

Autostrada Brescia Verona Vicenza Padova SpA

Via Flavio Gioia 71 37135 Verona

tel. 0458272222 Fax 0458200051 Casella Postale 460M www.autobspd.it AREA COSTRUZIONI AUTOSTRADALI

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO Piovene Rocchette - Valle dell'Astico

PROGETTO DEFINITIVO

CUP	G21B1 30006 60005
WBS	B25.A31N.L1
COMMESSA	J16L1

COMMITTENTE

S.p.A. AUTOSTRADA BRESCIA VERONA VICENZA PADOVA Area Costruzioni Autostradali

CAPO COMMESSA PER LA PROGETTAZIONE Dott. Ing. Gabriella Costantini

PRESTATORE DI SERVIZI: CONSORZIO RAETIA

RAPPRESENTANTE: Dott. Ing. Alberto Scotti

PROGETTAZIONE:

ELABORATO: STUDI PER LA CONOSCENZA DEL CONTEST INDAGINI GEOGNOSTICHE

PROVE IN SITO E DI LABORATORIO PREGRESSE

03 05 01 011 02

Rev.	Data	Descrizione	Redazione	Controllo	Approvazione	SCALA: SCALA
00	MARZO 2017	PRIMA EMISSIONE	TECHNITAL - E.FRESIA	E.FRESIA	A,RENSO	NOME FILE: J16L1_03_05_01_011_0101_0PD_02pdf
01 02	GIUGNO 2017 LUGLIO 2017	REVISIONE PER ADEGUAMENTO CARTIGLIO RECEPIMENTO OSSERVAZIONI	TECHNITAL - E.FRESIA TECHNITAL - E.FRESIA	E.FRESIA E.FRESIA	A.RENSO A.RENSO	CM. PROGR. FG. LIV. REV.
						J16L1 03 05 01 011 0101 0PD 02

IL PRESENTE DOCUMENTO NON POTRA' ESSERE COPIATO, RIPRODOTTO O ALTRIMENTI PUBBLICATO, IN TUTTO O IN PARTE, SENZA IL CONSENSO SCRITTO DELLA AUTOSTRADA BS-VR-VI-PD S,P.A., OGNI UTILIZZO NON AUTORIZZATO SARA' PERSEGUITO A NORMA DI LEGGE

PROVE DI LABORATORIO CAMPAGNA INDAGINI 1995

Spett.le

STUDIO IDROESSE

PADOVA

Oggetto: Autostrada Valdastico A31 - Completamento a nord.

Prove geotecniche di laboratorio.

Sui campioni prelevati con i sondaggi eseguiti nel cantiere di cui all'oggetto sono state condotte le seguenti prove geotecniche di laboratorio:

- consistenza con pocket penetrometer;
- resistenza al taglio con torvane;
- contenuto naturale d'acqua;
- limiti di Atterberg (LL);
- peso dell'unità di volume;
- peso specifico assoluto dei grani;
- prova di compressione con espansione laterale libera (ELL);
- analisi granulometrica con vagliatura meccanica(GR);
- prova edometrica ad incrementi di carico controllati (IL);
- prova triassiale non consolidata non drenata (Tx UU);
- prova triassiale consolidata e non drenata con misura della pressione nei pori (Tx CIU);
- prova di taglio diretto consolidata e drenata (DS).

 I simboli usati hanno il seguente significato:

```
1 ( ) 1
```

```
Pen = consistenza con pocket penetrometer in Kg/cm²;
Tor = resistenza al taglio con torvane in Kg/cm²;
Wn = contenuto naturale d'acqua in %;
W1 = limite di liquidità in %;
Wp = limite di plasticità in %;
Ip = indice di plasticità;
Y = peso dell'unità di volume in gr/cm³;
Gs = peso specifico assoluto dei grani in gr/cm<sup>3</sup>,
q_u = resistenza alla compressione con espansione laterale libera in
    Kg/cm²;
p = pressione verticale nella prova edometrica in Kg/cm²,
e = indice dei vuoti nella prova edometrica;
Cv = coefficiente di consolidazione nella prova edometrica in cm²/sec;
Mv = coefficiente di copressione di volume nella prova edometrica in
     cm^2/Kq;
K = coefficiente di permeabilità nella prova edometrica in cm/sec;
Cc = indice di compressione nella prova edometrica;
p' = pressione verticale nella prova di taglio diretto in Kg/cm²;
Tau = sforzo di taglio nella prova di taglio diretto in Kg/cm²;
Srot = spostamenti orrizzontali a rottura nella prova di taglio diretto
       in mm;
H = altezza provino nella prova di taglio diretto in mm;
L = lato provino nella prova di taglio diretto in mm;
pc = pressione in cella nella prova triassiale in Kg/cm²,
b.p. = back pressure nella prova triassiale in Kg/cm²,
pl = tensione totale maggiore nella prova triassiale in Kg/cm².
p3 = tensione totale minore nella prova triassiale in Kg/cm²;
u = pressione interstiziale nella prova triassiale in Kg/cm²;
pl'= tensione effettiva maggiore nella prova triassiale in Kq/cm²;
```



```
p3'= tensione effettiva minore nella prova triassiale in Kg/cm^z; \varepsilon_R = deformazioni percentuali a rottura; W_r = umidità iniiziale in %; W_r = umidità finale in %.

In allegato sono riportati i diagrammi e le tabelle con i risultati delle prove di laboratorio.
```


IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE PROFONDITA'

3.00 - 3.30

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limo-argillosa

PROVE PREVISTE:

LL - GR

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

1

CAMPIONE

1

PROFONDITA'

3.00 - 3.30

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	Wn	%	
LIMITE DI LIQUIDITA'	WL	8	23
LIMITE DI PLASTICITA'	WP	%	14
INDICE DI PLASTICITA'	IP		9
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		8	

VICENZETTO		I GRANULOMETRICA
CANTIERE AUTOSTRAD	A VALDASTICO A31 - COMPLE	TAMENTO A NORD PROFONDITA' 3.00 - 3.30
·	CURVA GRANULO	METRICA
	PER VAGLIATURA	PER SEDIMENTAZIONE
100 3° 2° 1½ 1° 34° 12		
CIOTTOLI G H I		B I A L I M O ARGILLA
ANALISI GRANUL SETACCI SERIE AS ANALISI GRANUL	6 2 0.6	erie uni □ ONE □

RROSKI

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

2

CAMPIONE

PROFONDITA'

6.00 - 6.50

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

		1
		;
		1
		1

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

sabbia con ghiaia limosa debolmente argillosa

PROVE PREVISTE:

GR

VICENZETTO	ANAL	ISI GRANULON	METRICA	
	DA VALDASTICO A31 - COM	PLETAMENTO A NOF	RD	
100 3" 2" 1½ 1" 34 V2" 37 V2"		60 200	PER SEDIMENTAZIONE—	0,00
			DIAMETRO IN mm	
CIOTTOLI G H I		B B I A	L I M O	ARGILLA
60 20	6 2 0.6	0.2 0.06		0.002
SETACCI SERIE A ANALISI GRANU	LOMETRICA: PER VI. STM SETACO LOMETRICA PER SEDIMENTA IMETRO METODO	CI SERIE UNI 🗆		

0.0000

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

1

CAMPIONE

PROFONDITA'

12.00 - 12.35

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limo-argillosa

PROVE PREVISTE:

LL - GR

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

1

CAMPIONE PROFONDITA'

12.00 - 12.35

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	*	
LIMITE DI LIQUIDITA'	WL	8	22
LIMITE DI PLASTICITA'	WP	%	13
INDICE DI PLASTICITA'	IP		9
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		%	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE PROFONDITA'

1 3.00 - 3.30

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limo-argillosa

PROVE PREVISTE :

LL - GR

VICENZETTO	ANALISI	GRANULOMETRICA
	DA VALDASTICO A31 — COMPLETAME CAMPIONE4PRO	1
100 3° 2° 1½ 1° 34° 1½ 3	/8° 4 10 20 40 60	PER SEDIMENTAZIONE————————————————————————————————————
10		
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	o i	0.1 0.01 0.001 DIAMETRO IN mm
CIOTTOLI G H I	A I A S A B B I A	L I M O ARGILLA
G 20	6 G M 0.2	F 0.06 0.002
SETACCI SERIE	JLOMETRICA: PER VIA SECCA ASIM © SETACCI SERIE JLOMETRICA PER SEDIMENTAZIONE	UNI 🗆
METODO CON DEN	SIMETRO	ETTA DI ANDREASEN 🗖

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

2

CAMPIONE

1

PROFONDITA'

3.00 - 3.30

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	ზ	
LIMITE DI LIQUIDITA'	WL	%	21
LIMITE DI PLASTICITA'	WP	%	12
INDICE DI PLASTICITA'	IP		9
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		%	

VICENZETTO	ANALI	SI GRANULOMETR	ICA	
	A VALDASTICO A31 — COMPL CAMPIONE1	ETAMENTO A NORD		
100 3" 2" 1½" 1" 34" 12" 3/8 90 80 70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CURVA GRANUL PER VAGLIATURA 10 20 40			0.00
CIOTTOLI G H I	A I A S A B	BIA	L I M O AR	GILLA
G M	F G M	F 0.2 0.06	0.002	
SETACCI SERIE AS ANALISI GRANUL	OMETRICA: PER VIA TH M SETACCI OMETRICA PER SEDIMENTAZ METRO METODO CO	SERIE UNI 🗆	VIA UMIDA ⊠	

RROSAS

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

7.00 - 7.20

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

argilla limosa grigia inglobante elementi di ghiaia

PROVE PREVISTE:

LL

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

2

CAMPIONE

3

PROFONDITA'

7.00 - 7.20

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	%	
LIMITE DI LIQUIDITA'	WL	8	26
LIMITE DI PLASTICITA'	₩₽	%	15
INDICE DI PLASTICITA'	IP		11
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	gu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		%	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE PROFONDITA'

9.00 - 9.50

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

İ
BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

argilla con ghiaia sabbiosa limosa grigia

PROVE PREVISTE:

LL - GR

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

2

CAMPIONE

PROFONDITA'

9.00 - 9.50

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	*	
LIMITE DI LIQUIDITA'	WL	%	26
LIMITE DI PLASTICITA'	₩₽	%	14
INDICE DI PLASTICITA'	IP		12
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		%	

VICENZETTO	ANALIS	SI GRANULOMETRICA	
	DA VALDASTICO A31 — COMPLI		•••••
30 20 100 30 20 100 100 100 100 100 100 100 100 100		PER SEDIME SO ZOO I I I I I I I I I I I I I I I I I I	NTAZIONE———
100		0.1 0.01	0.001
	'		TRO IN mm
G H I G M 60 20		B i A L i M 0.2 0.06	O ARGILLA 0.002
SETACCI SERIE AS	. LOMETRICA: PER VIA S SETACCI S LOMETRICA PER SEDIMENTAZI	ERIE UNI 🗆	IIDA 🗷
METODO CON DENS	IMETRO 🗆 METODO CON	PIPETTA DI ANDREASEN 🗖	
	•		

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA' 14.00 - 14.20

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

1	t		
- 1	!		
- 1	1		
1	1		
	1		

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE:

argilla con limo da grigia a grigio-scura con livelli di limo sabbioso

PROVE PREVISTE:

LL

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

2

CAMPIONE

6

PROFONDITA'

14.00 - 14.20

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	Wn	%	
LIMITE DI LIQUIDITA'	WL	%	29
LIMITE DI PLASTICITA'	WP	%	19
INDICE DI PLASTICITA'	IP		10
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		%	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

8

PROFONDITA'

15.75 - 16.00

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

argilla debolmente limosa marron-rossastra con rari elementi di ghiaia e laminazioni limose-sabbiose

PROVE PREVISTE:

LL

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

2

CAMPIONE

2

PROFONDITA'

15.75 - 16.00

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	%	
LIMITE DI LIQUIDITA'	WL	*	56
LIMITE DI PLASTICITA'	₩₽	%	26
INDICE DI PLASTICITA'	IP		3Ø
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	GS	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		ૠ	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

18.00 - 18.30

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limo-argillosa

PROVE PREVISTE:

LL - GR

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

2

CAMPIONE PROFONDITA'

18.00 - 18.30

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	*	
LIMITE DI LIQUIDITA'	WL	4	20
LIMITE DI PLASTICITA'	₩₽	*	11
INDICE DI PLASTICITA'	IP		9
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		%	

VICENZETTO	ANALISI GRA	ANULOMETRICA
	A VALDASTICO A31 - COMPLETAMENTO CAMPIONE 9 PROFOND	O A NORD
SONDAGGIO 2 100 3" 2" 1½ 1" 34 1/2" 34 90 40 40 40 30 40 40	CURVA GRANULOMETRI PER VAGLIATURA 10 20 40 60	200
SETACCI SERIE A:	LOMETRICA: PER VIA SECCA □ SIM ☑ SETACCI SERIE UN	I a
	LOMETRICA PER SEDIMENTAZIONE METRO METRO METRO .	

LESTUN

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

2

CAMPIONE

12

PROFONDITA'

28.50 - 28.80

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE:

ghiaia da grossa fine sabbiosa limo-argillosa

PROVE PREVISTE:

LL - GR

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

2

CAMPIONE

12

PROFONDITA'

28.50 - 28.80

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	8	
LIMITE DI LIQUIDITA'	WL	%	19
LIMITE DI PLASTICITA'	₩₽	9,	12
INDICE DI PLASTICITA'	IP		7
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		%	

VICENZETTO	ANALISI GRANULOMETRICA					
	VALDASTICO A31 - COMPLETAMENTO A NORD CAMPIONE					
100 3° 2° 1½ 1° 34° 12° 39° 39° 39° 39° 39° 39° 39° 39° 39° 39	PER VAGLIATURA PER SEDIMENTAZIONE OLI DIAMETRO IN mm	0.001				
CIOTTOLI G H I		RGILLA				
ANALISI GRANULOMETRICA: PER VIA SECCA PER VIA UMIDA SETACCI SERIE ASTM SETACCI SERIE UNI CANALISI GRANULOMETRICA PER SEDIMENTAZIONE METODO CON DENSIMETRO METODO CON PIPETTA DI ANDREASEN CANALISI GRANULOMETRICA PER SEDIMENTAZIONE CON PIPETTA DI ANDREASEN CANALISI CON DENSIMETRO CON METODO CON PIPETTA DI ANDREASEN CANALISI CON DENSIMETRO CON METODO CON PIPETTA DI ANDREASEN CON CON DENSIMETRO CON CON PIPETTA DI ANDREASEN CON CON CON CON CON CON CON CON CON CO						

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

2

CAMPIONE

13

PROFONDITA'

31.20 - 31.40

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

argilla limosa sabbiosa marron con zone carbonitiche biancastre e rari elementi di ghiaia; presenza di laminazioni sabbiose

PROVE PREVISTE:

LL - GR

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

3

CAMPIONE

PROFONDITA'

24.00 - 24.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine con sabbia limosa argillosa

PROVE PREVISTE:

GR

)A VALDASTICO A31 — COMPLETA	GRANULOMETRICA AMENTO A NORD PROFONDITA'24.0024.50
	CURVA GRANULOM	1ETRICA PER SEDIMENTAZIONE
100 3" 2" 1½ 1" 34" V2" 38 90 10 10 10 10		200
SETACCI SERIE AS	F G M	CCA PER VIA UMIDA 🗵
METODO CON DENS	IMETRO 🗆 METODO CON P	PIPETTA DI ANDREASEN 🗖

В1. < h И И..

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

4

PROFONDITA'

12.00 - 13.00

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE:

ghiaia in prevalenza medio-fine con sabbia limosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA	
	A VALDASTICO A31 - COMPLETAMENTO A NORD CAMPIONE 4 PROFONDITA' 12,00 - 12,50	
100 3° 2° 1½ 1° 14° V2° 34° V2	1 O,1 O,O1 DIAMETRO IN mm	0.001
G H I		RGILLA
60 20	6 2 0.5 0.2 0.06 . 0.00	2
SETACCI SERIE AS ANALISI GRANUL	OMETRICA: PER VIA SECCA PER VIA UMIDA TM S SETACCI SERIE UNI OMETRICA PER SEDIMENTAZIONE METRO	

3 L 3.D V V.

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE PROFONDITA!

9.00 - 9.50

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

BASSO

ALTO		
	1 1	

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-fine con sabbia limosa

PROVE PREVISTE:

GR

CURVA GRANULOMETRICA PER VAGUIATURA PER SEDIMENTAZIONE 100 30 40 40 40 200 80 40 40 40 40 40 40 40 40 40 40 40 40 40			ETAMENTO A NORD		
80 80 70 80 80 80 80 80 80 80				R SEDIMENTAZIONE	
ANALISI GRANULOMETRICA: S A B B I A L I M O ARGILLA G M F G M F G O S O S O S O S O S O S O S O S O S O	90-11-11-11-11-11-11-11-11-11-11-11-11-11				0,001
METODO CON DENSIMETRO 🗆 METODO CON PIPETTA DI ANDREASEN 🗖	ANALISI GRANU SETACCI SERIE A ANALISI GRANU	LOMETRICA: PER VIA SIM SETACCI LOMETRICA PER SEDIMENTAZ	SECCA PER SERIE UNI LIONE	R VIA UMIDA 🗹	

WILL THE

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

3.00 - 3.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine con sabbia limosa argillosa

PROVE PREVISTE:

GR

VICENZETTO		ANALISI GRANU	LOMETRICA	
DITTA IDROESSE CANTIERE AUTOSTRAD SONDAGGIO 3	A VALDASTICO A31 -		NORD	•••••
100 3" 2" 1½' 1" 34' V2" 37 90 80 70 70 70 70 70 70 70 70 70 70 70 70 70	PER VAGLIATURA 10 20 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 60 200	O.O1	0.001 TRO IN mm
G M		S A B B I A	L i M	O ARGILLA
60 20	6 2		0.06	0.002
SETACCI SERIE A ANALISI GRANU	LOMETRICA: PE SIM ☑ LOMETRICA PER SEDI	SETACCI SERIE UNI 🗆		IDA 🔀

i k n w w

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

2

CAMPIONE

13

PROFONDITA'

31.20 - 31.40

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	%	
LIMITE DI LIQUIDITA'	WL	%	71
LIMITE DI PLASTICITA'	₩₽	98	40
INDICE DI PLASTICITA'	IP		31
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		*	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

4

PROFONDITA'

10.50 - 10.70

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

argilla con limo grigia; presenza di numerosi livelli di limo sabbioso e rari elementi di ghiaia

PROVE PREVISTE:

LL

VICENZETTO	ANALISI	GRANULOMETRICA
	LDASTICO A31 - COMPLETAME	NTO A NORD FONDITA: 9.00 - 9.45
	CURVA GRANULOMET	RICA
PER	V AGL I ATURA	PER SEDIMENTAZIONE
10		200
CIOTTOLI G H I A I		
G M 60 20 6	F G M J	0.06
SETACCI SERIE ASIM &		
METODO CON DENSIMETRO	O METODO CON PIPE	TITA DI ANDREASEN 🗆

TINE

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

3

PROFONDITA'

9.00 - 9.45

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	%	
LIMITE DI LIQUIDITA'	WL	*	18
LIMITE DI PLASTICITA'	₩₽	%	13
INDICE DI PLASTICITA'	IP		5
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		*	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

3

PROFONDITA'

9.00 - 9.45

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

limo con sabbia argilloso grigio; presenza di rari elementi di ghiaia

PROVE PREVISTE:

LL - GR

VICENZETTO	ANALISI GRANULOMETRICA
	DA VALDASTICO A31 — COMPLETAMENTO A NORD CAMPIONE 2. PROFONDITA' 6.00.—6.45.
,	CURVA GRANULOMETRICA
	PER VAGLIATURA PER SEDIMENTAZIONE
10	0 1 0,1 0,01 0,00
	A 1 A S A B B 1 A L 1 M O ARGILLA M F G M F 6 2 0.6 0.2 0.06 0.002
SETACCI SERIE A ANALISI GRANU	ULOMETRICA: PER VIA SECCA PER VIA UMIDA
THE TOTAL CON UEN.	. ACTOOC CON PIPETTA DI ANDREASEN []

0.581

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

6.00 - 6.45

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

. sabbia fine con limo debolmente argillosa grigio-chiara presenza di rari elementi di ghiaia

PROVE PREVISTE:

GR

VICENZETTO	ANALIS	SI GRANULOMETRI	CA
	A VALDASTICO A31 - COMPLE	ETAMENTO A NORD	
100 3" 2" 1½ 1" 34 V2" 36 90 80 70 10 10 10			SEDIMENTAZIONE O.O1 O.O1 O.O01 DIAMETRO IN mm
CIOTTOLI G H I			L I M O ARGILLA
G M	F G M	0.2 0.06	0.002
SETACCI SERIE AS ANALISI GRANUL	OMETRICA: PER VIA S TH ⊠ SETACCI S OMETRICA PER SEDIMENTAZI METRO □ METODO CON	ERIE UNI ONE PIPETTA DI ANDREASEN	

.

O S

DITTA

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

4.50 - 5.00

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa fine sabbiosa limosa

PROVE PREVISTE:

GR

VICEN	ZETT	0	ANALISI GRANULOMETRICA						
CANTIERE .	AUT0ST	RADA N	/ALDASTI	CO A31 - COM	1PLETAME	NTO A NO	RD		
100 3" 2"	11/3	V2" 3/8"		JRVA GRAN	60		— PER SE	DI MENTAZION	E
70 1 1 1 1 1 1 1 1 1		10			•	0.1		0.01	0,001
CIOTTOLI	G 20	н I А I м	F	S A G 0.6	B B I A M 0.2	F 0.06		DIAMETRO IN #	ARGILLA
SET <i>I</i> ANA	ACCI SERIE	: ASTM	⊠ ETRICA P	PER VI SETACO ER SEDIMENT METODO	SERTE AZIONE	UNU []		. UMIDA ☑	·

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

3

CAMPIONE

10

PROFONDITA'

30.00 - 30.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine con sabbia limosa

PROVE PREVISTE:

GR

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

10.50 - 10.70

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	*	
LIMITE DI LIQUIDITA'	WL	*	22
LIMITE DI PLASTICITA'	₩₽	%	14
INDICE DI PLASTICITA'	IP		8
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		ቴ	

2

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

15.80 - 16.00

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

argilla con limo grigia; presenza di rari noduli calcarei e rare laminazioni sabbiose

PROVE PREVISTE:

LL

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

4

CAMPIONE PROFONDITA'

15.80 - 16.00

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	Wn	*	
LIMITE DI LIQUIDITA'	WL	%	23
LIMITE DI PLASTICITA'	₩₽	8	13
INDICE DI PLASTICITA'	IP		10
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		ૠ	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

24.00 - 24.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limosa

PROVE PREVISTE:

GR

	ANALISI GRANULOMETRICA DA VALDASTICO A31 — COMPLETAMENTO A NORD CAMPIONE 8 PROFONOITA' 24.00 — 24.50
100 3" 2" 1½ 1" 34" V2" 328 90 40 40 40 40	
ANALISI GRANU SETACCI SERIE A ANALISI GRANU	. ULOMETRICA: PER VIA SECCA □ PER VIA UMIDA ☑

ò Œ,

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

27.00 - 27.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa debolmente limosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA
CANTIERE AUTOSTRADA VALDASTICO	A31 - COMPLETAMENTO A NORD9profondita'27,0027,50
CURV	'A GRANULOMETRICA
PER VAGLIATUR	A ————————————————————————————————————
100 3 2 1/2 1 34 1/2 38 4 10 10 10 10 10 10 10 10 10 10 10 10 10	20 40 60 200
CIOTTOLI G H I A I A	S A B B I A L I M O ARGILL G M F
SETACCI SERIE ASTM 🗗 ANALISI GRANULOMETRICA PER	

Γ

١

Ó

C

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

1

PROFONDITA'

3.00 - 3.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

.ghiaia da grossa a fine con ciottoli sabbiosa deb. limosa

PROVE PREVISTE:

GR

VICENZETTO DITTA IDROESSE		ANALISI G		ETRICA	
CANTIERE AUTOSTRAE SONDAGGIO5					
100 3" 2" 1½' 1" 34" V2" 3	— PER VAGLIATURA	A GRANULOMETR		— PER SEDIMENTAZI	I ON E
20			0.1	0,01	0,001
	A 1 A	S A B B I A		DIAMETRO II	
G M		G M 0.8 0.2	F 0.06		0.002
SETACCI SERIE A ANALISI GRANU	SIM ⊠	PER VIA SECCA SETACCI SERIE SEDIMENTAZIONE [UNI 🗆	PER VIA UMIDA	<u>⊠</u>
METODO CON DENS	IMETRO 🗖	METODO CON PIPET	TA DI ANDRE	ASEN 🗆	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE PROFONDITA'

5.40 - 6.00

TIPO DI CAMPIONE : INDISTURBATO

TIPO DI CONTENITORE : FUSTELLA CILINDRICA INOX

LUNGHEZZA CAMPIONE : Dichiarata 60.0 (cm) Reale 64.0 (cm)

DIAMETRO CAMPIONE: 8.4 (cm)

ALTO

a

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

a) Spessore = 64 cm

argilla con limo grigia; presenza di laminazioni sabbiose

Pen = >10.0 (kg/cm2) - Tor =

(kg/cm2)

Pen = 5.0 - 7.5 (kg/cm2) - Tor =

(kg/cm2)

PROVE PREVISTE :

Wn - LL - Y - ELL

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

5

CAMPIONE

Ā

PROFONDITA'

5.40 - 6.00

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	*	16
LIMITE DI LIQUIDITA'	WL	*	24
LIMITE DI PLASTICITA'	₩₽	*	14
INDICE DI PLASTICITA'	IP		10
PESO DELL'UNITA' DI VOLUME		gr/cm3	2.15
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	8.98
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI	1000	ზ	

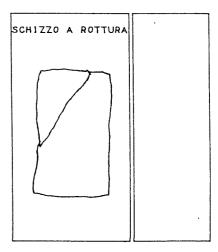
COMMITTENTE : IDROESSE

CANTIERE

: AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

: 5


CAMPIONE

: A

PROFONDITA' [m] : DA 5.40 A 6.00

PROVA DI COMPRESSIONE CON ESPANSIONE LATERALE LIBERA (ELL)

9.0 8.5		1
8.0	[velocity brown in]	0.5
7.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.66
6.5	DIAMETRO INIZIALE	3.64
5.5	I MUDITAL ELMIE	15.214
5.0 4.5	o SPORZU DEVIAL MAX [kg/cm2]	8.98
4.0	7550047 4 2077/04	3.701
3.5 3.0	0	
2.5		
2.0		
1.0		
0.5		
0.0	1 2 3 4 5 6 7 8 9 10 EPS %	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

5

CAMPIONE

PROFONDITA'

7.50 - 8.10

TIPO DI CAMPIONE

: INDISTURBATO

TIPO DI CONTENITORE : FUSTELLA CILINDRICA INOX

LUNGHEZZA CAMPIONE : Dichiarata 60.0 (cm) Reale 60.0 (cm)

DIAMETRO CAMPIONE: 8.4 (cm)

ALTO

a

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

Spessore = 60 cm a)

argilla con limo grigio-nocciola; presenza di laminazioni sabbiose

Pen = >10.0

(kg/cm2) - Tor =

(kg/cm2)

Pen = 7.0->10

(kg/cm2) - Tor =

(kg/cm2)

PROVE PREVISTE:

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

5

CAMPIONE

R

PROFONDITA'

7.50 - 8.10

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	Wn	%	15
LIMITE DI LIQUIDITA'	WL	*	26
LIMITE DI PLASTICITA'	₩P	*	16
INDICE DI PLASTICITA'	IP		10
PESO DELL'UNITA' DI VOLUME		gr/cm3	2.21
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	2.74
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	9.00
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		*	

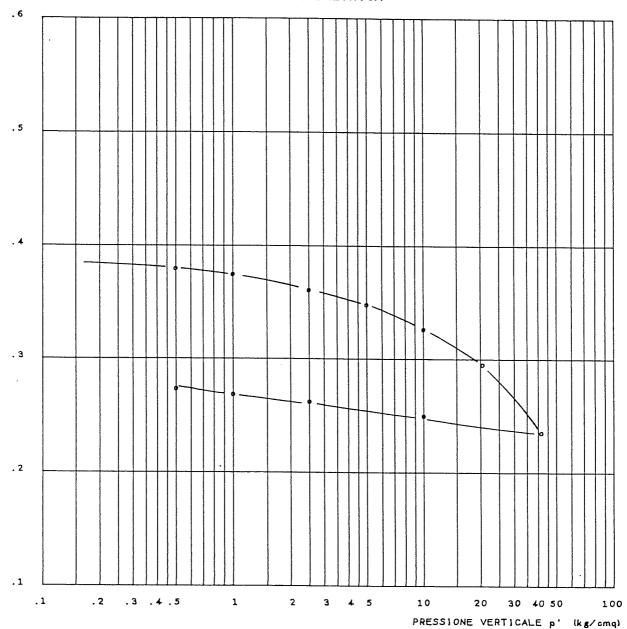
COMMITTENTE : IDROESSE

CANTIERE : AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD SONDAGGIO : 5
CAMPIONE : B

PROFONDITA' [m] : DA 7.50 A 8.10

PROVA DI COMPRESSIONE CON ESPANSIONE LATERALE LIBERA (ELL)

0.0	-	1	1	2	1	3	1_	1	 	 6	 <u> </u>	 _ <u> </u>	 9	 10			
0.5	•														4		
1.0	-0								٠						4		
1.5	-														+		
2.0	- •														+		
2.5	- 0														\dashv		
3.0															\dashv		
3.5	-							0						•	\dashv		
4.0		•													4	DEFORMAZ. A ROTTURA	2.554
4 . 5	+	0					0								\dashv	[kg/cm2]	
5.0	F	0					0								1	SFORZO DEVIAT. MAX	8.99
5.5	-	o												-	-	UMIDITA' FINALE	14.41
6.0	-	o												-	-	lcml	
6.5	_	D												-	-	DIAMETRO INIZIALE	3.95
7.0	-		0											-	-	ALTEZZA INIZIALE	9.03
7.5	-		0											-	4	[mm/min]	
8.0	-		0											-	-	VELOCITA' PROVA	0.5
8.5	H		•	ຸດິ[-	41	PROVINO NUMERO	1



DITTA: IDROESSE

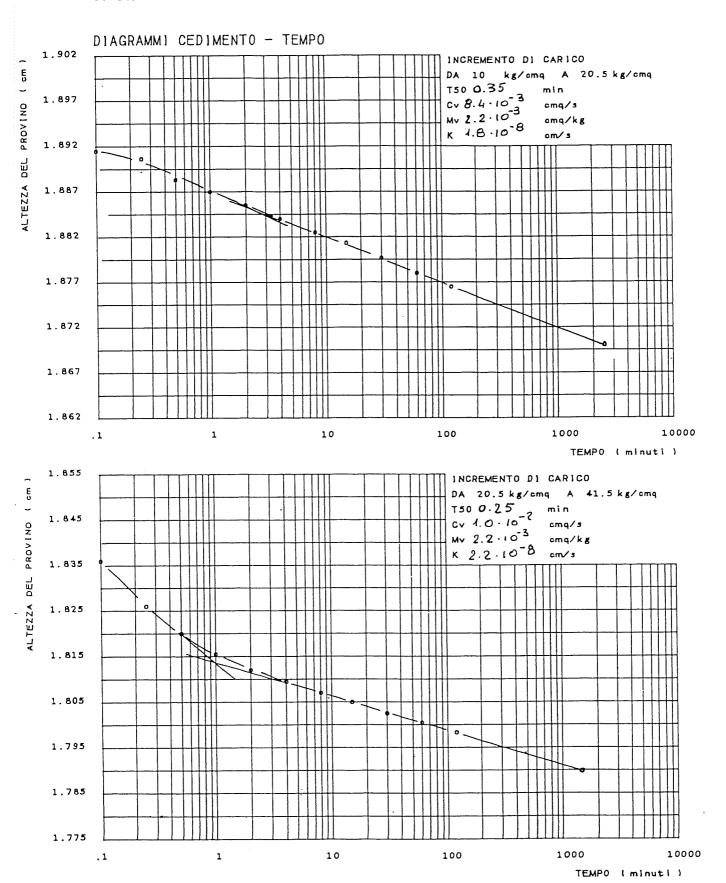
CANTIERE : AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO: 5 CAMPIONE: B PROFONDITA': 7.50 - 8.10

DIAGRAMMA DI COMPRESSIBILITA' EDOMETRICA

Apparechlo N. : 10 Durata prova (gg) : 13 Diametro provino (cm) Altezza iniziale provino icmi : 2 Altezza finale provino icm : 1.837 Contenuto in acqua iniziale 80: 14.6

Contenuto in maqua finale (%) : 13.4 Indice di compressione Co


PRESSIONE (kg/cmq)	INDICE DEI VUOTI						
0	.386						
. 5	. 38						
1	. 375						
2.5	. 361						
5	. 348						
10	. 326						
20.5	. 295						
41.5	. 235						
10	. 25						
2.5	. 262						
1	.268						
.5	. 273						

DITTA: IDROESSE

CANTIERE: AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO: 5 CAMPIONE: B PROFONDITA: 7.50 - 8.10

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

C

CAMPIONE

PROFONDITA'

10.50 - 11.00

TIPO DI CAMPIONE

: INDISTURBATO

TIPO DI CONTENITORE : FUSTELLA CILINDRICA INOX

LUNGHEZZA CAMPIONE : Dichiarata 50.0 (cm)

Reale 52.0 (cm)

DIAMETRO CAMPIONE: 8.4 (cm)

ALTO

а

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

a) Spessore = 52 cm

argilla con limo grigia inglobante rari elementi di ghiaia; presenza di livelli e laminazioni sabbiose

Pen = 8.0 -> 10

(kg/cm2) - Tor =

(kg/cm2)

Pen = >10.0

(kg/cm2) - Tor =

(kg/cm2)

PROVE PREVISTE:

Wn - LL - Y - ELL

DITTA .

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

5

CAMPIONE

C

PROFONDITA'

10.50 - 11.00

CARATTERISTICHE GENERALI DEL CAMPIONE

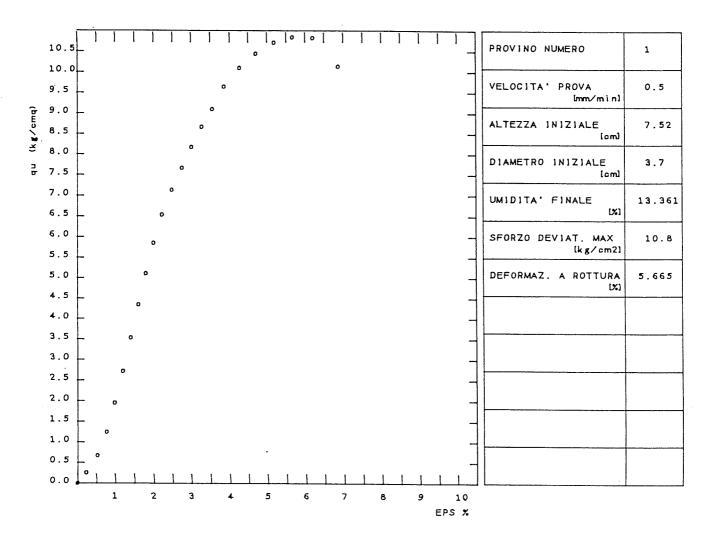
TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	*	14
LIMITE DI LIQUIDITA'	WL	8	23
LIMITE DI PLASTICITA'	₩₽	*	14
INDICE DI PLASTICITA' .	IP		9
PESO DELL'UNITA' DI VOLUME		gr/cm3	2.23
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	10.84
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		*	

COMMITTENTE

: IDROESSE

CANTIERE

: AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD


SONDAGGIO

CAMPIONE

: C

PROFONDITA' [m] : DA 10.50 A 11.00

PROVA D1 COMPRESSIONE CON ESPANSIONE LATERALE LIBERA (ELL)

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

D

PROFONDITA'

13.50 - 14.00

TIPO DI CAMPIONE

: INDISTURBATO

TIPO DI CONTENITORE : FUSTELLA CILINDRICA INOX

LUNGHEZZA CAMPIONE : Dichiarata 50.0 (cm) Reale 52.0 (cm)

DIAMETRO CAMPIONE: 8.4 (cm)

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

Spessore = 52 cma)

argilla con limo grigia inglobante elementi di ghiaia; presenza di laminazioni sabbiose

Pen = 4.5 - 6.0 (kg/cm2) - Tor =

(kg/cm2)

Pen = 6.5 - 8.0 (kg/cm2) - Tor =

(kg/cm2)

PROVE PREVISTE:

NOTE:

LA PROVA TX UU E' STATA ESEGUITA SULLA PARTE ALTA DEL CAMPIONE MENTRE LA PROVA ELL E' STATA ESEGUITA SULLA PARTE BASSA

IDROESSE

CANTIERE .

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

.5

CAMPIONE PROFONDITA'

13.50 - 14.00

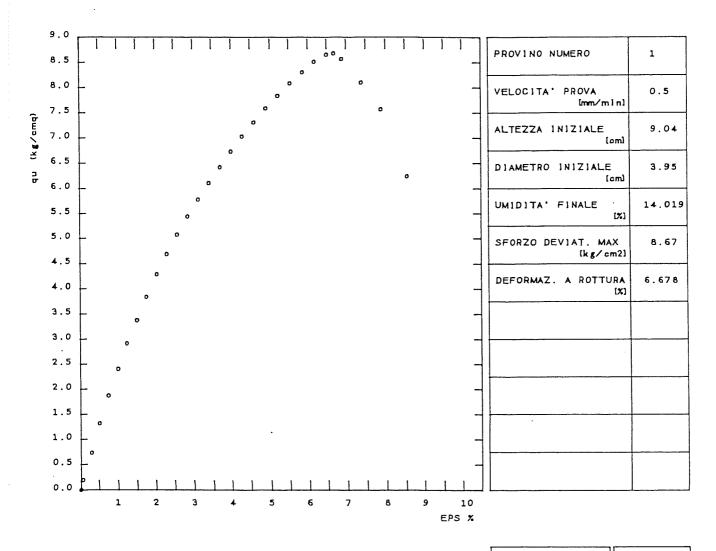
CARATTERISTICHE GENERALI DEL CAMPIONE

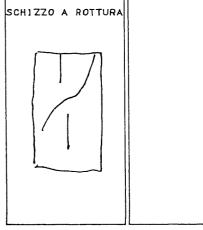
TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	8	15
LIMITE DI LIQUIDITA'	WL	ზ	23
LIMITE DI PLASTICITA'	WP	*	15
INDICE DI PLASTICITA'	IP		8
PESO DELL'UNITA' DI VOLUME		gr/cm3	2.24
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	8.68
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		%	

: IDROESSE

CANTIERE

: AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD


SONDAGGIO


CAMPIONE

: D

PROFONDITA' [m] : DA 13.50 A 14.00

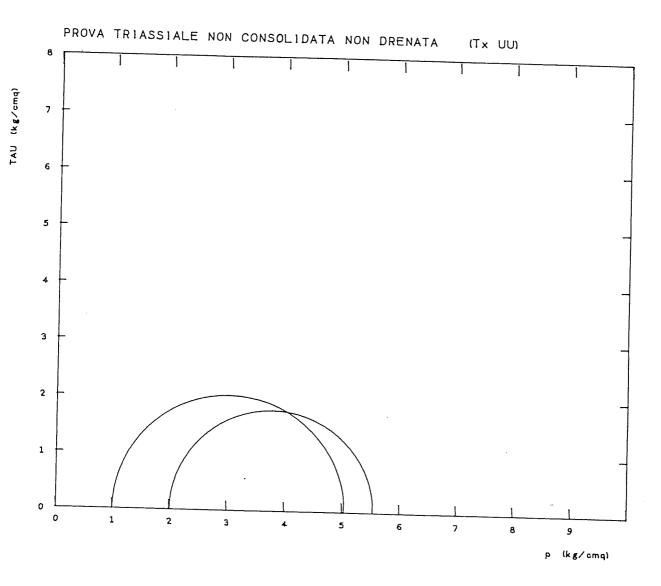
PROVA DI COMPRESSIONE CON ESPANSIONE LATERALE LIBERA (ELL)

: IDROESSE

CANTIERE

: AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO


: 5

CAMPIONE

ÓÜÜ

: D

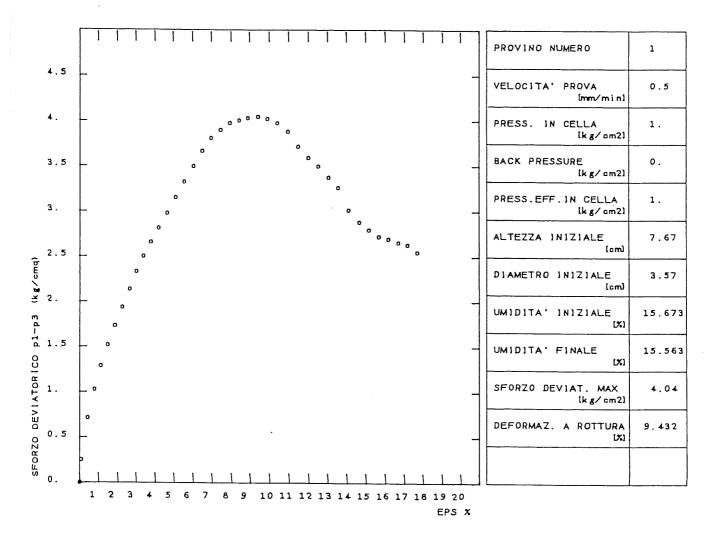
PROFONDITA' [m] : DA 13.50 A 14.00

pc [kg/om2]	bp [kg/cm2]	p3 [kg/cm2]	pl [kg/cm2]	EPSrottura	wı (%)	Wf USI
1.	0.	1.	5.04	9.43	15.7	15.6
2.	٥.	2.	5.54	7.38	15.5	15.7
		<u>.</u>				

: IDROESSE

CANTIERE

: AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD


SONDAGGIO

CAMPIONE

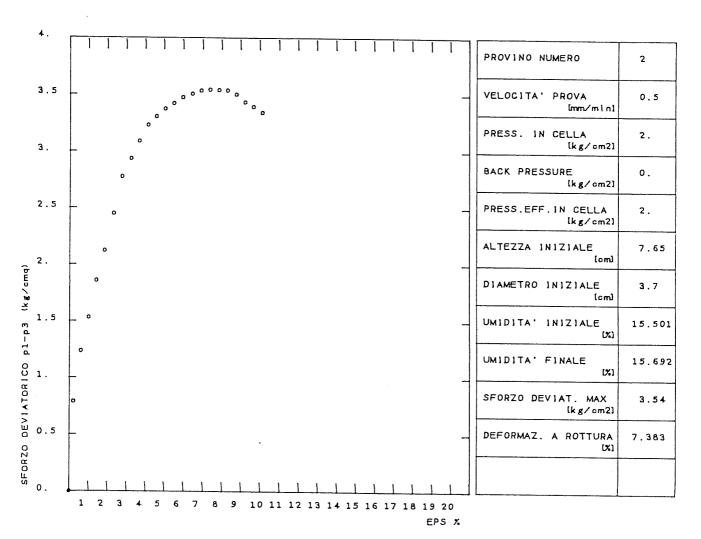
: D

PROFONDITA' [m] : DA 13.50 A 14.00

PROVA TRIASSIALE NON CONSOLIDATA NON DRENATA (Tx UU)

: IDROESSE

CANTIERE


: AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

: D PROFONDITA' [m] : DA 13.50 A 14.00

PROVA TRIASSIALE NON CONSOLIDATA NON DRENATA (Tx UU)

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

Α

PROFONDITA'

6.20 - 6.50

TIPO DI CAMPIONE

INDISTURBATO

TIPO DI CONTENITORE : FUSTELLA CILINDRICA INOX

LUNGHEZZA CAMPIONE : Dichiarata 30.0 (cm)

DIAMETRO CAMPIONE: 8.4 (cm)

ALTO

b

BASSO

Reale 22.0 (cm)

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

- Spessore = 4 cma) argilla con limo grigia; presenza di laminazioni sabbiose Pen = 6.5 - 7.0 (kg/cm2) - Tor = (kg/cm2)
- Spessore = 11 cm b) sabbia fine con limo grigia inglobante noduli argillosi
- C) Spessore = 7 cmsabbia fine con limo grigia inglobante elementi di ghiaia; presenza di laminazioni argillose

PROVE PREVISTE:

strato b) GR

ENZETTO	ANALISI GRANULOMETRICA	
IERE AUTOSTRAD	DA VALDASTICO A31 — COMPLETAMENTO A NORD	
3" 2" 1½ 1 3,4 72" 3		0.001
		GILLA.
SETACCI SERIE A ANALISI GRANU	SETACCI SERIE UNI ULOMETRICA PER SEDIMENTAZIONE	
	A IDROESSE IERE AUTOSTRAL AGGIO	A IDROESSE IERE AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD AGGID 7. CAMPIONE A(b) PROFONDITA; 6.20 6.50 CURVA GRANULOMETRICA PER VAGLIATURA PER SEDIMENTAZIONE PER VAGLIATURA PER SEDIMENTAZIONE DIAMETRO IN

1 6 C 6 E E E.

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

21.00 - 21.42

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

sabbia fine limosa grigia

PROVE PREVISTE :

GR

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

7

PROFONDITA'

24.00 - 24.38

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

sabbia medio-fine limosa grigia inglobante rari elementi di ghiaia

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA	
CANTIERE AUTOSTRAD	A VALDASTICO A31 - COMPLETAMENTO A NORD CAMPIONE	
	CURVA GRANULOMETRICA - PER VAGLIATURA — PER SEDIMENTAZIONE — PER SEDIME	
100 3" 2" 1½ 1 3 4 72 3 8 90 90 90 90 90 90 90 90 90 90 90 90 90		0.00
G H I G M 60 20	F G M F	ARGILL.
		002

ANALISI GRANULOMETRICA: PER VIA SECCA ☐ PER VIA UMIDA ☑

SETACCI SERIE ASTM ☑ SETACCI SERIE UNI □

ANALISI GRANULOMETRICA PER SEDIMENTAZIONE

METODO CON DENSIMETRO
METODO CON PIPETTA DI ANDREASEN

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE PROFONDITA'

26.00 - 26.20

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

argilla con limo grigia inglobante elementi di ghiaia

PROVE PREVISTE:

LL

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

7

CAMPIONE

Ω

PROFONDITA'

26.00 - 26.20

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	*	
LIMITE DI LIQUIDITA'	WL	%	24
LIMITE DI PLASTICITA'	₩₽	*	14
INDICE DI PLASTICITA'	IP		10
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		ጜ	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE PROFONDITA'

28.40 - 28.60

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

argilla con limo grigia inglobante elementi di ghiaia

PROVE PREVISTE:

 $\Gamma\Gamma$

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

7

CAMPIONE

9

PROFONDITA'

28.40 - 28.60

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'AQQUA	₩n	*	
LIMITE DI LIQUIDITA'	WL	*	24
LIMITE DI PLASTICITA'	₩₽	%	13
INDICE DI PLASTICITA'	IP		11
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	·
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		ૠ	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

9

CAMPIONE

A

PROFONDITA'

5.00 - 5.40

CARATTERISTICHE GENERALI DEL CAMPIONE

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	Wn	8	19
LIMITE DI LIQUIDITA!	WL	%	
LIMITE DI PLASTICITA'	WP	*	7 T T T T T T T T T T T T T T T T T T T
INDICE DI PLASTICITA'	IP		
PESO DELL'UNITA' DI VOLUME		gr/cm3	2.16
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006		***************************************	
DETERMINAZIONE DEI CARBONATI		%	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

Α

PROFONDITA'

5.00 - 5.40

TIPO DI CAMPIONE : INDISTURBATO

TIPO DI CONTENITORE : FUSTELLA CILINDRICA INOX

LUNGHEZZA CAMPIONE : Dichiarata 40.0 (cm) Reale 39.0 (cm)

DIAMETRO CAMPIONE: 8.4 (cm)

ALTO

a

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

a) Spessore = 39 cm limo con sabbia grigio; presenza di qualche livello argilloso

PROVE PREVISTE :

 $Wn - \gamma - GR - DS$

VICENZETTO	ANALISI GRANULOMETRICA
CANTIERE AUTOSTRAD	A VALDASTICO A31 - COMPLETAMENTO A NORD CAMPIONE 8. PROFONDITA' 33.00 - 33.50
	CURVA GRANULOMETRICA
	PER VAGLIATURA PER SEDIMENTAZIONE
100 3" 2" 1½ 1 34 V2" V 90 80 70 70 70 70 70 70 70 70 70 70 70 70 70	
G H I G M 60 20	A I A S A B B I A L I M O ARGILLA F G M F 6 2 0.6 0.2 0.06 0.002
SETACCI SERIE A ANALISI GRANUI	LOMETRICA: PER VIA SECCA PER VIA UMIDA STH S SETACCI SERIE UNI LOMETRICA PER SEDIMENTAZIONE IMETRO

.

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

33.00 - 33.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA	
	A VALDASTICO A31 - COMPLETAMENTO A NORD CAMPIONE 6 PROFONDITA' 24.00 24.50	
	CURVA GRANULOMETRICA	
	PER VAGLIATURA PER SEDIMENTAZIONE	
30 30 20 1½ 1 3A V2 3V		0,001
G M		ARGILLA 0.002
SETACCI SERIE A ANALISI GRANU	OMETRICA: PER VIA SECCA PER VIA UMIDA SIM SI SETACCI SERIE UNI LOMETRICA PER SEDIMENTAZIONE IMETRO METODO CON PIPETTA DI ANDREASEN	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE PROFONDITA'

24.00 - 24.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

f	
1	
1	
:	
•	

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine con sabbia limosa argillosa

PROVE PREVISTE :

GR

VICENZETTO	ANALISI	GRANULOMETRICA
CANTIERE AUTOSTRAD	DA VALDASTICO A31 - COMPLETA	MENTO A NORD ROFONDITA' 18.00 - 19.00
SONDAGGIO 8 100 3" 2" 1½" 1" 34" 72" 3 90 40 40 40 40 40 40 40 40 40 40 40 40 40	CURVA GRANULOME CURVA GRANULOME PER VAGLIATURA S A B B I M F G M CURVA GRANULOME CURV	TRICA ———————————————————————————————————

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

18.00 - 19.00

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-fine con sabbia limosa; presenza di zone argillose

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA	
	DA VALDASTICO A31 - COMPLETAMENTO A NORD CAMPIONE 2 PROFONDITA 12.00 - 12.50	
	CURVA GRANULOMETRICA	
	PER VAGLIATURA PER SEDIMENTAZIONE	
20	0 1 0,1 0.01 DIAMETRO IN COM	0.001
	A I A S A B B I A L I M O M F G M F 6 2 0.6 0.2 0.06	ARGILLA 0.002
SETACCI SERIE	ULOMETRICA: PER VIA SECCA ☐ PER VIA UMIDA ☑ ASIM ☑ SETACCI SERIE UNI □ ULOMETRICA PER SEDIMENTAZIONE □	
METODO CON DEN	SIMETRO METODO CON PIPETTA DI ANDREASEN	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

8

CAMPIONE

PROFONDITA'

12.00 - 12.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-fine sabbiosa limosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA
	DA VALDASTICO A31 — COMPLETAMENTO A NORD CAMPIONE
	CURVA GRANULOMETRICA
	— PER VAGLIATURA — PER SEDIMENTAZIONE — PER SEDIMENTAZIONE
100 3" 2" 1½ 1" 34 1/2" 38 1/2	
CIOTTOLI G H I	
SETACCI SERIE AS ANALISI GRANUL	OMETRICA: PER VIA SECCA PER VIA UMIDA SECCA PER VIA UMIDA SECENTE UNI DE COMETRICA PER SEDIMENTAZIONE DE METODO CON PIPETTA DI ANDREASEN DE COMETRICA PER SEDIMENTAZIONE DE COMETRICA PER SEDI

I

ſ

COMMITTENTE : IDROESSE

CANTIERE

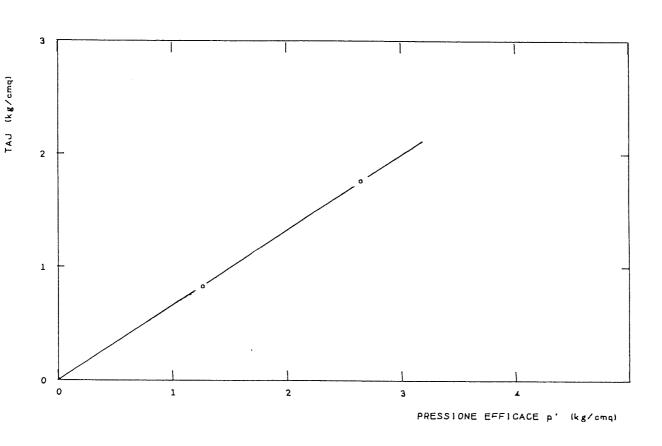
: AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

: 9

CAMPIONE

: A


PROFONDITA' [m] : DA 5.00 A 5.40

PROVA DI TAGLIO DIRETTO : IX) CONSOLIDATA E DRENATA

[] CONSOLIDATA E DRENATA CON MISURA DELLA

RESISTENZA MASSIMA E RESIDUA

[] NON CONSOLIDATA E NON DRENATA

p . [k g/cm2]	tau. lkg/cm21	S rot;	ALTEZZA	LATO	wı (%)	Wt (%)
1.26	0.82	4.09	30.	60.	19.1	18.5
2.65	1.76	3.32	30.	60,-	21	18.3
			<u>-</u>			

1-134

[-]

lkg/cm21 ______

Cr [/g/cm2] ____

DITTA -

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

В

PROFONDITA'

6.50 - 7.00

TIPO DI CAMPIONE

: INDISTURBATO

TIPO DI CONTENITORE : FUSTELLA CILINDRICA INOX

LUNGHEZZA CAMPIONE : Dichiarata 50.0 (cm) Reale 55.0 (cm)

DIAMETRO CAMPIONE: 8.4 (cm)

ALTO

a

b

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

- a) Spessore = 10 cm argilla con limo grigia; presenza di qualche livello di limo debolmente sabbioso Pen = 1.4 - 1.9 (kg/cm2) - Tor = 0.50(kg/cm2)
- b) Spessore = 45 cm limo con sabbia grigio; presenza di qualche livello argilloso

PROVE PREVISTE:

strato b) Wn - Y - GR - DS

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

9

CAMPIONE

B(b)

PROFONDITA'

6.50 - 7.00

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	%	22
LIMITE DI LIQUIDITA'	WL	%	
LIMITE DI PLASTICITA'	WP	96	
INDICE DI PLASTICITA'	IP		
PESO DELL'UNITA' DI VOLUME		gr/cm3	2.08
PESO SPECIFICO ASSOLUTO .	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		8	

VICENZETTO		ANALISI G	RANULOMETRI	CA	
DITTA IDROESSE CANTIERE AUTOSTRAL SONDAGGIO 9	DA VALDASTICO AS		ITO A NORD		
100 3" 2" 1½ 1" 34 V2" 3 90 40 40 40 40 40 40 40 40 40 40 40 40 40		GRANUL OME TE		SEDIMENTAZIONE —	0,001
100 1	0	i	O,1	O.O1	0.001
l 	A I A F 2	S A B B I A G M 0.6 0.2	0.06	LIMO	0.002
SETACCI SERIE 1	ULOMETRICA: ASIM 점 ULOMETRICA PER S	SETACCI SERIE	ואט 🗆	⊠ ADIMU AIV	
METODO CON DENS	SIMETRO 🗆	METODO CON PIPET	TA DI ANDREASEN	0	

: IDROESSE

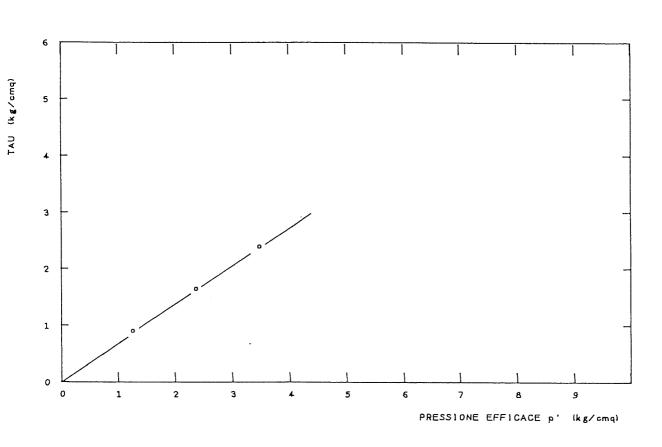
CANTIERE

: AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

: B (b)


PROFONDITA' [m] : DA 6.50 A 7.00

PROVA DI TAGLIO DIRETTO : [X] CONSOLIDATA E DRENATA

> CONSOLIDATA E DRENATA CON MISURA DELLA []

> > RESISTENZA MASSIMA E RESIDUA

[] NON CONSOLIDATA E NON DRENATA

' م	tau	S rot:	ALTEZZA	LATO	wı	Wf
lkg/cm2l	[kg/cm2]				txs.	(%)
1.26	0.90	2.89	30.	60.	22.4	19.2
2.37	1.64	2.75	30.	60.	21.8	19.1
3.48	2.38	3.71	30.	60.	26.3	20.5
			•			

F1 (-1 34

ι - 1 ____ Flr

C [kg/cm2] _____

Cr [kg/om2] ____

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

C

PROFONDITA'

9.00 - 9.50

TIPO DI CAMPIONE

: INDISTURBATO

TIPO DI CONTENITORE : FUSTELLA CILINDRICA INOX

LUNGHEZZA CAMPIONE : Dichiarata 50.0 (cm)

DIAMETRO CAMPIONE: 8.4 (cm)

ALTO

b C

BASSO

Reale 47.0 (cm)

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

- a) Spessore = 15 cm argilla con limo grigia Pen = 2.5 - 3.0 (kg/cm2) - Tor = 0.73(kg/cm2)
- b) Spessore = 8 cmlimo debolmente sabbioso grigio
- C) Spessore = 24 cm argilla con limo grigia Pen = 2.5 - 3.0 (kg/cm2) - Tor = 0.75(kg/cm2)

PROVE PREVISTE:

strato c) Wn - LL - Y - Tx CIU

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

9

CAMPIONE

C(c)

PROFONDITA'

9.00 - 9.50

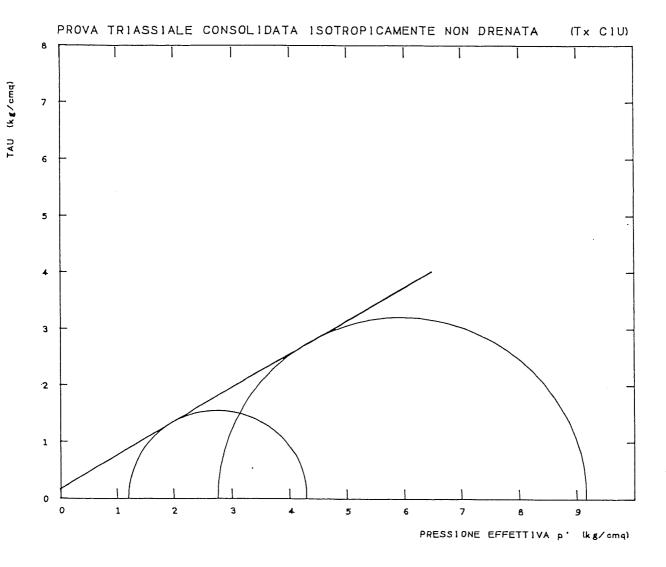
CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	*	22
LIMITE DI LIQUIDITA'	WL	%	25
LIMITE DI PLASTICITA'	₩₽	%	16
INDICE DI PLASTICITA'	IP		9
PESO DELL'UNITA' DI VOLUME		gr/cm3	2.09
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		%	

: IDROESSE

CANTIERE

: AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD


SONDAGGIO

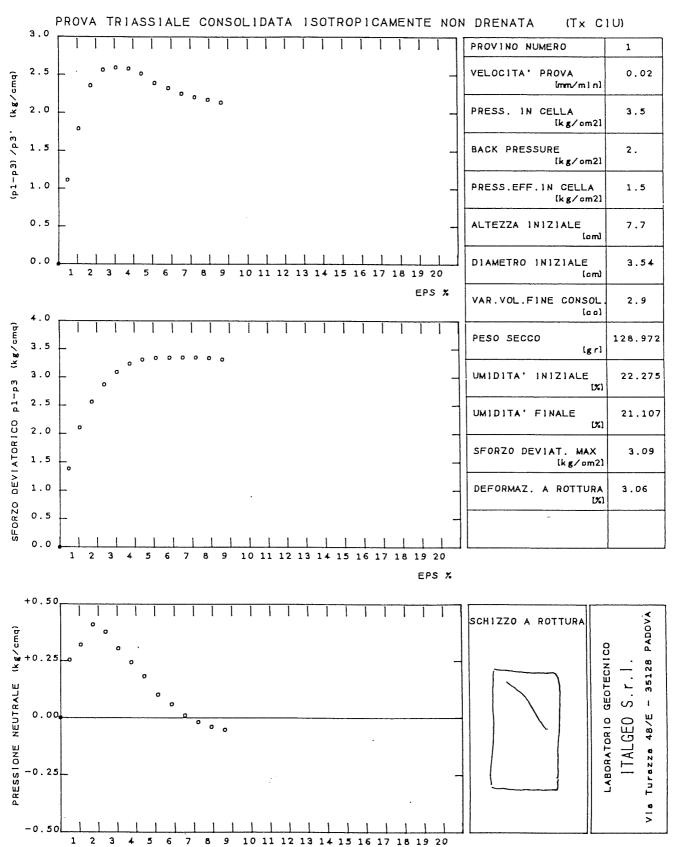
: 9

CAMPIONE

: C (c)

PROFONDITA' [m] : DA 9.00 A 9.50

pc [kg/cm2]	bp [kg/cm2]	p3 [kg/cm2]	p1 [kg/cm2]	u (k g/cm2)	p ° 3		EPSrott [X]	wi cxi	Wf UXI
3.5	2.	1.5	4.6	0.31	1.19	4.29	3.06	22.3	21.1
5.	2.	З.	9.41	0.25	2.75	9.16	10.63	21.8	19.4
			-						



COMMITTENTE : IDROESSE

CANTIERE : AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO : 9 CAMPIONE : C (c)

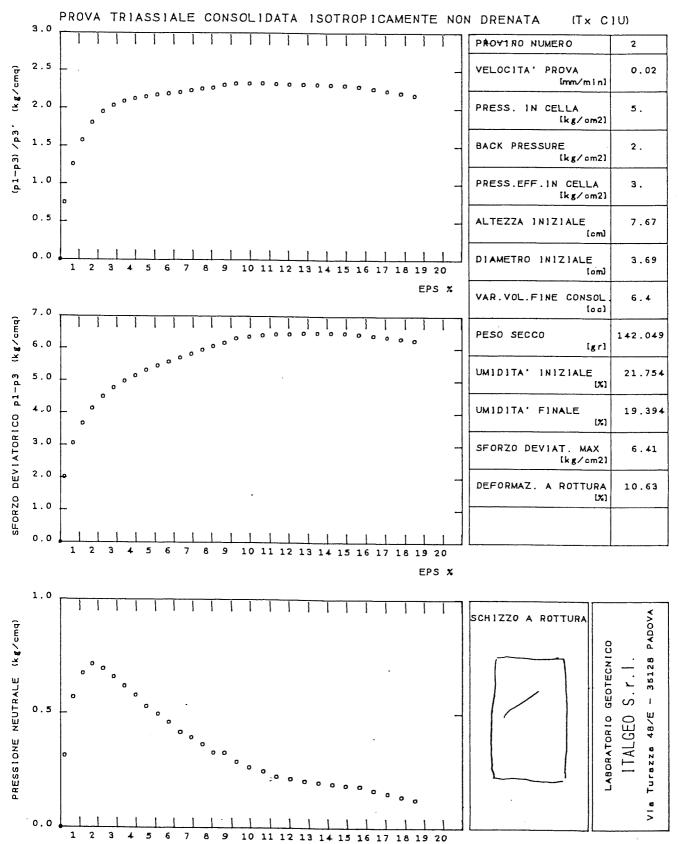
PROFONDITA' [m] : DA 9.00 A 9.50

COMMITTENTE

: IDROESSE

CANTIERE

: AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD


SONDAGGIO

: 9

CAMPIONE

: C (c)

PROFONDITA' [m] : DA 9.00 A 9.50

EPS X

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE PROFONDITA'

13.50 - 13.95

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

limo con sabbia grigio; presenza di rari elementi di ghiaia

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA
	DA VALDASTICO A31 — COMPLETAMENTO A NORD CAMPIONE 3 PROFONDITA 13.50 — 13.95
·	CURVA GRANULOMETRICA PER VAGLIATURA PER SEDIMENTAZIONE
100 3" 2" 1½ 1 34 V2" 3 90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
100 10	
	A I A S A B B I A L I M O ARGILLA 4 F G M F 6 2 0.6 0.2 0.06 0.002
SETACCI SERIE A	DLOMETRICA: PER VIA SECCA PER VIA UMIDA DE SETACCI SERIE UNI DE
METODO CON DENS	SIMETRO METODO CON PIPETTA DI ANDREASEN

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

19.50 - 19.95

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

sabbia medio-fine con limo grigia; presenza di livelli di limo sabbioso

PROVE PREVISTE:

GR

VICENZ	ZETTO		ANA	LISI 6	RANULO	METRICA	l		
CANTIERE		A VALDASTICO) A31 – C0	MPLETAMEI	NTO A NO	RD	••••		• • •
30 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 34 12 348	PER VAGLIATE		0 60		—— PER SI	E DI ME NTA Z	I ONE	0.001
CIOTTOLI	GНI	A I A	s /	8 8 1 A			I M O	IN mm	ARGILLA
60	G M	F 2	G 0.6	M 0.2	F 0.06			0.	.002
SETAC ANAL	CI SERIE AS ISI GRANU L	OMETRICA: ITM ☑ OMETRICA PE	SETAC R SEDIMENT	CCI SERIE FAZIONE	ם זאט		A UMIDA	X	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

6

PROFONDITA'

24.50 - 24.70

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE:

limo con argilla ghiaioso sabbioso grigio

PROVE PREVISTE:

LL - GR

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

9

CAMPIONE

5

PROFONDITA'

24.50 - 24.70

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	%	
LIMITE DI LIQUIDITA'	WL	%	19
LIMITE DI PLASTICITA'	₩₽	%	11
INDICE DI PLASTICITA'	IP		8
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		%	

		OMPLETAMENTO A NO	ORD 24.50 - 24.70	
100 3° 2° 1½ 134 V2° 3 90 80 80 80 80 80 80 80 80 80 80 80 80 80	PER VAGLIATURA	40 60 200	PER SEDIMENTAZIONE	
100 1	o i	0,1	0.01 DIAMETRO IN mm	0,00
G H I		A B B I A M F 6 0.2 0.06	L I M O	ARGILLA
SETACCI SERIE A ANALISI GRANU	LOMETRICA: PER SIM SE LOMETRICA PER SEDIME SIMETRO MET	TACCI SERIE UNI 🗆		

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

9

CAMPIONE

8

PROFONDITA'

30.00 - 30.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE:

ghiaia da grossa a fine con sabbia debolmente limosa

PROVE PREVISTE:

GR

VICENZETTO DITTA IDROESSE CANTIERE AUTOSTRAD SONDAGGIO 9		A31 – COMPLET	AMENTO A NO	RD	
	CURV	'A GRANULOI	1ETRICA		
		Α		PER SEDIMENT	A Z I ON E
100 3" 2" 1½ 1" 34" V2" Y 90 80 70 10 10 10 10 10 10 10 10 10 10 10 10 10		20 40 60	0.1	Q,O1 DIAMETR	0.00 O IN mm
CIOTTOLI G H I	A I A	S A 8 E	F	L I M	O ARGILLA
ANALISI GRANU SETACCI SERIE A ANALISI GRANU METODO CON DENS	ISTM ⊠ NLOMETRICA PER	SETACCI SE	RIE UNI 🗆	PER VIA UMII	o.ooz

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE PROFONDITA'

36.00 - 36.50

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE:

ghiaia in prevalenza medio-fine con sabbia limosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA
	A VALDASTICO A31 — COMPLETAMENTO A NORD CAMPIONE
100 3" 2" 1½' 1" 34' 72" 38	CURVA GRANULOMETRICA - PER VAGLIATURA — PER SEDIMENTAZIONE — PER SEDIME
90 80 70 10 100 100	0,1 0,01 0,00 DIAMETRO IN mm
G H I G M 60 20	A I A S A B B I A L I M O ARGILLA F G M F 6 2 0.6 0.2 0.06 0.002
SETACCI SERIE AS ANALISI GRANUL	OMETRICA: PER VIA SECCA PER VIA UMIDA TM 129 SETACCI SERIE UNI OMETRICA PER SEDIMENTAZIONE METRO METRO METODO CON PIPETTA DI ANDREASEN

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

11

PROFONDITA'

 $37.35 - 37.6\emptyset$

TIPO DI CAMPIONE

: SEMIDISTURBATO

TIPO DI CONTENITORE : FUSTELLA CILINDRICA PVC

LUNGHEZZA CAMPIONE : Dichiarata 25.0 (cm) Reale 24.0 (cm)

DIAMETRO CAMPIONE: 9.0 (cm)

ALTO

a

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

- a) Spessore = 10 cm limo sabbioso debolmente argilloso grigio
- b) Spessore = 14 cm argilla con limo grigia; presenza di numerosi livelli e laminazioni di limo sabbioso Pen = >4.5(kg/cm2) - Tor =(kg/cm2)

PROVE PREVISTE:

strato b) Wn - LL - Y - Gs - ELL - IL

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

9

CAMPIONE

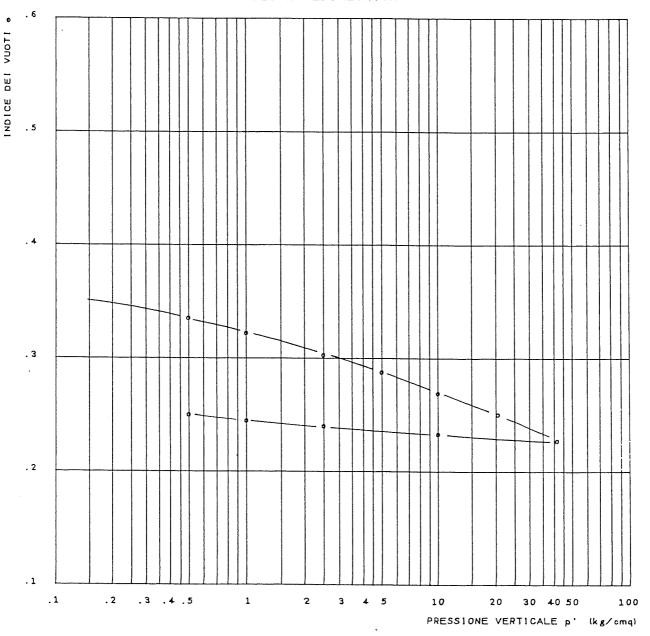
11(b)

PROFONDITA'

37.35 - 37.60

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	%	13
LIMITE DI LIQUIDITA'	WL	*	19
LIMITE DI PLASTICITA'	WP	ૠ	11
INDICE DI PLASTICITA'	IP		8
PESO DELL'UNITA' DI VOLUME		gr/cm3	2.27
PESO SPECIFICO ASSOLUTO ·	Gs	gr/cm3	2.74
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	2.11
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		%	



DITTA: 1DROESSE

CANTIERE : AUTOSTRADA VALDASTICO A 31 - COMPLETAMENTO A NORD

SONDAGGIO: 9 CAMPIONE: 11 (b) PROFONDITA: 37.35 - 37.60

DIAGRAMMA DI COMPRESSIBILITA' EDOMETRICA

Apparecchio N. : 8

Durata prova (gg) : 11

Diametro provino lom : 7.15

Altezza iniziale provino (cm) : 2

Altezza finale provino (cm) : 1.846

Contenuto in acqua iniziale (%) : 12.4

Contenuto in acqua finale (%) : 9.7

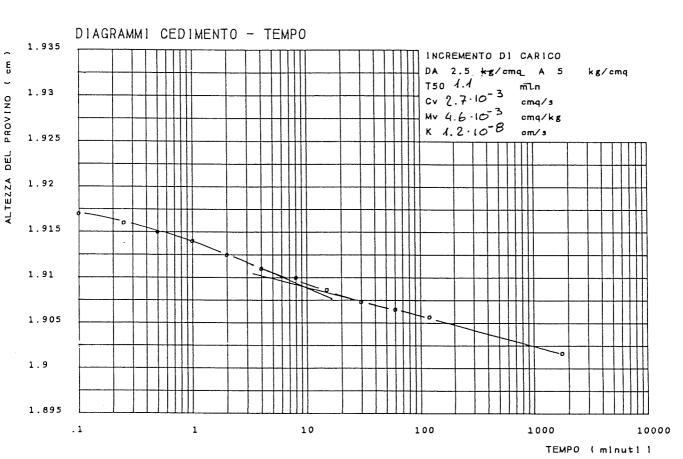
Indice di compressione Co : .08

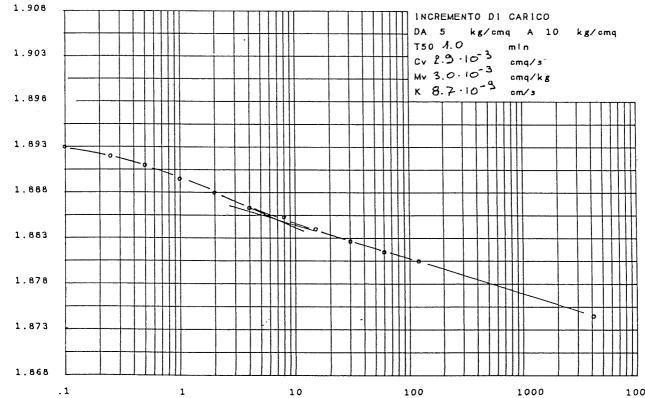
PRESSIONE (kg/cmq)	INDICE DEI VUOTI
0	. 354
. 5	. 335
1 1	.322
2.5	. 303
5	. 288
10	. 269
20.5	. 25
41.5	. 227
10	. 233
2.5	. 24
1	. 245
. 5	. 25
l	

Ę

PROVING (

DEL


ALTEZZA



DITTA: IDROESSE

CANTIERE: AUTOSTRADA VALDASTICO A 31 - COMPLETAMENTO A NORD

SONDAGGIO: 9 CAMPIONE: 11 (b) PROFONDITA': 37.35 - 37.60

TEMPO [mlnut1 1

COMMITTENTE : 1DROESSE

CANTIERE

: AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

: 9

CAMPIONE

: 11 (b)

PROFONDITA' [m] : DA 37.35 A 37.60

PROVA DI COMPRESSIONE CON ESPANSIONE LATERALE LIBERA (ELL)

	3.0	<u></u>					,,							
			1	1	1 1	1 1	1 1		1	1 1	1	1 1	PROVINO NUMERO	1
qu (kg/cmq)	2.5	_										_	VELOCITA' PROVA [mm./min]	0.5
													ALTEZZA INIZIALE	7.679
	2.0	_			o	0 0						-	DIAMETRO INIZIALE	3.67
					0		0						UMIDITA FINALE (%)	13.253
	1.5			o			Ü	o				_	SFORZO DEVIAT. MAX [k g/cm2]	2.11
				0									DEFORMAZ. A ROTTURA	3.930
	1.0	_	٥					o				_		
	•		0											
	0.5	- 0							0	o		_		
		0	,		, ,									
	0.0	1								1_1_				
		1		2	3	4	5	6	7	8	9	10 EPS %		
												EPS %		

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE PROFONDITA'

3.00 - 3.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limo-argillosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA						
	/ALDASTICO A31 - COMPLETAMENTO A NORD . CAMPIONE						
	CURVA GRANULOMETRICA						
	ER VAGLIATURA ————————————————————————————————————						
100 3° 2° 1½ 1° 3° 72° 38° 90 90 90 90 90 90 90 90 90 90 90 90 90	1 0 20 40 50 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
CIOTTOLI G H I A	I A S A B B I A L I M O ARGILLA						
ANALISI GRANULOMETRICA: PER VIA SECCA PER VIA UMIDA SETACCI SERIE ASTM SETACCI SERIE UNI SETACCI SERIE							

Γ

T

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

3

PROFONDITA'

9.00 - 9.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limo-argillosa

PROVE PREVISTE:

GR

DITTA IDROESSE CANTLERE AUTOSTRADA VALDASTICO A31 — COMPLETAMENTO A NORD	
SONDAGGIO	
CURVA GRANULOMETRICA	
PER VAGLIATURA PER SEDIMENTAZIONE	
100 3° 2° 1½ 13° 12° 13° 13° 10° 10° 10° 10° 10° 10° 10° 10° 10° 10	0,001
CIOTTOLI G H I A I A S A B B I A L I M O ARG	ILLA
ANALISI GRANULOMETRICA: PER VIA SECCA PER VIA UMIDA SETACCI SERIE ASTM SETACCI SERIE UNI CANALISI GRANULOMETRICA PER SEDIMENTAZIONE METODO CON DENSIMETRO CANALISI CA	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

10

CAMPIONE

5

PROFONDITA'

15.00 - 16.00

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limo-argillosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI	GRANULOMETRICA
	DA VALDASTICO A31 - COMPLETAN	MENTO A NORD ROFONDITA'15001600.
100 3" 2" 1½ 1" 34" V2" 37 90 80 70 100 100 100		PER SEDIMENTAZIONE 200 111 111 111 111 111 111 11
G M		F
SETACCI SERIE A ANALISI GRANU	LOMETRICA: PER VIA SECCI STM Ø SETACCI SERIE LOMETRICA PER SEDIMENTAZIONE THETRO METODO CON PIR	E UNI O

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

10

CAMPIONE PROFONDITA'

21.00 - 21.50

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine con sabbia limosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA					
	DA VALDASTICO A31 - COMPLETAMENTO A NORD CAMPIONE					
	CURVA GRANULOMETRICA					
	PER VAGLIATURA PER SEDIMENTAZIONE					
10						
	A I A S A B B I A L I M O ARGILLA F G M F 6 2 0.6 0.2 0.06 0.002					
ANALISI GRANULOMETRICA: PER VIA SECCA PER VIA UMIDA SETACCI SERIE ASTM SETACCI SERIE UNI ANALISI GRANULOMETRICA PER SEDIMENTAZIONE METODO CON DENSIMEIRO METODO CON PIPETTA DI ANDREASEN						

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

10

CAMPIONE

9

PROFONDITA'

27.00 - 28.00

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE:

ghiaia da grossa a fine sabbiosa debolmente limosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRA	ANULOMETRICA
CANTIERE AUTOSTRAI	DA VALDASTICO A31 — COMPLETAMENTO CAMPIONE	D A NORD
	CURVA GRANULOMETRI	CA
	PER VAGLIATURA ————————————————————————————————————	PER SEDIMENTAZIONE
0		200
	A I A S A B B I A	L I M O ARGILLA
G C C C C C C C C C C C C C C C C C C C	M F G M F	0.06
SETACCI SERIE ANALISI GRANL	JLOMETRICA: PER VIA SECCA ☐ ASTM SETACCI SERIE UN JLOMETRICA PER SEDIMENTAZIONE ☐ SIMETRO ☐ METODO CON PIPETTA	

DT	Jal	רא

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

10 bis

CAMPIONE

1

PROFONDITA'

2.00 - 2.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE:

ghiaia in prevalenza medio-grossa sabbiosa debolmente limosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI (GRANUL OME TRICA
	A VALDASTICO A31 – COMPLETAME	NTO A NORD ONDITA: 2.00 - 2.50
100 3" 2" 1½ 1" 34" V2" 38 90 40 40 40 40 40 40 40 40 40 40 40 40 40		PER SEDIMENTAZIONE 200 111 101 101 101 101 101 10
G M	F G M	G.06 0.002
SETACCI SERIE A ANALISI GRANU	LOMETRICA: PER VIA SECCA STH SE SETACCI SERIE LOMETRICA PER SEDIMENTAZIONE THETRO METODO CON PIPE	UNI []

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

3.00 - 3.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limosa; presenza di tracce argillose

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA	
CANTIERE AUTOSTRAD	DA VALDASTICO A31 — COMPLETAMENTO A NORD CAMPIONE	
	CURVA GRANULOMETRICA PER VAGLIATURA PER SEDIMENTAZIONE	
10		0.001
	A 1 A S A B B I A L I M O ARG	GILLA
SETACCI SERIE ANALISI GRANU	JLOMETRICA: PER VIA SECCA ☐ PER VIA UMIDA ☑ ASTH ☑ SETACCI SERIE UNI ☐ JLOMETRICA PER SEDIMENTAZIONE ☐ SIHEIRO ☐ HETODO CON PIPETTA DI ANDREASEN ☐	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

14

CAMPIONE

PROFONDITA'

9.00 - 9.50

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI	GRANULOMETRICA	
CANTIERE AUTOSTRADA	A VALDASTICO A31 — COMPLETAM CAMPIONE 3. PRO	IENTO A NORD	
100 3" 2" 1½ 1 34 ½ 38 90 80 70 60 40 40	CURVA GRANULOME		0.001
CIOTTOLI G H I	A I A S A B B I A	DIAMETRO IN mm	ARGILLA
SETACCI SERIE AS ANALISI GRANUL	6 2 0.6 0.2 OMETRICA: PER VIA SECCA TH SP SETACCI SERIE OMETRICA PER SEDIMENTAZIONE METRO METODO CON PIP	PER VIA UMIDA 🖂	0.002

T

ŊΤ	איושיח
ν_{\perp}	IIM

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

14

CAMPIONE

5

PROFONDITA'

15.00 - 15.50

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa

PROVE PREVISTE:

GTR.

VICENZETTO		ANALISI	GRANULOME	TRICA	
DITTA IDROESSE CANTIERE AUTOSTRAL SONDAGGIO	A VALDASTICO A	31 - COMPLETAME	NTO A NORD	5.00 - 15.50	
	CURVA	GRANULOMET	RICA		
	— PER VAGLIATURA-		+	PER SEDIMENTAZION	E
		20 40 60	0.1	Q.Q1	0,001
	A 1 A	SABBIA		L I M O	ARGILLA
60 20	6 Z	0.5 0.2	0.06		0.002
SETACCI SERIE A	SIM ⊠	PER VIA SECCA SETACCI SERIE SEDIMENTAZIONE	UNI 🗆	ER VIA UMIDA I	
		METODO CON PIPE	_	SEN 🗆	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE PROFONDITA'

24.00 - 24.50

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine con sabbia limosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GR	ANULOMETRICA
	DA VALDASTICO A31 — COMPLETAMENT CAMPIONE	l l
CANTIERE AUTOSTRAD SONDAGGIO 14 100 3" 2" 1½" 1" 34" 12" 34"	CURVA GRANULOMETRI CURVA GRANULOMETRI PER VAGLIATURA 10 20 40 60 10 20 40 60 10 20 40 60 10 20 40 60	O A NORD DITA'
METODO CON DENS	SIHETRO 🗖 METODO CON PIPETT.	A DI ANDREASEN 🗆

D)	ATT	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

10 PROFONDITA'

30.00 - 30.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE:

ghiaia da grossa a fine sabbiosa debolmente limosas

PROVE PREVISTE :

GR

VICENZETTO	ANALISI 6	GRANULOME TRICA
CANTIERE AUTOSTRAE	DA VALDASTICO A31 - COMPLETAMEN	NTO A NORD ONOITA' 30.00 - 30.50
SONDAGGIO	CAMPIONE	ONDITA' 3000 - 3050
	JLOMETRICA: PER VIA SECCA ASIM SETACCI SERIE	
	SETACCI SERIE JLOMETRICA PER SEDIMENTAZIONE	
	SIMETRO METODO CON PIPE	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

15

CAMPIONE

PROFONDITA'

6.00 - 6.30

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limo-argillosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GR	ÄNULOMETRICA
CANTIERE AUTOSTRAD	A VALDASTICO A31 - COMPLETAMENT CAMPIONE 2 PROFON	TO A NORD
·	CURVA GRANULOMETR	I CA
	— PER VAGLIATURA ————————————————————————————————————	PER SEDIMENTAZIONE
10	8 4 10 20 40 60	200
CIOTTOLI G H I	A I A S A B B I A	L I M O ARGILLA
G 20	6 2 0.6 0.2	0.06 0.002
SETACCI SERIE ANALISI GRANU	JLOMETRICA: PER VIA SECCA [ASIM SETACCI SERIE L JLOMETRICA PER SEDIMENTAZIONE [ואנ 🗆
METODO CON DEN	SIMETRO METODO CON PIPET	TA DI ANDREASEN 🗖

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

15 4

CAMPIONE PROFONDITA'

12.00 - 12.30

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa debolmente limosa

PROVE PREVISTE :

GR

VICENZETTO ANALISI GRANULOMETRICA	
DITTA IDROESSE CANTIERE AUTOSTRADA VALDASTICO A31 — COMPLETAMENTO A NORD SONDAGGIO 15 CAMPIONE 4 PROFONDITA 12.00 — 12.30	
CURVA GRANULOMETRICA PER VAGLIATURA PER SEOIMENTAZIONE 90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
100 10 1 0,1 0.01 DIAMETRO IN mm	0.001
CIOTTOLI GHIAIA SABBIA LIMO	ARGILLA
G M F G M F G M F G M G G G G G G G G G	0.002
ANALISI GRANULOMETRICA: PER VIA SECCA PER VIA UMIDA SETACCI SERIE UNI ANALISI GRANULOMETRICA PER SEDIMENTAZIONE METODO CON DENSIMETRO METODO CON PIPETTA DI ANDREASEN	

I

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

15

CAMPIONE

5

PROFONDITA'

14.20 - 14.40

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE :

SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limo-argillosa

PROVE PREVISTE:

LL - GR

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

15

CAMPIONE

5

PROFONDITA'

14.20 - 14.40

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	₩n	%	
LIMITE DI LIQUIDITA'	WL	*	32
LIMITE DI PLASTICITA'	₩₽	%	2Ø
INDICE DI PLASTICITA'	IP		12
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		%	

VICENZETTO	ANALISI GRANULOMETRICA
1	DA VALDASTICO A31 - COMPLETAMENTO A NORD CAMPIONE 5
100 3" 2" 1½ 1" 34 V2" 3 90 11 11 11 11 11 11 11 11 11 11 11 11 11	
100	DIAMETRO IN mm
G N 60 20	A I A S A B B I A L I M O ARGILL 4 F G M F 6 2 0.6 0.2 0.06 0.042
ANALISI GRANU SETACCI SERIE A ANALISI GRANU	SIMETRO METODO CON PIPETTA DI ANDREASEN

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

15 6

CAMPIONE PROFONDITA'

15.00 - 15.30

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limosa; presenza di rare zone argillose

PROVE PREVISTE:

GR

VICENZETTO		ANALISI (GRANULOMETR	ICA	
CANTIERE AUTOSTRAD	A VALDASTICO A		NTO A NORD		•••••
	CURV <i>A</i>	A GRANULOMETI	RICA		
100 - 3" 2" 1½' 1" 34' 1/2" 3/4		20 40 60	PEF	SEDIMENTAZIONE-	
90 80 70 (x) 60 40			0.1	Q.O1	0.00
G H 1 G M 60 20		S A B B I A G M 0.6 0.2	F 0.06	L I M O	0.002
SETACCI SERIE A	SIM 🖼 LOMETRICA PER S	PER VIA SECCA SETACCI SERIE SEDIMENTAZIONE METODO CON PIPET	UNI 🗆		
					•

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

8

PROFONDITA'

21.00 - 21.30

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-grossa sabbiosa limo-argillosa

PROVE PREVISTE:

GR

VICENZETTO		ANALISI GRA	NULOMETRICA	
DITTA IDROESSE CANTIERE AUTOSTRAD SONDAGGIO	A VALDASTICO A	31 - COMPLETAMENTO	A NORD TA1 2100 2130	
100 3" 2" 1½ 1 34 1/2"	- PER VAGLIATURA -	20 40 60	PER SEDIMENTAZION	0,001
CIOTTOLI G H I		S A B B I A	L I M O	ARGILLA
60 Z0	6 2	0.6 O.2	0.06	0.002
SETACCI SERIE AS	TH ⊠	PER VIA SECCA SETACCI SERIE UNI EDIMENTAZIONE	PER VIA UMIDA ⊠	
	METRO	METODO CON PIPETTA C	DI ANDREASEN 🗆	
ì		•		

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

PROFONDITA'

29.00 - 29.30

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine con sabbia limo-argillosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA	
CANTIERE AUTOSTRAD	A VALDASTICO A31 - COMPLETAMENTO A NORD campione 9 profondita 29.00 - 29.30	
	CURVA GRANULOMETRICA	
100 3" 2" 1½ 1 3 a 1 ½		0,000
CIOTTO LI G H I G M 60 20	A I A S A B B I A L I M O ARG	GILLA
SETACCI SERIE AS ANALISI GRANUL	LOMETRICA: PER VIA SECCA ☐ PER VIA UMIDA ☑ SIM ☑ SETACCI SERIE UNI ☐ LOMETRICA PÉR SEDIMENTAZIONE ☐ IMETRO ☐ METODO CON PIPETTA DI ANDREASEN ☐	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

16 3

CAMPIONE PROFONDITA!

9.00 - 9.50

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASS

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limosa

PROVE PREVISTE:

GR

VICENZETTO DITTA IDROESSE CANTIERE AUTOSTRAD		• • • • • • • • • • • • • • • • • • • •				
sondaggio16	CAMPIONE	3	PROFONDITA			
100 3" 2" 1½ 1 34 22" 34	PER VAGLIATURA		OMETRICA	PER SE	DI MENTAZIONE —	
80						
(1) H						
30	•					
10						
100 10		1	0.1		QO1	0.001
CIOTTOLI G H I	A I A	S A B	8 I A	LI	м о	ARGILLA
60 20	6 2	0.6	0.2 0.	08		0.002
ANALISI GRANUL SETACCI SERIE AS				PER VIA	UMIDA 🗷	
ANALISI GRANUL METODO CON DENSI			_	NDREASEN 🗖		

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

5

PROFONDITA'

16.00 - 16.30

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limosa

PROVE PREVISTE:

GR

VICENZETT	0	ANALISI	GRANULOME	ETRICA	
	TRADA VALDASTIC	CO A31 – COMPLETA	MENTO A NORD		
100- 3" 2" 1½' 1 74'	PER VAGLIA	0 20 40 60		— PER SEDIMENTAZIONE	
90 80 70 80 70 80 80 40 80 80 80 80 80 80 80 80 80 80 80 80 80					
100 CIOTTOLI G	10 H 1 A 1 A	S A B B I		DIAMETRO IN mm	O.OO
ANALISI GR. SETACCI SERI	ANULOMETRICA:	PER VIA SEC		o.oo;	2

ANALISI GRANULOMETRICA PER SEDIMENTAZIONE 🗌 🗀

METODO CON DENSIMETRO 🗆 METODO CON PIPETTA DI ANDREASEN 🗆

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

16

CAMPIONE

PROFONDITA'

20.50 - 20.80

TTPO	DT	CAMPIONE
TIEC	ν_{\perp}	

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ъ.	₹.	n	v	١
м	Ι.	. 1	1	1

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE:

ghiaia in prevalenza medio-fine sabbiosa limosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA
CANTIERE AUTOSTRAE	A VALDASTICO A31 - COMPLETAMENTO A NORD CAMPIONE 6 PROFONDITA' 20.50 - 20.80
100 3" 2" 1½ 1 34 V2" 3	CURVA GRANULOMETRICA PER VAGLIATURA PER SEDIMENTAZIONE 1 10 20 40 60 200 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
70 11 12 40 40 40	
100 10	DIAMETRO IN mm
G N N	
SETACCI SERIE A	LOMETRICA: PER VIA SECCA PER VIA UMIDA 🖾 SIM 🗷 SETACCI SERIE UNI 🗆 LOMETRICA PER SEDIMENTAZIONE 🗍
METODO CON DENS	IMETRO

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

16

CAMPIONE

PROFONDITA'

30.00 - 30.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE:

ghiaia da grossa a fine sabbiosa limosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA
	DA VALDASTICO A31 — COMPLETAMENTO A NORD CAMPIONE 8. PROFONDITA' 30.00 — 30.50
	CURVA GRANULOMETRICA
	— PER VAGLIATURA — PER SEDIMENTAZIONE — PER SEDIMENTAZIONE
20	
	A I A S A B B I A L I M O ARGILL
ANALISI GRANU SETACCI SERIE A ANALISI GRANU	DLOMETRICA: PER VIA SECCA PER VIA UMIDA SETACCI SERIE UNI DLOMETRICA PER SEDIMENTAZIONE SIMETRO METODO CON PIPETTA DI ANDREASEN SIMETRO METODO CON PIPETTA DI ANDREASEN

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

17

CAMPIONE

1

PROFONDITA'

3.00 - 3.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE

: SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-grossa sabbiosa debolmente limosa

PROVE PREVISTE:

ŒR

	A VALDASTICO A	131 – COMPI	LETAMENTO A NO	ORD 3.00 - 3.50	
·	CURV <i>i</i>	A GRANUL	_OMETRICA		
	— PER VAGLIATURA			———PER SEDIMENTAZIONE	
100 3" 2" 1½ 1 34 V2" 3 90 40 40 40 40 40 40 40 40 40 40 40 40 40		20 40	60 200	Q.O1 DIAMETRO IN ma	0.00
CIOTTOLI G H I	A I A		B B I A	LIM O	ARGILLA
ANALISI GRANU SETACCI SERIE A ANALISI GRANU METODO CON DENS	SIM ⊠ LOMETRICA PER	SETACCI SEDIMENTA	SERIE UNI 🗆	PER VIA UMIDA ⊠	o.òoz

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

17

CAMPIONE

2

PROFONDITA'

6.00 - 6.50

TIPO	DI	CAMPIONE	:	RIMANEGGIATO
TPO	DT	CONTENT TORE	•	SACCHETTO

SCHEMA DEL CAMPIONE

ALTO		BASSC

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevelenza medio-fine sabbiosa debolmente limosa

PROVE PREVISTE :

GR

VICENZETTO DI 11A IDROESSE	ANALISI GRANULOMETRICA	
	A VALDASTICO A31 - COMPLETAMENTO A NORD CAMPIONE 2 PROFONDITA' 6.00 - 6.50	
2" 2" 12' " 2" 2" 2"	CURVA GRANULOMETRICA - PER VAGLIATURA PER SEDIMENTAZIONE PER SEDIMENTAZIONE 200	Accordance in the Control of the Con
100 3 2 7 2 7 3 8 7 2 3 8 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9		
SETACCI SERIE AS	F G M F 6 2 0.6 0.2 0.06 0.002 DMETRICA: PER VIA SECCA □ PER VIA UMIDA ☑ IM ☒ SETACCI SERIE UNI □	LA
	OMETRICA PER SEDIMENTAZIONE METODO CON PIPETTA DI ANDREASEN	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

17

CAMPIONE

PROFONDITA'

12.00 - 12.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine con sabbia limosa

PROVE PREVISTE:

GR.

	ANALISI GRANULOMETRICA DA VALDASTICO A31 - COMPLETAMENTO A NORD CAMPIONE	
	CURVA GRANULOMETRICA PER VAGLIATURA PER SEDIMENTAZIONE 10 20 40 60 200	
90		0.001
	A I A S A B B I A L I M O AF M F G M F 6 2 0.6 0.2 0.06 0.00	RGILLA
SETACCI SERIE A ANALISI GRANU	SIMETRO . METODO CON PIPETTA DI ANDREASEN	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

CAMPIONE

6

PROFONDITA'

17.50 - 17.75

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

limo con sabbia argilloso grigio-scuro inglobante elementi di ghiaia e frustoli vegetali

PROVE PREVISTE:

LL - GR

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

17

CAMPIONE PROFONDITA' 6 17.50 - 17.75

CARATTERISTICHE GENERALI DEL CAMPIONE

TIPO DI PROVA	SIMBOLO	UNITA'DI MISURA	RISULTATI PROVE
CONTENUTO NATURALE D'ACQUA	Ŵn	*	
LIMITE DI LIQUIDITA'	WL	*	39
LIMITE DI PLASTICITA'	WP	%	33
INDICE DI PLASTICITA'	IP		6
PESO DELL'UNITA' DI VOLUME		gr/cm3	
PESO SPECIFICO ASSOLUTO	Gs	gr/cm3	
RESISTENZA ALLA COMPRESSIONE CON ESPANSIONE LATERALE LIBERA	qu(1)	kg/cm2	
CLASSIFICAZIONE CNR UNI 10006			
DETERMINAZIONE DEI CARBONATI		ૠ	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

EXCPTU 2

1

CAMPIONE PROFONDITA'

2.50 - 2.95

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

"ghiaia medio-fine con sabbia limosa argillosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI	GRANULOMETRICA
	A VALDASTICO A31 – COMPLETAM	MENTO A NORD OFONDITA' 2.50 295
·	CURVA GRANULOME — PER VAGLIATURA	TRICA PER SEDIMENTAZIONE
		200
G H I G N	A I A S A B B I A F G M 0.2	F
SETACCI SERIE A ANALISI GRANU	SIMETRO CON PIR	ב ואט ב

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

EXCPTU 2

CAMPIONE

2

PROFONDITA'

5.50 - 6.00

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-grossa sabbiosa deb. limosa

PROVE PREVISTE :

GR

VICENZETTO	ANALISI GRANULOMETRICA	
CANTIERE AUTOSTRAL	A VALDASTICO A31 — COMPLETAMENTO A NORD CAMPIONE 2 PROFONDITA' 5.50 — 6.00	
	CURVA GRANULOMETRICA - PER VAGLIATURA — PER SEDIMENTAZIONE — PER SEDIME	
100 3" 2" 1½ 1 34 V2 3 90 80 70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.001
G H I G H I		GILLA
SETACCI SERIE A ANALISI GRANU	LOMETRICA: PER VIA SECCA PER VIA UMIDA STH EX SETACCI SERIE UNI LOMETRICA PER SEDIMENTAZIONE IMETRO METODO CON PIPETTA DI ANDREASEN	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

EXCPTU 2

CAMPIONE

3

PROFONDITA'

8.50 - 9.00

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-grossa sabbiosa limosa

PROVE PREVISTE:

GR

VICENZETTO		ANALISI GR	RANULOMETR	ICA -	
DITTA IDROESSE CANTIERE AUTOSTRAI SONDAGGIO EXCPTU	DA VALDASTICO AS	31 - COMPLETAMENT	TO A NORD		
		GRANULOMETR		ER SEDIMENTAZI	ONE
10		20 40 50	200	O.O1 DIAMETRO	0,001
G 20	M F 2	G M 0.6 0.2	o.06		0.002
SETACCI SERIE ANALISI GRAN	ASIM ⊠ ULOMETRICA PER	PER VIA SECCA SETACCI SERIE SEDIMENTAZIONE	INU		⊠
METODO CON DE	VSIMETRO □	METODO CON PIPE	IIA UL ANDREAS	EN L.	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

EXCPTU 2

CAMPIONE

PROFONDITA'

16.50 - 17.00

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-fine sabbiosa limosa

PROVE PREVISTE :

GR

VICENZETTO	ANALISI	GRANULOMETRICA	
	A VALDASTICO A31 - COMPLETA 2 CAMPIONE6	MENTO A NORD	
	CURVA GRANULOM	ETRICA	
	PER VAGLIATURA	PER SEDI	1ENTAZIONE
100 3" 2" 1½ 1" 3ª V2" 34 12 3		•	01 0.001 METRO IN mm
	A ! A		M O ARGILLA
60 20	6 2 0.6	F 0.2 0.06	0.002
SETACCI SERIE ANALISI GRANU	JLOMETRICA: PER VIA SE ASTH SETACCI SET JLOMETRICA PER SEDIMENTAZIO SIMETRO METODO CON	RIE UNI 🗆	UMIDA ⊠

ļ

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

EXCPTU 2

CAMPIONE

PROFONDITA'

22.50 - 23.00

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-fine sabbiosa limosa

PROVE PREVISTE:

GR

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

EX CPTU4

CAMPIONE

PROFONDITA'

3.00 - 3.50

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

·	

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-fine con sabbia limosa; presenza di zone argillose

PROVE PREVISTE:

GR

ANAL	ISI GRANULOM	IETRICA	-
A VALDASTICO A31 — COM	PLETAMENTO A NOR	D.	
•		—— PER SEDIMENTAZIONE ——	
	0,1	0,01	0.001
	•	DIAMETRO IN mm	
A I A S A	BBIA	L I M O	ARGILLA
6 2 0.6	0.2 0.06		0.002
STH ⊠ SETACO LOMETRICA PER SEDIMENTA	I SERIE UNI 🗆		
	CURVA GRANU CURVA GRANU PER VAGLIATURA 10 20 40 1 10 20 40 CURVA CURVA CURVA CURVA CURVA CURVA CURVA CURVA CURVA COMETRICA: PER VIA SETACO LOMETRICA PER SEDIMENTA	CURVA GRANULOMETRICA PER VAGLIATURA 10 20 40 60 200 PER VAGLIATURA 10 20 40 60 200 10 10 10 10 10 10 10 10 10 10 10 10 10 1	A VALDASTICO A31 — COMPLETAMENTO A NORD 4. CAMPIONE

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

EX CPTU4

CAMPIONE

3

PROFONDITA'

9.00 - 9.35

TIPO	DI	CAMPIONE	:	RI
TTDO	DT	CONTINUENTERCOTO		G 3

MANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCI	-TEMA	DEI.	CAMP	LONE

ALTO	BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine sabbiosa limo-argillosa

PROVE PREVISTE :

GR

CANTIERE AUTOSTRADA	ANAI VALDASTICO A31 - COM CAMPIONE3	IPLETAMENTO A NOF	RD	
	CURVA GRAN		050	
100 3" 2" 1½' 1" 34" V2" 38" 90 10 10 10 10		60 200	Q.O1 DIAMETRO IN mm	0.001
CIOTTOLI G H I	A I A S /	A B B I A	LIM O	ARGILLA
SETACCI SERIE AS ANALISI GRANUL .	OMETRICA: PER V THES SETAN OMETRICA PER SEDIMEN METRO METOD	CCI SERIE UNI 🗆 TAZIONE 🗀		0.002

VICENZETTO	ANALISI GRANULOMETRICA	
CANTIERE AUTOSTRAD	A VALDASTICO A31 - COMPLETAMENTO A NORD CAMPIONE 5 PROFONDITA' 15.30 - 15.40	
	CURVA GRANULOMETRICA PER VAGLIATURA PER SEDIMENTAZIONE	
G 60 20	ULOMETRICA: PER VIA SECCA PER VIA UMIDA 🔀	D.001
	SETACCI SERIE UNI	
METODO CON DE	NSIMETRO □ METODO CON PIPETTA DI ANDREASEN □	

VICENZETTO	ANALISI GRANULOMETRICA
1	PA VALDASTICO A31 - COMPLETAMENTO A NORD 2. CAMPIONE 8. PROFONDITA 22.50 - 23.00
	CURVA GRANULOMETRICA
a" a" .l/' ." a=' .b" at	PER VAGLIATURA
90	
G H I G M 60 20	
ANALISI GRANUI SETACCI SERIE A ANALISI GRANUI	LOMETRICA: PER VIA SECCA PER VIA UMIDA SIM SETACCI SERIE UNI LOMETRICA PER SEDIMENTAZIONE IMETRO METODO CON PIPETTA DI ANDREASEN IMETRO

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

EXCPTU 2

CAMPIONE

10

PROFONDITA'

28.00 - 28.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-fine con sabbia limosa argillosa

PROVE PREVISTE:

GR

CANTIERE AUTOSTRADA VAL	DASTICO A31 - COMPLETA	GRANULOMETRICA AMENTO A NORD PROFONDITA: 28.00 - 28.50	
100 3" 2" 1½ 1" 3A V2" 3B 4 90 11 11 11 11 11 11 11 11 11 11 11 11 11	10 20 40 60	PER SEDIMENTAZIONE ZOO III III III III III III II	
100 10	<u> </u>	O.1 O.01 DIAMETRO IN mm	0.001
G H I A I A G M 60 20 6	F G M	1 A L I M O A	ARGILLA
SETACCI SERIE ASTH & ANALISI GRANULOMET	RICA: PER VIA SEC SETACCI SER RICA PER SEDIMENTAZION METODO CON P	NE .	

VICENZETTO	ANALISI GRA	ANULOMETRICA
CANTIERE AUTOSTRAD	A VALDASTICO A31 — COMPLETAMENTO 3 CAMPIONE	D A NORD
	CURVA GRANULOMETRI	CA
	PER VAGLIATURA	PER SEDIMENTAZIONE
40 40 40 40 40 40 40 40 40 40 40 40 40 4		200
	A I A S A B B I A M F G M	L I M O ARGILL
SETACCI SERIE ANALISI GRANU	LULOMETRICA: PER VIA SECCA C ASTH S SETACCI SERIE U ULOMETRICA PER SEDIMENTAZIONE C ISINETRO	

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

EX CPTU4

CAMPIONE

PROFONDITA'

15.30 - 15.40

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine con sabbia limosa

PROVE PREVISTE:

ŒR

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

EX CPTU4

CAMPIONE

10

PROFONDITA'

33.00 - 33.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia da grossa a fine con sabbia limosa debolmente argillosa

PROVE PREVISTE:

CIR.

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

EXCPTU 2

CAMPIONE PROFONDITA' 12 33.00 - 33.50

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-fine con sabbia limosa argillosa

PROVE PREVISTE:

GR

VICENZETTO	ANALISI GRANULOMETRICA	
CANTIERE AUTOSTRAD	VALDASTICO A31 - COMPLETAMENTO A NORD 2. CAMPIONE	
100 3" 2" 1½' 1 34' V2" 3	CURVA GRANULOMETRICA PER VAGLIATURA PER SEDIMENTAZIONE 4 10 20 40 60 200 10 10 10 10 10 10 10 10 10 10 10 10 1	
70 10 10 100	0,1 0.01 0	0,001
CIOTTOLI G H I	DIAMETRO IN mm A 1 A	SILLA
SETACCI SERIE A ANALISI GRANU	OMETRICA: PER VIA SECCA PER VIA UMIDA SETACCI SERIE UNI OMETRICA PER SEDIMENTAZIONE	
METODO CON DEN	METRO	

1

.

VICENZETTO	ANALISI GRANULOMETRICA
j	DA VALDASTICO A31 - COMPLETAMENTO A NORD CAMPIONE
100 3" 2" 1½ 1" 34" V2" 34 1	
1	
CIOTTOLI G H I	A I A S A B B I A L I M O ARGILLO
G M	F G M F 0.002
SETACCI SERIE A ANALISI GRANU	LOMETRICA: PER VIA SECCA PER VIA UMIDA SETACCI SERIE UNI LOMETRICA PER SEDIMENTAZIONE
METODO CON DENS	IMETRO METODO CON PIPETTA DI ANDREASEN

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

EXCPTU 3

CAMPIONE

3

6.00 - 6.50PROFONDITA'

TIPO DI CAMPIONE

: RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-fine con sabbia limosa

PROVE PREVISTE:

GR

	ICENZETTO DITTA IDROESSE ANTIERE AUTOSTRAD	ANALISI GRANULOMETRICA DA VALDASTICO A31 - COMPLETAMENTO A NORD	
100 90 80 70 (x) 10 40 30 20			
CIOT	ANALISI GRANUI SETACCI SERIE AS ANALISI GRANUI		ARGILLA 0.002

IDROESSE

CANTIERE

AUTOSTRADA VALDASTICO A31 - COMPLETAMENTO A NORD

SONDAGGIO

EXCPTU 3.

CAMPIONE

PROFONDITA'

12.00 - 12.50

TIPO DI CAMPIONE : RIMANEGGIATO

TIPO DI CONTENITORE : SACCHETTO

SCHEMA DEL CAMPIONE

ALTO	

BASSO

DESCRIZIONE GEOTECNICA DEL CAMPIONE ED EVENTUALI PROVE DI CONSISTENZA CON POCKET PENETROMETER E TORVANE :

ghiaia in prevalenza medio-grossa con limo sabbiosa

PROVE PREVISTE:

GER.

VICENZETTO	ANALISI GRANULOMETRICA
	A VALDASTICO A31 — COMPLETAMENTO A NORD 4. CAMPIONE
100 3" 2" 1½' 1" 3,41' V2"	CURVA GRANULOMETRICA — PER VAGLIATURA — PER SEDIMENTAZIONE — PER SEDIME
90 80 70 70 60 80 80 80 80 80 80 80 80 80 80 80 80 80	
G H I G M 60 20	
SETACCI SERIE A: ANALISI GRANUI	LOMETRICA: PER VIA SECCA PER VIA UMIDA STIM SETACCI SERIE UNI LOMETRICA PER SEDIMENTAZIONE IMETRO METODO CON PIPETTA DI ANDREASEN

INDAGINI CAMPAGNA ANNO 1995

VALDASTICO

TRATTA PIOVENE ROCCHETTE – BESENELLO

PROVE DI LABORATORIO GEOMECCANICO

SCHEDA CAMPIONI E **DENOMINAZIONE PROVINI**

Pag.: 2 / 140 1251 Data: Settembre 1995 12/95 Rif.: Rapporto n°:

Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente

VICENZETTO S.r.l.

Progetto

: Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

Localita'

Sondaggio: blocchi + S10bis

	Campione	Contenitore	Litotipo	Profondita'	Provini	Preparazione	Note
	VA1	BLOCCO	DOLOMIA	-	AU1-AU2-AU28-AU2AU30-AU31-AU39- AU40-AU47-AU80-AU81-AU82	2C-2T-2R	
1.94	VA2	11	, "	-	AU3-AU4-AU5-AU8-AU9-AU17-AU32- AU33-AU34-AU41-AU42-AU48-AU83-AU84	1C-5T-5R	
ev. 01/	VA3	**	н	•	AU6-AU7-AU35-AU36-AU37-AU43-AU44	1C-2T-2R	
.02 - R	VA4	CAROTA	п	3.70-3.90	AU10-AU11-AU12	2T-2R	
MODULO L02 - Rev. 01/1.94	VA5		N	5.70-5.60	AU13-AU27-AU27B	1T-1R	
MOD	VA6	*	11	7.80-8.00	AU14-AU15-AU16	1T-1R	
	VA7	**	11	8.40-8.60	AU18-AU19-AU20	1C-3T-3R	
	VA8	41		9.00-9.20	AU21	1T-1R	
	VA9	11	н	10.50-10.80	AU22-AU23-AU45-AU46	2T-2R	
	VA10	"	H	12.60-13.00	AU24-AU25-AU26-AU38	2C-3T-3R	
				. 1			

T = Troncatura

R = Rettifica

E = Essiccazione

C = Carotaggio

L'Operatore (Dr.Geol.Saverio RANA):

S = Saturazione

Il Responsabile (Dr.Ing.Alberto MORINO):

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

ELENCO PROVE ESEGUITE

Laboratorio di Meccanica delle Rocce

Rapporto n° .:

12/95

Rif. : 1251

Data

Settembre 1995

Pag. : 1/140

Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente

: VICENZETTO S.r.l.

Progetto -

: Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di mass.opere in sotterraneo - Indagini geognostiche

Prove geomeccaniche di laboratorio eseguite su DOLOMIE

CODICE	DESCRIZIONE	QUANTITA'
		ESEGUITE
A.1	Descrizione macroscopica dei campioni	1
B.1.1	Peso di volume apparente attraverso	
	misurazione diretta	49
B.3	Coefficiente di imbibizione	10
C.1	Resistenza a compressione uniassiale	21
C.2.1	Resistenza a compressione triassiale	12
C.3.1	Misura delle deformazioni e determinazione dei	
	moduli tangente e secante	9
C.3.3	Misura delle deformazioni e determinazione dei	
	moduli tangente e secante e rapporto di Poisson	12
C.4	Determinaz, curve di inviluppo	4
C.5	Resistenza a trazione indiretta "brasiliana"	16
C.6.2	Resistenza al taglio lungo discontinuità	4
C.6.3	Resistenza al taglio 2° step di carico	1
C.6.4	Determinaz, dei parametri di resistenza al taglio	2
C.6.5	JRC - JCS	15
C.7	Tilt test	32
C.8	Point Load Test	25
C.9	Prova sclerometrica	20
C.10.2	Determinazione della velocità delle onde elastiche	
	longitudinali e di taglio	35
C.11	Cone Indenter N.C.B.	5
C.12	Indice di abrasione CERCHAR	5
C.13	Prova di punzonamento PUNCH TEST	5
C.15	Prova di frammentazione DROP TEST	5
C16	Prova di perforabilità SIEVERS'	5

L'Operatore (Dr.Geol.Saverio RANA) :

Mrene

II Responsabile (Dr.Ing.Alberto MORINO):

SCHEDA CAMPIONI E DENOMINAZIONE PROVINI

Rapporto n° : 12/95 Rif.: 1251 Data : Settembre 1995 Pag. : 4/460

Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente VIC

VICENZETTO S.r.l.

Progetto

: Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

Localita'

Sondaggio: S20 + BLOCCO DI ANDESITE

	Campione	Contenitore	Litotipo	Profondita'	Provini	Preparazione	Note
	VA19	CAROTA	DOLOMIA	4.0-4.1	AU119		
4	VA20		81	4.3-4.9	AU61-AU120		
MODULO L02 - Rev. 01/1.94	VA21	н	н	5.0-5.2	Carota rotta in fase di preparazione provini		
2 - Rev	VA22	••	н	5.5-5.7	AU121-AU122		
10 F0	VA23		"	6.4-6.6	AU93-AU99-AU102	1T-1R	
МОБИ	VA24		81	6.6-6.8	AU60-AU64		
	VA25	"	91	7.6-8.0	AU49-AU56-AU65-AU66AU98-AU85-AU86	2T-2R	
	VA26	D	•	9.3-9.5	AU126		
	VA27	н	н	11.0-11.2	AU55-AU77	1C-1T-1R	
	VA28	"	п	11.2-11.6	AU50-AU97	1T-1R	
	VA29	U	н	11.6-11.8	AU94	1T-1R	
	VA30		"	12.2-12.75	AU51-AU52-AU53-AU101-AU79	3C-3T-3R	
	VA31		ANDESITE	-	da AUP1 ad AUP13	5C-4T-4R	

T = Troncatura

R = Rettifica

E = Essiccazione

C = Carotaggio

S = Saturazione

L'Operatore (Dr.Geol.Saverio RANA):

Il Responsabile (Dr.Ing.Alberto MORINO):

N

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

SCHEDA CAMPIONI E DENOMINAZIONE PROVINI

					_0
п	a١	טע	or	w	11

12/95

Rif.:

1251

Data:

Settembre 1995

Pag.: 3 /140

Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente

VICENZETTO S.r.l.

Progetto

: Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

Localita'

MODULO L02 - Rev. 01/1.94

Sondaggio: S22

Note	Preparazione	Provini	Profondita'	Litotipo	Contenitore	Campione
	1T-1R	AU78-AU62-AU116	33.5-33.8	DOLOMIA	CAROTA	VA11
	1T.1R	AU92	33.0-33.3		11	VA12
	1T-1R	AU57-AU58	29.8-30.1	14	11	VA13
		Carota non utilizzabile per presenta di grossi vuoti	29.0-29.3	14	11	VA14
		AU63	28.5-28.7	н	11	VA15
		Carota non utilizzabile per presenta di grossi vuoti	27.0-27.2	11	••	VA16
		AU59-AU100	32.2-32.4	Ħ	11	VA17
	1T-1R-1C	AU95	34.3-34.5	11	"	VA18
1						

T = Troncatura

R = Rettifica

E = Essiccazione

C = Carotaggio

L'Operatore (Dr.Geol.Saverio RANA) :

II Responsabile (Dr.Ing.Alberto MORINO):

MORINO):

S = Saturazione

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

DESCRIZIONE MACROSCOPICA

Laboratorio di Meccanica delle Rocce

Rapporto n.°:

12/95

Rif.:

1251

Data: Settembre 1995

Pag.: 6/140

Committente

: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente

VICENZETTO S.r.I.

Progetto

: Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio:

Campione/Provino:

Profondità:

(m)

Litotipo

MODULO L09 - Rev. 02/1.94

DOLOMIA

Descrizione:

I campioni provenienti dai sondaggi S20, S22, S27 e dai blocchi VA1, VA2, VA3 sono litologicamente costituiti da dolomie di colore variabile dal bianco - rosato al grigio chiaro, fa eccezione il campione CL28/S27 di colore verdastro con punteggiature biancastre. Presentano una struttura massiccia con frequenti passaggi a vacuolare con tessitura a grana minuta o, più raramente, subsaccaroide. I vacuoli, di dimesioni raramente superiori al cm, talvolta sono disposti lungo le discontinuità e contengono ricristallizzazioni.

La fratturazione, in genere scheggiosa, risulta piuttosto diffusa su tutti i campioni.
I giunti fessurativi sono capillari e, spesso, coperti da patine di alterazione.

A luoghi l'intensa fratturazione conferisce alla roccia un aspetto brecciato con grandi clasti dolomitici immersi in una matrice fine talvolta molto alterata.

I fossili, pur presenti, risultano essere di difficile classificazione.

L'Operatore (Dr.Geol.Saverio RANA)

Miera

II Responsabile (Dr.Ing.Alberto MORINO)

AT

SCHEDA CAMPIONI E **DENOMINAZIONE PROVINI**

Rapporto n°:

12/95

Rif.:

1251 Data:

Settembre 1995

Pag.: 5/140

Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente

VICENZETTO S.r.l.

Progetto

: Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

Localita'

Sondaggio: S27

	Campione	Contenitore	Litotipo	Profondita'	Provini	Preparazione	Note
	CL7	CAROTA	DOLOMIA	24.1-24.3	AU67-AU110	1T-1R	
94	CL8	N	ps	25.1-25.3	AU96-AU111	1T-1R	
. 01/1.	CL12	u	ı,	34.7-34.9	AU103-AU123	1T-1R	
2 - Re	CL13	u	11	35.55-32.	AU68-AU112	1T-1R	
MODULO L02 - Rev. 01/1.94	CL14	"	"	35.7-35.9	AU69-AU104	1T-1R	
MODL	CL17	**	u	45.6-45.8	AU91-AU105	1T-1R	
	CL18	11	11	46.3-46.5	AU71-AU72-AU73		
	CL19	H	ıı	46.5-46.7	AU106	1T-1R	
	CL23	"	· 11	58.1-58.3	AU107bis	1T-1R	
	CL24		52	58.5-58.7	AU69-AU113-AU125	1T-1R	
	CL25	11	u	59.5-59.7	AU70-AU74-AU89-AU90-AU107	1T-1R	
	CL28	11	н	66.7-66.9	AU108-AU114	2T-2R	
	CL29	"	"	68.0-68.3	AU87-AU88-AU109-AU115-AU124	2T-2R	

T = Troncatura

R = Rettifica

E = Essiccazione

C = Carotaggio

Il Responsabile (Dr.Ing.Alberto MORINO):

L'Operatore (Dr.Geol.Saverio RANA):

S = Saturazione

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

SCHEDA RIASSUNTIVA PROVE DI LABORATORIO

12/95 Rapporto n°

Settembre 1995

Data

Pag.: Ħ.

B1440

1251

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente

Progetto di mass.opere in sotterraneo - Indagini geognostiche : Autostrada VALDASTICO A31 - Collegamento con l'A22 VICENZETTO S.r.l.

Progetto Cliente

									ecciata	recciata																			
		Note							struttura brecciata	struttura brecciata															,				
		>	sec.	200	22.0	0.28	0.25	,	0.18	N.A.																			
		>	tang.	700	0.27	0.33	0.22	,	0.29	N.A.																			
iche		P >	€	3	Y.A.	Ä.Ä	Y.A.	0.46	98.0	0.31	0.32	N.A.																	Mour
Velocita' onde soniche	20010	P	(GPa)	3	68.18	30.16	N.A.	56.02	46.25	90.93	82.19	N.A.																`	THE STATE OF THE S
Velocita'	Velocina	Ϋ́	(s/ш)		5590	5813	4416	4351	3235	3537	4674	A	-																 (AN
		>	(s/m)		6283	6811	6543	5364	4071	<u> </u>	1	6337																	L'Operatore (Dr.Geol.Saverio RANA)
		təmo oibən	selec n A		64.6	9.99	68.1	58.5	48.1	54.5								1	-						_	-			.Geol.Sa
	110	ر ح																	2.5	4.3	1.3	4.6	3.2						atore (Dr
3	l aglio diretto	٦	(MPa)																4.8	6.7	2.0	4.7	4.5						L'Opera
'	-	b	(MPa)																4.1	8.1	2.1	6.1	5.3						
			вгаві 1) _О Т								5	1.6	6.7																
		lastici	m «	(GPa)	68.2	106.6	2.00	1,00.4	6.6.	32.0	13.0																		
	9	Moduli elastici	ш	(GPa)	70.1		 -	83.3	7.00.7	20.0	97.7																		
	Compressione	ale	G3	(MPa)							Ì			7.5	2.0	9.5	4.5	12.0											
	Con	Triassiale	р Т	(MPa)					İ					169.1	86.4	198.2	190.5	187.9											
		Uniass.		(MPa)	1507	7.00	111.9	64.2	72.4	65.6	53.7											İ							
-		• əuo	kW/m3)	<	٤ :	=		!_		- 2	=	=	=	=	=	=	= 2		1		+	ļ	1			Ŧ	-	
	ə	mulo	v ib os:			<u>-</u> -	27.5	27.4	27.0	26.4	27.2	27.1	27.1	27.1	27.4	26.9	27.5	27.2	1		1	-					<u> </u>	\dashv	E = secca
		Litotipo				dolomia	=	=	=	=	=	=	=	=	=	=	=	=				1					1		
		Profondità	(m)			7.70	11.40	6.50	11.70	33.15	33.50	7.70	29.90	12.40	=	=	=	=											= ambiente, S = satura,
		Provino				A049	AU50	AU93	AU94	AU92	AU116	AUS6	AU57	A1151	A1153	A1152	41155	2014	ACSO										*condizione : A = ambiente,
•		əu	oiqms:)		VA25	VA28	VA23	VA29	VA12	VA11	1	VA13	7.430	A ASS	=	1/4.97	1777	VAIO										one: A =
		oig	ondagi	s		S20	=	=	=	S22	=	520	665	440	320	=	2	8	277										·condizi

v d = rapporto dinamico di Poisson

= peso di vol.per misurazione direlta N.A. = Non Attendibile

II Responsabile (Dr.Ing.Alberto MORINO):

SCHEDA RIASSUNTIVA PROVE DI LABORATORIO

Agosto 1995 12/95 Rapporto n° Data

Pag.:

Ħ.

1251

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

VICENZETTO S.r.I Committente

Progetto

Cliente

Progetto di mass.opere in sotterraneo - Indagini geognostiche Autostrada VALDASTICO A31 - Collegamento con l'A22

breccia calcarea ossidata Note 0.19 0.24 sec. > 0.46 0.36 tang. > N.A. 0.28 0.36 0.46 0.38 0.34 0.45 0.30 0.39 0.45 N.A. Ä.Ä 0.22 0.34 0.30 0.27 N.A. A.A. 0.3 \odot Velocita' onde soniche 57.65 59.70 39.15 23.28 51.70 36.52 N.A. 53.18 39.30 63.60 21.19 56.12 56.55 63.94 (GPa) N.A. 12.97 54.51 N.A. 77.5 Щ 2217 2264 2816 2243 1692 (m/s) 2897 3771 2699 N.A. N.A. 1270 2693 3140 1627 2760 2997 3202 3246 N.A. s S 4756 5179 4894 5514 5155 4712 5740 4774 4861 4608 5250 5457 5310 5586 5368 6339 6378 4511 5627 (m/s) δ 48.5 48.1 A medio 49.0 50.0 55.3 51.7 52.7 Sclerometro (MPa) Taglio diretto (MPa) (MPa) ь T⁰ (Wba) 10.7 8. 3.5 6.6 6.5 2.6 5.3 6.7 Brasiliana 11.9 15.3 18.5 39.3 40.5 (GPa) Moduli elastici 13.1 7.0 п s (GPa) 21.9 32.4 56.4 50.5 11.9 23.1 22.7 ш Compressione (MPa) 10.0 10.0 5.0 2.5 3.0 Triassiale 271.5 141.3 205.3 121.2 157.0 (MPa) 115.1 b Uniass. Co (MPa) 32.8 102.4 6.09 76.0 75.4 73.9 105.1 4 · anoizibno 26.5 25.9 26.0 27.0 26.9 26.9 27.5 26.4 27.2 26.8 26.4 26.9 26.8 27.2 26.8 26.7 27.4 27.1 27.1 27.4 27.1 (KM/m3) Peso di volume dolomia Litotipo Profondità 10.70 12.75 10.65 12.75 5.85 7.90 9.10 3.80 8.50 8.50

E = secca S = satura, condizione : A = ambiente,

AU18

VA7

S10bis

AU6

VA3

VA2

AU24 AU25

VA10

6.0

165.2

27.2

= rapporto dinamico di Poisson

N.A. = Non Attendibile

= peso di vol.per misurazione diretta

COperatore (Dr.Geol.Saverio RANA) :

Responsabile (Dr.Ing.Alberto MORINO):

S10bis

AU16

AU21 **AU22** AUB AU9

AU13

AU7

VA3 VA5 VA6 VAB VA9

AU3 AU5

bloc.

AU10

VA4

S10bis

=

VA2

bloc.

AU11

AU19

VA7

=

AU20 **AU23** AU26

VA10

VA9

=

AU2 AU4

A01

VA1

bloc.

 $\widehat{\mathbf{E}}$

Campione

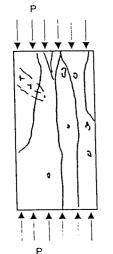
oiggebno2

Provino

COMPRESSIONE UNIASSIALE

10 1140 Pag.: Agosto 1995 Data: 1251 Rif.: Rapporto nº: 12/95

: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente


VICENZETTO S.r.I. Cliente

: Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto

	Progetto di	massima opere in sotterran	eo - Indagini	geognos	tiche	
Sondaggio :	da blocco	Campione/Provino:	VA2 / AU3		Profondita':	- (m
Diametro (mm)	53.6	Condizione	Secca	Ambiente	Satura	Cont. d'acqua
Lunghezza (mm)	109.8	Peso (g)		668.9		(%)
Volume (cm3)	247.75	Peso di volume (kN/m3)		26.47		
	Tempi di arriv	o tp (μ s)		21.2		Peso umido *
TRASMISSIONE		ts (μ s)		37.9		(g)
ONDE SONICHE	Velocita'	Vp (m/s)		5179		
E PARAMETRI	, or oak	Vs (m/s)		2897		Peso secco *
CORRELATI	Modulo elasti	co dinamico Ed (GPa)		57.652		(g)
33,,,,,	Rapporto di F	Poisson dinamico V d (-)		0.27		
	PROV	/A SCLEROMETRICA	Media	R medio	VOLUME C	ON PESATA IDROST.
Letture faccia superio		49-53-48-51-50	50.2		Temp. acqu	ıa (°C)
Letture superficie late				49.0	Peso in aria	a (g)
Letture faccia inferior		48-50-46-45-50	47.8	<u> </u>	Peso in acq	lua (g)

SCHEMA DI ROTTURA

MODULO L05 - Rev.02 /10.95

Legenda:

LITOTIPO **DOLOMIA**

NOTE

Ambiente Condizione

bianco-nocciola chiaro Colore

massiccia, con vene e lenti di calcite Struttura

ricristallizzata e microvacuoli concrezionati

presenti fratture capillari cementate Piani di discontinuita'

assente lungo le fratture Alterazione

Direz.carico/piani di disc.

improvvisa Rottura

rapida caduta del carico Comportamento parallela all'asse di carico Fratturazione

Osservazioni

Rapporto L/D 26 Condizioni ambiente : Temperatura (°C) 2.05 61 Umidita' dell'aria (%)

Area facce prov. (cm2): 22.56		Umi	dita' dell'aria (%) 61 2.0	, s
CARICO DI ROTTURA	P (kN)	233.33	MODULO ELASTICO TANGENTE Et (GPa)	21.85
RES. A COMPR. UNIASSIALE	Co' (MPa)	103.41	MODULO ELASTICO SECANTE Es (GPa)	13.13
RESISTENZA A COMPRESSIONE	UNIASSIALE		RAPPORTO DI POISSON TANGENTE VI (-)	
CORRETTA Co (D=50mm L/I		105.07	RAPPORTO DI POISSON SECANTE V s (-)	

L' Operatore (Dr.Geol.Saverio RANA):

Piani preesistenti Piani di rottura

pero

Il Responsabile (Dr.Ing.Alberto MORINO):

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

Misure eventuali per calcolo contenuto d'acqua

N.A.: Non Attendibile

राजनसम्बद्धाः <mark>स्टब्स्ट्रस्ट्रस्ट</mark>्रस्य । स्टब्स्ट्रस्य स्टब्स्ट्रस्य स्टब्स्ट

■CEODATA
Laboratorio di Meccanica delle Rocce

Committente Data

SCHEDA RIASSUNTIVA PROVE DI LABORATORIO

Settembre 1995 12/95 Rapporto n°

Rif. :

3,440

1251

Pag.:

: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Progetto di mass.opere in sotterraneo - Indagini geognostiche : Autostrada VALDASTICO A31 - Collegamento con l'A22 : VICENZETTO S.r.I.

> Progetto Cliente

*condizione: A = ambiente, S = satura, E = secca

v d = rapporto dinamico di Poisson

N.A. = Non Attendibile

= peso di vol.per misurazione diretta

L'Operatore (Dr.Geol.Saverio RANA) :

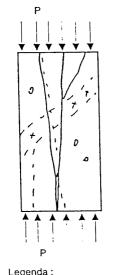
II Responsabile (Dr.Ing.Alberto MORINO):

COMPRESSIONE UNIASSIALE

121140 Agosto 1995 Data: Pag.: 12/95 Rif.: 1251 Rapporto n°:

: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente

Cliente VICENZETTO S.r.I.


: Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio :		da blocco	Campione/Provino:	VA2 / AU5		Profondita':	·	-	(m)
Diametro	(mm)	53.7	Condizione	Secca	Ambiente	Satura	Cont.	d'acqua	
Lunghezza	(mm)	111.7	Peso (g)		680			(%)	
Volume	(cm3)	252.98	Peso di volume (kN/m3)		26.36				
		Tempi di arrivo	tp (μ s)		23.4		Peso	umido *	
TRASM	ISSIONE		ts (μ s)		30.1			(g)	
ONDE SONICHE		Velocita'	Vp (m/s)		4774				
	RAMETRI		Vs (m/s)		3771		Peso secco * (g)		
	RRELATI	Modulo elastic	o dinamico Ed (GPa)		54.508				
		Rapporto di P	oisson dinamico V d (-)		N.A.				
		PROV	A SCLEROMETRICA	Media	R medio	VOLUME C	VOLUME CON PESATA IDROST.		
Letture faccia superiore			48-51-45-44-49	47.4		Temp. acqu	a (°C)		
Letture superficie laterale					48.5	Peso in aria	(g)		
Letture faccia inferiore			51-50-49-50-48	49.6		Peso in acq	ua (g)		

SCHEMA DI ROTTURA

MODULO L05 - Rev.02 /10.95

Ambiente

DOLOMIA

bianco-nocciola chiaro

massiccia, con vene e lenti di calcite Struttura

ricristallizzata e microvacuoli concrezionati

presenti fratture capillari cementate Piani di discontinuita'

assente lungo le fratture; i vacuoli sono, in parte, Alterazione

disposti lungo le fratture

NOTE

Direz.carico/piani di disc.

LITOTIPO

Condizione

Colore

Rottura

improvvisa

Comportamento

rapida caduta del carico

Fratturazione

iniziale su nuovo piano poi su nuovo piano

Osservazioni

· · · · Piani preesistenti

Area facce prov. (cm2):

Piani di rottura

22.65

Condizioni ambiente :

(°C) Temperatura Umidita' dell'aria (%) 26

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

Rapporto L/D 2.08

CARICO DI ROTTURA P (kN)	167.76	MODULO ELASTICO TANGENTE Et (GPa) 23.12
RES. A COMPR. UNIASSIALE C 0' (MPa)	74.07	MODULO ELASTICO SECANTE Es (GPa) 15.28
RESISTENZA A COMPRESSIONE UNIASSIALE		RAPPORTO DI POISSON TANGENTE V t (-)
CORRETTA C 0 (D=50mm L/D=2) (MPa)	75.44	RAPPORTO DI POISSON SECANTE V s (-)

L' Operatore (Dr.Geol.Saverio RANA) :

Ivene

Il Responsabile (Dr.Ing.Alberto MORINO) :

* Misure eventuali per calcolo contenuto d'acqua

Non Attendibile N.A.:

AU5.XLS

COMPRESSIONE UNIASSIALE

Rapporto n°: 12/95 Rif.: 1251 Data: Agosto 1995 Pag.: 14/40

Committente : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente : VICENZETTO S.r.I.

Progetto : Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio :	da blocco	Campione/Provino :	VA3 / AU7		Profondita':	- (m)
Diametro (mm)	53.7	Condizione	Secca	Ambiente	Satura	Cont. d'acqua
Lunghezza (mm)	105.0	Peso (g)		661		(%)
Volume (cm3)	237.81	Peso di volume (kN/m3)		27.24		
	Tempi di arri	ivo tp (μs)		21.6		Peso umido *
TRASMISSIONE	= [ts (μs)		38.9		(g)
ONDE SONICHE	Velocita'	Vp (m/s)		4861		
E PARAMETR	1	Vs (m/s)		2699		Peso secco *
CORRELAT	Modulo elas	tico dinamico Ed (GPa)		51.696		(g)
	Rapporto di	Poisson dinamico V d (-)		0.28		
	PRC	IVA SCLEROMETRICA	Media	R medio	VOLUME CO	ON PESATA IDROST.
Letture faccia super	iore	50-48-48-49-50	49.0		Temp. acqua	(°C)
Letture superficie la	terale			50.0	Peso in aria	(g)
Letture faccia inferio	оге	52-50-51-52-50	51.0		Peso in acqu	a (g)

SCHEMA DI ROTTURA

LITOTIPO :

DOLOMIA

NOTE

Condizione : Ambiente

Colore : grigio-nocciola chiaro

Struttura : massiccia, con numerose microfratture

cementae casualmente orientate

Piani di discontinuita': presenti microvacuoli concrezionati

Alterazione : assente lungo le fratture; i vacuoli sono , in parte,

disposti lungo le fratture

Direz.carico/piani di disc.

Rottura : in fasi successive

Comportamento : lenta caduta del carico

Fratturazione : principalmente lungo discontinuità preesistenti

Osservazioni

Piani preesistenti

Condizioni ambiente : Temperatura (°C) 26

Area facce prov. (cm2) : 22.65

CARICO DI ROTTURA P (kN) 170.31

MODULO ELASTICO TANGENTE Et (

(GPa) 22.68 (MPa) 75.2 11.92 RES. A COMPR. UNIASSIALE MODULO ELASTICO SECANTE (GPa) RESISTENZA A COMPRESSIONE UNIASSIALE RAPPORTO DI POISSON TANGENTE V t (-) CORRETTA Co (MPa) (D=50mm L/D=2) 75.96 RAPPORTO DI POISSON SECANTE ν_{s (-)}

L' Operatore (Dr.Geol.Saverio RANA) :

Piani di rottura

Stieve

Il Responsabile (Dr.Ing.Alberto MORINO):

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

M

Rapporto L/D

1.96

* Misure eventuali per calcolo contenuto d'acqua

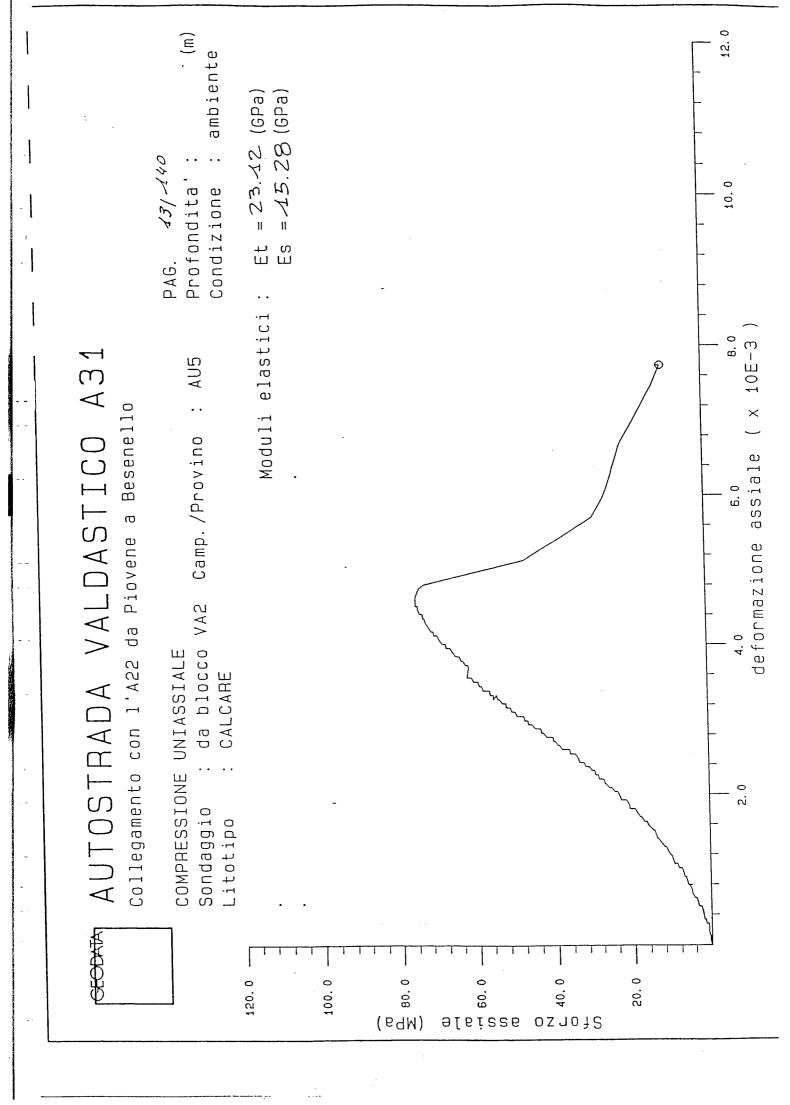
N.A.: Non Attendibile

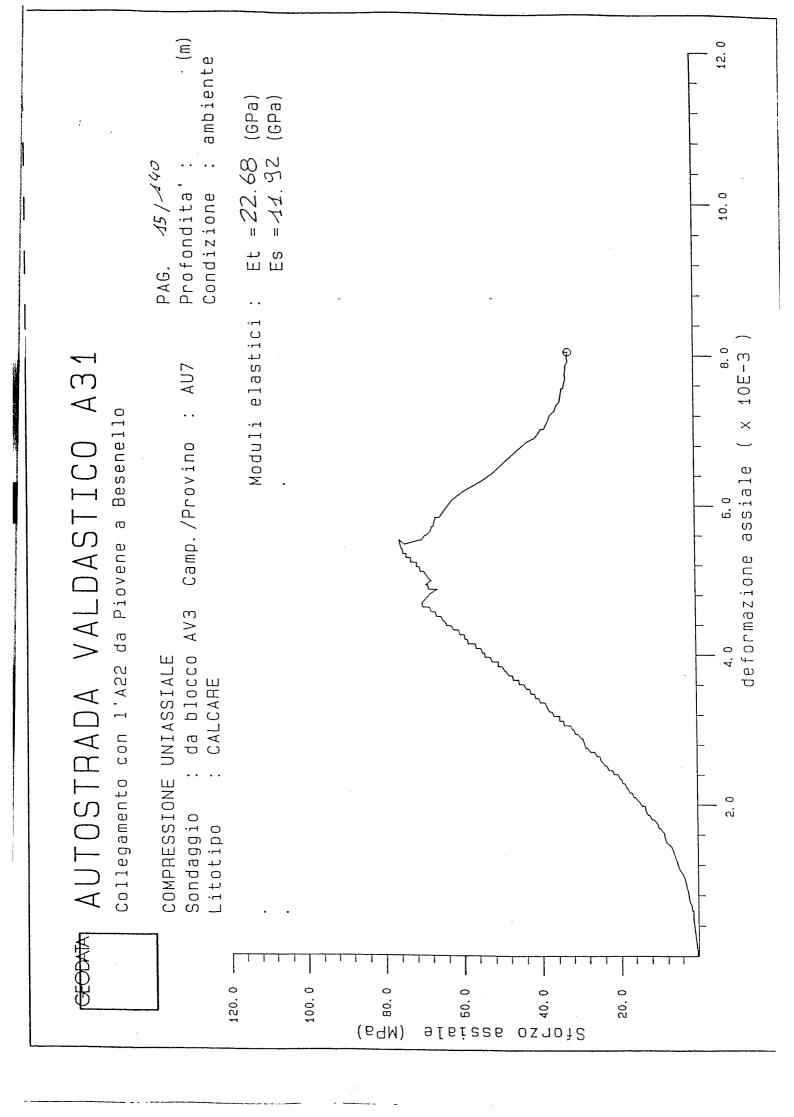
Legenda:

AU7,XLS

MODULO L05 - Rev.02 /10.95

COMPRESSIONE UNIASSIALE


16/1/40 Rapporto n°: 12/95 Pag.: Rif.: 1251 Agosto 1995 Data: Committente : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. VICENZETTO S.r.I. Cliente Progetto Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: S10bis Campione/Provino: **VA5/AU13** Profondita': 5.70-6.00 (m) Diametro 53.8 Condizione Ambiente (mm) Secca Satura Cont. d'acqua Lunghezza (mm) 120.8 Peso 750 (%) (g) Volume (cm3) 274.61 Peso di volume (kN/m3) 26.77 tp (μs) 25.4 Tempi di arrivo Peso umido * (g) 54.5 TRASMISSIONE ts (μ s) Vp (m/s) 4756 ONDE SONICHE Velocita' Vs (m/s) 2217 E PARAMETRI Peso secco * CORRELATI Modulo elastico dinamico Ed (GPa) 36.515 (q) Rapporto di Poisson dinamico V d (-) 0.36 PROVA SCLEROMETRICA VOLUME CON PESATA IDROST. Media R medio 50-48-52-56-50 Letture faccia superiore 51.2 Temp. acqua (°C) Letture superficie laterale 48.1 Peso in aria (g) Letture faccia inferiore 42-44-46-48-45 45.0 Peso in acqua (g) AODULO L05 - Rev.02 /10.95 LITOTIPO **DOLOMIA** SCHEMA DI ROTTURA NOTE Condizione **Ambiente** Colore variabile dal verdastro al grigio fortemente brecciata con numerose discontinuità Struttura occluse da detrito limoso ossidato numerosi casualmente orientati Piani di discontinuita presente lungo le discontinuità; presenti Alterazione microvacuoli concrezionati Direz.carico/piani di disc. **Bottura** progressiva Comportamento lenta caduta del carico parallela all'asse di carico su nuovi piani Fratturazione Osservazioni Legenda: Piani preesistenti Piani di rottura Rapporto L/D Condizioni ambiente : Temperatura (°C) 26 2.25 Area facce prov. (cm2): 22.73 Umidita' dell'aria 61 (%) CARICO DI ROTTURA 72.38 11.88 MODULO ELASTICO TANGENTE (GPa) Εt RES. A COMPR. UNIASSIALE (MPa) 31.84 6.98 Co, MODULO ELASTICO SECANTE (GPa) RESISTENZA A COMPRESSIONE UNIASSIALE RAPPORTO DI POISSON TANGENTE V t (-) (MPa) CORRETTA C (D=50mm L/D=2) 32.75 RAPPORTO DI POISSON SECANTE V s(-) Minue L' Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):


* Misure eventuali per calcolo contenuto d'acqua

N.A.: Non Attendibile

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

AU13.XLS

COMPRESSIONE UNIASSIALE

Rapporto n°:

12/95

Rif.:

Data: 1251

Agosto 1995

Pag.:

Profondita!

18 1140

7.80-8.00 Cont. d'acqua (%) ·

Peso umido * (g)

Peso secco * (g)

Committente

: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente

VICENZETTO S.r.l.

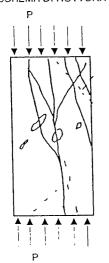
Progetto

Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio:		S10bis	Campione/Provino:	VA6 / AU16		Protonulta .
Diametro	(mm)	80.0	Condizione	Secca	Ambiente	Satura
Lunghezza	(mm)	161.5	Peso (g)		2239	
Volume	(cm3)	811.79	Peso di volume (kN/m3)		27.05	
		Tempi di arri	νο tp (μ s)		33.0	
TRASMI	SSIONE	, compress and	ts (µs))	206.1	
	ONICHE	Velocita'	Vp (m/s)		4894	
	AMETRI	Velocita	Vs (m/s)		784	
	RRELATI	Modulo elas	tico dinamico Ed (GPa)		5.037	
	MELAH	Rapporto di	Poisson dinamico V d (-)		0.49	
		<u>L</u>	VA SCLEROMETRICA	Media	R medio	VOLUME CC

1	
	VOLUME CON PESATA IDROST.
1	Temp. acqua (°C)
	Peso in aria (g)
	Peso in acqua (g)


SCHEMA DI ROTTURA

Letture faccia superiore

Letture faccia inferiore

MODULO L05 - Rev.02 /10.95

Letture superficie laterale

Legenda: Piani preesistenti **LITOTIPO**

55.2 DOLOMIA

55.4

NOTE

55.3

Condizione

54-56-58-56-53

56-58-56-54-52

Ambiente

Colore Struttura bianco-grigiastro

brecciata con numerose discontinuità

occluse da detrito limoso ossidato

Piani di discontinuita'

numerosi casualmente orientati

Alterazione

presenti patine di ossidazione lungo le discontinuità;

presenti microvacuoli concrezionati

Direz.carico/piani di disc.

Rottura

esplosiva

Comportamento

marcatamente fragile

Fratturazione

a clessidra e parallela all'asse di carico

su nuovi piani

Osservazioni

50.27 Area facce prov. (cm2):

Piani di rottura

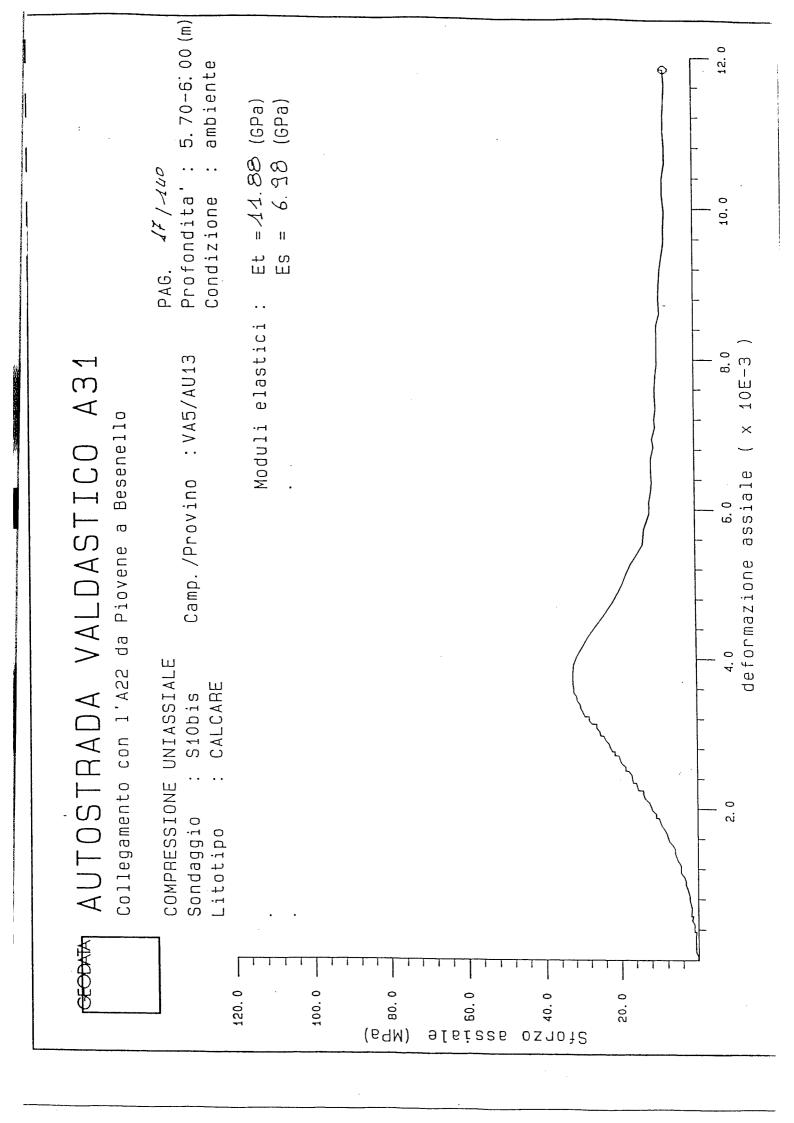
Temperatura (°C) Condizioni ambiente : Umidita' dell'aria

26

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

Rapporto L/D 2.02

CARICO DI ROTTURA P (KN	472.19	MODULO ELASTICO TANGENTE Et (GPa) 32.40	
RES. A COMPR. UNIASSIALE C 0' (MPa	93.94	MODULO ELASTICO SECANTE Es (GPa) 18.51	
RESISTENZA A COMPRESSIONE UNIASSIAL		RAPPORTO DI POISSON TANGENTE V t (-)	
CORRETTA C 0 (D=50mm L/D=2) (MPa) 102.39	RAPPORTO DI POISSON SECANTE V s (-)	


L' Operatore (Dr.Geot.Saverio RANA) :

II Responsabile (Dr.Ing.Alberto MORINO):

Misure eventuali per calcolo contenuto d'acqua

N.A.: Non Attendibile

AU16.XLS

COMPRESSIONE UNIASSIALE

Rapporto nº:

12/95

Rif.:

Data:

Agosto 1995

Pag.:

201140

Committente

: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente

VICENZETTO S.r.l.

Progetto

Autostrada VALDASTICO A31 - Collegamento con l'A22

1251

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio :	S10bis	Campione/Provino :	VA8 / AU21		Profondita':	9.00-9.20 (m)
Diametro (mm)	80.0	Condizione	Secca	Ambiente	Satura	Cont. d'acqua
Lunghezza (mm)	164.5	Peso (g)		2308		(%)
Volume (cm3)	826.87	Peso di volume (kN/m3)		27.37		
	Tempi di arri	vo tp (μ s)		35.7		Peso umido *
TRASMISSION		ts (μs)		212.9		(g)
ONDE SONICH		Vp (m/s)		4608		
E PARAMETE		Vs (m/s)		N.A.		Peso secco *
CORRELAT		tico dinamico Ed (GPa)		N.A.		(g)
	Rapporto di	Poisson dinamico V d (-)		N.A.		
	PRO	OVA SCLEROMETRICA	Media	R medio	VOLUME C	ON PESATA IDROST.
Letture faccia supe	iore	56-60-58-55-52	56.1		Temp. acqu	a (°C)
Letture superficie la	terale			51.7	Peso in aria	ı (g)

SCHEMA DI ROTTURA

etture faccia inferiore

Legenda:

MODULO L05 - Rev.02 /10.95

44-50-48-46-48

47.2 **DOLOMIA**

NOTE

Condizione

Ambiente

Colore

bianco-nocciola chiaro

Struttura

massiccia ma intensamente fratturata

Piani di discontinuita'

presenti mumerose fratture capillari casualmente

Peso in acqua (g)

Alterazione

presenti vacuoli con concrezioni e cristallizzazioni

piuttosto diffusi

Direz.carico/piani di disc.

Rottura

improvvisa

Comportamento

fragile

Fratturazione

sia su nuovi piani che lungo discontinuità

preesistenti

Osservazioni

Condizioni ambiente :

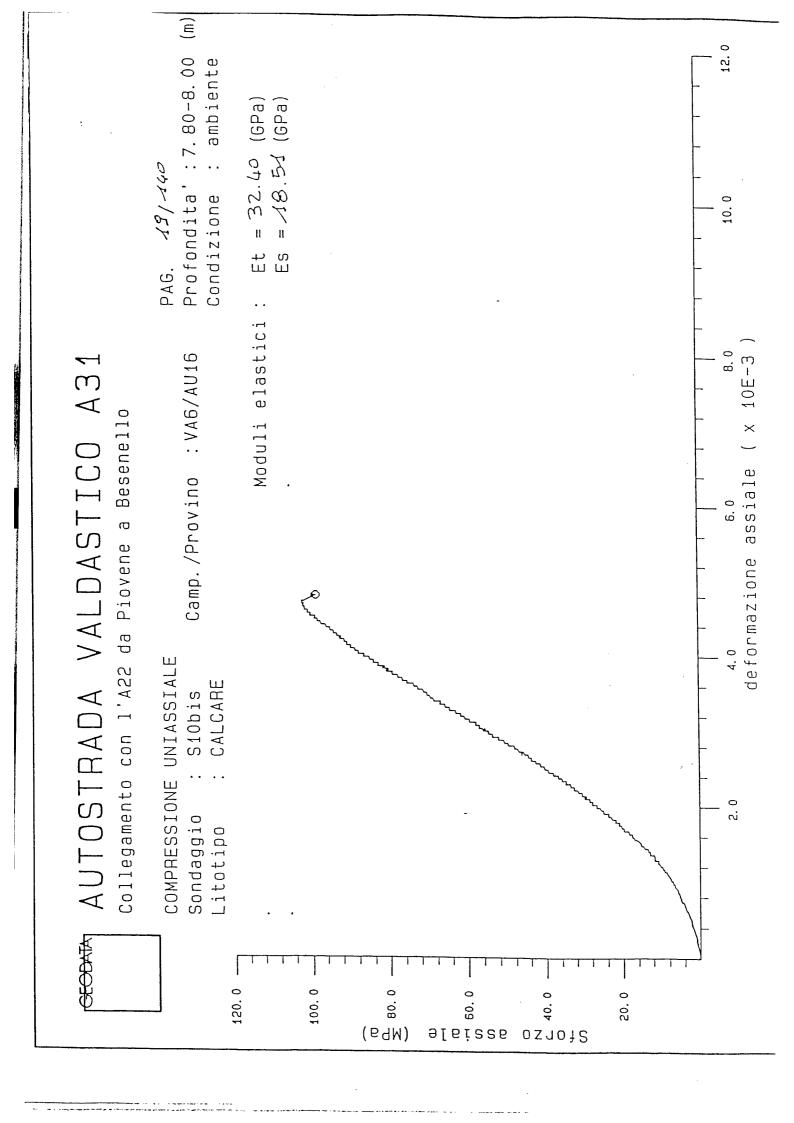
(°C)

Rapporto L/D 26 2,06

Umic	dita' dell'aria (%) 61	2.06
280.16	MODULO ELASTICO TANGENTE Et (GPa)	56.44
55.74	MODULO ELASTICO SECANTE Es (GPa)	39.27
		0.46
60.89	RAPPORTO DI POISSON SECANTE V s (-)	0.19
	280.16 55.74	280.16 MODULO ELASTICO TANGENTE Et (GPa) 55.74 MODULO ELASTICO SECANTE ES (GPa) RAPPORTO DI POISSON TANGENTE V t (-)

Temperatura

L' Operatore (Dr.Geol.Saverio RANA):


Piani preesistenti Piani di rottura

Mune

Il Responsabile (Dr.Ing.Alberto MORINO):

Misure eventuali per calcolo contenuto d'acqua

N.A.: Non Attendibile

COMPRESSIONE **UNIASSIALE**

Rapporto nº:

12/95

1251 Rif.:

Data:

Agosto 1995

22 1140 Pag.:

Committente

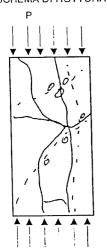
: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente

VICENZETTO S.r.l.

Progetto

Autostrada VALDASTICO A31 - Collegamento con l'A22


Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio :	S10bis	Campione/Provino:		VA9 / AU22		Profondita	·:	10.5	0-10.80	(m)
Diametro (mm)	79.9	Condizione		Secca	Ambiente	Satura		Cont	. d'acqua	
Lunghezza (mm)	163.3	Peso	(g)		2260				(%)	Σ
Volume (cm3)	818.78	Peso di volume (kN/	/m3)		27.07					
	Tempi di arriv	tp	(μs)		36.2			Pes	o umido *	
TRASMISSIONE	Tompi di 2	ts	(μs)		128.6				(g)	
ONDE SONICHE	Velocita'	Vp	(m/s)		4511					
E PARAMETRI		Vs	(m/s)		1270			Pes	so secco *	
CORRELATI	Modulo elasti	co dinamico Ed	(GPa)		12.971				(g)	
00111122111	Rapporto di F	oisson dinamico V	d (-)		0.46					
	PBOV	/A SCLEROMETRICA		Media	R medio	VOL	JME C	ON PESA	TA IDROS	т.
Letture faccia superio		58-48-54-55-50		53.0		Temp.	acqu	a (°C)		
Letture superficie laterale					52.7	Peso	in aria	(g)		

SCHEMA DI ROTTURA

Letture faccia inferiore

MODULO L05 - Rev.02 /10.95

DOLOMIA LITOTIPO

NOTE

Ambiente Condizione

bianco-nocciola chiaro Colore

brecciata con numerose discontinuità Struttura

52.4

e cariature carsiche

Piani di discontinuita'

numerosi casualmente orientati

Alterazione

50-52-54-56-50

presenti patine di ossidazione lungo le discontinuità;

Peso in acqua (g)

Direz.carico/piani di disc.

Rottura

improvvisa

Comportamento

fragile

Fratturazione

sia su nuovi piani che lungo discontinuità

preesistenti

Osservazioni

Area facce prov. (cm2): 50.14

Piani preesistenti Piani di rottura

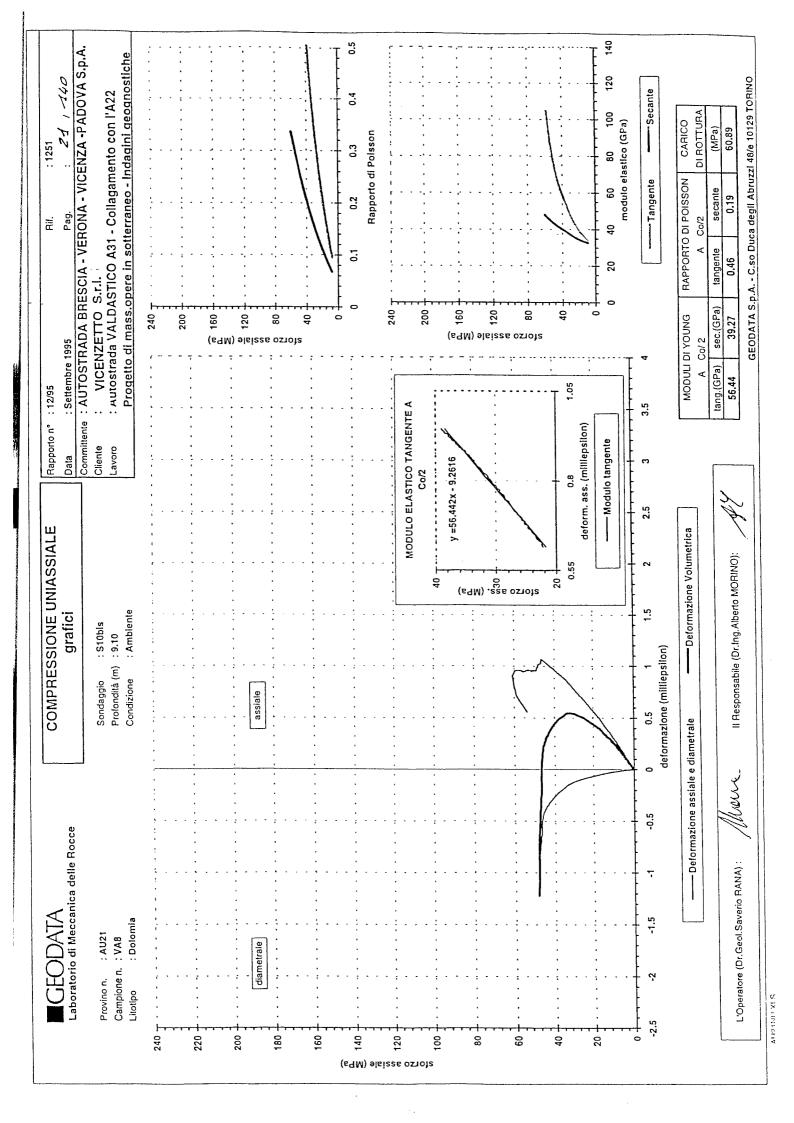
Legenda:

Condizioni ambiente :

(°C) (%) Umidita' dell'aria

26 61 Rapporto L/D 2.04

CARICO DI ROTTURA P (KN)	339.35	MODULO ELASTICO TANGENTE Et (GPa)	50.43
RES. A COMPR. UNIASSIALE C 0' (MPa)	67.68	MODULO ELASTICO SECANTE Es (GPa)	40.51
RESISTENZA A COMPRESSIONE UNIASSIALE		RAPPORTO DI POISSON TANGENTE V t (-)	0.36
CORRETTA Co (D=50mm L/D=2) (MPa)	73.87	RAPPORTO DI POISSON SECANTE V s(-)	0.24
1 COMMENTA CONTRACTOR (CONTRACTOR)	,	THAT ONE DIT GIGGOTT SECRET	


L' Operatore (Dr.Geol.Saverio RANA):

Mueure

Il Responsabile (Dr.Ing.Alberto MORINO):

Misure eventuali per calcolo contenuto d'acqua

N.A.: Non Attendibile

COMPRESSIONE UNIASSIALE

24 1140 12/95 Rif.: 1251 Data: Settembre 1995 Pag.: Rapporto nº: : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente : VICENZETTO S.r.l. Cliente

: Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto

Progetto di massima opere in sotterraneo - Indagini geognostiche

S20	Campione/Provino :	VA25 / AU49		Profondita':	7.6 - 8.0 (m)
78.5	Condizione	Secca	Ambiente	Satura	Cont. d'acqua
162.1	Peso (g)		2151		(%)
784.53	Peso di volume (kN/m3)		26.89		
Tempi di arrivo	tp (μ 5)		25.8		Peso umido •
	ts (μ s)		29.0		(g)
Velocita'	Vp (m/s)		6283		
	Vs (m/s)		5590		Peso secco *
Modulo elastic	o dinamico Ed (GPa)		68.186		(g)
Rapporto di Po	oisson dinamico V d (-)		N.A.		
PROVA	A SCLEROMETRICA	Media	R medio	VOLUME C	ON PESATA IDROST
·e	62-62-62-59-64	61.8		Temp. acqu	a (°C)
ale			64.6	Peso in aria	(g)
)	66-67-68-68-68	67.4	<u></u>	Peso in acq	ua (g)
TTURA	LITOTIPO :	DOLOMIA			
			NOTE		
	Condizione Colore Struttura	ralmente d	istinte, una		
	162.1 784.53 Tempi di arrivo Velocita' Modulo elastic Rapporto di Po	162.1 Peso (g) Peso di volume (kN/m3) Tempi di arrivo tp (μ s)	162.1 784.53 Peso (g) Peso di volume (kN/m3) Tempi di arrivo tp (μ s) ts (μ s) Velocita' Vp (m/s) Ws (m/s) Modulo elastico dinamico Ed (GPa) Rapporto di Poisson dinamico V d (-) PROVA SCLEROMETRICA Media 62-62-62-59-64 fale Condizione Condizione Colore Struttura Condizione Colore Struttura Condizione Colore Struttura Condizione Colore Struttura Condizione Colore Struttura Condizione Colore Colore Struttura Condizione Colore 162.1 784.53 Peso (g) 2151 784.53 Peso di volume (kN/m3) 26.89 Tempi di arrivo tp (μ s) 25.8 1s (μ s) 29.0 Velocita' Vp (m/s) 5590 Modulo elastico dinamico Ed (GPa) 68.186 Rapporto di Poisson dinamico V d (·) N.A. PROVA SCLEROMETRICA Media R medio 62-62-62-59-64 61.8 rate 62-62-68-68 67.4 DTURA LITOTIPO : DOLOMIA NOTE Condizione : Ambiente Colore : biancastro Struttura : massiccia, costituita de control contro	162.1	

SCHEMA DI ROTTURA

Piani di discontinuita' assenti

Alterazione assente

Direz.carico/piani di disc.

con esplosione Rottura

marcatamente fragile Comportamento

diffusa nella matrice su nuovi piani paralleli Fratturazione

all'asse di carico

Osservazioni

Piani preesistenti Piani di rottura

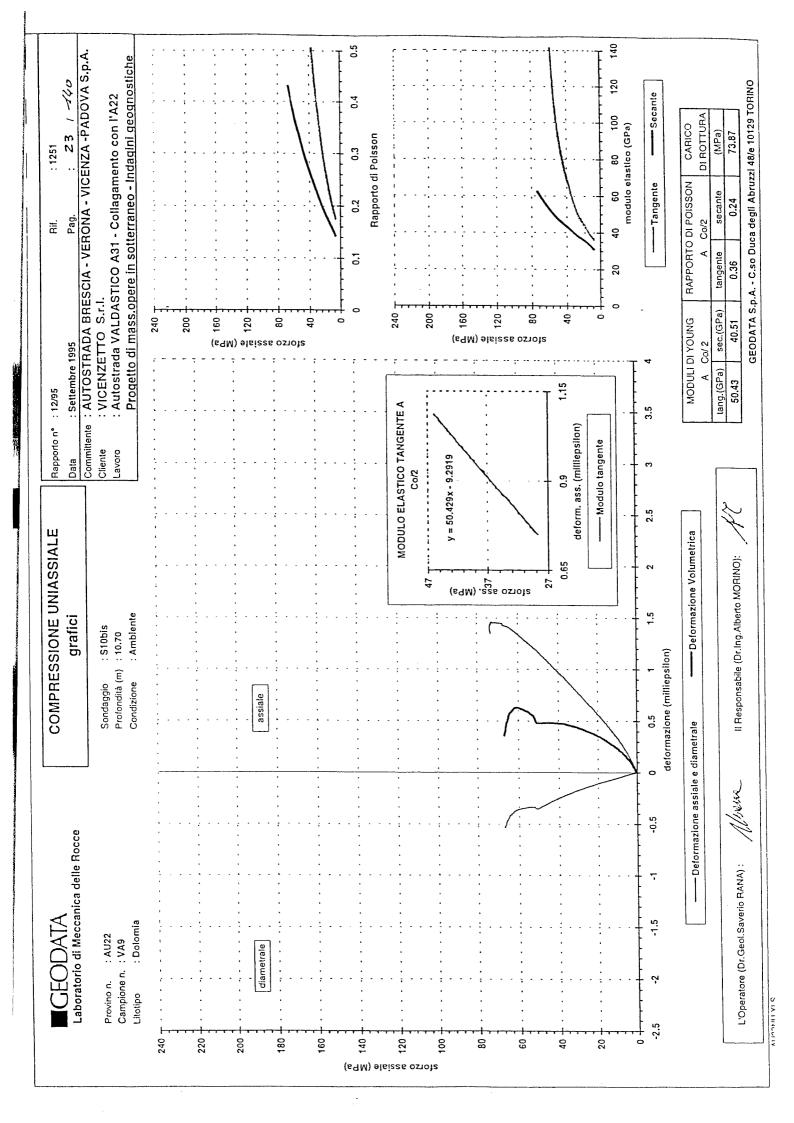
48.40 Area facce prov. (cm2):

Legenda:

Rapporto L/D (°C) 24 Condizioni ambiente : Temperatura 2.06 71 (%) Umidita' dell'aria

714.04	MODULO ELASTICO TANGENTE Et (GPa)	70.09
147.53	MODULO ELASTICO SECANTE Es (GPa)	68.23
	RAPPORTO DI POISSON TANGENTE V t (-)	0.27
160.73		0.22
	147.53	147.53 MODULO ELASTICO SECANTE ES (GPa) RAPPORTO DI POISSON TANGENTE V t (-)

L' Operatore (Dr.Geol.Saverio RANA):


Merre

Il Responsabile (Dr.Ing.Alberto MORINO):

Misure eventuali per calcolo contenuto d'acqua

N.A.: Non Attendibile

COMPRESSIONE **■**GFODATA Laboratorio di Meccanica delle Rocce UNIASSIALE 26 1140 Pag.: Settembre 1995 12/95 Rif.: 1251 Data: Rapporto nº: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente Cliente VICENZETTO S.r.l. Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche VA28 / AU50 Profondita': 11.20-11.60 (m) S20 Campione/Provino: Sondaggio: Ambiente Satura Condizione Secca Cont. d'acqua 78.5 Diametro (mm) (%) 2157 158.7 Peso (g) (mm) Lunghezza 27.54 768.08 Peso di volume (kN/m3) Volume (cm3) 23.3 Peso umido * tp (μs) Tempi di arrivo (q) 27.3 (µ s) TRASMISSIONE 6811 Vp (m/s) ONDE SONICHE Velocita' 5813 Peso secco * Vs (m/s) E PARAMETRI (g) 30.156 Ed (GPa) Modulo elastico dinamico CORRELATI N.A. Rapporto di Poisson dinamico V d (-) VOLUME CON PESATA IDROST. R medio PROVA SCLEROMETRICA Media 67-68-69-68-68 68.0 Temp. acqua (°C) Letture faccia superiore 66.6 Peso in aria (g) Letture superficie laterale 65.2 Peso in acqua (g) 64-66-64-67-65 Letture faccia inferiore MODULO L05 - Rev.02 /10.95

SCHEMA DI ROTTURA

LITOTIPO **DOLOMIA**

NOTE

Ambiente Condizione Colore biancastro

massiccia, poco fratturata con qualche Struttura

microcariature

Piani di discontinuita

Alterazione assente

Direz.carico/piani di disc.

con esplosione Rottura

Comportamento

fragile

Fratturazione

principale su nuovi piani, secondaria su

discontinuità preesistente

(°C)

(%)

Osservazioni

Condizioni ambiente : Temperatura 48.40 Umidita' dell'aria Area facce prov. (cm2):

101.12 (GPa) CARICO DI ROTTURA (kN) 498.59 MODULO ELASTICO TANGENTE Εt 106.57 103.02 (GPa) RES. A COMPR. UNIASSIALE (MPa) MODULO ELASTICO SECANTE 0.33 RAPPORTO DI POISSON TANGENTE RESISTENZA A COMPRESSIONE UNIASSIALE V t (-) V s(-) 0.28 (MPa) 111.93 RAPPORTO DI POISSON SECANTE CORRETTA Co (D=50mm L/D=2)

L' Operatore (Dr.Geol.Saverio RANA):

Piani preesistenti Piani di rottura

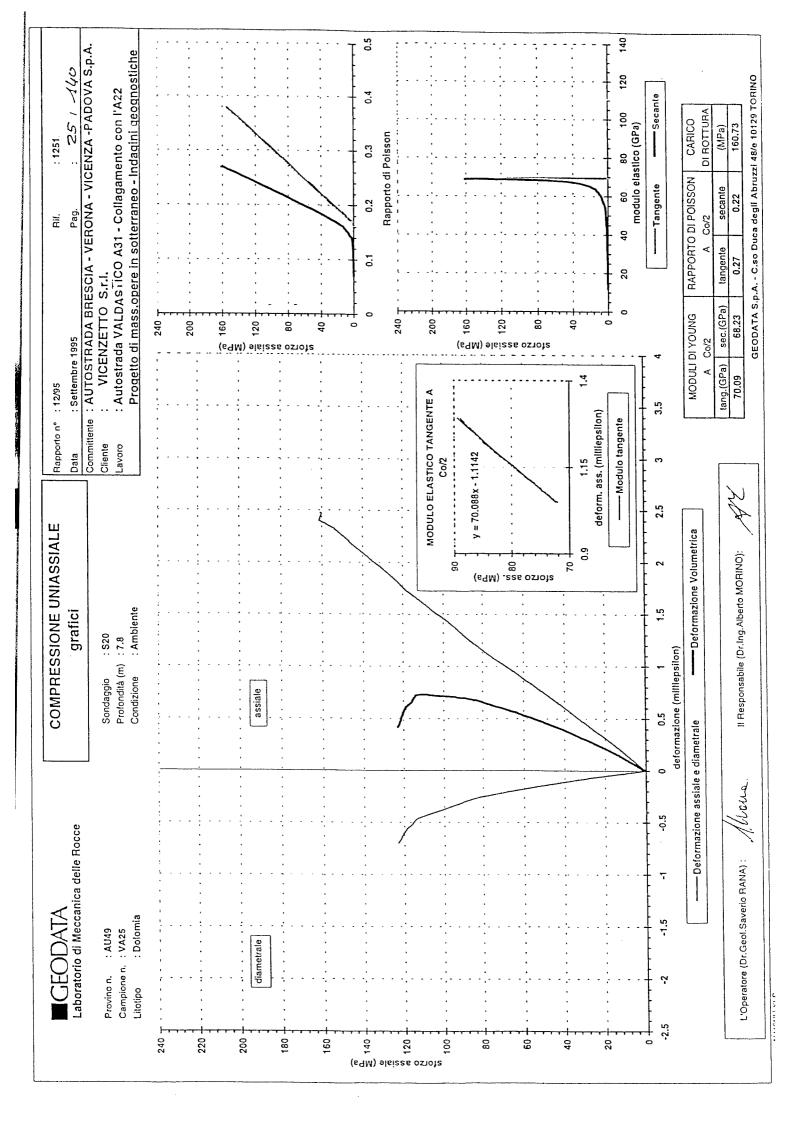
Mure

Il Responsabile (Dr.Ing.Alberto MORINO):

Rapporto L/D

2.02

Misure eventuali per calcolo contenuto d'acqua


Non Attendibile N.A.:

Legenda:

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

25

61

COMPRESSIONE UNIASSIALE

Rapporto n°: 12/95 Rif.: 1251 Data: Settembre 1995 Pag.: 28/1/40

Committente : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente : VICENZETTO S.r.l.

Progetto : Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio :		S22	Campione/Provino:	VA12 / AU92		Profondita':	33.00-33.	30 (m
Diametro	(mm)	78.5	Condizione	Secca	Ambiente	Satura	Cont. d'acq	ua
Lunghezza	(mm)	160.8	Peso (g)		2097	_	(%)	
Volume	(cm3)	778.24	Peso di volume (kN/m3)		26.42			
		Tempi di arrivo	tp (μ s)		39.5		Peso umio	io *
TRASMIS	SIONE		ts (μs)	49.7		(g)	
ONDE SO		Velocita'	Vp (m/s)		4071			
E PARA			Vs (m/s)		3235		Peso seco	:o •
	RELATI	Modulo elastic	co dinamico Ed (GPa)		36.245		(g)
		Rapporto di P	oisson dinamico V d (-)		0.36			
PROVA SCLEROMETRICA		Media	R medio	VOLUME C	VOLUME CON PESATA IDROST			
Letture faccia superiore		e	46-46-32-54-50	45.6		Temp. acqu	ıa (°C)	
Letture superficie laterale		ale			48.1	Peso in aria	a (g)	
Letture faccia inferiore			41-49-56-55-52	50.6	l	Peso in acc	qua (g)	

SCHEMA DI ROTTURA

MODULO L05 - Rev.02 /10.95

LITOTIPO :

DOLOMIA BRECCIATA

NOTE

Condizione : Ambiente
Colore : biancastro

Struttura : brecciata con elementi eterometrici, abbondanti

in matrice fine

Piani di discontinuital

Alterazione : frequenti passaggi a struttura vacuolare

Direz.carico/piani di disc.

Rottura : improvvisa

Comportamento : rapida caduta del carico

Fratturazione : irregolare, inclinata lungo nuovo piano

Osservazioni :

Legenda:

Area facce prov. (cm2):

Piani preesistenti
Piani di rottura

Condizioni ambiente :

Temperatura (°C)
Umidita' dell'aria (%)

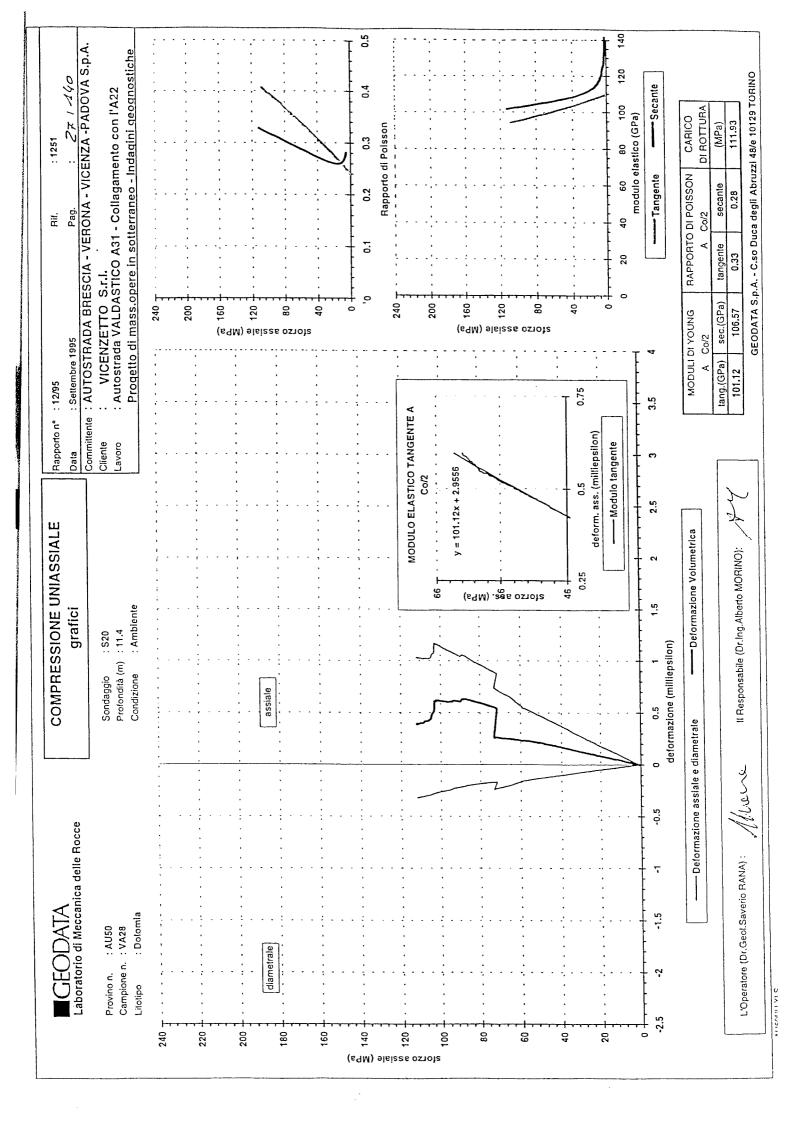
25 61

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

Rapporto L/D
2.05

CARICO DI ROTTURA P (kN)	291.66	MODULO ELASTICO TANGENTE Et (GPa)	38.27
RES. A COMPR. UNIASSIALE C 0' (MPa)	60.26	MODULO ELASTICO SECANTE Es (GPa)	32.77
RESISTENZA A COMPRESSIONE UNIASSIALE		RAPPORTO DI POISSON TANGENTE V t (-)	0.29
CORRETTA C 0 (D=50mm L/D=2) (MPa)	65.58	RAPPORTO DI POISSON SECANTE V s (-)	0.18

L' Operatore (Dr.Geol.Saverio RANA) :


Mure

II Responsabile (Dr.Ing.Alberto MORINO):

AT

48.40

Misure eventuali per calcolo contenuto d'acqua

COMPRESSIONE UNIASSIALE

30 1140 12/95 Rif.: 1251 Data: Settembre 1995 Pag.: Rapporto nº: : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente VICENZETTO S.r.l. Cliente

Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio :	S20	Campione/Provino:	VA23 / AU93		Profondita':	6.40-6.60 (1
Diametro (mm)	78.5	Condizione	Secca	Ambiente	Satura	Cont. d'acqua
Lunghezza (mm)	160.3	Peso (g)		2170		(%)
Volume (cm3)	775.82	Peso di volume (kN/m3)		27.43		
	Tempi di arrivo	tp (μ s)		24.5		Peso umido *
TRASMISSIONE		ts (μ s)		36.3		(g)
ONDE SONICHE	Velocita'	Vp (m/s)		6543		
E PARAMETRI		Vs (m/s)		4416		Peso secco *
CORRELATI	Modulo elastic	o dinamico Ed (GPa)		N.A.		(g)
	Rapporto di Po	oisson dinamico V d (-)		N.A.		
	PROV	A SCLEROMETRICA	Media	R medio	VOLUME C	CON PESATA IDROST.
Letture faccia superio	re	68-67-68-67-68	67.6		Temp. acqu	ла (°С)
Letture superficie late	rale			68.1 Peso in a		a (g)
Letture faccia inferiore	9	68-69-68-70-68	68.6			cqua (g)
SCHEMA DI RO	TTURA	LITOTIPO :	DOLOMIA			
Р				NOTE		
		Condizione Colore Struttura	: Ambiente: biancastro: massiccia,		ırata con quale	che
		Piani di discontinuita'	microcaria	ture		

SCHEMA DI ROTTURA

Piani di discontinuita'

Alterazione assente

Direz.carico/piani di disc.

Rottura improvvisa

fragile Comportamento

principale su nuovi piani, secondaria su Fratturazione

discontinuità preesistente

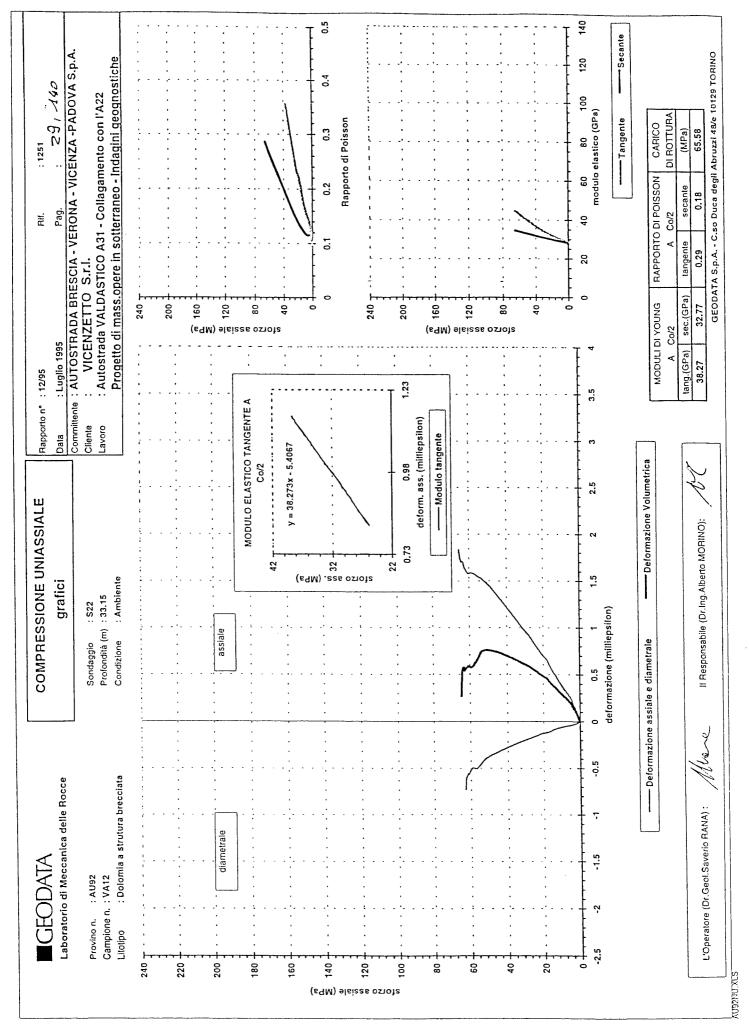
Osservazioni

Piani preesistenti

25 Rapporto L/D (°C) Condizioni ambiente : Temperatura 2.04 (%) Area facce prov. (cm2): 48.40 Umidita' dell'aria

CARICO DI ROTTURA P (KN)	285.70	MODULO ELASTICO TANGENTE Et (GPa)	89.88
RES. A COMPR. UNIASSIALE C ₀ ' (MPa)	59.03	MODULO ELASTICO SECANTE Es (GPa)	96.38
RESISTENZA A COMPRESSIONE UNIASSIALE		RAPPORTO DI POISSON TANGENTE V t (-)	0.22
CORRETTA C 0 (D=50mm L/D=2) (MPa)	64.22	RAPPORTO DI POISSON SECANTE V s (-)	0.25

L' Operatore (Dr.Geot.Saverio RANA) :


Piani di rottura

II Responsabile (Dr.Ing.Alberto MORINO) :

* Misure eventuali per calcolo contenuto d'acqua

Non Attendibile N.A.:

Legenda:

COMPRESSIONE UNIASSIALE

32/140 Settembre 1995 Pag.: 12/95 Rif.: 1251 Data: Rapporto nº: : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente VICENZETTO S.r.I. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Campione/Provino: VA29 / AU94 Profondita': 11.60-11.80 (m) S20 Sondaggio: а

Solidaygid.		020	eamplement t	O 11170 .	***********				
Diametro	(mm)	78.5	Condizione	•	Secca	Ambiente	Satura	Con	it. d'acqua
Lunghezza	(mm)	147.5	Peso	(g)		1964			(%)
Volume	(cm3)	713.87	Peso di vo	lume (kN/m3)		26.98			
		Tempi di arri	vo	tp (μ s)		27.5		Pe	so umido
TRASM	ISSIONE	·		ts (μs)		33.9			(g)
ONDE S	ONICHE	Velocita'		Vp (m/s)		5364			
E PAF	RAMETRI			Vs (m/s)		4351		Pe	so secco
СО	RRELATI	Modulo elas	tico dinamico	Ed (GPa)		56.020			(g)
		Rapporto di	Poisson dinami	co V d (-)		0.46			
		PRO	VA SCLEROM	ETRICA	Media	R medio	VOLUME	CON PES	ATA IDRO
							1		

Rappo	to di Poisson dinamico V d (-)		0.46	
	PROVA SCLEROMETRICA	Media	R medio	VOLUME CON PESATA IDROST.
Letture faccia superiore	54-54-54-55-52	53.8		Temp. acqua (°C)
Letture superficie laterale			58.5	Peso in aria (g)
Letture faccia inferiore	64-66-64-62-60	63.2		Peso in acqua (g)

SCHEMA DI ROTTURA
P

MODULO L05 - Rev.02 /10.95

LITOTIPO : DOLOMIA

NOTE

Condizione : Ambiente
Colore : biancastro

Struttura : massiccia, costituita da due porzioni tessitu-

ralmente distinte, una micritica l'altra sub-

saccaroide

Piani di discontinuita' : assenti

Alterazione : assente

Direz.carico/piani di disc.

Rottura : improvvisa

Comportamento : rapida caduta del carico

Fratturazione : principale su nuovi piani, secondaria su

discontinuità preesistente

Osservazioni

Piani preesistenti
Piani di rottura

Legenda:

Area facce prov. (cm2): 48.40

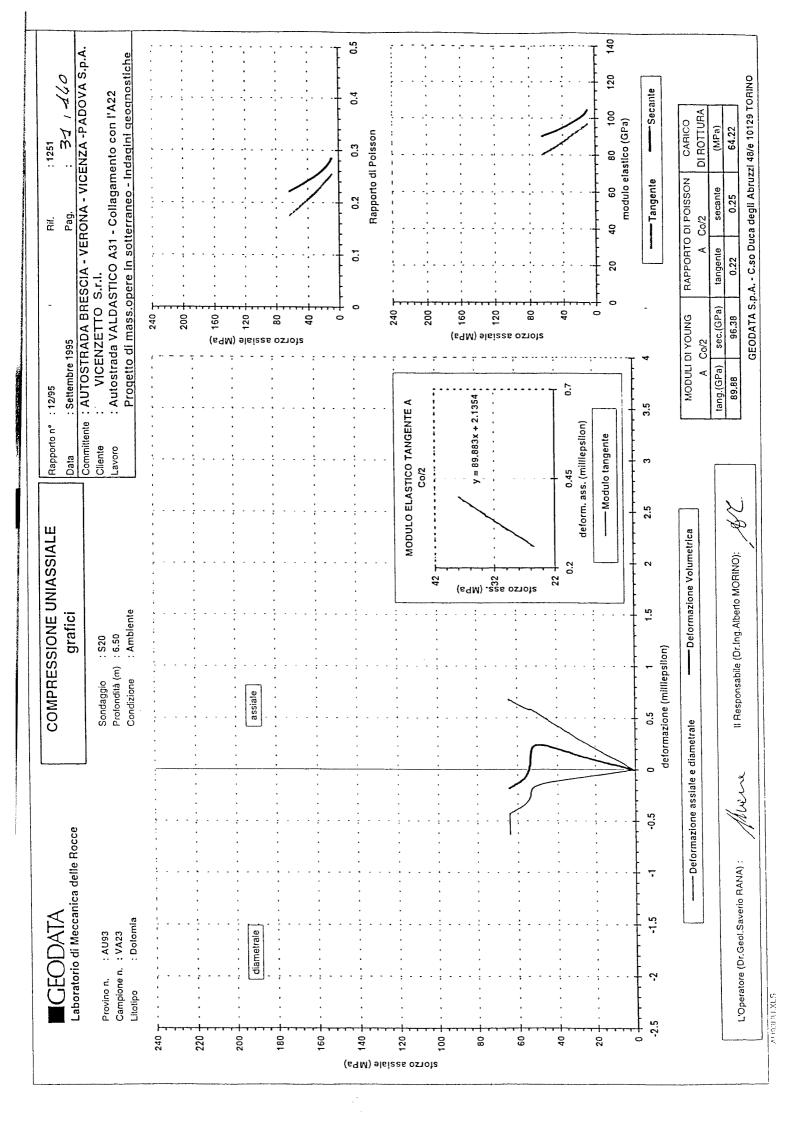
Condizioni ambiente : Temperatura (°C) 25
Umidita' dell'aria (%) 61

325.72 Εt (GPa) 108.69 MODULO ELASTICO TANGENTE (kN) CARICO DI ROTTURA 119.88 (MPa) 67.30 MODULO ELASTICO SECANTE (GPa) C 0, RES. A COMPR. UNIASSIALE RAPPORTO DI POISSON TANGENTE V t (-) RESISTENZA A COMPRESSIONE UNIASSIALE (MPa) 72.40 ν_{s(-)} (D=50mm L/D=2) CORRETTA Co RAPPORTO DI POISSON SECANTE

L' Operatore (Dr.Geol.Saverio RANA) :

Mrene

II Responsabile (Dr.Ing.Alberto MORINO):


AC

Rapporto L/D

1.88

* Misure eventuali per calcolo contenuto d'acqua

N.A.: Non Attendibile

COMPRESSIONE UNIASSIALE

Pag.:

341140

Settembre 1995 Rapporto nº: 12/95 Rif.: 1251 Data:

Committente Cliente

VICENZETTO S.r.I.

Progetto

MODULO L05 - Rev.02 /10.95

Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Sondaggio :	S22	Campione/Provino:	VA11 / AU116		Profondita':	33.50-33.80 (m)
Diametro (mm)	62.1	Condizione	Secca	Ambiente	Satura	Cont. d'acqua
Lunghezza (mm)	127.7	Peso (g)	_	1074		(%)
Volume (cm3)	368.78	Peso di volume (kN/m3)		27.23		
	Tempi di arr	ivo tp (μs)		19.0		Peso umido *
TRASMISSIONE	<u>'</u>	ts (µs)		36.1		(9)
ONDE SONICHE	Velocita'	Vp (m/s)		6721		
E PARAMETRI		Vs (m/s)		3537		Peso secco *
CORRELATI	Modulo elas	tico dinamico Ed (GPa)		90.929		(g)
	Rapporto di	Poisson dinamico V d (-)		0.31	·	
	PRO	DVA SCLEROMETRICA	Media	R medio	VOLUME C	ON PESATA IDROST.
Letture faccia superio	re	48-48-54-55-56	52.2		Temp. acqu	a (°C)
Letture superficie late	rale			54.5	Peso in aria	(g)
Letture faccia inferior	e	54-54-58-59-59	56.8		Peso in acq	ua (g)

SCHEMA DI ROTTURA Legenda:

DOLOMIA BRECCIATA LITOTIPO :

NOTE

Condizione

Colore

Struttura

brecciata con elementi eterometrici, abbondanti

in matrice fine

Piani di discontinuita'

Alterazione

frequenti passaggi a struttura vacuolare

Direz.carico/piani di disc.

Rottura

progressiva

Comportamento

rapida caduta del carico

Fratturazione

principale su nuovi piani, secondaria su

discontinuità preesistente

Osservazioni

Piani preesistenti Piani di rottura

30.29

Condizioni ambiente :

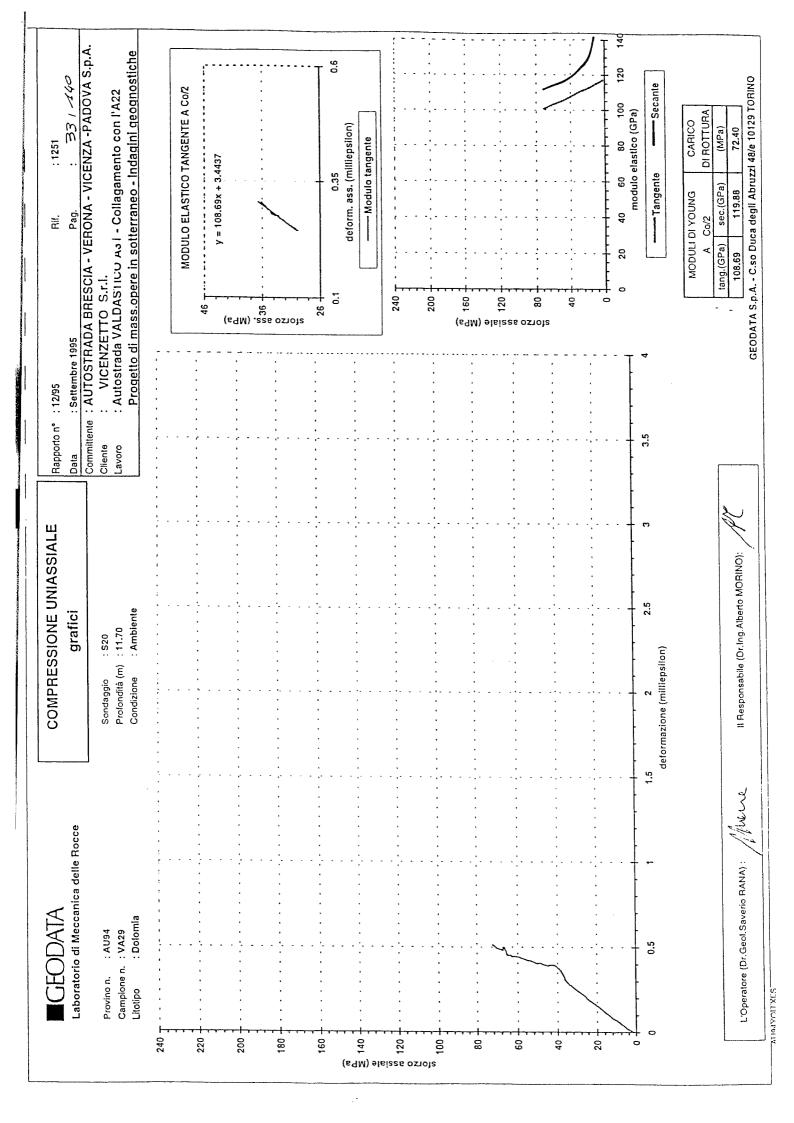
Temperatura Umidita' dell'aria (°C) (%)

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

Rapporto L/D 2.06

		7	00.70
CARICO DI ROTTURA P (kN)	155.84	MODULO ELASTICO TANGENTE Et (GPa)	82.70
RES. A COMPR. UNIASSIALE Co' (MPa)	51.45	MODULO ELASTICO SECANTE Es (GPa)	73.82
RESISTENZA A COMPRESSIONE UNIASSIALE		RAPPORTO DI POISSON TANGENTE V t (-)	N.A.
CORRETTA C ₀ (D=50mm L/D=2) (MPa)	53.71	RAPPORTO DI POISSON SECANTE V s (-)	N.A.

L' Operatore (Dr.Geol.Saverio RANA) :


Il Responsabile (Dr.Ing.Alberto MORINO) :

N.A.: Non Attendibile

Area facce prov. (cm2):

AU116.XLS

Misure eventuali per calcolo contenuto d'acqua

COMPRESSIONE

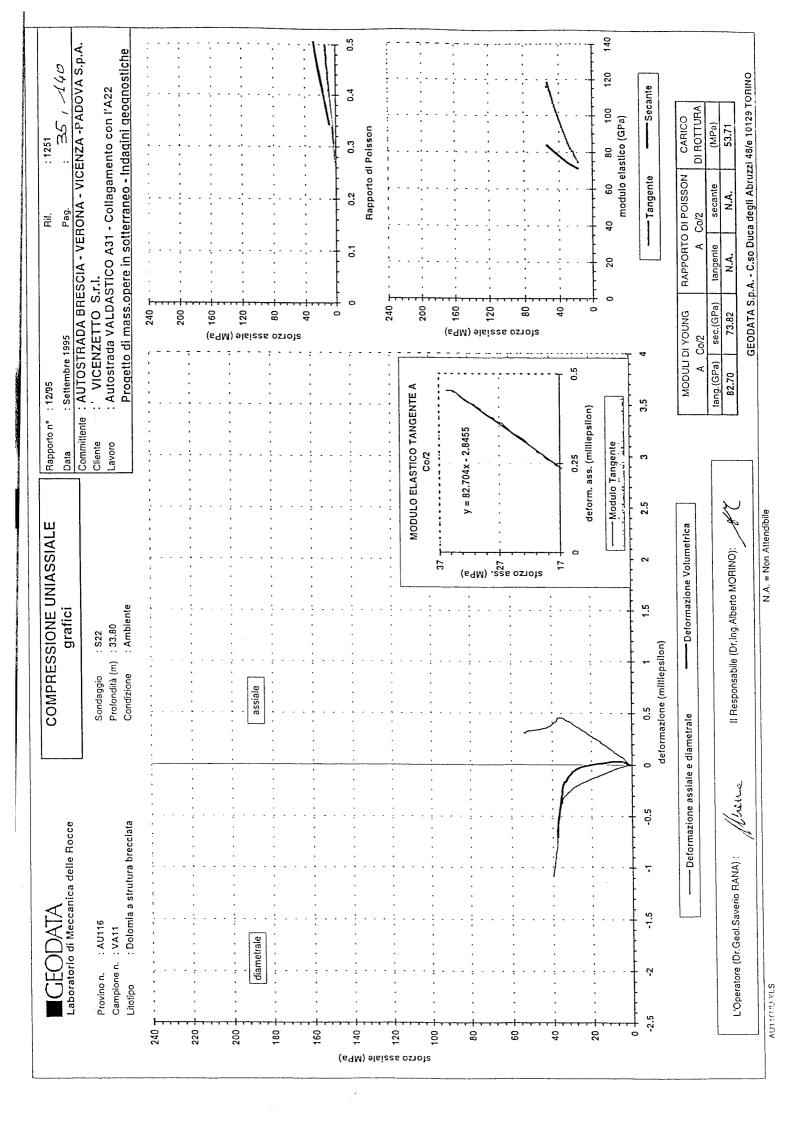
Laboratorio di Meccanica delle Rocce UNIASSIALE 36 1140 Settembre 1995 Pag.: Rapporto nº: 12/95 Rif.: 1251 Data: : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente Cliente VICENZETTO S.r.l. Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Campione/Provino: CL12 / AU103 Profondita': 34.70-34.80 S27 Sondaggio: Satura Condizione Secca Ambiente Diametro (mm) 78.5 Cont. d'acqua (%) 2174 161.1 Peso Lunghezza (mm) (g) 27,34 Volume 779.69 Peso di volume (kN/m3) (cm3) 24.1 tp (μs) Peso umido * Tempi di arrivo (g) 35.9 (µ s) TRASMISSIONE 6685 Vp (m/s) ONDE SONICHE Velocita' 4487 Vs (m/s) E PARAMETRI Peso secco * (g) Ed (GPa) N.A. Modulo elastico dinamico CORRELATI N.A. V d (-) Rapporto di Poisson dinamico R medio VOLUME CON PESATA IDROST. PROVA SCLEROMETRICA Media Temp. acqua (°C) 67.0 Letture faccia superiore 66-67-68-67-67 66.7 Peso in aria (g) Letture superficie laterale 66.4 Peso in acqua (g) 65-66-67-68-66 Letture faccia inferiore MODULO L05 - Rev.02 /10.95 **DOLOMIA** LITOTIPO SCHEMA DI ROTTURA NOTE Ambiente Condizione biancastro Colore massiccia, poco fratturata con qualche rara Struttura microcariature Piani di discontinuita assente Alterazione Direz.carico/piani di disc. con esplosione Rottura fragile Comportamento formazione di numerosi nuovi piani di rottura Fratturazione paralleli all'asse di carico Osservazioni Legenda: Piani preesistenti Piani di rottura Rapporto L/D Temperatura (°C) 25 Condizioni ambiente : 2.05 Umidita' dell'aria (%)

trea fa	CC	е	р	0	٧.	(0	m	2)	:		١			4	8.	4	0	
	=	_	=	_	=	=	_	=	Ξ	_	_	_	-	=	_	=	_	 =
										_								

74.17 (GPa) 580.34 MODULO ELASTICO TANGENTE Εt CARICO DI ROTTURA (kN) 74.67 RES. A COMPR. UNIASSIALE С°, (MPa) 119.91 (GPa) MODULO ELASTICO SECANTE N.A. RESISTENZA A COMPRESSIONE UNIASSIALE RAPPORTO DI POISSON TANGENTE ∨ t (-) 0.27 CORRETTA C 0 (D=50mm L/D=2) (MPa) 130.53 ν_{s(-)} RAPPORTO DI POISSON SECANTE

L'Operatore (Dr.Geol.Saverio RANA):

Juene


Il Responsabile (Dr.Ing.Alberto MORINO):

क्रमान्य साम्बर्धान्य वर्षात्र वर्षात्र वर्षात्र वर्षात्र वर्षात्र वर्षात्र वर्षात्र वर्षात्र वर्षात्र वर्षात्

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

' Misure eventuali per calcolo contenuto d'acqua

N.A.: Non Attendibile

IGFODATA COMPRESSIONE aboratorio di Meccanica delle Rocce UNIASSIALE 12/95 Settembre 1995 38 1140 Rapporto n°: Rif.: 1251 Data: Pag.: Committente : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. VICENZETTO S.r.I. Cliente : Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: Campione/Provino: CL14 / AU104 Profondita': 35.70-35.90 Condizione Secca Ambiente Satura Diametro 78.5 (mm) Cont. d'acqua (%) 2075 154.7 Peso Lunghezza (mm) (g) 748.72 Peso di volume (kN/m3) 27.18 Volume (cm3) 25.7 Peso umido * Tempi di arrivo tp (μs) 39.6 (g) (μs) TRASMISSIONE 6019 Vp (m/s) ONDE SONICHE Velocita' 3907 Vs (m/s) Peso secco * E PARAMETRI Modulo elastico dinamico Ed (GPa) 96.121 CORRELATI 0.14 Rapporto di Poisson dinamico V d (-) VOLUME CON PESATA IDROST. PROVA SCLEROMETRICA Media R medio 61.2 Letture faccia superiore 60-61-61-63 Temp. acqua (°C) 57.6 Letture superficie laterale Peso in aria (g) Letture faccia inferiore 50-51-54-57-58 54.0 Peso in acqua (g) MODULO L05 - Rev.02 /10.95 LITOTIPO **DOLOMIA** SCHEMA DI ROTTURA NOTE Condizione **Ambiente** Colore biancastro Struttura

massiccia, poco fratturata con qualche rara

microcariature

Piani di discontinuital

Alterazione

presenti patine di ossidazione nelle fratture

Direz.carico/piani di disc.

Rottura

improvvisa

Comportamento

lenta caduta del carico

Fratturazione

lungo superfci preesistenti

Osservazioni

48.40 Area facce prov. (cm2):

· · · · Piani preesistenti Piani di rottura

Legenda:

Temperatura (°C) Condizioni ambiente : Umidita' dell'aria (%)

24

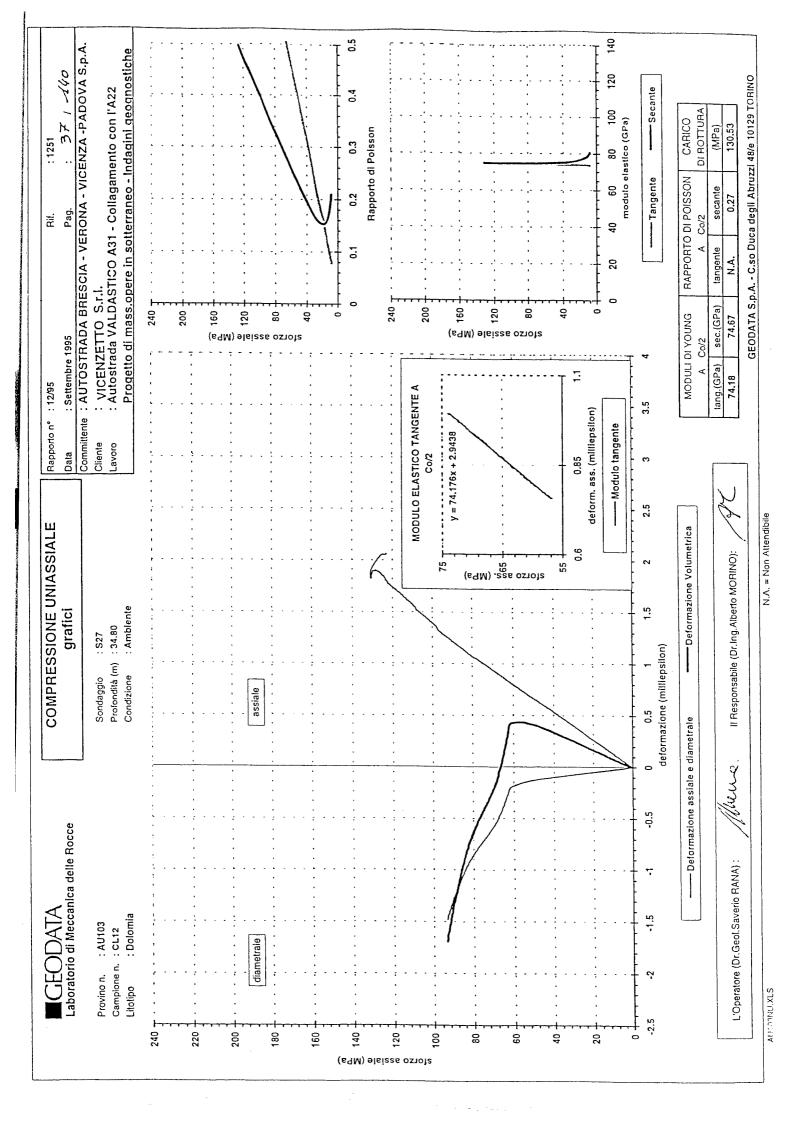
Rapporto L/D 1.97

172.02 CARICO DI ROTTURA RES. A COMPR. UNIASSIALE Co' (MPa) 35.54 RESISTENZA A COMPRESSIONE UNIASSIALE CORRETTA C ₀ (D=50mm L/D=2) 38.49

61.79 MODULO ELASTICO TANGENTE (GPa) 55.77 MODULO ELASTICO SECANTE (GPa) RAPPORTO DI POISSON TANGENTE V t (-) V s(-) RAPPORTO DI POISSON SECANTE

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

L' Operatore (Dr.Geol.Saverio RANA):


from

Il Responsabile (Dr.Ing.Alberto MORINO):

Misure eventuali per calcolo contenuto d'acqua

N.A.: Non Attendibile

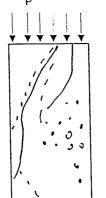
AU104.XLS

COMPRESSIONE UNIASSIALE

Rapporto n°: 12/95 Rif.: 1251 Data: Settembre 1995 Pag.: 40 / 140

Committente : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente : VICENZETTO S.r.l.


Progetto : Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio :		S27	Campione/Provino :	CL17 / AU105		Profondita':	45.60-45.80 (m)
Diametro (mi	m)	78.5	Condizione	Secca	Ambiente	Satura	Cont. d'acqua
Lunghezza (mi	m)	141.8	Peso (g)		1847		(%)
Volume (cn	13)	686.29	Peso di volume (kN/m3)		26.39		
		Tempi di arriv	/o tp (μ	s)	24.9		Peso umido *
TRASMISSIO	ONE		ts (μ	s)	40.3		(g)
ONDE SONIC	CHE	Velocita'	Vp (m/s	5)	5695		
E PARAME	TRI		Vs (m/s	3)	3519		Peso secco *
CORREI	_ATI	Modulo elast	ico dinamico Ed (GPa)		79.382		(g)
		Rapporto di	Poisson dinamico V d (-)		0.19		
		PRO	VA SCLEROMETRICA	Media	R medio	VOLUME (CON PESATA IDROST.
Letture faccia su	perior	'e	58-61-62-63-64	61.6		Temp. acqu	ла (°С)
Letture superfici	e later	ale			59.6	Peso in aria	a (g)
Letture faccia inf	eriore)	53-57-60-61-57	57.6		Peso in acc	qua (g)

SCHEMA DI ROTTURA

MODULO L05 - Rev.02 /10.95

LITOTIPO :

DOLOMIA BRECCIATA

NOTE

Condizione : Ambiente

Colore : bianco - grigiastro

Struttura : brecciata, con numerose microcariature

Piani di discontinuita'

Alterazione : diffusa nella matrice

Direz.carico/piani di disc.

Rottura : improvvisa

Comportamento : fragile

Fratturazione : lungo superfci preesistenti e su nuovi piani

Osservazioni :

Piani preesistenti

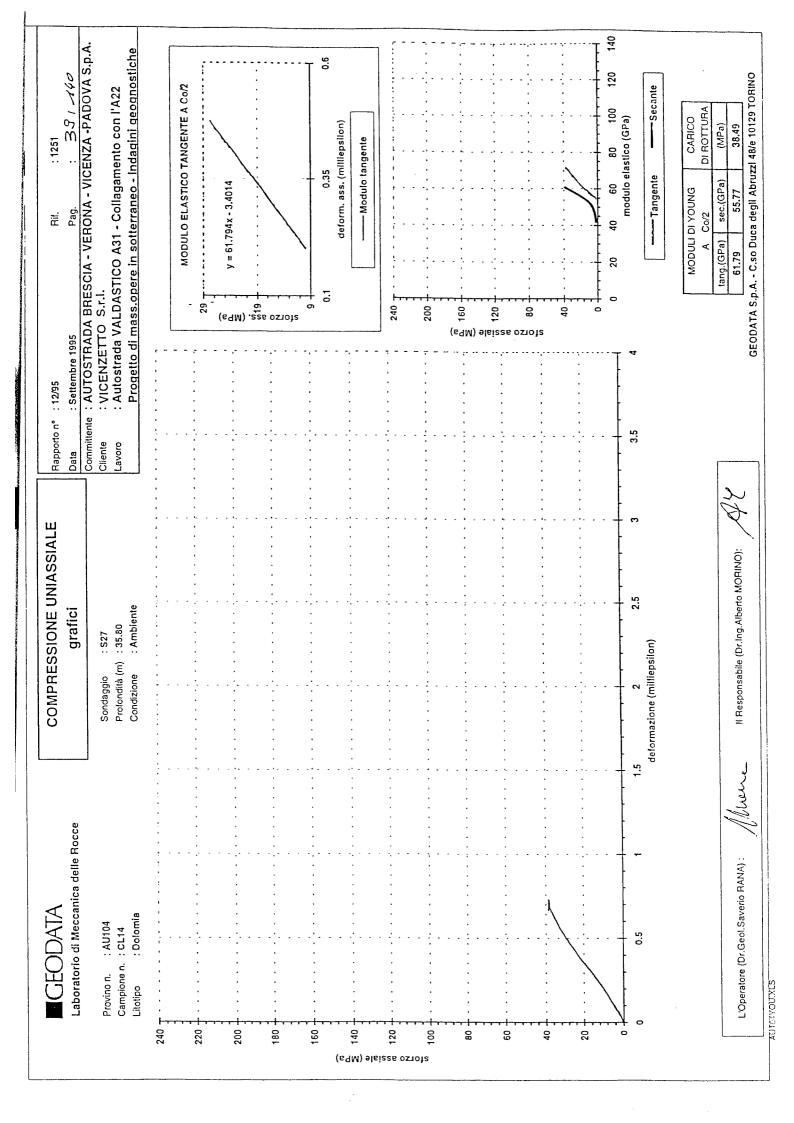
----- Piani di rottura

48.40 Condizioni ambiente : Temperatura (°C) 24 Rapporto L/D
Umidita' dell'aria (%) 61 1.81

Area facce prov. (cinz) . 40.40	UIII	iulta dell'alia (76)	
CARICO DI ROTTURA P (KN)	365.31	MODULO ELASTICO TANGENTE Et (GPa)	81.72
RES. A COMPR. UNIASSIALE Co' (MPa)	75.48	MODULO ELASTICO SECANTE Es (GPa)	71.74
RESISTENZA A COMPRESSIONE UNIASSIALE		RAPPORTO DI POISSON TANGENTE VI (-)	0.20
CORRETTA C 0 (D=50mm L/D=2) (MPa)	80.75	RAPPORTO DI POISSON SECANTE V s (-)	0.15

L' Operatore (Dr.Geol.Saverio RANA) :

Mure


Il Responsabile (Dr.Ing.Alberto MORINO):

M

* Misure eventuali per calcolo contenuto d'acqua

N.A.: Non Attendibile

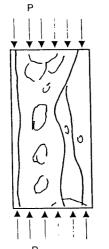
Area tagge provi (cm2):

COMPRESSIONE UNIASSIALE

42 1540 Pag.: 12/95 1251 Data: Settembre 1995 Rapporto nº: Rif.:

: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente

Cliente **VICENZETTO S.r.I.**


Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio :	S27	Campione/Provino:	CL19 / AU106		Profondita':	46.50-46.70 (n
Diametro (mm)	78.5	Condizione	Secca	Ambiente	Satura	Cont. d'acqua
Lunghezza (mm)	139.1	Peso (g)		1803		(%)
Volume (cm3)	673.22	Peso di volume (kN/m3)		26.26		
	Tempi di arri	vo tp (μs)		24.0		Peso umido *
TRASMISSIONE	,	ts (μs)		38.0		(g)
ONDE SONICHE	Velocita'	Vp (m/s)		5796		
E PARAMETRI		Vs (m/s)		3661		Peso secco *
CORRELATI	Modulo elas	tico dinamico Ed (GPa)		83.837		(g)
	Rapporto di	Poisson dinamico V d (-)		0.17		
	PRC	VA SCLEROMETRICA	Media	R medio	VOLUME (ON PESATA IDROST.
Letture faccia superio	re	57-42-60-62-59	56.0		Temp. acqu	ıa (°C)
Letture superficie late	rale			51.7	Peso in aria	ı (g)
Letture faccia inferior	е	40-40-53-54-50	47.4		Peso in acc	lua (g)
SCHEMA DI BO	TTI ID A	LITOTIPO :	DOLOMIA	BRECCIAT	Α	

SCHEMA DI ROTTURA

MODULO L05 - Rev.02 /10.95

NOTE

Ambiente Condizione

bianco - grigiastro Colore

brecciata, con qualche microcariatura e numerose Struttura

fratture capillari

Piani di discontinuita'

Alterazione

diffusa nella matrice

Direz.carico/piani di disc.

Rottura

improvvisa

Comportamento

lenta caduta del carico

Fratturazione

su nuovi piani paralleli all'asse di carico

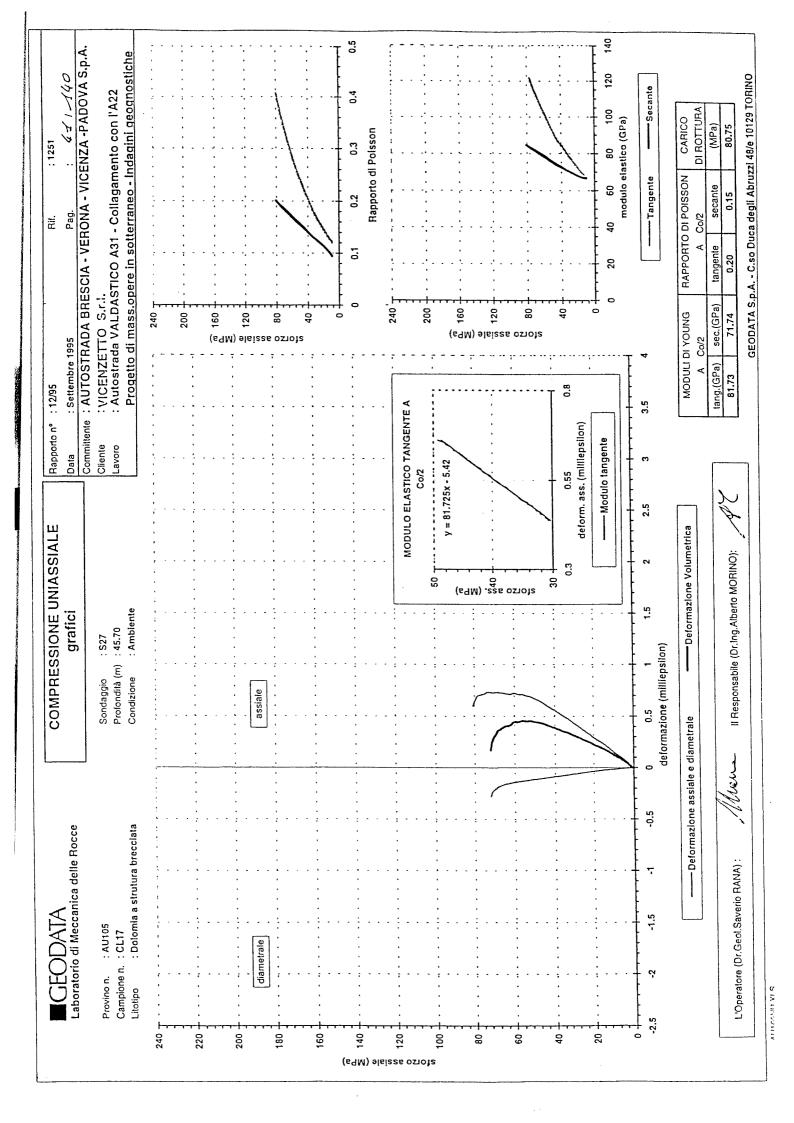
Osservazioni

Legenda: Piani preesistenti

Rapporto L/D (°C) Condizioni ambiente : Temperatura Area facce prov. (cm2): Umidita' dell'aria

	iana con and (14)	
301.45	MODULO ELASTICO TANGENTE Et (GPa)	49.71
62.29	MODULO ELASTICO SECANTE Es (GPa)	51.36
	RAPPORTO DI POISSON TANGENTE V t (-)	0.19
66.44	RAPPORTO DI POISSON SECANTE V s (-)	0.20
	301.45 62.29	62.29 MODULO ELASTICO SECANTE ES (GPa) RAPPORTO DI POISSON TANGENTE V t (-)

L' Operatore (Dr.Geol.Saverio RANA):


Piani di rottura

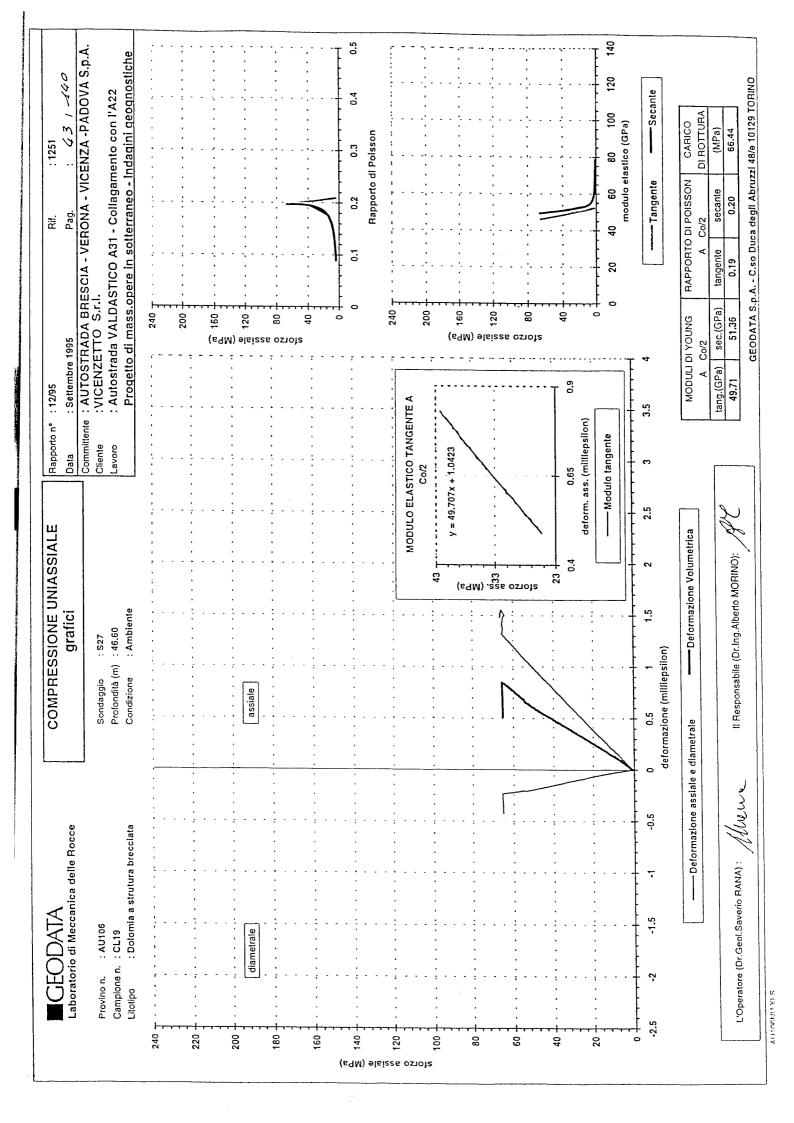
II Responsabile (Dr.Ing.Alberto MORINO) :

* Misure eventuali per calcolo contenuto d'acqua

N.A.: Non Attendibile

COMPRESSIONE UNIASSIALE

Laboratorio di Meccanica delle Rocce Settembre 1995 Pag.: 44 1140 12/95 Rif.: 1251 Data: Rapporto n°: : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche CL25 / AU107 Profondita': 59.50-59.70 (m) **S27** Campione/Provino: Sondaggio: **Ambiente** Satura 78.5 Condizione Secca Cont. d'acqua (mm) Diametro 2078 151.2 Peso (g) Lunghezza_ (mm) 27.20 (kN/m3) 731.78 Peso di volume Volume (cm3) 23.5 Peso umido * tp (μs) Tempi di arrivo (g) 35.8 ts (μ s) TRASMISSIONE 6587 Vp (m/s) ONDE SONICHE Velocita' 4324 Peso secco * Vs (m/s) E PARAMETRI (a) 116.32 Ed (GPa) Modulo elastico dinamico CORRELATI 0.12 Rapporto di Poisson dinamico V d (-) VOLUME CON PESATA IDROST. R medio PROVA SCLEROMETRICA Media Temp. acqua_(°C) 62-67-67-68-69 66.6 Letture faccia superiore 66.6 Peso in aria (g) Letture superficie laterale Peso in acqua (g) tessitura differente Letture faccia inferiore MODULO L05 - Rev.02 /10.95 LITOTIPO **DOLOMIA** SCHEMA DI ROTTURA NOTE **Ambiente** Condizione biancastro Colore massiccia e omogenea, con qualche frattura Struttura capillare Piani di discontinuital patine di ossidazione nelle fratture Alterazione Direz.carico/piani di disc. Rottura improvvisa lenta caduta del carico Comportamento lungo fratture preesistenti Fratturazione Osservazioni Legenda: Piani preesistenti Piani di rottura Rapporto L/D (°C) Temperatura Condizioni ambiente : 1.93 63 48.40 Umidita' dell'aria (%) Area facce prov. (cm2): 80.24 (GPa) 205.23 MODULO ELASTICO TANGENTE (kN) CARICO DI ROTTURA 79.38 42.40 MODULO ELASTICO SECANTE (GPa) C 0, RES. A COMPR. UNIASSIALE (MPa) RESISTENZA A COMPRESSIONE UNIASSIALE RAPPORTO DI POISSON TANGENTE V t (-) (MPa) 45.77 V s (-) CORRETTA C 0 (D=50mm L/D=2) RAPPORTO DI POISSON SECANTE


Mene

L' Operatore (Dr.Geol.Saverio RANA):

N.A.: Non Attendibile

Il Responsabile (Dr.Ing.Alberto MORINO):

Misure eventuali per calcolo contenuto d'acqua

COMPRESSIONE

Laboratorio di Meccanica delle Rocce UNIASSIALE 46 1140 Settembre 1995 Pag.: 12/95 1251 Data: Rif.: Rapporto nº: : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Profondita': 58.10-58.30 (m) CL23 / AU107bis Campione/Provino: S27 Sondaggio: Satura Secca Ambiente 78.5 Condizione Cont. d'acqua Diametro (mm) (%) 2007 (g) 153.0 Peso Lunghezza (mm) 26.58 740,49 Peso di volume (kN/m3) Volume (cm3) 23.3 Peso umido * tp (µ s) Tempi di arrivo (g) 41.3 (μs) TRASMISSIONE 6567 Vp (m/s) ONDE SONICHE Velocita' 3705 Peso secco * Vs (m/s) E PARAMETRI 94.233 Ed (GPa) Modulo elastico dinamico CORRELATI 0.27 V d (-) Rapporto di Poisson dinamico VOLUME CON PESATA IDROST. R medio Media PROVA SCLEROMETRICA Temp. acqua (°C) Letture faccia superiore Peso in aria Letture superficie laterale Peso in acqua (g) Letture faccia inferiore MODULO L05 - Rev.02 /10.95 **DOLOMIA** LITOTIPO SCHEMA DI ROTTURA NOTE **Ambiente** Condizione biancastro Colore massiccia e omogenea, con qualche frattura Struttura capillare e microcariature Piani di discontinuita patine di ossidazione nelle fratture Alterazione Direz.carico/piani di disc. Rottura improvvisa lenta caduta del carico Comportamento sia lungo fratture preesistenti che su nuovi piani Fratturazione Osservazioni Legenda: Piani preesistenti Piani di rottura Rapporto L/D 20 (°C) Temperatura Condizioni ambiente : 1.95 48.40 Umidita' dell'aria (%) Area facce prov. (cm2): 57.95 MODULO ELASTICO TANGENTE Εt (GPa) 252.91 (kN) CARICO DI ROTTURA 62.85 (GPa) 52.26 MODULO ELASTICO SECANTE RES. A COMPR. UNIASSIALE Co, (MPa)

56.50 RAPPORTO DI POISSON SECANTE CORRETTA C 0 (D=50mm L/D=2) (MPa) Mune

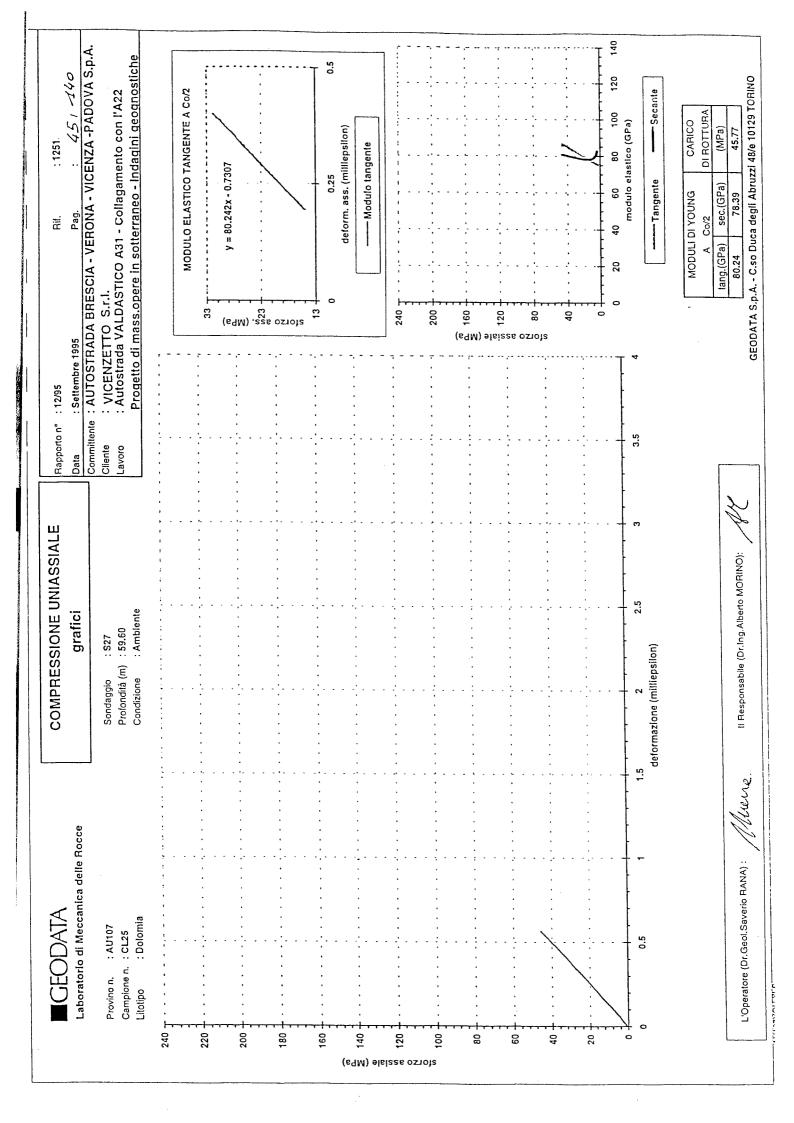
Il Responsabile (Dr.Ing.Alberto MORINO):

RAPPORTO DI POISSON TANGENTE

V t (-)

V s(-)

0.23


0.18

Misure eventuali per calcolo contenuto d'acqua

L' Operatore (Dr.Geol.Saverio RANA):

RESISTENZA A COMPRESSIONE UNIASSIALE

Non Attendibile N.A.:

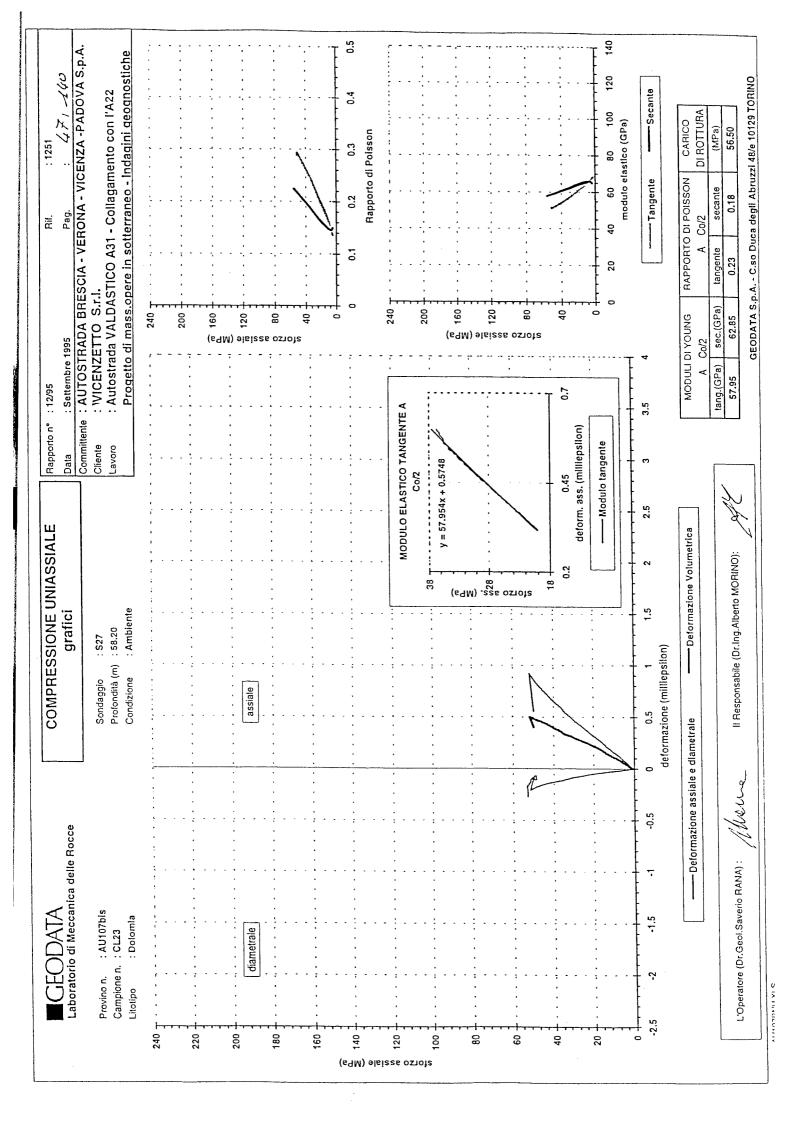
COMPRESSIONE UNIASSIALE

48 140 Data: Settembre 1995 Pag.: Rapporto nº: 12/95 Rif.: 1251 : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente VICENZETTO S.r.I. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Campione/Provino: CL28 / AU108 Profondita': 66.70-66.90 S27 Sondaggio: Satura Secca Ambiente 78.5 Condizione Cont. d'acqua Diametro (mm) (%) 2082 153.6 Peso Lunghezza (mm) (g) 27.46 743.40 Peso di volume (kN/m3) Volume (cm3) 21.9 tp (μ s) Peso umido * Tempi di arrivo 27.4 (g) (µ s) TRASMISSIONE 7014 Vp (m/s) ONDE SONICHE Velocita' 5606 Peso secco * Vs (m/s) E PARAMETRI Ed (GPa) N.A. Modulo elastico dinamico CORRELATI Rapporto di Poisson dinamico V d (-) N.A. VOLUME CON PESATA IDROST. R medio PROVA SCLEROMETRICA Media 67.0 66-66-68-67-68 Temp. acqua (°C) Letture faccia superiore 65.8 Peso in aria (g) Letture superficie laterale 64.6 Peso in acqua (g) 60-64-66-66-67 Letture faccia inferiore MODULO L05 - Rev.02 /10.95 **DOLOMIA** LITOTIPO SCHEMA DI ROTTURA NOTE **Ambiente** Condizione verdastro con punteggiature biancastre Colore massiccia e omogenea, con qualche frattura Struttura capillare Piani di discontinuita' Alterazione Direz.carico/piani di disc. con esplosione Rottura marcatamente fragile Comportamento lungo numerosi piani paralleli all'asse Fratturazione di carico Osservazioni Piani preesistenti Piani di rottura Rapporto L/D (°C) 20 Condizioni ambiente : Temperatura 1.96 71 48.40 Area facce prov. (cm2): Umidita' dell'aria

CARICO DI ROTTURA P (KN)	623.34	MODULO ELASTICO TANGENTE Et (GPa)	90.10
RES. A COMPR. UNIASSIALE C 0' (MPa)	128.79	MODULO ELASTICO SECANTE Es (GPa)	94.00
RESISTENZA A COMPRESSIONE UNIASSIALE		RAPPORTO DI POISSON TANGENTE V t (-)	0.33
CORRETTA C ₀ (D=50mm L/D=2) (MPa)	139.32	RAPPORTO DI POISSON SECANTE V s (-)	0.30

L' Operatore (Dr.Geol.Saverio RANA):

Mure


II Responsabile (Dr.Ing.Alberto MORINO):

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

Misure eventuali per calcolo contenuto d'acqua

N.A.: Non Attendibile

COMPRESSIONE UNIASSIALE

50 1140 Settembre 1995 Pag.: 1251 Data: 12/95 Rif.: Rapporto n°: : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio: S27		S27	Campione/Provino:	CL29	CL29 / AU109		Profondita':	68.00-68.30 (m)
Diametro ((mm)	78.5	Condizione		Secca	Ambiente	Satura	Cont. d'acqua
Lunghezza ((mm)	162.9	Peso (g)		2179		(%)
Volume ((cm3)	788.41	Peso di volume (kN/m3)			26.81	-	
		Tempi di arriv	ο tp (μ	s)		24.4		Peso umido *
TRASMISSIONE		, , , , , , , , , , , , , , , , , , , ,	ts (μ	. s)		36.6		(g)
ONDE SONICHE		Velocita'	Vp (m/	/s)		6750		
E PARAMETRI			Vs (m/	/s)		4500		Peso secco *
CORRELATI		Modulo elasti	co dinamico Ed (GPa)		N.A.		(g)
		Rapporto di F	Poisson dinamico V d (-))		N.A.		
		550	A CCLEDOMETRICA		Media	B medio	VOLUME C	ON PESATA IDROST.

Rapport	o di Poisson dinamico V d (-)		N.A.		
	Media	R medio	VOLUME CON PESATA IDRO		
Letture faccia superiore	65-67-68-68-68	67.0		Temp. acqua (°C)	
Letture superficie laterale			67.0	Peso in aria (g)	
Letture faccia inferiore	tessitura differente			Peso in acqua (g)	

SCHEMA DI ROTTURA

MODULO L05 - Rev.02 /10.95

48.40

NOTE Condizione **Ambiente**

grigio chiaro

DOLOMIA

massiccia e omogenea, con qualche frattura capillare e numerose cariature carsiche

Piani di discontinuita'

LITOTIPO

Colore

Struttura

Alterazione

presente lungo alcune discontinuità

Direz.carico/piani di disc.

Rottura

con esplosione

Comportamento

fragile

Fratturazione

lungo nuovi piani paralleli all'asse di carico

e su fratture preesistenti

Osservazioni

Rapporto L/D 20 Condizioni ambiente : Temperatura (°C) 2.08 (%) Umidita' dell'aria

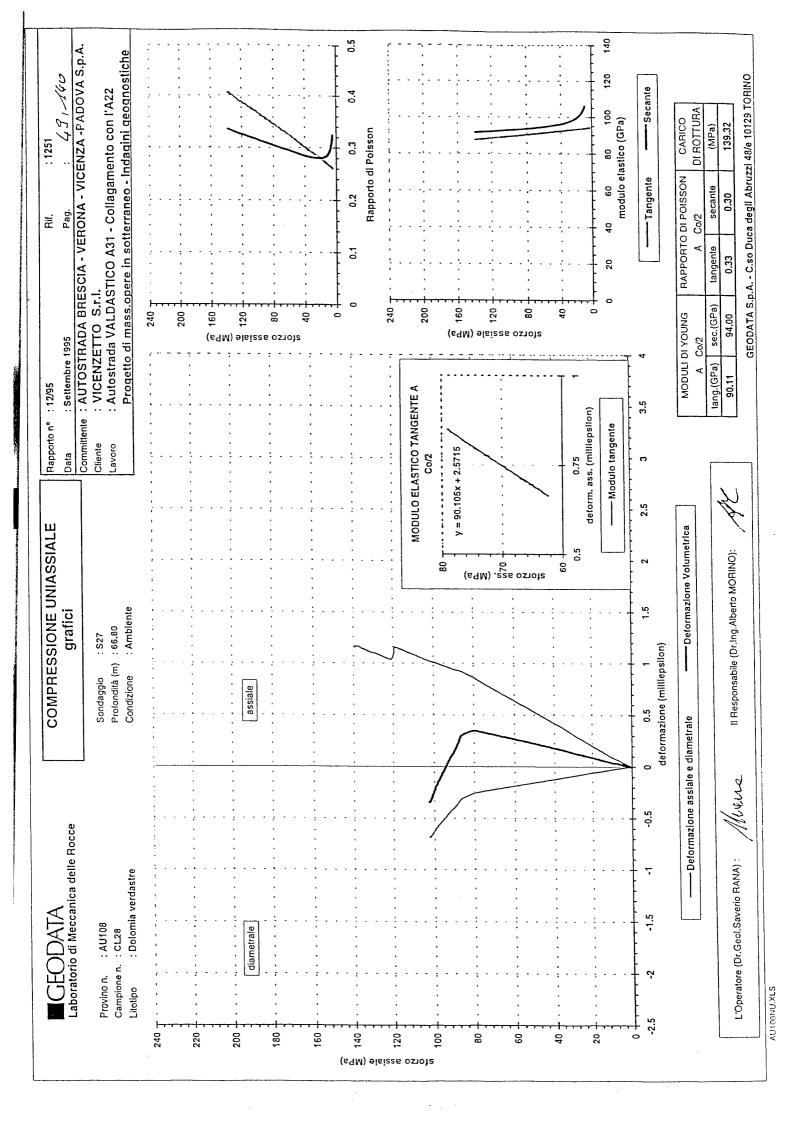
CARICO DI ROTTURA P (kN)	351.27	MODULO ELASTICO TANGENTE Et (GPa) 104.02
RES. A COMPR. UNIASSIALE C 0' (MPa)	72.58	MODULO ELASTICO SECANTE Es (GPa) 87.41
RESISTENZA A COMPRESSIONE UNIASSIALE		RAPPORTO DI POISSON TANGENTE V t (-)
CORRETTA C 0 (D=50mm L/D=2) (MPa)	79.12	RAPPORTO DI POISSON SECANTE V s (-)

L' Operatore (Dr.Geol.Saverio RANA):

Piani preesistenti Piani di rottura

Mene

Il Responsabile (Dr.Ing.Alberto MORINO):


GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

Misure eventuali per calcolo contenuto d'acqua

Non Attendibile N.A. :

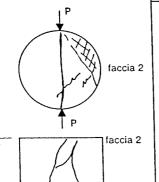
Area facce prov. (cm2):

AU109.XLS

TRAZIONE INDIRETTA "BRASILIANA"

Rapporto n°: 12/95 Rif.: 1251 Data: Agosto 1995 Pag.: 52/140

Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.


Cliente : VICENZETTO S.r.l.

Progetto : Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio: da blocco			Campione/Provino:	VA2 / AU8	VA2 / AU8		- (m	
Diametro	(mm)	53.6	Condizione		Ambiente	Satura	Cont. d'acqua	
_unghezza	(mm)	40.1	Peso (g)	243.5		(%)	
/olume	(cm3)	90.48	Peso di volume (kN/m3)		26.39			
		Tempi di arri	vo tp (μ ts (μ				Peso umido * (g)	
TRASMISSIONE						-		
ONDE SONICHE		Velocita'	Vp (m/	(S)	<u> </u>			
E PAR	IAMETRI		Vs (m/	(s)			Peso secco *	
COF	RRELATI	Modulo elas	tico dinamico Ed (GPa)			(g)	
		Rapporto di Poisson dinamico V d -)						
PROVA SCLEROMETRICA				Media	R medio	VOLUME (VOLUME CON PESATA IDROST	
Letture faccia superiore						Temp. acqu	ua (°C)	
Letture superficie laterale						Peso in aria	a (g)	
Letture faccia inferiore					1	Peso in acc	qua (g)	

SCHEMA DI ROTTURA

faccia 1

LITOTIPO : DOLOMIA

NOTE

Condizione : Ambiente
Colore : biancastro

Struttura : massiccia e omogenea, con qualche frattura

capillare e qualche cariatura carsica

Piani di discontinuita'

Alterazione :

Direz.carico/piani di disc.

Rottura : improvvisa

Comportamento : rapida caduta del carico

Comportamento : rapida caduta del carico
Fratturazione : parallala all'asse di carico

Osservazioni :

Legenda:

Piani preesistenti
Piani di rottura

Condizioni ambiente :

Temperatura (°C)
Umidita' dell'aria (%)

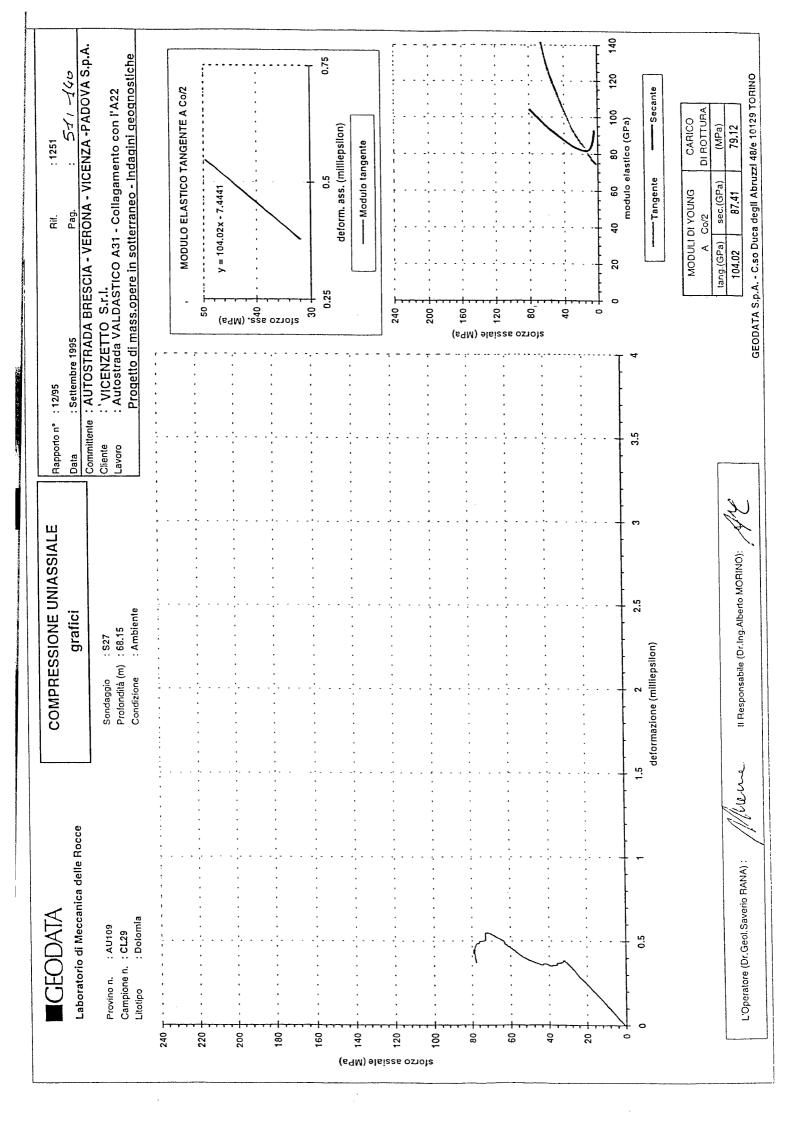
25 70 Rapporto L/D 0.75

CARICO DI ROTTURA P (kN) 22.7

RESISTENZA A TRAZIONE INDIRETTA

"BRASILIANA" Τ 0 : 2P/ ποι (MPa) 6.72

L' Operatore (Dr.Geol.Saverio RANA):


Mrene

Il Responsabile (Dr.Ing.Alberto MORINO):

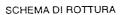
AL

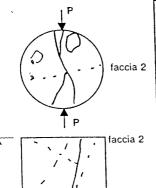
MODULO L07 - Rev.02 //.94

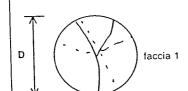
Misure eventuali per calcolo contenuto d'acqua

TRAZIONE INDIRETTA "BRASILIANA"

Pag.: 54/140 Agosto 1995 1251 . Data: Rapporto n°: 12/95 Rif.:


AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente


VICENZETTO S.r.l. Cliente


Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio: S10bis		Campione/Provino:	VA4 / AU10		Profondità :	- (m	
Diametro (mm) 79.8		Condizione	Ambien		Satura	Cont. d'acqua	
Lunghezza (mm)	57.9	Peso (g)	790.3			(%)	
Volume (cm3)	289.58	Peso di volume (kN/m3)		26.76			
	Tempi di arriv	/o tp (μs)		10.5		Peso umido *	
TRASMISSIONE		ts (µs)		21.5		(g)	
ONDE SONICHE	Velocita'	Vp (m/s)		5514			
E PARAMETRI	Voicema	Vs (m/s)		2693		Peso secco *	
CORRELATI	Modulo elastico dinamico Ed (GPa)			53.175		(g)	
00,	Rapporto di	Poisson dinamico V d -)		0.34			
PROVA SCLEROMETRICA			Media	R medio	VOLUME C	ON PESATA IDROST.	
Letture faccia superio	re				Temp. acqu	a (°C)	
Letture superficie late					Peso in aria	(g)	
Letture faccia inferior					Peso in acq	ua (g)	

Legenda:

LITOTIPO

DOLOMIA

NOTE

Ambiente Condizione

grigio-biancastro Colore

brecciata con fratture occluse da materiale Struttura

detritico

Piani di discontinuita'

presenti microvacuoli carsici Alterazione

Direz.carico/piani di disc. :

improvvisa Rottura

rapida caduta del carico Comportamento

parallala all'asse di carico su nuovi piani Fratturazione

e, sec., su fratture preesistenti

Osservazioni

Condizioni ambiente :

Temperatura Umidita' dell'aria

(°C) (%)

Rapporto L/D 0.73

13.0 CARICO DI ROTTURA RESISTENZA A TRAZIONE INDIRETTA 1.79 "BRASILIANA" T 0:2P/ πDL

L' Operatore (Dr.Geol.Saverio RANA):

Piani di rottura

· · · · Piani preesistenti

here

Il Responsabile (Dr.Ing.Alberto MORINO):

MODULO L07 - Rev.02 A.94

^{*} Misure eventuali per calcolo contenuto d'acqua

TRAZIONE INDIRETTA

"BRASILIANA" Rapporto nº: 12/95 Rif.: 1251. Data: Agosto 1995 Pag.: 53/140 Committente AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Cliente VICENZETTO S.r.I. Progetto Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: da blocco Campione/Provino: **VA2 / AU9** Profondità: (m) Diametro 53.7 (mm) Condizione Ambiente Satura Cont. d'acqua Lunghezza (mm) 42.1 Peso (g) 261.6 (%) Volume (cm3) 95.35 Peso di volume (kN/m3) 26.90 Tempi di arrivo tp (μs) Peso umido * TRASMISSIONE (μs) Vp (m/s) ONDE SONICHE Velocita' Vs (m/s) E PARAMETRI Peso secco * Modulo elastico dinamico CORRELATI Ed (GPa) (g) Rapporto di Poisson dinamico νa -) PROVA SCLEROMETRICA Media R medio VOLUME CON PESATA IDROST. Letture faccia superiore Temp. acqua (°C) Letture superficie laterale Peso in aria (g) Letture faccia inferiore Peso in acqua (g) LITOTIPO **DOLOMIA** SCHEMA DI ROTTURA NOTE Condizione **Ambiente** Colore biancastro Struttura massiccia e omogenea, con qualche frattura faccia 2 capillare e qualche cariatura carsica Piani di discontinuita' faccia 2 Alterazione Direz.carico/piani di disc. Rottura improvvisa faccia 1 Comportamento rapida caduta del carico parallala all'asse di carico Fratturazione faccia 1 Osservazioni Condizioni ambiente : Temperatura 25 Rapporto L/D 0.78 Umidita' dell'aria Legenda: (%) CARICO DI ROTTURA (kN) 37.9 Piani preesistenti Piani di rottura RESISTENZA A TRAZIONE INDIRETTA 10.66 "BRASILIANA" Το: 2P/ πOL Mrine L'Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):

MODULO L07 - Rev.02 //.94

^{*} Misure eventuali per calcolo contenuto d'acqua

■GEODATA

TRAZIONE INDIRETTA "BRASILIANA"

Laboratorio di Meccanica delle Rocce Pag.: 56/140 Agosto 1995 1251 Data: Rapporto nº: 12/95 Rif.: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche VA7 / AU19 Profondità: 8.40-8.60 (m) S10bis Campione/Provino: Sondaggio: Ambiente Satura 53.8 Condizione Cont. d'acqua Diametro (mm) 201.7 33.6 Peso (g) Lunghezza (mm) 25.89 Peso di volume (kN/m3) 76.38 Volume (cm3) 6.4 Peso umido * tp (μs) Tempi di arrivo (g) 10.7 ts (μs) TRASMISSIONE 5250 Vp (m/s) ONDE SONICHE Velocita^t 3140 Vs (m/s) Peso secco * E PARAMETRI (g) 63.601 Ed (GPa) Modulo elastico dinamico CORRELATI 0.22 Rapporto di Poisson dinamico V d 3 VOLUME CON PESATA IDROST. Media R medio PROVA SCLEROMETRICA Temp. acqua (°C) Letture faccia superiore Peso in aria (g) Letture superficie laterale Peso in acqua (g) Letture faccia inferiore LITOTIPO **DOLOMIA** SCHEMA DI ROTTURA NOTE **Ambiente** Condizione bianco-grigiastro Colore brecciata con fratture occluse da materiale Struttura faccia 2 detritico Piani di discontinuita' presenti microvacuoli carsici faccia 2 Alterazione Direz.carico/piani di disc. Rottura improvvisa faccia 1 rapida caduta del carico Comportamento parallala all'asse di carico su nuovi piani Fratturazione e, sec., su fratture preesistenti faccia 1 Osservazioni Rapporto L/D 25 (°C) Condizioni ambiente : Temperatura

_	е	g	е	(1)	u	d	•

Piani preesistenti
Piani di rottura

CARICO DI ROTTURA P (kN) 18.8

RESISTENZA A TRAZIONE INDIRETTA

BRASILIANA T 0:2P/ πδL (MPa) 6.61

Umidita' dell'aria

L' Operatore (Dr.Geol.Saverio RANA):

Muere

Il Responsabile (Dr.Ing.Alberto MORINO) :

0.62

(%)

MODULO L07 - Rev.02 Л.94

Misure eventuali per calcolo contenuto d'acqua

TRAZIONE INDIRETTA "BRASILIANA"

Rapporto n°: 12/95 Agosto 1995 Rif.: 1251 Data: Pag.: 55/140 Committente AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Cliente VICENZETTO S.r.l. Progetto : Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: S10bis Campione/Provino: VA4 / AU11 Profondità: 3.70-3.90 (m) Diametro 79.8 (mm) Condizione Ambiente Satura Cont. d'acqua Lunghezza (mm) 57.4 Peso 796.8 (%) 287.88 Volume (cm3) Peso di volume (kN/m3) 27.22 Tempi di arrivo tp (μs) 11.2 Peso umido * TRASMISSIONE (μs) 25.2 Vp (m/s) 5155 ONDE SONICHE Velocita' 2264 E PARAMETRI Vs (m/s) Peso secco * Modulo elastico dinamico Ed (GPa) 39.295 (g) CORRELATI Rapporto di Poisson dinamico 0.38 $V d \cdot$ PROVA SCLEROMETRICA Media R medio VOLUME CON PESATA IDROST. Letture faccia superiore Temp. acqua (°C) Letture superficie laterale, Peso in aria Letture faccia inferiore Peso in acqua (g) LITOTIPO **DOLOMIA** SCHEMA DI ROTTURA NOTE Condizione **Ambiente** Colore grigio-biancastro Struttura brecciata con fratture occluse da materiale faccia 2 detritico Piani di discontinuita' faccia 2 Alterazione presenti microvacuoli carsici Direz.carico/piani di disc. Rottura improvvisa faccia 1 rapida caduta del carico Comportamento parallala all'asse di carico su nuovi piani Fratturazione e, sec., su fratture preesistenti faccia 1 Osservazioni Condizioni ambiente : Temperatura (°C) 25 Rapporto L/D 0.72 70 Legenda: Umidita' dell'aria (%) CARICO DI ROTTURA ---- Piani preesistenti (kN) 25.2 Piani di rottura RESISTENZA A TRAZIONE INDIRETTA 3.50 T 0:2P/ πDL L'Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

MODULO L07 - Rev.02 A.94

^{*} Misure eventuali per calcolo contenuto d'acqua

TRAZIONE INDIRETTA "BRASILIANA"

Pag.: 58 / 140 Agosto 1995 1251 Data: 12/95 Rif.: Rapporto n°: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche VA9 / AU23 Profondità: 10.50-10.80 (m) Campione/Provino: S10bis Sondaggio: Satura 79.3 Condizione Ambiente Cont. d'acqua Diametro (mm) (%) 875.2 63.3 Peso (g) Lunghezza (mm) Peso di volume (kN/m3) 27.04 317.39 Volume (cm3) 11.6 Peso umido * tp (μs) Tempi di arrivo (g) 38.9 ts (μs) TRASMISSIONE 5457 Vp (m/s) ONDE SONICHE Velocita' 1627 Peso secco * Vs (m/s) **E PARAMETRI** (g) 21,192 Ed (GPa) Modulo elastico dinamico CORRELATI 0.45 Rapporto di Poisson dinamico v a 3 VOLUME CON PESATA IDROST. R medio PROVA SCLEROMETRICA Media Temp. acqua (°C) Letture faccia superiore Peso in aria (g) Letture superficie laterale Peso in acqua (g) Letture faccia inferiore LITOTIPO **DOLOMIA** SCHEMA DI ROTTURA NOTE **Ambiente** Condizione bianco-nocciola Colore brecciata con numerose fratture occluse cementate Struttura faccia 2 Piani di discontinuita' presenti microvacuoli carsici faccia 2 Alterazione Direz.carico/piani di disc. Rottura improvvisa faccia 1 rapida caduta del carico Comportamento parallala all'asse di carico su nuovi piani **Fratturazione** faccia 1 Osservazioni Rapporto L/D 25 (°C) Temperatura Condizioni ambiente : 0.80 70 Umidita' dell'aria (%) Legenda: 20.6 (kN) CARICO DI ROTTURA · · · · Piani preesistenti RESISTENZA A TRAZIONE INDIRETTA Piani di rottura 2.59 "BRASILIANA" T 0 : 2P/ TOL

L'Operatore (Dr.Geol.Saverio RANA):

Mure

Il Responsabile (Dr.Ing.Alberto MORINO):

MODULO L07 - Rev.02 /1.94

Misure eventuali per calcolo contenuto d'acqua

MODULO L07 - Rev.02 /1.94

Laboratorio di Meccanica delle Rocce

TRAZIONE INDIRETTA "BRASILIANA"

12/95 Rapporto nº: Rif.: 1251 Data: Pag.: 57/140 Agosto 1995 Committente : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. VICENZETTO S.r.I. Cliente Progetto Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: S10bis Campione/Provino: VA7 / AU20 Profondità: 8.40-8.60 (m) Diametro (mm) 53.8 Condizione Ambiente Satura Cont. d'acqua Lunghezza (mm) 40.5 Peso (g) 244.1 (%) Volume (cm3) 92.07 Peso di volume (kN/m3) 26.00 Tempi di arrivo tp (μs) Peso umido * TRASMISSIONE ts (μs) (g) ONDE SONICHE Velocita' Vp (m/s) E PARAMETRI Vs (m/s) Peso secco * Modulo elastico dinamico CORRELATI Ed (GPa) (a) Rapporto di Poisson dinamico ν d [-) PROVA SCLEROMETRICA VOLUME CON PESATA IDROST. Media R medio Letture faccia superiore Temp. acqua (°C) Letture superficie laterale Peso in aria (g) Letture faccia inferiore Peso in acqua (g) LITOTIPO DOLOMIA SCHEMA DI ROTTURA NOTE Condizione **Ambiente** Colore bianco-grigiastro Struttura brecciata con fratture occluse da materiale faccia 2 detritico Piani di discontinuita' faccia 2 Alterazione presenti microvacuoli carsici Direz.carico/piani di disc. : Rottura improvvisa faccia 1 Comportamento rapida caduta del carico Fratturazione parallala all'asse di carico su nuovi piani e, sec., su fratture preesistenti faccia 1 Osservazioni Condizioni ambiente : Temperatura (°C) 25 Rapporto L/D 0.75 Legenda: Umidita' dell'aria 70 (%) CARICO DI ROTTURA (kN) 22.3 · · · · Piani preesistenti Piani di rottura RESISTENZA A TRAZIONE INDIRETTA 6.51 "BRASILIANA" T 0:2P/ πDL were L' Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):

^{*} Misure eventuali per calcolo contenuto d'acqua

■GEODATA

Laboratorio di Meccanica delle Rocce

TRAZIONE INDIRETTA "BRASILIANA"

Pag.: 60/140 Settembre 1995 12/95 Rif.: 1251 Data: Rapporto nº: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente VICENZETTO S.r.I. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche 7.60-7.80 **VA25 / AU56** Profondità: (m) S20 Campione/Provino: Sondaggio: Ambiente Satura 78.5 Condizione Cont. d'acqua Diametro (mm) (%) 824.1 61.7 Peso Lunghezza (mm) (g) 27.06 Peso di volume 298.62 (kN/m3) Volume (cm3) 10.4 tp (μs) Peso umido * Tempi di arrivo 13.2 (g) ts (μs) TRASMISSIONE 5933 Vp (m/s) ONDE SONICHE Velocita' Vs (m/s) 4674 Peso secco * E PARAMETRI (g) 82.19 Modulo elastico dinamico Ed (GPa) CORRELATI 0.32 Rapporto di Poisson dinamico ν d 🖯 VOLUME CON PESATA IDROST. Media R medio PROVA SCLEROMETRICA Temp. acqua (°C) Letture faccia superiore Peso in aria (g) Letture superficie laterale Peso in acqua (g) Letture faccia inferiore **DOLOMIA** LITOTIPO SCHEMA DI ROTTURA NOTE Condizione **Ambiente** bianco-nocciola Colore brecciata con qualche frattura capillare e Struttura faccia 2 numerose microvacuoli carsici Piani di discontinuita' faccia 2 Alterazione Direz.carico/piani di disc. improvvisa Rottura faccia 1 Comportamento rapida caduta del carico parallala all'asse di carico su nuovi piani Fratturazione faccia 1 Osservazioni Rapporto L/D 25 Temperatura (°C) Condizioni ambiente 0.79 70 Umidita' dell'aria (%) Legenda: 55.1 (kN) CARICO DI ROTTURA Piani preesistenti Piani di rottura RESISTENZA A TRAZIONE INDIRETTA 7.24 (MPa) T 0:2P/ πDL "BRASILIANA"

Mone

II Responsabile (Dr.Ing.Alberto MORINO) :

MODULO L07 - Rev.02 //.94

L' Operatore (Dr.Geol.Saverio RANA) :

Misure eventuali per calcolo contenuto d'acqua

TRAZIONE INDIRETTA "BRASILIANA"

Rapporto nº: 12/95 Rif.: 1251 Pag.: 59/140 Data: Settembre 1995 Committente : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Cliente VICENZETTO S.r.I. Progetto Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: S10bis Campione/Provino: VA10 / AU26 Profondità: 12.60-13.00 (m) Diametro (mm) 78.5 Condizione Ambiente Satura Cont. d'acqua 57.4 Peso Lunghezza (mm) 788.4 (%) (g) Volume 287.08 (cm3) Peso di volume (kN/m3) 26.93 Tempi di arrivo tp (μs) 10.2 Peso umido * (g) TRASMISSIONE ts (μs) 20.8 Vp (m/s) 5627 ONDE SONICHE Velocita' E PARAMETRI Vs (m/s) 2760 Peso secco * Modulo elastico dinamico CORRELATI Ed (GPa) 56.121 (g) Rapporto di Poisson dinamico 0.34 v a 🗦 PROVA SCLEROMETRICA VOLUME CON PESATA IDROST. Media R medio Letture faccia superiore Temp. acqua (°C) Letture superficie laterale Peso in aria (g) Letture faccia inferiore Peso in acqua (g) LITOTIPO DOLOMIA SCHEMA DI ROTTURA NOTE Condizione **Ambiente** Colore bianco-grigiastro Struttura brecciata numerose fratture capillari faccia 2 Piani di discontinulta' faccia 2 Alterazione Direz.carico/piani di disc. : Rottura improvvisa faccia 1 Comportamento rapida caduta del carico Fratturazione parallala all'asse di carico su nuovi piani faccia 1 Osservazioni Condizioni ambiente : Rapporto L/D Temperatura (°C) 0.73 Legenda: Umidita' dell'aria 70 (%) CARICO DI ROTTURA Piani preesistenti (kN) 37.9 Piani di rottura RESISTENZA A TRAZIONE INDIRETTA 5.26 T 0:2P/ πDL L' Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

^{*} Misure eventuali per calcolo contenuto d'acqua

TRAZIONE INDIRETTA "BRASILIANA"

Pag.: 62/140 Settembre 1995 Data: Rapporto nº: 12/95 Rif.: 1251... AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche CL7 / AU110 Profondità: 24.10-24.30 Campione/Provino: **S27** Sondaggio: Ambiente Satura 78.5 Condizione Cont. d'acqua Diametro (mm) (%) 822 Peso 62.8 Lunghezza (mm) 26.52 303.94 Peso di volume (kN/m3) Volume (cm3) Peso umido * tp (μs) Tempi di arrivo (g) ts (μs) TRASMISSIONE Vp (m/s) ONDE SONICHE Velocita' Vs (m/s) Peso secco * E PARAMETRI Ed (GPa) Modulo elastico dinamico CORRELATI Rapporto di Poisson dinamico νa 🖯 VOLUME CON PESATA IDROST. Media R medio PROVA SCLEROMETRICA Temp. acqua (°C) Letture faccia superiore Peso in aria (g) Letture superficie laterale Peso in acqua (g) Letture faccia inferiore DOLOMIA LITOTIPO SCHEMA DI ROTTURA NOTE **Ambiente** Condizione Colore biancastro brecciata con qualche frattura capillare e Struttura faccia 2 microvacuoli carsici Piani di discontinuita' presente nei giunti faccia 2 Alterazione Direz.carico/piani di disc. improvvisa faccia 1 rapida caduta del carico Comportamento parallala all'asse di carico su nuovi piani Fratturazione faccia 1 Osservazioni Rapporto L/D 25 Temperatura (°C) Condizioni ambiente : 0.80 70 Umidita' dell'aria Legenda: 41.6 CARICO DI ROTTURA (kN) · · · · Piani preesistenti RESISTENZA A TRAZIONE INDIRETTA Piani di rottura 5,37 "BRASILIANA" T 0:2P/ πDL Il Responsabile (Dr.Ing.Alberto MORINO) : L' Operatore (Dr.Geol.Saverio RANA) :

Misure eventuali per calcolo contenuto d'acqua

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

AU110.XLS

MODULO L07 - Rev.02 A.94

TRAZIONE INDIRETTA "BRASILIANA"

Rapporto n°: 12/95 Rif.: 1251 Data: Settembre 1995 Pag.: 61 / 140 AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: VICENZETTO S.r.I. Cliente Progetto : Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: S22 Campione/Provino: VA13 / AU57 Profondità: 29.80-30.10 Diametro (mm) 78.5 Condizione Ambiente Satura Cont. d'acqua Lunghezza (mm) 60.2 Peso (g) 806 (%) Volume (cm3) 291.36 Peso di volume (kN/m3) 27.13 Tempi di arrivo tp (μs) 9.5 Peso umido * TRASMISSIONE (μs) 9.4 (q) ONDE SONICHE Vp (m/s) Velocita' 6337 E PARAMETRI Vs (m/s) 6404 Peso secco * Modulo elastico dinamico Ed (GPa) CORRELATI N.A. Rapporto di Poisson dinamico N.A. v d 🖯 PROVA SCLEROMETRICA Media R medio VOLUME CON PESATA IDROST. Letture faccia superiore Temp. acqua (°C) Letture superficie laterale Peso in aria (g) Letture faccia inferiore Peso in acqua (g) LITOTIPO DOLOMIA SCHEMA DI ROTTURA NOTE Condizione **Ambiente** Colore bianco-grigiastro Struttura brecciata con numerose fratture capillari e faccia 2 qualche microvacuolo Piani di discontinuita' faccia 2 Alterazione Direz.carico/piani di disc. Rottura improvvisa faccia 1 Comportamento rapida caduta del carico Fratturazione parallala all'asse di carico su nuovi piani e su fratturazione preesistente faccia 1 Osservazioni Condizioni ambiente : Temperatura Rapporto L/D 0.77 Legenda: Umidita' dell'aria (%) 70 CARICO DI ROTTURA Piani preesistenti (kN) 28.6 Piani di rottura RESISTENZA A TRAZIONE INDIRETTA T 0:2P/ πDL 7.89 L' Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

N.A. = Non Attendibile

^{*} Misure eventuali per calcolo contenuto d'acqua

TRAZIONE INDIRETTA "BRASILIANA"

Rapporto nº: 12/95 Rif.: 1251 Data: Settembre 1995 Pag.: 64/140 AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. VICENZETTO S.r.I. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: S27 Campione/Provino: CL13 / AU112 Profondità: 35.55-35.70 (m)Ambiente Diametro (mm) 78.5 Condizione Satura Cont. d'acqua (%) 60.2 Peso 796 (mm) Lunghezza (g) Volume 291.36 26.79 (cm3) Peso di volume (kN/m3) Tempi di arrivo tp (μs) Peso umido * (g) TRASMISSIONE ts (μs) Vp (m/s) ONDE SONICHE Velocita' Vs (m/s) E PARAMETRI Peso secco * Modulo elastico dinamico Ed (GPa) (g) CORRELATI Rapporto di Poisson dinamico v a -) VOLUME CON PESATA IDROST. PROVA SCLEROMETRICA R medio Media Temp. acqua (°C) Letture faccia superiore Letture superficie laterale Peso in aria (g) Letture faccia inferiore Peso in acqua (g) LITOTIPO **DOLOMIA** SCHEMA DI ROTTURA NOTE Condizione **Ambiente** Colore biancastro massiccia con qualche frattura capillare e Struttura faccia 2 numerosi microvacuoli carsici Piani di discontinuita' Ţρ faccia 2 Alterazione presente nei giunti Direz.carico/piani di disc. : improvvisa faccia 1 Rottura Comportamento rapida caduta del carico parallala all'asse di carico su nuovi piani Fratturazione faccia 1 Osservazioni Rapporto L/D Condizioni ambiente : Temperatura (°C) 25 0.77 Umidita' dell'aria (%) Legenda: CARICO DI ROTTURA 52.7 · · · · Piani preesistenti Piani di rottura RESISTENZA A TRAZIONE INDIRETTA 7.09 "BRASILIANA" T 0:2P/ πDL (MPa)

L'Operatore (Dr.Geol.Saverio RANA):

Mura

II Responsabile (Dr.Ing.Alberto MORINO):

AC

MODULO L07 - Rev.02 /1.94

Misure eventuali per calcolo contenuto d'acqua

TRAZIONE INDIRETTA "BRASILIANA"

Rapporto nº: 12/95 Rif.: 1251 Data: Pag.: 63/140 Settembre 1995 Committente AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Cliente VICENZETTO S.r.I. Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: Campione/Provino: CL8 / AU111 Profondità: 25.10-25.30 (m) Diametro (mm) 78.5 Condizione Ambiente Satura Cont. d'acqua Lunghezza (mm) 64.5 Peso (g) 839 (%) Volume 312.17 (cm3) Peso di volume (kN/m3) 26.36 Tempi di arrivo tp (μs) Peso umido * TRASMISSIONE ts (μs) (g) ONDE SONICHE Velocita' Vp (m/s) **E PARAMETRI** Vs (m/s) Peso secco * Modulo elastico dinamico CORRELATI Ed (GPa) (g) Rapporto di Poisson dinamico Vd -) PROVA SCLEROMETRICA Media R medio VOLUME CON PESATA IDROST. Letture faccia superiore Temp. acqua (°C) Letture superficie laterale Peso in aria Letture faccia inferiore Peso in acqua (g) LITOTIPO **DOLOMIA** SCHEMA DI ROTTURA NOTE Condizione **Ambiente** Colore biancastro Struttura massiccia con qualche frattura capillare e faccia 2 numerosi microvacuoli carsici Piani di discontinuita' faccia 2 Alterazione presente nei giunti Direz.carico/piani di disc. Rottura improvvisa faccia 1 Comportamento rapida caduta del carico Fratturazione parallala all'asse di carico su nuovi piani faccia 1 Osservazioni Condizioni ambiente : Temperatura Rapporto L/D Legenda: 0.82 Umidita' dell'aria CARICO DI ROTTURA - · · · Piani preesistenti (kN) 36.7 Piani di rottura RESISTENZA A TRAZIONE INDIRETTA T 0:2P/ πDL 4.61 L' Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

MODULO L07 - Rev.02 A.94

^{*} Misure eventuali per calcolo contenuto d'acqua

TRAZIONE INDIRETTA "BRASILIANA"

Rapporto n°: 12/95 Rif.: 1251 Data: Settembre 1995 Pag.: 66/340 : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Cliente VICENZETTO S.r.I. Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: S27 Campione/Provino: CL28 / AU114 Profondità: 66.70-66.90 (m) Diametro 78.5 (mm) Condizione **Ambiente** Satura Cont. d'acqua 61.2 Lunghezza (mm) Peso (g) 817 (%) Volume (cm3) 296.2 Peso di volume (kN/m3) 27.05 Tempi di arrivo tp (μs) Peso umido * TRASMISSIONE (g) ts (µ s) Vp (m/s) ONDE SONICHE Velocita' **E PARAMETRI** Vs (m/s) Peso secco * Modulo elastico dinamico Ed (GPa) (g) CORRELATI Rapporto di Poisson dinamico $\nu a \ni$ PROVA SCLEROMETRICA Media R medio VOLUME CON PESATA IDROST. Letture faccia superiore Temp. acqua (°C) Letture superficie laterale Peso in aria Letture faccia inferiore Peso in acqua (g) LITOTIPO **DOLOMIA** SCHEMA DI ROTTURA NOTE Condizione **Ambiente** Colore verdastro con punteggiature bianche Struttura massiccia, con tessitura subsaccaroide faccia 2 Piani di discontinuita' faccia 2 Alterazione Direz.carico/piani di disc. improvvisa faccia 1 Comportamento rapida caduta del carico Fratturazione parallala all'asse di carico su nuovi piani faccia 1 Osservazioni Condizioni ambiente : Temperatura Rapporto L/D 0.78 Legenda: Umidita' dell'aria (%) CARICO DI ROTTURA (kN) 72.8 · · · · Piani preesistenti Piani di rottura RESISTENZA A TRAZIONE INDIRETTA "BRASILIANA" T 0:2P/ π)L 9.64

L' Operatore (Dr.Geol.Saverio RANA):

Mrene

II Responsabile (Dr.Ing.Alberto MORINO):

M

MODULO L07 - Rev.02 /1.94

Misure eventuali per calcolo contenuto d'acqua

TRAZIONE INDIRETTA "BRASILIANA"

Rapporto n°: 12/95 Rif.: 1251 Data: Settembre 1995 Pag.: 65 / 140 : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente Cliente VICENZETTO S.r.I. : Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche S27 Sondaggio: Campione/Provino: CL24 / AU113 Profondità: 58.50-58.70 (m) Diametro (mm) 78.5 Condizione Ambiente Satura Cont. d'acqua Lunghezza 41.5 (mm) Peso (g) 553 (%) Volume (cm3) 200.85 Peso di volume (kN/m3) 27.00 Tempi di arrivo tp (μs) Peso umido * TRASMISSIONE ts (μs) (g) ONDE SONICHE Velocita' Vp (m/s) E PARAMETRI Vs (m/s) Peso secco * Modulo elastico dinamico CORRELATI Ed (GPa) (g) Rapporto di Poisson dinamico v_d PROVA SCLEROMETRICA Media VOLUME CON PESATA IDROST. R medio Letture faccia superiore Temp. acqua (°C) Letture superficie laterale Peso in aria Letture faccia inferiore Peso in acqua (g) SCHEMA DI ROTTURA LITOTIPO DOLOMIA NOTE Condizione **Ambiente** Colore biancastro Struttura massiccia con qualche frattura capillare e faccia 2 numerosi microvacuoli carsici Piani di discontinuita' ĪР faccia 2 Alterazione presente nei giunti con patine di assidazione Direz.carico/piani di disc. : Rottura faccia 1 improvvisa Comportamento rapida caduta del carico Fratturazione parallala all'asse di carico su nuovi piani faccia 1 Osservazioni Condizioni ambiente : Temperatura (°C) 25 Rapporto L/D Legenda: Umidita' dell'aria 70 0.53 · · · · Piani preesistenti CARICO DI ROTTURA (kN) 20.4 Piani di rottura RESISTENZA A TRAZIONE INDIRETTA "BRASILIANA" 3.98 T 0:2P/ πDL L'Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):

Misure eventuali per calcolo contenuto d'acqua

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

AU113.XLS Non Attendibile

COMPRESSIONE TRIASSIALE

Laboratorio di Meccanica delle Rocce TRIASSIALE 68/140 Rif.: Pag.: 1251 Data: Agosto 1995 Rapporto nº: 12/95 Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. VICENZETTO S.r.I. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche **VA1 / AU1** Profondita': (m) Campione/Provino: da blocco Sondaggio: Ambiente Satura Secca Diametro (mm) 53.7 Condizione Cont. d'acqua (%) 690.3 111.5 Peso Lunghezza (mm) 26.81 252.53 Peso di volume (kN/m3) Volume (cm3) tp (μ s) 21.0 Peso umido * Tempi di arrivo (g) 39.6 ts (µs) TRASMISSIONE 5310 Vp (m/s) ONDE SONICHE Velocita' 2816 Vs (m/s) Peso secco * E PARAMETRI (g) 56.545 Ed (GPa) Modulo elastico dinamico CORRELATI Rapporto di Poisson dinamico 0.30 v a 3 VOLUME CON PESATA IDROST. PROVA SCLEROMETRICA R medio Media Temp. acqua (°C) Letture faccia superiore Peso in aria (g) Letture superficie laterale Peso in acqua (g) Letture faccia inferiore SCHEMA DI ROTTURA LITOTIPO **DOLOMIA** NOTE biancastro-nocciola chiaro Colore massiccia, con rare microfratture e numerosi Struttura microvacuoli carsici Piani di discontinuita' assente Alterazione Direz.carico/piani di disc. improvvisa Rottura rapida caduta del carico Comportamento completa fratturazione del provino lungo Fratturazione nuovi piani Osservazioni Legenda: Piani preesistenti Piani di rottura PRESSIONE DI CONFINAMENTO 25 Rapporto L/D Condizioni ambiente : Temperatura (°C) 2.08 (MPa) Umidita' dell'aria (%) CARICO ASSIALE A ROTTURA 314.23 MODULO ELASTICO TANGENTE (GPa) (kN) σ₁' (MPa) 138.74 MODULO ELASTICO SECANTE (GPa) SFORZO PRINC, max a rottura RAPPORTO DI POISSON TANGENTE SFORZO PRINCIPALE MASSIMO A ROTTURA V t (-) 141.27 V s (-) (D=50mm L/D=2) CORRETTO 01 RAPPORTO DI POISSON SECANTE II Responsabile (Dr.Ing.Alberto MORINO): L' Operatore (Dr.Geol.Saverio RANA):

Misure eventuali per calcolo contenuto d'acqua

TRAZIONE INDIRETTA "BRASILIANA"

Rapporto nº: 12/95 Rif.: 1251 Data: Settembre 1995 Pag.: 67/140 Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: **S27** Campione/Provino: CL29 / AU115 Profondità: 68.00-68.30 Diametro (mm) 78.5 Condizione **Ambiente** Satura Cont. d'acqua Lunghezza (mm) 58.3 Peso 782 (%) Volume (cm3) 281.16 Peso di volume (kN/m3) 27.18 Tempi di arrivo tp (μs) Peso umido * TRASMISSIONE (μs) (g) ONDE SONICHE Velocita' Vp (m/s) E PARAMETRI Vs (m/s) Peso secco * CORRELATI Modulo elastico dinamico Ed (GPa) (g) Rapporto di Poisson dinamico ν a 🖯 PROVA SCLEROMETRICA Media R medio VOLUME CON PESATA IDROST. Letture faccia superiore Temp. acqua (°C) Letture superficie laterale Peso in aria (g) Letture faccia inferiore Peso in acqua (g) LITOTIPO **DOLOMIA** SCHEMA DI ROTTURA NOTE Condizione **Ambiente** Colore biancasrtro Struttura massiccia, con numerose microfratture faccia 2 Piani di discontinuita' faccia 2 Alterazione presenti patine di ossidazione sui giunti Direz.carico/piani di disc. : Rottura faccia 1 improvvisa Comportamento rapida caduta del carico Fratturazione lungo discontinuita' preesistenti faccia 1 Osservazioni Condizioni ambiente : Temperatura (°C) 25 Rapporto L/D Legenda: Umidita' dell'aria 0.74 (%) CARICO DI ROTTURA · · Piani preesistenti (kN) 15.6 Piani di rottura RESISTENZA A TRAZIONE INDIRETTA "BRASILIANA" T 0 : 2P/ π)L (MPa) 2.17 Mure L' Operatore (Dr.Geol.Saverio RANA): II Responsabile (Dr.Ing.Alberto MORINO):

*Misure eventuali per calcolo contenuto d'acqua N.A. = Non Attendibile

MODULO L07 - Rev.02 /1.94

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

EGEODATA Laboratorio di Meccanica delle Rocce

COMPRESSIONE TRIASSIALE

Pag.: 70 /140 Agosto 1995 1251 Data: Rapporto nº: 12/95 Rif.: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Profondita': (m) **VA2 / AU4** Campione/Provino: da blocco Sondaggio: Satura Secca Ambiente Cont. d'acqua 53.7 Condizione Diametro (mm) (%) 664.4 107,9 Peso (ğ) Lunghezza (mm) 26.66 Peso di volume (kN/m3) 244.38 Volume (cm3) 22.9 Peso umido * tp (μ s) Tempi di arrivo (g) 33.7 ts (µ s) TRASMISSIONE 4712 Vp (m/s) ONDE SONICHE Velocita' 3202 Vs (m/s) Peso secco * **E PARAMETRI** (g) 59.703 Ed (GPa) Modulo elastico dinamico CORRELATI N.A. Rapporto di Poisson dinamico va 3) VOLUME CON PESATA IDROST. Media R medio PROVA SCLEROMETRICA Temp. acqua (°C) Letture faccia superiore Peso in aria (g) Letture superficie laterale Peso in acqua (g) Letture faccia inferiore LITOTIPO **DOLOMIA** SCHEMA DI ROTTURA NOTE biancastro-nocciola chiaro Colore massiccia, con rare microfratture e numerosi Struttura microvacuoli carsici disposti lungo le fratture Piani di discontinuita' assente Alterazione Direz.carico/piani di disc. improvvisa Rottura rapida caduta del carico Comportamento sia su nuovi piani che su giunti Fratturazione preesistenti Osservazioni Legenda: Piani preesistenti Piani di rottura Rapporto L/D 25 PRESSIONE DI CONFINAMENTO Condizioni ambiente : Temperatura (°C) 2.01 Umidita' dell'aria (%) (MPa) MODULO ELASTICO TANGENTE (GPa) CARICO ASSIALE A ROTTURA (kN) 270.80 (GPa) 119.57 MODULO ELASTICO SECANTE (MPa) SFORZO PRINC. max a rottura SFORZO PRINCIPALE MASSIMO A ROTTURA RAPPORTO DI POISSON TANGENTE V t (-) (MPa) 121.23 RAPPORTO DI POISSON SECANTE ν_s (-) (D=50mm L/D=2) CORRETTO 01 Il Responsabile (Dr.Ing.Alberto MORINO): L' Operatore (Dr.Geol.Saverio RANA):

^{*} Misura gventuali per calcolo contenuto d'acqua

COMPRESSIONE TRIASSIALE

Rapporto nº: 12/95 Rif.: 1251 Pag.: 69/140 Data: Agosto 1995 AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: Cliente VICENZETTO S.r.I. Progetto Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: da blocco Campione/Provino: **VA1/AU2** Profondita': (m) Diametro (mm) 53.6 Condizione Secca **Ambiente** Satura Cont. d'acqua Lunghezza (mm) 106,7 Peso (g) 660.3 (%) Volume (cm3) 240.72 Peso di volume (kN/m3) 26.89 Tempi di arrivo tp (μ s) 19.1 Peso umido * TRASMISSIONE 35.6 ONDE SONICHE Velocita' Vp (m/s) 5586 E PARAMETRI Vs (m/s) 2997 Peso secco * CORRELATI Modulo elastico dinamico Ed (GPa) 63.944 Rapporto di Poisson dinamico va 3 0.30 PROVA SCLEROMETRICA R medio VOLUME CON PESATA IDROST. etture faccia superiore Temp. acqua (°C) etture superficie laterale Peso in aria Letture faccia inferiore Peso in acqua (g) SCHEMA DI ROTTURA LITOTIPO **DOLOMIA** NOTE Colore biancastro-nocciola chiaro Struttura massiccia, con rare microfratture e numerosi microvacuoli carsici Piani di discontinuita' Alterazione assente Direz.carico/piani di disc. Rottura improvvisa Comportamento rapida caduta del carico Fratturazione inclinata su nuovo piano Legenda: Osservazioni Piani preesistenti Piani di rottura PRESSIONE DI CONFINAMENTO Condizioni ambiente : Temperatura (°C) 25 Rapporto L/D (MPa) 10.0 Umidita' dell'aria 1.99 CARICO ASSIALE A ROTTURA (kN) 457.71 MODULO ELASTICO TANGENTE (GPa) SFORZO PRINC. max a rottura (MPa) 202.85 MODULO ELASTICO SECANTE (GPa) SFORZO PRINCIPALE MASSIMO A ROTTURA RAPPORTO DI POISSON TANGENTE V t (-) CORRETTO O 1 (D=50mm L/D=2) (MPa) 205.34 RAPPORTO DI POISSON SECANTE V s (-) Mena L' Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):

[்] Missus gventuali per calcolo contenuto d'acqua

COMPRESSIONE TRIASSIALE

Pag.: 72 / 140 Agosto 1995 12/95 1251 Data: Rapporto nº: Rif.: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Profondita': 8.40-8.60 **VA7 / AU18** (m) S10bis Campions/Provino: Sondaggio: Ambiente Satura Secca Cont. d'acqua 53.8 Condizione Diametro (mm) (%) 716.1 112.5 Peso (g) Lunghezzā (mm) 27.46 Peso di volume (kN/m3) 255.74 Volume (cm3) 19.6 Peso umido * tp (μ s) Tempi di arrivo (g) 66.5 TRASMISSIONE 5740 Vp (m/s) Velocita' ONDE SONICHE 1692 Peso secco * Vs (m/s) E PARAMETRI (g) 23.281 Ed (GPa) Modulo elastico dinamico CORRELATI 0.45 Rapporto di Poisson dinamico Vd 3 VOLUME CON PESATA IDROST. R medio Media PROVA SCLEROMETRICA Temp. acqua (°C) Letture faccia superiore Peso in aria (g) Letture superficie laterale Peso in acqua (g) Letture faccia inferiore **DOLOMIA** SCHEMA DI ROTTURA LITOTIPO NOTE biancastro-nocciola chiaro Colore massiccia, con numerose microfratture e Struttura microvacuoli carsici Piani di discontinuita' assente Alterazione Direz.carico/piani di disc. improvvisa Rottura rapida caduta del carico Comportamento parallela all'asse di carico su nuovi piani e Fratturazione secondariamente su giunti preesistenti Legenda: Osservazioni Piani preesistenti Piani di rottura 25 Rapporto L/D PRESSIONE DI CONFINAMENTO (°C) Temperatura Condizioni ambiente : 2.09 (%) (MPa) 349.99 MODULO ELASTICO TANGENTE (GPa) CARICO ASSIALE A ROTTURA (kN) (GPa) **σ₁** ' (MPa) 153.96 MODULO ELASTICO SECANTE SFORZO PRINC, max a rottura V t (-) SFORZO PRINCIPALE MASSIMO A ROTTURA RAPPORTO DI POISSON TANGENTE 156.96 (D=50mm L/D=2) RAPPORTO DI POISSON SECANTE V s (-) CORRETTO 01 Il Responsabile (Dr.Ing.Alberto MORINO): L' Operatore (Dr.Geol.Saverio RANA):

[•] Mishaese entuali per calcolo contenuto d'acqua

COMPRESSIONE TRIASSIALE

Rapporto n°: 12/95 Rif.: 1251 Data: Pag.: 71 /140 Agosto 1995 AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: Cliente VICENZETTO S.r.l. Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: da blocco Campione/Provino: **VA3 / AU6** Profondita': (m) Diametro (mm) 53.7 Condizione Secca Ambiente Satura Cont. d'acqua Lunghezza (mm) -107.9Peso (g) 681.8 (%) Volume Peso di volume (kN/m3) (cm3) 244.38 27.36 Tempi di arrivo tp (μ s) 20.1 Peso umido * TRASMISSIONE ts (µ s) 48.1 (g) ONDE SONICHE Velocita' Vp (m/s) 5368 E PARAMETRI Vs (m/s) 2243 Peso secco * Modulo elastico dinamico CORRELATI Ed (GPa) 39.150 Rapporto di Poisson dinamico ν d 🖯 0.39 PROVA SCLEROMETRICA Media R medio VOLUME CON PESATA IDROST. Letture faccia superiore Temp. acqua Letture superficie laterale Peso in aria (g) Letture faccia inferiore Peso in acqua (g) SCHEMA DI ROTTURA LITOTIPO **DOLOMIA** NOTE Colore biancastro-nocciola chiaro Struttura massiccia, con numerose microfratture e microvacuoli carsici disposti lungo le fratture Piani di discontinuita' Alterazione assente Direz.carico/piani di disc. Rottura improvvisa Comportamento rapida caduta del carico Fratturazione parallela all'asse di carico su nuovi piani e secondariamente su giunti preesistenti Legenda: Osservazioni Piani preesistenti Piani di rottura PRESSIONE DI CONFINAMENTO Condizioni ambiente : Temperatura (°C) 25 Rapporto L/D (MPa) Umidita' dell'aria 2.01 CARICO ASSIALE A ROTTURA (kN) 257.17 MODULO ELASTICO TANGENTE Et (GPa) SFORZO PRINC, max a rottura (MPa) 113.55 MODULO ELASTICO SECANTE (GPa) SFORZO PRINCIPALE MASSIMO A ROTTURA RAPPORTO DI POISSON TANGENTE V t (-) CORRETTO 01 (D=50mm L/D=2) 115.13 RAPPORTO DI POISSON SECANTE V s (-) L'Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):

[்] Misuse gventuali per calcolo contenuto d'acqua

COMPRESSIONE TRIASSIALE

Pag.: 74 /140 Agosto 1995 12/95 1251 Data: Rapporto nº: Rif.: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: VICENZETTO S.r.I. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche **VA10 / AU25** Profondita': 12.60-13.00 (m) S10bis Campione/Provino: Sondaggio: **Ambiente** Satura Secca Cont. d'acqua 53.8 Condizione Diametro (mm) (%) 693.4 109.7 Peso (g) Lunghezza (mm) 27.23 249.38 Peso di volume (kN/m3) Volume (cm3) 17.2 Peso umido * Tempi di arrivo tp (μ s) (g) 33.8 ts (µ s) TRASMISSIONE 6378 Vp (m/s) ONDE SONICHE Velocita' 3246 Peso secco * Vs (m/s) E PARAMETRI (g) Ed (GPa) 77.530 Modulo elastico dinamico CORRELATI 0.33 Rapporto di Poisson dinamico νa 🖯 VOLUME CON PESATA IDROST. Media R medio PROVA SCLEROMETRICA Temp. acqua (°C) Letture faccia superiore Peso in aria Letture superficie laterale (g) Peso in acqua (g) Letture faccia inferiore **DOLOMIA** SCHEMA DI ROTTURA LITOTIPO NOTE grigio chiaro Colore massiccia, con numerosi microvacuoli e poche Struttura fratture capillari Piani di discontinuita assente Alterazione Direz.carico/piani di disc. improvvisa Rottura rapida caduta del carico Comportamento principalmente lungo discontinuita' preesistenti Fratturazione σ Legenda: Osservazioni Piani preesistenti Piani di rottura Rapporto L/D PRESSIONE DI CONFINAMENTO 25 Temperatura (°C) Condizioni ambiente : 2.04 60 (%) (MPa) Umidita' dell'aria (GPa) CARICO ASSIALE A ROTTURA 369.58 MODULO ELASTICO TANGENTE (kN) σ₁' (MPa) 162.58 MODULO ELASTICO SECANTE (GPa) SFORZO PRINC, max a rottura SFORZO PRINCIPALE MASSIMO A ROTTURA RAPPORTO DI POISSON TANGENTE V t (-) (MPa) 165.20 (D=50mm L/D=2) V s (-) CORRETTO RAPPORTO DI POISSON SECANTE Mere Il Responsabile (Dr.Ing.Alberto MORINO): L' Operatore (Dr.Geol.Saverio RANA): GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

Misure eyentuali per calcolo contenuto d'acqua

COMPRESSIONE TRIASSIALE

Rapporto nº: 12/95 Rif.: 1251 Pag.: 73/140 Data: Agosto 1995 Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. VICENZETTO S.r.I. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: S10bis Campione/Provino: VA10 / AU24 Profondita': 12.60-13.00 (m) Diametro (mm) 53.9 Condizione Secca **Ambiente** Satura Cont. d'acqua 108.4 Lunghezza (mm) Peso (%) 683.0 Volume 247.34 Peso di volume (kN/m3) (cm3) 27.08 Tempi di arrivo tp (µ s) 17.1 Peso umido * TRASMISSIONE ts (µs) (g) 22.1 ONDE SONICHE Velocita' Vp (m/s) 6339 **E PARAMETRI** Vs (m/s) N.A. Peso secco * Modulo elastico dinamico CORRELATI Ed (GPa) N.A. (g) Rapporto di Poisson dinamico N.A. ν a 🖯 PROVA SCLEROMETRICA VOLUME CON PESATA IDROST. Media R medio Letture faccia superiore Temp. acqua (°C) Letture superficie laterale Peso in aria (g) Letture faccia inferiore Peso in acqua (g) SCHEMA DI ROTTURA LITOTIPO DOLOMIA NOTE Colore grigio chiaro Struttura massiccia, con rare fratture; vacuoli assenti Piani di discontinuita' Alterazione assente Direz.carico/piani di disc. Rottura improvvisa Comportamento marcatamente fragile Fratturazione intensa fartturazione su tutto il provino, sia su nuovi piani che su piani preesistenti Legenda: Osservazioni Piani preesistenti Piani di rottura PRESSIONE DI CONFINAMENTO Condizioni ambiente : Temperatura 25 (°C) Rapporto L/D (MPa) 10.0 2.01 Umidita' dell'aria (%) CARICO ASSIALE A ROTTURA (kN) 610.57 MODULO ELASTICO TANGENTE (GPa) SFORZO PRINC, max a rottura (MPa) 267,59 MODULO ELASTICO SECANTE (GPa) SFORZO PRINCIPALE MASSIMO A ROTTURA RAPPORTO DI POISSON TANGENTE V t (-) CORRETTO O1 (D=50mm L/D=2) 271.52 RAPPORTO DI POISSON SECANTE V s (-) L'Operatore (Dr.Geol.Saverio RANA) : Il Responsabile (Dr.Ing.Alberto MORINO): une

Misure eventuali per calcolo contenuto d'acqua

COMPRESSIONE TRIASSIALE

Pag.: 76/140 Settembre 1995 12/95 1251 Data: Rapporto nº: Rif.: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: VICENZETTO S.r.I. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Profondita': 12.20-12.75 VA30 / AU52 (m) S20 Campione/Provino: Sondaggio: **Ambiente** Satura 62.2 Condizione Secca Cont. d'acqua Diametro (mm) (%) 1056 Lunghezza (mm) 126.6 Peso (g) 26.92 384.68 Peso di volume (kN/m3) Volume (cm3) Peso umido * tp (μ s) Tempi di arrivo (g) TRASMISSIONE Vp (m/s) ONDE SONICHE Velocita' Vs (m/s) Peso secco * E PARAMETRI (g) Modulo elastico dinamico Ed (GPa) CORRELATI V d (-) Rapporto di Poisson dinamico R medio VOLUME CON PESATA IDROST. Media PROVA SCLEROMETRICA Temp. acqua (°C) Letture faccia superiore Peso in aria Letture superficie laterale Peso in acqua (g) Letture faccia inferiore **DOLOMIA** SCHEMA DI ROTTURA LITOTIPO NOTE grigio chiaro Colore massiccia e omogenea, con rare fratture capillari Struttura e qualche microvacuolo Piani di discontinuita' Alterazione assente Direz.carico/piani di disc. improvvisa Rottura rapida caduta del carico Comportamento sia su nuovi piani che su giunti preesistenti Fratturazione Legenda: Osservazioni Piani preesistenti Piani di rottura 19 Rapporto L/D PRESSIONE DI CONFINAMENTO (°C) Condizioni ambiente : Temperatura 2.04 61 (MPa) Umidita' dell'aria (%) 577.36 MODULO ELASTICO TANGENTE Εt (GPa) (kN) CARICO ASSIALE A ROTTURA (GPa) 190.01 MODULO ELASTICO SECANTE SFORZO PRINC, max a rottura (MPa) RAPPORTO DI POISSON TANGENTE ν_t (-) SFORZO PRINCIPALE MASSIMO A ROTTURA (D=50mm L/D=2) (MPa) 198.15 RAPPORTO DI POISSON SECANTE νs (-) CORRETTO Moure Il Responsabile (Dr.Ing.Alberto MORINO): L' Operatore (Dr.Geol.Saverio RANA) :

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

প্রত্যান্ত্রভূতি সমূহে বুলা চারতার সাম্ভরতার সাম্ভরতার

^{&#}x27;Misure eventuali per calcolo contenuto d'acqua

■GEODATA

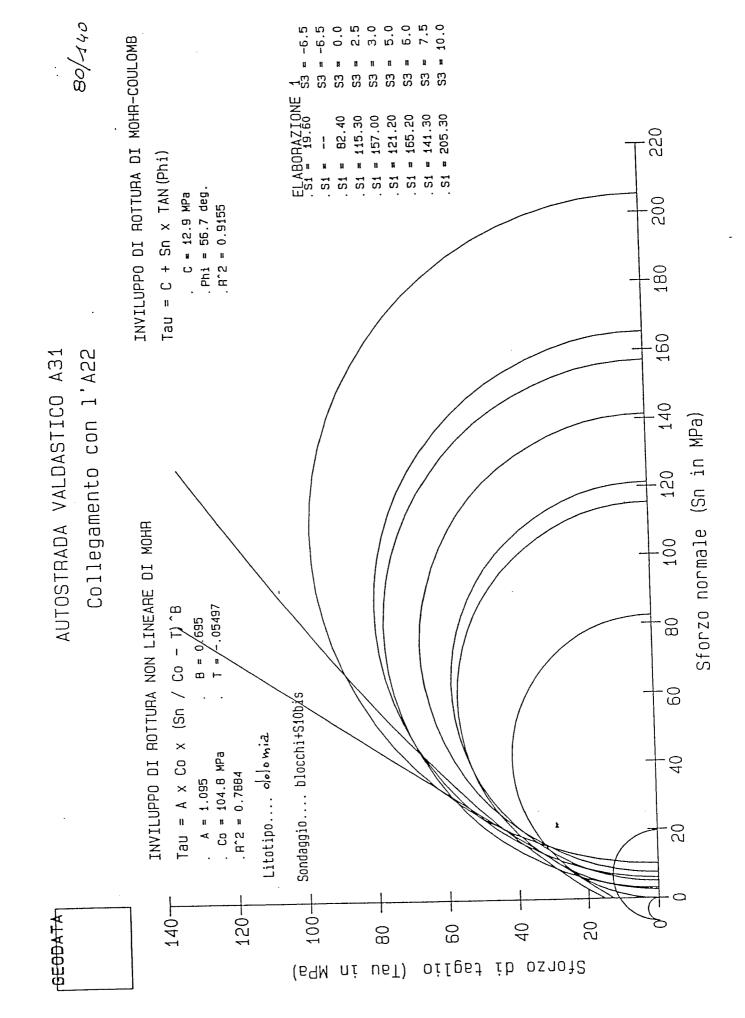
Laboratorio di Meccanica delle Rocce

COMPRESSIONE TRIASSIALE

Rapporto n°: 12/95 Rif.: 1251 Pag.: 75 / 140 Data: Settembre 1995 Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. VICENZETTO S.r.l. Cliente Progetto Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: S20 Campione/Provino: VA30 / AU51 Profondital: 12.20-12.75 Diametro 62.2 Condizione (mm) Secca Ambiente Satura Cont. d'acqua 126.9 Lunghezza (mm) Peso 106.7 (%) (g) Volume 385.60 Peso di volume (kN/m3) (cm3) 27.13 Tempi di arrivo tp (μ s) Peso umido * **TRASMISSIONE** (g) ONDE SONICHE Velocita' Vp (m/s) E PARAMETRI Vs (m/s) Peso secco * Modulo elastico dinamico Ed (GPa) CORRELATI (g) Rapporto di Poisson dinamico ν a :-) PROVA SCLEROMETRICA VOLUME CON PESATA IDROST. Media R medio etture faccia superiore Temp. acqua (°C) Letture superficie laterale Peso in aria (g) Letture faccia inferiore Peso in acqua (g) SCHEMA DI ROTTURA LITOTIPO **DOLOMIA** NOTE Colore grigio chiaro Struttura massiccia, con rare fratture; presenti pochi microvacuoli Piani di discontinuita' Alterazione assente Direz.carico/piani di disc. Rottura improvvisa Comportamento fragile Fratturazione iniziale su nuovo piano seguita da rottura su giunto Legenda: Osservazioni Piani preesistenti Piani di rottura PRESSIONE DI CONFINAMENTO Condizioni ambiente : (°C) Temperatura 19 Rapporto L/D (MPa) 7.5 2.04 Umidita' dell'aria (%) 61 CARICO ASSIALE A ROTTURA (kN) 492.63 MODULO ELASTICO TANGENTE (GPa) SFORZO PRINC, max a rottura (MPa) 162.13 MODULO ELASTICO SECANTE (GPa) SFORZO PRINCIPALE MASSIMO A ROTTURA RAPPORTO DI POISSON TANGENTE V t (-) CORRETTO σ_1 (D=50mm L/D=2) 169.12 RAPPORTO DI POISSON SECANTE V s (-) L' Operatore (Dr.Geol.Saverio RANA) : Il Responsabile (Dr.Ing.Alberto MORINO):

^{*} Misure eventuali per calcolo contenuto d'acqua

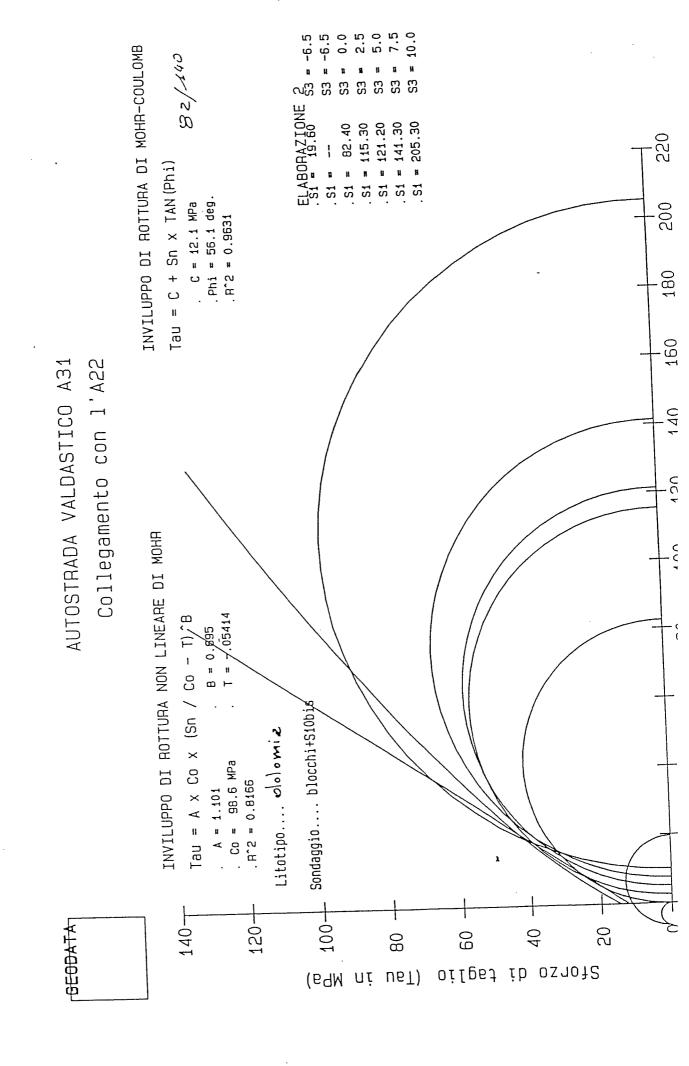
COMPRESSIONE TRIASSIALE

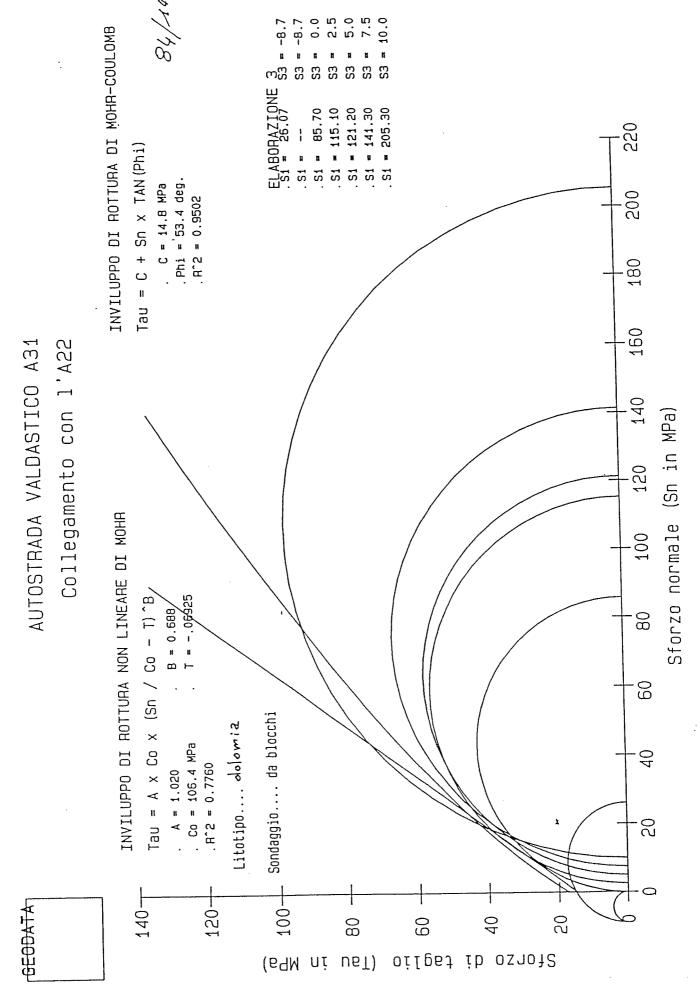

Pag.: 78 Settembre 1995 12/95 1251 Data: Rif.: Rapporto nº: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Profondita': 11.00-11.20 **VA27 / AU55** (m) S20 Campione/Provino: Sondaggio: Condizione Secca Ambiente Satura Diametro 62.2 Cont. d'acqua (mm) (%) 1097 128.8 Peso Lunghezza (mm) 27.49 Volume 391.37 Peso di volume (kN/m3) (cm3) Peso umido 1 tp (μ s) Tempi di arrivo (g) ts (µ s) TRASMISSIONE Vp (m/s) ONDE SONICHE Velocita' Vs (m/s) Peso secco * E PARAMETRI (g) Modulo elastico dinamico Ed (GPa) CORRELATI Rapporto di Poisson dinamico V d (-) VOLUME CON PESATA IDROST. PROVA SCLEROMETRICA Media R medio Temp. acqua (°C) Letture faccia superiore Peso in aria (g) Letture superficie laterale Peso in acqua (g) etture faccia inferiore SCHEMA DI ROTTURA LITOTIPO **DOLOMIA** NOTE Colore grigio chiaro massiccia e omogenea, con rare fratture capillari Struttura e qualche microvacuolo Piani di discontinuita' assente Alterazione Direz.carico/piani di disc. improvvisa Rottura rapida caduta del carico Comportamento sia su nuovi piani che su giunti preesistenti Fratturazione Legenda: Osservazioni · · · · Piani preesistenti Piani di rottura PRESSIONE DI CONFINAMENTO 19 Rapporto L/D Condizioni ambiente : Temperatura (°C) 2.07 (MPa) Umidita' dell'aria (%) MODULO ELASTICO TANGENTE (GPa) CARICO ASSIALE A ROTTURA (kN) 553.94 **σ**1' (MPa) 182.30 (GPa) SFORZO PRINC, max a rottura MODULO ELASTICO SECANTE SFORZO PRINCIPALE MASSIMO A ROTTURA RAPPORTO DI POISSON TANGENTE V t (-) CORRETTO O1 (D=50mm L/D=2) 190.53 RAPPORTO DI POISSON SECANTE V s (-) Juine Il Responsabile (Dr.Ing.Alberto MORINO): L' Operatore (Dr.Geol.Saverio RANA):

^{*} Misure eventuali per calcolo contenuto d'acqua

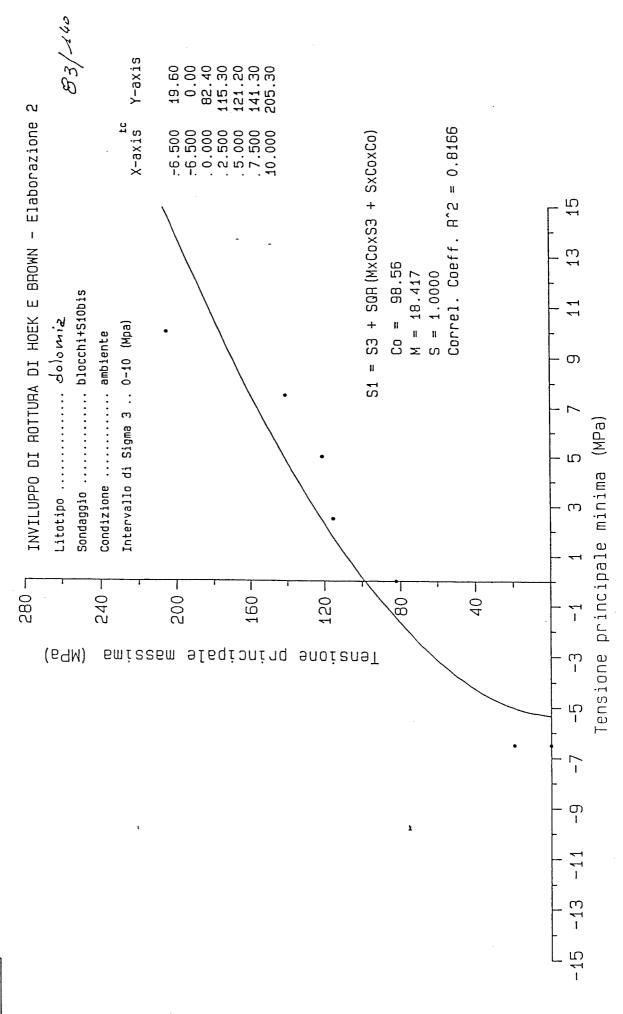
COMPRESSIONE TRIASSIALE

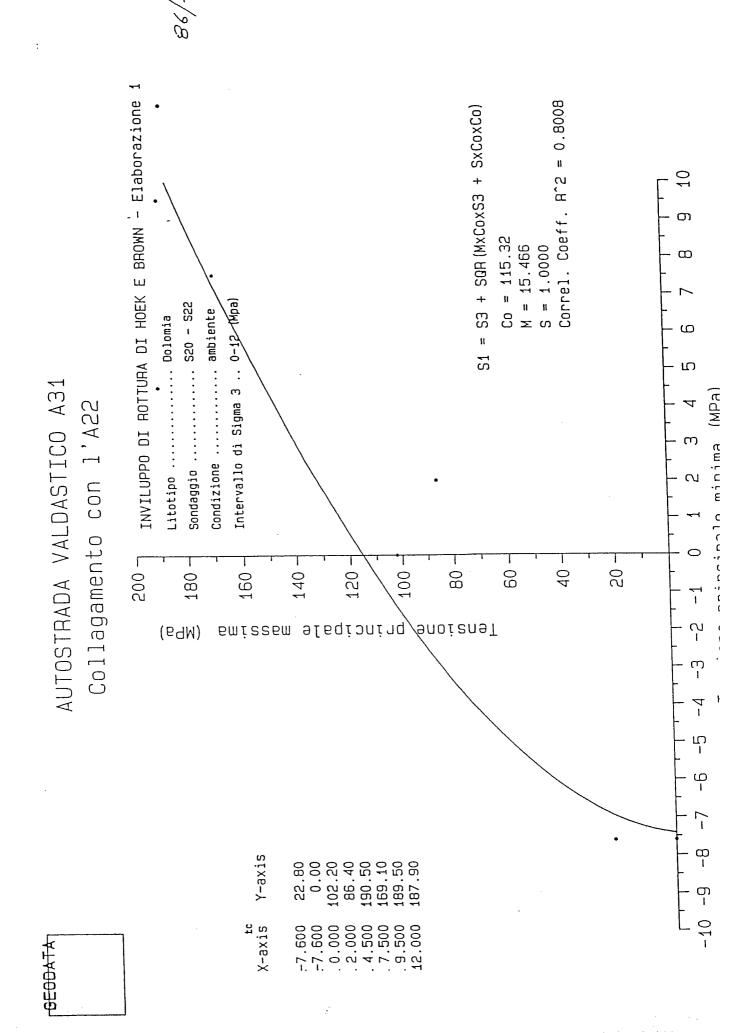
Rapporto nº: 12/95 Rif.: 1251 Data: Settembre 1995 Pag.: 77 /140 Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Cliente VICENZETTO S.r.l. Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: S20 Campione/Provino: VA30 / AU53 Profondita': 12.20-12.75 (m) 62.2 Diametro (mm) Condizione Secca Ambiente Satura Cont. d'acqua Lunghezza -(mm) 126.8 Peso (g) 1078.0 (%) Volume 385.29 (cm3) Peso di volume (kN/m3) 27.44 Tempi di arrivo tp (μ s) Peso umido * TRASMISSIONE ONDE SONICHE Velocita' Vp (m/s) E PARAMETRI Vs (m/s) Peso secco * Modulo elastico dinamico CORRELATI Ed (GPa) (q) Rapporto di Poisson dinamico ν d 🖯 PROVA SCLEROMETRICA Media R medio VOLUME CON PESATA IDROST. Letture faccia superiore Temp. acqua (°C) Letture superficie laterale Peso in aria (g) Letture faccia inferiore Peso in acqua (g) SCHEMA DI ROTTURA LITOTIPO **DOLOMIA** NOTE Colore grigio chiaro Struttura massiccia, a luoghi brecciata: presenti vacuoli anche di dimensioni centimetriche Piani di discontinuita' presenti numerose discontinuita' capillari Alterazione assente Direz.carico/piani di disc. Rottura improvvisa Comportamento rapida caduta del carico Fratturazione sia su nuovi piani che su giunti preesistenti σ Legenda: Osservazioni Piani preesistenti Piani di rottura PRESSIONE DI CONFINAMENTO Condizioni ambiente : Temperatura (°C) 19 Rapporto L/D 2.0 (MPa) Umidita' dell'aria 2.04 (%) CARICO ASSIALE A ROTTURA (kN) 251.64 MODULO ELASTICO TANGENTE (GPa) SFORZO PRINC. max a rottura (MPa) 82.82 MODULO ELASTICO SECANTE (GPa) SFORZO PRINCIPALE MASSIMO A ROTTURA RAPPORTO DI POISSON TANGENTE V t (-) CORRETTO O1 (D=50mm L/D=2) (MPa) 86.38 RAPPORTO DI POISSON SECANTE νs (-) L' Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):




COMPRESSIONE TRIASSIALE

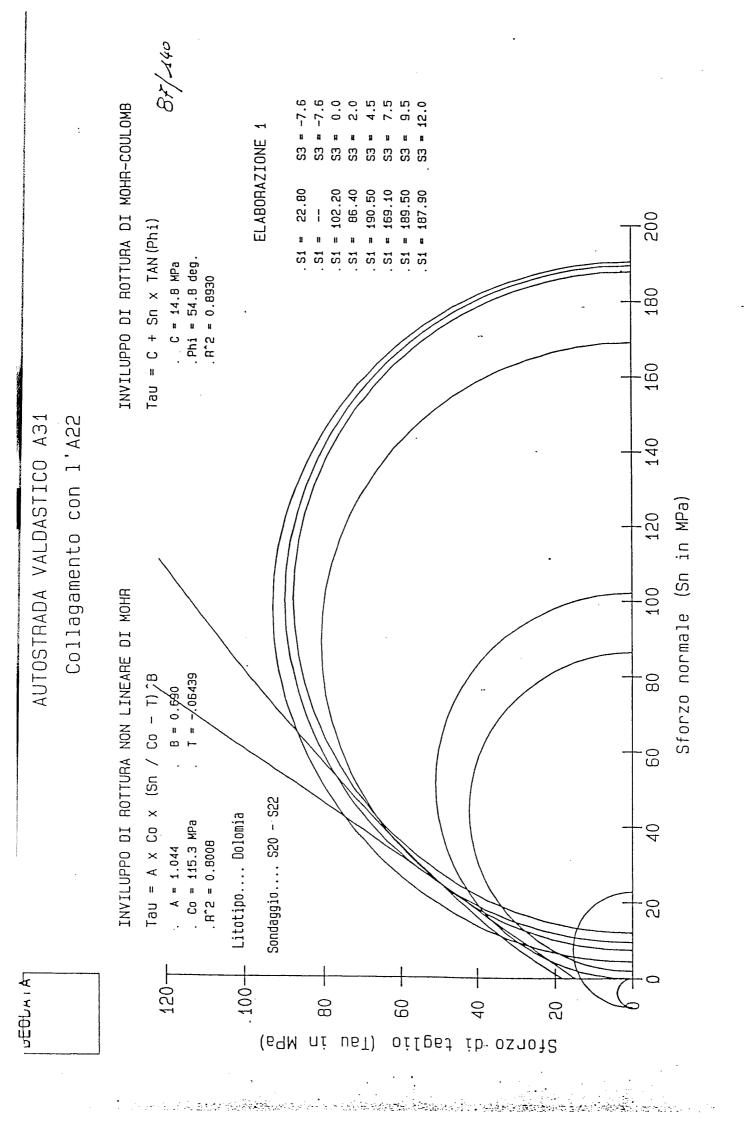
Rapporto nº: 12/95 Rif.: 1251 Data: Pag.: 79 / 140 Settembre 1995 Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Cliente VICENZETTO S.r.I. Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: Campione/Provino: VA18 / AU95 Profondita': 34.3-34.5 (m) Condizione Diametro (mm) 62.2 Secca **Ambiente** Satura Cont. d'acqua Lunghezza (mm) 135.1 Peso 1138 (%) (g) Volume 410.51 Peso di volume (kN/m3) (cm3) 27.18 Tempi di arrivo tp (μ s) Peso umido * TRASMISSIONE (g) ts (μ s) ONDE SONICHE Velocita' Vp (m/s) E PARAMETRI Vs (m/s) Peso secco * Modulo elastico dinamico CORRELATI Ed (GPa) (g) Rapporto di Poisson dinamico νd (-) PROVA SCLEROMETRICA VOLUME CON PESATA IDROST. Media R medio Letture faccia superiore Temp. acqua (°C) Letture superficie laterale Peso In aria (g) Letture faccia inferiore Peso in acqua (g) SCHEMA DI ROTTURA LITOTIPO **DOLOMIA** NOTE Colore biancasto -grigio chiaro Struttura massiccia, a tessitura subsaccaroide poco fratturata Piani di discontinuita' Alterazione Direz.carico/piani di disc. Rottura improvvisa rapida caduta del carico Comportamento Fratturazione inclinata su giunto preesistente σ Legenda: Osservazioni Piani preesistenti Piani di rottura PRESSIONE DI CONFINAMENTO Condizioni ambiente : Temperatura (°C) 19 Rapporto L/D (MPa) 2.17 Umidita' dell'aria CARICO ASSIALE A ROTTURA (kN) 542.87 MODULO ELASTICO TANGENTE (GPa) SFORZO PRINC, max a rottura (MPa) 178.66 MODULO ELASTICO SECANTE (GPa) SFORZO PRINCIPALE MASSIMO A ROTTURA RAPPORTO DI POISSON TANGENTE V t (-) CORRETTO 01 (D=50mm L/D=2) (MPa) 187.85 RAPPORTO DI POISSON SECANTE V s (-) There L' Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):


^{*} Misure eventuali per calcolo contenuto d'acqua



Y-axis 19.60 0.00 82.40 115.30 157.00 121.20 165.20 141.30 205.30 INVILUPPO DI ROTTURA DI HOEK E BROWN — Elaborazione 1 X-axis -6.500 0.000 2.500 3.000 .5.000 .6.000 Correl. Coeff. R^2 = 0.7884 S3 + SQR (MxCoxS3 + SxCoxCo) 13 $C_0 = 104.84$ M = 18.136S = 1.0000Sondaggio blocchi+S19bis Litotipo ololomiz Intervallo di Sigma 3 .. 0-10 (Mpa) Condizione ambiente g 11 S AUTOSTRADA VALDASTICO A31 Collegamento con 1'A22 (MPa) \Box Tensione principale minima ന 280 기 240 -2007 120 -80 — 40 — 160 (B9M) Tensione principale massima $\mathfrak{C}_{\mathsf{I}}$ _7 <u>ნ</u> -13 -15 **GEODATA**

AUTOSTRADA VALDASTICO A31 Collegamento con 1'A22


MODULO L26 - Rev.03/10.95

Laboratorio di Meccanica delle Rocce

TAGLIO DIRETTO

Pag.: 88/140 Seettembre 1995 Rif.: 1251 Data: Rapporto nº: 12/95 AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche 29.80-30.10 Profondita': (m) Campione/Provino: VA13 / AU58 S22 Sondaggio: Ambiente Satura Cont. d'acqua Secca Condizione Diametro (mm) (%) Peso (g) Lunghezza (mm) (kN/m3) Volume Peso di volume (cm3) Peso umido * (μs) Tempi di arrivo (g) (µs) ts TRASMISSIONE Vp (m/s) ONDE SONICHE Velocita' Peso secco * Vs (m/s) E PARAMETRI (g) Modulo elastico dinamico Ed (GPa) CORRELATI V d (-) Rapporto di Poisson dinamico VOLUME CON PESATA IDROST. PROVA SCLEROMETRICA Media R medio Temp. acqua (°C) Letture faccia superiore Peso in aria (g) Letture superficie laterale Peso in acqua (g) Letture faccia inferiore DOLOMIA LITOTIPO NOTE asse : ambiente Condizione camp. : biancastro - nocciola Colore : massiccia Struttura piani di taglio : presenti fratture capillari chiuse e rare Piani di discontinuita' (vista in pianta) fratture occluse da ricristallizzazioni : assente Alterazione vedi modulo "carat-: direzione di taglio: Joint Roughness Coefficient teristiche discontinuità" direzione normale: (MPa) : vedi modulo "caratteristiche discontinuità" Joint wall Compress. Strenght Angolo piano di taglio - orizzontale (°): Comportamento 45.75 Area del piano di taglio (cm2) Osservazioni 21 (°C) Temperatura Condizioni ambiente : 69 Umidita' dell'aria (%) (vista laterale) σn 4.10 (MPa) PRESSIONE VERTICALE 18.76 Νn (kN) FORZA VERTICALE τp 4.78 (MPa) (kN) 21.86 SFORZO DI TAGLIO (picco) Np FORZA DI TAGLIO (picco) 2.54 τu (MPa) 11.63 SFORZO DI TAGLIO (ultimo) (kN) Nu FORZA DI TAGLIO (ultima) 11.15 (°) SPOSTAM. ORIZZONTALE (ultimo) Su (mm) ANGOLO DI DILATANZA αр Mrene Il Responsabile (Dr.Ing.Alberto MORINO): L' Operatore (Dr.Geol.Saverio RANA): GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORIN(Misure eventuali per calcolo contenuto d'acqua

TAGLIO DIRETTO

Laboratorio di Meccanica delle Rocce

Rapporto n°:

12/95

Rif.:

1251

Data:

Seettembre 1995

90/140 Pag.:

Committente:

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente

VICENZETTO S.r.l.

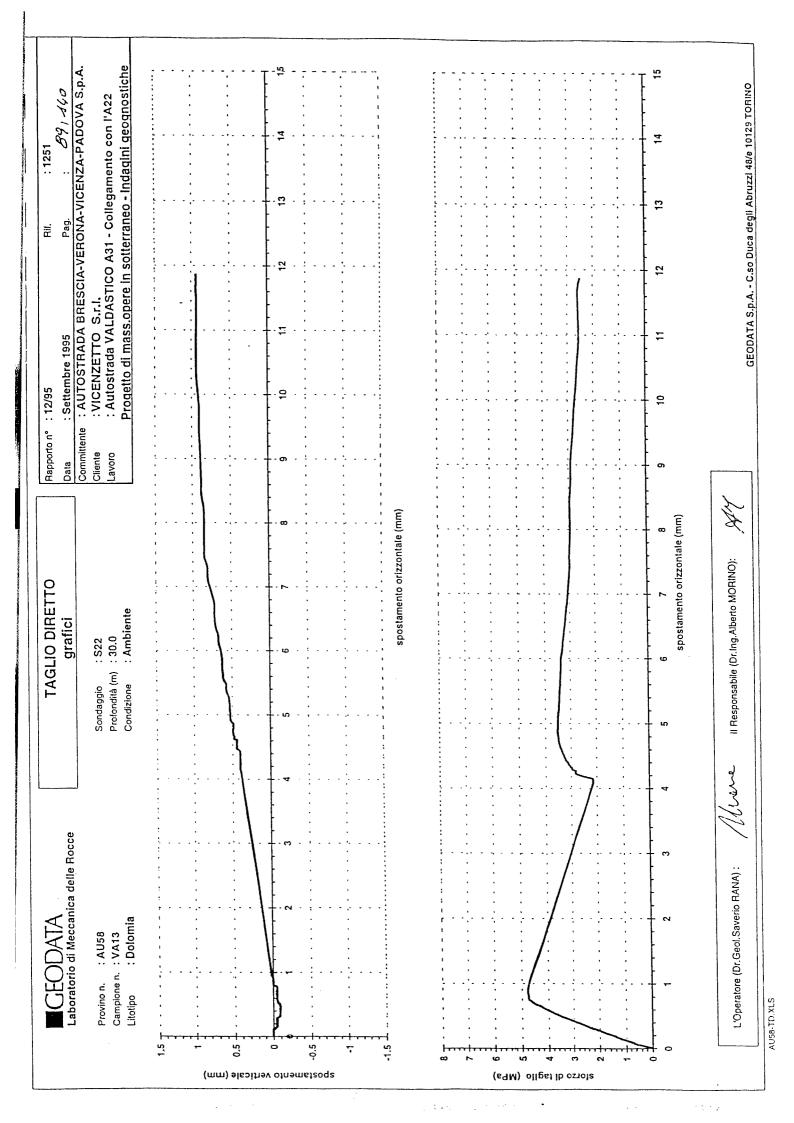
Progetto

MODULO L26 - Rev.03/10.95

Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio :	S22	Campione/Provino:	VA17 / AU59	9	Profondita':	32.20-32.40 (m)
Diametro (mm)		Condizione	Secca	Ambiente	Satura	Cont. d'acqua
Lunghezza (mm)		Peso (g)	-			(%)
Volume (cm3		Peso di volume (kN/m3)				
77.01.0000	Tempi di arriv	o tp (μs) ts (μs)				Peso umido * (g)
TRASMISSION		Vp (m/s)				
ONDE SONICH		Vs (m/s)				Peso secco *
E PARAMET						(g)
CORRELA						
1	Rapporto di F	Poisson dinamico V d (-)		<u> </u>	 	
	PRO\	/A SCLEROMETRICA	Media	R medio		CON PESATA IDROST.
Letture faccia supe	eriore			4	Temp. acc	
Letture superficie l	aterale			4	Peso in a	
Letture faccia infer	iore			<u> </u>	Peso in a	cqua (g)
		LITOTIPO :	DOLOMIA			
asse				NOTE		
camp.		Condizione		: ambiente		
		Colore			o - nocciola	
piani	di taglio	Struttura			a con rari mic	
(vista	in pianta)	Piani di discontinuita'				ari chiuse e rare ristallizzazioni
		Alterazione		: assente		
		Joint Roughness Coefficient	t	: direzione direzione r	•	vedi modulo "carat- teristiche discontinuità
		Joint wall Compress. Streng	, , ,	; vedi mod	dulo "caratter 0	istiche discontinuità"
		Angolo piano di taglio - oriz. Comportamento	zomale ().			
	L	Area del piano di taglio (cr	m2)	: 40	.19	
		Osservazioni (c.		:		
('		,				
		Condizioni ambiente :	Temperatura	(°C)	21	
	/	i	Umidita' dell'aria	(%)	69	1

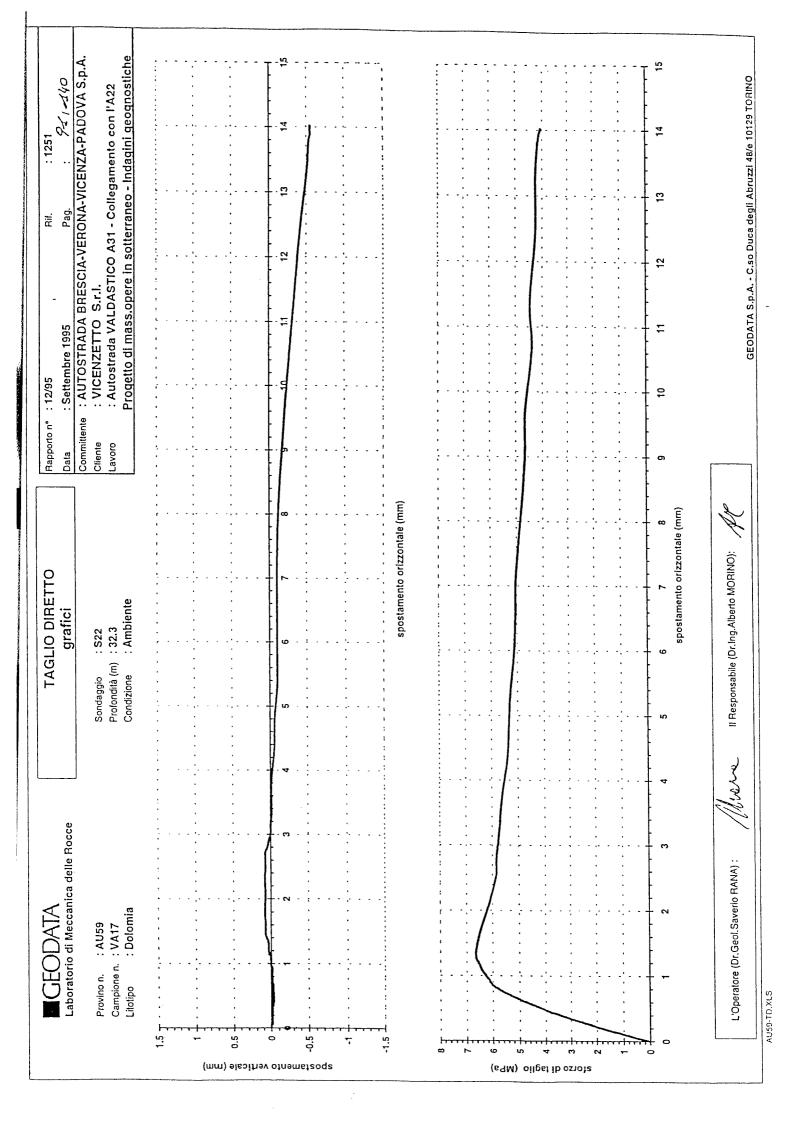

FORZA VERTICALE	Nn	(kN)	32.61
FORZA DI TAGLIO (picco)	Np	(kN)	26.71
FORZA DI TAGLIO (ultima)	Nu	(kN)	17.13
ANGOLO DI DILATANZA	αр	(°)	

σn 8.11 (MPa) PRESSIONE VERTICALE τρ 6.65 (MPa) SFORZO DI TAGLIO (picco) 4.26 SFORZO DI TAGLIO (ultimo) τu (MPa) 12.42 SPOSTAM. ORIZZONTALE (ultimo) Su (mm)

L' Operatore (Dr.Geol.Saverio RANA):

II Responsabile (Dr.Ing.Alberto MORINO):

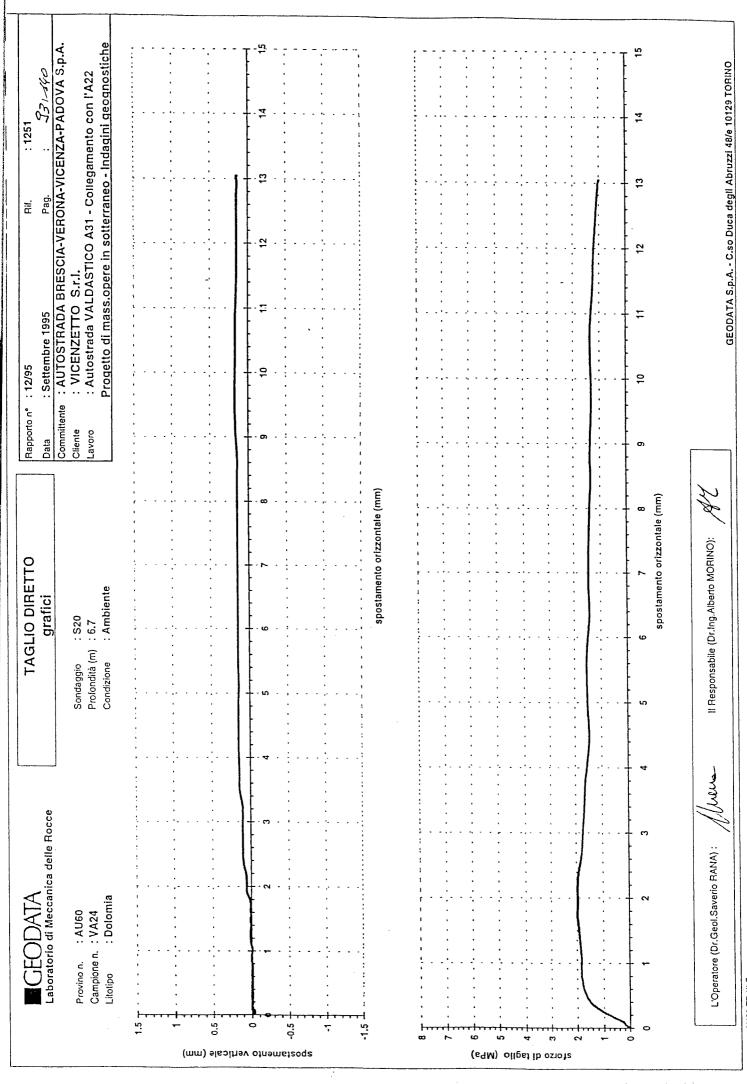
Misure eventuali per calcolo contenuto d'acqua



TAGLIO DIRETTO

92/140 Seettembre 1995 Pag.: 1251 Data: 12/95 Rif.: Rapporto nº: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche **VA24 / AU60** Profondita': 6.60-6.80 (m) S20 Campione/Provino: Sondaggio: Secca **Ambiente** Satura Cont. d'acqua Diametro Condizione (mm) (%) (mm) Peso (g) Lunghezza Peso di volume (kN/m3) Volume (cm3) Peso umido * (µs) tp Tempi di arrivo (g) (µs) ts TRASMISSIONE Vp (m/s) ONDE SONICHE Velocita⁴ Peso secco * Vs (m/s) E PARAMETRI (q) Modulo elastico dinamico Ed (GPa) CORRELATI ν_{d (-)} Rapporto di Poisson dinamico VOLUME CON PESATA IDROST. Media R medio PROVA SCLEROMETRICA Temp. acqua (°C) Letture faccia superiore Peso in aria (g) Letture superficie laterale Peso in acqua (g) Letture faccia inferiore **DOLOMIA** LITOTIPO NOTE asse : ambiente Condizione camp. : biancastro - nocciola Colore : massiccia con rari microvacuoli Struttura piani di taglio : presenti fratture capillari chiuse e rare Piani di discontinuita' (vista in pianta) fratture occluse da ricristallizzazioni : assente Alterazione : direzione di taglio: vedi modulo "carat-Joint Roughness Coefficient teristiche discontinuità" direzione normale: (MPa) : vedi modulo "caratteristiche discontinuità" Joint wall Compress. Strenght Angolo piano di taglio - orizzontale (°): Comportamento 44.51 Area del piano di taglio (cm2) Osservazioni 21 (°C) Temperatura Condizioni ambiente : 69 Umidita' dell'aria (vista laterale) 2.11 (MPa) PRESSIONE VERTICALE Νn (kN) 9.37 FORZA VERTICALE τρ 1.98 (MPa) SFORZO DI TAGLIO (picco) (kN) 8.80 FORZA DI TAGLIO (picco) Np 1.33 (MPa) FORZA DI TAGLIO (ultima) (kN) 5.90 SFORZO DI TAGLIO (ultimo) Nu 9.88 SPOSTAM. ORIZZONTALE (ultimo) Su (mm) ANGOLO DI DILATANZA αр Muere Il Responsabile (Dr.Ing.Alberto MORINO): L' Operatore (Dr.Geol.Saverio RANA):

Misure eventuali per calcolo contenuto d'acqua



TAGLIO DIRETTO

(pag. 1/2)

94 1140 12/95 Rif.: 1251 Data: Settembre 1995 Pag.: Rapporto nº: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche 4.30-4.90 VA20/AU61+61a Profondita': S20 Campione/Provino: Sondaggio: Secca Ambiente Satura Diametro Condizione Cont. d'acqua (mm) (%) Peso (g) Lunghezza (mm) Peso di volume (kN/m3) Volume (cm3) Peso umido tp (μs) Tempi di arrivo (g) ts (µs) TRASMISSIONE Vp (m/s) Velocita' ONDE SONICHE Vs (m/s) Peso secco E PARAMETRI (g) Ed (GPa) Modulo elastico dinamico CORRELATI MODULO L24 - Rev.03/10.95 Rapporto di Poisson dinamico V d (-) **VOLUME CON PESATA IDROS** PROVA SCLEROMETRICA Media R medio Temp. acqua (°C) Letture faccia superiore Peso in aria (g) Letture superficie laterale Peso in acqua (g) Letture faccia inferiore LITOTIPO NOTE asse : ambiente Condizione camp. : biancastro - nocciola Colore : massiccia con rari microvacuoli Struttura piani di taglio : presenti fratture capillari chiuse e rare Piani di discontinuita' (vista in pianta) fratture occluse da ricristallizzazioni : assente Alterazione vedi modulo "carat-: direzione di taglio: Joint Roughness Coefficient direzione normale: teristiche discontinu (MPa) : vedi modulo "caratteristiche discontinuita Joint wall Compress. Strenght Angolo piano di taglio - orizzontale (°) : Comportamento 44.51 Area del piano di taglio (cm2) Osservazioni 21 (°C) Temperatura Condizioni ambiente 69 Umidita' dell'aria (%) (vista laterale) Muere Il Responsabile (Dr.Ing. Alberto MORINO): L' Operatore (Dr.Geol. Saverio RANA): * Misure eventuali per calcolo contenuto d'acqua GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

AU60-TD.XLS

TAGLIO DIRETTO Data Statember 1995	: 961 140 ENZA-PADOVA S.p.A	O A31 - Collegamento con l'A22 sotterraneo - Indagini geognostiche	 ,	14 15	 1						14 15	•
TAGLIO DIRETTO Papponon Paginon Pagino	Pag. Pag. SCIA-VERONA-VIC	TICO A31 - Collegi e in sotterraneo -										
TAGLIO DIRETTO Papponon Paginon Pagino	95 tembre 1995 JTOSTRADA BRES	CENZETTO S.r.l. stostrada VALDAS getto di mass.oper									- -	
TAGLIO To di Meccanica delle Rocce Sondaggio S	orto n° :			 . 60		; ; ; ; ; ;	1					· \
n. : vAzo : Dolomia Dolomia : 2 3 4 5 5	LIO DIRETTO grafici	: S20 : 4.7 : Ambi		. 8		spostamento orizzontale (mm)					1	spostamento orizzontale (min)
in di Meccanica delle Rocce in VA20 in Dolomia in Dolomia in 2 3	TAG	Sondaggio Profondità (m) Condizione		4 5							-	
	■GEODATA Laboratorio di Meccanica delle Rocce	Provino n. : AU61 Campione n. : VA20 Litotipo : Dolomia		3							- - -	

Rapporto nº:

σn

τp

τu

Su

Laboratorio di Meccanica delle Rocce

PRESSIONE VERTICALE SFORZO DI TAGLIO (picco)

SFORZO DI TAGLIO (ultimo)

SPOSTAMENTO ORIZZONTALE

12/95

TAGLIO DIRETTO

Settembre 1995

(pag. 2/2)

Pag.:

95/140

(m)

Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Cliente VICENZETTO S.r.l. Progetto Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: -S.20 Campione/Provino: VA20/AU61*61a Profondita': 4.30-4.90 LEGENDA: Nn FORZA VERTICALE Νp FORZA DI TAGLIO (picco) Nu FORZA DI TAGLIO (ultima) α_p ANGOLO DI DILATANZA

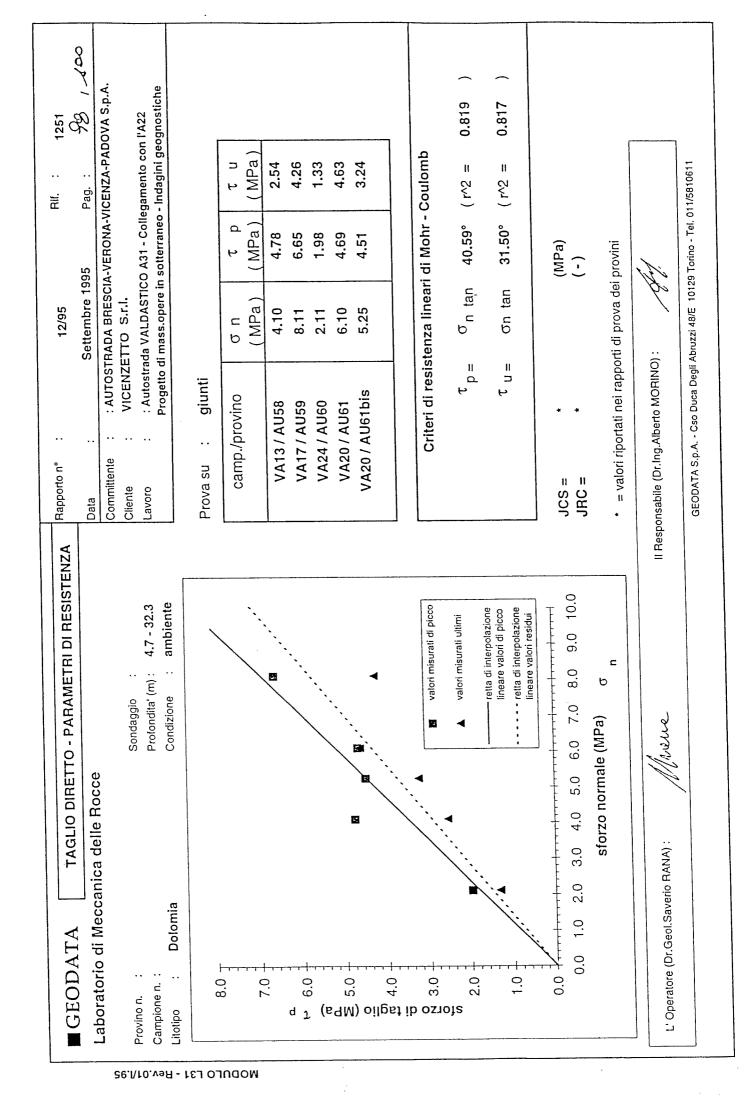
Rif.:

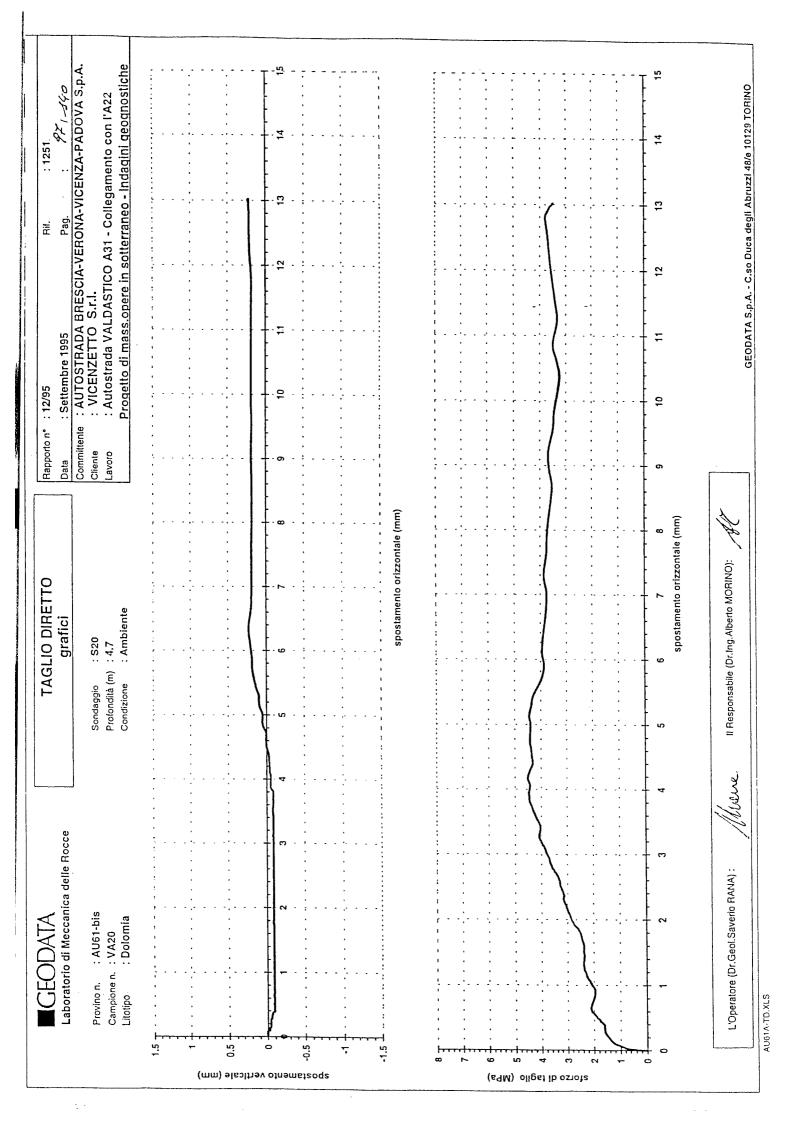
1251

Data:

Nn (kN)	Np (kN)	Nu (kN)	α _p (°)	σn (MPa)	τ _p (MPa)	τυ (MPa)	Su (mm)
28.87	22.22	0.9375		6.10	4.69	4.63	12.58
11.94	10.26	7.36		5.25	4.51	4.24	10.39
			 				
	(kN) 28.87	(kN) (kN) 28.87 22.22	(kN) (kN) (kN) 28.87 22.22 0.9375 11.94 10.26 7.36	(kN) (kN) (kN) (°) 28.87 22.22 0.9375 11.94 10.26 7.36	(kN) (kN) (kN) (°) (MPa) 28.87 22.22 0.9375 6.10 11.94 10.26 7.36 5.25	(kN) (kN) (kN) (°) (MPa) (MPa) 28.87 22.22 0.9375 6.10 4.69 11.94 10.26 7.36 5.25 4.51	(kN) (kN) (kN) (°) (MPa) (MPa) (MPa) 28.87 22.22 0.9375 6.10 4.69 4.63 11.94 10.26 7.36 5.25 4.51 4.24

L' Operatore (Dr.Geol.Saverio RANA):


Mrone


Il Responsabile (Dr.Ing.Alberto MORINO):

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

77 (

- Intesponsable (of ling Alberto MONING)

CARATTERISTICHE DISCONTINUITA'

Laboratorio di Meccanica delle Rocce

Rapporto n° :	12/9	95	Rif.:	1251	Data :	Setten	nbre 1995	Р	ад.: 10	× 1140
Committente : Cliente : Progetto :	VICENZE Autostra	TTO S.r.I da VALDA	ASTICO A	.31 - Collegam	NZA-PADOVA S nento con l'A22 o - Indagini geo	!	che			
Sondaggio :	S22	Campione	/Provino :	VA13/AU6O	Profondi	ta':	29.80-3	30.10		(m)
Litotipo :	Dolomia									w
A	A1							J	RC=	8 - 10
	A2							Ç	IRC=	8 - 10
В	R (A) =	41-36-32-	22-20-25-3	32-24-29	R m (A)	= 29	.4 JCS (A) =	41.2	(MPa)
2	B1							· -	JRC=	6 - 8
1	B2					$\overline{}$		-	JRC=	12 - 14
	R (B) =	37-38-40	-34-34-43-	36-19-35	R m (B			(B) =	49.1	(MPa)
Campione :	S22 Dolomia	Provino :		VA20/AU61	Profon	dita':	4.30	-4.90		(m)
Litotipo :	A1								JRC=	4 - 6
	A2								JRC=	6 - 8
В	R (A) =	42-36-4	1-26-33-22	:-39-38-35	R m (/	A) =	34.6 JCS	S (A) =	48.4	(MPa)
2	B1								JRC=	8 - 10
1	B2								JRC=	8 - 10
	R (B) =	: 36-40-4	5-36-36-4	7-32-38-39	R m ((B) =	38.8 JC	S (B) =	= 54.3	(MPa)
JCS = Rm * Co	medio / R medio				L' Operatore (Dr.	.Geol.Sav	erio RANA) :	N	June	

C.so Duca degli Abruzzi 48/E - 10129 Torino

Il Responsabile (Dr.Ing.Alberto MORINO) :

MODULO L29 - Rev. 01/1.94

CARATTERISTICHE DISCONTINUITA'

Laboratorio di Meccanica delle Rocce

Rapporto n°: 12/95 Rif.: 1251 Data: Settembre 1995 Pag.: 991/40

Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente: VICENZETTO S.r.I.

Progetto: Autostrada VAI DASTICO A31 Collegements and IMAG.

Progetto : Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio : S22 Campione/Provino : VA13/AU58 Profondità' : 29.80-30.10 Litotipo : Dolomia A1 JRC= A2 JRC= B R (A) = 26-24-20-20-24-24-14-20-22 R m (A) = 21.3 JCS (A) = 29.8 2 B1 JRC= A (B) = 44-44-36-42-32-45-33-45-40 R m (B) = 40.1 JCS (B) = 56.1 Campione : S22 Provino : VA17/AU59 Profondità' : 32.20-32.40 Litotipo : Dolomia A (A) JRC= JRC= B (A) = 42-32-25-33-26-28-35 R m (A) = 31.6 JCS (A) = 44.2 B (A) = 42-32-25-33-26-28-35 R m (A) = 31.6 JCS (A) = 44.2	Profondita': 29.80-30.10 (m)	neo - Indagini geo	ada VALDASTICO A31 - Colle o di massima opere in sotterr	Progetto : Autostra Progetto
Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio : S22 Campione/Provino : VA13/AU58 Profondita' : 29.80-30.10 Litotipo : Dolomia A	- Indagini geognostiche Profondita': 29.80-30.10 (m)	neo - Indagini geo	o di massima opere in sotterr	Progetto
Litotipo : Dolomia A A1	(m)			
Litotipo: Dolomia A A1	(11)			<u> </u>
A A1		B Profondita	The state of the s	
A2				<u>itotipo : Dolomia</u>
A2				
B R (A) = 26-24-20-20-24-24-14-20-22 R m (A) = 21.3 JCS (A) = 29.8 JRC= B1 JRC= R (B) = 44-44-36-42-32-45-33-45-40 R m (B) = 40.1 JCS (B) = 56.1 Campione: S22 Provino: VA17/AUS9 Prolondita': 32.20-32.40 Litotipo: Dolomia A A1 JRC= A2 JRC= JRC= JRC= A2 JRC= JRC= A2 JRC= A3 JRC= A4.2	JRC= 12-14			A A1 ——
B R (A) = 26-24-20-20-24-24-14-20-22 R m (A) = 21.3 JCS (A) = 29.8 JRC= B1 JRC= R (B) = 44-44-36-42-32-45-33-45-40 R m (B) = 40.1 JCS (B) = 56.1 Campione: S22 Provino: VA17/AUS9 Prolondita': 32.20-32.40 Litotipo: Dolomia A A1 JRC= A2 JRC= JRC= JRC= A2 JRC= JRC= A2 JRC= A3 JRC= A4.2				_
B R (A) = 26-24-20-20-24-24-14-20-22 R m (A) = 21.3 JCS (A) = 29.8 JRC= B1 JRC= R (B) = 44-44-36-42-32-45-33-45-40 R m (B) = 40.1 JCS (B) = 56.1 Campione: S22 Provino: VA17/AUS9 Profondita': 32.20-32.40 Litotipo: Dolomia A A1 JRC= A2 JRC= JRC= JRC= A2 JRC= A3 A4 JRC= A4 A4 JRC= JRC= JRC= A4 A4 JRC= JRC= A4 A4 JRC= JRC= A4 JRC= JRC= A4 A4 JRC= JRC= A4 A4 JRC= JRC= JRC= A4 A4 A4 JRC= JRC= JRC= JRC= A4 A4 A4 JRC= JRC= A4 A4 A4 JRC= JRC= JRC= JRC= A4 A4 A4 A4 A4 A4 A4 A4 A4 A	•			^2
R (A) = 26-24-20-20-24-24-14-20-22 R m (A) = 21.3 JCS (A) = 29.8 B JRC= R (B) = 44-44-36-42-32-45-33-45-40 R m (B) = 40.1 JCS (B) = 56.1 Campione : \$22 Provino : VA17/AU59 Profondita': 32.20-32.40 Litotipo : Dolomia A A1 JRC= A2 JRC= JRC= JRC= JRC= JRC=	JRC= 8-10			A2
B 2 B1 JRC= JRC= R (B) = 44-44-36-42-32-45-33-45-40 R m (B) = 40.1 JCS (B) = 56.1 Campione: S22 Provino: VA17/AU59 Profondita': 32.20-32.40 Litotipo: Dolomia A A1 JRC=				
B 2 B1 JRC= R (B) = 44-44-36-42-32-45-33-45-40 R m (B) = 40.1 JCS (B) = 56.1 Campione: S22 Provino: VA17/AU59 Profondita': 32.20-32.40 Litotipo: Dolomia A A1 JRC= A2 JRC= R m (A) = 42-32-25-33-26-28-35 R m (A) = 31.6 JCS (A) = 44.2				
B 2 B1 JRC= R (B) = 44-44-36-42-32-45-33-45-40 R m (B) = 40.1 JCS (B) = 56.1 Campione: S22 Provino: VA17/AU59 Profondita': 32.20-32.40 Litotipo: Dolomia A A1 JRC= A2 JRC= R m (A) = 42-32-25-33-26-28-35 R m (A) = 31.6 JCS (A) = 44.2	D m / \\ - 21.2 ICC / \\ 20.0 (ND.)	R m (Δ) =	26-24-20-20-24-24-14-20-22	
2	H m (A) = 21.3 JCS (A) = 29.8 (MPa)	ни (А) –		
1 B2				
1 B2			_	
1 B2	JRC= 12 - 14			2 B1
R (B) = 44-44-36-42-32-45-33-45-40 R m (B) = 40.1 JCS (B) = 56.1 Campione : S22 Provino : VA17/AU59 Profondita' : 32.20-32.40 Litotipo : Dolomia A A1 JRC= A2 JRC= R m (A) = 42-32-25-33-26-28-35 R m (A) = 31.6 JCS (A) = 44.2				
R (B) = 44-44-36-42-32-45-33-45-40 R m (B) = 40.1 JCS (B) = 56.1 Campione : S22 Provino : VA17/AU59 Profondita' : 32.20-32.40 Litotipo : Dolomia A A1 JRC= A2 JRC= R m (A) = 42-32-25-33-26-28-35 R m (A) = 31.6 JCS (A) = 44.2				Φ
R (B) = 44-44-36-42-32-45-33-45-40 R m (B) = 40.1 JCS (B) = 56.1 Campione : S22 Provino : VA17/AU59 Profondita' : 32.20-32.40 Litotipo : Dolomia A A1 JRC= A2 JRC= R m (A) = 42-32-25-33-26-28-35 R m (A) = 31.6 JCS (A) = 44.2	JRC= 8-10			1 B2
Campione : S22 Provino : VA17/AU59 Profondita' : 32.20-32.40 Litotipo : Dolomia A A1				
Campione : S22 Provino : VA17/AU59 Profondita' : 32.20-32.40 Litotipo : Dolomia A A1	_			
Campione : S22 Provino : VA17/AU59 Profondita' : 32.20-32.40 Litotipo : Dolomia A A1			** ** ** ** ** ** **	D (D)
Litotipo : Dolomia A A1 JRC= JRC= JRC= B R (A) = 42-32-25-33-26-28-35 R m (A) = 31.6 JCS (A) = 44.2	R m (B) = 40.1 JCS (B) = 56.1 (MPa)	R m (B) =	44-44-36-42-32-45-33-45-40	ਮ (b) =
Litotipo : Dolomia A	Profondita' : 32.20.32.40 (m)	Profondit:	Provino : VA17/AU	Campione : \$22
A A1	Profondita': 32.20-32.40 (m)	1 10/01/3/		
A2				
A2	JRC= 10 - 12			AA1
R (A) = 42-32-25-33-26-28-35 R m (A) = 31.6 JCS (A) = 44.2				
R (A) = 42-32-25-33-26-28-35 R m (A) = 31.6 JCS (A) = 44.2				
R (A) = 42-32-25-33-26-28-35 R m (A) = 31.6 JCS (A) = 44.2	JRC= 12 - 14			A2
B				
B				
B				D (A)
	R m (A) = 31.6 JCS (A) = 44.2 (MPa)	R m (A) =	42-32-25-33-26-28-35	
2 B1 JRC=				ß
2 () B1 JRC=	_	_		\wedge
JHC=	100 10 11			2 L
	JRC= 12 - 14			
				\bigcup
1 B2	IDC- 12 14			1 .B2
JRC=	JRC= 12 - 14			·
		R m (B) =	48-30-39-16-54-33-32	R (8) =
R(B) = 48-30-39-16-54-33-32 $Rm(B) = 36.7 JCS(B) = 51.4$	R m (B) = 36.7 JCS (B) = 51.4 (MPa)	` '		

JCS = Rm * Co medio / R medio

GEODATA S.p.A.

C.so Duca degli Abruzzi 48/E - 10129 Torino

L' Operatore (Dr.Geol.Saverio RANA):

Il Responsabile (Dr.Ing.Alberto MORINO):

Al

かない

Zi Si

MODULO L29 - Rev. 01/1.94

CARATTERISTICHE DISCONTINUITA'

Laboratorio di Meccanica delle Rocce

Pag.: 102/140 Data: Settembre 1995 Rif.: 1251 12/95 Rapporto n°: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche 4.30-4.90 (m) Campione/Provino: VA20/AU120 Profondita': Sondaggio: S20 Litotipo : Dolomia JRC= 8 - 10 JRC= R m (A) = 38.2 JCS (A) = 53.5(MPa) R(A) = 38-40-42-41-38-42-40-35-30JRC= JRC= JCS (B) = (MPa) Rm(B) =R(B) =9.30-9.50 (m) Campione/Provino: VA26/AU126 Profondita': S20 Sondaggio: Dolomia Litotipo : 12 - 14 JRC= JRC= R m (A) = 44.2 JCS (A) =(MPa) R(A) = 44-38-44-40-47-45-48-47-45В JRC= B2_____ JRC= JCS (B) = (MPa) Rm(B) =R(B) =

JCS = Rm * Co medio / R medio

GEODATA S.p.A.

C.so Duca degli Abruzzi 48/E - 10129 Torino

L' Operatore (Dr.Geol.Saverio RANA):

The second secon

Il Responsabile (Dr.Ing.Alberto MORINO) :

AU120JRC.XLS

MODULO L29 - Rev. 01/1.94

CARATTERISTICHE DISCONTINUITA'

Laboratorio di Meccanica delle Rocce

Progetto :		rada VALDASTICO A31 - Collegament to di massima opere in sotterraneo - I		tiche	
Sondaggio : Litotipo :	S27 Dolomia	Campione/Provino: CL17/AU105	Profondita' :	45.60-45.80	(m)
A	A1			JRC=	8 - 10
	A2			JRC=	4 - 6
В	R (A) =	30-28-29-30-32-34-30-29-30-32	R m (A) =	30.4 JCS (A) = 42.6	(MPa)
2	B1			JRC=	
1	B2			JRC=	
	R (B) =		R m (B) =	JCS (B) =	(MPa)
Sondaggio : Litotipo :	S20 Dolomia	Campione/Provino : VA19/AU119	Profondita' :	4.0-4.1	(m)
A	A1			JRC=	2 - 4
	A2			JRC=	6-8
В	R (A) =	40-42-40-38-36-38-45-37-35	R m (A) =	39 JCS (A) = 54.6	(MPa)
2	B1			JRC=	
1	B2			JRC=	
	R (B) =		R m (B) =	JCS (B) =	(MPa)

 $JCS = Rm \cdot Co medio / R medio$

GEODATA S.p.A.

C.so Duca degli Abruzzl 48/E - 10129 Torino

L' Operatore (Dr.Geol.Saverio RANA):

Il Responsabile (Dr.Ing.Alberto MORINO):

All

3

I;

CARATTERISTICHE DISCONTINUITA'

aboratorio di Meccanica delle Rocce

Data : Pag.: 104/140 12/95 Rif.: 1251 Settembre 1995 Rapporto n°: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: VICENZETTO S.r.l. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Campione/Provino: CL25/AU107 Profondita': 59.50-59.70 (m) S27 Sondaggio: Litotipo : Dolomia JRC= 10 - 12JRC= 6 - 8 A2 ___ R m (A) = JCS (A) =(MPa) R(A) =В 2 - 4 JRC= JRC= 2 - 4 49.2 JCS (B) =(MPa) 47-53-54-54-51-43-36-48-49 Rm(B) =68.9 R(B) =Campione/Provino: VA22/AU122 5.50-5.70 (m) S20 Profondita': Sondaggio: Dolomia Litotipo JRC= 6 - 8 JRC= 4 - 6 (MPa) JCS(A) =Rm(A) =R(A) =6 - 8 JRC= JRC= B2 42.1 JCS (B) = (MPa) R(B) = 40-40-41-45-48-38-41-44-42R m (B) =Muere

JCS = Rm * Co medio / R medio

GEODATA S.p.A.

C.so Duca degli Abruzzi 48/E - 10129 Torino

L'Operatore (Dr.Geol.Saverio RANA):

Company of the second control of the

Il Responsabile (Dr.Ing.Alberto MORINO) :

AU107JRC.XLS

MODULO L29 - Rev. 01/1.94

CARATTERISTICHE DISCONTINUITA'

Laboratorio di Meccanica delle Rocce

			stiche	
S20 Dolomia	Campione/Provino: VA22/AU121	Profondita':	5.50-5.70	(m)
A1			JRC=	4 - 6
A2	-		JRC=	4 - 6
R (A) =	44-48-46-50-44-46-48-50-52	R m (A) =	47.55 JCS (A) = 66.6	(MPa)
B1			JRC=	
B2			JRC=	
R (B) =		R m (B) =	JCS (B) =	(MPa)
S20	Campione/Provino: VA22/AU122	Profondita' :	5.50-5.70	(m)
A1			JRC=	2 - 4
A2			JRC=	2 - 4
R (A) =	36-40-38-42-40-38-42-40-42	R m (A) =	39.8 JCS (A) = 55.7	7 (MPa)
B1			JRC=	
B2			JRC=	
R (B) =		R m (B) =	JCS (B) =	(MPa)
	Progetto S20 Dolomia A1	Progetto di massima opere in sotterraneo - I S20	S20 Campione/Provino: VA22/AU121 Profondita': Dolomia A1	Progetto di massima opere in sotterraneo - Indagini geognostiche \$20

JCS = Rm * Co medio / R medio

GEODATA S.p.A.

C.so Duca degli Abruzzi 48/E - 10129 Torino

L' Operatore (Dr.Geol.Saverio RANA) :

Il Responsabile (Dr.Ing.Alberto MORINO):

AC

tch f f f f

CARATTERISTICHE DISCONTINUITA'

Laboratorio di Meccanica delle Rocce

Rapporto n°: 12/95 Rif.: 1251 Data: Settembre 1995 Pag.: 140

Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente: VICENZETTO S.r.I.

Progetto: Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

S27	Campione/Provino:	CL29/AU124	Profondita':	68.00-68.30	(1	m)
Dolomia						
A1					JRC= 2-4	,
A2					JRC=	
R (A) =	22-23-25-rotto		R m (A) =	24.0 JCS (A) =	33.6 (MP	'a)
B1					JRC=	
B2					JRC=	
	A1	Dolomia A1 A2 R (A) = 22-23-25-rotto	Dolomia A1 A2 R (A) = 22-23-25-rotto	Dolomia A1 A2 R (A) = 22-23-25-rotto R m (A) =	Dolomia A1 A2 R (A) = 22-23-25-rotto R m (A) = 24.0 JCS (A) =	Dolomia A1

	R (B) =	R m (B) =	JCS (B) =	(MPa)
Campione :	Provino :	Profondita' :		(m)
Litotipo :				
A	A1		JRC=	
	A2		JRC=	

R (B) =

JCS(B) =

A.C.

(MPa)

JCS = Rm * Co medio / R medio

GEODATA S.p.A.
C.so Duca degli Abruzzi 48/E - 10129 Torino

Il Responsabile (Dr.Ing.Alberto MORINO):

Rm(B) =

L';Operatore (Dr.Geol.Saverio RANA):

CARATTERISTICHE DISCONTINUITA'

Laboratorio di Meccanica delle Rocce

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

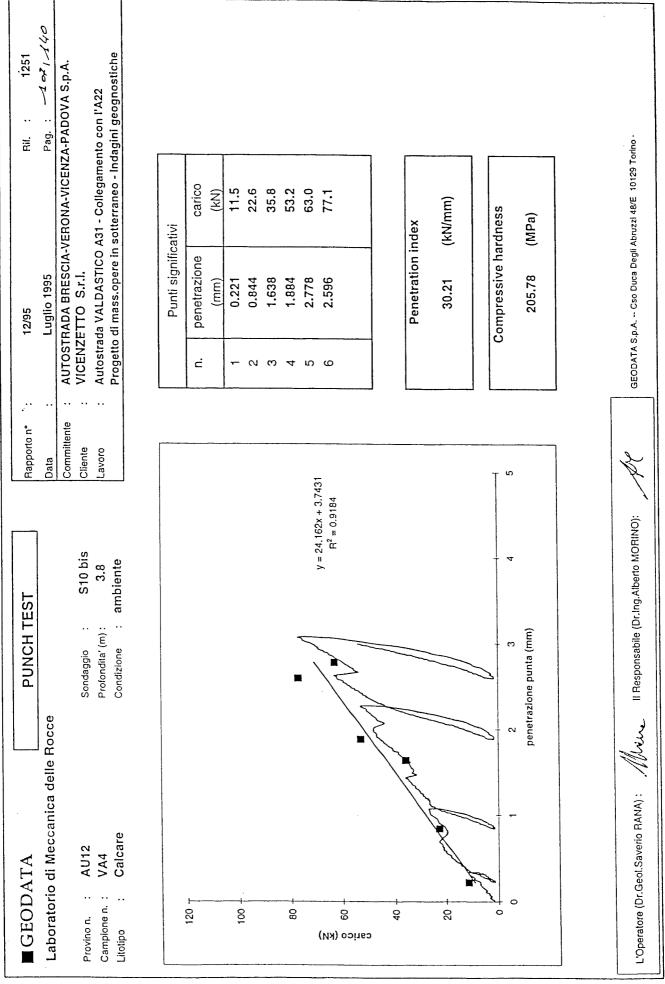
Cliente

VICENZETTO S.r.I.

MODULO L29 - Rev. 01/1.94

Progetto :	Autostr Progett	ada VALDASTICO A31 - Collegamer o di massima opere in sotterraneo -	nto con l'A22 Indagini geognos	stiche	
Sondaggio : Litotipo :	S27 Dolomia	Campione/Provino : CL12/AU123	Profondita' :	34.70-34.90	(m)
A	A1			JRC=	8 - 10
	A2			JRC=	10 - 12
В	R (A) =	34-35-36-32-30-36-33-36-38	R m (A) =	34.4 JCS (A) = 48.2	(MPa)
2	B1			JRC=	
1	B2			JRC=	
	R (B) =		R m (B) =	JCS (B) =	(MPa)
Campione : Litotipo :	S27 Dolomia	Provino : CL24/AU125	Profondita':	58.50-58.70	(m)
A	A1			JRC=	8 - 10
	A2			JRC=	4 - 6
В	R (A) =	30-28-30-29-27-32-30-32-31	R m (A) =	29.9 JCS (A) = 41.8	(MPa)
2	B1			JRC=	12 - 14
1	B2			JRC=	12 - 14
	R (B) =		R m (B) =	JCS (B) =	(MPa)

JCS = Rm * Co medio / R medio


GEODATA S.p.A.

C.so Duca degli Abruzzi 48/E - 10129 Torino

L' Operatore (Dr.Geol.Saverio RANA):

Il Responsabile (Dr.Ing.Alberto MORINO):

|--|

GEODATA S.p.A. -- Cso Duca Degli Abruzzi 48/E 10129 Torino (kN/mm) 104.74 118.37 carico 52.80 61.74 77.49 (MPa) 11.92 21.29 25.55 (KZ Progetto di mass opere in sotterraneo - Indagini geognostiche AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. 1251. Compressive hardness Autostrada VALDASTICO A31 - Collegamento con l'A22 Penetration index Punti significativi penetrazione 1267.75 36.97 (mm) 0.69 1.08 1.68 2.23 2.75 3.33 ŖĬ. ċ 3 8 459786 Settembre 1995 VICENZETTO S.r.l. 12/95 Committente Rapporto n° II Responsabile (Dr.Ing.Alberto MORINO): Cliente Lavoro Data penetrazione punta (mm) Condizione : Ambiente Profondita' (m): 11.5 **PUNCH TEST** Sondaggio More Laboratorio di Meccanica delle Rocce L'Operatore (Dr.Geol.Saverio RANA): Dolomia VA28 **AU97** ■ GEODATA Provino n. : Campione n.: Litotipo carico (KN) 20 140 120 100 8 40 9

POINT LOAD TEST

Pag.: Rif. Luglio 1995 12/95 Rapporto n° Data

1251

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Committente:

Progetto

Cliente

Progetto di mass.opere in sotterraneo - Indagini geognostiche Autostrada VALDASTICO A31 - Collegamento con l'A22 VICENZETTO S.r.l.

	Note																						
															in a								
Correlazioni		၀	(MPa)		6.4	70	5	9.4	6.5	6 9	2.0	7.2		7.2	8.2	10	0.,	7.2	0 7	4.0			
Corre		ပိ	(MPa)		92.1	7 00 1	120.7	135.0	92.8	1 00	0.50	103.2		102.5	117.9	0 00	109.0	103.2	0.00	66.0			
	Indice	corretto	ls(50)	(MPa)	4.95		6.43	7.26	4.99		4.81	5.55		5.51	6.34		5.86	5.55		3.55			
	Fattore	di forma	u.		1 096	201	1.031	0.998	1 023	2201	1.066	1.113		0.972	0.064	1000	0.955	1.078		1.035			
	Indice	non corretto	S	(MPa)	4 53	20:5	6.30	7.27	4 97	7.7	4.51	7 90	200	5.67	02.0	0.30	6.14	5.15	2	3.43			
	Diametro	equivalente non corretto	(mm)		613	3.10	53.5	49.8	0 0	32.0	57.6	623	5,50	47.0	7.04	40.1	45.1	F 0 4	13.1	54.0			
	Carico di	rottura	(Š		110	0.71	18.0	18.0	2 4	13.5	75.0	2 2	20.0	12.5		14.0	12.5		10.0	10.0	200		
	ezzedore I	20.16	(mm)	-		67.0	66.0	40.6	5.04	68.0	Cau	0.00	63.0	75.0	10.0	38.0	40.0	0.01	0.79				
	ortomojO		(mm)			44.0	34.0	0 0,	48.0	32.0	70.0	43.0	20.0		36.3	44.0	40.0	10.0	41.0	0 % 2	0.4.0		
	. ∈	noi	zibn	၀၁		4	=	1		=	=		=	-		3	=		:	-			Ī
_	•	Э.	۲٥٧	}		<u>co</u>	=	-	:	:	-	:	=	;	:	=	=		=	1			
		Litotipo				dolomia	2		=	z		1	-		=	=			ŧ		ı		
		Profondila:	1	E)		ı			•	1			,	•	•	•		ŧ	•		12.8		
		Provino				A1128	0011	AUZS	AU30	A1131		AU32	A1100	AU33	AU34	A1135	2	AU36	41137	202	AU38		
		Campione				VA1			:	=		VA2		:	:	1473	2	t	=		VA10		
	,	oigg	gepu	ioS						ı	Н	၁၁	0	78	3 1	d.					Stobls		
	L								t	6'	1/2	:0.4	١ə	н	- ε	רו	0	าก	a				

: D = diametrale, A = assiale, B = blocco *condizione: A = ambiente, S = satura, E = secca

•• prova

Co medio/ 1S50 medio 18.6 a CORRELAZIONI: Co =

#₀L

1.3 b

To medio/ IS50 medio

II Responsabile (Dr.Ing.Alberto MORINO) : 'Operatore (Dr.Geol.Saverio RANA) :

Marie

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

GEODATA S.p.A. -- Cso Duca Degll Abruzzi 48/E 10129 Torino 150,540 (kN/mm) 101.76 12.35 27.25 59.18 77.49 97.93 (MPa) 23.84 52.37 Progetto di mass.opere in sotterraneo - Indagini geognostiche AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Compressive hardness VICENZETTO S.r.I. Autostrada VALDASTICO A31 - Collegamento con l'A22 Penetration index Punti significativi penetrazione 752.08 25.05 0.63 1.12 1.51 2.05 2.65 3.58 3.39 4.16 3.98 Ħ. 9 2 8 4 9 Ċ. 0 0 12/95 Committente Rapporto n° Cliente Lavoro Il Responsabile (Dr.Ing.Alberto MORINO): Data penetrazione punta (mm) : Ambiente **PUNCH TEST** Profondita' (m): Sondaggio : Condizione 15.55g Laboratorio di Meccanica delle Rocce L'Operatore (Dr.Geol.Saverio RANA): Dolomia AU98 VA25 **■**GEODATA Campione n. : Provino n. Litotipo 140 120 carico (KN) 9 6 20 9

COEFFICIENTE DI IMBIBIZIONE

Rapporto n°:

12/95

Rif: 1251

Data:

Settembre 1995

Pag.: 133\140

Committente : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente

MODULO L14 - Rev.01/1.94

: VICENZETTO S.r.l.

Progetto

: Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di mass.opere in sotterraneo - Indagini geognostiche

Sond.	Campione	Provino	Litotipo	Tara	Pes	si	Coefficiente di	Note
So				T (g)	P ₁ (g)	P ₂ (g)	Imbibizione (%)	
	VA1	AU39	Dolomia	0.00	190.90	188.30	1.38	
	u	AU40	M	0.00	232.50	231.20	0.56	
	VA2	AU41	н	0.00	243.20	240.20	1.25	
Blocco		AU42	ŧı	0.00	266.30	263.80	0.95	
B	VA3	AU43	ţŧ.	0.00	237.70	237.10	0.25	
	n	AU44	**	0.00	239.50	239.00	0.21	
	VA9	AU45	16	0.00	177.10	175.10	1.14	
	**	AU46	"	0.00	180.60	179.80	0.44	
S27	CL8	AU96	"	0.00	871.30	865.90	0.62	
"	CL17	AU91		0.00	287.50	284.30	1.13	

= Campione umido o saturo-tara

Condizione : A = Ambiente U = Umida S = Satura

E = Secca

= Campione secco-tara

Coeff. di Imbibizione = $(P_1 - P_2)/P_2*100$

L'Operatore (Dr.Geol.Saverio RANA) :

II Responsabile (Dr.Ing.Alberto MORINO):

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

■GEODATA Laboratorio di Meccanica delle Rocce

Rapporto n° Data

12/95

ŖĬ.

1251

Settembre 1995

142,440 Pag.:

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. VICENZETTO S.r.l.

Committente:

Cliente Progetto

POINT LOAD TEST

Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di mass.opere in sotterraneo - Indagini geognostiche

		Note				rottura lungo superficia preesistente	rottura lungo superficie proesistente					rollura lungo superficie preesistente	rottura lungo superficie preesistente	rottura lungo superficie preesistente				rottura lungo superficie preesistente							
	Correlazioni		င	(MPa)		2.7	4.2	2.1	3.2	8.1	5.3	1.5	1.9	4.8	3.2	5.7	9.0	2.5	7.7						
	Correl		ပိ	(MPa)		38.9	60.1	29.9	45.8	115.9	76.3	21.9	27.5	68.8	45.4	82.2	128.7	36.1	110.7						
		Indice	corretto	ls(50)	(MPa)	2.09	3.23	1.61	2.46	6.23	4.10	1.18	1,48	3.70	2.44	4,42	6.92	1.94	5.95						
		Fattore	di forma	u.		1.222	1.224	1.225	1.106	1.106	1.225	1.231	1.224	1.224	1.160	1.222	1.047	1.224	1.015						
		Indice	on corretto	s	(MPa)	1.71	2.64	1.32	2.22	5.63	3.34	96.0	1.21	3.02	2.10	3.62	6.61	1.58	5.86						
		Diametro	equivalente non corretto	(mm)		78.0	78.3	78.5	62.5	62.5	78.5	79.3	78.4	78.3	9.69	78.0	55.4	78.4	51.6						
		Carico di	rottura	(bar)		90.0	140.0	70.0	75.0	190.0	178.0	52.0	64.0	160.0	88.0	190.0	175.0	84.0	135.0						
נ		Diametro Larghezza		(mm)		78.0	78.3	78.5	62.5	62.5	78.5	78.4	78.4	78.3	58.5	78.0	43.0	78.4	31.5						
		Diametro		(mm)		•	•	,	•	,		63.0	,	•	65.0	•	56.0		66.5						
	L	. əu	oisi	puo	c	4	:	=	I	=	=	-	=	=	2	=	2	=	=						
	_	• •	100	미심		٥	=	=	=	=	-	8	۵	=	m	۵	m	۵	m						
		Litotipo				Dolomia	=	=	=	Ξ	=	=	=	=	ŧ	=	Ŧ	c	=						
		Profondita*		Œ		33.7	28.6	6.7	7.8	=	25.2	24.2	35.6	35.8	59,6	46.4	=	=	59.6						
		Provino				AU62	AU63	AU64	AU65	AU66	AU96	AU67	AU68	AU69	AU70	AU71	AU72	AU73	AU74						
		Campione				VA11	VA15	VA24	VA25	VA25	CLB	CL7	CL13	CL14	CL25	CL18		2	CL25						
		oig	gei	ouog	3	S22	*	S20	=	=	\$27	=	=	=	•	=	-		<u>,</u>	 <u></u>	-1	 -	<u></u>		_
	L							t	6.N	20.4	/9Я	- EI		 חרכ	ОР	 N				 		 			

*condizione: A = ambiente, S = satura, E = secca

•• prova : D = diametrale, A = assiale, B = blocco CORRELAZIONI: Co = 18.6 a

<u>1</u>0

Co medio/ 1S50 medio

ıı

1.3 b

To medio/ IS50 medio

L'Operatore (Dr.Geol.Saverio RANA) :

II Responsabile (Dr.Ing.Alberto MORINO):

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

TILT TEST

Pag.: Rif. Settembre 1995 12/95 Rapporto n°.: Data

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Committente:

Progetto Cliente

Autostrada VALDASTICO A31 - Collegamento con l'A22 VICENZETTO S.r.l.

Progetto di mass.opere in sotterraneo - Indagini geognostiche

The state of the s	I	1	11		-						П		11		1				\neg	
Note																				
Angolo di attrito medio (°)	22.9	26.0		20.8		21.2		21.8		25.0		25.0		16.5		15.6		19.5		1
Angolo di scivolamento (°)	24.8-22.1-16.9-20.5-23.6	25 0.26 1-30 4-26 2-23 3	24.0-24.9-26.1-27.7-25.9	21 4-20.5-19.0-21.8-21.3	18.4-19.8-21.9-22.5-21.2	19 6-21 9-19.5-24.4-19.3	19.8-22.7-19.1-23.1-22.2	7 30-7 20 4 20 7 30 5 5	19.7-21.8-22.1-16.3-21.0	25 0.27 1.27 7-19.9-28.1	22.0-27.2-21.3-25.6-25.7	25.1-25.6-26.2-24.0-21.4	23.8-31.5-19.2-30.9-22.7	13.9-17.5-13.0-16.2-16.6	14.8-20.5-14.6-21.0-17.2	15 6-19 6-10.8-15.7-19.7	10.8-13.5-11.7-20.5-18.2	13 1-20 9-18 7-19 4-21.1	18 8-21 4-17.1-26.1-18.8	
Parametro Φ b,p,r**	q		٥	1	3	1	o .		Ω	-	۵	4	3	4	2		Ω		<u> </u>	
Tipo di superficie	piana liscia	da taglio	=				=		=		=			=					=	
anoizibno	4	=	= =		= :	:	=	=	-	=	<u>- </u> .	: : 	: =	: ; - :	: :	: <u> </u>	= :	=	=	-
6vo19			ĺ	<u> </u> 			- [<u> </u> 			<u> </u>		_					
Litotipo	Dolomia	=	=	=	=	=	=	=	z	=	=	=	=	=	=	=	=	=	=	=
Profondita'	11.4	7.8	11.4	29.9	11.4	7.8	7.8	7.8	7.8	29.9	29.9	7.8	6.5	7.8	6.5	11.4	6.5	7.8	6.5	29.9
Provino	AU97	AU98	AU97	AU57	AU97	AUS6	AU56	AU98	AUS6	AU57	AU57	AU98	AU99	AU98	AU99	AU97	AU99	AU56	AU99	AU57
Campione	VA28	VA25	VA28	VA13	VA28	VA25	VA25	VA25	VA25	VA13	VA13	VA25	VA23	VA25	VA23	VA28	VA23	VA25	VA23	VA13
oiggsbno	300	} =	820	\$22	S20	=	:	:	=	S22	=	S20	2	=	=	=		z		S22

: b = attrito di base ** Parametro

: p = attrito di picco

: r = attrito residuo

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

II Responsabile (Dr.Ing.Alberto MORINO):

L'Operatore (Dr.Geol.Saverio RANA) :

MODULO L12 - Rev. 02/1.94

Luglio 1995 12/95 Rapporto n°.: Data

Rif.:

0151 PFV

Pag.:

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

VICENZETTO S.r.I.

Committente:

TILT TEST

Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto Cliente

Progetto di mass.opere in sotterraneo - Indagini geognostiche

Note																		
Angolo di attrito medio (°)	31.5	31.8		33.2		30.1		28.6		31.6		30.5				*****		
Angolo di scivolamento (°)	28.7-30.0-31.8-31.7-31.2	33.0-33.3-33.0-23.0	31.0-32.5-31.8-32.1	31.8-32.0-33.3-32.8-33.4	32.6-34.5-35.0-34.0-32.8	33.7-36.0-35.2-32.3-34.0	33.5-32.7-35.4-33.9-34.2	30.0-29.8-28.3-27.8-28.2	29.3-27.6-28.3-28.7-28.2	28.4-30.5-32.5-31.5-32.5	32.0-32.6-31.7-31.5-33.0	32.5-28.3-26.5-27.8-29.0	30.2-34.3-32.5-33.0-31.0					
Parametro ф b.p.r**	q	2	2	q		q		q		q		q			. !	!		
Tipo di superficie	piana liscia	da taglio		=				=		=		=						
enoizibno⊃	∢ =	= =	=	=	2	=	=	=	=	=	=	=	=					
Prova																	_	
Litotipo	dolomia	= =	н	=	=	=	-	11	11	=	=	Ξ	2					
Profondita'	3.8	= 0	10.8	7.9	10.8	5.9	=	8.5	=	7.9	12.9	10.8	12.9					
Provino	AU10	AU11	AU25 AU23	AU14	AU23	AU27B	AU27	AU19	AU20	AU14	AU26	AU23	AU26					
Campione	VA4	=	VA10 VA9	VA6	VA9	VA5	=	VA7	=	VA6	VA10	VA9	VA10					1
oiggsbno2			s	9 0	ıs									 	 			

** Parametro : b = attrito di base

: p = attrito di picco

: r = attrito residuo

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

-'Operatore (Dr.Geol.Saverio RANA) :

II Responsabile (Dr.Ing.Alberto MORINO):

Settembre 1995 12/95 Rapporto n°.: Data

Riff. :

1251 Pag.:

147,140

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

VICENZETTO S.r.l. A.

Committente

Progetto Cliente

TILT TEST

Sondaggio

Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di mass opere in sotterraneo - Indagini geognostiche

Note									
Angolo di attrito medio (°)	28.2	24.5	27.0	28.9	29.5	27.7			
Angolo di scivolamento (°)	29.2-27.2-27.8-28.2-27.8	22.0-22.3-28.6-22.1-27.0	25.6-25.5-26.3-28.7-28.9	29.5-28.2-28.9-29.9-27.5	26.0-29.5-29.5-30.0-31.0 29.5-29.7-31.0-30.1-29.0	28.3-29.8-28.3-28.0-24.0			
Parametro Ф b,p,r	q	q	q	q	q	q			
Tipo di superficie	piana liscia	da tagilo "	1	1	=	11			
ənoizibno⊃	Α :	- - -	- - -	: =	: = =	= =			
Prova	1.								
Litotipo	Dolomia	= =	2 2	= =	=	= = =			
Profondita'	68.2	66.8	25.2	35.6	24.2	58.6	35.8		
Provino	AU115a	AU115 AU114a	AU114 AU96	AU111 AU68	AU112 AU67	AU113	AU69		
Campione	CL29	" CL28	CL8	CL13	CL7	" CL24	CL14		

: b = attrito di base · Parametro

: p = attrito di picco

: r = attrito residuo

Z

II Responsabile (Dr.Ing.Alberto MORINO):

L'Operatore (Dr.Geol.Saverio RANA) :

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

MODULO L12 - Rev. 02/1.94

72S

Settembre 1995 12/95 Rapporto n°.: Data

Pag.:

1161240 1251 Rif.

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente:

Autostrada VALDASTICO A31 - Collegamento con l'A22 VICENZETTO S.r.l.

Progetto Cliente

TILT TEST

Progetto di mass.opere in sotterraneo - Indagini geognostiche

Note									-											
Angolo di attrito medio (°)	19.5		17.1		23.1		16.4		16.5		20.4		14.4		13.2		15.7			
Angolo di scivolamento (°)	23.3-16.9-26.6-17.4-17.3	17.5-16.4-20.3-16.5-23.1	14.6-15.8-16.5-14.9-19.1	19.8-18.9-18.5-14.9-17.7	23.9-22.3-23.2-25.0-25.1	19.6-22.8-20.7-24.0-24.4	15.0-17.5-17.5-16.6-17.4	16.5-17.8-16.3-16.4-13.0	16.6-21.7-16.2-17.1-15.7	14.6-14.2-22.1-10.6-16.4	20,6-22.4-15.9-17.1-27.9	15.8-25.9-16.6-24.4-17.2	11.1-14.9-13.0-16.9-17.6	12.4-13.2-9.7-23.5-11.9	9,4-12,7-13,5-16,2-13,9	12.5-12.5-14.8-15.3-11.6	11.5-17.9-17.4-19.8-17.0	12.4-16.4-13.7-18.4-12.8		
Parametro Ф b,p,r**	q		q		q		q		q		q		q		q		q			
Tipo di superficie	piana liscia	da taglio	=		=		1		11		=		=		=		11			
Snoizibno	4	=	=	=	=	=	=	=	=	=	-	=	=	=	=	=	=	=		
Prova	<u> </u>					I		1		T		1		1		ī				
Litotipo	Dolomia	=	=		Ξ	=	=	=	=	=	=	=	=	=	=	=	=	z		
Profondita' (m)	6.5	29.9	32.3	7.8	32.3	7.8	6.5	7.8	6.5	11.4	12.5	7.8	12.5	11.4	12.5	7.8	12.5	29.9		
Provino	AU102	AU57	AU100	AU56	AU100	AU57	AU102	AU98	411102	AU97	AU101	AU98	411102	AU97	AU101	AUS6	A11101	AUS7		
Campione	VA23	VA13	VA17	VA25	VA17	VA13	VA23	VA25	VA23	VA28	VA30	VA25	1/430	VA28	VA30	VA25	VA30	VA13		
oippebno2	S22	=	=	S20	-			820				520	660	322 S20	222	220	233	525	}	

: b = attrito di base · Parametro

: p = attrito di picco

: r = attrito residuo

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

II Responsabile (Dr.Ing.Alberto MORINO) :

L'Operatore (Dr.Geol.Saverio RANA) :

■ GEODATA

Laboratorio di Meccanica delle Rocce

PROVA DI ABRASIVITA' CERCHAR

Progetto

Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di mass.opere in sotterraneo - Indagini geognostiche

Data Rapp

Rapporto n°.:	• •	12/95	Rif. :	1251
Data	••	Luglio 1995	Pag.:	1351440
Committente	: AUTOSTRAD	Committente : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.	-PADOVA S.p.A.	
Cliente	VICENZETTO S.r.l.	TO S.r.l.		

d = dian C.A.l. =			 	· · · ·		 -	b	loc	00			S101	bis		Sondag	gio	
d = diametro punta abrasa C.A.I. = Cerchar Abrasivily							=	-	=	VA2	=	=	=	VA6		Campione	
brasa asivity Index							=	=	=	AU17	=	=	=	AU15		Provino	
<pre>condi d = diametro punta abrasa C.A.I. = Cerchar Abrasivity Index (= 10 * d medio)</pre>							•	•	•	•	=	=	=	5.85	(m)	Proiondita	Diologidia.
ondi							=	Ξ	=	calcare	=	=	=	calcare		Litolibo	litatina
zione : A = Ambiente							4	ယ	N		4	З	2	-	Pro	va	
nbiente							=	=	3	Α	-	-	2	Α	Condi		
S						_					-					Z 9	Punta
S = Satura E = Secca							0.30	0.35	0.40	0.25	0.30	0.35	0.25	0.40	(mm)	a 0°	a
ù							0.30	0.25	0.25	0.25	0.20	0.35	0.20	0.35	(mm)	a 90°	а
L'Operatore (Dr.(0.30	0.30	0.33	0.25	0.25	0.35	0.23	0.38	(mm)	medio	Ф
L'Operatore (Dr.Geol.Saverio RANA) : Responsabile (Dr.Ing.Alberto MORINO) :							3.00	3.00	3.30	2.50	2.50	3.50	2.30	3.80			C.A.I.
1 1	13.7			h	-			2.95)			3.03	2			medio	C.A.I.
News																	Note

108800

VA27 =

Sondaggio

Campione

Sondaggio 20

Sondaggio 22

VA11

Sondaggio 20

VA30

Laboratorio di Mec IGEODATA

PROV/

Ccanica delle Rocce A DI ABRASIVITA' ERCHAR	ATA						Rapporto n°.	• •	12/95		Rif. :	1251
Committente : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Cliente VICENZETTO S.r.I. Cliente VICENZETTO S.r.I. Cliente VICENZETTO S.r.I. Collegamento con l'A22 Progetto Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di mass.opere in sotterraneo - Indaglini geognostiche C.A.I.	di Meccanica	delle	Rocce			[)ata		Settembre 199)5	Pag.:	1181140
Cliente VICENZETTO S.r.l. Collegamento con l'A22 Progetto Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di mass.opere in sotterraneo - Indagini geognostiche Proge						\overline{a}	Committente	: AUTOSTRAD	A BRESCIA-VE	ERONA-VICE	NZA-PADOVA	A S.p.A.
Protondia Litolipo (m)	PROVA DI AE	BRASI	VITA'					VICENZETTO	S.r.l.			
Protendia: Likotipo Resista Protendia: Likotipo Resista Resist	CERCHA	ಸ					rogetto	Autostrada V	ALDASTICO A:	งา - Collegan	nento con l'A:	22
Protonditat Libotipo Punia A A A A A A A A A								Progetto di m	iass.opere in s	otterraneo - i	ndagini geog	nostiche
(m) (m) (m) (m) (m) (m) (m) (m) (m) (m)		ondita'	Litotipo		1	unta	d	a	a	C.A.I.	C.A.I.	Note
(m) C. C. C. C. C. C. C. C				rova		<u>.</u>	`a0°	a 90°	medio		medio	-
11.1 dolomia 1 A 18 0.35 0.35 0.35 3.50 """ 1 2 "" 19 0.25 0.30 0.28 2.75 """ 1 4 "" 21 0.30 0.20 0.25 2.50 33.6 dolomia 1 A 22 0.40 0.45 0.43 4.25 - "" 2 " 23 0.30 0.25 0.28 2.75 - "" 4 " 25 0.40 0.45 0.43 4.25 - "" 4 " 25 0.40 0.45 0.43 4.25 - "" 4 " 25 0.45 0.45 0.43 4.25 - "" 4 " 25 0.45 0.45 0.45 4.50 - "" 3 " 16 0.45 0.40 0.43 4.25				Pr	Cond		(mm)	(mm)	(mm)			
""" """ 19 0.25 0.30 0.28 2.75 """ """ 3 """ 20 0.30 0.20 0.25 2.50 """ """ 4 """ 21 0.30 0.35 0.33 3.25 33.6 dolomia 1 A 22 0.40 0.45 0.43 4.25 """ 2 """ 23 0.30 0.25 0.28 2.75 """ 3 """ 24 0.35 0.35 0.35 3.50 12.5 dolomia 1 A 14 0.30 0.25 0.28 2.75 """ 2 """ 15 0.30 0.25 0.28 2.75 """ 3 """ 16 0.45 0.45 0.43 4.25 """ 3 """ 16 0.45 0.40 0.43 4.25 """ 3 """ 16 0.45 0.25 0.25 0.25 2.50 """ 4 """ 17 0.25 0.25 0.25 2.50		=	dolomia	_	Þ	18	0.35	0.35	0.35	3.50		
""" """ 20 0.30 0.20 0.25 2.50 """ """ 4"" 21 0.30 0.35 0.33 3.25 33.6 dolomia 1 A 22 0.40 0.45 0.43 4.25 """ 2 """ 23 0.30 0.25 0.28 2.75 """ 4 """ 25 0.45 0.45 0.45 4.50 12.5 dolomia 1 A 14 0.30 0.25 0.28 2.75 """ 2 """ 15 0.30 0.25 0.28 2.75 """ 3 """ 15 0.30 0.25 0.28 2.75 """ 4 """ 15 0.30 0.25 0.28 2.75 """ 3 """ 15 0.30 0.30 0.30 3.00 """ 3 """ 16 0.45 0.40 0.43 4.25 """ 4 """ 7 0.25 0.25 0.25 2.50		-	=	2	=	19	0.25	0.30	0.28	2.75		
"" 4 "21 0.30 0.35 0.33 3.25 33.6 dolomia 1 A 22 0.40 0.45 0.43 4.25 "" 2 "23 0.30 0.25 0.28 2.75 "" 3 "24 0.35 0.35 0.35 3.50 "" 4 "25 0.45 0.45 0.45 4.50 12.5 dolomia 1 A 14 0.30 0.25 0.28 2.75 "" 2 "15 0.30 0.25 0.28 2.75 "" 3 "16 0.45 0.40 0.43 4.25 "" 4 "17 0.25 0.25 0.25 2.50 "" 4 "17 0.25 0.25 0.25 2.50		=	=	3		20	0.30	0.20	0.25	2.50	3.00	
33.6 dolomia 1 A 22 0.40 0.45 0.43 4.25 - " 2 " 23 0.30 0.25 0.28 2.75 - " 3 " 24 0.35 0.35 0.35 3.50 - " 4 " 25 0.45 0.45 0.45 4.50 - " 2 " 15 0.30 0.25 0.28 2.75 - " 3 " 16 0.45 0.40 0.30 3.00 - " 3 " 16 0.45 0.40 0.43 4.25 - " 17 0.25 0.25 0.25 2.50		=	=	4		21	0.30	0.35	0.33	3.25		
33.6 dolomia 1 A 22 0.40 0.45 0.43 4.25 - " 2 " 23 0.30 0.25 0.28 2.75 - " 3 " 24 0.35 0.35 0.35 3.50 - " 4 " 25 0.45 0.45 0.45 4.50 - " 2 " 15 0.30 0.25 0.28 2.75 - " 3 " 16 0.45 0.45 0.40 0.43 4.25 - " 4 " 17 0.25 0.25 0.25 2.50												
1. " 2 " 23 0.30 0.25 0.28 2.75 1. " 3 " 24 0.35 0.35 0.35 3.50 1. " 4 " 25 0.45 0.45 0.45 4.50 12.5 dolomia 1 A 14 0.30 0.25 0.28 2.75 1. " 2 " 15 0.30 0.30 0.30 3.00 1. " 3 " 16 0.45 0.40 0.43 4.25 1. " 17 0.25 0.25 0.25 2.50	_	3.6	dolomia			22	0.40	0.45	0.43	4.25		
. " 3 " 24 0.35 0.35 0.35 3.50 . " 4 " 25 0.45 0.45 0.45 4.50 12.5 dolomia 1 A 14 0.30 0.25 0.28 2.75 . " 2 " 15 0.30 0.30 0.30 0.30 3.00 . " 3 " 16 0.45 0.45 0.40 0.43 4.25 . " 4 " 17 0.25 0.25 0.25 2.50		•	=	2		23	0.30	0.25	0.28	2.75		
12.5 dolomia 1 A 14 0.30 0.25 0.28 2.75		•	=	3	_	24	0.35	0.35	0.35	3.50	3.75	
12.5 dolomia 1 A 14 0.30 0.25 0.28 2.75 - " 2 " 15 0.30 0.30 0.30 3.00 - " 3 " 16 0.45 0.40 0.43 4.25 - " 4 " 17 0.25 0.25 0.25 2.50		•	=	4		25	0.45	0.45	0.45	4.50		
12.5 dolomia 1 A 14 0.30 0.25 0.28 2.75 - " 2 " 15 0.30 0.30 0.30 3.00 - " 3 " 16 0.45 0.40 0.43 4.25 - " 4 " 17 0.25 0.25 0.25 2.50 - " 0 0 0 0 0 0 0 0 - " 0 0 0 0 0 0 0 0 0 - " 1 17 0 0 0 0 0 0 0 0 0 - " 1 17 0				<u> </u>	-	-						
. " 2 " 15 0.30 0.30 0.30 3.00 . " 3 " 16 0.45 0.40 0.43 4.25 . " 4 " 17 0.25 0.25 0.25 2.50	\dashv	2.5	dolomia		А	14	0.30	0.25	0.28	2.75		
. " 3 " 16 0.45 0.40 0.43 4.25 . " 4 " 17 0.25 0.25 0.25 2.50		•	=	2		15	0.30	0.30	0.30	3.00		
- " 4 " 17 0.25 0.25 0.25 - " 4 " 17 0.25 0.25		•	=	3		16	0.45	0.40	0.43	4.25	3.13	
		•	=	4		17	0.25	0.25	0.25	2.50		
						_						

d = diametro punta abrasa

• condizione : A = Ambiente S = Satura E = Secca

IL Responsabile (Dr.Ing.Alberto MORINO) :

L'Operatore (Dr.Geol.Saverio RANA) :

C.A.I. = Cerchar Abrasivity Index (= 10 * d medio)

S27

S27

S20

MODULO L33- Rev.01/5.95

Blocco

DROP TEST

Sondaggi

Data Pag.:

Rapporto n°.:

12/95

Rif. :

1251

1211140

Settembre 1995

Laboratorio di Meccanica delle Rocce Campione CL29 **VA25** CL25 VA2 VA Provino AU85 AU48 AU47 **80** B AU87 Profondita' 59.5-59.7 68.0-68.3 7.6 - 7.8 Ξ Progetto Cliente Committente Litotipo Dolomia Dolomia Dolomia Dolomia Dolomia Prova ယ N ယ N N N N ယ VICENZETTO S.r.l. Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di mass.opere in sotterraneo - Indagini geognostiche AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVÁ S.p.A. Condizione Þ Þ Þ Þ Peso Specifico (g/cm3) 2.77 2.77 2.77 2.77 2.77 16.0 - 11.2 mm materiale tra Peso 522.00 522.00 522.00 522.00 522.00 522.00 522.00 522.00 522.00 522.00 522.00 522.00 522.00 522.00 522.00 mm a fine prova passante a 11.2 Peso materiale 200.00 202.00 196.00 175.00 181.00 178.00 174.00 166.00 198.00 187.00 183.00 181.00 183.00 145.00 158.00 a 11.2 mm a fine prova materiale passante Percentuale 34.67 33.52 34.67 37.93 38.31 27.78 37.55 33.33 31.80 35.82 35.06 35.06 34.10 30.27 38.70 % Coefficiente S₂₀ Medio

33,46

Blocco

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

condizione : A = Ambiente

S = Satura E = Secca

Mans

34.10

31.80

38.31

35.19

II Responsabile (Dr.Ing.Alberto MORINO) : L'Operatore (Dr.Geol.Saverio RANA) :

INDENTAMENTO AL CONE INDENTER N.C.B.

Data Rapporto nº: Settembre 1995 12/95

Rif.

1251

1201140

Pag.:

Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente VICENZETTO S.r.l.

Progetto : Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di mass.opere in sotterraneo - Indagini geognostiche

										da	blo	cc	0		· · · · · · · · · · · · · · · · · · ·		s	ond	agg	jio	
		=	=	VA2	=	2	VA2	=	=	VA1	=	=	VA1	=	=	VA1			•	Campione	
		=	=	AU84	=	=	AU83	=	=	AU82	=	=	AU81	=	=	AU80				Provino	
							•			4			•			t		(m)		Profondita*	
		=	=	dolomia	1	=	dolomia	=	=	dolomia	2	=	dolomia	=	=	dolomia				Litotipo	
		з	2		ယ	2	_	3	2	_	ယ	N		ယ	2			Р	rova	3	
		=	=	=	z	=	z	=	=	=	=	=	=	2	=	Α	C	ond	izio	ne *	•
		*		ls	=	n	ls	2	Ε.	ls	æ	=	ls	a	2	ls			Indice **		
		7.06-5.52-5.52-4.54-4.54-4.18-7.06-4.54-5.52	6.17-3.85-4.96-4.15-5.52-4.54-4.18-4.54-3.85	3.85-6.17-5.52-5.52-4.54-6.17-8.25-6.23-5.52	3.34-4.54-5.00-5.52-4.96-7.06-7.06-2.65-5.52	5.52-7.06-7.06-6.23-3.85-3.13-6.23-5.52-3.85	4.54-7.06-6.23-3.85-3.85-4.18-3.85-2.95-3.85	3.85-3.57-5.52-7.06-3.85-5.00-5.52-5.52-4.54	4.96-4.54-4.54-5.52-7.06-5.52-7.06-7.06-5.52	5.52-2.95-7.06-6.17-3.57-4.18-4.10-4.96-6.23	4.96-6.23-5.52-3.59-4.54-4.15-4.15-5.00-3.85	4.54-4.54-4.54-7.06-3.85-4.96-4.96-3.85-5.52	3.85-4.54-5.52-4.54-7.06-4.54-6.23-2.40-2.40	4.54-5.52-3.85-7.06-7.06-4.54-6.17-4.54-3.34	4.54-5.52-5.00-4.96-5.52-3.85-6.23-4.18-3.85	3.85-5.00-4.44-3.85-3.59-5.52-5.52-6.23-6.17			(valori ottenuti)	Indice al Cone Indenter N.C.B.	
		5.39	4.64	5.75	5.07	5.38	4.48	4.94	5.75	4.97	4.67	4.87	4.56	5.18	4.85	4.91			medio	Indice	
		133.67	115.07	142.60	125.74	133.42	111.10	122.51	142.60	123.26	115.82	120.78	113.09	128.46	120.28	121.77	(MPa)	calcolata	uniassiale	a compr.	Resist.
																				Note	

** indice condizione

: A = ambiente, S = satura, E = secca : Is - carico di indentamento 40 kN

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

lw - carico di indentamento 12 kN Im - carico di indentamento 110 kN

II Responsabile (Dr.Ing.Alberto MORINO) :

L'Operatore (Dr.Geol.Saverio RANA) :

Mura

■CEODATA Laboratorio di Meccanica delle Rocce

12 / 95 Rapporto n°.:

Data

Settembre 95

Pag.: Rif.:

121140 1251

> TEST SIEVERS'

A 11 TOCTO A DECOMA VEDONIA VICENZA DADOVA S DA

 Committente :		AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.P.A.
 Cliente	• •	VICENZETTO S.r.I.
 Progetto		Autostrada VALDASTICO A31 - Collegamento con l'A22
		Progetto di mass.opere in sotterraneo - Indagini geognostiche

Media		31.17					34.25					8.90				19.93				19.15						
Sievers' J - VALUE	30.90	35.20	27.40	38.70		25.40	39.20	39.70	32.70		2.20	12.40	16.40	4.60	18.90	7.70	26.30	26.80	32.30	25.30	13.70	5.30		7,	/ware	141
penetrazione punta (mm)	3.09	3.52	2.74	3.87		2.54	3.92	3.97	3.27		0.22	1.24	1.64	0.46	1.89	0.77	2.63	2.68	3.23	2.53	1.37	0.53				
spostamento finale (mm)	32.94	24.40	28.07	26.04		22.32	33.06	45.11	43.28		33.09	34.74	32.34	33.38	33.66	44.58	41.64	40.87	48.71	49.09	4.23	4.00			L'Operatore (Dr.Geol.Saverio RANA)	
spostamento iniziale (mm)	36.03	27.92	30.81	29.91		24.86	36.98	49.08	46.55		33.31	35.98	33.98	33.84	35 55	45.35	44.27	43.55	51.94	51.62	5.60	4.53				
noizibnoO	A	=				٨	F	2			A	-		2	<				A					E = Secca		
Ргоуа	-	2	3	4		-	2	ဗ	4		-	2	3	4	-	2	6	4	-	2	6	4		S = Satura E = Secca		
Litotipo	DOLOMIA	2				DOLOMIA					DOLOMIA	2			410100				AIMO IOU	<i>x</i>	r	r				
Profondita'	•		•				,				7.8	3		2	1 02	0.50		3	68.7	*		1		* condizione : A = Ambiente		
Provino	AU117					41118	=	2	-		41186				30	ACSO.		*	RALIA		-	1				
Campione	VA1	2	•	z		747		:			7007	*		2			:	3	8, 10		2		-			
iggsbno2		()))	ole	3		(000	olé	3			200	s			28	zs		•	L	75				

MODULO L43- Rev.01/10.95

II Responsabile (Dr.Ing.Alberto MORINO):

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA SPA SEDE IN VERONA

AUTOSTRADA VALDASTICO A31 COMPLETAMENTO A NORD

Collegamento con l'A22 AUTOBRENNERO da Piovene R. (Vicenza) a Besenello (Trento) Tracciato "A" del Progetto Preliminare 18-6-91

PROGETTO DI MASSIMA DELLE OPERE IN SOTTERRANEO

PROVE GEOMECCANICHE DI LABORATORIO

Rapporto prove 12/95

BLOCCO VA31 - ANDESITE -

GEODATA

DESCRIZIONE PETROGRAFICA

Laboratorio di Meccanica delle Rocce

Rapporto n.°: 12 95 Rif.: 1251 Data: ott-95 Pag.: \(\Delta 24 \setminus 40 \)

Committente : Autostrada Brescia - Verona - Vicenza - Padova S.p.A.

Cliente : VICENZETTO S.r.l.

Progetto : Autostrada Valdastico A31 - Collegamento con l'A22

Progetto di mass. opere in sotterraneo - Indagini geognostiche

Sondaggio: Campione/Provino: Avg/ va 31 Profondità: (m)

Nome della roccia: Andesite a tessitura microlitica

Descrizione:

Vulcanite a tessitura microlitica caratterizzata da una massa di fondo vetrosa di colore marrone arancio in cui si riconoscono fenocristalli di plagioclasio, femico sostituito (probabile anfibolo), opachi. La massa vetrosa è presente in una varietà chiara (quasi incolore) criptocristallina, ma caratterizzata da numerose piccole inclusioni opache che le conferiscono un aspetto cribroso più minuti cristalli di plagioclasio, e da porzioni generalmente a contorni sfumati/irregolari, talvolta a contorni netti, caratterizzate da un colore marrone scuro e chiaramente isotrope. Tra i fenocristalli il plagioclasio si presenta in individui da xenomorfi a subidiomorfi delle dimensioni comprese tra 0.2 e 1 mm, con bordi corrosi dalla massa di fondo vetrosa. Talora mostra delle evidenti zonature. In genere si presenta limpido e più raramente include elementi vetrosi. Il femico (ora completamente sostituito da carbonato ± biotite) si presenta in individui da idiomorfi a subidiomorfi. leggermente più grossi dei plagioclasi, talora con il contorno sottolineato da materiale opaco. Vista la forma dei cristalli è probabile che si tratti di pseudomorfosi su originario anfibolo.

Composizione modale: Massa di fondo vetrosa: ca. 50% Plagioclasio: ca. 30% Anfibolo: ca. 15% Minerali opachi: ca. 5%

L'Operatore :

Dr. Geol. Maurizio CANEPA

Il Responsabile:

and the second of the second s

A7

ELENCO PROVE ESEGUITE

Laboratorio di Meccanica delle Rocce

Rapporto n°.:

12/95

Rif. : 1251

Data

: Settembre 1995

Pag. : 123/140

Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente

: VICENZETTO S.r.I.

: Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di mass.opere in sotterraneo - Indagini geognostiche

Prove geomeccaniche di laboratorio eseguite su ANDESITE

CODICE	DESCRIZIONE	QUANTITA'
		ESEGUITE
B.1.1	Peso di volume apparente attraverso	
	misurazione diretta	7
C.1	Resistenza a compressione uniassiale	2
C.2.1	Resistenza a compressione triassiale	2
C.3.1	Misura delle deformazioni e determinazione dei	
	moduli tangente e secante	2
C.4	Determinaz, curve di inviluppo	1
C.5	Resistenza a trazione indiretta "brasiliana"	3
C.6.5	JRC - JCS	4
C.7	Tilt test	3
C.8	Point Load Test	5
C.9	Prova sclerometrica	6
C.10.2	Determinazione della velocità delle onde elastiche	
	longitudinali e di taglio	7
D.1 - A.5	Analisi petrografica con foto	1

L'Operatore (Dr.Geol.Saverio RANA):

II Responsabile (Dr.Ing.Alberto MORINO):

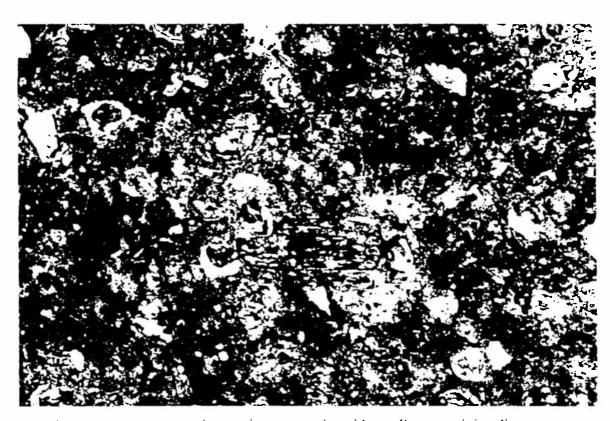
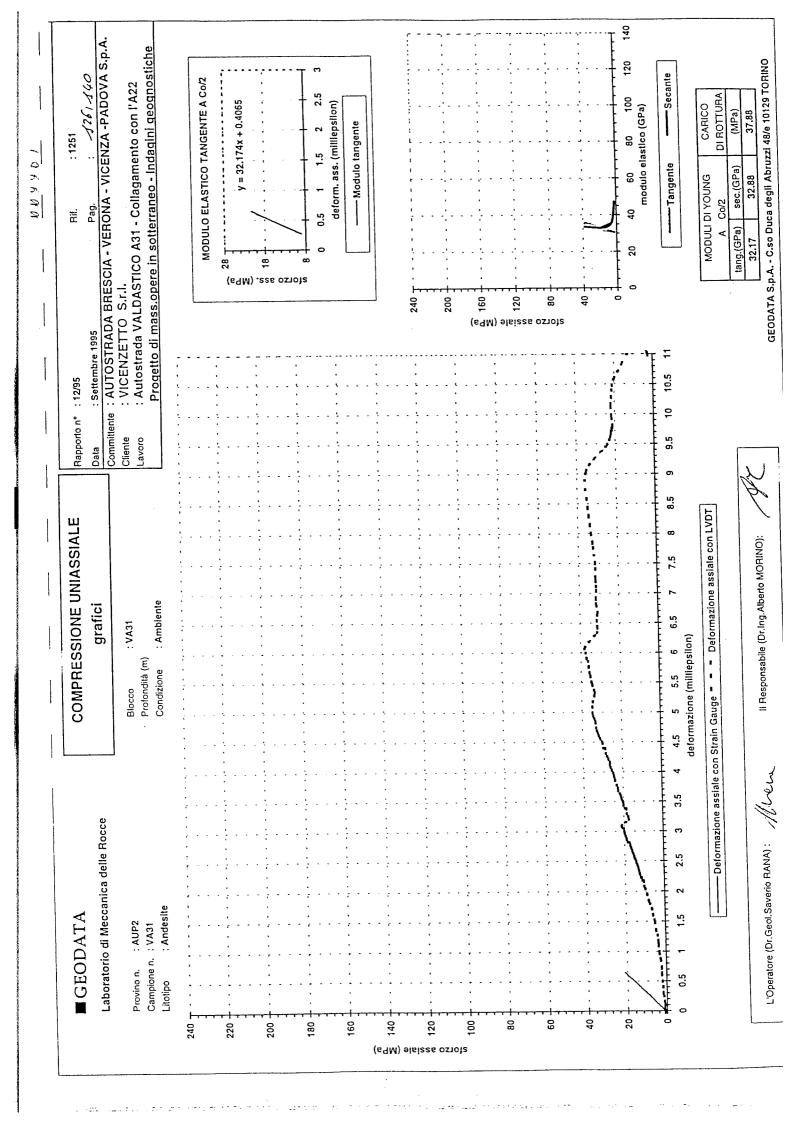



Foto 1: andesite a tessitura microlitica: viene messo in evidenza l'aspetto tipico di questa roccia caratterizzato dalla presenza di una massa di fondo vetrosa, isotropa in cui sono riconoscibili fenocristalli di plagioclasio (limpidi) e di femico (probabilmente ex anfibolo) visibile al centro della foto. Le chiazze marrone più scuro sono costituite da inclusioni di vetro di diversa composizione.

■GEODATA

Laboratorio di Meccanica delle Rocce

SCHEDA RIASSUNTIVA PROVE DI LABORATORIO

Settembre 1995 12/95 Rapporto n°: Data

Rif. : Pag.:

1251

Committente : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. : VICENZETTO S.r.I. Cliente

Progetto di mass.opere in sotterraneo - indagini geognostiche : Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto

		,			preesistenti]]r	
			Note		rottura su plani preesistenti																														
			>	sec.										\dagger		***					\dagger			\dagger	1			1			1		-		
			>	tang.						+							-	1		-				+							1			1	4
	che		σ >	Œ	0.31	90.0	0.43	4 2		0.41	0.41	0.43																							Mren
	nde son		Ed	(GPa)	31.64	1	29.65	1		<u></u> !-	20.07	22.66	1	1				1			1			-			<u> </u> 	1			1				The state of the s
	Velocita' onde soniche	•	۸s)) (s/ш)	3090		-				1699 '2	1790 2		1			<u> </u> 	1		<u> </u> 	-			+	,		<u> </u> 	1		-	1			-	••
	\ \			ı) (s/ш)	3928		 	+	- +		4430 1	5058 1	+-				<u> </u>	-		<u> </u> 	1		<u> </u>			<u> </u>	<u> </u>			<u> </u> 	+				RANA)
		oibe	อเม	님	36	41.3 46	-	-		48.1 54	46.8 44		<u> </u>	1						1			1	1			<u> </u> -	1		<u> </u>	$\frac{1}{1}$		-	-	.Saverio
	0.		¬	(MPa)		4	č.		4	4	4(4		1			1			<u> </u>			1	1			1	_		1			1	-	L'Operatore (Dr.Geot.Saverio RANA)
	Taglio diretto	7	_	(MPa) (M		<u> </u>				_			<u> </u>	1			<u> </u>		<u> </u> 	1			1	<u> </u>		<u> </u> 		_					1	4	eratore
	Taglio	٠	>			<u> </u> -			1				<u> </u>	_		<u> </u>	1			1			1	_		<u> </u> 	 			<u> </u>			<u> </u>	_	r. O
		۲	· 	(MPa)	-			1	1							<u> </u>				1			1				1			1			1	4	
		ene (69	ilis M)	518 T						13,45	7.93	90 9	3																						
		Moduli elastici		E S	3 0 00	23.5																													
	ne	Moduli		E t	3 3	27.0	51.17																												
	Compressione	iale		d3	(IVIC a)		6	3.0	6.0															****											
	Š	Triassiale		d 1	(WIF d)		3	141.2	162.1			Ì												····		1						-			
		Uniass.			+	37.3	+					1								1		-				+	-		 			-	+		
-		ــــــــــــــــــــــــــــــــــــــ		bno2		< =		-	=	=	=	<u> </u>	-		<u> </u>	<u> </u>	_		$\frac{1}{1}$	1		<u> </u>	<u> </u>		<u> </u> 		-		1			+	-		
				(<i>KU</i> \L	, (23.6	74:1	24.3	24.5	24.3	24.1	-	24.3																			Ī			
		1 itotioo				andesite	İ	=	±	=	=	İ	=																			-			E = secca
		Profondità		Î.			-	1					1																			+			S = satura,
		Provino				AUP2	AUP3	AUP6	AUP5	A1107		AUP4	AUP13									+													ımbiente,
		θL	oic	Camp		VA31		=	=	=	1	T	=																						condizione : A = ambiente,
		Oil	56e	puos		-	-		00	† 8 •	st	- 		-	Ī																İ				condizic

v d = rapporto dinamico di Poisson

N.A. = Non Attendibile

= peso di vol.per misurazione diretta

II Responsabile (Dr.Ing.Alberto MORINO):

L'Operatore (Dr.Geol.Saverio RANA) :

COMPRESSIONE UNIASSIALE

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

Pag.: 128/1/40 Settembre 1995 12/95 Rif.: 1251 Data: Rapporto nº: : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente VICENZETTO S.r.I. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche VA31/AUP3 Profondita': (m) da blocco Campione/Provino: Sondaggio: Amhiente Satura Diametro 53.5 Condizione Secca Cont. d'acqua (%) 714 129.3 (g) Lunghezza - (mm) (kN/m3) 24.09 Volume 290.67 Peso di volume (cm3) 28.1 Peso umido * tp (µs) Tempi di arrivo (g) 38.3 (μs) TRASMISSIONE 4601 ONDE SONICHE Velocita' Vp (m/s) 3376 Vs (m/s) Peso secco * E PARAMETRI 51.354 (q) Ed (GPa) Modulo elastico dinamico CORRELATI N.A. V d (-) Rapporto di Poisson dinamico VOLUME CON PESATA IDROST. R medio Media PROVA SCLEROMETRICA 41.6 Temp. acqua (°C) Letture faccia superiore 40-42-43-42-41 41.3 Peso in aria (g) Letture superficie laterale 41.0 Peso in acqua (g) 40-40-41-42-42 Letture faccia inferiore MODULO L05 - Rev.02 /10.95 LITOTIPO **ANDESITE** SCHEMA DI ROTTURA NOTE **Ambiente** Condizione marrone - arancio Colore massiccia, a tessitura microlitica in una massa Struttura di fondo vetrosa presenti rare disontinuità ad andamento Piani di discontinuital rugoso presente nelle discontinuità Alterazione Direz.carico/piani di disc. Rottura improvvisa fragile Comportamento parallala all'asse di carico su nuovi piani Fratturazione e second, su discontinuità preesistenti Osservazioni Legenda: Piani preesistenti Piani di rottura Rapporto L/D 19 Temperatura (°C) Condizioni ambiente : 2.42 63 Area facce prov. (cm2): 22.48 (%) Umidita' dell'aria 27.88 (kN) 270.37 MODULO ELASTICO TANGENTE (GPa) CARICO DI ROTTURA 22.95 120.27 MODULO ELASTICO SECANTE (GPa) RES, A COMPR. UNIASSIALE Co' (MPa) RESISTENZA A COMPRESSIONE UNIASSIALE RAPPORTO DI POISSON TANGENTE V t (-) 124.63 CORRETTA C 0 (D=50mm L/D=2) RAPPORTO DI POISSON SECANTE ν_{s(-)} Il Responsabile (Dr.Ing.Alberto MORINO): L' Operatore (Dr.Geol.Saverio RANA):

N.A.: Non Attendibile

AUP3.XLS

^{*} Misure eventuali per calcolo contenuto d'acqua

COMPRESSIONE UNIASSIALE

12/95 Pag.: 127 1140 Rapporto n°: Rif.: 1251 Data: Settembre 1995 : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente : VICENZETTO S.r.l. Cliente Progetto : Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto di massima opere in sotterraneo - Indagini geognostiche da blocco Sondaggio: Campione/Provino: VA31/AUP2 Profondita': (m) Diametro (mm) 53.5 Condizione Secca **Ambiente** Satura Cont. d'acqua Lunghezza (mm) 130.4 Peso 706 (g) Volume 293.14 (cm3) Peso di volume (kN/m3) 23.62 tp (μs) 33.2 Tempi di arrivo Peso umido * (g) TRASMISSIONE ts (μs) 42.3 Vp (m/s) 3928 ONDE SONICHE Velocita' E PARAMETRI Vs (m/s) 3090 Peso secco * Modulo elastico dinamico CORRELATI Ed (GPa) 31.641 (g) Rapporto di Poisson dinamico V d (-) N.A. PROVA SCLEROMETRICA VOLUME CON PESATA IDROST. Media R medio _etture faccia superiore Temp. acqua (°C) Letture superficie laterale Peso in aria (g) Letture faccia inferiore Peso in acqua (g) LITOTIPO **ANDESITE** SCHEMA DI ROTTURA NOTE Condizione **Ambiente** Colore marrone - arancio Struttura massiccia, a tessitura microlitica in una massa di fondo vetrosa Piani di discontinuita' presenti rare disontinuità ad andamento rugoso Alterazione presente nelle discontinuità Direz.carico/piani di disc. perpendicolare alle discontinuità Rottura progressiva Comportamento lenta caduta del carico Fratturazione parallala all'asse di carico su nuovi piani e su discontinuità preesistenti Osservazioni Legenda: Piani preesistenti Piani di rottura Condizioni ambiente : 20 Rapporto L/D Temperatura (°C) 22.48 Area facce prov. (cm2): 2.44 Umidita' dell'aria 71 (%) CARICO DI ROTTURA 82.18 32.17 MODULO ELASTICO TANGENTE Et (GPa) RES. A COMPR. UNIASSIALE Co' (MPa) 36.56 32.88 MODULO ELASTICO SECANTE (GPa) RESISTENZA A COMPRESSIONE UNIASSIALE RAPPORTO DI POISSON TANGENTE V t (-) CORRETTA C 0 (D=50mm L/D=2) 37.88 RAPPORTO DI POISSON SECANTE V s (-) Meire L'Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):

N.A.: Non Attendibile

GEODATA S.p.A. - C.so Duca degli Abruzzl 48/E - 10129 TORINO

MODULO L05 - Rev.02 /10.95

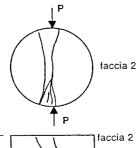
^{*} Misure eventuali per calcolo contenuto d'acqua

TRAZIONE INDIRETTA "BRASILIANA"

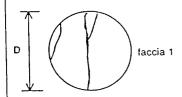
Rapporto n°: 12/95 Rif.: 1251 Data : Settembre 1995 Pag.: 130/140

Committente : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

Cliente : VICENZETTO S.r.I.


Progetto : Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche


Sondaggio :	da blocco	Campione/Provino:	VA31 / AUP4	Profondità :	- (m)
Diametro (mm)	53.5	Condizione	Ambiente	Satura	Cont. d'acqua
Lunghezza (mm)	47.4	Peso (g)	262		(%)
Volume (cm3)	106.56	Peso di volume (kN/m3)	24.11		
	Tempi di arriv	ro tp (μs)	10.7		Peso umido *
TRASMISSIONE	,	ts (μs)	27.9		(g)
ONDE SONICHE	Velocita'	Vp (m/s)	4430		
E PARAMETRI		Vs (m/s)	1699		Peso secco *
CORRELATI	Modulo elasti	co dinamico Ed (GPa)	20.066		(g)
	Rapporto di F	Poisson dinamico V d -)	0.41		

nappon	Juli dissoli dinamico V d . /			<u> </u>
	PROVA SCLEROMETRICA	Media	R medio	VOLUME CON PESATA IDROST.
Letture faccia superiore	51-51-52-50-50	50.8		Temp. acqua (°C)
Letture superficie laterale			46.8	Peso in aria (g)
Letture faccia inferiore	46-43-44-40-41	42.8	7	Peso in acqua (g)

SCHEMA DI ROTTURA

Legenda :

Piani preesistenti
Piani di rottura

LITOTIPO : ANDESITE

NOTE

Condizione : Ambiente

Colore : marrone - arancio

Struttura : massiccia,a tessitura microlitica in una massa

di fondo vetrosa

Piani di discontinuita': presenti rare disontinuità ad andamento

rugoso

Alterazione :

Direz.carico/piani di disc. :

Rottura : improvvisa

Comportamento : rapida caduta del carico

Fratturazione : parallala all'asse di carico su nuovi piani

, parameters

Osservazioni :

Condizioni ambiente :

CARICO DI RO	TTURA	Р	(kN)	31.6
RESISTENZA A	TRAZIONE IN	IDIRET	ГА	
BRASILIANA	Το:2P/ π	DL	(MPa)	7.93

Temperatura

Umidita' dell'aria

L' Operatore (Dr.Geol.Saverio RANA) :

Mune

Il Responsabile (Dr.Ing.Alberto MORINO):

19

71

AC

Rapporto L/D

0.89

(°C)

(%)

MODULO L07 - Rev.02 A.94

Misure eventuali per calcolo contenuto d'acqua

GEODATA

TRAZIONE INDIRETTA "BRASILIANA"

Laboratorio di Meccanica delle Rocce Pag.: 132/140 Data: Settembre 1995 12/95 Rif.: 1251 Rapporto nº: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente Cliente VICENZETTO S.r.I. Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Profondità: Campione/Provino: **VA31 / AUP13** (m) Sondaggio: da blocco Ambiente Satura Diametro (mm) 53.5 Condizione Cont. d'acqua (%) 242 43.5 Lunghezza (mm) (g) 24.27 Peso di volume (kN/m3) 97.79 Volume (cm3) 8.6 tp (μs) Peso umido * Tempi di arrivo (g) 24.3 ts (μs) TRASMISSIONE Vp (m/s) 5058 ONDE SONICHE Velocita' 1790 Vs (m/s) Peso secco * E PARAMETRI (g) Ed (GPa) 22.658 Modulo elastico dinamico CORRELATI 0.43 Rapporto di Poisson dinamico Va -) VOLUME CON PESATA IDROST. R medio Media PROVA SCLEROMETRICA Temp. acqua (°C) 51.8 Letture faccia superiore 51-51-53-52-52 46.6 Peso in aria Letture superficie laterale 41.4 Peso in acqua (g) 41-40-38-43-45 Letture faccia inferiore ANDESITE LITOTIPO SCHEMA DI ROTTURA NOTE **Ambiente** Condizione marrone - arancio Colore massiccia, a tessitura microlitica in una massa Struttura faccia 2 di fondo vetrosa presenti rare disontinuità ad andamento Piani di discontinuita' rugoso faccia 2 Alterazione Direz.carico/piani di disc. Rottura improvvisa faccia 1 rapida caduta del carico Comportamento parallala all'asse di carico su nuovi piani Fratturazione

Legenda:

Piani di rottura

Condizioni ambiente : Temperatura
Umidita' dell'aria

Osservazioni

CARICO DI ROTTURA P (kN) 22.3

RESISTENZA A TRAZIONE INDIRETTA

BRASILIANA T 0 : 2P/ TDL (MPa) 6.09

L' Operatore (Dr.Geol.Saverio RANA):

Muena

Il Responsabile (Dr.Ing.Alberto MORINO):

19

71

AC

Rapporto L/D

0.81

(°C)

MODULO L07 - Rev.02 /1.94

Misure eventuali per calcolo contenuto d'acqua

TRAZIONE INDIRETTA "BRASILIANA"

Rapporto n°: 12/95 1251 Pag.: 131/140 Rif.: Data: Settembre 1995

Committente : AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A.

VICENZETTO S.r.I. Cliente

Progetto : Autostrada VALDASTICO A31 - Collegamento con l'A22

Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio :	····	da blocco	Campione/Provino:	VA31 / AUP7		Profondità :	- (m)
Diametro	(mm)	53.5	Condizione		Ambiente	Satura	Cont. d'acqua
Lunghezza	(mm)	49.5	Peso (g)		276		(%)
Volume	(cm3)	111.28	Peso di volume (kN/m3)		24.32		
		Tempi di arriv	o tp (μs)		9.1		Peso umido *
TRASM	ISSIONE		ts (μs)		23.5		(g)
ONDE S	ONICHE	Velocita'	Vp (m/s)		5440		
E PAF	IAMETRI		Vs (m/s)		2106		Peso secco *
COF	RRELATI	Modulo elasti	co dinamico Ed (GPa)		31.071		(g)
		Rapporto di F	oisson dinamico v d 🖯		0.41		
		PRO\	'A SCLEROMETRICA	Media	R medio	VOLUME C	ON PESATA IDROST.
Letture facc	ia superior	е	47-49-50-52-50	49.6		Temp. acqua	a (°C)
Letture supe	erficie later	ale			48.1	Peso in aria	(g)
Letture facc	ia inferiore		44-45-46-48-50	46.6		Peso in acq	ua (g)

SCHEMA DI ROTTURA

LITOTIPO

ANDESITE

NOTE

Condizione Ambiente

Colore marrone - arancio

Struttura massiccia,a tessitura microlitica in una massa

di fondo vetrosa

presenti rare disontinuità ad andamento Piani di discontinuita'

rugoso

Alterazione

Direz.carico/piani di disc. :

Rottura improvvisa

Comportamento

rapida caduta del carico

Fratturazione

parallala all'asse di carico su nuovi piani

Osservazioni

Condizioni ambiente :

Temperatura (°C) Umidita' dell'aria

71

Rapporto L/D 0.93

Legenda:

· · · · Piani preesistenti

Piani di rottura

CARICO DI ROTTURA 56.0 RESISTENZA A TRAZIONE INDIRETTA 13,45 "BRASILIANA" T 0:2P/ πOL

L' Operatore (Dr.Geol, Saverio RANA):

Mune

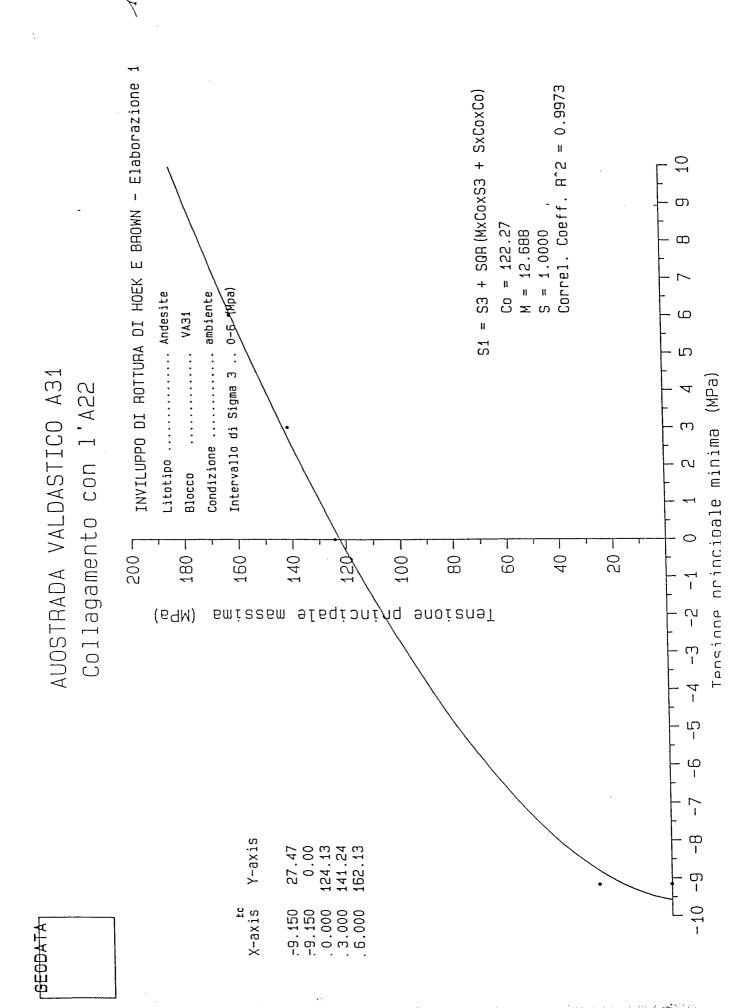
Il Responsabile (Dr.Ing.Alberto MORINO):

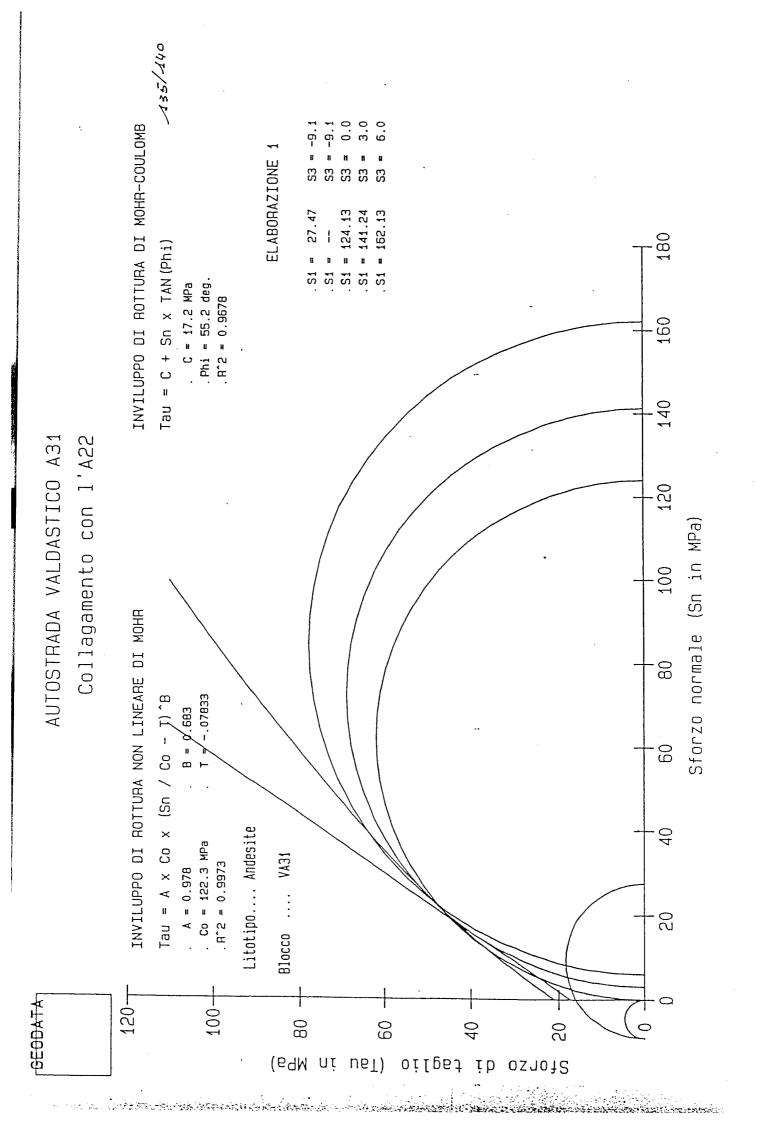
Misure eventuali per calcolo contenuto d'acqua

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

COMPRESSIONE

Laboratorio di Meccanica delle Rocce TRIASSIALE Pag.: 134/140 Settembre 1995 Rif.: 1251 Data: 12/95 Rapporto nº: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: VICENZETTO S.r.I. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche **VA31 / AUP6** Profondita': (m) Campione/Provino: da blocco Sondaggio: Satura Condizione Secca Ambiente Cont. d'acqua 53.5 Diametro (mm)(%) 593 106.4 Peso (g) Lunghezza (mm) 24.31 Volume 239.19 Peso di volume (kN/m3) (cm3) 32.0 Peso umido * tp (μ s) Tempi di arrivo (g) 39.7 ts (μs) TRASMISSIONE 4003 Vp (m/s) ONDE SONICHE Velocita' 3227 Vs (m/s) Peso secco * E PARAMETRI (g) 29.645 Ed (GPa) Modulo elastico dinamico CORRELATI N.A. Rapporto di Poisson dinamico V d (-) VOLUME CON PESATA IDROST. PROVA SCLEROMETRICA Media R medio 39-40-41-40-40 40.0 Temp. acqua (°C) Letture faccia superiore 39.5 Peso in aria (g) etture superficie laterale Peso in acqua (g) 37-38-40-41-39 39.0 Letture faccia inferiore SCHEMA DI ROTTURA LITOTIPO **ANDESITE** NOTE Colore marrone - arancio massiccia, a tessitura microlitica in una massa Struttura di fondo vetrosa presenti rare disontinuità ad andamento Piani di discontinuita rugoso presente nelle discontinuità Alterazione Direz.carico/piani di disc. improvvisa Rottura Comportamento fragile parallala all'asse di carico su nuovi piani Fratturazione Legenda: Osservazioni Piani preesistenti Piani di rottura Rapporto L/D PRESSIONE DI CONFINAMENTO (°C) 19 Condizioni ambiente : Temperatura 61 (MPa) Umidita' dell'aria (%) MODULO ELASTICO TANGENTE (kN) 313.80 (GPa) CARICO ASSIALE A ROTTURA 139.59 (GPa) SFORZO PRINC, max a rottura σ1' (MPa) MODULO ELASTICO SECANTE RAPPORTO DI POISSON TANGENTE V t (-) SFORZO PRINCIPALE MASSIMO A ROTTURA ν_s (-) (MPa) 141.24 CORRETTO (D=50mm L/D=2) RAPPORTO DI POISSON SECANTE Il Responsabile (Dr.Ing.Alberto MORINO): L' Operatore (Dr.Geol.Saverio RANA):


^{*} Misure eventuali per calcolo contenuto d'acqua



COMPRESSIONE TRIASSIALE

Rapporto nº: 12/95 Rif.: 1251 Pag.: 133/140 Data: Settembre 1995 Committente: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Cliente VICENZETTO S.r.I. Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche Sondaggio: da blocco Campione/Provino: VA31 / AUP5 Profondita': (m) Diametro 53.5 (mm) Condizione Secca Ambiente Satura Cont. d'acqua Lunghezza (mm) 101.0 Peso (g) 567 (%) Volume 227.05 (cm3) Peso di volume (kN/m3) 24.49 Tempi di arrivo tp (μs) 27.8 Peso umido * (g) ts (µ s) 39.3 TRASMISSIONE Vp (m/s) ONDE SONICHE 4540 Velocita' E PARAMETRI Vs (m/s) 3211 Peso secco * Modulo elastico dinamico Ed (GPa) CORRELATI 51.572 Rapporto di Poisson dinamico V d (-) N.A. PROVA SCLEROMETRICA R medio VOLUME CON PESATA IDROST. Media Letture faccia superiore 41-43-44-45 43.4 Temp. acqua (°C) Letture superficie laterale 43.2 Peso in aria Letture faccia inferiore 44-44-42-43-42 43.0 Peso in acqua (g) SCHEMA DI ROTTURA LITOTIPO **ANDESITE** NOTE Colore marrone - arancio Struttura massiccia, a tessitura microlitica in una massa di fondo vetrosa Piani di discontinuita' presenti rare disontinuità ad andamento rugoso Alterazione presente nelle discontinuità Direz.carico/piani di disc. Rottura improvvisa Comportamento fragile Fratturazione parallala all'asse di carico su nuovi piani Legenda: Osservazioni Piani preesistenti Piani di rottura PRESSIONE DI CONFINAMENTO Condizioni ambiente : Temperatura (°C) Rapporto L/D 19 (MPa) 6.0 Umidita' dell'aria 1.89 (%) 61 CARICO ASSIALE A ROTTURA (kN) 362.77 MODULO ELASTICO TANGENTE (GPa) SFORZO PRINC, max a rottura 161.37 (MPa) MODULO ELASTICO SECANTE (GPa) SFORZO PRINCIPALE MASSIMO A ROTTURA RAPPORTO DI POISSON TANGENTE V t (-) CORRETTO O1 (D=50mm L/D=2) (MPa) 162.13 RAPPORTO DI POISSON SECANTE V s (-) L'Operatore (Dr.Geol.Saverio RANA): Il Responsabile (Dr.Ing.Alberto MORINO):

Misure eventuali per calcolo contenuto d'acqua

CARATTERISTICHE DISCONTINUITA'

Laboratorio di Meccanica delle Rocce

Settembre 1995 Pag.: 138 1140 1251 12/95 Data: Rapporto n°: AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: VICENZETTO S.r.I. Cliente Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto Progetto di massima opere in sotterraneo - Indagini geognostiche

Sondaggio :	blocco	Campione/Provino:	VA31/AUP8	Profondita':				(m)
Litotipo :	Andesite)						
A	A1						JRC=	8 - 10
	A2						- JRC=	- 6 - 8
В	R (A) =	15-11-12-10-10		R m (A) =	11.6	JCS (A) :	= 32.5	(MPa)
2	B1						JRC=	
1	B2						JRC=	

$$Rm(B) =$$

$$JCS(B) =$$

(MPa)

Sondaggio :	biocco	Campione/Provino: VA31/AUP9	Profondita' :	-		(m)
Litotipo :	Andesite					
_ A	A1			JR	O= 14·	- 16
	A2			JR	C= 14	- 16
В	R (A) =	18-20-19-21-22-19-20-17-15-13	R m (A) = 1	18.4 JCS (A) =	51.5 (M	IPa)
2	B1			JF	RC=	

R(B) =

Rm(B) =

JCS (B) =

(MPa)

JCS = Rm * Co medio / R medio

GEODATA S.p.A.

C.so Duca degli Abruzzi 48/E - 10129 Torino

L' Operatore (Dr.Geol.Saverio RANA):

Il Responsabile (Dr.Ing.Alberto MORINO):

JRC=

AUUP8JRC.XLS

■GEODATA
Laboratorio di Meccanica delle Rocce

POINT LOAD TEST

Pag.: Rif. Luglio 1995 12/95 Rapporto n° Data

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Committente: Cliente

VICENZETTO S.r.I.

Progetto di mass.opere in sotterraneo - Indagini geognostiche

Autostrada VALDASTICO A31 - Collegamento con l'A22 Progetto

1	Г				\neg	_	1	_	-	T					 _		<u>-</u>			1	 -	1	 	_
		Note																						
	Correlazioni		욘	(MPa)																				
	, Corre		රි	(MPa)																				
		Indice	corretto	ls(50)	(MPa)	2.61	4.23	6.29	2.77	4.14														
		Fattore	ö	u_		1.028	1.027	1.029	1.020	1.018														
• !		Indice	equivalente non corretto	s	(MPa)	2.54	4.12	6.11	2.72	4.07														
		Diametro	equivalente	(mm)		53.2	53.0	53.3	52.2	52.0														
		Carico di	rottura	(bar)		62.0	100.0	150.0	64.0	95.0														
J		Larghezza		(mm)																				
		Diametro		(mm)		53.2	53.0	53.3	52.2	52.0														
		. əu	oizi	puo	၁	٨	2	z		:					İ	İ								
			EVO	ภ٩		۵	I	-	-	=											İ			
		Litotipo				andesite	=	=	=	=														
		Profondita'		(E)		•	1																	
		Provino				AUP8	AUP9	AUP10	AUP11	AUP12														
		Campione				VA31	=	3	*	2														
		oig	j6et	ouo	3			ı	£A1	\ IH	၁၁	פרס	3 V	a					•				 	

•• prova : D = diametrale, A = assiale, B = blocco *condizione: A = ambiente, S = satura, E = secca

CORRELAZIONI: Co =

<u>1</u>0

Il Responsabile (Dr.Ing.Alberto MORINO):

L'Operatore (Dr.Geol.Saverio RANA) :

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E - 10129 TORINO

MODULO L13 - Rev.02/1.94

TILT TEST

Progetto Cliente

140140 Pag.: Rif. : Luglio 1995 12/95 Rapporto n°.: Data

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A. Autostrada VALDASTICO A31 - Collegamento con l'A22 VICENZETTO S.r.I. Committente:

Progetto di mass.opere in sotterraneo - Indagini geognostiche

Note							
Angolo di attrito medio (°)	23.8	23.5	24.0				
Angolo di scivolamento (°)	24.6-21.0-24.6-24.0-23.3 24.5-21.7-24.5-24.6-25.0	23.6-20.5-23.2-22.2-23.1	24.5-24.7-24.2-24.3-24.6				
Parametro Φ b,p,r**	q	Ф	q				
Tipo di superficie	piana liscia da taqlio	=	#				
• ənoizibno	۷ :	= =	= =				
Prova					<u> </u>		
Litotipo	andesite "	= =	= =				
Profondita'	3.8						
Provino	AUP7	AUP13	AUP5 AUP7	AUPIS			
Campione							
oiggsbno2	ı	εΑν ο	госс	3	 	 	

MODULO L12 - Rev. 02/1.94

** Parametro : b = attrito di base

: p = attrito di picco

: r = attrito residuo

GEODATA S.p.A. - C.so Duca degli Abruzzi 48/E · 10129 TORINO

L'Operatore (Dr.Geol.Saverio RANA) :

II Responsabile (Dr.Ing.Alberto MORINO) :

AUPTILT.XLS

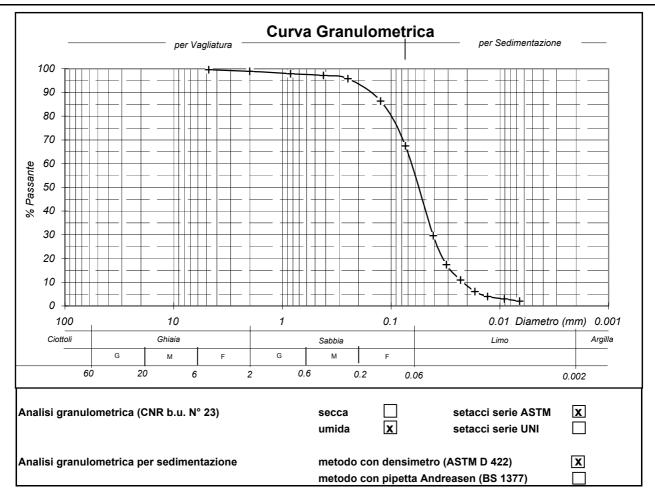
PROVE DI LABORATORIO CAMPAGNA INDAGINI 2005

COMM. 003CM05 **R.** 00

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD5 Campione Profondità (m) 39.00 - 39.50 Certificato nº Verbale di accettazione campioni n° 004/05 15/03/2005 Data arrivo campione 29/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura			
Diametro vaglio (mm)	Percentuale passante (%)		
76.20			
50.80			
38.10	100		
25.40	97		
19.05	94		
9.53	83		
4.76	65		
2.00	44		
0.84	31		
0.42	24		
0.25	21		
0.125	18		
0.074	15		

Analisi granulometrica per sedimentazione				
Diametro (mm)	Percentuale pass. (%)			
0.041				
0.031				
0.023				
0.017				
0.013				
0.0091				
0.0066				
0.0047				
0.0028				
0.0012				


Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

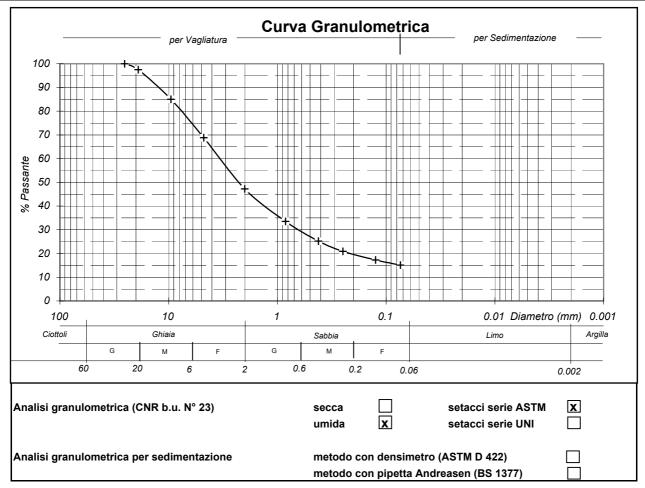
Data apr-05 Sperimentatore : P.i. A. Merlin Direttore Dott. Geol. V. Vicenzetto

COMM. 003CM05 R. OO

IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD5 Campione Profondità (m) 37.00 - 37.50 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 29/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura			
Diametro vaglio (mm)	Percentuale passante (%)		
76.20			
50.80			
38.10			
25.40			
19.05			
9.53			
4.76	100		
2.00	99		
0.84	98		
0.42	97		
0.25	96		
0.125	86		
0.074	67		

Data


Analisi granulometrica per sedimentazione			
Diametro (mm)	Percentuale pass. (%)		
0.041	30		
0.031	17		
0.023	11		
0.017	6		
0.013	4		
0.0091	3		
0.0066	2		
0.0047			
0.0028			
0.0012			

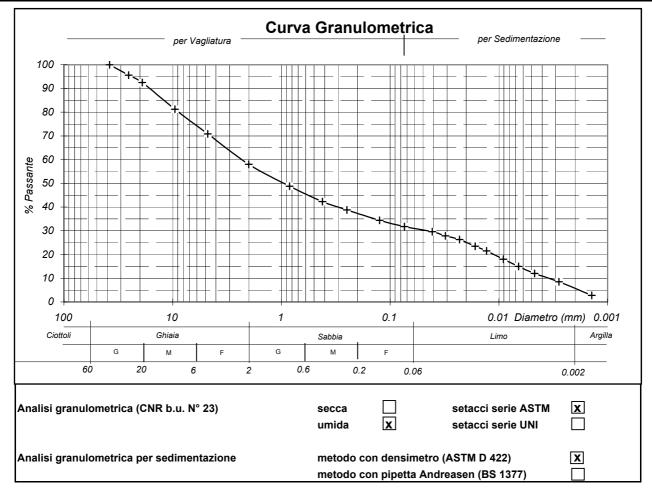
Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

COMM. 003CM05 **R.** 00

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD5 Campione Profondità (m) 31.50 - 32.00 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 29/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura			
Diametro vaglio (mm)	Percentuale passante (%)		
76.20			
50.80			
38.10			
25.40	100		
19.05	98		
9.53	85		
4.76	69		
2.00	47		
0.84	34		
0.42	25		
0.25	21		
0.125	17		
0.074	15		

Analisi granulometric	Analisi granulometrica per sedimentazione			
Diametro (mm)	Percentuale pass. (%)			
0.041				
0.031				
0.023				
0.017				
0.013				
0.0091				
0.0066				
0.0047				
0.0028				
0.0012				


Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

Data apr-05 Sperimentatore : P.i. A. Merlin Direttore Dott. Geol. V. Vicenzetto

COMM. 003CM05 R. 00

IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD5 Campione Profondità (m) 26.70 - 27.20 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 29/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura			
Diametro vaglio (mm)	Percentuale passante (%)		
76.20			
50.80			
38.10	100		
25.40	96		
19.05	92		
9.53	81		
4.76	71		
2.00	58		
0.84	49		
0.42	42		
0.25	39		
0.125	34		
0.074	32		

Analisi granulometric	Analisi granulometrica per sedimentazione			
Diametro (mm)	Percentuale pass. (%)			
0.041	30			
0.031	28			
0.023	26			
0.017	24			
0.013	22			
0.0091	18			
0.0066	15			
0.0047	12			
0.0028	9			
0.0014	3			

Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

DETERMINAZIONE DEI LIMITI

COMM 003CM05 R. OO
PAG. 1 DI 1

DI ATTERBERG

	Committente	IDROESSE INFRASTRUTTURE S.p.A.
--	-------------	--------------------------------

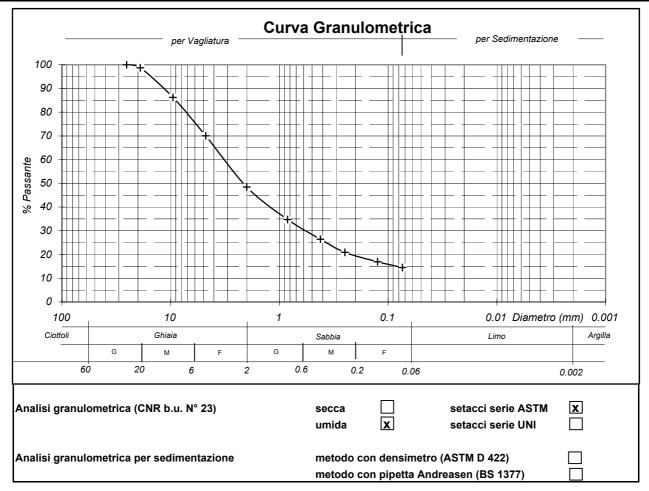
Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350

Data arrivo campione15/03/2005Data esecuzione prova31/03/2005

Certificato n° Verbale di accettazione campioni n° 004/05

NORMA ASTM D 4318

Sondaggio			SD5
Campione			6
Profondità			26.70 - 27.20
Limite di Liquidità	WI	(%)	18
Limite di Plasticità	Wp	(%)	14
Indice di plasticità	lp		4

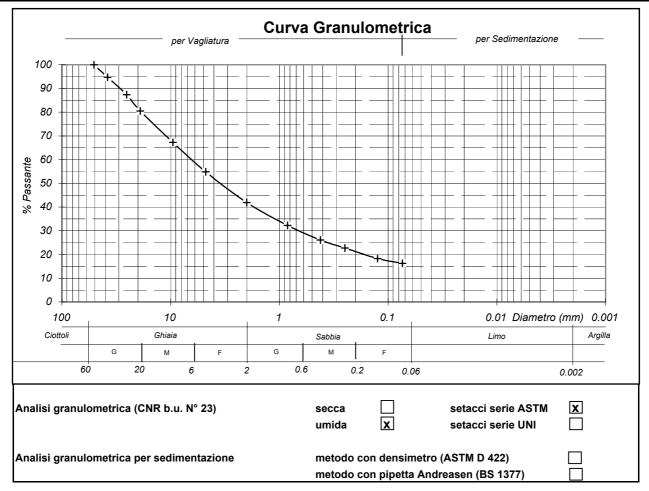

Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

Data apr-05 Sperimentatore: P.i. A. Merlin Direttore: Dott. Geol. V. Vicenzetto

COMM. 003CM05 R. 00

DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD5 Campione Profondità (m) 24.00 - 24.50 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 29/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura			
Diametro vaglio (mm)	Percentuale passante (%)		
76.20			
50.80			
38.10			
25.40	100		
19.05	99		
9.53	86		
4.76	70		
2.00	48		
0.84	35		
0.42	26		
0.25	21		
0.125	17		
0.074	14		


Analisi granulometri	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		

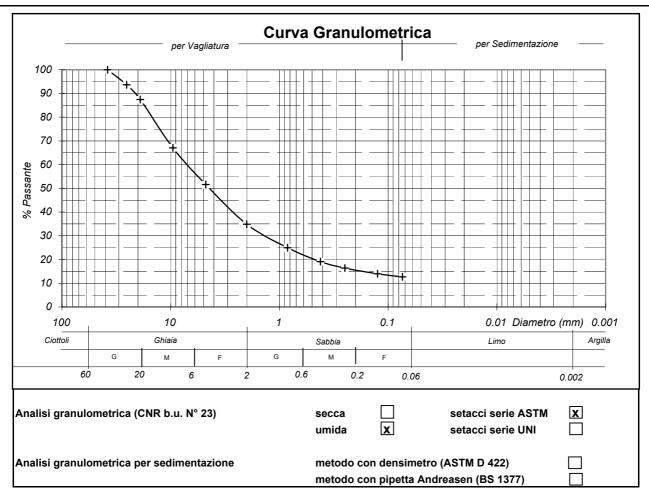
Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

COMM. 003CM05 **R**. 00

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD5 Campione Profondità (m) 18.00 - 18.50 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 24/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	
50.80	100
38.10	95
25.40	87
19.05	80
9.53	67
4.76	55
2.00	42
0.84	32
0.42	26
0.25	23
0.125	18
0.074	16

Analisi granulometrio	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		


Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

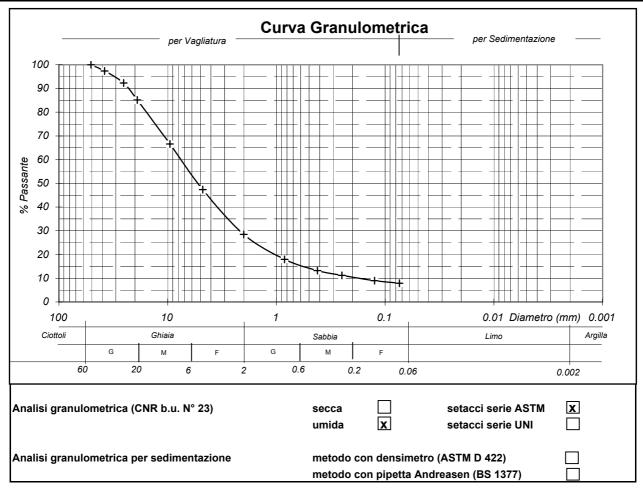
Data apr-05 Sperimentatore: P.i. A. Merlin Direttore Dott. Geol. V. Vicenzetto

COMM. 003CM05 R. 00

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD5 Campione Profondità (m) 9.00 - 9.50 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 24/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	
50.80	
38.10	100
25.40	94
19.05	87
9.53	67
4.76	52
2.00	35
0.84	25
0.42	19
0.25	16
0.125	14
0.074	13

Analisi granulometrio	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		


Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

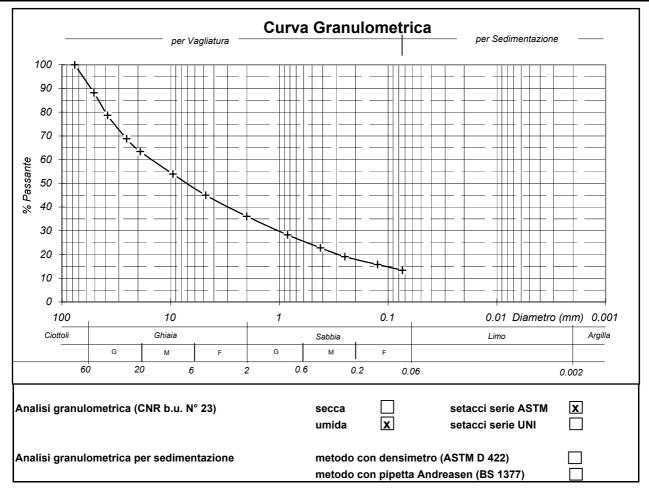
Data apr-05 Sperimentatore : P.i. A. Merlin Direttore Dott. Geol. V. Vicenzetto

COMM. 003CM05 R. 00

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD5 Campione Profondità (m) 6.00 - 6.50 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 24/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	
50.80	100
38.10	97
25.40	92
19.05	85
9.53	67
4.76	47
2.00	28
0.84	18
0.42	13
0.25	11
0.125	9
0.074	8

Analisi granulometri	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		


Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

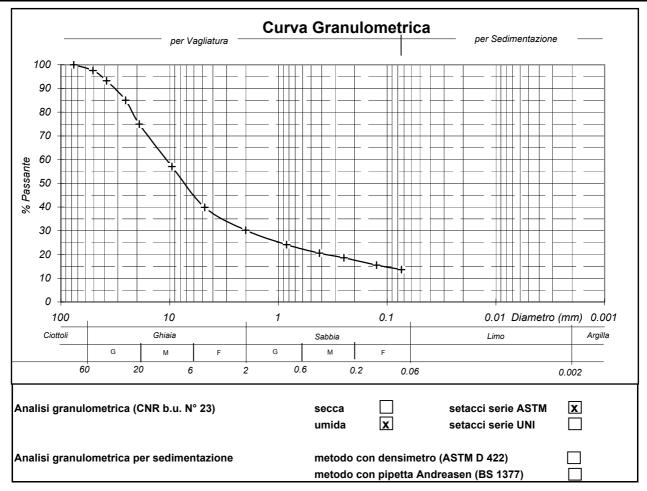
Data apr-05 Sperimentatore: P.i. A. Merlin Direttore Dott. Geol. V. Vicenzetto

COMM. 003CM05 **R.** 00

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD5 Campione Profondità (m) 3.50 - 4.00 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 24/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	100
50.80	88
38.10	79
25.40	69
19.05	63
9.53	54
4.76	45
2.00	36
0.84	28
0.42	23
0.25	19
0.125	16
0.074	13

Analisi granulometrio	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		


Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

Data apr-05 Sperimentatore: P.i. A. Merlin Direttore Dott. Geol. V. Vicenzetto

COMM. 003CM05 **R**. 00

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD4P Campione Profondità (m) 18.00 - 18.50 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 22/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	100
50.80	98
38.10	93
25.40	85
19.05	75
9.53	57
4.76	40
2.00	30
0.84	24
0.42	21
0.25	19
0.125	15
0.074	14

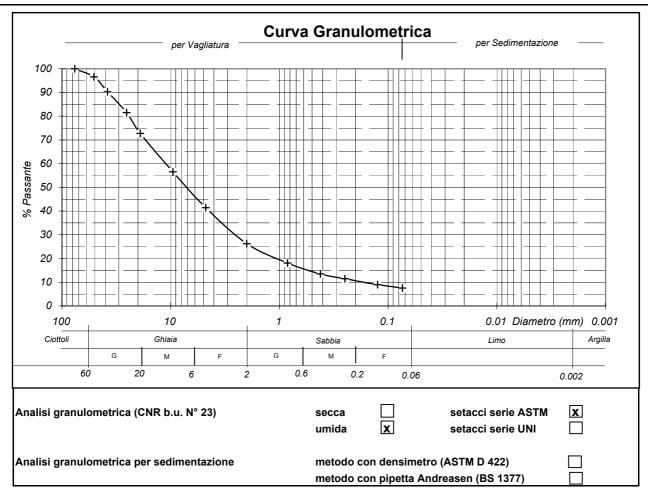

Analisi granulometri	ca per sedimentazione
Diametro (mm)	Percentuale pass. (%)
0.041	
0.031	
0.023	
0.017	
0.013	
0.0091	
0.0066	
0.0047	
0.0028	
0.0012	

Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

COMM. 003CM05 **R**. 00

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD4P Campione Profondità (m) 12.00 - 12.40 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 22/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	
50.80	100
38.10	97
25.40	92
19.05	87
9.53	77
4.76	63
2.00	47
0.84	34
0.42	24
0.25	19
0.125	15
0.074	13

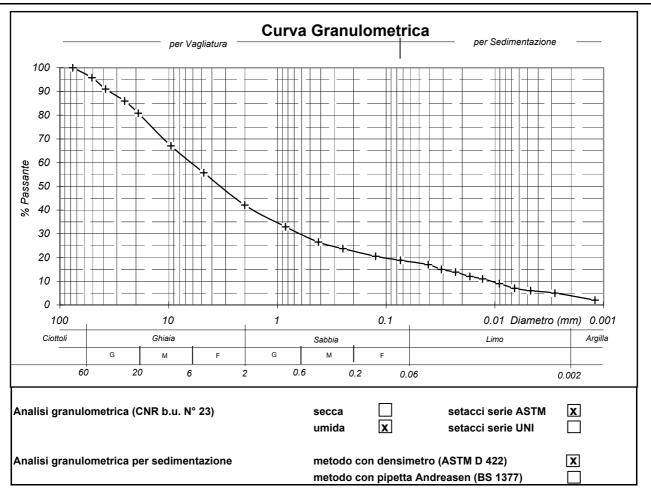

Analisi granulometric	Analisi granulometrica per sedimentazione		
Diametro (mm)	Percentuale pass. (%)		
0.041			
0.031			
0.023			
0.017			
0.013			
0.0091			
0.0066			
0.0047			
0.0028			
0.0012			

Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

COMM. 003CM05 R. 00

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD4P Campione Profondità (m) 9.00 - 9.50 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 22/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	100
50.80	97
38.10	90
25.40	82
19.05	73
9.53	57
4.76	41
2.00	26
0.84	18
0.42	14
0.25	11
0.125	9
0.074	8

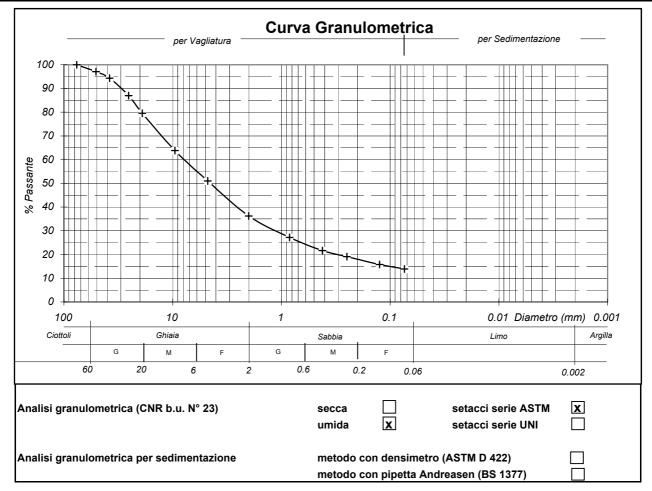

Analisi granulometrio	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		

Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

COMM. 003CM05 R. OO

DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD4P Campione Profondità (m) 6.00 - 6.50 Certificato nº Verbale di accettazione campioni n° 004/05 15/03/2005 Data arrivo campione 22/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	100
50.80	96
38.10	91
25.40	86
19.05	81
9.53	67
4.76	56
2.00	42
0.84	33
0.42	27
0.25	24
0.125	20
0.074	19

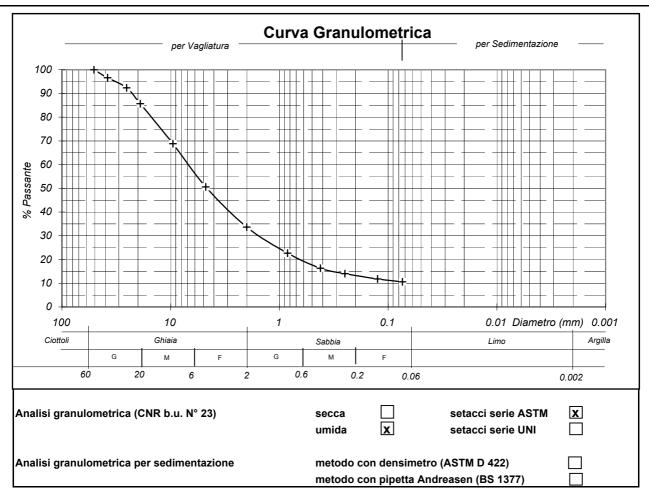

Data

Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)
0.041	17
0.031	15
0.023	14
0.017	12
0.013	11
0.0091	9
0.0066	7
0.0047	6
0.0028	5
0.0012	2

COMM. 003CM05 R. 00

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD4P Campione Profondità (m) 3.00 - 3.50 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 22/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	100
50.80	97
38.10	94
25.40	87
19.05	80
9.53	64
4.76	51
2.00	36
0.84	27
0.42	22
0.25	19
0.125	16
0.074	14

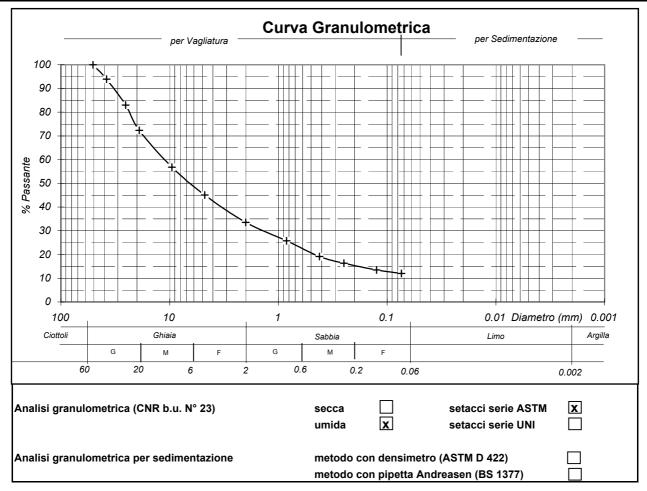

Analisi granulometrio	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		

Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

COMM. 003CM05 R. OO

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD3P Campione Profondità (m) 19.50 - 20.00 Certificato nº Verbale di accettazione campioni n° 004/05 15/03/2005 Data arrivo campione 25/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	
50.80	100
38.10	97
25.40	92
19.05	86
9.53	69
4.76	51
2.00	34
0.84	23
0.42	16
0.25	14
0.125	12
0.074	11

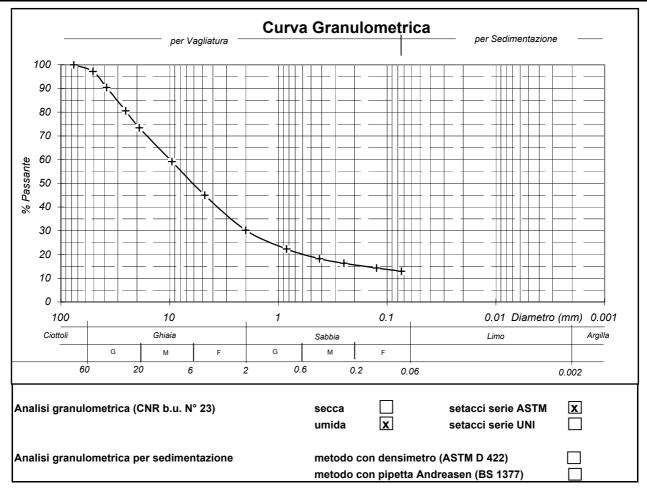

Analisi granulometrio	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		

Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

COMM. 003CM05 **R**. 00

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD3P Campione Profondità (m) 15.00 - 15.45 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 25/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	
50.80	100
38.10	94
25.40	83
19.05	72
9.53	57
4.76	45
2.00	34
0.84	26
0.42	19
0.25	16
0.125	13
0.074	12

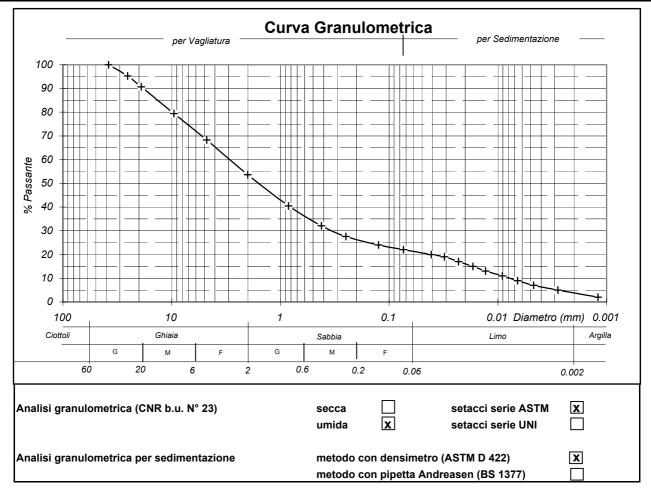

Analisi granulometrio	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		

Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

COMM. 003CM05 R. OO

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD3P Campione Profondità (m) 10.50 - 11.00 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 25/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	100
50.80	97
38.10	90
25.40	81
19.05	73
9.53	59
4.76	45
2.00	30
0.84	22
0.42	18
0.25	16
0.125	14
0.074	13

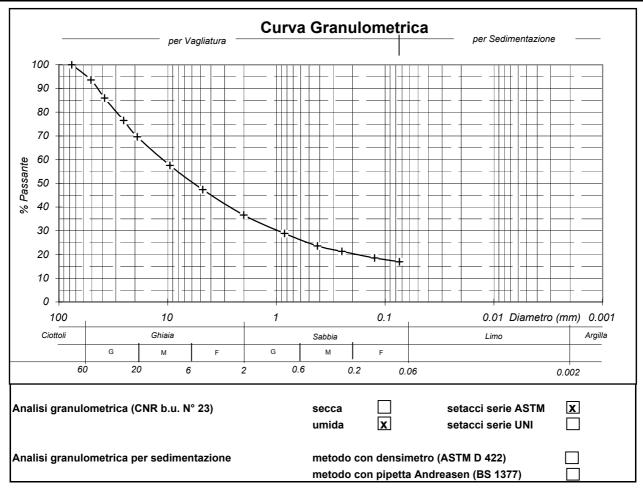

Analisi granulometrio	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		

Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

COMM. 003CM05 R. 00

IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD3P Campione Profondità (m) 7.50 - 8.00 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 25/03/2005 Data esecuzione prova

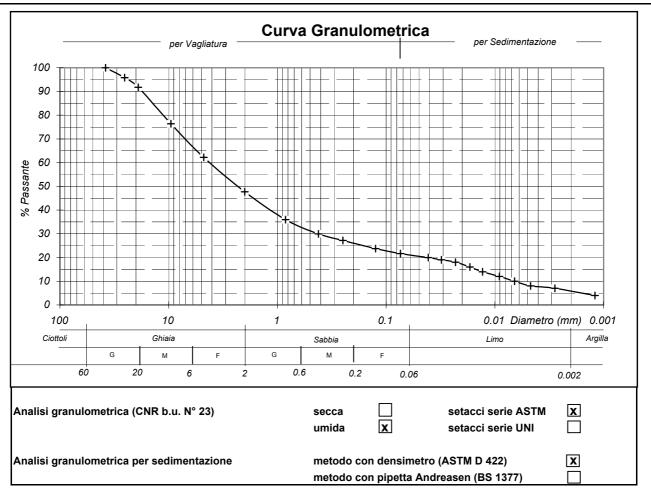
Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	
50.80	
38.10	100
25.40	95
19.05	91
9.53	79
4.76	68
2.00	54
0.84	40
0.42	32
0.25	28
0.125	24
0.074	22


Data

Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)
0.041	20
0.031	19
0.023	17
0.017	15
0.013	13
0.0091	11
0.0066	9
0.0047	7
0.0028	5
0.0012	2

COMM. 003CM05 R. OO

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD3P Campione Profondità (m) 4.50 - 5.00 Certificato nº 004/05 Verbale di accettazione campioni n° 15/03/2005 Data arrivo campione 25/03/2005 Data esecuzione prova

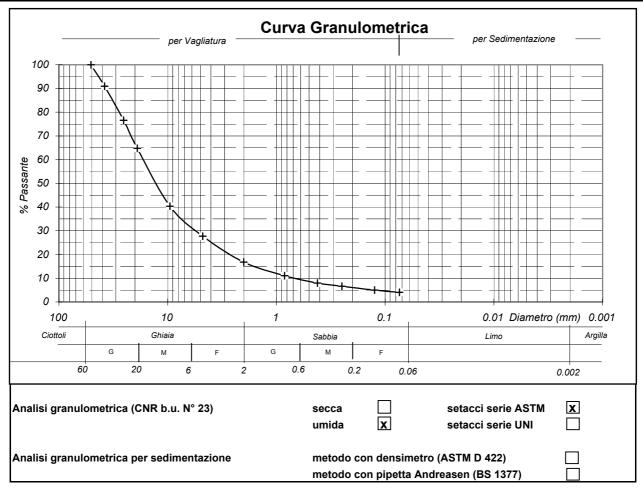

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	100
50.80	94
38.10	86
25.40	77
19.05	70
9.53	58
4.76	47
2.00	37
0.84	29
0.42	24
0.25	21
0.125	19
0.074	17

Analisi granulometrio	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		

COMM. 003CM05 R. 00

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD3P Campione Profondità (m) 1.50 - 2.00Certificato nº Verbale di accettazione campioni n° 004/05 15/03/2005 Data arrivo campione 25/03/2005 Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	
50.80	
38.10	100
25.40	96
19.05	92
9.53	76
4.76	62
2.00	48
0.84	36
0.42	30
0.25	27
0.125	24
0.074	22

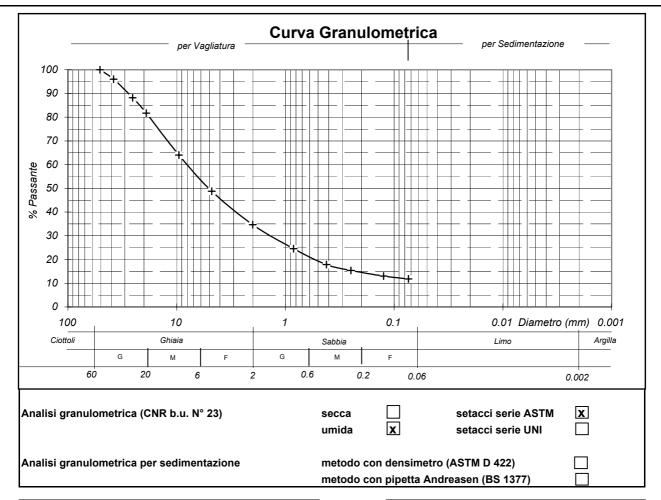

Data

Analisi granulometric	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041	20	
0.031	19	
0.023	18	
0.017	16	
0.013	14	
0.0091	12	
0.0066	10	
0.0047	8	
0.0028	7	
0.0012	4	

COMM. 003CM05 R. 00

IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD2P Campione Profondità (m) 24.50 - 25.00 Certificato nº 004-1/05 Verbale di accettazione campioni n° 04/04/2005 07/04/2005 Data arrivo campione Data esecuzione prova

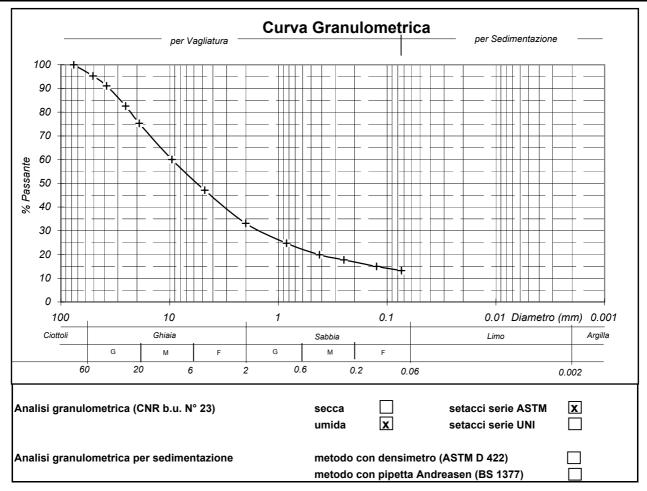
Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	
50.80	100
38.10	91
25.40	77
19.05	65
9.53	40
4.76	28
2.00	17
0.84	11
0.42	8
0.25	7
0.125	5
0.074	4


Data

Analisi granulometrica per sedimentazione		
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		

COMM. 003CM05 R. 00

IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD2P Campione Profondità (m) 21.00 - 21.50 Certificato nº 004-1/05 Verbale di accettazione campioni n° 04/04/2005 06/04/2005 Data arrivo campione Data esecuzione prova

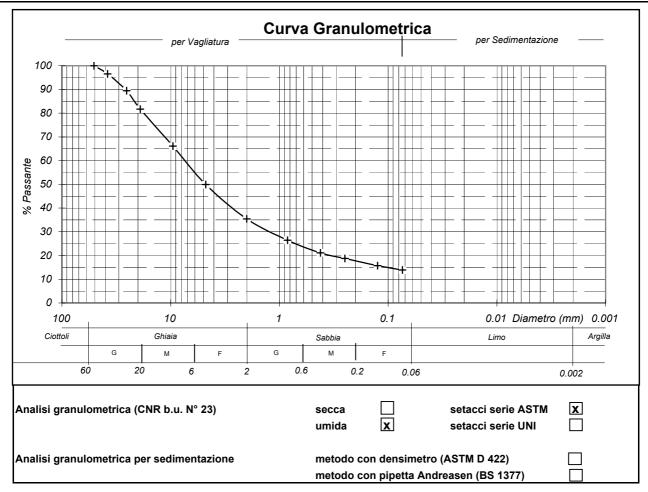

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	
50.80	100
38.10	96
25.40	88
19.05	82
9.53	64
4.76	49
2.00	35
0.84	25
0.42	18
0.25	15
0.125	13
0.074	12

Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)
0.041	
0.031	
0.023	
0.017	
0.013	
0.0091	
0.0066	
0.0047	
0.0028	
0.0012	
	_

COMM. 003CM05 R. OO

DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD2P Campione Profondità (m) 15.00 - 15.50 Certificato nº 004-1/05 Verbale di accettazione campioni n° 04/04/2005 06/04/2005 Data arrivo campione Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	100
50.80	95
38.10	91
25.40	83
19.05	75
9.53	60
4.76	47
2.00	33
0.84	25
0.42	20
0.25	18
0.125	15
0.074	13

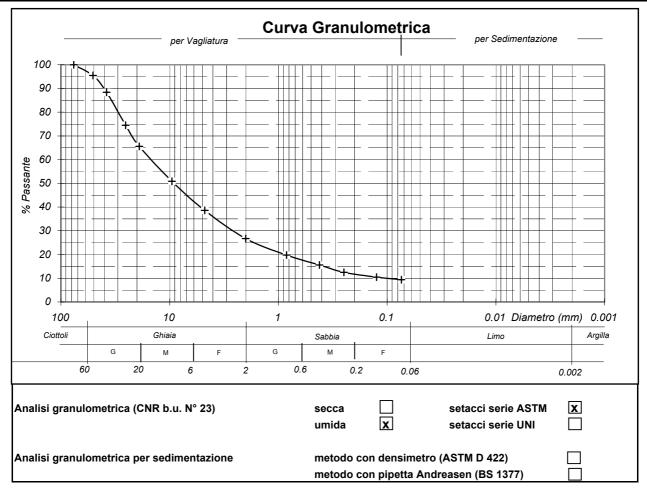

Analisi granulometri	ca per sedimentazione
Diametro (mm)	Percentuale pass. (%)
0.041	
0.031	
0.023	
0.017	
0.013	
0.0091	
0.0066	
0.0047	
0.0028	
0.0012	

Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

COMM. 003CM05 R. 00

DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD2P Campione Profondità (m) 9.00 - 9.50 Certificato nº 004-1/05 Verbale di accettazione campioni n° 04/04/2005 06/04/2005 Data arrivo campione Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	
50.80	100
38.10	97
25.40	89
19.05	82
9.53	66
4.76	50
2.00	35
0.84	26
0.42	21
0.25	19
0.125	16
0.074	14


Analisi granulometric	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		

Decreto di concessione **n. 52506** del **11/10/2004**, per il rilascio dei certificati relativi alle prove geotecniche sui terreni (settore a) ai sensi dell'Art. 8 D.P.R. 246/93

COMM. 003CM05 R. 00

PAG. DI 1 IDROESSE INFRASTRUTTURE S.p.A. Committente Cantiere RACCORDO AUTOSTRADALE PIOVENE ROCCHETTE - S.S. 350 Sondaggio SD2P Campione Profondità (m) 3.00 - 3.50 Certificato nº 004-1/05 Verbale di accettazione campioni n° 04/04/2005 06/04/2005 Data arrivo campione Data esecuzione prova

Analisi granulometrica per vagliatura	
Diametro vaglio (mm)	Percentuale passante (%)
76.20	100
50.80	96
38.10	88
25.40	75
19.05	66
9.53	51
4.76	39
2.00	27
0.84	20
0.42	16
0.25	12
0.125	10
0.074	9

Data

Analisi granulometric	Analisi granulometrica per sedimentazione	
Diametro (mm)	Percentuale pass. (%)	
0.041		
0.031		
0.023		
0.017		
0.013		
0.0091		
0.0066		
0.0047		
0.0028		
0.0012		

AUTOSTRADA BS-VR-VI-PD S.p.A.. – RACCORDO TRA IL CASELLO DI PIOVENE ROCCHETTE E LA S.P. 350 IN LOCALITA' SCHIRI

Progetto Preliminare – Aggiornamento in data Aprile 2005

ATI: IDROESSE INFRASTRUTTURE (Mandataria) – TECHNITAL - STUDIO ALTIERI – GIRPA - STUDIO GALLI

CAMPAGNA DI INDAGINI DEL 1995

ANALISI E PROVE DI LABORATORIO