ERMINAL GNL NEL PORTO CANALE DI CAGLIARI

ISGAS ENERGIT MULTIUTILITIES

Sede Legale Via Italia nº 167 - 09100 Cagliari

L'Amministratore Delegato: Dott. Giuseppe Deroma

TERMINAL GNL NEL PORTO CANALE DI CAGLIARI **PROGETTO AUTORIZZATIVO**

Progettazione

Società di ingegneria incaricata per la progettazione

COSIN S.r.I. SOCIETÀ DI INGEGNERIA UNIPERSONALE 09134 CAGLIARI - VIA SAN TOMMASO D'AQUINO 18 Tel e fax +39 070 2346768 info@cosinsrl.it P.IVA 03043130925

Progettista e responsabile per l'integrazione fra le varie prestazioni specialistiche

Ing. Giuseppe Delitala

ORDINE INGEGNERI PROVINCIA DI CAGLIARI

N. 4255

Dott. Ing. Giuseppe DELITALA

Gruppo di lavoro COSIN S.r.l.

Geologia e geotecnica

Geol. Alberto Gorini

Opere Civili

Ing. Nicola Marras

Studio di impatto ambientale

Ing. Emanuela Corona

Fotosimulazioni

Arch. Daniele Nurra

Archeologia

Archeol, Anna Luisa Sanna

Consulenze specialistiche:

Rapporto preliminare di sicurezza

Società ICARO S.r.I.

Opere antincendio

Ing. Fortunato Gangemi

Opere Marittime

Ing. Giovanni Spissu

Opere Strutturali

Ing. Francesco Fiori

Studio di impatto Acustico

Ing. Antonio Dedoni

Regione Autonoma della Sardegna Antonio Dedoni

STUDIO DI IMPATTO ACUSTICO 01 - ELABORATI TECNICI E SPECIALISTICI

NOME F	ILE				FORMATO	
D_01_ES_21_ACU_R00						
CODICE ELAB.	D 0 1 ES 2 1 ACUR 0 0 REV. A				A4	
Α	PRIMA EMISSIONE	Maggio 2017	Dedoni	Delitala	Delitala	
REV.	DESCRIZIONE	DATA	REDATTO	VERIFICATO	APPROVATO	

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 1 di 50

MAGGIO 2017

INDICE

1		PR	EMESSA	3
2		INT	FRODUZIONE	4
3		NO	PRMATIVA DI RIFERIMENTO	5
4		СО	NTENUTI DELLA DOCUMENTAZIONE DI IMPATTO ACUSTICO	6
5		DE	SCRIZIONE DELL'OPERA	9
	5.1 5.2 5.3	OR	NERALITÀARI DI ATTIVITÀPARECCHIATURE E MACCHINARI	11
6		DE	SCRIZIONE DELLE CARATTERISTICHE COSTRUTTIVE DEI LOCALI	13
7		CO	NTESTO URBANISTICO	13
8		CO	NTESTO ACUSTICO	16
	8.1 8.2 8.3 8.4 8.5	DEI API SOI	ASSE ACUSTICA DELL'AREA DI STUDIO	17 18 19
9		PR	EVISIONE DI IMPATTO ACUSTICO	22
	9.1	Мо	DELLO DI PREVISIONE	23
	9.1	1.1	Basi teoriche dell'algoritmo di calcolo	24
	9.1	1.2	Terminologia	24
	9.1	1.3	Diffusione acustica in campo libero	27
	9.2 9.3		TI TECNICI IN INGRESSOTESI DELLE ELABORAZIONI	
	9.3	3.1	Valutazione delle stime previsionali ottenute	34
	9.3	3.2	Previsione rispetto ai valori limite assoluti di immissione	34

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 2 di 50

MAGGIO 2017

	9.3	3.3	Previsione rispetto ai valori limite differenziali di immissione	34
) DO1		EVISIONE DEI LIVELLI SONORI GENERATI DAL TRAFFICO VEICOLAR	
	10.1	DAT	TIMMESSI/GENERALI DALL'ALGORITMO	36
11		INT	ERVENTI DI BONIFICA	38
12	2	IMF	PATTO ACUSTICO IN FASE DI CANTIERE	38
			PARECCHIATURE E MACCHINARIERVENTI ATTI ALLA MITIGAZIONE DEL RUMORE	
	12	.2.1	Scelta delle macchine, delle attrezzature e miglioramenti prestazioni:	43
	12	.2.2	Manutenzione dei mezzi e delle attrezzature:	43
	12	.2.3	Transito dei mezzi pesanti	43
13	3	TE	CNICO COMPETENTE IN ACUSTICA AMBIENTALE	44
14	Ļ	CO	NCLUSIONI	44

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D 01 ES 21 ACU R00

Pag. 3 di 50

MAGGIO 2017

1 PREMESSA

L'intervento in oggetto ha come obiettivo di realizzare un terminal per il GNL (Gas Naturale Liquefatto) nel Porto Canale di Cagliari. L'impianto è stato localizzato in un'area che intercetta il tracciato delle reti di trasporto del gas GPL (Gas Petrolio Liquefatto) esistenti dell'area vasta di Cagliari, ed in prossimità della dorsale Sarroch/Oristano/Porto Torres dell'ipotetico futuro metanodotto. L'obiettivo principale è quello di garantire agli utenti civili e industriali della Sardegna la possibilità di utilizzare il gas metano come fonte energetica alternativa a quelle già presenti nell'isola.

Il Terminal sarà caratterizzato da una struttura in banchina per la connessione e lo scarico del GNL dalle navi metaniere, un complesso di tubazioni criogeniche per il trasporto del fluido nella zona impianto, un sistema di stoccaggio, pompaggio, e rigassificazione del GNL.

Nel Terminal saranno installati 18 serbatoi criogenici, 9 gruppi di pompaggio, 40 vaporizzatori ad aria ambiente (AAV) e una stazione per il filtraggio, la misura e l'odorizzazione del gas naturale propedeutica all'immissione nelle reti di trasporto. Attraverso le baie di carico per le autocisterne si potrà trasportare il GNL su gomma in tutta l'isola, o rifornire le navi, attuando così le direttive europee sull'utilizzo del GNL come combustibile per le imbarcazioni.

Il progetto proposto rientra nelle linee guida del <u>Piano Energetico Ambientale della Regione Sardegna</u>, ed in quelle dell'Accordo di <u>Programma Quadro per la Metanizzazione della Sardegna</u>. La scelta progettuale adottata è inoltre in piena sinergia con le direttive europee e nazionali, sulla realizzazione di infrastrutture per i combustibili alternativi (Direttiva 2014/94/UE e D.Lgs.257/2016).

Con il Terminal di ISGAS, il porto canale potrebbe diventare, senza ulteriori infrastrutturazioni, un polo nel mediterraneo per il rifornimento delle navi che utilizzano il GNL come carburante per il trasporto marittimo. Le infrastrutture sono infatti progettate per creare un efficiente "Bunkering Point" (ship to ship, truck to ship, o pipe to ship).

A tal proposito di ricorda che il porto di Cagliari fa parte dei 14 porti italiani core delle reti transeuropee di trasporto (Reti TEN-T) del Regolamento UE1315/2013, che dovranno a breve garantire la "disponibilità di combustibili puliti alternativi".

Il proponente del progetto è la <u>ISGAS Energit Multiutilities S.p.A</u>, società Concessionaria, in regime di esclusiva, del servizio di distribuzione del gas nei comuni di Cagliari, Oristano e Nuoro. Attualmente ha oltre 21.000 utenti attivi. ISGAS si occupa della distribuzione e

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D 01 ES 21 ACU R00

Pag. 4 di 50

MAGGIO 2017

vendita dell'aria propanata (integralmente sostituibile con il metano) attraverso reti canalizzate nei vari territori comunali.

Il Terminal è stato progettato per essere un importante un punto di "Entry" nel sistema di metanodotti della Sardegna, attualmente in fase di progettazione. Tuttavia il Terminal GNL potrà svolgere a pieno le sue funzioni anche collegandosi alla rete di trasporto del gas già esistente a servizio dell'area vasta di Cagliari.

2 INTRODUZIONE

Il presente documento di Valutazione di Impatto Acustico, redatto in ottemperanza ai disposti stabiliti dall'art. 8 della legge 26 ottobre 1995, n. 447, riguarda lo studio delle immissioni sonore connesse alla realizzazione del Terminal GNL da realizzarsi all'interno del Porto di Cagliari.

Il presente documento viene elaborato dal sottoscritto Ing. Antonio Dedoni "Tecnico Competente in Acustica" (ex art.2, comma 6 e segg. della legge 447/95) al fine di certificare in via preliminare la compatibilità delle immissioni sonore connesse all'impiego delle opere in progetto rispetto al contesto acustico attualmente caratterizzante l'area ospite (rumore residuo). In tale ambito di studio si osservano le indicazioni contenute nel documento tecnico regionale che detta le "Direttive regionali in materia di inquinamento acustico ambientale e disposizioni in materia di acustica ambientale", approvato con Deliberazione della Giunta Regionale n° 62/9 del 14/11/2008.

Per chiarezza espositiva il presente documento di previsione di impatto acustico riporta, per ciascun capitolo che lo compone, esplicito riferimento alle lettere identificative dell'elenco contenuto nella parte V "Impatto acustico e clima acustico" del già citato Documento Tecnico regionale.

Nel momento in cui si produce la presente relazione di valutazione di previsione di impatto acustico l'attività non è ancora in atto; pertanto l'obiettivo che si prefigge è quello di stimare o prevedere se vi siano le condizioni affinché, dopo l'installazione dei nuovi macchinari, le emissioni sonore prodotte dalla stessa avvengano nei limiti di legge vigenti o di altri criteri di valutazione presa a riferimento.

Lo studio di impatto acustico prevede due distinte fasi di analisi:

in prima istanza il progetto dell'opera, struttura o attività viene sottoposto ad una
preliminare valutazione basata sui dati tecnici sulla base dei quali, con l'ausilio di
modelli di calcolo, si procede ad una stima delle eventuali variazioni del clima
acustico caratterizzante la zona che ospiterà l'insediamento produttivo. Lo studio
comprende le stime previsionali di impatto ambientale, conseguenti all'inserimento

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 5 di 50

MAGGIO 2017

dell'opera, struttura o attività, nelle aree interessate dalle emissioni ed immissioni sonore, mediante modelli matematici in grado di simularne, tenendo conto degli effetti combinati delle apparecchiature, macchine e impianti, del vento e della morfologia ambientale, la propagazione sonora. In questa fase è già possibile formulare una valutazione della compatibilità ambientale in relazione alle attuali norme disciplinanti l'inquinamento acustico, e formulazione del giudizio di conformità acustica;

 in un secondo tempo si procederà alle verifiche tecniche sul campo atte alla definizione della rumorosità intervenuta a seguito della realizzazione ed attivazione del nuovo insediamento produttivo.

3 NORMATIVA DI RIFERIMENTO

Le normative generali che disciplinano la materia sono le seguenti:

- Legge 26 Ottobre 1995, n° 447 (Legge Quadro sull'inquinamento acustico): questa legge stabilisce i principi fondamentali in materia di tutela dell'ambiente esterno e dell'ambiente abitativo dall'inquinamento acustico;
- D.P.C.M. 1 Marzo 1991 (Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno): questo decreto, per la parte ancora in vigore, indica i limiti massimi di rumore da rispettare in funzione della classificazione in zone del territorio comunale e fornisce indicazioni in merito alla strumentazione fonometrica e alle modalità di misura del rumore;
- D.M. 11 Dicembre 1996 (Applicazione del criterio differenziale per gli impianti a ciclo produttivo continuo): questo decreto definisce gli impianti a ciclo produttivo continuo, classifica gli impianti esistenti e gli impianti nuovi e indica i criteri di applicabilità del criterio differenziale;
- D.P.C.M. 14 Novembre 1997 (Determinazione dei valori limite delle sorgenti sonore): questo decreto contiene le definizioni e le quantificazioni relative ai valori di emissione, immissione, differenziali, di attenzione e di qualità che le attività umane sono tenute a rispettare;
- D.P.C.M. 05 Dicembre 1997 (Determinazione dei requisiti acustici degli edifici): questo decreto disciplina i requisiti acustici delle sorgenti sonore interne agli edifici, i requisiti acustici passivi degli edifici e dei loro componenti in opera, rivolto ai progettisti e costruttori;
- Decreto Ministero Ambiente 16 Marzo 1998 (Tecniche di rilevamento e misurazione dell'inquinamento acustico): questo decreto riporta le modalità sulla base delle quali il tecnico competente in acustica deve effettuare le misurazioni fonometriche e redigere il conseguente rapporto di valutazione;

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D 01 ES 21 ACU R00

Pag. 6 di 50

MAGGIO 2017

• Deliberazione R.A.S. n° 62/9 del 14/11/2008: "Direttive regionali in materia di inquinamento acustico ambientale e disposizioni in materia di acustica ambientale".

4 CONTENUTI DELLA DOCUMENTAZIONE DI IMPATTO ACUSTICO

Ai sensi dell'art.8, comma 5 della Legge 447/95, la valutazione di impatto acustico deve essere redatta sulla base dei criteri stabiliti dall'art. 4, comma 1, lettera I) della stessa norma, modalità di cui all'art. 4 della legge 4 gennaio 1968, n. 15.

Pertanto, nella redazione del presente documento tecnico, verranno opportunamente ricalcate integralmente le indicazioni contenute nelle "Direttive regionali in materia di inquinamento acustico ambientale", ai sensi dell'Art.4 della Legge Quadro 26 Ottobre 1995, n° 447", adottati con Deliberazione R.A.S. n. 62/9 del 14/11/2008.

Ai sensi della normativa regionale, la documentazione di impatto acustico deve prevedere, per quanto possibile, gli effetti acustici conseguenti alla realizzazione di una nuova opera e al suo esercizio per verificarne la compatibilità con le esigenze di uno standard di vita equilibrato della popolazione residente, al fine di una corretta fruibilità dell'area e nel rispetto degli equilibri naturali.

La medesima norma stabilisce altresì che la documentazione deve descrivere lo stato dei luoghi e indicare le caratteristiche dei ricettori circostanti, in quanto per una corretta ed esaustiva valutazione non si può prescindere dal contesto in cui viene a collocarsi la nuova sorgente sonora; deve inoltre contenere elementi relativi alla quantificazione degli effetti acustici in prossimità dei ricettori, in particolare di quelli sensibili quali scuole, asili nido, ospedali, case di cura e di riposo e dovrà inoltre prevedere, al fine del rispetto dei valori limite, eventuali interventi di mitigazione, qualora necessari a seguito della valutazione.

La documentazione di impatto acustico deve essere predisposta da tecnico competente in acustica ambientale e sottoscritta dal proponente, deve essere tanto più dettagliata quanto più è rilevante il potenziale inquinamento acustico derivante dalla realizzazione dell'opera e/o attività in progetto, ed è previsto che sia costituita da una relazione tecnica e da elaborati planimetrici.

In particolare la relazione tecnica dovrà contenente i seguenti elementi:

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

NAL GNL NEL PORTO CANALE DI CAGLIAR

D_01_ES_21_ACU_R00

Pag. 7 di 50

MAGGIO 2017

- descrizione della tipologia dell'opera o attività in progetto, del ciclo produttivo e tecnologico, degli impianti, delle attrezzature e dei macchinari che verranno utilizzati, dell'ubicazione dell'insediamento e del contesto in cui viene inserita;
- descrizione delle caratteristiche costruttive dei locali (coperture, murature, serramenti, vetrate ecc.) con particolare riferimento alle caratteristiche acustiche dei materiali utilizzati;
- descrizione delle sorgenti rumorose connesse all'opera o attività, con indicazione dei dati di targa relativi alla potenza acustica e loro ubicazione. In situazioni di incertezza progettuale sulla tipologia o sul posizionamento delle sorgenti sonore che saranno effettivamente installate è ammessa l'indicazione di livelli di emissione stimati per analogia con quelli derivanti da sorgenti simili (nel caso non siano disponibili i dati di potenza acustica, dovranno essere riportati i livelli di emissione in pressione sonora);
- indicazione degli orari di attività e di quelli di funzionamento degli impianti principali
 e sussidiari. Dovranno essere specificate le caratteristiche temporali dell'attività e
 degli impianti, indicando l'eventuale carattere stagionale, la durata nel periodo
 diurno e notturno e se tale durata è continua o discontinua, la frequenza di
 esercizio, la possibilità (o la necessità) che durante l'esercizio vengano mantenute
 aperte superfici vetrate (porte o finestre), la contemporaneità di esercizio delle
 sorgenti sonore, eccetera;
- indicazione della classe acustica cui appartiene l'area di studio. Nel caso in cui l'amministrazione comunale non abbia ancora approvato e adottato il Piano di classificazione acustica è cura del proponente ipotizzare, sentita la stessa Amministrazione comunale, la classe acustica da assegnare all'area interessata.
- identificazione e descrizione dei ricettori presenti nell'area di studio, con indicazione delle loro caratteristiche utili sotto il profilo acustico, quali ad esempio la destinazione d'uso, l'altezza, la distanza intercorrente dall'opera o attività in progetto, con l'indicazione della classe acustica da assegnare a ciascun ricettore presente nell'area di studio avendo particolare riguardo per quelli che ricadono nelle classi I e II:
- individuazione delle principali sorgenti sonore già presenti nell'area di studio e indicazione dei livelli di rumore preesistenti in prossimità dei ricettori di cui al punto precedente. L'individuazione dei livelli di rumore si effettua attraverso misure articolate sul territorio con riferimento a quanto stabilito dal D.M. Ambiente 16/03/1998 (Tecniche di rilevamento e di misurazione dell'inquinamento acustico);
- calcolo previsionale dei livelli sonori generati dall'opera o attività nei confronti dei ricettori e dell'ambiente esterno circostante indicando i parametri e i modelli di calcolo utilizzati. Particolare attenzione deve essere posta alla valutazione dei livelli sonori di emissione e di immissione assoluti, nonché ai livelli differenziali, qualora applicabili, all'interno o in facciata dei ricettori individuati. La valutazione del livello

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 8 di 50

MAGGIO 2017

differenziale deve essere effettuata nelle condizioni di potenziale massima criticità del livello differenziale;

- calcolo previsionale dell'incremento dei livelli sonori in caso di aumento del traffico veicolare indotto da quanto in progetto nei confronti dei ricettori e dell'ambiente circostante;
- descrizione degli eventuali interventi da adottarsi per ridurre i livelli di emissioni sonore al fine di ricondurli al rispetto dei limiti associati alla classe acustica assegnata o ipotizzata per ciascun ricettore. La descrizione di detti interventi è supportata da ogni informazione utile a specificare le loro caratteristiche e a individuare le loro proprietà di riduzione dei livelli sonori, nonché l'entità prevedibile delle riduzioni stesse;
- analisi dell'impatto acustico generato nella fase di realizzazione, o nei siti di cantiere, secondo il percorso logico indicato ai punti precedenti, e puntuale indicazione di tutti gli appropriati accorgimenti tecnici e operativi che saranno adottati per minimizzare il disturbo e rispettare i limiti (assoluto e differenziale) vigenti all'avvio di tale fase, fatte salve le eventuali deroghe per le attività rumorose temporanee di cui all'art. 6, comma 1, lettera h, e dell'art. 9 della legge 447/1995;
- indicazione del provvedimento regionale con cui il tecnico competente in acustica ambientale, che ha predisposto la documentazione di impatto acustico, è stato riconosciuto "competente in acustica ambientale" ai sensi della legge n. 447/1995, art. 2, commi 6 e 7.

La sopraccitata relazione può non contenere tutti gli elementi sopra indicati a condizione che sia puntualmente giustificata l'inutilità di ciascuna informazione omessa.

Per chiarezza espositiva e semplificazione istruttoria le informazioni omesse e le relative giustificazioni devono fare esplicito riferimento alle lettere identificative dell'elenco.

La planimetria in scala adeguata, (es.: 1:2000) dovrà evidenziare:

- l'area di studio interessata;
- l'ubicazione dell'intervento in progetto;
- l'ubicazione dei ricettori e delle principali sorgenti sonore preesistenti;
- l'indicazione delle quote altimetriche.

La domanda di licenza o di autorizzazione all'esercizio delle attività che si prevede possano produrre valori di emissione superiori a quelli di legge, deve contenere

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 9 di 50

MAGGIO 2017

l'indicazione delle misure previste per ridurre o eliminare le emissioni sonore causate dall'attività o dagli impianti. La relativa documentazione deve essere inviata al Comune al fine del rilascio del relativo nullaosta.

5 DESCRIZIONE DELL'OPERA

5.1 Generalità

Il sito è localizzato a sud ovest rispetto al Centro della città di Cagliari che dista circa 2 km, in area attualmente sgombra da qualsiasi tipo di attività. La superficie utile per il Terminal è pari a 78.000 mq. Il terminale sarà suddiviso in tre aree:

- Area Banchina
- Cunicolo per posa condotte di trasporto GNL
- Area Stoccaggio e Vaporizzazione

La banchina individuata è attualmente utilizzata per traffico RO-RO all'interno del Porto Canale, ma ha tutte le caratteristiche per accogliere entrambe le tipologie di traffico.

Dopo l'attracco della metaniera verranno avviate le procedure di scarico del GNL mediante i bracci di carico (GNL e BOG).

Il GNL verrà immesso a 5 bar di pressione nelle condotte di trasporto dalle pompe interne alla nave scaricato e quindi successivamente sarà stoccato all'interno di 18 serbatoi. Successivamente verrà inviato ai vaporizzatori (40 in totale) tramite pompe di rilancio, a seconda delle richieste della rete. Dopo la vaporizzazione potrà essere immesso nelle reti passando per la stazione di misura fiscale e odorizzazione.

Contemporaneamente alla vaporizzazione sarà possibile inviare il GNL alle baie di carico per il rifornimento delle autocisterne e alla banchina per il rifornimento delle navi (bunkeraggio). Infatti 2 dei 18 serbatoi saranno dedicati al rifornimento delle autocisterne e 2 al bunkeraggio. Per evitare lo scarico in atmosfera i gas prodotti per evaporazione (BOG), saranno inviati al sistema di gestione BOG che provvederà a immetterli nella rete di trasporto previa regolazione delle pressioni e delle temperature. Qualora questa non sia in grado di accettare il gas in eccesso, questo verrà convogliato in un sistema costituito da 3 Motori a Combustione Interna da 450 kW cadauno (3x50%) dedicati alla produzione di energia elettrica per gli autoconsumi d'impianto. E' prevista infine una torcia connessa ad un separatore per la raccolta della fase liquida del BOG che verrà azionata solamente in casi d'emergenza.

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D 01 ES 21 ACU R00

Pag. 10 di 50

MAGGIO 2017

Oltre ai motori per la produzione di energia, il servizio di emergenza sarà assicurato da un gruppo elettrogeno alimentato a gasolio di potenza pari a 900 kW. Un allaccio alla rete elettrica nazionale in Media Tensione, è previsto a sola copertura delle utenze essenziali fino a massimo 1200 kW. L'adduzione di acqua industriale e potabile avverrà mediante attacco alla rete presente nel porto industriale e le riserve saranno garantite dall'accumulo di serbatoi appositi in impianto. Le acque di prima pioggia saranno convogliate alle unità di trattamento e successivamente riversate nella rete di acque bianche presente. Nell'area terminal saranno costruite le infrastrutture dedicate a uffici, controllo a manutenzione e officina. Le componenti più semplici verranno verosimilmente installate all'interno di manufatti prefabbricati. L'impianto sarà dotato di sistemi di sicurezza, di sorveglianza con telecamere, e di un'adeguata recinzione antintrusione secondo le normative vigenti. Il progetto prevede l'arrivo di navi gasiere di piccola taglia che ormeggeranno presso la

banchina dedicata e trasferiranno il GNL attraverso bracci di carico da 10".

La durata prevista per le operazioni di discarica e ormeggio è di circa 15 ore complessive considerando circa 12 ore per il trasferimento del prodotto e il tempo restante per l'esecuzione delle operazioni di espletamento delle procedure di connessione, verifiche di sicurezza, inertizzazione e cool down. Il GNL sarà quindi stoccato nei serbatoi a contenimento totale (full containment) in pressione, in attesa della successiva distribuzione mediante autocisterne e della rigassificazione. Il terminale è progettato per operare secondo quattro principali modalità:

- Operazioni di scarico metaniere;
- Vaporizzazione
- Gestione del BOG (Rete MCI -Torcia)
- Operazioni di carico autocisterne:
- Operazioni di bunkeraggio

Le operazioni di carico autocisterne potranno essere eseguite simultaneamente alle operazioni di scarico metaniere o bunkeraggio. Il ricircolo, per il mantenimento della temperature nelle linee di trasferimento, sarà attivo tipicamente durante i periodi che intercorrono tra una fase di scarico/carico e la successiva, sia per le linee di collegamento GNL con la banchina che per le linee del GNL verso le baie di carico autocisterne.

Nelle opere previste sono incluse le sistemazioni dell'area e la realizzazione della rete di drenaggio delle acque superficiali, i principali sottoservizi, il sistema di raccolta del GNL, gli edifici principali a servizio dell'impianto (uffici, magazzino e le pensiline di copertura dell'area baia di carico), i vaporizzatori, le opere di fondazione destinate ad ospitare le strutture prefabbricate, le opere di fondazione dei serbatoi, gli sleepers e i racks di supporto alle tubazioni, le opere di fondazione relative alla torcia, la realizzazione del

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

NAL GILL NEL PORTO CANALE DI CAGLIA

D_01_ES_21_ACU_R00

Pag. 11 di 50

MAGGIO 2017

cunicolo di alloggio delle tubazioni e il rifacimento di alcuni tratti della viabilità attraversata, nonché il ripristino di tutte le sedi stradali coinvolte dagli interventi.

5.2 Orari di attività

Il terminal GNL è un impianto a ciclo produttivo continuo ai sensi dell'art. 2 del DM 11/12/1996, si prevede il funzionamento sulle 24 ore giornaliere.

5.3 Apparecchiature e macchinari

Nella tabella seguente sono elencate le apparecchiature potenzialmente rumorose in funzione durante l'esercizio del Terminal GNL e le relative informazioni di interesse per l'identificazione delle caratteristiche acustiche.

Tabella n.1: Dati acustici delle sorgenti esaminate

Apparecchiatura Sorgente N. Totali / N. Regime di Esercizi funzionamento		Localizzazione [Aperto/chiuso]	Lp a 1 m [dBA)		
Pompe di carico GNL alle autocisterne S1		2/1	Continuo (16 ore al giorno, 6 giorni su 7)	Aperto	80
Pompe GNL serbatoi S2 18/9 Continuo		Aperto	80		
Vaporizzatori ad aria	S3	40/20	Continuo	Aperto	70
Pompe Vasche di Pompaggio			Chiuso (in edificio realizzato in calcestruzzo)	80	
Motori a combustione interna per generazione S5 3/2 Continuo elettrica		Chiuso (in container insonorizzato)	80		
Pompe jockey firewater	S6	2/1	Discontinuo	Chiuso (in edificio realizzato in calcestruzzo)	85

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D 01 ES 21 ACU R00

Pag. 12 di 50

MAGGIO 2017

Compressori	S7	2/1	Continuo	Chiuso (in edificio realizzato in calcestruzzo)	76
Pompa antincendio elettrica	S8 1/1 Discontinuo (emergenza)			Chiuso (in edificio realizzato in calcestruzzo)	85
Motopompa diesel antincendio	S9	1/1	Discontinuo (emergenza)	Chiuso (in edificio realizzato in calcestruzzo)	85
Generatore Diesel Emergenza	S10	1/0	Discontinuo (emergenza)	Chiuso (in container insonorizzato)	85
Torcia	Torcia S11 1/1 Discontinuo (emergenza)		Aperto	120	

La stima previsionale delle attività è stata basata sulle descrizioni delle tipologie di macchine che opereranno e dei relativi livelli sonori di emissione ricevuti dal committente.

L'impianto di ricezione e rigassificazione GNL è inserito nel contesto del Porto Canale di Cagliari, che per la stessa destinazione d'uso dell'area è interessata dall'arrivo di navi dirette al terminal e da attività industriali.

In fase di esercizio si considera trascurabile qualsiasi rumore possa derivare dalla nave in stazionamento (solo motori ausiliari in funzione) o in manovra (motore principale al minimo) e quello dei rimorchiatori. E' inoltre da considerarsi trascurabile il rumore emesso durante le operazioni di trasferimento del gas dalla nave ai serbatoi.

In ordine alla specifica rumorosità dei generatori di emergenza, delle pompe antincendio e della torcia, si specifica che tali apparecchiature sono installate a supporto dell'impianto ed il loro funzionamento è previsto esclusivamente in casi di emergenza. Le apparecchiature di emergenza e antincendio saranno inoltre oggetto di sporadici avviamenti infrasettimanali, di brevissima durata, nell'ambito degli interventi programmati di manutenzione ordinaria, al fine di garantire la costante efficienza nel tempo.

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 13 di 50

MAGGIO 2017

Tali interventi manutentivi sono riconducibili a "eventi sonori singolarmente identificabili di natura eccezionale rispetto al valore ambientale della zona". Pertanto, ai sensi dell'Allegato "A", punto n.11 del DM 16/03/1998 (Tecniche di rilevamento e misurazione dell'inquinamento acustico) dette sorgenti sonore non, costituendo causa di potenziale inquinamento acustico secondo gli aspetti stabiliti dalla norma, non verranno considerate nel calcolo previsionale delle immissioni sonore nell'ambiente circostante addebitabili all'Opera in progetto.

6 DESCRIZIONE DELLE CARATTERISTICHE COSTRUTTIVE DEI LOCALI

I vaporizzatori ad aria, la torcia verranno installate all'esterno.

I locali di nuova realizzazioni, di alloggiamento dei macchinari, avranno una struttura portante in calcestruzzo armato. Le pareti perimetrali sono in muratura a cassa vuota con un paramento a faccia vista costituita da doppia parete di laterizio, con interposta camera d'aria, di spessore complessivo non superiore a 50 cm. Il paramento esterno è costituito in mattoni laterizi Doppio Uni spessore 12 cm ed quello interno in mattoni laterizi forati spessore 8 cm.

L'interno è intonacato in malta per interni premiscelata spessore complessivo mm 15.

Gli infissi sono in profilati di alluminio, tinto legno, sezione delle ante 53 mm, altezza sede vetro 22 mm, completo di vetrocamera 6/7-12-6/7.

La porta di accesso è a due ante a scorrimento orizzontale di dimensioni bxh 300x300.

Il solaio di copertura è a struttura mista in laterocemento di altezza pari a cm 16 oltre la soletta di cm 4, interasse cm 50, realizzato con travetti irrigiditi da traliccio metallico inserito in fondelli in laterizio di dimensioni cm 3,5 x 12, blocchi interposti in laterizio collaboranti ed armatura metallica a corredo.

L'isolamento acustico della struttura nei riguardi dell'ambiente esterno sarà dell'ordine di Rw ≥ 20 dB.

Il container insonorizzato, che conterrà i motori a combustione interna per generazione elettrica, dovrà garantire un abbattimento acustico dell'ordine dei 20 dB.

7 CONTESTO URBANISTICO

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D 01 ES 21 ACU R00

Pag. 14 di 50

MAGGIO 2017

L'impianto di stoccaggio e rigassificazione, in Zona Demaniale verrà realizzato all'interno del Porto Industriale di Cagliari. L'area è individuata dal Piano Regolatore Portuale come zona per Impianti industriali strettamente connessi alle attività portuali. L'area è inoltre libera da vincoli di natura paesaggistica e non ricade in Zone di Protezione Speciale e Zone di interesse Comunitario. L'area individuata ha una superficie di forma rettangolare di ca. 78.000 mq. L'area in banchina che verrà richiesta in concessione demaniale ha una superficie di 1651 mq anche questa di forma rettangolare (29mx55m), è situata in prossimità della banchina attrezzata per le operazioni di scarico di navi RO-RO e presumibilmente verrà utilizzata in futuro sia da navi RO-RO che dalle apposite navi per GNL. Per il passaggio delle tubazioni criogeniche invece, per una lunghezza totale di ca. 1.000 m che verranno posati in parte su strade di pertinenza demaniale e in parte in aree del CACIP.

La seguente Tavola n.1 riporta la corografia dell'area ospitante l'attività (evidenziata in rosso).

Tavola n.1: Comune di Cagliari - corografia della zona urbanistica ospitante l'azienda

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

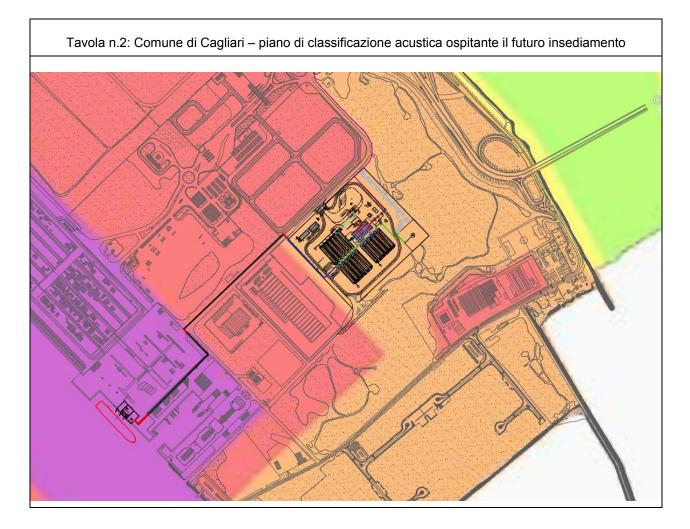
Pag. **15** di **50**

MAGGIO 2017

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00


Pag. 16 di 50

MAGGIO 2017

8 CONTESTO ACUSTICO

8.1 Classe Acustica dell'area di studio

L'area dove verrà realizzata la banchina di carico viene classificata in zona di Classe V (aree prevalentemente industriali), l'area dell'impianto di stoccaggio e rigassificazione in classe III (aree di tipo misto) sulla base del piano di Classificazione acustica del territorio comunale. In prossimità dell'area in esame sono presenti un insediamento produttivo classificato in zona di Classe IV e un insediamento residenziale (Villaggio Giorgino) identificato in classe III.

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 17 di 50

MAGGIO 2017

8.2 Definizione dei limiti di riferimento

Premesso quanto riportato al precedente paragrafo, i limiti acustici di riferimento ai quali l'attività dovrà subordinarsi, ai sensi della Legge quadro 447/95 vengono di seguito assunti:

- I cosiddetti "valori limite di assoluti di immissione", riferiti all'ambiente esterno in prossimità del ricettore, come specificato dall'Art.2, comma 1, lettera f), comma 2 e comma 3, lettera a) della Legge n.447/95 e dall'Art.3 del DPCM 14.11.1997;
- I cosiddetti "valori limite differenziali di immissione" specificati dall'Art.2, comma 1, lettera f), comma 2 e comma 3, lettera b) della Legge n.447/95, da applicarsi all'interno dell'ambiente abitativo recettore, come definiti dall'Art.4 del D.P.C.M. 14.11.1997 (il cui superamento deve essere verificato secondo le note stime del "criterio differenziale" già adottate nel D.P.C.M. 01.03.1991), sono fissati in 5 dB per il periodo diurno e 3 dB per il periodo notturno. Secondo lo stesso disposto, qualora il livello del rumore ambientale sia inferiore a 50 dBA di giorno e 40 dBA di notte nelle condizioni di finestre aperte ed inferiore a 35 dBA di giorno e 25 dBA di notte nelle condizioni di finestre chiuse, ... ogni effetto del rumore è da ritenersi trascurabile ..., qualsiasi sia il valore differenziale riscontrabile.

Nella tabella seguente sono riportati i limiti acustici per l'ambiente esterno per la classe acustica III, IV e V.

Tabella n.2: Limiti acustici validi per l'ambiente esterno - Classe III, IV e V.

	Art.2		A	Art.3 Art.7		Art.6		
	Tabella B		Tabella C		Tab	Tabella D		1, lett. A)
		i limite Valori limite assoluti Valori one (dBA) di immissione (dBA) di qualità (dBA)		Valori di attenzione* rif 1h (dBA)				
Classe	diurno	notturno	diurno	notturno	diurno	notturno	Diurno	notturno
Ш	55	45	60	50	57	47	70	50
IV	60	50	65	55	62	52	75	60
v	65	55	70	60	67	67	80	65

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

TWILE ONE THEE FORTIO OF WHILE BY OF COLUM

D_01_ES_21_ACU_R00

Pag. 18 di 50

MAGGIO 2017

8.3 Applicazione del criterio differenziale – Impianti a ciclo produttivo continuo

L'Impianto di stoccaggio e degassificazione, oggetto del presente studio, essendo un apparato tecnologico destinato a rimanere costantemente in attivo nell'arco delle 24 ore, è da considerarsi un Impianto a Ciclo Produttivo Continuo.

Il suddetto Impianto è pertanto assoggettato al Decreto del Ministero dell'Ambiente 11 Dicembre 1996 "Applicazione del criterio differenziale per gli impianti a ciclo produttivo continuo" in attuazione dell'art.15 comma 4 della Legge 447/95. Tale decreto definisce gli impianti a ciclo produttivo continuo nel modo seguente:

- impianti di cui non è possibile interrompere l'attività senza provocare danni all'impianto stesso, pericolo di incidenti o alterazioni del prodotto o per necessità di continuità finalizzata a garantire l'erogazione di un servizio pubblico essenziale;
- quelli il cui esercizio è regolato dai contratti nazionali di lavoro sulle ventiquattro ore per cicli settimanali, fatte salve le esigenze di manutenzione.

La medesima norma del DM 11/12/1996, attraverso le definizioni di cui all'art. 2, distingue gli impianti a ciclo produttivo continuo in "esistenti" e "nuovi":

- sono definiti impianti esistenti quelli già in esercizio o autorizzati prima del 19 marzo 1997 (data di entrata in vigore del decreto stesso) nonché quelli per i quali sia già stata presentata istanza di autorizzazione entro tale data;
- sono definiti impianti nuovi (tutti gli altri) quelli realizzati o autorizzati successivamente al 19 marzo 1997.

Il Decreto del Ministero dell'Ambiente 11 Dicembre 1996 disciplina le modalità di applicazione del "criterio differenziale" per gli impianti a ciclo produttivo continuo ubicati in zone non esclusivamente industriali e quelli ubicati in zone esclusivamente industriali che dispiegano i propri effetti acustici in zone diverse da quelle esclusivamente industriali. L'Impianto in progetto rientra pertanto nel secondo caso (Impianto Nuovo).

Tale D.M. prevede che tutti gli impianti a ciclo produttivo continuo, sia esistenti sia nuovi, siano tenuti a rispettare i limiti di zona fissati a seguito dell'adozione dei provvedimenti Comunali di cui all'art. 6 comma 1 lettera a della Legge 447/95 (zonizzazione acustica), ovvero (ex art 8 del D.P.C.M. 14.11.1997) in mancanza di specifici provvedimenti, i già citati limiti stabiliti dall'art. 6 del D.P.C.M 1 Marzo 1991.

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 19 di 50

MAGGIO 2017

Lo stesso D.M. prevede inoltre che gli impianti a ciclo produttivo continuo nuovi (impianti realizzati dopo il 19 Marzo 1997), il rispetto del criterio differenziale è condizione necessaria per il rilascio della relativa concessione.

In relazione alla classificazione acustica dell'area ospite, ed in considerazione dei criteri normativi suesposti, i limiti di riferimento che l'Impianto sarà tenuto a rispettare sono stabiliti secondo i sequenti criteri:

- i valori limite assoluti di immissione del Piano di Classificazione Acustica del Territorio Comunale, stabiliti nell'area ospite (Aree di tipo misto, Classe III) in 60 dB(A) nel periodo diurno e in 50 dB(A) nel periodo notturno;
- in relazione agli effetti acustici eventualmente dispiegati in zone diverse da quelle esclusivamente industriali, dovranno essere rispettati i relativi valori limite assoluti di immissione in tutte le aree circostanti classificate dalla Classe I alla Classe V, qualora interessate dalla rumorosità dell'opera in progetto;
- in relazione agli effetti acustici eventualmente dispiegati in zone diverse da quelle esclusivamente industriali, dovranno essere rispettati i relativi valori limite differenziali di immissione in tutti gli ambienti abitativi insediati nelle aree circostanti, classificate dalla Classe I alla Classe V, qualora interessate dalla rumorosità dell'opera in progetto; tali limiti sono stabiliti in 5 dB durante il periodo di riferimento diurno (06,00 - 22,00) e in 3 dB durante il periodo di riferimento notturno (22,00 - 06,00) dall'art.4, comma 1 del DPCM 14/11/1997.

8.4 Sorgenti sonore e ricettori presenti nell'area di studio

I ricettori presenti nelle vicinanze sono costituiti da attività produttive (Gruppo Grendi, Gruppo Remosa e gli uffici del Porto Canale) e dall'insediamento residenziale Villaggio dei Pescatori di Giorgino. I ricettori sensibili sorgono a non meno di 100 m dal confine della pertinenza fondiaria.

La tavola 3 mostra la localizzazione dei ricettori più vicini al fondo destinato a ospitare il nuovo impianto di stoccaggio e rigassificazione. I ricettori sono individuati con le sigle da R1 a R4.

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 20 di 50

MAGGIO 2017

Tavola n.3: Comune di Cagliari – piano di classificazione acustica ospitante il futuro insediamento

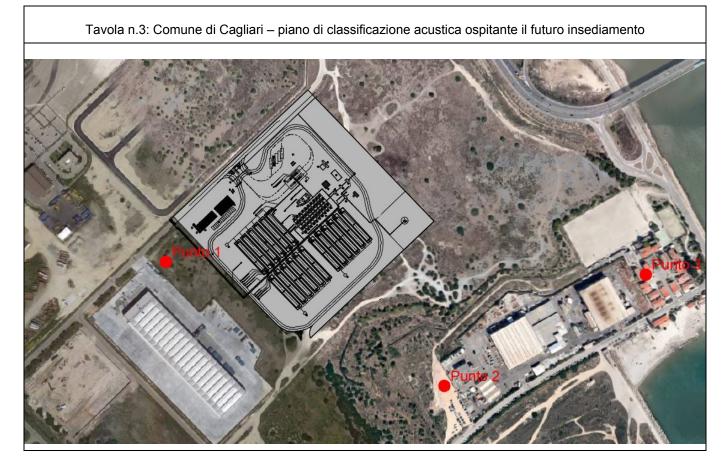
La rumorosità della zona è imputabile prevalentemente alle attività di carico/scarico, manutenzione e di viabilità interna del Porto stradale; all'interno del Villaggio Pescatori di Giorgino è invece attribuibile all'attività del Gruppo Remosa e alla viabilità della SS195.

Durante la fascia notturna (22,00-06,00), se si esclude la Strada Statale SS195, ed eventuali lavorazioni straordinarie delle attività site all'interno del Porto Canale, non sono presenti sorgenti sonore di rilevante entità.

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00


Pag. 21 di 50

MAGGIO 2017

8.5 Studio e indicazione dei livelli di rumore preesistenti in prossimità dei ricettori

Al fine di verificare l'attuale situazione di rumorosità che caratterizza le zone limitrofe all'area interessata dallo studio, sono state eseguite apposite rilevazioni fonometriche eseguite secondo i criteri e metodi stabiliti dal DM 16/03/98.

La seguente figura riporta la localizzazione dei punti di rilevamento.

La seguente Tabella 5 riporta la misura della rumorosità residua ante-operam, rappresentativa del clima acustico preesistente alla realizzazione dell'opera in progetto.

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 22 di 50

MAGGIO 2017

Tabella n.3: Localizzazione delle postazioni di rilevamento e misura del rumore residuo ante-operam

Postazione	Localizzazione	Classe acustica	Applicabilità valori limite differenziali di immissione	Parametro rilevato	Periodo di misura	Durata della misura	Livello sonoro misurato
Punto 1	In prossimità dell'area del nuovo impianto	III	no		diurno	3600 sec	48,2 dB(A)
Punto 1	In prossimità dell'area del nuovo impianto	III	Si		notturno	3600 sec	47,0 dB(A)
Punto 2	Parcheggio sterrato Remosa	IV	no	Dumara	diurno	3600 sec	47,0 dB(A)
Punto 2	Parcheggio sterrato Remosa	IV	Si	Rumore residuo	notturno	3600 sec	43,2 dB(A)
Punto 3	Villaggio Pescatori Giorgino	III	no		diurno	3600 sec	49,0 dB(A)
Punto 3	Villaggio Pescatori Giorgino	III	Si		notturno	3600 sec	40,5 dB(A)

I livelli sonori registrati presso il punto 3 sono tipici di rumorosità residua in zone similari, destinate ad uso prevalentemente residenziale, ed interessate da un modesto flusso veicolare locale. Si fa notare che i ricettori R1, R2, R3 sono uffici, pertanto destinati alla permanenza solamente nelle ore diurne, di conseguenza solamente il ricettore R4 (punto di misura 3) è vincolato al rispetto del criterio differenziale nel periodo notturno.

9 PREVISIONE DI IMPATTO ACUSTICO

Secondo le linee guida regionali, la valutazione di impatto acustico deve essere fondata sui dati dei livelli sonori generati dalla sorgente sonora esaminata nei confronti dei ricettori limitrofi e dell'ambiente esterno circostante. Particolare attenzione deve essere posta alla valutazione dei livelli sonori di emissione e di immissione assoluti, nonché ai livelli differenziali, qualora applicabili, all'interno o in facciata dei ricettori individuati. La valutazione del livello differenziale deve essere effettuata nelle condizioni di potenziale massima criticità.

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D 01 ES 21 ACU R00

Pag. 23 di 50

MAGGIO 2017

9.1 Modello di previsione

L'impatto acustico nel territorio circostante l'insediamento produttivo viene valutato in via previsionale mediante l'effettuazione di simulazioni che consentano di costruire delle curve isofoniche (curve di ugual livello sonoro). Ciò allo scopo di verificare che l'insediamento non arrechi disturbo agli attuali utilizzi del territorio ed in ogni caso di verificare il rispetto dei limiti di legge. La stima viene effettuata considerando il contributo acustico specifico di ciascuna macchina in ciascun punto di riferimento preso a campione, rappresentativo degli effetti acustici delle sorgenti sonore specifiche.

L'algoritmo di calcolo utilizzato per la simulazione considera i seguenti elementi:

- emissione caratteristica di ciascuna macchina nelle condizioni di massima potenza;
- distanza reale del ricettore rispetto a ciascuna macchina;
- eventuale presenza di ostacoli nel percorso acustico di ciascuna macchina.

Il calcolo si basa sull'applicazione delle leggi fisiche che disciplinano le grandezze acustiche, i cui effetti sull'ambiente circostante, dovuti alla propagazione, vengono esaminati col supporto di software di elaborazione grafica e matematica (Microsoft Excel).

Per determinare gli effetti acustici sul territorio circostante connessi all'insediamento dell'unità produttiva si è tenuto conto del contributo acustico di ciascuna macchina all'interno del terminal GNL.

Per la previsione degli effetti acustici dell'insediamento produttivo si tiene conto, in prima istanza, dell'attenuazione sonora dovuta alla distanza, variabile che incide marcatamente sul fenomeno della propagazione sonora.

Altri fattori che concorrono all'attenuazione o che possono influenzare la distribuzione spaziale del fenomeno sonoro sono rappresentati dall'attenuazione dovuta alla resistività e al potere fonoassorbente dell'aria, attenuazione dovuta al potere fonoassorbente della pioggia, della neve, della nebbia, al gradiente termico e alla turbolenza atmosferica, che verranno eventualmente considerati qualora si dovesse incorrere all'eventuale superamento dei limiti di legge.

Per gli stessi motivi non si tiene conto, in prima analisi, dell'attenuazione dovuta alla presenza di ostacoli naturali e della vegetazione, data la non uniforme distribuzione delle curve di isolivello della mappa (che in taluni casi possono determinare effetti di "ombra acustica") e della non uniforme conformazione della vegetazione.

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

TATE ONE INCE TO CHANGE BY CHOCKING

D_01_ES_21_ACU_R00

Pag. 24 di 50

MAGGIO 2017

Non va trascurato infatti che l'effettiva attenuazione sonora legata a tali variabili non sempre corrisponde alle stime teoriche, poiché l'attenuazione acustica dovuta alle barriere assume minore importanza all'aumentare della distanza della barriera dalla sorgente e di per sé può essere causa di turbolenze aerodinamiche o di riflessioni sonore che influenzano il livello sonoro, tanto da rendere scarsamente rappresentative le stime previsionali.

La presenza di vegetazione può essere di per sé fonte di rumore (frusciare del manto erboso, generazione di sibili dovuti a turbolenze aerodinamiche), effetti che non vengono assunti dall'elaborazione previsionale.

I margini di incertezza della procedura di calcolo sono correlati, oltre alle variabili sopradescritte (non computabili in modo oggettivo) alla variabilità del potere fonoassorbente del terreno e di eventuali ostacoli, alla variazione del clima che influenza l'attivazione contemporanea di una pluralità di macchinari. Per questo in prima istanza la valutazione considera una poco probabile "situazione peggiore" che tiene conto del funzionamento contemporaneo di tutte le unità esterne ed i possibili effetti acustici in tutte le direzioni.

9.1.1 Basi teoriche dell'algoritmo di calcolo

L'algoritmo di calcolo si fonda su considerazioni tipiche dell'acustica tecnica e sull'impiego di alcune grandezze caratteristiche quali la potenza, l'intensità e l'impedenza acustica (dalle quali, tramite opportuni calcoli, si risale al livello di pressione sonora, cioè al rumore), la direttività delle sorgenti di rumore e le modalità di diffusione della potenza acustica nello spazio. Viene inoltre considerata l'attenuazione del rumore nella sua propagazione nello spazio in seguito alla distanza, alle caratteristiche del mezzo e alla presenza di ostacoli naturali e artificiali. Vengono infine introdotti gli effetti conseguenti al gradiente termico, al vento e alla turbolenza atmosferica.

9.1.2 Terminologia

La potenza sonora viene espressa come livello in dB, relativamente ad un certo livello di riferimento:

$$L_{W} = 10 \log_{10} \frac{W}{W_{0}}$$

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

INAL ONE NEET ORTO GANALE DI GAGLIAI

D_01_ES_21_ACU_R00

Pag. 25 di 50

MAGGIO 2017

dove: W₀ è il livello di riferimento stabilito in 10⁻¹² W

La potenza acustica è una caratteristica della sorgente, non varia con la distanza essendo il prodotto della intensità per la superficie di propagazione. La potenza acustica per una sorgente omnidirezionale è altresì espressa dalla relazione:

$$W = SI$$

che rappresenta il prodotto della intensità acustica (I) in un punto qualunque intorno alla sorgente, alla distanza "d" volte la superficie della sfera di propagazione (S), il cui raggio sia la distanza "d" stessa. Essa rappresenta l'energia irradiata in tutte le direzioni nell'unità di tempo ed è data dalla somma delle intensità acustiche locali sulla superficie sincrona di propagazione:

$$W = \int_{s} i_{\delta a}$$

dove: W = potenza acustica

S = superficie della sfera di raggio d

iδa = intensità sull'area infinitesima δa

Attraverso opportuni calcoli può essere determinato il livello di pressione sonora in dBA che può attendersi in qualunque punto riportato sul terreno. Il calcolo tiene conto della reale posizione geografica di ciascuna sorgente sonora, che in questo caso vengono ipotizzate in opportune unità di trattamento aria, ed di ciascun punto di riferimento nel quale si voglia stimare il livello dell'emissione sonora dell'insieme dei macchinari. L'algoritmo di calcolo tiene evidentemente conto della rumorosità specifica generata dalle potenziali apparecchiature rumorose specifiche in massimo regime di funzionamento. L'intensità acustica è data dalla seguente relazione:

$$I = \frac{W}{S}$$

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

AL GNE NEL PORTO CANALE DI CAGLIAR

D_01_ES_21_ACU_R00

Pag. 26 di 50

MAGGIO 2017

L'intensità acustica di ciascuna unità di trattamento aria, calcolata sui dati di pressione sonora rilevati in prossimità della macchina forniti dal costruttore attraverso appositi test fonomerici, definisce la quantità di energia che passa nell'unità di tempo attraverso l'unità di superficie; si esprime in W/m² ed è data dalla seguente relazione:

$$I = \frac{p^2}{Z} \left(W/m^2 \right)$$

in cui:

- p = pressione acustica (PA)
- Z = rappresenta l'impedenza acustica del mezzo (Kg/m²s) cioè la resistenza che la sorgente deve vincere per mettere in vibrazione il mezzo
- I = intensità acustica (W/m²)

Una sorgente di rumore può irradiare la stessa quantità di energia acustica in tutte le direzioni dello spazio (sorgente omnidirezionale) o può irradiarne quantità diverse nelle varie direzioni (sorgente direttiva). L'intensità acustica media (Im) viene ricavata da più misure fatte intorno alla sorgente, alla distanza "d" volte la superficie della sfera o semisfera di propagazione (S) il cui raggio sia la distanza "d". La potenza sonora di una sorgente direttiva sarà pertanto pari a

$$W = ImS$$

Il fattore di direttività $Q\theta$, è il rapporto fra il quadrato della pressione sonora $p\theta$, misurata ad un angolo θ , ad una distanza "d" dalla sorgente e il quadrato della pressione sonora p, misurata alla stessa distanza di una sorgente omnidirezionale che emette la stessa potenza sonora (ovvero la pressione sonora calcolata sull'intensità acustica media lm):

$$Q_{\theta} = \frac{p_{\theta}^2}{p_1^2} = \frac{10^{(Lp\theta p\theta f)}}{10^{(Lps/10)}}$$

In questo caso l'intensità acustica alla distanza "d" dalla sorgente ad un angolo θ sarà data da:

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 27 di 50

MAGGIO 2017

$$I = \frac{WQ_{\,\theta}}{S}$$

L'indice di direttività sarà dato da:

$$DI = 10 \log Q$$

9.1.3 Diffusione acustica in campo libero

Se consideriamo le onde longitudinali e sferiche emesse da una sorgente puntiforme S in un mezzo omogeneo, si osserva che l'energia che si irradia è, in un certo punto P1 a distanza d1, distribuita sulla sfera di centro S e raggio d1; in un punto P2 posto a maggiore distanza d2, la stessa energia è distribuita sulla superficie della sfera di centro S e raggio d2. La superficie di una sfera è proporzionale al quadrato del suo raggio, per cui l'intensità dell'onda sarà inversamente proporzionale al quadrato della distanza dalla sorgente; pertanto se in P1 l'intensità vale I1, il suo valore I2 in P2 è legato a I1 dalla relazione:

$$\frac{\mathsf{I}_1}{\mathsf{I}_2} = \left(\begin{array}{c} \mathsf{d}_2 \\ \mathsf{d}_1 \end{array} \right)^2$$

Nel considerare la direttività delle sorgenti si deve tenere presente che le relative onde sonore si propagheranno inizialmente secondo fronti d'onda cilindrici, ma all'aumentare della distanza la propagazione avverrà secondo fronti d'onda sferici. La transazione avverrà in modo progressivo ed a una prevista distanza dalla sorgente, ottenibile mediante il seguente rapporto, in cui I è la lunghezza della sorgente:

$$d = \frac{I}{\pi}$$

Nel campo vicino alla sorgente (d < I/π) la diminuzione del livello sonoro è uguale a 3 dB per ogni raddoppio della distanza e 6 dB nel campo lontano (d > I/π).

Calcolando l'intensità acustica in un punto qualsiasi della mappa dovuta alla risultante della somma dell'energia sonora di ciascuna macchina in relazione alla sua distanza dal punto di riferimento, si risale al corrispondente livello sonoro atteso. Oltre all'attenuazione

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 28 di 50

MAGGIO 2017

dovuta alla diminuzione dell'intensità acustica all'aumentare del raggio della superficie sincrona sferica di propagazione, vi sono fattori di attenuazione che la tecnica acustica considera, quali:

- attenuazione dovuta alla resistività dell'aria
- attenuazione dovuta al potere fonoassorbente dell'aria
- attenuazione dovuta al potere fonoassorbente della pioggia, della neve, della nebbia
- attenuazione dovuta alla vegetazione
- attenuazione dovuta al vento, al gradiente termico, alla turbolenza atmosferica
- attenuazione dovuta alla presenza di ostacoli naturali e artificiali offerti dai fabbricati

Solamente alcuni di questi termini devono essere tenuti in considerazione e cioè l'assorbimento dell'aria, degli ostacoli e la vegetazione previsti. Tutti gli altri termini di riduzione infatti, si riferiscono a particolari situazioni meteorologiche che in acustica non devono essere prese in considerazione se non in casi in cui esse rappresentano la normalità della situazione.

L'attenuazione del suono dovuta al potere fonoassorbente dell'aria può essere calcolata per una temperatura di 20 °C mediante l'espressione:

$$A_2 = 7.4 \frac{f^2 d}{\theta} 10^{-8}$$

dove con f si indica il valore centrale della banda di frequenza considerata (convenzionalmente adottata in 500 Hz), con θ l'umidità relativa (%) e con d la distanza tra la sorgente ed il punto di ascolto considerato.

L'attenuazione del suono dovuta alla vegetazione sarà tanto maggiore quanto più fitta sarà la vegetazione stessa e dipenderà direttamente dalla frequenza del suono in esame; essa potrà essere calcolata mediante la seguente espressione:

A5 =
$$(0,18 \log f - 0,31) d$$
 (per erba o cespugli)

A5 = (0.01 f 1/3) d (per foreste)

dove con f si indica il valore centrale della banda di frequenza considerata e con d la lunghezza della vegetazione considerata (m).

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 29 di 50

MAGGIO 2017

L'attenuazione dovuta alla presenza di ostacoli naturali (fabbricati interni e muri di confine) può essere determinata conoscendo i parametri geometrici dell'ostacolo stesso.

Conoscendo la distanza fra il punto d'ascolto considerato e l'ostacolo, l'altezza efficace dell'ostacolo e la distanza fra la sorgente e l'ostacolo stesso, si può calcolare una frequenza, detta caratteristica, e trovare l'attenuazione offerta dall'ostacolo stesso. La frequenza caratteristica andrà calcolata mediante la seguente espressione:

$$f_1 = \frac{ac}{2H^2}$$

dove:

a: indica la distanza sorgente-ostacolo

c: indica la velocità del suono (m/s)

H: indica l'altezza efficace dell'ostacolo

Altri fattori che concorrono alla variabilità della propagazione sonora nell'aria e conseguenti effetti anomali sono la temperatura e la presenza del vento.

La velocità del suono "c" è legata alla temperatura assoluta dell'aria, secondo la seguente relazione:

$$c = \sqrt{\frac{\gamma P_0}{\rho_0}} = \sqrt{\gamma \frac{R}{M} T}$$

dove:

R è la costante dei gas perfetti (= 8,314 MKS)

M è la massa molecolare (= 0,029 per l'aria)

T è la temperatura assoluta in °K

γ è il rapporto tra i calori specifici cp e cv (= 1,4)

Pertanto:

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 30 di 50

MAGGIO 2017

$$c = \sqrt{\frac{1,4*8,314*T}{0,29}} = 20,05 \sqrt{T} \cong 331,4+0,6t \text{ (m/s)}$$

che rappresenta la velocità del suono in aria secca, alla pressione atmosferica e alla temperatura centigrada t (°C).

Come la temperatura, anche il vento ha una azione perturbatrice sulla propagazione sonora, nel senso che questa risulta favorita oppure ostacolata a seconda che il punto di ascolto si trovi sottovento (ossia dalla parte in cui spira il vento) o sopravento (ossia dalla parte da cui il vento proviene). Ciò deriva dal fatto che in ogni punto della superficie d'onda la perturbazione si trasmette con una velocità che è la risultante vettoriale della velocità di propagazione in aria calma e della velocità del vento nel punto considerato.

Naturalmente nella realtà le cose non sono così semplici poiché la sua direzione, soggetta a fenomeni vorticosi e turbolenze, subisce continue modificazioni.

9.2 Dati tecnici in ingresso

I dati di ingresso utilizzati sono stati pertanto i seguenti:

- tempo di riferimento, diurno e notturno;
- rumorosità residua misurata;
- numero e caratteristiche dei macchinari installati nell'ambiente esterno ed all'interno dei locali;
- rumorosità emessa dai macchinari installati LWA;

dati meteoclimatici (Taria = 20 °C; Velocità del vento max 5 m/sec)

I dati di output generati sono stati i seguenti:

 livello di rumore ambientale LA dovuto al contributo di ogni singolo macchinario nel punto considerato, nella condizione di flusso veicolare nullo (condizione peggiore);

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 31 di 50

MAGGIO 2017

• livello di rumore ambientale LA conseguente al contributo di tutti i macchinari azionati contemporaneamente, nella condizione di flusso veicolare nullo (condizione peggiore).

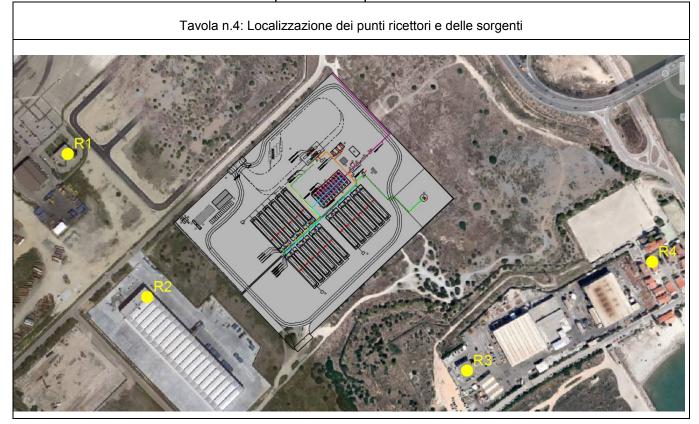
L'esame dei dati acustici ottenuti con l'ausilio delle istruzioni fornite dal costruttore dell'apparecchiatura o assunti per analogia, viene riassunta la pressione acustica di ciascuna sorgente secondo la Tabella n.4 che segue.

Tabella n.4: Dati acustici delle sorgenti esaminate

Apparecchiatura	Sorgente	N. Totali / N. Esercizi	Regime di funzionamento	Localizzazione [Aperto/chiuso]	Lp a 1 m [dBA)
1 51 2/1 1		Continuo (16 ore al giorno, 6 giorni su 7)	Aperto	80	
Pompe GNL serbatoi	S2	18/9	Continuo	Aperto	80
Vaporizzatori ad aria	S3	40/20	Continuo	Aperto	70
Pompe Vasche di Pompaggio			Continuo	Chiuso (in edificio realizzato in calcestruzzo)	80
Motori a combustione interna per generazione elettrica	S5	3/2	Continuo	Chiuso (in container insonorizzato)	80
Pompe jockey firewater S6 2/1 Discontinuo rea		Chiuso (in edificio realizzato in calcestruzzo)	85		
Compressori S7 2		2/1	Continuo	Chiuso (in edificio realizzato in calcestruzzo)	76

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO


D_01_ES_21_ACU_R00

Pag. 32 di 50

MAGGIO 2017

9.3 Sintesi delle elaborazioni

Si riporta di seguito la planimetria con indicazione delle sorgenti rumorose all'interno del terminal GNL ed i ricettori individuati per lo studio previsionale.

Nelle seguenti tabelle si riportano i dati salienti derivanti dalle elaborazioni matematiche. Lo studio previsionale ha riguardato la quota piano campagna (nel quale si è assunta l'altezza del recettore pari a 4 m).

Si rammenta che il livello di 40 dB(A) è livello minimo dell'immissione negli ambienti abitativi, durante il periodo di riferimento notturno, nelle condizioni di rilevamento a finestre aperte, per l'applicabilità del relativo valore limite differenziale di immissione (ex Art.4, comma 2 del DPCM 14/11/1997).

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 33 di 50

MAGGIO 2017

Tabella 5a: Elaborazione impatto acustico - quota piano campagna periodo diurno

	Distanza	Quota	Immissione	Rispetto limite	Rumore		Valore limit immissione	-
Punto minima sorgenti (m)	ricezione (m)	specifica dB(A)	differenziale dB(A)	residuo dB(A)	Classe acustica	06 ÷ 22	22 ÷ 06	
1	327		39.5	Si	48.2	IV	65	55
2	200		43.0	Si	48.2	IV	65	55
3	280	4	42.0	Si	47.0	IV	65	55
4	415		38.0	Si	49.0	Ш	60	50

Tabella 5b: Elaborazione impatto acustico - quota piano campagna periodo notturno

	Distanza	Quota	Immissione	Rispetto limite	Rumore			e limite one dB(A)
Punto minima sorgenti (m)	ricezione (m)	specifica dB(A)	differenziale residuo dB(A) dB(A)	Classe acustica	06 ÷ 22	22 ÷ 06		
1	327		39.5	Si	47.0	IV	65	55
2	200		43.0	Si	47.0	IV	65	55
3	280	4	42.0	Si	43.2	IV	65	55
4	415		38.0	Si	40.5	III	60	50

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 34 di 50

MAGGIO 2017

9.3.1 Valutazione delle stime previsionali ottenute

Le stime conducono a ritenere l'installazione dei nuovi macchinari non realizzerà alcuna immissione di interesse, per gli aspetti stabiliti dalla norma. Infatti le immissioni riconducibili all'attività si prevedono inferiori ai limiti di zona del territorio circostante le pertinenze fondiarie del sito ospite.

9.3.2 Previsione rispetto ai valori limite assoluti di immissione

I limiti di riferimento assunti, in relazione alle relative zone adiacenti le pertinenze fondiarie, sono stabiliti dai rispettivi Piani di Zonizzazione Acustica del Comune di Cagliari.

Nelle aree contigue alla pertinenza fondiaria dell'azienda, si prevedono pertanto livelli di immissione inferiori ai limiti stabiliti dall'art.3 del DPCM 14/11/1997.

9.3.3 Previsione rispetto ai valori limite differenziali di immissione

Le stesse immissioni all'interno degli ambienti abitativi presi a riferimento si prevedono inferiori ai limiti di applicabilità dei valori limite differenziali di immissione, stabiliti dall'art. 4, comma 1 del DPCM 14/11/1997 in 50 dB(A) durante il periodo di riferimento diurno (06,00 - 22,00) e in 40 dB(A) durante il periodo di riferimento notturno (22,00 - 06,00). Ai sensi dell'art.4, comma 2 della medesima norma, infatti, l'immissione viene ritenuta trascurabile, a prescindere dal livello differenziale riscontrato.

Tali presupposti si richiamano al fatto che all'interno dell'ambiente abitativo, in condizioni di rilevamento a finestre aperte, il valore dell'immissione giunge ridotto rispetto al livello che si registra all'esterno dell'edificio, ciò a causa dell'effetto fonoisolante dell'apertura lasciata dall'infisso spalancato che è generalmente compresa tra 2 ÷ 4 dB(A).

10 PREVISIONE DEI LIVELLI SONORI GENERATI DAL TRAFFICO VEICOLARE INDOTTO

I modelli di previsione del rumore dal traffico permettono di calcolare Leq in dB(A) partendo dai dati dei flussi veicolari.

Generalmente tutti i metodi considerano le seguenti variabili caratterizzanti:

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

IAL GIVE NEL PORTO CANALE DI CAGLIA

D_01_ES_21_ACU_R00

Pag. 35 di 50

MAGGIO 2017

- Flusso veicolare:
- Tipologia del traffico veicolare;
- Caratteristiche cinematiche del traffico (velocità dei veicoli, accelerazione addizionale);
- Caratteristiche della strada;
- · Condizioni meteorologiche.

Il CNR ha elaborato un modello matematico per il calcolo del livello equivalente Leq attraverso la relazione:

$$Leq = \alpha + 10 \cdot \log_{10}(Q_{VL} + \beta \cdot Q_{VP}) + 10 \cdot \log_{10}(d_0/d) + \Delta L_v + \Delta L_F + \Delta L_B + \Delta L_G + \Delta L_{VB}$$

Dove:

- Q_{VL} [veicoli/h] è il flusso dei veicoli leggeri comprendenti i veicoli privati, quelli commerciali di peso inferiore a 4,8 t ed i motoveicoli non compresi nella categoria seguente;
- Q_{VP} [veicoli/h] è il flusso di veicoli pesanti comprendenti i veicoli commerciali e da trasporto pubblico di peso superiore a 4,8 t ed i motoveicoli con rumorosità elevata;
- d0 è la distanza di riferimento pari a 2,5 m;
- ΔL_v [dB(A)] è un parametro correttivo che tiene conto della velocità media del flusso di traffico;

Velocità media del flusso di traffico (km/h)	$\Delta L_{\nu} [dB(A)]$
da 30 a 50	0
60	+ 1,0
70	+ 2,0
80	+ 3,0
100	+ 4,0

- ΔL_F e ΔL_B [dB(A)] sono parametri correttivi per le riflessioni dovute alla parete retrostante (+2,5 dB(A)) e sul lato opposto (+1,5 dB(A));
- ΔL_S [dB(A)] è un parametro correttivo che tiene conto del tipo di manto stradale;

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 36 di 50

MAGGIO 2017

Tipo di manto stradale	$\Delta L_{S} [dB(A)]$
Asfalto liscio	- 0,5
Asfalto ruvido	- 0,10
Cemento	+ 1,5

• ΔL_G [dB(A)] è un parametro correttivo che tiene conto della pendenza della strada;

Pendenza	$\Delta L_S [dB(A)]$
5	0
6	+ 0,6
7	+ 0,6 + 1,2
8	+ 1,8
9	+ 2,4
10	+ 2,4 +3,0

 ΔL_{VB} [dB(A)] è un parametro che si applica nei casi limite di traffico, come presenza di semafori e velocità di flusso assai bassa;

Situazioni di traffico	$\Delta L_{VB} [dB(A)]$
In prossimità di semafori	+1,0
Velocità del flusso veicolare <30 km/h	- 1,5

 α e β sono dei coefficienti che variano da Paese a Paese e dipendono dalle condizioni dei veicoli, nonché dalle abitudini di guida delle persone. Per l'Italia si utilizzano valori pari a α =35.3 e β =5.

10.1 Dati immessi/generali dall'algoritmo

Il traffico dei mezzi terrestri durante la fase di esercizio dell'impianto si svilupperà nella strada, sita all'interno del Porto Canale, di collegamento dell'impianto fino alla SS 195, e si suddividerà tra:

- Mezzi leggeri per il trasporto degli addetti al funzionamento dell'impianto (interni e/o esterni);
- Mezzi pesanti per la distribuzione del GNL, approvvigionamento, manutenzione, etc.
- I dati di ingresso utilizzati sono stati pertanto i seguenti:
- tempo di riferimento diurno (si considera il traffico legato all'esercizio nelle sole ore diurne dei giorni lavorativi);

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 37 di 50

MAGGIO 2017

- variabili caratterizzanti il rumore stradale;
- dati di traffico veicoli leggeri e pesanti;
- dati meteoclimatici (Taria = 20 °C; Velocità del vento max 5 m/sec).

I dati di output generati sono stati i seguenti:

livello di rumore ambientale LA dovuto al traffico indotto dalla nuova attività.

Per la determinazione del livello di rumore è stato ipotizzato il transito di 20 mezzi leggeri e 10 mezzi pesanti all'ora.

Nella tabella seguente si riporta la stima dei valori di emissione sonora da traffico veicolare a 5 m, 10 m, 20 m. dall'asse stradale e i limiti imposti dal D.P.R. 30 marzo 2004 n°142: Regolamento recante disposizioni per il contenimento e la prevenzione dell'inquinamento acustico derivante da traffico veicolare, a norma dell'articolo 11 della legge 26 ottobre 1995, n.447.

Tabella n.6: Valori di emissione traffico veicolare.

Strada	Leq a 5m [dB(A)]	Leq a 10m [dB(A)]	Leq a 20m [dB(A)]	Limiti di riferimento D.P.R. 30 marzo 2004 n°142
Strada di collegamento dell'impianto alla SS195.	53.7	50.7	47.7	60.0

La strada di collegamento con la SS195, è inquadrabile secondo la norma D.P.R. 30 marzo 2004 n°142 in strade locali tipo F, per la quali vigono i limiti secondo le Classi di Riferimento della Classificazione Acustica del Comune di Cagliari (Classe III).

Il contributo della rumorosità associata al traffico di mezzi durante la fase di esercizio, ad una distanza di 50 metri, è inferiore ai 50 dB(A) e comunque ai limiti di riferimento.

In relazione al traffico veicolare che potrà essere indotto dall'attività sulla SS195, non si ipotizza alcun contributo sostanziale sulla densità del transito veicolare riconducibile alla presenza dell'attività.

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 38 di 50

MAGGIO 2017

11 INTERVENTI DI BONIFICA

Dalle misure effettuate pertanto non risulta necessaria, in questa sede di valutazione, l'adozione di eventuali interventi per ridurre i livelli di emissioni sonore, tenuto conto dei limiti acustici di riferimento.

12 IMPATTO ACUSTICO IN FASE DI CANTIERE

La rumorosità prodotta durante questa fase di realizzazione sarà quella normalmente riscontrabile nei cantieri edili, quindi dovuta soprattutto all'utilizzo dei mezzi quali autocarri, pale meccaniche, asfaltatrici, rulli, escavatore, piattaforma semovente su ruote gommate, grader, terna, rullo, compattatore, gru telescopica, tagliapunti, trapani, sega elettrica, martello demolitore, betoniera.

Tutte le macchine e le attrezzature tecnologiche utilizzate dovranno essere conformi ai limiti di emissione sonora previsti dalla normativa europea e dovranno essere accompagnate da apposita certificazione.

Si prevede che le attività operative del cantiere impegneranno una fascia oraria continuativa compresa dalle ore 07:00 fino alle ore alle ore 17:00.

Sarà cura del Responsabile dei lavori richiedere la specifica autorizzazione all'Autorità Comunale per attività rumorose temporanee, come previsto nella Parte V delle citate "Direttive regionali in materia di inquinamento acustico ambientale e disposizioni in materia di acustica ambientale", approvate con Deliberazione della Giunta Regionale n° 62/9 del 14/11/2008.

La domanda di autorizzazione verrà predisposta in conformità alle disposizioni del regolamento comunale e dovrà essere corredata da una planimetria in scala opportuna, nonché da apposita relazione tecnica a firma di tecnico competente. Gli elaborati tecnici dovranno evidenziare:

- la durata, in termini di numero di ore o di giorni, dell'attività di cui si chiede l'autorizzazione;
- le fasce orarie interessate;
- le relative caratteristiche tecniche dei macchinari e degli impianti rumorosi utilizzati, ivi compresi i livelli sonori emessi;
- la stima dei livelli acustici immessi nell'ambiente abitativo circostante ed esterno;

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

NAL GNL NEL PORTO CANALE DI CAGLIAR

D 01 ES 21 ACU R00

Pag. 39 di 50

MAGGIO 2017

 la destinazione d'uso delle aree interessate dal superamento dei limiti di rumore consentiti.

Qualora si riscontrassero emissioni superiori a quelle consentite verrà focalizzata l'attenzione sulla opportunità di una oculata programmazione delle fasi maggiormente rumorose in modo tale che queste evitino o limitino al massimo l'eventuale molestia nei confronti degli edifici vicini.

Si procederà inoltre alla richiesta di deroga ai limiti acustici per lo svolgimento di tali limitate operazioni particolari in un ristretto numero di giorni lavorativi.

Per quanto concerne le autorizzazioni in deroga, si rammenta che la suddetta normativa regionale stabilisce che il Comune:

- può autorizzare, se previsto nel proprio regolamento, deroghe temporanee ai limiti di rumorosità definiti dalla legge n. 447/95 e i suoi provvedimenti attuativi, qualora lo richiedano particolari esigenze locali o ragioni di pubblica utilità. Il provvedimento autorizzatorio del Comune deve comunque prescrivere le misure necessarie a ridurre al minimo le molestie a terzi e i limiti temporali e spaziali di validità della deroga;
- rilascia il provvedimento di autorizzazione con deroga dei limiti, previo parere favorevole dell'Agenzia Regionale per la Protezione dell'Ambiente (A.R.P.A.S.);
- conserva e aggiorna il proprio registro delle deroghe;
- specifica con regolamento le modalità di presentazione delle domande di deroga.

La norma regionale precisa che i limiti della deroga devono sempre essere considerati come limiti di emissione dell'attività nel suo complesso, intesa come sorgente unica.

Tali limiti sono sempre misurati in facciata degli edifici in corrispondenza dei ricettori più disturbati o più vicini. Le misurazioni vanno effettuate conformemente a quanto prescritto nel D.M. 16 marzo 1998 recante "Tecniche di rilevamento e di misurazione dell'inquinamento acustico". Per quanto riguarda gli interventi di urgenza, giova rammentare che questi sono comunque esonerati dalla richiesta di deroga al Comune.

Il traffico indotto durante la fase di cantiere sarà dovuto principalmente all'approvvigionamento dei materiali e dei macchinari e al trasporto del personale di cantiere ed assimilabile a quello durante l'esercizio dell'impianto.

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 40 di 50

MAGGIO 2017

12.1 Apparecchiature e macchinari

Le sorgenti di rumore saranno costituite dall'insieme delle apparecchiature utilizzate nelle varie fasi di lavorazione. Gli impatti sulla componente rumore risultano determinati dalla rumorosità intrinseca dei macchinari impiegati per lo svolgimento delle attività previste per la realizzazione dell'intervento e dalle attività stesse.

Vengono di seguito elencate le sorgenti rumorose previste nella fase di cantiere.

Descrizione delle sorgenti sonore:

Escavatore	LW _(dBA) =	106.0
Autocarro	LW _(dBA) =	101.0
Autobetoniera	LW (dBA) =	97.0
Gru/autogru	LW _(dBA) =	91.0
Rullo compattante	LW _(dBA) =	101.0
Miniescavatore	LW (dBA) =	96.0
Pala Meccanica	LW (dBA) =	101.0
Trivella SpingiTubo	LW (dBA) =	108.5
Motosaldatrice	LW _(dBA) =	96.0
Sondatrivellatrice	LW _(dBA) =	108.5
Vibroinfissore	LW _(dBA) =	108.5

Attraverso il data base dei macchinari indicati nelle schede tecniche sono state associate delle probabili rumorosità generate in fase di esercizio.

A questo punto:

- analizzando la tipologia dei mezzi adoperati;
- dalla rumorosità da essi prodotta;
- dagli orari di attività del cantiere;

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 41 di 50

MAGGIO 2017

• dalla durata delle operazioni;

è stato ritenuto opportuno, visto il numero consistente di fasi lavorative e di ricettori da indagare, anziché sommare di volta in volta il rumore emesso da un determinato numero di attrezzature in funzione a poca distanza le une dalle altre, quantificare in fase progettuale preliminare il rumore medio emesso dai mezzi di cantiere in fase di esercizio, utilizzando il Leq medio.

Questo in quanto, nonostante i macchinari che si prevede vengano adoperati anche in contemporanea, siano in grado di generare rumorosità più elevate (vedasi il Leq Teorico) difficilmente si potranno avere, realisticamente, situazioni di propagazione della massima rumorosità di ciascuna singola sorgente in corrispondenza di un ipotetico punto di misura. Questo in quanto le sorgenti (evidentemente) non potrebbero mai occupare contemporaneamente il medesimo punto di operatività.

In presenza di precise indicazioni progettuali in merito alle attività di cantiere e, in particolare, alla tipologia e numero dei macchinari utilizzati e al numero di ore di attività, è possibile valutare il livello di potenza complessivo relativo al periodo di riferimento diurno in cui si svolgeranno tutte le attività.

Il livello di potenza complessivo del cantiere viene riportato nella seguente tabella:

1	Fase di cantiere						
Periodo di riferimento (06:00 - 22			Durata lavorazione (h)	Quota piano lavorazione (m)	Altezza Sorgenti		
		(06:00 - 22:00)		8	p.c.m.	1,5	m
ID	Mezzo	impiegato	Quantità	potenza sonora dB(A)	ore lavorazione	% atti	vità
	Escavatore		1	106.0	6.0	75.0	%
	Autocarro		4	101.0	6.0	75.0	%
	Autobetoniera		1	97.0	4.0	50.0	%
	Gru/autogru		2	91.0	6.0	75.0	%
	Rullo compattant	e	2	101.0	6.0	75.0	%
	Miniescavatore		1	96.0	4.0	50.0	%
	Pala Meccanica		1	101.0	4.0	50.0	%

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

NAL GIVE IVEE I GIVTO CANALE DI GAGLIAI

D_01_ES_21_ACU_R00

Pag. 42 di 50

MAGGIO 2017

	Trivella SpingiTubo	1	108.5	6.0	75.0	%
	Motosaldatrice	1	96.0	6.0	75.0	%
	Sondatrivellatrice	1	108.5	4.0	50.0	%
						ļ
A.	Potenza sonora massima caratteristica della fase di lavoro				114.5	dB(A)
В.	B. Potenza sonora generata dalla fase, mediata sulla durata della lavorazione			112.8	dB(A)	
C.	C. Potenza sonora generata dalla fase, incidenza sull'intero periodo di riferimento diurno			109.8	dB(A)	

Si riporta di seguito la tabella di propagazione sonora del cantiere, assumendo cautelativamente la contemporaneità operativa di tutti i mezzi di cantiere ed ipotizzando che siano ubicati nel baricentro del cantiere.

Tabella n.7: Propagazione sonora cantiere

Punto	Qualificazione del punto di misura	Distanza dalle sorgenti	LAeq Sorgenti
Rif.		m	dB(A)
1	Ricettore	350	46.5
2	Ricettore	240	49.7
3	Ricettore	300	47.8
4	Ricettore	490	43.5

Dalla tabella si evince che i valori di rumorosità delle attività di cantiere sono inferiori ai limiti di immissione della zona per il periodo diurno. Si evidenza inoltre che l'area del Porto Canale di Cagliari èa vocazione industriale e pertanto il clima acustico è già, allo stato attuale, caratterizzato da numerose sorgenti sonore.

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 43 di 50

MAGGIO 2017

12.2 Interventi atti alla mitigazione del rumore

Relativamente alla logistica di cantiere, è inoltre possibile, già in questa fase, prevedere azioni atte a limitare, il più possibile alla fonte, il livello di rumorosità dei macchinari impiegati. A tale scopo si riportano le seguenti prescrizioni e attenzioni.

12.2.1 Scelta delle macchine, delle attrezzature e miglioramenti prestazioni:

- utilizzo di macchine ed attrezzature omologate in conformità alle direttive della Comunità Europea e ai successivi recepimenti nazionali;
- impiego, se possibile, di macchine movimento terra ed operatrici gommate piuttosto che cingolate;
- installazione, se già non previsti e in particolare sulle macchine di una certa potenza, di silenziatori sugli scarichi;
- utilizzo di gruppi elettrogeni e compressori insonorizzati.

12.2.2 Manutenzione dei mezzi e delle attrezzature:

- eliminazione degli attriti attraverso operazioni di lubrificazione e ingrassaggio;
- sostituzione dei pezzi usurati e che lasciano giochi;
- controllo e serraggio delle giunzioni;
- bilanciatura delle parti rotanti delle apparecchiature per evitare vibrazioni eccessive;
- verifica della tenuta dei pannelli di chiusura dei motori;
- manutenzione delle sedi stradali interne alle aree di cantiere e delle piste esterne al fine di evitare la formazione di buche.

12.2.3 Transito dei mezzi pesanti

- riduzione delle velocità di transito in presenza di residenze nelle immediate vicinanze delle piste di cantiere;
- limitazione dei transiti dei mezzi nelle prime ore della mattina e nelle ore serali.

Oltre alle azioni indicate, valide per l'intero tratto soggetto ad interventi, si ritiene necessario porre particolare attenzione ai tratti di lavorazioni ubicati in corrispondenza delle residenze. Si ritiene opportuno in tali aree, per quanto possibile, limitare le ore di funzionamento dei macchinari più rumorosi, ripartendo eventualmente le attività su di un

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D 01 ES 21 ACU R00

Pag. 44 di 50

MAGGIO 2017

maggior numero di giorni, evitando le fasce orarie maggiormente sensibili (prime ore della mattina, dalle ore 12.00 alle ore 14.00, ore serali).

Trattandosi di attività in deroga ai limiti acustici stabiliti dalle norme in materia di tutela della popolazione dall'inquinamento acustico, eventuali ulteriori interventi temporanei di bonifica potranno essere adottati, qualora necessari, in relazione alle eventuali disposizioni emanate dalla Pubblica Amministrazione.

13 TECNICO COMPETENTE IN ACUSTICA AMBIENTALE

L'indicazione del provvedimento regionale con cui il tecnico competente in acustica ambientale, che ha predisposto la documentazione di impatto acustico, è stato riconosciuto "competente in acustica ambientale" ai sensi della legge n. 447/1995, art. 2, commi 6 e 7.

14 CONCLUSIONI

Dai dati ottenuti in questa sede di valutazione di impatto acustico, si prevede che il rumore immesso nell'ambiente esterno limitrofo dal nuovo Terminal GNL realizzato all'interno del Porto Industriale di Cagliari non determinerà il superamento dei limiti stabiliti dalle norme disciplinanti l'inquinamento acustico, di cui alla Legge quadro 447/95 e successivi regolamenti di attuazione.

La presente valutazione dovrà essere validata in fase post operam, al fine di accertarne l'effettivo ottenimento degli obiettivi, ovvero consentirà di individuare eventuali opere di mitigazione del rumore necessarie al conseguimento di tali obiettivi.

Le previsioni riportate nei precedenti paragrafi mantengono la loro validità qualora i dati relativi alla rumorosità emessa dagli impianti, le caratteristiche degli insediamenti circostanti e le componenti del rumore residuo, mantengano la configurazione e le caratteristiche ipotizzate. Il margine d'errore è quello previsto dalla norma ISO 9613-2 e dipende principalmente dall'approssimazione dei dati di pressione acustica relativa alle macchine.

Alla luce di quanto sopra esposto, il sottoscritto Ing. Antonio Dedoni, con studio professionale in Cagliari, Viale Monastir, km 6,500, Tel. 3929014642, iscritto all'Ordine degli Ingegneri della Provincia di Cagliari con il n°5398, Tecnico Competente in acustica ambientale, giusta la Determinazione n° 650/10, formulata dal Direttore Generale

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 45 di 50

MAGGIO 2017

dell'Assessorato Difesa Ambiente, ai sensi dell'art. 2 comma 7 della Legge 26 Ottobre 1995, n° 447 ("Legge quadro sull'inquinamento acustico"), formula giudizio previsionale di CONFORMITÀ ACUSTICA per il terminal GNL sito all'interno del Porto Industriale di Cagliari.

Il Tecnico Competente in Acustica

Antonio Dedoni

ALLEGATI

- D03 PL 32 SON R00 Layout emissioni sonore
- D03_PL_33_SON_R00 Layout emissioni sonore in assenza di rumore residuo
- Certificato di riconoscimento dei requisiti tecnico-professionali del Tecnico
 Competente R.A.S. Assessorato Difesa Ambiente
- Certificati strumentazione

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 1 di 50

MAGGIO 2017

REGIONE AUTONOMA DELLA SARDEGNA

ASSESSORATO DELLA DIFESA DELL'AMBIENTE

Direzione generale dell'ambiente Servizio tutela dell'atmosfera e del territorio

DETERMINAZIONE N.650 PROT 1448 DEL 16 GIU. 2010

Oggetto: Riconoscimento qualifica professionale di tecnico competente in acustica ambientale. Art. 2, commi 6 e 7, L. 26.10.1995 n. 447. / Delib. G.r. n. 62/9 del 14.11.2008. Ing. Dedoni Antonio.

la I.r. 13 novembre 1998, n. 31 recante "disciplina del personale regionale e VISTO dell'organizzazione degli uffici della Regione" e successive modifiche ed integrazioni;

l'art. 2, commi 6, 7 e 8 della legge quadro sull'inquinamento acustico n. 447 del VISTO 26.10.1995, ai sensi del quale:

- viene individuata e definita la figura professionale del tecnico competente in acustica ambientale;
- vengono definiti i requisiti per poter svolgere l'attività di tecnico competente in acustica ambientale;
- viene stabilito che detta attività può essere svolta previa presentazione di apposita domanda all'Assessorato regionale competente in materie ambientali;

il decreto del Presidente del consiglio dei ministri 31 marzo 1998; VISTO

Delibera della Giunta regionale n. 62/9 del 14.11.2008 recante "Direttive regionali in VISTO materia di inquinamento acustico ambientale" e disposizioni in materia di acustica ambientale;

le modifiche al Regolamento della Commissione esaminatrice, apportate dalla stessa VISTO nella seduta del 6 dicembre 2005 a seguito dell'emanazione della sopra citata norme regionali sull'inquinamento acustico;

ESAMINATO il documento istruttorio relativo alla richiesta avanzata dall'Ing. Dedoni Antonio nato a Cagliari il 03.09.1976, redatto dalla Commissione esaminatrice nella seduta del 11.06.2010;

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 2 di 50

MAGGIO 2017

REGIONE AUTONOMA DELLA SARDEGNA

ASSESSORATO DELLA DIFESA DELL'AMBIENTE

PRESO ATTO che nel citato documento istruttorio la Commissione ha espresso parere favorevole al predetto riconoscimento;

RITENUTO di far proprie le valutazioni conclusive espresse dalla Commissione esaminatrice nel sopra citato documento istruttorio;

CONSIDERATO che il relativo provvedimento pertiene alle competenze del Direttore del Servizio tutela dell'atmosfera e del territorio, ai sensi delle linee guida sull'inquinamento acustico approvate con delibera g.r. n. 62/9 dell'14.11.2008;

DETERMINA

- ART. 1 E' riconosciuta, con la presente determinazione, all'Ing. Dedoni Antonio nato a Cagliari il 03.09.1976, la qualifica professionale di tecnico competente in acustica ambientale, ai sensi dell'art. 2, comma 6 e 7, legge 26.10.1995, n. 447 e della delibera g.r. n. 62/9 del 14.11.2008.
- ART. 2 Il presente riconoscimento consente l'esercizio dell'attività di tecnico competente in acustica ambientale anche nel territorio delle altre regioni italiane, così come disposto dall'art. 2, comma 6 del d.p.c.m. 31 marzo 1998.
- ART. 3 L'Assessorato della difesa dell'ambiente provvederà all'inserimento del nominativo sopra citato nell'apposito **Elenco regionale** dei tecnici competenti in acustica ambientale, di prossima pubblicazione sul BURAS.

La presente determinazione viene comunicata all'Assessore della difesa dell'ambiente ai sensi dell'art. 21, comma 9, della I.r. 13 novembre 1998, n. 31.

Il Direttore del Servizio

Roberto Pisu

V.U./serv.t.a.t. D.E./ serv.t.a.t.

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 3 di 50

MAGGIO 2017

Skylab S.r.l. Area Laboratori Via Belvedere, 42 Arcore (MB) Tel. 039 6133233 skylab.tarature@outlook.it

Centro di Taratura LAT N° 163 Calibration Centre Laboratorio Accreditato di Taratura

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

> Pagina 1 di 4 Page 1 of 4

CERTIFICATO DI TARATURA LAT 163 12886-A Certificate of Calibration LAT 163 12886-A

data di emissione 2015-09-11 date of issue - cliente SPECTRA S.R.L. customer 20862 - ARCORE (MB) ANTONIO DEDONI destinatario 09100 - CAGLIARI (CA) - richiesta 560/13/BARM application in data 2013-03-28 date

Si riferisce a Referring to

- matricola

- oggetto Calibratore - costruttore Larson & Davis manufacturer - modello CAL200 model

9945 serial number - data di ricevimento oggetto 2015-09-11 date of receipt of item data delle misure 2015-09-11 date of measurements - registro di laboratorio Reg. 03 laboratory reference

Il presente certificato di taratura è emesso in base all'accreditamento LAT N° 163 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 163 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well.

They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02, Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

> Il Responsabile del Centro Head of the Centre

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 4 di 50

MAGGIO 2017

Skylab S.r.l. Area Laboratori Via Belvedere, 42 Arcore (MB) Tel. 039 6133233 skylab.tarature@outlook.it

Centro di Taratura LAT N° 163 Calibration Centre Laboratorio Accreditato di Taratura

LAT Nº 163

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

> Pagina 1 di 6 Page 1 of 6

CERTIFICATO DI TARATURA LAT 163 12888-A Certificate of Calibration LAT 163 12888-A

 - data di emissione date of issue
 2015-09-14

 - cliente customer
 SPECTRA S.R.L.

 - destinatario
 ANTONIO DEDONI receiver

 - richiesta application
 560/13/BARM

 - in data deta
 2013-03-28

Si riferisce a Referring to

laboratory reference

- oggetto Filtri 1/3
- costruttore Larson & Davis

- data di ricevimento oggetto date of receipt of item - data delle misure date of measurements - registro di laboratorio - Reg. 03

Il presente certificato di taratura è emesso in base all'accreditamento LAT N° 163 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 163 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

Il Responsabile del Centro Head of the Centre

PROGETTO AUTORIZZATIVO TERMINAL GNL NEL PORTO CANALE DI CAGLIARI

STUDIO DI IMPATTO ACUSTICO

D_01_ES_21_ACU_R00

Pag. 5 di 50

MAGGIO 2017

Skylab S.r.l. Area Laboratori Via Belvedere, 42 Arcore (MB) Tel. 039 6133233 Centro di Taratura LAT N° 163 Calibration Centre Laboratorio Accreditato di Taratura

Membro deali Accordi di Mutua EA IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreement

Pagina 1 di 9 Page 1 of 9

CERTIFICATO DI TARATURA LAT 163 12887-A Certificate of Calibration LAT 163 12887-A

- data di emissione 2015-09-11 date of issue - cliente SPECTRA S R I custome ANTONIO DEDONI destinatario 09100 - CAGLIARI (CA) - richiesta 560/13/BARM application - in data 2013-03-28

Si riferisce a

Referring to - oggetto Fonometro costruttore Larson & Davis manufacture

- modello model - matricola 3223 - data di ricevimento oggetto 2015-09-11 date of receipt of item
- data delle misure 2015-09-11 date of measurements registro di laboratorio Reg. 03 laboratory reference

Il presente certificato di taratura è emesso in base all'accreditamento LAT N° 163 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 163 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI). This certificate may not be partially reproduced, except with

the prior written permission of the issuing Centre

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

. The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or nstruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

Il Responsabile del Centro Head of the Centre