

Autostrada Brescia Verona Vicenza Padova SpA

Via Flavio Gioia 71 37135 Verona

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO Piovene Rocchette - Valle dell'Astico

PROGETTO DEFINITIVO

	CUP	G21B1 30006	60005
	WBS	B25	5.A31N.L1
ſ	COMMESSA		J16L1

COMMITTENTE

S.p.A. AUTOSTRADA BRESCIA VERONA VICENZA PADOVA

Area Costruzioni Autostradali

CAPO COMMESSA PER LA PROGETTAZIONE

Dott. Ing. Gabriella Costantini

PRESTATORE DI SERVIZI:
CONSORZIO RAETIA

RAPPRESENTANTE: Dott. Ing. Alberto Scotti

RESPONSASILE DELL'ANTÉGRAZIONE TRA LE PESTAZIONI SPECIALISTICHE: Technital S.p.A. - Pott, Ing. Andrea Renso PROGETTAZIONE:

ELABORATO: STUDI PER LA CONOSCENZA DEL CONTESTO

IDROLOGIA RELAZIONE IDROLOGICA

Progressivo Rev. 03 10 01 001 02

Rev.	Data	Descrizione	Redazione	Controllo	Approvazione	SCALA:
00	MARZO 2017	PRIMA EMISSIONE	GIRPA	M.SORGE	S.POSSATI	NOME FILE: J16L1_03_10_01_001_0101_0PD_02.dwg
01 02	GIUGNO 2017 LUGLIO 2017	REVISIONE PER VERIFICA RECEPIMENTO OSSERVAZIONI	GIRPA GIRPA	M.SORGE M.SORGE	S.POSSATI S.POSSATI	CM. PROGR. FG. LIV. REV.
,	20020 2011	THE STATE OF THE S	OHW 71	W.COTTOL	0.1 000ATI	J16L1_03_10_01_001_0101_0PD_02

IL PRESENTE DOCUMENTO NON POTRA' ESSERE COPIATO, RIPRODOTTO O ALTRIMENTI PUBBLICATO, IN TUTTO O IN PARTE, SENZA IL CONSENSO SCRITTO DELLA AUTOSTRADA BS-VR-VI-PD S.P.A.. OGNI UTILIZZO NON AUTORIZZATO SARA' PERSEGUITO A NORMA DI LEGGE.
THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED OR PUBLISHED, EITHER IN PART OR IN ITS ENTIRETY, WITHOUT THE WRITTEN PERMISSION OF AUTOSTRADA BRESCIA-VERONA-/ICENZA-PADOVA S.P.A.. UNAUTHORIZED USE WILL BE PROSECUTE BY LAW.

AUTOSTRADA VALDASTICO A31 NORD 1° LOTTO PIOVENE ROCCHETTE – VALLE DELL'ASTICO

Committente:

PROGETTO DEFINITIVO

RELAZIONE IDROLOGICA

INDICE

PREN	/IESSA	١		5
A.	PLUV	/ION	IETRIA	6
	A.1	DAT	I PLUVIOMETRICI	6
	A.2	ELA	BORAZIONE DELLA CURVA DI POSSIBILITA' PLUVIOMETRICA	6
	A.3	EQL	JAZIONE DI POSSIBILITÀ PLUVIOMETRICA	7
	A	3.1	Analisi statistica	8
	A.4	DIS	FRIBUZIONE SPAZIALE DELLE PRECIPITAZIONI	9
В.	MET	ODO	LOGIE DI CALCOLO DELLE PORTATE DI PROGETTO	12
	B.1	ME	TODI EMPIRICI PER IL CALCOLO DELLA PORTATA	12
	В.:	1.1	Metodo Trentino	13
	B.2	мо	DELLIZZAZIONE IDROLOGICA	16
	В.2	2.1	Metodo Curve Number del Soil Conservation Service	17
	В.2	2.1	Metodo dell'unità idrografica (Snyder)	20
	В.2	2.2	Metodo di Clark	20
	В.2	2.3	Modello di Muskingum	21
C.	MOD	ELLC	DIDROLOGICO DEL TORRENTE ASTICO	22
	C.1	GEN	IERALITA'	22
	C.2	INQ	UADRAMENTO	22
	C.2	2.1	Inquadramento geografico	22
	C.2	2.2	Geologia – Geomorfologia - Idrogeologia	25
	C.3	ELA	BORAZIONE DEI DATI PLUVIOMETRICI	28
	C.3	3.1	Determinazione della curva di possibilità climatica	28
	C.4	STIN	MA DELLE PRECIPITAZIONI EFFICACI	29
	C.4	4.1	Generalità	29
	C.4	4.2	Metodo Curve Number del Soil Conservation Service	30
	C.5	МО	DELLO AFFLUSSI-DEFLUSSI	35
	C.5	5.1	Generalità	35
	C.5	5. <i>2</i>	Metodo dell'unità idrografica (Snyder)	35
	C.5	5.3	Metodo di Clark	36
	C.6	DET	ERMINAZIONE DELLA PORTATA	37
	C. 6	6.1	Schema di bacino utilizzato per il calcolo delle portate	37
	C. 6	6.2	Caratteristiche dei sottobacini	37
	C. 6	6.3	Caratteristiche degli scoli	38
	C. 6	6.4	Caratteristiche del modello delle precipitazioni	39
	C. 6	6.5	Taratura degli idrogrammi	39

	C.7	RISULTATI OTTENUTI	40
	C.	7.1 Idrogrammi di piena alla sezione di Meda	40
	C.	7.2 Opere previsionali	43
	С.	7.3 Conclusioni	44
D.	ALLE	GATO A	45
	D.1	DATI E ANALISI STATISTICA DELLE STAZIONI PLUVIOMETRICHE CONSIDERATE	45
	D.2	CURVE DI POSSIBILITÀ CLIMATICA PER CIASCUN SOTTOBACINO	162
	D.3	CURVE DI POSSIBILITÀ CLIMATICA RAGGUAGLIATE COL COEFFICIENTE DI COLUMBO	212
E.	ALLE	GATO В	274
	E.1	DATI DI PORTATA ASTICO A PEDESCALA	274
	E.2	Dati di portata Posina a Stancari	300
		<u>Indice delle tabelle</u>	
Tahella 1	· Flence	delle stazioni meteorologiche nelle vicinanze del bacino del Torrente	6
		delle stazioni meteorologiche considerate nell'analisi statistica per la costruzione della	0
		tà pluviometrica del bacino del torrente Astico	. 11
		limite di verifica della portata di massima piena con Tr=100 anni	
		icazione dei tipi idrologici di suolo secondo il metodo SCS-CN	
		caratteristici del parametro CN nelle zone urbanizzate	
		etri geomorfologici dei sottobacini individuati	
		per il calcolo del coefficiente di riduzione col metodo di Columbo	
		· dei parametri impiegati per il calcolo della pioggia efficace per ciascun sottobacino	
		assunti dai parametri per il modello di Snyder in ciascun sottobacino	
Tabella 1	0: Valo	i assunti dai parametri per il modello di Clark in ciascun sottobacino	. 36
Tabella 1	1: Valo	i dei parametri per il modello di Muskingum per ciascun sottobacino	. 38
Tabella 1	2: limiti	massimi e minimi dei parametri da considerare per la taratura del modello	. 40
Tabella 1	3: Porta	ta e tirante TR10	. 43
Tabella 1	4: risult	ati della modellazione idrologica con Clark e Snyder per Tr 100 e 200 anni	. 44
Tabella 1	5: Con	ronto valori di portata nei tratti di Astico impiegati per l'analisi idraulica, secondo i	
metodi d	i Clark,	Snyder e metodo trentino	. 45
Tabella 1	6: valor	i di portata nei tratti impiegati per l'analisi idraulica, metodo Trentino	. 45

Indice delle figure

Figura 1: suddivisione dei topoieti per le stazioni pluviometriche situate lungo il tracciato	10
Figura 2: Portata di piena per bacini di estensione minore di 1000 Km²	13
Figura 3: Portata di piena per bacini di estensione maggiore di 1000 Km²	14
Figura 4: bacino imbrifero del torrente Astico	23
Figura 5: Rappresentazione del bacino del fiume Astico con evidenziazione (in rosso) della parte sottesa dalle	25
Figura 6: Rappresentazione della suddivisione in 22 sottobacini del bacino del fiume Astico con evidenziati i corsi d'acqua dell'Astico e del Posina	27
Figura 7: carta di utilizzo del suolo all'interno del bacino imbrifero dell'Astico	31
Figura 8: carta della permeabilità del suolo nel bacino imbrifero dell'Astico, dove: 1 rocce molto permeabili con fessurazione e carsismo; 2 rocce mediamente permeabili per fessurazione; 3 rocce poco permeabili per fessurazione; 4 rocce praticamente impermeabili; 1a depositi molto permeabili per porosità; 2a depositi mediamente permeabili per porosità; 3a depositi poco permeabili per porosità; 4a	22
depositi praticamente impermeabili	
Figura 10: schema dei sottobacini costituenti il bacino imbrifero del Torrente Astico in HEC HMS	
Figura 11: idrogramma dell'evento del 1966 fornito dall'Autorità di Bacino	39
Figura 12: portata alla sezione di chiusura per un TR di 10 anni	40
Figura 13: portata alla sezione di chiusura per un TR di 25 anni	41
Figura 14: portata alla sezione di chiusura per un TR di 50 anni	41
Figura 15: portata alla sezione di chiusura per un TR di 100 anni	42
Figura 16: portata alla sezione di chiusura per un TR di 200 anni	42
Figura 17: portata alla sezione di chiusura per un TR di 500 anni	43

PREMESSA

La presente relazione si pone come obiettivo la definizione delle portate di progetto da adottare per la verifica delle opere idrauliche relative alle interferenze del tracciato autostradale in progetto con il reticolo idrico.

Sulla base dei dati pluviometrici, come esposto al capitolo A, vengono definite per prima cosa le curve di possibilità pluviometrica e le altezze di pioggia per diversi tempi di ritorno.

Nel capitolo successivo vengono illustrate le possibili metodologie di calcolo delle portate di progetto, suddivise in metodi empirici (paragrafo B.1) e modellazione coi metodi di Clark e Snyder con l'ausilio del programma HEC-HMS (paragrafo B.2.1).

Vengono quindi presentati i risultati ottenuti per il principale corso d'acqua interferito: il torrente Astico (capitolo C).

Nell'ultimo capitolo viene infine presentata l'analisi che è stata svolta per i corsi d'acqua del reticolo secondario interferito dal tracciato autostradale in progetto.

A. PLUVIOMETRIA

Le valutazioni idrologiche per la stima della portata massima non possono prescindere dall'analisi delle serie storiche degli eventi pluviometrici nell'area di interesse.

Il calcolo dei parametri delle curve di possibilità pluviometrica si basa su un'analisi statistica dei dati relativi alle stazioni localizzate in prossimità del bacino del torrente Astico, descritta nel seguito.

A.1 DATI PLUVIOMETRICI

Sono stati reperiti presso gli enti preposti della Regione Veneto e della Provincia Autonoma di Trento le altezze di pioggia misurate in numerose stazioni meteorologiche site in prossimità del bacino imbrifero del torrente Astico. Dopo un primo screening delle serie storiche ottenute sono state individuate le seguenti stazioni aventi un numero sufficiente di dati per la successiva analisi statistica:

Regione Veneto - ARPAV	Provincia Autonoma di Trento
Asiago aeroporto	Bieno
Brustole Velo d'Astico	Borgo Valsugana
Castagna Arsiero	Centa San Nicolò
Contrà doppio Polesine	Costa Brunella
Lusiana	Lavarone
Molini Laghi	Levico Terme
Monte Summano	Telve
Passo Xomo - Posina	Tenna
Recoaro	
Valli del Pasubio	

Tabella 1: Elenco delle stazioni meteorologiche nelle vicinanze del bacino del Torrente

A.2 ELABORAZIONE DELLA CURVA DI POSSIBILITA' PLUVIOMETRICA

Mediante l'analisi dei dati registrati nelle stazioni vengono determinati i parametri della curva di probabilità di Gumbel (si veda il paragrafo successivo), corrispondenti a diversi tempi di ritorno: per gli scrosci si sono considerati Tr pari a 5, 10, 15, 25, 50, 100 per le

piogge superiori all'ora fino ad alcuni giorni sono stati considerati anche tempi di ritorno di 200, 300, 500 e 1000 anni.

A.3 EQUAZIONE DI POSSIBILITÀ PLUVIOMETRICA

Si è quindi proceduto alla determinazione dei parametri a e n della curva di possibilità

climatica con il modello della regressione lineare.

Per determinare le portate da utilizzare per la verifica delle interferenze, si deve fare prima

una premessa sulla durata dei diversi eventi. Gli eventi meteorici sono convenzionalmente

suddivisi in:

• eventi di breve durata, detti scosci; essi hanno una durata mediamente inferiore

all'ora, caratterizzati da forte intensità e perciò sviluppano elevate portate alla

sezione di chiusura del bacino idrografico;

eventi di lunga durata; essi hanno una durata superiore all'ora, minore intensità ma

sviluppano elevati volumi alla sezione di chiusura del bacino idrografico;

eventi di più giorni; essi vengono analizzati per considerare la differente tendenza

evolutiva del bacino per eventi di pioggia superiori alle 24 ore, con caratteristiche di

intensità e sviluppo dei volumi analoghe agli eventi al punto precedente.

Per definire le altezze di precipitazione corrispondenti a tali eventi pluviometrici vengono

utilizzate le curve di possibilità pluviometrica (CPP), elaborate a partire dalle registrazioni di

altezza di pioggia effettuate nelle stazioni pluviometriche.

Le tipologie di eventi meteorici descritti in precedenza hanno caratteristiche differenti e per

questo si ritiene opportuno analizzarli separatamente e perciò ricavare tre curve di

possibilità pluviometrica di progetto una per gli eventi di breve durata, una per quelli di

lunga durata e una per eventi di più giorni.

Lo scopo dell'elaborazione statistica dei dati è la determinazione dei coefficienti a (mm/oreⁿ)

e **n** che compaiono nelle equazioni di possibilità pluviometrica:

$$h=a \cdot t^{np}$$

dove: h = altezza di pioggia in mm

tp = tempo in ore

Il concetto di rischio idraulico è quantificato dal tempo di ritorno T_r, definito come l'inverso

della frequenza media probabile del verificarsi di un evento maggiore, ossia il periodo di tempo nel quale un certo evento è mediamente uguagliato o superato.

$$T_r = \frac{1}{1 - P(h \le H)}$$

L'equazione di possibilità pluviometrica fornisce, per un fissato tempo di pioggia t_P, il massimo valore di h nel periodo pari al tempo di ritorno T_r e viene utilizzata, nei modelli afflussi-deflussi, per la determinazione della portata afferente all'area interessata.

Dai parametri delle curve di possibilità pluviometriche individuate per tutte le stazioni ritenute significative, sono stati ricavati i valori di questi parametri per tutta l'area in esame, mediante la costruzione di mappe isovalore relative al parametro **a**, differente per ogni tempo di ritorno.

Pertanto, per i diversi tempi di pioggia, dalle mappe elaborate nell'ambito del suddetto studio è possibile, al variare del tempo di ritorno, individuare i valori per i parametri **a** ed **n** per ciascun bacino idrografico.

Seguendo questo approccio, dall'analisi delle suddette mappe isovalore, sono stati individuati, per i bacini idrografici dei corsi d'acqua interferiti dalle opere in progetto relative alla tratta in esame, i valori corrispondenti per la curva di possibilità pluviometrica.

A.3.1 Analisi statistica

La regolarizzazione statistico-probabilistica, impiegata per il calcolo dei tempi di ritorno, è stata eseguita facendo riferimento alla distribuzione del valore estremo EV1 o di Gumbel.

Tale legge si basa sull'introduzione di un'ipotesi relativa al tipo di distribuzione dei più grandi valori estraibili da più serie costituite da osservazioni tra loro indipendenti.

La distribuzione cumulata di probabilità è descritta dalla seguente funzione:

$$F(x) = \exp(-\exp(-\frac{x-u}{\alpha}))$$

dove α e u rappresentano rispettivamente i parametri di concentrazione e della tendenza centrale stimati con il metodo dei momenti:

$$\mu_x = mx = \frac{1}{N} \sum_{i=1}^{N} xi$$

$$\sigma_x = sx = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (xi - mx)^2}$$

$$\alpha = \frac{\sqrt{6} \cdot sx}{\pi}$$

$$u = mx - \lambda \cdot \alpha$$

dove α è la misura della dispersione attorno al valore medio e u è la moda.

con λ = 0,5772 è la costante di Eulero.

Indicando con F(x) la probabilità di non superamento del valore x, il tempo medio di ritorno è calcolato dalla relazione:

$$T_r = \frac{1}{(1 - F(x))}$$

dove T_r rappresenta quindi il numero medio di anni entro cui il valore x viene superato una sola volta.

I risultati per ciascuna stazione sono riportati nell'allegato A.

A.4 DISTRIBUZIONE SPAZIALE DELLE PRECIPITAZIONI

Visto il numero di stazioni meteorologiche che ricadono all'interno del bacino dell'Astico considerato, alcune precisazioni sono da farsi sui valori delle altezze di precipitazione. Se ogni stazione fosse singolarmente considerata, dando per ciascuna di esse la relazione $h_i=a_i(T_r)\;\tau^{ni}$, e si volesse individuare l'evento che, con prefissato tempo di ritorno e durata, potesse investire l'intero bacino, sarebbe errato accreditare come tale l'evento ottenuto calcolando per ciascuna stazione l'altezza corrispondente al prefissato Tr: è del tutto improbabile infatti che in tutte le stazioni possa verificarsi contemporaneamente una precipitazione avente lo stesso valore di Tr.

Un'ulteriore analisi per verificare la contemporaneità degli eventi massimi registrati in più stazioni contigue, può essere condotta considerando un metodo esclusivamente geometrico, chiamato metodo dei topoieti o dei reticolati di Thiessen. Questo procedimento richiede

come primo passo la definizione delle aree di competenza di ogni stazione pluviometrica, attraverso la definizione del punto medio dei segmenti che collegano una stazione con quella contigua e da questo punto tracciando la normale fino ad incontrare la normale relativa ad un'altra congiungente.

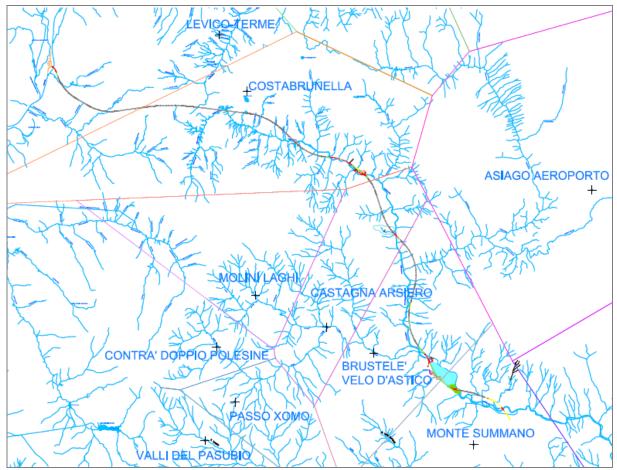


Figura 1: suddivisione dei topoieti per le stazioni pluviometriche situate lungo il tracciato

L'area così delimitata è associata agli eventi che si verificano nella stazione posta all'interno del poligono.

A seguito della definizione dei topoieti è stato possibile eseguire l'analisi considerando le 10 stazioni pluviometriche riportate nella tabella sottostante, la cui area di influenza copre l'intera superficie del bacino dell'Astico.

Regione Veneto - ARPAV	Provincia Autonoma di Trento
Asiago aeroporto	Centa San Nicolò
Brustole Velo d'Astico	Costa Brunella
Castagna Arsiero	Telve
Contrà doppio Polesine	

Regione Veneto - ARPAV	Provincia Autonoma di Trento
Molini Laghi	
Monte Summano	
Passo Xomo - Posina	

Tabella 2: Elenco delle stazioni meteorologiche considerate nell'analisi statistica per la costruzione della curva di possibilità pluviometrica del bacino del torrente Astico

Sulla base di questo metodo è possibile valutare la porzione di area per ogni sottobacino che ricade all'interno dei diversi topoieti individuati e quindi la frazione di bacino attribuibile ad ogni stazione pluviografica.

A seguito di questa analisi è stato possibile quindi calcolare, per ciascun sottobacino, l'altezza di pioggia al variare del tempo, come media pesata sulla superficie delle altezze ottenute per le i-esime stazioni pluviometriche in cui ricade il bacino:

$$h^* = \frac{\sum_{i} h_i S_i}{\sum_{i} S_i}$$

I dati relativi alle stazioni pluviometriche utilizzate, la loro analisi statistica e i risultati ottenuti mediante lo studio presentato in questo paragrafo sono riportati nell'allegato A della presente relazione.

B. METODOLOGIE DI CALCOLO DELLE PORTATE DI PROGETTO

B.1 METODI EMPIRICI PER IL CALCOLO DELLA PORTATA

La trasformazione degli afflussi meteorici in deflussi può essere condotta utilizzando diversi metodi o formule empiriche, come spiegato nel dettaglio nella relazione 2505-020802001-0101-0PP-00. In quest'ultimo elaborato accanto al metodo proposto dal Servizio Idrografico della Provincia Autonoma di Trento, vengono descritte alcune formule empiriche per la stima del tempo di corrivazione, necessaria all'applicazione del metodo razionale.

Di seguito vengono riportate le formule tra quelle indicate nell'elaborato precedentemente citato, che sono state utilizzate nell'analisi seguente.

Turazza
$$t_c = 1.085\sqrt{S}$$
 Ventura
$$t_c = 0.315\sqrt{S}$$
 Pasini
$$t_c = \frac{0.0045}{\sqrt{i}}\sqrt[3]{SL}$$
 Giandotti
$$t_c = \frac{4\sqrt{S} + 1.5L}{0.8\sqrt{H}}$$

dove:

 t_c = tempo di corrivazione in h nella formula di Giandotti e in giorni per gli altri autori;

S = superficie del bacino in km²;

L = lunghezza del percorso idraulicamente più lungo del bacino in km;

i = pendenza;

H = altitudine media del bacino rispetto alla sezione di chiusura in m s.l.m.m.

Le formule sopra riportate danno risultati molto differenti tra di loro in quanto sono state calcolate sperimentalmente su bacini eterogenei e in condizioni diverse. A seconda della sovrastima o sottostima del tempo di corrivazione si avrà una riduzione o aumento del valore della portata al colmo, mentre il volume di deflusso rimane invariato.

B.1.1 Metodo Trentino

In questo paragrafo viene descritto il metodo semplificato di tipo statistico elaborato dal Servizio Idrografico della Provincia Autonoma di Trento per la determinazione della portata di piena a partire dai dati raccolti a livello provinciale. Questo metodo di calcolo della portata di piena consente di esprimere empiricamente la portata di piena per un tempo di ritorno pari a cento anni in funzione della sola area del bacino sotteso alla sezione di chiusura mediante una formula del tipo:

$$Q_{100} = m S^n$$

Dove m e n sono due coefficienti, e S è l'area del bacino sotteso alla sezione di chiusura.

Tale formula, pur semplificata, consente di modellare il calo del contributo unitario al crescere dell'area del bacino, e costituisce un buon termine di paragone per evitare di adottare portate poco credibili o comunque poco cautelative.

Sono state così ricavate due diverse espressioni dell'equazione precedente valide rispettivamente per bacini di estensione minori e maggiori di 1000 km²; esse sono:

$$Q_{100} = 8,8029 \text{ S}^{0,6839} \quad \text{per S} < 1000 \text{ km}^2$$

 $Q_{100} = 46,697 \text{ S}^{0,4421} \quad \text{per S} > 1000 \text{ km}^2$

Nei grafici di Figura 2 e Figura 3 sono riportati gli andamenti delle curve che esprimono il legame tra portata di piena e area del bacino per estensioni rispettivamente minori e maggiori di 1000 km².

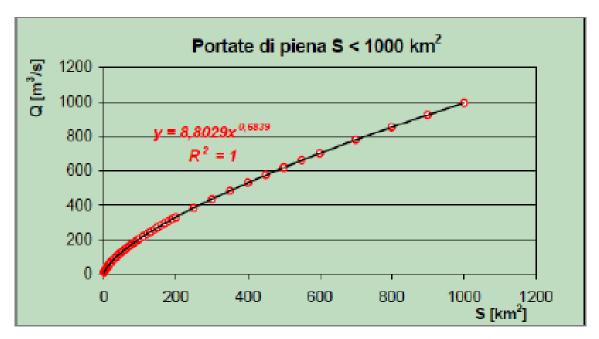


Figura 2: Portata di piena per bacini di estensione minore di 1000 Km²

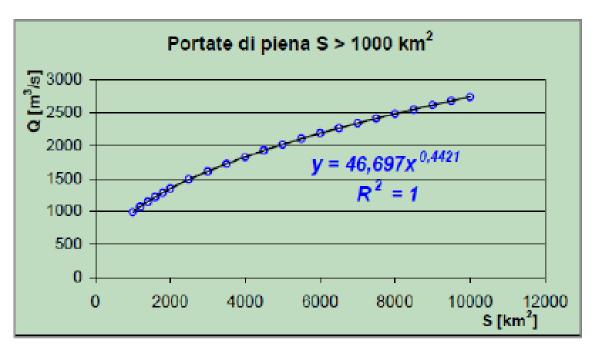


Figura 3: Portata di piena per bacini di estensione maggiore di 1000 Km²

Successivamente tramite l'adozione del coefficiente di crescita, opportunamente tarato, è stata calcolata la portata di verifica con tempo di ritorno duecentennale Q200.

Nella seguente Tabella 3 sono riportati i valori del contributo unitario di portata e della portata con Tr pari a 100 anni per le diverse estensioni del bacino.

Superficie	Contributo unitario	Portata	Superficie	Contributo unitario	Portata
[km²]	[m ³ /s/km ²]	[m ³ /s]	[km²]	[m ³ /s/km ²]	[m ³ /s]
1	8,8	9	170	1,74	295
2	7,07	14	180	1,71	307
3	6,22	19	190	1,68	319
4	5,68	23	200	1,65	330
5	5,29	26	250	1,54	384
6	5	30	300	1,45	435
7	4,76	33	350	1,38	484
8	4,56	36	400	1,33	530
9	4,39	40	450	1,28	574
10	4,25	43	500	1,23	617
12	4,01	48	550	1,2	659
14	3,82	54	600	1,17	699
16	3,66	59	700	1,11	777
18	3,53	64	800	1,06	852
20	3,41	68	900	1,03	923
25	3,18	80	1.000	0,99	990
30	3	90	1.200	0,89	1.073
35	2,86	100	1.400	0,82	1.149
40	2,74	110	1.600	0,76	1.219
45	2,64	119	1.800	0,71	1.284
50	2,56	128	2,000	0,67	1.345
55	2,48	136	2.500	0,59	1.485
60	2,41	145	3.000	0,54	1.609
65	2,35	153	3.500	0,49	1.723
70	2,3	161	4.000	0,46	1.828
75	2,25	169	4.500	0,43	1.925
80	2,2	176	5.000	0,4	2.017
85	2,16	184	5.500	0,38	2.104
90	2,12	191	6.000	0,36	2.186
95	2,09	198	6.500	0,35	2.265
100	2,05	205	7.000	0,33	2.341
110	1,99	219	7.500	0,32	2.413
120	1,94	233	8.000	0,31	2.483
130	1,89	246	8,500	0,3	2.550
140	1,85	258	9.000	0,29	2.616
150	1,81	271	9.500	0,28	2.679
160	1,77	283	10.000	0,27	2.740

Tabella 3: Valori limite di verifica della portata di massima piena con Tr=100 anni

B.2 MODELLIZZAZIONE IDROLOGICA

Si è utilizzato un programma messo a disposizione da US Army Corps of Engineers – Hydrologic Engineering Center: HEC-HMS.

Il software di modellazione idrologica HEC HMS è uno strumento che permette di simulare il deflusso superficiale della precipitazione, che può avvenire sia in modo naturale che controllato. Il programma è strutturato in modo da essere il più versatile possibile ed è quindi applicabile in differenti aree geografiche: dai bacini più vasti a quelli più piccoli di scorrimento urbano o naturale. Il modello viene costruito separando i diversi apporti del ciclo idrologico in più componenti, per ciascuno dei quali si può scegliere quale metodo impiegare a seconda delle caratteristiche del bacino, dei dati di input e dei risultati che si vogliono ottenere dalla simulazione.

I modelli utilizzabili per il calcolo del volume di ruscellamento e quindi della frazione di acqua che si infiltra nel suolo e quella che invece contribuisce alla piena per lo scorrimento superficiale, sono: *initial and constant-rate, SCS curve number (CN), Gridded SCS CN, Green and Ampt, deficit and constant rate, soil moisture accounting (SMA), gridded SMA.*

Per descrivere invece il drenaggio al di sotto della superficie fino ai canali di scolo, possono essere impiegati in HEC HMS i seguenti modelli idrologici: idrogramma unitario specificato dall'utente, idrogramma unitario di Clark, idrogramma unitario di Snyder, ModClark e modello dell'onda cinematica.

Tre differenti metodi possono essere inoltre selezionati per il calcolo della portata di base nel bacino: modello mensilmente costante, serbatoio a riempimento e svuotamento lineare e a riempimento esponenziale.

Di seguito vengono invece elencati i modelli, unidimensionali, che si possono impiegare per simulare il moto della portata all'interno dei corsi d'acqua: modello dell'onda cinematica, Lag, Modified Plus, Muskingum, Muskingum-Cunge Standard Selection, Muskingum-Cunge 8-point Selection, della confluenza, della biforcazione. In aggiunta a questi all'interno del programma sono contenuti anche modelli per la simulazione di strutture di controllo dell'acqua quali derivazioni o serbatoi.

L'interfaccia utente (Graphical User Interface GUI) permette un agevole inserimento di dati e una pronta analisi dei risultati; inoltre la possibilità di georeferenziare le sezioni introdotte consente un'intuitiva rappresentazione grafica dei risultati.

Le ipotesi adottate per le modellazioni che verranno presentate nel seguito sono:

 Analisi pluviometrica: intensità di precipitazione variabile secondo la curva di possibilità climatica ragguagliata e considerata costante sull'intero bacino;

- Modello di infiltrazione: per la determinazione della pioggia netta si è utilizzato il metodo del CURVE NUMBER (CN), introdotto dal SCS (Soil Conservation Service);
- Modello afflussi e deflussi: per simulare la formazione del deflusso di piena; si è utilizzato sia il metodo dell'unità idrografica (Snyder) sia il modello di Clark;
- Metodo di propagazione dell'onda di piena: per il calcolo della propagazione dell'acqua all'interno delle aste è stato impiegato il modello di Muskingum.

B.2.1 Metodo Curve Number del Soil Conservation Service

Una metodologia per la stima delle precipitazioni efficaci che trova ampia applicazione è quella proposta dal Soil Conservation Service (1972).

Il metodo, detto metodo del numero di curva (Curve Number), si basa sulla relazione:

$$Pe = \frac{(P - Ia)^2}{(P - Ia + S)}$$

dove: P_e = altezza di precipitazione efficace (mm);

P = altezza di precipitazione lorda (mm);

I_a = assorbimento iniziale (mm);

S = volume specifico di saturazione (mm).

La grandezza I_a rappresenta la quantità d'acqua meteorica assorbita inizialmente dal terreno e dalla vegetazione, perciò fino all'istante in cui non si ha $P > I_a$ il deflusso superficiale è da ritenersi praticamente assente.

Il parametro S corrisponde al volume idrico trattenuto dal terreno e dalla vegetazione, e quindi sottratto al deflusso superficiale, dopo l'istante in cui si ha $P > I_a$: mentre I_a assume un valore costante, S cresce nel corso dell'evento meteorico fino a raggiungere un valore massimo.

Il metodo del numero di curva correla la grandezza S ad un parametro CN funzione della permeabilità della litologia superficiale, dell'uso del suolo e del grado di saturazione del terreno prima dell'evento meteorico, come indicato nelle tabelle seguenti.

Tipo idrologico di suolo	Descrizione				
Α	Scarsa potenzialità di deflusso. Comprende sabbie profonde con scarsissimo				
	limo e argilla; anche ghiaie profonde, molto permeabili.				
В	Potenzialità di deflusso moderatamente bassa. Comprende la maggior				
	dei suoli sabbiosi meno profondi che nel gruppo A, ma il gruppo nel suo				
	insieme mantiene alte capacità di infiltrazione anche a saturazione.				
С	Potenzialità di deflusso moderatamente alta. Comprende suoli sottili e suoli				
	contenenti considerevoli quantità di argilla e colloidi, anche se meno che nel				
	gruppo D. Il gruppo ha scarsa capacità di infiltrazione a saturazione.				
D	Potenzialità di deflusso molto alta. Comprende la maggior parte delle argille				
	con alta capacità di rigonfiamento, ma anche suoli sottili con orizzonti				
	pressoché impermeabili in vicinanza delle superfici.				

Tabella 4: Classificazione dei tipi idrologici di suolo secondo il metodo SCS-CN

Valori del parametro CN (adimensionale)	Tipo idrologico Suolo			
Tipologia di Uso del Territorio	A	В	С	D
Coltivazioni, in presenza di pratiche di conservazione del suolo	62	71	78	81
Coltivazioni, in assenza di pratiche di conservazione del suolo	72	81	88	91
Terreno da pascolo: cattive condizioni	68	79	86	89
buone condizioni	39	61	74	80
Boschi, in presenza di copertura rada e senza sottobosco	45	66	77	83
Boschi e foreste, in presenza di copertura fitta e con sottobosco	25	55	70	77
Spazi aperti con manto erboso superiore al 75% dell'area	39	61	74	80
Spazi aperti con manto erboso compreso tra il 50 ed il 75% dell'area	49	69	79	84
Spazi aperti con manto erboso inferiore al 50% dell'area	68	79	86	89
Zone industriali (area impermeabile 72%)	81	88	91	93

Valori del parametro CN (adimensionale)	Tipo idrologico Suolo			
Tipologia di Uso del Territorio	A	В	С	D
Zone commerciali e industriali (area imperm. 85%)	89	92	94	95
Zone residenziali, lotti fino a 500 m² (area imperm. 65%)	77	85	90	92
Zone residenziali, lotti di 500÷1000 m² (area imperm. 38%)	61	75	83	87
Zone residenziali, lotti di 1000÷1500 m² (area imperm. 30%)	57	72	81	86
Zone residenziali , lotti di 1500÷2000 m² (area imperm. 25%)	54	70	80	85
Zone residenziali, lotti di 2000÷5000 m² (area imperm. 20%)	51	68	79	84
Zone residenziali, lotti di 5000÷10000 m² (area imperm. 12%)	46	65	77	82
Parcheggi, tetti, autostrade,	98	98	98	98
Strade pavimentate o asfaltate, dotate di drenaggio	98	98	98	98
Strade con letto in ghiaia	76	85	89	91
Strade battute in terra	72	82	87	89

Tabella 5: Valori caratteristici del parametro CN nelle zone urbanizzate

Una volta determinato il parametro CN, la grandezza S può essere valutata con l'espressione:

$$S(mm) = 254 \cdot \left[\left(\frac{100}{CN} \right) - 1 \right]$$

Il parametro I_a a sua volta può essere correlato a S attraverso la formula:

$$I_a(mm) = c \cdot S$$

Dove c è un coefficiente di valore variabile fra 0.1 e 0.2, normalmente posto uguale a 0.2.

Nota la precipitazione lorda e quella efficace si calcola facilmente il coefficiente di afflusso.

Il principale pregio di questo metodo è la sua capacità di condurre a previsioni quantitative sulla variazione del deflusso superficiale in funzione dei cambiamenti che avvengono nell'uso del suolo (per esempio a causa di opere di urbanizzazione).

B.2.1 Metodo dell'unità idrografica (Snyder)

Per determinare il deflusso dell'eccesso di precipitazione è necessario definire un modello che tenga conto del processo di trasformazione delle precipitazioni in deflusso.

Nel caso in oggetto si è utilizzato un modello empirico dell'unità idrografica di Snyder. Egli ha infatti trovato una relazione per stimare, assegnato la durata di un evento, il tempo a cui si realizza il picco nell'idrogramma. Questo modello utilizza due parametri fondamentali:

- *t_p* definisce il ritardo della risposta del bacino alla pioggia considerata;
- C_p coefficiente di bacino (0.4 ÷ 0.8).

Il ritardo nella risposta del bacino viene quindi stimato con la relazione:

$$t_p = C \times C_t \times (L \times L_c)^{0.3}$$

dove: C costante di conversione (0.75 per S.I.);

 C_t coefficiente di bacino (tra 0.4 e 8.0, più tipicamente tra 1.8 \div 2.2);

L lunghezza del corso d'acqua principale tra la sezione di uscita e lo spartiacque;

L_c lunghezza del corso d'acqua principale tra la sezione di uscita e il punto più vicino al centro del bacino.

B.2.2 Metodo di Clark

Un modello, alternativo a quello di Snyder, che è stato implementato in questo studio è quello di Clark. In questo metodo vengono rappresentati due processi critici nella trasformazione della precipitazione in eccesso in deflusso superficiale.:

- propagazione dell'afflusso dal bacino alla sezione di chiusura;
- attenuazione del deflusso per la laminazione della pioggia in eccesso all'interno del bacino.

Il modello di Clark è di tipo lineare ed integrato. Si basa su due parametri: *Time of Concentration* (h) (tempo impiegato dalla particella più lontana dalla sezione di chiusura per raggiungere la stessa) e *Storage Coefficient* (h) (tiene conto dell'effetto di immagazzinamento temporaneo, schematizzando un serbatoio lineare).

Per il calcolo di questi coefficienti sono state utilizzate le seguenti formule:

$$TC = 1.54^{-0.875} S^{-0.181}$$

 $R = 16.4 L^{0.342} S^{-0.790}$

dove L è la lunghezza lungo il canale principale dalla sezione di chiusura allo spartiacque in miglia;

S è la pendenza del canale principale determinata dall'elevazione dei punti che rappresentano il 10 e l'85 per cento della distanza lungo il corso d'acqua dalla sezione di chiusura allo spartiacque in ft/mi.

B.2.3 Modello di Muskingum

Il moto nei canali è stato schematizzato con il modello di Muskingum, i cui parametri fondamentali utilizzati sono: lunghezza del torrente, pendenza e scabrezza.

Per l'applicazione di questo modello si usa un'approssimazione alle differenze finite:

$$\left(\frac{I_{t-1} + I_t}{2}\right) - \left(\frac{O_{t-1} + O_t}{2}\right) = \left(\frac{S_t + S_{t-1}}{\Delta t}\right)$$

L'invaso nel corso d'acqua viene schematizzato come la somma di un volume definito dal profilo a moto uniforme (detto *prism storage*) e del volume al di sotto del profilo dell'onda di piena (denominato *wedge storage*). Mentre la fase crescente della piena è in corso, questa seconda componente è positiva e va ad aggiungersi alla prima, al contrario quando l'onda di piena inizia a decrescere questo volume risulta negativo e quindi viene sottratto al valore di *prism storage*. Il volume è dato dalla frazione in uscita, O, della portata moltiplicato per il tempo di permanenza all'interno del corso d'acqua, K. Il modello di Muskingum quindi definisce l'invaso come:

$$S_t = KO_t + KX(I_t - O_t) = K[XI_t + (1 - X)O_t]$$

Dove: K tempo che impiega l'onda di piena a passare nel corso d'acqua considerato,

X è un peso adimensionale compreso tra 0 e 0.5.

La quantità $XI_t + (1-X)O_t$ è un valore pesato di scarico. Se l'invaso nel tratto è governato dalle condizioni di valle allora \mathbf{X} assume valore nullo, nel caso invece che \mathbf{X} sia posto pari a 0.5, viene sostanzialmente attribuito lo stesso peso all'afflusso e al deflusso quindi risulta un'onda uniforme progressiva, che non si attenua lungo il corso d'acqua.

Il programma HEC HMS risolve in modo ricorsivo l'equazione seguente, ottenuta sostituendo il valore di S_t , dato l'idrogramma in ingresso I_t , a tutti i tempi t, la condizione iniziale $O_{t=0}$ e i parametri K e X, nella prima equazione illustrata in questo paragrafo:

$$O_{t} = \left(\frac{\Delta t - 2KX}{2K(1 - X) + \Delta t}\right) I_{t} + \left(\frac{\Delta t + 2KX}{2K(1 - X) + \Delta t}\right) I_{t-1} + \left(\frac{2K(1 - X) - \Delta t}{2K(1 - X) + \Delta t}\right) O_{t-1}$$

C. MODELLO IDROLOGICO DEL TORRENTE ASTICO

C.1 GENERALITA'

Il tracciato prescelto dal progetto si trova localizzato in diversi tratti in adiacenza al torrente Astico e per questo è necessario eseguire un'analisi dettagliata del comportamento del corso d'acqua in modo da procedere alla progettazione e alla verifica di opere idrauliche.

Per la determinazione della portata di piena del torrente Astico è stata quindi condotta un'analisi secondo quanto espresso nei paragrafi precedenti. Sono stati infatti individuati i parametri relativi alle curve di possibilità pluviometrica e ai modelli di afflussi-deflussi in modo da ricostruire l'idrogramma di piena col programma HEC-HMS.

Nei paragrafi seguenti vengono riportate le informazioni relative al bacino dell'Astico e i risultati del modello tarato sulla base delle curve fornite dall'Autorità di Bacino.

C.2 INQUADRAMENTO

C.2.1 Inquadramento geografico

Il torrente Astico nasce in Trentino, fra il Monte Sommo Alto ed il Monte Plaut a quota 1441 m s.l.m, nel comune di Folgaria. Il suo bacino imbrifero ricopre una superficie complessiva di circa 740 km² compresi in buona parte all'interno della Provincia di Vicenza e in misura minore in quella Autonoma di Trento.

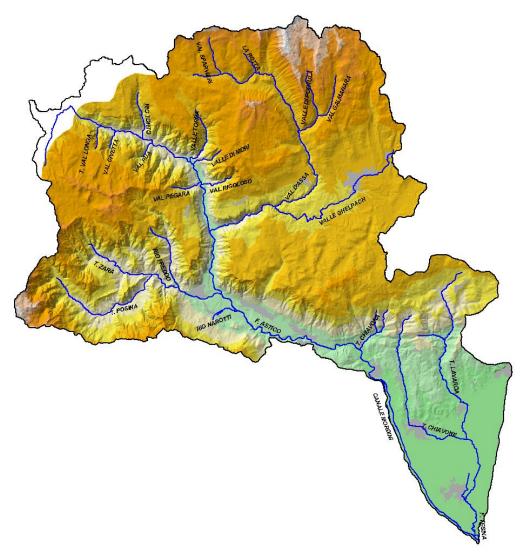


Figura 4: bacino imbrifero del torrente Astico

Nel suo tratto iniziale si dirige per circa 7 km verso Nord e Nord-Est sino alla località Buse, presso Lavarone. Da qui volge il suo corso verso Sud-Est passando da Lastebasse e Casotto, ricevendo sulla destra i torrenti Val Civetta, Val Roa e Val Longa, che scendono dal versante settentrionale del massiccio di Campomolon, ed in sinistra il Rio Torto che scende dall'Altipiano di Lavarone. Successivamente il torrente si dirige verso Sud fino ad arrivare a Pedescala, dove confluisce in sinistra l'importante torrente Assa. Questo corso d'acqua nasce a quota 1400 m s.l.m. a Passo Vezzena, scende con direzione Ovest-Est fino a Ghertele da dove piega a Sud fino al Comune di Roana. Nel primo tratto il torrente Assa riceve i contributi di alcuni torrenti che scendono dai massicci del Vezzena, del Manderiolo e dalle pendici settentrionali del Verena. Prima di Roana confluisce alla Val d'Assa il torrente Portule, che col suo affluente Galmarara scarica le acque dei versanti meridionali del Monte Pallone e Cima Dodici. A valle di Roana il torrente, profondamente incassato, piega ancora in direzione Sud-Ovest e riceve il Ghelpach, il quale proviene dalle pendici del Monte Longara e

del Monte Nos e passa da Gallio ad Asiago. Dopo la confluenza in prossimità della frazione di Pedescala, l'Astico procede il suo corso sino a Seghe di Velo, dove le sue portate si arricchiscono dei contributi idrici del Posina, importante affluente che scende col nome iniziale di Val del Lovo dal Monte Borcoletta, riceve a sua volta gli affluenti Zara e Rio Freddo ed attraversa la cittadina di Arsiero prima di scaricarsi nel fiume principale. Da Seghe di Velo l'Astico, con direzione Nord-Ovest, Sud-Est si dirige con sviluppo tortuoso verso il suo sbocco in pianura passando dai Comuni di Piovene Rocchette, Caltrano, Calvene e Lugo. In questo tratto l'Astico, riceve in destra il Rivo Narotti ed in sinistra la Val Chiavona. In località Lupia l'Astico riceve in sinistra il fiume Tesina e assume il nome dell'affluente. Il Tesina è un corso di risorgiva originato ed alimentato da polle perenni che sgorgano a monte di Sandrigo. Esso scende da quest'ultima località in direzione da Nord a Sud e riceve gli apporti dei torrenti Laverda e Chiavone che recapitano acque montane dei massicci del Monte Bertiaga e del Monte Frolla.

All'interno del bacino sono presenti due **stazioni idrometriche** con un periodo significativo di osservazioni: quella del Posina a Stancari, presso la sezione di chiusura del bacino del Posina e quella dell'Astico, in località Pedescala alla sezione di chiusura del bacino dell'Alto Astico. Entrambe sono inserite nella rete di monitoraggio idrometeorologico dell'ARPAV. Sulle stesse sezioni trasversali sono state attive, a cavallo degli anni '50 e '60, due stazioni di misura dell'Ufficio idrografico del Magistrato alle Acque. In Figura 5 si può vedere l'ubicazione delle due stazioni di misura, poste alla chiusura del bacino dell'Alto Astico e del torrente Posina.

I bacini sottesi dalle stazioni di misura in questione si estendono per un totale di 250 km² pari al 46% dell'intera superficie del bacino montano, che risulta pari a 543 km². Le informazioni a disposizione, seppur limitate a due sole stazioni di rilevamento, risultano essere rappresentative delle condizioni di deflusso nel tratto: il particolare assetto geologico del bacino e la distribuzione spaziale delle precipitazioni evidenziano come i due bacini monitorati dalle stazioni di misura poste alla chiusura condizionino in modo determinante il regime idrologico dell'intero bacino montano dell'Astico. D'altro canto, il bacino del torrente Assa che da solo si estende per 248 km² è interessato in tutta quasi tutta la sue estensione da imponenti fenomeni di carsismo che rendono del tutto marginale il contributo di deflusso ordinario verso l'Astico ad eccezione di importanti eventi di piena.

Figura 5: Rappresentazione del bacino del fiume Astico con evidenziazione (in rosso) della parte sottesa dalle due stazioni di misura, la cui ubicazione viene indicata in colore verde.

C.2.2 Geologia – Geomorfologia - Idrogeologia

Dal punto di vista geologico nella prima parte del suo percorso il torrente Astico presenta un ambiente prettamente alpino/dolomitico per poi giungere in una zona caratterizzata da sedimenti alluvionali e ghiaie di varia natura. Il tratto Trentino/Alto Veneto si ritrova incuneato in una valle alpina ed è rappresentato principalmente dal massiccio calcareo e calcareo-dolomitico dell'Altopiano di Tonezza, che si sviluppa nei rilievi montuosi in destra alveo. È costituito da calcari e dolomie incarsiti, che formano un acquifero sotterraneo particolarmente esteso. Varie sorgenti affiorano ai piedi del rilievo carsico: la principale sorgente in territorio vicentino è quella della Civetta che sgorga su una incisione valliva in destra Astico, nel comune di Lastebasse, e viene utilizzata sia a scopo idropotabile che idroelettrico. L'Astico è inoltre interessato parzialmente dall'acquifero carsico del massiccio

calcareodolomitico dell'Altopiano dei Sette Comuni che si estende per circa 500 km2 e che include pressoché interamente il rilievo montuoso delimitato dalla Valsugana a nord, dalla valle dell'Astico ad ovest, dalla valle del Brenta ad est e dalle colline pedemontane tra Bassano e Chiuppano a sud. Dal punto di vista litologico l'altipiano dei Sette Comuni risulta formato da rocce dolomitiche e calcaree. La dolomia principale del Triassico superiore ne costituisce il potente basamento, per uno spessore che arriva talvolta agli 800-1000 m; seguono verso l'alto le serie calcaree del Giurese che sono ricoperte su vaste aree da estese plaghe di Biancone (calcare talora marnoso, in gran parte di età cretacea).

La parte del torrente da Seghe di Arsiero verso valle, invece, è caratterizzata da una litologia più tipica della pianura veneta, con la presenza di depositi alluvionali e morenici di pezzatura ghiaiosa e ciottolosa. In quest'area il sottosuolo alluvionale ghiaioso contiene abbondantissime risorse idriche di buona qualità, appartenenti al grande sistema idrogeologico della Pianura Veneta (alta e media pianura). Dal punto di visto idrogeologico le alluvioni ghiaiose del fiume Astico, insieme a quelle di Leogra e Brenta costituiscono, di fatto, un potente serbatoio ad elevata permeabilità dove alloggia una abbondante falda di tipo freatico a nord, e ricche falde in pressione a sud. È inoltre presente, al limite tra alta e media pianura, una caratteristica e importante manifestazione sorgentifera spontanea, determinata dall'affioramento della falda freatica, che crea una serie di attive polle nelle zone di Dueville, Sandrigo, Caldogno (fascia dei fontanili o delle risorgive). La portata complessiva dei fontanili tra Astico e Brenta è stimabile in 15-20 m³/s, portata che mantiene perennemente attiva una caratteristica e importante rete idrica di risorgiva.

L'alimentazione dei potenti e ricchi acquiferi ghiaiosi viene assicurata soprattutto:

- dalle dispersioni in alveo di Astico (portata disperdente 3.5-4 m³/s) e Leogra (portata disperdente (m³/s);
- dall'infiltrazione delle acque irrigue nelle estese aree irrigate a scorrimento;
- dall'infiltrazione diretta degli afflussi meteorici.

Per la determinazione della portata di piena del torrente Astico si è suddiviso il bacino in 22 sottobacini ed è stato calcolato l'andamento della curva di piena per ogni area scolante.

I sottobacini individuati hanno come sezione di chiusura la sezione in corrispondenza della diga di Meda, a valle della confluenza del torrente Posina nell'Astico, come è possibile vedere dall'immagine sottostante.

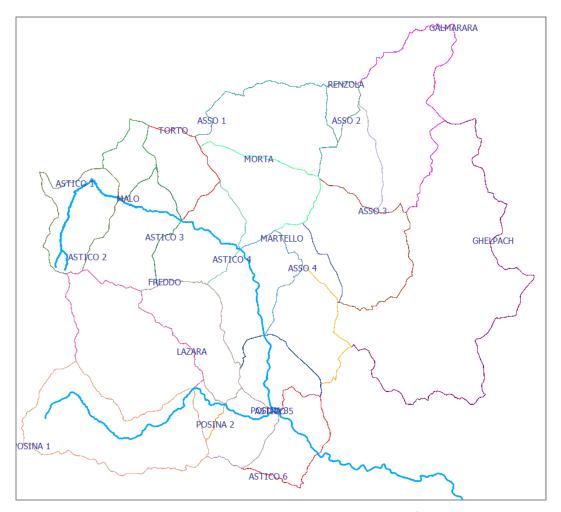


Figura 6: Rappresentazione della suddivisione in 22 sottobacini del bacino del fiume Astico con evidenziati i corsi d'acqua dell'Astico e del Posina.

Nella seguente tabella si riportano dei dati relativi a ciascun sottobacino individuato. In particolare viene indicata l'estensione in km², la lunghezza dell'asta fluviale principale compresa nel sottobacino e la pendenza, calcolata sulla base delle quote di monte e di valle individuate grazie alla base cartografica disponibile.

BACINO IMBRIFERO	ESTENSIONE [Km^2]	L. ASTA [m]	i [%]	Quota monte	Quota valle
ASTICO 1	19.611	9155.8	0.098	1500	600
ASTICO 2	23.783	4372.2	0.030	600	470
ASTICO 3	21.559	4628.3	0.023	470	361.6
ASTICO 4	23.19	5995.9	0.010	361.6	303.3
ASTICO 5	14.602	5537.8	0.008	303.3	258.5
ASTICO 6	16.581	3955.3	0.007	258.5	230.4
MALO	8.574	3006.9	0.190	1170	600
TORTO	14.28	5186.4	0.131	1150	470

VAL MORTA	23.965	7716.4	0.140	1440	361.6
ASSA 1	31.882	8841.9	0.025	1400	1180
ASSA 2	14.56	5286.5	0.036	1180	990
ASSA 3	32.487	9307.6	0.050	990	524
ASSA 4	19.766	5498.4	0.040	524	303.3
RENZOLA	4.9	3547.7	0.254	1890	990
GALMARARA	39.08	5938.6	0.099	1580	990
GHELPACH	98.913	17211.2	0.051	1500	627.6
MARTELLO	6.728	3318.9	0.257	1449.1	596.5
POSINA 1	45.05	13463.3	0.079	1500	440
POSINA 2	3.619	2740.5	0.018	440	390.8
POSINA 3	13.053	3899.1	0.034	390.8	258.5
LA ZARA	44.228	7333.1	0.013	533	440
FREDDO	22.339	9488.4	0.071	1068.57	390.8

Tabella 6: Parametri geomorfologici dei sottobacini individuati

C.3 ELABORAZIONE DEI DATI PLUVIOMETRICI

La valutazione delle portate che fluiscono all'interno del bacino del torrente Astico è stata effettuata coi metodi descritti al paragrafo A, che consentono di associare ad una determinata grandezza idrologica un'assegnata probabilità di accadimento a partire da eventi pluviometrici caratterizzati dalla medesima probabilità.

C.3.1 Determinazione della curva di possibilità climatica

Ottenuti i valori di h a seguito dell'analisi precedentemente descritta, sono stati considerate alcune relazioni empiriche per considerare che l'intensità media ragguagliata di una pioggia si riduce all'aumentare dell'area S del bacino considerato. Si determina quindi l'altezza di precipitazione ragguagliata h_r relativa a un'assegnata durata t e ad un assegnato tempo di ritorno Tr, moltiplicando l'altezza di precipitazione puntuale h relativa alla stessa durata e allo stesso tempo di ritorno per un opportuno coefficiente di riduzione (o coefficiente di ragguaglio all'area) R:

$$h_r(t) = at^n R$$

Formula che può essere riscritta come:

$$h_{\cdot \cdot}(t) = a't^{n'}$$

Per bacini di superficie inferiore a 600 km², in letteratura è possibile trovare la formula di Puppini, valida per il tempo espresso in ore, per il calcolo dei coefficienti della curva di possibilità pluviometrica:

$$a' = a \left[1 - 0.084 \frac{S}{100} + 0.007 \left(\frac{S}{100} \right)^2 \right]$$
 $n' = n + 0.014 \frac{S}{100}$

In alternativa è possibile calcolare i coefficienti con le formule proposte da Marchetti, valide per aree comprese tra i 100 e i 5000 ha:

$$a' = a \left[1 - 0.06 \left(\frac{S}{100} \right)^{0.4} \right]$$
 $n' = n + 0.003 \left(\frac{S}{100} \right)^{0.6}$

È stato calcolato il coefficiente di riduzione anche mediante il metodo proposto da Columbo, in funzione della durata e dell'area:

Durata					Area [ha]				
[h]	100	300	500	1000	1500	2000	3000	4000	5000
0,25	0,968	0,917	0,884	0,835	0,804	0,782	0,750	0,722	0,685
0,50	0,970	0,919	0,888	0,840	0,813	0,791	0,759	0,733	0,704
0,75	0,972	0,925	0,890	0,844	0,818	0,798	0,767	0,740	0,714
1	0,973	0,922	0,892	0,846	0,821	0,803	0,772	0,746	0,721
2	0,974	0,924	0,894	0,850	0,827	0,811	0,783	0,757	0,732
3	0,974	0,926	0,896	0,853	0,831	0,815	0,789	0,765	0,741
4	0,974	0,928	0,898	0,857	0,835	0,821	0,796	0,773	0,750
6	0,974	0,930	0,902	0,863	0,843	0,831	0,808	0,788	0,757
12	0,976	0,941	0,916	0,884	0,868	0,858	0,844	0,830	0,816
2 4	0,982	0,961	0,944	0,923	0,916	0,906	0,900	0,894	0,886

Tabella 7: tabella per il calcolo del coefficiente di riduzione col metodo di Columbo

Nell'elaborazione seguente è stato considerato il valore di R ottenuto mediante quest'ultimo metodo poiché è risultato essere il più cautelativo. A seguito dell'interpolazione dei valori presenti in tabella per 24 ore, con una superficie di 542.75 km² si ottiene infatti un rapporto di riduzione pari a 0.826.

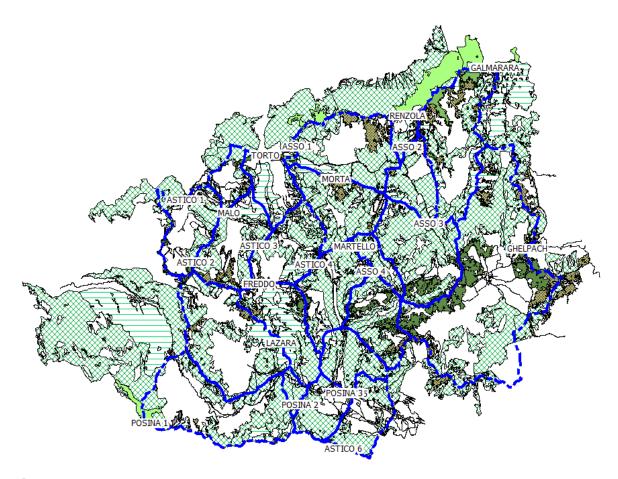
Sono quindi state ricalcolate le altezze di pioggia ragguagliate, ai diversi tempi di ritorno per i sottobacini individuati.

C.4 STIMA DELLE PRECIPITAZIONI EFFICACI

C.4.1 Generalità

Per precipitazione efficace s'intende la frazione della precipitazione complessiva, non trattenuta dal terreno o dalla vegetazione, cha partecipa alla formazione del deflusso superficiale. Il rapporto fra precipitazione efficace e precipitazione lorda prende il nome di coefficiente di afflusso.

Il valore della precipitazione efficace dipende principalmente da tre fattori:


 il grado di saturazione del terreno superficiale al momento del verificarsi dell'evento meteorico; maggiore è il grado di saturazione, legato ad eventi meteorici precedenti, minore è la capacità del terreno di assorbire altra acqua e di conseguenza maggiore è la frazione del volume d'acqua precipitato che va ad alimentare il deflusso superficiale;

- la permeabilità delle litologie superficiali; ovviamente una maggiore permeabilità dei terreni superficiali favorisce l'infiltrazione dell'acqua meteorica, comportando una conseguente diminuzione del deflusso superficiale;
- l'uso del suolo; la destinazione del suolo influisce notevolmente sul volume del deflusso superficiale: una fitta copertura vegetale, per esempio, tende a diminuirlo, un'intensa urbanizzazione, diminuendo la permeabilità superficiale del terreno, tende viceversa ad aumentarlo.

C.4.2 Metodo Curve Number del Soil Conservation Service

Questo metodo, descritto nei suoi aspetti teorici al paragrafo B.2.1, richiede l'analisi delle carte dell'uso del suolo, della litografia e della permeabilità, del territorio dell'Astico, reperibili sul sito della Regione Veneto. Le superfici in esse individuate sono state suddivise come illustrato nell'elaborato 2505-020802001-0101-0PP-00, per il calcolo del coefficiente CN.

Si riportano di seguito (in Figura 7, Figura 8, Figura 9) le tre mappe analizzate per l'individuazione del coefficiente CN di ogni sottobacino, grazie alle quali è stato possibile definire la presenza prevalente di boschi e superfici a copertura erbosa all'interno del bacino, rispetto a superfici impermeabili residenziali.

- 🛭 Bosco copertura fitta
- Bosco copertura rada
- Coltivazioni con conservazione del solo
- Coltivazioni senza conservazione del suolo
- Manto erboso 50-75%
- Manto erboso <50%
- Manto erboso >75%
- Pascoli
- Residenziale (area imp 12-25%)
- Residenziale (area imp 30-38%)
- Residenziale (area imp 65%)
- Strade con letto in ghiaia
- Strade pavimentate
- Tetti
- Zona commerciale-industriale
- Zone industriali
- 💢 acqua

Figura 7: carta di utilizzo del suolo all'interno del bacino imbrifero dell'Astico

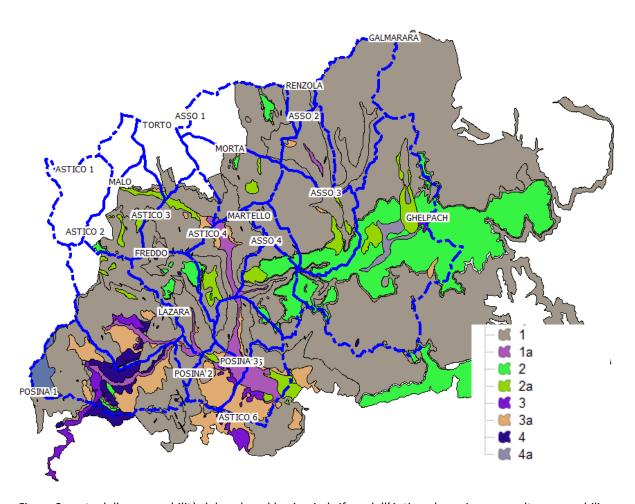


Figura 8: carta della permeabilità del suolo nel bacino imbrifero dell'Astico, dove: 1 rocce molto permeabili con fessurazione e carsismo; 2 rocce mediamente permeabili per fessurazione; 3 rocce poco permeabili per fessurazione; 4 rocce praticamente impermeabili; 1a depositi molto permeabili per porosità; 2a depositi mediamente permeabili per porosità; 3a depositi poco permeabili per porosità; 4a depositi praticamente impermeabili.

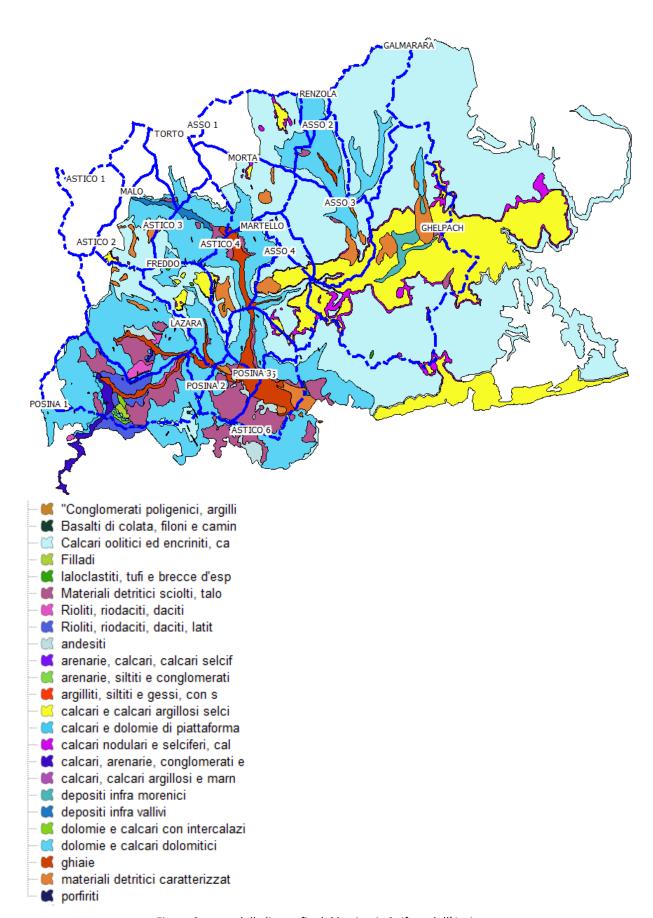


Figura 9: carta della litografia del bacino imbrifero dell'Astico

Di seguito si riportano i valori dei parametri del modello SCS, calcolati considerando quanto sopra riportato, per i singoli sottobacini in cui è stato suddiviso il bacino dell'Astico:

BACINO IMBRIFERO	As [Km²]	PE [mm]	CN	IMPERM. [%]	S [mm]
ASTICO 1	19.611	27.35	65	9.37%	136.77
ASTICO 2	23.783	27.35	65	3.76%	136.77
ASTICO 3	21.559	27.35	65	0.36%	136.77
ASTICO 4	23.19	41.56	55	14.88%	207.82
ASTICO 5	14.602	41.56	55	24.55%	207.82
ASTICO 6	16.581	62.09	45	14.47%	310.44
MALO	8.574	27.35	65	11.60%	136.77
TORTO	14.28	27.35	65	4.47%	136.77
VAL MORTA	23.965	27.35	65	2.07%	136.77
ASSA 1	31.882	55.88	45	3.08%	310.44
ASSA 2	14.56	55.88	45	6.69%	310.44
ASSA 3	32.487	55.88	45	7.35%	310.44
ASSA 4	19.766	37.41	55	12.33%	207.82
RENZOLA	4.9	37.41	55	4.83%	207.82
GALMARARA	39.08	55.88	45	0.79%	310.44
GHELPACH	98.913	84.91	35	6.60%	471.71
MARTELLO	6.728	30.48	60	9.25%	169.33
POSINA 1	45.05	27.35	65	8.50%	136.77
POSINA 2	3.619	27.35	65	43.25%	136.77
POSINA 3	13.053	27.35	65	26.63%	136.77
LA ZARA	44.228	27.35	65	7.53%	136.77
FREDDO	22.339	41.56	55	9.89%	207.82

Tabella 8: Valori dei parametri impiegati per il calcolo della pioggia efficace per ciascun sottobacino

Legenda:

As superficie del sottobacino (km²)

I_a perdita di acqua iniziale (mm)

CN numero adimensionale compreso tra 0 e 100

IMPERM percentuale di area impermeabile rispetto a quella dell'intero sottobacino (%)

S volume specifico di saturazione (mm)

C.5 MODELLO AFFLUSSI-DEFLUSSI

C.5.1 Generalità

La modellazione che si procede ad eseguire si basa su un metodo indiretto per la determinazione delle portate in uscita dalla sezione di chiusura del bacino imbrifero, poiché parte da dati di precipitazione e non da misure di portate a seguito degli eventi meteorici. Questo fa si che, per ottenere l'idrogramma di piena nella sezione di chiusura, si debbano fare delle ipotesi, le quali potranno essere verificate mediante la taratura del modello.

Per verificare l'attendibilità dei risultati ottenuti sono stati utilizzati due metodi differenti per il calcolo dell'idrogramma di piena: il metodo di Snyder, riportato al paragrafo seguente, e quello di Clark, al paragrafo C.5.3.

C.5.2 Metodo dell'unità idrografica (Snyder)

Il metodo, come spiegato al paragrafo B.2.1, prevede la stima di due parametri caratteristici per ciascun bacino idrografico: il tempo di ritardo e il coefficiente C_p.

Di seguito si riportano i valori dei parametri per i singoli sottobacini individuati all'interno del bacino idrografico del Torrente Astico, inseriti nel programma per l'applicazione del modello di Snyder:

BACINO IMBRIFERO	L. ASTA [m]	Т _р [h]	C _p	С	C _t
ASTICO 1	9155.8	4.44	0.7	0.75	1.8
ASTICO 2	4372.2	2.83	0.85	0.75	1.8
ASTICO 3	4628.3	2.87	0.85	0.75	1.8
ASTICO 4	5995.9	3.17	0.55	0.75	1.8
ASTICO 5	5537.8	3.15	0.55	0.75	1.8
ASTICO 6	3955.3	2.53	0.55	0.75	1.8
MALO	3006.9	2.50	0.70	0.75	1.8
TORTO	5186.4	3.27	0.7	0.75	1.8
VAL MORTA	7716.4	3.90	0.29	0.75	1.8
ASSA 1	8841.9	4.09	0.7	0.75	1.8
ASSA 2	5286.5	3.23	0.70	0.75	1.8
ASSA 3	9307.6	4.72	0.7	0.75	1.8
ASSA 4	5498.4	3.07	0.70	0.75	1.8
RENZOLA	3547.7	2.55	0.7	0.75	1.8
GALMARARA	5938.6	3.93	0.30	0.75	1.8
GHELPACH	17211.2	6.18	0.25	0.75	1.8
MARTELLO	3318.9	2.77	0.85	0.75	1.8
POSINA 1	13463.3	5.30	0.65	0.75	1.8

BACINO IMBRIFERO	L. ASTA [m]	T _p [h]	C _p	С	C _t
POSINA 2	2740.5	1.87	0.70	0.75	1.8
POSINA 3	3899.1	2.64	0.45	0.75	1.8
LA ZARA	7333.1	3.99	0.65	0.75	1.8
FREDDO	9488.4	4.31	0.7	0.75	1.8

Tabella 9: Valori assunti dai parametri per il modello di Snyder in ciascun sottobacino

C.5.3 Metodo di Clark

Di seguito si riportano i valori dei parametri per i singoli sottobacini individuati all'interno del bacino idrografico del torrente Astico, inseriti nel programma per l'applicazione del modello di Clark, spiegato al paragrafo B.2.2:

BACINO IMBRIFERO	Tempo di concentrazione [h]	Storage coeff [h]
ASTICO 1	18	0.24
ASTICO 2	16.93	0.25
ASTICO 3	16.07	0.42
ASTICO 4	15.84	0.28
ASTICO 5	16.75	0.56
ASTICO 6	19.21	1.7
MALO	16.21	0.64
TORTO	18.76	1.95
VAL MORTA	17.29	2.1
ASSA 1	16.78	1.32
ASSA 2	16.64	0.27
ASSA 3	16.56	0.72
ASSA 4	16.66	1.07
RENZOLA	15.29	0.22
GALMARARA	16.05	0.49
GHELPACH	15.9	0.22
MARTELLO	15.24	0.32
POSINA 1	18.77	0.28
POSINA 2	14.53	0.18
POSINA 3	13.76	0.54
LA ZARA	18.16	0.2
FREDDO	17.94	0.32

Tabella 10: Valori assunti dai parametri per il modello di Clark in ciascun sottobacino

C.6 DETERMINAZIONE DELLA PORTATA

C.6.1 Schema di bacino utilizzato per il calcolo delle portate

Nella figura sottostante è riportata la schematizzazione del bacino analizzato, come inserito nel programma impiegato per l'elaborazione. Esso viene schematizzato attraverso sottobacini e nodi, collegati tra loro mediante delle aste fluviali. All'interno di HEC HMS è possibile selezionare il metodo che si desidera impiegare per il calcolo dei diversi parametri al fine di stimare la portata defluente dalla sezione di chiusura e associare quindi alle entità inserite diversi valori dei parametri da impiegare per l'elaborazione.

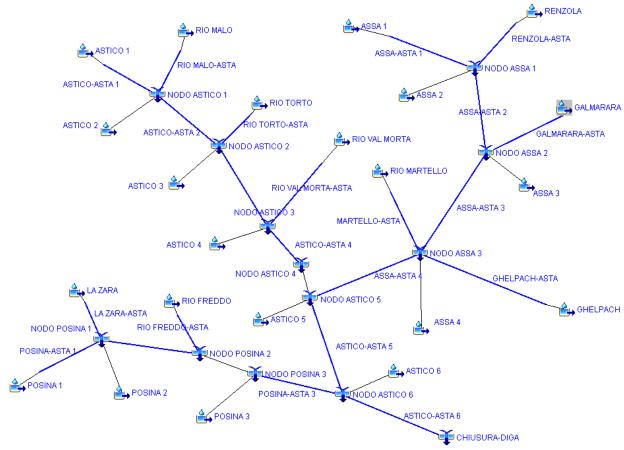


Figura 10: schema dei sottobacini costituenti il bacino imbrifero del Torrente Astico in HEC HMS

C.6.2 Caratteristiche dei sottobacini

Per determinare la portata alla sezione di chiusura del bacino è necessario inserire nel programma per ciascun sottobacino i parametri per il calcolo della pioggia efficace, descritti precedentemente.

Il metodo che si è utilizzato per il calcolo della pioggia netta (cioè la parte di pioggia caduta che effettivamente si trasforma in deflusso) è, come detto, quello del Curve Number, i cui parametri si trovano illustrati nella Tabella 8. La trasformazione dell'afflusso al bacino così

calcolata viene trasformata in deflusso come spiegato al paragrafo C.5.2 e quindi sono stati associati all'interno di HEC HMS ad ogni sottobacino i parametri corrispondenti per il modello dell'unità idrografica di Snyder e di Clark.

C.6.3 Caratteristiche degli scoli

Il moto nei canali è stato schematizzato con il modello di Muskingum, spiegato al paragrafo B.2.3.

Di seguito si riportano i valori dei parametri per i singoli tratti che collegano i sottobacini, che sono stati inseriti all'interno di HEC HMS per l'implementazione del modello di Muskingum:

BACINO IMBRIFERO	L	i	n 1/2
Brichito hvibilii ello	[m]	[%]	[s/m ^{1/3}]
ASTICO 1	9155.8	0.098	0.08
ASTICO 2	4372.2	0.030	0.08
ASTICO 3	4628.3	0.023	0.08
ASTICO 4	5995.9	0.010	0.08
ASTICO 5	5537.8	0.008	0.08
ASTICO 6	3955.3	0.007	0.08
MALO	3006.9	0.190	0.08
TORTO	5186.4	0.131	0.08
VAL MORTA	7716.4	0.140	0.08
ASSA 1	8841.9	0.025	0.08
ASSA 2	5286.5	0.036	0.08
ASSA 3	9307.6	0.050	0.08
ASSA 4	5498.4	0.040	0.08
RENZOLA	3547.7	0.254	0.08
GALMARARA	5938.6	0.099	0.08
GHELPACH	17211.2	0.051	0.08
MARTELLO	3318.9	0.257	0.08
POSINA 1	13463.3	0.079	0.08
POSINA 2	2740.5	0.018	0.08
POSINA 3	3899.1	0.034	0.08
LA ZARA	7333.1	0.013	0.08
FREDDO	9488.4	0.071	0.08

Tabella 11: Valori dei parametri per il modello di Muskingum per ciascun sottobacino

Legenda:

- L lunghezza del tratto (m);
- i pendenza media (%);
- n coefficiente di Manning (n=1/K_s).

C.6.4 Caratteristiche del modello delle precipitazioni

Per quanto riguarda il modello delle precipitazioni si sono utilizzate le piogge determinate con l'analisi statistica e spaziale descritta precedentemente, per diversi tempi di ritorno, pari a 10, 25, 50, 100, 200 e 500 anni.

La simulazione del comportamento dei bacini si è effettuata su un evento di pioggia della durata di un giorno.

C.6.5 Taratura degli idrogrammi

L'Autorità di Bacino ha fornito per il bacino dell'Astico la curva della portata, indicata come portata di progetto, misurata durante l'evento eccezionale del 1966 in corrispondenza della sezione di Meda.

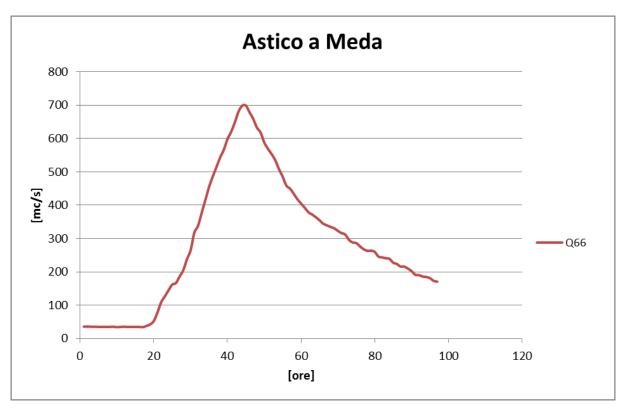


Figura 11: idrogramma dell'evento del 1966 fornito dall'Autorità di Bacino

Per la taratura dei parametri dei modelli utilizzati si è considerato che l'idrogramma fornito corrisponda ad un tempo di ritorno di 200 anni e che i valori inseriti debbano variare entro certi range altrimenti non sono riconosciuti dal programma; in particolare:

Model	Parameter	Minimum	Maximum
SCS	la	0 mm	500 mm
	CN	1	100
Clark	Тс	0.1 h	500 h
	S	0 h	150 h
Snyder	T _P	0.1 h	500 h
	C _P	0.1	1.0

Tabella 12: limiti massimi e minimi dei parametri da considerare per la taratura del modello

C.7 RISULTATI OTTENUTI

C.7.1 Idrogrammi di piena alla sezione di Meda

Di seguito si riportano gli idrogrammi di piena che si ottengono dalla modellizzazione in corrispondenza della sezione di chiusura considerata, per i diversi tempi di ritorno e tempo di pioggia di 1 giorno.

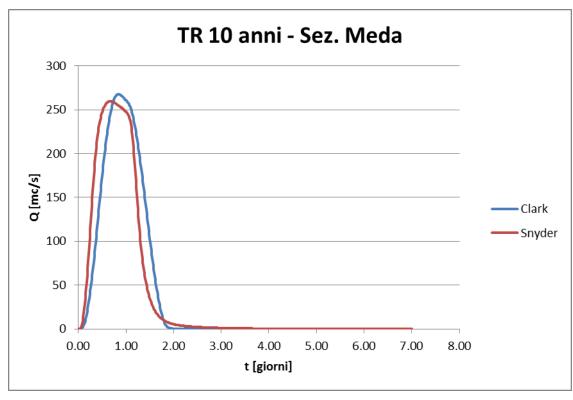


Figura 12: portata alla sezione di chiusura per un TR di 10 anni

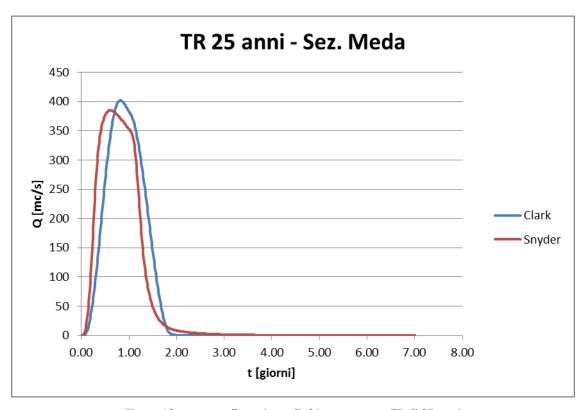


Figura 13: portata alla sezione di chiusura per un TR di 25 anni

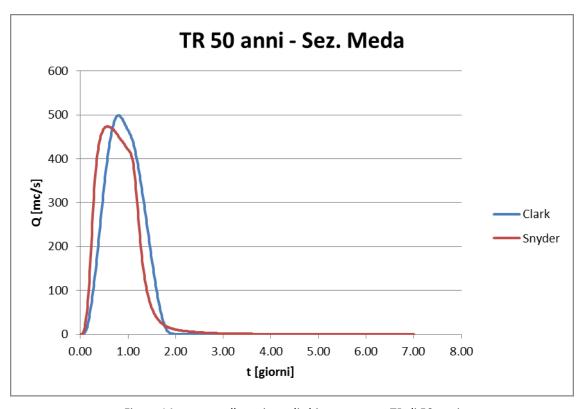


Figura 14: portata alla sezione di chiusura per un TR di 50 anni

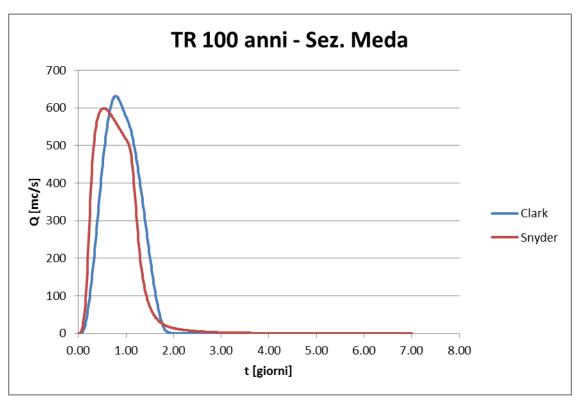


Figura 15: portata alla sezione di chiusura per un TR di 100 anni

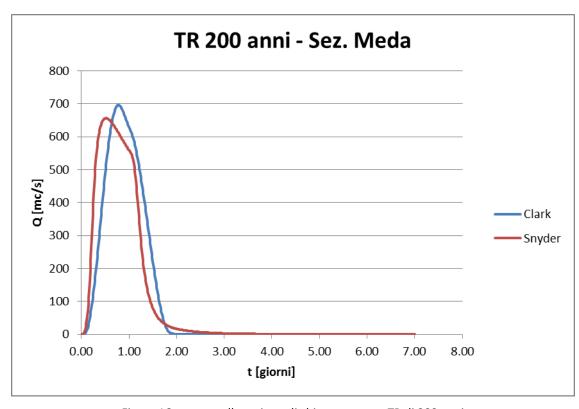


Figura 16: portata alla sezione di chiusura per un TR di 200 anni

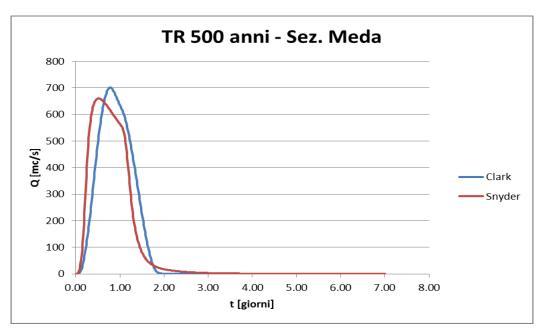


Figura 17: portata alla sezione di chiusura per un TR di 500 anni

C.7.2 Opere previsionali

In previsione della realizzazione delle pile di ponte dei viadotti Settecà e Molino sono state adottate specifiche opere previsionali. Queste sono state valutate considerando i tiranti idrici provenienti da simulazioni idrauliche con un tempo di ritorno di dieci anni. I relativi valori di portata con tempo di ritono decennale sono stati valutati tramite l'adozione di coefficienti riduttivi, applicate alle successive portate con tempo di ritorno Tr 200, derivanti da osservazioni empiriche spesso adottate nella determinazione delle portate ordinarie dell'alveo, generalmente tali coefficienti si attestano intorno a 1/3.

Si riportano di seguito i dati di portata utilizzati nella simulazione idraulica con i relativi risultati in termini di tirante idrico a monte dei viadotti oggetto di studio:

Nome Viadotto	Q10 [m³/s]	h10 [m.s.l.m]
Settecà Asse Nord	100.0	321.41
Settecà Asse Sud	100.0	320.80
Molino	75.0	399.84

Tabella 13: Portata e tirante TR10

Nello specifico per il viadotto Settecà sono state riportati i tiranti idrici a monte relativi agli assi di attraversamento Nord e Sud.

C.7.3 Conclusioni

I risultati presentati al paragrafo precedente sono stati ottenuti a seguito della taratura dei parametri inseriti nel software.

Per un tempo di pioggia di un giorno, si ottengono i seguenti valori di tempo e di portata di picco al variare del tempo di ritorno:

SEZIONE ASTICO	Tc Clark [h]	Qp Clark [m³/s]	Tc Snyder [h]	Qp Snyder [m³/s]
MEDA – TR 100 anni	18:45	631.5	12:45	599.3
MEDA – TR 200 anni	18:45	696.0	12:30	656.4

Tabella 14: risultati della modellazione idrologica con Clark e Snyder per Tr 100 e 200 anni

La curva fornitaci dall'Autorità di Bacino, risultato della modellazione da loro condotta con tempo di ritorno di 100 anni e tempo di pioggia di un giorno, presenta il picco di portata dopo 17 ore, con un valore di 642.7 m³/s.

La portata misurata durante l'evento eccezionale del 1966 invece presenta un picco di portata pari a $698.8 \text{ m}^3/\text{s}$ e tempo di picco di 25 h.

I valori trovati attraverso la modellazione risultano quindi sufficientemente attendibili per la progettazione delle opere idrauliche necessarie alla messa in sicurezza del tracciato autostradale in esame.

Per l'analisi idraulica delle interferenze del tracciato autostradale in progetto col torrente Astico, sono stati modellati tre diversi tratti del corso d'acqua. Per ciascuno di questi tratti è stato quindi trovato un differente valore di portata attraverso il programma HEC-HMS. Tale dato è stato confrontato con quello ottenuto mediante il metodo trentino.

Si riportano di seguito i valori di portata ottenuti col metodo di Clark, con quello di Snyder e col metodo trentino per i tratti considerati a tempo di ritorno pari a 100 e 200 anni.

Il metodo regionale trentino, come presentato all'interno del PGUAP, è stato implementato solo con tempo di ritorno di 100 anni. Per calcolare quindi la portata con tempo di ritorno di 200 anni, è stata stimata la crescita del valore calcolato con i metodi di Clark e di Snyder al variare del tempo di ritorno. Si sono quindi ottenuti due possibili valori della portata calcolata col metodo trentino a seconda che si assuma il valore di crescita dato dal metodo di Clark o di Snyder: la loro media è il valore indicato in Tabella 14.

TRATTO	SOTTOBACINO	ESTENSIONE	Q Clark 100 [mc/s]	Q Snyder 100 [mc/s]	Q100 Trentino	Q Clark 200 [mc/s]	Q Snyder 200 [mc/s]	Q200 Trentino
INATIO	30110BACINO	[KIII]	[IIIC/S]	[1110/3]	пенино	[IIIC/S]	[IIIC/S]	Hentino
1	Astico 3	87.807	158.5	169.8	187.8	188.3	204.9	224.9
2	Astico 4	134.962	234.4	226.5	252.0	277.2	269.5	299.0
1	Valle Meda	570.49	631.6	599.5	675.5	696.1	656.3	742.0

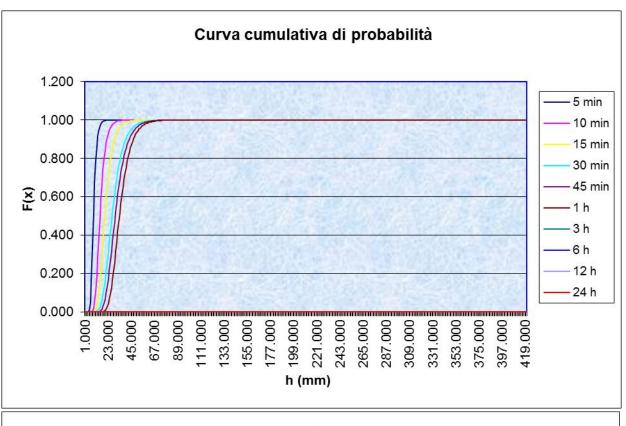
Tabella 15: Confronto valori di portata nei tratti di Astico impiegati per l'analisi idraulica, secondo i metodi di Clark, Snyder e metodo trentino

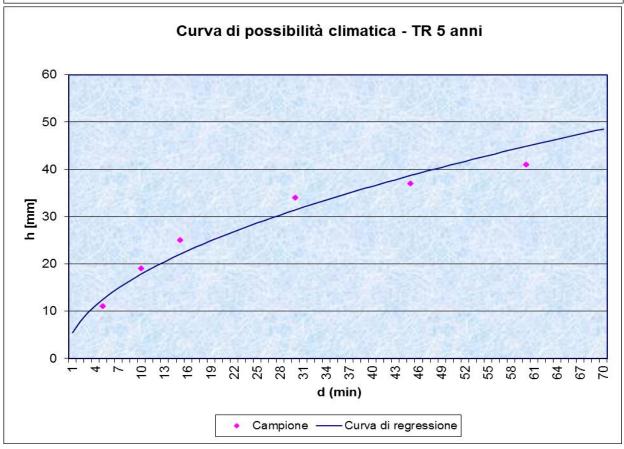
Per l'analisi idraulica sono stati quindi assunti i valori di portata ottenuti mediante il metodo trentino, in quanto risultano essere maggiormente cautelativi, come è facile desumere dalla tabella sopra riportata. Il calcolo della portata col metodo trentino per il torrente Assa (con superficie 248 km²) porta ad un valore di 481.34 m³/s, per un tempo di ritorno di 200 anni.

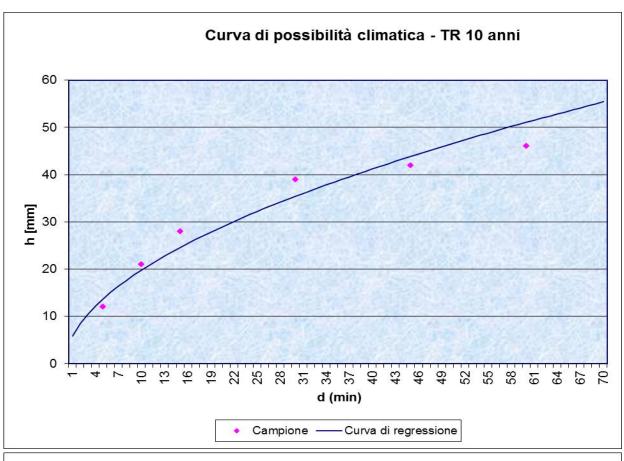
Nella tabella seguente si riportano i valori di portata con tempo di ritorno duecentennale utilizzati e i relativi coefficienti di crescita C per l'analisi delle quattro interferenze studiate sui torrenti principali Astico ed Assa.

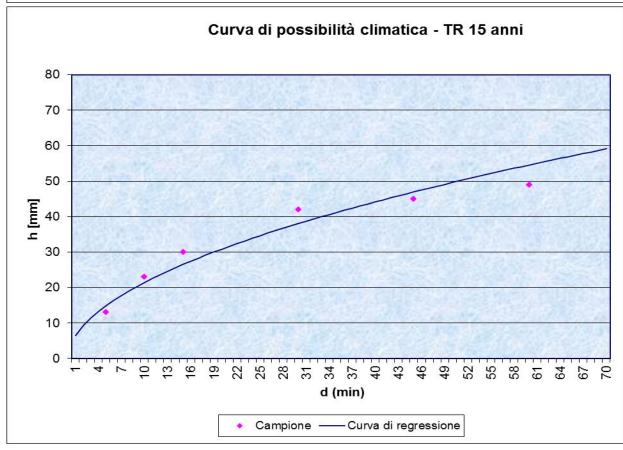
Tratto interferenza	Nome bacino	Estensione [Km²]	C [-]	Q ₂₀₀ [m ³ /s]
1	Valle Meda	570.5	1,1	742
2	Assa	248.0	1,2	480
3	Astico 4	135.0	1,2	299
4	Astico 3	87.8	1,2	225

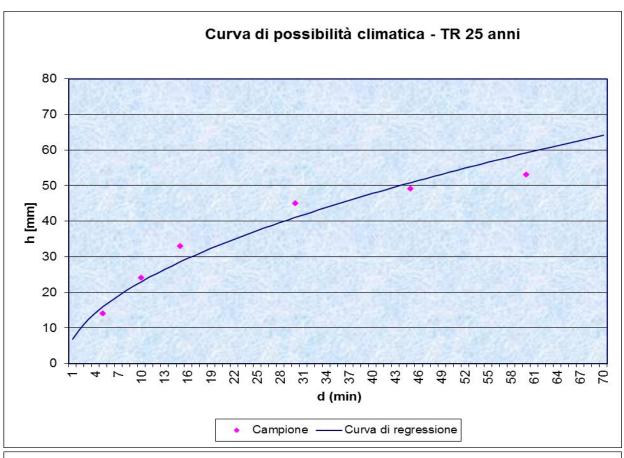
Tabella 16: valori di portata nei tratti impiegati per l'analisi idraulica, metodo Trentino

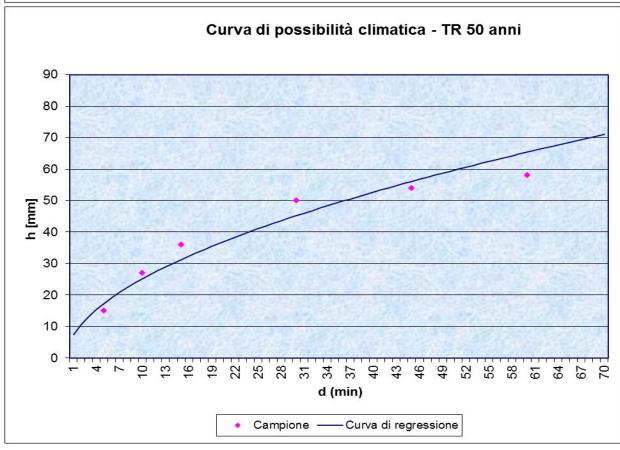

D. ALLEGATO A

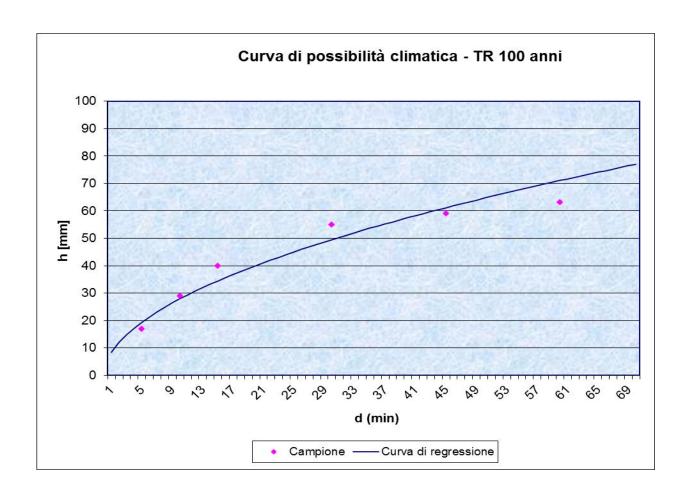

D.1 DATI E ANALISI STATISTICA DELLE STAZIONI PLUVIOMETRICHE CONSIDERATE

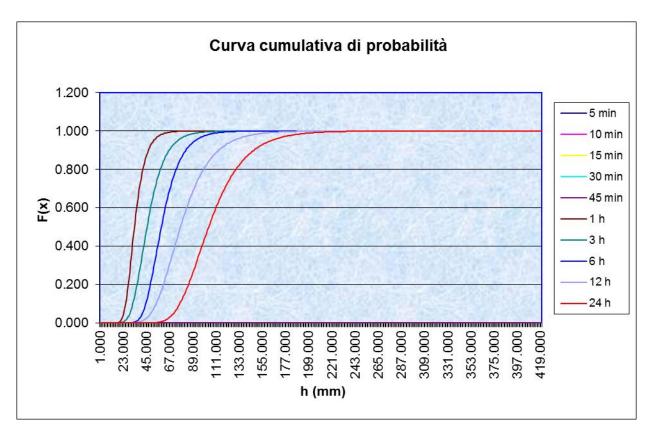

Di seguito si riportano i dati pluviometrici delle stazioni considerate nell'analisi coi grafici ottenuti mediante l'analisi statistica descritta al paragrafo A.3.

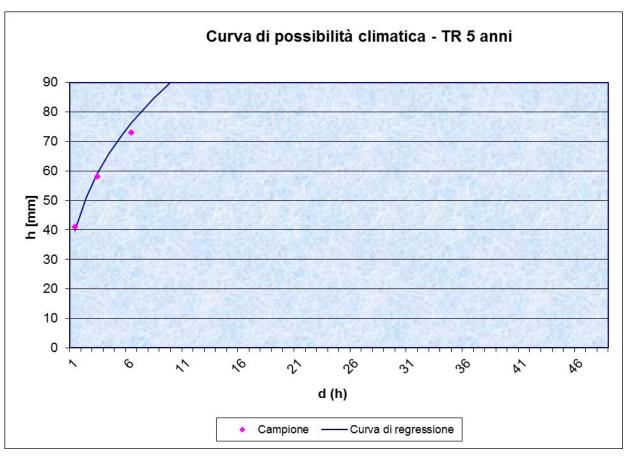

Stazione: Asiago aeroporto

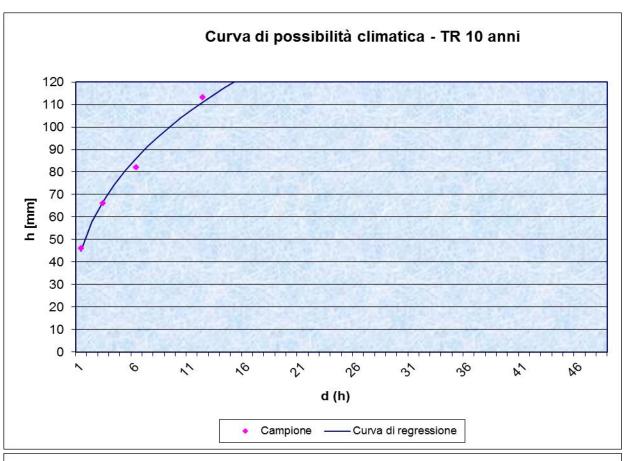

5 mir	ı	10 m	in	15 m	in	30 m	in	45 m	45 min	
mm	data	mm	data	mm	data	mm	data	mm	data	
11	12/08/1996	16	12/08/1996	20.2	12/08/1996	23	15/11/1996	25	12/08/1996	
6	04/07/1997	10.4	14/07/1997	12.6	14/07/1997	17.4	14/07/1997	23.4	05/07/1997	
8.8	28/07/1998	13.6	28/07/1998	18	10/06/1998	30	10/06/1998	31.6	10/06/1998	
15	07/06/1999	23.2	07/06/1999	29.2	07/06/1999	39.4	07/06/1999	42.6	07/06/1999	
12.2	20/09/2000	22	20/09/2000	31	20/09/2000	45.8	20/09/2000	51.4	20/09/2000	
7.2	05/08/2001	11.4	05/08/2001	14	05/08/2001	19.6	05/08/2001	23	05/08/2001	
8.4	24/08/2002	15.2	24/08/2002	18	24/08/2002	19.6	13/07/2002	23.2	13/07/2002	
10.8	26/06/2003	20.6	26/06/2003	27.4	26/06/2003	32	26/06/2003	33.4	26/06/2003	
8.8	07/08/2004	15.6	07/08/2004	21.8	07/08/2004	33.4	07/08/2004	38.8	07/08/2004	
5.6	09/09/2005	8.4	29/06/2005	10.6	09/09/2005	16.2	29/06/2005	18.6	29/06/2005	
7	28/07/2006	12.2	15/09/2006	18.6	15/09/2006	27.4	15/09/2006	29.2	15/09/2006	
11.2	18/09/2007	16	15/06/2007	17.8	15/06/2007	22.6	15/06/2007	27.6	15/06/2007	
11.2	13/07/2008	22.4	13/07/2008	29.2	02/08/2008	39.2	02/08/2008	41.2	02/08/2008	
8.6	03/08/2009	15	04/07/2009	22	03/08/2009	29.8	03/08/2009	31	03/08/2009	
7.8	18/07/2010	15.2	18/07/2010	20.2	18/07/2010	25	18/07/2010	25.6	18/07/2010	

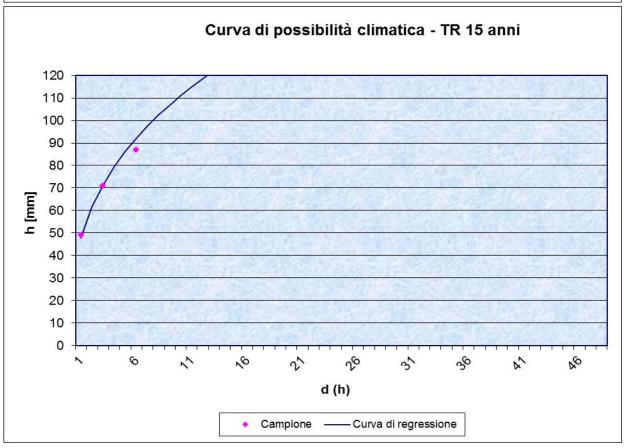


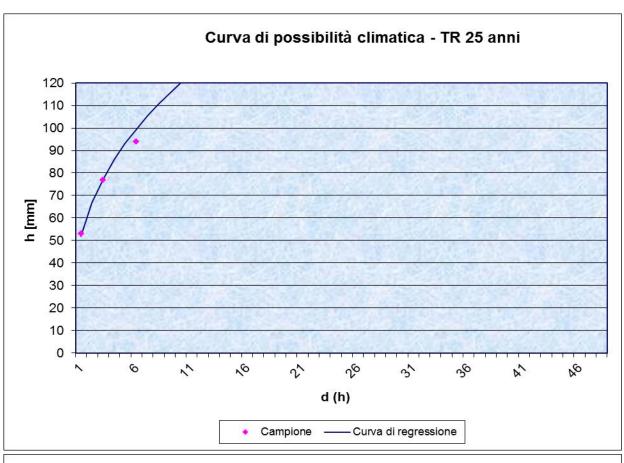


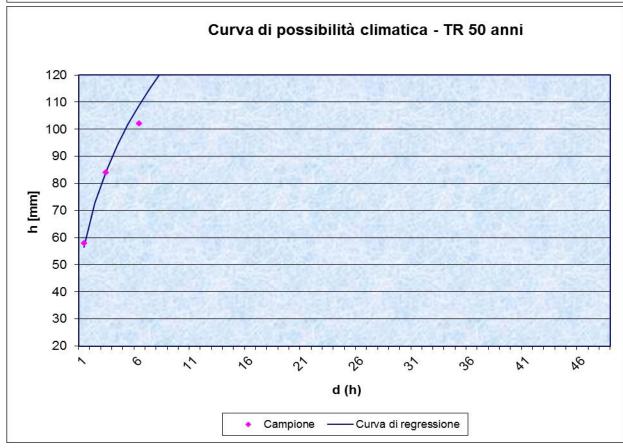


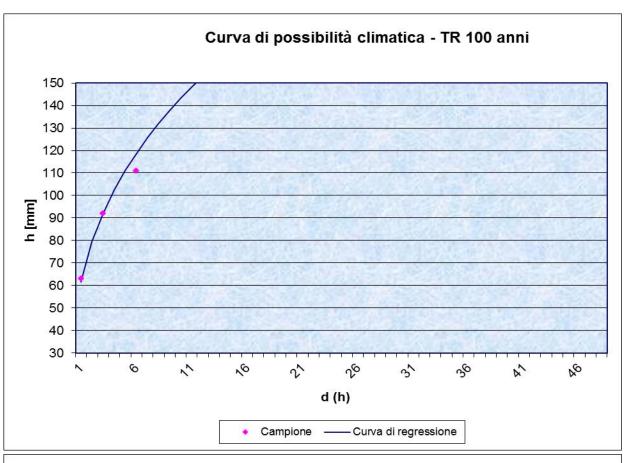


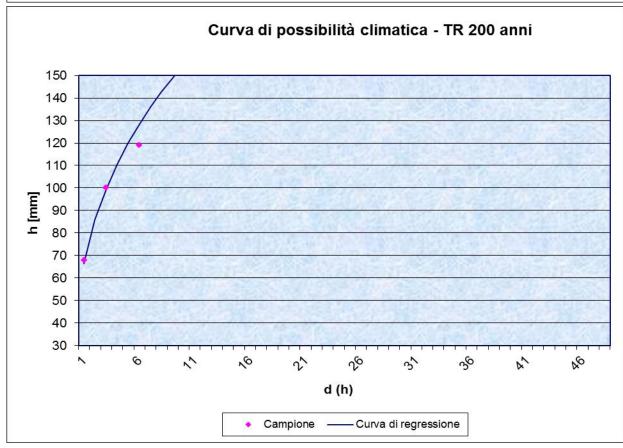

Stazione: Asiago aeroporto

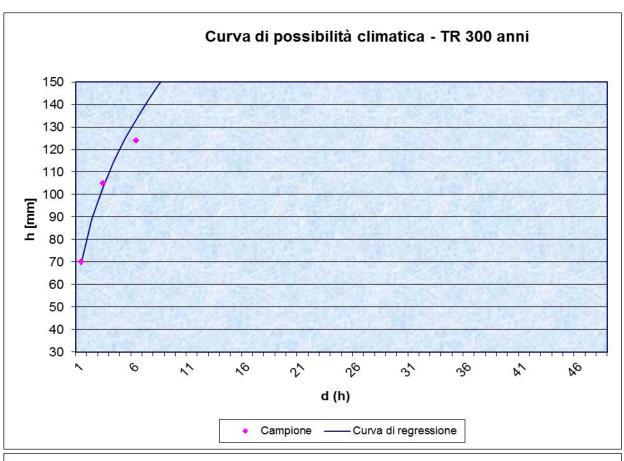

Piogge lunghe

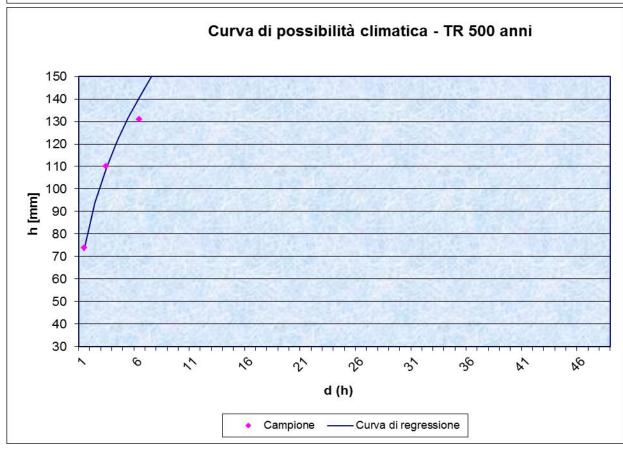

1 ora	1 ora 3 ore			6 ore	!	12 or	е	24 ore	
mm	data	mm	data	mm	data	mm	data	mm	data
26.6	12/08/1996	34.8	18/11/1996	48.2	18/11/1996	72	15/10/1996	102	16/10/1996
27	05/07/1997	38.4	07/11/1997	57.6	07/11/1997	70	07/11/1997	84.2	12/11/1997
34.6	10/06/1998	47.6	27/07/1998	49.8	05/09/1998	70.6	05/09/1998	90.6	12/09/1998
46.8	07/06/1999	65.4	20/09/1999	90	20/09/1999	138	20/09/1999	158	20/09/1999
54.2	20/09/2000	61.2	21/09/2000	86.2	06/11/2000	121	06/11/2000	133	07/11/2000
29.4	05/08/2001	37.4	06/08/2001	40.8	06/08/2001	43.2	30/03/2001	64.2	30/03/2001
27.2	17/07/2002	46	17/07/2002	50.2	17/07/2002	63.2	04/05/2002	108	04/05/2002
34.6	27/06/2003	36.2	27/06/2003	63.4	28/11/2003	89	28/11/2003	107	28/11/2003
44.8	07/08/2004	64.4	08/08/2004	64.4	08/08/2004	64.4	08/08/2004	68.4	30/11/2004
24.2	29/06/2005	34	03/10/2005	54	03/10/2005	69.8	03/10/2005	99.2	03/10/2005
30.8	15/09/2006	35.2	15/09/2006	61.8	15/09/2006	82.2	15/09/2006	135	16/09/2006
38	15/06/2007	81	15/06/2007	92.8	15/06/2007	102	15/06/2007	103	15/06/2007
42	02/08/2008	42.8	02/08/2008	50.6	06/07/2008	63.2	04/11/2008	90.6	30/05/2008
40	03/08/2009	54.2	03/08/2009	59.2	03/08/2009	73	28/04/2009	129	30/11/2009
26	18/07/2010	39	25/09/2010	56.6	25/09/2010	97.2	01/11/2010	162	01/11/2010

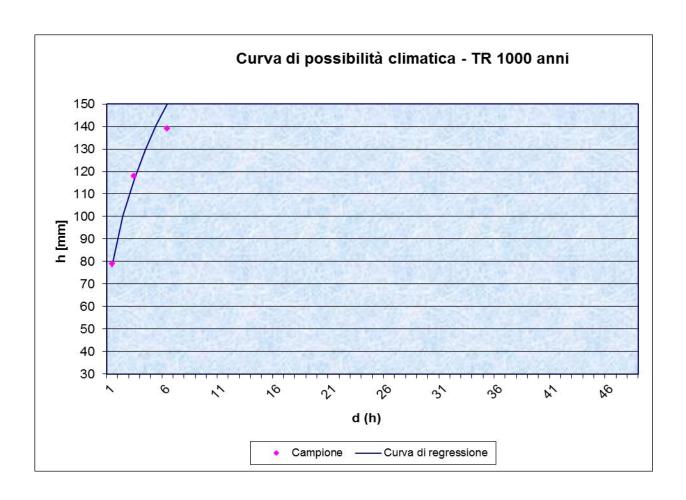


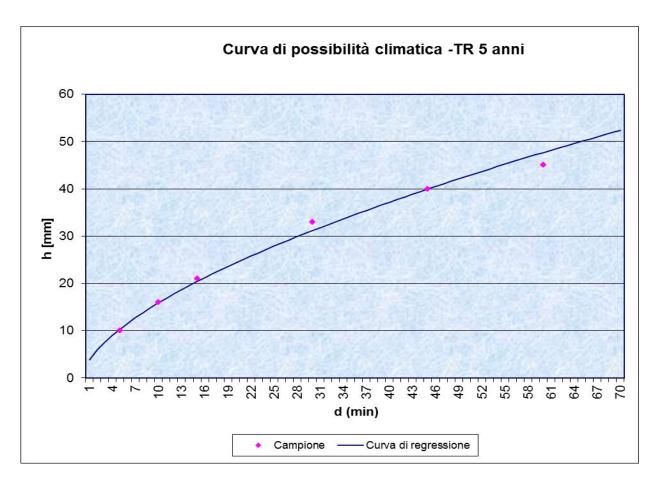


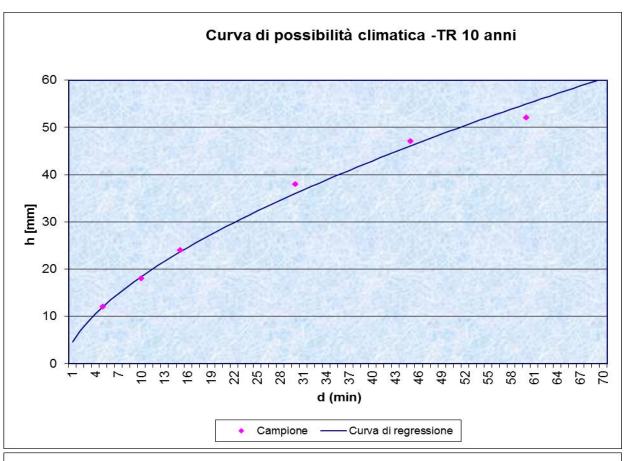


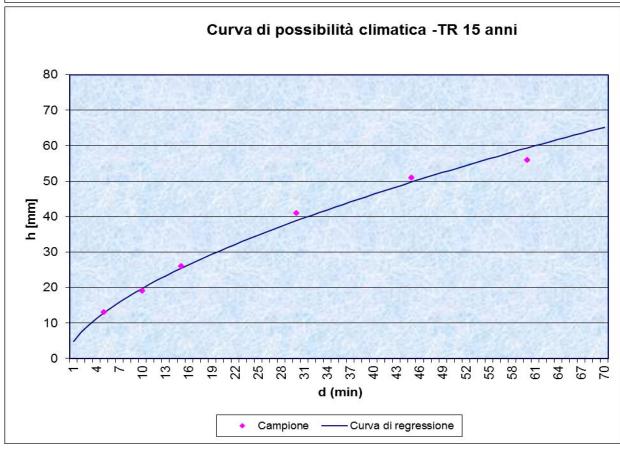


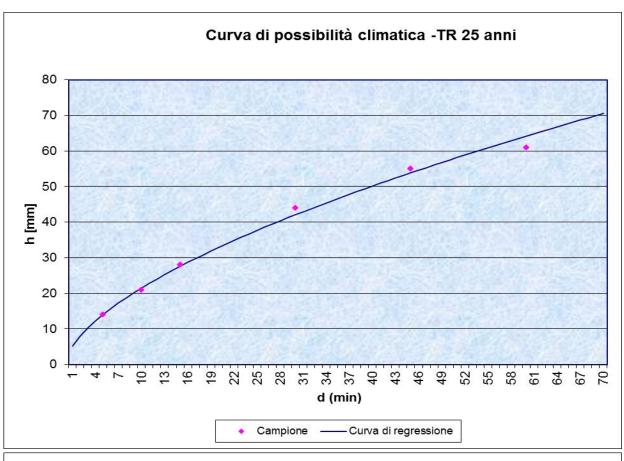


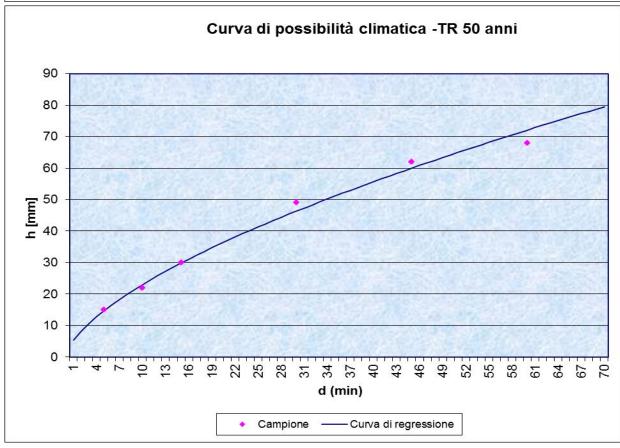


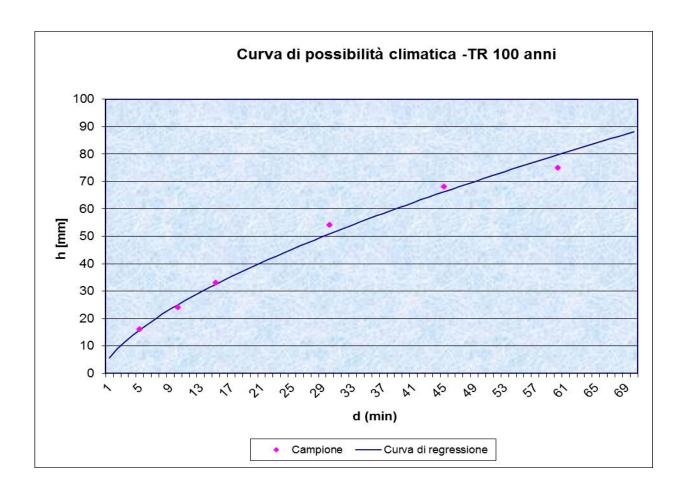


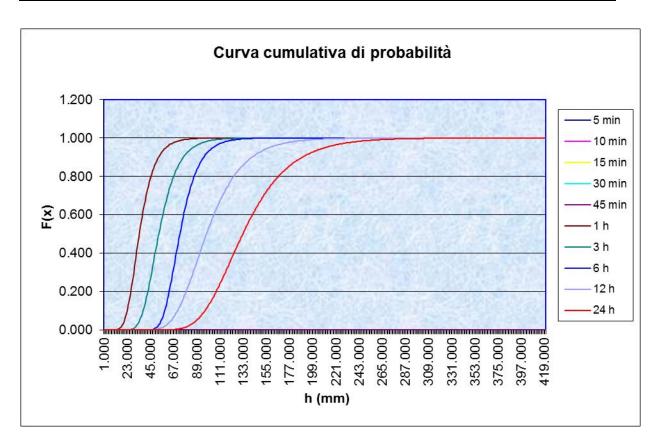


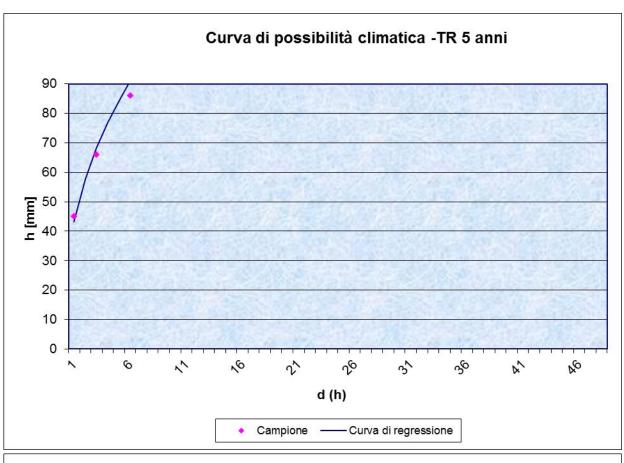


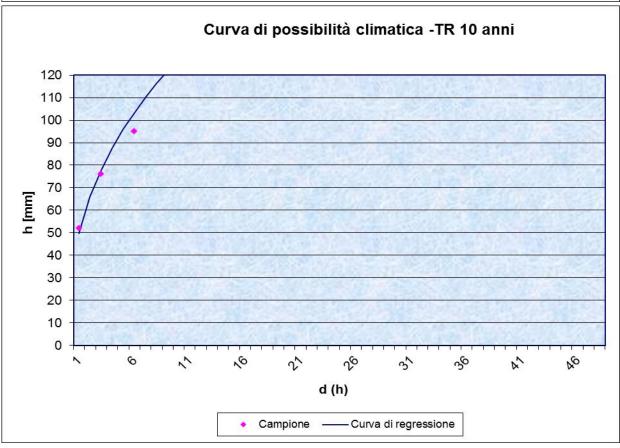

5 miı	n	10 m	in	15 m	in	30 m	in	45 min	
mm	data	mm	data	mm	data	mm	data	mm	data
7.2	10/06/1992	10.8	10/06/1992	14.4	10/06/1992	23.2	11/06/1992	28.6	11/06/1992
8.4	02/10/1993	14	24/08/1993	20	02/10/1993	34.2	02/10/1993	39.2	02/10/1993
12.2	13/09/1994	16.6	13/09/1994	20.8	13/09/1994	28.2	13/09/1994	29.8	21/07/1994
8	08/08/1995	15.4	08/08/1995	19.6	08/08/1995	28.8	08/08/1995	38.6	08/08/1995
8	24/08/1996	13	11/08/1996	18.6	11/08/1996	30.2	11/08/1996	36.6	24/08/1996
7.8	18/07/1997	14	18/07/1997	17	18/07/1997	24.2	18/07/1997	25	18/07/1997
6.2	23/05/1998	11.8	10/06/1998	17.4	10/06/1998	28	10/06/1998	34.4	10/06/1998
6.2	07/07/1999	9.4	14/06/1999	11.6	14/06/1999	15.2	14/06/1999	18.2	14/06/1999
13.4	20/09/2000	14.8	20/09/2000	16.4	20/09/2000	23.8	20/09/2000	26.2	20/09/2000
8.4	21/10/2001	11.4	31/08/2001	12.6	31/08/2001	19.2	31/08/2001	23	31/08/2001

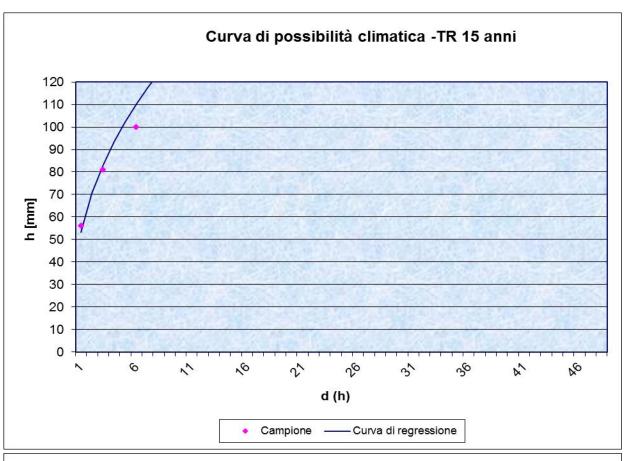

5 mir	5 min 10 min 15 min		in	30 m	in	45 min			
mm	data	mm	data	mm	data	mm	data	mm	data
12.8	18/08/2002	19.2	13/07/2002	26.8	13/07/2002	45.6	13/07/2002	61.6	13/07/2002
6.4	05/10/2003	11.2	24/06/2003	13.4	05/10/2003	16	24/06/2003	21	14/08/2003
9	01/11/2004	16.4	01/11/2004	22	01/11/2004	28.6	03/08/2004	32.2	01/11/2004
11.8	20/08/2005	17.2	20/08/2005	21	20/08/2005	28.2	20/08/2005	40.2	20/08/2005
6.8	25/06/2006	10.6	25/06/2006	11.4	25/06/2006	13.2	15/09/2006	18.4	15/09/2006
11.6	14/05/2007	20.2	14/05/2007	25.2	14/05/2007	30	15/06/2007	39.2	15/06/2007
8.6	01/09/2008	16	01/08/2008	23.6	01/08/2008	39.8	01/08/2008	45.6	01/08/2008
6	05/06/2009	9.2	10/08/2009	11.2	25/06/2009	16.2	06/07/2009	17	06/07/2009
12.6	17/06/2010	18.8	17/06/2010	24	18/07/2010	38.4	18/07/2010	43.4	18/07/2010

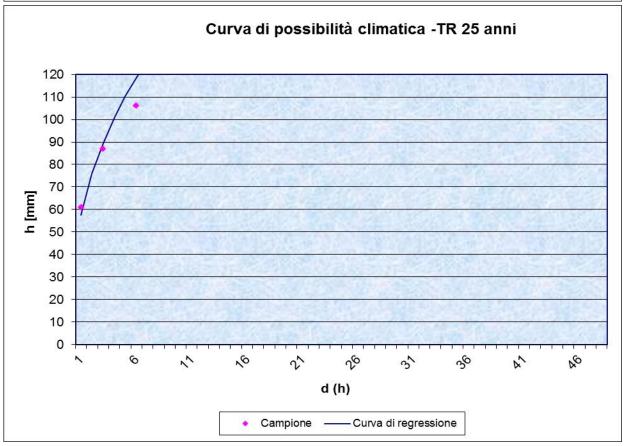


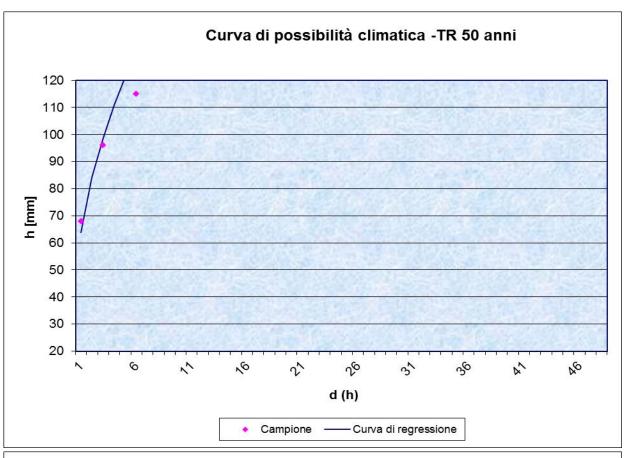


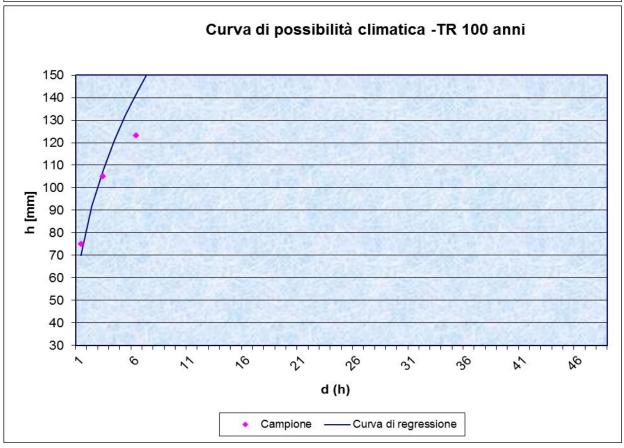

Piogge lunghe

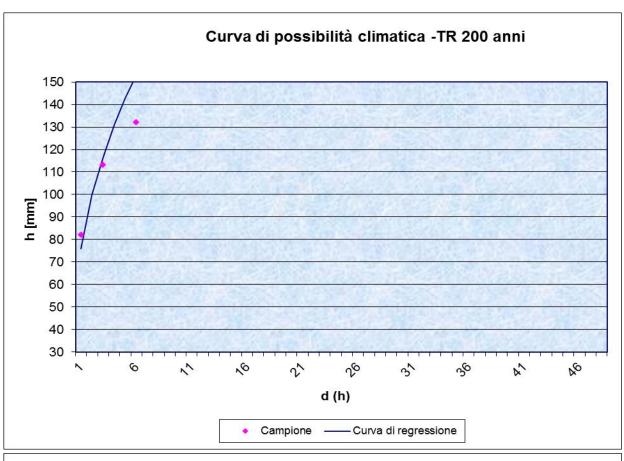

1 ora		3 ore		6 ore		12 ore		24 ore	
mm	data	mm	data	mm	data	mm	data	mm	data
30.8	11/06/1992	49.8	04/10/1992	89.2	04/10/1992	147	04/10/1992	218	04/10/1992
43.4	02/10/1993	75.4	02/10/1993	118	02/10/1993	180	02/10/1993	200	03/10/1993
30.4	13/09/1994	60.4	13/09/1994	73.2	13/09/1994	77	10/11/1994	114	14/09/1994
44.6	08/08/1995	47.2	08/08/1995	64.4	08/09/1995	71	08/09/1995	101	12/05/1995
45.8	24/08/1996	71.6	24/08/1996	71.6	24/08/1996	98.6	18/11/1996	127	18/10/1996
26.8	18/07/1997	35.6	27/06/1997	60.6	20/12/1997	97.4	20/12/1997	112	20/12/1997
35.8	10/06/1998	42.2	23/05/1998	63.4	07/10/1998	93	07/10/1998	111	07/10/1998
20	14/06/1999	39.2	27/04/1999	52.6	07/11/1999	75.4	07/11/1999	89	07/11/1999
30.4	20/09/2000	52.6	06/11/2000	90.8	06/11/2000	132	06/11/2000	154	12/10/2000
26.6	31/08/2001	40.2	31/08/2001	59.8	31/08/2001	62.8	31/08/2001	97.8	30/03/2001

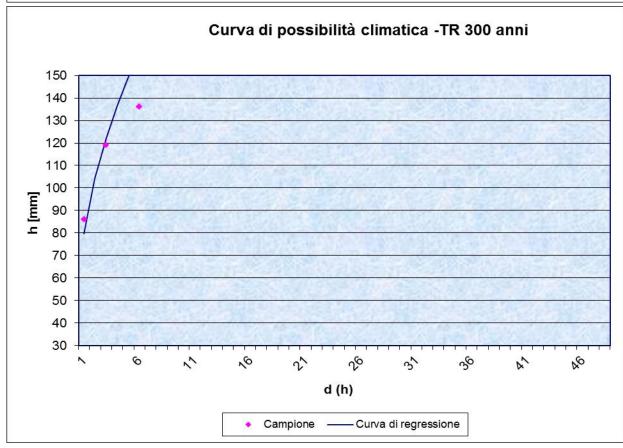

Piogge lunghe

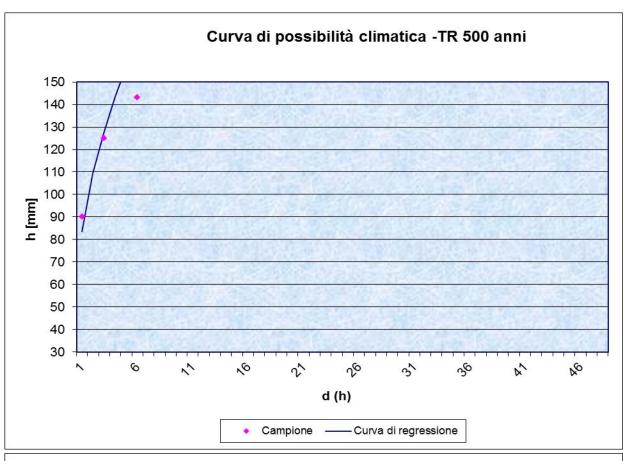

1 ora		3 ore		6 ore		12 ore		24 ore	
mm	data	mm	data	mm	data	mm	data	mm	data
68.4	13/07/2002	92	13/07/2002	92	13/07/2002	92	13/07/2002	133	25/11/2002
26.8	14/08/2003	39.4	27/11/2003	63.6	27/11/2003	113	28/11/2003	147	28/11/2003
37.2	01/11/2004	57.8	01/11/2004	66.2	01/11/2004	74.2	06/05/2004	112	06/05/2004
48.4	20/08/2005	85.6	20/08/2005	90.8	20/08/2005	115	09/09/2005	165	09/09/2005
23.6	15/09/2006	52	15/09/2006	72.6	15/09/2006	107	15/09/2006	133	15/09/2006
43.4	15/06/2007	58.4	15/06/2007	77.8	15/06/2007	91	15/06/2007	163	24/11/2007
47.8	01/08/2008	52.2	02/08/2008	73	04/11/2008	95.8	05/11/2008	126	05/11/2008
18.2	16/09/2009	44	28/04/2009	74.4	28/04/2009	97.8	28/04/2009	120	28/04/2009
44.6	18/07/2010	59.2	03/05/2010	79	31/10/2010	136	01/11/2010	214	01/11/2010

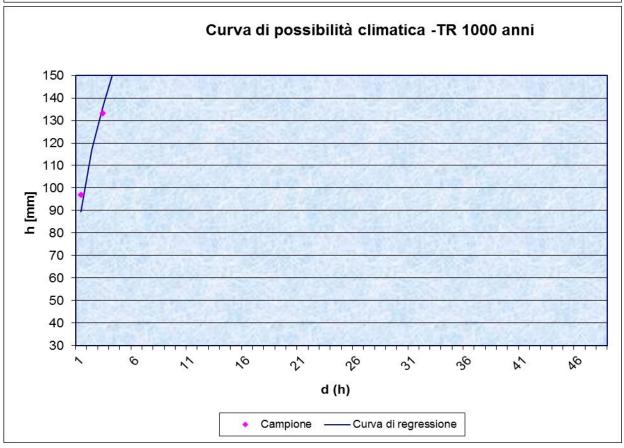


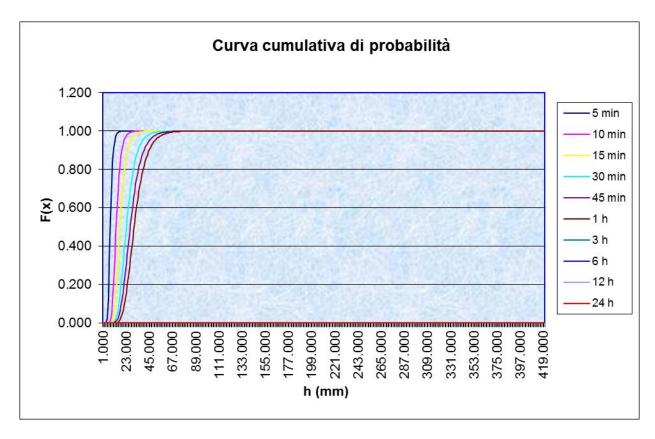


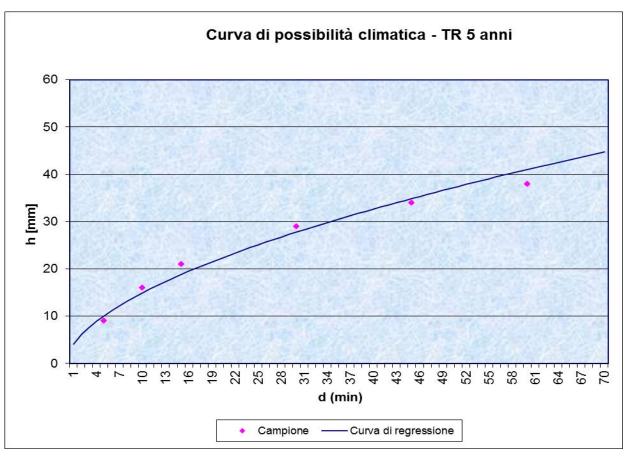


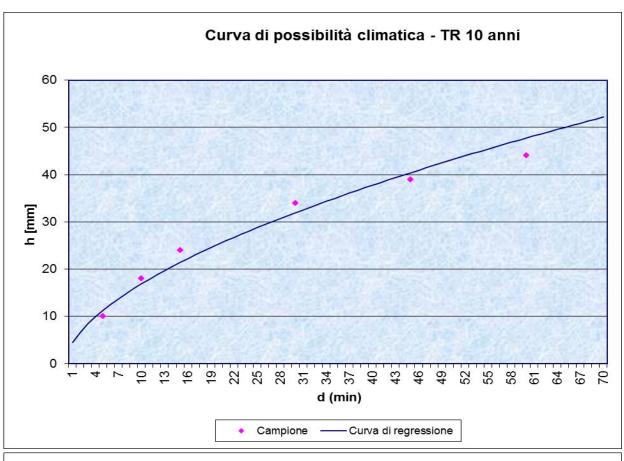


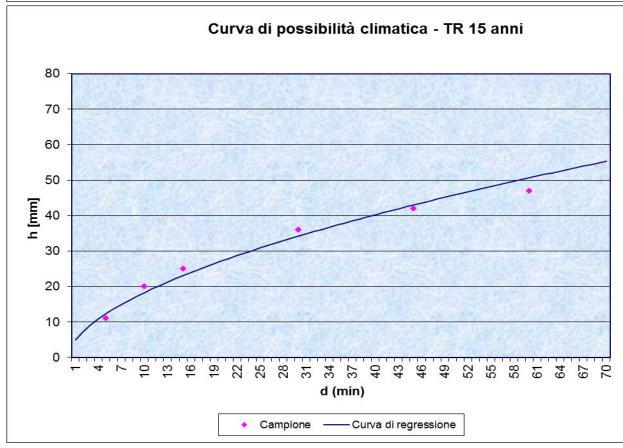


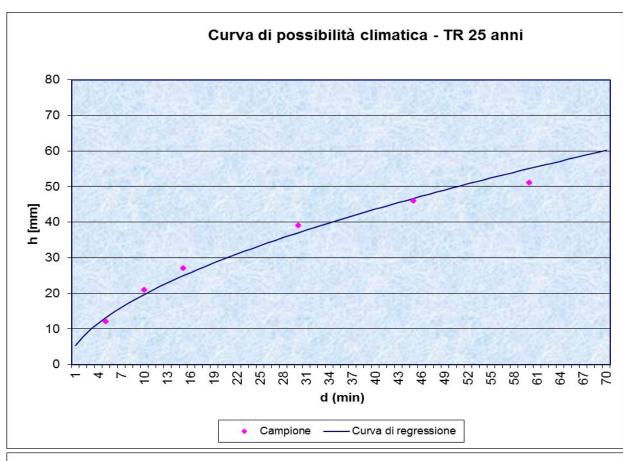


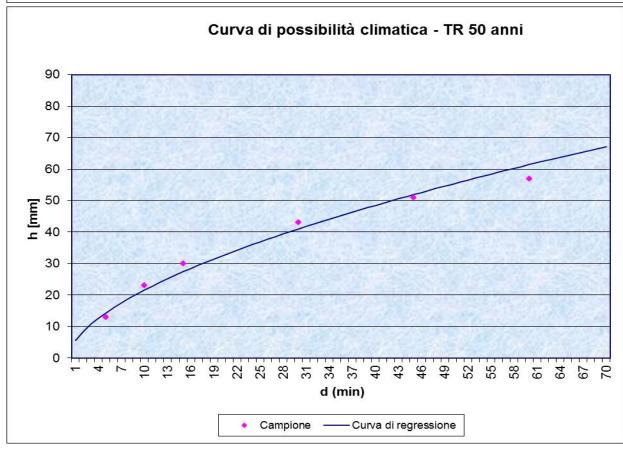


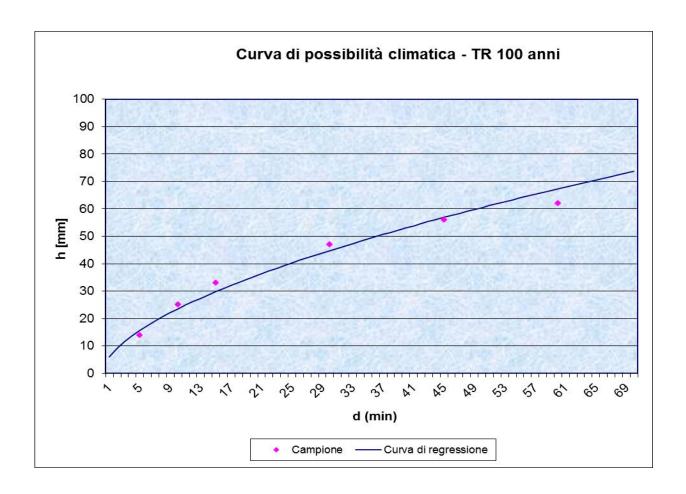


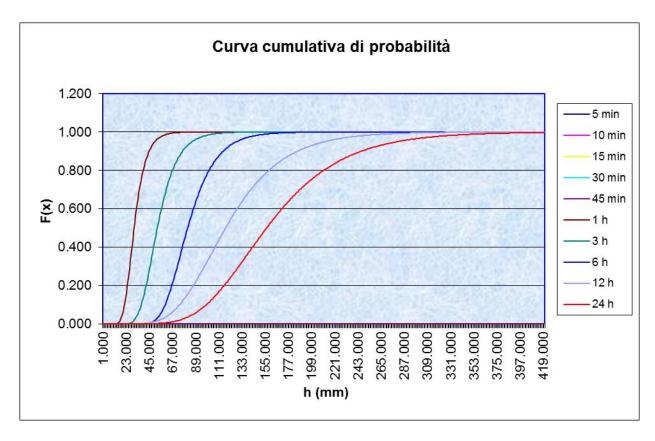


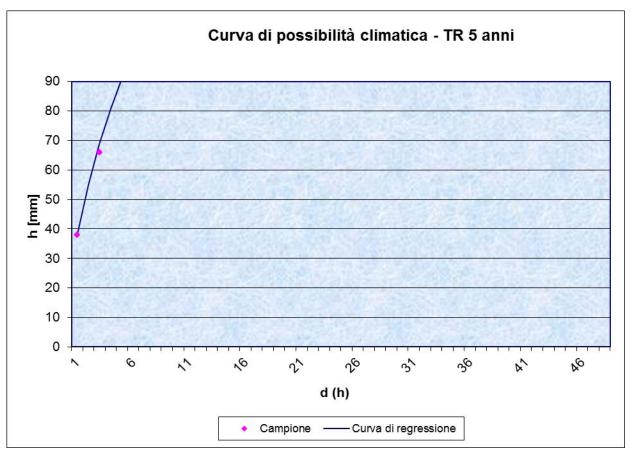

Stazione: Castagna Arsiero

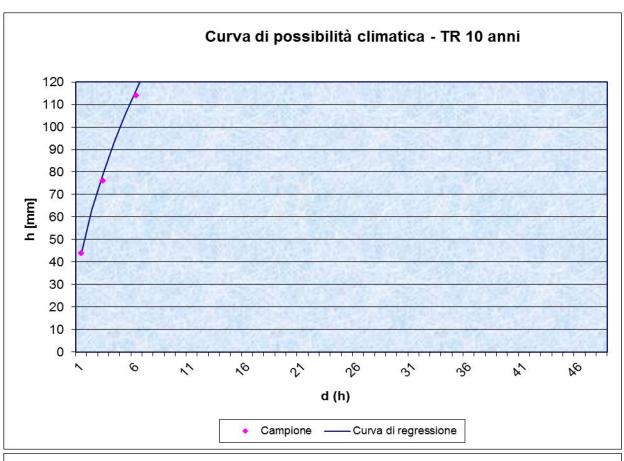

5 min		10 min		15 min		30 min		45 min	
mm	data	mm	data	mm	data	mm	data	mm	data
5.8	17/06/1986	10.2	17/06/1986	12.4	17/06/1986	19.6	17/06/1986	25	17/06/1986
6	19/07/1987	8.8	19/07/1987	11	19/07/1987	13	19/07/1987	13.4	19/07/1987
9.4	12/07/1988	16.6	12/07/1988	20.2	24/07/1988	24	24/07/1988	26.6	13/10/1988
7.4	13/07/1989	14.2	13/07/1989	19	13/07/1989	30.8	13/07/1989	32.8	13/07/1989
6.2	13/06/1990	10.8	24/07/1990	15	24/07/1990	27.6	24/07/1990	31	24/07/1990
9.4	17/07/1991	17.8	17/06/1991	24	17/06/1991	32.6	17/06/1991	33.8	17/06/1991
6	04/10/1992	10	23/09/1992	14.8	23/09/1992	26.6	23/09/1992	32.4	23/09/1992
8.2	24/08/1993	16	24/08/1993	20.6	24/08/1993	25.8	23/09/1993	32.8	02/10/1993
10.4	08/09/1994	17.6	08/09/1994	19.2	08/09/1994	22.8	08/09/1994	27.4	18/05/1994
12.2	03/07/1995	15.8	03/07/1995	19	03/07/1995	21.8	03/07/1995	22.2	03/07/1995
11	28/08/1996	18.8	28/08/1996	27	28/08/1996	34.8	28/08/1996	37.4	28/08/1996
6.4	18/07/1997	11.6	18/07/1997	16	18/07/1997	21.2	18/07/1997	22	18/07/1997
6.6	25/07/1998	10.6	25/07/1998	13.6	25/07/1998	19.6	25/07/1998	22.8	25/07/1998
11	27/06/1999	18.6	20/09/1999	24.4	20/09/1999	39.4	20/09/1999	51	20/09/1999
6.8	06/06/2000	12.2	06/06/2000	15.2	06/06/2000	16	06/06/2000	22	05/08/2000
3.2	17/05/2001	5	17/05/2001	6.2	17/05/2001	9.6	17/05/2001	11	17/05/2001
8.6	03/08/2004	15.8	03/08/2004	22.2	03/08/2004	29.8	03/08/2004	35.2	01/11/2004
10	20/08/2005	18.2	20/08/2005	19.8	20/08/2005	26	20/08/2005	33.8	20/08/2005
8.2	01/08/2006	13	14/07/2006	16.6	14/07/2006	18.4	14/07/2006	19	15/09/2006
9.2	20/08/2007	17.8	20/08/2007	22.4	20/08/2007	31	20/08/2007	32.8	20/08/2007
8.6	01/08/2008	14	28/06/2008	17.4	28/06/2008	26	28/06/2008	32.2	28/06/2008
7.8	03/08/2009	10.6	03/08/2009	11.6	03/08/2009	12.6	03/08/2009	16.8	28/04/2009
8.2	17/06/2010	16.2	17/06/2010	21.4	17/06/2010	31.2	17/06/2010	34.2	17/06/2010

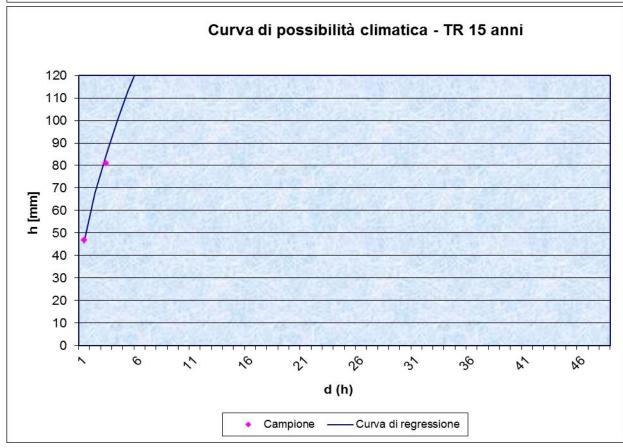


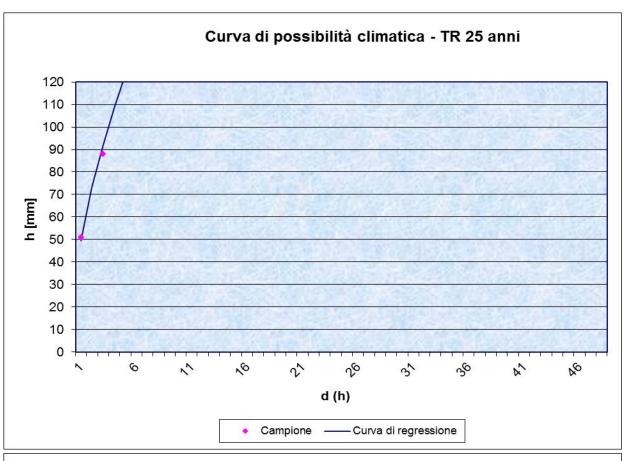


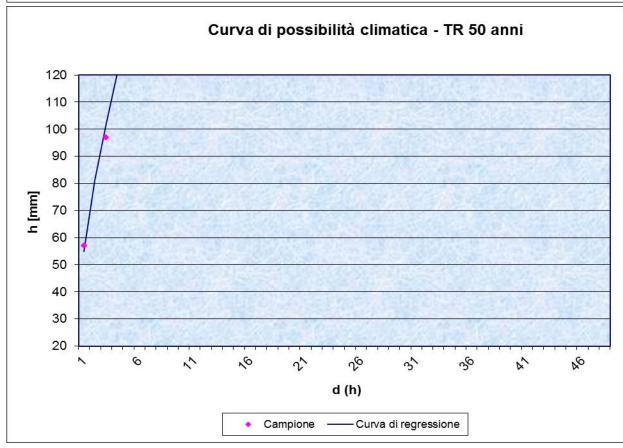


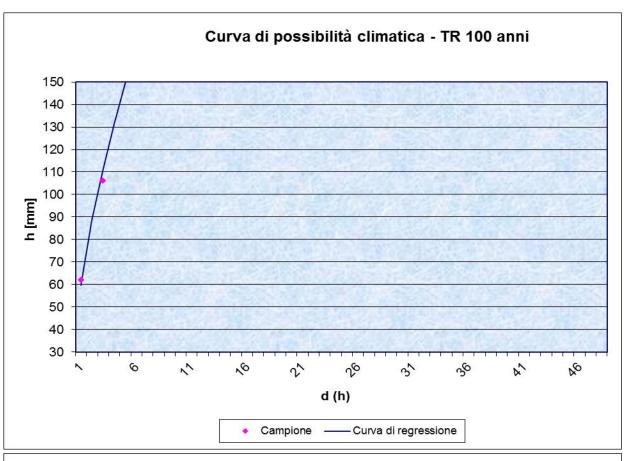

Stazione: Castagna Arsiero

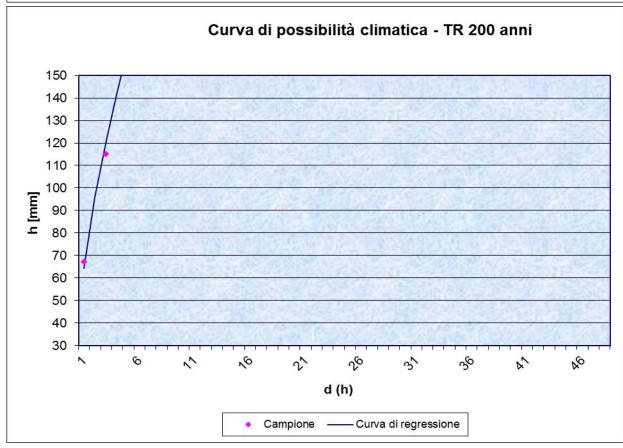

1 ora	l	3 ore		6 ore		12 oı	·e	24 oı	re
mm	data								
27.6	17/06/1986	37.4	13/07/1986	72.2	31/01/1986	130	01/02/1986	210	01/02/1986
13.8	26/06/1987	32.2	04/04/1987	48	24/11/1987	88.6	24/11/1987	115	25/11/1987
33.2	13/10/1988	65.8	13/10/1988	91.6	13/10/1988	112	13/10/1988	149	13/10/1988
32.8	13/07/1989	36.6	13/07/1989	63.8	24/02/1989	90.2	24/02/1989	130	25/02/1989
31.6	24/07/1990	41.4	25/11/1990	76.8	09/12/1990	143	10/12/1990	194	10/12/1990
41.2	13/07/1991	55.4	14/07/1991	84.4	14/07/1991	123	12/10/1991	162	12/10/1991
37.4	11/07/1992	66.4	11/07/1992	86.6	11/07/1992	147	04/10/1992	224	04/10/1992
40	02/10/1993	84	02/10/1993	142	02/10/1993	235	02/10/1993	253	02/10/1993
34.2	18/05/1994	59.4	18/05/1994	83.6	18/05/1994	113	19/05/1994	129	19/05/1994
22.2	03/07/1995	49.2	07/09/1995	70.6	07/09/1995	77.2	08/09/1995	112	12/05/1995

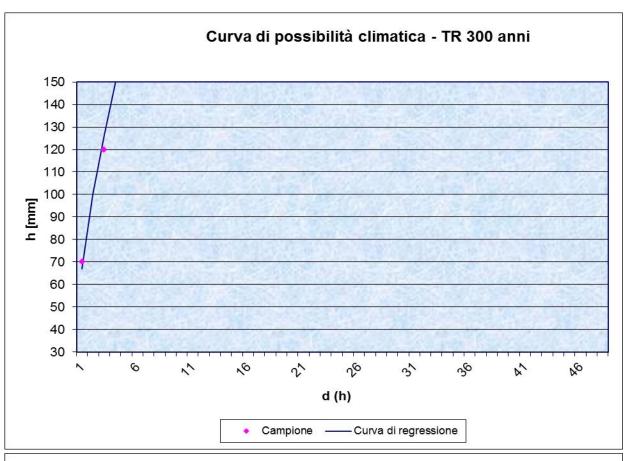

Stazione: Castagna Arsiero

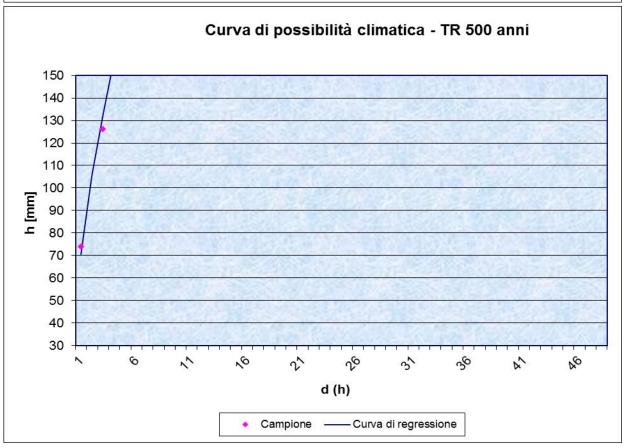

1 ora		3 ore	!	6 ore	!	12 oı	·e	24 oı	·e
mm	data								
37.4	28/08/1996	54.4	18/11/1996	83.4	18/11/1996	118	18/11/1996	146	17/10/1996
28.8	18/07/1997	50	07/11/1997	70.6	07/11/1997	93.8	12/11/1997	121	12/11/1997
28.8	05/09/1998	39.6	05/09/1998	68.6	05/09/1998	85.4	10/04/1998	103	07/10/1998
57.4	20/09/1999	94	20/09/1999	138	20/09/1999	251	20/09/1999	312	20/09/1999
25.6	05/08/2000	54.4	06/11/2000	99.8	06/11/2000	145	06/11/2000	160	07/11/2000
12.6	29/03/2001	26.6	29/03/2001	45.4	30/03/2001	68.4	30/03/2001	98.4	30/03/2001
39.8	01/11/2004	66	01/11/2004	88	01/11/2004	96.6	01/11/2004	113	06/05/2004
39.6	20/08/2005	77.4	20/08/2005	83	20/08/2005	96.4	09/09/2005	132	09/09/2005
24.2	15/09/2006	54.6	15/09/2006	77.8	15/09/2006	108	15/09/2006	134	15/09/2006
34.4	20/08/2007	48	15/06/2007	91	09/08/2007	108	24/11/2007	197	24/11/2007
34.8	28/06/2008	56.6	04/11/2008	86	04/11/2008	118	05/11/2008	149	05/11/2008
22	28/04/2009	55.2	28/04/2009	92	28/04/2009	125	28/04/2009	166	30/11/2009
36.8	15/08/2010	63.2	31/10/2010	112	01/11/2010	198	01/11/2010	314	01/11/2010

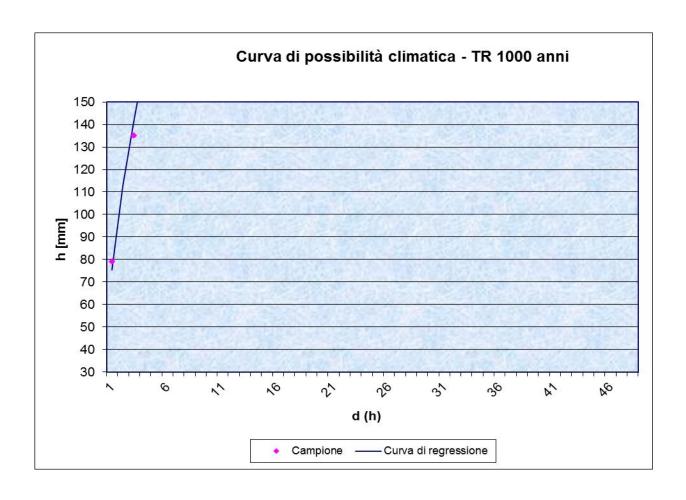


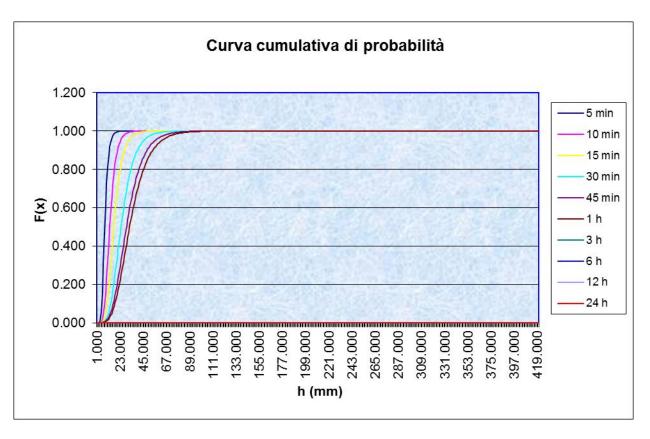


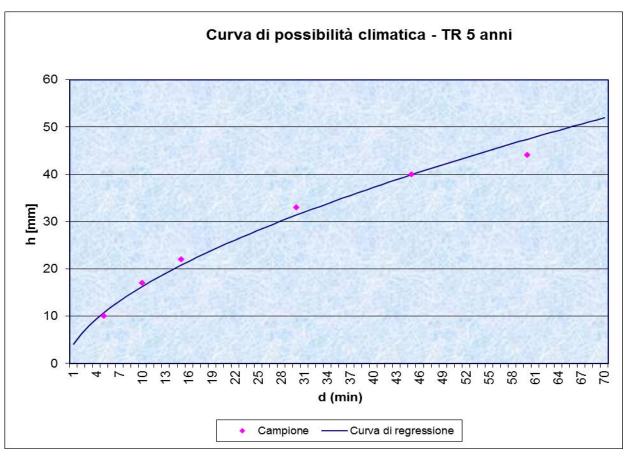


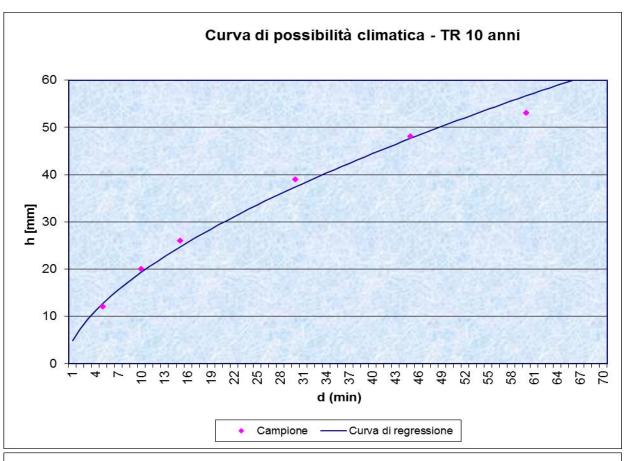


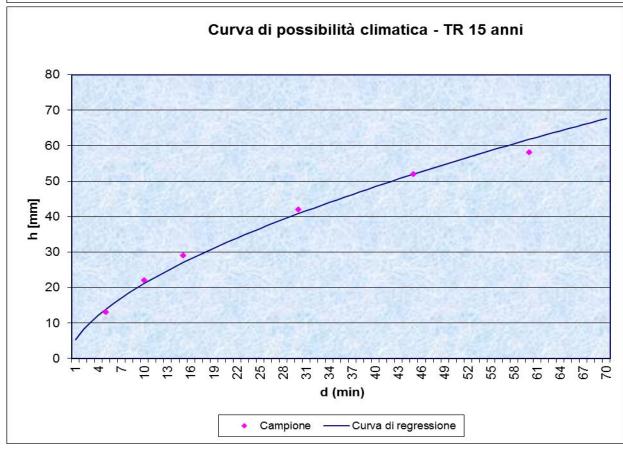


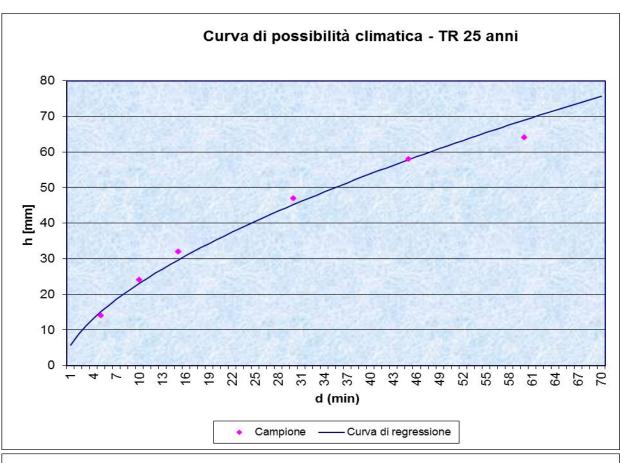


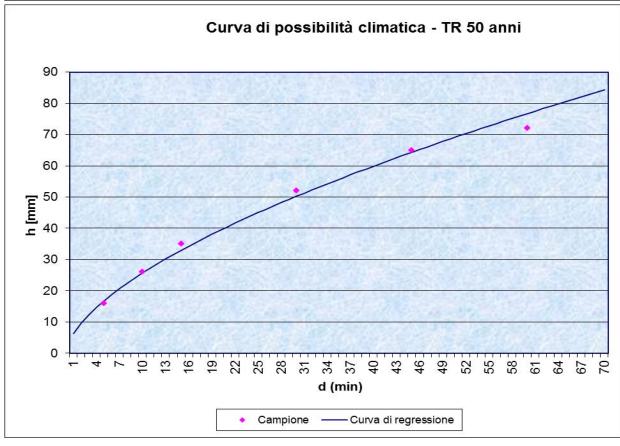


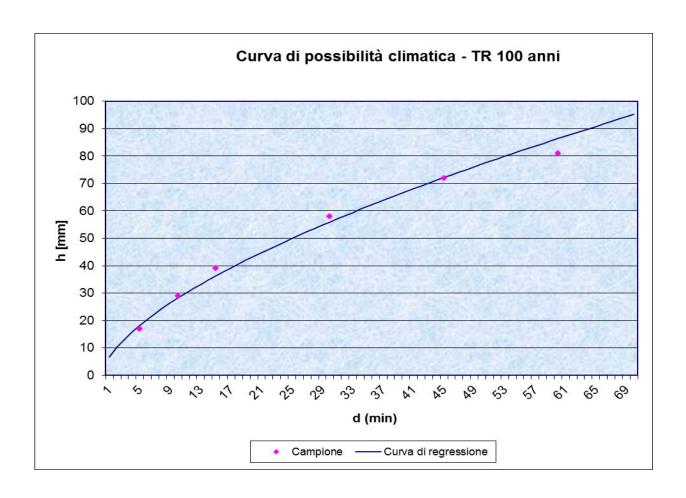


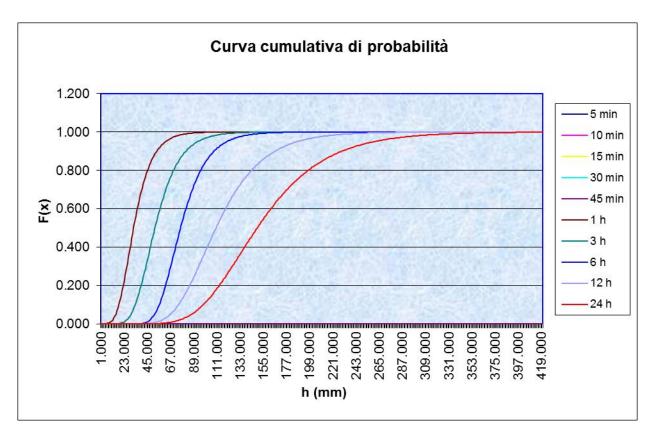


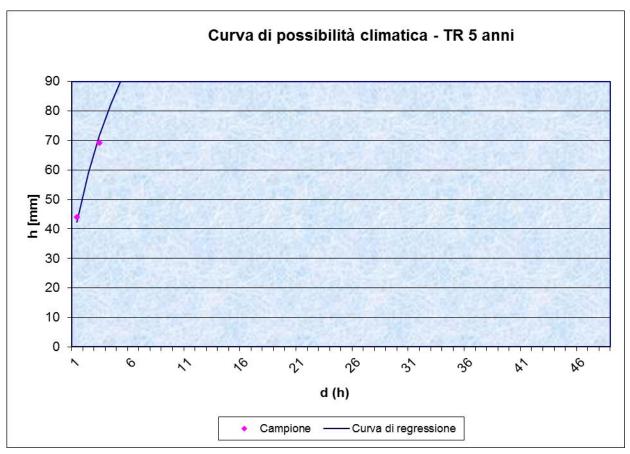

5 mir	ı	10 m	in	15 m	in	30 m	in	45 m	in
mm	data	mm	data	mm	data	mm	data	mm	data
11.2	17/10/1987	15.4	17/10/1987	20.8	17/10/1987	30.8	17/10/1987	49	17/10/1987
5	13/06/1988	8.2	02/05/1988	9.8	25/08/1988	13.4	25/08/1988	15.2	25/08/1988
8.2	23/06/1989	10.6	26/06/1989	12.6	26/06/1989	19.2	16/08/1989	23	26/06/1989
6.6	15/08/1990	10.8	15/08/1990	16.2	15/08/1990	28.8	15/08/1990	36.2	15/08/1990
9.6	14/07/1991	13.6	17/06/1991	17.2	17/06/1991	21.6	17/06/1991	26.8	14/07/1991
5.8	04/06/1992	10.2	23/08/1992	13.4	23/08/1992	19.6	04/10/1992	26.6	04/10/1992
14.6	01/07/1993	22.8	01/07/1993	28.8	01/07/1993	39.2	01/07/1993	40.2	01/07/1993
9.4	08/08/1994	15.6	08/08/1994	24	08/08/1994	31.4	08/08/1994	32.6	08/08/1994
5.4	29/05/1995	9.4	29/05/1995	12.6	29/05/1995	16.8	29/05/1995	19.2	29/05/1995
7	08/08/1996	11	16/06/1996	15	16/06/1996	22	28/08/1996	26	28/08/1996

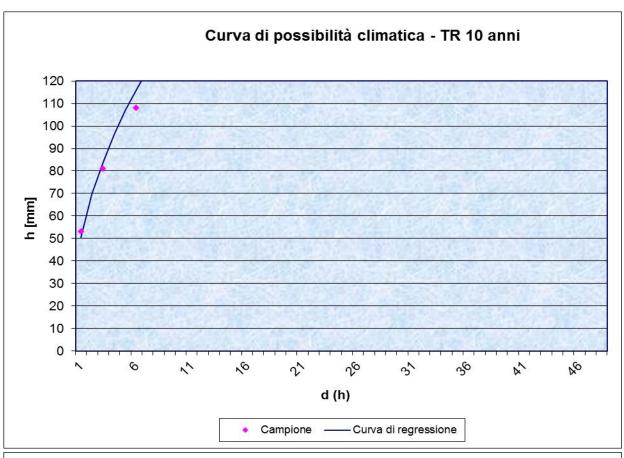

5 mir	ı	10 m	in	15 m	in	30 m	in	45 m	in
mm	data	mm	data	mm	data	mm	data	mm	data
6	05/07/1997	8.2	05/07/1997	8.8	05/07/1997	13.8	24/06/1997	16.6	24/06/1997
15.4	12/08/1998	27.4	12/08/1998	36.6	12/08/1998	52.2	12/08/1998	65	12/08/1998
7.8	07/06/1999	12.6	07/06/1999	15.8	07/06/1999	20.6	07/06/1999	25.4	20/09/1999
7.2	17/11/2000	11.2	17/11/2000	14	17/11/2000	22.8	17/11/2000	31	17/11/2000
7.8	21/10/2001	12.6	21/10/2001	15.4	21/10/2001	18.4	21/10/2001	23.4	21/10/2001
10.4	20/09/2002	16.8	06/06/2002	22.6	06/06/2002	41.2	06/06/2002	59.2	06/06/2002
8.4	24/06/2003	12.8	27/07/2003	15.2	27/07/2003	19	24/06/2003	24	05/10/2003
9.8	01/11/2004	18.6	01/11/2004	26.8	01/11/2004	39.6	01/11/2004	42.8	01/11/2004
6	22/07/2005	11.8	22/07/2005	16.8	22/07/2005	23.8	22/07/2005	26	22/07/2005
11.8	01/08/2006	13.2	01/08/2006	13.8	01/08/2006	13.8	01/08/2006	17.4	15/09/2006
9.8	09/08/2007	17.4	09/08/2007	22.6	09/08/2007	30	09/08/2007	31.4	08/08/2007
7	01/09/2008	11.4	01/09/2008	12.8	06/07/2008	20.4	01/08/2008	26.2	01/08/2008
5.2	04/07/2009	6.2	10/08/2009	10.2	10/08/2009	12.2	10/08/2009	15	28/04/2009
13.2	17/06/2010	22.4	17/06/2010	28	17/06/2010	39.6	29/07/2010	45.8	29/07/2010

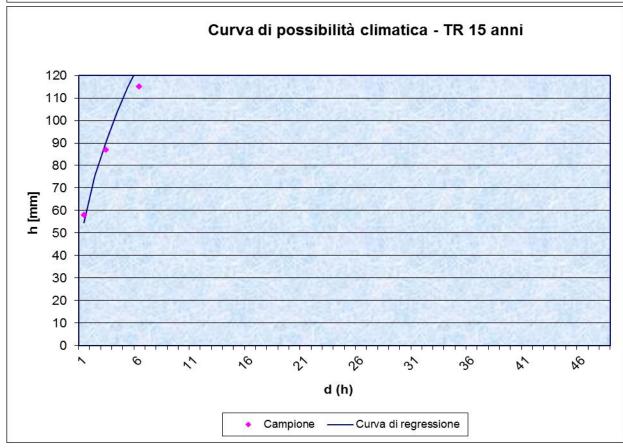


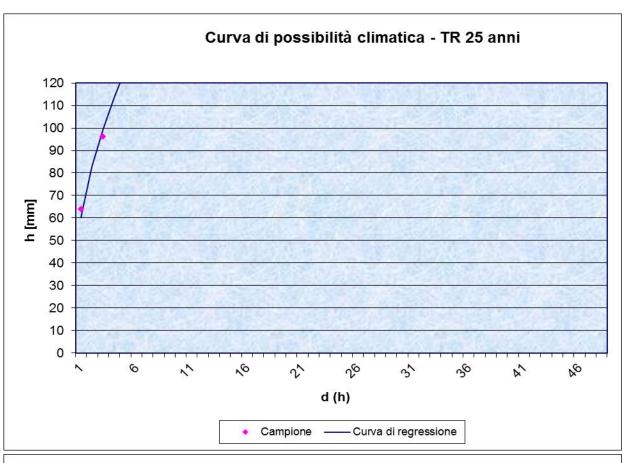


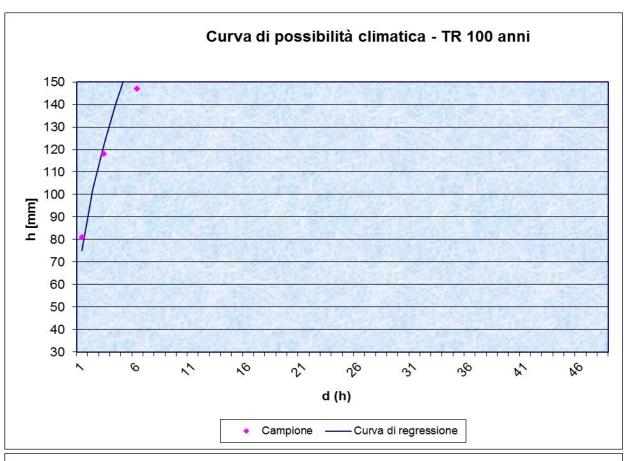


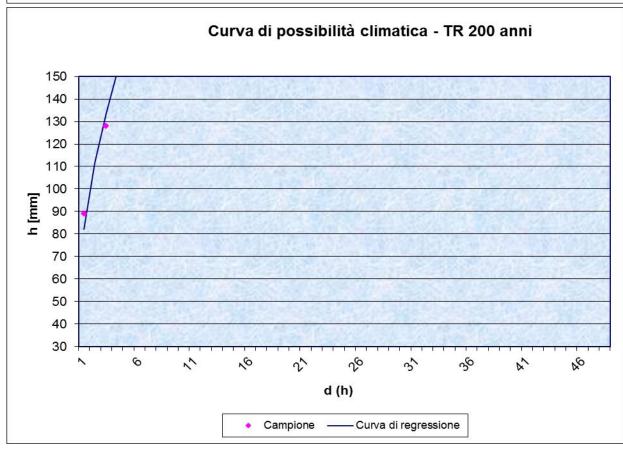


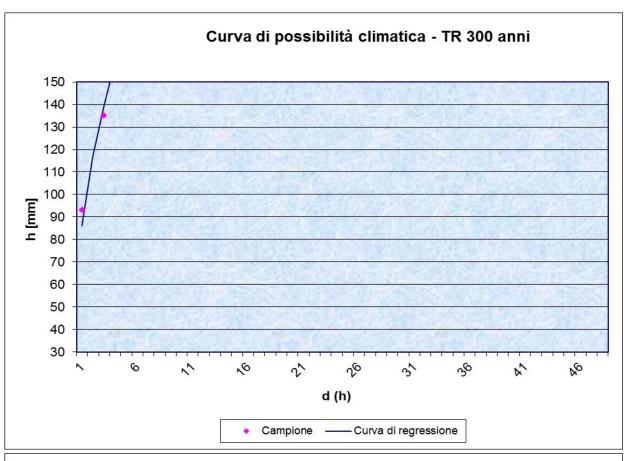


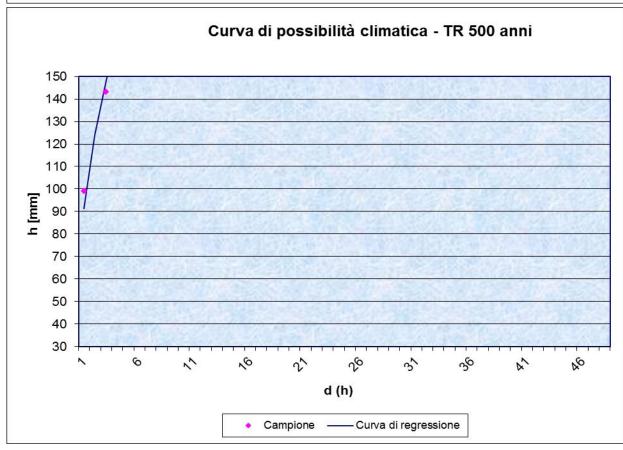

1 ora		3 ore	!	6 ore		12 or	·e	24 or	·e
mm	data								
50.6	17/10/1987	78.2	24/08/1987	106	24/08/1987	127	25/08/1987	145	25/08/1987
17.6	13/10/1988	39	13/10/1988	58.4	13/10/1988	76	13/10/1988	97	13/10/1988
24.4	03/07/1989	33.6	13/04/1989	53.2	13/04/1989	71.8	03/07/1989	115	13/04/1989
41.4	15/08/1990	44.4	15/08/1990	64.2	09/12/1990	101	25/11/1990	137	10/12/1990
27.6	14/07/1991	51.6	14/07/1991	74.6	14/07/1991	98.6	12/10/1991	139	12/10/1991
29.6	04/10/1992	65.2	04/10/1992	105	04/10/1992	200	04/10/1992	289	04/10/1992
41.2	01/07/1993	48.4	14/09/1993	79.6	02/10/1993	142	02/10/1993	169	02/10/1993
32.8	08/08/1994	40.4	18/05/1994	76.4	06/11/1994	128	06/11/1994	162	07/11/1994
20.4	08/05/1995	29.6	13/09/1995	50	13/09/1995	65.2	13/09/1995	86.4	14/09/1995
27.8	11/08/1996	57.2	12/08/1996	88.8	12/08/1996	109	17/10/1996	154	17/10/1996

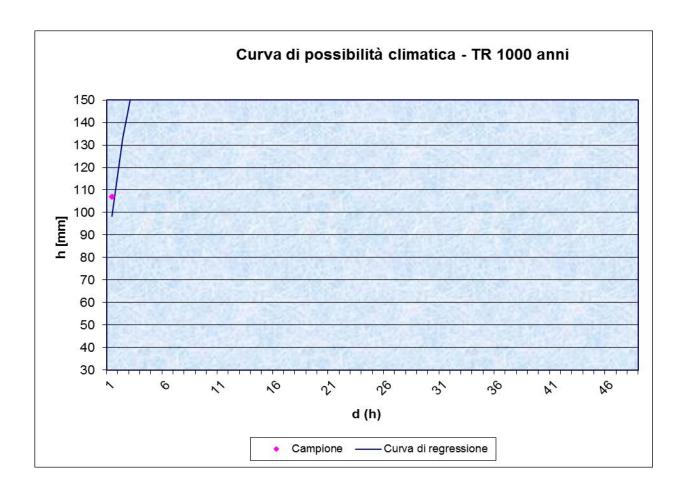

1 ora	l	3 ore	!	6 ore	!	12 oı	e	24 oı	re
mm	data								
19.6	11/07/1997	48.2	07/11/1997	73.4	07/11/1997	103	07/11/1997	124	07/11/1997
69	12/08/1998	74	12/08/1998	74.2	12/08/1998	83.4	12/09/1998	103	12/09/1998
29.8	20/09/1999	66	20/09/1999	113	20/09/1999	202	20/09/1999	249	20/09/1999
37	17/11/2000	74.6	17/11/2000	93.4	17/11/2000	168	17/11/2000	206	17/11/2000
25	21/10/2001	33.8	30/03/2001	47.6	30/03/2001	74.8	30/03/2001	109	30/03/2001
74.4	06/06/2002	117	06/06/2002	130	06/06/2002	139	06/06/2002	221	06/06/2002
25.8	05/10/2003	41.2	05/10/2003	65.6	05/10/2003	94.4	01/11/2003	134	01/11/2003
46.2	01/11/2004	76	01/11/2004	90.4	01/11/2004	100	01/11/2004	135	02/11/2004
26.6	22/07/2005	38	05/10/2005	55.2	05/10/2005	79.4	03/10/2005	111	03/10/2005
22.6	15/09/2006	49.6	15/09/2006	70.8	15/09/2006	98.2	15/09/2006	112	15/09/2006
34.4	08/08/2007	65	08/08/2007	107	09/08/2007	123	09/08/2007	165	24/11/2007
29	01/08/2008	37.8	04/11/2008	67.2	04/11/2008	106	05/11/2008	166	05/11/2008
19.4	28/04/2009	51	28/04/2009	84.8	28/04/2009	143	28/04/2009	202	28/04/2009
50.2	29/07/2010	68	29/07/2010	88.4	01/11/2010	158	01/11/2010	263	01/11/2010

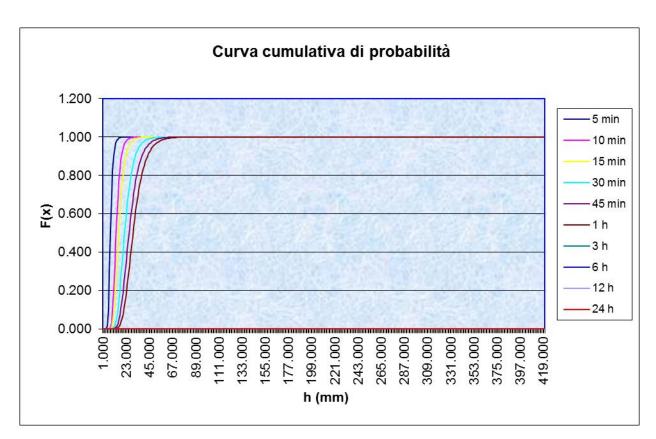


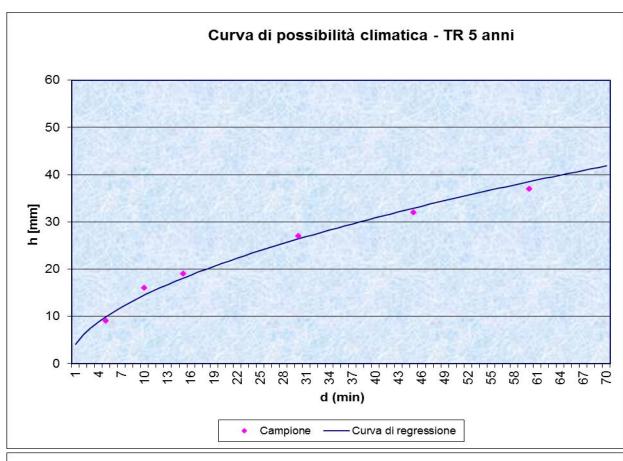


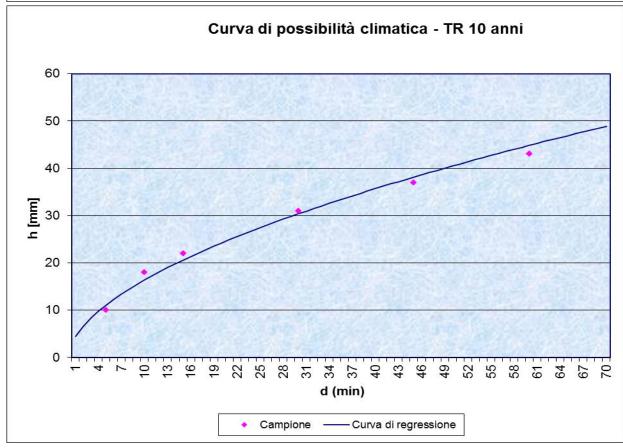


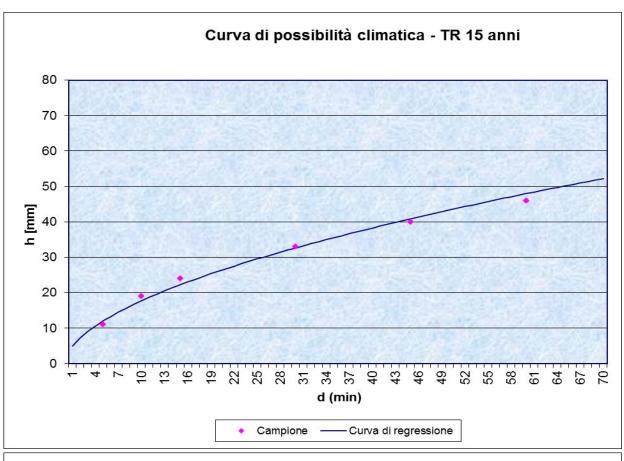


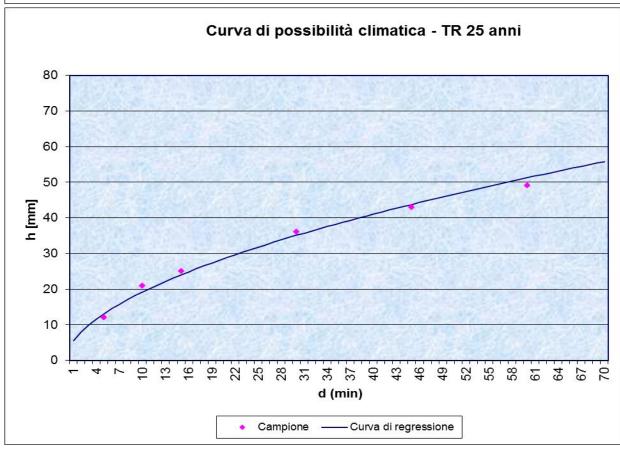


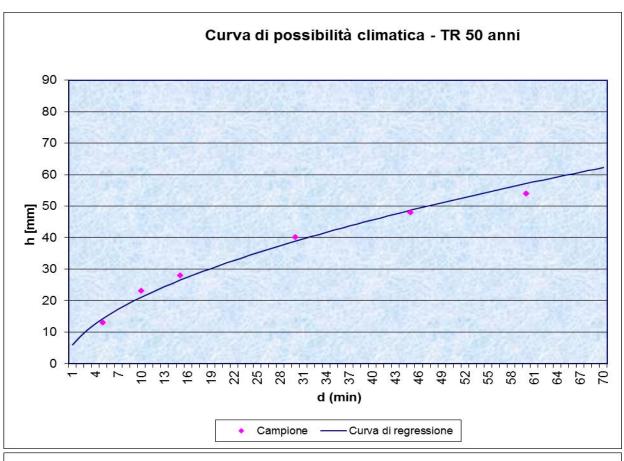


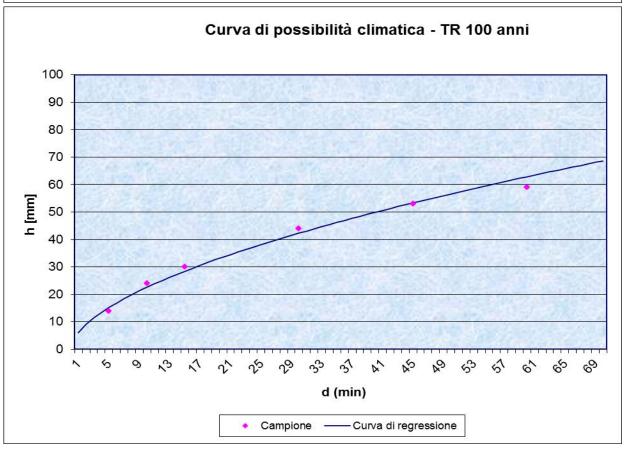

Stazione: Molini Laghi

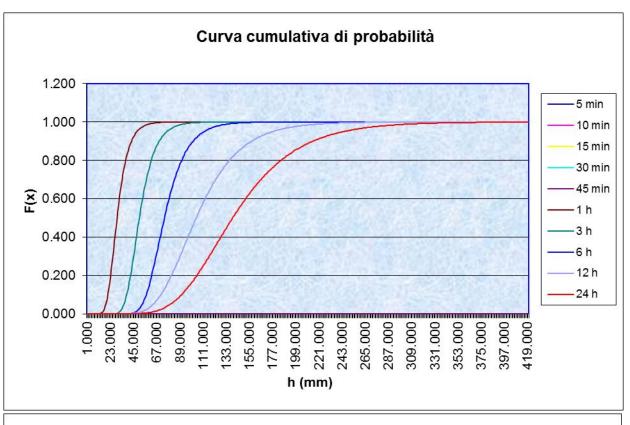

5 mir	า	10 m	in	15 m	in	30 m	in	45 m	in
mm	data	mm	data	mm	data	mm	data	mm	data
7.2	16/07/1992	13.6	12/07/1992	14.8	12/07/1992	18.6	23/08/1992	22	04/10/1992
6	08/10/1993	10.4	08/10/1993	12.6	23/09/1993	19.8	23/09/1993	24.4	23/09/1993
8.8	13/09/1994	16	08/08/1994	19.2	08/08/1994	25	08/08/1994	26.6	08/08/1994
7.2	03/07/1995	13.8	03/07/1995	15.2	03/07/1995	21	20/08/1995	26	20/08/1995
7	15/07/1996	12.4	11/08/1996	18	11/08/1996	29.8	11/08/1996	37	11/08/1996
5	05/07/1997	8	05/07/1997	8.2	05/07/1997	9.8	19/06/1997	13.4	19/06/1997
9.4	08/10/1998	11	05/09/1998	13.2	05/09/1998	18.6	05/09/1998	23.2	05/09/1998
7.6	20/09/1999	13.2	07/06/1999	16.4	07/06/1999	23.8	07/06/1999	25.4	07/06/1999
8.8	20/09/2000	15	20/09/2000	18.8	20/09/2000	29.4	17/11/2000	35	17/11/2000
10.4	09/08/2001	17.4	09/08/2001	17.8	09/08/2001	18.4	17/06/2001	20.2	17/06/2001

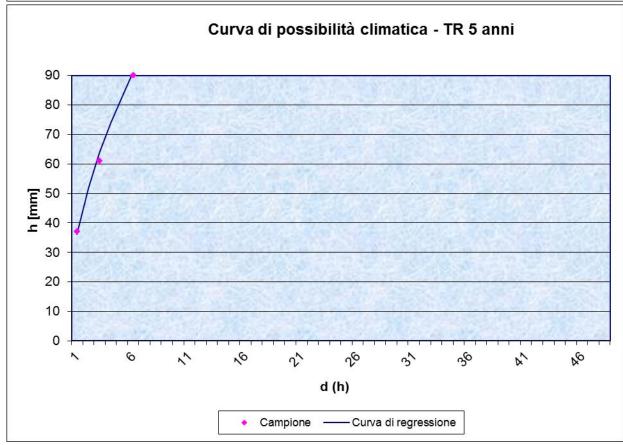

Stazione: Molini Laghi

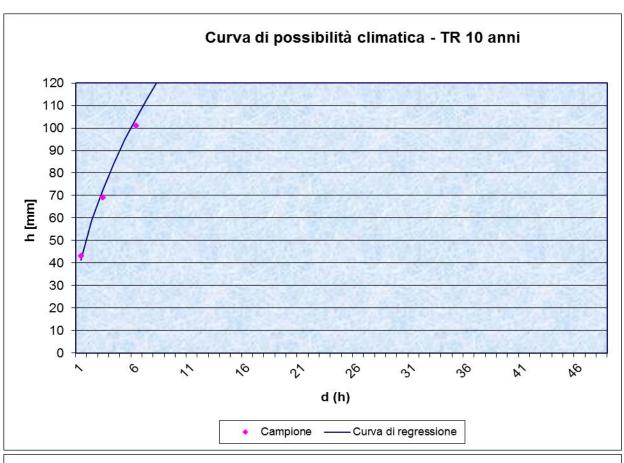

5 mir	า	10 m	in	15 m	in	30 m	in	45 m	in
mm	data	mm	data	mm	data	mm	data	mm	data
9	13/07/2002	15.4	31/07/2002	19.2	31/07/2002	28.2	13/07/2002	37.8	13/07/2002
7.4	27/07/2003	13.8	27/07/2003	16	27/07/2003	17.2	27/07/2003	17.4	27/07/2003
10.6	08/08/2004	14.4	01/11/2004	17.4	01/11/2004	26.4	01/11/2004	33.8	01/11/2004
8	21/07/2005	14.6	21/07/2005	16.4	21/07/2005	23	08/09/2005	28.4	08/09/2005
8.6	25/06/2006	14.2	25/06/2006	15.4	25/06/2006	15.6	25/06/2006	18.6	15/09/2006
8.6	28/08/2007	15.4	28/08/2007	17.2	28/08/2007	26.6	26/05/2007	29.8	20/08/2007
13.4	01/08/2008	22.6	01/08/2008	28.4	01/08/2008	36.8	01/08/2008	43.4	01/08/2008
4.4	16/08/2009	6.2	10/10/2009	7.2	10/10/2009	11	16/09/2009	15.2	16/09/2009
10	13/08/2010	16.4	13/08/2010	22	13/08/2010	29.2	29/07/2010	34.4	29/07/2010

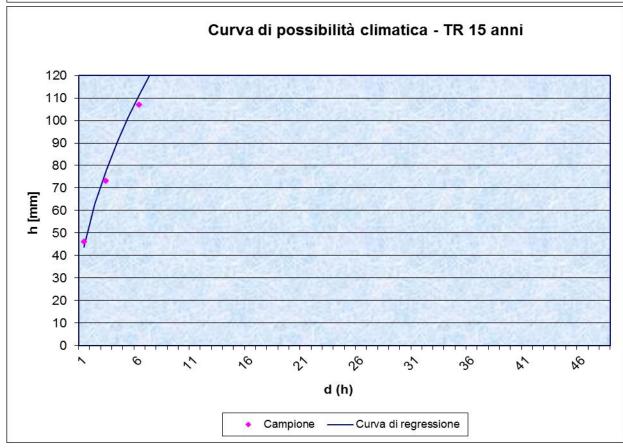


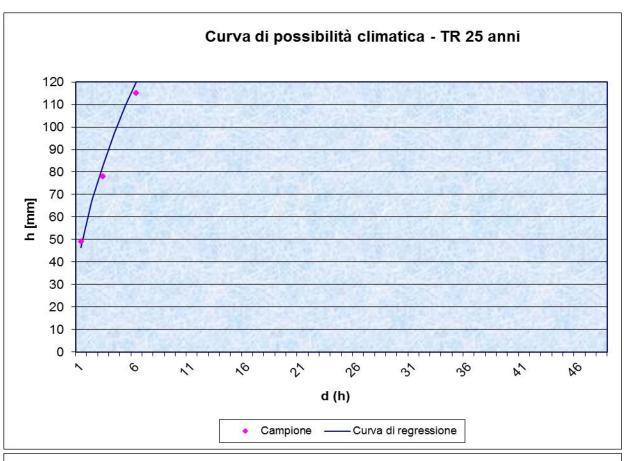


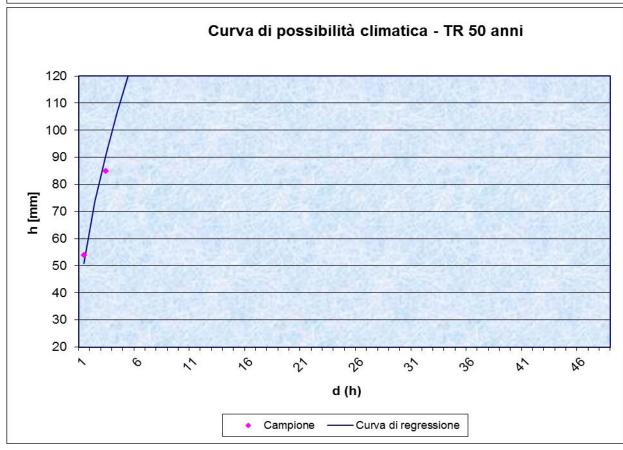


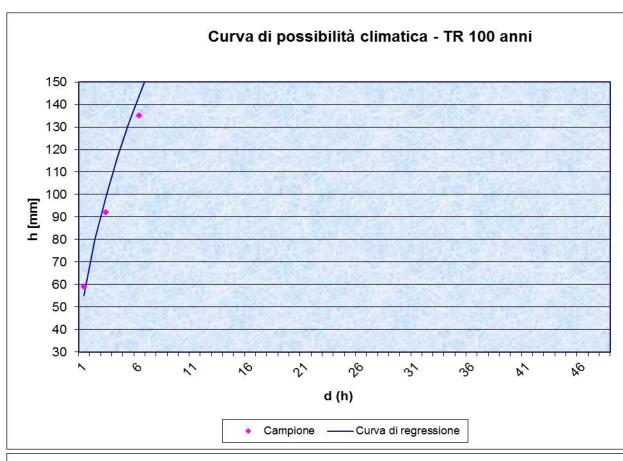


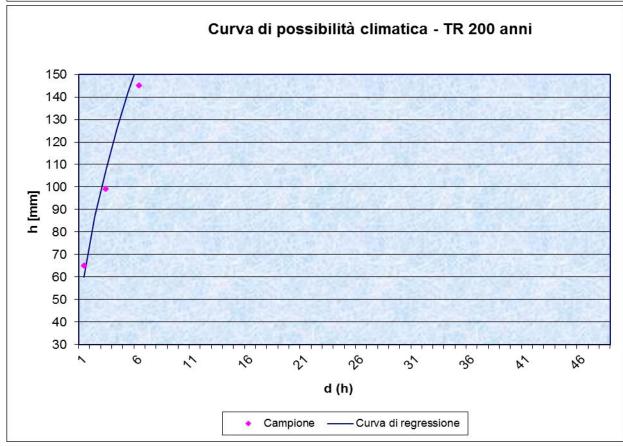


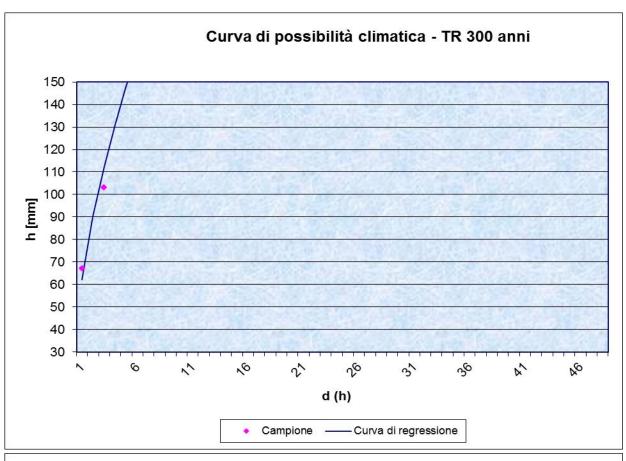

Stazione: Molini Laghi

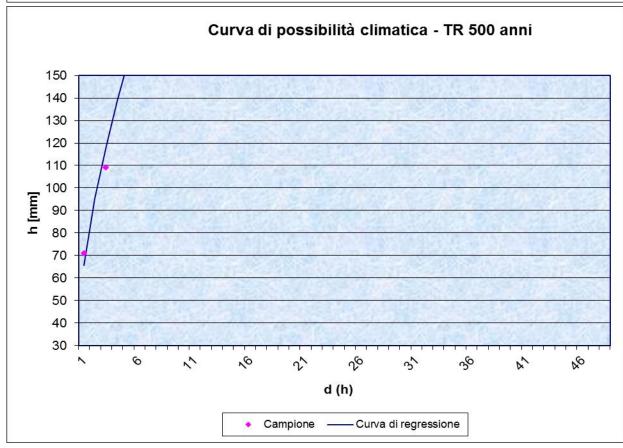

1 ora	1	3 ore		6 ore		12 or	·e	24 oı	·e
mm	data								
25.6	23/06/1992	56.8	05/10/1992	84.4	05/10/1992	149	04/10/1992	233	04/10/1992
27.4	23/09/1993	37.8	02/10/1993	65.8	02/10/1993	115	02/10/1993	133	03/10/1993
27	08/08/1994	50.8	18/05/1994	82.4	06/11/1994	129	06/11/1994	175	06/11/1994
26.8	20/08/1995	34.6	07/09/1995	60.4	07/09/1995	68.6	08/09/1995	81.4	14/09/1995
41.4	11/08/1996	67.4	11/08/1996	86.8	12/08/1996	90.4	12/08/1996	115	17/10/1996
17.4	19/06/1997	37.4	07/11/1997	59.2	07/11/1997	85	07/11/1997	105	07/11/1997
27.4	12/08/1998	48.4	05/09/1998	81.2	05/09/1998	92.4	05/09/1998	100	05/09/1998
28.2	07/11/1999	65	07/11/1999	96.4	20/09/1999	173	20/09/1999	213	20/09/1999
47.4	17/11/2000	67	17/11/2000	98.6	30/09/2000	135	17/11/2000	171	17/11/2000
21.2	17/06/2001	26	01/09/2001	34.2	18/05/2001	56.6	30/03/2001	91	30/03/2001
44.2	13/07/2002	76.6	06/06/2002	84.8	06/06/2002	98	06/06/2002	153	26/11/2002
20.8	27/11/2003	55.8	27/11/2003	100	27/11/2003	148	28/11/2003	167	28/11/2003
36	01/11/2004	54.2	01/11/2004	68.2	01/11/2004	86.8	11/03/2004	126	11/03/2004
31.6	08/09/2005	43.8	08/09/2005	56.8	09/09/2005	66.4	03/10/2005	100	09/09/2005
25.6	15/09/2006	59.2	15/09/2006	83.8	15/09/2006	109	15/09/2006	123	15/09/2006
37.2	09/08/2007	63	09/08/2007	92	09/08/2007	122	09/08/2007	165	09/08/2007
46.6	01/08/2008	50.6	02/08/2008	52.2	06/07/2008	64.4	14/09/2008	88.8	29/10/2008
19	16/09/2009	49	16/09/2009	83.4	28/04/2009	138	28/04/2009	217	28/04/2009
36.6	29/07/2010	57.6	01/11/2010	100	01/11/2010	170	01/11/2010	249	01/11/2010

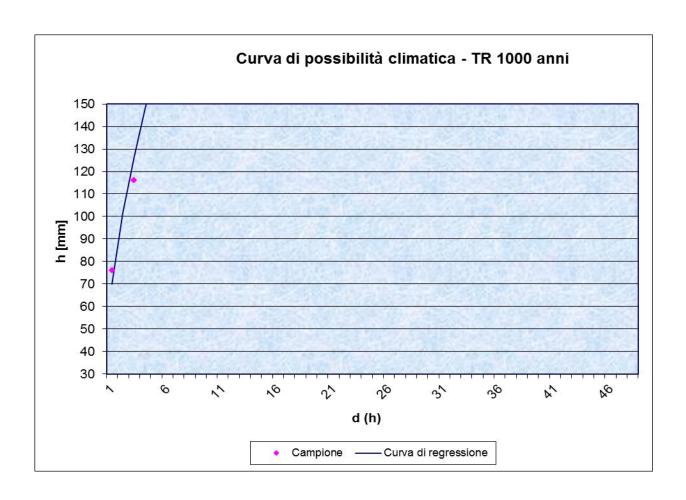


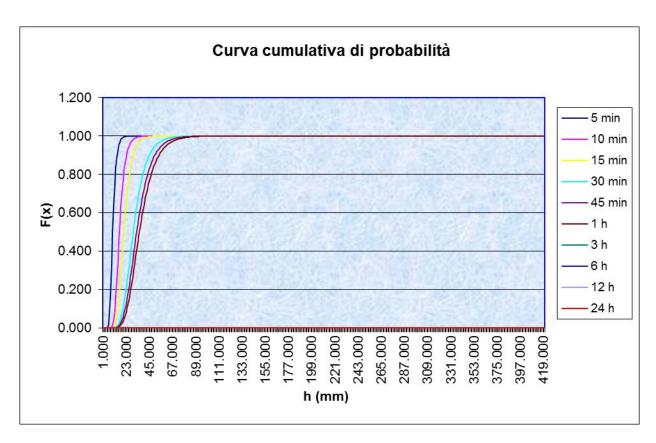


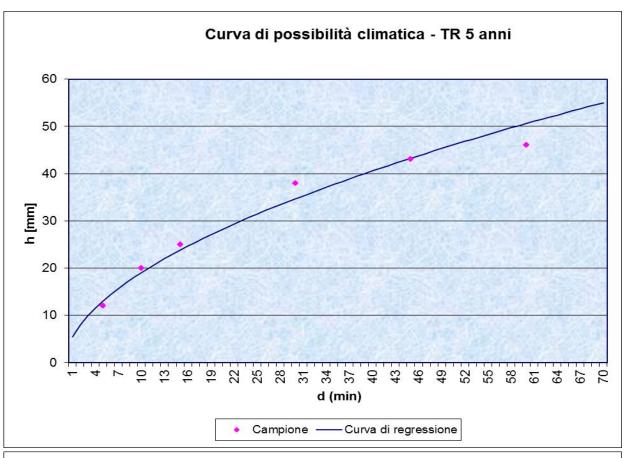


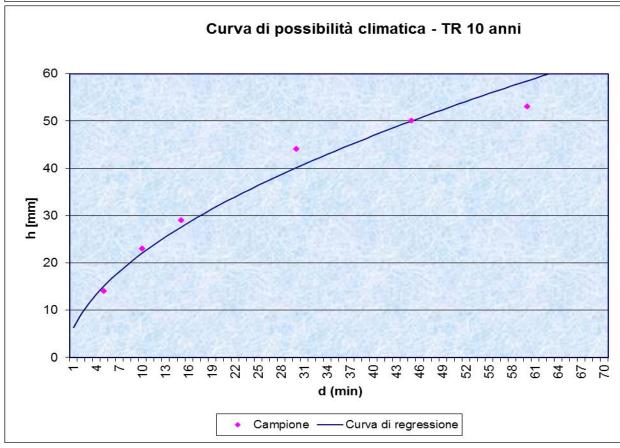


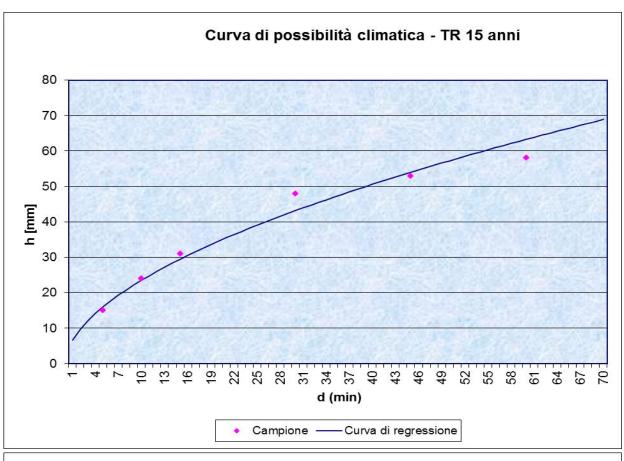


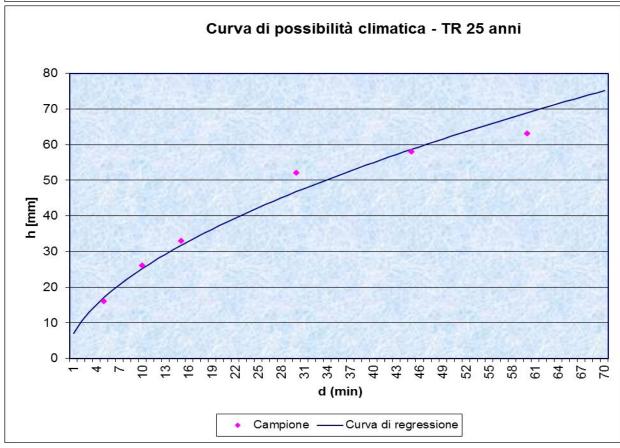


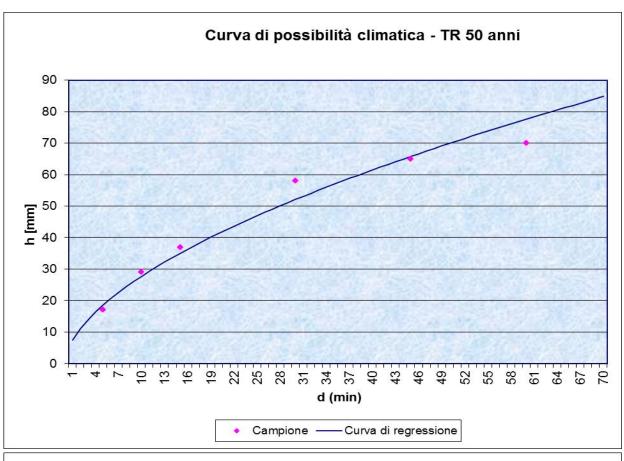


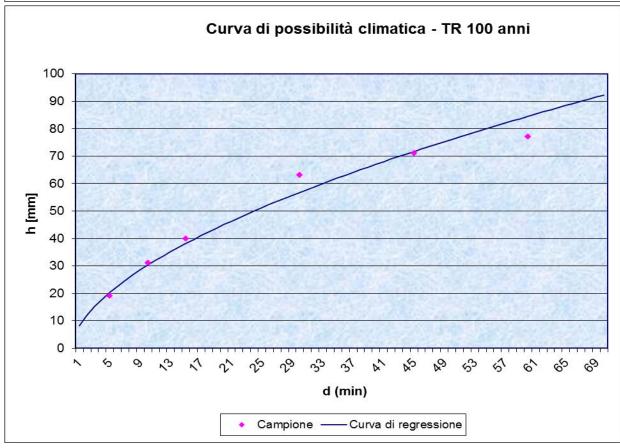

Stazione: Monte Summano

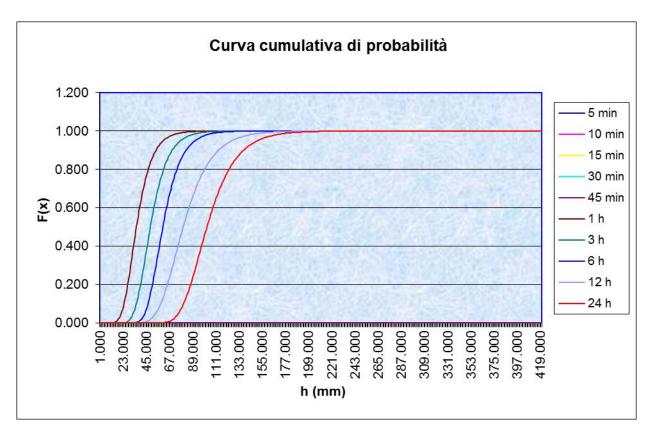

5 mir	า	10 m	in	15 m	in	30 m	in	45 m	in
mm	data	mm	data	mm	data	mm	data	mm	data
8.4	06/09/1987	14.4	06/09/1987	17.4	06/09/1987	24	06/09/1987	30.6	06/09/1987
11.2	21/08/1988	18.4	21/08/1988	21.4	21/08/1988	30	16/08/1988	31.8	16/08/1988
8.6	01/07/1993	14.8	11/07/1993	19.4	01/07/1993	31	01/07/1993	34.8	01/07/1993
10.6	14/09/1994	17.8	13/09/1994	25	13/09/1994	34.4	13/09/1994	36.8	13/09/1994
7.6	02/08/1995	11	15/07/1995	14.2	15/07/1995	22.6	15/07/1995	25.2	15/07/1995
15.4	24/08/1996	23.8	24/08/1996	31.2	24/08/1996	51.2	24/08/1996	64	24/08/1996
5.6	07/10/1997	9.4	07/10/1997	10.4	05/07/1997	15	14/06/1997	16.4	14/06/1997
8.6	10/06/1998	15.2	14/07/1998	19.4	14/07/1998	33	04/10/1998	41.4	14/07/1998
9	12/08/1999	14.2	12/08/1999	18.4	12/08/1999	25.6	12/08/1999	27.8	12/08/1999
10	15/06/2000	17	15/06/2000	24.2	20/09/2000	35.6	20/09/2000	39.2	20/09/2000

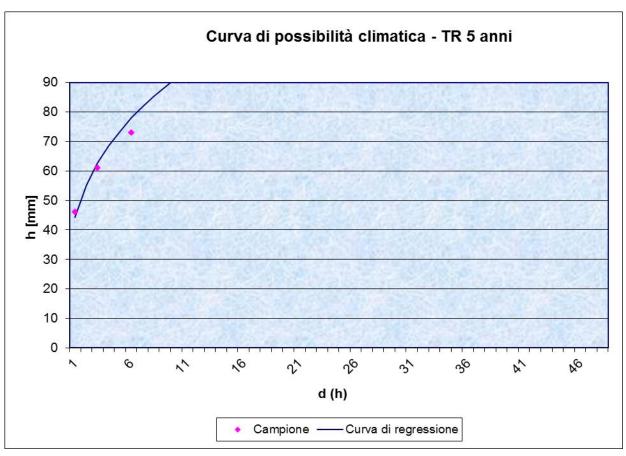

Stazione: Monte Summano

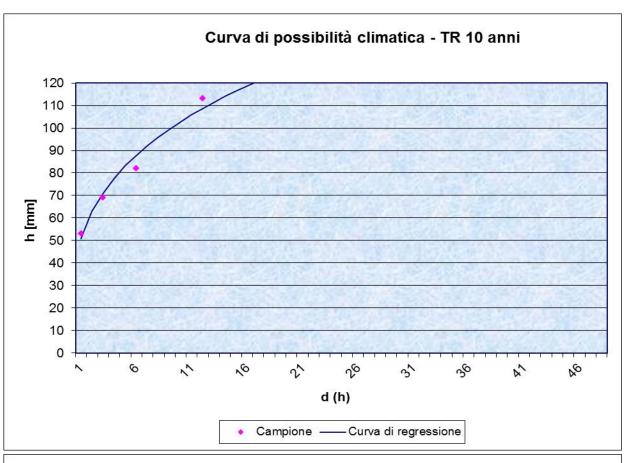

5 mir	า	10 m	in	15 m	in	30 m	in	45 m	in
mm	data	mm	data	mm	data	mm	data	mm	data
14.6	31/08/2001	26.2	20/08/2001	33.2	20/08/2001	47.4	31/08/2001	49.8	31/08/2001
9.2	13/07/2002	18.4	13/07/2002	26.2	13/07/2002	44.4	13/07/2002	46	13/07/2002
12.4	25/08/2003	20.4	27/06/2003	21	27/06/2003	21.4	27/06/2003	21.4	27/06/2003
9.8	29/08/2004	14	25/06/2004	15.8	25/06/2004	21.8	31/08/2004	24.4	31/08/2004
14.4	20/08/2005	18.6	20/08/2005	20.4	20/08/2005	28.8	09/09/2005	36	09/09/2005
8.2	29/06/2006	13	15/09/2006	20.6	15/09/2006	28.2	15/09/2006	32	16/09/2006
10.8	09/08/2007	20	09/08/2007	29.4	09/08/2007	46	09/08/2007	47.2	09/08/2007
14	12/09/2008	21.6	02/06/2008	24.4	06/07/2008	40.8	06/07/2008	43.8	06/07/2008
7.2	28/06/2009	11.8	28/06/2009	13.2	28/06/2009	16.2	06/06/2009	19.4	06/06/2009
14.4	13/08/2010	24.4	13/08/2010	27.2	13/08/2010	28.2	13/08/2010	28.4	13/08/2010

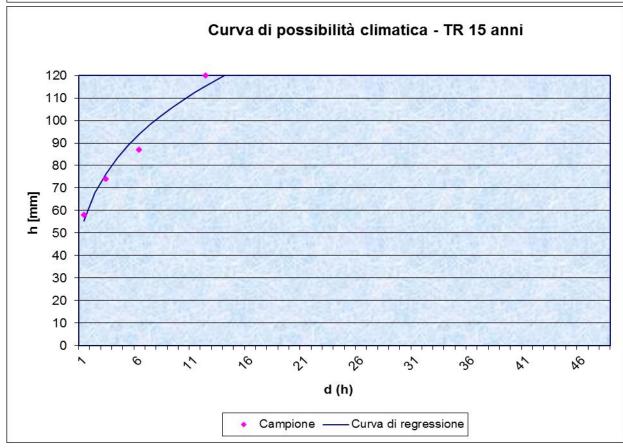


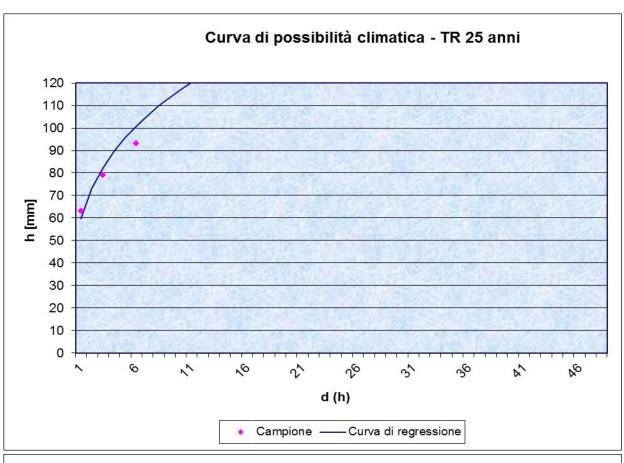


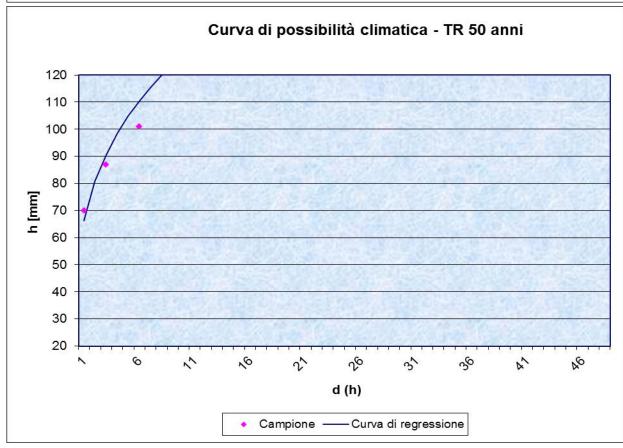


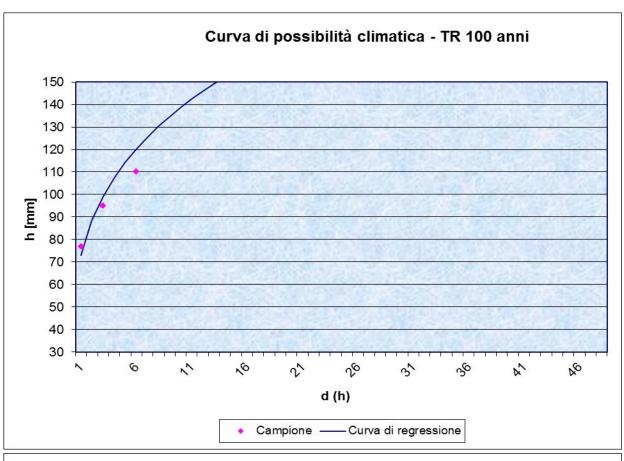


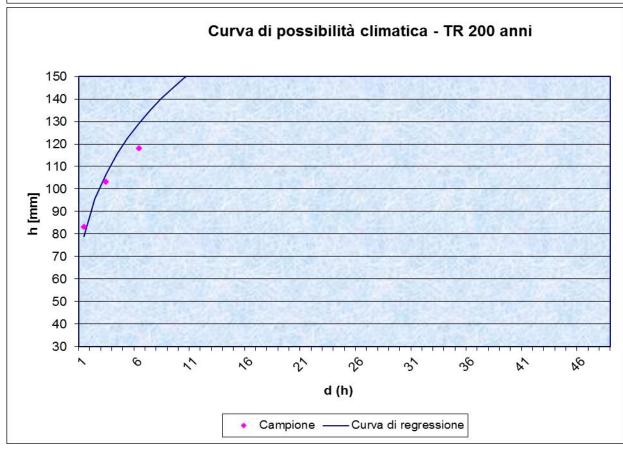


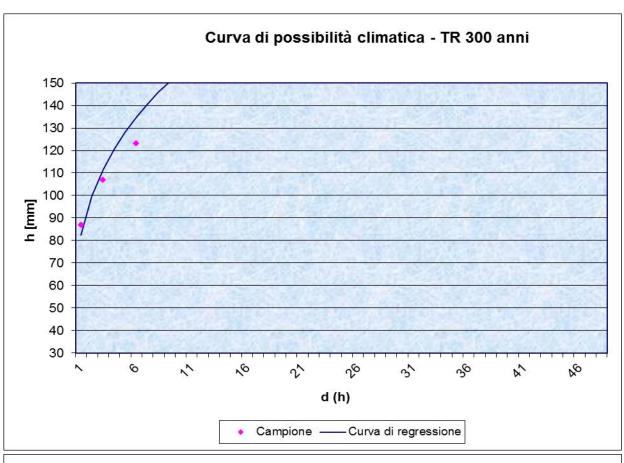

Stazione: Monte Summano

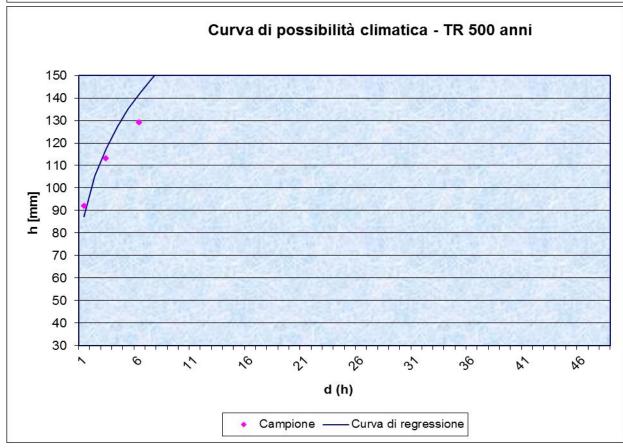

1 ora	ı	3 ore		6 ore		12 or	·e	24 oı	·e
mm	data								
36.2	06/09/1987	52.4	06/09/1987	61.8	06/09/1987	61.8	06/09/1987	87.4	11/10/1987
32	16/08/1988	46.8	16/08/1988	61.4	16/08/1988	62	17/08/1988	86	31/03/1988
39	11/07/1993	52.6	11/07/1993	58	11/07/1993	70.8	11/07/1993	71.6	11/07/1993
38.2	13/09/1994	49	20/07/1994	68.6	20/07/1994	101	18/05/1994	107	19/05/1994
25.8	15/07/1995	46.2	31/05/1995	55.6	08/09/1995	62.8	31/05/1995	86.8	12/05/1995
70.2	24/08/1996	82.6	24/08/1996	82.6	24/08/1996	82.6	24/08/1996	96.2	18/10/1996
20.8	07/11/1997	31.6	07/11/1997	36.6	07/11/1997	61.8	20/12/1997	82.2	07/11/1997
53.8	14/07/1998	74.6	14/07/1998	75.8	14/07/1998	92	14/07/1998	102	07/10/1998
31.4	20/09/1999	60.6	20/09/1999	91.8	20/09/1999	154	20/09/1999	164	20/09/1999
41.6	20/09/2000	47	21/09/2000	76.6	06/11/2000	116	06/11/2000	127	07/11/2000
50.6	31/08/2001	53.6	31/08/2001	55	31/08/2001	64.8	20/07/2001	85.2	31/08/2001
46.4	13/07/2002	49.2	13/07/2002	50.8	11/08/2002	80.2	04/05/2002	123	11/08/2002
21.6	27/06/2003	26	27/11/2003	40.8	28/11/2003	77.6	28/11/2003	98	29/12/2003
27.4	31/08/2004	44.2	11/10/2004	54.4	11/10/2004	71	30/11/2004	101	30/11/2004
41.6	09/09/2005	63	28/09/2005	92.4	05/10/2005	106	05/10/2005	120	03/10/2005
34.8	15/09/2006	64.8	16/09/2006	67.2	16/09/2006	75.6	15/09/2006	144	16/09/2006
47.2	09/08/2007	47.8	09/08/2007	55.2	28/05/2007	87.4	29/05/2007	102	29/05/2007
44	06/07/2008	59.4	06/07/2008	65.4	06/07/2008	65.8	04/11/2008	86.8	14/09/2008
19.6	06/06/2009	29	16/09/2009	49.6	16/09/2009	90.2	16/09/2009	123	16/09/2009
28.6	13/08/2010	39.6	23/12/2010	60.2	23/12/2010	89.2	23/12/2010	133	24/12/2010



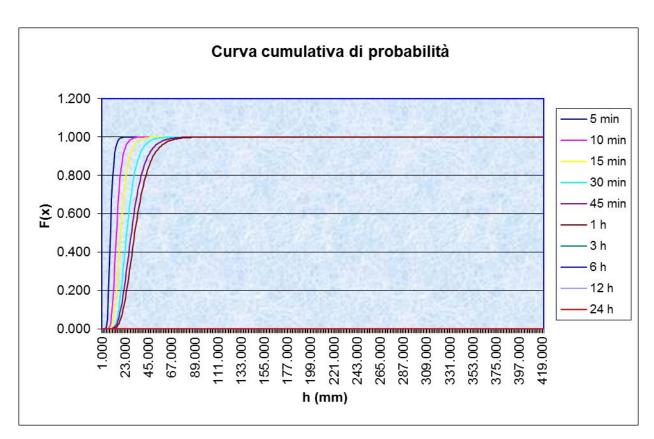


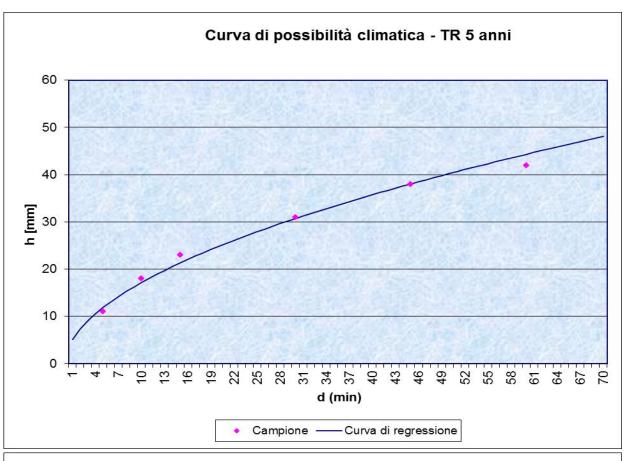


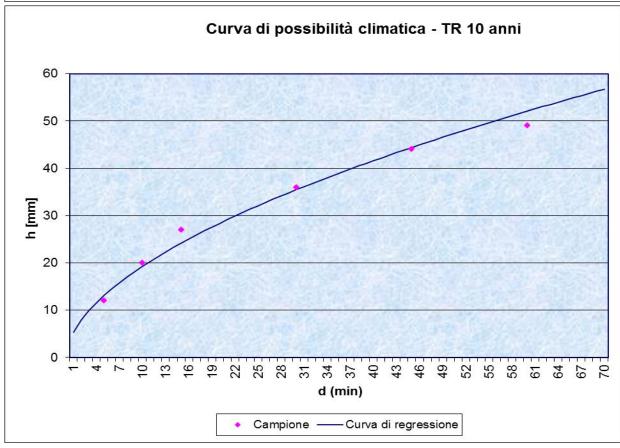


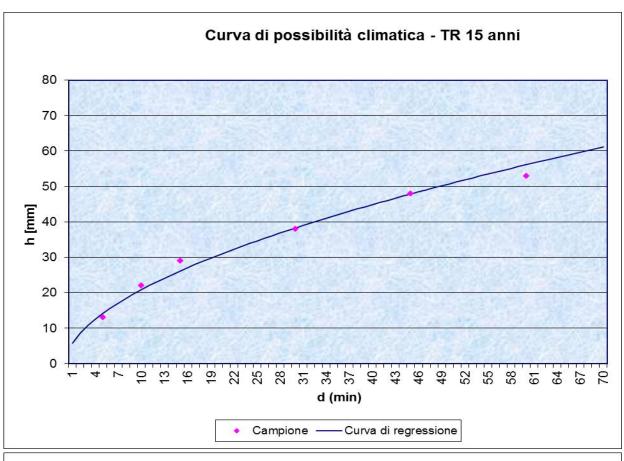


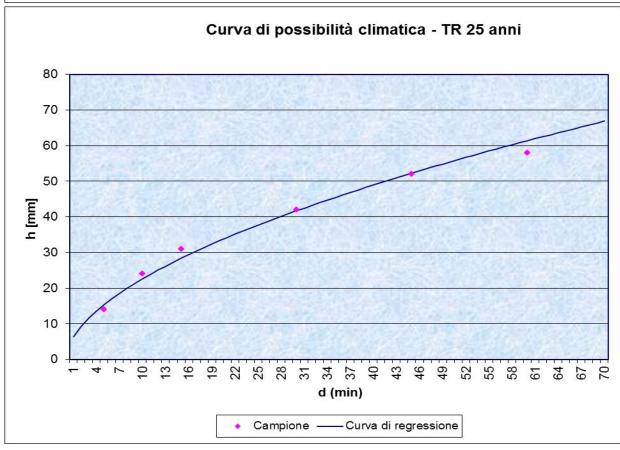


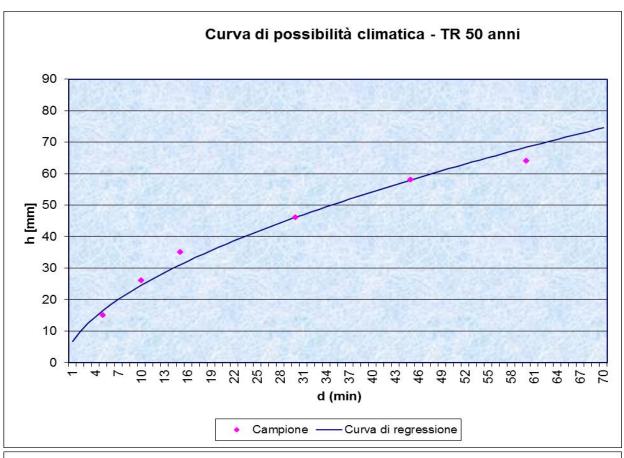


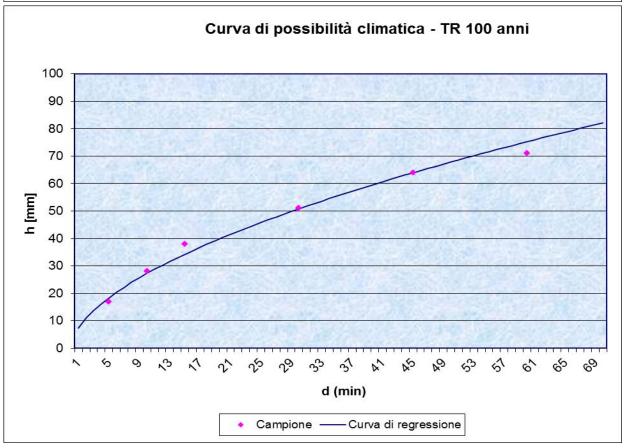

Stazione: Passo Xomo - Posina

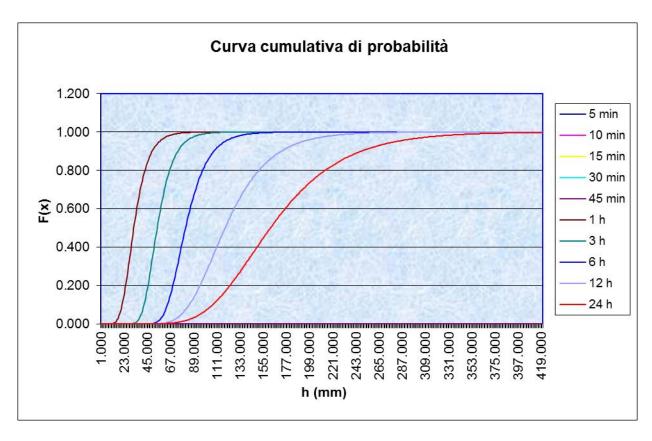

5 mir	ı	10 m	in	15 m	in	30 m	in	45 min	
mm	data	mm	data	mm	data	mm	data	mm	data
4.6	04/06/1992	9	04/06/1992	11.4	04/06/1992	16.8	23/09/1992	22.8	23/09/1992
10.6	08/10/1993	18.6	08/10/1993	22.2	08/10/1993	23.4	08/10/1993	23.8	08/10/1993
8.8	14/09/1994	13.8	14/09/1994	18.6	14/09/1994	22.2	14/09/1994	29.6	20/07/1994
7.8	23/07/1995	14.4	23/07/1995	17.6	23/07/1995	22.6	23/07/1995	25.2	23/07/1995
11	28/08/1996	16.4	28/08/1996	20.8	28/08/1996	27.6	11/08/1996	37.8	11/08/1996
6.2	05/07/1997	10.8	05/07/1997	14	05/07/1997	17.4	05/07/1997	20.4	05/07/1997
10	14/05/1998	16.8	14/05/1998	20.4	14/05/1998	27.6	14/05/1998	29	14/05/1998
6.4	28/07/1999	8.2	28/07/1999	11.8	28/07/1999	22	28/07/1999	25.6	20/09/1999
12.2	08/07/2000	21.2	08/07/2000	30	08/07/2000	39.8	08/07/2000	44.2	08/07/2000
11.6	21/10/2001	16.8	21/10/2001	19.8	21/10/2001	24.2	21/10/2001	29.8	21/10/2001

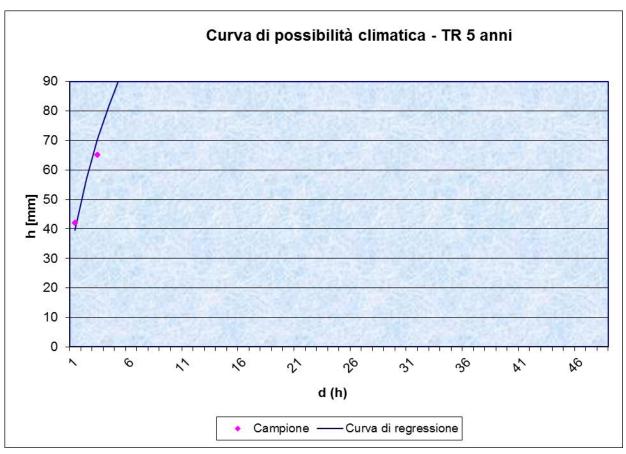

Stazione: Passo Xomo - Posina

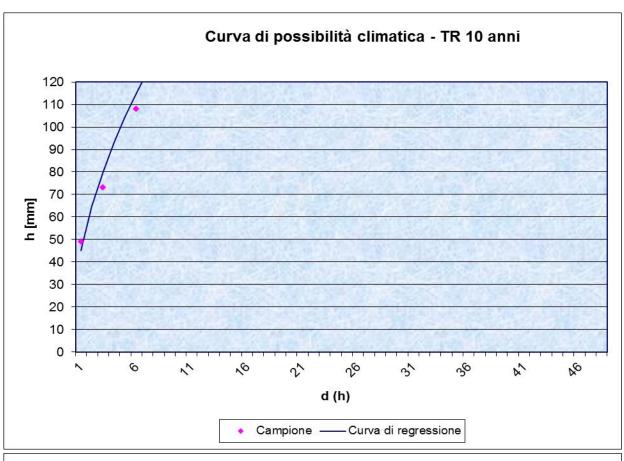

5 mir	า	10 m	in	15 m	in	30 m	in	45 min	
mm	data	mm	data	mm	data	mm	data	mm	data
12.4	06/06/2002	21.8	06/06/2002	27	06/06/2002	39.8	13/07/2002	59.6	13/07/2002
10.4	27/07/2003	15.2	27/07/2003	18.6	14/08/2003	25.8	14/08/2003	33.2	14/08/2003
8.8	19/06/2004	16	01/11/2004	21.6	01/11/2004	28.2	01/11/2004	31	01/11/2004
9.2	12/07/2005	12.2	12/07/2005	14	12/07/2005	15	12/07/2005	16.8	03/10/2005
6	27/07/2006	11.4	27/07/2006	16	27/07/2006	22.2	27/07/2006	23.6	27/07/2006
14.8	30/08/2007	24.4	09/08/2007	34.8	09/08/2007	43	09/08/2007	43.6	09/08/2007
9.2	28/06/2008	16.4	26/07/2008	20.8	26/07/2008	28.6	26/07/2008	36.2	26/07/2008
8.8	29/08/2009	11.4	13/09/2009	13.4	13/09/2009	14	13/09/2009	14	01/07/2009
7.4	17/06/2010	14.4	17/06/2010	16.4	29/07/2010	27.4	17/06/2010	32.6	29/07/2010

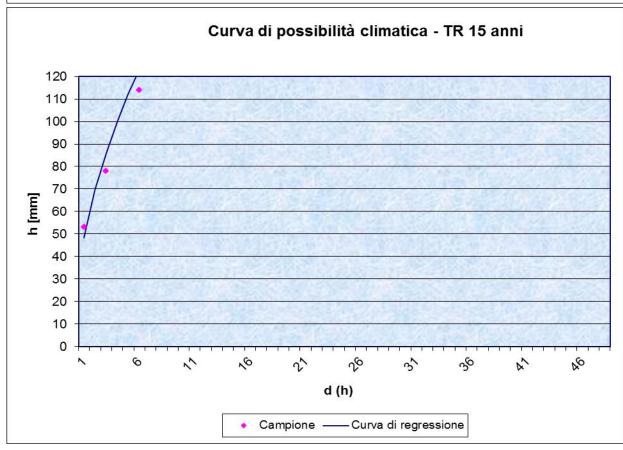


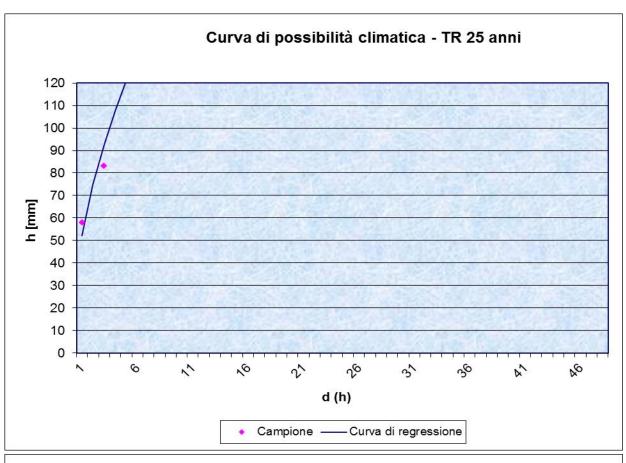


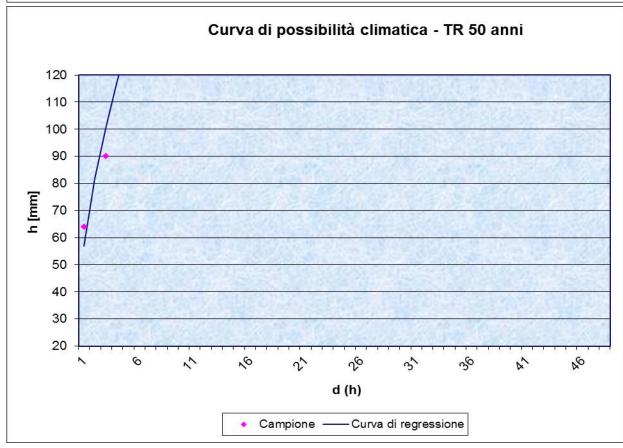




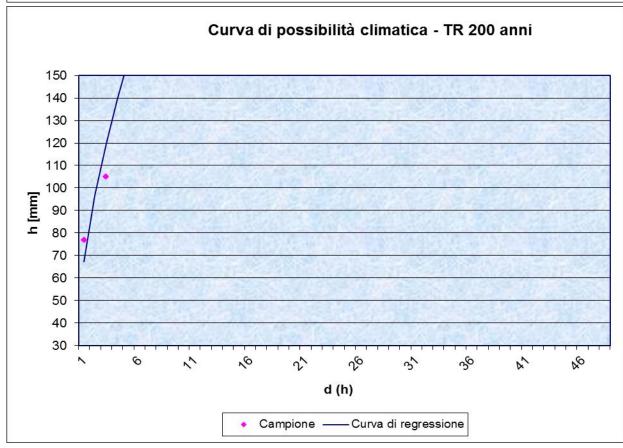

Stazione: Passo Xomo - Posina

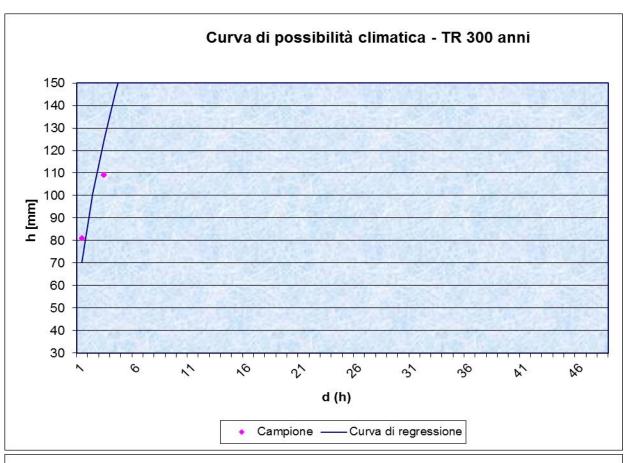

Piogge lunghe

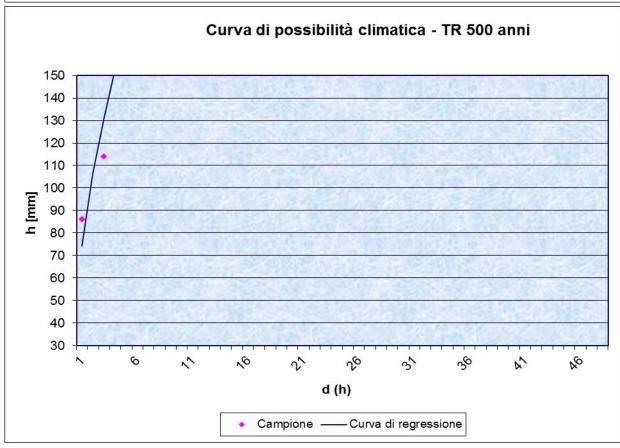

1 ora	ı	3 ore		6 ore	!	12 or	e	24 or	e
mm	data								
25	23/09/1992	52.8	04/10/1992	100	04/10/1992	176	04/10/1992	249	04/10/1992
26.6	11/07/1993	57	02/10/1993	88	02/10/1993	152	02/10/1993	173	02/10/1993
35.4	20/07/1994	62.8	20/07/1994	84.2	20/07/1994	135	06/11/1994	173	07/11/1994
25.4	23/07/1995	44.8	07/09/1995	68.2	07/09/1995	81	14/09/1995	98.2	14/09/1995
40.8	11/08/1996	61.4	11/08/1996	84.2	12/08/1996	115	17/10/1996	160	17/10/1996
23.2	07/11/1997	59.8	07/11/1997	88	07/11/1997	120	07/11/1997	148	07/11/1997
31	14/05/1998	40.6	20/08/1998	59.6	05/09/1998	70.6	05/09/1998	93.2	29/05/1998
29.8	20/09/1999	60.6	20/09/1999	101	20/09/1999	182	20/09/1999	232	20/09/1999
47.8	08/07/2000	56.6	08/07/2000	88.8	06/11/2000	127	17/11/2000	163	17/11/2000
31.4	21/10/2001	37	21/10/2001	42.4	21/10/2001	65.6	30/03/2001	101	30/03/2001
67.2	13/07/2002	90	06/06/2002	94.2	06/06/2002	141	26/11/2002	225	26/11/2002
43.6	14/08/2003	62.6	14/08/2003	79.2	27/11/2003	116	28/11/2003	135	28/11/2003
34.4	01/11/2004	72	01/11/2004	86.6	01/11/2004	95.8	01/11/2004	135	02/11/2004
19.4	03/10/2005	35.6	03/10/2005	61.2	03/10/2005	84.8	03/10/2005	121	03/10/2005
23.6	27/07/2006	54	15/09/2006	79.8	15/09/2006	110	15/09/2006	130	15/09/2006
45.8	09/08/2007	72	09/08/2007	123	09/08/2007	137	09/08/2007	220	24/11/2007
38.4	26/07/2008	49.6	04/11/2008	83.6	04/11/2008	124	05/11/2008	177	05/11/2008
18.6	13/09/2009	43	28/04/2009	77.4	28/04/2009	135	28/04/2009	204	28/04/2009
38.8	29/07/2010	59.2	01/11/2010	109	01/11/2010	197	01/11/2010	319	01/11/2010

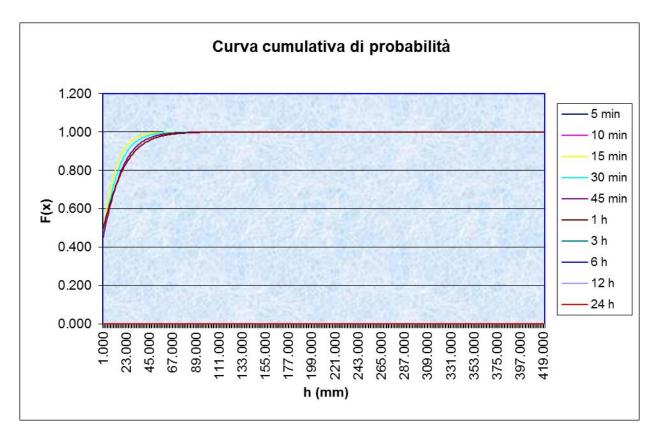


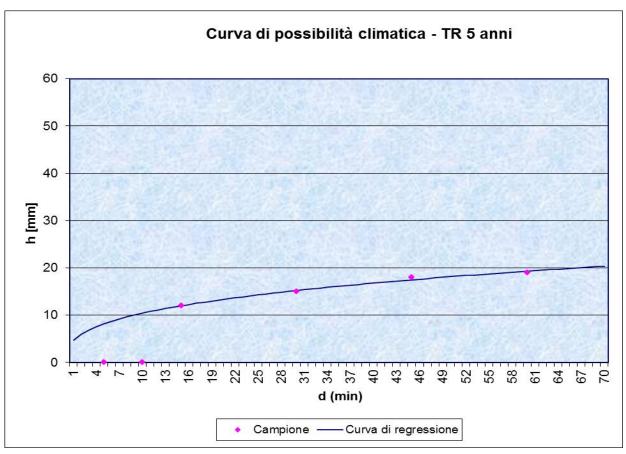


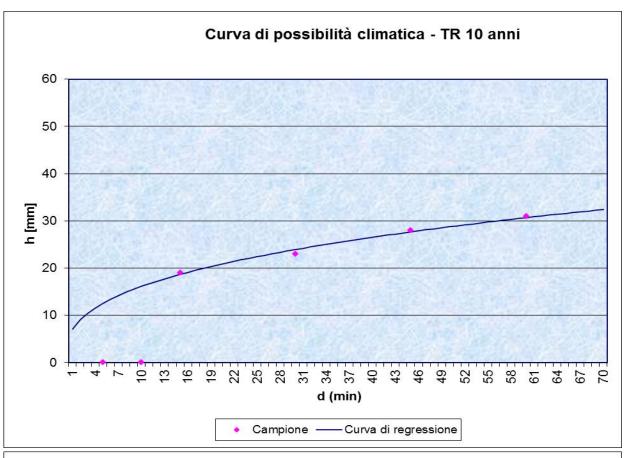


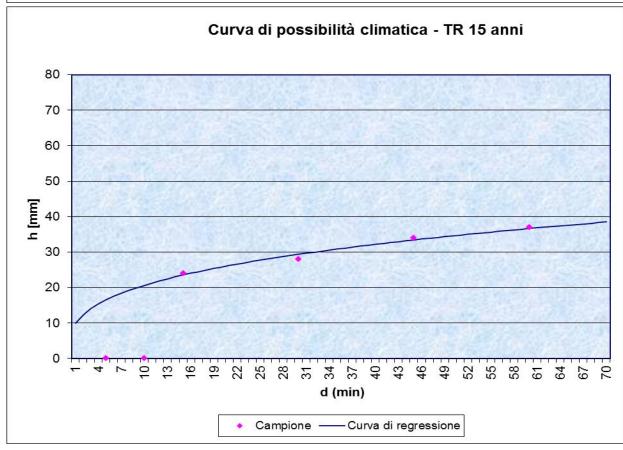


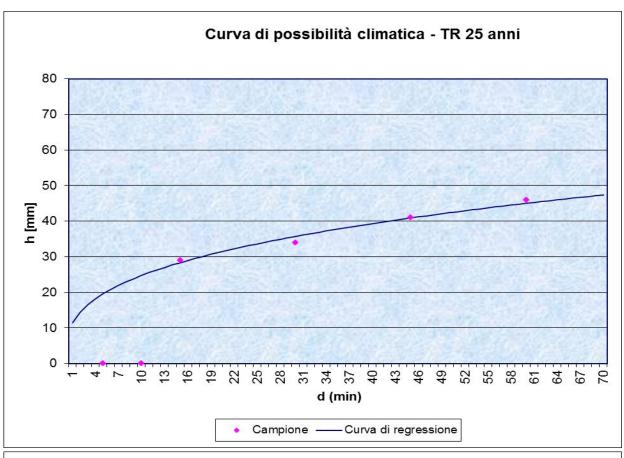


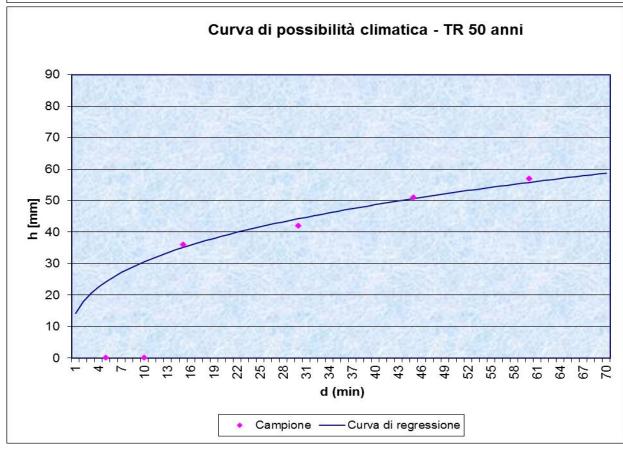


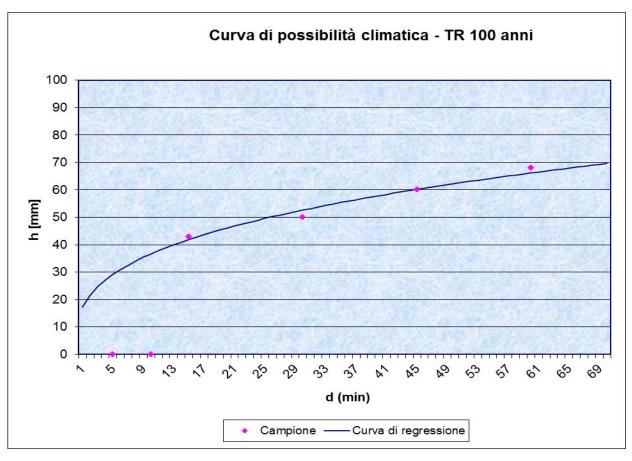

Stazione: Telve Piogge brevi


5 min	5 min 10 min			15 min		30 m	in	45 min	
mm	data	mm	data	mm	data	mm	data	mm	data
-	-	-	-	12.4	10 lug.	22.8	15 ago.	11.6	-
-	-	-	-	5.0	06 nov.	9.0	19 set.	27.8	-
-	-	-	-	17.6	12 ago.	20.6	12 ago.	21.6	-
-	-	-	-	25.0	16 set.	8.4	09 lug.	10.4	-
-	-	-	-	10.0	16 nov.	15.0	16 nov.	26.2	-
-	-	-	-	22.4	07 apr.	21.0	05 set.	16.6	-
-	-	-	-	13.2	05 set.	18.4	11 set.	28.6	-
-	-	-	-	15.4	11 set.	22.2	28 lug.	25.0	-
-	-	-	-	17.2	28 lug.	22.6	22 ago.	23.0	-
-	-	-	-	25.2	18 feb.	16.6	22 ago.	21.6	-

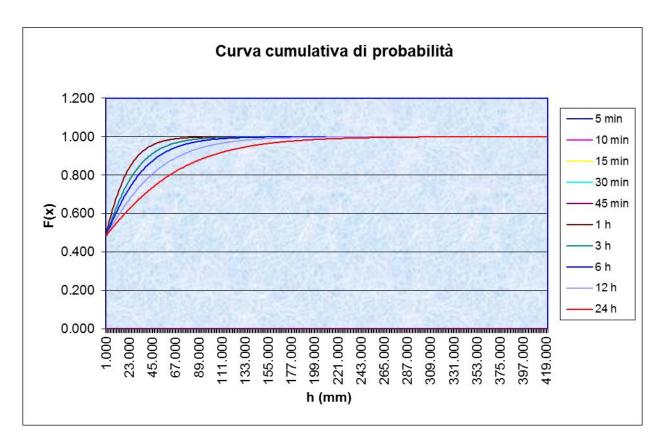

Stazione: Telve Piogge brevi

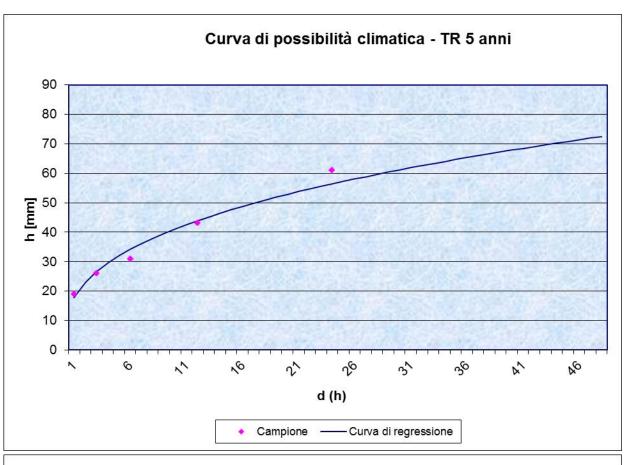

5 min		10 min		15 m	in	30 m	in	45 m	in
mm	data	mm	data	mm	data	mm	data	mm	data
-	-	-	-	17.2	22 ago.	13.2	01 ott.	16.6	-
-	-	-	-	14.6	22 ago.	18.6	11 giu.	20.0	-
-	-	-	-	12.8	16 set.	14.8	04 mag.	18.4	-
-	-	-	-	12.0	05 lug.	20.0	05 lug.	13.2	-
-	-	-	-	18.0	05 lug.	18.0	16 ott.	16.6	-
-	-	-	-	17.8	16 ott.	12.0	09 giu.	24.6	-
-	-	-	-	11.8	23 mag.	15.0	08 lug.	16.4	-
-	-	-	-	12.6	08 lug.	19.6	15 lug.	24.2	-
-	-	-	-	10.8	15 lug.	14.4	06 ago.	26.0	-
-	-	-	-	12.0	06 ago.	22.8	03 lug.	40.2	-
-	-	-	-	17.6	29 ago.	20.0	24 ago.	13.6	-
-	-	-	-	14.0	24 ago.	29.2	12 ago.	20	-
-	-	-	-	18.0	12 ago.	13.0	17 ago.	19.8	-
-	-	-	-	10.2	17 ago.	17.8	-	27.6	-
-	-	-	-	16.8	-	16.8	-	37	-
-	-	-	-	11.8	-	25.8	-	23.6	-
-	-	-	-	17.8	-	30	-	18	-
-	-	-	-	19.2	-	20.2	-	14.4	-
-	-	-	-	13.8	-	17.2	-	-	-
-	-	-	-	11.6	-	13	-	-	-
-	-	-	-	11.6	-	-	-	-	-

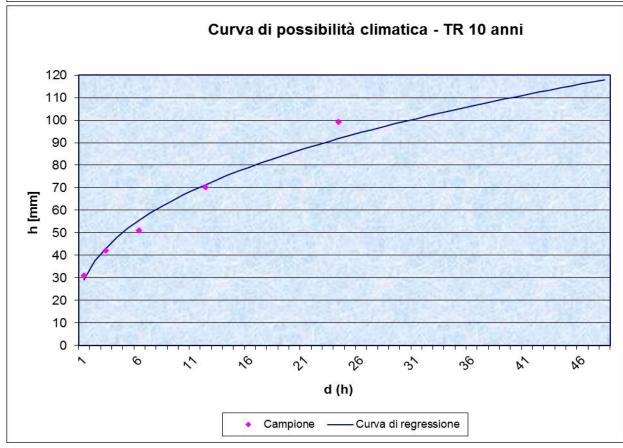


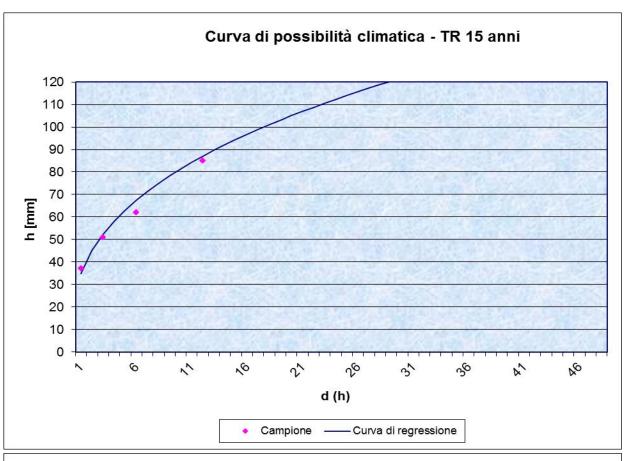


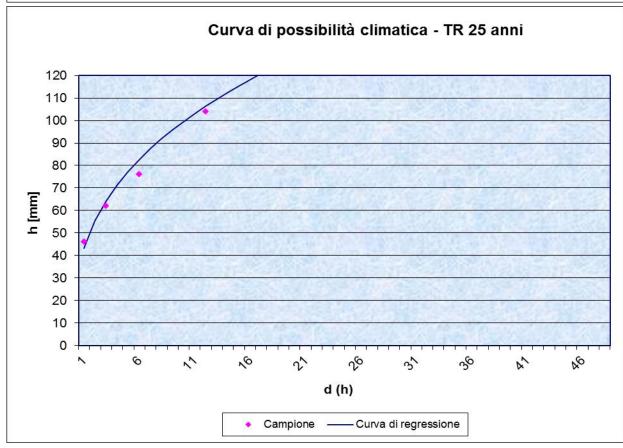
Stazione: Telve
Piogge lunghe

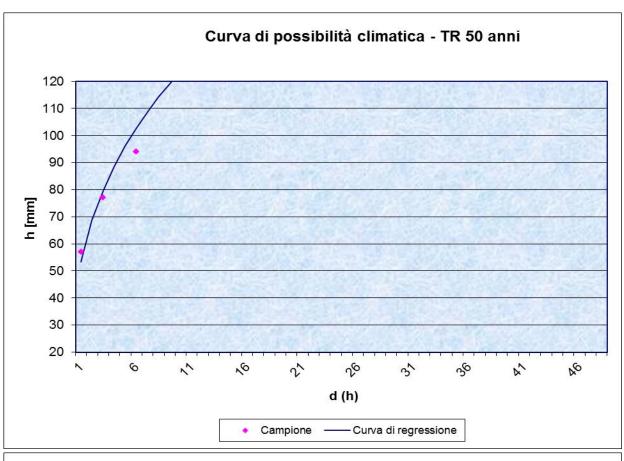

1 ora		3 ore		6 ore	!	12 ore		24 ore	!
mm	data	mm	data	mm	data	mm	data	mm	data
22.0	27 set.	30.2	27 set.	30.6	27 set.	32.4	27 set.	36.2	04/10/1992
33.8	26 set.	57.2	26 set.	74.4	25 set.	104.8	25 set.	121.4	02/10/1993
13.0	09 lug.	24.0	06 ago.	28.2	10 nov.	55.2	13 dic.	85.4	07/11/1994
19.8	10 set.	22.0	10 set.	25.2	12 nov.	47.4	12 nov.	71.6	14/09/1995
13.2	31 lug.	24.6	13 nov.	27.0	12 nov.	45.4	12 nov.	86.0	17/10/1996
16.6	15 gen.	29.8	15 ott.	43.6	15 ott.	60.4	14 ott.	98.6	07/11/1997
28.8	27 giu.	30.2	27 giu.	30.6	12 nov.	57.4	12 nov.	77.6	29/05/1998
26.6	15 ago.	28.6	15 ago.	30.8	15 ago.	45.6	05 nov.	66.8	20/09/1999
12.6	25 giu.	20.6	18 ago.	26.8	06 nov.	34.2	06 nov.	54.0	17/11/2000
21.6	12 ago.	22.6	12 ago.	30.8	08 ott.	49.8	08 ott.	60.4	30/03/2001
13.0	28 set.	22.0	28 set.	23.6	28 set.	37.6	01 set.	57.6	26/11/2002

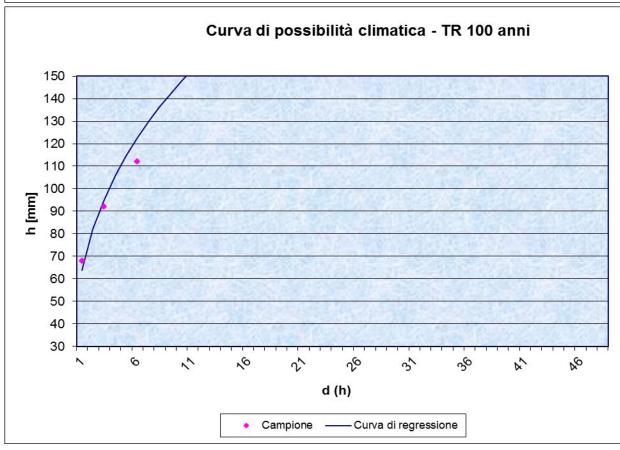

Stazione: Telve
Piogge lunghe

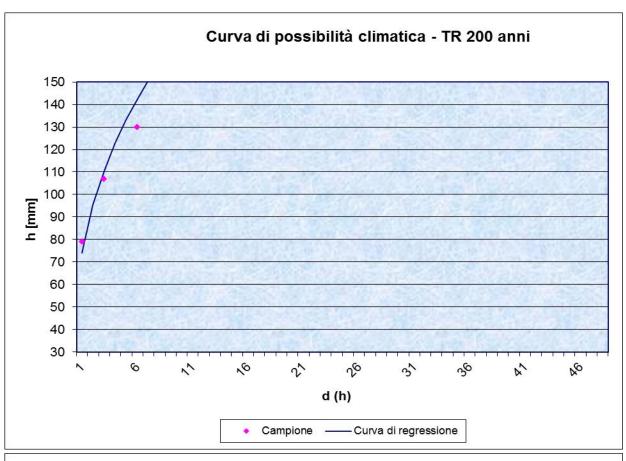

1 ora		3 ore		6 ore		12 ore	.	24 ore	
mm	data	mm	data	mm	data	mm	data	mm	data
26.2	16 set.	27.4	16 set.	38.6	19 ott.	63.4	04 nov.	117.6	28/11/2003
20.0	16 nov.	28.6	15 nov.	37.4	04 set.	43.4	15 nov.	51.8	02/11/2004
22.6	07 apr.	27.8	29 ago.	38.2	29 ago.	43.2	28 mag.	49.6	03/10/2005
30.4	05 set.	31.0	05 set.	34.2	05 set.	34.8	05 set.	55.0	15/09/2006
21.4	11 set.	24.4	11 set.	28.4	11 nov.	40.0	13 nov.	62.0	24/11/2007
25.4	28 lug.	37.4	10 nov.	58.0	10 nov.	75.0	09 nov.	105.0	05/11/2008
25.2	18 feb.	25.2	18 feb.	25.4	16 apr.	35.0	16 apr.	52.6	28/04/2009
25.0	05 lug.	34.8	31 ago.	39.2	14 lug.	53.6	14 lug.	67.4	01/11/2010
24.8	22 ago.	29.6	22 ago.	32.4	26 giu.	42.0	26 giu.	55.6	-
20.4	19 lug.	23.4	01 ott.	30.8	25 ago.	51.0	25 ago.	80.0	-
19.0	11 giu.	24.6	07 nov.	30.2	30 ott.	47.6	30 ott.	94.8	-
17.8	04 mag.	28.0	13 mag.	37.8	13 mag.	52.6	13 mag.	61.6	-
20.2	05 lug.	21.4	05 lug.	24.4	12 gen.	44.0	12 gen.	72.8	-
19.2	17 ott.	29.2	25 ott.	34.0	17 ott.	43.8	17 ott.	78.8	-
13.4	09 giu.	29.2	06 ott.	42.8	06 ott.	49.0	06 ott.	54.2	-
18.2	08 lug.	22.0	08 lug.	33.6	16 set.	50.0	16 set.	60.8	-
29.0	15 lug.	32.8	15 lug.	47.6	05 set.	54.4	05 set.	73.6	-
19.2	06 ago.	27.6	06 ago.	29.6	06 ago.	41.4	06 ago.	54.4	-
25.2	03 lug.	25.8	03 lug.	36.4	31 gen.	67.6	31 gen.	124.6	-
30.0	24 ago.	44.0	24 ago.	60.0	24 ago.	86.6	24 ago.	106.2	-
54.0	12 ago.	74.8	12 ago.	74.8	12 ago.	75.0	12 ago.	90.2	-
14.0	17 ago.	25.0	01 giu.	36.8	04 apr.	60.4	04 apr.	79.8	-
25.4	-	32	-	42.2	-	55.2	-	75.8	-
21.8	-	39	-	40.4	-	64	-	86.2	-
29.6	-	41.8	-	46	-	54.8	-	73.4	-
43.4	-	59.8	-	60.6	-	71.4	-	92.2	-
24.2	-	38	-	51.6	-	77	-	87.8	-

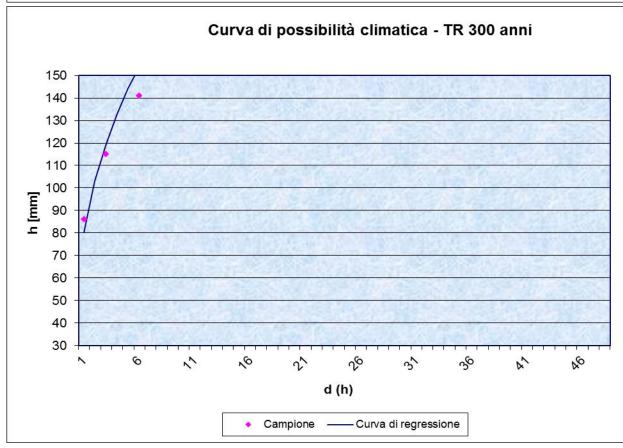

Stazione: Telve
Piogge lunghe

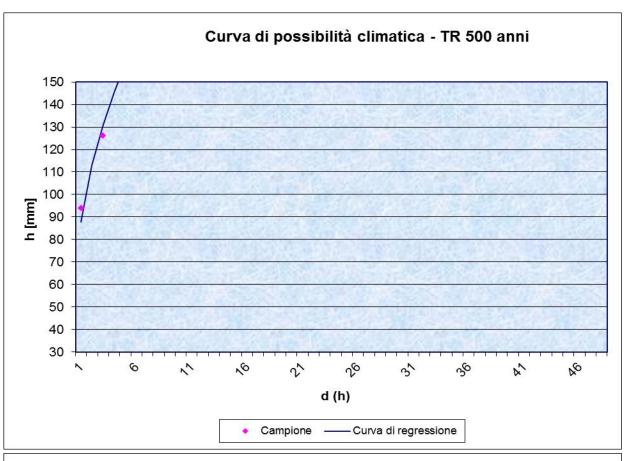

1 ora 3 ore		3 ore		1	12 ore	1	24 ore	2	
mm	data	mm	data	mm	data	mm	data	mm	data
18.8	-	25.8	-	40.2	-	49.8	-	64.8	-
18	-	22.4	-	28	-	42.6	-	78.6	-

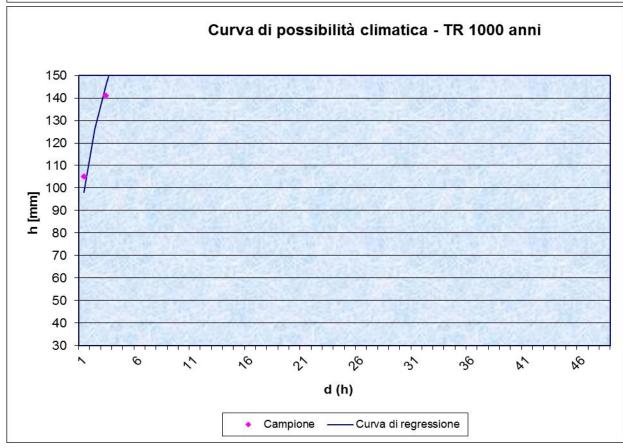


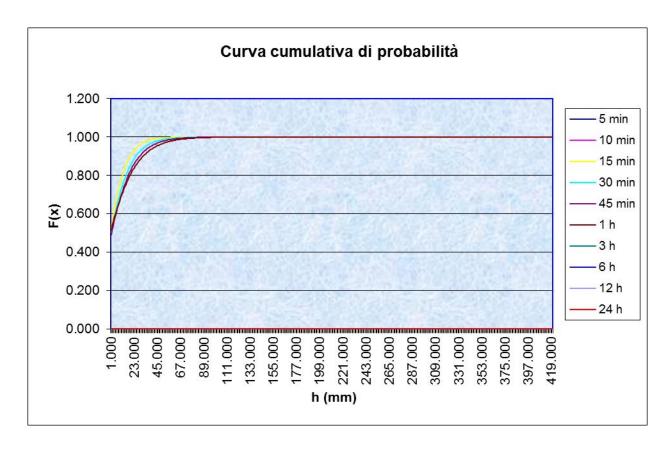


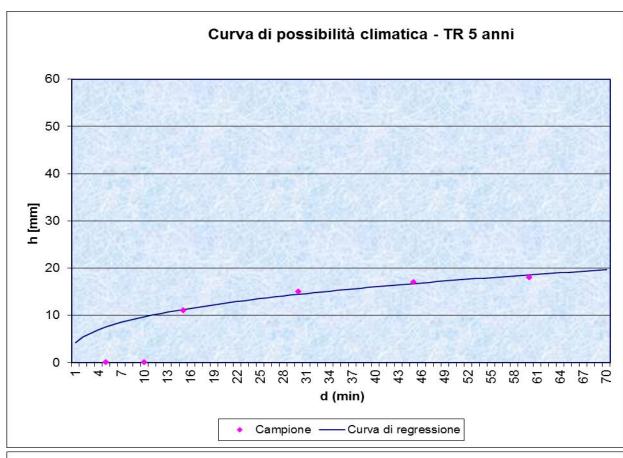


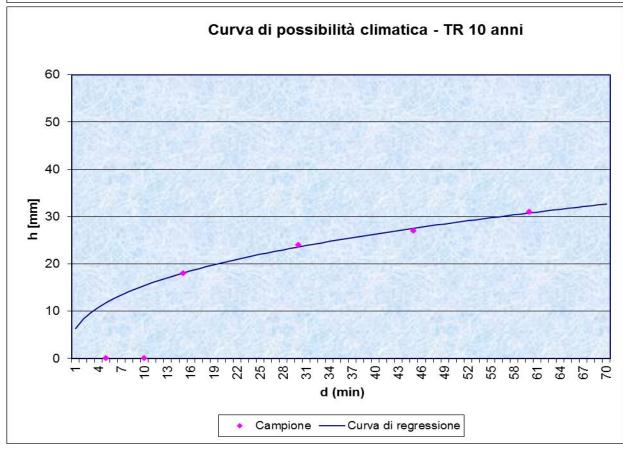


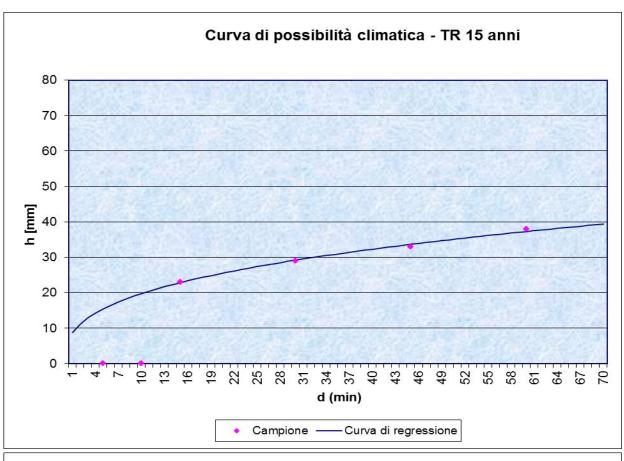


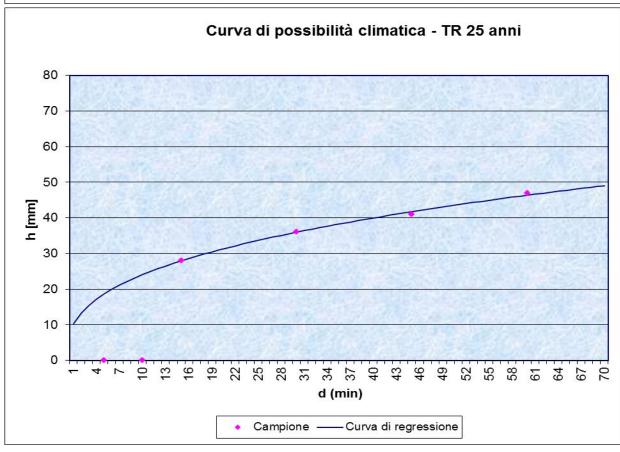


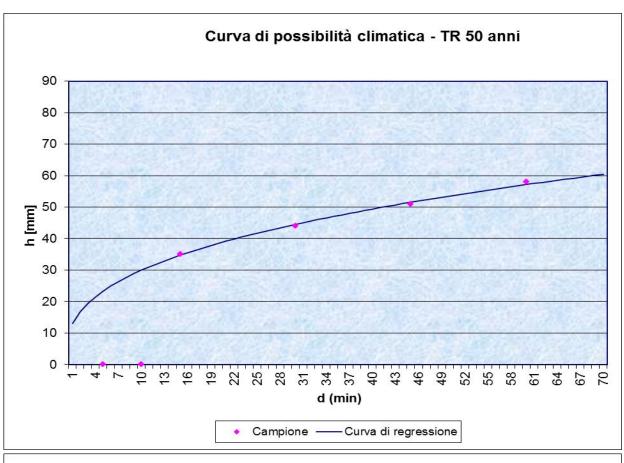


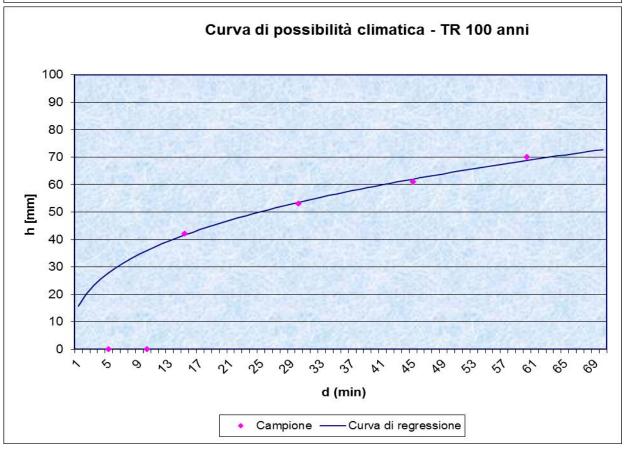


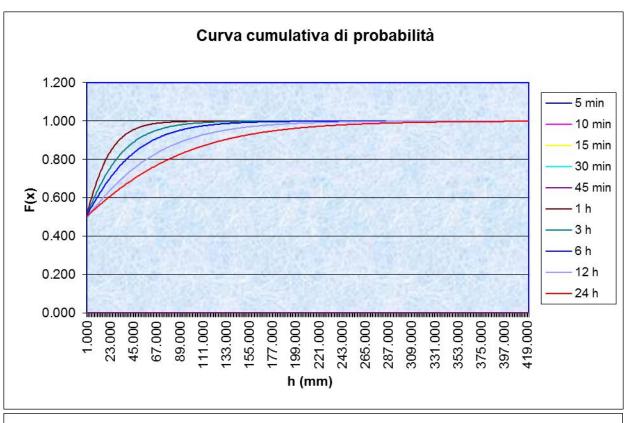


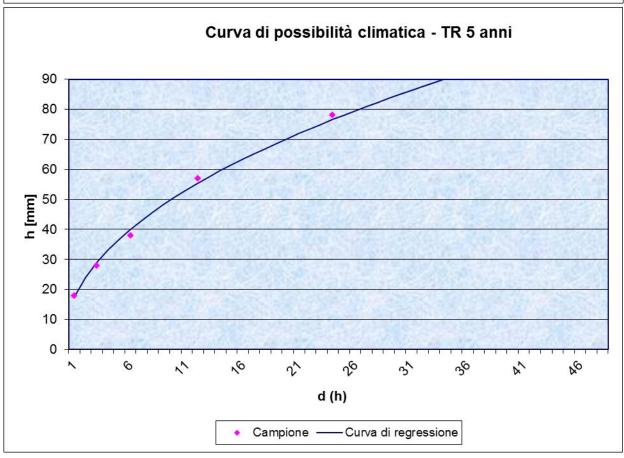

5 min		10 min	l	15 min	30 min	45 min	
mm	data	mm	data	mm data	mm data	mm data	
-	-	-	-	13.2 12-ago.	9.8 12-ago.	25.0 -	
-	-	-	-	14.4 25-giu.	20.0 17-set.	47.0 -	
-	-	-	-	28.0 04-ago.	23.8 25-giu.	24.8 -	
-	-	-	-	22.0 05-lug.	40.0 04-ago.	22.6 -	
-	-	-	-	15.8 18-lug.	24.2 05-lug.	12.0 -	
-	-	-	-	9.0 16-mag.	20.6 18-lug.	18.0 -	
-	-	-	-	14.0 28-mag.	10.2 16-mag.	24.8 -	
-	-	-	-	8.8 10-mag.	17.0 28-mag.	14.0 -	
-	-	-	-	5.2 30-ago.	12.0 10-mag.	9.6 -	
-	-	-	-	10.4 19-lug.	8.4 30-ago.	17.4 -	
-	-	-	-	9.4 04-set.	14.6 19-lug.	15.4 -	
-	-	-	-	7.8 26-lug.	13.0 27-ago.	11.4 -	
-	-	-	-	19.0 14-lug.	20.6 14-ago.	23.6 -	
-	-	-	-	13.2 13-ott.	11.2 26-lug.	17.0 -	
-	-	-	-	10.4 17-ott.	22.0 14-lug.	15.8 -	
-	-	-	-	19.8 16-giu.	14.4 13-ott.	25.0 -	
-	-	-	-	15.0 17-lug.	13.2 17-ott.	18.8 -	
-	-	-	-	10.2 29-ago.	23.6 16-giu.	20.8 -	
-	-	-	-	12.2 06-ago.	17.6 17-lug.	18.8 -	
-	-	-	-	10.6 24-giu.	14.0 29-ago.	17.6 -	
-	-	-	-	10.0 24-ago.	14.4 06-ago.	22.6 -	
-	-	-	-	10.8 09-mag.	17.6 24-giu.	23.0 -	
-	-	-	-	14.4 08-ago.	18.0 24-ago.	19.2 -	
-	-	-	-	13.6 12-ago.	15.8 -	20.4 -	
-	-	-	-	8.8 -	19.0 -	18.6 -	
-	-	-	-	13.6 -	18.0 -	10 -	

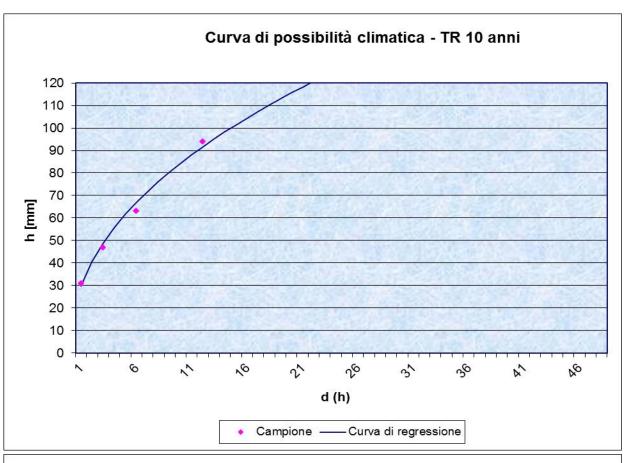

5 min	5 min		10 min		in	30 m	in	45 m	in
mm	data	mm	data	mm	data	mm	data	mm	data
-	-	-	-	21	-	16	-	12.8	-
-	-	-	-	23.2	-	8	-	24.2	-
-	-	-	-	-	-	10.4	-	29	-
-	-	-	-	-	-	20.2	-	34.8	-
-	-	-	-	-	-	26.6	-	-	-
-	-	-	-	-	-	33	-	-	-

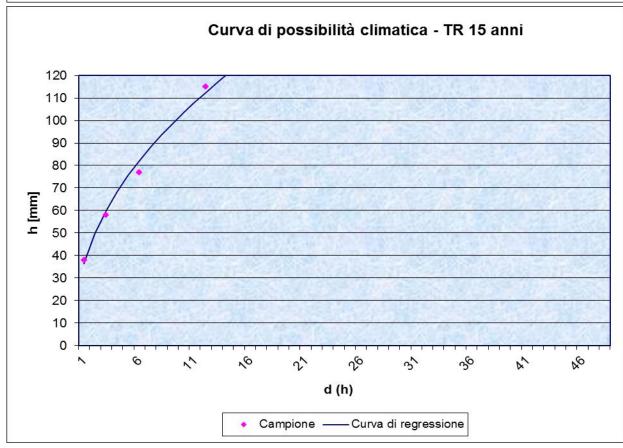


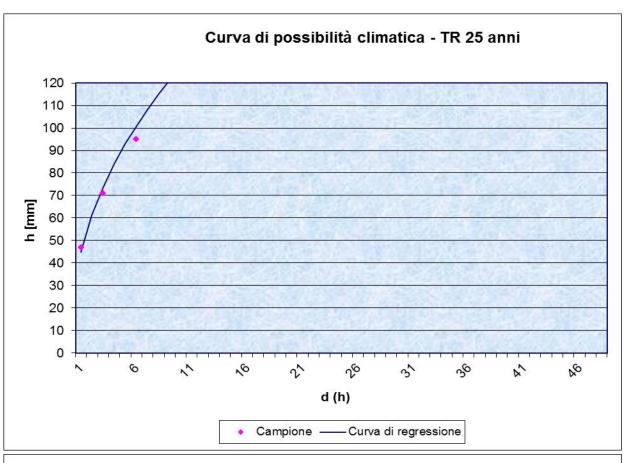


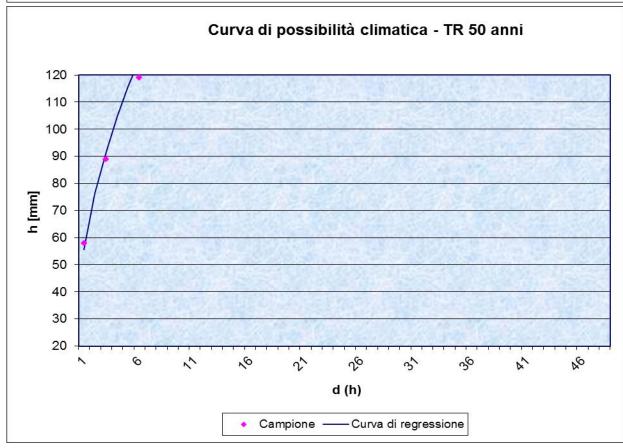


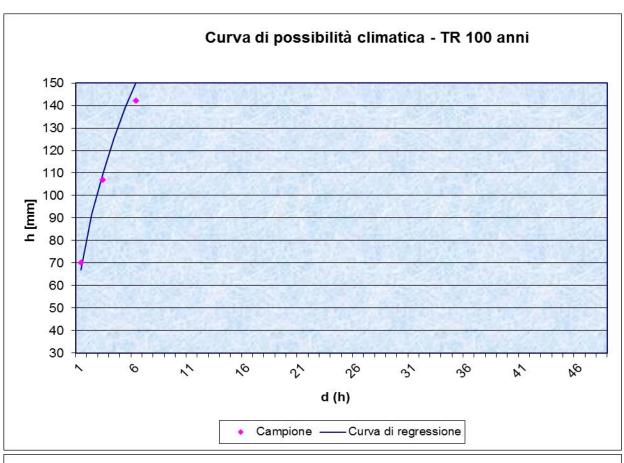

Piogge lunghe

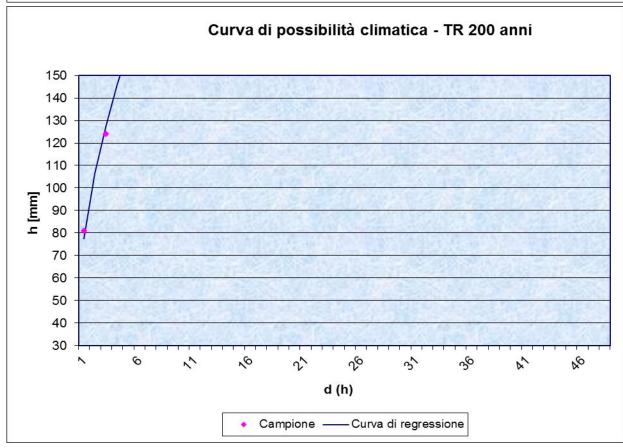

1 ora		3 ore		6 ore		12 ore		24 ore	<u> </u>
mm	data	mm	data	mm	data	mm	data	mm	data
24.2	23-giu.	30.2	23-giu.	54.8	23-giu.	55.0	23-giu.	117.5	-
15.4	09-giu.	22.0	09-giu.	24.0	09-giu.	24.2	09-giu.	43.6	-
9.8	03-ago.	11.2	02-ago.	15.4	03-ago.	26.0	03-ago.	42.4	-
15.4	15-ago.	23.6	22-ago.	32.0	22-ago.	55.6	22-ago.	60.0	-
10.8	07-set.	14.6	07-set.	17.6	07-set.	24.4	07-set.	35.0	-
44.4	10-lug.	45.8	10-lug.	47.6	26-set.	82.8	25-set.	98.4	-
23.4	23-giu.	30.0	23-giu.	37.0	10-lug.	49.0	10-nov.	75.0	-
14.8	22-lug.	23.8	22-lug.	31.4	12-nov.	58.6	12-nov.	86.6	-
27.2	16-set.	55.4	16-set.	81.6	17-set.	141.6	16-set.	163.8	-
27.2	07-ott.	49.0	07-ott.	58.6	06-ott.	72.6	12-nov.	108.4	-
27.4	25-giu.	39.8	29-lug.	45.4	29-lug.	55.0	05-nov.	83.8	-
54.8	04-ago.	56.6	04-ago.	56.8	04-ago.	56.8	04-ago.	81.8	-
25.8	05-lug.	29.0	05-lug.	33.8	05-lug.	50.2	08-ott.	63.6	-
27.0	18-lug.	39.0	04-nov.	68.0	04-nov.	124.0	04-nov.	192.0	-
13.0	16-mag.	29.0	16-mag.	51.0	30-mag.	61.0	30-mag.	72.0	-
21.0	28-mag.	33.2	29-ago.	37.2	28-mag.	51.4	28-mag.	67.2	-
14.6	10-nov.	31.6	10-mag.	39.6	10-mag.	45.2	09-nov.	67.6	-
12.6	02-lug.	29.4	02-lug.	48.8	02-lug.	51.2	02-lug.	51.2	-
18.8	19-lug.	21.2	14-ott.	33.4	14-ott.	59.4	14-ott.	66.4	-
18.8	27-ago.	34.0	27-ago.	44.0	27-ago.	45.0	27-ago.	51.6	-
18.8	16-set.	20.0	16-set.	30.0	18-nov.	55.0	18-nov.	97.0	-
22.8	14-ago.	33.0	30-ott.	56.0	30-ott.	98.0	30-ott.	169.0	-
12.8	28-ago.	20.0	28-ago.	33.6	28-ago.	45.0	28-ago.	68.8	-
25.2	14-lug.	26.8	14-lug.	27.4	03-ott.	52.6	03-ott.	93.0	-
19.2	13-ott.	34.6	13-ott.	54.2	22-set.	108.0	21-set.	153.8	-
21.4	17-ott.	58.6	17-ott.	103.8	17-ott.	152.2	16-ott.	182.0	-

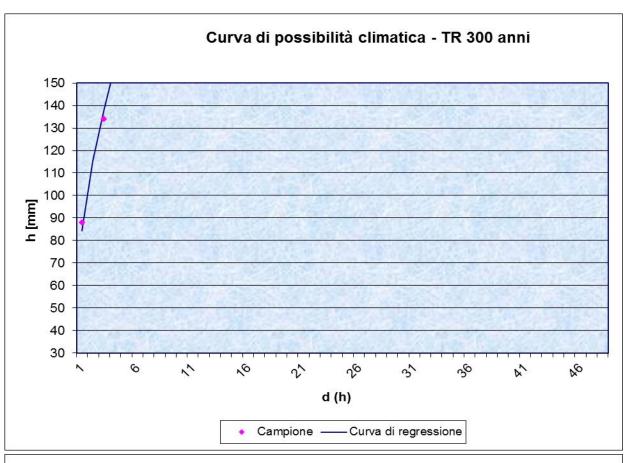

Piogge lunghe

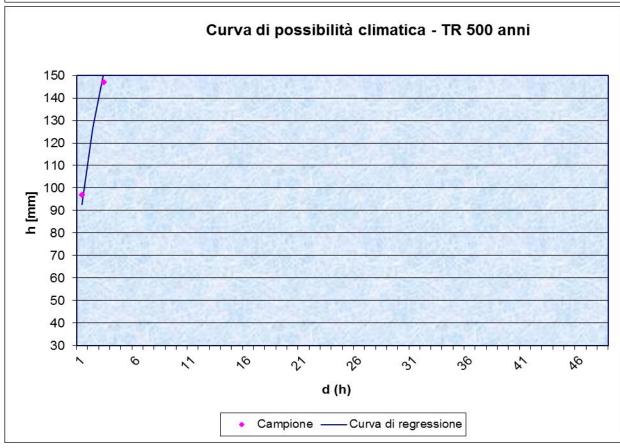

1 ora		3 ore		6 ore		12 ore	.	24 ore	
mm	data	mm	data	mm	data	mm	data	mm	data
31.2	16-giu.	79.0	16-giu.	79.0	16-giu.	81.0	26-ott.	162.0	-
19.0	17-lug.	31.6	23-ott.	49.8	23-ott.	87.4	22-ott.	101.2	-
24.2	29-ago.	33.2	29-ago.	37.0	16-set.	56.0	16-set.	72.4	-
19.6	06-ago.	20.8	06-ago.	29.6	20-mag.	40.2	20-mag.	56.8	-
17.6	24-giu.	22.6	04-giu.	31.8	04-giu.	33.4	19-lug.	53.8	-
30.0	24-ago.	50.0	24-ago.	67.0	24-ago.	95.0	24-ago.	115.2	-
26.8	09-mag.	41.8	16-ago.	58.0	05-giu.	62.4	12-ott.	85.8	-
20.8	-	27.6	-	37.4	-	48.8	-	71.8	-
22.6	-	28.8	-	44.0	-	63.4	-	94.2	-
18.6	-	24	-	45.5	-	75.8	-	106	-
13.4	-	20.6	-	34.6	-	60	-	77.8	-
13.8	-	23.8	-	37.6	-	61.4	-	70.6	-
29.6	-	34	-	48.4	-	66.2	-	80.2	-
36.4	-	69.2	-	70.8	-	119	-	135	-
36.4	-	42.2	-	52.8	-	90	-	120	-

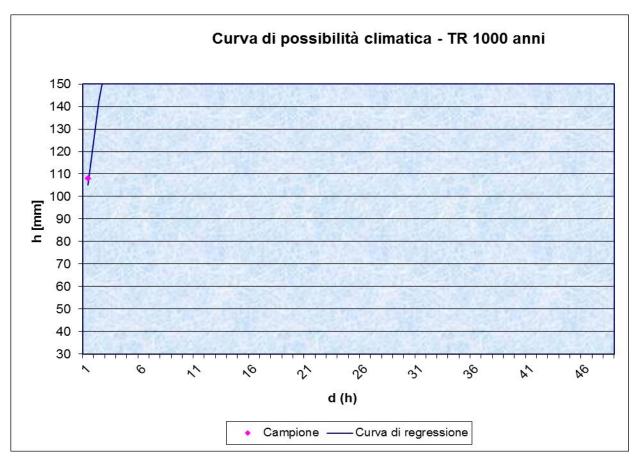


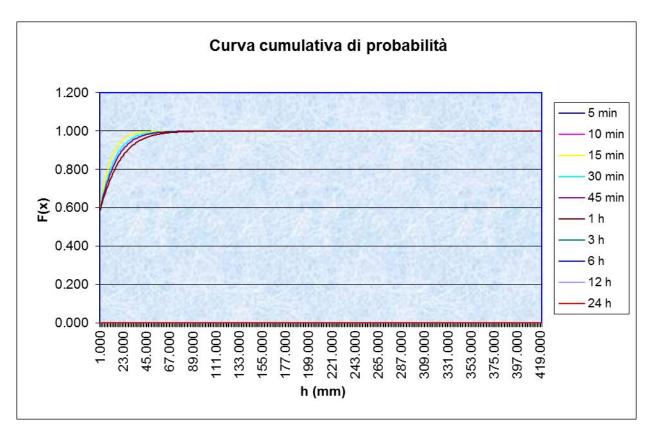


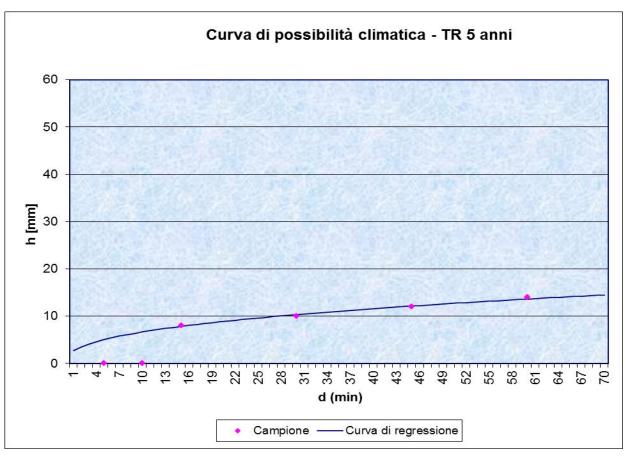


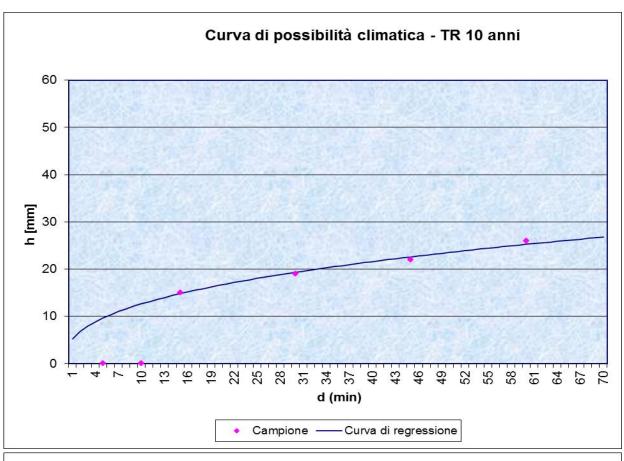


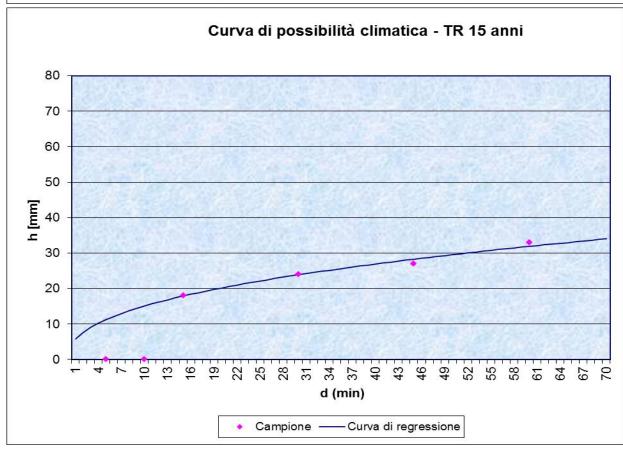


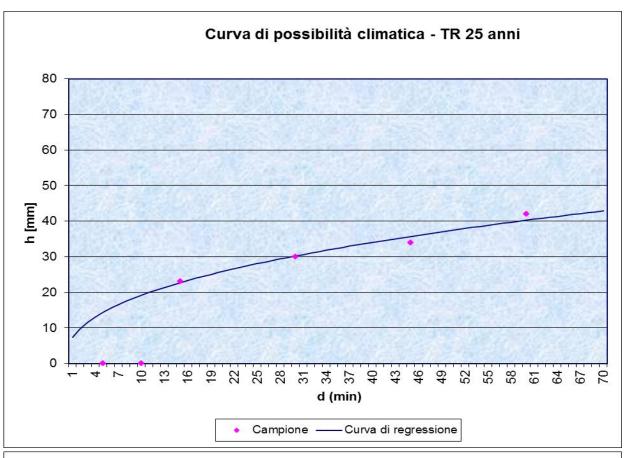


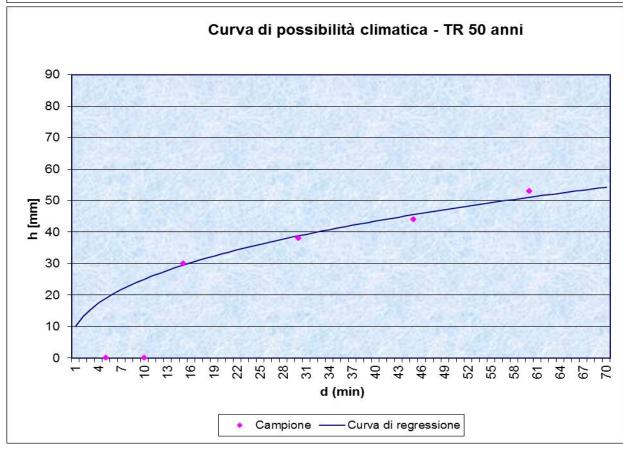


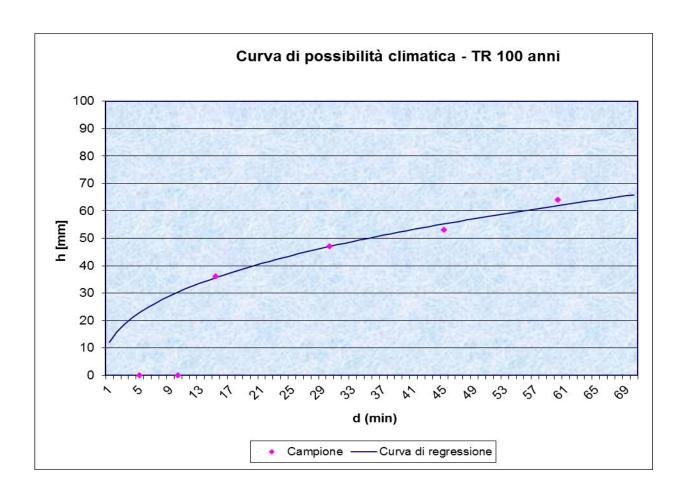

Piogge brevi

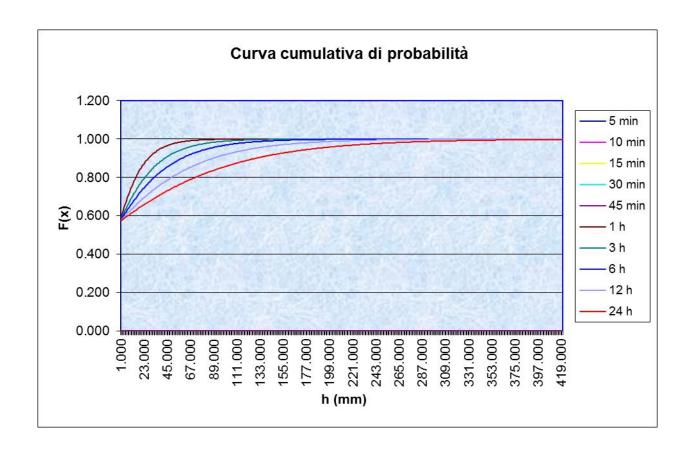

5 min		10 min		15 m	in	30 m	in	45 min		
mm	data	mm	data	mm	data	mm	data	mm	data	
-	-	-	-	8.4	27 ago.	19.4	31 ago.	22.4	-	
-	-	-	-	11.4	12 ago.	21.6	21 lug.	22.4	-	
-	-	-	-	15.6	13 ago.	18.8	09 giu.	11.0	-	
-	-	-	-	8.2	30 ago.	20.0	24 giu.	15.8	-	
-	-	-	-	11.6	28 set.	8.0	16 set.	22.0	-	
-	-	-	-	9.0	04 nov.	19.6	12 lug.	6.8	-	
-	-	-	-	10.0	15 set.	10.2	07 ago.	18.4	-	
-	-	-	-	7.0	15 ago.	12.2	30 ago.	11.8	-	
-	-	-	-	23.0	11 set.	13.6	28 set.	12.4	-	
-	-	-	-	6.8	05 nov.	13.0	04 nov.	16.4	-	
-	-	-	-	13.4	03 giu.	4.0	04 set.	14.4	-	

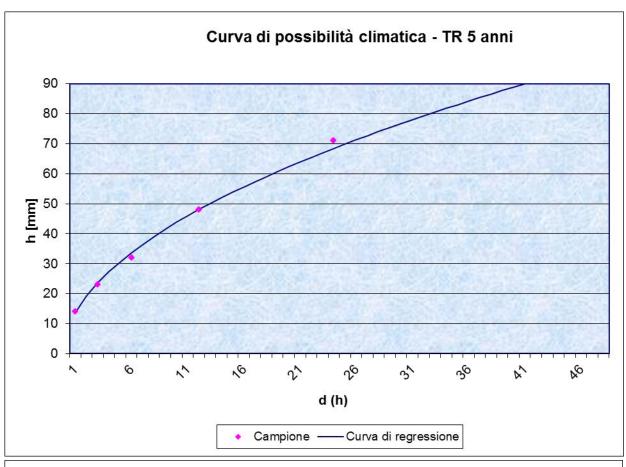

Piogge brevi

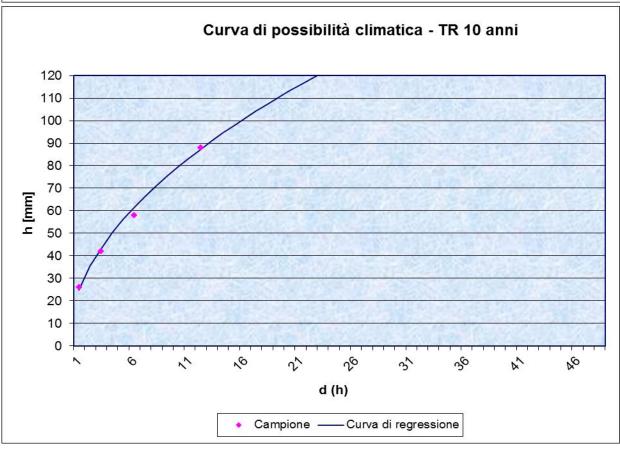

5 min		10 min		15 m	in	30 m	in	45 min			
mm	data	mm	data	mm	data	mm	data	mm	data		
-	-	-	-	10.6	19 ago.	16.0	15 set.	12.2	-		
-	-	-	-	8.8	03 lug.	9.6	15 ago.	23.2	-		
-	-	-	-	13.8	08 lug.	23.6	11 set.	20.2	-		
-	-	-	-	11.8	07 ago.	12.0	05 nov.	21.6	-		
-	-	-	-	15.2	13 giu.	15.8	05 lug.	12.2	-		
-	-	-	-	9.6	08 ago.	13.8	19 ago.	15.8	-		
-	-	-	-	8.6	18 lug.	10.6	05 giu.	15.2	-		
-	-	-	-	11.4	26 giu.	15.2	22 lug.	14.8	-		
-	-	-	-	9.6	02 ago.	16.0	08 lug.	14.8	-		
-	-	-	-	9.8	16 lug.	12.8	07 ago.	20.2	-		
-	-	-	-	7.2	06 ago.	18.4	13 giu.	18.4	-		
-	-	-	-	14.0	29 mag.	11.8	08 ago.	17.0	-		
-	-	-	-	8.0	02 lug.	12.0	18 lug.	12.8	-		
-	-	-	-	8.6	20 ago.	14.0	26 giu.	13.8	-		
-	-	-	-	10.8	28 giu.	14.0	02 ago.	13.6	-		
-	-	-	-	10.8	18 giu.	10.4	16 lug.	-	-		
-	-	-	-	-	-	13.6	06 ago.	-	-		
-	-	-	-	-	-	18.2	29 mag.	-	-		
-	-	-	-	-	-	15.0	04 set.	-	-		
-	-	-	-	-	-	10.0	20 ago.	-	-		
-	-	-	-	-	-	12.2	04 ott.	-	-		
-	-	-	-	-	-	13.0	18 giu.	-	-		

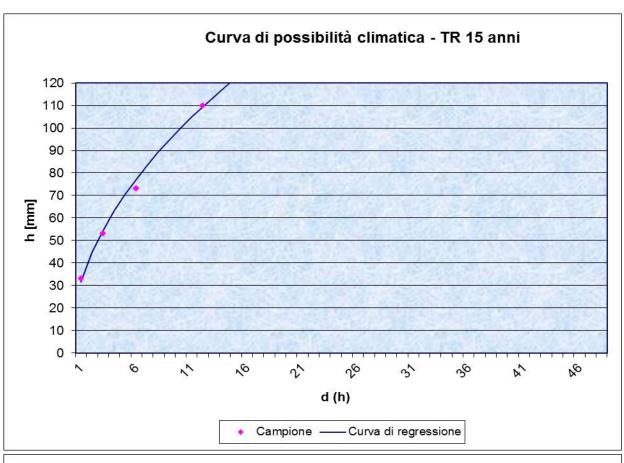


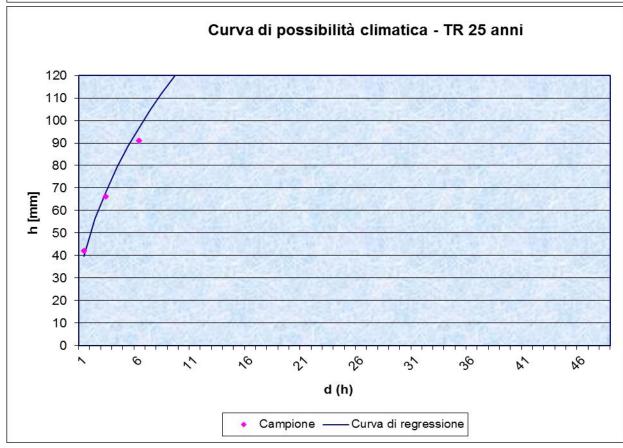


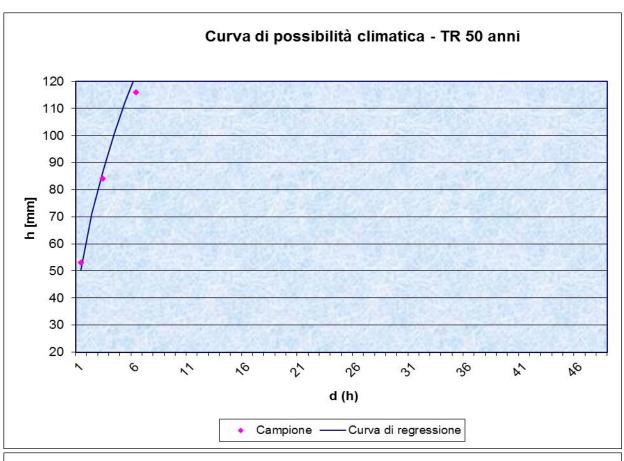


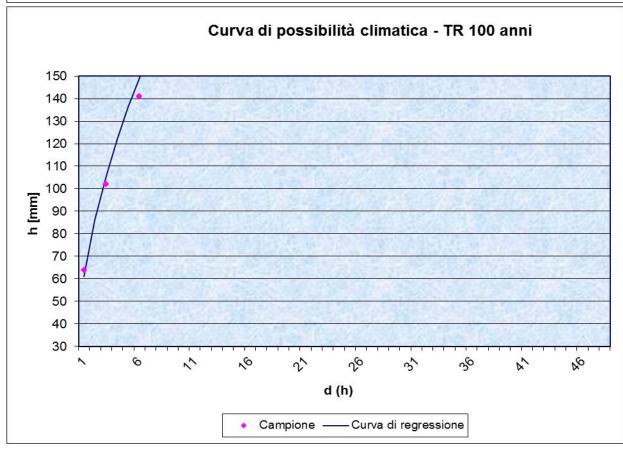

Piogge lunghe

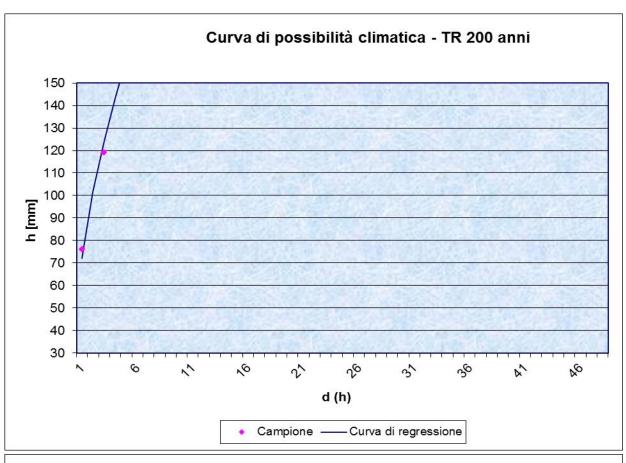

1 ora		3 ore		6 ore	!	12 ore	!	24 ore	!
mm	data	mm	data	mm	data	mm	data	mm	data
23.2	31 ago.	30.0	27 mag.	38.6	27 mag.	61.0	08 nov.	99.6	-
30.6	21 lug.	35.6	21 lug.	32.8	26 ott.	53.8	26 ott.	73.6	-
22.2	09 giu.	31.8	09 giu.	37.8	08 giu.	67.0	08 giu.	92.8	-
32.2	24 giu.	45.4	24 giu.	55.2	10 dic.	94.6	10 dic.	159.4	-
13.8	11 giu.	27.8	07 set.	29.6	07 set.	33.8	07 set.	50.8	-
26.6	26 set.	48.8	26 set.	73.0	26 set.	112.8	25 set.	138.8	-
11.4	29 lug.	20.0	31 lug.	24.0	28 ago.	34.2	30 apr.	44.2	-
12.0	16 set.	29.0	16 set.	40.6	16 set.	65.0	16 set.	133.0	-
23.2	12 ago.	32.4	12 ago.	37.2	15 apr.	39.0	15 apr.	54.8	-
24.4	12 lug.	29.8	12 lug.	36.2	15 ago.	42.2	08 nov.	65.8	-

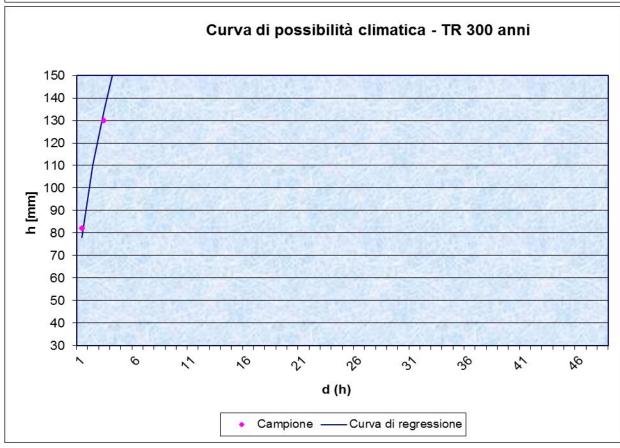

Piogge lunghe

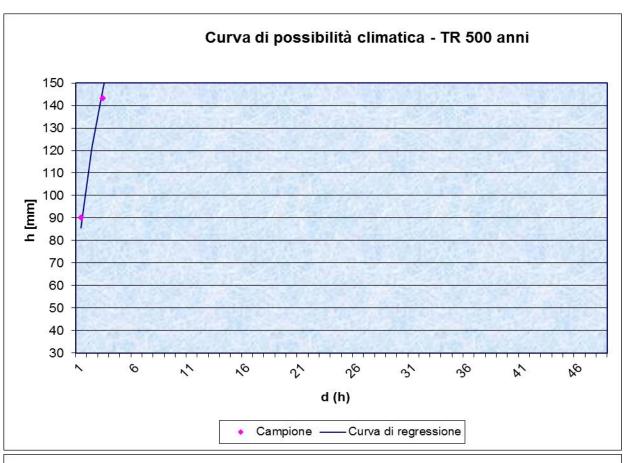

1 ora		3 ore		6 ore	<u> </u>	12 ore	<u> </u>	24 ore			
mm	data	mm	data	mm	data	mm	data	mm	data		
15.0	27 ago.	26.0	04 set.	31.6	06 nov.	47.4	04 set.	64.0	-		
17.0	30 ago.	18.6	15 ago.	30.4	08 ott.	54.0	08 ott.	64.4	-		
18.2	28 set.	29.0	28 set.	45.6	01 set.	81.4	01 set.	120.2	-		
25.4	04 nov.	48.0	04 nov.	81.4	04 nov.	121.4	04 nov.	188.4	-		
16.0	04 set.	29.4	04 set.	48.0	04 set.	56.2	04 set.	75.8	-		
21.0	15 set.	39.4	03 nov.	47.0	03 nov.	64.2	03 nov.	105.2	-		
13.4	15 ago.	16.6	16 ago.	23.8	12 nov.	39.8	12 nov.	64.2	-		
28.4	11 set.	33.2	11 set.	37.4	21 ago.	61.2	13 nov.	89.0	-		
12.8	05 nov.	30.8	05 nov.	37.0	09 nov.	64.6	09 nov.	94.0	-		
17.2	03 giu.	30.8	02 lug.	37.0	02 lug.	52.0	02 lug.	59.6	-		
18.2	21 ago.	35.4	21 ago.	41.6	14 lug.	62.4	14 lug.	76.0	-		
19.6	19 lug.	21.0	19 lug.	23.0	01 dic.	40.4	31 mar.	62.4	-		
16.0	13 set.	32.0	13 set.	44.0	13 set.	66.0	13 set.	113.2	-		
25.0	08 lug.	32.4	26 mag.	37.4	13 mag.	66.0	13 mag.	77.8	-		
26.6	07 ago.	35.0	07 ago.	37.2	07 ago.	51.4	03 ott.	79.6	-		
24.2	13 giu.	36.0	22 set.	55.8	22 set.	72.8	21 set.	117.4	-		
12.4	17 ott.	25.0	17 ott.	45.6	17 ott.	89.0	16 ott.	142.0	-		
24.0	18 lug.	33.4	18 lug.	63.0	18 lug.	84.0	18 lug.	105.4	-		
16.0	26 giu.	37.2	06 mag.	58.6	06 mag.	85.2	06 mag.	99.2	-		
15.2	02 ago.	33.2	11 set.	34.4	10 set.	55.2	16 set.	56.8	-		
15.4	16 lug.	27.6	20 mag.	36.2	20 mag.	47.4	05 set.	81.8	-		
25.2	06 ago.	32.8	06 ago.	47.2	06 ago.	56.8	06 ago.	69.6	-		
18.4	29 mag.	27.0	29 mag.	40.0	09 set.	53.8	29 mag.	100.0	-		
19.6	04 set.	40.0	24 ago.	60.0	24 ago.	90.0	24 ago.	116.0	-		
15.0	20 ago.	31.4	12 ott.	46.8	12 ott.	76.0	12 ott.	106.4	-		
17.0	04 ott.	24.2	05 apr.	43.0	04 apr.	61.6	04 apr.	90.4	-		
14.0	18 giu.	22.4	22 nov.	35.8	22 nov.	53.4	22 nov.	87.8	-		

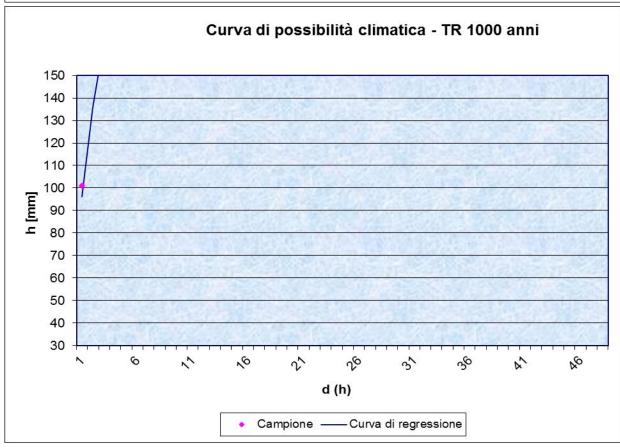


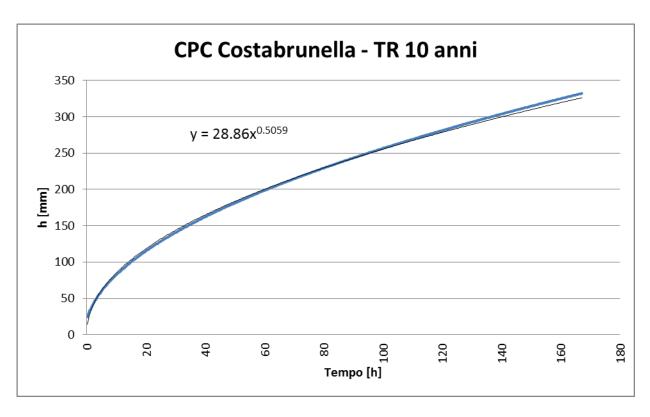


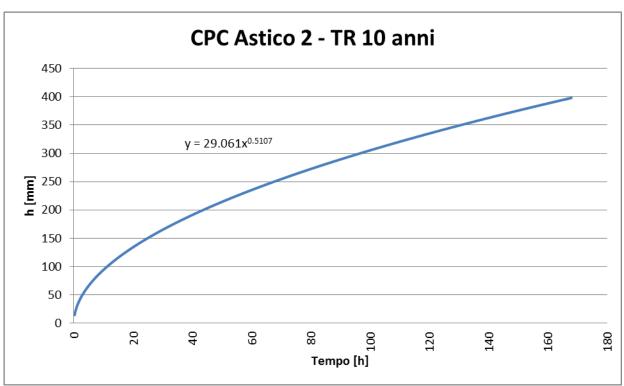


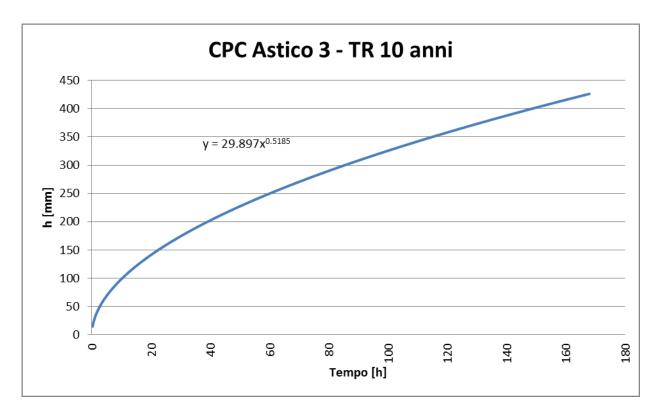


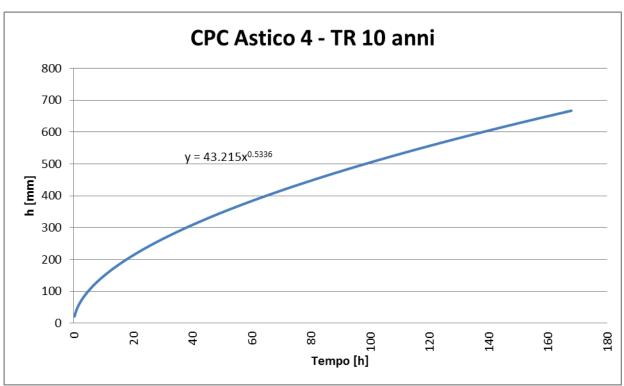


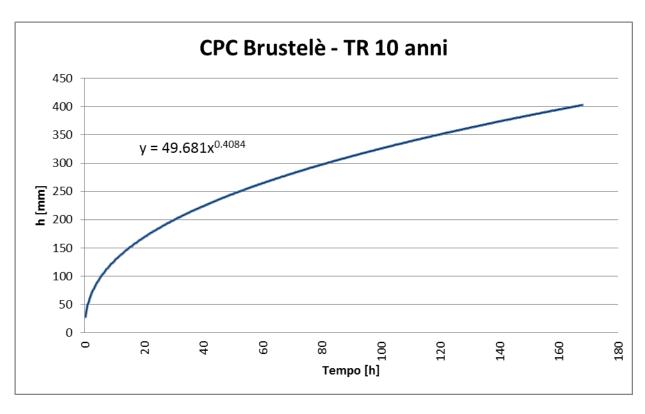


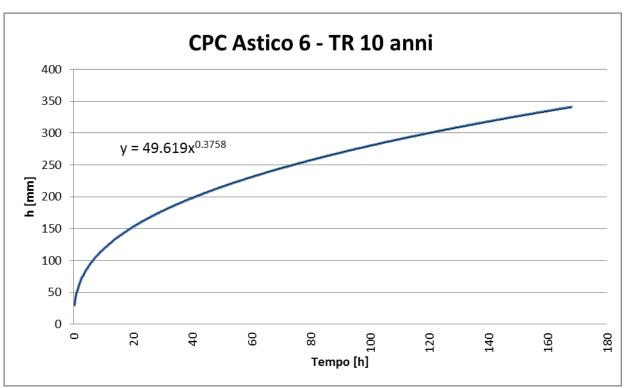

D.2 CURVE DI POSSIBILITÀ CLIMATICA PER CIASCUN SOTTOBACINO


Le superfici dei sottobacini si ripartiscono nei topoieti, individuati per le stazioni pluviometriche la cui analisi è stata riportata precedentemente, come indicato nella tabella seguente. Le celle evidenziate in rosso indicano i sottobacini la cui superficie è interamente contenuta in un solo topoieto, per i quali quindi la curva di possibilità climatica coincide con quella ottenuta dall'analisi statistica dei dati della stazione pluviometrica di riferimento.

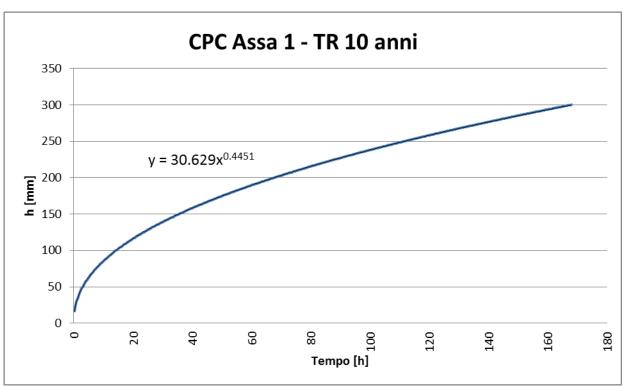

Si riportano di seguito le curve di possibilità climatica ottenute per ciascun sottobacino considerando le piogge di lunga durata, con tempi di ritorno pari a 10, 25, 50, 100, 200, 500 anni.

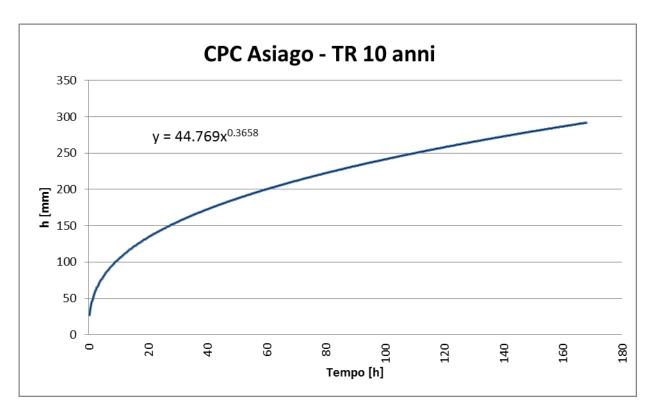

Per i sottobacini interamente contenuti in un topoieto si riporta la CPC della stazione corrispondente.

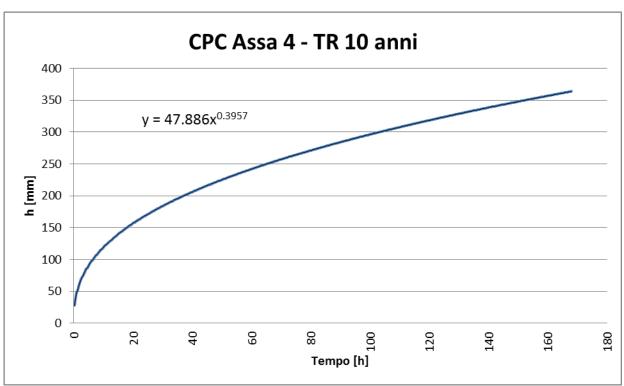

PASSO XOMO																		14.0				
CONTRA																		20.0			2.6	
MOLINI		6.1	4.1																		33.0	6.8
ARSIERO			2.3	18.3														8.7	2.0		8.6	13.4
MONTE						6.4																
BRUSTELE'				3.0	14.6	10.2							12.9					2.4	1.7	13.1		2.1
ASIAGO				1.8					6.3	3.3	14.6	32.5	6.9		20.6	98.9	6.7					
COSTABRUNELLA	19.6	17.7	15.1	0.1			8.6	14.3	17.7	2.4												
CENTA										24.8												
TELVE										1.3				4.9	18.5							
ESTENSIONE [Km^2]	19.611	23.783	21.559	23.19	14.602	16.581	8.574	14.28	23.965	31.882	14.56	32.487	19.766	4.9	39.08	98.913	6.728	45.05	3.619	13.053	44.228	22.339
BACINO IMBRIFERO	ASTICO 1	ASTICO 2	ASTICO 3	ASTICO 4	ASTICO 5	ASTICO 6	MALO	TORTO	VAL MORTA	ASSA 1	ASSA 2	ASSA 3	ASSA 4	RENZOLA	GALMARARA	GHELPACH	MARTELLO	POSINA 1	POSINA 2	POSINA 3	LA ZARA	FREDDO

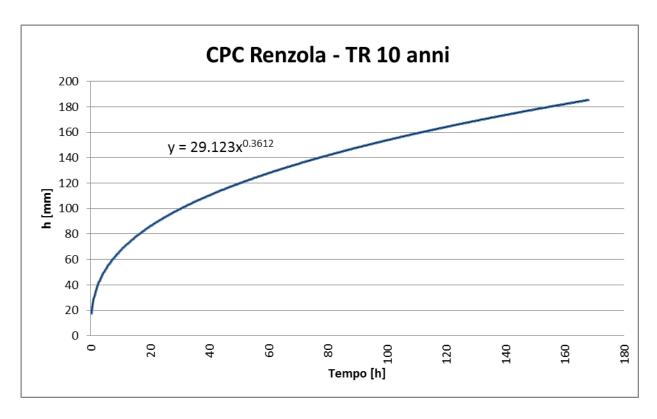


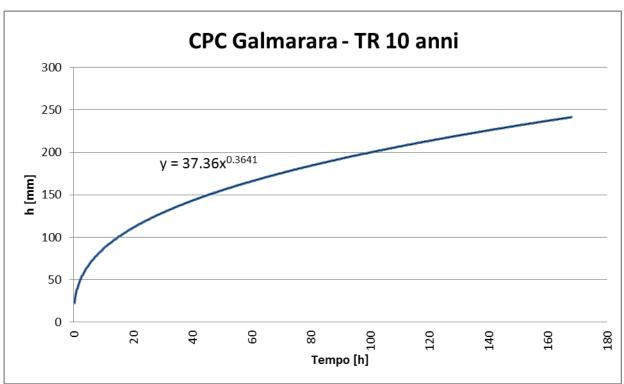


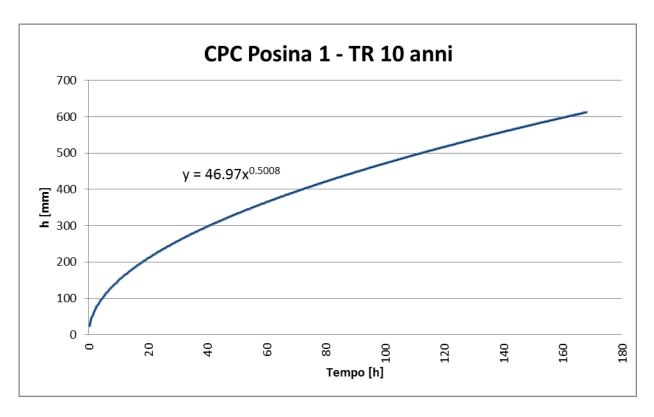


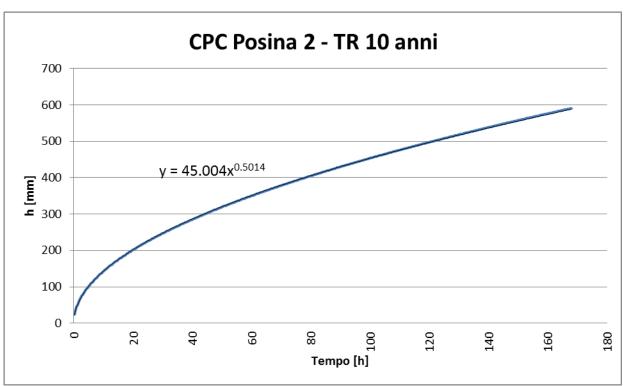


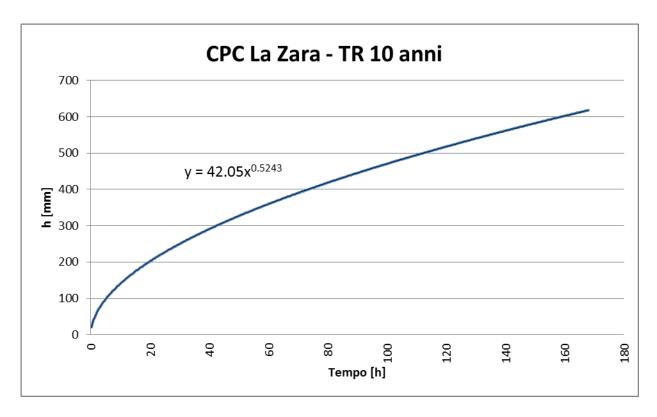


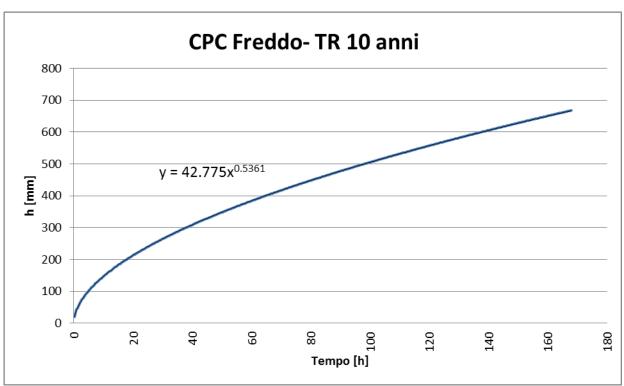


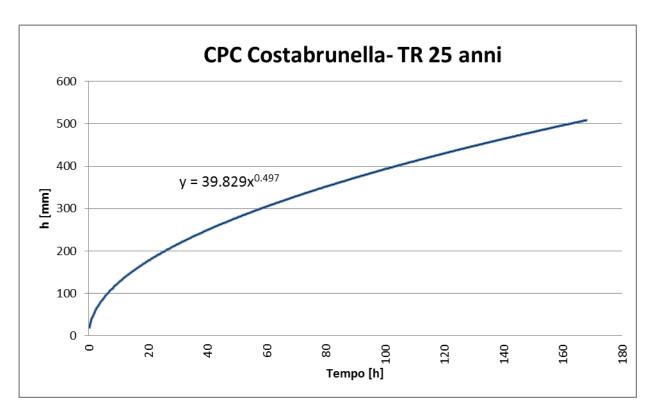


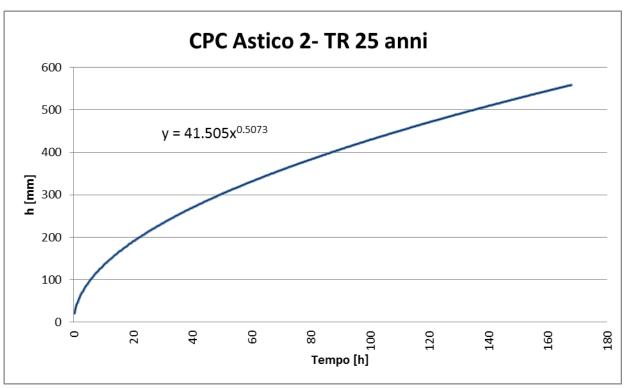


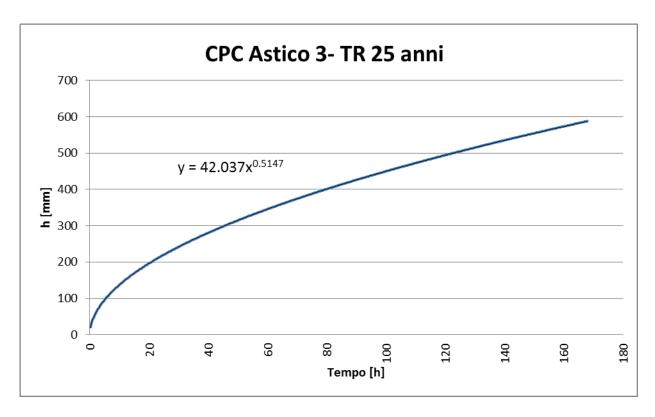


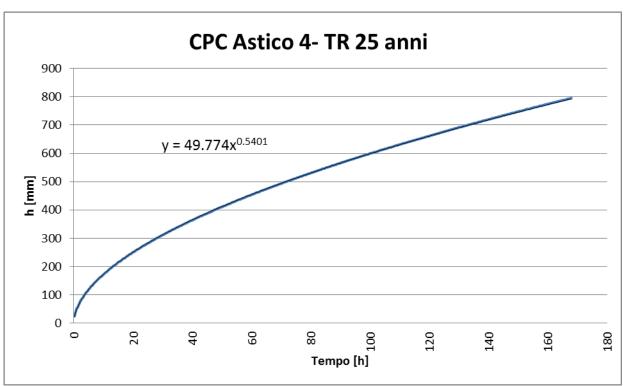


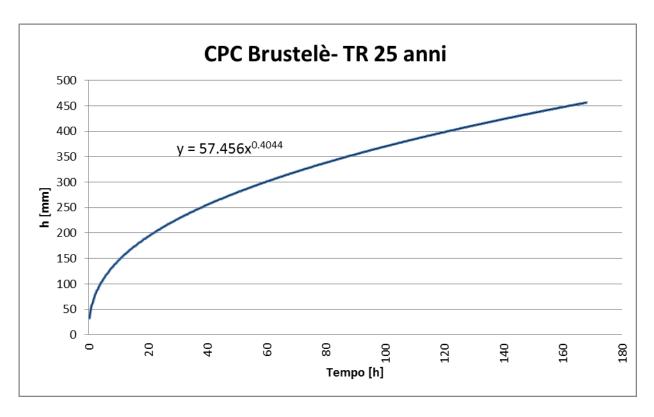


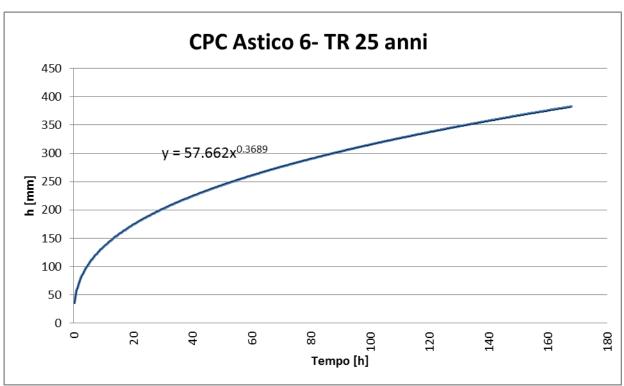


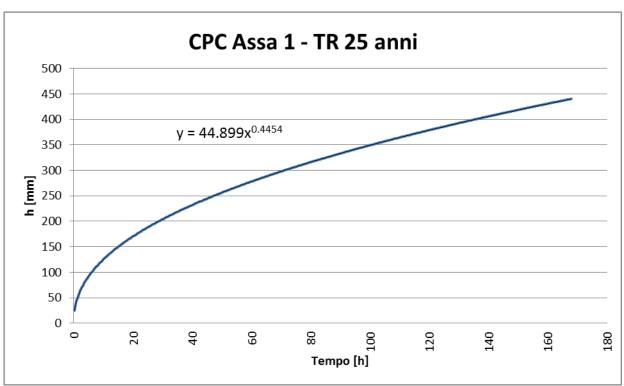


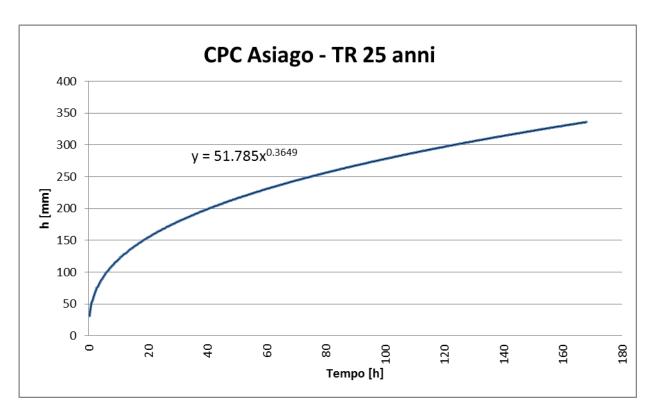


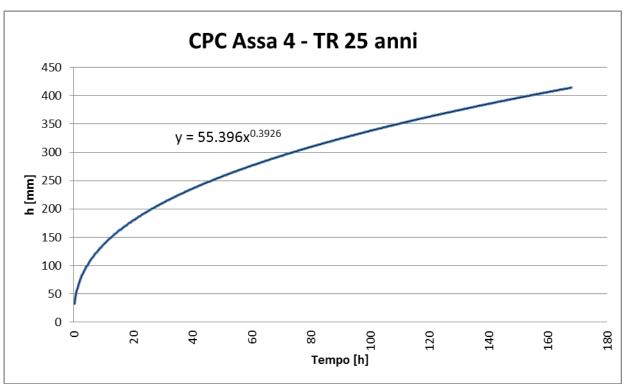


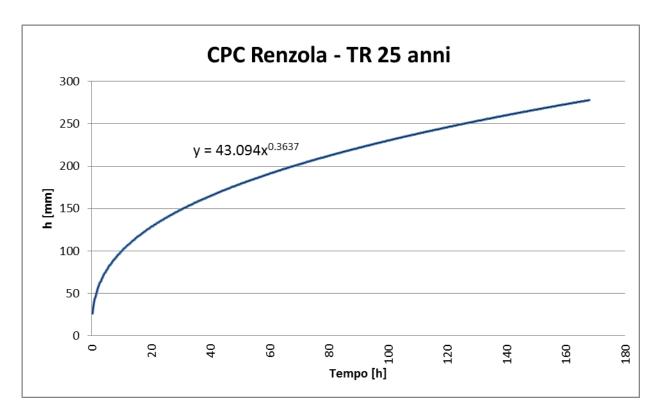


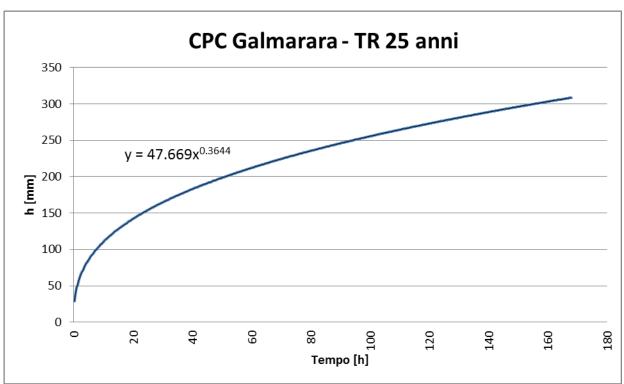


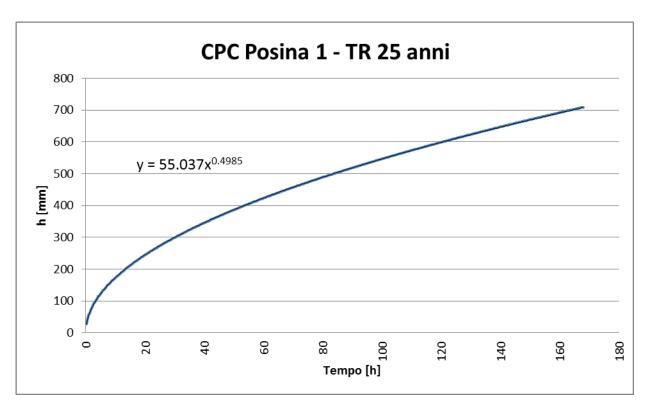


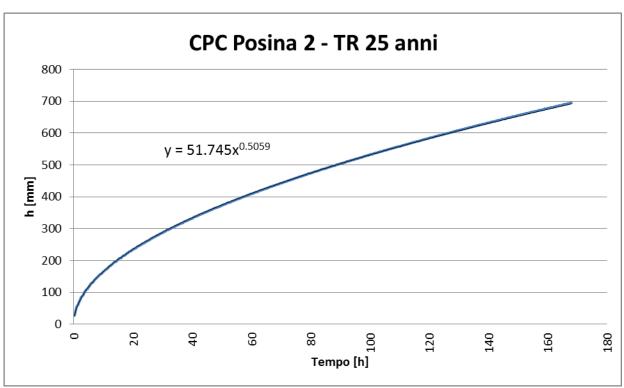


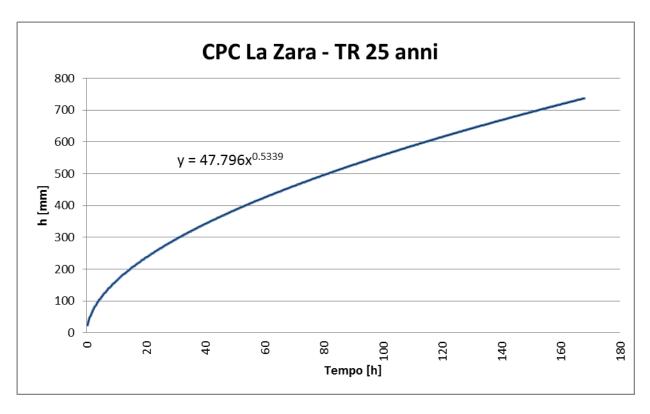


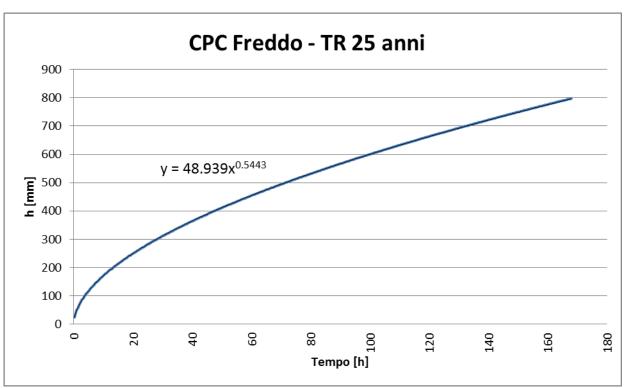


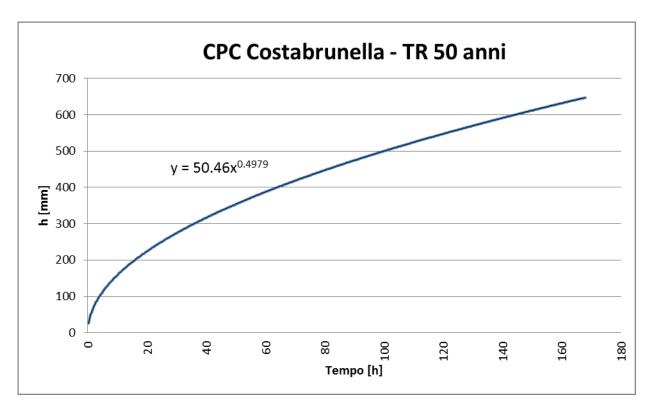


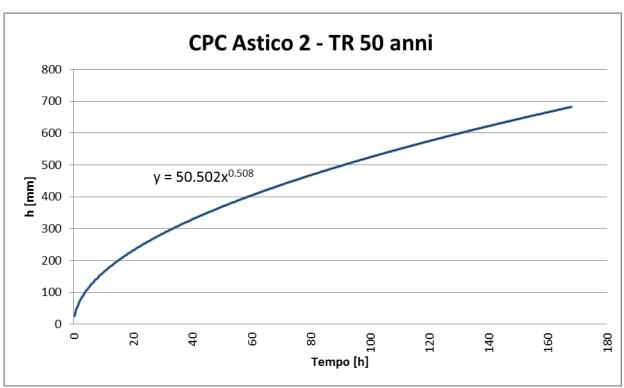


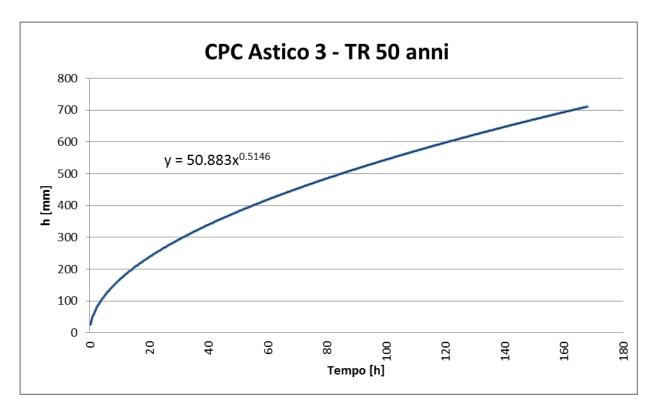


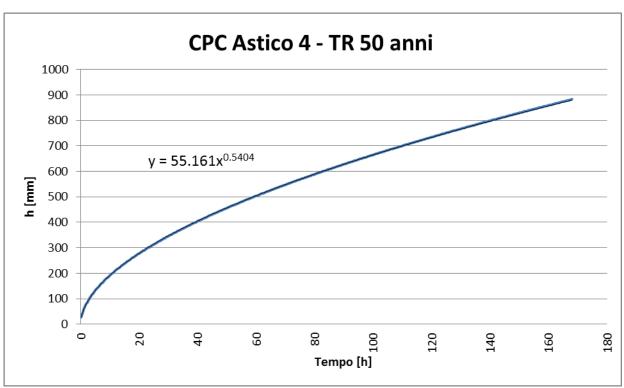


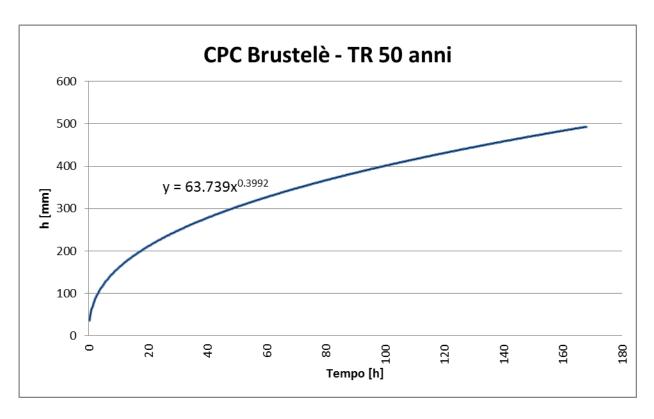


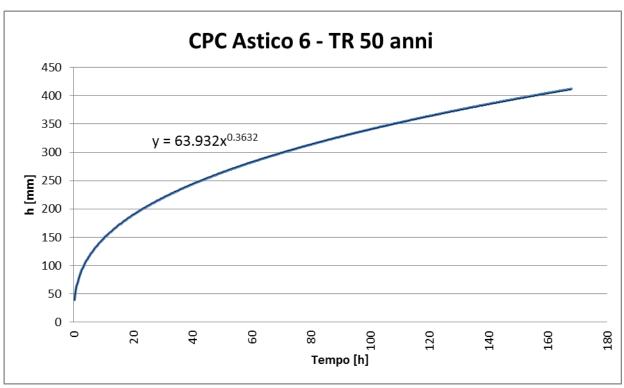


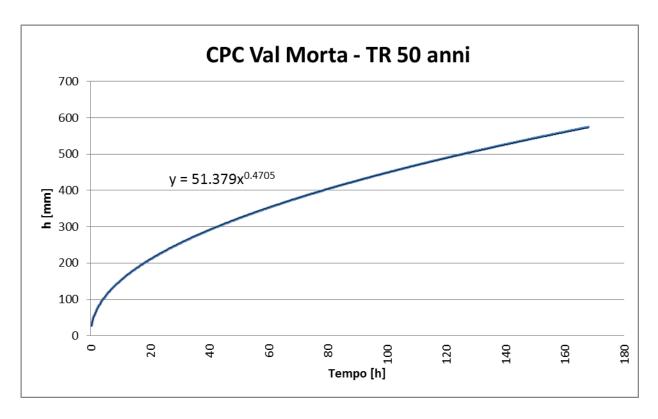


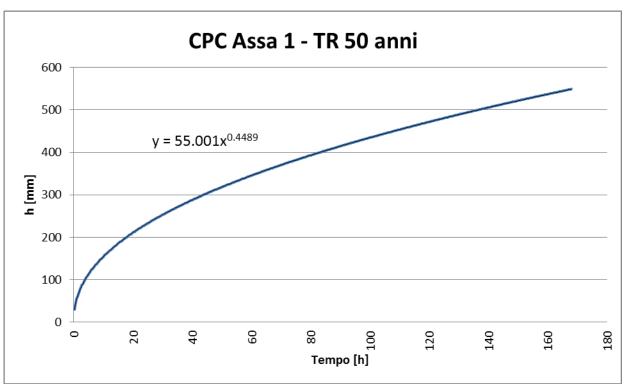


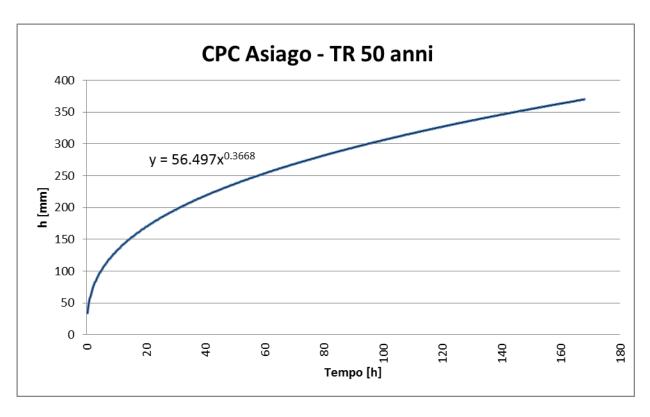


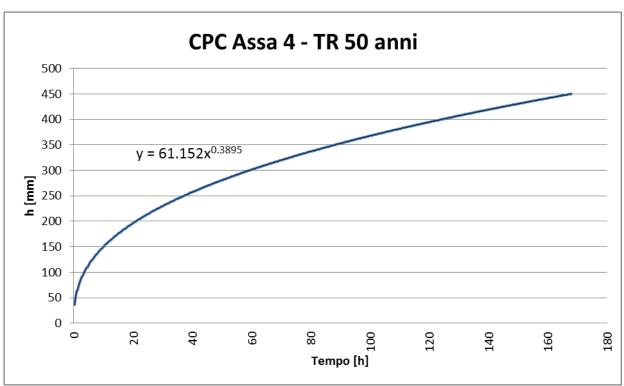


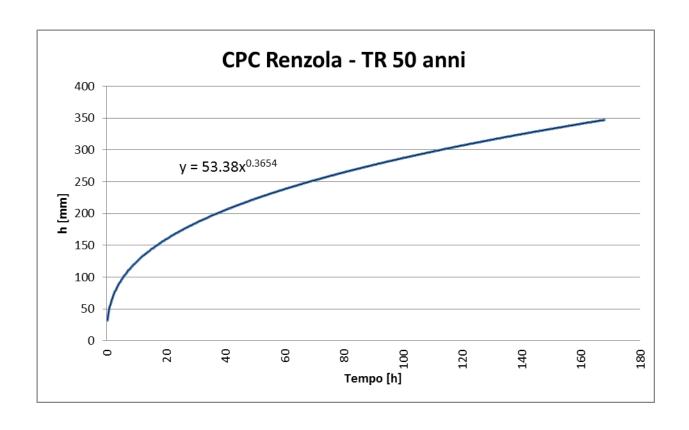


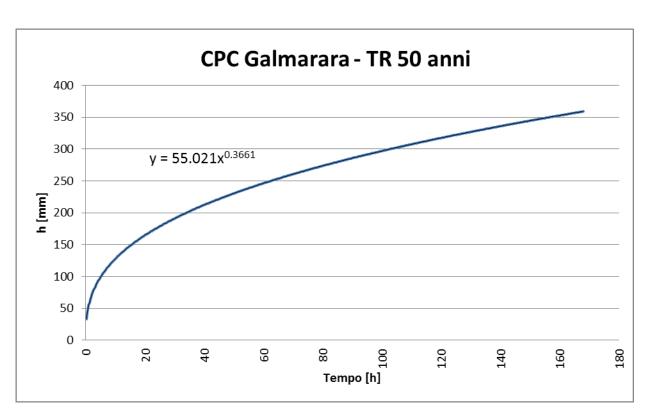


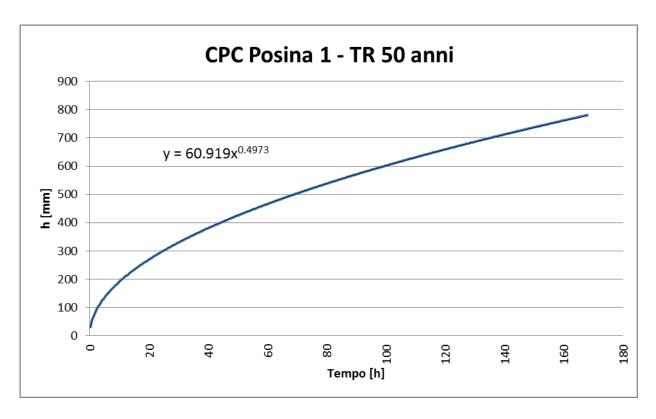


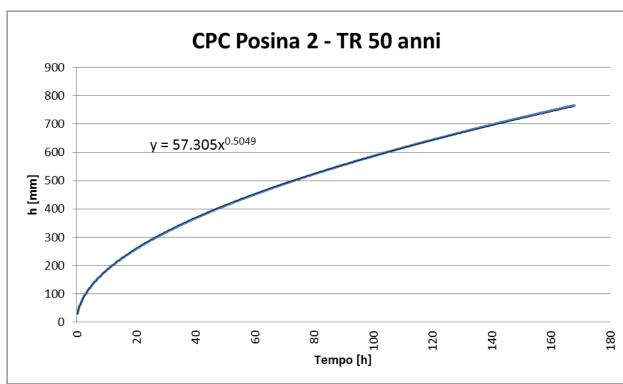


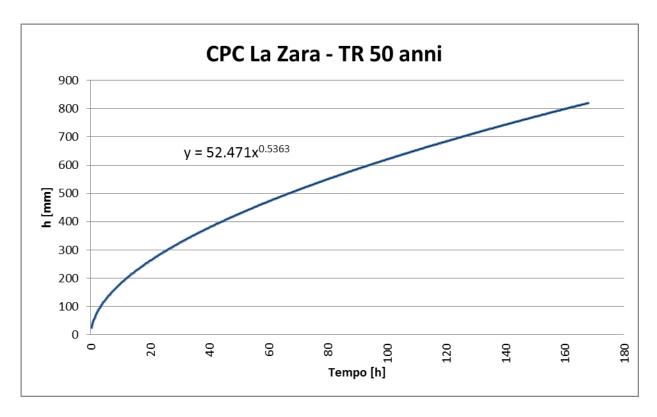


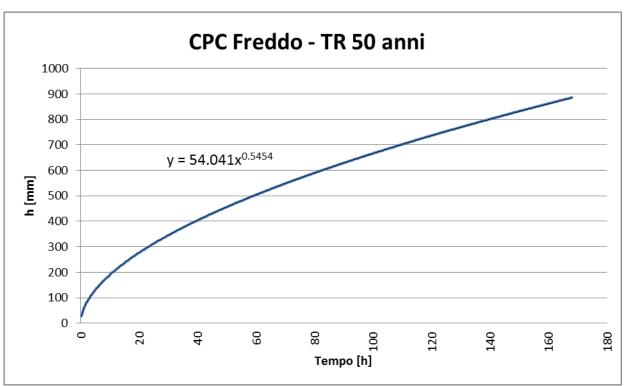


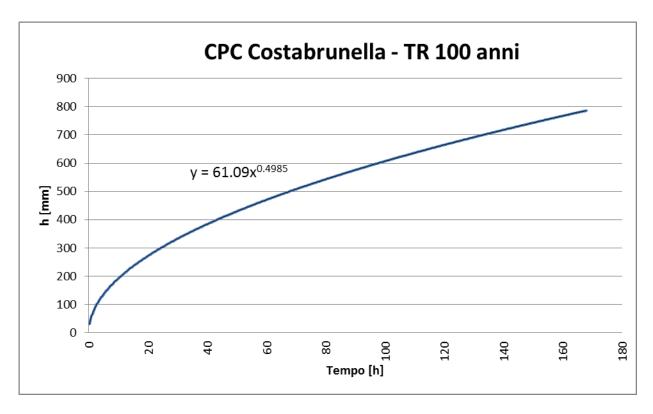


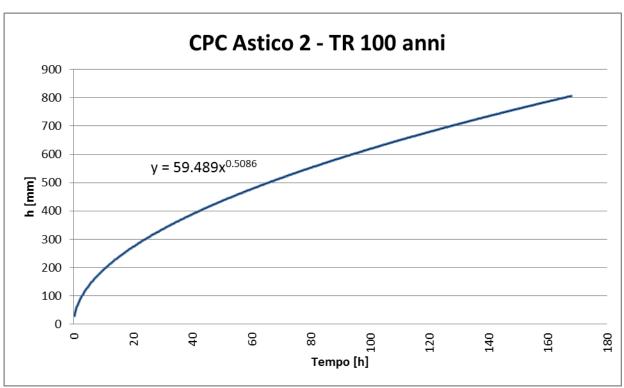


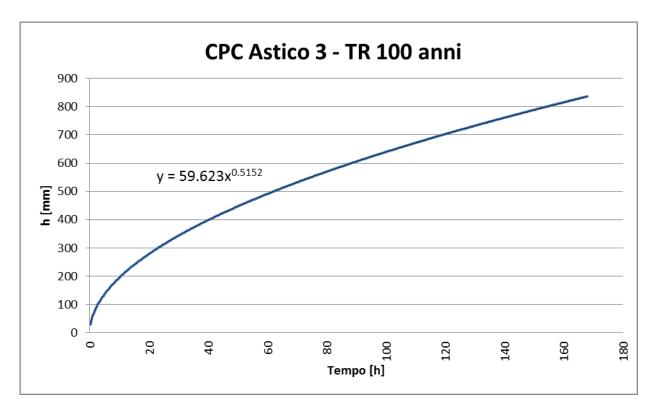


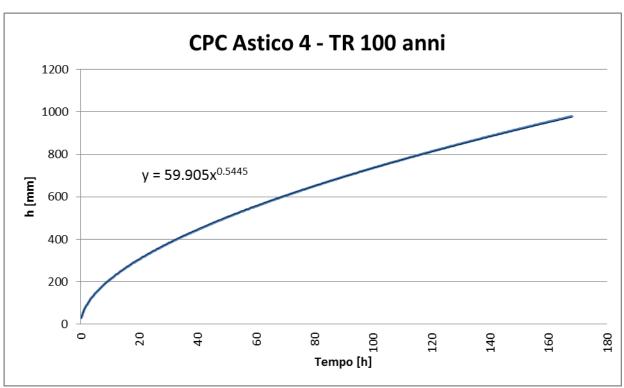


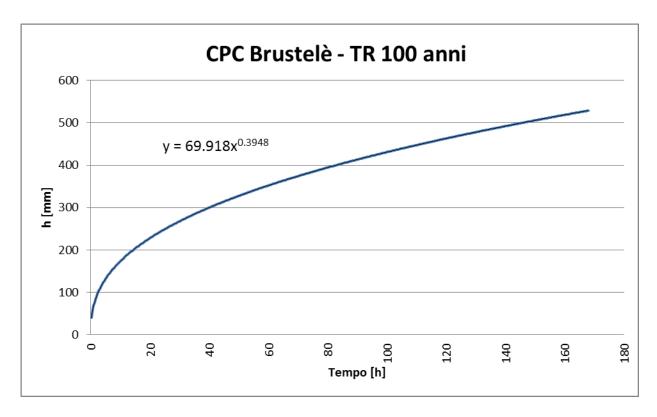


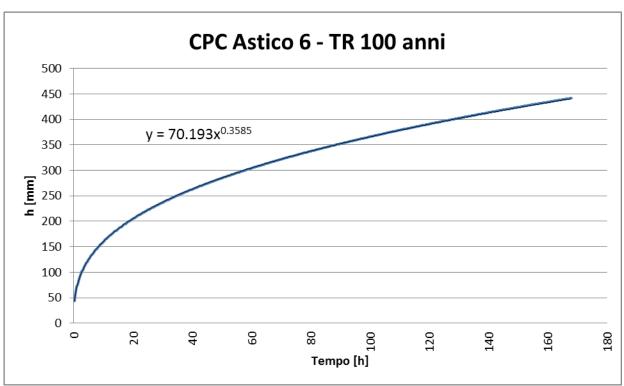


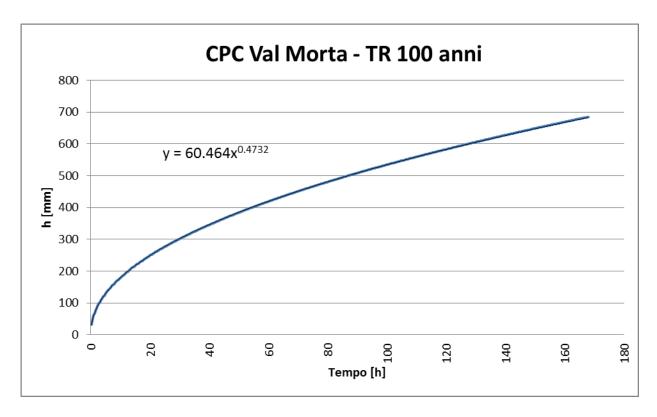


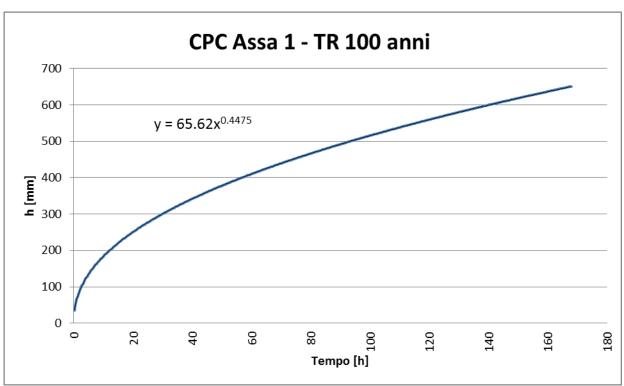


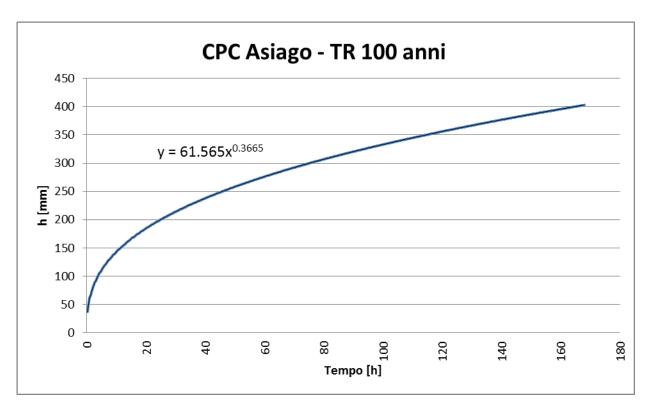


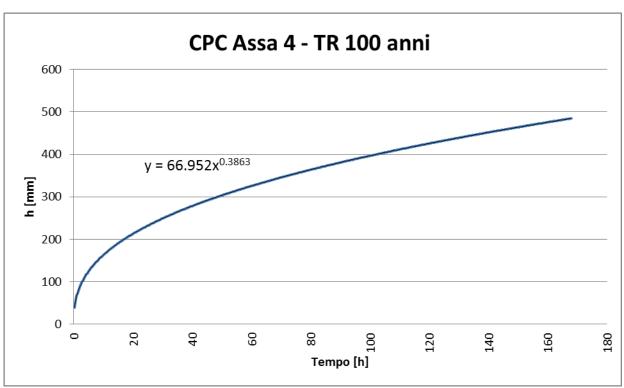


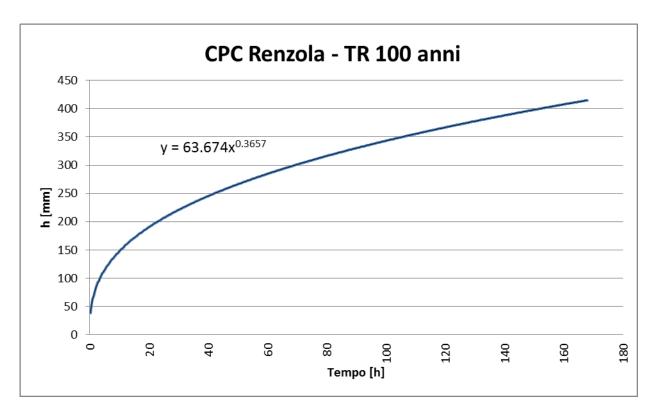


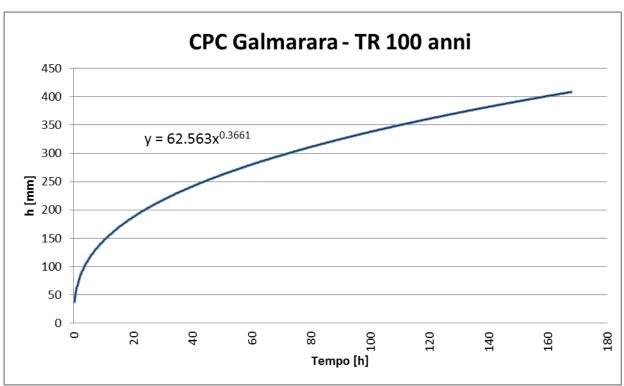


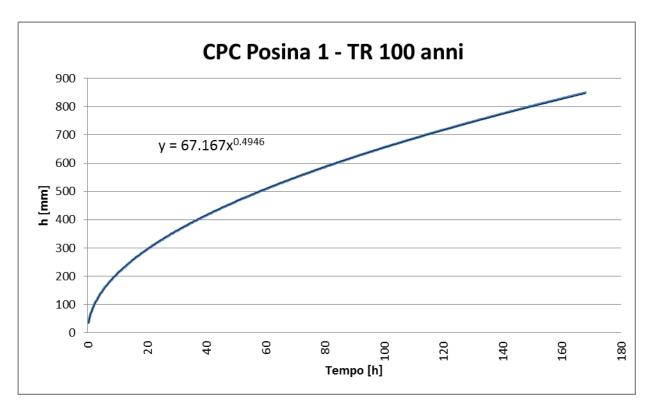


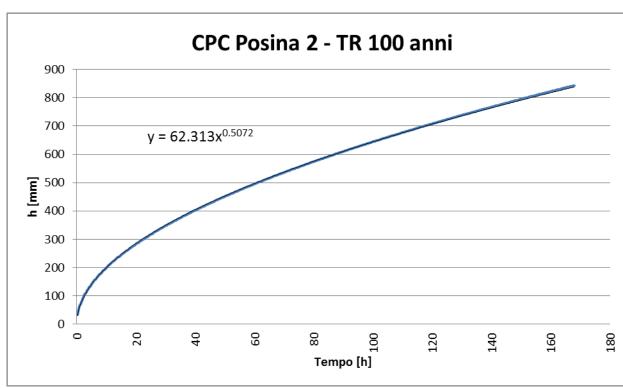


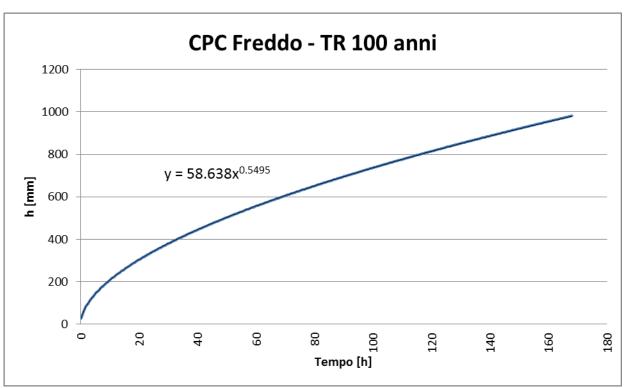


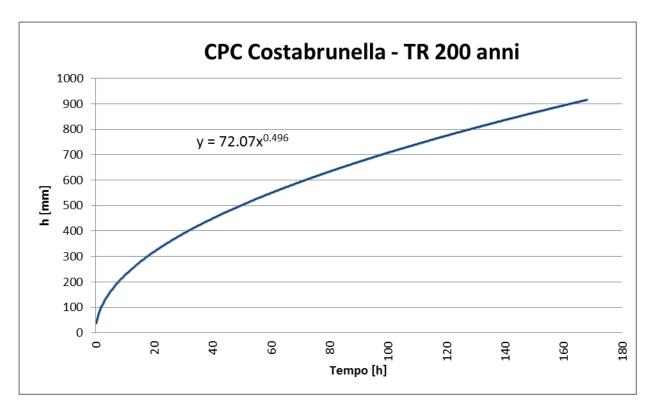


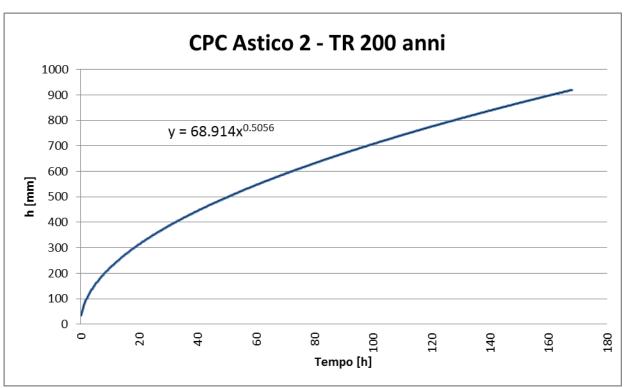


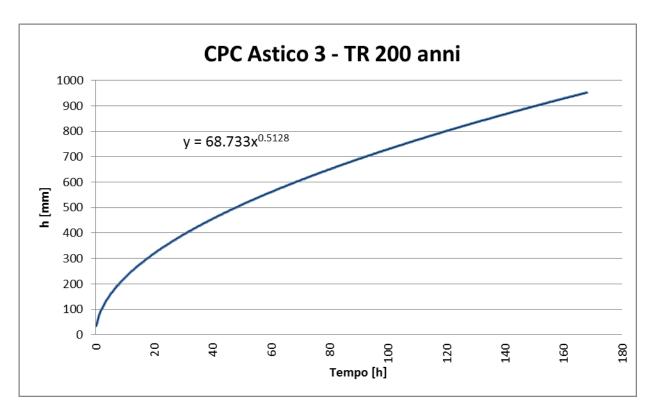


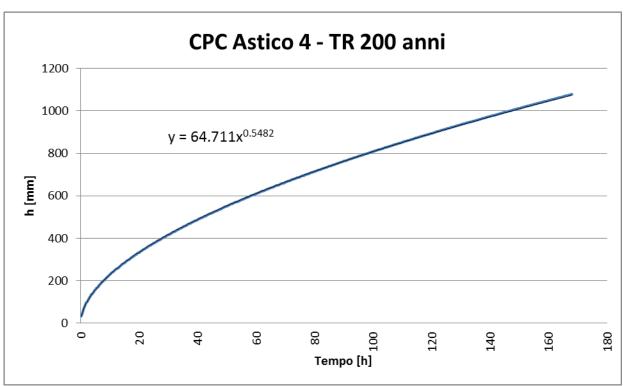


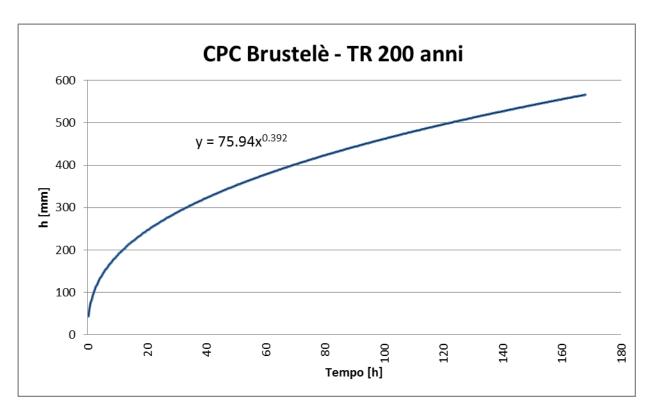


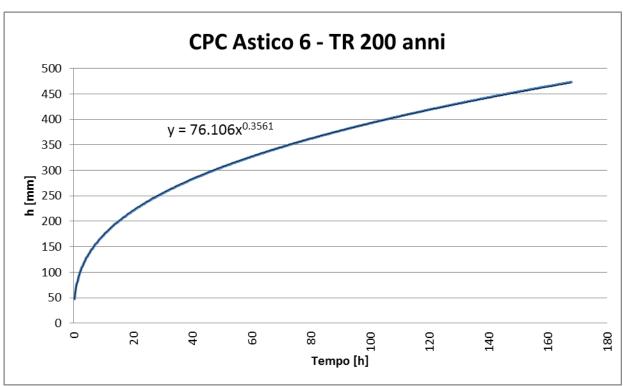


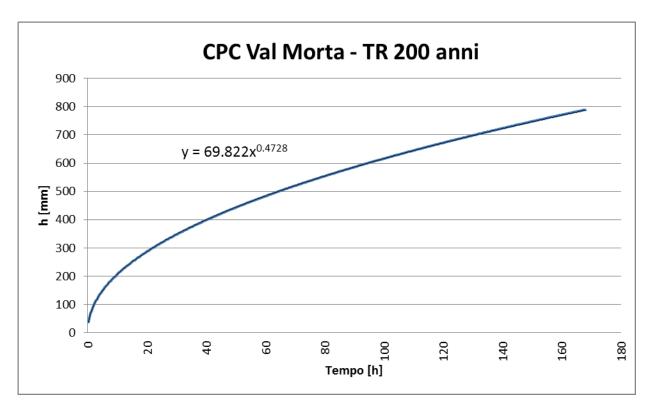


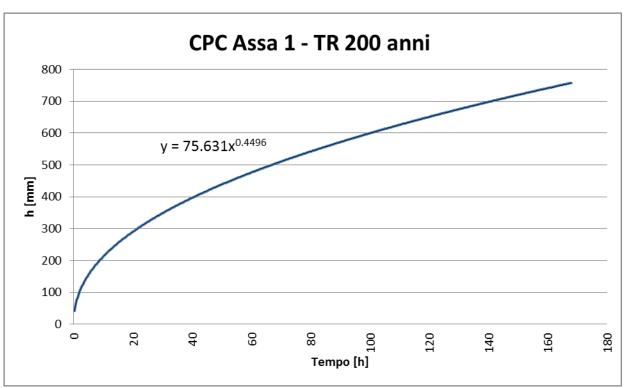


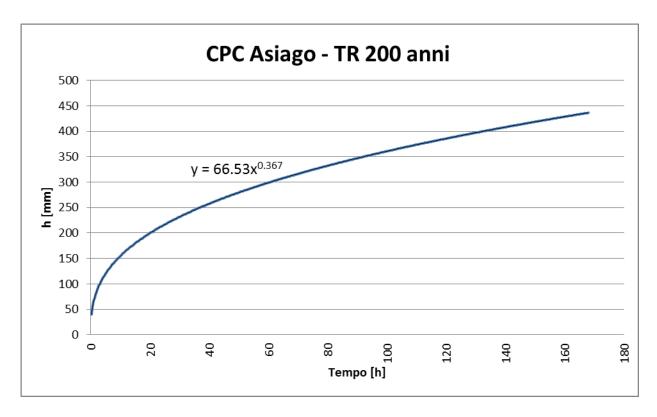


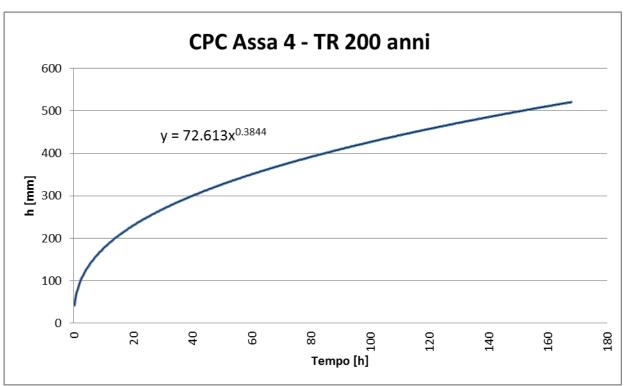


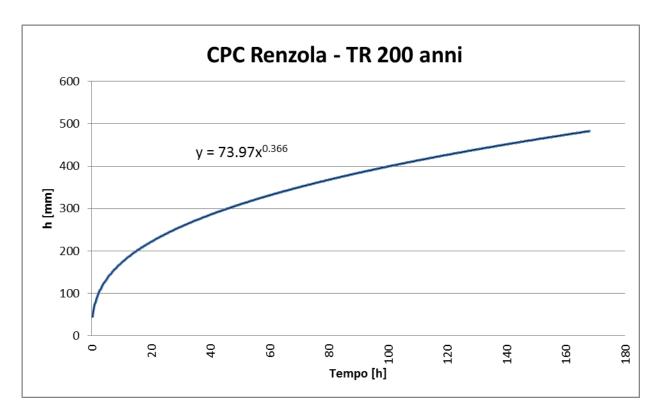


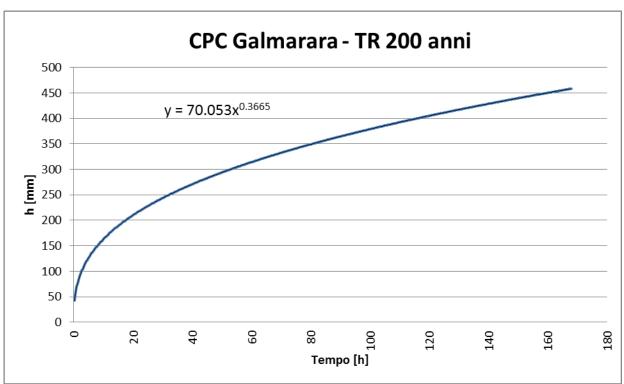


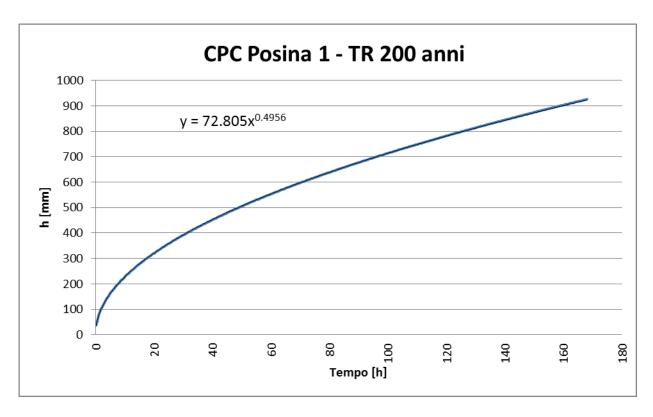


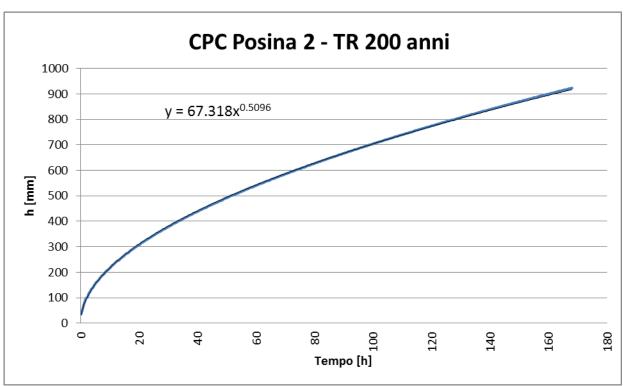


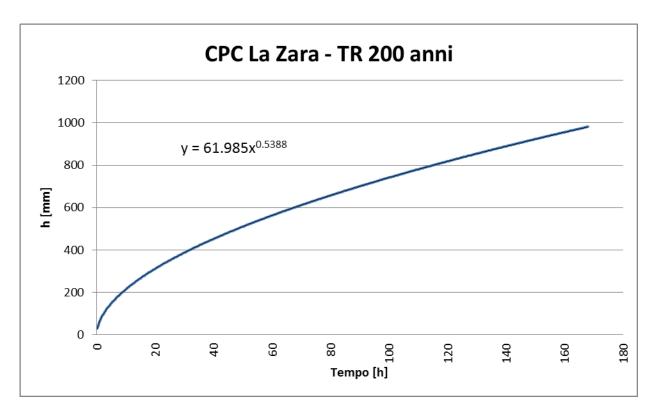


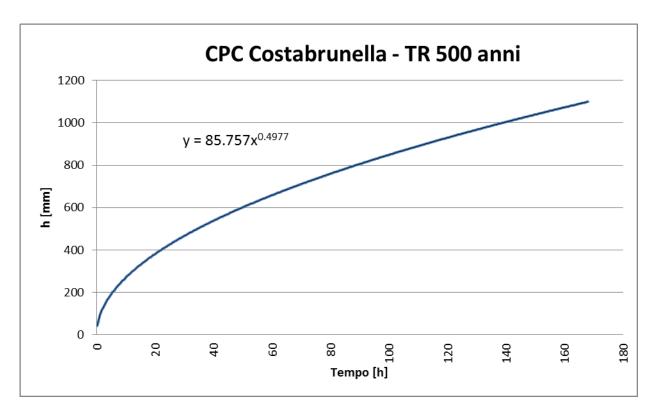


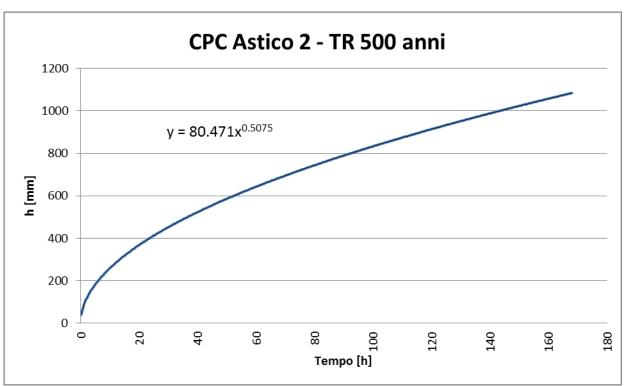


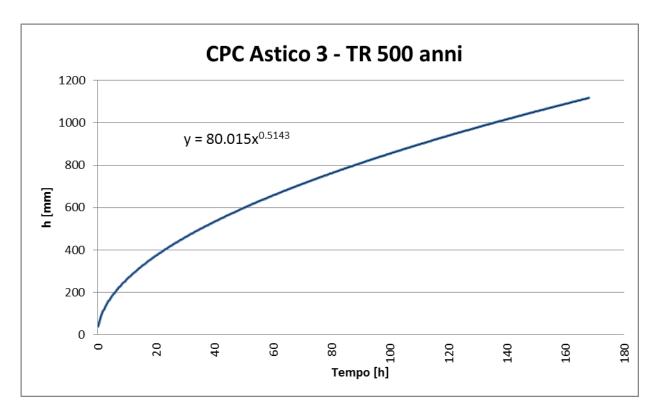


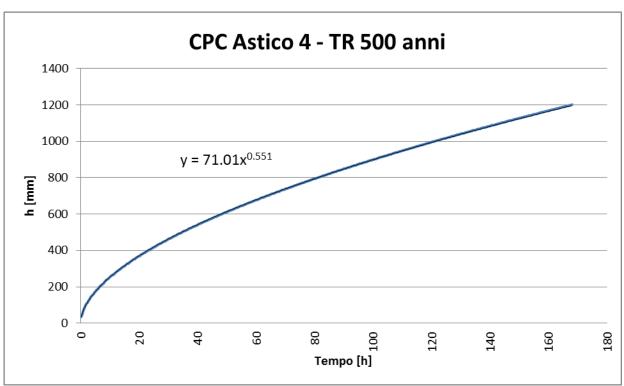


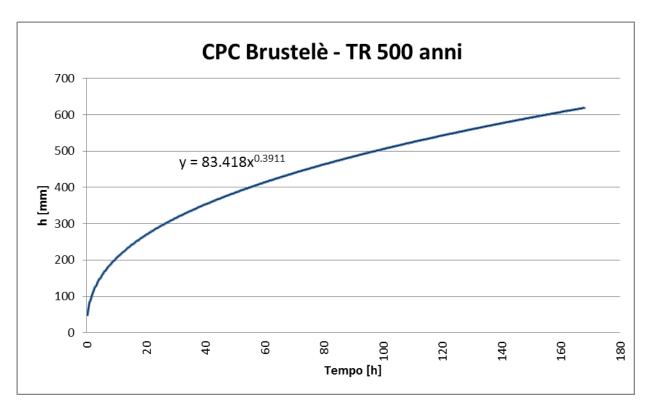


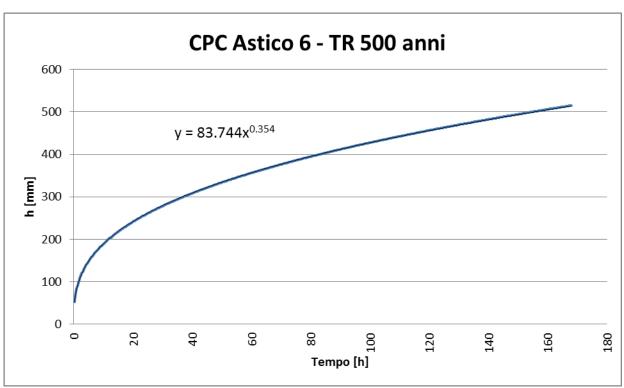


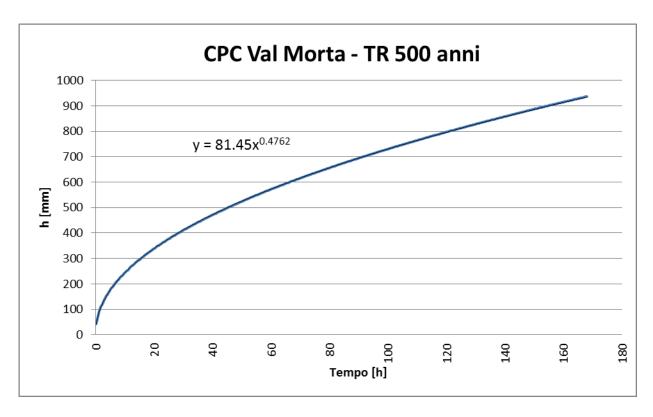


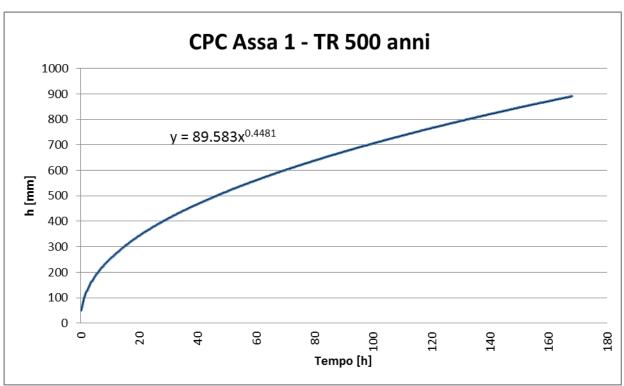


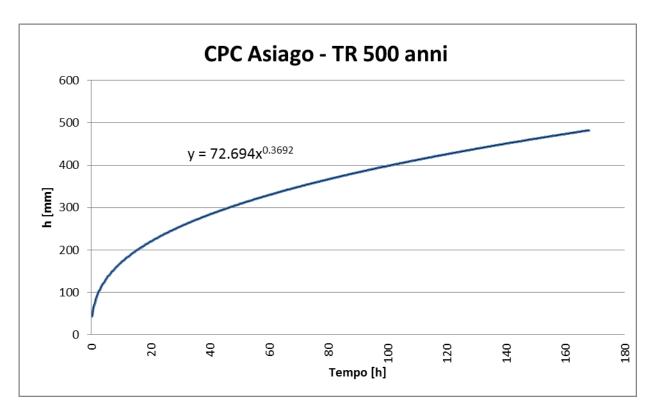


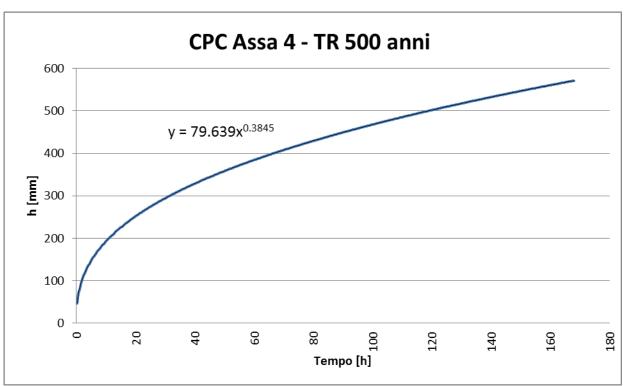


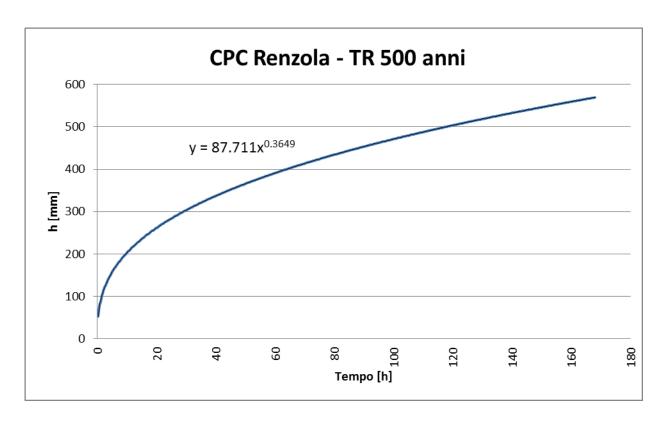


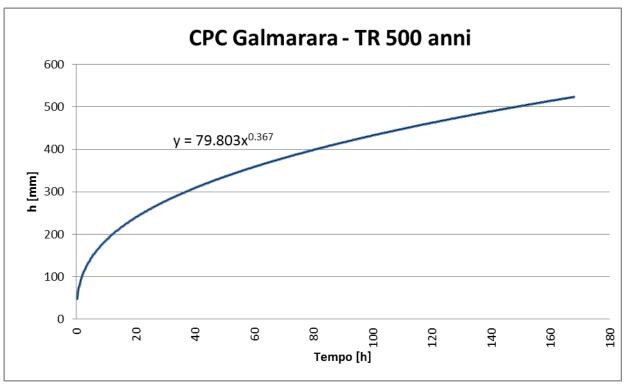


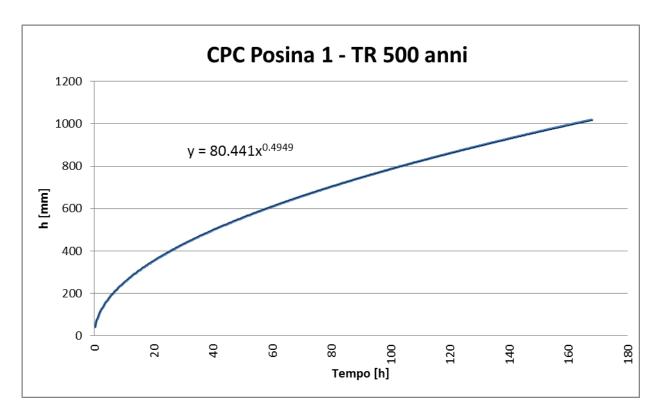


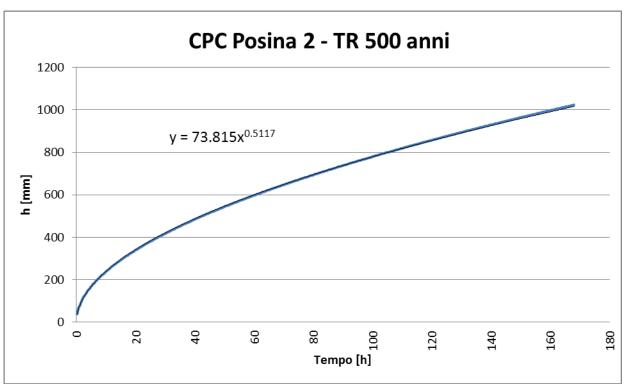


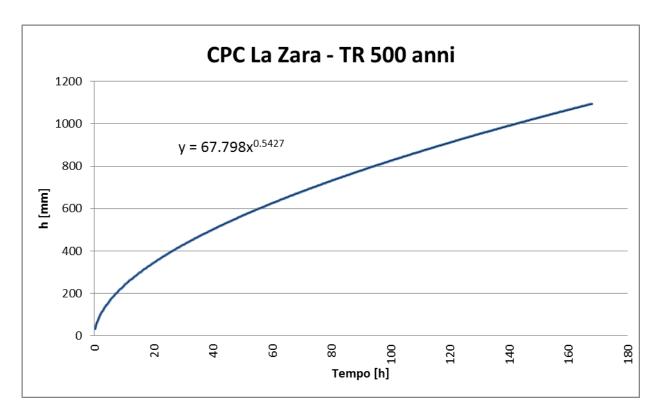


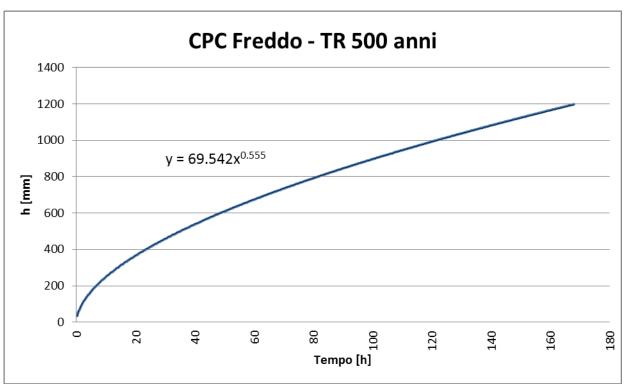


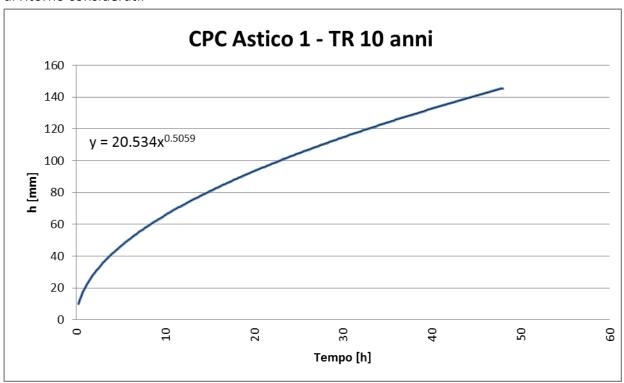


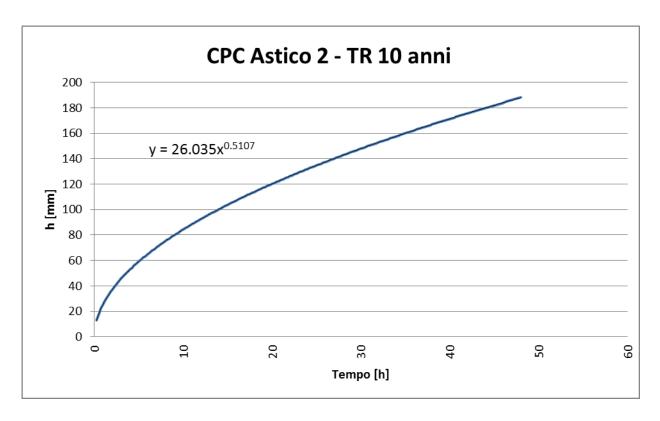


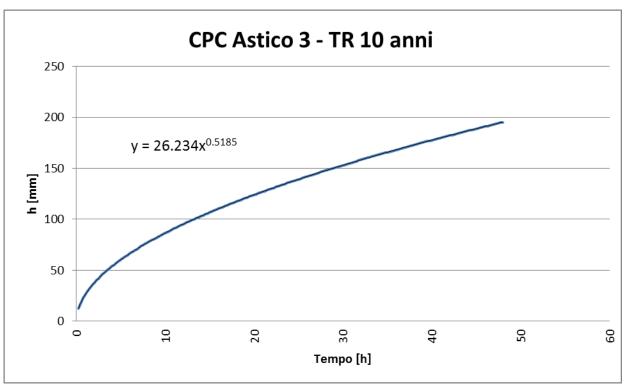


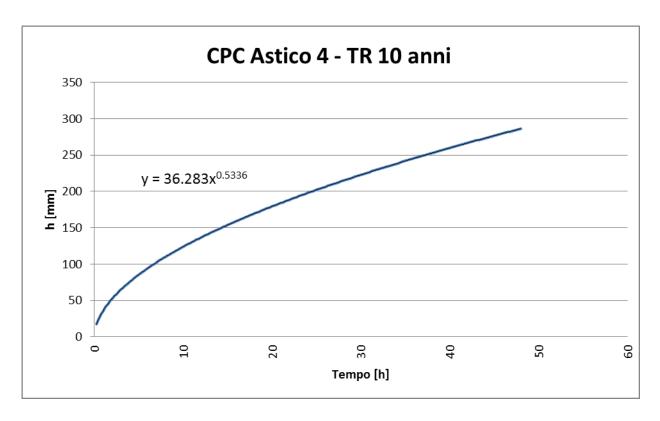


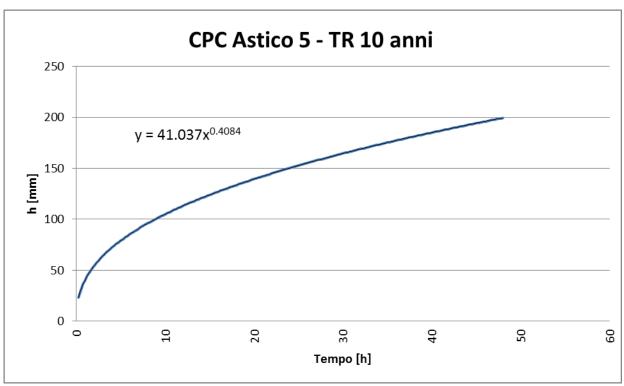


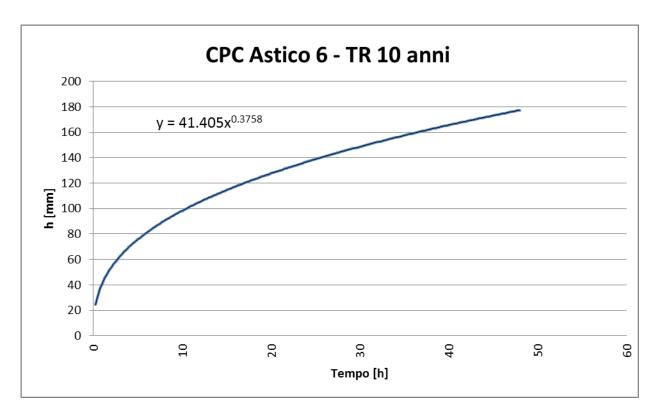


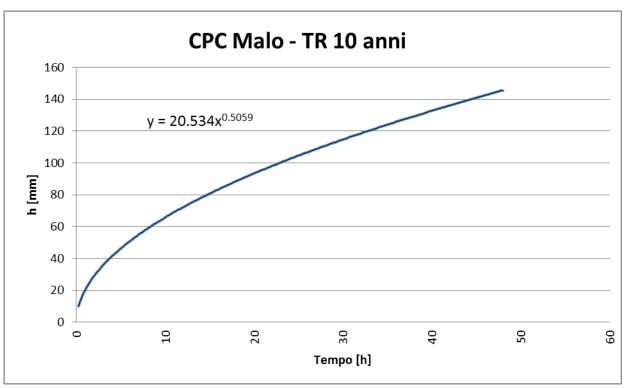


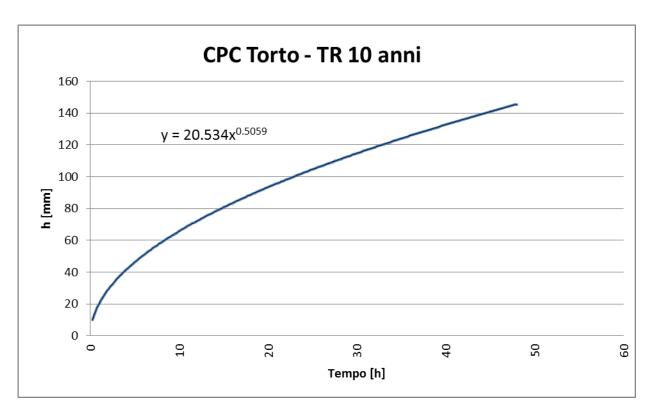


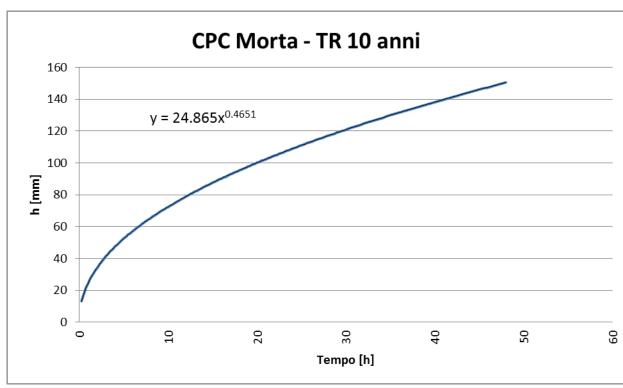

D.3 CURVE DI POSSIBILITÀ CLIMATICA RAGGUAGLIATE COL COEFFICIENTE DI COLUMBO

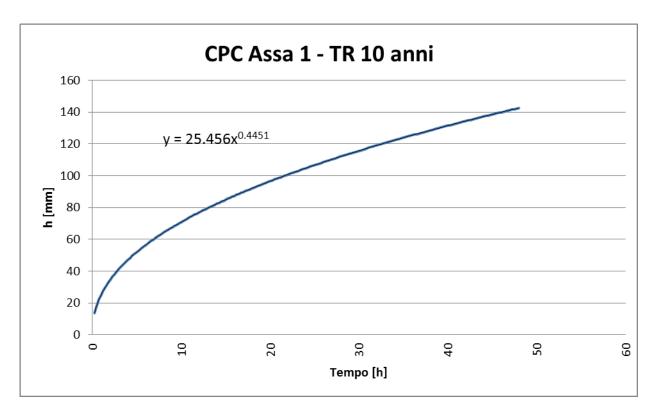

Le curve di possibilità climatica utilizzate per l'elaborazione del modello sono quelle risultanti dall'utilizzo del coefficiente di riduzione di Columbo (come spiegato al paragrafo C.3.1). Si riportano di seguito le curve così ottenute per ciascun sottobacino ai diversi tempi di ritorno considerati.

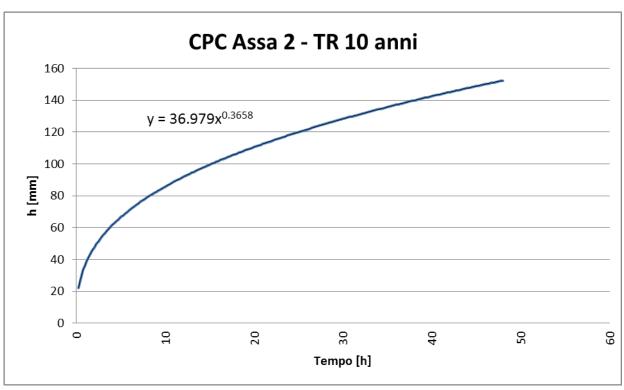


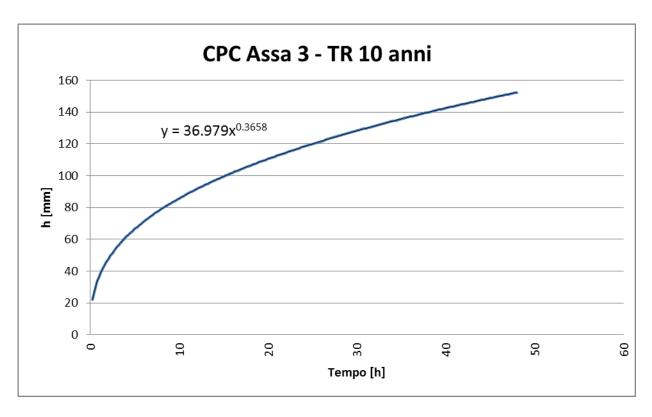


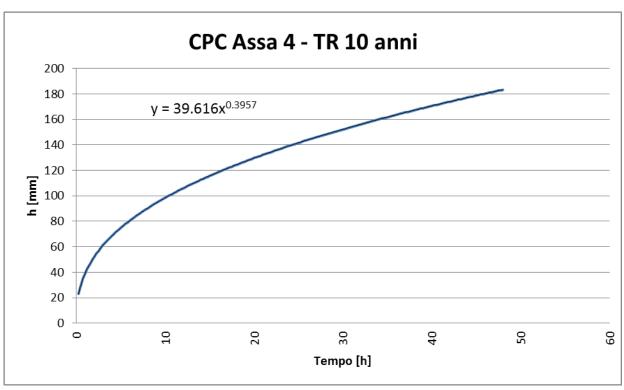


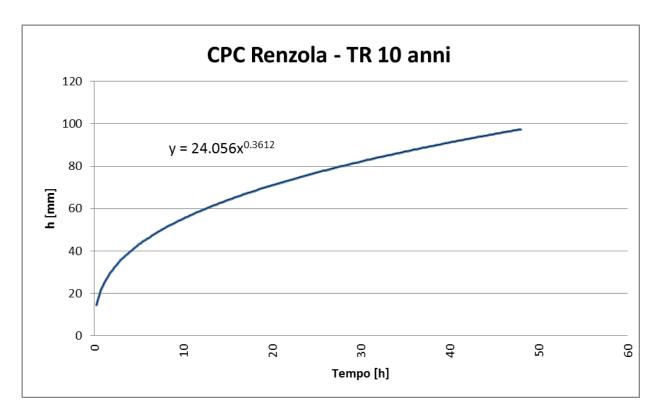


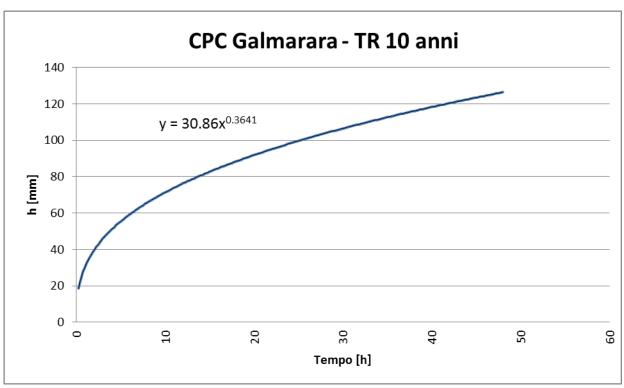


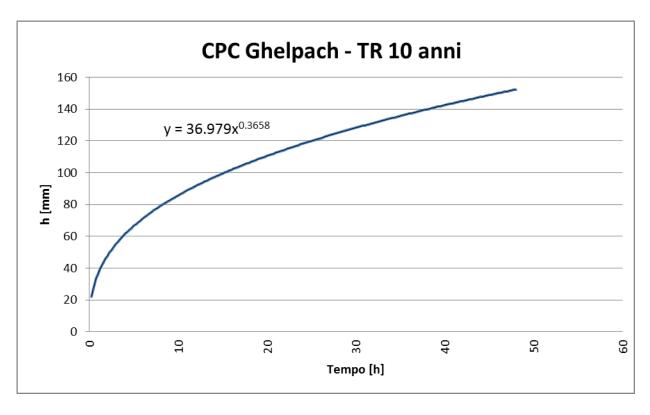


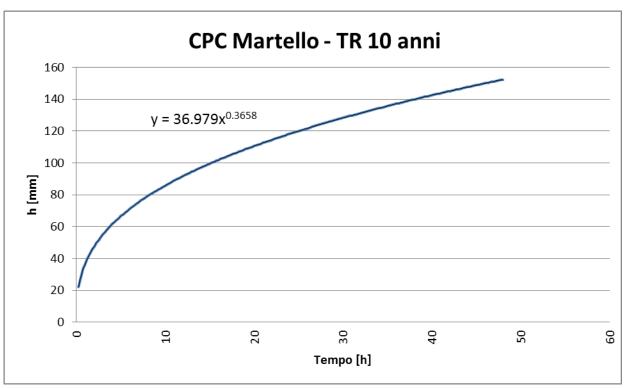


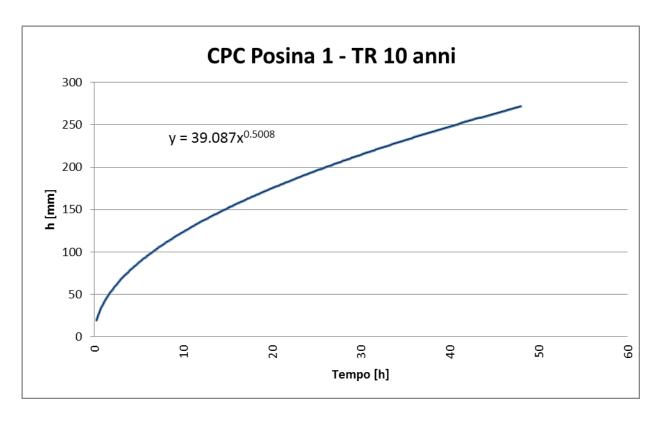


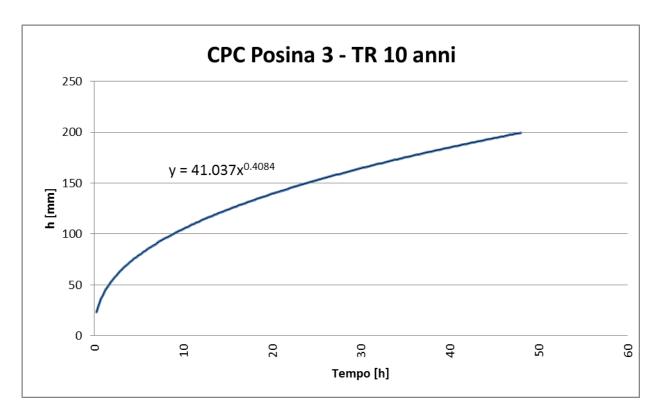


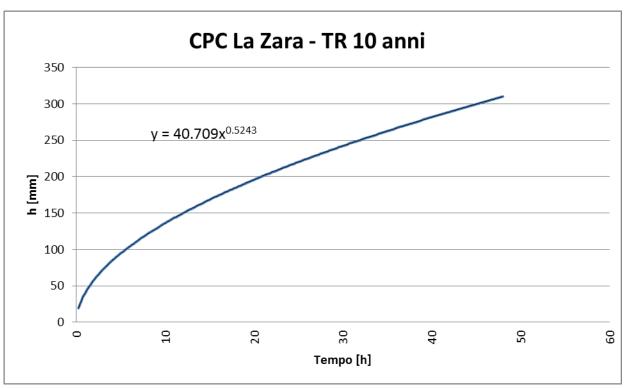


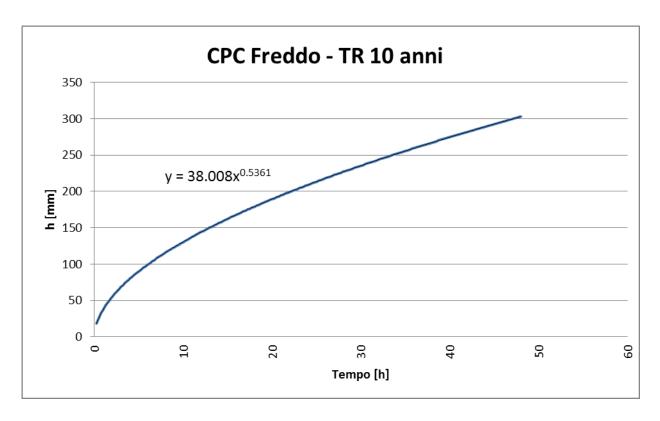


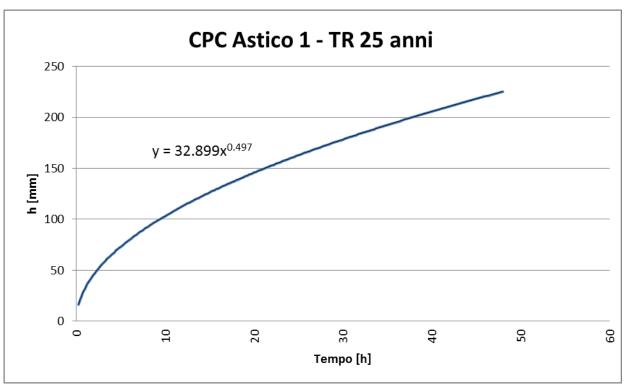


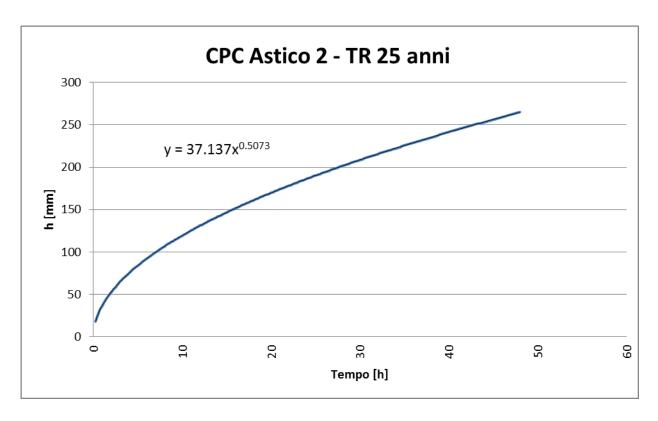


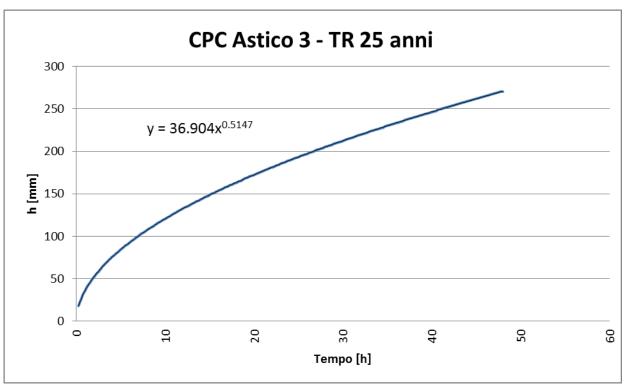


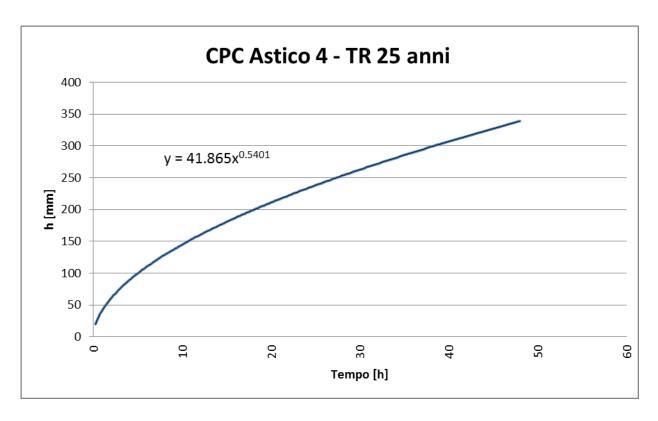


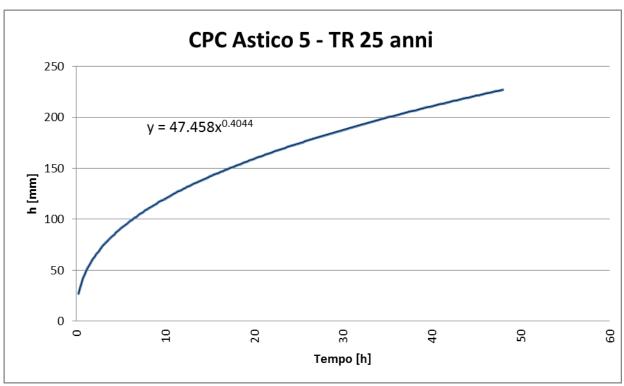


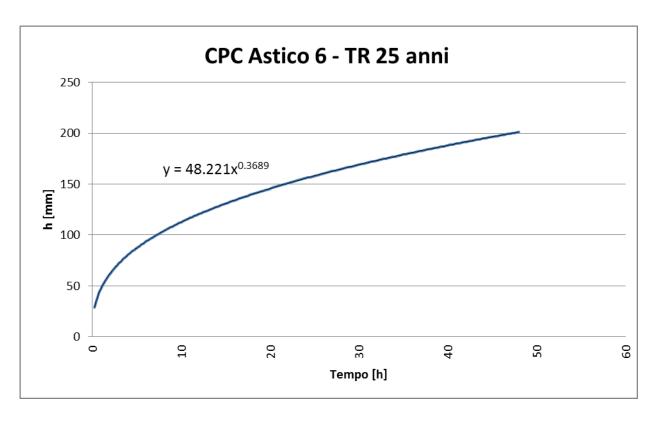


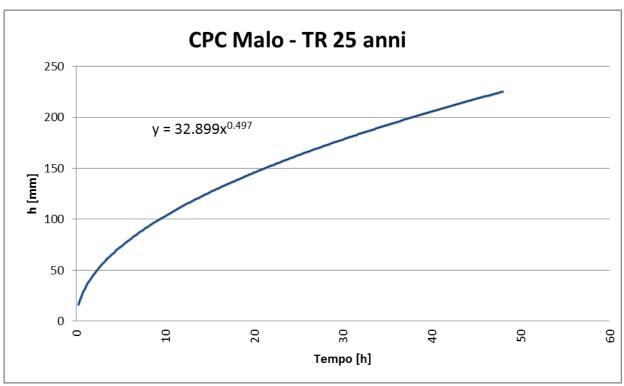


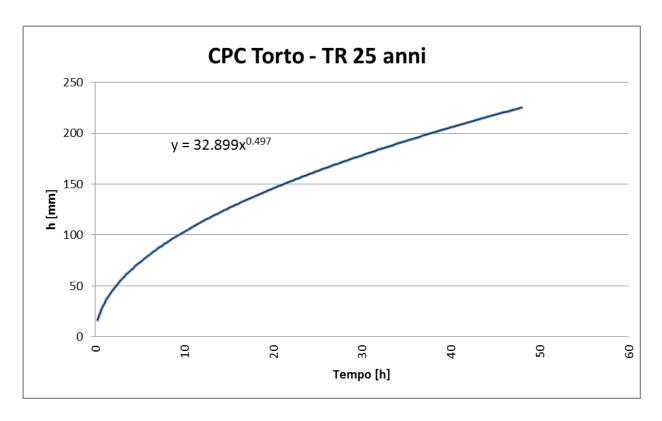


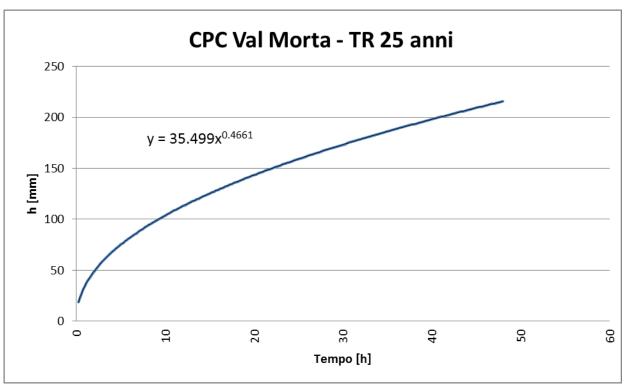


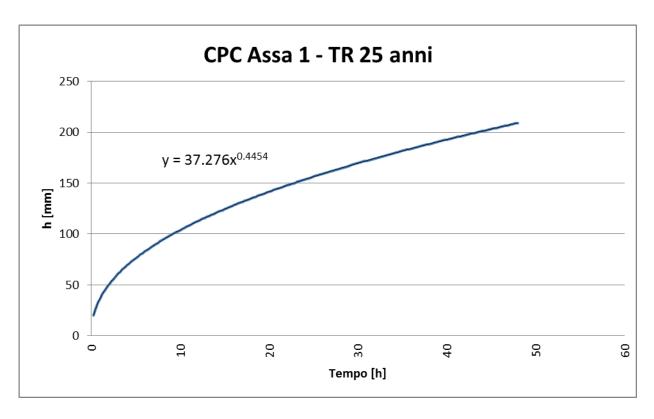


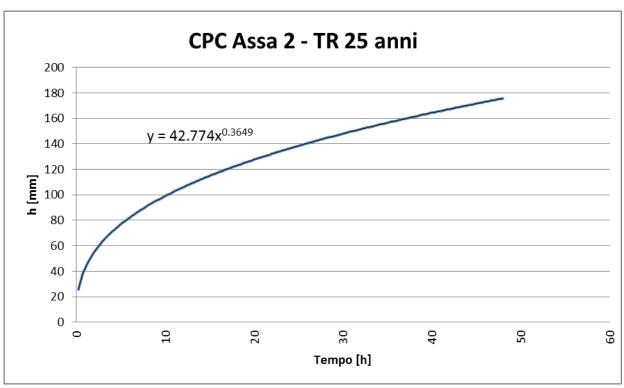


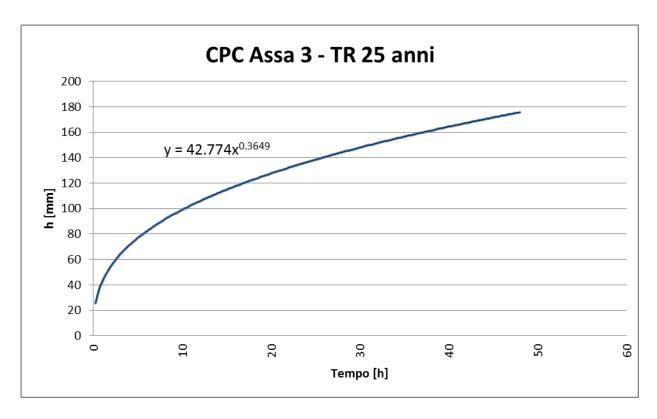


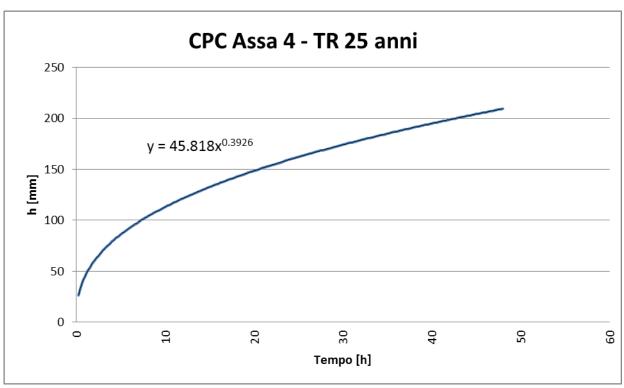


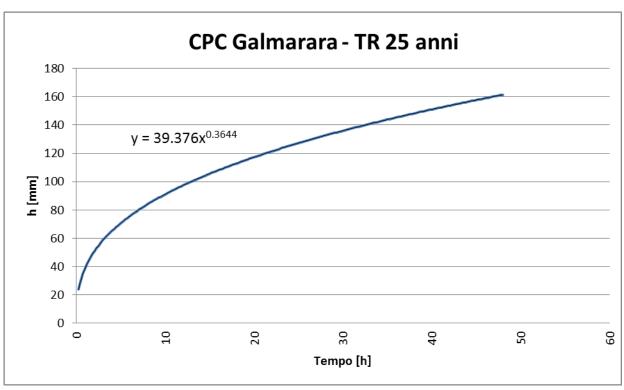


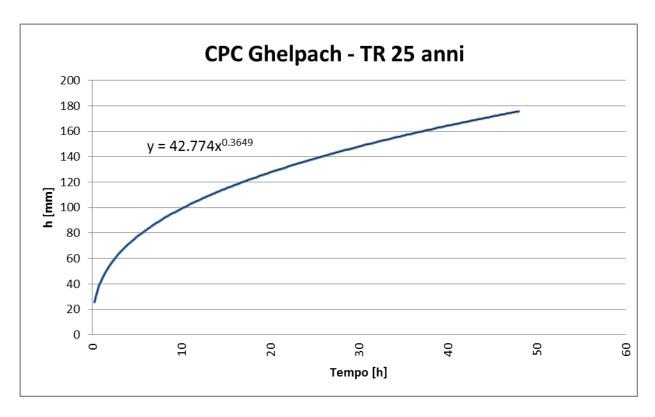


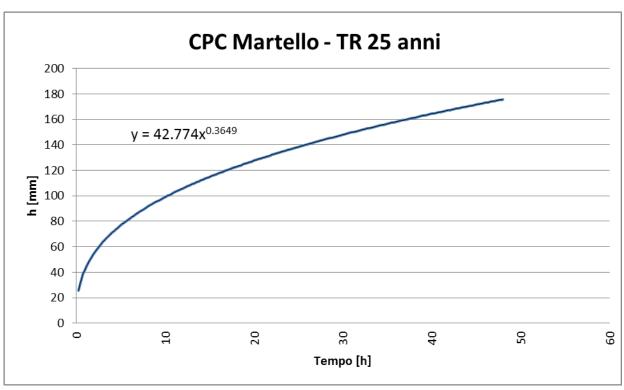


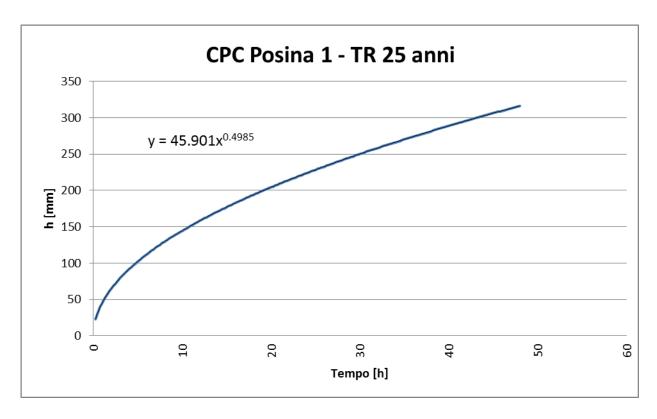


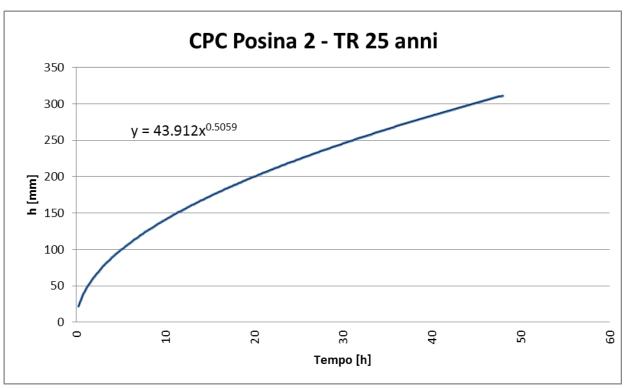


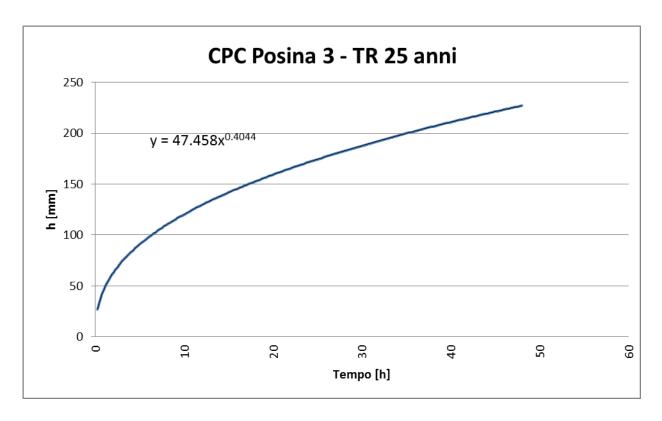


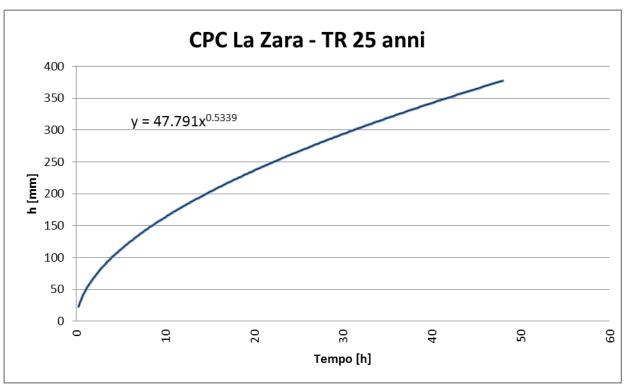


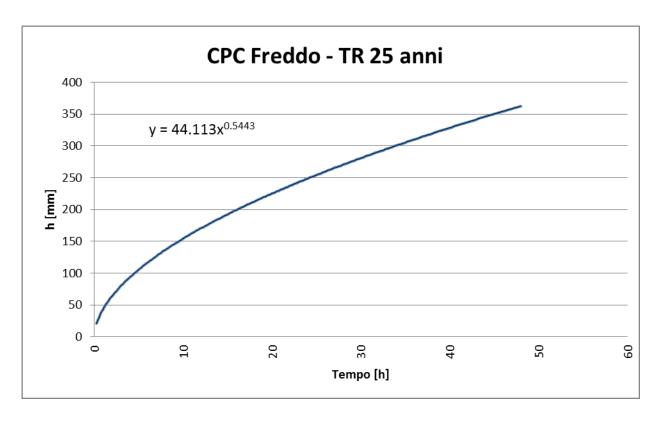


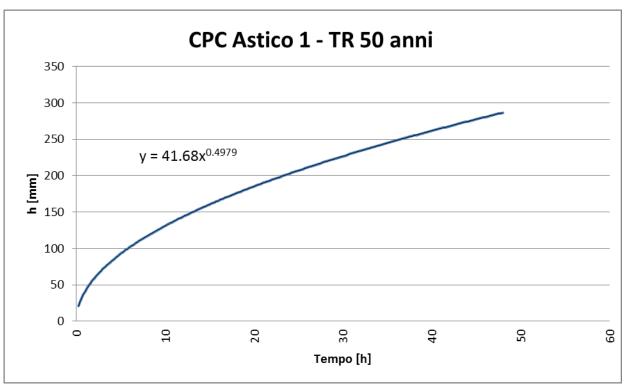


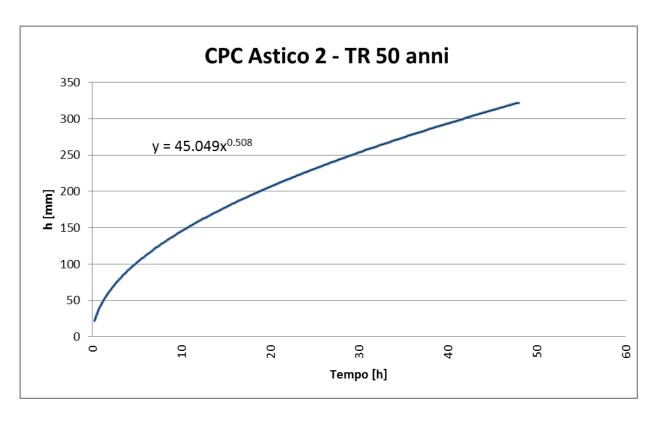


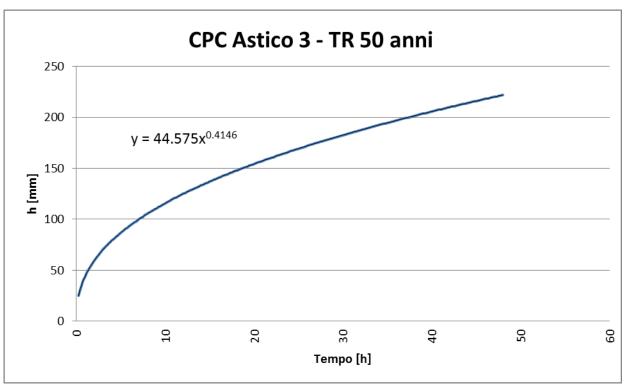


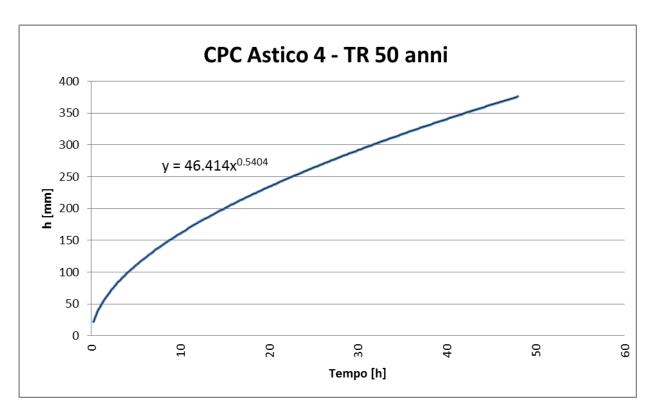


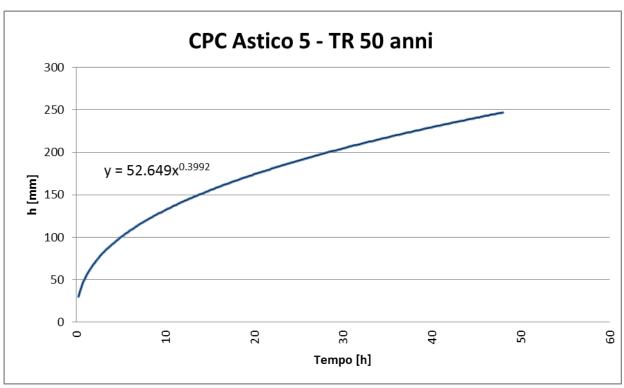


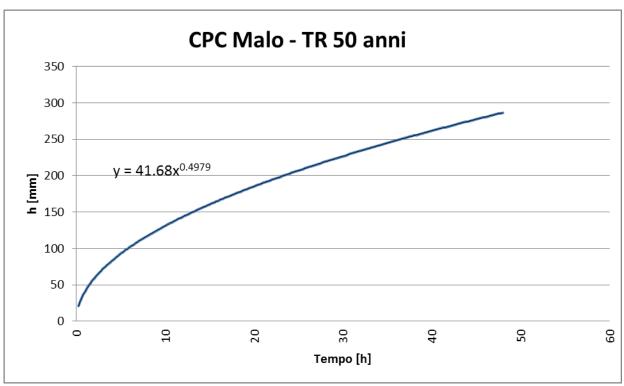


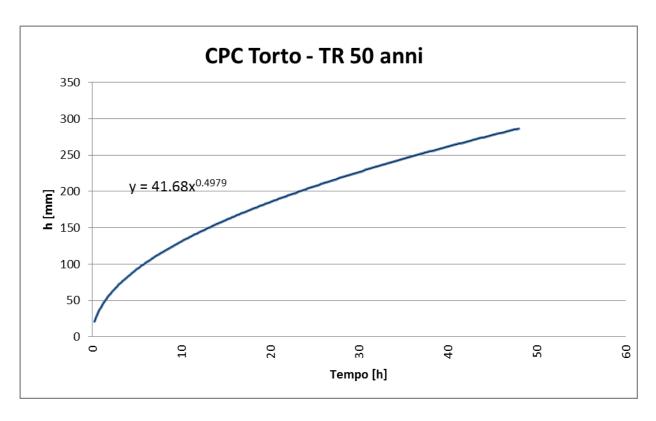


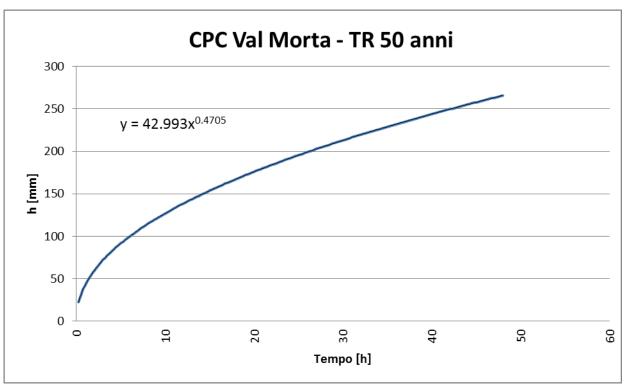


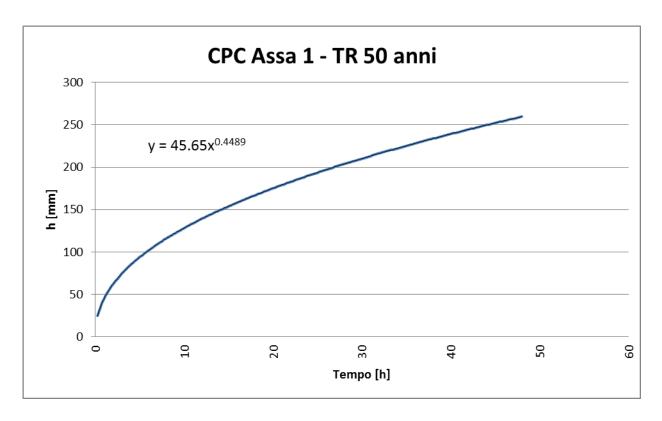


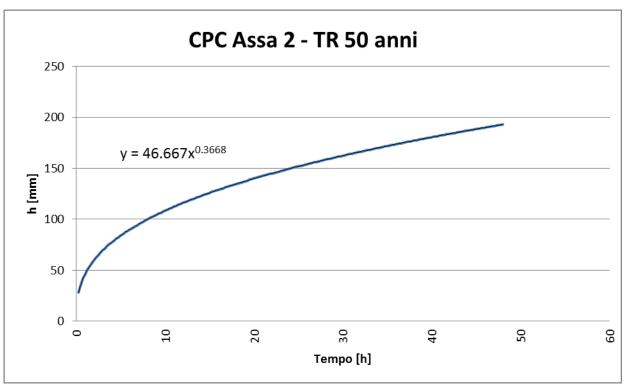


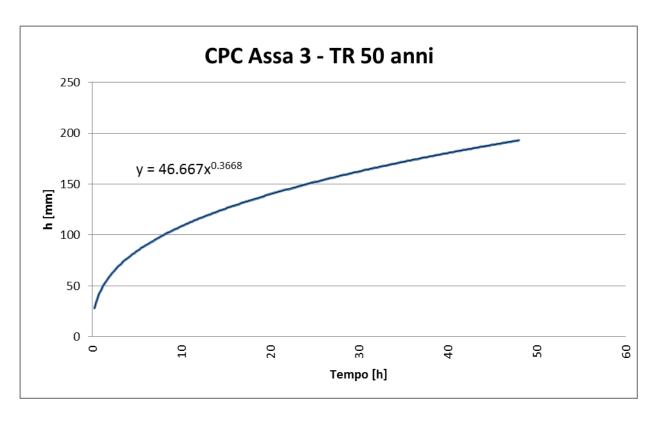


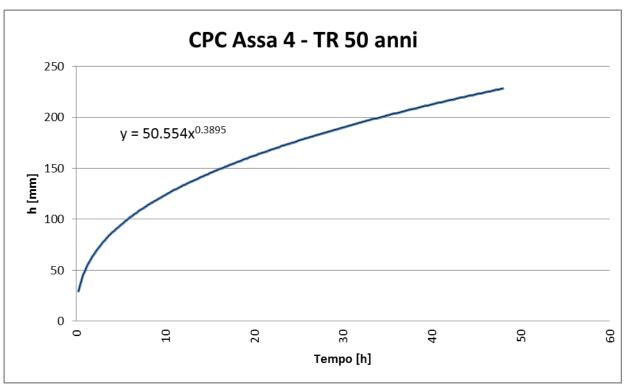


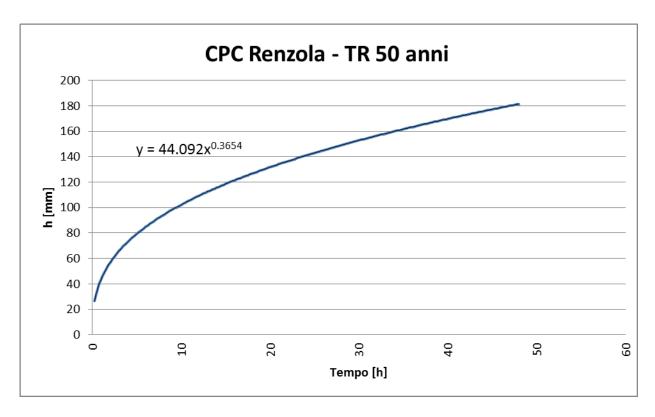


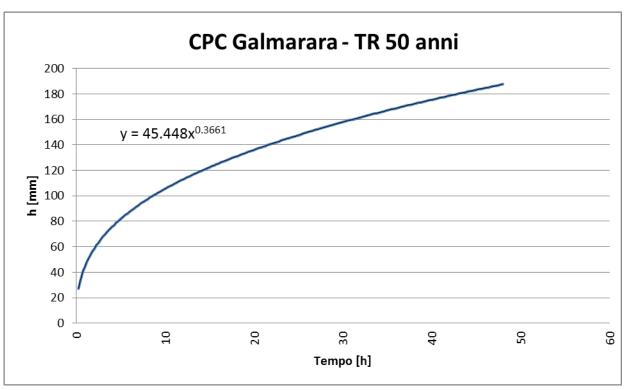


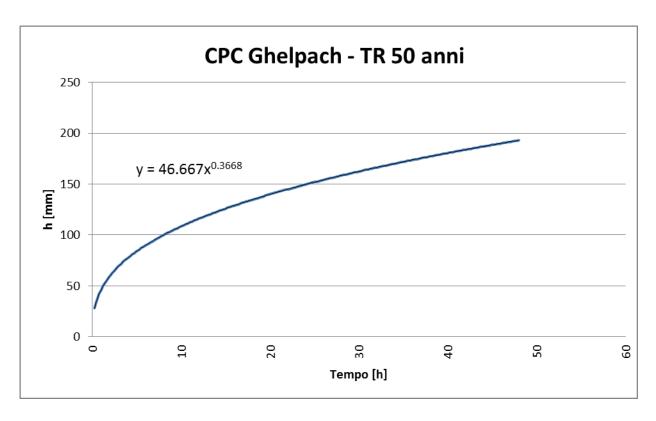


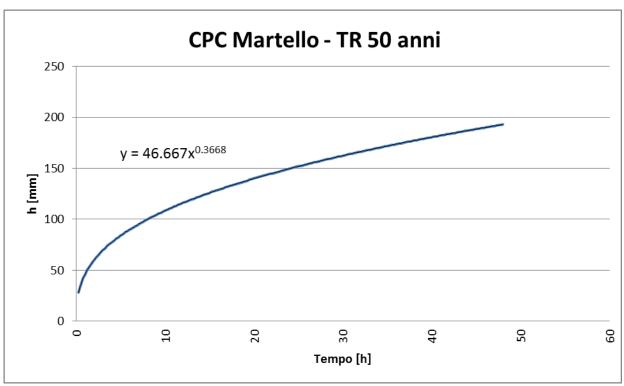


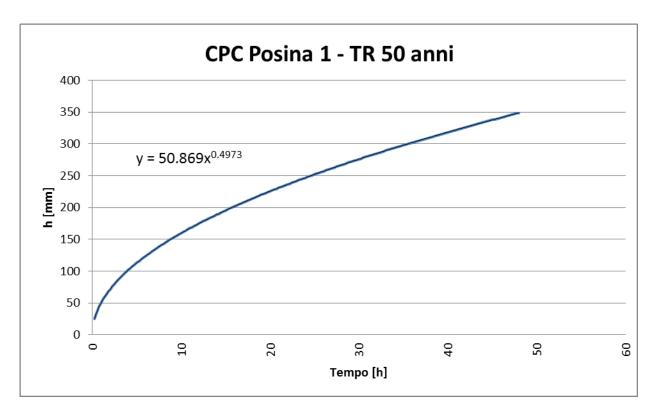


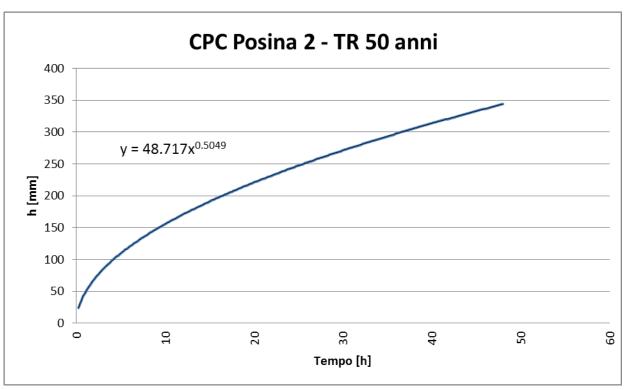


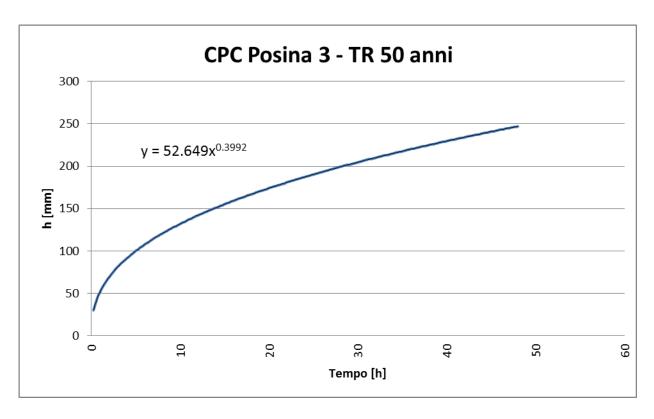


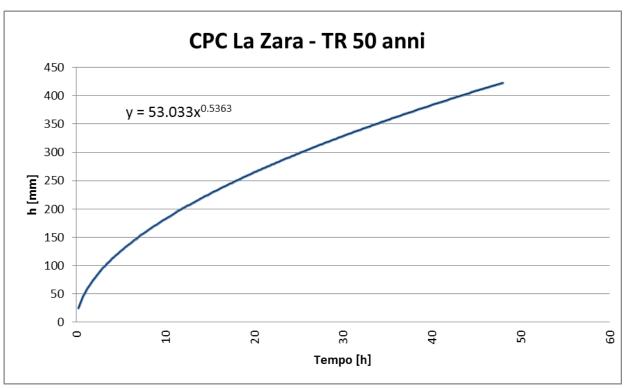


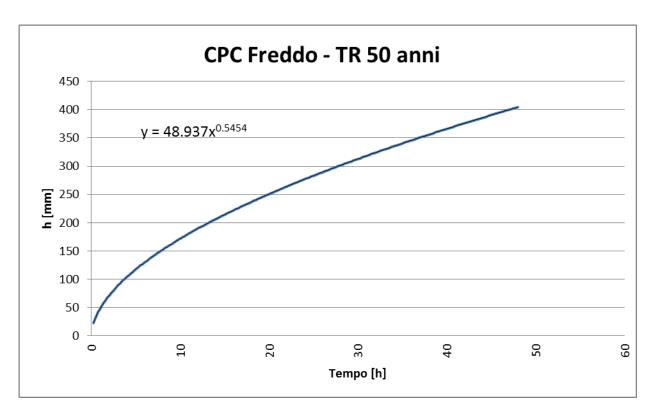


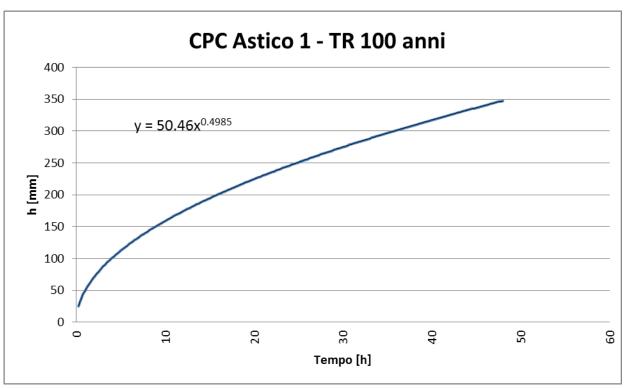


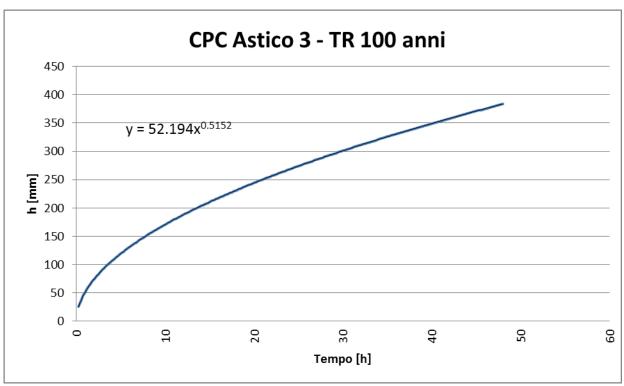


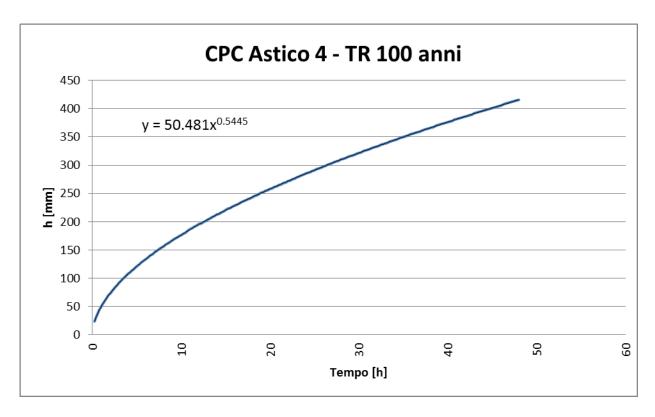


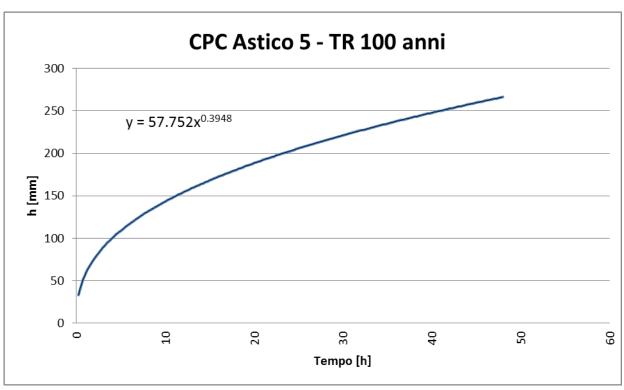


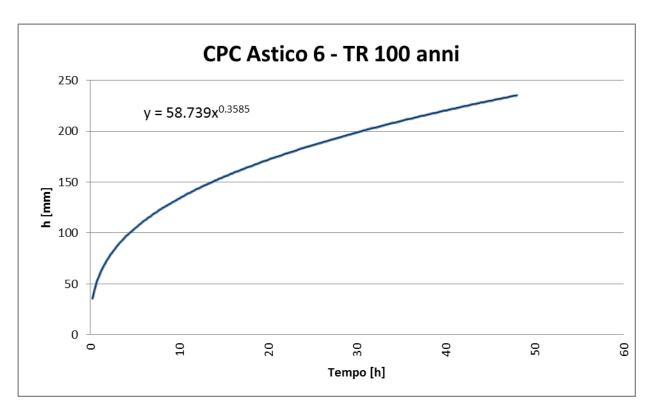


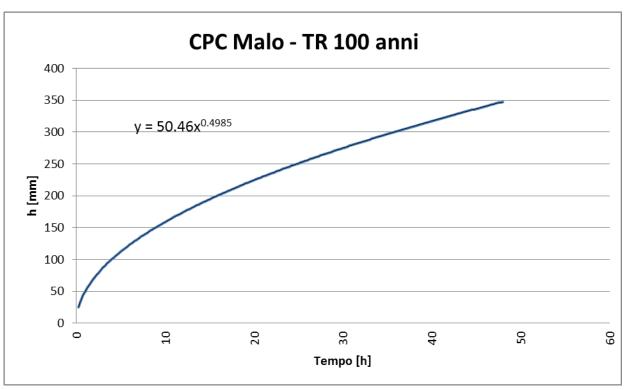


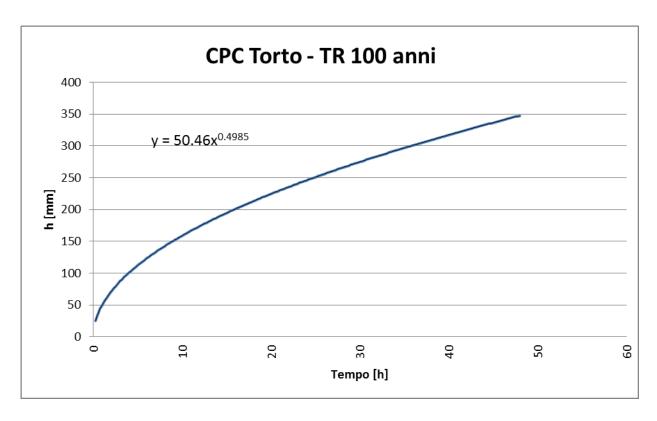


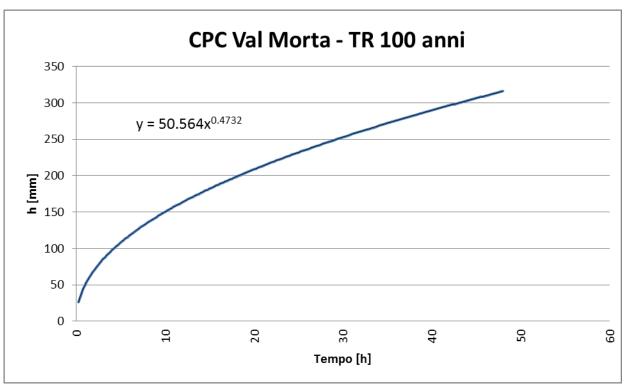


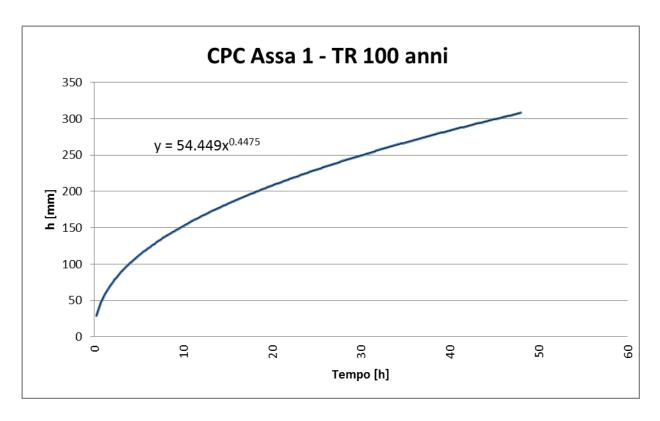


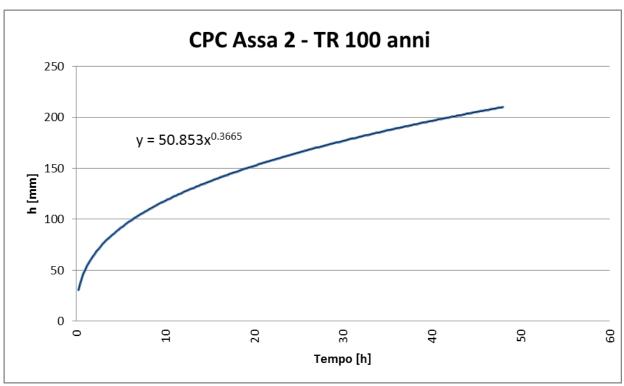


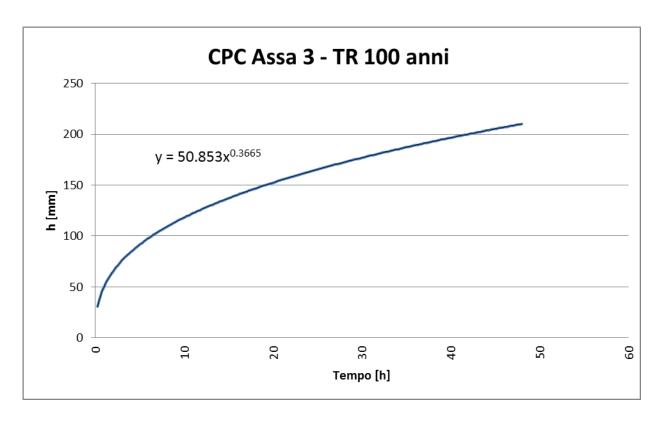


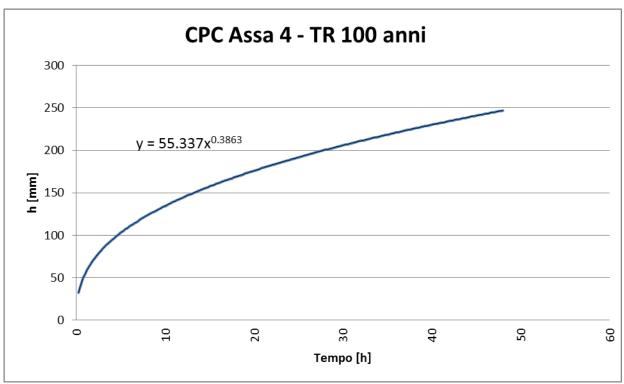


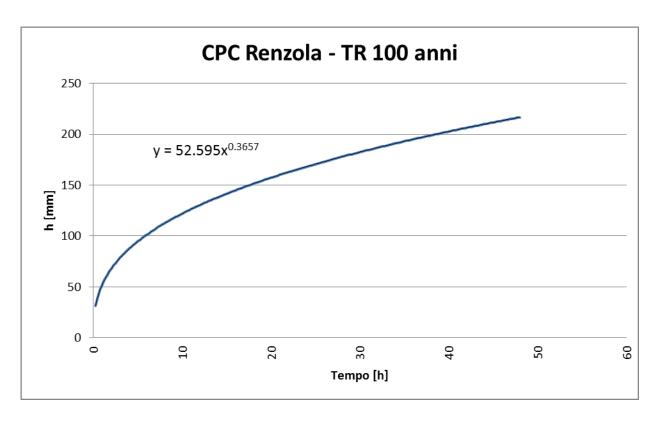


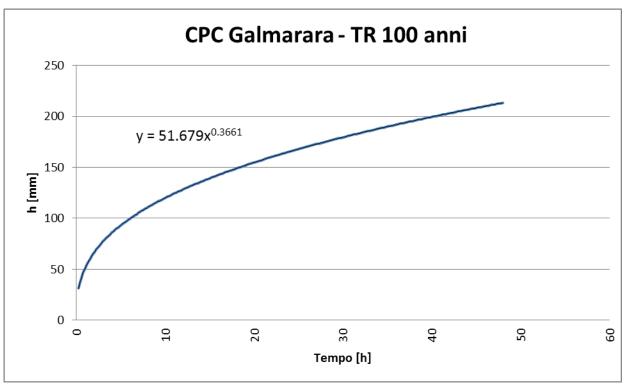


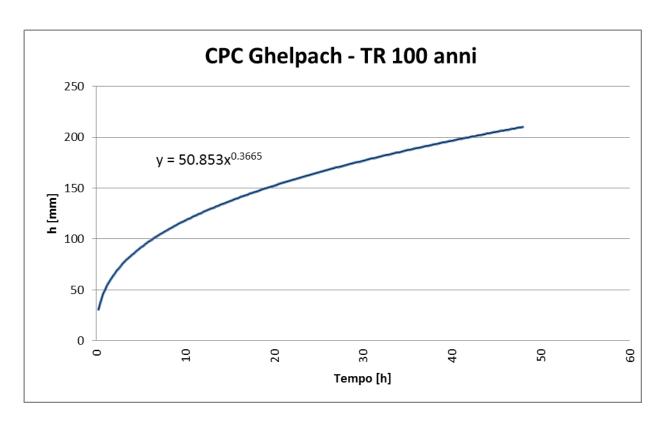


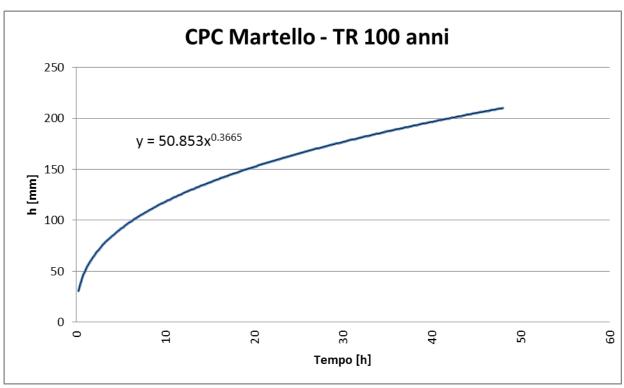


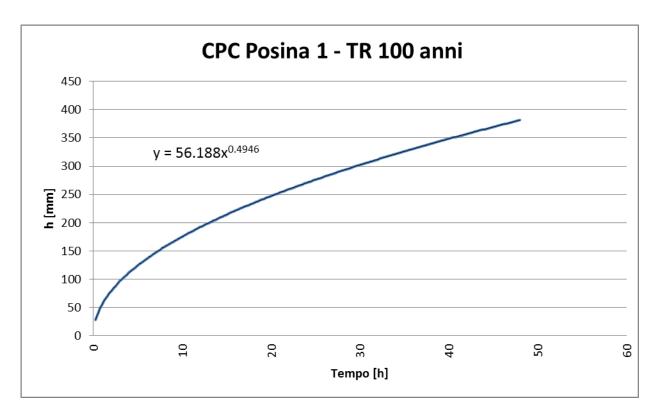


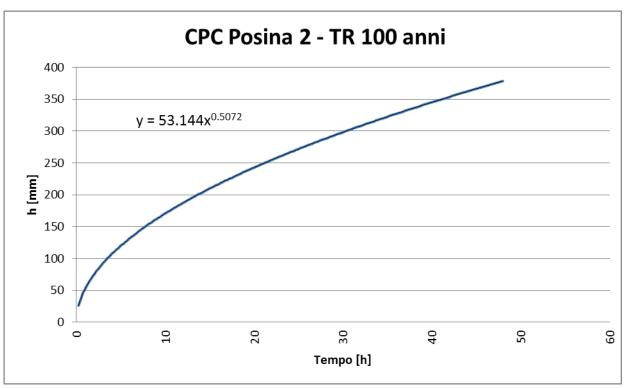


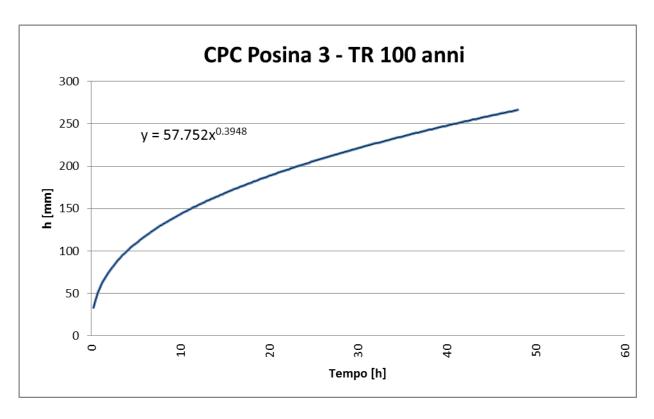


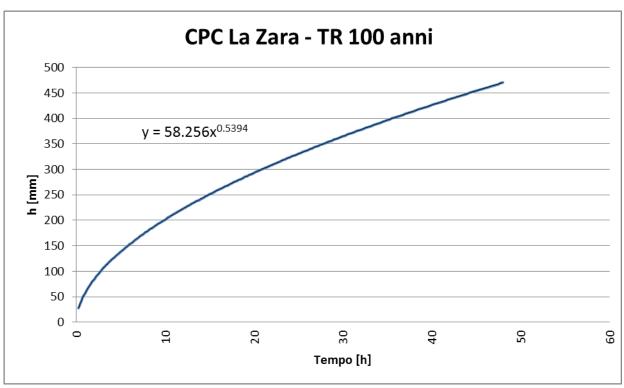


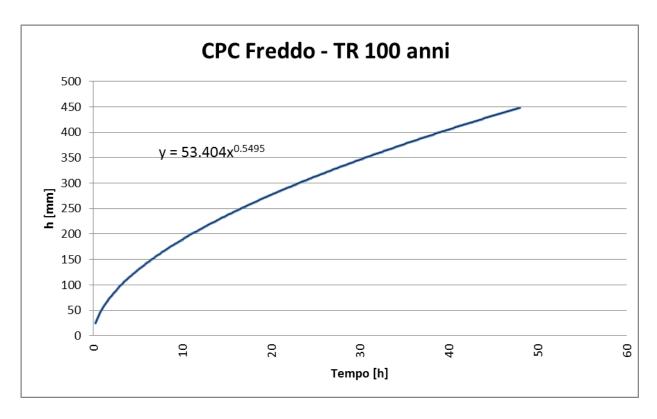


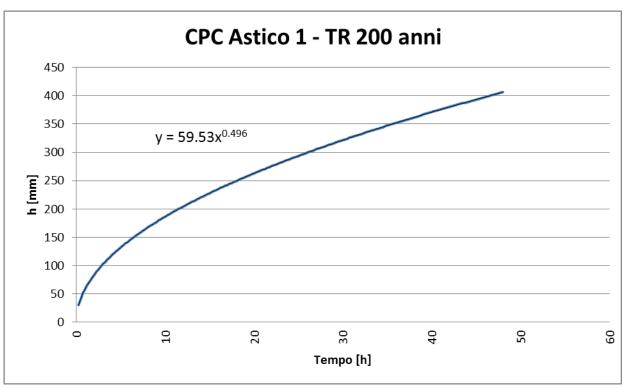


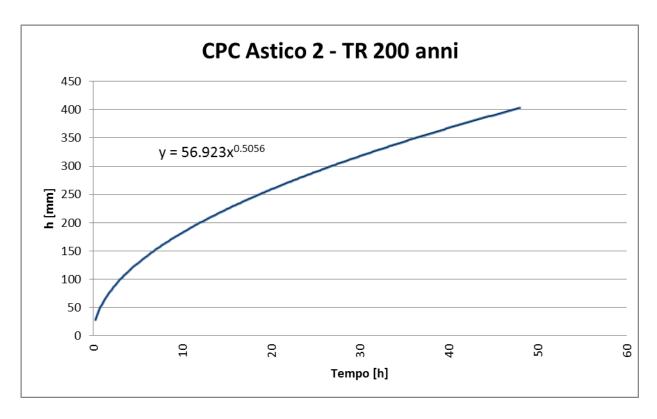


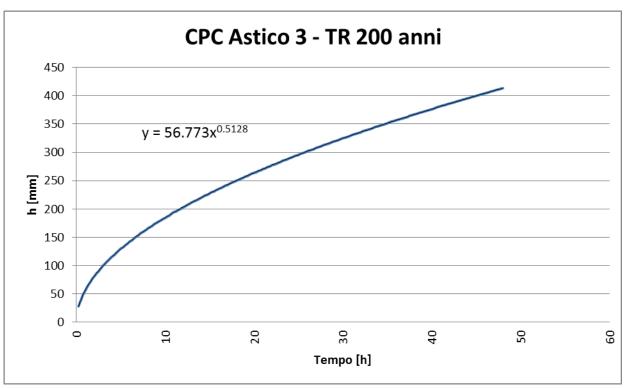


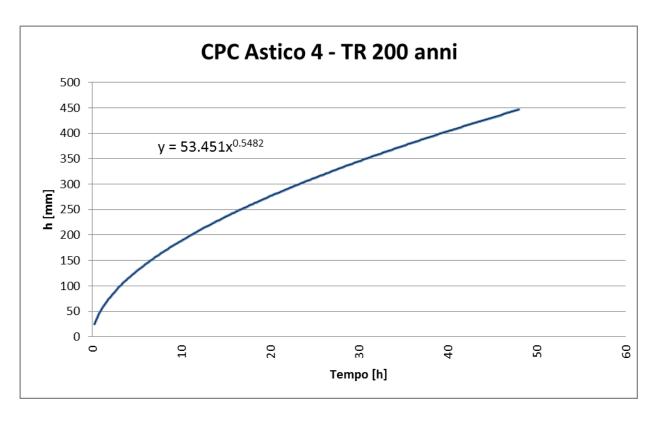


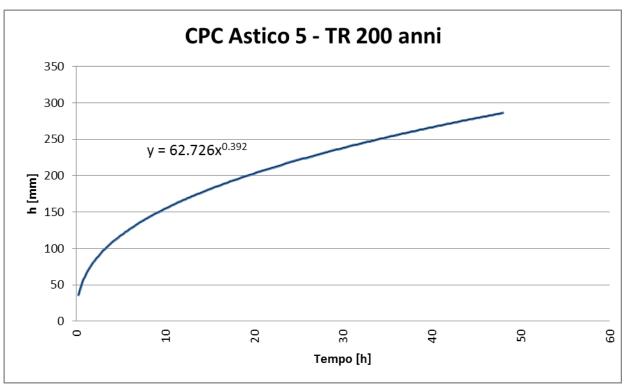


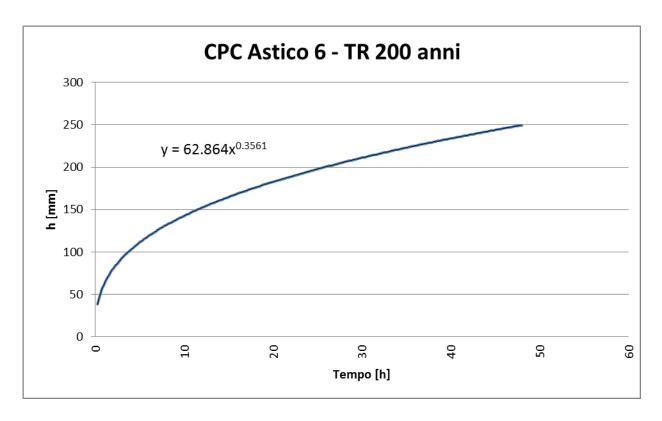


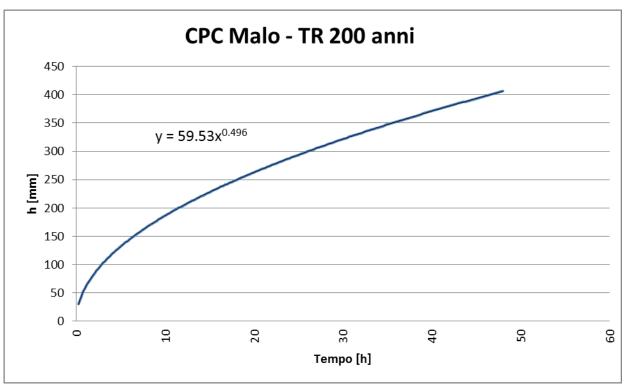


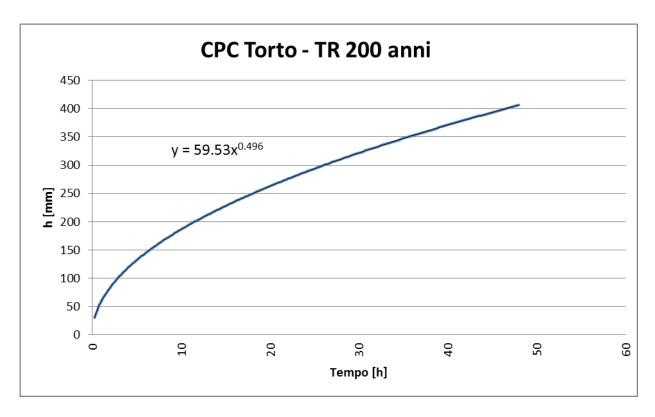


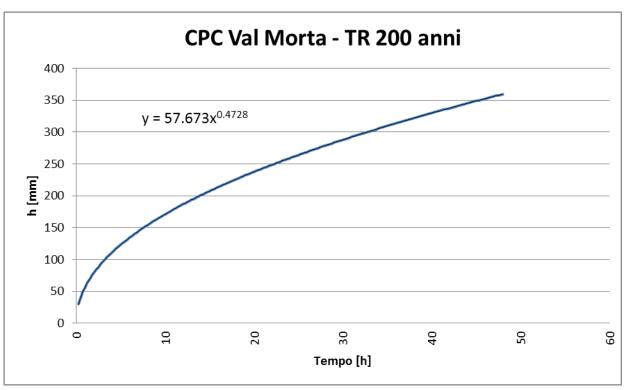


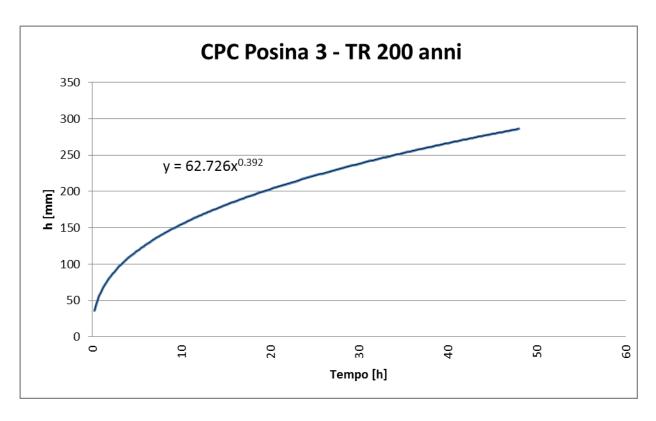


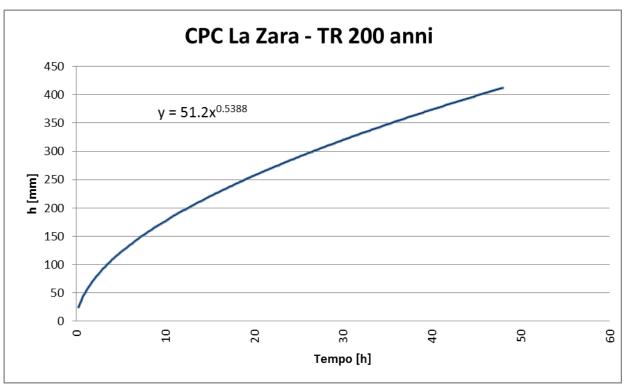


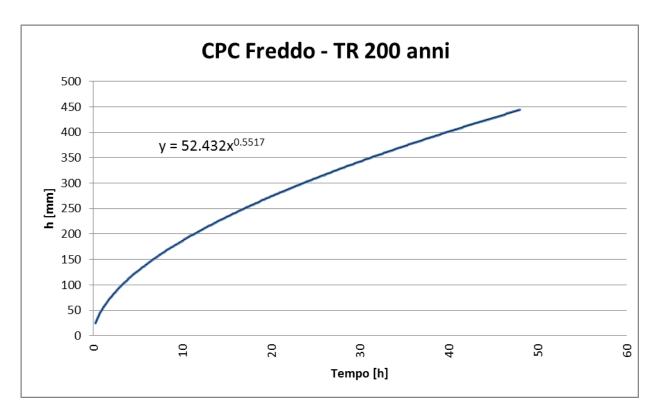


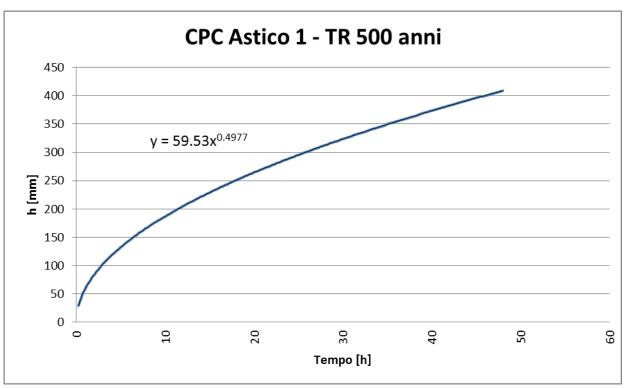


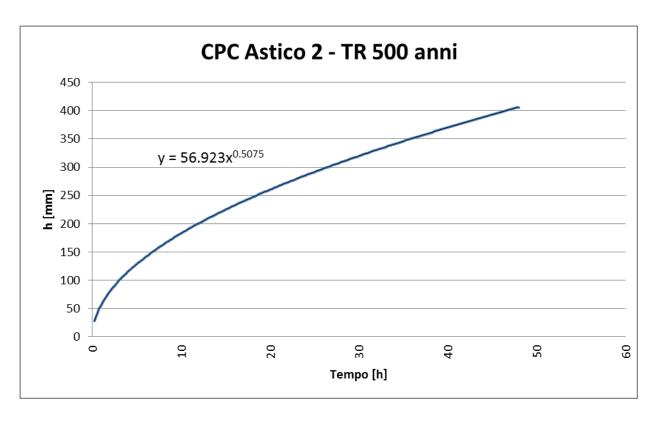


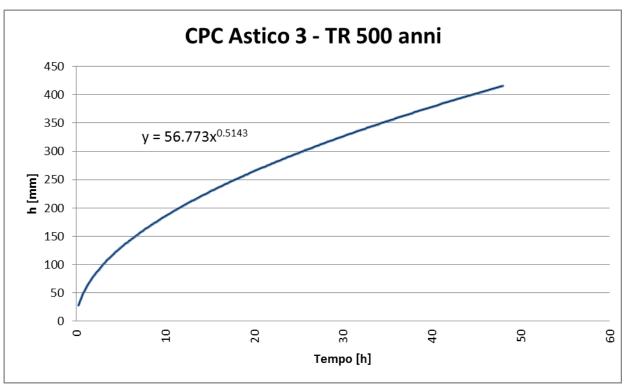


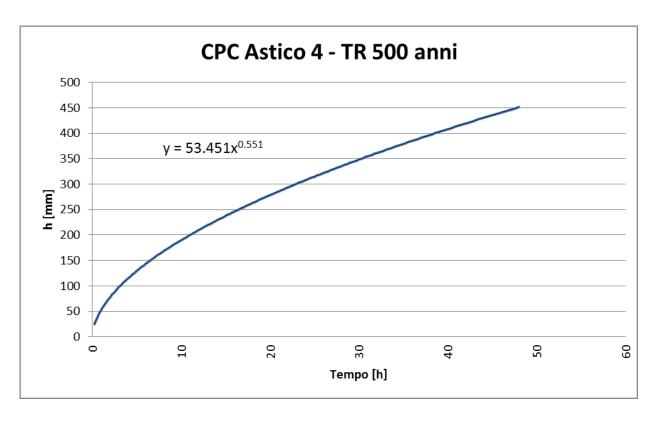


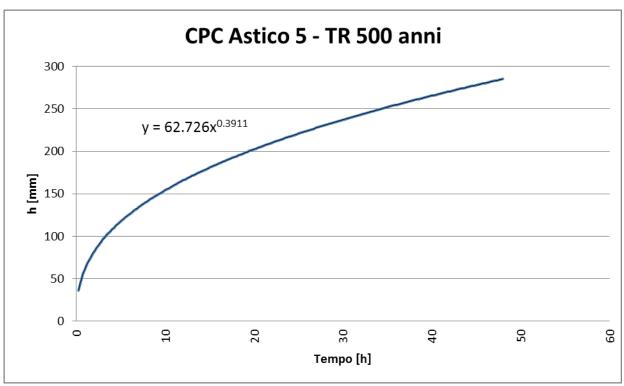


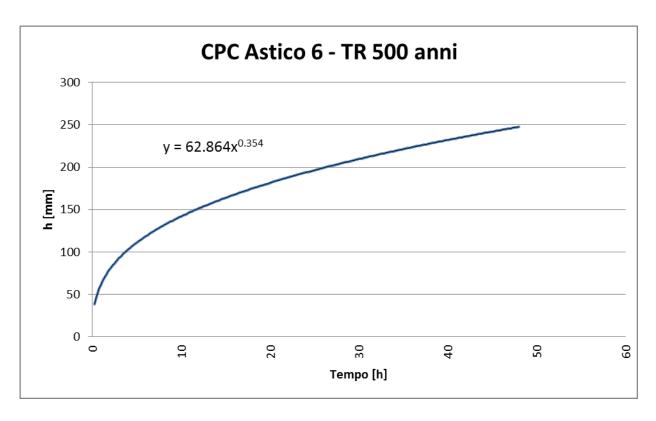


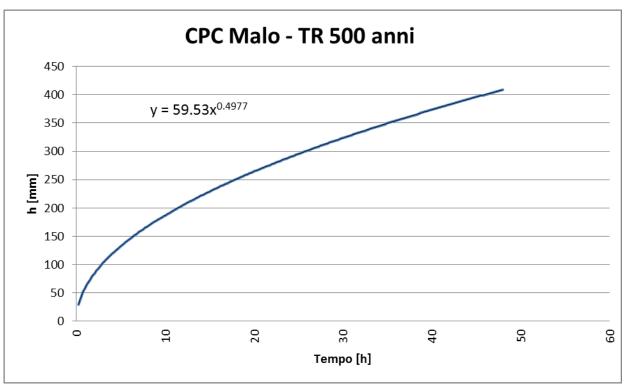


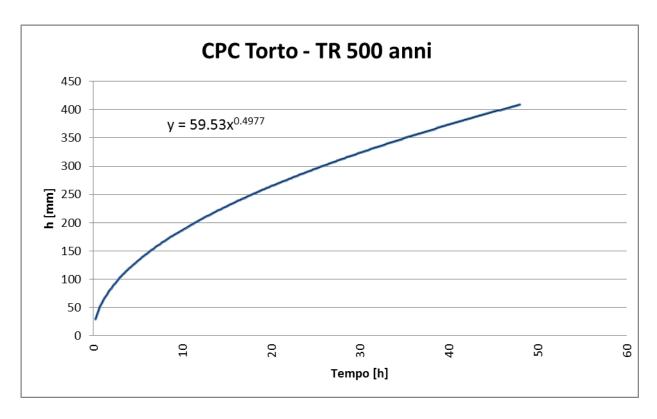


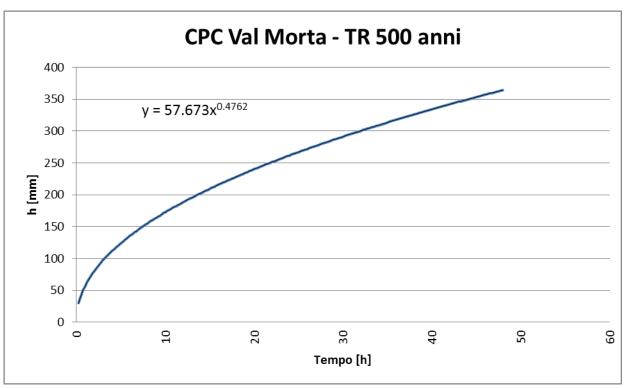


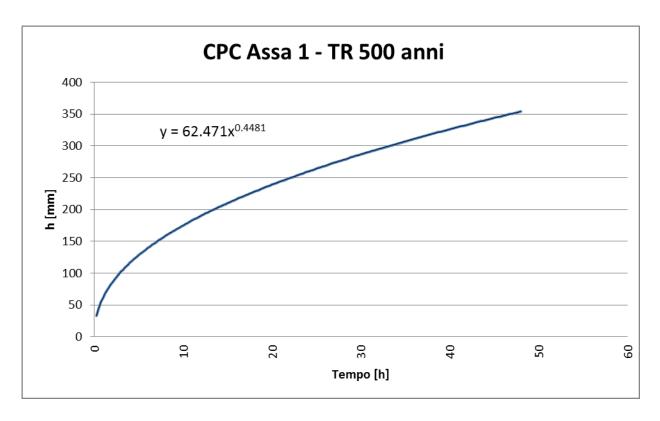


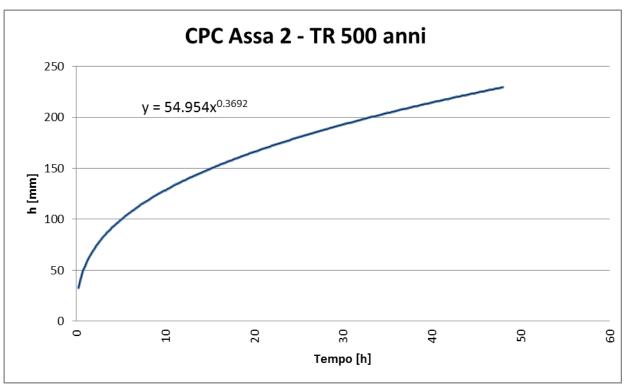


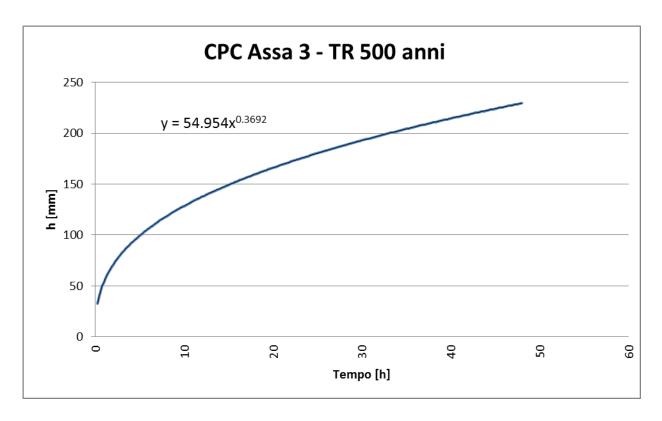


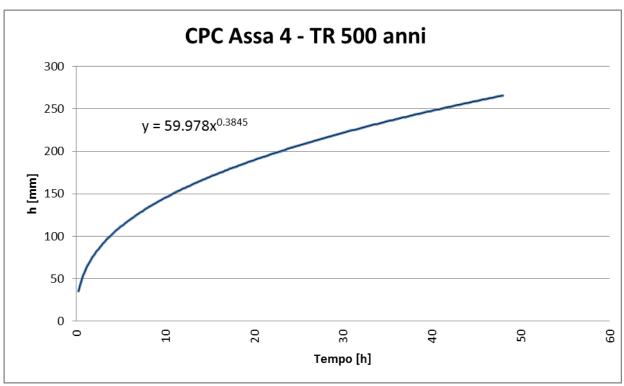


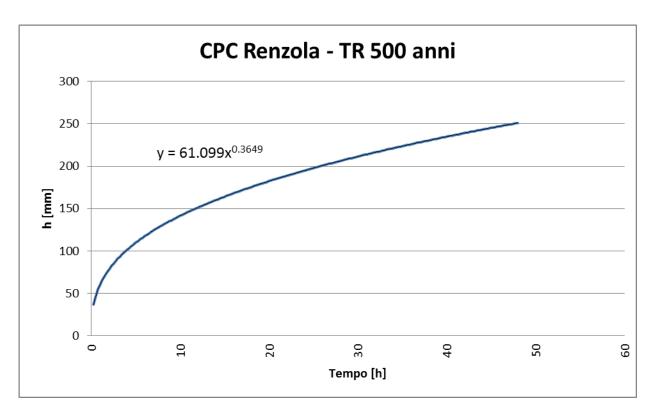


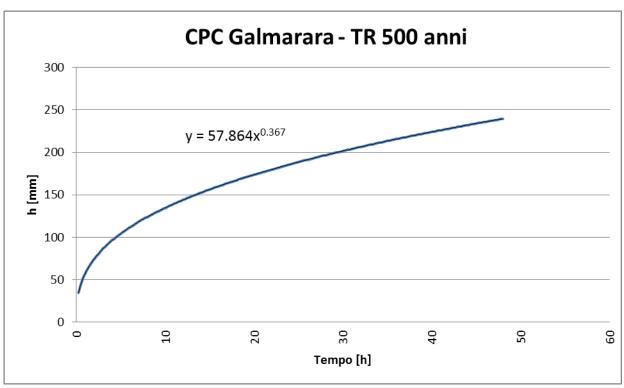


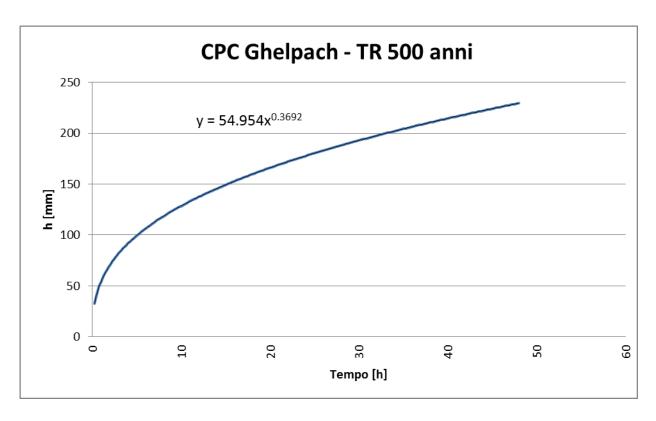


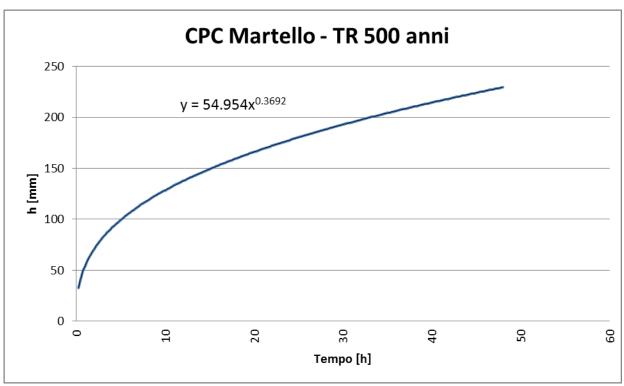


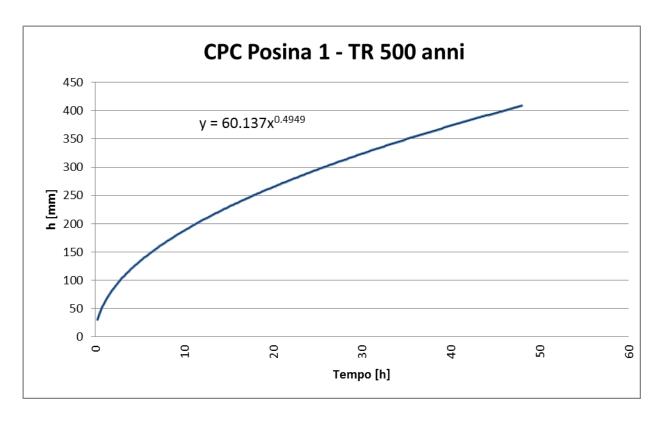


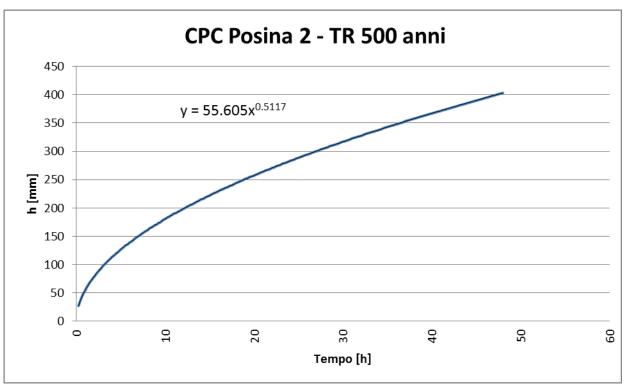


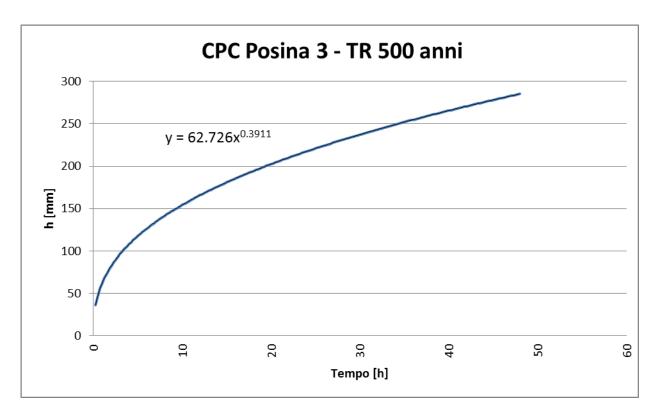


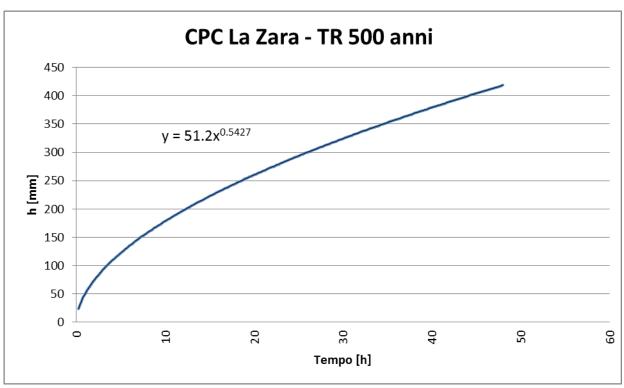


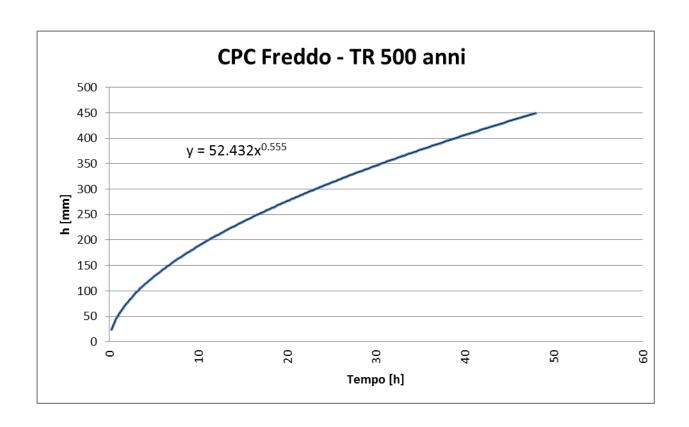












E. ALLEGATO B

E.1 DATI DI PORTATA ASTICO A PEDESCALA

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1985 al 31 dicembre 1985

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	>>	>>	>>	>>	>>	>>	7.02	4.14	4.14	>>	>>	>>
2	>>	>>	>>	>>	>>	>>	7.02	4.14	3.83	>>	>>	>>
3	>>	>>	>>	>>	>>	>>	>>	4.14	3.52	>>	>>	>>
4	>>	>>	>>	>>	>>	>>	>>	4.14	4.14	>>	>>	>>
5	>>	>>	>>	>>	>>	>>	>>	4.14	4.14	>>	>>	>>
6	>>	>>	>>	>>	>>	>>	>>	18.75	4.14	>>	>>	>>
7	>>	>>	>>	>>	>>	>>	>>	27.46	3.52	>>	>>	>>
8	>>	>>	>>	>>	>>	>>	>>	16.94	3.52	>>	>>	>>
9	>>	>>	>>	>>	>>	>>	>>	11.51	3.23	>>	>>	>>
10	>>	>>	>>	>>	>>	>>	>>	8.27	3.23	>>	>>	>>
11	>>	>>	>>	>>	>>	>>	>>	6.24	3.23	>>	>>	>>
12	>>	>>	>>	>>	>>	>>	>>	>>	3.23	>>	>>	5.86
13	>>	>>	>>	>>	>>	>>	4.46	>>	3.23	>>	>>	5.86
14	>>	>>	>>	>>	>>	7.84	4.46	>>	3.23	>>	>>	5.5
15	>>	>>	>>	>>	>>	7.02	4.46	>>	5.5	>>	>>	4.8
16	>>	>>	>>	>>	>>	7.02	4.14	>>	5.5	>>	>>	4.8
17	>>	>>	>>	>>	>>	6.24	4.14	>>	4.8	>>	>>	4.8
18	>>	>>	>>	>>	>>	6.24	3.83	>>	4.46	>>	>>	4.46
19	>>	>>	>>	>>	>>	6.24	3.52	>>	>>	>>	>>	4.46
20	>>	>>	>>	>>	>>	5.5	3.23	>>	>>	>>	>>	4.46
21	>>	>>	>>	>>	>>	5.86	2.95	>>	>>	>>	>>	4.14
22	>>	>>	>>	>>	>>	5.14	4.14	4.14	>>	>>	>>	4.14
23	>>	>>	>>	>>	>>	8.27	4.14	4.14	>>	>>	>>	4.14
24	>>	>>	>>	>>	>>	8.27	4.14	4.14	>>	>>	>>	4.14
25	>>	>>	>>	>>	>>	7.02	4.14	4.14	>>	>>	>>	4.14
26	>>	>>	>>	>>	>>	6.24	4.14	9.15	>>	>>	>>	4.46
27	>>	>>	>>	>>	>>	11.02	4.14	9.15	>>	>>	>>	4.14
28	>>	>>	>>	>>	>>	11.02	3.83	5.86	>>	>>	>>	4.14
29	>>		>>	>>	>>	10.06	4.14	5.5	>>	>>	>>	4.46
30	>>		>>	>>	>>	8.7	4.14	4.8	>>	>>	>>	7.02
31	>>		>>		>>		3.83	4.46		>>		7.42
Minima	>>	>>	>>	>>	>>	5.14	2.95	4.14	3.23	>>	>>	4.14
Media	>>	>>	>>	>>	>>	7.51	4.29	7.87	3.92	>>	>>	4.87
Massima	>>	>>	>>	>>	>>	11.02	7.02	27.46	5.5	>>	>>	7.42

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1986 al 31 dicembre 1986

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	7.42	22.59	>>	>>	>>	>>	>>	1.51	1.31	0.95	0.64	0.95
2	6.62	14.66	>>	>>	>>	>>	>>	1.51	1.31	0.95	0.64	0.95
3	5.86	10.54	>>	>>	>>	>>	>>	1.31	1.31	0.79	0.64	0.64
4	5.5	8.7	>>	>>	>>	>>	>>	1.31	1.12	0.79	0.64	0.64
5	5.14	7.84	>>	>>	>>	>>	>>	1.31	0.95	0.64	0.64	0.64
6	4.8	7.42	>>	>>	>>	>>	>>	1.31	0.95	0.64	0.64	0.64
7	4.8	6.62	>>	>>	>>	>>	>>	1.31	0.95	0.64	0.64	0.64
8	4.8	5.86	>>	>>	>>	>>	>>	1.12	0.95	0.64	0.64	0.64
9	4.8	7.42	>>	>>	>>	>>	>>	1.12	1.72	0.64	0.64	0.64
10	4.46	5.86	>>	>>	>>	>>	2.18	0.95	2.95	0.64	0.64	0.64
11	4.46	>>	>>	>>	>>	>>	1.94	0.95	2.95	0.64	0.64	0.64
12	4.14	5.86	>>	>>	>>	>>	1.94	0.95	2.18	0.64	0.64	0.64
13	4.14	6.24	>>	>>	>>	>>	1.94	0.95	2.18	0.64	0.64	0.64
14	4.14	6.24	>>	>>	>>	>>	5.14	0.79	1.94	0.64	0.64	0.64
15	5.14	4.8	>>	>>	>>	>>	5.14	0.64	1.31	0.64	0.64	0.64
16	4.14	4.46	>>	>>	>>	>>	4.14	0.64	1.31	0.64	0.64	0.64
17	4.14	4.8	>>	>>	>>	>>	3.23	0.5	1.31	0.64	0.64	0.64
18	4.8	4.8	>>	>>	>>	>>	2.68	0.5	1.51	0.64	0.64	0.64
19	5.14	4.46	>>	>>	>>	>>	11.51	1.51	1.12	0.95	0.64	0.64
20	3.83	4.46	>>	>>	>>	>>	10.54	2.18	0.95	0.64	0.64	0.64
21	3.52	4.8	>>	>>	>>	>>	6.62	1.94	0.95	0.64	0.64	0.64
22	3.52	4.8	>>	>>	>>	>>	4.8	1.51	0.95	0.64	0.64	0.64
23	3.52	4.8	>>	>>	>>	>>	3.83	2.18	0.95	0.64	0.95	0.64
24	3.52	4.8	>>	>>	>>	>>	3.23	2.68	0.95	0.64	1.12	0.5
25	3.83	5.14	>>	>>	>>	>>	2.68	1.31	0.95	0.64	0.95	0.5
26	4.14	5.14	>>	>>	>>	>>	2.68	1.72	0.95	0.64	0.95	0.5
27	3.83	5.5	>>	>>	>>	>>	1.94	1.72	0.79	0.64	0.95	0.5
28	4.46	5.5	>>	>>	>>	>>	1.94	1.72	0.79	0.64	0.95	0.5
29	3.23		>>	>>	>>	>>	1.72	1.94	0.79	0.64	0.95	0.5
30	3.52		>>	>>	>>	>>	1.51	1.94	1.12	0.64	0.95	0.5
31	8.7		>>		>>		1.51	1.72		0.64		0.5
Minima	3.23	4.46	>>	>>	>>	>>	1.51	0.5	0.79	0.64	0.64	0.5
Media	4.65	6.82	>>	>>	>>	>>	3.77	1.38	1.31	0.68	0.73	0.62
Massima	8.7	22.59	>>	>>	>>	>>	11.51	2.68	2.95	0.95	1.12	0.95

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1987 al 31 dicembre 1987

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	ОТТ	NOV	DIC
1	>>	>>	1.51	4.14	10.54	7.42	4.8	1.94	1.94	>>	2.42	4.8
2	>>	>>	1.72	3.23	10.54	7.02	3.83	1.94	1.51	>>	2.42	4.8
3	>>	>>	2.18	2.68	9.6	5.86	7.02	1.94	1.51	>>	1.94	4.8
4	>>	>>	2.18	41.84	16.94	5.14	5.86	1.72	1.72	>>	1.94	3.83
5	>>	>>	1.94	43.6	13.05	4.8	4.8	1.51	1.72	>>	1.72	3.52
6	>>	>>	1.94	15.78	10.54	4.8	3.83	1.51	3.52	>>	1.51	10.54
7	>>	>>	1.72	15.22	10.06	4.14	3.23	1.51	3.52	2.68	1.51	10.54
8	>>	>>	1.51	14.66	8.7	4.14	2.68	1.51	2.68	2.18	1.51	8.27
9	>>	>>	1.51	12.53	7.84	11.02	4.14	1.51	1.94	1.72	1.51	6.24
10	>>	>>	1.51	28.93	7.84	10.06	3.83	1.51	1.51	1.94	1.51	4.8
11	>>	>>	1.51	25.32	7.84	6.24	3.52	1.12	1.12	106.38	1.31	4.46
12	>>	1.94	1.51	18.75	7.02	5.5	2.68	1.31	0.95	106.38	1.12	3.52
13	>>	3.52	1.12	14.66	13.58	4.8	2.18	1.31	0.79	44.49	1.31	3.23
14	>>	>>	1.12	12.01	13.58	3.52	2.18	1.31	0.79	18.14	1.31	2.95
15	>>	12.53	1.12	10.54	10.06	3.52	2.18	1.31	0.79	11.51	1.12	2.68
16	>>	12.01	1.12	>>	11.02	3.52	10.06	0.95	0.5	7.42	1.12	2.18
17	>>	7.84	0.95	>>	11.02	3.83	11.51	0.95	0.5	8.7	1.12	2.18
18	>>	>>	0.95	13.58	10.54	3.52	21.27	1.51	0.5	20.63	1.12	1.94
19	>>	4.14	0.95	17.53	15.78	3.52	38.42	1.31	0.5	13.58	1.12	1.94
20	>>	3.83	0.95	17.53	13.58	3.83	31.19	1.31	0.38	8.27	1.12	2.68
21	>>	4.14	0.95	21.93	11.02	5.86	13.58	1.31	0.38	5.86	1.12	2.68
22	>>	4.14	0.95	20.63	9.6	5.5	8.7	1.31	0.38	4.46	1.12	4.8
23	>>	2.95	0.95	14.11	7.42	4.46	5.86	1.12	0.38	4.46	0.95	4.8
24	>>	2.42	0.95	12.01	6.24	3.52	4.8	9.6	0.38	7.02	51.9	4.8
25	>>	2.42	1.12	13.05	5.5	2.95	3.83	92.42	0.38	6.24	60.82	3.83
26	>>	2.18	1.51	13.58	5.5	3.83	3.52	36.76	0.38	5.14	21.27	2.95
27	>>	1.94	1.94	14.11	5.5	23.26	2.68	14.66	>>	4.46	13.58	2.42
28	>>	1.72	7.42	12.53	5.86	14.66	2.68	9.6	>>	4.14	9.15	2.18
29	>>		9.6	11.51	5.5	9.6	1.94	5.14	>>	3.52	6.62	1.94
30	>>		7.42	11.02	5.5	6.62	2.18	3.52	>>	2.95	5.5	1.94
31	>>		5.14		4.8		1.94	2.68		2.68		2.42
Minima	>>	1.72	0.95	2.68	4.8	2.95	1.94	0.95	0.38	1.72	0.95	1.94
Media	>>	4.51	2.16	16.32	9.42	6.22	7.13	6.68	1.18	16.2	6.73	4.02
Massima	>>	12.53	9.6	43.6	16.94	23.26	38.42	92.42	3.52	106.38	60.82	10.54

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1988 al 31 dicembre 1988

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	отт	NOV	DIC
1	2.42	5.14	1.12	3.52	5.86	5.86	2.18	1.12	>>	0.5	0.95	0.38
2	1.94	4.14	1.12	2.95	7.02	4.8	3.52	1.72	>>	0.5	0.95	4.46
3	1.94	3.52	1.12	2.68	29.67	3.83	3.83	1.12	>>	0.5	0.95	7.02
4	1.94	2.68	1.12	2.68	19.99	3.52	7.02	1.12	>>	0.5	0.79	5.5
5	1.72	2.18	1.12	3.23	14.11	52.86	9.15	0.79	>>	0.5	0.64	3.52
6	1.51	2.18	0.95	7.84	12.53	66.04	7.02	0.79	>>	0.5	0.64	2.42
7	1.51	6.62	0.79	32.74	10.54	51.9	5.14	0.79	>>	0.5	0.64	2.18
8	1.94	7.42	0.79	32.74	8.7	37.59	3.83	0.79	0.95	0.5	0.64	1.51
9	1.94	6.24	0.79	15.22	7.02	19.36	3.23	0.79	0.95	0.5	0.64	1.12
10	1.51	4.8	0.79	11.51	7.02	13.58	2.68	0.79	0.95	0.5	0.64	1.12
11	1.51	4.14	0.79	10.06	8.27	9.6	2.18	0.79	0.95	0.5	0.64	1.12
12	1.31	2.95	0.79	9.6	8.27	7.02	1.94	0.79	0.95	2.95	0.64	0.79
13	1.31	2.68	0.79	14.11	7.42	5.86	1.94	0.79	0.95	59.8	0.64	>>
14	1.31	2.42	0.79	13.58	6.24	5.5	1.94	0.79	0.79	17.53	0.64	0.79
15	2.42	1.94	0.79	10.54	>>	5.86	1.94	0.79	0.79	12.53	0.64	0.79
16	2.42	1.72	1.12	8.27	>>	7.42	1.72	0.79	0.79	8.27	0.5	0.79
17	1.94	1.72	0.95	7.84	>>	11.02	1.72	0.95	0.79	4.8	0.38	0.79
18	1.72	1.72	0.95	7.02	>>	39.27	1.72	0.95	0.79	3.23	0.38	0.79
19	1.51	1.72	0.95	7.84	>>	20.63	1.72	0.95	0.79	2.42	0.38	0.79
20	1.51	1.72	0.95	8.7	>>	13.58	1.51	1.72	0.79	3.52	0.38	0.79
21	1.31	1.72	0.95	7.84	>>	9.6	1.51	1.12	0.79	3.52	0.38	0.64
22	1.72	1.72	>>	8.27	>>	7.02	1.51	2.68	0.79	3.52	0.38	0.64
23	1.94	1.51	>>	7.84	4.14	5.5	1.12	2.95	0.79	2.95	0.38	0.64
24	1.94	1.51	>>	7.84	4.14	4.46	1.51	2.95	0.79	2.18	0.38	0.5
25	1.31	1.51	>>	7.84	3.52	4.14	1.94	>>	0.5	1.72	0.38	0.5
26	1.51	1.51	>>	5.86	3.23	3.52	1.12	>>	0.5	1.51	0.38	0.5
27	1.51	1.51	>>	5.14	3.23	3.52	1.12	>>	0.5	1.31	0.38	0.5
28	1.51	1.51	>>	4.8	3.52	3.23	1.12	>>	0.5	1.12	0.38	0.38
29	7.84	1.12	>>	4.8	5.86	2.68	1.51	>>	0.5	0.95	0.38	0.38
30	10.06		>>	4.14	7.02	2.68	1.31	>>	0.5	0.95	0.28	0.38
31	8.27		3.52		7.02		1.94	>>		0.95		0.38
Minima	1.31	1.12	0.79	2.68	3.23	2.68	1.12	0.79	0.5	0.5	0.28	0.38
Media	2.39	2.8	1.05	9.23	8.45	14.38	2.63	1.2	0.75	4.56	0.55	1.4
Massima	10.06	7.42	3.52	32.74	29.67	66.04	9.15	2.95	0.95	59.8	0.95	7.02

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1989 al 31 dicembre 1989

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	0.38	0.28	2.95	4.46	9.6	2.68	3.52	1.51	0.95	>>	>>	>>
2	0.38	0.28	2.18	3.83	7.84	3.52	3.83	1.51	0.79	>>	>>	>>
3	0.38	0.28	1.72	5.5	>>	8.7	77.04	1.12	0.79	>>	>>	>>
4	0.38	0.28	1.72	59.8	7.02	13.58	71.45	1.12	4.8	>>	>>	>>
5	0.38	0.28	1.51	77.04	7.42	16.94	41.84	1.12	5.14	>>	>>	>>
6	0.38	0.28	1.51	35.94	7.02	18.75	19.36	1.12	4.46	>>	>>	>>
7	0.38	0.28	1.72	17.53	7.02	12.01	13.05	1.12	3.23	2.42	>>	>>
8	0.38	0.28	2.18	12.01	5.86	8.27	12.01	1.31	2.18	2.68	>>	>>
9	0.38	0.28	2.18	12.01	4.8	5.86	10.06	2.68	1.72	2.68	>>	>>
10	0.38	0.28	1.94	12.01	4.46	4.8	7.42	2.42	1.51	2.68	>>	>>
11	0.38	0.28	1.94	9.6	4.46	3.52	5.86	1.72	1.12	2.68	>>	>>
12	0.38	0.28	2.95	8.7	4.14	2.95	4.8	1.31	1.12	2.68	>>	>>
13	0.38	0.28	3.83	87.56	4.14	2.42	5.5	1.12	1.12	2.68	>>	>>
14	0.38	0.28	4.8	57.78	4.14	2.42	4.8	1.12	1.12	2.68	>>	>>
15	0.38	0.28	4.46	23.94	4.14	1.94	7.42	1.12	0.95	2.68	>>	>>
16	0.38	0.28	3.52	16.36	3.52	1.94	6.24	0.95	0.79	2.95	>>	>>
17	0.28	0.28	2.95	19.99	2.95	1.51	5.14	0.79	0.79	2.95	>>	>>
18	0.28	0.28	5.14	19.99	2.68	1.51	3.83	0.79	0.79	2.68	>>	>>
19	0.28	0.28	8.7	13.05	2.68	1.51	2.95	1.12	0.79	2.95	>>	>>
20	0.28	0.28	10.54	13.05	2.68	1.51	2.68	1.12	0.79	2.95	>>	>>
21	0.28	0.28	8.27	20.63	2.68	1.51	2.18	0.79	0.79	2.95	>>	>>
22	0.28	0.28	8.27	21.27	2.42	1.51	1.94	0.95	0.79	2.95	>>	>>
23	0.28	0.28	6.62	16.36	2.18	4.8	1.72	1.12	0.79	2.95	>>	>>
24	0.28	4.14	5.14	12.01	2.18	4.8	1.72	1.12	0.79	2.95	>>	>>
25	0.28	8.7	4.46	10.06	1.94	4.14	1.72	1.12	0.79	2.95	>>	>>
26	0.28	9.6	3.83	13.58	1.94	5.14	1.51	0.79	0.79	2.95	>>	>>
27	0.28	7.02	4.46	24.63	1.51	5.86	1.51	0.79	0.79	2.95	>>	>>
28	0.28	4.14	4.46	24.63	1.51	4.14	1.51	0.79	1.94	2.95	>>	>>
29	0.28		4.14	16.94	2.95	4.46	1.51	1.12	0.79	2.95	>>	>>
30	0.28		4.8	11.51	3.83	4.14	1.12	1.12	0.79	2.95	>>	>>
31	0.28		4.46		3.83		1.51	1.12		2.95		>>
Minima	0.28	0.28	1.51	3.83	1.51	1.51	1.12	0.79	0.79	2.42	>>	>>
Media	0.33	1.43	4.11	22.73	4.12	5.23	10.54	1.19	1.46	2.83	>>	>>
Massima	0.38	9.6	10.54	87.56	9.6	18.75	77.04	2.68	5.14	2.95	>>	>>

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1990 al 31 dicembre 1990

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	>>	0.28	0.28	0.38	4.8	1.12	0.64	0.5	0.5	0.5	3.83	3.52
2	>>	0.28	0.28	1.31	4.8	0.95	0.64	0.5	0.5	0.5	4.8	2.68
3	>>	0.28	0.28	1.72	4.8	0.95	0.95	0.5	0.5	0.38	4.14	2.42
4	>>	0.28	0.28	2.42	4.8	0.95	5.5	0.5	0.5	0.38	4.14	1.94
5	>>	0.28	0.28	2.68	4.14	0.95	4.8	0.5	0.5	0.38	3.23	1.51
6	0.28	0.28	0.28	3.23	3.83	0.79	2.95	0.79	0.5	0.38	2.18	1.51
7	0.28	0.28	0.28	16.36	2.95	0.79	1.94	0.79	0.5	0.38	1.94	1.51
8	0.28	0.28	0.28	15.22	2.42	3.52	1.51	0.64	0.5	0.95	1.94	1.12
9	0.28	0.28	0.28	13.05	2.18	5.86	1.12	0.5	0.5	0.95	1.51	9.15
10	0.28	0.28	0.28	10.54	2.18	5.86	0.95	0.5	0.5	0.95	1.51	35.13
11	0.28	0.28	0.28	7.42	1.94	3.52	0.95	0.5	0.38	0.64	1.51	18.14
12	0.28	0.28	0.28	6.24	1.94	2.42	0.95	0.5	0.38	0.64	1.51	9.15
13	0.28	0.28	0.28	4.8	1.94	>>	0.95	0.5	0.38	0.64	1.12	5.86
14	0.28	0.28	0.28	3.52	1.51	>>	0.95	0.5	0.38	0.64	1.12	4.46
15	0.28	0.28	0.28	2.95	1.51	>>	0.95	0.64	0.38	0.64	1.12	3.52
16	0.28	0.28	0.28	2.95	1.51	>>	0.79	0.64	0.38	0.64	0.79	2.42
17	0.28	0.28	0.28	2.68	1.51	>>	0.79	0.5	0.38	0.79	0.79	1.94
18	0.28	0.28	0.28	2.42	1.72	>>	0.79	0.5	0.38	3.83	0.79	1.72
19	0.28	0.28	0.28	2.42	1.94	>>	0.79	0.5	0.38	3.83	0.79	1.72
20	0.28	0.28	0.28	2.42	1.94	2.18	0.79	0.5	0.38	2.95	0.79	1.51
21	0.28	0.28	0.28	2.42	1.94	1.72	0.79	0.5	0.38	2.18	0.79	2.68
22	0.28	0.28	0.28	2.95	1.94	1.51	0.79	0.5	0.38	2.18	26.74	2.42
23	0.28	0.28	0.28	3.52	1.51	1.12	0.79	0.38	0.28	2.18	56.78	2.18
24	0.28	0.28	0.28	4.14	1.12	0.95	0.79	0.38	0.5	>>	18.75	2.18
25	0.28	0.28	0.28	4.14	1.12	0.95	0.79	0.38	0.5	>>	86.36	2.18
26	0.28	0.28	>>	5.14	1.72	1.12	0.64	0.38	0.5	1.31	81.64	1.51
27	0.28	0.28	>>	5.86	1.72	0.79	0.5	0.5	0.5	2.68	21.27	1.72
28	>>	0.28	>>	5.86	1.72	0.64	0.5	0.64	0.5	4.14	11.51	1.94
29	>>		>>	5.5	1.12	0.64	0.5	0.64	0.5	4.46	7.42	1.72
30	>>		>>	5.14	1.12	0.64	0.5	0.5	0.5	4.46	4.8	1.72
31	>>		0.38		1.12		0.5	0.5		4.14		1.51
		'	'									
Minima	0.28	0.28	0.28	0.38	1.12	0.64	0.5	0.38	0.28	0.38	0.79	1.12
Media	0.28	0.28	0.28	4.98	2.27	1.74	1.19	0.53	0.45	1.68	11.85	4.28
Massima	0.28	0.28	0.38	16.36	4.8	5.86	5.5	0.79	0.5	4.46	86.36	35.13

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1991 al 31 dicembre 1991

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	1.51	0.79	1.94	4.46	3.52	3.83	1.51	>>	0.64	15.78	0.95	1.94
2	1.72	0.79	1.51	4.46	8.7	3.83	1.51	>>	0.64	8.7	0.95	1.94
3	1.72	0.64	1.51	4.46	35.13	3.83	1.12	>>	0.64	4.8	0.95	1.31
4	1.72	0.64	1.94	4.46	31.19	3.83	1.12	>>	0.64	2.95	0.95	1.31
5	1.51	0.64	2.18	4.8	14.66	5.14	1.12	>>	0.64	1.94	2.68	1.31
6	1.72	0.64	2.42	7.84	11.51	5.14	1.12	>>	0.64	1.72	2.18	0.95
7	1.72	0.64	2.95	8.27	10.06	4.46	1.12	>>	0.64	1.51	1.94	0.95
8	1.72	0.64	13.58	7.02	8.7	4.14	1.12	>>	0.64	3.52	>>	0.95
9	1.51	0.64	63.93	7.02	8.27	4.46	0.95	>>	0.79	3.52	>>	0.95
10	1.51	0.64	41.84	5.86	18.14	3.52	0.95	>>	0.64	3.23	>>	0.79
11	1.51	0.64	16.36	5.86	18.14	3.52	0.95	>>	0.64	2.68	>>	0.79
12	1.51	0.64	11.51	>>	13.58	2.42	0.95	>>	0.79	118.43	>>	0.79
13	1.51	0.5	8.27	>>	10.54	2.42	1.12	>>	0.95	89.98	0.5	0.79
14	3.52	0.5	7.02	>>	8.27	2.42	25.32	>>	1.12	25.32	12.53	0.79
15	2.95	0.5	5.86	4.14	9.15	1.72	16.36	>>	1.12	15.22	9.6	0.5
16	>>	0.5	5.14	3.52	9.15	1.72	7.84	>>	1.12	12.01	5.86	0.5
17	>>	0.5	4.8	3.83	6.62	37.59	5.14	>>	1.12	7.84	5.5	0.5
18	>>	0.5	4.46	3.83	5.14	36.76	4.8	>>	1.12	5.86	4.46	0.5
19	>>	0.5	3.52	2.68	4.14	10.54	4.8	>>	0.95	4.8	3.23	0.5
20	>>	0.28	4.14	>>	4.14	10.54	2.68	0.79	0.79	3.83	3.52	0.5
21	>>	0.28	5.5	>>	4.14	7.42	2.18	0.79	0.79	3.52	4.46	0.5
22	>>	0.5	6.24	>>	5.5	5.14	2.18	0.79	0.79	3.23	4.8	0.5
23	>>	0.5	9.15	>>	6.24	4.14	1.51	0.79	0.79	2.68	4.14	0.5
24	0.79	0.5	15.22	1.51	6.24	3.52	1.51	0.79	0.64	2.42	3.83	0.5
25	0.5	0.79	12.01	1.51	6.24	2.18	1.51	1.31	0.64	1.94	3.83	0.28
26	0.38	1.12	18.14	1.51	3.83	2.18	1.51	0.95	0.64	1.72	3.52	0.28
27	0.38	1.51	13.58	1.51	3.83	2.18	1.51	0.64	0.64	1.72	3.52	0.28
28	0.38	1.94	10.54	1.72	3.83	1.94	1.51	0.64	0.64	1.51	2.95	0.28
29	0.38		8.27	1.94	3.83	1.94	1.51	0.64	4.14	1.51	2.42	0.28
30	0.79		7.02	2.68	3.83	1.12	1.12	0.64	29.67	1.51	2.18	0.28
31	0.79		5.5		3.83		1.12	0.64		1.31		0.28
	<u> </u>											
Minima	0.38	0.28	1.51	1.51	3.52	1.12	0.95	>>	0.64	1.31	0.5	0.28
Media	1.38	0.68	10.19	4.13	9.36	6.12	3.19	>>	1.85	11.51	3.66	0.73
Massima	3.52	1.94	63.93	8.27	35.13	37.59	25.32	>>	29.67	118.43	12.53	1.94

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1992 al 31 dicembre 1992

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	0.28	0.28	0.28	29.67	8.7	5.5	3.83	1.51	1.12	2.95	4.14	1.51
2	0.28	0.28	0.28	13.58	7.84	5.5	3.52	1.12	1.94	2.18	>>	1.51
3	0.38	0.28	0.28	7.02	7.02	3.83	2.95	1.12	1.51	8.27	>>	8.27
4	0.28	0.28	0.28	10.54	6.62	4.46	3.52	1.12	1.31	139.75	5.14	15.22
5	0.28	0.28	0.28	48.14	7.02	9.6	14.11	1.12	1.12	173.76	4.14	45.39
6	0.28	0.28	0.28	35.13	5.86	10.06	14.66	1.12	0.95	122.57	3.52	31.19
7	0.28	0.28	0.28	17.53	4.8	7.02	9.6	0.95	0.95	78.18	2.68	14.66
8	0.28	0.28	0.28	11.02	4.8	11.51	7.84	0.95	0.79	>>	2.42	18.75
9	0.28	0.28	0.28	8.27	4.46	10.54	7.02	0.95	0.64	>>	2.18	18.75
10	0.28	0.28	0.38	7.02	4.14	7.42	8.7	1.12	0.79	>>	1.94	13.58
11	0.28	0.28	0.38	6.24	3.83	5.5	94.9	0.95	0.64	>>	1.94	9.6
12	0.28	0.28	0.38	5.86	3.83	5.5	91.2	0.95	0.64	>>	1.94	7.42
13	0.28	0.28	0.38	5.5	2.95	5.14	35.94	0.79	0.64	>>	1.94	5.86
14	0.28	0.28	0.38	4.8	2.68	6.24	19.36	0.79	0.64	5.86	1.72	4.8
15	0.28	0.28	0.28	7.02	2.42	5.14	12.01	0.79	0.64	5.14	1.51	4.14
16	0.28	0.28	0.28	7.02	1.94	4.46	8.27	0.79	0.64	4.46	3.83	3.52
17	0.28	0.28	0.28	6.24	1.72	3.52	8.7	0.79	0.64	11.02	7.02	2.95
18	0.28	0.28	0.28	5.14	1.72	3.52	7.42	0.79	0.79	18.75	7.02	2.68
19	0.28	0.28	0.38	5.14	1.51	31.19	5.86	0.79	0.5	13.58	5.14	2.68
20	0.28	0.28	0.28	7.84	1.31	40.12	4.46	0.5	0.5	8.27	3.83	2.42
21	0.28	0.28	0.28	8.7	1.31	21.27	3.83	0.5	0.5	6.24	3.23	2.18
22	0.28	0.28	0.28	7.02	1.31	12.53	3.23	0.5	0.5	6.24	2.68	2.18
23	0.28	0.28	0.5	7.42	1.12	35.94	2.68	0.79	0.79	5.86	2.42	1.94
24	0.28	0.28	0.79	6.62	1.51	26.03	2.18	0.64	2.18	5.14	2.68	1.94
25	0.28	0.28	0.79	9.15	1.51	15.22	2.42	0.79	2.42	4.46	2.42	1.72
26	0.28	0.28	0.79	10.54	1.31	10.06	2.18	0.64	1.94	3.83	2.42	1.72
27	0.28	0.28	0.79	11.02	1.31	7.84	2.18	0.64	1.51	3.23	2.18	1.51
28	0.28	0.28	0.5	10.54	0.95	6.62	1.94	0.64	1.51	2.95	1.94	1.51
29	0.28	0.28	0.5	13.58	0.95	5.14	1.51	0.79	2.68	2.68	1.72	1.51
30	0.28		0.5	13.05	0.95	4.46	1.51	0.95	3.52	2.68	1.72	1.51
31	0.28		4.8		0.95		1.51	0.95		3.83		1.31
Minima	0.28	0.28	0.28	4.8	0.95	3.52	1.51	0.5	0.5	2.18	1.51	1.31
Media	0.28	0.28	0.54	11.54	3.17	11.03	12.55	0.86	1.16	25.67	3.05	7.55
Massima	0.38	0.28	4.8	48.14	8.7	40.12	94.9	1.51	3.52	173.76	7.02	45.39

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1993 al 31 dicembre 1993

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	1.31	0.5	0.38	1.31	11.02	1.51	1.51	0.79	0.95	15.58	4.69	2.05
2	0.95	0.5	0.38	1.31	11.51	1.12	1.51	0.79	0.79	309.76	4.38	2.05
3	0.95	0.5	0.5	1.31	9.15	0.95	1.12	0.79	0.95	171.77	4.38	1.84
4	1.12	0.64	0.5	1.31	8.7	1.31	1.12	0.79	0.79	43.93	4.38	1.84
5	1.12	0.5	0.5	1.31	7.42	1.51	1.12	0.79	0.5	22.21	5.34	1.64
6	0.95	0.5	0.5	1.31	6.24	1.12	1.12	0.79	0.5	29.18	17.86	1.64
7	0.79	0.5	0.5	1.72	6.62	1.94	0.95	0.79	0.5	30.68	16.7	1.64
8	0.79	0.5	0.5	2.18	5.86	1.51	0.95	0.79	0.38	134.77	15.58	1.28
9	0.79	0.5	0.5	1.94	4.8	0.95	0.95	0.79	0.5	>>	14.49	1.28
10	0.79	0.5	0.64	2.42	4.46	0.95	1.12	0.79	0.79	>>	10.06	1.28
11	0.79	0.5	0.5	2.68	3.83	0.95	21.27	0.79	1.51	>>	7.53	1.28
12	0.79	0.38	0.5	5.86	3.52	1.12	10.54	0.79	1.51	>>	6.03	1.28
13	0.79	0.38	0.5	6.24	3.52	1.12	6.24	0.79	1.31	16.7	5.68	1.28
14	0.79	0.38	0.79	5.5	3.52	0.95	3.83	0.79	28.19	41.28	5.34	1.45
15	0.79	0.38	0.5	4.14	3.23	0.95	2.42	0.79	11.02	26.99	4.69	1.45
16	0.95	0.38	0.79	4.8	2.95	0.95	1.94	0.79	5.86	16.14	4.69	1.45
17	0.95	0.5	0.79	4.8	2.95	0.95	1.51	0.64	3.52	10.98	4.38	1.45
18	0.95	0.5	1.12	4.14	2.42	0.95	1.51	0.38	2.18	10.51	4.08	1.45
19	0.95	0.38	2.42	4.14	2.42	0.95	1.51	0.38	1.51	11.94	3.24	1.28
20	0.95	0.38	2.68	4.14	2.18	0.95	1.51	0.38	1.12	10.51	3.24	1.28
21	0.95	0.38	2.42	4.8	2.18	0.95	1.12	0.38	0.95	9.18	3.24	1.11
22	0.95	0.38	2.42	4.8	2.95	1.51	1.12	0.38	0.79	38.7	2.98	1.11
23	0.79	0.38	1.94	4.46	2.95	7.84	1.12	0.38	1.12	29.92	2.73	1.11
24	0.79	0.38	3.23	4.46	2.68	6.62	1.12	0.79	26.03	17.86	2.49	1.28
25	0.79	0.38	4.46	4.14	2.18	5.14	0.95	0.5	79.36	15.58	2.49	1.28
26	0.79	0.38	4.14	4.14	2.18	3.83	0.95	0.28	73.54	11.45	2.49	1.28
27	0.79	0.38	2.95	4.14	2.18	2.42	0.95	0.5	36.2	9.61	2.26	1.28
28	0.79	0.38	2.18	3.52	1.94	2.18	0.95	2.95	26.28	8.33	2.26	0.95
29	0.79		1.72	4.8	1.72	1.51	0.95	2.68	23.53	6.39	2.05	0.95
30	0.79		1.51	5.86	1.51	1.31	0.95	1.72	16.14	5.68	2.05	1.11
31	0.79		1.12		1.51		0.79	1.12		5.34		1.11
Minima	0.79	0.38	0.38	1.31	1.51	0.95	0.79	0.28	0.38	5.34	2.05	0.95
Media	0.88	0.44	1.41	3.59	4.2	1.87	2.41	0.84	11.61	39.3	5.73	1.38
Massima	1.31	0.64	4.46	6.24	11.51	7.84	21.27	2.95	79.36	309.76	17.86	2.05

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1994 al 31 dicembre 1994

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	1.11	1.64	2.98	2.73	4.38	4.38	1.28	1.45	0.95	4.08	2.98	1.11
2	1.11	1.64	6.39	4.08	4.08	3.51	1.28	1.28	12.93	2.98	2.26	1.11
3	1.11	1.28	6.39	4.08	4.08	2.98	1.45	1.28	9.61	3.79	1.84	1.11
4	1.11	1.28	5.34	2.98	3.51	2.49	1.45	1.11	5.01	3.79	1.45	0.95
5	1.11	1.28	4.38	2.49	3.24	2.26	1.28	1.11	3.24	3.24	1.28	0.95
6	2.05	1.64	3.51	2.05	2.98	2.26	1.28	1.28	2.49	2.73	53.34	0.95
7	12.93	2.05	3.51	1.64	2.73	2.05	1.11	0.95	2.05	2.49	62.53	0.95
8	38.7	2.05	3.24	1.84	2.49	1.84	1.28	1.45	6.03	2.05	22.21	0.68
9	17.28	2.26	4.08	1.84	2.49	2.05	1.45	1.28	22.86	1.84	11.94	0.68
10	10.51	2.05	5.68	1.64	2.26	1.84	1.64	1.28	12.93	1.64	36.2	0.68
11	8.75	2.05	6.76	1.64	2.26	1.84	1.64	1.28	7.14	1.64	36.2	0.68
12	8.75	1.84	6.39	1.64	2.49	1.64	1.45	1.28	4.38	1.64	16.14	0.68
13	7.53	1.84	6.03	1.64	2.05	1.64	1.45	1.11	4.08	1.28	10.06	0.68
14	5.68	1.45	5.34	4.08	2.49	2.05	1.45	1.11	66.83	1.11	6.76	0.68
15	5.34	1.64	5.34	6.39	2.73	2.05	1.45	1.11	45.75	1.11	4.69	0.68
16	4.69	1.28	5.01	6.76	2.73	1.64	1.28	1.11	16.14	1.11	4.08	0.68
17	4.08	1.45	5.34	27.71	2.49	1.64	1.45	0.95	21.56	1.11	3.51	0.68
18	3.24	1.28	4.69	20.29	48.53	1.45	1.28	1.11	13.44	0.95	2.98	0.68
19	2.73	1.28	3.51	13.96	51.39	1.45	1.11	0.95	8.33	0.95	2.73	0.68
20	2.49	1.28	2.98	10.51	20.92	1.45	5.01	0.95	6.03	0.95	2.49	0.68
21	2.26	1.28	2.98	7.53	20.29	1.84	9.61	0.95	4.69	0.95	2.05	0.68
22	2.05	1.28	2.98	7.14	12.43	2.05	10.06	0.95	4.08	0.95	1.84	0.68
23	2.05	1.28	2.98	6.03	8.33	1.84	6.39	0.95	4.08	0.95	1.84	0.68
24	1.84	0.95	3.51	5.68	6.03	1.45	4.08	0.81	3.24	0.95	1.45	0.68
25	1.84	0.95	4.38	6.03	5.34	1.45	2.73	0.95	3.51	0.95	1.45	0.68
26	1.84	0.95	4.69	7.14	4.08	1.28	2.26	0.81	11.45	1.28	1.45	0.68
27	1.64	0.95	4.08	6.76	4.08	1.28	2.05	0.81	24.89	1.28	1.45	0.68
28	1.64	0.95	3.51	5.68	3.24	1.11	2.05	0.81	12.43	2.49	1.11	0.68
29	1.64		2.98	5.01	2.73	1.45	1.64	0.81	7.93	6.03	1.11	0.68
30	1.64		2.49	4.69	2.98	1.28	1.64	0.81	5.01	5.34	1.11	0.68
31	1.45		2.49		4.38		1.45	1.11		4.08		0.68
Minima	1.11	0.95	2.49	1.64	2.05	1.11	1.11	0.81	0.95	0.95	1.11	0.68
Media	5.17	1.47	4.32	6.06	7.88	1.92	2.42	1.07	11.77	2.12	10.02	0.76
Massima	38.7	2.26	6.76	27.71	51.39	4.38	10.06	1.45	66.83	6.03	62.53	1.11

AUTOSTRADA VALDASTICO A31 NORD 1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1995 al 31 dicembre 1995

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	0.95	0.68	1.11	1.64	5.01	26.28	1.84	1.11	0.68	1.28	0.68	1.45
2	0.95	0.68	1.28	1.64	4.08	24.89	1.84	1.11	0.68	1.11	0.68	1.28
3	0.95	0.68	1.28	2.49	3.51	13.44	2.73	0.81	0.68	1.11	0.68	1.28
4	0.81	0.68	1.45	3.51	2.98	8.33	2.73	0.81	0.68	1.11	0.68	1.11
5	0.81	0.68	1.45	4.38	2.98	6.03	2.73	0.81	0.68	0.81	0.68	1.11
6	0.68	0.68	1.45	4.69	2.49	5.68	2.05	0.81	0.68	0.81	0.68	1.11
7	0.68	0.68	1.28	5.01	2.26	5.68	1.84	1.11	1.11	0.81	0.68	1.11
8	0.68	0.68	1.45	4.38	2.05	4.69	1.64	1.28	5.68	0.81	0.68	0.81
9	0.68	0.68	1.45	4.08	2.05	4.08	1.45	1.28	4.69	0.95	0.68	0.81
10	0.68	0.68	1.28	3.51	1.64	11.45	1.45	1.45	3.24	0.68	0.68	0.81
11	0.68	0.68	1.28	2.49	2.05	16.7	1.28	1.45	2.05	0.68	0.68	0.81
12	0.68	0.68	1.45	1.84	42.16	12.93	1.45	1.28	1.64	0.68	0.68	0.81
13	0.68	0.68	1.45	2.05	43.93	10.51	1.84	1.11	31.44	0.68	0.68	0.81
14	0.68	0.68	1.45	1.64	16.14	8.33	1.28	0.81	29.18	0.68	0.68	0.68
15	0.68	0.81	1.45	1.45	10.51	6.76	1.11	0.81	22.21	0.68	0.68	0.95
16	0.68	0.81	1.45	1.45	6.76	5.34	1.11	0.81	10.06	0.68	0.68	0.95
17	0.68	0.81	1.45	1.28	5.34	4.38	1.11	0.68	6.76	0.68	0.95	1.11
18	0.68	1.11	1.45	1.28	5.01	4.08	1.11	0.68	4.08	0.68	0.81	5.01
19	0.68	1.11	1.45	1.28	5.01	3.51	1.11	0.68	7.14	0.68	0.81	6.76
20	0.68	1.11	1.84	6.39	8.33	2.98	0.95	0.68	7.53	0.68	0.81	5.34
21	0.68	1.11	1.84	13.96	7.93	2.98	0.95	0.68	6.03	0.68	0.81	4.08
22	0.68	0.95	1.84	12.43	6.03	2.49	0.95	0.68	4.38	0.68	0.81	2.98
23	0.68	0.95	1.45	11.45	5.01	2.49	1.11	0.68	3.51	0.68	0.81	12.93
24	0.68	1.28	1.28	10.51	4.08	3.24	1.11	0.68	2.98	0.68	0.81	12.93
25	0.68	1.28	1.84	20.29	3.51	4.08	1.11	0.68	2.26	0.68	0.81	8.33
26	0.68	1.28	2.49	18.46	2.73	4.08	0.95	0.95	2.05	0.68	0.81	>>
27	0.68	1.28	2.98	11.94	2.26	3.24	0.95	0.95	1.64	0.68	0.81	>>
28	0.68	1.28	3.51	8.33	2.05	2.49	0.95	0.95	1.64	0.68	1.28	>>
29	0.68		2.98	7.53	1.84	2.26	1.11	0.81	1.45	0.68	2.05	>>
30	0.68		2.49	6.39	4.69	2.05	1.11	0.81	1.28	0.68	1.64	4.38
31	0.68		2.05		32.21		1.11	0.81		0.68		3.51
Minima	0.68	0.68	1.11	1.28	1.64	2.05	0.95	0.68	0.68	0.68	0.68	0.68
Media	0.71	0.88	1.71	5.93	7.96	7.19	1.42	0.91	5.6	0.76	0.83	3.08
Massima	0.95	1.28	3.51	20.29	43.93	26.28	2.73	1.45	31.44	1.28	2.05	12.93

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1996 al 31 dicembre 1996

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	отт	NOV	DIC
1	3.24	2.73	1.45	3.79	8.75	>>	2.05	1.45	4.08	1.28	2.26	3.69
2	3.24	2.49	1.45	3.51	10.06	>>	7.14	1.45	3.51	4.08	2.01	3.09
3	2.98	2.26	1.64	3.24	27.71	>>	12.93	1.45	2.73	4.69	2.01	2.8
4	2.49	2.26	1.64	2.73	20.29	>>	9.18	1.28	2.73	4.69	1.77	2.8
5	2.49	2.26	1.64	2.73	11.94	>>	5.68	1.28	2.26	4.08	1.77	2.53
6	2.49	2.26	1.64	2.98	8.75	2.26	4.38	1.28	2.26	3.24	1.54	2.26
7	2.73	2.05	1.64	3.51	6.39	2.05	3.51	1.28	2.05	13.96	1.54	2.26
8	3.51	2.05	1.64	4.08	6.03	2.05	42.16	2.26	1.84	13.96	1.32	2.26
9	3.51	2.05	1.64	4.69	5.34	2.05	24.89	1.45	1.84	9.18	1.32	2.01
10	3.51	1.84	1.64	5.34	6.76	1.84	11.94	1.28	1.64	6.03	1.32	5.37
11	7.53	1.84	1.64	6.76	8.75	1.84	7.53	1.64	1.64	4.69	3.09	6.1
12	9.61	1.84	1.64	7.14	7.93	1.64	5.34	8.75	1.45	3.51	23.24	6.1
13	9.61	1.84	1.64	7.14	10.06	1.84	4.08	8.33	1.45	2.98	16.81	6.1
14	8.75	1.45	1.45	7.14	10.06	1.64	3.51	6.76	1.45	2.73	46.06	6.48
15	6.76	1.45	1.45	6.39	7.93	1.64	2.98	4.69	1.45	46.67	92.23	6.1
16	5.34	1.45	1.45	5.34	7.14	1.64	2.98	3.24	1.45	69.03	57.77	5.01
17	4.69	1.45	1.45	4.69	6.39	1.64	2.73	2.73	1.45	122.89	29.74	4.33
18	3.79	1.45	1.84	4.69	5.34	1.64	2.73	2.26	1.45	93.28	99.62	4.33
19	3.51	1.45	1.84	5.34	4.69	1.45	2.49	2.05	1.28	33.21	56.9	3.69
20	2.98	1.45	1.64	7.14	6.03	1.64	2.05	2.05	1.28	18.49	25.13	4.33
21	2.73	1.45	2.05	7.53	6.76	2.73	1.84	1.84	1.28	13.64	18.49	4.67
22	2.49	1.45	2.26	7.93	6.03	5.34	1.84	1.84	1.28	9.37	13.14	5.01
23	2.26	1.45	2.49	7.93	5.34	7.14	1.64	1.45	1.84	7.26	10.26	6.48
24	2.26	1.45	2.98	7.93	4.69	5.01	1.64	1.84	2.05	5.73	8.5	7.67
25	2.73	1.45	3.51	7.93	4.08	3.79	2.05	1.64	2.05	4.67	6.87	7.67
26	2.98	1.28	4.08	9.18	3.51	3.24	1.64	2.05	1.84	4.33	6.48	6.87
27	4.08	1.28	5.34	8.33	10.98	2.73	1.45	1.84	1.64	3.69	5.73	5.37
28	4.08	1.28	6.03	7.53	10.98	2.73	1.45	18.46	1.64	3.09	5.01	4.33
29	4.08	1.64	6.03	6.76	6.39	2.26	1.45	13.96	1.45	2.8	4.33	4.01
30	3.51		5.34	7.93	5.01	2.26	1.45	8.33	1.45	2.53	4.01	3.69
31	3.24		4.38		4.08		1.45	5.68		2.53		3.09
'			'			'		'			<u>'</u>	
Minima	2.26	1.28	1.45	2.73	3.51	1.45	1.45	1.28	1.28	1.28	1.32	2.01
Media	4.11	1.75	2.47	5.91	8.2	2.56	5.75	3.74	1.86	16.85	18.34	4.53
Massima	9.61	2.73	6.03	9.18	27.71	7.14	42.16	18.46	4.08	122.89	99.62	7.67

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1997 al 31 dicembre 1997

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	2.8	2.26	2.01	1.32	2.53	0.75	8.5	0.93	1.12	0.31	0.31	0.93
2	2.53	2.26	1.77	1.32	1.77	0.58	6.87	0.93	0.93	0.31	0.31	0.93
3	2.26	2.01	1.77	1.32	1.32	0.58	5.73	0.93	0.93	0.31	0.31	1.32
4	11.19	2.01	2.26	1.54	1.54	0.58	4.33	0.75	0.75	0.31	0.31	1.32
5	9.37	2.01	3.09	1.54	1.54	0.93	5.37	0.75	0.58	0.31	0.31	1.12
6	6.48	1.54	3.69	1.54	5.01	1.54	10.72	0.75	0.58	0.31	0.58	1.12
7	5.01	1.54	3.39	1.32	6.87	1.54	8.08	0.75	0.58	0.58	29.74	0.93
8	4.33	1.77	2.8	1.32	5.73	1.54	5.73	0.75	0.58	0.31	12.15	0.93
9	3.69	1.32	2.8	1.12	4.33	1.12	4.33	0.75	0.58	0.31	16.81	0.93
10	3.69	1.77	2.53	1.12	3.39	0.93	3.09	0.93	0.58	0.31	16.81	0.93
11	3.39	1.32	2.8	1.12	3.09	0.93	3.09	0.75	0.58	0.31	8.93	0.75
12	2.8	1.32	2.53	1.12	2.8	0.93	2.01	0.75	0.44	0.31	76.18	0.75
13	2.53	1.32	2.53	1.32	2.26	0.75	2.01	0.75	0.93	0.44	50.13	0.93
14	2.26	1.54	2.53	1.32	2.01	0.93	1.54	0.75	0.58	0.31	17.92	0.93
15	2.26	1.54	2.53	1.12	2.01	0.93	1.54	0.75	0.44	0.31	12.15	0.93
16	2.26	1.54	2.53	1.12	1.54	1.54	1.32	0.75	0.44	0.31	7.67	0.93
17	2.01	1.54	2.26	1.12	1.32	1.54	1.32	2.01	0.44	0.31	5.73	0.93
18	2.01	1.12	2.8	1.12	1.12	0.93	4.33	4.33	0.44	0.31	4.33	0.75
19	2.01	1.12	3.09	0.93	1.12	9.37	5.37	3.69	0.44	0.31	3.09	2.8
20	2.01	1.12	2.8	0.93	1.12	10.72	4.67	3.09	0.44	0.31	2.53	75.21
21	2.53	1.12	2.26	0.93	0.93	6.87	3.39	2.01	0.58	0.31	2.01	35.37
22	3.09	1.12	1.77	0.93	0.93	4.33	2.53	1.54	0.44	0.31	1.77	16.26
23	3.09	1.12	1.54	0.93	0.93	4.01	2.01	1.32	0.44	0.31	1.54	10.72
24	3.09	1.12	1.54	0.75	1.32	3.39	2.26	1.12	0.44	0.31	1.12	6.87
25	3.09	1.12	1.54	0.75	1.12	3.09	2.26	1.12	0.44	0.31	1.12	5.01
26	3.09	1.12	1.32	0.75	0.93	3.09	1.32	1.12	0.44	0.31	1.12	4.33
27	3.69	2.26	1.32	0.75	1.12	57.77	1.32	1.12	0.44	0.31	0.93	4.67
28	2.8	2.26	1.12	3.09	1.12	56.04	1.32	1.12	0.44	0.31	0.93	4.67
29	2.53		1.54	3.09	1.12	18.49	>>	0.93	0.44	0.31	0.93	4.33
30	2.53		1.54	2.8	1.12	11.67	>>	0.93	0.44	0.31	0.93	3.39
31	2.26		1.54		0.75		>>	1.12		0.31		2.8
Minima	2.01	1.12	1.12	0.75	0.75	0.58	1.32	0.75	0.44	0.31	0.31	0.75
Media	3.44	1.54	2.24	1.31	2.06	6.91	3.8	1.27	0.56	0.32	9.29	6.25
Massima	11.19	2.26	3.69	3.09	6.87	57.77	10.72	4.33	1.12	0.58	76.18	75.21

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1998 al 31 dicembre 1998

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	2.26	0.75	1.54	0.75	13.64	8.08	1.54	1.12	0.75	8.08	1.77	0.75
2	2.01	0.75	1.54	1.12	15.73	5.01	2.01	0.93	0.75	8.08	1.77	0.75
3	2.01	0.75	1.54	1.12	11.67	3.69	1.77	0.93	0.75	6.48	1.54	0.75
4	2.01	0.75	1.54	1.54	9.81	3.09	2.01	0.93	0.93	13.14	1.32	0.58
5	2.01	0.75	1.12	2.26	8.93	2.53	2.01	0.93	32.51	25.77	8.93	0.58
6	1.77	0.75	1.12	2.53	8.08	2.01	2.01	0.75	18.49	56.04	6.87	0.58
7	1.77	0.75	1.32	2.53	7.67	2.26	1.54	0.75	8.5	128.85	4.67	0.58
8	1.77	0.58	1.32	3.09	6.48	8.08	1.54	0.93	5.01	80.08	3.39	0.58
9	1.54	0.58	1.32	3.09	6.1	6.87	1.32	0.93	3.09	50.13	2.53	0.58
10	1.54	0.58	1.12	14.67	6.1	5.37	1.32	0.75	2.01	23.24	2.26	0.58
11	1.12	0.58	1.12	14.67	5.73	4.33	1.32	0.93	2.01	15.73	2.01	0.58
12	1.12	0.58	1.12	8.5	5.01	8.5	1.12	0.75	32.51	11.67	2.01	0.58
13	1.12	0.58	0.93	6.1	4.33	7.67	1.12	1.32	23.24	8.5	1.77	0.58
14	1.12	0.75	0.93	5.37	5.37	6.1	1.54	1.54	12.64	6.48	1.54	0.58
15	1.12	0.93	0.93	4.33	5.01	5.01	1.54	1.54	9.37	5.37	1.54	0.44
16	1.32	1.54	0.93	5.73	4.33	5.37	1.54	1.32	6.1	4.67	1.54	0.44
17	1.54	1.54	0.75	6.1	3.69	5.37	1.54	1.12	4.33	4.33	1.32	0.44
18	1.54	1.54	0.75	6.48	3.09	4.67	1.32	1.12	3.39	3.39	1.32	0.44
19	1.54	1.54	0.75	6.48	2.53	3.69	1.32	1.12	2.8	3.39	1.12	0.44
20	1.54	1.12	0.93	6.1	2.53	3.09	1.32	1.12	2.01	4.67	1.12	0.44
21	1.54	1.12	0.75	6.48	2.53	2.8	1.32	1.12	2.01	4.67	1.12	0.44
22	1.32	1.12	0.75	11.67	2.26	2.26	1.12	1.12	1.54	3.69	1.12	0.44
23	1.32	1.12	0.75	11.67	2.26	2.26	0.93	1.12	1.54	3.09	1.12	0.44
24	0.93	1.12	0.75	12.15	2.01	2.53	1.12	1.12	1.54	2.8	0.93	0.44
25	0.93	1.12	0.75	13.14	2.53	2.01	1.12	0.93	1.32	2.53	0.93	0.44
26	0.93	1.54	0.75	13.14	2.26	2.01	0.93	0.93	1.32	2.53	0.93	0.44
27	0.93	1.54	0.75	12.64	2.26	1.77	1.12	1.12	2.8	2.26	0.75	0.44
28	0.93	1.54	0.75	35.37	3.09	1.77	1.32	1.12	3.09	2.01	0.75	0.44
29	0.93		0.75	30.43	21.41	1.54	1.12	0.75	2.53	2.01	0.75	0.44
30	0.93		0.75	20.22	20.81	1.54	1.12	0.75	2.01	2.01	0.75	0.44
31	0.93		0.93		11.19		1.12	0.75		1.77		0.44
Minima	0.93	0.58	0.75	0.75	2.01	1.54	0.93	0.75	0.75	1.77	0.75	0.44
Media	1.4	1	1	8.98	6.72	4.04	1.39	1.02	6.36	16.05	1.98	0.52
Massima	2.26	1.54	1.54	35.37	21.41	8.5	2.01	1.54	32.51	128.85	8.93	0.75

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1999 al 31 dicembre 1999

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	отт	NOV	DIC
1	0.44	0.93	0.58	5.37	7.26	2.01	1.12	0.75	1.54	5.01	3.39	1.77
2	0.44	0.75	0.58	5.37	6.87	1.54	1.12	0.75	1.12	5.01	2.8	1.77
3	0.44	0.75	0.58	5.73	6.48	1.54	0.93	0.75	1.12	4.01	2.8	1.77
4	0.44	0.75	3.09	5.73	7.67	1.32	1.12	0.58	0.93	6.87	6.87	1.54
5	0.44	0.75	5.73	5.73	21.41	1.32	0.75	0.58	0.93	6.87	8.93	1.54
6	0.44	0.75	4.33	5.73	13.64	1.54	1.32	0.58	0.75	5.01	9.81	1.54
7	0.44	0.75	3.39	6.48	9.81	3.39	1.12	0.58	0.75	3.39	21.41	1.54
8	0.44	0.75	2.8	8.93	7.67	9.37	0.93	0.93	0.75	2.53	15.73	1.32
9	0.44	0.75	2.26	7.67	6.48	7.67	0.93	0.58	0.75	2.01	10.72	1.32
10	0.58	0.75	2.01	6.48	6.1	4.33	0.93	0.75	0.75	2.01	9.81	1.32
11	2.01	0.75	2.01	6.1	5.73	8.5	0.75	0.58	0.58	1.54	7.26	1.32
12	2.01	0.75	2.8	6.1	5.37	8.08	0.75	1.54	0.58	1.54	5.37	1.32
13	1.77	0.75	4.33	6.87	4.67	5.01	1.32	2.53	0.58	1.32	4.67	1.32
14	1.77	0.75	5.01	5.73	5.01	4.01	1.32	2.53	0.58	1.77	4.67	1.32
15	1.32	0.75	5.73	6.87	5.37	2.8	1.32	2.01	0.44	1.54	4.67	1.32
16	1.32	0.58	6.1	76.18	5.73	4.33	0.93	1.54	0.58	1.54	4.33	1.32
17	1.12	0.58	5.73	57.77	5.73	4.33	1.32	4.33	0.58	1.32	4.33	1.12
18	1.12	0.58	5.01	19.06	4.67	3.69	1.32	4.33	0.44	1.54	3.69	1.12
19	0.93	0.58	3.69	12.64	4.01	3.39	1.12	2.8	0.44	1.32	3.69	1.12
20	0.93	0.58	3.09	8.08	6.48	2.53	1.12	2.01	256.35	1.54	3.39	1.12
21	0.93	0.58	2.53	6.1	7.26	3.09	0.93	3.69	155.73	17.92	3.09	0.93
22	0.93	0.58	2.26	5.37	7.67	3.39	0.75	4.33	32.51	23.24	2.8	0.93
23	0.93	0.58	2.01	5.73	7.26	3.09	0.75	4.33	15.73	42.12	2.53	0.93
24	0.93	0.58	1.77	5.37	6.1	2.53	0.75	3.09	10.72	29.07	2.53	0.93
25	0.93	0.58	1.77	5.37	4.67	2.01	0.75	2.53	6.87	39.06	2.26	0.93
26	0.93	0.58	2.01	5.73	3.69	1.54	0.75	2.01	5.01	34.64	2.01	0.75
27	0.93	0.58	12.15	6.48	3.09	1.54	0.75	1.77	3.69	15.73	2.01	0.75
28	0.93	0.58	12.15	7.26	2.26	1.32	0.75	1.54	3.09	10.26	2.01	1.12
29	0.93		8.93	6.87	2.8	1.32	0.75	2.01	2.8	6.48	1.77	1.12
30	0.93		6.87	7.67	2.53	1.12	0.75	2.01	2.53	5.01	1.77	0.75
31	0.93		5.73		2.26		0.75	1.77		4.33		0.75
Minima	0.44	0.58	0.58	5.37	2.26	1.12	0.75	0.58	0.44	1.32	1.77	0.75
Media	0.93	0.68	4.1	11.02	6.31	3.39	0.96	1.94	16.97	9.21	5.37	1.22
Massima	2.01	0.93	12.15	76.18	21.41	9.37	1.32	4.33	256.35	42.12	21.41	1.77

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 2000 al 31 dicembre 2000

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	0.75	0.44	0.58	7.67	5.01	0.93	0.93	0.75	2.01	44.47	20.81	>>
2	0.75	0.44	0.58	6.87	5.01	0.93	0.93	0.44	2.01	26.42	12.64	>>
3	0.75	0.44	0.58	10.72	5.01	0.93	0.93	0.44	1.54	14.67	45.26	>>
4	0.93	0.44	0.58	13.64	5.01	1.12	0.93	0.93	1.12	9.37	43.68	>>
5	0.75	0.44	0.58	12.15	5.73	0.93	0.75	23.87	1.12	6.1	18.49	>>
6	0.75	0.44	0.58	10.72	5.01	2.26	0.75	35.37	0.75	4.33	102.85	>>
7	0.75	0.44	0.58	9.37	6.87	4.67	0.75	13.64	0.75	14.67	98.55	>>
8	0.58	0.44	0.58	7.67	12.15	3.09	0.75	8.5	0.75	17.36	28.4	>>
9	0.75	0.58	0.58	7.26	12.15	2.01	0.75	5.73	0.75	16.81	18.49	>>
10	0.75	0.58	0.58	6.48	8.5	1.54	0.93	3.39	0.44	14.67	13.14	>>
11	0.75	0.58	0.58	6.1	6.48	1.54	7.26	2.26	>>	32.51	9.37	>>
12	0.58	0.58	0.58	6.48	5.01	3.09	7.67	2.01	>>	105.02	7.26	>>
13	0.58	0.58	1.12	7.67	4.33	3.39	5.37	1.77	>>	103.93	6.1	>>
14	0.58	0.58	1.12	8.08	3.39	3.09	3.39	1.77	0.44	34.64	74.25	>>
15	0.58	0.58	1.12	12.64	3.09	3.09	2.53	1.54	0.44	23.24	65.82	>>
16	0.58	0.44	1.12	12.15	3.09	2.26	2.01	1.32	0.44	29.07	34.64	>>
17	0.58	0.44	1.12	10.26	2.53	1.77	1.77	1.12	>>	16.81	91.2	>>
18	0.58	0.44	1.12	10.72	2.26	1.54	1.54	1.12	>>	13.14	>>	>>
19	0.44	0.44	0.93	11.19	2.26	1.12	1.32	0.75	>>	9.37	>>	>>
20	0.44	0.44	0.93	11.67	2.01	1.12	0.93	0.75	>>	7.26	>>	>>
21	0.44	0.44	0.93	12.15	2.01	0.93	0.75	0.75	>>	5.73	>>	>>
22	0.44	0.44	0.75	10.72	1.54	0.93	0.75	0.75	>>	4.67	>>	>>
23	0.44	0.44	0.75	9.37	1.54	0.75	0.75	0.75	>>	4.33	>>	>>
24	0.44	0.44	0.75	10.26	1.32	0.93	0.75	0.58	>>	3.69	>>	>>
25	0.44	0.44	0.93	10.26	1.32	0.93	0.75	0.58	>>	3.09	>>	>>
26	0.44	0.44	1.12	8.5	1.32	0.75	0.75	0.58	>>	2.8	>>	>>
27	0.44	0.44	4.33	6.1	1.32	0.75	0.75	0.58	>>	2.53	>>	>>
28	0.44	0.44	4.33	5.37	1.54	1.12	0.58	0.58	>>	2.26	>>	>>
29	0.44	0.44	23.87	5.37	1.32	0.75	0.58	>>	1.12	2.01	>>	>>
30	0.44		16.81	5.37	1.12	0.93	0.58	>>	45.26	2.01	>>	>>
31	0.44		8.93		1.12		0.58	0.93		8.93		>>
Minima	0.44	0.44	0.58	5.37	1.12	0.75	0.58	0.44	0.44	2.01	6.1	>>
Media	0.58	0.47	2.55	9.1	3.88	1.64	1.6	3.91	3.93	18.9	40.64	>>
Massima	0.93	0.58	23.87	13.64	12.15	4.67	7.67	35.37	45.26	105.02	102.85	>>

1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 2001 al 31 dicembre 2001

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
2	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
3	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
4	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
5	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
6	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
7	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
8	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
9	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
10	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
11	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
12	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
13	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
14	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
15	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
16	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
17	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
18	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
19	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
20	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
21	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
22	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
23	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
24	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
25	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
26	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
27	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
28	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
29	>>		>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
30	>>		>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
31	>>		>>		>>		>>	>>		>>		>>
L												
Minima	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
Media	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
Massima	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>

Bollettino dei valori giornalieri medi

Stazione Astico a Pedescala Parametro Livello idrometrico 1 media (m) Valori dal 1 gennaio 2002 al 31 dicembre 2002

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.42
2	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.35
3	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.27
4	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.23
5	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.22
6	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.19
7	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.17
8	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.13
9	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.06
10	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.03
11	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.03
12	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.03
13	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.04
14	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.01
15	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.04
16	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.03
17	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.03
18	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.02
19	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0
20	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0
21	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0
22	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0
23	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0
24	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0
25	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0
26	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0
27	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.02
28	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.02
29	>>		>>	>>	>>	>>	>>	>>	>>	>>	>>	0.02
30	>>		>>	>>	>>	>>	>>	>>	>>	>>	0.55	0.02
31	>>		>>		>>		>>	>>		>>		0.02
Minima	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0
Media	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.08
Massima	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	0.42

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 2003 al 31 dicembre 2003

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	0.79	1.12	0.63	1.31	1.92	1.31	2.15	0.5	0.5	0.16	55.9	10.98
2	0.79	0.95	0.63	1.71	1.92	1.31	1.71	0.5	0.5	0.16	24.21	7.78
3	0.79	0.95	0.63	1.71	1.71	1.12	1.31	0.5	0.5	0.16	>>	7.11
4	0.79	0.95	0.63	1.5	1.71	1.12	3.68	0.5	0.5	0.26	>>	7.11
5	0.79	0.95	0.63	1.12	1.31	1.12	3.68	0.5	0.5	7.58	5.23	5.84
6	0.79	0.63	0.63	1.12	1.12	1.31	3.14	0.5	0.5	7.58	4.08	4.93
7	0.79	0.63	0.95	1.12	1.12	1.31	2.15	0.5	0.5	3.96	3.27	4.36
8	0.79	0.63	0.63	1.12	1.12	1.31	1.71	0.5	0.5	2.62	7.78	3.8
9	0.79	0.63	0.63	1.12	1.12	1.5	1.5	0.5	0.5	1.71	11.36	3.27
10	0.79	0.5	0.95	1.12	1.12	1.71	1.31	0.5	0.5	1.31	9.52	3.01
11	0.79	0.5	1.12	1.12	1.12	1.71	0.95	0.5	0.5	1.12	7.44	2.52
12	0.79	0.5	1.12	1.12	1.12	1.71	0.95	0.5	0.5	0.95	6.15	2.05
13	0.79	0.5	1.12	1.5	1.12	1.71	0.95	0.5	0.5	0.79	4.64	2.05
14	1.12	0.5	1.5	1.92	1.12	1.71	0.95	0.5	0.5	0.79	3.8	1.83
15	1.12	0.5	1.31	3.14	0.95	1.71	0.95	0.5	0.5	0.5	3.27	1.83
16	1.12	0.5	1.12	3.14	1.12	1.92	0.95	0.5	0.5	0.5	2.52	1.83
17	1.12	0.5	1.12	3.96	1.12	1.71	0.95	0.5	0.37	0.5	3.27	1.62
18	1.12	0.5	0.95	4.26	1.12	1.5	0.95	0.5	0.37	0.5	4.36	1.62
19	1.12	0.37	0.95	3.68	1.12	1.5	0.95	0.5	0.26	0.5	4.08	1.21
20	1.12	>>	0.95	3.4	1.12	1.71	0.63	0.5	0.26	0.37	4.08	0.85
21	1.12	>>	0.95	2.62	1.12	1.71	0.63	0.5	0.26	0.37	3.8	0.85
22	1.12	>>	0.95	2.38	1.12	1.71	0.79	0.5	0.26	0.37	3.27	0.85
23	1.71	>>	0.95	2.38	1.12	1.71	0.63	0.5	0.26	0.63	3.01	0.85
24	1.31	>>	0.95	2.38	1.31	1.92	0.63	0.5	0.26	0.37	3.8	0.85
25	1.31	0.63	0.95	2.38	1.31	2.15	0.63	0.5	0.26	0.37	3.8	0.85
26	1.12	0.63	0.95	2.38	1.31	1.71	0.63	0.5	0.26	0.37	5.53	0.52
27	1.12	0.63	0.95	2.38	1.12	1.92	0.95	0.37	0.26	>>	54.65	0.52
28	1.12	0.63	0.95	2.38	1.31	1.71	0.79	0.37	0.26	0.37	75.69	0.52
29	1.12		0.95	1.92	1.31	2.88	0.5	0.37	0.26	0.37	29.09	2.52
30	1.12		0.95	1.92	1.31	2.88	0.63	0.37	0.16	0.63	15.32	3.01
31	1.12		1.31		1.31		0.63	0.37		2.62		3.8
Minima	0.79	0.37	0.63	1.12	0.95	1.12	0.5	0.37	0.16	0.16	2.52	0.52
Media	1.01	0.64	0.94	2.11	1.25	1.68	1.26	0.48	0.39	1.28	12.96	2.93
Massima	1.71	1.12	1.5	4.26	1.92	2.88	3.68	0.5	0.5	7.58	75.69	10.98

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 2004 al 31 dicembre 2004

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	3.8	0.52	2.28	5.53	17.42	3.62	2.02	0.81	0.5	0.37	116.45	11.75
2	3.01	0.38	2.05	6.79	12.51	3.05	1.79	0.81	0.37	0.37	63.79	8.23
3	2.52	0.38	1.83	8.81	10.24	2.77	1.79	0.81	0.37	0.37	24.4	5.92
4	2.05	0.38	1.83	9.52	19.17	2.77	1.57	0.81	0.37	0.37	14.19	5.92
5	1.62	0.38	1.83	9.88	41.27	2.51	1.57	0.81	0.37	0.37	10.38	4.88
6	1.41	0.52	1.83	9.88	66.54	2.51	1.16	0.81	0.37	0.37	7.04	6.66
7	1.21	1.03	1.83	10.61	33.04	2.26	1.16	0.65	0.37	0.37	5.22	5.92
8	1.21	1.03	1.83	9.16	19.03	2.02	1.36	0.81	0.37	0.37	4.23	5.57
9	0.85	1.03	1.83	7.11	14.7	2.02	1.16	0.98	0.37	0.26	3.62	4.88
10	0.85	1.03	1.83	5.84	12.23	2.02	1.57	0.81	0.37	0.37	3.05	4.23
11	0.85	1.03	2.05	5.53	10.38	1.79	1.57	0.81	0.37	0.37	3.05	3.33
12	0.85	1.41	1.83	5.23	9.07	2.02	1.36	0.65	0.37	0.37	4.55	3.05
13	0.68	1.41	1.83	5.23	9.93	2.77	1.16	0.65	0.37	0.37	5.22	2.51
14	0.68	1.41	2.28	4.64	9.5	2.77	1.16	0.65	0.65	0.37	5.22	2.26
15	0.68	1.41	3.8	4.36	8.65	2.02	1.16	0.65	0.65	0.37	4.55	2.02
16	0.52	1.21	6.47	4.36	8.65	1.79	1.16	0.65	0.81	0.37	3.62	2.02
17	0.68	1.21	8.46	5.53	8.65	1.57	0.98	0.37	1.16	0.37	3.05	1.79
18	0.68	1.21	9.88	7.11	8.23	1.57	0.98	0.37	1.16	0.5	2.51	1.79
19	0.68	1.21	9.88	28.59	7.83	1.79	0.98	0.5	1.16	0.5	2.51	1.79
20	0.68	1.21	10.24	27.1	7.83	5.22	0.98	0.37	0.98	0.5	2.02	1.79
21	0.68	1.62	9.88	16.15	7.83	5.57	0.98	0.37	0.81	0.5	2.02	1.36
22	0.68	4.93	12.12	13.29	7.43	4.55	0.98	0.37	0.81	1.16	1.79	1.16
23	0.52	8.46	12.12	13.29	7.83	3.33	0.98	0.37	0.5	3.33	1.57	1.16
24	0.52	8.46	9.88	12.9	7.04	2.51	1.16	0.37	0.5	3.05	1.36	1.16
25	0.52	6.15	8.12	12.9	5.57	2.26	0.98	0.37	0.5	2.02	1.36	0.98
26	0.52	4.64	6.15	9.88	4.55	5.92	0.98	0.65	0.5	1.57	1.16	2.02
27	0.52	3.8	5.53	8.46	4.55	5.57	0.81	0.37	0.37	29.59	1.16	3.05
28	0.52	3.27	4.64	8.12	4.23	>>	0.81	0.37	0.37	20.76	1.16	3.05
29	0.52	3.01	4.36	8.81	4.23	>>	0.81	0.37	0.37	19.6	1.16	3.05
30	0.52		4.36	17.42	3.92	2.51	0.81	0.37	0.37	19.6	12.23	2.77
31	0.52		5.23		3.62		0.81	0.81		44.24		2.02
Minima	0.52	0.38	1.83	4.36	3.62	1.57	0.81	0.37	0.37	0.26	1.16	0.98
Media	1.02	2.2	5.1	10.07	12.76	2.9	1.18	0.6	0.56	4.94	10.45	3.49
Massima	3.8	8.46	12.12	28.59	66.54	5.92	2.02	0.98	1.16	44.24	116.45	11.75

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 2005 al 31 dicembre 2005

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	2.02	0.65	0.5	4.23	5.57	1.36	0.65	0.37	1.16	0.98	1.08	0.89
2	1.79	0.5	0.5	4.23	5.22	1.36	0.65	0.37	0.98	1.79	1.27	0.89
3	1.79	0.5	0.5	3.62	4.88	1.36	0.65	0.37	0.81	63.79	1.08	1.67
4	1.57	0.5	0.37	3.05	3.92	1.36	0.65	0.5	0.98	41.73	1.08	1.67
5	1.16	0.5	0.37	2.77	3.62	1.36	0.65	0.5	0.98	15.57	0.89	1.89
6	1.16	0.5	0.37	2.26	3.05	1.36	0.65	0.5	0.98	21.33	5.22	1.89
7	1.16	0.5	0.37	2.26	2.77	1.36	0.65	0.5	0.98	15.57	9.67	1.89
8	1.16	0.37	0.5	2.77	2.26	1.36	0.65	0.5	1.16	14.8	8	1.67
9	1.16	0.37	0.37	3.92	2.02	1.57	1.57	0.5	37.37	11.43	5.22	1.67
10	1.16	0.37	0.37	4.23	2.02	1.36	1.79	0.5	28.92	8.66	3.83	1.47
11	0.98	0.37	0.37	4.23	1.79	1.16	1.79	0.5	13.2	6.41	2.81	1.27
12	0.98	0.37	0.37	4.23	1.57	0.98	1.57	0.5	9.07	5.22	2.34	1.27
13	0.98	0.37	0.37	4.88	1.57	0.98	1.16	0.5	9.07	4.37	2.11	1.27
14	0.98	0.37	0.37	5.22	1.57	0.98	1.16	0.5	9.07	3.57	1.89	1.27
15	0.98	0.37	0.37	4.88	1.79	0.98	1.16	0.5	4.23	3.06	1.67	0.89
16	0.98	0.37	0.37	19.03	2.02	1.16	1.16	0.5	3.33	2.81	1.67	0.89
17	0.98	0.37	0.65	19.03	2.51	1.16	0.98	0.5	3.05	2.57	1.67	0.89
18	0.98	0.37	0.98	10.38	18.46	0.98	0.98	0.5	6.29	2.34	1.27	1.27
19	0.98	0.37	2.02	7.04	14.19	0.98	0.65	0.5	6.29	2.34	1.27	1.08
20	0.98	0.37	3.92	6.29	9.07	0.81	0.81	29.59	5.22	1.89	1.27	0.89
21	0.98	0.37	4.23	5.92	5.57	0.65	0.65	17.36	4.23	1.89	1.08	0.89
22	0.98	0.37	4.23	5.22	3.92	0.65	0.81	13.69	3.33	2.11	1.08	1.08
23	0.98	0.37	3.62	4.55	3.05	0.65	0.65	8.23	2.51	1.89	1.08	0.72
24	0.98	0.37	3.05	4.23	2.77	1.16	0.65	5.92	2.02	1.47	1.08	0.72
25	0.65	0.37	3.92	7.04	2.02	0.65	0.65	4.23	1.79	1.89	1.08	0.72
26	0.65	0.37	4.23	7.83	2.02	0.81	0.65	2.51	1.57	1.67	1.27	0.72
27	0.65	0.37	4.23	7.04	1.79	0.81	0.65	2.02	1.57	1.47	1.08	0.72
28	0.65	0.5	5.57	6.29	1.57	0.65	0.5	1.79	1.16	1.27	0.89	0.89
29	0.65		5.57	5.57	1.36	0.65	0.65	1.57	1.36	1.27	0.89	0.89
30	0.65		5.57	5.22	1.36	0.65	0.37	1.57	0.98	1.27	0.89	0.72
31	0.65		4.23		1.36		0.37	1.36		1.47		0.72
Minima	0.65	0.37	0.37	2.26	1.36	0.65	0.37	0.37	0.81	0.98	0.89	0.72
Media	1.04	0.42	2.02	5.92	3.76	1.04	0.86	3.19	5.45	8	2.19	1.14
Massima	2.02	0.65	5.57	19.03	18.46	1.57	1.79	29.59	37.37	63.79	9.67	1.89

Bollettino dei valori giornalieri massimi

Stazione Astico a Pedescala Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 2006 al 31 dicembre 2006

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	0.72	1.08	2.11	8.66	8.99	2.11	1.08	1.4	1.02	1.4	0.68	0.53
2	0.72	0.89	2.11	8.99	6.41	1.67	0.89	1.2	1.02	1.2	0.68	0.53
3	0.72	1.27	2.11	9.67	5.51	1.67	0.89	13.91	1.02	1.2	0.84	0.68
4	0.72	1.27	1.67	8.66	5.51	1.67	0.89	11.2	1.02	1.2	0.68	0.4
5	0.72	1.27	3.06	7.67	5.22	1.67	0.89	5.78	0.84	1.2	0.68	0.53
6	0.72	1.27	3.83	6.72	4.65	1.47	0.72	3.32	0.84	1.2	0.68	0.68
7	0.72	1.27	3.83	5.51	4.37	1.67	0.72	2.28	0.84	1.02	0.68	0.68
8	0.72	1.27	3.06	4.65	4.1	1.47	0.72	1.82	0.84	1.2	0.68	1.6
9	0.72	1.27	2.81	4.1	6.41	1.47	0.72	1.4	0.84	1.2	0.68	37.54
10	0.41	1.27	2.57	5.22	8	1.47	1.08	1.6	0.84	1.02	1.02	18.88
11	0.41	1.27	2.34	12.9	7.04	1.47	0.68	1.6	0.53	1.2	0.53	9.52
12	0.41	1.27	2.11	10.02	6.41	1.08	1.02	2.05	0.53	1.02	0.53	6.13
13	0.41	1.08	2.11	7.04	5.22	1.27	0.84	2.53	0.53	1.02	0.68	3.89
14	0.41	1.08	1.89	5.81	5.22	1.08	1.02	2.78	0.53	0.68	0.68	3.04
15	0.41	1.08	1.89	6.41	5.22	1.08	0.68	2.53	32.92	1.02	0.4	3.04
16	0.41	1.08	1.89	7.35	4.65	1.08	0.68	5.78	23.24	1.02	0.4	2.05
17	0.41	1.08	1.89	8.99	4.1	1.08	0.68	8.33	12.53	0.84	0.53	1.6
18	0.41	1.08	1.89	9.33	3.83	1.08	0.68	11.2	9.52	1.2	0.53	1.82
19	0.41	1.08	1.89	8.99	3.57	1.08	0.68	7.2	6.83	0.68	0.53	2.05
20	0.41	1.27	1.89	8.32	3.31	1.08	0.68	4.8	4.8	0.68	0.53	2.28
21	0.41	1.67	2.11	8.66	2.81	1.08	0.84	3.6	3.32	0.68	0.53	2.05
22	0.41	1.89	2.81	8.99	2.57	0.89	0.68	2.78	2.78	0.68	0.68	1.82
23	0.41	2.34	3.06	8.99	2.34	0.89	0.68	2.05	2.28	0.68	0.68	1.6
24	0.41	2.34	3.57	8.66	2.57	0.89	0.68	1.82	1.82	0.68	0.53	1.6
25	0.41	2.34	4.1	8.32	1.89	1.27	0.68	1.6	1.6	0.68	0.53	1.4
26	0.72	2.34	5.22	8.32	1.89	1.27	0.84	1.6	1.4	0.84	0.53	1.2
27	0.72	2.34	6.41	7.35	1.89	1.27	0.53	1.4	>>	0.84	0.68	1.2
28	0.56	2.34	11.79	6.72	1.67	1.08	2.78	1.2	1.6	0.84	0.53	1.02
29	0.41		16.37	7.04	1.67	1.08	6.13	1.2	1.6	0.84	0.68	1.02
30	0.72		11.07	9.33	1.67	0.89	2.78	1.2	1.4	1.02	1.02	1.02
31	0.56		8		1.67		1.82	1.2		0.84		0.84
Minima	0.41	0.89	1.67	4.10	1.67	0.89	0.53	1.20	0.53	0.68	0.40	0.40
Media	0.54	1.47	3.92	7.91	4.21	1.28	1.12	3.62	4.10	0.96	0.63	3.62
Massima	0.72	2.34	16.37	12.90	8.99	2.11	6.13	13.91	32.92	1.40	1.02	37.54

Bollettino dei valori giornalieri massimi dati NON validati

Stazione Astico a Pedescala CAE Sensore Portata massima (m3/s) Valori dal 1 gennaio 2007 al 31 dicembre 2007

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	ОТТ	NOV	DIC
1	0.84	1.6	0.84	3.89	1.4	6.83	1.6	0.84	3.89	4.8	4.18	4.12
2	1.2	1.6	1.2	3.89	1.4	9.12	1.82	1.02	3.32	4.49	3.6	3.29
3	1.2	1.6	1.2	4.18	1.82	9.12	2.28	1.02	2.78	3.6	3.04	3.03
4	1.02	1.6	1.6	4.18	2.28	7.2	2.28	0.84	2.53	2.53	2.53	3.29
5	0.84	1.4	1.2	4.49	4.18	5.78	2.28	1.02	2.05	2.28	2.28	2.78
6	0.84	1.2	1.02	4.49	3.89	4.49	2.53	1.02	2.05	4.18	1.82	2.32
7	0.84	1.2	1.2	5.12	3.6	3.89	1.82	0.84	2.28	4.8	2.05	1.89
8	1.02	1.02	3.89	5.78	2.78	3.6	1.6	1.4	2.05	4.18	1.82	2.1
9	0.84	1.2	4.18	6.48	2.05	3.89	1.6	42.37	1.82	3.32	1.6	1.89
10	0.68	1.2	3.6	5.78	1.82	3.6	2.53	22.67	1.82	2.53	2.05	1.89
11	0.68	1.02	2.78	5.45	1.6	3.32	2.78	11.2	1.82	2.53	1.82	1.89
12	0.68	1.02	2.28	5.12	1.4	2.78	2.53	7.2	1.6	2.28	1.4	1.69
13	0.68	1.4	2.05	4.49	1.4	5.45	2.05	4.49	1.4	2.05	1.6	1.69
14	0.68	1.2	1.82	4.49	1.2	6.13	2.05	3.6	1.4	1.82	1.4	1.5
15	0.68	1.02	1.82	4.18	1.2	6.13	1.6	3.32	1.4	1.82	1.2	1.32
16	0.68	1.4	1.6	3.6	1.2	6.83	1.6	2.53	1.2	1.82	1.2	1.5
17	0.68	1.02	1.6	3.32	1.02	5.78	1.4	2.53	1.4	1.6	1.2	1.32
18	0.53	0.84	1.4	2.78	1.02	4.8	1.4	2.05	1.6	1.6	1.02	1.32
19	0.68	1.02	1.82	2.53	1.02	3.6	1.4	1.82	1.82	1.6	1.02	1.32
20	0.68	1.2	1.82	2.28	1.02	3.32	1.4	12.98	1.6	1.6	0.84	1.32
21	0.53	0.84	1.82	2.28	1.02	2.78	1.2	13.44	1.6	1.82	0.84	1.32
22	0.53	0.84	1.6	2.05	1.2	2.53	1.4	9.52	1.4	1.2	0.84	1.32
23	17.84	0.84	1.82	2.05	1.02	2.28	1.2	7.2	1.4	1.4	22.12	1.15
24	19.93	0.84	1.82	2.05	2.05	2.05	1.4	6.48	1.4	1.2	91.69	1.15
25	7.95	0.84	1.2	1.82	1.82	1.82	1.4	5.12	1.2	1.4	78.99	1
26	4.8	1.2	1.6	1.82	8.72	1.82	1.02	3.89	1.2	1.2	23.4	1.32
27	3.32	1.2	1.6	1.82	6.13	1.6	1.2	3.04	4.18	2.28	13.18	1.32
28	2.78	1.02	1.4	1.6	27.32	1.6	1.02	2.78	8.72	2.53	9.08	1.15
29	2.28		1.6	1.4	35.53	1.6	1.02	3.04	9.12	2.28	6.03	1.15
30	2.05		1.6	1.2	17.33	1.6	1.4	5.78	5.78	2.05	5.03	1
31	1.82		3.6		9.52		0.84	5.12		3.89		1.32
				'								
Minima	0.53	0.84	0.84	1.2	1.02	1.6	0.84	0.84	1.2	1.2	0.84	1
Media	2.58	1.16	1.89	3.49	4.8	4.18	1.66	6.13	2.53	2.47	9.63	1.76
Massima	19.93	1.6	4.18	6.48	35.53	9.12	2.78	42.37	9.12	4.8	91.69	4.12

1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi dati NON validati

Stazione Astico a Pedescala CAE Sensore Portata massima (m3/s) Valori dal 1 gennaio 2008 al 31 dicembre 2008

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	отт	NOV	DIC
1	1.15	2.55	2.1	2.1	5.36	14.18	2.55	2.1	1.69	1.5	28.09	21.52
2	1	2.32	2.78	2.32	6.03	8.67	3.03	3.56	2.32	1.32	16.29	14.7
3	1	1.89	3.56	2.55	5.03	6.74	2.78	3.29	2.55	1.5	23.4	7.87
4	0.85	2.1	3.56	2.32	4.72	5.36	2.32	2.78	2.1	1.5	118.3	5.69
5	1	2.55	3.29	1.89	4.72	14.18	2.78	2.32	2.1	1.5	123.72	5.03
6	1	2.78	2.55	1.89	4.72	14.7	3.03	2.55	1.89	1.5	46.15	4.12
7	1	3.03	2.32	1.89	4.12	11.27	9.93	2.1	1.89	1.5	22.77	3.83
8	1.15	2.32	1.89	1.89	4.12	11.27	10.37	2.1	1.89	1.32	14.7	3.29
9	1	2.1	1.69	1.69	3.83	11.27	6.74	1.89	1.69	1.32	10.37	3.03
10	1	2.32	1.69	3.56	3.83	9.5	4.72	1.69	1.69	1.5	7.48	3.83
11	0.85	2.1	2.55	20.9	3.56	7.11	3.83	1.89	1.5	1.32	5.69	9.93
12	19.7	1.89	2.32	20.9	3.56	7.87	3.29	1.69	1.5	1.5	4.72	15.75
13	21.52	1.89	3.03	11.27	3.29	14.7	3.56	1.89	1.89	1.32	10.82	14.7
14	9.08	1.89	3.03	7.48	2.78	12.21	5.69	1.89	13.68	1.32	12.21	10.37
15	5.36	1.89	2.78	6.74	2.55	8.67	5.69	5.03	11.74	1.32	9.5	14.18
16	4.41	1.5	2.78	6.38	2.78	7.11	4.72	4.41	8.67	1.15	7.87	20.9
17	5.36	1.5	3.56	5.36	6.38	6.74	4.12	3.56	5.36	1.32	5.69	22.77
18	5.36	1.5	3.29	7.11	26.03	6.38	3.29	3.29	3.83	1.15	5.03	14.7
19	4.12	1.69	3.03	14.7	20.9	6.03	2.78	3.03	3.03	1.15	4.41	9.66
20	3.56	1.32	2.78	13.68	12.69	5.36	2.55	2.55	2.55	1.32	3.83	7.2
21	3.29	1.5	2.1	16.84	11.27	4.72	2.55	2.32	2.1	1.15	3.29	5.75
22	3.56	1.32	2.32	16.84	9.08	4.12	2.55	2.1	2.1	1.15	3.03	5.41
23	3.29	1.32	1.89	12.21	7.11	3.56	3.03	1.89	1.89	1	2.78	6.46
24	2.78	1.5	1.89	9.08	6.03	3.56	2.32	2.32	2.1	1.15	2.78	5.41
25	3.03	1.89	1.89	7.48	5.69	3.29	2.32	2.32	1.69	1	2.55	5.08
26	2.78	2.32	1.69	6.74	4.72	3.03	2.1	2.32	1.89	1.15	2.32	4.76
27	2.78	1.89	1.32	6.03	4.41	3.29	2.32	2.1	1.5	1	2.1	3.86
28	2.55	2.32	1.5	5.36	3.83	2.78	2.55	2.1	1.5	1.15	2.1	3.86
29	3.29	2.1	1.32	5.36	3.83	2.78	2.1	1.89	1.5	14.18	2.32	3.31
30	3.03		1.32	5.36	24.7	2.78	2.32	1.69	1.5	25.36	6.38	3.31
31	2.78		1.5		28.09		2.1	1.69		26.03		3.05
				•	•				•		•	
Minima	0.85	1.32	1.32	1.69	2.55	2.78	2.1	1.69	1.5	1	2.1	3.03
Media	3.96	1.97	2.36	7.6	7.73	7.44	3.68	2.46	3.04	3.28	17.02	8.5
Massima	21.52	3.03	3.56	20.9	28.09	14.7	10.37	5.03	13.68	26.03	123.72	22.77

Bollettino dei valori giornalieri massimi dati NON validati

Stazione Astico a Pedescala CAE Sensore Portata massima (m3/s) Valori dal 1 gennaio 2009 al 31 dicembre 2009

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	отт	NOV	DIC
1	3.05	2.1	2.1	15.55	22.69	3.05	1.5	1.32	0.99	1.15	1.32	97.87
2	2.8	2.55	2.32	21.42	17.79	2.55	1.32	1.5	0.99	1.15	1.5	24.67
3	2.55	3.58	2.32	21.42	17.22	3.05	1.32	1.32	1.15	1.15	2.1	12.94
4	2.8	4.15	3.05	17.22	14.48	2.55	1.32	2.32	1.15	1.15	2.1	9.23
5	2.55	4.15	12.94	15.55	11.96	2.32	1.32	2.1	1.15	0.99	1.89	7.2
6	2.32	17.79	11.96	16.09	11.01	2.8	1.5	1.89	0.99	0.99	2.55	5.41
7	2.1	32.58	8.39	13.95	11.01	3.05	3.31	1.69	0.99	1.15	2.8	4.45
8	2.1	22.05	6.1	14.48	11.96	2.8	4.76	1.5	0.84	0.99	3.05	6.1
9	1.89	12.44	5.41	15.01	11.96	2.55	4.76	1.32	0.84	0.99	4.45	6.46
10	2.1	7.99	4.45	15.55	12.44	3.05	3.58	1.5	0.84	0.99	4.45	5.41
11	2.55	6.46	4.15	14.48	11.96	3.05	3.31	1.32	0.84	0.99	3.86	4.45
12	1.89	5.41	3.86	13.44	11.96	2.55	2.8	1.32	0.71	0.99	3.31	3.86
13	1.89	4.15	3.58	12.44	11.01	2.32	2.1	1.15	0.71	0.99	2.8	3.31
14	1.89	4.15	3.31	12.44	10.55	2.1	1.89	1.32	4.76	0.99	2.55	3.05
15	1.89	3.58	3.31	12.94	9.66	2.1	1.69	1.5	5.08	0.99	3.58	2.8
16	2.1	3.31	3.58	13.44	8.8	1.89	1.69	1.69	54.23	0.84	4.76	2.55
17	1.89	3.05	3.86	24.01	8.8	1.69	1.5	1.69	42.34	0.84	5.41	2.32
18	1.69	3.31	4.45	16.09	8.8	1.89	2.32	1.69	13.44	0.84	5.75	2.1
19	2.1	2.8	4.45	12.44	8.8	1.5	2.32	1.69	7.99	0.84	5.08	2.1
20	7.99	2.8	4.15	14.48	8.8	1.5	2.1	1.5	5.08	0.84	4.15	1.89
21	8.8	2.55	4.15	16.09	7.99	1.5	2.1	1.32	3.58	0.84	3.31	1.89
22	7.2	2.55	3.58	15.01	7.59	1.69	1.89	1.32	2.8	7.2	2.8	1.89
23	5.75	2.32	3.31	14.48	7.59	1.5	1.89	1.32	2.32	6.83	2.32	5.08
24	4.76	2.55	4.15	11.96	7.2	1.32	1.89	1.32	1.89	4.45	2.32	36.5
25	4.15	2.55	3.58	9.23	7.99	1.32	1.69	1.15	1.69	4.45	2.1	66.4
26	3.31	2.1	3.31	9.66	6.83	1.32	1.69	1.15	1.5	3.31	1.69	38.13
27	3.05	2.1	3.05	91.62	6.83	1.5	1.69	1.15	1.5	2.55	1.69	17.79
28	3.05	2.32	4.76	129.03	5.08	1.5	1.69	1.15	1.32	2.1	1.69	11.48
29	3.05		20.17	63.25	3.86	1.5	1.5	0.99	1.32	1.69	2.1	7.59
30	2.32		22.69	38.13	3.58	1.5	1.5	0.84	1.32	1.5	105.61	5.75
31	2.32		15.01		3.31		1.5	0.84		1.32		4.76
Minima	1.69	2.1	2.1	9.23	3.31	1.32	1.32	0.84	0.71	0.84	1.32	1.89
Media	3.16	5.98	5.98	23.7	9.98	2.1	2.11	1.41	5.48	1.81	6.44	13.08
Massima	8.8	32.58	22.69	129.03	22.69	3.05	4.76	2.32	54.23	7.2	105.61	97.87

1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi dati NON validati

Stazione Astico a Pedescala CAE Sensore Portata massima (m3/s) Valori dal 1 gennaio 2010 al 31 dicembre 2010

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	отт	NOV	DIC
1	4.15	1.32	2.8	15.55	6.83	2.1	2.1	2.8	1.5	4.15	203.04	4.94
2	4.15	1.5	2.55	11.01	6.1	1.89	1.89	1.89	1.32	3.58	131.93	4.62
3	3.58	1.32	2.55	8.39	13.95	1.89	1.89	1.69	1.32	2.8	51.37	4.31
4	3.05	1.15	2.32	6.46	67.47	1.89	1.89	1.69	1.32	2.32	26.73	4.01
5	2.8	1.32	2.55	5.41	69.62	1.69	2.1	1.69	1.32	22.05	17.22	3.73
6	2.8	1.32	2.55	4.76	65.34	1.69	2.1	2.1	1.32	17.79	13.44	3.73
7	2.55	1.15	2.1	4.45	28.14	1.89	2.1	2.1	1.32	11.01	10.1	6.67
8	2.55	1.32	1.89	5.08	17.22	1.69	1.89	1.89	1.5	6.83	11.01	19.33
9	3.58	1.15	1.89	6.1	13.44	2.8	1.69	1.69	1.5	5.08	11.01	19.93
10	3.86	1.15	2.32	6.83	10.55	1.89	1.69	1.5	1.69	4.15	10.1	15.34
11	3.58	1.15	2.1	7.99	10.1	1.69	1.69	1.5	1.5	3.31	9.66	10.37
12	3.31	1.15	1.89	6.46	12.44	1.5	1.69	1.5	1.32	2.8	7.99	8.23
13	2.8	1.15	1.69	5.41	11.96	1.5	1.69	18.97	1.32	2.55	7.2	6.67
14	2.8	1.15	1.69	4.15	10.1	1.5	1.5	39.79	1.15	2.32	6.46	5.6
15	2.55	1.15	1.5	3.58	10.55	5.08	1.5	149.92	1.15	2.32	6.46	4.94
16	2.1	1.15	1.5	3.31	9.23	11.96	1.5	34.13	1.15	2.1	114.56	4.31
17	2.1	1.15	1.5	4.15	7.59	27.43	1.5	15.55	1.32	2.32	79.76	4.01
18	2.1	1.15	1.5	6.46	6.46	21.42	1.5	10.55	6.46	2.32	29.25	3.73
19	2.1	3.31	1.69	6.83	5.41	11.01	1.5	6.83	7.59	2.32	21.16	3.45
20	1.89	4.45	1.89	6.46	4.76	20.79	1.5	4.76	5.75	2.32	18.14	3.18
21	1.89	3.31	2.32	6.46	4.15	18.37	1.5	3.86	3.86	2.1	18.73	2.92
22	1.69	2.8	4.15	7.59	3.58	11.01	1.32	3.05	2.8	1.89	31.46	3.18
23	1.69	2.32	6.83	7.2	3.58	7.2	1.5	2.8	2.32	1.69	21.16	92.75
24	1.5	2.1	7.2	6.83	3.31	5.41	1.32	2.32	2.32	1.89	13.76	109.24
25	1.5	2.1	7.99	7.2	3.05	4.15	1.32	2.32	41.48	26.73	10.83	50.76
26	1.5	3.31	14.48	7.59	3.05	3.31	1.32	2.1	15.55	23.35	8.64	26.43
27	1.5	3.31	18.37	7.2	2.8	3.05	1.32	1.89	10.55	11.01	7.43	17
28	1.32	3.05	11.48	7.2	2.55	2.55	1.15	1.69	11.48	7.59	6.31	12.25
29	1.32		7.59	7.2	2.32	2.32	2.8	1.69	8.39	7.2	5.95	9.06
30	1.5		12.94	7.2	2.32	2.32	4.76	1.69	5.75	7.59	5.27	7.43
31	1.32		21.42		2.32		3.58	1.5		149.92		6.31
Minima	1.32	1.15	1.5	3.31	2.32	1.5	1.15	1.5	1.15	1.69	5.27	2.92
Media	2.42	1.85	5.01	6.69	13.56	6.1	1.83	10.56	4.91	11.14	30.54	15.43
Massima	4.15	4.45	21.42	15.55	69.62	27.43	4.76	149.92	41.48	149.92	203.04	109.24

1° LOTTO – Piovene Rocchette – Valle dell'Astico

E.2 Dati di portata Posina a Stancari

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1985 al 31 dicembre 1985

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	>>	>>	>>	>>	>>	>>	2.96	2.15	0.94	>>	0.79	1.1
2	>>	>>	>>	>>	>>	>>	2.82	2.54	1.02	>>	0.94	1.02
3	>>	>>	>>	>>	>>	>>	2.67	2.02	0.94	>>	0.87	1.02
4	>>	>>	>>	>>	>>	>>	2.54	2.15	0.87	>>	0.79	1.02
5	>>	>>	>>	>>	>>	>>	2.54	2.02	0.79	>>	0.72	1.1
6	>>	>>	>>	>>	>>	>>	2.54	3.93	0.79	>>	0.72	1.02
7	>>	>>	>>	>>	>>	6.13	2.4	>>	0.79	>>	0.72	1.02
8	>>	>>	>>	>>	>>	7.06	2.82	>>	0.79	>>	0.72	1.1
9	>>	>>	>>	>>	>>	6.58	2.4	>>	0.79	>>	0.72	1.1
10	>>	>>	>>	>>	>>	6.13	3.11	>>	0.79	>>	0.72	1.19
11	>>	>>	>>	>>	>>	5.9	2.82	>>	0.79	0.87	0.72	1.19
12	>>	>>	>>	>>	>>	5.47	2.67	>>	0.79	0.72	0.72	1.1
13	>>	>>	>>	>>	>>	5.26	2.54	>>	0.79	0.72	1.38	1.1
14	>>	>>	>>	>>	>>	5.26	2.67	>>	0.72	0.72	1.28	1.1
15	>>	>>	>>	>>	>>	5.06	2.82	>>	1.28	0.72	1.1	1.1
16	>>	>>	>>	>>	>>	4.86	2.54	>>	1.02	0.72	1.02	1.1
17	>>	>>	>>	>>	>>	3.11	2.67	>>	0.87	0.72	1.1	1.1
18	>>	>>	>>	>>	>>	2.96	2.54	>>	0.79	0.66	0.87	1.1
19	>>	>>	>>	>>	>>	2.82	2.4	>>	0.72	0.66	0.94	1.02
20	>>	>>	>>	>>	>>	2.96	2.4	>>	0.72	0.66	1.02	1.1
21	>>	>>	>>	>>	>>	2.67	2.54	>>	0.72	0.66	1.02	1.02
22	>>	>>	>>	>>	>>	3.11	2.54	1.1	0.72	0.87	1.1	0.94
23	>>	>>	>>	>>	>>	2.96	2.27	1.28	0.66	0.6	1.47	0.94
24	>>	>>	>>	>>	>>	2.82	2.27	1.02	0.66	0.6	1.47	1.28
25	>>	>>	>>	>>	>>	2.67	2.27	0.94	0.6	0.6	1.28	0.87
26	>>	>>	>>	>>	>>	2.54	2.27	1.47	0.66	0.6	1.19	0.87
27	>>	>>	>>	>>	>>	4.11	2.27	0.94	0.43	0.6	1.19	1.28
28	>>	>>	>>	>>	>>	4.29	2.15	0.94	0.6	0.6	1.19	0.94
29	>>		>>	>>	>>	3.76	2.4	1.02	0.6	0.6	1.28	1.47
30	>>		>>	>>	>>	3.43	2.27	0.87	0.48	0.72	1.1	1.38
31	>>		>>		>>		2.15	1.58		0.94		1.38
Minima	>>	>>	>>	>>	>>	2.54	2.15	>>	0.43	0.6	0.72	0.87
Media	>>	>>	>>	>>	>>	4.25	2.52	>>	0.77	0.69	1.01	1.1
Massima	>>	>>	>>	>>	>>	7.06	3.11	>>	1.28	0.94	1.47	1.47

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1986 al 31 dicembre 1986

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	>>	27.66	2.27	5.26	12.24	6.13	3.76	>>	1.1	0.79	0.54	>>
2	>>	10.33	2.4	5.26	10.95	5.26	3.27	>>	0.94	0.72	0.54	>>
3	>>	6.13	2.54	5.69	10.33	4.86	3.59	>>	0.94	0.72	0.54	>>
4	>>	4.67	2.82	5.9	10.03	11.58	3.43	>>	1.02	0.66	0.6	>>
5	>>	3.93	2.96	6.35	9.16	10.95	2.96	>>	0.94	0.66	0.54	>>
6	>>	3.59	3.11	5.9	10.03	7.56	2.82	>>	0.94	0.66	>>	>>
7	>>	3.27	3.27	9.16	10.33	5.9	2.96	>>	0.94	0.66	>>	>>
8	>>	2.96	4.48	11.58	10.64	5.26	2.82	>>	1.19	0.66	0.48	>>
9	1.19	2.96	6.35	22.2	10.33	4.86	2.67	>>	1.58	0.66	0.48	>>
10	1.19	2.82	6.58	17.4	8.61	4.48	2.54	>>	1.79	0.66	0.48	>>
11	1.19	2.54	7.56	10.95	7.81	4.67	2.54	>>	1.1	0.66	0.48	>>
12	1.19	2.4	7.56	9.45	8.88	9.16	2.67	>>	1.02	0.66	0.48	>>
13	1.1	2.27	7.06	8.88	7.06	8.61	5.47	>>	0.94	0.66	0.48	>>
14	1.02	2.02	6.35	7.56	6.82	6.35	7.31	>>	0.94	0.6	0.72	>>
15	1.1	2.02	6.35	6.35	6.35	5.47	3.59	>>	0.94	0.6	0.6	>>
16	1.02	2.02	6.58	5.69	6.13	5.69	2.67	>>	0.94	0.6	0.54	>>
17	0.94	1.91	6.13	12.91	5.69	6.82	2.54	>>	1.02	0.6	0.54	>>
18	0.94	1.91	5.47	19.93	5.47	7.81	2.54	>>	0.94	0.6	0.54	>>
19	0.94	1.79	5.06	>>	>>	7.06	4.67	>>	1.02	0.6	0.48	>>
20	0.94	2.54	4.67	>>	>>	6.58	4.67	>>	0.87	0.6	0.48	>>
21	0.94	2.96	4.29	7.81	>>	5.9	4.29	>>	0.87	0.6	0.87	>>
22	0.87	2.4	4.11	7.31	4.67	5.47	3.43	>>	1.02	0.6	0.6	>>
23	0.94	2.4	3.76	8.61	4.67	5.9	2.27	>>	0.94	0.6	0.79	>>
24	1.02	2.4	3.76	9.45	4.67	4.86	2.27	>>	0.79	0.6	0.79	>>
25	1.02	2.54	3.59	9.74	4.29	4.67	2.15	>>	0.87	0.6	0.72	>>
26	1.02	2.4	3.76	9.16	4.11	4.29	2.4	>>	0.87	0.66	0.66	>>
27	0.87	2.27	3.43	9.74	3.93	4.11	1.91	>>	0.94	0.6	1.1	>>
28	0.79	2.27	3.93	29.82	3.93	3.93	1.91	>>	0.79	>>	1.1	>>
29	0.79		5.69	22.2	7.31	3.76	1.68	>>	0.72	>>	1.1	>>
30	0.94		5.69	14.69	9.16	3.59	>>	>>	0.79	0.54	1.1	>>
31	21.73		5.69		8.07		>>	>>		0.54		>>
Minima	0.79	1.79	2.27	5.26	3.93	3.59	1.68	>>	0.72	0.54	0.48	>>
Media	1.9	3.91	4.75	10.89	7.56	6.05	3.16	>>	0.99	0.63	0.66	>>
Massima	21.73	27.66	7.56	29.82	12.24	11.58	7.31	>>	1.79	0.79	1.1	>>

1° LOTTO – Piovene Rocchette – Valle dell'Astico

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1987 al 31 dicembre 1987

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	0.48	0.43	2.27	2.82	3.43	2.54	2.27	1.58	4.11	1.91	4.67	8.61
2	0.48	0.43	2.82	2.67	3.43	2.27	2.02	1.58	3.27	1.79	4.67	8.07
3	0.48	0.48	2.67	2.82	3.59	2.15	5.9	1.38	3.59	1.68	4.29	7.56
4	0.48	0.43	2.54	23.62	4.67	2.15	3.43	1.38	3.11	1.79	4.29	6.58
5	0.43	0.43	2.27	20.82	4.67	2.02	2.82	1.38	3.43	2.02	4.11	6.35
6	0.43	0.43	2.02	10.03	4.11	1.79	2.54	1.28	3.43	2.54	4.11	11.91
7	0.43	0.43	1.79	8.88	4.29	1.79	2.15	1.28	3.11	2.02	4.11	10.64
8	0.43	0.43	1.79	7.31	3.93	2.27	2.96	1.28	2.82	2.4	3.93	8.61
9	0.43	0.43	1.68	7.81	3.76	3.27	3.11	1.28	2.82	2.02	3.93	7.31
10	0.43	0.43	1.58	11.91	3.43	2.82	2.67	1.47	3.11	2.96	3.76	6.58
11	0.43	1.28	1.58	10.95	4.29	2.4	2.27	1.47	2.67	59.04	3.76	6.35
12	0.43	6.58	1.68	8.34	3.27	2.15	1.91	1.28	2.82	60.67	3.59	5.9
13	0.43	6.58	1.47	7.31	5.69	1.91	1.79	1.28	2.54	22.67	3.59	5.69
14	0.48	6.35	1.38	7.06	5.47	1.68	1.68	1.1	2.67	12.91	3.76	5.26
15	0.48	12.24	1.38	6.13	4.48	1.79	1.68	1.19	2.4	9.45	3.43	5.26
16	0.48	10.95	1.38	5.69	4.11	2.02	3.59	1.1	2.67	7.56	3.43	5.06
17	0.48	6.82	1.38	5.06	3.93	1.79	2.82	1.1	2.27	8.07	3.43	4.86
18	0.48	5.69	1.38	5.06	5.26	1.79	3.76	1.28	2.27	19.93	3.27	4.67
19	0.48	5.06	1.28	5.47	7.31	1.58	8.34	1.02	2.27	10.64	3.27	4.67
20	0.48	5.69	1.19	5.69	7.06	1.58	7.31	0.94	2.15	8.07	3.27	4.67
21	0.48	5.69	1.02	5.9	5.69	1.58	4.11	0.94	2.15	6.82	3.27	2.27
22	0.48	4.48	1.02	5.9	4.67	1.58	3.43	0.94	2.27	6.13	3.43	2.27
23	0.43	3.76	1.02	4.67	4.29	1.38	3.11	1.02	2.15	7.81	3.27	2.27
24	0.43	3.43	1.02	4.48	3.76	1.38	2.82	32.07	2.15	8.07	40.04	3.43
25	0.43	2.96	1.19	4.29	3.59	1.38	2.67	47.57	2.02	7.06	33.23	3.93
26	0.43	2.96	1.28	4.11	3.43	3.76	2.54	12.91	2.02	7.31	18.22	3.93
27	0.43	2.82	1.28	4.29	3.43	6.35	2.02	7.31	2.15	5.9	13.61	1.79
28	0.43	2.67	5.9	3.93	3.27	4.29	1.91	6.58	1.91	5.9	10.33	1.79
29	0.43		6.35	3.76	2.96	3.11	1.79	5.06	1.79	5.47	9.16	1.68
30	0.43		4.29	3.43	2.82	2.67	1.68	4.67	1.79	5.26	8.34	1.68
31	0.43		3.27		2.54		1.58	4.48		4.86		3.43
Minima	0.43	0.43	1.02	2.67	2.54	1.38	1.58	0.94	1.79	1.68	3.27	1.68
Media	0.45	3.58	2.04	7.01	4.21	2.31	2.99	4.81	2.6	10.02	7.32	5.26
Massima	0.48	12.24	6.35	23.62	7.31	6.35	8.34	47.57	4.11	60.67	40.04	11.91

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1988 al 31 dicembre 1988

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	3.43	4.11	1.28	6.58	>>	>>	>>	>>	>>	>>	>>	>>
2	3.27	3.43	1.38	4.67	>>	>>	>>	>>	>>	>>	>>	>>
3	1.58	2.96	1.28	5.06	>>	>>	>>	>>	>>	>>	>>	>>
4	1.58	2.96	1.28	4.67	>>	>>	>>	>>	>>	>>	>>	>>
5	1.47	2.96	1.28	3.93	>>	>>	>>	>>	>>	>>	>>	>>
6	1.38	2.67	1.28	6.35	>>	>>	>>	>>	>>	>>	>>	>>
7	1.47	7.31	1.19	21.73	>>	>>	>>	>>	>>	>>	>>	>>
8	1.38	6.35	1.38	20.82	>>	>>	>>	>>	>>	>>	>>	>>
9	1.38	4.86	1.28	12.24	>>	>>	>>	>>	>>	>>	>>	>>
10	1.38	3.93	1.19	9.16	>>	>>	>>	>>	>>	>>	>>	>>
11	1.28	3.59	1.1	7.81	>>	>>	>>	>>	>>	>>	>>	>>
12	1.38	3.43	1.02	8.34	>>	>>	>>	>>	>>	>>	>>	>>
13	1.38	3.27	1.02	10.03	>>	>>	>>	>>	>>	>>	>>	>>
14	1.38	2.82	1.02	8.88	>>	>>	>>	>>	0.66	>>	>>	>>
15	4.67	2.82	1.02	6.82	>>	>>	>>	>>	0.66	>>	>>	>>
16	3.76	2.54	1.19	6.13	>>	>>	>>	>>	0.66	>>	>>	>>
17	2.54	2.82	1.02	5.69	>>	>>	>>	>>	0.66	>>	>>	>>
18	2.27	2.27	1.02	5.26	>>	>>	>>	>>	0.66	>>	>>	>>
19	2.15	2.15	1.02	5.06	>>	>>	>>	>>	0.66	>>	>>	>>
20	1.79	1.91	1.02	5.26	>>	>>	>>	>>	0.66	>>	>>	>>
21	1.68	1.68	0.94	5.06	>>	>>	>>	>>	0.66	>>	>>	>>
22	1.68	1.58	0.94	5.47	>>	>>	>>	>>	0.66	>>	>>	>>
23	1.79	1.68	1.02	4.67	>>	>>	>>	>>	0.6	>>	>>	>>
24	1.58	1.79	1.02	4.67	>>	>>	>>	>>	0.6	>>	>>	>>
25	1.68	1.68	0.94	4.29	>>	>>	>>	>>	0.6	>>	>>	>>
26	1.79	1.58	1.02	4.11	>>	>>	>>	>>	0.6	>>	>>	>>
27	2.4	1.47	0.94	3.93	>>	>>	>>	>>	0.6	>>	>>	>>
28	1.79	1.38	1.02	3.76	>>	>>	>>	>>	0.6	>>	>>	>>
29	7.06	1.68	0.94	3.59	>>	>>	>>	>>	0.6	>>	>>	>>
30	8.34		1.19	3.59	>>	>>	>>	>>	0.6	>>	>>	>>
31	5.69		6.58		>>		>>	>>		>>		>>
Minima	1.28	1.38	0.94	3.59	>>	>>	>>	>>	0.6	>>	>>	>>
Media	2.46	2.88	1.29	6.92	>>	>>	>>	>>	0.63	>>	>>	>>
Massima	8.34	7.31	6.58	21.73	>>	>>	>>	>>	0.66	>>	>>	>>

1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1989 al 31 dicembre 1989

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	0.48	0.48	>>	1.38	9.16	2.02	1.68	2.4	1.19	1.28	0.87	0.87
2	0.48	0.48	>>	1.38	8.34	2.4	1.91	2.27	1.58	1.1	0.87	0.87
3	0.48	0.48	>>	3.76	>>	4.67	25.6	2.4	1.58	1.19	0.87	0.87
4	0.48	0.48	>>	18.22	7.06	4.86	30.38	2.27	1.91	1.02	1.02	0.87
5	0.48	0.48	1.19	32.65	6.82	5.9	19.07	2.27	1.58	0.94	1.02	0.87
6	0.48	0.48	1.19	18.64	6.35	5.9	10.95	2.4	1.38	0.94	3.27	0.87
7	0.48	0.48	1.19	11.58	6.35	4.67	8.34	2.15	1.28	0.94	2.02	0.87
8	0.48	0.48	1.19	8.61	6.13	3.93	7.06	2.4	1.47	0.94	1.38	0.87
9	0.48	0.48	1.19	9.45	5.69	3.43	6.13	2.4	1.38	0.94	1.1	0.87
10	0.48	0.48	1.19	9.16	5.69	2.96	5.69	2.02	1.38	1.02	1.1	0.87
11	0.48	0.48	1.19	7.81	5.47	2.82	5.26	2.27	1.38	0.87	1.28	0.87
12	0.48	0.48	1.19	10.33	5.26	2.54	5.06	2.02	1.19	0.87	1.1	0.79
13	0.48	0.48	1.38	68.35	5.26	2.27	5.06	1.91	1.47	0.87	1.1	0.79
14	0.48	0.48	1.19	>>	5.26	2.15	6.35	1.91	1.38	0.87	1.1	0.79
15	0.48	0.48	1.19	>>	2.54	1.91	7.31	1.91	1.28	0.87	1.1	0.79
16	0.48	0.3	1.19	>>	2.54	1.91	5.9	2.15	1.47	0.87	1.1	0.79
17	0.48	0.3	1.19	>>	2.27	1.79	5.26	2.4	1.28	0.87	1.02	0.79
18	0.48	0.3	1.68	>>	2.15	1.68	4.86	2.02	1.38	0.87	0.94	0.79
19	0.48	0.3	3.43	>>	2.02	1.68	4.48	2.15	1.38	0.87	1.1	1.47
20	0.48	0.3	3.59	>>	2.02	1.91	4.29	1.68	1.28	0.87	1.1	1.02
21	0.48	0.38	2.96	>>	1.91	1.79	3.93	1.68	1.38	0.87	1.02	0.79
22	0.48	0.38	2.96	>>	1.79	1.91	3.93	1.68	1.28	0.87	1.38	0.87
23	0.48	0.38	2.4	>>	1.79	3.11	3.93	1.91	1.19	0.87	1.02	0.87
24	0.48	2.96	2.15	>>	1.68	2.27	3.76	1.68	1.38	0.87	0.94	0.87
25	0.48	>>	3.43	>>	1.68	1.91	3.59	1.38	1.58	0.87	1.02	0.87
26	0.48	>>	3.43	>>	1.58	1.91	3.59	1.68	1.38	0.87	0.87	0.87
27	0.48	>>	3.11	>>	1.58	2.15	3.43	1.38	1.38	0.87	0.87	0.87
28	0.48	>>	1.58	15.06	1.58	1.91	3.43	1.47	1.28	0.87	0.87	0.87
29	0.48		1.47	12.57	3.59	1.91	3.27	1.28	1.28	0.87	0.87	0.87
30	0.48		1.47	10.64	1.91	1.79	2.4	1.19	1.1	0.87	0.87	0.87
31	0.48		1.38		1.68		2.82	1.19		0.87		0.87
											•	
Minima	0.48	0.3	1.19	1.38	1.58	1.68	1.68	1.19	1.1	0.87	0.87	0.79
Media	0.48	0.54	1.88	14.97	3.9	2.73	6.73	1.93	1.38	0.92	1.14	0.87
Massima	0.48	2.96	3.59	68.35	9.16	5.9	30.38	2.4	1.91	1.28	3.27	1.47

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1990 al 31 dicembre 1990

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	0.87	0.87	0.72	0.72	2.82	1.38	1.38	1.38	0.94	0.72	1.58	6.13
2	0.87	0.87	0.72	0.72	2.82	1.28	1.58	1.58	0.94	0.72	1.68	5.69
3	0.87	0.87	0.72	0.79	2.27	1.28	1.68	1.19	0.79	0.72	2.02	3.59
4	0.87	0.87	0.72	0.79	2.02	1.28	1.58	1.19	0.87	0.72	2.02	2.82
5	0.87	0.87	0.72	0.79	2.02	1.38	1.47	1.19	0.87	0.72	1.79	2.54
6	0.79	0.87	0.72	1.47	2.02	1.58	1.47	1.19	0.87	0.72	1.68	2.4
7	0.79	0.87	0.72	4.86	1.91	2.15	1.28	1.28	0.87	0.72	1.68	2.27
8	0.79	0.87	0.72	5.9	1.79	4.29	1.38	1.28	0.87	0.72	1.68	2.27
9	0.79	0.87	0.72	7.81	2.02	4.29	1.28	1.19	0.79	0.72	1.58	40.04
10	0.79	0.87	0.72	5.06	1.68	3.27	1.47	1.19	0.79	0.72	1.58	59.85
11	0.79	0.87	0.72	3.93	1.68	2.54	1.38	1.19	0.79	0.72	1.47	22.67
12	0.79	0.87	0.72	2.96	1.58	2.4	1.28	1.02	0.79	0.72	1.38	12.24
13	0.79	0.87	0.72	2.82	1.58	3.59	1.19	1.02	0.72	0.72	1.38	9.45
14	0.79	0.87	0.72	3.11	1.68	3.59	1.28	1.02	0.72	0.72	1.47	7.56
15	0.72	0.87	0.72	3.11	1.68	2.82	1.28	1.1	0.72	0.72	1.38	6.58
16	0.72	0.79	0.72	2.96	1.58	2.67	1.28	1.1	0.72	0.72	1.28	6.35
17	0.72	0.79	0.72	2.02	1.68	2.15	1.1	1.02	0.72	1.68	1.38	5.69
18	0.72	0.79	0.72	2.15	2.82	2.27	1.1	1.02	0.72	1.58	1.47	5.06
19	0.72	0.79	0.72	2.02	2.4	2.27	1.1	1.02	0.72	1.47	1.38	4.86
20	0.72	0.79	0.6	2.27	1.68	2.15	1.1	0.94	0.72	1.28	1.28	4.67
21	0.72	0.79	0.66	2.67	1.68	2.02	1.1	0.87	0.72	1.28	1.28	4.48
22	0.72	0.79	0.66	2.67	1.68	1.79	1.19	0.94	0.72	1.28	3.43	4.29
23	1.68	0.79	0.66	3.43	1.47	1.68	1.47	0.87	0.72	1.19	6.58	3.93
24	0.72	0.79	0.66	3.43	1.47	1.68	1.79	0.87	0.87	1.02	3.59	2.4
25	0.72	0.79	0.66	3.43	1.58	1.68	1.58	0.87	0.72	1.19	53.51	2.27
26	0.72	0.79	0.66	3.27	1.68	1.68	1.58	0.87	0.72	1.1	41.35	2.27
27	0.72	0.79	0.72	3.11	1.47	1.47	1.68	0.87	0.72	1.68	14.69	1.38
28	0.79	0.79	0.72	2.96	1.47	1.68	1.38	0.87	0.72	1.58	9.74	1.28
29	1.02		0.72	2.82	1.91	1.47	1.28	0.87	0.72	1.79	7.81	1.28
30	1.19		0.72	2.67	1.47	1.58	1.19	0.79	0.72	1.68	6.82	1.19
31	1.02		0.72		1.38		1.28	0.94		1.58		2.27
Minima	0.72	0.79	0.6	0.72	1.38	1.28	1.1	0.79	0.72	0.72	1.28	1.19
Media	0.83	0.83	0.71	2.89	1.84	2.18	1.36	1.06	0.78	1.06	6	7.73
Massima	1.68	0.87	0.72	7.81	2.82	4.29	1.79	1.58	0.94	1.79	53.51	59.85

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1991 al 31 dicembre 1991

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	2.82	0.79	1.02	5.26	3.11	2.82	2.27	1.91	1.19	3.59	0.87	2.02
2	2.4	0.72	0.94	3.76	5.06	2.82	2.27	1.91	1.28	2.27	0.87	1.91
3	1.02	0.72	0.94	3.59	18.22	2.82	2.4	1.91	1.28	2.27	0.72	1.68
4	1.1	0.72	0.94	3.43	17.4	2.96	2.27	1.91	1.19	2.15	1.28	1.58
5	1.02	1.02	0.94	4.11	10.64	3.43	2.27	1.68	1.19	1.68	1.47	1.68
6	1.19	0.72	0.94	7.31	10.33	3.11	2.27	1.68	1.1	1.68	0.87	1.38
7	1.02	0.66	1.1	6.58	9.74	3.11	2.15	1.68	1.47	2.02	1.28	1.19
8	0.94	0.72	5.69	5.47	7.81	3.27	2.02	1.91	1.28	3.43	0.66	1.19
9	0.87	0.94	30.94	5.06	8.34	2.96	2.27	1.68	1.1	2.82	0.66	0.94
10	0.87	1.02	24.11	4.48	15.44	2.82	2.02	1.68	1.19	2.15	0.54	0.94
11	0.87	0.72	9.45	4.11	15.06	2.96	1.91	1.58	1.19	2.27	0.54	0.72
12	0.87	0.66	6.58	3.93	10.95	2.82	2.15	1.79	1.47	82.32	0.54	0.54
13	0.94	0.6	5.69	3.59	8.88	2.4	3.43	1.68	1.91	37.48	0.54	0.48
14	1.58	0.66	4.86	3.43	7.31	2.4	18.64	1.91	1.68	14.32	6.58	0.54
15	1.38	0.66	4.48	3.27	6.58	2.4	7.31	2.4	1.68	9.16	3.76	0.48
16	1.1	0.6	4.11	3.27	6.35	2.4	3.76	1.79	1.47	7.81	3.93	0.48
17	1.1	0.6	3.76	3.43	5.47	5.9	3.27	1.58	1.19	6.35	3.93	0.43
18	0.94	0.6	3.59	3.27	5.06	5.26	2.96	1.47	1.19	5.47	3.27	0.43
19	1.02	0.6	3.43	3.27	4.48	7.31	2.67	1.58	1.19	4.86	2.67	0.43
20	1.02	0.66	3.27	2.96	5.06	6.35	2.54	1.68	1.38	4.67	3.11	0.43
21	0.94	0.66	3.11	2.82	3.76	4.29	2.54	1.38	0.94	4.29	3.43	0.38
22	0.94	0.66	3.43	2.82	3.59	3.76	2.54	1.38	0.94	3.93	3.93	0.38
23	0.87	0.72	4.29	2.82	3.59	3.43	2.27	1.47	1.1	3.59	3.93	0.38
24	0.87	0.72	5.06	2.67	3.59	3.11	2.54	1.68	1.19	3.11	3.43	0.38
25	0.87	0.79	4.48	2.67	3.59	2.96	2.4	1.79	1.1	2.54	3.27	0.43
26	0.79	0.87	4.86	2.67	4.29	2.96	2.54	1.68	1.19	2.15	2.96	0.38
27	0.87	0.87	4.86	2.54	3.11	2.67	2.15	1.47	1.02	1.79	2.82	0.38
28	0.79	0.87	4.48	2.96	2.96	2.67	1.91	1.58	1.02	1.68	2.54	0.38
29	0.79		4.29	2.67	2.96	2.54	1.91	1.28	2.15	1.58	2.4	0.34
30	0.79		5.26	2.82	2.82	2.54	2.02	1.68	5.69	1.38	2.27	0.34
31	0.79		5.26		2.82		2.02	1.38		1.19		0.3
Minima	0.79	0.6	0.94	2.54	2.82	2.4	1.91	1.28	0.94	1.19	0.54	0.3
Media	1.08	0.73	5.36	3.7	7.04	3.38	3.09	1.68	1.43	7.29	2.3	0.76
Massima	2.82	1.02	30.94	7.31	18.22	7.31	18.64	2.4	5.69	82.32	6.58	2.02

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1992 al 31 dicembre 1992

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	0.34	0.16	0.11	33.82	3.11	1.38	2.82	2.02	>>	0.6	9	3.67
2	0.3	0.16	0.11	10.95	3.11	0.87	3.11	2.67	>>	0.66	8.72	3.51
3	0.3	0.16	0.11	6.58	2.4	0.54	2.54	2.96	0.6	5.06	8.72	14.59
4	0.3	0.16	0.11	8.61	2.15	1.02	2.4	2.96	0.72	199.53	7.65	14.97
5	0.3	0.13	0.11	48.29	2.15	1.38	4.29	2.96	0.6	195.91	6.91	37.31
6	0.3	0.13	0.11	33.82	2.02	1.28	4.48	2.4	0.48	88.59	7.4	36
7	0.3	0.13	0.11	15.82	1.68	1.58	3.76	2.82	0.6	66.96	6.21	20.47
8	0.3	0.13	0.11	10.64	1.58	3.76	3.59	2.4	0.54	34.08	5.76	40.02
9	0.26	0.13	0.11	8.34	1.47	2.96	3.93	2.4	0.6	26.48	5.55	38.65
10	0.3	0.13	0.11	6.82	1.28	2.67	3.93	2.54	0.6	22.37	5.34	29.27
11	0.3	0.13	0.09	6.13	1.19	4.48	59.04	2.54	0.6	20.93	5.34	22.37
12	0.26	0.13	0.09	5.69	1.1	4.48	39.39	2.54	0.54	19.11	4.94	18.23
13	0.34	0.13	0.09	5.26	1.02	3.11	13.96	2.54	0.6	17.38	5.14	16.55
14	0.26	0.13	0.09	4.86	0.79	2.82	9.74	2.54	0.54	16.55	4.74	14.59
15	0.3	0.13	0.09	6.35	1.28	2.4	7.56	2.4	0.54	15.75	4.74	13.48
16	0.26	0.13	0.09	6.82	0.66	2.27	6.58	2.54	0.48	14.97	8.17	12.43
17	0.22	0.13	0.09	6.13	0.6	2.15	6.35	2.54	0.6	14.59	9.87	12.09
18	0.26	0.13	0.09	5.69	0.6	2.27	5.47	2.54	0.54	14.59	9.87	11.43
19	0.22	0.13	0.09	5.69	2.02	10.64	5.26	>>	0.38	14.22	7.91	11.1
20	0.26	0.13	0.09	5.47	0.54	12.24	4.67	>>	0.38	13.85	7.15	10.47
21	0.22	0.11	0.09	5.06	0.79	8.61	4.48	>>	0.38	13.48	6.21	10.17
22	0.19	0.11	0.09	4.67	0.79	5.26	4.29	>>	0.38	12.78	5.76	9.87
23	0.16	0.11	0.09	4.11	0.54	10.95	3.93	>>	0.79	12.43	5.34	9.57
24	0.26	0.11	0.16	3.43	0.43	9.74	3.93	>>	1.47	12.43	5.14	9.28
25	0.22	0.11	0.16	2.82	0.43	7.06	3.76	>>	0.87	11.76	4.74	9
26	0.22	0.11	0.13	2.54	0.43	5.47	3.59	>>	0.66	11.43	4.55	8.72
27	0.26	0.11	0.13	2.54	0.38	4.48	2.67	>>	0.6	11.1	4.37	8.17
28	0.22	0.11	0.13	2.54	0.43	3.93	2.67	>>	0.66	10.79	4.19	7.91
29	0.16	0.11	0.13	2.82	0.43	3.43	2.67	>>	0.72	10.47	4.01	7.15
30	0.19		0.13	2.67	0.38	2.96	2.4	>>	0.79	9.87	3.84	6.67
31	0.16		25.09		0.43		2.67	>>		9.28		5.98
Minima	0.16	0.11	0.09	2.54	0.38	0.54	2.4	2.02	0.38	0.6	3.84	3.51
Media	0.26	0.13	0.91	9.16	1.17	4.21	7.42	2.57	0.62	29.94	6.24	15.28
Massima	0.34	0.16	25.09	48.29	3.11	12.24	59.04	2.96	1.47	199.53	9.87	40.02

1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1993 al 31 dicembre 1993

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	отт	NOV	DIC
1	4.94	2.24	2.01	1.68	3.51	1.89	1.58	1.13	0.83	14.97	9.87	3.2
2	3.67	2.24	2.12	1.68	3.2	2.12	1.58	1.05	0.83	339.85	9.28	3.05
3	3.35	2.24	2.01	1.68	3.35	2.12	1.58	1.13	0.7	134.48	8.17	3.05
4	3.35	2.12	2.12	1.68	4.01	2.12	1.3	1.48	1.05	41.42	7.91	2.91
5	3.2	2.12	1.58	1.68	4.94	1.79	1.3	1.05	0.77	25.94	10.79	2.91
6	3.05	2.12	1.48	1.68	6.43	1.79	1.21	1.39	0.77	23.86	18.67	2.77
7	3.05	2.24	1.48	1.79	6.43	1.79	1.13	1.05	0.54	23.36	17.38	2.77
8	3.05	2.24	1.48	1.79	6.21	1.79	1.13	1.48	0.77	87.48	16.55	2.63
9	3.05	2.12	1.58	1.68	5.34	1.68	1.05	1.21	0.7	66.02	14.97	2.63
10	2.91	2.12	1.48	1.79	4.94	2.01	1.21	1.05	1.48	>>	12.09	2.5
11	2.91	2.12	1.48	2.01	4.55	1.79	8.44	1.3	1.13	>>	10.47	2.37
12	2.91	2.12	1.48	2.5	4.37	2.01	4.74	0.97	1.05	>>	9.87	2.37
13	2.63	2.12	1.39	2.63	4.19	2.12	2.63	0.77	1.05	>>	9.57	2.37
14	2.63	2.01	1.48	2.63	4.01	2.01	1.79	0.97	2.12	>>	9.28	2.63
15	2.63	2.12	1.21	2.63	3.84	1.68	1.68	0.7	1.79	>>	9	2.37
16	2.63	2.01	1.48	2.63	3.67	1.3	1.58	0.83	1.58	19.55	8.44	2.37
17	2.63	2.12	1.48	2.63	3.35	1.3	1.58	1.05	1.21	16.15	7.91	2.24
18	2.63	2.12	1.48	2.63	3.05	1.21	1.48	0.97	1.21	14.97	7.65	2.24
19	2.63	2.01	1.58	2.5	2.91	1.21	1.68	0.83	1.05	14.59	7.4	2.24
20	2.63	2.12	1.58	2.5	2.63	1.13	1.48	0.7	1.3	14.59	6.91	2.12
21	2.63	2.12	1.58	2.5	2.77	1.13	1.48	0.83	1.39	13.85	6.91	2.12
22	2.5	2.12	1.68	2.5	2.37	1.39	1.39	1.05	1.05	39.33	6.67	2.24
23	2.5	2.01	1.58	2.5	2.37	1.68	1.39	0.97	2.24	32.22	4.01	2.12
24	2.5	1.89	1.68	2.5	2.37	1.58	1.3	0.77	14.59	20.93	3.84	2.12
25	2.37	1.79	1.89	2.5	2.12	1.68	1.39	1.13	48.86	18.23	3.84	2.24
26	2.37	1.79	2.01	2.37	2.12	1.3	1.58	1.05	44.31	16.15	3.51	2.12
27	2.5	1.89	1.79	2.37	2.12	1.21	1.39	0.9	21.88	13.85	3.51	2.12
28	2.63	2.5	2.01	2.37	2.12	1.3	1.3	0.97	19.55	12.78	3.35	2.12
29	2.37		1.79	2.37	2.01	1.3	1.21	0.97	19.55	11.76	3.35	2.01
30	2.37		1.68	2.77	1.89	1.21	1.21	0.97	14.22	10.79	3.35	2.01
31	2.24		1.68		1.89		1.13	1.21		10.47		2.01
Minima	2.24	1.79	1.21	1.68	1.89	1.13	1.05	0.7	0.54	10.47	3.35	2.01
Media	2.82	2.1	1.66	2.24	3.52	1.62	1.77	1.03	6.99	41.5	8.48	2.42
Massima	4.94	2.5	2.12	2.77	6.43	2.12	8.44	1.48	48.86	339.85	18.67	3.2

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1994 al 31 dicembre 1994

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	отт	NOV	DIC
1	2.12	2.01	6.67	1.79	3.2	4.94	1.21	1.13	0.7	3.51	1.48	2.5
2	2.12	1.89	6.91	2.63	3.35	4.74	1.48	1.13	1.89	3.51	1.48	2.5
3	2.01	1.89	4.01	2.24	3.2	4.55	1.3	1.05	1.21	3.67	1.48	2.37
4	2.12	1.89	3.35	1.79	2.77	4.37	1.3	1.05	0.7	3.35	1.48	2.24
5	2.12	1.89	2.91	1.79	2.77	4.19	1.21	0.97	0.83	3.2	1.48	2.24
6	2.77	2.63	2.63	1.68	2.63	4.19	1.21	0.97	0.83	2.91	99	2.37
7	20.47	3.51	2.63	1.68	2.5	4.19	1.21	0.97	0.77	2.63	84.19	2.24
8	31.62	2.91	2.37	1.58	2.37	4.01	1.3	1.39	1.48	2.5	22.86	2.12
9	15.36	2.63	2.5	1.68	2.24	3.84	1.21	1.05	1.48	2.12	13.85	2.12
10	11.1	2.63	2.63	1.68	2.24	3.67	1.13	1.05	1.3	1.79	41.42	2.12
11	13.48	2.5	2.63	1.68	2.37	3.67	1.13	0.97	0.97	1.68	40.02	2.01
12	13.48	2.24	2.63	1.68	2.12	3.35	0.97	0.9	1.13	1.68	18.23	2.01
13	11.43	2.24	2.63	1.68	2.12	3.05	1.58	0.97	4.74	1.58	12.78	2.01
14	9.57	2.12	2.63	3.35	2.12	2.91	0.97	0.97	16.55	1.89	10.47	1.89
15	8.44	2.12	2.63	5.55	2.12	2.77	0.83	0.9	9.28	1.58	9.28	1.89
16	7.91	1.79	2.5	6.67	2.01	2.63	0.97	0.9	3.67	1.48	8.17	2.01
17	7.15	1.79	2.5	18.67	2.01	2.5	0.9	0.9	5.98	1.39	6.67	1.89
18	6.21	1.79	2.37	11.43	36.65	2.12	0.9	0.9	4.94	1.48	5.98	1.79
19	4.94	1.79	2.24	7.4	32.83	1.89	1.3	0.83	3.84	1.39	5.34	1.79
20	4.37	1.79	2.12	6.21	15.36	1.79	2.77	0.83	3.2	1.39	5.14	2.37
21	3.05	1.68	2.01	4.94	13.85	1.68	2.12	0.83	3.2	1.48	4.01	2.24
22	2.77	1.68	2.01	4.74	10.17	1.68	2.12	0.83	2.63	1.3	3.67	2.12
23	2.77	1.68	1.89	4.55	8.44	1.58	1.3	0.77	2.37	1.39	3.51	2.01
24	2.63	1.68	1.89	4.19	7.4	1.48	1.3	0.77	2.12	1.3	3.2	1.89
25	2.63	1.68	1.89	4.19	6.91	1.48	1.21	0.83	2.01	1.3	3.2	1.79
26	2.63	1.58	1.89	4.55	6.43	1.39	1.21	0.77	9.28	1.3	3.05	1.79
27	2.37	1.58	1.89	4.01	5.98	1.39	1.21	0.7	11.43	1.48	2.77	1.79
28	2.37	1.58	1.79	3.67	5.55	1.3	1.13	0.9	5.34	1.68	3.2	1.79
29	2.24		1.79	3.51	5.34	1.3	1.21	0.7	3.67	2.01	2.63	1.79
30	2.24		1.68	3.35	6.21	1.3	1.21	0.7	3.05	1.58	2.63	1.68
31	2.12		1.68		5.14		1.13	0.7		1.48		1.79
<u>'</u>											-	
Minima	2.01	1.58	1.68	1.58	2.01	1.3	0.83	0.7	0.7	1.3	1.48	1.68
Media	6.66	2.04	2.64	4.15	6.72	2.8	1.29	0.92	3.69	1.97	14.09	2.04
Massima	31.62	3.51	6.91	18.67	36.65	4.94	2.77	1.39	16.55	3.67	99	2.5

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1995 al 31 dicembre 1995

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	1.89	1.48	2.01	1.79	5.98	17.8	3.67	2.12	1.48	2.77	1.39	1.48
2	2.01	1.48	2.01	1.68	4.94	16.15	3.51	2.01	1.48	2.77	1.39	1.48
3	1.68	1.48	2.01	1.79	5.34	10.79	3.84	1.68	1.39	2.91	1.3	1.39
4	1.68	1.39	2.24	1.89	4.01	8.17	3.84	1.68	1.48	2.77	1.3	1.48
5	1.89	1.39	2.12	1.79	3.84	7.15	3.51	1.68	1.39	2.63	1.3	1.48
6	1.58	1.3	2.12	2.01	3.67	7.65	3.35	2.12	1.89	3.2	1.3	1.48
7	1.58	1.3	2.12	2.12	3.2	6.91	3.2	2.01	3.84	2.5	1.3	1.48
8	1.58	1.48	2.12	2.01	3.2	6.43	3.05	2.01	6.21	2.37	1.3	1.39
9	1.58	1.48	2.24	1.89	3.2	5.98	3.05	2.12	2.91	2.77	1.3	1.39
10	1.58	1.48	2.24	1.68	3.2	7.4	3.05	1.68	2.12	2.24	1.68	1.39
11	1.58	1.48	2.12	1.68	3.2	11.1	3.05	1.58	2.01	2.24	1.3	1.39
12	1.79	1.48	2.12	1.68	31.02	11.1	2.63	1.58	1.89	2.37	1.21	1.39
13	1.58	1.39	2.12	1.58	30.43	10.47	2.91	1.58	11.43	2.12	1.21	1.39
14	1.58	1.58	2.12	1.58	14.97	8.17	2.63	1.58	26.48	2.12	1.3	1.21
15	1.39	1.58	2.12	1.58	10.17	7.15	2.77	1.48	18.67	2.12	1.05	1.58
16	1.39	1.58	2.12	1.58	8.17	6.67	2.5	1.48	7.65	2.01	1.21	2.12
17	1.39	1.58	2.12	1.48	7.4	5.98	2.37	1.79	5.98	2.12	1.79	2.37
18	1.39	1.79	2.01	1.48	7.4	5.55	2.24	1.39	5.14	2.12	1.05	6.91
19	1.48	1.79	1.89	1.48	9.28	5.34	2.24	1.39	10.79	1.79	1.05	8.17
20	1.39	1.68	2.12	4.19	12.78	4.94	2.24	1.48	9.57	1.79	1.05	6.91
21	1.39	1.68	2.12	11.1	10.47	4.74	2.5	1.58	6.67	1.79	0.97	5.34
22	1.48	1.58	1.89	9	8.17	4.55	2.12	1.48	5.55	1.79	1.05	4.37
23	1.39	1.79	1.79	6.43	6.67	4.37	2.12	1.68	4.74	1.68	0.97	9.87
24	1.39	1.79	1.79	>>	6.21	4.37	2.24	1.58	4.19	1.68	0.97	9.87
25	1.39	1.79	1.79	>>	5.55	4.19	2.12	1.79	3.84	1.68	0.97	6.67
26	1.48	2.01	1.79	>>	5.34	4.19	2.12	1.58	3.67	1.58	0.97	8.17
27	1.68	2.12	1.89	>>	5.14	4.19	1.89	1.48	3.35	1.58	1.48	9.28
28	1.58	2.01	2.12	9.28	4.74	3.84	2.12	1.89	3.2	1.58	2.63	7.65
29	1.48		1.89	8.17	4.55	3.84	2.12	1.68	3.2	1.39	2.12	5.76
30	1.48		1.79	6.67	4.94	3.67	1.89	1.58	2.91	1.39	1.58	5.14
31	1.48		1.79		16.96		2.01	1.48		1.39		5.55
Minima	1.39	1.3	1.79	1.48	3.2	3.67	1.89	1.39	1.39	1.39	0.97	1.21
Media	1.56	1.6	2.02	3.37	8.2	7.1	2.68	1.68	5.5	2.1	1.32	4.05
Massima	2.01	2.12	2.24	11.1	31.02	17.8	3.84	2.12	26.48	3.2	2.63	9.87

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1996 al 31 dicembre 1996

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	5.76	4.55	2.12	2.12	5.34	2.91	1.89	1.89	4.19	1.79	3.16	7.15
2	6.91	4.19	1.89	2.24	5.14	2.77	4.01	1.89	3.51	2.24	3.16	6.71
3	5.98	4.19	2.01	2.12	13.13	2.77	4.01	1.68	3.67	2.37	2.76	5.88
4	5.14	4.01	2.01	2.12	11.43	2.63	2.63	1.68	3.67	2.12	2.76	5.88
5	4.94	3.84	1.89	2.12	8.17	2.5	2.37	1.79	2.77	2.12	2.63	5.49
6	4.55	3.67	1.79	2.5	6.67	2.5	2.12	1.68	2.63	2.12	2.63	5.3
7	6.91	3.51	1.79	2.5	5.76	2.5	2.37	1.79	2.63	4.55	2.51	5.3
8	8.17	3.35	1.79	2.5	5.34	2.37	7.4	2.12	2.5	4.55	2.38	5.3
9	6.91	3.2	1.68	2.63	5.14	2.37	6.21	1.68	2.5	4.19	2.38	5.3
10	6.91	3.05	1.79	2.63	6.21	2.37	4.01	1.58	2.37	3.67	3.3	9.86
11	13.85	2.77	1.79	2.63	6.21	2.24	3.2	3.51	2.37	3.2	3.75	10.41
12	16.15	2.63	1.79	2.63	6.91	2.12	2.77	11.76	2.37	3.2	7.15	9.07
13	16.55	2.63	1.68	2.63	7.65	2.24	2.63	6.21	2.37	2.63	7.15	8.32
14	12.09	2.63	1.68	2.63	7.4	2.37	2.5	4.19	2.24	2.63	27	9.07
15	9.28	2.5	1.68	2.63	7.15	2.12	2.63	3.51	2.12	29.27	55.96	9.07
16	8.17	2.5	1.68	2.5	6.67	2.12	3.05	3.35	2.12	52.05	31.52	8.08
17	6.67	2.37	1.68	2.5	5.98	2.24	2.63	3.2	2.12	137.37	18.74	7.15
18	5.98	2.5	1.68	2.5	5.34	2.12	2.37	2.91	2.12	105.08	104.71	6.5
19	5.34	2.37	1.68	2.63	4.94	2.01	2.37	2.63	2.01	29.97	44.32	6.5
20	4.94	2.37	1.68	2.63	4.94	2.12	2.37	2.63	2.12	17.97	23.31	6.29
21	4.55	2.24	1.68	2.63	4.94	2.12	2.24	2.5	2.24	13.73	19.13	6.29
22	4.19	2.24	1.68	2.77	4.55	2.5	2.12	2.63	2.12	11.56	15.42	6.29
23	4.01	2.24	1.68	2.63	4.55	2.5	2.12	2.5	2.12	10.41	13.09	6.29
24	5.34	2.12	1.68	2.63	4.19	2.24	2.12	3.51	2.12	9.07	11.56	6.71
25	5.34	2.12	1.79	3.67	3.84	2.12	2.12	4.94	2.12	8.32	10.41	6.71
26	5.98	2.12	1.89	4.55	3.84	2.12	2.12	3.51	1.89	7.61	9.6	6.71
27	7.65	2.12	2.12	4.01	3.84	2.01	2.12	3.2	1.89	7.61	8.82	6.71
28	7.15	2.12	2.24	4.01	3.84	2.01	1.89	8.17	2.12	4.07	7.84	6.29
29	6.43	2.12	2.12	3.84	3.67	2.01	1.89	7.65	1.89	3.75	7.84	5.68
30	5.76		2.12	5.34	3.35	1.89	2.12	5.76	1.79	3.75	7.15	5.68
31	5.14		2.01		3.2		1.89	4.55		3.16		5.68
				•						·	·	
Minima	4.01	2.12	1.68	2.12	3.2	1.89	1.89	1.58	1.79	1.79	2.38	5.3
Media	7.19	2.84	1.83	2.85	5.78	2.3	2.78	3.57	2.42	16	15.41	6.83
Massima	16.55	4.55	2.24	5.34	13.13	2.91	7.4	11.76	4.19	137.37	104.71	10.41

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1997 al 31 dicembre 1997

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	5.68	4.75	3.75	2.63	2.15	2.15	7.38	3.16	1.36	0.77	0.54	2.15
2	5.3	4.75	3.45	2.27	2.15	2.15	6.71	3.16	1.36	0.77	0.4	2.27
3	5.3	4.75	3.16	2.27	2.15	2.15	6.08	3.02	1.45	0.77	0.4	3.02
4	16.48	4.4	3.16	2.38	2.15	2.04	5.68	3.02	1.27	0.77	0.44	2.63
5	12.46	4.4	3.16	2.27	2.15	2.15	5.68	3.02	1.36	0.77	0.54	2.38
6	9.6	4.93	3.16	2.27	4.75	2.76	5.68	3.02	1.45	0.77	4.07	2.27
7	8.57	4.57	3.16	2.51	4.75	2.27	6.5	2.76	1.54	0.97	22.01	2.15
8	7.84	4.57	3.16	2.51	3.45	2.15	5.68	2.76	1.45	0.97	5.49	2.15
9	7.15	4.57	3.16	2.51	3.16	2.15	5.68	2.76	1.27	0.77	11.27	2.04
10	6.71	4.57	3.16	2.38	3.02	2.38	5.11	2.76	1.27	0.77	10.69	2.04
11	6.71	4.57	3.16	2.51	3.02	2.63	5.11	2.63	1.11	0.77	5.3	2.04
12	6.08	4.57	3.16	2.51	2.63	2.63	4.93	2.38	1.11	0.77	59.68	1.93
13	5.68	4.07	3.16	2.51	2.63	1.93	4.93	2.63	1.36	0.77	33.67	1.93
14	5.68	4.07	3.16	2.38	2.63	2.04	4.57	2.63	1.36	0.77	14.39	1.93
15	5.68	4.07	3.16	2.27	2.63	2.04	4.93	2.51	1.11	0.65	9.6	1.73
16	5.68	3.91	3.16	2.38	2.63	1.83	4.75	2.51	1.27	0.65	8.08	1.73
17	5.49	3.91	3.16	2.27	2.51	2.63	4.75	5.49	1.04	0.65	6.5	1.73
18	5.3	3.91	3.16	2.27	2.51	2.51	5.49	5.49	1.04	0.49	5.49	1.83
19	5.3	3.91	3.16	2.27	2.51	5.11	5.49	3.16	1.19	0.49	4.07	6.93
20	5.3	3.75	3.16	2.27	2.51	5.11	4.93	2.89	1.27	0.54	3.6	54.51
21	5.3	3.75	3.16	2.27	2.51	3.75	4.75	1.93	1.11	0.59	3.45	31.52
22	5.3	3.75	3.16	2.15	2.51	3.16	4.4	1.93	0.97	0.49	3.45	15.42
23	5.3	3.75	3.16	2.15	2.51	2.63	4.23	1.83	0.83	0.54	3.16	11.27
24	5.3	3.75	3.16	2.15	2.51	2.63	3.91	1.83	0.83	0.59	3.02	9.33
25	5.3	3.45	2.89	2.15	2.27	2.63	4.07	1.73	0.83	0.59	2.51	7.61
26	5.3	3.6	2.89	2.04	3.02	3.3	3.75	1.73	0.83	0.44	2.51	7.61
27	5.3	3.6	2.76	2.89	2.76	31.52	3.75	1.73	0.83	0.49	2.38	7.15
28	5.3	3.45	2.76	2.89	2.63	26.52	3.45	1.83	0.83	0.49	2.38	6.71
29	5.3		3.02	2.38	2.27	11.27	3.45	1.73	0.83	0.49	2.15	6.29
30	4.75		3.02	2.15	2.15	8.57	3.3	1.36	0.83	0.49	2.15	5.68
31	4.75		3.16		2.15		3.45	1.73		0.54		5.49
Minima	4.75	3.45	2.76	2.04	2.15	1.83	3.3	1.36	0.83	0.44	0.4	1.73
Media	6.42	4.15	3.14	2.36	2.69	4.89	4.92	2.62	1.15	0.66	7.78	6.89
Massima	16.48	4.93	3.75	2.89	4.75	31.52	7.38	5.49	1.54	0.97	59.68	54.51

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1998 al 31 dicembre 1998

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	3.6	1.45	1.11	0.83	9.6	6.5	1.93	1.11	0.77	8.82	3.6	2.76
2	3.3	1.54	1.11	0.83	9.6	5.3	2.15	0.97	0.59	7.61	3.6	2.76
3	3.3	1.54	1.11	0.83	8.57	4.75	1.93	1.11	0.59	5.68	3.75	2.76
4	3.3	1.45	1.11	0.9	7.61	4.4	1.83	1.04	0.77	8.57	3.91	2.76
5	3.16	1.45	1.27	0.9	6.93	4.57	1.73	0.97	11.86	19.53	4.07	2.63
6	3.16	1.36	1.04	0.9	6.08	3.75	1.73	0.97	6.29	38.2	3.6	2.63
7	2.51	1.36	1.04	1.19	5.68	4.07	1.83	0.97	3.02	83.11	3.6	2.63
8	2.51	1.45	1.19	1.36	5.3	3.6	1.73	0.97	2.15	44.96	5.49	2.63
9	2.38	1.27	1.11	1.27	4.93	3.45	1.73	0.97	1.27	34.77	3.45	2.63
10	2.15	1.27	1.11	16.48	5.68	4.4	1.63	0.9	1.11	20.74	3.45	2.51
11	2.15	1.27	1.19	16.12	4.4	5.88	1.45	1.36	2.38	15.07	3.45	2.51
12	2.04	1.19	1.11	7.61	4.4	7.61	1.54	0.9	13.41	12.46	3.45	2.51
13	2.04	1.19	0.97	6.08	3.75	6.93	2.15	1.04	9.6	10.69	3.3	2.38
14	2.04	1.19	0.97	5.68	4.4	5.49	2.15	1.19	5.68	9.07	3.3	2.27
15	1.93	1.19	1.11	5.49	3.45	4.93	2.15	0.97	4.75	8.32	3.16	2.38
16	1.83	1.11	0.97	7.61	3.45	5.3	1.54	1.36	3.91	7.61	3.16	2.51
17	1.83	1.27	0.97	7.61	4.4	4.75	2.15	1.19	3.75	6.71	3.16	2.38
18	1.83	1.11	0.9	7.15	3.3	4.75	1.73	0.9	3.75	6.29	3.16	2.27
19	1.93	1.11	0.9	6.71	2.89	3.75	1.54	0.9	3.6	5.68	3.45	2.27
20	1.93	1.04	0.9	5.88	2.63	3.6	1.83	1.45	3.16	5.11	3.16	2.38
21	1.83	1.11	0.9	6.08	2.38	3.3	1.45	1.19	3.16	4.93	3.16	2.38
22	1.83	1.11	0.83	6.71	2.15	3.16	1.36	1.11	3.16	4.4	3.02	2.27
23	1.83	1.27	0.97	6.71	2.76	3.45	1.36	1.04	3.3	5.3	3.02	2.27
24	1.83	1.19	0.9	6.5	2.38	3.3	1.73	0.9	2.76	4.4	3.45	2.38
25	1.83	1.19	0.9	5.88	5.3	2.76	1.45	0.97	2.76	4.4	2.89	2.27
26	1.73	1.11	0.9	5.88	2.27	2.51	1.36	0.83	3.16	4.93	2.89	2.27
27	1.73	1.19	0.83	5.49	1.93	2.15	2.27	0.83	4.4	4.4	2.76	2.27
28	1.63	1.11	0.9	15.07	11.86	2.15	1.36	0.83	3.75	3.91	2.76	2.27
29	1.63		0.77	13.41	14.73	2.15	1.54	0.77	3.75	3.75	2.76	1.93
30	1.63		1.04	10.14	12.46	2.63	1.19	0.77	4.07	3.91	2.76	1.93
31	1.45		0.9		7.84		1.27	0.77		3.6		1.93
Minima	1.45	1.04	0.77	0.83	1.93	2.15	1.19	0.77	0.59	3.6	2.76	1.93
Media	2.19	1.26	1	6.11	5.58	4.18	1.7	1.01	3.89	13.13	3.36	2.41
Massima	3.6	1.54	1.27	16.48	14.73	7.61	2.27	1.45	13.41	83.11	5.49	2.76

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 1999 al 31 dicembre 1999

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	2.04	2.51	1.63	4.4	4.57	2.38	1.36	1.45	1.19	4.42	7.49	2.24
2	2.04	2.51	1.63	4.57	4.4	2.15	1.36	1.27	1.11	3.73	7.04	2.51
3	2.04	2.15	1.63	4.4	4.4	2.15	1.27	1.27	1.54	3.73	5.96	2.24
4	2.04	2.27	5.88	4.4	4.4	2.51	1.27	1.19	1.19	4.6	11.57	2.11
5	1.93	2.15	6.5	4.07	4.93	1.93	1.27	1.11	1.19	4.06	11.02	2.11
6	1.93	2.38	3.6	4.07	4.75	1.93	1.73	1.11	1.11	3.73	14.23	2.11
7	1.93	2.38	3.16	4.23	4.4	1.93	1.45	1.11	1.11	3.56	39.78	1.99
8	1.93	2.63	3.3	4.4	4.07	1.93	1.45	1.36	1.36	2.65	20.31	1.99
9	1.93	2.27	3.16	4.75	3.91	1.73	1.36	1.04	1.54	3.24	12.72	1.99
10	1.93	2.15	3.16	4.4	3.75	1.63	1.45	1.19	1.11	3.09	9.95	2.24
11	10.14	2.15	3.3	4.07	3.75	2.38	1.54	1.11	1.11	3.09	8.68	2.11
12	6.08	2.15	3.45	4.23	3.6	2.04	1.54	1.27	1.45	3.09	7.72	1.99
13	3.6	2.04	3.75	4.4	3.45	2.15	1.36	1.27	1.11	2.94	7.04	1.99
14	3.3	2.51	3.75	4.23	3.45	2.38	1.54	1.19	1.19	2.51	6.6	1.99
15	3.3	1.93	4.07	4.07	3.6	2.51	1.36	1.27	1.04	2.51	6.38	1.99
16	3.16	1.93	4.07	61.98	3.45	1.83	1.36	1.19	1.04	2.37	6.17	1.99
17	3.02	2.15	3.75	37.61	3.45	1.83	1.45	1.27	1.11	2.37	5.76	1.86
18	3.02	2.15	3.6	15.07	3.16	1.73	1.36	1.19	0.83	2.51	5.56	1.86
19	2.89	2.15	3.45	10.41	3.45	1.73	1.27	1.11	0.9	2.11	5.16	1.86
20	2.89	2.15	3.3	8.32	4.07	1.73	1.36	2.63	254.64	1.99	4.97	1.99
21	2.89	2.15	3.16	7.15	4.4	1.83	1.19	3.16	85.97	29.94	4.78	1.99
22	2.89	2.04	3.16	6.71	4.4	1.83	1.54	1.54	21.42	30.38	4.6	1.63
23	2.76	2.04	3.02	6.5	4.07	1.83	1.36	1.36	11.3	29.94	4.42	1.63
24	2.76	1.73	2.89	6.08	3.75	1.83	1.27	1.36	8.92	25.31	4.42	1.63
25	2.76	1.73	2.89	5.88	3.6	1.63	1.19	1.36	7.95	34	4.06	1.52
26	2.76	1.73	3.02	4.57	3.3	1.54	1.73	1.27	7.26	31.27	4.06	1.63
27	2.63	1.63	13.41	6.08	3.16	1.73	1.27	1.36	6.81	17.83	3.89	1.52
28	2.63	1.63	10.14	6.5	3.16	1.63	1.63	1.36	4.78	12.72	3.89	1.63
29	2.76		7.61	5.11	2.89	1.45	1.36	2.04	4.42	9.95	2.37	1.52
30	2.76		5.3	4.93	2.63	1.45	1.27	1.93	4.06	8.92	2.37	1.41
31	2.76		4.93		2.51		1.27	1.27		8.19		1.63
Minima	1.93	1.63	1.63	4.07	2.51	1.45	1.19	1.04	0.83	1.99	2.37	1.41
Media	2.95	2.12	4.18	8.59	3.77	1.91	1.39	1.41	14.66	9.7	8.1	1.9
Massima	10.14	2.63	13.41	61.98	4.93	2.51	1.73	3.16	254.64	34	39.78	2.51

1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 2000 al 31 dicembre 2000

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	1.31	0.85	0.76	5.16	2.51	1.52	1.31	0.36	1.31	20.67	10.48	>>
2	1.31	0.85	0.61	4.97	2.51	1.41	0.61	0.36	1.11	8.19	7.72	>>
3	1.31	0.85	0.61	11.3	2.51	1.41	1.11	0.48	1.11	5.96	28.21	>>
4	1.21	0.76	0.61	12.72	3.73	1.52	0.93	0.54	1.02	4.78	28.21	>>
5	1.21	0.61	0.48	8.68	4.06	1.31	0.61	5.56	0.85	4.06	14.54	>>
6	1.21	0.69	1.02	7.04	3.24	1.63	1.31	5.96	0.76	3.73	89.58	>>
7	1.21	1.02	0.48	5.96	4.78	1.63	0.61	3.09	0.76	7.26	72.9	>>
8	1.21	0.76	0.48	5.16	8.19	1.31	1.75	1.75	0.85	14.23	23.32	>>
9	1.11	0.85	0.48	4.6	7.72	1.21	0.85	1.31	0.48	9.69	16.15	>>
10	1.11	0.69	0.48	4.06	5.76	1.31	0.76	1.11	0.48	7.26	12.72	>>
11	1.11	0.69	0.48	4.06	4.78	1.99	2.24	1.11	0.48	26.95	10.75	>>
12	1.02	0.69	0.48	4.6	4.42	1.11	1.52	1.21	0.61	66.42	9.17	>>
13	1.11	0.54	0.48	4.6	3.89	1.52	0.93	1.11	0.48	57.82	8.68	>>
14	1.11	0.54	0.48	4.6	3.73	1.11	0.85	1.02	0.54	22.94	52.02	>>
15	1.02	0.54	0.48	5.96	3.4	1.52	0.93	1.02	0.48	18.52	34.46	>>
16	1.11	0.61	0.48	5.36	3.09	1.11	0.85	1.11	0.48	19.58	23.72	>>
17	1.02	0.61	0.48	4.97	3.09	1.02	1.02	1.02	0.48	14.54	97	>>
18	1.02	0.61	0.48	4.6	2.51	0.93	0.69	1.02	0.48	11.86	>>	>>
19	1.31	0.48	0.48	4.6	2.37	1.11	1.02	1.11	0.48	9.69	>>	>>
20	1.02	0.48	0.48	4.6	2.24	0.93	0.69	0.85	0.93	8.68	>>	>>
21	1.21	0.48	0.48	4.06	2.11	0.93	0.54	0.93	1.31	7.72	>>	>>
22	1.11	0.48	0.48	3.73	2.11	1.21	1.11	0.76	0.69	7.04	>>	>>
23	0.93	0.48	0.48	3.4	1.99	0.85	0.61	0.93	0.54	6.38	>>	>>
24	0.85	0.48	0.48	3.4	1.86	0.93	0.54	0.76	0.76	6.81	>>	>>
25	1.02	0.48	0.48	3.4	2.37	1.11	0.61	0.93	0.61	5.36	>>	>>
26	0.93	0.48	0.69	3.09	1.99	1.31	0.54	0.76	0.36	4.97	>>	>>
27	0.93	0.48	3.09	2.94	1.86	0.85	0.54	0.69	0.36	4.97	>>	>>
28	0.76	0.48	2.94	2.65	1.75	1.11	0.93	0.85	0.36	4.78	>>	>>
29	0.93	0.48	28.21	2.65	1.63	1.11	0.48	0.69	0.61	4.42	>>	>>
30	0.93		14.54	2.65	1.52	0.76	0.85	0.54	25.72	2.79	>>	>>
31	0.69		6.38		1.52		0.54	1.31		6.38		>>
												$\overline{}$
Minima	0.69	0.48	0.48	2.65	1.52	0.76	0.48	0.36	0.36	2.79	7.72	>>
Media	1.08	0.62	2.23	4.99	3.2	1.23	0.9	1.3	1.52	13.05	31.74	>>
Massima	1.31	1.02	28.21	12.72	8.19	1.99	2.24	5.96	25.72	66.42	97	>>

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 2001 al 31 dicembre 2001

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
2	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
3	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
4	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
5	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
6	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
7	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
8	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
9	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
10	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
11	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
12	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
13	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
14	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
15	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
16	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
17	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
18	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
19	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
20	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
21	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
22	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
23	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
24	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
25	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
26	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
27	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
28	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
29	>>		>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
30	>>		>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
31	>>		>>		>>		>>	>>		>>		>>
Minima	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
Media	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
Massima	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>
massima	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>

1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 2002 al 31 dicembre 2002

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	>>	>>	>>	>>	>>	>>	2.02	2.2	>>	1.36	1.88	14.41
2	>>	>>	>>	>>	>>	>>	1.93	2.11	>>	1.36	1.66	11.76
3	>>	>>	>>	>>	>>	>>	2.29	1.66	>>	1.23	1.66	10.23
4	>>	>>	>>	>>	>>	>>	1.97	2.25	>>	1.45	1.58	9.4
5	>>	>>	>>	>>	>>	>>	1.71	2.11	>>	1.49	2.11	8.61
6	>>	>>	>>	>>	>>	>>	1.75	1.75	>>	1.23	1.45	8.05
7	>>	>>	>>	>>	>>	>>	2.11	1.53	>>	1.28	1.45	7.68
8	>>	>>	>>	>>	>>	6.16	1.49	1.49	>>	1.15	1.36	7.32
9	>>	>>	>>	>>	>>	5.43	1.45	2.11	>>	1.4	1.32	6.47
10	>>	>>	>>	>>	>>	5.22	1.58	4.01	>>	1.8	1.32	5.83
11	>>	>>	>>	>>	>>	4.81	1.58	6.26	>>	3.04	1.19	5.67
12	>>	>>	>>	>>	>>	4.46	1.45	5.22	>>	>>	1.23	4.93
13	>>	>>	>>	>>	>>	4.31	4.46	3.62	>>	2.9	1.75	4.93
14	>>	>>	>>	>>	>>	4.11	4.01	3.28	>>	2.9	3.04	4.12
15	>>	>>	>>	>>	>>	4.01	4.41	3.28	>>	2.38	5.69	3.86
16	>>	>>	>>	>>	>>	3.86	4.97	3.23	>>	2.06	5.95	3.62
17	>>	>>	>>	>>	>>	3.81	4.86	3.09	>>	2.8	5.69	3.5
18	>>	>>	>>	>>	>>	3.72	4.26	3.13	>>	3.04	9.91	3.5
19	>>	>>	>>	>>	>>	3.62	3.62	2.9	>>	2.71	10.25	3.38
20	>>	>>	>>	>>	>>	3.52	3.33	2.8	>>	2.52	6.1	3.38
21	>>	>>	>>	>>	>>	3.52	2.85	2.66	>>	2.25	4.86	3.38
22	>>	>>	>>	>>	>>	3.47	2.38	2.66	>>	2.94	5.84	3.38
23	>>	>>	>>	>>	>>	3.33	3.13	2.61	>>	2.94	5.43	3.38
24	>>	>>	>>	>>	>>	2.9	3.04	2.34	>>	2.99	6.95	3.15
25	>>	>>	>>	>>	>>	3.23	3.13	2.11	>>	2.99	11.67	3.15
26	>>	>>	>>	>>	>>	2.94	3.04	2.52	>>	2.9	104.64	2.93
27	>>	>>	>>	>>	>>	2.76	2.8	2.66	>>	2.99	65.32	2.93
28	>>	>>	>>	>>	>>	2.52	2.8	2.48	>>	2.66	29.44	7.32
29	>>		>>	>>	>>	2.85	2.29	2.15	>>	2.29	24.46	5.37
30	>>		>>	>>	>>	2.15	2.15	1.88	>>	2.11	21.21	3.74
31	>>		>>		>>		2.43	1.66		2.02		3.5
				•								
Minima	>>	>>	>>	>>	>>	2.15	1.45	1.49	>>	1.15	1.19	2.93
Media	>>	>>	>>	>>	>>	3.77	2.75	2.7	>>	2.24	11.55	5.58
Massima	>>	>>	>>	>>	>>	6.16	4.97	6.26	>>	3.04	104.64	14.41

AUTOSTRADA VALDASTICO A31 NORD 1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 2003 al 31 dicembre 2003

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	3.5	1.55	0.73	0.54	0.54	0.08	0.11	0.07	0.05	0.04	15.45	7.15
2	3.62	1.4	0.73	0.68	0.54	0.08	0.1	0.07	0.06	0.04	6.14	5.99
3	3.62	1.4	0.73	0.68	0.11	0.08	0.1	0.07	0.07	0.04	2.62	5.52
4	3.62	1.79	0.73	0.54	0.11	0.08	0.09	0.07	0.06	0.04	1.55	4.79
5	3.62	1.33	0.68	0.54	0.11	0.07	0.1	0.1	0.06	0.31	1.48	4.25
6	3.62	1.71	0.73	0.54	0.09	0.08	0.1	0.08	0.06	0.31	1.07	3.99
7	3.62	1.33	0.73	0.58	0.09	0.07	0.09	0.08	0.06	0.06	1.07	4.25
8	3.5	1.26	0.68	0.63	0.09	0.08	0.09	0.08	0.06	>>	7.86	4.25
9	3.27	1.13	0.63	0.5	0.09	0.08	0.08	0.08	0.07	>>	7.86	3.86
10	3.27	1.13	0.63	0.73	0.09	0.07	0.08	0.08	0.07	>>	5.67	4.12
11	3.04	1.13	1.13	0.54	0.09	0.07	0.08	0.08	0.06	>>	4.52	3.74
12	2.72	1.13	0.68	0.5	0.09	0.07	0.08	0.08	0.06	>>	3.74	3.5
13	2.72	1.13	0.68	0.58	0.09	0.07	0.08	0.08	0.06	>>	2.93	3.27
14	2.52	1.07	0.73	1.13	0.31	0.09	0.08	0.1	0.06	>>	2.93	3.27
15	2.14	1.07	0.68	0.58	0.42	0.1	0.08	0.08	0.06	>>	1.88	3.27
16	2.23	1.01	0.58	0.54	0.5	0.1	0.06	0.08	0.06	>>	1.79	2.93
17	2.05	0.95	0.58	1.07	0.42	0.12	0.06	0.08	0.06	>>	2.05	2.42
18	1.71	0.95	0.58	0.73	0.42	0.12	0.06	0.08	0.06	>>	1.71	1.88
19	1.71	0.89	0.58	0.73	0.42	0.12	0.06	0.08	0.06	>>	1.71	1.63
20	1.71	0.89	0.73	0.68	0.42	0.11	0.06	0.06	0.04	>>	1.55	1.4
21	2.62	0.89	0.63	0.68	0.42	0.1	0.06	0.06	0.03	>>	1.55	1.13
22	3.38	0.83	0.58	0.68	0.42	0.1	0.06	0.06	0.06	>>	1.4	1.26
23	3.38	0.89	0.58	0.68	0.12	0.09	0.06	0.06	0.04	>>	1.48	1.13
24	3.27	0.89	0.54	0.68	0.12	0.09	0.06	0.06	0.04	0.08	1.48	1.01
25	2.93	0.83	0.58	0.58	0.12	0.11	0.06	0.09	0.04	0.06	1.48	0.89
26	2.62	0.78	0.54	0.68	0.12	0.11	0.06	0.07	0.04	0.04	3.15	1.01
27	2.62	0.78	0.54	0.54	0.12	0.11	0.06	0.06	0.02	0.04	43.15	0.78
28	2.52	0.78	0.46	0.54	0.12	0.11	0.06	0.06	0.04	0.06	57.56	1.63
29	2.42		0.46	0.54	0.12	0.11	0.06	0.04	0.04	0.54	18.79	5.67
30	1.88		0.46	0.54	0.08	0.11	0.07	0.02	0.04	0.09	9.81	5.99
31	1.71		0.63		0.08		0.07	0.02		0.89		7.32
Minima	1.71	0.78	0.46	0.5	0.08	0.07	0.06	0.02	0.02	>>	1.07	0.78
Media	2.81	1.1	0.64	0.64	0.22	0.09	0.07	0.07	0.05	>>	7.18	3.33
Massima	3.62	1.79	1.13	1.13	0.54	0.12	0.11	0.1	0.07	>>	57.56	7.32

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 2004 al 31 dicembre 2004

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	6.64	0.42	3.15	5.37	10.66	4.36	1.57	8.0	0.49	0.61	25.81	10.92
2	5.37	0.54	3.04	5.52	7.15	4.25	1.65	0.49	0.55	0.49	17.1	7.89
3	4.52	1.33	1.88	5.67	5.83	4.14	1.17	8.0	0.49	0.27	10.02	6.56
4	4.25	0.46	2.72	6.47	14.41	4.02	1.09	1.17	0.49	0.49	6.95	5.55
5	3.99	0.73	1.71	5.67	25.83	3.91	1.4	0.67	0.49	0.27	5.8	4.95
6	3.74	0.68	0.95	5.83	42.69	4.02	1.32	0.61	0.49	0.14	5.18	5.31
7	3.5	0.46	1.01	6.14	15.9	3.8	1.32	0.49	0.49	0.14	4.95	4.95
8	3.5	0.46	1.48	5.52	10.92	4.02	1.32	0.8	0.49	0.49	4.59	4.48
9	3.5	0.89	1.33	4.93	9.3	4.14	1.32	0.8	0.49	0.07	3.48	4.02
10	2.32	1.13	2.52	5.08	8.17	3.91	1.02	0.61	>>	0.27	4.95	4.25
11	1.88	1.48	2.93	5.22	7.35	3.69	1.02	0.61	>>	0.49	5.55	3.91
12	2.05	0.54	2.93	5.08	6.95	3.69	1.32	0.49	>>	0.49	5.92	3.59
13	2.14	0.73	1.63	5.08	6.82	4.36	1.17	0.49	>>	0.49	6.05	3.37
14	1.96	0.42	2.62	4.65	6.3	3.91	1.17	0.49	>>	0.55	5.92	2.96
15	2.14	0.42	3.74	4.65	5.8	3.91	1.17	0.49	>>	0.37	5.67	3.8
16	1.2	0.73	5.99	4.52	5.67	1.82	1.17	0.49	0.49	0.61	5.06	3.69
17	0.83	0.73	7.68	4.65	5.55	1.74	0.8	0.49	0.8	0.49	4.59	3.59
18	0.95	0.5	8.61	5.22	4.59	1.74	0.8	0.55	0.61	0.74	4.71	3.37
19	1.13	0.89	8.61	18.5	4.71	1.91	1.17	0.55	0.61	0.49	4.59	4.02
20	1.2	0.68	8.61	19.08	5.18	4.25	1.09	0.67	0.67	0.49	4.48	3.16
21	0.83	0.54	8.81	10.66	5.06	4.36	1.02	0.49	0.67	0.49	4.14	2.76
22	0.78	3.62	8.42	7.68	4.95	4.14	0.94	0.27	0.55	0.61	3.91	2.56
23	0.89	5.52	8.42	7.5	4.95	3.59	0.94	0.94	0.49	0.49	3.69	2.37
24	0.63	5.52	8.23	6.31	4.48	2.28	0.8	0.49	8.0	0.49	3.27	2.28
25	0.68	4.52	6.98	6.31	4.02	3.06	0.74	0.55	0.27	0.49	2.96	1.74
26	0.73	3.99	6.31	5.22	3.91	1.57	0.94	0.55	0.27	0.55	2.96	4.95
27	0.73	3.86	5.99	4.93	4.83	1.48	0.94	0.67	0.49	7.62	2.09	5.67
28	0.73	3.04	5.52	4.52	4.83	1.65	0.87	0.37	0.49	5.8	2	5.55
29	0.68	2.62	5.22	4.12	4.71	1.65	0.8	0.37	0.49	8.44	3.16	5.43
30	0.63		5.22	11.09	4.95	2.47	0.74	0.55	0.61	7.62	13.26	4.83
31	0.38		5.22		4.83		0.8	0.55		10.92		4.59
										•		
Minima	0.38	0.42	0.95	4.12	3.91	1.48	0.74	0.27	0.27	0.07	2	1.74
Media	2.08	1.63	4.76	6.71	8.43	3.26	1.08	0.59	0.53	1.67	6.09	4.42
Massima	6.64	5.52	8.81	19.08	42.69	4.36	1.65	1.17	0.8	10.92	25.81	10.92

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 2005 al 31 dicembre 2005

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
1	4.25	1.09	0.74	1.4	4.48	1.82	0.87	0.67	1.09	1.74	1.81	1.31
2	4.02	1.09	1.32	1.32	4.36	1.74	0.74	0.61	1.17	2.18	2.11	1.26
3	4.02	1.09	0.67	1.17	4.02	3.37	0.94	0.61	1.02	17.45	1.59	2.79
4	3.69	1.02	0.49	1.17	4.02	1.82	0.87	0.61	1.02	16.07	1.53	2.54
5	3.37	0.87	0.43	1.24	4.14	1.65	0.94	0.61	0.67	16.07	1.26	2.86
6	3.27	0.8	0.43	0.94	4.14	1.65	0.94	0.61	1.02	16.07	3.19	2.99
7	3.06	1.09	0.43	1.02	4.02	1.57	0.94	0.61	1.09	11.99	3.67	2.86
8	2.28	0.8	0.32	1.32	3.69	1.57	1.02	0.67	1.32	11.07	3.12	2.79
9	2	0.8	0.32	3.27	3.59	1.48	1.09	0.61	12.94	8.73	2.92	2.67
10	2.56	0.8	0.43	2.18	3.37	1.48	1.02	0.61	11.38	7.22	2.79	1.93
11	2.47	0.8	0.43	1.82	3.16	1.32	1.17	0.61	6.3	4.02	2.67	1.7
12	2.28	0.94	0.49	2.47	2.66	1.4	1.02	0.61	5.18	3.53	2.35	2.41
13	2	0.67	0.49	2.76	2.37	1.32	0.74	0.61	4.48	3.12	2.17	2.35
14	2	0.8	0.49	2.47	2.28	1.4	1.17	0.61	4.02	3.12	2.48	2.35
15	1.57	1.02	0.49	3.8	1.4	1.32	0.8	0.74	3.8	3.12	2.41	2.23
16	1.57	0.74	1.24	7.35	2.28	1.24	0.87	0.61	3.48	2.99	2.41	2.11
17	3.27	0.8	0.74	7.08	2	1.32	0.8	0.61	3.59	2.92	2.29	1.42
18	2.56	0.8	0.67	5.55	6.95	1.17	0.8	0.61	4.36	2.6	2.11	1.31
19	1.65	0.67	0.8	4.95	5.8	1.17	0.8	0.67	4.14	2.79	1.37	1.81
20	1.65	0.8	1.02	4.95	4.59	1.17	0.74	5.92	4.02	2.79	1.26	1.59
21	1.65	0.87	0.74	4.95	4.25	1.17	0.61	5.18	3.8	2.92	1.59	1.53
22	1.32	0.8	0.8	4.83	4.02	1.09	0.8	3.91	3.48	2.67	2.54	1.53
23	1.32	0.61	1.02	4.48	3.91	1.02	0.94	1.57	3.06	2.6	1.53	1.37
24	1.48	0.61	1.32	4.48	3.69	0.94	0.74	1.32	2.47	2.6	1.48	1.06
25	1.91	0.61	1.09	5.06	3.59	0.94	0.61	1.17	2.47	2.54	1.42	1.06
26	1.32	0.67	1.17	5.31	3.37	1.02	0.67	1.17	2.09	2.41	1.16	1.31
27	1.32	0.67	1.09	4.95	3.16	0.8	0.8	1.74	1.74	2.35	1.11	2.17
28	2.37	1.02	1.24	4.83	2.37	0.74	0.61	4.48	1.74	2.29	1.31	1.31
29	1.02		1.24	4.48	2.18	0.67	0.74	1.65	1.82	2.23	1.37	1.26
30	0.94		1.24	4.59	1.74	0.94	0.61	1.32	1.32	2.05	1.37	1.21
31	2		1.32		1.82		0.74	1.17		1.87		1.01
<u>'</u>												
Minima	0.94	0.61	0.32	0.94	1.4	0.67	0.61	0.61	0.67	1.74	1.11	1.01
Media	2.26	0.84	0.8	3.54	3.47	1.34	0.84	1.37	3.34	5.36	2.01	1.87
Massima	4.25	1.09	1.32	7.35	6.95	3.37	1.17	5.92	12.94	17.45	3.67	2.99

Bollettino dei valori giornalieri massimi

Stazione Posina a Stancari Parametro Portata 1 massima (m3/s) Valori dal 1 gennaio 2006 al 31 dicembre 2006

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	отт	NOV	DIC
1	0.91	1.01	2.67	3.81	3.67	1.53	0.68	0.64	0.72	1.16	0.64	0.57
2	1.21	0.96	2.6	3.88	3.53	1.7	0.82	0.64	0.64	1.11	0.55	0.52
3	1.11	1.06	2.48	3.88	3.46	1.48	0.77	>>	0.68	1.06	0.51	0.48
4	1.11	0.86	2.41	3.74	3.12	1.31	0.68	1.11	0.72	1.06	0.47	0.48
5	1.11	0.86	3.46	3.67	2.92	1.48	0.64	0.86	0.68	1.06	0.55	0.43
6	1.11	1.37	3.39	3.46	2.92	1.26	0.59	0.77	0.64	0.96	0.51	0.57
7	0.77	1.06	3.06	3.53	2.79	1.26	0.25	0.68	0.64	0.96	0.47	0.57
8	0.82	0.91	2.92	3.12	2.79	1.16	0.25	0.68	0.64	0.91	0.47	1.18
9	1.06	0.91	2.86	3.12	3.39	1.06	0.72	0.64	0.59	0.82	0.43	8.05
10	1.01	1.16	2.79	3.26	3.46	1.06	0.51	0.68	0.59	0.86	0.47	5.4
11	1.01	0.86	2.79	4.98	3.26	1.06	0.21	0.64	0.59	0.82	0.43	3.18
12	1.01	0.91	2.73	4.09	3.12	1.01	1.31	0.68	0.96	0.77	0.35	2.72
13	1.01	1.16	2.6	3.74	2.99	0.96	0.64	0.82	0.68	0.77	0.35	2.22
14	0.91	1.11	2.54	3.81	3.12	1.01	0.77	0.91	0.64	0.77	0.64	1.74
15	0.68	1.11	2.67	3.53	2.99	1.06	0.64	0.77	5.05	0.72	>>	1.51
16	0.91	1.11	2.54	3.39	2.92	0.91	0.64	1.21	4.68	0.72	>>	1.46
17	0.96	1.11	2.48	3.46	2.86	1.01	0.82	1.21	4.02	0.72	0.59	1.46
18	1.37	0.91	2.41	3.53	2.79	0.86	0.77	1.11	3.46	0.47	0.64	1.46
19	0.82	0.91	2.35	3.6	2.79	0.91	0.77	1.06	2.92	0.91	0.55	1.51
20	1.01	2.11	2.41	3.53	2.6	0.91	0.64	0.96	2.35	0.91	0.64	1.4
21	0.86	2.67	2.48	3.67	2.48	0.82	0.68	0.91	1.76	0.68	0.64	1.35
22	0.72	2.79	2.6	3.53	2.29	0.82	0.64	0.86	1.53	0.91	0.64	1.23
23	0.96	3.19	2.67	3.46	2.29	0.86	0.72	0.86	1.48	0.86	0.59	1.23
24	1.01	2.99	2.92	3.46	2.6	0.72	0.59	0.82	1.37	0.96	0.64	1.18
25	1.11	2.86	2.79	3.46	2.6	0.91	0.59	0.82	1.37	0.86	0.59	1.18
26	0.86	2.86	2.86	3.53	2.48	0.77	0.64	0.77	1.31	0.77	0.59	1.18
27	0.96	2.86	3.12	3.46	2.29	0.91	0.86	0.82	1.31	0.77	0.52	1.07
28	0.82	2.79	4.68	3.39	2.05	0.86	0.64	0.86	1.21	0.68	0.52	1.13
29	0.82		5.28	3.46	1.93	0.77	0.59	0.72	1.16	0.72	0.52	1.07
30	0.91		3.95	4.02	1.81	0.77	0.64	0.72	1.16	1.01	0.57	1.07
31	1.11		3.74		1.53		0.59	0.72		1.42		0.97
Minima	0.68	0.86	2.35	3.12	1.53	0.72	0.21	0.64	0.59	0.47	0.35	0.43
Media	0.97	1.59	2.94	3.62	2.77	1.04	0.65	0.83	1.52	0.88	0.54	1.60
Massima	1.37	3.19	5.28	4.98	3.67	1.70	1.31	1.21	5.05	1.42	0.64	8.05

1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi dati NON validati

Stazione Posina a Stancari CAE Sensore Portata 1 massima (m3/s) Valori dal 1 gennaio 2007 al 31 dicembre 2007

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	отт	NOV	DIC
1	0.97	1.18	0.71	2.79	1.07	3.98	1.92	0.67	1.46	>>	>>	>>
2	0.97	1.23	0.71	2.72	1.13	4.12	1.74	0.71	1.4	>>	>>	>>
3	0.92	1.13	0.71	2.72	1.98	4.26	1.69	0.76	1.35	>>	>>	>>
4	0.92	1.13	2.35	3.51	2.22	4.12	1.57	0.71	1.35	>>	>>	>>
5	0.86	1.92	0.62	2.85	2.41	3.85	1.51	0.67	2.79	>>	>>	>>
6	0.81	1.18	0.67	2.72	1.29	3.64	1.4	0.71	1.23	>>	>>	>>
7	0.81	1.02	1.02	2.72	2.85	3.51	1.4	0.67	1.23	>>	>>	>>
8	0.76	2.41	2.85	2.66	1.18	3.38	1.35	2.92	>>	>>	>>	>>
9	0.76	1.51	1.02	3.24	1.13	3.24	1.4	6.14	>>	>>	>>	>>
10	0.76	1.02	0.92	2.6	1.13	3.11	2.79	3.31	>>	>>	>>	>>
11	0.71	2.79	0.92	3.05	1.07	3.11	1.29	2.35	>>	>>	>>	>>
12	0.71	0.97	0.92	2.22	1.07	3.05	1.23	2.79	>>	>>	>>	>>
13	0.71	0.97	0.86	1.98	1.07	3.44	1.18	1.51	>>	>>	>>	>>
14	0.67	0.92	0.81	1.8	0.97	3.05	1.13	1.4	>>	>>	>>	>>
15	0.67	0.92	0.81	1.63	1.02	5.91	1.13	1.4	>>	>>	>>	>>
16	0.71	0.81	0.86	1.57	0.97	5.62	1.07	1.29	>>	>>	>>	>>
17	0.62	0.86	0.81	1.46	0.97	4.33	1.02	1.29	>>	>>	>>	>>
18	0.67	0.81	0.81	1.46	0.97	4.05	0.97	1.13	>>	>>	>>	>>
19	0.62	2.04	0.97	1.4	0.86	3.71	0.97	1.13	>>	>>	>>	>>
20	0.62	0.81	1.02	1.35	0.92	3.78	0.86	3.11	>>	>>	>>	>>
21	0.67	1.86	0.92	1.29	0.81	3.51	0.86	3.98	>>	>>	>>	>>
22	0.67	0.76	0.86	1.29	0.81	3.18	0.92	3.18	>>	>>	>>	>>
23	3.85	0.76	0.81	1.29	1.8	3.05	0.86	2.98	>>	>>	>>	>>
24	4.12	0.81	0.86	1.18	0.86	2.98	0.81	2.79	>>	>>	>>	>>
25	2.98	0.76	0.92	1.18	0.76	2.92	0.86	2.53	>>	>>	>>	>>
26	2.53	0.81	0.97	1.13	3.51	2.72	0.81	2.1	>>	>>	>>	>>
27	1.69	2.53	1.02	1.13	1.8	2.72	0.76	1.8	>>	>>	>>	>>
28	1.35	0.81	1.02	1.07	7.58	2.6	0.71	3.11	>>	>>	>>	>>
29	1.35		0.97	1.13	7.9	2.47	0.71	1.57	>>	>>	>>	>>
30	1.23		2.1	1.02	4.97	2.16	0.71	2.72	>>	>>	>>	>>
31	1.23		2.72		3.78		0.71	1.63		>>		>>
Minima	0.62	0.76	0.62	1.02	0.76	2.16	0.71	0.67	>>	>>	>>	>>
Media	1.19	1.24	1.08	1.94	1.96	3.52	1.17	2.03	>>	>>	>>	>>
Massima	4.12	2.79	2.85	3.51	7.9	5.91	2.79	6.14	>>	>>	>>	>>

1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi dati NON validati

Stazione Posina a Stancari CAE Sensore Portata 1 massima (m3/s) Valori dal 1 gennaio 2008 al 31 dicembre 2008

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	отт	NOV	DIC
1	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	10.38	31.33
2	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	5.09	17.94
3	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	16.89	7.75
4	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	88.77	4.53
5	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	86.6	5.09
6	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	33.81	4.35
7	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	15.52	4.3
8	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	9.18	4.06
9	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	6.38	3.94
10	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	6.12	4.6
11	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	4.84	15.52
12	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	4.6	>>
13	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	7.75	>>
14	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	7.47	>>
15	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	6.38	>>
16	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	5.34	>>
17	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	5.6	>>
18	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	4.3	>>
19	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	5.09	>>
20	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	4.06	>>
21	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	3.89	>>
22	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	4.3	>>
23	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	4.41	5.34
24	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	3.66	5.34
25	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	3.89	4.84
26	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	4.12	4.47
27	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	4.06	4.3
28	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	4.24	4.18
29	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	3.66	4
30	>>		>>	>>	>>	>>	>>	>>	>>	>>	5.86	3.89
31	>>		>>		>>		>>	>>		>>		3.77
Minima	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	3.66	3.77
Media	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	12.54	7.18
Massima	>>	>>	>>	>>	>>	>>	>>	>>	>>	>>	88.77	31.33

1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi dati NON validati

Stazione Posina a Stancari CAE Sensore Portata 1 massima (m3/s) Valori dal 1 gennaio 2009 al 31 dicembre 2009

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	отт	NOV	DIC
1	3.71	3.32	2.25	6.12	25.73	2.51	1.04	0.54	0.27	0.88	0.72	35.08
2	3.66	4.24	2.2	9.77	15.18	2.36	3.6	0.5	0.27	0.84	1.04	8.31
3	3.54	4.53	2.1	10.68	12.24	2.3	3.66	0.57	0.27	0.84	3.66	4.84
4	3.49	4.53	3.94	7.75	9.77	2.72	3.77	1.48	0.27	0.76	1.04	5.09
5	3.89	5.86	17.24	6.38	7.75	2.41	3.94	0.61	0.27	0.8	1.04	5.34
6	3.37	19.01	12.56	5.6	5.34	2.36	3.71	0.54	0.24	0.72	1.3	4.53
7	3.26	43.8	7.47	5.09	5.86	2.2	3.71	0.47	0.27	0.68	1.44	4.35
8	3.15	27.3	5.09	4.6	5.86	3.37	3.66	0.47	0.21	0.72	1.91	4.41
9	2.93	11.92	4.6	4.84	5.6	1.81	1.04	0.43	0.19	0.68	4.06	4.41
10	2.56	6.65	4.53	5.34	5.09	1.81	1	0.5	0.19	0.76	4.06	4.18
11	3.1	6.12	4.18	5.09	5.6	1.71	1.04	0.47	0.19	0.68	3.89	4
12	2.25	4.84	4	5.34	4.53	1.62	1	0.47	0.19	0.68	2.46	3.94
13	2.99	4.53	3.94	4.6	4.47	1.62	0.96	0.47	0.19	0.72	2.1	3.83
14	4	4.3	3.83	4.53	4.41	1.53	0.96	0.47	0.24	1.17	1.91	3.66
15	4	4.12	3.77	4.6	4.24	3.77	0.96	0.43	0.72	0.57	1.86	3.54
16	1.96	3.94	3.77	5.6	4.12	1.53	0.92	3.32	14.18	0.57	2	3.37
17	2.67	3.94	3.71	5.86	4.53	1.39	0.88	3.21	7.75	0.5	1.86	3.21
18	2.93	3.77	3.83	5.34	4	1.39	1.48	0.43	3.37	0.57	1.71	2.83
19	3.32	3.71	3.83	4.47	3.94	1.3	0.88	0.4	1.53	0.57	1.62	2.99
20	14.51	3.77	3.71	6.12	3.83	3.71	0.84	3.26	1.26	0.5	1.48	2.56
21	13.53	3.49	3.66	6.92	3.77	1.35	0.8	0.37	1.26	0.54	1.39	2.51
22	8.89	3.37	4.12	6.12	3.71	1.26	0.76	0.34	1.09	2.56	2.25	2.41
23	6.65	3.26	3.43	5.86	3.66	1.17	0.76	0.37	1.04	1.76	1.35	3.71
24	4.35	3.21	3.43	5.09	3.6	3.6	0.72	1	1	1	1.35	24.57
25	4.12	2.99	3.37	4.47	3.54	1.17	2.25	0.4	1	0.88	1.26	35.93
26	3.89	3.54	3.26	4.53	3.54	1.21	0.65	0.34	1	0.88	1.21	20.09
27	4.35	2.99	3.15	78.06	3.43	1.17	0.65	0.34	0.92	0.8	1.21	9.18
28	3.71	2.25	3.54	107.23	3.26	1.13	0.84	0.76	0.88	0.88	1.17	7.19
29	3.6		10.68	53.04	3.94	1.17	0.57	0.37	0.92	0.72	1.91	5.6
30	3.49		13.2	35.93	3.32	1.04	0.54	0.37	0.92	0.8	48.36	4.6
31	3.37		8.03		2.56		0.54	0.3		0.68		4.41
Minima	1.96	2.25	2.1	4.47	2.56	1.04	0.54	0.3	0.19	0.5	0.72	2.41
Media	4.36	7.12	5.18	14.17	5.82	1.92	1.55	0.77	1.4	0.83	3.42	7.57
Massima	14.51	43.8	17.24	107.23	25.73	3.77	3.94	3.32	14.18	2.56	48.36	35.93

1° LOTTO – Piovene Rocchette – Valle dell'Astico

ARPAV Servizio Idrologico Regionale

Bollettino dei valori giornalieri massimi dati NON validati

Stazione Posina a Stancari CAE Sensore Portata 1 massima (m3/s) Valori dal 1 gennaio 2010 al 31 dicembre 2010

Giorno	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	ОТТ	NOV	DIC
1	4.3	2	3.6	4.84	3.1	2.51	2.67	1.62	2.05	3.6	139.38	6.65
2	4.18	1.96	3.43	5.6	3.26	2.3	2.56	1.76	1.96	3.37	86.6	6.38
3	4.06	1.91	3.37	5.09	6.38	2.77	2.3	1.62	1.96	3.1	50.22	4.84
4	3.89	2.1	3.37	4.41	46.52	2.15	2.25	1.57	1.91	2.83	31.74	5.09
5	3.71	2	3.37	4.3	46.07	2.05	2.15	1.62	1.86	19.36	20.82	4.18
6	3.66	2.05	3.32	4.12	44.25	2.05	2.15	1.53	1.81	11.61	15.86	4.12
7	3.66	2	4	4	21.93	2.72	2.05	1.57	1.96	6.12	13.53	4.53
8	3.71	1.96	3.71	4.06	13.53	2.2	1.96	1.48	1.96	4.53	14.18	14.18
9	6.65	1.91	2.56	4	9.48	1.91	2	2.2	1.91	4.18	13.85	14.85
10	6.38	1.91	3.89	3.94	9.48	1.91	1.86	1.48	1.76	4	13.2	11.3
11	6.38	2.56	2.36	4.06	8.31	1.81	1.86	1.57	1.71	3.89	11.92	7.75
12	4.84	1.91	2.25	4.3	9.77	1.81	2.05	1.48	1.67	3.77	10.07	6.12
13	4.53	1.76	2.15	3.71	8.89	3.54	1.81	4.24	1.67	3.66	8.31	6.38
14	4.18	1.86	2.15	3.54	7.75	1.81	1.76	13.85	1.67	3.77	7.47	4.53
15	4	1.81	2.2	3.6	7.19	2.56	1.76	50.22	1.62	3.89	7.75	4.3
16	3.83	1.76	2.1	3.26	6.38	5.6	1.71	11.3	1.62	3.04	78.59	4.24
17	3.77	1.81	2.1	3.1	5.34	14.85	1.76	4.84	1.62	3.37	44.25	4.12
18	3.6	1.86	2.05	3.54	4.6	10.07	1.81	4.24	1.76	2.99	24.19	4.06
19	3.37	5.6	2.05	3.83	4.35	4.84	1.71	3.89	3.54	2.72	24.19	3.94
20	3.1	5.6	2.05	3.49	4.24	8.31	1.67	3.94	1.81	3.26	19.36	4.18
21	3.04	4.12	2.05	3.49	4.18	7.75	1.62	3.66	2.77	2.61	30.1	3.77
22	2.99	3.71	3.54	3.49	4	6.38	1.57	3.43	1.86	2.36	40.25	3.83
23	2.99	3.89	3.43	3.43	3.94	4.84	1.62	3.26	1.67	2.3	26.51	82.3
24	2.41	3.49	3.66	3.43	3.89	4.24	2.77	3.37	1.91	2.56	17.94	91.51
25	2.3	3.26	3.66	3.49	3.77	4.06	1.57	2.56	13.85	25.34	13.85	40.25
26	3.37	3.77	6.12	3.43	3.66	3.83	1.57	2.41	4.6	22.67	11.3	24.19
27	2.1	3.83	4.53	3.37	4.12	3.71	1.48	2.36	4.47	7.19	9.77	15.86
28	2.15	3.66	4.24	3.43	3.54	3.6	2.99	2.25	4.47	5.86	8.6	11.61
29	2.15		4	3.21	3.26	3.37	2.77	2.25	4.41	4.53	7.75	9.77
30	3.1		6.65	3.15	2.77	3.21	3.54	2.2	3.77	4.47	6.92	7.75
31	2.1		8.03		2.72		1.67	2.05		87.68		6.38
Minima	2.1	1.76	2.05	3.1	2.72	1.81	1.48	1.48	1.62	2.3	6.92	3.77
Media	3.69	2.72	3.42	3.82	10.02	4.09	2.03	4.7	2.72	8.54	26.95	13.64
Massima	6.65	5.6	8.03	5.6	46.52	14.85	3.54	50.22	13.85	87.68	139.38	91.51