

Autostrada Brescia Verona Vicenza Padova SpA

AREA COSTRUZIONI AUTOSTRADALI

Via Flavio Gioia 71 37135 Verona tel. 0458272222 Fax 0458200051 Casella Postale 460M www.autobspd.it

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO Piovene Rocchette - Valle dell'Astico

PROGETTO DEFINITIVO

	CUP	G21B1 30006 60005
	WBS	B25.A31N.L1
ſ	COMMESSA	J16L1

COMMITTENTE

S.p.A. AUTOSTRADA BRESCIA VERONA VICENZA PADOVA
Area Costruzioni Autostradali

CAPO COMMESSA PER LA PROGETTAZIONE

Dott. Ing. Gabriella Costantini

PRESTATORE DI SERVIZI:
CONSORZIO RAFTIA

RAPPRESENTANTE: Dott. Ing. Alberto Scotti

RESPONSABILE DENL'INTÉGRAZIONE TRA LE LE STAZIO IL SPECIALISTICHE: Technital S.p.A. - Dott, Ing. Andrea Renso PROGETTAZIONE:

ELABORATO: OPERE D'ARTE MINORI

Cavalcavia

Cavalcavia via Colombara Relazione di calcolo Impalcato

	<u> </u>	
SCALA:		
NOME FIL	E:	J16L
CM	PF	ROGR

08 01 01 001 0

Rev.	Data	Descrizione	Redazione	Controllo	Approvazione	S
00	MARZO 2017	PRIMA EMISSIONE	3TI PROGETTI - DI SANZO	M. SORGE	S.L.POSSATI	N
01	GIUGNO 2017	REVISIONE PER VERIFICA	3TI PROGETTI - DI SANZO	M. SORGE	S.L.POSSATI	
02	LUGLIO 2017	RECEPIMENTO OSSERVAZIONI	3TI PROGETTI - PIERUCCI	M. SORGE	S.L.POSSATI	CI
						Ų

NOME FILE: J16L1_08_01_01_001_0103_0PD_02.dwg

CM. PROGR. FG. LIV. REV.
J16L1_08_01_01_001_0103_PD_02

IL PRESENTE DOCUMENTO NON POTRA' ESSERE COPIATO, RIPRODOTTO O ALTRIMENTI PUBBLICATO, IN TUTTO O IN PARTE, SENZA IL CONSENSO SCRITTO DELLA AUTOSTRADA BS-VR-VI-PD S.P.A., OGNI UTILIZZO NON AUTORIZZATO SARA' PERSEGUITO A NORMA DI LEGGE.
THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED OR PUBLISHED. EITHER IN PART OR IN ITS ENTIRETY, WITHOUT THE WRITTEN PERMISSION OF AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.P.A., UNAUTHORIZZED USE WILL BE PROSECULTE BY LAW.

AUTOSTRADA VALDASTICO A31 NORD 1° LOTTO PIOVENE ROCCHETTE – VALLE DELL'ASTICO

Committente:

Progettazione:

CONSORZIO RAETIA

PROGETTO DEFINITIVO

CAVALCAVIA VIA COLOMBARA

RELAZIONE DI CALCOLO IMPALCATO

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO – Piovene Rocchette – Valle dell'Astico

INDICE

1.	DESC	CRIZION	RE DELL OPERA	0
2.	Nor	MATIVA	A DI RIFERIMENTO	8
3.	CAR	ATTERIS	STICHE DEI MATERIALI	9
4.	Sofi	ΓWARE Ι	UTILIZZATI	11
	4.1.	Conve	enzioni generali per le verifiche e le analisi globali	12
5.	IMPO	OSTAZIO	ONI DI ANALISI E DELLE VERIFICHE	14
	5.1.	Analis	si della struttura composta	14
		5.1.1	Fasi	14
	5.2.	Dati g	generali delle sezioni di impalcato	16
		5.2.1	Viscosita' e ritiro (en 1992-1-1, en 1994)	16
		5.2.2	Larghezze collaboranti di soletta	18
		5.2.3	Caratteristiche sezioni di impalcato	19
		5.2.4	Proprietà geometrico-statiche	22
		5.2.5	Proprietà plastiche delle sezioni	23
6.	IMPA	ALCATO		25
	6.1.	Analis	si dei carichi	25
		6.1.1	Carichi permanenti strutturali (g ₁)	25
		6.1.2	Carichi permanenti portati (g ₂)	25
		6.1.3	Ritiro (e2) e Temperatura (e3)	26
		6.1.4	Cedimenti vincolari (ɛ₄)	26
		6.1.5	Carichi mobili (q ₁)	26
		6.1.6	Frenamento (q ₃)	28
		6.1.7	Vento (q ₅)	29
		6.1.8	Resistenze passive dei vincoli (q ₇)	31
		6.1.9	Urto di veicolo in svio (q ₈)	31
		6.1.10	Azione sismica	33
	6.2.	Comb	vinazioni di carico	35
		6.2.1	Combinazioni per gli SLU	35
		6.2.2	Combinazioni per lo SLE "respiro delle anime"	37
		6.2.3	Combinazioni per lo SLE di controllo delle tensioni	38
7.	Soli	LECITAZ	ZIONI DI CALCOLO	40

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO – Piovene Rocchette – Valle dell'Astico

	7.1.	Sollec	itazioni travi	41
		7.1.1	SLU fondamentale Fase 1 (g1.a, g1.b)	42
		7.1.2	SLU fondamentale Fase 2 (g2)	43
		7.1.3	SLU fondamentale Fase 3b (mobili)	44
		SLU f	ondamentale.Mmax e Mmin	45
		7.1.4	SLU fondamentale.Vmin-max	45
		7.1.5	SLS caratteristica.Mmax e Mmin	46
		7.1.6	SLS caratteristica.Vmax e Vmin	46
		7.1.7	SLS frequente.Mmax e Mmin	47
		7.1.8	SLS frequente. Vmax e Vmin	47
8.	VERI	FICHE D	DI RESISTENZA	48
	8.1.	Travi j	principali	48
		8.1.1	Generalita'	48
		8.1.2	Slu – resistenza delle sezioni	49
		8.1.3	Verifiche delle sezioni	51
		8.1.4	Riepilogo coefficienti di sfruttamento	51
		8.1.5	Sle – limitazioni delle tensioni	54
		8.1.6	Riepilogo dei coefficienti di sfruttamento	54
		8.1.7	S.L.E. – "web breathing"	54
9.	VERI	FICA CO	ONNESSIONE TRAVE SOLETTA	56
		9.1.1	Generalità	56
		9.1.2	Caratteristiche piolatura	61
		1.1.1	Verifica plastica S.L.U.	62
	9.2.	Verific	che a fatica	63
		9.2.1	Generalità	63
		9.2.2	Verifiche	69
	9.3.	Verific	ca di deformabilità	74
	9.4.	Travei	rsi	75
		9.4.1	Sollecitazioni	75
		9.4.2	Verifiche	76
	9.5.	Trave	di spina	78
		9.5.1	Sollecitazioni	78
		9.5.2	Verifiche	79

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO – Piovene Rocchette – Valle dell'Astico

10.	SOLETTA	80
	10.1. Analisi trasversale	80
	10.2. Combinazioni di carico	94
	10.3. Sollecitazioni	96
	10.3.1 Schema di carico 1 – zona interna soletta	96
	10.3.2 Schema di carico urto veicolo – zona interna soletta	99
	10.3.3 Schema di carico 1– zona di bordo soletta	100
	10.3.4 Schema di carico urto veicolo – zona di bordo soletta	103
	10.3.5 Schema di carico 2 – zona interna soletta	103
	10.3.6 Schema di carico 2 – zona bordo soletta	106
	10.4. Verifiche	110
	10.5. Verifica trasmissione sforzo di taglio fra le lastre predalles e la soletta gettata in opera	
11.	APPOGGI	129
12.	VALIDAZIONE MODELLO DI CALCOLO	130
	12.1. Verifica tensionale	133
13.	VALIDAZIONE MODELLO DI CALCOLO	135
	13.1. Tipi di analisi svolta	135
	13.2. Origine e caratteristiche dei codici di calcolo	135
	13.3. Affidabilità dei codici di calcolo	135
	13.4. Modalità di presentazione dei risultati	136
	13.5. Informazioni generali sull'eleborazione	136
	13.6. Giudizio motivato di accettabilità dei risultati	136

1. Descrizione dell'opera

Il cavalcavia oggetto della presente relazione di calcolo è ubicato alla progressiva 1+696.45 dell'autostrada Valdastico A31 Nord.

La sede stradale presenta due corsie di marcia da 3,75 m e banchine laterali da 0,50m ed interne. A tergo delle barriere è previsto un cordolo da 2,00 m.

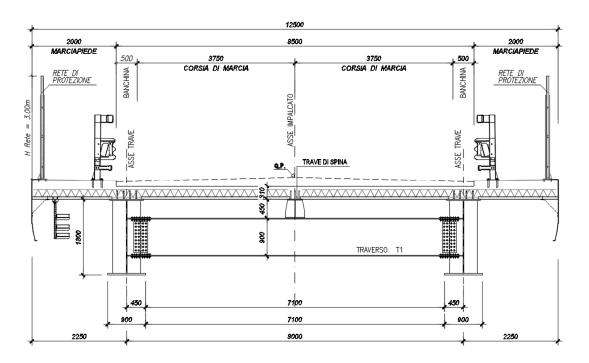


Immagine 1: Sezione trasversale impalcato.

L'impalcato in acciaio presenta un'unica luce tra gli appoggi pari a 36,00m e la tipologia strutturale è a via di corsa superiore. Le travi principali, saldate a doppio T e distanziate di 8,00 m, hanno un'altezza costante pari 1800mm.

Ad interasse costante di 4,00 m vengono posizionati i traversi (anch'essi in composizione saldata)

In corrispondenza di ciascun traverso è presente, su ciascuna trave, un irrigididente verticale interno all'anima. Solamente in corrispondenza degli appoggi sono presenti anche dei piatti singoli sul lato esterno dell'anima.

Al di sopra delle travi e dei traversi, in direzione perpendicolare all'asse d'impalcato, viene disposta una lastra predalle da 6 cm che funge da cassero a perdere per il getto della soletta in c.a. dello spessore minimo di 25 cm.

Al fine di contenere la luce delle predelle, in corrispondeza della mezzeria del trasverso è posta una trave di spina (a doppio T in composizione saldata) dipostasta lungo l'asse longitudinale dell'impalcato.

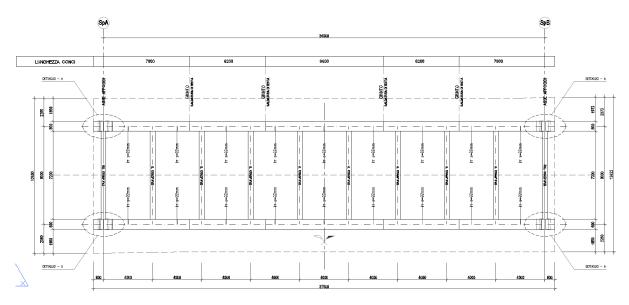


Immagine 2: Sezione trasversale impalcato.

Tutti gli elementi di carpenteria metallica dell'impalcato vengono realizzati in acciaio CorTen.

Lo schema di vincolo dell'impalcato prevede l'utilizzo di isolatori elastomerici in corrispondenza delle spalle. Tale schema di vincolo comporta l'adozione di giunto a doppio scorrimento (longitudinale e trasversale) in corrispondenza delle spalle.

2. Normativa di riferimento

La presente relazione è redatta in conformità con le prescrizioni di cui alle normative di seguito elencate:

L. $n^{\circ}1086$ 5 novembre 1971: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica.

D.M. 14/01/2008: "Norme tecniche per le costruzioni".

CIRCOLARE 02/02/2009 N 617: "Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al decreto ministeriale 14 gennaio 2008".

UNI EN 1993-1-1:2005: "Eurocodice 3: Progettazione delle strutture in acciaio – Parte 1-1: Regole generali e regole per gli edifici".

UNI EN 1993-1-5:2005: "Eurocodice 3: Progettazione delle strutture in acciaio – Parte 1-5: Elementi strutturali a lastra".

UNI EN 1993-1-9:2005: "Eurocodice 3: Progettazione delle strutture in acciaio – Parte 1-9: Fatica".

UNI EN 1993-2:2007: "Eurocodice 3: Progettazione delle strutture in acciaio – Parte 2: Ponti di acciaio".

UNI EN 1994-1-1:2005: "Eurocodice 4: Progettazione delle strutture composte acciaio-calcestruzzo – Parte 1-1: Regole generali e regole per gli edifici".

UNI EN 1994-2:2006: "Eurocodice 4: Progettazione delle strutture composte acciaio-calcestruzzo – Parte 2: Regole generali e per i ponti".

EUR 22898 *EN-2007*: "Commentary and worked examples to EN 1993-1-5 - Plated structural elements" – JRC European Commission, October 2007.

UNI EN 1993-5:2007: "Eurocodice 3 – Parte 5: Progettazione delle strutture di acciaio - Parte 5: Pali e palancole".

3. Caratteristiche dei materiali

Calcestruzzo per soletta

Classe di resistenza C32/40 Classe di esposizione XC4/XF4 Resistenza cubica caratteristica R_{ck}=40 MPa Resistenza cilindrica caratteristica $f_{ck}=32 \text{ MPa}$ Modulo elastico $E_c = 33346 \text{ MPa}$ Contenuto minimo di cemento 360 kg/mc Rapporto a/c 0,4 Classe di consistenza **S**4 Copriferro 60 mm Massima dimensione dell'aggregato 20 mm

Calcestruzzo per predalle

C32/40 Classe di resistenza Classe di esposizione XC4/XF4 Resistenza cubica caratteristica R_{ck} =40 MPa Resistenza cilindrica caratteristica $f_{ck}=32 \text{ MPa}$ $E_c = 33346 \text{ MPa}$ Modulo elastico Contenuto minimo di cemento 350 kg/mc 0,4 Rapporto a/c **S**4 Classe di consistenza Massima dimensione dell'aggregato 20 mm Copriferro* 25 mm

Acciaio per carpenteria metallica

 $\begin{array}{lll} \mbox{Acciaio per elementi saldati} & \mbox{S355J2W+N} \\ \mbox{Acciaio per elementi non saldati} & \mbox{S355J0W+N} \\ \mbox{Tensione caratteristica di snervamento} & \mbox{f}_{yk} = 355 \mbox{ MPa} \\ \mbox{Modulo elastico} & \mbox{E}_{s} = 210000 \mbox{ MPa} \end{array}$

Coefficiente di Poisson v= 0.3

Bulloni

Classe viti (secondo UNI EN 14399-4:2005)	10.9
Tensione di snervamento	900 MPa
Tensione di rottura	1000 MPa
CI 1 11 / 1 TDTT TDT 1 1000 1 000 f)	1.0

Classe dadi (secondo UNI EN 14399-4:2005)

Pioli

^{*} Elementi soggetti a procedura di verifica del copriferro che prevede la non accettazione di elementi non conformi.

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO – Piovene Rocchette – Valle dell'Astico

Tipo "Nelson" DIN 32500 – Materiale base ST 37-K DIN 17100 Resistenza a rottura acciaio del piolo

 $f_t = 450 \text{ MPa}$

Acciaio per strutture in c.a.

Classe acciaio B450C
Tensione caratteristica di rottura f_{tk} = 540 MPa
Tensione caratteristica di snervamento f_{yk} = 450 MPa

4. Software utilizzati

Si sono utilizzati i seguenti software di calcolo:

- *Microsoft Excel* [®] della Microsoft Corporation (verifiche a livello sezionale e varie);
- RC-SEC della Geo Stru software (verifiche a livello sezionale);
- *VcaSlu* Di Piero Gelfi (verifiche a livello sezionale);
- *SAP2000* ® della Computers and Structures, Inc. (determinazione di un'aliquota delle sollecitazioni agenti sulla paratia di pali e sull'impalcato);
- *PONTI EC4* della Alhambra s.r.l. (verifiche travi in acciaio a sezione composta)

L'analisi della struttura viene eseguita tramite modellazione con il metodo degli elementi finiti, adottando il software "SAP2000", fornito da C.S.I. Computers and Structure.

Per le verifiche delle sezioni in cemento armato si utilizza il software RC-SEC.

Per le verifiche delle sezioni acciaio calcestruzzo si adotta il programma "Ponti EC4" sviluppato e testato da Alhambra s.r.l.. Il programma opera sulla base di un database di sezioni opportunamente sincronizzato con quello del sistema ad elementi finiti, ed effettua le verifiche di resistenza e di stabilità locale di membrature in acciaio ed acciao-cls sulla base dei criteri contenuti negli Eurocodici di riferimento (EN 1993, EN 1994), e in osservanza a quanto previsto dalle NTC.

In particolare, la procedura opera, per ciascuna sezione, le seguenti verifiche:

- calcolo proprietà geometrico - statiche delle sezioni nelle varie fasi considerate

S.L.U.:

- preclassificazione e classificazione delle sezioni
- pressoflessione (interazione N/M): analisi e verifica plastica di ciascuna sezione, e deduzione del rapporto di sfruttamento plastico (sezioni classe 1 e 2)
- pressoflessione (interazione N/M): Analisi tensionale elastica su sezione lorda, con calcolo del rapporto di sfruttamento elastico (sezioni di classe 3)

- pressoflessione (interazione N/M): Analisi tensionale elastica su sezione lorda e sezione efficace (depurata dagli effetti del local buckling), con calcolo del rapporto di sfruttamento elastico (sezioni

di classe 4)

- taglio: verifica a taglio plastico, includendo i fenomeni di shear buckling
- interazione pressoflessione taglio (N-M-V): deduzione del rapporto di sfruttamento finale della sezione
- verifica S.L.U. delle piolature
- deduzione della sovratensione nelle piolature per effetto della plasticizzazione per flessione

S.L.E.:

- verifica elastica S.L. delle tensioni in esercizio
- verifica Web Breathing
- fessurazione soletta
- verifica elastica piolature

4.1. Convenzioni generali per le verifiche e le analisi globali

Le unità di misura sono quelle relative al sistema internazionale, ovvero:

lunghezze:

forze - coppie:

N, Nm

tensioni: N/mm2

Per quanto riguarda le convenzioni di segno, si considerano, in generale, positive le trazioni.

Per quanto riguarda le azioni interne nell'impalcato, salvo diversamente specificato, si indicherà con:

Fx azione assiale

Fy azione tagliante agente nel piano orizzontale

Fz azione tagliante agente nel piano verticale

Mx momento torcente

My momento flettente agente nel piano verticale

Mz momento flettente agente nel piano orizzontale

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO – Piovene Rocchette – Valle dell'Astico

Le verifiche dell'impalcato verranno eseguite esclusivamente con riferimento alle caratteristiche Fx, Fz, My, dal momento che risultano non significativi i contributi Fy, Mx ed Mz.

Le notazioni impiegate sono conformi a quelle impiegate negli Eurocodici ed indicate nei relativi capitoli introduttivi.

In particolare, per le sollecitazioni verrà impiegata anche la seguente notazione alternativa:

M (Mf) in luogo di My

V in luogo di Fz

T in luogo di Mx

Nell'ambito dell'adozione del sistema di riferimento elementare, si precisa che le azioni flettenti di trave sono da intendersi:

- POSITIVE: se le fibre tese sono rivolte all'estradosso trave

- NEGATIVE: se le fibre tese sono rivolte all'intradosso trave

5. Impostazioni di analisi e delle verifiche

5.1. Analisi della struttura composta

La struttura composta acciaio-calcestruzzo verrà analizzata secondo il metodo classico adottato per questi tipi di strutture, che prevede il calcolo delle caratteristiche geometrico-statiche delle varie sezioni sulla base di una sezione equivalente, in cui la porzione in calcestruzzo viene "omogeneizzata" ad acciaio in funzione del rapporto Es/Ec(t), essendo Ec(t) il modulo elastico del calcestruzzo valutato in funzione del tipo di carico applicato, tenendo conto, ove opportuno, dei fenomeni a lungo termine.

Viene pertanto effettuata l'analisi separata e conseguente sovrapposizione dei quadri tensionali afferenti alle varie "fasi" attraversate dalla struttura, ciascuna delle quali si differenzia dalle altre per lo schema statico di analisi e/o per la proprietà delle sezioni.

5.1.1 Fasi

Le caratteristiche geometrico-statiche delle sezioni di impalcato si differenziano in funzione delle caratteristiche della soletta in c.a., per la quale verranno considerati gli effetti dovuti alla viscosità, sulla base di coefficienti di omogeneizzazione acciaio/calcestruzzo opportunamente modificati. Nel caso più generale, si studieranno pertanto le seguenti fasi:

- fase 1: assenza soletta (fase iniziale);

- fase 2a: presenza della soletta, con modulo elastico a lungo termine, valutato per cari-

chi permanenti applicati ad istante successivo al getto, e di intensità costante

nel tempo (es. permanenti di finitura);

- fase 2b: presenza della soletta, con modulo elastico a lungo termine, valutato per ca-

richi permanenti applicati ad istante t₁ immediatamente dopo il getto, ed aventi svi-

luppo nel tempo parallelo a quello dei fenomeni differiti (ritiro);

- fase 2c: presenza della soletta, con modulo elastico a lungo termine, valutato per coa-

zioni e/o cedimenti vincolari imposti all'istante t₁ dal il getto, ed aventi svi-

luppo nel tempo costante.

fase 3: presenza della soletta, con modulo elastico valutato a breve termine

Per il caso in esame non è prevista l'applicazione di coazioni imposte, pertanto la fase "2c" non verrà considerata.

Per completezza, e viste le incertezze connesse alla deduzione dei parametri reologici del calcestruzzo, le verifiche della travata di impalcato verranno effettuate sia con riferimento al lungo termine (analisi "long term"), sia con riferimento al "breve termine" (analisi "short term"). Nel secondo caso, si trascureranno totalmente i fenomeni differiti (ritiro, viscosità).

La tabella seguente riporta, fase per fase, i vari contributi di carico considerati nei due tipi di analisi.

analisi long term

fase	carico	sezione resistente	connessione
1	peso proprio acciaio+soletta	sezione metallica	non attiva
2a	carichi permanenti portati	sez. omog. con n=nL perm.	attiva
2b 2b	ritiro cedimenti vincolari	sez. omog. con n=nL ritiro	attiva
3 3 3	carichi mobili variazioni temriche vento	sez. omog. con n=n0	attiva

analisi short term

fase	carico	sezione resistente	connessione
1	peso proprio acciaio+soletta	sezione metallica	non attiva
3	carichi permanenti portati		attiva
3	carichi mobili	sez. omog. con	
3	variazioni temriche	n=nO	attiva
3	vento		

5.2. Dati generali delle sezioni di impalcato

5.2.1 Viscosita' e ritiro (en 1992-1-1, en 1994)

Il calcolo dei coefficienti di omogeneizzazione acciaio-cls viene condotto secondo le indicazioni riportate nella UNI-EN 1994-2:2006.

Caratteristiche del cls a tempo zero

Resistenza a compressione caratteristica, f _{ck} (N/mm ²)	32.00
Resistenza a compressione media, $f_{cm} = f_{ck} + 8$ (N/mm ²)	40.00
Modulo elastico secante, $E_{cm} = 22000 (f_{cm}/10)^{0.3} k (N/mm^2)$	33 345.76
Coefficiente di correzione, k	1.00
Tipo di aggregati presenti nell'impasto	Quarziti
Classe del cemento	N

Coefficienti di omogeneizzazione

Moduli elastici Longitudina	ali	Moduli elastici Tangenziali	
nE a tempo 0	6.298	nG a tempo 0	5.813
nE(t,t ₀) - Permanenti	17.424	nG(t,t ₀) - Permanenti	16.084
nE(t,t ₀) - Ritiro	13.737	nG(t,t ₀) - Ritiro	12.681
$nE(t,t_0)$ - Def. imposte	26.588	$nG(t,t_0)$ - Def. imposte	24.543

Tempo e ambiente

6
28
6
6
36 500
520
3 276 000.00
12 600.00
75

Coefficiente di viscosita' φ(t,t₀) e modulo elastico E_{cm} al tempo "t"

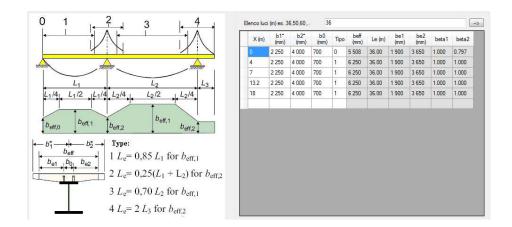
Coefficiente di viscosita' $\phi(t,t_0) = \phi_0 \beta_c(t,t_0) =$ al momento dell'applicazione dei carichi permanenti	1.606
al momento dell'applicazione del ritiro	2.148
al momento dell'applicazione delle deformazioni imposte	2.148
Coefficiente nominale di viscosita', $\phi_0 = \phi_{RH} \beta_c(f_{cm}) \beta_c(t_0) =$	
al momento dell'applicazione dei carichi permanenti	1.621
al momento dell'applicazione del ritiro	2.168
al momento dell'applicazione delle deformazioni imposte	2.168
Coefficiente per l'evoluzione della viscosita' nel tempo, $\beta_c(t_0) = 1/(0.1 + t_0^{0.20})$	
al momento dell'applicazione dei carichi permanenti	0.488
al momento dell'applicazione del ritiro	0.653
al momento dell'applicazione delle deformazioni imposte	0.653
Eta' del calcestruzzo corretta in funzione della tipologia di cemento, $t_0 = t_0 \left[9/(2 + t_0^{-1.2}) + 1 \right]^{\alpha} >= 0.5$	
al momento dell'applicazione dei carichi permanenti	28.00

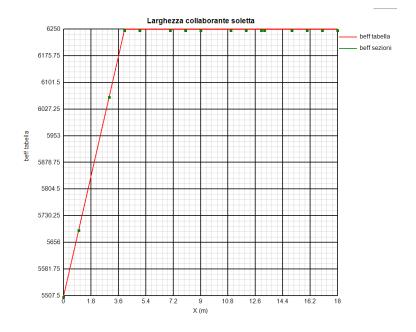
al momento dell'applicazione del ritiro al momento dell'applicazione delle deformazioni imposte	6.00 6.00
Coefficiente per la variabilita' della viscosita' nel tempo, $\beta_c(t,t_0) = \left[(t-t_0)/(\beta_H + t-t_0) \right]^{0.30}$ al momento dell'applicazione dei carichi permanenti al momento dell'applicazione del ritiro al momento dell'applicazione delle deformazioni imposte	0.991 0.991 0.991
Modulo elastico al tempo "t", $E_{cm}(t,t_0)=E_{cm}/[1+\psi^*\phi(t,t_0)]$ al momento dell'applicazione dei carichi permanenti al momento dell'applicazione del ritiro al momento dell'applicazione delle deformazioni imposte	12 052 15 287 7 898
 ψ = al momento dell'applicazione dei carichi permanenti al momento dell'applicazione del ritiro al momento dell'applicazione delle deformazioni imposte 	1.100 0.550 1.500
Altri dati: Coefficiente che tiene conto dell'umidita', ϕ_{RH} = 1 + [(1-RH/100)/(0.1h ₀ ^{1/3}) α_1] α_2 Coefficiente per la resistenza del cls, α_1 =(35/f _{cm}) ^{0.7} per f _{cm} >35 Mpa oppure α_1 =1 per f _{cm} <=35 Mpa Coefficiente per la resistenza del cls, α_2 =(35/f _{cm}) ^{0.2} per f _{cm} >35 Mpa oppure α_2 =1 per f _{cm} <=35 Mpa Coefficiente per la resistenza del cls, β_c (f _{cm}) = 16.8/f _{cm} ^{0.5} Coefficiente per il tipo di cemento, α = Coefficiente che tiene conto dell'umidita', β_H = 1.5 [1+(0.012 RH) ¹⁸] h ₀ + 250 α_3 <= 1500 α_3 Coefficiente per la resistenza del cls, α_3 =(35/f _{cm}) ^{0.5} per f _{cm} >35 Mpa oppure α_3 =1 per f _{cm} <=35 Mpa	1.249 0.911 0.974 2.656 0 1 131 0.935

<u>Deformazione di ritiro ε_s (t,t₀)</u>

```
\epsilon_{\text{s}}\left(t,t_{0}\right)=\epsilon_{\text{cd}}\left(t\right)+\epsilon_{\text{ca}}\left(t\right)=0.000270
```

Dove:


Deformazione dovuta al ritiro per essiccamento, $\varepsilon_{cd}(t) = \beta_{ds}(t,t_s) k_h \varepsilon_{cd,0} =$ Coeff. per la variabilita' della deformazione nel tempo, $\beta_{ds}(t,t_s) = (t-t_s)/[(t-t_s)+0.04(h_0^3)^{0.5}] =$	0.000215 0.987
Parametro che dipende da h_0 (vedi prospetto seguente), $k_h =$	0.70
Deformazione di base, $\varepsilon_{cd,0} = 0.85 \left[(220 + 110\alpha_{ds1})^* \exp(-\alpha_{ds2} * f_{cm} / f_{cm0}) \right] 10^{-6} \beta_{RH} =$	0.000311
$\beta_{RH} = 1.55 [1-(RH/RH0)^3] =$	0.896
$f_{cm0} =$	10 Mpa
RH0 =	100%
Coefficiente per il tipo di cemento, α_{ds1}	4
Coefficiente per il tipo di cemento, α_{ds2}	0.12
Deformazione dovuta al ritiro autogeno, ε_{ca} (t) = β_{as} (t) ε_{caoo} =	0.0000550
$ \beta_{as}(t) = 1-\exp(-0.2t^{0.5}) = $ $ \varepsilon_{caoo} = 2.5(f_{ck}-10) \cdot 10^{-6} = $	1.00
$\varepsilon_{\text{caoo}} = 2.5(f_{\text{ck}} - 10) \cdot 10^{-6} =$	0.0000550


Valori di k_h

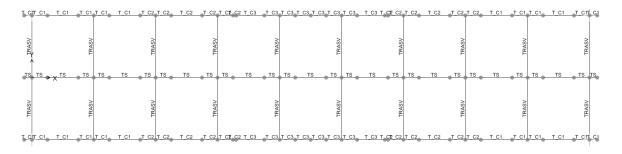
h_0	k_h
100	1.00
200	0.85
300	0.75
>=500	0.70

5.2.2 Larghezze collaboranti di soletta

Le larghezze collaboranti di soletta vengono valutate sulla base dei criteri contenuti in EN 1994-2, punto 5.4.1.2 (NTC 2008, punto 4.3.2.3.), e richiamati nella figura seguente.

5.2.3 Caratteristiche sezioni di impalcato

Le travi principali sono suddivise in conci. Le sezioni verificate, sono univocamente determinate da una sigla formata dal nome del concio, dal numero dell'elemento finito del modello globale di calcolo. Per tutti i conci che formano le travate sono state analizzate oltre alle sezioni di inizio, e fine concio, anche svariate sezioni intermedie fornendo di fatto una verifica senza soluzione di continuità. Nella tabella seguente si riporta in forma tabellare la posizione di ogni sezione, le dimensioni delle lamiere, l'armatura in soletta la larghezza efficace della soletta ed il numero e tipo di pioli.


Nella tabella non figurano le grandezze costanti: d pioli=22mm, h pioli=220 mm, h pred=60 mm

Per tutte le sezioni si riportano gli esiti delle verifiche in forma grafica e tabellare; per le sezioni più significative, ovvero quelle per le quali si hanno le condizioni più sfavorevoli nei vari SL, si riportano anche dei report di verifica dettagliati.

5.2.3.1 Geometria travi metalliche

5.2.3.1.1 <u>Travi principali</u>

C1-C5	C2-C4	СЗ		
appoggio di estremi- tà	campata	campata		
1800	1800	1800	mm	altezza
800	800	800	mm	larghezza ala superiore
30	40	40	mm	spessore ala superiore
0	0	0	mm	larghezza rinforzo ala sup
0	0	0	mm	spessore rinforzo ala superiore
1730	1700	1685	mm	altezza anima
20	18	16	mm	spessore anima
0	800	800	mm	larghezza rinforzo ala inf
0	20	35	mm	spessore rinforzo ala inf
900	900	900	mm	larghezza ala inferiore
40	40	40	mm	spessore ala inferiore
94600	114600	122960	mm ²	Area trave
791.5	753.3	683.4	mm	distanza baricentro dal bordo inferiore
5.42E+10	6.895E+10	7.275E+10	mm ⁴	momento d'inerzia baricentrico
800	800	800	mm	larghezza equi piatto sup
30	40	40		Spessore
20	18	16		Spessore
900	867	853		larghezza equi piatto inf
40	60	75	mm	Spessore
	appoggio di estremità 1800 800 30 0 1730 20 0 900 40 94600 791.5 5.42E+10 800 30 20 900	appoggio di estremità campata 1800 1800 800 800 30 40 0 0 1730 1700 20 18 0 800 0 20 900 900 40 40 94600 114600 791.5 753.3 5.42E+10 6.895E+10 800 800 30 40 20 18 900 867	appoggio di estremità campata campata 1800 1800 1800 800 800 800 30 40 40 0 0 0 0 0 0 1730 1700 1685 20 18 16 0 800 800 0 20 35 900 900 900 40 40 40 94600 114600 122960 791.5 753.3 683.4 5.42E+10 6.895E+10 7.275E+10 800 800 800 30 40 40 20 18 16 900 867 853	appoggio di estremità campata campata 1800 1800 1800 mm 800 800 mm 30 40 40 mm 0 0 0 mm 1730 1700 1685 mm 20 18 16 mm 0 20 35 mm 900 900 900 mm 40 40 40 mm 94600 114600 122960 mm² 791.5 753.3 683.4 mm 5.42E+10 6.895E+10 7.275E+10 mm⁴ 800 800 800 mm 30 40 40 mm 20 18 16 mm 900 867 853 mm

Modello Sap - Travi -

AUTOSTRADA VALDASTICO A31 NORD

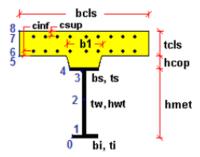
1° LOTTO – Piovene Rocchette – Valle dell'Astico

Input Ponti EC4

Sections	X (m)	hs (mm)	bsup (mm)	tsup (mm)	hw (mm)	tw (mm)	binf (mm)	tinf (mm)	tcls (mm)	hcop (mm)	beff (mm)	Fisup (mm)	pbsup (mm)	csup (mm)	Fiinf (mm)	pbinf (mm)	cinf (mm)	d pioli (mm)	h pioli (mm)	-
A_T1i	0.000	1 800	800	30	1 730	20	900	40	310	0	5 508	16	200	30	16	200	80	22	220	25
A_T1f	1.000	1 800	800	30	1 730	20	900	40	310	0	5 693	16	200	30	16	200	80	22	220	25
A_T2i	1.000	1 800	800	30	1 730	20	900	40	310	0	5 693	16	200	30	16	200	80	22	220	25
A_T2f	3.000	1 800	800	30	1 730	20	900	40	310	0	6 064	16	200	30	16	200	80	22	220	25
A_T3i	3.000	1 800	800	30	1 730	20	900	40	310	0	6 064	16	200	30	16	200	80	22	220	25
A_T3f	4.000	1 800	800	30	1 730	20	900	40	310	0	6 250	16	200	30	16	200	80	22	220	25
A_T4i	4.000	1 800	800	30	1 730	20	900	40	310	0	6 250	16	200	30	16	200	80	22	220	25
A_T4f	5.000	1 800	800	30	1 730	20	900	40	310	0	6 250	16	200	30	16	200	80	22	220	25
A_T5i	5.000	1 800	800	30	1 730	20	900	40	310	0	6 250	16	200	30	16	200	80	22	220	25
A_T5f	7.000	1 800	800	30	1 730	20	900	40	310	0	6 250	16	200	30	16	200	80	22	220	25
B_T6i	7.000	1 800	800	40	1 700	18	867	60	310	0	6 250	16	200	30	16	200	80	22	220	20
B_T6f	8.000	1 800	800	40	1 700	18	867	60	310	0	6 250	16	200	30	16	200	80	22	220	20
B_T7i	8.000	1 800	800	40	1 700	18	867	60	310	0	6 250	16	200	30	16	200	80	22	220	20
B_T7f	9.000	1 800	800	40	1 700	18	867	60	310	0	6 250	16	200	30	16	200	80	22	220	20
B_T8i	9.000	1 800	800	40	1 700	18	867	60	310	0	6 250	16	200	30	16	200	80	22	220	20
B_T8f	11.000	1 800	800	40	1 700	18	867	60	310	0	6 250	16	200	30	16	200	80	22	220	20
B_T9i	11.000	1 800	800	40	1 700	18	867	60	310	0	6 250	16	200	30	16	200	80	22	220	20
B_T9f	12.000	1 800	800	40	1 700	18	867	60	310	0	6 250	16	200	30	16	200	80	22	220	20
B_T10i	12.000	1 800	800	40	1 700	18	867	60	310	0	6 250	16	200	30	16	200	80	22	220	20
B_T10f	13.000	1 800	800	40	1 700	18	867	60	310	0	6 250	16	200	30	16	200	80	22	220	20
B_T11i	13.000	1 800	800	40	1 700	18	867	60	310	0	6 250	16	200	30	16	200	80	22	220	20
B_T11f	13.200	1 800	800	40	1 700	18	867	60	310	0	6 250	16	200	30	16	200	80	22	220	20
C_T12i	13.200	1 800	800	40	1 685	16	853	75	310	0	6 250	16	200	30	16	200	80	22	220	20
C_T12f	15.000	1 800	800	40	1 685	16	853	75	310	0	6 250	16	200	30	16	200	80	22	220	20
C_T13i	15.000	1 800	800	40	1 685	16	853	75	310	0	6 250	16	200	30	16	200	80	22	220	20
C_T13f	16.000	1 800	800	40	1 685	16	853	75	310	0	6 250	16	200	30	16	200	80	22	220	20
C_T14i	16.000	1 800	800	40	1 685	16	853	75	310	0	6 250	16	200	30	16	200	80	22	220	20
C_T14f	17.000	1 800	800	40	1 685	16	853	75	310	0	6 250	16	200	30	16	200	80	22	220	20
C_T15i	17.000	1 800	800	40	1 685	16	853	75	310	0	6 250	16	200	30	16	200	80	22	220	20
C_T15f	18.000	1 800	800	40	1 685	16	853	75	310	0	6 250	16	200	30	16	200	80	22	220	20

5.2.3.1.2 <u>Traversi</u>

Sections	X (m)	hs (mm)	bsup (mm)	tsup (mm)	hw (mm)	tw (mm)	binf (mm)	tinf (mm)	d pioli (mm)	h pioli (mm)	n pioli (/m)
Traverso_TIPO	0	900	400	20	860	12	500	20	0	0	0


5.2.4 Proprietà geometrico-statiche

Le proprietà geometrico statiche delle sezioni lorde di impalcato vengono valutate dal programma di verifica PontiEC4 e sono riportate in forma tabellare per tutte le sezioni verificate.

Tutti i dati indicati sono espressi in mm e sono riferiti alla trave metallica singola, con relativa porzione di soletta collaborante.

Per i dati relativi a ciascuna riga, si rimanda alla legenda ed alla figura riportate di seguito.

A	Area sezione					
ZG	Distanza baricentro da intradosso					
J_{y}	Inerzia verticale					
J_z	Inerzia orizzontale					
$\mathbf{W}_{\mathrm{y,0}}$	Modulo resistenza lembo inf. piatt. inferiore					
$\mathbf{W}_{\mathbf{y},1}$	Modulo resistenza lembo sup piatt. inferiore					
$W_{y,3}$	Modulo resistenza lembo inf. piatt. superiore					
$W_{y,4}$	Modulo resistenza lembo sup. piatt. superiore					
$W_{y,5}$	Modulo resistenza lembo inferiore soletta in c.a.					
$W_{y,6}$	Modulo resistenza layer inferiore armatura					
$\mathbf{W}_{\mathrm{y,7}}$	Modulo resistenza layer superiore armatura					
$W_{y,8}$	Modulo resistenza lembo superiore soletta in c.a.					
$S_{y,1}$	Momento statico attacco anima/piatt. inferiore					
$S_{y,2}$	Momento statico rispetto baricentro					
$egin{array}{c} \mathbf{S_{y,2}} \ \mathbf{S_{y,3}} \end{array}$	Momento statico attacco anima/piatt. superiore					
$S_{y,4}$	Momento statico interfaccia trave/soletta					
e	Eccentricità tra baricentro globale e linea d'azione N					

5.2.5 Proprietà plastiche delle sezioni

Ai fini della classificazione e delle verifiche sezionali, vengono valutate le proprietà plastiche di base delle sezioni, con il tracciamento dei domini N/M rispettivamente per la sezione completa e per la sezione formata dalle sole flange in acciaio. Le proprietà vengono sistematicamente valutate per tutte le sezioni considerate nelle verifiche (cfr. mappa delle sezioni ai punti precedenti).

Per la valutazione di N_{pl} e M_{pl} si seguono i criteri contenuti in EN 1994-2, cap. 6.2.1.2. (4.3.2.1.2. delle NTC 2008).

Il calcolo di M_{pl} viene effettuato mediante semplici considerazioni di equilibrio delle forze plastiche sviluppate dai singoli elementi componenti la sezione, e della eventuale azione assiale concomitante, sotto opportune ipotesi, verificate a posteriori, riguardanti la posizione dell'asse neutro plastico.

In generale, quindi, indicato con:

 $N_{abf} = t_{inf} x b_{inf} x f_{vinf} / \gamma_{m0}$ azione assiale plastica sviluppabile dalla piattabanda inferiore;

 $N_{aweb} = t_{web} \times h_{web} \times f_{vweb} / \gamma_{m0}$ azione assiale plastica sviluppabile dalla anima;

 $N_{atf} = t_{sup} \; x \; b_{sup} \; \; x f_{ysup} \, / \, \gamma_{m0}$ azione assiale plastica sviluppabile dalla piattabanda superiore;

 $N_{c1} = 0.85 \text{ x } f_{ck} \text{ x } b_{eff} \text{ x } t_{c1} / \gamma_c$ azione assiale plastica sviluppabile dal layer di cls (di spessore pari a t_{c1}) compreso tra il layer superiore di armatura e l'estradosso della soletta (agente solo a compressione);

 $N_{c2} = 0.85 \text{ x } f_{ck} \text{ x } b_{eff} \text{ x } t_{c2} / \gamma_c$ azione assiale plastica sviluppabile dal layer di cls (di spessore pari a t_{c2}) compreso tra i due layers di armatura (agente solo a compressione);

 $N_{c3} = 0.85 \text{ x } f_{ck} \text{ x } b_{eff} \text{ x } t_{c3} / \gamma_c$ azione assiale plastica sviluppabile dal layer di cls (di spessore pari a t_{c3}) compreso tra la piattabanda superiore e il layer di armatura inferiore (agente solo a compressione);

 $N_{layer1} = A_{slinf} x f_{yk} / \gamma_s$ azione assiale plastica sviluppabile dal layer inferiore di armatura (di complessiva A_{slinf});

 $N_{layer2} = A_{slsup} \ x \ f_{yk} / \gamma_s$ azione assiale plastica sviluppabile dal layer superiore di armatura (di complessiva A_{slsup});

N_e azione assiale esterna, agente in corrispondenza del baricentro geometrico della sezione;

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO - Piovene Rocchette - Valle dell'Astico

f_{yinf}, f_{ysup}, f_{yweb}

resistenze caratteristiche di snervamento dell'acciaio componente rispettivamente la piattabanda inferiore, la piattabanda superiore e l'a-

nima;

La posizione dell'asse neutro plastico, per un dato segno dell'azione flettente, è immediatamente e univocamente determinabile dall'esame di relazioni simili alla seguente, esplicitata per il caso di momento flettente negativo (soletta compressa), e asse neutro plastico disposto nell'anima:

$$z_{pl} = t_{inf} + (-N_e + N_{layer1} + N_{layer2} + N_{atf} - N_{abf} + N_{aweb})/(2 t_{web} f_{yweb} \square_{m0})$$

Si evidenzia inoltre che:

- l'azione assiale plastica sviluppata dal calcestruzzo in compressione viene valutata sulla base di uno stress block equivalente, di altezza pari a quella effettiva, ma di intensità ridotta all'85 % (cfr. EN 1994-2, cap. 6.2.1.2.(1), punto d),
- le armature in compressione vengono considerate, al fine di evitare possibili punti di discontinuità nella ricerca di a.n.p. per azione assiale variabile, rinunciando all'ipotesi semplificativa contemplata da EN 1994-2, cap. 6.2.1.2.(1), punto c
- per i medesimi motivi indicati al punto precedente, i layers di armatura vengono modellati con "strisce" di spessore equivalente.

Il tracciamento dei domini viene effettuato per punti, valutando di volta in volta la posizione dell'asse neutro plastico e il valore di M_{pl} sotto l'azione dell'azione assiale N incrementata da 0 (flessione semplice, positiva o negativa) fino a +/- N_{pl} con incrementi pari a $N_{pl}/10$.

6. IMPALCATO

6.1. Analisi dei carichi

6.1.1 Carichi permanenti strutturali (g₁)

Il peso dell'acciaio viene calcolato automaticamente dal software ad elementi finiti assegnando le proprietà delle sezioni ed il peso di volume dell'acciaio. Quest'ultimo viene incrementato del 15 % per tenere conto del peso delle parti di carpenteria non modellate, quali irrigidimenti, piastrame, pioli, bulloni, saldature.

 $G1_a$ - Peso acciaio = $78.5*1.15 \text{ kN/m}^3$

G1_b Peso soletta (spessore medio 0,31 m)= $25*0,31 = 7,75 \text{ kN/m}^2$

	Trave in SX	Trave di spina	Trave in DX	
Area di influenza	4.25	4	4.25	m
G1.b_Peso soletta	33	31	33	kN/m

6.1.2 Carichi permanenti portati (g₂)

Vengono considerati i seguenti carichi permanenti portati

Cordoli esterni = 25*0,15*2,0 = 6,75 kN/m

Pavimentazione = 3.00 kN/m^2

Barriere = 1,50 kN/m

Reti = 1.0 kN/m

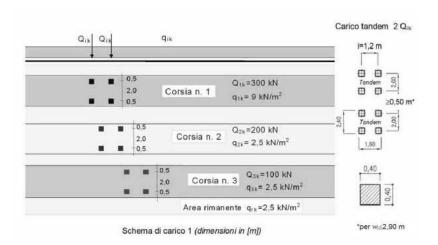
G2	Trave in SX	Trave di spina	Trave in DX	
Pavimentazione	6.75	12	6.75	kN/m
Cordoli	7.5	0	7.5	kN/m
Barriere + Reti	2.5	0	2.5	kN/m
	16.75	12	16.75	kN/m

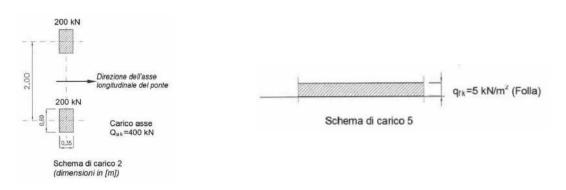
6.1.3 Ritiro (e2) e Temperatura (e3)

Ritiro:

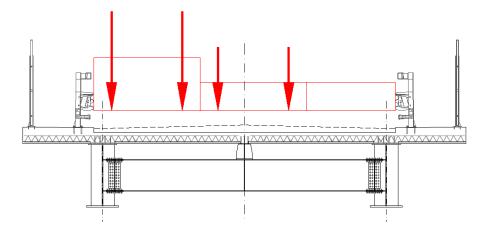
Si assume una deformazione longitudinale da ritiro pari a $\cdot r = 0.00027$. La coazione tra calcestruzzo impedito di ritirarsi e la sezione mista si traduce in uno sforzo di trazione agente sulla sola soletta di calcestruzzo che si aggiunge ad una pressoflessione agente, invece, sull'intera sezione composta acciaio-calcestruzzo.

Temperatura:

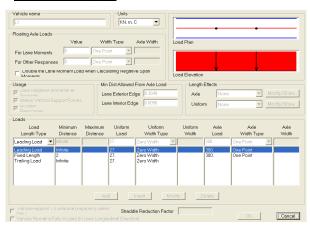

I criteri per la determinazione degli effetti della temperatura sono contenuti nelle NTC cap. 3.5 (rif. Eurocodici EN 1991-1-5). Dal momento che le NTC non riportano prescrizioni specifiche per il calcolo degli effetti della temperatura (in particolare i gradienti termici) per i ponti si farà riferimento ai criteri contenuti negli Eurocodici. L'impalcato si considera soggetto ad un gradiente termico tra soletta in calcestruzzo e travi metalliche pari a ·10 °C, utilizzando l'approccio n.2 riportato negli Eurocodici (EN 1991-1-5 cap. 6.1.4.2).


6.1.4 Cedimenti vincolari (ε_4)

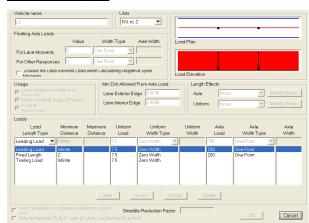
Essendo l'impalcato isostatico non saranno considerati cedimenti in prossimità degli appoggi di spalla.


6.1.5 Carichi mobili (q₁)

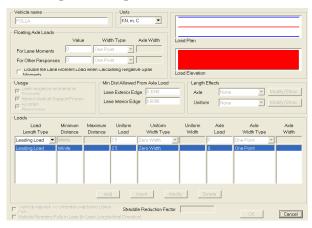
I carichi mobili disposti sull'impalcato in maniera tale da massimizzare gli effetti sui vari elementi. Per le verifiche di tutte le membrature è stato utilizzato lo schema di carico 1 previsto dalla normativa, mentre solamente per le verifiche locali della soletta è stato utilizzato anche lo schema di carico 2, costituito da un singolo asse del peso complessivo di 400 kN. Sui marciapiedi è stato considerato lo schema di carico 5, con valore di combinazione 2,50 kN/m² (Gruppo di azioni 1).



Di seguito si riportano le disposizioni relative allo schema di carico 1 utilizzate per determinare le sollecitazioni sulle travi principali e sui traversi.



Sono stati considerati i modelli di carico di normativa, descritti nelle seguenti figure:


Corsia N°1 (L1):

Corsia N°2 (L2):

2.5 kPa, per folla e parte rimanente:

Il carico da folla è stato applicato su una larghezza costante di 1m

Nella tabella seguente, si riporta la larghezza delle corsie, della parte rimanente e della folla. L'eccentricità è valutata rispetto all'asse della pila.

		Larghezza piattaforma (m)									
		Larghezza	8.5								
		Corsia 1	Corsia 2	Corsia 3	Parte rim	Folla sx	Folla dx				
Í	b(m)	3	3	0	2.5	1	1				

6.1.6 Frenamento (q₃)

L'azione longitudinale di frenamento o di accelerazione per i ponti di I^ categoria viene calcolata come

$$180kN \le q_3 = 0.6 \cdot \left(2 \cdot Q_{1k}\right) + 0.10 \cdot q_{1k} \cdot w_1 \cdot L \le 900kN$$

Tale forza è stata applicata a livello della pavimentazione come forza uniformemente distribuita. Tale azione è variabile in funzione della lunghezza del viadotto, limitata ad un massimo di 900 kN. Con la lunghezza in oggetto, risulta:

Lunghezza	37.6 m	
Frenatura	462 kN =	12.27 kN/ml

In questa fase progettuale si ritengono trascurabili gli effetti che tale tipo di azioni producono sull'impalcato. Se ne considerano invece gli effetti al livello delle sottostrutture e tal proposito si rimanda alla specifica relazione.

6.1.7 Vento (q₅)

La pressione del vento è data dall'espressione

$$p = q_b \cdot c_e \cdot c_p \cdot c_d$$

dove

 q_b è la pressione cinetica di riferimento

 c_e è il coefficiente di esposizione

 c_p è il coefficiente di forma

 c_d è il coefficiente dinamico

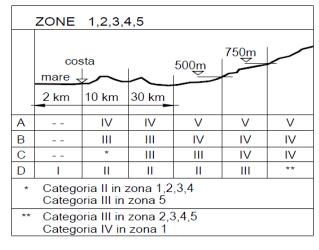
La pressione cinetica di riferimento è data dall'espressione

$$q_b = \frac{1}{2} \cdot \boldsymbol{\rho} \cdot \boldsymbol{v}_b^2$$

dove

 v_b è la velocità di riferimento del vento

 ρ è la densità dell'aria, assunta convenzionalmente costante e pari a 1,25 kg/m³.



L'opera si trova in ZONA 1, il che comporta l'adozione dei seguenti parametri

 $v_{b,0} = 25,0$ m/s $a_0 = 1000$ m/s $k_a = 0,01$ 1/s

Considerando un'altitudine sul livello del mare di 600 m per il sito su cui sorge l'opera si ha che la velocità di riferimento $v_b=v_{b,0}=25$ m/s.

La pressione cinetica di riferimento risulta quindi 492,80 kN/m².

Il sito in questione sorge oltre i 30 km dalla costa e può essere classificato in classe di rugosità C, pertanto la categoria di esposizione del sito è la III, da cui

$$k_r = 0,19$$

$$z_0 = 0,05 \quad m$$

$$z_{min} = 4 \quad m$$

Il coefficiente di topografia viene assunto unitario e l'altezza massima dell'impalcato rispetto al p.c. (z) è di 8 m, pertanto il coefficiente di esposizione vale

$$c_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) [7 + c_t \cdot \ln(z/z_0)] = 2.21$$

Il coefficiente di forma per travi isolate vale

$$\varphi = \frac{S_p}{S}$$

dove S è la superficie delimitata dal contorno della trave ed S_p la superficie della parte piena della trave. Nel caso in esame si considera cautelativamente $\varphi=1$, pertanto $c_p=2,4-1=1,4$.

La pressione del vento sarà quindi pari a 492,80*2,21*1,40/1000=1,53 kN/m².

Tal pressione viene applicata su una superficie compresa fra l'intradosso medio d'impalcato ed un'altezza di 3 m dal piano viabile, per un totale di circa 5,30 m.

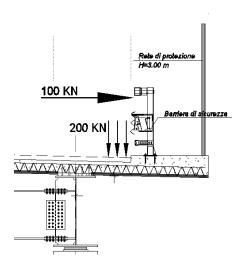
L'azione del vento viene considerata come una forza distribuita orizzontale ed una coppia distribuita lungo l'asse d'impalcato.

Forza orizzontale distribuita

$$f_{vento} = 1,53*5,30 = 8,10 \text{ kN/m}$$

Coppia distribuita

$$m_{vento} = 8,51 \text{ kNm/m}$$


La coppia viene ripartita rigidamente fra le due travi principali, determinando un carico verticale di $1,06~\mathrm{kN/m}$.

6.1.8 Resistenze passive dei vincoli (q₇)

Al fine di considerare le azioni parassite sugli appoggi multidirezionali posti sulle spalle si considera un coefficiente d'attrito pari al 5%.

6.1.9 Urto di veicolo in svio (q_8)

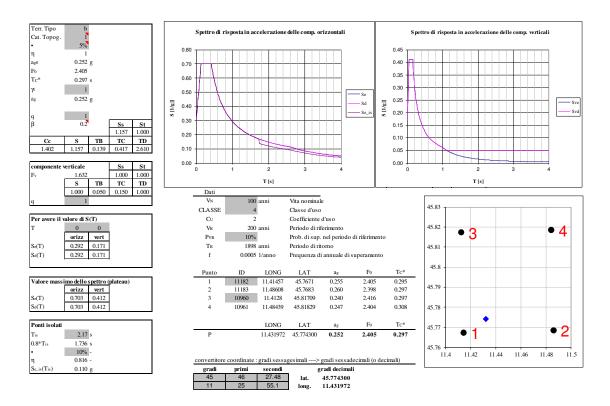
L'urto del veicolo in svio sul sicurvia viene considerato attraverso una forza orizzontale equivalente di 100 kN applicata 1,00 m sopra al piano di marcia.

La forza viene applicata su una linea lunga 0,50 m e viene diffusa:

- verticalmente a 45° fino all'asse della soletta;
- orizzontalmente a 45° fino alla sezione d'incastro dello sbalzo.

Nel progetto dell'impalcato viene considerata una condizione di carico eccezionale nella quale alla forza orizzontale d'urto sul sicurvia viene associato un carico verticale isolato sulla sede stradale costituito dallo schema di carico 2 posizionato in adiacenza al sicurvia stesso.

L'impronta di carico, da 0.35×0.60 m, viene diffusa verticalmente a 45° nella pavimentazione e fino all'asse della soletta e viene operata una diffusione orizzontale a 45° fino all'anima della trave principale.


Leverifiche sarano effettuate nel paragrafo relativo alla soletta.

6.1.10 Azione sismica

Per quanto concerne i carichi derivanti dalle azioni sismiche relative alla componente verticale si riporta in tabella una comparazione con i carichi agenti in condizioni sismiche e quelli agenti in condizioni statiche.

In tabella si riporta, in funzione di un'analisi dei carichi effettuata per aree di influenza, il carico agente su singola trave per le condizioni di carico precedentemente menzionate.

L'incremento dei carichi in fase sismica è stato calcolato, a vantaggio di sicurezza, con l'accelerazione massima di plateau.

G1.b Pesc	ica travi soletta mentazione	15.0 7.75		1		
G1.b Pesc	soletta			1		
		7 75		-	15.0	
	montaziono	7.75	6.25	1	48.44	
G2 Pavi	Henrazione	3	3.0	1	9.0	
Mar	ciapiedi	4.5	2	1	9.0	
Barr	iere+reti+velette	3.5		1	3.5	
Q Mob	illi	9	3	0.2	5.4	
					90.34	kN/m
Accelerazione plateau					0.412	ag
Carico sismico verti			37.22	kN/m		
Incremento carico r			41%			
Carico verticale equivalente in condizioni sismiche					127.6	kN/m
			[kN/m]	γ g	[kN/m]	
Combinazioni SLU						
G1.a			15.0	1.35	20.25	
G1.b			48.44	1.35	64.4	
G2			21.5	1.5	32.25	
Q_mobili			27	1.35	36.45	
				_	153.35	kN/m

Dal raffronto si evince come in condizioni statiche (agli SLU) il carico agente sulla trave, è maggiore del carico in condizioni sismiche: 153.35 kNm > 127.6 kNm.

Sono stati pertanto trascurati, ai fini delle verifiche strutturali, gli effetti dell'azione sismica sull'impalcato.

6.2. Combinazioni di carico

6.2.1 Combinazioni per gli SLU

Le combinazioni di azioni per le verifiche agli stati limite ultimi, definite al punto 2.5.3 del D.M. 14 gennaio 2008, sono espresse complessivamente dalle seguenti relazioni:

dove:

- G_k è il valore caratteristico delle azioni permanenti;
- E è l'azione del sisma per lo stato limite considerato;
- P è il valore caratteristico delle azioni di precompressione;
- Q_k è il valore caratteristico delle azioni variabili;
- $\gamma_{\scriptscriptstyle G},\ \gamma_{\scriptscriptstyle P}$ e $\gamma_{\scriptscriptstyle Q}$ sono i coefficienti parziali delle azioni per gli SLU;
- ψ_0, ψ_2 sono i coefficienti di combinazione delle azioni variabili.

I valori dei coefficienti ψ_0 , γ_G , γ_P e γ_Q sono riportati nelle tabelle seguenti:

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i

Coefficienti parziali γ.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

 ^{(3) 1,30} per instabilità in strutture con precompressione esterr
 (4) 1,20 per effetti locali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente Ψ1 (valori frequenti)	Coefficiente Ψ2 (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
Azioni da traffico (Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento q ₅	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Novo a	SLU e SLE	0,0	0,0	0,0
Neve q₅	esecuzione	0,8	0,6	0,5
Temperatura	T _k	0,6	0,6	0,5

Coefficienti parziali ψ_0 , ψ_1 , ψ_2 per le azioni variabili per ponti stradali e pedonali

Per quanto riguarda i carichi mobili, la simultaneità dei sistemi di carico definiti nel DM 14 gennaio 2008 (modelli di carico 1, 2, 3, 4, 6 - forze orizzontali - carichi agenti su ponti pedonali), deve essere tenuta in conto considerando i "gruppi di carico" definiti nella tabella seguente. Ognuno dei "gruppi di carico", indipendente dagli altri, deve essere considerato come azione caratteristica per la combinazione con gli altri carichi agenti sul ponte.

	Carichi sulla carreggiata					Carichi su marciapiedi e piste ciclabili
	Carichi verticali		Carichi orizzo		ontali	Carichi verticali
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				
(**) Ponti di : (**) Da cons (***) Da cons	3ª categoria siderare solo se richies siderare solo se si con	sto dal particola siderano veicoli	re progetto (ad es speciali	. ponti in zona	urbana)	

Gruppi di carico da traffico per le combinazioni di carico.

Le combinazioni di carico adottate per le verifiche di resistenza agli SLU sono le seguenti:

$$F_{d \setminus} = 1,35 \cdot G_k + 1,20 \cdot \varepsilon_2 + 1,35 \cdot Q_k + 1,5 \cdot 0,6 \cdot Q_5 + 1,2 \cdot 0,6 \cdot \varepsilon_{3-} + 1,20 \cdot \varepsilon_4$$

essendo:

- Gk pesi propri e carichi permanenti $(g_1 + g_2)$;
- Q_k carichi mobili;
- Q₅ azione del vento;
- ε₂ ritiro del calcestruzzo;
- ε_{3} variazione termica negativa;
- ε₄ cedimenti vincolari.

$$ightharpoonup F_d = 1,35 \cdot G_k + 1,35 \cdot Q_k + 1,5 \cdot 0,6 \cdot Q_5 + 1,2 \cdot 0,6 \cdot \varepsilon_{3+} + 1,20 \cdot \varepsilon_4$$

- ε₃₊ variazione termica positiva;
- ϵ_4 deformazioni impresse sulle pile;

Nelle verifiche di resistenza dell'impalcato viene omessa la combinazione sismica $E + \sum_{i>1} G_{k,j} + P + \sum_{i>1} \psi_{2,i} \cdot Q_{k,i}$ definita al punto 3.2.4 del D.M. 14 gennaio 2008, in quanto non di-

mensionante e non significativa in rapporto alle combinazioni analizzate, con i carichi accidentali come condizione dominante. Tale combinazione viene invece considerata nel dimensionamento delle sottostrutture.

6.2.2 Combinazioni per lo SLE "respiro delle anime"

Le verifiche delle travi principali associate a tale stato limite sono state eseguite in riferimento alle combinazioni di carico del gruppo **frequente** espresse complessivamente dalla seguente relazione:

$$\sum_{j>1} G_{k,j} + P + \psi_{1,1} \cdot Q_{k,1} + \sum_{i>1} \psi_{2,i} \cdot Q_{k,i}$$

dove:

- G_k è il valore caratteristico delle azioni permanenti;
- P è il valore caratteristico delle azioni di precompressione;
- Q_k è il valore caratteristico delle azioni variabili;
- ψ_1, ψ_2 sono i coefficienti di combinazione delle azioni variabili riportati in precedenza.

Con riferimento alle condizioni di carico descritte ai paragrafi precedenti, risultano definite le seguenti combinazioni:

$$F_d = G_k + \varepsilon_2 + 0.75 \cdot Q_k + 0.5 \cdot \varepsilon_{3} + \varepsilon_4$$

essendo:

- G_k pesi propri e carichi permanenti $(g_1 + g_2)$;
- Q_k carichi mobili $(q_1 + q_2)$;
- ε₂ ritiro del calcestruzzo;
- ε_{3} variazione termica negativa;
- ε_4 deformazioni impresse sulle pile.

$$ightharpoonup F_d = G_k + 0.75 \cdot Q_k + 0.5 \cdot ε_{3+} + ε_4$$

- ε_{3+} variazione termica positiva;
- ε₄ cedimenti vincolari.

6.2.3 Combinazioni per lo SLE di controllo delle tensioni.

Le verifiche delle travi principali associate a tale stato limite sono state eseguite in riferimento alle combinazioni di carico del gruppo **rara** espresse complessivamente dalla seguente relazione:

$$\sum_{j>1} G_{k,j} + P + Q_{k,1} + \sum_{i>1} \psi_{0,i} \cdot Q_{k,i}$$

dove:

- G_k è il valore caratteristico delle azioni permanenti;
- P è il valore caratteristico delle azioni di precompressione;
- Q_k è il valore caratteristico delle azioni variabili;
- $m{\psi}_0$ sono i coefficienti di combinazione delle azioni variabili riportati in precedenza.

Con riferimento alle condizioni di carico descritte ai paragrafi precedenti risultano definite le seguenti combinazioni:

$$ightharpoonup F_d = G_k + \varepsilon_2 + Q_k + 0.6 \cdot Q_5 + 0.6 \cdot \varepsilon_{3-} + \varepsilon_4$$

essendo:

- G_k pesi propri e carichi permanenti $(g_1 + g_2)$;
- Q_k carichi mobili $(q_1 + q_2)$;
- ε₂ ritiro del calcestruzzo;
- ε_{3} variazione termica negativa;
- ε₄ cedimenti vincolari.

$$ightharpoonup F_d = G_k + Q_k + 0.6 \cdot Q_5 + 0.6 \cdot \varepsilon_{3+} + \varepsilon_4$$

- ε_{3+} variazione termica positiva.
- ε₄ cedimenti vincolari.

7. SOLLECITAZIONI DI CALCOLO

Si riportano di seguito gli inviluppi delle sollecitazioni sulla travi principali.

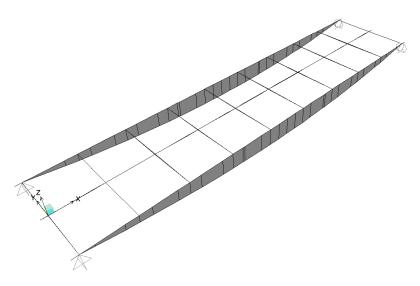


Diagramma del momento flettente

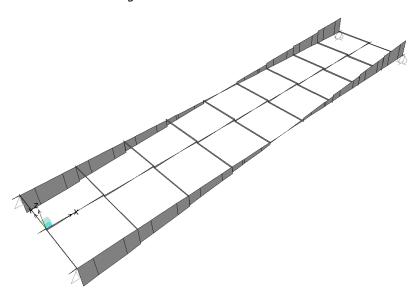
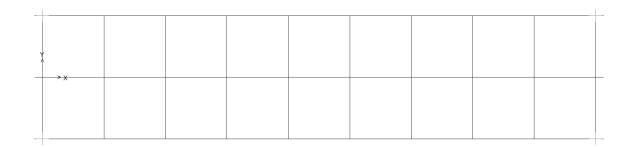


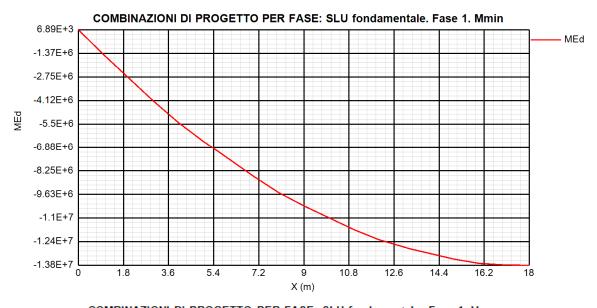
Diagramma del taglio

7.1. Sollecitazioni travi

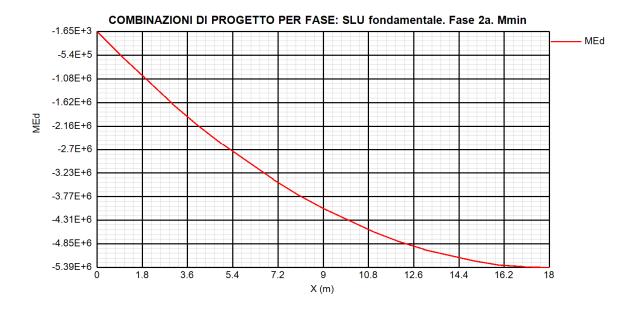

A valle dell'analisi strutturale, effettuate per le singole azioni caratteristiche, vengono eseguiti gli inviluppi e le combinazioni di carico pertinenti ai vari scopi, rispettivamente per max/min V e max/min M.

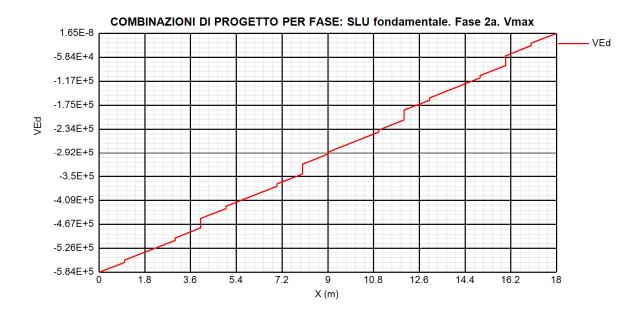
Nel seguito si riportano i diagrammi delle sollecitazioni della semi-travata DX organizzati per inviluppi di progetto.

I diagrammi sono espressi nelle seguenti unità di misura:

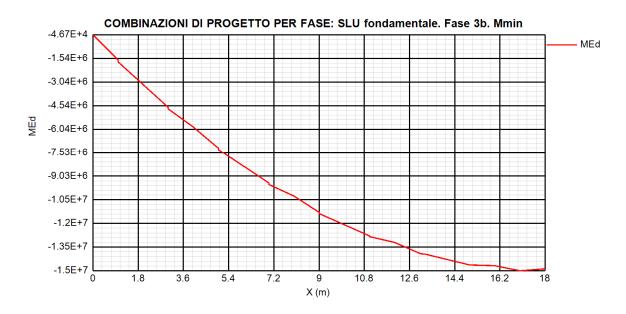

- Momento flettente : [Nm]

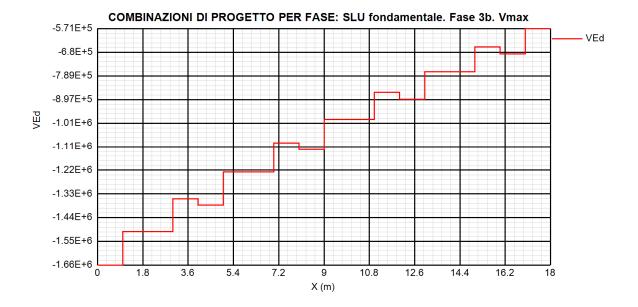
- Taglio: [N]

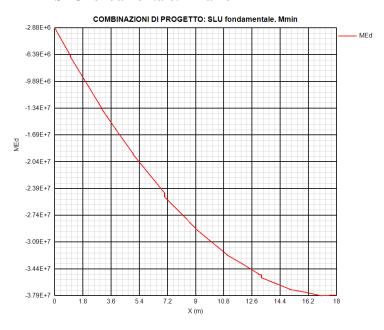

7.1.1 SLU fondamentale Fase 1 (g1.a, g1.b)



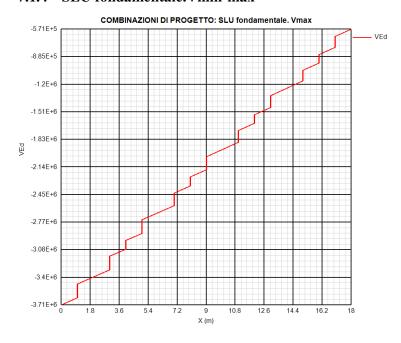
COMBINAZIONI DI PROGETTO PER FASE: SLU fondamentale. Fase 1. Vmax

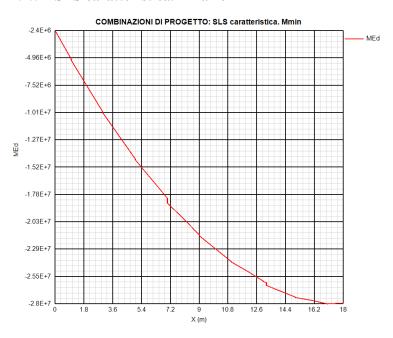


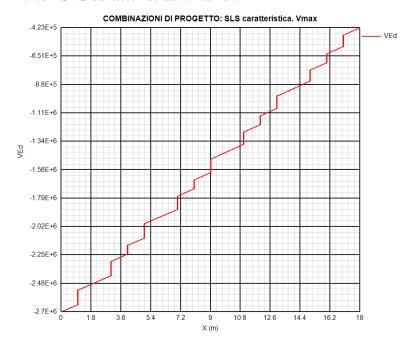

7.1.2 SLU fondamentale Fase 2 (g2)



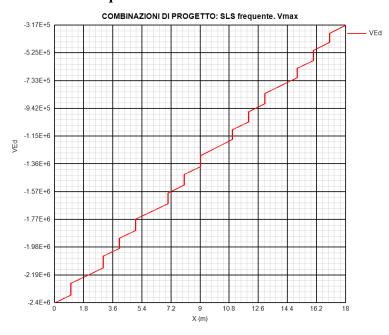
7.1.3 SLU fondamentale Fase 3b (mobili)




SLU fondamentale.Mmax e Mmin


7.1.4 SLU fondamentale.Vmin-max

7.1.5 SLS caratteristica.Mmax e Mmin


7.1.6 SLS caratteristica. Vmax e Vmin

7.1.7 SLS frequente.Mmax e Mmin

7.1.8 SLS frequente. Vmax e Vmin

8. VERIFICHE DI RESISTENZA

8.1. Travi principali

8.1.1 Generalita'

I criteri per la verifica della resistenza delle sezioni (cross section checks) sono contenuti in NTC-08 cap 4.2., 4.3 e relative istruzioni. Si rileva una perfetta coincidenza con quanto contenuto in Eurocodice, attraverso l'applicazione del relativo N.A.D. (rif. EN 1993-1-1, EN1993-1-5, EN 1993-2, EN1994-1-1, EN 1994-2).

Nel prosieguo si farà riferimento puntuale a quest'ultimo testo, caratterizzato da una trattazione più omogenea, e da un riferimento più puntuale relativamente alle varie regole applicative.

Nell'ambito dei vari S.L. considerati, si effettuano, a livello sezionale, le seguenti verifiche:

S.L.U.

resistenza delle sezioni (incluse verifiche di local buckling)

flange induced buckling

S.L.E.

limitazione delle tensioni

web breathing

Fatica

verifica dell'ampiezza dell'escursione delle tensioni , con impiego del metodo dei coefficienti λ .

I medesimi S.L. verranno esaminati, con le medesime modalità generali, per la verifica della connessione trave-soletta.

Il complesso delle precedenti verifiche viene effettuato in automatico dal programma "Ponti EC4" per tutte le sezioni del viadotto, indicate nei paragrafi iniziali. Nel seguito vengono esposte in dettaglio le modalità operative attraverso il commento della reportistica delle sezioni più significative prese a campione.

8.1.2 Slu – resistenza delle sezioni

Le verifica di resistenza delle sezioni allo S.L.U. viene effettuata attraverso i seguenti passaggi:

- Preclassificazione della sezione

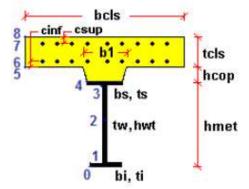
Effettuata sulla base delle caratteristiche geometriche dei singoli sottocomponenti

- Analisi plastica

Tracciamento dei domini di resistenza della sezione N/Mrd ed N/Mf,rd (dominio della sezione privata dell'anima)

- Classificazione effettiva della sezione

Effettuata sulla base dell'effettio valore di NEd, MEd per la combinazione in esame (max/min MEd, max/min VEd, con i rispettivi valori concomitanti)


- Verifica a plastica a pressoflessione (sezioni cl. 1 e 2):

Valutazione del massimo rapporto di sfruttamento plastico -1,; effettuata con riferimento a N_{Ed} , M_{Ed} agenti isolatamente, e per effetto combinato.

- Verifica elastica a pressoflessione (sezioni cl. 3-4)

valutazione del massimo rapporto di sfruttamento elastico • 1, effettuata rispettivamente per le sezioni in classe 3/4 con riferimento alle caratteristiche geometriche lorde/efficaci. Le caratteristiche goemetriche efficaci vengono dedotte in maniera iterativa, tenendo conto delle flessioni parassite che nascono per effetto dell'eccentricità assunta dall'azione assiale di progetto causata dallo "shift" progressivo dell'a.n.e.

Le tensioni vengono valutate in corrispondenza dell 8 fibre indicate nello schema seguente.

Nell'ambito del calcolo tensionale, la soletta viene considerata "cracked" (non reagente) all'atto dell'annullamento della tensione di compressione valutata in corrispondenza della fibra media.

Contestualmente all'annullamento della soletta, si annullano anche le sollecitazioni da ritiro primario.

- Verifica a taglio - sezioni non soggette a "shear buckling"

Viene effettuato il calcolo del taglio resistente plastico, ed il calcolo del rapporto di sfruttamento a taglio.

- Verifica a taglio - sezioni suscettibili di "shear buckling"

per sezioni soggette a "shear buckling" viene valutato il coefficiente di riduzione \square_{w} , e successivamente valutato il taglio resistente $V_{b,Rd}$ come somma dei contributo resistenti dell'anima $V_{bw,Rd}$ e, se applicabile, delle flange $V_{bf,Rd}$.

- Verifica interazione azione assiale - flessione - taglio (tutte le classi)

Si adotta univocamente, per tutte le classi di sezione, l'approccio proposto da EN 1993-1-5, cap. 7.1, che consiste nella valutazione di un rapporto di sfruttamento modificato in funzione dei singoli rapporti di sfruttamento valutati per pressoflessione e taglio agenti separatamente. L'adozione di questa formulazione risulta a rigore solo leggermente più cautelativa di quella riservata alle sezioni di classe 1 - 2, per le quali l'interazion N-M-V si risolverebbe con la deduzione di un rapporto di sfruttamento elastico per tensioni nornali valutato con riferimento ad una anima opportunamente ridotta per tenere conto dell'influenza del taglio (cfr. EN 1994-2 cap. 6.2.2.4.(2)).

Un'ulteriore ipotesi caultativa, riservata alla verifica di sezioni in classe 3-4, è l'utilizzo sistematico del rapporto di sfruttamento elastico η_1 in luogo di quello plastico $\bar{\eta}_1$, indipendentemente dall'andamento delle tensioni lungo l'anima (a rigore la EN 1993-1-5, cap. 7.1.(4) e (5) prevede tale accortezza solo qualora l'anima risulta interamente in compressione). Inoltre in EN 1993-1-5 7.1 (2) è indicato che la verifica deve essere effettuata a distanza maggiore di $h_w/2$ dalla sezione di appoggio. In considerazione di queste ipotesi cautelative le verifiche di interazione si intendono soddisfatte anche se dovessero eccedere l'unità di qualche punto percentuale.

Come già evidenziato relativamente al calcolo del contributo resistente a taglio delle flange, le resistenze plastiche della sezione completa e della sezione privata dell'anima sono rilevate direttamente dai rispettivi domini di interazione, per cui:

$$M_{pl,Rd} = M_{pl(N),Rd}$$

$$M_{f,Rd} = M_{f(N),Rd}$$

Si rileva che la diseguaglianza associata alla formula di interazione presentata poco sopra, evidenzia implicitamente che la formula non è applicabile (non vi è interazione) qualora il momento di progetto sia minore di quello sopportabile dalle sole flange.

Per sezioni in classe 3-4, il momento di progetto M_{Ed} viene valutato sulla base degli stress cumulati nella fibra più sollecitata ($M_{Ed,eq} = max \mid W_{xi} * \Sigma \sigma_{x,i} \mid$).

A seguire si riporta lo sviluppo delle verifiche nelle sezioni più significative, tramite le singole tabelle prodotte dalla procedura PontiEC4. Per tutte le altre sezioni si indicheranno in forma grafica e tabellare i coefficienti di utilizzo.

8.1.3 Verifiche delle sezioni

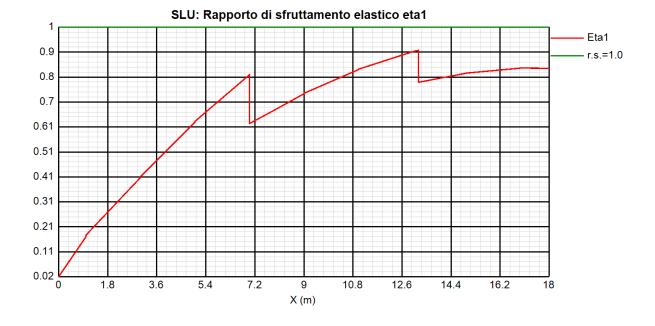
Il programma effettua sistematicamente il set di verifiche per le quattro condizioni fondamentali M_{max} , M_{min} , V_{max} e V_{min} , sulla base delle sollecitazioni di progetto S.L.U. esportate direttamente, nell'ambito di ciascuna "fase", dal modello ad elementi finiti.

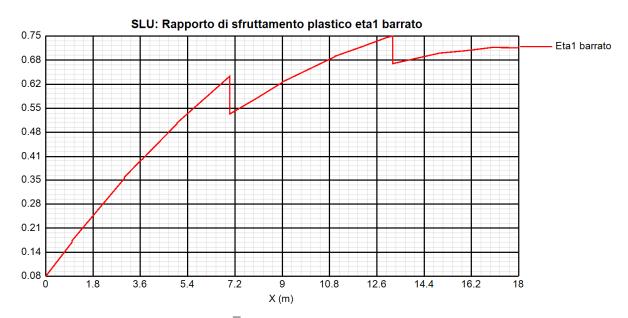
8.1.4 Riepilogo coefficienti di sfruttamento

I grafici restituiscono l'output sintetico delle verifiche del programma Ponti EC4, contenenti, per ciascuna sezione e per ciascuna condizione esaminata, i seguenti risultati, rispettivamente scaturiti dall'analisi a lungo termine (LT) e dall'analisi a breve temrine (ST):

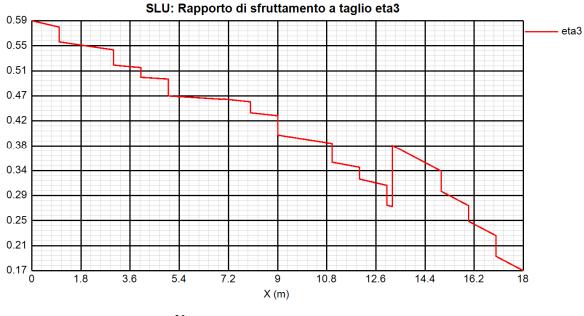
- classificazione della sezione in fase 1
- clasificazione della sezione in fase finale
- $\frac{1}{\eta_1} = \frac{M_{Ed}}{M_{Rd}}$ rapporto di sfruttamento plastico per tensioni normali
- $\eta_1 = \frac{\sigma_{Ed}}{f_y / \gamma_{M0}}$ rapporto di sfruttamento elastico per tensioni normali
- $\dfrac{V_{\it Ed}}{V_{\it Rd}}$ rapporto di sfruttamento a taglio
- $\frac{M_{Ed}}{M_{f,Rd}}$ rapporto di sfruttamento interno della sezione (aliquota di ME portata dalle sole flan-

ge)


- $\eta_3 = \frac{V_{Ed}}{V_{bw,Rd}}$ rapporto di sfruttamento plastico a taglio
- V/M/N raporto di sfruttamento per azione combinata M/N/V


Si evidenzia che sia l'analisi plastica, si l'analisi elastica vengono effettuate sistemticamente dal programma, indipendentemetne dalla calssificazione della sezione.

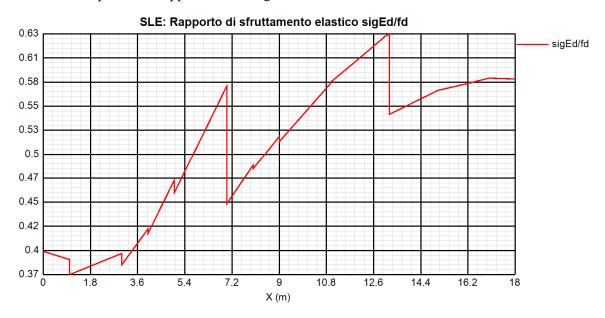
Pertanto, nell'ambito dell'esposizione dei vari rapporti di sfruttamento, verranno indicati tra parentesi:


- il rapporto di sfruttamento elastico per tensioni normali, quando riferito a sezioni di classe 1-2 (valore non significativo).
- Il rapporto di sfruttamento plastico per tensioni normali, quando riferito a sezioni di classe 3-4 (verifica plastica non applicabile)

Nelle pagine seguenti si riportano in forma grafica i risultati principali.

 η_1 per sezioni in classe 3 e 4, η_1 per sezioni in classe 1 e 2 (Mmax, Mmin, Vmax, Vmin)

 $\frac{V_{Ed}}{V_{rel}}$ rapporto di sfruttamento a taglio


8.1.5 Sle – limitazioni delle tensioni

La verifica viene condotta con riferimento alle tensioni di Von Mises valutate sotto la combinazione fondamentale S.L.E., applicando il coefficiente di materiale $\gamma_{m,ser} = 1.0$.

Il programma Ponti EC4, procede al calcolo del rapporto di sfruttamento dei vari componenti (acciaio, calcetruzzo ed armature) delle sezioni esaminate nelle condizioni Mmax/min e Vmax/min.

8.1.6 Riepilogo dei coefficienti di sfruttamento

Come si può notare, i rapporti di sfruttamento calcolati appaiono soddisfacentemente al di sotto dell'unità. Si riporta una rappresentazione grafica dei coefficienti massimi di sfruttamento.

$$\eta_1 = \frac{\sigma_{Ed}}{f_y / \gamma_{Mserv}}$$
 rapporto di sfruttamento elastico per tensioni normali

8.1.7 S.L.E. – "web breathing"

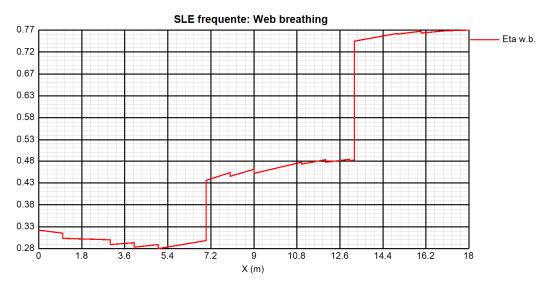
La verifica è volta alla limitazione della snellezza dei singoli pannelli e sottopannelli. I criteri di verifica sono contenuti nelle istruzioni a NTC-08, cap. 4.2.4.1.3.4, che rimandano a EN 1993.2, cap. 7.4.

Tra i metodi proposti, si sceglie quello più rigoroso, comprenendente la verifica diretta della stabilità dei sottopannelli, consistente nel confronto del quadro tensionale indotto dalla combinazio-

ne S.L.E. frequente, rappresentanto da $\sigma_{x,Ed,ser}$ e $\tau_{xy,Ed,ser}$, con le tensioni normali e tangenziali critiche del pannello, mendiante la relazione (cfr. 1993-2 cap. 7.4.(3)):

$$\sqrt{\left(\frac{\sigma_{x,Ed,ser}}{k_{\sigma}\sigma_{E}}\right)^{2} + \left(\frac{1,1\tau_{x,Ed,ser}}{k_{\tau}\sigma_{E}}\right)^{2}} \leq 1,1$$

In cui:


 $\sigma_E = 186200(t/h)^2$ tensione critica Euleriana

 k_{σ} , k_{τ} = coefficienti di imbozzamento per tensioni normali e per taglio, funzione della geimetria e stato di sforzo del pannello.

La verifica viene effettuata in automatico dal programma Ponti EC4, sulla base delle combinazioni S.L.E. frequenti elaborate per tutte le sezioni di verifica, rispettivamente per Mmax/min e Vmax/min.

La tensione normale critica viene valutata a partire da quella Euleriana, tenendo conto della eventuale sovrapposizione dei feomeni di instabilità di piastra e di colonna tramite il coefficiente ξ , seguendo i criteri contenuti in EN 1993-1-5 - 4.5.4.(1).

Come testimoniato dalla presenza di coefficienti di sicurezza inferiori a 1.1, le verifiche appaiono in tutti i casi soddisfatte. Si riporta di seguito il grafico dei coefficienti di utilizzo a web breathing.

Coefficiente di sfruttamento a web breathing

9. VERIFICA CONNESSIONE TRAVE SOLETTA

9.1.1 Generalità

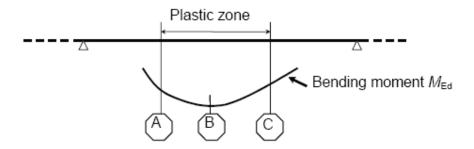
Le specifiche relative al detaling della connessione trave-soletta sono contenute in NTC-08, 4.3.4.1.2 e C.4.3.4. delle relative istruzioni; per quanto riguarda i riferimenti Eurocodice, i cui contenuti sono perfettamente identici, si fa riferimento a EN 1994-1 e EN 1994-2. Le piolature adottate sono tutte a completo rispritino di resistenza.

Il ciclo di verifica delle piolature comprende i seguenti passi:

- Verifica tensioni S.L.U. (valido per sezionii con $\eta_1 \le 1$)

Deduzione del massimo scorrimento "elastico" a taglio allo S.L.U. sul singolo piolo, nell'ambito delle condizioni M_{max}/M_{min} , V_{max}/V_{min} , e confronto con la portanza del piolo allo S.L.U.:

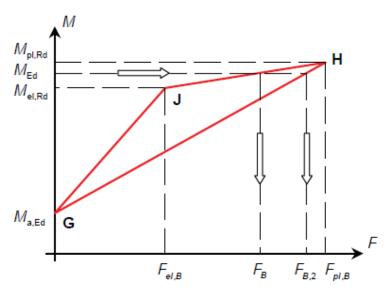
$$\begin{aligned} v_{L,Ed}(x) &= V_{Ed}(x) \ S/J \\ v_{L,Ed}^{\ ULS} &\leq 1.1 \ N_i/l_i \ P_{Rd} \end{aligned}$$


In cui S e J sono univocamente definite sulla base delle caratteristiche "uncracked"

Tale approccio risulta ovviamente valido solamente per le sezioni che non attingono alle proprie risorse extra elastiche ($\eta_1 \le 1$). Per sezioni di classe 1-2, qualora il rapporto di sfruttamento elastico \cdot $_1$ risulta maggiore di 1, non risulta più valido l'approccio di calcolo dello scorrimento (v = VS/J), ed è quindi necessario tenere conto in maniera non lineare della relazione tra azione tagliante V_e scorrimento v_L mediante l'approccio non lineare indicato al punto seguente.

- Verifica plastica S.L.U. (obbligatorio per sezioni con $\eta_1 > 1$)

Nelle zone plasticizzate (in generale a momento negativo) non risulta più valido l'approccio di calcolo dell'azione nei pioli basata sul flusso elastico: in questo caso, infatti, il legame fra il taglio per unità di lunghezza, le forze interne della soletta ed il momento flettente non è più lineare (EN 1994-2 cap. 6.6.2.2).


Il calcolo viene effettuato individuando, propedeuticamente, la regione entro la quale le sezioni attingono alle proprio risorse extra-elastiche. Tale regione (simmetrica nel caso in esame), è schematicamente rappresentata dai due punti di boundary A e C e dal punto di minimo momento (mezzeria) indicati nello schema seguente. I punti di boundary sono individuate dalle sezioni nelle quali la massima tensione è pari allo snervamento del materiale.

La verifica è di tipo "globale", e comprende la valutazione dello scorrimento in maniera diretta, mediante considerazioni di equilibrio dei conci di soletta compresi tra la boundary ed il punto di minimo momento.

L'azione assiale insistente ai confini della zona plastica (punti A / B) è pari all'integrale delle tensioni rilevate lungo la soletta in calcestruzzo.

Lazione assiale N_B è la risultante delle azioni in soletta, da valutarsi con riferimento all'effettivo stato, parzialmente "plastico" della sezione. Per il calcolo, si fa riferimento ai criteri di "non linear resistance to bending" contenuti in EN 1994-2 cap. 6.2.1.4..(6), con l'ausilio della costruzione riportata nel diagramma seguente, che riporta in un sistema d'assi M/N, i possibili stati della sezione di minimo momento flettente.

Si indica con:

M_{a.Ed} momento flettente agente sulla sola trave metallica

M_{el,Rd} momento flettente elastico

M_{Ed} momento flettente di progetto

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO - Piovene Rocchette - Valle dell'Astico

M_{pl,Rd} momento plastico della sezione

F_{el,B} azione assiale agente nella soletta, al raggiungimento del momento elastico (N_B)

Il diagramma è caratterizzato dai seguenti punti notevoli:

G punto corrispondente al momento flettente della trave in fase 1

H punto che individua il raggiungimento dello stato plastico della sezione, caratterizzato da $M_{pl,Rd}$ ed $F_{pl,B}$ (azione assiale plastica in soletta).

J punto corrispondente allo yielding del prima fibra della sezione, caratterizzato da $M_{el,Rd}$ ed $F_{El,B}$ (risultante tensioni in soletta sotto l'azione di $M_{El,Rd}$).

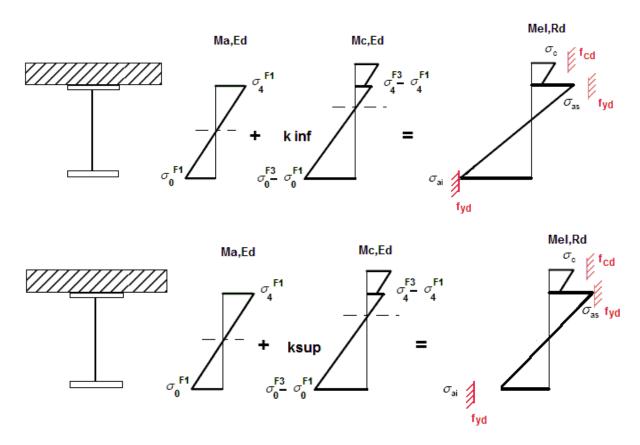
Come si nota dal diagramma, l'effettiva azione assiale F_B insistente in soletta nel reale stato della sezione è rappresentato dalla linea verticale che interseca la retta JH all'ordinata corrispondente al momento di progetto M_{Ed} . In alternativa, operando in maniera semplificata, risulta possibile stabilire un limite superiore a N_B , intercettando direttamente la retta GH.

Si segue l'approccio "rigoroso" che, pur comportando la necessità di valutare $M_{el,Rd}$, comporta una stima più accurata di N_B .

Per il calcolo di $M_{el,Rd}$ ed $F_{el,B}$, viene valutato il fattore "k" (≤ 1) che, applicato al momento flettente agente sulla sezione composta $M_{c,Ed}$ (derivante da fase 2 e fase 3) comporta un quadro tensionale al limite di snervamento, e che implica pertanto l'espressione:

$$M_{el,Rd} = M_{a,Ed} + k M_{c,ED}$$

Si avrà pertanto, con riferimento alle fibre estreme della sezione:

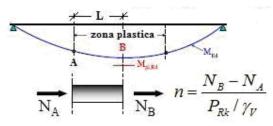

$$k = f_{yd} - \sigma_{ifl} / \Delta \sigma_i$$

i = 1 o 4 (lembo inferiore/superiore trave metallica)

 σ_{ifl} = tensione alla fibra "i" della sezione in fase 1

 $\Delta \sigma_i$ = variazione di tensione alla fibra "i" tra la fase 3 e la fase 1

Si utilizza uno dei due schemi di calcolo riportati nelle figure sottostanti, a seconda che la tensione di snervamento sia stata superata nella fibra inferiore oppure in quella superiore.


Quando la sezione è plasticizzata il coefficiente k risulta compreso fra 0 ed 1, e rappresenta il coefficiente moltiplicativo che riporta il diagramma di tensioni in fase 3 ad un diagramma al limite elastico.

Noto k è immediato valutare $M_{el,Ed}$ e la corrispondente azione assiale di soletta, tramite integrazione delle tensioni:

$$N_{el Ed} = k * (\sigma_5 + \sigma_8)/2 * A_{soletta}$$

Essendo σ_5 e σ_8 le tensioni normali nella soletta in fase 3, calcolate a partire da $M_{el,Ed}$.

Il numero di pioli necessario nella zona plastica è infine calcolabile, con riferimento allo schema ed alla formula seguente.

- Verifica tensioni S.L.E.

Deduzione del massimo scorrimento "elastico" a taglio allo S.L.E. sul singolo piolo, nell'ambito delle condizioni M_{max}/M_{min} , V_{max}/V_{min} , e confronto con la portanza del piolo allo S.L.E..

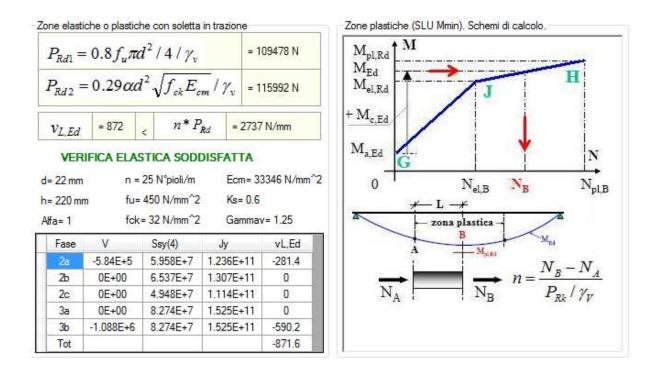
Il criterio di confronto dello scorrimento con la portanza della piolatura è identico a quello visto per la verifica delle tensioni S.L.U., con ovvia sostituzione delle grndezze.

$$v_{L,Ed}{}^{SLS} \leq N_i/l_i \; k_s \; P_{Rd}$$

- Verifica concentrazione scorrimenti per effetto del ritiro nelle zone di estremità trave

L'ammontare delle azioni di scorrimento per ritiro e variazione termica nelle zone di coda viene calcolato a partire dall'azione assiale indotta dalle relative deformazioni impresse nella soletta, assumendo una distribuzione costante del flusso per una lunghezza di trave assunta pari alla larghezza di soletta efficace (b_{eff}) in accordo a En 1994-2. 6.2.2.4 (3). Si ha quindi:

$$v_{L.Ed.max} = V_{L.Ed} / b_{eff}$$


essendo V_{Ed} =N ritiro/N termica

Per i pioli da inserire nella parte di travi di lunghezza beff, si ha:

$$n \text{ pioli} = v_{\text{L.Ed.max}} / P_{\text{Rd}}$$

Nella fattispecie si ha:

vL,Ed= 1279 N/mm Ritiro
$$v_{L,Ed} = 1034 \text{ N/mm} \quad \text{Termica +/-}10^{\circ} \text{ nella soletta}$$

$$v_{L,Ed} = 1034 *1.2 + 1279 *1.2 = 2776 \text{ N/mm} \quad \text{totale}$$

9.1.2 Caratteristiche piolatura

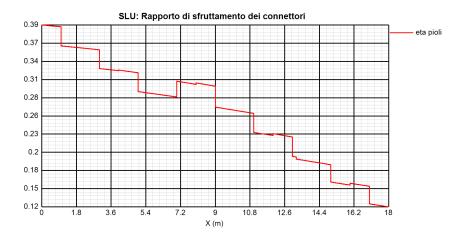
Per la trave in esame, si prevede l'adozione delle seguenti tipologie di piolatura:

Piolatura di estremità - conci C1-C5:

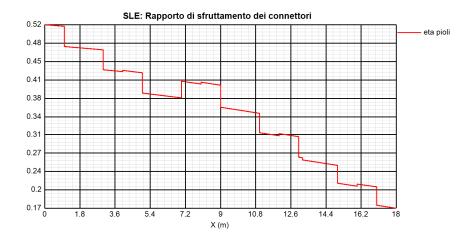
n. 25 pioli/m = 5 f22/200 mm

Piolatura corrente per tutti i conci C2-C3-C4

n. 20 pioli/m = 4 f22/200 mm


Le caratteristiche della piolatura di progetto vengono definite compiutamente nei capitoli seguenti, esaminato l'esito delle verifiche.

9.1.2.1 Riepilogo rapporti di sfruttamento verifica elastica S.L.U. - S.L.E.


Il calcolo dello scorirmento nelle varie sezioni di verifica ed il confronto con la piolatura di progetto viene effettuato in automatico dal programma PontiEC4 nell'ambito delle condizioni considerate (Mmax/min e Vmax/min).

I grafici riepilogano, rispettivamente per lo S.L.U. e lo S.L.E., il calcolo dei massimi rapporti di sfruttamento "elastici" $v_{L,Ed}$ / N/l_i $P_{rd.}$.

Le verifiche S.L.U. (ove applicabili) e S.L.E. appaiono pertanto soddisfatte.

SLU -Rapporto di sfruttamento lungo la trave

SLE – Rapporto di sfruttamento lungo la trave

1.1.1 Verifica plastica S.L.U.

La verifica plastica della piolatura non si esegue, in quanto, come si vede dai grafici riportati sopra, il rapporto di sfruttamento elastico è sempre minore dell'unità.

9.2. VERIFICHE A FATICA

9.2.1 Generalità

Le verifiche a fatica vengono effettuate con l'impiego del metodo dei coefficienti λ , associato all'impiego del veicolo a fatica FLM3 (cfr. istruzioni NTC-08, cap. 4.2.4.1.4.6.3., ovvero EN 1993-2 cap. 9).

In estrema sintesi, il metodo consente di valutare l'oscillazione di sforzo in un dato dettaglio strutturale sulla base del singolo transito di uno specifico modello di carico (FLM3), opportunamente calibrato mediante l'applicazione dei fattori equivalenti di danno, in modo da fornire il medesimo impatto del traffico reale.

Si ha pertanto:

 $\Delta \sigma_p = |\sigma_{p,max} - \sigma_{p,min}|$ ampiezza escursione tensioni, valutata dalla combinazione di

progetto a fatica (comp. non ciclica + comp. ciclica da FLM3).

 $\Delta \sigma_{E,2} = \lambda \Phi_2 \Delta \sigma_P$ ampiezza equivalente allo spettro di danneggiamento per 2E6 cicli

con:

 $\lambda = \lambda_1 \lambda_2 \lambda_3 \lambda_4$ fattore equivalente di danno

 Φ_2 fattore di amplificazione dinamica (impatto)

Verifica:

$$\gamma_{\rm Ff} \Delta \sigma_{\rm E,2} \leq \Delta \sigma_{\rm c} / \gamma_{\rm Mf}$$

In ottemeperanza a quanto previsto dalle istruzioni e dal N.A.D., e nell'ottica del concetto "safe life", si pone:

 $\gamma_{\rm Ff} = 1$

 $\gamma_{\rm Mf}$ = 1.35 alta conseguenza a seguito della rottura del dettaglio

 $\gamma_{\rm Mf}$ = 1.15 bassa conseguenza a seguito della rottura del dettaglio

Coefficienti λ

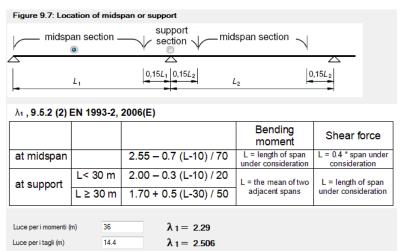
Il valore dei coefficienti λ_1 , λ_2 , λ_3 , λ_4 viene determinato secondo quanto previsto in EN 1993-2 cap. 9 e EN 1994-2 cap. 6.8.6.2 rispettivamente per i dettagli di carpenteria e per le piolature (in quest'ultimo caso i coefficienti λ verranno indicati con il pedice aggiuntivo "v"). Per l'individuazione delle caratteristiche distintive la tipologia di traffico ed il modello di carico, si fa riferimento a NTC-08, cap. 5, equivalente a EN 1991-2 cap. 4.6.

Con riferimento alla tabella seguente, tratta da NTC-08 cap. 5, o indifferentemente da EN 1991-2, cap. 4.6.1.(3), la strada ospitata dalla struttura in esame viene assunta di categoria 2 (strade e autostrade con flusso medio del traffico pesante).

	Traffic categories	Nobs per year and per slow lane		
1	Roads and motorways with 2 or more lanes per direction with high flow rates of lorries	2.0×10^6		
2	Roads and motorways with medium flow rates of lorries	0.5×10^6		
3	Main roads with low flow rates of	$0,125 \times 10^6$		

 0.05×10^{6}

Table 4.5(n) - Indicative number of heavy vehicles expected per year and per slow lane


Coefficiente λ_1 - λ_{v1}

Il coefficiente λ_1 dipende dalla lunghezza e tipologia della linea di influenza.

Local roads with low flow rates of

lorries

Per la verifica dei dettagli di carpenteria (connettori esclusi), viene dedotto dai grafici di seguito riportati, rispettivamente per la zona di centro campata e per la zona in prossimità degli appoggi interni, con riferimento alla luce L calcolata secondo lo schema di cui alla EN 1993-2 cap. 9.5.2.(2).

Coefficiente λ_2 - λ_{v2}

Il coefficiente λ_2 dipende dalla tipologia e dal volume di traffico.

Per i dettagli di carpenteria, si fa riferimento a EN 1993-2 cap. 9.5.2.(3). il coefficiente λ_2 viene determinato in funzione del flusso atteso di veicoli pesanti (N_{Obs}), e dal peso medio degli stessi Q_{ml} , tramite la relazione (*):

$$\lambda_2 = \frac{Q_{m1}}{Q_0} \left(\frac{N_{Obs}}{N_0} \right)^{1/5}$$

Con:

 $N_{Obs} = 0.5e6$ flusso medio veicoli pesanti/anno (strada cat 2 - cfr. tab. precedente)

 $N_0 = 0.5e6$ flusso di riferimento

Q_{ml} peso medio dei veicoli, dedotto secondo la composizione di traffico dei "frequent lorries" per strade di collegamento ti-

po "local traffic", e valutato secondo la seguente relazione:

$$Q_{m1} = \left(\frac{\sum n_i Q_i^5}{\sum n_i}\right)^{1/5}$$

Per i valori di Q_i e n_i si adotta la tabella 4.7 di EN 1991-2 cap. 4.6.5.(1), equivalente alla tabella contenuta in NTC-08 cap. 5, e di seguito riportata.

VEHICLE TYPE TRAFFIC TYPE LORRY 4,5 20,0 40,0 80,0 A B 130 4,20 1,30 70 120 10.0 A B В 70 50,0 3,20 30,0 5,0 A B C C 5,20 150 1,30 90 A B 3,40 15,0 6,00 140 В 4,80 70 5,0 A B 3,60

Table 4.7 - Set of equivalent lorries

Si ottiene pertanto:

Q_{ml} 316.7 kN

$$\lambda_2 = 0.66$$

Per la verifica dei connettori, si adotta quanto previsto in EN 1994-2 6.8.6.2.(4), sostituendo l'esponente 1/5 con 1/8 nelle relazioni precedentemente esposte.

Si ha pertanto:

$$Q_{mlv} = 360.2 \text{ kN}$$

$$\lambda_{\rm v2} = 0.75$$

coefficiente λ_3 - λ_{v3}

Il coefficiente λ_3 dipende dalla vita di progetto della struttura.

Per i dettagli di carpenteria, con riferimento a EN 1993-2 cap. 9.5.2.(5), mediante la relazione:

$$\lambda_3 = \left(\frac{t_{Ld}}{100}\right)^{1/5}$$

 t_{Ld} = vita di progetto prevista.

Si ottengono pertanto i valori tabellari indicati di seguito.

Table 9.2: λ₃

Design life in years	50	60	70	80	90	100	120
Factor λ ₃	0,871	0,903	0,931	0,956	0,979	1,00	1,037

Per la vita di progetto si considera in prima battuta il valore raccomandato di 100 anni, ribadito anche dal D.A.N., ottenendo:

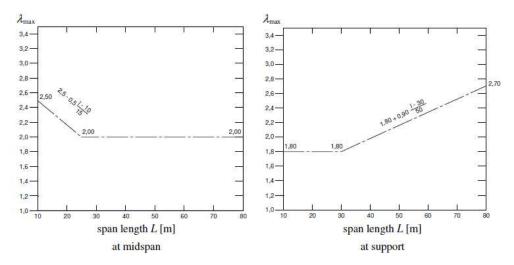
$$\lambda_3 = 1.00$$

Per la verifica dei connettori, la sostituzione dell'esponente 1/5 on 1/8 porta in questo caso al medesimo valore:

$$\lambda_{\rm v3} = 1.00$$

coefficiente λ_4 - λ_{v4}

Il coefficiente λ_4 dipende dall'organizzazione delle corsie di carico in direzione trasversale, e dalla loro posizione relativa sulla linea di influenza trasversale di ciascuna trave.


La formulazione, tratta da EN 1993-2 cap. 9.5.3.(6), prevede:

$$\lambda_{4} = \left[1 + \frac{N_{2}}{N_{1}} \left(\frac{\eta_{2} Q_{m2}}{\eta_{1} Q_{m1}}\right)^{5} + \frac{N_{3}}{N_{1}} \left(\frac{\eta_{3} Q_{m3}}{\eta_{1} Q_{m1}}\right)^{5} + \dots + \frac{N_{k}}{N_{1}} \left(\frac{\eta_{k} Q_{mk}}{\eta_{1} Q_{m1}}\right)^{5}\right]^{1/5}$$

Nel caso in esame essendo presente una unica corsia di marcia si ha $\lambda_4 = 1$.

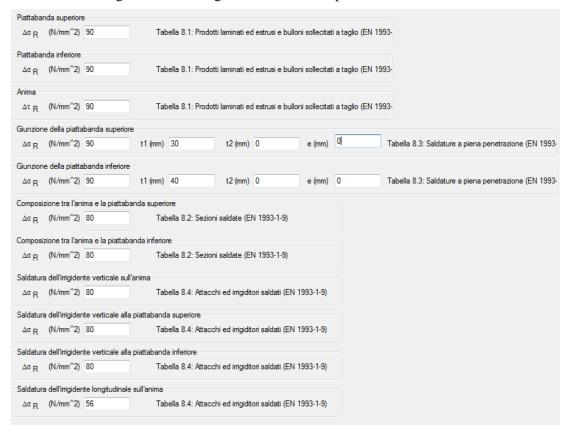
Coefficiente λ - λ_v

Il fattore equivalente di danno (per il momento flettente) è limitato superiormente dal fattore λ_{max} , da valutarsi secondo quanto previsto in EN 1993-2 cap. 9.5.2.(7) in funzione della posizione della sezione verificata e della luce del ponte, con riferimento ai grafici estratti dalla norma, riportati di seguito.

Amplificazione dinamica

Con riferimento a quanto previsto in EN 1991-2, il fattore di amplificazione dinamica è già incluso nella calibrazione del modello di carico FLM3.

Come indicato dalla norma si considera il fattore di impatto per le zone in prossimità dei giunti secondo i criteri indicati al cap. 4.6.1.(6), funzione della distanza dal giunto stesso:


$$\Phi = 1.3(1-D/26)$$

Essendo D < 6 m la distanza dal giunto.

Tutti i coefficienti di utilizzo riportati nelle tabelle che seguono sono da intendersi al netto del suddetto coefficiente dinamico. Si evidenzia che nelle zone poste entro i 6 m dalla testata del ponte comunque si hanno coefficienti di utilizzo sempre minori di 1/1.3=0.77.

9.2.1.1 Dettagli e Coefficienti di sicurezza

Per la verifica a fatica dei **dettagli di carpenteria**, si prendono in esame i dettagli di seguito elencati unitamente alla categoria/num. dettaglio dedotti dalle rispettive tabelle di EN 1993-1-9:

Per la verifica a fatica dei **dettagli di carpenteria**, si prendono in esame i dettagli di seguito elencati unitamente alla categoria dedotti dalle rispettive tabelle di EN 1993-1-9:

Piattabande - tensioni normali	categoria/dettaglio:	90		
Anima - tensioni tangenziali	categoria/dettaglio:	90		
Saldatura composizione anima-piatt.	categoria/dettaglio:	80		
Saldatura di testa piatt inf. e sup.	categoria/dettaglio:	90		
Attacco irr. vert piattabande	categoria/dettaglio:	80		
Attacco irr. vert anima	categoria/dettaglio:	56		
- si conteggia il size effect $k_s = (25/t)^{0.2}$				

t < 50 mm in tutti i casi

Per la verifica a fatica delle **piolature** si seguono i criteri generali contenuti in EN 1994-2. Vengono presi in esame i seguenti dettagli (EN 1993-1-9- cap. 8.):

Saldatura piolo - rottura piatt. categoria/dettaglio: 80/9 (*) tab. 8.4 EN 1993-1-9

Saldatura piolo - rottura piolo categoria/dettaglio: 90/10

Il ciclo di verifica segue quanto previsto in EN 1994-2 cap. 6.8.7.2.(2), comprendendo la verifica separata per rottura del piolo e per rottura della piattabanda.

Per le piattebande in tensione si tiene conto dell'interazione dei due fenomeni, sfruttando la relazione:

$$\frac{\gamma_{Ff} \, \Delta \sigma_{E,2}}{\Delta \sigma_c / \gamma_{Mf}} \, + \, \frac{\gamma_{Ff} \, \Delta \tau_{E,2}}{\Delta \tau_c / \gamma_{Mf,s}} \leq 1.3$$

$$\frac{\gamma_{Ff} \, \Delta \sigma_{E,2}}{\Delta \sigma_c \, / \gamma_{Mf}} \leq 1.0 \qquad \frac{\gamma_{Ff} \, \Delta \tau_{E,2}}{\Delta \tau_c \, / \gamma_{Mf,s}} \leq 1.0$$

Per tutti i dettagli, nell'ambito dell'approccio "safe life", si adotteranno i seguenti coefficienti di sicurezza:

 $\gamma_{Mf} = 1.35$ per tutti i dettagli di carpenteria

 $\gamma_{\rm Mf} = 1.15$ per la rottura del piolo

9.2.2 Verifiche

Come accennato nei capitoli introdottivi, l'ampiezza dei $\Delta \sigma_p$ di tensione viene calcolata sulla base di σ_{max} e σ_{min} derivanti dalla combinazione di carico a fatica, elaborata con riferimento a EN 1992-1-1 cap. 6.8.3.(2), che prevede la sovrapposizione di una componente non ciclica delle sollecitazioni, derivata dalla combinazione S.L.E. frequante, con la componente ciclica, derivata dall'inviluppo delle sollecitazioni dovute al transito del veicolo FLM3.

Le verifiche vengono effettuate in automatico dal programma Ponti EC4 per le categorie di dettaglio indicate al punto precedente.

Relativamente alle sollecitazioni di input, il programma gestisce in automatico le sollecitazioni derivanti dalla combinazione S.L.E. frequente, elaborata come d'uso per Mmax/min e Vmax/min, sovrapponendole alle sollecitazioni derivanti dall'inviluppo per Mmax/min Vmax/min derivanti dal transito di FLM3, con l'obbiettivo di estrarre il massimo valore di ampiezza di $\Delta\sigma_p$. Il programma procede quindi al calcolo dei $\Delta\sigma_E$, tramite applicazione dei coefficienti λ , ed al confronto del valore calcolato con i $\Delta\sigma_c$ tabellari, opportunamente modificati mediante l'applicazione del size effect k_s , quando rilevante, e del coefficiente di sicurezza γ_{Mf} .

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO – Piovene Rocchette – Valle dell'Astico

L'iter di verifica comprende il calcolo delle tensioni lungo la sezione per le seguenti situazioni:

combinazione SLF Mmax

comb. S.L.E. frequente max M + comp. ciclica (FLM3) max M

comb. S.L.E. frequente max M + comp. ciclica (FLM3) min M

combinazione SLF Mmin

comb. S.L.E. frequente min M + comp. ciclica (FLM3) max M

comb. S.L.E. frequente min M + comp. ciclica (FLM3) min M

combinazione SLF Vmax

comb. S.L.E. frequente max V + comp. ciclica (FLM3) max V

comb. S.L.E. frequente max V + comp. ciclica (FLM3) min V

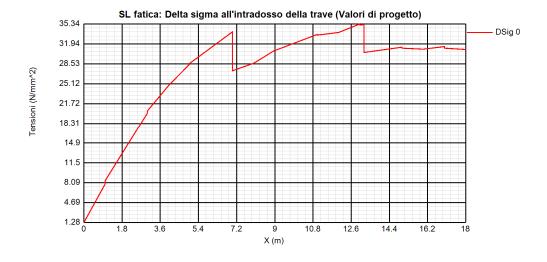
combinazione SLF Vmin

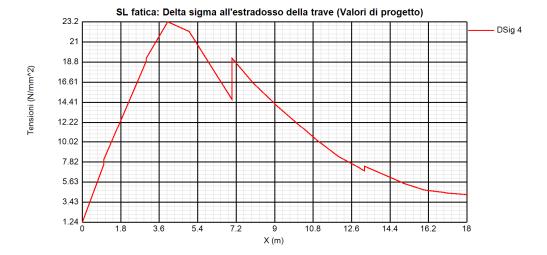
comb. S.L.E. frequente min V + comp. ciclica (FLM3) max V

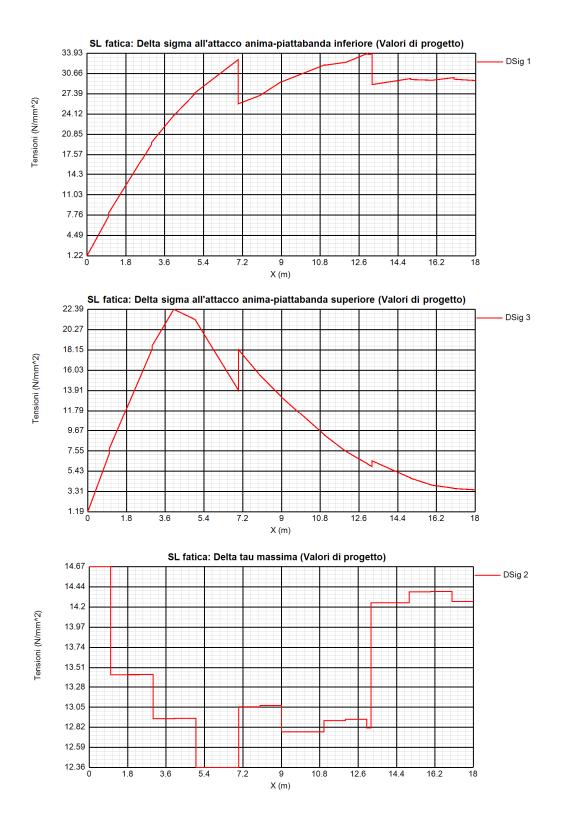
comb. S.L.E. frequente min V + comp. ciclica (FLM3) min V

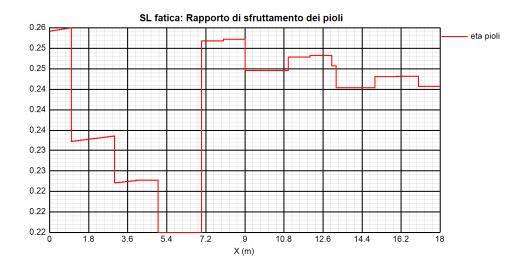
Contestualmente al calcolo delle tensioni, nell'ambito di ciascuna combinazione SLF viene calcolato il $\Delta\sigma_{D}$.

Segue quindi:


calcolo di $\Delta\sigma_E$, mediante applicazione degli appropriati coefficienti λ .


calcolo di $\Delta\sigma_c$, per i vari dettagli, con applicazione degli appropriati coefficienti di sicurezza dell'eventuale size effect.


Il calcolo delle tensioni normali e tangenziali nel piolo avviene secondo le medesime modalità relative ai dettagli di carpenteria.


9.2.2.1 Output sintetico verifiche a fatica

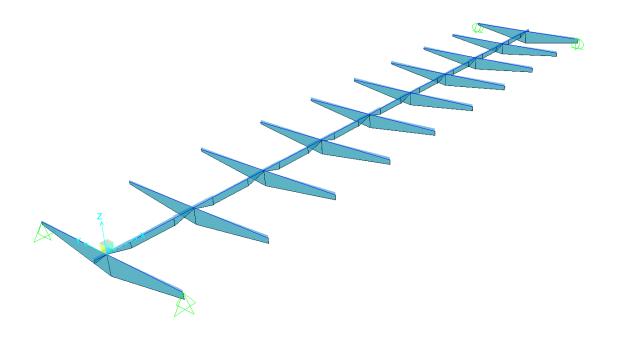
Si riporta di seguito per tutte le sezioni esaminate, il valore del $\Delta\sigma_E$.

1° LOTTO – Piovene Rocchette – Valle dell'Astico

9.3. VERIFICA DI DEFORMABILITÀ

La deformazione delle travi principali legata ai carichi permanenti verrà compensata mediante controfreccia di montaggio.

		d (mm)
G1.a		22.4
G1.b		72.1
G2		8.2
0.2 Az Traff		4.6
Valore contromonta	mm	107


La verifica di deformabilità si riconduce quindi al controllo della freccia sotto carichi accidentali, che deve essere contenuta entro L/500 (indicando con L la luce della campata).

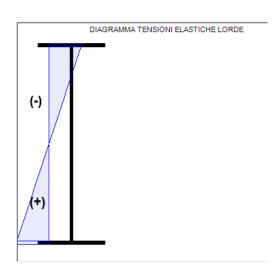
Freccia massima per carichi accidentali $f_{acc} = 23 \text{ mm}$

Freccia ammissibile (L/500) f_{amm} = 72 mm

9.4. Traversi

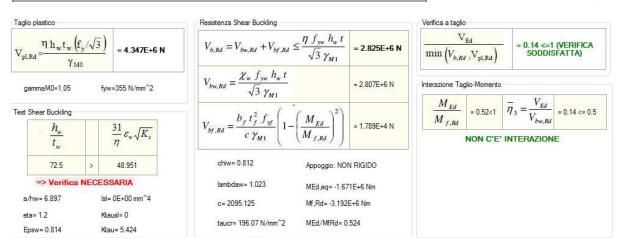
9.4.1 Sollecitazioni

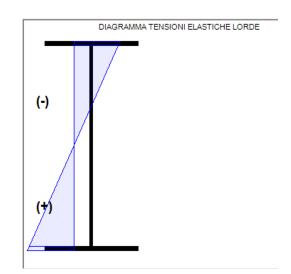
TRAVERSO DI CAMPATA


	Ved	M mezz		Ved	Med
	[KN]	[KNm]		[KN]	[KNm]
G1a	17	44	1.35	23	59
G1b	61	243	1.35	82	328
G2	16	69	1.5	24	104
Az traf	192	780	1.35	259	1053
				389	1544

9.4.2 Verifiche

Di seguito siriporta i grafici di verifica maggiormente rappresentativi.


9.4.2.1 Traverso Spalla


9.4.2.2 Traverso Corrente

Classificazione e verifica plastica in Fase 3

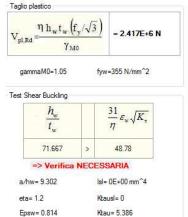

	c/t	zpl(mm)	α	Ψ	Classe
Anima	71.67	450	0.5	-1	3
Piattabanda superiore	9.7				3
Piattabanda inferiore	9.7				1
Classe della sezione					3

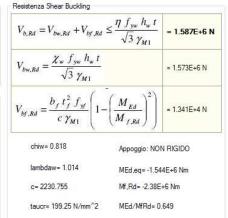
=> Verifica plastica NON APPLICABILE

Azione a	ssiale N	I Flessione M		Interazio	ne N-M
NEd	0E+00	MEd	-1.54E+6	NEd	0E+00
NRd	-8.9E+6	MRd	-3.13E+6	MEd	-1.54E+6
				MRd	-3.13E+6
NEd/NRd	0	MEd/MRd	0.493	MEd/MR	0.493

Fase 1: Piatt. Sup in Cl. 3, Anima in Cl. 4, Piatt. Inf. in Cl. 1

Totale, intradosso = 0 => Sezione a fine fase 2: FESSURATA (m.)

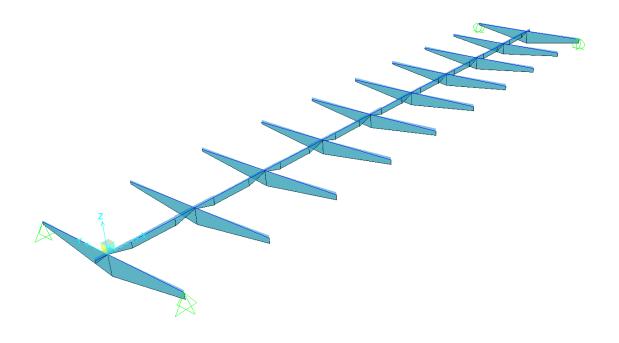

Tensioni nella soletta a fine fase 3 (N/mm^2):


Totale, estradosso = 0
Totale, intradosso = 0

l otale, intradosso = 0

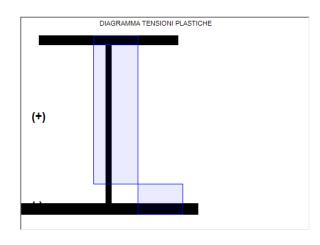
=> Sezione a fine fase 3: FESSURATA (m.)

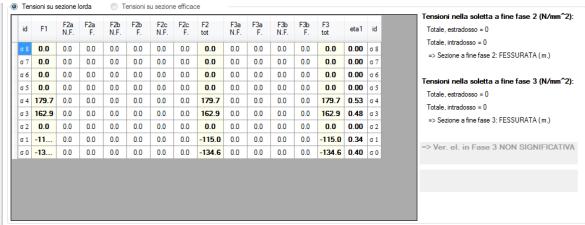
=> Ver. el. in Fase 3 SODDISFATTA eta 1= 0.55

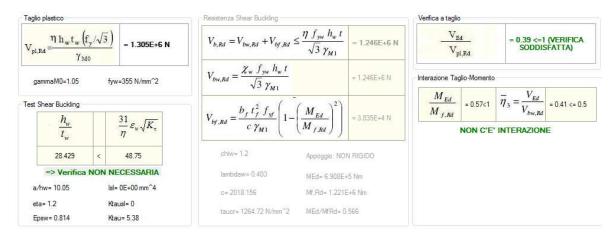


9.5. Trave di spina

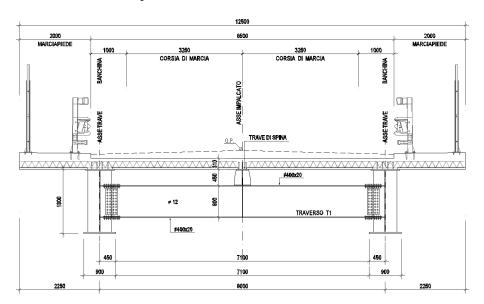
9.5.1 Sollecitazioni

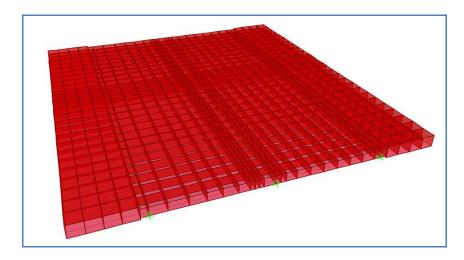

TRAVE DI S	PINA			SLU	SLU
	Ved (max)	Med (max)		Ved	Med
	[KN]	[KNm]		[KN]	[KNm]
G1a	4	33	1.35	5.4	44.55
G1b	62	112	1.35	83.7	151.2
G2	18	15	1.5	27	22.5
Az traf	362	350	1.35	489	472.5
	446	510		605.1	690.75


9.5.2 Verifiche


Di seguito siriporta i grafici di verifica maggiormente rappresentativi.

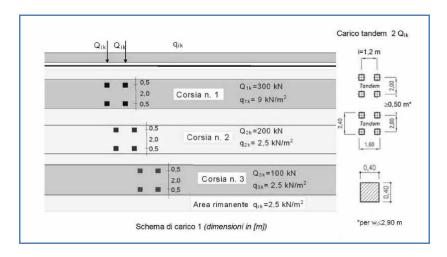
9.5.2.1 Traverso Spalla



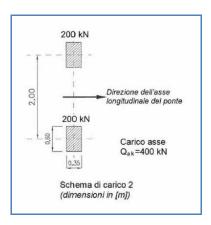

10. SOLETTA

10.1. Analisi trasversale

La soletta dell'impalcato è stata analizzata per mezzo di un modello agli elementi finiti costituito da elementi bidimensionali tipo "shell" di spessore variabile in funzione degli effettivi spessori che la soletta assume rispettivamente nella porzione carrabile dell'opera e nelle porzioni laterali dei marciapiedi. I vincoli esterni adottati sono degli appoggi e sono posizionati in corrispondenza delle anime delle due travi principali ed in corrispondenza della trave di spina centrale. Di seguito si riporta una sezione trasversale dell'impalcato ed un estratto estruso del modello di calcolo.



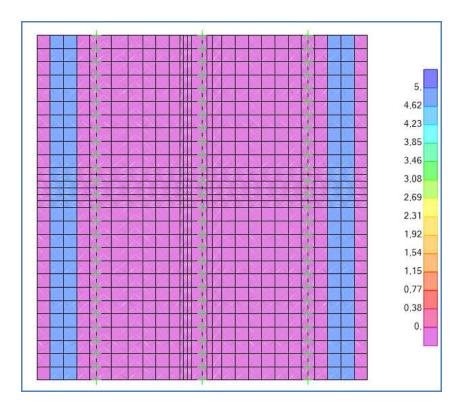
Vista trasversale della carpenteria di impalcato


Vista del modello di calcolo utilizzato

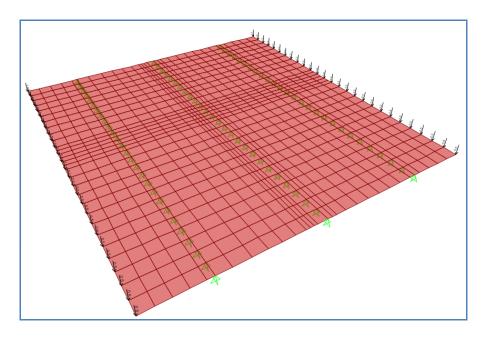
I carichi adottati sono quelli prescritti in normativa ed in particolare lo schema di carico 1, costituito da carichi concentrati su due assi in tandem applicati su impronte di pneumatico di forma quadrata e lato pari a 0,40 m (Q_{ik}) oltre che da un carico distribuito a metro quadrato (q_{ik}) applicato alla corsia di carico. I valori adottati per i carichi variano in base alla corsia di carico, secondo lo schema di normativa riportato nel seguito.

Schema di normativa relativo allo schema di carico 1

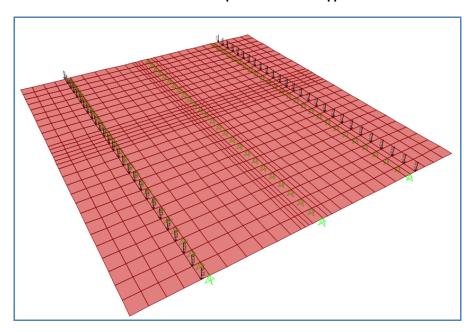
Oltre a questo è stato adottato lo schema di carico 2, costituito da un singolo asse applicato su specifiche impronte di pneumatico di forma rettangolare, con larghezza 0,60 m ed altezza 0,35 m. Nel seguito l'immagine estratta dalla normativa.

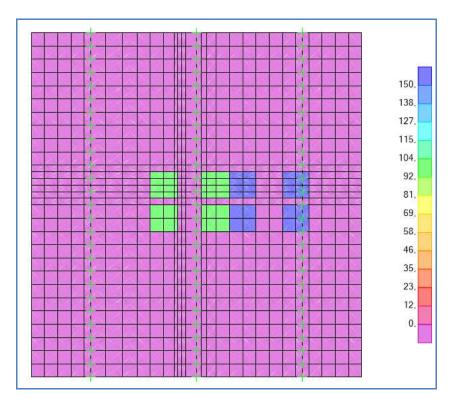


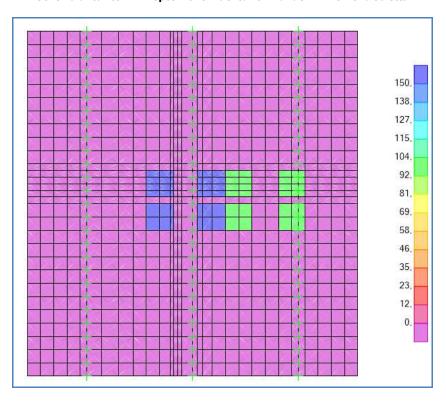
Schema di normativa relativo allo schema di carico 2

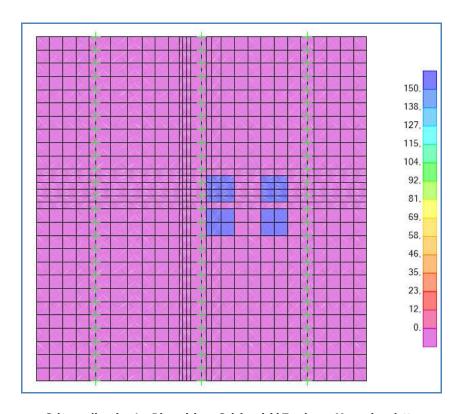

Infine occorre tenere in conto anche l'urto di veicoli in svio (q₈); la normativa indica che "i sicurvia e gli elementi strutturali ai quali sono collegati (la soletta appunto) devono essere dimensionati in funzione della classe di contenimento richiesta.... la forza deve essere applicata ad una quota h pari alla minore delle dimensioni h₁ e h₂, con h₁ = altezza della barriera – 0,10 m e h₂ = 1,00 m. Nel progetto dell'impalcato... alla forza orizzontale d'urto su sicurvia si associa un carico verticale i-solato sulla sede stradale costituito dal secondo schema di carico, posizionato in adiacenza al sicurvia stesso e disposto nella posizione più gravosa"; si rimanda inoltre al paragrafo 3.6.3.3.2 della normativa dove si indica che "in assenza di specifiche prescrizioni.... si può tenere conto delle forze causate da collisioni sugli elementi di sicurezza attraverso una forza orizzontale equivalente di 100 KN applicata 100 mm sotto la sommità dell'elemento o 1,00 m sopra il piano di marcia. Questa forza deve essere applicata su una linea lunga 0,50 m". Nel caso in esame pertanto si assume come forza agente 100 KN applicata 1,00 m sopra il piano viario; questa darà luogo ad una coppia concentrata di valore pari a 100 KNm applicata in corrispondenza di tre nodi consecutivi posti a passo 50 cm, per un totale di 33 KNm per ciascun nodo.

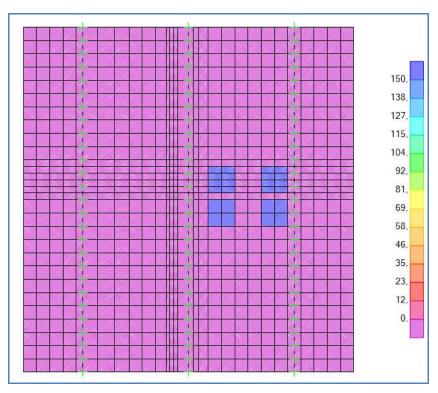
Come indicato in normativa i carichi sopra descritti utilizzati per il calcolo delle strutture secondarie di impalcato quale è la soletta, si considerano proiettati fino alla linea media della soletta stessa, assumendo un angolo di diffusione di 45°. Individuata quindi l'impronta di applicazione del carico si riportano i carichi concentrati a carichi di superficie per poi applicarli alle shell presenti nel modello di calcolo agli elementi finiti. Quale posizione di applicazione del carico si deve assumere quella di volta in volta più gravosa ai fine delle verifiche. In totale sono stati sviluppati quattro modelli di carico, due per ciascuno dei due schemi. Ciascuno schema è stato applicato, variandone la posizione trasversale, nel primo modello nella mezzeria del concio di soletta analizzato (di sviluppo pari alla

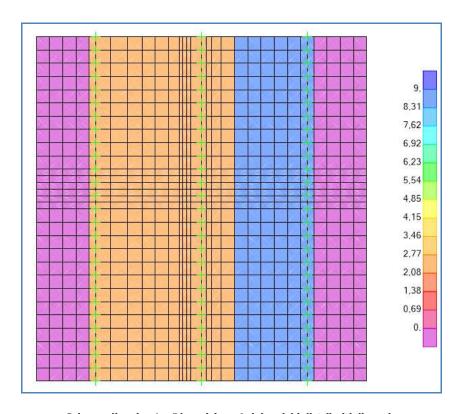

sua larghezza, in modo da limitare gli effetti di bordo) e nel secondo modello nella zona di bordo in modo da simulare il comportamento all'estremità della soletta in prossimità dei giunti. Di seguito si riportano le viste del modello di calcolo dove si individuano le posizioni dei carichi Tandem e dei carichi di corsia permutate trasversalmente. Si riportano inizialmente le viste dei carichi relativi alla pavimentazione stradale che resta costante nei quattro modelli e le viste dei carichi delle reti di protezione, dei due guardrail e del carico folla che può essere presente fra i guardrail e la rete di protezione. Le unità di misura adottate sono il KN ed il metro.

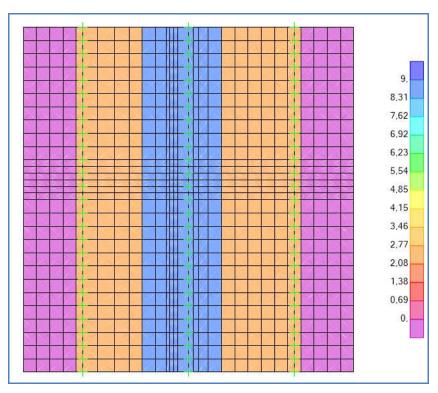

Carico di superficie della folla applicato sui marciapiedi

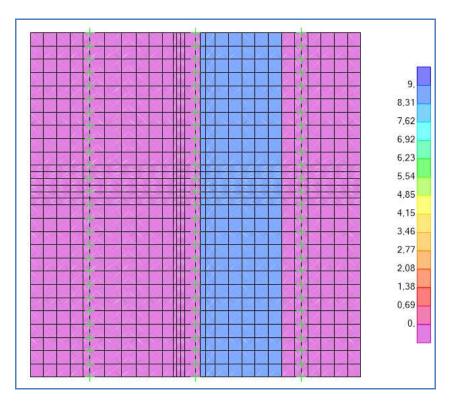

Carichi concentrati delle reti di protezione laterali applicati sui nodi

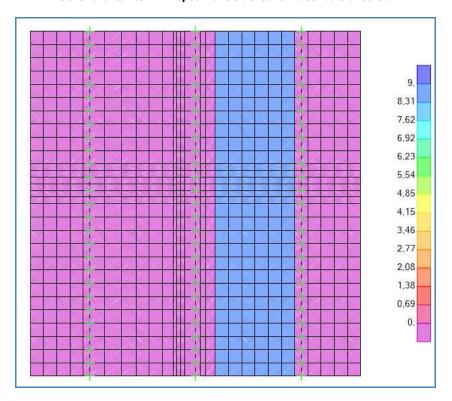

Carichi concentrati dei due guardrail laterali applicati sui nodi

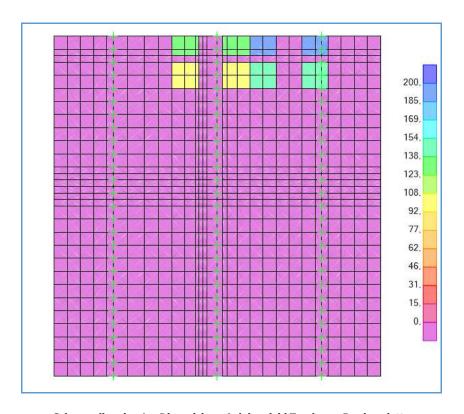

Schema di carico 1 – Disposizione A dei carichi Tandem – Mezzeria soletta

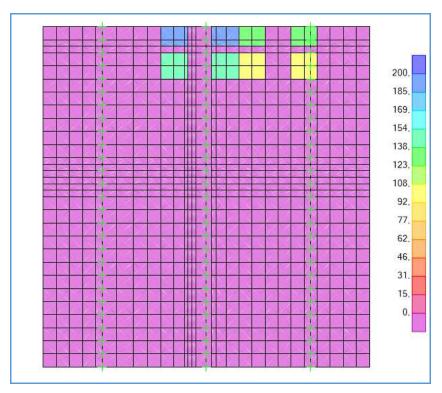

Schema di carico 1 – Disposizione B dei carichi Tandem – Mezzeria soletta

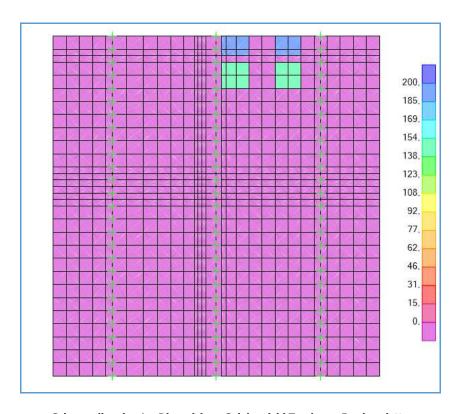

Schema di carico 1 – Disposizione C dei carichi Tandem – Mezzeria soletta

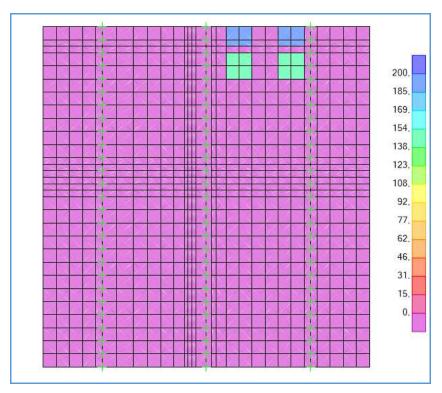

Schema di carico 1 – Disposizione D dei carichi Tandem – Mezzeria soletta

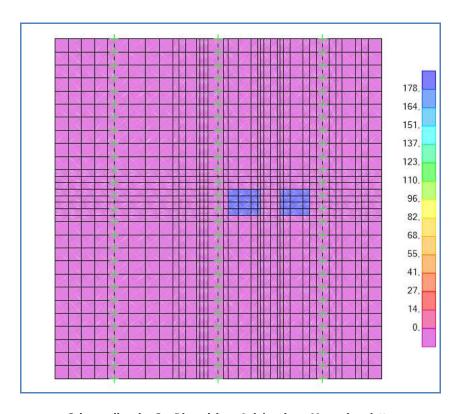

Schema di carico ${f 1}$ – Disposizione ${f A}$ dei carichi distribuiti di corsia

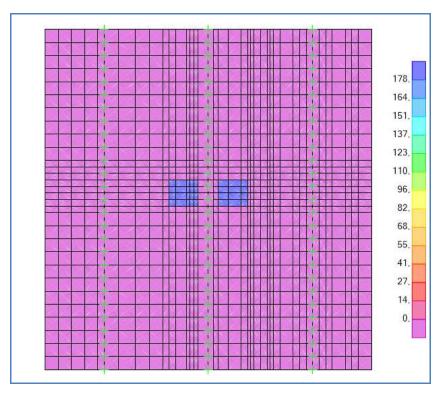

Schema di carico 1 – Disposizione B dei carichi distribuiti di corsia

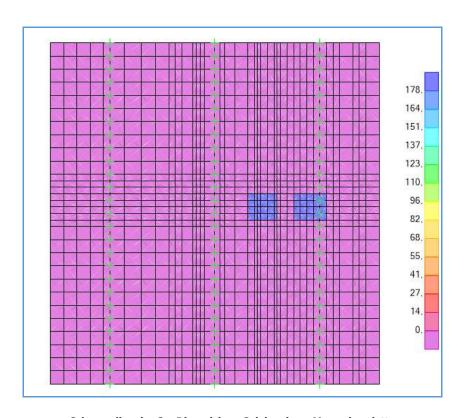

Schema di carico 1 – Disposizione C dei carichi distribuiti di corsia

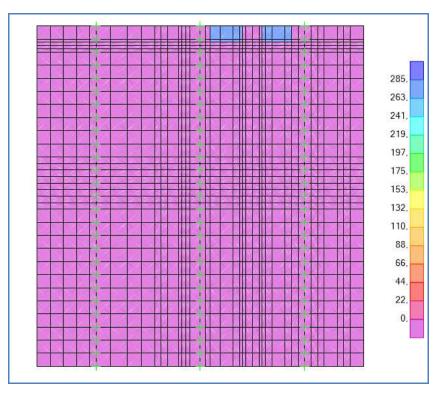

Schema di carico 1 – Disposizione D dei carichi distribuiti di corsia

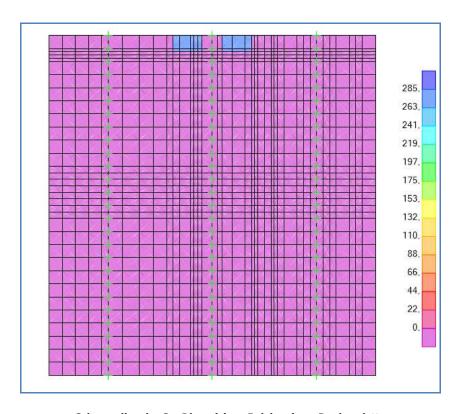

Schema di carico 1 – Disposizione A dei carichi Tandem – Bordo soletta

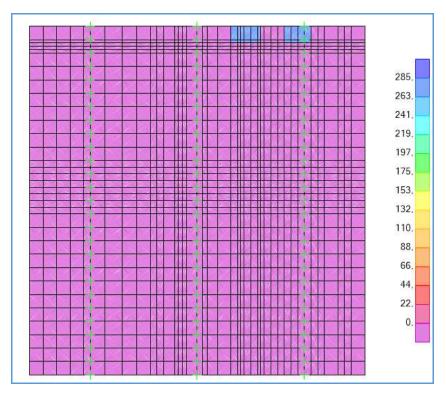

Schema di carico 1 – Disposizione B dei carichi Tandem – Bordo soletta


Schema di carico 1 – Disposizione C dei carichi Tandem – Bordo soletta


Schema di carico 1 – Disposizione D dei carichi Tandem – Bordo soletta


Schema di carico 2 – Disposizione A del carico – Mezzeria soletta


Schema di carico 2 – Disposizione B del carico – Mezzeria soletta


Schema di carico 2 – Disposizione C del carico – Mezzeria soletta

Schema di carico 2 – Disposizione A del carico – Bordo soletta

Schema di carico 2 – Disposizione B del carico – Bordo soletta

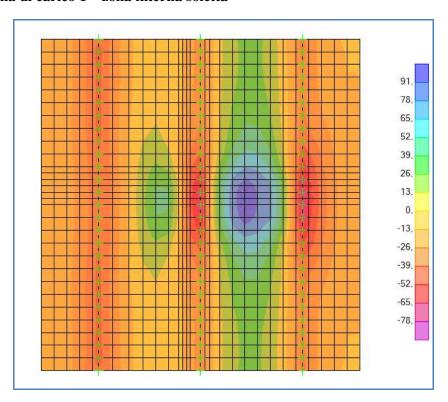
Schema di carico 2 – Disposizione C del carico – Bordo soletta

10.2. Combinazioni di carico

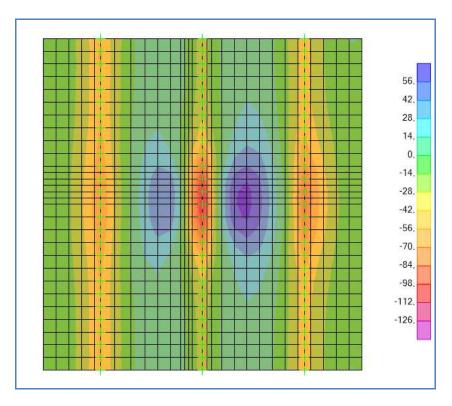
Le combinazioni di carico adottate sono quelle indicate dalla normativa; in particolare sono state definite per i due modelli relativi allo schema di carico 1 quattro combinazioni di carico relative allo stato limite ultimo (SLU), una per ciascuna delle posizioni assunte dai carichi mobili e quattro combinazioni di carico agli stati limite di esercizio (SLE) di tipo frequente; per i due modelli relativi allo schema di carico 2 tre combinazioni di carico relative allo stato limite ultimo (SLU) e altrettante relative allo stato limite di esercizio (SLE) di tipo frequente. In entrambi i casi sono state definite due combinazioni di carico inviluppo, uno per gli SLU ed una per gli SLE. Per la condizione di carico relativa all'urto del veicolo in svio è stata definita una sola combinazione SLU ed una sola combinazione SLE. Di seguito le tabelle riepilogative con i coefficienti adottati.

COMBINAZIONI DI CARICO – SCHEMA DI CARICO 1								
	SLU-A	SLU-B	SLU-C	SLU-D	SLE-A	SLE-B	SLE-C	SLE-D
G1	1,35	1,35	1,35	1,35	1,00	1,00	1,00	1,00
G2-Pavimentazione	1,50	1,50	1,50	1,50	1,00	1,00	1,00	1,00
G2-Guardrail	1,50	1,50	1,50	1,50	1,00	1,00	1,00	1,00
G2-Rete	1,50	1,50	1,50	1,50	1,00	1,00	1,00	1,00
Q1k-A	1,35	-	-	-	0,75	-	-	-
Q1k-B	-	1,35	-	-	-	0,75	-	-
Q1k-C	-	-	1,35	-	-	-	0,75	-
Q1k-D	-	-	-	1,35	-	-	-	0,75
q1k-A	1,35	-	-	-	0,40	-	-	-
q1k-B	-	1,35	-	-	-	0,40	-	-
q1k-C	-	-	1,35	-	-	-	0,40	-
q1k-D	-	-	-	1,35	-	-	-	0,40
Q5	0,675	0,675	0,675	0,675	-	-	-	-

1° LOTTO – Piovene Rocchette – Valle dell'Astico

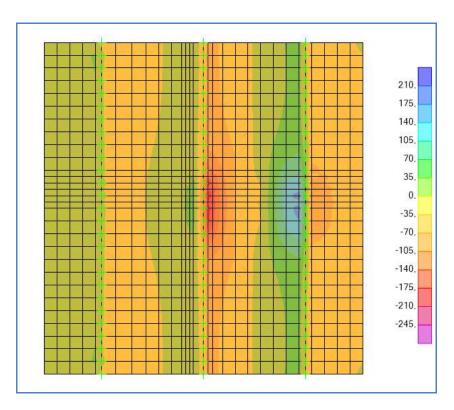

COMBINAZIONI DI CARICO – SCHEMA DI CARICO 2						
	SLU-A	SLU-B	SLU-C	SLE-A	SLE-B	SLE-C
G1	1,35	1,35	1,35	1,00	1,00	1,00
G2-Pavimentazione	1,50	1,50	1,50	1,00	1,00	1,00
G2-Guardrail	1,50	1,50	1,50	1,00	1,00	1,00
G2-Rete	1,50	1,50	1,50	1,00	1,00	1,00
Q2k-A	1,35	-	-	0,75	-	-
Q2k-B	-	1,35	-	-	0,75	-
Q2k-C	-	-	1,35	-	-	0,75

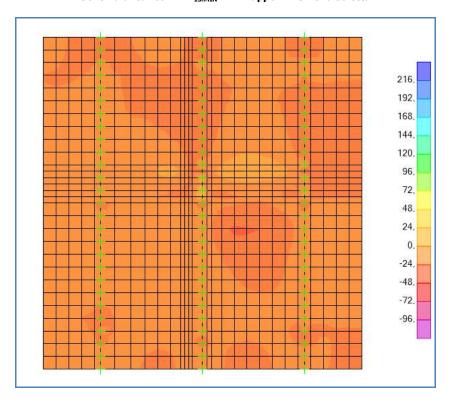
COMBINAZIONI DI CARICO – URTO VEICOLO						
SLU-A SLE-A						
G1	1,35	1,00				
G2-Pavimentazione	1,50	1,00				
G2-Guardrail	1,50	1,00				
G2-Rete	1,50	1,00				
Q2k	1,35	0,75				
q8	1,35	0,75				

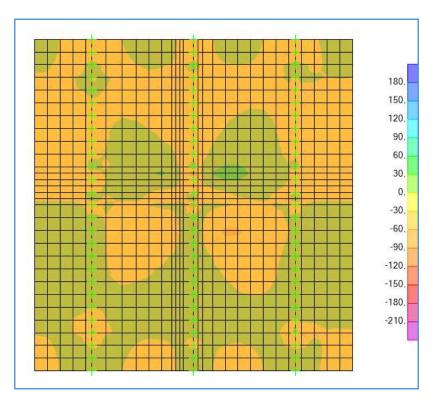

10.3. Sollecitazioni

Si riportano le sollecitazioni di calcolo ottenute dai modelli agli elementi finiti sviluppati; in particolare per ciascun modello si riportano i digrammi del momento flettente M1 (con riferimento sia ai massimi valori positivi sia ai massimi valori negativi) ed i diagrammi dei tagli V13 e V23 (con riferimento sia ai massimi valori positivi sia ai massimi valori negativi). Le unità di misura adottate sono il KNm/m per il momento flettente ed il KN/m per il taglio.

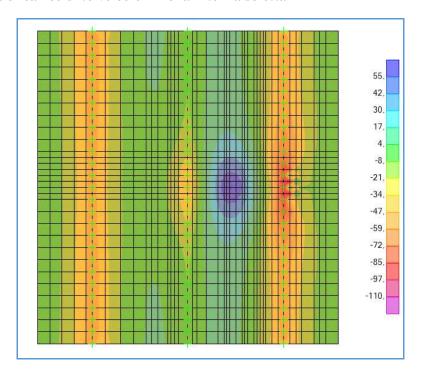
10.3.1 Schema di carico 1 – zona interna soletta


Schema di carico 1 – M_{11.MAX} – Inviluppo – Mezzeria soletta

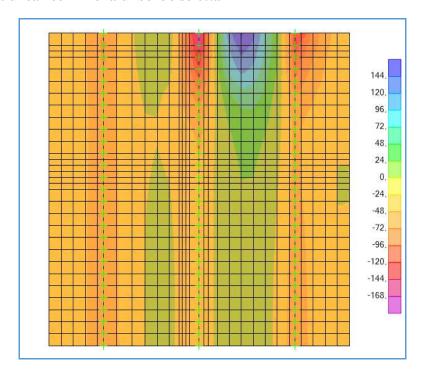

Schema di carico 1 — $M_{11.MIN}$ - Inviluppo — Mezzeria soletta


Schema di carico $\mathbf{1} - \mathbf{V}_{13.\text{MAX}}$ - Inviluppo - Mezzeria soletta

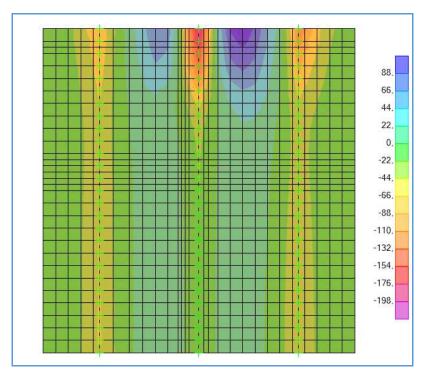
Schema di carico 1 - V_{13.MIN} - Inviluppo - Mezzeria soletta



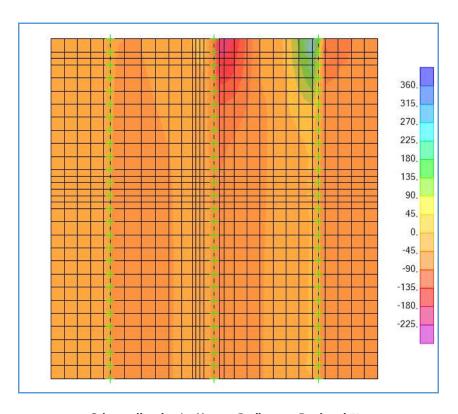
Schema di carico 1 – V_{23.MAX} - Inviluppo – Mezzeria soletta

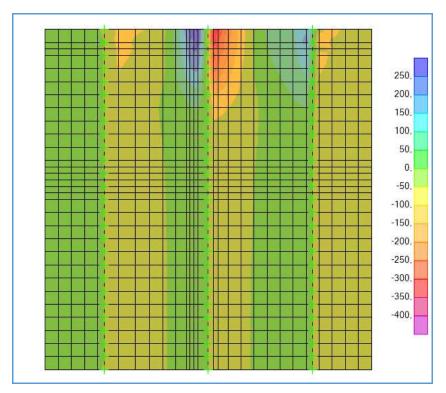

Schema di carico $1 - V_{23.MIN}$ - Inviluppo - Mezzeria soletta

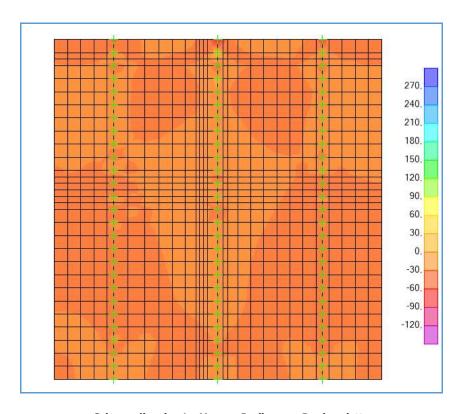
10.3.2 Schema di carico urto veicolo - zona interna soletta

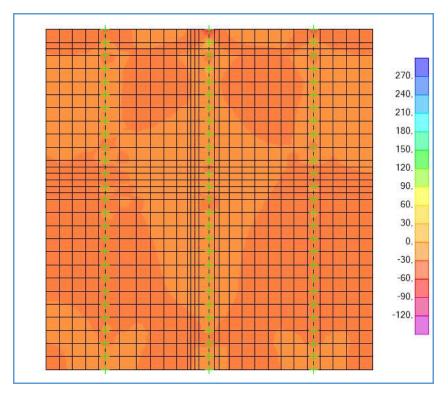


Schema di carico Urto Veicolo in svio — M_{11} - Mezzeria soletta

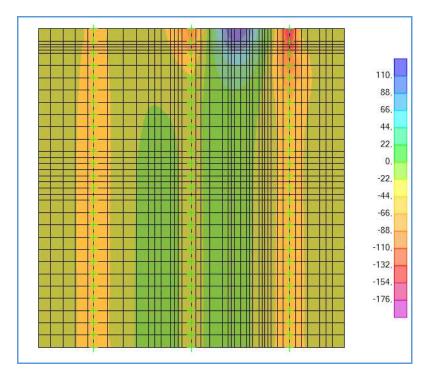

10.3.3 Schema di carico 1- zona di bordo soletta


Schema di carico 1 — $M_{11.MAX}$ - Inviluppo — Bordo soletta

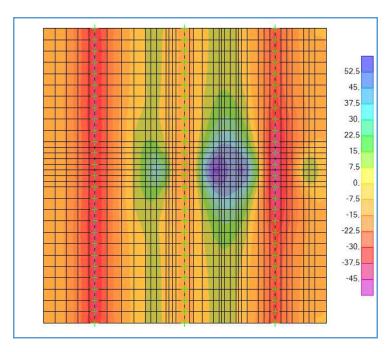

Schema di carico 1 - M_{11.MIN} - Inviluppo - Bordo soletta


Schema di carico 1 — $V_{13.MAX}$ - Inviluppo — Bordo soletta

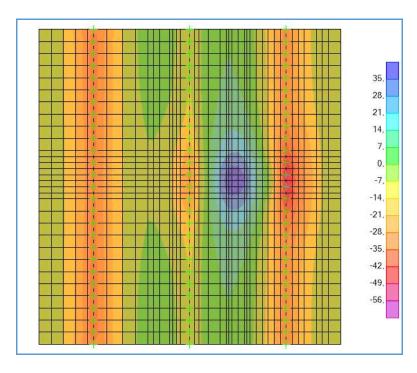
Schema di carico 1 - V_{13.MIN} - Inviluppo - Bordo soletta



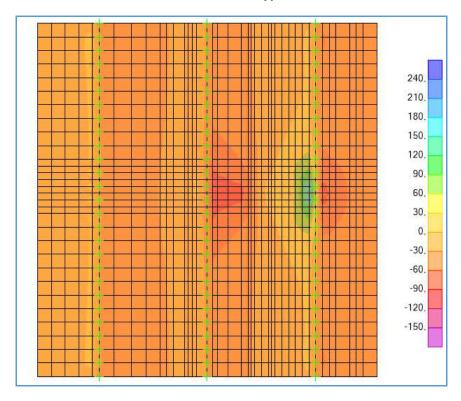
Schema di carico 1 — $V_{23,MAX}$ - Inviluppo — Bordo soletta

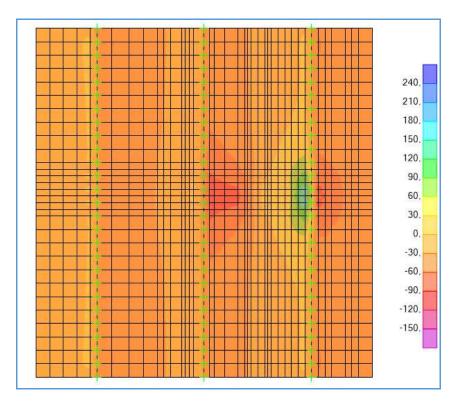

Schema di carico 1 – $V_{23.MIN}$ - Inviluppo – Bordo soletta

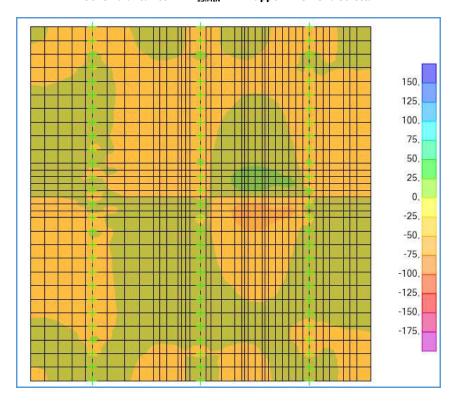
10.3.4 Schema di carico urto veicolo – zona di bordo soletta

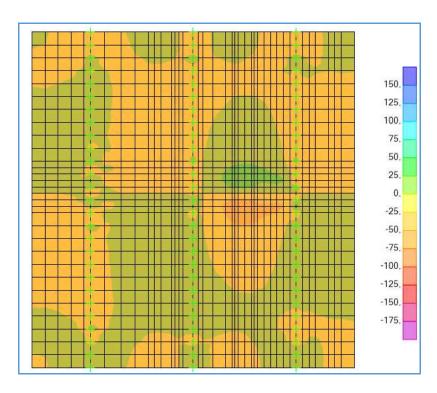


Schema di carico Urto Veicolo in svio - M₁₁ - Bordo soletta

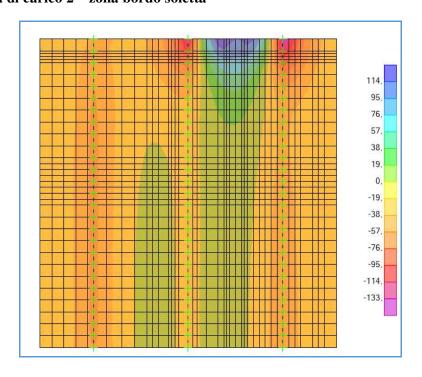

10.3.5 Schema di carico 2 – zona interna soletta


Schema di carico 2 - M_{11.MAX} - Inviluppo - Mezzeria soletta

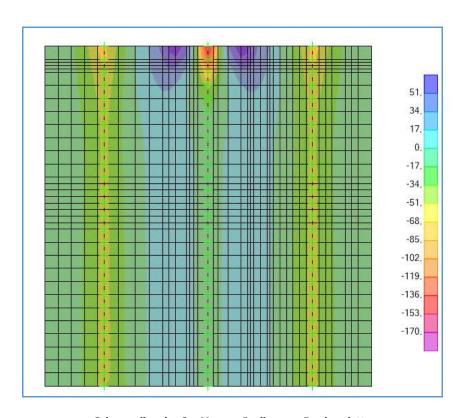

Schema di carico 2 — $M_{11.MIN}$ - Inviluppo — Mezzeria soletta


Schema di carico $2 - V_{13.MAX}$ - Inviluppo - Mezzeria soletta

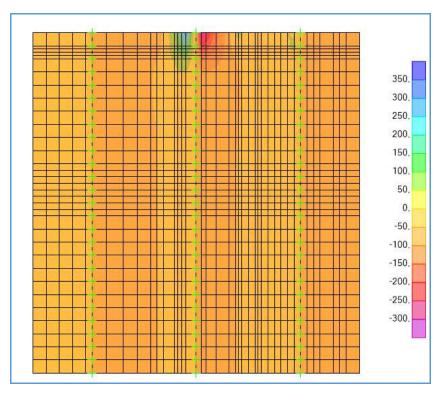
Schema di carico 2 - V_{13.MIN} - Inviluppo - Mezzeria soletta

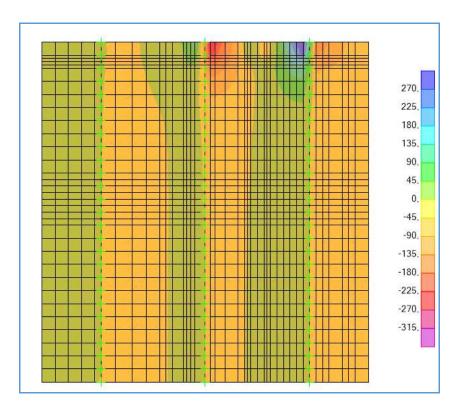


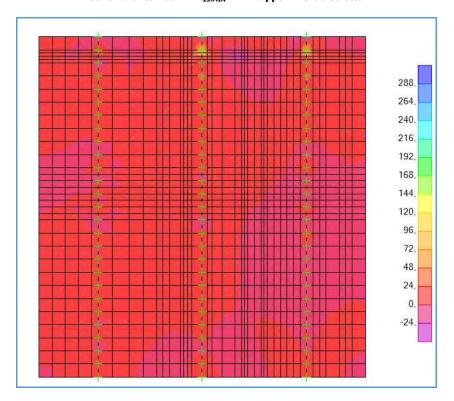
Schema di carico 2 - V_{23.MAX} - Inviluppo - Mezzeria soletta

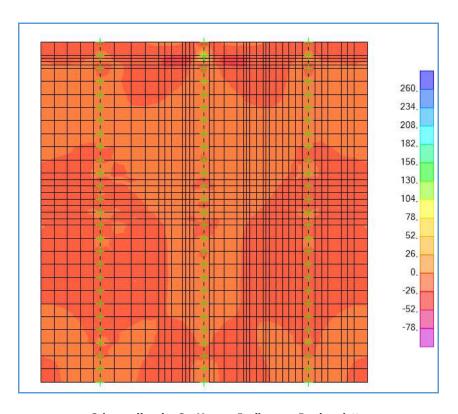


Schema di carico 2 – V_{23.MIN} - Inviluppo – Mezzeria soletta


10.3.6 Schema di carico 2 – zona bordo soletta

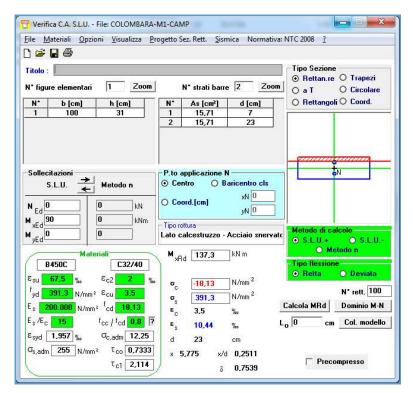

Schema di carico 2 - M_{11.MAX} - Inviluppo - Bordo soletta


Schema di carico 2 — $M_{11.MIN}$ - Inviluppo — Bordo soletta

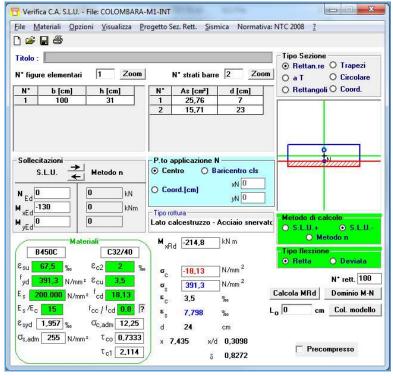

Schema di carico 2 - V_{13.MAX} - Inviluppo - Bordo soletta

Schema di carico 2 - V_{13.MIN} - Inviluppo - Bordo soletta

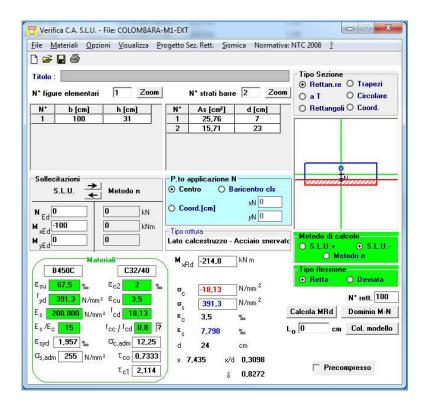
Schema di carico 2 – V_{23.MAX} - Inviluppo – Bordo soletta

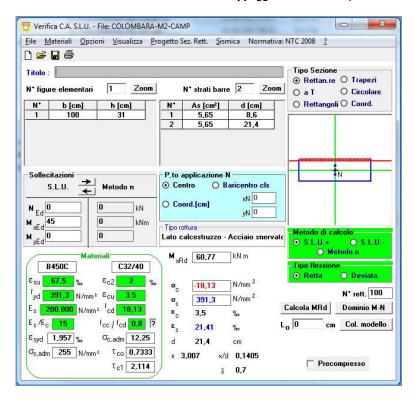

Schema di carico 2 — $V_{23,MIN}$ - Inviluppo — Bordo soletta

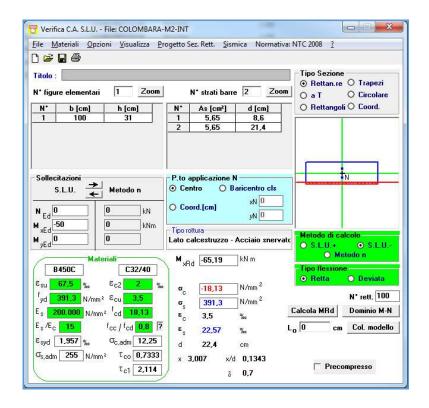
10.4. Verifiche

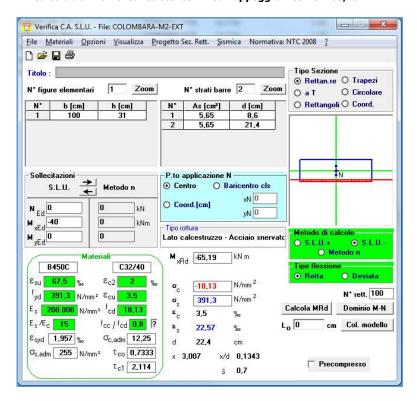

Dall'analisi puntuale dei modelli sopra riportati, è possibile ricavare i massimi valori delle sollecitazioni agenti nelle varie zone della soletta. Per praticità si riassumono nelle tabelle seguenti, dove è indicato lo schema di carico, la combinazione di carico e l'armatura adottata con il relativo momento resistente.

	SOLETTA IMPALCATO – ZONE INTERNE							
	M _{1,MAX} CAMPATA	M _{1,MIN} TRA- VE INTER- NA	M _{1,MIN} TRAVE E- STERNA	M _{2,MAX} CAMPATA	M _{2,MIN} TRAVE IN- TERNA	M _{2,MIN} TRAVE E- STERNA	$\mathbf{V_{13}}$	
M _{ED} / V _{ED}	+ 90 KNm/m	-130 KNm/m	-100 KNm/m	+ 45 KNm/m	-50 KNm/m	-40 KNm/m	180 KN/m	
SCHEMA DI CARICO	Schema di Ca- rico 1 - SLU-A	Schema di Ca- rico 1 - SLU-B	Schema di Ca- rico 2 - SLU-C	Schema di Ca- rico 1 - SLU-A	Schema di Ca- rico 1 - SLU-B	Schema di Ca- rico 2 - SLU-C	Schema di Ca- rico 1 - ENVE	
ARMATURA SUP.	ф 20 /20"	φ 16 /20"+ φ 20 /20"	φ 16 /20"+ φ 20 /20"	ф 12 /20"	ф 12 /20"	ф 12 /20	φ 16 /20"+ φ 20 /20"	
ARMATURA INF.	ф 20 /20"	ф 20 /20"	ф 20 /20"	φ 12 /20"	ф 12 /20"	ф 12 /20"	ф 20 /20"	
M _{RD} / V _{RD}	+ 137,3 KNm/m	-214,8 KNm/m	-214,8 KNm/m	+ 60,77 KNm/m	-65,19 KNm/m	-65,19 KNm/m	194 KN/m	
VERIFICA	ОК	ОК	ок	ОК	ок	ок	ок	


Si riportano di seguito le viste del programma VCASLU utilizzato per il calcolo dei momenti resistenti; il calcolo è condotto adottando una striscia di soletta di larghezza pari a 100 cm e di altezza pari a 31 cm; i materiali utilizzati sono l'acciaio da cemento armato B450C e calcestruzzo di classe C32/40.


Calcolo del momento resistente M1 in campata: 137,3 KNm


Calcolo del momento resistente M1 sull'appoggio interno: -214,8 KNm


Calcolo del momento resistente M1 sull'appoggio esterno: -214,8 KNm

Calcolo del momento resistente M2 in campata: 60,77 KNm

Calcolo del momento resistente M2 sull'appoggio interno: -65,19 KNm

Calcestru	IZZO		Sollecitazioni		V13
Гіро	C32/40		VEd	kN	180
₹.	40	N/mm²	N _{Ed}	kN	0
dk	33,2	N/mm²		•	
'c	1,5		Armatura a taglio		
l _{cc}	0,85		Diametro	mm	0
cd	18,8	N/mm²	Numero barre		0
			A _{sw}	cm ²	0,00
Acciaio			Passo s	cm	20
k	540	N/mm²	Angolo α	0	90
k	450	N/mm²			
's	1,15		Armatura longitudinal	le	
yd .	391	N/mm²	n ₁	Ī	5,0
			Ø ₁	mm	20
			n ₂		5
			Ø ₂	mm	20
			A _{sl}	cm ²	31,42
			Sezione		
			b _w	cm	100
			н	cm	31
			С	cm	7
			d	cm	24
			k	N/mm²	1,91
			V _{min}	N/mm²	0,53
			ρ		0,0131
			$\sigma_{\sf cp}$	N/mm²	0,00
			α_{c}		1,00
			Resistenza senza armatura	a taglio	
			V _{Rd}	kN	194

Calcolo del momento resistente M2 sull'appoggio esterno: -65,19 KNm

Verifica a taglio

Per quanto riguarda la verifica a fessurazione della soletta occorre riferirsi alle sollecitazioni ottenute con le combinazioni agli stati limite di esercizio; la verifica deve essere condotta sia per il momento flettente positivo di campata sia per il momento flettente negativo all'appoggio.

SOLETTA IMPALCATO – ZONE INTERNE						
M _{1,SLE} CAMPATA	M _{1,SLE} TRA- VE INTER- NA	M _{1,SLE} TRA- VE ESTER- NA				
+ 48 KNm/m	-75KNm/m	-65 KNm/m				
Schema di Ca-	Schema di Ca-	Schema di Ca-				
rico 1 - SLE-A	rico 1 - SLE-B	rico 2 - SLE-C				
ф 20 /20"	φ 16 /20"+	φ 16 /20"+ φ 20 /20"				
	M _{1,SLE} CAMPATA + 48 KNm/m Schema di Carico 1 - SLE-A	M _{1,SLE} TRA- VE INTER- NA + 48 KNm/m Schema di Ca- rico 1 - SLE-A γ 16 /20"+				

ARMATURA INF.	ф 20 /20"	ф 20 /20"	ф 20 /20"
w	0,16 mm	0,19 mm	0,14 mm
W _{LIM}	0,20 mm	0,20 mm	0,20 mm
VERIFICA	ок	OK	OK

Sollecitazioni

Momento flettente	M	48	kN m
Storzo normale	N	0	kN

Materiali

Res. caratteristica ds	Rox	40	N/mm²
Tensione ammissibile cls	σc _{amm}	12,3	N/mm ²
Res. media a trazione ds	f _{ctm}	3,2	N/mm ²
Res. caratteristica a trazione ds	f _{ctk}	2,2	N/mm²
Tensione ammissibile acciaio	σs _{amm}		N/mm²
Coefficiente om og. acciaio-cls	n	15	

Caratteristiche geometriche

curations geometrical								
Altezza sezione	Н	31	cm					
Larghezza sezione	В	100	cm					
Armatura compressa (1º strato)	As ₁ '	15,71	cm ²	5	Ø 20	$C_{s1} =$	7	cm
Armatura compressa (2º strato)	As ₂ '	0,00	cm ²		Ø	C _{s2} =		cm
Armatura tesa (2º strato)	As ₂	0,00	cm ²		Ø	C ₁₂ =		cm
Armatura tesa (1º strato)	As ₁	15,71	cm ²	5	Ø 20	C ₁₁ =	8	cm

Tensioni nei materiali

Compressione max nel ds.	σς	5,5	N/mm²	<	σc _{amm}
Trazione nell'acciaio (1º strato)	σs	152,8	N/mm²	<	σa _{amm}

Eccentricità	e (M)	œ	cm	>	H/6 Sez. parzializzata
	u (M)	00	cm		
Posizione asse neutro	y (M)	8,1	cm		
Area ideale (sez. int. reagente)	A _{id}	3540	cm ²		
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	278535	cm ¹		
Mom. di inerzia ideale (sez. parz. N=0)	J _{lo*}	70309	cm ⁴		

Verifica a fessurazione

Momento di fessurazione (f _{ctk})	M _{fess} *	40	kN m	La sezione è fessurata
Momento di fessurazione (f _{ctm})	M _{fess}	57	kN m	
Eccentricità per M=M _{fess}	e (M _{fess})	00	cm	
	u (M _{fess})	00	cm	
Compressione max nel cls. per M=M _{fess}	σcr	6,5		
Traz. nell'acciaio (1º str.) per M=M _{fess}	σsr	180,7	N/mm ²	
Posizione asse neutro per M=M _{fess}	y (M _{fess})	8,1	cm	
	β_1	1		
	β ₂	0,5		
Deform. uni taria media dell'arm.	εsm	0,00029		
Copriferro netto	c'	7,0	cm	
Altezza efficace	der	22,0	cm	
Area efficace	Acerr	2200	cm ²	
Armatura nell'area efficace	Aserr	15,7	cm ²	
	ρr	0,00714		
Distanza tra le barre	S	20,0	cm	
	K ₂	0,4		
	K ₃	0,125		
Distanza media tra le fessure	s _m	32,0	cm	
Valore medio dell'ap. delle fessure	wm	0,09	mm	_
Valore caratter, dell'ap, delle fessure	wk	0,16	mm	

Sollecitazioni

Momento flettente	М	75	kN m
Storzo normale	N	0	kN

Materiali

Res. caratteristica ds	R _{ok}	40	N/mm ²
Tensione ammissibile cls	σc _{amm}	12,3	N/mm ²
Res. media a trazione ds	f _{ctm}	3,2	N/mm ²
Res. caratteristica a trazione ds	f _{ctk}	2,2	N/mm ²
Tensione ammissibile acciaio	σs _{amm}	260	N/mm ²
Coefficiente om og. acciaio-cls	n	15	

Caratteristiche geometriche

curaturisticine geometricine								
Altezza sezione	Н	31	cm					
Larghezza sezione	В	100	cm					
Armatura compressa (1º strato)	As ₁ '	15,71	cm ²	5	Ø 20	C _{s1} =	8	cm
Armatura compressa (2º strato)	As ₂ '	0,00	cm ²		Ø	C _{s2} =		cm
Armatura tesa (2º strato)	As ₂	10,05	cm ²	5	Ø 16	C ₁₂ =	7	cm
Armatura tesa (1º strato)	As ₁	15,71	cm ²	5	Ø 20	C ₁₁ =	7	cm

> H/6 Sez. parzializzata

Tensioni nei materiali

Telisioni nermaterian					
Compressione max nel ds.	σς	6,8 N/I	mm² <	< oc _{amm}	
Trazione nell'acciaio (1º strato)	σs	143,6 N/s	mm² «	< σa _{amm}	

Eccentricità	e (M)	00	cm
	u (M)	00	cm
Posizione asse neutro	y (M)	10,0	cm
Area ideale (sez. int. reagente)	A _{id}	3681	cm ²
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	289430	cm ⁴
Mom, di inerzia ideale (sez. parz. N=0)	June	110011	cm *

Verifica a fessurazione

Momento di fessurazione (f _{ctk})	M _{fess} *	41	kN m	La sezione è fessurata
Momento di fessurazione (f _{ctm})	M _{fess}	59	kN m	
Eccentricità per M=M _{fess}	e (M _{fess})	00	cm	
	u (M _{fess})	00	cm	
Compressione max nel ds. per M=M _{fess}	σcr	5,3		
Traz. nell'acciaio (1º str.) per M=M _{fess}	σsr	112,9	N/mm ²	
Posizione asse neutro per M=M _{fess}	y (M _{fess})	10,0	cm	
	β_1	1		
	β ₂	0,5		
Deform. unitaria media dell'arm.	Esm	0,00047		
Copriferro netto	c'	6,0	cm	
Altezza efficace	der	18,2	cm	
Area efficace	Acerr	1820	cm ²	
Armatura nell'area efficace	As _{eff}	25,8	cm ²	
	ρr	0,01415		
Distanza tra le barre	S	20,0	cm	
	K ₂	0,4		
	K ₃	0,125		
Distanza media tra le fessure	Sm	23,1	cm	
Valore medio dell'ap, delle fessure	wm	0,11	mm	_
Valore caratter, dell'ap, delle fessure	wk	0,19	mm	

Sollecitazioni

Momento flettente	M	65	kN m
Sforzo normale	N	0	kN

Materiali

Res. caratteristica ds	R _{ok}	40	N/mm ²
Tensione ammissibile cls	σc _{amm}	12,3	N/mm ²
Res. media a trazione ds	f _{ctm}	3,2	N/mm²
Res. caratteristica a trazione cls	f _{etk}	2,2	N/mm ²
Tensione ammissibile acciaio	σs _{amm}	260	N/mm ²
Coefficiente om og. acciaio-cls	n	15	

Caratteristiche geometriche

Altezza sezione	Н	31	cm					
Larghezza sezione	В	100	cm					
Armatura compressa (1º strato)	As ₁ '	15,71	cm ²	5	Ø 20	C _{s1} =	8	cm
Armatura compressa (2º strato)	As ₂ '	0,00	cm ²		Ø	C _{s2} =		cm
Armatura tesa (2º strato)	As ₂	10,05	cm ²	5	Ø 16	$C_{12} =$	7	cm
Armatura tesa (1º strato)	As ₁	15,71	cm ²	5	Ø 20	C ₁₁ =	7	cm

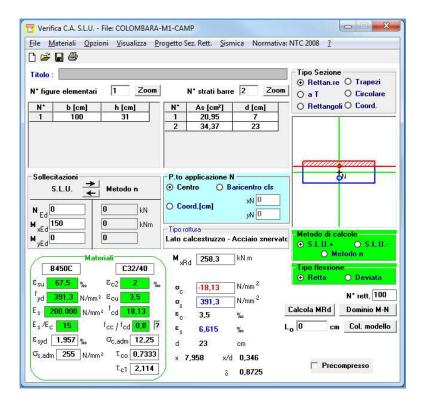
Tensioni nei materiali

Compressione max nel cls.	σς	5,9	N/mm²	<	σc _{amm}
Trazione nell'acciaio (1º strato)	σs	124,4 1	N/mm²	<	σa _{amm}

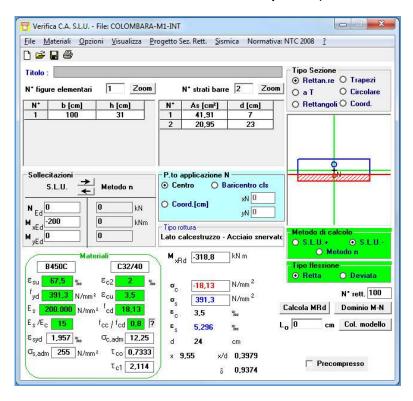
Eccentricità	e (M)	00	cm	>	H/6 Sez. parzializzata
	u (M)	00	cm		
Posizione asse neutro	y (M)	10,0	cm		
Area ideale (sez. int. reagente)	A _{ld}	3681	cm ²		
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	289430	cm ⁴		
Mom. di inerzia ideale (sez. parz. N=0)	June	110011	cm 1		

AUTOSTRADA VALDASTICO A31 NORD

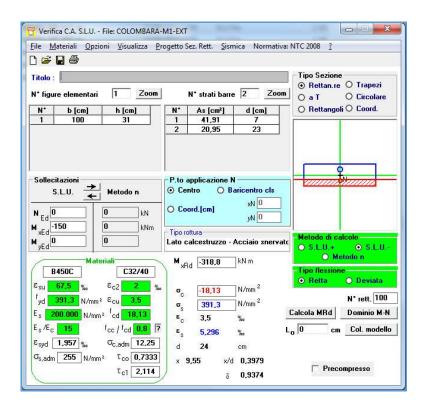
1° LOTTO – Piovene Rocchette – Valle dell'Astico

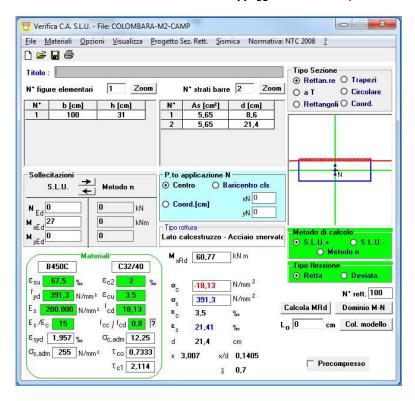

Verifica a fessurazione

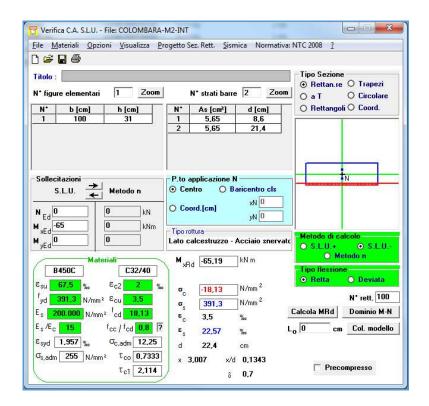
venna a ressurazione				
Momento di fessurazione (fctx)	M _{fess} *	41	kN m	La sezione è fessurata
Momento di fessurazione (f _{ctm})	M _{fess}	59	kN m	
Eccentricità per M=M _{fess}	e (M _{fess})	00	cm	
	u (M _{fess})	00	cm	
Compressione max nel ds. per M=M _{fess}	σcr	5,3		
Traz. nell'acciaio (1º str.) per M=M _{fess}	σsr	112,9	N/mm ²	
Posizione asse neutro per M=M _{fess}	y (M _{res})	10,0	cm	
	β_1	1		
	β ₂	0,5		
Deform. unitaria media dell'arm.	Esm	0,00035		
Copriferro netto	c'	6,0	cm	
Altezza efficace	der	18,2	cm	
Area efficace	Acerr	1820	cm ²	
Armatura nell'area efficace	Aseff	25,8	cm ²	
	ρr	0,01415		
Distanza tra le barre	S	20,0	cm	
	K ₂	0,4		
	K ₃	0,125		
Distanza media tra le fessure	Sm	23,1	cm	
Valore medio dell'ap. delle fessure	wm	0,08	mm	_
Valore caratter, dell'ap, delle fessure	wk	0,14	mm]

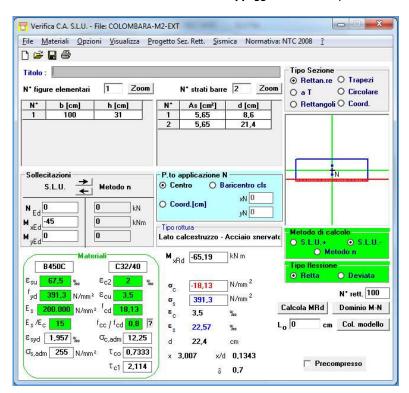

Analogo discorso può essere fatto con la porzione di soletta in adiacenza ai giunti di estremità.

		SOLET	TA IMPALCAT	O – ZONE DI BO	ORDO		
	M _{1,MAX} CAMPATA	M _{1,MIN} TRA- VE INTER- NA	M _{1,MIN} TRAVE E- STERNA	M _{2,MAX} CAMPATA	M _{2,MIN} TRAVE IN- TERNA	M _{2,MIN} TRAVE E- STERNA	V_{13}
M_{ED}	+ 150 KNm/m	-200 KNm/m	-150 KNm/m	+ 27 KNm/m	-65 KNm/m	-45 KNm/m	193 KN
SCHEMA DI CARICO	Schema di Ca- rico 1 - SLU-A	Schema di Ca- rico 1 - SLU-B	Schema di Ca- rico 2 - SLU-A	Schema di Ca- rico 1 - SLU-A	Schema di Ca- rico 1 - SLU-B	Schema di Ca- rico 2 - SLU-A	Schema di Ca- rico 1 - ENVE
ARMATURA SUP.	ф 20 /15"	φ 20 /15"+ φ 20 /15"	φ 20 /15"+ φ 20 /15"	ф 12 /20"	ф 12 /20"	ф 12 /20	φ 20 /15"+ φ 20 /15"
ARMATURA INF.	φ 16 /15" φ 20 /15"	ф 20 /15"	ф 20 /15"	φ 12 /20"	φ 12 /20"	ф 12 /20"	ф 20 /15"
$ m M_{RD}$	+ 258,3 KNm/m	-318,8KNm/m	-318,8 KNm/m	+ 60,77 KNm/m	-65,19 KNm/m	-65,19 KNm/m	213 KN
VERIFICA	ОК	ОК	ОК	ОК	ОК	ОК	OK


Si riportano di seguito le viste del programma VCASLU utilizzato per il calcolo dei momenti resistenti; il calcolo è condotto adottando una striscia di soletta di larghezza pari a 100 cm e di altezza pari a 31 cm; i materiali utilizzati sono l'acciaio da cemento armato B450C e calcestruzzo di classe C32/40.


Calcolo del momento resistente M1 in campata: 258,3 KNm


Calcolo del momento resistente M1 sull'appoggio interno: -318,8 KNm


Calcolo del momento resistente M1 sull'appoggio esterno: -318,8 KNm

Calcolo del momento resistente M2 in campata: 60,77 KNm

Calcolo del momento resistente M2 sull'appoggio interno: -65,19 KNm

Calcolo del momento resistente M2 sull'appoggio esterno: -65,19 KNm

Calcestru	IZZO		Sollecitazioni	Γ	V13
Гіро	C32/40		Vы	kN	193
ξik	40	N/mm²	N _{Ed}	kN	0
k	33,2	N/mm²	•		
/c	1,5	1	Armatura a taglio		
X _{cc}	0,85	1	Diametro	mm	0
cd	18,8	N/mm²	Numero barre		0
			A _{sw}	cm²	0,00
Acciaio			Passo s	cm	20
tk	540	N/mm²	Angolo α	0	90
yk	450	N/mm²			
/s	1,15		Armatura longitudinal	le	
yd	391	N/mm²	n ₁		6,67
			Ø ₁	mm	2
			n ₂		6,67
			Ø ₂	mm	20
			A _{sl}	cm ²	41,9
				•	
			Sezione		
			b _w	cm	100
			Н	cm	31
			С	cm	7
			d	cm	24
			k	N/mm²	1,91
			V _{min}	N/mm²	0,53
			ρ		0,0175
			σ_{cp}	N/mm²	0,00
			α_{c}		1,00
			Resistenza senza armatura	a taulio	
			V _{Rd}	kN kn	213

Verifica a taglio

Per quanto riguarda la verifica a fessurazione della soletta occorre riferirsi alle sollecitazioni ottenute con le combinazioni agli stati limite di esercizio; la verifica deve essere condotta sia per il momento flettente positivo di campata sia per il momento flettente negativo all'appoggio.

SOLET	SOLETTA IMPALCATO – ZONE DI BORDO								
	M _{I,SLE} CAMPATA	M _{1,SLE} TRA- VE INTER- NA	M _{1,SLE} TRA- VE ESTER- NA						
M_{ED}	+ 82 KNm/m	-110 KNm/m	-90 KNm/m						
SCHEMA DI	Schema di Ca-	Schema di Ca-	Schema di Ca-						
CARICO	rico 1 - SLE-A	rico 1 - SLE-B	rico 2 - SLE-A						
ARMATURA	ф 20 /15"	ф 20 /15"+	ф 20 /15"+						
SUP.		ф 20 /15"	ф 20 /15"						
ARMATURA	ф 16 /15"	ф 20 /15"	ф 20 /15"						
INF.	ф 20 /15"	•	•						

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO – Piovene Rocchette – Valle dell'Astico

w	0,17 mm	0,18 mm	0,13 mm
W _{LIM}	0,20 mm	0,20 mm	0,20 mm
VERIFICA	OK	OK	OK

Jonecitazioni									
Momento flettente	M		kN m						
Sforzo normale	N	0	kN						
Materiali									
Res, caratteristica ds	R _{ek}	40	N/mm²						
Tensione ammissibile cls	σc _{amm}	12,3	N/mm²						
Res. media a trazione ds	f _{ctm}	3,2	N/mm²						
Res, caratteristica a trazione ds	f _{cts}	2,2	N/mm²						
Tensione ammissibile acciaio	σs _{amm}	260	N/mm²						
Coefficiente om og. acciaio-cls	n	15							
Caratteristiche geometriche									
Altezza sezione Larghezza sezione	H B	31 100	cm cm						
Armatura compressa (1º strato)	As ₁ '	20,95	cm ²		6.67	Ø 20	c. =	7	cm
Armatura compressa (2º strato)	As ₂ '	0,00	cm ²		0,07	Ø	C ₅₂ =	1	cm
Armatura tesa (2º strato)	As ₂	13,41	cm ²		6.67	Ø 16	C ₁₂ =	8	cm
Armatura tesa (1º strato)	As ₁	20,95	cm ²			Ø 20	C ₁₁ =	8	cm
Armadia Cod (1 octo)	701	20/33	CIII		0,07	2 20	41	Ť	Cili
Tensioni nei materiali							_		
Compressione max nel ds.	σς	6,9	N/mm²	<	σc _{amm}]		
Trazione nell'acciaio (1º strato)	σs	125,9	N/mm²	<	σa_{amm}				
Eccentricità	e (M)	œ	cm	>	H/6	Sez. pa	rzializza	ata	
Desiriena assa pautes	u (M)	10.4	cm						
Posizione asse neutro	y (M)	10,4	cm						
Area ideale (sez. int. reagente)	A _{Id}	3874	cm ²						
Mom. di inerzia ideale (sez. int. reag.)	J _{ld}	299963	cm [†]						
Mom. di inerzia ideale (sez. parz. N=0)	J _{lo*}	122966	CIII						
Verifica a fessurazione									
Momento di fessurazione (f _{ctc})	M _{fess} *	4	3 kN m	1	La sezio	ne è fe	ssurata		
Momento di fessurazione (f _{ctm})	M _{fess}	6	1 kN n	1					
Eccentricità per M=M _{fess}	e (M _{fess})	0	o cm						
	u (M _{res})	0	o cm						
Compressione max nel ds. per M=M _{fess}	σcr	5,	2						
Traz. nell'acciaio (1º str.) per M=M _{fess}	σsr	93,	9 N/mi	m 2					
Posizione asse neutro per M=M _{fess}	y (M _{res})	10,	4 cm						
	β_1		1						
	β_2	0,							
Deform, unitaria media dell'arm.	Esm C'	0,0004							
Copriferro netto	_		0 cm						
Altezza efficace	d _{er}		2 cm						
Area efficace	Ac _{eff}	192							
Armatura nell'area efficace	As _{eff}	34,							
Distanza tra le barre	ρr	0,017							
Distaliza da le baife	S	15,							
	K ₂	0,	4						
	K ₃	0,12	5						
Distanza media tra le fessure	S _m	22,	6 cm						
Valore medio dell'ap. delle fessure	wm	0,1	0 mm						
Valore caratter, dell'ap, delle fessure	wk	0,1	7 mm						

Sollecitazioni

Sollecitazioni			
Momento flettente	M	110	kN m
Sforzo normale	N	0	kN

Materiali Res. caratteristica ds R_{ck} N/mm² Tensione ammissibile cls 12,3 N/mm² σc_{amm} Res. media a trazione ds 3,2 N/mm² f_{ctm} Res. caratteristica a trazione ds f_{ctk} 2,2 N/mm² Tensione ammissibile acciaio 260 N/mm² σs_{amm} Coefficiente om og. acciaio-ds 15 n

Caratteristiche geometriche								
Altezza sezione	Н	31	cm					
Larghezza sezione	В	100	cm					
Armatura compressa (1º strato)	As ₁ '	20,95	cm ²	6,67	Ø 20	C _{s1} =	8	cm
Armatura compressa (2º strato)	As ₂ '	0,00	cm ²		Ø	C _{s2} =		cm
Armatura tesa (2º strato)	As ₂	20,95	cm ²	6,67	Ø 20	C ₁₂ =	7	cm
Armatura tesa (1º strato)	As ₁	20,95	cm ²	6,67	Ø 20	C ₁₁ =	7	cm

Tensioni nei materiali 8,3 N/mm² < σc_{amm} Compressione max nel ds. σα Trazione nell'acciaio (1º strato) σs 134,3 N/mm² < σa_{amm}

Eccentricità	e (M)	œ	cm	>	H/6	Sez. parzializzata
	u (M)	00	cm			
Posizione asse neutro	y (M)	11,6	cm			
Area ideale (sez. int. reagente)	Aid	3980	cm ²			
Mom. di inerzia ideale (sez. int. reag.)	J _{ld}	311357	cm ⁴			
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	152760	cm [†]			

Momento di fessurazione (f _{ctk})	M _{fess} *	44	kN m	La sezione è fessurata
Momento di fessurazione (f _{ctm})	M _{fess}	63	kN m	
Eccentricità per M=M _{fess}	e (M _{fess})	00	cm	
	u (M _{fess})	00	cm	
Compressione max nel ds. per M=M _{fess}	σcr	4,8		
Traz. nell'acciaio (1º str.) per M=M _{fess}	σsr	77,4	N/mm²	
Posizione asse neutro per M=M _{fess}	y (M _{fess})	11,6	cm	
	β_1	1		
	β_2	0,5		
Deform, unitaria media dell'arm. Copriferro netto	Esm c'	0,00053 6,0	cm	
Altezza efficace	der	21,0	cm	
Area efficace	Acerr	2100	cm ²	
Armatura nell'area efficace	Aseff	41,9	cm ²	
	ρr	0,01996		
Distanza tra le barre	S	15,0	cm	
	K ₂	0,4		
	K ₃	0,125		

20,0 cm

0,18 mm

0,11

Sm

wm

wk

Distanza media tra le fessure

Valore medio dell'ap. delle fessure

Valore caratter, dell'ap, delle fessure

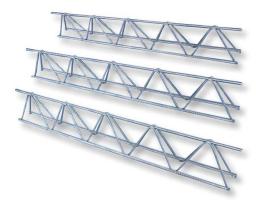
Sollecitazioni			
Momento flettente	M	90	kN m
Sforzo normale	N	0	kN
Materiali			
Res. caratteristica ds	R _{ok}	40	N/mm ²
Tensione ammissibile cls	σc _{amm}	12,3	N/mm ²
Res. media a trazione ds	f _{ctm}	3,2	N/mm ²
Res. caratteristica a trazione ds	f _{ctk}	2,2	N/mm ²
Tensione ammissibile acciaio	OS amm	260	N/mm ²
Coefficiente om og. acciaio-cls	n	15	

Caratteristiche geometriche							
Altezza sezione	Н	31	cm				
Larghezza sezione	В	100	cm				
Armatura compressa (1º strato)	As ₁ '	20,95	cm ²	6,67 Ø 20	C _{s1} =	8	cm
Armatura compressa (2º strato)	As ₂ '	0,00	cm ²	Ø	C _{s2} =		cm
Armatura tesa (2º strato)	As ₂	20,95	cm ²	6,67 Ø 20	C12 =	7	cm
Armatura tesa (1º strato)	As ₁	20,95	cm ²	6,67 Ø 20	c ₁₁ =	7	cm

Tensioni nei materiali						
Compressione max nel ds.	σς	6,8	N/mm²	<	σc _{amm}	
Trazione nell'acciaio (1º strato)	σs	109,9	N/mm ²	<	σa_{amm}	
	0.0					_

Eccentricità	e (M) u (M)	00 00	cm cm	>	H/6	Sez. parzializzata
Posizione asse neutro	y (M)	11,6	cm			
Area ideale (sez. int. reagente)	A _{id}	3980	cm ²			
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	311357	cm ⁴			
Mom. di inerzia ideale (sez. parz. N=0)	J _{la*}	152760	cm 1			

Verifica a fessurazione


Momento di fessurazione (f _{ctk})	M _{fess} *	44	kN m	La sezione è fessurata
Momento di fessurazione (f _{ctm})	M _{fess}	63	kN m	
Eccentricità per M=M _{fess}	e (M _{fess})	00	cm	
	u (M _{res})	œ	cm	
Compressione max nel cls. per M=M _{fess}	σcr	4,8		
Traz. nell'acciaio (1º str.) per M=M _{fess}	σsr	77,4	N/mm²	
Posizione asse neutro per M=M _{fess}	y (M _{fes})	11,6	cm	
	β_1	1		
	β_2	0,5		
Deform. unitaria media dell'arm.	Esm	0,00039		
Copriferro netto	c'	6,0	cm	
Altezza efficace	der	21,0	cm	
Area efficace	Acerr	2100	cm ²	
Armatura nell'area efficace	As _{eff}	41,9	cm ²	
	ρr	0,01996		
Distanza tra le barre	S	15,0	cm	
	K ₂	0,4		
	K ₃	0,125		
Distanza media tra le fessure	s _m	20,0	cm	
Valore medio dell'ap. delle fessure	wm	0,08	mm	_
Valore caratter, dell'ap, delle fessure	wk	0,13	mm	

10.5. Verifica trasmissione sforzo di taglio fra le lastre predalles e la soletta gettata in opera

Il procedimento costruttivo dell'opera prevede il varo delle travi in acciaio, la posa delle lastre predalles prefabbricate, la posa delle armature di progetto ed infine il getto della soletta in calcestruzzo di spessore pari a 25 cm. In totale quindi lo spessore finale della struttura risulta pari a 31 cm, essendo le lastre predalles caratterizzate da un spessore di 6 cm.

Nelle verifiche agli SLU e agli SLE lo spessore di soletta preso in conto è pari a 31 cm; il trasferimento degli sforzi fra le lastre predalles prefabbricate e la soletta gettata in opera è garantito dalla presenza dei diagonali dei tralicci di armatura. Al fine di verificare il tasso di lavoro di questi elementi è sufficiente condurre una verifica speditiva e cautelativa assegnando ai soli diagonali con lo stesso angolo di inclinazione l'intero sforzo tagliante massimo cui è soggetta la soletta che dall'analisi dei risultati risulta pari a circa 200 KN/m.

Le armature delle lastre predalles è costituita da tralicci inclinati realizzati con barre di diametro almeno pari al ø 10 mm, come si evince dall'immagine seguente.

La dimensione tipica della lastra è di 120 cm e l'interasse trasversale dei tralicci risulta pari a 40 cm, pertanto per ogni metro di soletta abbiamo 2.50 tralicci; considerato che i diagonali hanno un interasse longitudinale di 20 cm per ogni metro di soletta abbiamo 5 coppie di diagonali con la stessa inclinazione, trascurando a vantaggio di sicurezza i diagonali con inclinazione contrapposta.

In sintesi quindi, per una striscia di soletta di un metro, abbiamo un'area di acciaio pari a:

$$A_{s,diag} = 0.785 \text{ cm}^2 \text{ x } 2.50 \text{ tralicci x } 5 \text{ diagonali x } 2 = 19.625 \text{ cm}^2$$

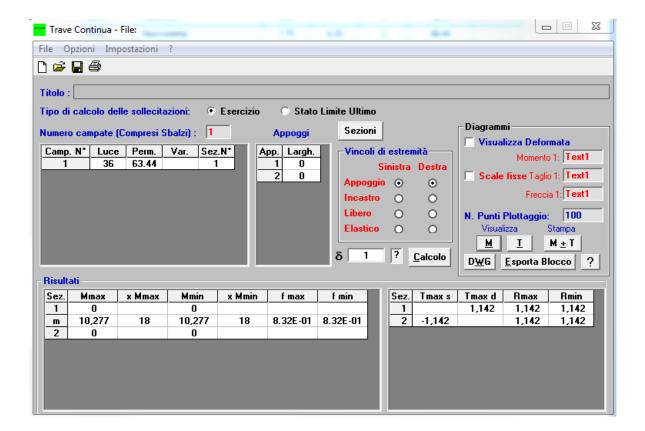
Assumendo un taglio di progetto allo SLU di 200 KN, lo stato tensionale indotto sui diagonali, data l'area di acciaio presa in considerazione, risulta pari a: 1020 daN/cm^2 ; l'acciaio utilizzato per la realizzazione delle armature è del tipo B450C, caratterizzato da un $f_{yk} = 4500 \text{ daN/cm}^2$ e da un $f_{yd} = 3913 \text{ daN/cm}^2$, essendo il coefficiente relativo pari a 1,15.

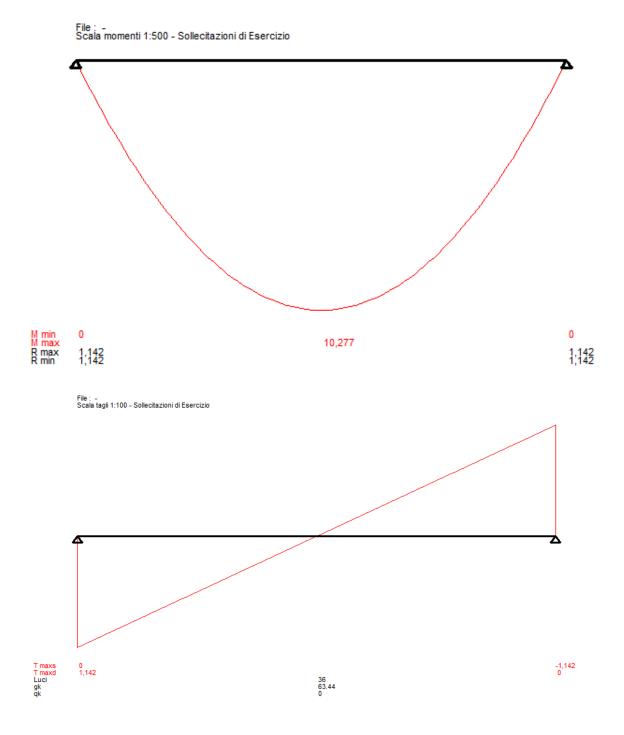
Si evince pertanto che la verifica risulta ampiamente soddisfatta, essendo 1020 daN/cm² < 3913 daN/cm².

11. APPOGGI

Si riportano le caratteristiche principali degli isolatori elastomerici.

Il valore massimo in condizioni sismiche è calcolato facendo la sommatoria vettoriale


Rigidezza	1 410	kN/m				
	SISMICA					
	Nmax	Ux,max	Ux,max	Uy,max	Ux,prev,max	Uy,prev,max
	SLC	SLC	DTU	SLC	SLC+0.5DT	SLC+0.5DT
	kN	mm	mm	mm	mm	mm
Spalle	1 800	135	7	135	144	142
	ESERCIZIO					
	Nmax		Ux,max	Uy,max		
	SLU STR		DTU caratt	vento caratt		
	kN		mm	mm		
Spalle	4 000		7	56		


12. VALIDAZIONE MODELLO DI CALCOLO

Al fine di validare il modello di calcolo utilizzato per lo studio dell'impalcato ed i programmi di verifica delle sezioni, si presente un calcolo semplificato, prendendo in considerazione la sola trave destra nella situazione di carico di FASE1(caratteristica).

Si riconduce lo studio della trave ad uno schema statico di trave su semplice appoggio soggetta ai seguenti carichi distribuiti.

		[kN/m]	[m]	Ϋ́G	[kN/m]	
Combinazione caratteristica						
G1.a	Peso travi	15.0		1	15.0	
G1.b	Peso soletta	7.75	6.25	1	48.44	
Campata	Luce 36m				63.21	

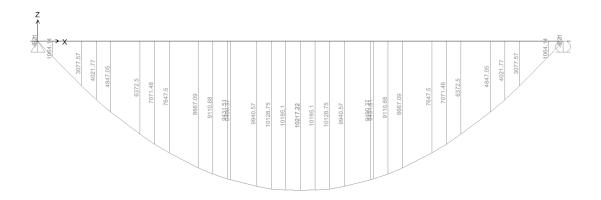
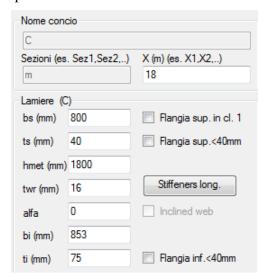
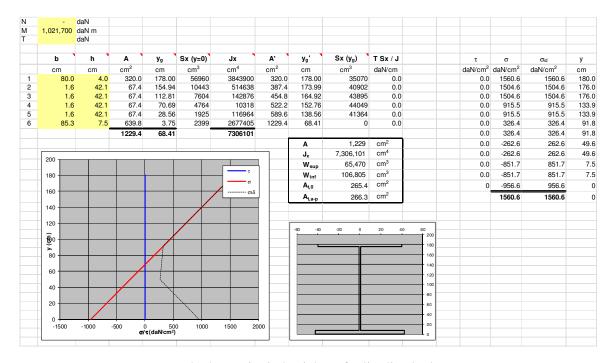


Diagramma del Momento – fase 1 (caratteristica) – modello di calcolo

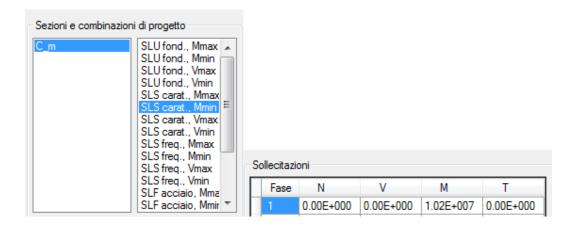


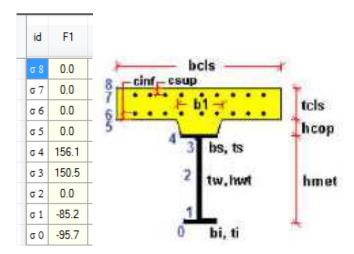

Diagramma del Taglio – fase 1 (caratteristica) – modello di calcolo

Parametro di raffronto	SAP 2000	Trave continua [Gelfi]	Δ
Momento mezzeria prima campata	10217 kNm	10277 kN	-0.5%
Taglio in Appoggio	1090 kN	1142 kN	-4.7%


12.1. Verifica tensionale

Di seguito si riporta un raffronto tensionale relativo al concio di mezzeria, tra la verifica condotta mediante il software "PEC4" ed un calcolo manuale.


Il confronto è stato eseguito a parità di momento flettente: 10217 kNm



Proprietà concio di verifica

calcolo tensioni elastiche – foglio di calcolo

calcolo tensioni elastiche – P_EC4

Si rileva che i valori massimi nei punti esterni della sezione(0 e 4) risultano essere uguali.

13. VALIDAZIONE MODELLO DI CALCOLO

Il presente capitolo è redatta secondo le indicazioni relative al punto 10.2 del DM 14/01/2008 in merito alle "Analisi e verifiche svolte mediante l'ausilio di codici di calcolo" per l'opera oggetto di questa relazione.

13.1. Tipi di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di più codici di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

Per quanto riguarda i criteri di modellazione e le caratteristiche dei programmi utilizzati si rimanda ai relativi paragrafi.

13.2. Origine e caratteristiche dei codici di calcolo

Di seguito si indicano l'origine e le caratteristiche dei codici di calcolo utilizzati riportando titolo, produttore e distributore, versione.

	Software	Versione	Produttore - Distributore
Calcolo impalcato	Sap 2000	18.2.0	CSI Italia srl
Calcolo soletta	Sap 2000	18.2.0	CSI Italia srl
Calcolo Sottostrutture Fondazioni	Fogli di calcolo excel	excel 2007	Microsoft- Office
Verifica sezioni in CA	RC-SEC-Vca_SLU	1.0.0.14	Geostru software
Verifica sezioni composte	PONTI EC4	3.22	Alhambra srl

13.3. Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo dei software ha consentito di valutarne l'affidabilità. La documentazione fornita dai produttori dei software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. L'affidabilità e la robustezza dei codici di calcolo sono garantite attraverso un nu-

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO - Piovene Rocchette - Valle dell'Astico

mero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

I fogli di calcolo implementati in EXCEL sono stati sottoposti a procedure di valutazioni mediante test di affidabilità che ne hanno validato il corretto funzionamento.

13.4. Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

13.5. Informazioni generali sull'eleborazione

I software prevedono una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

13.6. Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.