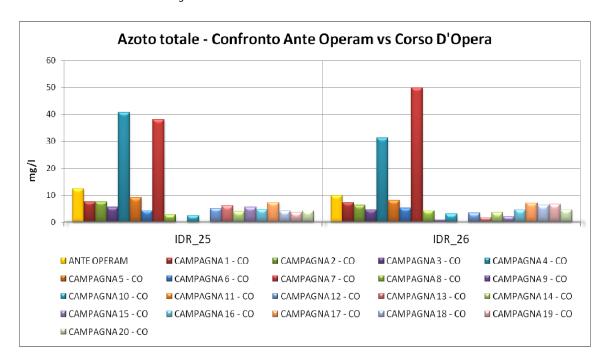

In tutto il periodo di monitoraggio sono stati registrati sporadicamente valori ottimali di BOD_5 , inferiori ad 1 mg di O_2/l , mentre valori normali sono stati riscontrati nella maggior parte delle campagne, tali valori sono risultati confrontabili sia con la sezione di monte che di valle. Valori di BOD_5 maggiori di 10 mg di O_2/l sono stati riscontrati sporadicamente talvolta nelle sezioni di valle talvolta in quelle di monte, si segnala il picco massimo di concentrazioni pari a 78.1 mg di O_2/l nella campagna n.5 di luglio 2015 sul punto IDR_26 . Tali valori elevati sono sintomatici della presenza eccessiva di sostanza organica all'interno del tratto fluviale indagato.

Relativamente alle campagne eseguite durante il semestre in oggetto, i valori di BOD_5 misurati nei campioni prelevati dalle sezioni IDR_25 e IDR_26 sono compresi, rispettivamente, tra 4,0 e 10,0 e tra <1 e 8,9 mg/l.

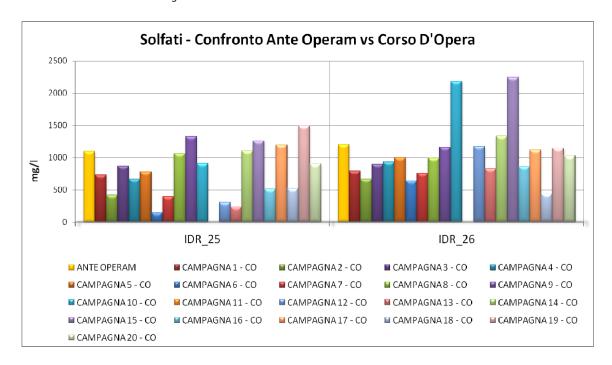
Per quanto concerne il **COD**, i risultati ottenuti nelle campagne di monitoraggio ricalcano quanto esposto per il BOD5.


I **nitrati** sono presenti principalmente nei fertilizzanti e sono portati nelle acque dalla pioggia che dilava il terreno. Stimolano la crescita di plancton e piante acquatiche provocando l'eutrofizzazione delle acque. Una limitata concentrazione di nitrati è sempre presente nelle acque, in quanto deriva dalla naturale decomposizione degli organismi acquatici.

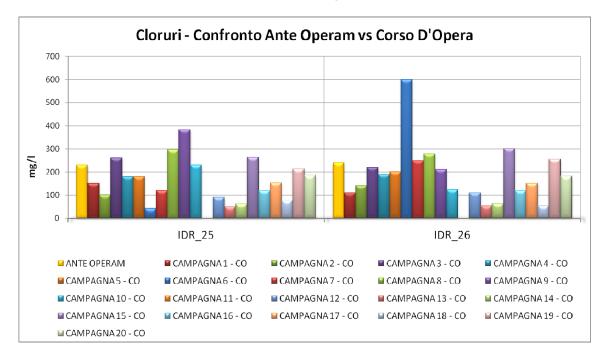
Nel periodo in esame, si riscontrano concentrazioni di **nitrati** comprese tra 6,4 e 23,0 mg/l per il punto IDR_25, e tra 6,2 e 21,0 mg/l relativamente al punto IDR_26. Tale range di variabilità è perfettamente confrontabile con i valori storici a disposizione, eseguiti in AO e CO.


MONITORAGGI AMBIENTALI INTEGRATIVI
Report periodico Monitoraggio Ante e Corso d'Opera - periodo novembre 2016 – aprile 2017

Anche i **nitriti** derivano dalla decomposizione di organismi viventi, hanno vita breve perché sono subito convertiti in nitrati dai batteri. Sono molto tossici, producono una serie di gravi malattie nei pesci, reagiscono con l'emoglobina impedendo al sangue di trasportare ossigeno. Nelle acque superficiali la presenza di nitriti rileva sicuramente un inquinamento di origine recente. La concentrazione di nitriti non dovrebbe superare 1 mg/l: questo linite è stato ampiamente rispettato nelle campagne eseguite durante il semestre novembre 2016 – aprile 2017, dato che i valori misurati sono risultati compresi tra 0,542 e 0,157 mg/l.


Le circostanze appena descritte, che hanno evidenziato la presenza di nitrati e di nitriti sia nelle sezioni di monte che di valle, permettono di associare la loro presenza ad un inquinamento derivante da reflui civili e industriali riversati all'interno del corso d'acqua indagato. Tali valori non risultano in alcun modo correlabili alle attività di cantiere della galleria Caltanissetta.

Allo stesso modo, anche la presenza dell'**azoto totale** concorre alla presenza di un inquinamento da reflui. Nello specifico, il massimo valore pari a 49,9 mg/l, è stato determinato nella campagna n.7 eseguita a luglio 2015. Limitatamente al semestre oggetto della presente relazione, l'azoto totale misurato si è mantenuto al di sotto della soglia di 10 mg/l, rispettata dalla quasi totalità delle campagne eseguite in AO e in CO, precisamente all'interno del campo di valori 2,0 – 7,3 mg/l.

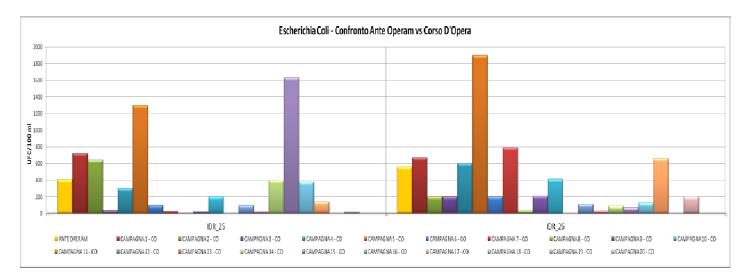


Per quanto concerne i **solfati**, una concentrazione elevata, pari a 2183 mg/l, è stata registrata nel punto IDR_26 della campagna n.10 di luglio 2016, concentrazione che è diminuita nelle successive campagne in Corso d'Opera. Tale valore è stato superato durante il semestre in oggetto durante la campagna n. 15 eseguita il 01 dicembre 2016, rilevando una concentrazione pari a 2243 mg/l. Nelle successive campagne il valore è diminuito, rientrato nel campo di variabilità medio che risulta dalle indagini storiche.

I picchi di concentrazione indicati sono sintomo di una contaminazione delle acque dovuta a scarichi di origine antropica.

I **cloruri** sono composti inorganici contenenti cloro, la presenza di questi composti nell'acqua può avere origine minerale oppure organica, valori superiori a 250 mg/l potrebbero indicare una contaminazione dovuta a scarichi civili, industriali oppure a pratiche zootecniche. Elevate concentrazioni di cloruri conferiscono all'acqua odore e sapore sgradevoli, ma in genere non sono tossici per l'uomo. Nelle campagne eseguite nel semestre novembre 2016 – aprile 2017 le concentrazioni dei cloruri sono comprese tra 76 e 301 mg/l.

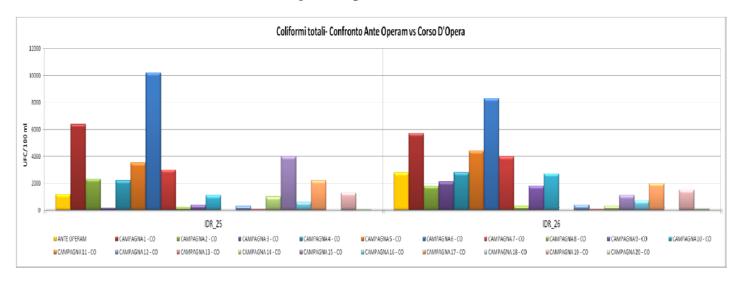
MONITORAGGI AMBIENTALI INTEGRATIVI
Report periodico Monitoraggio Ante e Corso d'Opera - periodo novembre 2016 – aprile 2017


Per quanto riguarda i **metalli**, essi sono in genere di origine naturale e possono essere presenti nell'ambiente sotto forma di sali, di complessi organici e inorganici o di gas. Alle concentrazioni originariamente presenti in natura non costituivano un rischio per gli esseri viventi, ma l'estrazione dai giacimenti minerali e l'utilizzazione nell'industria e nell'agricoltura ha portato alla produzione di emissioni gassose nell'atmosfera, alla produzione di rifiuti solidi e di reflui contenenti metalli pesanti.

Per i metalli monitorati, il monitoraggio ha restituito valori in linea con quanto riscontrato in ante operam, risultando il più delle volte inferiori ai limiti strumentali.

Per quanto riguarda, invece, i parametri caratteristici delle sostanze additivanti, utilizzate per il condizionamento del materiale da scavo, si segnala nella campagna n.5, sia nella sezione di monte che di valle valori di **tensioattivi** superiori all'ante operam. Relativamente alle campagne eseguite nel periodo novembre 2016 – aprile 2017 il valore più alto è risultato pari a 0,72 mg/l, mentre per la maggior parte delle campagne il valore dei tensioattivi è risultato inferiore al limite strumentale. Sulla base di quanto appena esposto, si ritiene che il tenore di tensioattivi rilevati non siano da attribuire alle attività da scavo della GN Caltanissetta. L'**acido acrilico**, invece, è risultato sempre inferiore ai limiti di rilevabilità strumentale.

Nel corso delle campagne di monitoraggio, sono state eseguite anche analisi sui parametri batteriologici e alcuni saggi di tossicità. L'**escherichia coli** è un batterio che vive nell'intestino degli animali, incluso l'uomo, dove svolge un ruolo importante per la digestione ed assorbimento del cibo. La presenza di escherichia coli nelle acque indica un possibile inquinamento di origine fecale che potrebbe provenire da scarichi fognari o dal contatto delle acque di falda con bacini inquinati (canali, fiumi, etc.).


La qualità batteriologica delle acque del Fosso Mumia mette in luce una contaminazione di tipo fecale in tutte le campagne eseguite, sia nella sezione di valle che di monte rispetto all'affluente Niscima. I valori massimi, 1630 UFC/100 ml e 1900 UFC/100 ml, sono stati registrati rispettivamente nei punti IDR_25 e IDR_26, durante la campagna n.15 di dicembre 2016 e n.5 di luglio 2015.

Anche la presenza di Coliformi nell'acqua può indicare una contaminazione della stessa a causa del contatto con l'ambiente esterno inquinato. In generale la presenza di Coliformi può indicare:

- Contatto dell'acqua con l'ambiente esterno (es. contaminazione da terreni);
- Contatto con materiale fecale (umano e/o animale) proveniente da fognature, scarichi superficiali, pozzi perdenti.

Le analisi eseguite sui **coliformi totali** ricalcano l'andamento evidenziato dall'escherichia coli, le stazioni IDR_25 e IDR_26 presentano livelli significativi di contaminazione. Tale contaminazione è ascrivibile, come già esposto, a sorgenti inquinanti riconducibili a scarichi di reflui civili e industriali direttamente nei corsi d'acqua indagati.

Per quanto riguarda i saggi di tossicità, uno degli organismi utilizzati per il saggio è il crostaceo cladocero della specie **Daphnia Magna Straus**, molto sensibile soprattutto all'inquinamento da metalli pesanti (piombo, cadmio, zinco, rame etc.). I neonati di meno di 24 h vengono immessi nel campione da analizzare e dopo un periodo di tempo prestabilito (24h) si osserva la percentuale di

MONITORAGGI AMBIENTALI INTEGRATIVI
Report periodico Monitoraggio Ante e Corso d'Opera - periodo novembre 2016 – aprile 2017

individui sopravvissuti. I risultati sono espressi come percentuale di individui morti/immobilizzati, nelle campagne in esame, non si evidenziano particolari criticità.

Il test con batteri bioluminescenti sfrutta la naturale capacità di un gruppo di batteri marini, appartenenti alla specie **Vibrio fischeri**, di emettere luce se si trovano nelle condizioni ottimali. Attraverso uno specifico strumento, il luminometro, vengono effettuate delle misure di luminescenza a dei tempi rispettivamente di 15 minuti. La presenza di sostanze inibenti si manifesta mediante una riduzione della bioluminescenza proporzionale alla tossicità del campione. Nel caso in esame, i campioni di acqua prelevati non evidenziano particolari condizioni di tossicità.

Si segnala, ad integrazione di quanto già esposto relativamente alla valutazione dei parametri batteriologici, che nella campagna n. 18 eseguita il 7 febbraio 2017 sono stati riscontrati valori altissimi di coliformi fecali e totali, escherichia coli e di streptococchi fecali ed enterococchi, superiori a 300000 UFC/100 ml. Si sottolinea che questa occorrenza risulta occasionale, in quanto già dai campionamenti successivi i valori sono rientrati nella norma, entro un range confrontabile con quello registrato nelle campagne precedenti.

Il genere **salmonella**, comprende microrganismi bastoncellari appartenenti alla famiglia delle Enterobatteriacee, gram negativi, aerobi e anaerobi facoltativi, non fermentanti il lattosio, saccarosio e salicina, le salmonelle parassitano l'intestino dell'uomo, degli animali domestici e selvatici; talvolta possono essere isolate dal sangue e dagli organi interni dei vertebrati. La presenza di salmonelle nell'ambiente idrico è indice di una contaminazione fecale primaria (immissione diretta di scarichi fognari) o secondaria (ad esempio, dilavamento da suoli contaminati). Salmonelle si trovano frequentemente nei liquami, in acque costiere, lacustri e nel suolo dove si moltiplicano però in maniera non significativa. Il metodo consente di valutare la presenza/assenza di Salmonella in un determinato volume di acqua, la procedura analitica per la sua determinazione consiste in una serie di fasi successive che comprendono: prearricchimento, arricchimento, isolamento, conferma biochimica, ed eventualmente conferma sierologica. Su entrambi i punti monitorati, non si riscontra la presenza di salmonella nei monitoraggi effettuati durante il semestre novembre 2016 – aprile 2017.

4.5.3. Indagini biotiche e di funzionalità fluviale- Fiume Salso e Fosso Mumia

Il monitoraggio del Fosso Mumia e del Fiume Salso viene eseguito in ottemperanza alla prescrizione n.3 del parere n. 1029 della CTVIA. La prescrizione n. 3 dispone che il monitoraggio ambientale debba verificare che le opere provvisionali e le attività di cantiere non alterino in maniera significativa e permanente l'ecosistema fluviale.

A tal riguardo, il PMA integrativo ha previsto il monitoraggio dell'indice di funzionalità fluviale IFF e dell'indice diatomico, oltre al campionamento dei macroinvertebrati con tecnica Macroper.

MONITORAGGI AMBIENTALI INTEGRATIVI
Report periodico Monitoraggio Ante e Corso d'Opera - periodo novembre 2016 – aprile 2017

Macroinvertebrati e indice STAR-ICMi:

I campionamenti dei macroinvertebrati è stato eseguito in conformità alle metodiche riportate nel notiziario dei metodi analitici IRSA-CNR n. 1 del 2007 e ai metodi biologici per le acque superficiali interne – Ispra 111/2014.

Per quanto riguarda il fiume Salso (sez. IDR_23-IDR_24), mediante l'elaborazione fornita dal software Macroper, il risultato rilevato nei due punti campionati durante la campagna di aprile 2017, dello STAR_ICMi è pari a 0,366 per IDR_23 ed è pari a 0,373 per IDR_24, che corrispondono ad uno stato SCARSO di classe 4 (colore di riferimento: Arancione). Tale risultato è dato dalla mancanza di taxa nelle aree indagate. Il fiume Salso, nel giorno del campionamento, si presentava con acqua piuttosto calda e una portata molto bassa, condizioni queste che limitano la colonizzazione e la vita di fauna macrobentonica.

Per quanto concerne il Fosso Mumia (sez. IDR_13-IDR_14), l'indice STAR_ICMi, rilevato nei due punti monitorati durante la campagna di aprile 2017, è pari a 0,239 per IDR_13 ed è pari a 0,228 per IDR_14, che corrispondono ad uno stato CATTIVO di classe 5 (colore di riferimento: Rosso).

Per quanto concerne l'indice Star-ICMi, detto parametro è attualmente fortemente influenzato dalla stagionalità, caratterizzata da basse portate e alte temperature delle acque.

Indice di funzionalità fluviale IFF

L'Indice di Funzionalità Fluviale permette di studiare il grado di funzionalità di un fiume o di parte di questo, attraverso la descrizione dei parametri morfometrici e biotici dell'ecosistema in studio. Rappresenta pertanto uno strumento in grado di valutare lo stato complessivo dell'ambiente fluviale e la sua funzionalità, ad esempio la funzione tampone svolta dall'ecotono ripario (un ambiente di transizione tra due sistemi ecologici adiacenti: il fiume e l'ambiente circostante), la struttura morfologica dell'alveo, delle rive e del corso del fiume che deve essere in grado di dare riparo e garantire un habitat idoneo a diverse comunità biologiche.

L'IFF è strutturato in 14 domande raggruppabili in 4 gruppi funzionali:

- condizione vegetazionale delle rive e del territorio circostante al corso d'acqua;
- ampiezza relativa dell'alveo bagnato e struttura morfo-fisica delle rive;
- > struttura dell'alveo;
- caratteristiche biologiche.

Il punteggio complessivo (valore minimo di 14, massimo di 300) viene tradotto in 5 livelli ai quali corrispondono 5 livelli di funzionalità. Si riportano di seguito i valori riscontrati in campo durante la campagna di aprile 2017:

MONITORAGGI AMBIENTALI INTEGRATIVI

	I.F	.F.	Livello di	Giudizio di	Livello di	Giudizio di
STAZIONE		ı	Funzionalità	funzionalità	Funzionalità	funzionalità
	Dx	Sx	Sponda destra	Sponda destra	Sponda sinistra	Sponda sinistra
IDR 23	94	108	IV	SCADENTE	III-IV	MEDIOCRE/ SCADENTE
IDR 24	172	134	III	MEDIOCRE	III	MEDIOCRE
IDR 13	47	43	V	PESSIMO	V	PESSIMO
IDR 14	47	46	V	PESSIMO	V	PESSIMO

Indice diatomico:

Nell'ambito della direttiva europea (Water Frame Directive WFD, CE 2000/60), per la classificazione dello stato di qualità dei corpi idrici assumono rilevante interesse gli indicatori biologici, tra cui le Diatomee, quali maggiori componenti nel fitobenthos fluviale.

I corsi d'acqua sono popolati in tutta la loro lunghezza da alghe micro e macroscopiche afferenti soprattutto alle seguenti classi: Cyanophyceae o alghe azzurre o cianobatteri; Chrysophyceae o alghe dorate; Xanthophyceae o alghe gialle; Bacillariophyceae o Diatomee, Rhodophyceae o alghe rosse; Chlorophyceae, Zygophyceae e Charophyceae, tutte alghe verdi.

Tra tutte le alghe, però, sono le Diatomee che si rivelano le più idonee al monitoraggio delle acque correnti, in quanto risultano presenti con una elevata diversità in tutti i fiumi e sono molto reattive al variare delle condizioni ambientali. Le Diatomee, inoltre, sono ben conosciute sia dal punto di vista sistematico che ecologico.

Di seguito si riportano i risultati relativi alla campagna di aprile 2017:

Fiume	Valore RQE	Classe di Qualità	Giudizio	di qualità
Mumia Monte	0,62	III	Bud	no
Mumia Valle	0,58	III	Suffic	iente
Salso Monte	0,52	III	Suffic	iente
Salso Valle	0,51	III	Sufficiente	Scarso

Le indagini, sin qui effettuate, hanno evidenziato per entrambi i corsi d'acqua (all'interno delle tratte monitorate: monte-valle) un ambiente fluviale piuttosto compromesso, soprattutto dal punto di vista funzionale. In particolare, il Fosso Mumia evidenzia giudizi di funzionalità che vanno da "buono" a "sufficiente", mentre per il fiume Salso il giudizio va da "sufficiente" a "scarso".

MONITORAGGI AMBIENTALI INTEGRATIVI

4.5.4. Conclusioni

Nel periodo di riferimento del presente report sono stati eseguiti alcuni monitoraggi integrativi in ossequio alla richiesta dall'AS-ANAS di estendere il monitoraggio ambientale a tutti i ricettori posti a valle dello scarico delle acque del cantiere della galleria Caltanissetta. Sono state monitorate due sezioni idriche ubicate nel corpo idrico denominato Fosso Mumia, a monte e a valle rispetto all'affluente Niscima, denominati IDR_25 e IDR_26, nei mesi di dicembre 2016, gennaio, febbraio e aprile 2017.

Le analisi eseguite evidenziano ambienti disturbati e soggetti a scarichi abusivi di tipi civile e industriale, tale condizione viene evidenziata dalla presenza diffusa di sostanza organica e composti azotati. E' stata rilevata la presenza diffusa di contaminazione di tipo fecale, anch'essa attribuibile a scarichi civili e/o industriali. Per quanto riguarda, invece, i tensioattivi, sostanze presenti negli additivi utilizzati per il condizionamento del materiale da scavo, i valori rilevati risultano inferiori al limite strumentale.

L'acido acrilico, invece, è risultato sempre inferiore ai limiti di rilevabilità strumentale.

In considerazione del fatto che la qualità delle acque risulta compromessa in entrambe le sezioni, anche durante la fase Ante Operam, non si ritiene opportuno dover attribuire eventuali contaminazioni, rilevate in CO, agli scarichi provenienti dal cantiere della GN Caltanissetta sul corpo idrico indagato.

Inoltre in ottemperanza alla prescrizione n.3 del parere n. 1029 della CTVIA, la quale dispone indagini suppletive atte a verificare che le opere provvisionali e le attività di cantiere non alterino in maniera significativa e permanente l'ecosistema fluviale. A tal riguardo, il monitoraggio integrativo è stato esteso alle stazioni IDR_13, IDR_14, IDR_23 e IDR_24 ed ha previsto l'applicazione dell'indice di funzionalità fluviale IFF e dell'indice diatomico, oltre al campionamento dei macroinvertebrati con tecnica Macroper.

Per quanto riguarda il fiume Salso (sez. IDR_23-IDR_24), mediante l'elaborazione fornita dal software Macroper, il risultato rilevato nei due punti campionati durante la campagna di aprile 2017, dello STAR_ICMi è pari a 0,366 per IDR_23 ed è pari a 0,373 per IDR_24, che corrispondono ad uno stato SCARSO di classe 4 (colore di riferimento: Arancione). Tale risultato è dato dalla mancanza di taxa nelle aree indagate. Il fiume Salso, nel giorno del campionamento, si presentava con acqua piuttosto calda e una portata molto bassa, condizioni queste che limitano la colonizzazione e la vita di fauna macrobentonica.

Per quanto concerne il Fosso Mumia (sez. IDR_13-IDR_14), l'indice STAR_ICMi, rilevato nei due punti monitorati durante la campagna di giugno 2016, è pari a 0,239 per IDR_13 ed è pari a 0,228 per IDR_14, che corrispondono ad uno stato CATTIVO di classe 5 (colore di riferimento: Rosso).

Le indagini diatomiche, sin qui effettuate, hanno evidenziato per entrambi i corsi d'acqua (all'interno delle tratte monitorate: monte-valle) un ambiente fluviale piuttosto compromesso, soprattutto dal punto di vista funzionale. In particolare, il Fosso Mumia evidenzia giudizi di funzionalità che vanno da "buono" a "sufficiente", mentre per il fiume Salso il giudizio va da "sufficiente" a "scarso".

MONITORAGGI AMBIENTALI INTEGRATIVI

L'Indice di Funzionalità Fluviale permette di studiare il grado di funzionalità di un fiume o di parte di questo, attraverso la descrizione dei parametri morfometrici e biotici dell'ecosistema in studio. I risultati hanno evidenziato livelli di funzionalità che oscillano da" mediocre" a "pessimo".

5 Acque sotterranee

Il monitoraggio dell'ambiente idrico sotterraneo ha lo scopo di controllare l'impatto della costruzione delle opere sul sistema idrogeologico profondo, al fine di prevenirne alterazioni di tipo quali-quantitativo delle acque ed eventualmente programmare efficaci interventi di contenimento e mitigazione.

In occasione dei sopraggiunti provvedimenti e in ottemperanza a quanto evidenziato in premessa, si riportano nei seguenti paragrafi le risultanze dei monitoraggi ambientali afferenti al periodo novembre 2016/aprile 2017.

5.1 Monitoraggio pozzi emungimento acque TBM - GN Caltanissetta

Con la sopraggiunta Determina Direttoriale del MATTM prot. DVA-2014-0019853 di approvazione del Piano di Utilizzo del materiale da scavo della GN Caltanissetta, il Ministero ha prescritto che venisse costantemente monitorato il livello di falda dei 10 pozzi (allineati lungo l'asse delle due canne) realizzati dal CG al fine di aggottare la falda all'interno del banco dei calcari e consentire alla TBM di procedere in sicurezza negli scavi di perforazione. Sulla prescrizione in esame è intervenuta l'ARPA Sicilia ST di Caltanissetta che, durante il Tavolo Tecnico tenutosi presso la loro sede il 17/02/2015, ha prescritto un monitoraggio aggiuntivo atto a verificare che l'utilizzo di additivi durante la fase di scavo con TBM non alteri la qualità delle acque di falda.

Il monitoraggio risulta così strutturato:

- Monitoraggio AO: prelievo e l'analisi di un campione di bianco in corrispondenza del pozzo denominato PZ-N6, prima che la TBM intercetti il primo pozzo della batteria;
- Monitoraggio CO: campagne di monitoraggio per l'intera durata dell'attraversamento della TBM nel banco dei calcari. In considerazione del fatto che i pozzi saranno contemporaneamente attivi in numero massimo di tre unità per volta (immediatamente avanti al fronte di avanzamento della TBM), e che quelli superati dalla stessa saranno disattivati, la campagna di prelievo è stata eseguita con le seguenti modalità: campionamento e analisi del primo pozzo attraversato (non più in emungimento) e contemporaneamente del primo pozzo non attivo in direzione di avanzamento. Detto monitoraggio sarà ripetuto con la stessa metodologia durante la realizzazione della seconda canna della galleria.
- ➤ Per tutti i campioni prelevati è stato determinato il set analitico previsto dalla tabella 2, Allegato 5 alla Parte IV del Titolo V del D.Lgs. 152/06, con esclusione di diossine e furani.

5.1.1 Stazioni indagate

Di seguito si riporta l'elenco dei pozzi monitorati.

		Coordinate p	geografiche	Periodo	di monitoraggio
Id_punto	Ubicazione			Co	rso d'Opera
		Nord	Est	novembre	
				2016	febbraio 2016
PZ_N1	Banco dei calcari	37°29'51.50"N	14° 2'12.70"E		08/02/2017 - 16/02/2017
PZ_N2	Banco dei calcari	37°29'51.50"N	14° 2'12.70"E		01/02/2017
PZ_N3	Banco dei calcari	37°29'51.50"N	14° 2'12.70"E		08/02/2017
PZ_N4	Banco dei calcari	37°29'51.50"N	14° 2'12.70"E		01/02/2017 - 15/02/2017
PZ_N6	Banco dei calcari	37°29'51.50"N	14° 2'12.70"E	09/11/2016	17/02/2017
PZ_N10	Banco dei calcari	37°29'51.50"N	14° 2'12.70"E		17/02/2017 - 24/02/2017

Punti di monitoraggio indagati

5.1.2 Risultati indagini

Nel seguito sono riportati i risultati dei monitoraggi eseguiti in Corso d'Opera, comparate con le concentrazioni registrate durante la campagna effettuata in Ante Operam eseguita in assenza di lavorazioni.

		22/04/15	05/06/15	05/06/15	09/06/15	09/06/15	09/06/15	15/06/15	15/06/15	17/06/15	17/06/15	19/06/15	13/10/15	13/10/15	09/11/16	01/02/17	01/02/17	15/02/17	08/02/17	16/02/17	08/02/17	17/02/17	17/02/17	24/02/17	
PARAMETRO	UM	PZ_N6 - AO	PZ_N6 - CO	PZ_N2 - CO	PZ_N3 - CO	PZ_N4 - CO	PZ_N8 - CO	PZ_N1 - CO	PZ_N9 - CO	PZ_N6 - CO	PZ_N11 - CO	PZ_N10 - CO	PZ_N06 -CO	PZ_N10 - CO	PZ_N6 - CO	PZ_N2 - CO	PZ_N4 - CO	PZ_N4 - CO	PZ_N1 - CO	PZ_N1 - CO	PZ_N3 - CO	PZ_N6 - CO	PZ_N10 - CO	PZ_N10 - CO	Limiti*
LIVELLO DI FALDA	m	-	66,2	62,7	64,4	27,6	-	90,4	64,4	75,4	26,9	35,6	62,5	25,1	72,5	54,3	55,6	81,3	62,9	54,6	54,6	83,4	21,2	29,7	
TEMPERATURA ARIA	°C	-	25	24	24	25	26	32	31	30	30	29	24	24	15	11	11	12	9,1	12	9,2	6,5	7	11	
TEMPERATURA	°C	-	24,3	18,9	19	19	20,3	21	17,8	21,3	20,5	19,3	18,4	17,2	18,1	17	16	18	16	17	17	17	15	18	
POTENZIALE REDOX	Mv	-	-174	130	33,4	-27,6	26,1	< -200	-75,2	120	-15	-18,2	-346	-189	-264	-48,3	-46,8	10,9	< 0.1	-103,8	< 0.1	-354,3	-140	-33,2	
pН	Unità di pH	-	7,8	7,1	7,1	7,3	7,8	7,8	8	7,8	7,6	8	6,9	8,9	6,5	7,6	7,1	7,2	8	7,6	7,5	7,1	8,5	7,8	
CONDUCIBILITA'	μS/cm	-	3750	1646	1460	2270	4110	3800	1591	5550	1839	13460	4240	1390	2750	1506	1417	1597	2300	3090	1351	4500	3760	4830	
OSSIGENO DISCIOLTO	mg/l	-	7,67	5,46	8,41	8,42	7,74	0,07	5,24	2,17	6,51	8,72	0,41	1,24	0,66	9,2	9,2	9,5	3,7	2,3	7,3	0,26	9,2	3,7	
FLUORURI	mg/l	1,74	2,89	3,55	1,56	1,98	3,73	3,36	4,19	4,34	1,59	2,06	3,6	1,6	1,0	2,9	1,1	0,97	2,4	2,7	1,1	2,8	1,2	0,97	1,5
AZOTO NITROSO	mg/l	0,207	<0.05	0,102	0,09	<0.05	<0.05	<0.05	<0.05	<0.05	<0.015	<0.015	<0.05	1,03	0,74	0,095	< 0.01	0,16	< 0.01	< 0.05	0,066	< 0.05	< 0.05	< 0.05	0,5
SOLFATI	mg/l	790	740	150	250	460	700	1100	780	880	18	51	1500	120	955	298	346	341	482	866	295	918	79	95	250
CIANURI LIBERI E TOTALI	μg/1	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	< 20	< 20	< 20	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	50
ALLUMINIO	μg/1	20,5	13,5	12,7	< 10	13,5	20,2	< 10	13,7	< 10	< 10	< 10	< 10	106	13	< 10	< 10	< 10	13	33	< 10	45	40	20	200
ANTIMONIO	μg/1	1,42	<1	<1	<1	<1	1,49	< 1	3,67	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	7,4	3	5
ARGENTO	μg/1	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	10
ARSENICO	μg/1	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	2,93	4,97	3,47	6,28	5,98	3,1	2,55	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	10
BERILLIO	μg/1	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	4
BORO	μg/1	2760	4580	3320	665	1440	3610	4570	13900	7440	18900	15200	5950	2360	940	2304	534	608	3048	3656	828	5694	5069	6116	1000
CADMIO	μg/1	< 1	<1	< 1	< 1	< 1	<1	<1	<1	<1	< 1	<1	<1	< 1	< 1	< 1	< 1	<1	< 1	< 1	< 1	<1	<1	< 1	5
COBALTO	μg/1	1,67	< 1	< 1	<1	<1	<1	<1	<1	< 1	< 1	<1	<1	< 1	< 1	<1	< 1	<1	< 1	< 1	< 1	<1	<1	< 1	50
CROMO TOTALE	μg/1	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	4,3	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	7,3	< 2,5	< 2,5	< 2,5	< 2,5	50
CROMO ESAVALENTE	mg/l	< 0,0025	<0.0025	<0.0025	< 0,0025	< 0,0025	< 0,0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.003	<0.003	<0.003	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.003	0,005
FERRO	μg/1	47,9	< 20	35,6	361	1510	35,9	21	< 20	< 20	48,8	< 20	< 20	32,1	160	483	2331	502	97	251	1481	89	1997	25	200
MANGANESE	μg/1	197	37,9	178	40,2	68,3	73,5	325	89	36,2	74,5	186	1080	36,3	44	294	62	50	16	62	89	134	84	226	50
MERCURIO	μg/1	< 0,03	< 0,03	< 0,03	0,112	0,186	0,08	< 0,03	0,326	< 0,03	0,62	0,267	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	0,091	< 0.03	< 0.03	< 0.03	< 0.03	0,062	1
NICHEL	μg/1	21,2	5,22	< 2,5	< 2,5	4,55	4,26	< 2,5	6,44	3,32	6,06	5	< 2,5	< 2,5	< 2,5	9,2	5,9	6,1	4	17	9	< 2.5	2,6	31	20

MONITORAGGI AMBIENTALI INTEGRATIVI

		22/04/15	05/06/15	05/06/15	09/06/15	09/06/15	09/06/15	15/06/15	15/06/15	17/06/15	17/06/15	19/06/15	13/10/15	13/10/15	09/11/16	01/02/17	01/02/17	15/02/17	08/02/17	16/02/17	08/02/17	17/02/17	17/02/17	24/02/17	
PARAMETRO	UM	PZ_N6 - AO	PZ_N6 - CO	PZ_N2 - CO	PZ_N3 - CO	PZ_N4 - CO	PZ_N8 - CO	PZ_N1 - CO	PZ_N9 - CO	PZ_N6 - CO	PZ_N11 - CO	PZ_N10 - CO	PZ_N06 - CO	PZ_N10 - CO	PZ_N6 - CO	PZ_N2 - CO	PZ_N4 - CO	PZ_N4 - CO	PZ_N1 - CO	PZ_N1 - CO	PZ_N3 - CO	PZ_N6 - CO	PZ_N10 - CO	PZ_N10 - CO	Limiti*
PIOMBO	μg/1	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	10
RAME	μg/1	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 2,5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	1000
SELENIO	μg/l	< 5	5,04	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	7,3	< 5	< 5	< 5	16	< 5	< 5	19	5,5	< 5	10
TALLIO	μg/1	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	< 1,5	2
ZINCO	μg/1	< 10	11,7	< 10	14	21,5	< 10	52,2	17,5	< 10	< 10	< 10	< 10	< 10	< 10	< 10	52	41	< 10	10	197	< 10	18	< 10	3000
BENZENE	μg/1	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0.1	< 0,5	< 0.1	< 0,5	< 0.1	< 0.1	< 0.1	1
ETILBENZENE	μg/1	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	50
STIRENE	μg/1	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	2,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	25
TOLUENE	μg/1	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	1,6	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	15
p-XILENE	μg/1	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	1,1	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	10
BROMODICLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,10	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,17
CLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	1,5
CLORURO DI VINILE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,5
DIBROMOCLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,09	< 0,001	< 0,001	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,13
1,2-DIBROMOETANO	μg/l	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,05	< 0,05	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001
1,1-DICLOROETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	810
1,2-DICLOROETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	3
1,1-DICLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,05
1,2-DICLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	60
1,2-DICLOROPROPANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,15
ESACLOROBUTADIENE	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,15
1,1,2,2- TETRACLOROETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,05
TETRACLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,54	< 0,05	< 0,05	0,07	0,11	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,5	< 0,5	1,1
TRIBROMOMETANO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,3
1,1,2-TRICLOROETANO	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,2
TRICLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	1,5
TRICLOROMETANO (CLOROFORMIO)	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,07	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,15

MONITORAGGI AMBIENTALI INTEGRATIVI

		22/04/15	05/06/15	05/06/15	09/06/15	09/06/15	09/06/15	15/06/15	15/06/15	17/06/15	17/06/15	19/06/15	13/10/15	13/10/15	09/11/16	01/02/17	01/02/17	15/02/17	08/02/17	16/02/17	08/02/17	17/02/17	17/02/17	24/02/17	
PARAMETRO	UM	PZ_N6 - AO	PZ_N6 - CO	PZ_N2 - CO	PZ_N3 - CO	PZ_N4 - CO	PZ_N8 - CO	PZ_N1 - CO	PZ_N9 - CO	PZ_N6 - CO	PZ_N11 - CO	PZ_N10 - CO	PZ_N06 - CO	PZ_N10 - CO	PZ_N6 - CO	PZ_N2 - CO	PZ_N4 - CO	PZ_N4 - CO	PZ_N1 - CO	PZ_N1 - CO	PZ_N3 - CO	PZ_N6 - CO	PZ_N10 - CO	PZ_N10 - CO	Limiti*
1,2,3-TRICLOROPROPANO	μg/1	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001
SOMMATORIA SOLVENTI ORGANICI ALOGENATI	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,54	< 0,05	< 0,05	0,07	0,11	0,26	< 0,05	< 0,05	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	10
BENZO(a)ANTRACENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,10
BENZO(b)FLUORANTENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,10
BENZO(k)FLUORANTENE	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	0,05
BENZO(g,h,i)PERILENE	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	0,01
BENZO(a)PIRENE	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	0,01
CRISENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	5,00
DIBENZO(a,h)ANTRACENE	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	0,01
INDENO(1,2,3-c,d)PIRENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,1
PIRENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,07	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	50
SOMMATORIA IDROCARBURI POLICICLICI AROMATICI (da calcolo)	μg/l	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,1
ALACLOR	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,1
ALDRIN	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,03
ATRAZINA	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	0,3
CLORDANO (CIS+TRANS)	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	0,1
2,4'DDD	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	
2,4'DDE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	
2,4'DDT	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	
4,4'DDD	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	
4,4'DDE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	
4,4'DDT	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	
DDD, DDT, DDE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,1
DIELDRIN	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,03
ENDRIN	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,1

MONITORAGGI AMBIENTALI INTEGRATIVI

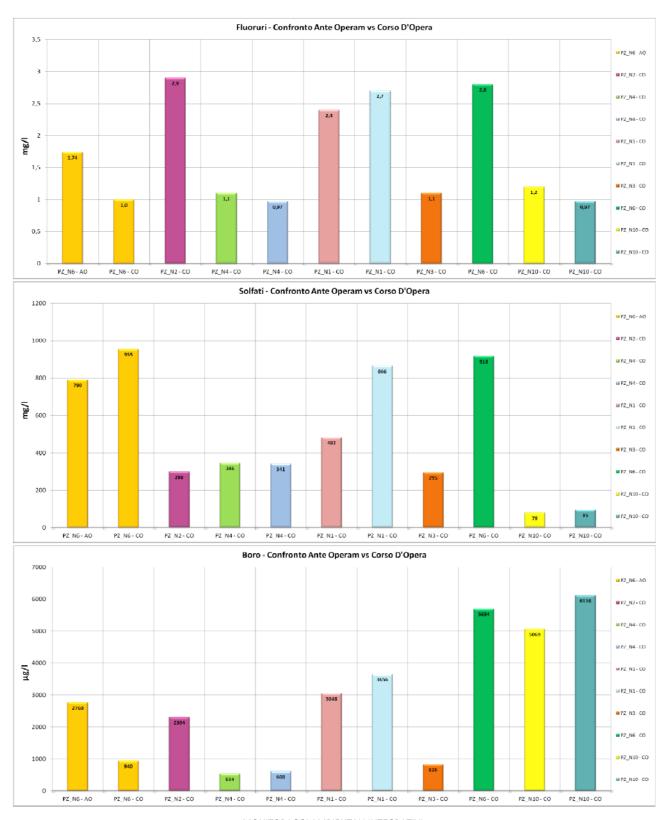
		22/04/15	05/06/15	05/06/15	09/06/15	09/06/15	09/06/15	15/06/15	15/06/15	17/06/15	17/06/15	19/06/15	13/10/15	13/10/15	09/11/16	01/02/17	01/02/17	15/02/17	08/02/17	16/02/17	08/02/17	17/02/17	17/02/17	24/02/17	
PARAMETRO	UM	PZ_N6	PZ_N6	PZ_N2	PZ_N3	PZ_N4	PZ_N8	PZ_N1	PZ_N9	PZ_N6	PZ_N11 -	PZ_N10	PZ_N06	PZ_N10	PZ_N6 -	PZ_N2	PZ_N4	PZ_N4	PZ_N1	PZ_N1 -	PZ_N3	PZ_N6	PZ_N10	PZ_N10	Limiti*
ALFA-ESACLOROESANO	μg/1	- AO < 0,01	- CO < 0.01	- CO < 0,01	- CO < 0,01	- CO < 0,01	- CO < 0.01	- CO < 0.01	- CO < 0,01	- CO < 0,01	< 0.01	- CO < 0,01	- CO < 0.01	- CO < 0,01	< 0.01	- CO < 0,01	- CO < 0,01	- CO < 0,01	- CO < 0.01	< 0,01	- CO < 0,01	- CO < 0,01	- CO < 0.01	- CO < 0,01	0.1
BETA-ESACLOROESANO	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	0,1
GAMMA- ESACLOROESANO (LINDANO)	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,1
SOMMATORIA PESTICIDI ORGANOCLORURATI (da calcolo)	μg/l	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,5
PCB 28	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 30	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 52	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 77	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 81	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 101	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 105	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 114	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 118	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 123	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 126	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 128	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 138	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 153	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 156	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 157	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 167	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 169	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 170	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 180	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	
PCB 189	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	

MONITORAGGI AMBIENTALI INTEGRATIVI

		22/04/15	05/06/15	05/06/15	09/06/15	09/06/15	09/06/15	15/06/15	15/06/15	17/06/15	17/06/15	19/06/15	13/10/15	13/10/15	09/11/16	01/02/17	01/02/17	15/02/17	08/02/17	16/02/17	08/02/17	17/02/17	17/02/17	24/02/17	
PARAMETRO	UM	PZ_N6 - AO	PZ_N6 - CO	PZ_N2 - CO	PZ_N3 - CO	PZ_N4 - CO	PZ_N8 - CO	PZ_N1 - CO	PZ_N9 - CO	PZ_N6 - CO	PZ_N11 - CO	PZ_N10 - CO	PZ_N06 - CO	PZ_N10 - CO	PZ_N6 - CO	PZ_N2 - CO	PZ_N4 - CO	PZ_N4 - CO	PZ_N1 - CO	PZ_N1 - CO	PZ_N3 - CO	PZ_N6 - CO	PZ_N10 - CO	PZ_N10 - CO	Limiti*
SOMMATORIA PCB (da calcolo)	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	0,01
2-CLOROFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	180
2,4-DICLOROFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	110
PENTACLOROFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,5
2,4,6-TRICLOROFENOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	5
CLORONITROBENZENI	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	0,24	<0,01	<0,01	<0,01	<0,01	0,5
1,2-DINITROBENZENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,24	<0,01	<0,01	<0,01	<0,01	15
1,3-DINITROBENZENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	3,7
NITROBENZENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	3,5
CLOROBENZENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	40
1,2-DICLOROBENZENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0.1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	270
1,4-DICLOROBENZENE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0.1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,5
ESACLOROBENZENE	μg/1	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	0,01
PENTACLOROBENZENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	5
1,2,4,5- TETRACLOROBENZENE	μg/1	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	1,8
1,2,4-TRICLOROBENZENE	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	190
ANILINA	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	10
DIFENILAMINA	μg/1	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,035	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	910
p-TOLUIDINA	μg/1	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	< 0,01	0,35
IDROCARBURI TOTALI (espressi come n-esano)	μg/1	105	< 50	< 50	< 50	< 50	198	< 50	917	< 50	< 50	< 50	364	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	350
ACRILAMMIDE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,1
ACIDO ACRILICO	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	
ACIDO PARA-FTALICO	μg/1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 0,01	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	37000
1-ESANOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	
2-BUTOSSIETANOLO	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	
ESILENGLICOLE	μg/1	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	İ

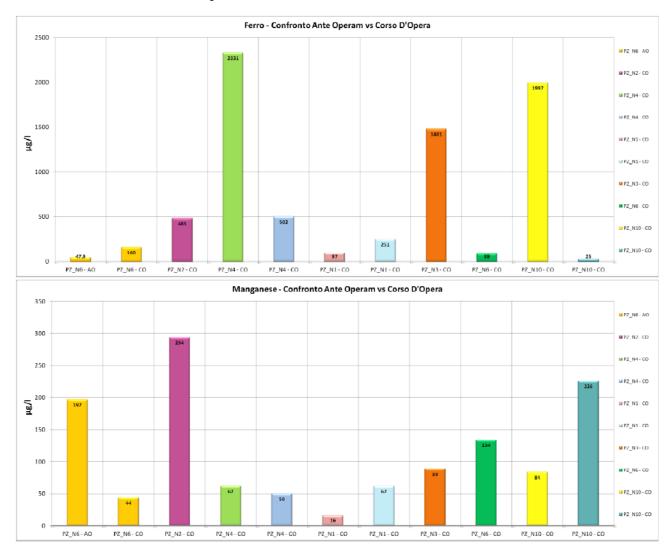
MONITORAGGI AMBIENTALI INTEGRATIVI

Corridoio Plurimodale Tirrenico - Nord Europa / Itinerario Agrigento – Caltanissetta - A19 / S.S. n° 640 "di Porto Empedocle" Ammodernamento e adeguamento alla Cat. B del D.M. 5.11.2001 dal km 44+000 allo svincolo con l'A19


		22/04/15	05/06/15	05/06/15	09/06/15	09/06/15	09/06/15	15/06/15	15/06/15	17/06/15	17/06/15	19/06/15	13/10/15	13/10/15	09/11/16	01/02/17	01/02/17	15/02/17	08/02/17	16/02/17	08/02/17	17/02/17	17/02/17	24/02/17	
PARAMETRO	UM	PZ_N6 - AO	PZ_N6 - CO	PZ_N2 - CO	PZ_N3 - CO	PZ_N4 - CO	PZ_N8 - CO	PZ_N1 - CO	PZ_N9 - CO	PZ_N6 - CO	PZ_N11 - CO	PZ_N10 - CO	PZ_N06 - CO	PZ_N10 - CO	PZ_N6 - CO	PZ_N2 - CO	PZ_N4 - CO	PZ_N4 - CO	PZ_N1 - CO	PZ_N1 - CO	PZ_N3 - CO	PZ_N6 - CO	PZ_N10 - CO	PZ_N10 - CO	Limiti*
TENSIOATTIVI ANIONICI	mg/l	< 0,5	<0.05	<0.05	<0.05	<0.05	2,14	0,79	0,801	< 0.05	<0.05	0,462	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	0,27	0,077	0,1	0,83	0,12	0,05	
TENSIOATTIVI CATIONICI	mg/l	< 0,5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0,5	< 0,5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
TENSIOATTIVI NON IONICI	mg/l	< 0,5	<0.2	<0.2	<0.2	<0.2	0,418	1,02	<0.2	<0.2	<0.2	0,6	<0.2	<0.2	<0.2	0,26	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
TENSIOATTIVI TOTALI	mg/l	< 0,5	<0.5	<0.5	<0.5	<0.5	2,56	1,81	0,801	<0.5	<0.5	1,06	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	0,84	< 0,5	< 0,5	
AMIANTO	Fibre/1	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 30	< 1	< 1	<1	<1	< 1	< 1	< 1	<1	< 1	
MTBE (Metil ter-butil etere)	μg/l												< 0,05	< 0,05		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0,015	0,035	< 0.01	

*Limite Tab.2 All.5 Parte IV - D.Lgs. 152/06

Sintesi dei parametri da laboratorio ricercati


MONITORAGGI AMBIENTALI INTEGRATIVI

I dati analitici determinati, mostrano su quasi la totalità dei pozzi monitorati un elevato tenore di fluoruri, solfati, boro e manganese. Dette concentrazioni, peraltro riscontrate nel pozzo PZ_N06 anche durante la campagna effettuata in condizioni indisturbate (ante operam), risultano caratteristiche del corpo idrico sotterraneo.

MONITORAGGI AMBIENTALI INTEGRATIVI

Report periodico Monitoraggio Ante e Corso d'Opera - periodo novembre 2016 – aprile 2017

Invece, per quanto concerne i parametri analitici, riconducibili agli additivi utilizzati durante lo scavo meccanizzato con TBM, i valori determinati per tensioattivi e acido acrilico risultano spesso inferiori ai limiti di rilevabilità strumentale.

Non si segnalano, pertanto, interazioni di carattere ambientale tra lo scavo meccanizzato della GN Caltanissetta e le acque di falda intercettate.

5.2. Monitoraggio piezometro PdU_PZM_02 (ARPA SICILIA)

Un ulteriore monitoraggio è scaturito a seguito della Determina Direttoriale del MATTM prot. DVA-2014- 0019853; il Contraente Generale, al fine di ottemperare alla prescrizione n. 12, in sede di Tavolo Tecnico con l'ARPA Sicilia S.T. di Caltanissetta, ha individuato il piezometro PdU_PZM-02 definendo un monitoraggio della qualità delle acque con frequenza quindicinale, da effettuarsi in corrispondenza dell'attraversamento della TBM nel banco dei calcari.

Il set analitico da ricercare è quello previsto dalla tabella 2, Allegato 5 alla Parte IV del Titolo V del D.Lgs. 152/06, con esclusione di diossine e furani.

5.2.1. Stazioni indagate

Di seguito si riporta l'elenco dei pozzi monitorati.

		Coordinate g	geografiche	Periodo di monitoraggio			
Id_punto	Ubicazione	Nord	Est	Novembre 2016	Febbraio 2016	Marzo 2016	
PdU_PZ_02	Area sovrastante galleria Caltanissetta	37°29'48.66"N	14°2'13.18"E	09/11/2016	15/02/2017	06/03/2017	

Stralcio cartografico del pozzo PdU_PZM_02

5.2.2. Risultati indagini

Nel seguito sono riportati i risultati delle indagini di laboratorio eseguiti sul punto PdU_PZM_02.

		09/11/16	15/02/17	06/03/17	Limite Tab.2 All.5
PARAMETRO	UM	PdU_PZM_02	PdU_PZM_02	PdU_PZM_02	Parte IV - D.Lgs. 152/06
LIVELLO DI FALDA	m	50,2	44,0	44,6	
TEMPERATURA ARIA	°C	18,2	11,0	9,0	
TEMPERATURA	°C	14,0	18,0	17,0	
POTENZIALE REDOX	Mv	54,3	65,8	69,3	
pH	Unità di pH	7,1	6,9	6,8	
CONDUCIBILITA'	μS/cm	2680	2630	2680	
OSSIGENO DISCIOLTO	mg/l	7,8	2,8	2,5	
FLUORURI	mg/l	1,2	0,36	0,32	1,5
AZOTO NITROSO	mg/l	0,25	< 0,05	< 0,05	0,5
SOLFATI	mg/l	709	718	703	250
CIANURI LIBERI E TOTALI	μg/1	<20	< 50	< 50	50
ALLUMINIO	μg/1	25	< 10	< 10	200
ANTIMONIO	μg/l	<1	< 1	<1	5
ARGENTO	μg/l	< 2,5	< 2,5	< 2,5	10
ARSENICO	μg/1	< 2,5	< 2,5	< 2,5	10
BERILLIO	μg/1	< 0,5	< 0,5	< 0,5	4
BORO	μg/1	1090	546	561	1000
CADMIO	μg/1	<1	<1	<1	5
COBALTO	μg/1	<1	<1	<1	50
CROMO TOTALE	μg/1	< 2,5	< 2,5	< 2,5	50
CROMO ESAVALENTE FERRO	mg/1	<0.003	<0.0025 33,0	<0.003 < 20	0,005
MANGANESE	μg/1	9	19	17	50
MERCURIO	μg/1 μg/1	< 0,03	< 0,03	< 0,03	1
NICHEL	μg/1	< 2,5	7,8	7,8	20
PIOMBO	μg/1	< 2,5	< 2,5	< 2,5	10
RAME	μg/1	< 5	< 5	< 5	1000
SELENIO	μg/1	< 5	< 5	< 5	10
TALLIO	μg/1	< 1,5	< 1,5	< 1,5	2
ZINCO	μg/1	38	20	< 10	3000
BENZENE	μg/1	< 0,5	< 0,1	< 0,1	1
ETILBENZENE	μg/1	< 0,5	< 0,5	< 0,5	50
STIRENE	μg/1	< 0,5	< 0,5	< 0,5	25
TOLUENE	μg/1	< 0,5	< 0,5	< 0,5	15
p-XILENE	μg/1	< 0,5	< 0,5	< 0,5	10
BROMODICLOROMETANO	μg/l	< 0,05	< 0,05	< 0,05	0,17
CLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	1,5
CLORURO DI VINILE	μg/1	< 0,05	< 0,05	< 0,05	0,5
DIBROMOCLOROMETANO	μg/1	< 0,05	< 0,05	< 0,05	0,13
1,2-DIBROMOETANO	μg/1	< 0,001	< 0,001	< 0,001	0,001
1,1-DICLOROETANO	μg/1	< 0,05	< 0,05	< 0,05	810
1,2-DICLOROETANO	μg/l	< 0,05	< 0,05	< 0,05	3
1,1-DICLOROETILENE	μg/l	< 0,05	< 0,05	< 0,05	0,05
1,2-DICLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	60

MONITORAGGI AMBIENTALI INTEGRATIVI

		09/11/16	15/02/17	06/03/17	Limite Tab.2 All.5
PARAMETRO	UM	PdU_PZM_02	PdU_PZM_02	PdU_PZM_02	Parte IV - D.Lgs. 152/06
1,2-DICLOROPROPANO	μg/1	< 0,05	< 0,05	< 0,05	0,15
ESACLOROBUTADIENE	μg/1	< 0,05	< 0,05	< 0,05	0,15
1,1,2,2-TETRACLOROETANO	μg/1	< 0,05	< 0,05	< 0,05	0,05
TETRACLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	1,1
TRIBROMOMETANO	μg/1	< 0,05	< 0,05	< 0,05	0,3
1,1,2-TRICLOROETANO	μg/1	< 0,05	< 0,05	< 0,05	0,2
TRICLOROETILENE	μg/1	< 0,05	< 0,05	< 0,05	1,5
TRICLOROMETANO (o CLOROFORMIO)	μg/1	< 0,05	< 0,05	< 0,05	0,15
1,2,3-TRICLOROPROPANO	μg/1	< 0,001	< 0,001	< 0,001	0,001
SOMMATORIA SOLVENTI ORGANICI ALOGENATI	μg/1	< 0,5	< 0,5	< 0,5	10
BENZO(a)ANTRACENE	μg/1	< 0,01	< 0,01	< 0,01	0,1
BENZO(b)FLUORANTENE	μg/1 μg/1	< 0,01	< 0,01	< 0,01	0,1
• • • • • • • • • • • • • • • • • • • •		· ·		· ·	·
BENIZO(a h. i)DEDII ENIE	μg/1	< 0,005	< 0,005	< 0,005	0,05
BENZO(s,h)PERILENE	μg/1	< 0,005	< 0,005	< 0,005	0,01
BENZO(a)PIRENE	μg/1	< 0,005	< 0,005	< 0,005	0,01
CRISENE	μg/1	< 0,005	< 0,01	< 0,01	5
DIBENZO(a,h)ANTRACENE	μg/1	< 0,005	< 0,005	< 0,005	0,01
INDENO(1,2,3-c,d)PIRENE	μg/1	< 0,01	< 0,01	< 0,01	0,1
PIRENE	μg/l	< 0,01	< 0,01	< 0,01	50
SOMMATORIA IDROCARBURI POLICICLICI AROMATICI (da calcolo)	μg/l	< 0,01	< 0,01	< 0,01	0,1
ALACLOR	μg/1	< 0,01	< 0,01	< 0,01	0,1
ALDRIN	μg/l	< 0,01	< 0,01	< 0,01	0,03
ATRAZINA	μg/l	< 0,01	< 0,01	< 0,01	0,3
CLORDANO (CIS+TRANS)	μg/l	< 0,01	< 0,01	< 0,01	0,1
2,4'DDD	μg/l	< 0,01	< 0,01	< 0,01	
2,4'DDE	μg/l	< 0,01	< 0,01	< 0,01	
2,4'DDT	μg/l	< 0,01	< 0,01	< 0,01	
4,4'DDD	μg/l	< 0,01	< 0,01	< 0,01	
4,4'DDE	μg/l	< 0,01	< 0,01	< 0,01	
4,4'DDT	μg/l	< 0,01	< 0,01	< 0,01	
DDD, DDT, DDE	μg/1	< 0,01	< 0,01	< 0,01	0,1
DIELDRIN	μg/1	< 0,01	< 0,01	< 0,01	0,03
ENDRIN	μg/l	< 0,01	< 0,01	< 0,01	0,1
ALFA-ESACLOROESANO	μg/1	< 0,01	< 0,01	< 0,01	0,1
BETA-ESACLOROESANO	μg/1	< 0,01	< 0,01	< 0,01	0,1
GAMMA-ESACLOROESANO (LINDANO)	μg/l	< 0,01	< 0,01	< 0,01	0,1
SOMMATORIA PESTICIDI ORGANOCLORURATI (da calcolo)	μg/1	< 0,01	< 0,01	< 0,01	0,5
PCB 28	μg/1	< 0,005	< 0,005	< 0,005	
PCB 30	μg/1	< 0,005	< 0,005	< 0,005	
PCB 52	μg/1	< 0,005	< 0,005	< 0,005	
PCB 77	μg/1 μg/1	< 0,005	< 0,005	< 0,005	
PCB 81	μg/1 μg/1	< 0,005	< 0,005	< 0,005	
PCB 101		< 0,005	< 0,005	< 0,005	
	μg/1	·	·	·	
PCB 105	μg/l	< 0,005	< 0,005	< 0,005	
PCB 114	μg/1	< 0,005	< 0,005	< 0,005	
PCB 118	μg/1	< 0,005	< 0,005	< 0,005	
PCB 123	μg/1	< 0,005	< 0,005	< 0,005	
PCB 126	μg/l	< 0,005	< 0,005	< 0,005	

MONITORAGGI AMBIENTALI INTEGRATIVI

		09/11/16	15/02/17	06/03/17	Limite Tab.2 All.5
PARAMETRO	UM	PdU_PZM_02	PdU_PZM_02	PdU_PZM_02	Parte IV - D.Lgs. 152/06
PCB 128	μg/l	< 0,005	< 0,005	< 0,005	
PCB 138	μg/l	< 0,005	< 0,005	< 0,005	
PCB 153	μg/l	< 0,005	< 0,005	< 0,005	
PCB 156	μg/l	< 0,005	< 0,005	< 0,005	
PCB 157	μg/l	< 0,005	< 0,005	< 0,005	
PCB 167	μg/l	< 0,005	< 0,005	< 0,005	
PCB 169	μg/l	< 0,005	< 0,005	< 0,005	
PCB 170	μg/l	< 0,005	< 0,005	< 0,005	
PCB 180	μg/1	< 0,005	< 0,005	< 0,005	
PCB 189	μg/1	< 0,005	< 0,005	< 0,005	
SOMMATORIA PCB (da calcolo) - nota 8 -	μg/l	< 0,005	< 0,005	< 0,005	0,01
2-CLOROFENOLO	μg/1	< 0,05	< 0,05	< 0,05	180
2,4-DICLOROFENOLO	μg/1	< 0,05	< 0,05	< 0,05	110
PENTACLOROFENOLO	μg/1	< 0,05	< 0,05	< 0,05	0,5
2,4,6-TRICLOROFENOLO	μg/l	< 0,05	< 0,05	< 0,05	5
CLORONITROBENZENI	μg/1	< 0,01	< 0,01	< 0,01	0,5
1,2-DINITROBENZENE	μg/1	< 0,01	< 0,01	< 0,01	15
1,3-DINITROBENZENE	μg/1	< 0,01	< 0,01	< 0,01	3,7
NITROBENZENE	μg/1	< 0,01	< 0,01	< 0,01	3,5
CLOROBENZENE	μg/1	< 0,05	< 0,05	< 0,05	40
1,2-DICLOROBENZENE	μg/1	< 0,05	< 0,05	< 0,05	270
1,4-DICLOROBENZENE	μg/1	< 0,05	< 0,05	< 0,05	0,5
ESACLOROBENZENE	μg/l	< 0,005	< 0,005	< 0,005	0,01
PENTACLOROBENZENE	μg/1	< 0,01	< 0,01	< 0,01	5
1,2,4,5-TETRACLOROBENZENE	μg/l	<0,01	<0,01	<0,01	1,8
1,2,4-TRICLOROBENZENE	μg/1	<0,01	<0,01	<0,01	190
ANILINA	μg/l	<0,01	<0,01	< 0,01	10
DIFENILAMINA	μg/1	0,037	< 0,01	< 0,01	910
p-TOLUIDINA	μg/l	<0,01	<0,01	< 0,01	0,35
IDROCARBURI TOTALI (espressi come n-esano)	μg/1	84	90	103	350
ACRILAMMIDE	μg/l	< 0,05	< 0,05	< 0,05	0,1
ACIDO ACRILICO	μg/l	< 0,1	< 0,1	< 0,1	
ACIDO PARA-FTALICO	μg/l	< 0,01	< 10	< 10	37000
1-ESANOLO	μg/1	< 0,1	< 0,1	< 0,1	
2-BUTOSSIETANOLO	μg/1	< 0,1	< 0,1	< 0,1	
ESILENGLICOLE	μg/1	< 0,1	< 0,1	< 0,1	
TENSIOATTIVI ANIONICI	mg/l	< 0,05	0,18	0,35	
TENSIOATTIVI CATIONICI	mg/l	<0.2	<0.2	<0.2	
TENSIOATTIVI NON IONICI	mg/l	<0.2	<0.2	0,53	
TENSIOATTIVI TOTALI	mg/l	<0.5	<0.5	1,0	
AMIANTO	Fibre/1	< 30	<1	< 30	

Le misure eseguite hanno evidenziato la non conformità ai sensi del Titolo V del D.Lgs. 152/2006, Tabella 2, Allegato 5 alla Parte IV per i seguenti parametri:

Campagna di novembre 2016

- > Solfati 709 μ g/l (limite pari a 250 mg/l);
- ightharpoonup Boro 1090 µg/l (limite pari a 1000 µg/l);

MONITORAGGI AMBIENTALI INTEGRATIVI

Campagna di febbraio 2017

 \triangleright Solfati - 718 µg/l (limite pari a 250 mg/l);

Campagna di marzo 2017

ightharpoonup Solfati - 703µg/l (limite pari a 250 mg/l);

Tali superamenti, risultano però riconducibili alle caratteristiche chimico-fisiche dell'acquifero sotterraneo; gli altri parametri analizzati risultano inferiori ai limiti vigenti.

Alla luce di quanto esposto, non si segnalano interferenze tra la falda sotterranea e l'avanzamento della TBM.

6 Vibrazioni

La presente sezione descrive le risultanze dei monitoraggi ambientali contenuti del Piano di Monitoraggio Ambientale aggiuntivo predisposto per ottemperare alle prescrizioni riportate nel Parere n. 1029 del 03/08/2012 della CTVIA, con il quale, sulla base degli esiti istruttori, la stessa Commissione determinava la positiva conclusione dell'istruttoria di Verifica di Attuazione (ai sensi dei commi 6 e 7 dell'art. 185 del D.Lgs 163/2006 e s.m.i.), subordinandola al rispetto delle prescrizioni riportate nel medesimo Parere al punto C del paragrafo 7.

Con riferimento alla prescrizione 9 del parere su citato, la Commissione Tecnica chiede di integrare l'attuale PMA afferente al PEA, con la verifica dei fenomeni di subsidenza indotti dal fronte di scavo della GN Caltanissetta.

Il monitoraggio ambientale è stato condotto con l'obiettivo di effettuare misurazioni atte a rilevare l'intensità dei moti vibrazionali provenienti dal fronte di scavo ad opera della TBM, con specifico riferimento alla possibilità che possano verificarsi fenomeni indotti di subsidenza.

6.1 Riferimenti normativi

La normativa di settore sulle vibrazioni è ancora mancante, ma esiste una normativa tecnica di supporto per il disturbo alle persone e per gli eventuali danni alle strutture.

Più precisamente la valutazione delle vibrazioni può essere condotta utilizzando gli standard appositamente elaborati sia in sede internazionale (ISO) sia in sede nazionale (UNI):

Normativa Comunitaria

- NORMA INTERNAZIONALE ISO 2631/1 (edizione 1997) Stima dell'esposizione degli individui a vibrazioni globali del corpo Parte 1: Specifiche generali.
- ➤ NORMA INTERNAZIONALE ISO 2631/2 (edizione 2003) Stima dell'esposizione degli individui a vibrazioni globali del corpo Parte 2: Vibrazioni continue ed impulsive negli edifici (da 1 a 80 Hz).
- ➤ NORMA INTERNAZIONALE ISO 4866 (edizione 1990) Vibrazioni meccaniche ed impulsi Vibrazioni degli edifici Guida per la misura delle vibrazioni e valutazione dei loro effetti sugli edifici.
- DIN 4150-3 1999 Le vibrazioni nelle costruzioni Parte 3: Effetti sui manufatti

Normativa Nazionale

MONITORAGGI AMBIENTALI INTEGRATIVI

- NORMA UNI 11048 (2003) Vibrazioni meccaniche ed urti metodo di misura delle vibrazioni negli edifici al fine della valutazione del disturbo
- NORMA UNI 9916 (1991) Criteri di misura e valutazione degli effetti delle vibrazioni sugli edifici.
- ➤ NORMA UNI 9670 (prima edizione 1990) Risposta degli individui alle vibrazioni Apparecchiatura di misura.
- ➤ NORMA UNI 9614 (1990) Misura delle vibrazioni negli edifici e criteri di valutazione del disturbo.
- NORMA UNI 9513 (1989) Vibrazioni e Urti. Vocabolario

Le norme UNI 9614, UNI 9916 e DIN 4150-3 risultano di particolare interesse per il presente lavoro in quanto oltre ad indicare le grandezze da rilevare riportano dei valori limite mediante i quali valutare i valori rilevati.

La norma UNI 9614 definisce le metodologie di misura delle vibrazioni immesse negli edifici ad opera di sorgenti interne o esterne agli edifici stessi. La misura della vibrazione viene effettuata al fine di una sua valutazione in termini di disturbo alle persone. In generale sono indicati i quattro parametri fisici per la determinazione del comportamento umano alle vibrazioni: intensità, frequenza, direzione e durata.

All'interno del testo si fa specifico riferimento alle cause di vibrazioni che, oltre a quelle naturali (fenomeni sismici, ecc.), possono essere legate ad attività umane quali ad esempio il traffico di veicoli su gomma.

In essa vengono considerate tre tipi di vibrazione:

- ➢ <u>di livello costante</u>: quando il livello dell'accelerazione complessiva ponderata in frequenza rilevato mediante la costante di tempo slow varia nel tempo in un intervallo di ampiezza inferiore a 5 dB;
- *di livello non costante*: quando il livello dell'accelerazione complessiva ponderata in frequenza rilevato mediante la costante di tempo slow varia nel tempo in un intervallo di ampiezza superiore a 5 dB;
- ➤ <u>impulsive</u>: quando sono generate da eventi di breve durata costituiti da un rapido innalzamento del livello di accelerazione sino ad un valore massimo seguito da un decadimento che può comportare o meno, a seconda dello smorzamento della struttura, una serie di oscillazioni che tendono ad estinguersi nel tempo.

Nella stessa norma poi si considerano vibrazioni trasmesse da superfici solide per persone in piedi, sedute o coricate.

La UNI 9614 indica come grandezza preferenziale per la misura delle vibrazioni ai ricettori il valore r.m.s. (root-mean-square) dell'accelerazione ponderata in frequenza definito come:

$$a_{w} = \sqrt{\frac{1}{T} \int_{0}^{T} a_{w}(t)^{2} dt}$$

dove $a_w(t)$ è il valore "istantaneo" dell'accelerazione subita dal un punto materiale (pesata in frequenza mediante i filtri di ponderazione) durante il moto vibratorio e T è il tempo di integrazione.

Il livello di accelerazione viene espresso in dB come:

$$Lw = 20 \times Log \frac{a_w}{a_0}$$

dove a0 è il valore dell'accelerazione di riferimento, pari a 10-6 m/s2.

La funzione $a_w(t)$ si ottiene dalla funzione a(t), ossia dall'andamento temporale dell'accelerazione del punto materiale (time history), applicando i filtri in frequenza.

I filtri di ponderazione portano in conto che la sensibilità dell'uomo alle vibrazioni dipende dalla frequenza delle stesse. In questo senso i filtri di ponderazione frequenza per frequenza rendono tutte le componenti dello spettro equivalenti in termini di percezione e quindi di disturbo.

Poiché la sensibilità dell'uomo alle vibrazioni dipende anche dalla direzione di propagazione della stessa nel corpo i filtri sono riportati separatamente per vibrazioni lungo l'asse z e lungo gli assi x e y. Nel caso la postura del soggetto esposto non sia nota viene indicato un filtro apposito

La norma individua una soglia di percezione delle vibrazioni (che varia a seconda della frequenza considerata e dell'asse di riferimento) ed una soglia di percezione cumulativa da confrontarsi con i valori di accelerazione ponderata in frequenza secondo opportuni filtri di pesatura.

Tale soglia, come dimostrano le tabelle che seguono, si pone a 5*10-3 m/s2 (74 dB) per l'asse z e a 3.6*10-3 m/s2 (71 dB) per gli assi x e y.

VALORI E LIVELLI LIMITE DELLE ACCELERAZIONI COMPLESSIVE PONDERATE IN FREQUENZA VALIDI PER L'ASSE z								
Dod's day 1	Accelerazione							
Destinazione d'uso	m/s²	dB						
Aree critiche	5,0 10-3	74						
Abitazioni notte	7,0 10-3	77						
Abitazioni giorno	10,0 10-3	80						
Uffici	Uffici 20,0 10 ⁻³ 86							
Fabbriche	40,0 10-3	92						

VALORI E LIVELLI LIMITE DELLE ACCELERAZIONI COMPLESSIVE PONDERATE IN FREQUENZA VALIDI PER GLI ASSI x E y						
Destinazione d'uso	A	ccelerazione				
Destinazione a aso	m/s²	dB				
Aree critiche	3,6 10 ⁻³	71				
Abitazioni notte	5,0 10 ⁻³	74				
Abitazioni giorno	7,0 10-3	77				
Uffici	14,4 10-3	83				
Fabbriche	28,8 10-3	89				

MONITORAGGI AMBIENTALI INTEGRATIVI

Nel caso di vibrazioni di livello non costante il parametro da rilevare, in un intervallo di tempo rappresentativo, è l'accelerazione equivalente $a_{w,eq}$ o il livello equivalente dell'accelerazione $L_{W,eq}$ così definiti:

$$a_{W.eq} = \left[\left(\frac{1}{T} \right) \int_{0}^{T} \left[a_{W}(t) \right]^{2} dt \right]^{0.5}$$

$$L_{W.eq} = 10 \log \left[\left(\frac{1}{T} \right)_{0}^{T} \left[a_{W}(t) / a_{o} \right]^{2} dt \right]$$

dove $a_w(t)$ è il valore "istantaneo" dell'accelerazione ponderata in frequenza, T è la durata del rilievo e a_0 è il valore dell'accelerazione di riferimento, pari a 10^{-6} m/s².

Per la valutazione del disturbo, i valori dell'accelerazione equivalente ponderata in frequenza o i corrispondenti livelli possono essere confrontati con i limiti riportati nelle due tabelle precedenti.

Fenomeni vibratori caratterizzati dal superamento di predetti limiti, possono essere considerati oggettivamente disturbanti per l'individuo esposto.

Il giudizio sull'accettabilità (tollerabilità) del disturbo riscontrato dovrà tenere conto di fattori quali la frequenza con cui si verifica il fenomeno vibratorio, la sua durata, etc.

I parametri indicati devono essere valutati nel punto esatto in cui la vibrazione interessa l'individuo. Nel caso in cui la posizione dell'individuo non sia nota o sia variabile, la misura va eseguita al centro della stanza.

La norma UNI 9614 infine:

- introduce i criteri per la scelta della strumentazione di misura, per il confronto con le vibrazioni residue e per la compilazione del report di misura;
- > suddivide la giornata secondo due periodi di riferimento, dalle 7 alle 22.00 (periodo diurno) e dalle 22.00 alle 7.00 (periodo notturno). Sono considerate frequenze da 1 a 80 Hz.

La norma UNI 9916 (norma in sostanziale accordo con i contenuti tecnici della ISO 4866 e in cui viene richiamata, sebbene non faccia parte integrante della norma, la DIN 4150) fornisce una guida per la scelta di appropriati metodi di misura, di trattamento dei dati e di valutazione dei fenomeni vibratori allo scopo di permettere anche la valutazione degli effetti delle vibrazioni sugli edifici, con riferimento alla loro risposta strutturale ed integrità architettonica. Altro scopo della norma è di ottenere dati comparabili sulle caratteristiche delle vibrazioni rilevate in tempi diversi su uno stesso edificio, o su edifici diversi a parità di sorgente di eccitazione, nonché di fornire criteri di valutazione degli effetti delle vibrazioni medesime.

La norma considera per semplicità gamme di frequenza variabili da 0.1 a 150 Hz. Tale intervallo interessa una grande casistica di edifici e di elementi strutturali di edifici sottoposti ad eccitazione naturale (vento, terremoti, ecc.) nonché ad eccitazioni causate dall'uomo (traffico, attività di costruzione, ecc.). In alcuni casi l'intervallo di frequenza delle vibrazioni può essere più ampio ma,

MONITORAGGI AMBIENTALI INTEGRATIVI

tuttavia, le eccitazioni con contenuto in frequenza superiore a 150 Hz non sono tali da influenzare significativamente la risposta dell'edificio.

La norma UNI 9916 conduce alla classificazione delle strutture in 14 categorie. Le strutture comprese nella classificazione riguardano:

- ➤ tutti gli edifici residenziali e gli edifici utilizzati per le attività professionali (case, uffici, ospedali, case di cura, ecc.);
- gli edifici pubblici (municipi, chiese, ecc.);
- > edifici vecchi ed antichi con un valore architettonico, archeologico e storico;
- le strutture industriali più leggere spesso concepite secondo le modalità costruttive in uso per gli edifici abitativi.

La classificazione degli edifici è basata sulla loro resistenza strutturale alle vibrazioni oltre che sulla tolleranza degli effetti vibratori sugli edifici in ragione del loro valore architettonico, archeologico e storico.

I fattori dai quali dipende la reazione di una struttura agli effetti delle vibrazioni sono:

- la categoria della struttura;
- le fondazioni;
- > la natura del terreno.

La categoria di struttura è classificata in una scala da 1 a 8 (a numero crescente di categoria corrisponde una minore resistenza alle vibrazioni) in base ad una ripartizione in due gruppi di edifici:

- ➤ <u>GRUPPO 1</u>: edifici vecchi e antichi o strutture costruite con criteri tradizionali;
- ➤ GRUPPO 2: edifici e strutture moderne.

L'associazione della categoria viene fatta risalire alle caratteristiche tipologiche e costruttive della costruzione e al numero di piani.

Le fondazioni sono classificate in tre classi.

- ➤ <u>Classe A</u> comprende fondazioni su pali legati in calcestruzzo armato e acciaio, platee rigide in calcestruzzo armato, pali di legno legati tra loro e muri di sostegno a gravita.
- ➤ <u>Classe B</u> comprende pali non legati in calcestruzzo armato, fondazioni continue, pali e platee in legno.
- ➤ <u>Classe C</u> infine comprende i muri di sostegno leggeri, le fondazioni massicce in pietra e la condizione di assenza di fondazioni, con muri appoggiati direttamente sul terreno.

Il terreno viene classificato in sei classi:

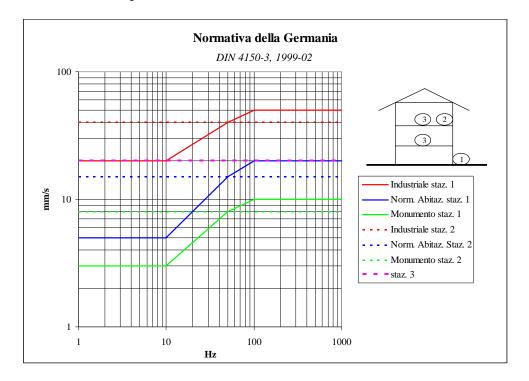
- ➤ <u>Tipo a</u>: rocce non fessurate o rocce molto solide, leggermente fessurate o sabbie cementate;
- Tipo b: terreni compattati a stratificazione orizzontale;
- Tipo c: terreni poco compattati a stratificazione orizzontale;
- Tipo d: piani inclinati, con superficie di scorrimento potenziale;
- ➤ <u>Tipo e</u>: terreni granulari, sabbie, ghiaie (senza coesione) e argille coesive sature;
- ➤ <u>Tipo f</u>: materiale di riporto.

L'Appendice D della UNI 9916 contiene i criteri di accettabilità dei livelli delle vibrazioni con riferimento alla DIN 4150.

La parte 3 della DIN 4150 indica i punti in cui eseguire i rilievi all'interno di una abitazione e indica le velocità massime ammissibili per vibrazioni transitorie e continue.

MONITORAGGI AMBIENTALI INTEGRATIVI

Per vibrazioni transitorie la DIN 4150 indica tre posizione in cui eseguire i rilievi:


- in corrispondenza delle fondazioni;
- > sul solaio più elevato in corrispondenza del muro perimetrale;
- > al centro dei solai.

Nella Tabella che segue, applicabile per vibrazioni transitorie, sono riportati, per diverse tipologie di costruzioni, i valori di riferimento per velocità di oscillazione sulle fondazioni ed a livello del solaio superiore.

Riga	Tipi di edificio		iferimento pe ndazioni frequ	cillazione in mm/s Ultimo solaio, orizzontale	
		da 1 a 10 Hz	da 10 a 50 Hz	da 50 a 100 Hz *	Tutte le frequenze
1	Costruzioni per attività commerciale, costruzioni industriali e costruzioni con strutture similari	20	da 20 a 40	da 40 a 50	40
2	Edifici abitativi o edifici simili per costruzione o utilizzo	5	da 5 a 15	da 15 a 20	15
3	Edifici che per la loro particolare sensibilità alle vibrazioni non rientrano nelle precedenti classificazioni e che sono da tutelare in modo particolare (monumenti sotto la protezione delle belle arti	3	da 3 a 8	Da 8 a 10	8

La figura riportata nella pagina che segue riassume quanto esposto per le vibrazioni transitorie. Nella lettura di tale figura si deve rammentare che:

- ➤ Nel caso di misure in staz. 1 (fondazione) si prende a riferimento il valore maggiore delle tre componenti;
- ➤ Nel caso di misure in staz. 2 (ultimo solaio orizzontale del fabbricato) si prende in considerazione il valore maggiore tra le due componenti orizzontali;
- ➤ Nel caso di misure in staz. 3 (mezzeria solaio) si prende in considerazione la vibrazione in direzione verticale.

Nel caso di vibrazioni prolungate la norma DIN 4150 richiede l'esecuzione di misure all'ultimo solaio dell'edificio e in mezzeria dei solai. Nella tabella che segue sono riportati i valori di riferimento per ciascuna componente orizzontale misurate all'ultimo solaio dell'edificio

Riga	Tipo di edificio	Valori di riferimento per velocità di oscillazione in mm/s
		Ultimo solaio, orizzontale,
		tutte le frequenze
	Costruzioni per attività commerciale,	
1	costruzioni industriali e costruzioni con	10
	strutture similari	
***************************************	T 1.0 1	
2	Edifici abitativi o edifici simili per costruzione o utilizzo	5
	Edifici che per la loro particolare sensibilità	
	alle vibrazioni non rientrano nelle precedenti	
3	classificazioni e che sono da tutelare in modo	2,5
	particolare (monumenti sotto la protezione	,
	delle belle arti	
	delle belle di ti	

Per velocità massima è da intendersi la velocità massima di picco. Essa è ricavabile dalla velocità massima r.m.s. attraverso la moltiplicazione di quest'ultima con il fattore di cresta F. Tale parametro esprime il rapporto tra il valore di picco e il valore efficace. Per onde sinusoidali si

MONITORAGGI AMBIENTALI INTEGRATIVI
Report periodico Monitoraggio Ante e Corso d'Opera - periodo novembre 2016 – aprile 2017

assume F = 1.41; in altri casi si possono assumere valori maggiori. Nei casi più critici (ed es. esplosioni di mina) F può raggiungere il valore 6.

Infine la ISO 4866 fornisce una classificazione degli effetti di danno a carico delle strutture secondo tre livelli:

- Danno di soglia: formazione di fessure filiformi sulle superfici dei muri a secco o accrescimento di fessure già esistenti sulle superfici in gesso o sulle superfici di muri a secco; inoltre formazioni di fessure filiformi nei giunti di malta delle costruzioni in muratura di mattoni.
- *Danno minore:* formazione di fessure più aperte, distacco e caduta di gesso o di pezzi di intonaco dai muri; formazione di fessure in murature di mattoni.
- Danno maggiore: danneggiamento di elementi strutturali; fessure nei pilastri; aperture di giunti; serie di fessure nei blocchi di muratura.

6.2 Parametri del monitoraggio

Di fondamentale importanza nelle attività di monitoraggio è la scelta dei parametri, in modo tale da poter seguire l'evoluzione del fenomeno fisico in tutte le fasi in cui si eseguono i rilievi. I parametri da considerare devono descrivere al meglio il fenomeno, devono risultare facilmente misurabili e confrontabili con i dati disponibili (da SIA o da dati di letteratura preesistenti).

La propagazione delle vibrazioni attraverso un mezzo elastico può essere caratterizzata attraverso tre grandezze di base:

- vettore spostamento;
- vettore velocità;
- > vettore accelerazione.

Tali grandezze possono essere espresse rispettivamente in m, m/s e m/s², oppure in dB. In quest'ultimo caso vengono considerate opportune grandezze di riferimento per lo spostamento, la velocità e l'accelerazione.

Il valore quadratico medio consente di caratterizzare un fenomeno estremamente variabile su un certo intervallo temporale. Si definisce valore quadratico medio (RMS – Root Mean Square) di accelerazione il valore generato dalla seguente espressione:

$$a_{RMS,T} = \sqrt{\frac{1}{T} \int_{0}^{T} \left[a(t) \right]^{2}} dt$$

essendo a(t) il valore istantaneo dell'accelerazione.

Nel corso del monitoraggio sarà valutata l'accelerazione equivalente secondo la norma UNI 9614:

$$a_{w,eq} = \sqrt{\frac{1}{T}} \int_{0}^{T} \left[a_{w}(t) \right]^{2} dt$$

dove aw(t) è l'accelerazione complessiva ponderata in frequenza e T è la durata della misura.

Si definisce come amax il massimo tra i valori di accelerazione aRMS,1 su tempo di integrazione pari ad un secondo, calcolato per tutti gli istanti che compongono il tempo di misura.

Per quanto riguarda i valori di velocità si definisce vmax,f il valore massimo su una singola banda di frequenza riscontrato sull'intero periodo di misura. I criteri di accettabilità indicati nella norma UNI9916 sono da confrontare con tale valore.

Si definisce valore di picco la massima oscillazione, in valore assoluto, dell'accelerazione ponderata in frequenza, mentre con fattore di cresta si indica il rapporto tra il valore di picco ed il valore efficace.

Durante i rilievi i parametri da acquisire sono la time history del rilievo per tutte le bande di frequenza da 1 a 80 Hz - con una risoluzione pari ad un secondo - l'accelerazione massima (e massima ponderata) e la velocità massima (con relativa frequenza) per tutto il periodo di misura, e lo spettro dell'accelerazione per tutto il periodo di misura.

Potranno essere inoltre valutati i superamenti della soglia di sensibilità secondo la norma UNI 9614, riportando data ed ora di inizio dell'evento, durata, valori di accelerazione e velocità, valori di cresta e di picco per eventi impulsivi, spettro di accelerazione per tutta la durata dell'evento.

Ulteriori parametri da prendere in considerazione per il monitoraggio sono:

- > Denominazione ed indirizzo del ricettore;
- Coordinate del punto di misura;
- Descrizione e fotografia del posizionamento della strumentazione;
- Caratteristiche della sorgente vibrazionale;
- Caratteristiche costruttive degli edifici e delle fondazioni;
- > Eventuale traffico su strade e ferrovie;
- Attività di cantiere.

6.3 Stazioni di monitoraggio

La scelta dei punti di monitoraggio è legata sia alla struttura geolitoligica del terreno che alla tipologia dell'opera in costruzione. Il profilo geologico nel quale si innesta la Galleria Caltanissetta prevede l'attraversamento delle seguenti formazioni: Sabbie di Lannari, Trubi e Brecce Argillose, secondo la successione di seguito descritta: dall'imbocco , per circa 40 m sono presenti sabbie con spessori di circa 10÷15 m (Sabbie di Lannari), ricoprenti un substrato argillo marnoso dalle argille marnose di Geracello (GER); di seguito si ha una successione di Trubi (per circa 150 m), Argille Marnose (per circa 300 m) che evidenziano una serie di fasce tettonizzate per circa il 60% della distanza; seguono (per circa 2200 m) una successione di Trubi e Brecce Argillose con presenza di fasce tettonizzate, sino al riscontro di una zona caratterizzata da calcare di base, fratturato, saturo. La parte terminale dello scavo incontra Brecce Argillose.

I monitoraggi sono stati previsti in corrispondenza delle tratte più vicine agli imbocchi, dove lo spessore della copertura è ridotto, e diradati lungo la parte centrale della canna, dove la probabilità che possano verificarsi fenomeni di subsidenza o anche lievi cedimenti della calotta è più bassa.

Di seguito si riportano in tabella i punti monitorati nel periodo a cui il presente report fa riferimento.

Id_punto	Ubicazione	Coordinate geografiche		Data di monitoraggio
VIB_31	GN Caltanissetta - Canna DX	37°29′46.90″ N	14°2′9.82″E	20/01/2017
VIB_33	GN Caltanissetta - Imbocco lato A19 canna DX	37°29'57.01" N	14° 2'25.07"E	13/04/2017
VIB_35	GN Caltanissetta - Imbocco lato A19 canna DX	37°30'05.81" N	14° 02'33.04"E	24/04/2017

Stazioni di misura monitorate nel periodo di riferimento

6.4 Risultati dei monitoraggi

Si riportano di seguito le misurazioni effettuate relativamente alle accelerazioni registrate lungo gli assi X, Y e Z, espresse in mm·s-², per il periodo di osservazione diurno. Sono indicati, inoltre, i limiti stabiliti dalla Norma UNI 9614 per il rilievo del disturbo sulla popolazione, al fine di correlare i risultati con la normativa tecnica adottata sul territorio nazionale.

Si riporta di seguito il quadro sinottico delle misure effettuate:

RICETTORI	VIB_31	VIB_33	VIB_35	Limiti normativi Norma UNI
Data misura	20/01/2017	13/04/2017	24/04/2017	9614
accelerazione lungo l'asse X Periodo diurno [mm·s-2]	0.10 mm·s ⁻²	0.07 mm·s ⁻²	0.25 mm·s ⁻²	7.20 mm/s ²
accelerazione lungo l'asse Y Periodo diurno [mm·s-2]	0.11 mm·s ⁻²	0.08 mm·s ⁻²	0.12 mm·s ⁻²	
accelerazione lungo l'asse Z Periodo diurno [mm·s-2]	0.11 mm·s ⁻²	0.09 mm·s ⁻²	0.14 mm·s-²	10.00 mm/s ²

Valori di accelerazione lungo gli assi X, Y e Z misurati nel periodo diurno espressi in mm s-2

Dai risultati delle misure si evince che tutte le registrazioni rilevate nelle due postazioni indagate sono risultate essere ben al di sotto dei limiti vigenti.

6.5 Conclusioni

Il presente documento si riferisce alle attività di monitoraggio ambientale condotte con l'obiettivo di effettuare misurazioni atte a rilevare l'intensità dei moti vibrazionali provenienti dal fronte di scavo ad opera della TBM, con specifico riferimento alla possibilità che possano verificarsi fenomeni indotti di subsidenza. Il monitoraggio ha previsto nel periodo in esame l'indagine su tre punti (VIB_31, VIB_33, VIB_35).

Le misure eseguite sono state confrontate con i valori di accelerazione misurati ed i limiti imposti dalle norme e in particolare (a vantaggio di sicurezza) con la UNI 9614 relativa al disturbo vibrazionale arrecato alla popolazione.

Dai risultati delle misure si evince che tutte le registrazioni rilevate lungo gli assi X, Y e Z, nelle postazioni indagate, sono risultate essere ben al di sotto dei limiti vigenti.

MONITORAGGI AMBIENTALI INTEGRATIVI