LIAISON LYON - TURIN / COLLEGAMENTO TORINO - LIONE

Partie commune franco-italienne Section transfrontalière

Parte comune italo-francese Sezione transfrontaliera

NOUVELLE LIGNE LYON TURIN – NUOVA LINEA TORINO LIONE PARTIE COMMUNE FRANCO-ITALIENNE – PARTE COMUNE ITALO-FRANCESE

PARTE IN TERRITORIO ITALIANO – PROGETTO IN VARIANTE (OTTEMPERANZA ALLA PRESCRIZIONE N. 235 DELLA DELIBERA CIPE 19/2015)

CUP C11J05000030001 - PROGETTO DEFINITIVO

GENIE CIVIL / OPERE CIVILI

TUNNEL DE BASE – TUNNEL DI BASE

GALERIE DE LA MADDALENA – GALLERIA DELLA MADDALENA

PORTAIL ET PLATEFORME – EXCAVATION ET OUVRAGES DE SOUTENEMENT ET DE PROTECTION –

IMBOCCO E PIAZZALE – SCAVI E OPERE DI SOSTEGNO E DI PROTEZIONE

NOTE DE CALCUL MERLON PARE-BLOCS ET MURS DE TERASSEMENT/ RELAZIONE DI CALCOLO RILEVATO PARAMASSI E MURI DI TERRAZZAMENTO

Indice	Date/ Data	Modifications / Modifiche	Etabli par / Concepito da	Vérifié par / Controllato da	Autorisé par / Autorizzato da
0	25/01/2012	Première diffusion / Prima emissione	C. SALOT (BG) L. PEANO (BG)	M. RUSSO C. OGNIBENE	L. CHANTRON M. PANTALEO
A	08/02/2012	Révision suite aux commentaires LTF / Revisione a seguito commenti LTF	C. SALOT (BG)	M. RUSSO C. OGNIBENE	M. CHANTRON M. PANTALEO
В	20/01/2017	Première diffusion / Prima emissione	G. VERGNANO (st. 40) C. CARUSO (st. 40)	F. MAGNORFI C. OGNIBENE	L. CHANTRON A. MORDASINI
С	28/02/2017	Révision suite aux commentaires TELT / Revisione a seguito commenti TELT	G. VERGNANO (st. 40) C. CARUSO (st. 40)	F. MAGNORFI C. OGNIBENE	L. CHANTRON A. MORDASINI
		SER DOLL INC.		2	

CODE	P	R	V	C	3	A	T	S	3	3	8	5	0	C
DOC	Р	hase / Fas	se	Sigl	e étude /	Sigla	Émet	teur / Emi	ittente		Nun	nero		Indice

A	P	N	О	T
Statut	/ Stato	,	Type / Tip	o

ADRESSE GED INDIRIZZO GED	C3A	//	//	26	48	35	10	01

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

SOMMAIRE / INDICE

R.	ESU.	ME/RIASSUNTO	3
1.	INT	TRODUZIONE	
		OCUMENTI DI RIFERIMENTO	
۷.	2.1		
	2.2		
3.	VA	ALLO PARAMASSI	5
	3.1		
	3.2	Verifica delle terre rinforzate	
		3.2.1 Dati di input	6
		3.2.2 Verifiche di Stabilità interna	7
4.	MU	JRI PER TERRAZZAMENTI	9
	4.1		
	4.2	CARATTERISTICHE GEOTECNICHE DEL TERRENO	
		4.2.1 ANALISI DELLA SPINTA	10
		4.2.2 VERIFICHE GEOTECNICHE	
		4.2.3 IMPOSTAZIONI DI ANALISI	17
	4.3	MURO TIPO 1	23
	4.4	MURO TIPO 2	43
	4.5	VERIFICHE STRUTTURALI	63

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

RESUME/RIASSUNTO

ventilation de La Maddalena il son situés en pied de versant.

Du fait des possibles activités de versant, un merlon pare-blocs en terre armée est prévu en phase définitive, situè immédiatement en amont de la usine de ventilation.

La présent note contient les vérifications géotechniques des merlon pare-blocs et des murs de soutien prévus pour la réalisation des terrasses pour l'arrangement final de arre à côté de la usine de ventilation.

La zone de portail des galeries et la usine de La zona di imbocco delle gallerie e la centrale di ventilazione della Maddalena sono ubicate al piede del versante.

> La possibilità di attività di versante ha comportato la necessità di prevedere un rilevato paramassi in terra rinforzata in fase posto immediatamente a monte definitiva, della centrale di ventilazione.

> Nella relazione si riportano le verifiche geotecniche del rilevato paramassi e dei muri di sostegno previsti per la realizzazione dei terrazzamenti per la sistemazione definitiva delle aree prossime alla centrale ventilazione.

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

1. Introduzione

La presente relazione riporta le verifiche geotecniche del rilevato paramassi in terra rinforzata previsto, in fase definitiva, a protezione della centrale di ventilazione della Maddalena e delle strutture della A32.

Si riportano inoltre le verifiche relative ai muri di contenimento utilizzati per la realizzazione delle sistemazioni a terrazzo sia della porzione sud del rilevato paramassi, parte compresa tra la sommità dello stesso e la centrale di ventilazione, che per le arre attigue al piazzale della stessa.

Il rilevato paramassi ha una altezza massima da piano campagna pari a circa 9 m, larghezza in sommità pari a circa 6 m e sviluppo pari a circa 300 m. Sul lato est, in prossimità del torrente Clarea, ha anche funzione di protezione idraulica del piazzale delle centrali, nel caso di sormonto del ponte in pietra della viabilità di collegamento Chiomonte –Giaglione (Strada delle Gallie) da parte delle acque del torrente.

È realizzato in terra rinforzata, con scarpa avente inclinazione pari a 70 gradi, sul lato rivolto verso versante, e gradonato sul lato della centrale di ventilazione.

In fase di cantiere si prevede l'anticipazione di una porzione di rilevato a protezione delle zone di imbocco delle gallerie. La stessa è prevista avere altezza pari a circa 5,5m e sviluppo pari a circa 60m ed è posta in continuità con le reti paramassi in opera in fase di cantiere.

I muri per i terrazzamenti hanno altezza media fuori terra pari a circa 2m, sono realizzati in cemento armato e rivestiti, sulla faccia a vista, con gabbioni metallici riempiti in pietra locale.

2. Documenti di riferimento

2.1 Documenti di progetto

I documenti di riferimento sono i seguenti:

- PRV_C3A_3842_26-48-30_30-02_Sistemazione imbocco Maddalena Ortofoto;
- PRV_C3A_3843_26-48-30_30-02_Sistemazione imbocco Maddalena Planimetria;
- PRV_C3A_3843_26-48-30_30-02_Sistemazione imbocco Maddalena Sezioni;
- PRV_C3A_3854_26-48-35_30-03_Rilevato paramassi e muri di terrazzamento-Planimetria;
- PRV_C3A_3855_26-48-35_40-02_Rilevato paramassi e muri di terrazzamento-sezione tipo e dettagli;
- PRV_C3A_3858_26-48-35_40-02_ Muro provvisorio imbocco prospetti e sezioni;
- PD2-C3A-TS3-3845 Relazione geotecnica-sismica
- PRV_C3A_3840_26-48-30_10-01_Relazione generale illustrativa delle opere all' aperto

2.2 Normativa

Il quadro normativo di riferimento è trattato all'interno del documento allegato al DPS – Annexe 4.1 – Cadre regolamentaire

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Figura 1 – Planimetria della sistemazione finale (tavola 3853)

3. Vallo paramassi

3.1 Geometria

Il vallo paramassi (la cui vista planimetrica è illustrata della tavola 3854) ha una lunghezza di circa 300 m di cui circa 230 m effettivamente predisposti per la protezione contro la caduta massi ed i rimanenti 70 m, tratto lungo alveo, realizzati quale protezione idraulica. Globalmente l'opera è orientata in direzione N-S.

Alle estremità Nord e Sud, si innesta su dei rilevati antropici e si abbassa progressivamente fino a raccordarsi con la quota di questi ultimi.

Lato monte il rilevato ha un'altezza massima di 9.0 m e presenta inclinazione del paramento pari a 70°, lato valle esso è sostenuto da un muro di sostegno

Il corpo del rilevato (vedi tavola 3855) è costituito da terreno di riempimento confinato tra geogriglie ogni 0.60 m. Sugli strati di terreno, il risvolto delle geogriglie è di 1.50 m nel corpo del rilevato e di 3.0 m in testa.

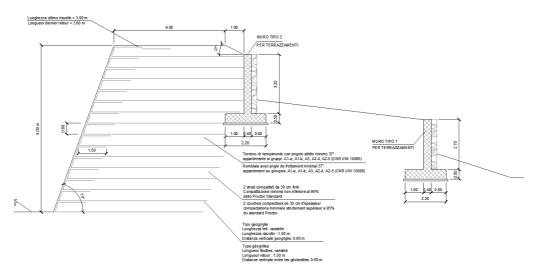


Figura 2 – Sezione tipo della diga paramassi (tavola 3855)

Il rilevato è composto da strati compattati di altezza massima 0.30 m. La compattazione minima non deve essere inferiore al 95% dello Proctor Standard.

Gli strati sono contenuti lateralmente da un cassero a perdere in rete elettosaldata 150mm x 150 mm Ø8mm, mantenuta con tiranti uncinati Ø8mm.

3.2 Verifica delle terre rinforzate

La verifica di stabilità del vallo paramassi in terra rinforzata è stata eseguita mediante il codice Macstar W, sviluppato da Officine Maccaferri SpA.

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Sono state effettuate le Verifiche di stabilità interna, sia in fase statica che in fase sismica.

Il modello di calcolo semplifica, a favore di sicurezza, la geometria reale: esso è costituito da un rilevato simmetrico con caratteristiche pari a quelle del lato di monte che è la parte di cui interessa verificare il rinforzo.

3.2.1 Dati di input

Le verifiche sono state effettuate per la sezione di altezza massima. È stato assunto un rilevato di altezza pari a 9.0 m, costituito da un blocco simmetrico con le seguenti caratteristiche:

- Angolo di attrito terreno di riempimento = 37°
- Angolo di attrito alla base = 37°
- Inclinazione dei paramenti = 70°
- Interdistanza geogriglie = 0.76 m
- Lunghezza di ancoraggio fogli = 4.0 m

Nota: le caratteristiche dei terreni sono definite in analogia a quanto assunto nell'elaborato PRV_C3A_TS3_7650_26-48-50_10-07.

Il codice impone valori di interdistanza tra le geogriglie pari a 0.5 o 0.8m. È stata dunque compiuta una scelta in favore di sicurezza assumendo una spaziatura di 0.76, superiore quella adottata nel progetto (pari a 0.6 m).

La geometria adottata è mostrata in **Figura 3**.

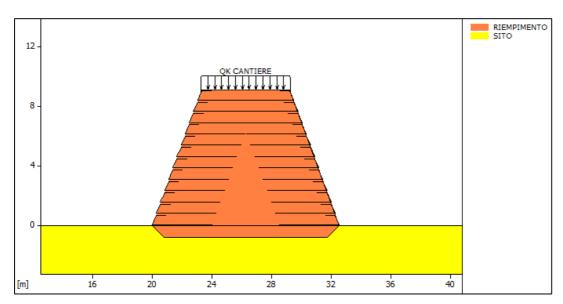


Figura 3 – Geometria di calcolo

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

3.2.2 Verifiche di Stabilità interna

Sulla base della normativa vigente (si veda il documento PD2-C3A-TSE3-1113 "Soumission 44 - Normes Techniques - Cadre réglementaire"), le verifiche sono state effettuate con i seguenti approcci:

- A2 + M2 + R2
- M2 + R2 + Azione sismica

Ipotesi

L'azione sismica é presa in conto come azione statica equivalente, moltiplicando la massa del rilevato per i fattori k_h e k_v , relativi rispettivamente alla componente orizzontale e verticale. Nella ricerca del caso dimensionante, la componente verticale è applicata sia verso l'alto che verso il basso.

I coefficienti k sono determinati in riferimento allo stato limite di salvaguardia della vita (SLV):

Dove:

 $a_{\text{max}} = S_s \cdot S_T \cdot a_g = 0.338g$ accelerazione massima attesa al sito

 $S_s = 1.393$ effetto amplificazione stratigrafica (categoria di suolo D)

 $S_{\tau} = 1.2$ effetto amplificazione topografica

 $a_n = 0.202$ g accelerazione orizzontale massima attesa su sito di riferimento rigido

 $\beta_s = 0.28$ coefficiente di riduzione dell'accelerazione massima attesa al sito

Sono stati assunti i seguenti coefficienti sismici:

$$k_h = 0.0945$$

$$k_v = \pm 0.5 \cdot k_h = \pm 0.0473$$

I coefficienti sopraindicati sono calcolati a partire dalle seguenti ipotesi:

- Categoria di suolo C
- Vita nominale $V_N = 100$ anni
- Coefficiente di destinazione d'uso $c_u = 2.0$ (da cui vita di riferimento $V_R = c_u \cdot V_N = 200$ anni).

Per questo tipo di verifica è stato considerato un carico variabile distribuito al di sopra del terrapieno pari a 10 kPa.

Risultati

Il calcolo ha fornito i seguenti fattori di sicurezza:

•
$$A2 + M2 + R2$$
 \longrightarrow FS = 1.377

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

•
$$M2 + R2 + Azione sismica$$
 $\longrightarrow FS = 1.287$

La stabilità interna del rilevato è garantita

I risultati delle analisi di stabilità interna sono mostrati in Figura 4 e in Figura 5

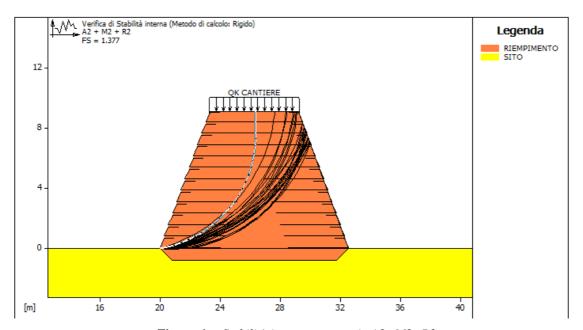


Figura 4 – Stabilità interna:approccio A2+M2+R2

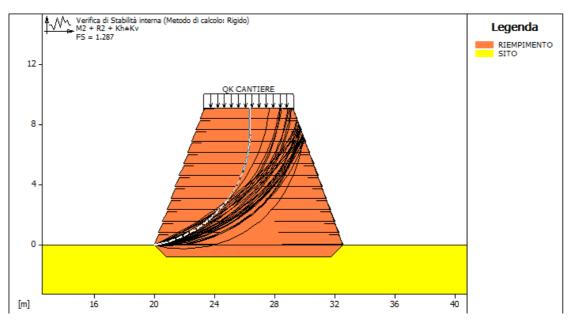
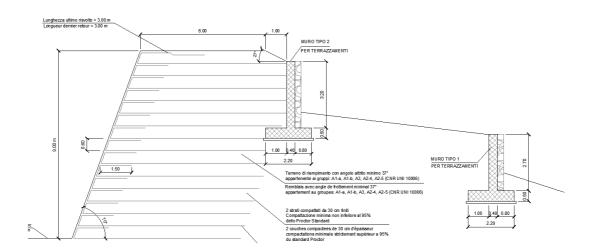


Figura 5 – Stabilità interna: approccio M2+R2+Azione Sismica


Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

4. MURI PER TERRAZZAMENTI

Si riportano di seguito le verifiche strutturali dei muri tipo 1 e tipo 2, che realizzano dei terrazzamenti in adiacenza al vallo paramassi.

La stessa tipologia di muro è adottata anche per il sostegno del terreno nella realizzazione delle sistemazioni a terrazzo delle aree prossime alla centrale di ventilazione.

Oltre che sulla base della conformazione del terreno, i muri sono stati verificati con un carico accidentale distribuito pari a 2.000 kg/m², per tenere in conto l'accesso dei mezzi in fase di realizazione dei rilevati, per futuri interventi di manutenzione o, nel caso di muri prossimi alla viabilità locale, per tenere conto dei carichi ad essa conseguenti.

4.1 MATERIALI

Calcestruzzo

Sottofondazioni

· ·		
Classe di resis	stenza:	C12/15

Contenuto minimo di cemento: 150 kg/m³

Muri

Muri		
Classe di resistenza:	(C32/40
Classe di esposizione:		XF1
Modulo elastico:	$E_c =$	33.643 N/mm ²
Resistenza caratteristica a compressione cilindrica:	$f_{ck}\!=\!$	33,20 N/mm ²
Resistenza media a compressione cilindrica:	$f_{cm} =$	41,20 N/mm ²
Resistenza di calcolo a compressione:	$f_{cd} =$	18,81 N/mm ²

Resistenza a trazione (valore medio): $f_{ctm} = 3,10 \text{ N/mm}^2$

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Resistenza caratteristica a trazione:	$f_{ctk} =$	2,17 N/mm ²
Copriferro:	c =	45 mm

Acciaio per cemento armato

Si utilizzano barre ad aderenza migliorata in acciaio con le seguenti caratteristiche meccaniche:

		B450C	
Tensione caratteristica di snervamento:	$f_{yk}\!=\!$	450	N/mm ²
Tensione caratteristica di rottura:	$f_{tk}\!=\!$	540	N/mm ²
Resistenza di calcolo a trazione:	$f_{yd}\!=\!$	391,30	N/mm ²
Modulo elastico	$E_s =$	210.000	N/mm ²

4.2 CARATTERISTICHE GEOTECNICHE DEL TERRENO

Per calcolare la spinta delle terre si sono utilizzate le seguenti caratteristiche:

- Terreno in sito $\gamma = 20 \text{ kN/m}^3$ $\phi = 30^\circ$ coesione = 0 kN/m²
- Terreno di reinterro $\gamma = 20 \text{ kN/m}^3$ $\phi = 37^\circ$ coesione = 0 kN/m²

4.2.1 ANALISI DELLA SPINTA

Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite il D.M. 14/01/2008 è necessario fare la distinzione fra i parametri caratteristici ed i valori di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ. In particolare si distinguono combinazioni di carico di tipo A1-M1 nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

combinazioni di carico di tipo A2-M2 nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ϵ l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove $\theta = arctg(k_h/(1\pm k_v))$ essendo k_h il coefficiente sismico orizzontale e k_v il coefficiente sismico verticale, definito in funzione di k_h .

In presenza di falda a monte, θ assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = \arctan[(\gamma_{\text{sat}}/(\gamma_{\text{sat}}-\gamma_{\text{w}}))*(k_{\text{h}}/(1\pm k_{\text{v}}))]$$

Terreno a permeabilità elevata

$$\theta = arctg[(\gamma/(\gamma_{sat}-\gamma_w))*(k_h/(1\pm k_v))]$$

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta \cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ .

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W$$
 $F_{iV} = \pm k_v W$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

4.2.2 VERIFICHE GEOTECNICHE

Verifica a ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_s) rispetto allo spigolo a valle della

fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza η_r .

Eseguendo il calcolo mediante gli eurocodici si può impostare $\eta_r >= 1.0$.

Deve quindi essere verificata la seguente diseguaglianza

$$M_s \longrightarrow \eta_r >= \eta_r$$

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Il momento ribaltante Mr è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo.

 δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante.

Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento risulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante il DM 14/01/2008 si può impostare $\eta_s >= 1.0$ (Approccio 1)

$$F_{r} \rightarrow = \eta_{s}$$

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50%.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$\frac{Q_u}{R}>=\eta_q$$

Eseguendo il calcolo mediante il DM 14/01/2008 si può impostare $\eta_q>=1.0$ (Approccio 1)

Terzaghi ha proposto la seguente espressione per il calcolo della capacità portante di una fondazione superficiale.

$$q_u = cN_c s_c + qN_q + 0.5B\gamma N_{\gamma} s_{\gamma}$$

La simbologia adottata è la seguente:

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

- c coesione del terreno in fondazione;
- φ angolo di attrito del terreno in fondazione;
- γ peso di volume del terreno in fondazione;
- B larghezza della fondazione;
- D profondità del piano di posa;
- q pressione geostatica alla quota del piano di posa.

I fattori di capacità portante sono espressi dalle seguenti relazioni:

$$N_{q} = \frac{e^{2(0.75\pi - \phi/2)tg(\phi)}}{2cos^{2}(45 + \phi/2)}$$

$$N_c = (N_a - 1)ctg\phi$$

$$N_{\gamma} = \frac{tg\phi}{2} \left(\frac{K_{p\gamma}}{\cos^2 \phi} - 1 \right)$$

I fattori di forma s_c e s_γ che compaiono nella espressione di q_u dipendono dalla forma della fondazione. In particolare valgono 1 per fondazioni nastriformi o rettangolari allungate e valgono rispettivamente 1.3 e 0.8 per fondazioni quadrate.

termine $K_{p\gamma}$ che compare nell'espressione di N_{γ} non ha un'espressione analitica. Pertanto si assume per N_{γ} l'espressione proposta da Meyerof

$$N_{\gamma} = (N_{q} - 1)tg(1.4*\phi)$$

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a $\eta_{\rm g}$

Eseguendo il calcolo si può impostare $\eta_g >= 1.1$

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\begin{array}{c} c_i b_i + (W_i - u_i b_i) t g \phi_i \\ \Sigma_i \ (\begin{array}{c} \\ \\ \end{array}) \\ \eta = \begin{array}{c} \\ \\ \\ \\ \end{array}$$

dove il termine mè espresso da

$$m = (1 + \frac{tg\phi_i tg\alpha_i}{\eta}) \cos\alpha_i$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima}, c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approssimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare finquando il valore calcolato coincide con il valore assunto.

4.2.3 IMPOSTAZIONI DI ANALISI

Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

- Verifica della stabilità globale

- Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle

armature e relative verifiche dei materiali.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo

dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM

14/01/2008.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo

degli Stati Limite. Le combinazioni di carico adottate sono esaustive

relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Codice di calcolo

Codice di calcolo: MAX - Analisi e Calcolo Muri di Sostegno

Versione:

10.10

Produttore:

Aztec Informatica srl, Casole Bruzio (CS)

Affidabilità del codice di calcolo

Un attento esame preliminare della documentazione a corredo del software ha

consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del

software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi

impiegati e l'individuazione dei campi d'impiego. La società produttrice Aztec

Informatica srl ha verificato l'affidabilità e la robustezza del codice di calcolo

attraverso un numero significativo di casi prova in cui i risultati dell'analisi

numerica sono stati confrontati con soluzioni teoriche.

Impostazioni verifiche

Metodo verifica sezioni

Stato limite

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta

metodo di Culmann

Calcolo del carico limite

metodo di Terzaghi

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Calcolo della stabilità globale	metodo di Bishop
---------------------------------	------------------

Calcolo della spinta in condizioni di Spinta attiva

Impostazioni verifiche SLU

Coefficienti parziali per resistenze di calcolo dei materiali

Coefficiente di sicurezza calcestruzzo a compressione	1,50
Coefficiente di sicurezza calcestruzzo a trazione	1,50
Coefficiente di sicurezza acciaio	1,15
Fattore riduzione da resistenza cubica a cilindrica	0,83
Fattore di riduzione per carichi di lungo periodo	0,85

Impostazioni verifiche SLE

Condizioni ambientali	Ordinarie
Condizioni ambientan	Chumane

Armatura ad aderenza migliorata

Verifica fessurazione

Sensibilità delle armature	Poco sensibile
Delibiolita delle alliatare	

Valori limite delle aperture delle fessure

$$w_2 = 0.30$$

$$w_3 = 0.40$$

Metodo di calcolo aperture delle fessure DM 14/01/2008

Verifica delle tensioni

Combinazione di carico Rara $\sigma_c < 0.60 \ f_{ck} - \sigma_s < 0.80 \ f_{yk}$

Quasi permanente $\sigma_c < 0.45 f_{ck}$

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle

Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Parametri sismici

La valutazione dell'azione sismica è stata eseguita in accordo al paragrafo 3.2 delle Norme tecniche per le costruzioni, facendo riferimento ai seguenti parametri:

- Latitudine: 45,129402°

- Longitudine: 6,989686°

- Vita nominale VN = 100 anni

- Classe d'uso IV (opere strategiche)

- Categoria di sottosuolo C (depositi di terreni a grana grossa mediamente

addensati o terreni a grana fina mediamente consistenti)

- Categoria topografica T2 (pendii con inclinazione media i > 15°)

Dalla definizione dei parametri sopra è possibile definire tutti gli elementi necessari alla formazione degli spettri di stato limite di salvaguardia della vita SLV

Accelerazione al suolo a _g	$1,985 \text{ [m/s}^2\text{]}$
Coefficiente di amplificazione per tipo di sottosuolo (Ss)	1,393
Coefficiente di amplificazione topografica (St)	1,20
Coefficiente riduzione (b _m)	0,31
Rapporto intensità sismica verticale/orizzontale	0,50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g * b_m * St * S) = 10,48$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 5,24$

Forma diagramma incremento sismico: stessa forma diagramma statico

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Coefficienti di partecipazione (N.T.C. 2008 - Approccio 1)

Simbologia adottata

γ_{Gsfav}	Coefficiente parziale sfavorevole sulle azioni permanenti
γ_{Gfav}	Coefficiente parziale favorevole sulle azioni permanenti
γ_{Qsfav}	Coefficiente parziale sfavorevole sulle azioni variabili
γ_{Qfav}	Coefficiente parziale favorevole sulle azioni variabili
$\gamma_{tan\varphi'}$	Coefficiente parziale di riduzione dell'angolo di attrito drenato
$\gamma_{c'}$	Coefficiente parziale di riduzione della coesione drenata
γ_{cu}	Coefficiente parziale di riduzione della coesione non drenata
γ_{qu}	Coefficiente parziale di riduzione del carico ultimo
γ_{γ}	Coefficiente parziale di riduzione della resistenza a compressione uniassiale
delle ro	cce

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

	Ł			_		
Carichi	Effetto		<i>A1</i>	A2	EQU	HYD
Permanenti	Favorevole	γ_{Gfav}	1.00	1.00	0.90	0.90
Permanenti	Sfavorevole	γ_{Gsfav}	1.30	1.00	1.10	1.30
Variabili	Favorevole	γ_{Qfav}	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	γ_{Qsfav}	1.50	1.30	1.50	1.50
<u>Coefficienti</u>	parziali per i paramet	ri geotecnici	del terreno:			
Parametri			M1	<i>M</i> 2	<i>M</i> 2	<i>M1</i>
Tangente del	l'angolo di attrito	$\gamma_{tan\phi'}$	1.00	1.25	1.25	1.00
Coesione eff	icace	$\gamma_{c'}$	1.00	1.25	1.25	1.00
Resistenza no	on drenata	γcu	1.00	1.40	1.40	1.00

Centale de ventilation Maddalena – C	antrola di vantiloziana Maddalana	

Note de calcul merlon pare blocs et mu	J. 4 2. D.l 12 .	-11	4
Note de calcili merion pare piocs et mil	rs de terassement - Kelazione di c	aicolo riievalo paramassi e miiri	terrazzamento

Resistenza a compressione uniassiale	γ_{qu}	1.00	1.60	1.60	1.00
Peso dell'unità di volume	γ_{γ}	1.00	1.00	1.00	1.00

Coefficienti di partecipazione combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

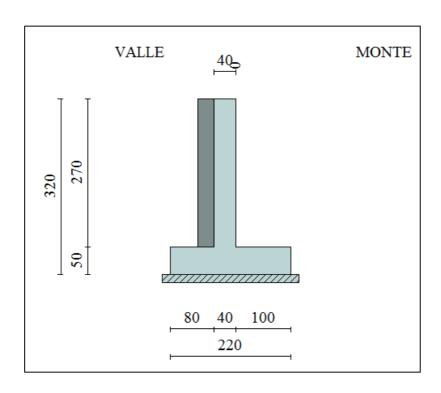
Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	γ_{Gfav}	1.00	1.00	1.00	0.90
Permanenti	Sfavorevole	γ_{Gsfav}	1.00	1.00	1.00	1.30
Variabili	Favorevole	γ_{Qfav}	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	γ_{Qsfav}	1.00	1.00	1.00	1.50

Coefficienti parziali per i parametri geotecnici del terreno:

- 					
Parametri		M1	<i>M</i> 2	<i>M</i> 2	<i>M1</i>
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1.00	1.25	1.25	1.00
Coesione efficace	$\gamma_{c'}$	1.00	1.25	1.25	1.00
Resistenza non drenata	γ_{cu}	1.00	1.40	1.40	1.00
Resistenza a compressione uniassiale	γ_{qu}	1.00	1.60	1.60	1.00
Peso dell'unità di volume	γ_{γ}	1.00	1.00	1.00	1.00

FONDAZIONE SUPERFICIALE

Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO


Verifica	Coefficienti parziali		
	<i>R1</i>	<i>R</i> 2	<i>R3</i>
Capacità portante della fondazione	1.00	1.00	1.40
Scorrimento	1.00	1.00	1.10
Resistenza del terreno a valle	1.00	1.00	1.40
Stabilità globale		1.10	

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

4.3 MURO TIPO 1

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.
Altezza del paramento	2,70 [m]
Spessore in sommità	0,40 [m]
Spessore all'attacco con la fondazione	0,40 [m]
Inclinazione paramento esterno	0,00 [°]
Inclinazione paramento interno	0,00 [°]
Lunghezza del muro	10,00 [m]
Spessore rivestimento	0,30 [m]
Peso sp. rivestimento	20,0000 [kN/mc]
<u>Fondazione</u>	
Lunghezza mensola fondazione di valle	0,80 [m]
Lunghezza mensola fondazione di monte	1,00 [m]
Lunghezza totale fondazione	2,20 [m]
Inclinazione piano di posa della fondazione	0,00 [°]
Spessore fondazione	0,50 [m]
Spessore magrone	0,15 [m]

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	\mathbf{X}	\mathbf{Y}	\mathbf{A}
1	9,00	1,09	6,91
2	9,20	3,52	85,29
3	10,82	4,08	19,07
4	17,26	4,20	1,07
5	20,15	-2,70	-67,27

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0,00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0,00 [m]

Descrizione terreni

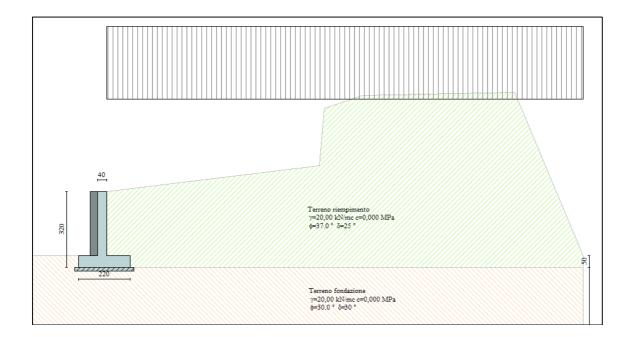
Simbologia adottata

Nr.	Indice del terreno
Descrizione	Descrizione terreno
γ	Peso di volume del terreno espresso in [kN/mc]
γ_s	Peso di volume saturo del terreno espresso in [kN/mc]
ϕ	Angolo d'attrito interno espresso in [°]
δ	Angolo d'attrito terra-muro espresso in [°]
\boldsymbol{c}	Coesione espressa in [MPa]
c_a	Adesione terra-muro espressa in [MPa]

Descrizione y	$\gamma_{\rm s}$	ф	δ	c	$\mathbf{c}_{\mathbf{a}}$
Terreno riempimento20,00	20,00	37.00	24.67	0,0000	0,0000
Terreno fondazione 20.00	20.00	30.00	30.00	0.0000	0.0000

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Stratigrafia


Simbologia adottata

N	Indice dello strato
H	Spessore dello strato espresso in [m]
a	Inclinazione espressa in [°]

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta
Terreno Terreno dello strato

Nr.	H	a	$\mathbf{K}\mathbf{w}$	Ks	Terreno
1	3,20	0,00	0,00	0,00	Terreno riempimento
2	6,00	0,00	2,13	0,00	Terreno fondazione

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

- X Ascissa del punto di applicazione del carico concentrato espressa in [m]
- F_x Componente orizzontale del carico concentrato espressa in [kN]
- F_{ν} Componente verticale del carico concentrato espressa in [kN]
- M Momento espresso in [kNm]
- X_i Ascissa del punto iniziale del carico ripartito espressa in [m]
- X_f Ascissa del punto finale del carico ripartito espressa in [m]

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

- Q_i Intensità del carico per $x=X_i$ espressa in [kN/m]
- Q_f Intensità del carico per $x=X_f$ espressa in [kN/m]
- D/C Tipo carico: D=distribuito C=concentrato

Condizione nº 1 (Variabile distribuito mezzi cantiere)

D Profilo $X_{i}=0.00$ $X_{f}=20.15$ $Q_{i}=20.0000$ $Q_{f}=20.0000$

Descrizione combinazioni di carico

Simbologia adottata

F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione

Combinazione n° 1 - Caso A1-M1 (STR)

	S/F	γ	Ψ	γ * Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Variabile distribuito mezzi c	antiereSFAV	1.50	1.00	1.50

Combinazione n° 2 - Caso A2-M2 (GEO)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Variabile distribuito mezzi cantiereSFAV		1.30	1.00	1.30

Combinazione n° 3 - Caso EQU (SLU)

	S/F	γ	Ψ	γ * Ψ
Peso proprio muro	FAV	0,90	1.00	0,90
Peso proprio terrapieno	FAV	0,90	1.00	0,90
Spinta terreno	SFAV	1,10	1.00	1,10
Variabile distribuito mezzi d	cantiereSFAV	1.50	1.00	1.50

Combinazione n° 4 - Caso A2-M2 (GEO-STAB)

	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Variabile distribuito mezzi cantiereSFAV		1.30	1.00	1.30

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Combinazione n° 5 - Caso A	1-M1 (STR)	- Sisma Ve	rt. negativo	
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
1		,		,
Combinazione n° 6 - Caso A				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 7 - Caso A	2-M2 (GEO) - Sisma Ve	rt. positivo	
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Spinta terreno	DITIV	1,00	1.00	1,00
Combinazione n° 8 - Caso A	2-M2 (GEO) - Sisma Ve	rt. negativo	
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinations no 0 Coss E		Ciama Mant		
Combinazione n° 9 - Caso E			•	
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 10 - Caso l	EQU (SLU)	- Sisma Vert	t. positivo	
	S/F	γ	Ψ	γ * Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Spinta terreno	51111	1,00	1.00	1,00
Combinazione n° 11 - Caso A		<u> </u>		-
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 12 - Caso	A2-M2 (GE0)-STAR) - S	Sisma Vert	negativo
Comomunione ii 12 Cuso i	S/F		<u>Ψ</u>	<u>negativo</u> γ*Ψ
Peso proprio muro	S/F SFAV	γ 1,00	1.00	1,00
		1,00	1.00	1,00
Peso proprio terrapieno	SFAV	,		
Spinta terreno	SFAV	1,00	1.00	1,00

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Combinazione n° 13 - Quasi	Permanente (S	SLE)		
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro		1,00	1.00	1,00
Peso proprio terrapieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Combinazione n° 14 - Frequ	ente (SLE)			
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro		1,00	1.00	1,00
Peso proprio terrapieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Variabile distribuito mezzi cantiereSFAV		1.00	0.50	0.50
Combinazione n° 15 - Rara ((SLE)			
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro		1,00	1.00	1,00
Peso proprio terrapieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Variabile distribuito mezzi c	1.00	1.00	1.00	

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione

Sisma Combinazione sismica

CS_{SCO} Coeff. di sicurezza allo scorrimento

CS_{RIB} Coeff. di sicurezza al ribaltamento

CS_{OLIM} Coeff. di sicurezza a carico limite

CS_{STAB} Coeff. di sicurezza a stabilità globale

C	Tipo	Sisma	cs_{sco}	CS rib	CSqlim	CS _{stab}
1	AÎ-M1 - [1]		1,94		7,79	
2	A2-M2 - [1]		1,39		3,49	
3	EQU - [1]			2,86		
4	STAB - [1]					1,25
5	A1-M1 - [2]	Orizzontale + Verticale negativo	1,78		9,46	
6	A1-M1 - [2]	Orizzontale + Verticale positivo	1,84		8,84	
7	A2-M2 - [2]	Orizzontale + Verticale positivo	1,22		3,77	
8	A2-M2 - [2]	Orizzontale + Verticale negativo	1,18		4,02	
9	EQU - [2]	Orizzontale + Verticale negativo		2,71		
10	EQU - [2]	Orizzontale + Verticale positivo		3,04		
11	STAB - [2]	Orizzontale + Verticale positivo				1,23
12	STAB - [2]	Orizzontale + Verticale negativo				1,20
13	SLEQ - [1]		3,25		9,83	
14	SLEF - [1]		2,74		9,14	
15	SLER - [1]		2,43		8,54	

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle

Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta	metodo di Culmann
Calcolo del carico limite	metodo di Terzaghi
Calcolo della stabilità globale	metodo di Bishop
Calcolo della spinta in condizioni di	Spinta attiva

Sisma

Combinazioni SLU

Accelerazione al suolo a _g	1.98 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.39
Coefficiente di amplificazione topografica (St)	1.20
Coefficiente riduzione (β_m)	0.31
Rapporto intensità sismica verticale/orizzontale	0.50

Coefficiente di intensità sismica orizzontale (percento) $k_h=(a_g/g^*\beta_m^*St^*S)=10.48$ Coefficiente di intensità sismica verticale (percento) $k_v=0.50*k_h=5.24$

Combinazioni SLE

Accelerazione al suolo a _g 0.95 [m/s [^]	
Coefficiente di amplificazione per tipo di sottosuolo (S) 1.50	
Coefficiente di amplificazione topografica (St) 1.20	
Coefficiente riduzione (β_m) 0.18	
Rapporto intensità sismica verticale/orizzontale 0.50	

Coefficiente di intensità sismica orizzontale (percento) $k_h=(a_g/g^*\beta_m^*St^*S)=3.15$ Coefficiente di intensità sismica verticale (percento) $k_v=0.50*k_h=1.58$

Forma diagramma incremento sismico Stessa forma diagramma statico

Partecipazione spinta passiva (percento) 0,0

Lunghezza del muro 10,00 [m]

Peso muro 54,5000 [kN]
Baricentro del muro X=-0,15 Y=-2,16

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Superficie di spinta Punto inferiore superficie di spinta Punto superiore superficie di spinta Altezza della superficie di spinta Inclinazione superficie di spinta(rispetto alla verticale)	X = 1,00 X = 1,00 3,32 [m] 0,00 [°]	Y =	-3,20 0,12)	
COMBINAZIONE n° 2					
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	61,0894 57,3419 21,0671 X = 1,00 [m]	[kN] [kN] [kN] [m]	Y	=	-1,85
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	20,17 54,97	[°] [°]			
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	81,2111 X = 0,50 [m]	[kN] [m]	Y	=	-1,32
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	57,3419 172,9782 172,9782 57,3419 0,09 2,20 182,2349 18,34 15,2286 604,1695 2,20 0,09750 0,05975	[kN] [kN] [kN] [m] [m] [kN] [°] [kNm] [kN] [m]			
Fattori per il calcolo della capacità portante	0,00710	[u]			
2 por vi ourocro worw cupucius por unive					

Coeff. capacità portante	$N_c = 24.75$	$N_q = 12.43$	$N_{\gamma} = 7.92$
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
I coefficienti N' tengono	conto dei fattori di	forma, profondità,	inclinazione carico,
inclinazione piano di posa, ir	nclinazione pendio.		
	$N'_c = 24.75$	$N'_{0} = 12.43$	$N'_{v} = 7.92$

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.39
Coefficiente di sicurezza a carico ultimo	3.49

Sollecitazioni paramento

Combinazione n° 2

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Y	N	\mathbf{M}	T
1	0,00	0,0000	0,0000	0,0000
2	0,14	1,3500	0,0710	1,0708
3	0,27	2,7000	0,2941	2,2533
4	0,41	4,0500	0,6842	3,5433
5	0,54	5,4000	1,2556	4,9396
6	0,68	6,7500	2,0227	6,4423
7	0,81	8,1000	2,9998	8,0513
8	0,95	9,4500	4,2014	9,7667
9	1,08	10,8000	5,6416	11,5884
10	1,22	12,1500	7,3350	13,5165
11	1,35	13,5000	9,2959	15,5509
12	1,49	14,8500	11,5386	17,6917
13	1,62	16,2000	14,0774	19,9388
14	1,76	17,5500	16,9268	22,2923
15	1,89	18,9000	20,1011	24,7521
16	2,03	20,2500	23,6147	27,3183
17	2,16	21,6000	27,4819	29,9908
18	2,29	22,9500	31,7170	32,7697
19	2,43	24,3000	36,3345	35,6549
20	2,57	25,6500	41,3486	38,6465
21	2,70	27,0000	46,7732	41,7274

Sollecitazioni fondazione di valle

Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Nr.	\mathbf{X}	\mathbf{M}	T
1	0,00	0,0000	0,0000
2	0,08	0,2706	6,7455
3	0,16	1,0763	13,3811
4	0,24	2,4086	19,9069
5	0,32	4,2585	26,3229
6	0,40	6,6173	32,6290
7	0,48	9,4762	38,8253
8	0,56	12,8264	44,9117
9	0,64	16,6592	50,8883
10	0,72	20,9657	56,7551
11	0,80	25,7371	62,5120

Sollecitazioni fondazione di monte

Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	\mathbf{M}	T
1	0,00	0,0000	0,0000
2	0,10	-0,1726	-3,4195
3	0,20	-0,6774	-6,6432
4	0,30	-1,4947	-9,6710
5	0,40	-2,6050	-12,5029
6	0,50	-3,9888	-15,1391
7	0,60	-5,6263	-17,5793
8	0,70	-7,4981	-19,8238
9	0,80	-9,5845	-21,8724
10	0,90	-11,8661	-23,7251
11	1,00	-14,3230	-25,3820

COMBINAZIONE n° 8

Valore della spinta statica	34,2571	[kN]			
Componente orizzontale della spinta statica	32,1556	[kN]			
Componente verticale della spinta statica	11,8138	[kN]			
Punto d'applicazione della spinta	X = 1,00	[m]	Y	=	-2,09
	[m]				

Note de calcul merlon	pare blocs et murs de terassement	- Relazione di calcolo rilevato	naramacci a muri tarrazzamenta
Note ue calcul mellon	pare blocs et murs de lei assement	- Keiazione ui caicolo i nevato	pai ainassi e mui i tei i azzamento

	F				
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	20,17 54,97	[°] [°]			
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta	7,6933 X = 1,00 [m]	[kN] [m]	Y	=	-2,09
Inclinazione linea di rottura in condizioni sismiche	48,15	[°]			
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	55,2111 X = 0,50 [m]	[kN] [m]	Y	=	-1,32
Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte	5,7137 -2,8569 5,7883	[kN] [kN] [kN]			
Inerzia verticale del terrapieno fondazione di monte	-2,8941	[kN]			
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	52,5774 134,6270 134,6270 52,5774 0,19 2,20 144,5296 21,33 25,9630 541,5928	[kN] [kN] [kN] [kN] [m] [m] [kN] [c°] [kNm]			
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	2,20 0,09338 0,02901	[m] [MPa] [MPa]			

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 24.75$	$N_q = 12.43$	$N_{\gamma} = 7.92$
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
I coefficienti N' tengono	conto dei fattori di	forma, profondità,	inclinazione carico,
inclinazione piano di posa, ir	nclinazione pendio.		
	$N'_{c} = 24.75$	$N'_{0} = 12.43$	$N'_{y} = 7.92$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.18
Coefficiente di sicurezza a carico ultimo	4.02

Sollecitazioni paramento

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Combinazione n° 8

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Y	N	M	T
1	0,00	0,0000	0,0000	0,0000
2	0,14	1,3500	0,0125	0,2066
3	0,27	2,7000	0,0617	0,5435
4	0,41	4,0500	0,1651	1,0106
5	0,54	5,4000	0,3404	1,6080
6	0,68	6,7500	0,6051	2,3356
7	0,81	8,1000	0,9769	3,1934
8	0,95	9,4500	1,4732	4,1814
9	1,08	10,8000	2,1117	5,2997
10	1,22	12,1500	2,9100	6,5482
11	1,35	13,5000	3,8856	7,9270
12	1,49	14,8500	5,0561	9,4359
13	1,62	16,2000	6,4391	11,0752
14	1,76	17,5500	8,0523	12,8446
15	1,89	18,9000	9,9130	14,7443
16	2,03	20,2500	12,0391	16,7742
17	2,16	21,6000	14,4479	18,9343
18	2,29	22,9500	17,1572	21,2247
19	2,43	24,3000	20,1845	23,6453
20	2,57	25,6500	23,5473	26,1961
21	2,70	27,0000	27,2625	28,8564

Sollecitazioni fondazione di valle

Combinazione n° 8

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	\mathbf{M}	T
1	0,00	0,0000	0,0000
2	0,08	0,2563	6,3767
3	0.16	1.0153	12.5662

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

4	0,24	2,2619	18,5684	
5	0,32	3,9812	24,3834	
6	0,40	6,1583	30,0111	
7	0,48	8,7780	35,4515	
8	0,56	11,8255	40,7047	
9	0,64	15,2858	45,7706	
10	0,72	19,1438	50,6493	
11	0.80	23,3847	55,3407	

Sollecitazioni fondazione di monte

Combinazione n° 8

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	\mathbf{X}	\mathbf{M}	T
1	0,00	0,0000	0,0000
2	0,10	-0,1943	-3,8330
3	0,20	-0,7560	-7,3491
4	0,30	-1,6535	-10,5484
5	0,40	-2,8552	-13,4309
6	0,50	-4,3292	-15,9966
7	0,60	-6,0439	-18,2455
8	0,70	-7,9677	-20,1775
9	0,80	-10,0689	-21,7928
10	0,90	-12,3157	-23,0912
11	1,00	-14,6765	-24,0728

COMBINAZIONE n° 9

Valore della spinta statica	34,2571	[kN]			
Componente orizzontale della spinta statica Componente verticale della spinta statica	32,1556 11,8138	[kN] [kN]			
Punto d'applicazione della spinta	X = 1,00	[m]	Y	=	-2,09
-	[m]				
Inclinaz. della spinta rispetto alla normale alla superficie	20,17	[°]			
Inclinazione linea di rottura in condizioni statiche	54,97	[°]			
Incremento sismico della spinta	7,6933	[kN]			

Note de calcul merlon	pare blocs et murs de terassement	- Relazione di calcolo rilevato	naramacci a muri tarrazzamenta
Note ue calcul mellon	pare blocs et murs de lei assement	- Keiazione ui caicolo i nevato	pai ainassi e mui i tei i azzamento

Punto d'applicazione dell'incremento sismico di spinta	X = 1,00	[m]	Y	=	-2,09
Inclinazione linea di rottura in condizioni sismiche	[m] 48,15	[°]			
Peso terrapieno gravante sulla fondazione a monte	55,2111	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.50 [m]	[m]	Y	=	-1,32
Inerzia del muro	5,7137	[kN]			
Inerzia verticale del muro	-2,8569	[kN]			
Inerzia del terrapieno fondazione di monte	5,7883	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-2,8941	[kN]			
Risultanti					
Risultante dei carichi applicati in dir. orizzontale	52,5774	[kN]			
Risultante dei carichi applicati in dir. verticale	134,6270	[kN]			
Momento ribaltante rispetto allo spigolo a valle	71,5412	[kNm]			
Momento stabilizzante rispetto allo spigolo a valle	193,6679	[kNm]			
Sforzo normale sul piano di posa della fondazione	134,6270	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	52,5774	[kN]			
Eccentricità rispetto al baricentro della fondazione	0,19	[m]			
Lunghezza fondazione reagente	2,20	[m]			
Risultante in fondazione	144,5296	[kN]			
Inclinazione della risultante (rispetto alla normale)	21,33	[°]			
Momento rispetto al baricentro della fondazione	25,9630	[kNm]			
COEFFICIENTI DI SICUREZZA					

2.71

Stabilità globale muro + terreno

Coefficiente di sicurezza a ribaltamento

Combinazione n° 12

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [MPa]
- b larghezza della striscia espressa in [m]
- *u* pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -1.31 Y[m] = 1.83

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

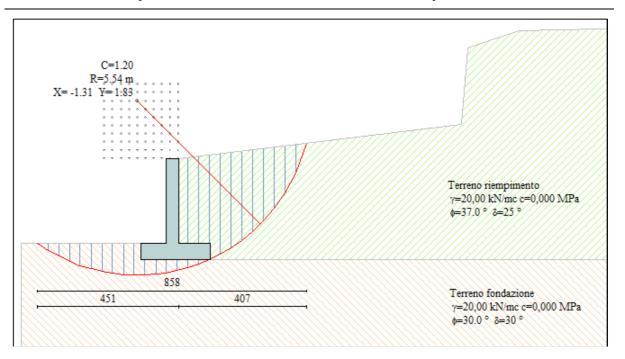
Raggio del cerchio R[m]= 5,54

Ascissa a valle del cerchio Xi[m]=-4,51Ascissa a monte del cerchio Xs[m]=4,07Larghezza della striscia dx[m]=0,34Coefficiente di sicurezza C=1.20

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	\mathbf{W}	$\alpha(^{\circ})$	Wsinα	b/cosa	ф	c	u
1	3,1372	70.24	2,9524	0,0100	31.08	0,000	0,000
2	8,3251	61.76	7,3339	0,0071	31.08	0,000	0,000
3	11,9105	54.91	9,7458	0,0059	31.08	0,000	0,000
4	14,6630	49.11	11,0842	0,0051	31.08	0,000	0,000
5	16,8732	43.93	11,7057	0,0047	31.08	0,000	0,000
6	18,6829	39.17	11,8006	0,0043	31.08	0,000	0,000
7	20,1740	34.72	11,4900	0,0041	31.08	0,000	0,000
8	21,3990	30.50	10,8598	0,0039	31.08	0,000	0,000
9	22,4336	26.45	9,9930	0,0038	30.82	0,000	0,000
10	24,0421	22.55	9,2181	0,0036	24.79	0,000	0,000
11	24,6458	18.75	7,9210	0,0036	24.79	0,000	0,000
12	25,6960	15.03	6,6649	0,0035	24.79	0,000	0,000
13	30,1599	11.38	5,9523	0,0034	24.79	0,000	0,000
14	8,1328	7.78	1,1007	0,0034	24.79	0,000	0,000
15	7,6349	4.21	0,5599	0,0034	24.79	0,000	0,000
16	7,1879	0.65	0,0814	0,0034	24.79	0,000	0,000
17	6,8302	-2.91	-0,3462	0,0034	24.79	0,000	0,000
18	6,6368	-6.47	-0,7479	0,0034	24.79	0,000	0,000
19	6,2940	-10.06	-1,0996	0,0034	24.79	0,000	0,000
20	5,7978	-13.69	-1,3725	0,0035	24.79	0,000	0,000
21	5,1419	-17.38	-1,5361	0,0035	24.79	0,000	0,000
22	4,3172	-21.15	-1,5575	0,0036	24.79	0,000	0,000
23	3,3116	-25.01	-1,4001	0,0037	28.63	0,000	0,000
24	2,1087	-29.00	-1,0224	0,0038	31.08	0,000	0,000
25	0,6858	-33.15	-0,3750	0,0040	31.08	0,000	0,000


 $\Sigma W_i = 306,2218 [kN]$

 $\Sigma W_i \sin \alpha_i = 109,0062 [kN]$

 $\Sigma W_i tan \phi_i = 161,3640 [kN]$

 $\Sigma \tan \alpha_i \tan \phi_i = 5.59$

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Inviluppo Sollecitazioni paramento

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kNm] Sforzo normale positivo di compressione, espresso in [kN] Taglio positivo se diretto da monte verso valle, espresso in [kN]

Nr.	Y	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,000	0,000	0,0000	0,0000
2	0,14	1,3500	1,3500	0,0118	0,0710	0,1918	1,0708
3	0,27	2,7000	2,7000	0,0563	0,2941	0,4842	2,2533
4	0,41	4,0500	4,0500	0,1471	0,6842	0,8772	3,5433
5	0,54	5,4000	5,4000	0,2977	1,2556	1,3707	4,9396
6	0,68	6,7500	6,7500	0,5217	2,0227	1,9648	6,4423
7	0,81	8,1000	8,1000	0,8327	2,9998	2,6595	8,0513
8	0,95	9,4500	9,4500	1,2443	4,2014	3,4547	9,7667
9	1,08	10,8000	10,8000	1,7700	5,6416	4,3506	11,5884
10	1,22	12,1500	12,1500	2,4235	7,3350	5,3469	13,5165
11	1,35	13,5000	13,5000	3,2182	9,2959	6,4439	15,5509
12	1,49	14,8500	14,8500	4,1678	11,5386	7,6414	17,6917
13	1,62	16,2000	16,2000	5,2859	14,0774	8,9395	19,9388
14	1,76	17,5500	17,5500	6,5860	16,9268	10,3382	22,2923
15	1,89	18,9000	18,9000	8,0818	20,1011	11,8375	24,7521
16	2,03	20,2500	20,2500	9,7867	23,6147	13,4373	27,3183
17	2,16	21,6000	21,6000	11,7144	27,4819	15,1377	29,9908
18	2,29	22,9500	22,9500	13,8784	31,7170	16,9387	32,7697

Contala do ventilation Maddalana	Centrale di ventilazione Maddalena

Note de calcul moulen nous blace et mune de tougeament	Relazione di calcolo rilevato paramassi e muri terrazzamento
Note de caicul merion dare diocs et murs de terassement :	Kelazione di caicolo filevato Dafamassi e mufi terfazzamento

19	2,43	24,3000	24,3000	16,2923	36,3345	18,8402	35,6549
20	2,57	25,6500	25,6500	18,9698	41,3486	20,8423	38,6465
21	2,70	27,0000	27,0000	21,9237	46,7732	22,9289	41,7274

Inviluppo combinazioni SLE

Nr.	Y	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
2	0,14	1,3500	1,3500	0,0018	0,0418	0,0402	0,6327
3	0,27	2,7000	2,7000	0,0145	0,1746	0,1610	1,3491
4	0,41	4,0500	4,0500	0,0489	0,4097	0,3622	2,1466
5	0,54	5,4000	5,4000	0,1159	0,7578	0,6440	3,0247
6	0,68	6,7500	6,7500	0,2264	1,2299	1,0062	3,9832
7	0,81	8,1000	8,1000	0,3912	1,8369	1,4489	5,0222
8	0,95	9,4500	9,4500	0,6212	2,5896	1,9722	6,1417
9	1,08	10,8000	10,8000	0,9273	3,4988	2,5759	7,3417
10	1,22	12,1500	12,1500	1,3204	4,5754	3,2601	8,6222
11	1,35	13,5000	13,5000	1,8112	5,8304	4,0249	9,9832
12	1,49	14,8500	14,8500	2,4107	7,2745	4,8701	11,4247
13	1,62	16,2000	16,2000	3,1297	8,9187	5,7958	12,9467
14	1,76	17,5500	17,5500	3,9792	10,7737	6,8020	14,5492
15	1,89	18,9000	18,9000	4,9699	12,8506	7,8887	16,2321
16	2,03	20,2500	20,2500	6,1127	15,1600	9,0559	17,9956
17	2,16	21,6000	21,6000	7,4186	17,7130	10,3036	19,8396
18	2,29	22,9500	22,9500	8,8983	20,5204	11,6318	21,7641
19	2,43	24,3000	24,3000	10,5628	23,5929	13,0405	23,7691
20	2,57	25,6500	25,6500	12,4229	26,9416	14,5297	25,8545
21	2,70	27,0000	27,0000	14,4890	30,5768	16,0865	28,0076

Inviluppo Sollecitazioni fondazione di valle

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]

Nr.	\mathbf{X}	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000
2	0,08	0,2193	0,2711	5,4617	6,7479
3	0,16	0,8707	1,0763	10,8038	13,3811
4	0,24	1,9447	2,4086	16,0264	19,9069
5	0.32	3,4317	4,2585	21,1294	26,3229

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

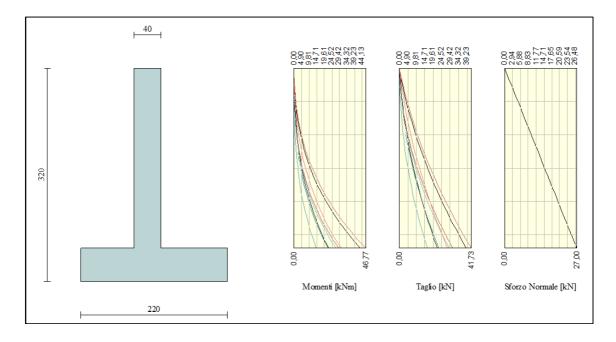
6	0,40	5,3222	6,6173	26,1127	32,6290
7	0,48	7,6066	9,4762	30,9766	38,8253
8	0,56	10,2753	12,8264	35,7208	44,9117
9	0,64	13,3187	16,6592	40,3454	50,8883
10	0,72	16,7273	20,9657	44,8505	56,7551
11	0.80	20,4916	25,7371	49,2360	62,5120

Inviluppo combinazioni SLE

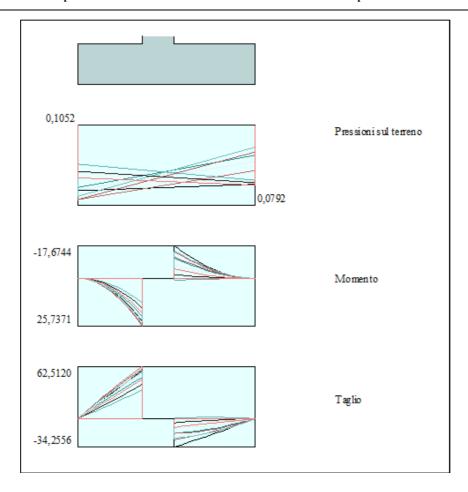
Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,000	0,0000	0,0000
2	0,08	0,1258	0,1836	3,1566	4,5935
3	0,16	0,5067	0,7357	6,3757	9,2144
4	0,24	1,1476	1,6586	9,6573	13,8628
5	0,32	2,0536	2,9545	13,0014	18,5386
6	0,40	3,2295	4,6255	16,4081	23,2419
7	0,48	4,6805	6,6739	19,8773	27,9727
8	0,56	6,4116	9,1019	23,4091	32,7309
9	0,64	8,4276	11,9116	27,0033	37,5165
10	0,72	10,7338	15,1052	30,6601	42,3296
11	0,80	13,3349	18,6850	34,3794	47,1701

Inviluppo Sollecitazioni fondazione di monte

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte


Momento positivo se tende le fibre inferiori, espresso in [kNm]

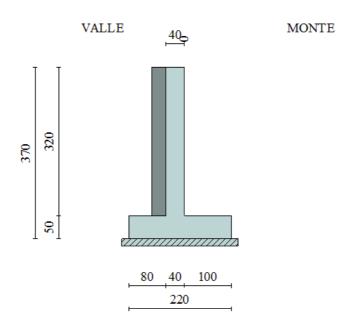
Taglio positivo se diretto verso l'alto, espresso in [kN]


Nr.	\mathbf{X}	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000
2	0,10	-0,1943	-0,0999	-3,8330	-1,9657
3	0,20	-0,7560	-0,3868	-7,3759	-3,7399
4	0,30	-1,6596	-0,8415	-10,9654	-5,3226
5	0,40	-2,9329	-1,4449	-14,4894	-6,7139
6	0,50	-4,5553	-2,1779	-17,9477	-7,9138
7	0,60	-6,5202	-3,0213	-21,3405	-8,9222
8	0,70	-8,8212	-3,9559	-24,6677	-9,7392
9	0,80	-11,4516	-4,9627	-27,9292	-10,3647
10	0,90	-14,4048	-6,0225	-31,1252	-10,7987
11	1,00	-17,6744	-7,1161	-34,2556	-11,0414

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,000	0,0000
2	0,10	-0,0490	0,0195	-0,9832	0,3770
3	0,20	-0,1973	0,0730	-1,9851	0,6805
4	0,30	-0,4467	0,1531	-3,0057	0,9106
5	0,40	-0,7990	0,2526	-4,0450	1,0672
6	0,50	-1,2563	0,3641	-5,1029	1,1503
7	0,60	-1,8202	0,4802	-6,1795	1,1599
8	0,70	-2,4928	0,5936	-7,2747	1,0961
9	0,80	-3,2758	0,6970	-8,3887	0,9588
10	0,90	-4,1711	0,7829	-9,5213	0,7480
11	1,00	-5,1807	0,8441	-10,6725	0,4637

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento



Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

4.4 MURO TIPO 2

Geometria muro e fondazione

Muro a mensola in c.a.
3,20 [m]
0,40 [m]
0,40 [m]
0,00 [°]
0,00 [°]
10,00 [m]
0,30 [m]
20,0000 [kN/mc]
0,80 [m]
1,00 [m]
2,20 [m]
0,00 [°]
0,50 [m]
0,15 [m]

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	\mathbf{X}	\mathbf{Y}	\mathbf{A}
1	1,12	0,56	26,57
2	7,56	0,69	1,16
3	9,19	-3,20	-67,27

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0,00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0,00 [m]

Descrizione terreni

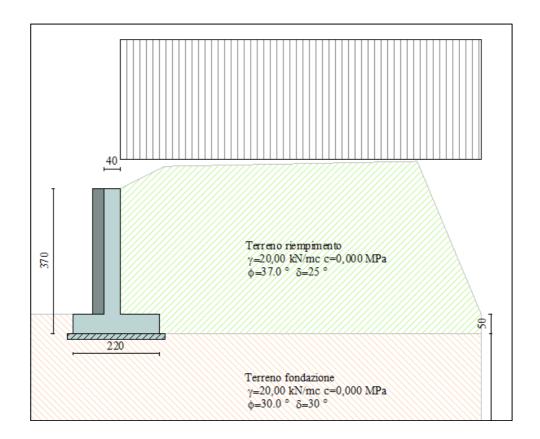
Simbologia adottata

Nr.	Indice del terreno
Descrizione	Descrizione terreno
γ	Peso di volume del terreno espresso in [kN/mc]
γ_s	Peso di volume saturo del terreno espresso in [kN/mc]
ϕ	Angolo d'attrito interno espresso in [°]
δ	Angolo d'attrito terra-muro espresso in [°]
c	Coesione espressa in [MPa]
c_a	Adesione terra-muro espressa in [MPa]

Descrizione y	$\gamma_{ m s}$	ф	δ	c	$\mathbf{c_a}$
Terreno riempimento20,00	20,00	37.00	24.67	0,0000	0,0000
Terreno fondazione 20.00	20.00	30.00	30.00	0.0000	0.0000

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Stratigrafia


Simbologia adottata

N	Indice dello strato
H	Spessore dello strato espresso in [m]
a	Inclinazione espressa in [°]

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta
Terreno Terreno dello strato

Nr.	H	a	$\mathbf{K}\mathbf{w}$	Ks	Terreno
1	3,70	0,00	0,00	0,00	Terreno riempimento
2	6,00	0,00	2,13	0,00	Terreno fondazione

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

- X Ascissa del punto di applicazione del carico concentrato espressa in [m]
- F_x Componente orizzontale del carico concentrato espressa in [kN]
- F_y Componente verticale del carico concentrato espressa in [kN]
- M Momento espresso in [kNm]
- X_i Ascissa del punto iniziale del carico ripartito espressa in [m]
- X_f Ascissa del punto finale del carico ripartito espressa in [m]
- Q_i Intensità del carico per $x=X_i$ espressa in [kN/m]
- Q_f Intensità del carico per $x=X_f$ espressa in [kN/m]
- D/C Tipo carico: D=distribuito C=concentrato

Condizione n° 1 (Variabile distribuito mezzi cantiere)

D Profilo $X_i=0.00 \quad X_f=9.19 \quad Q_i=20.0000 \quad Q_f=20.0000$

Descrizione combinazioni di carico

Simbologia adottata

- F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)
- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione

Combinazione n° 1 - Caso A1-M1 (STR)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Variabile distribuito mezzi ca	antiereSFAV	1.50	1.00	1.50

Combinazione n° 2 - Caso A2-M2 (GEO)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Variabile distribuito mezzi o	cantiereSFAV	1.30	1.00	1.30

Combinazione n° 3 - Caso EQU (SLU)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	0,90	1.00	0,90
Peso proprio terrapieno	FAV	0,90	1.00	0,90
Spinta terreno	SFAV	1,10	1.00	1,10

Note de calcul merlon i	pare blocs et murs de terassement	- Relazione di calcolo rilevato	naramassi e muri terrazzamento
110tc uc caicui ilici loli	part blocs et murs de lei assement	- Ittiazione ui calcolo i nevato	pai ainassi C mui i teri azzamento

Variabile distribuito mezzi o	cantiereSFAV	1.50	1.00	1.50
Combinazione n° 4 - Caso A	A2-M2 (GEO-S	STAB)		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Variabile distribuito mezzi	cantiereSFAV	1.30	1.00	1.30
Combinazione n° 5 - Caso A	<u> A1-M1 (STR) -</u>	Sisma Ve	rt. negativo	
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 6 - Caso A	<u> </u>	Sisma Ve	rt. positivo	
	S/F	γ	Ψ	γ * Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 7 - Caso A	A2-M2 (GEO) -	- Sisma Ve	ert. positivo	
	S/F	γ	Ψ	γ * Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 8 - Caso A	A2-M2 (GEO) -	- Sisma Ve	ert. negativo	<u> </u>
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 9 - Caso I	EQU (SLU) - S	isma Vert.	negativo	
	S/F	γ	Ψ	γ * Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 10 - Caso	EQU (SLU) -	Sisma Ver	t. positivo	
	S/F	γ	Ψ	γ * Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 11 - Caso	A2-M2 (GEO-	-STAB) - S	Sisma Vert.	positivo
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
re- Le-Line combient		-,00	2.00	-,00

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 12 - Caso	A2-M2 (GEO-	STAB) - S	Sisma Vert.	<u>negativo</u>
	S/F	γ	Ψ	γ * Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
pinta terreno	SFAV	1,00	1.00	1,00
ombinazione n° 13 - Quasi	Permanente (S	SLE)		
	S/F	γ	Ψ	$\gamma * \Psi$
eso proprio muro		1,00	1.00	1,00
eso proprio terrapieno		1,00	1.00	1,00
pinta terreno		1,00	1.00	1,00
ombinazione n° 14 - Frequ	ente (SLE)			
•	S/F	γ	Ψ	$\gamma * \Psi$
eso proprio muro		1,00	1.00	1,00
eso proprio terrapieno		1,00	1.00	1,00
ointa terreno		1,00	1.00	1,00
ariabile distribuito mezzi c	antiereSFAV	1.00	0.50	0.50
ombinazione n° 15 - Rara	(SLE)			
	S/F	γ	Ψ	$\gamma * \Psi$
so proprio muro		1,00	1.00	1,00
eso proprio terrapieno		1,00	1.00	1,00
ointa terreno		1,00	1.00	1,00
ariabile distribuito mezzi c	antiereSFAV	1.00	1.00	1.00

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione

Sisma Combinazione sismica

CS_{SCO} Coeff. di sicurezza allo scorrimento

CS_{RIB} Coeff. di sicurezza al ribaltamento

CS_{QLIM} Coeff. di sicurezza a carico limite

CS_{STAB} Coeff. di sicurezza a stabilità globale

C	Tipo	Sisma	cs_{sco}	cs_{rib}	cs _{qlim}	cs _{stab}
1	A1-M1 - [1]		1,63		5,61	
2	A2-M2 - [1]		1,18		2,44	
3	EQU - [1]			1,98		
4	STAB - [1]					1,17
5	A1-M1 - [2]	Orizzontale + Verticale negativo	1,52		6,74	
6	A1-M1 - [2]	Orizzontale + Verticale positivo	1,56		6,35	

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

7	A2-M2 - [2]	Orizzontale + Verticale positivo	1,03		2,55	
8	A2-M2 - [2]	Orizzontale + Verticale negativo	1,01		2,69	
9	EQU - [2]	Orizzontale + Verticale negativo		1,98		
10	EQU - [2]	Orizzontale + Verticale positivo		2,14		
11	STAB - [2]	Orizzontale + Verticale positivo				1,14
12	STAB - [2]	Orizzontale + Verticale negativo				1,12
13	SLEQ - [1]		2,54		8,48	
14	SLEF - [1]		2,23		7,49	
15	SLER - [1]		2,02		6,69	

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle

Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta	metodo di Culmann
Calcolo del carico limite	metodo di Terzaghi
Calcolo della stabilità globale	metodo di Bishop
Calcolo della spinta in condizioni di	Spinta attiva

Sisma

Combinazioni SLU

Accelerazione al suolo ag	1.98 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.39
Coefficiente di amplificazione topografica (St)	1.20
Coefficiente riduzione (β_m)	0.31
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g*\beta_m*St*S) = 10.48$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 5.24$

Combinazioni SLE

Accelerazione al suolo ag	$0.95 [m/s^2]$
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.50
Coefficiente di amplificazione topografica (St)	1.20
Coefficiente riduzione (β_m)	0.18
Rapporto intensità sismica verticale/orizzontale	0.50

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Coefficiente di intensità sismica orizzontale (percento) Coefficiente di intensità sismica verticale (percento)	$\begin{aligned} k_h &= (a_g/g * \beta_m * St * S) = 3.15 \\ k_v &= 0.50 * k_h = 1.58 \end{aligned}$			
Forma diagramma incremento sismico	Stessa forma diagramma statico			
Partecipazione spinta passiva (percento) Lunghezza del muro	0,0 10,00 [m]			
Peso muro Baricentro del muro	59,5000 [kN] X=-0,15 Y=-2,46			
Superficie di spinta Punto inferiore superficie di spinta Punto superiore superficie di spinta Altezza della superficie di spinta Inclinazione superficie di spinta(rispetto alla verticale)	X = 1,00 $Y = -3,70X = 1,00$ $Y = 0,504,20$ [m] 0,00 [°]			
COMBINAZIONE n° 2				
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	84,3352 [kN] 79,1617 [kN] 29,0836 [kN] X = 1,00 [m] Y = -2,01 [m]			
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	20,17 [°] 56,47 [°]			
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	95,0000 [kN] X = 0,51 [m] Y = -1,47 [m]			
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	79,1617 [kN] 202,7836 [kN] 202,7836 [kN] 79,1617 [kN] 0,27 [m] 2,20 [m] 217,6873 [kN] 21,32 [°] 55,2528 [kNm] 494,0575 [kN]			
<u>Tensioni sul terreno</u> Lunghezza fondazione reagente Tensione terreno allo spigolo di valle	2,20 [m] 0,16067 [MPa]			

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Tensione	terreno	allo	spigolo	di	monte

0,02368 [MPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_{\rm c} = 24.75$	$N_{\rm q} = 12.43$	$N_{\gamma} = 7.92$
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
I coefficienti N' tengono	conto dei fattori di	forma, profondità,	inclinazione carico,
inclinazione piano di posa, inclinazione pendio.			
	$N'_{c} = 24.75$	$N'_{q} = 12.43$	$N'_{\gamma} = 7.92$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.18
Coefficiente di sicurezza a carico ultimo	2.44

Sollecitazioni paramento

Combinazione n° 2

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Y	N	\mathbf{M}	T
1	0,00	0,0000	0,0000	0,0000
2	0,16	1,6000	0,1565	1,9963
3	0,32	3,2000	0,6517	4,2337
4	0,48	4,8000	1,5234	6,6956
5	0,64	6,4000	2,8016	9,2856
6	0,80	8,0000	4,4925	11,8346
7	0,96	9,6000	6,5844	14,3086
8	1,12	11,2000	9,0727	16,8096
9	1,28	12,8000	11,9703	19,4341
10	1,44	14,4000	15,2991	22,1997
11	1,60	16,0000	19,0817	25,1060
12	1,76	17,6000	23,3406	28,1528
13	1,92	19,2000	28,0981	31,3397
14	2,08	20,8000	33,3767	34,6665
15	2,24	22,4000	39,1988	38,1330
16	2,40	24,0000	45,5867	41,7391
17	2,56	25,6000	52,5627	45,4847
18	2,72	27,2000	60,1492	49,3697
19	2,88	28,8000	68,3685	53,3941
20	3,04	30,4000	77,2428	57,5577

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

21	3,20	32,0000	86,7934	61,8383

Sollecitazioni fondazione di valle

Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	\mathbf{X}	\mathbf{M}	T
1	0,00	0,0000	0,0000
2	0,08	0,4688	11,6543
3	0,16	1,8541	22,9101
4	0,24	4,1238	33,7674
5	0,32	7,2462	44,2261
6	0,40	11,1894	54,2863
7	0,48	15,9214	63,9481
8	0,56	21,4104	73,2113
9	0,64	27,6246	82,0759
10	0,72	34,5320	90,5421
11	0,80	42,1007	98,6098

Sollecitazioni fondazione di monte

Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	${f M}$	${f T}$
1	0,00	0,0000	0,0000
2	0,10	-0,4321	-8,5207
3	0,20	-1,6801	-16,3188
4	0,30	-3,6717	-23,3942
5	0,40	-6,3348	-29,7468
6	0,50	-9,5970	-35,3769
7	0,60	-13,3861	-40,2842

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

8	0,70	-17,6298	-44,4688
9	0,80	-22,2558	-47,9308
10	0,90	-27,1918	-50,6700
11	1,00	-32,3657	-52,6866

COMBINAZIONE n° 3

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	94,4915 88,6949 32,5861 X = 1,00 [m] 20,17 56,47	[kN] [kN] [kN] [m]	Y	=	-2,00
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	92,1000 X = 0,51 [m]	[kN] [m]	Y	=	-1,47
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale)	88,6949 197,4361 150,3454 297,8767 197,4361 88,6949 0,35 2,20 216,4435 24,19	[kN] [kNm] [kNm] [kNm] [kN] [kN] [kN] [m] [m] [kN]			

COEFFICIENTI DI SICUREZZA

Momento rispetto al baricentro della fondazione

Coefficiente di sicurezza a ribaltamento 1.98

COMBINAZIONE n° 8

Valore della spinta statica	52,3409	[kN]			
Componente orizzontale della spinta statica	49,1301	[kN]			
Componente verticale della spinta statica	18,0502	[kN]			
Punto d'applicazione della spinta	X = 1,00	[m]	Y	=	-2,28
	[m]				
Inclinaz. della spinta rispetto alla normale alla superficie	20,17	[°]			
Inclinazione linea di rottura in condizioni statiche	56,40	[°]			

69,6484

[kNm]

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta	10,4797 X = 1,00	[kN] [m]	v	=	-2,28
i unto d'applicazione den incremento sistinco di spinta	[m]	[111]	1	_	-2,20
Inclinazione linea di rottura in condizioni sismiche	50,40	[°]			
Peso terrapieno gravante sulla fondazione a monte	69,0000	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.51	[m]	Y	=	-1,47
	[m]				,
Inerzia del muro	6,2379	[kN]			
Inerzia verticale del muro	-3,1190	[kN]			
Inerzia del terrapieno fondazione di monte	7,2339	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-3,6169	[kN]			
•					
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	74,4516	[kN]			
Risultante dei carichi applicati in dir. verticale	162,6282	[kN]			
Sforzo normale sul piano di posa della fondazione	162,6282	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	74,4516	[kN]			
Eccentricità rispetto al baricentro della fondazione	0,37	[m]			
Lunghezza fondazione reagente	2,20	[m]			
Risultante in fondazione	178,8602	[kN]			
Inclinazione della risultante (rispetto alla normale)	24,60	[°]			
Momento rispetto al baricentro della fondazione	59,5897	[kNm]			
Carico ultimo della fondazione	437,9696	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	2,20	[m]			
Tensione terreno allo spigolo di valle	0,14779	[MPa]			
Tensione terreno allo spigolo di monte	0,00005	[MPa]			

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 24.75$	$N_q = 12.43$	$N_{\gamma} = 7.92$			
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$			
I coefficienti N' tengono	conto dei fattori di	forma, profondità,	inclinazione carico,			
inclinazione piano di posa, inclinazione pendio.						
	$N'_{c} = 24.75$	$N'_{a} = 12.43$	$N'_{y} = 7.92$			

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.01
Coefficiente di sicurezza a carico ultimo	2.69

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Sollecitazioni paramento

Combinazione nº 8

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	\mathbf{Y}	N	\mathbf{M}	T
1	0,00	0,0000	0,0000	0,0000
2	0,16	1,6000	0,0210	0,3092
3	0,32	3,2000	0,1140	0,9013
4	0,48	4,8000	0,3244	1,7748
5	0,64	6,4000	0,6962	2,9135
6	0,80	8,0000	1,2689	4,2804
7	0,96	9,6000	2,0767	5,8506
8	1,12	11,2000	3,1513	7,6131
9	1,28	12,8000	4,5228	9,5611
10	1,44	14,4000	6,2205	11,6899
11	1,60	16,0000	8,2730	13,9962
12	1,76	17,6000	10,7087	16,4781
13	1,92	19,2000	13,5553	19,1339
14	2,08	20,8000	16,8407	21,9626
15	2,24	22,4000	20,5925	24,9633
16	2,40	24,0000	24,8381	28,1354
17	2,56	25,6000	29,6050	31,4784
18	2,72	27,2000	34,9203	34,9920
19	2,88	28,8000	40,8115	38,6759
20	3,04	30,4000	47,3057	42,5298
21	3,20	32,0000	54,4289	46,5265

Sollecitazioni fondazione di valle

Combinazione n° 8

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	${f M}$	T
1	0,00	0,0000	0,0000
2	0,08	0,4272	10,6086
3	0,16	1,6859	20,7874
4	0,24	3,7417	30,5363

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

5	0,32	6,5603	39,8555
6	0,40	10,1071	48,7449
7	0,48	14,3480	57,2045
8	0,56	19,2484	65,2343
9	0,64	24,7740	72,8343
10	0,72	30,8904	80,0045
11	0,80	37,5633	86,7449

Sollecitazioni fondazione di monte

Combinazione n° 8

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	\mathbf{X}	\mathbf{M}	T
1	0,00	0,0000	0,0000
2	0,10	-0,4194	-8,2592
3	0,20	-1,6261	-15,7468
4	0,30	-3,5430	-22,4629
5	0,40	-6,0930	-28,4074
6	0,50	-9,1988	-33,5803
7	0,60	-12,7833	-37,9817
8	0,70	-16,7694	-41,6115
9	0,80	-21,0799	-44,4698
10	0,90	-25,6376	-46,5565
11	1,00	-30,3655	-47,8716

Stabilità globale muro + terreno

Combinazione n° 12

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [MPa]
- b larghezza della striscia espressa in [m]
- *u* pressione neutra lungo la base della striscia espressa in [MPa]

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -1.48 Y[m] = 1.48

Raggio del cerchio R[m] = 5,75

Ascissa a valle del cerchio Xi[m]= -4,83

Ascissa a monte del cerchio Xs[m]= 4,21

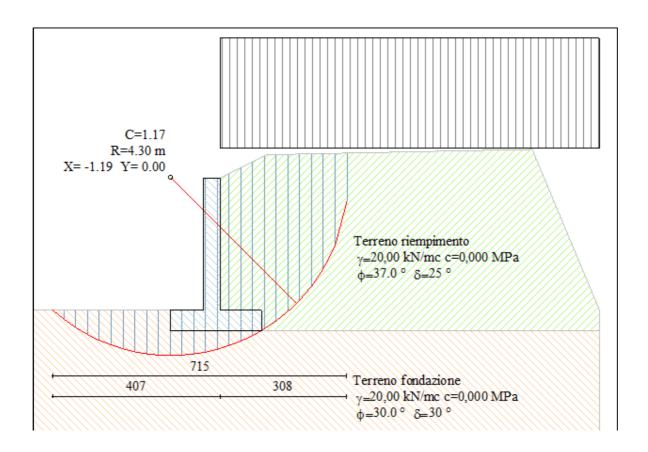
Larghezza della striscia dx[m]=0.36

Coefficiente di sicurezza C= 1.12

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	\mathbf{W}	$\alpha(^{\circ})$	Wsina	b/cosa	ф	c	u
1	4,6286	74.31	4,4561	0,0131	31.08	0,000	0,000
2	11,9053	63.94	10,6953	0,0081	31.08	0,000	0,000
3	16,5076	56.56	13,7756	0,0064	31.08	0,000	0,000
4	20,0193	50.46	15,4383	0,0056	31.08	0,000	0,000
5	22,8616	45.07	16,1864	0,0050	31.08	0,000	0,000
6	25,2235	40.16	16,2677	0,0046	31.08	0,000	0,000
7	27,2100	35.59	15,8340	0,0044	31.08	0,000	0,000
8	28,8867	31.26	14,9899	0,0041	31.08	0,000	0,000
9	30,2798	27.13	13,8057	0,0040	30.35	0,000	0,000
10	31,1764	23.14	12,2514	0,0039	24.79	0,000	0,000
11	30,8847	19.27	10,1922	0,0038	24.79	0,000	0,000
12	32,5644	15.49	8,6964	0,0037	24.79	0,000	0,000
13	29,2895	11.78	5,9779	0,0036	24.79	0,000	0,000
14	8,1640	8.11	1,1523	0,0036	24.79	0,000	0,000
15	8,4154	4.49	0,6581	0,0036	24.79	0,000	0,000
16	7,6715	0.87	0,1170	0,0035	24.79	0,000	0,000
17	7,6291	-2.73	-0,3638	0,0036	24.79	0,000	0,000
18	7,4210	-6.35	-0,8210	0,0036	24.79	0,000	0,000
19	7,0450	-10.00	-1,2229	0,0036	24.79	0,000	0,000
20	6,4961	-13.68	-1,5366	0,0036	24.79	0,000	0,000
21	5,7673	-17.43	-1,7273	0,0037	24.79	0,000	0,000
22	4,8483	-21.25	-1,7573	0,0038	24.79	0,000	0,000
23	3,7250	-25.18	-1,5847	0,0039	27.38	0,000	0,000
24	2,3785	-29.23	-1,1616	0,0041	31.08	0,000	0,000
25	0,7823	-33.46	-0,4313	0,0043	31.08	0,000	0,000


 $\Sigma W_i = 381,7811 [kN]$

 $\Sigma W_i \sin \alpha_i = 149,8879 \text{ [kN]}$

 $\Sigma W_i \tan \phi_i = 202,9034 \text{ [kN]}$

 $\Sigma tan\alpha_i tan\phi_i = 6.35$

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Inviluppo Sollecitazioni paramento

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kNm] Sforzo normale positivo di compressione, espresso in [kN] Taglio positivo se diretto da monte verso valle, espresso in [kN]

Nr.	\mathbf{Y}	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,000	0,0000	0,0000	0,0000
2	0,16	1,6000	1,6000	0,0186	0,1565	0,2656	1,9963
3	0,32	3,2000	3,2000	0,0954	0,6517	0,7268	4,2337
4	0,48	4,8000	4,8000	0,2617	1,5234	1,3837	6,6956
5	0,64	6,4000	6,4000	0,5486	2,8016	2,2363	9,2856
6	0,80	8,0000	8,0000	0,9877	4,4925	3,2844	11,8346
7	0,96	9,6000	9,6000	1,6098	6,5844	4,5223	14,3086
8	1,12	11,2000	11,2000	2,4438	9,0727	5,9287	16,8096
9	1,28	12,8000	12,8000	3,5150	11,9703	7,4849	19,4341
10	1,44	14,4000	14,4000	4,8466	15,2991	9,1849	22,1997
11	1,60	16,0000	16,0000	6,4616	19,0817	11,0255	25,1060
12	1,76	17,6000	17,6000	8,3822	23,3406	13,0047	28,1528

Note de coloul merlen nor	o bloog of mung do tonoggomoni	t - Relazione di calcolo rilevato na	mamacci a muni tannazzamenta

13	1,92	19,2000	19,2000	10,6304	28,0981	15,1210	31,3397
	2,08	20,8000	20,8000	13,2282	33,3767	17,3735	34,6665
	2,24	22,4000	22,4000	16,1971	39,1988	19,7612	38,1330
16	2,40	24,0000	24,0000	19,5589	45,5867	22,2837	41,7391
17	2,56	25,6000	25,6000	23,3351	52,5627	24,9405	45,4847
18	2,72	27,2000	27,2000	27,5470	60,1492	27,7313	49,3697
19	2,88	28,8000	28,8000	32,2162	68,3685	30,6557	53,3941
20	3,04	30,4000	30,4000	37,3640	77,2428	33,7137	57,5577
21	3,20	32,0000	32,0000	43,0108	86,7934	36,8838	61,8383

Inviluppo combinazioni SLE

Nr.	\mathbf{Y}	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,000	0,0000	0,0000
2	0,16	1,6000	1,6000	0,0042	0,0821	0,0784	1,0535
3	0,32	3,2000	3,2000	0,0335	0,3457	0,3137	2,2683
4	0,48	4,8000	4,8000	0,1129	0,8164	0,7059	3,6409
5	0,64	6,4000	6,4000	0,2677	1,5192	1,2549	5,1702
6	0,80	8,0000	8,0000	0,5229	2,4792	1,9606	6,8558
7	0,96	9,6000	9,6000	0,9033	3,7199	2,8186	8,6679
8	1,12	11,2000	11,2000	1,4320	5,2544	3,8116	10,5109
9	1,28	12,8000	12,8000	2,1294	7,0829	4,9247	12,3515
10	1,44	14,4000	14,4000	3,0141	9,2108	6,1531	14,2650
11	1,60	16,0000	16,0000	4,1043	11,6534	7,4942	16,2853
12	1,76	17,6000	17,6000	5,4181	14,4279	8,9464	18,4134
13	1,92	19,2000	19,2000	6,9731	17,5514	10,5085	20,6490
14	2,08	20,8000	20,8000	8,7867	21,0413	12,1798	22,9919
15	2,24	22,4000	22,4000	10,8764	24,9146	13,9595	25,4418
16	2,40	24,0000	24,0000	13,2595	29,1884	15,8473	27,9987
17	2,56	25,6000	25,6000	15,9533	33,8798	17,8427	30,6624
18	2,72	27,2000	27,2000	18,9749	39,0060	19,9456	33,4328
19	2,88	28,8000	28,8000	22,3415	44,5840	22,1556	36,3098
20	3,04	30,4000	30,4000	26,0704	50,6309	24,4727	39,2935
21	3,20	32,0000	32,0000	30,1778	57,1629	26,8795	42,3665

Inviluppo Sollecitazioni fondazione di valle

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,000	0,0000	0,0000
2	0,08	0,3583	0,4688	8,9064	11,6543

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

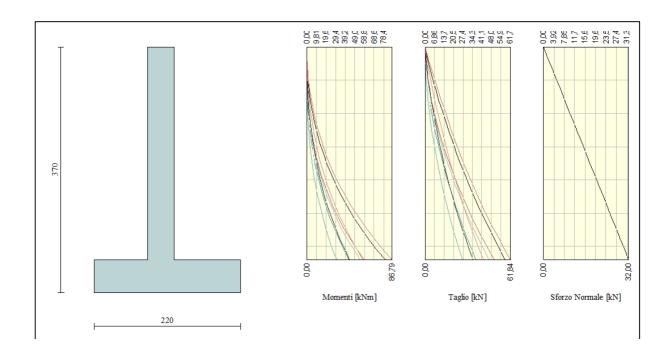
3	0,16	1,4170	1,8541	17,5103	22,9101
4	0,24	3,1518	4,1238	25,8115	33,7674
5	0,32	5,5387	7,2462	33,8102	44,2261
6	0,40	8,5534	11,1894	41,5064	54,2863
7	0,48	12,1717	15,9214	48,8999	63,9481
8	0,56	16,3693	21,4104	55,9909	73,2113
9	0,64	21,1222	27,6246	62,7794	82,0759
10	0,72	26,4060	34,5320	69,2652	90,5421
11	0,80	32,1965	42,1007	75,4485	98,6098

Inviluppo combinazioni SLE

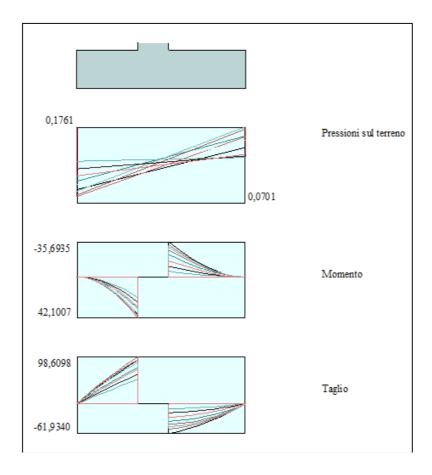
Nr.	\mathbf{X}	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,000	0,0000	0,0000
2	0,08	0,2151	0,3194	5,3721	7,9609
3	0,16	0,8588	1,2698	10,7159	15,7753
4	0,24	1,9289	2,8396	16,0315	23,4433
5	0,32	3,4231	5,0169	21,3189	30,9648
6	0,40	5,3391	7,7900	26,5781	38,3399
7	0,48	7,6748	11,1473	31,8091	45,5686
8	0,56	10,4278	15,0771	37,0118	52,6507
9	0,64	13,5960	19,5676	42,1864	59,5865
10	0,72	17,1769	24,6070	47,3327	66,3758
11	0,80	21,1684	30,1838	52,4508	73,0186

Inviluppo Sollecitazioni fondazione di monte

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte


Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]


Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000
2	0,10	-0,4420	-0,2761	-8,7457	-5,4269
3	0,20	-1,7302	-1,0665	-16,9242	-10,2880
4	0,30	-3,8079	-2,3148	-24,5356	-14,5834
5	0,40	-6,6184	-3,9643	-31,5797	-18,3131
6	0,50	-10,1050	-5,9586	-38,0567	-21,4770
7	0,60	-14,2109	-8,2409	-43,9665	-24,0752
8	0,70	-18,8794	-10,7547	-49,3092	-26,1077
9	0,80	-24,0538	-13,4436	-54,0846	-27,5745
10	0,90	-29,6774	-16,2508	-58,2929	-28,4755
11	1,00	-35,6935	-19,1198	-61,9340	-28,8108

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Nr.	\mathbf{X}	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,000	0,0000	0,0000
2	0,10	-0,2141	-0,0795	-4,2271	-1,5652
3	0,20	-0,8345	-0,3082	-8,1255	-2,9864
4	0,30	-1,8282	-0,6719	-11,6949	-4,2634
5	0,40	-3,1625	-1,1561	-14,9356	-5,3964
6	0,50	-4,8044	-1,7464	-17,8474	-6,3852
7	0,60	-6,7210	-2,4284	-20,4304	-7,2300
8	0,70	-8,8795	-3,1876	-22,6846	-7,9307
9	0,80	-11,2470	-4,0097	-24,6100	-8,4873
10	0,90	-13,7905	-4,8803	-26,2065	-8,8998
11	1,00	-16,4773	-5,7849	-27,4742	-9,1682

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

4.5 VERIFICHE STRUTTURALI

VERIFICHE A FLESSIONE (SLU)

Nelle verifiche che seguono si sono considerate le sezioni maggiormente sollecitate che vengono opportunamente integrate con armatura a flessione.

Muro	uro Elemento		h	d	Arma	Armatura		m _{Rd}	VER
iviuro			cm	cm	As ₁	As ₂	kNm/m	kNm/m	VEK
Tipo 1	Paramento	100	40	34	ф14/20	-	47	100	Sì
Tipo 1	Fondazione	100	50	44	ф16/20	-	26	169	Sì
Tipo 2	Paramento	100	40	34	ф14/20	-	87	100	Sì
Tipo 2	Fondazione	100	50	44	ф16/20	-	42	169	Sì

Tabella verifiche flessionali (S.L.U.)

VERIFICHE A TAGLIO (SLU)

Sono state effettuate le verifiche al taglio considerando la minore delle armature longitudinali, di seguito si riportano i risultati ottenuti.

Muro	Elemento	b	h	d	Ac	Δ	k	V _{min}	V _{Ed}	V_{Rd}	Verifica
iviuro	Elemento	cm	cm	cm	cm ²	A _{SI (TESA)}	-	N/mm²	kN/m	kN/m	vernica
Tipo 1	Paramento	100	40	34	4000	ф14/20	1,767	0,474	42	161	Sì
Tipo 1	Fondazione	100	50	44	5000	ф16/20	1,674	0,437	63	192	Sì
Tipo 2	Paramento	100	40	34	4000	ф14/20	1,767	0,474	62	161	Sì
Tipo 2	Fondazione	100	50	44	5000	ф16/20	1,674	0,437	100	192	Sì

Note de calcul merlon pare blocs et murs de terassement - Relazione di calcolo rilevato paramassi e muri terrazzamento

VERIFICHE A SLE

Si deve verificare che le tensioni nell'acciaio e nel calcestruzzo, nonché i limiti di apertura fessure, non eccedano le seguenti quantità:

[combinazione rara] $\sigma_c < 0.60 \cdot f_{ck} = 19.92 N / mm^2; \sigma_s < 0.8 \cdot f_{yk} = 360 N / mm^2$ [combinazione frequente] $w \le 0.40 \text{ mm};$

[combinazione quasi permanente] $w \le 0.30 \text{ mm}; \ \sigma_c < 0.45 \cdot f_{ck} = 14.94 \text{N/mm}^2$

Muro Elemento		b	h	d	Armatura		m _{Ed}	σ_{c}		σ_{s}	
iviuro	Elemento	cm	cm	cm	As ₁	As ₂	kNm/m	N/mm²	N/mm²	N/mm²	N/mm²
Tipo 1	Paramento	100	40	34	ф14/20	-	31	2,54	< 19,92	128	< 360
Tipo 1	Fondazione	100	50	44	ф16/20	-	19	0,93	< 19,92	47	< 360
Tipo 2	Paramento	100	40	34	ф14/20	-	57	4,67	< 19,92	236	< 360
Tipo 2	Fondazione	100	50	44	ф16/20	-	30	1,46	< 19,92	73	< 360

Tabella verifica limitazione tensioni (S.L.E. Rara)

Muro	Elemento	b	h	d	Arma	Armatura		m _{Ed} w _k	
iviuro	Elemento	cm	cm	cm	As ₁	As ₂	kNm/m	mm	mm
Tipo 1	Paramento	100	40	34	ф14/20	-	23	0,09	< 0,40
Tipo 1	Fondazione	100	50	44	ф16/20	-	16	0,04	< 0,40
Tipo 2	Paramento	100	40	34	ф14/20	-	44	0,17	< 0,40
Tipo 2	Fondazione	100	50	44	ф16/20	-	26	0,06	< 0,40

Tabella verifica fessurazione (S.L.E. Frequente)

Muro	Elemento	b	h	d	Armatura		m _{Ed}	σ_{c}		$\mathbf{w}_{\mathbf{k}}$	
		cm	cm	cm	As ₁	As ₂	kNm/m	N/mm²	N/mm²	mm	mm
Tipo 1	Paramento	100	40	34	ф14/20	-	15	1,23	< 14,94	0,06	< 0,30
Tipo 1	Fondazione	100	50	44	ф16/20	-	13	0,63	< 14,94	0,03	< 0,30
Tipo 2	Paramento	100	40	34	ф14/20	-	30	2,46	< 14,94	0,12	< 0,30
Tipo 2	Fondazione	100	50	44	ф16/20	-	21	1,02	< 14,94	0,05	< 0,30

Tabella verifica limitazione tensioni / fessurazione (S.L.E. Quasi permanente)