

AEROPORTO "L. DA VINCI" FIUMICINO - ROMA

REALIZZAZIONE NUOVI PIAZZALI IN AREA OVEST - 2[^] FASE

INDICE

1	PR	EMESSA	3
2	INC	QUADRAMENTO GEOLOGICO	4
3	CA	MPAGNA DI INDAGINI	5
4	UN	ITA' GEOTECNICHE	5
5	LIV	VELLI PIEZOMETRICI	6
6	CA	RATTERIZZAZIONE GEOTECNICA	6
7	PR	OVE SPT	7
8	PR	ОVЕ СРТи Е S-СРТи	
- 8.	.1	RICONOSCIMENTO STRATIGRAFICO	
8.	.2	COMPORTAMENTO A ROTTURA	
8.	.3	CARATTERIZZAZIONE MECCANICA LITOTIPI COESIVI	
8.	.4	CARATTERIZZAZIONE MECCANICA LITOTIPI INCOERENTI	15
9	PR	OVE DI PORTANZA IN SITU	18
10	PR	OVE DI LABORATORIO	23
1(0.1	ANALISI GRANULOMETRICA E CARATTERISTICHE FISICHE	23
10	0.2	PROVE TRISSIALI UU	
1(0.3	Prove Edometriche	
11	CA	LCOLO DEI CEDIMENTI	
11	1.1	GENERALITA'	
1	1.2	CALCOLO ANALITICO - TEORIA DELLA CONSOLIDAZIONE	
11	1.3	CALCOLO NUMERICO – PLAXIS 2D V.8.2	40
12	CA	RATTERIZZAZIONE SISMICA DEL SOTTOSUOLO	42
13	AZ	IONE SISMICA DI PROGETTO	
14	AN	ALISI DI RISPOSTA SISMICA LOCALE	
15	VE	RIFICA DEL POTENZIALE DI LIQUEFAZIONE	79
14	51	Genedal Ità	79
1.	5.2	DEFINIZIONE DELL'INPUT SISMICO	
15	5.3	VERIFICHE A LIQUEFAZIONE	
16	AL	LEGATI	103
16	6.1	TABELLE VALORI CBR DA DCP	
10	6.2	TABULATO DI LABORATORIO	
10	6.3	Prove edometriche	109
16	6.4	PROFILI PARAMETRI GEOTECNICI DA PROVE CPT-U , PLANIMETRIA E SEZIONI GEOLOGICO-	
ST	ГRАТ	IGRAFICHE	110

1 PREMESSA

Vengono riportati all'interno del presente elaborato i risultati relativi la caratterizzazione geotecnica a supporto della progettazione esecutiva della nuova piazzola per aeromobili in area Ovest dell'Aeroporto di Fiumicino – Apron Ovest.

Tale caratterizzazione viene basata sull'esame, analisi, ed interpretazione delle risultanze delle indagini geognostiche di sito, nonché sulla analisi delle le prove geotecniche di laboratorio eseguite su campioni indisturbati e rimaneggiati.

L'interpretazione litologica di tali indagini ha consentito di ricostruire alcuni profili geologici e geologico - tecnici relativamente a due sezioni trasversali ritenute rappresentative dell'impronta del piazzale rispetto alle indagini geotecniche a disposizione, che costituiscono a tutti gli effetti parte integrante al presente studio.

Le litologie individuate sono state sintetizzate in Unità Geotecniche significative, cui è stata associata una valutazione del comportamento meccanico in termini di condizioni di drenaggio a rottura con definizione dei parametri di resistenza a breve termine per i litotipi a comportamento coesivo, e di lungo termine per i litotipi a comportamento incoerente. La distinzione del comportamento a rottura delle diverse litologie, effettuata attraverso l'analisi dei risultati delle prove CPTu ha consentito di calibrare caso per caso i metodi di interpretazione delle indagini in situ in termini di resistenza, deformabilità e compressibilità. I litotipi a comportamento prevalente di tipo coesivo sono stati caratterizzati significativamente in termini di storia tensionale e di compressibilità edometrica, per quanto attiene quelli a comportamento tipicamente incoerente è stata fornita una valutazione dello stato di addensamento e di deformabilità a bassi livelli di sforzo mobilitato. Come è noto, infatti, l'ampio quadro di letteratura disponibile in ambito di correlazioni tra risultati di prove in situ e parametri meccanici, fondamentalmente legato ad aspetti di tipo empirico, fornisce risultati attendibili per ambiti di applicazione molto ben definiti. Ai fini di fornire risultati affidabili, quindi, è stata condotta una analisi di calibrazione attraverso l'utilizzo di svariati approcci, di cui si riportano di seguito i risultati di sintesi, particolarizzati fondamentalmente per litologie a comportamento coesivo e incoerente, in relazioni ai meccanismi di rottura fisicamente compatibili con le condizioni di prova.

I risultati delle prove di laboratorio hanno consentito di completare il quadro di caratterizzazione meccanica e tensio-deformativa dei litotipi e di tarare i modelli costituivi a supporto della modellazione analitica e numerica finalizzata al calcolo dei cedimenti a breve e lungo termine attesi per l'opera.

Per quanto attiene la caratterizzazione sismica dei litotipi è stata condotta una analisi interpretativa dei risultati delle misure dirette delle velocità di propagazione delle onde di taglio Vs, effettuate con il piezocono sismico s-CPTu. I valori ricavati dalle prove sono stati mediati in relazione allo spessore degli strati ai fini della valutazione di $V_{s,30}$, parametro ritenuto significativo per valutazione della categoria di sottosuolo ai fini delle analisi simiche. Una stima del modulo di taglio iniziale per bassi valori di deformazione G_0 è stata ricavata sulla base della teoria di propagazione delle onde elastiche in un mezzo di massa volumica nota. Tali analisi hanno trovato riscontro nei risultati delle indagini tipo MASW. Tali risultati, unitamente alla definizione dell'input sismico di riferimento, hanno consentito di impostare specifiche analisi nei confronti di potenziali fenomeni di liquefazione dei litotipi sabbiosi sotto falda e di valutare tramite specifici analisi di risposta simica locale l'entità dei fenomeni di amplificazione locale per 5 accelerogrammi naturali spettro-compatibili.

2 INQUADRAMENTO GEOLOGICO

L'area oggetto del presente studio è parte integrante dell'estesa pianura costiera che dalla foce del Tevere arriva fino all'altezza degli abitati di S. Severa e S. Marinella, chiusa verso l'interno dalle colline plio-pleistoceniche e separata dal mare dalla lieve ondulazione della Duna Antica che raggiunge il massimo risalto morfologico proprio all'altezza dell'area di studio, tra Fregene e Maccarese con quote massime di 8 m s.l.m.

Il territorio in esame si colloca in un settore della piana deltizia che può ritenersi distribuito a cavallo tra la piana deltizia superiore (P.D.S.), prevalentemente occupata depositi di origine alluvionale e palustre, prevalentemente argillosi ed in parte torbosi, e la piana deltizia inferiore (P.D.I.), in cui prevalgono invece i cordoni dunari, accresciutisi parallelamente alla linea di costa durante le varie fasi della pro gradazione.

All'interno del cordone dunale, la pianura mostra un andamento clinometrico che a grande scala appare del tutto omogeneo, con una debole vergenza verso la linea di costa, ma questo andamento d'insieme è in realtà leggermente articolato dalla presenza di tre diversi ordini di gradini morfologici, corrispondenti ad altrettanti terrazzi marini posti a quote crescenti dalla costa verso l'entroterra. Il primo di questi terrazzi (che è anche quello maggiormente esteso) è posto ad una quota di appena 2-3 m s.l.m.; quello intermedio si sviluppa tra 6 e 8 m s.l.m., mentre quello più interno raggiunge gli 11-12 m s.l.m. e segna il passaggio ai terreni più antichi.

L'area di progetto è posizionata esternamente a questa serie di terrazzi marini, in corrispondenza di quella fascia di territorio ampia circa 2 km e compresa tra il primo ordine di terrazzi

marini e il cordone dunale, che risulta caratterizzata da quote altimetriche prossime al livello del mare o addirittura inferiori, che in passato hanno creano condizioni idonee per l'instaurarsi di bacini lacustri che in epoca storica, sono stati interessati dai diffusi interventi di bonifica.

In relazione al quadro complessivo dei dati geologico-stratigrafici attualmente esistenti, il comparto territoriale oggetto del presente lavoro può considerarsi caratterizzato dalla presenza di diversi ambienti deposizionali che hanno portato alla scomposizione dello stesso in settori litostratigraficamente differenziati. Tralasciando le sabbie di spiaggia della fascia più prettamente costiera e i sedimenti terrazzati delle colline plioceniche, non direttamente ricadenti nell'areale di studio, il principale domino litologico affioranti è quello relativo all'ambito della duna costiera.

Quest'ultimo interessa nella fattispecie tutto il settore dell'area direttamente oggetto delle indagini geognostiche ed è marcatamente segnato dall'affioramento di sabbie a diverso grado di addensamento.

3 CAMPAGNA DI INDAGINI

Le indagini eseguite hanno interessato tutta l'impronta del nuovo piazzale di stazionamento e hanno riguardato le seguenti investigazioni:

- n.1 Sondaggio geognostico a carotaggio continuo spinto alla profondità di 35 m dal p.c. con prove SPT in foro e prelievo di campioni di terreno sia indisturbati che rimaneggiati (SW1).

- n.2 piezometri a tubo aperto istallati in corrispondenza di 2 fori specifici di media profondità finalizzati anche al monitoraggio ambientale della qualità delle acque superficiali (PZW1 e PZW2)

- n.3 prove penetrometriche statiche con piezocono (PW2-PW3-PW4);

- n.1 prova penetrometrica statica con piezocono sismico (PW1s);
- n.2 stendimenti sismici tipo MASW.

Sondaggio	Profondità
	[m]
SW1	35
PZW1	6
PZW2	6

Prova	Profondità
	[m]
PW1s	35,0
PW2	35,0
PW3	35,0
PW4	35,0

4 UNITA' GEOTECNICHE

L'interpretazione litologica dei risultati delle prove penetrometriche statiche e le evidenze dei sondaggi geognostici hanno consentito di ricostruire un modello geologico-stratigrafico del sottosuolo abbastanza accurato e certamente adeguato al volume significativo interagente con le opere di progetto.

I risultati di tali ricostruzioni sono stati riportati in specifiche sezioni lito-stratigrafiche, che costituiscono parte integrante del presente elaborato.

Le Unità geologico-geotecniche individuate possono essere sintetizzate come di seguito:

- UNITA' s Suoli sabbioso-limosi, limo-argilloso-sabbiosi e limo-sabbioso-ghiaiosi con resti vegetali; terreni di riporto;
- UNITA' A-B Sabbie da fini a medio-fini fino a medio-grossolane, da marrone avava a grigie, mediamente addensate;
- UNITA' C Limi argillosi, argille limose e limo-sabbiose di colore grigio, con gusci di bivalvi, con materia organica, a luoghi sabbiosi, da mediamente consistenti a consistenti.

5 LIVELLI PIEZOMETRICI

Sono stati analizzati i risultati delle misure freatimetriche condotte nei fori attrezzati con piezometri ai fini della ricostruzione della superficie di falda.

I risultati delle misure effettuate mostrano un andamento della superficie piezometrica superficiale in generale molto prossimo al piano campagna, nella fattispecie, a profondità comprese tra -2.0 m e -2.3 m dal p.c..

La pressoché totale condizione di saturazione che caratterizza le varie litologie rende realistica la modellazione geotecnica in condizioni limite di breve e lungo termine.

6 CARATTERIZZAZIONE GEOTECNICA

Sono stati analizzati i dati della campagna di prove in situ, costituite essenzialmente da prove penetrometriche SPT effettuate nei fori di sondaggio e prove penetrometriche statiche continue tipo CPTu (piezocono con filtro poroso) e s-CPTu (piezocono sismico). L'analisi dei dati, per completezza, è stata estesa ben oltre il volume significativo interagente con le opere di progetto, grazie alla notevole quantità di dati a disposizione.

L'interpretazione delle prove SPT è stata orientata fondamentalmente alla caratterizzazione meccanica dei litotipi incoerenti attraverso le note correlazioni con il numero di colpi N_{SPT}. Le prove SPT condotte nella campagna di indagine hanno investigato prevalentemente le Unità geotecniche a carattere prevalentemente sabbioso, mentre solo in minima parte le Unità geotecniche limo-argillose,

nella fattispecie, per quanto attiene la stima dei parametri meccanici per terreni coesivi da prove SPT, è possibile fornire solo una stima approssimativa dei parametri di resistenza in condizioni non drenate.

Le prove penetrometriche statiche di tipo continuo hanno consentito di ricostruire il profilo di variabilità con la profondità delle caratteristiche meccaniche dei differenti litotipi. Infatti, in ragione delle evidenze dei riconoscimenti stratigrafici di massima, calibrati successivamente con le evidenze dei sondaggi geognostici, si sono distinti le differenti litologie. Tale analisi è stata supportata dalla valutazione dell'andamento delle pressioni interstiziali misurate nel corso dell'avanzamento del piezocono differenziando quindi i litotipi a carattere maggiormente incoerente o coesivo e, di conseguenza i relativi parametri geotecnici significativi.

7 PROVE SPT

L'analisi dei risultati ottenuti dalla prove SPT consente di ottenere una stima significativa dei parametri di resistenza di terreni incoerenti, nonché una stima sullo loro di addensamento.

Per quanto attiene la stima della densità relativa le correlazioni più utilizzate sono quelle proposte da Gibbs e Holtz (1957), valide per sabbie quarzose non cementate, graficamente rappresentate in Figura, che corrispondono all'equazione:

$$D_{r} = 21 \cdot \left(\frac{N_{SPT}}{\sigma'_{v0}} + 0.7\right)^{0.5}$$

in cui σ'_{v0} è la tensione geostatica verticale efficace alla profondità di prova in kg/cm² e Nspt il numero di colpi medio misurato nello strato.

Figura 7.1 – Densità relativa - Nspt - σ'_{v0} (da Gibbs e Holtz 1957)

Attraverso la stima della densità relativa è possibile determinare i valori dell'angolo di attrito alle varie profondità di prova attraverso le correlazioni proposte da Schmertmann (1977), riportate in Figura.

Figura 7.2 – Densità relativa – angolo d'attrito (da Schmertmann 1977)

Tali correlazioni portano in generale ad una sovrastima dei parametri di resistenza, pertanto, per il caso in esame, si è preferito calibrare la stima dell'angolo d'attrito attraverso le correlazioni dirette proposte dal metodo di De Mello. Tale metodo è valido per le sabbie in genere e per qualunque profondità (tranne che per i primi 2 m sotto il p.c.).

Figura 7.3 – Nspt – σ'_{v0} – angolo d'attrito (da De Mello)

La correlazione rappresentata in forma grafica è esprimibile dalla seguente espressione:

$$\varphi' = 19 - 0.38 \cdot \sigma'_{v0} + 8.73 \cdot \log(N_{SPT})$$

in cui σ'_{v0} è la tensione geostatica verticale efficace alla profondità di prova in kg/cm² e N_{SPT} il numero di colpi medio misurato nello strato.

Essendo tutte le prove eseguite contenute all'interno dei litotipi sabbiosi non sono state sviluppate correlazioni per terreni coesivi.

Si riportano di seguito i valori di Nspt ottenuti alle varie profondità di prova per il sondaggio SW1:

	z _i z _f Litologia	Z	Zw	N _{SPT}
--	---	---	----	------------------

[m]	[m]		[m]	[m]	[-]
0,0	-0,7	Unità s - Terreni di riporto sabbioso-limosi		2,0	
-0,7		Unità A - Sabbie da fini a medio-fini, di colore avana o	-3,0		25
	-4,8	marrone avana, da mediamente addensate a addensate,			
		debolmente limose			
			-6,0		15
1.9	16 5	Unità B - Sabbie da fini a medio-fini fino a medio-			
-4,0	-10,5	grossolane, grigie, da med. addensate ad addensate	-9,0		27

I valori di SPT ottenuti mostrano andamenti tendenzialmente crescenti con la profondità per quanto attiene le Unità Geotecniche tendenzialmente sabbiose investigate fino a profondità di circa - 16.5 m dal p.c. I valori di N_{SPT} oscillano tra i 15 e i 27 evidenziando una tendenza, in generale piuttosto lieve, all'incremento dello stato di addensamento e delle proprietà meccanica con la profondità.

I risultati ottenuti per l'Unità A-B consentono di stimare valori di densità relativa compresi tra il 55% e l'80% a testimoniare uno stato di addensamento da mediamente addensato ad addensato. I valori dell'angolo di attrito medi per tale unità, considerando a vantaggio di sicurezza le correlazioni proposte da De Mello, possono stimarsi a valori compresi tra i 28° e i 31°. Si riportano di seguito gli andamenti dei parametri geotecnici analizzati con la profondità.

Figura 7.4 – Variazione di Nspt - Dr - ϕ con la profondità

Sond	z _i	z _f	Litologia		z _w	N1	N2	N3	N _{SPT}	Ynat	σν		φ' [°]		D _R [%]
30110	[m]	[m]	Entitogia	[m]	[m]	[-]	[-]	[-]	[-]	[kN/m ³]	[kN/m ²]	De Mello	Schmertmann	φ Medio	Gibbs&Holtz
	0,0	-0,7	Unità s - Terreni di riporto sabbioso-limosi		2,0										
SW1	-0,7	Unità A - Sabbie da fini a medio-fini, di colore avana o	-3,0		6,0	11,0	14,0	25,0	20,0	60,0	31,0	40,9	35,9	92,09	
		-4,8	8 marrone avana, da mediamente addensate a addensate, debolmente limose												
			Unità B - Sabbie da fini a medio-fini fino a medio-	-6,0		4,0	5,0	10,0	15,0	20,0	120,0	28,8	36,3	32,5	59,00
	-18	-16.5													
	-+,0	-10,5	grossolane, grigie, da med. addensate ad addensate	-9,0		6	12	15	27,0	20,0	180,0	30,8	37,7	34,2	69,01

Figura 7.5 – Sintesi dei dati da SPT

8 PROVE CPT_U E S-CPT_U

8.1 **RICONOSCIMENTO STRATIGRAFICO**

L'analisi dei risultati di prove C.P.T. consente in primo luogo il riconoscimento litologico dei terreni attraversati e la ricostruzione della successione stratigrafica. Questa prima fase interpretativa è essenziale e necessaria per ogni ulteriore interpretazione geotecnica. Infatti durante la prova vengono misurate le resistenze di punta e di attrito laterale opposte dal terreno nelle condizioni di rottura determinate dalla penetrazione dello strumento con una velocità imposta e costante pari a circa 2 cm/sec.

A seconda della permeabilità del terreno attraversato la rottura avviene in condizioni drenate o non drenate. Pertanto il modello interpretativo del fenomeno della rottura è condizionato dal tipo di terreno cui si riferiscono i dati di resistenza misurati.

Tuttavia le migliori correlazioni proposte per l'individuazione della natura del terreno attraversato fanno uso, oltre che della resistenza di punta, q_c , anche della resistenza d'attrito laterale, f_s .

Nella fattispecie, viene adottato come grandezza caratteristica ai fini del riconoscimento stratigrafico il rapporto delle resistenze (friction ratio) R_f , calcolato come rapporto percentuale tra la resistenza all'attrito locale e la resistenza alla punta, misurate alla stessa quota:

$$R_f = \frac{f_s}{q_c} \cdot 100$$

Tale grandezza consente una prima valutazione dei materiali considerando i seguenti valori indicativi (Begemann, 1965 - Raccomandazioni A.G.I., 1977), riportati in Figura.

Son Type as a runction of Friction Ratio) (Degen	nann	1, 1905)	
Coarse sand with gravel through fine sand	1.2 %	-	1.6 %	
Silty sand	1.6 %	-	2.2 %	
Silty sandy clayey soils	2.2 %	-	3.2 %	
Clay and loam, and loam soils	3.2 %	-	4.1 %	
Clay	4.1 %	-	7.0 %	
Peat			>7 %	

Soil Type as a Function of Friction Ratio (Begemann, 1965)

Figura 8.1 – Interpretazione litostratigrafica di prove CPT sulla base di Rf %

8.2 COMPORTAMENTO A ROTTURA

Il piezocono è un penetrometro statico a punta elettrica dotato di un elemento poroso di ceramica fine o di acciaio, detto filtro, di norma posizionato alla base della punta conica, che permette di misurare e registrare oltre ai parametri di resistenza alla penetrazione, q_c ed f_s , anche la pressione interstiziale, u_2 , sia durante l'avanzamento che a penetro metro fermo.

La possibilità di misurare la pressione interstiziale ha considerevolmente aumentato la capacità interpretativa della prova nei terreni saturi sotto falda. Infatti durante la penetrazione a velocità costante, nei terreni sabbiosi e permeabili la rottura avviene in condizioni drenate, senza sensibili variazioni della pressione interstiziale, e quindi la pressione misurata dal piezometro coincide con quella in sito ($u_2 = u_0$), mentre nei terreni a grana fine e poco permeabili, si generano sovrappressioni interstiziali, Δu , e quindi viene misurata la pressione $u_2 = u_0 + \Delta u$.

Poiché inoltre la sensibilità dello strumento alla variazione delle pressioni interstiziali è molto alta in quanto non risente di effetti di scala, è possibile identificare anche sottili livelli di terreno a permeabilità differente, la cui presenza può essere decisiva nella stima dei tempi di consolidazione.

8.3 CARATTERIZZAZIONE MECCANICA LITOTIPI COESIVI

L'avanzamento del penetrometro statico in terreni a grana fine saturi avviene in condizioni non drenate. Una stima della **resistenza al taglio non drenata**, cu, e del **grado di sovraconsolidazione**, OCR, di terreni argillosi può essere eseguita con le seguenti equazioni:

$$c_u = \frac{q_c - \sigma_{v0}}{N_k}$$

 $N_K = 15$ per penetrometro elettrico

 $N_{K} = 20$ per penetrometro meccanico

in cui σ_{v0} è la tensione geostatica verticale totale alla profondità della misura di q_c.

Nel caso di studio, a vantaggio di sicurezza, è stato assunto $N_K = 18$.

La stima del grado di sovra consolidazione può essere ottenuta attraverso la seguente espressione (Mayne e Kemper, 1988):

$$OCR = 0.37 \cdot \left(\frac{q_c - \sigma_{v0}}{\sigma'_{v0}}\right)^{1.01}$$

Il **modulo edometrico**, E_{ed} , ovvero il modulo di deformazione in condizioni di espansione laterale impedita, può essere approssimativamente stimato con la relazione (Sanglerat, 1972):

$$E_{ed} = \alpha \cdot q_c$$

 $2,3\cdot(1+e)\cdot\sigma_{v}$ 1 $= \alpha \cdot q_c$ M = C_{c} m, $q_c < 0,7$ MPa $3 < \alpha < 8$ Argille di bassa plasticità (CL) $0,7 < q_c < 2,0$ MPa $2 < \alpha < 5$ $q_c > 2,0$ MPa $1 < \alpha < 2,5$ $q_c < 2,0$ MPa $3 < \alpha < 6$ Limi di bassa plasticità (ML) $q_c > 2,0$ MPa $1 < \alpha < 3$ Argille e limi di elevata plasticità

in cui α è un coefficiente i cui valori sono indicati nella figura di seguito.

*w = contenuto in acqua (%)

Torbe e argille organiche (Pt, OH)

(CH. MH)

Limi organici (OL)

Figura 8.2 – Fattori di correlazione modulo edometrico (M= E_{ed}) - qc

 $q_c < 2,0$ MPa

 $q_c < 1,2$ MPa

 $q_c < 0.7 \text{ MPa} \\ 50 < \mathbf{w}^* < 100$

100 < w < 200w > 200 $2 < \alpha < 6$

 $2 < \alpha < 8$

 $1,5 < \alpha < 4$

 $1 < \alpha < 1,5$

 $0, 4 < \alpha < 1$

8.4 CARATTERIZZAZIONE MECCANICA LITOTIPI INCOERENTI

L'avanzamento del penetrometro statico in terreni sabbiosi avviene generalmente in condizioni drenate, ed è quindi possibile interpretarne i risultati in termini di tensioni efficaci.

Per la stima dei parametri geotecnici dei terreni sabbiosi si utilizza comunemente la densità relativa, come parametro intermedio, sebbene sia stato dimostrato che anche la compressibilità della sabbia (che dipende dalla mineralogia) e lo stato di tensione in sito (che dipende dalla profondità, dallo stato di addensamento e dall'età del deposito) siano fattori molto influenti sulla resistenza penetrometrica di punta.

Le correlazioni fra resistenza penetrometrica e densità relativa dei terreni sabbiosi sono state studiate con prove di laboratorio in camera di calibrazione. Una delle correlazioni più note e utilizzate, valida per sabbie silicee, non cementate, di recente deposizione, normalmente consolidate, è la seguente (Jamiolkowski et al., 1985):

$$D_{r} = -98 + 66 \cdot \log \left[\frac{q_{c}}{(\sigma'_{v0})^{0.5}}\right]$$

 $con q_c e \sigma'_{v0}$ espressi in t/m²

L'angolo di resistenza al taglio di picco può essere stimato a partire dal valore della densità relativa con le correlazioni proposte da Schmertmann (1977) per differenti granulometrie. Tali correlazioni portano in generale ad una sovrastima dei valori d'angolo di attrito, pertanto sono stati sviluppati opportuni confronti con svariate correlazioni proposte dalla letteratura tecnica. La più adatta al caso di studio è risultata essere la correlazione diretta proposta da De Beer 1965-1967, valida per sabbie non cementate sature, in funzione della resistenza alla punta e della tensione litostatica efficace agente alla corrispondente profondità:

$$\varphi' = 5.9 + 4.76 \cdot \ln\left(\frac{q_c}{\sigma'_{v0}}\right)$$

Poiché la prova CPT misura la resistenza a rottura del terreno, le correlazioni per la stima della rigidezza del terreno a bassi livelli di deformazione dai risultati di tale tipo di prova hanno necessariamente carattere empirico. Una semplice correlazione fra la resistenza penetrometrica di punta, qc, ed il modulo di Young secante, drenato, per un livello di sforzo mobilitato pari al 25% di quello a rottura, ovvero per condizioni di esercizio con coefficiente di sicurezza rispetto alla rottura pari a 4, valida per sabbie quarzose non cementate, è la seguente (Robertson e Campanella, 1983):

$$E_{25} = 2 \cdot q_c$$

I parametri geotecnici determinati attraverso l'interpretazione delle prove CPT sono stati, per quanto attiene i litotipi coesivi, coesione non drenata cu, grado di sovra consolidazione OCR, e modulo edometrico Ed, mentre per quanto attiene i litotipi incoerenti, Dr densità relativa, ϕ ' angolo d'attrito e E₂₅, modulo di Young al 25% del carico di rottura.

Gli andamenti di tali parametri con la profondità, unitamente alle valutazioni su carattere litologico e meccanismo di rottura, sono riportati integralmente negli allegati grafici delle prove CPT allegati alla fine del presente elaborato.

Tali andamenti sono stati mediati rispetto a ciascuno strato interessato dalla prova, determinando quindi i valori caratteristici per ciascuna litologia. I risultati si riportano nella tabella di seguito, per ciascuna verticale di indagine.

Unità	Descrizione	Prove	cu [kPa]	OCR	E _{ed} [kPa]	φ' [°]	Dr [%]	E ₂₅ [kPa]	Vs [m/s]
	Sabbie da fini a	PW1s	-	-	-	25-27	50-65	15000-25000	180-230
	medio-fini fino a	PW2	-	-	-	24-26	50-65	12000-22000	-
	medio-grossolane,	PW3	-	-	-	24-26	50-65	12000-22000	-
A-B	a grigie	PW4	-	-	-	24-25	40-55	12000-18000	-
	Limi argillosi,	PW1s	40-60	0,8-0,9	5000-7000	-	-	-	170-250
	argille limose e	PW2	40-60	0,8-0,9	5000-7000	-	-	-	-
	limo-sabbiose di	PW3	50-70	0,9-1,1	6000-8000	-	-	-	-
С	luoghi sabbiosi	PW4	50-60	0,8-1,0	5000-7000	-	-	-	-

Si è pervenuti quindi ad una stima generale dei parametri geotecnici caratteristici per le principali Unità litologiche individuate. I litotipi sabbiosi delle Unità A-B mostrano buone caratteristiche meccaniche in generale crescenti con la profondità in relazione al discreto grado di addensamento che le caratterizza. Le argille tenere delle Unità C mostrano parametri di resistenza non drenata medio-bassi e rigidezza edometrica relativamente bassa in ragione delle condizioni di normal-consolidazione che le caratterizzano.

	cu [kPa]	OCR	E _{ed} [kPa]	φ' [°]	Dr [%]	E ₂₅ [kPa]	Vs [m/s]
Unità-A-B	-	-	-	24-27	40-65	12000-25000	180-230
Unità-C	40-70	0,8-1,1	5000-7000	-	-	-	170-250

9 PROVE DI PORTANZA IN SITU

Per la caratterizzazione della capacità portante dei terreni costituenti il sottofondo delle nuove pavimentazioni si è proceduto (ottobre 2013) con l'effettuazione di prove di portanza CBR individuando i punti da indagare secondo quanto specificato nella AC 150/5320-6E.

I punti di indagine sono stati riportati nelle figure seguenti:

Figura 5 - Ubicazione prove portanza terreni di sottofondo

Sulla base di tale schema planimetrico si è proceduto con l'esecuzione delle seguenti prove:

- **Prova tipo 1:** prove DCP (Dynamic Cone Penetrometer): per un totale di n. 54 postazioni di prova in sito;
 - Prova Tipo 2: prove di laboratorio da effettuarsi su materiale terroso prelevato in corrispondenza di saggi per un totale di nº 12.
 Le rigultanza di teli indegini hanna mostrata chei

Le risultanze di tali indagini hanno mostrato che:

- i terreni di sottofondo (prova tipo 2 a 90 100 cm da p.c.) sono costituiti da sabbie appartenenti al gruppo A₃;
- i valori di CBR provenienti da prove DCP effettuate in campo (n° 53 totali), alla citata profondità di -90 -100 cm da p.c., assumono valori varabili da un minimo di 3% fino ad un massimo di 39%. Dall'analisi dei dati ottenuti si è stabilito per il CBR rappresentativo dei terreni esistenti un valore pari a CBR=10%.

I terreni costituenti il sottofondo delle nuove pavimentazioni dell'Apron Ovest, sono stati suddivisi in tre gruppi: GRUPPO 1 (colore rosso), GRUPPO 2 (colore blue) e GRUPPO 3 (colore verde).

I primi due gruppi sono caratterizzati da sabbie molto simili e pressoché prive di componente fino mentre quelle del gruppo tre hanno una leggera componente di materiale fino.

Figura 6 - Individuazione tipologie sabbie

Analizzando i valori dell'indice di portanza CBR si hanno comportamenti differenti a seconda del contenuto di acqua, ovvero:

CBR all'w% naturale (ricomp. In lab):	in tale condizione il Gruppo 1 ed il Gruppo 2 mostrano valori di CBR sostanzialmente diversi caratterizzati da un rapporto CBR1 / CBR2 = circa 2. In sintesi, in corrispondenza dell'umidità naturale per le sabbie del Gruppo 2 non si riescono ad avere valori di CBR paragonabili con quelli del Gruppo 1 neanche con adeguata rullatura. Per quanto riguarda invece le sabbie del Gruppo 3, caratterizzate dalla presenza di materiale fino (che funge da legante), i CBR raggiungono valori di circa 60-65%. Si tratta però di zone puntuali a limitata estensione;
CBR all'w% PROCTOR (ricomp. In lab):	Per le sabbie del Gruppo 1 e del Gruppo 2, l'umidità ottima di costipamento (Proctor) è risultata essere pari al w,ott=12%. In tale condizione il CBR corrispondente arriva a valori di circa 30%, tale da far perdere la distinzione tra Gruppo 1 e Gruppo 2. Per le sabbie del Gruppo 3 l'w,ott=10% con valori di CBR variabili da 60 a 80%.

Per quanto sopra, al fine di rendere il più omogeno possibile il terreno di sottofondo in termini di portanza, sarà realizzato uno strato in materiale arido da riempimento, A1-a e A1-b di spessore minimo non inferiore a 15 cm.

Infine i valori dell'indice di portanza da adottare per il dimensionamento delle nuove pavimentazioni flessibile e rigide sono riportata nella tabella seguente:

PAVIMENTAZIONE	CBR	MODULO	Elastico	Modulo Sotto	Reazione fondo	
	%	psi	MPa	pci	MPa/m	
Flessibile	10%	15.000	103			
Rigida				141	37,4	

dove:

E=1500 x CBR (E psi)

$$k = \left[\frac{1500 \times \text{CBR}}{26}\right]^{0.7788}$$
, (k in pci)

10 PROVE DI LABORATORIO

Sono stati prelevati nel corso di esecuzione del sondaggio SW1, 3 campioni rimaneggiati all'interno dei litotipi sabbiosi (Unità A-B) e 3 campioni indisturbati all'interno dei litotipi argillosi (Unità C). Tali campioni sono stati sottoposti in generale ad analisi finalizzate alla caratterizzazione fisica, nonché meccanica e di compressibilità per quanto attiene nella fattispecie i campioni a comportamento prevalentemente coesivo.

Sond	Zi [m]	Z f	Litologia	z [m]	Z _w	СІ
	0,0	-0,7	Unità s - Terreni di riporto sabbioso-limosi	[111]	[]	
SW1					-2,0	
	-0,7	-4,8	Unità A - Sabbie da fini a medio-fini, di colore avana o marrone avana, da mediamente addensate a addensate, debolmente limose	-7,5		CR1
	-4.8	-16 5	Unità B - Sabbie da fini a medio-fini fino a medio-grossolane,	-11,6		CR2
	7,0	10,0	grigie, da med. addensate ad addensate	-17,6	CR3	
				-21,0		CI1
	-16,5	-35,0	Unità C - Limi argillosi, argille limose e limo-sabbiose di colore grigio, con gusci di bivalvi, con materia organica, a luoghi sabbiosi, da mediamente consistenti a consistenti	-27,0		CI2
				-30,0		CI3

10.1 ANALISI GRANULOMETRICA E CARATTERISTICHE FISICHE

Vengono di seguito riportati i risultati delle analisi finalizzate alla caratterizzazione fisica dei campioni prelevati alle varie profondità rispetto alla verticale indagata. Tali risultati vengono forniti in forma grafica rispetto alle principali tipiche grandezze geotecniche (peso specifico di volume naturale γ_{nat} , indice dei vuoti *e*, contenuto d'acqua naturale e relativi limiti liquidi e plastici *w*, *w*_L, *w*_P, grado di

saturazione Sr, indice di plasticità I_P, e indice di consistenza I_C). I tabulati integrali, completi di tutte le elaborazioni vengono forniti in allegato.

10.2 PROVE TRISSIALI UU

Per quanto attiene le prove triassiali non consolidate non drenate tipo UU vengono riportati i valori della coesione non drenata c_u e relativo modulo di rigidezza non drenato $E_{u,30}$ al 30% del carico di rottura. Quest'ultimo valore, ritenuto in generale poco significativo ai fini della determinazione del cedimento istantaneo, è stato calcolato anche come funzione di OCR, c_u e I_P, secondo le correlazioni empiriche fornite da Viggiani, riportate nella tabella seguente.

OCR	E _µ /c _µ			
	$I_{\rm P} < 30$	$30 < I_P < 50$	$I_{\rm P} > 50$	
< 3	800	400	200	
3÷5	500	300	150	
> 5	300	200	100	

Tabella 16.1: Stima del modulo di deformazione non drenato per terreni a grana fine

Figura 10.1 –	Correlazioni	per il calcolo	di Eu da	OCR, Ip e cu.
---------------	--------------	----------------	----------	---------------

10.3 PROVE EDOMETRICHE

Per quanto attiene le prove edometriche sono stati analizzate le principali grandezze utili alla caratterizzazione dei litotipi in termini di compressibilità. Sono stati ricavati infatti per ciascuna prova il grado di sovraconsolidazone OCR, i moduli edometrici relativi agli steps di carico congruenti con le tensioni citostatiche in situ E_{ed} , e i relativi coefficienti di compressibilità e rigonfiamento C_C , C_S e analogamente C_R , S_R , utili per il calcolo dei cedimenti di consolidazione primaria. In relazione alle stime dei tempi di consolidazione vengono riportati i coefficienti di consolidazione verticale c_v e di consolidazione secondaria c_{α} , ricavati dalle prove. Tali analisi costituisco i dati principali di input per la stima dei cedimenti e relativo decorso temporale.

Figura 10.2 – Profilo granulometrico, peso specifico naturale e indice dei vuoti

Figura 10.3 – Contenuto d'acqua naturale, limite liquido e plastico e grado di saturazione

Figura 10.4 – Indice di plasticità e indice di consistenza

Figura 10.5 – Coesione non drenata e modulo non drenato

Figura 10.6 – Grado di sovra consolidazione e modulo edometrico

Figura 10.7 – Coefficienti di compressibilità e ringonfiamento

Figura 10.8 – Coefficienti di compressibilità e ringonfiamento

Figura 10.9 – Coefficienti di consolidazione primaria e secondaria

11 CALCOLO DEI CEDIMENTI

11.1 GENERALITA'

E' stato effettuato un duplice calcolo dei cedimenti di consolidazione attesi per l'area di impronta dei nuovi piazzali tenendo conto degli effettivi carichi trasmessi al sottosuolo. Il calcolo è stato sviluppato, in prima fase, attraverso la teoria classica della consolidazione monodimensionale, considerando la trasmissione dei carichi con la profondità secondo le leggi di variazioni proposte per la verticale d'asse di una piastra equivalente di dimensioni pari a quelle del carico. Successivamente è stato messo a punto un modello di calcolo agli elementi finiti con l'ausilio del codice di calcolo Plaxis v.8.2.

Per entrambi gli approcci sono stati adottati i parametri meccanici e di compressibilità ottenuti attraverso le prove di laboratorio ed è stato considerato, ai fini della consolidazione lo strato compressibile di natura argillo-limosa presente in tale area fino a profondità di circa -70, dal piano campagna. I carichi trasmessi sono stati calcolati secondo la configurazione geometrica del pacchetto di pavimentazione previsto dal Progetto Esecutivo.

E' stata verificata nella fattispecie la configurazione di sterro-riporto maggiormente gravosa in termini di carichi trasmessi al semispazio. La configurazione ritenuta rappresentativa dell'area a maggiore entità del carico è quella corrispondente all'asse Apron-TWY CL-AY relativa alla sezione trasversale di progetto AA nell'area Est del Piazzale.

Il tipo di pavimentazione prevista per tale area sarà del tipo semirigida-portante e avrà uno spessore complessivo di 67cm secondo la configurazione riportata nella figura successiva.

Per quanto attiene l'area Ovest del Piazzale, assimilabile in termini di configurazioni di carico applicate al semispazio, dalla geometria di sterro-riporto rappresentata nella sezione B-B, in relazione alla pressoché totale configurazione in sterro, e quindi veri e propri scarichi e relativi rilasci tensionali applicati al semispazio, non ci si attendono componenti di rigonfiamento significative.

SEZIONE A-A - scala 1:50/500

SEZIONE B-B - scala 1:50/500

Figura 11.1 – Sezioni di progetto AA e BB

PAVIMENTAZIONE SEMIRIGIDA PORTANTE

Figura 11.2 – Pavimentazione di progetto nelle aree a maggior carico

11.2 CALCOLO ANALITICO - TEORIA DELLA CONSOLIDAZIONE

ANALISI DEI CARICHI									
Geometria									
Impronta Piazzale Apron Ovest - Sezione AA									
Pavimetazione flessibile									
L	=	280	m	larghezza					
L/2	=	140	m	semi-larghezza					
В	=	280		lunghezza					
B/2	=	140	m	semi-lunghezza					
Н	=	0.97	m	quota progetto da p.c.					
Hp	=	0.67	m	spessore pavimentazione					
S	=	0.60	m	scotico dal p.c.					
Hr	=	0.90	m	altezza rilevato					
Carichi rimossi									
γt	=	17	kN/m ³	peso specifico terreno in sito					
qrim	=	10.2	kN/m ²	carichi rimossi					
Carichi applicati									
γr	=	20	kN/m³	peso specifico rilevato					
q _{ril}	=	18.0	kN/m ²	carico da rilevato					
q _{pav}	=	14.7	kN/m ²	carico da pavimentazione carico trasmesso al piano					
q _{app}	=	32.7	kN/m ²	campagna					
Carichi netti									
a	=	22.54	kN/m ²						
1			-,						

PARAMETRI GEOTECNICI
Geotecnica Sezioni ST1-ST2

Litologia	Zi	Zf	Н	γ	Eu	Eed	Cc	CR	Cs	RR	CV	cα
	[m]	[m]	[m]	[kN/m³]	[kPa]	[kPa]	[-]	[-]	[-]	[-]	cm²/s	[-]
A/B	0,0	16,0	16,0	20	-	-	-	-	-	-	-	-
С	16	36,0	20,0	18,5	36690	9950	0,330	0,164	0,064	0,032	1,0E-03	3,9E-03
Сс	36,0	72,0	36,0	18,5	41680	6342	0,314	0,147	0,107	0,049	2,2E-03	3,9E-03

CALCOLO DEI CEDIMENTI SECONDO DIFFUSIONE VERTICALE DEL CARICO

Δ	Z	σ',	m²	n²	С	$\Delta\sigma'_{v}$	$\sigma'_{v +} \Delta \sigma'_v$	Wist	Δw_{cons}	$\Delta w_{cs,50}$
[m]	[m]	[kPa]	[-]	[-]	[-]	[kPa]	[kPa]	[m]	[m]	[m]
0.5	0.0	0	-	-	-	-	-	-	-	-
	0.5	5	-	-	-	-	-	-	-	-
	1.0	10	19601.0	19700.0	198.0	22.54	32.54	0.008	-	-
	1.5	15	19602.3	19825.0	198.0	22.54	37.54	-	-	_
	2.0	20	19604.0	20000.0	198.0	22.54	42.54	-	-	-
	25	25	19606 3	20225.0	198.0	22 53	47 53	-	-	-
	3.0	<u>-0</u>	19609.0	20500.0	198.0	22 53	52 53	_	_	_
	3.0 2.5	30	19009.0	20300.0	190.0	22.55	52.55	-	-	-
	3.5	35	19612.3	20825.0	198.0	22.52	57.52	-	-	-
	4.0	40	19616.0	21200.0	198.0	22.52	62.52	-	-	-
	4.5	45	19620.3	21625.0	198.0	22.51	67.51	-	-	-
	5.0	50	19625.0	22100.0	198.1	22.50	72.50	-	-	-
	5.5	55	19630.3	22625.0	198.1	22.49	77.49	-	-	-
	6.0	60	19636.0	23200.0	198.1	22.47	82.47	-	-	-
	6.5	65	19642.3	23825.0	198.1	22.46	87.46	-	-	-
	7.0	70	19649.0	24500.0	198.1	22.44	92.44	-	-	-
	7.5	75	19656.3	25225.0	198.1	22.42	97.42	-	-	-
	8.0	80	19664.0	26000.0	198.2	22.40	102.40	-	-	-
	8.5	85	19672.3	26825.0	198.2	22.37	107.37	-	-	-
	9.0	90	19681.0	27700.0	198.2	22.35	112.35	-	-	-
	9.5	95	19690.3	28625.0	198.2	22.32	117.32	-	-	-
	10.0	100	19700.0	29600.0	198.2	22.29	122.29	-	-	-
	10.5	105	19710.3	30625.0	198.3	22.26	127.26	-	-	-
	11.0	110	19721.0	31700.0	198.3	22.23	132.23	-	-	-
	11.5	115	19732.3	32825.0	198.3	22.20	137.20	-	-	-
	12.0	120	19744.0	34000.0	198.4	22.17	142.17	-	-	-
	12.5	125	19756.3	35225.0	198.4	22.13	147.13	-	-	-
	13.0	130	19769.0	36500.0	198.4	22.10	152.10	-	-	-
	13.5	135	19782.3	37825.0	198.4	22.06	157.06	-	-	-
	14.0	140	19796.0	39200.0	198.5	22.03	162.03	-	-	-
	14.5	145	19810.3	40625.0	198.5	21.99	166.99	-	-	-
	15.0	150	19825.0	42100.0	198.6	21.95	1/1.95	-	-	-
	15.5	155	19840.3	43625.0	198.6	21.91	176.91	-	-	-
	16.0	160	19856.0	45200.0	198.6	21.88	181.88	-	-	-
	10.5	105	198/2.3	40825.0	198.7	21.84	100.04	-	0.004	0.001
	17.0	170	19006.2	40000.0	198.7	∠1.ŏU 21.70	191.00	-	0.004	0.001
	17.5	1/5	19900.3	50225.0	198.8	21.70	190.70	-	0.004	0.001
	10.0	100	19924.0	52000.0	190.0	21.72	201.72	-	0.004	0.001
	10.0	CQI	19942.3	53825.0	198.9	21.00	200.00	-	0.004	0.001

0A662X1-PIV-PG-APE002-.doc

190 196 195 195 195 195 195 195 195 195 115 211.64 211.64 211.64 0.004 0.001 200 20000.0 5660.0 199.0 21.55 221.55 - 0.004 0.001 210 210 2004.1 63700.0 199.1 21.47 231.47 - 0.003 0.001 210 220 2020.6 6800.0 199.2 21.39 241.39 - 0.003 0.001 230 230 20120.7 72500.0 199.3 21.30 251.30 - 0.003 0.001 240 24076.0 77200.0 199.4 21.26 256.26 - 0.003 0.001 250 255 20203.3 84625.0 199.5 21.18 261.12 - 0.003 0.001 260 20276.0 8720.0 199.8 21.01 286.01 - 0.003 0.001 2										
19.5 198.0 3 5762.5 198.0 21.59 21.65 - 0.004 0.001 20.0 2000 3 61625.0 199.0 21.51 226.5 - 0.004 0.001 21.0 2104 20041.0 63700.0 199.2 21.43 236.43 - 0.003 0.001 21.0 2105 2006.3 70225.0 199.2 21.34 236.34 - 0.003 0.001 23.0 230 20129.0 7250.0 199.3 21.30 251.30 - 0.003 0.001 23.0 230 20129.0 7250.0 199.4 21.22 261.22 - 0.003 0.001 25.0 2502.0 37425.0 199.4 21.22 261.22 - 0.003 0.001 25.0 2502.0 84625.0 199.5 21.13 271.13 - 0.003 0.001 26.5 2025.0 8720.0 199.7 21.05	19.0	190	19961.0	55700.0	198.9	21.64	211.64	-	0.004	0.001
200 200 2000.0 5600.0 199.0 21.55 221.55 - 0.004 0.001 20.5 2002.3 61625.0 199.0 21.47 231.47 - 0.003 0.001 21.0 210 2004.10 6800.0 199.2 21.43 236.43 - 0.003 0.001 22.0 220.0 2008.40 6800.0 199.2 21.43 246.34 - 0.003 0.001 23.5 235 2015.2. 74825.0 199.4 21.22 261.22 - 0.003 0.001 24.5 245 2020.3 74825.0 199.4 21.26 256.26 - 0.003 0.001 25.0 2022.0 8210.0 199.4 21.13 271.13 - 0.003 0.001 25.0 2022.0 8210.0 199.4 21.05 280.97 0.003 0.001 26.0 2022.0 870.0 199.7 21.13 286.16 <td< td=""><td>19.5</td><td>195</td><td>19980.3</td><td>57625.0</td><td>198.9</td><td>21.59</td><td>216.59</td><td>-</td><td>0.004</td><td>0.001</td></td<>	19.5	195	19980.3	57625.0	198.9	21.59	216.59	-	0.004	0.001
20.5 205 2002.3 61625.0 199.1 21.51 228.51 - 0.004 0.001 21.0 210 20041.0 63700.0 199.1 21.43 236.43 - 0.003 0.001 22.0 2208.40 66802.0 199.2 21.43 236.43 - 0.003 0.001 23.0 230 2012.0 7250.0 199.3 21.30 251.30 - 0.003 0.001 24.0 240 20175.0 7720.0 199.4 21.22 261.22 - 0.003 0.001 24.5 245 2020.0 7720.0 199.5 21.18 266.18 0.003 0.001 25.5 255 2025.0 8210.0 199.6 21.09 276.09 - 0.003 0.001 26.5 255 2025.0 89825.0 199.8 20.97 290.97 - 0.003 0.001 27.6 275 20356.3 95225.0 199	20.0	200	20000.0	59600.0	199.0	21.55	221.55	-	0.004	0.001
210 210 20041.0 6582.0 199.2 21.43 236.43 - 0.003 0.001 22.0 220 20084.0 6800.0 199.2 21.38 241.39 - 0.003 0.001 22.0 220 20084.0 6800.0 199.3 21.38 241.39 - 0.003 0.001 23.0 230 20129.0 72500.0 199.4 21.22 261.22 - 0.003 0.001 24.0 240 20176.0 77200.0 199.4 21.22 261.22 - 0.003 0.001 25.0 250 20225.0 82100.0 199.6 21.13 271.13 - 0.003 0.001 26.0 20276.0 8720.0 199.8 21.01 281.05 - 0.003 0.001 27.0 270 2032.0 9250.0 199.9 2.022 29.592 - 0.003 0.001 27.5 20356.3 9522.5 199.	20.5	205	20020.3	61625.0	199.0	21.51	226.51	-	0.004	0.001
21.5 215 20062.3 65825.0 199.2 21.43 236.43 - 0.003 0.001 22.0 220044.0 68000.0 199.2 21.33 241.39 - 0.003 0.001 23.0 20129.0 72500.0 199.3 21.30 251.30 - 0.003 0.001 23.5 235 2015.3 74825.0 199.4 21.22 621.22 - 0.003 0.001 24.0 240 20176.0 7720.0.0 199.5 21.18 2261.22 - 0.003 0.001 25.5 20250.3 84625.0 199.6 21.9 276.09 - 0.003 0.001 26.5 265 20302.3 89825.0 199.8 2.097 290.97 - 0.003 0.001 27.0 20329.0 92500.0 199.8 2.097 290.97 - 0.003 0.001 28.0 280 20344.0 98000.0 200.2 20.75	21.0	210	20041.0	63700.0	199.1	21.47	231.47	-	0.003	0.001
1.10 2.10 2.002.0 6800.0 199.2 21.39 241.39 - 0.003 0.001 22.5 225 2016.3 70225.0 199.3 21.34 246.34 - 0.003 0.001 23.0 230 230 20129.0 7250.0 199.4 21.22 256.26 - 0.003 0.001 24.0 244 20176.0 7720.0 199.4 21.22 261.22 - 0.003 0.001 25.5 2050 20225.0 8210.0 199.6 21.13 271.13 - 0.003 0.001 26.0 20276.0 8720.0 199.7 21.05 281.05 - 0.003 0.001 27.0 2702 2032.9 9250.0 29.07 2.0.003 0.001 28.5 2941.1 10370.0 200.2 20.75 315.75 - 0.002 0.001 28.5 2941.1 10370.0 200.2 20.75 315.75 <	21.5	215	20062 3	65825.0	199.2	21 43	236.43	-	0.003	0.001
ALD 210 210 21.34 246.34	22.0	220	20084.0	68000.0	100.2	21.40	200.40	_	0.000	0.001
2230 0.003 0.001 24.0 240 20176.0 77200.0 199.4 21.22 261.22 - 0.003 0.001 25.5 2050 02225.0 8210.0 199.6 21.18 266.18 - 0.003 0.001 26.0 20276.0 8720.0 199.7 21.05 281.05 - 0.003 0.001 26.0 20276.0 8720.0 199.8 21.01 286.0 0.003 0.001 27.5 275 2036.3 9525.0 199.9 20.92 29.97 - 0.003 0.001 28.5 2845 20412.3 106625.0 200.2 20.75 315.75 - 0.002 0.001 29.0	22.0	220	20004.0	70225.0	100.2	21.00	241.03	-	0.000	0.001
23.5 23.5 <th< td=""><td>22.0</td><td>220</td><td>20100.3</td><td>70225.0</td><td>199.3</td><td>21.34</td><td>240.34</td><td>-</td><td>0.003</td><td>0.001</td></th<>	22.0	220	20100.3	70225.0	199.3	21.34	240.34	-	0.003	0.001
23.5 235 20152.3 74825.0 199.4 21.22 256.26 - 0.003 0.001 24.0 240 240 240 240 240 240 240 240 240 240 240 24152 2512 2 0.003 0.001 25.5 2525 2250.0 84210.0 199.6 21.13 271.13 - 0.003 0.001 25.5 2255.0 8425.0 199.8 21.01 286.01 - 0.003 0.001 26.5 275 2032.3 8982.0 199.8 20.97 290.97 - 0.003 0.001 27.0 270 2032.0 9250.0 199.9 20.92 295.92 - 0.003 0.001 28.5 20412.3 100825.0 200.0 20.84 305.84 - 0.002 0.001 29.5 29470.3 108625.0 200.2 20.75 315.75 - 0.002 0.001	23.0	230	20129.0	72500.0	199.3	21.30	251.30	-	0.003	0.001
244.0 24176.0 77200.0 199.4 21.22 261.22 - 0.003 0.001 25.0 250 20225.0 82100.0 199.6 21.18 266.18 - 0.003 0.001 25.5 255 20225.0 82100.0 199.6 21.09 276.09 - 0.003 0.001 26.0 260 260 87200.0 199.7 21.05 281.05 - 0.003 0.001 27.5 275 2755 20323.3 95250.0 199.8 20.97 290.97 - 0.003 0.001 28.0 20324.0 98000.0 20.00 20.88 300.88 - 0.003 0.001 29.0 290 2441.0 10370.0 20.01 20.80 310.80 0.002 0.001 30.0 2050.0 10960.0 200.2 20.75 315.75 0.002 0.001 30.5 2052.0 118700.0 20.04 20.63 330.63	23.5	235	20152.3	74825.0	199.4	21.26	256.26	-	0.003	0.001
24.5 24.6 20200.3 79625.0 199.5 21.18 266.18 - 0.003 0.001 25.0 255 2025.0 82402.0 199.6 21.13 271.13 - 0.003 0.001 25.5 2025.0.3 84625.0 199.6 21.09 276.09 - 0.003 0.001 26.5 20302.3 89625.0 199.8 21.01 286.01 - 0.003 0.001 27.0 20328.0 9520.0 199.8 20.97 290.97 - 0.003 0.001 28.5 285 20412.3 100825.0 20.00 20.84 306.84 - 0.003 0.001 29.5 295 20470.3 106625.0 200.2 20.75 315.75 - 0.002 0.001 30.0 300 20561.0 11570.0 20.04 20.63 336.63 - 0.002 0.001 31.5 3152 2052.3 314825.0 20.05	24.0	240	20176.0	77200.0	199.4	21.22	261.22	-	0.003	0.001
25.0 250 20225.0 82100.0 199.6 21.13 271.13 - 0.003 0.001 26.0 260 20276.0 87200.0 199.6 21.09 276.09 - 0.003 0.001 26.0 20072.0 98250.0 199.8 20.97 290.97 - 0.003 0.001 27.5 275 20386.3 98225.0 199.9 20.92 295.2 0.003 0.001 28.0 20384.0 98000.0 20.00 20.88 300.88 - 0.003 0.001 29.0 29411.3 106825.0 200.2 20.75 315.75 - 0.002 0.001 30.5 305 2050.0 10960.0 200.2 20.71 320.71 - 0.002 0.001 30.5 305 20530.3 112625.0 200.3 20.67 335.59 - 0.002 0.001 31.5 20592.3 118825.0 200.6 20.59 335.59 <td>24.5</td> <td>245</td> <td>20200.3</td> <td>79625.0</td> <td>199.5</td> <td>21.18</td> <td>266.18</td> <td>-</td> <td>0.003</td> <td>0.001</td>	24.5	245	20200.3	79625.0	199.5	21.18	266.18	-	0.003	0.001
25.5 255 20250.3 84625.0 199.6 21.09 276.09 - 0.003 0.001 26.6 266 20302.3 88825.0 199.8 21.01 286.01 - 0.003 0.001 27.0 2702 20329.0 92500.0 199.8 20.97 290.97 - 0.003 0.001 28.0 280 2036.3 95225.0 199.9 20.92 295.2 - 0.003 0.001 28.0 280 20344.0 98000.0 200.0 20.84 305.84 - 0.003 0.001 29.5 295 20470.3 106825.0 200.2 20.71 320.71 - 0.002 0.001 30.0 300 2050.0 10960.0 200.2 20.71 320.71 - 0.002 0.001 31.0 330 20593.3 11825.0 200.5 20.59 335.59 - 0.002 0.001 31.5 315 20593	25.0	250	20225.0	82100.0	199.6	21.13	271.13	-	0.003	0.001
26.0 260 20276.0 87200.0 199.7 21.05 281.05 - 0.003 0.001 27.0 270 20323.3 89825.0 199.8 21.01 286.01 - 0.003 0.001 27.0 20329.0 92500.0 199.8 20.97 290.97 - 0.003 0.001 28.0 2805 20441.0 10370.0 200.1 20.88 300.88 - 0.003 0.001 29.0 20441.0 10370.0 200.1 20.80 310.80 - 0.002 0.001 30.0 300 2050.0 10960.0 20.22 20.75 315.75 - 0.002 0.001 30.5 305 20530.3 112625.0 200.2 20.71 326.77 - 0.002 0.001 31.0 310 20561.0 11570.0 20.42 20.55 335.59 - 0.002 0.001 32.0 3202 20624.0 122000.0	25.5	255	20250.3	84625.0	199.6	21.09	276.09	-	0.003	0.001
26.5 265 20302.3 88825.0 199.8 21.01 286.01 - 0.003 0.001 27.0 270 20329.0 92500.0 199.8 20.97 290.97 - 0.003 0.001 27.5 275 20356.3 95225.0 199.9 20.92 295.92 - 0.003 0.001 28.0 20384.0 98000.0 200.0 20.84 305.84 - 0.003 0.001 29.0 2941.0 10300.0 200.1 20.84 305.84 - 0.002 0.001 30.0 20500.0 10960.0 200.2 20.71 320.71 - 0.002 0.001 31.0 310 20561.0 115700.0 20.4 20.63 330.63 - 0.002 0.001 32.5 225 20666.3 12220.0 20.54 340.54 - 0.002 0.001 33.0 330 20689.0 12850.0 20.05 345.03	26.0	260	20276.0	87200.0	199.7	21.05	281.05	-	0.003	0.001
27.0 270 20329.0 92500.0 199.8 20.97 290.97 - 0.003 0.001 27.5 275 20366.3 95225.0 199.9 20.92 295.92 - 0.003 0.001 28.0 2084.0 98000.0 200.0 20.84 305.84 - 0.003 0.001 29.0 20441.0 103700.0 20.01 20.80 310.80 - 0.002 0.001 30.0 300 2050.0 106625.0 200.2 20.71 320.71 - 0.002 0.001 30.0 305 2050.0 106625.0 200.3 20.67 325.67 - 0.002 0.001 31.5 315 2052.3 118825.0 200.6 20.59 335.59 - 0.002 0.001 32.0 320 20624.0 122000.0 20.6 20.50 345.50 - 0.002 0.001 33.0 330 20689.0 128500.0 20.77 360.37 - 0.002 0.001 33.5 355	26.5	265	20302.3	89825.0	199.8	21.01	286.01	-	0.003	0.001
27.5 275 20356.3 95225.0 199.9 20.92 295.92 - 0.003 0.001 28.6 286 20384.0 98000.0 200.0 20.88 305.84 - 0.003 0.001 29.0 290 20441.0 103700.0 200.1 20.80 310.80 - 0.002 0.001 30.0 300 20500.0 19660.0 200.2 20.71 320.71 - 0.002 0.001 30.5 305 20530.3 112625.0 200.3 20.67 325.67 - 0.002 0.001 31.0 310 20561.0 115700.0 200.4 20.63 330.63 - 0.002 0.001 32.5 325 20563.1 128250.0 200.6 20.50 345.50 - 0.002 0.001 33.0 30 20689.0 128500.0 20.7 20.46 350.46 - 0.002 0.001 34.5 345 20790.3 138625.0 201.1 20.23 366.37 - 0.002 0.001 <td>27.0</td> <td>270</td> <td>20329.0</td> <td>92500.0</td> <td>199.8</td> <td>20.97</td> <td>290.97</td> <td>-</td> <td>0.003</td> <td>0.001</td>	27.0	270	20329.0	92500.0	199.8	20.97	290.97	-	0.003	0.001
28.0 280 20384.0 98000.0 200.0 20.88 300.88 - 0.003 0.001 29.0 290 20441.0 103700.0 200.1 20.84 305.84 - 0.002 0.001 29.5 295 20470.3 106625.0 200.2 20.75 315.75 - 0.002 0.001 30.0 300 20500.0 109600.0 200.2 20.71 320.71 - 0.002 0.001 31.0 310 20551.0 116700.0 200.4 20.63 330.63 - 0.002 0.001 32.0 320 20624.0 12200.0 20.06 20.54 340.54 - 0.002 0.001 33.0 303 20689.0 128250.0 200.7 20.46 350.46 - 0.002 0.001 34.5 345 20790.3 1386250 201.0 20.33 365.33 - 0.002 0.001 35.3 355 <td< td=""><td>27.5</td><td>275</td><td>20356.3</td><td>95225.0</td><td>199.9</td><td>20.92</td><td>295.92</td><td>-</td><td>0.003</td><td>0.001</td></td<>	27.5	275	20356.3	95225.0	199.9	20.92	295.92	-	0.003	0.001
28.5 285 20412.3 100825.0 200.0 20.84 305.84 - 0.003 0.001 29.0 290 20441.0 103700.0 200.1 20.80 310.80 - 0.002 0.001 30.0 300 0000.0 106625.0 200.2 20.71 320.71 - 0.002 0.001 30.5 305 20530.3 112625.0 200.3 20.67 325.67 - 0.002 0.001 31.5 315 20592.3 118825.0 200.5 20.59 335.59 - 0.002 0.001 32.0 320 20664.0 12200.0 20.06 20.50 345.50 - 0.002 0.001 33.5 335 20722.3 131825.0 200.8 20.42 355.42 - 0.002 0.001 34.0 340 20756.0 135200.0 200.7 20.37 360.37 - 0.002 0.001 35.5 355 <t< td=""><td>28.0</td><td>280</td><td>20384.0</td><td>98000.0</td><td>200.0</td><td>20.88</td><td>300.88</td><td>-</td><td>0.003</td><td>0.001</td></t<>	28.0	280	20384.0	98000.0	200.0	20.88	300.88	-	0.003	0.001
29.0 290 20441.0 103700.0 200.1 20.80 310.80 - 0.002 0.001 30.0 300 2050.0 10960.0 200.2 20.75 315.75 - 0.002 0.001 30.5 305 20530.3 112625.0 200.2 20.71 320.71 - 0.002 0.001 31.0 310 20561.0 115700.0 200.4 20.63 330.63 - 0.002 0.001 32.5 325 20656.3 125225.0 20.66 20.54 340.54 - 0.002 0.001 33.0 330 20656.3 125225.0 20.66 20.55 345.50 - 0.002 0.001 34.5 345 2072.3 131825.0 200.8 20.42 355.42 - 0.002 0.001 34.5 345 2079.3 138625.0 201.1 20.25 375.25 - 0.002 0.001 35.0 365	28.5	285	20412.3	100825.0	200.0	20.84	305 84	-	0.003	0.001
29.5 295 20470.3 106625.0 200.2 20.75 315.75 - 0.002 0.001 30.0 300 20500.0 109600.0 200.2 20.71 320.71 - 0.002 0.001 31.0 310 20561.0 115700.0 200.4 20.63 330.63 - 0.002 0.001 31.0 315 20592.3 118825.0 200.5 20.59 335.59 - 0.002 0.001 32.0 320 20624.0 122000.0 200.6 20.54 340.54 - 0.002 0.001 33.0 330 20689.0 128500.0 200.7 20.46 350.46 - 0.002 0.001 34.0 340 20756.0 135200.0 200.9 20.37 360.37 - 0.002 0.001 35.0 355 20865.0 14210.0 201.1 20.25 375.25 - 0.002 0.001 36.0 360 <	29.0	290	20441.0	103700.0	200.1	20.80	310.80	-	0.002	0.001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29.5	200	20470 3	106625.0	200.1	20.00	315 75	_	0.002	0.001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0	200	20500.0	100020.0	200.2	20.75	320.71	_	0.002	0.001
	20.5	205	20500.0	112625.0	200.2	20.71	225.67	-	0.002	0.001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30.5	305	20030.3	112023.0	200.3	20.07	323.07	-	0.002	0.001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31.0	310	20561.0	115700.0	200.4	20.63	330.63	-	0.002	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.5	315	20592.3	118825.0	200.5	20.59	335.59	-	0.002	0.001
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	32.0	320	20624.0	122000.0	200.6	20.54	340.54	-	0.002	0.001
33.0 330 20689.0 128500.0 200.7 20.46 350.46 - 0.002 0.001 33.5 335 20722.3 131825.0 200.8 20.42 355.42 - 0.002 0.001 34.0 20756.0 135200.0 20.99 20.37 360.37 - 0.002 0.001 35.0 350 20825.0 142100.0 201.1 20.29 370.29 - 0.002 0.001 35.5 355 20860.3 145625.0 201.1 20.25 375.25 - 0.002 0.001 36.0 360 20896.0 149200.0 201.2 20.20 380.20 - 0.002 0.001 37.0 370 20969.0 156500.0 201.4 20.12 390.12 - 0.002 0.001 38.0 380 21044.0 164000.0 201.6 20.04 400.04 - 0.002 0.001 38.0 380 21121.0 17170.0 201.8 19.95 409.95 - 0.002 0.001	32.5	325	20656.3	125225.0	200.6	20.50	345.50	-	0.002	0.001
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	33.0	330	20689.0	128500.0	200.7	20.46	350.46	-	0.002	0.001
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	33.5	335	20722.3	131825.0	200.8	20.42	355.42	-	0.002	0.001
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	34.0	340	20756.0	135200.0	200.9	20.37	360.37	-	0.002	0.001
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	34.5	345	20790.3	138625.0	201.0	20.33	365.33	-	0.002	0.001
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	35.0	350	20825.0	142100.0	201.1	20.29	370.29	-	0.002	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35.5	355	20860.3	145625.0	201.1	20.25	375.25	-	0.002	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36.0	360	20896.0	149200.0	201.2	20.20	380.20	-	0.002	0.001
37.037020969.0156500.0201.420.12390.12 - 0.0020.00137.537521006.3160225.0201.520.08395.08 - 0.0020.00138.038021044.0164000.0201.620.04400.04 - 0.0020.00138.538521082.3167825.0201.719.99404.99 - 0.0020.00139.021121.0171700.0201.819.95409.95 - 0.0020.00139.539521160.3175625.0201.919.91414.91 - 0.0020.00140.040021200.0179600.0202.019.87419.87 - 0.0020.00140.540521240.3183625.0202.119.82424.82 - 0.0020.00141.041021281.0187700.0202.219.78429.78 - 0.0020.00141.541521322.3191825.0202.319.74434.74 - 0.0010.00142.021364.019600.0202.619.66444.66 - 0.0010.00142.542521406.3200225.0202.719.57454.57 - 0.0010.00143.043021492.3208825.0	36.5	365	20932.3	152825.0	201.3	20.16	385.16	-	0.002	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37.0	370	20969.0	156500.0	201.4	20.12	390.12	-	0.002	0.001
38.0 380 21044.0 164000.0 201.6 20.04 400.04 - 0.002 0.001 38.5 385 21082.3 167825.0 201.7 19.99 404.99 - 0.002 0.001 39.0 390 21121.0 171700.0 201.8 19.95 409.95 - 0.002 0.001 39.5 395 21160.3 175625.0 201.9 19.91 414.91 - 0.002 0.001 40.0 400 21200.0 179600.0 202.0 19.87 419.87 - 0.002 0.001 40.5 405 21240.3 183625.0 202.1 19.82 424.82 - 0.002 0.001 41.0 410 21281.0 187700.0 202.2 19.78 429.78 - 0.002 0.001 41.5 415 21322.3 191825.0 202.3 19.74 434.74 - 0.001 0.001 42.0 21364.0 19600.0 202.4 19.70 439.70 - 0.001 0.001	37.5	375	21006.3	160225.0	201.5	20.08	395.08	-	0.002	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.0	380	21044.0	164000.0	201.6	20.04	400.04	-	0.002	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.5	385	21082.3	167825.0	201.7	10.00	404 99	_	0.002	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.0	300	21002.0	171700.0	201.7	10.00	409.05	_	0.002	0.001
39.339321100.3173023.0201.919.91414.91- 0.002 0.001 40.040021200.0179600.0202.019.87419.87- 0.002 0.001 40.540521240.3183625.0202.119.82424.82- 0.002 0.001 41.041021281.0187700.0202.219.78429.78- 0.002 0.001 41.541521322.3191825.0202.319.74434.74- 0.001 0.001 42.042021364.0196000.0202.419.70439.70- 0.001 0.001 42.542521406.3200225.0202.519.66444.66- 0.001 0.001 43.043021449.0204500.0202.619.61449.61- 0.001 0.001 43.543521492.3208825.0202.719.57454.57- 0.001 0.001 44.044021536.0213200.0202.819.53459.53- 0.001 0.001 44.544521580.3217625.0202.919.49464.49- 0.001 0.001 44.544521625.0222100.0203.019.44469.44- 0.001 0.001 45.545521670.3226625.0203.219.40474.40- 0.001 0.001 46.046021716.0231200.0 <td>20 E</td> <td>205</td> <td>21121.0</td> <td>175625.0</td> <td>201.0</td> <td>10.01</td> <td>409.95</td> <td>-</td> <td>0.002</td> <td>0.001</td>	20 E	205	21121.0	175625.0	201.0	10.01	409.95	-	0.002	0.001
40.0 400 21200.0 179600.0 202.0 19.87 419.87 $ 0.002$ 0.001 40.5 405 21240.3 183625.0 202.1 19.82 424.82 $ 0.002$ 0.001 41.0 410 21281.0 187700.0 202.2 19.78 429.78 $ 0.002$ 0.001 41.5 415 21322.3 191825.0 202.3 19.74 434.74 $ 0.001$ 0.001 42.0 420 21364.0 196000.0 202.4 19.70 439.70 $ 0.001$ 0.001 42.5 425 21406.3 200225.0 202.5 19.66 444.66 $ 0.001$ 0.001 43.0 430 21449.0 204500.0 202.6 19.61 449.61 $ 0.001$ 0.001 43.5 435 21492.3 208825.0 202.7 19.57 454.57 $ 0.001$ 0.001 44.0 440 21536.0 213200.0 202.8 19.53 459.53 $ 0.001$ 0.001 44.5 445 21580.3 217625.0 202.9 19.49 464.49 $ 0.001$ 0.001 45.0 450 21625.0 222100.0 203.0 19.44 469.44 $ 0.001$ 0.001 45.5 21670.3 226625.0 203.2 19.40 474.40 $ 0.001$ 0.001 46.0 460 <t< td=""><td>39.5</td><td>395</td><td>21100.3</td><td>170600.0</td><td>201.9</td><td>19.91</td><td>414.91</td><td>-</td><td>0.002</td><td>0.001</td></t<>	39.5	395	21100.3	170600.0	201.9	19.91	414.91	-	0.002	0.001
40.540.521240.3183625.0202.119.82424.82- 0.002 0.001 41.041021281.0187700.0202.219.78429.78- 0.002 0.001 41.541521322.3191825.0202.319.74434.74- 0.001 0.001 42.042021364.0196000.0202.419.70439.70- 0.001 0.001 42.542521406.3200225.0202.519.66444.66- 0.001 0.001 43.043021449.0204500.0202.619.61449.61- 0.001 0.001 43.543521492.3208825.0202.719.57454.57- 0.001 0.001 44.044021536.0213200.0202.819.53459.53- 0.001 0.001 44.544521580.3217625.0202.919.49464.49- 0.001 0.001 45.045021625.0222100.0203.019.44469.44- 0.001 0.001 45.545521670.3226625.0203.219.40474.40- 0.001 0.001 46.046021716.0231200.0203.319.36479.36- 0.001 0.001	40.0	400	21200.0	179600.0	202.0	19.07	419.07	-	0.002	0.001
41.041021281.0 187700.0 202.2 19.78 429.78 - 0.002 0.001 41.541521322.3 191825.0 202.3 19.74 434.74 - 0.001 0.001 42.042021364.0 196000.0 202.4 19.70 439.70 - 0.001 0.001 42.542521406.3200225.0202.5 19.66 444.66 - 0.001 0.001 43.043021449.0204500.0202.6 19.61 449.61 - 0.001 0.001 43.543521492.3208825.0202.7 19.57 454.57 - 0.001 0.001 44.044021536.0213200.0202.8 19.53 459.53 - 0.001 0.001 44.544521580.3217625.0202.9 19.49 464.49 - 0.001 0.001 45.045021625.0222100.0203.0 19.44 469.44 - 0.001 0.001 45.545521670.3226625.0203.2 19.40 474.40 - 0.001 0.001 46.046021716.0231200.0203.3 19.36 479.36 - 0.001 0.001	40.5	405	21240.3	183625.0	202.1	19.82	424.82	-	0.002	0.001
41.5415 21322.3 191825.0 202.3 19.74 434.74 - 0.001 0.001 42.0420 21364.0 196000.0 202.4 19.70 439.70 - 0.001 0.001 42.5425 21406.3 200225.0 202.5 19.66 444.66 - 0.001 0.001 43.0430 21449.0 204500.0 202.6 19.61 449.61 - 0.001 0.001 43.5435 21492.3 208825.0 202.7 19.57 454.57 - 0.001 0.001 44.0440 21536.0 213200.0 202.8 19.53 459.53 - 0.001 0.001 44.5445 21580.3 217625.0 202.9 19.49 464.49 - 0.001 0.001 45.0450 21625.0 222100.0 203.0 19.44 469.44 - 0.001 0.001 45.5 455 21670.3 226625.0 203.2 19.40 474.40 - 0.001 0.001 46.0460 21716.0 231200.0 203.3 19.36 479.36 - 0.001 0.001	41.0	410	21281.0	187700.0	202.2	19.78	429.78	-	0.002	0.001
42.042021364.0196000.0202.419.70439.70-0.0010.00142.542521406.3200225.0202.519.66444.66-0.0010.00143.043021449.0204500.0202.619.61449.61-0.0010.00143.543521492.3208825.0202.719.57454.57-0.0010.00144.044021536.0213200.0202.819.53459.53-0.0010.00144.544521580.3217625.0202.919.49464.49-0.0010.00145.045021625.0222100.0203.019.44469.44-0.0010.00145.545521670.3226625.0203.219.40474.40-0.0010.00146.046021716.0231200.0203.319.36479.36-0.0010.001	41.5	415	21322.3	191825.0	202.3	19.74	434.74	-	0.001	0.001
42.542521406.3200225.0202.519.66444.66-0.0010.00143.043021449.0204500.0202.619.61449.61-0.0010.00143.543521492.3208825.0202.719.57454.57-0.0010.00144.044021536.0213200.0202.819.53459.53-0.0010.00144.544521580.3217625.0202.919.49464.49-0.0010.00145.045021625.0222100.0203.019.44469.44-0.0010.00145.545521670.3226625.0203.219.40474.40-0.0010.00146.046021716.0231200.0203.319.36479.36-0.0010.001	42.0	420	21364.0	196000.0	202.4	19.70	439.70	-	0.001	0.001
43.043021449.0204500.0202.619.61449.61-0.0010.00143.543521492.3208825.0202.719.57454.57-0.0010.00144.044021536.0213200.0202.819.53459.53-0.0010.00144.544521580.3217625.0202.919.49464.49-0.0010.00145.045021625.0222100.0203.019.44469.44-0.0010.00145.545521670.3226625.0203.219.40474.40-0.0010.00146.046021716.0231200.0203.319.36479.36-0.0010.001	42.5	425	21406.3	200225.0	202.5	19.66	444.66	-	0.001	0.001
43.543521492.3208825.0202.719.57454.57-0.0010.00144.044021536.0213200.0202.819.53459.53-0.0010.00144.544521580.3217625.0202.919.49464.49-0.0010.00145.045021625.0222100.0203.019.44469.44-0.0010.00145.545521670.3226625.0203.219.40474.40-0.0010.00146.046021716.0231200.0203.319.36479.36-0.0010.001	43.0	430	21449.0	204500.0	202.6	19.61	449.61	-	0.001	0.001
44.044021536.0213200.0202.819.53459.53-0.0010.00144.544521580.3217625.0202.919.49464.49-0.0010.00145.045021625.0222100.0203.019.44469.44-0.0010.00145.545521670.3226625.0203.219.40474.40-0.0010.00146.046021716.0231200.0203.319.36479.36-0.0010.001	43.5	435	21492.3	208825.0	202.7	19.57	454.57	-	0.001	0.001
44.544521580.3217625.0202.919.49464.49-0.0010.00145.045021625.0222100.0203.019.44469.44-0.0010.00145.545521670.3226625.0203.219.40474.40-0.0010.00146.046021716.0231200.0203.319.36479.36-0.0010.001	44.0	440	21536.0	213200.0	202.8	19.53	459.53	-	0.001	0.001
45.045021625.0222100.0203.019.44469.44-0.0010.00145.545521670.3226625.0203.219.40474.40-0.0010.00146.046021716.0231200.0203.319.36479.36-0.0010.001	44.5	445	21580.3	217625.0	202.9	19.49	464.49	-	0.001	0.001
45.545521670.3226625.0203.219.40474.40-0.0010.00146.046021716.0231200.0203.319.36479.36-0.0010.001	45.0	450	21625.0	222100.0	203.0	19.44	469.44	-	0.001	0.001
46.0 460 21716.0 231200.0 203.3 19.36 479.36 - 0.001 0.001	45.5	455	21670.3	226625.0	203.2	19.40	474.40	-	0.001	0.001
	46.0	460	21716.0	231200.0	203.3	19.36	479.36	-	0.001	0.001

0A662X1-PIV-PG-APE002-.doc

46.5	465	21762.3	235825.0	203.4	19.32	484.32	-	0.001	0.001
47.0	470	21809.0	240500.0	203.5	19.27	489.27	-	0.001	0.001
47.5	475	21856.3	245225.0	203.6	19.23	494.23	-	0.001	0.001
48.0	480	21904.0	250000.0	203.7	19.19	499.19	-	0.001	0.001
48.5	485	21952.3	254825.0	203.8	19.15	504.15	-	0.001	0.001
49.0	490	22001.0	259700.0	204.0	19.10	509.10	-	0.001	0.001
49.5	495	22050.3	264625.0	204.1	19.06	514.06	-	0.001	0.001
50.0	500	22100.0	269600.0	204.2	19.02	519.02	-	0.001	0.001
50.5	505	22150.3	274625.0	204.3	18.98	523.98	-	0.001	0.001
51.0	510	22201.0	279700.0	204.5	18.94	528.94	-	0.001	0.001
51.5	515	22252.3	284825.0	204.6	18.89	533.89	-	0.001	0.001
52.0	520	22304.0	290000.0	204.7	18.85	538.85	-	0.001	0.001
52.5	525	22356.3	295225.0	204.8	18.81	543.81	-	0.001	0.001
53.0	530	22409.0	300500.0	205.0	18.77	548.77	-	0.001	0.001
53.5	535	22462.3	305825.0	205.1	18.72	553.72	-	0.001	0.001
54.0	540	22516.0	311200.0	205.2	18.68	558.68	-	0.001	0.001
54.5	545	22570.3	316625.0	205.4	18.64	563.64	-	0.001	0.001
55.0	550	22625.0	322100.0	205.5	18.60	568.60	-	0.001	0.001
55.5	555	22680.3	327625.0	205.6	18.55	573.55	-	0.001	0.001
56.0	560	22736.0	333200.0	205.8	18.51	578.51	-	0.001	0.001
56.5	565	22792.3	338825.0	205.9	18.47	583.47	-	0.001	0.001
57.0	570	22849.0	344500.0	206.0	18.43	588.43	-	0.001	0.001
57.5	575	22906.3	350225.0	206.2	18.38	593.38	-	0.001	0.001
58.0	580	22964.0	356000.0	206.3	18.34	598.34	-	0.001	0.001
58.5	585	23022.3	361825.0	206.5	18.30	603.30	-	0.001	0.001
59.0	590	23081.0	367700.0	206.6	18.25	608.25	-	0.001	0.001
59.5	595	23140.3	373625.0	206.7	18.21	613.21	-	0.001	0.001
60.0	600	23200.0	379600.0	206.9	18.17	618.17	-	0.001	0.001
60.5	605	23260.3	385625.0	207.0	18.13	623.13	-	0.001	0.001
61.0	610	23321.0	391700.0	207.2	18.08	628.08	-	0.001	0.001
61.5	615	23382.3	397825.0	207.3	18.04	633.04	-	0.001	0.001
62.0	620	23444.0	404000.0	207.5	18.00	638.00	-	0.001	0.001
62.5	625	23506.3	410225.0	207.6	17.96	642.96	-	0.001	0.001
63.0	630	23569.0	416500.0	207.8	17.91	647.91	-	0.001	0.001
63.5	635	23632.3	422825.0	207.9	17.87	652.87	-	0.001	0.001
64.0	640	23696.0	429200.0	208.1	17.83	657.83	-	0.001	0.001
64.5	645	23760.3	435625.0	208.2	17.79	662.79	-	0.001	0.001
65.0	650	23825.0	442100.0	208.4	17.74	667.74	-	0.001	0.001
65.5	655	23890.3	448625.0	208.5	17.70	672.70	-	0.001	0.001
66.0	660	23956.0	455200.0	208.7	17.66	677.66	-	0.001	0.001
66.5	665	24022.3	461825.0	208.9	17.62	682.62	-	0.001	0.001
67.0	670	24089.0	468500.0	209.0	17.57	687.57	-	0.001	0.001
67.5	675	24156.3	475225.0	209.2	17.53	692.53	-	0.001	0.001
68.0	680	24224.0	482000.0	209.3	17.49	697.49	-	0.001	0.001

0.8 19.1 7.2

I valori di cedimento ottenuti si attestano a valori di meno di 1cm, per quanto attiene il cedimento istantaneo e poco più di 19 cm per quanto attiene il cedimento di consolidazione primaria relativo alla completa dissipazione delle sovrappressioni indotte dal carico. In relazione al relativamente breve tempo caratteristico di consolidazione primaria, è stato inoltre valutato un cedimento di consolidazione secondaria relativo alla componente di deformazione viscosa tipica dei terreni argillosi compressibili di natura organica. In relazione alla vita utile dell'opera tale contributo appare non trascurabile. Tenendo

0A662X1-PIV-PG-APE002-.doc

conto di una finestra temporale di calcolo dei cedimenti di consolidazione secondaria impostata a +50 anni dal termine della consolidazione primaria si stimano circa 7cm.

Determinando i massimi percorsi di filtrazione individuati attraverso l'analisi delle successioni sabbiose e argillose è stato determinato lo sviluppo temporale del fenomeno della consolidazione primaria. I valori ottenuti mostrano lo sviluppo del 50% dei cedimenti in un tempo prossimo ai 7 anni, con all'80% dei cedimenti attesi a poco meno di 20anni.

	T 5-95	t 5-95	W 5-95
	[-]	[anni]	[cm]
T ₅	0.0017	0.060	0.95
T ₁₀	0.0077	0.270	1.91
T ₁₅	0.0177	0.621	2.86
T ₂₀	0.0314	1.102	3.82
T ₂₅	0.0491	1.723	4.77
T ₃₀	0.0707	2.481	5.72
T ₃₅	0.0962	3.375	6.68
T ₄₀	0.126	4.421	7.63
T ₄₅	0.159	5.579	8.59
T ₅₀	0.197	6.912	9.54
T 55	0.238	8.350	10.49
T ₆₀	0.286	10.034	11.45
T ₆₅	0.342	11.999	12.40
T ₇₀	0.403	14.139	13.36
T ₇₅	0.477	16.736	14.31
T ₈₀	0.567	19.893	15.27
T ₈₅	0.684	23.998	16.22
T ₉₀	0.848	29.752	17.17
T ₉₅	1.129	39.611	18.13

ANDAMENTO TEMPORALE DEI CEDIMENTI

Figura 11.3 – Andamento dei cedimenti nel tempo

11.3 CALCOLO NUMERICO – PLAXIS 2D V.8.2

Il Dominio 2D agli elementi finiti utilizzato per il calcolo dei cedimenti è stato impostato con dimensioni di 70m per 180m. E' stata considerata una geometria assialsimmetrica come rappresentazione del problema reale a tre dimensioni. Il modello assialsimmetrico è tipicamente utilizzato per circolari o quadrate caratterizzate da simmetria radiale e sistema di carico attorno all'asse centrale. Lo stato deformativo e le sollecitazioni indotte quindi, possono assumersi identiche in ogni direzione radiale.

Figura 11.4 – Schema di calcolo per modelli assialsimmetrici

Nel caso dell'area di impronta del nuovo piazzale è stata considerata un impronta con raggio equivalente paria a 160m come rappresentativa dell'impronta quadrata di 280m circa di lato prevista per il nuovo piazzale. I carichi applicati risultano i medesimi applicati per il calcolo analitico. Il modello costitutivo di terreno applicato alle diverse litologie è stato impostato come elastico-perfettamente plastico con criterio di rottura alla Mohr-Coulomb per i materiale sabbiosi, mentre, per cogliere meglio il comportamento compressibile dei materiali argillosi Normal-Consolidati, è stato tarato un modello avanzato Soft-Soil con incrudimento sulla base del modello Cam-Clay, tenendo in conto i parametri di compressibilità ottenuti dalle prove edometriche.

Figura 11.6 – Configurazione deformata

Figura 11.7 – Valori di cedimento verticale

I valori massimi di cedimento determinati attraverso l'analisi agli elementi finiti si attestano a poco meno di 17cm, a conferma con quanto ottenuto dal calcolo analitico.

I tempi di sviluppo di tale aliquota di cedimento si attestano attorno ai 9 anni, a mostrare un fenomeno più veloce rispetto a quanto verificato dal calcolo analitico. Tale aspetto risulta senz'altro imputabile alla elevata permeabilità delle intercalazioni sabbiose che caratterizzano i materiali argillosi, oltre che alla effettiva configurazione stratigrafica modellata, per la quale le coperture sabbiose costituiscono via di dissipazione preferenziale per le sovrappressioni che si manifestano negli strati coesivi.

12 CARATTERIZZAZIONE SISMICA DEL SOTTOSUOLO

La caratterizzazione sismica dei litotipi la determinazione della categoria di sottosuolo ai sensi delle NTC08 è stata effettuata sulla base delle misure dirette delle velocità di propagazione delle onde di taglio V_s , effettuate con il piezocono sismico s-CPTu, incrociate con le relative misure H/R e stendimenti sismici tipo MASW. I valori ricavati dalle prove sono stati mediati in relazione allo spessore degli strati ai fini della valutazione di $V_{s,30}$, parametro ritenuto significativo per valutazione della categoria di sottosuolo ai fini delle analisi simiche.

Tale parametro si esprime quindi attraverso la seguente relazione:

$$V_{s,30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_{s,i}}}$$

Dove h_i e $V_{s,i}$ sono rispettivamente lo spessore degli strati e le velocità medie misurate per ciascuno di esso per i primi 30m.

Una stima del modulo di taglio iniziale per bassi valori di deformazione G_0 è stata ricavata sulla base della teoria di propagazione delle onde elastiche in un mezzo di massa volumica nota, sulla base della seguente espressione:

$$G_0 = \rho \cdot V_s$$

Si riportano di seguito i risultati di tali analisi.

	PW1s						
Z	Vs	V _{S,i}	G ₀	G _{0,i}			
[m]	[m/s]	[m/s]	[MPa]	[MPa]			
1,0	290		171				
2,0	229		107				
3,0	198	212	80	02			
4,0	188	213	72	93			
5,0	186		71				
6,0	188		72				
7,0	214		93				
8,0	213		92				
9,0	232		110				
10,0	227		105				
11,0	225		93				
12,0	216		86				
13,0	209	207	80	78			
14,0 15,0 16,0	215		85				
	190		66				
	185		63				
17,0	206		78				
18,0	175		56				
19,0	178		58				
20,0	202		75				
21,0	182		61				
22,0	189		66				
23,0	238		104				
24,0	260		124				
25,0	227		95				
26,0	256		127				
27,0	214	225	89	00			
28,0	215	225	90	70			
29,0	216		90				
30,0	213		88				
31,0	232		104				
32,0	256		127				
33,0	228		101				
34,0	248		119				
35,0	222		95				

V _{S,30}	214
Cs	С

La categoria di sottosuolo ottenuta in relazione alla verticale sismica indagata, è la **categoria C**, dove lo stato di addensamento delle litologie evidenziano un discreto contributo di amplificazione sismica.

La definizione riportate al paragrafo 3.2.2 delle NTC08 è le seguente:

Categoria di sottosuolo C - Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT,30 < 50 nei terreni a grana grossa e 70 < cu,30 < 250 kPa nei terreni a grana fina).

Si riportano di seguito gli andamenti delle velocità delle onde di taglio V_S e del modulo di taglio a basse deformazioni G_0 determinati attraverso le misure effettuate. L'andamento delle V_S , si mostra in generale piuttosto costante con la profondità e non mostra in maniera netta il passaggio litologico tra i litotipi sabbiosi più superficiali e quelli argillosi più profondi, ad evidenziare una risposta sismica di sito

Tali valutazioni risultano di particolare rilevanza in ambito di modellazione geotecnica sismica, pertanto, dovranno valutarsi nelle fasi successive di progettazione eventuali approfondimenti in questo senso.

PW1s V_s [m/s]

Figura 12.1 – Andamento di V_{S} con la profondità

PW1s G₀ [MPa]

Figura 12.2 – Andamento di Go con la profondità

La definizione di categoria di sottosuolo e la relativa stima delle velocità delle onde di taglio ottenuta dall'analisi dei risultati del piezocono sismico, appare congruente con i valori ottenuti attraverso le misure H/R e relativi stendimenti sismici tipo MASW.

Figura 12.3 – Risultati misure H/R

300 3 Velocità [m/s]

Figura 12.4 – Risultati stendimento sismico MASW 1

Figura 12.5 – Risultati stendimento sismico MASW 2

13 AZIONE SISMICA DI PROGETTO

Definita la categoria di sottosuolo e quindi le proprietà sismo-amplificatrici dei terreni di imposta è possibile definire le azioni sismiche di progetto ai differenti Stati Limite previsti ai sensi del § 3.2 delle NTC08. L'individuazione dei parametri sito-dipendenti per la definizione dell'azione sismica di progetto sotto forma di spettri di risposta in accelerazione è stata effettuata rispetto alle effettive coordinate ggeografiche dell'area individuata per la realizzazione dei nuovi piazzali e relative opere civili accessorie. Per quanto attiene i parametri di riferimento legati alla Classe d'uso e Vita nominale, sono stati assunti $C_U = 1.5$, relativamente ad una Classe d'uso III e $V_N = 50$ anni.

LAT	LONG	V _N	cl.d'uso	Cu	V _R
[°]	[°]	[anni]	[-]	[-]	[anni]
41.78739	12.2442	50	III	1.5	75

Figura 13.1 – Punto di determinazione delle coordinate geografiche

Figura 13.3 – Mappa di pericolosità sismica dell'area per SLD P_{VR} =63%

Figura 13.4 – Mappa di pericolosità sismica dell'area per SLV PvR=10%

Figura 13.5 – Mappa di pericolosità sismica dell'area per SLC PvR=5%

Si riportano di seguito i parametri spettrali per l'area di studio ricavati in accordo con il § 3.2 delle NTC08 e relativi allegati.

Stato limite	P _{vr} [%]	T _R [anni]	a g [g]	F ₀ [-]	T c* [S]
SLO	81%	45	0.036	2.582	0.247
SLD	63%	75	0.043	2.596	0.272
SLV	10%	712	0.082	2.770	0.330
SLC	5%	1462	0.097	2.827	0.346

	Parametri	dipendenti						
Stato limite	a g [g]	F₀ [-]	T c* [S]	S s [-]	С _с [-]	S т [-]	S [-]	a_{max} [g]
SLO	0.036	2.582	0.247	1.500	1.665	1.000	1.500	0.054
SLD	0.043	2.596	0.272	1.500	1.613	1.000	1.500	0.064
SLV	0.082	2.770	0.330	1.500	1.513	1.000	1.500	0.123
SLC	0.097	2.827	0.346	1.500	1.491	1.000	1.500	0.146

Parametri indipendenti								
Stato	h	Τ _B	Tc	T _D				
limite	[-]	[S]	[S]	[S]				
SLO	1.000	0.137	0.412	1.744				
SLD	1.000	0.146	0.439	1.771				
SLV	1.000	0.167	0.500	1.927				
SLC	1.000	0.172	0.515	1.989				

Figura 13.6 – Spettri di risposta elastici per i diversi SL

Figura 13.7 – Spettri di risposta in componente orizzontale e verticale per SLO

Figura 13.8 – Spettri di risposta in componente orizzontale e verticale per SLD

Figura 13.9 – Spettri di risposta in componente orizzontale e verticale per SLV

Figura 13.10 - Spettri di risposta in componente orizzontale e verticale per SLC

14 ANALISI DI RISPOSTA SISMICA LOCALE

In relazione alle evidenze emerse dalla campagna di indagini geognostiche, nella fattispecie, relativamente agli elevati spessori di materiali sciolti sabbio-limosi e limo-argillosi individuati, è stato predisposto uno studio di risposta sismica locale specifico basato su modelli mono-dimensionali di propagazione dell'input sismico di tipo. Tale studio si prefigge l'obbiettivo di valutare in modo specifico i fenomeni di amplificazione attesi per la successione stratigrafica individuata e confrontarne i risultati in termini di a_{max}, accelerazione massima attesa al sito, o PGA (Peak Ground Acceleration), rispetto determinati attraverso i parametri spettrali forniti dalle NTC08 e i relativi coefficienti amplificativi ottenuti dalle metodologie semplificate riportati nelle suddette Norme.

Tale studio è stato basato, oltre che sulle caratterizzazione geologico stratigrafica adottata per la modellazione geotecnica di progetto e sulle proprietà sismiche specifiche dei litotipi individuati, su specifici accelerogrammi di sito spettro-compatibili ricavati attraverso la banca dati fornita dalle recenti Linee Guida regionali in ambito di studi di risposta sismica locale e microzonazione sismica di Livello 3.

La Regione Lazio, infatti, ha commissionato ad ENEA l'analisi della pericolosità sismica regionale con l'obiettivo di raggruppare le Unità Amministrative Sismiche (UAS) in Gruppi con caratteristiche sismologiche omogenee. A partire dagli spettri di risposta ad hazard uniforme calcolati dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV- probabilità di eccedenza inferiore al 10% in 50 anni - SLV) per l'intero territorio nazionale.

Gli accelerogrammi naturali sono stati selezionati e scalati in modo da approssimare gli spettri di risposta nel campo di periodi di interesse per il problema in esame, come previsto per le analisi dinamiche dei "sistemi geotecnici" (terreno-fondazione). Per suddette analisi le Norme raccomandano l'utilizzo di non meno di 5 accelerogrammi spettro-compatibili.

Sono state così individuate, per il sito di progetto, le 5 registrazioni accelerometriche naturali aventi le forme spettrali più simili allo spettro ad hazard uniforme rappresentativo del Gruppo. Tali registrazioni sono state ulteriormente adattate allo spettro di riferimento seguendo una metodologia che consente di mantenere le caratteristiche naturali degli accelerogrammi.

Accelerogrammi UAS - Fiumicino Archivio – ENEA- Regione Lazio
ENEA - Regione Lazio - 1258120_000_A
ENEA - Regione Lazio - 1258120_000_B
ENEA - Regione Lazio - 1258120_000_C
ENEA - Regione Lazio - 1258120_000_D
ENEA - Regione Lazio - 1258120_000_E

Tale accelerogrammi, riferiti ad un affioramento rigido di superficie (*Outcrop*) -Suolo di Categoria A – NTC08), sono stati utilizzati nelle analisi dinamiche con modelli numerici del suolo in termini di input sismico applicato al substrato rigido. Tale approccio ha consentito di analizzare la

propagazione del segnale attraverso la successione stratigrafica individuata per il sito e quindi di ricavare i specifici fattori di amplificazione attesi per tali input sismici e quindi le massime accelerazioni attese in superficie.

Tale procedimento è stato sviluppato tramite specifiche tecniche di deconvoluzione implementate nel codice di calcolo EERA (*Equivalent-linear Earthquake Site Response Analyses of Layered Soil Deposits, Bardet et al., 2000*).

Tale codice di calcolo consente di sviluppare analisi di propagazione dell'input sismico in termini di tensioni totali, e permette una valutazione del profilo di accelerazione e deformazione tangenziale massime lungo una verticale rappresentativa del modello geologico-stratigrafico elaborato, interfacciato con i dati sismici ricavati dalle misure di piezocono sismico e MASW.

Il codice EERA tiene in considerazione il comportamento ciclico del terreno mediante l'implementazione di un modello lineare-equivalente schematizzandolo come un sistema di N strati orizzontali omogenei, isotropi e visco-elastici, sovrastanti un semispazio uniforme, attraversati da un treno di onde di taglio che incidono verticalmente le superfici.

Ogni strato è descritto per mezzo dello spessore H, del modulo di taglio massimo G_{max} o dalla corrispondente velocità massima V_s, dal valore dello smorzamento D, dal peso dell'unità di volume (o alla densità di massa $\Gamma = g/g$) e dalle curve di decadimento del modulo di rigidezza a taglio normalizzato $(G/G_0 - \gamma)$ e le corrispondenti curve dello smorzamento $(D - \gamma)$ con la deformazione di taglio γ .

Figura 14.1 – Modello di calcolo implementato in EERA

La risposta sismica del deposito di terreni viene quindi valutata attraverso un'analisi viscoelastica lineare equivalente che consiste in una serie di analisi lineari, con aggiornamento successivo dei valori della rigidezza a taglio $G(\gamma)$ e dello smorzamento $D(\gamma)$ fino al soddisfacimento di un criterio di convergenza sulle deformazioni.

La procedura lineare equivalente include le seguenti fasi: assunto l'accelerogramma associato al terremoto di riferimento e ottenuto da esso, mediante le trasformate dirette (FFT), il corrispondente spettro di Fourier, la funzione di trasferimento consente di ottenere lo spettro lungo la superficie di separazione tra due generici strati contigui. Da esso, con un'operazione inversa (IFFT), si ottiene il corrispondente l'accelerogramma nel dominio del tempo e mediante doppia integrazione nel tempo, si ricavano gli spostamenti orizzontali alla profondità considerata e, derivandoli rispetto a z, si valuta la variazione temporale della deformazione di taglio insieme al suo valore massimo.

Figura 14.2 – Procedura di calcolo implementata in EERA

La deformazione di taglio effettiva, da utilizzare per il passo successivo, attraverso il confronto progressivo della differenza tra la deformazione assunta e quella calcolata fino a convergenza rispetto agli scarti di tolleranza imposti al calcolo (in genere < 0.1%).

Al termine dell'elaborazione è possibile valutare i parametri tensio-deformativi del semispazio in termini di profili di massima deformazione distorsionale (*maximum shear strain* %) e massimo sforzo tangenziale (*maximum shear stress* %), profilo del modulo di rigidezza dinamico (G/G_{max}) e del fattore di smorzamento (*D-Damping Ratio* %), e profilo di variabilità dell'accelerazione nel banco di terreni.

In termini di caratteristiche dinamiche è possibile ricavare quindi l'andamento in frequenza del rapporto di amplificazione (A) e del relativo spettro in frequenza di Fourier e spettro di risposta attesi per il semispazio analizzato sotto l'input sismico applicato.

Il profilo delle velocità delle onde di taglio implementate nel software sono state ricavate dalle misure di piezocono sismico e MASW, mentre le curve di decadimento del modulo di rigidezza dinamico e fattore di smorzamento D, in assenza di specifiche prove di caratterizzazione dinamica sono state mutuate da studi di letteratura (*Seed & Idriss 1970 - Idriss 1990*).

Figura 14.3 – Profilo di velocità delle onde di taglio Vs e modulo di rigidezza tagliante Gmax

Figura 14.4 – Curva di decadimento rapporto delle rigidezze taglianti per argille (Seed & Idriss 1970) - e fattore di smorzamento (Idriss 1990)

Figura 14.5 – Curva di decadimento rapporto delle rigidezze taglianti per sabbie (Seed & Idriss 1970) - e fattore di smorzamento (Idriss 1990)

Figura 14.6 – Accelerogramma 1 - ENEA - Regione Lazio - 1258120_000_A

Figura 14.7 – Profili di massima deformazione e tensione tangenziale per accelerogramma 1 - ENEA -Regione Lazio - 1258120_000_A

Figura 14.8 – Profili di massima deformazione, massime tensioni tangenziali ed accelerazioni per accelerogramma 1 - ENEA - Regione Lazio - 1258120_000_A

Figura 14.9 – Fattore di amplificazione, spettro di Fourier e spettro di risposta in accelerazione per accelerogramma 1 - ENEA - Regione Lazio - 1258120_000_A

Figura 14.10 - Accelerogramma 2 - ENEA - Regione Lazio - 1258120_000_B

Figura 14.11 – Profili di massima deformazione, massime tensioni tangenziali ed accelerazioni per accelerogramma 2 - ENEA - Regione Lazio - 1258120_000_B

Figura 14.12 – Profili di massima deformazione, massime tensioni tangenziali ed accelerazioni per accelerogramma 2 - ENEA - Regione Lazio - 1258120_000_B

Figura 14.13 – Fattore di amplificazione, spettro di Fourier e spettro di risposta in accelerazione per accelerogramma 2 - ENEA - Regione Lazio - 1258120_000_B

Figura 14.14 - Accelerogramma 3 - ENEA - Regione Lazio - 1258120_000_C

Figura 14.15 – Profili di massima deformazione e tensione tangenziale per accelerogramma 3 - ENEA -Regione Lazio - 1258120_000_C

Figura 14.16 – Profili di massima deformazione, massime tensioni tangenziali ed accelerazioni per accelerogramma 3 - ENEA - Regione Lazio - 1258120_000_C

Figura 14.17 – Fattore di amplificazione, spettro di Fourier e spettro di risposta in accelerazione per accelerogramma 3 - ENEA - Regione Lazio - 1258120_000_C

Figura 14.18 - Accelerogramma 4 - ENEA - Regione Lazio - 1258120_000_D

Figura 14.19 – Profili di massima deformazione e tensione tangenziale per accelerogramma 4 - ENEA -Regione Lazio - 1258120_000_D

Figura 14.20 – Profili di massima deformazione, massime tensioni tangenziali ed accelerazioni per accelerogramma 4 - ENEA - Regione Lazio - 1258120_000_D

Figura 14.21 – Fattore di amplificazione, spettro di Fourier e spettro di risposta in accelerazione per accelerogramma 4 - ENEA - Regione Lazio - 1258120_000_D

Figura 14.22 – Accelerogramma 5 - ENEA - Regione Lazio - 1258120_000_E

Figura 14.23 – Profili di massima deformazione e tensione tangenziale per accelerogramma 5 -ENEA - Regione Lazio - 1258120_000_E

Figura 14.24 – Profili di massima deformazione, massime tensioni tangenziali ed accelerazioni per accelerogramma 5 - ENEA - Regione Lazio - 1258120_000_E

Figura 14.25 – Fattore di amplificazione, spettro di Fourier e spettro di risposta in accelerazione per accelerogramma 5 - ENEA - Regione Lazio - 1258120_000_E

I risultati ottenuti in ambito di studio di risposta sismica loicale possono essere quindi sintetizzati nella seguente tabella.

Accelerogrammi UAS - Fiumicino	T _f	f _f	f _{a,max}	A _{max}	f _F	ab	as	Α	PGA=a _{max}
ENEA - Regione Lazio	[s]	[Hz]	[Hz]	[-]	[Hz]	[g]	[g]	[-]	
1258120_000_A	0.99	1.01	1.00	3.750	4.46	0.0569	0.1145	1.970	0.114
1258120_000_B	0.99	1.01	1.00	3.678	2.49	0.0611	0.0968	2.250	0.096
1258120_000_C	0.99	1.01	1.00	3.784	1.00	0.0536	0.1357	3.784	0.135
1258120_000_D	0.99	1.01	1.00	3.745	4.27	0.0555	0.1285	1.750	0.128
1258120_000_E	0.99	1.01	1.00	3.794	2.70	0.0557	0.1082	2.680	0.108

MEDIA	2.487	0.117
-------	-------	-------

Il valore di periodo proprio di vibrazione del banco di terreno (T_f , valore per il quale si attinge la massima amplificazione del segnale sismico) è stato valutato in 0.99s.

Tale valore di periodo proprio del banco ricavato dall'analisi, coincide peraltro con le misure HVSR (*Horizontal to Vertical Spectral Ratio*) effettuate in sito tramite misure di tromino.

Figura 14.26 – Misure HVRS in sito tramite tromino

Rispetto a tale valore di periodo si ottengono valori di fattore di amplificazione massima A_{max} compresi tra 3.67 e 3.79 per i rispettivi segnali sismici.

Rispetto alle frequenze di massima energizzazione ricavate dagli spettri di Fourier, valori compresi tra 1 e 4.46, i coefficienti di amplificazione a tali frequenze si stimano in valori compresi tra 1.75 e 3.78 rispetto ai valori di accelerazione imposti dall'input scelto.

I valori di massima accelerazione spettrale quindi, ricavati dagli spettri di risposta, mostrano valori massimi attesi al sito (*PGA*) compresi tra 0.096g e 0.135g con valore medio di 0.117g, valore praticamente coincidente con l'accelerazione massima ricavata tramite i dati di classificazione sismica delle NTC 08 per il medesimo SL (0.123g).

Stato	ag	Ss	ST	S	a _{max}
limite	[g]	[-]	[-]	[-]	[g]
SLV	0.082	1.500	1.000	1.500	0.123

15 VERIFICA DEL POTENZIALE DI LIQUEFAZIONE

15.1 GENERALITÀ

Per quanto attiene la verifica del rischio potenziale alla liquefazione il §7.11.3.4.2 delle NTC 08 individua la concomitanza di una serie di condizioni legate ad intensità sismica e caratteristiche fisiche e meccaniche dei litotipi affinché sia necessario sviluppare specifiche verifiche del potenziale di liquefazione dei terreni, nella fattispecie:

1. eventi sismici attesi di magnitudo M inferiore a 5;

2. accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di campo libero) minori di 0,1g;

3. profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano campagna sub-orizzontale e strutture con fondazioni superficiali;

4. depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata $(N_1)_{60} > 30$ oppure $q_{c1N} > 180$ dove $(N_1)_{60}$ è il valore della resistenza determinata in prove penetrometriche dinamiche (Standard Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa e q_{c1N} è il valore della resistenza determinata in prove penetrometriche statiche (Cone Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa;

5. distribuzione granulometrica esterna alle zone indicate nelle figure successive nel caso di terreni con coefficiente di uniformità $U_c < 3,5$) e nel caso di terreni con coefficiente di uniformità $U_c > 3,5$.

Figura 15.1 – Fuso granulometrico per potenziale liquefazione per Uc < 3.5

Figura 15.2 – Fuso granulometrico per potenziale liquefazione per $U_c > 3.5$

Per il nostro caso, i litotipi riconosciuti come potenzialmente liquefacibili sono rappresentati dalle Unità geotecniche A e B per i quali rispetto alle caratteristiche granulometriche, alla pressoché stabile condizione di saturazione e alle entità degli input sismici così come caratterizzati ai paragrafi precedenti rispetto alle massime accelerazioni attese al sito, è necessario condurre specifiche verifiche nei confronti di potenziale fenomeni di liquefazione sotto azione sismica.

15.2 DEFINIZIONE DELL'INPUT SISMICO

La definizione dell'input sismico in termini di magnitudo del momento sismico M_{aw} è stata sviluppata in modo duale, e nella fattispecie, sia attraverso una analisi di tipo storico rispetto ai fenomeni sismici accertati all'interno di un'area circolare di raggio pari a 50 km dal punto di ubicazione delle opere di progetto (<u>http://emidius.mi.ingv.it/</u>), sia facendo riferimento ai diagrammi di disaggregazione ricavati dalle mappe di pericolosità sismica del territorio italiano (<u>http://esse1-gis.mi.ingv.it/</u>).

Il valore di magnitudo massima ricavato dall'analisi dei sismi storici risulta paria a 5.53, mentre varia tra 4.0 e 5.5 per le analisi di disaggregazione. Ai fini delle verifiche del potenziale di liquefazione si è scelto di applicare il valore massimo (M_{aw} =5.53).

Anno	Ме	Gi	Or	Mi	Se	AE	Lat	Lon	Maw	Mas	Msp	ZS9
801	4	29	20			ROMA	41.9	12.48	5.37	5.1	5.27	-
1484	1	19				MONTEROTONDO	42.09	12.562	5.06	4.64	4.84	-
1577	6	6				VELLETRI	41.683	12.783	4.83	4.3	4.53	922
1748	9	17	24			FRASCATI	41.783	12.683	4.83	4.3	4.53	922
1750	1	28				ALBANO	41.667	12.583	4.83	4.3	4.53	922
1754	6	8	1	20		ROCCA DI PAPA	41.833	12.783	4.83	4.3	4.53	922
1773	3					COLLI ALBANI	41.839	12.831	5.03	4.6	4.8	922
1773	6	22				ALBANO	41.717	12.667	4.63	4	4.25	922
1781	2	25				ALBANO	41.717	12.667	4.63	4	4.25	922
1782	9	24	11	30		ROCCA DI PAPA	41.817	12.717	5.17	4.8	4.99	922
1784	3					ALBANO	41.75	12.667	4.83	4.3	4.53	922
1800	12	29	10	15		VELLETRI	41.683	12.783	5.17	4.8	4.99	922
1806	8	26	7	35		COLLI ALBANI	41.72	12.73	5.47	5.25	5.41	922
1810	7	13	13			ALBANO	41.717	12.667	5.17	4.8	4.99	922
1811	2	18	2	15		ROMA	41.85	12.567	4.83	4.3	4.53	922
1812	3	22	2	20		ROMA	41.895	12.482	5.03	4.6	4.8	-
1829	6	1	9			COLLI ALBANI	41.75	12.68	5.17	4.8	4.99	922
1855	6	29	3	3		FRASCATI	41.8	12.683	4.63	4	4.25	922
1861	12	12	6	10		ROCCA DI PAPA	41.817	12.717	5.03	4.6	4.8	922
1876	10	26	14	18		PALESTRINA	41.827	12.784	5.03	4.6	4.8	922
1877	8	16	12	24		ROCCA DI PAPA	41.744	12.754	4.63	4	4.25	922
1883	3	16				ALBANO	41.831	12.828	5.03	4.6	4.8	922
1883	9	2	7	3		FRASCATI	41.807	12.765	4.63	4	4.25	922
1884	2	6	23	30		ALBANO	41.72	12.671	5.17	4.8	4.99	922
1884	8	7	2	15		ROCCA DI PAPA	41.767	12.717	4.83	4.3	4.53	922
1886	1	17	7	10		ALBANO	41.713	12.679	5.17	4.8	4.99	922
1892	1	22				COLLI ALBANI	41.725	12.712	5.17	4.8	4.99	922
1893	3	12		6		ALBANO	41.717	12.667	4.63	4	4.25	922
1895	11	1				CASTELPORZIANO	41.768	12.44	4.83	4.3	4.53	922
1899	7	19	13	18	54	COLLI ALBANI	41.8	12.68	5.18	4.82	5.01	922
1902	3	11	14	19		FRASCATI	41.8	12.683	4.83	4.3	4.53	922
1906	2	21	20	49		ALBANO	41.75	12.667	4.83	4.3	4.53	922
1909	8	31	13	41	15	M.MARIO	41.95	12.383	4.83	4.3	4.53	-

1911	4	10	9	43	38	FRASCATI	41.817	12.667	4.65	4.03	4.28	922
1919	10	22	6	10		ANZIO	41.537	12.684	5.53	5.33	5.48	922
1927	12	26	15	6	14	COLLI ALBANI	41.7	12.7	5.02	4.58	4.79	922
1949	6	4	22	30		NEPI	42.217	12.417	4.83	4.3	4.53	-
1969	7	2	7	55		TOLFA	42.168	12.002	5.08	4.67	4.87	921
2004	10	05	23	12	22	MONTI TIBURTINI	41.908	12.995	2.93	-	-	-
2004	12	12	11	52	33	TIRRENO CENTRALE	-	-	4.14	-	-	-
2004	12	18	09	12	47	TIRRENO CENTRALE	-	-	4.65	-	-	-
2005	08	22	12	02	8	ANZIO	41.575	12.564	4.58	-	-	-

Figura 15.3 – Grafico di disaggregazione ricavato dalle mappe di pericolosità sismica SLV - P_{VR} =10%

Figura 15.4 – Grafico di disaggregazione ricavato dalle mappe di pericolosità sismica SLC - PvR=5%

15.3 VERIFICHE A LIQUEFAZIONE

Le verifiche a liquefazione sono state condotte con metodi di tipo empirico – semplificato basati principalmente sui risultati di prove in sito nella fattispecie prove SPT, CPTu e sismiche oltre che chiaramente su parametri relativi l'input sismico di progetto così come caratterizzato ai punti precedenti.

Metodo
Youd e Perkins (1978)
Andrus e Stokoe (1997)
Iwasaki at al.
Tokimatsu e Yoshimi (1983)
Seed e Idriss (1985) - Modificato
Sherif e Ishibashi - (1978) - Campione CR1
Sherif e Ishibashi - (1978) - Campione CR2
Sherif e Ishibashi - (1978) - Campione CR3
EC8 - Seed e Idriss (1982) - NSPT
EC8 - Seed e Idriss (1982) - CPTu - PW1s
EC8 - Seed e Idriss (1982) - CPTu - PW2
EC8 - Seed e Idriss (1982) - CPTu - PW3
EC8 - Seed e Idriss (1982) - CPTu - PW4

Criterio di Youd e Perkins (1978)

Tipo deposito		Età del d		
	<500 anni	Olocene	Pleistocene	Pre-Pleistocene
		Depositi continentali		
Canali fluviali	Molto alta	Alta	Bassa	Molto bassa
Pianure di	Alta	Moderata	Bassa	Molto bassa
esondazione				
alluvionali	Moderata	Bassa	Bassa	Molto bassa
Spianate e terrazzi marini		Bassa	Molto bassa	Molto bassa
Deltaici	Alta	Moderata	Bassa	Molto bassa
Lacustri	Alta	Moderata	Bassa	Molto bassa
Colluvioni	Alta	Moderata Bassa		Molto bassa
Scarpate	Bassa	Bassa	Molto bassa	Molto bassa
Dune	Alta	Moderata	Bassa	Molto bassa
Loess	Alta	Alta	Alta	Molto bassa
Glaciali	Bassa	Bassa	Molto bassa	Molto bassa
Tuff	Bassa	Bassa	Molto bassa	Molto bassa
Tephra	Alta	Alta	?	?
Terreni residuali	Bassa	Bassa	Molto bassa	Molto bassa
Sebkha	Alta	Moderata	Bassa	Molto bassa
		Zone costiere		
Deltaici	Molto alta	Alta	Bassa	Molto bassa
Di estuario	Alta	Moderata	Bassa	Molto bassa
Di spiaggia con	Moderata	Bassa	Molto bassa	Molto bassa
elevata energia				
delle onde				
Di spiaggia con	Alta	Moderata	Bassa	Molto bassa
bassa energia				
delle onde				
Lagunari	Alta	Moderata	Bassa	Molto bassa
Litorali	Alta	Moderata	Bassa	Molto bassa
		Riempimenti artificiali		
Non compattati	Molto alta			
Compattati	Bassa			

Metodo di Andrus e Stokoe (1997)

Spessore	γ	Vs	σ _{VO}	σ' _{VO}	FC	Vsl	Vslc
[m]	[kg/m ³]	[m/s]	[kg/cm ²]	[kg/cm ²]	[%]	[m/s]	[m/s]
6 13	2000 2100	213 207	$\begin{array}{c} 1.20 \\ 2.73 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$	0.60 1.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	19 25	242 189 0 0 0 0 0 0 0 0 0 0 0 0 0 0	210.67 206.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R	Т	FS			Zona 3	a _{max}	0.15

M	5.53
MSF	2.7334

R T FS 0.1433 0.0069 20.64 0.1545 0.0057 26.92 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00		
0.14330.006920.640.15450.005726.920.00000.00000.000.00000.00000.000.00000.00000.000.00000.00000.000.00000.00000.00	Т	FS
0.0000 0.0000 0.000 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00	33 0.0069 45 0.0057 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000	20.64 26.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

- γ Peso di volume terreno
- FC Percentuale di fine
- T sforzo tagliante indotto dal sisma
- R resistenza al taglio mobilitabile nello strato
- M Magnitudo del sisma di riferimento
- MSF Coefficiente correttivo
- σ_V Tensione verticale
- σ'_{VO} Tensione verticale efficace
- Vsl e Vslc Fattori correttivi

Il deposito è considerato non liquefacibile se Fs >1.

Metodo di Iwasaki at al.

Profondità [m]	γ [kɑ/m ³]	Nspt [colpi/piede]	σ _{VO} [kg/cm ²]	σ' _{VO} [kg/cm²]	d ₅₀ [mm]	R	т	FS
100g	[Kg/m]	[colp#pload]	[kg/offi]	[kg/offi]	[]			
3	2000	25	0.60	0.30	0.102	0.1555	0.0071	21.88
6	2100	15	1.26	0.66	0.1	0.0938	0.0066	14.16
9	2100	27	1.89	0.99	0.085	0.2385	0.0065	36.89
			0.00	0.00		0.0000	0.0000	0.00
			0.00	0.00		0.0000	0.0000	0.00
			0.00	0.00		0.0000	0.0000	0.00
			0.00	0.00		0.0000	0.0000	0.00
			0.00	0.00		0.0000	0.0000	0.00
			0.00	0.00		0.0000	0.0000	0.00
			0.00	0.00		0.0000	0.0000	0.00
			0.00	0.00		0.0000	0.0000	0.00
			0.00	0.00		0.0000	0.0000	0.00
			0.00	0.00		0.0000	0.0000	0.00
			0.00	0.00		0.0000	0.0000	0.00
		1						
			3				ſ	
Zona 3	a _{max}	0.15			M	5.53		
					MSF	2.7334		

Falda	0.00	[m]

γ Peso di volume terreno

d₅₀ Particelle corrispondente al 50% di passante

- T sforzo tagliante indotto dal sisma
- R resistenza al taglio mobilitabile nello strato

M Magnitudo del sisma di riferimento

MSF Coefficiente correttivo

 $\sigma_{V} \qquad \text{Tensione verticale} \qquad \qquad$

 $\sigma'_{\text{ VO}} \quad \text{ Tensione verticale efficace}$

Il deposito è considerato non liquefacibile se **Fs** >1.

Metodo di Tokimatsu e Yoshimi (1983)

Spessore	γ	Nspt	σ_{VO}	FC	N1	Na
[m]	[kg/m ³]	[colpi/piede]	[kg/cm ²]	[%]	[colpi/piede]	[colpi/piede]
6 13	2000 2100	25 15	1.20 2.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	21 30	2.14 3.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.51 10.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R	т	FS		
0.6539	0.0069	94.2158		
0.1358	0.0057	23.6511		
0.0000	0.0000	0.0000		
0.0000	0.0000	0.0000		
0.0000	0.0000	0.0000		
0.0000	0.0000	0.0000		
0.0000	0.0000	0.0000		
0.0000	0.0000	0.0000		
0.0000	0.0000	0.0000		
0.0000	0.0000	0.0000		
0.0000	0.0000	0.0000		
0.0000	0.0000	0.0000		
0.0000	0.0000	0.0000		
0.0000	0.0000	0.0000		
0.0000	0.0000	0.0000		

M	5.53
MSF	2.7334

Zona 3

0.15

Falda 0.00 [m]

a_{max}

Si considera non liquefacibile un deposito in cui sia Fs > 1.3 (sabbie sciolte) o Fs >1.5 (sabbie mediamente addensate).

- γ Peso di volume terreno
- FC Percentuale di fine
- T sforzo tagliante indotto dal sisma
- R resistenza al taglio mobilitabile nello strato
- M Magnitudo del sisma di riferimento
- MSF Coefficiente correttivo
- σ_V Tensione verticale
- N1 Fattore correttivo
- Na Valore corretto di Nspt

Metodo di Seed e Idriss (1985) - Modificato

Diametr	o del foro	65	[mm]		Cb	1.00]	
Tipo di ca	mpionatore	Sta	ndard		Cs	1.00		
					Tantas		- -	
Spessore	γ	ER	Nspt	FC	σ_{VO}	σ_{VO}	N _{60c}	
[m]	[kg/m [°]]	[%]	[colpi/piede]	[%]	[kg/cm ²]	[kg/cm ²]	[colpi/piede]	
6	2000	60	25	21	1.20	0.60	24.85	
13	2100	60	15	30	2.73	1.43	15.19	
					0.00	0.00	0.00	
					0.00	0.00	0.00	
					0.00	0.00	0.00	
					0.00	0.00	0.00	
					0.00	0.00	0.00	
					0.00	0.00	0.00	
					0.00	0.00	0.00	
					0.00	0.00	0.00	
					0.00	0.00	0.00	
							1	
CN	CE	Cr	fa	fb	rd	R	Т	FS
0.913	1.00	0.85	3.78	1.09	0.9541	0.2802	0.0069	40.37
0.605	1.00	1.00	4.71	1.15	0.8269	0.1642	0.0057	28.59
0.000	0.00	0.00	0.00	0.00	0.0000	0.0480	0.0000	0.00
0.000	0.00	0.00	0.00	0.00	0.0000	0.0480	0.0000	0.00
0.000	0.00	0.00	0.00	0.00	0.0000	0.0480	0.0000	0.00
0.000	0.00	0.00	0.00	0.00	0.0000	0.0480	0.0000	0.00
0.000	0.00	0.00	0.00	0.00	0.0000	0.0480	0.0000	0.00
0.000	0.00	0.00	0.00	0.00	0.0000	0.0480	0.0000	0.00
0.000	0.00	0.00	0.00	0.00	0.0000	0.0480	0.0000	0.00
0.000	0.00	0.00	0.00	0.00	0.0000	0.0480	0.0000	0.00
0.000	0.00	0.00	0.00	0.00	0.0000	0.0480	0.0000	0.00
a _{max}	0.15	Zona 3]	Falda	0.00	[m]]	
M	5 5 2	ſ						
MSF	2.7334			NOTA:	S > 1 Non lie	quefacibile	1	

1/	Peso di volume terreno	

ER efficienza del sistema d'infissione utilizzato

- FC Percentuale di fine
- N_{60c} Nspt riferito ad una energia pari al 60%
- T sforzo tagliante indotto dal sisma
- R resistenza al taglio mobilitabile nello strato
- M Magnitudo del sisma di riferimento
- MSF Coefficiente correttivo

 σ ν
 Tensioni verticali

 CN, CE;Cr
 Coefficienti correttivi

 CS, Cb
 Coefficienti correttivi

 fa, fb
 Fattori correttivi

Metodo di Sherif e Ishibashi - (1978) - Campione CR1 - Unità A - z = -7.5m

Metodo di Sherif e Ishibashi - (1978) - Campione CR2 - Unità B - z = -11.6m

Metodo di Sherif e Ishibashi - (1978) - Campione CR3 - Unità B - z = -11.6m

EC8 – SPT e CPTu – (Seed e Idriss, 1982)

Tale metodo è basato sul concetto di rapporto il tensionale ciclico (CSR), che esprime il carico sismico, e di rapporto di resistenza ciclica (CRR), che esprime la capacità del terreno di resistere alla liquefazione. Il rapporto tra le due variabili, da stimare alle diverse profondità del deposito, costituisce il coefficiente di sicurezza rispetto alla liquefazione, consentendo pertanto di stabilire il verificarsi o meno del fenomeno. I valori di CSR dipendono essenzialmente dall'entità dell'azione sismica in termini di A_{max} mentre il calcolo della capacità resistente in termini di CRR viene basato su dati di prove in sito tipo SPT e CPTu.

. Soi	layers	data				2. Test poir	n <mark>ts da</mark> ta				🗌 🗌 from	CPT De
nickne	ss 9.0	0 (m) ? 2	:1.00 (kN/	m ³)	C	epth 9.00	(m) ?s	pt 27	% FC	21.00		
No	н	gamma		Add layer		No [Depth	Nspt	FC		A 🔁	dd layer
1	3.00	20.00				1	3.00	25	19,40			
2	6.00	21.00				2	6.00	15	21.00		🛛 🔂 Loa	d form f
3	9.00	21.00	1.00		- I	3	9,00	27	21.00			
			1	Delete layer							🔁 De	lete laye
			8	Delete all								elete al
Lal	culation	parameter	5									
w.t	-	0.00 (m,	-1 no wat	er) 🦻 🦻	Import data	a 🔠 Calc.	method	🔥 FC d	orrectio	n 🔳 (Calc, param	is.
G.A.		0.16 (a)		E	Calculate Cn	according to			Calculat	e rd acco	ordina to	
					C Liao & Wh	itmari (1986	5		e ().	1100	4000	8
rthq	uake Maç	n. 5.5 💌	(Richter)		· Seed & In	lrice (1982)			k Liao	and whit	man (1966)	R.
Ibsoi	class	C 💌			0.0000.010	1133 (1902)			🖲 Blake	(1996)		
1.1					Ks calc. ac	cording to Yo	ud et al,	, 2001	San terretoe	-(+270)		
obal	ractor of	sarety 1	0		a a a				C Idrise	: & Goles	orkhi (1997	'Y*
				80	rehole diame	ter 65 mm	to 115 m	<u> </u>			N 18. 74	
_	M a 1			Ha	mmer Energ	y Ratio, Ce	0.60	* (1	MSE is ca 999)	alculated	according	to Idriss
	Caic											
. Cal	culation	results	1				1					
No	Depti 2.00	1 Bulk ?	% FC	u (kPa)	5V (kPa)	s'v (kPa)	Nspt	N1(60)	??1	CSR 0.19	CRRm 2.00	F.S.
2	6.00	20.00		58.86	123.00	64 14	40	18.7	1000	0.18	0.58	3.24
3	9.00	21.00		88.29	125.00	97.71	27	27.3	0.52	0.10	0.94	5.00
9	5,00	21.00		00.29	100.00	2001		2710		0.10	0.71	0.00

Figura 15.5 – Implementazione metodo Seed e Idriss 1982 basato su dati SPT e CPTu

Figura 15.6 - Dominio di potenziale liquefazione secondo (Seed e Idriss, 1982), basato su SPT

Figura 15.7 – Diagrafie prova sCPTu – PW1s e profilo del FS alla liquefazione

Figura 15.8 – Classificazione litotipi potenzialmente liquefacibili (Unità A-B Prova SCPTu PW1s) Schmertmann 1978 - Robertson 1986 - Robertson 1990

Figura 15.9 – Diagrafie prova CPTu – PW2 e profilo del FS alla liquefazione

Figura 15.10 - Classificazione litotipi potenzialmente liquefacibili (Unità A-B - Prova CPTu - PW2) Schmertmann 1978 - Robertson 1986 - Robertson 1990

Figura 15.11 – Diagrafie prova CPTu – PW3 e profilo del FS alla liquefazione

Figura 15.12 - Classificazione litotipi potenzialmente liquefacibili (Unità A-B - Prova CPTu - PW3) Schmertmann 1978 - Robertson 1986 - Robertson 1990

Figura 15.13 – Diagrafie prova CPTu – PW4 e profilo del FS alla liquefazione

Figura 15.14 - Classificazione litotipi potenzialmente liquefacibili (Unità A-B - Prova CPTu - PW4) Schmertmann 1978 - Robertson 1986 - Robertson 1990

Si riporta di seguito la sintesi dei risultati ottenuti in termini di fattori di sicurezza nei confronti del fenomeno della liquefazione. Come si può notare dai risultati i coefficienti di sicurezza ottenuti, pur abbastanza variabili rispetto ai metodi utilizzati, risultano sempre significativamente maggiori dell'unità, pertanto sono da escludersi per il sito di studio potenziali fenomeni di liquefazione.

Metodo	FS
Youd e Perkins (1978)	Bassa
Andrus e Stokoe (1997)	20.6
Iwasaki at al.	14.1
Tokimatsu e Yoshimi (1983)	10.4
Seed e Idriss (1985) - Modificato	15.2
Sherif e Ishibashi - (1978) - Campione CR1	*liquefacibile per granulometria **non liquefacibile/discutibile per SPT
Sherif e Ishibashi - (1978) - Campione CR2	*liquefacibile per granulometria **non liquefacibile/discutibile per SPT
Sherif e Ishibashi - (1978) - Campione CR3	*liquefacibile per granulometria **non liquefacibile/discutibile per SPT
EC8 - Seed e Idriss (1982) - NSPT	3.24
EC8 - Seed e Idriss (1982) - CPTu - PW1s	1.5
EC8 - Seed e Idriss (1982) - CPTu - PW2	1.2
EC8 - Seed e Idriss (1982) - CPTu - PW3	1.2
EC8 - Seed e Idriss (1982) - CPTu - PW4	1.2

16 ALLEGATI

16.1 TABELLE VALORI CBR DA DCP

Π.

		RICE Laborator effettuare	FICHE & L/	ABORATOR reto Ministero LL.PP. N 20 Legge n 1086 del 0	45751 del 03.02.2000 ad 5.11.71						
	VALORI CBR OTTENUTI DA DCP										
POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta			
	0,5	0		0,5	0		0,5	0			
1/T1	1,0	7	2/71	1,0	4	- 3/T1	1,0	9			
1/11	1,5	11	2/11	1,5	7		1,5	16			
	2,0	11		2,0	22		2,0	28			
POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta			
	0,5	0		0,5	0		0,5	0			
A/T1	1,0	10	E /T1	1,0	39	c / T 1	1,0	22			
4/11	1,5	22	5/11	1,5	28	0/11	1,5	13			
	2,0	48		2,0	28		2,0	10			
POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta			
	0,5	0		0,5	0		0,5	0			
7/71	1,0	22	0/11	1,0	10	0/71	1,0	9			
//11	1,5	18	0/11	1,5	16	9/11	1,5	22			
	2,0	28		2,0	22		2,0	28			
POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta			
	0,5	0		0,5	0		0,5	0			
10/71	1,0	10	11/71	1,0	16		1,0	13			
10/11	1,5	22	11/11	1,5	16	12/11	1,5	13			
	2,0	18		2,0	22		2,0	22			

POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenut
	0,5	0		0,5	0		0,5	0
42/74	1,0	7	4.4/74	1,0	16	45 /74	1,0	27
13/11	1,5	7	14/11	1,5	22	15/11	1,5	18
	2,0	10		2,0	6		2,0	28
POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenut
	0,5	0		0,5	0		0,5	0
10/11	1,0	13	17/71	1,0	18	10/71	1,0	9
10/11	1,5	22	1//11	1,5	15	10/11	1,5	13
	2,0	39		2,0	15		2,0	22
POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenut
	0,5	0		0,5	0		0,5	0
10/71	1,0	35	20/71	1,0	22	22/74	1,0	22
19/11	1,5	28	20/11	1,5	25	22/11	1,5	11
	2,0	33		2,0	25		2,0	15
POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenut
	0,5	0		0,5	0		0,5	0
22/74	1,0	10	24/74	1,0	13	DF (T 4	1,0	13
23/11	1,5	16	24/11	1,5	13	25/11	1,5	85
	2,0	-	1	2,0	16		2,0	25

POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta
	0,5	0		0,5	0		0,5	0
27/71	1,0	4	20/71	1,0	9	20 (71	1,0	6
2//11	1,5	16	28/11	1,5	13	29/11	1,5	5
	2,0	13		2,0	7		2,0	35
POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta
	0,5	0		0,5	0		0,5	0
20/71	1,0	13	24/74	1,0	7	22/71	1,0	9
30/11	1,5	16	31/11	1,5	5	32/11	1,5	35
	2,0	16		2,0	16		2,0	28
POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta
	0,5	0		0,5	0		0,5	0
22/71	1,0	13	24/71	1,0	9	25 /71	1,0	10
33/11	1,5	28	34/11	1,5	13	35/11	1,5	10
	2,0	22		2,0	16		2,0	39
POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta
	0,5	0		0,5	0		0,5	0
26/74	1,0	35	27/74	1,0	10	20 (71	1,0	9
36/11	1,5	28	3//11	1,5	13	38/11	1,5	9
	2,0	28		2,0	22		2,0	22

POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenut
	0,5	0		0,5	0		0,5	0
20/74	1,0	7	40/74	1,0	9		1,0	16
39/11	1,5	22	40/11	1,5	22	41/11	1,5	22
	2,0	16		2,0	28		2,0	28
POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenut
	0,5	0		0,5	0		0,5	0
42/74	1,0	10	42/72	1,0	9	44/72	1,0	10
42/11	1,5	28	43/12	1,5	22	44/12	1,5	22
	2,0	28		2,0	22		2,0	22
POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenut
	0,5	0		0,5	0		0,5	0
45 /70	1,0	9	46 (72)	1,0	9	47 (72	1,0	7
45/12	1,5	10	46/12	1,5	18	47/12	1,5	13
	2,0	28		2,0	22		2,0	16
POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenut
	0,5	0		0,5	0		0,5	0
40/70	1,0	10	40 (72	1,0	7	50/73	1,0	16
48/12	1,5	18	49/12	1,5	18	50/12	1,5	15
	2,0	28		2,0	39		2,0	11

2,0

22

POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP	POZZETTO N°	PROF.	CBR ottenuta da DCP
	0,5	0		0,5	0		0,5	0
E1/T2	1,0	13	E2/T2	1,0	16	E2 /T2	1,0	3
51/12	1,5	22	52/12	1,5	18	53/12	1,5	13
	2,0	22		2,0	18		2,0	6
POZZETTO N°	PROF.	CBR ottenuta da DCP						
	0,5	0						
E4/T2	1,0	13						
34/1Z	1,5	22						
16.2 TABULATO DI LABORATORIO

Sond	Zi	Zf	Litologia	z	z _w	G	S	L	Α	D ₆₀	D ₁₀	Uc	D ₅₀	Wnat	е	Sr	WL	WP	I _P	lc	γnat	PL	Cu	E _{U,30}	E _{U,30,med}	E _{U,(Ip,cu)}	ZLefr	k _{Lefr}
	[m]	[m]	Litologia	[m]	[m]	[%]] [%]	[%]	[%]	[mm]	[mm]		[mm]	[%]	-	[%]	[%]	[%]	[%]	[%]	[kN/m³]	-	[kPa]	[kPa]	[kPa]	[kPa]	[m]	[m/s]
	0,0	-0,7	Unità s - Terreni di riporto sabbioso-limosi																									
			Unità A - Sabbie da fini a medio-		-2,0																							
	-0.7	-4 8	fini, di colore avana o marrone																								-3,75	1,35E-05
	0,1	.,5	avana, da mediamente addensate a addensate, debolmente limose	-7,5	CR1	0,1	80,4	19,4		0,104	0,04	2,6	0,102														-4,75	1,44E-05
			Unità B - Sabbie da fini a medio-fini	-11,6	CR2	0,1	78,9	21,0		0,102	0,03	3,4	0,100															
	-4,8	-16,5	fino a medio-grossolane, grigie, da med. addensate ad addensate																									
SW1				-17,6	CR3	0,1	69,9	30,0		0,095	0,02	4,8	0,085															
														-										649,13				
				-21,0	CI1		18,7	59,6	21,7					36,6	0,999	99,97	36,8	21,0	15,8	0,01	18,3	TRX UU	35,2	1187,69	907,6	28160,0		
			Unità C - Limi argillosi, argille																					885,85				
			limose e limo-sabbiose di colore																					1080,40				
	-16,5	-35,0	materia organica, a luoghi sabbiosi,	-27,0	CI2	0,1	5,7	64,2	30,0					37	1,013	99,31	54,2	28,2	26	0,66	18,2	TRX UU	50,3	1424,59	1270,6	40240,0		
			da mediamente consistenti a																					1306,83				
			consistenti																					1313,29	1070 -			
				-30,0			5,7	67,0	27,3					33,5	0,927	98,69	40,5	22,0	18,5	0,38	18,6	IRX UU	52,1	1210,86	1276,2	41680,0		
																								1304,44				

16.3 PROVE EDOMETRICHE

Generale

Sond	Litalagia		Zi	Zf	Zm	Zw	γ	p' _c	e ₀	σν	u	σ',	OCR	σ' _{vi}	σ' _{vf}	e _i	e f	E _{ed}	Cc	CR	Cs	SR	Cα	Cv	k
Sona	Litologia		[m]	[m]	[m]	[m]	[kN/m ³]	[kPa]	[-]	[kPa]	[kPa]	[kPa]	[-]	[kPa]	[kPa]	[-]	[-]	[kPa]	[-]	[-]	[-]	[-]	[-]	[cm ² /s]	[m/s]
												196,6		196,13	392,27	0,875	0,792	4790	-0,276	-0,131	-	-	4,1E-03	2,0E-03	3,2E-10
									1,104	389,6	5 193,0		0,51	392,27	784,53	0,792	0,707	9263	-0,282	-0,134	-	-	4,2E-03	2,2E-03	1,8E-10
														784,53	1569,06	0,707	0,618	17938	-0,296	-0,141	-	-	4,6E-03	2,8E-03	1,2E-10
		C11	21.00	21 60	21 20	2 00	18,29	100						1569,06	3138,13	0,618	0,529	35232	-0,296	-0,141	-	-	3,5E-03	3,0E-03	6,9E-11
		CIT	-21,00	-21,00	-21,30	-2,00								3138,13	784,53	0,529	0,541	-	-	-	-0,020	-0,009	-	-	-
														784,53	392,27	0,541	0,556	-	-	-	-0,050	-0,024	-	-	-
														392,27	98,07	0,556	0,575	-	-	-	-0,032	-0,015	-	-	-
		CI1 -2												98,07	9,81	0,575	0,615	-	-	-	-0,040	-0,019	-	-	-
														98,07	196,13	1,061	1,005	3750	-0,186	-0,093	-	-	2,1E-03	3,1E-04	7,0E-11
														196,13	392,27	1,005	0,898	3864	-0,355	-0,178	-	-	5,4E-03	1,7E-04	- - - - - - - - 1E-04 7,0E-11 7E-04 3,7E-11 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
	Unità C - Limi argillosi, argille limose e limo-sabbiose di colore grigio, con gusci di bivalvi, con materia organica, a luoghi sabbiosi, da mediamente consistenti a					-2.00	18,15	160	0,998					392,27	784,53	0,898	0,760	6000	-0,458	-0,229	-	-	-	-	-
SW1		CI2	-27 00	-27 60	-27 30					495 5	253.0	242 5	0.66	784,53	1569,06	0,760	0,632	12913	-0,425	-0,213	-	-	-	-	-
••••			,00	,00		_,					,	,o	0,00	1569,06	784,53	0,632	0,651	-	-	-	-0,063	-0,032	-	-	-
	consistenti													784,53	392,27	0,651	0,684	-	-	-	-0,110	-0,055	-	-	-
														392,27	98,07	0,684	0,758	-	-	-	-0,123	-0,062	-	-	-
														98,07	9,81	0,758	0,803	-	-	-	-0,045	-0,023	-	-	-
														98,07	196,13	0,959	0,892	2968	-0,223	-0,115	-	-	3,8E-03	3,8E-04	1,0E-10
														196,13	392,27	0,892	0,787	3812	-0,349	-0,180	-	-	3,9E-03	3,1E-04	7,0E-11
														392,27	784,53	0,787	0,667	6607	-0,399	-0,205	-	-	-	-	-
		CI3	-30,00	-30,60	-30,30	-2,00	18,55	140	0,942	562,1	283,0	279,1	0,50	784,53	1569,06	0,667	0,542	12741	-0,415	-0,214	-	-	-	-	-
		010	,	00,00	,	2,00	,		0,042	,	,		,	1569,06	784,53	0,542	0,556	-	-	-	-0,047	-0,024	-	-	-
														784,53	392,27	0,556	0,579	-	-	-	-0,076	-0,039	-	-	-
														392,27	98,07	0,579	0,638	-	-	-	-0,098	-0,050	-	-	-
														98,07	9,81	0,638	0,706	-	-	-	-0,068	-0,035	-	-	-

Valo	i medi																				
Sond	Litologia	CI	Zi	Z _f	Z _m	Zw	Y	p' c	e 0	σv	u	σ',	OCR	E _{ed,m}	C _{C,m}	CR,m	C _{S,m}	SR,m	C _{α,m}	C _{v,m}	k ,m
SW1		CI1	[m] -21,00	[m] -21,60	[m] -21,30	[m] -2,00	[<u>k</u> N/m ³] 18,29	[kPa] 100	[-] 1,104	[кРа] 389,6	[кРа] 193,0) [kPa]	0,51	[ĸ₽а] 16806	-0,287	[-] -0,137	[-] -0,035	-0,017	[-] 4,1E-03	[cm²/s]	[m/s]
	Unità C - Limi argillosi, argille limose e limo-sabbiose di colore grigio, con gusci di bivalvi, con materia organica, a luoghi sabbiosi, da mediamente consistenti a consistenti	CI2	-27,00	-27,60	-27,30	-2,00	18,15	160	0,998	495,5	253,0) 242,5	0,66	6632	-0,356	-0,178	-0,085	-0,043	3,8E-03	2,4E-04	5,4E-11
		CI3	-30,00	-30,60	-30,30	-2,00	18,55	140	0,942	562,1	283,0) 279,1	0,50	6532	-0,346	-0,178	-0,072	-0,037	3,9E-03	3,5E-04	8,5E-11

16.4 PROFILI PARAMETRI GEOTECNICI DA PROVE CPT-U, PLANIMETRIA E SEZIONI GEOLOGICO-STRATIGRAFICHE

PW1s

PW1s

Eed [kPa]

PW2

Eed [kPa]

z [m]

35

PW3

Eed [kPa]

[m] z

PW4

Eed [kPa]

[m] z

Ξ

DEPOSITI CONTINENTALI E MARINI RECENTI E DI ETA' STORICA

Suoli sabbioso-limosi, limo-argilloso-sabbiosi e limo-sabbioso-ghiaiosi con resti vegetali; terreni di riporto γ= 17-19kN/m³ cu=30-60kPa Eed=3000-4000kPa

Sabbie da fini a medio-fini, di colore avana o marrone avana, da mediamente addensate a addensate, debolmente limose qc = 6-12 MPa - Vs=180-230m/s $\gamma = 19-20 k N/m^3 \phi' = 25-27^{\circ} Dr = 55-65\% E_{25} = 15000-25000 k Pa$

LEGENDA

DEPOSITI CONTINENTALI E MARINI DEL PLEISTOCENE-SUP-OLOCENE

Sabbie da fini a medio-fini fino a medio-grossolane, di colore grigio, con gusci di bivalvi, da mediamente addensate qc = 6-9 MPa - Vs=170-220m/s

Limi argillosi, argille limose e limo-sabbiose di colore grigio, con gusci di bivalvi, con materia organica, a luoghi sabbiosi, da mediamente consistenti a consistenti qc = 1-2 MPa - Vs = 170-250 m/s

y= 18-19kN/m³cu=40-70kPa Eed=5000-7000kPa OCR=0.8-1.1

Livello della falda libera libera contenuta nei depositi sabbiosi (Unita' A - B)