autostrade || per l'italia

AUTOSTRADA (A14) : BOLOGNA-BARI-TARANTO

AMPLIAMENTO ALLA QUARTA CORSIA TRATTO : BOLOGNA S. LAZZARO – DIRAM. RAVENNA

PROGETTO DEFINITIVO

OPERA D'ARTE									
CAVALCAVIA SOLAROLO									
	RELAZIONE DI CALCOLO IMPALCATO E SOTTOSTRUTTURE								
IL RESPONSABILE SPECIAI Ing. Mauriz Ord. Ingg. Mild RESPONSABILE	IL RESPONSABILE PROGETTAZIONE SPECIALISTICA IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE IL DIRETTORE TECNICO Ing. Maurizio Torresi Ing. Giuliana Garigali Ing. Maurizio Torresi Ord. Ingg. Milano N. 16492 Ord. Ingg. Milano N. 18419 Ord. Ingg. Milano N. 16492 RESPONSABILE UFFICIO STR RESPONSABILE AREA DI PROGETTO BOLOGNA RESPONSABILE FUNZIONE FSP								
WBS RIFERIMENTO ELABOR					FILE n. progressivo 1 6 6	DATA: MA SCALA:	A: MAGGIO 2011 n. data ILA: -		
CONSULENZA A CURA DI :	Coordinatore operativo Di progetto ELABORAZIONE GRAFICA A CURA DI : - ELABORAZIONE GRAFICA - Speca europea Ing. Mario Brugnoli ELABORAZIONE PROGETTUALE A CURA DI : - Consulenza Ing. A. Marchiondelli O.I. Milano n* A 25126						lli O.I. Milano n° A 25126		
VISTO DEL COORDINATORE GENERALE SPEA DIREZIONE OPERATIVA PROGETTAZIONE ED ESECUZIONE LAVORI ASPI Ing. Alberto Selleri									

1.	Introduzione	5
	1.1 Descrizione generale dell'opera	5
	1.2 Modalità realizzative	7
	1.3 Normative di riferimento	8
	1.4 Condizioni ambientali e classi di esposizione	8
	1.5 Caratteristiche materiali	9
	1.5.1 Tensioni limite e proprietà di riferimento	10
	1.5.2 Coefficienti parziali di sicurezza	11
	1.6 Software di calcolo	13
	1.7 Convenzioni generali	14
2.	Impostazioni generali delle analisi strutturali	14
	2.1 Analisi della mutua interazione di impalcato e spalla	14
	2.2 Analisi globale impalcato	17
	2.2.1 Fasi di analisi	17
	2.2.2 Connessione impalcato-spalla	18
	2.2.3 Coefficienti di omogeneizzazione	18
	2.2.4 Larghezze collaboranti di soletta	19
	2.2.5 Conci di impalcato	21
	2.2.6 Sezioni di verifica	23
	2.2.6.1 Caratteristiche dimensionali	25
	2.2.6.2 Proprietà geometrico-statiche	28
	2.2.6.3 Proprietà plastiche delle sezioni	29
	2.2.6.4 Preclassificazione delle sezioni	31
	2.2.7 Stato fessurativo della soletta	31
	2.2.8 Combinazioni di verifica	32
	2.2.9 Metodologia di verifica	35
	2.2.9.1 Metodo plastico	36
	2.2.9.2 Metodo elastico	38
	2.2.9.3 Procedura di verifica	39
	2.3 Analisi globale sostegni	41
	2.3.1 Sezioni di verifica	41
	2.3.2 Analisi delle condizioni statiche	42
	2.3.3 Analisi delle condizioni sismiche	42
	2.3.4 Metodologia di verifica	45
3.	Analisi dei carichi	45
	3.1 Carichi agenti in fase 1	45
	3.1.1 Pesi propri acciaio (g ₁ ')	45
	3.1.2 Peso proprio soletta (g ₁ ")	46
	3.1.3 Peso proprio sostegni (g1")	46
	3.2 Carichi agenti in fase 2	46

	3.2.1	Sovraccarichi permanenti (g ₂)	46
	3.2.2	Reologia calcestruzzo (ε ₂)	47
	3.2.3	Cedimenti differenziali ai sostegni (ε ₄)	48
	3.3 Ca	richi agenti in fase 3	49
	3.3.1	Variazioni termiche (ε_3)	49
	3.3.	1.1 Variazioni termiche uniformi Δt_N	49
	3.3.1	1.2 Variazioni termiche lineari Δt_M	49
	3.3.1	1.3 Combinazione degli effetti uniformi e lineari	50
	3.3.2	Carichi mobili (q ₁)	50
	3.3.3	Azioni di frenatura (q ₃)	52
	3.3.4	Gruppi di azioni da traffico	53
	3.3.5	Azione del vento (q ₅)	53
	3.3.	5.1 Componente media del vento	53
	3.3.	5.2 Componente turbolenta del vento	55
	3.3.	5.3 Valore di picco della pressione del vento	56
	3.3.6	Resistenze parassite dei vincoli (q ₇)	56
	3.3.7	Azione sismica (q ₆)	57
4.	An	alisi della mutua interazione di impalcato e spalla	58
	4.1 Fa	si realizzative della paratia di spalla e della connessione con l'impalcato	59
	4.2 Az	oni scambiate dalla paratia all'impalcato per effetto di reinterro e scavo	64
	4.3 Az	oni trasmesse dalla paratia all'impalcato per effetto del ritiro	64
	4.4 Az	oni trasmesse dalla paratia all'impalcato per effetto delle variazioni termiche uniformi	66
	4.5 Az	oni trasmesse dalla paratia all'impalcato per effetto dei contributi di carico verticale	69
	4.6 Az	oni trasmesse dalla paratia all'impalcato per effetto del vento	71
	4.7 Az	oni trasmesse dalla paratia all'impalcato per effetto della frenatura	72
	4.8 Sir	tesi delle azioni scambiate dall'impalcato con la paratia	73
5.	An	alisi dell'impalcato	76
	5.1 Ge	neralità	76
	5.2 Ou	tput sintetico delle sollecitazioni	77
	5.2.1	Pesi propri (acciaio + soletta)	77
	5.2.2	Sovraccarichi permanenti	78
	5.2.3	Cedimenti vincolari	79
	5.2.4	Ritiro	81
	5.2.5	Reinterro e scavo	83
	5.2.6	Inviluppo modello di carico LM1	84
	5.2.7	Inviluppo modello di carico a fatica FLM3	86
	5.2.8	Inviluppi Combinazioni termiche	88
6.	Ve	rifica dell'impalcato	91
	6.1 Ge	neralità	91
	6.2 S.L	U resistenza delle sezioni	92

	6.2	2.1	Generalità	92
	6.2	2.2	Report sintetico	94
	6.3	S.L	.U "flange induced buckling"	99
	6.4	S.L	.E limitazione delle tensioni	100
	6.4	1.1	Generalità	100
	6.4	1.2	Report sintetico	100
	6.5	S.L	.E "web breathing"	102
	6.5	5.1	Generalità	102
	6.5	5.2	Report sintetico	103
	6.6	FA	TICA: verifiche	105
	6.6	6.1	Generalità	105
	6.6	6.2	Amplificazione dinamica	109
	6.6	6.3	Dettagli e coefficienti di sicurezza	109
	6.6	6.4	Report sintetico dei dettagli di carpenteria	110
	6.7	Ver	ifica connessione trave soletta	112
	6.7	7.1	Generalità	112
	6.7	7.2	Caratteristiche piolatura corrente	116
	6.7	7.3	Detailing	116
	6.7	7.4	Report sintetico	117
	6.7	7.5	Verifiche a fatica della piolatura	120
	6.8	Fes	ssurazione soletta in c.a.	122
	6.8	3.1	Generalità	122
	6.8	3.2	Minimo quantitativi di armatura	122
	6.8	3.3	Controllo fessurazione per carichi indiretti	122
	6.8	3.4	Controllo fessurazione per carichi diretti	123
	6.8	3.5	Report sintetico	123
	6.9	Ver	ifiche di deformabilità	124
7.		Sta	bilità flesso-torsionale	128
	7.1	Cal	colo rigidezza traversi	128
	7.2	Qu	adro tensionale di riferimento della piattabanda compressa	131
	7.3	Ver	ifica di stabilità flesso-torsionale	132
8.		Stif	feners	133
	8.1	Ra	oporti dimensionali	133
	8.2	Sta	bilità flesso torsionale	134
	8.3	Rig	idezza flessionale	134
9.		Ver	ifica giunti bullonati	135
	9.1	Giu	nzione bullonata tra conci A e B	137
	9.2	Giu	inzioni bullonate dei traversi di pila	142
	9.3	Giu	nzioni bullonate dei traversi di campata	147
10		Coi	nnessione impalcato-sella-paratia	151

10.1	1 Dimensionamento della piolatura sulla flangia superiore	153
10.2	2 Dimensionamento dei connettori a staffa sulla flangia inferiore	154
10.3	3 Dimensionamento dello spinotto di collegamento palo-sella	155
11.	Soletta d'impalcato	155
11.1	1 Verifica coppella in fase di costruzione	156
11.2	2 Analisi trasversale della soletta	162
11.3	3 Combinazione degli effetti locali e globali	172
12.	Analisi e verifica delle pile	174
12.1	1 Condizioni statiche	174
	12.1.1 Verifica delle elevazioni	175
	12.1.2 Verifica delle fondazioni	177
	12.1.3 Verifica dei pali di fondazione	179
12.2	2 Condizioni sismiche	180
	12.2.1 Verifica delle elevazioni	181
	12.2.2 Verifica delle fondazioni	182
	12.2.3 Verifica dei pali di fondazione	182
13.	Analisi e verifica delle spalle	183
13.1	1 Condizioni statiche	183
	13.1.1 Sollecitazioni nei pali di fondazione	203
	13.1.2 Verifica dei pali di fondazione	206
13.2	2 Condizioni sismiche	207
	13.2.1 Impostazione analisi della struttura a telaio	207
	13.2.2 Sollecitazioni sismiche	210
14.	Apparecchiature di appoggio	211

1. Introduzione

Il presente elaborato presenta il resoconto delle analisi e dei relativi risultati svolti per il progetto del cavalcavia di tipo semi-integrale previsto per lo Svincolo di Solarolo.

1.1 Descrizione generale dell'opera

Lo Svincolo di Solarolo si colloca al km 59+992.89 dell'autostrada A14 Diramazione Ravenna – Bologna San Lazzaro, ed è del tipo a "trombetta", con stazione di esazione lato carreggiata sud. Il progetto prevede due rampe dirette di ingresso ed uscita alla carreggiata Sud dall'autostrada e due rampe "indirette", di connessione per i veicoli marcianti in carreggiata Nord.

Il cavalcavia in esame scavalca quindi l'autostrada presentando una lunghezza complessiva pari a 93.50 m, ripartita in 3 campate di luci pari a 22.50 + 48.50 + 22.50 m.

La sovrastruttura si compone di una travata bitrave in sezione mista di altezza variabile da un massimo di 3.0 m circa in corrispondenza del testa-pila, ad un minimo di 1.65 m circa in mezzeria campata e in asse spalla. La travata, realizzata in acciaio tipo S 355, risulta composta da due travi gemelle ad anima verticale, disposte ad interasse costante pari a 7.0 m, collegate da traversi ad anima piena, disposti con passo pari a 4.55 m nelle campate laterali e 4.85 m nella campata centrale, e aventi altezza pari a 0.85 m in campata e 1.80 m in asse pila. Le anime delle travi metalliche principali sono inoltre irrigidite da un sistema di nervature trasversali, aventi interasse tipico pari all'interasse traversi. La travata è infine dotata di un sistema di controventi di montaggio superiore costituito da profili L100x100x8.

Le campate del viadotto sono suddivise in conci di lunghezza al massimo pari a 13.0 m, giuntati mutuamente mediante saldature di testa a piena penetrazione, ad eccezione della sola giunzione tra i conci A e B che è stata prevista bullonata per ragioni realizzative. I traversi ed i controventi di montaggio sono infine collegati mediante bullonatura ad attrito.

La soletta in calcestruzzo, sagomata a schiena d'asino per una larghezza complessiva pari a 13.50 m, presenta uno spessore variabile da un minimo di 25 cm ad un massimo di 37 cm. Per la sua realizzazione si prevede l'adozione di coppelle prefabbricate di spessore pari a 6.0 cm, dotate di armatura a traliccio, aventi la funzione di cassero a perdere. La solidarizzazione della soletta con la travata metallica avviene tramite connettori a piolo tipo Nelson, di diametro pari a 22.0 mm, disposti sulla piattabanda superiore delle travi metalliche principali.

Lo schema statico, definito semi-integrale, prevede per l'impalcato la realizzazione di una connessione tipo "cerniera" in corrispondenza delle spalle a livello della sezione di sommità dei pali, e una connessione tipo "carrello longitudinale" su ciascuna pila. A tale scopo sulle pile vengono disposte due apparecchiature d'appoggio di tipo unidirezionale longitudinale, mentre in corrispondenza delle spalle l'impalcato risulta terminare in modo continuo nella sella di spalla che a sua volta è collegata alla paratia di pali mediante spinotti in grado di trasmettere azioni assiali e taglianti. Le pile si presentano come setti a sezione rastremata verso il basso, aventi spessore pari a 1.0 m e altezza pari a 7.70 m, plinto incluso. Per le fondazioni delle pile si è optato per una soluzione su pali di diametro 1200 mm con un plinto di fondazione di spessore pari a 1.50 m e di ingombro in pianta pari a 12.80 x 5.60 m.

Le spalle sono costituite da una fila di pali di diametro 1200 mm, posti ad interasse 3.80 m, collegati in sommità da una trave pulvino avente spessore di 2.0 m e altezza pari a circa 2.85 m.

Le figure seguenti riportano la generica sezione trasversale dell'impalcato, il prospetto dell'opera e lo schema statico di riferimento della struttura principale.

SEZIONE TRASVERSALE SULLE PILE

1.2 Modalità realizzative

La costruzione del cavalcavia di tipo integrale si articola nelle seguenti fasi:

- a) Realizzazione delle fondazioni e delle elevazioni delle pile;
- Realizzazione dei pali di spalla, posizionamento degli spinotti di collegamento palo-sella, getto della parte inferiore della sella;
- c) Assemblaggio dei tre macro-conci di impalcato (*);
- d) Montaggio dei tre macroconci mediante gru e collegamento degli stessi mediante giunto bullonato;
- e) Posizionamento delle predalles e getto della soletta d'impalcato ad esclusione delle zone terminali lato spalla;
- f) Realizzazione della connessione monolitica tra impalcato e setto di spalla mediante getto delle parti terminali di soletta e delle elevazioni del paraghiaia;
- g) Completamento del rilevato a tergo spalla;
- h) Completamento della sovrastruttura mediante posa delle finiture d'impalcato.

(*) Per facilitare la messa in opera del cavalcavia, l'impalcato è stato progettato articolato nei seguenti 3 macro-conci:

- Macro-concio 1: formato dai conci E-D-A lato spalla SA;
- Macro-concio 2: formato dai tre conci B-C-B della campata centrale;
- Macro-concio 3: formato dai conci A-D-E lato spalla SB.

I macro-conci 1 e 3 risultano tra di loro simmetrici.

1.3 Normative di riferimento

Le analisi strutturali e le relative verifiche vengono eseguite secondo il metodo semi-probabilistico agli Stati Limite in accordo alle disposizioni normative previste dalla vigente normativa italiana e da quella europea (Eurocodici). In particolare, al fine di conseguire un approccio il più unitario possibile relativamente alle prescrizioni ed alle metodologie/criteri di verifica, si è fatto diretto riferimento alle varie parti degli Eurocodici, unitamente ai relativi National Application Documents, verificando puntualmente l'armonizzazione del livello di sicurezza conseguito con quello richiesto dalla vigente normativa nazionale.

In dettaglio si sono prese in esame quindi i seguenti documenti, che volta in volta verranno opportunamente richiamati:

D.M. 14 gennaio 2008: Nuove norme tecniche per le costruzioni (indicate nel prosieguo "NTC-08") Istruzioni per l'applicazione delle Norme Tecniche per la Costruzioni di cui al D.M. 14/01/2008

UNI EN 1990:	Basi della progettazione strutturale
UNI EN 1991-1-4:	Azioni sulle strutture – Azione del vento
UNI EN 1991-1-5:	Azioni sulle strutture – Azioni termiche
UNI EN 1991-2:	Azioni sulle strutture – Carichi da traffico sui ponti
UNI EN 1992-1-1:	Progettazione delle strutture di calcestruzzo - regole generali e regole per gli edifici
UNI EN 1992-2:	Progettazione delle strutture di calcestruzzo – Ponti di calcestruzzo
UNI EN 1993-1-1:	Progettazione delle strutture di acciaio – Regole generali e regole per gli edifici
UNI EN 1993-2:	Progettazione delle strutture di acciaio – Ponti di acciaio
UNI EN 1993-1-5:	Progettazione delle strutture di acciaio – Elementi strutturali a lastra
UNI EN 1993-1-8:	Progettazione delle strutture di acciaio – Progettazione dei collegamenti
UNI EN 1993-1-9:	Progettazione delle strutture di acciaio – Fatica
UNI EN 1994-1-1:	Progettazione delle strutture composte acciaio-calcestruzzo – Regole generali e regole per gli edifici
UNI EN 1994-2:	Progettazione delle strutture composte acciaio-calcestruzzo – Ponti
UNI EN 1998-2:	Progettazione delle strutture per la resistenza sismica – Ponti
UNI EN 1090 - 1:	Esecuzione di strutture in acciaio e di alluminio – Requisiti per la valutazione di conformità dei componenti strutturali
UNI EN 1090 - 2:	Esecuzione di strutture in acciaio e di alluminio – Requisiti tecnici per strutture in acciaio.

1.4 Condizioni ambientali e classi di esposizione

Per l'opera in esame si prevede l'esposizione al seguente "range" di temperature:

T_{min} = -15 °C

T_{max} = 38 °C

Per l'umidità ambientale si assume:

RH = 80 %

Per quanto riguarda le classi di esposizione, si prevede l'alternarsi di cicli di gelo/disgelo, in presenza di agenti disgelanti, per cui, applicheranno le seguenti classi di esposizione:

soletta:	XF4
plinto di fondazione:	XC2
pali di fondazione:	XC2

Le caratteristiche del calcestruzzo dovranno pertanto rispettare, oltre i requisiti di resistenza indicati al punto seguente, anche i criteri previsti dalla vigente normativa (EN 11104 e EN 206) per quanto riguarda l'esposizione alle classi indicate.

1.5 Caratteristiche materiali

Vengono di seguito elencati i materiali impiegati per la realizzazione dell'opera, unitamente ai rispettivi parametri di riferimento.

1.5.1 Tensioni limite e proprietà di riferimento

Carpenteria metallica								
Tipo e grado	(*)							
S355	JO	J3	t <= 30 mm					
S355	J2	G3	t <= 50 mm					
S355	K2	G3	50 < t <= 65 mm					
S355	JO		el. non saldati, profili, piastre					
Tensioni di ri	ferimento (f _{yk})							
t <= 40 mm	355.00	Мра						
t > 40 mm	335.00	Мра						
riferimenti:								
	NTC 08 tab.							
	11.3.IX							
	EN 10025-1							
	EN 10025-2							
Caratteristich	10							
Es	210000.00	Modu						
V	0.30	Coef	ficiente di Poisson					
G _s	80769.00	Mod.	el. Langenziale					
riferimenti:								
	NTC 08 tab.							
	11.3.IX							
	EN 1993-1-10	2.3.2	(1)					
	EN 10025-1							
(*)) / = + + =	EN 10025-2							
(^) Valutazione	e grado acciaio	secon	do EN 1993-1-10 tab. 2.1					
$\Delta I_r, \Delta I_\sigma, \Delta I_r, $	$\Delta I_{\varepsilon}, \Delta I_{\varepsilon cf} = 0$							
$I_{ed} = I_{md} = -15$	5 ⁻ C							
σ_{Ed} = 0.75 ty(t)								

Connettori a	piolo	(tipo	Nelson)	1

		-		<i>i</i>
Tipo e grado				
S235	J2		G3	
Tensioni di rifer	rimento			
f _{yk}		350.00	Мра	Snervamento
f _u		450.00	Мра	rottura a trazione

riferimenti:

EN 13918

Giunzioni bullonate (sistema HRC)

Giunzioni bullonate (sistema HRC)						
Tipo e classe						
viti	cl. 10.9					
Dadi	cl. 8					
Rosette	Acc. C50					
cl. Sup.	В					
Tensioni di riferimento						
f _{yb}	900.00					
f _{ub}	1000.00					

riferimenti:

NTC 08 tab. 11.3.XIII EN 1993-1-8 3.1.1(3) EN 14399 EN 1090-2

Calcestruzzo							
elemento	classe	f _{ck}	R _{bk}	f _{cm}	f _{ctm}	E _{cm}	
soletta	C35/45	35.00	45.00	43.00	3.21	34000.00	
coppelle	C35/45	35.00	45.00	43.00	3.21	34000.00	
fondazioni	C28/35	28.00	35.00	36.00	2.77	32000.00	

riferimenti:

EN 206 NTC-08 cap. 11.2.10

EN 1992-1-1 3.1.2. tab. 3.1

Acciaio in barre per c.a.				
tipo	B450C			
f _{yk}	450.00	Мра	snervamento	
f _{tk}	540.00	Мра	rottura a trazione	
Es	210000.00	Мра	modulo di Young	
rife rime e reti-				

riferimenti:

NTC-08 cap. 11.3 EN 1992-1-1 cap. 3.2 + ann. C EN 1994-2 cap. 3.2(2)

1.5.2 Coefficienti parziali di sicurezza

Relativamente ai coefficienti parziali dei materiali si fa riferimento, nell'ambito delle rispettive verifiche, a quanto contenuto in tabella.

Carpenter	ia metallica
γmo	1.05 verifiche S.L.U resistenza
γm1	1.10 verifiche S.L.U buckling
γm2	1.25 verifiche S.L.U frattura in trazione
γm,ser	1.00 verifiche S.L.E limitazione delle tensioni
γFf	1.00 verifiche S.L. fatica
γ _{Mf}	1.35 non fail safe (vita illimitata)
riferimenti:	
	NTC 08 tab. 4.2.V
	EN 1993-1-1 6.1.(1) + N.A.D.
	EN 1993-2 EN 1993-1-9 cap. 3.(8) - cap. 8.
Piolature	
γv	1.25 verifiche S.L.U resistenza
ks	0.75 verifiche S.L.E.
γMf	1.15 fail safe (vita illimitata)
riferimenti:	
	NTC 08 cap. 4.3.3
Bullonatu	EN 1994-2 cap. 6.6.3.1.(1)
Builonatui	
γm2	1.25 resistenza S.L.U.
γm3	1.25 scorrimento S.L.U. (bull. Cat. C)
γm3,ser	1.10 scorrimento S.L.E. (bull. Cat. B)
riferimenti:	
	FN 1993-1-8 2 2 (2) + N A D
	EN 1090-2
Saldature	
γ _{m2}	1.25 resistenza S.L.U.
β _w	0.90 correlation factor (cord. Angolo)
riferimenti:	` ```````````````````````````````
	NTC 08 4.2.8.2.4
	EN 1993-1-8 4.5.3.2.(4) + N.A.D.
Calcostrus	EN 1090-2
α_{cc}	0.85 carichi di lunga durata (quando rilevante)
γc	1.50 S.L.U.
riterimenti:	NTC 08 cap 412111
	NTC 08 cap. 4.3.3
	EN 1992-1-1 2.4.2.4
Acciaio in	barre
γs	1.15 resistenza S.L.U.
riferimenti:	
	NTC 08 cap. 4.1.2.1.1.3
	NTC 08 cap. 4.3.3

Coefficienti di sicurezza materiali

1.6 Software di calcolo

Per l'analisi strutturale dell'impalcato e delle sottostrutture si adotta il metodo degli elementi finiti; si utilizza, a tale fine, il pacchetto software denominato "LUSAS (vers. 14.5)", fornito da F.E.A. (U.K.) su piattaforma windows NT. Il pacchetto software comprende pre-post processore grafico interattivo destinato all'input della geometria di base e all'interpretazione dei risultati di output, ed un risolutore ad elementi finiti.

Per le verifiche delle sezioni in acciaio ed acciaio calcestruzzo si adotta il programma "Ponti EC4" sviluppato da Alhambra s.r.l.. Il programma opera sulla base di un database di sezioni opportunamente sincronizzato con quello del sistema ad elementi finiti, ed effettua le verifiche di resistenza e di stabilità locale di membrature in acciaio ed acciao-cls sulla base dei criteri contenuti negli Eurocodici di riferimento (EN 1993, EN 1994), e in osservanza a quanto previsto da NTC-08.

In particolare, la procedura opera, per ciascuna sezione, le seguenti verifiche:

- calcolo proprietà geometrico - statiche delle sezioni nelle varie fasi considerate

S.L.U. :

- identificazione delle sezioni, consistente nella preclassificazione dei singoli componenti, e nella classificazione effettiva, effettuata sulla base di ciascuna combinazione di carico.
- verifica per tensioni normali (interazione N/M):
 - sezioni cl. 1 e 2: analisi e verifica plastica di ciascuna sezione, e deduzione del rapporto di sfruttamento plastico;
 - sezioni classe 3: analisi tensionale elastica su sezione lorda, con calcolo del rapporto di sfruttamento elastico;
 - sezioni classe 4: analisi tensionale elastica su sezione efficace, con calcolo del rapporto di sfruttamento elastico;
- taglio: verifica a taglio plastico, includendo i fenomeni di shear buckling
- interazione pressoflessione taglio (N-M-V): deduzione del rapporto di sfruttamento finale della sezione
- verifica rapporto v_{Ed}/v_{Rd} piolature (sezioni con rapporto di sfruttamento plastico a flessione ≤ 1 ;
- calcolo plastico piolature (sezioni con rapporto di sfruttamento plastico a flessione > 1).

S.L.E. :

- verifica elastica S.L. delle tensioni in esercizio
- verifica Web Breathing
- fessurazione soletta
- verifica elastica piolature

Fatica:

- verifica, con il metodo dei coefficienti λ , per preselezionate categorie di dettaglio;
- verifica, con il metodo dei coefficienti λ, della connessione travi/soletta

1.7 Convenzioni generali

Nel prosieguo del presente elaborato si adotteranno le notazioni contemplate dalle varie orme EN di riferimento.

Le unità di misura sono quelle relative al sistema internazionale, ovvero:

lunghezze: m

forze - coppie: kN

tensioni: MPa

Per quanto riguarda le convenzioni di segno, si considerano, in generale, positive le trazioni.

Convenzioni specifiche verranno riportate nel prosieguo della presente relazione.

Si farà riferimento, di norma, a sistemi di tipo cartesiano ortogonale, in cui, in generale, si ha piano x-y orizzontale, con x posto tangente al tracciato nel punto in esame ed asse z verticale.

In generale, per quanto riguarda le azioni interne nell'impalcato, salvo diversamente specificato, si indicherà con:

Fx azione assiale

- Fy azione tagliante agente nel piano orizzontale
- Fz azione tagliante agente nel piano verticale
- Mx momento torcente
- My momento flettente agente nel piano verticale
- Mz momento flettente agente nel piano orizzontale

Le verifiche dell'impalcato verranno eseguite esclusivamente con riferimento alle caratteristiche Fx, Fz, My, dal momento che risultano non significativi i contributi Fy, Mx ed Mz.

In particolare, per le sollecitazioni verrà impiegata anche la seguente notazione alternativa:

M (Mf) in luogo di My

V in luogo di Fz

T in luogo di Mx

Nell'ambito dell'adozione del sistema di riferimento elementare, si precisa che le azioni flettenti di trave sono da intendersi:

- POSITIVE: se le fibre tese sono rivolte all'estradosso trave
- NEGATIVE: se le fibre tese sono rivolte all'intradosso trave

2. Impostazioni generali delle analisi strutturali

2.1 Analisi della mutua interazione di impalcato e spalla

La tipologia di ponte integrale si contraddistingue rispetto alle tipologie tradizionali per i vantaggi conseguenti al comportamento interdipendente dell'impalcato e del corpo spalla che realizzano in sostanza uno schema a telaio. In fase di studio si è deciso di condurre analisi separate rispettivamente per l'impalcato e la struttura di spalla riproducendo però in ciascuna analisi le condizioni di vincolo derivanti dalla presenza dell'altra porzione di struttura non considerata. L'impalcato pertanto viene studiato in maniera a sè stante, mediante un modello ad elementi finiti a grigliato realizzato con il programma Lusas, vincolando le estremità delle travi mediante "joint" in grado di riprodurre le caratteristiche di rigidezza della paratia di spalla; analogamente la paratia viene studiata in maniera a sè stante mediante un modello piano di Paratie in cui sono presenti vincoli tali da riprodurre le caratteristiche di rigidezza dell'impalcato. Inoltre, per valutare le azioni scambiate tra impalcato e paratia, è stata delineata un'apposita procedura che viene di seguito descritta:

- 1) Si è ipotizzato che l'impalcato risulti assialmente rigido;
- 2) Si è studiato il comportamento della paratia di spalla modellandola a sè stante e assumendo che a quota del baricentro impalcato sia posizionato un carrello verticale (spostamento orizzontale impedito);
- Grazie al modello descritto al punto precedente sono stati valutati innanzitutto gli effetti delle fasi di reinterro e scavo della paratia ad impalcato montato; in particolare in tale situazione si è fatto riferimento alle caratteristiche sezionali piene dell'impalcato nella situazione a lungo termine;
- 4) Le altre azioni di importanza decisiva scambiate tra impalcato e paratia risultano quelle derivanti dalle variazioni termiche e dal ritiro; per determinare tali azioni di scambio risulta necessario studiare le curve di comportamento rispettivamente della paratia e dell'impalcato ed individuare infine i punti di intersezione di tali curve, che rappresenteranno la situazione equilibrata e congruente in cui impalcato e paratia si trovano realmente;
- 5) A tale scopo è stata valutata la rigidezza traslazionale della paratia assoggettandola ad una forza orizzontale di intensità via via crescente, di segno sia positivo che negativo, in corrispondenza della quota del baricentro impalcato; tale operazione è stata condotta considerando le caratteristiche sezionali della sezione omogeneizzata secondo un coefficiente n sia di breve sia di lungo termine; conseguentemente sono state ricavate quattro curve forza-spostamento che descrivono appunto l'andamento delle rigidezze traslazionali nei quattro suddetti casi;
- 6) Per determinare invece le curve di comportamento dell'impalcato per effetto delle azioni termiche e da ritiro è sufficiente individuare le due condizioni limite di "impalcato vincolato agli estremi" (A) e di "impalcato libero agli estremi" (B): nel primo caso lo spostamento indotto dai contributi di carico in esame risulta impedito e di conseguenza la forza trasmessa al vincolo risulta la massima possibile; viceversa nel secondo caso, l'impalcato risulta libero di accorciarsi e/o dilatarsi, pertanto lo spostamento assiale risulterà quello massimo possibile mentre la forza trasmessa al vincolo sarà nulla. Essendo la situazione reale intermedia tra le due condizioni limite appena richiamate, si può concludere che il comportamento dell'impalcato è rappresentato dalla retta che unisce i punti A e B. In particolare, seguendo tale procedura, si arriva a determinare una curva di comportamento relativa al ritiro e due curve di comportamento relative alle variazioni termiche, una positiva (dilatazione) e una negativa (accorciamento).
- 7) Note le curva di comportamento di impalcato e paratia, rimangono da determinare i punti di intersezione delle stesse, ed in particolare:

- 8) La curva di comportamento dell'impalcato soggetto a ritiro viene sovrapposta alla curva di comportamento della paratia ottenuta considerando le caratteristiche dell'impalcato a lungo termine e l'azione di una forza che "tira" la paratia verso l'impalcato; il punto di intersezione determina l'effettivo spostamento orizzontale della paratia, coincidente con l'effettivo accorciamento dell'impalcato, e permette di individuare immediatamente l'azione orizzontale (F_{ritiro}) scambiata tra le due parti strutturali; dalla deformata della paratia in quella situazione si deduce anche la rotazione in corrispondenza dell'asse baricentrico dell'impalcato e da essa, depurata della rotazione subita per effetto del reinterro e dello scavo della paratia, si valuta anche il momento flettente scambiato dalla spalla con l'impalcato (M_{ritiro});
- 9) La curva di comportamento dell'impalcato soggetto a variazione termica positiva viene sovrapposta alla curva di comportamento della paratia ottenuta considerando le caratteristiche dell'impalcato a breve termine e l'azione di una forza che "spinge" la paratia verso il rilevato; il punto di intersezione determina l'effettivo spostamento orizzontale della paratia, coincidente con l'effettivo allungamento dell'impalcato, e permette di individuare immediatamente l'azione orizzontale (F_{termica positiva}) scambiata tra le due parti strutturali; dalla deformata della paratia in quella situazione si deduce anche la rotazione in corrispondenza dell'asse baricentrico dell'impalcato e da essa, depurata della rotazione subita per effetto del reinterro e dello scavo della paratia, si valuta anche il momento flettente scambiato dalla spalla con l'impalcato (M_{termica positiva});
- 10) La curva di comportamento dell'impalcato soggetto a variazione termica negativa viene sovrapposta alla curva di comportamento della paratia ottenuta considerando le caratteristiche dell'impalcato a breve termine e l'azione di una forza che "tira" la paratia verso l'impalcato; il punto di intersezione determina l'effettivo spostamento orizzontale della paratia, coincidente con l'effettivo accorciamento dell'impalcato, e permette di individuare immediatamente l'azione orizzontale (F_{termica negativa}) scambiata tra le due parti strutturali; dalla deformata della paratia in quella situazione si deduce anche la rotazione in corrispondenza dell'asse baricentrico dell'impalcato e da essa, depurata della rotazione subita per effetto del reinterro e dello scavo della paratia, si valuta anche il momento flettente scambiato dalla spalla con l'impalcato (M_{termica negativa});
- 11) Pur se di intensità decisamente inferiore rispetto alle sollecitazioni appena trattate, anche le sollecitazioni scambiate tra impalcato e paratia per effetto dei pesi permanenti e dei carichi mobili sono state tenute in conto. Per la loro valutazione si è operato come di seguito descritto.
- 12) Dall'analisi dell'impalcato in fase 2, soggetto alle azioni permanenti di lungo termine (pesi permanenti portati), sono state dedotte le azioni assiali agenti alle estremità delle travi. Tale forza, riportata a metro lineare, è stata poi applicata in testa alla paratia modellata a sè stante con un carrello verticale posizionato a quota baricentro impalcato. Depurando gli effetti dovuti alle fasi di reinterro e scavo della paratia, si deducono le sollecitazioni taglianti nella paratia concomitanti alla forza applicata.
- 13) Analogamente si opera con riferimento alle azioni da traffico: dall'analisi dell'impalcato in fase 3, soggetto ai carichi mobili, sono state dedotte le azioni assiali agenti alle estremità delle travi nelle condizioni ritenute maggiormente significative. La forza d'estremità così ricavata, riportata a metro lineare, è stata poi applicata in testa alla paratia modellata a sè stante con un carrello verticale

posizionato a quota baricentro impalcato. Depurando gli effetti dovuti alle fasi di reinterro e scavo della paratia, si deducono le sollecitazioni taglianti nella paratia concomitanti alla forza applicata.

Tale procedura, qui riportata in maniera sintetica, viene descritta nel dettaglio nel capitolo 4 della presente relazione.

2.2 Analisi globale impalcato

2.2.1 Fasi di analisi

Per l'analisi della sovrastruttura si ricorre ad un modello agli elementi finiti. La travata continua viene modellata mediante elementi di tipo "thick beam" come un grigliato di travi e traversi, collegati ai sostegni mediante elementi di tipo "joint" opportunamente selezionati ed orientati allo scopo di restituire gli effettivi gradi di libertà forniti dalle apparecchiature di vincolo.

L'analisi globale dell'impalcato viene eseguita differenziando le fasi di vita della struttura riassunte in tabella e descritte più in dettaglio nel seguito:

Fase	Condizione	Sez resist	Connessione
1	peso proprio acciaio + soletta	solo trave metallica	non attiva
2a	permanenti cedimenti reinterro e scavo	sez omog con n=nL 2a	
2b	ritiro	sez omog con n=nL 2b	attiva
3а	variazioni termiche uniformi gradienti termici	sez omog con n=n0	
3b	carichi mobili frenatura vento	sez omog con n=n0	

Fasi di analisi dell'impalcato

Fase 1

Tale fase coincide con la posa in opera delle travi metalliche e il getto della soletta in calcestruzzo; la sezione resistente della trave è relativa al solo acciaio, essendo la soletta in calcestruzzo non ancora collaborante; i carichi agenti sono quelli dovuti al peso proprio di travi e traversi ed al getto della soletta in calcestruzzo. Non essendo ancora stata realizzata la connessione monolitica con il corpo spalla, in tale fase l'impalcato risulta appoggiato sui quattro sostegni (2 spalle e 2 pile).

Fase 2

In fase 2 vengono esaminati i carichi di tipo permanente, ovvero:

- pesi permanenti portati (peso dei cordoli, dei guardavia e del manto di finitura e barriere)
- cedimenti vincolari dei sostegni
- azione di reinterro e scavo a tergo spalla
- ritiro della soletta in calcestruzzo

Tali carichi sono stati considerati in due differenti condizioni in base alla loro durata:

- fase 2a: i carichi dovuti a permanenti e cedimenti e alla azione di reinterro e scavo a tergo spalla vengono considerati;
- o fase 2b: si considera la sola azione da ritiro.

La sezione resistente è quella composta acciaio/calcestruzzo; si tiene conto, per i carichi di tale fase, dell'influenza della viscosità omogeneizzando le aree in calcestruzzo ad acciaio secondo i coefficienti di omogeneizzazione descritti nel seguito.

Dal momento che prima della posa dei carichi permanenti viene realizzata la connessione tra impalcato e corpo spalla, in tale fase l'impalcato risulta appoggiato sulle pile e incastrato nella sella di spalla che a sua volta risulta incernierata nella paratia di pali. Ulteriori dettagli riguardo al vincolo tra impalcato e spalle vengono forniti nel seguito.

Fase 3

In tale fase si considera, di volta in volta, la presenza di tutti i contributi di carico di tipo istantaneo, ovvero:

- carichi mobili ed azioni collegate (frenatura, centrifuga, ...)
- variazioni termiche
- azioni di breve durata in genere

La sezione resistente è anche in questo caso quella composta acciaio/calcestruzzo; in questo caso, però, l'omogeneizzazione delle aree in calcestruzzo avviene secondo il coefficiente n di breve durata, definito nel seguito.

Come nella precedente fase, anche ora l'impalcato risulta appoggiato sulle pile e incastrato nella sella incernierata alla paratia di pali. Ulteriori dettagli riguardo al vincolo tra impalcato e spalle vengono forniti nel seguito.

2.2.2 Connessione impalcato-spalla

Come già accennato, lo schema statico della struttura in esame risulta il seguente: in corrispondenza delle pile viene fornito all'impalcato un vincolo alla traslazione in direzione trasversale e verticale, essendo presenti appoggi unidirezionali longitudinali, mentre la connessione con le strutture di spalla fornisce un vincolo tipo "cerniera", in quanto la spalla è costituita da una paratia di pali dotati in sommità di spinotti di collegamento alla sella in grado di trasmettere unicamente azioni assiali e taglianti.

In fase di analisi, come verrà meglio descritto nel seguito, l'impalcato verrà trattato in modo isolato modellando i vincoli di estremità come cerniere e gli appoggi sulle pile come carrelli orizzontali.

2.2.3 Coefficienti di omogeneizzazione

Lo studio dell'impalcato viene eseguito, come d'uso per strutture composte di questo tipo, "omogeneizzando" la sezione di calcestruzzo ad acciaio. In funzione della durata del carico si distinguono due tipi di coefficienti:

- n₀ coefficiente di omogeneizzazione per carichi di breve durata;
- n_L coefficiente di omogeneizzazione per carichi di lunga durata.

In particolare, il coefficiente di omogeneizzazione per carichi di breve durata risulta semplicemente pari al rapporto tra i moduli elastici di acciaio e calcestruzzo, ossia $n_0 = E_a / E_{cm}$. Nel presente caso si ha $n_0 = 6.16$. Il coefficiente di omogeneizzazione per carichi di lunga durata, invece, viene valutato in accordo alla norma EN 1994-2 al punto 5.4.2.2, in funzione della fase di vita in esame e del tipo di carico applicato, nel seguente modo:

$$n_{L} = n_{0} (1 + \psi_{L} \phi_{t})$$

dove:

$$n_0 = E_a / E_{cm}$$

 ψ_L = moltiplicatore di viscosità, funzione del tipo di carico applicato

 ϕ_t = coefficiente di viscosità

dove:

ψ _L = 1.10	per i carichi permanenti e i cedimenti vincolari
ψ _L = 1.50	per le deformazioni imposte
$\psi_1 = 0.55$	per l'azione del ritiro

Avendo assunto:

t ₀ = 1 g	per il calcolo del φ_t finalizzato alla valutazione dei n_ riferiti al ritiro
t ₀ = 30 g	per il calcolo del φ_t finalizzato alla valutazione di n_{L} riferito ai carichi permanenti e ai
	cedimenti

si ottiene (per il calcolo esteso di ϕ_t vedere il paragrafo relativo alla "Reologia del calcestruzzo"):

$\phi_t = 2.724$	per la valutazione dei n∟ riferiti al ritiro
φ _t = 1.445	per la valutazione di n_L riferito ai carichi permanenti e ai cedimenti
Da cui si ottengono i se	guenti valori del coefficiente di omogeneizzazione:
$n_1 = \infty$ (*)	in fase 1, ossia per la fase di montaggio (soletta in calcestruzzo non collaborante);

n _{L 2a} = 15.96	in fase 2a, per i pesi permanenti ed i cedimenti vincolari;
n _{r 2b} = 15.40	in fase 2b, per l'azione di ritiro;
n ₀ = 6.16	in fase 3, per i carichi, sia accidentali che permanenti, di breve durata.

(*) Per ragioni puramente numeriche, in fase 1, si considera n = 0.

2.2.4 Larghezze collaboranti di soletta

L'effettiva larghezza della soletta che risulta collaborante con le travi metalliche viene valutata in accordo a quanto esposto nella norma UNI EN 1994-2 al punto 5.4.1.2. In particolare, nelle zone di campata e di appoggio interno la larghezza collaborante viene calcolata secondo l'espressione:

 $b_{eff} = b_0 + \Sigma b_{e,i}$

mentre nelle zone di appoggio d'estremità:

 $b_{eff} = b_0 + \Sigma \beta_i b_{e,i}$

dove:

 $b_{e,i} = L_e/8 \le b_{reale,i}$

 β_i = (0.55 + 0.025 L_e / $b_{e,i}$) \leq 1.0

L_e = lunghezza di riferimento definita in accordo alla legenda della figura 5.1 del citato paragrafo normativo

Se si considera l'impalcato a sè stante, indipendentemente dalle spalle a cui è collegato, la sua configurazione può essere assimilata ad una situazione intermedia tra quella di trave su due appoggi intermedi con incastri agli estremi e quella di trave su quattro appoggi.

Considerando l'impalcato dapprima incastrato nelle spalle, si può immaginare la travata suddivisa in 4 regioni come mostrato in figura, in modo da distinguere le zone di campata da quelle di appoggio sia interno che di estremità.

In tale configurazione la tabella seguente restituisce per ogni regione il valore della larghezza di soletta da considerare collaborante con la singola trave metallica sottostante.

Regione	Lregione	Le	b0	be1,2	β	beff
1	5.75	11.50	0.50	1.44	_	3.38
2	11.50	16.10	0.50	2.01	-	4.53
3	17.88	17.875	0.50	2.23	-	4.97
4	24.25	33.95	0.50	3.13	-	6.75

Caso di impalcato incastrato nelle spalle

Si precisa che nella presente valutazione si è ritenuto corretto assimilare l'incastro di estremità al pari di un appoggio interno (β_1 = 1) con L_e = 0.25 (2 L_{riva}).

Considerando ora invece l'impalcato appoggiato su pile e spalle, si ottengono i valori sintetizzati nella seguente tabella.

Caso di impaicato appoggiato sulle spalle						
Regione	Lregione	Le	bo	be1,2	β	beff
1	5.75	19.55	0.50	2.44	0.75	4.17
2	11.50	19.55	0.50	2.44	-	5.39
3	17.88	17.875	0.50	2.23	-	4.97
4	24.25	33.95	0.50	3.13	-	6.75

Caso di impalcato appoggiato sulle spalle

In tal caso, invece, la larghezza collaborante nella regione 1, corrispondente all'appoggio di estremità, è stata valutata considerando β_i = (0.55 + 0.025 x 19.55 / 2.44) = 0.75.

Dal momento che la configurazione di vincolo reale per la struttura in esame è intermedia tra le configurazioni di incastro e appoggio sulle spalle, per semplicità operativa si è scelto di riferirsi ai valori medi di seguito esposti.

Regione	Lregione	beff
1	5.75	3.77
2	11.50	4.96
3	17.88	4.97
4	24.25	6.75

che corrispondono alla seguente distribuzione lungo l'impalcato:

Si procede quindi a valutare il valore di larghezza collaborante (b_eff) lungo lo sviluppo del cavalcavia a partire dalla sezione in asse spalla fino a quella di mezzeria della campata centrale, individuate univocamente dal valore dell'ascissa x, posizionata in asse spalla A.

Sezione	X	beff [m]
0	0.00	3.77
1	0.65	3.77
2	1.40	3.77
3	4.95	3.77
4	5.65	3.77
5	8.65	4.96
6	9.50	4.96
7	14.05	4.96
8	17.15	4.96
9	18.60	4.97
10	22.65	4.97
11	23.15	4.97
12	23.65	4.97
13	25.83	4.97
14	28.00	4.97
15	29.15	4.97
16	31.11	4.97
17	33.07	4.97
18	35.03	4.97
19	36.98	6.75
20	38.94	6.75
21	40.90	6.75
22	42.57	6.75
23	44.23	6.75
24	45.90	6.75
25	47.40	6.75

2.2.5 Conci di impalcato

L'impalcato risulta suddiviso in 5 tipologie di conci, di lunghezza ed altezza variabili. Per ragioni di economia si è cercato di ottimizzare le larghezze e gli spessori dei vari piatti di acciaio costituenti le piattabande e le anime delle travi principali, modulando lo spessore in base all'effettivo impegno statico.

La tabella seguente restituisce la lunghezza dei vari conci.

Concio	Lunghezza
Α	12.00
В	11.75
С	13.00
D	8.50
E	8.65

Le caratteristiche costituenti le lamiere delle travi principali di ciascun concio sono riportate nella tabella seguente (valori espressi in mm). In particolare si evidenzia che il concio di testa-pila, denominato A, risulta composto da un tratto di 1.0 m ad altezza costante pari a 3.0 m (denominato nel seguito "A cost"), in corrispondenza dell'asse pila, e da due parti laterali da 5.0 m ciascuna, caratterizzate da altezza variabile da un lato linearmente e dall'altro parabolicamente, chiamate appunto "A_var_lin" e "A_var_par". Anche il concio di riva, denominato E, risulta composto da un tratto ad altezza costante (E_cost), di lunghezza pari a 5.65 m, e da un tratto ad altezza variabile linearmente (E_var), di lunghezza pari a 3.0 m. Il concio C, infine, è organizzato in un tratto centrale di 3.0 m ad altezza costante, pari a 1.65 m, affiancato da due tratti simmetrici ad altezza variabile parabolicamente fino ad un massimo di 1.70 m.

Di seguito si riportano le caratteristiche geometriche della sola sezione metallica dei vari conci.

	Acost	Avar_lin	Avar_par	Bvar	Cvar	Ccost	Dvar	Evar	Ecost
h _{s media}	2700	2447	2361	1691	1367	1350	1881	1469	1350
b _{inf}	800	800	800	800	800	800	800	800	800
t _{inf}	70	70	70	70	80	80	60	60	60
b _{sup}	600	600	600	600	600	600	600	600	600
t _{sup}	70	70	70	70	70	70	60	60	60
h _{web}	2560	2307	2221	1551	1217	1200	1761	1349	1230
t _{web}	22	22	22	20	18	18	20	20	20

Nella tabella precedente, si è indicato con:

- b_i larghezza piattabanda superiore
- t_i spessore piattabanda superiore
- b_s larghezza piattabande superiori
- t_s spessore piattabande superiori
- h_w altezza anime
- t_w spessore anime

Di seguito, con le medesime notazioni appena utilizzate, si riepilogano invece le caratteristiche dei traversi di campata e di testapila.

	TRV_campata	TRV_testapila
h _{s media}	850	1800
b _{inf}	350	500
t _{inf}	20	30
b _{sup}	350	500
t _{sup}	20	30
h _{web}	810	1740
t _{web}	12	18

2.2.6 Sezioni di verifica

Per l'analisi della struttura metallica d'impalcato si prendono in esame le sezioni rappresentative di tutte le tipologie di concio presenti. Ai fini delle verifiche si fissa l'attenzione su 16 sezioni di verifica, denominate a partire da S0 fino a S15. Esse corrispondono a tutte le sezioni di giunzione tra un concio e l'altro, e alle sezioni di testa-spalla, testa-pila e mezzeria campata.

Nome	Corrispondenza sezione	Concio
S0	Sezione in asse spalla (annegata nel getto)	E
S1	Sezione a filo sella spalla	E
S2	Sezione di inizio variabilità altezza concio E	E
S3	Sezione di giunto tra i conci E e D	E
S4	Sezione di giunto tra i conci E e D	D
S5	Sezione di giunto tra i conci D e A	D
S6	Sezione di giunto tra i conci D e A	A
S7	Sezione di fine tratto ad altezza cost (concio A)	A
S8	Sezione in asse pila	A
S9	Sezione di fine tratto ad altezza cost (concio A)	A
S10	Sezione di giunto tra i conci A e B	A
S11	Sezione di giunto tra i conci A e B	В
S12	Sezione di giunto tra i conci B e C	В
S13	Sezione di giunto tra i conci B e C	С
S14	Sezione di inizio tratto ad altezza cost (concio C)	С
S15	Sezione di mezzeria	С

La seguente tabella riporta la corrispondenza delle sezioni di verifica prese in esame:

I seguenti disegni mostrano l'esatta ubicazione delle sezioni critiche appena definite.

La seguente tabella riporta la corrispondente altezza della trave metallica nelle sezioni di verifica prese in esame:

Sezione	H trave met	Concio
S0	1.35	Ecost
S1	1.35	Ecost
S2	1.35	Ecost
S3	1.50	Evar
S4	1.84	Dvar
S5	2.18	Dvar
S6	2.44	Avar_lin
S7	2.70	Avar_lin
S8	2.70	Acost
S9	2.70	Avar_par
S10	2.10	Avar_par
S11	2.10	Bvar
S12	1.77	Bvar
S13	1.77	Cvar
S14	1.35	Cvar
S15	1.35	Ccost

Per tutti i conci di trave viene considerata collaborante una porzione di soletta spessore pari a 0.297 m e di larghezza pari a quanto valutato in accordo ai criteri precedentemente esposti. Lo spessore dichiarato tiene conto della sagoma a schiena d'asino della soletta a seguito della quale lo spessore varia da un minimo di 0.25 m ad un massimo di 0.37 m. La seguente tabella riporta l'entità di larghezza collaborante di soletta considerata per le sezioni critiche in esame.

Sezione	X	beff [m]	η sol collab
S1	0.65	3.77	0.56
S2	5.65	3.77	0.56
S3	8.65	4.96	0.73
S4	8.65	4.96	0.73
S5	17.15	4.96	0.73
S6	17.15	4.96	0.73
S7	22.65	4.97	0.74
S8	23.15	4.97	0.74
S9	23.65	4.97	0.74
S10	29.15	4.97	0.74
S11	29.15	4.97	0.74
S12	40.90	6.75	1.00
S13	40.90	6.75	1.00
S14	45.90	6.75	1.00
S15	47.40	6.75	1.00

Nella presente tabella si è indicato con η il valore del rapporto tra la larghezza di soletta collaborante con la singola trave d'acciaio e la metà della larghezza complessiva della soletta d'impalcato, che rappresenta appunto l'aliquota di calcestruzzo effettivamente partecipante all'impegno statico sezionale della singola trave.

La soletta risulta inoltre armata longitudinalmente con i quantitativi di armatura riassunti nella seguente tabella concio per concio:

Riepilogo dell'armatura di soletta

Concio	Arm. Sup	Arm. Inf
Acost	f16/10	f16/10
Avar_lin	f16/10	f16/10
Avar_par	f16/10	f16/10
Bvar	f16/20	f16/20
Cvar	f16/20	f16/20
Ccost	f16/20	f16/20
Dvar	f16/20	f16/20
Evar	f16/20	f16/20
Ecost	f16/20	f16/20

2.2.6.1 Caratteristiche dimensionali

Si riporta di seguito il prospetto sintetico delle caratteristiche delle sezioni critiche, completo delle dimensioni delle lamiere componenti la trave metallica, delle dimensioni sia reali che efficaci della soletta di competenza di ciascuna trave, ed infine, dei quantitativi di armatura dei due layer superiore ed inferiore della soletta stessa.

		Cavalca	avia di So	olarolo (2	3+48.5+2	23m) - Ca	aratterist	iche dim	ensional	i sezioni	trasversali	
		Acost	Avar_lin	Avar_par	Bvar	Cvar	Ccost	Dvar	Evar	Ecost	TRV_campata	TRV_testapila
	h _{s media}	2700	2447	2361	1691	1367	1350	1881	1469	1350	850	1800
llic	b _{inf}	800	800	800	800	800	800	800	800	800	350	500
eta	t _{inf}	70	70	70	70	80	80	60	60	60	20	30
E	b _{sup}	600	600	600	600	600	600	600	600	600	350	500
one	t _{sup}	70	70	70	70	70	70	60	60	60	20	30
ezi	h _{web}	2560	2307	2221	1551	1217	1200	1761	1349	1230	810	1740
0	t _{web}	22	22	22	20	18	18	20	20	20	12	18
	h _{cls}	297	297	297	297	297	297	297	297	297	-	-
ta	h _{cop}	60	60	60	60	60	60	60	60	60	-	-
olet	t _{sol}	237	237	237	237	237	237	237	237	237	-	-
Š	b _{reale}	6750	6750	6750	6750	6750	6750	6750	6750	6750	-	-
	b _{eff}	4969	4969	4969	4969	6750	6750	4956	4956	3770	-	-
	ϕ_{sup}	16	16	16	16	16	16	16	16	16	-	-
g	passo _{sup}	100	100	100	200	200	200	200	200	200	-	-
atui	C _{sup}	63	63	63	63	63	63	63	63	63	-	-
L I	φinf	16	16	16	16	16	16	16	16	16	-	-
◄	passo _{inf}	100	100	100	200	200	200	200	200	200	-	-
	C _{inf}	28	28	28	28	28	28	28	28	28	-	-

Per le notazioni adottate in seconda colonna, ci si riferisce alla seguente legenda.

Legenda				
h _s	altezza trave metallica			
b _{inf}	larghezza piattabanda inferiore			
t _{inf}	spessore pattabanda inferiore			
b _{sup}	larghezza piattabanda superiore			
t _{sup}	spessore pattabanda superiore			
h _{web}	altezza anima			
t _{web}	spessore anima			
h _{cls}	spessore complessivo soletta			
h_{cop}	spessore di calcolo coppella			
t _{sol}	spessore di calcolo soletta			
b _{reale}	larghezza reale soletta			
b _{eff}	larghezza collaborante soletta			
Щ _{ир}	diametro armature superiori			
passo _{sup}	passo armature superiori			
C _{sup}	copriferro armature superiori			
∏inf	diametro armature inferiori			
passo _{inf}	passo armature inferiori			
C _{inf}	copriferro armature inferiori			

Si riporta infine la tabella con le corrispondenze delle sezioni delle travi principali in cui vengono estratti i risultati dal modello ad elementi finiti.

Sezione	Elemento	Gauss Point	Concio
S0	2	1	Ecost
S1	2	5	Ecost
S2	4	1	Ecost
S3	4	11	Evar
S4	5	1	Dvar
S5	7	11	Dvar
S6	8	1	Avar_lin
S7	9	11	Avar_lin
S8	11	1	Acost
S9	12	1	Avar_par
S10	13	11	Avar_par
S11	14	1	Bvar
S12	16	11	Bvar
S13	17	1	Cvar
S14	221	1	Cvar
S15	222	1	Ccost

Corrispondenze Sezioni - Elementi del modello

Per quanto riguarda invece i traversi, si distinguono due tipologie: i traversi di pila e quelli di campata. Ai fini delle verifiche si fissa l'attenzione su 4 sezioni di verifica, denominate a partire da St1 fino a St4, corrispondenti alle sezioni dei traversi maggiormente sollecitati.

Si riporta quindi la tabella con le corrispondenze delle sezioni in cui vengono estratti i risultati dal modello ad elementi finiti.

Nome	Elemento	Gauss Point	Sezione
St1	181	1	TRV_testapila
St2	182	11	TRV_testapila
St3	173	1	TRV_campata
St4	174	11	TRV_campata

2.2.6.2 Proprietà geometrico-statiche

Le proprietà geometrico-statiche delle sezioni di impalcato vengono valutate dal programma di verifica PontiEC4 ed implementate automaticamente nel database del sistema ad Elementi Finiti. Per la versione estesa delle caratteristiche geometriche si rimanda all'Allegato della presente relazione dove, per ciascuna sezione, tali dati sono raccolti nelle seguenti tabelle:

- tab. I: riepilogo delle caratteristiche dimensionali e generali e degli stiffeners (se previsti)

- tab. II: valutazione delle proprietà di base della porzione in acciaio, calcestruzzo e armatura

- tab. III: valutazione delle caratteristiche omogeneizzate nelle fasi di studio

Tutti i dati indicati sono espressi in mm e sono riferiti alla trave metallica singola, con relativa porzione di soletta collaborante.

Per i dati relativi a ciascuna riga, si rimanda alla legenda ed alla figura riportate di seguito.

	Legenda
Α	Area sezione
z _G	Distanza baricentro da intradosso
J _y	Inerzia verticale
Jz	Inerzia orizzontale
W _{y,0}	Modulo resistenza lembo inf. piatt. inferiore
W _{y,1}	Modulo resistenza lembo sup piatt. inferiore
W _{y,3}	Modulo resistenza lembo inf. piatt. superiore
W _{y,4}	Modulo resistenza lembo sup. piatt. superiore
W _{y,5}	Modulo resistenza lembo inferiore soletta in c.a.
W _{y,6}	Modulo resistenza layer inferiore armatura
W _{y,7}	Modulo resistenza layer superiore armatura
W _{y, 8}	Modulo resistenza lembo superiore soletta in c.a.
S _{y,1}	Momento statico attacco anima/piatt. inferiore
S _{y,2}	Momento statico rispetto baricentro
S _{y,3}	Momento statico attacco anima/piatt. superiore
S _{y,4}	Momento statico interfaccia trave/soletta
е	Eccentricità tra baricentro globale e linea d'azione N

2.2.6.3 Proprietà plastiche delle sezioni

Ai fini della classificazione e delle verifiche sezionali, vengono valutate le proprietà plastiche di base delle sezioni, con il tracciamento dei domini N/M rispettivamente per la sezione completa e per la sezione formata dalle sole flange in acciaio. Le proprietà vengono sistematicamente valutate per tutte le sezioni considerate nelle verifiche.

Per la valutazione di N_{pl} e M_{pl} si seguono i criteri contenuti in EN 1994-2, cap. 6.2.1.2. (4.3.2.1.2. delle NTC 2008).

Il calcolo di M_{pl} viene effettuato mediante semplici considerazioni di equilibrio delle forze plastiche sviluppate dai singoli elementi componenti la sezione, e della eventuale azione assiale concomitante, sotto opportune ipotesi, verificate a posteriori, riguardanti la posizione dell'asse neutro plastico.

In generale, quindi, indicato con:

 $N_{abf} = t_{inf} \times b_{inf} \times f_{vinf} / \gamma_{m0}$ azione assiale plastica sviluppabile dalla piattabanda inferiore;

 $N_{aweb} = t_{web} \times h_{web} \times f_{yweb} / \gamma_{m0}$ azione assiale plastica sviluppabile dalla anima;

N_{atf} = $t_{sup} \times b_{sup} \times f_{ysup} / \gamma_{m0}$	azione assiale plastica sviluppabile dalla piattabanda superiore;
N _{c1} = 0.85 x f _{ck} x b _{eff} x t _{c1} / γ_c	azione assiale plastica sviluppabile dal layer di cls (di spessore pari a t_{c1}) compreso tra il layer superiore di armatura e l'estradosso della soletta (agente solo a compressione);
N _{c2} = 0.85 x f _{ck} x b _{eff} x t _{c2} / γ_c	azione assiale plastica sviluppabile dal layer di cls (di spessore pari a t_{c2}) compreso tra i due layers di armatura (agente solo a compressione);
N _{c3} = 0.85 x f _{ck} x b _{eff} x t _{c3} / γ_c	azione assiale plastica sviluppabile dal layer di cls (di spessore pari a t_{c3}) compreso tra la piattabanda superiore e il layer di armatura inferiore (agente solo a compressione);
$N_{layer1} = A_{slinf} x f_{yk} / \gamma_s$	azione assiale plastica sviluppabile dal layer inferiore di armatura (di area complessiva $A_{\text{slinf}});$
$N_{layer2} = A_{slsup} \times f_{yk} / \gamma_s$	azione assiale plastica sviluppabile dal layer superiore di armatura (di area complessiva A_{slsup});
N _e	azione assiale esterna, agente in corrispondenza del baricentro geometrico della sezione;
$f_{yinf}, f_{ysup}, f_{yweb}$	resistenze caratteristiche di snervamento dell'acciaio componente rispettivamente la piattabanda inferiore, la piattabanda superiore e l'anima;

La posizione dell'asse neutro plastico, per un dato segno dell'azione flettente, è immediatamente e univocamente determinabile dall'esame di relazioni simili alla seguente, esplicitata per il caso di momento flettente negativo (soletta compressa), e asse neutro plastico disposto nell'anima:

 $z_{pl} = t_{inf} + (-N_e + N_{layer1} + N_{layer2} + N_{atf} - N_{abf} + N_{aweb})/(2 t_{web} f_{yweb} \gamma_{m0})$

Si evidenzia inoltre che:

- l'azione assiale plastica sviluppata dal calcestruzzo in compressione viene valutata sulla base di uno stress block equivalente, di altezza pari a quella effettiva, ma di intensità ridotta all'85 % (cfr. EN 1994-2, cap. 6.2.1.2.(1), punto d),
- le armature in compressione vengono considerate, al fine di evitare possibili punti di discontinuità nella ricerca di a.n.p. per azione assiale variabile, rinunciando all'ipotesi semplificativa contemplata da EN 1994-2, cap. 6.2.1.2.(1), punto c
- per i medesimi motivi indicati al punto precedente, i layers di armatura vengono modellati con "strisce" di spessore equivalente.

Il tracciamento dei domini viene effettuato per punti, valutando di volta in volta la posizione dell'asse neutro plastico e il valore di M_{pl} sotto l'azione dell'azione assiale N incrementata da 0 (flessione semplice, positiva o negativa) fino a +/- N_{pl} con incrementi pari a $N_{pl}/10$.

L'operazione viene effettuata in automatico dal programma PontiEC4 per tutte le sezioni di verifica, considerando sia la sezione completa, sia la sezione formata dalle sole flange in acciaio e calcestruzzo.

Per la versione estesa delle proprietà plastiche si rimanda all'Allegato della presente relazione

2.2.6.4 Preclassificazione delle sezioni

Sulla base dei dati scaturiti dall'analisi plastica, è possibile effettuare una prima preclassificazione delle sezioni, riferita ai singoli sottocomponenti (piattabanda inferiore, superiore e anima rispettivamente).

La classificazione effettiva è dipendente dallo quadro tensionale della sezione, ed in particolare dall'effetto combinato di azione assiale e momento flettente e pertanto essa sarà superata dalla classificazione effettiva, effettuata nell'ambito di ciascuna combinazione di carico in fase di verifica (riclassificazione).

La preclassificazione viene effettuata sulla base delle seguenti caratteristiche di sollecitazione, pensate agenti separatamente:

azione assiale di compressione

momento flettente positivo (soletta tesa)

momento flettente negativo (soletta compressa).

Si seguono i criteri contenuti in NTC 2008, cap. 4.2.3.1 (EN 1993-1-1, cap. 5.6), con le seguenti precisazioni:

- vengono presi in considerazione i soli elementi compressi, o parzialmente compressi (1993-1-1 cap.
 5.5.2(3)
- la classificazione è riferita ai singoli sottocomponenti (1993-1-1 cap. 5.5.2(7)
- le piattabande superiori vengono classificate sistematicamente in classe 1 (1994-2, cap. 5.5.2(1));
 a tale proposito la spaziatura dei connettori verrà predisposta conformemente ai criteri contenuti in 1994-2 cap. 6.6.5.5, ovvero:

i₁ < 22 x 30.0 x 0.81 = 534.60 mm	massimo interasse longitudinale
-----------------------------------	---------------------------------

$$d_t < 9 \times 30.0 \times 0.81 = 218.7 \text{ mm}$$
 massimo distanza dal bordo

In questo caso si è considerato il minimo spessore di piattabanda presente lungo lo sviluppo delle travi.

Per ragioni puramente numeriche, gli elementi tesi, a rigore non da classificarsi, vengono assegnati alla classe 1.

La preclassificazione delle sezioni viene effettuata in automatico nelle schede relative al calcolo delle proprietà plastiche delle sezioni; per i dati completi si rimanda all'allegato della presente relazione dove sono riportate le schede inerenti la classificazione di tutte le sezioni.

2.2.7 Stato fessurativo della soletta

Le caratteristiche geometriche utilizzate ai fini dell'analisi strutturale vengono opportunamente selezionate in funzione dello stato fessurativo atteso per la soletta. A tale proposito si seguono i criteri contemplati da NTC 2008 4.3.2.2.1 (EN 1994-2 cap. 5.4.2.3(2)).

Viene pertanto effettuata un'analisi preliminare delle sollecitazioni considerando, nell'ambito di ciascuna "fase" di calcolo, le rigidezze flessionali "uncracked", basate sul pieno contributo della soletta, indipendentemente dallo stato tensionale.

Per il caso in esame, il valore limite della tensione di trazione nel calcestruzzo risulta:

 σ_{lim} = 2x3.2 = 6.4 MPa

L'analisi "uncracked" dimostra che le zone in cui la soletta si fessura sono limitate essenzialmente al concio di testapila (concio A). Le sollecitazioni che verranno riportate nel seguito risultano quindi figlie dell'analisi condotta considerando tale zona fessurata.

2.2.8 Combinazioni di verifica

La scelta delle combinazioni di carico da prendere in esame viene eseguita in accordo a quanto specificato nella norma UNI EN 1990.

In particolare, per lo studio dell'impalcato vengono prese in esame le seguenti combinazioni:

- Stato Limite di Esercizio:
 - Combinazione caratteristica o rara
 - Combinazione frequente
 - Combinazione quasi-permanente
- Stato Limite Ultimo:
 - Combinazione STR
 - Combinazione sismica
- Stato Limite di Fatica

Più in dettaglio le combinazioni delle azioni da adottare ai fini delle verifiche sono quelle riportate nel prospetto seguente:

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

 $\gamma_{G1}\cdot G_1+\gamma_{G2}\cdot G_2+\gamma_P\cdot P+\gamma_{Q1}\cdot Q_{k1}+\gamma_{Q2}\cdot \psi_{02}\cdot Q_{k2}+\gamma_{Q3}\cdot \psi_{03}\cdot Q_{k3}+\ldots$

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili

 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

 $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

 $G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

 $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$

Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

Per la scelta dei coefficienti " γ " e " ψ " da adottare nelle suddette combinazioni ci si riferisce a quanto esposto nella stessa UNI EN 1990. Si precisa che si è scelto di adottare per il contributo "Reinterro&scavo" un valore

pari a 1.0 quando tale contributo risulta agire favorevolmente. Inoltre per i carichi permanenti si è scelto di adottare, come concesso dal DM 14 Gennaio 2008, il coefficiente di combinazione allo SLU pari a 1.35 al posto di 1.50 in quanto tali contributi risultano nel presente progetto univocamente determinati.

Per la specifica tipologia dei ponti integrali si è ritenuto opportuno considerare quale azione dominante in fase combinatoria sia il modello dei carichi da traffico sia la combinazione termica.

Di seguito si riportano, per ciascun contributo di carico considerato, i coefficienti di combinazione considerati.

SLU Carichi mobili dominanti

riepilogo coeff. γ ψ	
γunfav	γ _{fav}
1.35	1.00
1.35	1.00
1.20	0.00
1.35	1.00
1.20	1.20
1.35	0.00
0.72	0.00
	riepilogo <u>γunfav</u> 1.35 1.35 1.20 1.35 1.20 1.35 0.72

(*) Come coeff si presenta direttamente il prodotto $\psi_0 \gamma$ dove ψ_0 è pari a 0.6

SLU Termiche dominanti

	riepilogo coeff. γ ψ	
	γ̂unfav	γfav
g _{k1} +g _{k2} : pesi propri acc+cls	1.35	1.00
g _{k3} : sovraccarichi di finitura	1.35	1.00
g _{ksett.} - comb. ced. vincolari	1.20	0.00
g _{kp} - spinta delle terre	1.35	1.00
g _{sh} I+II - effetti ritiro	1.20	1.20
Q _k - mobili (az. concomitante)	1.35	0.00
T _k - termiche dominanti	1.20	0.00

SLE RARA Carichi mobili dominanti

	riepilogo coeff. γ ψ	
	γunfav	γ _{fav}
g _{k1} +g _{k2} : pesi propri acc+cls	1.00	1.00
g _{k3} : sovraccarichi di finitura	1.00	1.00
g _{ksett.} - comb. ced. vincolari	1.00	0.00
g _{kp} - spinta delle terre	1.00	1.00
g _{sh} I+II - effetti ritiro	1.00	1.00
Q _k - mobili (az. dominante)	1.00	0.00
T _k - termiche concomitanti (*)	0.60	0.00

(*) Come coeff si presenta direttamente il prodotto $\psi_0 \gamma$ dove ψ_0 è pari a 0.6

SLE RARA Termiche dominanti

	riepilogo coeff. γ ψ	
	γ̂unfav	γfav
g _{k1} +g _{k2} : pesi propri acc+cls	1.00	1.00
g _{k3} : sovraccarichi di finitura	1.00	1.00
g _{ksett.} - comb. ced. vincolari	1.00	0.00
g _{kp} - spinta delle terre	1.00	1.00
g _{sh} I+II - effetti ritiro	1.00	1.00
Q _k - mobili (az. concomitante)	1.00	0.00
T _k - termiche dominanti	1.00	0.00

SLE FREQUENTE

Termiche dominanti

riepilogo coeff. γ ψ	
γ̈́unfav	γ _{fav}
1.00	1.00
1.00	1.00
1.00	0.00
1.00	1.00
1.00	1.00
1.00	0.00
0.60	0.00
	riepilogo γ _{unfav} 1.00 1.00 1.00 1.00 1.00 1.00 0.60

SLE QUASI-PERMANENTE

	riepilogo coeff. γ ψ		
	γunfav	γfav	
g _{k1} +g _{k2} : pesi propri acc+cls	1.00	1.00	
g _{k3} : sovraccarichi di finitura	1.00	1.00	
g _{ksett.} - comb. ced. vincolari	1.00	0.00	
g _{kp} - spinta delle terre	1.00	1.00	
g _{sh} I+II - effetti ritiro	1.00	1.00	
Q _k - mobili	0.00	0.00	
T _k - termiche	0.50	0.00	

	riepilogo	riepilogo coeff. γ ψ	
	γunfav	γ _{fav}	
g _{k1} +g _{k2} : pesi propri acc+cls	1.00	1.00	
g _{k3} : sovraccarichi di finitura	1.00	1.00	
g _{ksett.} - comb. ced. vincolari	1.00	0.00	
g _{kp} - spinta delle terre	1.00	1.00	
g _{sh} I+II - effetti ritiro	1.00	1.00	
Q _k - mobili (az. dominante)	0.00	0.00	
T _k - termiche concomitanti	0.50	0.00	
FLM1 (az. ciclica)	1.00	0.00	

FATICA: SLE frequente (mobili dominanti) + FLM1

In tutti i casi, ai fini delle verifiche, sono stati elaborati gli inviluppi delle sollecitazioni volti a massimizzare/minimizzare le caratteristiche di sollecitazione di interesse, che risultano complete dei rispettivi valori concomitanti.

2.2.9 Metodologia di verifica

Le verifiche vengono effettuate nell'ambito del metodo semiprobabilistico agli stati limite, secondo quanto specificato nelle normative prese a riferimento.

Con riferimento all'intero impalcato vengono effettuate le seguenti verifiche di:

- verifiche di resistenza e stabilità delle travi
- verifica delle tensioni nel calcestruzzo e nelle barre di armatura della soletta
- verifica a fatica dei dettagli strutturali
- verifica della connessione trave-soletta
- verifica di stabilità flesso-torsionale delle travi
- verifiche di resistenza e stabilità dei traversi
- verifica delle giunzioni bullonate
- verifica delle giunzioni saldate
- verifica di deformabilità
- verifiche locali di dettagli costruttivi (irrigidenti trasversali, irrigidimenti di appoggio, etc..)

Per maggiore chiarezza nel capitolo relativo alle verifiche delle travi si preciseranno in dettaglio le metodologie di verifica impiegate. In generale comunque si precisa che, per quanto riguarda le verifiche di resistenza delle sezioni di impalcato in acciaio-calcestruzzo, la resistenza delle sezioni può essere valutata con il metodo elastico, plastico o elasto-plastico in funzione della classe della sezione stessa: se la sezione risulta appartenere alle classi 1 o 2 ("sezione compatta") è possibile adottare uno qualsiasi dei metodi citati, mentre per le sezioni di classe 3 o 4 ("sezioni snelle") risulta necessario riferirsi al metodo elastico o tutt'al più a quello elasto-plastico. Nel seguito, pertanto, si eseguirà innanzitutto la classificazione della sezione in esame in funzione del suo reale stato di sollecitazione e si provvederà a valutare la sua capacità resistente secondo il seguente criterio:
- Classe 1 o 2: si adotterà il metodo plastico;
- Classe 3 o 4: si adotterà il metodo elastico.

Si precisa inoltre che per le sezioni ricadenti in classe 4 verranno valutate le caratteristiche resistenti efficaci ricorrendo al "Hole-in-web method" come richiesto dalle norme EN 1993-1-1.

A titolo di completezza, e per favorire un raffronto diretto, per tutte le sezioni esaminate si riporteranno i risultati delle verifiche condotte con entrambi i metodi di verifica, ponendo tra parentesi il risultato laddove il metodo impiegato non risulti appropriato e non porti quindi ad un risultato significativo.

2.2.9.1 Metodo plastico

Il metodo plastico prevede innanzitutto la valutazione delle caratteristiche plastiche elementari delle varie componenti della sezione, e quindi la valutazione delle caratteristiche plastiche complessive della sezione in termini di pura azione assiale e puro momento flettente, ed infine in termini di momento flettente ridotto per effetto dell'interazione con azione assiale e azione tagliante. Affinché le verifiche condotte con il metodo plastico possano ritenersi soddisfatte, le sollecitazioni agenti sulla sezione dovranno risultare inferiori ai suddetti valori plastici. In particolare il rapporto tra l'azione sollecitante (genericamente indicata $E_{calcolo}$) e quella resistente (genericamente indicata E_{R}) viene definito η e dovrà quindi risultare inferiore all'unità:

$$\eta = \frac{E_{calcolo}}{E_R} < 1.0$$

Nello schema seguente si riportano i componenti della sezione trasversale di cui vengono valutate le caratteristiche plastiche elementari.

Singole componenti della sezione per il calcolo delle caratteristiche plastiche elementari

Più in dettaglio le componenti considerate sono le seguenti:

- 1) cls 1: porzione di cls compresa tra il layer superiore di armatura e l'estradosso della soletta
- 2) layer superiore di armatura della soletta
- 3) cls 2: porzione di cls compresa tra i due layer di armatura della soletta
- 4) layer inferiore di armatura della soletta
- 5) cls 3: porzione di cls compresa tra l'estradosso coppella e il layer inferiore di armatura

- 6) coppella
- 7) piattabanda superiore

8) anima

9) piattabanda inferiore

Per la valutazione di N_{pl} e M_{pl} si seguono i criteri contenuti in EN 1994-2, cap. 6.2.1.2. (4.3.2.1.2. delle NTC 2008). In particolare, il calcolo di M_{pl} viene effettuato mediante semplici considerazioni di equilibrio delle forze plastiche sviluppate dai singoli elementi componenti la sezione, e della eventuale azione assiale concomitante, sotto opportune ipotesi, verificate a posteriori, riguardanti la posizione dell'asse neutro plastico.

In generale, quindi, indicato con:

N_{abf} = $t_{inf} \times b_{inf} \times f_{yinf} / \gamma_{m0}$	azione assiale plastica sviluppabile dalla piattabanda inferiore;
N_{aweb} = $t_{web} \times h_{web} \times f_{yweb} / \gamma_{m0}$	azione assiale plastica sviluppabile dalla anima;
N_{atf} = $t_{sup} \times b_{sup} \times f_{ysup} / \gamma_{m0}$	azione assiale plastica sviluppabile dalla piattabanda superiore;
N _{c1} = 0.85 x f _{ck} x b _{eff} x t _{c1} / γ_c	azione assiale plastica sviluppabile dal layer di cls (di spessore pari a t_{c1}) compreso tra il layer superiore di armatura e l'estradosso della soletta (agente solo a compressione);
N _{c2} = 0.85 x f _{ck} x b _{eff} x t _{c2} / γ_c	azione assiale plastica sviluppabile dal layer di cls (di spessore pari a t_{c2}) compreso tra i due layers di armatura (agente solo a compressione);
N _{c3} = 0.85 x f _{ck} x b _{eff} x t _{c3} / γ_c	azione assiale plastica sviluppabile dal layer di cls (di spessore pari a t_{c3}) compreso tra la piattabanda superiore e il layer di armatura inferiore (agente solo a compressione);
$N_{layer1} = A_{slinf} \times f_{yk} / \gamma_s$	azione assiale plastica sviluppabile dal layer inferiore di armatura (di area complessiva $A_{slinf});$
N_{layer2} = $A_{slsup} \ge f_{yk} / \gamma_s$	azione assiale plastica sviluppabile dal layer superiore di armatura (di area complessiva $A_{slsup});$
N _e	azione assiale esterna, agente in corrispondenza del baricentro geometrico della sezione;
$f_{yinf},\;f_{ysup},\;f_{yweb}$	resistenze caratteristiche di snervamento dell'acciaio componente rispettivamente la piattabanda inferiore, la piattabanda superiore e l'anima;

La posizione dell'asse neutro plastico, per un dato segno dell'azione flettente, è immediatamente e univocamente determinabile dall'esame di relazioni simili alla seguente, esplicitata per il caso di momento flettente negativo (soletta compressa), e asse neutro plastico disposto nell'anima:

 $z_{\mathsf{pl}} = t_{\mathsf{inf}} + (-N_{\mathsf{e}} + N_{\mathsf{layer1}} + N_{\mathsf{layer2}} + N_{\mathsf{atf}} - N_{\mathsf{abf}} + N_{\mathsf{aweb}}) / (2 \ t_{\mathsf{web}} \ f_{\mathsf{yweb}} \ \gamma_{\mathsf{m0}})$

Si evidenzia inoltre che:

- l'azione assiale plastica sviluppata dal calcestruzzo in compressione viene valutata sulla base di uno stress block equivalente, di altezza pari a quella effettiva, ma di intensità ridotta all'85 % (cfr. EN 1994-2, cap. 6.2.1.2.(P)1, punto d);
- le armature in compressione vengono considerate, al fine di evitare possibili punti di discontinuità nella ricerca di a.n.p. per azione assiale variabile, rinunciando all'ipotesi semplificativa contemplata da EN 1994-2, cap. 6.2.1.2.(P)1, punto c);
- per i medesimi motivi indicati al punto precedente, i layers di armatura vengono modellati con "strisce" di spessore equivalente.

2.2.9.2 Metodo elastico

Il metodo elastico prevede la valutazione delle tensioni presenti in determinati punti considerati significativi per la sezione, ed il successivo confronto di questi valori tensionali con i valori limite imposti da normativa. In particolare il rapporto tra la tensione agente e quella limite viene definito "rapporto di sfruttamento" η e dovrà quindi risultare inferiore all'unità:

$$\eta = \frac{\sigma_{calcolo}}{f_d} < 1.0$$

Nello schema seguente si riportano, lungo la sezione trasversale, i punti ritenuti significativi per il calcolo delle tensioni.

Disposizione dei punti significativi per il calcolo delle tensioni

L'ubicazione esatta dei punti indicati è la seguente:

- 1) intradosso piattabanda inferiore
- 2) attacco anima/piattabanda inferiore
- 3) baricentro sezione
- 4) attacco anima/piattabanda superiore
- 5) estradosso piattabanda superiore (attacco trave/soletta)
- reinf) baricentro armature di soletta (inf+sup)
- cls) estradosso soletta in calcestruzzo

2.2.9.3 Procedura di verifica

Date le novità introdotte dalle norme NTC e dagli Eurocodici in materia di progettazione delle strutture in acciaio, si ritiene utile presentare a livello generale le procedure di verifica seguite nel presente lavoro.

Per le verifiche di resistenza delle sezioni si seguono i criteri contenuti in EN 1993-1-1, EN 1993-2, EN 1994-2 e EN 1993-1-5.

La classificazione delle sezioni viene effettuata sulla base dei rapporti dimensionali e con riferimento al reale stato tensionale indotto dai carichi agenti sulla struttura. Una volta individuata la classe di riferimento di ciascuna sezione di verifica si adottano le seguenti metodologie di verifica:

classe 1-2: analisi plastica;

classe 3: analisi elastica;

classe 4: analisi elastica con caratteristiche resistenti valutate secondo "hole in web method".

Le verifiche vengono effettuate mediante una procedura automatica implementata in un foglio elettronico, organizzata in "schede" relativa a ciascuna sezione di verifica. La procedura automatica effettua, per ciascuna sezione di verifica la combinazione delle sollecitazioni per ottenere il massimo e minimo momento flettente, e la massima azione tagliante assoluta e, nell'ambito di queste tre combinazioni di base, vengono seguiti i seguenti passaggi:

- classificazione della sezione con riferimento alla combinazione in esame

- analisi plastica per tensioni normali, con valutazione di:

resistenza a trazione/compressione semplice

resistenza a flessione

resistenza a presso-flessione

- analisi elastica, effettuata sulla base delle caratteristiche resistenti della sezione (reali o efficaci in base alla classe della sezione stessa)

- calcolo dei contributi resistenti a taglio

- verifica interazione azione assiale - flessione - taglio.

I principali criteri di verifica adottatati vengono di seguito sintetizzati.

2.2.9.3.1 Azione assiale N, flessione M ed effetti combinati N-M (cfr. EN1993-1-1 cap. 6.2.9)

Per le sezioni di classe 1 e 2, la verifica nei confronti delle sollecitazioni indotte da azione assiale e momento flettente concomitante viene effettuata attraverso l'analisi plastica della sezione. Con riferimento a EN1993-1-1- cap. 6.2.9.1(P)1, la presenza di una azione assiale N è debitamente tenuta in conto con una analisi rigorosa, costruendo il dominio N-M plastico, e valutando pertanto il reale decadimento di M_{Rd} per effetto della concomitante azione assiale

Il rapporto di sfruttamento della sezione è rappresentato dal parametro:

 $\eta_1 = M_{E,d}/M_{NR,d}$

essendo M_{NR,d} il valore del momento flettente ultimo in presenza dell'azione assiale concomitante.

Per le sezioni di classe 3, 4 si effettua una comune analisi tensionale elastica deducendo per la sezione il massimo rapporto di sfruttamento, rappresentato al parametro:

η_1 = max σ_{xEd} /fy

in cui σ_{xEd} è la massime tensione normale calcolata nei vari elementi rappresentativi della sezione per effetto del cumulo delle sollecitazioni nelle varie fasi, ed f_y è la tensione di snervamento riferita all'elemento (anima/piattabande) ove σ viene calcolata.

Per piattabande di classe massima pari a 3, il calcolo delle tensioni viene effettuato in corrispondenza della fibra media come consentito da 1993-1-1 cap. 6.1(P)9 e relativa nota (per le verifiche S.L.E. si assumerà invece la posizione reale coincidente con estradosso/intradosso trave metallica).

Per le sezioni in classe 4, le caratteristiche geometrico statiche di riferimento vengono dedotte dall'applicazione dell' "hole in web method", procedendo iterativamente alla riduzione dell'area d'anima, in funzione della distribuzione di tensioni relativa a ciascuna condizione di carico, ed applicando il momento flettente parassita dovuto allo "shift" progressivo dell'asse neutro durante l'operazione di riduzione.

Per anime prive di irrigidimenti longitudinali, la riduzione (ρ_{loc}) viene rappresentata da un "foro" nell'anima, la cui posizione viene stabilita sulla base del quadro tensionale dell'iterazione precedente.

Per anime dotate di irrigidimenti longitudinali, in aggiunta alla riduzione ρ_{loc} operata sui singoli sottopannelli, si considera l'l'ulteriore riduzione "globale" ρ_c , uniformemente distribuita sulla parte compressa dell'anima, così come consentito da 1993-1-5, cap. 4.5.1(P)7.

2.2.9.3.2 Taglio V (cfr. EN1993-1-1 cap. 6.2.6)

Per la verifica a taglio, si seguono i criteri contenuti in EN 1994-2, cap. 6.2.2, EN 1993-1-1 cap. 6.2.6. e EN 1993-1-5 cap. 5; la condizione di vincolo di estremità per l'anima è quella di "non rigid end post".

In presenza di shear buckling vengono valutati sia il contributo resistente dell'anima (eq. 5.2 di EN 1993-1-5 cap. 5.2(P)1, sia il contributo resistente delle flange.

Questo ultimo valore viene calcolato con riferimento a:

- M_{f,Rd}: momento resistente plastico della sezione, valutato escludendo il contributo dell'anima, con riferimento all'effettiva azione assiale di progetto
- $M_{E,d}$ momento agente di progetto, inteso, per sezioni di classe > 2 come momento equivalente in grado di fornire, per la sezione, il massimo valore dell' "accumulated stress" σ_{xEd} .

La verifica consiste pertanto nella valutazione del rapporto: $V_{E,d}/V_{bR,d}$, che dovrà risultare ≤ 1 .

con: $V_{b,Rd} = V_{bw,Rd} = V_{bf,,Rd}$

2.2.9.3.3 Interazione azione assiale-taglio-flessione (N-V-M) (cfr. EN1993-1-5 cap. 7.)

In accordo con quanto previsto da EN 1993-1-1 cap. 6.2.10.(P)2 ed EN 1994-2 cap. 6.2.2.4.(P)1, l'interazione tra azione assiale, taglio e momento non viene studiata se $V_{Ed} < 0.5 V_{b,Rd}$ (o $V_{pl,Rd}$).

Per sezioni di qualsiasi classe, soggette o meno a "shear buckling", si seguono comunque, per unitarietà d'approccio, i criteri contenuti in EN 1993-1-5 cap. 7. Questo porta ad un giudizio sulla sicurezza

leggermente più gravoso rispetto a quanto sarebbe strettamente richiesto ad es. da EN 1994-2 cap. 6.2.2.4(P)2.

Il soddisfacimento della sicurezza sotto l'azione combinata di azione assiale, momento flettente ed azione tagliante avviene attraverso la definizione di un rapporto di sfruttamento modificato, che conduce alla disuguaglianza:

$$\eta_1 x(1-M_{f,Rd}/M_{pl,Rd})x(2\eta_3-1)^2 \le 1$$

dove:

 $\overline{\boldsymbol{\eta}_3} = V_{E,d}/V_{bw,Rd}$

$$\eta_1 = M_{E,d}/M_{c,Rd}$$

Vengono osservate le seguenti ipotesi, limitazioni:

- Per sezioni in classe >2, ovvero per anime interamente compresse, si sostituirà il rapporto di sfruttamento elastico η_1 a quello plastico $\overline{\eta_1}$ (cfr. EN 1993-1-5 cap. 7.1. (P)4).
- Per valori di $\eta_1 \ge M_{f,Rd}/M_{pl,Rd}$ non vi è interazione (l'azione flettente è portata dalle piattabande ed il taglio dall'anima).
- il valore di M_{f,Rd} viene dedotto dal corrispondenza dominio di resistenza, tenendo pertanto automaticamente conto della concomitante presenza di azione assiale.

2.3 Analisi globale sostegni

L'analisi delle sottostrutture viene condotta in modo distinto per le pile e le spalle.

Per l'analisi delle pile si è ricorso al medesimo modello ad elementi finiti utilizzato per lo studio dell'impalcato, in cui le pile sono costituite da elementi finiti tipo "thick beam" vincolati a terra mediante un incastro.

Per l'analisi delle spalle si è invece ricorso all'utilizzo del programma Paratie, come meglio descritto nel prosieguo della relazione.

2.3.1 Sezioni di verifica

Con riferimento alle elevazioni delle pile, le sezioni maggiormente sollecitate risultano essere quelle di spiccato, cui si riferiscono le verifiche strutturali. Vengono inoltre prese in esame le sezioni di intradosso plinto per lo studio delle sollecitazioni scaricate in fondazione, e lo studio delle sezioni in spessore del plinto per il dimensionamento dell'armatura di questo ultimo nelle due direzioni principali longitudinale e trasversale.

Con riferimento infine alle spalle, vengono prese in esame le sezioni di connessione con l'impalcato, della sella di spalla e dei pali di fondazione.

2.3.2 Analisi delle condizioni statiche

L'analisi statica dei sostegni viene condotta con riferimento ai contributi di carico descritti nel capitolo 3, opportunamente combinati in accordo a quanto specificato nella norma UNI EN 1990. Per la scelta dei coefficienti da adottare in fase di combinazione dei carichi ci si riferisce a quanto esposto nella norma UNI EN 1990 in funzione della tipologia di carico e del tipo di combinazione di volta in volta in esame.

In particolare verranno prese in esame le seguenti combinazioni:

- Stato Limite di Esercizio:
 - Combinazione caratteristica o rara
 - Combinazione frequente
 - Combinazione quasi-permanente
- > Stato Limite Ultimo:
 - Combinazione STR
 - Combinazione EQU
 - Combinazione GEO

Per l'esame delle combinazioni di Stato Limite Ultimo prettamente geotecniche (EQU e GEO) si rimanda all'apposita relazione geotecnica della struttura in esame.

In tutti i casi, ai fini delle verifiche, verranno elaborati gli inviluppi delle sollecitazioni volti a massimizzare/minimizzare le caratteristiche di sollecitazione di interesse, che saranno complete dei rispettivi valori concomitanti.

2.3.3 Analisi delle condizioni sismiche

Come già precisato, l'analisi delle pile e quella delle spalle verrà condotta in maniera indipendente.

In particolare per lo studio del comportamento delle pile in fase sismica si farà riferimento ad una analisi dinamica modale con spettro di risposta. La definizione dello spettro è dettata dalla scelta di alcuni parametri che descrivono la tipologia dell'opera in esame (vita nominale V_N legata al tipo di costruzione e classe d'uso C_u) e di altri che individuano la probabilità di superamento P_{VR} che un determinato livello di intensità sismica venga superato in un assegnato periodo di tempo, detto Vita di riferimento V_R . L'intensità sismica viene specificata in termini di periodo medio di ritorno T_R , definito a sua volta in funzione di P_{VR} e V_R .

In fase di verifica si è fatto riferimento allo Stato Limite Ultimo di Salvaguardia della Vita (SLU-SLV).

Di seguito si riportano i valori dei parametri sopra citati.

V_N = 50 anni (opere ordinarie)

 $C_u = 2.0$ (classe IV)

P_{VR} = 10% (Stato Limite Ultimo di Salvaguardia della Vita – SLU-SLV)

 $V_R = V_N C_u = 100 \text{ anni}$

$$T_{R} = \frac{-V_{R}}{\ln(1 - P_{V_{R}})} = 949 \text{ anni}$$

L'azione sismica viene definita a partire dalla "pericolosità sismica di base" del sito della costruzione, specificata in termini di spettro di risposta elastico in accelerazione della componente orizzontale. I parametri locali di sito necessari per la costruzione delle forme spettrali risultano i seguenti:

a_q = accelerazione orizzontale massima al suolo

F₀ = valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale

T_c = periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale

Nel caso in esame, essendo il viadotto situato nel Comune di Solarolo, i precedenti parametri assumono i seguenti valori:

 $a_g = 0.2048$

 $F_0 = 2.497$

 $T_{\rm C} = 0.28$

come desunto dall'Allegato alle norme.

L'amplificazione del moto sismico dipende invece dalla natura del terreno su cui poggia l'opera in esame. Nel caso presente, la categoria di suolo risulta la "C", relativa a depositi di terreni a grana grossa/fine mediamente addensati/consistenti, mentre le condizioni topografiche corrispondono alla categoria T1 (superficie pianeggiante).

Noti tutti i parametri sopra riportati, è possibile definire l'azione sismica in termini di spettro di risposta elastico in accelerazione. Questo è costituito da tre componenti, due orizzontali X e Y, e una verticale Z, che vengono di seguito mostrate.

In conformità a quanto consentito dalle norme vigenti al par. 3.2.3.5, viene impiegato al posto dello spettro di risposta elastico lo spettro di risposta ridotto del fattore di struttura q, in maniera da tenere automaticamente in conto le capacità dissipative della struttura, la sua sovraresistenza e l'incremento del suo periodo proprio a seguito delle platicizzazioni. In particolare, per lo studio delle elevazioni si è assunto un fattore q pari a 1.5.

Di seguito si riporta il confronto tra lo spettro di risposta elastico e lo spettro di progetto ridotto in termini di accelerazione orizzontale.

Il modello strutturale tiene conto del livello di fessurazione degli elementi a seguito dell'azione sismica, impiegando per le pile la rigidezza secante efficace al posto di quella piena. Per gli elementi di impalcato, invece, vengono adottate le caratteristiche di sezione interamente reagente dal momento in quanto normalmente essi rimangono in campo elastico.

Successivamente all'analisi, tutte le verifiche verranno condotte in termini di resistenza. Si ricorda che, in base a quanto previsto da normativa, la verifica delle fondazioni così come quella delle apparecchiature di appoggio verrà eseguita con riferimento alle sollecitazioni elastiche, ossia dedotte dall'analisi condotta impiegando lo spettro di risposta elastico (q=1.0) al posto di quello ridotto (q=1.5).

Per lo studio del comportamento sismico, invece, delle spalle, risulta necessario tener conto dell'effetto telaio dovuto all'interazione con l'impalcato. A tale scopo è stata messa a punto una procedura che verrà descritta in dettaglio nel capitolo relativo appunto all'analisi delle spalle.

2.3.4 Metodologia di verifica

Le verifiche vengono effettuate nell'ambito del metodo semiprobabilistico agli stati limite, secondo quanto specificato nelle normative prese a riferimento.

Con riferimento alle sole sottostrutture vengono effettuate le seguenti verifiche di:

- verifica a pressoflessione della sezione di spiccato delle pile
- verifica a flessione del plinto di fondazione delle pile
- verifica a pressoflessione della sezione di spiccato paraghiaia delle spalle
- verifica a pressoflessione della sezione di spiccato paramento delle spalle
- verifica a pressoflessione della suola di fondazione delle spalle
- verifica a pressoflessione della sezione critica dei pali di fondazione delle pile e delle spalle.

3. Analisi dei carichi

Nel presente capitolo si riportano i contributi di carico presi in esame fase per fase secondo quanto già anticipato al paragrafo 2.1.1.

L'analisi dei carichi viene fatta in accordo a quanto previsto dalla norma UNI EN 1990.

3.1 Carichi agenti in fase 1

3.1.1 Pesi propri acciaio (g₁')

Il peso dei vari elementi strutturali metallici è stato conteggiato con riferimento ad un peso specifico convenzionale di 78.50 kN/m³.

Il peso complessivo a metro lineare di trave per ciascuna tipologia di concio è risultato:

Riepilogo pesi lordi dei conci			
Concio	[kN/m]		
Acost	13.46		
Avar_lin	13.02		
Avar_par	12.88		
Bvar	11.48		
Cvar	11.39		
Ccost	11.36		
Dvar	10.71		
Evar	10.06		
Ecost	9.87		

I valori indicati tengono conto, oltre che del peso netto delle lamiere componenti la sezione, anche dei seguenti fattori aggiuntivi:

- peso aggiuntivo per saldature	+ 1% sul peso netto teorico
- peso aggiuntivo per bullonature, piastrame,	+ 5% sul peso netto teorico
- peso irrigidimenti principali d'anima	0.27 kN/m
- peso controventatura di montaggio (completa)	0.40 kN/m
- peso piolatura	0.10 kN/m
Si considera inoltre il peso dei traversi:	
P _{traverso corrente} = 13.03 kN	n _{traverso corrente} = 17
P _{traverso testapila} = 33.70N	n _{traverso testapila} = 2
Il peso di tutti i traversi risulta quindi pari a:	

P _{traversi} = 221.58 + 67.39 = 288.97 kN

Complessivamente si ottiene quindi un peso di vestizione pari a circa 2.69 kN a metro di singola trave, inclusi i traversi.

3.1.2 Peso proprio soletta (g₁")

Il peso complessivo del getto in calcestruzzo e delle coppelle prefabbricate risulta pari a:

g1 " = 25.0 x [13.5 x 0.297] = 100.24 kN/m

Su ciascuna delle due travi graverà pertanto un carico distribuito pari a g1 " = 50.12 kN/m.

3.1.3 Peso proprio sostegni (g₁"')

L'elevazione delle pile è costituita da un fusto a setto di spessore pari a 1.0 m avente larghezza B variabile lungo l'altezza. La seguente tabella riporta, per il singolo sostegno, le principali caratteristiche geometriche e il valore del peso proprio espresso in kN, plinto escluso.

	Pila 1	Pila 2	
H fusto	6.20	6.20	m
B top	9.90	9.90	m
B bottom	8.20	8.20	m
B medio	9.05	9.05	m
A top	9.40	9.40	m^2
A bottom	7.70	7.70	m^2
A media	8.55	8.55	m^2
V medio	53.01	53.01	m^3
Peso	1325.25	1325.25	kN

3.2 Carichi agenti in fase 2

3.2.1 Sovraccarichi permanenti (g₂)

I sovraccarichi permanenti consistono nei seguenti contributi:

- Manto asfaltatura	g2'= 10.5x3.0 =	31.50 kN/m
- Marciapiedi	g2" = 2x25.0x0.15x1.5 =	11.25 kN/m

- Carter di finitura	g2‴ ≅ 2x1.5 =	3.0 kN/m
- Guardavia	g2 ^{IV} = 2x1.5 =	3.0 kN/m
- Reti di protezione	$g2^{\vee} = 2x0.5 =$	1.0 kN/m

Il carico totale per effetto dei contributi permanenti risulta quindi: $g_2 = 49.75$ kN/m. Su ciascuna delle due travi graverà pertanto un carico distribuito pari a $g_2 = 24.88$ kN/m.

3.2.2 Reologia calcestruzzo (ε₂)

Il calcolo delle deformazioni conseguenti alla viscosità e al ritiro viene effettuato in accordo ai criteri presentati nell'Appendice B della norma UNI EN 1992-1-1.

Viscosità

Le deformazioni viscose subite dalla soletta per effetto dei carichi di tipo permanente generano all'interno della sezione una redistribuzione delle tensioni con generale migrazione delle tensioni dal calcestruzzo all'acciaio e conseguente nascita, sulle strutture iperstatiche, di sollecitazioni "parassite". Come d'uso, si terrà conto di tale redistribuzione, eseguendo l'analisi della struttura sotto l'effetto dei carichi di lunga durata (fase 2a-b) tenendo conto di un modulo elastico ridotto della soletta.

Di seguito si riporta il calcolo della deformazione finale da ritiro e il calcolo dei coefficienti di viscosità valutati con l'aiuto di un foglio elettronico con riferimento ai carichi di fase 2, ossia permanenti, cedimenti e ritiro.

Dati soletta cls per va	alutazione effetti riti	ro/viscosità			
t	296.67 m	m - Spessor	re complessivo soleti	a	
tcalc	236.67 m	m - Spessor	e per calcolo ritiro (c	oppella esclus	a)
b	13500.00 m	m - Larghezz	za reale	••	,
Ac	3195000.00 m	m ² - Area pe	r calcolo spessore fi	ttizio	
u	15893.33 m	m - Perimetr	o di calcolo (2 x t + b	inf + b marcia	ıp dx + b marciap sn)
ho	402.06 m	m - Spessor	e fittizio		
alpha term	1.00E-05				
Dati e parametri per v	alutazione ritiro				
h _o	402.06 m	m			
t _s	2				
ads1	4 ce	emento tipo N	N		
ads2	0.12 ce	emento tipo N	٨		
βRH	0.7564 (1	992-1-1- B.1	2)		
ε _{cd (0)}	2.533E-04 ε _s	h essiccamer	nto (EN1992-1-1 B.1	1)	
ε _{ca (∞)}	6.250E-05 ε _s	_h autogeno (l	EN1992-1-1 - 3.11)		
k _h	0.72 E	N 1992-1-1 -	prospetto 3.3		
ε _{cs} (∞)	-2.437E-04				
Effetti primari del riti	ro				
Nr (kN)	-5310.51 kl	N			
Valutazione coefficie	nti di viscosità (cfr.	Annesso B	della EN 1992-1-1)		
~1	0.866		R 8c		
α2	0.800		B.8c		
α2	0.902		B.8c		
α	0		B.9		
β(f _{cm})	2.56		B.4		
β _h	1117.87		B.8a / B.8b		
Φ _{RH}	1.185		B.3a / B.3b		
	t ₀₁	t ₀₂			
t _{oi}	30.00	1.00			
t _{0i,mod}	30.00	1.00	B.5		
β(t0)	0.482	0.909	B.2		
φ0	1.463	2.760	B.2		
φ (t ₀ ,t _∞)	1.445	2.724	B.1	2.08	4
Coefficienti di omoge	eneizzazione		_		
	mE	mG	E _{cm(t)}	ψ	
n ₁	0.00	0.00	0.00		
n _{2a}	15.955	14.73	13161.65	1.10	per carichi permanenti
n _{2b}	15.396	14.21	13639.79	0.55	per ritiro
n _{2c}	31.345	28.93	6699.60	1.50	per deformaz. impost
n ₃	6.162	5.69	34077.15		per accidentali di breve durata

3.2.3 Cedimenti differenziali ai sostegni (٤4)

Si considera per ciascun sostegno, un cedimento pari allo 0.2 ‰ della media delle luci concorrenti al sostegno in esame, ottenendo:

 $\delta_{1/2}$ = 7.1 mm pila 1 e 2

I cedimenti di ciascun sostegno saranno combinati in modo da fornire, di volta in volta, le sollecitazioni più gravose sull'elemento strutturale in esame.

3.3 Carichi agenti in fase 3

3.3.1 Variazioni termiche (ε₃)

La valutazione delle azioni da variazioni termiche viene effettuata in base ai criteri contenuti nelle norme UNI EN 1991-1-5 e nell'Annesso Nazionale.

3.3.1.1 Variazioni termiche uniformi Δt_N

Per l'Italia, il "range" di temperatura dell'aria è definito dai seguenti valori:

T_{min} = -15 °C

T_{max} = +45 °C

a cui corrispondono, per ponti di gruppo 2 (tipologia impalcato a struttura composta), i seguenti valori riferiti alla struttura:

Te_{min} = -11 °C

Te_{max} = +49 °C

Fissando T_0 a 15.0 °C, dedotto dall'Annesso nazionale dell'Eurocodice, si ottiene l'escursione termica effettiva subita dall'impalcato:

$$\Delta TN_{comp} = -26 \ ^{\circ}C$$

 ΔTN_{exp} = +34 °C

a cui corrisponde complessivamente un'escursione pari a:

 ΔT_N = 60.0 °C.

3.3.1.2 Variazioni termiche lineari ${\bigtriangleup t}_{M}$

Per ponti di gruppo 2, i valori caratteristici delle variazioni lineari di temperatura (gradiente tra intradosso ed estradosso) risultano:

 $\Delta T_{M,heat}$ = 15.0 °C

 $\Delta T_{M,cool}$ = -18.0 °C

Considerando il coefficiente riduttivo di Δt_{pos} concesso per tenere conto dello spessore del manto di asfaltatura (k_{sur} = 1 per t = 100.0 mm), si ottengono i valori di progetto:

$k_{sur} \Lambda T_{M heat} = 15.0 \ ^{\circ}C$	estradosso più caldo dell'intradosso
sur a Mineat 10.0 0	

 $k_{sur} \Delta T_{M,cool} = -18.0 \ ^{\circ}C$ estradosso più freddo dell'intradosso

Facendo riferimento all'altezza media h_{media} dei vari conci, si ottengono i gradienti riassunti nella seguente tabella:

Concio	DT	h media	gradDT
Acost	-18	2.70	-6.67
Avar_lin	-18	2.45	-7.36
Avar_par	-18	2.36	-7.63
Bvar	-18	1.69	-10.64
Cvar	-18	1.37	-13.17
Ccost	-18	1.35	-13.33
Dvar	-18	1.88	-9.57
Evar	-18	1.47	-12.25
Ecost	-18	1.35	-13.33
Acost	15	2.70	5.56
Avar_lin	15	2.45	6.13
Avar_par	15	2.36	6.35
Bvar	15	1.69	8.87
Cvar	15	1.37	10.97
Ccost	15	1.35	11.11
Dvar	15	1.88	7.97
Evar	15	1.47	10.21
Ecost	15	1.35	11.11

3.3.1.3 Combinazione degli effetti uniformi e lineari

La combinazione degli effetti dovuti alla variazione termica uniforme e lineare verrà effettuata sfruttando la formula di combinazione proposta dalla normativa, che prevede due combinazioni principali in cui $\Delta t_M e \Delta t_N$ sono amplificati mediante differenti coefficienti di combinazione:

C1: Δt_M + 0.35 Δt_N

C2: 0.75 Δt_M + Δt_N

3.3.2 Carichi mobili (q₁)

I carichi da traffico transitanti sui ponti sono definiti nella norma UNI EN 1991-2. Si fa riferimento in particolare ai ponti di I categoria.

Nel caso in esame, la carreggiata, di larghezza utile pari a 10.5 m, è in grado di ospitare 3 corsie di carico di larghezza convenzionale pari a 3.0 m. La parte rimanente risulta quindi pari a 1.50 m.

Per le verifiche globali dell'impalcato e dei sostegni si ricorre al Modello di carico 1 (LM1), mostrato in figura, composto da due sistemi accoppiati: un tandem system (TS) formato da un veicolo a due assi, avente ciascuno un peso pari a Q_{ik} , e un carico uniformemente distribuito (UDL system), avente un peso per unità di superficie pari a q_{ik} . In funzione del numero di corsie di volta in volta caricate, i valori di Q_{ik} e q_{ik} sono quelli riportati in tabella.

Location	Tandem system TS	UDL system
	Axle loads Q_{ik} (kN)	q_{ik} (or q_{ik}) (kN/m ²)
Lane Number 1	300	9
Lane Number 2	200	2,5
Lane Number 3	100	2,5
Other lanes	0	2,5
Remaining area ($q_{\rm rk}$)	0	2,5

Sui marciapiedi viene inoltre considerata, quando peggiorativa, la presenza di un carico da folla, denominato Modello di carico 4, costituito da un carico uniformemente distribuito di intensità pari a 5 kN/m² (valore caratteristico).

Le diverse disposizioni dei carichi mobili sulla sezione trasversale vengono automaticamente determinate dal programma in base alle sollecitazioni da massimizzare/minimizzare in una data sezione di verifica. Analogamente la disposizione longitudinale dei carichi mobili viene automaticamente determinate dal programma sulla base delle linee di influenza delle sollecitazioni di interesse in corrispondenza dei punti di verifica.

In particolare, le disposizioni trasversali dei carichi mobili dovranno essere tali da massimizzare/minimizzare le seguenti caratteristiche di sollecitazione:

- T in asse travi
- M_{torc} dell'impalcato

Mentre le disposizioni longitudinali dei carichi mobili dovranno essere tali da massimizzare/minimizzare le seguenti caratteristiche di sollecitazione:

- M, T e N in mezzeria campata
- M, T e N in testa pila
- M, T e N in testa spalla
- M, T e N in tutti i punti in cui si verifica un cambiamento di sezione trasversale

Con riferimento invece alle apparecchiature d'appoggio, le disposizioni longitudinali dei carichi mobili dovranno essere tali da massimizzare/minimizzare le reazioni vincolari (max/min Rz).

Infine con riferimento ai sostegni, le disposizioni trasversali e longitudinali dei carichi mobili dovranno essere tali da massimizzare/minimizzare le sollecitazioni assiali e flettenti.

Per le verifiche locali della soletta d'impalcato si ricorre invece al Modello di carico 2 (LM2), mostrato in figura, composto da un veicolo ad un solo asse, avente un peso complessivo pari a 400 kN. Dettagli riguardo alle posizioni più significative di tale carico vengono forniti nel paragrafo relativo alle verifiche locali della soletta.

Per le verifiche a fatica dell'impalcato si ricorre infine al Modello di carico a fatica 3 (FLM3), mostrato in figura, composto da un veicolo a quattro assi, aventi ciascuno un peso pari a 120 kN.

Anche in questo caso le diverse disposizioni longitudinali del modello di carico da far viaggiare sulla corsia lenta vengono automaticamente determinate dal programma in base alle sollecitazioni da massimizzare/minimizzare in una data sezione di verifica.

3.3.3 Azioni di frenatura (q₃)

La forza di frenatura, valutata in accordo alla norma UNI EN 1991-2, è data da un'azione longitudinale funzione del carico verticale totale agente sulla corsia convenzionale n.1. La sua intensità è pari a:

 $Q_{lk} = 0.6 \text{ x} (2 \text{ x} Q_{1k}) + 0.10 \text{ x} q_{1k} \text{ x} w_1 \text{ x} L$

dove:

 $Q_{1k} = 300 \text{ kN}$

 $q_{1k} = 9 \text{ kN/m}^2$

w₁ = 3.0 m

L = 98.40 m

Tale valore deve inoltre risultare: $180 \leq Q_{lk} \leq 900 \ kN$

Ne consegue:

Q_{lk} = 0.6 x (2 x 300) + 0.10 x 9 x 3 x 94.80 = 615.96 kN

La forza di frenatura distribuita uniformemente sulla travata d'impalcato risulta quindi:.

q_x = +/-615.96/94.80 = +/- 6.5 kN/m

3.3.4 Gruppi di azioni da traffico

Le azioni da traffico vengono definite, in base a quanto specificato nella norma EN 1991-2 al paragrafo 4.5, come azioni multi-componenti che combinano tra loro i singoli carichi agenti sulla carreggiata, ed in particolare i modelli di carico mobile (LM1 e LM2), il carico da folla sui marciapiedi, l'azione di frenatura e la forza centrifuga.

Nel presente caso, i gruppi di azioni da traffico presi in esame risultano quelli indicati nella seguente tabella.

	LM1	LM2	LM4	Frenatura
Gruppo 1a	Val. caratt.			
Gruppo 1b		Val. caratt.		
Gruppo 2	Val. frequente			Val. caratt.
Gruppo 4			Val. caratt.	

In particolare i valori dei coefficienti di combinazione adottati per il modello LM1 sono i seguenti:

LM1	Ψo	Ψ1
TS	0.75	0.75
UDL	0.40	0.40

mentre quelli relativi al modello LM2 e al carico da folla LM4 risultano i seguenti:

	Ψ0	Ψ 1
LM2	0.00	0.75
LM4	0.00	0.75

3.3.5 Azione del vento (q₅)

L'azione del vento viene valutata in accordo alla norma UNI EN 1991-1-4 e all'Annesso Nazionale.

Si considera, per semplicità, il vento agente perpendicolarmente all'asse tracciato, nella direzione più sfavorevole. L'azione trasversale del vento agente sulla superficie di prospetto dell'impalcato viene valutata sia nella condizione di ponte scarico sia nella condizione di ponte carico, come esposto nel seguito.

La pressione di picco del vento viene valutata come somma di una componente media e di una fluttuante.

3.3.5.1 Componente media del vento

La componente media del vento viene calcolata come segue:

 $q_{b}(z) = 0.5 \rho v_{m}^{2}(z)$

dove:

 $\rho = 1.25 \text{ kg/m}^3$

 $v_m(z)$ = velocità media del vento, valutata come di seguito esposto.

Per la zona 3 (Toscana) il valore dei parametri necessari alla valutazione della velocità di riferimento v_b risultano i seguenti:

 $v_{b,0} = 27 \text{ m/s}$

a₀ = 500 m

$$k_a = 0.02 \ 1/s$$

Considerando il coefficiente direzionale $c_{dir} = 1$ e il coefficiente di stagionalità $c_{season} = 1$, si ottiene una velocità di base del vento pari a:

 $v_b = c_{dir} x c_{season} x v_{b,0} = 27 m/s.$

In funzione della quota z, la velocità media del vento può essere valutata come segue:

 $v_{m}(z) = c_{r}(z) \times c_{o}(z) \times v_{b}$

dove:

 $c_o(z)$ = coefficiente di orografia, che assume valore unitario;

 $c_r(z)$ = coefficiente di rugosità.

In particolare il coefficiente di rugosità, dipendente dalla categoria di terreno, viene calcolato secondo la seguente espressione:

$$\mathbf{c}_{r}(\mathbf{z}) = k_{r} \ln \left(\frac{z}{z_{0}}\right)$$
 per $\mathbf{z}_{min} \le \mathbf{z} \le \mathbf{z}_{max}$

 $c_r(z) = c_r(z_{min})$

per z ≤ z_{min}

Trovandoci in Categoria II, risultano i seguenti parametri:

z ₀ = 0.05 m	lunghezza di rugosità
z _{min} = 2.0 m	altezza minima
z _{max} = 200.0 m	altezza massima

z_{0,II} = 0.05 m

$$k_r = 0.19 \left(\frac{z_0}{z_{0,II}}\right)^{0.07} = 0.19$$

Da cui risulta il seguente andamento di c_r (z).

Di conseguenza, la componente media del vento, calcolata come anticipato nel seguente modo:

$$q_{b}(z) = 0.5 \rho v_{m}^{2}(z)$$

ad una quota di circa 10.0 m dal suolo assume il valore seguente:

 $q_b (10.0) = 0.5 \rho v_m^2 (10.0) = 461.733 \text{ N/m}^2.$

3.3.5.2 Componente turbolenta del vento

La componente turbolenta del vento viene invece calcolata come segue:

$$q_v(z) = 7 \times I_v(z) \times 0.5 \rho v_m^2(z)$$

dove:

 $I_v(z)$ = intensità di turbolenza, calcolata come di seguito esposto:

$$I_{v}(z) = \frac{\sigma_{v}}{v_{m}(z)} = \frac{k_{l}}{c_{0}(z)\ln\left(\frac{z}{z_{0}}\right)} \quad \text{per } z_{\min} \le z \le z_{\max}$$

 $I_v(z) = I_v(z_{min})$ per $z \le z_{min}$

Essendo:

$k_1 = 1.0$	fattore della turbolenza
$c_0(z) = 1.0$	coefficiente di orografia
z ₀ = 0.05 m	lunghezza di rugosità
z _{min} = 2.0 m	altezza minima
z _{max} = 200.0 m	altezza massima

ne consegue che, per z= 10.0 m, risulta:

 $I_v(10.0 \text{ m}) = 0.189$

La componente turbolenta del vento infine sarà pari a:

$$q_v (10) = 7 \times I_v (10.0) \times 0.5 \rho v_m^2 (10.0) = 610.03 \text{ N/m}^2$$

3.3.5.3 Valore di picco della pressione del vento

Il valore di picco della pressione del vento è dato dalla somma della componente media e di quella turbolenta del vento:

$$q_p(z) = q_b(z) + q_p(z) = [1 + 7 \times I_v(z)] \times 0.5 \rho v_m^2(z)$$

Per z = 10.0 m risulta:

 $q_p(z) = q_b(z) + q_p(z) = 1071.76 \text{ N/m}^2$

L'azione del vento agente effettivamente sull'impalcato del ponte in direzione trasversale risulta infine determinata come segue:

$$F_{wk} = c_{f,x} q_p (z) h$$

dove:

$$c_{f,x} = c_{f,x,0}$$
 coefficiente di forza in direzione trasversale

$$c_{f,x,0} = f(b/d_{tot})$$
 coefficiente di forza in assenza di flusso di estremità libera

Tale coefficiente, funzione della larghezza d'impalcato b e dell'altezza esposta al vento d_{tot} , assume i seguenti valori:

•	Caso di impalcato scarico:	c _{f,x} (13.5/2.26) = 1.3

• Caso di impalcato carico: $c_{f,x} (13.5/4.92) = 1.6$

L'altezza esposta al vento, tenendo conto di un ingombro in altezza del parapetto pari a 0.30 m, nel caso di impalcato scarico risulta pari a 2.26 m, mentre nel caso di impalcato carico, tenendo conto di un ingombro in altezza del veicolo pari a 3.0 m, risulta pari a 4.92 m. Si precisa che, a favore di sicurezza, è stata presa un'altezza di veicolo pari a 3.0 m, come richiesto espressamente dal cogente D.M. 2008, al posto di 2.0 m come consentito dalle norme EN 1991-1-4.

Di conseguenza la pressione del vento agente sull'impalcato risulta pari a:

- Caso di impalcato scarico: $c_{f,x} q_p (10.0 \text{ m}) = 1393.29 \text{ N/m}^2 = 1.39 \text{ kN/m}^2$
- Caso di impalcato carico: $c_{f_x} q_p (10.0 \text{ m}) = 1714.82 \text{ N/m}^2 = 1.71 \text{ kN/m}^2$

L'azione del vento agente sull'impalcato, data dal prodotto della pressione per l'altezza esposta al vento, assume i seguenti valori a metro lineare:

- Caso di impalcato scarico: $F_{wk} = c_{f,x} q_p (z) h_{imp \ scarico} = 1.39 \ x \ 2.26 = 3.14 \ kN/m$
- Caso di impalcato carico: $F_{wk} = c_{f,x} q_p (z) h_{imp carico} = 1.71 x 4.92 = 8.41 kN/m$

3.3.6 Resistenze parassite dei vincoli (q₇)

Per la valutazione delle resistenze passive dei vincoli si fa riferimento a un coefficiente di attrito base pari a $\mu_{base} = 0.03$. La forza d'attrito viene infine valutata sulla base dell'azione dei soli contributi permanenti (pesi propri e permanenti) scaricati sul singolo sostegno, ossia in base ai seguenti contributi:

R_{z pesi propri (acciaio + soletta)} = 2190.26 kN

R_{z pesi permanenti} = 1084.33kN

R_{z totali} = 3931.31 kN

Le forze d'attrito sviluppate dagli appoggi sul singolo sostegno risultano quindi le seguenti:

Attrito appoggio pila = μ Rz = 0.03 x 3931.31 = 117.94 kN

3.3.7 Azione sismica (q₆)

La caratterizzazione dell'azione sismica dell'opera in esame viene effettuata ai sensi del D.M. 14 gennaio 2008 e relative istruzioni. In particolare si fa riferimento ai seguenti parametri legati all'opera in sè:

- Vita utile dell'opera = 50 anni
- Classe d'uso IV => Cu = 2.0
- Vita di riferimento = 100 anni
- o Probabilità di superamento P_{RV} (SLV) = 10%

I parametri legati al sito e alle caratteristiche del terreno risultano i seguenti:

- o Comune: Solarolo (Long. 10.5588; Lat. 45.548)
- o Categoria di sottosuolo: C
- o Condizione topografica: T1

Nel seguente prospetto si riassumono i valori delle variabili dipendenti dai parametri appena individuati, utilizzati allo scopo di definire gli spettri di risposta.

NTC 2008: Parametri dello scuotimento per il periodo di ritorno prefissa	ato
Parametri per l'elaborazione degli spettri di risposta orizzontale e vertic	ale

ag	2.048		
Fo	2.497		
Fv	1.525		
T*C	0.280		
Cc	1.598		
St	1.000		
n	1.00		
	Spettro_orizz	Spettro_vert	
Ss	Spettro_orizz 1.393	Spettro_vert 1.000	
Ss S	Spettro_orizz 1.393 1.393	Spettro_vert 1.000 1.000	
Ss S Tb	Spettro_orizz 1.393 1.393 0.149	Spettro_vert 1.000 1.000 0.050	
Ss S Tb Tc	Spettro_orizz 1.393 1.393 0.149 0.447	Spettro_vert 1.000 1.000 0.050 0.150	
Ss S Tb Tc Td	Spettro_orizz 1.393 1.393 0.149 0.447 2.419	Spettro_vert 1.000 1.000 0.050 0.150 1.000	

Le seguenti figure restituiscono lo spettro di risposta elastico utilizzato per la definizione delle componenti sismiche orizzontali e verticali.

4. Analisi della mutua interazione di impalcato e spalla

Come preannunciato nel capitolo relativo all'impostazione delle analisi effettuate per lo studio del ponte integrale in oggetto, la metodologia impiegata prevede che vengano condotte analisi separate rispettivamente per l'impalcato e la struttura di spalla riproducendo però in ciascuna analisi le condizioni di vincolo derivanti dalla presenza della porzione di struttura non considerata.

Sotto ciascun contributo di carico il comportamento dell'impalcato viene studiato scindendo gli effetti flessionali e assiali, che vengono esaminati indipendentemente operando nel seguente modo. Per i contributi di carico che causano principalmente effetti flessionali (pesi propri, permanenti, azioni da traffico, gradienti termici, etc) si studia l'impalcato dapprima come grigliato di travi libero assialmente ma vincolato alle estremità mediante "joint rotazionali" in grado di riprodurre la rigidezza flessionale della paratia di spalla. Per tener conto dell'interazione con la paratia, l'impalcato viene studiato in secondo luogo come grigliato di travi libero assialmente e privo di joint rotazionali, assoggettato alle forze di scambio trasmesse dalla spalla, valutate mediante il programma Paratie come descritto nel seguito. Per i contributi di carico che causano, invece, principalmente effetti assiali (ritiro e variazioni termiche uniformi) si studia l'impalcato come grigliato

di travi libero assialmente assoggettato alle forze di scambio trasmesse dalla spalla, valutate mediante il programma Paratie come descritto nel seguito.

Tutti gli effetti flessionali ed assiali dei vari contributi di carico sopraccitati vengono infine considerati in fase di dimensionamento e verifica degli elementi di impalcato.

Per determinare invece le cosiddette "azioni di scambio" tra impalcato e corpo spalla, è necessario valutare innanzitutto la rigidezza della paratia di pali costituente la spalla. A tale scopo questa viene studiata mediante un modello piano in cui sono presenti condizioni al contorno tali da riprodurre il vincolo fornito dall'impalcato. Nell'ipotesi che l'impalcato possa essere assunto rigido assialmente, tale vincolo risulta simulato per mezzo di un carrello con piano di scorrimento verticale. Una molla viene inoltre inserita per riprodurre la rigidezza flessionale dell'impalcato.

Di seguito si riporta nel dettaglio il modello impiegato per lo studio della paratia:

Ripercorrendo la procedura delineata sommariamente in precedenza, si illustrano di seguito i principali risultati dei vari passaggi della suddetta metodologia.

4.1 Fasi realizzative della paratia di spalla e della connessione con l'impalcato

Le fasi di reinterro e scavo della paratia insieme con il montaggio dell'impalcato vengono di seguito sinteticamente richiamate:

Fase 1: Condizione geostatica (piano di lavoro a quota -2.85 m)

Fase 2: Realizzazione della paratia (pali + spinotto di collegamento + sella)

Fase 3: Montaggio dell'impalcato e realizzazione della connessione con paratia (carrello verticale + molla rotazionale)

Fase 4: Realizzazione dello scavo a valle (*) e del reinterro a monte

(*) Con riferimento alle fase 3 e 4 si vuole fare la seguente precisazione: la configurazione finale del terreno a valle della paratia di spalla prevede un pendio 4/7; in fase di analisi si è scelto, operando a favore di sicurezza, di modellare tale configurazione ricorrendo ad una "berma equivalente" che presenta un'altezza di scavo pari a 7.20 m circa, valutata sulla base della costruzione grafica sotto riportata.

Si precisa inoltre che si è scelto volutamente di modellare lo scavo a valle successivamente alla fase di montaggio dell'impalcato e della realizzazione della connessione con la spalla in quanto la presenza di uno scavo così profondo in assenza del contrasto dato dall'impalcato avrebbe portato a dedurre delle sollecitazioni molto ingenti sulla paratia che non avrebbero rispecchiato il reale stato tensionale.

Con riferimento, infine, alla stratigrafia del terreno presente in sito si riporta quanto segue:

Stratigrafia di calcolo per analisi cavalcavia Sovarolo Sondaggi di riferimento SB15 e SB16										
Parametri caratteristici quota piano campagna p.c. = 28.5m s.l.m. coincide con z=0m										
2	2	DR	peso	fi	C'	E	Eur	ko(NC)	OCR	n
da	a	(%)	(kN/mc)	(°)	(kPa)	(kPa)	(kPa)	(-)	(-)	(-)
Hrilevato	0	-	20	35	0	40000	60000	0.426		
0	-10	50÷60	19	36	0	30000	50000	0.412]	
-10	-15	40÷50	19	33	0	20000	64000	0.455	4	0
-15	-20	coesivo	19	30	0	50000	04000	0.500] '	
-20	-25	40.50	19	33	0	42000	105000	0.455]	
-25	-	40-00	19	30	0	42000	100000	0.500]	
Ka e Kp calcolati secondo la tool del programma paratie assumendo angolo terreno/pali pari a 2/3 fi										
alasse di suele C (Va 30=254m/ses da CH15): Depositi di terrezi a arasse mediamente addeposti										

falda a 4m da p.c.

Per ulteriori dettagli riguardo alle caratteristiche del terreno si rimanda alla relazione geotecnica.

4.2 Azioni scambiate dalla paratia all'impalcato per effetto di reinterro e scavo

Per studiare l'effetto derivato dal reinterro e dallo scavo della paratia si è impiegato un modello della paratia isolata, assumendo che a quota del baricentro impalcato sia posizionato un carrello verticale (spostamento orizzontale impedito) che restituisce il vincolo offerto dall'impalcato.

Il seguente prospetto riassume i valori di calcolo delle sollecitazioni di scambio valutate per effetto del reinterro e dello scavo della paratia. I valori sono espressi a metro lineare di spalla.

Effetti dell'azione di reinterro e scavo:

Fx spalla A =	-815400.00 N/m
My spalla A =	-1436400.00 Nm/m
Fx spalla B =	815400.00 N/m
My spalla B =	1436400.00 Nm/m

4.3 Azioni trasmesse dalla paratia all'impalcato per effetto del ritiro

Tra le azioni scambiate tra impalcato e paratia, quelle di importanza decisiva risultano dovute essenzialmente al ritiro e alle variazioni termiche. Per determinare le azioni di scambio risulta necessario studiare le curve di comportamento rispettivamente della paratia e dell'impalcato soggetti rispettivamente ai suddetti contributi di carico, ed individuare infine i punti di intersezione di tali curve, i quali rappresenteranno la situazione equilibrata e congruente in cui impalcato e paratia si trovano realmente.

Partendo innanzitutto dagli effetti del ritiro, il comportamento dell'impalcato è stato studiato sulla base delle sezioni fessurate nella condizione a lungo termine. Sono state prese in particolare in esame le due condizioni limite di "impalcato incastrato agli estremi" (A) e di "impalcato semplicemente appoggiato" (B): nel primo caso l'accorciamento indotto dal ritiro risulta impedito e di conseguenza la forza trasmessa al vincolo risulta la massima possibile; viceversa nel secondo caso, l'impalcato risulta libero di accorciarsi, pertanto lo spostamento assiale risulterà quello massimo possibile mentre la forza trasmessa al vincolo sarà nulla. Essendo la situazione reale intermedia tra le due condizioni limite appena richiamate, si può concludere che il comportamento dell'impalcato è rappresentato dalla retta che unisce i punti A e B, riportata nella seguente figura.

Curve di comportamento dell'impalcato per effetto del ritiro

Il comportamento della paratia per effetto del ritiro dell'impalcato è stato studiato andando a valutare innanzitutto la rigidezza traslazionale della spalla. A tale scopo la paratia è stata assoggettata ad una forza orizzontale di intensità via via crescente, diretta verso valle (ossia nel verso che "tira" la paratia verso l'impalcato), posizionata in corrispondenza della quota del baricentro impalcato..

Il comportamento della paratia per effetto del ritiro dell'impalcato risulta quindi rappresentato dalla curva forza-spostamento riprodotta nella seguente figura.

Il comportamento reale del ponte integrale in esame soggetto all'azione di ritiro dell'impalcato risulta quindi individuato dal punto di intersezione delle due curve di comportamento delle due parti strutturali, ossia dal punto C evidenziato nella seguente figura.

Curve caratteristiche impalcato-paratia per effetto del ritiro

Il punto C di intersezione individua l'effettivo spostamento orizzontale della paratia, coincidente con l'effettivo accorciamento dell'impalcato per effetto del ritiro (δ_{ritiro}), e permette di determinare immediatamente l'azione orizzontale (F_{ritiro}) scambiata tra le due parti strutturali.

Il seguente prospetto riassume i valori delle sollecitazioni di scambio valutate per effetto del ritiro. I valori sono espressi a metro lineare di spalla.

Effetti dell'azione del ritiro:

Fx spalla A =	-257416.79 N
My spalla A =	713809.43 Nm
Fx spalla B =	257416.79 N
My spalla B =	-713809.43 Nm

4.4 Azioni trasmesse dalla paratia all'impalcato per effetto delle variazioni termiche uniformi

Analogamente a quanto fatto per valutare gli effetti del ritiro, i comportamenti di impalcato e paratia sono stati esaminati sotto l'effetto delle variazioni termiche uniformi sia positive (dilatazione dell'impalcato) che negative (contrazione dell'impalcato).

Partendo innanzitutto dal comportamento dell'impalcato, sono state considerate le sue caratteristiche derivate dalle sezioni fessurate nella condizione a breve termine e sono state esaminate le due condizioni limite di "impalcato incastrato agli estremi" (A) e di "impalcato semplicemente appoggiato" (B): nel primo caso l'accorciamento/allungamento indotto dalla variazione termica risulta impedito e di conseguenza la

forza trasmessa al vincolo risulta la massima possibile; viceversa nel secondo caso, l'impalcato risulta libero di accorciarsi/allungarsi, pertanto lo spostamento assiale risulterà quello massimo (in valore assoluto) possibile mentre la forza trasmessa al vincolo sarà nulla. Essendo la situazione reale intermedia tra le due condizioni limite appena richiamate, si può concludere che il comportamento dell'impalcato è rappresentato dalla retta che unisce i punti A e B, riportata nella seguente figura.

Comportamento impalcato per DT uniformi positive e negative

Il comportamento della paratia per effetto delle variazioni termiche dell'impalcato è stato studiato andando a valutare innanzitutto la rigidezza traslazionale della spalla. A tale scopo la paratia è stata assoggettata ad una forza orizzontale di intensità via via crescente, diretta verso valle (ossia nel verso che "tira" la paratia verso l'impalcato), posizionata in corrispondenza della quota del baricentro impalcato.

Il comportamento della paratia per effetto delle variazioni termiche dell'impalcato risulta quindi rappresentato dalle curve forza-spostamento riprodotte di seguito.

Comportamento paratia: valutazione rigidezza traslazionale per effetto di una contrazione termica dell'impalcato

Il comportamento reale del ponte integrale in esame soggetto a variazioni termiche risulta quindi individuato dal punto di intersezione delle due curve di comportamento delle due parti strutturali.

Curve caratteristiche impalcato-paratia per effetto del DT uniforme

Il punto di intersezione di ciascuna coppia di curve individua l'effettivo spostamento orizzontale della paratia, coincidente con l'effettivo accorciamento/allungamento dell'impalcato per effetto della variazione termica (δ_{term}), e permette di determinare immediatamente l'azione orizzontale (F_{term}) scambiata tra le due parti strutturali.

Il seguente prospetto riassume i valori di calcolo delle sollecitazioni di scambio valutate per effetto delle variazioni termiche uniformi. I valori sono espressi a metro lineare di spalla.

Effetto della dilatazione termica:

Fx spalla A =	2446552.10 N
My spalla A =	-3390189.55 Nm
Fx spalla B =	-2446552.10 N
My spalla B =	3390189.55 Nm

Effetto della contrazione termica:

Fx spalla A =	-471877.07 N
My spalla A =	1419997.80 Nm
Fx spalla B =	471877.07 N
My spalla B =	-1419997.80 Nm

4.5 Azioni trasmesse dalla paratia all'impalcato per effetto dei contributi di carico verticale

Come già accennato in precedenza, i carichi verticali agenti sull'impalcato, ed in particolare i pesi permanenti e i carichi mobili, che su una struttura semplicemente appoggiata in corrispondenza delle spalle, indurrebbero solamente effetti flessionali e taglianti nell'impalcato, nel caso di ponti integrali inducono anche una componente assiale dovuta all'interazione dell'impalcato con il corpo spalla. Per la determinazione di tali componenti si opera come di seguito descritto.

Si studia innanzitutto l'impalcato sotto l'azione di tali carichi nella configurazione che vede le estremità delle travi vincolate in semplice appoggio con l'inserimento di una molla rotazionale in grado di riprodurre la rigidezza flessionale della paratia. Una volta noto il momento che nasce alle estremità dell'impalcato per effetto di tali carichi, si passa a studiare la paratia nella configurazione già descritta in cui risulta vincolata da un carrello verticale e da una molla rotazionale, che riproducono il vincolo esistente con l'impalcato. Prima dell'applicazione del momento dovuto ai carichi esterni, la molla rotazionale viene sostituita da un momento pari alla reazione della molla stessa, valutata per effetto delle fasi intercorse fino a quel momento (sostanzialmente le operazioni di scavo e reinterro); successivamente viene applicato il momento esterno. Chiaramente dovendo tener conto della storia di carico della paratia, la reazione finale del carrello dovrà essere depurata degli effetti derivanti dalle operazioni di scavo e reinterro eseguite prima dell'applicazione del momento esterno. La reazione del carrello così valutata rappresenta quindi la forza assiale scambiata dalla paratia con l'impalcato per conto dei contributi di carico verticali agenti sull'impalcato.

Di seguito vengono riassunti i valori di calcolo delle sollecitazioni di scambio valutate per effetto dei vari contributi di carico presi in esame. I valori sono espressi a metro lineare di spalla.

Effetto dei carichi permanenti:

Fx spalla A =	2025.00 N
Fx spalla B =	-2025.00 N
Effetto dei carichi mobili	CASO 1: max Fz
Fx spalla A =	492075.00 kN
Fx spalla B =	-492075.00 kN
Effetto dei carichi mobili	CASO 2: min Fz
Fx spalla A =	-149917.50 kN
Fx spalla B =	149917.50 kN
Effetto dei carichi mobili	CASO 3: max My
Fx spalla A =	-239017.50 kN
Fx spalla B =	239017.50 kN
Effetto dei carichi mobili	CASO 4: min My
Fx spalla A =	581175.00 N
Fx spalla B =	-581175.00 N
Effetto dei carichi mobili_	conc CASO 1: max Fz
Fx spalla A =	247725.00 kN
Fx spalla B =	-247725.00 kN
Effetto dei carichi mobili_	conc CASO 2: min Fz
Fx spalla A =	-73575.00 kN
Fx spalla B =	73575.00 kN
Effetto dei carichi mobili_	conc CASO 3: max My
Fx spalla A =	-135000.00 kN
Fx spalla B =	135000.00 kN
Effetto dei carichi mobili_	conc CASO 4: min My
Fx spalla A =	392175.00 N
Fx spalla B =	-392175.00 N

Effetto dei carichi FLM3	CASO 1: max Fz
Fx spalla A =	88425.00 kN
Fx spalla B =	-88425.00 kN
Effetto dei carichi FLM3	CASO 2: min Fz
Fx spalla A =	-20250.00 kN
Fx spalla B =	20250.00 kN
Effetto dei carichi FLM3	CASO 3: max My
Fx spalla A =	-49950.00 kN
Fx spalla B =	49950.00 kN
Effetto dei carichi FLM3	CASO 4: min My
Fx spalla A =	144450.00 N
Fx spalla B =	-144450.00 N
Effetto dei gradienti	CASO 1: GradDTpos
Fx spalla A =	0.00 N
Fx spalla B =	0.00 N
Effetto dei gradienti	CASO 2: GradDTneg
Fx spalla A =	0.00 N
Fx spalla B =	0.00 N

4.6 Azioni trasmesse dalla paratia all'impalcato per effetto del vento

L'azione del vento agente sul prospetto dell'impalcato, oltre a comportare un aggravio di sollecitazione per le travi, attiva l'effetto telaio dovuto alla connessione impalcato-spalla. Per valutare gli effetti dovuti a tale contributo di carico ci si rifà allo schema sotto riportato, in cui si mostra come, per effetto del vento agente trasversalmente sull'impalcato, su ciascuna paratia si generino contemporaneamente forze di segno opposto. In particolare le due metà di una stessa paratia vengono sollecitate in maniera differente essendo una parte "tirata" verso valle mentre l'altra "spinta" verso monte. Esse quindi risponderanno in modo significativamente diverso. Per valutare tali risposte si studiano indipendentemente le due porzioni.

Si studia innanzitutto l'impalcato sotto l'azione del vento nella configurazione che vede le estremità delle travi vincolate in semplice appoggio con l'inserimento di una molla rotazionale in grado di riprodurre la rigidezza flessionale della paratia. Una volta noto il momento che nasce alle estremità delle travi per effetto di tale carico, si passa a studiare (a metro lineare) la singola metà-paratia nella configurazione già descritta in cui risulta vincolata da un carrello verticale e da una molla rotazionale, che riproducono il vincolo esistente con l'impalcato. Prima dell'applicazione del momento dovuto ai carichi esterni, la molla rotazionale viene
sostituita da un momento pari alla reazione della molla stessa, valutata per effetto delle fasi intercorse fino a quel momento (sostanzialmente le operazioni di scavo e reinterro); successivamente viene applicato il momento esterno. Chiaramente dovendo tener conto della storia di carico della paratia, la reazione finale del carrello dovrà essere depurata degli effetti derivanti dalle operazioni di scavo e reinterro eseguite prima dell'applicazione del momento esterno. La reazione del carrello così valutata rappresenta quindi la forza assiale scambiata dalla metà-paratia con l'impalcato per conto dei contributi di carico verticali agenti sull'impalcato. L'altra metà della stessa paratia trasferirà all'impalcato una forza diversa, in funzione del fatto che il comportamento "a trazione" di una paratia è notevolmente diverso dal comportamento "a compressione" della stessa.

Di seguito vengono riassunti i valori di calcolo delle sollecitazioni di scambio valutate per effetto dei vari casi presi in esame. I valori sono espressi a metro lineare di spalla.

Effetto del vento	CASO 1: Vento_ponte_scarico_positivo
Fx spA tp1 =	-2700.00 N
Fx spA tp2 =	6075.00 N
Fx spB tp1 =	2700.00 N
Fx spB tp2 =	-6075.00 N
Effetto del vento	CASO 2: Vento_ponte_scarico_negativo
Fx spA tp1 =	6075.00 N
Fx spA tp2 =	-2700.00 N
Fx spB tp1 =	-6075.00 N
Fx spB tp2 =	2700.00 N
Effetto del vento	CASO 3: Vento_ponte_carico_positivo
Fx spA tp1 =	-4725.00 N
Fx spA tp2 =	10800.00 N
Fx spB tp1 =	4725.00 N
Fx spB tp2 =	-10800.00 N
Effetto del vento	CASO 4: Vento_ponte_carico_negativo
Fx spA tp1 =	10800.00 N
Fx spA tp2 =	-4725.00 N
Fx spB tp1 =	-10800.00 N
Fx spB tp2 =	4725.00 N

4.7 Azioni trasmesse dalla paratia all'impalcato per effetto della frenatura

L'azione di frenatura non comporta alcun aggravio di sollecitazione per l'impalcato ma risulta determinante per la valutazione dell'effetto telaio dovuto alla connessione impalcato-spalla.

Per valutare gli effetti dovuti all'azione di frenatura si ipotizza innanzitutto che essa si ripartisca in due forze di uguale intensità agenti ai due estremi dell'impalcato in corrispondenza della connessione con le paratie di spalla, come mostrato dallo schema sotto riportato.

Ne consegue che le due paratie verranno sollecitate in maniera differente essendo la paratia di sinistra "tirata" verso valle mentre quella di destra "spinta" verso monte. Esse quindi risponderanno in modo significativamente diverso. Per valutare tali risposte si studiano indipendentemente le due paratie.

Ciascuna paratia viene esaminata nella configurazione già descritta in cui risulta vincolata da un carrello verticale e da una molla rotazionale che riproducono il vincolo esistente con l'impalcato; prima dell'applicazione del carico il carrello verticale viene sostituito da una forza pari alla reazione del carrello stesso, valutata per effetto delle fasi intercorse fino a quel momento (sostanzialmente le operazioni di scavo e reinterro); successivamente viene applicata la forza di frenatura, in un caso di tiro e nell'altro di spinta, andando a monitorare la variazione della reazione della molla rotazionale rispetto allo step precedente. L'incremento o il decremento del momento così valutato rappresenta quindi la forza (momento) scambiato dalla paratia con l'impalcato per effetto dell'azione di frenatura.

Di seguito vengono riassunti i valori di calcolo delle sollecitazioni di scambio valutate per effetto dei vari casi presi in esame. I valori sono espressi a metro lineare di spalla.

Effetto della frenatura	CASO 1: Frenatura positiva
My spA =	-355725.00 N
My spB =	878715.00 N
Effetto della frenatura	CASO 2: Frenatura negativa
Effetto della frenatura My spA =	CASO 2: Frenatura negativa -878715.00 N

4.8 Sintesi delle azioni scambiate dall'impalcato con la paratia

Si riporta di seguito il riepilogo finale delle azioni scambiate tra impalcato e paratia per i singoli contributi di carico presi in esame. In particolare nelle righe indicate con "_M" vengono riportati gli effetti figli del modello di studio dei contributi flessionali (con vincolo di semplice appoggio + molla rotazionale) mentre nelle righe indicate con "_N" vengono riportati gli effetti figli del modello di studio dei contributi assiali (modello assialmente libero e privo di molle rotazionali).

Con Fx è indicata la forza assiale agente nell'impalcato, con Fz la componente tagliante verticale e con M il momento flettente. I valori, riferiti alla singola trave, sono espressi in kN e kNm.

Sollecitazioni complessive agenti all'estremità della trave in corrispondenza della connessione con la spalla

Valori caratteristici	Connessione	Fx	Fz	М
Fase1_Pesi_propri	non attiva	0.00	-128.55	0.00
Fase2a_Permanenti_M	attiva	0.00	-74.18	5.25
Fase2a_Permanenti_N	attiva	2.02	0.00	0.00
Fase2a_Cedimenti_M max Fz	attiva	0.00	37.24	0.00
Fase2a_Cedimenti_M min Fz	attiva	0.00	-41.96	0.00
Fase2a_Cedimenti_M max My	attiva	0.00	37.24	0.00
Fase2a_Cedimenti_M min My	attiva	0.00	-41.96	0.00
Fase2a_Cedimenti_N max Fz	attiva	0.00	0.00	0.00
Fase2a_Cedimenti_N min Fz	attiva	0.00	0.00	0.00
Fase2a_Cedimenti_N max My	attiva	0.00	0.00	0.00
Fase2a_Cedimenti_N min My	attiva	0.00	0.00	0.00
Fase2a_Reinterro&scavo	attiva	815.40	-72.89	1436.40
Fase2b_Ritiro_M	attiva	0.00	154.04	0.00
Fase2b_Ritiro_N	attiva	-257.42	0.00	-713.81
Fase3a_DTunif_pos_M	attiva	0.00	0.00	0.00
Fase3a_DTunif_neg_M	attiva	0.00	0.00	0.00
Fase3a_DTunif_pos_N	attiva	2446.55	0.00	3390.19
Fase3a_DTunif_neg_N	attiva	-471.88	0.00	-1420.00
Fase3a_GradDT_pos_M	attiva	0.00	-172.51	0.00
Fase3a_GradDT_neg_M	attiva	0.00	207.01	0.00
Fase3a_GradDT_pos_N	attiva	0.00	0.00	0.00
Fase3a_GradDT_neg_N	attiva	0.00	0.00	0.00
Fase3b_Mobili_dom_M max Fz	attiva	0.00	566.83	-1246.53
Fase3b_Mobili_dom_M min Fz	attiva	0.00	-1292.67	1100.45
Fase3b_Mobili_dom_M max My	attiva	0.00	-644.72	1/53.48
Fase3b Mobili dom M min My	attiva	0.00	290.24	-14/1.38
Fase3b_Mobili_dom_N max Fz	attiva	492.08	0.00	0.00
Fase3b_Mobili_dom_N min FZ	attiva	-149.92	0.00	0.00
Fase3b_Mobili_dom_N max My	attiva	-239.02	0.00	0.00
Fase3b_Mobili_dom_N min My	attiva	581.18	0.00	0.00
Fase3D_Wobili_conc_W max FZ	attiva	0.00	307.08	-020.29
Fase3b_Mobili_conc_M max My	alliva	0.00	-014.00	006.26
Fasesb_Wobiii_conc_Wimax Wy	alliva	0.00	-474.30	990.20
Fase3b Mobili conc N max Ez	attiva	0.00	0.00	-991.42
Fase3b Mobili conc N min Ez	attiva	247.73	0.00	0.00
Ease3b Mobili conc N max My	attiva	135.00	0.00	0.00
Ease3b Mobili conc N min My	attiva	-133.00	0.00	0.00
Fase3b Mobili fatica M may Ez	attiva	0.00	78 58	-221 56
Fase3b Mobili fatica M min Ez	attiva	0.00	-237 76	-221.50
Fase3b Mobili fatica M max My	attiva	0.00	-172 24	360 54
Fase3b Mobili fatica M min My	attiva	0.00	26.36	-360 54
Fase3b Mobili fatica N max Fz	attiva	88.43	0.00	0.00
Fase3b Mobili fatica N min Fz	attiva	-20 25	0.00	0.00
Fase3b Mobili fatica N max My	attiva	-49.95	0.00	0.00
Fase3b Mobili fatica N min My	attiva	144.45	0.00	0.00
Fase3b Frenatura pos M	attiva	0.00	0.00	0.00
Fase3b Frenatura pos N	attiva	-307.98	0.00	-355.73
Fase3b Frenatura neg M	attiva	0.00	0.00	0.00
Fase3b Frenatura neg N	attiva	307.98	0.00	878.72
Fase3b Vento ps pos M	attiva	0.00	5.38	-15.18
Fase3b_Vento_ps_pos_N	attiva	6.08	0.00	0.00
Fase3b_Vento_ps_neg_M	attiva	0.00	-5.38	15.18
Fase3b_Vento_ps_neg_N	attiva	-2.70	0.00	0.00
Fase3b_Vento_pc_pos_M	attiva	0.00	12.80	-27.69
Fase3b_Vento_pc_pos_N	attiva	10.80	0.00	0.00
Fase3b_Vento_pc_neg_M	attiva	0.00	-12.80	27.69
Fase3b_Vento_pc_neg_N	attiva	-4.73	0.00	0.00

Considerando che l'azione assiale Fx e l'azione tagliante Fz agenti all'estremità dell'impalcato si traducono per la paratia di spalla rispettivamente in una forza orizzontale di taglio T e in una forza verticale N, le

sollecitazioni appena riportate possono essere riformulate nel seguente modo, in accordo al sistema di riferimento della paratia indicato in figura. I valori di seguito riportati, finalizzati allo studio della paratia, vengono riferiti a metro lineare di spalla dividendo le sollecitazioni della precedente tabella per la larghezza di influenza di ciascuna trave, pari a 6.75 m. Tali valori sono espressi quindi in kN/m e kNm/m.

Sollecitazioni a metro lineare trasmesse dall'impalcato in testa alla paratia

B spalla =

6.75

m

Valori caratteristici	Connessione	Т	Ν	М
Fase1_Pesi_propri	non attiva	0.00	-19.04	0.00
Fase2a_Permanenti	attiva	0.30	-10.99	0.78
Fase2a_Cedimenti max N	attiva	0.00	5.52	0.00
Fase2a_Cedimenti min N	attiva	0.00	-6.22	0.00
Fase2a_Cedimenti max M	attiva	0.00	5.52	0.00
Fase2a_Cedimenti min M	attiva	0.00	-6.22	0.00
Fase2a_Reinterro&scavo	attiva	120.80	-10.80	212.80
Fase2b_Ritiro	attiva	-38.14	22.82	-105.75
Fase3a_DTunif_pos	attiva	362.45	0.00	502.25
Fase3a_DTunif_neg	attiva	-69.91	0.00	-210.37
Fase3a_GradDT_pos	attiva	0.00	-25.56	0.00
Fase3a_GradDT_neg	attiva	0.00	30.67	0.00
Fase3b_Mobili_dom max N	attiva	72.90	83.97	-184.67
Fase3b_Mobili_dom min N	attiva	-22.21	-191.51	163.03
Fase3b_Mobili_dom max M	attiva	-35.41	-95.51	259.77
Fase3b_Mobili_dom min M	attiva	86.10	43.00	-217.98
Fase3b_Mobili_conc max N	attiva	36.70	45.58	-91.89
Fase3b_Mobili_conc min N	attiva	-10.90	-120.69	81.92
Fase3b_Mobili_conc max M	attiva	-20.00	-70.28	147.59
Fase3b_Mobili_conc min M	attiva	58.10	14.85	-146.88
Fase3b_Mobili_fatica max N	attiva	13.10	11.64	-32.82
Fase3b_Mobili_fatica min N	attiva	-3.00	-35.22	20.91
Fase3b_Mobili_fatica max M	attiva	-7.40	-25.52	53.41
Fase3b_Mobili_fatica min M	attiva	21.40	3.91	-53.41
Fase3b_Frenatura_pos	attiva	-45.63	0.00	-52.70
Fase3b_Frenatura_neg	attiva	45.63	0.00	130.18
Fase3b_Vento_ps_pos	attiva	0.90	0.80	-2.25
Fase3b_Vento_ps_neg	attiva	-0.40	-0.80	2.25
Fase3b_Vento_pc_pos	attiva	1.60	1.90	-4.10
Fase3b_Vento_pc_neg	attiva	-0.70	-1.90	4.10

5. Analisi dell'impalcato

5.1 Generalità

L'intero viadotto è stato modellato usando 360 elementi di tipo "beam" lineari a due nodi.

Come anticipato, l'analisi strutturale è stata eseguita tenendo conto delle varie fasi di vita della struttura mista costituente l'impalcato, ossia nel dettaglio:

- o fase 1: sola sezione metallica; azione dei pesi propri (acciaio + soletta in c.a.);
- fase 2a: sezione metallica + soletta omogeneizzata ad acciaio con coefficiente n_{L 2a} per carichi di lunga durata; azione dei pesi permanenti (permanenti portati + cedimenti + reinterro e scavo);
- fase 2b: sezione metallica + soletta omogeneizzata ad acciaio con coefficiente n_{L 2b} per carichi di lunga durata; azione del solo ritiro;
- fase 3: sezione metallica + soletta omogeneizzata ad acciaio con coefficiente n₀ per carichi di breve durata; azione dei carichi accidentali (carichi mobili, frenatura, vento e variazioni termiche).

In ciascuna delle suddette fasi il modello ad elementi finiti di trave, aggiornato in base alle corrette caratteristiche sezionali di ogni fase, è stato studiato separatamente sotto l'effetto dei carichi di volta in volta agenti. La tabella seguente riepiloga, fase per fase, le varie fasi studiate, come già precedentemente esposto.

Fase	Condizione	Sez resist	Connessione
1	peso proprio acciaio + soletta	solo trave metallica	non attiva
2a	permanenti cedimenti reinterro e scavo	sez omog con n=nL 2a	
2b	ritiro	sez omog con n=nL 2b	attiva
3	carichi mobili frenatura variazioni termiche (unif + grad)	sez omog con n=n0	

In fase di analisi vengono elaborati gli inviluppi massimi e minimi delle sollecitazioni dovute sia ai cedimenti vincolari che ai gruppi di carico da traffico (carichi mobili + frenatura) che alle combinazioni termiche (variazioni uniformi + gradienti termici). In fase di verifica, inoltre, vengono determinate in automatico le più sfavorevoli combinazioni dei vari contributi, in funzione della caratteristica di sollecitazione che si intende estrarre e della combinazione di carico in esame (max/min Momento flettente, max/min Azione tagliante).

L'analisi sopra descritta è stata condotta, come già anticipato nel capitolo introduttivo, tenendo conto della mutua interazione tra impalcato e corpo spalla.

Di seguito sono stati riportati i diagrammi delle sollecitazioni maggiormente rappresentative riscontrate nelle due situazioni prese in esame.

5.2 Output sintetico delle sollecitazioni

Di seguito si riporta l'output grafico relativo alle sollecitazioni dell'impalcato, espresse in valore caratteristico, riferite ai principali contributi di carico. A tal fine nel modello sono stati resi visibili i soli elementi della singola trave d'impalcato. I valori numerici sono espressi in N e Nm.

5.2.1 Pesi propri (acciaio + soletta)

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Pesi_propri Diagram entity: Force/Moment - Thick 3D Beam Diagram component: My Diagram maximum 13.0266E6 at Gauss point 11 of element 10 Diagram minimum -5.87226E6 at Gauss point 11 of element 221 Diagram scale: 1: 0.460596E-6

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Pesi_propri Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fz Diagram maximum 1.55918E6 at Gauss point 11 of element 24 Diagram minimum -1.5592E6 at Gauss point 1 of element 11 Diagram scale: 1: 3.84813E-6

5.2.2 Sovraccarichi permanenti

Scale: 1: 802.71 Zoom: 123.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Permanenti Diagram entity: Force/Moment - Thick 3D Beam Diagram component: My Diagram maximum 4.63401E6 at Gauss point 1 of element 25 Diagram minimum -2.68066E6 at Gauss point 1 of element 222 Diagram scale: 1: 1.29477E-6

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Permanenti Diagram entity: Force/Moment - Thick 3D Beam

Diagram component: Fz Diagram maximum 603.245E3 at Gauss point 11 of element 24 Diagram minimum -603.192E3 at Gauss point 1 of element 11 Diagram scale: 1: 9.9462E-6

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Permanenti Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fx Diagram maximum 0.0 at Gauss point 1 of element 1 Diagram minimum -2.025E3 at Gauss point 1 of element 17 Diagram scale: 1: 2.96296E-3

5.2.3 Cedimenti vincolari

Scale: 1: 802.71 Zoom: 123.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Combining on: My Cedimenti (Max) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: My Diagram maximum 837.899E3 at Gauss point 11 of element 10 Diagram minimum 93.1323E-12 at Gauss point 2 of element 1 Diagram scale: 1: 7.16077E-6

Scale: 1: 802.71 Zoom: 123.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Combining on: My Cedimenti (Min) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: My Diagram maximum -0.232831E-9 at Gauss point 11 of element 34 Diagram minimum -944.152E3 at Gauss point 11 of element 10 Diagram scale: 1: 6.35491E-6

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Combining on: Fz Cedimenti (Max)

Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fz Diagram maximum 41.8902E3 at Gauss point 1 of element 26 Diagram minimum 0.0 at Gauss point 1 of element 34 Diagram scale: 1: 0.143232E-3

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Combining on: Fz Cedimenti (Min) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fz Diagram maximum -0.465661E-9 at Gauss point 1 of element 1 Diagram minimum -41.9623E3 at Gauss point 1 of element 10 Diagram scale: 1: 0.142986E-3

5.2.4 Ritiro

Scale: 1: 802.71 Zoom: 123.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Ritiro Diagram entity: Force/Moment - Thick 3D Beam Diagram component: My Diagram maximum 3.56565E6 at Gauss point 1 of element 11 Diagram minimum -713.809E3 at Gauss point 11 of element 33 Diagram scale: 1: 1.68272E-6

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Ritiro Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fz Diagram maximum 190.198E3 at Gauss point 1 of element 2 Diagram minimum -190.068E3 at Gauss point 1 of element 33 Diagram scale: 1: 31.546E-6

Scale: 1: 802.71 Zoom: 123.093 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Ritiro Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fx Diagram maximum 257.417E3 at Gauss point 1 of element 29 Diagram minimum 5.12227E-9 at Gauss point 1 of element 1 Diagram scale: 1: 23.3085E-6

5.2.5 Reinterro e scavo

Ζ

Scale: 1: 802.71 Zoom: 123.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Loadcase: 1:Scavo&reinterro Results file: Solarolo_scavo&reinterro.mys Diagram entity: Force/Moment - Thick 3D Beam Diagram component: My Diagram maximum 1.4364E6 at Gauss point 1 of element 2 Diagram minimum -224.009E3 at Gauss point 11 of element 24

Diagram scale: 1: 4.17711E-6

000

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Loadcase: 1:Scavo&reinterro Results file: Solarolo_scavo&reinterro.mys

0 0 0 0

Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fz Diagram maximum 73.796E3 at Gauss point 1 of element 26 Diagram minimum -72.8867E3 at Gauss point 1 of element 6 Diagram scale: 1: 81.3053E-6

Scale: 1: 802.71 Zoom: 123.093 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Loadcase: 1:Scavo&reinterro Results file: Solarolo_scavo&reinterro.mys Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fx Diagram maximum 815.4E3 at Gauss point 1 of element 3 Diagram minimum 0.0 at Gauss point 1 of element 1 Diagram scale: 1: 7.35835E-6

5.2.6 Inviluppo modello di carico LM1

Scale: 1: 802.71 Zoom: 123.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Combining on: My Comb_Mobili_dom (Max) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: My

Diagram maximum 12.2565E6 at Gauss point 1 of element 11 Diagram minimum 8.88667E-9 at Gauss point 6 of element 34 Diagram scale: 1: 0.489534E-6

Scale: 1: 802.71 Zoom: 123.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Combining on: My Comb_Mobili_dom (Min) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: My Diagram maximum -11.8378E-9 at Gauss point 4 of element 1 Diagram minimum -9.27057E6 at Gauss point 11 of element 221 Diagram scale: 1: 0.647209E-6

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Combining on: Fz Comb_Mobili_dom (Max) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fz

Diagram maximum 1.81714E6 at Gauss point 10 of element 24 Diagram minimum 43.3956E-9 at Gauss point 1 of element 34 Diagram scale: 1: 3.30189E-6

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Combining on: Fz Comb_Mobili_dom (Min) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fz Diagram maximum -34.7936E-9 at Gauss point 2 of element 1 Diagram minimum -1.819E6 at Gauss point 1 of element 11 Diagram scale: 1: 3.29852E-6

5.2.7 Inviluppo modello di carico a fatica FLM3

Scale: 1: 802.71 Zoom: 123.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Combining on: My Comb_Mobili_FLM3 (Max) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: My Diagram maximum 1.50333E6 at Gauss point 1 of element 11

Diagram minimum 1.86265E-9 at Gauss point 6 of element 34 Diagram scale: 1: 3.99114E-6

Scale: 1: 802.71 Zoom: 123.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Combining on: My Comb_Mobili_FLM3 (Min) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: My Diagram maximum -1.86265E-9 at Gauss point 6 of element 34 Diagram minimum -1.30112E6 at Gauss point 11 of element 221 Diagram scale: 1: 4.6114E-6

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Combining on: Fz Comb_Mobili_FLM3 (Max)

Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fz Diagram maximum 248.58E3 at Gauss point 1 of element 1 Diagram minimum 7.45058E-9 at Gauss point 1 of element 34 Diagram scale: 1: 24.1371E-6

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Combining on: Fz Comb_Mobili_FLM3 (Min) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fz Diagram maximum -11.1759E-9 at Gauss point 1 of element 34 Diagram minimum -245.808E3 at Gauss point 1 of element 11 Diagram scale: 1: 24.4093E-6

5.2.8 Inviluppi Combinazioni termiche

Scale: 1: 802.71 Zoom: 123.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Enveloping on: My Env_Comb_Termiche (Max) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: My Diagram maximum 4.72859E6 at Gauss point 1 of element 11 Diagram minimum 0.0 at Gauss point 11 of element 34 Diagram scale: 1: 1.26888E-6

Scale: 1: 802.71 Zoom: 123.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Enveloping on: My Env_Comb_Termiche (Min) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: My Diagram maximum -9.22009E-9 at Gauss point 8 of element 34 Diagram minimum -4.05685E6 at Gauss point 11 of element 24 Diagram scale: 1: 1.47898E-6

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Enveloping on: Fz Env_Comb_Termiche (Max) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fz

Diagram maximum 303.797E3 at Gauss point 1 of element 33 Diagram minimum 14.9012E-9 at Gauss point 1 of element 1 Diagram scale: 1: 19.75E-6

Scale: 1: 802.71 Zoom: 121.68 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Enveloping on: Fz Env_Comb_Termiche (Min) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fz Diagram maximum -14.9012E-9 at Gauss point 1 of element 1 Diagram minimum -301.527E3 at Gauss point 1 of element 3 Diagram scale: 1: 19.8987E-6

Scale: 1: 802.71 Zoom: 123.093 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Enveloping on: Fx Env_Comb_Termiche (Max) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fx Diagram maximum 471.877E3 at Gauss point 1 of element 20 Diagram minimum 0.0 at Gauss point 1 of element 1

Diagram scale: 1: 12.7152E-6

Scale: 1: 802.71 Zoom: 123.093 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Enveloping on: Fx Env_Comb_Termiche (Min) Diagram entity: Force/Moment - Thick 3D Beam Diagram component: Fx Diagram maximum -0.931323E-9 at Gauss point 1 of element 34 Diagram minimum -2.44655E6 at Gauss point 1 of element 29 Diagram scale: 1: 2.45243E-6

6. Verifica dell'impalcato

6.1 Generalità

L'analisi e la verifica della struttura d'impalcato sono state condotte in accordo a quanto dichiarato nel capitolo 2 sulla base dell'analisi dei carichi riportata al capitolo 3 della presente relazione.

Come dichiarato nel capitolo 1, le combinazioni considerate nelle verifiche sono quelle previste dalle norme EN 1990 e l'azione accidentale dominante è di volta in volta l'azione da traffico o la combinazione termica. Ai fini delle verifiche tensionali sono risultate effettivamente significative le sole combinazioni relative alla massimizzazione/minimizzazione delle sollecitazioni flettenti (max/min M) e taglianti (max |V|).

Nel presente capitolo vengono riportate, per ciascuna tipologia di verifica, le generalità della procedura seguita e il riepilogo sintetico dei risultati, espressi in termine di coefficienti di sicurezza o di rapporti di sfruttamento. Nell'allegato della presente relazione si troverà invece riscontro della versione estesa di tutte le verifiche condotte su tutte le sezioni critiche prese in esame.

I criteri per la verifica della resistenza delle sezioni (cross section checks) sono contenuti in NTC-08 cap 4.2., 4.3 e relative Istruzioni, e risultano in completo accordo con quanto previsto in Eurocodice + N.A.D. (rif. EN 1993-1-1, EN1993-1-5, EN 1993-2, EN1994-1-1, EN 1994-2).

Nel prosieguo si farà riferimento puntuale a quest'ultimo testo, caratterizzato da una trattazione più omogenea, e da un riferimento più puntuale relativamente alle varie regole applicative.

Nell'ambito dei vari S.L. considerati, si effettuano le seguenti verifiche sezionali:

S.L.U.

resistenza delle sezioni (incluse verifiche di local buckling)

flange induced buckling

S.L.E.

limitazione delle tensioni

web breathing

Fatica

verifica dell'ampiezza dei $\Delta \sigma$ (metodo dei coefficienti λ)

I medesimi S.L. verranno esaminati per la verifica della connessione trave-soletta; relativamente alle verifiche effettuate si rimanda allo specifico paragrafo.

Il complesso delle precedenti verifiche viene effettuato in automatico, ad eccezione delle verifiche di flange induced buckling, dal programma "Ponti EC4" per tutte le sezioni critiche, di cui nel seguito vengono esposte in dettaglio le modalità operative attraverso il commento della reportistica di uno o più sezioni prese a campione.

6.2 S.L.U. - resistenza delle sezioni

6.2.1 Generalità

Le verifica S.L.U. di resistenza della sezione viene effettuata attraverso in seguenti passaggi:

- Preclassificazione della sezione

Effettuata sulla base delle caratteristiche geometriche dei singoli sottocomponenti

- Analisi plastica

Tracciamento dei domini di resistenza della sezione N/M_{rd} ed N/M_{f,rd} (dominio della sezione privata dell'anima)

- Classificazione effettiva della sezione

Effettuata sulla base dell'effettivo valore di N_{Ed} , M_{Ed} per la combinazione in esame (max/min M_{Ed} , max/min V_{Ed} , con i rispettivi valori concomitanti)

- Verifica a plastica a pressoflessione (sezioni cl. 1 e 2):

Valutazione del massimo rapporto di sfruttamento plastico η_1 ,; effettuata con riferimento a N_{Ed}, M_{Ed} agenti isolatamente, e per effetto combinato.

- Verifica elastica a pressoflessione (sezioni cl. 3-4)

valutazione del massimo rapporto di sfruttamento elastico η_1 , effettuata rispettivamente per le sezioni in classe 3/4 con riferimento alle caratteristiche geometriche lorde/efficaci. Le caratteristiche geometriche efficaci vengono dedotte in maniera iterativa, tenendo conto delle flessioni parassite che nascono per effetto dell'eccentricità assunta dall'azione assiale di progetto causata dallo "shift" progressivo dell'a.n.e..

Le tensioni vengono valutate in corrispondenza delle 8 fibre indicate nello schema seguente.

Nell'ambito del calcolo tensionale, la soletta viene considerata "cracked" (non reagente) all'atto dell'annullamento della tensione di compressione valutata in corrispondenza della fibra media. Contestualmente all'annullamento della soletta, si annullano anche le sollecitazioni da ritiro primario.

- Verifica a taglio - sezioni non soggette a "shear buckling"

Viene effettuato il calcolo del taglio resistente plastico, ed il calcolo del rapporto di sfruttamento a taglio.

- Verifica a taglio - sezioni suscettibili di "shear buckling"

per sezioni soggette a "shear buckling" viene valutato il coefficiente di riduzione $\chi_{w_{i}}$ e successivamente valutato il taglio resistente $V_{b,Rd}$ come somma dei contributo resistenti dell'anima $V_{bw,Rd}$ e, se applicabile, delle flange $V_{bf,Rd}$.

- Verifica interazione azione assiale - flessione - taglio (tutte le classi)

Si adotta univocamente, per tutte le classi di sezione, l'approccio proposto da EN 1993-1-5, cap. 7.1, che consiste nella valutazione di un rapporto di sfruttamento modificato in funzione dei singoli rapporti di sfruttamento valutati per pressoflessione e taglio agenti separatamente. L'adozione di questa formulazione risulta a rigore solo leggermente più cautelativa di quella riservata alle sezioni di classe 1 - 2, per le quali l'interazione N-M-V si risolverebbe con la deduzione di un rapporto di sfruttamento elastico per tensioni normali valutato con riferimento ad una anima opportunamente ridotta per tenere conto dell'influenza del taglio (cfr. EN 1994-2 cap. 6.2.2.4.(2)).

Un'ulteriore ipotesi cautelativa, riservata alla verifica di sezioni in classe 3-4, è l'utilizzo sistematico del rapporto di sfruttamento elastico η_1 in luogo di quello plastico $\overline{\eta_1}$, indipendentemente dall'andamento delle tensioni lungo l'anima (a rigore la EN 1993-1-5, cap. 7.1.(4) e (5) prevede tale accortezza solo qualora l'anima risulta interamente in compressione).

Come già evidenziato relativamente al calcolo del contributo resistente a taglio delle flange, le resistenze plastiche della sezione completa e della sezione privata dell'anima sono rilevate direttamente dai rispettivi domini di interazione, per cui:

 $M_{pl,Rd} = M_{pl(N),Rd}$

 $M_{f,Rd} = M_{f(N),Rd}$

Si rileva incidentalmente che la diseguaglianza associata alla formula di interazione presentata poco sopra, evidenzia implicitamente che la formula non è applicabile (non vi è interazione) qualora il momento di progetto sia minore di quello sopportabile dalle sole flange.

Per sezioni in classe 3-4, il momento di progetto M_{Ed} viene valutato sulla base degli stress stress cumulati nella fibra più sollecitata ($M_{Ed,eq} = max | W_{xi} x \Sigma \sigma_{x,i} |$).

6.2.2 Report sintetico

Le tabelle seguenti restituiscono l'output sintetico della verifica del programma Ponti EC4, contenenti, per ciascuna sezione e per ciascuna condizione esaminata, i seguenti risultati:

- classificazione della sezione in fase 1
- classificazione della sezione in fase finale
- $\overline{\eta_1} = M_{Ed}/M_{R,d}$ rapporto di sfruttamento plastico per tensioni normali
- $\eta_1 = \sigma_{Ed}/(f_{y/\gamma_{m0}})$ rapporto di sfruttamento elastico per tensioni normali
- V_{Ed}/V_{Rd} rapporto di sfruttamento a taglio
- M_{Ed}/M_{f,Rd} rapporto di sfruttamento interno della sezione (aliquota di ME portata dalle sole flange)
- $\eta_3 = V_{Ed}/V_{bw,Rd}$ rapporto di sfruttamento plastico a taglio

- V/M/N rapporto di sfruttamento per azione combinata M/N/V

Si evidenzia che sia l'analisi plastica sia l'analisi elastica vengono effettuate sistematicamente dal programma, indipendentemente dalla classificazione della sezione.

Pertanto, nell'ambito dell'esposizione dei vari rapporti di sfruttamento, verranno indicati tra parentesi:

- il rapporto di sfruttamento elastico per tensioni normali, quando riferito a sezioni di classe 1-2 (valore non significativo).
- Il rapporto di sfruttamento plastico per tensioni normali, quando riferito a sezioni di classe 3-4 (verifica plastica non applicabile)

Nelle seguenti tabelle sono stati evidenziati in grassetto i valori massimi riscontrati per le principali sezioni di verifica delle travi d'impalcato, mentre i valori riportati tra parentesi sono riferiti alle verifiche da ritenersi non significative.

Per la versione estesa delle verifiche nelle varie sezioni si rimanda all'allegato alla presente relazione.

RIEPII OGO	RIEPILOGO VERIFICA ELESSIONALE		Metodo	nlastico	Metodo elastico			
RIEI IEOOC		MOR dom		MOR dom	DT dom	MOB dom DT dom		
SEZIONE	SLU	Classes	Classe		Dr dom Mod/Mr		SigEd/fty	
East 04		Classe	Classe					
Ecost_S1	Mmax	1	1	0.200	0.240	(0.334)	(0.403)	
Ecost_S1	Mmin	1	1	0.140	0.170	(0.149)	(0.189)	
Ecost_S1	Vmax	1	1	0.100	0.120	(0.097)	(0.125)	
Ecost_S1	Vmin	1 1		0.160	0.220	(0.283)	(0.374)	
Ecost_S2	Mmax	1	1	0.220	0.260	(0.37)	(0.407)	
Ecost_S2	Mmin	1	1	0.200	0.200	(0.21)	(0.224)	
Ecost_S2	Vmax	1	1	0.050	0.010	(0.184)	(0.14)	
Ecost_S2	Vmin	1	1	0.080	0.080	(0.065)	(0.141)	
Evar_S3	Mmax	1	1	0.310	0.300	(0.444)	(0.476)	
Evar_S3	Mmin	1	1	0.210	0.180	(0.209)	(0.186)	
Evar S3	Vmax	1	1	0.030	0.020	(0.121)	(0.144)	
Evar S3	Vmin	1	1	0.120	0.080	(0.088)	(0.081)	
Dvar S4	Mmax	1	1	0.310	0.300	(0.444)	(0.476)	
Dvar S4	Mmin	1	1	0.210	0.180	(0.209)	(0.186)	
Dvar S4	Vmax	1	1	0.030	0.020	(0.200)	(0.100)	
Dvar_54	Viniax	1	1	0.030	0.020	(0.121)	(0.144)	
Dval_34	Manau	1	1	0.120	0.080	(0.088)	(0.081)	
Dvar_S5	Mmax	4	4	(0.6)	(0.53)	0.825	0.738	
Dvar_S5	Mmin	4	4	(0.03)	(0.02)	0.163	0.169	
Dvar_S5	Vmax	4	4	(0.38)	(0.36)	0.586	0.587	
Dvar_S5	Vmin	4	4	(0.05)	(0.07)	0.161	0.157	
Avarlin_S6	Mmax	4	4	(0.49)	(0.43)	0.657	0.591	
Avarlin_S6	Mmin	4	4	(0.02)	(0.02)	0.141	0.146	
Avarlin_S6	Vmax	4	4	(0.3)	(0.29)	0.478	0.480	
Avarlin_S6	Vmin	4	4	(0.04)	(0.06)	0.138	0.137	
Avarlin_S7	Mmax	4	4	(0.66)	(0.59)	0.892	0.825	
Avarlin S7	Mmin	4	4	(0.17)	(0.15)	0.344	0.303	
Avarlin S7	Vmax	4	4	(0.56)	(0.51)	0.782	0.745	
Avarlin S7	Vmin	4	4	(0, 2)	(0, 17)	0.355	0.322	
Acost S8	Mmax	4	4	(0.69)	(0.62)	0.934	0.863	
Acost S8	Mmin	4	4	(0.00)	(0.16)	0.360	0.318	
Acost S8	Vmax	4	4	(0.10)	(0.18)	0.390	0.360	
Acost Se	Vinidx	4	4	(0.2)	(0.18)	0.369	0.309	
ACOSI_S6	Vmm	4	4	(0.00)	(0.51)	0.801	0.737	
Avarpar_59	Mmax	4	4	(0.66)	(0.59)	0.886	0.823	
Avarpar_S9	Mmin	4	4	(0.17)	(0.14)	0.338	0.296	
Avarpar_S9	Vmax	4	4	(0.18)	(0.17)	0.367	0.347	
Avarpar_S9	Vmin	4	4	(0.55)	(0.49)	0.764	0.706	
Avarpar_S10	Mmax	2	2	0.420	0.410	(0.586)	(0.584)	
Avarpar_S10	Mmin	2	2	0.030	0.040	(0.113)	(0.103)	
Avarpar_S10	Vmax	2	2	0.030	0.020	(0.169)	(0.153)	
Avarpar_S10	Vmin	2	2	0.290	0.290	(0.426)	(0.444)	
Bvar_S11	Mmax	2	2	0.470	0.460	(0.667)	(0.664)	
Bvar S11	Mmin	2	2	0.030	0.040	(0.111)	(0.102)	
Bvar S11	Vmax	2	2	0.030	0.030	(0.172)	(0.152)	
Bvar S11	Vmin	2	2	0.320	0 320	(0.472)	(0.459)	
Byar S12	Mmax	1	1	0.030	0.080	(0.344)	(0.436)	
Bvar_512	Mmin	1	1	0.580	0.520	(0.727)	(0.649)	
Bvar S12	Vmax	1	1	0.420	0.320	(0.727)	(0.045)	
Bvar S12	Vinidx	1	1	0.420	0.390	(0.317)	(0.475)	
Dval_312	Mmax	1	1	0.330	0.230	(0.44)	(0.388)	
Cvar_S13	Mmax	1	1	0.040	0.050	(0.316)	(0.401)	
Cvar_S13	Mmin	1	1	0.530	0.480	(0.657)	(0.588)	
Cvar_S13	Vmax	1	1	0.390	0.350	(0.468)	(0.43)	
Cvar_S13	Vmin	1	1	0.320	0.220	(0.401)	(0.402)	
Cvar_S14	Mmax	1	1	0.040	0.050	(0.316)	(0.401)	
Cvar_S14	Mmin	1	1	0.530	0.480	(0.657)	(0.588)	
Cvar_S14	Vmax	1	1	0.390	0.350	(0.468)	(0.43)	
Cvar_S14	Vmin	1	1	0.320	0.310	(0.401)	(0.53)	
Ccost S15	Mmax	1	1	0.060	0.030	(0.302)	(0.392)	
Ccost S15	Mmin	1	1	0.640	0.570	(0.826)	(0.735)	
Ccost S15	Vmax	1	1	0.460	0.420	(0.584)	(0.53)	
Ccost S15	Vmin	1	1	0.420	0.280	(0.552)	(0.501)	

RIEPILOGO VERIFICA A TAGLIO							
SEZIONE	SUU	MOB dom	DT dom				
	020	Ved/Vr	Ved/Vr				
Ecost_S1	Mmax	0.266	0.257				
Ecost_S1	Mmin	0.109	0.093				
Ecost_S1	Vmax	0.190	0.156				
Ecost_S1	Vmin	0.448	0.356				
Ecost_S2	Mmax	0.121	0.090				
Ecost_S2	Mmin	0.045	0.005				
Ecost S2	Vmax	0.280	0.244				
Ecost S2	Vmin	0.266	0.208				
Evar S3	Mmax	0.316	0.242				
Evar S3	Mmin	0.044	0.077				
Evar S3	Vmax	0.387	0.341				
Evar S3	Vmin	0.122	0.094				
Dvar S4	Mmax	0.316	0.242				
Dvar S4	Mmin	0.044	0.077				
Dvar S4	Vmax	0.387	0.341				
Dvar S4	Vmin	0.122	0.094				
Dvar S5	Mmax	0.564	0.497				
Dvar S5	Mmin	0 335	0 291				
Dvar S5	Vmax	0 726	0.629				
Dvar_S5	Vmin	0 164	0.129				
Avarlin S6	Mmax	0 454	0 402				
Avarlin S6	Mmin	0 274	0.239				
Avarlin S6	Vmax	0.591	0.513				
Avarlin S6	Vmin	0 119	0 106				
Avarlin_S7	Mmax	0.681	0.602				
Avarlin_S7	Mmin	0.243	0.218				
Avarlin_S7	Vmax	0.836	0.704				
Avarlin_S7	Vmin	0.224	0.201				
Acost S8	Mmax	0.382	0.201				
Acost S8	Mmin	0.152	0.154				
Acost S8	Vmax	0.152	0.153				
Acost S8	Vmin	0.413	0.334				
Avarnar S9	Mmax	0.850	0.693				
Avarpar_00	Mmin	0.000	0.000				
Avarpar_39	Vmax	0.305	0.304				
Avarpar_39	Viliax	0.303	0.300				
Avarpar_39	Mmax	0.612	0.500				
Avarpar_S10	Mmin	0.012	0.309				
Avarpar S10	Vmay	0.040	0.010				
Avarpar S10	VilidX	0.220	0.232				
Rvar S10	Mmoy	0.097	0.004				
Byar S11	Mmin	0.720	0.005				
Byor S11		0.400	0.307				
Byor S11	VIIIdX \/min	0.270	0.210				
	Mmov	0.033	0.072				
Evar_S12	XSIIIVI	0.133	0.134				
Bvar_S12		0.264	0.208				
Bvar_512	Vmax	0.000	0.034				
Bvar_512	Vmin	0.420	0.324				
Over_513	ivimax	0.158	0.159				
Cvar_S13	IVIMIN	0.314	0.247				
Cvar_S13	vmax	0.000	0.041				
Cvar_S13	Vmin	0.500	0.385				
Cvar_S14	Mmax	0.158	0.159				
Cvar_S14	Mmin	0.314	0.247				
Cvar_S14	Vmax	0.000	0.041				
Cvar_S14	Vmin	0.500	0.203				
Ccost_S15	Mmax	0.045	0.045				
Ccost_S15	Mmin	0.077	0.062				
Ccost_S15	Vmax	0.170	0.104				
Ccost_S15	Vmin	0.286	0.149				

RIEPILOGO VERIFICA INTERAZIONE N/M/V									
05710115		MOB dom	DT dom	MOB dom	DT dom	MOB dom	DT dom		
SEZIONE	SLU	Med/Mf,rd	Med/Mf.rd	Ved/Vbw,rd	Ved/Vbw.rd	N/M/V	N/M/V		
Ecost S1	Mmax	0.220	0.270	0.293	0.281	No int.	No int.		
Ecost S1	Mmin	0.170	0.210	0.121	0.103	No int.	No int.		
Ecost S1	Vmax	0.120	0.140	0.211	0.172	No int.	No int.		
Ecost S1	Vmin	0.170	0.240	0.494	0.389	No int.	No int.		
Ecost S2	Mmax	0.240	0.290	0.132	0.098	No int.	No int.		
Ecost S2	Mmin	0.240	0.250	0.050	0.006	No int	No int		
Ecost S2	Vmax	0.060	0.000	0.310	0 271	No int	No int		
Ecost S2	Vmin	0.090	0 150	0 295	0.230	No int	No int		
Evar S3	Mmax	0.360	0.350	0.346	0.264	No int	No int		
Evar S3	Mmin	0.260	0.230	0.049	0.086	No int	No int		
Evar S3	Vmax	0.020	0.010	0.434	0.383	No int	No int		
Evar_53	Vmin	0.150	0.060	0.404	0.000	No int	No int.		
Dvar S4	Mmax	0.360	0.350	0.346	0.264	No int	No int.		
Dvar_54	Mmin	0.300	0.330	0.040	0.204	No int	No int.		
Dvar_34		0.200	0.230	0.049	0.000	No int	No int.		
Dvar_54	VIIIdX	0.020	0.010	0.434	0.363	NO III.	NO IIIL.		
Dvar_54	Mmov	0.150	0.000	0.137	0.105	NO III.	NO INL.		
Dvar_55	winax	0.750	0.660	0.574	0.518	NO INT.	NO INT.		
Dvar_S5	IVIMIN	0.010	0.000	0.381	0.330	No Int.	No Int.		
Dvar_S5	Vmax	0.470	0.450	0.783	0.678	No int.	No int.		
Dvar_S5	Vmin	0.060	0.220	0.164	0.146	No int.	No int.		
Avarlin_S6	Mmax	0.630	0.560	0.475	0.428	No int.	No int.		
Avarlin_S6	Mmin	0.010	0.000	0.315	0.273	No int.	No int.		
Avarlin_S6	Vmax	0.400	0.380	0.648	0.561	No int.	No int.		
Avarlin_S6	Vmin	0.050	0.190	0.136	0.121	No int.	No int.		
Avarlin_S7	Mmax	1.150	1.060	0.681	0.602	0.928	0.837		
Avarlin_S7	Mmin	0.230	0.200	0.273	0.247	No int.	No int.		
Avarlin_S7	Vmax	1.010	0.950	0.836	0.714	0.907	No int.		
Avarlin_S7	Vmin	0.460	0.370	0.251	0.228	No int.	No int.		
Acost_S8	Mmax	1.200	1.100	0.400	0.326	No int.	No int.		
Acost_S8	Mmin	0.250	0.210	0.160	0.161	No int.	No int.		
Acost_S8	Vmax	0.270	0.250	0.159	0.161	No int.	No int.		
Acost_S8	Vmin	1.020	0.850	0.433	0.350	No int.	No int.		
Avarpar_S9	Mmax	0.940	1.050	0.850	0.693	0.922	0.863		
Avarpar_S9	Mmin	0.230	0.190	0.339	0.342	No int.	No int.		
Avarpar_S9	Vmax	0.250	0.220	0.339	0.342	No int.	No int.		
Avarpar_S9	Vmin	0.970	0.810	0.924	0.748	No int.	No int.		
Avarpar_S10	Mmax	0.540	0.520	0.651	0.542	No int.	No int.		
Avarpar_S10	Mmin	0.010	0.030	0.390	0.353	No int.	No int.		
Avarpar_S10	Vmax	0.030	0.020	0.258	0.263	No int.	No int.		
Avarpar_S10	Vmin	0.370	0.370	0.772	0.623	No int.	No int.		
Bvar_S11	Mmax	0.550	0.530	0.788	0.656	No int.	No int.		
Bvar_S11	Mmin	0.010	0.030	0.472	0.427	No int.	No int.		
Bvar_S11	Vmax	0.030	0.010	0.312	0.318	No int.	No int.		
Bvar_S11	Vmin	0.380	0.380	0.934	0.754	No int.	No int.		
Bvar_S12	Mmax	0.010	0.080	0.150	0.151	No int.	No int.		
Bvar_S12	Mmin	0.690	0.610	0.282	0.225	No int.	No int.		
Bvar_S12	Vmax	0.500	0.460	0.000	0.038	No int.	No int.		
Bvar_S12	Vmin	0.410	0.280	0.465	0.362	No int.	No int.		
Cvar_S13	Mmax	0.010	0.050	0.186	0.187	No int.	No int.		
Cvar S13	Mmin	0.610	0.550	0.348	0.277	No int.	No int.		
 Cvar_S13	Vmax	0.440	0.410	0.000	0.047	No int.	No int.		
Cvar S13	Vmin	0.370	0.250	0.574	0.448	No int.	No int.		
Cvar S14	Mmax	0.010	0.050	0.186	0.187	No int.	No int.		
Cvar S14	Mmin	0.610	0.550	0.348	0.277	No int.	No int.		
Cvar S14	Vmax	0.440	0.410	0.000	0.047	No int.	No int.		
Cvar S14	Vmin	0.370	0.350	0.574	0.232	No int.	No int.		
Ccost S15	Mmax	0.060	0.010	0.052	0.053	No int.	No int.		
Ccost S15	Mmin	0.740	0.650	0.082	0.067	No int.	No int.		
Ccost S15	Vmax	0.530	0.480	0.190	0.117	No int.	No int.		
Ccost S15	Vmin	0.480	0.320	0.322	0.170	No int	No int		

Come si evince dalle tabelle, tutte le verifiche possono ritenersi ampiamente soddisfatte.

Analogamente a quanto fatto per le travi d'impalcato, si riporta ora l'esito delle verifiche condotte con riferimento ai traversi.

RIEPILOGO VERIFICA FLESSIONALE			Metodo j	olastico	Metodo elastico		
SEZIONE	9111	MOB dom	DT dom	MOB dom	DT dom	MOB dom	DT dom
OLZIONE	010	Classe	Classe	Med/Mr	Med/Mr	SigEd/fy	SigEd/fy
TRV_testapila_St1	Mmax	4	3	(0.001)	(0.001)	0.001	0.001
TRV_testapila_St1	Mmin	4	3	(0.001)	(0.001)	0.001	0.001
TRV_testapila_St1	Vmax	4	3	(0.001)	(0.001)	0.001	0.001
TRV_testapila_St1	Vmin	4	3	(0.001)	(0.001)	0.001	0.001
TRV_testapila_St2	Mmax	4	3	(0.001)	(0.001)	0.001	0.001
TRV_testapila_St2	Mmin	4	3	(0.001)	(0.001)	0.001	0.001
TRV_testapila_St2	Vmax	4	3	(0.001)	(0.001)	0.001	0.001
TRV_testapila_St2	Vmin	4	3	(0.001)	(0.001)	0.001	0.001
TRV_campata_St3	Mmax	3	3	(0.09)	(0.08)	0.100	0.094
TRV_campata_St3	Mmin	3	3	(0.07)	(0.06)	0.080	0.074
TRV_campata_St3	Vmax	3	3	(0.07)	(0.06)	0.080	0.074
TRV_campata_St3	Vmin	3	3	(0.09)	(0.08)	0.100	0.093
TRV_campata_St4	Mmax	3	3	(0.09)	(0.08)	0.100	0.094
TRV_campata_St4	Mmin	3	3	(0.07)	(0.06)	0.080	0.074
TRV_campata_St4	Vmax	3	3	(0.09)	(0.08)	0.100	0.093
TRV_campata_St4	Vmin	3	3	(0.07)	(0.06)	0.080	0.074

RIEPILOGO VERIFICA A TAGLIO								
SEZIONE	911	MOB dom	DT dom					
OLZIONE	ZIONE SLU		Ved/Vr					
TRV_testapila_St1	Mmax	0.003	0.003					
TRV_testapila_St1	Mmin	0.001	0.001					
TRV_testapila_St1	Vmax	0.001	0.001					
TRV_testapila_St1	Vmin	0.003	0.003					
TRV_testapila_St2	Mmax	0.003	0.003					
TRV_testapila_St2	Mmin	0.001	0.001					
TRV_testapila_St2	Vmax	0.003	0.003					
TRV_testapila_St2	Vmin	0.001	0.001					
TRV_campata_St3	Mmax	0.050	0.047					
TRV_campata_St3	Mmin	0.025	0.023					
TRV_campata_St3	Vmax	0.025	0.023					
TRV_campata_St3	Vmin	0.050	0.047					
TRV_campata_St4	Mmax	0.050	0.047					
TRV_campata_St4	Mmin	0.025	0.023					
TRV_campata_St4	Vmax	0.050	0.047					
TRV_campata_St4	Vmin	0.025	0.023					

RIEPILOGO VERIFICA INTERAZIONE N/M/V							
SEZIONE	SI 11	MOB dom	DT dom	MOB dom	DT dom	MOB dom	DT dom
OLZIONE	010	Med/Mf,rd	Med/Mf,rd	Ved/Vbw,rd	Ved/Vbw,rd	N/M/V	N/M/V
TRV_testapila_St1	Mmax	0.000	0.000	0.003	0.003	No int.	No int.
TRV_testapila_St1	Mmin	0.000	0.000	0.001	0.001	No int.	No int.
TRV_testapila_St1	Vmax	0.000	0.000	0.001	0.001	No int.	No int.
TRV_testapila_St1	Vmin	0.000	0.000	0.003	0.003	No int.	No int.
TRV_testapila_St2	Mmax	0.000	0.000	0.003	0.003	No int.	No int.
TRV_testapila_St2	Mmin	0.000	0.000	0.001	0.001	No int.	No int.
TRV_testapila_St2	Vmax	0.000	0.000	0.003	0.003	No int.	No int.
TRV_testapila_St2	Vmin	0.000	0.000	0.001	0.001	No int.	No int.
TRV_campata_St3	Mmax	0.120	0.110	0.051	0.048	No int.	No int.
TRV_campata_St3	Mmin	0.090	0.090	0.026	0.023	No int.	No int.
TRV_campata_St3	Vmax	0.090	0.090	0.026	0.023	No int.	No int.
TRV_campata_St3	Vmin	0.120	0.110	0.051	0.048	No int.	No int.
TRV_campata_St4	Mmax	0.120	0.110	0.051	0.048	No int.	No int.
TRV_campata_St4	Mmin	0.090	0.090	0.026	0.023	No int.	No int.
TRV_campata_St4	Vmax	0.120	0.110	0.051	0.048	No int.	No int.
TRV_campata_St4	Vmin	0.090	0.090	0.026	0.023	No int.	No int.

Come si evince dalle tabelle, tutte le verifiche possono ritenersi ampiamente soddisfatte.

6.3 S.L.U. - "flange induced buckling"

Si effettua la verifica nei confronti della problematica relativa al "flange induced buckling", al fine di assicurare nei confronti dell'eventuale instabilizzazione della piattabanda compressa nel piano dell'anima.

La verifica viene effettuata seguendo i criteri contenuti nelle istruzioni a NTC-08, cap. EN 1993-1-5, cap. 8.

La verifica consiste nel controllo della diseguaglianza:

$$h_{web}/t_{web} \le k E_s/f_{yinf} x (A_{web}/A_{fc})^{0.5}/(1+h_{web} E_s/(3 r f_{yinf}))^{0.5}$$
 cfr. eq. 8.2 EN 1993-1-5 cap. 8(2).

in cui:

h_{web}, t_{web} = altezza, spessore anima

f_{vinf} = tensione di snervamento piattabanda compressa

 A_{web} , A_{fc} = area anima, piattabanda compressa

k = parametro dipendente dal tipo di resistenza utilizzata (elastica = 0.55, plastica = 0.4).

r = raggio di curvatura di intradosso

La verifica viene condotta unicamente per le sezioni che contemplano, nell'ambito delle verifiche svolte, la presenza di compressione in piattabanda inferiore.

La tabella seguente riepiloga il calcolo. Il parametro β rappresenta il valore numerico della parte a destra della diseguaglianza di verifica; il parametro η rappresenta il rapporto di sfruttamento nei confronti del "flange induced buckling". In grassetto sono stati evidenziati i valori massimi riscontrati.

concio tipo	bi (mm)	ti (mm)	Ainf	hweb (mm)	tweb (mm)	Aweb	hweb / tweb	k	fy	β	η
Acost	8.00E+02	7.00E+01	5.60E+04	2.56E+03	2.20E+01	5.63E+04	1.16E+02	0.55	335	345.76	0.337
Avar_lin	8.00E+02	7.00E+01	5.60E+04	2.31E+03	2.20E+01	5.08E+04	1.05E+02	0.55	335	328.24	0.319
Avar_par	8.00E+02	7.00E+01	5.60E+04	2.22E+03	2.20E+01	4.89E+04	1.01E+02	0.55	335	322.03	0.313
Bvar	8.00E+02	7.00E+01	5.60E+04	1.55E+03	2.00E+01	3.10E+04	7.76E+01	0.40	335	186.64	0.416
Cvar	8.00E+02	8.00E+01	6.40E+04	1.22E+03	1.80E+01	2.19E+04	6.76E+01	0.40	335	146.69	0.461
Ccost	8.00E+02	8.00E+01	6.40E+04	1.20E+03	1.80E+01	2.16E+04	6.67E+01	0.40	335	145.67	0.458
Dvar	8.00E+02	6.00E+01	4.80E+04	1.76E+03	2.00E+01	3.52E+04	8.81E+01	0.55	335	295.34	0.298
Evar	8.00E+02	6.00E+01	4.80E+04	1.35E+03	2.00E+01	2.70E+04	6.75E+01	0.40	335	188.00	0.359
Ecost	8.00E+02	6.00E+01	4.80E+04	1.23E+03	2.00E+01	2.46E+04	6.15E+01	0.40	335	179.51	0.343

La verifica appare pertanto ampiamente soddisfatta.

6.4 S.L.E. - limitazione delle tensioni

6.4.1 Generalità

La verifica viene condotta con riferimento alle tensioni di Von Mises valutate sotto la combinazione fondamentale S.L.E., applicando il coefficiente di materiale $\gamma_{m,ser}$ = 1.0.

La verifica viene condotta in automatico dal programma Ponti EC4, che procede al calcolo del rapporto di sfruttamento dei vari componenti della sezione (acciaio, calcestruzzo ed armature) nelle condizioni Mmax/min e Vmax/min, per tutte le sezioni esaminate.

6.4.2 Report sintetico

La tabella seguente restituisce il riepilogo dei coefficienti di sfruttamento rilevati nelle sezioni di verifica delle travi principali per le varie condizioni esaminate. In grassetto è stato evidenziato il valore massimo riscontrato.

SEZIONE	SI E RARA	MOB dom	DT dom		
OLZIONE	OLE IVAIVA	Sig_id/fy	Sig_id/fy		
Ecost_S1	Mmax	0.269	0.298		
Ecost_S1	Mmin	0.106	0.137		
Ecost_S1	Vmax	0.112	0.115		
Ecost_S1	Vmin	0.305	0.301		
Ecost_S2	Mmax	0.309	0.321		
Ecost_S2	Mmin	0.150	0.163		
Ecost_S2	Vmax	0.215	0.188		
Ecost S2	Vmin	0.160	0.135		
Evar_S3	Mmax	0.342	0.359		
Evar S3	Mmin	0.137	0.129		
Evar S3	Vmax	0.233	0.220		
Evar S3	Vmin	0.092	0.088		
Dvar S4	Mmax	0.342	0.359		
Dvar S4	Mmin	0 137	0 129		
Dvar S4	Vmax	0 233	0.220		
Dvar S4	Vmin	0.092	0.088		
Dvar S5	Mmax	0.596	0.538		
Dvar_55	Mmin	0.330	0.330		
Dvar 95		0.233	0.252		
Dvar SE	VillaX	0.479	0.402		
Livai_30 Avarlia Se	Mmoy	0.200	0.170		
Avarlin_50	Masin	0.474	0.430		
Availin_50		0.212	0.208		
Avanin_56	Vmax	0.404	0.387		
Avariin_S6	Vmin	0.175	0.156		
Avariin_S7	Mmax	0.646	0.602		
Avarlin_S7	Mmin	0.340	0.307		
Avarlin_S7	Vmax	0.583	0.546		
Avarlin_S7	Vmin	0.347	0.311		
Acost_S8	Mmax	0.676	0.629		
Acost_S8	Mmin	0.356	0.324		
Acost_S8	Vmax	0.382	0.366		
Acost_S8	Vmin	0.592	0.526		
Avarpar_S9	Mmax	0.643	0.601		
Avarpar_S9	Mmin	0.335	0.306		
Avarpar_S9	Vmax	0.361	0.345		
Avarpar_S9	Vmin	0.568	0.504		
Avarpar_S10	Mmax	0.465	0.443		
Avarpar_S10	Mmin	0.235	0.215		
Avarpar_S10	Vmax	0.215	0.207		
Avarpar_S10	Vmin	0.418	0.376		
Bvar_S11	Mmax	0.526	0.502		
Bvar_S11	Mmin	0.253	0.235		
Bvar_S11	Vmax	0.230	0.221		
Bvar_S11	Vmin	0.465	0.407		
Bvar_S12	Mmax	0.288	0.372		
Bvar_S12	Mmin	0.497	0.448		
Bvar_S12	Vmax	0.417	0.391		
_ Bvar_S12	Vmin	0.351	0.277		
_ Cvar S13	Mmax	0.265	0.343		
Cvar S13	Mmin	0.450	0.406		
Cvar S13	Vmax	0.378	0.355		
Cvar S13	Vmin	0.378	0.293		
Cvar S14	Mmax	0.265	0.343		
Cvar S14	Mmin	0.450	0.406		
Cvar \$14	Vmay	0.378	0.355		
Cvar S14	Viniax	0.370	0.305		
	Mmay	0.334	0.330		
Coost 615	Mmin	0.240	0.330		
		0.000	0.009		
Conet 615	VillaX	0.479	0.444		
CCOSL_315	VIIIN	0.400	0.402		

SEZIONE	SI E RARA	MOB dom	DT dom	
OLEIONE	OLE MARA	Sig_id/fy	Sig_id/fy	
TRV_testapila_St1	Mmax	0.002	0.001	
TRV_testapila_St1	Mmin	0.001	0.001	
TRV_testapila_St1	Vmax	0.001	0.001	
TRV_testapila_St1	Vmin	0.002	0.001	
TRV_testapila_St2	Mmax	0.002	0.001	
TRV_testapila_St2	Mmin	0.001	0.001	
TRV_testapila_St2	Vmax	0.002	0.001	
TRV_testapila_St2	Vmin	0.001	0.001	
TRV_campata_St3	Mmax	0.067	0.063	
TRV_campata_St3	Mmin	0.051	0.046	
TRV_campata_St3	Vmax	0.051	0.046	
TRV_campata_St3	Vmin	0.067	0.062	
TRV_campata_St4	Mmax	0.067	0.063	
TRV_campata_St4	Mmin	0.051	0.046	
TRV_campata_St4	Vmax	0.067	0.063	
TRV_campata_St4	Vmin	0.051	0.046	

Analogamente si è operato per le sezioni critiche dei traversi d'impalcato.

Come si può notare, i rapporti di sfruttamento calcolati appaiono ampiamente al di sotto dell'unità.

Per la versione estesa delle verifiche nelle varie sezioni si rimanda all'allegato alla presente relazione.

6.5 S.L.E. - "web breathing"

6.5.1 Generalità

La verifica è volta alla limitazione della snellezza dei singoli sottopannelli. I criteri di verifica sono contenuti nelle istruzioni a NTC-08, cap. 4.2.4.1.3.4, che rimandano a EN 1993.2, cap. 7.4.

Tra i metodi proposti, si sceglie quello più rigoroso, comprendente la verifica diretta della stabilità dei sottopannelli, consistente nel confronto del quadro tensionale indotto dalla combinazione S.L.E. frequente, rappresentato da $\sigma_{x,Ed,ser}$ e $\tau_{xy,Ed,ser}$, con le tensioni normali e tangenziali critiche del pannello, mediante la relazione (cfr. 1993-2 cap. 7.4.(3)):

$$\sqrt{\left(\frac{\sigma_{x,Ed,ser}}{k_{\sigma} \sigma_{E}}\right)^{2} + \left(\frac{1.1 \tau_{x,Ed,ser}}{k_{\tau} \sigma_{E}}\right)^{2}} \le 1.1$$

In cui:

 σ_{E} = 186200(t/h)² tensione critica Euleriana

 k_{σ},k_{τ} = coefficienti di imbozzamento per tensioni normali e per taglio, funzione della geometria e stato di sforzo del pannello.

La verifica viene effettuata in automatico dal programma Ponti EC4, sulla base delle combinazioni S.L.E. frequenti elaborate per tutte le sezioni di verifica, rispettivamente per Mmax/min e Vmax/min.

La tensione normale critica viene valutata a partire da quella Euleriana, tenendo conto della eventuale sovrapposizione dei fenomeni di instabilità di piastra e di colonna tramite il coefficiente ξ , seguendo i criteri contenuti in EN 1993-1-5 - 4.5.4.(1).

6.5.2 Report sintetico

La tabella seguente riepiloga i coefficienti di sicurezza dedotti per la verifica Web Breathing di tutte le sezioni critiche delle travi principali. In grassetto è stato evidenziato il valore massimo riscontrato.

SEZIONE	COMB	Web breathing		
Ecost S1	SIS freq Mmax	0 102		
Ecost S1	SLS freq., Mmin	0.016		
Ecost S1	SLS freq., Vmax	0.045		
Ecost S1	SLS freq., Vmin	0.147		
Ecost S2	SLS freq., Mmax	0.079		
Ecost S2	SIS freq. Mmin	0.004		
Ecost S2	SIS freq. Vmax	0.099		
Ecost S2	SLS freq. Vmin	0.066		
Evar S3	SIS freq Mmax	0 174		
Evar S3	SLS freq., Mmin	0.070		
Evar S3	SLS freq., Vmax	0.180		
Evar S3	SIS freq Vmin	0.020		
Dvar S4	SIS freq Mmax	0 174		
Dvar S4	SIS freq. Mmin	0.070		
Dvar S4	SLS freq. Vmax	0.180		
Dvar S4	SIS freq Vmin	0.020		
Dvar S5	SLS freq. Mmax	0.496		
Dvar S5	SIS freq Mmin	0.342		
Dvar S5	SLS freq. Vmav	0.521		
Dvar S5	SLS freq Vmin	0.270		
Avarlin S6	SIS freq. Mmay	0.369		
Avarlin S6	SLS freq. Mmin	0.254		
Avarlin SA	SLS freq Vmay	0.207		
Avarlin_S6	SLS frog Vmin	0.307		
Avarlin_30 Avarlin_87	SLS frog Mmax	0.204		
Avarlin_57	SLS frog Mmin	0.020		
Avarlin_57	SLS frog Vmax	0.400		
Avarlin_57	SLS frog Vinida	0.037		
	SLS lieq., Villin	0.421		
Acost_S8	SLS freq., Miniax	0.455		
Acost_S8	SLS freq., Minin	0.263		
Acost_S8	SLS freq., Vinax	0.247		
Acost_58	SLS freq., Vmin	0.442		
Avarpar_59	SLS freq., Minax	0.703		
Avarpar_59	SLS freq., Mimin	0.461		
Avarpar_59	SLS freq., Vmax	0.452		
Avarpar_S9	SLS freq., Vmin	0./34		
Avarpar_S10	SLS freq., Mmax	0.389		
Avarpar_S10	SLS freq., Mimin	0.303		
Avarpar_S10	SLS freq., Vmax	0.249		
Avarpar_S10	SLS freq., Vmin	0.424		
Bvar_S11	SLS freq., Mmax	0.504		
Bvar_S11	SLS freq., Mmin	0.404		
Bvar_S11	SLS freq., Vmax	0.331		
Bvar_S11	SLS freq., Vmin	0.557		
Bvar_S12	SLS freq., Mmax	0.094		
Bvar_S12	SLS freq., Mmin	0.123		
Bvar_S12	SLS freq., Vmax	0.081		
Bvar_S12	SLS freq., Vmin	0.185		
Cvar_S13	SLS freq., Mmax	0.130		
Cvar_S13	SLS freq., Mmin	0.170		
Cvar_S13	SLS freq., Vmax	0.117		
Cvar_S13	SLS freq., Vmin	0.250		
Cvar_S14	SLS freq., Mmax	0.075		
Cvar_S14	SLS freq., Mmin	0.104		
Cvar_S14	SLS freq., Vmax	0.119		
Cvar_S14	SLS freq., Vmin	0.181		
Ccost_S15	SLS freq., Mmax	0.056		
Ccost_S15	SLS freq., Mmin	0.103		
Ccost_S15	SLS freq., Vmax	0.134		
Ccost S15	SLS freq., Vmin	0.166		

SEZIONE	СОМВ	Web breathing		
TRV_testapila_St1	SLS freq., Mmax	0.002		
TRV_testapila_St1	SLS freq., Mmin	0.001		
TRV_testapila_St1	SLS freq., Vmax	0.001		
TRV_testapila_St1	SLS freq., Vmin	0.002		
TRV_testapila_St2	SLS freq., Mmax	0.002		
TRV_testapila_St2	SLS freq., Mmin	0.001		
TRV_testapila_St2	SLS freq., Vmax	0.002		
TRV_testapila_St2	SLS freq., Vmin	0.001		
TRV_campata_St3	SLS freq., Mmax	0.014		
TRV_campata_St3	SLS freq., Mmin	0.007		
TRV_campata_St3	SLS freq., Vmax	0.007		
TRV_campata_St3	SLS freq., Vmin	0.014		
TRV_campata_St4	SLS freq., Mmax	0.014		
TRV_campata_St4	SLS freq., Mmin	0.007		
TRV_campata_St4	SLS freq., Vmax	0.014		
TRV_campata_St4	SLS freq., Vmin	0.007		

Analogamente si è operato per le sezioni critiche dei traversi d'impalcato.

Come testimoniato dalla presenza di coefficienti di sicurezza inferiori a 1.1, le verifiche appaiono in tutti i casi ampiamente soddisfatte.

Per la versione estesa delle verifiche nelle varie sezioni si rimanda all'allegato alla presente relazione.

6.6 FATICA: verifiche

6.6.1 Generalità

Le verifiche a fatica vengono effettuate con l'impiego del metodo dei coefficienti λ , associato all'impiego del veicolo a fatica FLM3 (cfr. istruzioni NTC-08, cap. 4.2.4.1.4.6.3., ovvero EN 1993-2 cap. 9).

In estrema sintesi, il metodo consente di valutare l'oscillazione di sforzo in un dato dettaglio strutturale sulla base del singolo transito di uno specifico modello di carico (FLM3), opportunamente calibrato mediante l'applicazione dei fattori equivalenti di danno, in modo da fornire il medesimo impatto del traffico reale.

Si ha pertanto:

$\Delta \sigma_{p}$ = $\sigma_{p,max}$ - $\sigma_{p,min}$	ampiezza escursione tensioni, valutata dalla combinazione di
	progetto a fatica (comp. non ciclica + comp. ciclica da FLM3).
$\Delta \sigma_{\text{E},2} = \lambda \Phi_2 \Delta \sigma p$	ampiezza equivalente allo spettro di danneggiamento per 2E6 cicli
con:	
$\lambda = \lambda_1 \ \lambda_2 \ \lambda_3 \ \lambda_4$	fattore equivalente di danno
Φ_2	fattore di amplificazione dinamica (impatto)

Verifica:

$\gamma_{\mathsf{Ff}}\,\Delta\sigma_{\mathsf{E},2} \leq \Delta\sigma_{\mathsf{c}}/\gamma_{\mathsf{Mf}}$

In ottemperanza a quanto previsto dalle istruzioni e dal N.A.D., e nell'ottica del concetto "safe life", si pone:

 $\gamma_{\rm Ff} = 1$

 γ_{Mf} = 1.35 alta conseguenza a seguito della rottura del dettaglio

 γ_{Mf} = 1.15 bassa conseguenza a seguito della rottura del dettaglio

Il valore dei coefficienti λ_1 , λ_2 , λ_3 , λ_4 viene determinato secondo quanto previsto in EN 1993-2 cap. 9 e EN 1994-2 cap. 6.8.6.2 rispettivamente per i dettagli di carpenteria e per le piolature (in quest'ultimo caso i coefficienti λ verranno indicati con il pedice aggiuntivo "v").

Per l'individuazione delle caratteristiche distintive la tipologia di traffico ed il modello di carico, si fa riferimento a NTC-08, cap. 5, equivalente a EN 1991-2 cap. 4.6.

Con riferimento alla tabella seguente, tratta da NTC-08 cap. 5, o indifferentemente da EN 1991-2, cap. 4.6.1.(3), si assume, in mancanza di dettagli più puntuali, che la strada ospitata dalla struttura in esame sia di categoria 1 (alta densità di traffico).

	Traffic categories	Nobs per year and per slow lane
1	Roads and motorways with 2 or more lanes per direction with high flow rates of lorries	$2,0 imes 10^6$
2	Roads and motorways with medium flow rates of lorries	
3	Main roads with low flow rates of lorries	$0,125 imes 10^6$
4	Local roads with low flow rates of lorries	$0{,}05 imes10^6$

Table 4.5(n) - Indicative number of heavy vehicles expected per year and per slow lane

coefficiente $\lambda_1 - \lambda_{v1}$

Il coefficiente λ_1 dipende dalla lunghezza e tipologia della linea di influenza.

Per la verifica dei dettagli di carpenteria (connettori esclusi), esso viene dedotto dai grafici di normativa in funzione della luce della campata e della posizione (zona di mezzeria oppure zona appoggi) in cui si trova la sezione in esame. Note tali informazioni, il coefficiente λ_1 viene automaticamente calcolato dal programma Ponti EC4.

coefficiente λ_2 - λ_{v2}

Il coefficiente λ_2 dipende dalla tipologia e dal volume di traffico.

flusso di riferimento

Per l'assessment dei dettagli di carpenteria, si fa riferimento a EN 1993-2 cap. 9.5.2.(3). il coefficiente λ_2 viene determinato in funzione del flusso atteso di veicoli pesanti (N_{Obs}), e dal peso medio degli stessi Q_{m1}, tramite la relazione (*):

$$\lambda_2 = \frac{Q_{m1}}{Q_0} \left(\frac{N_{Obs}}{N_0}\right)^{1/5}$$

Con:

N_{Obs} = 2e6 flusso medio veicoli pesanti/anno (strada cat 1 - cfr. tab. precedente)

N₀ = 0.5e6

Q_{ml} peso medio dei veicoli, dedotto secondo la composizione di traffico dei "frequent lorries" per strade di collegamento tipo "long distance" (ip. cautelativa), e valutato secondo la seguente relazione:

$$Q_{m1} = \left(\frac{\sum n_i Q_i^5}{\sum n_i}\right)^{1/5}$$

Per la i valori di Q_i e n_i si adotta la tabella 4.7 di EN 1991-2 cap. 4.6.5.(1), equivalente alla tabella contenuta in NTC-08 cap. 5, e di seguito riportata.

VEHICLE TYPE		TRAFFIC TYPE				
1	2	3	4	5	6	7
			Long distance	Medium distance	Local traffic	
LORRY	Axle spacing (m)	Equivalent axle loads (kN)	Lorry percentage	Lorry percentage	Lorry percentage	Wheel type
	4,5	70 130	20,0	40,0	80,0	A B
	1.20	70	5.0	10.0	5.0	
	4,20	120	5,0	10,0	5,0	A
	1,50	120				В
0-00		120				в
	3,20	70	50,0	30,0	5,0	Α
	5,20	150				В
	1,30	90				С
000	1,30	90				С
		90				С
	3,40	70	15,0	15,0	5,0	Α
	6,00	140				В
	1,80	90				В
		90				В
	4,80	70	10,0	5,0	5,0	Α
	3,60	130				В
	4,40	90				С
	1,30	80				С
		80				С

Table 4.7 - Set of equivalent lorries

Si ottiene pertanto:

Q_{ml} = 445.4 kN

 $\lambda_2 = 1.224$
Per la verifica dei connettori, si adotta quanto previsto in EN 1994-2 6.8.6.2.(4), sostituendo l'esponente 1/5 con 1/8 nelle relazioni precedentemente esposte.

Si ha pertanto:

Q_{ml} = 457.4 kN

$$\lambda_{v2} = 1.133$$

coefficiente λ_3 - λ_{v3}

Il coefficiente λ_3 dipende dalla vita di progetto della struttura.

Per i dettagli di carpenteria, con riferimento a EN 1993-2 cap. 9.5.2.(5), mediante la relazione:

$$\lambda_3 = \left(\frac{t_{Ld}}{100}\right)^{1/5}$$

t_{Ld} = vita di progetto prevista.

Si ottengono pertanto i valori tabellari indicati di seguito.

		Та	able 9.2:	λ ₃	ſ		1
Design life in years	50	60	70	80	90	100	120
Factor λ_3	0,871	0,903	0,931	0,956	0,979	1,00	1,037
					í		1

Per la vita di progetto si considera in prima battuta il valore raccomandato di 100 anni, ribadito anche dal N.A.D., ottenendo:

λ₃ = 1

Per la verifica dei connettori, la sostituzione dell'esponente 1/5 on 1/8 porta in questo caso al medesimo valore:

 $\lambda_{v3} = 1$

coefficiente λ_4 - λ_{v4}

Il coefficiente λ_4 dipende dall'organizzazione delle corsie di carico in direzione trasversale, e dalla loro posizione relativa sulla linea di influenza trasversale di ciascuna trave.

La formulazione, tratta da EN 1993-2 cap. 9.5.3.(6), prevede:

$$\lambda_4 = \left[1 + \frac{N_2}{N_1} \left(\frac{\eta_2 Q_{m2}}{\eta_1 Q_{m1}}\right)^5 + \frac{N_3}{N_1} \left(\frac{\eta_3 Q_{m3}}{\eta_1 Q_{m1}}\right)^5 + \dots + \frac{N_k}{N_1} \left(\frac{\eta_k Q_{mk}}{\eta_1 Q_{m1}}\right)^5\right]^{1/5}$$

Nel caso in esame (doppio senso di marcia) si ha:

k = 2	numero corsia
$N_1 = N_2$	numero di veicoli viaggianti su ciascuna corsia
$Q_{m1} = Q_{m2}$	peso medio veicoli viaggianti sulle due corsie

 $\eta_1 = 0.5+3.75/7 = 1.036$ intensità carico I.d.i. carico verticale su trave esterna lane 1

 $\eta_2 = 0.5-3.75/7 = -0.03571$ intensità carico I.d.i. carico verticale su trave esterna lane 2

Pertanto, su ambedue le travi, si ha:

 $\lambda_4 = (1+(0.03571/1.036)^5)^{(1/5)} \cong 1$

Per la verifica delle piolature, a seguito della sostituzione dell'esponente 5 con 8, si ottiene univocamente:

 $\lambda_{v4} = (1+(0.03571/1.036)^5)^{(1/5)} \cong 1$

coefficiente λ - λ_v

Il fattore equivalente di danno è limitato superiormente da fattore λ_{max} , da valutarsi secondo quanto previsto in EN 1993-2 cap. 9.5.2.(7). Tale fattore viene dedotto dai grafici di normativa in funzione della luce della campata e della posizione (zona di mezzeria oppure zona appoggi) in cui si trova la sezione in esame. Note tali informazioni, il coefficiente λ_1 viene automaticamente calcolato dal programma Ponti EC4.

6.6.2 Amplificazione dinamica

Con riferimento a quanto previsto in EN 1991-2, il fattore di amplificazione dinamica è già incluso nella calibrazione del modello di carico FLM3.

6.6.3 Dettagli e coefficienti di sicurezza

Per la verifica a fatica dei **dettagli di carpenteria**, si prendono in esame i dettagli di seguito elencati unitamente alla categoria/num. dettaglio dedotti dalle rispettive tabelle di EN 1993-1-9:

Piattabande - tensioni normali	categoria/dettaglio:	125/5	tab. 8.1 EN 1993-1-9
Anima - tensioni tangenziali	categoria/dettaglio:	100/6	tab. 8.1 EN 1993-1-9
Saldatura composizione anima-piatt.	categoria/dettaglio:	125/1	tab. 8.2 EN 1993-1-9
Saldatura di testa piatt inf. e sup.	categoria/dettaglio:	112/7(*)	tab. 8.3 EN 1993-1-9
Attacco irr. vert piattabande	categoria/dettaglio:	80/6(**)	tab. 8.4 EN 1993-1-9
Attacco irr. vert anima	categoria/dettaglio:	80/7(**)	tab. 8.4 EN 1993-1-9

(*) si conteggia il size effect $k_s = (25/t)^{0.2}$

(**) t < 50 mm in tutti i casi

Per la verifica a fatica delle **piolature** si seguono i criteri generali contenuti in EN 1994-2. Vengono presi in esame i seguenti dettagli (EN 1993-1-9- cap. 8.):

Saldatura piolo - rottura piatt.	categoria/dettaglio:	80/9	tab. 8.4 EN 1993-1-9
Saldatura piolo - rottura piolo	categoria/dettaglio:	90/10	

Il ciclo di verifica segue quanto previsto in EN 1994-2 cap. 6.8.7.2.(2), comprendendo la verifica separata per rottura del piolo e per rottura della piattabanda.

Per le piattabande in tensione si tiene conto dell'interazione dei due fenomeni, sfruttando la relazione:

$$\frac{\gamma_{\rm Ff} \Delta \sigma_{\rm E,2}}{\Delta \sigma_{\rm c} / \gamma_{\rm Mf}} + \frac{\gamma_{\rm Ff} \Delta \tau_{\rm E,2}}{\Delta \tau_{\rm c} / \gamma_{\rm Mf,s}} \le 1.3$$
$$\frac{\gamma_{\rm Ff} \Delta \sigma_{\rm E,2}}{\Delta \sigma_{\rm c} / \gamma_{\rm Mf}} \le 1.0 \qquad \frac{\gamma_{\rm Ff} \Delta \tau_{\rm E,2}}{\Delta \tau_{\rm c} / \gamma_{\rm Mf,s}} \le 1.0$$

Per tutti i dettagli, nell'ambito dell'approccio "safe life", si adotteranno i seguenti coefficienti di sicurezza:

 γ_{Mf} = 1.35 per tutti i dettagli di carpenteria

 γ_{Mf} = 1.15 per la rottura del piolo

6.6.4 Report sintetico dei dettagli di carpenteria

Come accennato nei capitoli introdottivi, l'ampiezza dei $\Delta \sigma_p$ di tensione viene calcolata sulla base di σ_{max} e σ_{min} derivanti dalla combinazione di carico a fatica, elaborata con riferimento a EN 1992-1-1 cap. 6.8.3.(2), che prevede la sovrapposizione di una componente non ciclica delle sollecitazioni, derivata dalla combinazione S.L.E. frequente, con la componente ciclica, derivata dall'inviluppo delle sollecitazioni dovute al transito del veicolo FLM3.

Le verifiche vengono effettuate in automatico dal programma Ponti EC4 per le categorie di dettaglio indicate al punto precedente.

Relativamente alle sollecitazioni di input, il programma gestisce in automatico le sollecitazioni derivanti dalla combinazione S.L.E. frequente, elaborata come d'uso per Mmax/min e Vmax/min, sovrapponendole alle sollecitazioni derivanti dall'inviluppo per Mmax/min Vmax/min derivanti dal transito di FLM3, con l'obiettivo di estrarre il massimo valore di ampiezza di $\Delta \sigma_p$. Il programma procede quindi al calcolo dei $\Delta \sigma_E$, tramite applicazione dei coefficienti λ , ed al confronto del valore calcolato con i $\Delta \sigma_c$ tabellari, opportunamente modificati mediante l'applicazione del size effect k_s, quando rilevante, e del coefficiente di sicurezza γ_{Mf} .

La tabella seguente riporta, per tutte le sezioni critiche delle travi principali, il valore del rapporto di sfruttamento a fatica $\eta = \gamma_{Ff} \Delta \sigma_E / (\Delta \sigma_c / \gamma_{Mf})$. In grassetto sono stati evidenziati i valori massimi riscontrati. E' stata chiaramente in questo caso considerata la sola combinazione avente i carichi mobili dominanti.

SEZIONE	FATICA	Psup	Pinf	Web	Psup-Psup	Pinf-Pinf	Psup-Web	Pinf-Web	IrrV-Web	IrrV-Psup	IrrV-Pinf
Ecost S1	Mmax	0.266	0.165	0.163	0.354	0.220	0.247	0.146	0.386	0.386	0.229
Ecost S1	Mmin	0.266	0.165	0.163	0.354	0.220	0.247	0.146	0.386	0.386	0.229
Ecost S1	Vmax	0.048	0.169	0.260	0.064	0.225	0.039	0.159	0.249	0.060	0.249
Ecost S1	Vmin	0.048	0.169	0.260	0.064	0.225	0.039	0.159	0.249	0.060	0.249
Ecost S2	Mmax	0.147	0.260	0.061	0.195	0.346	0.129	0.242	0.378	0.201	0.378
Ecost S2	Mmin	0.147	0.260	0.061	0.195	0.346	0.129	0.242	0.378	0.201	0.378
Ecost_S2	Vmax	0.207	0.101	0.226	0.276	0.134	0.194	0.087	0.303	0.303	0.136
Ecost_S2	Vmin	0.207	0.101	0.226	0.276	0.134	0.194	0.087	0.303	0.303	0.136
Evar_S3	Mmax	0.381	0.275	0.109	0.506	0.366	0.356	0.251	0.556	0.556	0.391
Evar_S3	Mmin	0.381	0.275	0.109	0.506	0.366	0.356	0.251	0.556	0.556	0.391
Evar_S3	Vmax	0.366	0.259	0.217	0.487	0.344	0.342	0.235	0.535	0.535	0.367
Evar_S3	Vmin	0.366	0.259	0.217	0.487	0.344	0.342	0.235	0.535	0.535	0.367
Dvar_S4	Mmax	0.381	0.275	0.109	0.506	0.366	0.356	0.251	0.556	0.556	0.391
Dvar_S4	Mmin	0.381	0.275	0.109	0.506	0.366	0.356	0.251	0.556	0.556	0.391
Dvar_S4	Vmax	0.366	0.259	0.217	0.487	0.344	0.342	0.235	0.535	0.535	0.367
Dvar_S4	Vmin	0.366	0.259	0.217	0.487	0.344	0.342	0.235	0.535	0.535	0.367
Dvar_S5	Mmax	0.356	0.273	0.014	0.474	0.364	0.340	0.257	0.531	0.531	0.401
Dvar_S5	Mmin	0.356	0.273	0.014	0.474	0.364	0.340	0.257	0.531	0.531	0.401
Dvar_S5	Vmax	0.058	0.060	0.161	0.077	0.080	0.058	0.060	0.094	0.091	0.094
Dvar_S5	Vmin	0.058	0.060	0.161	0.077	0.080	0.058	0.060	0.094	0.091	0.094
Avarlin_S6	Mmax	0.234	0.201	0.009	0.321	0.276	0.221	0.187	0.345	0.345	0.293
Avarlin_S6	Mmin	0.234	0.201	0.009	0.321	0.276	0.221	0.187	0.345	0.345	0.293
Avarlin_S6	Vmax	0.042	0.043	0.109	0.057	0.059	0.042	0.043	0.067	0.065	0.067
Avarlin_S6	Vmin	0.042	0.043	0.109	0.057	0.059	0.042	0.043	0.067	0.065	0.067
Avarlin_S7	Mmax	0.193	0.144	0.036	0.265	0.197	0.185	0.135	0.288	0.288	0.211
Avariin_S7	ivimin	0.193	0.144	0.036	0.265	0.197	0.185	0.135	0.288	0.288	0.211
Avariin_57	Viliax	0.026	0.046	0.103	0.036	0.003	0.027	0.045	0.071	0.042	0.071
	Mmox	0.020	0.040	0.103	0.030	0.003	0.027	0.045	0.071	0.042	0.071
Acost S8	Mmin	0.213	0.158	0.071	0.203	0.210	0.203	0.140	0.317	0.317	0.232
Acost_S8	Vmax	0.213	0.009	0.071	0.200	0.210	0.200	0.140	0.017	0.017	0.202
Acost S8	Vmin	0.074	0.009	0.100	0.098	0.012	0.072	0.010	0.112	0.112	0.016
Avarpar S9	Mmax	0.228	0.166	0.076	0.313	0.227	0.218	0.155	0.341	0.341	0.243
Avarpar S9	Mmin	0.228	0.166	0.076	0.313	0.227	0.218	0.155	0.341	0.341	0.243
Avarpar S9	Vmax	0.087	0.005	0.109	0.119	0.007	0.085	0.007	0.133	0.133	0.011
Avarpar S9	Vmin	0.087	0.005	0.109	0.119	0.007	0.085	0.007	0.133	0.133	0.011
Avarpar_S10	Mmax	0.102	0.242	0.014	0.140	0.331	0.091	0.230	0.360	0.142	0.360
Avarpar_S10	Mmin	0.102	0.242	0.014	0.140	0.331	0.091	0.230	0.360	0.142	0.360
Avarpar_S10	Vmax	0.055	0.048	0.130	0.075	0.066	0.055	0.048	0.085	0.085	0.076
Avarpar_S10	Vmin	0.055	0.048	0.130	0.075	0.066	0.055	0.048	0.085	0.085	0.076
Bvar_S11	Mmax	0.123	0.240	0.017	0.169	0.329	0.111	0.227	0.355	0.173	0.355
Bvar_S11	Mmin	0.123	0.240	0.017	0.169	0.329	0.111	0.227	0.355	0.173	0.355
Bvar_S11	Vmax	0.057	0.050	0.163	0.077	0.068	0.056	0.050	0.088	0.088	0.078
Bvar_S11	Vmin	0.057	0.050	0.163	0.077	0.068	0.056	0.050	0.088	0.088	0.078
Bvar_S12	Mmax	0.279	0.435	0.029	0.382	0.596	0.244	0.400	0.625	0.381	0.625
Bvar_S12	Mmin	0.252	0.437	0.029	0.345	0.599	0.218	0.403	0.630	0.340	0.630
Bvar_S12	Vmax	0.060	0.054	0.220	0.082	0.073	0.059	0.054	0.093	0.093	0.084
Bvar_S12	Vmin	0.060	0.054	0.220	0.082	0.073	0.059	0.054	0.093	0.093	0.084
Cvar_S13	Mmax	0.256	0.392	0.032	0.351	0.537	0.224	0.355	0.555	0.351	0.555
Cvar_S13	ivimin	0.256	0.392	0.032	0.351	0.537	0.224	0.355	0.555	0.351	0.555
Cvar_S13	Vinax	0.056	0.050	0.242	0.077	0.069	0.056	0.051	0.087	0.087	0.079
Cvar S13	Mmox	0.000	0.000	0.242	0.077	0.009	0.000	0.001	0.007	0.00/	0.079
Cvar_314	Mmin	0.200	0.431	0.002	0.391	0.591	0.∠48 ∩ 104	0.309	0.00	0.308	0.008
Cvar S14	Vmax	0.220	0.422	0.002	0.013	0.079	0.134	0.004	0.000	0.004	0.000
Cvar S14	Vmin	0.056	0.050	0 252	0.077	0.000	0.056	0.050	0.007	0.007	0.078
Ccost S15	Mmax	0.398	0,324	0.006	0.546	0.444	0.360	0.281	0.563	0.563	0.439
Ccost S15	Mmin	0.269	0.374	0.006	0.369	0.513	0.236	0.336	0.525	0.368	0.525
Ccost S15	Vmax	0.036	0.076	0.252	0.049	0.104	0.038	0.073	0.115	0.059	0.115
_ Ccost_S15	Vmin	0.036	0.076	0.252	0.049	0.104	0.038	0.073	0.115	0.059	0.115

Come si può notare dall'esame della tabella, la sicurezza a fatica dei dettagli di carpenteria appare ovunque adeguatamente soddisfatta.

Analogamente a quanto fatto per le travi principali, si riporta ora la sintesi delle verifiche a fatica dei traversi.

SEZIONE	FATICA	Psup	Pinf	Web	Psup-Psup	Pinf-Pinf	Psup-Web	Pinf-Web	IrrV-Web	IrrV-Psup	IrrV-Pinf
TRV_testapila_St1	Mmax	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
TRV_testapila_St1	Mmin	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
TRV_testapila_St1	Vmax	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
TRV_testapila_St1	Vmin	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
TRV_testapila_St2	Mmax	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
TRV_testapila_St2	Mmin	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
TRV_testapila_St2	Vmax	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
TRV_testapila_St2	Vmin	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
TRV_campata_St3	Mmax	0.043	0.043	0.011	0.050	0.050	0.041	0.041	0.065	0.065	0.065
TRV_campata_St3	Mmin	0.043	0.043	0.011	0.050	0.050	0.041	0.041	0.065	0.065	0.065
TRV_campata_St3	Vmax	0.043	0.043	0.011	0.050	0.050	0.041	0.041	0.065	0.065	0.065
TRV_campata_St3	Vmin	0.043	0.043	0.011	0.050	0.050	0.041	0.041	0.065	0.065	0.065
TRV_campata_St4	Mmax	0.043	0.043	0.011	0.050	0.050	0.041	0.041	0.065	0.065	0.065
TRV_campata_St4	Mmin	0.043	0.043	0.011	0.050	0.050	0.041	0.041	0.065	0.065	0.065
TRV_campata_St4	Vmax	0.043	0.043	0.011	0.050	0.050	0.041	0.041	0.065	0.065	0.065
TRV_campata_St4	Vmin	0.043	0.043	0.011	0.050	0.050	0.041	0.041	0.065	0.065	0.065

Per la versione estesa delle verifiche nelle varie sezioni si rimanda all'allegato alla presente relazione.

6.7 Verifica connessione trave soletta

6.7.1 Generalità

Le specifiche relative al detaling della connessione trave-soletta sono contenute in NTC-08, 4.3.4.1.2 e C.4.3.4. delle relative Istruzioni; per quanto riguarda i riferimenti Eurocodice, i cui contenuti sono perfettamente identici, si fa riferimento a EN 1994-1 e EN 1994-2. Le piolature adottate sono tutte a completo ripristino di resistenza.

Il ciclo di verifica delle piolature comprende i seguenti passi:

- Verifica tensioni S.L.U. (valido per sezioni con $\eta_1 \leq 1$)

Deduzione del massimo scorrimento "elastico" a taglio allo S.L.U. sul singolo piolo, nell'ambito delle condizioni M_{max}/M_{min} , V_{max}/V_{min} , e confronto con la portanza del piolo allo S.L.U..:

$$\begin{split} v_{L,Ed}(x) &= V_{Ed}(x) \; S/J \\ v_{L,Ed}^{ULS} &\leq 1.1 \; N_i/I_i \; P_{Rd} \end{split}$$

In cui S e J sono univocamente definite sulla base delle caratteristiche "uncracked"

Tale approccio risulta ovviamente valido solamente per le sezioni che non attingono alle proprie risorse extra elastiche ($\eta_1 \le 1$). Per sezioni di classe 1-2, qualora il rapporto di sfruttamento elastico η_1 risulta maggiore di 1, non risulta più valido l'approccio di calcolo dello scorrimento (v = VS/J), ed è quindi necessario tenere conto in maniera non lineare della relazione tra azione tagliante V_e scorrimento v_L mediante l'approccio non lineare indicato al punto seguente.

- Verifica plastica S.L.U. (obbligatorio per sezioni con $\eta_1 > 1$)

Nelle zone plasticizzate (in generale a momento negativo) non risulta più valido l'approccio di calcolo dell'azione nei pioli basata sul flusso elastico: in questo caso, infatti, il legame fra il taglio per unità di lunghezza, le forze interne della soletta ed il momento flettente non è più lineare (EN 1994-2 cap. 6.6.2.2).

Il calcolo viene effettuato individuando, propedeuticamente, la regione entro la quale le sezioni attingono alle proprio risorse extra-elastiche. Tale regione (simmetrica nel caso in esame), è schematicamente rappresentata dai due punti di boundary A e C e dal punto di minimo momento (mezzeria) indicati nello schema seguente. I punti di boundary sono individuate dalle sezioni nelle quali la massima tensione è pari allo snervamento del materiale.

La verifica è di tipo "globale", e comprende la valutazione dello scorrimento in maniera diretta, mediante considerazioni di equilibrio del concio dei conci di soletta compresi tra la boundary ed il punto di minimo mento (concio di soletta compreso tra A e B e concio di soletta compreso tra B e C).

L'azione assiale insistente ai confini della zona plastica (punti A / B) è pari all'integrale delle tensioni rilevate lungo la soletta in calcestruzzo; a tale azione va aggiunta, per le verifiche nell'ambito della condizione "long term" l'effetto del ritiro primario.

L'azione assiale N_B è la risultante delle azioni in soletta, da valutarsi con riferimento all'effettivo stato, parzialmente "plastico" della sezione. Per il calcolo, si fa riferimento ai criteri di "non linear resistance to bending" contenuti in EN 1994-2 cap. 6.2.1.4.(6), con l'ausilio della costruzione riportata nel diagramma seguente, che riporta in un sistema d'assi M/N, i possibili stati della sezione di minimo momento flettente.

Si indica con:

$M_{a,Ed}$	momento flettente agente sulla sola trave metallica
M _{el,Rd}	momento flettente elastico
M_{Ed}	momento flettente di progetto
M _{pl,Rd}	momento plastico della sezione
F _{el,B}	azione assiale agente nella soletta, al raggiungimento del momento elastico (N_B)

Il diagramma è caratterizzato dai seguenti punti notevoli:

G punto corrispondente al momento flettente della trave in fase 1

H punto che individua il raggiungimento dello stato plastico della sezione, caratterizzato da $M_{pl,Rd}$ ed $F_{pl,B}$ (azione assiale plastica in soletta).

J punto corrispondente allo yielding del prima fibra della sezione, caratterizzato da $M_{el,Rd}$ ed $F_{El,B}$ (risultante tensioni in soletta sotto l'azione di $M_{El,Rd}$).

Come si nota dal diagramma, l'effettiva azione assiale F_B insistente in soletta nel reale stato della sezione è rappresentato dalla linea verticale che interseca la retta JH all'ordinata corrispondente al momento di progetto M_{Ed} . In alternativa, operando in maniera semplificata, risulta possibile stabilire un limite superiore a N_B , intercettando direttamente la retta GH.

Si segue l'approccio "rigoroso" che, pur comportando la necessità di valutare $M_{el,Rd}$, comporta una stima più accurata di N_B .

Per il calcolo di $M_{el,Rd}$ ed $F_{el,B}$, viene valutato il fattore "k" (\leq 1) che, applicato al momento flettente agente sulla sezione composta $M_{c,Ed}$ (derivante da fase 2 e fase 3) comporta un quadro tensionale al limite di snervamento, e che implica pertanto l'espressione:

$$M_{el,Rd} = M_{a,Ed} + k M_{c,ED}$$

Si avrà pertanto, con riferimento alle fibre estreme della sezione:

 $\mathbf{k} = \mathbf{f}_{yd} - \sigma_{if1} / \Delta \sigma_i$

i = 1 o 4 (lembo inferiore/superiore trave metallica)

 σ_{if1} = tensione alla fibra "i" della sezione in fase 1

 $\Delta \sigma_i$ = variazione di tensione alla fibra "i" tra la fase 3 e la fase 1

Si utilizza uno dei due schemi di calcolo riportati nelle figure sottostanti, a seconda che la tensione di snervamento sia stata superata nella fibra inferiore oppure in quella superiore.

Quando la sezione è plasticizzata il coefficiente k risulta compreso fra 0 ed 1, e rappresenta il coefficiente moltiplicativo che riporta il diagramma di tensioni in fase 3 ad un diagramma al limite elastico.

Noto k è immediato valutare $M_{el,Ed}$ e la corrispondente azione assiale di soletta, tramite integrazione delle tensioni:

Nel,Ed = k * $(\sigma_5 + \sigma_8)/2$ *Asoletta

Essendo σ_5 e σ_8 le tensioni normali nella soletta in fase 3, calcolate a partire da Mel,Ed.

Il numero di pioli necessario nella zona plastica è infine calcolabile, con riferimento allo schema ed alla formula seguente.

- Verifica tensioni S.L.E.

Deduzione del massimo scorrimento "elastico" a taglio allo S.L.E. sul singolo piolo, nell'ambito delle condizioni M_{max}/M_{min} , V_{max}/V_{min} , e confronto con la portanza del piolo allo S.L.E..

Il criterio di confronto dello scorrimento con la portanza della piolatura è identico a quello visto per la verifica delle tensioni S.L.U., con ovvia sostituzione delle grandezze.

$$v_{L,Ed}^{SLS}(x) \leq \frac{N_i}{l_i} \cdot \{k_s P_{Rd}\}$$

 $v_{L,Ed}^{SLS} \leq N_i / I_i \; k_s \; P_{Rd}$

- Verifica concentrazione scorrimenti per effetto del ritiro nelle zone di estremità trave

L'ammontare delle azioni di scorrimento per ritiro nelle zone di coda verrà affidato per intero all'armatura di continuità.

6.7.2 Caratteristiche piolatura corrente

Per la trave in esame, si prevede l'adozione di n. 20 pioli/m ovunque. Si adottano pioli ϕ 19 con altezza massima pari a 200.0 mm.

Nell'ambito del calcolo dei contributi resistenti si valuta separatamente la rottura del piolo e la rottura del calcestruzzo che lo circonda, sulla base dei seguenti parametri:

f _u = 450.0 MPa	tensione ultima del gambo del piolo
γ _v = 1.25	coefficiente di sicurezza piolo
f _{ck} = 35.0 MPa	resistenza caratteristica cilindrica del calcestruzzo
E _{cm} = 34077 MPa	modulo elastico secante del calcestruzzo

Inoltre, essendo h/d = 200.0/19 = 10.53, si ha:

Si ha pertanto (cfr. EN 1994-2, 6.6.3.1.(1)):

 $P_{rk,1} = 0.8 \text{ fv} \pi d^2/4 = 102.07 \text{ kN}$ rottura gambo

 $P_{rk,2} = 0.29 \alpha d^2 (f_{ck} E_{cm})^{0.5} = 114.33 kN$ rottura calcestruzzo

Discende pertanto il valore di progetto della resistenza ultima, dal minimo dei valori riscontrati diviso per il coefficiente di sicurezza:

I valori di riferimento nell'ambito delle verifiche S.L.U. e S.L.E. sono pertanto i seguenti:

P_{rd,slu} = 81.66 kN

Ponendo $k_s = 0.6$, conformemente a quanto previsto dalle Istruzioni della NTC-08 e dal N.A.D. di EN 1994-2, si ha

P_{rd,sle} = 0.6 x 81.66 = 49.0 kN

6.7.3 Detailing

Per i limiti dimensionali da rispettare nel detailing delle piolature si fa riferimento ai contenuti di NTC-08 cap. 4.3.4.3.4/EN 1994-2 cap. 6.6.5.. Di seguito si evidenzia il riferimento specifico a quest'ultimo testo normativo, più puntuale.

Il massimo interasse longitudinale delle piolature dovrà rispettare le seguenti limitazioni (EN1994-2 6.6.5.5(2)):

 $e_{max}/t_f \le 22 \epsilon$

 $e_{max}/t_f \le 22 \ge 0.81 = 17.9$

Essendo t_{fmax} = 80, ne consegue:

 $e_{max} = 1432.0 \text{ mm}$

La distanza delle file longitudinali di pioli dal bordo dovrà rispettare le seguenti limitazioni (EN1994-2 6.6.5.5(2)):

 $e_d/t_f \le 9 \epsilon$

 $e_d/t_f \le 9 \ge 0.81 = 7.29$

Pertanto:

 $e_{d,max} = 7.29x80 = 583.20 \text{ mm}$

Inoltre:

 $e_{d,min} = 25.0 \text{ mm}$ (1994-2 6.6.5.6(2))

La minima distanza misurata tra la parte inferiore della testa del piolo e lo strato inferiore di armatura dovrà essere > 40 mm.

I pioli dovranno rispettare le seguenti limitazioni dimensionali:

h _p ≥ 3d	EN 1994-2 6.6.5.7.(1)	h _p = altezza piolo
d _t ≥ 1.5d	EN 1994-2 6.6.5.7.(2)	d _t = diametro testa
h _t ≥ 0.4d	EN 1994-2 6.6.5.7.(2)	h _t = altezza testa
d _p ≥ 1.5t _{sup}	EN 1994-2 6.6.5.7.(3)	d_{p} = diam. piolo, t_{sup} = spessore flangia (*)

(*) per piattabande in tensione, soggette a fatica

 $d_p \ge 2.5t_{sup}$ EN 1994-2 6.6.5.7.(5) d_p = diam. piolo, t_{sup} = spessore flangia (**)

(**) per tutte le piattabande

 $d_p \ge 1.5t_{sup}$ EN 1994-2 6.6.5.7.(3) d_p = diam. piolo, t_{sup} = spessore flangia

L'interasse dei pioli dovrà rispettare le seguenti limitazioni dimensionali (EN1994-2 6.6.5.7.(4)):

 $s_{lg} \ge 5 d_p$ in direzione longitudinale

 $s_{tv} \ge 2.5 d_p$ in direzione trasversale

6.7.4 Report sintetico

Il calcolo dello scorrimento nelle varie sezioni di verifica ed il confronto con la piolatura di progetto viene effettuato in automatico dal programma PontiEC4 nell'ambito delle condizioni considerate (Mmax/min e Vmax/min).

La tabella seguente riepiloga, rispettivamente per lo S.L.U. e lo S.L.E., il calcolo dei massimi rapporti di sfruttamento "elastici" $v_{L,Ed}$ / N/I_i P_{rd} nelle sezioni critiche. In grassetto sono stati evidenziati i valori massimi riscontrati. Per la versione estesa delle verifiche nelle varie sezioni si rimanda all'allegato alla presente relazione.

RIEPIL	OGO VERIF	ICA SLU PIOL	ATURA	
SEZIONE	ei 11	MOB dom	DT dom	
SEZIONE	SLU	vEd/(n*Prd)	vEd/(n*Prd)	
Ecost_S1	Mmax	0.404	0.308	
Ecost_S1	Mmin	0.231	0.162	
Ecost_S1	Vmax	0.372	0.249	
Ecost_S1	Vmin	0.725	0.445	
Ecost_S2	Mmax	0.135	0.063	
Ecost_S2	Mmin	0.156	0.068	
Ecost_S2	Vmax	0.404	0.272	
Ecost_S2	Vmin	0.533	0.343	
Evar_S3	Mmax	0.314	0.194	
Evar_S3	Mmin	0.063	0.008	
Evar_S3	Vmax	0.439	0.364	
Evar_S3	Vmin	0.328	0.282	
 Dvar_S4	Mmax	0.314	0.194	
Dvar_S4	Mmin	0.063	0.008	
Dvar_S4	Vmax	0.439	0.364	
Dvar_S4	Vmin	0.328	0.282	
Dvar_S5	Mmax	0.295	0.233	
 Dvar_S5	Mmin	0.175	0.120	
_ Dvar_S5	Vmax	0.518	0.405	
_ Dvar_S5	Vmin	0.058	0.077	
Avarlin S6	Mmax	0.293	0.233	
 Avarlin_S6	Mmin	0.174	0.120	
 Avarlin_S6	Vmax	0.513	0.402	
_ Avarlin S6	Vmin	0.056	0.075	
_ Avarlin S7	Mmax	0.386	0.298	
_ Avarlin S7	Mmin	0.033	0.004	
_ Avarlin S7	Vmax	0.560	0.424	
_ Avarlin S7	Vmin	0.009	0.017	
Acost S8	Mmax	0.509	0.332	
Acost S8	Mmin	0.053	0.056	
Acost S8	Vmax	0.053	0.056	
Acost S8	Vmin	0.588	0.390	
Avarpar S9	Mmax	0.496	0.323	
Avarpar S9	Mmin	0.051	0.055	
Avarpar S9	Vmax	0.051	0.055	
Avarpar S9	Vmin	0.578	0.384	
Avarpar S10	Mmax	0.455	0.307	
Avarpar S10	Mmin	0.217	0.167	
Avarpar S10	Vmax	0.037	0.044	
Avarpar S10	Vmin	0.620	0 417	
Bvar S11	Mmax	0.445	0.298	
Bvar S11	Mmin	0.212	0.162	
Byar S11	Vmax	0.033	0.040	
Byar S11	Vmin	0.608	0.408	
Byar S12	Mmax	0.069	0 070	
Bvar S12	Mmin	0 223	0 134	
Bvar S12	Vmax	0 158	0.099	
Bvar S12	Vmin	0.501	0.341	
Cvar S13	Mmax	0 074	0.075	
Cvar .513	Mmin	0 231	0 140	
Cvar S13	Vmav	0 158	0.098	
Cvar S13	Vmin	0.514	0.352	
Cvar S14	Mmay	0.074	0.075	
Cvar \$14	Mmin	0.074	0.075	
Cvar \$14	\/may	0.201	0.140	
Cvar Q14	Vinida	0.130	0.050	
Crost 915	Mmax	0.014	0.200	
Coost S15	Mmin	0.030	0.031	
Coost S15	Vmax	0.000	0.030	
Coost Q15	VIIIdX	0.290	0.193	
00081_010	VIIIII	0.374	0.221	

RIEPIL	OGO VERIF	ICA SLE PIOL	ATURA	
SEZIONE		MOB dom	DT dom	
SEZIONE	SLE rara	vEd/(n*Prd)	vEd/(n*Prd)	
Ecost_S1	Mmax	0.432	0.334	
Ecost_S1	Mmin	0.253	0.182	
Ecost_S1	Vmax	0.408	0.277	
Ecost_S1	Vmin	0.781	0.484	
Ecost_S2	Mmax	0.158	0.078	
Ecost_S2	Mmin	0.162	0.069	
Ecost S2	Vmax	0.449	0.308	
Ecost S2	Vmin	0.570	0.371	
Evar S3	Mmax	0.349	0.219	
Evar S3	Mmin	0.050	0.008	
Evar S3	Vmax	0.486	0.410	
Evar S3	Vmin	0.339	0.296	
_ Dvar S4	Mmax	0.349	0.219	
Dvar S4	Mmin	0.050	0.008	
Dvar S4	Vmax	0.486	0.410	
Dvar S4	Vmin	0.339	0.296	
Dvar S5	Mmax	0.329	0.265	
Dvar S5	Mmin	0.213	0.151	
Dvar S5	Vmax	0.569	0.450	
Dvar S5	Vmin	0.039	0.064	
Avarlin S6	Mmax	0.328	0.264	
Avarlin_S6	Mmin	0.212	0.151	
Avarlin_S6	Vmax	0.564	0.447	
Avarlin_60	Vmin	0.036	0.061	
Avarlin_57	Mmax	0.000	0.332	
Avarlin_S7	Mmin	0.065	0.030	
Avarlin_57	Vmax	0.614	0.469	
Avarlin_57	Vmin	0.037	0.005	
	Mmax	0.554	0.000	
Acost S8	Mmin	0.088	0.001	
Acost S8	Vmay	0.000	0.091	
Acost S8	Vmin	0.640	0.425	
Avarnar S9	Mmax	0.540	0.351	
Avarpar_S0	Mmin	0.046	0.080	
Avarpar_00	Vmay	0.005	0.000	
Avarpar_00	Vmin	0.000	0.005	
Avarpar_59	Mmax	0.029	0.410	
Avarpar_S10	Mmin	0.495	0.334	
Avarpar_S10	Vmax	0.200	0.211	
Avarpar_S10	Viliax	0.070	0.078	
Byor C11	Mmax	0.074	0.404	
Byar S11	Mmin	0.404	0.024	
Byar Q11	\/may	0.200	0.203	
	\/min	0.661	0.072	
Byor 612	Mmax	0.001	0.440	
Byar C12	Mmin	0.091	0.052	
Byar C12	Vmay	0.242	0.140	
Byar C12	VIIIdX	0.157	0.034	
	Mmax	0.040	0.012	
	Mmin	0.090	0.055	
	Vmov	0.200	0.101	
	VIIIdX	0.100	0.091	
	VIIIII	0.000	0.000	
	Mmin	0.098	0.099	
		0.200	0.101	
Cvar_S14	Vmax	0.156	0.091	
Cvar_S14	vmin	0.408	0.276	
	Mmin	0.030	0.038	
	Vmess	0.001	0.040	
	VIIIdX	0.313	0.207	
CC0St_S15	vmin	0.370	U.248	

Le verifiche S.L.U. e S.L.E. appaiono pertanto ampiamente soddisfatte.

6.7.5 Verifiche a fatica della piolatura

In accordo a quanto descritto nel capitolo relativo alle verifiche a fatica, la tabella seguente riporta separatamente, per tutte le sezioni critiche esaminate, i coefficienti di sicurezza nei confronti della rottura del piolo (η_1), della rottura della piattabanda (η_2) e della rottura combinata (η_3). In grassetto sono stati evidenziati i valori massimi riscontrati, mentre i valori in grigio sono riferiti alle verifiche da ritenersi non significative. Per la versione estesa delle verifiche nelle varie sezioni si rimanda all'allegato alla presente relazione.

SEZIONE	FATICA	Pioli Eta1	Pioli Eta2	Pioli Eta3
Ecost S1	Mmax	0.230	0.416	0.497
Ecost S1	Mmin	0.230	0.416	0.497
Ecost S1	Vmax	0.366	0.075	0 340
Ecost S1	Vmin	0.366	0.075	0 340
Ecost S2	Mmax	0.085	0 229	0 242
Ecost S2	Mmin	0.085	0.229	0.242
Ecost_62	Vmax	0.318	0.220	0.242
Ecost S2	Vmin	0.318	0.324	0.494
Evar S3	Mmax	0.010	0.524	0.434
Evar_00	Mmin	0.154	0.505	0.577
Evar_53	Vmax	0.104	0.595	0.577
Evar_55	Vmin	0.300	0.572	0.075
Lval_33	Mmox	0.300	0.572	0.075
Dvar_54	Mmin	0.193	0.595	0.000
Dvar_54	Vmov	0.193	0.595	0.000
Dvar_54	Vinax	0.363	0.572	
Dvar_54	Vmin	0.383	0.572	0.734
Dvar_S5	Mimax	0.024	0.557	0.446
Dvar_S5	IVIMIN	0.024	0.557	0.446
Dvar_S5	Vmax	0.275	0.091	0.282
Dvar_S5	Vmin	0.275	0.091	0.282
Avarlin_S6	Mmax	0.023	0.366	0.300
Avarlin_S6	Mmin	0.023	0.366	0.300
Avarlin_S6	Vmax	0.272	0.065	0.259
Avarlin_S6	Vmin	0.272	0.065	0.259
Avarlin_S7	Mmax	0.089	0.302	0.301
Avarlin_S7	Mmin	0.089	0.302	0.301
Avarlin_S7	Vmax	0.252	0.041	0.225
Avarlin_S7	Vmin	0.252	0.041	0.225
Acost_S8	Mmax	0.178	0.332	0.393
Acost_S8	Mmin	0.178	0.332	0.393
Acost_S8	Vmax	0.260	0.115	0.288
Acost_S8	Vmin	0.260	0.115	0.288
Avarpar_S9	Mmax	0.178	0.357	0.412
Avarpar_S9	Mmin	0.178	0.357	0.412
Avarpar_S9	Vmax	0.257	0.136	0.303
Avarpar_S9	Vmin	0.257	0.136	0.303
Avarpar_S10	Mmax	0.033	0.160	0.148
Avarpar_S10	Mmin	0.033	0.160	0.148
Avarpar S10	Vmax	0.312	0.086	0.305
Avarpar S10	Vmin	0.312	0.086	0.305
Bvar S11	Mmax	0.033	0.192	0.173
Bvar S11	Mmin	0.033	0.192	0.173
Bvar S11	Vmax	0.309	0.088	0.305
Bvar S11	Vmin	0.309	0.088	0.305
Bvar S12	Mmax	0.057	0.436	0.379
Bvar S12	Mmin	0.057	0 393	0.346
Bvar S12	Vmax	0.435	0.093	0.010
Bvar S12	Vmin	0.435	0.000	0.407
Cvar S13	Mmax	0.460	0.000	0.467
Cvar S13	Mmin	0.050	0.400	0.353
Cvar \$12	Vmay	0.000	0.400	0.000
Cvar 612	VilidX	0.442	0.007	0.407
$Cvar_{013}$	Mmax	0.442	0.007	0.407
Oval_314	Miniax	0.003	0.440	0.040
	IVIITIITI Vmaii	0.003	0.350	0.277
Cvar_S14	vmax	0.461	0.088	0.422
Cvar_S14	vmin	0.461	0.088	0.422
Ccost_S15	Mmax	0.012	0.622	0.487
Ccost_S15	Mmin	0.012	0.420	0.333
Ccost_S15	Vmax	0.461	0.056	0.398
Ccost_S15	Vmin	0.461	0.056	0.398

Come si può notare dall'esame della tabella, la sicurezza a fatica della piolatura appare soddisfatta con ampio margine.

6.8 Fessurazione soletta in c.a.

6.8.1 Generalità

Ai fini delle verifiche a fessurazione, la soletta viene ipotizzata situata in ambiente molto aggressivo. Il limite previsto per l'ampiezza delle fessure, dedotta da NTC-08 tab. 4.1.IV è quindi pari a:

 $w_k = 0.2 \text{ mm}.$

I medesimi requisiti sono previsti da EN 1994-2 cap. 7.4.1., che rimanda a EN 1991-1-1, cap. 7.3.

Per le verifiche nei confronti dello S.L. di fessurazione si seguono in criteri proposti da EN-1994-2, afferenti ad un ciclo più sistematico di verifiche. L'esame dello S.L. prevede i seguenti passi:

- verifica presenza minimi quantitativi di armatura (EN 1994-2 cap. 7.4.2.)

- controllo dell'ampiezza delle fessure per effetto dei carichi indiretti (EN 1994-2 cap. 7.4.2.)

- controllo dell'ampiezza delle fessure per effetto dei carichi indiretti (EN 1994-2 cap. 7.4.3.)

Le verifiche vengono effettuate in automatico dal programma Ponti EC4.

Di seguito si riportano gli esempi esplicativi contenenti le modalità di calcolo applicate per ciascuna verifica.

6.8.2 Minimo quantitativi di armatura

SI considera quanto previsto in EN 1994-2, cap. 7.4.2.(1)/Istruzioni NTC-08 cap. 4.1.2.2.4.6. Il minimo quantitativo di armatura da prevedersi ai fini del contenimento delle azioni indirette, in combinazione o meno di altre azioni dirette è dato da:

$$A_{\rm s} = k_{\rm s} k_{\rm c} k f_{\rm ct,eff} A_{\rm ct} / \sigma_{\rm s}$$

Per il caso in esame, si ha:

$f_{ct,eff} = f_{ctm} = 3.2 \text{ Mpa}$	(EN 1992-1-1 tab. 3.1)
k = 0.8	(EN 1994-2 cap. 7.4.2.(1))
k _s = 0.9	"

σ_s = 450.0 MPa

6.8.3 Controllo fessurazione per carichi indiretti

La verifica viene eseguita per le sezioni in cui la tensione di trazione nel calcestruzzo per effetto della combinazione S.L.E. caratteristica supera il valore 2 f_{ctm} . Essa consiste nel confronto della tensione nelle armature per carichi indiretti σ_s con quella di riferimento prevista nelle tabelle 7.1/7.2 di EN 1994-2 (tab. C.4.1.II/C.4.1.III delle Istruzioni NTC-08), in funzione del diametro/passo delle barre e dell'ampiezza di fessura limite, e che di seguito vengono riportate.

Steel stress	Maximum bar diameter ϕ (mm) for design crack width					
$\sigma_{\rm s}$		w _k r				
(N/mm^2)	$w_k=0.4$ mm	$w_k=0.3$ mm	$w_k=0.2mm$			
160	40	32	25			
200	32	25	16			
240	20	16	12			
280	16	12	8			
320	12	10	6			
360	10	8	5			
400	8	6	4			
450	6	5	-			

Table 7.1: Maximum bar diameters for high bond bars

÷.		Tuble 7.2 Muximum but spucing for high bond buts							
į.	$w_k=0.2$ mm	Steel stress	Maximum bar spacing (mm) for design crack						
1	25	$\sigma_{ m s}$		width w _k					
i.	16	(N/mm ²)	$w_k=0.4$ mm	$w_k=0.3$ mm	$w_k=0.2$ mm				
į.	12	160	300	300	200				
İ.	8	200	300	250	150				
Ľ	6	240	250	200	100				
Ŀ	5	280	200	150	50				
i.	4	320	150	100	-				
į.	-	360	100	50	-				
Ι.									

Table 7.2 Maximum bar spacing for high bond bars

La tensione per carichi indiretti viene valutata con riferimento alla medesima formula impiegata per la deduzione del minimo quantitativo di armatura, riformulata nel seguente modo:

$$\sigma_{\rm s} = k_{\rm s} k_{\rm c} k f_{\rm ct, eff} \frac{A_{\rm ct}}{A_{\rm s}}$$

Il controllo viene effettuato interpolando linearmente sui valori delle tabelle 71-7.2 per $w_k = 0.2$ mm.

6.8.4 Controllo fessurazione per carichi diretti

Il controllo della fessurazione sotto carichi diretti viene effettuato con riferimento a EN 1994-2 cap. 7.4.3., confrontando la tensione nell'acciaio per la combinazione di carico S.L.E. frequente, incrementata del contributo del tension stiffening con il valore limite tabellare riferito all'effettivo diametro/passo delle armature ricavato dalle tabelle 7.1/7.2 del medesimo capitolo EN.

Il contributo del tension stiffening viene così calcolato con l'impiego delle relazioni proposte in EN 1994-2 cap. 7.4.3(3):

$$\Delta \sigma_{\rm s} = \frac{0.4 f_{\rm ctm}}{\alpha_{\rm st} \rho_{\rm s}}$$

con:

f_{ctm} = 3.2 Mpa

 $\rho_s = A_{steel}/A_{ct} = 34376/1398400 = 0.0246$

$$\alpha_{\rm st} = \frac{AI}{A_{\rm a}I_{\rm a}}$$

A,I area ed inerzia della sezione completa, valutata trascurando il calcestruzzo in trazione

A_a,I_a area ed inerzia della sezione metallica

6.8.5 Report sintetico

Si riporta di seguito l'output tabellare relativo alle verifiche a fessurazione, esteso a tutte le sezioni di verifica della struttura in esame. Per la versione estesa delle verifiche nelle varie sezioni si rimanda all'allegato alla presente relazione.

Sezione	z0 fase3 (mm)	kc	Act (mm^2)	As,min (mm^2)	As,reale (mm^2)	Verifica (As min)
Ecost_S1	349	1	1119690	5751	7580	SI
Ecost_S2	349	1	1119690	5751	7580	SI
Evar_S3	340	1	1471932	7560	9965	SI
Dvar_S4	340	1	1471932	7560	9965	SI
Dvar_S5	488	1	1471932	7560	9965	SI
Avar_lin_S6	519	1	1475793	7580	19982	SI
Avar_lin_S7	627	1	1475793	7580	19982	SI
Acost_S8	627	1	1475793	7580	19982	SI
Avar_par_S9	627	1	1475793	7580	19982	SI
Avar_par_S10	479	1	1475793	7580	19982	SI
Bvar_S11	483	1	1475793	7580	9991	SI
Bvar_S12	330	1	1475793	7580	9991	SI
Cvar_S13	284	1	2004750	10296	13572	SI
Cvar_S14	271	1	2004750	10296	13572	SI
Ccost_S15	271	1	2004750	10296	13572	SI

Sezione	fimax/pmax	Sigc rara (N/mm^2)	Stato (c. rara)	Sig,s (N/mm^2)	Fi* (mm)	Sig am(Fi) (N/mm^2)	Sig am (p) (N/mm^2)	Verifica (carichi indiretti)
Ecost_S1	16\200	3.65	Non Fess.		14.45	215	160	
Ecost_S2	16\200	4	Non Fess.		14.45	215	160	
Evar_S3	16\200	3.93	Non Fess.		14.45	215	160	
Dvar_S4	16\200	3.93	Non Fess.		14.45	215	160	
Dvar_S5	16\200	5.48	Non Fess.		14.45	215	160	
Avar_lin_S6	16\100	5.27	Non Fess.		14.45	215	240	
Avar_lin_S7	16\100	6.32	Non Fess.		14.45	215	240	
Acost_S8	16\100	6.55	Fess.	171	14.45	215	240	SI (0.79)
Avar_par_S9	16\100	6.31	Non Fess.		14.45	215	240	
Avar_par_S10	16\100	5.08	Non Fess.		14.45	215	240	
Bvar_S11	16\200	5.14	Non Fess.		14.45	215	160	
Bvar_S12	16\200	3.95	Non Fess.		14.45	215	160	
Cvar_S13	16\200	3.19	Non Fess.		14.45	215	160	
Cvar_S14	16\200	3.09	Non Fess.		14.45	215	160	
Ccost_S15	16\200	3.06	Non Fess.		14.45	215	160	

Le verifiche appaiono tutte ampiamente soddisfatte.

6.9 Verifiche di deformabilità

Nel presente paragrafo vengono riportate le massime deformazioni verticali subite dalla trave di impalcato in condizioni di esercizio. In particolare, per tale valutazione viene esaminato il contributo apportato dai seguenti carichi:

- Peso proprio acciaio + Peso getto soletta (fase 1);
- Sovraccarichi permanenti + Cedimenti + Ritiro + Reinterro&scavo (fase 2);
- Carichi mobili + Variazioni termiche (Inviluppi per massimo spostamento verticale negativo) (fase 3).

Nel seguito vengono riportate le deformate relative ai sopraccitati carichi, con l'indicazione del valore massimo di freccia riscontrato.

The states and

Scale: 1: 351.832 Zoom: 100.0 Eye: (0.563131, -0.629369, 0.535516) Linear/dynamic analysis Fase2b_Ritiro_N+M Maximum displacement 7.39305E-3 at node 393 Deformation exaggeration: 498.54

Peak/value entity: Displacement Peak/value component: DZ Peak range(%): 0.0 Peak/value maximum 0.426071E-3 at node 1 Peak/value minimum -1.92852E-3 at node 15

I rapporti luce/freccia massima restituiscono pertanto:

fase 1:	fmax/L = 47.23/38000 = 1/804
fase 1+2:	fmax/L = 58.74/38000 = 1/647
fase 3:	fmax/L = 34.95/38000 = 1/1087

e risultano pertanto ampiamente entro i limiti ammissibili.

7. Stabilità flesso-torsionale

Le verifica delle travi principali nei confronti dell'instabilità flesso-torsionale della piattabanda compressa viene effettuata in maniera semplificata sfruttando l'analogia con l'analisi di stabilità di una colonna compressa. A tale scopo la sola piattabanda inferiore viene esaminata assumendo che sia appoggiata in corrispondenza delle pile e, lungo il suo sviluppo, vincolata elasticamente da molle di rigidezza equivalente ai traversi dell'impalcato.

7.1 Calcolo rigidezza traversi

La rigidezza dei traversi intermedi può essere valutata sulla base delle formule di Roche e Foucriat (French Technical Office for the Use of Steel, OTUA, 1985) oppure può essere dedotta dall'analisi di un modello ad elementi finiti che prende in esame il portale formato da due montanti e dal traverso di collegamento. In particolare i montanti sono costituiti dagli irrigidenti verticali completi di una porzione di anima collaborante pari a $2x15 \varepsilon t_w$ e risultano incernierati nella soletta in calcestruzzo.

Per valutare la rigidezza del portale lo si assoggetta all'azione di una forza unitaria secondo i due schemi di carico riportati nelle seguenti figure: caso 1) Forze concomitanti; caso 2) Forze discordi.

Lungo l'intero sviluppo dell'impalcato si individuano 8 tipologie di portali, che si differenziano per le caratteristiche dei montanti (conseguenti allo spessore dell'anima della trave collaborante e dell'irrigidente

verticale) e per le caratteristiche del traverso che può essere quello di testa pila oppure quello "tipo" di campata.

Avendo scelto di riferirsi alle formule di Roche e Foucriat, si riepilogano le caratteristiche dei montanti e dei traversi, e le dimensioni geometriche dei portali, in accordo alle notazioni riportate nelle precedenti figure.

Caratteristiche dei montanti (anima travi con nervatura) - tavola 1/2 Portale concio tweb t rib b rib b web coll yGm Е D D Avarlin Acost Avarpar В В С С

Caratteristiche dei montanti (anima travi con nervatura) - tavola 2/2

Portale	Α	Σm	lm1	lm2	уG	Jzz
1	17710.00	2.57E+06	2.14E+08	2.14E+08	86.46	2.22E+08
2	17710.00	2.57E+06	2.14E+08	2.14E+08	86.46	2.22E+08
3	17710.00	2.57E+06	2.14E+08	2.14E+08	86.46	2.22E+08
4	20531.28	3.56E+06	2.42E+08	2.42E+08	83.35	3.24E+08
5	20747.28	3.60E+06	2.59E+08	2.59E+08	86.31	3.25E+08
6	20531.28	3.56E+06	2.42E+08	2.42E+08	83.35	3.24E+08
7	17710.00	2.57E+06	2.14E+08	2.14E+08	86.46	2.22E+08
8	17710.00	2.57E+06	2.14E+08	2.14E+08	86.46	2.22E+08
9	15810.08	2.11E+06	2.00E+08	2.00E+08	94.17	1.48E+08
10	15810.08	2.11E+06	2.00E+08	2.00E+08	94.17	1.48E+08

Caratteristiche dei traversi di ciascun portale

Portale	Htraverso	quota trv	tweb trv	Ae	le	Σе
1	850.00	200.00	12.00	2.37E+04	2.94E+09	2.33E+06
2	850.00	300.00	12.00	2.37E+04	2.94E+09	2.33E+06
3	850.00	300.00	12.00	2.37E+04	2.94E+09	2.33E+06
4	850.00	300.00	12.00	2.37E+04	2.94E+09	2.33E+06
5	1800.00	450.00	18.00	6.13E+04	3.14E+10	1.24E+07
6	850.00	300.00	12.00	2.37E+04	2.94E+09	2.33E+06
7	850.00	300.00	12.00	2.37E+04	2.94E+09	2.33E+06
8	850.00	300.00	12.00	2.37E+04	2.94E+09	2.33E+06
9	850.00	240.00	12.00	2.37E+04	2.94E+09	2.33E+06
10	850.00	200.00	12.00	2.37E+04	2.94E+09	2.33E+06

Calcolo delle caratteristiche geometriche del portale

Portale	Hm	Hm1	Hm2	h'm1	h'm2	b	be	b'e
1	1350	625	725	200	300	7000	6827	6318
2	1655	725	930	300	505	7000	6827	6318
3	2017	725	1292	300	867	7000	6827	6318
4	2378	725	1653	300	1228	7000	6833	6318
5	2700	1350	1350	450	450	7000	6827	6300
6	2238	725	1513	300	1088	7000	6833	6318
7	1837	725	1112	300	687	7000	6827	6318
8	1550	725	825	300	400	7000	6827	6318
9	1389	665	724	240	299	7000	6812	6318
10	1350	625	725	200	300	7000	6812	6318

Le formule di Roche e Foucriat per la valutazione degli spostamenti δ_1 e δ_2 sono le seguenti:

$$\delta_{1} = [A + A_{t}] + \frac{1}{3}B_{3} + \left[\frac{h_{m}}{b_{e}}\right]^{2}B_{t} + [D + D_{t}]$$
$$\delta_{2} = [A + A_{t}] + B_{1} + C - \frac{\left[C - \frac{h_{m1}}{h_{m2}}B_{2}\right]^{2}}{B_{2} + C + [D + D_{t}]}$$

dove:

$$A_{t} = \frac{h'_{m1}}{G\Sigma_{m}}; \qquad B_{t} = \frac{2b_{e}}{G\Sigma_{e}}; \qquad D_{t} = \frac{h'_{m2}}{G\Sigma_{m}}; \\B_{1} = \frac{b'_{e}}{2}\frac{h'_{m1}}{EI_{e}}; \qquad B_{2} = \frac{b'_{e}}{2}\frac{h'_{m2}}{EI_{e}}; \qquad B_{3} = \frac{b'_{e}}{2}\frac{h'_{m}}{EI_{e}};$$

$$A = \frac{h_{m1}^{'3}}{3EI_{m1}}; \qquad C = \frac{b_{e}^{'}}{2EA_{e}}; \qquad D = \frac{h_{m2}^{'3}}{3EI_{m2}}$$

Di seguito si riassumono i valori delle varie costanti con riferimento ai vari portali in esame:

Calcolo delle variabili delle formule di Roche e Foucriat

Portale	At	Bt	Dt	A	B1	B2	B3	С	D
1	9.63E-10	6.71E-08	1.44E-09	5.94E-08	2.00E-06	2.69E-06	9.32E-06	6.34E-07	2.00E-07
2	1.44E-09	6.71E-08	2.43E-09	2.00E-07	2.69E-06	4.42E-06	1.40E-05	6.34E-07	9.56E-07
3	1.44E-09	6.71E-08	4.17E-09	2.00E-07	2.69E-06	8.53E-06	2.08E-05	6.34E-07	4.84E-06
4	1.04E-09	6.71E-08	4.27E-09	1.77E-07	2.69E-06	1.40E-05	2.89E-05	6.34E-07	1.21E-05
5	1.55E-09	1.26E-08	1.55E-09	5.58E-07	8.71E-07	8.71E-07	3.48E-06	2.45E-07	5.58E-07
6	1.04E-09	6.71E-08	3.78E-09	1.77E-07	2.69E-06	1.17E-05	2.56E-05	6.34E-07	8.45E-06
7	1.44E-09	6.71E-08	3.31E-09	2.00E-07	2.69E-06	6.32E-06	1.72E-05	6.34E-07	2.41E-06
8	1.44E-09	6.71E-08	1.93E-09	2.00E-07	2.69E-06	3.48E-06	1.23E-05	6.34E-07	4.75E-07
9	1.41E-09	6.71E-08	1.76E-09	1.10E-07	2.26E-06	2.68E-06	9.86E-06	6.34E-07	2.12E-07
10	1.17E-09	6.71E-08	1.76E-09	6.35E-08	2.00E-06	2.69E-06	9.32E-06	6.34E-07	2.14E-07

Si ricavano quindi i valori degli spostamenti $\delta_1 e \delta_2$:

Calcolo della rigidezza dei traversi

Portale	δ1	δ2	Cd [kN/m]
1	3.37E-06	1.89E-06	296748.94
2	5.83E-06	2.21E-06	171513.31
3	1.20E-05	2.29E-06	83478.88
4	2.20E-05	2.37E-06	45507.14
5	2.28E-06	1.44E-06	438223.59
6	1.72E-05	2.31E-06	58232.58
7	8.37E-06	2.22E-06	119540.38
8	4.78E-06	2.24E-06	209408.08
9	3.62E-06	2.06E-06	276622.85
10	3.39E-06	1.90E-06	295111.57

La rigidezza del singolo portale viene infine valutata come:

$$C_d = \min\left\{\frac{1}{\delta_1}; \frac{1}{\delta_2}\right\}$$

e risulta pari a quanto sintetizzato nella seguente tabella.

Rigidezza	dei	traversi
-----------	-----	----------

Portale	Cd [N/m]
1	2.97E+08
2	1.72E+08
3	8.35E+07
4	4.55E+07
5	4.38E+08
6	5.82E+07
7	1.20E+08
8	2.09E+08
9	2.77E+08
10	2.95E+08

7.2 Quadro tensionale di riferimento della piattabanda compressa

Il quadro tensionale ritenuto maggiormente gravoso ai fini della verifica della sicurezza nei confronti dell'instabilità è quello che provoca le massime tensioni di compressione in corrispondenza del testa-pila della trave principale. Per determinarlo, si valuta l'andamento delle tensioni nella piattabanda inferiore sotto l'azione di:

- carichi di fase 1 (γ_q = 1.35)

- sovraccarichi permanenti di finitura e cedimenti vincolari (fase 2a, γ_q = 1.35)

- ritiro (fase 2b,
$$\gamma_q$$
 = 1.2)

- carichi mobili, condizione di max M in corrispondenza del testapila (γ_q = 1.35)

- gradiente termico negativo (estradosso + freddo, γ_{q} = 1.2)

Il diagramma seguente sintetizza l'andamento delle tensioni σ_1 e delle conseguenti azioni assiali agenti sulla piattabanda inferiore sotto l'azione della combinazione S.L.U. descritta poco sopra.

Il calcolo viene effettuato in corrispondenza di ciascun elemento finito, seguendo la discretizzazione adottata per il modello globale.

7.3 Verifica di stabilità flesso-torsionale

Per la verifica di stabilità flesso-torsionale si è deciso di adottare il metodo semplificato rimandando alla fase di progettazione esecutiva analisi maggiormente affinate.

Si riporta di seguito la tabella sintetica della verifica, dove i singoli contributi vengono di seguito descritti.

a =	4.85 m	passo traversi
Cd =	4.38E+08 N/m	traverso di testapila
c =	9.04E+07 N/m^2	
tf =	70 mm	spessore massimo piatta inf (concio TP)
bf =	800 mm	
tw =	22 mm	
hw,c =	1200 mm	altezza minima compressa d'anima
L =	48.5 m	luce campata centrale
=	2.99E-03 m^4	
γ =	797103.87	
m =	180.92	
Ne =	2.63E+06 N	
Ncr =	4.76E+08 N	
Aeff =	6.48E+04 mm^2	
fy =	335.00 Mpa	
αLt =	0.76	Table 6.3 e 6.4 EN1993-1-1 curva d
λLt =	0.214	
Φ_{Lt} =	0.528	
χ _{Lt} =	0.989	
γм1 =	1.10	
σmax =	288.70 MPa	verifica soddisfatta
σlimite =	301.30 MPa	
σ limite / σ max =	1.04	

La snellezza adimensionale viene valutata secondo i criteri di EN 1993-1-1, con la formula:

 $\lambda_{0p} = \left(\alpha_{\text{ult,k}} / \alpha_{\text{cr,op}}\right)^{0.5}$

essendo:

 $\alpha_{ult,k}$ = minimo moltiplicatore che causa il raggiungimento dello S.L.U. per tensioni normali

 $\alpha_{\text{cr,op}}$ = minimo moltiplicatore di collasso dedotto dall'analisi di buckling

Il moltiplicatore di collasso $\alpha_{ult,k}$ viene valutato sulla base della tensione massima di compressione rilevata nella piattabanda inferiore del concio A nelle combinazioni allo SLU, quindi:

Posto:

 α = 0.76 fattore di imperfezione per la curva d (Table 6.1 e 6.2 EN1993-1-1)

$$\Phi = \frac{1}{2} \left[1 + \alpha_{LT} (\lambda_{op} - 0.2) + \lambda_{op}^{2} \right]$$

$$\chi = \frac{1}{\Phi_{LT} + \sqrt{\left(\Phi_{LT}^2 - \lambda_{op}^2\right)}}$$

Il criterio di verifica risulta dato da:

$$\frac{\chi \cdot \alpha_{ult,k}}{\gamma_{M1}} \ge 1$$

La verifica risulta quindi soddisfatta.

8. Stiffeners

Il sistema di stiffeners è formato da piatti verticali 240 x 22 mm, disposti sul lato interno dell'anima. Il sistema di stiffeners verticali deve essere in grado di fornire un adeguato vincolo sufficientemente rigido nei confronti del pannello che stabilizzano, oltre a garantire il necessario ancoraggio alle bande diagonali di trazione, all'atto dell'imbozzamento dei pannelli. Le verifiche effettuate comprendono:

- stabilità flesso torsionale
- rigidezza flessionale

- resistenza

Le tre verifiche verranno effettuate, in generale, trascurando il vincolo intermedio offerto dal traverso, e considerando l'elemento stiffener come una "colonna" incernierata alle estremità.

Nell'ambito della verifica di resistenza, mediante analisi separata, si considera anche l'adeguatezza del sistema composto da stiffeners e traversa metallica nei riguardi della stabilizzazione delle piattabande inferiori compresse, ai fini della stabilità flesso torsionale delle travi.

8.1 Rapporti dimensionali

Si effettua innanzitutto il controllo dimensionale relativo al rapporto larghezza/spessore del piatto secondo quanto previsto dalle EN 1993-1-1 tab. 5.2:

b/t = 240/22 = 10.91

Tale valore deve risultare inferiore al limite b/t_{lim} dove:

$b/t_{lim} = 14 \epsilon = 11.34$

La verifica risulta quindi soddisfatta.

8.2 Stabilità flesso torsionale

Relativamente alle problematiche connesse con la stabilità nei confronti del buckling torsionale, si considera quanto proposto in EN 1993-1-5 (8):

$$\frac{I_T}{I_p} \ge 5.3 \frac{f_y}{E}$$

Dove I_p e I_t sono rispettivamente l'inerzia polare (attorno all'asse vincolato) e l'interzia torsionale del piatto.

Si ha pertanto: $I_t/I_{p,lim} = 5.3x355/210000 = 8.96e-3$ $b_s = 240.0 \text{ mm}$ $t_s = 22.0 \text{ mm}$ $I_p = 240^3x22/3 + 22^3x240/12 = 10.16e7 \text{ mm}^4$ $I_t = 1/3x240x22^3 = 8.52e5 \text{ mm}^4$ $I_t/I_p = 8.99e-3 > I_t/I_{p,lim}$

La verifica risulta quindi soddisfatta.

8.3 Rigidezza flessionale

In prima battuta si effettua il controllo dimensionale relativo al rapporto larghezza/spessore del piatto; si ha pertanto (EN 1993-1-1 tab. 5.2):

b/t = 240/22 = 10.91 < $b/t_{lim} = 14 \epsilon = 11.34$

Il controllo relativo all'adeguatezza della rigidezza flessionale dello stiffener viene effettuato secondo i criteri contenuti in EN 1993-1-5 cap. 9.3.3(3).

Le caratteristiche dello stiffener vengono valutate con riferimento allo schema di figura, conteggiando una porzione di anima collaborante pari a 15 ε t_{web} (EN 1993-1-5 9.1.(2)).

La verifica consiste nel confrontare l'inerzia dello stiffener I_{st} con quella limite, da valutarsi secondo quanto previsto in EN 1993-1-5 cap. 9.3.3.(3):

$$a / h_w < \sqrt{2}$$
: $I_{st} \ge 1,5 h_w^3 t^3 / a^2$
 $a / h_w \ge \sqrt{2}$: $I_{st} \ge 0,75 h_w t^3$

Per semplicità, il controllo viene effettuato, calcolando le caratteristiche del profilo equivalente indipendentemente dalla sua reale posizione sulle varie tipologie di concio.

La tabella seguente riporta il calcolo di I_{st} effettuato per le varie tipologie di concio, ed il relativo confronto con la rilevante inerzia minima.

concio	a (mm)	tweb (mm)	hweb (mm)	btot (mm)	lst,lim	
Acost	4850	22	2560	559	2.04E+07	
Avar_lin	4850	22	2307	559	1.84E+07	
Avar_par	4850	22	2221	559	1.77E+07	
Bvar	4850	20	1551	508	9.31E+06	
Cvar	4850	18	1217	459	5.32E+06	
Ccost	4850	18	1200	459	5.25E+06	
Dvar	4500	20	1761	508	1.06E+07	
Evar	4500	20	1349	508	8.09E+06	
Ecost	4500	20	1230	508	7.38E+06	
						-
concio	tst (mm)	hst (mm)	Ast	е	lst, reale	lst / Ist,lim
Acost	24	250	6000.00	136	1.42E+08	6.957
Avar_lin	24	250	6000.00	136	1.42E+08	7.719
Avar_par	24	250	6000.00	136	1.42E+08	8.020
Bvar	22	240	5280.00	130	1.15E+08	12.309
Cvar	22	240	5280.00	129	1.13E+08	21.271
Ccost	22	240	5280.00	129	1.13E+08	21.568
Dvar	22	240	5280.00	130	1.15E+08	10.843
Evar	22	240	5280.00	130	1.15E+08	14.154
Ecost	22	240	5280.00	130	1.15E+08	15.525

Verifica della rigidezza flessionale minima degli stiffeners

La rigidezza minima è pertanto ampiamente soddisfatta.

9. Verifica giunti bullonati

Le uniche giunzioni bullonate sono quelle di connessione dei conci A e B delle travi principali e quelle di connessione dei traversi metallici. Per le travi principali e per i traversi di testata vengono utilizzati bulloni ad attrito M27 in categoria "B" di classe 10.9, mentre per la connessione dei traversi di campata sono sufficienti bulloni M20.

Secondo quanto imposto dalle norme EN 1993-1-8, per i collegamenti di tipo bullonato viene richiesto il soddisfacimento delle seguenti condizioni:

- 1) Non si deve verificare scorrimento in condizioni di esercizio (SLE), ossia $F_{v,Ed,ser} \leq F_{s,Rd,ser}$;
- 2) Il taglio sollecitante di progetto in condizioni ultime (SLU) non deve eccedere la resistenza ultima tagliante, ossia $F_{v,Ed} \leq F_{v,Rd}$;

- 3) Il taglio sollecitante di progetto in condizioni ultime (SLU) non deve eccedere la resistenza ultima a rifollamento, ossia $F_{v,Ed} \leq F_{b,Rd}$;
- 4) La forza di trazione che sollecita la sezione bullonata in condizioni ultime (SLU) non deve eccedere sia la resistenza ultima di progetto della sezione "netta" depurata dai fori, ossia $N_{u,Sd} \leq N_{u,Rd}$, sia la resistenza a snervamento della sezione lorda, ossia $N_{u,Sd} \leq N_{pl,Rd}$.

Si valutano quindi innanzitutto i valori delle resistenze sopra citate con riferimento ai bulloni M27.

La resistenza a scorrimento in condizioni di esercizio viene valutata come segue:

$$F_{s,Rd,ser} = \frac{k_s n \mu}{\gamma_{M3}} 0.7 f_{ub} A_s = 172.96 \text{ kN}$$

dove:

<i>k</i> _s = 1.0	per bulloni in fori normali
n = 2.0	essendo due le superficie di contatto
μ = 0.30	coefficiente di attrito
f _{ub} = 1000 MPa	resistenza ultima a trazione del bullone
$As = 453.0 \text{ mm}^2$	area resistente dei bulloni M20

 $\gamma_{M3} = 1.10$

La resistenza a taglio del singolo bullone in condizioni ultime viene invece valutata, tenendo conto della resistenza di due facce, come segue:

$$F_{s,Rd} = \frac{\alpha_v f_{ub} A}{\gamma_{M2}} = 362.40 \text{ kN}$$

dove:

α _v = 0.5	per bulloni di classe 10.9
f _{ub} = 1000 MPa	resistenza ultima a trazione del bullone

A = 453.0 mm² area resistente dei bulloni M20

γ_{M2} = 1.25

La resistenza a rifollamento in condizioni ultime viene infine valutata come segue:

$$F_{b,Rd} = \frac{k_1 \alpha_b f_u dt}{\gamma_{M2}}$$

dove:

$k_1 = 2.50$	funzione della geometria della bullonatura
α_{b} = 0.52	funzione della geometria della bullonatura
f _u = 510 MPa	per t <= 40 mm
d = 27 mm	diametro del bullone

minimo spessore della lamiera

Di conseguenza:

$$F_{b,Rd} = \frac{k_1 \alpha_b f_u dt}{\gamma_{M2}} = 284.90 \text{ kN}$$

La resistenza ultima di progetto della sezione "netta" depurata dai fori viene infine valutata come segue:

$$N_{u,Rd} = 0.9 \frac{A_{net} f_u}{\gamma_{M2}}$$

dove:

Anet = area della sezione resistente depurata dai fori

f_u = 510 MPa per t <= 40 mm

 $\gamma_{M2} = 1.25$

mentre la resistenza a snervamento della sezione lorda viene valutata come segue:

$$N_{pl,Rd} = \frac{Af_y}{\gamma_{M0}}$$

dove:

f_y = 355 MPa

per t <= 40 mm

 $\gamma_{M0} = 1.05$

Giunzione bullonata tra conci A e B 9.1

La sezione di giunzione tra i conci A e B corrisponde alla Sezione S10 (Elem 13 G.P. 11).

Si valutano le sollecitazioni agenti nella sezione bullonata in condizioni sia di esercizio che ultime per le combinazioni max/min M e max/min T.

Comb_SLErara_Mob_dom				
Comb	Ν	Т	Μ	
max M	1127.12	-2692.17	17902.24	
min M	616.02	-2030.54	4194.31	
max T	-330.12	-3191.78	13136.04	

Comb_SLErara_DT_dom

Comb	Ν	Т	М
max M	1470.42	-2241.39	17750.32
min M	-4.09	-1876.53	3215.80
max T	-1058.07	-2576.70	13318.88

Comb_SLU_Mob_dom

_

Comb	N	Т	Μ
max M	1136.43	-3221.82	20787.83
min M	814.13	-2176.99	2687.83
max T	-310.40	-3896.33	14436.72

Comb_SLU_DT_dom

Comb	Ν	Т	М
max M	1589.98	-2613.26	20299.10
min M	28.37	-1969.07	1609.92
max T	-1146.34	-3065.87	14503.50

Da tali sollecitazioni complessive si ricavano le azioni di taglio massime agenti rispettivamente in condizioni di esercizio e ultime sulle bullonature della piattabanda superiore, di quella inferiore e dell'anima.

Comb_SLErara_Mob_dom

Bullonatura piattabanda superiore: Composta da 30+30 bulloni M27

	Max M	Min M	Max T
N piattabanda	3208.21	2358.67	2790.34
T bullone	106.94	78.62	93.01

Bullonatura piattabanda inferiore: Composta da 42+42 bulloni M27

	Max M	Min M	Max T
N piattabanda	6772.74	1836.44	5267.72
T bullone	161.26	43.72	125.42

Bullonatura d'anima:

Composta da 51+51 bulloni M27

J polare bullonatura = 12580000 mm^2

	Max M	Min M	Max T
N anima	958.45	502.61	594.34
M anima	1604.87	805.15	1405.58
T bullone	158.89	92.62	153.74

Comb_SLErara_DT_dom

Bullonatura piattabanda superiore: Composta da 30+30 bulloni M27

	Max M	Min M	Max T
N piattabanda	3241.41	2234.57	2712.80
T bullone	108.05	74.49	90.43

Bullonatura piattabanda inferiore:

Composta da 42+42 bulloni M27

	Max M	Min M	Max T
N piattabanda	6662.73	1578.54	5450.22
T bullone	158.64	37.58	129.77

Bullonatura d'anima:

Composta da 51+51 bulloni M27 J polare bullonatura = 12580000 mm^2

	Max M	Min M	Max T
N anima	899.18	538.12	704.16
M anima	1551.85	738.57	1353.63
T bullone	146.81	85.61	139.13

Comb_SLU_Mob_dom

Bullonatura piattabanda superiore: Composta da 30+30 bulloni M27

	Max M	Min M	Max T
N piattabanda	3398.15	2308.15	2912.74
T bullone	113.27	76.94	97.09

Bullonatura piattabanda inferiore: Composta da 42+42 bulloni M27

N piattabanda	7833.34	1229.67	5725.21
T bullone	186.51	29.28	136.31

Bullonatura d'anima:

Composta da 51+51 bulloni M27

J polare bullonatura = 12580000 mm^2

	Max M	Min M	Max T
N anima	1268.57	709.81	707.39
M anima	1816.64	738.31	1551.05
T bullone	184.32	92.21	177.05

Comb_SLU_DT_dom

Bullonatura piattabanda superiore: Composta da 30+30 bulloni M27

	Max M	Min M	Max T
N piattabanda	3427.28	2159.19	2816.37
T bullone	114.24	71.97	93.88

Bullonatura piattabanda inferiore:

Composta da 42+42 bulloni M27

	Max M	Min M	Max T
N piattabanda	7583.04	961.91	5882.60
T bullone	180.55	22.90	140.06

Bullonatura d'anima:

Composta da 51+51 bulloni M27 J polare bullonatura = 12580000 mm^2

	Max M	Min M	Max T
N anima	1157.50	736.37	817.21
M anima	1730.22	661.15	1471.50
T bullone	166.93	83.59	156.52

In conclusione, essendo la forza di taglio massima agente in condizioni di esercizio ampiamente inferiore alla resistenza a scorrimento in condizioni di servizio, la condizione di verifica 1) si ritiene pienamente soddisfatta.

Analogamente, essendo la forza di taglio massima agente in condizioni ultime ampiamente inferiore sia alla resistenza a scorrimento in condizioni ultime sia alla resistenza a rifollamento, anche le rimanenti condizioni di verifica 2) e 3) si ritengono pienamente soddisfatte.

Rimane infine da verificare la sezione resistente delle piattabande, dell'anima e dei relativi coprigiunti.

Bullonatura piattabanda superiore:

	b	t	A forata	n bulloni/fila
Coprigiunto esterno	600	25	10725	6
Coprigiunto interno	250	25	4112.5	3
Piattabanda	600	70	30030	6

Bullonatura piattabanda inferiore:

	b	t	A forata	n bulloni/fila
Coprigiunto esterno	700	25	13225	6
Coprigiunto interno	350	25	6612.5	3
Piattabanda	800	70	44030	6

Bullonatura d'anima:

	b	t	A forata	n bulloni/fila
Coprigiunto	1790	20	26110	17
Anima	1955.55	22	32363.09	17

Si riporta quindi di seguito il riepilogo delle sollecitazioni riscontrate in condizioni ultime, avendo riportato nell'ultima colonna di destra la massima sollecitazione agente per ciascun elemento in esame.

Comb_SLU_Mob_dom Verifica delle lamiere in trazione: calcolo azioni sollecitanti

PIATTABANDA	Max M	Min M	Max T	
SUPERIORE	N Sd	N Sd	N Sd	N Sd
Coprigiunto esterno	1427.22	969.42	1223.35	1427.22
Coprigiunto interno	713.61	484.71	611.68	713.61
Piattabanda	3126.29	2123.50	2679.72	3126.29

PIATTABANDA	Max M	Min M	Max T	
INFERIORE	N Sd	N Sd	N Sd	N Sd
Coprigiunto esterno	3469.05	544.57	2535.45	3469.05
Coprigiunto interno	1734.53	272.28	1267.72	1734.53
Piattabanda	7385.72	1159.40	5398.05	7385.72

ΔΝΙΜΔ	Max M	Min M	Max T	
	N Sd	N Sd	N Sd	N Sd
Coprigiunto	-619.08	-272.15	-850.25	850.25
Anima	-936.22	-449.61	-1027.10	1027.10

Comb_SLU_DT_dom

Verifica delle lamiere in trazione: calcolo azioni sollecitanti

PIATTABANDA	Max M	Min M	Max T	
SUPERIORE	N Sd	N Sd	N Sd	N Sd
Coprigiunto esterno	1439.46	906.86	1182.87	1439.46
Coprigiunto interno	719.73	453.43	591.44	719.73
Piattabanda	3153.10	1986.45	2591.06	3153.10

PIATTABANDA	Max M	Min M	Max T	
INFERIORE	N Sd	N Sd	N Sd	N Sd
Coprigiunto esterno	3358.20	425.99	2605.15	3358.20
Coprigiunto interno	1679.10	212.99	1302.58	1679.10
Piattabanda	7149.72	906.94	5546.45	7149.72

ΔΝΙΜΑ	Max M	Min M	Max T	
ANIMA	N Sd	N Sd	N Sd	N Sd
Coprigiunto	-556.36	-200.24	-655.73	655.73
Anima	-845.74	-384.33	-860.03	860.03

Si riporta di seguito il riepilogo delle resistenze della sezione, dove con $N_{u,Rd}$ viene indicata la resistenza ultima della sezione netta, mentre con $N_{pl,Rd}$ viene indicata la resistenza plastica (a snervamento) della sezione lorda. Nell'ultima colonna di destra viene infime riportata l'effettiva resistenza data dal minimo dei suddetti valori.

PIATTABANDA	Resistenza della sezione				
SUPERIORE	Npl,Rd	Nu,Rd	N Rd		
Coprigiunto esterno	4568.18	3783.78	3783.78		
Coprigiunto interno	1903.41	1450.89	1450.89		
Piattabanda	12790.91	10594.58	10594.58		

Verifica delle lamiere in trazione: calcolo delle resistenze

PIATTABANDA	Resistenza della sezione				
INFERIORE	Npl,Rd	Nu,Rd	N Rd		
Coprigiunto esterno	5329.55	4665.78	4665.78		
Coprigiunto interno	2664.77	2332.89	2332.89		
Piattabanda	17054.55	15533.78	15533.78		

	Resistenza della sezione			
ANIMA	Npl,Rd	Nu,Rd	N Rd	
Coprigiunto	10902.73	9211.61	9211.61	
Anima	13102.18	11417.70	11417.70	

Essendo ovunque $N_{Sd} \leq N_{Rd}$, le verifiche risultano ampiamente soddisfatte.

9.2 Giunzioni bullonate dei traversi di pila

La sezione di giunzione maggiormente sollecitata risulta corrispondere alla Sezione St1 (Elem 181 G.P. 1) dei Traversi di testa-pila.

Si valutano quindi le sollecitazioni agenti nella sezione bullonata in condizioni sia di esercizio che ultime per le combinazioni max/min M e max/min T.

Comb_SLErara_Mob_dom

Comb	Ν	Т	М
max M	1.05	-8.73	8.08
min M	1.05	-4.30	-7.42
max T	1.05	-8.73	8.08

Comb_SLErara_DT_dom

Comb	N	Т	Μ
max M	1.05	-7.75	4.65
min M	1.05	-5.28	-3.99
max T	1.05	-7.75	4.65

Comb_SLU_Mob_dom				
Comb	Ν	Т	М	
max M	1.04	-9.50	10.79	
min M	1.05	-3.53	-10.13	
max T	1.05	-9.50	10.79	

Comb_SLU_DT_dom

Comb	N	Т	Μ
max M	1.04	-8.18	6.17
min M	1.05	-4.85	-5.51
max T	1.05	-8.18	6.17

Da tali sollecitazioni complessive si ricavano le azioni di taglio massime agenti rispettivamente in condizioni di esercizio e ultime sulle bullonature della piattabanda superiore, di quella inferiore e dell'anima.

Comb_SLErara_Mob_dom

Bullonatura piattabanda superiore: Composta da 12+12 bulloni M27

	Max M	Min M	Max T
N piattabanda	3.67	2.88	3.67
T bullone	0.31	0.24	0.31

Bullonatura piattabanda inferiore: Composta da 12+12 bulloni M27

	Max M	Min M	Max T
N piattabanda	3.16	3.39	3.16
T bullone	0.26	0.28	0.26

Bullonatura d'anima:

Composta da 32+32 bulloni M27

J polare bullonatura = 6851200 mm²

	Max M	Min M	Max T
N anima	0.53	0.54	0.54
M anima	2.91	2.30	2.91
T bullone	0.59	0.39	0.59

Comb_SLErara_DT_dom

Bullonatura piattabanda superiore: Composta da 12+12 bulloni M27

	Max M	Min M	Max T
N piattabanda	2.22	1.43	2.22
T bullone	0.19	0.12	0.19

Bullonatura piattabanda inferiore: Composta da 12+12 bulloni M27

	Max M	Min M	Max T
N piattabanda	1.71	1.95	1.71
T bullone	0.14	0.16	0.14

Bullonatura d'anima:

Composta da 32+32 bulloni M27 J polare bullonatura = 6851200 mm^2

	Max M	Min M	Max T
N anima	0.53	0.54	0.54
M anima	1.95	1.53	1.95
T bullone	0.46	0.33	0.46
Comb_SLU_Mob_dom

Bullonatura piattabanda superiore: Composta da 12+12 bulloni M27

	Max M	Min M	Max T
N piattabanda	4.82	4.02	4.82
T bullone	0.40	0.34	0.40

Bullonatura piattabanda inferiore:

Composta da 12+12 bulloni M27

	Max M	Min M	Max T
N piattabanda	4.31	4.54	4.30
T bullone	0.36	0.38	0.36

Bullonatura d'anima:

Composta da 32+32 bulloni M27 J polare bullonatura = 6851200 mm^2

	Max M	Min M	Max T
N anima	0.53	0.54	0.54
M anima	3.67	2.90	3.67
T bullone	0.70	0.43	0.70

Comb_SLU_DT_dom

Bullonatura piattabanda superiore: Composta da 12+12 bulloni M27

	Max M	Min M	Max T
N piattabanda	2.86	2.07	2.86
T bullone	0.24	0.17	0.24

Bullonatura piattabanda inferiore: Composta da 12+12 bulloni M27

	Max M	Min M	Max T
N piattabanda	2.35	2.59	2.35
T bullone	0.20	0.22	0.20

Bullonatura d'anima:

Composta da 32+32 bulloni M27

J polare bullonatura = 6851200 mm^2

	Max M	Min M	Max T
N anima	0.53	0.54	0.54
M anima	2.37	1.87	2.37
T bullone	0.52	0.36	0.52

Come si può osservare dai risultati appena riportati, le normali condizioni di lavoro della bullonatura dei traversi di testata sono molto poco onerose; la condizioni maggiormente critica e dimensionante risulta invece essere quella del sollevamento dell'impalcato per la sostituzione degli appoggi di pila. Si prende quindi in considerazione tale condizione, che si ipotizza avvenga in assenza di carico da traffico.

Comb	N	Т	М
Condizione di sollevamento	0.00	-4000.00	2600.00

Da tali sollecitazioni complessive si ricavano le azioni di taglio massime agenti rispettivamente sulle bullonature della piattabanda superiore, di quella inferiore e dell'anima.

Condizione di sollevamento

Bullonatura piattabanda superiore: Composta da 12+12 bulloni M27

	Max M	Min M	Max T
N piattabanda	1099.17	1099.17	1099.17
T bullone	91.60	91.60	91.60

Bullonatura piattabanda inferiore: Composta da 12+12 bulloni M27

	Max M	Min M	Max T
N piattabanda	1099.17	1099.17	1099.17
T bullone	91.60	91.60	91.60

Bullonatura d'anima:

Composta da 32+32 bulloni M27 J polare bullonatura =

6851200 mm²

	Max M	Min M	Max T
N anima	0.00	0.00	0.00
M anima	1054.29	1054.29	1054.29
T bullone	240.58	240.58	240.58

In conclusione, essendo la forza di taglio massima agente in condizioni di esercizio ampiamente inferiore alla resistenza a scorrimento in condizioni di servizio, la condizione di verifica 1) si ritiene pienamente soddisfatta.

Analogamente, essendo la forza di taglio massima agente in condizioni ultime ampiamente inferiore sia alla resistenza a scorrimento in condizioni ultime sia alla resistenza a rifollamento, anche le rimanenti condizioni di verifica 2) e 3) si ritengono pienamente soddisfatte.

Rimane infine da verificare la sezione resistente delle piattabande, dell'anima e dei relativi coprigiunti.

Bullonatura piattabanda superiore:

	b	t	A forata	n bulloni/fila
Coprigiunto esterno	600	25	12150	4
Coprigiunto interno	250	25	4825	2
Piattabanda	500	30	11580	4

Bullonatura piattabanda inferiore:

	b	t	A forata	n bulloni/fila
Coprigiunto esterno	700	25	14650	4
Coprigiunto interno	350	25	7325	2
Piattabanda	500	30	11580	4

Bullonatura d'anima:

	b	t	A forata	n bulloni/fila
Coprigiunto	1790	20	26680	16
Anima	1740	18	23112	16

Si riporta quindi di seguito il riepilogo delle sollecitazioni riscontrate in condizioni ultime, avendo riportato nell'ultima colonna di destra la massima sollecitazione agente per ciascun elemento in esame.

PIATTABANDA	Max M	Min M	Max T	
SUPERIORE	N Sd	N Sd	N Sd	N Sd
Coprigiunto esterno	403.03	403.03	403.03	403.03
Coprigiunto interno	201.51	201.51	201.51	201.51
Piattabanda	952.61	952.61	952.61	952.61

Verifica delle lamiere in trazione: calcolo azioni sollecitanti

PIATTABANDA	Max M	Min M	Max T	
INFERIORE	N Sd	N Sd	N Sd	N Sd
Coprigiunto esterno	403.03	403.03	403.03	403.03
Coprigiunto interno	201.51	201.51	201.51	201.51
Piattabanda	952.61	952.61	952.61	952.61

ΔΝΙΜΔ	Max M	Min M	Max T	
	N Sd	N Sd	N Sd	N Sd
Coprigiunto	-1539.69	-1539.69	-1539.69	1539.69
Anima	-1539.69	-1539.69	-1539.69	1539.69

Si riporta di seguito il riepilogo delle resistenze della sezione, dove con $N_{u,Rd}$ viene indicata la resistenza ultima della sezione netta, mentre con $N_{pl,Rd}$ viene indicata la resistenza plastica (a snervamento) della sezione lorda. Nell'ultima colonna di destra viene infime riportata l'effettiva resistenza data dal minimo dei suddetti valori.

Verifica delle lamiere in trazione: calcolo delle resistenze

PIATTABANDA	Resistenza della sezione			
SUPERIORE	Npl,Rd	Nu,Rd	N Rd	
Coprigiunto esterno	4568.18	4286.52	4286.52	
Coprigiunto interno	1903.41	1702.26	1702.26	
Piattabanda	4568.18	4085.42	4085.42	

PIATTABANDA	Resistenza della sezione			
INFERIORE	Npl,Rd	Nu,Rd	N Rd	
Coprigiunto esterno	5329.55	5168.52	5168.52	
Coprigiunto interno	2664.77	2584.26	2584.26	
Piattabanda	4568.18	4085.42	4085.42	

	Resistenza della sezione			
ANIMA	Npl,Rd	Nu,Rd	N Rd	
Coprigiunto	10902.73	9412.70	9412.70	
Anima	9538.36	8153.91	8153.91	

Essendo ovunque $N_{Sd} \leq N_{Rd}$, le verifiche risultano ampiamente soddisfatte.

9.3 Giunzioni bullonate dei traversi di campata

La sezione di giunzione maggiormente sollecitata risulta corrispondere alla Sezione St3 (Elem 173 G.P. 1) dei Traversi di campata. Dato il modesto impegno statico, si è optato per l'utilizzo di bulloni M20 al posto di M27.

Si valutano ora le sollecitazioni agenti nella sezione bullonata in condizioni sia di esercizio che ultime per le combinazioni max/min M e max/min T.

Comb_SLErara_Mob_dom

Comb	Ν	Т	Μ
max M	-20.01	-56.25	156.63
min M	-19.67	22.55	-119.30
max T	-19.70	-56.25	156.51

Comb_SLErara_DT_dom

Comb	N	Т	М
max M	-20.40	-53.02	145.48
min M	-19.98	19.32	-107.86
max T	-19.95	-53.02	145.30

Comb_SLU_Mob_dom

Comb	N	Т	Μ
max M	-19.46	-74.10	218.70
min M	-18.77	40.40	-182.32
max T	-18.83	-74.10	218.46

Comb_SLU_DT_dom

Comb	N	Т	М
max M	-19.98	-69.74	203.65
min M	-19.20	36.04	-166.87
max T	-19.17	-69.74	203.33

Da tali sollecitazioni complessive si ricavano le azioni di taglio massime agenti rispettivamente in condizioni di esercizio e ultime sulle bullonature della piattabanda superiore, di quella inferiore e dell'anima.

Comb_SLErara_Mob_dom

Bullonatura piattabanda superiore: Composta da 8+8 bulloni M27

	Max M	Min M	Max T
N piattabanda	148.70	123.56	148.67
T bullone	18.59	15.45	18.58

Bullonatura piattabanda inferiore:

Composta da 8+8 bulloni M27

	Max M	Min M	Max T
N piattabanda	160.51	111.95	160.30
T bullone	20.06	13.99	20.04

Bullonatura d'anima:

Composta da 14+14 bulloni M27 J polare bullonatura = 582400 mm^2

	Max M	Min M	Max T
N anima	8.20	8.06	8.07
M anima	33.91	23.80	33.89
T bullone	21.68	14.08	21.67

Comb_SLErara_DT_dom

Bullonatura piattabanda superiore: Composta da 8+8 bulloni M27

	Max M	Min M	Max T
N piattabanda	137.58	112.37	137.53
T bullone	17.20	14.05	17.19

Bullonatura piattabanda inferiore: Composta da 8+8 bulloni M27

	Max M	Min M	Max T
N piattabanda	149.62	100.57	149.31
T bullone	18.70	12.57	18.66

Bullonatura d'anima:

Composta da 14+14 bulloni M27

J polare bullonatura = 582400 mm^2

	Max M	Min M	Max T
N anima	8.36	8.19	8.18
M anima	31.57	21.41	31.54
T bullone	20.24	12.62	20.22

Comb_SLU_Mob_dom

Bullonatura piattabanda superiore: Composta da 8+8 bulloni M27

T bullone	26.27	23.19	26.26
N piattabanda	210.13	185.50	210.08
	Max M	Min M	Max T

Bullonatura piattabanda inferiore:

Composta da 8+8 bulloni M27

	Max M	Min M	Max T
N piattabanda	221.62	174.42	221.19
T bullone	27.70	21.80	27.65

Bullonatura d'anima:

Composta da 14+14 bulloni M27 J polare bullonatura = 582400 mm^2

	Max M	Min M	Max T
N anima	7.98	7.69	7.72
M anima	46.90	36.96	46.86
T bullone	29.70	22.15	29.67

Comb_SLU_DT_dom

Bullonatura piattabanda superiore: Composta da 8+8 bulloni M27

	Max M	Min M	Max T
N piattabanda	195.12	170.38	195.04
T bullone	24.39	21.30	24.38

Bullonatura piattabanda inferiore: Composta da 8+8 bulloni M27

	Max M	Min M	Max T
N piattabanda	206.91	159.05	206.36
T bullone	25.86	19.88	25.79

Bullonatura d'anima:

Composta da 14+14 bulloni M27

J polare bullonatura = 582400 mm^2

	Max M	Min M	Max T
N anima	8.19	7.87	7.86
M anima	43.75	33.74	43.69
T bullone	27.75	20.17	27.72

In conclusione, essendo la forza di taglio massima agente in condizioni di esercizio ampiamente inferiore alla resistenza a scorrimento in condizioni di servizio, la condizione di verifica 1) si ritiene pienamente soddisfatta.

Analogamente, essendo la forza di taglio massima agente in condizioni ultime ampiamente inferiore sia alla resistenza a scorrimento in condizioni ultime sia alla resistenza a rifollamento, anche le rimanenti condizioni di verifica 2) e 3) si ritengono pienamente soddisfatte.

Rimane infine da verificare la sezione resistente delle piattabande, dell'anima e dei relativi coprigiunti.

Bullonatura piattabanda superiore:

	b	t	A forata	n bulloni/fila
Coprigiunto esterno	600	20	9720	4
Coprigiunto interno	250	20	3860	2
Piattabanda	350	20	4720	4

Bullonatura piattabanda inferiore:

	b	t	A forata	n bulloni/fila
Coprigiunto esterno	700	20	11720	4
Coprigiunto interno	350	20	5860	2
Piattabanda	350	20	4720	4

Bullonatura d'anima:

	b	t	A forata	n bulloni/fila
Coprigiunto	1790	14	22267	7
Anima	810	12	7326	7

Si riporta quindi di seguito il riepilogo delle sollecitazioni riscontrate in condizioni ultime, avendo riportato nell'ultima colonna di destra la massima sollecitazione agente per ciascun elemento in esame.

Comb_SLU_Mob_dom

Verifica delle lamiere in trazione: calcolo azioni sollecitanti

PIATTABANDA	Max M	Min M	Max T	
SUPERIORE	N Sd	N Sd	N Sd	N Sd
Coprigiunto esterno	63.04	55.65	63.02	63.04
Coprigiunto interno	31.52	27.82	31.51	31.52
Piattabanda	168.11	148.40	168.06	168.11

PIATTABANDA	Max M	Min M	Max T	
INFERIORE	N Sd	N Sd	N Sd	N Sd
Coprigiunto esterno	66.49	52.33	66.36	66.49
Coprigiunto interno	33.24	26.16	33.18	33.24
Piattabanda	177.29	139.53	176.95	177.29

	Max M	Min M	Max T	
	N Sd	N Sd	N Sd	N Sd
Coprigiunto	-79.16	-58.16	-79.22	79.22
Anima	-81.16	-60.08	-81.15	81.16

Comb_SLU_DT_dom Verifica delle lamiere in trazione: calcolo azioni sollecitanti

PIATTABANDA	Max M	Min M	Max T	
SUPERIORE	N Sd	N Sd	N Sd	N Sd
Coprigiunto esterno	58.53	51.11	58.51	58.53
Coprigiunto interno	29.27	25.56	29.26	29.27
Piattabanda	156.09	136.30	156.03	156.09

PIATTABANDA	Max M	Min M	Max T	
INFERIORE	N Sd	N Sd	N Sd	N Sd
Coprigiunto esterno	62.07	47.71	61.91	62.07
Coprigiunto interno	31.04	23.86	30.95	31.04
Piattabanda	165.53	127.24	165.09	165.53

ΔΝΙΜΔ	Max M	Min M	Max T	
	N Sd	N Sd	N Sd	N Sd
Coprigiunto	-73.60	-52.53	-73.68	73.68
Anima	-75.65	-54.50	-75.64	75.65

Si riporta di seguito il riepilogo delle resistenze della sezione, dove con $N_{u,Rd}$ viene indicata la resistenza ultima della sezione netta, mentre con $N_{pl,Rd}$ viene indicata la resistenza plastica (a snervamento) della sezione lorda. Nell'ultima colonna di destra viene infime riportata l'effettiva resistenza data dal minimo dei suddetti valori.

Verifica delle lamiere in trazione: calcolo delle resistenze

PIATTABANDA	Resistenza della sezione					
SUPERIORE	Npl,Rd Nu,Rd N Rd					
Coprigiunto esterno	3654.55	3429.22	3429.22			
Coprigiunto interno	1522.73	1361.81	1361.81			
Piattabanda	2131.82	1665.22	1665.22			

PIATTABANDA	Resistenza della sezione					
INFERIORE	Npl,Rd	N Rd				
Coprigiunto esterno	4263.64	4134.82	4134.82			
Coprigiunto interno	2131.82	2067.41	2067.41			
Piattabanda	2131.82	1665.22	1665.22			

ΔΝΙΜΑ	Resistenza della sezione				
ANIMA	Npl,Rd Nu,Rd N Rd				
Coprigiunto	7631.91	7855.80	7631.91		
Anima	2960.18	2584.61	2584.61		

Essendo ovunque $N_{Sd} \leq N_{Rd}$, le verifiche risultano ampiamente soddisfatte.

10. Connessione impalcato-sella-paratia

Nel presente paragrafo si riportano le principali verifiche della connessione tra le travi d'impalcato e la paratia di pali costituente la spalla. Tale connessione viene realizzata garantendo la continuità tra la soletta

d'impalcato e la sella-paraghiaia della spalla, nella quale il retro della trave metallica viene inghisato mediante un getto di seconda fase. Si ricorda, infatti, che in fase di costruzione si prevede di realizzare dapprima la palificata, sulla cui sommità si pone uno spinotto, costituito da un tubo metallico in corrispondenza di ciascun palo, al fine di garantire la trasmissione delle sole azioni taglianti tra sella e palo; in seconda fase viene infine realizzata la parte sommitale della sella-paraghiaia, in cui risultano inglobate le parti retrostanti delle travi d'impalcato.

Le modalità di trasferimento delle azioni di scambio impalcato-paratia sono brevemente richiamate di seguito:

- l'azione flettente agente all'estremità della trave viene trasferita alla sella della paratia grazie a due sistemi di connessione predisposti sulle piattabande, costituiti da piolatura al lembo superiore e da connettori a staffa al lembo inferiore;
- l'azione orizzontale introdotta dall'impalcato viene ripresa come flessione nel piano orizzontale della parte superiore della sella-paraghiaia, soggetta anche ad una distribuzione tagliante uniforme della porzione inferiore della sella stessa; il trasferimento di tale forza alla paratia di pali avviene tramite la resistenza a taglio dello spinotto predisposto in testa ai pali;
- l'azione verticale trasmessa dall'impalcato alla paratia viene distribuita uniformemente tra i pali costituenti la stessa senza introduzione di momenti flettenti aggiuntivi.

L'efficacia della connessione impalcato-spalla è affidata ad una serie di connettori e ad un sistema di armature trasversali passanti attraverso l'anima della trave, dove sono stati previsti appositi fori per consentirne il passaggio.

La progettazione della connessione impalcato-spalla è basata sui seguenti presupposti:

- La trasmissione delle azioni flettente ed assiale dall'impalcato al corpo spalla avviene a livello delle flange della trave grazie ai due sistemi di connettori precedentemente descritti; tale forza viene in seguito trasmessa ai pali come azione di taglio agente in sommità al palo stesso;
- II. L'azione di scorrimento trasmessa dai connettori sopra richiamata viene ripresa in direzione trasversale da due sistemi di armature, di cui il primo, posto a livello dei connettori a staffa saldati sulla piattabanda inferiore, risulta passante attraverso l'anima delle travi grazie ad apposite forature, mentre il secondo, posizionato a livello della piolatura saldata sulla piattabanda superiore, va ad integrare l'armatura trasversale di soletta.

Si procede di seguito a dimensionare i due sistemi di connessione coinvolti nel garantire la trasmissione delle sopra citate sollecitazioni. A tale scopo si riepiloga innanzitutto lo stato tensionale più gravoso per la sezione di connessione impalcato-spalla.

La seguente tabella riporta le sollecitazioni agenti allo SLU rispettivamente nella condizione dove l'azione dominante è costituita dapprima dai carichi da traffico e poi dalle variazioni termiche. In fase di verifica si considera la situazione di volta in volta peggiore tra le due prese in esame.

Combination	Ν	V	Т	Μ
SLU_Mob_dom_Vmax	1367758.55	941359.68	13892.18	-1467965.18
SLU_Mob_dom_Vmin	-575322.79	-2206051.08	-6725.09	5201125.74
SLU_Mob_dom_Mmax	-576160.44	-1307804.72	-17701.89	6082710.59
SLU_Mob_dom_Mmin	1626606.40	540930.81	18002.37	-2800573.89
SLU_DT_dom_Vmax	2002409.79	770447.17	7689.29	-2040938.96
SLU_DT_dom_Vmin	-2285024.02	-1737120.38	-3119.17	6563111.22
SLU_DT_dom_Mmax	-2296337.76	-1254195.29	-10467.94	7161566.68
SLU_DT_dom_Mmin	2398980.93	461022.15	10772.24	-3649574.54
Env_SLU_Nmax	2398980.93	461022.15	10772.24	-3649574.54
Env_SLU_Nmin	-2296337.76	-1254195.29	-10467.94	7161566.68
Env_SLU_Mmax	-2296337.76	-1254195.29	-10467.94	7161566.68
Env_SLU_Mmin	2398980.93	461022.15	10772.24	-3649574.54
totale:	2398.98			7161.57

L'azione assiale trasferita a ciascuna delle due piattabande allo SLU risulta quindi:

$$N_{SLU, piatta inf} = \left(\frac{\sigma_1 + \sigma_2}{2}\right) A_{piatta inf} = -4113.05 \text{ kN}$$

$$N_{SLU, piatta \, sup} = \left(\frac{\sigma_3 + \sigma_4}{2}\right) A_{piatta \, sup} = 4407.74 \, kN$$

10.1 Dimensionamento della piolatura sulla flangia superiore

Si procede ora a dimensionare il sistema di connettori a piolo da saldare alla piattabanda superiore della trave per l'intera lunghezza di inghisaggio nel corpo spalla. Si è scelto di impiegare pioli Nelson di diametro \$\overline{19}\$ e altezza pari a 200.0 mm, così come fatto per il rimanente sviluppo dell'impalcato.

La tabella seguente richiama le caratteristiche di resistenza della piolatura in esame, calcolate nel dettaglio nel paragrafo relativo alle verifiche della connessione trave-soletta della presente relazione.

Pioli Nelson	
Prd SLU = min(Prd1,Prd2) =	81.66 kN
$P_{Rd SLE} = k_s x \min(P_{Rd1}, P_{Rd2}) =$	61.24 kN
P _{Rd1} = (0.8 fu π φ^2 /4) / γv =	81.66 kN
P _{Rd2} = (0.29 α φ ^2 radq(fck Ecm)) /γv =	91.47 kN
ks =	0.75

L'azione che tali connettori dovranno essere in grado di assorbire, pari a quella trasmessa alla piattabanda superiore, è risultata pari a 4407.74 kN.

Di conseguenza, per assorbire tale forza, il numero minimo di connettori a piolo da saldare sulla flangia superiore della trave risulta il seguente:

n° minimo di pioli (SLU) =
$$\frac{N_{SLU, piattabanda superioree}}{P_{Rd, piolo}}$$
 = 72

Dal momento che si è previsto di impiegare n. 5 pioli su 15 file con passo longitudinale pari a 100.0 mm, per un totale di 75 pioli, il numero minimo richiesto risulta garantito.

10.2 Dimensionamento dei connettori a staffa sulla flangia inferiore

Si procede ora a dimensionare il sistema di connettori a staffa da saldare alla piattabanda inferiore riportato nella seguente figura.

Si è scelto, in particolare, di impiegare connettori costituiti da una piastra da 100x40x300 mm (altezza x spessore x larghezza) corredata da una staffa ¢20 saldata a cappio. Tali connettori vengono saldati sulla piattabanda inferiore a coppie in senso trasversale (uno a sinistra e uno a destra dell'anima della trave, come mostrato nella precedente figura) e con un passo longitudinale di circa 200 mm.

La seguente tabella riporta nel dettaglio tutte le caratteristiche dimensionali e di resistenza dei connettori a staffa impiegati.

Connettori a staffa (dimensionamento secondo EN				
Riepilogo caratteristiche dimensionali:				
diametro staffa :	φ	=	20	mm
larghezza :	d ₁	=	300	mm
altezza :	b ₁ / 2	=	100	mm
spessore :	a ₁	=	40	mm
passo lg :	р	=	200	mm
larghezza libera della flangia su cui è vincolato il connet	ore :		390	mm
distanza tra estremità SX della barra e estremità SX dell	a flangia :		45	mm
all' estremità SX della flangia c'è una piastra ortog a que		0		
all' estremità DX della flangia c'è una piastra ortog a que	sta? sì 1 / no 0:		1	
resistenza cilindrica caratteristica del CLS a compressio	ne f _{ck}	=	35.00	N / mm^2
coefficiente di sicurezza lato CLS:	=	1.50		
numero di file di connettori nel senso trasversale:			2	
h = p - a1 =			160	mm
b1 =			200	mm
b2 =			360	mm
d2 =			425	mm
η =			1.60	
distanza tra filo spalla e asse "appoggio" :			750	mm
lunghezza retrotrave :			650	mm
Valutazione portanza del singolo connettore:				
Portanza in esercizio di un connettore a staffa:	$P_{Rd} = d_1 * b_1 / 2 * \eta * f_{ck} / \gamma_{ck}$, =	1117.81	kN / conn

La portanza ultima di ciascun connettore è stata calcolata come segue:

$$P_{Rd} = d_1 \frac{b_1}{2} \eta \frac{f_{ck}}{\gamma_c} = 1117.81 \text{ kN}$$

dove $d_1 e b_1$ sono le distanze indicate nella precedente figura, mentre η risulta dato da:

$$\eta = \sqrt{\frac{\left(\frac{d_2 b_2}{2}\right)}{\left(\frac{d_1 b_1}{2}\right)}} = 1.60$$

dove d₂ e b₂ sono le distanze indicate nella precedente figura.

L'azione che tali connettori dovranno essere in grado di assorbire, pari a quella trasmessa alla piattabanda inferiore allo SLU, è risultata pari a -4113.05 kN.

Di conseguenza, per assorbire tale forza, il numero minimo di connettori a staffa da saldare sulla flangia inferiore della trave risulta il seguente:

n° minimo di connettori a staffa =
$$\frac{N_{piattabanda inf eriore}}{P_{Rd,connettore}}$$
 = 4

Dal momento che si è previsto di impiegare n. 6 connettori a staffa, distribuiti a coppie con passo longitudinale pari a 200.0 mm circa, si conferma che il numero minimo richiesto di connettori è garantito.

10.3 Dimensionamento dello spinotto di collegamento palo-sella

L'azione assiale derivante dall'impalcato si trasforma in azione tagliante per la paratia di pali e viene trasmessa dalla sella al singolo palo tramite lo spinotto costituito da un tubo d'acciaio avente diametro pari a 200 mm e spessore pari a 20 mm.

L'azione tagliante massima agente in condizioni ultime (SLU) risulta pari a:

La resistenza a taglio dello spinotto, valutata come prodotto dell'area di taglio del tubo e della resistenza di progetto dell'acciaio, risulta invece pari a:

Vrd = At x fyd = 5969.03 mm² x 391.30 MPa = 2335.71 kN

Essendo Vrd maggiore di Vsd, la verifica risulta ampiamente soddisfatta.

11. Soletta d'impalcato

Nel presente paragrafo si prende in esame la soletta dell'impalcato. In particolare si provvede ad eseguire lo studio della statica locale della soletta in quanto la statica globale è già stata presa in esame nei paragrafi precedenti, valutando le tensioni nel calcestruzzo e nelle barre d'armatura longitudinali.

In fase di progetto si è scelto di realizzare la soletta con l'utilizzo di coppelle prefabbricate che fungono da cassero a perdere. Lo spessore complessivo di soletta è pari mediamente a circa 0.297 m, di cui 0.06 m sono relativi alla coppella. La larghezza totale della soletta è pari a 13.50 m.

Nei punti seguenti viene innanzitutto verificata la coppella durante la fase di getto della soletta; in secondo luogo viene esaminato il comportamento complessivo in fase di esercizio.

11.1 Verifica coppella in fase di costruzione

In direzione trasversale, il getto dello spessore corrente di soletta avverrà in due fasi:

- fase 1: viene gettata la zona centrale tra le due travi e un'aliquota degli sbalzi fino ad una luce poco maggiore di 1.50 m dagli assi delle travi;
- fase 2: viene gettata la parte residua degli sbalzi, costituita essenzialmente dai marciapiedi.

Si prevede a tale scopo l'utilizzo di coppelle di larghezza 2.40 m e dello spessore di 60.0 mm, armate con n. 4 tralicci d'armatura. Si potranno eventualmente adottare campiture differenti, a patto di mantenere i medesimi quantitativi d'armatura e, per i tralicci, i medesimi rapporti dimensionali.

Ciascun traliccio è così formato:

Corrente superiore: n. $1 \phi 30$

Corrente inferiore: n. $2 \neq 20$ annegati nella coppella.

Staffe diagonali: n. 2 \u03c6 12/25

Distanza tra corrente superiore/inferiore: 180.0 mm

In corrispondenza del punto di passaggio sulle piattabande delle travi la coppella risulta interrotta; in questa zona la sezione resistente risulta formata dalle sole armature dei tralicci, i cui correnti inferiori vengono verificati nei confronti dell'instabilità.

6.3.1 . COPPELLA PER GETTO SOLETTA : NON COLLABORANTE CON SBALZO AUTOSOSTENTANTE E FERMAGETTO A FINE SBALZO.

6.3.1 .1. DATI D'INGRESSO.

Geometria :	luce tra gli appoggi "a" e "b" :			=	7.00	m
	lunghezza dello sbalzo :			=	3.25	m
	numero degli sbalzi :			=	2	
Connella ·	spessore della coppella :			=	0.060	m
ooppena .	varco tra le connelle (vedi figura):			=	0.000	m
	larghezza della connella in campata :			=	2 400	m
	larghezza della coppella in campata :			=	2.400	m
-						
Tralicci :	numero di tralicci per coppella :			=	4	
	altezza fuoritutto del traliccio :		_	=	0.180	m
	diametro delle barre del corrente superiore :		Φcor.sup	=	30	mm
	diametro delle barre del corrente inferiore :		<pre> Φcor.inf </pre>	=	20	mm
	diametro delle barre diagonali :		• diag	=	12	mm
	coefficiente ω per corrente superiore in funzione di λ calcolato più avanti : λ =	29.33	ωcor.sup	=	1.06	
	coefficiente ω per corrente inferiore in funzione di λ calcolato più avanti : λ =:	46.00	ωcor.inf	=	1.17	
	coefficiente ω per diagonale in funzione di λ calcolato più avanti : λ =:	66.49	ωdiag	=	1.20	
	passo degli elementi diagonali :			=	0.25	m
	lunghezza del tratto di saldatura degli elementi diagonali al corrente superiore :			=	0.03	m
	lunghezza del tratto di saldatura degli elementi diagonali al corrente inferiore :			=	0.03	m
	interasse fra le barre del corrente inferiore (vedi schema nell' immagine) :			=	0.150	m
Carichi :	spessore del getto (compreso maggior spessore in fase esecutiva da livellare) :			=	0.237	m
	lunghezza di getto in 1.a fase dello sbalzo da "a" a "c":			=	1.50	m
	sovraccarico accidentale in corso di esecuzione :			=	1.00	kN/m2
	cassero fermagetto :			=	0.75	kN/m
	caccore rennagene .				0.10	

6.3.1 .2. DATI CALCOLATI.

Interasse verticale fra correnti superiore	e inferiore	: ic =			0.18	- (0.03	+		0.02) / 2	=	0.155	m
Lunghezza della proiezione longitudinale	sul piano d	lella copp	ella dell'	' eler	mento di d	iagonale :		0.02		1.0		_	0.005	
inclinazione dell' elemento di diagonale i	d icnetto alla) = verticale (0.25 Julinian		- aitudinale	. 0.05	-	0.03)	/ 2	-	-	0.095	m
	$\alpha = \operatorname{arctr}$	r (a / ic)	=	0 1011	arcta (. 0.095	1	0 159	5)		-	-	31 50 9	, ,
Lunghezza della projezione trasversale	sul piano de	lla coppel	la dell' e	elem	ento di dia	donale :	,	0.100	,				01.00	
g + p +	b	= (0.150		+	0.020	-	0.030))	/ 2	-	=	0.070	m
inclinazione dell' elemento di diagonale	ispetto alla	verticale s	sul piano	o lon	gitudinale	:			,					
	$\beta = \operatorname{arctg}$	g (b / ic)	=		arctg (0.070	1	0.155	5)		=	=	24.30	b
Taglio presso l' appoggio :														
dallo sbalzo : coppella :	2	2.400	*		0.060	* 25.0 *	3.05				=	=	10.98	kN * m / coppella
carico accider	itale : 2	2.400	*		1.00	*	3.05				=	=	7.32	kN * m / coppella
fermagetto :	2	2.400	*		0.75						-	=	1.80	kN * m / coppella
getto :	2	2.400	*		0.24	* 25.0 *	1.30			— .	- =		18.49	kN * m / coppella
										l a sba	ıl =	=	38.59	kN * m / coppella
dalla campata : coppella + get	to ·	2 400	*	(0.24	+	0.060) * 25.0	*	6 60	12	_	58 81	kN / connella
carico accider	itale ·	2.400		(2 400	*	1 00) 23.0		6.60	12	-	7 92	kN / connella
					2.400		1.00			Ta camr	, <u> </u>		66.73	kN / connella
										ru ourin	5		00.70	kit / ooppend
Ta =	MAX [Ta car	mp ; Ta sl	bal] =	[66.73	;	38.59]		=			66.73	kN / coppella
Momento presso l' appoggio :														
connella	10.98	*	3 05	1	2					=			16 74	kN * m / coppella
carico accidentale :	7.32	*	3.05	,	2					=			11.16	kN * m / coppella
fermagetto :	1.80	*	3.05		-					=			5.49	kN * m / coppella
getto :	18.49	*	1.30	1	2					=			12.02	kN * m / coppella
3								Ν	Ma	=			45.41	kN * m / coppella
Momento in campata :														
momento dallo/dagli sbal	20/i :	0	*		2	*	45.41	/ 2		=			0.00	kN * m / coppella
coppella + getto :	2.400	* (0.24		+	0.060) * 25.0 *	6	.60 ^2	2/8 =			-97.03	kN * m / coppella
carico accidentale :			-2.400		*	1.00	*	6	.60 ^2	2/8 =			-13.07	kN * m / coppella
								Ma	ab	=			-110.10	kN * m / coppella
Taglio presso la ripresa dello sbalzo					0.000	+ of c + c				4.65				
coppella :	2	2.400	*		0.060	* 25.0 * (3.05	-		1.30) =		6.30	kN * m / coppella
carico accider	itale : 2	2.400			1.000	* (3.05	-		1.30) =		4.20	kN * m / coppella
termagetto :	-	2.400	÷		0.750	+ 05 0 + /	0.05			4 00	、 _=	=	1.80	KN ^ m / coppella
getto :	4	2.400			0.237	° 25.0 ° (3.05	-		1.30) =		24.89	kN * m / coppella
										10		-	37.19	kin III/coppella
Momento presso la ripresa dello sbal	zo :													
coppella :		6.30	*	(3.05	-	1.30)/2		=			5.51	kN * m / coppella
carico accider	tale :	4.20	*	ì	3.05	-	1.30	ý/ 2		=			3.68	kN * m / coppella
fermagetto :		1.80	*	(3.05	-	1.30)		=			3.15	kN * m / coppella
getto :	2	24.89	*	(3.05	-	1.30)/2		=		_	21.77	kN * m / coppella
								N	Иc	=			34.11	kN * m / coppella

6.3.1 .3. VERIFICA DELLE COPPELLE.

Convenzione : sforzi e tensioni > 0 se di trazione.

6.3.1 .3.1. TENSIONI NEL CORRENTE SUPERIORE.

Massima tensione di compressione nella barra (sezione in campata) :

Massimo sforzo di compressione nella barra :			
C = -110.10 / (0.155 * 1 barra / traliccio * 4	tralicci / coppella)	-177.58	kN / barra
Raggio giratore : i = 3.00	/ 4	= 0.75	cm
lunghezza della barra tra vincolo e vincolo : L = 25.00	- 3.00	= 22.00	cm
lunghezza di libera inflessione (caso euleriano cerniera - cerniera):	L0 = L	= 22.00	cm
snellezza : $\lambda = L0 / i = 22.00$	/ 0.75	= 29.33	
tensione di compressione nella barra : C * ω / Af = -177.58 *10^3 * 1.06	/ 707	-266.3	N / mm2
Massima tensione di trazione nella barra (sezione presso l' appoggio):			
Massimo sforzo di trazione nella barra :			
MAX [Ma ; Mc] = [45.41 ; 34.11] =	45.41 kN / coppella		
T = 45.41 / (0.155 * 1 barra / traliccio * 4	tralicci / coppella)	= 73.25	kN / barra
tensione di trazione nella barra : T / Af = 73.25 *10^3	/ 707	= 103.6	N / mm2
6.3.1 .3.2. TENSIONI NEL CORRENTE INFERIORE.			
Massima tanaiana di compressione nelle barro / corrigne presso l'apparatio) ;			
Massima tensione di compressione nella barra (sezione presso i appoggio).			
Massimo siorzo di compressione mena barra. MAS $[Ma \cdot Mo] = [4541 \cdot 3411] =$	45.41 kN * m / conn		
C = -45.41 / (0.155 * 2 harre / traliccio * 4	tralicci / connella)	= -36.62	kN / harra
Radio diratore $i = 200$		= 0.50	cm
lunghezza della barra tra vincolo e vincolo : $L = 40.00$	+ 2*3.00	= 46.00	cm
lunghezza di libera inflessione (caso euleriano incastro - incastro): $10 = 0.5 * L =$	0.50 * 46.00	= 23.00	cm
snellezza : $\lambda = L0 / i = 23.00$	/ 0.50	= 46	
tensione di compressione nella barra : C * ω / Af = -36.62 *10^3 * 1.17	/ 314	= -136.4	N / mm2
Massima tensione di trazione nella barra (sezione in campata):			
Massimo sforzo di trazione nella barra :			
T = 110.10 / (0.155 * 2 barre / traliccio * 4	tralicci / coppella)	= 88.79	kN / barra
tensione di trazione nella barra : $T / Af = 88.79 *10^{3}$	/ 314	= 282.6	N / mm2
6.3.1			
CONTROL PENDION NECE ELEMENT BROOMAL			
Massima tensione di compressione nella barra (sezione presso l'apporgio) :			
Massimo sforzo di taglio sulle sezioni :			
MAX $[Ta : Tc] = [6673 : 3719] =$	66.73 kN / connella		
Massimo sforzo di compressione nella barra :			

D = -66.73 / (cos 31.5)	0 * cos	24.30 *:	2 diagonali	/ traliccio *	4	tralicci / coppel	la) =	-10.73	kN / barra
Raggio giratore :		i	=	1.20	/	4	=	0.30	cm
lunghezza della barra tra vincolo e vincolo : L =	0.155	/ (cos	31.50	* cos	24.30)	=	19.95	cm
lunghezza di libera inflessione (caso euleriano cerniera -	cerniera) :					L0 = L	=	19.95	cm
snellezza :	λ	= L0 / i	=	19.95	1	0.30	=	66	
tensione di compressione nella barra :	D*ω / Af =	-10.73 *1	10^3 *	1.20	1	113	=	-113.9	N / mm2

Le situazioni più gravose vengono rilevate al centro del campo centrale di coppella tra le due travi, risultando le tensioni massime e minime:

σs = -266.30 MPa

nel corrente superiore

σs = 282.60 MPa

nel corrente inferiore

Vista la transitorietà di tale situazione e la non-collaborazione della coppella alla statica trasversale della soletta in fase di esercizio, tali tensioni vengono ritenute accettabili.

Si valuta ora la deformabilità della coppella durante le fasi di getto della soletta. Si considera la "striscia" di coppella di competenza di ciascun traliccio, ossia di larghezza pari a 0.650m.

Per effetto del peso proprio della coppella si ottiene la deformata riportata nella seguente figura, con un abbassamento massimo pari a 5.5 mm in corrispondenza dell'estremità degli sbalzi.

Scale: 1: 78.2609 Zoom: 100.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Loadcase: 1:Peso_coppella Results file: Statica_trasv_soletta_1.mys Maximum displacement 5.51384E-3 at node 80 Deformation exaggeration: 85.1611 Peak/value entity: Displacement

Peak/value component: DZ Peak range(%): 0.0 Peak/value maximum 0.122823E-3 at node 51 Peak/value minimum -5.51384E-3 at node 80

Per effetto del getto di prima fase, consistente nella zona centrale della soletta fino ad 1.5 m oltre gli assi delle due travi, si ottiene invece la seguente deformata, che presenta un abbassamento massimo in mezzeria pari a 19 mm e un innalzamento massimo all'estremità degli sbalzi pari a 22 mm.

Scale: 1: 78.2609 Zoom: 100.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Loadcase: 1:Peso_getto_1fase Results file: Statica_trasv_soletta_2.mys Maximum displacement 0.0220345 at node 54 Deformation exaggeration: 21.3104

Peak/value entity: Displacement Peak/value component: DZ Peak range(%): 0.0 Peak/value maximum 0.0220345 at node 54 Peak/value minimum -0.0190253 at node 17

Con la seconda fase di getto si ottiene infine la seguente deformata, che presenta un innalzamento massimo in mezzeria pari a 6.9 mm e un abbassamento massimo all'estremità degli sbalzi pari a 15 mm.

Scale: 1: 78.2609 Zoom: 100.0 Eye: (0.0, -1.0, 0.0) Linear/dynamic analysis Loadcase: 1:Peso_getto_2fase Results file: Statica_trasv_soletta_3.mys Maximum displacement 0.015117 at node 80 Deformation exaggeration: 31.062

Peak/value entity: Displacement Peak/value component: DZ Peak range(%): 0.0 Peak/value maximum 6.89832E-3 at node 17 Peak/value minimum -0.015117 at node 80

Sovrapponendo quindi le varie fasi di getto, tenendo conto anche del peso proprio della coppella, si viene a definire il seguente stato deformativo:

Il massimo abbassamento della zona centrale risulta quindi pari a 14.6 mm e viene ritenuto accettabile.

11.2 Analisi trasversale della soletta

L'analisi trasversale della soletta viene condotta con riferimento al modello bidimensionale a piastra mostrato in figura, utilizzando elementi "thick shell" lineari a 4 nodi. La soletta viene schematizzata come appoggiata sulle travi principali e vincolata in corrispondenza delle spalle mediante un incastro rigido (Caso A) o una cerniera cilindrica (caso B). Il dimensionamento della soletta viene effettuato sulla base dei risultati inviluppo delle due condizioni limite prese in esame per il vincolo presente in corrispondenza al corpo spalla.

L'analisi della soletta d'impalcato viene condotta prendendo in esame i contributi di carico relativi a peso proprio, carichi permanenti e carichi accidentali. In particolare, con riferimento a questi ultimi, sono state considerate apposite condizioni di carico mobile al fine di massimizzare/minimizzare le sollecitazioni nelle sezioni ritenute maggiormente significative, ossia quelle in corrispondenza della connessione con la spalla, in corrispondenza del testapila ed infine quelle di mezzeria delle campate di riva e centrale, come indicato nella seguente figura.

Per semplicità, ed a favore di sicurezza, si considera integralmente agente sulla sezione completa di coppella il contributo del peso proprio, ipotizzando che vi sia la totale redistribuzione sullo schema statico finale delle sollecitazioni inizialmente assorbite dalla coppella in calcestruzzo.

Si considera quindi la presenza dei seguenti contributi:

o Peso proprio

 $g1 = 25.0x0.297 = 7.5 \text{ kN/m}^2$ uniformemente distribuito sulla sezione corrente

o Sovraccarichi permanenti:

Manto:

g2' = 3.0 kN/m² uniformemente distribuito sul piano viabile

Marciapiedi

 $g2'' = 0.15x25.0 = 3.75 \text{ kN/m}^2$ uniformemente distribuito in corrispondenza dei marciapiedi

Finiture

g2''' = 3.0 kN/m	peso della barriera di sicurezza
$g2^{iv} = 2.0 \text{ kN/m}$	peso della rete protettiva
g2 ^v = 3.0 kN/m	peso del carter metallico

o Carichi mobili

La posizione dei carichi mobili viene definita con l'obiettivo principale di massimizzare/minimizzare il momento flettente trasversale in corrispondenza di:

- sezione di attacco dello sbalzo

- sezione di mezzeria del campo centrale fra le travi.

A tale scopo vengono applicati i modelli di carico LM1 (solo componente Tandem System) e LM2, descritti nel capitolo relativo all'analisi dei carichi, nelle disposizioni trasversali descritte di seguito:

- Condizione 1: si prevede l'applicazione di 2 Tandem System del LM1 affiancati a distanza mutua pari a 0.50 m, accostati il più possibile al marciapiede di sinistra; il peso di ciascun asse del primo TS risulta pari a 300 kN, mentre quello del secondo TS risulta pari a 200 kN.
- o Condizione 2: si prevede l'applicazione di un LM2 accostato il più possibile al marciapiede di sinistra.
- Condizione 3: si prevede l'applicazione di 2 Tandem System del LM1 affiancati a distanza mutua pari a 0.50 m, disposti perfettamente al centro della carreggiata; il peso di ciascun asse del primo TS risulta pari a 300 kN, mentre quello del secondo TS risulta pari a 200 kN.
- Condizione 4: si prevede l'applicazione di 2 Tandem System del LM1 disposti ai due estremi della carreggiata, accostati il più possibile ciascuno al marciapiede più vicino; il peso di ciascun asse del primo TS risulta pari a 300 kN, mentre quello del secondo TS risulta pari a 200 kN.

La risultante di competenza di ciascuna ruota del veicolo TS e LM2 viene diffusa attraverso il manto (assunto di spessore pari a 11 cm) fino al piano medio della soletta, stimata di spessore medio pari a 0.297 m. Ne consegue che l'impronta sul piano medio della soletta della ruota del TS risulta pari a 0.917 x 0.917 m, mentre quella della ruota del LM2 risulta 1.117 x 0.867 m.

In corrispondenza della zona di estremità della soletta, ossia lato connessione con la spalla, si è tenuto conto dell'effetto dinamico dei carichi mobili mediante un coefficiente amplificativo fissato per semplicità e a favore di sicurezza pari a 1.3.

La posizione longitudinale dei carichi viene fissata previo uno studio semplificato delle linee di influenza delle sollecitazioni effettuato in corrispondenza delle quattro sezioni critiche sopra citate. In totale vengono previste 16 disposizioni di carico mobile (4 condizioni di carico mobile x 4 sezioni critiche).

Le verifiche vengono effettuate allo S.L.E. e S.L.U., con riferimento ai coefficienti di normativa; tali combinazioni vengono utilizzate per le verifiche della soletta come di seguito specificato:

- combinazione S.L.E. rara per le verifiche delle tensioni di esercizio

- combinazione S.L.E. frequente per le verifiche a fessurazione

- combinazione S.L.U. per le verifiche a rottura

Di seguito si riportano i diagrammi relativi al momento flettente trasversale (Mx), tracciati lungo la sezione trasversale di volta in volta in esame, per effetto delle diverse combinazioni di carico sopra citate, derivanti dall'inviluppo dei casi A e B dipendenti dalla natura della connessione impalcato-spalla. Si precisa che i diagrammi relativi alla zona di estremità della soletta, ossia lato connessione con la spalla, non tengono ancora conto dell'effetto dinamico dei carichi mobili dato dal coefficiente amplificativo pari a 1.3.

SLU - min My


```
Momento trasversale - Sezione in prossimità della spalla
```

SLU - max My SLU - min My

Momento trasversale - Sezione mezzeria campata di riva

SLU - max My SLU - min My

Momento trasversale - Sezione in corrispondenza del testapila

Momento trasversale - Sezione di mezzeria campata centrale

In fase di verifica si considerano le due sezioni indicate in figura.

Per la zona di estremità della soletta, ossia quella in prossimità della connessione con la spalla, sono stati riscontrati i seguenti valori massimi e minimi di momento trasversale:

M _A = 1.3 x 43.0 = 55.90 kNm/m	allo SLE rara
M _A = 1.3 x 38.0 = 49.4 kNm/m	allo SLE frequente
M _A = 1.3 x 58.0 = 75.40 kNm/m	allo SLU

M _B =1.3 x -35.0 = -45.50 kNm/m	allo SLE rara
M _B =1.3 x -28.0 = -36.40 kNm/m	allo SLE frequente
M _B = 1.3 x -47.0 = -61.10 kNm/m	allo SLU

Per la altre zona di soletta, ossia quella in prossimità del testapila e le zone di mezzeria campata, sono stati invece riscontrati i seguenti valori massimi e minimi di momento trasversale:

M _A = 105.0 kNm/m	allo SLE rara
M _A = 90.0 kNm/m	allo SLE frequente
M _A = 140.0 kNm/m	allo SLU
M _B = -80.0 kNm/m	allo SLE rara
M _B = -53.0 kNm/m	allo SLE frequente
$M_{B} = -100.0 \text{ kNm/m}$	allo SLU

In fase di verifica si farà riferimento chiaramente alla situazione caratterizzata dalle sollecitazioni peggiori.

Si riportano di seguito le verifiche strutturali condotte per le due sezioni in esame sulla base delle massime sollecitazioni riscontrate lungo tutta la soletta. In fase di verifica si considera l'effettivo spessore della soletta, comprensivo di coppella, ossia:

- s_A = 0.2937 m (esattamente in asse alla trave); in luogo di tale spessore, però, a favore di sicurezza, si considera lo spessore effettivo che si ha all'estremo esterno della piattabanda della trave, che risulta pari a 0.2860 m;
- s_B = 0.3812 m (in mezzeria della soletta); in luogo di tale spessore, però, a favore di sicurezza, si considera lo spessore medio della zona di soletta compresa tra le travi, che risulta pari a 0.33745 m.

L'armatura trasversale corrente viene realizzata mediante barre correnti ϕ 20/20 inferiori/superiori che vengono integrate mediante ulteriori ϕ 20/20 superiori nella zona a cavallo delle travi metalliche.

o Verifica della sezione A-A

In combinazione S.L.E. rara risulta agire il seguente momento sollecitante:

M_A = 105.0 kNm/m

Le tensioni di lavoro del calcestruzzo e dell'armatura risultano:

 σ_{cmin} = -7.86 MPa

σ_{smax} = 157.95 MPa

Essendo i tassi di lavoro dei materiali entro i limiti imposti da normativa, la verifica risulta soddisfatta.

In combinazione S.L.E. frequente risulta agire il seguente momento sollecitante:

 $M_{A} = 90.0 \text{ kNm/m}$

Le tensioni di lavoro del calcestruzzo e dell'armatura risultano:

 σ_{cmin} = -6.74 MPa

σ_{smax} = 135.38 MPa

Il calcolo dell'ampiezza delle fessure, eseguito in accordo a quanto esposto al paragrafo 7.3.4 delle norme EN 1992-1-1, restituisce quanto segue:

$$w_k = s_{r,max} (\epsilon_{sm} - \epsilon_{cm}) = 0.040 \text{ mm}$$

essendo:

 $s_{r,max} = k_3 c + k_1 k_2 k_4 \phi / \rho_{p,eff} = 102.32 mm$

dove:

 $k_1 = 0.8$

 $k_2 = 0.5$

 $k_3 = 3.4$

 $k_4 = 0.425$

c = 35 mm

φ = 20 mm

 $\rho_{p,eff}$ = 0.022

```
ed essendo:
```

$$(\varepsilon_{\rm sm} - \varepsilon_{\rm cm}) = \frac{\sigma_s - k_t \frac{f_{ct,eff}}{\rho_{p,eff}} \left(1 + \alpha_e \rho_{p,eff}\right)}{E_s} \ge 0.6 \frac{\sigma_s}{E_s}$$

dove:

σ_s = 135.38 MPa

 $k_t = 0.6$

 $f_{ct,eff}$ = 2.9 Mpa

 α_{e} = 6.16

E_s = 210000 MPa

Da cui:

($\epsilon_{sm} - \epsilon_{cm}$) = 0.000216

Risultando ($\varepsilon_{\rm sm} - \varepsilon_{\rm cm}$) $\leq 0.6 \frac{\sigma_s}{E_s}$, si assume:

$$(\varepsilon_{\rm sm} - \varepsilon_{\rm cm}) = 0.6 \frac{\sigma_s}{E_s} = 0.000387$$

Dal momento che l'ampiezza delle fessure risulta contenuta, la verifica a fessurazione può ritenersi ampiamente soddisfatta.

In combinazione S.L.U. risulta agire il seguente momento sollecitante:

M_A = 140.0 kNm/m

Essendo il momento resistente pari a:

$$M_{rd} = 259.634 \text{ kNm/m}$$

il coefficiente di sicurezza a rottura risulta:

 $\eta = M_{rd}/M_{sd} = 1.85$

La verifica può ritenersi pertanto soddisfatta.

o Verifica della sezione B-B

In combinazione S.L.E. rara risulta agire il seguente momento sollecitante:

 M_{B} = -80.0 kNm/m

Le tensioni di lavoro del calcestruzzo e dell'armatura risultano:

 σ_{cmin} = -5.91 MPa

 σ_{smax} = 205.39 MPa

Essendo i tassi di lavoro dei materiali entro i limiti imposti da normativa, la verifica risulta soddisfatta.

In combinazione S.L.E. frequente risulta agire il seguente momento sollecitante:

M_B = -53.0 kNm/m

Le tensioni di lavoro del calcestruzzo e dell'armatura risultano:

 σ_{cmin} = -3.91 MPa

 σ_{smax} = 136.07 MPa

Il calcolo dell'ampiezza delle fessure, eseguito in accordo a quanto esposto al paragrafo 7.3.4 delle norme EN 1992-1-1, restituisce quanto segue:

 $w_k = s_{r,max} (\epsilon_{sm} - \epsilon_{cm}) = 0.079 \text{ mm}$

essendo:

 $s_{r,max} = k_3 c + k_1 k_2 k_4 \phi / \rho_{p,eff} = 204.32 mm$

dove:

 $k_1 = 0.8$

k₂ = 0.5

 $k_3 = 3.4$

k₄ = 0.425

c = 60 mm

φ = 20 mm

 $\rho_{p,eff} = 0.0106$

ed essendo:

$$(\varepsilon_{\rm sm} - \varepsilon_{\rm cm}) = \frac{\sigma_s - k_t \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_e \rho_{p,eff})}{E_s} \ge 0.6 \frac{\sigma_s}{E_s}$$

dove:

σ_s = 136.07 MPa

$$k_{t} = 0.6$$

f_{ct,eff} = 2.9 Mpa

E_s = 210000 MPa

Risultando ($\varepsilon_{sm} - \varepsilon_{cm}$) $\leq 0.6 \frac{\sigma_s}{E_s}$, si assume:

$$(\varepsilon_{\rm sm} - \varepsilon_{\rm cm}) = 0.6 \frac{\sigma_s}{E_s} = 0.000389.$$

Dal momento che l'ampiezza delle fessure risulta contenuta, la verifica a fessurazione può ritenersi ampiamente soddisfatta.

In combinazione S.L.U. risulta agire il seguente momento sollecitante:

Msd = -100.0 kNm/m

Essendo il momento resistente pari a:

M_{rd} = -152.875

il coefficiente di sicurezza a rottura risulta:

 $\eta = M_{rd}/M_{sd} = 1.53$

La verifica può ritenersi pertanto soddisfatta.

11.3 Combinazione degli effetti locali e globali

La sovrapposizione degli effetti locali e globali nello studio della soletta d'impalcato viene eseguita in accordo a quanto esposto nell'Annesso E delle norme EN 1993-2. In particolare viene adottata la seguente regola di combinazione:

 σ_{Ed} = $\sigma_{\text{glob,d}}$ + $\psi \sigma_{\text{loc,d}}$

dove ψ risulta variabile da 0.70 a 1.0 in funzione della luce della campata in esame. Come indicato nell'Annesso Nazionale delle norme EN 1994-2, si è adottato il valore unitario.

I grafici seguenti riportano l'andamento delle sollecitazioni flettenti longitudinali derivanti dai soli effetti locali del carico mobile disposto secondo quanto descritto al precedente paragrafo.

Le verifiche tensionali effettuate sulla base delle sollecitazioni derivanti dai soli effetti locali dei carichi mobili restituiscono quanto segue.

Il massimo momento riscontrato nella zona in prossimità della spalla (concio E), amplificato mediante il coefficiente dinamico pari a 1.3, risulta pari a:

M = 1.3 x 40.0 = 52.0 kNm

Le tensioni derivanti da tali sollecitazioni, valutate tenendo conto di un'armatura longitudinale di soletta formata da $\phi 20/20 + \phi 24/20$ inferiori e superiori (concio E), risultano le seguenti:

 σ_{cmin} = -3.87 MPa

 σ_{smax} = 80.78 MPa

Il minimo momento riscontrato nella generica sezione longitudinale (conci A, B, C e D) risulta:

M = -49.0 kNm.

Le tensioni derivanti da tali sollecitazioni, valutate tenendo conto di un'armatura longitudinale di soletta formata da ϕ 20/10 inferiori e superiori (conci A e B), risultano le seguenti:

 σ_{cmin} = -3.82 MPa

σ_{smax} = 82.06 MPa

Le tensioni derivanti da tali sollecitazioni, valutate invece tenendo conto di un'armatura longitudinale di soletta formata da ϕ 24/20 inferiori e superiori (concio C), risultano le seguenti:

 σ_{cmin} = -3.79 MPa

 σ_{smax} = 110.66 MPa

Le tensioni derivanti da tali sollecitazioni, valutate invece tenendo conto di un'armatura longitudinale di soletta formata da ϕ 20/20 inferiori e superiori (concio D), risultano le seguenti:

 σ_{cmin} = -5.41 MPa

 σ_{smax} = 158.09 MPa

In definitiva, quindi, le tensioni riscontrate nell'acciaio di armatura dei vari conci, per effetto dei soli effetti locali dei carichi mobili, risultano le seguenti (valori in MPa):

Tensioni derivanti dagli effetti locali

	Acost	Α	В	С	D	E
σreinf loc	82.06	82.06	82.06	110.66	158.09	80.78

Dall'analisi globale dell'impalcato, sotto la combinazione SLE rara, erano stati valutati i seguenti tassi di lavoro dell'acciaio di soletta (valori in MPa):

Tensioni derivanti dagli effetti globali

	Acost	Α	В	С	D	E
σ reinf glob	141.87	134.86	80.07	64.14	112.07	53.21

Sovrapponendo ora gli effetti locali secondo la regola di combinazione sopra richiamata si ottengono le seguenti tensioni:

Tensioni derivanti dalla combinazione degli effetti locali e globali

	Acost	Α	В	С	D	E
σ reinf loc+glob	223.93	216.92	162.13	174.80	270.16	133.99

La massima tensione, riscontrata nel concio D, risulta pari a 270.16 MPa. Essendo tale valore inferiore al limite imposto da normativa, ossia $0.8 f_{vk} = 0.8 \times 450 = 360$ MPa, le verifiche possono ritenersi soddisfatte.

12. Analisi e verifica delle pile

12.1 Condizioni statiche

Ciascun sostegno viene studiato come un elemento isolato soggetto alle reazioni scaricate in sommità dall'impalcato, al suo peso proprio e all'azione del vento lungo la sua elevazione. Data la presenza di appoggi unidirezionali longitudinali, l'impalcato risulta in grado di trasmettere alle sottostrutture la sola forza trasversale dovuta al vento. Risulterà inoltre da considerare in sommità all'elevazione la forza d'attrito dell'apparecchiatura d'appoggio stessa, diretta secondo l'asse longitudinale.

12.1.1 Verifica delle elevazioni

Le seguenti tabelle riportano, per la sezione di spiccato delle pile, i valori delle sollecitazioni agenti nelle varie combinazioni di carico da esaminare. In grassetto sono state evidenziate le condizioni più sfavorevoli. I valori sono espressi in kN e kNm.

Condizioni SLE

Combination	Fx (kN)	Fy (kN)	Fz (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
Env_Comb_SLErara (MAX) Fx	-8093.17	-471.75	287.03	0.00	-2505.54	3113.57
Env_Comb_SLErara (MIN) Fx	-13419.20	471.75	-191.68	0.00	7182.73	-3113.58
Env_Comb_SLErara (MAX) Fy	-9925.82	471.76	193.33	0.00	-2755.82	-3113.58
Env_Comb_SLErara (MIN) Fy	-10576.40	-471.76	-192.55	0.00	4037.00	3113.58
Env_Comb_SLErara (MAX) Fz	-11812.36	-471.75	385.18	0.00	4798.95	3113.58
Env_Comb_SLErara (MIN) Fz	-11644.08	471.75	-385.18	0.00	-4798.95	-3113.58
Env_Comb_SLErara (MAX) My	-11987.92	471.75	-168.56	0.00	10004.10	-3113.58
Env_Comb_SLErara (MIN) My	-11952.31	-471.75	168.55	0.00	-10003.94	3113.58
Env_Comb_SLErara (MAX) Mz	-10576.40	-471.76	-192.55	0.00	4037.00	3113.58
Env_Comb_SLErara (MIN) Mz	-9925.82	471.76	193.33	0.00	-2755.82	-3113.58
Env_Comb_SLEfreq (MAX) Fx	-8538.18	-471.75	31.56	0.00	-443.01	3113.58
Env_Comb_SLEfreq (MIN) Fx	-13373.21	471.75	26.27	0.00	5376.95	-3113.58
Env_Comb_SLEfreq (MAX) Fy	-9288.37	471.75	-38.09	0.00	327.14	-3113.58
Env_Comb_SLEfreq (MIN) Fy	-11840.04	-471.75	87.90	0.00	3686.27	3113.58
Env_Comb_SLEfreq (MAX) Fz	-11815.87	-471.75	153.51	0.00	6722.04	3113.58
Env_Comb_SLEfreq (MIN) Fz	-11657.12	471.75	-153.51	0.00	-6722.04	-3113.58
Env_Comb_SLEfreq (MAX) My	-12000.97	471.75	63.11	0.00	8081.02	-3113.58
Env_Comb_SLEfreq (MIN) My	-11955.82	-471.75	-63.12	0.00	-8080.85	3113.58
Env_Comb_SLEfreq (MAX) Mz	-9053.87	-471.75	38.09	0.00	-327.14	3113.58
Env_Comb_SLEfreq (MIN) Mz	-9288.37	471.75	-38.09	0.00	327.14	-3113.58
Comb_SLEquasi-perm (MAX) Fx	-8697.91	-471.75	38.09	0.00	-327.14	3113.58
Comb_SLEquasi-perm (MIN) Fx	-9670.87	471.75	-38.09	0.00	327.14	-3113.58
Comb_SLEquasi-perm (MAX) Fy	-9291.88	471.75	-38.09	0.00	327.14	-3113.58
Comb_SLEquasi-perm (MIN) Fy	-9066.91	-471.75	38.09	0.00	-327.14	3113.58
Comb_SLEquasi-perm (MAX) Fz	-9258.77	-471.75	38.09	0.00	-327.14	3113.58
Comb_SLEquasi-perm (MIN) Fz	-9100.02	471.75	-38.09	0.00	327.14	-3113.58
Comb_SLEquasi-perm (MAX) My	-9201.97	471.75	-38.09	0.00	327.14	-3113.58
Comb_SLEquasi-perm (MIN) My	-9156.82	-471.75	38.09	0.00	-327.14	3113.58
Comb_SLEquasi-perm (MAX) Mz	-9066.91	-471.75	38.09	0.00	-327.14	3113.58
Comb_SLEquasi-perm (MIN) Mz	-9291.88	471.75	-38.09	0.00	327.14	-3113.58

Condizioni SLU

Combination	Fx (kN)	Fy (kN)	Fz (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
Env_Comb_SLU-STR (MAX) Fx	-7811.27	-636.87	422.24	0.00	-3670.95	4203.31
Env_Comb_SLU-STR (MIN) Fx	-18052.34	636.87	-291.46	0.00	9967.56	-4203.33
Env_Comb_SLU-STR (MAX) Fy	-10173.74	636.87	293.69	0.00	-3991.23	-4203.34
Env_Comb_SLU-STR (MIN) Fy	-14301.58	-636.87	-294.69	0.00	5738.41	4203.34
Env_Comb_SLU-STR (MAX) Fz	-12703.17	-636.87	554.75	0.00	6190.12	4203.33
Env_Comb_SLU-STR (MIN) Fz	-15750.41	636.87	-554.75	0.00	-6190.12	-4203.33
Env_Comb_SLU-STR (MAX) My	-16199.31	636.87	-262.31	0.00	13794.00	-4203.33
Env_Comb_SLU-STR (MIN) My	-12907.39	-636.87	262.30	0.00	-13793.78	4203.33
Env_Comb_SLU-STR (MAX) Mz	-14301.58	-636.87	-294.69	0.00	5738.41	4203.34
Env_Comb_SLU-STR (MIN) Mz	-10173.74	636.87	293.69	0.00	-3991.23	-4203.34
Env_Comb_SLU-EQU (MAX) Fx	-6888.72	-636.87	422.24	0.00	-3670.95	4203.31
Env_Comb_SLU-EQU (MIN) Fx	-15745.97	636.87	-291.46	0.00	9967.56	-4203.33
Env_Comb_SLU-EQU (MAX) Fy	-9251.19	636.87	293.69	0.00	-3991.23	-4203.34
Env_Comb_SLU-EQU (MIN) Fy	-11995.20	-636.87	-294.69	0.00	5738.41	4203.34
Env_Comb_SLU-EQU (MAX) Fz	-11780.62	-636.87	554.75	0.00	6190.12	4203.33
Env_Comb_SLU-EQU (MIN) Fz	-13444.04	636.87	-554.75	0.00	-6190.12	-4203.33
Env_Comb_SLU-EQU (MAX) My	-13892.93	636.87	-262.31	0.00	13794.00	-4203.33
Env_Comb_SLU-EQU (MIN) My	-11984.84	-636.87	262.30	0.00	-13793.78	4203.33
Env_Comb_SLU-EQU (MAX) Mz	-11995.20	-636.87	-294.69	0.00	5738.41	4203.34
Env_Comb_SLU-EQU (MIN) Mz	-9251.19	636.87	293.69	0.00	-3991.23	-4203.34
Env_Comb_SLU-GEO (MAX) Fx	-8016.39	-471.75	359.12	0.00	-3120.77	3113.57
Env_Comb_SLU-GEO (MIN) Fx	-13974.55	471.75	-247.41	0.00	8481.94	-3113.58
Env_Comb_SLU-GEO (MAX) Fy	-10026.82	471.76	260.74	0.00	-3489.13	-3113.59
Env_Comb_SLU-GEO (MIN) Fy	-10807.44	-471.76	-261.90	0.00	4980.09	3113.59
Env_Comb_SLU-GEO (MAX) Fz	-12195.93	-471.75	472.00	0.00	5279.40	3113.58
Env_Comb_SLU-GEO (MIN) Fz	-12027.64	471.75	-472.00	0.00	-5279.40	-3113.58
Env_Comb_SLU-GEO (MAX) My	-12407.77	471.75	-222.88	0.00	11744.11	-3113.58
Env_Comb_SLU-GEO (MIN) My	-12372.16	-471.75	222.87	0.00	-11743.92	3113.58
Env_Comb_SLU-GEO (MAX) Mz	-10807.44	-471.76	-261.90	0.00	4980.09	3113.59
Env_Comb_SLU-GEO (MIN) Mz	-10026.82	471.76	260.74	0.00	-3489.13	-3113.59

Legenda:

Fx = azione assiale

Fy = azione tagliante in direzione longitudinale (parallela all'asse struttura)

Fz = azione tagliante in direzione trasversale (ortogonale all'asse struttura)

Mx = *momento torcente*

My = *momento flettente trasversale (agente attorno all'asse Y parallelo all'asse struttura)*

Mz = momento flettente longitudinale (agente attorno all'asse *Z* ortogonale all'asse struttura)

Le verifiche vengono condotte facendo affidamento ad una sezione resistente in calcestruzzo di spessore

pari a 1.0 m e larghezza complessiva pari a 8.15 m, armata mediante ϕ 16/20 disposti perimetralmente.

Le verifiche tensionali condotte in condizioni SLE restituiscono quanto segue:

Comb1_SLE RARA		Comb3_SLE RARA		
N =	-8093.17 kN	N =	-11987.92 kN	
Mx =	3113.57 kNm	My =	-3113.58 kNm	
My =	-2505.54 kNm	Mx =	10004.10 kNm	
σ s =	65.97 Mpa	σ s =	29.39 Mpa	
σ C =	-4.77 Mpa	σ C =	-5.23 Mpa	
Comb2_SLE RARA		Comb4_S	SLE RARA	
Comb2_SLE RARA N =	-13419.20 kN	Comb4_S N =	S LE RARA -11952.31 kN	
Comb2_SLE RARA N = Mx =	-13419.20 kN -3113.58 kNm	Comb4_S N = Mx =	SLE RARA -11952.31 kN 3113.58 kNm	
Comb2_SLE RARA N = Mx = My =	-13419.20 kN -3113.58 kNm 7182.73 kNm	Comb4_S N = Mx = My =	SLE RARA -11952.31 kN 3113.58 kNm -10003.94 kNm	
Comb2_SLE RARA N = Mx = My = σs =	-13419.20 kN -3113.58 kNm 7182.73 kNm 16.78 Mpa	Comb4_S N = Mx = My = σs =	SLE RARA -11952.31 kN 3113.58 kNm -10003.94 kNm 29.65 Mpa	

La tensione massima dell'acciaio risulta rispettare per tutte le condizioni esaminate la limitazione seguente, come richiesto dalle normative di riferimento:

 $\sigma_{s} \leq 0.8 f_{yk}$ = 0.8 x 450 = 360.0 MPa

Analogamente, le tensioni massime di compressione del calcestruzzo risultano rispettare le limitazioni seguenti:

 $\sigma_c \le 0.60 f_{ck}$ = 0.60 x 35 = -21.00 MPa per le combinazioni rare

 $\sigma_c \le 0.45 f_{ck}$ = 0.45 x 35 = -15.75 MPa per le combinazioni quasi-permanente

Dati i modesti tassi di lavoro dell'acciaio, inoltre, le verifiche a fessurazione possono ritenersi automaticamente soddisfatte.

Le verifiche a rottura condotte in condizioni SLU restituiscono invece quanto segue:

Comb1_SLU		Comb3_SLU	
N =	-7811.27 kN	N =	-16199.31 kN
Mx =	4203.31 kNm	Mx =	-4203.33 kNm
My =	-3670.95 kNm	My =	13794.00 kNm
$\gamma =$	1.52	$\gamma =$	2.17
Comb2_SLU		Comb4_SLU	
Comb2_SLU N =	-18052.34 kN	Comb4_SLU N =	-12907.39 kN
Comb2_SLU N = Mx =	-18052.34 kN -4203.33 kNm	Comb4_SLU N = Mx =	-12907.39 kN 4203.33 kNm
Comb2_SLU N = Mx = My =	-18052.34 kN -4203.33 kNm 9967.56 kNm	Comb4_SLU N = Mx = My =	-12907.39 kN 4203.33 kNm -13793.78 kNm

Le verifiche a rottura condotte in condizioni SLU possono ritenersi ampiamente soddisfatte dal momento che il coefficiente di sicurezza risulta sempre ampiamente superiore all'unità.

12.1.2 Verifica delle fondazioni

Le seguenti tabelle riportano, per la sezione di intradosso fondazione di ciascun sostegno, i valori delle sollecitazioni agenti sulle pile nelle varie combinazioni di carico da esaminare. I valori sono espressi in kN e kNm.

Condizioni SLE

Combination	Fx (kN)	Fy (kN)	Fz (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
Env_Comb_SLErara (MAX) Fx	-10781.17	-471.75	287.03	0.00	-2936.09	3821.20
Env_Comb_SLErara (MIN) Fx	-16107.20	471.75	-191.68	0.00	7470.25	-3821.21
Env_Comb_SLErara (MAX) Fy	-12613.82	471.76	193.33	0.00	-3045.82	-3821.22
Env_Comb_SLErara (MIN) Fy	-13264.40	-471.76	-192.55	0.00	4325.83	3821.22
Env_Comb_SLErara (MAX) Fz	-14500.36	-471.75	385.18	0.00	4221.18	3821.21
Env_Comb_SLErara (MIN) Fz	-14332.08	471.75	-385.18	0.00	-4221.18	-3821.21
Env_Comb_SLErara (MAX) My	-14669.39	471.75	-170.34	0.00	10259.04	-3821.21
Env_Comb_SLErara (MIN) My	-14633.78	-471.75	170.33	0.00	-10258.87	3821.21
Env_Comb_SLErara (MAX) Mz	-13264.40	-471.76	-192.55	0.00	4325.83	3821.22
Env_Comb_SLErara (MIN) Mz	-12613.82	471.76	193.33	0.00	-3045.82	-3821.22
Env_Comb_SLEfreq (MAX) Fx	-11226.18	-471.75	31.56	0.00	-490.35	3821.21
Env_Comb_SLEfreq (MIN) Fx	-16061.21	471.75	26.27	0.00	5337.54	-3821.21
Env_Comb_SLEfreq (MAX) Fy	-11976.37	471.75	-38.09	0.00	384.27	-3821.21
Env_Comb_SLEfreq (MIN) Fy	-14528.04	-471.75	87.90	0.00	3554.42	3821.21
Env_Comb_SLEfreq (MAX) Fz	-14503.87	-471.75	153.51	0.00	6491.77	3821.21
Env_Comb_SLEfreq (MIN) Fz	-14345.12	471.75	-153.51	0.00	-6491.77	-3821.21
Env_Comb_SLEfreq (MAX) My	-14682.44	471.75	61.33	0.00	7988.45	-3821.21
Env_Comb_SLEfreq (MIN) My	-14637.29	-471.75	-61.34	0.00	-7988.28	3821.21
Env_Comb_SLEfreq (MAX) Mz	-11741.87	-471.75	38.09	0.00	-384.27	3821.21
Env_Comb_SLEfreq (MIN) Mz	-11976.37	471.75	-38.09	0.00	384.27	-3821.21
Comb_SLEquasi-perm (MAX) Fx	-11385.91	-471.75	38.09	0.00	-384.27	3821.21
Comb_SLEquasi-perm (MIN) Fx	-12358.87	471.75	-38.09	0.00	384.27	-3821.21
Comb_SLEquasi-perm (MAX) Fy	-11979.88	471.75	-38.09	0.00	384.27	-3821.21
Comb_SLEquasi-perm (MIN) Fy	-11754.91	-471.75	38.09	0.00	-384.27	3821.21
Comb_SLEquasi-perm (MAX) Fz	-11946.77	-471.75	38.09	0.00	-384.27	3821.21
Comb_SLEquasi-perm (MIN) Fz	-11788.02	471.75	-38.09	0.00	384.27	-3821.21
Comb_SLEquasi-perm (MAX) My	-11889.97	471.75	-38.09	0.00	384.27	-3821.21
Comb_SLEquasi-perm (MIN) My	-11844.82	-471.75	38.09	0.00	-384.27	3821.21
Comb_SLEquasi-perm (MAX) Mz	-11754.91	-471.75	38.09	0.00	-384.27	3821.21
Comb_SLEquasi-perm (MIN) Mz	-11979.88	471.75	-38.09	0.00	384.27	-3821.21

Condizioni SLU						
Combination	Fx (kN)	Fy (kN)	Fz (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
Env_Comb_SLU-STR (MAX) Fx	-10499.27	-636.87	422.24	0.00	-4304.31	5158.61
Env_Comb_SLU-STR (MIN) Fx	-21681.14	636.87	-291.46	0.00	10404.74	-5158.63
Env_Comb_SLU-STR (MAX) Fy	-12861.74	636.87	293.69	0.00	-4431.76	-5158.64
Env_Comb_SLU-STR (MIN) Fy	-17930.38	-636.87	-294.69	0.00	6180.46	5158.64
Env_Comb_SLU-STR (MAX) Fz	-15391.17	-636.87	554.75	0.00	5358.00	5158.63
Env_Comb_SLU-STR (MIN) Fz	-19379.21	636.87	-554.75	0.00	-5358.00	-5158.63
Env_Comb_SLU-STR (MAX) My	-19819.30	636.87	-264.71	0.00	14190.30	-5158.63
Env_Comb_SLU-STR (MIN) My	-15586.58	-636.87	264.69	0.00	-14190.06	5158.63
Env_Comb_SLU-STR (MAX) Mz	-17930.38	-636.87	-294.69	0.00	6180.46	5158.64
Env_Comb_SLU-STR (MIN) Mz	-12861.74	636.87	293.69	0.00	-4431.76	-5158.64
Env_Comb_SLU-EQU (MAX) Fx	-9307.92	-636.87	422.24	0.00	-4304.31	5158.61
Env_Comb_SLU-EQU (MIN) Fx	-18702.77	636.87	-291.46	0.00	10404.74	-5158.63
Env_Comb_SLU-EQU (MAX) Fy	-11670.39	636.87	293.69	0.00	-4431.76	-5158.64
Env_Comb_SLU-EQU (MIN) Fy	-14952.00	-636.87	-294.69	0.00	6180.46	5158.64
Env_Comb_SLU-EQU (MAX) Fz	-14199.82	-636.87	554.75	0.00	5358.00	5158.63
Env_Comb_SLU-EQU (MIN) Fz	-16400.84	636.87	-554.75	0.00	-5358.00	-5158.63
Env_Comb_SLU-EQU (MAX) My	-16840.92	636.87	-264.71	0.00	14190.30	-5158.63
Env_Comb_SLU-EQU (MIN) My	-14395.23	-636.87	264.69	0.00	-14190.06	5158.63
Env_Comb_SLU-EQU (MAX) Mz	-14952.00	-636.87	-294.69	0.00	6180.46	5158.64
Env_Comb_SLU-EQU (MIN) Mz	-11670.39	636.87	293.69	0.00	-4431.76	-5158.64
Env_Comb_SLU-GEO (MAX) Fx	-10704.39	-471.75	359.12	0.00	-3659.45	3821.19
Env_Comb_SLU-GEO (MIN) Fx	-16662.55	471.75	-247.41	0.00	8853.05	-3821.21
Env_Comb_SLU-GEO (MAX) Fy	-12714.82	471.76	260.74	0.00	-3880.24	-3821.22
Env_Comb_SLU-GEO (MIN) Fy	-13495.44	-471.76	-261.90	0.00	5372.93	3821.22
Env_Comb_SLU-GEO (MAX) Fz	-14883.93	-471.75	472.00	0.00	4571.40	3821.21
Env_Comb_SLU-GEO (MIN) Fz	-14715.64	471.75	-472.00	0.00	-4571.40	-3821.21
Env_Comb_SLU-GEO (MAX) My	-15088.26	471.75	-224.93	0.00	12080.85	-3821.21
Env_Comb_SLU-GEO (MIN) My	-15052.65	-471.75	224.92	0.00	-12080.65	3821.21
Env_Comb_SLU-GEO (MAX) Mz	-13495.44	-471.76	-261.90	0.00	5372.93	3821.22
Env_Comb_SLU-GEO (MIN) Mz	-12714.82	471.76	260.74	0.00	-3880.24	-3821.22

Nei seguenti paragrafi si riporta l'esito delle verifiche strutturali condotte per i pali di fondazione. Per le verifiche di carattere geotecnico si rimanda invece ad altro elaborato progettuale.

12.1.3 Verifica dei pali di fondazione

Le seguenti tabelle restituiscono, a partire dalle peggiori sollecitazioni valutate all'intradosso plinto, le sollecitazioni riscontrate nei pali di fondazione delle pile, valutate nell'ipotesi di plinto rigido.
V uivi	1 000100011					
		N	Tx	Ту	Мx	Му
	Max_N	-10781.17	-471.75	287.03	3821.20	-2936.09
	Min_N	-16107.20	471.75	-191.68	-3821.21	7470.25
щ	Max_Mx	-14669.39	471.75	-170.34	-3821.21	10259.04
S.L	Min_Mx	-14633.78	-471.75	170.33	3821.21	-10258.87
	Max_My	-13264.40	-471.76	-192.55	3821.22	4325.83
	Min_My	-12613.82	471.76	193.33	-3821.22	-3045.82
	Max_N	-10499.27	-636.87	422.24	5158.61	-4304.31
	Min_N	-21681.14	636.87	-291.46	-5158.63	10404.74
, ⊃	Max_Mx	-19819.30	636.87	-264.71	-5158.63	14190.30
S.L	Min_Mx	-15586.58	-636.87	264.69	5158.63	-14190.06
	Max_My	-17930.38	-636.87	-294.69	5158.64	6180.46
	Min_My	-12861.74	636.87	293.69	-5158.64	-4431.76

Sollecitazioni globali ad intradosso fondazione (peso plinto incluso) Valori espressi in kN e kNm.

PALIFICATA PILE - CONDIZIONI S.L.E.								
PALO	1	2	3	4	5	6		
	N [kN]							
1	-985	-2,691	-2,705	-958	-1,799	-1,524		
2	-1,091	-2,585	-2,599	-1,064	-1,905	-1,418		
3	-1,197	-2,479	-2,493	-1,170	-2,012	-1,312		
4	-1,303	-2,373	-2,387	-1,276	-2,118	-1,206		
5	-1,392	-1,654	-1,280	-2,382	-1,198	-1,947		
6	-1,498	-1,548	-1,174	-2,489	-1,305	-1,841		
7	-1,605	-1,442	-1,068	-2,595	-1,411	-1,735		
8	-1,711	-1,335	-962	-2,701	-1,517	-1,629		
	T [kN]							
tutti	69	64	63	63	64	64		

	PALIFICATA PILE - CONDIZIONI S.L.U.									
PALO	1	2	3	4	5	6				
	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]				
1	-799	-3,648	-3,678	-748	-2,456	-1,515				
2	-942	-3,504	-3,534	-891	-2,599	-1,372				
3	-1,085	-3,361	-3,391	-1,035	-2,742	-1,228				
4	-1,228	-3,218	-3,248	-1,178	-2,885	-1,085				
5	-1,396	-2,203	-1,707	-2,719	-1,597	-2,130				
6	-1,540	-2,059	-1,564	-2,862	-1,740	-1,987				
7	-1,683	-1,916	-1,420	-3,005	-1,884	-1,844				
8	-1,826	-1,773	-1,277	-3,149	-2,027	-1,701				
	T [kN]	T [kN]	T [kN]	T [kN]	T [kN]	T [kN]				
tutti	96	88	86	86	88	88				

La massima azione di compressione riscontrata in condizioni ultime risulta pari a 3678.0 kN.

12.2 Condizioni sismiche

Ciascun sostegno viene studiato come un oscillatore ad un grado di libertà, vincolato alla base e avente in sommità la massa dell'impalcato ad esso afferente. Per tener conto del reale stato della sezione si tiene conto della rigidezza fessurata in direzione longitudinale.

L'analisi condotta, già ampiamente descritta nel capitolo relativo alle impostazioni delle analisi riportate nella presente relazione, consiste in un'analisi dinamica modale con spettro di risposta. Per lo studio delle elevazioni si è deciso di tener conto delle capacità dissipative della struttura, della sua sovraresistenza e dell'incremento del suo periodo proprio a seguito delle platicizzazioni, impiegando, al posto dello spettro di risposta elastico, lo spettro di risposta ridotto del fattore di struttura q, assunto pari a 1.5.

Come richiesto dalla vigente normativa, il dimensionamento delle fondazioni e delle apparecchiature di appoggio viene invece condotto sulla base delle sollecitazioni dedotte dall'analisi con lo spettro elastico (q=1.0).

Lo studio degli effetti sismici viene affrontato assoggettando l'oscillatore semplice ad un input sismico diretto separatamente in direzione orizzontale longitudinale (Ex), in direzione orizzontale trasversale (Ey) ed in direzione verticale (Ez). Le tre componenti sismiche vengono successivamente combinate tra loro con la regola del 100% e del 30%, e poi combinate con i pesi propri e permanenti.

12.2.1 Verifica delle elevazioni

Le seguenti tabelle riportano, per la sezione di spiccato delle pile, i valori delle sollecitazioni agenti nelle varie combinazioni sismiche. In grassetto sono state evidenziate le condizioni più sfavorevoli. I valori sono espressi in kN e kNm.

				-	-		
Combination		Fx	Fy	Fz	Mx	My	Mz
Env_Comb_sisma	max Fx	-7700.00	99.00	510.00	0.00	3300.00	420.00
Env_Comb_sisma	min Fx	-10700.00	99.00	510.00	0.00	3300.00	420.00
Env_Comb_sisma	max My	-8750.00	99.00	1700.00	0.00	11000.00	420.00
Env_Comb_sisma	min My	-8750.00	99.00	-1700.00	0.00	-11000.00	420.00
Env_Comb_sisma	max Mz	-8750.00	330.00	510.00	0.00	3300.00	1400.00
Env_Comb_sisma	min Mz	-8750.00	-330.00	510.00	0.00	3300.00	-1400.00

Riepilogo delle peggiori combinazioni di carico sismiche allo spiccato delle pile

Legenda:

Fx = azione assiale

Fy = azione tagliante in direzione longitudinale (parallela all'asse struttura)

Fz = azione tagliante in direzione trasversale (ortogonale all'asse struttura)

Mx = momento torcente

My = *momento flettente trasversale* (*agente attorno all'asse Y parallelo all'asse struttura*)

Mz = momento flettente longitudinale (agente attorno all'asse Z ortogonale all'asse struttura)

Le verifiche vengono condotte facendo affidamento ad una sezione resistente in calcestruzzo di spessore

pari a 1.0 m e larghezza complessiva pari a 8.15 m, armata mediante ϕ 16/20 disposti perimetralmente.

Le verifiche restituiscono quanto segue:

Comb1_	Sisma	Comb3_S	Sisma	Comb5_	Sisma
N =	-7700.00 kN	N =	-8750.00 kN	N =	-8750.00 kN
Mx =	3300.00 kNm	My =	11000.00 kNm	My =	3300.00 kNm
My =	420.00 kNm	Mx =	420.00 kNm	Mx =	1400.00 kNm
$\gamma =$	1.91	$\gamma =$	1.30	$\gamma =$	1.51
Comb2_	Sisma	Comb4_S	Sisma	Comb6_	Sisma
N =	-10700.00 kN	N =	-8750.00 kN	N =	-8750.00 kN
My =	3300.00 kNm	My =	-11000.00 kNm	My =	3300.00 kNm
Mx =	420.00 kNm	Mx =	420.00 kNm	Mx =	-1400.00 kNm
$\gamma =$	4.01	<u>~</u>	1 01	v —	4 68

Verifiche sismiche sezione di spiccato pile

Le verifiche a rottura possono ritenersi ampiamente soddisfatte dal momento che il coefficiente di sicurezza risulta sempre ampiamente superiore all'unità.

12.2.2 Verifica delle fondazioni

Le seguenti tabelle riportano, per la sezione di intradosso fondazione, i valori delle sollecitazioni nelle varie combinazioni sismiche. I valori sono espressi in kN e kNm.

Riepilogo delle peggiori combinazioni di c	arico sismiche allo spiccato delle	pile (incluso pp plinto)
--	------------------------------------	--------------------------

Combination		Fx	Fy	Fz	Mx	My	Mz
Env_Comb_sisma	max Fx	-12903.00	135.00	600.00	0.00	4800.00	780.00
Env_Comb_sisma	min Fx	-16303.00	135.00	600.00	0.00	4800.00	780.00
Env_Comb_sisma	max My	-14093.00	135.00	2000.00	0.00	16000.00	780.00
Env_Comb_sisma	min My	-14093.00	135.00	-2000.00	0.00	-16000.00	780.00
Env_Comb_sisma	max Mz	-14093.00	450.00	600.00	0.00	4800.00	2600.00
Env_Comb_sisma	min Mz	-14093.00	-450.00	600.00	0.00	4800.00	-2600.00

Nei seguenti paragrafi si riporta l'esito delle verifiche strutturali condotte per i pali di fondazione. Per le verifiche di carattere geotecnico si rimanda invece ad altro elaborato progettuale.

12.2.3 Verifica dei pali di fondazione

Le seguenti tabelle restituiscono, a partire dalle peggiori sollecitazioni valutate all'intradosso plinto, le sollecitazioni riscontrate nei pali di fondazione delle pile, valutate nell'ipotesi di plinto rigido.

Sollecitazioni globali ad intradosso fondazione (peso plinto incluso) Valori espressi in kN e kNm

		Fx	Fy	Fz	Мх	My	Mz
	Comb1	-12903.00	135.00	600.00	0.00	4800.00	780.00
	Comb2	-16303.00	135.00	600.00	0.00	4800.00	780.00
Σ	Comb3	-14093.00	135.00	2000.00	0.00	16000.00	780.00
SIS	Comb4	-14093.00	135.00	-2000.00	0.00	-16000.00	780.00
0,	Comb5	-14093.00	450.00	600.00	0.00	4800.00	2600.00
	Comb6	-14093.00	-450.00	600.00	0.00	4800.00	-2600.00

PALIFICATA PILE - CONDIZIONI SISMICHE									
PALO	1	2	3	4	5	6			
	N [kN]								
1	-1467	-1892	-1149	-2482	-1742	-1381			
2	-1600	-2025	-1594	-2038	-1876	-1514			
3	-1734	-2159	-2038	-1594	-2009	-1648			
4	-1867	-2292	-2482	-1149	-2142	-1781			
5	-1359	-1784	-1041	-2374	-1381	-1742			
6	-1492	-1917	-1485	-1930	-1514	-1876			
7	-1625	-2050	-1930	-1485	-1648	-2009			
8	-1759	-2184	-2374	-1041	-1781	-2142			
	T [kN]								
tutti	77	77	251	251	94	94			

La massima azione di compressione riscontrata in condizioni ultime risulta pari a 2482.0 kN.

Dal momento che le condizioni statiche allo S.L.U. risultano peggiori rispetto a quelle sismiche, le verifiche dei pali in condizioni sismiche si ritengono automaticamente soddisfatte.

13. Analisi e verifica delle spalle

13.1 Condizioni statiche

L'interazione tra l'impalcato e la paratia di spalla è stata studiata impiegando la procedura ampiamente descritta nel capitolo 4 della presente relazione, al termine del quale sono state richiamate sinteticamente le azioni statiche scambiate tra i due elementi strutturali. Sulla base di tali sollecitazioni, per comodità di seguito richiamate (valori in kN/m e kNm/m), si procede ora al dimensionamento e alla verifica della paratia di pali che costituisce il corpo spalla. Di seguito si riporta anche la convenzione di segni adottata.

Sollecitazioni a metro lineare trasmesse dall'impalcato in testa alla paratia

B spalla =

6.75

m

Valori caratteristici	Connessione	Т	Ν	Μ
Fase1_Pesi_propri	non attiva	0.00	-19.04	0.00
Fase2a_Permanenti	attiva	0.30	-10.99	0.78
Fase2a_Cedimenti max N	attiva	0.00	5.52	0.00
Fase2a_Cedimenti min N	attiva	0.00	-6.22	0.00
Fase2a_Cedimenti max M	attiva	0.00	5.52	0.00
Fase2a_Cedimenti min M	attiva	0.00	-6.22	0.00
Fase2a_Reinterro&scavo	attiva	120.80	-10.80	212.80
Fase2b_Ritiro	attiva	-38.14	22.82	-105.75
Fase3a_DTunif_pos	attiva	362.45	0.00	502.25
Fase3a_DTunif_neg	attiva	-69.91	0.00	-210.37
Fase3a_GradDT_pos	attiva	0.00	-25.56	0.00
Fase3a_GradDT_neg	attiva	0.00	30.67	0.00
Fase3b_Mobili_dom max N	attiva	72.90	83.97	-184.67
Fase3b_Mobili_dom min N	attiva	-22.21	-191.51	163.03
Fase3b_Mobili_dom max M	attiva	-35.41	-95.51	259.77
Fase3b_Mobili_dom min M	attiva	86.10	43.00	-217.98
Fase3b_Mobili_conc max N	attiva	36.70	45.58	-91.89
Fase3b_Mobili_conc min N	attiva	-10.90	-120.69	81.92
Fase3b_Mobili_conc max M	attiva	-20.00	-70.28	147.59
Fase3b_Mobili_conc min M	attiva	58.10	14.85	-146.88
Fase3b_Mobili_fatica max N	attiva	13.10	11.64	-32.82
Fase3b_Mobili_fatica min N	attiva	-3.00	-35.22	20.91
Fase3b_Mobili_fatica max M	attiva	-7.40	-25.52	53.41
Fase3b_Mobili_fatica min M	attiva	21.40	3.91	-53.41
Fase3b_Frenatura_pos	attiva	-45.63	0.00	-52.70
Fase3b_Frenatura_neg	attiva	45.63	0.00	130.18
Fase3b_Vento_ps_pos	attiva	0.90	0.80	-2.25
Fase3b_Vento_ps_neg	attiva	-0.40	-0.80	2.25
Fase3b_Vento_pc_pos	attiva	1.60	1.90	-4.10
Fase3b_Vento_pc_neg	attiva	-0.70	-1.90	4.10

Per maggiore comodità in fase di combinazione dei contributi di carico, si opta per una riformulazione delle precedenti sollecitazioni in termini di macro-gruppi di carico.

Valori caratteristici	Connessione	Т	Ν	Μ
Fase1_Pesi_propri	non attiva	0.00	-19.04	0.00
Fase2a_Permanenti	attiva	0.30	-10.99	0.78
Fase2a_Cedimenti max N	attiva	0.00	5.52	0.00
Fase2a_Cedimenti min N	attiva	0.00	-6.22	0.00
Fase2a_Cedimenti max M	attiva	0.00	5.52	0.00
Fase2a_Cedimenti min M	attiva	0.00	-6.22	0.00
Fase2b_Ritiro	attiva	-38.14	22.82	-105.75
Fase3a_Comb_termica1_pos	attiva	126.86	-25.56	175.79
Fase3a_Comb_termica1_neg	attiva	-24.47	30.67	-73.63
Fase3a_Comb_termica2_pos	attiva	362.45	-19.17	502.25
Fase3a_Comb_termica2_neg	attiva	-69.91	23.00	-210.37
Fase3a_Env_Comb_termiche_pos	attiva	362.45	-19.17	502.25
Fase3a_Env_Comb_termiche_neg	attiva	-69.91	23.00	-210.37
Fase3b_Mobili_dom max N	attiva	72.90	83.97	-184.67
Fase3b_Mobili_dom min N	attiva	-22.21	-191.51	163.03
Fase3b_Mobili_dom max M	attiva	-35.41	-95.51	259.77
Fase3b_Mobili_dom min M	attiva	86.10	43.00	-217.98
Fase3b_Mobili_conc+frenatura max N	attiva	-8.93	45.58	-144.59
Fase3b_Mobili_conc+frenatura min N	attiva	-56.53	-120.69	29.22
Fase3b_Mobili_conc+frenatura max M	attiva	25.63	-70.28	277.77
Fase3b_Mobili_conc+frenatura min M	attiva	12.47	14.85	-199.58
Fase3b_Vento_pc_pos	attiva	1.60	1.90	-4.10
Fase3b_Vento_pc_neg	attiva	-0.70	-1.90	4.10

Sollecitazioni finali agenti in testa alla paratia, raggruppate per macro-gruppi di carico

Si segnala che le condizioni di carico relative ai cedimenti e ai carichi mobili sono espresse in termini di "max/min N" e "max/min M" in quanto discendono dallo studio dell'impalcato dove si era scelto di massimizzare/minimizzare l'azione tagliante Fz (che si traduce in azione verticale N per la paratia) e il momento flettente My (che si traduce in azione flettente M per la paratia). Dal momento che ora l'attenzione è focalizzata sulla paratia di spalla, le sollecitazioni più significative risultano l'azione tagliante T e il momento flettente M; si provvede quindi a ricercare, nell'ambito delle condizioni di carico sopra riportate, le peggiori in termini di T e M.

Sollecitazioni derivanti dall'impalcato e agenti in testa alla paratia (Valori in kN/m e kNm/m)

I valori riportati di seguito devono intendersi quali "caratteristici" e verranno amplificati in fase di combinazione. Larghezza di paratia considerata = 1.00 m

Valori caratteristici a metro lineare	Conness.	N	Т	М
Peso proprio sella (*)	non attiva	-142.50	0.00	0.00
Peso proprio impalcato	non attiva	-19.04	0.00	0.00
Permanenti	attiva	-10.99	0.30	0.78
Cedimenti - max T	attiva	5.52	0.00	0.00
Cedimenti - min T	attiva	-6.22	0.00	0.00
Cedimenti - max M	attiva	5.52	0.00	0.00
Cedimenti - min M	attiva	-6.22	0.00	0.00
Ritiro	attiva	22.82	-38.14	-105.75
Comb Termiche - max T/max M	attiva	-19.17	362.45	502.25
Comb Termiche - min T/min M	attiva	23.00	-69.91	-210.37
Traffico dominante - max T	attiva	83.97	72.90	-184.67
Traffico dominante - min T	attiva	-191.51	-22.21	163.03
Traffico dominante - max M	attiva	-95.51	-35.41	259.77
Traffico dominante - min M	attiva	43.00	86.10	-217.98
Traffico concomitante - max T	attiva	-70.28	25.63	277.77
Traffico concomitante - min T	attiva	-120.69	-56.53	29.22
Traffico concomitante - max M	attiva	-70.28	25.63	277.77
Traffico concomitante - min M	attiva	14.85	12.47	-199.58
Vento_ponte_carico - max T/min M	attiva	1.90	1.60	-4.10
Vento_ponte_carico - min T/max M	attiva	-1.90	-0.70	4.10

A partire quindi dalle sollecitazioni caratteristiche appena riportate, riferite ai singoli contributi di carico, si provvede ora ad effettuare le combinazioni di carico allo S.L.E. e allo S.L.U. impiegando i coefficienti previsti dalla vigente normativa. Le sollecitazioni finali così valutate saranno quindi quelle effettivamente trasmesse dall'impalcato in testa alla paratia e, come tali, potranno essere attribuite al modello di Paratie della spalla.

Dal momento, però, che l'introduzione nel programma Paratie delle sollecitazioni allo SLU già amplificate mediante i coefficienti $\gamma\psi$ comporterebbe un'alterazione dello stato di spinta del terreno a tergo spalla, si è optato per l'adozione della seguente procedura: l'input delle forze esterne agenti in testa alla paratia avviene utilizzando il valore risultante dalla combinazione allo SLU, dove ciascun contributo è amplificato per il rispettivo valore dei coefficienti $\gamma\psi$, diviso per un valore di riferimento del coefficiente γ . In particolare si è scelto di adottare il valore più ricorrente, pari a $\gamma = 1.35$. In tal modo i vari contributi di carico saranno "omogeneizzati" ad uno stesso coefficiente di combinazione che verrà successivamente utilizzato per amplificare gli effetti di tali carichi sulla paratia.

Di seguito vengono riportate le tabelle delle combinazioni allo S.L.U. (STR, EQU e GEO) esaminate al fine di dimensionare la paratia di spalla. I valori riportati nelle colonne di N,T ed M sono valori caratteristici espressi a metro lineare di spalla (kN/m e kNm/m); i valori riportati nella colonna "Coeff" corrispondono agli effettivi coefficienti di combinazione $\gamma\psi$, mentre quelli riportati nella colonna "Coeff fatt" corrispondono ai coefficienti $\gamma\psi$ ridotti del coefficiente di riferimento, ossia di 1.35.

Combinazioni SLU-STR

Coefficiente utilizzato per la fattorizzazione allo SLU =

1.35

Combinaziono 1	SL	U-STR - max	<u> </u>		
	Nconc	Tconc	М	Coeff fatt	Coeff
Pesi propri	-161.54	0.00	0.00	1.00	1.35
Permanenti	-10.99	0.30	0.78	1.00	1.35
Cedimenti - max T	0.00	0.00	0.00	0.00	0.00
Cedimenti - min T	0.00	0.00	0.00	0.00	0.00
Cedimenti - max M	4.90	0.00	0.00	0.89	1.20
Cedimenti - min M	0.00	0.00	0.00	0.00	0.00
Ritiro	20.29	-33.90	-94.00	0.89	1.20
Comb Termiche - max T/max M	-10.22	193.31	267.87	0.53	0.72
Comb Termiche - min T/min M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max M	-95.51	-35.41	259.77	1.00	1.35
Traffico dominante - min M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	-1.26	-0.47	2.73	0.67	0.90
Carichi verticali	-264.41	-35.58	263.29		
Carichi orizzontali	10.06	159.41	173.87		
SLU-STR - max M	-254.35	123.83	437.15		

Combinazione 2	SL	U-STR - min	пM		
	Nconc	Tconc	М	Coeff fatt	Coeff
Pesi propri	-161.54	0.00	0.00	1.00	1.35
Permanenti	-10.99	0.30	0.78	1.00	1.35
Cedimenti - max T	0.00	0.00	0.00	0.00	0.00
Cedimenti - min T	0.00	0.00	0.00	0.00	0.00
Cedimenti - max M	0.00	0.00	0.00	0.00	0.00
Cedimenti - min M	-5.53	0.00	0.00	0.89	1.20
Ritiro	20.29	-33.90	-94.00	0.89	1.20
Comb Termiche - max T/max M	0.00	0.00	0.00	0.00	0.00
Comb Termiche - min T/min M	12.27	-37.28	-112.20	0.53	0.72
Traffico dominante - max T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min M	43.00	86.10	-217.98	1.00	1.35
Traffico concomitante - max T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	1.26	1.07	-2.73	0.67	0.90
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00	0.00
Carichi verticali	-133.80	87.47	-219.94		
Carichi orizzontali	32.55	-71.18	-206.20		
SLU-STR - min M	-101.24	16.28	-426.14		

Combinazione 2	SL	U-STR - max			
Combinazione 5	Nconc	Т	Mconc	Coeff fatt	Coeff
Pesi propri	-161.54	0.00	0.00	1.00	1.35
Permanenti	-10.99	0.30	0.78	1.00	1.35
Cedimenti - max T	0.00	0.00	0.00	0.00	0.00
Cedimenti - min T	-5.53	0.00	0.00	0.89	1.20
Cedimenti - max M	0.00	0.00	0.00	0.00	0.00
Cedimenti - min M	0.00	0.00	0.00	0.00	0.00
Ritiro	20.29	-33.90	-94.00	0.89	1.20
Comb Termiche - max T/max M	-10.22	193.31	267.87	0.53	0.72
Comb Termiche - min T/min M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max T	83.97	72.90	-184.67	1.00	1.35
Traffico dominante - min T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	1.26	1.07	-2.73	0.67	0.90
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00	0.00
Carichi verticali	-92.82	74.27	-186.63		
Carichi orizzontali	10.06	159.41	173.87		
SLU-STR - max T	-82.76	233.68	-12.76		

Combinations 4	SL	U-STR - mir			
Combinazione 4	Nconc	Т	Mconc	Coeff fatt	Coeff
Pesi propri	-161.54	0.00	0.00	1.00	1.35
Permanenti	-10.99	0.30	0.78	1.00	1.35
Cedimenti - max T	0.00	0.00	0.00	0.00	0.00
Cedimenti - min T	-5.53	0.00	0.00	0.89	1.20
Cedimenti - max M	0.00	0.00	0.00	0.00	0.00
Cedimenti - min M	0.00	0.00	0.00	0.00	0.00
Ritiro	20.29	-33.90	-94.00	0.89	1.20
Comb Termiche - max T/max M	0.00	0.00	0.00	0.00	0.00
Comb Termiche - min T/min M	12.27	-37.28	-112.20	0.53	0.72
Traffico dominante - max T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min T	-191.51	-22.21	163.03	1.00	1.35
Traffico dominante - max M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	-1.26	-0.47	2.73	0.67	0.90
Carichi verticali	-370.83	-22.38	166.54		
Carichi orizzontali	32.55	-71.18	-206.20		
SLU-STR - min T	-338.28	-93.56	-39.65		

Combinazioni SLU-EQU

Coefficiente utilizzato per la fattorizzazione allo SLU =

1.35

Combinaziono 1	ĸМ				
Combinazione i	Nconc	Tconc	Μ	Coeff fatt	Coeff
Pesi propri	-131.63	0.00	0.00	0.81	1.10
Permanenti	-8.95	0.24	0.63	0.81	1.10
Cedimenti - max T	0.00	0.00	0.00	0.00	0.00
Cedimenti - min T	0.00	0.00	0.00	0.00	0.00
Cedimenti - max M	4.90	0.00	0.00	0.89	1.20
Cedimenti - min M	0.00	0.00	0.00	0.00	0.00
Ritiro	20.29	-33.90	-94.00	0.89	1.20
Comb Termiche - max T/max M	-10.22	193.31	267.87	0.53	0.72
Comb Termiche - min T/min M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max M	-95.51	-35.41	259.77	1.00	1.35
Traffico dominante - min M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	-1.26	-0.47	2.73	0.67	0.90
Carichi verticali	-232.46	-35.63	263.14		
Carichi orizzontali	10.06	159.41	173.87		
SLU-EQU - max M	-222.40	123.78	437.01		

Combinazione 2	SLU	J-EQU - min			
Combinazione z	Nconc	Tconc	М	Coeff fatt	Coeff
Pesi propri	-131.63	0.00	0.00	0.81	1.10
Permanenti	-8.95	0.24	0.63	0.81	1.10
Cedimenti - max T	0.00	0.00	0.00	0.00	0.00
Cedimenti - min T	0.00	0.00	0.00	0.00	0.00
Cedimenti - max M	0.00	0.00	0.00	0.00	0.00
Cedimenti - min M	-5.53	0.00	0.00	0.89	1.20
Ritiro	20.29	-33.90	-94.00	0.89	1.20
Comb Termiche - max T/max M	0.00	0.00	0.00	0.00	0.00
Comb Termiche - min T/min M	12.27	-37.28	-112.20	0.53	0.72
Traffico dominante - max T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min M	43.00	86.10	-217.98	1.00	1.35
Traffico concomitante - max T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	1.26	1.07	-2.73	0.67	0.90
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00	0.00
Carichi verticali	-101.85	87.41	-220.08		
Carichi orizzontali	32.55	-71.18	-206.20		
SLU-EQU - min M	-69.29	16.23	-426.28		

Combinazione 2	SLU	J-EQU - max			
Combinazione 5	Nconc	Т	Mconc	Coeff fatt	Coeff
Pesi propri	-131.63	0.00	0.00	0.81	1.10
Permanenti	-8.95	0.24	0.63	0.81	1.10
Cedimenti - max T	0.00	0.00	0.00	0.00	0.00
Cedimenti - min T	-5.53	0.00	0.00	0.89	1.20
Cedimenti - max M	0.00	0.00	0.00	0.00	0.00
Cedimenti - min M	0.00	0.00	0.00	0.00	0.00
Ritiro	20.29	-33.90	-94.00	0.89	1.20
Comb Termiche - max T/max M	-10.22	193.31	267.87	0.53	0.72
Comb Termiche - min T/min M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max T	83.97	72.90	-184.67	1.00	1.35
Traffico dominante - min T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	1.26	1.07	-2.73	0.67	0.90
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00	0.00
Carichi verticali	-60.87	74.21	-186.77		
Carichi orizzontali	10.06	159.41	173.87		
SLU-EQU - max T	-50.81	233.62	-12.90		

Combinations 4	SL	U-EQU - mir			
Combinazione 4	Nconc	Т	Mconc	Coeff fatt	Coeff
Pesi propri	-131.63	0.00	0.00	0.81	1.10
Permanenti	-8.95	0.24	0.63	0.81	1.10
Cedimenti - max T	0.00	0.00	0.00	0.00	0.00
Cedimenti - min T	-5.53	0.00	0.00	0.89	1.20
Cedimenti - max M	0.00	0.00	0.00	0.00	0.00
Cedimenti - min M	0.00	0.00	0.00	0.00	0.00
Ritiro	20.29	-33.90	-94.00	0.89	1.20
Comb Termiche - max T/max M	0.00	0.00	0.00	0.00	0.00
Comb Termiche - min T/min M	12.27	-37.28	-112.20	0.53	0.72
Traffico dominante - max T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min T	-191.51	-22.21	163.03	1.00	1.35
Traffico dominante - max M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	-1.26	-0.47	2.73	0.67	0.90
Carichi verticali	-338.88	-22.43	166.40		
Carichi orizzontali	32.55	-71.18	-206.20		
SLU-EQU - min T	-306.33	-93.61	-39.80		

Combinazioni SLU-GEO

Coefficiente utilizzato per la fattorizzazione allo SLU =

1.35

Combinaziono 1	I-GEO - max	×М			
Combinazione i	Nconc	Tconc	Μ	Coeff fatt	Coeff
Pesi propri	-119.66	0.00	0.00	0.74	1.00
Permanenti	-8.14	0.22	0.58	0.74	1.00
Cedimenti - max T	0.00	0.00	0.00	0.00	0.00
Cedimenti - min T	0.00	0.00	0.00	0.00	0.00
Cedimenti - max M	4.09	0.00	0.00	0.74	1.00
Cedimenti - min M	0.00	0.00	0.00	0.00	0.00
Ritiro	16.90	-28.25	-78.33	0.74	1.00
Comb Termiche - max T/max M	-8.52	161.09	223.22	0.44	0.60
Comb Termiche - min T/min M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max M	-81.36	-30.16	221.29	0.85	1.15
Traffico dominante - min M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	-1.10	-0.40	2.37	0.58	0.78
Carichi verticali	-206.18	-30.35	224.24		
Carichi orizzontali	8.39	132.84	144.89		
SLU-GEO - max M	-197.79	102.49	369.13		

Combinazione 2	SLU	J-GEO - min			
Combinazione z	Nconc	Tconc	М	Coeff fatt	Coeff
Pesi propri	-119.66	0.00	0.00	0.74	1.00
Permanenti	-8.14	0.22	0.58	0.74	1.00
Cedimenti - max T	0.00	0.00	0.00	0.00	0.00
Cedimenti - min T	0.00	0.00	0.00	0.00	0.00
Cedimenti - max M	0.00	0.00	0.00	0.00	0.00
Cedimenti - min M	-4.60	0.00	0.00	0.74	1.00
Ritiro	16.90	-28.25	-78.33	0.74	1.00
Comb Termiche - max T/max M	0.00	0.00	0.00	0.00	0.00
Comb Termiche - min T/min M	10.22	-31.07	-93.50	0.44	0.60
Traffico dominante - max T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min M	36.63	73.34	-185.69	0.85	1.15
Traffico concomitante - max T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	1.10	0.92	-2.37	0.58	0.78
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00	0.00
Carichi verticali	-94.68	74.49	-187.48		
Carichi orizzontali	27.13	-59.32	-171.83		
SLU-GEO - min M	-67.56	15.17	-359.31		

Combinazione 2	SLU	J-GEO - ma			
Combinazione 5	Nconc	Т	Mconc	Coeff fatt	Coeff
Pesi propri	-119.66	0.00	0.00	0.74	1.00
Permanenti	-8.14	0.22	0.58	0.74	1.00
Cedimenti - max T	0.00	0.00	0.00	0.00	0.00
Cedimenti - min T	-4.60	0.00	0.00	0.74	1.00
Cedimenti - max M	0.00	0.00	0.00	0.00	0.00
Cedimenti - min M	0.00	0.00	0.00	0.00	0.00
Ritiro	16.90	-28.25	-78.33	0.74	1.00
Comb Termiche - max T/max M	-8.52	161.09	223.22	0.44	0.60
Comb Termiche - min T/min M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max T	71.53	62.10	-157.31	0.85	1.15
Traffico dominante - min T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	1.10	0.92	-2.37	0.58	0.78
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00	0.00
Carichi verticali	-59.78	63.25	-159.11		
Carichi orizzontali	8.39	132.84	144.89		
SLU-GEO - max T	-51.39	196.09	-14.22		

Combinazione 4	SLU-GEO - min T				
Combinazione 4	Nconc	Т	Mconc	Coeff fatt	Coeff
Pesi propri	-119.66	0.00	0.00	0.74	1.00
Permanenti	-8.14	0.22	0.58	0.74	1.00
Cedimenti - max T	0.00	0.00	0.00	0.00	0.00
Cedimenti - min T	-4.60	0.00	0.00	0.74	1.00
Cedimenti - max M	0.00	0.00	0.00	0.00	0.00
Cedimenti - min M	0.00	0.00	0.00	0.00	0.00
Ritiro	16.90	-28.25	-78.33	0.74	1.00
Comb Termiche - max T/max M	0.00	0.00	0.00	0.00	0.00
Comb Termiche - min T/min M	10.22	-31.07	-93.50	0.44	0.60
Traffico dominante - max T	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min T	-163.14	-18.92	138.88	0.85	1.15
Traffico dominante - max M	0.00	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	-1.10	-0.40	2.37	0.58	0.78
Carichi verticali	-296.64	-19.10	141.82		
Carichi orizzontali	27.13	-59.32	-171.83		
SLU-GEO - min T	-269.51	-78.42	-30.01		

Di seguito vengono riportate le tabelle delle combinazioni allo SLE RARA esaminate. I valori riportati sono espressi a metro lineare di spalla, ossia in kN/m e kNm/m.

Combinazione 1	SLE	SLE RARA - Max M			
	Nconc	Tconc	М	Coeff	
Pesi propri	-161.54	0.00	0.00	1.00	
Permanenti	-10.99	0.30	0.78	1.00	
Cedimenti - max T	0.00	0.00	0.00	0.00	
Cedimenti - min T	0.00	0.00	0.00	0.00	
Cedimenti - max M	5.52	0.00	0.00	1.00	
Cedimenti - min M	0.00	0.00	0.00	0.00	
Ritiro	22.82	-38.14	-105.75	1.00	
Comb Termiche - max T/max M	-11.50	217.47	301.35	0.60	
Comb Termiche - min T/min M	0.00	0.00	0.00	0.00	
Traffico dominante - max T	0.00	0.00	0.00	0.00	
Traffico dominante - min T	0.00	0.00	0.00	0.00	
Traffico dominante - max M	-95.51	-35.41	259.77	1.00	
Traffico dominante - min M	0.00	0.00	0.00	0.00	
Traffico concomitante - max T	0.00	0.00	0.00	0.00	
Traffico concomitante - min T	0.00	0.00	0.00	0.00	
Traffico concomitante - max M	0.00	0.00	0.00	0.00	
Traffico concomitante - min M	0.00	0.00	0.00	0.00	
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00	
Vento_ponte_carico - min T/max M	-1.14	-0.42	2.46	0.60	
Carichi verticali	-263.67	-35.53	263.01		
Carichi orizzontali	11.32	179.34	195.60		
SLE RARA - Max M	-252.35	143.81	458.61		

Combinations 2	SLE	SLE RARA - Min M			
Compinazione 2	Nconc	Tconc	М	Coeff	
Pesi propri	-161.54	0.00	0.00	1.00	
Permanenti	-10.99	0.30	0.78	1.00	
Cedimenti - max T	0.00	0.00	0.00	0.00	
Cedimenti - min T	0.00	0.00	0.00	0.00	
Cedimenti - max M	0.00	0.00	0.00	0.00	
Cedimenti - min M	-6.22	0.00	0.00	1.00	
Ritiro	22.82	-38.14	-105.75	1.00	
Comb Termiche - max T/max M	0.00	0.00	0.00	0.00	
Comb Termiche - min T/min M	13.80	-41.94	-126.22	0.60	
Traffico dominante - max T	0.00	0.00	0.00	0.00	
Traffico dominante - min T	0.00	0.00	0.00	0.00	
Traffico dominante - max M	0.00	0.00	0.00	0.00	
Traffico dominante - min M	43.00	86.10	-217.98	1.00	
Traffico concomitante - max T	0.00	0.00	0.00	0.00	
Traffico concomitante - min T	0.00	0.00	0.00	0.00	
Traffico concomitante - max M	0.00	0.00	0.00	0.00	
Traffico concomitante - min M	0.00	0.00	0.00	0.00	
Vento_ponte_carico - max T/min M	1.14	0.96	-2.46	0.60	
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00	
Carichi verticali	-134.61	87.36	-219.67		
Carichi orizzontali	36.62	-80.08	-231.97		
SLE RARA - Min M	-97.99	7.28	-451.64		

Combinations 2	SLE			
Combinazione 3	Nconc	Т	Mconc	Coeff
Pesi propri	-161.54	0.00	0.00	1.00
Permanenti	-10.99	0.30	0.78	1.00
Cedimenti - max T	5.52	0.00	0.00	1.00
Cedimenti - min T	0.00	0.00	0.00	0.00
Cedimenti - max M	0.00	0.00	0.00	0.00
Cedimenti - min M	0.00	0.00	0.00	0.00
Ritiro	22.82	-38.14	-105.75	1.00
Comb Termiche - max T/max M	-19.17	362.45	502.25	1.00
Comb Termiche - min T/min M	0.00	0.00	0.00	0.00
Traffico dominante - max T	83.97	72.90	-184.67	1.00
Traffico dominante - min T	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	1.14	0.96	-2.46	0.60
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00
Carichi verticali	-81.90	74.16	-186.35	
Carichi orizzontali	3.65	324.32	396.50	
SLE RARA - Max T	-78.25	398.48	210.15	

Combinations 4	SLE	7		
Combinazione 4	Nconc	Т	Mconc	Coeff
Pesi propri	-161.54	0.00	0.00	1.00
Permanenti	-10.99	0.30	0.78	1.00
Cedimenti - max T	0.00	0.00	0.00	0.00
Cedimenti - min T	-6.22	0.00	0.00	1.00
Cedimenti - max M	0.00	0.00	0.00	0.00
Cedimenti - min M	0.00	0.00	0.00	0.00
Ritiro	22.82	-38.14	-105.75	1.00
Comb Termiche - max T/max M	0.00	0.00	0.00	0.00
Comb Termiche - min T/min M	23.00	-69.91	-210.37	1.00
Traffico dominante - max T	0.00	0.00	0.00	0.00
Traffico dominante - min T	-191.51	-22.21	163.03	1.00
Traffico dominante - max M	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	-1.14	-0.42	2.46	0.60
Carichi verticali	-371.39	-22.33	166.27	
Carichi orizzontali	45.82	-108.04	-316.12	
SLE RARA - Min T	-325.57	-130.37	-149.85	

Di seguito vengono riportate le tabelle delle combinazioni allo SLE QUASI-PERMANENTE esaminate. I valori riportati sono espressi a metro lineare di spalla, ossia in kN/m e kNm/m.

Combinaziono 1	SLE C			
	Nconc	Tconc	М	Coeff
Pesi propri	-161.54	0.00	0.00	1.00
Permanenti	-10.99	0.30	0.78	1.00
Cedimenti - max T	0.00	0.00	0.00	0.00
Cedimenti - min T	0.00	0.00	0.00	0.00
Cedimenti - max M	5.52	0.00	0.00	1.00
Cedimenti - min M	0.00	0.00	0.00	0.00
Ritiro	22.82	-38.14	-105.75	1.00
Comb Termiche - max T/max M	-9.58	181.23	251.13	0.50
Comb Termiche - min T/min M	0.00	0.00	0.00	0.00
Traffico dominante - max T	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00
Carichi verticali	-167.02	0.30	0.78	
Carichi orizzontali	13.24	143.09	145.38	
SLE Q-PERM - Max M	-153.78	143.39	146.15	

Combinezione 2	SLE C			
Combinazione z	Nconc	Tconc	М	Coeff
Pesi propri	-161.54	0.00	0.00	1.00
Permanenti	-10.99	0.30	0.78	1.00
Cedimenti - max T	0.00	0.00	0.00	0.00
Cedimenti - min T	0.00	0.00	0.00	0.00
Cedimenti - max M	0.00	0.00	0.00	0.00
Cedimenti - min M	-6.22	0.00	0.00	1.00
Ritiro	22.82	-38.14	-105.75	1.00
Comb Termiche - max T/max M	0.00	0.00	0.00	0.00
Comb Termiche - min T/min M	11.50	-34.95	-105.19	0.50
Traffico dominante - max T	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00
Carichi verticali	-178.75	0.30	0.78	
Carichi orizzontali	34.32	-73.09	-210.93	
SLE Q-PERM - Min M	-144.43	-72.79	-210.16	

Combinations 2	SLE C	SLE Q-PERM - Max T			
Combinazione 5	Nconc	Т	Mconc	Coeff	
Pesi propri	-161.54	0.00	0.00	1.00	
Permanenti	-30.03	0.30	0.78	1.00	
Cedimenti - max T	-5.47	0.30	0.78	1.00	
Cedimenti - min T	0.00	0.00	0.00	0.00	
Cedimenti - max M	0.00	0.00	0.00	0.00	
Cedimenti - min M	0.00	0.00	0.00	0.00	
Ritiro	16.60	-38.14	-105.75	1.00	
Comb Termiche - max T/max M	1.83	162.16	198.25	0.50	
Comb Termiche - min T/min M	0.00	0.00	0.00	0.00	
Traffico dominante - max T	0.00	0.00	0.00	0.00	
Traffico dominante - min T	0.00	0.00	0.00	0.00	
Traffico dominante - max M	0.00	0.00	0.00	0.00	
Traffico dominante - min M	0.00	0.00	0.00	0.00	
Traffico concomitante - max T	0.00	0.00	0.00	0.00	
Traffico concomitante - min T	0.00	0.00	0.00	0.00	
Traffico concomitante - max M	0.00	0.00	0.00	0.00	
Traffico concomitante - min M	0.00	0.00	0.00	0.00	
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00	
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00	
Carichi verticali	-197.05	0.60	1.56		
Carichi orizzontali	18.43	124.02	92.50		
SLE Q-PERM - Max T	-178.62	124.62	94.06		

Combinations (SLE (
Combinazione 4	Nconc	Т	Mconc	Coeff
Pesi propri	-161.54	0.00	0.00	1.00
Permanenti	-10.99	0.30	0.78	1.00
Cedimenti - max T	0.00	0.00	0.00	0.00
Cedimenti - min T	-6.22	0.00	0.00	1.00
Cedimenti - max M	0.00	0.00	0.00	0.00
Cedimenti - min M	0.00	0.00	0.00	0.00
Ritiro	22.82	-38.14	-105.75	1.00
Comb Termiche - max T/max M	0.00	0.00	0.00	0.00
Comb Termiche - min T/min M	11.50	-34.95	-105.19	0.50
Traffico dominante - max T	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00
Carichi verticali	-178.75	0.30	0.78	
Carichi orizzontali	34.32	-73.09	-210.93	
SLE Q-PERM - Min T	-144.43	-72.79	-210.16	

Di seguito vengono riportate le tabelle delle combinazioni allo SLE FREQUENTE esaminate. I valori riportati sono espressi a metro lineare di spalla, ossia in kN/m e kNm/m.

Combinaziono 1	SLE FR	Max M		
	Nconc	Tconc	М	Coeff
Pesi propri	-161.54	0.00	0.00	1.00
Permanenti	-10.99	0.30	0.78	1.00
Cedimenti - max T	0.00	0.00	0.00	0.00
Cedimenti - min T	0.00	0.00	0.00	0.00
Cedimenti - max M	5.52	0.00	0.00	1.00
Cedimenti - min M	0.00	0.00	0.00	0.00
Ritiro	22.82	-38.14	-105.75	1.00
Comb Termiche - max T/max M	-9.58	181.23	251.13	0.50
Comb Termiche - min T/min M	0.00	0.00	0.00	0.00
Traffico dominante - max T	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00
Traffico concomitante - max M	-70.28	25.63	277.77	1.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00
Carichi verticali	-237.30	25.93	278.55	
Carichi orizzontali	13.24	143.09	145.38	
SLE FREQUENTE - Max M	-224.06	169.02	423.93	

Combinaziono 2	SLE FR	- Min M		
	Nconc	Tconc	М	Coeff
Pesi propri	-161.54	0.00	0.00	1.00
Permanenti	-10.99	0.30	0.78	1.00
Cedimenti - max T	0.00	0.00	0.00	0.00
Cedimenti - min T	0.00	0.00	0.00	0.00
Cedimenti - max M	0.00	0.00	0.00	0.00
Cedimenti - min M	-6.22	0.00	0.00	1.00
Ritiro	22.82	-38.14	-105.75	1.00
Comb Termiche - max T/max M	0.00	0.00	0.00	0.00
Comb Termiche - min T/min M	11.50	-34.95	-105.19	0.50
Traffico dominante - max T	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00
Traffico concomitante - min M	14.85	12.47	-199.58	1.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00
Carichi verticali	-163.90	12.77	-198.80	
Carichi orizzontali	34.32	-73.09	-210.93	
SLE FREQUENTE - Min M	-129.58	-60.32	-409.73	

Combinations 2	SLE FR	- Max T		
Complinazione 3	Nconc	Т	Mconc	Coeff
Pesi propri	-161.54	0.00	0.00	1.00
Permanenti	-10.99	0.30	0.78	1.00
Cedimenti - max T	5.52	0.00	0.00	1.00
Cedimenti - min T	0.00	0.00	0.00	0.00
Cedimenti - max M	0.00	0.00	0.00	0.00
Cedimenti - min M	0.00	0.00	0.00	0.00
Ritiro	22.82	-38.14	-105.75	1.00
Comb Termiche - max T/max M	-9.58	181.23	251.13	0.50
Comb Termiche - min T/min M	0.00	0.00	0.00	0.00
Traffico dominante - max T	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00
Traffico concomitante - max T	-70.28	25.63	277.77	1.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00
Carichi verticali	-237.30	25.93	278.55	
Carichi orizzontali	13.24	143.09	145.38	
SLE FREQUENTE - Max T	-224.06	169.02	423.93	

Combinations 4	SLE FREQUENTE - Min T			
Combinazione 4	Nconc	Т	Mconc	Coeff
Pesi propri	-161.54	0.00	0.00	1.00
Permanenti	-10.99	0.30	0.78	1.00
Cedimenti - max T	0.00	0.00	0.00	0.00
Cedimenti - min T	-6.22	0.00	0.00	1.00
Cedimenti - max M	0.00	0.00	0.00	0.00
Cedimenti - min M	0.00	0.00	0.00	0.00
Ritiro	22.82	-38.14	-105.75	1.00
Comb Termiche - max T/max M	0.00	0.00	0.00	0.00
Comb Termiche - min T/min M	11.50	-34.95	-105.19	0.50
Traffico dominante - max T	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00
Traffico concomitante - min T	-120.69	-56.53	29.22	1.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00
Carichi verticali	-299.44	-56.23	30.00	
Carichi orizzontali	34.32	-73.09	-210.93	
SLE FREQUENTE - Min T	-265.12	-129.32	-180.94	

Si precisa che tra le azioni esterne non compare il contributo "Reinterro e scavo della paratia" in quanto considerato direttamente nelle fasi di realizzazione del corpo spalla modellate per mezzo del programma "Paratie". Per maggiore chiarezza si riportano di seguito tutte le fasi considerate nello studio della paratia finalizzato alla deduzione delle sollecitazioni agenti sui pali di fondazione.

Fase 1: Condizione geostatica (piano di lavoro a quota -2.85 m)

Fase 2: Realizzazione della paratia (pali + spinotto di collegamento + sella)

Fase 3: Montaggio dell'impalcato e realizzazione della connessione con paratia (carrello verticale + molla rotazionale)

Fase 4: Realizzazione dello scavo a valle e del reinterro a monte

Fase 5: Sostituzione del carrello verticale con l'azione orizzontale da esso trasmessa e sostituzione della molla rotazionale con il momento da essa trasmesso

Fase 6: Applicazione dei carichi esterni (T e M)

Sulla base delle sollecitazioni dedotte in quest'ultimo step dell'analisi viene dimensionata la paratia di spalla, come riportato nel successivo paragrafo.

13.1.1 Sollecitazioni nei pali di fondazione

Seguendo la procedura appena descritta si studia il comportamento della paratia di spalla in condizioni statiche deducendo le sollecitazioni agenti nella sella e lungo i pali. Dal momento che le sollecitazioni estratte dal programma Paratie risultano espresse a metro lineare, si procede ad amplificarle per la larghezza di spalla di competenza di ciascun palo. Dal momento, però che i pali risultano tra loro piuttosto distanziati (interasse pari a 3.80 m), si ritiene lecita l'affermazione che il terreno tra un palo e l'altro non partecipi integralmente al comportamento della paratia, come invece accadrebbe se si trattasse di una fila continua di pali molto ravvicinati. In conseguenza di ciò si assume che la larghezza di spalla di competenza di ciascun palo possa essere ritenuta pari a circa 1.5 volte il diametro del palo stesso. Le sollecitazioni dedotte a metro lineare da Paratie vengono, quindi, moltiplicate non per l'interasse, pari a 3.80 m, ma per una larghezza pari a $1.5x\phi = 1.5x1.2m = 1.80$ m.

Si riportano di seguito le sollecitazioni flettenti e taglianti agenti sui pali nelle diverse condizioni di carico prese in esame. Dal momento che per le verifiche strutturali le condizioni dimensionanti risultano le S.L.U.-STR e le S.L.E. caratteristiche (o S.L.E. rare), nel prosieguo ci si limiterà per brevità ad esse.

I seguenti grafici riportano le sollecitazioni flettenti e taglianti agenti lungo i pali a metro lineare, nelle combinazioni SLU-STR.

Andamento dei momenti nelle condizioni S.L.U.-STR

Profondità [m]

Andamento dei tagli nelle condizioni S.L.U.-STR

I seguenti grafici riportano le sollecitazioni flettenti e taglianti agenti lungo i pali a metro lineare, nelle combinazioni SLE rare.

Andamento dei momenti nelle condizioni S.L.E. rara

Profondità [m]

Andamento dei tagli nelle condizioni S.L.E. rara

Come si può notale, le condizioni peggiori sia per l'azione tagliante che per quella flettente risultano associate alla condizione "max T".

Le sollecitazioni dimensionanti per i pali in condizioni ultime risultano quindi quelle riportate nella seguente tabella, dove nella prima colonna sono indicati i valori massimi dedotti dai precedenti grafici (ossia valori caratteristici a metro lineare), nella seconda colonna vengono calcolati i valori finali di combinazione, sempre a metro lineare, ed infine nell'ultima colonna vengono restituiti i valori finali delle sollecitazioni massime sul palo (tenendo conto di una "larghezza di influenza" pari a 1.80 m, come già spiegato).

SLU-STR - max M	[val. car.]	[val x γ]	[val x 1.80]	z [m]
max M	510.00	688.50	1239.30	-2.00
max T	-110.00	-148.50	-267.30	-5.00
Ν	-310.89	-419.71	-755.47	
SLU-STR - min M	[val. car.]	[val x γ]	[val x 1.80]	z [m]
max M	-390.00	-526.50	-947.70	0.00
max T	110.00	148.50	267.30	0.00
Ν	-101.24	-136.68	-246.02	
SLU-STR - max T	[val. car.]	[val x γ]	[val x 1.80]	z [m]
max M	405.00	546.75	984.15	-3.00
max T	-70.00	-94.50	-170.10	-6.00
Ν	-167.58	-226.23	-407.22	
SLU-STR - min T	[val. car.]	[val x γ]	[val x 1.80]	z [m]
max M	-670.00	-904.50	-1628.10	-8.00
max T	-125.00	-168.75	-303.75	-5.00
Ν	-564.47	-762.04	-1371.67	

Analogamente si ragiona per la valutazione delle sollecitazioni dimensionanti per i pali in condizione di esercizio.

SLE RARA - max M	[val. car.]	[val x 1.80]	z [m]
max M	-120.00	-216.00	-5.00
max T	550.00	990.00	-1.50
Ν	-393.72	-708.70	
SLE RARA - min M	[val. car.]	[val x 1.80]	z [m]
max M	35.00	63.00	-11.50
max T	-410.00	-738.00	0.00
Ν	-423.15	-761.67	
SLE RARA - max T	[val. car.]	[val x 1.80]	z [m]
max M	210.00	378.00	0.00
max T	100.00	180.00	0.00
Ν	-78.25	-140.85	
SLE RARA - min T	[val. car.]	[val x 1.80]	z [m]
max M	-160.00	-288.00	-5.00
max T	-1100.00	-1980.00	-7.50
Ν	-466.94	-840.50	

Nel paragrafo seguente si riportano le verifiche strutturali di pali condotte sulla base di tali sollecitazioni.

13.1.2 Verifica dei pali di fondazione

La paratia di spalla risulta costituita da quattro pali ϕ 1200 mm disposti ad un interasse di 3.80 m, armati mediante una corona di 18 barre ϕ 26, per i primi 15.0 m circa e poi ridotti per la rimanente lunghezza.

Si riportano di seguito i risultati sintetici delle verifiche condotte sui pali di fondazione sulla base delle sollecitazioni riscontrate per effetto dell'applicazione in testa alla paratia di spalla delle peggiori condizioni di carico esposte nel precedente paragrafo.

Le verifiche a presso-flessione a rottura restituiscono quanto segue.

Verifiche allo SLU-STR:

Comb1_SLU-STR		Comb3_SLU-STR				
N =	-755.47	kN	N =	-407.22 kN		
M =	1239.30	kNm	M =	984.15 kNm		
Mu =	2018.23	kNm	Mu =	1887.14 kNm		
$\gamma =$	1.63		$\gamma =$	1.92		
Comb2_SLU-STR Comb4_SLU-STR						
Comb2_SL	U-STR		Comb4_SL	U-STR		
Comb2_SL N =	. U-STR -246.02	kN	Comb4_SL N =	. U-STR -1371.67 kN		
Comb2_SL N = M =	. U-STR -246.02 -947.70	kN kNm	Comb4_SL N = M =	U-STR -1371.67 kN -1628.10 kNm		
Comb2_SL N = M = Mu =	. U-STR -246.02 -947.70 -1825.20	kN kNm kNm	Comb4_SL N = M = Mu =	U-STR -1371.67 kN -1628.10 kNm -2226.36 kNm		

Dal momento che i coefficienti di sicurezza riscontrati appaiono tutti ampiamente superiori all'unità, le verifiche a rottura possono ritenersi pienamente soddisfatte.

Si riporta di seguito la verifica a taglio dei pali condotta con riferimento alla massima forza di taglio riscontrata. La staffatura predisposta è costituita da ϕ 12/20, con un infittimento a passo 10 cm nei primi 4.0 m.

Pag	207/211

<u>Crisi lato cls:</u>		
Vr =	5826.70	KN
fcd =	19.37	MPa
Ac =	1002874.91	mm^2
Crisi lato acciaio:		
Vcd =	811.24	KN
fctd =	1.35	MPa
$\delta =$	1.00	
Vwd =	199.26	KN
Aswd =	113.00	mm^2
fywd =	391.30	MPa
d =	1001.44	mm
s =	200.00	mm
Vr,d = Vcd + Vwd =	1010.50	KN

Dal momento che l'azione sollecitante risulta inferiore a quella resistente, la verifica risulta pienamente soddisfatta.

Le verifiche in condizioni di esercizio restituiscono invece quanto segue:

Verifiche allo SLE RARA:

Comb1_SLE RARA		Comb3_	Comb3_SLE RARA				
N =	-708.70 kN	N =	-140.85 kN				
M =	-216.00 kNm	M =	378.00 kNm				
σ s =	9.74 Mpa	σ s =	101.03 Mpa				
σ c =	-1.75 Mpa	σ c =	-3.38 Mpa				
Comb2_S	ELE RARA	Comb4_	SLE RARA				
Comb2_S N =	5LE RARA -761.67 kN	Comb4_ N =	SLE RARA -840.50 kN				
Comb2_S N = M =	5LE RARA -761.67 kN 63.00 kNm	Comb4_ N = M =	SLE RARA -840.50 kN -288.00 kNm				
Comb2_S N = M = σs =	SLE RARA -761.67 kN 63.00 kNm -4.73 Mpa	Comb4_ N = M = _o s =	SLE RARA -840.50 kN -288.00 kNm 16.86 Mpa				

Dal momento che le tensioni di esercizio dei due materiali risultano contenute, le verifiche possono ritenersi ampiamente soddisfatte. Non risulta infine significativa la verifica a fessurazione.

13.2 Condizioni sismiche

13.2.1 Impostazione analisi della struttura a telaio

La procedura di analisi sismica della struttura a telaio costituita dall'assieme impalcato+paratie può essere sintetizzata nei seguenti passaggi:

STEP 1: condizione geostatica

Si parte dalla condizione a riposo del terreno. Viene descritta la stratigrafia del terreno e vengono definiti i parametri geotecnici del terreno in valore caratteristico.

STEP 2: realizzazione delle due paratie di spalla

Si procede alla realizzazione delle due paratie di spalla, definendo i due elementi SELLA e PALO.

Dal momento che il programma ragiona a metro lineare di paratia, per l'elemento PALO deve essere assegnato uno spessore equivalente che viene dedotto in funzione del diametro reale del palo stesso e dell'interasse della palificata.

STEP 3: montaggio dell'impalcato con realizzazione della connessione di spalla

Si completa la struttura a telaio definendo per l'impalcato un elemento SLAB caratterizzato dall'area A e dall'inerzia I dell'impalcato in fase 3 in condizioni non fessurate; si ricorda che anche tali valori devono essere assegnati a metro lineare.

Nel caso di cavalcavia a più luci, non essendo possibile con il programma Paratie inserire pile intermedie,

è necessario definire un elemento TRUS al posto dell'elemento SLAB e introdurre una MOLLA ROTAZIONALE in testa a ciascuna paratia, posizionata a quota baricentro impalcato, per modellare correttamente l'inerzia flessionale dell'impalcato.

STEP 4: condizione statica pre-sisma

Si definisce la configurazione finale della struttura assegnando le quote del terreno a monte e a valle delle due paratie. Si assegnano i carichi statici da considerare concomitanti al sisma (pesi propri, permanenti ed eventuali accidentali).

In questo step il programma valuta automaticamente il regime di spinta esistente nelle condizioni immediatamente antecedenti all'evento sismico che verrà introdotto nello step successivo. A monte di ciascuna paratia si instaura in generale un regime di spinta prossimo a quello attivo; in conseguenza di ciò la valutazione delle spinte sismiche potrà in generale sempre avvenire secondo l'approccio di Mononobe-Okabe (strutture deformabili).

STEP 5: evento sismico

Dal momento che la spinta delle terre in condizioni statiche è già stata valutata automaticamente dal programma nello step precedente, nel presente step dev'essere calcolato il solo incremento di spinta dovuto al sisma. Dato che la formula di Mononobe- Okabe rappresenta la spinta complessiva sismica (statica+dinamica), la sovraspinta sismica viene valutata come differenza tra la spinta di Mononobe-Okabe e quella attiva. Si precisa che tale approccio opera a favore di sicurezza valutando la sovraspinta per eccesso come differenza tra la spinta sismica di Mononobe-Okabe e la minima spinta possibile in condizioni statiche, ossia la spinta attiva.

Si ricorda che, secondo quanto previsto dalla vigente normativa con riferimento alle paratie, nella procedura di calcolo del coefficiente di spinta di Mononobe-Okabe deve essere imposto kv = 0. Nel calcolo del Ksismico si è inoltre concordato di adottare, a favore di sicurezza, β =1.0.

La sovraspinta sismica, agente da monte verso valle, viene assegnata ad una sola paratia come carico uniformemente distribuito su un'altezza pari all'altezza di scavo maggiorata di 2.0 m. La necessità di maggiorare l'altezza di scavo di una certa aliquota è contemplata dalla vigente normativa senza che però

vengano definiti criteri concreti. Da studi specialistici condotti dall'ufficio Geotecnica di SPEA, una ragionevole quantificazione di tale aliquota nel caso di paratie è appunto 2.0 m.

Le forze di inerzia dell'impalcato e delle paratie stesse devono essere assegnate come carichi esterni. In particolare l'inerzia dell'impalcato viene assegnata come carico concentrato agente in testa alle due paratie.

Dal momento che la resistenza passiva del terreno in condizioni sismiche è inferiore a quella in condizioni statiche, nello step relativo all'evento sismico deve essere introdotta la modifica del coefficiente di spinta passiva. Tale coefficiente viene calcolato con la formula di Mononobe-Okabe per la spinta passiva, imponendo β =1.0, kv = 0 e δ =0.

13.2.2 Sollecitazioni sismiche

Di seguito si riportano le sollecitazioni trasmesse dall'impalcato alla paratia quali azioni concomitanti all'evento sismico. In particolare tali sollecitazioni rappresentano il contributo dei seguenti carichi:

- Pesi propri
- Permanenti portati e ritiro
- Variazioni termiche fattorizzate al 50%

La combinazione di tali contributi ha portato alla definizione delle due seguenti combinazioni di carico:

Combinazione 1	SISN			
	Nconc	Coeff		
Pesi propri	-161.54	0.00	0.00	1.00
Permanenti	-10.99	0.30	0.78	1.00
Cedimenti - max T	0.00	0.00	0.00	0.00
Cedimenti - min T	0.00	0.00	0.00	0.00
Cedimenti - max M	5.52	0.00	0.00	1.00
Cedimenti - min M	0.00	0.00	0.00	0.00
Ritiro	22.82	-38.14	-105.75	1.00
Comb Termiche - max T/max M	-9.58	181.23	251.13	0.50
Comb Termiche - min T/min M	0.00	0.00	0.00	0.00
Traffico dominante - max T	0.00	0.00	0.00	0.00
Traffico dominante - min T	0.00	0.00	0.00	0.00
Traffico dominante - max M	0.00	0.00	0.00	0.00
Traffico dominante - min M	0.00	0.00	0.00	0.00
Traffico concomitante - max T	0.00	0.00	0.00	0.00
Traffico concomitante - min T	0.00	0.00	0.00	0.00
Traffico concomitante - max M	0.00	0.00	0.00	0.00
Traffico concomitante - min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00
Carichi verticali	-167.02	0.30	0.78	
Carichi orizzontali	13.24	143.09	145.38	
SISMA-STR - max M	-153.78	143.39	146.15	

Combinations 2	SISM				
Complinazione 2	Nconc	Nconc Tconc M			
Pesi propri	-161.54	0.00	0.00	1.00	
Permanenti	-10.99	0.30	0.78	1.00	
Cedimenti - max T	0.00	0.00	0.00	0.00	
Cedimenti - min T	0.00	0.00	0.00	0.00	
Cedimenti - max M	0.00	0.00	0.00	0.00	
Cedimenti - min M	-6.22	0.00	0.00	1.00	
Ritiro	22.82	-38.14	-105.75	1.00	
Comb Termiche - max T/max M	0.00	0.00	0.00	0.00	
Comb Termiche - min T/min M	11.50	-34.95	-105.19	0.50	
Traffico dominante - max T	0.00	0.00	0.00	0.00	
Traffico dominante - min T	0.00	0.00	0.00	0.00	
Traffico dominante - max M	0.00	0.00	0.00	0.00	
Traffico dominante - min M	0.00	0.00	0.00	0.00	
Traffico concomitante - max T	0.00	0.00	0.00	0.00	
Traffico concomitante - min T	0.00	0.00	0.00	0.00	
Traffico concomitante - max M	0.00	0.00	0.00	0.00	
Traffico concomitante - min M	0.00	0.00	0.00	0.00	
Vento_ponte_carico - max T/min M	0.00	0.00	0.00	0.00	
Vento_ponte_carico - min T/max M	0.00	0.00	0.00	0.00	
Carichi verticali	-178.75	0.30	0.78		
Carichi orizzontali	34.32	-73.09	-210.93		
SISMA-STR - min M	-144.43	-72.79	-210.16		

14. Apparecchiature di appoggio

Essendo il cavalcavia di tipo integrale, lo schema appoggi prevede l'assenza di apparecchiature d'appoggio in corrispondenza delle spalle; sulle pile invece vengono previsti due appoggi di tipo unidirezionale longitudinale aventi le portate dichiarate nella seguente tabella, espresse in kN.

	SLE			SLU			SISMA		
Tipo	Rx	Ry	Rz	Rx	Ry	Rz	Rx	Ry	Rz
UL	-	210	7100	-	310	9500	-	290	4000