COMMITTENTE:

PROGETTAZIONE:

DIREZIONE TECNICA U.O. TECNOLOGIE CENTRO

PROGETTO DEFINITIVO

ITINERARIO NAPOLI - BARI
RADDOPPIO TRATTA APICE - ORSARA
I LOTTO FUNZIONALE APICE - HIRPINIA

SSE HIRPINIA

Distinta materiali fornitura RFI

-	
1	
1	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

IFOG 01 D 18 DM SE0200 001 A

Revis.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzate Data
Α	Emissione Esecutiva	G.Trezza	07-2017	N.Carones	07-2017	D. Aprea	07-2017	d rini
	Elmissione Esecutiva	Weno	07-2017	By	07-2017	A	07-2017	G. Guige Beffarini
		9	7					
		2						
								T S
								U.C. Ing.
								rdir

File: IF0G01D18DMSE0200001A n. Elab.: 711

I LOTTO FUNZIONALE APICE - HIRPINIA

COMPUTO METRICO ESTIMATIVO

SE02 - SSE02-SSE HIRPINIA
SE0002C - OPERE EDILI PIAZZALE HIRPINIA

SE0002	SE0002C - OPERE EDILI PIAZZALE_HIRPINIA					
	ARTICOLO	INDICAZIONE DEI LAVORI E DELLE PROVVISTE	QUANTITA'	PREZZO	IMPORTO	
N.	CODICE					
1	785/1250	SEO - MATERIALI RFI CORDA PORTANTE DI RAME CRUDO COMPOSTA DA 19 FILI DEL DIAM. DI MM 2,80 CADAUNO - DIAM. ESTERNO MM 14 - SEZIONE NOMINALE MMQ 120 PESO=1,070 KG kg	6.018,75	5,47	32.922,56	
2	785/1620	CORDA DI RAME RICOTTO COMPOSTA DA 37 FILI DEL DIAM. DI MM 2 CADAUNO- DIAM. ESTERNO MM 14 - SEZ. NOMINALE 115 MMQ - PESO = 1,070 KG/M - PER COLLEGAMENTI VA	0.010/13	·	ŕ	
		kg	1.297,38	4,58	5.942,00	
<u> </u>		Totale SE0 - MATERIALI RFI Euro Totale SE0002C - OPERE EDILI PIAZZALE_HIRPINIA Euro			<i>38.864,56</i> 38.864,56	
		A RIPORTARE SSE02-SSE HIRPINIA A RIPORTARE			38.864,56 38.864,56	

SE02 - SSE02-SSE HIRPINIA

SE0002D - OPERE ELETTROMECCANICHE PIAZZALE RFI_HIRPINIA

520002	ARTICOLO	ECCANICHE PIAZZALE RFI_HIRPINIA			
N.	CODICE	INDICAZIONE DEI LAVORI E DELLE PROVVISTE	QUANTITA'	PREZZO	IMPORTO
		RIPORTO			38.864,56
3	766/0060	SEO - MATERIALI RFI Cartello monitore per pali TE			
3	7 00,0000	Cadauno	6,00	4,13	24,78
4	766/0080	Targa di individuazione per pali TE	0,00	·	,
		Cadauno	6,00	3,41	20,46
5	766/0820	TENDITORE DEL DIAM. DI MM 16 PER FILO DI CONTATTO PER LINEE ALLO SCOPERTO MARCHE A103 - A 104 - A 106		·	
i 		Cadauno	6,00	7,33	43,98
6	766/0850	TENDITORE DEL DIAM. DI MM 20 PER CORDA PORTANTE - PER LINEE ALLO SCOPERTO MARCHE A 204 - A 203 - A 202			
		Cadauno	4,00	21,71	86,84
7	768/0390	CASSETTA DERIVAZIONE CAVI DI ALIMENTAZIONE PER COMANDI SEZIONATORI 3 KV C.C.			
		Cadauno	6,00	240,37	1.442,22
8	768/1830	TELAIO DI SOSTEGNO PER ARGANO A MOTORE MARCA AM 951			
		Cadauno	6,00	89,02	534,12
9	768/2110	FASCIA A PUNTA PER PALO LS/LSF 22G			
		Cadauno	6,00	12,49	74,94
10	768/6420	TIRAFONDI DIAMETRO 52mm - L=1200 mm PER PALI LSFP20-22			
		Cadauno	6,00	334,27	2.005,62
11	768/7630	REDANCIA USATA COME TERMINALE SUPERIORE PER I DUE TIRANTI DELLA TRASMISSIONE PER SEZIONATORI A CORNA 3 KV C.C.			
		Cadauno	6,00	1,02	6,12
12	768/7640	TERMINALE INFERIORE PER I DUE TIRANTI DELLA TRASMISSIONE PER SEZIONATORE A CORNA 3 KV C.C.			
		Cadauno	6,00	21,08	126,48
13	773/1570	ISOLATORI PORTASBARRE-CON PARTI METALLICHE-DA 6 KV. TIPO CNA. 522 PER SOTTOSTAZIONI DELLA TE.			
		Cadauno	4,00	3,45	13,80
14	773/1950	ISOLATORE DI ORMEGGIO IN VETRORESINA EPOSSIDICA CON COPERTURA ALETTATA CON ATTACCHI A FORCELLA.			
		Cadauno	6,00	48,02	288,12
15	773/2230	CATENA RIGIDA ISOLANTE IN VETRO TEMPRATO DI TIPO ANTISALE PER LINEE PRIMARIE 132-150 Kv			
		Cadauno	38,00	289,22	10.990,36
16	774/0700	MORSETTO A CAVALLOTTO PER CORDE O FILI DIAM. 14 - 18 MM MARCHE MS 1080 - MS 1081			
		Cadauno	24,00	2,86	68,64
17	774/4050	MORSA DRITTA PER TERMINALE CORDA IN ALLUMINIO DEL DIAMETRO DI 36MM - TUBO IN ALLUMINIO DEL DIAMETRO DI 40/30 MM O CODOLO DEL DIAMETRO DI 40 MM			
		Cadauno	3,00	147,37	442,11
18	774/4100	MORSA DIRITTA PER TERMINALE TUBO IN ALLUMINIO DEL DIAMETRO DI 40/30 MM - CODOLO DEL DIAMETRO DI 40 MM.	-,		
		A RIPORTARE OPERE ELETTROMECCANICHE PIAZZALE RFI_HIRPINIA A RIPORTARE SSE02-SSE HIRPINIA A RIPORTARE			16.168,59 55.033,15 55.033,15

SE02 - SSE02-SSE HIRPINIA

SE0002D - OPERE ELETTROMECCANICHE PIAZZALE RFI_HIRPINIA

320002	ARTICOLO	CANICHE PIAZZALE RFI_HIRPINIA			
N.	CODICE	INDICAZIONE DEI LAVORI E DELLE PROVVISTE	QUANTITA'	PREZZO	IMPORTO
IN.	CODICE	RIPORTO			55.033,15
		Cadauno	12,00	149,39	1.792,68
19	774/4130	MORSA A "T" PER COLLEGAMENTO TUBO PASSANTE IN ALLUMINIO DEL DIAMETRO DI 40/30 MM - TUBO IN ALLUMINIO DEL DIAMETRO DI 40/30 MM O CODOLO DEL DIAMETRO DI 40 MM.	12,00	,,,	,,,,
		Cadauno	6,00	151,41	908,46
20	774/4180	MORSA PORTANTE SCORREVOLE PER TUBO PASSANTE IN ALLUMINIO DEL DIAMETRO DI 40/30 MM.			
<u> </u>		Cadauno	3,00	174,76	524,28
21	774/4210	MORSA A "T" PER COLLEGAMENTO TUBO PASSANTE IN ALLUMINIO DEL DIAMETRO DI 100/86 MM TUBO IN ALLUMINIO DEL DIAMETRO DI 40/30 MM.			
Ī		Cadauno	3,00	173,09	519,27
22	774/4230	MORSA PORTANTE FISSA E DI GIUNZIONE DIRITTA PER TUBO IN ALLUMINIO DEL DIAMETRO DI 100/86 MM.			
		Cadauno	6,00	270,18	1.621,08
23	774/4260	MORSA PORTANTE SCORREVOLE PER TUBO PASSANTE IN ALLUMINIO DEL DIAMETRO DI 100/86 MM.			
		Cadauno	27,00	208,44	5.627,88
24	774/4280	TERMINALE DI ESTREMITA' DI TIPO INTERNO PER TUBO IN ALLUMINIO DEL DIAMETRO DI 100/86 MM.			
		Cadauno	6,00	151,15	906,90
25	774/4330	MORSA DRITTA PER TERMINALE TUBO IN ALLUMINIO DEL DIAMETRO DI 100/86 MM - CORDA IN ALLUMINIO DEL DIAMETRO DI 36 MM.			
		Cadauno	3,00	173,52	520,56
26	774/4380	MORSA TERMINALE E DI GIUNZIONE ELASTICA DRITTA PER TUBO IN ALLUMINIO DEL DIAMETRO DI 40/30 MM - CODOLO DEL DIAMETRO DI 40 MM.			
		Cadauno	54,00	200,00	10.800,00
27	776/0950	SOSTEGNO PORTAFARO A PANNELLO MOBILE TIPO "MINILUX"			
		Cadauno	2,00	3.179,68	6.359,36
28	776/0960	TORRE FARO POLIGONALE A CORONA MOBILE DA 25 M COMPRENSIVO DI DIME DI FONDAZIONE PER TORRI FARO A CORONA MOBILE.			
		Cadauno	1,00	8.114,79	8.114,79
29	776/1740	Palo flangiato tipo LSU-22c con altezza di 12000 mm per linee aeree di contatto.			
		Cadauno	6,00	1.121,00	6.726,00
30	779/0510	VITE M12 x 50 CON DADI E ROSETTA MARCA T 158			
		Cadauno	20,00	0,58	11,60
31	779/0540	PIASTRINA CON FORO DEL DIAM. DI MM 13 MARCA T 117			
		Cadauno	6,00	0,57	3,42
32	785/1440	CORDA DI ALLUMINIO-ACCIAIO (ACSR) DEL DIAMETRO DI 31,5 MM (ACCIAIO TIPO 170)			
		kg	18,00	2,48	44,64
33	785/1530	CORDA PORTANTE DI RAME CRUDO COMPOSTA DA 37 FILI DEL DIAM. DI MM 2,3 CADAUNO - DIAM. ESTERNO MM 16,1 - SEZ. NOMINALE MMQ 155 - PESO = 1,414			
1		, · · · · · · · · · · · · · · · · ·	282,00	4,87	1.373,34
		A RIPORTARE OPERE ELETTROMECCANICHE PIAZZALE RFI_HIRPINIA			62.022,85
		A RIPORTARE SSE02-SSE HIRPINIA A RIPORTARE			100.887,41 100.887,41

SE02 - SSE02-SSE HIRPINIA

SE0002D - OPERE ELETTROMECCANICHE PIAZZALE RFI HIRPINIA

SE0002	D - OPERE ELETTROME	CCANICHE PIAZZALE RFI_HIRPINIA			
	ARTICOLO	INDICAZIONE DEI LAVORI E DELLE PROVVISTE	QUANTITA'	PREZZO	IMPORTO
N.	CODICE		Q=. 0.1.2171		
34	785/6240	RIPORTO RAME IN VERGA PIATTA DA MM. 100X6 IN BARRA DIRITTA DI LUNGHEZZA COMMERCIALE AVENTE SPIGOLI VIVI - NORME CEI 7-4/3.1.01			100.887,41
2-	705 (7220	kg	55,54	9,27	514,86
35	785/7330	CONDUTTORE IN TUBO D'ALLUMINIO DEL DIAMETRO 40/30 MM m	210,00	5,06	1.062,60
36	785/7340	CONDUTTORE IN TUBO D'ALLUMINIO DEL DIAMETRO 100/86 MM			
37	790/1260	m BILANCIERE MARCA RA 375	240,00	5,08	1.219,20
	730/1200	Cadauno	4,00	5,77	23,08
38	790/1270	DOPPIA PIASTRINA MARCA RA 374 - BF 1002 Cadauno	4.00	8,57	34,28
39	790/1340	PROLUNGA PER ORMEGGIO - L = 2500 MM MARCA RA 434	4,00	6,37	34,20
		Cadauno	4,00	10,47	41,88
40	794/0520	ARGANO DI MANOVRA CON MOTORE A 144 V C.C. A DISECCITAZIONE PER COMANDO SEZIONATORI UNIPOLARI A CORNA (N.B.: MATERIALE PROVENIENTE DALLA VOCE 785/072)			
		Cadauno	4,00	962,11	3.848,44
41	794/0530	ARGANO DI MANOVRA CON MOTORE A 144V. C.C. A ECCITAZIONE PER COMANDO SEZIONATORI UNIPOLARI A CORNA (N.B.: MATERIALE PROVENIENTE DALLA VOCE 78			
		Cadauno	2,00	1.013,46	2.026,92
42	794/1270	INTERRUTTORE TRIPOLARE IN SF6 A 170 KV - 31,5 KA COMPLETO DI TRASFORMATORE DI CORRENTE CON RAPPORTO 50-100/5 CON SOSTEGNI PER INSTALLAZIONE A RASO SENZA INTERPOSIZIONE DI ROTAIA (N.B.: MATERIALE PROVENIENTE DALLA VOCE 785/727)			
		Cadauno	2,00	35.506,20	71.012,40
43	794/3250	SEZIONATORE TRIPOLARE A SEZIONAMENTO VERTICALE A 150 KV			
		Cadauno	3,00	22.745,80	68.237,40
44	794/4020	TRASFORMATORE MONOFASE DI TENSIONE INDUTTIVO TIPO C PER MISURA E PROTEZIONE SU RETI A TENSIONE NOMINALE 150 KV			
		Cadauno	3,00	6.444,23	19.332,69
45	794/4630	TERNA DI SCARICATORI UNIPOLARI DI SOVRATENSIONE AD OSSIDO METALLICO SENZA SPINTEROMETRI PER RETI ELETTRICHE A 150 KV (CON SOSTEGNI)			
		Cadauno	2,00	10.873,48	21.746,96
46	794/4671	scaricatore a spinterometro con condensatore 4ÁF per protezione impianti da 3 kV			
		Cadauno	4,00	728,20	2.912,80
47	794/4750	TRASFORMATORE TRIFASE PER L'ALIMENTAZIONE DEI RADDRIZZATORI AL SILICIO 5400 KW A 150 KV (N.B.: MATERIALE PROVENIENTE DALLA VOCE 785/275)			
		Cadauno	2,00	168.101,05	336.202,10
48	799/4050	LAMPADE TUBOLARI A VAPORI DI SODIO AD ALTA PRESSIONE PER ILLUMINAZIONE DI GRANDI AREE FERROVIARIE - 220 V 400 W			
		Cadauno	24,00	11,31	271,44
		A RIPORTARE OPERE ELETTROMECCANICHE PIAZZALE RFI_HIRPINIA A RIPORTARE SSE02-SSE HIRPINIA A RIPORTARE			590.509,90 629.374,46 629.374,46

I LOTTO FUNZIONALE APICE - HIRPINIA

COMPUTO METRICO ESTIMATIVO

SE02 - SSE02-SSE HIRPINIA

SE0002D - OPERE ELETTROMECCANICHE PIAZZALE RFI_HIRPINIA

SE0002	D - OPERE ELETTROME	CCANICHE PIAZZALE RFI_HIRPINIA			
	ARTICOLO	INDICAZIONE DEI LAVORI E DELLE PROVVISTE	QUANTITA'	PREZZO	IMPORTO
N.	CODICE				
		RIPORTO			629.374,46
49	816/3460	PROIETTORE A FASCIO MEDIO PER LAMPADE DA 400 W	24.22	220.20	F 742 72
		Cadauno	24,00	239,28	5.742,72
50	846/9550	CONNESSIONE INDUTTIVA DA 1000 A PERMANENTI NON RISONANTE PER IL CIRCUI TO DI RITORNO DEL NEGATIVO DELLA CORRENTE DI TRAZIONE IN S.S.E. (CLAS			
		Cadauno	2,00	6.155,80	12.311,60
<u> </u>		Totale SEO - MATERIALI RFI Euro			608.564,22
		Totale SE0002D - OPERE ELETTROMECCANICHE PIAZZALE RFI_HIRPINIA Euro			608.564,22
		A RIPORTARE SSE02-SSE HIRPINIA			647.428,78
	l .	A RIPORTARE			647.428,78

SE02 - SSE02-SSE HIRPINIA

SE0002E - OPERE ELETTROMECCANICHE FABBRICATO_HIRPINIA

	ARTICOLO	CCANICHE FABBRICATO_HIRPINIA			
N.	CODICE	INDICAZIONE DEI LAVORI E DELLE PROVVISTE	QUANTITA'	PREZZO	IMPORTO
		RIPORTO SEO - MATERIALI RFI			647.428,78
51	773/1570	ISOLATORI PORTASBARRE-CON PARTI METALLICHE-DA 6 KV. TIPO CNA. 522 PER SOTTOSTAZIONI DELLA TE.			
		Cadauno	30,00	3,45	103,50
52	785/6120	RAME IN VERGA PIATTA DA MM. 50X4 IN BARRA DIRITTA DI LUNGHEZZA COMMERCIALE AVENTE SPIGOLI VIVI - NORME CEI 7-4/3.1.01			
53	705/6240	kg	180,00	1,63	293,40
53	785/6240	RAME IN VERGA PIATTA DA MM. 100X6 IN BARRA DIRITTA DI LUNGHEZZA COMMERCIALE AVENTE SPIGOLI VIVI - NORME CEI 7-4/3.1.01			
		kg	330,00	9,27	3.059,10
54	794/0380	ALIMENTATORE STABILIZZATO CARICABATTERIA PER L' ALIMENTAZIONE DEI SERVIZI AUSILIARI IN C.C. DI SSE E CABINA TE - CONFIGURAZIONE BASE (1 BLOCCO GAL PIU' 1 BLOCCO GCB)			
		Cadauno	1,00	8.074,15	8.074,15
55	794/2300	RADDRIZZATORI AL SILICIO DA 5400 KW (N.B.: MATERIALE PROVENIENTE DALLA VOCE 785/265)			
		Cadauno	2,00	20.738,56	41.477,12
56	794/2370	REATTORI DA 6 MH, PER FILTRI FISSI DELLE SSE, IN ALLUMINIO - TIPO DA 2500 A (N.B.: MATERIALE PROVENIENTE DALLA VOCE 785/687)			
		Cadauno	2,00	16.979,15	33.958,30
57	794/2850	RELE' DIRETTO DI MASSA, INTERVENTO NEL CAMPO DA 50 A A 75 A, CON RITENUTA MECCANICA, DUE CONTATTI CHIUSI ED UNO APERTO ISOLATI A 15KV, COMPL			
		Cadauno	1,00	476,01	476,01
58	794/3700	SEZIONATORE AUTOSTRINGENTE ESAPOLARE 12KV - 3000A PER CELLE RADDRIZZATORI (N.B.: MATERIALE PROVENIENTE DALLA VOCE 785/690)			
		Cadauno	2,00	1.972,79	3.945,58
59	794/6100	RELE' DIRETTO DIREZIONALE, INTERVENTO NEL CAMPO DA 150A A 190A, CON RITENUTA MECCANICA, DUE CONTATTI CHIUSI ED UNO APERTO ISOLATI A 15KV, CO			
		Cadauno	2,00	546,82	1.093,64
60	803/6550	CAVO MT 8,7/15 kV TIPO RG7H1R 1X50 MMQ - RAPPORTO DI TRASFORMAZ;IONE Kg/Km 504			
		m	140,00	7,60	1.064,00
61	803/6600	CAVO MT 8,7/15 kV TIPO RG7H1R 1X240 MMQ - RAPPORTO DI TRASFORMA;ZIONE Kg/Km 2311			
		m	5.616,00	22,79	127.988,64
62	803/9010	Cavo in lega di alluminio ad alta temperatura con portante in acciaio rivestita di alluminio TACSR Ø 19,62			
		m	2.700,00	6,26	16.902,00
63	803/9370	Cavo elettrico unipolare in rame di sezione 500 mmq (Tipo FG7H1M2-12/20 kV-schermo 120 mmq) per l'alimentazione delle linee di trazione a 3 kVcc - PEZZAT		10.00	
64	909/0001	M CAVO 9 EIRDE OTTICHE MONOMODALI# DROTEZIONE METALLICA IN ACCIAIO	2.500,00	48,02	120.050,00
64	808/9001	CAVO 8 FIBRE OTTICHE MONOMODALI# PROTEZIONE METALLICA IN ACCIAIO CORRUGATO ELETTROSALDATO DI TIPO #H6#- 8(1SMR) T/EKH6E			
		m	520,00	2,11	1.097,20
		A RIPORTARE OPERE ELETTROMECCANICHE FABBRICATO_HIRPINIA A RIPORTARE SSE02-SSE HIRPINIA A RIPORTARE			359.582,64 1.007.011,42 1.007.011,42

I LOTTO FUNZIONALE APICE – HIRPINIA

COMPUTO METRICO ESTIMATIVO

SE02 - SSE02-SSE HIRPINIA

SE0002E - OPERE ELETTROMECCANICHE FABBRICATO_HIRPINIA

SE0002	E - OPERE ELETTROMEC	CCANICHE FABBRICATO_HIRPINIA			
	ARTICOLO	INDICAZIONE DEI LAVORI E DELLE PROVVISTE	QUANTITA'	PREZZO	IMPORTO
N.	CODICE	1.0.0 = 0.1 = 0.0 =	Q0/		2 0.1.10
65	808/9041	RIPORTO CAVO 16 FIBRE OTTICHE MONOMODALI - PROTEZIONE METALLICA IN ACCIAIO CORRUGATO ELETTROSALDATO DI TIPO 'H6' - AFUMEX -8(2SMR) T/EKH6M			1.007.011,42
66	808/9110	m CAVO 8 FIBRE OTTICHE ANTIFIAMMA MULTIMODALI - PROTEZIONE METALLICA	130,00	2,25	292,50
	·	IN ACCIAIO CORRUGATO ELETTROSALDATO DI TIPO'H6'-AFUMEX-8(1MM62.5) T/N1EKH6M			
		m	910,00	2,81	2.557,10
		Totale SEO - MATERIALI RFI Euro			362.432,24
		Totale SE0002E - OPERE ELETTROMECCANICHE FABBRICATO_HIRPINIA Euro Totale SE02 - SSE02-SSE HIRPINIA Euro			362.432,24 1.009.861,02
		Importo Lavori Euro			1.009.861,02

IMPORTO COMPLESSIVO DELL'OPERA

INDICAZIONE DEI LAVORI E DELLE PROVVISTE	IMPORTI PARZIALI	IMPORTI TOTALI
A) LAVORI		
SE02 - SSE02-SSE HIRPINIA	1.009.861,02	
SE0002C - OPERE EDILI PIAZZALE_HIRPINIA	38.864,56	
SEO - MATERIALI RFI	<i>38.864,56</i>	
SE0002D - OPERE ELETTROMECCANICHE PIAZZALE RFI_HIRPINIA	608.564,22	
SEO - MATERIALI RFI	608.564,22	
SE0002E - OPERE ELETTROMECCANICHE FABBRICATO_HIRPINIA	362.432,24	
SEO - MATERIALI RFI	362.432,24	
IMPORTO LAVORI Euro		1.009.861,02
B) SOMME A DISPOSIZIONE		
TOTALE SOMME A DISPOSIZIONE		
IMPORTO COMPLESSIVO DELL'OPERA Euro		1.009.861,02