COMMITTENTE

PROGETTAZIONE:

DIREZIONE TECNICA U.O. INFRASTRUTTURE CENTRO

PROGETTO DEFINITIVO

ITINERARIO NAPOLI-BARI.

RADDOPPIO TRATTA CANCELLO - BENEVENTO.
II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.
2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00

Spalle - Relazione di ca	alcolo					SCALA:	
						-	
COMMESSA LOTTO FAS	E ENTE TIP	O DOC. OPERA/	DISCIPLINA	A PROG	R. RE	V.	
I F 0 H 2 2 D	1 1	CL VI	1 7 0 0	0 0	1 A		
Rev. Descrizione	Redatto I	Data Verificato	Data	Approvato	Data	Autorizza	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizza Data
Α	EMISSIONE	A.Falace	Maggio 2017	F.Bavetta	Maggio 2017	F.Cerrone	Giugno 2017	F.Addigni O.Waggido
								Tecnic Central Distriction of the Central Distri
								Irezione rastruttu trrg. Ea legneri
								Dokti

File: IF0H22D11CLVI1700001A.doc n. Elab.: 2L 344

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

COMMESSA LOTTO

IF0H 22 D 11

CODIFICA CL

DOCUMENTO VI1700 001

REV. F

Α

FOGLIO 2 di 95

INDICE

1.	GENERALITA'	5
1.1	DESCRIZIONE DELL'OPERA	5
1.2	Unità di misura	<i>6</i>
2.	NORMATIVA DI RIFERIMENTO	7
2.1	Elaborati di riferimento	7
3.	MATERIALI	8
3.1	CLASSI DI ESPOSIZIONE E COPRIFERRI	8
3.2	CALCESTRUZZO PER PALI DI FONDAZIONE (C 25/30)	9
3.3	CALCESTRUZZO PER PLINTI DI FONDAZIONE (C 28/35)	11
3.4	CALCESTRUZZO PER ELEVAZIONI (C 32/40)	12
3.5	CALCESTRUZZO MAGRO PER GETTI DI LIVELLAMENTO/SOTTOFONDAZIONI (C12/15)	13
3.6	ACCIAIO IN BARRE D'ARMATURA PER C.A. (B450C)	14
4.	CARATTERIZZAZIONE E CRITERI DI PROGETTAZIONE GEOTECNICA	15
4.1	STRATIGRAFIA E INDAGINI IN PROSSIMITA' DELL'OPERA	15
4.2	CURVE DI PORTANZA DI PROGETTO A CARICO VERTICALE	17
4.3	COEFFICIENTE A	25
1.4	CARICO LIMITE PER AZIONI ORIZZONTALI	26
5.	CARATTERIZZAZIONE SISMICA DEL SITO	28
5.1	VITA NOMINALE E CLASSE D'USO DELL'OPERA	29
5.2	PARAMETRI DI PERICOLOSITÀ SISMICA	31
5.3	CATEGORIA DI SOTTOSUOLO E CATEGORIA TOPOGRAFICA	36
5.	ANALISI DEI CARICHI	38
5.1	CARICHI PROVENIENTI DALL'IMPALCATO	38
	6.1.1 Pesi permanenti strutturali e non strutturali	38

V117 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 3 di 95

	6.1.2	Carichi variabili sui marciapiedi	40
	6.1.3	Carichi variabili da traffico	40
		6.1.3.1 Azioni da traffico ferroviario	
		6.1.3.2 Incremento dinamico	
		6.1.3.3 Contemporaneità dei treni sui binari	44
	6.1.4	Azioni orizzontali da avviamento / frenatura	44
	6.1.5	Forza centrifuga	44
	6.1.6	Serpeggio	45
	6.1.7	Azioni parassite dei vincoli	45
	6.1.8	Azioni da Vento	47
	6.1.9	Azioni aerodinamiche indotte dal transito dei convogli	53
	6.1.10	Tabelle riepilogo Scarichi impalcato	55
5.2	SPI	VTA DEL TERRENO DEL RILEVATO IN CONDIZIONI STATICHE	57
5.3	SPI	VTA DEL SOVRACCARICO ACCIDENTALE CONDIZIONI STATICHE	58
5.4	Azı	ONE SISMICA	59
	6.4.1	Azioni sismiche sulle Spalle	59
	6.4.2	Sovraspinta sismica del terreno	62
7.	COME	INAZIONI DI CARICO	63
3.	CRITE	RI GENERALI PER LE VERIFICHE STRUTTURALI	68
8.1	VE	RIFICHE ALLO SLU	68
	8.1.1	Pressoflessione	68
	8.1.2	Taglio	70
3.2	VE	RIFICA SLE	72
	8.2.1	Verifiche alle tensioni	72
	8.2.2	Verifiche a fessurazione	73
9.	MODE	LLI DI CALCOLO PER LE SPALLE	74
9.1	Мо	DELLI A MENSOLA PER LA VERIFICA DELLE SPALLE	74

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 4 di 95

10.	ANALI	SI E VERIFICA SPALLA FISSA (S2)	75
10.1	Muf	RO FRONTALE	75
10.2	Mu	PO PARAGHIAIA	78
10.3	Mui	RI LATERALI	80
10.4	PLIN	TO DI FONDAZIONE	81
10.5	PAL	DI FONDAZIONE	87
	10.5.1	Verifiche Geotecniche di capacità portante per carichi verticali	87
	10.5.2	Verifiche Geotecniche di capacità portante per carichi orizzontali	87
	10.5.3	Verifiche Strutturali Pali	93
11.	ANALI	SI E VERIFICA SPALLA MOBILE (S1)	94
11.1	PAL	DI FONDAZIONE	94
	11.1.1	Verifiche Geotecniche di capacità portante per carichi verticali	95
	11.1.2	Verifiche Geotecniche di capacità portante per carichi orizzontali	95
	11.1.3	Verifiche Strutturali Pali	95

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 5 di 95

1. GENERALITA'

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo del Raddoppio dell'Itinerario Ferroviario Napoli-Bari nella Tratta Cancello-Benevento/ 2° Lotto Funzionale Frasso Telesino – Vitulano.

Le Analisi e Verifiche nel seguito esposte fanno in particolare riferimento alle sottostrutture (Spalla mobile e fissa) del Ponte VI17, previsto sull'asse principale del tracciato di progetto, tra le 37+275.00 - 37+305.00.

1.1 Descrizione dell'opera

Il viadotto in esame è costituito da un'unica campata di luce pari a 30.00 m.

L'impalcato è costituito una travata metallica a sezione mista acciaio-cls di portata teorica pari a 28.4 m. La larghezza complessiva dell'impalcato è pari a 13.70 m su cui gravano 2 binari posti ad interasse pari a 4.00 m, in maniera simmetrica rispetto alla mezzeria del viadotto. Per maggiori dettagli riguardanti l'impalcato si rinvia alla relazione specifica.

Le sottostrutture consistono in due spalle con fondazioni di tipo profondo su pali. La spalla indicata con "S1" è la spalla mobile mentre quella indicata con "S2" è la spalla fissa.

L'opera in oggetto è progettato per una vita nominale VN pari a 75 anni. Gli si attribuisce inoltre una classe d'uso III ("Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza.") ai sensi del D. Min. 14/01/2008, da cui scaturisce un coefficiente d'uso CU = 1.5.

Di seguito si riporta la sezione longitudinale del viadotto:

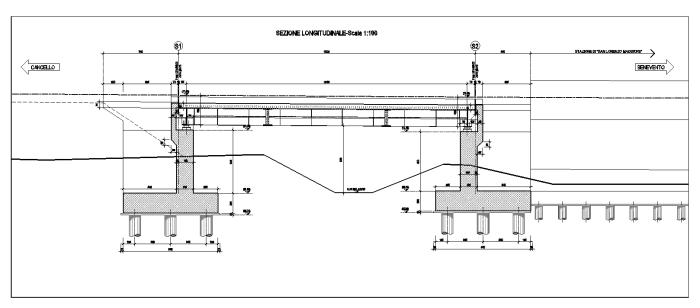


Figura 1 – Sezione Longitudinale Viadotto

1.2 Unità di misura

Nel seguito si adotteranno le seguenti unità di misura:

• per le lunghezze ⇒ m, mm

per i carichi ⇒ kN, kN/m2, kN/m3

per le azioni di calcolo ⇒ kN, kNm

• per le tensioni \Rightarrow MPa

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 7 di 95

2. NORMATIVA DI RIFERIMENTO

Di seguito si riporta l'elenco generale delle Normative Nazionali ed internazionali vigenti alla data di redazione del presente documento, quale riferimento per la redazione degli elaborati tecnici e/o di calcolo dell'intero progetto nell'ambito della guale si inserisce l'opera oggetto della presente relazione:

- Rif. [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Nuove Norme Tecniche per le Costruzioni»
- Rif. [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- Rif. [3] Manuale di Progettazione delle Opere Civili: PARTE I / Aspetti Generali (RFI DTC SI MA IFS 001 A)
- Rif. [4] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 1 / Ambiente e Geologia (RFI DTC SI AG MA IFS 001 A rev 30/12/2016)
- Rif. [5] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 2 / Ponti e Strutture (RFI DTC SI PS MA IFS 001 A– rev 30/12/2016)
- Rif. [6] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 3 / Corpo Stradale (RFI DTC SI CS MA IFS 001 A– rev 30/12/2016)
- Rif. [7] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 4 / Gallerie (RFI DTC SI GA MA IFS 001 A– rev 30/12/2016)
- Rif. [8] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 5 / Prescrizioni per i Marciapiedi e le Pensiline delle Stazioni Ferroviarie a servizio dei Viaggiatori (RFI DTC SI CS MA IFS 002 A– rev 30/12/2016)
- Rif. [9] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 6 / Sagome e Profilo minimo degli ostacoli (RFI DTC SI CS MA IFS 003 A– rev 30/12/2016)
- Rif. [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Rif. [11] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Rif. [12] UNI 11104: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1

2.1 Elaborati di riferimento

Costituiscono parte integrante di quanto esposto nel presente documento, l'insieme degli elaborati di progetto specifici relativi all'opera in esame e riportati in elenco elaborati.

3. MATERIALI

Di seguito si riportano le caratteristiche dei materiali previsti per la realizzazione delle strutture oggetto di calcolo nell'ambito del presente documento :

3.1 CLASSI DI ESPOSIZIONE E COPRIFERRI

Con riferimento alle specifiche di cui alla norma UNI 11104, si definiscono di seguito le classi di esposizione del calcestruzzo delle diverse parti della struttura oggetto dei dimensionamenti di cui al presente documento:

Elevazioni spalle: XC4;

• Plinti e pali di fondazione: XC2;

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 -1	Descrizione dell'ambiense	Esemplo	Massimo rapporto a/c	Minima Classe di resissenza	Contenuto minimo in aria (%)
1 Assenza	a di rischio di	corrosione o attacco				
1	ΧO	Per calcestruzzo privo di armatura o inserti metallici: tutte le esposizioni eccetto dove c'è gelo'disgelo, o attacco chimico. Calcestruzzi con armatura o inserti metallicitin ambiente molto asciutto.	Interno di edifici con umidità relativa mollo bassa. Caloestruzzo non armato all'interno di edifici. Caloestruzzo non armato immerso in suolo non aggressiva o in acqua non aggressiva. Caloestruzzo non armato soggetto a cidi di bagnato asciutto ma non soggetto adarbasione, gelo o attasco chimico.	-	C 12/15	
Nota - Le cond condizioni rifle	fizioni di umidità si ri ttano quelle dell'amb	a carbonatazione leriscono a quelle presenti nel copi iente circostante. In questi casi la c estruzzo e il suo ambiente.	riferro o nel ricoprimento di inserti metallici, ma in i classificazione dell'ambiente circostante può esser	molti casi su re adeguata	può considera Questo può no	are che tali on essere il
2 a	XC1	Asciutto o permanentemente bagnato.	Interni di edifici con umidità relativa bassa. Calcestruzzo armato ordinario o precompresso con le superfici all'interno di strutture con eccezione delle parti esposte a condensa, o immerse i acqua.	0,60	C 25/30	
2 a	XC2	Bagnato, raramente asciutto.	Parti di strutture di contenimento liquidi, fondazioni. Calcestruzzo armato ordinario o precompresso prevalentemente immerso in acqua o terreno non aggressivo.	0,60	C 25/30	
5 a	XC3	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in esterni con superfici esterne riparate dalla pioggia, o in interni con umidità da moderata ad alta.	0,55	C 28/35	
4 a 5 b	XC4	Ciclicamente asciutto e bagnato.	Calcestruzzo armato ordinario o precompresso in esterni con superfici soggette a alternanze di asciutto ed umido. Calcestruzzi a vista in ambienti urbani. Superfici a contatto con l'acqua non comprese nella classe XC2.	0,50	C 32/40	
3 Corrosi	one indotta d	a cloruri esclusi quelli	provenenti dall'acqua di mare			
5 a	XD1	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in superfici o parti di ponti e viadotti esposti a spruzzi d'acqua contenenti cloruri.	0,55	C 28/35	
4 a 5 b	XD2	Bagnato, raramente asciutto.	Calcestruzzo armato ordinario o precompresso in elementi strutturali totalmente immersi in acqua anche industriale contenete cloruri (Piscine).	0,50	C 32/40	
5 c	XD3	Ciclicamente bagnato e asciutto.	Calcestruzzo armato ordinario o precompresso, di elementi strutturali direttamente soggetti agli agenti dispelanti o agli apruzzi contenenti agenti dispelanti. Calcestruzzo armato ordinario o precompresso, elementi con una auperticie immersa in acqua contenente coloru i e l'attre esposta all'aria. Parti di ponti, pavimentazioni e parcheggi per auto.	0,45	C 35/45	

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 –1	Descrizione dell'ambiente	Esemplo	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)
4 Corrosi	one indotta	da cloruri presenti nell'	acqua di mare			-
4 a 5 b	XS1	Esposto alla salsedine marina ma non direttamente in contatto con l'acqua di mare.	Calcestruzzo armato ordinario o precompresso con elementi strutturali sulle coste o in prossimità.	0,50	C 32/40	
	XS2	Permanentemente sommerso.	Calcestruzzo armato ordinario o precompresso di strutture marine completamente immersi in acqua.	0,45	C 35/45	
	XS3	Zone esposte agli spruzzi o alle marea.	Calcestruzzo armato ordinario o precompresso con elementi strutturali esposti alla battigia o alle zone soggette agli spruzzi ed onde del mare.	0,45	C 35/45	
5 Attacco	dei cicli di g	elo/disgelo con o senza	disgelanti *			
2 b	XF1	Moderata saturazione d'acqua,in assenza di agente disgelante.	Superfici verticali di calcestruzzo come facciate e colonne esposte alla pioggia ed al gelo. Superfici non verticali e non soggette alla completa saturazione ma esposte al qelo. alla pioggia o all'acogua.	0,50	C 32/40	
3	XF2	Moderata saturazione d'acqua, in presenza di agente disgelante.	Elementi come parti di ponti che in altro modo sarebbero classificati come XF1 ma che sono esposti direttamente o indirettamente agli agenti disgelanti.	0,50	C 25/30	3,0
2 b	XF3	Elevata saturazione d'acqua, in assenza di agente disgelante	Superfici orizzontali în edifici dove l'acqua può accumularsi e che possono essere soggetti ai fenomeni di gelo, elementi soggetti a frequenti bagnature ed esposti al gelo.	0,50	C 25/30	3,0
3	XF4	Elevata saturazione d'acqua, con presenza di agente antigelo oppure acqua di mare.	Superfici orizzontali quali strade o pavimentazioni esposte al gelo ed ai sali disgelanti in modo diretto o indiretto, elementi esposti al gelo e soggetti a frequenti bagnature in presenza di agenti disgelanti o di acqua di mare.	0,45	C 28/35	3,0
6 Attacco	chimico**					
5 a	XA1	Ambiente chimicamente debolmente aggressivo secondo il prospetto 2 della UNI EN 206-1	Contenitori di fanghi e vasche di decantazione. Contenitori e vasche per acque reflue.	0,55	C 28/35	
4 a 5 b	XA2	Ambiente chimicamente moderatamente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di terreni aggressivi.	0,50	C 32/40	
5 c	ХАЗ	Ambiente chimicamente fortemente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di acque industriali fortemente aggressive. Contentiori di foraggi, mangimi e liquame provenienti dall'allevamento animale. Torri di raffreddamento di fumi di gas di scarico industriali.	0,45	C 35/45	

⁷⁾ Il grado di saturazione della seconda colorina rifette la relativa frequenza con cui si verifica il gelo in condizioni di saturazione - indicetato cocasionalimente gleito in condizioni di saturazione; - idvasto: alta frequenza di gelo in condizioni di saturazione.
**) Da parte di acque del tereno a ecque filuenti.

V117 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF0H 22 D 11 CL VI1700 001 A 9 di 95

La determinazione delle classi di resistenza dei conglomerati dei conglomerati, di cui ai successivi paragrafi, sono state inoltre determinate tenendo conto delle classi minime stabilite dalla stessa norma UNI-EN 11104, di cui alla successiva tabella:

٤.	prospetto 4 Va	alori limiti per la c	omposizi	one e le p	roprietà	del calc	estruzzo										
								Classi di	esposizio	ne							
		Nessun rischio di corrosione dell'armatura	0011001	one delle ar alla carbona	i i i i i i i i i i i i i i i i i i i	Corro	sione delle a	rmature ir	ndotta da	cloruri	Attaco	co da cicl	i di gelo/d	lisgelo		nte aggres acco chim	
UN 11						Acqu	a di mare		uri prover a altre for								
11104:2004		X0	XC1 XC	2 XC3	XC4	XS1	XS2 XS3	XD1	XD2	XD3	XF1	XF2	XF3	XF4	XA1	XA2	XA3
004	Massimo rapporto a/c	-	0,60	0,55	0,50	0,50	0,45	0,55	0,50	0,45	0,50	0,	50	0,45	0,55	0,50	0,45
	Minima classe di resistenza ^{*)}	C12/15	C25/30	C28/35	C32/40	C32/40	C35/45	C28/35	C32/40	C35/45	32/40	25	/30	28/35	28,35	32/40	35/45
	Minimo contenuto in cemento (kg/m³)	-	300	320	340	340	360	320	340	360	320	3	40	360	320	340	360
	Contenuto minimo in aria (%)												3,0 ^{a)}				
	Altri requisiti														È richiest cementi r		
	*) Nel prospetto 7 della UNI EN 206-1 viene riportata la classe C8/10 che corrisponde a specifici calcestruzzi destinati a sottofondazioni e ricoprimenti. Per tale classe dovrebbero essere definite le prescrizioni di durabilità nei riguardi di acque o terreni aggressivi. a) Quando il calcestruzzo non contiene aria aggiunta, le sue prestazioni devono essere verificate rispetto ad un calcestruzzo aerato per il quale è provata la resistenza al gelo/disgelo, da determinarsi secondo UNI 7087, per la relativa classe di esposizione.																

Classi di resistenza minima del calcestruzzo secondo UNI – 11104

I copriferri di progetto adottati per le barre di armatura, tengono infine conto inoltre delle prescrizioni di cui alla Tabella C4.1.IV della Circolare n617 del 02-02-09; si è in particolare previsto di adottare i seguenti Copriferri minimi espressi in mm

Elevazioni spalle: 40 mm
 Plinti di fondazione: 40 mm
 Pali di fondazione: 60 mm

3.2 Calcestruzzo per Pali di Fondazione (C 25/30)

Valore cara	ntteristico dell	a resistenza	a compressione cubica a 28 gg:	_				
R _{ck} =	30	MPa						
Valore caratteristico della resistenza a compressione cilindrica a 28 gg:								
f _{ck} =	24.9	MPa	(0.83^*R_{ck})					
Resistenza	a compression	one cilindric	a media:					
f _{cm} = 32.9 MPa (fck+8)								
Resistenza a trazione assiale:								

ITINERARIO NAPOLI-BARI.

RADDOPPIO TRATTA CANCELLO - BENEVENTO.
II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 10 di 95

f_{ctm}= 2.56 MPa Valore medio

f_{ctk,0,05}= 1.79 MPa Valore caratteristico frattile 5%

Resistenza a trazione per flessione:

f_{cfm}= 3.1 MPa Valore medio

f_{cfk,0.05}= 2.1 MPa Valore caratteristico frattile 5%

Coefficiente parziale per le verifiche agli SLU:

 $\gamma_c = 1.5$

Per situazioni di carico eccezionali, tale valore va considerato pari ad 1,0

Resistenza di calcolo a compressione allo SLU:

 $f_{cd} = \frac{14.1}{\text{MPa}} \text{MPa} \qquad (0.85 \text{ fck/ys})$

Resistenza di calcolo a trazione diretta allo SLU:

 $f_{ctd} = \frac{1.19}{MPa} MPa \qquad (f_{ctk \ 0.05} / \gamma s)$

Resistenza di calcolo a trazione per flessione SLU:

Per spessori minori di 50mm e calcestruzzi ordinari, tale valore va ridotto del 20%

Modulo di elasticità normale : Modulo di elasticità tangenziale:

E_{cm}**=** 31447 MPa **G**_{cm}**=** 13103 MPa

Modulo di Poisson:

v= 0.2

Coefficiente di dilatazione lineare

 $\alpha = 0.00001$ °C⁻¹

Tensione di aderenza di calcolo acciaio-calcestruzzo

 $\eta = 1.00$

f_{bd}= **2.69** MPa $(2,25*f_{ctk*}\eta/\gamma_S)$

Nel caso di armature molto addensate, o ancoraggi in zona tesa tale valore va diviso per 1,5

Tensioni massime per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2)

 $\sigma_{cmax QP} = (0.40 f_{cK}) =$ 9.96 MPa (Combinazione di Carico Quasi Permanente)

 $\sigma_{\text{cmax R}} = (0.55 \, f_{\text{cK}}) =$ 13.70 MPa (Combinazione di Carico Caratteristica - Rara)

Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

ITINERARIO NAPOLI-BARI.
RADDOPPIO TRATTA CANCELLO - BENEVENTO.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F0H 22 D 11 CL VI1700 001 A 11 di 95

3.3 Calc	estruzzo per P	linti di F	Fondazione (C 28/35)
Valore cara	at <u>teristico della i</u>	esistenz	za a compressione cubica a 28 gg:
R _{ck} :		MPa	
Valore care	atteristico della i	esistenz	za a compressione cilindrica a 28 gg:
f _{ck} :		MPa	$(0.83*R_{ck})$
Resistenza	a a compression		ica media:
f _{cm} :		MPa	(fck+8)
	a a trazione assia	1	
f _{ctm} :	= 2.83	MPa	Valore medio
f _{ctk.0.05} :	1.98	MPa	Valore caratteristico frattile 5%
	a a trazione per	1	
f _{cfm} :	= 3.4	MPa	Valore medio
f _{cfk,0,05} :	= 2.4	МРа	Valore caratteristico frattile 5%
Coefficient	te parziale per le	verifich	e agli SLU:
γ с			
<u>Per situazioni</u>	di carico eccezionali,	tale valore	va considerato pari ad 1,0
- Resistenza	a di calcolo a coi	mnressir	one allo SLU:
f _{cd} :		MPa	(0,85*fck/γs)
Resistenza	a di calcolo a tra	zione dir	retta allo SLU:
f _{ctd} :	1.32	MPa	$(f_{\text{ctk 0,05}}/\gamma s)$
Resistenza	a di calcolo a tra	zione pe	r flessione SLU:
f _{ctd f} =	= 1.59	MPa	1,2*fctd
Per spessori n	ninori di 50mm e calce	estruzzi ord	inari, tale valore va ridotto del 20%
	elasticità norma	1	Modulo di elasticità tangenziale:
E _{cm} =	= 32588	MPa	G _{cm} = 13578 MPa
Modulo di	Poisson:		
v	= 0.2		
	_	_	
Coefficient	te di dilatazione	1	
α=	= 0.00001	°C ⁻¹	
Tensione d	di aderenza di ca	Icolo ac	ciaio-calcestruzzo
η:	= 1.00		
		1	
f _{bd} =		MPa	$(2,25*f_{ctk*}\eta/\gamma_S)$
inei caso di ari	mature molto addensa	ite, o ancor	aggi in zona tesa tale valore va diviso per 1,5

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

LOTTO COMMESSA IF0H 22 D 11 CODIFICA CL

DOCUMENTO VI1700 001

REV. FOGLIO Α 12 di 95

Tensioni massime per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2)

 $\sigma_{cmax QP} = (0.40 f_{cK}) = 11.62$ MPa

(Combinazione di Carico Quasi Permanente)

 $\sigma_{\text{cmax R}}$ = (0,55 f_{cK}) = **15.98** MPa

(Combinazione di Carico Caratteristica - Rara)

Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

3.4 Calcestruzzo per Elevazioni	(C 32/40	J)
---------------------------------	----------	----

3.4 Calce	struzzo per E	ievazior	ni (C 32/40)
Valore carat	tteristico della r	esistenz	a a compressione cubica a 28 gg:
R _{ck} =	40	MPa	
Valore carat	teristico della r	esistenz	a a compressione cilindrica a 28 gg:
f _{ck} =	33.2	MPa	(0.83^*R_{ck})
Resistenza a	a compressione	e cilindri	ca media:
f _{cm} =	41.2	MPa	(fck+8)
Resistenza a	a trazione assia	ile:	
f _{ctm} =	3.10	MPa	Valore medio
		Ī	
f _{ctk.0.05} =	2.17	MPa	Valore caratteristico frattile 5%
	a trazione per		
flessione:		1	Valera madia
f _{cfm} =	3.7	MPa	Valore medio
		•	
$f_{cfk,0,05} =$	2.6	MPa	Valore caratteristico frattile 5%
Coefficiente	parziale per le	verifich	e agli SLU:
γ _c =	1.5		
Per situazioni di	carico eccezionali, t	tale valore	va considerato pari ad 1,0
	di colonia a con		and alla CLU.
	di calcolo a con	-	
f _{cd} =	18.8	MPa	$(0.85 \text{fck/}\gamma \text{s})$
Resistenza	di calcolo a traz	zione dir	etta allo SLU:
f_{ctd} =	1.45	MPa	$(f_{\text{ctk }0.05}/\gamma s)$
Resistenza	di calcolo a traz	zione pei	r flessione SLU:
f _{ctd f} =	1.74	MPa	1,2*fctd
Per spessori mii	nori di 50mm e calce	estruzzi ordi	inari, tale valore va ridotto del 20%
		_	

Modulo di elasticità normale : Modulo di elasticità tangenziale: 33643 MPa 14018 MPa

Modulo di P	oisson:						
v=	0.2						
Coefficiente di dilatazione lineare							
α=	0.00001	°C ⁻¹					

Tensione di aderenza di calcolo acciaio-calcestruzzo

$$\eta$$
= 1.00
$$f_{bd}$$
= 3.25 MPa (2,25* f_{ctk} * η/γ s)

Nel caso di armature molto addensate, o ancoraggi in zona tesa tale valore va diviso per 1,5

Tensioni massime per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2)

$$\sigma_{cmax\ QP}$$
 = (0,40 f_{cK}) = 13.28 MPa (Combinazione di Carico Quasi Permanente)
$$\sigma_{cmax\ R}$$
 = (0,55 f_{cK}) = 18.26 MPa (Combinazione di Carico Caratteristica - Rara)

Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

3.5 Calcestruzzo magro per Getti di livellamento/sottofondazioni (C12/15)

Valore caratteristico della resistenza a compressione cubica a 28 gg:

R_{ck}= **15** MPa

Valore caratteristico della resistenza a compressione cilindrica a 28 gg:

 $f_{ck} = 12.5$ MPa $(0.83*R_{ck})$

Resistenza a compressione cilindrica media:

 f_{cm} = 20.5 MPa (fck+8)

Si omettono resistenze e/o tensioni di calcolo, essendo tale conglomerato previsto per parti d'opera senza funzioni strutturali.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOH 22 D 11 CL VI1700 001 A 14 di 95

3.6 Acciaio in barre d'armatura per c.a. (B450C)

Tensione caratteristica di rottura:

 f_{tk} = **540** MPa (frattile al 5%)

Tensione caratteristica allo snervamento:

f_{vk}= 450 MPa (frattile al 5%)

Fattore di sovraresistenza (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento)

 $k=f_{tk}/f_{vk}=$ 1.20 MPa

Allungamento a rottura (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento)

 $(A_{gt})_k = \varepsilon_{uk} = 7.5$ %

 $\varepsilon_{\rm ud} = 0.9 \ \varepsilon_{\rm uk} = 6.75 \ \%$

Coefficiente parziale per le verifiche agli SLU:

 $\gamma_c = 1.15$

Per situazioni di carico eccezionali, tale valore va considerato pari ad 1,0

Resistenza di calcolo allo SLU:

 f_{yd} = 391.3 MPa (f_{yk}/γ_s)

Modulo di elasticità :

E_f= **210000** MPa

Tensione massima per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2)

 $\sigma_{s \text{ max}} = (0.75 \text{ f}_{yK}) = 360 \text{ MPa}$ Combinazione di Carico Caratteristica(Rara)

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 15 di 95

4. CARATTERIZZAZIONE E CRITERI DI PROGETTAZIONE GEOTECNICA

Il ponte ricade alle chilometriche 37+275.00 - 37+305.00 del tracciato di progetto dell'Asse Principale, nell'ambito del 2° Lotto Funzionale Telese-San Lorenzo, individuato dalle pk 27+700 – 39+050.La definizione del modello geotecnico di sottosuolo di riferimento per il dimensionamento delle strutture di fondazione dell'opera, è trattata diffusamente nella specifica sezione dedicata all'opera in esame nell'ambito del seguente documento di progetto:

Relazione generale di linea delle opere all'aperto - Sub lotto 2	0 н	0	2	D	1	1	R	В	G	E	0	0	0	1	0	0	2	Α	
--	-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

Nella fattispecie, dal documento appena citato si desumono le curve di portanza dei pali nei riguardi dei carichi verticali di compressione e/o trazione, oltre al coefficiente α [m] utile alla valutazione delle sollecitazioni flessionali a testa pali legati alla deformabilità a taglio della palificata; relativamente a quest'ultimo aspetto, si specifica che ai fini della valutazione degli sforzi normali a testa pali, la valutazione del momento incrementale $\mathbf{M} = \mathbf{T} \ \mathbf{x} \ \alpha$ è stata effettuata considerando un coefficiente α pari al 50% di quello relativo al modello di palo isolato rigidamente vincolato in testa, per tener conto in qualche modo della reale deformabilità del plinti, mentre, per la valutazione delle sollecitazioni di progetto del palo singolo, il coefficiente α è stato considerato cautelativamente per intero.

Viene invece affrontato nell'ambito del presente paragrafo il tema del carico limite dei pali nei riguardi delle azioni orizzontali, essendo tale aspetto strettamente connesso agli aspetti strutturali (armatura di progetto a testa palo).

4.1 STRATIGRAFIA E INDAGINI IN PROSSIMITA' DELL'OPERA

Nelle vicinanze dell'opera sono state eseguite le seguenti indagini.

Sondaggio	Anno	Profondità	SPT n.	Lefranc n.	Lugeon n.	Dilatometrica n.	Pressiometrica n.	CR n.	CI n.	CL n.	Piezometro	Inclinometro	DH
		[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	TA/CC	[m]	[m]
T,	~	₩	~	~	~	~	▼	~	~	₩	₩	~	
IF15V30	2017	30	2	1	-	-	-	3	1	-	TA	-	-

Il sondaggio ha evidenziato la presenza di depositi alluvionali (antichi e recenti) incoerenti (unità ba1 e ba2) fino a circa 9.0 m da p.c.; successivamente sono stati intercettati i depostiti alluvionali terrazzati con spessori di circa 19.0 m in cui si ha predominanza della facies ghiaiosa (unità bn1) intercalata da

V117 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 16 di 95

qualche lente di spessore metrico a facies sabbiosa (unità bn2). Infine è stata rilevata l'unità di Maddaloni coesiva (unità MDL3) fino alla massima profondità investigata (30.0 m).

FALDA: il livello della falda massimo rilevato in corrispondenza del piezometro installato nel foro del sondaggio è a quota +59.5 m s.l.m., quindi variabile da 11.0 a 12.0 m circa di profondità dal p.c. locale (vedasi profilo geotecnico longitudinale).

Pertanto, risulta in corrispondenza dell'opera in esame, la seguente stratigrafia di progetto:

VI17 – stratigrafia e parametri di calcolo

Profondità [m]	Unità geotecnica	γ [kN/m³]	cu [kPa]	φ' [°]	<u>Ng</u> [-]	qb,lim [kPa]
da 0.0 a 2.0	ba2	19.0		31	17	4300
da 2.0 a 7.5	ba1	19.0	-	36	25	4300
da 7.5 a 10.0	ba2	20.0	-	32	17	4300
da 10.0 a 12.0	ba1	20.0	-	38	25	5800
da 12.0 a 13.0	ba2	20.0	-	32	17	4300
da 13.0 a 15.0	ba1	20.0	-	38	25	5800
da 15.0 a 18.0	ba2	20.0	-	32	17	4300
da 18.0 a 23.0	ba1	20.0	-	38	25	5800
da 23.0 a 24.0	ba2	20.0	-	32	17	4300
da 24.0 a 27.5	ba1	20.0	-	38	25	5800
da 27.5 a 30.0	MDL3	20.0	150	-	-	-
>30.0	MDL3	20.0	250	-	-	-

Falda: cautelativamente a p.c.

Stratigrafia definita da p.c. a quota +72m s.1.m.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 17 di 95

4.2 CURVE DI PORTANZA DI PROGETTO A CARICO VERTICALE

La capacità portante per le fondazioni del viadotto è stata valutata per pali di grande diametro D=1200 mm considerando l'Approccio 2 (A1+M1+R3) di normativa e quindi con i seguenti coefficienti parziali sulle resistenze di base e laterale:

N. 1 verticali di indagine, da cui $\xi_3 = 1.7$,

FSL = fattore di sicurezza per la portata laterale a compressione (= $\xi_3 \cdot \gamma_s = 2.0$).

FSL,t = fattore di sicurezza per la portata laterale a trazione (= $\xi_3 \cdot \gamma_{st} = 2.1$).

FSB = fattore di sicurezza per la portata di base (= $\xi_3 \cdot \gamma_b$ = 2.3).

Quindi per la verifica di capacità portante del palo si dovranno verificare le seguenti due condizioni:

- N_{max,SLU} < Q_d, la massima sollecitazione assiale (sia statica, che sismica) allo SLU dovrà essere inferiore alla portata di progetto del palo (riportata nelle seguenti tabelle);
- N_{max,SLE} < Q_{II} / 1.25 la massima sollecitazione assiale allo SLE RARA dovrà essere inferiore alla portata laterale limite del palo (Q_{II}, riportata nelle seguenti tabelle) con un fattore di sicurezza di 1.25.

Inoltre si è considerato:

- testa palo a 2.0 m di profondità da p.c.;
- falda cautelativamente a p.c..

V117 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 18 di 95

Tabella 1 – VI17 - Capacità portante palo D=1200 mm - A1+M1+R3 compressione

LINEA NAPOLI-BARI TRATTA CANCELLO-BENEVENTO FRASSO-VITULANO
VI17 palo D1200mm -SLU A1+M1+R3

STAMPA capacita' portante e relativi contributi

Lp m	Q11 kN	Qbl kN	Wp kN	Qu kN	Qd kN
.00	0.	346.	0.	346.	150.
.50	16.	497.	3.	510.	221.
1.00	37.	647.	6.	678.	294.
1.50	61.	798.	8.	850.	369.
2.00	88.	948.	11.	1025.	445.
2.50	120.	1038.	14.	1144.	497.
3.00	155.	1082.	17.	1220.	531.
3.50	194.	1125.	20.	1299.	566.
4.00	236.	1168.	23.	1382.	603.
4.50	283.	1211.	25.	1468.	642.
5.00	332.	1255.	28.	1559.	683.
5.50	385.	1298.	31.	1652.	726.
6.00	436.	1394.	34.	1796.	790.
6.50	489.	1490.	37.	1942.	855.
7.00	545.	1586.	40.	2092.	923.
7.50	605.	1682.	42.	2245.	992.
8.00	671.	1778.	45.	2404.	1063.
8.50	753.	2039.	48.	2744.	1215.
9.00	841.	2168.	51.	2959.	1312.
9.50	934.	2166.	54.	3046.	1355.
10.00	1029.	2163.	57.	3135.	1398.
10.50	1112.	2259.	59.	3312.	1479.
11.00	1200.	2355.	62.	3493.	1562.
11.50	1308.	2655.	65.	3898.	1743.
12.00	1422.	2792.	68.	4146.	1857.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 19 di 95

12.50	1542.	2766.	71.	4237.	1903.
13.00	1662.	2740.	74.	4329.	1949.
13.50	1768.	2836.	76.	4527.	2041.
14.00	1874.	2932.	79.	4727.	2133.
14.50	1983.	3028.	82.	4930.	2226.
15.00	2097.	3124.	85.	5136.	2322.
15.50	2213.	3220.	88.	5346.	2419.
16.00	2337.	3317.	90.	5563.	2520.
16.50	2488.	3681.	93.	6076.	2751.
17.00	2647.	4045.	96.	6596.	2986.
17.50	2810.	4410.	99.	7121.	3223.
18.00	2978.	4678.	102.	7555.	3421.
18.50	3151.	4947.	105.	7993.	3622.
19.00	3327.	4813.	107.	8033.	3649.
19.50	3508.	4679.	110.	8078.	3679.
20.00	3694.	4546.	113.	8127.	3710.
20.50	3884.	4412.	116.	8180.	3744.
21.00	4073.	4278.	119.	8233.	3778.
21.50	4237.	4374.	122.	8490.	3899.
22.00	4405.	4470.	124.	8751.	4022.
22.50	4608.	4769.	127.	9249.	4250.
23.00	4820.	5067.	130.	9757.	4483.
23.50	5036.	4482.	133.	9385.	4334.
24.00	5257.	3896.	136.	9018.	4187.
24.50	5482.	3311.	139.	8655.	4042.
25.00	5712.	2726.	141.	8296.	3900.
25.50	5933.	2140.	144.	7929.	3753.
26.00	6074.	2152.	147.	8078.	3825.
26.50	6203.	2163.	150.	8216.	3892.
27.00	6335.	2174.	153.	8357.	3960.
27.50	6469.	2186.	156.	8499.	4029.
28.00	6612.	2197.	158.	8651.	4103.
28.50	6795.	2354.	161.	8987.	4259.
29.00	6983.	2510.	164.	9329.	4419.
29.50	7172.	2667.	167.	9672.	4579.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 20 di 95

30.00	7360.	2824.	170.	10014.	4738.
30.50	7549.	2981.	172.	10357.	4898.
31.00	7737.	3137.	175.	10699.	5057.
31.50	7925.	3294.	178.	11041.	5217.
32.00	8114.	3305.	181.	11238.	5313.
32.50	8302.	3317.	184.	11435.	5409.
33.00	8491.	3328.	187.	11632.	5506.
33.50	8679.	3339.	189.	11829.	5602.
34.00	8868.	3351.	192.	12026.	5698.
34.50	9056.	3362.	195.	12223.	5795.
35.00	9245.	3373.	198.	12420.	5891.
35.50	9433.	3384.	201.	12617.	5987.
36.00	9622.	3396.	204.	12814.	6084.
36.50	9810.	3407.	206.	13011.	6180.
37.00	9999.	3418.	209.	13208.	6276.
37.50	10187.	3430.	212.	13405.	6373.
38.00	10376.	3441.	215.	13602.	6469.
38.50	10564.	3452.	218.	13799.	6566.
39.00	10753.	3464.	221.	13996.	6662.
39.50	10944.	3475.	223.	14196.	6760.
40.00	11137.	3486.	226.	14397.	6858.
40.50	11333.	3498.	229.	14601.	6958.
41.00	11531.	3509.	232.	14808.	7059.
41.50	11731.	3520.	235.	15017.	7161.
42.00	11934.	3531.	238.	15228.	7265.
42.50	12139.	3543.	240.	15441.	7369.
43.00	12346.	3554.	243.	15657.	7475.
43.50	12556.	3565.	246.	15875.	7582.
44.00	12768.	3577.	249.	16096.	7690.
44.50	12982.	3588.	252.	16319.	7799.
45.00	13199.	3599.	254.	16544.	7910.
45.50	13418.	3611.	257.	16771.	8022.
46.00	13640.	3622.	260.	17001.	8134.
46.50	13863.	3633.	263.	17234.	8248.
47.00	14090.	3645.	266.	17468.	8364.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0H	22 D 11	CL	VI1700 001	Α	21 di 95

47.50	14318.	3656.	269.	17705.	8480.
48.00	14549.	3667.	271.	17945.	8598.
48.50	14782.	3678.	274.	18187.	8716.
49.00	15018.	3690.	277.	18431.	8836.
49.50	15256.	3701.	280.	18677.	8957.
50.00	15496.	3712.	283.	18926.	9079.
50.50	15739.	3724.	286.	19177.	9203.
51.00	15984.	3735.	288.	19431.	9328.
51.50	16231.	3746.	291.	19687.	9453.
52.00	16481.	3758.	294.	19945.	9580.
52.50	16733.	3769.	297.	20205.	9708.
53.00	16988.	3780.	300.	20468.	9838.
53.50	17245.	3792.	303.	20734.	9968.
54.00	17504.	3803.	305.	21001.	10100.
54.50	17765.	3814.	308.	21271.	10233.
55.00	18029.	3826.	311.	21544.	10367.
55.50	18295.	3837.	314.	21818.	10502.
56.00	18564.	3848.	317.	22095.	10638.
56.50	18835.	3859.	319.	22375.	10776.
57.00	19108.	3871.	322.	22657.	10915.
57.50	19384.	3882.	325.	22941.	11055.
58.00	19662.	3893.	328.	23227.	11196.

Lp = Lunghezza utile del palo

Qll = Portata laterale limite

Qbl = Portata di base limite

 $^{{\}tt Wp}$ = Peso efficace del palo

Qu = Portata totale limite

Qd = Portata di progetto = Qll/FS,l + Qbl/FS,b - Wp

V117 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 22 di 95

Tabella 2 – VI17 - Capacità portante palo D=1200mm - A1+M1+R3 trazione

LINEA NAPOLI-BARI TRATTA CANCELLO-BENEVENTO FRASSO-VITULANO

VI17 palo D1200mm -SLU A1+M1+R3 trazione

STAMPA capacita' portante e relativi contributi

Lp Q11 Qb1 Wp Qu Qd m kN kN kN kN kN .00 0. 0. 0. 0. 0. .50 14. 0. -8. 22. 15. 1.00 31. 0. -17. 48. 32. 1.50 51. 0. -25. 76. 50. 2.00 74. 0. -34. 108. 69. 2.50 100. 0. -42. 142. 90. 3.00 129. 0. -51. 180. 112. 3.50 162. 0. -59. 221. 136. 4.00 197. 0. -68. 265. 162. 4.50 235. 0. -76. 312. 188. 5.00 277. 0. -85. 362. 217. 5.50 321. 0. -93. 414. 246.						
.00 0. 0. 0. 0. 0. 0. 150 14. 08. 22. 15. 1.00 31. 017. 48. 32. 1.50 51. 025. 76. 50. 2.00 74. 034. 108. 69. 2.50 100. 042. 142. 90. 3.00 129. 051. 180. 112. 3.50 162. 059. 221. 136. 4.00 197. 068. 265. 162. 4.50 235. 076. 312. 188. 5.00 277. 085. 362. 217. 5.50 321. 093. 414. 246. 6.00 363. 0102. 465. 275. 6.50 407. 0110. 517. 304. 7.00 454. 0119. 573. 335. 7.50 504. 0127. 632. 367. 8.00 559. 0136. 695. 402. 8.50 627. 0144. 771. 443. 9.00 701. 0153. 854. 486. 9.50 778. 0161. 939. 532.	Lp	Qll	Qbl	Wp	Qu	Qd
.50 14. 0. -8. 22. 15. 1.00 31. 0. -17. 48. 32. 1.50 51. 0. -25. 76. 50. 2.00 74. 0. -34. 108. 69. 2.50 100. 0. -42. 142. 90. 3.00 129. 0. -51. 180. 112. 3.50 162. 0. -59. 221. 136. 4.00 197. 0. -68. 265. 162. 4.50 235. 0. -76. 312. 188. 5.00 277. 0. -85. 362. 217. 5.50 321. 0. -93. 414. 246. 6.00 363. 0. -102. 465. 275. 6.50 407. 0. -110. 517. 304. 7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402.	m	kN	kN	kN	kN	kN
.50 14. 0. -8. 22. 15. 1.00 31. 0. -17. 48. 32. 1.50 51. 0. -25. 76. 50. 2.00 74. 0. -34. 108. 69. 2.50 100. 0. -42. 142. 90. 3.00 129. 0. -51. 180. 112. 3.50 162. 0. -59. 221. 136. 4.00 197. 0. -68. 265. 162. 4.50 235. 0. -76. 312. 188. 5.00 277. 0. -85. 362. 217. 5.50 321. 0. -93. 414. 246. 6.00 363. 0. -102. 465. 275. 6.50 407. 0. -110. 517. 304. 7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402.						
1.00 31. 0. -17. 48. 32. 1.50 51. 0. -25. 76. 50. 2.00 74. 0. -34. 108. 69. 2.50 100. 0. -42. 142. 90. 3.00 129. 0. -51. 180. 112. 3.50 162. 0. -59. 221. 136. 4.00 197. 0. -68. 265. 162. 4.50 235. 0. -76. 312. 188. 5.00 277. 0. -85. 362. 217. 5.50 321. 0. -93. 414. 246. 6.00 363. 0. -102. 465. 275. 6.50 407. 0. -110. 517. 304. 7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402. 8.50 627. 0. -144. 771. 443	.00	0.	0.	0.	0.	0.
1.50 51. 0. -25. 76. 50. 2.00 74. 0. -34. 108. 69. 2.50 100. 0. -42. 142. 90. 3.00 129. 0. -51. 180. 112. 3.50 162. 0. -59. 221. 136. 4.00 197. 0. -68. 265. 162. 4.50 235. 0. -76. 312. 188. 5.00 277. 0. -85. 362. 217. 5.50 321. 0. -93. 414. 246. 6.00 363. 0. -102. 465. 275. 6.50 407. 0. -110. 517. 304. 7.00 454. 0. -119. 573. 335. 7.50 504. 0. -127. 632. 367. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. <td< td=""><td>.50</td><td>14.</td><td>0.</td><td>-8.</td><td>22.</td><td>15.</td></td<>	.50	14.	0.	-8.	22.	15.
2.00 74. 0. -34. 108. 69. 2.50 100. 0. -42. 142. 90. 3.00 129. 0. -51. 180. 112. 3.50 162. 0. -59. 221. 136. 4.00 197. 0. -68. 265. 162. 4.50 235. 0. -76. 312. 188. 5.00 277. 0. -85. 362. 217. 5.50 321. 0. -93. 414. 246. 6.00 363. 0. -102. 465. 275. 6.50 407. 0. -110. 517. 304. 7.00 454. 0. -119. 573. 335. 7.50 504. 0. -127. 632. 367. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939.	1.00	31.	0.	-17.	48.	32.
2.50 100. 0. -42. 142. 90. 3.00 129. 0. -51. 180. 112. 3.50 162. 0. -59. 221. 136. 4.00 197. 0. -68. 265. 162. 4.50 235. 0. -76. 312. 188. 5.00 277. 0. -85. 362. 217. 5.50 321. 0. -93. 414. 246. 6.00 363. 0. -102. 465. 275. 6.50 407. 0. -110. 517. 304. 7.00 454. 0. -119. 573. 335. 7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939.	1.50	51.	0.	-25.	76.	50.
3.00 129. 0. -51. 180. 112. 3.50 162. 0. -59. 221. 136. 4.00 197. 0. -68. 265. 162. 4.50 235. 0. -76. 312. 188. 5.00 277. 0. -85. 362. 217. 5.50 321. 0. -93. 414. 246. 6.00 363. 0. -102. 465. 275. 6.50 407. 0. -110. 517. 304. 7.00 454. 0. -119. 573. 335. 7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939. 532.	2.00	74.	0.	-34.	108.	69.
3.50 162. 0. -59. 221. 136. 4.00 197. 0. -68. 265. 162. 4.50 235. 0. -76. 312. 188. 5.00 277. 0. -85. 362. 217. 5.50 321. 0. -93. 414. 246. 6.00 363. 0. -102. 465. 275. 6.50 407. 0. -110. 517. 304. 7.00 454. 0. -119. 573. 335. 7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939. 532.	2.50	100.	0.	-42.	142.	90.
4.00 197. 0. -68. 265. 162. 4.50 235. 0. -76. 312. 188. 5.00 277. 0. -85. 362. 217. 5.50 321. 0. -93. 414. 246. 6.00 363. 0. -102. 465. 275. 6.50 407. 0. -110. 517. 304. 7.00 454. 0. -119. 573. 335. 7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939. 532.	3.00	129.	0.	-51.	180.	112.
4.50 235. 0. -76. 312. 188. 5.00 277. 0. -85. 362. 217. 5.50 321. 0. -93. 414. 246. 6.00 363. 0. -102. 465. 275. 6.50 407. 0. -110. 517. 304. 7.00 454. 0. -119. 573. 335. 7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939. 532.	3.50	162.	0.	-59.	221.	136.
5.00 277. 0. -85. 362. 217. 5.50 321. 0. -93. 414. 246. 6.00 363. 0. -102. 465. 275. 6.50 407. 0. -110. 517. 304. 7.00 454. 0. -119. 573. 335. 7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939. 532.	4.00	197.	0.	-68.	265.	162.
5.50 321. 0. -93. 414. 246. 6.00 363. 0. -102. 465. 275. 6.50 407. 0. -110. 517. 304. 7.00 454. 0. -119. 573. 335. 7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939. 532.	4.50	235.	0.	-76.	312.	188.
6.00 363. 0. -102. 465. 275. 6.50 407. 0. -110. 517. 304. 7.00 454. 0. -119. 573. 335. 7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939. 532.	5.00	277.	0.	-85.	362.	217.
6.50 407. 0. -110. 517. 304. 7.00 454. 0. -119. 573. 335. 7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939. 532.	5.50	321.	0.	-93.	414.	246.
7.00 454. 0. -119. 573. 335. 7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939. 532.	6.00	363.	0.	-102.	465.	275.
7.50 504. 0. -127. 632. 367. 8.00 559. 0. -136. 695. 402. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939. 532.	6.50	407.	0.	-110.	517.	304.
8.00 559. 0. -136. 695. 402. 8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939. 532.	7.00	454.	0.	-119.	573.	335.
8.50 627. 0. -144. 771. 443. 9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939. 532.	7.50	504.	0.	-127.	632.	367.
9.00 701. 0. -153. 854. 486. 9.50 778. 0. -161. 939. 532.	8.00	559.	0.	-136.	695.	402.
9.50 778. 0161. 939. 532.	8.50	627.	0.	-144.	771.	443.
	9.00	701.	0.	-153.	854.	486.
	9.50	778.		-161.	939.	532.
10.00 857. 0170. 1027. 578.	10.00	857.	0.	-170.	1027.	578.
10.50 927. 0178. 1105. 620.						
11.00 1000. 0187. 1186. 663.						
11.50 1090. 0195. 1285. 714.						

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 23 di 95

12.00	1185.	0.	-204.	1389.	768.
12.50	1285.	0.	-212.	1497.	824.
13.00	1385.	0.	-221.	1606.	880.
13.50	1473.	0.	-229.	1702.	931.
14.00	1562.	0.	-238.	1799.	981.
14.50	1653.	0.	-246.	1899.	1033.
15.00	1747.	0.	-254.	2002.	1086.
15.50	1844.	0.	-263.	2107.	1141.
16.00	1948.	0.	-271.	2219.	1199.
16.50	2073.	0.	-280.	2353.	1267.
17.00	2206.	0.	-288.	2494.	1339.
17.50	2342.	0.	-297.	2639.	1412.
18.00	2482.	0.	-305.	2787.	1487.
18.50	2626.	0.	-314.	2939.	1564.
19.00	2773.	0.	-322.	3095.	1643.
19.50	2924.	0.	-331.	3255.	1723.
20.00	3078.	0.	-339.	3418.	1805.
20.50	3237.	0.	-348.	3584.	1889.
21.00	3395.	0.	-356.	3751.	1973.
21.50	3531.	0.	-365.	3896.	2046.
22.00	3671.	0.	-373.	4044.	2121.
22.50	3840.	0.	-382.	4221.	2210.
23.00	4016.	0.	-390.	4407.	2303.
23.50	4197.	0.	-399.	4595.	2397.
24.00	4381.	0.	-407.	4788.	2493.
24.50	4569.	0.	-416.	4984.	2591.
25.00	4760.	0.	-424.	5184.	2691.
25.50	4946.	0.	-433.	5379.	2788.
26.00	5082.	0.	-441.	5524.	2861.
26.50	5212.	0.	-450.	5662.	2932.
27.00	5344.	0.	-458.	5802.	3003.
27.50	5478.	0.	-467.	5945.	3075.
28.00	5621.	0.	-475.	6096.	3152.
28.50	5803.	0.	-483.	6287.	3247.
29.00	5992.	0.	-492.	6484.	3345.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF0H 22 D 11 CL VI1700 001 A 24 di 95

29.50	6180.	0.	-500.	6681.	3444.
30.00	6369.	0.	-509.	6878.	3542.
30.50	6557.	0.	-517.	7075.	3640.
31.00	6746.	0.	-526.	7272.	3738.
31.50	6934.	0.	-534.	7469.	3837.
32.00	7123.	0.	-543.	7666.	3935.
32.50	7311.	0.	-551.	7863.	4033.
33.00	7500.	0.	-560.	8060.	4131.
33.50	7688.	0.	-568.	8257.	4229.
34.00	7877.	0.	-577.	8454.	4328.
34.50	8065.	0.	-585.	8651.	4426.
35.00	8254.	0.	-594.	8848.	4524.
35.50	8442.	0.	-602.	9045.	4622.
36.00	8631.	0.	-611.	9242.	4721.
36.50	8819.	0.	-619.	9439.	4819.
37.00	9008.	0.	-628.	9636.	4917.
37.50	9196.	0.	-636.	9833.	5015.
38.00	9385.	0.	-645.	10030.	5114.
38.50	9573.	0.	-653.	10227.	5212.
39.00	9762.	0.	-662.	10424.	5310.
39.50	9953.	0.	-670.	10623.	5410.
40.00	10146.	0.	-679.	10825.	5510.
40.50	10342.	0.	-687.	11029.	5612.
41.00	10540.	0.	-696.	11235.	5714.
41.50	10740.	0.	-704.	11444.	5818.
42.00	10943.	0.	-713.	11655.	5923.
42.50	11148.	0.	-721.	11869.	6029.
43.00	11355.	0.	-729.	12084.	6137.
43.50	11565.	0.	-738.	12303.	6245.
44.00	11777.	0.	-746.	12523.	6354.
44.50	11991.	0.	-755.	12746.	6465.
45.00	12208.	0.	-763.	12971.	6577.
45.50	12427.	0.	-772.	13199.	6690.
46.00	12649.	0.	-780.	13429.	6803.
46.50	12872.	0.	-789.	13661.	6919.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0H	22 D 11	CL	VI1700 001	Α	25 di 95

47.00	13099.	0.	-797.	13896.	7035.
47.50	13327.	0.	-806.	14133.	7152.
48.00	13558.	0.	-814.	14372.	7270.
48.50	13791.	0.	-823.	14614.	7390.
49.00	14027.	0.	-831.	14858.	7511.
49.50	14265.	0.	-840.	15105.	7633.
50.00	14505.	0.	-848.	15353.	7755.
50.50	14748.	0.	-857.	15605.	7880.
51.00	14993.	0.	-865.	15858.	8005.
51.50	15240.	0.	-874.	16114.	8131.
52.00	15490.	0.	-882.	16372.	8258.
52.50	15742.	0.	-891.	16633.	8387.
53.00	15997.	0.	-899.	16896.	8517.
53.50	16253.	0.	-908.	17161.	8647.
54.00	16513.	0.	-916.	17429.	8779.
54.50	16774.	0.	-925.	17699.	8912.
55.00	17038.	0.	-933.	17971.	9046.
55.50	17304.	0.	-942.	18246.	9182.
56.00	17573.	0.	-950.	18523.	9318.
56.50	17844.	0.	-958.	18802.	9456.
57.00	18117.	0.	-967.	19084.	9594.
57.50	18393.	0.	-975.	19368.	9734.
58.00	18671.	0.	-984.	19655.	9875.

```
Lp = Lunghezza utile del palo
```

4.3 COEFFICIENTE α

Qll = Portata laterale limite

Qbl = Portata di base limite

 $^{{\}tt Wp}$ = Peso efficace del palo

Qu = Portata totale limite

Qd = Portata di progetto = Q11/FS,1 + Qb1/FS,b - Wp

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 26 di 95

Nella Relazione Geotecnica Generale già citata in precedenza, è riportata la valutazione del parametro alfa (α) per le varie situazioni stratigrafiche caratteristiche del tracciato, tra cui l'area interessata dalla realizzazione dell'opera in esame; in funzione dei risultati ottenuti si è ritenuto di assumere, ai fini progettuali, un valore del coefficiente α pari a **2.6m**

4.4 CARICO LIMITE PER AZIONI ORIZZONTALI.

Per le fondazioni in esame, vista la presenza di una stratigrafia piuttosto variabile con la profondità in cui si intercalano incoerenti e coesivi e la presenza di carichi orizzontali piuttosto elevati in condizioni sismiche, le verifiche a carico limite orizzontale sono state svolte con programma FEM non lineare, considerando negli altri strati di terreno curve P-Y non lineari, definibili lungo il fusto del palo e resistenze variabili. La teoria di Broms è comunque applicabile però impone semplificazioni (ad esempio unico tipo di terreno) che rendono ancora più restrittiva la verifica, mentre l'utilizzo di una legge P-Y di mobilitazione non lineare, di tipo iperbolico per la valutazione della pressione orizzontale limite, meglio descrive il comportamento dei terreni in esame.

Il palo, in testa è stato vincolato alla rotazione (ϕ =0 rotazione impedita) ed è stato applicato un carico orizzontale (H) via via incrementato, mobilitando man mano la resistenza laterale disponibile fino a raggiungere il momento di prima plasticizzazione della sezione lungo il palo.

La verifica a carico limite è stata svolta incrementando il carico orizzontale man mano fino ad un carico massimo pari al taglio massimo (T_{max} , SLU) per il coefficiente di sicurezza FS. Il fattore di sicurezza per la verifica a carico orizzontale è valutato come FS = $\gamma T \cdot \xi 3$ (con γ_T = 1.30). Per la verifica a carico limite orizzontale, per le opere in esame, è stato assunto $\xi 3$ = 1.40, con riferimento al numero massimo di verticali di indagine eseguite su ogni sub lotto di pertinenza. Questo per i seguenti motivi:

- le verifiche vengono condotte per le condizioni di carico più gravose, che sono date dalle azioni sismiche SLU, in cui si evidenziano valori delle azioni orizzontali molto alti, decisamente maggiori rispetto alle massima azioni orizzontali in condizioni statiche SLU.
- per le singole unità geotecniche, l'insieme delle informazioni per la caratterizzazione geotecnica del terreno deriva anche dall'analisi di tutte le prove in sito ed in laboratorio del singolo sub lotto, dettagliate sulle indagini locali in corrispondenza dell'opera principalmente per la definizione della stratigrafia.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 28 di 95

5. CARATTERIZZAZIONE SISMICA DEL SITO

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.

L'opera in questione rientra in particolare nell'ambito del Progetto di Raddoppio della tratta Ferroviaria Frasso Telesino – Vitulano, che si sviluppa per circa 30Km, da ovest verso est, attraversando il territorio di diverse località tra cui Dugenta/Frasso (BN), Amorosi (BN), Telese(BN), Solopaca(BN), San Lorenzo Maggiore(BN), Ponte(BN), Torrecuso(BN), Vitulano (BN) Benevento – Località Roseto (BN).



Figura 2 – Configurazione planimetrica tracciato

In considerazione della variabilità dei parametri di pericolosità sismica con la localizzazione geografica del sito, ed allo scopo di individuare dei tratti omogenei nell'ambito dei quali assumere costanti detti parametri, si è provveduto a suddividere il tracciato in tre sottozone simiche, a seguito di un esame generale del livello pericolosità sismica dell'area che evidenzia un graduale incremento dell'intensità sismica da ovest verso est; nella fattispecie le zone sismiche "omogenee" individuate, sono quelle di seguito elencate:

Zona S1: da pk 16+500 a pk 22+500 (Dugenta/Frasso - Amorosi)

Zona S2: da pk 22+500 a pk 30+000 (Amorosi – Solopaca)

Zona S3: da pk 30+000 a pk 46+577 (Solopaca-Ponte-Vitulano)

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 29 di 95

Per ciascuna zona, sono stati dunque individuati, in funzione del periodo di riferimento dell'azione sismica (VR), i parametri di pericolosità sismica (ag/g, F0 e Tc*) rappresentativi delle più severe condizioni di pericolosità riscontrabili lungo il tratto di riferimento, assumendo in particolare come riferimento le seguenti Località

Zona S1: Amorosi (BN)

Zona S2: Solopaca (BN)

Zona S3: Ponte (BN)

Nei paragrafi seguenti è riportata la valutazione dei parametri di pericolosità sismica per ciascuna delle località di riferimento.

L'opera in esame ricade nella zona sismica denominata Zona S3

5.1 Vita Nominale e Classe d'uso dell'Opera

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (VN), intesa come il numero di anni nel quale la struttura, purchè soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (CU)

La vita nominale delle infrastrutture ferroviarie può, di norma, assumersi come indicato nella seguente tabella.

	TIPI DI COSTRUZIONE	Vita Nominale V _N [anni]
1	Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM14/1/2008 a velocità convenzionale V<250 Km/h	50
2	Altre opere nuove a velocità V<250 Km/h	75
3	Altre opere nuove a velocità V>250 Km/h	100
4	Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	≥100

Per l'opera in oggetto si considera una vita nominale VN = 75 anni (categoria 2)

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 30 di 95

Riguardo invece la Classe d'Uso, il Decreto Ministeriale del 14 gennaio 2008, individua le seguenti quattro categorie

- Classe I: costruzioni con presenza solo occasionale di persone, edifici agricoli.
- Classe II: costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe III o in Classe IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- Classe III: costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose
 per l'ambiente. Reti viarie extraurbane non ricadenti in Classe IV. Ponti e reti ferroviarie la cui
 interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro
 eventuale collasso.
- Classe IV: costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione di strade", e di tipo quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti o reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

All' opera in oggetto corrisponde pertanto una Classe III a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II):

$$C_u = 1.5$$

I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso V_R 0, ovvero:

$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1.5 = 112.5$ anni

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 31 di 95

5.2 Parametri di pericolosità sismica

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 14-01-2008, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / VR) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

Il DM 14.01.08 definisce in particolare la pericolosità sismica di un sito attraverso i seguenti parametri::

- ag/g: accelerazione orizzontale relativa massima al suolo, su sito di riferimento rigido;
- Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T^{*}c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per quanto detto al precedente paragrafo, risulta:

Localizzazione Geografica: Amorosi (BN), Solopaca (BN), Ponte (BN)

Periodo di riferimento Azione sismica V_R = 112.5 anni,

Riguardo, infine gli stati limite di verifica/periodo di ritorno dell'azione sismica, la normativa individua in particolare 4 situazioni tipiche riferendosi alle prestazioni che la costruzione nel suo complesso deve poter espletare, riferendosi sia agli elementi strutturali, che a quelli non strutturali / impianti, come di seguito descritto:

- <u>Stato Limite di Operatività</u> (SLO): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, non deve subire danni ed interruzioni d'uso significativi;
- Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile all'interruzione d'uso di parte delle apparecchiature.

- Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce rotture o crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione invece conserva una parte della resistenza e della rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche
- Stato Limite di prevenzione del Collasso (SLC): a seguito del terremoto la costruzione subisce gravi rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

A ciascuno stato limite di verifica è quindi associata una probabilità di superamento \mathbf{P}_{VR} nel periodo di riferimento ità di superamento nel periodo di riferimento \mathbf{V}_{R} , secondo quanto indicato nel seguito:

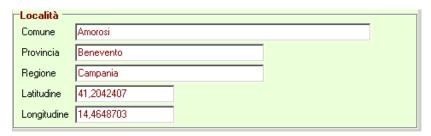
Stati Limite		P _{VR} : Probabilità di superamento nel periodo di riferimento VR
Stati limite	SLO	81%
di esercizio	SLD	63%
Stati limite	SLV	10%
ultimi	SLC	5%

Tab. 3.2.1 DM 14.01.08

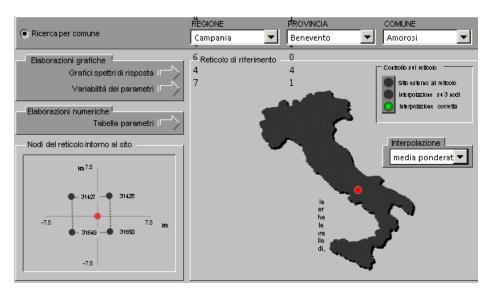
A ciascuna probabilità di superamento Pv_R è quindi associato un Periodo di Ritorno dell'azione sismica T_R , valutabile attraverso la seguente relazione:

 $T_R = -V_R / In(1-P_{VR})$ (periodo di ritorno dell'azione sismica)

Nel caso in esame risulta dunque, con riferimento ai diversi stati limite :


SLATO	T _R
LIMITE	[anni]
SLO	68
SLD	113
SLV	1068
SLC	2193

Zona S1 da pk 16+500 a pk 22+500 (Dugenta/Frasso - Amorosi)


Di seguito si riportano i parametri di pericolosità sismica da assumere come riferimento per la determinazione delle Azioni sismiche di progetto per opere ricadenti nella parte di tracciato dell'infrastruttura individuata come zona S1:

Località: Amorosi (BN)

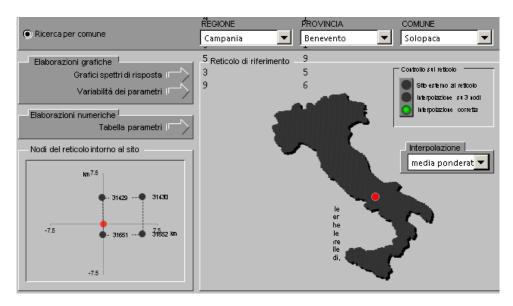
VR = 112.5 anni

Sulla scorta di quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene:

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.078	2.428	0.324
SLD	113	0.099	2.440	0.340
SLV	1068	0.273	2.352	0.419
SLC	2193	0.357	2.394	0.433

Tabella di riepilogo Parametri di pericolosità sismica zona S1

Zona S2 da pk 22+500 a pk 30+000 (Amorosi - Solopaca)


Di seguito si riportano i parametri di pericolosità sismica da assumere come riferimento per la determinazione delle Azioni sismiche di progetto per opere ricadenti nella parte di tracciato dell'infrastruttura individuata come zona S2:

Località: Solopaca (BN)

-Località -	
Comune	Solopaca
Provincia	Benevento
Regione	Campania
Latitudine	41,1937370
Longitudine	14,5550380

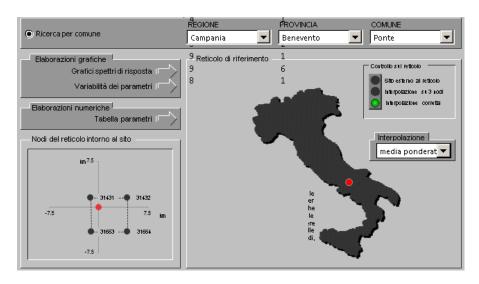
 $V_R = 112.5 \text{ anni}$

Sulla scorta di quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene:

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.088	2.368	0.316
SLD	113	0.113	2.377	0.331
SLV	1068	0.322	2.346	0.401
SLC	2193	0.419	2.430	0.425

Tabella di riepilogo Parametri di pericolosità sismica zona S2

Zona S3 da pk 30+000 a pk 46+577 (Solopaca-Ponte-Vitulano)


Di seguito si riportano i parametri di pericolosità sismica da assumere come riferimento per la determinazione delle Azioni sismiche di progetto per opere ricadenti nella parte di tracciato dell'infrastruttura individuata come zona **S2**:

Località: Ponte (BN)

-Località -	
Comune	Ponte
Provincia	Benevento
Regione	Campania
Latitudine	41,2139730
Longitudine	14,6935400

 $V_R = 112.5 \text{ anni}$

Sulla scorta di quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene:

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.097	2.343	0.310
SLD	113	0.127	2.332	0.326
SLV	1068	0.367	2.346	0.395
SLC	2193	0.473	2.445	0.427

Tabella di riepilogo Parametri di pericolosità sismica zona S3

L'opera in esame ricade nella zona sismica denominata S3.

5.3 Categoria di sottosuolo e categoria topografica

Le Categoria di Sottosuolo e le Condizioni Topografiche sono valutate come descritte al punto 3.2.2 del DM 14.01.08, ovvero:

Tabella 3.2.II - Categorie di sottosuolo

Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di $V_{s,30}$ superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{8,30}$ compresi tra 360 m/s e 800 m/s (ovvero $N_{SPT,30} > 50$ nei terreni a grana grossa e $c_{u,30} > 250$ kPa nei terreni a grana fina).
C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 180 m/s e 360 m/s (ovvero $15 < N_{SPT,30} < 50$ nei terreni a grana grossa e $70 < c_{u,30} < 250$ kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} < 15$ nei terreni a grana grossa e $c_{u,30} < 70$ kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con $V_s > 800$ m/s).

Tabella 3.2.III – Categorie aggiuntive di sottosuolo.

Categoria	Descrizione
S1	Depositi di terreni caratterizzati da valori di $V_{s,30}$ inferiori a 100 m/s (ovvero $10 < c_{u,30} < 20$ kPa), che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di torba o di argille altamente organiche.
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

Tabella 3.2.IV - Categorie topografiche

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i $\leq 15^{\circ}$
T2	Pendii con inclinazione media i > 15°
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^\circ \le i \le 30^\circ$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Tabella di riepilogo Categoria di Sottosuolo e Topografiche DM 14.01.08

Note la Categoria di Sottosuolo e le Condizioni Topografiche, la costruzione degli spettri passa infine attraverso la definizione dei coefficienti di Amplificazione Stratigrafica (S_S e C_C) e Topografica (S_T), mediante le indicazioni di cui alle tab 3.2.V e 3.2.VI del DM 14.01.08, che si ripropongono nel seguito per chiarezza espositiva:

Tabella 3.2.V – Espressioni di S_S e di C_C

Categoria sottosuolo	\mathbf{S}_{S}	C _C
A	1,00	1,00
В	$1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10 \cdot (T_{\rm c}^*)^{-0,20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80 \cdot$	$1,25 \cdot (T_{\rm c}^*)^{-0.50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1.15 \cdot (T_C^*)^{-0.40}$

 $\textbf{Tabella 3.2.VI} - \textit{Valori massimi del coefficiente di amplificazione topografica } S_T$

Categoria topografica	Ubicazione dell'opera o dell'intervento	S_T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta del rilievo	1,2
T4	In corrispondenza della cresta del rilievo	1,4

Per il caso in esame, come riportato all'interno della relazione geotecnica e di calcolo del lotto in esame (lotto1) (cod. elaborato IF0H02D 11CLGE0001004A), risulta una categoria di sottosuolo di tipo B e una classe Topografica T1.

6. ANALISI DEI CARICHI

6.1 Carichi provenienti dall'impalcato

6.1.1 Pesi permanenti strutturali e non strutturali

G1 (Permanenti strutturali)

Soletta impalcato:

γca =	25	KN/m ³	
A _{ca} =	6.75	m ²	(Area soletta impalcato)

Carpenteria metallica:

i=	3.5	KN/m2	(Incidenza carpenteria metallica)
Ltrav=	13.7	m	(Lunghezza trasversale impalcato)

Tot G1 = 216.7 KN/m (peso complessivo struttura impalcato per metro in direzione longitudinale)

N	ML	MT	TL	TT	
[kN]	[kNm]	[kNm]	[kN]	[kN]	
3250.50	0	0	0	0	Scarichi
3250.50	0	0	0	0	Scarichi

Scarichi su spalla mobile Scarichi su spalla fissa

G2 (Permanenti non strutturali)

Ballast/Armamento

γ _{armam} =	18	KN/m ³	
L =	8.20	m	(lunghezza complessiva trasversale)
s =	0.80	m	(spessore)
G2a =	118.1	KN/m	(peso complessivo armamento a metro lineare in direzione longitudinale)

Impermeabilizzazione e Massetto di protezione

$\gamma_{\text{mass}} =$	21	KN/m ³	
L =	11.70	m	(lunghezza complessiva trasversale)
s =	0.05	m	(spessore)
G2b =	12.3	KN/m	(peso complessivo armamaento a metro lineare in direzione longitudinale)

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 39 di 95

Canalette portacavi

G2c = 5.0 KN/m (peso complessivo canalette portacavi(n°2) a metro lineare in direzione longitudinale)

Velette in c.a. a margine impalcato

G2d= 3.0 KN/m (peso complessivo velette a margine impalcato per metro lineare in direzione longitudinale.)

Barriere Antirumore

Si fa riferimento cautelativamente al caso di doppia barriera, anche se non contemplato attualmente dal progetto, in previsione di eventuali future integrazioni degli interventi di mitigazione acustica

p barr = 4.0 KN/m² (peso barriera a metro quadro)
hb = 5.05 m (Barriera H4)
nb = 2 (n° barriere previste)

G2e= 40.4 KN/m (peso complessivo barriere antirumore a metro lineare in direzione longitudinale.)

tot.G2 = 178.8 KN/m (Carico permanente complessivo non strutturale per metro in direzione longitudinale)

N	ML	MT	TL	TT
[kN]	[kNm]	[kNm]	[kN]	[kN]
2681.84	0	0	0	0
2681.84	0	0	0	0

Scarichi su spalla mobile Scarichi su spalla fissa

Ai fini della valutazione delle azioni agenti sugli elementi strutturali costituenti la spalla vengono inoltre considerati il peso proprio della spalla (calcolato considerando un peso specifico del calcestruzzo di 25 kN/m³) e il peso del terreno compreso tra i muri andatori.

6.1.2 Carichi variabili sui marciapiedi

Qm(Carico Variabile sui marciapiedi)

Lm =	1.75	m	(larghezza trasversale singolo marciapiede)
q13=	10.00	KN/m2	(carico variabile per unità di superfice zona marciapiedi)

tot.Qm 1=	17.5	KN/m	(carico variabile sui marciapiedi per metro lineare longitudinale 1 marciapiede carico)
et(m) =	5.20	m	eccentricità trasversale di calcolo

Qm1 (1 Marciapiedi carico)

N	ML	MT	TL	TT	
[kN]	[kNm]	[kNm]	[kN]	[kN]	
262.50	0.0	1365.0	0.0	0.0	Scarichi su spalla mobile
262.50	0.0	1365.0	0.0	0.0	Scarichi su spalla fissa

tot.Qm 2=	35.0	KN/m	(carico variabile sui marciapiedi per metro lineare longitudinale 2 marciapiedi carichi)
et(m) =	0.10	m	eccentricità trasversale di calcolo

Qm2 (2 Marciapiedi carichi)

N	ML	MT	TL	TT	
[kN]	[kNm]	[kNm]	[kN]	[kN]	
525.00	0.0	52.5	0.0	0.0	Scarichi su spalla mobile
525.00	0.0	52.5	0.0	0.0	Scarichi su spalla fissa

6.1.3 Carichi variabili da traffico

6.1.3.1 Azioni da traffico ferroviario

Per la valutazione delle azioni da traffico ferroviario trasmesse dall'impalcato alle spalle si è fatto riferimento ai modelli di carico previsti dalle norme.

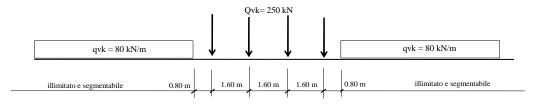
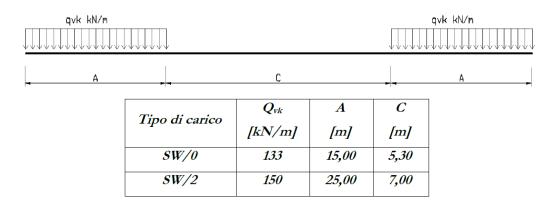
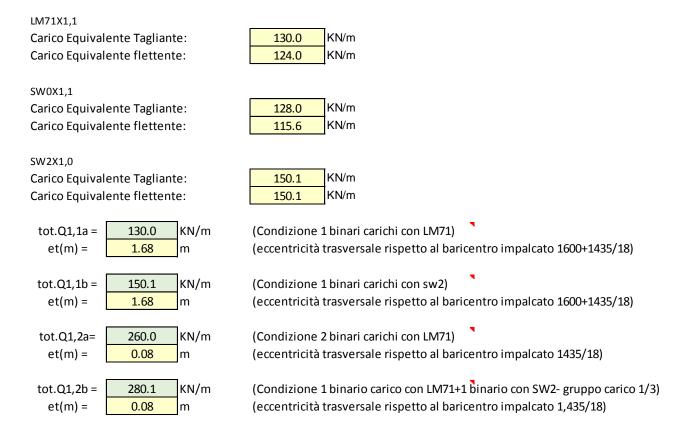



Figura 3 – Modello di carico LM71



Tab. 5.2.I. caratteristiche treni di carico SW

Figura 4 – Modello di carico SW

In particolare si sono considerati i carichi equivalenti (taglianti e flettenti) previsti dalle norme ferroviarie RFI DTC SI PS MA IFS 001 A in funzione della luce di impalcato netta. Tali carichi sono comprensivi del coefficiente di adattamento α .

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 42 di 95

6.1.3.2 Incremento dinamico

Trattandosi di Viadotto con velocità di percorrenza non superiore a 160 Km/h con frequenza propria della struttura ricadente all'interno del prospetto indicato in figura 5.2.7 del D.M. 14/01/2008, si utilizzano i valori dei coefficienti dinamici definiti al paragrafo 5.2.2.3.3 D.M. 14/01/2008 per linee con ridotto standard manutentivo.

La lunghezza caratteristica $L\phi$ per questa tipologia di impalcato è proprio pari alla luce di progetto del ponte. Quindi considerando una linea con normale standard manutentivo, il coefficiente di incremento dinamico si calcola secondo l'espressione:

$$\Phi_3 = \frac{2,16}{\sqrt{L_{\phi}} - 0,2} + 0,73$$
 con la limitazione $1,00 \le \Phi_3 \le 2,00$

quindi:

• Coefficiente dinamico per impalcato di luce L=30.00m: ϕ_3 = 1.15

ITINERARIO NAPOLI-BARI.

RADDOPPIO TRATTA CANCELLO - BENEVENTO.
II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF0H 22 D 11 CL VI1700 001 A 43 di 95

In definitiva gli scarichi sulle sottostrutture sono pari a:

Q1,1a x
$$\Phi$$
 3 = 149.6 KN/m et1(m) = 1.68 m

Q1,1a (1 LM71)

N	ML	MT	TL	TT		
[kN]	[kNm]	[kNm]	[kN]	[kN]		
2244.69	0	3771.07	0	0		
2244.69	0	3771.07	0	0		

Scarichi su spalla mobile Scarichi su spalla fissa

Q1,1b x
$$\Phi$$
 3 = 172.8 KN/m et1(m) = 1.68 m

Q1,1b (1 sw2)

N	ML	МТ	TL	TT	
[kN]	[kNm]	[kNm]	[kN]	[kN]	
2591.58	0	4353.85	0	0	Sc
2591.58	0	4353.85	0	0	Sc

Scarichi su spalla mobile Scarichi su spalla fissa

Q1,2a x
$$\Phi$$
 3 = 299.29
et2(m) = 0.08 m

Q1,2a (2 LM71)

N	ML	MT	TL	тт
[kN]	[kNm]	[kNm]	[kN]	[kN]
4489.37	0	359.15	0	0
4489.37	0	359.15	0	0

Scarichi su spalla mobile Scarichi su spalla fissa

Q1,2b x Φ 3 = 322.4 KN/m et(m) = 0.08 m

Eccentricità LM71 (rispetto asse binario)

Q1,2b (1 LM71 + 1 SW2)

N	ML	MT	TL	TT	
[kN]	[kNm]	[kNm]	[kN]	[kN]	
4836.26	0	386.90	0	0	Scar
4836.26	0	386.90	0	0	Scar

Scarichi su spalla mobile Scarichi su spalla fissa

6.1.3.3 Contemporaneità dei treni sui binari

La contemporaneità dei treni sui due binari, è stata considerata con riferimento alla condizione di traffico pesante. Come si vedrà in seguito, sono state considerate combinazioni di carico che prevedono anche solo un binario carico, ai fini di massimizzare il momento in direzione trasversale agente in testa alle sottostrutture.

6.1.4 Azioni orizzontali da avviamento / frenatura

I valori caratteristici da considerare, da moltiplicare per i coefficienti di adattamento α, sono:

Avviamento:

 $Q_{1a,k}$ = 33 [kN/m] x L [m] \leq 1000 KN per modelli di carico LM71, SW/0, SW/2

Frenatura:

 $Q_{1b,k} = 20 \text{ [kN/m] } x \text{ L [m]} \le 6000 \text{ KN per modelli di carico LM71, SW/0}$

 $Q_{1b,k} = 35 [kN/m] \times L [m]$ per modelli di carico SW/2

Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento, l'altro in fase di frenatura.

6.1.5 Forza centrifuga

Le forze centrifughe sono state calcolate con f = 1 dato che la velocità di progetto pari 100km/h è inferiore a 120km/h.

$$Q_{tk} = \frac{v^2}{g \cdot r} (f \cdot Q_{vk}) = \frac{V^2}{127 \cdot r} (f \cdot Q_{vk})$$
 (5.2.9.a)

$$q_{tk} = \frac{v^2}{g \cdot r} (f \cdot q_{vk}) = \frac{V^2}{127 \cdot r} (f \cdot q_{vk})$$
 (5.2.9.b)

Si distinguono i carichi per LM71 e SW2, calcolati in funzione dei carichi equivalenti flettente e tagliante. Nel caso in esame l'azione centrifuga è nulla in quanto il viadotto si sviluppa in rettifilo.

6.1.6 Serpeggio

L'azione laterale associata al serpeggio è definita al par. 1.4.3.2 delle Istruzioni per la progettazione e l'esecuzione dei ponti ferroviari, che riprende il par. 5.2.2.4.2 del DM 14.1.2008, ed equivale ad una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario, del valore di 100 kN. Tale valore deve essere moltiplicato per il coefficiente di adattamento α .

Qs=	100.00	KN	(carico da serpeggiomanuale RFI)
α LM71	1.1		(coefficiente di adattamento)
ev(m) =	3.50	m	(eccentricità verticale rispetto testa muro frontale)

QS1 (1 TRENO)

N	ML	MT	TL	TT	
[kN]	[kNm]	[kNm]	[kN]	[kN]	
0.00	0.0	385.0	0.0	110.0	Scarichi su spalla mobile
0.00	0.0	385.0	0.0	110.0	Scarichi su spalla fissa

QS2 (2 TRENI)

N	ML	MT	TL	TT	
[kN]	[kNm]	[kNm]	[kN]	[kN]	
0.00	0.0	770.0	0.0	220.0	Scarichi su spalla mobile
0.00	0.0	770.0	0.0	220.0	Scarichi su spalla fissa

6.1.7 Azioni parassite dei vincoli

Le resistenze parassite dei vincoli sono valutate sulla base del paragrafo 2.5.1.6.3 delle norme RFI con riferimento al caso di viadotti a trave semplicemente appoggiati:

- Spalle: $F_a = f \cdot (V_g + V_q);$
- Pile: facendo riferimento all'apparecchio d'appoggio maggiormente caricato fra i due presenti sulla pila, si considererà agente F_a = $f \cdot (0,20 \cdot V_g + V_g)$

Dove:

V_g = Reazione verticale massima associata ai carichi permanenti;

V_q = Reazione verticale massima associata ai carichi mobili dinamizzati.

Nel caso in esame le azioni trasmesse alle sottostrutture sono pari a:

Vg1 (KN)	Vg2 (KN)
3250.50	2681.84

VQ1-1a (KN)	VQ1-1b (KN)	VQ1-2a(KN)	VQ1-2b(KN)	VQm1(KN)	VQm2(KN)
(1LM71)	(1SW2)	(2LM71)	(1LM71+SW2)	1 marciapiedi	2 marciapiedi
2244.69	2591.58	4489.37	4836.26	262.50	525.00

QP1a (azione su spalla mobile) 1 LM71+1MARC

TL	337.58	KN	SLE
TL	479.23	KN	SLU
TL	255.25	KN	SISMA

QP1b (azione su spalla mobile) 1 SW2 + 1 MARC

TL	351.46	KN	SLE
TL	499.35	KN	SLU
TL	258.03	KN	SISMA

QP2a (azione su spalla mobile) 2 LM71 + 2 marc

TL	437.87	KN	SLE
TL	622.02	KN	SLU
TL	273.21	KN	SISMA

QP2b (azione su spalla mobile) 1 LM71 + 1SW2 + 2 marc

TL	451.74	KN	SLE
TL	642.14	KN	SLU
TL	275.98	KN	SISMA

Si specifica che i valori di sollecitazioni (TL) precedentemente riportati, per ciascuno dei casi esaminati, contemplano già i coefficienti di combinazione e/o partecipazioni proprie delle Vg e Vq da considerare per ciascuno stato limite di verifica:

(Sisma) $\psi_2 = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{bmatrix}$

 $\psi_2 =$

0,2

Coefficienti di Combinazione e di partecipazione

		(SLE rar	a /SLU)
γ _{G1} =	1,35	Ψ ο =	-
γ _{G2} =	1,5	Ψ ο =	1
γ _{Q1} =	1,45	carico ferroviario ψ_{o} =	1
γ _{Qm} =	1,5	carico marciapiedi $\psi_o =$	0,8
$\gamma_{Qm} =$	1,5	carico marciapiedi $\psi_0 =$	0,8

6.1.8 Azioni da Vento

Il calcolo dell'azione del vento è condotto secondo le indicazioni del par. 3.3 del DM 14.01.2008, in cui l'effetto di tale evento è modellato, ai fini del calcolo strutturale, con una pressione normale e/o tangenziale sulla superfice di impatto effettiva o convenzionale, valutate mediante le espressioni 3.3.2 e 3.3.3 dello stesso DM, ovvero:

p _v =	q _b x c _e x c _p x c _d	(pressione normale)
p _f =	q _b x c _e x c _f	(azione tangente)

Essendo:

q_b: pressione cinetica di riferimento

c_e: coefficiente di esposizione

c_p: coefficiente di forma (o aerodinamico)

c_d: coefficiente dinamico

c_f: coefficiente di attrito

Per il caso dell'opera in esame, risulta in ogni caso significativa la sola azioni normale che produce azioni trasversali all'impalcato e quindi alle sottostrutture.

Pressione Cinetica di riferimento - qb

La pressione cinetica di riferimento in N/m², è data dall'espressione:

$$q_b = \frac{1}{2} \rho v_b^2$$

dove

v_b è la velocità di riferimento del vento (in m/s);

ρ è la densità dell'aria assunta convenzionalmente costante e pari a 1,25 kg/m³.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 48 di 95

Occorre in primo luogo dunque determinare la velocità di riferimento del Vento $v_b(T_R)$ relativa alla Vita di riferimento dell'opera Tr, assunta pari a 75 anni, utilizzando a tal riguardo la formulazione proposta al par. C3.3.2 del DM 14/02/2008, ovvero:

$$v_b (T_R) = \alpha_R x v_b$$

con:

$$\alpha_R = 0.75 \cdot [1 - 0.2 \cdot \ln (-\ln (1-1/T_R))]^{0.5} = 1.023$$

La velocità di riferimento del Vento v_b , riferita ad un periodo di ritorno di 10 min in 50 anni, è data dalla 3.3.1 del DM 2008; in particolare ricadendo il sito in esame in Zona 3 ed essendo l'altitudine massima dell'intera area attraversata dal tracciato di progetto dell'infrastruttura contenuta entro i 200m circa s.l.m. risulta quanto di seguito:

```
Sito di Riferimento: Campania (Zona 3)
   V_{b,o} (m/(sec)=
            a_0 m)=
                         500
                        0.02
              k_a =
          a_s(m) =
                        200
                                  (Altitudine massima slm del sito ove sorge la costruzione)
              V_b =
                         27
                                  m/s
              \alpha r =
                        1.023
         V_b (TR) =
                       27.621
                                  m/s
                                  Kg/m<sup>3</sup>
                        1.25
                \rho =
```

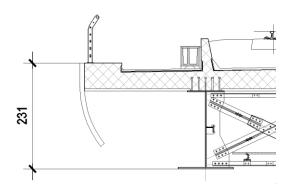
e quindi:

$$q_b = 476.8 N/m^2 = 0.477 KN/m^2$$

Coefficiente di forma - cp

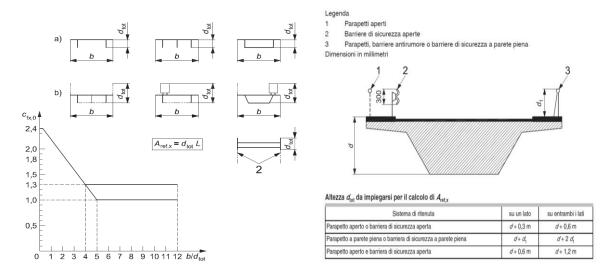
Per la valutazione del coefficiente di forma dell'impalcato si è fatto riferimento a quando indicato nell'EC1-4.

Nello specifico si fa riferimento ad entrambe le situazioni di *Ponte Scarico* e *Ponte carico/ con Barriera Antirumore*, considerando quest'ultimo caso ai fini delle analisi, in quanto più gravoso o comunque pressoché coincidente con il caso di presenza del convoglio.


In particolare, con riferimento a quanto indicato negli schemi grafici di cui alla pagina seguente risulta:

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO - BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO. 2° LOTTO FUNZIONALE TELESE - SAN LORENZO.					
VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo	COMMESSA IF0H	LOTTO 22 D 11	CODIFICA	DOCUMENTO VI1700 001	REV.	FOGLIO 49 di 95

$$d_{tot}(1) = 2.31 + 0.60 = 2.91m$$
 (Ponte scarico)


$$d_{tot}$$
 (2a) = 2.31 + 5.05 = 7.36m (Ponte con convoglio o Barriera antirumore su un solo lato)

Essendo 5.05m, l'altezza complessiva della barriera antirumore tipo H=4 prevista sulle opere d'arte e d_{tot} la dimensione complessiva da considerare ai fini del calcolo della superfice totale d'impatto

e quindi:

LUCE IMPALCATO A _{TOT,1}		A _{TOT,2a}	A _{TOT,2b}	
30.0	$30.0x2.91 \cong 87.3 \text{ m}^2$	$30.0x7.36 \cong 220.8 \text{ m}^2$	$30.0 \text{ x} 12.41 \cong 372.3 \text{ m}^2$	

Riferimenti EC1-4 per la valutazione del coefficiente di forma.

Si procede dunque, nel seguito, con il calcolo dei coefficienti di forma nei tre casi in riferimento:

Calcolo coefficiente di forma per impalcato Caso 1 (rif. §8.3.1 EC1-4)

d_{tot} (m) 1.97
b (m) 13,7 larghezza totale dell'impalcato
b/d_{tot} (-) 6,95

C_{p1:} 1,30 coefficiente di forma

Calcolo coefficiente di forma per impalcato Caso 2a (rif. §8.3.1 EC1-4)

d_{tot} (m) 6.42
b (m) 13,7 larghezza totale dell'impalcato
b/d_{tot} (-) 2,13

C_{p2a}: 1,90 coefficiente di forma

Calcolo coefficiente di forma per impalcato Caso 2b (rif. §8.3.1 EC1-4)

d_{tot} (m) 11.47 altezza totale di impatto
b (m) 13,7 larghezza totale dell'impalcato
b/d_{tot} (-) 1,20

C_{p2b}: 2,20 coefficiente di forma

Il coefficiente di esposizione, è definito al 3.3.7 del DM 14.01.08, dalle seguenti espressioni:

$$c_{e}(z) = k_{r}^{2} c_{t} \ln(z/z_{0}) [7 + c_{t} \ln(z/z_{0})]$$
 per $z \ge z_{min}$
$$c_{e}(z) = c_{e}(z_{min})$$
 per $z < z_{min}$ (3.3.5)

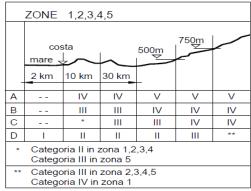
dove

 k_r , z_0 , z_{min} sono assegnati in Tab. 3.3.II in funzione della categoria di esposizione del sito ove sorge la costruzione:

ct è il coefficiente di topografia.

Tabella 3.3.II - Parametri per la definizione del coefficiente di esposizione

Categoria di esposizione del sito	$\mathbf{k_r}$	z_0 [m]	$z_{\rm min}$ [m]
I	0,17	0,01	2
II	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
V	0,23	0,70	12


Il coefficiente di topografia è assunto, pari ad 1, come da indicazioni normative.

Per la determinazione invece degli altri parametri \mathbf{k}_r , \mathbf{z}_o e \mathbf{z}_{min} è necessario invece definire la Categoria di esposizione del sito, che dipende dalla <u>classe di rugosità del terreno</u> e <u>dalla distanza della costruzione</u> <u>della Costa</u> secondo quanto indicato nelle tabelle seguenti:

Tabella 3.3.III - Classi di rugosità del terreno

Classe di rugosità del terreno Descrizione			
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15m		
В	Aree urbane (non di classe A), suburbane, industriali e boschive		
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A,B,D		
D	Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,)		

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Affinché una costruzione possa dirsi ubicata in classe A o B è necessario che la situazione che contraddistingue la classe permanga intorno alla costruzione per non meno di 1 km e comunque non meno di 20 volte l'altezza della costruzione. Laddove sussistano dubbi sulla scelta della classe di rugosità, a meno di analisi dettagliate, verrà assegnata la classe più sfavorevole.

Nello specifico, per il caso in specie risulta:

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 52 di 95

Distanza dalla Costa ≈ 50 Km / Altitudine max : ≈ 200 m

Classe di rugosità : D

→ Categoria di esposizione del sito: II

e quindi:

Caso 1

Z (m) =	1.67	m	(Altezza della Costruzione)	Casi 2/2a			
$z_0 =$	0.05	m		Z (m) =	6.4	m	(Altezza della Costruzione)
z _{min} =	4.0	m		$z_0 =$	0.05	m	
k _r =	0.19			z _{min} =	4.0	m	
c _e (z _{min})=	1.80			$k_r =$	0.19		
c _e =	1.80			$c_e (z_{min})=$	1.80		
				c _e =	2.08		

Coefficiente dinamico - cd

Il coefficiente dinamico è posto pari ad 1, in accordo alle indicazioni di cui al DM 14.01.08.

Come anticipato ad inizio paragrafo, ai fini delle analisi si fa riferimento al caso di doppia barriera in quanto più gravoso ed in previsione di eventuali future integrazione degli elementi di mitigazione acustica.

Riepilogo pressioni del vento e azioni risultanti sull'opera caso 2b (Ponte con Treno/barriera su due lati)

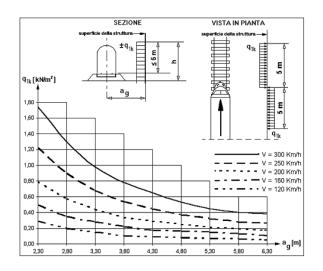
$$Pv2b = q_b \times c_{e2} \times c_{p2b} \times c_d = 0.477 \times 2.08 \times 2.30 \times 1 = 2.227 \text{ KN/m}^2$$
 (pressione normale)

Superifice totale di impatto: 372.3 m²

Conseguentemente, in corrispondenza di ciascuna estremità dell'impalcato, agiranno, in direzione trasversale, le seguenti azioni:

$$V \cong 414.5 \text{ KN}$$
 (taglio trasversale)

 $Mt \cong 414.5 \text{ x } (7.36/2 + 0.20) = 1608.26 \text{ KNm}$ (momento torcente)



Gli scarichi sulle sottostrutture sono pertanto quelli riportati nelle tabelle seguenti, da intendersi riferiti a ciascuno appoggio di estremità dell'impalcato.

N	ML	MT	TL	тт
[kN]	[kNm]	[kNm]	[kN]	[kN]
0.00	0.0	1608.3	0.0	414.5

6.1.9 Azioni aerodinamiche indotte dal transito dei convogli

Per la valutazione delle azioni aerodinamiche indotte dal transito dei convogli si è fatto riferimento a quanto riportato al punto 2.5.1.4.6 delle istruzioni RFI [RFI DTC SICS MA IFS 001 con riferimento al caso di "Superfici verticali parallele al binario".

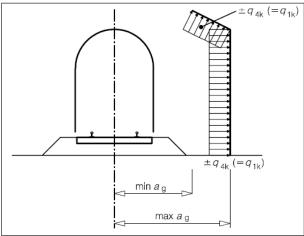


Figura 5 – Valori caratteristici delle azioni e definizione della distanza minima e massima della barriera dal convoglio [NTC – Fig. 5.2.8 e 5.2.11]

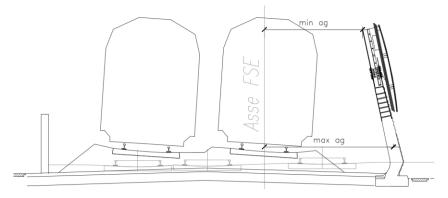


Figura 6 – Criterio di valutazione della distanza minima e massima del convoglio dalla barriera per i casi in esame

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 54 di 95

Per la linea in esame è possibile considerare, cautelativamente, convogli con forme aerodinamiche sfavorevoli e aventi velocità di linea pari a 160 km/h. Pertanto si ha:

dmed = 4,00m V= 160 Km/h

dal grafico:

KN/m2 qaK= 0.20 Lb = 30.00 m lunghezza barriera hb= 5.05 m altezza barriera Yb= 2.50 m altezza base barriera da testa muro frontale 5.03 m baricentro barriera da testa muro forntale ygb=

Qae1 - Caso di 1 treni

N	ML	MT	TL	TT	
[kN]	[kNm]	[kNm]	[kN]	[kN]	
0.00	0.0	76.2	0.0	15.2	Scarichi s
0.00	0.0	76.2	0.0	15.2	Scarichi

Scarichi su spalla mobile Scarichi su spalla fissa

Qae2 - Caso di 2 treni contemporanei (pressione + depressione)

N	ML	MT	TL	TT
[kN]	[kNm]	[kNm]	[kN]	[kN]
0.00	0.0	152.4	0.0	30.3
0.00	0.0	152.4	0.0	30.3

Scarichi su spalla mobile Scarichi su spalla fissa

6.1.10 Tabelle riepilogo Scarichi impalcato

Di seguito si riporta un riepilogo degli scarichi trasmessi dall'impalcato alle sottostrutture per ciascuna delle condizioni di carico elementari prese in esame:

RIEPILOGO SCARICHI	RIEPILOGO SCARICHI A TESTA SPALLA FISSA - CONDIZIONI DI CARICO ELEMENTARI							
(Sollecitazioni	riferite alla sezione	del muro in as	se Appoggi in	npalcato)				
			ML	МТ	TL	TT		
Condizione		[kN]	[kNm]	[kNm]	[kN]	[kN]		
Permanenti strutturali	G1	3250.5	0.0	0.0	0.0	0.0		
Permanenti NON strutturali	G2	2681.8	0.0	0.0	0.0	0.0		
Traffico - 1LM71	Q1,1a	2244.7	0.0	3771.1	0.0	0.0		
Traffico - 1SW2	Q1,1b	2591.6	0.0	4353.8	0.0	0.0		
Traffico - 2 LM71	Q1,2a	4489.4	0.0	359.1	0.0	0.0		
Traffico - 1 LM72 + 1 SW2	Q1,2b	4836.3	0.0	386.9	0.0	0.0		
Carico variabile 1 Marciapiede	Qm1	262.5	0.0	1365.0	0.0	0.0		
Carico variabile 2 Marciapiedi	Qm2	525.0	0.0	52.5	0.0	0.0		
Carico Avviamento	Qa	134.2	0.0	0.0	1089.0	0.0		
Frenatura LM71	Qf1	81.3	0.0	0.0	660.0	0.0		
Frenatura SW2	Qf2	129.4	0.0	0.0	1050.0	0.0		
Centrifuga 1 LM71	Qc1a	0.0	0.0	0.0	0.0	0.0		
Centrifuga 2 LM71	Qc1b	0.0	0.0	0.0	0.0	0.0		
Centrifuga SW2	Qc2	0.0	0.0	0.0	0.0	0.0		
Serpeggio 1 treno	QS1	0.0	0.0	385.0	0.0	110.0		
Serpeggio 2 treni	QS2	0.0	0.0	770.0	0.0	220.0		
Vento	Qw	0.0	0.0	1608.3	0.0	414.5		
Azioni aerodinamiche 1 treno	Qae1	0.0	0.0	76.2	0.0	15.2		
Azioni aerodinamiche 2 treni	Qae2	0.0	0.0	152.4	0.0	30.3		
Sisma Long con 2 LM71	Ex	501.8	0.0	0.0	5294.1	0.0		
Sisma Trasv con 2 LM71	Ey	0.0	0.0	7125.9	0.0	2647.1		
Sisma Vert con 2 LM71	Ez	1323.5	0.0	0.0	0.0	0.0		

Tabella 3 – Sollecitazioni trasmesse dall'impalcato alle sottostrutture (SPALLA FISSA "S2")

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 56 di 95

RIEPILOGO SCARICHI AP	RIEPILOGO SCARICHI APPOGGIO MOBILE PILA - CONDIZIONI DI CARICO ELEMENTARI							
(Sollecitazioni rif	erite alla sezione de	el muro in asse A	Appoggi impal	cato)				
			ML	МТ	TL	TT		
Condizione		[kN]	[kNm]	[kNm]	[kN]	[kN]		
Permanenti strutturali	G1	3250.5	0.0	0.0	0.0	0.0		
Permanenti NON strutturali	G2	2681.8	0.0	0.0	0.0	0.0		
Traffico - 1LM71	Q1,1a	2244.7	0.0	3771.1	0.0	0.0		
Traffico - 1SW2	Q1,1b	2591.6	0.0	4353.8	0.0	0.0		
Traffico - 2 LM71	Q1,2a	4489.4	0.0	359.1	0.0	0.0		
Traffico - 1 LM72 + 1 SW2	Q1,2b	4489.4	0.0	359.1	0.0	0.0		
Carico variabile 1 Marciapiede	Qm1	262.5	0.0	1365.0	0.0	0.0		
Carico variabile 2 Marciapiedi	Qm2	525.0	0.0	52.5	0.0	0.0		
Carico Avviamento	Qa	134.2	0.0	0.0	0.0	0.0		
Frenatura LM71	Qf1	81.3	0.0	0.0	0.0	0.0		
Frenatura SW2	Qf2	129.4	0.0	0.0	0.0	0.0		
Centrifuga 1 LM71	Qc1a	0.0	0.0	0.0	0.0	0.0		
Centrifuga 2 LM71	Qc1b	0.0	0.0	0.0	0.0	0.0		
Centrifuga SW2	Qc2	0.0	0.0	0.0	0.0	0.0		
Serpeggio 1 treno	QS1	0.0	0.0	385.0	0.0	110.0		
Serpeggio 2 treni	QS2	0.0	0.0	770.0	0.0	220.0		
Vento	Qw	0.0	0.0	1608.3	0.0	414.5		
Azioni aerodinamiche 1 treno	Qae1	0.0	0.0	76.2	0.0	15.2		
Azioni aerodinamiche 2 treni	Qae2	0.0	0.0	152.4	0.0	30.3		
Sisma Long con 2 LM71	Ex	501.8	0.0	0.0	0.0	0.0		
Sisma Trasv con 2 LM71	Ey	0.0	0.0	7125.9	0.0	2647.1		
Sisma Vert con 2 LM71	Ez	1323.5	0.0	0.0	0.0	0.0		
Azioni Parassite dei vincoli	QP		•	parassite sono in riepilogo delle so		_		

Tabella 4 – Sollecitazioni trasmesse dall'impalcato alle sottostrutture (SPALLA MOBILE "S1")

Dove:

- \bullet T_L = risultante delle azioni orizzontali dirette lungo l'asse longitudinale dell'impalcato (taglio longitudinale);
- T_T = risultante delle azioni orizzontali dirette lungo l'asse trasversale dell'impalcato (taglio trasversale);
- N = risultante delle azioni verticali (sforzo normale);
- M_T = risultante delle azioni flettenti che provocano flessione nel piano ortogonale all'asse longitudinale dell'impalcato (momento trasversale);
- M_L = risultante delle azioni flettenti che provocano flessione nel piano parallelo all'asse longitudinale dell'impalcato (momento longitudinale).

6.2 Spinta del terreno del rilevato in condizioni statiche

La spinta del terreno del rilevato in condizioni statiche, viene valutata in termini di spinta a riposo, adottando un coefficiente di spinta pari a:

$$K_{o} = (1 - \operatorname{sen} \varphi)$$

Ne consegue che la spinta stati\ca agente su un metro di parete con altezza H è pari a:

$$S_{stat} = \frac{1}{2} \gamma \cdot H^2 \cdot k_o$$

La spinta così calcolata è applicata ad una altezza pari a H/3.

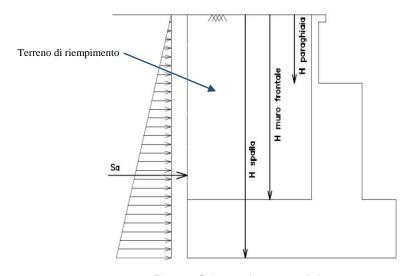


Figura 7: Spinta statica terreno di rinterro

Per il terreno di riempimento si considera lo standard per rilevati ferroviari e si assegnano le seguenti caratteristiche meccaniche:

Parametri Geotecnici Terreno di riempimento								
γ	γ φ' c'							
[kN/m³]	[°]	[kPa]						
20	38	0						

Tabella 5 – Caratteristiche terreno di riempimento

6.3 Spinta del sovraccarico accidentale condizioni statiche

In aggiunta in condizioni statiche si considera un sovraccarico accidentale pari a Q = 50.0 KN/m2 gravante sulla spalla e sul cuneo di spinta a tergo di essa

La presenza del sovraccarico Q genera una spinta pari a:

$$S_q = Q \cdot H \cdot K_o$$

Tale spinta è applicata ad una altezza pari a H/2.

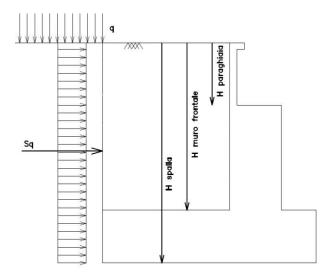


Figura 8: Spinta statica sovraccarico accidentale

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 59 di 95

6.4 Azione sismica

6.4.1 Azioni sismiche sulle Spalle

Per la valutazione dell'azione sismica associata ai carichi fissi propri e permanenti /accidentali agenti sulle <u>spalle</u> si utilizza il metodo dell'analisi pseudostatica in cui il sisma è rappresentato da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico kh (coefficiente sismico orizzontale) o Kv (coefficiente sismico verticale) secondo quanto di seguito indicato:

Forza sismica orizzontale Fh = kh W

Forza sismica verticale Fv = kv W

I valori dei coefficienti sismici orizzontali kh e verticale kv, relativi allo stato limite considerato, sono posti pari all'ordinata dello spettro di progetto corrispondente al periodo T=0, per la componente orizzontale, ed a quella corrispondente al periodo proprio T =T0, per la componente verticale.

Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{g} \tag{7.11.6}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$
 (7.11.7)

dove

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_g = S_S \cdot S_T \cdot a_g \tag{7.11.8}$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) , di cui al § 3.2.3.2;

 a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente β_m assume i valori riportati nella Tab. 7.11-II.

Per muri che non siano in grado di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario.

Nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di specifici studi si deve assumere che tale incremento sia applicato a metà altezza del muro.

Tabella 7.11.II - Coefficienti di riduzione dell'accelerazione massima attesa al sito.

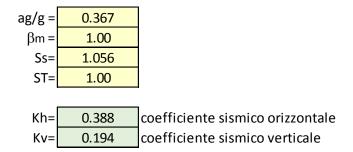

	Categoria di sottosuolo				
	A	B, C, D, E			
	$\beta_{\rm m}$	β_{m}			
$0.2 \le a_g(g) \le 0.4$	0,31	0,31			
$0.1 \le a_g(g) \le 0.2$	0,29	0,24			
$a_g(g) \le 0,1$	0,20	0,18			

Figura 9 – Coefficienti sismici (estratto D.M. 14/01/2008 p.to 7.11.6.2.1)

Con riferimento al valore da assegnare al coefficiente βm , si è fatto riferimento alle indicazioni di cui alla Tabella 7.1.II riportata nella stessa sezione della norma, tenendo tuttavia conto della specifica che prescrive, nel caso di muri che non siano in grado di subire spostamenti (quale è il caso delle spalle del viadotto in questione che in virtù della elevata rigidezza sia del sistema di fondazione che della parte in elevazione, è interessata da spostamenti trascurabili durante l'evento sismico) un valore del coefficiente βm pari ad 1.0.

Assumendo tale valore si considera che, cautelativamente, il terreno di riempimento è rigidamente connesso alla spalla e non subisce deformazioni o movimenti relativi rispetto ad essa.

In definitiva risulta:

Sulla scorta dei coefficienti sismici appena valutati, si è proceduto pertanto alla valutazione delle azioni trasmesse dall'impalcato alle sottostrutture, avendo considerato, come mostrato successivamente nella tabella di riepilogo delle combinazioni di carico, il caso più gravoso in termini di massa sismica associata ai carichi variabili, corrispondente in particolare alla Condizioni di doppio binario carico con treno tipo LM71.

Di seguito il riepilogo delle Azioni inerziali:

ITINERARIO NAPOLI-BARI.

RADDOPPIO TRATTA CANCELLO - BENEVENTO.
II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0H	22 D 11	CL	VI1700 001	Α	61 di 95

ΔΝ	ML	MT	TL	TT
[kN]	[kNm]	[kNm]	[kN]	[kN]
501.8	0.0	0.0	0.0	0.0
501.8	0.0	0.0	5294.1	0.0

Scarichi su spalla mobile Scarichi su spalla fissa

Caso con 2 LM71 (Sisma trasv Ey)

ΔΝ	ML	MT	TL	TT
[kN]	[kNm]	[kNm]	[kN]	[kN]
0.0	0.0	7125.9	0.0	2647.1
0.0	0.0	7125.9	0.0	2647.1

Scarichi su spalla mobile

Caso con 2 LM71 (Sisma vert Ez)

ΔΝ	ML	MT	TL	TT
[kN]	[kNm]	[kNm]	[kN]	[kN]
1323.5	0.0	0.0	0.0	0.0
1323.5	0.0	0.0	0.0	0.0

Scarichi su spalla mobile Scarichi su spalla fissa

6.4.2 Sovraspinta sismica del terreno

In assenza di uno studio più dettagliato che prenda in considerazione la rigidezza relativa, il tipo di movimento e la massa dell'opera di sostegno, si assume che la forza dovuta alla spinta dinamica del terreno sia valutata con la teoria di Wood ed agisca con un'inclinazione rispetto alla normale al muro uguale a zero:

$$\Delta S_S = (a_{max}/g) \cdot \gamma \cdot H^2$$

Tale risultante è applicata ad un'altezza pari ad H/2.

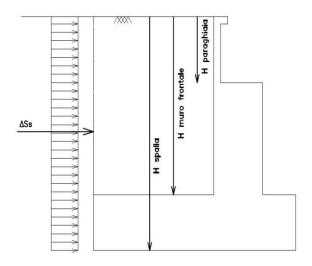


Figura 10: Incremento di spinta sismica

La spinta totale di progetto Ed esercitata dal terrapieno ed agente sull'opera di sostegno in condizioni sismiche è dunque data dalla somma della spinta a riposo, della spinta sismica e della spinta statica data dal sovraccarico accidentale combinata al 20% così come riportato nella Tabella 5.2.V delle NTC2008.

$$Ed=S_{stat} + 0.2 \cdot S_q + \Delta S_s$$

Infine, nel caso specifico non essendo presente la falda a tergo dell'opera, la spinta idrostatica è nulla

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0H	22 D 11	CL	VI1700 001	Α	63 di 95

7. COMBINAZIONI DI CARICO

La determinazione delle Sollecitazioni di Progetto utili al dimensionamento strutturale e geotecnico delle opere oggetto del presente documento, è stata condotta utilizzando il metodo agli stati limite, secondo quanto specificato a riguardo al paragrafo 2.6 del DM 14.01.08, con riferimento all'Approccio 2.

Per la definizione dei criteri di combinazione degli effetti prodotti dalle singole condizioni elementari di carico previste sull'opera, si è fatto inoltre riferimento a quanto prescritto al prg 2.5.3 dello stesso DM, di seguito riproposto per completezza:

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Trattandosi nel caso in esame di opere ferroviarie, la definizione dei coefficienti parziali di combinazione (γ) e di partecipazione (ψ) è stata effettuata seguendo a riguardo le specifiche di cui al paragrafo 5.2.3

del DM 14.01.08 nonché quanto indicato nel relativo manuale di progettazione RFI già citato al paragrafo dei documenti di riferimento; nel seguito un estratto significativo sul tema dei documenti citati:

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(7) 1,20 per effetti locali

Azioni		Ψo	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

Aliquota di carico da traffico da considerare.

1,30 per instabilità in strutture con precompressione esterna

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

ITINERARIO NAPOLI-BARI.
RADDOPPIO TRATTA CANCELLO - BENEVENTO.

II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0H	22 D 11	CL	VI1700 001	Α	65 di 95

Tabella 5.2.III - Carichi mobili in funzione del numero di binari presenti sul ponte

Numero	Binari	Traffico	normale	Traffico
di binari	Carichi	caso a(1)	caso b(1)	pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0")	-	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0")	-	1,0 SW/2
2	secondo	1,0 (LM 71"+"SW/0")	-	1,0 (LM 71"+"SW/0")
	Primo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 SW/2
≥3	secondo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 (LM 71"+"SW/0")
	Altri	-	0,75 (LM 71"+"SW/0")	-

⁽¹⁾ LM71 "+" SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

Tabella 5.2.IV - Valutazione dei carichi da traffico

TIPO DI CARICO	Azioni v	erticali	A			
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale
Gruppo.2 (2)	•	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale
Gruppo 3 (2)	1,0 (0,5)	15	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione

Azione dominante

Includendo tutti i fattori ad essi relativi (Φ,α, ecc..)

Per la ricerca delle condizioni maggiormente gravose in termini di sollecitazioni di progetto sugli elementi, sono state esaminate, per ciascuno dei tre stati limite di verifica previsti dalla normativa (SLE, SLU e Sisma) 4 differenti configurazioni dei carichi variabili, corrispondenti in particolare ai gruppi di carico Gr1 e GR3, significativi per l'opera in esame, ovvero:

Configurazione 1 : 2 binari carichi con treno LM71 (Gruppo 1)

Configurazione 2 : 1 binario carico con treno LM71 + 1 binario carico con treno SW2 (Gruppo 3)

Configurazione 3: 1 binario carico con treno LM71 (Gruppo 1)

Configurazione 4 : 1 binario carico con treno SW2 (Gruppo 1)

n concomitanza ai treni di carico sono state considerate tutte le azioni variabili a questi direttamente associate (frenatura, avviamento, ecc....) oltre agli altri carichi variabili di altra natura (vento, carichi

⁽²⁾ Salvo i casi in cui sia esplicitamente escluso

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

variabili marciapiedi, azioni parassite vincoli, sisma) per un totale complessivi di 8 combinazioni di carico per la fase statica e 4 per la fase sismica, di cui nelle pagine seguenti sono riportati i relativi dettagli

	Condizione
Permanenti strutturali	G1
Permanenti NON strutturali	G2
Traffico - 1LM71	Q1,1a
Traffico - 1SW2	Q1,1b
Traffico - 2 LM71	Q1,2a
Traffico - 1 LM72 + 1 SW2	Q1,2b
Carico variabile 1 Marciapiede	Qm1
Carico variabile 2 Marciapiedi	Qm2
Carico Avviamento	Qa
Frenatura LM71	Qf1
Frenatura SW2	Qf2
Centrifuga 1 LM71	Qc1a
Centrifuga 2 LM71	Qc1b
Centrifuga SW2	Qc2
Serpeggio 1 treno	QS1
Serpeggio 2 treni	QS2
Vento	Qw
Azioni Parassite vincoli	Qp
Azioni aerodinamiche 1 treno	Qae1
Azioni aerodinamiche 2 treni	Qae2
Sisma Long	Ex
Sisma Trasv	Еу
Sisma Vert	Ez

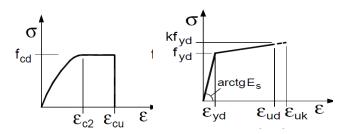
Tabella 6 – Riepilogo condizioni elementari di carico

Coefficienti di Co	mbinazione (γχψ)																								
	Combinazi	oni		G1	G2	Q1,1a	Q1,1b	Q1,2a	Q1,2b	Qm1	Qm2	Qa	Qf1	Qf2	Qc1a	Qc1b	Qc2	QS1	QS2	Qw	Qae1	Qae2	Ex	Еу	Ez	
	1	Gr.1	2 treni Lm71	1,00	1,00	0	0	1,00	0	0	0,80	0,50	0,50	0	0	1,00	0	0	1,00	0,60	0	1,00	0	0	0	ψο
SLE-rara	2	Gr.3	2 treni (1Lm71+1 SW2)	1,00	1,00	0	0	0	1,00	0	0,80	1,00	0	1,00	0,50	0	0,50	0	0,50	0,60	0	0,50	0	0	0	ψο
SLE-Idid	3	Gr.1	1 treno LM71	1,00	1,00	1,00	0	0	0	0,80	0	0,50	0	0	1,00	0	0	1,00	0	0,60	1,00	0	0	0	0	ψο
	4	Gr1	1 treno SW2	1,00	1,00	0	1,00	0	0	0,80	0	0	0	0,50	1,00	0	0	1,00	0	0,60	1,00	0	0	0	0	ψο
	5	Gr.1	2 treni Lm71	1,35	1,50	0	0	1,45	0	0	1,20	0,73	0,73	0	0	1,45	0	0	1,45	0,90	0	1,45	0	0	0	ψοχγ
SLU	6	Gr.3	2 treni (1Lm71+1 SW2)	1,35	1,50	0	0	0	1,45	0	1,20	1,45	0	1,45	0,73	0	0,73	0	0,73	0,90	0	0,73	0	0	0	ψοχγ
310	7	Gr.1	1 treno LM71	1,35	1,50	1,45	0	0	0	1,20	0	0,73	0	0	1,45	0	0	1,45	0	0,90	1,45	0	0	0	0	ψοχγ
	8	Gr1	1 treno SW2	1,35	1,50	0	1,45	0	0	1,20	0	0	0	0,73	1,45	0	0	1,45	0	0,90	1,45	0	0	0	0	ψοχγ
	9	Ex+0.3Ey+0,3Ez	2 treni Lm71	1,00	1,00	0	0	0,20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,3	0,3	ψ2
SLV	10	0,3Ex+Ey+0,3Ez	2 treni Lm71	1,00	1,00	0	0	0	0,20	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	0,3	ψ2
3LV	11	Ex+0.3Ey-0,3Ez	2 treni Lm71	1,00	1,00	0,20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,3	-0,3	ψ2
	12	0,3Ex+Ey-0,3Ez	2 treni Lm71	1,00	1,00	0	0,20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	-0,3	ψ2

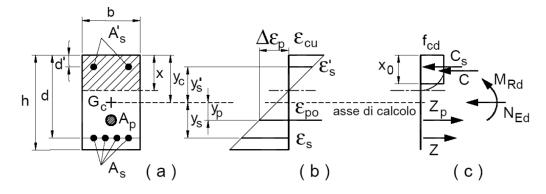
Tabella 7 – Coefficienti di combinazione Spalla Fissa/Appoggio Fisso Pila

	Combi	inazioni		G1	G2	Q1,1a	Q1,1b	Q1,2a	Q1,2b	Qm1	Qm2	Qa	Qf1	Qf2	Qc1a	Qc1b	Qc2	QS1	QS2	Qw	Qae1	Qae2	Ex	Еу	Ez	Qp*	
	1	Gr.1	2 treni Lm71	1,00	1,00	0	0	1,00	0	0	0,80	0,50	0,50	0	0	1,00	0	0	1,00	0,60	0	1,00	0	0	0	1	ψο
SLE-rara	2	Gr.3	2 treni (1Lm71+1 SW2)	1,00	1,00	0	0	0	1,00	0	0,80	1,00	0	1,00	0,50	0	0,50	0	0,50	0,60	0	0,50	0	0	0	1	ψο
SLE-rara	3	Gr.1	1 treno LM71	1,00	1,00	1,00	0	0	0	0,80	0	0,50	0	0	1,00	0	0	1,00	0	0,60	1,00	0	0	0	0	1	ψο
	4	Gr1	1 treno SW2	1,00	1,00	0	1,00	0	0	0,80	0	0	0	0,50	1,00	0	0	1,00	0	0,60	1,00	0	0	0	0	1	ψο
	5	Gr.1	2 treni Lm71	1,35	1,50	0	0	1,45	0	0	1,20	0,73	0,73	0	0	1,45	0	0	1,45	0,90	0	1,45	0	0	0	1	ψοχγ
	6	Gr.3	2 treni (1Lm71+1 SW2)	1,35	1,50	0	0	0	1,45	0	1,20	1,45	0	1,45	0,73	0	0,73	0	0,73	0,90	0	0,73	0	0	0	1	ψοχγ
SLU	7	Gr.1	1 treno LM71	1,35	1,50	1,45	0	0	0	1,20	0	0,73	0	0	1,45	0	0	1,45	0	0,90	1,45	0	0	0	0	1	ψοχγ
	8	Gr1	1 treno SW2	1,35	1,50	0	1,45	0	0	1,20	0	0	0	0,73	1,45	0	0	1,45	0	0,90	1,45	0	0	0	0	1	ψ₀χγ
	9	Ex+0.3Ey+0,3Ez	2 treni Lm71	1,00	1,00	0	0	0,20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,3	0,3	1	ψ2
SLV	10	0,3Ex+Ey+0,3Ez	2 treni Lm71	1,00	1,00	0	0	0	0,20	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	0,3	1	ψ2
SLV	11	Ex+0.3Ey-0,3Ez	2 treni Lm71	1,00	1,00	0,20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,3	-0,3	1	ψ2
	12	0,3Ex+Ey-0,3Ez	2 treni Lm71	1,00	1,00	0	0,20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	-0,3	1	ψ2

Tabella 8 – Coefficienti di combinazione Spalla Mobile/Appoggio Mobile Pila


8. CRITERI GENERALI PER LE VERIFICHE STRUTTURALI

I criteri generali di verifica utilizzati per la valutazione delle capacità resistenti delle sezioni, per la condizione SLU, e per le massime tensioni nei materiali nonché per il controllo della fessurazione, relativamente agli SLE, sono quelli definiti al p.to 4.1.2 del DM 14.01.08.


8.1 VERIFICHE ALLO SLU

8.1.1 Pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.1.2.4 delle NTC08, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

Legami costitutivi Calcestruzzo ed Acciaio -

Schema di riferimento per la valutazione della capacità resistente a pressoflessione generica sezione -

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

 2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 69 di 95

 $M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$

dove

 M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed} ;

N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

 ${\rm M_{Ed}}$ è il valore di calcolo della componente flettente dell'azione.

8.1.2 Taglio

La resistenza a taglio VRd della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}}\right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

Dove:

•
$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$
;

•
$$k = 1 + (200/d)^{1/2} \le 2$$
;

•
$$\rho_1 = A_{sw}/(b_w^*d)$$

- d = altezza utile per piedritti soletta superiore ed inferiore;
- b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} e la resistenza a taglio compressione V_{Rcd}

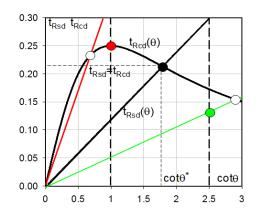
$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd}' \cdot \frac{\left(ctg\alpha + ctg\theta\right)}{\left(1 + ctg^{2}\theta\right)}$$

Essendo:

$$1 \le \operatorname{ctg} \theta \le 2,5$$

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.1.3 delle NTC08, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.


$$1 \leq ctg \ \theta \leq 2.5$$
 $45 \ ^{\circ} \geq \theta \ \geq 21.8^{\circ}$

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF0H	22 D 11	CL	VI1700 001	Α	71 di 95

• Se la $\cot \theta^*$ è compresa nell'intervallo (1,0-2,5) è possibile valutare il taglic resistente $V_{Rd}(=V_{Rcd}=V_{Rsd})$

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema

• Se la $\cot\theta^*$ è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasversale e il taglio resistente $V_{Rd}(=V_{Rsd})$ coincide con il massimo taglio sopportate dalle armature trasversali valutabile per una $\cot\theta=2,5$.

• Se la $\cot \theta^*$ è minore di 1.0 la crisi è da attribuirsi alle bielle compresse e taglio resistente $V_{Rd}(=V_{Rcd})$ coincide con il massimo taglio sopportato dalle bielle di calcestruzzo valutabile per una $\cot \theta = 1,0$.

di verifica, tenendo conto di quanto di seguito indicato :

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

(θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature)

dove

$$v = f' cd / fcd = 0.5$$

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

α_c coefficiente maggiorativo pari a

 $\begin{array}{lll} 1 & & \text{per membrature non compresse} \\ 1 + \sigma_{cp}/f_{cd} & & \text{per} & 0 \leq \sigma_{cp} < 0.25 \ f_{cd} \\ 1.25 & & \text{per} \ 0.25 \ f_{cd} \leq \sigma_{cp} \leq 0.5 \ f_{cd} \\ 2.5(1 - \sigma_{cp}/f_{cd}) & & \text{per} \ 0.5 \ f_{cd} < \sigma_{cp} < f_{cd} \end{array}$

 ω_{sw} : Percentuale meccanica di armatura trasversale.

$$\omega_{sw} = \frac{A_{sw} f_{yd}}{b s f_{cd}}$$

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 72 di 95

8.2 VERIFICA SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

8.2.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento " Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A del 30-12-16 ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 fek;
- per combinazioni di carico quasi permanente: 0,40 fek;
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{\rm yk}$.

8.2.2 Verifiche a fessurazione

La verifica a fessurazione consiste nel controllo dell'ampiezza massima delle fessure per le combinazioni di carico di esercizio i cui valori limite sono stabiliti, nell'ambito del progetto di opere ferroviarie, nel documento RFI DTC SICS MA IFS 001 A – 2.5.1.8.3.2.4 (*Manuale di progettazione delle opere civili del 30/12/2016*).

In particolare l'apertura convenzionale delle fessure δ_f dovrà rispettare i seguenti limiti:

- $\delta_f \leq w_1 = 0.2 \, mm$ per tutte le strutture in condizioni ambientali aggressive o molto aggressive (così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008 Tab 4.1.III), per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;
- $\delta_f \le w_2 = 0.3 \ mm$ per strutture in condizioni ambientali ordinarie.

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4.1.III – DM 14.01.2008

In definitiva, nel caso in esame, con riferimento alle indicazioni della tabella di cui in precedenza, si adotta il limite **w1=0,20 mm** sia per le parti in elevazione che per quelle in fondazione, in quanto in entrambi i casi trattasi di strutture a permanente contatto col terreno:

ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO - BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 74 di 95

9. MODELLI DI CALCOLO PER LE SPALLE

9.1 Modelli a mensola per la verifica delle spalle

Le sollecitazioni di verifica della spalla sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio (riportati al paragrafo 6.1) alle quali vanno combinate le azioni determinate dalle spinte del terreno di riempimento e del sovraccarico in condizioni sia statiche che sismiche e le azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture.

Tutti i muri sono considerati sconnessi fra loro per la valutazione delle sollecitazioni alla base e quindi le azioni provenienti dall'impalcato sono applicate solamente al muro frontale. Tale schema pur risultando cautelativo, non fornisce sovrastime eccessive nel calcolo dei quantitativi di armatura previsti.

Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali muro paraghiaia, muro frontale e muri laterali che vengono tutti modellati come delle mensole incastrate alla base.

Per il plinto di fondazione, si è utilizzato un modello tirante-puntone per l'analisi e la verifica dello zoccolo anteriore al muro frontale.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

10. ANALISI E VERIFICA SPALLA FISSA (S2)

Di seguito si riportano le modalità di calcolo delle sollecitazioni e le verifiche di resistenza nei diversi elementi.

10.1 Muro frontale

Le sollecitazioni riportate nella seguente tabella sono state ottenute dal modello di calcolo descritto nei paragrafi precedenti.

	RIEPILOGO SCA	RICHI A	TESTA SPALLA	- SOLLECITAZ	IONI COMBINAT	E	
	(Sollecitazion	i riferite	alla sezione del m	uro in asse App	oggi impalcato)		
	Combinazione		N	ML	MT	TL	TT
	Combinazione		[kN]	[kNm]	[kNm]	[kN]	[kN]
	Gr.1	1	10949.5	0.0	2288.5	874.5	499.0
SLE-rara	Gr.3	2	11452.4	0.0	1855.1	2139.0	373.9
SEE-rara	Gr.1	3	8454.1	0.0	6289.2	544.5	373.9
	Gr1	4	8798.8	0.0	6872.3	525.0	373.9
	Gr.1	5	15706.8	0.0	3368.7	1268.0	736.0
SLU	Gr.3	6	16436.0	0.0	2740.2	3101.6	554.5
SLU	Gr.1	7	12078.0	0.0	9222.3	789.5	554.5
	Gr1	8	12577.8	0.0	10067.7	761.3	554.5
	Ex+0.3Ey+0,3Ez	9	7729.1	0.0	2209.6	5294.1	794.1
CIV	0,3Ex+Ey+0,3Ez	10	7447.2	0.0	7203.3	1588.2	2647.1
SLV	Ex+0.3Ey-0,3Ez		6486.0	0.0	2892.0	5294.1	794.1
	0,3Ex+Ey-0,3Ez	12	6204.2	0.0	7996.7	1588.2	2647.1

Tabella 9– Scarichi dall'impalcato per combinazioni di carico a quota testa muro

Per la verifica del muro frontale, a quota spiccato, tali azioni possono essere considerate uniformemente distribuite in quanto l'altezza del muro frontale è tale che nell' ipotesi di ripartizione a 45°, tali scarichi si ripartiscono uniformemente alla base del muro.

Ai carichi prima riportati, si aggiungono il peso proprio del muro frontale, del muro paraghiaia e la spinta del terreno di riempimento.

MURO FRONTALE		
H Muro Frontale	6.00	m
Spessore Muro Frontale	1.70	m
Lunghezza Muro Frontale	13.5	m
Spessore massimo tratto ringrossato	2.25	m
H tratto ringrossato a spessore costante	1.00	m
H tratto a spessore variabile	0.55	m
Eccentr. Baricentro Ringrosso- Baricentro Muro Front	-0.20	m
Altezza Baricentro Ringrosso da Spiccato Muro	5.40	m
Altezza Muro Paraghiaia	2.70	m
Spessore Muro Paraghiaia	0.50	m
Peso Ringrosso Muro Frontale	193	kN
Peso Muro Frontale	3443	kN
Peso Muro Paraghiaia	456	kN
Eccentr. appoggi - muro frontale (base)	0.20	m
Eccentr. paraghiaia - muro frontale (base)	-1.15	m
Peso Specifico Terreno di Rilevato	20	kN/mc
Angolo di Attrito Terreno di Rilevato	38	0
Coefficiente di spinta a riposo Ko	0.384	
Altezza totale	8.7	m
Spinta a riposo (Terreno)	3199	kN
Sovraccarico accidentale sul rilevato	50.0	kN/mq
Spinta a riposo (Sovraccarico)	1838	kN
Accelerazione sismica di base a _g	0.367	
Coefficiente stratigrafico SS	1.056	
Coefficiente topografico ST	1.00	
Fattore di categoria del suolo S	1.056	
Accelerazione orizzontale massima attesa amax	0.388	
βm (massa cls spalla)	1.00	
Kh (cls spalla) =	0.388	
Kν (cls spalla)=	0.194	
Spinta Sismica (Teoria di Wood)	6451	kN
Forza di inerzia del Muro Frontale	1334	kN
Forza di inerzia del Muro Paraghiaia	177	kN
Forza di inerzia del Ringrosso Muro Frontale	75	kN

Tabella 10 – Valutazioni pesi e spinte agenti sul muro frontale

Si ottengono quindi le seguenti sollecitazioni, con riferimento alle combinazioni maggiormente significative.

ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO - BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 77 di 95

			SPICCATO MUR	O FRONTALE			
	Combinazioni		N	Mlong	Mtrasv	Tlong	Ttrasv
	Combinazioni		KN	kNm	kNm	KN	KN
	Gr.1	1	15040	16151	5283	4073	499
SLE	Gr.3	2	15543	23839	4098	5338	374
SLE	Gr.1	3	12545	21670	8532	5582	374
	Gr1	4	12890	13624	9115	3724	374
	Gr.1	5	21230	22514	7785	5587	736
CLLI	Gr.3	6	21959	33661	6067	7420	555
SLU	Gr.1	7	17601	30514	12549	7774	555
	Gr1	8	18101	18848	13395	5080	555
	Ex+0.3Ey+0,3Ez	9	12797	51645	8175	10882	1247
SLV	0,3Ex+Ey+0,3Ez	10	13064	51799	24286	12749	3100
SLV	Ex+0.3Ey-0,3Ez	11	10010	52996	6456	11249	341
	0,3Ex+Ey-0,3Ez	12	9743	51551	22678	12749	2194

	S	PICCATO	MURO FRONTA	LE PER METRO LI	NEARE		
	Combinariani		N	Mlong	Mtrasv	Tlong	Ttrasv
	Combinazioni		KN	kNm	kNm	KN	KN
	Gr.1	1	1114	1196	391	302	37
SLE	Gr.3	2	1151	1766	304	395	28
SLE	Gr.1	3	929	1605	632	413	28
	Gr1	4	955	1009	675	276	28
	Gr.1	5	1573	1668	577	414	55
SLU	Gr.3	6	1627	2493	449	550	41
SLU	Gr.1	7	1304	2260	930	576	41
	Gr1	8	1341	1396	992	376	41
	Ex+0.3Ey+0,3Ez	9	948	3826	606	806	92
CLV	0,3Ex+Ey+0,3Ez	10	968	3837	1799	944	230
SLV	Ex+0.3Ey-0,3Ez	11	742	3926	478	833	25
	0,3Ex+Ey-0,3Ez	12	722	3819	1680	944	163

Tabella 11 – Sollecitazioni alla base del muro frontale

Le sollecitazioni in direzione trasversale risultano trascurabili rispetto a quelle in direzione longitudinale, tenuto anche conto della geometria della sezione del muro frontale. Di seguito si riportano le verifiche di resistenza con riferimento ad una striscia di un metro per le combinazioni che provocano il massimo e il minimo sforzo normale, il massimo momento longitudinale ed il massimo taglio alla base del muro frontale.

ITINERARIO NAPOLI-BARI.
RADDOPPIO TRATTA CANCELLO - BENEVENTO.
II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.
2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 78 di 95

Muro	Sezione o	di verifica		Armatura	
IVIUIO	Base [m]	Altezza [m]	Tesa	Compressa	Taglio
Frontale	1.0	1.7	I Strato: 1φ26/10 II Strato: 1φ26/10	1ф26/10	Spilli 1ф12/40x20

Tabella 12 – Geometria sezione e armatura del muro frontale

	VERIFICHE SPICCATO MURO FRONTALE								
	Combinations		N	Mlong	Mtrasv	σc,min	σs,max	Wk	
	Combinazione		kN	kNm	kNm	MPa	MPa	mm	
	Gr.1	1	-1114	1196	391	-3.71	56.9	0	
CLE	Gr.3	2	-1151	1766	304	-4.52	92.06	0.041	
SLE	SLE Gr.1 3		-929	1605	632	-7.35	175.79	0.085	
	Gr1	4	-955	1009	675	-5.85	137.6	0.068	

	Combinazione		N	Mlong	Mtrasv	Tlong	C.S. (TRd/ TEd)	C.S. (MRd, NRd)
	Combinazione		kN	kNm	kNm	kNm	[-]	[-]
	Gr.1	5	-1573	1668	577	414	4.96	2.85
CLU (CTD)	Gr.3	6	-1627	2493	449	550	3.74	2.1
SLU (STR)	Gr.1	7	-1304	2260	930	576	3.57	2.05
	Gr1	8	-1341	1396	992	376	5.46	3.24

	Combinazione		N	Mlong	Mtrasv	Tlong	C.S. (TRd/ TEd)	C.S. (MRd, NRd)
	Combinazione		kN	kNm	kNm	kNm	[-]	[-]
	Ex+0.3Ey+0,3Ez	9	-948	3826	606	806	2.55	1.48
SLV	0,3Ex+Ey+0,3Ez	10	-968	3837	1799	944	2.17	1.45
SLV	Ex+0.3Ey-0,3Ez	11	-742	3926	478	833	2.46	1.16
	0,3Ex+Ey-0,3Ez	12	-722	3819	1680	944	2.17	1.18

Tabella 15 – Verifiche del muro frontale

10.2 Muro paraghiaia

In condizioni statiche il muro paraghiaia è sollecitato dalla spinta a riposo del rilevato, dalla spinta dei sovraccarichi accidentali, dai sovraccarichi mobili agenti sulla mensola del muro e dall'azione di frenatura. In condizioni sismiche il muro paraghiaia è sollecitato dalla spinta attiva e sismica del rilevato, dalle masse del muro e della mensola.

Nella tabella che segue sono indicati parametri geometrici, meccanici e di carico utilizzati nell'analisi. Il modello di calcolo utilizzato è quello di mensola incastrata al muro frontale.

MURO PARAGHIAIA		
Peso Muro Paraghiaia	34	KN/m
Altezza Muro Paraghiaia	2.7	m
Spessore Muro Paraghiaia	0.5	m
Luce mensola del muro paraghiaia	0.00	m
Spessore mensola del muro paraghiaia	0.00	m
Altezza Baric. Mensola del Paragh. da spicc. Muro	0.00	m
Peso Mensola Paraghiaia	0	kN
Peso Mensola Paraghiaia	0	kN/m
Distanza baricentri (Mensola- Paraghiaia)	0.25	m
Coefficiente di spinta a riposo Ko	0.384	
Peso Specifico Terreno di Rilevato	20.0	kN/mc
Sovraccarico accidentale	50.00	kN/mq
Angolo di Attrito Terreno di Rilevato	38.0	
Spinta a riposo (terreno)	28.02	kN/m
Spinta a riposo (sovraccarico)	51.89	kN/m
Spinta Sismica (Teoria di Wood)	56.5	kN/m
Forza di inerzia del Muro Paraghiaia	177	kN
Forza di inerzia del Muro Paraghiaia	13.1	kN/m
Forza di inerzia della mensola del Muro Paraghiaia	0.00	kN
Forza di inerzia della mensola del Muro Paraghiaia	0.0	kN/m

Tabella 13 - Valutazioni pesi e spinte agenti sul muro paraghiaia

Muro	Sezione d	di verifica		Armatura	
Muro	Base [m]	Altezza [m]	Tesa	Compressa	Taglio
PARAGHIAIA	1.0	0.50	1φ16/10	1φ16/20	-

Tabella 14 – Geometria sezione e armatura del muro paraghiaia

La verifica a taglio è soddisfatta come elemento non armato a taglio. Si prevede comunque un minimo di armatura a taglio costituita da spilli $\phi 10/40x40$

		VERIFICHE BASE MURO PARAGHIAIA		
	VE	RIFICA ALLO STATO LIMITE DI ESERCI	ZIO	
N	M	σc,min	σs,max	Wk
KN/m	kNm/m	MPa	MPa	mm
-34	95	-3.21	108.58	0.052
	1	VERIFICA ALLO STATO LIMETE ULTIM	0	
N	M	C.S. (Mu; Nu)	T	Tu
KN/m	kNm/m	C.S. (Mu; Nu)	KN/m	KN/m
-46	136	2.62	113	227.09
		VERIFICA IN CONDIZIONE SISMICA		
N	M	C S (NA N)	Т	Tu
KN/m	kNm/m	C.S. (Mu; Nu)	KN/m	KN/m
-34	133	2.63	108	225.49

Tabella 15 - Verifiche del muro paraghiaia

10.3 Muri laterali

In questo paragrafo si riporta il calcolo dei muri laterali della spalla. Tali muri sono sollecitati essenzialmente dalle spinte del terreno di riempimento all'interno della spalla e dei sovraccarichi presenti su di esso in condizioni statiche e sismiche.

Nella tabella che segue sono indicati parametri geometrici, meccanici e di carico utilizzati nell'analisi. Il modello di calcolo utilizzato è quello di mensola incastrata al muro frontale.

MURI LATERALI			
	S1	1.50	m
SPESSORI MURO	S2	0.70	m
SPESSORI WORD	S3	0.00	m
	S4	0.00	m
	h1	6.00	m
ALTESTE DADTIALIAMIDO	h2	2.70	m
ALTEZZE PARZIALI MURO	h3	0.00	m
	h4	0.00	m
Lunghezza Massima Muri Laterali		5.40	m
Altezza Totale		8.7	m
Spessore medio Muri Laterali		1.3	m
Altezza Baricentro Muro		4.9	m
Peso Muro Laterale		272.3	kN/m
Sovraccarico accidentale		50.0	kN/mq
Peso Specifico Terreno di Rilevato		20.0	kN/mc
Coefficiente di spinta a riposo Ko		0.384	
Spinta a riposo (terreno)	:	290.91	kN/m
Spinta a riposo (sovraccarico)	:	167.19	kN/m
Spinta Sismica (Teoria di Wood)		614.0	kN/m
Forza di inerzia Muro Laterale		105.5	kN/m

Tabella 16 - Valutazioni pesi e spinte agenti sui muri laterali

Muro	Sezione (di verifica		Armatura	
iviuro	Muro Base [m] Altezza [m]		Tesa	Compressa	Taglio
LATERALE	1.0	1.5	I Strato: 1φ26/10 II Strato: 1φ26/10	1ф26/10	Spilli 1ф12/20x40

Tabella 17 – Geometria sezione e armatura dei muri laterali

VERIFICHE SPICCATOMURO LATERALE										
	VERIFICA ALLO STATO LIMITE DI ESERCIZIO									
N	M	σc,min	σs,max	Wk						
KN/m	kNm/m	MPa	MPa	mm						
-272	1571	-4.56	120.3	0.048						

VERIFICA ALLO STATO LIMETE ULTIMO									
N	M	C.C. (B.A.v. Blv.)	T	Tu					
KN/m	kNm/m	C.S. (Mu; Nu)	KN/m	KN/m					
-368	2193	2.46	635	1804.79					

	VERIFICA IN CONDIZIONE SISMICA									
N	M	C C (BA No.)	T	Tu						
KN/m	kNm/m	C.S. (Mu; Nu)	KN/m	KN/m						
-272	4182	1.46	1044	1804.79						

Tabella 18 - Verifiche dei muri laterali

10.4 Plinto di fondazione

In questo paragrafo si riporta la determinazione delle sollecitazioni in quota testa pali che si ottengono sommando, alle azioni provenienti dall'impalcato, la risultante e il momento risultante dei pesi della struttura, del terreno interno alla spalla e delle spinte dovute al rilevato rispetto al baricentro del plinto. In condizioni sismiche si è tenuto conto dell'incremento di spinta delle inerzie.

Nella tabella che segue sono indicati i parametri geometrici, meccanici e di carico del plinto utilizzati nell'analisi per il calcolo della risultante e momento risultante rispetto al baricentro del plinto di fondazione.

PLINTO DI FONDAZIONE						
Peso Muro Laterale (singolo)	1470	kN				
Peso totale Muri Laterali	2940	kN				
Peso Muro Frontale	3443	kN				
Peso Ringrosso Muro Frontale	193	kN				
Ecc. Long. Muro Frontale - Plinto	1.45	m				
Ecc. Long. Ringrosso Muro Frontale - Plinto	1.25	m				
Ecc.Appoggi Plinto	1.65	m				
Peso Muro Paraghiaia	456	m				
Peso Mensola Paraghiaia	0	kN				
Ecc. Long. Muro Paraghiaia - Plinto	0.30	kN				
Peso Terreno Interno	10332	kN				
Peso Accidentali	2969	kN				
Eccentricità long Terreno -Plinto	-2.10	m				
Spessore Plinto	2.00	m				
Lunghezza plinto	9.60	m				
Larghezza plinto	16.80	m				
Peso plinto di fondazione	8064	kN				
Altezza Rilevato (Hmur.frontale+Hmur.paragh.+Spessore Plinto)	10.70	m				
Coefficiente di spinta a riposo Ko STRU	0.384					
Coefficiente di spinta a riposo Ko GEO	0.470					
Spinta a riposo rilevato	5940	kN				

Spinta a riposo sovraccarichi STRU	2776 kr	:N
Spinta sismica	11980 kM	:N
Forza di inerzia del Muro Frontale	1334 kľ	:N
Forza di inerzia del ringrosso del Muro Frontale	75 ki	:N
Forza di inerzia del Muro Paraghiaia	177 ki	:N
Forza di inerzia della mensola del Muro Paraghiaia	0 kt	:N
Forza di inerzia rilevato interno	4004 kr	:N
Forza di inerzia dei muri laterali	1140 kr	:N
Forza di inerzia plinto di fondazione	3125 kr	:N

Tabella 19 - Valutazioni pesi e spinte agenti sul plinto di fondazione

	SOLLECITAZIONI A	QUO	TA TESTA PALI	(BARICENTRO PL	INTO)		
	Cambinasiana		N	Mlong	Mtrasv	Tlong	Ttrasv
	Combinazione		KN	kNm	kNm	KN	KN
	Gr.1	1	36315	23644	6276	9591	499
SLE	Gr.3	2	36826	34604	4842	10855	374
SLE	Gr.1	3	33851	16938	9228	9261	374
	Gr1	4	34204	17365	9825	9241	374
	Gr.1	5	49944	34135	9250	9984	736
SLU (STR)	Gr.3	6	50686	50027	7170	11818	555
3LO (31K)	Gr.1	7	46360	24394	13583	9506	555
	Gr1	8	46872	25013	14449	9478	555
	Ex+0.3Ey+0,3Ez	9	34620	166094	22217	28507	4202
SLV	0,3Ex+Ey+0,3Ez	10	34141	42357	73897	9524	12950
SLV	Ex+0.3Ey-0,3Ez	11	30639	164055	22890	28507	3296
	0,3Ex+Ey-0,3Ez	12	30387	40318	74684	9524	12044

Tabella 20 – Sollecitazioni ad intradosso plinto (quota testa pali)

Per la valutazione delle sollecitazioni nel plinto di fondazione, è necessario valutare preventivamente le sollecitazioni agenti nei pali di fondazione. Tali sollecitazioni sono state valutate mediate una ripartizione rigida delle sollecitazioni agenti a base plinto.

Come già anticipato in precedenza nel documento, per il calcolo degli sforzi nei pali si è tenuto del parametro α (vedi paragrafo 4) sia per la valutazione ΔM sulla palificata legato alla deformabilità a taglio della stessa sia per la valutazione del momento flettente agente in testa al palo ($M_{Ed} = \alpha V_{Ed}$), con le precisazioni già esposte.

Si riportano nel seguito le coordinate dei pali di fondazione e per ogni combinazione di carico, le sollecitazioni nei pali sollecitati dal massimo e dal minimo sforzo normale.

	Coordinate dei pali rispetto a baricentro plinto														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Z	-3.60	0.00	3.60	-3.60	0.00	3.60	-3.60	0.00	3.60	-3.60	0.00	3.60	-3.60	0.00	3.60
У	7.20	7.20	7.20	3.60	3.60	3.60	0.00	0.00	0.00	-3.60	-3.60	-3.60	-7.20	-7.20	-7.20
z ²	12.96	0.00	12.96	12.96	0.00	12.96	12.96	0.00	12.96	12.96	0.00	12.96	12.96	0.00	12.96
y ²	51.84	51.84	51.84	12.96	12.96	12.96	0.00	0.00	0.00	12.96	12.96	12.96	51.84	51.84	51.84
W _Y	54.00	54.00	54.00	108.00	108.00	108.00	0.00	0.00	0.00	-108.00	-108.00	-108.00	-54.00	-54.00	-54.00
Wz	-36.00	0.00	36.00	-36.00	0.00	36.00	-36.00	0.00	36.00	-36.00	0.00	36.00	-36.00	0.00	36.00

Tabella 21 – Numero di pali e coordinate rispetto al baricentro del plinto

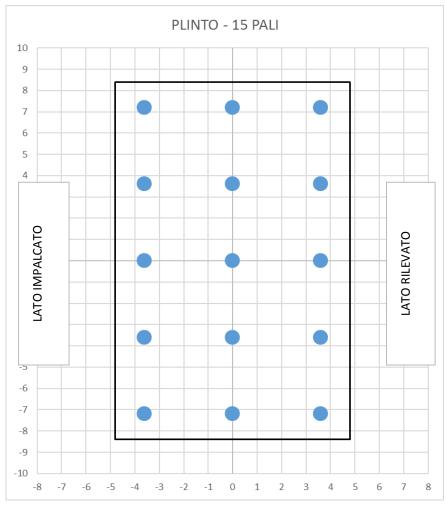


Figura 11 – Geometria Palificata

ITINERARIO NAPOLI-BARI.
RADDOPPIO TRATTA CANCELLO - BENEVENTO.
II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

V117 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 84 di 95

Tabella 22 – Massime e minime sollecitazioni nei pali di fondazione

SFORZI MASSIMI E MINIMI NEI PALI											
Combo		N _{min}		N _{max}	V _{max}	M _{max}					
Combo	Palo	[kN]	Palo	[kN]	[kN]	[kNm]					
Gr.1	13	-3552	3	-1290	640	1665					
Gr.3	13	-3907	3	-1003	724	1883					
Gr.1	13	-3242	3	-1272	618	1607					
Gr1	13	-3287	3	-1273	617	1603					
Gr.1	13	-4827	3	-1832	667	1735					
Gr.3	13	-5342	3	-1417	789	2051					
Gr.1	13	-4376	3	-1805	635	1650					
Gr1	13	-4443	3	-1807	633	1646					
Ex+0.3Ey+0,3Ez	13	-8464	3	3848	1921	4995					
0,3Ex+Ey+0,3Ez	13	-5477	3	925	1072	2786					
Ex+0.3Ey-0,3Ez	13	-8132	3	4047	1913	4974					
0,3Ex+Ey-0,3Ez	13	-5163	3	1111	1024	2661					
		-8464		4047	1921	4995					

Il tacco anteriore del plinto di fondazione è stato verificato ipotizzando un meccanismo di tirante puntone. Si riporta di seguito la verifica. La larghezza di diffusione è stata valutata in corrispondenza del filo anteriore del muro frontale, mediante una diffusione a 45° a partire dal piano medio del palo (vedi figura seguente), mentre l'altezza della biella compressa è stata valutata pari a 0.2 d_p (con d_paltezza utile della sezione del plinto).

La verifica è stata eseguita in corrispondenza del palo più sollecitato (generalmente quello di spigolo).

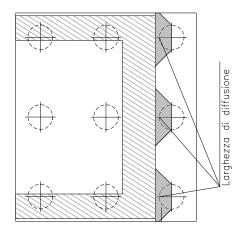


Figura 12 – Diffusione delle azioni dal palo al muro frontale

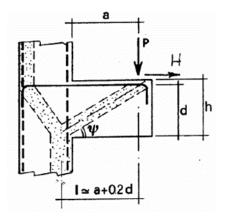
ITINERARIO NAPOLI-BARI.

RADDOPPIO TRATTA CANCELLO - BENEVENTO.

II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.

2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 - Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo


CODIFICA COMMESSA LOTTO DOCUMENTO REV. **IF0H** 22 D 11 CL VI1700 001 Α

FOGLIO

85 di 95

VERIFICA MENSOLE TOZZE - MECCANISMO TIRANTE PUNTONE secondo Circ 617-09/ C4.1.2.1.5

VERIFICA - MECCANISMO TIRANTE PUNTONE.

P,H: Carichi Esterni di Progetto (P_{ED},H_{ED})

Pr: Portanza mensola in termini di resistenza dell'armatura metallica

$$P_{R} = P_{Rs} = (A_{s}f_{yd} - H_{Ed})\frac{1}{\lambda}$$
 $\lambda = ctg\psi \cong l/(0.9d)$.

Pr: Portanza mensola in termini di resistenza della Biella compressa

$$P_{Rc} = 0,4bdf_{cd} \frac{c}{1+\lambda^2} \ge P_{Rs}$$

CONDIZIONI DI VERIFICA

$$P_{\text{R}} \geq P_{\text{Ed}}$$

$$P_{\text{Rc}} \geq P_{\text{Rs}}$$

Dati di progetto

Ldiff(m)	3.80	m	Lunghezza di diffusione
b(m)=	1.00	m	dimensione trasversale di verifica mensola
N_{Ed} (KN) =	8464	KN	Sforzo normale massimo pali
$P_{Ed}(KN) =$	2227	KN	Carico complessivo VERTICALE diffuso
H_{Ed} (KN) =	0	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	1.30	m	distanza P da incastro
h(m) =	2.00	m	spessore mensola
$\delta(m) =$	0.10	m	copriferro riferito al baricentro delle armature complessive in trazione
d(m) =	1.90	m	altezza utile
I(m) =	1.68	m	a+0,2d

0.98 Tipo di mensola (Valutazione coefficiente c)

$$c(m) = 1.00$$

Caratteristiche Materiali

 $\lambda =$

fcd = 16.5 MPa Calcestruzzo
fyd = 391.3 MPa
$$\lambda = \text{ctg} \psi \cong 1/(0.9 \text{d})$$
.

Caratteristiche Armature di Progetto

Registro tipo	R1						ĺ
n° R1=	1	φ1(mm) =	22.0	p1(cm) =	10.0	θ1° =	0.0
$A\phi i (mm^2) =$	380.13	nb tot 1=	10.0	$A\phi TOT (mm^2) =$	3801.32	$A\phi CAL(mm^2) =$	3801.32
Registro tipo	R2						
n° R2=	1	ϕ 2(mm) =	22.0	p2(cm) =	10.0	θ2° =	0.0
$A\phi i (mm^2) =$	380.13	nb tot 2 =	10.0	$A\phi TOT (mm^2) =$	3801.32	$A\phi CAL(mm^2) =$	3801.32
Registro tipo	R3						
n° R3=	0	ϕ 3(mm) =	26.0	p3(cm) =	15.0	θ3° =	0.0
$A\phi i (mm^2) =$	530.93	nb tot 3 =	0	$A\phi TOT (mm^2) =$	0.00	$A\phi CAL(mm^2) =$	0.00
Verifiche di res	<u>istenza</u>	_		_			
Ψ=	0.794	rad =	45.51	٥			
P _{Rs} =	3028.1	KN		PRs>PEd- Verifi	ca Soddisfa	atta	
P _{RC} =	6366.1	KN		PRc>PRs - Verifi	ca Soddisf	atta	

Tabella 23 – Verifica dello zoccolo anteriore del plinto di fondazione con meccanismo tirante-puntone

ITINERARIO NAPOLI-BARI.
RADDOPPIO TRATTA CANCELLO - BENEVENTO.
II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.
2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0H
 22 D 11
 CL
 VI1700 001
 A
 87 di 95

10.5 Pali di fondazione

Le sollecitazioni agenti nei pali di fondazione, sono state valutate mediante una ripartizione rigida delle sollecitazioni globali agenti a quota testa pali e in corrispondenza del baricentro del plinto di fondazione. Il valore del momento flettente agente in testa ai pali, è stato ottenuto moltiplicando il taglio in testa per il parametro "α". Il calcolo di tale parametro è riportato nella *Relazione geotecnica generale*.

L'individuazione dei pali a cui corrispondono tali sollecitazioni può essere effettuata mediante le tabelle riportate nel paragrafo precedente

10.5.1 Verifiche Geotecniche di capacità portante per carichi verticali

Confrontando il massimo sforzo di compressione agente nei pali con i valori riportate nelle curve di capacità portante dei pali (riportate all'interno della relazione geotecnica generale del Sub lotto dove ricade l'opera in esame), si è scelto di utilizzare dei pali aventi lunghezza pari a **48 m.**

10.5.2 Verifiche Geotecniche di capacità portante per carichi orizzontali

E' stato analizzato un palo diametro D=1200 mm L=36, con la stratigrafia del viadotto VI15.

La verifica viene condotta con riferimento al massimo taglio:

T = 1961 kN taglio massimo (condizione di carico sismica SLV).

Per il palo è prevista un'armatura longitudinale in testa costituita da doppia corona 26+26+20 Φ28 Il momento plasticizzazione della sezione circolare è pari a 6669 kNm (valutato con sollecitazione assiale nulla).

La verifica a carico limite è stata svolta incrementando il carico orizzontale man mano fino ad un carico massimo di 3600 kN e quindi FS \geq 1.82, considerando che il fattore di sicurezza per la verifica a carico orizzontale è valutato come FS = γ_T · ξ = 1.30 · 1.40 =1.82 (da normativa vigente per verifica A1+M1+R3, condizione di carico SLV).

Nelle figure seguenti sono mostrate le curve P-Y con cui è stato modellato il palo di lunghezza 41 m suddividendolo in conci di 0.50 m; in particolare tali curve sono relative a due profondità, 5 m e 10 m da testa palo (spostamenti in mm e pressioni in kPa).

Nella seguenti figure è mostrato:

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO - BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO - VITULA 2° LOTTO FUNZIONALE TELESE - SAN LORENZO.				ANO.	
V117 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo	COMMESSA IFOH	LOTTO 22 D 11	CODIFICA CL	DOCUMENTO	REV.	FOGLIO

- l'andamento lungo il palo delle pressioni orizzontali mobilitate e della pressione limite;
- l'andamento del taglio massimo;
- l'andamento del momento lungo il palo; l'armatura del palo di progetto dovrà essere tale da avere un momento di plasticizzazione maggiore del valore massimo indicato in figura.

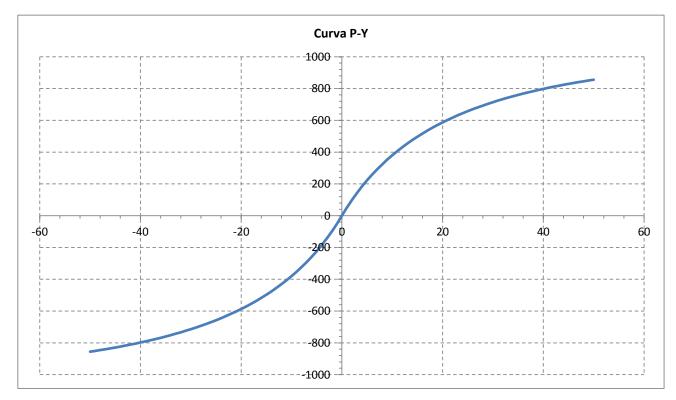


Figura 13 – curva P-Y a quota 5 m da testa palo

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO - BENEVENTO. II LOTTO FUNZIONALE FRASSO TELESINO - VITUL 2° LOTTO FUNZIONALE TELESE - SAN LORENZO.				ANO.	
VI17 - Ponte del Corpo - PONTE dal km 37+275.00 al km	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
37+305.00 Spalle - Relazione di calcolo	IF0H	22 D 11	CL	VI1700 001	Α	89 di 95

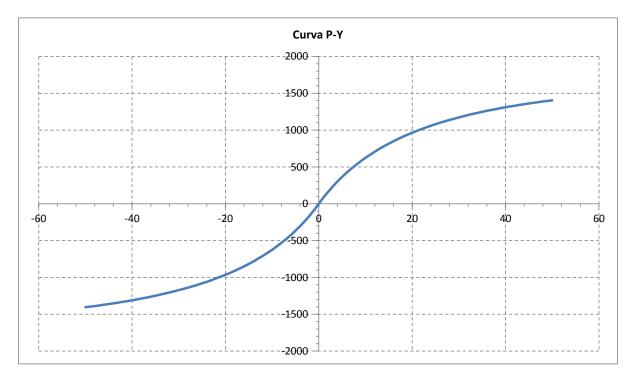


Figura 14 - curva P-Y a quota 10.0 m da testa palo



Figura 15 – Andamento pressioni orizzontali

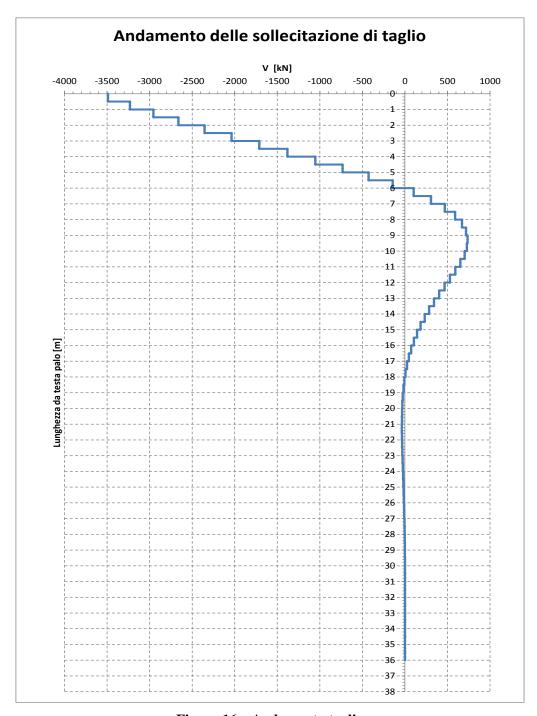


Figura 16 – Andamento taglio

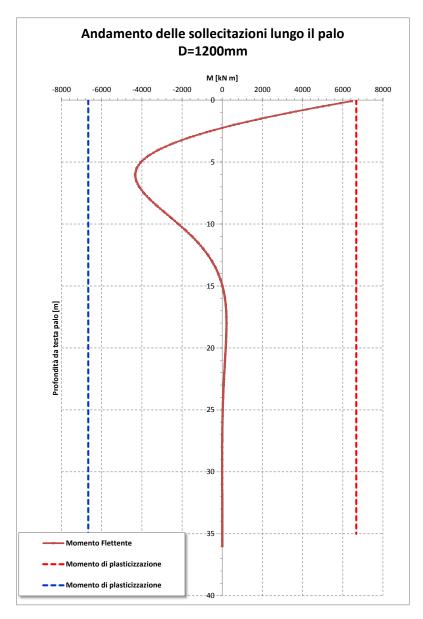


Figura 17 – Andamento momento

10.5.3 Verifiche Strutturali Pali

Si riportano di seguito le sollecitazioni e le verifiche di resistenza per le varie combinazioni di carico, e per i pali soggetti al massimo e al minimo sforzo normale.

Palo	Sezione di verifica	Armatura				
PalO	D [m]	Armatura longitudinale	Taglio			
Ф1200	200 1.2	1 STRATO: 2x26φ28		Spirale 1ф14/10+		
Ф1200		II STRATO: 20 φ28	(2+2) φ14/10			

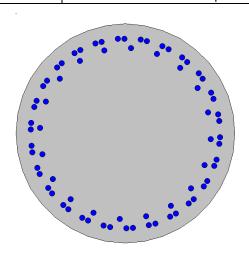


Figura 18 – Disposizione armatura longitudinale pali

	PALO - Verifiche allo SLU								
Combinazioni		N	Mlong	Tlong	C.S.	C.S.			
	Combinazioni		kNm	kN	(NRd, MRd)	(VRd)			
Max N	Ex+0.3Ey+0,3Ez	-8468	4996	1922	1.24	1.66			
Min N	Ex+0.3Ey-0,3Ez	4050	4976	1914	1.03	1.67			
Max VL	Ex+0.3Ey+0,3Ez	3850	4996	1922	1.04	1.66			

PALO - Verifiche allo SLE								
Combinazioni		N	Mlong	σ_{c}	$\sigma_{\rm s}$	Wk		
		kN	kNm	Мра	Мра	mm		
RARA	Gr.3	-3913	1883	-8.98	119.76	0.059		
KAKA	Gr.3	-1004	1883	-7.98	130.50	0.142		

Tabella 24 – Verifica dei pali di fondazione

Si precisa che la verifica a taglio è condotta su una sezione rettangolare equivalente (in termini di aree) con base 100 cm.

11. ANALISI E VERIFICA SPALLA MOBILE (S1)

Per le verifiche strutturali degli elementi della spalla mobile si rimanda a quanto già esposto a riguardo per il caso della spalla fissa, in quanto, a parità di sezioni resistenti degli elementi, quest'ultima risulta interessata da sollecitazioni maggiormente gravose.

Si procede pertanto unicamente con la valutazione delle sollecitazioni in fondazione per le varie combinazioni di carico, ai fini del dimensionamento geotecnico dei pali.

11.1 Pali di fondazione

Si riportano di seguito gli scarichi a quota testa pali, riferiti al baricentro del plinto, e gli sforzi massimi e minimi agenti sui pali della spalla mobile:

SOLLECITAZIONI A QUOTA TESTA PALI (BARICENTRO PLINTO)								
Combinazione			N	Mlong	Mtrasv	Tlong	Ttrasv	
Combinazione		KN	kNm	kNm	KN	KN		
	Gr.1	1	37065	22303	6480	9710	499	
SLE	Gr.3	2	37221	22677	4968	9724	374	
SLE	Gr.1	3	34570	17344	9430	9610	374	
	Gr1	4	34915	18029	10013	9624	374	
	Gr.1	5	50963	31895	9551	9895	736	
SLU (STR)	Gr.3	6	51189	32437	7358	9915	555	
3LU (31K)	Gr.1	7	47334	24708	13880	9752	555	
	Gr1	8	47834	25702	14726	9772	555	
	Ex+0.3Ey+0,3Ez	9	35363	138582	23425	24727	4310	
6114	0,3Ex+Ey+0,3Ez	10	34798	35207	77914	8620	13248	
SLV	Ex+0.3Ey-0,3Ez	11	31309	136381	24107	24709	3351	
	0,3Ex+Ey-0,3Ez	12	31054	33119	78713	8602	12288	

Tabella 25 – Sollecitazioni ad intradosso plinto (quota testa pali)

SFORZI MASSIMI E MINIMI NEI PALI									
Combo	N _{min}		N _{max}		V _{max}	M _{max}			
Combo	Palo	[kN]	Palo	[kN]	[kN]	[kNm]			
Gr.1	13	-3573	3	-1369	648	1685			
Gr.3	13	-3563	3	-1399	649	1687			
Gr.1	13	-3317	3	-1292	641	1667			
Gr1	13	-3370	3	-1285	642	1669			
Gr.1	13	-4835	3	-1960	661	1720			
Gr.3	13	-4821	3	-2004	662	1721			
Gr.1	13	-4465	3	-1847	651	1693			
Gr1	13	-4542	3	-1836	653	1697			
Ex+0.3Ey+0,3Ez	13	-7638	3	2922	1673	4351			
0,3Ex+Ey+0,3Ez	13	-5371	3	731	1054	2740			
Ex+0.3Ey-0,3Ez	13	-7295	3	3120	1662	4322			
0,3Ex+Ey-0,3Ez	13	-5054	3	914	1000	2600			
		-7638		3120	1673	4351			

Tabella 26 – Massime e minime sollecitazioni nei pali di fondazione

ITINERARIO NAPOLI-BARI.
RADDOPPIO TRATTA CANCELLO - BENEVENTO.
II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO.
2° LOTTO FUNZIONALE TELESE - SAN LORENZO.

VI17 – Ponte del Corpo - PONTE dal km 37+275.00 al km 37+305.00 Spalle - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IFOH 22 D 11 CL VI1700 001 A 95 di 95

11.1.1 Verifiche Geotecniche di capacità portante per carichi verticali

Confrontando il massimo sforzo di compressione agente nei pali con i valori riportate nelle curve di capacità portante dei pali (riportate all'interno della relazione geotecnica generale del Sub lotto dove ricade l'opera in esame), si è scelto di utilizzare dei pali aventi lunghezza pari a **44 m**.

11.1.2 Verifiche Geotecniche di capacità portante per carichi orizzontali

Per le verifiche geotecniche a carico limite orizzontale, si rimanda a quanto già esposto a riguardo per il caso della Spalla Fissa ritenute significative anche per il caso della Spalla Mobile.

11.1.3 Verifiche Strutturali Pali

Per le verifiche strutturali dei pali della Spalla Mobile, si rimanda a quanto già esposto a riguardo per il caso della spalla fissa, in quanto, a parità di sezioni resistenti degli elementi, quest'ultima risulta interessata da sollecitazioni maggiormente gravose.