

Autostrada Brescia Verona Vicenza Padova SpA

AREA COSTRUZIONI AUTOSTRADALI

Via Flavio Gioia 71 37135 Verona tel. 0458272222 Fax 0458200051 Casella Postale 460M www.autobspd.it

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO Piovene Rocchette - Valle dell'Astico

PROGETTO DEFINITIVO

CUP	G21B1 30006 60005
WBS	B25.A31N.L1
COMMESSA	J16L1

COMMITTENTE

Data

LUGLIO 2017

S.p.A. AUTOSTRADA BRESCIA VERONA VICENZA PADOVA

Area Costruzioni Autostradali

CAPO COMMESSA PER LA PROGETTAZIONE

Dott. Ing. Gabriella Costantini

PRESTATORE DI SERVIZI:
CONSORZIO RAETIA

RAPPRESENTANTE: Dott. Ing. Alberto Scotti

RESPONSACILE DELL'INTEGRAZIONE TRA LE ITE ESTAZIONE TSPECIALISTICHE: Technital S:pA - Fort, Inc. Andrea Renso

18 002

ELABORATO: OPERE D'ARTE MINORI

Opere di sostegno

RECEPIMENTO OSSERVAZIONI

Descrizione

OS20 -Muro di approccio Spalla B Cavalcavia Asse 4 SV Cogollo

Relazioni di calcolo - Muro di sostegno

Redazione	Controllo	Approvazione	SCALA:
3TI PROGETTI - DI SANZO	M. SORGE	S.L.POSSATI	NOME FILE: J16L1_08_03_18_002_0101_0PD_02.dwg
			CM. PROGR. FG. LIV. REV.
			J16L1_08_03_18_002_0101_0PD_02

IL PRESENTE DOCUMENTO NON POTRA' ESSERE COPIATO, RIPRODOTTO O ALTRIMENTI PUBBLICATO, IN TUTTO O IN PARTE, SENZA IL CONSENSO SCRITTO DELLA AUTOSTRADA BS-VR-VI-PD S.P.A., OGNI UTILIZZO NON AUTORIZZATO SARA' PERSEGUITO A NORMA DI LEGGE.
THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED OR PUBLISHED, EITHER IN PART OR IN ITS ENTIRETY, WITHOUT THE WRITTEN PERMISSION OF AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.P.A., UNAUTHORIZED USE WILL BE PROSECUTE BY LAW.

Committente:

Progettazione:

CONSORZIO RAETIA

PROGETTO DEFINITIVO

RELAZIONE TECNICA

INDICE

1.	GENERALITA	3
2.	DOCUMENTI DI RIFERIMENTO	4
3.	CARATTERISTICHE DEI MATERIALI	5
	Calcestruzzo	5
	Acciaio d'armatura B450C	5
4.	TERRENI	6
	Geometria profilo terreno Tipologia 1 (6m)	7
	Geometria profilo terreno Tipologia 2 (8m)	7
5.	GEOMETRIA DEI MURI	8
	Tipologia 1	8
	Tipologia 2	9
6.	METODI DI CALCOLO	10
	Calcolo della spinta sul muro	10
	Valori caratteristici e valori di calcolo	10
	Metodo di Culmann	10
	Spinta in presenza di sisma	11
	Verifica a ribaltamento	13
	Verifica a scorrimento	13
	Verifica al carico limite	14
	Verifica alla stabilità globale	16
7.	CONDIZIONI DI CARICO	18
8.	IMPOSTAZIONI DI ANALISI	19
9.	DESCRIZIONE COMBINAZIONI DI CARICO	20
10.	ANALISI DELLA SPINTA	26
11.	Sollecitazioni Tipologia 1	28
	Inviluppo Sollecitazioni	28
	Armature	32
12.	Sollecitazioni Tipologia 2	33
	Inviluppo Sollecitazioni	33
	Armature	38

1. GENERALITÀ

La presente relazione di calcolo riporta il dimensionamento e le verifiche delle opere di sostegno, che fa parte del progetto definitivo dell'Autostrada Valdastico A31 Nord, I Lotto "Piovene Rocchette - Valle dell'Astico".

Premessa

Nel presente documento si analizzano strutturalmente le opere muri di sostegno. I muri di sostegno in esame nel presente documento compongono l'opera di sostegno posta a ridosso del cavalcavia Cogollo essa è composta da 2 tipologie differenti di muro. Le tipologie di muro si differenziano per altezza e spessore, la tipologia 1 si estende fino all' altezza del paramento di 8m, ed ha uno spessore di 90 cm.

La tipologia 2 arriva all'altezza di 6m per uno spessore di 70cm.

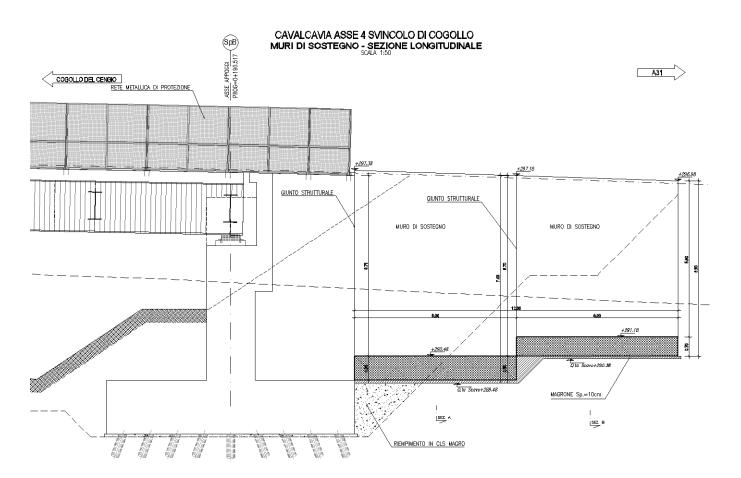


Figura 1 – Prospetto Muro.

2. DOCUMENTI DI RIFERIMENTO

Le opere sono conformi alla normativa vigente, e in particolare:

- Legge 05.11.1971 n.1086: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica";
- D.M. 14/01/2008: "Norme tecniche per le costruzioni";
- Circolare 02/02/2009 n.617: "Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al decreto ministeriale 14 gennaio 2008 (Suppl. Ordinario n.27)";
- EN 1991-1-4:2005 "Eurocodice 1 Parte 1-4: Azioni del vento";
- EN 1992-1-1:2005 "Eurocodice 2 Progettazione delle strutture di calcestruzzo –
 Parte 1-1: Regole generali e regole per gli edifici";
- EN 1993-1-5:2007 "Eurocodice 3 Parte 1-5: Elementi strutturali a lastra";
- EN 1993-2:2007 "Eurocodice 3 Parte 2: Ponti di acciaio";
- UNI EN 1993-5:2007 "Eurocodice 3 Parte 5: Progettazione delle strutture di acciaio -Parte 5: Pali e palancole";
- EN 1994-2:2006 "Eurocodice 4 Parte 2: Regole generali e regole per i ponti";
- UNI EN 1997-1:2005 "Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali";
- UNI EN 1998-5:2005 "Eurocodice 8 Parte 5: Progettazione delle strutture per la resistenza sismica: fondazioni, strutture di contenimento ed aspetti geotecnici";
- "Raccomandazioni sui pali di fondazione", AGI, 1984;
- EN 206 2013: "Concrete Specification, performance, production and conformity";
- UNI 11104-2016: "Calcestruzzo Specificazione, prestazione, produzione e conformità - Specificazioni complementari per l'applicazione della EN 206".

3. CARATTERISTICHE DEI MATERIALI

Nelle verifiche strutturali si fa riferimento ai seguenti materiali:

Calcestruzzo

-	Classe di resistenza	C28/35
_	Classe di esposizione	XC3
_	Resistenza caratteristica a compressione	$Rck = 35 N/mm^2$
_	Resistenza cilindrica caratteristica a compressione	fck = 28 N/mm ²
_	Resistenza cilindrica di progetto a compressione	fcd =15,9 N/mm ²
_	Copriferro minimo	c = 45 mm

Acciaio d'armatura B450C

-	Tensione caratteristica di snervamento	$fyk = 450 N/mm^2$
-	Tensione caratteristica di rottura	ftk = 540 N/mm ²
_	Tensione di progetto	yd =391 N/mm²
-	Modulo elastico	E = 200.000 N/mm ²

In accordo con le NTC, i coefficienti di sicurezza parziali dei materiali sono posti pari a:

_	$\gamma c = 1,50$	per il calcestruzzo
_	γs = 1,15	per l'acciaio d'armatura in barre e in trefoli
_	γ s = 1,05	per l'acciaio da carpenteria

4. TERRENI

Di seguito si riportano le caratteristiche meccaniche dei terreni presenti in corrispondenza dell'opera:

Simbologia adottata

Nr.	Indice del terreno
Descrizione	Descrizione terreno
γ	Peso di volume del terreno espresso in [kN/mc]
γs	Peso di volume saturo del terreno espresso in [kN/mc]
ϕ	Angolo d'attrito interno espresso in [°]
δ	Angolo d'attrito terra-muro espresso in [°]
с	Coesione espressa in [N/mmq]
Ca	Adesione terra-muro espressa in [N/mmq]

Descrizione	γ	γ_{s}	ф	δ	C	Ca
С	20.00	22.00	32.00	21.33	0.0000	0.0000
Depositi Glaciali	20.00	20.00	38.00	25.33	0.0000	0.0000

Falda assente

Geometria profilo terreno Tipologia 1 (6m)

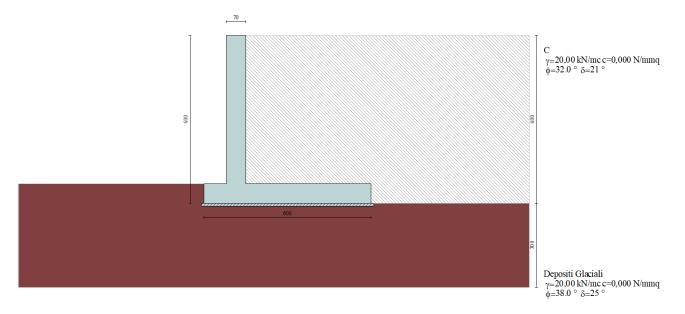


Figura 2 - Sezione stratigrafica.

Geometria profilo terreno Tipologia 2 (8m)

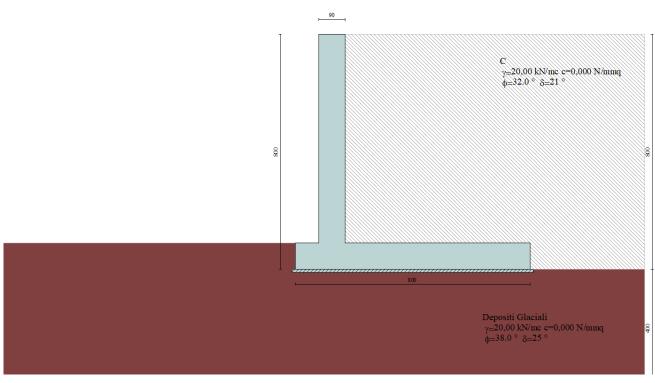


Figura 3 - Sezione stratigrafica.

5. GEOMETRIA DEI MURI

Tipologia 1

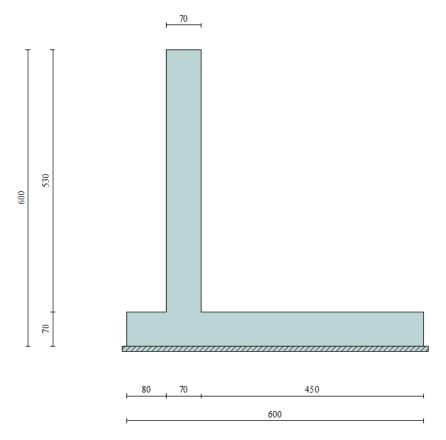


Figura 6 - Sezione trasversale.

Tipologia 2

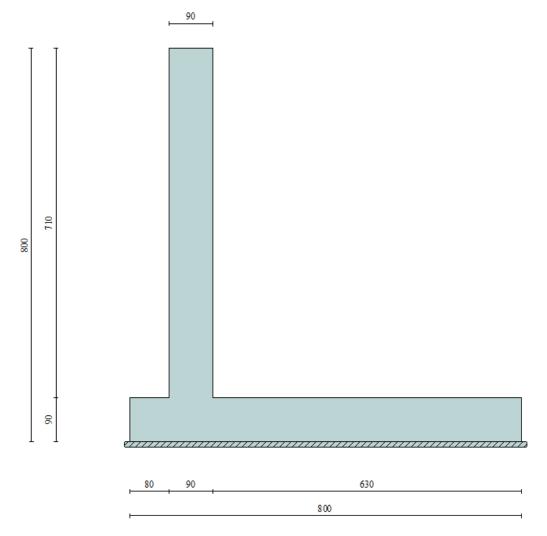


Figura 7 - Sezione trasversale.

6. METODI DI CALCOLO

Per l'analisi dei muri si è utilizzato il programma di calcolo MAX 10.10d dell'Aztec, che effetua una verifica a metro lineare degli elementi costituenti la struttura.

Calcolo della spinta sul muro

Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ . In particolare si distinguono combinazioni di carico di tipo **A1-M1** nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo **A2-M2** nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);

- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ε l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove θ = arctg($k_h/(1\pm k_v)$) essendo k_h il coefficiente sismico orizzontale e k_v il coefficiente sismico verticale, definito in funzione di k_h .

In presenza di falda a monte, θ assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = arctg[(\gamma_{sat}/(\gamma_{sat}-\gamma_{w}))*(k_{h}/(1\pm k_{v}))]$$

Terreno a permeabilità elevata

$$\theta = arctg[(\gamma/(\gamma_{sat}-\gamma_{w}))*(k_{h}/(1\pm k_{v}))]$$

Detta *S* la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta\cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ .

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W$$
 $F_{iV} = \pm k_v W$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

Verifica a ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_s) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza η_r .

Eseguendo il calcolo mediante gli eurocodici si puo impostare $\eta_r >= 1.0$.

Deve quindi essere verificata la seguente diseguaglianza

Il momento ribaltante M_r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terramuro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante.

Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_s>=1.0

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_q>=1.0

Terzaghi ha proposto la seguente espressione per il calcolo della capacità portante di una fondazione superficiale.

$$q_u = cN_cs_c + qN_q + 0.5B\gamma N_\gamma s_\gamma$$

La simbologia adottata è la seguente:

- c coesione del terreno in fondazione;
- φ angolo di attrito del terreno in fondazione;
- γ peso di volume del terreno in fondazione;
- B larghezza della fondazione;
- D profondità del piano di posa;
- q pressione geostatica alla quota del piano di posa.

I fattori di capacità portante sono espressi dalle seguenti relazioni:

$$N_{q} = \frac{e^{2(0.75\pi - \phi/2)tg(\phi)}}{2cos^{2}(45 + \phi/2)}$$

$$N_c = (N_q - 1)ctg\phi$$

$$N_{\gamma} = \frac{\mathsf{tg}\phi}{} \qquad (\frac{\mathsf{K}_{\mathsf{p}\gamma}}{} - 1)$$

$$2 \qquad \mathsf{cos}^{2}\phi$$

I fattori di forma s_c e s_γ che compaiono nella espressione di q_u dipendono dalla forma della fondazione. In particolare valgono 1 per fondazioni nastriformi o rettangolari allungate e valgono rispettivamente 1.3 e 0.8 per fondazioni quadrate.

termine $K_{p\gamma}$ che compare nell'espressione di N_{γ} non ha un'espressione analitica. Pertanto si assume per N_{γ} l'espressione proposta da Meyerof

$$N_{\gamma} = (N_{q} - 1)tg(1.4*\phi)$$

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a $\eta_{\rm g}$

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_g>=1.0

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

dove il termine m è espresso da

$$m = (1 + \frac{tg\phi_i tg\alpha_i}{n}) \cos\alpha_i$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima}, c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approsimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare finquando il valore calcolato coincide con il valore assunto.

•

7. CONDIZIONI DI CARICO

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

- X Ascissa del punto di applicazione del carico concentrato espressa in [m]
- F_x Componente orizzontale del carico concentrato espressa in [kg]
- F_y Componente verticale del carico concentrato espressa in [kg]
- M Momento espresso in [kgm]
- X_i Ascissa del punto iniziale del carico ripartito espressa in [m]
- X_f Ascissa del punto finale del carico ripartito espressa in [m]
- Q_i Intensità del carico per x=X_i espressa in [kg/m]
- Q_f Intensità del carico per x= X_f espressa in [kg/m]
- D/C Tipo carico : D=distribuito C=concentrato

Condizione n° 1 (Strada)

D Profilo $X_{i}=2,00 X_{f}=8,00 Q_{i}=20,0000 Q_{f}=20,0000$

Condizione n° 2 (Strada Sismica)

Profilo $X_{i}=2,00 \quad X_{f}=8,00 \quad Q_{i}=10,0000 \quad Q_{f}=10,0000$

8. IMPOSTAZIONI DI ANALISI

Metodo verifica sezioni Stato limite

Impostazioni verifiche SLU

Coefficienti parziali per resistenze di calcolo dei materiali

Coefficiente di sicurezza calcestruzzo a compressione	1.50
Coefficiente di sicurezza calcestruzzo a trazione	1.50
Coefficiente di sicurezza acciaio	1.15
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza per la sezione	1.00

Impostazioni verifiche SLE

Condizioni ambientali	Ordinarie
	Ordinanc

Armatura ad aderenza migliorata

Verifica fessurazione

Sensibilità delle armature	Poco sensibile
----------------------------	----------------

Valori limite delle a	perture delle fessure	$w_1 = 0.20$

 $w_2 = 0.30$

 $w_3 = 0.40$

Metodo di calcolo aperture delle fessure E.C. 2

Verifica delle tensioni

Combinazione di carico Rara σ_c < 0.60 f_{ck} - σ_f < 0.80 f_{yk}

Quasi permanente σ_c < 0.45 f_{ck}

<u>Calcolo della portanza</u> metodo di Terzaghi

Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLU): 1.00 Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLE): 1.00

Impostazioni avanzate

Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

9. DESCRIZIONE COMBINAZIONI DI CARICO

N.T.C. 2008 - Approccio 1

Simbologia adottata

γ_{Gsfav}	Coefficiente parziale sfavorevole sulle azioni permanenti
γ_{Gfav}	Coefficiente parziale favorevole sulle azioni permanenti
γQsfav	Coefficiente parziale sfavorevole sulle azioni variabili
γQfav	Coefficiente parziale favorevole sulle azioni variabili
$\gamma_{tan\varphi'}$	Coefficiente parziale di riduzione dell'angolo di attrito drenato
$\gamma_{c'}$	Coefficiente parziale di riduzione della coesione drenata
γ_{cu}	Coefficiente parziale di riduzione della coesione non drenata
γ_{qu}	Coefficiente parziale di riduzione del carico ultimo
γ_{γ}	Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle
rocce	

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	γ Gfav	1.00	1.00	0.90	0.90
Permanenti	Sfavorevole	γGsfav	1.35	1.00	1.10	1.30
Variabili	Favorevole	γQfav	0.00	0.00	0.00	0.00

Variabili	Sfavorevole	γ̈Qsfav	1.35	1.15	1.35	1.50
Coefficienti parzia	ali per i parametri geoto	ecnici del te	rreno:			
Parametri			M1	M2	M2	M1
Tangente dell'ang	golo di attrito	$\gamma_{tan\phi'}$	1.00	1.25	1.25	1.00
Coesione efficace	1	$\gamma_{c'}$	1.00	1.25	1.25	1.00
Resistenza non di	renata	γ_{cu}	1.00	1.40	1.40	1.00
Resistenza a com	pressione uniassiale	γ_{qu}	1.00	1.60	1.60	1.00
Peso dell'unità di	volume	γ_{γ}	1.00	1.00	1.00	1.00
Coefficienti di pa	rtecipazione combinaz	ioni sismich	e			
Coefficienti parzia	ali per le azioni o per l'e	ffetto delle	azioni:			
Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	γ Gfav	1.00	1.00	1.00	0.90
Permanenti	Sfavorevole	γ Gsfav	1.00	1.00	1.00	1.30
Variabili	Favorevole	γ Qfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	γQsfav	1.00	1.00	1.00	1.50
Coefficienti parzia	ali per i parametri geoto	ecnici del te	rreno:			
Parametri			 M1	M2	M2	M1
Tangente dell'ang	golo di attrito	γtanφ'	1.00	1.25	1.25	1.00
Coesione efficace	1	γ c'	1.00	1.25	1.25	1.00
Resistenza non di	renata	γcu	1.00	1.40	1.40	1.00
Resistenza a com	pressione uniassiale	γ_{qu}	1.00	1.60	1.60	1.00
Peso dell'unità di	volume	γ_{γ}	1.00	1.00	1.00	1.00

FONDAZIONE SUPERFICIALE

Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Coefficienti parziali			
	R1	R2	R3	
Capacità portante della fondazione	1.00	1.00	1.40	
Scorrimento	1.00	1.00	1.10	
Resistenza del terreno a valle	1.00	1.00	1.40	
Stabilità globale		1.10		

Simbologia adottata

- F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)
- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione

γ*Ψ 1,00 1,00 1,30
1,00
,
1,30
γ * Ψ
1,00
1,00
1,00
$\gamma * \Psi$
0,90
0,90
1,10
γ * Ψ
1,00
1,00
1,00
γ* 0,9 0,9 1,1 γ* 1,0 1,0

Combinazione n° 5 - Caso Al	1-M1 (STR)			
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Strada	SFAV	1.50	1.00	1.50
Combinazione n° 6 - Caso A2	2-M2 (GEO)	<u>.</u>		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Strada	SFAV	1.30	1.00	1.30
Combinazione n° 7 - Caso EQ				
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	FAV	0,90	1.00	0,90
Peso proprio terrapieno	FAV	0,90	1.00	0,90
Spinta terreno	SFAV	1,10	1.00	1,10
Strada	SFAV	1.50	1.00	1.50
Combinazione n° 8 - Caso A2	2-M2 (GEO-	STAB)		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Strada	SFAV	1.30	1.00	1.30
Combinazione n° 9 - Caso Al		- Sisma Vei	-	
	S/F	γ	Ψ	γ * Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
C1:	1 M1 (CTD) C: V		
Combinazione n° 10 - Caso A		-		
. ·	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 11 - Caso A	2-M2 (GEC)) - Sisma V	ert. positivo	
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
-F	~****	-,00	2.00	1,00
Combinazione nº 12 - Caso A	<u> </u>	<u>)) - Sisma </u> V	ert. negativo	<u>)</u>
	S/F	γ	Ψ	γ*Ψ

Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 13 - Caso	EQU (SLU) -	Sisma Ver	t. positivo	
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
-				
Combinazione n° 14 - Caso	EQU (SLU) -	Sisma Ver	t. negativo	
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
•				
Combinazione n° 15 - Caso	A2-M2 (GEC)-STAB) - S	Sisma Vert.	<u>positivo</u>
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
_				
Combinazione n° 16 - Caso	A2-M2 (GEC)-STAB) - S	Sisma Vert.	<u>negativo</u>
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
-				
Combinazione n° 17 - Caso	A1-M1 (STR) - Sisma V	ert. positivo	<u>)</u>
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 18 - Caso	A1-M1 (STR) - Sisma V	ert. negativ	<u>0</u>
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 19 - Caso	A2-M2 (GEC)) - Sisma V	ert. positiv	<u>0</u>
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno				
1 050 proprio compresso	SFAV	1,00	1.00	1,00
Spinta terreno		1,00 1,00	1.00 1.00	1,00 1,00
	SFAV			

Combinazione n° 20 - Caso	A2-M2 (GEO)) - Sisma V	Vert. negativo	<u>.</u>			
	S/F	γ	Ψ	γ * Ψ			
Peso proprio muro	SFAV	1,00	1.00	1,00			
Peso proprio terrapieno	SFAV	1,00	1.00	1,00			
Spinta terreno	SFAV	1,00	1.00	1,00			
Strada Sismica	SFAV	1.00	1.00	1.00			
Combinazione n° 21 - Caso	EQU (SLU) -	Sisma Ver	t. negativo				
	S/F	γ	Ψ	γ * Ψ			
Peso proprio muro	FAV	1,00	1.00	1,00			
Peso proprio terrapieno	FAV	1,00	1.00	1,00			
Spinta terreno	SFAV	1,00	1.00	1,00			
Strada Sismica	SFAV	1.00	1.00	1.00			
Combinazione n° 22 - Caso	EQU (SLU) -	Sisma Ver	t. positivo				
	S/F	γ	Ψ	γ * Ψ			
Peso proprio muro	FAV	1,00	1.00	1,00			
Peso proprio terrapieno	FAV	1,00	1.00	1,00			
Spinta terreno	SFAV	1,00	1.00	1,00			
Strada Sismica	SFAV	1.00	1.00	1.00			
Combinazione n° 23 - Caso	A2-M2 (GEO)-STAB) - 3	Sisma Vert. p	ositivo			
	S/F	γ	Ψ	γ * Ψ			
Peso proprio muro	SFAV	1,00	1.00	1,00			
Peso proprio terrapieno	SFAV	1,00	1.00	1,00			
Spinta terreno	SFAV	1,00	1.00	1,00			
Strada Sismica	SFAV	1.00	1.00	1.00			
Combinazione n° 24 - Caso A2-M2 (GEO-STAB) - Sisma Vert. negativo							
Comomazione ii 24 Caso	S/F	<u>γ 517(Β) </u>	<u>σισιμα νετι. π</u> Ψ	γ * Ψ			
Peso proprio muro	SFAV	1,00	1.00	1,00			
Peso proprio terrapieno	SFAV	1,00	1.00	1,00			
Spinta terreno	SFAV	1,00	1.00	1,00			
Strada Sismica	SFAV	1.00	1.00	1.00			

10. ANALISI DELLA SPINTA

Sistema di riferimento adottato per le coordinate:

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle

Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta metodo di Culmann Calcolo del carico limite metodo di Terzaghi Calcolo della stabilità globale metodo di Bishop Calcolo della spinta in condizioni di Spinta attiva

Sisma

Combinazioni SLU

Accelerazione al suolo ag 2.43 [m/s²] Coefficiente di amplificazione per tipo di sottosuolo (S) 1.16 Coefficiente di amplificazione topografica (St) 1.00 Coefficiente riduzione (β_m) 0.31 0.50 Rapporto intensità sismica verticale/orizzontale Coefficiente di intensità sismica orizzontale (percento)

 $k_h = (a_g/g * \beta_m * St * S) = 8.93$

 $k_v = 0.50 * k_h = 4.46$ Coefficiente di intensità sismica verticale (percento)

Combinazioni SLE

1.11 [m/s^2] Accelerazione al suolo ag

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.20

Coefficiente di amplificazione topografica (St) 1.00

Coefficiente riduzione (β_m) 0.24

Rapporto intensità sismica verticale/orizzontale 0.50

Coefficiente di intensità sismica orizzontale (percento) $k_h=(a_g/g^*\beta_m^*St^*S)=3.25$

Coefficiente di intensità sismica verticale (percento) $k_v=0.50 * k_h = 1.63$

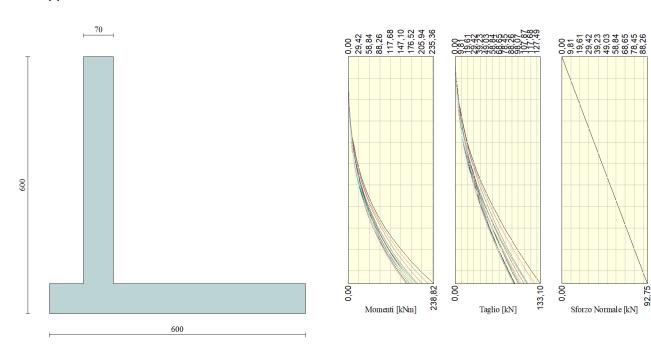
Forma diagramma incremento sismico Stessa forma diagramma statico

Partecipazione spinta passiva (percento) 50,0

Lunghezza del muro 10,00 [m]

Peso muro 197,7500 [kN]

Baricentro del muro X=0,63 Y=-4,24


Superficie di spinta

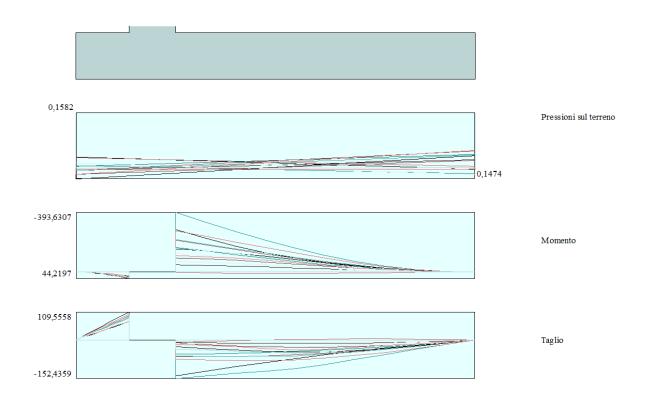
Punto inferiore superficie di spinta X = 4,50 Y = -6,00

Punto superiore superficie di spinta X = 4,50 Y = 0,00

11. Sollecitazioni Tipologia 1

Inviluppo Sollecitazioni

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kNm] Sforzo normale positivo di compressione, espresso in [kN] Taglio positivo se diretto da monte verso valle, espresso in [kN]


Inviluppo combinazioni SLU

Nr.	Υ	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
2	0,27	4,6375	4,6375	0,0201	0,0801	0,2279	0,6994
3	0,53	9,2750	9,2750	0,1611	0,4211	0,9118	1,9698
4	0,80	13,9125	13,9125	0,5436	1,1745	2,0515	3,8109
5	1,06	18,5500	18,5500	1,2886	2,4913	3,6470	6,2229
6	1,33	23,1875	23,1875	2,5168	4,5230	5,6985	9,2058
7	1,59	27,8250	27,8250	4,3491	7,4208	8,2059	12,7595
8	1,85	32,4625	32,4625	6,9062	11,3360	11,1691	16,8841
9	2,12	37,1000	37,1000	10,3090	16,4198	14,5882	21,5795
10	2,39	41,7375	41,7375	14,6782	22,8407	18,4632	27,0426
11	2,65	46,3750	46,3750	20,1347	30,8466	22,7940	33,5443
12	2,92	51,0125	51,0125	26,7993	40,6879	27,5808	40,8392
13	3,18	55,6500	55,6500	34,7928	52,5453	32,8234	48,7507
14	3,45	60,2875	60,2875	44,2360	66,5785	38,5219	57,2596

15	3,71	64,9250	64,9250	55,2497	82,9451	44,6763	66,3598
16	3,98	69,5625	69,5625	67,9547	101,8011	51,2866	76,0468
17	4,24	74,2000	74,2000	82,4719	123,3015	58,3527	86,3175
18	4,50	78,8375	78,8375	98,9219	147,6007	65,8748	97,1693
19	4,77	83,4750	83,4750	117,4258	174,8524	73,8527	108,6002
20	5,04	88,1125	88,1125	138,1041	205,2098	82,2865	120,6087
21	5,30	92,7500	92,7500	161,0727	238,8194	91,1032	133,1017

Inviluppo combinazioni SLE

Nr.	Υ	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
2	0,27	4,6375	4,6375	0,0159	0,0375	0,1799	0,3492
3	0,53	9,2750	9,2750	0,1271	0,2201	0,7196	1,0952
4	0,80	13,9125	13,9125	0,4291	0,6530	1,6191	2,2380
5	1,06	18,5500	18,5500	1,0170	1,4413	2,8784	3,7775
6	1,33	23,1875	23,1875	1,9864	2,6902	4,4975	5,7138
7	1,59	27,8250	27,8250	3,4325	4,5047	6,4764	8,0469
8	1,85	32,4625	32,4625	5,4507	6,9901	8,8151	10,7767
9	2,12	37,1000	37,1000	8,1363	10,2514	11,5137	13,9033
10	2,39	41,7375	41,7375	11,6114	14,4233	14,8787	17,7650
11	2,65	46,3750	46,3750	16,1242	19,7795	19,3554	22,8525
12	2,92	51,0125	51,0125	21,9345	26,6065	24,5865	28,7718
13	3,18	55,6500	55,6500	29,1958	35,0735	30,2900	35,2121
14	3,45	60,2875	60,2875	38,0265	45,3112	36,4280	42,1315
15	3,71	64,9250	64,9250	48,5397	57,4441	42,9853	49,5134
16	3,98	69,5625	69,5625	60,8448	71,5930	49,9507	57,3452
17	4,24	74,2000	74,2000	75,0488	87,8759	57,3153	65,6173
18	4,50	78,8375	78,8375	91,2565	106,4084	65,0721	74,3219
19	4,77	83,4750	83,4750	109,5712	127,3042	73,2158	83,4530
20	5,04	88,1125	88,1125	130,0947	150,6758	81,7419	93,0060
21	5,30	92,7500	92,7500	152,9236	176,6296	90,5870	102,9106

Inviluppo Sollecitazioni fondazione di valle

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000
2	0,08	0,2830	0,4493	7,0793	11,2238
3	0,16	1,1335	1,7942	14,1894	22,3880
4	0,24	2,5541	4,0298	21,3304	33,4926
5	0,32	4,5472	7,1514	28,5022	44,5376
6	0,40	7,1153	11,1543	35,7048	55,5229
7	0,48	10,2608	16,0335	42,9383	66,4487
8	0,56	13,9862	21,7845	50,2027	77,3149
9	0,64	18,2940	28,4023	57,4978	88,1214
10	0,72	23,1867	35,8823	64,8239	98,8684
11	0,80	28,6667	44,2197	72,1807	109,5558

Inviluppo combinazioni SLE

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000
2	0,08	0,3298	0,3809	8,2486	9,5213
3	0,16	1,3205	1,5234	16,5260	19,0429
4	0,24	2,9747	3,4277	24,8321	28,5647
5	0,32	5,2944	6,0938	33,1669	38,0868
6	0,40	8,2822	9,5216	41,5305	47,6091
7	0,48	11,9401	13,7113	49,9228	57,1317
8	0,56	16,2706	18,6627	58,3439	66,6545
9	0,64	21,2759	24,3760	66,7937	76,1776
10	0,72	26,9583	30,8511	75,2722	85,7009
11	0,80	33,3202	38,0881	83,7795	95,2244

Inviluppo Sollecitazioni fondazione di monte

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

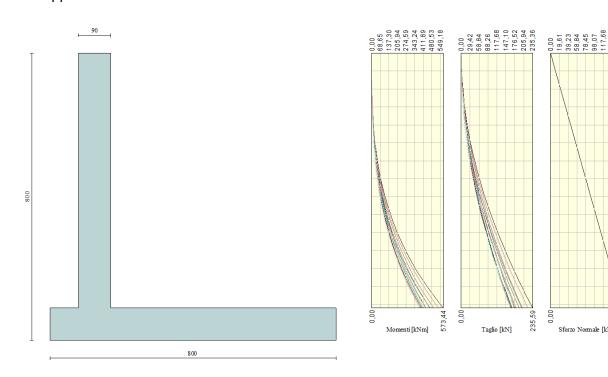
Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000
2	0,45	-4,1947	0,4901	-18,3216	2,0621
3	0,90	-16,5868	1,7515	-37,2925	3,4278
4	1,35	-37,7587	3,4707	-56,9128	4,0970
5	1,80	-67,9057	5,3343	-77,1823	4,0698
6	2,25	-107,3202	7,0290	-98,1013	3,3461
7	2,70	-155,6943	8,2413	-113,6695	1,9259
8	3,15	-208,7827	8,6578	-122,3871	-0,1908
9	3,60	-265,9401	7,9651	-131,7541	-3,0039
10	4,05	-327,4587	5,8498	-141,7703	-6,5136
11	4,50	-393,6307	1,9984	-152,4359	-7,3289

Inviluppo combinazioni SLE


Nr.	Х	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000
2	0,45	-2,1802	-0,6889	-9,6861	-3,2132
3	0,90	-8,7143	-3,0283	-19,3505	-7,3357
4	1,35	-19,5923	-7,4274	-28,9929	-12,3674
5	1,80	-34,8046	-14,2954	-38,6136	-18,3085
6	2,25	-54,3413	-24,0414	-48,2124	-25,1588
7	2,70	-77,5925	-36,4747	-51,7894	-26,9184
8	3,15	-100,0110	-47,4669	-47,8445	-22,0873
9	3,60	-120,6493	-56,4897	-43,8779	-18,1655
10	4,05	-139,4978	-63,9522	-39,8893	-15,1529
11	4,50	-156,5465	-70,2637	-35,8790	-13,0496

Armature

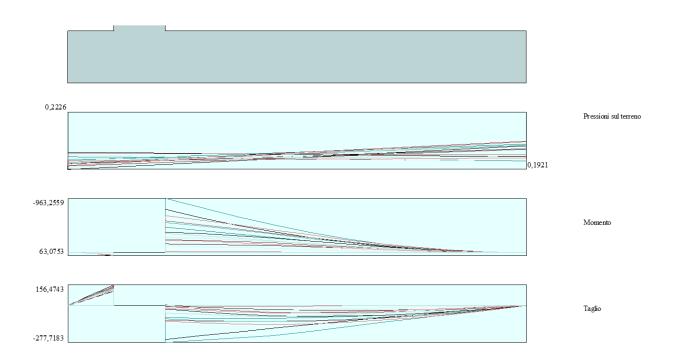
Parapetto	Anteriore	Posteriore
	Ф20/20	Ф24/20
Soletta	Superiore	Inferiore
	Φ24/20	Φ20/20

12. Sollecitazioni Tipologia 2

Inviluppo Sollecitazioni

Inviluppo Sollecitazioni paramento

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kNm] Sforzo normale positivo di compressione, espresso in [kN]


Taglio positivo se diretto da monte verso valle, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	Υ	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
2	0,35	7,9875	7,9875	0,0484	0,1868	0,4091	1,2223
3	0,71	15,9750	15,9750	0,3872	0,9884	1,6362	3,4632
4	1,06	23,9625	23,9625	1,3069	2,7662	3,6815	6,7225
5	1,42	31,9500	31,9500	3,0979	5,8819	6,5449	11,0003
6	1,77	39,9375	39,9375	6,0507	10,6970	10,2265	16,2966

_							
7	2,13	47,9250	47,9250	10,4556	17,5746	14,7261	22,6446
8	2,48	55,9125	55,9125	16,6030	26,9431	20,0439	30,4095
9	2,84	63,9000	63,9000	24,7835	39,3603	26,1798	39,7827
10	3,19	71,8875	71,8875	35,2875	55,3339	33,1338	50,3887
11	3,55	79,8750	79,8750	48,4053	75,2623	40,9059	62,0604
12	3,90	87,8625	87,8625	64,4275	99,5213	49,4962	74,7842
13	4,26	95,8500	95,8500	83,6444	128,4825	58,9045	88,5509
14	4,62	103,8375	103,8375	106,3465	162,5151	69,1310	103,3543
15	4,97	111,8250	111,8250	132,8243	201,9862	80,1756	119,1899
16	5,32	119,8125	119,8125	163,3680	247,2617	92,0383	136,0546
17	5,68	127,8000	127,8000	198,2683	298,7064	104,7192	153,9461
18	6,04	135,7875	135,7875	237,8155	356,6847	118,2181	172,8627
19	6,39	143,7750	143,7750	282,3000	421,5601	132,5352	192,8032
20	6,74	151,7625	151,7625	332,0123	493,6960	147,6704	213,7665
21	7,10	159,7500	159,7500	387,2304	573,4398	163,4928	235,5884
<u>Invi</u>	luppo	<u>combinazio</u>	ni SLE				
<u>Invi</u> Nr.	luppo Y	combinazio Nmin	ni SLE Nmax	Mmin	Mmax	Tmin	Tmax
				Mmin 0,0000	Mmax 0,0000	Tmin 0,0000	Tmax 0,0000
Nr.	Υ	Nmin	Nmax				
N r.	Y 0,00	Nmin 0,0000	Nmax 0,0000	0,0000	0,0000	0,0000	0,0000
Nr. 1 2	Y 0,00 0,35	Nmin 0,0000 7,9875	Nmax 0,0000 7,9875	0,0000 0,0382	0,0000 0,0880	0,0000 0,3228	0,0000 0,6139
Nr. 1 2 3	Y 0,00 0,35 0,71	Nmin 0,0000 7,9875 15,9750	Nmax 0,0000 7,9875 15,9750	0,0000 0,0382 0,3056	0,0000 0,0880 0,5197	0,0000 0,3228 1,2914	0,0000 0,6139 1,9360
Nr. 1 2 3 4	Y 0,00 0,35 0,71 1,06	Nmin 0,0000 7,9875 15,9750 23,9625	Nmax 0,0000 7,9875 15,9750 23,9625	0,0000 0,0382 0,3056 1,0315	0,0000 0,0880 0,5197 1,5463	0,0000 0,3228 1,2914 2,9056	0,0000 0,6139 1,9360 3,9662
Nr. 1 2 3 4 5	Y 0,00 0,35 0,71 1,06 1,42	Nmin 0,0000 7,9875 15,9750 23,9625 31,9500	Nmax 0,0000 7,9875 15,9750 23,9625 31,9500	0,0000 0,0382 0,3056 1,0315 2,4450	0,0000 0,0880 0,5197 1,5463 3,4194	0,0000 0,3228 1,2914 2,9056 5,1656	0,0000 0,6139 1,9360 3,9662 6,7045
Nr. 1 2 3 4 5	Y 0,00 0,35 0,71 1,06 1,42 1,77	Nmin 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375	Nmax 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375	0,0000 0,0382 0,3056 1,0315 2,4450 4,7755	0,0000 0,0880 0,5197 1,5463 3,4194 6,3904	0,0000 0,3228 1,2914 2,9056 5,1656 8,0712	0,0000 0,6139 1,9360 3,9662 6,7045 10,1511
Nr. 1 2 3 4 5 6 7	Y 0,00 0,35 0,71 1,06 1,42 1,77 2,13	Nmin 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375 47,9250	Nmax 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375 47,9250	0,0000 0,0382 0,3056 1,0315 2,4450 4,7755 8,2545	0,0000 0,0880 0,5197 1,5463 3,4194 6,3904 10,7132	0,0000 0,3228 1,2914 2,9056 5,1656 8,0712 11,6746	0,0000 0,6139 1,9360 3,9662 6,7045 10,1511 14,3628
Nr. 1 2 3 4 5 6 7 8	Y 0,00 0,35 0,71 1,06 1,42 1,77 2,13 2,48	Nmin 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375 47,9250 55,9125	Nmax 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375 47,9250 55,9125	0,0000 0,0382 0,3056 1,0315 2,4450 4,7755 8,2545 13,2166	0,0000 0,0880 0,5197 1,5463 3,4194 6,3904 10,7132 16,7549	0,0000 0,3228 1,2914 2,9056 5,1656 8,0712 11,6746 16,5570	0,0000 0,6139 1,9360 3,9662 6,7045 10,1511 14,3628 19,9774
Nr. 1 2 3 4 5 6 7 8	Y 0,00 0,35 0,71 1,06 1,42 1,77 2,13 2,48 2,84	Nmin 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375 47,9250 55,9125 63,9000	Nmax 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375 47,9250 55,9125 63,9000	0,0000 0,0382 0,3056 1,0315 2,4450 4,7755 8,2545 13,2166 20,2099	0,0000 0,0880 0,5197 1,5463 3,4194 6,3904 10,7132 16,7549 25,1165	0,0000 0,3228 1,2914 2,9056 5,1656 8,0712 11,6746 16,5570 23,0668	0,0000 0,6139 1,9360 3,9662 6,7045 10,1511 14,3628 19,9774 27,3767
Nr. 1 2 3 4 5 6 7 8 9 10	Y 0,00 0,35 0,71 1,06 1,42 1,77 2,13 2,48 2,84 3,19	Nmin 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375 47,9250 55,9125 63,9000 71,8875	Nmax 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375 47,9250 55,9125 63,9000 71,8875	0,0000 0,0382 0,3056 1,0315 2,4450 4,7755 8,2545 13,2166 20,2099 29,7183	0,0000 0,0880 0,5197 1,5463 3,4194 6,3904 10,7132 16,7549 25,1165 36,3287	0,0000 0,3228 1,2914 2,9056 5,1656 8,0712 11,6746 16,5570 23,0668 30,6355	0,0000 0,6139 1,9360 3,9662 6,7045 10,1511 14,3628 19,9774 27,3767 35,9374
Nr. 1 2 3 4 5 6 7 8 9 10 11	Y 0,00 0,35 0,71 1,06 1,42 1,77 2,13 2,48 2,84 3,19 3,55	Nmin 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375 47,9250 55,9125 63,9000 71,8875 79,8750	Nmax 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375 47,9250 55,9125 63,9000 71,8875 79,8750	0,0000 0,0382 0,3056 1,0315 2,4450 4,7755 8,2545 13,2166 20,2099 29,7183 42,0532	0,0000 0,0880 0,5197 1,5463 3,4194 6,3904 10,7132 16,7549 25,1165 36,3287 50,7330	0,0000 0,3228 1,2914 2,9056 5,1656 8,0712 11,6746 16,5570 23,0668 30,6355 38,9837	0,0000 0,6139 1,9360 3,9662 6,7045 10,1511 14,3628 19,9774 27,3767 35,9374 45,3530
Nr. 1 2 3 4 5 6 7 8 9 10 11 12	y 0,00 0,35 0,71 1,06 1,42 1,77 2,13 2,48 2,84 3,19 3,55 3,90 4,26	Nmin 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375 47,9250 55,9125 63,9000 71,8875 79,8750 87,8625	Nmax 0,0000 7,9875 15,9750 23,9625 31,9500 39,9375 47,9250 55,9125 63,9000 71,8875 79,8750 87,8625	0,0000 0,0382 0,3056 1,0315 2,4450 4,7755 8,2545 13,2166 20,2099 29,7183 42,0532 57,4848	0,0000 0,0880 0,5197 1,5463 3,4194 6,3904 10,7132 16,7549 25,1165 36,3287 50,7330 68,6259	0,0000 0,3228 1,2914 2,9056 5,1656 8,0712 11,6746 16,5570 23,0668 30,6355 38,9837 48,0769	0,0000 0,6139 1,9360 3,9662 6,7045 10,1511 14,3628 19,9774 27,3767 35,9374 45,3530 55,5857

15	4,97	111,8250	111,8250	124,9253	146,0491	79,6179	90,9572
16	5,32	119,8125	119,8125	155,2802	180,6778	91,5087	104,2581
17	5,68	127,8000	127,8000	189,9763	220,1599	104,0743	118,2991
18	6,04	135,7875	135,7875	229,2522	264,7570	117,3093	133,0742
19	6,39	143,7750	143,7750	273,3446	314,7289	131,2096	148,5789
20	6,74	151,7625	151,7625	322,4893	370,3339	145,7717	164,8095
21	7,10	159,7500	159,7500	376,9106	431,8183	160,8878	181,6477

Inviluppo Sollecitazioni fondazione di valle

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]

luppo		

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000
2	0,08	0,4295	0,6395	10,7408	15,9752
3	0,16	1,7189	2,5541	21,4945	31,8776
4	0,24	3,8690	5 <i>,</i> 7380	32,2609	47,7071
5	0,32	6,8810	10,1853	43,0402	63,4638
6	0,40	10,7558	15,8902	53,8323	79,1476
7	0,48	15,4945	22,8470	64,6372	94,7586
8	0,56	21,0981	31,0497	75,4549	110,2968
9	0,64	27,5676	40,4925	86,2854	125,7621
10	0,72	34,9041	51,1697	97,1288	141,1546
11	0,80	43,1085	63,0753	107,9849	156,4743

Inviluppo combinazioni SLE

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000
2	0,08	0,4619	0,5299	11,5511	13,2469
3	0,16	1,8487	2,1193	23,1225	26,4855

4	0,24	4,1620	4,7674	34,7142	39,7159
5	0,32	7,4035	8,4736	46,3262	52,9379
6	0,40	11,5748	13,2372	57,9585	66,1516
7	0,48	16,6774	19,0576	69,6111	79,3570
8	0,56	22,7131	25,9341	81,2840	92,5541
9	0,64	29,6834	33,8661	92,9772	105,7429
10	0,72	37,5900	42,8528	104,6907	118,9235
11	0,80	46,4345	52,8936	116,4245	132,0957

Inviluppo Sollecitazioni fondazione di monte

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000
2	0,63	-11,0557	0,0517	-34,3409	0,1229
3	1,26	-42,3164	0,1030	-64,1431	-0,0013
4	1,89	-90,9228	-0,0018	-93,2041	-0,3726
5	2,52	-155,9340	-0,4184	-125,8172	-0,9912
6	3,15	-245,6748	-1,3026	-159,2028	-1,8569
7	3,78	-356,6918	-2,8100	-193,3609	-2,9697
8	4,41	-489,2902	-5,0963	-224,9915	-4,3297
9	5,04	-636,2872	-8,3173	-241,7946	-5,9369
10	5,67	-794,1136	-12,6287	-259,3702	-7,7912
11	6,30	-963,2559	-18,1861	-277,7183	2,3709

Inviluppo combinazioni SLE

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0,00	0,0000	0,0000	0,0000	0,0000
2	0,63	-4,5040	-0,6004	-14,2056	-2,1159
3	1,26	-17,7823	-2,9305	-27,8553	-5,4909
4	1,89	-39,4848	-7,7834	-40,9489	-10,1251
5	2,52	-69,2612	-15,9525	-53,4866	-16,0183
6	3,15	-106,7612	-28,2309	-65,4683	-23,1707
7	3,78	-151,6345	-45,4120	-76,8940	-31,5822
8	4,41	-203,3494	-68,1074	-84,4637	-37,9528
9	5,04	-253,8861	-89,4410	-75,8775	-29,9825
10	5,67	-298,8382	-106,1498	-66,7352	-23,2714
11	6,30	-337,8557	-119,0273	-57,0370	-17,8193

Armature

Parapetto	Anteriore	Posteriore
	Φ20/20	Ф20/10
Soletta	Superiore	Inferiore
	Φ20/20	Φ20/20