

Autostrada Brescia Verona Vicenza Padova SpA

Via Flavio Gioia 71 37135 Verona

AUTOSTRADA VALDASTICO A31 NORD

1° LOTTO Piovene Rocchette - Valle dell'Astico

PROGETTO DEFINITIVO

CUP	G21B1 30006	60005
WBS	B25.	A31N.L1
COMMESSA		J16L1

COMMITTENTE

S.p.A. AUTOSTRADA BRESCIA VERONA VICENZA PADOVA

Area Costruzioni Autostradali

CAPO COMMESSA PER LA PROGETTAZIONE

Dott. Ing. Gabriella Costantini

PRESTATORE DI SERVIZI:

CONSORZIO RAETIA

RAPPRESENTANTE: Dott. Ing. Alberto Scotti

RESPONSABILE DELL'ANTÉGRAZIONE TRA LE PRESTAZIONI SPECIALISTICHE: Technital S.p.A. Pott Ing. Andrea Renso PROGETTAZIONE:

ELABORATO: OPERE D'ARTE MINORI

OS16 - OPERA DI SOSTEGNO SVINCOLO PEDEMONTE - MURO N°3

RELAZIONE DI CALCOLO - ALLEGATO

Progressivo Rev. 08 03 14 001 02

Rev.	Data	Descrizione	Redazione	Controllo	Approvazione	SCALA:
00	MARZO 2017	PRIMA EMISSIONE	TECHNITAL - REDATTO	VERIFICATO	APPROVATO	NOME FILE: J16L1_08_03_14_001_0202_0PD_02.dwg
01	GIUGNO 2017	REVISIONE PER ADEGUAMENTO CARTIGLIO	TECHNITAL - REDATTO	VERIFICATO	APPROVATO	ON DROOD FO UIT DEV
02	LUGLJO 2017	RECEPIMENTO OSSERVAZIONI	3TI PROGETTI - PIERUCCI	M. SORGE	S.L.POSSATI	CM. PROGR. FG. LIV. REV.
						J16L1 08 03 14 001 0202 0PD 02

Committente:

Progettazione: CONSORZIO RAETIA

PROGETTO DEFINITIVO

RELAZIONE TECNICA

INDICE

1.	Allegato 1	3
2.	Allegato 2	376
3.	Allegato 3	749

1. Allegato 1

N.T.C. 2008 - Approccio 1

c. 1			
Simbol	$\alpha \alpha \alpha \alpha$	$\alpha \alpha \alpha$	トナハナハ
			,,,,,,,,
0	09.0		

	- 9
$?_{Gsfav}$	Coefficiente parziale sfavorevole sulle azioni permanenti
$?_{Gfav}$	Coefficiente parziale favorevole sulle azioni permanenti
? Qsfav	Coefficiente parziale sfavorevole sulle azioni variabili
?Qfav	Coefficiente parziale favorevole sulle azioni variabili
? tan?'	Coefficiente parziale di riduzione dell'angolo di attrito drenato
? _{c'}	Coefficiente parziale di riduzione della coesione drenata
?cu	Coefficiente parziale di riduzione della coesione non drenata
?qu	Coefficiente parziale di riduzione del carico ultimo
?	Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti di partecipazione combinazioni statiche

					delle azioni:
COCITICICITE	parzian	PC: 1C	uzioiii o	per i crietto	aciic azioiii.

Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole		1.00	1.00	0.90	0.90
Permanenti	Sfavorevole	? Gsfav	1.30	1.00	1.10	1.30
Variabili	Favorevole	?Qfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	? Qsfav	1.50	1.30	1.50	1.50
	i per i parametri geote	ecnici del terreno:	-			
Parametri			M1	M2	M2	M1
Tangente dell'ango	lo di attrito	? tan2'	1.00	1.25	1.25	1.00
Coesione efficace		? _{c'}	1.00	1.25	1.25	1.00
Resistenza non dre	nata	?cu	1.00	1.40	1.40	1.00
Resistenza a compi	ressione uniassiale	?qu	1.00	1.60	1.60	1.00

?

1.00

1.00

1.00

1.00

Coefficienti di partecipazione combinazioni sismiche

Peso dell'unità di volume

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	? Gfav	1.00	1.00	1.00	0.90
Permanenti	Sfavorevole	? Gsfav	1.00	1.00	1.00	1.30
Variabili	Favorevole	? Qfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	? Qsfav	1.00	1.00	1.00	1.50

Coefficienti parziali per i parametri geotecnici del terreno:						
Parametri		M1	M2	M2	M1	
Tangente dell'angolo di attrito	?tan?'	1.00	1.25	1.25	1.00	
Coesione efficace	? _{c'}	1.00	1.25	1.25	1.00	
Resistenza non drenata	?] _{cu}	1.00	1.40	1.40	1.00	
Resistenza a compressione uniassiale	?] _{qu}	1.00	1.60	1.60	1.00	
Peso dell'unità di volume	?	1.00	1.00	1.00	1.00	

FONDAZIONE SUPERFICIALE

Coefficienti parziali \mathbb{Z}_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Coefficienti parzi		
	R1	R2	R3
Capacità portante della fondazione	1.00	1.00	1.40
Scorrimento	1.00	1.00	1.10
Resistenza del terreno a valle	1.00	1.00	1.40
Stabilità globale		1.10	

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.
Altezza del paramento Spessore in sommità Spessore all'attacco con la fondazione Inclinazione paramento esterno Inclinazione paramento interno Lunghezza del muro Mensola di contrappeso	2.60 [m] 0.40 [m] 0.40 [m] 0.00 [°] 0.00 [°] 10.00 [m]
Posizione rispetto alla testa del muro Lunghezza mensola Spessore all'estremità libera Spessore all'incastro	0.00 [m] 0.30 [m] 0.50 [m] 0.50 [m]
Lunghezza mensola fondazione di valle Lunghezza mensola fondazione di monte Lunghezza totale fondazione Inclinazione piano di posa della fondazione Spessore estremità fondazione di valle Spessore all'incastro fondazione di monte Spessore estremità fondazione di monte Spessore magrone	0.80 [m] 1.80 [m] 3.00 [m] 5.00 [°] 0.40 [m] 0.47 [m] 0.47 [m] 0.63 [m] 0.10 [m]

Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico 25.000 [kN/mc]

Classe di Resistenza C25/30

Resistenza caratteristica a compressione R_{ck} 30.00 [N/mmq]
Modulo elastico E 30874.286 [N/mmq]

Acciaio

Tipo FeB44K

Tensione di snervamento 🛚 fa 431.50 [N/mmq]

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	X	Υ	Α
1	0.50	0.00	0.00
2	1.00	0.00	0.00
3	4.00	0.00	0.00
4	10.20	0.00	0.00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0.00 [m]

Descrizione terreni

Simbologia adottata

Nr. Indice del terreno
Descrizione Descrizione terreno

Peso di volume del terreno espresso in [kN/mc]

 \mathbb{Z}_s Peso di volume saturo del terreno espresso in [kN/mc]

Angolo d'attrito interno espresso in [°]

Angolo d'attrito terra-muro espresso in [°]

c Coesione espressa in [N/mmq]

c_a Adesione terra-muro espressa in [N/mmq]

Descrizione	?	? _s	?	?	С	Ca
Riporto	20.00	22.00	35.00	23.33	0.0000	0.0000
С	20.00	22.00	32.00	21.33	0.0000	0.0000
FLgs	21.00	23.00	35.00	23.33	0.0000	0.0000
Terreno di Riporto	20.00	20.00	32.00	21.33	0.0000	0.0000
Fla	21.00	23.00	26.00	17.33	0.0000	0.0000

Stratigrafia

Simbologia adottata

N Indice dello strato

H Spessore dello strato espresso in [m]

a Inclinazione espressa in [°]

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta Terreno dello strato

Nr.	Н	а	Kw	Ks	Terreno
1	3.00	0.00	3.68	0.54	С
2	2.00	0.00	2.77	0.43	Terreno di Riporto

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

X	Ascissa del punto di applicazione del carico concentrato es	nressa in l	ſml	
^	Ascissa dei punto di applicazione dei carico concentrato es	picssa iii	[]	

- F_x Componente orizzontale del carico concentrato espressa in [kN]
- *F_y* Componente verticale del carico concentrato espressa in [kN]
- M Momento espresso in [kNm]
- X_i Ascissa del punto iniziale del carico ripartito espressa in [m]
- X_f Ascissa del punto finale del carico ripartito espressa in [m]
- Q_i Intensità del carico per $x=X_i$ espressa in [kN/m]
- Q_f Intensità del carico per x=X_f espressa in [kN/m]
- D/C Tipo carico : D=distribuito C=concentrato

Con	dizione n° 1 (Str	<u>ada)</u>				
D	Profilo	$X_{i}=1.00$	$X_f = 6.00$	$Q_i = 20.0000$	$Q_f = 20.0000$	
Con	dizione n° 2 (Str	ada Sismica)				
D	Profilo	$X_i = 1.00$	$X_{f} = 6.00$	$Q_i = 10.0000$	$Q_f = 10.0000$	
Con	dizione n° 3 (Ur	<u>to)</u>				
С	Paramento	X =-0.20	Y =0.00	F _x =16.7000	$F_y = 0.0000$	M =11.0000

Descrizione combinazioni di carico

Simbologia adottata

- F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)
- Coefficiente di partecipazione della condizione
- Coefficiente di combinazione della condizione

Combinazione n° 1 - Caso A1-	M1 (STR)			
	S/F	?	?	? * ?
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.30	1.00	1.30
Combinazione n° 2 - Caso A2-	M2 (GEO)			
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 3 - Caso EQU	J (SLU)			
	S/F	?	?	? * ?
Peso proprio muro	FAV	0.90	1.00	0.90
Peso proprio terrapieno	FAV	0.90	1.00	0.90
Spinta terreno	SFAV	1.10	1.00	1.10
Combinazione n° 4 - Caso A2-	M2 (GEO-STAB)		
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 5 - Caso A1-	M1 (STR)			
	S/F	?	?	? * ?
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.30	1.00	1.30
Strada	SFAV	1.50	1.00	1.50
Combinazione n° 6 - Caso A2-	M2 (GEO)			
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00

Spinta terreno	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.30	1.00	1.30	
<u>Combinazione n° 7 - Caso EQ</u> I	<u>J (SLU)</u>				
	S/F	?	?	? * ?	
Peso proprio muro	FAV	0.90	1.00	0.90	
Peso proprio terrapieno	FAV	0.90	1.00	0.90	
Spinta terreno	SFAV	1.10	1.00	1.10	
Strada	SFAV	1.50	1.00	1.50	
Combinazione n° 8 - Caso A2-	M2 (GEO-STAB)			
comonidatione in a case AE	S/F	?	?	? * ?	
Peso proprio muro	SFAV	1.00	1.00	1.00	
Peso proprio terrapieno	SFAV	1.00	1.00	1.00	
Spinta terreno	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.30	1.00	1.30	
<u> Combinazione n° 9 - Caso A1-</u>	M1 (STR)				
	S/F	?	?	? * ?	
Peso proprio muro	FAV	1.00	1.00	1.00	
Peso proprio terrapieno	FAV	1.00	1.00	1.00	
Spinta terreno	SFAV	1.30	1.00	1.30	
Strada	SFAV	1.50	1.00	1.50	
Urto	SFAV	1.50	1.00	1.50	
Combinazione n° 10 - Caso A2	2-M2 (GEO)				
	S/F	?	?	? * ?	
Peso proprio muro	SFAV	1.00	1.00	1.00	
Peso proprio terrapieno	SFAV	1.00	1.00	1.00	
Spinta terreno	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.30	1.00	1.30	
Urto	SFAV	1.30	1.00	1.30	
Combinazione n° 11 - Caso EC		_	_		
	S/F	2	?	? * ?	
Peso proprio muro	FAV	0.90	1.00	0.90	
Peso proprio terrapieno	FAV	0.90	1.00	0.90	
Spinta terreno	SFAV	1.10	1.00	1.10	
Strada	SFAV	1.50	1.00	1.50	
Urto	SFAV	1.50	1.00	1.50	
Combinazione n° 12 - Caso A2	2-M2 (GEO-STA	В)			
	S/F	?	?	? * ?	
Peso proprio muro	SFAV	1.00	1.00	1.00	

Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada	SFAV	1.30	1.00	1.30
Urto	SFAV	1.30	1.00	1.30
Combinazione n° 13 - Caso A1-	-M1 (STR) - Sis	ma Vert. neg	ativo_	
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 14 - Caso A1-	<u>-M1 (STR) - Sis</u>	ma Vert. pos	<u>itivo</u>	
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 15 - Caso A2-	-M2 (GEO) - Si	sma Vert. po	<u>sitivo</u>	
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 16 - Caso A2-	<u>-M2 (GEO) - Si</u>	sma Vert. ne	gativo_	
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 17 - Caso EQ	<u>U (SLU) - Sisma</u>	a Vert. negat	<u>ivo</u>	
	S/F	?	?	? * ?
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 18 - Caso EQ	<u>U (SLU) - Sisma</u>	a Vert. positi	<u>vo</u>	
	S/F	?	?	? * ?
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 19 - Caso A2-	-M2 (GEO-STA	B) - Sisma Ve	rt. positivo	
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00

Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 20 - Caso A2-	M2 (GEO-STA	B) - Sisma Ve	rt. negativo	
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 21 - Caso A1-		-	<u>-</u>	
	S/F	?	?	? * ?
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
	(077)			
Combinazione n° 22 - Caso A1-		_		
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinations v° 22 Coss A2	N42 (CEO) C:	\/t	+:	
Combinazione n° 23 - Caso A2-			_	n * n
Dana anamia mana	S/F	2	2	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 24 - Caso A2-	M2 (GEO) - Si	sma Vert no	sitivo	
Combinazione il 24 cuso NZ	S/F	<u> </u>	<u> </u>	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Straua Sistilica	SFAV	1.00	1.00	1.00
Combinazione n° 25 - Caso EQU	J (SLU) - Sisma	a Vert. positi	<u>vo</u>	
	S/F	?	?	? * ?
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
· · · · ·				

Combinazione n° 26 - Caso EC	QU (SLU) - Sisma	a Vert. negat	<u>ivo</u>	
	S/F	?	?	? * ?
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 27 - Caso A2	2-M2 (GEO-STAI	B) - Sisma Ve	rt. positivo	
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 28 - Caso A2		B) - Sisma Ve	rt. negativo	
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 29 - Quasi P	<u>ermanente (SLE</u>	<u>)</u>		
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 30 - Frequer	nte (SLE)			
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 31 - Frequer	nte (SLE)			
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00

Combinazione n° 32 - Frequent	te (SLE)			
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Urto	SFAV	1.00	0.20	0.20
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 33 - Rara (SLE	<u>=)</u>			
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Urto	SFAV	1.00	0.60	0.60
Combinazione n° 34 - Rara (SLE	<u>=)</u>			
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Urto	SFAV	1.00	0.60	0.60
Combinazione n° 35 - Rara (SLE	<u>=)</u>			
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Urto	SFAV	1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 36 - Quasi Pe	rmanente (SLI	E) - Sisma Ve	rt. positivo	
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00

Combinazione n° 37 - Quasi Pe	ermanente (SLI	E) - Sisma Ve	rt. negativo	
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 38 - Frequen	te (SLE) - Sism	a Vert. positi	<u>vo</u>	
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 39 - Frequen	te (SLE) - Sism	a Vert. negat	<u>ivo</u>	
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 40 - Frequen	te (SLE) - Sism	a Vert. positi	<u>vo</u>	
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Combinazione n° 41 - Frequen	te (SLE) - Sism	a Vert. negat	<u>ivo</u>	
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Combinazione n° 42 - Frequen	te (SLE) - Sism	a Vert. positi	<u>vo</u>	
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00

Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Urto	SFAV	1.00	0.20	0.20	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Combinazione n° 43 - Frequer	nte (SLE) - Sisma	a Vert. negat	ivo		
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Urto	SFAV	1.00	0.20	0.20	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Combinazione n° 44 - Rara (SI	<u>.E) - S</u> isma Vert	<u>. pos</u> itivo			
- ,	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Urto	SFAV	1.00	0.60	0.60	
Combinazione n° 45 - Rara (SI	.E) - Sisma Vert	. negativo			
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Urto	SFAV	1.00	0.60	0.60	
Combinazione n° 46 - Rara (SI	<u>.E) - S</u> isma Vert	<u>. pos</u> itivo			
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Urto	SFAV	1.00	0.60	0.60	
<u>Combinazione n° 47 - Rara (SI</u>	_E) - Sisma Vert	. negativo			
	S/F	?	?	? * ?	
	•				

Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Urto	SFAV	1.00	0.60	0.60	
Combinazione n° 48 - Rara (SI	E) - Sisma Vert	. positivo			
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Urto	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Combinazione n° 49 - Rara (SI	E) - Sisma Vert	. negativo			
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Urto	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	

Impostazioni di analisi

Metodo verifica sezioni	Stato limite
Impostazioni verifiche SLU	
Coefficienti parziali per resistenze di calcolo dei materiali	
Coefficiente di sicurezza calcestruzzo a compressione	1.50
Coefficiente di sicurezza calcestruzzo a trazione	1.50
Coefficiente di sicurezza acciaio	1.15
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza per la sezione	1.00

Impostazioni verifiche SLE

Condizioni ambientali	Ordinarie
Armatura ad aderenza migliorata	
<u>Verifica fessurazione</u>	
Sensibilità delle armature	Poco sensibile
Valori limite delle aperture delle fessure	$w_1 = 0.20$
	$w_2 = 0.30$
	$w_3 = 0.40$
Metodo di calcolo aperture delle fessure	E.C. 2
<u>Verifica delle tensioni</u>	
Combinazione di carico	Rara $\mathbb{Z}_c < 0.60 f_{ck} - \mathbb{Z}_f < 0.80 f_{yk}$
	Quasi permanente ⊡ _c < 0.45 f _{ck}

Calcolo della portanza metodo di Terzaghi

Coefficiente correttivo su N2 per effetti cinematici (combinazioni sismiche SLU): 1.00 Coefficiente correttivo su N2 per effetti cinematici (combinazioni sismiche SLE): 1.00

Impostazioni avanzate

Influenza del terreno sulla fondazione di valle nelle verifiche e nel calcolo delle sollecitazioni Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione *Sisma* Combinazione sismica

 CS_{SCO} Coeff. di sicurezza allo scorrimento CS_{RIB} Coeff. di sicurezza al ribaltamento CS_{QLIM} Coeff. di sicurezza a carico limite CS_{STAB} Coeff. di sicurezza a stabilità globale

С	Tipo	Sisma	CS _{sco}	CS _{rib}	CS _{qlim}	CS _{stab}
1	A1-M1 - [1]		3.54		15.62	
2	A2-M2 - [1]		2.88		6.81	
3	EQU - [1]			9.39		
4	STAB - [1]					1.83
5	A1-M1 - [2]		2.03		13.68	
6	A2-M2 - [2]		1.49		6.20	
7	EQU - [2]			5.02		
8	STAB - [2]					1.45
9	A1-M1 - [3]		1.28		11.65	
10	A2-M2 - [3]		1.01		5.08	
11	EQU - [3]			2.25		
12	STAB - [3]					1.45
13	A1-M1 - [4]	Orizzontale + Verticale negativo	2.12		17.88	
14	A1-M1 - [4]	Orizzontale + Verticale positivo	2.24		16.19	
15	A2-M2 - [4]	Orizzontale + Verticale positivo	1.43		7.03	
16	A2-M2 - [4]	Orizzontale + Verticale negativo	1.37		7.76	
17	EQU - [4]	Orizzontale + Verticale negativo		4.95		
18	EQU - [4]	Orizzontale + Verticale positivo		6.21		
19	STAB - [4]	Orizzontale + Verticale positivo				1.49
20	STAB - [4]	Orizzontale + Verticale negativo				1.47
21	A1-M1 - [5]	Orizzontale + Verticale positivo	1.84		15.46	
22	A1-M1 - [5]	Orizzontale + Verticale negativo	1.76		17.07	
23	A2-M2 - [5]	Orizzontale + Verticale negativo	1.13		7.24	
24	A2-M2 - [5]	Orizzontale + Verticale positivo	1.18		6.68	
25	EQU - [5]	Orizzontale + Verticale positivo		5.01		
26	EQU - [5]	Orizzontale + Verticale negativo		4.19		
27	STAB - [5]	Orizzontale + Verticale positivo				1.36
28	STAB - [5]	Orizzontale + Verticale negativo				1.34
29	SLEQ - [1]		2.45		13.77	
30	SLEF - [1]		2.45		13.77	

31	SLEF - [1]		2.45	 13.77	
32	SLEF - [1]		2.23	 14.36	
33	SLER - [1]		1.90	 14.75	
34	SLER - [1]		1.90	 14.75	
35	SLER - [1]		1.66	 13.50	
36	SLEQ - [1]	Orizzontale + Verticale positivo	1.94	 13.93	
37	SLEQ - [1]	Orizzontale + Verticale negativo	1.93	 14.41	
38	SLEF - [1]	Orizzontale + Verticale positivo	1.94	 13.93	
39	SLEF - [1]	Orizzontale + Verticale negativo	1.93	 14.41	
40	SLEF - [1]	Orizzontale + Verticale positivo	1.94	 13.93	
41	SLEF - [1]	Orizzontale + Verticale negativo	1.93	 14.41	
42	SLEF - [1]	Orizzontale + Verticale positivo	1.81	 14.50	
43	SLEF - [1]	Orizzontale + Verticale negativo	1.79	 15.01	
44	SLER - [1]	Orizzontale + Verticale positivo	1.59	 13.88	
45	SLER - [1]	Orizzontale + Verticale negativo	1.57	 14.25	
46	SLER - [1]	Orizzontale + Verticale positivo	1.59	 13.88	
47	SLER - [1]	Orizzontale + Verticale negativo	1.57	 14.25	
48	SLER - [1]	Orizzontale + Verticale positivo	1.42	 12.69	
49	SLER - [1]	Orizzontale + Verticale negativo	1.40	 12.99	

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle

Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta	metodo di Culmann
Calcolo del carico limite	metodo di Terzaghi
Calcolo della stabilità globale	metodo di Bishop
Calcolo della spinta in condizioni di	Spinta attiva

<u>Sisma</u>

Combinazioni SLU

Accelerazione al suolo a _g	2.54 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.15
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (2 _m)	0.31
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g^* @_m * St^* S) = 9.24$
Coefficients di intensità significa continula (novembra)	L _0 F0 * L _ 4 C2

Coefficiente di intensità sismica verticale (percento) $k_v = 0.50 * k_h = 4.62$

Combinazioni SLE

Accelerazione al suolo a _g	1.11 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.20
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (⊡ _m)	0.24
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g^* P_m^* St^* S) = 3.25$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 1.63$

Forma diagramma incremento sismico Stessa forma diagramma statico

Partecipazione spinta passiva (percento) Lunghezza del muro	50.0 10.00 [m]
Peso muro Baricentro del muro	68.0750 [kN] X=0.16 Y=-2.13
Superficie di spinta Punto inferiore superficie di spinta Punto superiore superficie di spinta Altezza della superficie di spinta Inclinazione superficie di spinta(rispetto alla verticale)	X = 1.80 Y = -3.26 X = 1.80 Y = 0.00 3.26 [m] 0.00 [°]

COMBINAZIONE n° 1

Peso muro favorevole e Peso terrapieno favorevole

38.0239	[kN]			
35.4185	[kN]			
13.8328	[kN]			
X = 1.80 [m]	[m]	Υ	=	-2.17
21.33	[°]			
57.17	[°]			
91.8145	[kN]			
X = 0.92 [m]	[m]	Υ	=	-1.35
0.0000	[kN]			
X = 0.00	Y = 0.00			
35.4185	[kN]			
173.7223	[kN]			
-2.6038	[kN]			
176.1481	[kN]			
20.1428	[kN]			
-0.20	[m]			
3.01	[m]			
177.2961	[kN]			
6.52	[°]			
-34.6403	[kNm]			
2751.7370	[kN]			
	35.4185 13.8328 X = 1.80 [m] 21.33 57.17 91.8145 X = 0.92 [m] 0.0000 X = 0.00 35.4185 173.7223 -2.6038 176.1481 20.1428 -0.20 3.01 177.2961 6.52 -34.6403	35.4185 [kN] 13.8328 [kN] X = 1.80 [m] [m] 21.33 [°] 57.17 [°] 91.8145 [kN] X = 0.92 [m] [m] 0.0000 [kN] X = 0.00 Y = 0.00 35.4185 [kN] 173.7223 [kN] -2.6038 [kN] 176.1481 [kN] 20.1428 [kN] -0.20 [m] 3.01 [m] 177.2961 [kN] 6.52 [°] -34.6403 [kNm]	35.4185 [kN] 13.8328 [kN] X = 1.80 [m] Y [m] 21.33 [°] 57.17 [°] 91.8145 [kN] X = 0.92 [m] Y [m] 0.0000 [kN] X = 0.00 Y = 0.00 35.4185 [kN] 173.7223 [kN] -2.6038 [kN] 176.1481 [kN] 20.1428 [kN] -0.20 [m] 3.01 [m] 177.2961 [kN] 6.52 [°] -34.6403 [kNm]	35.4185 [kN] 13.8328 [kN] X = 1.80 [m] Y = [m] 21.33 [°] 57.17 [°] 91.8145 [kN] X = 0.92 [m] Y = [m] 0.0000 [kN] X = 0.00 Y = 0.00 35.4185 [kN] 173.7223 [kN] -2.6038 [kN] 176.1481 [kN] 20.1428 [kN] -0.20 [m] 3.01 [m] 177.2961 [kN] 6.52 [°] -34.6403 [kNm]

Tensioni sul terreno

Lunghezza fondazione reagente	3.01	[m]
Tensione terreno allo spigolo di valle	0.03557	[N/mmq]
Tensione terreno allo spigolo di monte	0.08141	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{g} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.54

Coefficiente di sicurezza a carico ultimo 15.62

Sollecitazioni paramento

Combinazione n° 1

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5600	0.0578
3	0.26	6.3850	-0.5422	0.2312
4	0.40	7.7025	-0.4940	0.5203
5	0.53	9.0200	-0.4000	0.9249
6	0.66	10.3375	-0.2452	1.4452
7	0.79	11.6550	-0.0141	2.0811
8	0.92	12.9725	0.3083	2.8326
9	1.05	14.2900	0.7373	3.6997
10	1.19	15.6075	1.2882	4.6824
11	1.32	16.9250	1.9762	5.7808
12	1.45	18.2425	2.8165	6.9947
13	1.58	19.5600	3.8244	8.3243
14	1.71	20.8775	5.0150	9.7695
15	1.84	22.1950	6.4037	11.3303
16	1.98	23.5125	8.0056	13.0067
17	2.11	24.8300	9.8361	14.7987
18	2.24	26.1475	11.9102	16.7064
19	2.37	27.4650	14.2433	18.7296
20	2.50	28.7825	16.8505	20.8685
21	2.63	30.1000	19.7465	23.1045

Sollecitazioni fondazione di valle

Combinazione n° 1

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.0835	2.1018
3	0.16	0.3385	4.2874
4	0.24	0.7717	6.5567
5	0.32	1.3898	8.9099
6	0.40	2.1995	11.3468
7	0.48	3.2076	13.8675
8	0.56	4.4206	16.4720
9	0.64	5.8453	19.1603
10	0.72	7.4885	21.9324
11	0.80	9.3567	24.7882

Sollecitazioni fondazione di monte

Combinazione n° 1

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.0550	-0.6818
3	0.36	-0.2709	-1.7877
4	0.54	-0.7240	-3.3179
5	0.72	-1.4908	-5.2723
6	0.90	-2.6475	-7.6509
7	1.08	-4.2706	-10.4537
8	1.26	-6.4363	-13.6808
9	1.44	-9.2211	-17.3320
10	1.62	-12.6077	-19.8474
11	1.80	-16.3682	-22.0071

Sollecitazioni mensola di contrappeso

Combinazione n° 1

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 1

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	15.71	15.71	0.00	0.00	1000.00	168.20		
2	0.13	100, 40	15.71	15.71	3626.09	400.69	715.56	168.89		
3	0.26	100, 40	15.71	15.71	4176.76	354.68	654.15	169.06		
4	0.40	100, 40	15.71	15.71	4694.38	301.05	609.46	169.24		
5	0.53	100, 40	15.71	15.71	5246.90	232.69	581.70	169.42		
6	0.66	100, 40	15.71	15.71	5473.85	129.82	529.51	169.60		
7	0.79	100, 40	15.71	15.71	5682.29	6.89	487.54	169.78		
8	0.92	100, 40	15.71	15.71	5473.42	-130.07	421.93	169.95		
9	1.05	100, 40	15.71	15.71	5038.47	-259.97	352.59	170.13		
10	1.19	100, 40	15.71	15.71	4231.28	-349.24	271.11	170.31		
11	1.32	100, 40	15.71	15.71	3508.39	-409.65	207.29	170.49		
12	1.45	100, 40	15.71	15.71	2909.92	-449.27	159.51	170.67		
13	1.58	100, 40	15.71	15.71	2334.07	-456.36	119.33	170.84		
14	1.71	100, 40	15.71	15.71	1783.15	-428.34	85.41	171.02		
15	1.84	100, 40	15.71	15.71	1357.75	-391.74	61.17	171.20		
16	1.98	100, 40	15.71	15.71	1046.82	-356.43	44.52	171.38		
17	2.11	100, 40	15.71	15.71	821.00	-325.23	33.06	171.55		
18	2.24	100, 40	15.71	15.71	661.85	-301.47	25.31	171.73		
19	2.37	100, 40	15.71	15.71	546.58	-283.46	19.90	171.91		
20	2.50	100, 40	15.71	15.71	461.44	-270.15	16.03	172.09		
21	2.63	100, 40	15.71	15.71	396.26	-259.96	13.16	172.27		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 1

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	\mathbf{N}_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 1

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	2421.24	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	609.32	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	272.55	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	154.26	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	99.32	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	69.38	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	51.26	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	39.46	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	31.34	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	25.52	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	M_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	0.18	100 61	15 71	15 71	0.00	-322 44	5863 00	203 16		

3	0.36	100, 60	15.71	15.71	0.00	-313.12	1155.92	199.06	
4	0.54	100, 58	15.71	15.71	0.00	-303.81	419.61	194.95	
5	0.72	100, 57	15.71	15.71	0.00	-294.50	197.55	190.81	
6	0.90	100, 55	15.71	15.71	0.00	-285.19	107.72	186.66	
7	1.08	100, 53	15.71	15.71	0.00	-275.88	64.60	182.48	
8	1.26	100, 52	15.71	15.71	0.00	-266.58	41.42	178.28	
9	1.44	100, 50	15.71	15.71	0.00	-257.27	27.90	175.16	
10	1.62	100, 49	15.71	15.71	0.00	-247.97	19.67	172.30	
11	1.80	100, 47	15.71	15.71	0.00	-238.67	14.58	169.40	

COMBINAZIONE n° 2

	25.1552	EL 5.13			
Valore della spinta statica	36.1660	[kN]			
Componente orizzontale della spinta statica	34.5203	[kN]			
Componente verticale della spinta statica	10.7856	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-2.17
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Peso terrapieno gravante sulla fondazione a monte	91.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Risultanti					
Risultante dei carichi applicati in dir. orizzontale	34.5203	[kN]			
Risultante dei carichi applicati in dir. verticale	170.6751	[kN]			
Resistenza passiva a valle del muro	-2.0941	[kN]			
Sforzo normale sul piano di posa della fondazione	173.0343	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	19.5136	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.18	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	174.1311	[kN]			
Inclinazione della risultante (rispetto alla normale)	6.43	[°]			
Momento rispetto al baricentro della fondazione	-30.9292	[kNm]			
Carico ultimo della fondazione	1177.8763	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	3.01	[m]			
Tensione terreno allo spigolo di valle	0.03700	[N/mmq	.]		

Tensione terreno allo spigolo di monte	0.07792	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.88

Coefficiente di sicurezza a carico ultimo 6.81

Sollecitazioni paramento

Combinazione n° 2

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5600	0.0563
3	0.26	6.3850	-0.5427	0.2254
4	0.40	7.7025	-0.4957	0.5071
5	0.53	9.0200	-0.4041	0.9015
6	0.66	10.3375	-0.2532	1.4085
7	0.79	11.6550	-0.0280	2.0283
8	0.92	12.9725	0.2862	2.7607
9	1.05	14.2900	0.7044	3.6059
10	1.19	15.6075	1.2413	4.5637
11	1.32	16.9250	1.9118	5.6342
12	1.45	18.2425	2.7308	6.8173
13	1.58	19.5600	3.7131	8.1132
14	1.71	20.8775	4.8736	9.5217
15	1.84	22.1950	6.2271	11.0430
16	1.98	23.5125	7.7884	12.6769
17	2.11	24.8300	9.5724	14.4235
18	2.24	26.1475	11.5939	16.2827
19	2.37	27.4650	13.8678	18.2547
20	2.50	28.7825	16.4089	20.3393
21	2.63	30.1000	19.2315	22.5186

Sollecitazioni fondazione di valle

Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.08	0.0879	2.2088
3	0.16	0.3554	4.4908
4	0.24	0.8083	6.8462
5	0.32	1.4527	9.2749
6	0.40	2.2943	11.7769
7	0.48	3.3390	14.3522
8	0.56	4.5926	17.0008
9	0.64	6.0611	19.7228
10	0.72	7.7502	22.5180
11	0.80	9.6659	25.3865

Sollecitazioni fondazione di monte

Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	0.1457	1.5565
3	0.36	0.5381	2.7421
4	0.54	1.1106	3.5569
5	0.72	1.7963	4.0007
6	0.90	2.5286	4.0736
7	1.08	3.2405	3.7756
8	1.26	3.8655	3.1067
9	1.44	4.3367	2.0669
10	1.62	4.6593	1.8562
11	1.80	5.0007	1.8746

Sollecitazioni mensola di contrappeso

Combinazione n° 2

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	T	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 2

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	V_{Rsd}
0.00	100, 40	15.71	15.71	0.00	0.00	1000.00	168.20		
0.13	100, 40	15.71	15.71	3625.85	400.70	715.51	168.89		
0.26	100, 40	15.71	15.71	4174.89	354.85	653.86	169.06		
0.40	100, 40	15.71	15.71	4688.45	301.72	608.69	169.24		
0.53	100, 40	15.71	15.71	5233.25	234.48	580.18	169.42		
0.66	100, 40	15.71	15.71	5466.91	133.91	528.84	169.60		
0.79	100, 40	15.71	15.71	5670.84	13.65	486.56	169.78		
0.92	100, 40	15.71	15.71	5488.65	-121.09	423.10	169.95		
1.05	100, 40	15.71	15.71	5102.98	-251.53	357.10	170.13		
1.19	100, 40	15.71	15.71	4302.30	-342.17	275.66	170.31		
1.32	100, 40	15.71	15.71	3578.96	-404.28	211.46	170.49		
1.45	100, 40	15.71	15.71	2977.03	-445.65	163.19	170.67		
1.58	100, 40	15.71	15.71	2412.37	-457.95	123.33	170.84		
1.71	100, 40	15.71	15.71	1859.67	-434.12	89.08	171.02		
1.84	100, 40	15.71	15.71	1418.69	-398.03	63.92	171.20		
1.98	100, 40	15.71	15.71	1096.93	-363.35	46.65	171.38		
2.11	100, 40	15.71	15.71	856.25	-330.10	34.48	171.55		
2.24	100, 40	15.71	15.71	689.73	-305.83	26.38	171.73		
2.37	100, 40	15.71	15.71	568.01	-286.81	20.68	171.91		
2.50	100, 40	15.71	15.71	478.55	-272.82	16.63	172.09		
2.63	100, 40	15.71	15.71	410.31	-262.16	13.63	172.27		
	0.00 0.13 0.26 0.40 0.53 0.66 0.79 0.92 1.05 1.19 1.32 1.45 1.58 1.71 1.84 1.98 2.11 2.24 2.37 2.50	0.00100, 400.13100, 400.26100, 400.40100, 400.53100, 400.66100, 400.79100, 401.05100, 401.19100, 401.32100, 401.45100, 401.58100, 401.71100, 401.84100, 401.98100, 402.11100, 402.24100, 402.50100, 40	0.00 100, 40 15.71 0.13 100, 40 15.71 0.26 100, 40 15.71 0.40 100, 40 15.71 0.53 100, 40 15.71 0.66 100, 40 15.71 0.79 100, 40 15.71 1.05 100, 40 15.71 1.19 100, 40 15.71 1.32 100, 40 15.71 1.45 100, 40 15.71 1.58 100, 40 15.71 1.71 100, 40 15.71 1.84 100, 40 15.71 1.98 100, 40 15.71 2.11 100, 40 15.71 2.24 100, 40 15.71 2.37 100, 40 15.71 2.50 100, 40 15.71	0.00 100, 40 15.71 15.71 0.13 100, 40 15.71 15.71 0.26 100, 40 15.71 15.71 0.40 100, 40 15.71 15.71 0.53 100, 40 15.71 15.71 0.66 100, 40 15.71 15.71 0.79 100, 40 15.71 15.71 1.05 100, 40 15.71 15.71 1.19 100, 40 15.71 15.71 1.32 100, 40 15.71 15.71 1.45 100, 40 15.71 15.71 1.58 100, 40 15.71 15.71 1.71 100, 40 15.71 15.71 1.84 100, 40 15.71 15.71 1.98 100, 40 15.71 15.71 2.11 100, 40 15.71 15.71 2.24 100, 40 15.71 15.71 2.37 100, 40 15.71 15.71 2.50 100, 40 15.71 15.71	0.00 100, 40 15.71 15.71 0.00 0.13 100, 40 15.71 15.71 3625.85 0.26 100, 40 15.71 15.71 4174.89 0.40 100, 40 15.71 15.71 4688.45 0.53 100, 40 15.71 15.71 5233.25 0.66 100, 40 15.71 15.71 5466.91 0.79 100, 40 15.71 15.71 5670.84 0.92 100, 40 15.71 15.71 5488.65 1.05 100, 40 15.71 15.71 5102.98 1.19 100, 40 15.71 15.71 4302.30 1.32 100, 40 15.71 15.71 3578.96 1.45 100, 40 15.71 15.71 2977.03 1.58 100, 40 15.71 15.71 2412.37 1.71 100, 40 15.71 15.71 1418.69 1.98 100, 40 15.71 15.71 1418.69 1.98 100, 40 15.71 15.71 689.73 <t< td=""><td>0.00 100, 40 15.71 15.71 0.00 0.00 0.13 100, 40 15.71 15.71 3625.85 400.70 0.26 100, 40 15.71 15.71 4174.89 354.85 0.40 100, 40 15.71 15.71 4688.45 301.72 0.53 100, 40 15.71 15.71 5233.25 234.48 0.66 100, 40 15.71 15.71 5466.91 133.91 0.79 100, 40 15.71 15.71 5670.84 13.65 0.92 100, 40 15.71 15.71 5488.65 -121.09 1.05 100, 40 15.71 15.71 5102.98 -251.53 1.19 100, 40 15.71 15.71 5102.98 -251.53 1.19 100, 40 15.71 15.71 3578.96 -404.28 1.45 100, 40 15.71 15.71 2977.03 -445.65 1.58 100, 40 15.71 15.71 <td< td=""><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 0.13 100, 40 15.71 15.71 3625.85 400.70 715.51 0.26 100, 40 15.71 15.71 4174.89 354.85 653.86 0.40 100, 40 15.71 15.71 4688.45 301.72 608.69 0.53 100, 40 15.71 15.71 5233.25 234.48 580.18 0.66 100, 40 15.71 15.71 5466.91 133.91 528.84 0.79 100, 40 15.71 15.71 5670.84 13.65 486.56 0.92 100, 40 15.71 15.71 5488.65 -121.09 423.10 1.05 100, 40 15.71 15.71 5102.98 -251.53 357.10 1.19 100, 40 15.71 15.71 4302.30 -342.17 275.66 1.32 100, 40 15.71 15.71 3578.96 -404.28 211.46</td><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3625.85 400.70 715.51 168.89 0.26 100, 40 15.71 15.71 4174.89 354.85 653.86 169.06 0.40 100, 40 15.71 15.71 5233.25 234.48 580.18 169.42 0.53 100, 40 15.71 15.71 5233.25 234.48 580.18 169.42 0.66 100, 40 15.71 15.71 5466.91 133.91 528.84 169.60 0.79 100, 40 15.71 15.71 5670.84 13.65 486.56 169.78 0.92 100, 40 15.71 15.71 5488.65 -121.09 423.10 169.95 1.05 100, 40 15.71 15.71 5102.98 -251.53 357.10 170.13 1.19 100, 40 15.71 15.71 3578.96 -404.28 21</td><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3625.85 400.70 715.51 168.89 0.26 100, 40 15.71 15.71 4174.89 354.85 653.86 169.06 0.40 100, 40 15.71 15.71 4688.45 301.72 608.69 169.24 0.53 100, 40 15.71 15.71 5233.25 234.48 580.18 169.42 0.66 100, 40 15.71 15.71 5466.91 133.91 528.84 169.60 0.79 100, 40 15.71 15.71 5670.84 13.65 486.56 169.78 0.92 100, 40 15.71 15.71 5488.65 -121.09 423.10 169.95 1.05 100, 40 15.71 15.71 4302.30 -342.17 275.66 170.31 1.32 100, 40 15.71 15.71 3578.96 -404.28</td></td<></td></t<>	0.00 100, 40 15.71 15.71 0.00 0.00 0.13 100, 40 15.71 15.71 3625.85 400.70 0.26 100, 40 15.71 15.71 4174.89 354.85 0.40 100, 40 15.71 15.71 4688.45 301.72 0.53 100, 40 15.71 15.71 5233.25 234.48 0.66 100, 40 15.71 15.71 5466.91 133.91 0.79 100, 40 15.71 15.71 5670.84 13.65 0.92 100, 40 15.71 15.71 5488.65 -121.09 1.05 100, 40 15.71 15.71 5102.98 -251.53 1.19 100, 40 15.71 15.71 5102.98 -251.53 1.19 100, 40 15.71 15.71 3578.96 -404.28 1.45 100, 40 15.71 15.71 2977.03 -445.65 1.58 100, 40 15.71 15.71 <td< td=""><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 0.13 100, 40 15.71 15.71 3625.85 400.70 715.51 0.26 100, 40 15.71 15.71 4174.89 354.85 653.86 0.40 100, 40 15.71 15.71 4688.45 301.72 608.69 0.53 100, 40 15.71 15.71 5233.25 234.48 580.18 0.66 100, 40 15.71 15.71 5466.91 133.91 528.84 0.79 100, 40 15.71 15.71 5670.84 13.65 486.56 0.92 100, 40 15.71 15.71 5488.65 -121.09 423.10 1.05 100, 40 15.71 15.71 5102.98 -251.53 357.10 1.19 100, 40 15.71 15.71 4302.30 -342.17 275.66 1.32 100, 40 15.71 15.71 3578.96 -404.28 211.46</td><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3625.85 400.70 715.51 168.89 0.26 100, 40 15.71 15.71 4174.89 354.85 653.86 169.06 0.40 100, 40 15.71 15.71 5233.25 234.48 580.18 169.42 0.53 100, 40 15.71 15.71 5233.25 234.48 580.18 169.42 0.66 100, 40 15.71 15.71 5466.91 133.91 528.84 169.60 0.79 100, 40 15.71 15.71 5670.84 13.65 486.56 169.78 0.92 100, 40 15.71 15.71 5488.65 -121.09 423.10 169.95 1.05 100, 40 15.71 15.71 5102.98 -251.53 357.10 170.13 1.19 100, 40 15.71 15.71 3578.96 -404.28 21</td><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3625.85 400.70 715.51 168.89 0.26 100, 40 15.71 15.71 4174.89 354.85 653.86 169.06 0.40 100, 40 15.71 15.71 4688.45 301.72 608.69 169.24 0.53 100, 40 15.71 15.71 5233.25 234.48 580.18 169.42 0.66 100, 40 15.71 15.71 5466.91 133.91 528.84 169.60 0.79 100, 40 15.71 15.71 5670.84 13.65 486.56 169.78 0.92 100, 40 15.71 15.71 5488.65 -121.09 423.10 169.95 1.05 100, 40 15.71 15.71 4302.30 -342.17 275.66 170.31 1.32 100, 40 15.71 15.71 3578.96 -404.28</td></td<>	0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 0.13 100, 40 15.71 15.71 3625.85 400.70 715.51 0.26 100, 40 15.71 15.71 4174.89 354.85 653.86 0.40 100, 40 15.71 15.71 4688.45 301.72 608.69 0.53 100, 40 15.71 15.71 5233.25 234.48 580.18 0.66 100, 40 15.71 15.71 5466.91 133.91 528.84 0.79 100, 40 15.71 15.71 5670.84 13.65 486.56 0.92 100, 40 15.71 15.71 5488.65 -121.09 423.10 1.05 100, 40 15.71 15.71 5102.98 -251.53 357.10 1.19 100, 40 15.71 15.71 4302.30 -342.17 275.66 1.32 100, 40 15.71 15.71 3578.96 -404.28 211.46	0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3625.85 400.70 715.51 168.89 0.26 100, 40 15.71 15.71 4174.89 354.85 653.86 169.06 0.40 100, 40 15.71 15.71 5233.25 234.48 580.18 169.42 0.53 100, 40 15.71 15.71 5233.25 234.48 580.18 169.42 0.66 100, 40 15.71 15.71 5466.91 133.91 528.84 169.60 0.79 100, 40 15.71 15.71 5670.84 13.65 486.56 169.78 0.92 100, 40 15.71 15.71 5488.65 -121.09 423.10 169.95 1.05 100, 40 15.71 15.71 5102.98 -251.53 357.10 170.13 1.19 100, 40 15.71 15.71 3578.96 -404.28 21	0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3625.85 400.70 715.51 168.89 0.26 100, 40 15.71 15.71 4174.89 354.85 653.86 169.06 0.40 100, 40 15.71 15.71 4688.45 301.72 608.69 169.24 0.53 100, 40 15.71 15.71 5233.25 234.48 580.18 169.42 0.66 100, 40 15.71 15.71 5466.91 133.91 528.84 169.60 0.79 100, 40 15.71 15.71 5670.84 13.65 486.56 169.78 0.92 100, 40 15.71 15.71 5488.65 -121.09 423.10 169.95 1.05 100, 40 15.71 15.71 4302.30 -342.17 275.66 170.31 1.32 100, 40 15.71 15.71 3578.96 -404.28

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 2

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 2

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

N_u sforzo normale ultimo espresso in [kN]

M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	2301.39	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	580.46	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	260.20	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	147.59	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	95.22	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	66.65	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	49.34	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	38.06	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	30.29	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	24.70	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	0.18	100 61	15 71	15 71	0.00	322 44	2213 77	209 17		

3	0.36	100, 60	15.71	15.71	0.00	313.12	581.91	206.35	
4	0.54	100, 58	15.71	15.71	0.00	303.81	273.56	203.49	
5	0.72	100, 57	15.71	15.71	0.00	294.50	163.95	200.61	
6	0.90	100, 55	15.71	15.71	0.00	285.19	112.79	197.69	
7	1.08	100, 53	15.71	15.71	0.00	275.88	85.13	194.73	
8	1.26	100, 52	15.71	15.71	0.00	266.58	68.96	191.73	
9	1.44	100, 50	15.71	15.71	0.00	257.27	59.32	188.69	
10	1.62	100, 49	15.71	15.71	0.00	247.97	53.22	185.61	
11	1.80	100, 47	15.71	15.71	0.00	238.67	47.73	182.48	

COMBINAZIONE n° 3

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	39.7826 37.9723 11.8642 X = 1.80 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.17
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 54.01	[°] [°]			
Peso terrapieno gravante sulla fondazione a monte	82.6330	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	37.9723	[kN]			
Risultante dei carichi applicati in dir. verticale	155.7647	[kN]			
Resistenza passiva a valle del muro	-1.8847	[kN]			
Momento ribaltante rispetto allo spigolo a valle	31.3601	[kNm]			
Momento stabilizzante rispetto allo spigolo a valle	294.4544	[kNm]			
Sforzo normale sul piano di posa della fondazione	158.4815	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	24.2520	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.15	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	160.3264	[kN]			
Inclinazione della risultante (rispetto alla normale)	8.70	[°]			
Momento rispetto al baricentro della fondazione	-24.4641	[kNm]			

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 9.39

Stabilità globale muro + terreno

Combinazione n° 4

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.59 Y[m] = 1.18

Raggio del cerchio R[m]= 5.05

Ascissa a valle del cerchio Xi[m] = -3.95Ascissa a monte del cerchio Xs[m] = 4.32

Larghezza della striscia dx[m]= 0.33 Coefficiente di sicurezza C= 1.83

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	?(°)	Wsin?	b/cos2	?	С	u
1	312.37	70.34	294.16	0.98	26.56	0.000	0.000
2	829.36	61.39	728.13	0.69	26.56	0.000	0.000
3	1189.00	54.25	964.98	0.57	26.56	0.000	0.000
4	1468.88	48.21	1095.26	0.50	26.56	0.000	0.000
5	1697.20	42.83	1153.84	0.45	26.56	0.000	0.000
6	1887.48	37.89	1159.15	0.42	26.56	0.000	0.000
7	2047.51	33.26	1122.95	0.40	26.56	0.000	0.000
8	2220.95	28.87	1072.26	0.38	26.56	0.000	0.000
9	2396.92	24.66	999.89	0.36	26.56	0.000	0.000
10	2485.08	20.58	873.58	0.35	26.56	0.000	0.000
11	2555.32	16.61	730.60	0.35	26.56	0.000	0.000
12	2608.85	12.73	574.73	0.34	26.56	0.000	0.000
13	2716.84	8.90	420.27	0.33	26.56	0.000	0.000

14	3087.01	5.11	275.00	0.33	26.56	0.000	0.000	
15	1548.65	1.35	36.36	0.33	26.56	0.000	0.000	
16	921.66	-2.41	-38.83	0.33	26.56	0.000	0.000	
17	880.03	-6.18	-94.81	0.33	26.56	0.000	0.000	
18	799.80	-9.98	-138.64	0.34	26.56	0.000	0.000	
19	752.70	-13.82	-179.86	0.34	26.56	0.000	0.000	
20	689.56	-17.73	-210.02	0.35	26.56	0.000	0.000	
21	609.40	-21.73	-225.59	0.36	26.56	0.000	0.000	
22	510.90	-25.84	-222.66	0.37	26.56	0.000	0.000	
23	392.19	-30.10	-196.67	0.38	26.56	0.000	0.000	
24	250.68	-34.55	-142.16	0.40	26.56	0.000	0.000	
25	82.65	-39.26	-52.30	0.43	26.56	0.000	0.000	

@W_i= 342.6594 [kN]
@W_isin@_i= 98.0644 [kN]
@W_itan@_i= 171.2939 [kN]
@tan@_itan@_i= 3.91

COMBINAZIONE n° 5

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica	64.9332	[kN]			
Componente orizzontale della spinta statica	60.4840	[kN]			
Componente verticale della spinta statica	23.6223	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.95
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Risultanti					
Risultante dei carichi applicati in dir. orizzontale	60.4840	[kN]			
Risultante dei carichi applicati in dir. verticale	207.5117	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	211.9936	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	42.1680	[kN]			

Eccentricità rispetto al baricentro della fondazione	-0.13	[m]
Lunghezza fondazione reagente	3.01	[m]
Risultante in fondazione	216.1468	[kN]
Inclinazione della risultante (rispetto alla normale)	11.25	[°]
Momento rispetto al baricentro della fondazione	-26.7225	[kNm]
Carico ultimo della fondazione	2900.1434	[kN]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	3.01	[m]
Tensione terreno allo spigolo di valle	0.05272	[N/mmq]
Tensione terreno allo spigolo di monte	0.08808	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 44.04$$
 $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.03
Coefficiente di sicurezza a carico ultimo	13.68

Sollecitazioni paramento

Combinazione n° 5

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5600	0.0578
3	0.26	6.3850	-0.5422	0.2312
4	0.40	7.7025	-0.4940	0.5203
5	0.53	9.0200	-0.4000	0.9249
6	0.66	10.3375	-0.2452	1.4452
7	0.79	11.6550	-0.0141	2.0811
8	0.92	12.9725	0.3083	2.8326
9	1.05	14.2900	0.7396	3.7637
10	1.19	15.6075	1.3181	5.1000
11	1.32	16.9250	2.1001	6.8187
12	1.45	18.2425	3.1233	8.7416
13	1.58	19.5600	4.4107	10.8280
14	1.71	20.8775	5.9832	13.0680
15	1.84	22.1950	7.8605	15.4542
16	1.98	23.5125	10.0615	17.9811
17	2.11	24.8300	12.6045	20.6442
18	2.24	26.1475	15.5071	23.4402
19	2.37	27.4650	18.7867	26.3664
20	2.50	28.7825	22.4603	29.4204
21	2.63	30.1000	26.5438	32.5807

Sollecitazioni fondazione di valle

Combinazione n° 5

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.08	0.1379	3.4587
3	0.16	0.5550	6.9789
4	0.24	1.2562	10.5605
5	0.32	2.2464	14.2036
6	0.40	3.5304	17.9080
7	0.48	5.1133	21.6740
8	0.56	6.9999	25.5013
9	0.64	9.1951	29.3901
10	0.72	11.7039	33.3403
11	0.80	14.5312	37.3520

Sollecitazioni fondazione di monte

Combinazione n° 5

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.4303	-4.8327
3	0.36	-1.7584	-9.9765
4	0.54	-4.0405	-15.4314
5	0.72	-7.3324	-21.1973
6	0.90	-11.5402	-24.2743
7	1.08	-15.9938	-25.2623
8	1.26	-20.6533	-26.5614
9	1.44	-25.5746	-28.1716
10	1.62	-30.7201	-28.5328
11	1.80	-35.8417	-28.4251

Sollecitazioni mensola di contrappeso

Combinazione n° 5

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 5

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	15.71	15.71	0.00	0.00	1000.00	168.20		
2	0.13	100, 40	15.71	15.71	3626.09	400.69	715.56	168.89		
3	0.26	100, 40	15.71	15.71	4176.76	354.68	654.15	169.06		
4	0.40	100, 40	15.71	15.71	4694.38	301.05	609.46	169.24		
5	0.53	100, 40	15.71	15.71	5246.90	232.69	581.70	169.42		
6	0.66	100, 40	15.71	15.71	5473.85	129.82	529.51	169.60		
7	0.79	100, 40	15.71	15.71	5682.29	6.89	487.54	169.78		
8	0.92	100, 40	15.71	15.71	5473.42	-130.07	421.93	169.95		
9	1.05	100, 40	15.71	15.71	5034.13	-260.54	352.28	170.13		
10	1.19	100, 40	15.71	15.71	4187.33	-353.62	268.29	170.31		
11	1.32	100, 40	15.71	15.71	3378.59	-419.22	199.62	170.49		
12	1.45	100, 40	15.71	15.71	2692.64	-461.00	147.60	170.67		
13	1.58	100, 40	15.71	15.71	1948.83	-439.45	99.63	170.84		
14	1.71	100, 40	15.71	15.71	1372.08	-393.22	65.72	171.02		
15	1.84	100, 40	15.71	15.71	980.56	-347.27	44.18	171.20		
16	1.98	100, 40	15.71	15.71	729.04	-311.97	31.01	171.38		
17	2.11	100, 40	15.71	15.71	563.64	-286.12	22.70	171.55		
18	2.24	100, 40	15.71	15.71	453.39	-268.89	17.34	171.73		
19	2.37	100, 40	15.71	15.71	375.24	-256.67	13.66	171.91		
20	2.50	100, 40	15.71	15.71	317.32	-247.62	11.02	172.09		
21	2.63	100, 40	15.71	15.71	272.93	-240.68	9.07	172.27		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 5

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 5

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	1465.89	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	371.63	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	167.44	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	95.44	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	61.88	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	43.52	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	32.37	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	25.08	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	20.06	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	16.43	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	0.18	100 61	15 71	15 71	0.00	-322 44	749 37	203 16		

3	0.36	100, 60	15.71	15.71	0.00	-313.12	178.07	199.06	
4	0.54	100, 58	15.71	15.71	0.00	-303.81	75.19	194.95	
5	0.72	100, 57	15.71	15.71	0.00	-294.50	40.16	190.81	
6	0.90	100, 55	15.71	15.71	0.00	-285.19	24.71	186.66	
7	1.08	100, 53	15.71	15.71	0.00	-275.88	17.25	182.48	
8	1.26	100, 52	15.71	15.71	0.00	-266.58	12.91	178.28	
9	1.44	100, 50	15.71	15.71	0.00	-257.27	10.06	175.16	
10	1.62	100, 49	15.71	15.71	0.00	-247.97	8.07	172.30	
11	1.80	100, 47	15.71	15.71	0.00	-238.67	6.66	169.40	

COMBINAZIONE n° 6

Valore della spinta statica	65.0026	[kN]			
Componente orizzontale della spinta statica	62.0446	[kN]			
Componente verticale della spinta statica	19.3854	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.93
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Peso terrapieno gravante sulla fondazione a monte	112.6145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	62.0446	[kN]			
Risultante dei carichi applicati in dir. verticale	200.0749	[kN]			
Resistenza passiva a valle del muro	-2.0941	[kN]			
Sforzo normale sul piano di posa della fondazione	204.7211	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	44.3709	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.08	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	209.4743	[kN]			
Inclinazione della risultante (rispetto alla normale)	12.23	[°]			
Momento rispetto al baricentro della fondazione	-15.5419	[kNm]			
Carico ultimo della fondazione	1269.1504	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	3.01	[m]			

Tensione terreno allo spigolo di valle

[N/mmq]

0.05770

Tensione terreno allo spigolo di monte	0.07826	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.49
Coefficiente di sicurezza a carico ultimo 6.20

Sollecitazioni paramento

Combinazione n° 6

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5600	0.0563
3	0.26	6.3850	-0.5427	0.2254
4	0.40	7.7025	-0.4957	0.5071
5	0.53	9.0200	-0.4041	0.9015
6	0.66	10.3375	-0.2532	1.4085
7	0.79	11.6550	-0.0277	2.0493
8	0.92	12.9725	0.3027	3.0423
9	1.05	14.2900	0.7937	4.4634
10	1.19	15.6075	1.4893	6.1286
11	1.32	16.9250	2.4165	7.9738
12	1.45	18.2425	3.5977	9.9844
13	1.58	19.5600	5.0541	12.1496
14	1.71	20.8775	6.8055	14.4612
15	1.84	22.1950	8.8708	16.9132
16	1.98	23.5125	11.2681	19.5006
17	2.11	24.8300	14.0150	22.2199
18	2.24	26.1475	17.1287	25.0679
19	2.37	27.4650	20.6259	28.0423
20	2.50	28.7825	24.5233	31.1410
21	2.63	30.1000	28.8363	34.3430

Sollecitazioni fondazione di valle

Combinazione n° 6

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.08	0.1533	3.8370
3	0.16	0.6147	7.7039
4	0.24	1.3867	11.6007
5	0.32	2.4716	15.5274
6	0.40	3.8719	19.4839
7	0.48	5.5899	23.4703
8	0.56	7.6279	27.4866
9	0.64	9.9885	31.5327
10	0.72	12.6740	35.6087
11	0.80	15.6867	39.7146

Sollecitazioni fondazione di monte

Combinazione n° 6

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.2647	-2.9659
3	0.36	-1.0768	-6.0829
4	0.54	-2.4636	-9.3509
5	0.72	-4.4522	-12.7698
6	0.90	-6.9398	-13.7398
7	1.08	-9.3244	-12.7808
8	1.26	-11.5499	-11.9728
9	1.44	-13.6437	-11.3159
10	1.62	-15.5607	-9.6099
11	1.80	-17.0943	-7.4549

Sollecitazioni mensola di contrappeso

Combinazione n° 6

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 6

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	15.71	15.71	0.00	0.00	1000.00	168.20		
2	0.13	100, 40	15.71	15.71	3625.85	400.70	715.51	168.89		
3	0.26	100, 40	15.71	15.71	4174.89	354.85	653.86	169.06		
4	0.40	100, 40	15.71	15.71	4688.45	301.72	608.69	169.24		
5	0.53	100, 40	15.71	15.71	5233.25	234.48	580.18	169.42		
6	0.66	100, 40	15.71	15.71	5466.91	133.91	528.84	169.60		
7	0.79	100, 40	15.71	15.71	5671.14	13.47	486.59	169.78		
8	0.92	100, 40	15.71	15.71	5477.28	-127.79	422.22	169.95		
9	1.05	100, 40	15.71	15.71	4931.59	-273.90	345.11	170.13		
10	1.19	100, 40	15.71	15.71	3935.99	-375.59	252.19	170.31		
11	1.32	100, 40	15.71	15.71	3078.80	-439.57	181.91	170.49		
12	1.45	100, 40	15.71	15.71	2311.72	-455.91	126.72	170.67		
13	1.58	100, 40	15.71	15.71	1605.83	-414.93	82.10	170.84		
14	1.71	100, 40	15.71	15.71	1127.70	-367.60	54.02	171.02		
15	1.84	100, 40	15.71	15.71	809.88	-323.69	36.49	171.20		
16	1.98	100, 40	15.71	15.71	613.19	-293.87	26.08	171.38		
17	2.11	100, 40	15.71	15.71	485.19	-273.86	19.54	171.55		
18	2.24	100, 40	15.71	15.71	397.02	-260.08	15.18	171.73		
19	2.37	100, 40	15.71	15.71	332.99	-250.07	12.12	171.91		
20	2.50	100, 40	15.71	15.71	284.63	-242.51	9.89	172.09		
21	2.63	100, 40	15.71	15.71	247.00	-236.63	8.21	172.27		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 6

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100.50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 6

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	1319.16	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	335.55	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	151.68	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	86.74	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	56.42	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	39.81	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	29.71	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	23.09	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	18.52	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	15.22	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	M_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	0.18	100 61	15 71	15 71	0.00	-322 44	1218 26	203 16		

 	199.06	290.79	-313.12	0.00	15.71	15.71	100, 60	0.36	3
 	194.95	123.32	-303.81	0.00	15.71	15.71	100, 58	0.54	4
 	190.81	66.15	-294.50	0.00	15.71	15.71	100, 57	0.72	5
 	186.66	41.09	-285.19	0.00	15.71	15.71	100, 55	0.90	6
 	182.48	29.59	-275.88	0.00	15.71	15.71	100, 53	1.08	7
 	178.28	23.08	-266.58	0.00	15.71	15.71	100, 52	1.26	8
 	175.16	18.86	-257.27	0.00	15.71	15.71	100, 50	1.44	9
 	172.30	15.94	-247.97	0.00	15.71	15.71	100, 49	1.62	10
 	169.40	13.96	-238.67	0.00	15.71	15.71	100.47	1.80	11

COMBINAZIONE n° 7

Valore della spinta statica	73.0555	[kN]			
Componente orizzontale della spinta statica	69.7312	[kN]			
Componente verticale della spinta statica	21.7870	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.93
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
	·				
Peso terrapieno gravante sulla fondazione a monte	106.6330	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Risultanti					
Risultante dei carichi applicati in dir. orizzontale	69.7312	[kN]			
Risultante dei carichi applicati in dir. verticale	189.6875	[kN]			
Resistenza passiva a valle del muro	-1.8847	[kN]			
Momento ribaltante rispetto allo spigolo a valle	74.8157	[kNm]			
Momento stabilizzante rispetto allo spigolo a valle	375.2075	[kNm]			
Sforzo normale sul piano di posa della fondazione	195.0432	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	52.9335	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.03	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	202.0985	[kN]			
Inclinazione della risultante (rispetto alla normale)	15.18	[°]			
Momento rispetto al baricentro della fondazione	-6.7095	[kNm]			
,		. ,			

5.02

Relazione di calcolo opera di sostegno 16 Allegati

Coefficiente di sicurezza a ribaltamento

COEFFICIENTI DI SICUREZZA

Stabilità globale muro + terreno

Combinazione n° 8

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.59 Y[m] = 1.48

Raggio del cerchio R[m]= 5.31

Ascissa a valle del cerchio Xi[m] = -4.00Ascissa a monte del cerchio Xs[m] = 4.52

Larghezza della striscia dx[m]= 0.34 Coefficiente di sicurezza C= 1.45

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	?(°)	Wsin⊡	b/cos?	?	С	u
1	1201.61	68.35	1116.81	0.92	26.56	0.000	0.000
2	1706.60	60.21	1481.01	0.69	26.56	0.000	0.000
3	2072.87	53.41	1664.43	0.57	26.56	0.000	0.000
4	2362.02	47.60	1744.16	0.51	26.56	0.000	0.000
5	2599.69	42.38	1752.21	0.46	26.56	0.000	0.000
6	2798.78	37.57	1706.31	0.43	26.56	0.000	0.000
7	2966.87	33.05	1617.99	0.41	26.56	0.000	0.000
8	3111.88	28.76	1497.02	0.39	26.56	0.000	0.000
9	3334.80	24.63	1389.93	0.37	26.56	0.000	0.000
10	3428.43	20.64	1208.64	0.36	26.56	0.000	0.000
11	2889.34	16.75	832.94	0.36	26.56	0.000	0.000
12	2657.61	12.95	595.39	0.35	26.56	0.000	0.000
13	2753.06	9.19	439.89	0.35	26.56	0.000	0.000

@W_i= 439.4711 [kN]
@W_isin@_i= 156.5917 [kN]
@W_itan@_i= 219.6896 [kN]
@tan@_itan@_i= 3.80

COMBINAZIONE n° 9

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica	64.9332	[kN]			
Componente orizzontale della spinta statica	60.4840	[kN]			
Componente verticale della spinta statica	23.6223	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.95
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Risultanti carichi esterni					
Componente dir. X	25.05	[kN]			
Risultanti					
Risultante dei carichi applicati in dir. orizzontale	85.5340	[kN]			
• •	207.5117				
Risultante dei carichi applicati in dir. verticale	207.3117	[kN]			

Resistenza passiva a valle del muro	-2.6038	[kN]
Sforzo normale sul piano di posa della fondazione	214.1768	[kN]
Sforzo tangenziale sul piano di posa della fondazione	67.1227	[kN]
Eccentricità rispetto al baricentro della fondazione	0.32	[m]
Lunghezza fondazione reagente	3.01	[m]
Risultante in fondazione	224.4486	[kN]
Inclinazione della risultante (rispetto alla normale)	17.40	[°]
Momento rispetto al baricentro della fondazione	68.2151	[kNm]
Carico ultimo della fondazione	2495.6146	[kN]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	3.01	[m]
Tensione terreno allo spigolo di valle	0.11625	[N/mmq]
Tensione terreno allo spigolo di monte	0.02599	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.28
Coefficiente di sicurezza a carico ultimo 11.65

Sollecitazioni paramento

Combinazione n° 9

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	16.5000	25.0500
2	0.13	5.0675	19.2404	25.1078
3	0.26	6.3850	22.5585	25.2812
4	0.40	7.7025	25.9070	25.5703
5	0.53	9.0200	29.3013	25.9749
6	0.66	10.3375	32.7565	26.4952
7	0.79	11.6550	36.2879	27.1311
8	0.92	12.9725	39.9106	27.8826
9	1.05	14.2900	43.6422	28.8137
10	1.19	15.6075	47.5210	30.1500
11	1.32	16.9250	51.6034	31.8687
12	1.45	18.2425	55.9269	33.7916
13	1.58	19.5600	60.5147	35.8780
14	1.71	20.8775	65.3875	38.1180
15	1.84	22.1950	70.5652	40.5042
16	1.98	23.5125	76.0665	43.0311
17	2.11	24.8300	81.9098	45.6942
18	2.24	26.1475	88.1128	48.4902
19	2.37	27.4650	94.6927	51.4164
20	2.50	28.7825	101.6666	54.4704
21	2.63	30.1000	109.0505	57.6307

Sollecitazioni fondazione di valle

Combinazione n° 9

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3373	8.3969
3	0.16	1.3380	16.5871
4	0.24	2.9857	24.5709
5	0.32	5.2638	32.3481
6	0.40	8.1559	39.9187
7	0.48	11.6453	47.2827
8	0.56	15.7156	54.4402
9	0.64	20.3502	61.3912
10	0.72	25.5327	68.1356
11	0.80	31.2464	74.6734

Sollecitazioni fondazione di monte

Combinazione n° 9

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-1.3976	-15.3541
3	0.36	-5.4647	-29.6625
4	0.54	-12.0133	-42.9253
5	0.72	-20.8551	-55.1424
6	0.90	-31.6518	-63.3138
7	1.08	-43.4893	-68.0396
8	1.26	-56.0833	-71.7197
9	1.44	-69.2457	-74.3542
10	1.62	-82.6945	-74.3830
11	1.80	-95.9374	-72.5862

Sollecitazioni mensola di contrappeso

Combinazione n° 9

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 9

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	15.71	15.71	0.00	-198.02	12.00	168.20		
2	0.13	100, 40	15.71	15.71	54.39	-206.52	10.73	168.89		
3	0.26	100, 40	15.71	15.71	58.64	-207.19	9.18	169.06		
4	0.40	100, 40	15.71	15.71	61.74	-207.67	8.02	169.24		
5	0.53	100, 40	15.71	15.71	64.04	-208.03	7.10	169.42		
6	0.66	100, 40	15.71	15.71	65.74	-208.30	6.36	169.60		
7	0.79	100, 40	15.71	15.71	66.96	-208.49	5.75	169.78		
8	0.92	100, 40	15.71	15.71	67.81	-208.62	5.23	169.95		
9	1.05	100, 40	15.71	15.71	68.34	-208.70	4.78	170.13		
10	1.19	100, 40	15.71	15.71	68.56	-208.74	4.39	170.31		
11	1.32	100, 40	15.71	15.71	68.46	-208.72	4.04	170.49		
12	1.45	100, 40	15.71	15.71	68.06	-208.66	3.73	170.67		
13	1.58	100, 40	15.71	15.71	67.41	-208.56	3.45	170.84		
14	1.71	100, 40	15.71	15.71	66.55	-208.42	3.19	171.02		
15	1.84	100, 40	15.71	15.71	65.50	-208.26	2.95	171.20		
16	1.98	100, 40	15.71	15.71	64.32	-208.08	2.74	171.38		
17	2.11	100, 40	15.71	15.71	63.01	-207.87	2.54	171.55		
18	2.24	100, 40	15.71	15.71	61.62	-207.65	2.36	171.73		
19	2.37	100, 40	15.71	15.71	60.16	-207.43	2.19	171.91		
20	2.50	100, 40	15.71	15.71	58.66	-207.19	2.04	172.09		
21	2.63	100, 40	15.71	15.71	57.12	-206.95	1.90	172.27		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 9

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 9

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	599.57	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	154.16	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	70.45	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	40.73	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	26.79	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	19.11	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	14.42	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	11.33	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	9.19	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	7.64	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	0.18	100 61	15 71	15 71	0.00	-322 44	230.72	203 16		

3	0.36	100, 60	15.71	15.71	0.00 -313.12	57.30	199.06	
4	0.54	100, 58	15.71	15.71	0.00 -303.81	25.29	194.95	
5	0.72	100, 57	15.71	15.71	0.00 -294.50	14.12	190.81	
6	0.90	100, 55	15.71	15.71	0.00 -285.19	9.01	186.66	
7	1.08	100, 53	15.71	15.71	0.00 -275.88	6.34	182.48	
8	1.26	100, 52	15.71	15.71	0.00 -266.58	4.75	178.28	
9	1.44	100, 50	15.71	15.71	0.00 -257.27	3.72	175.16	
10	1.62	100, 49	15.71	15.71	0.00 -247.97	3.00	172.30	
11	1.80	100, 47	15.71	15.71	0.00 -238.67	2.49	169.40	

COMBINAZIONE n° 10

Valore della spinta statica	65.0026	[kN]			
Componente orizzontale della spinta statica	62.0446	[kN]			
Componente verticale della spinta statica	19.3854	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.93
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Peso terrapieno gravante sulla fondazione a monte	112.6145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Y	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti carichi esterni</u>					
Componente dir. X	21.71	[kN]			
Risultanti					
	83.7546	[kN]			
Risultante dei carichi applicati in dir. orizzontale					
Risultante dei carichi applicati in dir. verticale	200.0749	[kN]			
Resistenza passiva a valle del muro	-2.0941	[kN]			
Sforzo normale sul piano di posa della fondazione	206.6132	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	65.9983	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.32	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	216.8981	[kN]			
Inclinazione della risultante (rispetto alla normale)	17.71	[°]			
Momento rispetto al baricentro della fondazione	66.7374	[kNm]			
Carico ultimo della fondazione	1049.8259	[kN]			

Tensioni sul terreno

Lunghezza fondazione reagente	3.01	[m]
Tensione terreno allo spigolo di valle	0.11276	[N/mmq]
Tensione terreno allo spigolo di monte	0.02446	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00
		6 11.3 1 11 1	

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{e} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.01
Coefficiente di sicurezza a carico ultimo 5.08

Sollecitazioni paramento

Combinazione n° 10

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	т
1	0.00	0.0000	14.3000	21.7100
2	0.13	5.0675	16.6003	21.7663
3	0.26	6.3850	19.4779	21.9354
4	0.40	7.7025	22.3852	22.2171
5	0.53	9.0200	25.3370	22.6115
6	0.66	10.3375	28.3482	23.1185
7	0.79	11.6550	31.4340	23.7593
8	0.92	12.9725	34.6247	24.7523
9	1.05	14.2900	37.9760	26.1734
10	1.19	15.6075	41.5319	27.8386
11	1.32	16.9250	45.3193	29.6838
12	1.45	18.2425	49.3609	31.6944
13	1.58	19.5600	53.6776	33.8596
14	1.71	20.8775	58.2893	36.1712
15	1.84	22.1950	63.2148	38.6232
16	1.98	23.5125	68.4724	41.2106
17	2.11	24.8300	74.0796	43.9299
18	2.24	26.1475	80.0536	46.7779
19	2.37	27.4650	86.4111	49.7523
20	2.50	28.7825	93.1687	52.8510
21	2.63	30.1000	100.3420	56.0530

Sollecitazioni fondazione di valle

Combinazione n° 10

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3261	8.1198
3	0.16	1.2938	16.0372
4	0.24	2.8867	23.7522
5	0.32	5.0887	31.2649
6	0.40	7.8837	38.5751
7	0.48	11.2554	45.6830
8	0.56	15.1876	52.5885
9	0.64	19.6641	59.2916
10	0.72	24.6688	65.7923
11	0.80	30.1855	72.0906

Sollecitazioni fondazione di monte

Combinazione n° 10

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.18	-1.1024	-12.0775
3	0.36	-4.2864	-23.1303
4	0.54	-9.3678	-33.1582
5	0.72	-16.1619	-42.1613
6	0.90	-24.3543	-47.5396
7	1.08	-33.1314	-49.8131
8	1.26	-42.2255	-51.0617
9	1.44	-51.4522	-51.2856
10	1.62	-60.5549	-49.2846
11	1.80	-69.1151	-45.6589

Sollecitazioni mensola di contrappeso

Combinazione n° 10

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 10

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	15.71	15.71	0.00	-198.02	13.85	168.20		
2	0.13	100, 40	15.71	15.71	63.48	-207.94	12.53	168.89		
3	0.26	100, 40	15.71	15.71	68.42	-208.72	10.72	169.06		
4	0.40	100, 40	15.71	15.71	72.01	-209.28	9.35	169.24		
5	0.53	100, 40	15.71	15.71	74.65	-209.69	8.28	169.42		
6	0.66	100, 40	15.71	15.71	76.58	-209.99	7.41	169.60		
7	0.79	100, 40	15.71	15.71	77.94	-210.20	6.69	169.78		
8	0.92	100, 40	15.71	15.71	78.81	-210.34	6.07	169.95		
9	1.05	100, 40	15.71	15.71	79.17	-210.40	5.54	170.13		
10	1.19	100, 40	15.71	15.71	79.06	-210.38	5.07	170.31		
11	1.32	100, 40	15.71	15.71	78.54	-210.30	4.64	170.49		
12	1.45	100, 40	15.71	15.71	77.67	-210.16	4.26	170.67		
13	1.58	100, 40	15.71	15.71	76.52	-209.98	3.91	170.84		
14	1.71	100, 40	15.71	15.71	75.13	-209.77	3.60	171.02		
15	1.84	100, 40	15.71	15.71	73.56	-209.52	3.31	171.20		
16	1.98	100, 40	15.71	15.71	71.85	-209.25	3.06	171.38		
17	2.11	100, 40	15.71	15.71	70.04	-208.97	2.82	171.55		
18	2.24	100, 40	15.71	15.71	68.16	-208.68	2.61	171.73		
19	2.37	100, 40	15.71	15.71	66.23	-208.37	2.41	171.91		
20	2.50	100, 40	15.71	15.71	64.28	-208.07	2.23	172.09		
21	2.63	100, 40	15.71	15.71	62.32	-207.76	2.07	172.27		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 10

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100.50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 10

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	619.99	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	159.43	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	72.86	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	42.13	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	27.71	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	19.77	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	14.92	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	11.73	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	9.51	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	7.91	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	0.18	100 61	15 71	15 71	0.00	-322 44	292 50	203 16		

3	0.36	100, 60	15.71	15.71	0.00 -313.12	73.05	199.06	
4	0.54	100, 58	15.71	15.71	0.00 -303.81	32.43	194.95	
5	0.72	100, 57	15.71	15.71	0.00 -294.50	18.22	190.81	
6	0.90	100, 55	15.71	15.71	0.00 -285.19	11.71	186.66	
7	1.08	100, 53	15.71	15.71	0.00 -275.88	8.33	182.48	
8	1.26	100, 52	15.71	15.71	0.00 -266.58	6.31	178.28	
9	1.44	100, 50	15.71	15.71	0.00 -257.27	5.00	175.16	
10	1.62	100, 49	15.71	15.71	0.00 -247.97	4.09	172.30	
11	1.80	100, 47	15.71	15.71	0.00 -238.67	3.45	169.40	

COMBINAZIONE n° 11

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	73.0555 69.7312 21.7870 X = 1.80 [m] 17.35 54.01	[kN] [kN] [kN] [m] [°]	Υ	=	-1.93
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	106.6330 X = 0.92 [m]	[kN] [m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso Baricentro terrapieno della mensola di contrappeso	0.0000 X = 0.00	[kN] Y = 0.00			
<u>Risultanti carichi esterni</u> Componente dir. X	25.05	[kN]			
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione	94.7812 189.6875 -1.8847 166.4659 375.2075 197.2264 77.8882 0.45 3.01 212.0491 21.55 88.2281	[kN] [kN] [kNm] [kNm] [kN] [kN] [kN] [m] [m] [m] [kN]			

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento

2.25

Stabilità globale muro + terreno

Combinazione n° 12

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.59 Y[m] = 1.48

Raggio del cerchio R[m]= 5.31

Ascissa a valle del cerchio Xi[m] = -4.00Ascissa a monte del cerchio Xs[m] = 4.52

Larghezza della striscia dx[m]= 0.34 Coefficiente di sicurezza C= 1.45

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	②(°)	Wsin?	b/cos2	?	С	u
1	1201.61	68.35	1116.81	0.92	26.56	0.000	0.000
2	1706.60	60.21	1481.01	0.69	26.56	0.000	0.000
3	2072.87	53.41	1664.43	0.57	26.56	0.000	0.000
4	2362.02	47.60	1744.16	0.51	26.56	0.000	0.000
5	2599.69	42.38	1752.21	0.46	26.56	0.000	0.000
6	2798.78	37.57	1706.31	0.43	26.56	0.000	0.000
7	2966.87	33.05	1617.99	0.41	26.56	0.000	0.000
8	3111.88	28.76	1497.02	0.39	26.56	0.000	0.000
9	3334.80	24.63	1389.93	0.37	26.56	0.000	0.000
10	3428.43	20.64	1208.64	0.36	26.56	0.000	0.000
11	2889.34	16.75	832.94	0.36	26.56	0.000	0.000
12	2657.61	12.95	595.39	0.35	26.56	0.000	0.000
13	2753.06	9.19	439.89	0.35	26.56	0.000	0.000

14	3087.22	5.48	294.95	0.34	26.56	0.000	0.000	
15	1901.80	1.79	59.52	0.34	26.56	0.000	0.000	
16	927.82	-1.89	-30.57	0.34	26.56	0.000	0.000	
17	891.78	-5.58	-86.67	0.34	26.56	0.000	0.000	
18	805.32	-9.29	-130.00	0.35	26.56	0.000	0.000	
19	758.53	-13.04	-171.18	0.35	26.56	0.000	0.000	
20	695.23	-16.85	-201.57	0.36	26.56	0.000	0.000	
21	614.53	-20.74	-217.65	0.36	26.56	0.000	0.000	
22	515.14	-24.74	-215.56	0.38	26.56	0.000	0.000	
23	395.33	-28.86	-190.83	0.39	26.56	0.000	0.000	
24	252.71	-33.16	-138.23	0.41	26.56	0.000	0.000	
25	83.89	-37.68	-51.28	0.43	26.56	0.000	0.000	

2W_i= 439.4711 [kN] 2W_isin2_i= 156.5917 [kN] 2W_itan2_i= 219.6896 [kN] 2tan2_itan2_i= 3.80

COMBINAZIONE n° 13

Valore della spinta statica	29.2491	[kN]			
Componente orizzontale della spinta statica	27.2450	[kN]			
Componente verticale della spinta statica	10.6406	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-2.17
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	5.0835	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-2.17
Inclinazione linea di rottura in condizioni sismiche	52.11	[°]			
Peso terrapieno gravante sulla fondazione a monte	91.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	6.2929	[kN]			
Inerzia verticale del muro	-3.1464	[kN]			
Inerzia del terrapieno fondazione di monte	8.4874	[kN]			

Inerzia verticale del terrapieno fondazione di monte	-4.2437	[kN]
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]
<u>Risultanti</u>		
Risultante dei carichi applicati in dir. orizzontale	46.7604	[kN]
Risultante dei carichi applicati in dir. verticale	164.9893	[kN]
Resistenza passiva a valle del muro	-2.6038	[kN]
Sforzo normale sul piano di posa della fondazione	168.4369	[kN]
Sforzo tangenziale sul piano di posa della fondazione	32.2027	[kN]
Eccentricità rispetto al baricentro della fondazione	-0.07	[m]
Lunghezza fondazione reagente	3.01	[m]
Risultante in fondazione	171.4876	[kN]
Inclinazione della risultante (rispetto alla normale)	10.82	[°]
Momento rispetto al baricentro della fondazione	-12.3183	[kNm]
Carico ultimo della fondazione	3011.3848	[kN]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	3.01	[m]
Tensione terreno allo spigolo di valle	0.04778	[N/mmq]
Tensione terreno allo spigolo di monte	0.06408	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]
•		•

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00
I coefficienti N' tengono conto o di posa, inclinazione pendio.	dei fattori di forma, profo	ndità, inclinazione carico, i	nclinazione piano
	$N'_{c} = 44.04$	$N'_{q} = 28.52$	N' _? = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.12
Coefficiente di sicurezza a carico ultimo	17.88

Sollecitazioni paramento

Combinazione n° 13

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5522	0.1740
3	0.26	6.3850	-0.5121	0.4524
4	0.40	7.7025	-0.4284	0.8351
5	0.53	9.0200	-0.2874	1.3223
6	0.66	10.3375	-0.0754	1.9138
7	0.79	11.6550	0.2215	2.6098
8	0.92	12.9725	0.6169	3.4101
9	1.05	14.2900	1.1246	4.3148
10	1.19	15.6075	1.7584	5.3240
11	1.32	16.9250	2.5320	6.4375
12	1.45	18.2425	3.4593	7.6554
13	1.58	19.5600	4.5538	8.9777
14	1.71	20.8775	5.8295	10.4043
15	1.84	22.1950	7.2999	11.9354
16	1.98	23.5125	8.9790	13.5709
17	2.11	24.8300	10.8805	15.3107
18	2.24	26.1475	13.0180	17.1550
19	2.37	27.4650	15.4054	19.1036
20	2.50	28.7825	18.0564	21.1567
21	2.63	30.1000	20.9841	23.2974

Sollecitazioni fondazione di valle

Combinazione n° 13

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.08	0.1214	3.0379
3	0.16	0.4866	6.0966
4	0.24	1.0974	9.1760
5	0.32	1.9553	12.2763
6	0.40	3.0621	15.3973
7	0.48	4.4195	18.5391
8	0.56	6.0289	21.7016
9	0.64	7.8923	24.8849
10	0.72	10.0111	28.0890
11	0.80	12.3871	31.3139

Sollecitazioni fondazione di monte

Combinazione n° 13

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.0721	-0.8185
3	0.36	-0.3010	-1.7419
4	0.54	-0.7055	-2.7703
5	0.72	-1.3046	-3.9036
6	0.90	-2.1171	-5.1419
7	1.08	-3.1619	-6.4851
8	1.26	-4.4580	-7.9333
9	1.44	-6.0242	-9.4864
10	1.62	-7.8074	-9.9444
11	1.80	-9.5925	-9.9074

Sollecitazioni mensola di contrappeso

Combinazione n° 13

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 13

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	15.71	15.71	0.00	0.00	1000.00	168.20		
2	0.13	100, 40	15.71	15.71	3656.15	398.40	721.49	168.89		
3	0.26	100, 40	15.71	15.71	4286.33	343.76	671.31	169.06		
4	0.40	100, 40	15.71	15.71	4929.33	274.16	639.97	169.24		
5	0.53	100, 40	15.71	15.71	5402.08	172.14	598.90	169.42		
6	0.66	100, 40	15.71	15.71	5624.42	41.02	544.08	169.60		
7	0.79	100, 40	15.71	15.71	5516.25	-104.81	473.30	169.78		
8	0.92	100, 40	15.71	15.71	5152.70	-245.02	397.20	169.95		
9	1.05	100, 40	15.71	15.71	4322.39	-340.17	302.48	170.13		
10	1.19	100, 40	15.71	15.71	3584.54	-403.85	229.67	170.31		
11	1.32	100, 40	15.71	15.71	2978.38	-445.58	175.98	170.49		
12	1.45	100, 40	15.71	15.71	2415.31	-458.01	132.40	170.67		
13	1.58	100, 40	15.71	15.71	1867.07	-434.68	95.45	170.84		
14	1.71	100, 40	15.71	15.71	1429.49	-399.15	68.47	171.02		
15	1.84	100, 40	15.71	15.71	1110.40	-365.21	50.03	171.20		
16	1.98	100, 40	15.71	15.71	869.01	-331.86	36.96	171.38		
17	2.11	100, 40	15.71	15.71	702.47	-307.82	28.29	171.55		
18	2.24	100, 40	15.71	15.71	579.75	-288.64	22.17	171.73		
19	2.37	100, 40	15.71	15.71	489.42	-274.52	17.82	171.91		
20	2.50	100, 40	15.71	15.71	420.40	-263.73	14.61	172.09		
21	2.63	100, 40	15.71	15.71	366.14	-255.25	12.16	172.27		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 13

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	$\mathbf{M}_{\mathbf{u}}$	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 13

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	1665.91	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	423.88	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	191.67	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	109.65	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	71.34	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	50.35	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	37.58	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	29.23	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	23.45	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	19.28	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	M_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	0.18	100 61	15 71	15 71	0.00	-322 44	4472 69	203 16		

3	0.36	100, 60	15.71	15.71	0.00	-313.12	1040.44	199.06	
4	0.54	100, 58	15.71	15.71	0.00	-303.81	430.64	194.95	
5	0.72	100, 57	15.71	15.71	0.00	-294.50	225.74	190.81	
6	0.90	100, 55	15.71	15.71	0.00	-285.19	134.71	186.66	
7	1.08	100, 53	15.71	15.71	0.00	-275.88	87.25	182.48	
8	1.26	100, 52	15.71	15.71	0.00	-266.58	59.80	178.28	
9	1.44	100, 50	15.71	15.71	0.00	-257.27	42.71	175.16	
10	1.62	100, 49	15.71	15.71	0.00	-247.97	31.76	172.30	
11	1.80	100, 47	15.71	15.71	0.00	-238.67	24.88	169.40	

COMBINAZIONE n° 14

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	29.2491 27.2450 10.6406 X = 1.80 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.17
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	21.33 57.17	[°] [°]			
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta	7.7211 X = 1.80 [m]	[kN] [m]	Υ	=	-2.17
Inclinazione linea di rottura in condizioni sismiche	52.54	[°]			
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	91.8145 X = 0.92 [m]	[kN] [m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	6.2929	[kN]			
Inerzia verticale del muro	3.1464	[kN]			
Inerzia del terrapieno fondazione di monte	8.4874	[kN]			
Inerzia verticale del terrapieno fondazione di monte	4.2437	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	49.2173	[kN]			
Risultante dei carichi applicati in dir. verticale	180.7291	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	184.3309	[kN]			

Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	33.2784 -0.09 3.01 187.3108 10.23 -15.8239 2984.6640	[kN] [m] [m] [kN] [s] [kNm] [kNm]
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte Tensione terreno all'estremità della mensola di contrappeso	3.01 0.05074 0.07168 0.000	[m] [N/mmq] [N/mmq] [N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N _? = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.24
Coefficiente di sicurezza a carico ultimo 16.19

Sollecitazioni paramento

Combinazione n° 14

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5520	0.1780
3	0.26	6.3850	-0.5107	0.4684
4	0.40	7.7025	-0.4236	0.8712
5	0.53	9.0200	-0.2762	1.3864
6	0.66	10.3375	-0.0534	2.0141
7	0.79	11.6550	0.2595	2.7541
8	0.92	12.9725	0.6773	3.6066
9	1.05	14.2900	1.2148	4.5715
10	1.19	15.6075	1.8868	5.6488
11	1.32	16.9250	2.7082	6.8385
12	1.45	18.2425	3.6937	8.1406
13	1.58	19.5600	4.8581	9.5551
14	1.71	20.8775	6.2164	11.0820
15	1.84	22.1950	7.7832	12.7214
16	1.98	23.5125	9.5734	14.4731
17	2.11	24.8300	11.6018	16.3373
18	2.24	26.1475	13.8832	18.3139
19	2.37	27.4650	16.4324	20.4029
20	2.50	28.7825	19.2643	22.6043
21	2.63	30.1000	22.3929	24.9001

Sollecitazioni fondazione di valle

Combinazione n° 14

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1310	3.2810
3	0.16	0.5258	6.5926
4	0.24	1.1867	9.9349
5	0.32	2.1162	13.3078
6	0.40	3.3167	16.7115
7	0.48	4.7908	20.1458
8	0.56	6.5409	23.6107
9	0.64	8.5694	27.1064
10	0.72	10.8787	30.6327
11	0.80	13.4714	34.1897

Sollecitazioni fondazione di monte

Combinazione n° 14

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	0.0498	0.5271
3	0.36	0.1805	0.8992
4	0.54	0.3642	1.1162
5	0.72	0.5730	1.1782
6	0.90	0.7790	1.0852
7	1.08	0.9544	0.8371
8	1.26	1.0711	0.4340
9	1.44	1.1013	-0.1242
10	1.62	1.0891	0.3626
11	1.80	1.2406	1.2944

Sollecitazioni mensola di contrappeso

Combinazione n° 14

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 14

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
0.00	100, 40	15.71	15.71	0.00	0.00	1000.00	168.20		
0.13	100, 40	15.71	15.71	3656.84	398.34	721.63	168.89		
0.26	100, 40	15.71	15.71	4291.59	343.23	672.14	169.06		
0.40	100, 40	15.71	15.71	4946.18	272.05	642.15	169.24		
0.53	100, 40	15.71	15.71	5412.96	165.72	600.11	169.42		
0.66	100, 40	15.71	15.71	5644.55	29.15	546.03	169.60		
0.79	100, 40	15.71	15.71	5486.83	-122.16	470.77	169.78		
0.92	100, 40	15.71	15.71	5021.65	-262.17	387.10	169.95		
1.05	100, 40	15.71	15.71	4174.61	-354.88	292.14	170.13		
1.19	100, 40	15.71	15.71	3434.91	-415.25	220.08	170.31		
1.32	100, 40	15.71	15.71	2833.56	-453.40	167.42	170.49		
1.45	100, 40	15.71	15.71	2239.13	-453.37	122.74	170.67		
1.58	100, 40	15.71	15.71	1698.96	-421.97	86.86	170.84		
1.71	100, 40	15.71	15.71	1293.30	-385.09	61.95	171.02		
1.84	100, 40	15.71	15.71	996.64	-349.49	44.90	171.20		
1.98	100, 40	15.71	15.71	787.35	-320.58	33.49	171.38		
2.11	100, 40	15.71	15.71	636.84	-297.56	25.65	171.55		
2.24	100, 40	15.71	15.71	528.55	-280.64	20.21	171.73		
2.37	100, 40	15.71	15.71	448.01	-268.05	16.31	171.91		
2.50	100, 40	15.71	15.71	386.01	-258.36	13.41	172.09		
2.63	100, 40	15.71	15.71	336.97	-250.69	11.20	172.27		
	0.00 0.13 0.26 0.40 0.53 0.66 0.79 0.92 1.05 1.19 1.32 1.45 1.58 1.71 1.84 1.98 2.11 2.24 2.37 2.50	0.00100, 400.13100, 400.26100, 400.40100, 400.53100, 400.66100, 400.79100, 401.05100, 401.19100, 401.32100, 401.45100, 401.58100, 401.71100, 401.84100, 401.98100, 402.11100, 402.24100, 402.50100, 40	0.00 100, 40 15.71 0.13 100, 40 15.71 0.26 100, 40 15.71 0.40 100, 40 15.71 0.53 100, 40 15.71 0.66 100, 40 15.71 0.79 100, 40 15.71 1.05 100, 40 15.71 1.19 100, 40 15.71 1.32 100, 40 15.71 1.45 100, 40 15.71 1.58 100, 40 15.71 1.71 100, 40 15.71 1.84 100, 40 15.71 1.98 100, 40 15.71 2.11 100, 40 15.71 2.24 100, 40 15.71 2.37 100, 40 15.71 2.50 100, 40 15.71	0.00 100, 40 15.71 15.71 0.13 100, 40 15.71 15.71 0.26 100, 40 15.71 15.71 0.40 100, 40 15.71 15.71 0.53 100, 40 15.71 15.71 0.66 100, 40 15.71 15.71 0.79 100, 40 15.71 15.71 1.05 100, 40 15.71 15.71 1.19 100, 40 15.71 15.71 1.32 100, 40 15.71 15.71 1.45 100, 40 15.71 15.71 1.58 100, 40 15.71 15.71 1.71 100, 40 15.71 15.71 1.84 100, 40 15.71 15.71 1.98 100, 40 15.71 15.71 2.11 100, 40 15.71 15.71 2.24 100, 40 15.71 15.71 2.37 100, 40 15.71 15.71 2.50 100, 40 15.71 15.71	0.00 100, 40 15.71 15.71 0.00 0.13 100, 40 15.71 15.71 3656.84 0.26 100, 40 15.71 15.71 4291.59 0.40 100, 40 15.71 15.71 4946.18 0.53 100, 40 15.71 15.71 5412.96 0.66 100, 40 15.71 15.71 5644.55 0.79 100, 40 15.71 15.71 5486.83 0.92 100, 40 15.71 15.71 5021.65 1.05 100, 40 15.71 15.71 3434.91 1.32 100, 40 15.71 15.71 2833.56 1.45 100, 40 15.71 15.71 2239.13 1.58 100, 40 15.71 15.71 1698.96 1.71 100, 40 15.71 15.71 1996.64 1.98 100, 40 15.71 15.71 787.35 2.11 100, 40 15.71 15.71 528.55 2.37 100, 40 15.71 15.71 448.01	0.00 100, 40 15.71 15.71 0.00 0.00 0.13 100, 40 15.71 15.71 3656.84 398.34 0.26 100, 40 15.71 15.71 4291.59 343.23 0.40 100, 40 15.71 15.71 4946.18 272.05 0.53 100, 40 15.71 15.71 5412.96 165.72 0.66 100, 40 15.71 15.71 5644.55 29.15 0.79 100, 40 15.71 15.71 5486.83 -122.16 0.92 100, 40 15.71 15.71 5021.65 -262.17 1.05 100, 40 15.71 15.71 4174.61 -354.88 1.19 100, 40 15.71 15.71 3434.91 -415.25 1.32 100, 40 15.71 15.71 2833.56 -453.40 1.45 100, 40 15.71 15.71 1698.96 -421.97 1.71 100, 40 15.71 15.71 <t< td=""><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 0.13 100, 40 15.71 15.71 3656.84 398.34 721.63 0.26 100, 40 15.71 15.71 4291.59 343.23 672.14 0.40 100, 40 15.71 15.71 4946.18 272.05 642.15 0.53 100, 40 15.71 15.71 5412.96 165.72 600.11 0.66 100, 40 15.71 15.71 5486.83 -122.16 470.77 0.92 100, 40 15.71 15.71 5021.65 -262.17 387.10 1.05 100, 40 15.71 15.71 5021.65 -262.17 387.10 1.05 100, 40 15.71 15.71 4174.61 -354.88 292.14 1.19 100, 40 15.71 15.71 2833.56 -453.40 167.42 1.45 100, 40 15.71 15.71 2239.13 -453.37 122.74 <tr< td=""><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3656.84 398.34 721.63 168.89 0.26 100, 40 15.71 15.71 4291.59 343.23 672.14 169.06 0.40 100, 40 15.71 15.71 4946.18 272.05 642.15 169.24 0.53 100, 40 15.71 15.71 5412.96 165.72 600.11 169.42 0.66 100, 40 15.71 15.71 5644.55 29.15 546.03 169.60 0.79 100, 40 15.71 15.71 5286.83 -122.16 470.77 169.78 0.92 100, 40 15.71 15.71 5021.65 -262.17 387.10 169.95 1.05 100, 40 15.71 15.71 3434.91 -415.25 220.08 170.31 1.32 100, 40 15.71 15.71 2833.56 -453.40 1</td><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3656.84 398.34 721.63 168.89 0.26 100, 40 15.71 15.71 4291.59 343.23 672.14 169.06 0.40 100, 40 15.71 15.71 4946.18 272.05 642.15 169.24 0.53 100, 40 15.71 15.71 5412.96 165.72 600.11 169.42 0.66 100, 40 15.71 15.71 5644.55 29.15 546.03 169.60 0.79 100, 40 15.71 15.71 5021.65 -262.17 387.10 169.78 0.92 100, 40 15.71 15.71 4174.61 -354.88 292.14 170.13 1.19 100, 40 15.71 15.71 2833.56 -453.40 167.42 170.49 1.45 100, 40 15.71 15.71 1298.96 -421.97</td></tr<></td></t<>	0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 0.13 100, 40 15.71 15.71 3656.84 398.34 721.63 0.26 100, 40 15.71 15.71 4291.59 343.23 672.14 0.40 100, 40 15.71 15.71 4946.18 272.05 642.15 0.53 100, 40 15.71 15.71 5412.96 165.72 600.11 0.66 100, 40 15.71 15.71 5486.83 -122.16 470.77 0.92 100, 40 15.71 15.71 5021.65 -262.17 387.10 1.05 100, 40 15.71 15.71 5021.65 -262.17 387.10 1.05 100, 40 15.71 15.71 4174.61 -354.88 292.14 1.19 100, 40 15.71 15.71 2833.56 -453.40 167.42 1.45 100, 40 15.71 15.71 2239.13 -453.37 122.74 <tr< td=""><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3656.84 398.34 721.63 168.89 0.26 100, 40 15.71 15.71 4291.59 343.23 672.14 169.06 0.40 100, 40 15.71 15.71 4946.18 272.05 642.15 169.24 0.53 100, 40 15.71 15.71 5412.96 165.72 600.11 169.42 0.66 100, 40 15.71 15.71 5644.55 29.15 546.03 169.60 0.79 100, 40 15.71 15.71 5286.83 -122.16 470.77 169.78 0.92 100, 40 15.71 15.71 5021.65 -262.17 387.10 169.95 1.05 100, 40 15.71 15.71 3434.91 -415.25 220.08 170.31 1.32 100, 40 15.71 15.71 2833.56 -453.40 1</td><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3656.84 398.34 721.63 168.89 0.26 100, 40 15.71 15.71 4291.59 343.23 672.14 169.06 0.40 100, 40 15.71 15.71 4946.18 272.05 642.15 169.24 0.53 100, 40 15.71 15.71 5412.96 165.72 600.11 169.42 0.66 100, 40 15.71 15.71 5644.55 29.15 546.03 169.60 0.79 100, 40 15.71 15.71 5021.65 -262.17 387.10 169.78 0.92 100, 40 15.71 15.71 4174.61 -354.88 292.14 170.13 1.19 100, 40 15.71 15.71 2833.56 -453.40 167.42 170.49 1.45 100, 40 15.71 15.71 1298.96 -421.97</td></tr<>	0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3656.84 398.34 721.63 168.89 0.26 100, 40 15.71 15.71 4291.59 343.23 672.14 169.06 0.40 100, 40 15.71 15.71 4946.18 272.05 642.15 169.24 0.53 100, 40 15.71 15.71 5412.96 165.72 600.11 169.42 0.66 100, 40 15.71 15.71 5644.55 29.15 546.03 169.60 0.79 100, 40 15.71 15.71 5286.83 -122.16 470.77 169.78 0.92 100, 40 15.71 15.71 5021.65 -262.17 387.10 169.95 1.05 100, 40 15.71 15.71 3434.91 -415.25 220.08 170.31 1.32 100, 40 15.71 15.71 2833.56 -453.40 1	0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3656.84 398.34 721.63 168.89 0.26 100, 40 15.71 15.71 4291.59 343.23 672.14 169.06 0.40 100, 40 15.71 15.71 4946.18 272.05 642.15 169.24 0.53 100, 40 15.71 15.71 5412.96 165.72 600.11 169.42 0.66 100, 40 15.71 15.71 5644.55 29.15 546.03 169.60 0.79 100, 40 15.71 15.71 5021.65 -262.17 387.10 169.78 0.92 100, 40 15.71 15.71 4174.61 -354.88 292.14 170.13 1.19 100, 40 15.71 15.71 2833.56 -453.40 167.42 170.49 1.45 100, 40 15.71 15.71 1298.96 -421.97

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 14

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	$\mathbf{M}_{\mathbf{u}}$	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 14

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	1543.15	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	392.32	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	177.25	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	101.31	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	65.87	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	46.45	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	34.64	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	26.92	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	21.58	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	17.73	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	በ 18	100 61	15 71	15 71	0.00	322 44	6479 01	209 17		

3	0.36	100, 60	15.71	15.71	0.00	313.12	1735.13	206.35	
4	0.54	100, 58	15.71	15.71	0.00	303.81	834.24	203.49	
5	0.72	100, 57	15.71	15.71	0.00	294.50	513.95	200.61	
6	0.90	100, 55	15.71	15.71	0.00	285.19	366.08	197.69	
7	1.08	100, 53	15.71	15.71	0.00	275.88	289.07	194.73	
8	1.26	100, 52	15.71	15.71	0.00	266.58	248.88	191.73	
9	1.44	100, 50	15.71	15.71	0.00	257.27	233.61	188.69	
10	1.62	100, 49	15.71	15.71	0.00	247.97	227.68	185.61	
11	1.80	100, 47	15.71	15.71	0.00	238.67	192.39	182.48	

COMBINAZIONE n° 15

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	36.1660 34.5203 10.7856 X = 1.80 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.17
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 54.01	[°] [°]			
Incremento sismico della spinta	8.8312	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-2.17
Inclinazione linea di rottura in condizioni sismiche	48.89	[°]			
Peso terrapieno gravante sulla fondazione a monte	91.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	6.2929	[kN]			
Inerzia verticale del muro	3.1464	[kN]			
Inerzia del terrapieno fondazione di monte	8.4874	[kN]			
Inerzia verticale del terrapieno fondazione di monte	4.2437	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	57.7298	[kN]			
Risultante dei carichi applicati in dir. verticale	180.6989	[kN]			
Resistenza passiva a valle del muro	-2.0941	[kN]			
Sforzo normale sul piano di posa della fondazione	185.0428	[kN]			

Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	41.7612 -0.04 3.01 189.6967 12.72 -7.6312 1299.9313	[kN] [m] [m] [kN] [°] [kNm]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	3.01	[m]
Tensione terreno allo spigolo di valle	0.05640	[N/mmq]
Tensione terreno allo spigolo di monte	0.06650	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	$N_{?} = 10.72$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _P = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.43
Coefficiente di sicurezza a carico ultimo 7.03

Sollecitazioni paramento

Combinazione n° 15

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5514	0.1919
3	0.26	6.3850	-0.5058	0.5240
4	0.40	7.7025	-0.4072	0.9963
5	0.53	9.0200	-0.2371	1.6087
6	0.66	10.3375	0.0229	2.3614
7	0.79	11.6550	0.3913	3.2543
8	0.92	12.9725	0.8866	4.2874
9	1.05	14.2900	1.5272	5.4607
10	1.19	15.6075	2.3316	6.7742
11	1.32	16.9250	3.3183	8.2278
12	1.45	18.2425	4.5058	9.8217
13	1.58	19.5600	5.9125	11.5558
14	1.71	20.8775	7.5569	13.4301
15	1.84	22.1950	9.4575	15.4445
16	1.98	23.5125	11.6327	17.5992
17	2.11	24.8300	14.1010	19.8941
18	2.24	26.1475	16.8809	22.3291
19	2.37	27.4650	19.9909	24.9044
20	2.50	28.7825	23.4494	27.6199
21	2.63	30.1000	27.2741	30.4531

Sollecitazioni fondazione di valle

Combinazione n° 15

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1487	3.7186
3	0.16	0.5952	7.4448
4	0.24	1.3401	11.1785
5	0.32	2.3839	14.9198
6	0.40	3.7274	18.6685
7	0.48	5.3711	22.4249
8	0.56	7.3156	26.1888
9	0.64	9.5615	29.9602
10	0.72	12.1094	33.7392
11	0.80	14.9600	37.5257

Sollecitazioni fondazione di monte

Combinazione n° 15

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.0314	-0.3549
3	0.36	-0.1300	-0.7477
4	0.54	-0.3028	-1.1785
5	0.72	-0.5566	-1.6473
6	0.90	-0.8981	-2.1540
7	1.08	-1.3343	-2.6987
8	1.26	-1.8719	-3.2813
9	1.44	-2.5178	-3.9019
10	1.62	-3.2069	-3.3605
11	1.80	-3.7119	-2.2570

Sollecitazioni mensola di contrappeso

Combinazione n° 15

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 15

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	15.71	15.71	0.00	0.00	1000.00	168.20		
2	0.13	100, 40	15.71	15.71	3659.22	398.16	722.10	168.89		
3	0.26	100, 40	15.71	15.71	4309.94	341.41	675.01	169.06		
4	0.40	100, 40	15.71	15.71	5003.76	264.51	649.63	169.24		
5	0.53	100, 40	15.71	15.71	5451.00	143.29	604.32	169.42		
6	0.66	100, 40	15.71	15.71	5672.68	-12.56	548.75	169.60		
7	0.79	100, 40	15.71	15.71	5387.29	-180.86	462.23	169.78		
8	0.92	100, 40	15.71	15.71	4586.19	-313.43	353.53	169.95		
9	1.05	100, 40	15.71	15.71	3698.02	-395.21	258.78	170.13		
10	1.19	100, 40	15.71	15.71	2981.52	-445.41	191.03	170.31		
11	1.32	100, 40	15.71	15.71	2326.91	-456.21	137.48	170.49		
12	1.45	100, 40	15.71	15.71	1712.61	-423.00	93.88	170.67		
13	1.58	100, 40	15.71	15.71	1263.93	-382.05	64.62	170.84		
14	1.71	100, 40	15.71	15.71	946.36	-342.55	45.33	171.02		
15	1.84	100, 40	15.71	15.71	733.95	-312.74	33.07	171.20		
16	1.98	100, 40	15.71	15.71	585.10	-289.48	24.88	171.38		
17	2.11	100, 40	15.71	15.71	481.11	-273.22	19.38	171.55		
18	2.24	100, 40	15.71	15.71	404.71	-261.28	15.48	171.73		
19	2.37	100, 40	15.71	15.71	346.46	-252.17	12.61	171.91		
20	2.50	100, 40	15.71	15.71	300.76	-245.03	10.45	172.09		
21	2.63	100, 40	15.71	15.71	264.10	-239.30	8.77	172.27		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 15

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 15

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	1359.86	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	346.56	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	156.96	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	89.93	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	58.61	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	41.43	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	30.97	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	24.12	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	19.38	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	15.96	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	0.18	100 61	15 71	15 71	0.00	-322 44	10278 77	203 16		

3	0.36	100, 60	15.71	15.71	0.00	-313.12	2408.04	199.06	
4	0.54	100, 58	15.71	15.71	0.00	-303.81	1003.26	194.95	
5	0.72	100, 57	15.71	15.71	0.00	-294.50	529.13	190.81	
6	0.90	100, 55	15.71	15.71	0.00	-285.19	317.54	186.66	
7	1.08	100, 53	15.71	15.71	0.00	-275.88	206.76	182.48	
8	1.26	100, 52	15.71	15.71	0.00	-266.58	142.41	178.28	
9	1.44	100, 50	15.71	15.71	0.00	-257.27	102.18	175.16	
10	1.62	100, 49	15.71	15.71	0.00	-247.97	77.32	172.30	
11	1.80	100, 47	15.71	15.71	0.00	-238.67	64.30	169.40	

COMBINAZIONE n° 16

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	36.1660 34.5203 10.7856 X = 1.80 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.17
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 54.01	[°] [°]			
Incremento sismico della spinta	5.5673	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-2.17
Inclinazione linea di rottura in condizioni sismiche	48.32	[°]			
Peso terrapieno gravante sulla fondazione a monte	91.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	6.2929	[kN]			
Inerzia verticale del muro	-3.1464	[kN]			
Inerzia del terrapieno fondazione di monte	8.4874	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-4.2437	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	54.6145	[kN]			
Risultante dei carichi applicati in dir. verticale	164.9453	[kN]			
Resistenza passiva a valle del muro	-2.0941	[kN]			
Sforzo normale sul piano di posa della fondazione	169.0776	[kN]			

Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	40.0307 -0.03 3.01 173.7518 13.32 -4.7351 1311.6787	[kN] [m] [m] [kN] [s] [kNm]
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	3.01 0.05301 0.05928	[m] [N/mmq] [N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.37 Coefficiente di sicurezza a carico ultimo 7.76

Sollecitazioni paramento

Combinazione n° 16

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5516	0.1868
3	0.26	6.3850	-0.5076	0.5036
4	0.40	7.7025	-0.4132	0.9505
5	0.53	9.0200	-0.2514	1.5274
6	0.66	10.3375	-0.0050	2.2343
7	0.79	11.6550	0.3431	3.0713
8	0.92	12.9725	0.8100	4.0382
9	1.05	14.2900	1.4128	5.1353
10	1.19	15.6075	2.1688	6.3623
11	1.32	16.9250	3.0950	7.7194
12	1.45	18.2425	4.2086	9.2065
13	1.58	19.5600	5.5266	10.8236
14	1.71	20.8775	7.0663	12.5707
15	1.84	22.1950	8.8447	14.4479
16	1.98	23.5125	10.8790	16.4551
17	2.11	24.8300	13.1863	18.5924
18	2.24	26.1475	15.7838	20.8597
19	2.37	27.4650	18.6886	23.2570
20	2.50	28.7825	21.9177	25.7843
21	2.63	30.1000	25.4877	28.4209

Sollecitazioni fondazione di valle

Combinazione n° 16

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1377	3.4425
3	0.16	0.5508	6.8844
4	0.24	1.2392	10.3257
5	0.32	2.2029	13.7663
6	0.40	3.4418	17.2064
7	0.48	4.9559	20.6457
8	0.56	6.7451	24.0845
9	0.64	8.8094	27.5226
10	0.72	11.1487	30.9601
11	0.80	13.7630	34.3969

Sollecitazioni fondazione di monte

Combinazione n° 16

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	М	т
1	0.00	0.0000	0.0000
2	0.18	-0.1473	-1.6360
3	0.36	-0.5887	-3.2685
4	0.54	-1.3237	-4.8976
5	0.72	-2.3517	-6.5233
6	0.90	-3.6719	-8.1456
7	1.08	-5.2839	-9.7644
8	1.26	-7.1869	-11.3798
9	1.44	-9.3804	-12.9918
10	1.62	-11.7917	-13.4003
11	1.80	-14.1863	-13.2055

Sollecitazioni mensola di contrappeso

Combinazione n° 16

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 16

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	15.71	15.71	0.00	0.00	1000.00	168.20		
2	0.13	100, 40	15.71	15.71	3658.34	398.23	721.92	168.89		
3	0.26	100, 40	15.71	15.71	4303.20	342.08	673.96	169.06		
4	0.40	100, 40	15.71	15.71	4982.53	267.29	646.87	169.24		
5	0.53	100, 40	15.71	15.71	5437.02	151.54	602.77	169.42		
6	0.66	100, 40	15.71	15.71	5689.29	2.77	550.35	169.60		
7	0.79	100, 40	15.71	15.71	5423.30	-159.63	465.32	169.78		
8	0.92	100, 40	15.71	15.71	4739.30	-295.91	365.33	169.95		
9	1.05	100, 40	15.71	15.71	3862.98	-381.93	270.33	170.13		
10	1.19	100, 40	15.71	15.71	3135.58	-435.72	200.90	170.31		
11	1.32	100, 40	15.71	15.71	2515.75	-460.05	148.64	170.49		
12	1.45	100, 40	15.71	15.71	1892.48	-436.60	103.74	170.67		
13	1.58	100, 40	15.71	15.71	1402.99	-396.41	71.73	170.84		
14	1.71	100, 40	15.71	15.71	1057.38	-357.89	50.65	171.02		
15	1.84	100, 40	15.71	15.71	813.54	-324.20	36.65	171.20		
16	1.98	100, 40	15.71	15.71	646.31	-299.04	27.49	171.38		
17	2.11	100, 40	15.71	15.71	528.40	-280.61	21.28	171.55		
18	2.24	100, 40	15.71	15.71	442.66	-267.21	16.93	171.73		
19	2.37	100, 40	15.71	15.71	377.80	-257.07	13.76	171.91		
20	2.50	100, 40	15.71	15.71	327.21	-249.17	11.37	172.09		
21	2.63	100, 40	15.71	15.71	286.80	-242.85	9.53	172.27		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 16

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	\mathbf{N}_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 16

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	1468.38	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	374.50	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	169.73	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	97.33	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	63.47	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	44.90	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	33.59	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	26.18	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	21.05	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	17.35	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	0.18	100 61	15 71	15 71	0.00	-322 44	2189 16	203 16		

3	0.36	100, 60	15.71	15.71	0.00 -313.12	531.85	199.06	
4	0.54	100, 58	15.71	15.71	0.00 -303.81	229.51	194.95	
5	0.72	100, 57	15.71	15.71	0.00 -294.50	125.23	190.81	
6	0.90	100, 55	15.71	15.71	0.00 -285.19	77.67	186.66	
7	1.08	100, 53	15.71	15.71	0.00 -275.88	52.21	182.48	
8	1.26	100, 52	15.71	15.71	0.00 -266.58	37.09	178.28	
9	1.44	100, 50	15.71	15.71	0.00 -257.27	27.43	175.16	
10	1.62	100, 49	15.71	15.71	0.00 -247.97	21.03	172.30	
11	1.80	100, 47	15.71	15.71	0.00 -238.67	16.82	169.40	

COMBINAZIONE n° 17

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	36.1660 34.5203 10.7856 X = 1.80 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.17
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 54.01	[°] [°]			
Incremento sismico della spinta	5.5673	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Y	=	-2.17
Inclinazione linea di rottura in condizioni sismiche	48.32	[°]			
Peso terrapieno gravante sulla fondazione a monte	91.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	6.2929	[kN]			
Inerzia verticale del muro	-3.1464	[kN]			
Inerzia del terrapieno fondazione di monte	8.4874	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-4.2437	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	54.6145	[kN]			
Risultante dei carichi applicati in dir. verticale	164.9453	[kN]			
Resistenza passiva a valle del muro	-2.0941	[kN]			
Momento ribaltante rispetto allo spigolo a valle	65.6419	[kNm]			

Momento stabilizzante rispetto allo spigolo a valle	324.9621	[kNm]			
Sforzo normale sul piano di posa della fondazione	169.0776	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	40.0307	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.03	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	173.7518	[kN]			
Inclinazione della risultante (rispetto alla normale)	13.32	[°]			
Momento rispetto al baricentro della fondazione	-4.7351	[kNm]			
COEFFICIENTI DI SICUREZZA					
Coefficiente di sicurezza a ribaltamento	4.95				
COMBINAZIONE n° 18					
Valore della spinta statica	36.1660	[kN]			
Componente orizzontale della spinta statica	34.5203	[kN]			
Componente verticale della spinta statica	10.7856	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-2.17
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Incremento sismico della spinta	8.8312	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-2.17
Inclinazione linea di rottura in condizioni sismiche	48.89	[°]			
Peso terrapieno gravante sulla fondazione a monte	91.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Y	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	6.2929	[kN]			
Inerzia verticale del muro	3.1464	[kN]			
Inerzia del terrapieno fondazione di monte	8.4874	[kN]			
Inerzia verticale del terrapieno fondazione di monte	4.2437	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	57.7298	[kN]			
Risultante dei carichi applicati in dir. verticale	180.6989	[kN]			
Resistenza passiva a valle del muro	-2.0941	[kN]			

Momento ribaltante rispetto allo spigolo a valle	54.9207	[kNm]
Momento stabilizzante rispetto allo spigolo a valle	341.1762	[kNm]
Sforzo normale sul piano di posa della fondazione	185.0428	[kN]
Sforzo tangenziale sul piano di posa della fondazione	41.7612	[kN]
Eccentricità rispetto al baricentro della fondazione	-0.04	[m]
Lunghezza fondazione reagente	3.01	[m]
Risultante in fondazione	189.6967	[kN]
Inclinazione della risultante (rispetto alla normale)	12.72	[°]
Momento rispetto al baricentro della fondazione	-7.6312	[kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 6.21

Stabilità globale muro + terreno

Combinazione n° 19

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.89 Y[m] = 2.66

Raggio del cerchio R[m]= 6.50

Ascissa a valle del cerchio Xi[m] = -4.72Ascissa a monte del cerchio Xs[m] = 5.05

Larghezza della striscia dx[m]= 0.39 Coefficiente di sicurezza C= 1.49

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	?(°)	Wsin?	b/cos?	?	С	u
1	290.76	61.78	256.21	0.83	26.56	0.000	0.000
2	809.03	55.56	667.23	0.69	26.56	0.000	0.000
3	1221.39	49.84	933.40	0.61	26.56	0.000	0.000
4	1560.81	44.74	1098.54	0.55	26.56	0.000	0.000
5	1846.53	40.05	1188.27	0.51	26.56	0.000	0.000
6	2089.70	35.68	1218.78	0.48	26.56	0.000	0.000
7	2297.43	31.53	1201.51	0.46	26.56	0.000	0.000
8	2474.59	27.56	1145.08	0.44	26.58	0.000	0.000
9	2708.56	23.73	1090.21	0.43	26.56	0.000	0.000
10	2867.49	20.02	981.48	0.42	26.56	0.000	0.000
11	2963.25	16.38	835.81	0.41	26.56	0.000	0.000
12	3037.67	12.82	673.89	0.40	26.56	0.000	0.000
13	3209.82	9.30	518.81	0.40	26.56	0.000	0.000

14	3505.55	5.82	355.53	0.39	26.56	0.000	0.000	
15	1074.86	2.36	44.30	0.39	26.56	0.000	0.000	
16	1070.62	-1.09	-20.34	0.39	26.56	0.000	0.000	
17	973.04	-4.54	-77.07	0.39	26.56	0.000	0.000	
18	938.68	-8.01	-130.87	0.39	26.56	0.000	0.000	
19	884.93	-11.52	-176.66	0.40	26.56	0.000	0.000	
20	811.17	-15.06	-210.78	0.41	26.56	0.000	0.000	
21	716.48	-18.67	-229.32	0.41	26.56	0.000	0.000	
22	599.63	-22.35	-228.03	0.42	26.56	0.000	0.000	
23	458.93	-26.14	-202.17	0.44	26.56	0.000	0.000	
24	292.13	-30.05	-146.29	0.45	26.56	0.000	0.000	
25	96.16	-34.13	-53.95	0.47	26.56	0.000	0.000	

2W_i= 380.4963 [kN]

②W_isin②_i= 105.2621 [kN]

②Witan?i= 190.2210 [kN]

②tan②itan②i= 3.31

Stabilità globale muro + terreno

Combinazione n° 20

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -0.89 Y[m]= 2.66

Raggio del cerchio R[m]= 6.50

Ascissa a valle del cerchio Xi[m] = -4.72Ascissa a monte del cerchio Xs[m] = 5.05

Larghezza della striscia dx[m]= 0.39 Coefficiente di sicurezza C= 1.47

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	w	?(°)	Wsin 	b/cos?	?	С	u
1	290.76	61.78	256.21	0.83	26.56	0.000	0.000
2	809.03	55.56	667.23	0.69	26.56	0.000	0.000
3	1221.39	49.84	933.40	0.61	26.56	0.000	0.000
4	1560.81	44.74	1098.54	0.55	26.56	0.000	0.000
5	1846.53	40.05	1188.27	0.51	26.56	0.000	0.000
6	2089.70	35.68	1218.78	0.48	26.56	0.000	0.000
7	2297.43	31.53	1201.51	0.46	26.56	0.000	0.000
8	2474.59	27.56	1145.08	0.44	26.58	0.000	0.000
9	2708.56	23.73	1090.21	0.43	26.56	0.000	0.000
10	2867.49	20.02	981.48	0.42	26.56	0.000	0.000
11	2963.25	16.38	835.81	0.41	26.56	0.000	0.000
12	3037.67	12.82	673.89	0.40	26.56	0.000	0.000
13	3209.82	9.30	518.81	0.40	26.56	0.000	0.000

14	3505.55	5.82	355.53	0.39	26.56	0.000	0.000	
15	1074.86	2.36	44.30	0.39	26.56	0.000	0.000	
16	1070.62	-1.09	-20.34	0.39	26.56	0.000	0.000	
17	973.04	-4.54	-77.07	0.39	26.56	0.000	0.000	
18	938.68	-8.01	-130.87	0.39	26.56	0.000	0.000	
19	884.93	-11.52	-176.66	0.40	26.56	0.000	0.000	
20	811.17	-15.06	-210.78	0.41	26.56	0.000	0.000	
21	716.48	-18.67	-229.32	0.41	26.56	0.000	0.000	
22	599.63	-22.35	-228.03	0.42	26.56	0.000	0.000	
23	458.93	-26.14	-202.17	0.44	26.56	0.000	0.000	
24	292.13	-30.05	-146.29	0.45	26.56	0.000	0.000	
25	96.16	-34.13	-53.95	0.47	26.56	0.000	0.000	

2W_i= 380.4963 [kN]
2W_isin_i= 105.2621 [kN]
2W_itan_i= 190.2210 [kN]

②tan②itan②i= 3.31

COMBINAZIONE n° 21

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica	38.2189	[kN]			
Componente orizzontale della spinta statica	35.6001	[kN]			
Componente verticale della spinta statica	13.9038	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-2.05
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	10.0889	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-2.05
Inclinazione linea di rottura in condizioni sismiche	52.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	99.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	6.2929	[kN]			
Inerzia verticale del muro	3.1464	[kN]			

Inerzia del terrapieno fondazione di monte	9.2269	[kN]
Inerzia verticale del terrapieno fondazione di monte	4.6134	[kN]
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]
<u>Risultanti</u>		
Risultante dei carichi applicati in dir. orizzontale	60.5175	[kN]
Risultante dei carichi applicati in dir. verticale	193.2234	[kN]
Resistenza passiva a valle del muro	-2.6038	[kN]
Sforzo normale sul piano di posa della fondazione	197.7626	[kN]
Sforzo tangenziale sul piano di posa della fondazione	43.4467	[kN]
Eccentricità rispetto al baricentro della fondazione	-0.05	[m]
Lunghezza fondazione reagente	3.01	[m]
Risultante in fondazione	202.4788	[kN]
Inclinazione della risultante (rispetto alla normale)	12.39	[°]
Momento rispetto al baricentro della fondazione	-10.0842	[kNm]
Carico ultimo della fondazione	3057.9270	[kN]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	3.01	[m]
Tensione terreno allo spigolo di valle	0.05900	[N/mmq]
Tensione terreno allo spigolo di monte	0.07234	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00
I coefficienti N' tengono conto de di posa, inclinazione pendio.	ei fattori di forma, p	orofondità, inclinazione cari	co, inclinazione piano

 $N'_{c} = 44.04$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.84
Coefficiente di sicurezza a carico ultimo	15.46

 $N'_{q} = 28.52$ $N'_{2} = 27.33$

Sollecitazioni paramento

Combinazione n° 21

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5519	0.1795
3	0.26	6.3850	-0.5101	0.4745
4	0.40	7.7025	-0.4218	0.8850
5	0.53	9.0200	-0.2718	1.4110
6	0.66	10.3375	-0.0450	2.0524
7	0.79	11.6550	0.2740	2.8093
8	0.92	12.9725	0.7004	3.6817
9	1.05	14.2900	1.2492	4.6696
10	1.19	15.6075	1.9359	5.7764
11	1.32	16.9250	2.7821	7.1192
12	1.45	18.2425	3.8251	8.7507
13	1.58	19.5600	5.0949	10.5471
14	1.71	20.8775	6.6100	12.4749
15	1.84	22.1950	8.3876	14.5303
16	1.98	23.5125	10.4442	16.7108
17	2.11	24.8300	12.7963	19.0147
18	2.24	26.1475	15.4599	21.4404
19	2.37	27.4650	18.4511	23.9869
20	2.50	28.7825	21.7857	26.6532
21	2.63	30.1000	25.4788	29.4196

Sollecitazioni fondazione di valle

Combinazione n° 21

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1571	3.9311
3	0.16	0.6294	7.8768
4	0.24	1.4178	11.8368
5	0.32	2.5236	15.8114
6	0.40	3.9480	19.8004
7	0.48	5.6921	23.8039
8	0.56	7.7570	27.8218
9	0.64	10.1440	31.8542
10	0.72	12.8541	35.9011
11	0.80	15.8885	39.9625

Sollecitazioni fondazione di monte

Combinazione n° 21

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.0995	-1.1178
3	0.36	-0.4068	-2.3085
4	0.54	-0.9350	-3.5723
5	0.72	-1.6972	-4.9091
6	0.90	-2.6566	-5.3190
7	1.08	-3.5844	-5.0018
8	1.26	-4.4617	-4.7577
9	1.44	-5.3016	-4.5866
10	1.62	-6.0452	-3.2885
11	1.80	-6.4718	-1.4634

Sollecitazioni mensola di contrappeso

Combinazione n° 21

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 21

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	15.71	15.71	0.00	0.00	1000.00	168.20		
2	0.13	100, 40	15.71	15.71	3657.10	398.32	721.68	168.89		
3	0.26	100, 40	15.71	15.71	4293.61	343.03	672.45	169.06		
4	0.40	100, 40	15.71	15.71	4952.47	271.22	642.97	169.24		
5	0.53	100, 40	15.71	15.71	5417.13	163.26	600.57	169.42		
6	0.66	100, 40	15.71	15.71	5652.29	24.59	546.78	169.60		
7	0.79	100, 40	15.71	15.71	5475.67	-128.74	469.81	169.78		
8	0.92	100, 40	15.71	15.71	4973.29	-268.50	383.37	169.95		
9	1.05	100, 40	15.71	15.71	4116.81	-359.89	288.09	170.13		
10	1.19	100, 40	15.71	15.71	3379.39	-419.17	216.52	170.31		
11	1.32	100, 40	15.71	15.71	2776.86	-456.46	164.07	170.49		
12	1.45	100, 40	15.71	15.71	2139.36	-448.59	117.27	170.67		
13	1.58	100, 40	15.71	15.71	1587.74	-413.57	81.17	170.84		
14	1.71	100, 40	15.71	15.71	1179.01	-373.29	56.47	171.02		
15	1.84	100, 40	15.71	15.71	883.43	-333.85	39.80	171.20		
16	1.98	100, 40	15.71	15.71	687.83	-305.53	29.25	171.38		
17	2.11	100, 40	15.71	15.71	551.51	-284.23	22.21	171.55		
18	2.24	100, 40	15.71	15.71	455.27	-269.18	17.41	171.73		
19	2.37	100, 40	15.71	15.71	384.13	-258.06	13.99	171.91		
20	2.50	100, 40	15.71	15.71	329.70	-249.56	11.46	172.09		
21	2.63	100, 40	15.71	15.71	286.92	-242.87	9.53	172.27		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 21

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	$\mathbf{M}_{\mathbf{u}}$	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 21

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	1286.70	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	327.74	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	148.35	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	84.96	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	55.33	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	39.09	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	29.21	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	22.74	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	18.26	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	15.03	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	0.18	100 61	15 71	15 71	0.00	-322 44	3240 47	203 16		

3	0.36	100, 60	15.71	15.71	0.00 -313.12	769.77	199.06	
4	0.54	100, 58	15.71	15.71	0.00 -303.81	324.95	194.95	
5	0.72	100, 57	15.71	15.71	0.00 -294.50	173.52	190.81	
6	0.90	100, 55	15.71	15.71	0.00 -285.19	107.35	186.66	
7	1.08	100, 53	15.71	15.71	0.00 -275.88	76.97	182.48	
8	1.26	100, 52	15.71	15.71	0.00 -266.58	59.75	178.28	
9	1.44	100, 50	15.71	15.71	0.00 -257.27	48.53	175.16	
10	1.62	100, 49	15.71	15.71	0.00 -247.97	41.02	172.30	
11	1.80	100, 47	15.71	15.71	0.00 -238.67	36.88	169.40	

COMBINAZIONE n° 22

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie	38.2189 35.6001 13.9038 X = 1.80 [m] 21.33	[kN] [kN] [kN] [m]	Υ	=	-2.05
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	6.6424	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-2.05
Inclinazione linea di rottura in condizioni sismiche	52.11	[°]			
Peso terrapieno gravante sulla fondazione a monte	99.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	6.2929	[kN]			
Inerzia verticale del muro	-3.1464	[kN]			
Inerzia del terrapieno fondazione di monte	9.2269	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-4.6134	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	57.3072	[kN]			
Risultante dei carichi applicati in dir. verticale	176.4498	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	180.7730	[kN]			

Sforzo tangenziale sul piano di posa della fondazione	41.7105	[kN]
Eccentricità rispetto al baricentro della fondazione	-0.04	[m]
Lunghezza fondazione reagente	3.01	[m]
Risultante in fondazione	185.5226	[kN]
Inclinazione della risultante (rispetto alla normale)	12.99	[°]
Momento rispetto al baricentro della fondazione	-6.8054	[kNm]
Carico ultimo della fondazione	3085.9802	[kN]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	3.01	[m]
Tensione terreno allo spigolo di valle	0.05553	[N/mmq]
Tensione terreno allo spigolo di monte	0.06453	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N _≥ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.76

Coefficiente di sicurezza a carico ultimo 17.07

Sollecitazioni paramento

Combinazione n° 22

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5521	0.1755
3	0.26	6.3850	-0.5115	0.4586
4	0.40	7.7025	-0.4266	0.8491
5	0.53	9.0200	-0.2831	1.3472
6	0.66	10.3375	-0.0669	1.9527
7	0.79	11.6550	0.2362	2.6658
8	0.92	12.9725	0.6403	3.4864
9	1.05	14.2900	1.1596	4.4144
10	1.19	15.6075	1.8082	5.4532
11	1.32	16.9250	2.6065	6.7117
12	1.45	18.2425	3.5892	8.2389
13	1.58	19.5600	4.7840	9.9196
14	1.71	20.8775	6.2083	11.7227
15	1.84	22.1950	7.8781	13.6446
16	1.98	23.5125	9.8088	15.6829
17	2.11	24.8300	12.0156	17.8361
18	2.24	26.1475	14.5136	20.1027
19	2.37	27.4650	17.3176	22.4818
20	2.50	28.7825	20.4424	24.9723
21	2.63	30.1000	23.9020	27.5562

Sollecitazioni fondazione di valle

Combinazione n° 22

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1459	3.6474
3	0.16	0.5837	7.3000
4	0.24	1.3140	10.9579
5	0.32	2.3371	14.6209
6	0.40	3.6535	18.2892
7	0.48	5.2635	21.9626
8	0.56	7.1676	25.6413
9	0.64	9.3663	29.3252
10	0.72	11.8598	33.0143
11	0.80	14.6487	36.7086

Sollecitazioni fondazione di monte

Combinazione n° 22

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.2249	-2.5033
3	0.36	-0.9027	-5.0327
4	0.54	-2.0382	-7.5883
5	0.72	-3.6361	-10.1701
6	0.90	-5.6510	-11.7780
7	1.08	-7.8457	-12.6120
8	1.26	-10.1929	-13.4723
9	1.44	-12.6973	-14.3587
10	1.62	-15.2916	-14.0712
11	1.80	-17.7465	-13.2099

Sollecitazioni mensola di contrappeso

Combinazione n° 22

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 22

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	15.71	15.71	0.00	0.00	1000.00	168.20		
2	0.13	100, 40	15.71	15.71	3656.42	398.38	721.54	168.89		
3	0.26	100, 40	15.71	15.71	4288.37	343.56	671.63	169.06		
4	0.40	100, 40	15.71	15.71	4936.15	273.36	640.85	169.24		
5	0.53	100, 40	15.71	15.71	5406.30	169.66	599.37	169.42		
6	0.66	100, 40	15.71	15.71	5632.21	36.42	544.83	169.60		
7	0.79	100, 40	15.71	15.71	5504.80	-111.56	472.31	169.78		
8	0.92	100, 40	15.71	15.71	5101.05	-251.78	393.22	169.95		
9	1.05	100, 40	15.71	15.71	4263.86	-346.00	298.38	170.13		
10	1.19	100, 40	15.71	15.71	3524.93	-408.39	225.85	170.31		
11	1.32	100, 40	15.71	15.71	2915.36	-448.98	172.25	170.49		
12	1.45	100, 40	15.71	15.71	2317.85	-456.03	127.06	170.67		
13	1.58	100, 40	15.71	15.71	1737.08	-424.85	88.81	170.84		
14	1.71	100, 40	15.71	15.71	1295.86	-385.35	62.07	171.02		
15	1.84	100, 40	15.71	15.71	976.97	-346.78	44.02	171.20		
16	1.98	100, 40	15.71	15.71	759.09	-316.67	32.28	171.38		
17	2.11	100, 40	15.71	15.71	604.44	-292.50	24.34	171.55		
18	2.24	100, 40	15.71	15.71	496.59	-275.64	18.99	171.73		
19	2.37	100, 40	15.71	15.71	417.57	-263.29	15.20	171.91		
20	2.50	100, 40	15.71	15.71	357.48	-253.90	12.42	172.09		
21	2.63	100, 40	15.71	15.71	310.48	-246.55	10.32	172.27		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 22

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 22

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	1386.28	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	353.37	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	160.07	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	91.74	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	59.80	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	42.28	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	31.61	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	24.63	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	19.79	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	16.30	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	0.18	100 61	15 71	15 71	0.00	-322 44	1433 68	203 16		

3	0.36	100, 60	15.71	15.71	0.00	-313.12	346.86	199.06	
4	0.54	100, 58	15.71	15.71	0.00	-303.81	149.05	194.95	
5	0.72	100, 57	15.71	15.71	0.00	-294.50	80.99	190.81	
6	0.90	100, 55	15.71	15.71	0.00	-285.19	50.47	186.66	
7	1.08	100, 53	15.71	15.71	0.00	-275.88	35.16	182.48	
8	1.26	100, 52	15.71	15.71	0.00	-266.58	26.15	178.28	
9	1.44	100, 50	15.71	15.71	0.00	-257.27	20.26	175.16	
10	1.62	100, 49	15.71	15.71	0.00	-247.97	16.22	172.30	
11	1.80	100, 47	15.71	15.71	0.00	-238.67	13.45	169.40	

COMBINAZIONE n° 23

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	47.2570 45.1066 14.0932 X = 1.80 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.05
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 54.01	[°] [°]			
Incremento sismico della spinta	7.2746	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-2.05
Inclinazione linea di rottura in condizioni sismiche	48.32	[°]			
Peso terrapieno gravante sulla fondazione a monte	99.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	6.2929	[kN]			
Inerzia verticale del muro	-3.1464	[kN]			
Inerzia del terrapieno fondazione di monte	9.2269	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-4.6134	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	67.5699	[kN]			
Risultante dei carichi applicati in dir. verticale	176.3923	[kN]			
Resistenza passiva a valle del muro	-2.0941	[kN]			
Sforzo normale sul piano di posa della fondazione	181.6102	[kN]			

Sforzo tangenziale sul piano di posa della fondazione	51.9392	[kN]
Eccentricità rispetto al baricentro della fondazione	0.02	[m]
Lunghezza fondazione reagente	3.01	[m]
Risultante in fondazione	188.8913	[kN]
Inclinazione della risultante (rispetto alla normale)	15.96	[°]
Momento rispetto al baricentro della fondazione	4.4099	[kNm]
Carico ultimo della fondazione	1314.9837	[kN]
Tensioni sul terreno		
Lunghezza fondazione reagente	3.01	[m]
Tensione terreno allo spigolo di valle	0.06322	[N/mmq]
Tensione terreno allo spigolo di monte	0.05739	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00
. cc		6 11.3 1 11	

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.13

Coefficiente di sicurezza a carico ultimo 7.24

Sollecitazioni paramento

Combinazione n° 23

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Y	N	M	т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5515	0.1886
3	0.26	6.3850	-0.5069	0.5109
4	0.40	7.7025	-0.4111	0.9668
5	0.53	9.0200	-0.2463	1.5564
6	0.66	10.3375	0.0049	2.2796
7	0.79	11.6550	0.3602	3.1365
8	0.92	12.9725	0.8373	4.1271
9	1.05	14.2900	1.4556	5.3086
10	1.19	15.6075	2.2508	6.8201
11	1.32	16.9250	3.2631	8.5767
12	1.45	18.2425	4.5179	10.4973
13	1.58	19.5600	6.0358	12.5709
14	1.71	20.8775	7.8368	14.7932
15	1.84	22.1950	9.9402	17.1612
16	1.98	23.5125	12.3651	19.6726
17	2.11	24.8300	15.1302	22.3254
18	2.24	26.1475	18.2540	25.1184
19	2.37	27.4650	21.7550	28.0504
20	2.50	28.7825	25.6513	31.1205
21	2.63	30.1000	29.9605	34.3061

Sollecitazioni fondazione di valle

Combinazione n° 23

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1700	4.2447
3	0.16	0.6784	8.4629
4	0.24	1.5233	12.6547
5	0.32	2.7025	16.8200
6	0.40	4.2138	20.9589
7	0.48	6.0552	25.0714
8	0.56	8.2245	29.1574
9	0.64	10.7197	33.2169
10	0.72	13.5385	37.2500
11	0.80	16.6790	41.2567

Sollecitazioni fondazione di monte

Combinazione n° 23

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	М	т
1	0.00	0.0000	0.0000
2	0.18	-0.3364	-3.7149
3	0.36	-1.3293	-7.2956
4	0.54	-2.9547	-10.7423
5	0.72	-5.1885	-14.0548
6	0.90	-7.9564	-16.2332
7	1.08	-10.9924	-17.4776
8	1.26	-14.2403	-18.5878
9	1.44	-17.6759	-19.5638
10	1.62	-21.2032	-19.2058
11	1.80	-24.5640	-18.1137

Sollecitazioni mensola di contrappeso

Combinazione n° 23

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 23

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
0.00	100, 40	15.71	15.71	0.00	0.00	1000.00	168.20		
0.13	100, 40	15.71	15.71	3658.66	398.21	721.98	168.89		
0.26	100, 40	15.71	15.71	4305.60	341.84	674.33	169.06		
0.40	100, 40	15.71	15.71	4990.08	266.30	647.85	169.24		
0.53	100, 40	15.71	15.71	5441.99	148.60	603.33	169.42		
0.66	100, 40	15.71	15.71	5689.38	-2.71	550.36	169.60		
0.79	100, 40	15.71	15.71	5410.41	-167.23	464.21	169.78		
0.92	100, 40	15.71	15.71	4683.56	-302.28	361.04	169.95		
1.05	100, 40	15.71	15.71	3801.69	-387.25	266.04	170.13		
1.19	100, 40	15.71	15.71	3057.89	-440.99	195.92	170.31		
1.32	100, 40	15.71	15.71	2370.93	-457.11	140.08	170.49		
1.45	100, 40	15.71	15.71	1706.01	-422.50	93.52	170.67		
1.58	100, 40	15.71	15.71	1225.11	-378.05	62.63	170.84		
1.71	100, 40	15.71	15.71	892.86	-335.16	42.77	171.02		
1.84	100, 40	15.71	15.71	679.19	-304.18	30.60	171.20		
1.98	100, 40	15.71	15.71	535.79	-281.77	22.79	171.38		
2.11	100, 40	15.71	15.71	437.09	-266.34	17.60	171.55		
2.24	100, 40	15.71	15.71	365.48	-255.15	13.98	171.73		
2.37	100, 40	15.71	15.71	311.46	-246.70	11.34	171.91		
2.50	100, 40	15.71	15.71	269.45	-240.14	9.36	172.09		
2.63	100, 40	15.71	15.71	236.00	-234.91	7.84	172.27		
	0.00 0.13 0.26 0.40 0.53 0.66 0.79 0.92 1.05 1.19 1.32 1.45 1.58 1.71 1.84 1.98 2.11 2.24 2.37 2.50	0.00100, 400.13100, 400.26100, 400.40100, 400.53100, 400.66100, 400.79100, 401.05100, 401.19100, 401.32100, 401.45100, 401.58100, 401.71100, 401.84100, 401.98100, 402.11100, 402.24100, 402.50100, 40	0.00 100, 40 15.71 0.13 100, 40 15.71 0.26 100, 40 15.71 0.40 100, 40 15.71 0.53 100, 40 15.71 0.66 100, 40 15.71 0.79 100, 40 15.71 1.05 100, 40 15.71 1.19 100, 40 15.71 1.32 100, 40 15.71 1.45 100, 40 15.71 1.58 100, 40 15.71 1.71 100, 40 15.71 1.84 100, 40 15.71 1.98 100, 40 15.71 2.11 100, 40 15.71 2.24 100, 40 15.71 2.37 100, 40 15.71 2.50 100, 40 15.71	0.00 100, 40 15.71 15.71 0.13 100, 40 15.71 15.71 0.26 100, 40 15.71 15.71 0.40 100, 40 15.71 15.71 0.53 100, 40 15.71 15.71 0.66 100, 40 15.71 15.71 0.79 100, 40 15.71 15.71 1.05 100, 40 15.71 15.71 1.19 100, 40 15.71 15.71 1.32 100, 40 15.71 15.71 1.45 100, 40 15.71 15.71 1.58 100, 40 15.71 15.71 1.71 100, 40 15.71 15.71 1.84 100, 40 15.71 15.71 1.98 100, 40 15.71 15.71 2.11 100, 40 15.71 15.71 2.24 100, 40 15.71 15.71 2.37 100, 40 15.71 15.71 2.50 100, 40 15.71 15.71	0.00 100, 40 15.71 15.71 0.00 0.13 100, 40 15.71 15.71 3658.66 0.26 100, 40 15.71 15.71 4305.60 0.40 100, 40 15.71 15.71 4990.08 0.53 100, 40 15.71 15.71 5441.99 0.66 100, 40 15.71 15.71 5689.38 0.79 100, 40 15.71 15.71 5410.41 0.92 100, 40 15.71 15.71 3801.69 1.05 100, 40 15.71 15.71 3057.89 1.32 100, 40 15.71 15.71 2370.93 1.45 100, 40 15.71 15.71 1706.01 1.58 100, 40 15.71 15.71 1225.11 1.71 100, 40 15.71 15.71 892.86 1.84 100, 40 15.71 15.71 535.79 2.11 100, 40 15.71 15.71 365.48 2.37 100, 40 15.71 15.71 365.48	0.00 100, 40 15.71 15.71 0.00 0.00 0.13 100, 40 15.71 15.71 3658.66 398.21 0.26 100, 40 15.71 15.71 4305.60 341.84 0.40 100, 40 15.71 15.71 4990.08 266.30 0.53 100, 40 15.71 15.71 5441.99 148.60 0.66 100, 40 15.71 15.71 5689.38 -2.71 0.79 100, 40 15.71 15.71 5410.41 -167.23 0.92 100, 40 15.71 15.71 3801.69 -387.25 1.19 100, 40 15.71 15.71 3801.69 -387.25 1.19 100, 40 15.71 15.71 3057.89 -440.99 1.32 100, 40 15.71 15.71 2370.93 -457.11 1.45 100, 40 15.71 15.71 1706.01 -422.50 1.58 100, 40 15.71 15.71 <t< td=""><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 0.13 100, 40 15.71 15.71 3658.66 398.21 721.98 0.26 100, 40 15.71 15.71 4305.60 341.84 674.33 0.40 100, 40 15.71 15.71 4990.08 266.30 647.85 0.53 100, 40 15.71 15.71 5441.99 148.60 603.33 0.66 100, 40 15.71 15.71 5489.38 -2.71 550.36 0.79 100, 40 15.71 15.71 5410.41 -167.23 464.21 0.92 100, 40 15.71 15.71 3801.69 -387.25 266.04 1.05 100, 40 15.71 15.71 3057.89 -440.99 195.92 1.32 100, 40 15.71 15.71 2370.93 -457.11 140.08 1.45 100, 40 15.71 15.71 1706.01 -422.50 93.52</td><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3658.66 398.21 721.98 168.89 0.26 100, 40 15.71 15.71 4305.60 341.84 674.33 169.06 0.40 100, 40 15.71 15.71 4990.08 266.30 647.85 169.24 0.53 100, 40 15.71 15.71 5441.99 148.60 603.33 169.42 0.66 100, 40 15.71 15.71 5689.38 -2.71 550.36 169.60 0.79 100, 40 15.71 15.71 5410.41 -167.23 464.21 169.78 0.92 100, 40 15.71 15.71 4683.56 -302.28 361.04 169.95 1.05 100, 40 15.71 15.71 3801.69 -387.25 266.04 170.13 1.19 100, 40 15.71 15.71 2370.93 -457.11 1</td><td>0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3658.66 398.21 721.98 168.89 0.26 100, 40 15.71 15.71 4305.60 341.84 674.33 169.06 0.40 100, 40 15.71 15.71 4990.08 266.30 647.85 169.24 0.53 100, 40 15.71 15.71 5441.99 148.60 603.33 169.42 0.66 100, 40 15.71 15.71 5689.38 -2.71 550.36 169.60 0.79 100, 40 15.71 15.71 5410.41 -167.23 464.21 169.78 0.92 100, 40 15.71 15.71 4683.56 -302.28 361.04 169.95 1.05 100, 40 15.71 15.71 3801.69 -387.25 266.04 170.13 1.19 100, 40 15.71 15.71 3057.89 -440.99</td></t<>	0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 0.13 100, 40 15.71 15.71 3658.66 398.21 721.98 0.26 100, 40 15.71 15.71 4305.60 341.84 674.33 0.40 100, 40 15.71 15.71 4990.08 266.30 647.85 0.53 100, 40 15.71 15.71 5441.99 148.60 603.33 0.66 100, 40 15.71 15.71 5489.38 -2.71 550.36 0.79 100, 40 15.71 15.71 5410.41 -167.23 464.21 0.92 100, 40 15.71 15.71 3801.69 -387.25 266.04 1.05 100, 40 15.71 15.71 3057.89 -440.99 195.92 1.32 100, 40 15.71 15.71 2370.93 -457.11 140.08 1.45 100, 40 15.71 15.71 1706.01 -422.50 93.52	0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3658.66 398.21 721.98 168.89 0.26 100, 40 15.71 15.71 4305.60 341.84 674.33 169.06 0.40 100, 40 15.71 15.71 4990.08 266.30 647.85 169.24 0.53 100, 40 15.71 15.71 5441.99 148.60 603.33 169.42 0.66 100, 40 15.71 15.71 5689.38 -2.71 550.36 169.60 0.79 100, 40 15.71 15.71 5410.41 -167.23 464.21 169.78 0.92 100, 40 15.71 15.71 4683.56 -302.28 361.04 169.95 1.05 100, 40 15.71 15.71 3801.69 -387.25 266.04 170.13 1.19 100, 40 15.71 15.71 2370.93 -457.11 1	0.00 100, 40 15.71 15.71 0.00 0.00 1000.00 168.20 0.13 100, 40 15.71 15.71 3658.66 398.21 721.98 168.89 0.26 100, 40 15.71 15.71 4305.60 341.84 674.33 169.06 0.40 100, 40 15.71 15.71 4990.08 266.30 647.85 169.24 0.53 100, 40 15.71 15.71 5441.99 148.60 603.33 169.42 0.66 100, 40 15.71 15.71 5689.38 -2.71 550.36 169.60 0.79 100, 40 15.71 15.71 5410.41 -167.23 464.21 169.78 0.92 100, 40 15.71 15.71 4683.56 -302.28 361.04 169.95 1.05 100, 40 15.71 15.71 3801.69 -387.25 266.04 170.13 1.19 100, 40 15.71 15.71 3057.89 -440.99

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 23

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	$\mathbf{M}_{\mathbf{u}}$	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 23

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	1189.69	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	304.03	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	138.08	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	79.33	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	51.84	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	36.75	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	27.55	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	21.52	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	17.34	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	14.32	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	0.18	100 61	15 71	15 71	0.00	-322 44	958 64	203 16		

3	0.36	100, 60	15.71	15.71	0.00	-313.12	235.55	199.06	
4	0.54	100, 58	15.71	15.71	0.00	-303.81	102.82	194.95	
5	0.72	100, 57	15.71	15.71	0.00	-294.50	56.76	190.81	
6	0.90	100, 55	15.71	15.71	0.00	-285.19	35.84	186.66	
7	1.08	100, 53	15.71	15.71	0.00	-275.88	25.10	182.48	
8	1.26	100, 52	15.71	15.71	0.00	-266.58	18.72	178.28	
9	1.44	100, 50	15.71	15.71	0.00	-257.27	14.55	175.16	
10	1.62	100, 49	15.71	15.71	0.00	-247.97	11.69	172.30	
11	1.80	100, 47	15.71	15.71	0.00	-238.67	9.72	169.40	

COMBINAZIONE n° 24

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	47.2570 45.1066 14.0932 X = 1.80 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.05
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 54.01	[°] [°]			
Incremento sismico della spinta	11.5394	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-2.05
Inclinazione linea di rottura in condizioni sismiche	48.89	[°]			
Peso terrapieno gravante sulla fondazione a monte	99.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	6.2929	[kN]			
Inerzia verticale del muro	3.1464	[kN]			
Inerzia del terrapieno fondazione di monte	9.2269	[kN]			
Inerzia verticale del terrapieno fondazione di monte	4.6134	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti					
Risultante dei carichi applicati in dir. orizzontale	71.6407	[kN]			
Risultante dei carichi applicati in dir. verticale	193.1839	[kN]			
Resistenza passiva a valle del muro	-2.0941	[kN]			
Sforzo normale sul piano di posa della fondazione	198.6927	[kN]			

Tensioni sul terreno Lunghezza fondazione reagente 3.01 [m] Tensione terreno allo spigolo di valle 0.06733 [N/mmq] Tensione terreno allo spigolo di monte 0.06463 [N/mmq]	Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	54.5310 0.01 3.01 206.0398 15.35 2.0369	[kN] [m] [m] [kN] [°] [kNm]
Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte 0.06733 [N/mmq] 0.06463 [N/mmq]	Carico ultimo della fondazione <u>Tensioni sul terreno</u>	1327.4376	[kN]
	Tensione terreno allo spigolo di valle	0.06733	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.18
Coefficiente di sicurezza a carico ultimo 6.68

Sollecitazioni paramento

Combinazione n° 24

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5513	0.1937
3	0.26	6.3850	-0.5052	0.5311
4	0.40	7.7025	-0.4051	1.0123
5	0.53	9.0200	-0.2321	1.6373
6	0.66	10.3375	0.0327	2.4061
7	0.79	11.6550	0.4082	3.3186
8	0.92	12.9725	0.9135	4.3749
9	1.05	14.2900	1.5695	5.6367
10	1.19	15.6075	2.4146	7.2534
11	1.32	16.9250	3.4919	9.1336
12	1.45	18.2425	4.8289	11.1904
13	1.58	19.5600	6.4478	13.4117
14	1.71	20.8775	8.3699	15.7931
15	1.84	22.1950	10.6161	18.3311
16	1.98	23.5125	13.2069	21.0232
17	2.11	24.8300	16.1624	23.8677
18	2.24	26.1475	19.5026	26.8628
19	2.37	27.4650	23.2473	30.0075
20	2.50	28.7825	27.4161	33.3007
21	2.63	30.1000	32.0277	36.7182

Sollecitazioni fondazione di valle

Combinazione n° 24

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1832	4.5762
3	0.16	0.7317	9.1327
4	0.24	1.6439	13.6695
5	0.32	2.9183	18.1864
6	0.40	4.5532	22.6837
7	0.48	6.5471	27.1612
8	0.56	8.8985	31.6189
9	0.64	11.6056	36.0569
10	0.72	14.6670	40.4751
11	0.80	18.0811	44.8736

Sollecitazioni fondazione di monte

Combinazione n° 24

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.2200	-2.4282
3	0.36	-0.8681	-4.7562
4	0.54	-1.9263	-6.9840
5	0.72	-3.3763	-9.1115
6	0.90	-5.1504	-10.1389
7	1.08	-6.9883	-10.2661
8	1.26	-8.8402	-10.2931
9	1.44	-10.6878	-10.2199
10	1.62	-12.4413	-8.8464
11	1.80	-13.8485	-6.7728

Sollecitazioni mensola di contrappeso

Combinazione n° 24

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 24

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	15.71	15.71	0.00	0.00	1000.00	168.20		
2	0.13	100, 40	15.71	15.71	3659.52	398.14	722.16	168.89		
3	0.26	100, 40	15.71	15.71	4312.31	341.17	675.38	169.06		
4	0.40	100, 40	15.71	15.71	5011.26	263.53	650.60	169.24		
5	0.53	100, 40	15.71	15.71	5455.93	140.38	604.87	169.42		
6	0.66	100, 40	15.71	15.71	5663.61	-17.91	547.87	169.60		
7	0.79	100, 40	15.71	15.71	5374.76	-188.25	461.16	169.78		
8	0.92	100, 40	15.71	15.71	4532.96	-319.19	349.43	169.95		
9	1.05	100, 40	15.71	15.71	3639.14	-399.69	254.66	170.13		
10	1.19	100, 40	15.71	15.71	2905.57	-449.51	186.17	170.31		
11	1.32	100, 40	15.71	15.71	2184.83	-450.77	129.09	170.49		
12	1.45	100, 40	15.71	15.71	1552.21	-410.88	85.09	170.67		
13	1.58	100, 40	15.71	15.71	1106.10	-364.62	56.55	170.84		
14	1.71	100, 40	15.71	15.71	806.09	-323.17	38.61	171.02		
15	1.84	100, 40	15.71	15.71	614.96	-294.14	27.71	171.20		
16	1.98	100, 40	15.71	15.71	488.47	-274.37	20.77	171.38		
17	2.11	100, 40	15.71	15.71	400.35	-260.60	16.12	171.55		
18	2.24	100, 40	15.71	15.71	335.88	-250.52	12.85	171.73		
19	2.37	100, 40	15.71	15.71	286.93	-242.87	10.45	171.91		
20	2.50	100, 40	15.71	15.71	248.70	-236.90	8.64	172.09		
21	2.63	100, 40	15.71	15.71	218.15	-232.12	7.25	172.27		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 24

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 24

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	1103.85	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	281.91	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	127.95	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	73.47	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	47.98	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	33.99	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	25.46	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	19.87	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	16.00	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	13.21	182.48		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	207.23		
2	0.18	100 61	15 71	15 71	0.00	-322 44	1465 36	203 16		

3	0.36	100, 60	15.71	15.71	0.00	-313.12	360.68	199.06	
4	0.54	100, 58	15.71	15.71	0.00	-303.81	157.72	194.95	
5	0.72	100, 57	15.71	15.71	0.00	-294.50	87.22	190.81	
6	0.90	100, 55	15.71	15.71	0.00	-285.19	55.37	186.66	
7	1.08	100, 53	15.71	15.71	0.00	-275.88	39.48	182.48	
8	1.26	100, 52	15.71	15.71	0.00	-266.58	30.16	178.28	
9	1.44	100, 50	15.71	15.71	0.00	-257.27	24.07	175.16	
10	1.62	100, 49	15.71	15.71	0.00	-247.97	19.93	172.30	
11	1.80	100, 47	15.71	15.71	0.00	-238.67	17.23	169.40	

COMBINAZIONE n° 25

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	47.2570 45.1066 14.0932 X = 1.80 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.05
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 54.01	[°] [°]			
Incremento sismico della spinta	11.5394	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-2.05
Inclinazione linea di rottura in condizioni sismiche	48.89	[°]			
Peso terrapieno gravante sulla fondazione a monte	99.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	6.2929	[kN]			
Inerzia verticale del muro	3.1464	[kN]			
Inerzia del terrapieno fondazione di monte	9.2269	[kN]			
Inerzia verticale del terrapieno fondazione di monte	4.6134	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	71.6407	[kN]			
Risultante dei carichi applicati in dir. verticale	193.1839	[kN]			
Resistenza passiva a valle del muro	-2.0941	[kN]			
Momento ribaltante rispetto allo spigolo a valle	74.1619	[kNm]			

Momento stabilizzante rispetto allo spigolo a valle	371.3025	[kNm]			
Sforzo normale sul piano di posa della fondazione	198.6927	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	54.5310	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.01	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	206.0398	[kN]			
Inclinazione della risultante (rispetto alla normale)	15.35	[°]			
Momento rispetto al baricentro della fondazione	2.0369	[kNm]			
COEFFICIENTI DI SICUREZZA					
Coefficiente di sicurezza a ribaltamento	5.01				
COMBINAZIONE n° 26					
Valore della spinta statica	47.2570	[kN]			
Componente orizzontale della spinta statica	45.1066	[kN]			
Componente verticale della spinta statica	14.0932	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-2.05
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Incremento sismico della spinta	7.2746	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-2.05
Inclinazione linea di rottura in condizioni sismiche	48.32	[°]			
Peso terrapieno gravante sulla fondazione a monte	99.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	6.2929	[kN]			
Inerzia verticale del muro	-3.1464	[kN]			
Inerzia del terrapieno fondazione di monte	9.2269	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-4.6134	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	67.5699	[kN]			
Risultante dei carichi applicati in dir. verticale	176.3923	[kN]			
Resistenza passiva a valle del muro	-2.0941	[kN]			

Momento ribaltante rispetto allo spigolo a valle	84.3613	[kNm]
Momento stabilizzante rispetto allo spigolo a valle	353.4073	[kNm]
Sforzo normale sul piano di posa della fondazione	181.6102	[kN]
Sforzo tangenziale sul piano di posa della fondazione	51.9392	[kN]
Eccentricità rispetto al baricentro della fondazione	0.02	[m]
Lunghezza fondazione reagente	3.01	[m]
Risultante in fondazione	188.8913	[kN]
Inclinazione della risultante (rispetto alla normale)	15.96	[°]
Momento rispetto al baricentro della fondazione	4.4099	[kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 4.19

Stabilità globale muro + terreno

Combinazione n° 27

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.89 Y[m] = 2.66

Raggio del cerchio R[m]= 6.50

Ascissa a valle del cerchio Xi[m] = -4.72Ascissa a monte del cerchio Xs[m] = 5.05

Larghezza della striscia dx[m]= 0.39 Coefficiente di sicurezza C= 1.36

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	w	?(°)	Wsin 	b/cos?	?	С	u
1	689.61	61.78	607.66	0.83	26.56	0.000	0.000
2	1207.87	55.56	996.17	0.69	26.56	0.000	0.000
3	1620.23	49.84	1238.20	0.61	26.56	0.000	0.000
4	1959.65	44.74	1379.26	0.55	26.56	0.000	0.000
5	2245.38	40.05	1444.93	0.51	26.56	0.000	0.000
6	2488.55	35.68	1451.41	0.48	26.56	0.000	0.000
7	2696.28	31.53	1410.09	0.46	26.56	0.000	0.000
8	2873.43	27.56	1329.64	0.44	26.58	0.000	0.000
9	3107.41	23.73	1250.74	0.43	26.56	0.000	0.000
10	3266.33	20.02	1118.00	0.42	26.56	0.000	0.000
11	3108.55	16.38	876.80	0.41	26.56	0.000	0.000
12	3037.67	12.82	673.89	0.40	26.56	0.000	0.000
13	3209.82	9.30	518.81	0.40	26.56	0.000	0.000

14	3505.55	5.82	355.53	0.39	26.56	0.000	0.000	
15	1074.86	2.36	44.30	0.39	26.56	0.000	0.000	
16	1070.62	-1.09	-20.34	0.39	26.56	0.000	0.000	
17	973.04	-4.54	-77.07	0.39	26.56	0.000	0.000	
18	938.68	-8.01	-130.87	0.39	26.56	0.000	0.000	
19	884.93	-11.52	-176.66	0.40	26.56	0.000	0.000	
20	811.17	-15.06	-210.78	0.41	26.56	0.000	0.000	
21	716.48	-18.67	-229.32	0.41	26.56	0.000	0.000	
22	599.63	-22.35	-228.03	0.42	26.56	0.000	0.000	
23	458.93	-26.14	-202.17	0.44	26.56	0.000	0.000	
24	292.13	-30.05	-146.29	0.45	26.56	0.000	0.000	
25	96.16	-34.13	-53.95	0.47	26.56	0.000	0.000	

②W_i= 421.0353 [kN]

2W_isin_i= 129.6457 [kN]

@Witan@i= 210.4883 [kN]

②tan②itan②i= 3.31

Stabilità globale muro + terreno

Combinazione n° 28

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.89 Y[m] = 2.66

Raggio del cerchio R[m]= 6.50

Ascissa a valle del cerchio Xi[m] = -4.72Ascissa a monte del cerchio Xs[m] = 5.05

Larghezza della striscia dx[m]= 0.39 Coefficiente di sicurezza C= 1.34

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	w	?(°)	Wsin 	b/cos?	?	С	u
1	689.61	61.78	607.66	0.83	26.56	0.000	0.000
2	1207.87	55.56	996.17	0.69	26.56	0.000	0.000
3	1620.23	49.84	1238.20	0.61	26.56	0.000	0.000
4	1959.65	44.74	1379.26	0.55	26.56	0.000	0.000
5	2245.38	40.05	1444.93	0.51	26.56	0.000	0.000
6	2488.55	35.68	1451.41	0.48	26.56	0.000	0.000
7	2696.28	31.53	1410.09	0.46	26.56	0.000	0.000
8	2873.43	27.56	1329.64	0.44	26.58	0.000	0.000
9	3107.41	23.73	1250.74	0.43	26.56	0.000	0.000
10	3266.33	20.02	1118.00	0.42	26.56	0.000	0.000
11	3108.55	16.38	876.80	0.41	26.56	0.000	0.000
12	3037.67	12.82	673.89	0.40	26.56	0.000	0.000
13	3209.82	9.30	518.81	0.40	26.56	0.000	0.000

3505.55	5.82	355.53	0.39	26.56	0.000	0.000	
1074.86	2.36	44.30	0.39	26.56	0.000	0.000	
1070.62	-1.09	-20.34	0.39	26.56	0.000	0.000	
973.04	-4.54	-77.07	0.39	26.56	0.000	0.000	
938.68	-8.01	-130.87	0.39	26.56	0.000	0.000	
884.93	-11.52	-176.66	0.40	26.56	0.000	0.000	
811.17	-15.06	-210.78	0.41	26.56	0.000	0.000	
716.48	-18.67	-229.32	0.41	26.56	0.000	0.000	
599.63	-22.35	-228.03	0.42	26.56	0.000	0.000	
458.93	-26.14	-202.17	0.44	26.56	0.000	0.000	
292.13	-30.05	-146.29	0.45	26.56	0.000	0.000	
	1074.86 1070.62 973.04 938.68 884.93 811.17 716.48 599.63 458.93 292.13	1074.862.361070.62-1.09973.04-4.54938.68-8.01884.93-11.52811.17-15.06716.48-18.67599.63-22.35458.93-26.14292.13-30.05	1074.86 2.36 44.30 1070.62 -1.09 -20.34 973.04 -4.54 -77.07 938.68 -8.01 -130.87 884.93 -11.52 -176.66 811.17 -15.06 -210.78 716.48 -18.67 -229.32 599.63 -22.35 -228.03 458.93 -26.14 -202.17 292.13 -30.05 -146.29	1074.86 2.36 44.30 0.39 1070.62 -1.09 -20.34 0.39 973.04 -4.54 -77.07 0.39 938.68 -8.01 -130.87 0.39 884.93 -11.52 -176.66 0.40 811.17 -15.06 -210.78 0.41 716.48 -18.67 -229.32 0.41 599.63 -22.35 -228.03 0.42 458.93 -26.14 -202.17 0.44 292.13 -30.05 -146.29 0.45	1074.86 2.36 44.30 0.39 26.56 1070.62 -1.09 -20.34 0.39 26.56 973.04 -4.54 -77.07 0.39 26.56 938.68 -8.01 -130.87 0.39 26.56 884.93 -11.52 -176.66 0.40 26.56 811.17 -15.06 -210.78 0.41 26.56 716.48 -18.67 -229.32 0.41 26.56 599.63 -22.35 -228.03 0.42 26.56 458.93 -26.14 -202.17 0.44 26.56 292.13 -30.05 -146.29 0.45 26.56	1074.86 2.36 44.30 0.39 26.56 0.000 1070.62 -1.09 -20.34 0.39 26.56 0.000 973.04 -4.54 -77.07 0.39 26.56 0.000 938.68 -8.01 -130.87 0.39 26.56 0.000 884.93 -11.52 -176.66 0.40 26.56 0.000 811.17 -15.06 -210.78 0.41 26.56 0.000 716.48 -18.67 -229.32 0.41 26.56 0.000 599.63 -22.35 -228.03 0.42 26.56 0.000 458.93 -26.14 -202.17 0.44 26.56 0.000 292.13 -30.05 -146.29 0.45 26.56 0.000	1074.86 2.36 44.30 0.39 26.56 0.000 0.000 1070.62 -1.09 -20.34 0.39 26.56 0.000 0.000 973.04 -4.54 -77.07 0.39 26.56 0.000 0.000 938.68 -8.01 -130.87 0.39 26.56 0.000 0.000 884.93 -11.52 -176.66 0.40 26.56 0.000 0.000 811.17 -15.06 -210.78 0.41 26.56 0.000 0.000 716.48 -18.67 -229.32 0.41 26.56 0.000 0.000 599.63 -22.35 -228.03 0.42 26.56 0.000 0.000 458.93 -26.14 -202.17 0.44 26.56 0.000 0.000

②W_i= 421.0353 [kN] ②W_isin②_i= 129.6457 [kN] ②W_itan②_i= 210.4883 [kN] ②tan②_itan②_i= 3.31

COMBINAZIONE n° 29

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie	56.1585 52.3105 20.4301 X = 1.80 [m] 21.33	[kN] [kN] [kN] [m]	Υ	=	-1.91
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	115.8145 X = 0.92	[kN] [m]	Y	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	[m] 0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	52.3105	[kN]			
Risultante dei carichi applicati in dir. verticale	204.3195	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	208.1012	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	34.3038	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.14	[m]			

Lunghezza fondazione reagente	3.01	[m]
Risultante in fondazione	210.9096	[kN]
Inclinazione della risultante (rispetto alla normale)	9.36	[°]
Momento rispetto al baricentro della fondazione	-29.7571	[kNm]
Carico ultimo della fondazione	2864.5349	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	3.01	[m]
Tensione terreno allo spigolo di valle	0.04942	[N/mmq]
Tensione terreno allo spigolo di monte	0.08879	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00
I coefficienti N' tengono conto d	lei fattori di forma, profor	ndità, inclinazione carico, i	nclinazione piano

l coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.45
Coefficiente di sicurezza a carico ultimo 13.77

Sollecitazioni paramento

Combinazione n° 29

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5605	0.0445
3	0.26	6.3850	-0.5469	0.1779
4	0.40	7.7025	-0.5098	0.4002
5	0.53	9.0200	-0.4375	0.7115
6	0.66	10.3375	-0.3184	1.1117
7	0.79	11.6550	-0.1407	1.6008
8	0.92	12.9725	0.1075	2.1836
9	1.05	14.2900	0.4434	2.9830
10	1.19	15.6075	0.9129	4.2158
11	1.32	16.9250	1.5646	5.7028
12	1.45	18.2425	2.4222	7.3389
13	1.58	19.5600	3.5044	9.1114
14	1.71	20.8775	4.8286	11.0105
15	1.84	22.1950	6.4109	13.0291
16	1.98	23.5125	8.2667	15.1617
17	2.11	24.8300	10.4108	17.4042
18	2.24	26.1475	12.8574	19.7530
19	2.37	27.4650	15.6203	22.2055
20	2.50	28.7825	18.7130	24.7595
21	2.63	30.1000	22.1482	27.3975

Sollecitazioni fondazione di valle

Combinazione n° 29

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1275	3.2002
3	0.16	0.5139	6.4705
4	0.24	1.1647	9.8107
5	0.32	2.0855	13.2209
6	0.40	3.2819	16.7012
7	0.48	4.7595	20.2514
8	0.56	6.5240	23.8716
9	0.64	8.5809	27.5619
10	0.72	10.9358	31.3221
11	0.80	13.5943	35.1523

Sollecitazioni fondazione di monte

Combinazione n° 29

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.1639	-1.8797
3	0.36	-0.6980	-4.1136
4	0.54	-1.6660	-6.7017
5	0.72	-3.1318	-9.6439
6	0.90	-5.0091	-9.9402
7	1.08	-6.6355	-8.1907
8	1.26	-7.9790	-6.7954
9	1.44	-9.1031	-5.7542
10	1.62	-9.9997	-3.8672
11	1.80	-10.4985	-1.7343

Sollecitazioni mensola di contrappeso

Combinazione n° 29

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 29

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? c	$\mathbf{Z}_{\mathbf{c}}$	$ m ?_{fs}$	\mathbf{P}_{fi}
1	0.00	100, 40	15.71	15.71	0.000	0.000	0.000	0.000
2	0.13	100, 40	15.71	15.71	0.030	0.000	-0.387	0.074
3	0.26	100, 40	15.71	15.71	0.031	0.001	-0.417	-0.009
4	0.40	100, 40	15.71	15.71	0.033	0.001	-0.445	-0.071
5	0.53	100, 40	15.71	15.71	0.034	0.002	-0.463	-0.142
6	0.66	100, 40	15.71	15.71	0.033	0.004	-0.464	-0.230
7	0.79	100, 40	15.71	15.71	0.030	0.005	-0.443	-0.339
8	0.92	100, 40	15.71	15.71	0.032	0.007	-0.396	-0.475
9	1.05	100, 40	15.71	15.71	0.046	0.010	-0.317	-0.642
10	1.19	100, 40	15.71	15.71	0.063	0.014	-0.189	-0.859
11	1.32	100, 40	15.71	15.71	0.087	0.019	0.038	-1.153
12	1.45	100, 40	15.71	15.71	0.125	0.024	0.650	-1.598
13	1.58	100, 40	15.71	15.71	0.181	0.030	1.904	-2.197
14	1.71	100, 40	15.71	15.71	0.250	0.036	3.824	-2.911
15	1.84	100, 40	15.71	15.71	0.333	0.043	6.358	-3.728
16	1.98	100, 40	15.71	15.71	0.428	0.050	9.484	-4.653
17	2.11	100, 40	15.71	15.71	0.537	0.057	13.206	-5.694
18	2.24	100, 40	15.71	15.71	0.661	0.065	17.539	-6.859
19	2.37	100, 40	15.71	15.71	0.799	0.073	22.503	-8.156
20	2.50	100, 40	15.71	15.71	0.954	0.081	28.120	-9.592
21	2.63	100, 40	15.71	15.71	1.125	0.090	34.412	-11.173

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 29

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 29

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$	$ m ?_{fs}$
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.006	0.010	0.244	-0.056
3	0.16	100, 41	12.57	15.71	0.024	0.020	0.966	-0.221
4	0.24	100, 42	12.57	15.71	0.053	0.030	2.146	-0.490
5	0.32	100, 43	12.57	15.71	0.093	0.040	3.769	-0.858
6	0.40	100, 44	12.57	15.71	0.142	0.050	5.821	-1.321
7	0.48	100, 44	12.57	15.71	0.200	0.059	8.287	-1.874
8	0.56	100, 45	12.57	15.71	0.266	0.069	11.155	-2.514
9	0.64	100, 46	12.57	15.71	0.341	0.078	14.413	-3.236
10	0.72	100, 46	12.57	15.71	0.423	0.087	18.049	-4.039
11	0.80	100, 47	12.57	15.71	0.512	0.096	22.053	-4.918

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.004	-0.004	-0.039	0.196
3	0.36	100, 60	15.71	15.71	0.017	-0.009	-0.174	0.861
4	0.54	100, 58	15.71	15.71	0.042	-0.015	-0.432	2.118

5	0.72	100, 57	15.71	15.71	0.083	-0.022	-0.844	4.109
6	0.90	100, 55	15.71	15.71	0.140	-0.023	-1.405	6.787
7	1.08	100, 53	15.71	15.71	0.195	-0.020	-1.939	9.296
8	1.26	100, 52	15.71	15.71	0.247	-0.017	-2.432	11.570
9	1.44	100, 50	15.71	15.71	0.298	-0.015	-2.896	13.679
10	1.62	100, 49	15.71	15.71	0.346	-0.010	-3.326	15.593
11	1.80	100, 47	15.71	15.71	0.385	-0.005	-3.656	17.012

Verifiche a fessurazione

Combinazione n° 29

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	15.71	15.71	-43.85	0.00	0.0000	0.00	0.000
2	0.13	15.71	15.71	43.85	0.56	0.0000	0.00	0.000
3	0.26	15.71	15.71	43.85	0.55	0.0000	0.00	0.000
4	0.40	15.71	15.71	43.85	0.51	0.0000	0.00	0.000
5	0.53	15.71	15.71	43.85	0.44	0.0000	0.00	0.000
6	0.66	15.71	15.71	43.85	0.32	0.0000	0.00	0.000
7	0.79	15.71	15.71	43.85	0.14	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-0.11	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-0.44	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-0.91	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-1.56	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-2.42	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-3.50	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-4.83	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-6.41	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-8.27	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-10.41	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-12.86	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-15.62	0.0000	0.00	0.000
20	2.50	15.71	15.71	-43.85	-18.71	0.0000	0.00	0.000
21	2.63	15.71	15.71	-43.85	-22.15	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	<u>ione fondazi</u>	<u>one</u>					
B10	v			24	24	F		
N°	Y 1.20	A fs	A fi	M_{pf} -42.79	M		s _m	W
1	-1.20 1.12	12.57	15.71	-42.79 45.13	0.00	0.0000	0.00 0.00	0.000
2	-1.12	12.57	15.71		0.13	0.0000		0.000
3	-1.04	12.57	15.71	46.64	0.51	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.16	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	2.09	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	3.28	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	4.76	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	6.52	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	8.58	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	10.94	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	13.59	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-10.50	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-10.00	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-9.10	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-7.98	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-6.64	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-5.01	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-3.13	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-1.67	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-0.70	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.16	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
Verif	ica fessuraz	ione mensolo	a di monte					
<u>verij</u>	ica jessaraz	ione mensor	<u>u ui iiioiite</u>					
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	$M_{\sf pf}$	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 30

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	52.3105	[kN]			
Risultante dei carichi applicati in dir. verticale	204.3195	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	208.1012	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	34.3038	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.14	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	210.9096	[kN]			
Inclinazione della risultante (rispetto alla normale)	9.36	[°]			
Momento rispetto al baricentro della fondazione	-29.7571	[kNm]			
Carico ultimo della fondazione	2864.5349	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	3.01	[m]			
Tensione terreno allo spigolo di valle	0.04942	[N/mmc	1]		
Tensione terreno allo spigolo di monte	0.08879	[N/mmc	1]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	1]		

Fattori per il calc<u>olo della capacità portante</u>

			
Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s ₂ = 1.00
I coefficienti N' tengono conto d di posa, inclinazione pendio.	ei fattori di forma, profo	ndità, inclinazione carico, i	inclinazione piano
	$N'_{c} = 44.04$	$N'_{q} = 28.52$	N' ₂ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.45
Coefficiente di sicurezza a carico ultimo	13.77

Sollecitazioni paramento

Combinazione n° 30

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5605	0.0445
3	0.26	6.3850	-0.5469	0.1779
4	0.40	7.7025	-0.5098	0.4002
5	0.53	9.0200	-0.4375	0.7115
6	0.66	10.3375	-0.3184	1.1117
7	0.79	11.6550	-0.1407	1.6008
8	0.92	12.9725	0.1075	2.1836
9	1.05	14.2900	0.4434	2.9830
10	1.19	15.6075	0.9129	4.2158
11	1.32	16.9250	1.5646	5.7028
12	1.45	18.2425	2.4222	7.3389
13	1.58	19.5600	3.5044	9.1114
14	1.71	20.8775	4.8286	11.0105
15	1.84	22.1950	6.4109	13.0291
16	1.98	23.5125	8.2667	15.1617
17	2.11	24.8300	10.4108	17.4042
18	2.24	26.1475	12.8574	19.7530
19	2.37	27.4650	15.6203	22.2055
20	2.50	28.7825	18.7130	24.7595
21	2.63	30.1000	22.1482	27.3975

Sollecitazioni fondazione di valle

Combinazione n° 30

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1275	3.2002
3	0.16	0.5139	6.4705
4	0.24	1.1647	9.8107
5	0.32	2.0855	13.2209
6	0.40	3.2819	16.7012
7	0.48	4.7595	20.2514
8	0.56	6.5240	23.8716
9	0.64	8.5809	27.5619
10	0.72	10.9358	31.3221
11	0.80	13.5943	35.1523

Sollecitazioni fondazione di monte

Combinazione n° 30

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.1639	-1.8797
3	0.36	-0.6980	-4.1136
4	0.54	-1.6660	-6.7017
5	0.72	-3.1318	-9.6439
6	0.90	-5.0091	-9.9402
7	1.08	-6.6355	-8.1907
8	1.26	-7.9790	-6.7954
9	1.44	-9.1031	-5.7542
10	1.62	-9.9997	-3.8672
11	1.80	-10.4985	-1.7343

Sollecitazioni mensola di contrappeso

Combinazione n° 30

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 30

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	\mathbf{P}_{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.000	0.000	0.000	0.000
2	0.13	100, 40	15.71	15.71	0.030	0.000	-0.387	0.074
3	0.26	100, 40	15.71	15.71	0.031	0.001	-0.417	-0.009
4	0.40	100, 40	15.71	15.71	0.033	0.001	-0.445	-0.071
5	0.53	100, 40	15.71	15.71	0.034	0.002	-0.463	-0.142
6	0.66	100, 40	15.71	15.71	0.033	0.004	-0.464	-0.230
7	0.79	100, 40	15.71	15.71	0.030	0.005	-0.443	-0.339
8	0.92	100, 40	15.71	15.71	0.032	0.007	-0.396	-0.475
9	1.05	100, 40	15.71	15.71	0.046	0.010	-0.317	-0.642
10	1.19	100, 40	15.71	15.71	0.063	0.014	-0.189	-0.859
11	1.32	100, 40	15.71	15.71	0.087	0.019	0.038	-1.153
12	1.45	100, 40	15.71	15.71	0.125	0.024	0.650	-1.598
13	1.58	100, 40	15.71	15.71	0.181	0.030	1.904	-2.197
14	1.71	100, 40	15.71	15.71	0.250	0.036	3.824	-2.911
15	1.84	100, 40	15.71	15.71	0.333	0.043	6.358	-3.728
16	1.98	100, 40	15.71	15.71	0.428	0.050	9.484	-4.653
17	2.11	100, 40	15.71	15.71	0.537	0.057	13.206	-5.694
18	2.24	100, 40	15.71	15.71	0.661	0.065	17.539	-6.859
19	2.37	100, 40	15.71	15.71	0.799	0.073	22.503	-8.156
20	2.50	100, 40	15.71	15.71	0.954	0.081	28.120	-9.592
21	2.63	100, 40	15.71	15.71	1.125	0.090	34.412	-11.173

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 30

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 30

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- ☑c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.006	0.010	0.244	-0.056
3	0.16	100, 41	12.57	15.71	0.024	0.020	0.966	-0.221
4	0.24	100, 42	12.57	15.71	0.053	0.030	2.146	-0.490
5	0.32	100, 43	12.57	15.71	0.093	0.040	3.769	-0.858
6	0.40	100, 44	12.57	15.71	0.142	0.050	5.821	-1.321
7	0.48	100, 44	12.57	15.71	0.200	0.059	8.287	-1.874
8	0.56	100, 45	12.57	15.71	0.266	0.069	11.155	-2.514
9	0.64	100, 46	12.57	15.71	0.341	0.078	14.413	-3.236
10	0.72	100, 46	12.57	15.71	0.423	0.087	18.049	-4.039
11	0.80	100, 47	12.57	15.71	0.512	0.096	22.053	-4.918

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.004	-0.004	-0.039	0.196
3	0.36	100, 60	15.71	15.71	0.017	-0.009	-0.174	0.861
4	0.54	100, 58	15.71	15.71	0.042	-0.015	-0.432	2.118

5	0.72	100, 57	15.71	15.71	0.083	-0.022	-0.844	4.109
6	0.90	100, 55	15.71	15.71	0.140	-0.023	-1.405	6.787
7	1.08	100, 53	15.71	15.71	0.195	-0.020	-1.939	9.296
8	1.26	100, 52	15.71	15.71	0.247	-0.017	-2.432	11.570
9	1.44	100, 50	15.71	15.71	0.298	-0.015	-2.896	13.679
10	1.62	100, 49	15.71	15.71	0.346	-0.010	-3.326	15.593
11	1.80	100, 47	15.71	15.71	0.385	-0.005	-3.656	17.012

Verifiche a fessurazione

Combinazione n° 30

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	15.71	15.71	-43.85	0.00	0.0000	0.00	0.000
2	0.13	15.71	15.71	43.85	0.56	0.0000	0.00	0.000
3	0.26	15.71	15.71	43.85	0.55	0.0000	0.00	0.000
4	0.40	15.71	15.71	43.85	0.51	0.0000	0.00	0.000
5	0.53	15.71	15.71	43.85	0.44	0.0000	0.00	0.000
6	0.66	15.71	15.71	43.85	0.32	0.0000	0.00	0.000
7	0.79	15.71	15.71	43.85	0.14	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-0.11	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-0.44	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-0.91	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-1.56	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-2.42	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-3.50	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-4.83	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-6.41	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-8.27	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-10.41	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-12.86	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-15.62	0.0000	0.00	0.000
20	2.50	15.71	15.71	-43.85	-18.71	0.0000	0.00	0.000
21	2.63	15.71	15.71	-43.85	-22.15	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	<u>ione fondazi</u>	<u>one</u>					
B10	v			24	24	F		
N°	Y 1.20	A fs	A fi	M_{pf} -42.79	M		s _m	W
1	-1.20 1.12	12.57	15.71	-42.79 45.13	0.00	0.0000	0.00 0.00	0.000
2	-1.12	12.57	15.71		0.13	0.0000		0.000
3	-1.04	12.57	15.71	46.64	0.51	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.16	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	2.09	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	3.28	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	4.76	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	6.52	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	8.58	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	10.94	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	13.59	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-10.50	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-10.00	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-9.10	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-7.98	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-6.64	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-5.01	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-3.13	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-1.67	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-0.70	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.16	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
Verif	ica fessuraz	ione mensolo	a di monte					
<u>verij</u>	ica jessaraz	ione mensor	<u>u ui iiioiite</u>					
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	$M_{\sf pf}$	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 31

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	52.3105	[kN]			
Risultante dei carichi applicati in dir. verticale	204.3195	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	208.1012	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	34.3038	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.14	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	210.9096	[kN]			
Inclinazione della risultante (rispetto alla normale)	9.36	[°]			
Momento rispetto al baricentro della fondazione	-29.7571	[kNm]			
Carico ultimo della fondazione	2864.5349	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	3.01	[m]			
Tensione terreno allo spigolo di valle	0.04942	[N/mmc	1]		
Tensione terreno allo spigolo di monte	0.08879	[N/mmc	1]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	1]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N _? = 27.33					
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00					
I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.								
	$N'_c = 44.04$	$N'_{a} = 28.52$	N' ₀ = 27.33					

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.45
Coefficiente di sicurezza a carico ultimo	13.77

Sollecitazioni paramento

Combinazione n° 31

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5605	0.0445
3	0.26	6.3850	-0.5469	0.1779
4	0.40	7.7025	-0.5098	0.4002
5	0.53	9.0200	-0.4375	0.7115
6	0.66	10.3375	-0.3184	1.1117
7	0.79	11.6550	-0.1407	1.6008
8	0.92	12.9725	0.1075	2.1836
9	1.05	14.2900	0.4434	2.9830
10	1.19	15.6075	0.9129	4.2158
11	1.32	16.9250	1.5646	5.7028
12	1.45	18.2425	2.4222	7.3389
13	1.58	19.5600	3.5044	9.1114
14	1.71	20.8775	4.8286	11.0105
15	1.84	22.1950	6.4109	13.0291
16	1.98	23.5125	8.2667	15.1617
17	2.11	24.8300	10.4108	17.4042
18	2.24	26.1475	12.8574	19.7530
19	2.37	27.4650	15.6203	22.2055
20	2.50	28.7825	18.7130	24.7595
21	2.63	30.1000	22.1482	27.3975

Sollecitazioni fondazione di valle

Combinazione n° 31

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1275	3.2002
3	0.16	0.5139	6.4705
4	0.24	1.1647	9.8107
5	0.32	2.0855	13.2209
6	0.40	3.2819	16.7012
7	0.48	4.7595	20.2514
8	0.56	6.5240	23.8716
9	0.64	8.5809	27.5619
10	0.72	10.9358	31.3221
11	0.80	13.5943	35.1523

Sollecitazioni fondazione di monte

Combinazione n° 31

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.1639	-1.8797
3	0.36	-0.6980	-4.1136
4	0.54	-1.6660	-6.7017
5	0.72	-3.1318	-9.6439
6	0.90	-5.0091	-9.9402
7	1.08	-6.6355	-8.1907
8	1.26	-7.9790	-6.7954
9	1.44	-9.1031	-5.7542
10	1.62	-9.9997	-3.8672
11	1.80	-10.4985	-1.7343

Sollecitazioni mensola di contrappeso

Combinazione n° 31

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 31

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	\mathbf{P}_{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.000	0.000	0.000	0.000
2	0.13	100, 40	15.71	15.71	0.030	0.000	-0.387	0.074
3	0.26	100, 40	15.71	15.71	0.031	0.001	-0.417	-0.009
4	0.40	100, 40	15.71	15.71	0.033	0.001	-0.445	-0.071
5	0.53	100, 40	15.71	15.71	0.034	0.002	-0.463	-0.142
6	0.66	100, 40	15.71	15.71	0.033	0.004	-0.464	-0.230
7	0.79	100, 40	15.71	15.71	0.030	0.005	-0.443	-0.339
8	0.92	100, 40	15.71	15.71	0.032	0.007	-0.396	-0.475
9	1.05	100, 40	15.71	15.71	0.046	0.010	-0.317	-0.642
10	1.19	100, 40	15.71	15.71	0.063	0.014	-0.189	-0.859
11	1.32	100, 40	15.71	15.71	0.087	0.019	0.038	-1.153
12	1.45	100, 40	15.71	15.71	0.125	0.024	0.650	-1.598
13	1.58	100, 40	15.71	15.71	0.181	0.030	1.904	-2.197
14	1.71	100, 40	15.71	15.71	0.250	0.036	3.824	-2.911
15	1.84	100, 40	15.71	15.71	0.333	0.043	6.358	-3.728
16	1.98	100, 40	15.71	15.71	0.428	0.050	9.484	-4.653
17	2.11	100, 40	15.71	15.71	0.537	0.057	13.206	-5.694
18	2.24	100, 40	15.71	15.71	0.661	0.065	17.539	-6.859
19	2.37	100, 40	15.71	15.71	0.799	0.073	22.503	-8.156
20	2.50	100, 40	15.71	15.71	0.954	0.081	28.120	-9.592
21	2.63	100, 40	15.71	15.71	1.125	0.090	34.412	-11.173

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 31

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 31

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- ☑c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.006	0.010	0.244	-0.056
3	0.16	100, 41	12.57	15.71	0.024	0.020	0.966	-0.221
4	0.24	100, 42	12.57	15.71	0.053	0.030	2.146	-0.490
5	0.32	100, 43	12.57	15.71	0.093	0.040	3.769	-0.858
6	0.40	100, 44	12.57	15.71	0.142	0.050	5.821	-1.321
7	0.48	100, 44	12.57	15.71	0.200	0.059	8.287	-1.874
8	0.56	100, 45	12.57	15.71	0.266	0.069	11.155	-2.514
9	0.64	100, 46	12.57	15.71	0.341	0.078	14.413	-3.236
10	0.72	100, 46	12.57	15.71	0.423	0.087	18.049	-4.039
11	0.80	100, 47	12.57	15.71	0.512	0.096	22.053	-4.918

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.004	-0.004	-0.039	0.196
3	0.36	100, 60	15.71	15.71	0.017	-0.009	-0.174	0.861
4	0.54	100, 58	15.71	15.71	0.042	-0.015	-0.432	2.118

5	0.72	100, 57	15.71	15.71	0.083	-0.022	-0.844	4.109
6	0.90	100, 55	15.71	15.71	0.140	-0.023	-1.405	6.787
7	1.08	100, 53	15.71	15.71	0.195	-0.020	-1.939	9.296
8	1.26	100, 52	15.71	15.71	0.247	-0.017	-2.432	11.570
9	1.44	100, 50	15.71	15.71	0.298	-0.015	-2.896	13.679
10	1.62	100, 49	15.71	15.71	0.346	-0.010	-3.326	15.593
11	1.80	100, 47	15.71	15.71	0.385	-0.005	-3.656	17.012

Verifiche a fessurazione

Combinazione n° 31

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	${f A}_{\sf fs}$	A_{fi}	M_{pf}	M	? _m	S _m	w
1	0.00	15.71	15.71	-43.85	0.00	0.0000	0.00	0.000
2	0.13	15.71	15.71	43.85	0.56	0.0000	0.00	0.000
3	0.26	15.71	15.71	43.85	0.55	0.0000	0.00	0.000
4	0.40	15.71	15.71	43.85	0.51	0.0000	0.00	0.000
5	0.53	15.71	15.71	43.85	0.44	0.0000	0.00	0.000
6	0.66	15.71	15.71	43.85	0.32	0.0000	0.00	0.000
7	0.79	15.71	15.71	43.85	0.14	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-0.11	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-0.44	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-0.91	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-1.56	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-2.42	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-3.50	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-4.83	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-6.41	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-8.27	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-10.41	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-12.86	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-15.62	0.0000	0.00	0.000
20	2.50	15.71	15.71	-43.85	-18.71	0.0000	0.00	0.000
21	2.63	15.71	15.71	-43.85	-22.15	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	${\sf A}_{\sf fs}$	A_{fi}	M_{pf}	М	? _m	S _m	w
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.13	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.51	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.16	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	2.09	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	3.28	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	4.76	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	6.52	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	8.58	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	10.94	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	13.59	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-10.50	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-10.00	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-9.10	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-7.98	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-6.64	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-5.01	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-3.13	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-1.67	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-0.70	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.16	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	Verifica fessurazione mensola di monte							
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 32

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Risultanti carichi esterni					
Componente dir. X	3.34	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	55.6505	[kN]			
Risultante dei carichi applicati in dir. verticale	204.3195	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	208.3923	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	37.6311	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.08	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	211.7627	[kN]			
Inclinazione della risultante (rispetto alla normale)	10.24	[°]			
Momento rispetto al baricentro della fondazione	-17.0988	[kNm]			
Carico ultimo della fondazione	2992.6392	[kN]			
Tensioni sul terreno	2.01	[ma]			
Lunghezza fondazione reagente	3.01	[m]	.1		
Tensione terreno allo spigolo di valle	0.05789	[N/mmc	•-		
Tensione terreno allo spigolo di monte	0.08051	[N/mmc	•-		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	1]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.23
Coefficiente di sicurezza a carico ultimo	14.36

Sollecitazioni paramento

Combinazione n° 32

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	2.2000	3.3400
2	0.13	5.0675	2.0795	3.3845
3	0.26	6.3850	2.5332	3.5179
4	0.40	7.7025	3.0104	3.7402
5	0.53	9.0200	3.5227	4.0515
6	0.66	10.3375	4.0818	4.4517
7	0.79	11.6550	4.6996	4.9408
8	0.92	12.9725	5.3878	5.5236
9	1.05	14.2900	6.1637	6.3230
10	1.19	15.6075	7.0733	7.5558
11	1.32	16.9250	8.1650	9.0428
12	1.45	18.2425	9.4627	10.6789
13	1.58	19.5600	10.9849	12.4514
14	1.71	20.8775	12.7491	14.3505
15	1.84	22.1950	14.7715	16.3691
16	1.98	23.5125	17.0674	18.5017
17	2.11	24.8300	19.6515	20.7442
18	2.24	26.1475	22.5381	23.0930
19	2.37	27.4650	25.7411	25.5455
20	2.50	28.7825	29.2738	28.0995
21	2.63	30.1000	33.1491	30.7375

Sollecitazioni fondazione di valle

Combinazione n° 32

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1540	3.8550
3	0.16	0.6177	7.7442
4	0.24	1.3940	11.6678
5	0.32	2.4855	15.6255
6	0.40	3.8950	19.6176
7	0.48	5.6252	23.6439
8	0.56	7.6789	27.7045
9	0.64	10.0588	31.7994
10	0.72	12.7677	35.9285
11	0.80	15.8083	40.0919

Sollecitazioni fondazione di monte

Combinazione n° 32

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.2936	-3.2908
3	0.36	-1.1951	-6.7549
4	0.54	-2.7357	-10.3922
5	0.72	-4.9467	-14.2028
6	0.90	-7.7092	-15.1867
7	1.08	-10.3283	-13.9438
8	1.26	-12.7393	-12.8742
9	1.44	-14.9734	-11.9778
10	1.62	-16.9897	-10.0547
11	1.80	-18.5855	-7.7049

Sollecitazioni mensola di contrappeso

Combinazione n° 32

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 32

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	\mathbf{P}_{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.107	0.011	4.300	-0.953
2	0.13	100, 40	15.71	15.71	0.107	0.011	2.609	-1.141
3	0.26	100, 40	15.71	15.71	0.131	0.011	3.122	-1.398
4	0.40	100, 40	15.71	15.71	0.156	0.012	3.679	-1.665
5	0.53	100, 40	15.71	15.71	0.182	0.013	4.303	-1.949
6	0.66	100, 40	15.71	15.71	0.211	0.015	5.017	-2.254
7	0.79	100, 40	15.71	15.71	0.243	0.016	5.842	-2.587
8	0.92	100, 40	15.71	15.71	0.278	0.018	6.802	-2.951
9	1.05	100, 40	15.71	15.71	0.318	0.021	7.930	-3.356
10	1.19	100, 40	15.71	15.71	0.364	0.025	9.314	-3.821
11	1.32	100, 40	15.71	15.71	0.420	0.030	11.050	-4.368
12	1.45	100, 40	15.71	15.71	0.485	0.035	13.185	-5.008
13	1.58	100, 40	15.71	15.71	0.562	0.041	15.757	-5.746
14	1.71	100, 40	15.71	15.71	0.651	0.047	18.800	-6.591
15	1.84	100, 40	15.71	15.71	0.752	0.053	22.346	-7.548
16	1.98	100, 40	15.71	15.71	0.867	0.060	26.427	-8.625
17	2.11	100, 40	15.71	15.71	0.996	0.068	31.072	-9.826
18	2.24	100, 40	15.71	15.71	1.139	0.075	36.308	-11.159
19	2.37	100, 40	15.71	15.71	1.298	0.083	42.162	-12.629
20	2.50	100, 40	15.71	15.71	1.474	0.092	48.662	-14.241
21	2.63	100, 40	15.71	15.71	1.665	0.100	55.831	-16.002

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 32

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 32

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.007	0.012	0.295	-0.068
3	0.16	100, 41	12.57	15.71	0.029	0.024	1.161	-0.266
4	0.24	100, 42	12.57	15.71	0.064	0.036	2.568	-0.587
5	0.32	100, 43	12.57	15.71	0.110	0.047	4.492	-1.023
6	0.40	100, 44	12.57	15.71	0.168	0.058	6.909	-1.567
7	0.48	100, 44	12.57	15.71	0.236	0.069	9.795	-2.215
8	0.56	100, 45	12.57	15.71	0.314	0.080	13.130	-2.959
9	0.64	100, 46	12.57	15.71	0.400	0.090	16.895	-3.794
10	0.72	100, 46	12.57	15.71	0.494	0.100	21.072	-4.716
11	0.80	100, 47	12.57	15.71	0.596	0.110	25.645	-5.719

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.007	-0.007	-0.071	0.352
3	0.36	100, 60	15.71	15.71	0.029	-0.014	-0.299	1.474
4	0.54	100, 58	15.71	15.71	0.070	-0.023	-0.710	3.479

5	0.72	100, 57	15.71	15.71	0.132	-0.032	-1.334	6.490
6	0.90	100, 55	15.71	15.71	0.216	-0.035	-2.163	10.446
7	1.08	100, 53	15.71	15.71	0.304	-0.033	-3.018	14.469
8	1.26	100, 52	15.71	15.71	0.395	-0.032	-3.882	18.473
9	1.44	100, 50	15.71	15.71	0.490	-0.031	-4.764	22.501
10	1.62	100, 49	15.71	15.71	0.588	-0.027	-5.651	26.493
11	1.80	100, 47	15.71	15.71	0.682	-0.021	-6.471	30.116

Verifiche a fessurazione

Combinazione n° 32

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? m	$\mathbf{S}_{\mathbf{m}}$	w
1	0.00	15.71	15.71	-43.85	-2.20	0.0000	0.00	0.000
2	0.13	15.71	15.71	-43.85	-2.08	0.0000	0.00	0.000
3	0.26	15.71	15.71	-43.85	-2.53	0.0000	0.00	0.000
4	0.40	15.71	15.71	-43.85	-3.01	0.0000	0.00	0.000
5	0.53	15.71	15.71	-43.85	-3.52	0.0000	0.00	0.000
6	0.66	15.71	15.71	-43.85	-4.08	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-4.70	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-5.39	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-6.16	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-7.07	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-8.17	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-9.46	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-10.98	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-12.75	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-14.77	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-17.07	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-19.65	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-22.54	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-25.74	0.0000	0.00	0.000
20	2.50	15.71	15.71	-43.85	-29.27	0.0000	0.00	0.000
21	2.63	15.71	15.71	-43.85	-33.15	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	${\sf A}_{\sf fs}$	A_{fi}	M_{pf}	М	? _m	S _m	w
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.15	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.62	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.39	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	2.49	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	3.89	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	5.63	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	7.68	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	10.06	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	12.77	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	15.81	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-18.59	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-16.99	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-14.97	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-12.74	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-10.33	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-7.71	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-4.95	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-2.74	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-1.20	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.29	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	īca fessuraz	tione mensolo	a di monte					
N°	Υ	\mathbf{A}_{fs}	A_{fi}	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 33

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti carichi esterni</u>					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	62.3305	[kN]			
Risultante dei carichi applicati in dir. verticale	204.3195	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	208.9745	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	44.2857	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.04	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	213.6154	[kN]			
Inclinazione della risultante (rispetto alla normale)	11.97	[°]			
Momento rispetto al baricentro della fondazione	8.2179	[kNm]			
Carico ultimo della fondazione	3082.4507	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	3.01	[m]			
Tensione terreno allo spigolo di valle	0.07483	[N/mmq			
Tensione terreno allo spigolo di monte	0.06396	[N/mmq			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.90
Coefficiente di sicurezza a carico ultimo	14.75

Sollecitazioni paramento

Combinazione n° 33

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	т
1	0.00	0.0000	6.6000	10.0200
2	0.13	5.0675	7.3596	10.0645
3	0.26	6.3850	8.6934	10.1979
4	0.40	7.7025	10.0506	10.4202
5	0.53	9.0200	11.4430	10.7315
6	0.66	10.3375	12.8823	11.1317
7	0.79	11.6550	14.3801	11.6208
8	0.92	12.9725	15.9484	12.2036
9	1.05	14.2900	17.6044	13.0030
10	1.19	15.6075	19.3941	14.2358
11	1.32	16.9250	21.3659	15.7228
12	1.45	18.2425	23.5436	17.3589
13	1.58	19.5600	25.9460	19.1314
14	1.71	20.8775	28.5903	21.0305
15	1.84	22.1950	31.4928	23.0491
16	1.98	23.5125	34.6687	25.1817
17	2.11	24.8300	38.1329	27.4242
18	2.24	26.1475	41.8996	29.7730
19	2.37	27.4650	45.9827	32.2255
20	2.50	28.7825	50.3955	34.7795
21	2.63	30.1000	55.1509	37.4175

Sollecitazioni fondazione di valle

Combinazione n° 33

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2070	5.1678
3	0.16	0.8259	10.2984
4	0.24	1.8537	15.3918
5	0.32	3.2876	20.4480
6	0.40	5.1244	25.4670
7	0.48	7.3613	30.4488
8	0.56	9.9952	35.3934
9	0.64	13.0232	40.3009
10	0.72	16.4424	45.1711
11	0.80	20.2496	50.0041

Sollecitazioni fondazione di monte

Combinazione n° 33

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.18	-0.5523	-6.1055
3	0.36	-2.1867	-12.0226
4	0.54	-4.8691	-17.7511
5	0.72	-8.5658	-23.2910
6	0.90	-13.0926	-25.6424
7	1.08	-17.6897	-25.4053
8	1.26	-22.2272	-24.9797
9	1.44	-26.6711	-24.3655
10	1.62	-30.9155	-22.3628
11	1.80	-34.6924	-19.5716

Sollecitazioni mensola di contrappeso

Combinazione n° 33

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 33

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.322	0.033	12.900	-2.858
2	0.13	100, 40	15.71	15.71	0.367	0.033	12.870	-3.470
3	0.26	100, 40	15.71	15.71	0.435	0.033	15.085	-4.119
4	0.40	100, 40	15.71	15.71	0.503	0.034	17.345	-4.779
5	0.53	100, 40	15.71	15.71	0.573	0.035	19.675	-5.454
6	0.66	100, 40	15.71	15.71	0.645	0.036	22.095	-6.149
7	0.79	100, 40	15.71	15.71	0.721	0.038	24.631	-6.870
8	0.92	100, 40	15.71	15.71	0.799	0.040	27.303	-7.622
9	1.05	100, 40	15.71	15.71	0.882	0.042	30.147	-8.412
10	1.19	100, 40	15.71	15.71	0.972	0.047	33.251	-9.260
11	1.32	100, 40	15.71	15.71	1.070	0.051	36.711	-10.188
12	1.45	100, 40	15.71	15.71	1.178	0.057	40.573	-11.205
13	1.58	100, 40	15.71	15.71	1.298	0.063	44.873	-12.320
14	1.71	100, 40	15.71	15.71	1.429	0.069	49.645	-13.541
15	1.84	100, 40	15.71	15.71	1.573	0.075	54.922	-14.873
16	1.98	100, 40	15.71	15.71	1.730	0.082	60.732	-16.325
17	2.11	100, 40	15.71	15.71	1.902	0.090	67.105	-17.902
18	2.24	100, 40	15.71	15.71	2.088	0.097	74.070	-19.610
19	2.37	100, 40	15.71	15.71	2.290	0.105	81.652	-21.455
20	2.50	100, 40	15.71	15.71	2.507	0.114	89.879	-23.444
21	2.63	100, 40	15.71	15.71	2.742	0.122	98.775	-25.581

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 33

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 33

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.010	0.017	0.397	-0.091
3	0.16	100, 41	12.57	15.71	0.039	0.032	1.552	-0.356
4	0.24	100, 42	12.57	15.71	0.085	0.048	3.415	-0.780
5	0.32	100, 43	12.57	15.71	0.146	0.062	5.942	-1.353
6	0.40	100, 44	12.57	15.71	0.221	0.076	9.089	-2.062
7	0.48	100, 44	12.57	15.71	0.309	0.089	12.818	-2.898
8	0.56	100, 45	12.57	15.71	0.408	0.102	17.091	-3.851
9	0.64	100, 46	12.57	15.71	0.517	0.114	21.874	-4.912
10	0.72	100, 46	12.57	15.71	0.636	0.126	27.137	-6.073
11	0.80	100, 47	12.57	15.71	0.763	0.137	32.850	-7.326

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.013	-0.013	-0.133	0.662
3	0.36	100, 60	15.71	15.71	0.053	-0.025	-0.546	2.697
4	0.54	100, 58	15.71	15.71	0.124	-0.039	-1.263	6.191

5	0.72	100, 57	15.71	15.71	0.228	-0.052	-2.310	11.238
6	0.90	100, 55	15.71	15.71	0.366	-0.059	-3.673	17.740
7	1.08	100, 53	15.71	15.71	0.521	-0.061	-5.170	24.782
8	1.26	100, 52	15.71	15.71	0.689	-0.061	-6.774	32.230
9	1.44	100, 50	15.71	15.71	0.873	-0.062	-8.486	40.079
10	1.62	100, 49	15.71	15.71	1.070	-0.059	-10.283	48.208
11	1.80	100, 47	15.71	15.71	1.272	-0.054	-12.080	56.215

Verifiche a fessurazione

Combinazione n° 33

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	${f A}_{\sf fs}$	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	15.71	15.71	-43.85	-6.60	0.0000	0.00	0.000
2	0.13	15.71	15.71	-43.85	-7.36	0.0000	0.00	0.000
3	0.26	15.71	15.71	-43.85	-8.69	0.0000	0.00	0.000
4	0.40	15.71	15.71	-43.85	-10.05	0.0000	0.00	0.000
5	0.53	15.71	15.71	-43.85	-11.44	0.0000	0.00	0.000
6	0.66	15.71	15.71	-43.85	-12.88	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-14.38	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-15.95	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-17.60	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-19.39	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-21.37	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-23.54	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-25.95	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-28.59	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-31.49	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-34.67	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-38.13	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-41.90	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-45.98	0.0238	197.67	0.080
20	2.50	15.71	15.71	-43.85	-50.40	0.0262	197.67	0.088
21	2.63	15.71	15.71	-43.85	-55.15	0.0308	197.67	0.103
<u>Verif</u>	ica fessuraz	rione fondazio	<u>one</u>					
N°	Υ	A_{fs}	A_{fi}	M_{pf}	М	? m	S _m	w
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.21	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.83	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.85	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	3.29	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	5.12	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	7.36	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	10.00	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	13.02	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	16.44	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	20.25	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-34.69	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-30.92	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-26.67	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-22.23	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-17.69	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-13.09	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-8.57	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-4.87	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-2.19	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.55	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	?m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 34

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti carichi esterni</u>					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	62.3305	[kN]			
Risultante dei carichi applicati in dir. verticale	204.3195	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	208.9745	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	44.2857	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.04	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	213.6154	[kN]			
Inclinazione della risultante (rispetto alla normale)	11.97	[°]			
Momento rispetto al baricentro della fondazione	8.2179	[kNm]			
Carico ultimo della fondazione	3082.4507	[kN]			
<u>Tensioni sul terreno</u>	2.04	f 1			
Lunghezza fondazione reagente	3.01	[m]	,		
Tensione terreno allo spigolo di valle	0.07483	[N/mmc	•-		
Tensione terreno allo spigolo di monte	0.06396	[N/mmc	•-		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	IJ		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.90
Coefficiente di sicurezza a carico ultimo	14.75

Sollecitazioni paramento

Combinazione n° 34

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	6.6000	10.0200
2	0.13	5.0675	7.3596	10.0645
3	0.26	6.3850	8.6934	10.1979
4	0.40	7.7025	10.0506	10.4202
5	0.53	9.0200	11.4430	10.7315
6	0.66	10.3375	12.8823	11.1317
7	0.79	11.6550	14.3801	11.6208
8	0.92	12.9725	15.9484	12.2036
9	1.05	14.2900	17.6044	13.0030
10	1.19	15.6075	19.3941	14.2358
11	1.32	16.9250	21.3659	15.7228
12	1.45	18.2425	23.5436	17.3589
13	1.58	19.5600	25.9460	19.1314
14	1.71	20.8775	28.5903	21.0305
15	1.84	22.1950	31.4928	23.0491
16	1.98	23.5125	34.6687	25.1817
17	2.11	24.8300	38.1329	27.4242
18	2.24	26.1475	41.8996	29.7730
19	2.37	27.4650	45.9827	32.2255
20	2.50	28.7825	50.3955	34.7795
21	2.63	30.1000	55.1509	37.4175

Sollecitazioni fondazione di valle

Combinazione n° 34

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2070	5.1678
3	0.16	0.8259	10.2984
4	0.24	1.8537	15.3918
5	0.32	3.2876	20.4480
6	0.40	5.1244	25.4670
7	0.48	7.3613	30.4488
8	0.56	9.9952	35.3934
9	0.64	13.0232	40.3009
10	0.72	16.4424	45.1711
11	0.80	20.2496	50.0041

Sollecitazioni fondazione di monte

Combinazione n° 34

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.5523	-6.1055
3	0.36	-2.1867	-12.0226
4	0.54	-4.8691	-17.7511
5	0.72	-8.5658	-23.2910
6	0.90	-13.0926	-25.6424
7	1.08	-17.6897	-25.4053
8	1.26	-22.2272	-24.9797
9	1.44	-26.6711	-24.3655
10	1.62	-30.9155	-22.3628
11	1.80	-34.6924	-19.5716

Sollecitazioni mensola di contrappeso

Combinazione n° 34

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 34

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.322	0.033	12.900	-2.858
2	0.13	100, 40	15.71	15.71	0.367	0.033	12.870	-3.470
3	0.26	100, 40	15.71	15.71	0.435	0.033	15.085	-4.119
4	0.40	100, 40	15.71	15.71	0.503	0.034	17.345	-4.779
5	0.53	100, 40	15.71	15.71	0.573	0.035	19.675	-5.454
6	0.66	100, 40	15.71	15.71	0.645	0.036	22.095	-6.149
7	0.79	100, 40	15.71	15.71	0.721	0.038	24.631	-6.870
8	0.92	100, 40	15.71	15.71	0.799	0.040	27.303	-7.622
9	1.05	100, 40	15.71	15.71	0.882	0.042	30.147	-8.412
10	1.19	100, 40	15.71	15.71	0.972	0.047	33.251	-9.260
11	1.32	100, 40	15.71	15.71	1.070	0.051	36.711	-10.188
12	1.45	100, 40	15.71	15.71	1.178	0.057	40.573	-11.205
13	1.58	100, 40	15.71	15.71	1.298	0.063	44.873	-12.320
14	1.71	100, 40	15.71	15.71	1.429	0.069	49.645	-13.541
15	1.84	100, 40	15.71	15.71	1.573	0.075	54.922	-14.873
16	1.98	100, 40	15.71	15.71	1.730	0.082	60.732	-16.325
17	2.11	100, 40	15.71	15.71	1.902	0.090	67.105	-17.902
18	2.24	100, 40	15.71	15.71	2.088	0.097	74.070	-19.610
19	2.37	100, 40	15.71	15.71	2.290	0.105	81.652	-21.455
20	2.50	100, 40	15.71	15.71	2.507	0.114	89.879	-23.444
21	2.63	100, 40	15.71	15.71	2.742	0.122	98.775	-25.581

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 34

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 34

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- ☑c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.010	0.017	0.397	-0.091
3	0.16	100, 41	12.57	15.71	0.039	0.032	1.552	-0.356
4	0.24	100, 42	12.57	15.71	0.085	0.048	3.415	-0.780
5	0.32	100, 43	12.57	15.71	0.146	0.062	5.942	-1.353
6	0.40	100, 44	12.57	15.71	0.221	0.076	9.089	-2.062
7	0.48	100, 44	12.57	15.71	0.309	0.089	12.818	-2.898
8	0.56	100, 45	12.57	15.71	0.408	0.102	17.091	-3.851
9	0.64	100, 46	12.57	15.71	0.517	0.114	21.874	-4.912
10	0.72	100, 46	12.57	15.71	0.636	0.126	27.137	-6.073
11	0.80	100, 47	12.57	15.71	0.763	0.137	32.850	-7.326

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.013	-0.013	-0.133	0.662
3	0.36	100, 60	15.71	15.71	0.053	-0.025	-0.546	2.697
4	0.54	100, 58	15.71	15.71	0.124	-0.039	-1.263	6.191

5	0.72	100, 57	15.71	15.71	0.228	-0.052	-2.310	11.238
6	0.90	100, 55	15.71	15.71	0.366	-0.059	-3.673	17.740
7	1.08	100, 53	15.71	15.71	0.521	-0.061	-5.170	24.782
8	1.26	100, 52	15.71	15.71	0.689	-0.061	-6.774	32.230
9	1.44	100, 50	15.71	15.71	0.873	-0.062	-8.486	40.079
10	1.62	100, 49	15.71	15.71	1.070	-0.059	-10.283	48.208
11	1.80	100, 47	15.71	15.71	1.272	-0.054	-12.080	56.215

Verifiche a fessurazione

Combinazione n° 34

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	${f A}_{\sf fs}$	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	15.71	15.71	-43.85	-6.60	0.0000	0.00	0.000
2	0.13	15.71	15.71	-43.85	-7.36	0.0000	0.00	0.000
3	0.26	15.71	15.71	-43.85	-8.69	0.0000	0.00	0.000
4	0.40	15.71	15.71	-43.85	-10.05	0.0000	0.00	0.000
5	0.53	15.71	15.71	-43.85	-11.44	0.0000	0.00	0.000
6	0.66	15.71	15.71	-43.85	-12.88	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-14.38	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-15.95	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-17.60	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-19.39	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-21.37	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-23.54	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-25.95	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-28.59	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-31.49	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-34.67	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-38.13	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-41.90	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-45.98	0.0238	197.67	0.080
20	2.50	15.71	15.71	-43.85	-50.40	0.0262	197.67	0.088
21	2.63	15.71	15.71	-43.85	-55.15	0.0308	197.67	0.103
<u>Verif</u>	ica fessuraz	rione fondazi	<u>one</u>					
N°	Υ	${\sf A}_{\sf fs}$	A_{fi}	M_{pf}	М	? m	S _m	w
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.21	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.83	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.85	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	3.29	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	5.12	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	7.36	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	10.00	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	13.02	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	16.44	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	20.25	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-34.69	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-30.92	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-26.67	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-22.23	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-17.69	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-13.09	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-8.57	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-4.87	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-2.19	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.55	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	?m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 35

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Risultanti carichi esterni					
Componente dir. X	16.70	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	69.0105	[kN]			
Risultante dei carichi applicati in dir. verticale	204.3195	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	209.5567	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	50.9403	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.16	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	215.6593	[kN]			
Inclinazione della risultante (rispetto alla normale)	13.66	[°]			
Momento rispetto al baricentro della fondazione	33.5346	[kNm]			
Carico ultimo della fondazione	2828.7305	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	3.01	[m]			
Tensione terreno allo spigolo di valle	0.09177	[N/mmc	•-		
Tensione terreno allo spigolo di monte	0.04740	[N/mmc	•-		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	1]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N _□ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.66
Coefficiente di sicurezza a carico ultimo	13.50

Sollecitazioni paramento

Combinazione n° 35

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	11.0000	16.7000
2	0.13	5.0675	12.6397	16.7445
3	0.26	6.3850	14.8536	16.8779
4	0.40	7.7025	17.0909	17.1002
5	0.53	9.0200	19.3634	17.4115
6	0.66	10.3375	21.6827	17.8117
7	0.79	11.6550	24.0606	18.3008
8	0.92	12.9725	26.5090	18.8836
9	1.05	14.2900	29.0451	19.6830
10	1.19	15.6075	31.7149	20.9158
11	1.32	16.9250	34.5668	22.4028
12	1.45	18.2425	37.6246	24.0389
13	1.58	19.5600	40.9070	25.8114
14	1.71	20.8775	44.4314	27.7105
15	1.84	22.1950	48.2140	29.7291
16	1.98	23.5125	52.2700	31.8617
17	2.11	24.8300	56.6144	34.1042
18	2.24	26.1475	61.2612	36.4530
19	2.37	27.4650	66.2243	38.9055
20	2.50	28.7825	71.5172	41.4595
21	2.63	30.1000	77.1526	44.0975

Sollecitazioni fondazione di valle

Combinazione n° 35

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2602	6.4875
3	0.16	1.0351	12.8663
4	0.24	2.3159	19.1365
5	0.32	4.0940	25.2980
6	0.40	6.3607	31.3509
7	0.48	9.1073	37.2951
8	0.56	12.3250	43.1306
9	0.64	16.0053	48.8575
10	0.72	20.1393	54.4757
11	0.80	24.7185	59.9852

Sollecitazioni fondazione di monte

Combinazione n° 35

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.8097	-8.9048
3	0.36	-3.1727	-17.2592
4	0.54	-6.9900	-25.0634
5	0.72	-12.1625	-32.3172
6	0.90	-18.4412	-36.0207
7	1.08	-25.0009	-36.7738
8	1.26	-31.6467	-36.9767
9	1.44	-38.2795	-36.6292
10	1.62	-44.7282	-34.5314
11	1.80	-50.6598	-31.2833

Sollecitazioni mensola di contrappeso

Combinazione n° 35

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 35

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- Image: Tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	A_{fs}	${\sf A}_{\sf fi}$? c	? _c	?₁fs	? _{fi}
1	0.00	100, 40	15.71	15.71	0.536	0.055	21.501	-4.763
2	0.13	100, 40	15.71	15.71	0.625	0.055	23.182	-5.763
3	0.26	100, 40	15.71	15.71	0.736	0.055	27.115	-6.796
4	0.40	100, 40	15.71	15.71	0.847	0.056	31.093	-7.839
5	0.53	100, 40	15.71	15.71	0.960	0.057	35.140	-8.897
6	0.66	100, 40	15.71	15.71	1.076	0.058	39.278	-9.976
7	0.79	100, 40	15.71	15.71	1.194	0.060	43.531	-11.080
8	0.92	100, 40	15.71	15.71	1.315	0.062	47.922	-12.215
9	1.05	100, 40	15.71	15.71	1.441	0.064	52.484	-13.388
10	1.19	100, 40	15.71	15.71	1.574	0.068	57.307	-14.618
11	1.32	100, 40	15.71	15.71	1.715	0.073	62.485	-15.928
12	1.45	100, 40	15.71	15.71	1.867	0.079	68.066	-17.328
13	1.58	100, 40	15.71	15.71	2.029	0.084	74.086	-18.824
14	1.71	100, 40	15.71	15.71	2.203	0.091	80.579	-20.426
15	1.84	100, 40	15.71	15.71	2.390	0.097	87.575	-22.140
16	1.98	100, 40	15.71	15.71	2.590	0.104	95.106	-23.972
17	2.11	100, 40	15.71	15.71	2.805	0.111	103.201	-25.930
18	2.24	100, 40	15.71	15.71	3.034	0.119	111.886	-28.018
19	2.37	100, 40	15.71	15.71	3.278	0.127	121.189	-30.244
20	2.50	100, 40	15.71	15.71	3.539	0.135	131.137	-32.613
21	2.63	100, 40	15.71	15.71	3.816	0.144	141.754	-35.130

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 35

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 35

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.013	0.021	0.499	-0.115
3	0.16	100, 41	12.57	15.71	0.049	0.040	1.945	-0.446
4	0.24	100, 42	12.57	15.71	0.106	0.059	4.267	-0.975
5	0.32	100, 43	12.57	15.71	0.182	0.077	7.400	-1.684
6	0.40	100, 44	12.57	15.71	0.275	0.093	11.282	-2.560
7	0.48	100, 44	12.57	15.71	0.382	0.109	15.858	-3.585
8	0.56	100, 45	12.57	15.71	0.503	0.124	21.074	-4.749
9	0.64	100, 46	12.57	15.71	0.636	0.138	26.883	-6.037
10	0.72	100, 46	12.57	15.71	0.779	0.152	33.239	-7.438
11	0.80	100, 47	12.57	15.71	0.931	0.164	40.099	-8.942

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	\mathbf{P}_{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.019	-0.018	-0.195	0.970
3	0.36	100, 60	15.71	15.71	0.077	-0.036	-0.793	3.914
4	0.54	100, 58	15.71	15.71	0.178	-0.054	-1.813	8.888

5	0.72	100, 57	15.71	15.71	0.324	-0.072	-3.279	15.957
6	0.90	100, 55	15.71	15.71	0.516	-0.083	-5.174	24.987
7	1.08	100, 53	15.71	15.71	0.736	-0.088	-7.306	35.024
8	1.26	100, 52	15.71	15.71	0.981	-0.091	-9.644	45.889
9	1.44	100, 50	15.71	15.71	1.252	-0.093	-12.180	57.523
10	1.62	100, 49	15.71	15.71	1.548	-0.091	-14.878	69.747
11	1.80	100, 47	15.71	15.71	1.858	-0.086	-17.639	82.088

Verifiche a fessurazione

Combinazione n° 35

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	\mathbf{P}_{m}	S _m	w
1	0.00	15.71	15.71	-43.85	-11.00	0.0000	0.00	0.000
2	0.13	15.71	15.71	-43.85	-12.64	0.0000	0.00	0.000
3	0.26	15.71	15.71	-43.85	-14.85	0.0000	0.00	0.000
4	0.40	15.71	15.71	-43.85	-17.09	0.0000	0.00	0.000
5	0.53	15.71	15.71	-43.85	-19.36	0.0000	0.00	0.000
6	0.66	15.71	15.71	-43.85	-21.68	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-24.06	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-26.51	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-29.05	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-31.71	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-34.57	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-37.62	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-40.91	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-44.43	0.0235	197.67	0.079
15	1.84	15.71	15.71	-43.85	-48.21	0.0255	197.67	0.086
16	1.98	15.71	15.71	-43.85	-52.27	0.0283	197.67	0.095
17	2.11	15.71	15.71	-43.85	-56.61	0.0337	197.67	0.113
18	2.24	15.71	15.71	-43.85	-61.26	0.0392	197.67	0.132

19	2.37	15.71	15.71	-43.85	-66.22	0.0448	197.67	0.151
20	2.50	15.71	15.71	-43.85	-71.52	0.0507	197.67	0.170
21	2.63	15.71	15.71	-43.85	-77.15	0.0569	197.67	0.191
<u>Verif</u>	īca fessuraz	rione fondazi	<u>one</u>					
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	М	? m	S _m	w
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.26	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	1.04	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	2.32	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	4.09	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	6.36	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	9.11	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	12.33	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	16.01	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	20.14	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	24.72	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-50.66	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-44.73	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-38.28	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-31.65	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-25.00	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-18.44	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-12.16	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-6.99	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-3.17	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.81	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Y	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	М	? m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 36

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	4.9425	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	62.8960	[kN]			
Risultante dei carichi applicati in dir. verticale	209.1084	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	213.7944	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	44.4316	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.09	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	218.3626	[kN]			
Inclinazione della risultante (rispetto alla normale)	11.74	[°]			
Momento rispetto al baricentro della fondazione	-18.9562	[kNm]			
Carico ultimo della fondazione	2978.7343	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	3.01	[m]	_		
Tensione terreno allo spigolo di valle	0.05845	[N/mmq			
Tensione terreno allo spigolo di monte	0.08354	[N/mmq	. –		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s ₂ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$

 $N'_{q} = 28.52$

N'₂ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.94 Coefficiente di sicurezza a carico ultimo 13.93

Sollecitazioni paramento

Combinazione n° 36

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Υ	N	M	T
0.00	0.0000	0.0000	0.0000
0.13	5.0675	-0.5575	0.0923
0.26	6.3850	-0.5339	0.2833
0.40	7.7025	-0.4785	0.5731
0.53	9.0200	-0.3785	0.9618
0.66	10.3375	-0.2208	1.4492
0.79	11.6550	0.0077	2.0354
0.92	12.9725	0.3200	2.7257
1.05	14.2900	0.7355	3.6565
1.19	15.6075	1.3052	5.0688
1.32	16.9250	2.0827	6.7635
1.45	18.2425	3.0946	8.6238
1.58	19.5600	4.3617	10.6356
1.71	20.8775	5.9032	12.7880
1.84	22.1950	7.7372	15.0732
1.98	23.5125	9.8806	17.4851
2.11	24.8300	12.3498	20.0190
2.24	26.1475	15.1608	22.6710
2.37	27.4650	18.3287	25.4382
2.50	28.7825	21.8687	28.3182
2.63	30.1000	25.7948	31.2914
	0.00 0.13 0.26 0.40 0.53 0.66 0.79 0.92 1.05 1.19 1.32 1.45 1.58 1.71 1.84 1.98 2.11 2.24 2.37 2.50	0.00 0.0000 0.13 5.0675 0.26 6.3850 0.40 7.7025 0.53 9.0200 0.66 10.3375 0.79 11.6550 0.92 12.9725 1.05 14.2900 1.19 15.6075 1.32 16.9250 1.45 18.2425 1.58 19.5600 1.71 20.8775 1.84 22.1950 1.98 23.5125 2.11 24.8300 2.24 26.1475 2.37 27.4650 2.50 28.7825	0.00 0.0000 0.0000 0.13 5.0675 -0.5575 0.26 6.3850 -0.5339 0.40 7.7025 -0.4785 0.53 9.0200 -0.3785 0.66 10.3375 -0.2208 0.79 11.6550 0.0077 0.92 12.9725 0.3200 1.05 14.2900 0.7355 1.19 15.6075 1.3052 1.32 16.9250 2.0827 1.45 18.2425 3.0946 1.58 19.5600 4.3617 1.71 20.8775 5.9032 1.84 22.1950 7.7372 1.98 23.5125 9.8806 2.11 24.8300 12.3498 2.24 26.1475 15.1608 2.37 27.4650 18.3287 2.50 28.7825 21.8687

Sollecitazioni fondazione di valle

Combinazione n° 36

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1559	3.9035
3	0.16	0.6256	7.8466
4	0.24	1.4124	11.8292
5	0.32	2.5193	15.8513
6	0.40	3.9496	19.9129
7	0.48	5.7065	24.0140
8	0.56	7.7929	28.1546
9	0.64	10.2122	32.3347
10	0.72	12.9675	36.5543
11	0.80	16.0620	40.8135

Sollecitazioni fondazione di monte

Combinazione n° 36

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.2453	-2.7583
3	0.36	-1.0050	-5.7164
4	0.54	-2.3152	-8.8743
5	0.72	-4.2117	-12.2321
6	0.90	-6.5807	-12.7896
7	1.08	-8.7320	-11.1469
8	1.26	-10.6056	-9.7040
9	1.44	-12.2374	-8.4610
10	1.62	-13.5915	-6.2177
11	1.80	-14.4698	-3.5743

Sollecitazioni mensola di contrappeso

Combinazione n° 36

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 36

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? c	?fs	? _{fi}
1	0.00	100, 40	15.71	15.71	0.000	0.000	0.000	0.000
2	0.13	100, 40	15.71	15.71	0.030	0.000	-0.386	0.072
3	0.26	100, 40	15.71	15.71	0.031	0.001	-0.411	-0.015
4	0.40	100, 40	15.71	15.71	0.032	0.002	-0.434	-0.083
5	0.53	100, 40	15.71	15.71	0.032	0.003	-0.442	-0.164
6	0.66	100, 40	15.71	15.71	0.030	0.005	-0.428	-0.266
7	0.79	100, 40	15.71	15.71	0.026	0.007	-0.388	-0.394
8	0.92	100, 40	15.71	15.71	0.039	0.009	-0.318	-0.553
9	1.05	100, 40	15.71	15.71	0.054	0.012	-0.209	-0.749
10	1.19	100, 40	15.71	15.71	0.075	0.017	-0.036	-1.005
11	1.32	100, 40	15.71	15.71	0.108	0.022	0.434	-1.398
12	1.45	100, 40	15.71	15.71	0.159	0.028	1.517	-1.956
13	1.58	100, 40	15.71	15.71	0.226	0.035	3.302	-2.645
14	1.71	100, 40	15.71	15.71	0.306	0.042	5.747	-3.445
15	1.84	100, 40	15.71	15.71	0.401	0.049	8.828	-4.361
16	1.98	100, 40	15.71	15.71	0.510	0.057	12.548	-5.402
17	2.11	100, 40	15.71	15.71	0.634	0.065	16.926	-6.577
18	2.24	100, 40	15.71	15.71	0.775	0.074	21.984	-7.894
19	2.37	100, 40	15.71	15.71	0.933	0.083	27.749	-9.362
20	2.50	100, 40	15.71	15.71	1.110	0.093	34.247	-10.989
21	2.63	100, 40	15.71	15.71	1.304	0.102	41.503	-12.780

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 36

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 36

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.008	0.013	0.299	-0.069
3	0.16	100, 41	12.57	15.71	0.029	0.025	1.175	-0.269
4	0.24	100, 42	12.57	15.71	0.065	0.037	2.602	-0.594
5	0.32	100, 43	12.57	15.71	0.112	0.048	4.554	-1.037
6	0.40	100, 44	12.57	15.71	0.171	0.059	7.006	-1.589
7	0.48	100, 44	12.57	15.71	0.240	0.070	9.936	-2.247
8	0.56	100, 45	12.57	15.71	0.318	0.081	13.325	-3.002
9	0.64	100, 46	12.57	15.71	0.406	0.091	17.153	-3.852
10	0.72	100, 46	12.57	15.71	0.502	0.102	21.402	-4.789
11	0.80	100, 47	12.57	15.71	0.605	0.112	26.056	-5.811

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.006	-0.006	-0.059	0.294
3	0.36	100, 60	15.71	15.71	0.024	-0.012	-0.251	1.240
4	0.54	100, 58	15.71	15.71	0.059	-0.019	-0.601	2.944

5	0.72	100, 57	15.71	15.71	0.112	-0.027	-1.136	5.526
6	0.90	100, 55	15.71	15.71	0.184	-0.030	-1.846	8.917
7	1.08	100, 53	15.71	15.71	0.257	-0.027	-2.552	12.233
8	1.26	100, 52	15.71	15.71	0.329	-0.024	-3.232	15.378
9	1.44	100, 50	15.71	15.71	0.400	-0.022	-3.894	18.389
10	1.62	100, 49	15.71	15.71	0.470	-0.016	-4.521	21.194
11	1.80	100, 47	15.71	15.71	0.531	-0.010	-5.038	23.447

Verifiche a fessurazione

Combinazione n° 36

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	15.71	15.71	-43.85	0.00	0.0000	0.00	0.000
2	0.13	15.71	15.71	43.85	0.56	0.0000	0.00	0.000
3	0.26	15.71	15.71	43.85	0.53	0.0000	0.00	0.000
4	0.40	15.71	15.71	43.85	0.48	0.0000	0.00	0.000
5	0.53	15.71	15.71	43.85	0.38	0.0000	0.00	0.000
6	0.66	15.71	15.71	43.85	0.22	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-0.01	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-0.32	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-0.74	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-1.31	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-2.08	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-3.09	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-4.36	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-5.90	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-7.74	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-9.88	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-12.35	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-15.16	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-18.33	0.0000	0.00	0.000
20	2.50	15.71	15.71	-43.85	-21.87	0.0000	0.00	0.000
21	2.63	15.71	15.71	-43.85	-25.79	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	zione fondazi	<u>one</u>					
N°	Υ	${\sf A}_{\sf fs}$	A_{fi}	M_{pf}	М	? m	S _m	w
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.16	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.63	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.41	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	2.52	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	3.95	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	5.71	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	7.79	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	10.21	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	12.97	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	16.06	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-14.47	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-13.59	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-12.24	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-10.61	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-8.73	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-6.58	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-4.21	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-2.32	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-1.00	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.25	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	zione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
•	-			· -				2.300

COMBINAZIONE n° 37

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	3.1206	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	-1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	61.1989	[kN]			
Risultante dei carichi applicati in dir. verticale	202.4640	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	207.0274	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	43.3202	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.09	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	211.5111	[kN]			
Inclinazione della risultante (rispetto alla normale)	11.82	[°]			
Momento rispetto al baricentro della fondazione	-17.9854	[kNm]			
Carico ultimo della fondazione	2982.4992	[kN]			
Tensioni sul terreno	2.01	[m]			
Lunghezza fondazione reagente	3.01	[m]	.1		
Tensione terreno allo spigolo di valle	0.05685	[N/mmq			
Tensione terreno allo spigolo di monte	0.08065	[N/mmq			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq	IJ		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N _≥ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ N'₂ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.93 Coefficiente di sicurezza a carico ultimo 14.41

Sollecitazioni paramento

Combinazione n° 37

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5576	0.0908
3	0.26	6.3850	-0.5344	0.2775
4	0.40	7.7025	-0.4802	0.5602
5	0.53	9.0200	-0.3825	0.9387
6	0.66	10.3375	-0.2287	1.4132
7	0.79	11.6550	-0.0060	1.9835
8	0.92	12.9725	0.2983	2.6549
9	1.05	14.2900	0.7029	3.5599
10	1.19	15.6075	1.2574	4.9322
11	1.32	16.9250	2.0138	6.5787
12	1.45	18.2425	2.9979	8.3860
13	1.58	19.5600	4.2299	10.3404
14	1.71	20.8775	5.7286	12.4313
15	1.84	22.1950	7.5112	14.6511
16	1.98	23.5125	9.5945	16.9939
17	2.11	24.8300	11.9943	19.4551
18	2.24	26.1475	14.7260	22.0310
19	2.37	27.4650	17.8044	24.7188
20	2.50	28.7825	21.2442	27.5160
21	2.63	30.1000	25.0590	30.4038

Sollecitazioni fondazione di valle

Combinazione n° 37

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1507	3.7734
3	0.16	0.6047	7.5836
4	0.24	1.3650	11.4305
5	0.32	2.4346	15.3142
6	0.40	3.8163	19.2347
7	0.48	5.5131	23.1920
8	0.56	7.5280	27.1860
9	0.64	9.8639	31.2168
10	0.72	12.5237	35.2844
11	0.80	15.5103	39.3887

Sollecitazioni fondazione di monte

Combinazione n° 37

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	т
1	0.00	0.0000	0.0000
2	0.18	-0.2917	-3.2723
3	0.36	-1.1892	-6.7306
4	0.54	-2.7259	-10.3748
5	0.72	-4.9353	-14.2050
6	0.90	-7.7008	-15.2210
7	1.08	-10.3300	-14.0230
8	1.26	-12.7603	-13.0109
9	1.44	-15.0251	-12.1848
10	1.62	-17.0860	-10.3446
11	1.80	-18.7423	-8.0903

Sollecitazioni mensola di contrappeso

Combinazione n° 37

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 37

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.000	0.000	0.000	0.000
2	0.13	100, 40	15.71	15.71	0.030	0.000	-0.386	0.072
3	0.26	100, 40	15.71	15.71	0.031	0.001	-0.411	-0.015
4	0.40	100, 40	15.71	15.71	0.032	0.002	-0.435	-0.082
5	0.53	100, 40	15.71	15.71	0.032	0.003	-0.443	-0.162
6	0.66	100, 40	15.71	15.71	0.030	0.005	-0.431	-0.263
7	0.79	100, 40	15.71	15.71	0.026	0.006	-0.393	-0.389
8	0.92	100, 40	15.71	15.71	0.038	0.009	-0.326	-0.545
9	1.05	100, 40	15.71	15.71	0.053	0.012	-0.221	-0.737
10	1.19	100, 40	15.71	15.71	0.074	0.016	-0.058	-0.986
11	1.32	100, 40	15.71	15.71	0.105	0.021	0.369	-1.363
12	1.45	100, 40	15.71	15.71	0.154	0.027	1.378	-1.905
13	1.58	100, 40	15.71	15.71	0.219	0.034	3.078	-2.577
14	1.71	100, 40	15.71	15.71	0.297	0.041	5.429	-3.360
15	1.84	100, 40	15.71	15.71	0.389	0.048	8.403	-4.255
16	1.98	100, 40	15.71	15.71	0.495	0.056	12.002	-5.270
17	2.11	100, 40	15.71	15.71	0.617	0.064	16.242	-6.416
18	2.24	100, 40	15.71	15.71	0.754	0.072	21.143	-7.700
19	2.37	100, 40	15.71	15.71	0.907	0.081	26.732	-9.130
20	2.50	100, 40	15.71	15.71	1.079	0.090	33.033	-10.713
21	2.63	100, 40	15.71	15.71	1.268	0.099	40.072	-12.456

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 37

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 37

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.007	0.012	0.289	-0.066
3	0.16	100, 41	12.57	15.71	0.029	0.024	1.136	-0.260
4	0.24	100, 42	12.57	15.71	0.062	0.035	2.515	-0.574
5	0.32	100, 43	12.57	15.71	0.108	0.046	4.400	-1.002
6	0.40	100, 44	12.57	15.71	0.165	0.057	6.769	-1.536
7	0.48	100, 44	12.57	15.71	0.231	0.068	9.600	-2.170
8	0.56	100, 45	12.57	15.71	0.307	0.078	12.872	-2.900
9	0.64	100, 46	12.57	15.71	0.392	0.088	16.568	-3.720
10	0.72	100, 46	12.57	15.71	0.484	0.098	20.670	-4.625
11	0.80	100, 47	12.57	15.71	0.584	0.108	25.161	-5.611

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.007	-0.007	-0.070	0.349
3	0.36	100, 60	15.71	15.71	0.029	-0.014	-0.297	1.467
4	0.54	100, 58	15.71	15.71	0.069	-0.023	-0.707	3.466

5	0.72	100, 57	15.71	15.71	0.132	-0.032	-1.331	6.475
6	0.90	100, 55	15.71	15.71	0.215	-0.035	-2.161	10.435
7	1.08	100, 53	15.71	15.71	0.304	-0.033	-3.019	14.471
8	1.26	100, 52	15.71	15.71	0.396	-0.032	-3.889	18.503
9	1.44	100, 50	15.71	15.71	0.492	-0.031	-4.781	22.579
10	1.62	100, 49	15.71	15.71	0.591	-0.027	-5.683	26.643
11	1.80	100, 47	15.71	15.71	0.687	-0.022	-6.526	30.370

Verifiche a fessurazione

Combinazione n° 37

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	? _m	S _m	w
1	0.00	15.71	15.71	-43.85	0.00	0.0000	0.00	0.000
2	0.13	15.71	15.71	43.85	0.56	0.0000	0.00	0.000
3	0.26	15.71	15.71	43.85	0.53	0.0000	0.00	0.000
4	0.40	15.71	15.71	43.85	0.48	0.0000	0.00	0.000
5	0.53	15.71	15.71	43.85	0.38	0.0000	0.00	0.000
6	0.66	15.71	15.71	43.85	0.23	0.0000	0.00	0.000
7	0.79	15.71	15.71	43.85	0.01	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-0.30	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-0.70	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-1.26	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-2.01	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-3.00	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-4.23	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-5.73	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-7.51	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-9.59	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-11.99	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-14.73	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-17.80	0.0000	0.00	0.000
20	2.50	15.71	15.71	-43.85	-21.24	0.0000	0.00	0.000
21	2.63	15.71	15.71	-43.85	-25.06	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	<u>ione fondazi</u>	<u>one</u>					
N°	Y	A_{fs}	A_{fi}	M_{pf}	M		S _m	W
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.15	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.60	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.37	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	2.43	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	3.82	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	5.51	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	7.53	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	9.86	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	12.52	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	15.51	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-18.74	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-17.09	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-15.03	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-12.76	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-10.33	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-7.70	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-4.94	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-2.73	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-1.19	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.29	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
•	0.50	10.00	12.57	55.11	3.00	0.0000	0.00	0.000

COMBINAZIONE n° 38

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	4.9425	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Y	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	62.8960	[kN]			
Risultante dei carichi applicati in dir. verticale	209.1084	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	213.7944	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	44.4316	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.09	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	218.3626	[kN]			
Inclinazione della risultante (rispetto alla normale)	11.74	[°]			
Momento rispetto al baricentro della fondazione	-18.9562	[kNm]			
Carico ultimo della fondazione	2978.7343	[kN]			
<u>Tensioni sul terreno</u>	2.01	C 3			
Lunghezza fondazione reagente	3.01	[m]	,		
Tensione terreno allo spigolo di valle	0.05845	[N/mmc			
Tensione terreno allo spigolo di monte	0.08354	[N/mmc			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	IJ		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s ₂ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano

di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ N'₂ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.94 Coefficiente di sicurezza a carico ultimo 13.93

Sollecitazioni paramento

Combinazione n° 38

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5575	0.0923
3	0.26	6.3850	-0.5339	0.2833
4	0.40	7.7025	-0.4785	0.5731
5	0.53	9.0200	-0.3785	0.9618
6	0.66	10.3375	-0.2208	1.4492
7	0.79	11.6550	0.0077	2.0354
8	0.92	12.9725	0.3200	2.7257
9	1.05	14.2900	0.7355	3.6565
10	1.19	15.6075	1.3052	5.0688
11	1.32	16.9250	2.0827	6.7635
12	1.45	18.2425	3.0946	8.6238
13	1.58	19.5600	4.3617	10.6356
14	1.71	20.8775	5.9032	12.7880
15	1.84	22.1950	7.7372	15.0732
16	1.98	23.5125	9.8806	17.4851
17	2.11	24.8300	12.3498	20.0190
18	2.24	26.1475	15.1608	22.6710
19	2.37	27.4650	18.3287	25.4382
20	2.50	28.7825	21.8687	28.3182
21	2.63	30.1000	25.7948	31.2914

Sollecitazioni fondazione di valle

Combinazione n° 38

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1559	3.9035
3	0.16	0.6256	7.8466
4	0.24	1.4124	11.8292
5	0.32	2.5193	15.8513
6	0.40	3.9496	19.9129
7	0.48	5.7065	24.0140
8	0.56	7.7929	28.1546
9	0.64	10.2122	32.3347
10	0.72	12.9675	36.5543
11	0.80	16.0620	40.8135

Sollecitazioni fondazione di monte

Combinazione n° 38

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.2453	-2.7583
3	0.36	-1.0050	-5.7164
4	0.54	-2.3152	-8.8743
5	0.72	-4.2117	-12.2321
6	0.90	-6.5807	-12.7896
7	1.08	-8.7320	-11.1469
8	1.26	-10.6056	-9.7040
9	1.44	-12.2374	-8.4610
10	1.62	-13.5915	-6.2177
11	1.80	-14.4698	-3.5743

Sollecitazioni mensola di contrappeso

Combinazione n° 38

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 38

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? c	?fs	? _{fi}
1	0.00	100, 40	15.71	15.71	0.000	0.000	0.000	0.000
2	0.13	100, 40	15.71	15.71	0.030	0.000	-0.386	0.072
3	0.26	100, 40	15.71	15.71	0.031	0.001	-0.411	-0.015
4	0.40	100, 40	15.71	15.71	0.032	0.002	-0.434	-0.083
5	0.53	100, 40	15.71	15.71	0.032	0.003	-0.442	-0.164
6	0.66	100, 40	15.71	15.71	0.030	0.005	-0.428	-0.266
7	0.79	100, 40	15.71	15.71	0.026	0.007	-0.388	-0.394
8	0.92	100, 40	15.71	15.71	0.039	0.009	-0.318	-0.553
9	1.05	100, 40	15.71	15.71	0.054	0.012	-0.209	-0.749
10	1.19	100, 40	15.71	15.71	0.075	0.017	-0.036	-1.005
11	1.32	100, 40	15.71	15.71	0.108	0.022	0.434	-1.398
12	1.45	100, 40	15.71	15.71	0.159	0.028	1.517	-1.956
13	1.58	100, 40	15.71	15.71	0.226	0.035	3.302	-2.645
14	1.71	100, 40	15.71	15.71	0.306	0.042	5.747	-3.445
15	1.84	100, 40	15.71	15.71	0.401	0.049	8.828	-4.361
16	1.98	100, 40	15.71	15.71	0.510	0.057	12.548	-5.402
17	2.11	100, 40	15.71	15.71	0.634	0.065	16.926	-6.577
18	2.24	100, 40	15.71	15.71	0.775	0.074	21.984	-7.894
19	2.37	100, 40	15.71	15.71	0.933	0.083	27.749	-9.362
20	2.50	100, 40	15.71	15.71	1.110	0.093	34.247	-10.989
21	2.63	100, 40	15.71	15.71	1.304	0.102	41.503	-12.780

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 38

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	$ m ?_{fi}$? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 38

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.008	0.013	0.299	-0.069
3	0.16	100, 41	12.57	15.71	0.029	0.025	1.175	-0.269
4	0.24	100, 42	12.57	15.71	0.065	0.037	2.602	-0.594
5	0.32	100, 43	12.57	15.71	0.112	0.048	4.554	-1.037
6	0.40	100, 44	12.57	15.71	0.171	0.059	7.006	-1.589
7	0.48	100, 44	12.57	15.71	0.240	0.070	9.936	-2.247
8	0.56	100, 45	12.57	15.71	0.318	0.081	13.325	-3.002
9	0.64	100, 46	12.57	15.71	0.406	0.091	17.153	-3.852
10	0.72	100, 46	12.57	15.71	0.502	0.102	21.402	-4.789
11	0.80	100, 47	12.57	15.71	0.605	0.112	26.056	-5.811

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.006	-0.006	-0.059	0.294
3	0.36	100, 60	15.71	15.71	0.024	-0.012	-0.251	1.240
4	0.54	100, 58	15.71	15.71	0.059	-0.019	-0.601	2.944

5	0.72	100, 57	15.71	15.71	0.112	-0.027	-1.136	5.526
6	0.90	100, 55	15.71	15.71	0.184	-0.030	-1.846	8.917
7	1.08	100, 53	15.71	15.71	0.257	-0.027	-2.552	12.233
8	1.26	100, 52	15.71	15.71	0.329	-0.024	-3.232	15.378
9	1.44	100, 50	15.71	15.71	0.400	-0.022	-3.894	18.389
10	1.62	100, 49	15.71	15.71	0.470	-0.016	-4.521	21.194
11	1.80	100, 47	15.71	15.71	0.531	-0.010	-5.038	23.447

Verifiche a fessurazione

Combinazione n° 38

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	15.71	15.71	-43.85	0.00	0.0000	0.00	0.000
2	0.13	15.71	15.71	43.85	0.56	0.0000	0.00	0.000
3	0.26	15.71	15.71	43.85	0.53	0.0000	0.00	0.000
4	0.40	15.71	15.71	43.85	0.48	0.0000	0.00	0.000
5	0.53	15.71	15.71	43.85	0.38	0.0000	0.00	0.000
6	0.66	15.71	15.71	43.85	0.22	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-0.01	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-0.32	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-0.74	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-1.31	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-2.08	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-3.09	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-4.36	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-5.90	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-7.74	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-9.88	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-12.35	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-15.16	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-18.33	0.0000	0.00	0.000
20	2.50	15.71	15.71	-43.85	-21.87	0.0000	0.00	0.000
21	2.63	15.71	15.71	-43.85	-25.79	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	zione fondazi	<u>one</u>					
N°	Υ	${\sf A}_{\sf fs}$	A_fi	M_{pf}	М	? m	S _m	w
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.16	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.63	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.41	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	2.52	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	3.95	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	5.71	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	7.79	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	10.21	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	12.97	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	16.06	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-14.47	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-13.59	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-12.24	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-10.61	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-8.73	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-6.58	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-4.21	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-2.32	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-1.00	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.25	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	zione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
•	-			· -				2.300

COMBINAZIONE n° 39

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	[m] 21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	3.1206	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80	[m]	Υ	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	[m]	[0]			
inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92	[m]	Υ	=	-1.35
	[m]				
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	-1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	61.1989	[kN]			
Risultante dei carichi applicati in dir. verticale	202.4640	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	207.0274	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	43.3202	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.09	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	211.5111	[kN]			
Inclinazione della risultante (rispetto alla normale)	11.82	[°]			
Momento rispetto al baricentro della fondazione	-17.9854	[kNm]			
Carico ultimo della fondazione	2982.4992	[kN]			
<u>Tensioni sul terreno</u>	2.24	r 3			
Lunghezza fondazione reagente	3.01	[m]	,		
Tensione terreno allo spigolo di valle	0.05685	[N/mmq			
Tensione terreno allo spigolo di monte	0.08065	[N/mmq	. –		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante $N_q = 28.52$ $N_{?} = 27.33$ $N_c = 44.04$ $s_q = 1.00$ **Fattori forma** $s_c = 1.00$ $s_{?} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano

di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ N' = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.93 Coefficiente di sicurezza a carico ultimo 14.41

Sollecitazioni paramento

Combinazione n° 39

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5576	0.0908
3	0.26	6.3850	-0.5344	0.2775
4	0.40	7.7025	-0.4802	0.5602
5	0.53	9.0200	-0.3825	0.9387
6	0.66	10.3375	-0.2287	1.4132
7	0.79	11.6550	-0.0060	1.9835
8	0.92	12.9725	0.2983	2.6549
9	1.05	14.2900	0.7029	3.5599
10	1.19	15.6075	1.2574	4.9322
11	1.32	16.9250	2.0138	6.5787
12	1.45	18.2425	2.9979	8.3860
13	1.58	19.5600	4.2299	10.3404
14	1.71	20.8775	5.7286	12.4313
15	1.84	22.1950	7.5112	14.6511
16	1.98	23.5125	9.5945	16.9939
17	2.11	24.8300	11.9943	19.4551
18	2.24	26.1475	14.7260	22.0310
19	2.37	27.4650	17.8044	24.7188
20	2.50	28.7825	21.2442	27.5160
21	2.63	30.1000	25.0590	30.4038

Sollecitazioni fondazione di valle

Combinazione n° 39

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1507	3.7734
3	0.16	0.6047	7.5836
4	0.24	1.3650	11.4305
5	0.32	2.4346	15.3142
6	0.40	3.8163	19.2347
7	0.48	5.5131	23.1920
8	0.56	7.5280	27.1860
9	0.64	9.8639	31.2168
10	0.72	12.5237	35.2844
11	0.80	15.5103	39.3887

Sollecitazioni fondazione di monte

Combinazione n° 39

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	т
1	0.00	0.0000	0.0000
2	0.18	-0.2917	-3.2723
3	0.36	-1.1892	-6.7306
4	0.54	-2.7259	-10.3748
5	0.72	-4.9353	-14.2050
6	0.90	-7.7008	-15.2210
7	1.08	-10.3300	-14.0230
8	1.26	-12.7603	-13.0109
9	1.44	-15.0251	-12.1848
10	1.62	-17.0860	-10.3446
11	1.80	-18.7423	-8.0903

Sollecitazioni mensola di contrappeso

Combinazione n° 39

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 39

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	\mathbf{P}_{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.000	0.000	0.000	0.000
2	0.13	100, 40	15.71	15.71	0.030	0.000	-0.386	0.072
3	0.26	100, 40	15.71	15.71	0.031	0.001	-0.411	-0.015
4	0.40	100, 40	15.71	15.71	0.032	0.002	-0.435	-0.082
5	0.53	100, 40	15.71	15.71	0.032	0.003	-0.443	-0.162
6	0.66	100, 40	15.71	15.71	0.030	0.005	-0.431	-0.263
7	0.79	100, 40	15.71	15.71	0.026	0.006	-0.393	-0.389
8	0.92	100, 40	15.71	15.71	0.038	0.009	-0.326	-0.545
9	1.05	100, 40	15.71	15.71	0.053	0.012	-0.221	-0.737
10	1.19	100, 40	15.71	15.71	0.074	0.016	-0.058	-0.986
11	1.32	100, 40	15.71	15.71	0.105	0.021	0.369	-1.363
12	1.45	100, 40	15.71	15.71	0.154	0.027	1.378	-1.905
13	1.58	100, 40	15.71	15.71	0.219	0.034	3.078	-2.577
14	1.71	100, 40	15.71	15.71	0.297	0.041	5.429	-3.360
15	1.84	100, 40	15.71	15.71	0.389	0.048	8.403	-4.255
16	1.98	100, 40	15.71	15.71	0.495	0.056	12.002	-5.270
17	2.11	100, 40	15.71	15.71	0.617	0.064	16.242	-6.416
18	2.24	100, 40	15.71	15.71	0.754	0.072	21.143	-7.700
19	2.37	100, 40	15.71	15.71	0.907	0.081	26.732	-9.130
20	2.50	100, 40	15.71	15.71	1.079	0.090	33.033	-10.713
21	2.63	100, 40	15.71	15.71	1.268	0.099	40.072	-12.456

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 39

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 39

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.007	0.012	0.289	-0.066
3	0.16	100, 41	12.57	15.71	0.029	0.024	1.136	-0.260
4	0.24	100, 42	12.57	15.71	0.062	0.035	2.515	-0.574
5	0.32	100, 43	12.57	15.71	0.108	0.046	4.400	-1.002
6	0.40	100, 44	12.57	15.71	0.165	0.057	6.769	-1.536
7	0.48	100, 44	12.57	15.71	0.231	0.068	9.600	-2.170
8	0.56	100, 45	12.57	15.71	0.307	0.078	12.872	-2.900
9	0.64	100, 46	12.57	15.71	0.392	0.088	16.568	-3.720
10	0.72	100, 46	12.57	15.71	0.484	0.098	20.670	-4.625
11	0.80	100, 47	12.57	15.71	0.584	0.108	25.161	-5.611

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.007	-0.007	-0.070	0.349
3	0.36	100, 60	15.71	15.71	0.029	-0.014	-0.297	1.467
4	0.54	100, 58	15.71	15.71	0.069	-0.023	-0.707	3.466

5	0.72	100, 57	15.71	15.71	0.132	-0.032	-1.331	6.475
6	0.90	100, 55	15.71	15.71	0.215	-0.035	-2.161	10.435
7	1.08	100, 53	15.71	15.71	0.304	-0.033	-3.019	14.471
8	1.26	100, 52	15.71	15.71	0.396	-0.032	-3.889	18.503
9	1.44	100, 50	15.71	15.71	0.492	-0.031	-4.781	22.579
10	1.62	100, 49	15.71	15.71	0.591	-0.027	-5.683	26.643
11	1.80	100, 47	15.71	15.71	0.687	-0.022	-6.526	30.370

Verifiche a fessurazione

Combinazione n° 39

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	15.71	15.71	-43.85	0.00	0.0000	0.00	0.000
2	0.13	15.71	15.71	43.85	0.56	0.0000	0.00	0.000
3	0.26	15.71	15.71	43.85	0.53	0.0000	0.00	0.000
4	0.40	15.71	15.71	43.85	0.48	0.0000	0.00	0.000
5	0.53	15.71	15.71	43.85	0.38	0.0000	0.00	0.000
6	0.66	15.71	15.71	43.85	0.23	0.0000	0.00	0.000
7	0.79	15.71	15.71	43.85	0.01	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-0.30	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-0.70	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-1.26	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-2.01	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-3.00	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-4.23	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-5.73	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-7.51	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-9.59	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-11.99	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-14.73	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-17.80	0.0000	0.00	0.000
20	2.50	15.71	15.71	-43.85	-21.24	0.0000	0.00	0.000
21	2.63	15.71	15.71	-43.85	-25.06	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	<u>ione fondazi</u>	<u>one</u>					
N°	Y	A_{fs}	A_{fi}	M_{pf}	M		S _m	W
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.15	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.60	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.37	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	2.43	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	3.82	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	5.51	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	7.53	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	9.86	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	12.52	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	15.51	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-18.74	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-17.09	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-15.03	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-12.76	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-10.33	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-7.70	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-4.94	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-2.73	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-1.19	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.29	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
•	0.50	10.00	12.57	55.11	3.00	0.0000	0.00	0.000

COMBINAZIONE n° 40

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	4.9425	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Y	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	62.8960	[kN]			
Risultante dei carichi applicati in dir. verticale	209.1084	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	213.7944	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	44.4316	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.09	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	218.3626	[kN]			
Inclinazione della risultante (rispetto alla normale)	11.74	[°]			
Momento rispetto al baricentro della fondazione	-18.9562	[kNm]			
Carico ultimo della fondazione	2978.7343	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	3.01	[m]	,		
Tensione terreno allo spigolo di valle	0.05845	[N/mmc			
Tensione terreno allo spigolo di monte	0.08354	[N/mmc			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	IJ		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano

di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ N'₂ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.94 Coefficiente di sicurezza a carico ultimo 13.93

Sollecitazioni paramento

Combinazione n° 40

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5575	0.0923
3	0.26	6.3850	-0.5339	0.2833
4	0.40	7.7025	-0.4785	0.5731
5	0.53	9.0200	-0.3785	0.9618
6	0.66	10.3375	-0.2208	1.4492
7	0.79	11.6550	0.0077	2.0354
8	0.92	12.9725	0.3200	2.7257
9	1.05	14.2900	0.7355	3.6565
10	1.19	15.6075	1.3052	5.0688
11	1.32	16.9250	2.0827	6.7635
12	1.45	18.2425	3.0946	8.6238
13	1.58	19.5600	4.3617	10.6356
14	1.71	20.8775	5.9032	12.7880
15	1.84	22.1950	7.7372	15.0732
16	1.98	23.5125	9.8806	17.4851
17	2.11	24.8300	12.3498	20.0190
18	2.24	26.1475	15.1608	22.6710
19	2.37	27.4650	18.3287	25.4382
20	2.50	28.7825	21.8687	28.3182
21	2.63	30.1000	25.7948	31.2914

Sollecitazioni fondazione di valle

Combinazione n° 40

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	т
1	0.00	0.0000	0.0000
2	0.08	0.1559	3.9035
3	0.16	0.6256	7.8466
4	0.24	1.4124	11.8292
5	0.32	2.5193	15.8513
6	0.40	3.9496	19.9129
7	0.48	5.7065	24.0140
8	0.56	7.7929	28.1546
9	0.64	10.2122	32.3347
10	0.72	12.9675	36.5543
11	0.80	16.0620	40.8135

Sollecitazioni fondazione di monte

Combinazione n° 40

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.2453	-2.7583
3	0.36	-1.0050	-5.7164
4	0.54	-2.3152	-8.8743
5	0.72	-4.2117	-12.2321
6	0.90	-6.5807	-12.7896
7	1.08	-8.7320	-11.1469
8	1.26	-10.6056	-9.7040
9	1.44	-12.2374	-8.4610
10	1.62	-13.5915	-6.2177
11	1.80	-14.4698	-3.5743

Sollecitazioni mensola di contrappeso

Combinazione n° 40

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 40

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? c	? _c	₽ _{fs}	$?_{fi}$
1	0.00	100, 40	15.71	15.71	0.000	0.000	0.000	0.000
2	0.13	100, 40	15.71	15.71	0.030	0.000	-0.386	0.072
3	0.26	100, 40	15.71	15.71	0.031	0.001	-0.411	-0.015
4	0.40	100, 40	15.71	15.71	0.032	0.002	-0.434	-0.083
5	0.53	100, 40	15.71	15.71	0.032	0.003	-0.442	-0.164
6	0.66	100, 40	15.71	15.71	0.030	0.005	-0.428	-0.266
7	0.79	100, 40	15.71	15.71	0.026	0.007	-0.388	-0.394
8	0.92	100, 40	15.71	15.71	0.039	0.009	-0.318	-0.553
9	1.05	100, 40	15.71	15.71	0.054	0.012	-0.209	-0.749
10	1.19	100, 40	15.71	15.71	0.075	0.017	-0.036	-1.005
11	1.32	100, 40	15.71	15.71	0.108	0.022	0.434	-1.398
12	1.45	100, 40	15.71	15.71	0.159	0.028	1.517	-1.956
13	1.58	100, 40	15.71	15.71	0.226	0.035	3.302	-2.645
14	1.71	100, 40	15.71	15.71	0.306	0.042	5.747	-3.445
15	1.84	100, 40	15.71	15.71	0.401	0.049	8.828	-4.361
16	1.98	100, 40	15.71	15.71	0.510	0.057	12.548	-5.402
17	2.11	100, 40	15.71	15.71	0.634	0.065	16.926	-6.577
18	2.24	100, 40	15.71	15.71	0.775	0.074	21.984	-7.894
19	2.37	100, 40	15.71	15.71	0.933	0.083	27.749	-9.362
20	2.50	100, 40	15.71	15.71	1.110	0.093	34.247	-10.989
21	2.63	100, 40	15.71	15.71	1.304	0.102	41.503	-12.780

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 40

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 40

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.008	0.013	0.299	-0.069
3	0.16	100, 41	12.57	15.71	0.029	0.025	1.175	-0.269
4	0.24	100, 42	12.57	15.71	0.065	0.037	2.602	-0.594
5	0.32	100, 43	12.57	15.71	0.112	0.048	4.554	-1.037
6	0.40	100, 44	12.57	15.71	0.171	0.059	7.006	-1.589
7	0.48	100, 44	12.57	15.71	0.240	0.070	9.936	-2.247
8	0.56	100, 45	12.57	15.71	0.318	0.081	13.325	-3.002
9	0.64	100, 46	12.57	15.71	0.406	0.091	17.153	-3.852
10	0.72	100, 46	12.57	15.71	0.502	0.102	21.402	-4.789
11	0.80	100, 47	12.57	15.71	0.605	0.112	26.056	-5.811

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.006	-0.006	-0.059	0.294
3	0.36	100, 60	15.71	15.71	0.024	-0.012	-0.251	1.240
4	0.54	100, 58	15.71	15.71	0.059	-0.019	-0.601	2.944

5	0.72	100, 57	15.71	15.71	0.112	-0.027	-1.136	5.526
6	0.90	100, 55	15.71	15.71	0.184	-0.030	-1.846	8.917
7	1.08	100, 53	15.71	15.71	0.257	-0.027	-2.552	12.233
8	1.26	100, 52	15.71	15.71	0.329	-0.024	-3.232	15.378
9	1.44	100, 50	15.71	15.71	0.400	-0.022	-3.894	18.389
10	1.62	100, 49	15.71	15.71	0.470	-0.016	-4.521	21.194
11	1.80	100, 47	15.71	15.71	0.531	-0.010	-5.038	23.447

Verifiche a fessurazione

Combinazione n° 40

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	15.71	15.71	-43.85	0.00	0.0000	0.00	0.000
2	0.13	15.71	15.71	43.85	0.56	0.0000	0.00	0.000
3	0.26	15.71	15.71	43.85	0.53	0.0000	0.00	0.000
4	0.40	15.71	15.71	43.85	0.48	0.0000	0.00	0.000
5	0.53	15.71	15.71	43.85	0.38	0.0000	0.00	0.000
6	0.66	15.71	15.71	43.85	0.22	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-0.01	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-0.32	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-0.74	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-1.31	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-2.08	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-3.09	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-4.36	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-5.90	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-7.74	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-9.88	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-12.35	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-15.16	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-18.33	0.0000	0.00	0.000
20	2.50	15.71	15.71	-43.85	-21.87	0.0000	0.00	0.000
21	2.63	15.71	15.71	-43.85	-25.79	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	<u>ione fondazi</u>	<u>one</u>					
N°	Y	A_{fs}	A_{fi}	M_{pf}	M		S _m	W
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.16	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.63	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.41	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	2.52	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	3.95	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	5.71	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	7.79	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	10.21	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	12.97	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	16.06	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-14.47	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-13.59	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-12.24	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-10.61	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-8.73	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-6.58	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-4.21	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-2.32	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-1.00	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.25	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	<u>ione mensolo</u>	a di monte					
N°	Υ	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 41

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	3.1206	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	-1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	61.1989	[kN]			
Risultante dei carichi applicati in dir. verticale	202.4640	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	207.0274	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	43.3202	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.09	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	211.5111	[kN]			
Inclinazione della risultante (rispetto alla normale)	11.82	[°]			
Momento rispetto al baricentro della fondazione	-17.9854	[kNm]			
Carico ultimo della fondazione	2982.4992	[kN]			
<u>Tensioni sul terreno</u>	2.04	for 3			
Lunghezza fondazione reagente	3.01	[m]	,		
Tensione terreno allo spigolo di valle	0.05685	[N/mmq			
Tensione terreno allo spigolo di monte	0.08065	[N/mmq			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq	J		

Fattori per il calcolo della capacità portante

Coeff. capacità portante $N_q = 28.52$ $N_{?} = 27.33$ $N_c = 44.04$ $s_q = 1.00$ **Fattori forma** $s_c = 1.00$ $s_{?} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano

di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ N' = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.93 Coefficiente di sicurezza a carico ultimo 14.41

Sollecitazioni paramento

Combinazione n° 41

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.13	5.0675	-0.5576	0.0908
3	0.26	6.3850	-0.5344	0.2775
4	0.40	7.7025	-0.4802	0.5602
5	0.53	9.0200	-0.3825	0.9387
6	0.66	10.3375	-0.2287	1.4132
7	0.79	11.6550	-0.0060	1.9835
8	0.92	12.9725	0.2983	2.6549
9	1.05	14.2900	0.7029	3.5599
10	1.19	15.6075	1.2574	4.9322
11	1.32	16.9250	2.0138	6.5787
12	1.45	18.2425	2.9979	8.3860
13	1.58	19.5600	4.2299	10.3404
14	1.71	20.8775	5.7286	12.4313
15	1.84	22.1950	7.5112	14.6511
16	1.98	23.5125	9.5945	16.9939
17	2.11	24.8300	11.9943	19.4551
18	2.24	26.1475	14.7260	22.0310
19	2.37	27.4650	17.8044	24.7188
20	2.50	28.7825	21.2442	27.5160
21	2.63	30.1000	25.0590	30.4038

Sollecitazioni fondazione di valle

Combinazione n° 41

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1507	3.7734
3	0.16	0.6047	7.5836
4	0.24	1.3650	11.4305
5	0.32	2.4346	15.3142
6	0.40	3.8163	19.2347
7	0.48	5.5131	23.1920
8	0.56	7.5280	27.1860
9	0.64	9.8639	31.2168
10	0.72	12.5237	35.2844
11	0.80	15.5103	39.3887

Sollecitazioni fondazione di monte

Combinazione n° 41

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	М	т
1	0.00	0.0000	0.0000
2	0.18	-0.2917	-3.2723
3	0.36	-1.1892	-6.7306
4	0.54	-2.7259	-10.3748
5	0.72	-4.9353	-14.2050
6	0.90	-7.7008	-15.2210
7	1.08	-10.3300	-14.0230
8	1.26	-12.7603	-13.0109
9	1.44	-15.0251	-12.1848
10	1.62	-17.0860	-10.3446
11	1.80	-18.7423	-8.0903

Sollecitazioni mensola di contrappeso

Combinazione n° 41

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 41

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	A_{fs}	${\sf A}_{\sf fi}$? _c	?c	? _{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.000	0.000	0.000	0.000
2	0.13	100, 40	15.71	15.71	0.030	0.000	-0.386	0.072
3	0.26	100, 40	15.71	15.71	0.031	0.001	-0.411	-0.015
4	0.40	100, 40	15.71	15.71	0.032	0.002	-0.435	-0.082
5	0.53	100, 40	15.71	15.71	0.032	0.003	-0.443	-0.162
6	0.66	100, 40	15.71	15.71	0.030	0.005	-0.431	-0.263
7	0.79	100, 40	15.71	15.71	0.026	0.006	-0.393	-0.389
8	0.92	100, 40	15.71	15.71	0.038	0.009	-0.326	-0.545
9	1.05	100, 40	15.71	15.71	0.053	0.012	-0.221	-0.737
10	1.19	100, 40	15.71	15.71	0.074	0.016	-0.058	-0.986
11	1.32	100, 40	15.71	15.71	0.105	0.021	0.369	-1.363
12	1.45	100, 40	15.71	15.71	0.154	0.027	1.378	-1.905
13	1.58	100, 40	15.71	15.71	0.219	0.034	3.078	-2.577
14	1.71	100, 40	15.71	15.71	0.297	0.041	5.429	-3.360
15	1.84	100, 40	15.71	15.71	0.389	0.048	8.403	-4.255
16	1.98	100, 40	15.71	15.71	0.495	0.056	12.002	-5.270
17	2.11	100, 40	15.71	15.71	0.617	0.064	16.242	-6.416
18	2.24	100, 40	15.71	15.71	0.754	0.072	21.143	-7.700
19	2.37	100, 40	15.71	15.71	0.907	0.081	26.732	-9.130
20	2.50	100, 40	15.71	15.71	1.079	0.090	33.033	-10.713
21	2.63	100, 40	15.71	15.71	1.268	0.099	40.072	-12.456

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 41

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	$ m ?_{fi}$? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 41

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.007	0.012	0.289	-0.066
3	0.16	100, 41	12.57	15.71	0.029	0.024	1.136	-0.260
4	0.24	100, 42	12.57	15.71	0.062	0.035	2.515	-0.574
5	0.32	100, 43	12.57	15.71	0.108	0.046	4.400	-1.002
6	0.40	100, 44	12.57	15.71	0.165	0.057	6.769	-1.536
7	0.48	100, 44	12.57	15.71	0.231	0.068	9.600	-2.170
8	0.56	100, 45	12.57	15.71	0.307	0.078	12.872	-2.900
9	0.64	100, 46	12.57	15.71	0.392	0.088	16.568	-3.720
10	0.72	100, 46	12.57	15.71	0.484	0.098	20.670	-4.625
11	0.80	100, 47	12.57	15.71	0.584	0.108	25.161	-5.611

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.007	-0.007	-0.070	0.349
3	0.36	100, 60	15.71	15.71	0.029	-0.014	-0.297	1.467
4	0.54	100, 58	15.71	15.71	0.069	-0.023	-0.707	3.466

5	0.72	100, 57	15.71	15.71	0.132	-0.032	-1.331	6.475
6	0.90	100, 55	15.71	15.71	0.215	-0.035	-2.161	10.435
7	1.08	100, 53	15.71	15.71	0.304	-0.033	-3.019	14.471
8	1.26	100, 52	15.71	15.71	0.396	-0.032	-3.889	18.503
9	1.44	100, 50	15.71	15.71	0.492	-0.031	-4.781	22.579
10	1.62	100, 49	15.71	15.71	0.591	-0.027	-5.683	26.643
11	1.80	100, 47	15.71	15.71	0.687	-0.022	-6.526	30.370

Verifiche a fessurazione

Combinazione n° 41

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

Υ	${\sf A_{fs}}$	A_{fi}	$M_{\sf pf}$	M	? _m	S _m	w
0.00	15.71	15.71	-43.85	0.00	0.0000	0.00	0.000
0.13	15.71	15.71	43.85	0.56	0.0000	0.00	0.000
0.26	15.71	15.71	43.85	0.53	0.0000	0.00	0.000
0.40	15.71	15.71	43.85	0.48	0.0000	0.00	0.000
0.53	15.71	15.71	43.85	0.38	0.0000	0.00	0.000
0.66	15.71	15.71	43.85	0.23	0.0000	0.00	0.000
0.79	15.71	15.71	43.85	0.01	0.0000	0.00	0.000
0.92	15.71	15.71	-43.85	-0.30	0.0000	0.00	0.000
1.05	15.71	15.71	-43.85	-0.70	0.0000	0.00	0.000
1.19	15.71	15.71	-43.85	-1.26	0.0000	0.00	0.000
1.32	15.71	15.71	-43.85	-2.01	0.0000	0.00	0.000
1.45	15.71	15.71	-43.85	-3.00	0.0000	0.00	0.000
1.58	15.71	15.71	-43.85	-4.23	0.0000	0.00	0.000
1.71	15.71	15.71	-43.85	-5.73	0.0000	0.00	0.000
1.84	15.71	15.71	-43.85	-7.51	0.0000	0.00	0.000
1.98	15.71	15.71	-43.85	-9.59	0.0000	0.00	0.000
2.11	15.71	15.71	-43.85	-11.99	0.0000	0.00	0.000
2.24	15.71	15.71	-43.85	-14.73	0.0000	0.00	0.000
	0.00 0.13 0.26 0.40 0.53 0.66 0.79 0.92 1.05 1.19 1.32 1.45 1.58 1.71 1.84 1.98 2.11	0.00 15.71 0.13 15.71 0.26 15.71 0.40 15.71 0.53 15.71 0.66 15.71 0.79 15.71 1.05 15.71 1.19 15.71 1.32 15.71 1.45 15.71 1.58 15.71 1.71 15.71 1.84 15.71 1.98 15.71 2.11 15.71	0.00 15.71 15.71 0.13 15.71 15.71 0.26 15.71 15.71 0.40 15.71 15.71 0.53 15.71 15.71 0.66 15.71 15.71 0.79 15.71 15.71 1.05 15.71 15.71 1.19 15.71 15.71 1.32 15.71 15.71 1.45 15.71 15.71 1.58 15.71 15.71 1.71 15.71 15.71 1.84 15.71 15.71 1.98 15.71 15.71 2.11 15.71 15.71	0.00 15.71 15.71 -43.85 0.13 15.71 15.71 43.85 0.26 15.71 15.71 43.85 0.40 15.71 15.71 43.85 0.53 15.71 15.71 43.85 0.66 15.71 15.71 43.85 0.79 15.71 15.71 43.85 0.92 15.71 15.71 -43.85 1.05 15.71 15.71 -43.85 1.19 15.71 15.71 -43.85 1.32 15.71 15.71 -43.85 1.45 15.71 15.71 -43.85 1.58 15.71 15.71 -43.85 1.71 15.71 15.71 -43.85 1.84 15.71 15.71 -43.85 1.98 15.71 15.71 -43.85 2.11 15.71 15.71 -43.85	0.00 15.71 15.71 -43.85 0.00 0.13 15.71 15.71 43.85 0.56 0.26 15.71 15.71 43.85 0.53 0.40 15.71 15.71 43.85 0.48 0.53 15.71 15.71 43.85 0.38 0.66 15.71 15.71 43.85 0.23 0.79 15.71 15.71 43.85 0.01 0.92 15.71 15.71 -43.85 -0.30 1.05 15.71 15.71 -43.85 -0.70 1.19 15.71 15.71 -43.85 -2.01 1.45 15.71 15.71 -43.85 -2.01 1.45 15.71 15.71 -43.85 -3.00 1.58 15.71 15.71 -43.85 -5.73 1.84 15.71 15.71 -43.85 -7.51 1.98 15.71 15.71 -43.85 -9.59 2.11 15.71 15.71 -43.85 -11.99	0.00 15.71 15.71 -43.85 0.00 0.0000 0.13 15.71 15.71 43.85 0.56 0.0000 0.26 15.71 15.71 43.85 0.53 0.0000 0.40 15.71 15.71 43.85 0.48 0.0000 0.53 15.71 15.71 43.85 0.38 0.0000 0.66 15.71 15.71 43.85 0.23 0.0000 0.79 15.71 15.71 43.85 0.01 0.0000 0.92 15.71 15.71 -43.85 -0.30 0.0000 1.05 15.71 15.71 -43.85 -0.70 0.0000 1.19 15.71 15.71 -43.85 -1.26 0.0000 1.45 15.71 15.71 -43.85 -2.01 0.0000 1.58 15.71 15.71 -43.85 -3.00 0.0000 1.84 15.71 15.71 -43.85 -7.51 0.0000	0.00 15.71 15.71 -43.85 0.00 0.0000 0.00 0.13 15.71 15.71 43.85 0.56 0.0000 0.00 0.26 15.71 15.71 43.85 0.53 0.0000 0.00 0.40 15.71 15.71 43.85 0.48 0.0000 0.00 0.53 15.71 15.71 43.85 0.38 0.0000 0.00 0.66 15.71 15.71 43.85 0.23 0.0000 0.00 0.79 15.71 15.71 43.85 0.01 0.0000 0.00 0.92 15.71 15.71 -43.85 -0.30 0.0000 0.00 1.05 15.71 15.71 -43.85 -0.70 0.0000 0.00 1.19 15.71 15.71 -43.85 -1.26 0.0000 0.00 1.32 15.71 15.71 -43.85 -2.01 0.0000 0.00 1.58 15.71 15.71

19	2.37	15.71	15.71	-43.85	-17.80	0.0000	0.00	0.000
20	2.50	15.71	15.71	-43.85	-21.24	0.0000	0.00	0.000
21	2.63	15.71	15.71	-43.85	-25.06	0.0000	0.00	0.000
<u>Veri</u> ţ	ica fessuraz	ione fondazi	<u>one</u>					
N°	Y	${\sf A}_{\sf fs}$	A_{fi}	M_{pf}	М	?m	S _m	w
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.15	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.60	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.37	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	2.43	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	3.82	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	5.51	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	7.53	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	9.86	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	12.52	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	15.51	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-18.74	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-17.09	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-15.03	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-12.76	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-10.33	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-7.70	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-4.94	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-2.73	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-1.19	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.29	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
Varif	ica fessura:	zione mensolo	a di monte					
verij	<u>icu jessuruz</u>	ione mensor	<u>a ui iiioiite</u>					
N°	Υ	\mathbf{A}_{fs}	A_{fi}	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 42

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	4.9425	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Y	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Y	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti carichi esterni					
Componente dir. X	3.34	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	66.2360	[kN]			
Risultante dei carichi applicati in dir. verticale	209.1084	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	214.0855	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	47.7589	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.03	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	219.3480	[kN]			
Inclinazione della risultante (rispetto alla normale)	12.58	[°]			
Momento rispetto al baricentro della fondazione	-6.2979	[kNm]			
Carico ultimo della fondazione	3103.2765	[kN]			
Tensioni sul terreno	2.01	[]			
Lunghezza fondazione reagente	3.01	[m]	.1		
Tensione terreno allo spigolo di valle	0.06692	[N/mmc	-		
Tensione terreno allo spigolo di monte	0.07526	[N/mmc	1]		

[N/mmq] Tensione terreno all'estremità della mensola di contrappeso 0.000

Fattori per il calcolo della capacità portante

 $N_q = 28.52$ Coeff. capacità portante $N_c = 44.04$ $N_{2} = 27.33$ **Fattori forma** $s_c = 1.00$ $s_q = 1.00$ s_? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano

di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ N' = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.81 Coefficiente di sicurezza a carico ultimo 14.50

Sollecitazioni paramento

Combinazione n° 42

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	2.2000	3.3400
2	0.13	5.0675	2.0825	3.4323
3	0.26	6.3850	2.5462	3.6233
4	0.40	7.7025	3.0416	3.9131
5	0.53	9.0200	3.5817	4.3018
6	0.66	10.3375	4.1795	4.7892
7	0.79	11.6550	4.8480	5.3754
8	0.92	12.9725	5.6004	6.0657
9	1.05	14.2900	6.4559	6.9965
10	1.19	15.6075	7.4656	8.4088
11	1.32	16.9250	8.6831	10.1035
12	1.45	18.2425	10.1351	11.9638
13	1.58	19.5600	11.8422	13.9756
14	1.71	20.8775	13.8238	16.1280
15	1.84	22.1950	16.0978	18.4132
16	1.98	23.5125	18.6813	20.8251
17	2.11	24.8300	21.5906	23.3590
18	2.24	26.1475	24.8415	26.0110
19	2.37	27.4650	28.4495	28.7782
20	2.50	28.7825	32.4295	31.6582
21	2.63	30.1000	36.7957	34.6314

Sollecitazioni fondazione di valle

Combinazione n° 42

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1823	4.5583
3	0.16	0.7294	9.1204
4	0.24	1.6417	13.6862
5	0.32	2.9193	18.2559
6	0.40	4.5627	22.8293
7	0.48	6.5721	27.4065
8	0.56	8.9478	31.9875
9	0.64	11.6902	36.5722
10	0.72	14.7995	41.1607
11	0.80	18.2760	45.7531

Sollecitazioni fondazione di monte

Combinazione n° 42

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.3750	-4.1694
3	0.36	-1.5021	-8.3577
4	0.54	-3.3849	-12.5649
5	0.72	-6.0266	-16.7910
6	0.90	-9.2808	-18.0361
7	1.08	-12.4247	-16.9000
8	1.26	-15.3659	-15.7829
9	1.44	-18.1077	-14.6846
10	1.62	-20.5815	-12.4053
11	1.80	-22.5567	-9.5448

Sollecitazioni mensola di contrappeso

Combinazione n° 42

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 42

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? c	$\mathbf{Z}_{\mathbf{c}}$	$ m ?_{fs}$	2_{fi}
1	0.00	100, 40	15.71	15.71	0.107	0.011	4.300	-0.953
2	0.13	100, 40	15.71	15.71	0.107	0.011	2.615	-1.143
3	0.26	100, 40	15.71	15.71	0.132	0.012	3.146	-1.404
4	0.40	100, 40	15.71	15.71	0.157	0.013	3.739	-1.680
5	0.53	100, 40	15.71	15.71	0.185	0.014	4.416	-1.976
6	0.66	100, 40	15.71	15.71	0.216	0.016	5.203	-2.299
7	0.79	100, 40	15.71	15.71	0.250	0.018	6.125	-2.655
8	0.92	100, 40	15.71	15.71	0.289	0.020	7.208	-3.049
9	1.05	100, 40	15.71	15.71	0.332	0.023	8.489	-3.489
10	1.19	100, 40	15.71	15.71	0.384	0.027	10.067	-3.999
11	1.32	100, 40	15.71	15.71	0.446	0.033	12.048	-4.603
12	1.45	100, 40	15.71	15.71	0.519	0.039	14.483	-5.310
13	1.58	100, 40	15.71	15.71	0.605	0.046	17.415	-6.129
14	1.71	100, 40	15.71	15.71	0.704	0.053	20.882	-7.069
15	1.84	100, 40	15.71	15.71	0.818	0.060	24.921	-8.135
16	1.98	100, 40	15.71	15.71	0.947	0.068	29.564	-9.337
17	2.11	100, 40	15.71	15.71	1.091	0.076	34.844	-10.679
18	2.24	100, 40	15.71	15.71	1.253	0.085	40.793	-12.170
19	2.37	100, 40	15.71	15.71	1.431	0.094	47.439	-13.815
20	2.50	100, 40	15.71	15.71	1.628	0.103	54.814	-15.621
21	2.63	100, 40	15.71	15.71	1.844	0.113	62.943	-17.594

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 42

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	?fs
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 42

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.009	0.015	0.349	-0.080
3	0.16	100, 41	12.57	15.71	0.034	0.029	1.371	-0.314
4	0.24	100, 42	12.57	15.71	0.075	0.042	3.025	-0.691
5	0.32	100, 43	12.57	15.71	0.130	0.055	5.277	-1.201
6	0.40	100, 44	12.57	15.71	0.197	0.068	8.093	-1.836
7	0.48	100, 44	12.57	15.71	0.276	0.080	11.444	-2.587
8	0.56	100, 45	12.57	15.71	0.365	0.092	15.300	-3.447
9	0.64	100, 46	12.57	15.71	0.464	0.103	19.635	-4.409
10	0.72	100, 46	12.57	15.71	0.573	0.114	24.426	-5.466
11	0.80	100, 47	12.57	15.71	0.689	0.125	29.648	-6.612

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	${f A}_{\sf fs}$	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.009	-0.009	-0.090	0.449
3	0.36	100, 60	15.71	15.71	0.036	-0.018	-0.375	1.853
4	0.54	100, 58	15.71	15.71	0.086	-0.027	-0.878	4.304

5	0.72	100, 57	15.71	15.71	0.161	-0.038	-1.625	7.907
6	0.90	100, 55	15.71	15.71	0.260	-0.042	-2.604	12.575
7	1.08	100, 53	15.71	15.71	0.366	-0.040	-3.631	17.406
8	1.26	100, 52	15.71	15.71	0.476	-0.039	-4.683	22.281
9	1.44	100, 50	15.71	15.71	0.592	-0.037	-5.761	27.211
10	1.62	100, 49	15.71	15.71	0.712	-0.033	-6.846	32.094
11	1.80	100, 47	15.71	15.71	0.827	-0.026	-7.854	36.550

Verifiche a fessurazione

Combinazione n° 42

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? m	$\mathbf{S}_{\mathbf{m}}$	w
1	0.00	15.71	15.71	-43.85	-2.20	0.0000	0.00	0.000
2	0.13	15.71	15.71	-43.85	-2.08	0.0000	0.00	0.000
3	0.26	15.71	15.71	-43.85	-2.55	0.0000	0.00	0.000
4	0.40	15.71	15.71	-43.85	-3.04	0.0000	0.00	0.000
5	0.53	15.71	15.71	-43.85	-3.58	0.0000	0.00	0.000
6	0.66	15.71	15.71	-43.85	-4.18	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-4.85	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-5.60	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-6.46	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-7.47	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-8.68	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-10.14	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-11.84	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-13.82	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-16.10	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-18.68	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-21.59	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-24.84	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-28.45	0.0000	0.00	0.000
20	2.50	15.71	15.71	-43.85	-32.43	0.0000	0.00	0.000
21	2.63	15.71	15.71	-43.85	-36.80	0.0000	0.00	0.000
<u>Verif</u>	<u>ica fessuraz</u>	<u>rione fondazi</u>	<u>one</u>					
N°	Υ	۸.	۸.	М.	М	5	c	w
1	-1.20	A fs 12.57	A fi 15.71	M_{pf} -42.79	0.00	⊡ _m 0.0000	s _m 0.00	0.000
2	-1.12	12.57	15.71	45.13	0.00	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.13	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.64	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	2.92	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	4.56	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	6.57	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	8.95	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	11.69	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	14.80	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	18.28	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-22.56	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-20.58	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-18.11	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-15.37	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-12.42	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-9.28	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-6.03	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-3.38	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-1.50	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.37	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 43

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	3.1206	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	-1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti carichi esterni</u>					
Componente dir. X	3.34	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	64.5389	[kN]			
Risultante dei carichi applicati in dir. verticale	202.4640	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	207.3185	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	46.6474	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.03	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	212.5016	[kN]			
Inclinazione della risultante (rispetto alla normale)	12.68	[°]			
Momento rispetto al baricentro della fondazione	-5.3271	[kNm]			
Carico ultimo della fondazione	3111.1014	[kN]			
Tensioni sul terreno	2.01	[m]			
Lunghezza fondazione reagente Tensione terreno allo spigolo di valle	3.01	[m]	1		
Tensione terreno allo spigolo di valle	0.06532 0.07237	[N/mmq [N/mmq			
Tensione terreno allo spigolo di monte	0.07237	[IN/IIII]]		

[N/mmq] Tensione terreno all'estremità della mensola di contrappeso 0.000

Fattori per il calcolo della capacità portante

 $N_q = 28.52$ Coeff. capacità portante $N_c = 44.04$ $N_{2} = 27.33$ **Fattori forma** $s_c = 1.00$ $s_q = 1.00$ s_? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano

di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ N'₂ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.79 Coefficiente di sicurezza a carico ultimo 15.01

Sollecitazioni paramento

Combinazione n° 43

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	2.2000	3.3400
2	0.13	5.0675	2.0825	3.4308
3	0.26	6.3850	2.5457	3.6175
4	0.40	7.7025	3.0399	3.9002
5	0.53	9.0200	3.5776	4.2787
6	0.66	10.3375	4.1716	4.7532
7	0.79	11.6550	4.8343	5.3235
8	0.92	12.9725	5.5786	5.9949
9	1.05	14.2900	6.4233	6.8999
10	1.19	15.6075	7.4178	8.2722
11	1.32	16.9250	8.6142	9.9187
12	1.45	18.2425	10.0384	11.7260
13	1.58	19.5600	11.7105	13.6804
14	1.71	20.8775	13.6491	15.7713
15	1.84	22.1950	15.8719	17.9911
16	1.98	23.5125	18.3952	20.3339
17	2.11	24.8300	21.2350	22.7951
18	2.24	26.1475	24.4067	25.3710
19	2.37	27.4650	27.9252	28.0588
20	2.50	28.7825	31.8050	30.8560
21	2.63	30.1000	36.0598	33.7438

Sollecitazioni fondazione di valle

Combinazione n° 43

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	М	т
1	0.00	0.0000	0.0000
2	0.08	0.1771	4.4282
3	0.16	0.7085	8.8573
4	0.24	1.5943	13.2876
5	0.32	2.8346	17.7188
6	0.40	4.4294	22.1512
7	0.48	6.3788	26.5845
8	0.56	8.6829	31.0189
9	0.64	11.3418	35.4543
10	0.72	14.3556	39.8908
11	0.80	17.7244	44.3283

Sollecitazioni fondazione di monte

Combinazione n° 43

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.4214	-4.6834
3	0.36	-1.6863	-9.3719
4	0.54	-3.7956	-14.0654
5	0.72	-6.7502	-18.7639
6	0.90	-10.4009	-20.4675
7	1.08	-14.0228	-19.7761
8	1.26	-17.5206	-19.0897
9	1.44	-20.8954	-18.4084
10	1.62	-24.0760	-16.5321
11	1.80	-26.8293	-14.0609

Sollecitazioni mensola di contrappeso

Combinazione n° 43

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 43

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	\mathbf{P}_{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.107	0.011	4.300	-0.953
2	0.13	100, 40	15.71	15.71	0.107	0.011	2.615	-1.143
3	0.26	100, 40	15.71	15.71	0.131	0.012	3.145	-1.404
4	0.40	100, 40	15.71	15.71	0.157	0.013	3.735	-1.679
5	0.53	100, 40	15.71	15.71	0.185	0.014	4.408	-1.974
6	0.66	100, 40	15.71	15.71	0.215	0.016	5.188	-2.296
7	0.79	100, 40	15.71	15.71	0.249	0.017	6.099	-2.649
8	0.92	100, 40	15.71	15.71	0.288	0.020	7.166	-3.039
9	1.05	100, 40	15.71	15.71	0.331	0.023	8.427	-3.474
10	1.19	100, 40	15.71	15.71	0.381	0.027	9.975	-3.978
11	1.32	100, 40	15.71	15.71	0.442	0.032	11.915	-4.572
12	1.45	100, 40	15.71	15.71	0.514	0.038	14.296	-5.266
13	1.58	100, 40	15.71	15.71	0.598	0.045	17.160	-6.070
14	1.71	100, 40	15.71	15.71	0.696	0.052	20.544	-6.991
15	1.84	100, 40	15.71	15.71	0.807	0.059	24.482	-8.036
16	1.98	100, 40	15.71	15.71	0.933	0.066	29.008	-9.211
17	2.11	100, 40	15.71	15.71	1.074	0.074	34.152	-10.523
18	2.24	100, 40	15.71	15.71	1.231	0.083	39.946	-11.979
19	2.37	100, 40	15.71	15.71	1.406	0.092	46.417	-13.585
20	2.50	100, 40	15.71	15.71	1.598	0.101	53.596	-15.348
21	2.63	100, 40	15.71	15.71	1.808	0.110	61.508	-17.273

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 43

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	?fs
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 43

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	\mathbf{Z}_{c}	$?_{fi}$	$ m ?_{fs}$
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.009	0.014	0.339	-0.078
3	0.16	100, 41	12.57	15.71	0.033	0.028	1.331	-0.305
4	0.24	100, 42	12.57	15.71	0.073	0.041	2.938	-0.671
5	0.32	100, 43	12.57	15.71	0.126	0.054	5.123	-1.166
6	0.40	100, 44	12.57	15.71	0.191	0.066	7.856	-1.782
7	0.48	100, 44	12.57	15.71	0.268	0.078	11.107	-2.511
8	0.56	100, 45	12.57	15.71	0.354	0.089	14.847	-3.345
9	0.64	100, 46	12.57	15.71	0.451	0.100	19.050	-4.278
10	0.72	100, 46	12.57	15.71	0.555	0.111	23.693	-5.302
11	0.80	100, 47	12.57	15.71	0.668	0.121	28.753	-6.412

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.010	-0.010	-0.101	0.505
3	0.36	100, 60	15.71	15.71	0.041	-0.020	-0.421	2.080
4	0.54	100, 58	15.71	15.71	0.097	-0.031	-0.985	4.826

5	0.72	100, 57	15.71	15.71	0.180	-0.042	-1.820	8.856
6	0.90	100, 55	15.71	15.71	0.291	-0.047	-2.918	14.093
7	1.08	100, 53	15.71	15.71	0.413	-0.047	-4.098	19.645
8	1.26	100, 52	15.71	15.71	0.543	-0.047	-5.339	25.406
9	1.44	100, 50	15.71	15.71	0.684	-0.047	-6.648	31.400
10	1.62	100, 49	15.71	15.71	0.833	-0.044	-8.008	37.543
11	1.80	100, 47	15.71	15.71	0.984	-0.038	-9.342	43.474

Verifiche a fessurazione

Combinazione n° 43

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Y	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? m	S _m	w
1	0.00	15.71	15.71	-43.85	-2.20	0.0000	0.00	0.000
2	0.13	15.71	15.71	-43.85	-2.08	0.0000	0.00	0.000
3	0.26	15.71	15.71	-43.85	-2.55	0.0000	0.00	0.000
4	0.40	15.71	15.71	-43.85	-3.04	0.0000	0.00	0.000
5	0.53	15.71	15.71	-43.85	-3.58	0.0000	0.00	0.000
6	0.66	15.71	15.71	-43.85	-4.17	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-4.83	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-5.58	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-6.42	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-7.42	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-8.61	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-10.04	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-11.71	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-13.65	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-15.87	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-18.40	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-21.24	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-24.41	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-27.93	0.0000	0.00	0.000
20	2.50	15.71	15.71	-43.85	-31.80	0.0000	0.00	0.000
21	2.63	15.71	15.71	-43.85	-36.06	0.0000	0.00	0.000
Verif	ica fessuraz	ione fondazi	one					
<u>v erij</u>	ica jessaraz	ione jonadzn	<u> </u>					
N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	? _m	S _m	w
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.18	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.71	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	1.59	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	2.83	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	4.43	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	6.38	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	8.68	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	11.34	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	14.36	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	17.72	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-26.83	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-24.08	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-20.90	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-17.52	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-14.02	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-10.40	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-6.75	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-3.80	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-1.69	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.42	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 44

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	4.9425	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti carichi esterni</u>					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	72.9160	[kN]			
Risultante dei carichi applicati in dir. verticale	209.1084	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	214.6677	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	54.4135	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.09	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	221.4567	[kN]			
Inclinazione della risultante (rispetto alla normale)	14.22	[°]			
Momento rispetto al baricentro della fondazione	19.0188	[kNm]			
Carico ultimo della fondazione	2978.8799	[kN]			
<u>Tensioni sul terreno</u>	2.04	f 3			
Lunghezza fondazione reagente	3.01	[m]	,		
Tensione terreno allo spigolo di valle	0.08387	[N/mmq			
Tensione terreno allo spigolo di monte	0.05870	[N/mmq]		

[N/mmq] Tensione terreno all'estremità della mensola di contrappeso 0.000

Fattori per il calcolo della capacità portante

 $N_q = 28.52$ Coeff. capacità portante $N_c = 44.04$ $N_{2} = 27.33$ **Fattori forma** $s_c = 1.00$ $s_q = 1.00$ s_? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano

di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ N'₂ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.59 Coefficiente di sicurezza a carico ultimo 13.88

Sollecitazioni paramento

Combinazione n° 44

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	т
1	0.00	0.0000	6.6000	10.0200
2	0.13	5.0675	7.3626	10.1123
3	0.26	6.3850	8.7064	10.3033
4	0.40	7.7025	10.0819	10.5931
5	0.53	9.0200	11.5020	10.9818
6	0.66	10.3375	12.9799	11.4692
7	0.79	11.6550	14.5285	12.0554
8	0.92	12.9725	16.1610	12.7457
9	1.05	14.2900	17.8966	13.6765
10	1.19	15.6075	19.7864	15.0888
11	1.32	16.9250	21.8840	16.7835
12	1.45	18.2425	24.2161	18.6438
13	1.58	19.5600	26.8033	20.6556
14	1.71	20.8775	29.6650	22.8080
15	1.84	22.1950	32.8190	25.0932
16	1.98	23.5125	36.2826	27.5051
17	2.11	24.8300	40.0720	30.0390
18	2.24	26.1475	44.2030	32.6910
19	2.37	27.4650	48.6911	35.4582
20	2.50	28.7825	53.5512	38.3382
21	2.63	30.1000	58.7974	41.3114

Sollecitazioni fondazione di valle

Combinazione n° 44

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2355	5.8755
3	0.16	0.9383	11.6832
4	0.24	2.1030	17.4233
5	0.32	3.7242	23.0957
6	0.40	5.7965	28.7005
7	0.48	8.3145	34.2375
8	0.56	11.2727	39.7068
9	0.64	14.6658	45.1085
10	0.72	18.4882	50.4425
11	0.80	22.7347	55.7088

Sollecitazioni fondazione di monte

Combinazione n° 44

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.6328	-6.9743
3	0.36	-2.4902	-13.6058
4	0.54	-5.5103	-19.8944
5	0.72	-9.6316	-25.8401
6	0.90	-14.6422	-28.4429
7	1.08	-19.7544	-28.3028
8	1.26	-24.8106	-27.8198
9	1.44	-29.7490	-26.9940
10	1.62	-34.4359	-24.6253
11	1.80	-38.5755	-21.3136

Sollecitazioni mensola di contrappeso

Combinazione n° 44

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 44

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.322	0.033	12.900	-2.858
2	0.13	100, 40	15.71	15.71	0.368	0.033	12.876	-3.471
3	0.26	100, 40	15.71	15.71	0.435	0.034	15.110	-4.125
4	0.40	100, 40	15.71	15.71	0.504	0.035	17.406	-4.793
5	0.53	100, 40	15.71	15.71	0.576	0.036	19.790	-5.480
6	0.66	100, 40	15.71	15.71	0.650	0.037	22.286	-6.192
7	0.79	100, 40	15.71	15.71	0.728	0.039	24.920	-6.935
8	0.92	100, 40	15.71	15.71	0.810	0.042	27.718	-7.715
9	1.05	100, 40	15.71	15.71	0.896	0.045	30.717	-8.539
10	1.19	100, 40	15.71	15.71	0.991	0.049	34.017	-9.431
11	1.32	100, 40	15.71	15.71	1.095	0.055	37.722	-10.413
12	1.45	100, 40	15.71	15.71	1.211	0.061	41.885	-11.498
13	1.58	100, 40	15.71	15.71	1.340	0.068	46.546	-12.694
14	1.71	100, 40	15.71	15.71	1.482	0.075	51.743	-14.009
15	1.84	100, 40	15.71	15.71	1.638	0.082	57.510	-15.451
16	1.98	100, 40	15.71	15.71	1.809	0.090	63.883	-17.027
17	2.11	100, 40	15.71	15.71	1.997	0.098	70.891	-18.745
18	2.24	100, 40	15.71	15.71	2.201	0.107	78.567	-20.611
19	2.37	100, 40	15.71	15.71	2.422	0.116	86.941	-22.633
20	2.50	100, 40	15.71	15.71	2.661	0.125	96.041	-24.815
21	2.63	100, 40	15.71	15.71	2.920	0.135	105.897	-27.165

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 44

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 44

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.011	0.019	0.451	-0.104
3	0.16	100, 41	12.57	15.71	0.044	0.037	1.763	-0.404
4	0.24	100, 42	12.57	15.71	0.096	0.054	3.875	-0.885
5	0.32	100, 43	12.57	15.71	0.165	0.070	6.731	-1.532
6	0.40	100, 44	12.57	15.71	0.250	0.085	10.281	-2.332
7	0.48	100, 44	12.57	15.71	0.349	0.100	14.477	-3.273
8	0.56	100, 45	12.57	15.71	0.460	0.114	19.275	-4.343
9	0.64	100, 46	12.57	15.71	0.583	0.128	24.633	-5.532
10	0.72	100, 46	12.57	15.71	0.715	0.140	30.514	-6.828
11	0.80	100, 47	12.57	15.71	0.857	0.152	36.881	-8.225

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.015	-0.014	-0.152	0.758
3	0.36	100, 60	15.71	15.71	0.060	-0.029	-0.622	3.072
4	0.54	100, 58	15.71	15.71	0.140	-0.043	-1.429	7.007

5	0.72	100, 57	15.71	15.71	0.257	-0.058	-2.597	12.636
6	0.90	100, 55	15.71	15.71	0.410	-0.066	-4.108	19.840
7	1.08	100, 53	15.71	15.71	0.581	-0.067	-5.773	27.674
8	1.26	100, 52	15.71	15.71	0.769	-0.068	-7.561	35.976
9	1.44	100, 50	15.71	15.71	0.973	-0.069	-9.465	44.704
10	1.62	100, 49	15.71	15.71	1.192	-0.065	-11.454	53.697
11	1.80	100, 47	15.71	15.71	1.415	-0.058	-13.432	62.507

Verifiche a fessurazione

Combinazione n° 44

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	\mathbf{P}_{m}	s _m	w
1	0.00	15.71	15.71	-43.85	-6.60	0.0000	0.00	0.000
2	0.13	15.71	15.71	-43.85	-7.36	0.0000	0.00	0.000
3	0.26	15.71	15.71	-43.85	-8.71	0.0000	0.00	0.000
4	0.40	15.71	15.71	-43.85	-10.08	0.0000	0.00	0.000
5	0.53	15.71	15.71	-43.85	-11.50	0.0000	0.00	0.000
6	0.66	15.71	15.71	-43.85	-12.98	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-14.53	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-16.16	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-17.90	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-19.79	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-21.88	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-24.22	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-26.80	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-29.66	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-32.82	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-36.28	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-40.07	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-44.20	0.0229	197.67	0.077

19	2.37	15.71	15.71	-43.85	-48.69	0.0253	197.67	0.085
20	2.50	15.71	15.71	-43.85	-53.55	0.0290	197.67	0.097
21	2.63	15.71	15.71	-43.85	-58.80	0.0354	197.67	0.119
<u>Verif</u>	ica fessuraz	<u>rione fondazi</u>	<u>one</u>					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.24	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.94	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	2.10	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	3.72	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	5.80	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	8.31	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	11.27	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	14.67	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	18.49	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	22.73	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-38.58	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-34.44	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-29.75	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-24.81	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-19.75	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-14.64	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-9.63	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-5.51	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-2.49	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.63	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	<u>a di monte</u>					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 45

•					
Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	3.1206	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	-1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti carichi esterni					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	71.2189	[kN]			
Risultante dei carichi applicati in dir. verticale	202.4640	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	207.9007	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	53.3020	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.10	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	214.6248	[kN]			
Inclinazione della risultante (rispetto alla normale)	14.38	[°]			
Momento rispetto al baricentro della fondazione	19.9896	[kNm]			
Carico ultimo della fondazione	2963.0024	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	3.01	[m]			
Tensione terreno allo spigolo di valle	0.08226	[N/mmq			
Tensione terreno allo spigolo di monte	0.05581	[N/mmq]		

[N/mmq] Tensione terreno all'estremità della mensola di contrappeso 0.000

Fattori per il calcolo della capacità portante

 $N_q = 28.52$ Coeff. capacità portante $N_c = 44.04$ $N_{2} = 27.33$ **Fattori forma** $s_c = 1.00$ $s_q = 1.00$ s_? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano

di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ N'₂ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.57 Coefficiente di sicurezza a carico ultimo 14.25

Sollecitazioni paramento

Combinazione n° 45

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

— the same positive at compressions, copiess in the

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	6.6000	10.0200
2	0.13	5.0675	7.3626	10.1108
3	0.26	6.3850	8.7059	10.2975
4	0.40	7.7025	10.0802	10.5802
5	0.53	9.0200	11.4980	10.9587
6	0.66	10.3375	12.9720	11.4332
7	0.79	11.6550	14.5148	12.0035
8	0.92	12.9725	16.1393	12.6749
9	1.05	14.2900	17.8640	13.5799
10	1.19	15.6075	19.7385	14.9522
11	1.32	16.9250	21.8151	16.5987
12	1.45	18.2425	24.1194	18.4060
13	1.58	19.5600	26.6715	20.3604
14	1.71	20.8775	29.4903	22.4513
15	1.84	22.1950	32.5931	24.6711
16	1.98	23.5125	35.9965	27.0139
17	2.11	24.8300	39.7164	29.4751
18	2.24	26.1475	43.7682	32.0510
19	2.37	27.4650	48.1668	34.7388
20	2.50	28.7825	52.9267	37.5360
21	2.63	30.1000	58.0616	40.4238

Sollecitazioni fondazione di valle

Combinazione n° 45

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.08	0.2303	5.7457
3	0.16	0.9174	11.4210
4	0.24	2.0558	17.0258
5	0.32	3.6397	22.5603
6	0.40	5.6635	28.0243
7	0.48	8.1217	33.4179
8	0.56	11.0085	38.7410
9	0.64	14.3184	43.9937
10	0.72	18.0456	49.1760
11	0.80	22.1847	54.2879

Sollecitazioni fondazione di monte

Combinazione n° 45

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.6792	-7.4875
3	0.36	-2.6741	-14.6182
4	0.54	-5.9204	-21.3922
5	0.72	-10.3539	-27.8094
6	0.90	-15.7604	-30.8699
7	1.08	-21.3496	-31.1736
8	1.26	-26.9615	-31.1206
9	1.44	-32.5316	-30.7108
10	1.62	-37.9239	-28.7442
11	1.80	-42.8401	-25.8209

Sollecitazioni mensola di contrappeso

Combinazione n° 45

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	T	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 45

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? c	? c	? _{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.322	0.033	12.900	-2.858
2	0.13	100, 40	15.71	15.71	0.368	0.033	12.876	-3.471
3	0.26	100, 40	15.71	15.71	0.435	0.034	15.109	-4.125
4	0.40	100, 40	15.71	15.71	0.504	0.035	17.403	-4.792
5	0.53	100, 40	15.71	15.71	0.576	0.036	19.782	-5.478
6	0.66	100, 40	15.71	15.71	0.650	0.037	22.271	-6.188
7	0.79	100, 40	15.71	15.71	0.727	0.039	24.893	-6.929
8	0.92	100, 40	15.71	15.71	0.809	0.041	27.676	-7.705
9	1.05	100, 40	15.71	15.71	0.895	0.044	30.653	-8.525
10	1.19	100, 40	15.71	15.71	0.988	0.049	33.923	-9.410
11	1.32	100, 40	15.71	15.71	1.092	0.054	37.588	-10.383
12	1.45	100, 40	15.71	15.71	1.207	0.060	41.696	-11.456
13	1.58	100, 40	15.71	15.71	1.333	0.067	46.289	-12.636
14	1.71	100, 40	15.71	15.71	1.473	0.073	51.402	-13.932
15	1.84	100, 40	15.71	15.71	1.627	0.081	57.069	-15.352
16	1.98	100, 40	15.71	15.71	1.795	0.088	63.324	-16.903
17	2.11	100, 40	15.71	15.71	1.979	0.096	70.197	-18.591
18	2.24	100, 40	15.71	15.71	2.179	0.105	77.718	-20.422
19	2.37	100, 40	15.71	15.71	2.396	0.114	85.917	-22.405
20	2.50	100, 40	15.71	15.71	2.631	0.123	94.822	-24.544
21	2.63	100, 40	15.71	15.71	2.884	0.132	104.459	-26.845

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 45

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	$?_{fi}$?fs
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 45

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.011	0.018	0.441	-0.101
3	0.16	100, 41	12.57	15.71	0.043	0.036	1.724	-0.395
4	0.24	100, 42	12.57	15.71	0.094	0.053	3.788	-0.865
5	0.32	100, 43	12.57	15.71	0.162	0.068	6.579	-1.497
6	0.40	100, 44	12.57	15.71	0.245	0.083	10.046	-2.279
7	0.48	100, 44	12.57	15.71	0.341	0.098	14.142	-3.197
8	0.56	100, 45	12.57	15.71	0.449	0.111	18.823	-4.241
9	0.64	100, 46	12.57	15.71	0.569	0.124	24.050	-5.400
10	0.72	100, 46	12.57	15.71	0.698	0.137	29.783	-6.665
11	0.80	100, 47	12.57	15.71	0.836	0.149	35.989	-8.026

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.016	-0.015	-0.164	0.814
3	0.36	100, 60	15.71	15.71	0.065	-0.031	-0.668	3.299
4	0.54	100, 58	15.71	15.71	0.151	-0.046	-1.536	7.528

5	0.72	100, 57	15.71	15.71	0.276	-0.062	-2.792	13.584
6	0.90	100, 55	15.71	15.71	0.441	-0.071	-4.422	21.355
7	1.08	100, 53	15.71	15.71	0.628	-0.074	-6.239	29.909
8	1.26	100, 52	15.71	15.71	0.836	-0.077	-8.216	39.095
9	1.44	100, 50	15.71	15.71	1.064	-0.078	-10.351	48.886
10	1.62	100, 49	15.71	15.71	1.312	-0.076	-12.614	59.136
11	1.80	100, 47	15.71	15.71	1.571	-0.071	-14.917	69.417

Verifiche a fessurazione

Combinazione n° 45

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? m	S _m	w
1	0.00	15.71	15.71	-43.85	-6.60	0.0000	0.00	0.000
2	0.13	15.71	15.71	-43.85	-7.36	0.0000	0.00	0.000
3	0.26	15.71	15.71	-43.85	-8.71	0.0000	0.00	0.000
4	0.40	15.71	15.71	-43.85	-10.08	0.0000	0.00	0.000
5	0.53	15.71	15.71	-43.85	-11.50	0.0000	0.00	0.000
6	0.66	15.71	15.71	-43.85	-12.97	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-14.51	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-16.14	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-17.86	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-19.74	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-21.82	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-24.12	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-26.67	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-29.49	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-32.59	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-36.00	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-39.72	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-43.77	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-48.17	0.0250	197.67	0.084
20	2.50	15.71	15.71	-43.85	-52.93	0.0281	197.67	0.095
21	2.63	15.71	15.71	-43.85	-58.06	0.0345	197.67	0.116
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_{fs}	A_{fi}	M_{pf}	М	? _m	S _m	w
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.23	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	0.92	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	2.06	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	3.64	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	5.66	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	8.12	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	11.01	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	14.32	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	18.05	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	22.18	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-42.84	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-37.92	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-32.53	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-26.96	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-21.35	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-15.76	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-10.35	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-5.92	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-2.67	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.68	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	rione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 46

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	4.9425	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti carichi esterni</u>					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	72.9160	[kN]			
Risultante dei carichi applicati in dir. verticale	209.1084	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	214.6677	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	54.4135	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.09	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	221.4567	[kN]			
Inclinazione della risultante (rispetto alla normale)	14.22	[°]			
Momento rispetto al baricentro della fondazione	19.0188	[kNm]			
Carico ultimo della fondazione	2978.8799	[kN]			
<u>Tensioni sul terreno</u>	2.04	f 1			
Lunghezza fondazione reagente	3.01	[m]	,		
Tensione terreno allo spigolo di valle	0.08387	[N/mmq			
Lensione terreno allo spigolo di monte	0.05870	[N/mmq	J		
Tensione terreno allo spigolo di monte	0.05870	[N/mmq]		

[N/mmq] Tensione terreno all'estremità della mensola di contrappeso 0.000

Fattori per il calcolo della capacità portante

 $N_q = 28.52$ Coeff. capacità portante $N_c = 44.04$ $N_{?} = 27.33$ **Fattori forma** $s_c = 1.00$ $s_q = 1.00$ $s_{\text{P}} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano

di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ N'₂ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.59 Coefficiente di sicurezza a carico ultimo 13.88

Sollecitazioni paramento

Combinazione n° 46

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	6.6000	10.0200
2	0.13	5.0675	7.3626	10.1123
3	0.26	6.3850	8.7064	10.3033
4	0.40	7.7025	10.0819	10.5931
5	0.53	9.0200	11.5020	10.9818
6	0.66	10.3375	12.9799	11.4692
7	0.79	11.6550	14.5285	12.0554
8	0.92	12.9725	16.1610	12.7457
9	1.05	14.2900	17.8966	13.6765
10	1.19	15.6075	19.7864	15.0888
11	1.32	16.9250	21.8840	16.7835
12	1.45	18.2425	24.2161	18.6438
13	1.58	19.5600	26.8033	20.6556
14	1.71	20.8775	29.6650	22.8080
15	1.84	22.1950	32.8190	25.0932
16	1.98	23.5125	36.2826	27.5051
17	2.11	24.8300	40.0720	30.0390
18	2.24	26.1475	44.2030	32.6910
19	2.37	27.4650	48.6911	35.4582
20	2.50	28.7825	53.5512	38.3382
21	2.63	30.1000	58.7974	41.3114

Sollecitazioni fondazione di valle

Combinazione n° 46

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2355	5.8755
3	0.16	0.9383	11.6832
4	0.24	2.1030	17.4233
5	0.32	3.7242	23.0957
6	0.40	5.7965	28.7005
7	0.48	8.3145	34.2375
8	0.56	11.2727	39.7068
9	0.64	14.6658	45.1085
10	0.72	18.4882	50.4425
11	0.80	22.7347	55.7088

Sollecitazioni fondazione di monte

Combinazione n° 46

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.6328	-6.9743
3	0.36	-2.4902	-13.6058
4	0.54	-5.5103	-19.8944
5	0.72	-9.6316	-25.8401
6	0.90	-14.6422	-28.4429
7	1.08	-19.7544	-28.3028
8	1.26	-24.8106	-27.8198
9	1.44	-29.7490	-26.9940
10	1.62	-34.4359	-24.6253
11	1.80	-38.5755	-21.3136

Sollecitazioni mensola di contrappeso

Combinazione n° 46

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 46

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- Image: Tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	A_{fs}	A_{fi}	? _c	? c	? _{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.322	0.033	12.900	-2.858
2	0.13	100, 40	15.71	15.71	0.368	0.033	12.876	-3.471
3	0.26	100, 40	15.71	15.71	0.435	0.034	15.110	-4.125
4	0.40	100, 40	15.71	15.71	0.504	0.035	17.406	-4.793
5	0.53	100, 40	15.71	15.71	0.576	0.036	19.790	-5.480
6	0.66	100, 40	15.71	15.71	0.650	0.037	22.286	-6.192
7	0.79	100, 40	15.71	15.71	0.728	0.039	24.920	-6.935
8	0.92	100, 40	15.71	15.71	0.810	0.042	27.718	-7.715
9	1.05	100, 40	15.71	15.71	0.896	0.045	30.717	-8.539
10	1.19	100, 40	15.71	15.71	0.991	0.049	34.017	-9.431
11	1.32	100, 40	15.71	15.71	1.095	0.055	37.722	-10.413
12	1.45	100, 40	15.71	15.71	1.211	0.061	41.885	-11.498
13	1.58	100, 40	15.71	15.71	1.340	0.068	46.546	-12.694
14	1.71	100, 40	15.71	15.71	1.482	0.075	51.743	-14.009
15	1.84	100, 40	15.71	15.71	1.638	0.082	57.510	-15.451
16	1.98	100, 40	15.71	15.71	1.809	0.090	63.883	-17.027
17	2.11	100, 40	15.71	15.71	1.997	0.098	70.891	-18.745
18	2.24	100, 40	15.71	15.71	2.201	0.107	78.567	-20.611
19	2.37	100, 40	15.71	15.71	2.422	0.116	86.941	-22.633
20	2.50	100, 40	15.71	15.71	2.661	0.125	96.041	-24.815
21	2.63	100, 40	15.71	15.71	2.920	0.135	105.897	-27.165

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 46

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 46

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.011	0.019	0.451	-0.104
3	0.16	100, 41	12.57	15.71	0.044	0.037	1.763	-0.404
4	0.24	100, 42	12.57	15.71	0.096	0.054	3.875	-0.885
5	0.32	100, 43	12.57	15.71	0.165	0.070	6.731	-1.532
6	0.40	100, 44	12.57	15.71	0.250	0.085	10.281	-2.332
7	0.48	100, 44	12.57	15.71	0.349	0.100	14.477	-3.273
8	0.56	100, 45	12.57	15.71	0.460	0.114	19.275	-4.343
9	0.64	100, 46	12.57	15.71	0.583	0.128	24.633	-5.532
10	0.72	100, 46	12.57	15.71	0.715	0.140	30.514	-6.828
11	0.80	100, 47	12.57	15.71	0.857	0.152	36.881	-8.225

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.015	-0.014	-0.152	0.758
3	0.36	100, 60	15.71	15.71	0.060	-0.029	-0.622	3.072
4	0.54	100, 58	15.71	15.71	0.140	-0.043	-1.429	7.007

5	0.72	100, 57	15.71	15.71	0.257	-0.058	-2.597	12.636
6	0.90	100, 55	15.71	15.71	0.410	-0.066	-4.108	19.840
7	1.08	100, 53	15.71	15.71	0.581	-0.067	-5.773	27.674
8	1.26	100, 52	15.71	15.71	0.769	-0.068	-7.561	35.976
9	1.44	100, 50	15.71	15.71	0.973	-0.069	-9.465	44.704
10	1.62	100, 49	15.71	15.71	1.192	-0.065	-11.454	53.697
11	1.80	100, 47	15.71	15.71	1.415	-0.058	-13.432	62.507

Verifiche a fessurazione

Combinazione n° 46

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	\mathbf{P}_{m}	s _m	w
1	0.00	15.71	15.71	-43.85	-6.60	0.0000	0.00	0.000
2	0.13	15.71	15.71	-43.85	-7.36	0.0000	0.00	0.000
3	0.26	15.71	15.71	-43.85	-8.71	0.0000	0.00	0.000
4	0.40	15.71	15.71	-43.85	-10.08	0.0000	0.00	0.000
5	0.53	15.71	15.71	-43.85	-11.50	0.0000	0.00	0.000
6	0.66	15.71	15.71	-43.85	-12.98	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-14.53	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-16.16	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-17.90	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-19.79	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-21.88	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-24.22	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-26.80	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-29.66	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-32.82	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-36.28	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-40.07	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-44.20	0.0229	197.67	0.077

19	2.37	15.71	15.71	-43.85	-48.69	0.0253	197.67	0.085		
20	2.50	15.71	15.71	-43.85	-53.55	0.0290	197.67	0.097		
21	2.63	15.71	15.71	-43.85	-58.80	0.0354	197.67	0.119		
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>							
N°	Υ	\mathbf{A}_{fs}	A_{fi}	M_{pf}	М	? _m	S _m	w		
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000		
2	-1.12	12.57	15.71	45.13	0.24	0.0000	0.00	0.000		
3	-1.04	12.57	15.71	46.64	0.94	0.0000	0.00	0.000		
4	-0.96	12.57	15.71	48.16	2.10	0.0000	0.00	0.000		
5	-0.88	12.57	15.71	49.71	3.72	0.0000	0.00	0.000		
6	-0.80	12.57	15.71	51.29	5.80	0.0000	0.00	0.000		
7	-0.72	12.57	15.71	52.88	8.31	0.0000	0.00	0.000		
8	-0.64	12.57	15.71	54.50	11.27	0.0000	0.00	0.000		
9	-0.56	12.57	15.71	56.14	14.67	0.0000	0.00	0.000		
10	-0.48	12.57	15.71	57.81	18.49	0.0000	0.00	0.000		
11	-0.40	12.57	15.71	59.50	22.73	0.0000	0.00	0.000		
12	0.00	15.71	15.71	-59.75	-38.58	0.0000	0.00	0.000		
13	0.18	15.71	15.71	-63.72	-34.44	0.0000	0.00	0.000		
14	0.36	15.71	15.71	-67.80	-29.75	0.0000	0.00	0.000		
15	0.54	15.71	15.71	-72.00	-24.81	0.0000	0.00	0.000		
16	0.72	15.71	15.71	-76.33	-19.75	0.0000	0.00	0.000		
17	0.90	15.71	15.71	-80.77	-14.64	0.0000	0.00	0.000		
18	1.08	15.71	15.71	-85.34	-9.63	0.0000	0.00	0.000		
19	1.26	15.71	15.71	-90.03	-5.51	0.0000	0.00	0.000		
20	1.44	15.71	15.71	-94.84	-2.49	0.0000	0.00	0.000		
21	1.62	15.71	15.71	-99.77	-0.63	0.0000	0.00	0.000		
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000		
<u>Verif</u>	Verifica fessurazione mensola di monte									
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w		
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000		
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000		
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000		
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000		

COMBINAZIONE n° 47

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	3.1206	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	-1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti carichi esterni</u>					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	71.2189	[kN]			
Risultante dei carichi applicati in dir. verticale	202.4640	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	207.9007	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	53.3020	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.10	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	214.6248	[kN]			
Inclinazione della risultante (rispetto alla normale)	14.38	[°]			
Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	19.9896 2963.0024	[kNm] [kN]			
Tensioni sul terreno					
Lunghezza fondazione reagente	3.01	[m]			
Tensione terreno allo spigolo di valle	0.08226	[N/mmq	1		
Tensione terreno allo spigolo di monte	0.05581	[N/mmq			
	2.30001	,9			

[N/mmq] Tensione terreno all'estremità della mensola di contrappeso 0.000

Fattori per il calcolo della capacità portante

 $N_q = 28.52$ Coeff. capacità portante $N_c = 44.04$ $N_{?} = 27.33$ **Fattori forma** $s_c = 1.00$ $s_q = 1.00$ $s_{\text{P}} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano

di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ N'₂ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.57 Coefficiente di sicurezza a carico ultimo 14.25

Sollecitazioni paramento

Combinazione n° 47

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	6.6000	10.0200
2	0.13	5.0675	7.3626	10.1108
3	0.26	6.3850	8.7059	10.2975
4	0.40	7.7025	10.0802	10.5802
5	0.53	9.0200	11.4980	10.9587
6	0.66	10.3375	12.9720	11.4332
7	0.79	11.6550	14.5148	12.0035
8	0.92	12.9725	16.1393	12.6749
9	1.05	14.2900	17.8640	13.5799
10	1.19	15.6075	19.7385	14.9522
11	1.32	16.9250	21.8151	16.5987
12	1.45	18.2425	24.1194	18.4060
13	1.58	19.5600	26.6715	20.3604
14	1.71	20.8775	29.4903	22.4513
15	1.84	22.1950	32.5931	24.6711
16	1.98	23.5125	35.9965	27.0139
17	2.11	24.8300	39.7164	29.4751
18	2.24	26.1475	43.7682	32.0510
19	2.37	27.4650	48.1668	34.7388
20	2.50	28.7825	52.9267	37.5360
21	2.63	30.1000	58.0616	40.4238

Sollecitazioni fondazione di valle

Combinazione n° 47

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.08	0.2303	5.7457
3	0.16	0.9174	11.4210
4	0.24	2.0558	17.0258
5	0.32	3.6397	22.5603
6	0.40	5.6635	28.0243
7	0.48	8.1217	33.4179
8	0.56	11.0085	38.7410
9	0.64	14.3184	43.9937
10	0.72	18.0456	49.1760
11	0.80	22.1847	54.2879

Sollecitazioni fondazione di monte

Combinazione n° 47

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	М	т
1	0.00	0.0000	0.0000
2	0.18	-0.6792	-7.4875
3	0.36	-2.6741	-14.6182
4	0.54	-5.9204	-21.3922
5	0.72	-10.3539	-27.8094
6	0.90	-15.7604	-30.8699
7	1.08	-21.3496	-31.1736
8	1.26	-26.9615	-31.1206
9	1.44	-32.5316	-30.7108
10	1.62	-37.9239	-28.7442
11	1.80	-42.8401	-25.8209

Sollecitazioni mensola di contrappeso

Combinazione n° 47

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 47

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image: Item to the inference of the image: Item to the image: Item t
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? c	? _c	? _{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.322	0.033	12.900	-2.858
2	0.13	100, 40	15.71	15.71	0.368	0.033	12.876	-3.471
3	0.26	100, 40	15.71	15.71	0.435	0.034	15.109	-4.125
4	0.40	100, 40	15.71	15.71	0.504	0.035	17.403	-4.792
5	0.53	100, 40	15.71	15.71	0.576	0.036	19.782	-5.478
6	0.66	100, 40	15.71	15.71	0.650	0.037	22.271	-6.188
7	0.79	100, 40	15.71	15.71	0.727	0.039	24.893	-6.929
8	0.92	100, 40	15.71	15.71	0.809	0.041	27.676	-7.705
9	1.05	100, 40	15.71	15.71	0.895	0.044	30.653	-8.525
10	1.19	100, 40	15.71	15.71	0.988	0.049	33.923	-9.410
11	1.32	100, 40	15.71	15.71	1.092	0.054	37.588	-10.383
12	1.45	100, 40	15.71	15.71	1.207	0.060	41.696	-11.456
13	1.58	100, 40	15.71	15.71	1.333	0.067	46.289	-12.636
14	1.71	100, 40	15.71	15.71	1.473	0.073	51.402	-13.932
15	1.84	100, 40	15.71	15.71	1.627	0.081	57.069	-15.352
16	1.98	100, 40	15.71	15.71	1.795	0.088	63.324	-16.903
17	2.11	100, 40	15.71	15.71	1.979	0.096	70.197	-18.591
18	2.24	100, 40	15.71	15.71	2.179	0.105	77.718	-20.422
19	2.37	100, 40	15.71	15.71	2.396	0.114	85.917	-22.405
20	2.50	100, 40	15.71	15.71	2.631	0.123	94.822	-24.544
21	2.63	100, 40	15.71	15.71	2.884	0.132	104.459	-26.845

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 47

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- ②c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 47

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Х	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.011	0.018	0.441	-0.101
3	0.16	100, 41	12.57	15.71	0.043	0.036	1.724	-0.395
4	0.24	100, 42	12.57	15.71	0.094	0.053	3.788	-0.865
5	0.32	100, 43	12.57	15.71	0.162	0.068	6.579	-1.497
6	0.40	100, 44	12.57	15.71	0.245	0.083	10.046	-2.279
7	0.48	100, 44	12.57	15.71	0.341	0.098	14.142	-3.197
8	0.56	100, 45	12.57	15.71	0.449	0.111	18.823	-4.241
9	0.64	100, 46	12.57	15.71	0.569	0.124	24.050	-5.400
10	0.72	100, 46	12.57	15.71	0.698	0.137	29.783	-6.665
11	0.80	100, 47	12.57	15.71	0.836	0.149	35.989	-8.026

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.016	-0.015	-0.164	0.814
3	0.36	100, 60	15.71	15.71	0.065	-0.031	-0.668	3.299
4	0.54	100, 58	15.71	15.71	0.151	-0.046	-1.536	7.528

5	0.72	100, 57	15.71	15.71	0.276	-0.062	-2.792	13.584
6	0.90	100, 55	15.71	15.71	0.441	-0.071	-4.422	21.355
7	1.08	100, 53	15.71	15.71	0.628	-0.074	-6.239	29.909
8	1.26	100, 52	15.71	15.71	0.836	-0.077	-8.216	39.095
9	1.44	100, 50	15.71	15.71	1.064	-0.078	-10.351	48.886
10	1.62	100, 49	15.71	15.71	1.312	-0.076	-12.614	59.136
11	1.80	100, 47	15.71	15.71	1.571	-0.071	-14.917	69.417

Verifiche a fessurazione

Combinazione n° 47

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	${f A}_{\sf fs}$	A_{fi}	M_{pf}	M	\mathbf{P}_{m}	S _m	w
1	0.00	15.71	15.71	-43.85	-6.60	0.0000	0.00	0.000
2	0.13	15.71	15.71	-43.85	-7.36	0.0000	0.00	0.000
3	0.26	15.71	15.71	-43.85	-8.71	0.0000	0.00	0.000
4	0.40	15.71	15.71	-43.85	-10.08	0.0000	0.00	0.000
5	0.53	15.71	15.71	-43.85	-11.50	0.0000	0.00	0.000
6	0.66	15.71	15.71	-43.85	-12.97	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-14.51	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-16.14	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-17.86	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-19.74	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-21.82	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-24.12	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-26.67	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-29.49	0.0000	0.00	0.000
15	1.84	15.71	15.71	-43.85	-32.59	0.0000	0.00	0.000
16	1.98	15.71	15.71	-43.85	-36.00	0.0000	0.00	0.000
17	2.11	15.71	15.71	-43.85	-39.72	0.0000	0.00	0.000
18	2.24	15.71	15.71	-43.85	-43.77	0.0000	0.00	0.000

19	2.37	15.71	15.71	-43.85	-48.17	0.0250	197.67	0.084	
20	2.50	15.71	15.71	-43.85	-52.93	0.0281	197.67	0.095	
21	2.63	15.71	15.71	-43.85	-58.06	0.0345	197.67	0.116	
<u>Verifica fessurazione fondazione</u>									
N°	Υ	\mathbf{A}_{fs}	A_{fi}	$M_{\sf pf}$	М	? _m	S _m	w	
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000	
2	-1.12	12.57	15.71	45.13	0.23	0.0000	0.00	0.000	
3	-1.04	12.57	15.71	46.64	0.92	0.0000	0.00	0.000	
4	-0.96	12.57	15.71	48.16	2.06	0.0000	0.00	0.000	
5	-0.88	12.57	15.71	49.71	3.64	0.0000	0.00	0.000	
6	-0.80	12.57	15.71	51.29	5.66	0.0000	0.00	0.000	
7	-0.72	12.57	15.71	52.88	8.12	0.0000	0.00	0.000	
8	-0.64	12.57	15.71	54.50	11.01	0.0000	0.00	0.000	
9	-0.56	12.57	15.71	56.14	14.32	0.0000	0.00	0.000	
10	-0.48	12.57	15.71	57.81	18.05	0.0000	0.00	0.000	
11	-0.40	12.57	15.71	59.50	22.18	0.0000	0.00	0.000	
12	0.00	15.71	15.71	-59.75	-42.84	0.0000	0.00	0.000	
13	0.18	15.71	15.71	-63.72	-37.92	0.0000	0.00	0.000	
14	0.36	15.71	15.71	-67.80	-32.53	0.0000	0.00	0.000	
15	0.54	15.71	15.71	-72.00	-26.96	0.0000	0.00	0.000	
16	0.72	15.71	15.71	-76.33	-21.35	0.0000	0.00	0.000	
17	0.90	15.71	15.71	-80.77	-15.76	0.0000	0.00	0.000	
18	1.08	15.71	15.71	-85.34	-10.35	0.0000	0.00	0.000	
19	1.26	15.71	15.71	-90.03	-5.92	0.0000	0.00	0.000	
20	1.44	15.71	15.71	-94.84	-2.67	0.0000	0.00	0.000	
21	1.62	15.71	15.71	-99.77	-0.68	0.0000	0.00	0.000	
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000	
Verif	ica fessura:	zione mensolo	a di monte						
<u>v Ci ij</u>	ica jessaruz	LIGITE THEHSON	a ai monte						
N°	Υ	\mathbf{A}_{fs}	\mathbf{A}_{fi}	M_{pf}	M	? _m	S _m	w	
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000	
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000	
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000	
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000	

COMBINAZIONE n° 48

Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	4.9425	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Y	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Y	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti carichi esterni					
Componente dir. X	16.70	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	79.5960	[kN]			
Risultante dei carichi applicati in dir. verticale	209.1084	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	215.2499	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	61.0681	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.21	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	223.7450	[kN]			
Inclinazione della risultante (rispetto alla normale)	15.84	[°]			
Momento rispetto al baricentro della fondazione	44.3355	[kNm]			
Carico ultimo della fondazione	2732.1507	[kN]			
<u>Tensioni sul terreno</u>	2.04	f 1			
Lunghezza fondazione reagente	3.01	[m]	.1		
Tensione terreno allo spigolo di valle	0.10081	[N/mmq			
Tensione terreno allo spigolo di monte	0.04214	[N/mmq	IJ		

[N/mmq] Tensione terreno all'estremità della mensola di contrappeso 0.000

Fattori per il calcolo della capacità portante

 $N_q = 28.52$ Coeff. capacità portante $N_c = 44.04$ $N_{2} = 27.33$ **Fattori forma** $s_c = 1.00$ $s_q = 1.00$ $s_{\text{P}} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano

di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ N'₂ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.42 Coefficiente di sicurezza a carico ultimo 12.69

Sollecitazioni paramento

Combinazione n° 48

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Y	N	M	т
1	0.00	0.0000	11.0000	16.7000
2	0.13	5.0675	12.6427	16.7923
3	0.26	6.3850	14.8666	16.9833
4	0.40	7.7025	17.1221	17.2731
5	0.53	9.0200	19.4224	17.6618
6	0.66	10.3375	21.7803	18.1492
7	0.79	11.6550	24.2090	18.7354
8	0.92	12.9725	26.7216	19.4257
9	1.05	14.2900	29.3373	20.3565
10	1.19	15.6075	32.1071	21.7688
11	1.32	16.9250	35.0849	23.4635
12	1.45	18.2425	38.2970	25.3238
13	1.58	19.5600	41.7644	27.3356
14	1.71	20.8775	45.5061	29.4880
15	1.84	22.1950	49.5403	31.7732
16	1.98	23.5125	53.8839	34.1851
17	2.11	24.8300	58.5534	36.7190
18	2.24	26.1475	63.5645	39.3710
19	2.37	27.4650	68.9327	42.1382
20	2.50	28.7825	74.6729	45.0182
21	2.63	30.1000	80.7992	47.9914

Sollecitazioni fondazione di valle

Combinazione n° 48

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.08	0.2887	7.1952
3	0.16	1.1475	14.2512
4	0.24	2.5652	21.1680
5	0.32	4.5307	27.9458
6	0.40	7.0328	34.5843
7	0.48	10.0605	41.0837
8	0.56	13.6025	47.4440
9	0.64	17.6478	53.6651
10	0.72	22.1852	59.7471
11	0.80	27.2036	65.6899

Sollecitazioni fondazione di monte

Combinazione n° 48

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.8902	-9.7736
3	0.36	-3.4762	-18.8425
4	0.54	-7.6312	-27.2067
5	0.72	-13.2283	-34.8662
6	0.90	-19.9908	-38.8211
7	1.08	-27.0656	-39.6713
8	1.26	-34.2302	-39.8168
9	1.44	-41.3574	-39.2577
10	1.62	-48.2486	-36.7939
11	1.80	-54.5429	-33.0254

Sollecitazioni mensola di contrappeso

Combinazione n° 48

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 48

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.536	0.055	21.501	-4.763
2	0.13	100, 40	15.71	15.71	0.626	0.055	23.188	-5.764
3	0.26	100, 40	15.71	15.71	0.736	0.056	27.140	-6.802
4	0.40	100, 40	15.71	15.71	0.849	0.056	31.154	-7.853
5	0.53	100, 40	15.71	15.71	0.963	0.058	35.255	-8.923
6	0.66	100, 40	15.71	15.71	1.080	0.059	39.469	-10.019
7	0.79	100, 40	15.71	15.71	1.201	0.061	43.821	-11.145
8	0.92	100, 40	15.71	15.71	1.326	0.063	48.337	-12.307
9	1.05	100, 40	15.71	15.71	1.456	0.067	53.054	-13.514
10	1.19	100, 40	15.71	15.71	1.593	0.071	58.073	-14.789
11	1.32	100, 40	15.71	15.71	1.741	0.077	63.497	-16.153
12	1.45	100, 40	15.71	15.71	1.900	0.083	69.380	-17.619
13	1.58	100, 40	15.71	15.71	2.071	0.089	75.761	-19.196
14	1.71	100, 40	15.71	15.71	2.256	0.096	82.678	-20.893
15	1.84	100, 40	15.71	15.71	2.455	0.104	90.166	-22.715
16	1.98	100, 40	15.71	15.71	2.669	0.112	98.259	-24.673
17	2.11	100, 40	15.71	15.71	2.899	0.120	106.989	-26.771
18	2.24	100, 40	15.71	15.71	3.146	0.129	116.386	-29.018
19	2.37	100, 40	15.71	15.71	3.410	0.138	126.481	-31.419
20	2.50	100, 40	15.71	15.71	3.693	0.147	137.303	-33.982
21	2.63	100, 40	15.71	15.71	3.994	0.157	148.879	-36.712

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 48

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 48

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- ☑c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.014	0.023	0.553	-0.127
3	0.16	100, 41	12.57	15.71	0.054	0.045	2.156	-0.494
4	0.24	100, 42	12.57	15.71	0.117	0.065	4.726	-1.079
5	0.32	100, 43	12.57	15.71	0.201	0.085	8.189	-1.864
6	0.40	100, 44	12.57	15.71	0.304	0.103	12.474	-2.830
7	0.48	100, 44	12.57	15.71	0.422	0.120	17.518	-3.961
8	0.56	100, 45	12.57	15.71	0.555	0.136	23.259	-5.241
9	0.64	100, 46	12.57	15.71	0.701	0.152	29.642	-6.656
10	0.72	100, 46	12.57	15.71	0.858	0.166	36.615	-8.194
11	0.80	100, 47	12.57	15.71	1.025	0.180	44.131	-9.841

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.021	-0.020	-0.214	1.066
3	0.36	100, 60	15.71	15.71	0.084	-0.040	-0.868	4.288
4	0.54	100, 58	15.71	15.71	0.194	-0.059	-1.980	9.704

5	0.72	100, 57	15.71	15.71	0.353	-0.078	-3.567	17.355
6	0.90	100, 55	15.71	15.71	0.559	-0.090	-5.609	27.087
7	1.08	100, 53	15.71	15.71	0.796	-0.094	-7.910	37.917
8	1.26	100, 52	15.71	15.71	1.061	-0.098	-10.432	49.635
9	1.44	100, 50	15.71	15.71	1.353	-0.100	-13.159	62.149
10	1.62	100, 49	15.71	15.71	1.669	-0.097	-16.049	75.236
11	1.80	100, 47	15.71	15.71	2.000	-0.090	-18.991	88.380

Verifiche a fessurazione

Combinazione n° 48

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	15.71	15.71	-43.85	-11.00	0.0000	0.00	0.000
2	0.13	15.71	15.71	-43.85	-12.64	0.0000	0.00	0.000
3	0.26	15.71	15.71	-43.85	-14.87	0.0000	0.00	0.000
4	0.40	15.71	15.71	-43.85	-17.12	0.0000	0.00	0.000
5	0.53	15.71	15.71	-43.85	-19.42	0.0000	0.00	0.000
6	0.66	15.71	15.71	-43.85	-21.78	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-24.21	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-26.72	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-29.34	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-32.11	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-35.08	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-38.30	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-41.76	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-45.51	0.0241	197.67	0.081
15	1.84	15.71	15.71	-43.85	-49.54	0.0263	197.67	0.088
16	1.98	15.71	15.71	-43.85	-53.88	0.0304	197.67	0.102
17	2.11	15.71	15.71	-43.85	-58.55	0.0361	197.67	0.121
18	2.24	15.71	15.71	-43.85	-63.56	0.0419	197.67	0.141

19	2.37	15.71	15.71	-43.85	-68.93	0.0480	197.67	0.161
20	2.50	15.71	15.71	-43.85	-74.67	0.0543	197.67	0.183
21	2.63	15.71	15.71	-43.85	-80.80	0.0609	197.67	0.205
<u>Verif</u> i	<u>ica fessuraz</u>	<u>ione fondazi</u>	<u>one</u>					
		_	_			_		
N°	Υ	A _{fs}	A _{fi}	M _{pf}	M		S _m	W
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.29	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	1.15	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	2.57	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	4.53	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	7.03	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	10.06	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	13.60	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	17.65	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	22.19	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	27.20	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-54.54	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-48.25	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-41.36	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-34.23	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-27.07	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-19.99	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-13.23	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-7.63	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-3.48	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.89	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verifica fessurazione mensola di monte</u>								
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
4	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
4	0.30	10.03	14.37	-00.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 49

•					
Valore della spinta statica	56.1585	[kN]			
Componente orizzontale della spinta statica	52.3105	[kN]			
Componente verticale della spinta statica	20.4301	[kN]			
Punto d'applicazione della spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	3.1206	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 1.80 [m]	[m]	Υ	=	-1.91
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	115.8145	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.92 [m]	[m]	Υ	=	-1.35
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	2.2144	[kN]			
Inerzia verticale del muro	-1.1072	[kN]			
Inerzia del terrapieno fondazione di monte	3.7673	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-1.8836	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti carichi esterni</u>					
Componente dir. X	16.70	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	77.8989	[kN]			
Risultante dei carichi applicati in dir. verticale	202.4640	[kN]			
Resistenza passiva a valle del muro	-2.6038	[kN]			
Sforzo normale sul piano di posa della fondazione	208.4829	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	59.9566	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.22	[m]			
Lunghezza fondazione reagente	3.01	[m]			
Risultante in fondazione	216.9329	[kN]			
Inclinazione della risultante (rispetto alla normale)	16.04	[°]			
Momento rispetto al baricentro della fondazione	45.3063	[kNm]			
Carico ultimo della fondazione	2708.3090	[kN]			
<u>Tensioni sul terreno</u>	2.04	[mail			
Lunghezza fondazione reagente	3.01	[m]	1		
Tensione terreno allo spigolo di valle	0.09920	[N/mmq			
Tensione terreno allo spigolo di monte	0.03926	[N/mmq	J		

[N/mmq] Tensione terreno all'estremità della mensola di contrappeso 0.000

Fattori per il calcolo della capacità portante

 $N_q = 28.52$ Coeff. capacità portante $N_c = 44.04$ $N_{2} = 27.33$ **Fattori forma** $s_c = 1.00$ $s_q = 1.00$ $s_{\text{P}} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano

di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ N'₂ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.40 Coefficiente di sicurezza a carico ultimo 12.99

Sollecitazioni paramento

Combinazione n° 49

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	11.0000	16.7000
2	0.13	5.0675	12.6427	16.7908
3	0.26	6.3850	14.8661	16.9775
4	0.40	7.7025	17.1204	17.2602
5	0.53	9.0200	19.4183	17.6387
6	0.66	10.3375	21.7724	18.1132
7	0.79	11.6550	24.1954	18.6835
8	0.92	12.9725	26.6999	19.3549
9	1.05	14.2900	29.3047	20.2599
10	1.19	15.6075	32.0593	21.6322
11	1.32	16.9250	35.0160	23.2787
12	1.45	18.2425	38.2003	25.0860
13	1.58	19.5600	41.6326	27.0404
14	1.71	20.8775	45.3314	29.1313
15	1.84	22.1950	49.3143	31.3511
16	1.98	23.5125	53.5978	33.6939
17	2.11	24.8300	58.1979	36.1551
18	2.24	26.1475	63.1297	38.7310
19	2.37	27.4650	68.4084	41.4188
20	2.50	28.7825	74.0484	44.2160
21	2.63	30.1000	80.0634	47.1038

Sollecitazioni fondazione di valle

Combinazione n° 49

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.08	0.2836	7.0654
3	0.16	1.1267	13.9889
4	0.24	2.5180	20.7706
5	0.32	4.4462	27.4103
6	0.40	6.8999	33.9081
7	0.48	9.8677	40.2641
8	0.56	13.3383	46.4782
9	0.64	17.3004	52.5503
10	0.72	21.7426	58.4806
11	0.80	26.6535	64.2690

Sollecitazioni fondazione di monte

Combinazione n° 49

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.18	-0.9366	-10.2867
3	0.36	-3.6601	-19.8549
4	0.54	-8.0412	-28.7045
5	0.72	-13.9506	-36.8356
6	0.90	-21.1089	-41.2481
7	1.08	-28.6608	-42.5421
8	1.26	-36.3810	-43.1176
9	1.44	-44.1401	-42.9745
10	1.62	-51.7367	-40.9128
11	1.80	-58.8075	-37.5326

Sollecitazioni mensola di contrappeso

Combinazione n° 49

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	T	N
1	0.00	0.5625	3.7500	0.0000
2	0.10	0.2500	2.5000	0.0000
3	0.20	0.0625	1.2500	0.0000
4	0.30	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 49

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- Image: The state of the state
- Image: Image:
- Image: The state of t

	v		•	•				
Nr.	Υ	В, Н	A_{fs}	A_{fi}	\mathbf{r}_{c}	? _c	? _{fs}	? _{fi}
1	0.00	100, 40	15.71	15.71	0.536	0.055	21.501	-4.763
2	0.13	100, 40	15.71	15.71	0.626	0.055	23.188	-5.764
3	0.26	100, 40	15.71	15.71	0.736	0.055	27.139	-6.801
4	0.40	100, 40	15.71	15.71	0.848	0.056	31.151	-7.852
5	0.53	100, 40	15.71	15.71	0.963	0.058	35.247	-8.921
6	0.66	100, 40	15.71	15.71	1.080	0.059	39.453	-10.015
7	0.79	100, 40	15.71	15.71	1.200	0.061	43.794	-11.139
8	0.92	100, 40	15.71	15.71	1.325	0.063	48.295	-12.298
9	1.05	100, 40	15.71	15.71	1.454	0.066	52.991	-13.500
10	1.19	100, 40	15.71	15.71	1.591	0.071	57.979	-14.768
11	1.32	100, 40	15.71	15.71	1.737	0.076	63.363	-16.123
12	1.45	100, 40	15.71	15.71	1.895	0.082	69.191	-17.577
13	1.58	100, 40	15.71	15.71	2.065	0.088	75.503	-19.139
14	1.71	100, 40	15.71	15.71	2.247	0.095	82.337	-20.817
15	1.84	100, 40	15.71	15.71	2.444	0.102	89.725	-22.617
16	1.98	100, 40	15.71	15.71	2.655	0.110	97.700	-24.548
17	2.11	100, 40	15.71	15.71	2.882	0.118	106.294	-26.617
18	2.24	100, 40	15.71	15.71	3.125	0.127	115.537	-28.829
19	2.37	100, 40	15.71	15.71	3.385	0.135	125.456	-31.192
20	2.50	100, 40	15.71	15.71	3.662	0.144	136.083	-33.711
21	2.63	100, 40	15.71	15.71	3.958	0.154	147.441	-36.393

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 49

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 49

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 41	12.57	15.71	0.014	0.023	0.544	-0.125
3	0.16	100, 41	12.57	15.71	0.053	0.044	2.117	-0.485
4	0.24	100, 42	12.57	15.71	0.115	0.064	4.639	-1.060
5	0.32	100, 43	12.57	15.71	0.198	0.083	8.036	-1.829
6	0.40	100, 44	12.57	15.71	0.298	0.101	12.238	-2.776
7	0.48	100, 44	12.57	15.71	0.414	0.118	17.182	-3.885
8	0.56	100, 45	12.57	15.71	0.545	0.134	22.807	-5.139
9	0.64	100, 46	12.57	15.71	0.687	0.149	29.058	-6.525
10	0.72	100, 46	12.57	15.71	0.841	0.163	35.885	-8.030
11	0.80	100, 47	12.57	15.71	1.004	0.176	43.238	-9.642

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000
2	0.18	100, 61	15.71	15.71	0.022	-0.021	-0.226	1.122
3	0.36	100, 60	15.71	15.71	0.089	-0.042	-0.914	4.515
4	0.54	100, 58	15.71	15.71	0.204	-0.062	-2.086	10.225

5	0.72	100, 57	15.71	15.71	0.372	-0.082	-3.762	18.303
6	0.90	100, 55	15.71	15.71	0.591	-0.095	-5.922	28.602
7	1.08	100, 53	15.71	15.71	0.843	-0.101	-8.376	40.151
8	1.26	100, 52	15.71	15.71	1.128	-0.106	-11.087	52.754
9	1.44	100, 50	15.71	15.71	1.444	-0.109	-14.044	66.330
10	1.62	100, 49	15.71	15.71	1.790	-0.108	-17.209	80.675
11	1.80	100, 47	15.71	15.71	2.157	-0.103	-20.476	95.290

Verifiche a fessurazione

Combinazione n° 49

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	A_{fi}	M_{pf}	M	\mathbf{P}_{m}	S _m	w
1	0.00	15.71	15.71	-43.85	-11.00	0.0000	0.00	0.000
2	0.13	15.71	15.71	-43.85	-12.64	0.0000	0.00	0.000
3	0.26	15.71	15.71	-43.85	-14.87	0.0000	0.00	0.000
4	0.40	15.71	15.71	-43.85	-17.12	0.0000	0.00	0.000
5	0.53	15.71	15.71	-43.85	-19.42	0.0000	0.00	0.000
6	0.66	15.71	15.71	-43.85	-21.77	0.0000	0.00	0.000
7	0.79	15.71	15.71	-43.85	-24.20	0.0000	0.00	0.000
8	0.92	15.71	15.71	-43.85	-26.70	0.0000	0.00	0.000
9	1.05	15.71	15.71	-43.85	-29.30	0.0000	0.00	0.000
10	1.19	15.71	15.71	-43.85	-32.06	0.0000	0.00	0.000
11	1.32	15.71	15.71	-43.85	-35.02	0.0000	0.00	0.000
12	1.45	15.71	15.71	-43.85	-38.20	0.0000	0.00	0.000
13	1.58	15.71	15.71	-43.85	-41.63	0.0000	0.00	0.000
14	1.71	15.71	15.71	-43.85	-45.33	0.0240	197.67	0.081
15	1.84	15.71	15.71	-43.85	-49.31	0.0261	197.67	0.088
16	1.98	15.71	15.71	-43.85	-53.60	0.0301	197.67	0.101
17	2.11	15.71	15.71	-43.85	-58.20	0.0356	197.67	0.120
18	2.24	15.71	15.71	-43.85	-63.13	0.0414	197.67	0.139

19	2.37	15.71	15.71	-43.85	-68.41	0.0474	197.67	0.159
20	2.50	15.71	15.71	-43.85	-74.05	0.0536	197.67	0.180
21	2.63	15.71	15.71	-43.85	-80.06	0.0601	197.67	0.202
<u>Verif</u>	<u>ica fessuraz</u>	<u>rione fondazi</u>	<u>one</u>					
N°	Y	A_{fs}	A_{fi}	M_{pf}	M	? m	S _m	W
1	-1.20	12.57	15.71	-42.79	0.00	0.0000	0.00	0.000
2	-1.12	12.57	15.71	45.13	0.28	0.0000	0.00	0.000
3	-1.04	12.57	15.71	46.64	1.13	0.0000	0.00	0.000
4	-0.96	12.57	15.71	48.16	2.52	0.0000	0.00	0.000
5	-0.88	12.57	15.71	49.71	4.45	0.0000	0.00	0.000
6	-0.80	12.57	15.71	51.29	6.90	0.0000	0.00	0.000
7	-0.72	12.57	15.71	52.88	9.87	0.0000	0.00	0.000
8	-0.64	12.57	15.71	54.50	13.34	0.0000	0.00	0.000
9	-0.56	12.57	15.71	56.14	17.30	0.0000	0.00	0.000
10	-0.48	12.57	15.71	57.81	21.74	0.0000	0.00	0.000
11	-0.40	12.57	15.71	59.50	26.65	0.0000	0.00	0.000
12	0.00	15.71	15.71	-59.75	-58.81	0.0000	0.00	0.000
13	0.18	15.71	15.71	-63.72	-51.74	0.0000	0.00	0.000
14	0.36	15.71	15.71	-67.80	-44.14	0.0000	0.00	0.000
15	0.54	15.71	15.71	-72.00	-36.38	0.0000	0.00	0.000
16	0.72	15.71	15.71	-76.33	-28.66	0.0000	0.00	0.000
17	0.90	15.71	15.71	-80.77	-21.11	0.0000	0.00	0.000
18	1.08	15.71	15.71	-85.34	-13.95	0.0000	0.00	0.000
19	1.26	15.71	15.71	-90.03	-8.04	0.0000	0.00	0.000
20	1.44	15.71	15.71	-94.84	-3.66	0.0000	0.00	0.000
21	1.62	15.71	15.71	-99.77	-0.94	0.0000	0.00	0.000
22	1.80	15.71	15.71	-104.82	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.56	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
4	0.30	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
•	3.30	20.00	12.57	33.11	3.00	0.0000	2.00	0.000

Inviluppo Sollecitazioni paramento

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kNm]

Sforzo normale positivo di compressione, espresso in [kN]

Taglio positivo se diretto da monte verso valle, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	Υ	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	16.5000	0.0000	25.0500
2	0.13	5.0675	5.0675	-0.5600	19.2404	0.0563	25.1078
3	0.26	6.3850	6.3850	-0.5427	22.5585	0.2254	25.2812
4	0.40	7.7025	7.7025	-0.4957	25.9070	0.5071	25.5703
5	0.53	9.0200	9.0200	-0.4041	29.3013	0.9015	25.9749
6	0.66	10.3375	10.3375	-0.2532	32.7565	1.4085	26.4952
7	0.79	11.6550	11.6550	-0.0280	36.2879	2.0283	27.1311
8	0.92	12.9725	12.9725	0.2862	39.9106	2.7607	27.8826
9	1.05	14.2900	14.2900	0.7044	43.6422	3.6059	28.8137
10	1.19	15.6075	15.6075	1.2413	47.5210	4.5637	30.1500
11	1.32	16.9250	16.9250	1.9118	51.6034	5.6342	31.8687
12	1.45	18.2425	18.2425	2.7308	55.9269	6.8173	33.7916
13	1.58	19.5600	19.5600	3.7131	60.5147	8.1132	35.8780
14	1.71	20.8775	20.8775	4.8736	65.3875	9.5217	38.1180
15	1.84	22.1950	22.1950	6.2271	70.5652	11.0430	40.5042
16	1.98	23.5125	23.5125	7.7884	76.0665	12.6769	43.0311
17	2.11	24.8300	24.8300	9.5724	81.9098	14.4235	45.6942
18	2.24	26.1475	26.1475	11.5939	88.1128	16.2827	48.4902
19	2.37	27.4650	27.4650	13.8678	94.6927	18.2547	51.4164
20	2.50	28.7825	28.7825	16.4089	101.6666	20.3393	54.4704
21	2.63	30.1000	30.1000	19.2315	109.0505	22.5186	57.6307

Inviluppo combinazioni SLE

Nr.	Υ	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	11.0000	0.0000	16.7000
2	0.13	5.0675	5.0675	-0.5605	12.6427	0.0445	16.7923
3	0.26	6.3850	6.3850	-0.5469	14.8666	0.1779	16.9833
4	0.40	7.7025	7.7025	-0.5098	17.1221	0.4002	17.2731
5	0.53	9.0200	9.0200	-0.4375	19.4224	0.7115	17.6618
6	0.66	10.3375	10.3375	-0.3184	21.7803	1.1117	18.1492
7	0.79	11.6550	11.6550	-0.1407	24.2090	1.6008	18.7354

8	0.92	12.9725	12.9725	0.1075	26.7216	2.1836	19.4257	
9	1.05	14.2900	14.2900	0.4434	29.3373	2.9830	20.3565	
10	1.19	15.6075	15.6075	0.9129	32.1071	4.2158	21.7688	
11	1.32	16.9250	16.9250	1.5646	35.0849	5.7028	23.4635	
12	1.45	18.2425	18.2425	2.4222	38.2970	7.3389	25.3238	
13	1.58	19.5600	19.5600	3.5044	41.7644	9.1114	27.3356	
14	1.71	20.8775	20.8775	4.8286	45.5061	11.0105	29.4880	
15	1.84	22.1950	22.1950	6.4109	49.5403	13.0291	31.7732	
16	1.98	23.5125	23.5125	8.2667	53.8839	15.1617	34.1851	
17	2.11	24.8300	24.8300	10.4108	58.5534	17.4042	36.7190	
18	2.24	26.1475	26.1475	12.8574	63.5645	19.7530	39.3710	
19	2.37	27.4650	27.4650	15.6203	68.9327	22.2055	42.1382	
20	2.50	28.7825	28.7825	18.7130	74.6729	24.7595	45.0182	
21	2.63	30.1000	30.1000	22.1482	80.7992	27.3975	47.9914	

Inviluppo Sollecitazioni fondazione di valle

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	0.0000
2	0.08	0.0835	0.3373	2.1018	8.3969
3	0.16	0.3385	1.3380	4.2874	16.5871
4	0.24	0.7717	2.9857	6.5567	24.5709
5	0.32	1.3898	5.2638	8.9099	32.3481
6	0.40	2.1995	8.1559	11.3468	39.9187
7	0.48	3.2076	11.6453	13.8675	47.2827
8	0.56	4.4206	15.7156	16.4720	54.4402
9	0.64	5.8453	20.3502	19.1603	61.3912
10	0.72	7.4885	25.5327	21.9324	68.1356
11	0.80	9.3567	31.2464	24.7882	74.6734

Inviluppo combinazioni SLE

nr. A ivimin ivimax i'min i'ma	Nr.	Х	Mmin	Mmax	Tmin	Tmax
--------------------------------	-----	---	------	------	------	------

1	0.00	0.0000	0.0000	0.0000	0.0000
2	0.08	0.1275	0.2887	3.2002	7.1952
3	0.16	0.5139	1.1475	6.4705	14.2512
4	0.24	1.1647	2.5652	9.8107	21.1680
5	0.32	2.0855	4.5307	13.2209	27.9458
6	0.40	3.2819	7.0328	16.7012	34.5843
7	0.48	4.7595	10.0605	20.2514	41.0837
8	0.56	6.5240	13.6025	23.8716	47.4440
9	0.64	8.5809	17.6478	27.5619	53.6651
10	0.72	10.9358	22.1852	31.3221	59.7471
11	0.80	13.5943	27.2036	35.1523	65.6899

Inviluppo Sollecitazioni fondazione di monte

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	0.0000
2	0.18	-1.3976	0.1457	-15.3541	1.5565
3	0.36	-5.4647	0.5381	-29.6625	2.7421
4	0.54	-12.0133	1.1106	-42.9253	3.5569
5	0.72	-20.8551	1.7963	-55.1424	4.0007
6	0.90	-31.6518	2.5286	-63.3138	4.0736
7	1.08	-43.4893	3.2405	-68.0396	3.7756
8	1.26	-56.0833	3.8655	-71.7197	3.1067
9	1.44	-69.2457	4.3367	-74.3542	2.0669
10	1.62	-82.6945	4.6593	-74.3830	1.8562
11	1.80	-95.9374	5.0007	-72.5862	1.8746

Inviluppo combinazioni SLE

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	0.0000
2	0.18	-0.9366	-0.1639	-10.2867	-1.8797
3	0.36	-3.6601	-0.6980	-19.8549	-4.1136

4	0.54	-8.0412	-1.6660	-28.7045	-6.7017
5	0.72	-13.9506	-3.1318	-36.8356	-9.6439
6	0.90	-21.1089	-5.0091	-41.2481	-9.9402
7	1.08	-28.6608	-6.6355	-42.5421	-8.1907
8	1.26	-36.3810	-7.9790	-43.1176	-6.7954
9	1.44	-44.1401	-9.1031	-42.9745	-5.7542
10	1.62	-51.7367	-9.9997	-40.9128	-3.8672
11	1.80	-58.8075	-10.4985	-37.5326	-1.7343

Inviluppo sollecitazioni mensola di contrappeso

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N			
<u>Invil</u>	ирро со	mbinazioni S	<u>LU</u>				
Nr.	X	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
0	0.00	0.0000	0.0000	0.5625	0.5625	3.7500	3.7500
1	0.10	0.0000	0.0000	0.2500	0.2500	2.5000	2.5000
2	0.20	0.0000	0.0000	0.0625	0.0625	1.2500	1.2500
3	0.30	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
<u>Invil</u>	ирро со	mbinazioni S	<u>LE</u>				
Nr.	X	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
0	0.00	0.0000	0.0000	0.5625	0.5625	3.7500	3.7500
1	0.10	0.0000	0.0000	0.2500	0.2500	2.5000	2.5000
2	0.20	0.0000	0.0000	0.0625	0.0625	1.2500	1.2500
3	0.30	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Inviluppo armature e tensioni nei materiali del muro

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- □_{fs} tensione nell'armatura disposta sul lembo di monte in [N/mmq]
- □_{fi} tensione nell'armatura disposta sul lembo di valle in [N/mmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	15.71	15.71	0.00	0.00	12.00	168.20		
2	0.13	100, 40	15.71	15.71	54.39	-206.52	10.73	168.89		
3	0.26	100, 40	15.71	15.71	58.64	-207.19	9.18	169.06		
4	0.40	100, 40	15.71	15.71	61.74	-207.67	8.02	169.24		
5	0.53	100, 40	15.71	15.71	64.04	140.38	7.10	169.42		
6	0.66	100, 40	15.71	15.71	65.74	-2.71	6.36	169.60		
7	0.79	100, 40	15.71	15.71	66.96	6.89	5.75	169.78		
8	0.92	100, 40	15.71	15.71	67.81	-121.09	5.23	169.95		
9	1.05	100, 40	15.71	15.71	68.34	-208.70	4.78	170.13		
10	1.19	100, 40	15.71	15.71	68.56	-208.74	4.39	170.31		
11	1.32	100, 40	15.71	15.71	68.46	-208.72	4.04	170.49		
12	1.45	100, 40	15.71	15.71	68.06	-208.66	3.73	170.67		
13	1.58	100, 40	15.71	15.71	67.41	-208.56	3.45	170.84		
14	1.71	100, 40	15.71	15.71	66.55	-208.42	3.19	171.02		
15	1.84	100, 40	15.71	15.71	65.50	-208.26	2.95	171.20		
16	1.98	100, 40	15.71	15.71	64.32	-208.08	2.74	171.38		
17	2.11	100, 40	15.71	15.71	63.01	-207.87	2.54	171.55		
18	2.24	100, 40	15.71	15.71	61.62	-207.65	2.36	171.73		
19	2.37	100, 40	15.71	15.71	60.16	-207.43	2.19	171.91		

20	2.50	100, 40	15.71	15.71	58.66	-207.19	2.04	172.09	
21	2.63	100, 40	15.71	15.71	57.12	-206.95	1.90	172.27	
<u>Invilu</u>	ppo SLE								
Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? c	? _{fs}	? _{fi}	
1	0.00	100, 40	15.71	15.71	0.536	0.055	21.501	-4.763	
2	0.13	100, 40	15.71	15.71	0.626	0.055	23.188	-5.764	
3	0.26	100, 40	15.71	15.71	0.736	0.056	27.140	-6.802	
4	0.40	100, 40	15.71	15.71	0.849	0.056	31.154	-7.853	
5	0.53	100, 40	15.71	15.71	0.963	0.058	35.255	-8.923	
6	0.66	100, 40	15.71	15.71	1.080	0.059	39.469	-10.019	
7	0.79	100, 40	15.71	15.71	1.201	0.061	43.821	-11.145	
8	0.92	100, 40	15.71	15.71	1.326	0.063	48.337	-12.307	
9	1.05	100, 40	15.71	15.71	1.456	0.067	53.054	-13.514	
10	1.19	100, 40	15.71	15.71	1.593	0.071	58.073	-14.789	
11	1.32	100, 40	15.71	15.71	1.741	0.077	63.497	-16.153	
12	1.45	100, 40	15.71	15.71	1.900	0.083	69.380	-17.619	
13	1.58	100, 40	15.71	15.71	2.071	0.089	75.761	-19.196	
14	1.71	100, 40	15.71	15.71	2.256	0.096	82.678	-20.893	
15	1.84	100, 40	15.71	15.71	2.455	0.104	90.166	-22.715	
16	1.98	100, 40	15.71	15.71	2.669	0.112	98.259	-24.673	
17	2.11	100, 40	15.71	15.71	2.899	0.120	106.989	-26.771	
18	2.24	100, 40	15.71	15.71	3.146	0.129	116.386	-29.018	
19	2.37	100, 40	15.71	15.71	3.410	0.138	126.481	-31.419	
20	2.50	100, 40	15.71	15.71	3.693	0.147	137.303	-33.982	
21	2.63	100, 40	15.71	15.71	3.994	0.157	148.879	-36.712	

Inviluppo armature e tensioni nei materiali della mensola di contrappeso

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	A_{fs}	A_fi	N_u	M_u	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	543.95	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
3	0.20	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
4	0.30	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		
<u>Invilu</u>	ppo SLE									
Nr.	X	В, Н	A_{fs}	A_{fi}	? _c	? c	$ m ?_{fi}$? _{fs}		
1	0.00	100, 50	18.85	12.57	0.018	0.010	0.713	-0.182		
2	0.10	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081		
3	0.20	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020		
4	0.30	100, 50	18.85	12.57	0.000	0.000	0.000	0.000		

Inviluppo armature e tensioni nei materiali della fondazione

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_u	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 40	12.57	15.71	0.00	0.00	1000.00	156.15		
2	0.08	100, 41	12.57	15.71	0.00	202.20	599.57	169.68		
3	0.16	100, 41	12.57	15.71	0.00	206.27	154.16	171.14		
4	0.24	100, 42	12.57	15.71	0.00	210.33	70.45	172.60		
5	0.32	100, 43	12.57	15.71	0.00	214.40	40.73	174.04		
6	0.40	100, 44	12.57	15.71	0.00	218.46	26.79	175.47		
7	0.48	100, 44	12.57	15.71	0.00	222.53	19.11	176.89		
8	0.56	100, 45	12.57	15.71	0.00	226.59	14.42	178.30		
9	0.64	100, 46	12.57	15.71	0.00	230.66	11.33	179.71		
10	0.72	100, 46	12.57	15.71	0.00	234.72	9.19	181.10		
11	0.80	100, 47	12.57	15.71	0.00	238.79	7.64	182.48		
<u>Invilu</u>	ppo SLE									
Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fi}	? fs		
12	0.00	100, 40	12.57	15.71	0.000	0.000	0.000	0.000		
13	0.08	100, 41	12.57	15.71	0.014	0.023	0.553	-0.127		

14	0.16	100, 41	12.57	15.71	0.054	0.045	2.156	-0.494
15	0.24	100, 42	12.57	15.71	0.117	0.065	4.726	-1.079
16	0.32	100, 43	12.57	15.71	0.201	0.085	8.189	-1.864
17	0.40	100, 44	12.57	15.71	0.304	0.103	12.474	-2.830
18	0.48	100, 44	12.57	15.71	0.422	0.120	17.518	-3.961
19	0.56	100, 45	12.57	15.71	0.555	0.136	23.259	-5.241
20	0.64	100, 46	12.57	15.71	0.701	0.152	29.642	-6.656
21	0.72	100, 46	12.57	15.71	0.858	0.166	36.615	-8.194
22	0.80	100, 47	12.57	15.71	1.025	0.180	44.131	-9.841

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_u	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 63	15.71	15.71	0.00	0.00	1000.00	156.15		
2	0.18	100, 61	15.71	15.71	0.00	-322.44	230.72	169.68		
3	0.36	100, 60	15.71	15.71	0.00	-313.12	57.30	171.14		
4	0.54	100, 58	15.71	15.71	0.00	-303.81	25.29	172.60		
5	0.72	100, 57	15.71	15.71	0.00	-294.50	14.12	174.04		
6	0.90	100, 55	15.71	15.71	0.00	-285.19	9.01	175.47		
7	1.08	100, 53	15.71	15.71	0.00	-275.88	6.34	176.89		
8	1.26	100, 52	15.71	15.71	0.00	-266.58	4.75	178.30		
9	1.44	100, 50	15.71	15.71	0.00	-257.27	3.72	179.71		
10	1.62	100, 49	15.71	15.71	0.00	-247.97	3.00	181.10		
11	1.80	100, 47	15.71	15.71	0.00	-238.67	2.49	182.48		
<u>Invilu</u>	ippo SLE									
Nr.	Х	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}		
12	0.00	100, 63	15.71	15.71	0.000	0.000	0.000	0.000		
13	0.18	100, 61	15.71	15.71	0.022	-0.021	-0.226	1.122		
14	0.36	100, 60	15.71	15.71	0.089	-0.042	-0.914	4.515		
15	0.54	100, 58	15.71	15.71	0.204	-0.062	-2.086	10.225		
16	0.72	100, 57	15.71	15.71	0.372	-0.082	-3.762	18.303		
17	0.90	100, 55	15.71	15.71	0.591	-0.095	-5.922	28.602		
18	1.08	100, 53	15.71	15.71	0.843	-0.101	-8.376	40.151		
19	1.26	100, 52	15.71	15.71	1.128	-0.106	-11.087	52.754		
20	1.44	100, 50	15.71	15.71	1.444	-0.109	-14.044	66.330		
21	1.62	100, 49	15.71	15.71	1.790	-0.108	-17.209	80.675		
22	1.80	100, 47	15.71	15.71	2.157	-0.103	-20.476	95.290		

Spostamenti

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione

 $ag_{Critico}$ Accelerazione critica espressa in [m/s²]

D Spostamento espresso in [cm]

Spostamento limite imposto **D**_{limite} = 1.00 [cm]

С	Tipo	ag _{Critico}	D
29	SLEQ	7.5077	0.0001
30	SLEF	7.5077	0.0001
31	SLEF	7.5077	0.0001
32	SLEF	7.0816	0.0001
33	SLER	6.2079	0.0002
34	SLER	6.2079	0.0002
35	SLER	5.2974	0.0005
36	SLEQ	7.8373	0.0001
37	SLEQ	7.8373	0.0001
38	SLEF	7.8373	0.0001
39	SLEF	7.8373	0.0001
40	SLEF	7.8373	0.0001
41	SLEF	7.8373	0.0001
42	SLEF	7.3851	0.0001
43	SLEF	7.3851	0.0001
44	SLER	6.4593	0.0002
45	SLER	6.4593	0.0002
46	SLER	6.4593	0.0002
47	SLER	6.4593	0.0002
48	SLER	5.5043	0.0004
49	SLER	5.5043	0.0004

2. Allegato 2

N.T.C. 2008 - Approccio 1

Simbol	logia	adottata	
31111001	CGIG	aacttata	

?Gsfav	Coefficiente parziale sfavorevole sulle azioni permanenti
?Gfav	Coefficiente parziale favorevole sulle azioni permanenti
? _{Qsfav}	Coefficiente parziale sfavorevole sulle azioni variabili
? _{Qfav}	Coefficiente parziale favorevole sulle azioni variabili
?tan?'	Coefficiente parziale di riduzione dell'angolo di attrito drenato
? _{c'}	Coefficiente parziale di riduzione della coesione drenata
?cu	Coefficiente parziale di riduzione della coesione non drenata
?qu	Coefficiente parziale di riduzione del carico ultimo
?	Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti di partecipazione combinazioni statiche

					delle azioni:
COCITICICITE	parzian	PC: 1C	uzioiii o	per i crietto	aciic azioiii.

Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	? Gfav	1.00	1.00	0.90	0.90
Permanenti	Sfavorevole	? Gsfav	1.30	1.00	1.10	1.30
Variabili	Favorevole	? Qfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	? _{Qsfav}	1.50	1.30	1.50	1.50
Coefficienti parzial	<u>i per i parametri geot</u>	<u>ecnici del terreno:</u>				
Parametri			M1	M2	M2	M1
Tangente dell'ango	? tan?'	1.00	1.25	1.25	1.00	
Coesione efficace	? _{c'}	1.00	1.25	1.25	1.00	
Resistenza non drenata		?cu	1.00	1.40	1.40	1.00

?qu

?

1.00

1.00

1.60

1.00

1.60

1.00

1.00

1.00

Coefficienti di partecipazione combinazioni sismiche

Resistenza a compressione uniassiale

Peso dell'unità di volume

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	? Gfav	1.00	1.00	1.00	0.90
Permanenti	Sfavorevole	? Gsfav	1.00	1.00	1.00	1.30
Variabili	Favorevole	? Qfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	? Qsfav	1.00	1.00	1.00	1.50

Coefficienti narziali ner i narametri gostor	sici dal tarrana				
Coefficienti parziali per i parametri geotecr	iici dei terreno	<u>):</u>			
Parametri		M1	M2	M2	M1
Tangente dell'angolo di attrito	? tan?'	1.00	1.25	1.25	1.00
Coesione efficace	? _{c'}	1.00	1.25	1.25	1.00
Resistenza non drenata	₹] _{cu}	1.00	1.40	1.40	1.00
Resistenza a compressione uniassiale	?] _{qu}	1.00	1.60	1.60	1.00
Peso dell'unità di volume	?	1.00	1.00	1.00	1.00

FONDAZIONE SUPERFICIALE

Coefficienti parziali \mathbb{Z}_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Сов	efficienti parz	ziali
	R1	R2	R3
Capacità portante della fondazione	1.00	1.00	1.40
Scorrimento	1.00	1.00	1.10
Resistenza del terreno a valle	1.00	1.00	1.40
Stabilità globale		1.10	

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.
Altezza del paramento	3.50 [m]
Spessore in sommità	0.50 [m]
Spessore all'attacco con la fondazione	0.50 [m]
Inclinazione paramento esterno	0.00 [°]
Inclinazione paramento interno	0.00 [°]
Lunghezza del muro	10.00 [m]
Mensola di contrappeso	
Posizione rispetto alla testa del muro	0.00 [m]
Lunghezza mensola	0.20 [m]
Spessore all'estremità libera	0.50 [m]
Spessore all'incastro	0.50 [m]
<u>Fondazione</u>	
Lunghezza mensola fondazione di valle	0.80 [m]
Lunghezza mensola fondazione di monte	2.70 [m]
Lunghezza totale fondazione	4.00 [m]
Inclinazione piano di posa della fondazione	5.00 [°]
Spessore estremità fondazione di valle	0.50 [m]
Spessore all'incastro fondazione di valle	0.57 [m]
Spessore all'incastro fondazione di monte	0.57 [m]
Spessore estremità fondazione di monte	0.81 [m]
Spessore magrone	0.10 [m]

Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico 25.000 [kN/mc]

Classe di Resistenza C25/30

Resistenza caratteristica a compressione R_{ck} 30.00 [N/mmq]
Modulo elastico E 30874.286 [N/mmq]

Acciaio

Tipo FeB44K

Tensione di snervamento 🛚 fa 431.50 [N/mmq]

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	X	Υ	Α
1	0.50	0.00	0.00
2	1.00	0.00	0.00
3	4.00	0.00	0.00
4	10.20	0.00	0.00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0.00 [m]

Descrizione terreni

Simbologia adottata

Nr. Indice del terreno
Descrizione Descrizione terreno

Peso di volume del terreno espresso in [kN/mc]

 \mathbb{Z}_s Peso di volume saturo del terreno espresso in [kN/mc]

Angolo d'attrito interno espresso in [°]

Angolo d'attrito terra-muro espresso in [°]

c Coesione espressa in [N/mmq]

c_a Adesione terra-muro espressa in [N/mmq]

Descrizione	?	? _s	?	?	С	Ca
Riporto	20.00	22.00	35.00	23.33	0.0000	0.0000
С	20.00	22.00	32.00	21.33	0.0000	0.0000
FLgs	21.00	23.00	35.00	23.33	0.0000	0.0000
Terreno di Riporto	20.00	20.00	32.00	21.33	0.0000	0.0000
Fla	21.00	23.00	26.00	17.33	0.0000	0.0000

Stratigrafia

Simbologia adottata

N Indice dello strato

H Spessore dello strato espresso in [m]

a Inclinazione espressa in [°]

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta
Terreno Terreno dello strato

Nr.	Н	а	Kw	Ks	Terreno
1	4.00	0.00	3.68	0.54	С
2	2.00	0.00	3.55	0.43	Terreno di Riporto

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Χ	Ascissa del	punto di ap	plicazione	del carico	concentrato	espressa in	[m]

- F_x Componente orizzontale del carico concentrato espressa in [kN]
- F_y Componente verticale del carico concentrato espressa in [kN]
- M Momento espresso in [kNm]
- X_i Ascissa del punto iniziale del carico ripartito espressa in [m]
- X_f Ascissa del punto finale del carico ripartito espressa in [m]
- Q_i Intensità del carico per $x=X_i$ espressa in [kN/m]
- Q_f Intensità del carico per x=X_f espressa in [kN/m]
- D/C Tipo carico : D=distribuito C=concentrato

Con	dizione n° 1 (Str	<u>rada)</u>				
D	Profilo	$X_{i}=1.00$	$X_{f} = 6.00$	$Q_i = 20.0000$	$Q_f = 20.0000$	
Con	dizione n° 2 (Str	rada Sismica)				
D	Profilo	$X_{i}=1.00$	$X_{f} = 6.00$	$Q_i = 10.0000$	$Q_f = 10.0000$	
Condizione n° 3 (Urto)						
С	Paramento	X =-0.25	Y =0.00	$F_x = 16.7000$	$F_y = 0.0000$	M =11.0000

Descrizione combinazioni di carico

Simbologia adottata

F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

- Coefficiente di partecipazione della condizione
- Coefficiente di combinazione della condizione

Combinazione n° 1 - Caso A1-M	1 (STR)						
	S/F	?	?	? * ?			
Peso proprio muro	FAV	1.00	1.00	1.00			
Peso proprio terrapieno	FAV	1.00	1.00	1.00			
Spinta terreno	SFAV	1.30	1.00	1.30			
Combinazione n° 2 - Caso A2-M2 (GEO)							
	S/F	?	?	? * ?			
Peso proprio muro	SFAV	1.00	1.00	1.00			
Peso proprio terrapieno	SFAV	1.00	1.00	1.00			
Spinta terreno	SFAV	1.00	1.00	1.00			
Combinazione n° 3 - Caso EQU ((SLU)						
	S/F	?	?	? * ?			
Peso proprio muro	FAV	0.90	1.00	0.90			
Peso proprio terrapieno	FAV	0.90	1.00	0.90			
Spinta terreno	SFAV	1.10	1.00	1.10			
Combinazione n° 4 - Caso A2-M	2 (GEO-STAB)					
	S/F	?	?	? * ?			
Peso proprio muro	SFAV	1.00	1.00	1.00			
Peso proprio terrapieno	SFAV	1.00	1.00	1.00			
Spinta terreno	SFAV	1.00	1.00	1.00			
Combinazione n° 5 - Caso A1-M	1 (STR)						
	S/F	?	?	? * ?			
Peso proprio muro	FAV	1.00	1.00	1.00			
Peso proprio terrapieno	FAV	1.00	1.00	1.00			
Spinta terreno	SFAV	1.30	1.00	1.30			
Strada	SFAV	1.30	1.00	1.30			
Combinazione n° 6 - Caso A2-M2 (GEO)							
	S/F	?	?	? * ?			
Peso proprio muro	SFAV	1.00	1.00	1.00			
Peso proprio terrapieno	SFAV	1.00	1.00	1.00			

Spinta terreno	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Campbinaniana nº 7 Cana FOI	. (С)				
Combinazione n° 7 - Caso EQL		-		? * ?	
Doco proprio muro	S/F	2	2 1 00		
Peso proprio muro	FAV	0.90	1.00	0.90	
Peso proprio terrapieno	FAV	0.90	1.00	0.90	
Spinta terreno	SFAV	1.10	1.00	1.10	
Strada	SFAV	1.10	1.00	1.10	
Combinazione n° 8 - Caso A2-	M2 (GEO-STAB)			
	S/F	?	?	? * ?	
Peso proprio muro	SFAV	1.00	1.00	1.00	
Peso proprio terrapieno	SFAV	1.00	1.00	1.00	
Spinta terreno	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Combinazione n° 9 - Caso A1-	M1 (STR)				
	S/F	?	?	? * ?	
Peso proprio muro	FAV	1.00	1.00	1.00	
Peso proprio terrapieno	FAV	1.00	1.00	1.00	
Spinta terreno	SFAV	1.30	1.00	1.30	
Strada	SFAV	1.30	1.00	1.30	
Urto	SFAV	1.50	1.00	1.50	
Combinazione n° 10 - Caso A2					
	S/F	?	?	? * ?	
Peso proprio muro	SFAV	1.00	1.00	1.00	
Peso proprio terrapieno	SFAV	1.00	1.00	1.00	
Spinta terreno	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Urto	SFAV	1.30	1.00	1.30	
Combinazione n° 11 - Caso EC		_	_		
December	S/F	2	2	2 * 2	
Peso proprio muro	FAV	0.90	1.00	0.90	
Peso proprio terrapieno	FAV	0.90	1.00	0.90	
Spinta terreno	SFAV	1.10	1.00	1.10	
Strada	SFAV	1.10	1.00	1.10	
Urto	SFAV	1.50	1.00	1.50	
Combinazione n° 12 - Caso A2-M2 (GEO-STAB)					
COMBINAZIONE N 12 - Caso AZ	-N/2 (GEO-STA) S/F	<u>B)</u> []	?	? * ?	
Peso proprio muro	SFAV	1.00	1.00	1.00	
r eso proprio muro	2LH A	1.00	1.00	1.00	

Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Strada	SFAV	1.00	1.00	1.00		
Urto	SFAV	1.30	1.00	1.30		
Combinazione n° 13 - Caso A1	-M1 (STR) - Sis	ma Vert. neg	<u>ativo</u>			
	S/F	?	?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Combinazione n° 14 - Caso A1	-M1 (STR) - Sis	ma Vert. pos	itivo			
<u> </u>	S/F	?	?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Spirita terreno	3.7.0	2.00	2.00	2.00		
Combinazione n° 15 - Caso A2	-M2 (GEO) - Sis	sma Vert. po:	sitivo			
	S/F	?	?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Combinazione n° 16 - Caso A2						
	S/F	?	?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Combinazione n° 17 - Caso EQ	U (SLU) - Sisma	a Vert. negat	<u>ivo</u>			
	S/F	?	?	? * ?		
Peso proprio muro	FAV	1.00	1.00	1.00		
Peso proprio terrapieno	FAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Combinazione n° 18 - Caso EQ	U (SLU) - Sisma	a Vert. positi	<u>vo</u>			
	S/F	?	?	? * ?		
Peso proprio muro	FAV	1.00	1.00	1.00		
Peso proprio terrapieno	FAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Combinazione n° 19 - Caso A2-M2 (GEO-STAB) - Sisma Vert. positivo						
	S/F	?	?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		

Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Combinazione n° 20 - Caso A2-	M2 (GEO-STA	B) - Sisma Ve	rt. negativo			
	S/F	?	?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Combinazione n° 21 - Caso A1-		-	<u>-</u>			
	S/F	?	?	? * ?		
Peso proprio muro	FAV	1.00	1.00	1.00		
Peso proprio terrapieno	FAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
	(077)					
Combinazione n° 22 - Caso A1-		_				
	S/F	?	?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Combinations n° 33 Coss A3	N42 (CEO) C:	\/t	+:			
Combinazione n° 23 - Caso A2-			_	n * n		
Dana anamia mana	S/F	2	2	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Combinazione n° 24 - Caso A2-	M2 (GEO) - Si	sma Vert no	sitivo			
Combinazione il 24 cuso NZ	S/F	<u> </u>	<u> </u>	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Straua Sistilica	SFAV	1.00	1.00	1.00		
Combinazione n° 25 - Caso EQU (SLU) - Sisma Vert. positivo						
	S/F	?	?	? * ?		
Peso proprio muro	FAV	1.00	1.00	1.00		
Peso proprio terrapieno	FAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
· · · · ·						

Combinazione n° 26 - Caso EC	U (SLU) - Sisma	a Vert. negati	<u>ivo</u>			
	S/F	?	?	? * ?		
Peso proprio muro	FAV	1.00	1.00	1.00		
Peso proprio terrapieno	FAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Combinazione n° 27 - Caso A2	2-M2 (GEO-STA	B) - Sisma Ve	rt. positivo			
	S/F	?	?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Combinazione n° 28 - Caso A2	2-M2 (GEO-STA	B) - Sisma Ve	rt. negativo			
	S/F	?	?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Combinazione n° 29 - Quasi P	ermanente (SLI	<u>=)</u>				
	S/F	?	?	? * ?		
Peso proprio muro		1.00	1.00	1.00		
Peso proprio terrapieno		1.00	1.00	1.00		
Spinta terreno		1.00	1.00	1.00		
Strada	SFAV	1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Combinazione n° 30 - Frequer	nte (SLE)					
	S/F	?	?	? * ?		
Peso proprio muro		1.00	1.00	1.00		
Peso proprio terrapieno		1.00	1.00	1.00		
Spinta terreno		1.00	1.00	1.00		
Strada	SFAV	1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Combinazione n° 31 - Frequente (SLE)						
	S/F	?	?	? * ?		
Peso proprio muro		1.00	1.00	1.00		
Peso proprio terrapieno		1.00	1.00	1.00		
Spinta terreno		1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Strada	SFAV	1.00	1.00	1.00		

Combinazione n° 32 - Frequent	te (SLE)							
	S/F	?	?	? * ?				
Peso proprio muro		1.00	1.00	1.00				
Peso proprio terrapieno		1.00	1.00	1.00				
Spinta terreno		1.00	1.00	1.00				
Urto	SFAV	1.00	0.20	0.20				
Strada	SFAV	1.00	1.00	1.00				
Strada Sismica	SFAV	1.00	1.00	1.00				
Combinazione n° 33 - Rara (SLE	Combinazione n° 33 - Rara (SLE)							
	S/F	?	?	? * ?				
Peso proprio muro		1.00	1.00	1.00				
Peso proprio terrapieno		1.00	1.00	1.00				
Spinta terreno		1.00	1.00	1.00				
Strada	SFAV	1.00	1.00	1.00				
Strada Sismica	SFAV	1.00	1.00	1.00				
Urto	SFAV	1.00	0.60	0.60				
Combinazione n° 34 - Rara (SLE	<u>=)</u>							
	S/F	?	?	? * ?				
Peso proprio muro		1.00	1.00	1.00				
Peso proprio terrapieno		1.00	1.00	1.00				
Spinta terreno		1.00	1.00	1.00				
Strada Sismica	SFAV	1.00	1.00	1.00				
Strada	SFAV	1.00	1.00	1.00				
Urto	SFAV	1.00	0.60	0.60				
Combinazione n° 35 - Rara (SLE	<u>=)</u>							
	S/F	?	?	? * ?				
Peso proprio muro		1.00	1.00	1.00				
Peso proprio terrapieno		1.00	1.00	1.00				
Spinta terreno		1.00	1.00	1.00				
Urto	SFAV	1.00	1.00	1.00				
Strada	SFAV	1.00	1.00	1.00				
Strada Sismica	SFAV	1.00	1.00	1.00				
Combinazione n° 36 - Quasi Permanente (SLE) - Sisma Vert. positivo								
	S/F	?	?	? * ?				
Peso proprio muro		1.00	1.00	1.00				
Peso proprio terrapieno		1.00	1.00	1.00				
Spinta terreno		1.00	1.00	1.00				
Strada	SFAV	1.00	1.00	1.00				
Strada Sismica	SFAV	1.00	1.00	1.00				

Combinazione n° 37 - Quasi Pe	ermanente (SLI	E) - Sisma Ve	rt. negativo			
	S/F	?	?	? * ?		
Peso proprio muro		1.00	1.00	1.00		
Peso proprio terrapieno		1.00	1.00	1.00		
Spinta terreno		1.00	1.00	1.00		
Strada	SFAV	1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Combinazione n° 38 - Frequente (SLE) - Sisma Vert. positivo						
	S/F	?	?	? * ?		
Peso proprio muro		1.00	1.00	1.00		
Peso proprio terrapieno		1.00	1.00	1.00		
Spinta terreno		1.00	1.00	1.00		
Strada	SFAV	1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Combinazione n° 39 - Frequen	te (SLE) - Sism	a Vert. negat	<u>ivo</u>			
	S/F	?	?	? * ?		
Peso proprio muro		1.00	1.00	1.00		
Peso proprio terrapieno		1.00	1.00	1.00		
Spinta terreno		1.00	1.00	1.00		
Strada	SFAV	1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Combinazione n° 40 - Frequen	te (SLE) - Sism	a Vert. positi	<u>vo</u>			
	S/F	?	?	? * ?		
Peso proprio muro		1.00	1.00	1.00		
Peso proprio terrapieno		1.00	1.00	1.00		
Spinta terreno		1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Strada	SFAV	1.00	1.00	1.00		
Combinazione n° 41 - Frequente (SLE) - Sisma Vert. negativo						
	S/F	?	?	? * ?		
Peso proprio muro		1.00	1.00	1.00		
Peso proprio terrapieno		1.00	1.00	1.00		
Spinta terreno		1.00	1.00	1.00		
Strada Sismica	SFAV	1.00	1.00	1.00		
Strada	SFAV	1.00	1.00	1.00		
Combinazione n° 42 - Frequente (SLE) - Sisma Vert. positivo						
	S/F	?	?	? * ?		
Peso proprio muro		1.00	1.00	1.00		

Peso proprio terrapieno						
Urto SFAV 1.00 0.20 0.20 Strada SFAV 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Combinazione n° 43 - Frequente (SLE) - Sisma Vert. negativo S/F III III III Peso proprio muro 1.00 1.00 1.00 Peso proprio muro 1.00 1.00 1.00 Spray 1.00 1.00 1.00 Urto SFAV 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Syf III III<	Peso proprio terrapieno		1.00	1.00	1.00	
Strada SFAV 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Combinazione n° 43 - Frequente (SLE) - Sisma Vert. negativo S/F Image: I	Spinta terreno		1.00	1.00	1.00	
Strada Sismica SFAV 1.00 1.00 1.00 Combinazione n° 43 - Frequente (SLE) - Sisma Vert. negativo S/F III III III Peso proprio muro 1.00 1.00 1.00 1.00 Peso proprio terrapieno 1.00 1.00 1.00 1.00 Spinta terreno 1.00 1.00 1.00 1.00 1.00 Urto SFAV 1.00	Urto	SFAV	1.00	0.20	0.20	
Syf	Strada	SFAV	1.00	1.00	1.00	
Peso proprio muro	Strada Sismica	SFAV	1.00	1.00	1.00	
Peso proprio muro	Combinazione n° 43 - Frequer	nte (SLE) - Sisma	a Vert. negat	<u>:ivo</u>		
Peso proprio terrapieno		S/F	?	?	? * ?	
Spinta terreno	Peso proprio muro		1.00	1.00	1.00	
Urto SFAV 1.00 0.20 0.20 Strada SFAV 1.00 1.00 1.00 SFAV 1.00 1.00 1.00 Combinazione n° 44 - Rara (SLE) - Sisma Vert. positivo S/F □ □ □ □ Peso proprio muro 1.00 1.00 1.00 Peso proprio terrapieno 1.00 1.00 1.00 Sprav 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 SFAV 1.00 1.00 1.00 Urto SFAV 1.00 1.00 1.00 S/F □ □ □ □ □ Peso proprio muro 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Peso proprio terrapieno		1.00	1.00	1.00	
Strada SFAV 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Combinazione n° 44 - Rara (SLE) - Sisma Vert. positivo S/F B	Spinta terreno		1.00	1.00	1.00	
Strada Sismica SFAV 1.00 1.00 1.00 Combinazione n° 44 - Rara (SLE) - Sisma Vert. positivo S/F □ <td>Urto</td> <td>SFAV</td> <td>1.00</td> <td>0.20</td> <td>0.20</td> <td></td>	Urto	SFAV	1.00	0.20	0.20	
SyF	Strada	SFAV	1.00	1.00	1.00	
SyF	Strada Sismica	SFAV	1.00	1.00	1.00	
SyF	Combinazione n° 44 - Rara (SL	.E) - Sisma Vert	. positivo			
Peso proprio terrapieno				?	? * ?	
Peso proprio terrapieno	Peso proprio muro		1.00	1.00	1.00	
Strada SFAV 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Urto SFAV 1.00 1.00 1.00 Combinazione n° 45 - Rara (SLE) - Sisma Vert. negativo S/F □ <t< td=""><td>Peso proprio terrapieno</td><td></td><td>1.00</td><td>1.00</td><td>1.00</td><td></td></t<>	Peso proprio terrapieno		1.00	1.00	1.00	
Strada Sismica SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60 Combinazione n° 45 - Rara (SLE) - Sisma Vert. negativo S/F Image: Combinazione n° 45 - Rara (SLE) - Sisma Vert. negativo Peso proprio muro 1.00 1.00 1.00 Peso proprio terrapieno 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60 Combinazione n° 46 - Rara (SLE) - Sisma Vert. positivo S/F Image: Combinazione n° 46 - Rara (SLE) - Sisma Vert. positivo Peso proprio muro 1.00 1.00 1.00 Peso proprio terrapieno 1.00 1.00 1.00 Spinta terreno 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Strada			1.00	1.00	1.00	
Urto SFAV 1.00 0.60 0.60 Combinazione n° 45 - Rara (SLE) - Sisma Vert. negativo S/F □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ <th< td=""><td>Strada</td><td>SFAV</td><td>1.00</td><td>1.00</td><td>1.00</td><td></td></th<>	Strada	SFAV	1.00	1.00	1.00	
Combinazione n° 45 - Rara (SLE) - Sisma Vert. negativo S/F □ <td>Strada Sismica</td> <td>SFAV</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td></td>	Strada Sismica	SFAV	1.00	1.00	1.00	
S/F □ □ □*□ □*□ Peso proprio muro 1.00 1.00 1.00 Peso proprio terrapieno 1.00 1.00 1.00 Spinta terreno 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Urto SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60 Combinazione n° 46 - Rara (SLE) - Sisma Vert. positivo S/F □	Urto	SFAV	1.00	0.60	0.60	
S/F □ □ □*□ □*□ Peso proprio muro 1.00 1.00 1.00 Peso proprio terrapieno 1.00 1.00 1.00 Spinta terreno 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Urto SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60 Combinazione n° 46 - Rara (SLE) - Sisma Vert. positivo S/F □	Combinazione n° 45 - Rara (SL	.E) - Sisma Vert	. negativo			
Peso proprio terrapieno 1.00 1.00 1.00 Spinta terreno 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60 Combinazione n° 46 - Rara (SLE) - Sisma Vert. positivo S/F □ □ □ *□ □ *□ □ *□ □ *□ □ *□ □ *□ □ </td <td></td> <td></td> <td>_</td> <td>?</td> <td>? * ?</td> <td></td>			_	?	? * ?	
Peso proprio terrapieno 1.00 1.00 1.00 Spinta terreno 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Urto SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60 Combinazione n° 46 - Rara (SLE) - Sisma Vert. positivo S/F □ □ □ *□ □ *□ □ *□ □ *□ □ *□ □ *□ □	Peso proprio muro		1.00	1.00	1.00	
Spinta terreno 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60 Combinazione n° 46 - Rara (SLE) - Sisma Vert. positivo S/F □ □ □ *□ □ *□ □ *□ □ *□ □ *□ □ *□ □ *□ □<			1.00	1.00	1.00	
Strada Sismica SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60 Combinazione n° 46 - Rara (SLE) - Sisma Vert. positivo S/F P<			1.00	1.00	1.00	
Urto SFAV 1.00 0.60 0.60 Combinazione n° 46 - Rara (SLE) - Sisma Vert. positivo S/F □ □ □ * □ Peso proprio muro 1.00 1.00 1.00 Peso proprio terrapieno 1.00 1.00 1.00 Spinta terreno 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60	Strada	SFAV	1.00	1.00	1.00	
Urto SFAV 1.00 0.60 0.60 Combinazione n° 46 - Rara (SLE) - Sisma Vert. positivo S/F □ □ □ * □ Peso proprio muro 1.00 1.00 1.00 Peso proprio terrapieno 1.00 1.00 1.00 Spinta terreno 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60	Strada Sismica	SFAV	1.00	1.00	1.00	
S/F □ □ □ * □ Peso proprio muro 1.00 1.00 1.00 Peso proprio terrapieno 1.00 1.00 1.00 Spinta terreno 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60		SFAV	1.00	0.60	0.60	
S/F □ □ □ * □ Peso proprio muro 1.00 1.00 1.00 Peso proprio terrapieno 1.00 1.00 1.00 Spinta terreno 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60	Combinazione n° 46 - Rara (SL	.E) - Sisma Vert	. positivo			
Peso proprio muro 1.00 1.00 1.00 Peso proprio terrapieno 1.00 1.00 1.00 Spinta terreno 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60 Combinazione n° 47 - Rara (SLE) - Sisma Vert. negativo				?	? * ?	
Peso proprio terrapieno 1.00 1.00 1.00 Spinta terreno 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60 Combinazione n° 47 - Rara (SLE) - Sisma Vert. negativo	Peso proprio muro	-	1.00			
Spinta terreno 1.00 1.00 1.00 Strada Sismica SFAV 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60 Combinazione n° 47 - Rara (SLE) - Sisma Vert. negativo	, ,					
Strada Sismica SFAV 1.00 1.00 1.00 Strada SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60 Combinazione n° 47 - Rara (SLE) - Sisma Vert. negativo	, ,					
Strada SFAV 1.00 1.00 1.00 Urto SFAV 1.00 0.60 0.60 Combinazione n° 47 - Rara (SLE) - Sisma Vert. negativo	·	SFAV				
Urto SFAV 1.00 0.60 0.60 Combinazione n° 47 - Rara (SLE) - Sisma Vert. negativo						
S/F 2 2 *?	Combinazione n° 47 - Rara (SLE) - Sisma Vert. negativo					
		S/F	?	?	? * ?	

Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Urto	SFAV	1.00	0.60	0.60	
Combinazione n° 48 - Rara (SI	E) - Sisma Vert	. positivo			
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Urto	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Combinazione n° 49 - Rara (SI	E) - Sisma Vert	. negativo			
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Urto	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	

Impostazioni di analisi

Impostazioni verifiche SLE

Metodo verifica sezioni	Stato limite
Impostazioni verifiche SLU	
Coefficienti parziali per resistenze di calcolo dei materiali	
Coefficiente di sicurezza calcestruzzo a compressione	1.50
Coefficiente di sicurezza calcestruzzo a trazione	1.50
Coefficiente di sicurezza acciaio	1.15
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza per la sezione	1.00

Condizioni ambientali	Ordinarie
Armatura ad aderenza migliorata	
<u>Verifica fessurazione</u>	
Sensibilità delle armature	Poco sensibile
Valori limite delle aperture delle fessure	$W_1 = 0.20$
	$w_2 = 0.30$
	$w_3 = 0.40$
Metodo di calcolo aperture delle fessure	E.C. 2
<u>Verifica delle tensioni</u>	
Combinazione di carico	Rara $\mathbb{C}_c < 0.60 f_{ck}$ - $\mathbb{C}_f < 0.80 f_{yk}$

Quasi permanente ②_c < 0.45 f_{ck}

Calcolo della portanza metodo di Terzaghi

Coefficiente correttivo su N2 per effetti cinematici (combinazioni sismiche SLU): 1.00 Coefficiente correttivo su N2 per effetti cinematici (combinazioni sismiche SLE): 1.00

Impostazioni avanzate

Influenza del terreno sulla fondazione di valle nelle verifiche e nel calcolo delle sollecitazioni Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione *Sisma* Combinazione sismica

 CS_{SCO} Coeff. di sicurezza allo scorrimento CS_{RIB} Coeff. di sicurezza al ribaltamento CS_{QLIM} Coeff. di sicurezza a carico limite CS_{STAB} Coeff. di sicurezza a stabilità globale

С	Tipo	Sisma	CS _{sco}	CS _{rib}	CS _{qlim}	CS _{stab}
1	A1-M1 - [1]		3.85		15.31	
2	A2-M2 - [1]		3.13		6.64	
3	EQU - [1]			9.52		
4	STAB - [1]					1.86
5	A1-M1 - [2]		2.66		13.33	
6	A2-M2 - [2]		2.05		6.03	
7	EQU - [2]			6.46		
8	STAB - [2]					1.60
9	A1-M1 - [3]		1.87		13.06	
10	A2-M2 - [3]		1.50		5.72	
11	EQU - [3]			3.42		
12	STAB - [3]					1.60
13	A1-M1 - [4]	Orizzontale + Verticale negativo	2.21		17.48	
14	A1-M1 - [4]	Orizzontale + Verticale positivo	2.34		15.84	
15	A2-M2 - [4]	Orizzontale + Verticale positivo	1.50		6.68	
16	A2-M2 - [4]	Orizzontale + Verticale negativo	1.43		7.25	
17	EQU - [4]	Orizzontale + Verticale negativo		4.90		
18	EQU - [4]	Orizzontale + Verticale positivo		6.14		
19	STAB - [4]	Orizzontale + Verticale positivo				1.51
20	STAB - [4]	Orizzontale + Verticale negativo				1.48
21	A1-M1 - [5]	Orizzontale + Verticale positivo	2.04		14.99	
22	A1-M1 - [5]	Orizzontale + Verticale negativo	1.94		16.38	
23	A2-M2 - [5]	Orizzontale + Verticale negativo	1.26		6.63	
24	A2-M2 - [5]	Orizzontale + Verticale positivo	1.32		6.11	
25	EQU - [5]	Orizzontale + Verticale positivo		5.29		
26	EQU - [5]	Orizzontale + Verticale negativo		4.37		
27	STAB - [5]	Orizzontale + Verticale positivo				1.43
28	STAB - [5]	Orizzontale + Verticale negativo				1.40
29	SLEQ - [1]		3.24		13.15	
30	SLEF - [1]		3.24		13.15	

31	SLEF - [1]		3.24	 13.15	
32	SLEF - [1]		3.03	 13.44	
33	SLER - [1]		2.69	 14.01	
34	SLER - [1]		2.69	 14.01	
35	SLER - [1]		2.42	 13.87	
36	SLEQ - [1]	Orizzontale + Verticale positivo	2.42	 13.31	
37	SLEQ - [1]	Orizzontale + Verticale negativo	2.41	 13.76	
38	SLEF - [1]	Orizzontale + Verticale positivo	2.42	 13.31	
39	SLEF - [1]	Orizzontale + Verticale negativo	2.41	 13.76	
40	SLEF - [1]	Orizzontale + Verticale positivo	2.42	 13.31	
41	SLEF - [1]	Orizzontale + Verticale negativo	2.41	 13.76	
42	SLEF - [1]	Orizzontale + Verticale positivo	2.31	 13.58	
43	SLEF - [1]	Orizzontale + Verticale negativo	2.29	 14.05	
44	SLER - [1]	Orizzontale + Verticale positivo	2.11	 13.64	
45	SLER - [1]	Orizzontale + Verticale negativo	2.09	 14.05	
46	SLER - [1]	Orizzontale + Verticale positivo	2.11	 13.64	
47	SLER - [1]	Orizzontale + Verticale negativo	2.09	 14.05	
48	SLER - [1]	Orizzontale + Verticale positivo	1.94	 13.07	
49	SLER - [1]	Orizzontale + Verticale negativo	1.92	 13.43	

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle

Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta	metodo di Culmann
Calcolo del carico limite	metodo di Terzaghi
Calcolo della stabilità globale	metodo di Bishop
Calcolo della spinta in condizioni di	Spinta attiva

<u>Sisma</u>

Combinazioni SLU

Accelerazione al suolo a _g	2.54 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.15
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (☑ _m)	0.31
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g^* P_m^* St^* S) = 9.24$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 4.62$

Combinazioni SLE

Accelerazione al suolo a _g	1.11 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.20
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (∑m)	0.24
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g^*?_m^*St^*S) = 3.25$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 1.63$

Forma diagramma incremento sismico Stessa forma diagramma statico

Partecipazione spinta passiva (percento)	50.0
Lunghezza del muro	10.00 [m]
Peso muro	110.9234 [kN]
Baricentro del muro	X=0.40 Y=-2.95
Superficie di spinta Punto inferiore superficie di spinta Punto superiore superficie di spinta Altezza della superficie di spinta Inclinazione superficie di spinta(rispetto alla verticale)	X = 2.70 Y = -4.35 X = 2.70 Y = 0.00 4.35 [m] 0.00 [°]

COMBINAZIONE n° 1

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	67.5979 62.9661 24.5917 X = 2.70 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.90
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	189.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	62.9661	[kN]			
Risultante dei carichi applicati in dir. verticale	324.7752	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	329.0272	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	34.4204	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.19	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	330.8227	[kN]			
Inclinazione della risultante (rispetto alla normale)	5.97	[°]			
Momento rispetto al baricentro della fondazione	-61.1273	[kNm]			
Carico ultimo della fondazione	5036.8953	[kN]			

Tensioni sul terreno

Lunghezza fondazione reagente	4.02	[m]
Tensione terreno allo spigolo di valle	0.05920	[N/mmq]
Tensione terreno allo spigolo di monte	0.10469	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N _ℙ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{g} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.85

Coefficiente di sicurezza a carico ultimo 15.31

Sollecitazioni paramento

Combinazione n° 1

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2438	0.1046
3	0.35	6.9297	-0.2006	0.4182
4	0.53	9.1445	-0.0833	0.9410
5	0.71	11.3594	0.1452	1.6729
6	0.89	13.5742	0.5219	2.6139
7	1.06	15.7890	1.0839	3.7640
8	1.24	18.0039	1.8681	5.1232
9	1.42	20.2187	2.9118	6.6916
10	1.59	22.4336	4.2518	8.4690
11	1.77	24.6484	5.9253	10.4556
12	1.95	26.8632	7.9694	12.6513
13	2.13	29.0781	10.4210	15.0561
14	2.30	31.2929	13.3172	17.6700
15	2.48	33.5078	16.6951	20.4930
16	2.66	35.7226	20.5918	23.5251
17	2.83	37.9374	25.0442	26.7664
18	3.01	40.1523	30.0894	30.2167
19	3.19	42.3671	35.7646	33.8762
20	3.37	44.5820	42.1066	37.7448
21	3.54	46.7968	49.1511	41.7890

Sollecitazioni fondazione di valle

Combinazione n° 1

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1508	3.7788
3	0.16	0.6062	7.6165
4	0.24	1.3710	11.5129
5	0.32	2.4498	15.4682
6	0.40	3.8474	19.4822
7	0.48	5.5685	23.5550
8	0.56	7.6178	27.6866
9	0.64	10.0000	31.8771
10	0.72	12.7197	36.1263
11	0.80	15.7817	40.4343

Sollecitazioni fondazione di monte

Combinazione n° 1

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.3007	-2.3393
3	0.54	-1.3235	-5.3484
4	0.81	-3.2491	-9.0273
5	1.08	-6.2585	-13.3761
6	1.35	-10.5325	-18.3948
7	1.62	-16.2520	-24.0833
8	1.89	-23.5978	-30.4416
9	2.16	-32.7507	-37.4697
10	2.43	-43.8917	-45.1677
11	2.70	-56.9416	-50.9356

Sollecitazioni mensola di contrappeso

Combinazione n° 1

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 1

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	0.00	1000.00	200.11		
2	0.18	100, 50	18.85	18.85	6605.81	341.61	1401.07	200.76		
3	0.35	100, 50	18.85	18.85	6797.75	196.78	980.96	201.06		
4	0.53	100, 50	18.85	18.85	6974.37	63.51	762.68	201.37		
5	0.71	100, 50	18.85	18.85	6940.94	-88.73	611.03	201.67		
6	0.89	100, 50	18.85	18.85	6716.31	-258.24	494.78	201.98		
7	1.06	100, 50	18.85	18.85	6173.33	-423.78	390.99	202.28		
8	1.24	100, 50	18.85	18.85	5280.72	-547.94	293.31	202.59		
9	1.42	100, 50	18.85	18.85	4440.48	-639.49	219.62	202.90		
10	1.59	100, 50	18.85	18.85	3712.43	-703.61	165.49	203.20		
11	1.77	100, 50	18.85	18.85	2982.31	-716.93	120.99	203.51		
12	1.95	100, 50	18.85	18.85	2281.46	-676.83	84.93	203.81		
13	2.13	100, 50	18.85	18.85	1724.74	-618.11	59.31	204.12		
14	2.30	100, 50	18.85	18.85	1319.26	-561.43	42.16	204.42		
15	2.48	100, 50	18.85	18.85	1024.69	-510.55	30.58	204.73		
16	2.66	100, 50	18.85	18.85	817.20	-471.06	22.88	205.03		
17	2.83	100, 50	18.85	18.85	667.84	-440.87	17.60	205.34		
18	3.01	100, 50	18.85	18.85	558.93	-418.86	13.92	205.65		
19	3.19	100, 50	18.85	18.85	476.42	-402.18	11.25	205.95		
20	3.37	100, 50	18.85	18.85	412.04	-389.16	9.24	206.26		
21	3.54	100, 50	18.85	18.85	360.63	-378.77	7.71	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 1

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 1

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	1388.82	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	350.78	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	157.47	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	89.45	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	57.80	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	40.52	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	30.05	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	23.22	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	18.51	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	15.12	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	18 85	18 85	0.00	-505.83	1682 00	246 18		

3	0.54	100, 76	18.85	18.85	0.00	-489.04	369.51	240.28	
4	0.81	100, 74	18.85	18.85	0.00	-472.24	145.34	234.34	
5	1.08	100, 71	18.85	18.85	0.00	-455.45	72.77	228.37	
6	1.35	100, 69	18.85	18.85	0.00	-438.67	41.65	222.38	
7	1.62	100, 67	18.85	18.85	0.00	-421.88	25.96	216.35	
8	1.89	100, 64	18.85	18.85	0.00	-405.10	17.17	210.28	
9	2.16	100, 62	12.57	12.57	0.00	-261.00	7.97	204.18	
10	2.43	100, 59	12.57	12.57	0.00	-249.83	5.69	198.03	
11	2.70	100, 57	12.57	12.57	0.00	-238.66	4.19	191.85	

COMBINAZIONE n° 2

Valore della spinta statica	64.2951	[kN]			
Componente orizzontale della spinta statica	61.3693	[kN]			
Componente verticale della spinta statica	19.1744	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Y	=	-2.90
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Peso terrapieno gravante sulla fondazione a monte	189.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36	[m]	Υ	=	-1.79
Baricentro terrapieno gravante suna fondazione a monte	m]	נייין	ı	_	-1.75
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Disultanti					
Risultanti	C4 2C02	FL-8-17			
Risultante dei carichi applicati in dir. orizzontale	61.3693	[kN]			
Risultante dei carichi applicati in dir. verticale	319.3580	[kN]			
Resistenza passiva a valle del muro	-3.2720	[kN]			
Sforzo normale sul piano di posa della fondazione	323.4914	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	33.3019	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.16	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	325.2010	[kN]			
Inclinazione della risultante (rispetto alla normale)	5.88	[°]			
Momento rispetto al baricentro della fondazione	-52.3305	[kNm]			
Carico ultimo della fondazione	2147.3736	[kN]			
Tensioni sul terreno					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.06109	[N/mmq]		

Tensione terreno allo spigolo di monte	0.10004	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.13

Coefficiente di sicurezza a carico ultimo 6.64

Sollecitazioni paramento

Combinazione n° 2

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2440	0.1019
3	0.35	6.9297	-0.2019	0.4076
4	0.53	9.1445	-0.0875	0.9171
5	0.71	11.3594	0.1352	1.6305
6	0.89	13.5742	0.5023	2.5476
7	1.06	15.7890	1.0500	3.6686
8	1.24	18.0039	1.8144	4.9933
9	1.42	20.2187	2.8316	6.5219
10	1.59	22.4336	4.1377	8.2543
11	1.77	24.6484	5.7687	10.1905
12	1.95	26.8632	7.7609	12.3305
13	2.13	29.0781	10.1504	14.6743
14	2.30	31.2929	12.9732	17.2219
15	2.48	33.5078	16.2654	19.9733
16	2.66	35.7226	20.0632	22.9286
17	2.83	37.9374	24.4027	26.0876
18	3.01	40.1523	29.3201	29.4505
19	3.19	42.3671	34.8513	33.0171
20	3.37	44.5820	41.0325	36.7876
21	3.54	46.7968	47.8984	40.7293

Sollecitazioni fondazione di valle

Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1566	3.9232
3	0.16	0.6290	7.8948
4	0.24	1.4211	11.9146
5	0.32	2.5366	15.9828
6	0.40	3.9796	20.0993
7	0.48	5.7538	24.2641
8	0.56	7.8631	28.4773
9	0.64	10.3115	32.7388
10	0.72	13.1026	37.0485
11	0.80	16.2405	41.4067

Sollecitazioni fondazione di monte

Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	0.3084	2.1926
3	0.54	1.1345	3.8352
4	0.81	2.3299	4.9280
5	1.08	3.7461	5.4708
6	1.35	5.2347	5.4638
7	1.62	6.6471	4.9068
8	1.89	7.8349	3.8000
9	2.16	8.6496	2.1432
10	2.43	8.9427	-0.0634
11	2.70	8.7658	-0.8200

Sollecitazioni mensola di contrappeso

Combinazione n° 2

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 2

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	$M_{\rm u}$	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	0.00	1000.00	200.11		
2	0.18	100, 50	18.85	18.85	6605.54	341.82	1401.01	200.76		
3	0.35	100, 50	18.85	18.85	6796.18	197.96	980.74	201.06		
4	0.53	100, 50	18.85	18.85	6970.15	66.69	762.22	201.37		
5	0.71	100, 50	18.85	18.85	6948.93	-82.71	611.74	201.67		
6	0.89	100, 50	18.85	18.85	6728.54	-249.00	495.69	201.98		
7	1.06	100, 50	18.85	18.85	6230.28	-414.34	394.60	202.28		
8	1.24	100, 50	18.85	18.85	5349.88	-539.16	297.15	202.59		
9	1.42	100, 50	18.85	18.85	4514.46	-632.24	223.28	202.90		
10	1.59	100, 50	18.85	18.85	3788.66	-698.78	168.88	203.20		
11	1.77	100, 50	18.85	18.85	3073.92	-719.42	124.71	203.51		
12	1.95	100, 50	18.85	18.85	2370.06	-684.72	88.23	203.81		
13	2.13	100, 50	18.85	18.85	1798.02	-627.64	61.83	204.12		
14	2.30	100, 50	18.85	18.85	1379.24	-571.79	44.08	204.42		
15	2.48	100, 50	18.85	18.85	1066.72	-517.81	31.83	204.73		
16	2.66	100, 50	18.85	18.85	850.83	-477.86	23.82	205.03		
17	2.83	100, 50	18.85	18.85	693.44	-446.05	18.28	205.34		
18	3.01	100, 50	18.85	18.85	579.22	-422.96	14.43	205.65		
19	3.19	100, 50	18.85	18.85	492.98	-405.52	11.64	205.95		
20	3.37	100, 50	18.85	18.85	425.86	-391.96	9.55	206.26		
21	3.54	100, 50	18.85	18.85	372.38	-381.14	7.96	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 2

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 2

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

N_u sforzo normale ultimo espresso in [kN]

M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	M_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	1336.99	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	338.05	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	151.92	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	86.39	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	55.88	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	39.22	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	29.11	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	22.51	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	17.97	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	14.70	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	12 25	12 25	0.00	505 83	1640 34	246 18		

3	0.54	100, 76	18.85	18.85	0.00	489.04	431.06	240.28	
4	0.81	100, 74	18.85	18.85	0.00	472.24	202.69	234.34	
5	1.08	100, 71	18.85	18.85	0.00	455.45	121.58	228.37	
6	1.35	100, 69	18.85	18.85	0.00	438.67	83.80	222.38	
7	1.62	100, 67	18.85	18.85	0.00	421.88	63.47	216.35	
8	1.89	100, 64	18.85	18.85	0.00	405.10	51.71	210.28	
9	2.16	100, 62	12.57	12.57	0.00	261.00	30.17	204.18	
10	2.43	100, 59	12.57	12.57	0.00	249.83	27.94	198.03	
11	2.70	100, 57	12.57	12.57	0.00	238.66	27.23	191.85	

COMBINAZIONE n° 3

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	70.7246 67.5063 21.0919 X = 2.70 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.90
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Peso terrapieno gravante sulla fondazione a monte	170.3341	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	67.5063	[kN]			
Risultante dei carichi applicati in dir. verticale	291.2570	[kN]			
Resistenza passiva a valle del muro	-2.9448	[kN]			
Momento ribaltante rispetto allo spigolo a valle	74.3348	[kNm]			
Momento stabilizzante rispetto allo spigolo a valle	707.7652	[kNm]			
Sforzo normale sul piano di posa della fondazione	296.0323	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	41.8647	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.13	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	298.9779	[kN]			
Inclinazione della risultante (rispetto alla normale)	8.05	[°]			
Momento rispetto al baricentro della fondazione	-39.1042	[kNm]			

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 9.52

Stabilità globale muro + terreno

Combinazione n° 4

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.81 Y[m] = 2.03

Raggio del cerchio R[m]= 7.28

Ascissa a valle del cerchio Xi[m] = -5.56Ascissa a monte del cerchio Xs[m] = 6.19

Larghezza della striscia dx[m]= 0.47 Coefficiente di sicurezza C= 1.86

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	?(°)	Wsin⊡	b/cos?	?	С	u
1	571.14	68.49	531.37	1.28	26.56	0.000	0.000
2	1532.96	60.06	1328.31	0.94	26.56	0.000	0.000
3	2225.07	53.25	1782.96	0.79	26.56	0.000	0.000
4	2771.50	47.43	2040.99	0.69	26.56	0.000	0.000
5	3220.52	42.20	2163.11	0.63	26.56	0.000	0.000
6	3596.45	37.37	2182.95	0.59	26.56	0.000	0.000
7	3913.61	32.84	2122.42	0.56	26.56	0.000	0.000
8	4291.48	28.53	2049.97	0.53	26.56	0.000	0.000
9	4588.94	24.40	1895.54	0.52	26.56	0.000	0.000
10	4764.69	20.39	1660.30	0.50	26.56	0.000	0.000
11	4904.98	16.49	1392.32	0.49	26.56	0.000	0.000
12	5012.17	12.67	1098.98	0.48	26.56	0.000	0.000
13	5118.56	8.90	791.68	0.48	26.56	0.000	0.000

14	5858.18	5.17	527.70	0.47	26.56	0.000	0.000	
15	2790.89	1.46	71.14	0.47	26.56	0.000	0.000	
16	1786.62	-2.24	-69.85	0.47	26.56	0.000	0.000	
17	1637.73	-5.95	-169.81	0.47	26.56	0.000	0.000	
18	1575.85	-9.69	-265.18	0.48	26.56	0.000	0.000	
19	1483.54	-13.47	-345.47	0.48	26.56	0.000	0.000	
20	1359.53	-17.31	-404.42	0.49	26.56	0.000	0.000	
21	1201.99	-21.23	-435.20	0.50	26.56	0.000	0.000	
22	1008.39	-25.26	-430.26	0.52	26.56	0.000	0.000	
23	775.26	-29.43	-380.89	0.54	26.56	0.000	0.000	
24	497.79	-33.78	-276.74	0.57	26.56	0.000	0.000	
25	169.15	-38.36	-104.97	0.60	26.56	0.000	0.000	

2W_i= 653.6920 [kN] 2W_isin2_i= 183.9456 [kN] 2W_itan2_i= 326.7777 [kN]

COMBINAZIONE n° 5

②tan②¡tan②¡= 3.71

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	98.6955 91.9329 35.9048 X = 2.70 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.67
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	233.4601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	91.9329	[kN]			
Risultante dei carichi applicati in dir. verticale	380.2883	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	386.8536	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	58.4387	[kN]			

Eccentricità rispetto al baricentro della fondazione	-0.14	[m]
Lunghezza fondazione reagente	4.02	[m]
Risultante in fondazione	391.2427	[kN]
Inclinazione della risultante (rispetto alla normale)	8.59	[°]
Momento rispetto al baricentro della fondazione	-55.1366	[kNm]
Carico ultimo della fondazione	5156.4857	[kN]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	4.02	[m]
Tensione terreno allo spigolo di valle	0.07583	[N/mmq]
Tensione terreno allo spigolo di monte	0.11686	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 44.04$$
 $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.66
Coefficiente di sicurezza a carico ultimo	13.33

Sollecitazioni paramento

Combinazione n° 5

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2438	0.1046
3	0.35	6.9297	-0.2006	0.4182
4	0.53	9.1445	-0.0833	0.9410
5	0.71	11.3594	0.1452	1.6729
6	0.89	13.5742	0.5219	2.6140
7	1.06	15.7890	1.0850	3.8037
8	1.24	18.0039	1.9067	5.5881
9	1.42	20.2187	3.1011	7.9509
10	1.59	22.4336	4.7415	10.6112
11	1.77	24.6484	6.8773	13.5395
12	1.95	26.8632	9.5545	16.7209
13	2.13	29.0781	12.8171	20.1453
14	2.30	31.2929	16.7073	23.8050
15	2.48	33.5078	21.2665	27.6945
16	2.66	35.7226	26.5349	31.8098
17	2.83	37.9374	32.5522	36.1477
18	3.01	40.1523	39.3577	40.7059
19	3.19	42.3671	46.9902	45.4824
20	3.37	44.5820	55.4883	50.4757
21	3.54	46.7968	64.8887	55.6503

Sollecitazioni fondazione di valle

Combinazione n° 5

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2038	5.1044
3	0.16	0.8181	10.2605
4	0.24	1.8469	15.4682
5	0.32	3.2944	20.7276
6	0.40	5.1647	26.0386
7	0.48	7.4619	31.4014
8	0.56	10.1903	36.8157
9	0.64	13.3538	42.2818
10	0.72	16.9567	47.7995
11	0.80	21.0031	53.3689

Sollecitazioni fondazione di monte

Combinazione n° 5

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.8017	-6.0367
3	0.54	-3.3128	-12.6621
4	0.81	-7.6922	-19.8759
5	1.08	-14.0988	-27.6784
6	1.35	-22.6915	-36.0695
7	1.62	-33.6293	-45.0491
8	1.89	-46.6017	-49.6773
9	2.16	-60.4248	-52.8141
10	2.43	-75.1743	-56.5394
11	2.70	-90.7491	-58.2534

Sollecitazioni mensola di contrappeso

Combinazione n° 5

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 5

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	0.00	1000.00	200.11		
2	0.18	100, 50	18.85	18.85	6605.81	341.61	1401.07	200.76		
3	0.35	100, 50	18.85	18.85	6797.75	196.78	980.96	201.06		
4	0.53	100, 50	18.85	18.85	6974.37	63.51	762.68	201.37		
5	0.71	100, 50	18.85	18.85	6940.94	-88.73	611.03	201.67		
6	0.89	100, 50	18.85	18.85	6716.31	-258.24	494.78	201.98		
7	1.06	100, 50	18.85	18.85	6171.50	-424.08	390.87	202.28		
8	1.24	100, 50	18.85	18.85	5232.14	-554.11	290.61	202.59		
9	1.42	100, 50	18.85	18.85	4275.04	-655.70	211.44	202.90		
10	1.59	100, 50	18.85	18.85	3404.85	-719.64	151.77	203.20		
11	1.77	100, 50	18.85	18.85	2477.83	-691.35	100.53	203.51		
12	1.95	100, 50	18.85	18.85	1745.44	-620.80	64.98	203.81		
13	2.13	100, 50	18.85	18.85	1244.38	-548.50	42.79	204.12		
14	2.30	100, 50	18.85	18.85	921.97	-492.24	29.46	204.42		
15	2.48	100, 50	18.85	18.85	707.17	-448.82	21.10	204.73		
16	2.66	100, 50	18.85	18.85	565.74	-420.23	15.84	205.03		
17	2.83	100, 50	18.85	18.85	466.33	-400.14	12.29	205.34		
18	3.01	100, 50	18.85	18.85	393.12	-385.34	9.79	205.65		
19	3.19	100, 50	18.85	18.85	337.24	-374.04	7.96	205.95		
20	3.37	100, 50	18.85	18.85	293.40	-365.18	6.58	206.26		
21	3.54	100, 50	18.85	18.85	258.24	-358.07	5.52	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 5

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 5

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	1027.23	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	259.92	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	116.89	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	66.52	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	43.06	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	30.24	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	22.46	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	17.38	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	13.88	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	11.36	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	18 85	18 85	0.00	-505.83	630 93	246 18		

3	0.54	100, 76	18.85	18.85	0.00	-489.04	147.62	240.28	
4	0.81	100, 74	18.85	18.85	0.00	-472.24	61.39	234.34	
5	1.08	100, 71	18.85	18.85	0.00	-455.45	32.30	228.37	
6	1.35	100, 69	18.85	18.85	0.00	-438.67	19.33	222.38	
7	1.62	100, 67	18.85	18.85	0.00	-421.88	12.55	216.35	
8	1.89	100, 64	18.85	18.85	0.00	-405.10	8.69	210.28	
9	2.16	100, 62	12.57	12.57	0.00	-261.00	4.32	204.18	
10	2.43	100, 59	12.57	12.57	0.00	-249.83	3.32	198.03	
11	2.70	100, 57	12.57	12.57	0.00	-238.66	2.63	191.85	

COMBINAZIONE n° 6

93.8732	[kN]			
89.6016	[kN]			
27.9954	[kN]			
X = 2.70 [m]	[m]	Υ	=	-2.67
17.35	[°]			
54.01	[°]			
223.2601	[kN]			
X = 1.36 [m]	[m]	Υ	=	-1.79
0.0000	[kN]			
X = 0.00	Y = 0.00			
89.6016	[kN]			
362.1789	[kN]			
-3.2720	[kN]			
368.6100	[kN]			
57.6946	[kN]			
-0.10	[m]			
4.02	[m]			
373.0979	[kN]			
8.90	[°]			
-36.0621	[kNm]			
2221.7519	[kN]			
4.02	[m]			
	89.6016 27.9954 X = 2.70 [m] 17.35 54.01 223.2601 X = 1.36 [m] 0.0000 X = 0.00 89.6016 362.1789 -3.2720 368.6100 57.6946 -0.10 4.02 373.0979 8.90 -36.0621 2221.7519	89.6016 [kN] 27.9954 [kN] X = 2.70 [m] [m] 17.35 [°] 54.01 [°] 223.2601 [kN] X = 1.36 [m] [m] 0.0000 [kN] X = 0.00 Y = 0.00 89.6016 [kN] 362.1789 [kN] -3.2720 [kN] 368.6100 [kN] 57.6946 [kN] -0.10 [m] 4.02 [m] 373.0979 [kN] 8.90 [°] -36.0621 [kNm] 2221.7519 [kN]	89.6016 [kN] 27.9954 [kN] X = 2.70 [m] Y [m] 17.35 [°] 54.01 [°] 223.2601 [kN] X = 1.36 [m] Y [m] 0.0000 [kN] X = 0.00 Y = 0.00 89.6016 [kN] 362.1789 [kN] -3.2720 [kN] 368.6100 [kN] 57.6946 [kN] -0.10 [m] 4.02 [m] 373.0979 [kN] 8.90 [°] -36.0621 [kNm] 2221.7519 [kN]	89.6016 [kN] 27.9954 [kN] X = 2.70 [m] Y = [m] 17.35 [°] 54.01 [°] 223.2601 [kN] X = 1.36 [m] Y = [m] 0.0000 [kN] X = 0.00 Y = 0.00 89.6016 [kN] 362.1789 [kN] -3.2720 [kN] 368.6100 [kN] 57.6946 [kN] -0.10 [m] 4.02 [m] 373.0979 [kN] 8.90 [°] -36.0621 [kNm] 2221.7519 [kN]

Tensione terreno allo spigolo di valle

[N/mmq]

0.07838

Tensione terreno allo spigolo di monte	0.10522	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.05

Coefficiente di sicurezza a carico ultimo 6.03

Sollecitazioni paramento

Combinazione n° 6

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	T
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2440	0.1019
3	0.35	6.9297	-0.2019	0.4076
4	0.53	9.1445	-0.0875	0.9171
5	0.71	11.3594	0.1352	1.6305
6	0.89	13.5742	0.5080	2.6477
7	1.06	15.7890	1.1074	4.2167
8	1.24	18.0039	2.0317	6.2777
9	1.42	20.2187	3.3496	8.6449
10	1.59	22.4336	5.1110	11.2794
11	1.77	24.6484	7.3615	14.1645
12	1.95	26.8632	10.1447	17.2893
13	2.13	29.0781	13.5021	20.6456
14	2.30	31.2929	17.4743	24.2274
15	2.48	33.5078	22.1007	28.0305
16	2.66	35.7226	27.4204	32.0514
17	2.83	37.9374	33.4717	36.2876
18	3.01	40.1523	40.2924	40.7372
19	3.19	42.3671	47.9204	45.3985
20	3.37	44.5820	56.3929	50.2702
21	3.54	46.7968	65.7456	55.3180

Sollecitazioni fondazione di valle

Combinazione n° 6

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2115	5.2931
3	0.16	0.8477	10.6152
4	0.24	1.9107	15.9662
5	0.32	3.4030	21.3462
6	0.40	5.3269	26.7551
7	0.48	7.6846	32.1930
8	0.56	10.4786	37.6598
9	0.64	13.7110	43.1556
10	0.72	17.3842	48.6803
11	0.80	21.5006	54.2339

Sollecitazioni fondazione di monte

Combinazione n° 6

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.2235	-1.7103
3	0.54	-0.9532	-3.7498
4	0.81	-2.2780	-6.1185
5	1.08	-4.2868	-8.8165
6	1.35	-7.0685	-11.8437
7	1.62	-10.7120	-15.2001
8	1.89	-14.9452	-15.0857
9	2.16	-18.8239	-13.7005
10	2.43	-22.3731	-12.6446
11	2.70	-25.4816	-9.9178

Sollecitazioni mensola di contrappeso

Combinazione n° 6

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 6

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	0.00	1000.00	200.11		
2	0.18	100, 50	18.85	18.85	6605.54	341.82	1401.01	200.76		
3	0.35	100, 50	18.85	18.85	6796.18	197.96	980.74	201.06		
4	0.53	100, 50	18.85	18.85	6970.15	66.69	762.22	201.37		
5	0.71	100, 50	18.85	18.85	6948.93	-82.71	611.74	201.67		
6	0.89	100, 50	18.85	18.85	6724.99	-251.68	495.42	201.98		
7	1.06	100, 50	18.85	18.85	6134.33	-430.24	388.52	202.28		
8	1.24	100, 50	18.85	18.85	5073.97	-572.58	281.83	202.59		
9	1.42	100, 50	18.85	18.85	4069.29	-674.16	201.26	202.90		
10	1.59	100, 50	18.85	18.85	3169.12	-722.01	141.27	203.20		
11	1.77	100, 50	18.85	18.85	2258.99	-674.68	91.65	203.51		
12	1.95	100, 50	18.85	18.85	1590.56	-600.66	59.21	203.81		
13	2.13	100, 50	18.85	18.85	1143.84	-531.13	39.34	204.12		
14	2.30	100, 50	18.85	18.85	858.55	-479.42	27.44	204.42		
15	2.48	100, 50	18.85	18.85	668.68	-441.04	19.96	204.73		
16	2.66	100, 50	18.85	18.85	540.93	-415.22	15.14	205.03		
17	2.83	100, 50	18.85	18.85	449.72	-396.78	11.85	205.34		
18	3.01	100, 50	18.85	18.85	381.70	-383.03	9.51	205.65		
19	3.19	100, 50	18.85	18.85	329.27	-372.43	7.77	205.95		
20	3.37	100, 50	18.85	18.85	287.80	-364.05	6.46	206.26		
21	3.54	100, 50	18.85	18.85	254.30	-357.28	5.43	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 6

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 6

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

N_u sforzo normale ultimo espresso in [kN]

M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	989.83	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	250.85	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	112.99	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	64.39	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	41.75	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	29.36	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	21.84	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	16.93	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	13.54	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	11.10	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	18 85	18 85	0.00	-505.83	2263.40	246 18		

3	0.54	100, 76	18.85	18.85	0.00	-489.04	513.06	240.28	
4	0.81	100, 74	18.85	18.85	0.00	-472.24	207.31	234.34	
5	1.08	100, 71	18.85	18.85	0.00	-455.45	106.25	228.37	
6	1.35	100, 69	18.85	18.85	0.00	-438.67	62.06	222.38	
7	1.62	100, 67	18.85	18.85	0.00	-421.88	39.38	216.35	
8	1.89	100, 64	18.85	18.85	0.00	-405.10	27.11	210.28	
9	2.16	100, 62	12.57	12.57	0.00	-261.00	13.87	204.18	
10	2.43	100, 59	12.57	12.57	0.00	-249.83	11.17	198.03	
11	2.70	100, 57	12.57	12.57	0.00	-238.66	9.37	191.85	

COMBINAZIONE n° 7

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	103.2606 98.5617 30.7949 X = 2.70 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.67
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Peso terrapieno gravante sulla fondazione a monte	207.7341	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	98.5617	[kN]			
Risultante dei carichi applicati in dir. verticale	338.3601	[kN]			
Resistenza passiva a valle del muro	-2.9448	[kN]			
Momento ribaltante rispetto allo spigolo a valle	130.9972	[kNm]			
Momento stabilizzante rispetto allo spigolo a valle	846.1724	[kNm]			
Sforzo normale sul piano di posa della fondazione	345.6628	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	68.6966	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.06	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	352.4230	[kN]			
Inclinazione della risultante (rispetto alla normale)	11.24	[°]			
Momento rispetto al baricentro della fondazione	-21.2089	[kNm]			

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 6.46

Stabilità globale muro + terreno

Combinazione n° 8

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.81 Y[m] = 1.62

Raggio del cerchio R[m]= 6.93

Ascissa a valle del cerchio Xi[m] = -5.49Ascissa a monte del cerchio Xs[m] = 5.93

Larghezza della striscia dx[m]= 0.46 Coefficiente di sicurezza C= 1.60

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	w	?(°)	Wsin 	b/cos?	?	С	u
1	1532.48	70.52	1444.80	1.37	26.56	0.000	0.000
2	2520.72	61.22	2209.26	0.95	26.56	0.000	0.000
3	3201.13	54.07	2592.03	0.78	26.56	0.000	0.000
4	3730.85	48.02	2773.57	0.68	26.56	0.000	0.000
5	4162.90	42.63	2819.35	0.62	26.56	0.000	0.000
6	4522.80	37.67	2764.20	0.58	26.56	0.000	0.000
7	4825.24	33.03	2630.36	0.54	26.56	0.000	0.000
8	5250.05	28.63	2515.33	0.52	26.56	0.000	0.000
9	5467.16	24.40	2258.50	0.50	26.56	0.000	0.000
10	5632.85	20.31	1955.22	0.49	26.56	0.000	0.000
11	5575.58	16.33	1567.44	0.48	26.56	0.000	0.000
12	4932.80	12.42	1061.28	0.47	26.56	0.000	0.000
13	5063.82	8.58	755.38	0.46	26.56	0.000	0.000

14	5867.76	4.77	488.19	0.46	26.56	0.000	0.000	
15	2140.37	0.99	36.87	0.46	26.56	0.000	0.000	
16	1770.42	-2.79	-86.30	0.46	26.56	0.000	0.000	
17	1635.15	-6.59	-187.58	0.46	26.56	0.000	0.000	
18	1571.54	-10.41	-283.97	0.46	26.56	0.000	0.000	
19	1478.36	-14.28	-364.67	0.47	26.56	0.000	0.000	
20	1354.25	-18.22	-423.41	0.48	26.56	0.000	0.000	
21	1197.28	-22.25	-453.34	0.49	26.56	0.000	0.000	
22	1004.75	-26.40	-446.75	0.51	26.56	0.000	0.000	
23	772.93	-30.71	-394.69	0.53	26.56	0.000	0.000	
24	496.56	-35.22	-286.35	0.56	26.56	0.000	0.000	
25	168.09	-40.00	-108.04	0.60	26.56	0.000	0.000	

?W_i= 744.0998 [kN]
 ?W_isin?_i= 243.5685 [kN]
 ?W_itan?_i= 371.9721 [kN]

②tan②itan②i= 3.82

COMBINAZIONE n° 9

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica	98.6955	[kN]			
Componente orizzontale della spinta statica	91.9329	[kN]			
Componente verticale della spinta statica	35.9048	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.67
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	233.4601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Risultanti carichi esterni					
Componente dir. X	25.05	[kN]			
Dicultanti					
Risultanti	116 0020	[L.N.1]			
Risultante dei carichi applicati in dir. orizzontale	116.9829	[kN]			
Risultante dei carichi applicati in dir. verticale	380.2883	[kN]			

Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale)	-4.0684 389.0369 83.3934 0.17 4.02 397.8746 12.10	[kN] [kN] [kN] [m] [m] [kN]
Tensione terreno allo spigolo di valle Tensione terreno all'estremità della mensola di contrappeso	0.07235 0.000	[N/mmq] [N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _≥ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{g} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.87

Coefficiente di sicurezza a carico ultimo 13.06

Sollecitazioni paramento

Combinazione n° 9

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	16.5000	25.0500
2	0.18	4.7148	20.6947	25.1546
3	0.35	6.9297	25.1765	25.4682
4	0.53	9.1445	29.7324	25.9910
5	0.71	11.3594	34.3994	26.7229
6	0.89	13.5742	39.2146	27.6640
7	1.06	15.7890	44.2162	28.8537
8	1.24	18.0039	49.4765	30.6381
9	1.42	20.2187	55.1094	33.0009
10	1.59	22.4336	61.1883	35.6612
11	1.77	24.6484	67.7626	38.5895
12	1.95	26.8632	74.8784	41.7709
13	2.13	29.0781	82.5795	45.1953
14	2.30	31.2929	90.9084	48.8550
15	2.48	33.5078	99.9061	52.7445
16	2.66	35.7226	109.6130	56.8598
17	2.83	37.9374	120.0689	61.1977
18	3.01	40.1523	131.3129	65.7559
19	3.19	42.3671	143.3840	70.5324
20	3.37	44.5820	156.3206	75.5257
21	3.54	46.7968	170.1595	80.7003

Sollecitazioni fondazione di valle

Combinazione n° 9

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3473	8.6682
3	0.16	1.3844	17.2439
4	0.24	3.1039	25.7271
5	0.32	5.4983	34.1177
6	0.40	8.5603	42.4158
7	0.48	12.2824	50.6213
8	0.56	16.6572	58.7343
9	0.64	21.6774	66.7548
10	0.72	27.3355	74.6828
11	0.80	33.6242	82.5182

Sollecitazioni fondazione di monte

Combinazione n° 9

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	М	т
1	0.00	0.0000	0.0000
2	0.27	-2.3562	-17.2774
3	0.54	-9.2350	-33.5009
4	0.81	-20.3518	-48.6705
5	1.08	-35.4222	-62.7862
6	1.35	-54.1615	-75.8480
7	1.62	-76.2853	-87.8559
8	1.89	-101.0395	-93.8698
9	2.16	-126.7969	-96.7499
10	2.43	-153.1896	-98.5760
11	2.70	-179.6731	-96.7483

Sollecitazioni mensola di contrappeso

Combinazione n° 9

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 9

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	-305.87	18.54	200.11		
2	0.18	100, 50	18.85	18.85	73.05	-320.64	15.49	200.76		
3	0.35	100, 50	18.85	18.85	89.15	-323.89	12.86	201.06		
4	0.53	100, 50	18.85	18.85	100.31	-326.15	10.97	201.37		
5	0.71	100, 50	18.85	18.85	108.23	-327.75	9.53	201.67		
6	0.89	100, 50	18.85	18.85	113.84	-328.88	8.39	201.98		
7	1.06	100, 50	18.85	18.85	117.72	-329.67	7.46	202.28		
8	1.24	100, 50	18.85	18.85	120.14	-330.16	6.67	202.59		
9	1.42	100, 50	18.85	18.85	121.21	-330.37	5.99	202.90		
10	1.59	100, 50	18.85	18.85	121.12	-330.35	5.40	203.20		
11	1.77	100, 50	18.85	18.85	120.09	-330.15	4.87	203.51		
12	1.95	100, 50	18.85	18.85	118.31	-329.79	4.40	203.81		
13	2.13	100, 50	18.85	18.85	115.96	-329.31	3.99	204.12		
14	2.30	100, 50	18.85	18.85	113.16	-328.75	3.62	204.42		
15	2.48	100, 50	18.85	18.85	110.05	-328.12	3.28	204.73		
16	2.66	100, 50	18.85	18.85	106.71	-327.44	2.99	205.03		
17	2.83	100, 50	18.85	18.85	103.24	-326.74	2.72	205.34		
18	3.01	100, 50	18.85	18.85	99.69	-326.02	2.48	205.65		
19	3.19	100, 50	18.85	18.85	96.12	-325.30	2.27	205.95		
20	3.37	100, 50	18.85	18.85	92.57	-324.58	2.08	206.26		
21	3.54	100, 50	18.85	18.85	89.07	-323.88	1.90	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 9

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 9

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

N_u sforzo normale ultimo espresso in [kN]

M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	602.80	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	153.59	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	69.55	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	39.86	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	25.98	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	18.37	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	13.74	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	10.71	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	8.61	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	7.10	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	18 85	18 85	0.00	-505.83	214 68	246 18		

3	0.54	100, 76	18.85	18.85	0.00 -489.04	52.96	240.28	
4	0.81	100, 74	18.85	18.85	0.00 -472.24	23.20	234.34	
5	1.08	100, 71	18.85	18.85	0.00 -455.45	12.86	228.37	
6	1.35	100, 69	18.85	18.85	0.00 -438.67	8.10	222.38	
7	1.62	100, 67	18.85	18.85	0.00 -421.88	5.53	216.35	
8	1.89	100, 64	18.85	18.85	0.00 -405.10	4.01	210.28	
9	2.16	100, 62	12.57	12.57	0.00 -261.00	2.06	204.18	
10	2.43	100, 59	12.57	12.57	0.00 -249.83	1.63	198.03	
11	2.70	100, 57	12.57	12.57	0.00 -238.66	1.33	191.85	

COMBINAZIONE n° 10

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	93.8732 89.6016 27.9954 X = 2.70 [m] 17.35 54.01	[kN] [kN] [kN] [m] [°]	Υ	=	-2.67
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	223.2601 X = 1.36 [m]	[kN] [m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Risultanti carichi esterni Componente dir. X Risultanti	21.71	[kN]			
Risultante dei carichi applicati in dir. orizzontale	111.3116	[kN]			
Risultante dei carichi applicati in dir. verticale	362.1789	[kN]			
Resistenza passiva a valle del muro	-3.2720	[kN]			
Sforzo normale sul piano di posa della fondazione	370.5022	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	79.3220	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.19	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	378.8982	[kN]			
Inclinazione della risultante (rispetto alla normale)	12.08	[°]			
Momento rispetto al baricentro della fondazione	68.8769	[kNm]			
Carico ultimo della fondazione	2119.2982	[kN]			

Tensioni sul terreno

Lunghezza fondazione reagente	4.02	[m]
Tensione terreno allo spigolo di valle	0.11791	[N/mmq]
Tensione terreno allo spigolo di monte	0.06664	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{e} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.50
Coefficiente di sicurezza a carico ultimo 5.72

Sollecitazioni paramento

Combinazione n° 10

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	т
1	0.00	0.0000	14.3000	21.7100
2	0.18	4.7148	17.9028	21.8119
3	0.35	6.9297	21.7916	22.1176
4	0.53	9.1445	25.7527	22.6271
5	0.71	11.3594	29.8221	23.3405
6	0.89	13.5742	34.0417	24.3577
7	1.06	15.7890	38.4878	25.9267
8	1.24	18.0039	43.2588	27.9877
9	1.42	20.2187	48.4235	30.3549
10	1.59	22.4336	54.0316	32.9894
11	1.77	24.6484	60.1289	35.8745
12	1.95	26.8632	66.7588	38.9993
13	2.13	29.0781	73.9629	42.3556
14	2.30	31.2929	81.7818	45.9374
15	2.48	33.5078	90.2550	49.7405
16	2.66	35.7226	99.4214	53.7614
17	2.83	37.9374	109.3194	57.9976
18	3.01	40.1523	119.9869	62.4472
19	3.19	42.3671	131.4616	67.1085
20	3.37	44.5820	143.7809	71.9802
21	3.54	46.7968	156.9803	77.0280

Sollecitazioni fondazione di valle

Combinazione n° 10

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.08	0.3360	8.3844
3	0.16	1.3389	16.6728
4	0.24	3.0011	24.8652
5	0.32	5.3148	32.9616
6	0.40	8.2724	40.9619
7	0.48	11.8662	48.8662
8	0.56	16.0884	56.6745
9	0.64	20.9315	64.3868
10	0.72	26.3878	72.0030
11	0.80	32.4495	79.5233

Sollecitazioni fondazione di monte

Combinazione n° 10

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.27	-1.5695	-11.4432
3	0.54	-6.0809	-21.7922
4	0.81	-13.2388	-31.0469
5	1.08	-22.7477	-39.2074
6	1.35	-34.3123	-46.2736
7	1.62	-47.6370	-52.2455
8	1.89	-62.0654	-53.3231
9	2.16	-76.2690	-51.7065
10	2.43	-89.8884	-48.9956
11	2.70	-102.4281	-43.1904

Sollecitazioni mensola di contrappeso

Combinazione n° 10

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 10

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	$N_{\rm u}$	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	-305.87	21.39	200.11		
2	0.18	100, 50	18.85	18.85	85.08	-323.07	18.05	200.76		
3	0.35	100, 50	18.85	18.85	103.95	-326.88	15.00	201.06		
4	0.53	100, 50	18.85	18.85	117.01	-329.52	12.80	201.37		
5	0.71	100, 50	18.85	18.85	126.23	-331.39	11.11	201.67		
6	0.89	100, 50	18.85	18.85	132.66	-332.69	9.77	201.98		
7	1.06	100, 50	18.85	18.85	136.83	-333.53	8.67	202.28		
8	1.24	100, 50	18.85	18.85	138.99	-333.97	7.72	202.59		
9	1.42	100, 50	18.85	18.85	139.49	-334.07	6.90	202.90		
10	1.59	100, 50	18.85	18.85	138.63	-333.89	6.18	203.20		
11	1.77	100, 50	18.85	18.85	136.71	-333.51	5.55	203.51		
12	1.95	100, 50	18.85	18.85	133.98	-332.95	4.99	203.81		
13	2.13	100, 50	18.85	18.85	130.63	-332.28	4.49	204.12		
14	2.30	100, 50	18.85	18.85	126.85	-331.51	4.05	204.42		
15	2.48	100, 50	18.85	18.85	122.77	-330.69	3.66	204.73		
16	2.66	100, 50	18.85	18.85	118.51	-329.83	3.32	205.03		
17	2.83	100, 50	18.85	18.85	114.16	-328.95	3.01	205.34		
18	3.01	100, 50	18.85	18.85	109.78	-328.06	2.73	205.65		
19	3.19	100, 50	18.85	18.85	105.44	-327.19	2.49	205.95		
20	3.37	100, 50	18.85	18.85	101.18	-326.32	2.27	206.26		
21	3.54	100, 50	18.85	18.85	97.03	-325.48	2.07	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 10

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 10

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

N_u sforzo normale ultimo espresso in [kN]

M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	623.13	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	158.81	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	71.94	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	41.23	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	26.88	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	19.02	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	14.23	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	11.09	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	8.92	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	7.35	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	18 85	18 85	0.00	-505.83	322 29	246 18		

3	0.54	100, 76	18.85	18.85	0.00 -489.04	80.42	240.28	
4	0.81	100, 74	18.85	18.85	0.00 -472.24	35.67	234.34	
5	1.08	100, 71	18.85	18.85	0.00 -455.45	20.02	228.37	
6	1.35	100, 69	18.85	18.85	0.00 -438.67	12.78	222.38	
7	1.62	100, 67	18.85	18.85	0.00 -421.88	8.86	216.35	
8	1.89	100, 64	18.85	18.85	0.00 -405.10	6.53	210.28	
9	2.16	100, 62	12.57	12.57	0.00 -261.00	3.42	204.18	
10	2.43	100, 59	12.57	12.57	0.00 -249.83	2.78	198.03	
11	2.70	100, 57	12.57	12.57	0.00 -238.66	2.33	191.85	

COMBINAZIONE n° 11

Valore della spinta statica	103.2606	[kN]			
Componente orizzontale della spinta statica	98.5617	[kN]			
Componente verticale della spinta statica	30.7949	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.67
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Peso terrapieno gravante sulla fondazione a monte	207.7341	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Y	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti carichi esterni</u>					
Componente dir. X	25.05	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	123.6117	[kN]			
Risultante dei carichi applicati in dir. verticale	338.3601	[kN]			
Resistenza passiva a valle del muro	-2.9448	[kN]			
Momento ribaltante rispetto allo spigolo a valle	247.6974	[kNm]			
Momento stabilizzante rispetto allo spigolo a valle	846.1724	[kNm]			
Sforzo normale sul piano di posa della fondazione	347.8460	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	93.6513	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.29	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	360.2325	[kN]			
Inclinazione della risultante (rispetto alla normale)	15.07	[°]			
Momento rispetto al baricentro della fondazione	99.8745	[kNm]			

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento

3.42

Stabilità globale muro + terreno

Combinazione n° 12

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.81 Y[m] = 1.62

Raggio del cerchio R[m]= 6.93

Ascissa a valle del cerchio Xi[m] = -5.49Ascissa a monte del cerchio Xs[m] = 5.93

Larghezza della striscia dx[m]= 0.46 Coefficiente di sicurezza C= 1.60

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	w	?(°)	Wsin 	b/cos?	?	С	u
1	1532.48	70.52	1444.80	1.37	26.56	0.000	0.000
2	2520.72	61.22	2209.26	0.95	26.56	0.000	0.000
3	3201.13	54.07	2592.03	0.78	26.56	0.000	0.000
4	3730.85	48.02	2773.57	0.68	26.56	0.000	0.000
5	4162.90	42.63	2819.35	0.62	26.56	0.000	0.000
6	4522.80	37.67	2764.20	0.58	26.56	0.000	0.000
7	4825.24	33.03	2630.36	0.54	26.56	0.000	0.000
8	5250.05	28.63	2515.33	0.52	26.56	0.000	0.000
9	5467.16	24.40	2258.50	0.50	26.56	0.000	0.000
10	5632.85	20.31	1955.22	0.49	26.56	0.000	0.000
11	5575.58	16.33	1567.44	0.48	26.56	0.000	0.000
12	4932.80	12.42	1061.28	0.47	26.56	0.000	0.000
13	5063.82	8.58	755.38	0.46	26.56	0.000	0.000

6 4.77	488.19	0.46	26.56	0.000	0.000	
7 0.99	36.87	0.46	26.56	0.000	0.000	
2 -2.79	-86.30	0.46	26.56	0.000	0.000	
5 -6.59	-187.58	0.46	26.56	0.000	0.000	
4 -10.41	-283.97	0.46	26.56	0.000	0.000	
6 -14.28	-364.67	0.47	26.56	0.000	0.000	
5 -18.22	-423.41	0.48	26.56	0.000	0.000	
8 -22.25	-453.34	0.49	26.56	0.000	0.000	
5 -26.40	-446.75	0.51	26.56	0.000	0.000	
3 -30.71	-394.69	0.53	26.56	0.000	0.000	
6 -35.22	-286.35	0.56	26.56	0.000	0.000	
	400.04	0.00	26.56	0.000	0.000	
3	37 0.99 42 -2.79 45 -6.59 54 -10.41 36 -14.28 25 -18.22 28 -22.25 75 -26.40 93 -30.71 56 -35.22	37 0.99 36.87 42 -2.79 -86.30 45 -6.59 -187.58 46 -10.41 -283.97 46 -14.28 -364.67 47 -25 -423.41 48 -22.25 -453.34 47 -26.40 -446.75 48 -35.22 -286.35	37 0.99 36.87 0.46 42 -2.79 -86.30 0.46 45 -6.59 -187.58 0.46 54 -10.41 -283.97 0.46 36 -14.28 -364.67 0.47 25 -18.22 -423.41 0.48 28 -22.25 -453.34 0.49 75 -26.40 -446.75 0.51 93 -30.71 -394.69 0.53 36 -35.22 -286.35 0.56	37 0.99 36.87 0.46 26.56 42 -2.79 -86.30 0.46 26.56 45 -6.59 -187.58 0.46 26.56 54 -10.41 -283.97 0.46 26.56 26 -14.28 -364.67 0.47 26.56 25 -18.22 -423.41 0.48 26.56 28 -22.25 -453.34 0.49 26.56 25 -26.40 -446.75 0.51 26.56 23 -30.71 -394.69 0.53 26.56 36 -35.22 -286.35 0.56 26.56	37 0.99 36.87 0.46 26.56 0.000 42 -2.79 -86.30 0.46 26.56 0.000 45 -6.59 -187.58 0.46 26.56 0.000 54 -10.41 -283.97 0.46 26.56 0.000 26 -14.28 -364.67 0.47 26.56 0.000 25 -18.22 -423.41 0.48 26.56 0.000 28 -22.25 -453.34 0.49 26.56 0.000 25 -26.40 -446.75 0.51 26.56 0.000 23 -30.71 -394.69 0.53 26.56 0.000 36 -35.22 -286.35 0.56 26.56 0.000	37 0.99 36.87 0.46 26.56 0.000 0.000 42 -2.79 -86.30 0.46 26.56 0.000 0.000 45 -6.59 -187.58 0.46 26.56 0.000 0.000 54 -10.41 -283.97 0.46 26.56 0.000 0.000 26 -14.28 -364.67 0.47 26.56 0.000 0.000 25 -18.22 -423.41 0.48 26.56 0.000 0.000 28 -22.25 -453.34 0.49 26.56 0.000 0.000 25 -26.40 -446.75 0.51 26.56 0.000 0.000 26 -30.71 -394.69 0.53 26.56 0.000 0.000

2W_i= 744.0998 [kN] 2W_isin2_i= 243.5685 [kN] 2W_itan2_i= 371.9721 [kN] 2tan2_itan2_i= 3.82

COMBINAZIONE n° 13

Valore della spinta statica	51.9984	[kN]			
Componente orizzontale della spinta statica	48.4354	[kN]			
Componente verticale della spinta statica	18.9167	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.90
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	9.0373	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.90
Inclinazione linea di rottura in condizioni sismiche	52.11	[°]			
Peso terrapieno gravante sulla fondazione a monte	189.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	10.2538	[kN]			
Inerzia verticale del muro	-5.1269	[kN]			
Inerzia del terrapieno fondazione di monte	17.4953	[kN]			

Inerzia verticale del terrapieno fondazione di monte Inerzia del terrapieno mensola di contrappeso Inerzia verticale del terrapieno mensola di contrappeso	-8.7476 0.0000 0.0000	[kN] [kN] [kN]
Risultanti		
Risultante dei carichi applicati in dir. orizzontale	84.6026	[kN]
Risultante dei carichi applicati in dir. verticale	308.5133	[kN]
Resistenza passiva a valle del muro	-4.0684	[kN]
Sforzo normale sul piano di posa della fondazione	314.7130	[kN]
Sforzo tangenziale sul piano di posa della fondazione	57.3919	[kN]
Eccentricità rispetto al baricentro della fondazione	-0.02	[m]
Lunghezza fondazione reagente	4.02	[m]
Risultante in fondazione	319.9032	[kN]
Inclinazione della risultante (rispetto alla normale)	10.34	[°]
Momento rispetto al baricentro della fondazione	-5.5065	[kNm]
Carico ultimo della fondazione	5502.1534	[kN]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	4.02	[m]
Tensione terreno allo spigolo di valle	0.07633	[N/mmq]
Tensione terreno allo spigolo di monte	0.08043	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00
I coefficienti N' tengono conto de di posa, inclinazione pendio.	i fattori di forma, profoi	ndità, inclinazione carico, i	nclinazione piano
	$N'_{c} = 44.04$	$N'_{g} = 28.52$	N' ₀ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.21
Coefficiente di sicurezza a carico ultimo	17.48

Sollecitazioni paramento

Combinazione n° 13

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2263	0.2991
3	0.35	6.9297	-0.1328	0.7871
4	0.53	9.1445	0.0638	1.4639
5	0.71	11.3594	0.3971	2.3295
6	0.89	13.5742	0.9004	3.3839
7	1.06	15.7890	1.6074	4.6271
8	1.24	18.0039	2.5513	6.0591
9	1.42	20.2187	3.7657	7.6799
10	1.59	22.4336	5.2840	9.4896
11	1.77	24.6484	7.1397	11.4880
12	1.95	26.8632	9.3662	13.6753
13	2.13	29.0781	11.9970	16.0514
14	2.30	31.2929	15.0656	18.6163
15	2.48	33.5078	18.6053	21.3700
16	2.66	35.7226	22.6497	24.3125
17	2.83	37.9374	27.2322	27.4438
18	3.01	40.1523	32.3862	30.7640
19	3.19	42.3671	38.1453	34.2729
20	3.37	44.5820	44.5428	37.9707
21	3.54	46.7968	51.6109	41.8270

Sollecitazioni fondazione di valle

Combinazione n° 13

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2042	5.1039
3	0.16	0.8164	10.2003
4	0.24	1.8361	15.2893
5	0.32	3.2625	20.3709
6	0.40	5.0952	25.4450
7	0.48	7.3335	30.5117
8	0.56	9.9769	35.5709
9	0.64	13.0247	40.6227
10	0.72	16.4763	45.6670
11	0.80	20.3312	50.7040

Sollecitazioni fondazione di monte

Combinazione n° 13

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.3827	-2.8209
3	0.54	-1.5156	-5.5565
4	0.81	-3.3756	-8.2068
5	1.08	-5.9396	-10.7719
6	1.35	-9.1847	-13.2517
7	1.62	-13.0879	-15.6463
8	1.89	-17.6260	-17.9556
9	2.16	-22.7762	-20.1796
10	2.43	-28.5154	-22.3184
11	2.70	-34.6205	-22.3719

Sollecitazioni mensola di contrappeso

Combinazione n° 13

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 13

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	0.00	1000.00	200.11		
2	0.18	100, 50	18.85	18.85	6636.43	318.51	1407.56	200.76		
3	0.35	100, 50	18.85	18.85	6883.66	131.96	993.36	201.06		
4	0.53	100, 50	18.85	18.85	6993.87	-48.79	764.82	201.37		
5	0.71	100, 50	18.85	18.85	6746.02	-235.81	593.87	201.67		
6	0.89	100, 50	18.85	18.85	6234.84	-413.59	459.32	201.98		
7	1.06	100, 50	18.85	18.85	5325.95	-542.20	337.32	202.28		
8	1.24	100, 50	18.85	18.85	4483.17	-635.31	249.01	202.59		
9	1.42	100, 50	18.85	18.85	3763.52	-700.95	186.14	202.90		
10	1.59	100, 50	18.85	18.85	3051.78	-718.82	136.04	203.20		
11	1.77	100, 50	18.85	18.85	2362.19	-684.24	95.84	203.51		
12	1.95	100, 50	18.85	18.85	1801.39	-628.08	67.06	203.81		
13	2.13	100, 50	18.85	18.85	1390.69	-573.77	47.83	204.12		
14	2.30	100, 50	18.85	18.85	1080.49	-520.19	34.53	204.42		
15	2.48	100, 50	18.85	18.85	866.22	-480.97	25.85	204.73		
16	2.66	100, 50	18.85	18.85	708.20	-449.03	19.82	205.03		
17	2.83	100, 50	18.85	18.85	593.15	-425.77	15.63	205.34		
18	3.01	100, 50	18.85	18.85	506.04	-408.16	12.60	205.65		
19	3.19	100, 50	18.85	18.85	438.08	-394.43	10.34	205.95		
20	3.37	100, 50	18.85	18.85	383.79	-383.45	8.61	206.26		
21	3.54	100, 50	18.85	18.85	339.58	-374.51	7.26	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 13

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 13

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	1025.35	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	260.45	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	117.58	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	67.17	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	43.65	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	30.77	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	22.94	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	17.82	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	14.29	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	11.74	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	12 25	18 85	0.00	-505.83	1321 61	246 18		

3	0.54	100, 76	18.85	18.85	0.00	-489.04	322.67	240.28	
4	0.81	100, 74	18.85	18.85	0.00	-472.24	139.90	234.34	
5	1.08	100, 71	18.85	18.85	0.00	-455.45	76.68	228.37	
6	1.35	100, 69	18.85	18.85	0.00	-438.67	47.76	222.38	
7	1.62	100, 67	18.85	18.85	0.00	-421.88	32.23	216.35	
8	1.89	100, 64	18.85	18.85	0.00	-405.10	22.98	210.28	
9	2.16	100, 62	12.57	12.57	0.00	-261.00	11.46	204.18	
10	2.43	100, 59	12.57	12.57	0.00	-249.83	8.76	198.03	
11	2.70	100, 57	12.57	12.57	0.00	-238.66	6.89	191.85	

COMBINAZIONE n° 14

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	51.9984 48.4354 18.9167 X = 2.70 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.90
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	21.33 57.17	[°]			
Incremento sismico della spinta	13.7264	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.90
Inclinazione linea di rottura in condizioni sismiche	52.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	189.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	10.2538	[kN]			
Inerzia verticale del muro	5.1269	[kN]			
Inerzia del terrapieno fondazione di monte	17.4953	[kN]			
Inerzia verticale del terrapieno fondazione di monte	8.7476	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	88.9704	[kN]			
Risultante dei carichi applicati in dir. verticale	337.9683	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	344.4365	[kN]			

349.4829 9.75 -11.8763 5455.1992	[kN] [°] [kNm] [kN]
4.02 0.08136 0.09020	[m] [N/mmq] [N/mmq] [N/mmq]
	9.75 -11.8763 5455.1992 4.02 0.08136

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.34

Coefficiente di sicurezza a carico ultimo 15.84

Sollecitazioni paramento

Combinazione n° 14

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2259	0.3064
3	0.35	6.9297	-0.1294	0.8161
4	0.53	9.1445	0.0754	1.5292
5	0.71	11.3594	0.4245	2.4455
6	0.89	13.5742	0.9540	3.5652
7	1.06	15.7890	1.6999	4.8882
8	1.24	18.0039	2.6982	6.4145
9	1.42	20.2187	3.9850	8.1441
10	1.59	22.4336	5.5963	10.0770
11	1.77	24.6484	7.5681	12.2133
12	1.95	26.8632	9.9364	14.5529
13	2.13	29.0781	12.7373	17.0958
14	2.30	31.2929	16.0067	19.8420
15	2.48	33.5078	19.7808	22.7915
16	2.66	35.7226	24.0955	25.9444
17	2.83	37.9374	28.9868	29.3005
18	3.01	40.1523	34.4908	32.8600
19	3.19	42.3671	40.6436	36.6228
20	3.37	44.5820	47.4810	40.5889
21	3.54	46.7968	55.0377	44.7259

Sollecitazioni fondazione di valle

Combinazione n° 14

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2205	5.5117
3	0.16	0.8819	11.0235
4	0.24	1.9842	16.5355
5	0.32	3.5276	22.0476
6	0.40	5.5119	27.5599
7	0.48	7.9371	33.0723
8	0.56	10.8034	38.5848
9	0.64	14.1107	44.0975
10	0.72	17.8590	49.6103
11	0.80	22.0484	55.1233

Sollecitazioni fondazione di monte

Combinazione n° 14

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.0297	-0.2205
3	0.54	-0.1191	-0.4421
4	0.81	-0.2685	-0.6648
5	1.08	-0.4782	-0.8887
6	1.35	-0.7485	-1.1137
7	1.62	-1.0798	-1.3399
8	1.89	-1.4722	-1.5672
9	2.16	-1.9261	-1.7957
10	2.43	-2.4419	-2.0253
11	2.70	-2.8199	-0.2560

Sollecitazioni mensola di contrappeso

Combinazione n° 14

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 14

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	0.00	1000.00	200.11		
2	0.18	100, 50	18.85	18.85	6637.18	317.94	1407.72	200.76		
3	0.35	100, 50	18.85	18.85	6888.06	128.63	993.99	201.06		
4	0.53	100, 50	18.85	18.85	6982.28	-57.54	763.55	201.37		
5	0.71	100, 50	18.85	18.85	6725.47	-251.32	592.06	201.67		
6	0.89	100, 50	18.85	18.85	6130.61	-430.86	451.64	201.98		
7	1.06	100, 50	18.85	18.85	5192.95	-559.09	328.90	202.28		
8	1.24	100, 50	18.85	18.85	4335.55	-649.77	240.81	202.59		
9	1.42	100, 50	18.85	18.85	3599.69	-709.49	178.04	202.90		
10	1.59	100, 50	18.85	18.85	2860.63	-713.62	127.52	203.20		
11	1.77	100, 50	18.85	18.85	2169.39	-666.09	88.01	203.51		
12	1.95	100, 50	18.85	18.85	1641.98	-607.35	61.12	203.81		
13	2.13	100, 50	18.85	18.85	1257.25	-550.72	43.24	204.12		
14	2.30	100, 50	18.85	18.85	984.57	-503.62	31.46	204.42		
15	2.48	100, 50	18.85	18.85	787.94	-465.15	23.52	204.73		
16	2.66	100, 50	18.85	18.85	647.52	-436.76	18.13	205.03		
17	2.83	100, 50	18.85	18.85	544.33	-415.90	14.35	205.34		
18	3.01	100, 50	18.85	18.85	465.66	-400.00	11.60	205.65		
19	3.19	100, 50	18.85	18.85	403.96	-387.53	9.53	205.95		
20	3.37	100, 50	18.85	18.85	354.47	-377.53	7.95	206.26		
21	3.54	100, 50	18.85	18.85	314.05	-369.35	6.71	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 14

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 14

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

N_u sforzo normale ultimo espresso in [kN]

M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	949.72	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	241.12	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	108.80	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	62.12	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	40.35	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	28.43	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	21.19	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	16.45	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	13.18	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	10.82	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	18 85	18 85	0.00	-505.83	17010 64	246 18		

3	0.54	100, 76	18.85	18.85	0.00	-489.04	4104.39	240.28	
4	0.81	100, 74	18.85	18.85	0.00	-472.24	1758.49	234.34	
5	1.08	100, 71	18.85	18.85	0.00	-455.45	952.34	228.37	
6	1.35	100, 69	18.85	18.85	0.00	-438.67	586.03	222.38	
7	1.62	100, 67	18.85	18.85	0.00	-421.88	390.72	216.35	
8	1.89	100, 64	18.85	18.85	0.00	-405.10	275.17	210.28	
9	2.16	100, 62	12.57	12.57	0.00	-261.00	135.50	204.18	
10	2.43	100, 59	12.57	12.57	0.00	-249.83	102.31	198.03	
11	2.70	100, 57	12.57	12.57	0.00	-238.66	84.64	191.85	

COMBINAZIONE n° 15

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	64.2951 61.3693 19.1744 X = 2.70 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.90
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 54.01	[°] [°]			
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta	15.6998 X = 2.70 [m]	[kN] [m]	Υ	=	-2.90
Inclinazione linea di rottura in condizioni sismiche Peso terrapieno gravante sulla fondazione a monte	48.89 189.2601	[°] [kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	10.2538	[kN]			
Inerzia verticale del muro	5.1269	[kN]			
Inerzia del terrapieno fondazione di monte	17.4953	[kN]			
Inerzia verticale del terrapieno fondazione di monte	8.7476	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	104.1038	[kN]			
Risultante dei carichi applicati in dir. verticale	337.9146	[kN]			
Resistenza passiva a valle del muro	-3.2720	[kN]			
Sforzo normale sul piano di posa della fondazione	345.7020	[kN]			

Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	74.2565 0.02 4.02 353.5872 12.12 7.5434 2310.1799	[kN] [m] [m] [kN] [s] [kNm]
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	4.02 0.08890 0.08329	[m] [N/mmq] [N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00
. cc		6 11.3 1 11	

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.50

Coefficiente di sicurezza a carico ultimo 6.68

Sollecitazioni paramento

Combinazione n° 15

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2244	0.3315
3	0.35	6.9297	-0.1175	0.9166
4	0.53	9.1445	0.1154	1.7553
5	0.71	11.3594	0.5195	2.8476
6	0.89	13.5742	1.1395	4.1934
7	1.06	15.7890	2.0205	5.7928
8	1.24	18.0039	3.2073	7.6458
9	1.42	20.2187	4.7449	9.7524
10	1.59	22.4336	6.6783	12.1125
11	1.77	24.6484	9.0523	14.7262
12	1.95	26.8632	11.9119	17.5935
13	2.13	29.0781	15.3020	20.7144
14	2.30	31.2929	19.2675	24.0888
15	2.48	33.5078	23.8534	27.7169
16	2.66	35.7226	29.1046	31.5985
17	2.83	37.9374	35.0661	35.7336
18	3.01	40.1523	41.7827	40.1224
19	3.19	42.3671	49.2994	44.7647
20	3.37	44.5820	57.6611	49.6606
21	3.54	46.7968	66.9109	54.7695

Sollecitazioni fondazione di valle

Combinazione n° 15

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2442	6.1008
3	0.16	0.9755	12.1786
4	0.24	2.1922	18.2335
5	0.32	3.8923	24.2653
6	0.40	6.0740	30.2742
7	0.48	8.7355	36.2601
8	0.56	11.8750	42.2230
9	0.64	15.4906	48.1630
10	0.72	19.5805	54.0799
11	0.80	24.1428	59.9739

Sollecitazioni fondazione di monte

Combinazione n° 15

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.2710	-1.9640
3	0.54	-1.0370	-3.6658
4	0.81	-2.2270	-5.1053
5	1.08	-3.7702	-6.2825
6	1.35	-5.5959	-7.1974
7	1.62	-7.6332	-7.8500
8	1.89	-9.8113	-8.2403
9	2.16	-12.0593	-8.3684
10	2.43	-14.3066	-8.2341
11	2.70	-16.2822	-5.8376

Sollecitazioni mensola di contrappeso

Combinazione n° 15

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 15

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	0.00	1000.00	200.11		
2	0.18	100, 50	18.85	18.85	6639.78	315.98	1408.27	200.76		
3	0.35	100, 50	18.85	18.85	6903.36	117.09	996.20	201.06		
4	0.53	100, 50	18.85	18.85	6942.39	-87.64	759.19	201.37		
5	0.71	100, 50	18.85	18.85	6655.19	-304.35	585.88	201.67		
6	0.89	100, 50	18.85	18.85	5766.36	-484.07	424.80	201.98		
7	1.06	100, 50	18.85	18.85	4753.07	-608.24	301.04	202.28		
8	1.24	100, 50	18.85	18.85	3878.35	-690.91	215.42	202.59		
9	1.42	100, 50	18.85	18.85	3064.44	-719.17	151.56	202.90		
10	1.59	100, 50	18.85	18.85	2269.85	-675.72	101.18	203.20		
11	1.77	100, 50	18.85	18.85	1660.19	-609.72	67.35	203.51		
12	1.95	100, 50	18.85	18.85	1232.22	-546.40	45.87	203.81		
13	2.13	100, 50	18.85	18.85	943.56	-496.53	32.45	204.12		
14	2.30	100, 50	18.85	18.85	739.59	-455.37	23.63	204.42		
15	2.48	100, 50	18.85	18.85	600.06	-427.17	17.91	204.73		
16	2.66	100, 50	18.85	18.85	499.30	-406.80	13.98	205.03		
17	2.83	100, 50	18.85	18.85	423.54	-391.49	11.16	205.34		
18	3.01	100, 50	18.85	18.85	364.80	-379.61	9.09	205.65		
19	3.19	100, 50	18.85	18.85	318.12	-370.18	7.51	205.95		
20	3.37	100, 50	18.85	18.85	280.30	-362.53	6.29	206.26		
21	3.54	100, 50	18.85	18.85	249.15	-356.23	5.32	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 15

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 15

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

N_u sforzo normale ultimo espresso in [kN]

M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	857.47	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	217.97	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	98.48	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	56.30	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	36.61	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	25.83	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	19.28	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	14.99	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	12.02	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	9.89	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	18 85	18 85	0.00	-505.83	1866 21	246 18		

3	0.54	100, 76	18.85	18.85	0.00 -489	.04 471.60	240.28	
4	0.81	100, 74	18.85	18.85	0.00 -472	.24 212.06	234.34	
5	1.08	100, 71	18.85	18.85	0.00 -455	.45 120.80	228.37	
6	1.35	100, 69	18.85	18.85	0.00 -438	.67 78.39	222.38	
7	1.62	100, 67	18.85	18.85	0.00 -421	.88 55.27	216.35	
8	1.89	100, 64	18.85	18.85	0.00 -405	.10 41.29	210.28	
9	2.16	100, 62	12.57	12.57	0.00 -261	.00 21.64	204.18	
10	2.43	100, 59	12.57	12.57	0.00 -249	.83 17.46	198.03	
11	2.70	100, 57	12.57	12.57	0.00 -238	.66 14.66	191.85	

COMBINAZIONE n° 16

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	64.2951 61.3693 19.1744 X = 2.70 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.90
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 54.01	[°] [°]			
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta	9.8974 X = 2.70 [m]	[kN] [m]	Υ	=	-2.90
Inclinazione linea di rottura in condizioni sismiche	48.32	[°]			
Peso terrapieno gravante sulla fondazione a monte	189.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	10.2538	[kN]			
Inerzia verticale del muro	-5.1269	[kN]			
Inerzia del terrapieno fondazione di monte	17.4953	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-8.7476	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	98.5654	[kN]			
Risultante dei carichi applicati in dir. verticale	308.4351	[kN]			
Resistenza passiva a valle del muro	-3.2720	[kN]			
Sforzo normale sul piano di posa della fondazione	315.8519	[kN]			

Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	71.3084 0.04 4.02 323.8014 12.72 12.4685 2289.6409	[kN] [m] [m] [kN] [°] [kNm]
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	4.02 0.08330 0.07402	[m] [N/mmq] [N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.43
Coefficiente di sicurezza a carico ultimo 7.25

Sollecitazioni paramento

Combinazione n° 16

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2249	0.3223
3	0.35	6.9297	-0.1219	0.8798
4	0.53	9.1445	0.1008	1.6725
5	0.71	11.3594	0.4847	2.7004
6	0.89	13.5742	1.0716	3.9635
7	1.06	15.7890	1.9032	5.4617
8	1.24	18.0039	3.0210	7.1952
9	1.42	20.2187	4.4668	9.1638
10	1.59	22.4336	6.2823	11.3676
11	1.77	24.6484	8.5091	13.8066
12	1.95	26.8632	11.1889	16.4807
13	2.13	29.0781	14.3634	19.3901
14	2.30	31.2929	18.0741	22.5346
15	2.48	33.5078	22.3629	25.9143
16	2.66	35.7226	27.2714	29.5292
17	2.83	37.9374	32.8412	33.3793
18	3.01	40.1523	39.1141	37.4646
19	3.19	42.3671	46.1316	41.7850
20	3.37	44.5820	53.9355	46.3406
21	3.54	46.7968	62.5656	51.0938

Sollecitazioni fondazione di valle

Combinazione n° 16

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.08	0.2262	5.6498
3	0.16	0.9032	11.2707
4	0.24	2.0287	16.8628
5	0.32	3.6005	22.4260
6	0.40	5.6161	27.9604
7	0.48	8.0734	33.4659
8	0.56	10.9699	38.9426
9	0.64	14.3034	44.3905
10	0.72	18.0716	49.8095
11	0.80	22.2722	55.1996

Sollecitazioni fondazione di monte

Combinazione n° 16

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	М	Т
1	0.00	0.0000	0.0000
2	0.27	-0.6058	-4.4327
3	0.54	-2.3641	-8.5364
4	0.81	-5.1858	-12.3109
5	1.08	-8.9823	-15.7563
6	1.35	-13.6646	-18.8727
7	1.62	-19.1440	-21.6600
8	1.89	-25.3314	-24.1181
9	2.16	-32.1381	-26.2472
10	2.43	-39.4753	-28.0472
11	2.70	-47.0540	-27.5181

Sollecitazioni mensola di contrappeso

Combinazione n° 16

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 16

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	0.00	1000.00	200.11		
2	0.18	100, 50	18.85	18.85	6638.83	316.70	1408.07	200.76		
3	0.35	100, 50	18.85	18.85	6897.75	121.32	995.39	201.06		
4	0.53	100, 50	18.85	18.85	6956.94	-76.66	760.78	201.37		
5	0.71	100, 50	18.85	18.85	6680.74	-285.07	588.13	201.67		
6	0.89	100, 50	18.85	18.85	5894.95	-465.38	434.28	201.98		
7	1.06	100, 50	18.85	18.85	4905.52	-591.30	310.69	202.28		
8	1.24	100, 50	18.85	18.85	4035.40	-677.13	224.14	202.59		
9	1.42	100, 50	18.85	18.85	3282.05	-725.09	162.33	202.90		
10	1.59	100, 50	18.85	18.85	2466.19	-690.63	109.93	203.20		
11	1.77	100, 50	18.85	18.85	1830.22	-631.83	74.25	203.51		
12	1.95	100, 50	18.85	18.85	1368.26	-569.90	50.93	203.81		
13	2.13	100, 50	18.85	18.85	1038.37	-512.91	35.71	204.12		
14	2.30	100, 50	18.85	18.85	814.71	-470.56	26.03	204.42		
15	2.48	100, 50	18.85	18.85	657.43	-438.77	19.62	204.73		
16	2.66	100, 50	18.85	18.85	544.95	-416.03	15.26	205.03		
17	2.83	100, 50	18.85	18.85	460.98	-399.05	12.15	205.34		
18	3.01	100, 50	18.85	18.85	396.21	-385.96	9.87	205.65		
19	3.19	100, 50	18.85	18.85	344.95	-375.60	8.14	205.95		
20	3.37	100, 50	18.85	18.85	303.55	-367.23	6.81	206.26		
21	3.54	100, 50	18.85	18.85	269.53	-360.35	5.76	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 16

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 16

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

N_u sforzo normale ultimo espresso in [kN]

M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	925.72	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	235.43	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	106.41	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	60.86	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	39.60	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	27.95	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	20.87	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	16.23	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	13.03	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	10.72	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	12 25	18 85	0.00	-505.83	834 95	246 18		

3	0.54	100, 76	18.85	18.85	0.00	-489.04	206.86	240.28	
4	0.81	100, 74	18.85	18.85	0.00	-472.24	91.06	234.34	
5	1.08	100, 71	18.85	18.85	0.00	-455.45	50.71	228.37	
6	1.35	100, 69	18.85	18.85	0.00	-438.67	32.10	222.38	
7	1.62	100, 67	18.85	18.85	0.00	-421.88	22.04	216.35	
8	1.89	100, 64	18.85	18.85	0.00	-405.10	15.99	210.28	
9	2.16	100, 62	12.57	12.57	0.00	-261.00	8.12	204.18	
10	2.43	100, 59	12.57	12.57	0.00	-249.83	6.33	198.03	
11	2.70	100, 57	12.57	12.57	0.00	-238.66	5.07	191.85	

COMBINAZIONE n° 17

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	64.2951 61.3693 19.1744 X = 2.70 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.90
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 54.01	[°] [°]			
Incremento sismico della spinta	9.8974	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.90
Inclinazione linea di rottura in condizioni sismiche	48.32	[°]			
Peso terrapieno gravante sulla fondazione a monte	189.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	10.2538	[kN]			
Inerzia verticale del muro	-5.1269	[kN]			
Inerzia del terrapieno fondazione di monte	17.4953	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-8.7476	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	98.5654	[kN]			
Risultante dei carichi applicati in dir. verticale	308.4351	[kN]			
Resistenza passiva a valle del muro	-3.2720	[kN]			
Momento ribaltante rispetto allo spigolo a valle	159.5200	[kNm]			

Momento stabilizzante rispetto allo spigolo a valle	781.1684	[kNm]			
Sforzo normale sul piano di posa della fondazione	315.8519	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	71.3084	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.04	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	323.8014	[kN]			
Inclinazione della risultante (rispetto alla normale)	12.72	[°]			
Momento rispetto al baricentro della fondazione	12.4685	[kNm]			
COEFFICIENTI DI SICUREZZA					
Coefficiente di sicurezza a ribaltamento	4.90				
COMBINAZIONE n° 18					
Valore della spinta statica	64.2951	[kN]			
Componente orizzontale della spinta statica	61.3693	[kN]			
Componente verticale della spinta statica	19.1744	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.90
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Incremento sismico della spinta	15.6998	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.90
Inclinazione linea di rottura in condizioni sismiche	48.89	[°]			
Peso terrapieno gravante sulla fondazione a monte	189.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	10.2538	[kN]			
Inerzia verticale del muro	5.1269	[kN]			
Inerzia del terrapieno fondazione di monte	17.4953	[kN]			
Inerzia verticale del terrapieno fondazione di monte	8.7476	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>		F1 3			
Risultante dei carichi applicati in dir. orizzontale	104.1038	[kN]			
Risultante dei carichi applicati in dir. verticale	337.9146	[kN]			
Resistenza passiva a valle del muro	-3.2720	[kN]			

Momento ribaltante rispetto allo spigolo a valle	133.6036	[kNm]
Momento stabilizzante rispetto allo spigolo a valle	820.1052	[kNm]
Sforzo normale sul piano di posa della fondazione	345.7020	[kN]
Sforzo tangenziale sul piano di posa della fondazione	74.2565	[kN]
Eccentricità rispetto al baricentro della fondazione	0.02	[m]
Lunghezza fondazione reagente	4.02	[m]
Risultante in fondazione	353.5872	[kN]
Inclinazione della risultante (rispetto alla normale)	12.12	[°]
Momento rispetto al baricentro della fondazione	7.5434	[kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 6.14

Stabilità globale muro + terreno

Combinazione n° 19

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.81 Y[m] = 3.24

Raggio del cerchio R[m]= 8.36

Ascissa a valle del cerchio Xi[m] = -5.77Ascissa a monte del cerchio Xs[m] = 6.91

Larghezza della striscia dx[m]= 0.51 Coefficiente di sicurezza C= 1.51

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	?(°)	Wsin⊡	b/cos2	?	С	u
1	514.99	63.01	458.89	1.12	26.56	0.000	0.000
2	1425.13	56.42	1187.34	0.92	26.56	0.000	0.000
3	2139.00	50.54	1651.57	0.80	26.56	0.000	0.000
4	2723.13	45.34	1936.83	0.72	26.56	0.000	0.000
5	3213.18	40.58	2090.03	0.67	26.56	0.000	0.000
6	3629.35	36.14	2140.23	0.63	26.56	0.000	0.000
7	3984.39	31.94	2107.63	0.60	26.56	0.000	0.000
8	4286.90	27.92	2007.38	0.57	26.56	0.000	0.000
9	4687.67	24.05	1910.49	0.56	26.56	0.000	0.000
10	4952.48	20.30	1717.82	0.54	26.56	0.000	0.000
11	5116.17	16.63	1464.10	0.53	26.56	0.000	0.000
12	5243.57	13.03	1182.35	0.52	26.56	0.000	0.000
13	5336.45	9.49	879.46	0.51	26.56	0.000	0.000

14	5796.36	5.98	603.53	0.51	26.56	0.000	0.000	
15	4550.81	2.49	197.70	0.51	26.56	0.000	0.000	
16	1809.89	-0.99	-31.20	0.51	26.56	0.000	0.000	
17	1671.46	-4.47	-130.23	0.51	26.56	0.000	0.000	
18	1590.53	-7.97	-220.44	0.51	26.56	0.000	0.000	
19	1500.48	-11.49	-299.01	0.52	26.56	0.000	0.000	
20	1376.52	-15.07	-357.84	0.53	26.56	0.000	0.000	
21	1217.10	-18.70	-390.26	0.54	26.56	0.000	0.000	
22	1020.09	-22.42	-389.01	0.55	26.56	0.000	0.000	
23	782.62	-26.23	-345.95	0.57	26.56	0.000	0.000	
24	500.79	-30.18	-251.77	0.59	26.56	0.000	0.000	
25	169.32	-34.30	-95.41	0.61	26.56	0.000	0.000	

②W_i= 679.0074 [kN]

2W_isin_i= 186.5670 [kN]

PWitan is 339.4327 [kN]

②tan②itan②i= 3.44

Stabilità globale muro + terreno

Combinazione n° 20

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.81 Y[m] = 3.65

Raggio del cerchio R[m]= 8.73

Ascissa a valle del cerchio Xi[m] = -5.84Ascissa a monte del cerchio Xs[m] = 7.13

Larghezza della striscia dx[m]= 0.52 Coefficiente di sicurezza C= 1.48

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	?(°)	Wsin?	b/cos2	?	С	u
1	504.41	61.44	443.02	1.09	26.56	0.000	0.000
2	1404.42	55.23	1153.73	0.91	26.56	0.000	0.000
3	2122.89	49.62	1617.11	0.80	26.56	0.000	0.000
4	2716.52	44.60	1907.34	0.73	26.56	0.000	0.000
5	3217.57	39.98	2067.51	0.68	26.56	0.000	0.000
6	3644.91	35.66	2125.14	0.64	26.56	0.000	0.000
7	4010.71	31.57	2099.77	0.61	26.56	0.000	0.000
8	4323.30	27.65	2006.23	0.59	26.56	0.000	0.000
9	4685.94	23.86	1895.81	0.57	26.56	0.000	0.000
10	5013.67	20.19	1730.22	0.55	26.56	0.000	0.000
11	5184.27	16.60	1480.81	0.54	26.56	0.000	0.000
12	5317.67	13.07	1202.71	0.53	26.56	0.000	0.000
13	5415.65	9.60	902.85	0.53	26.56	0.000	0.000

14	5771.57	6.16	619.01	0.52	26.56	0.000	0.000	
15	5088.36	2.74	243.19	0.52	26.56	0.000	0.000	
16	1815.61	-0.67	-21.18	0.52	26.56	0.000	0.000	
17	1684.73	-4.08	-119.82	0.52	26.56	0.000	0.000	
18	1595.80	-7.50	-208.38	0.52	26.56	0.000	0.000	
19	1506.48	-10.96	-286.29	0.53	26.56	0.000	0.000	
20	1382.58	-14.45	-344.96	0.54	26.56	0.000	0.000	
21	1222.63	-18.00	-377.75	0.55	26.56	0.000	0.000	
22	1024.59	-21.62	-377.50	0.56	26.56	0.000	0.000	
23	785.76	-25.33	-336.23	0.57	26.56	0.000	0.000	
24	502.48	-29.17	-244.91	0.59	26.56	0.000	0.000	
25	169.84	-33.15	-92.88	0.62	26.56	0.000	0.000	

2W_i= 687.5784 [kN] 2W_isin2_i= 187.1584 [kN] 2W_itan2_i= 343.7173 [kN]

②tan②itan②i= 3.36

COMBINAZIONE n° 21

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica	63.9590	[kN]			
Componente orizzontale della spinta statica	59.5765	[kN]			
Componente verticale della spinta statica	23.2678	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.76
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	16.8783	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.76
Inclinazione linea di rottura in condizioni sismiche	52.86	[°]			
Peso terrapieno gravante sulla fondazione a monte	206.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	10.2538	[kN]			
Inerzia verticale del muro	5.1269	[kN]			

Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	19.0668 9.5334	[kN] [kN]
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]
merzia verticale dei terrapieno mensola di contrappeso	0.0000	[KIN]
<u>Risultanti</u>		
Risultante dei carichi applicati in dir. orizzontale	104.6189	[kN]
Risultante dei carichi applicati in dir. verticale	361.2519	[kN]
Resistenza passiva a valle del muro	-4.0684	[kN]
Sforzo normale sul piano di posa della fondazione	368.9953	[kN]
Sforzo tangenziale sul piano di posa della fondazione	72.7356	[kN]
Eccentricità rispetto al baricentro della fondazione	-0.01	[m]
Lunghezza fondazione reagente	4.02	[m]
Risultante in fondazione	376.0958	[kN]
Inclinazione della risultante (rispetto alla normale)	11.15	[°]
Momento rispetto al baricentro della fondazione	-2.7603	[kNm]
Carico ultimo della fondazione	5529.8460	[kN]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	4.02	[m]
Tensione terreno allo spigolo di valle	0.09087	[N/mmq]
Tensione terreno allo spigolo di monte	0.09293	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N _≥ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00
I coefficienti N' tengono conto de di posa, inclinazione pendio.	ei fattori di forma, profo	ndità, inclinazione carico, i	nclinazione piano
	$N'_{c} = 44.04$	$N'_{q} = 28.52$	N' ₂ = 27.33

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.04
Coefficiente di sicurezza a carico ultimo	14.99

Sollecitazioni paramento

Combinazione n° 21

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2258	0.3080
3	0.35	6.9297	-0.1287	0.8225
4	0.53	9.1445	0.0779	1.5436
5	0.71	11.3594	0.4305	2.4711
6	0.89	13.5742	0.9658	3.6052
7	1.06	15.7890	1.7203	4.9458
8	1.24	18.0039	2.7324	6.5402
9	1.42	20.2187	4.0656	8.5902
10	1.59	22.4336	5.7983	11.0079
11	1.77	24.6484	7.9804	13.6608
12	1.95	26.8632	10.6527	16.5401
13	2.13	29.0781	13.8548	19.6407
14	2.30	31.2929	17.6257	22.9591
15	2.48	33.5078	22.0037	26.4926
16	2.66	35.7226	27.0266	30.2395
17	2.83	37.9374	32.7323	34.1982
18	3.01	40.1523	39.1581	38.3679
19	3.19	42.3671	46.3413	42.7476
20	3.37	44.5820	54.3191	47.3368
21	3.54	46.7968	63.1270	52.1016

Sollecitazioni fondazione di valle

Combinazione n° 21

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2507	6.2649
3	0.16	1.0021	12.5191
4	0.24	2.2534	18.7626
5	0.32	4.0038	24.9953
6	0.40	6.2524	31.2174
7	0.48	8.9983	37.4287
8	0.56	12.2407	43.6294
9	0.64	15.9787	49.8193
10	0.72	20.2115	55.9985
11	0.80	24.9382	62.1670

Sollecitazioni fondazione di monte

Combinazione n° 21

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.2903	-2.1302
3	0.54	-1.1393	-4.1378
4	0.81	-2.5137	-6.0230
5	1.08	-4.3807	-7.7856
6	1.35	-6.7069	-9.4257
7	1.62	-9.4595	-10.9433
8	1.89	-12.4248	-10.4384
9	2.16	-15.0532	-9.0110
10	2.43	-17.2797	-7.4610
11	2.70	-18.8712	-3.7886

Sollecitazioni mensola di contrappeso

Combinazione n° 21

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 21

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	0.00	1000.00	200.11		
2	0.18	100, 50	18.85	18.85	6637.34	317.82	1407.76	200.76		
3	0.35	100, 50	18.85	18.85	6889.03	127.90	994.13	201.06		
4	0.53	100, 50	18.85	18.85	6979.72	-59.47	763.27	201.37		
5	0.71	100, 50	18.85	18.85	6720.94	-254.74	591.67	201.67		
6	0.89	100, 50	18.85	18.85	6107.18	-434.53	449.91	201.98		
7	1.06	100, 50	18.85	18.85	5163.61	-562.62	327.04	202.28		
8	1.24	100, 50	18.85	18.85	4302.64	-652.99	238.98	202.59		
9	1.42	100, 50	18.85	18.85	3543.04	-712.44	175.24	202.90		
10	1.59	100, 50	18.85	18.85	2736.35	-707.25	121.98	203.20		
11	1.77	100, 50	18.85	18.85	2010.24	-650.85	81.56	203.51		
12	1.95	100, 50	18.85	18.85	1477.70	-585.98	55.01	203.81		
13	2.13	100, 50	18.85	18.85	1098.16	-523.24	37.77	204.12		
14	2.30	100, 50	18.85	18.85	847.04	-477.10	27.07	204.42		
15	2.48	100, 50	18.85	18.85	672.94	-441.90	20.08	204.73		
16	2.66	100, 50	18.85	18.85	551.69	-417.39	15.44	205.03		
17	2.83	100, 50	18.85	18.85	462.98	-399.46	12.20	205.34		
18	3.01	100, 50	18.85	18.85	395.64	-385.85	9.85	205.65		
19	3.19	100, 50	18.85	18.85	343.04	-375.21	8.10	205.95		
20	3.37	100, 50	18.85	18.85	300.97	-366.71	6.75	206.26		
21	3.54	100, 50	18.85	18.85	266.71	-359.78	5.70	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 21

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 21

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	835.30	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	212.19	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	95.80	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	54.73	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	35.57	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	25.08	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	18.70	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	14.53	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	11.65	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	9.57	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	18 85	18 85	0.00	-505.83	1742 25	246 18		

3	0.54	100, 76	18.85	18.85	0.00	-489.04	429.26	240.28	
4	0.81	100, 74	18.85	18.85	0.00	-472.24	187.87	234.34	
5	1.08	100, 71	18.85	18.85	0.00	-455.45	103.97	228.37	
6	1.35	100, 69	18.85	18.85	0.00	-438.67	65.41	222.38	
7	1.62	100, 67	18.85	18.85	0.00	-421.88	44.60	216.35	
8	1.89	100, 64	18.85	18.85	0.00	-405.10	32.60	210.28	
9	2.16	100, 62	12.57	12.57	0.00	-261.00	17.34	204.18	
10	2.43	100, 59	12.57	12.57	0.00	-249.83	14.46	198.03	
11	2.70	100, 57	12.57	12.57	0.00	-238.66	12.65	191.85	

COMBINAZIONE n° 22

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	63.9590 59.5765 23.2678 X = 2.70 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.76
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	21.33 57.17	[°] [°]			
Incremento sismico della spinta	11.0804	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.76
Inclinazione linea di rottura in condizioni sismiche	52.86	[°]			
Peso terrapieno gravante sulla fondazione a monte	206.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	10.2538	[kN]			
Inerzia verticale del muro	-5.1269	[kN]			
Inerzia del terrapieno fondazione di monte	19.0668	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-9.5334	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	99.2182	[kN]			
Risultante dei carichi applicati in dir. verticale	329.8220	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	337.2144	[kN]			

Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	70.0948 0.01 4.02 344.4225 11.74 3.4095 5522.5743	[kN] [m] [m] [kN] [°] [kNm] [kN]
<u>Tensioni sul terreno</u> Lunghezza fondazione reagente Tensione terreno allo spigolo di valle	4.02 0.08525	[m] [N/mmq]
Tensione terreno allo spigolo di monte Tensione terreno all'estremità della mensola di contrappeso	0.08271 0.000	[N/mmq] [N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00
			and the second second

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.94
Coefficiente di sicurezza a carico ultimo 16.38

Sollecitazioni paramento

Combinazione n° 22

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2262	0.3008
3	0.35	6.9297	-0.1321	0.7936
4	0.53	9.1445	0.0664	1.4785
5	0.71	11.3594	0.4032	2.3555
6	0.89	13.5742	0.9124	3.4245
7	1.06	15.7890	1.6281	4.6856
8	1.24	18.0039	2.5858	6.1827
9	1.42	20.2187	3.8447	8.1035
10	1.59	22.4336	5.4777	10.3662
11	1.77	24.6484	7.5311	12.8477
12	1.95	26.8632	10.0430	15.5398
13	2.13	29.0781	13.0502	18.4376
14	2.30	31.2929	16.5888	21.5380
15	2.48	33.5078	20.6945	24.8385
16	2.66	35.7226	25.4026	28.3373
17	2.83	37.9374	30.7482	32.0333
18	3.01	40.1523	36.7660	35.9253
19	3.19	42.3671	43.4907	40.0127
20	3.37	44.5820	50.9570	44.2950
21	3.54	46.7968	59.1977	48.7404

Sollecitazioni fondazione di valle

Combinazione n° 22

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2326	5.8111
3	0.16	0.9293	11.6041
4	0.24	2.0887	17.3791
5	0.32	3.7095	23.1360
6	0.40	5.7900	28.8748
7	0.48	8.3290	34.5956
8	0.56	11.3248	40.2984
9	0.64	14.7762	45.9831
10	0.72	18.6816	51.6497
11	0.80	23.0397	57.2982

Sollecitazioni fondazione di monte

Combinazione n° 22

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.6590	-4.8474
3	0.54	-2.5991	-9.4887
4	0.81	-5.7644	-13.9237
5	1.08	-10.0993	-18.1525
6	1.35	-15.5481	-22.1751
7	1.62	-22.0553	-25.9915
8	1.89	-29.3845	-27.7017
9	2.16	-36.9636	-28.4056
10	2.43	-44.7050	-28.9034
11	2.70	-52.3529	-27.1950

Sollecitazioni mensola di contrappeso

Combinazione n° 22

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 22

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	0.00	1000.00	200.11		
2	0.18	100, 50	18.85	18.85	6636.59	318.38	1407.60	200.76		
3	0.35	100, 50	18.85	18.85	6884.64	131.21	993.50	201.06		
4	0.53	100, 50	18.85	18.85	6991.27	-50.76	764.53	201.37		
5	0.71	100, 50	18.85	18.85	6741.41	-239.30	593.47	201.67		
6	0.89	100, 50	18.85	18.85	6211.17	-417.51	457.57	201.98		
7	1.06	100, 50	18.85	18.85	5295.56	-546.06	335.39	202.28		
8	1.24	100, 50	18.85	18.85	4447.63	-638.79	247.04	202.59		
9	1.42	100, 50	18.85	18.85	3702.81	-704.11	183.14	202.90		
10	1.59	100, 50	18.85	18.85	2930.35	-715.51	130.62	203.20		
11	1.77	100, 50	18.85	18.85	2184.90	-667.58	88.64	203.51		
12	1.95	100, 50	18.85	18.85	1615.25	-603.87	60.13	203.81		
13	2.13	100, 50	18.85	18.85	1208.24	-542.26	41.55	204.12		
14	2.30	100, 50	18.85	18.85	932.62	-494.39	29.80	204.42		
15	2.48	100, 50	18.85	18.85	736.22	-454.69	21.97	204.73		
16	2.66	100, 50	18.85	18.85	600.97	-427.35	16.82	205.03		
17	2.83	100, 50	18.85	18.85	502.79	-407.51	13.25	205.34		
18	3.01	100, 50	18.85	18.85	428.68	-392.53	10.68	205.65		
19	3.19	100, 50	18.85	18.85	371.03	-380.87	8.76	205.95		
20	3.37	100, 50	18.85	18.85	325.10	-371.59	7.29	206.26		
21	3.54	100, 50	18.85	18.85	287.78	-364.04	6.15	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 22

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 22

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

N_u sforzo normale ultimo espresso in [kN]

M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	900.32	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	228.81	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	103.36	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	59.08	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	38.41	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	27.09	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	20.21	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	15.71	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	12.60	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	10.36	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	18 85	18 85	0.00	-505.83	767 52	246 18		

3	0.54	100, 76	18.85	18.85	0.00	-489.04	188.16	240.28	
4	0.81	100, 74	18.85	18.85	0.00	-472.24	81.92	234.34	
5	1.08	100, 71	18.85	18.85	0.00	-455.45	45.10	228.37	
6	1.35	100, 69	18.85	18.85	0.00	-438.67	28.21	222.38	
7	1.62	100, 67	18.85	18.85	0.00	-421.88	19.13	216.35	
8	1.89	100, 64	18.85	18.85	0.00	-405.10	13.79	210.28	
9	2.16	100, 62	12.57	12.57	0.00	-261.00	7.06	204.18	
10	2.43	100, 59	12.57	12.57	0.00	-249.83	5.59	198.03	
11	2.70	100, 57	12.57	12.57	0.00	-238.66	4.56	191.85	

COMBINAZIONE n° 23

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie	79.0841 75.4855 23.5849 X = 2.70 [m] 17.35	[kN] [kN] [kN] [m]	Υ	=	-2.76
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Incremento sismico della spinta	11.0614	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.76
Inclinazione linea di rottura in condizioni sismiche	52.82	[°]			
Peso terrapieno gravante sulla fondazione a monte	206.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	10.2538	[kN]			
Inerzia verticale del muro	-5.1269	[kN]			
Inerzia del terrapieno fondazione di monte	19.0668	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-9.5334	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	115.3640	[kN]			
Risultante dei carichi applicati in dir. verticale	329.4069	[kN]			
Resistenza passiva a valle del muro	-3.2720	[kN]			
Sforzo normale sul piano di posa della fondazione	338.2081	[kN]			

Sforzo tangenziale sul piano di posa della fondazione	86.2153	[kN]
Eccentricità rispetto al baricentro della fondazione	0.08	[m]
Lunghezza fondazione reagente	4.02	[m]
Risultante in fondazione	349.0241	[kN]
Inclinazione della risultante (rispetto alla normale)	14.30	[°]
Momento rispetto al baricentro della fondazione	27.0281	[kNm]
Carico ultimo della fondazione	2242.5955	[kN]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	4.02	[m]
Tensione terreno allo spigolo di valle	0.09429	[N/mmq]
Tensione terreno allo spigolo di monte	0.07417	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.26
Coefficiente di sicurezza a carico ultimo 6.63

Sollecitazioni paramento

Combinazione n° 23

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Y	N	M	т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2248	0.3242
3	0.35	6.9297	-0.1210	0.8875
4	0.53	9.1445	0.1038	1.6897
5	0.71	11.3594	0.4919	2.7309
6	0.89	13.5742	1.0857	4.0137
7	1.06	15.7890	1.9342	5.6348
8	1.24	18.0039	3.1127	7.7454
9	1.42	20.2187	4.7027	10.2517
10	1.59	22.4336	6.7619	13.0370
11	1.77	24.6484	9.3383	16.0879
12	1.95	26.8632	12.4783	19.3975
13	2.13	29.0781	16.2273	22.9610
14	2.30	31.2929	20.6299	26.7748
15	2.48	33.5078	25.7302	30.8364
16	2.66	35.7226	31.5720	35.1440
17	2.83	37.9374	38.1988	39.6962
18	3.01	40.1523	45.6537	44.4919
19	3.19	42.3671	53.9799	49.5304
20	3.37	44.5820	63.2203	54.8108
21	3.54	46.7968	73.4159	60.2943

Sollecitazioni fondazione di valle

Combinazione n° 23

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	80.0	0.2611	6.5200
3	0.16	1.0420	12.9938
4	0.24	2.3389	19.4214
5	0.32	4.1482	25.8029
6	0.40	6.4661	32.1381
7	0.48	9.2890	38.4272
8	0.56	12.6132	44.6701
9	0.64	16.4350	50.8668
10	0.72	20.7507	57.0173
11	0.80	25.5566	63.1216

Sollecitazioni fondazione di monte

Combinazione n° 23

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.9560	-6.9936
3	0.54	-3.7292	-13.4607
4	0.81	-8.1774	-19.4011
5	1.08	-14.1584	-24.8150
6	1.35	-21.5301	-29.7023
7	1.62	-30.1502	-34.0630
8	1.89	-39.6962	-35.9970
9	2.16	-49.5092	-36.6045
10	2.43	-59.4152	-36.6854
11	2.70	-69.0720	-34.2397

Sollecitazioni mensola di contrappeso

Combinazione n° 23

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 23

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	0.00	1000.00	200.11		
2	0.18	100, 50	18.85	18.85	6639.03	316.55	1408.11	200.76		
3	0.35	100, 50	18.85	18.85	6898.91	120.45	995.56	201.06		
4	0.53	100, 50	18.85	18.85	6953.92	-78.94	760.45	201.37		
5	0.71	100, 50	18.85	18.85	6675.42	-289.08	587.66	201.67		
6	0.89	100, 50	18.85	18.85	5867.75	-469.33	432.27	201.98		
7	1.06	100, 50	18.85	18.85	4864.20	-595.89	308.07	202.28		
8	1.24	100, 50	18.85	18.85	3956.60	-684.05	219.76	202.59		
9	1.42	100, 50	18.85	18.85	3095.62	-720.01	153.11	202.90		
10	1.59	100, 50	18.85	18.85	2228.70	-671.77	99.35	203.20		
11	1.77	100, 50	18.85	18.85	1582.76	-599.65	64.21	203.51		
12	1.95	100, 50	18.85	18.85	1143.16	-531.01	42.55	203.81		
13	2.13	100, 50	18.85	18.85	859.39	-479.59	29.55	204.12		
14	2.30	100, 50	18.85	18.85	669.14	-441.13	21.38	204.42		
15	2.48	100, 50	18.85	18.85	540.65	-415.16	16.14	204.73		
16	2.66	100, 50	18.85	18.85	448.71	-396.57	12.56	205.03		
17	2.83	100, 50	18.85	18.85	380.08	-382.70	10.02	205.34		
18	3.01	100, 50	18.85	18.85	327.18	-372.01	8.15	205.65		
19	3.19	100, 50	18.85	18.85	285.34	-363.55	6.73	205.95		
20	3.37	100, 50	18.85	18.85	251.55	-356.72	5.64	206.26		
21	3.54	100, 50	18.85	18.85	223.81	-351.11	4.78	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 23

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 23

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	801.90	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	204.07	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	92.30	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	52.83	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	34.39	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	24.29	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	18.15	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	14.13	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	11.34	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	9.34	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	18 85	18 85	0.00	-505.83	529 12	246 18		

3	0.54	100, 76	18.85	18.85	0.00	-489.04	131.14	240.28	
4	0.81	100, 74	18.85	18.85	0.00	-472.24	57.75	234.34	
5	1.08	100, 71	18.85	18.85	0.00	-455.45	32.17	228.37	
6	1.35	100, 69	18.85	18.85	0.00	-438.67	20.37	222.38	
7	1.62	100, 67	18.85	18.85	0.00	-421.88	13.99	216.35	
8	1.89	100, 64	18.85	18.85	0.00	-405.10	10.21	210.28	
9	2.16	100, 62	12.57	12.57	0.00	-261.00	5.27	204.18	
10	2.43	100, 59	12.57	12.57	0.00	-249.83	4.20	198.03	
11	2.70	100, 57	12.57	12.57	0.00	-238.66	3.46	191.85	

COMBINAZIONE n° 24

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	79.0841 75.4855 23.5849 X = 2.70 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.76
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 54.01	[°] [°]			
Incremento sismico della spinta	18.3640	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.76
Inclinazione linea di rottura in condizioni sismiche	52.82	[°]			
Peso terrapieno gravante sulla fondazione a monte	206.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	10.2538	[kN]			
Inerzia verticale del muro	5.1269	[kN]			
Inerzia del terrapieno fondazione di monte	19.0668	[kN]			
Inerzia verticale del terrapieno fondazione di monte	9.5334	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	122.3344	[kN]			
Risultante dei carichi applicati in dir. verticale	360.9054	[kN]			
Resistenza passiva a valle del muro	-3.2720	[kN]			
Sforzo normale sul piano di posa della fondazione	370.1941	[kN]			

Sforzo tangenziale sul piano di posa della fondazione	90.4139	[kN]
Eccentricità rispetto al baricentro della fondazione	0.06	[m]
Lunghezza fondazione reagente	4.02	[m]
Risultante in fondazione	381.0753	[kN]
Inclinazione della risultante (rispetto alla normale)	13.72	[°]
Momento rispetto al baricentro della fondazione	22.9367	[kNm]
Carico ultimo della fondazione	2263.4857	[kN]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	4.02	[m]
Tensione terreno allo spigolo di valle	0.10073	[N/mmq]
Tensione terreno allo spigolo di monte	0.08366	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00
		6 11.3 1 11	

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.32
Coefficiente di sicurezza a carico ultimo 6.11

Sollecitazioni paramento

Combinazione n° 24

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2243	0.3334
3	0.35	6.9297	-0.1167	0.9242
4	0.53	9.1445	0.1184	1.7722
5	0.71	11.3594	0.5266	2.8776
6	0.89	13.5742	1.1534	4.2431
7	1.06	15.7890	2.0517	5.9729
8	1.24	18.0039	3.3025	8.2297
9	1.42	20.2187	4.9936	10.9126
10	1.59	22.4336	7.1872	13.8959
11	1.77	24.6484	9.9348	17.1652
12	1.95	26.8632	13.2865	20.7130
13	2.13	29.0781	17.2911	24.5342
14	2.30	31.2929	21.9967	28.6249
15	2.48	33.5078	27.4508	32.9824
16	2.66	35.7226	33.7005	37.6048
17	2.83	37.9374	40.7926	42.4906
18	3.01	40.1523	48.7736	47.6386
19	3.19	42.3671	57.6899	53.0479
20	3.37	44.5820	67.5878	58.7178
21	3.54	46.7968	78.5114	64.6062

Sollecitazioni fondazione di valle

Combinazione n° 24

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2818	7.0379
3	0.16	1.1250	14.0345
4	0.24	2.5262	20.9898
5	0.32	4.4822	27.9038
6	0.40	6.9897	34.7764
7	0.48	10.0454	41.6078
8	0.56	13.6459	48.3978
9	0.64	17.7879	55.1465
10	0.72	22.4682	61.8539
11	0.80	27.6834	68.5200

Sollecitazioni fondazione di monte

Combinazione n° 24

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	М	Т
1	0.00	0.0000	0.0000
2	0.27	-0.6126	-4.4594
3	0.54	-2.3657	-8.4478
4	0.81	-5.1320	-11.9650
5	1.08	-8.7844	-15.0112
6	1.35	-13.1957	-17.5863
7	1.62	-18.2386	-19.6902
8	1.89	-23.6055	-19.4231
9	2.16	-28.6527	-17.8849
10	2.43	-33.2209	-15.8756
11	2.70	-36.9831	-11.3952

Sollecitazioni mensola di contrappeso

Combinazione n° 24

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 24

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	0.00	1000.00	200.11		
2	0.18	100, 50	18.85	18.85	6639.98	315.83	1408.31	200.76		
3	0.35	100, 50	18.85	18.85	6904.51	116.23	996.37	201.06		
4	0.53	100, 50	18.85	18.85	6939.43	-89.87	758.86	201.37		
5	0.71	100, 50	18.85	18.85	6650.00	-308.27	585.42	201.67		
6	0.89	100, 50	18.85	18.85	5740.70	-487.80	422.91	201.98		
7	1.06	100, 50	18.85	18.85	4714.06	-612.57	298.57	202.28		
8	1.24	100, 50	18.85	18.85	3802.77	-697.54	211.22	202.59		
9	1.42	100, 50	18.85	18.85	2892.93	-714.50	143.08	202.90		
10	1.59	100, 50	18.85	18.85	2040.59	-653.76	90.96	203.20		
11	1.77	100, 50	18.85	18.85	1442.46	-581.40	58.52	203.51		
12	1.95	100, 50	18.85	18.85	1036.31	-512.56	38.58	203.81		
13	2.13	100, 50	18.85	18.85	779.29	-463.40	26.80	204.12		
14	2.30	100, 50	18.85	18.85	610.78	-429.34	19.52	204.42		
15	2.48	100, 50	18.85	18.85	495.66	-406.07	14.79	204.73		
16	2.66	100, 50	18.85	18.85	412.64	-389.28	11.55	205.03		
17	2.83	100, 50	18.85	18.85	350.32	-376.69	9.23	205.34		
18	3.01	100, 50	18.85	18.85	302.07	-366.93	7.52	205.65		
19	3.19	100, 50	18.85	18.85	263.79	-359.19	6.23	205.95		
20	3.37	100, 50	18.85	18.85	232.80	-352.93	5.22	206.26		
21	3.54	100, 50	18.85	18.85	207.29	-347.77	4.43	206.56		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 24

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 24

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

N_u sforzo normale ultimo espresso in [kN]

M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	743.04	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	189.01	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	85.46	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	48.89	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	31.82	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	22.46	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	16.77	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	13.05	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	10.48	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	8.62	191.85		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	252.06		
2	0.27	100 79	18 85	18 85	0.00	-505.83	825 68	246 18		

3	0.54	100, 76	18.85	18.85	0.00 -	-489.04	206.72	240.28	
4	0.81	100, 74	18.85	18.85	0.00 -	-472.24	92.02	234.34	
5	1.08	100, 71	18.85	18.85	0.00 -	-455.45	51.85	228.37	
6	1.35	100, 69	18.85	18.85	0.00 -	-438.67	33.24	222.38	
7	1.62	100, 67	18.85	18.85	0.00 -	-421.88	23.13	216.35	
8	1.89	100, 64	18.85	18.85	0.00 -	-405.10	17.16	210.28	
9	2.16	100, 62	12.57	12.57	0.00 -	-261.00	9.11	204.18	
10	2.43	100, 59	12.57	12.57	0.00 -	-249.83	7.52	198.03	
11	2.70	100, 57	12.57	12.57	0.00 -	-238.66	6.45	191.85	

COMBINAZIONE n° 25

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	79.0841 75.4855 23.5849 X = 2.70 [m]	[kN] [kN] [kN] [m]	Υ	=	-2.76
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 54.01	[°] [°]			
Incremento sismico della spinta	18.3640	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.76
Inclinazione linea di rottura in condizioni sismiche	52.82	[°]			
Peso terrapieno gravante sulla fondazione a monte	206.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	10.2538	[kN]			
Inerzia verticale del muro	5.1269	[kN]			
Inerzia del terrapieno fondazione di monte	19.0668	[kN]			
Inerzia verticale del terrapieno fondazione di monte	9.5334	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	122.3344	[kN]			
Risultante dei carichi applicati in dir. verticale	360.9054	[kN]			
Resistenza passiva a valle del muro	-3.2720	[kN]			
Momento ribaltante rispetto allo spigolo a valle	168.0084	[kNm]			

Momento stabilizzante rispetto allo spigolo a valle	888.2882	[kNm]			
Sforzo normale sul piano di posa della fondazione	370.1941	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	90.4139	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.06	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	381.0753	[kN]			
Inclinazione della risultante (rispetto alla normale)	13.72	[°]			
Momento rispetto al baricentro della fondazione	22.9367	[kNm]			
COEFFICIENTI DI SICUREZZA					
Coefficiente di sicurezza a ribaltamento	5.29				
COMBINAZIONE n° 26					
Valore della spinta statica	79.0841	[kN]			
Componente orizzontale della spinta statica	75.4855	[kN]			
Componente verticale della spinta statica	23.5849	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.76
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Incremento sismico della spinta	11.0614	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.76
Inclinazione linea di rottura in condizioni sismiche	52.82	[°]			
Peso terrapieno gravante sulla fondazione a monte	206.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	10.2538	[kN]			
Inerzia verticale del muro	-5.1269	[kN]			
Inerzia del terrapieno fondazione di monte	19.0668	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-9.5334	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	115.3640	[kN]			
Risultante dei carichi applicati in dir. verticale	329.4069	[kN]			
Resistenza passiva a valle del muro	-3.2720	[kN]			

Momento ribaltante rispetto allo spigolo a valle	193.4974	[kNm]
Momento stabilizzante rispetto allo spigolo a valle	845.4693	[kNm]
Sforzo normale sul piano di posa della fondazione	338.2081	[kN]
Sforzo tangenziale sul piano di posa della fondazione	86.2153	[kN]
Eccentricità rispetto al baricentro della fondazione	0.08	[m]
Lunghezza fondazione reagente	4.02	[m]
Risultante in fondazione	349.0241	[kN]
Inclinazione della risultante (rispetto alla normale)	14.30	[°]
Momento rispetto al baricentro della fondazione	27.0281	[kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 4.37

Stabilità globale muro + terreno

Combinazione n° 27

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.81 Y[m] = 2.43

Raggio del cerchio R[m]= 7.63

Ascissa a valle del cerchio Xi[m] = -5.63Ascissa a monte del cerchio Xs[m] = 6.43

Larghezza della striscia dx[m]= 0.48 Coefficiente di sicurezza C= 1.43

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	?(°)	Wsin 	b/cos?	?	С	u
1	597.12	66.58	547.94	1.21	26.56	0.000	0.000
2	1981.41	58.84	1695.50	0.93	26.56	0.000	0.000
3	2682.12	52.37	2124.13	0.79	26.56	0.000	0.000
4	3242.64	46.76	2362.15	0.70	26.56	0.000	0.000
5	3706.64	41.69	2465.20	0.65	26.56	0.000	0.000
6	4097.05	36.99	2465.37	0.60	26.56	0.000	0.000
7	4427.70	32.58	2384.06	0.57	26.56	0.000	0.000
8	4759.32	28.37	2261.45	0.55	26.56	0.000	0.000
9	5134.53	24.32	2114.88	0.53	26.56	0.000	0.000
10	5319.65	20.40	1854.62	0.51	26.56	0.000	0.000
11	5468.14	16.58	1560.53	0.50	26.56	0.000	0.000
12	5219.14	12.83	1159.37	0.49	26.56	0.000	0.000
13	5181.98	9.14	823.39	0.49	26.56	0.000	0.000

14	5844.39	5.49	559.03	0.48	26.56	0.000	0.000	
15	3402.41	1.86	110.28	0.48	26.56	0.000	0.000	
16	1798.86	-1.77	-55.45	0.48	26.56	0.000	0.000	
17	1644.03	-5.40	-154.65	0.48	26.56	0.000	0.000	
18	1580.33	-9.05	-248.60	0.49	26.56	0.000	0.000	
19	1488.81	-12.74	-328.36	0.49	26.56	0.000	0.000	
20	1364.82	-16.49	-387.34	0.50	26.56	0.000	0.000	
21	1206.66	-20.31	-418.77	0.51	26.56	0.000	0.000	
22	1011.94	-24.22	-415.21	0.53	26.56	0.000	0.000	
23	777.41	-28.27	-368.16	0.55	26.56	0.000	0.000	
24	498.61	-32.47	-267.68	0.57	26.56	0.000	0.000	
25	169.33	-36.88	-101.62	0.60	26.56	0.000	0.000	

②W_i= 712.0236 [kN]

?W_isin?_i= 213.2201 [kN]

PWitan in 355.9374 [kN]

②tan②itan②i= 3.62

Stabilità globale muro + terreno

Combinazione n° 28

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.81 Y[m] = 2.43

Raggio del cerchio R[m]= 7.63

Ascissa a valle del cerchio Xi[m] = -5.63Ascissa a monte del cerchio Xs[m] = 6.43

Larghezza della striscia dx[m]= 0.48 Coefficiente di sicurezza C= 1.40

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	?(°)	Wsin 	b/cos?	?	С	u
1	597.12	66.58	547.94	1.21	26.56	0.000	0.000
2	1981.41	58.84	1695.50	0.93	26.56	0.000	0.000
3	2682.12	52.37	2124.13	0.79	26.56	0.000	0.000
4	3242.64	46.76	2362.15	0.70	26.56	0.000	0.000
5	3706.64	41.69	2465.20	0.65	26.56	0.000	0.000
6	4097.05	36.99	2465.37	0.60	26.56	0.000	0.000
7	4427.70	32.58	2384.06	0.57	26.56	0.000	0.000
8	4759.32	28.37	2261.45	0.55	26.56	0.000	0.000
9	5134.53	24.32	2114.88	0.53	26.56	0.000	0.000
10	5319.65	20.40	1854.62	0.51	26.56	0.000	0.000
11	5468.14	16.58	1560.53	0.50	26.56	0.000	0.000
12	5219.14	12.83	1159.37	0.49	26.56	0.000	0.000
13	5181.98	9.14	823.39	0.49	26.56	0.000	0.000

14	5844.39	5.49	559.03	0.48	26.56	0.000	0.000	
15	3402.41	1.86	110.28	0.48	26.56	0.000	0.000	
16	1798.86	-1.77	-55.45	0.48	26.56	0.000	0.000	
17	1644.03	-5.40	-154.65	0.48	26.56	0.000	0.000	
18	1580.33	-9.05	-248.60	0.49	26.56	0.000	0.000	
19	1488.81	-12.74	-328.36	0.49	26.56	0.000	0.000	
20	1364.82	-16.49	-387.34	0.50	26.56	0.000	0.000	
21	1206.66	-20.31	-418.77	0.51	26.56	0.000	0.000	
22	1011.94	-24.22	-415.21	0.53	26.56	0.000	0.000	
23	777.41	-28.27	-368.16	0.55	26.56	0.000	0.000	
24	498.61	-32.47	-267.68	0.57	26.56	0.000	0.000	
25	169.33	-36.88	-101.62	0.60	26.56	0.000	0.000	

@W_i= 712.0236 [kN]
@W_isin@_i= 213.2201 [kN]
@W_itan@_i= 355.9374 [kN]
@tan@_itan@_i= 3.62

COMBINAZIONE n° 29

Valore della spinta statica	87.8802	[kN]			
Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Risultanti					
Risultante dei carichi applicati in dir. orizzontale	81.8587	[kN]			
Risultante dei carichi applicati in dir. verticale	383.1538	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	388.8302	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	48.1531	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.16	[m]			

Lunghezza fondazione reagente	4.02	[m]
Risultante in fondazione	391.8005	[kN]
Inclinazione della risultante (rispetto alla normale)	7.06	[°]
Momento rispetto al baricentro della fondazione	-61.4080	[kNm]
Carico ultimo della fondazione	5113.8975	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	4.02	[m]
Tensione terreno allo spigolo di valle	0.07398	[N/mmq]
Tensione terreno allo spigolo di monte	0.11969	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00
I coefficienti N' tengono conto d	dei fattori di forma, profon	dità, inclinazione carico, i	nclinazione piano

di posa, inclinazione pendio.

$$N'_{c} = 44.04$$
 $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	3.24
Coefficiente di sicurezza a carico ultimo	13.15

Sollecitazioni paramento

Combinazione n° 29

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2452	0.0804
3	0.35	6.9297	-0.2120	0.3217
4	0.53	9.1445	-0.1217	0.7238
5	0.71	11.3594	0.0540	1.2868
6	0.89	13.5742	0.3438	2.0164
7	1.06	15.7890	0.7912	3.1211
8	1.24	18.0039	1.4872	4.8244
9	1.42	20.2187	2.5251	6.9382
10	1.59	22.4336	3.9609	9.3077
11	1.77	24.6484	5.8370	11.9055
12	1.95	26.8632	8.1924	14.7153
13	2.13	29.0781	11.0636	17.7254
14	2.30	31.2929	14.4852	20.9275
15	2.48	33.5078	18.4907	24.3152
16	2.66	35.7226	23.1126	27.8839
17	2.83	37.9374	28.3825	31.6300
18	3.01	40.1523	34.3318	35.5506
19	3.19	42.3671	40.9909	39.6435
20	3.37	44.5820	48.3905	43.9069
21	3.54	46.7968	56.5591	48.3125

Sollecitazioni fondazione di valle

Combinazione n° 29

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1981	4.9622
3	0.16	0.7955	9.9836
4	0.24	1.7970	15.0641
5	0.32	3.2074	20.2037
6	0.40	5.0312	25.4025
7	0.48	7.2733	30.6604
8	0.56	9.9385	35.9774
9	0.64	13.0313	41.3535
10	0.72	16.5566	46.7888
11	0.80	20.5191	52.2832

Sollecitazioni fondazione di monte

Combinazione n° 29

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.0735	-0.6564
3	0.54	-0.4150	-1.9858
4	0.81	-1.2064	-3.9882
5	1.08	-2.6292	-6.6637
6	1.35	-4.8653	-10.0122
7	1.62	-8.0964	-14.0337
8	1.89	-11.9626	-13.0283
9	2.16	-15.0963	-10.2960
10	2.43	-17.5830	-8.2366
11	2.70	-19.4046	-4.8503

Sollecitazioni mensola di contrappeso

Combinazione n° 29

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 29

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? c	\mathbf{P}_{fs}	? _{fi}
1	0.00	100, 50	18.85	18.85	0.000	0.000	0.000	0.000
2	0.18	100, 50	18.85	18.85	0.013	0.000	-0.187	-0.067
3	0.35	100, 50	18.85	18.85	0.017	0.001	-0.238	-0.135
4	0.53	100, 50	18.85	18.85	0.019	0.002	-0.276	-0.217
5	0.71	100, 50	18.85	18.85	0.021	0.003	-0.293	-0.319
6	0.89	100, 50	18.85	18.85	0.031	0.005	-0.282	-0.450
7	1.06	100, 50	18.85	18.85	0.044	0.008	-0.233	-0.619
8	1.24	100, 50	18.85	18.85	0.061	0.012	-0.122	-0.848
9	1.42	100, 50	18.85	18.85	0.087	0.018	0.126	-1.179
10	1.59	100, 50	18.85	18.85	0.129	0.024	0.825	-1.695
11	1.77	100, 50	18.85	18.85	0.189	0.030	2.241	-2.399
12	1.95	100, 50	18.85	18.85	0.266	0.038	4.424	-3.262
13	2.13	100, 50	18.85	18.85	0.359	0.045	7.354	-4.275
14	2.30	100, 50	18.85	18.85	0.468	0.054	11.032	-5.447
15	2.48	100, 50	18.85	18.85	0.594	0.062	15.477	-6.787
16	2.66	100, 50	18.85	18.85	0.738	0.071	20.719	-8.307
17	2.83	100, 50	18.85	18.85	0.902	0.081	26.792	-10.018
18	3.01	100, 50	18.85	18.85	1.085	0.091	33.732	-11.930
19	3.19	100, 50	18.85	18.85	1.290	0.101	41.575	-14.053
20	3.37	100, 50	18.85	18.85	1.517	0.112	50.357	-16.398
21	3.54	100, 50	18.85	18.85	1.767	0.124	60.115	-18.972

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 29

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 29

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.007	0.013	0.366	-0.066
3	0.16	100, 51	12.57	12.57	0.028	0.025	1.446	-0.262
4	0.24	100, 52	12.57	12.57	0.062	0.037	3.218	-0.581
5	0.32	100, 53	12.57	12.57	0.108	0.049	5.657	-1.018
6	0.40	100, 54	12.57	12.57	0.165	0.060	8.743	-1.569
7	0.48	100, 54	12.57	12.57	0.233	0.072	12.455	-2.229
8	0.56	100, 55	12.57	12.57	0.312	0.083	16.775	-2.994
9	0.64	100, 56	12.57	12.57	0.400	0.094	21.685	-3.859
10	0.72	100, 56	12.57	12.57	0.498	0.105	27.167	-4.820
11	0.80	100, 57	12.57	12.57	0.604	0.116	33.206	-5.875

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.001	-0.001	-0.012	0.056
3	0.54	100, 76	18.85	18.85	0.006	-0.003	-0.069	0.328
4	0.81	100, 74	18.85	18.85	0.019	-0.007	-0.210	0.987

5	1.08	100, 71	18.85	18.85	0.043	-0.012	-0.479	2.230
6	1.35	100, 69	18.85	18.85	0.085	-0.018	-0.931	4.284
7	1.62	100, 67	18.85	18.85	0.150	-0.026	-1.629	7.414
8	1.89	100, 64	18.85	18.85	0.235	-0.025	-2.536	11.409
9	2.16	100, 62	12.57	12.57	0.388	-0.021	-3.872	22.324
10	2.43	100, 59	12.57	12.57	0.483	-0.017	-4.760	27.173
11	2.70	100, 57	12.57	12.57	0.572	-0.011	-5.556	31.402

Verifiche a fessurazione

Combinazione n° 29

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? m	S _m	w
1	0.00	18.85	18.85	-68.98	0.00	0.0000	0.00	0.000
2	0.18	18.85	18.85	68.98	0.25	0.0000	0.00	0.000
3	0.35	18.85	18.85	68.98	0.21	0.0000	0.00	0.000
4	0.53	18.85	18.85	68.98	0.12	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-0.05	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-0.34	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-0.79	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-1.49	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-2.53	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-3.96	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-5.84	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-8.19	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-11.06	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-14.49	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-18.49	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-23.11	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-28.38	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-34.33	0.0000	0.00	0.000

19	3.19	18.85	18.85	-68.98	-40.99	0.0000	0.00	0.000
20	3.37	18.85	18.85	-68.98	-48.39	0.0000	0.00	0.000
21	3.54	18.85	18.85	-68.98	-56.56	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	${\sf A}_{\sf fs}$	A_{fi}	M_{pf}	М	? _m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.20	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	0.80	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	1.80	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	3.21	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	5.03	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	7.27	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	9.94	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	13.03	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	16.56	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	20.52	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-19.40	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-17.58	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-15.10	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-11.96	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-8.10	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-4.87	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-2.63	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-1.21	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-0.42	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.07	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
Vorif	ica fossura:	ione mensolo	a di monto					
verij	icu jessui uz	TOTIE THEHSON	a di monte					
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 30

Valore della spinta statica 87.8802

[kN]

Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	81.8587 31.9702 X = 2.70 [m] 21.33 57.17	[kN] [kN] [m] [°] [°]	Υ	=	-2.60
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Peso terrapieno gravante sulla mensola di contrappeso Baricentro terrapieno della mensola di contrappeso	240.2601 X = 1.36 [m] 0.0000 X = 0.00	[kN] [m] [kN] Y = 0.00	Y	=	-1.79
Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	81.8587 383.1538 -4.0684 388.8302 48.1531 -0.16 4.02 391.8005 7.06 -61.4080 5113.8975	[kN] [kN] [kN] [kN] [m] [m] [kN] [kN] [kN]			
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte Tensione terreno all'estremità della mensola di contrappeso	4.02 0.07398 0.11969 0.000	[m] [N/mmq [N/mmq]		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.24

Coefficiente di sicurezza a carico ultimo	13.15

Sollecitazioni paramento

Combinazione n° 30

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2452	0.0804
3	0.35	6.9297	-0.2120	0.3217
4	0.53	9.1445	-0.1217	0.7238
5	0.71	11.3594	0.0540	1.2868
6	0.89	13.5742	0.3438	2.0164
7	1.06	15.7890	0.7912	3.1211
8	1.24	18.0039	1.4872	4.8244
9	1.42	20.2187	2.5251	6.9382
10	1.59	22.4336	3.9609	9.3077
11	1.77	24.6484	5.8370	11.9055
12	1.95	26.8632	8.1924	14.7153
13	2.13	29.0781	11.0636	17.7254
14	2.30	31.2929	14.4852	20.9275
15	2.48	33.5078	18.4907	24.3152
16	2.66	35.7226	23.1126	27.8839
17	2.83	37.9374	28.3825	31.6300
18	3.01	40.1523	34.3318	35.5506
19	3.19	42.3671	40.9909	39.6435
20	3.37	44.5820	48.3905	43.9069
21	3.54	46.7968	56.5591	48.3125

Sollecitazioni fondazione di valle

Combinazione n° 30

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1981	4.9622
3	0.16	0.7955	9.9836
4	0.24	1.7970	15.0641
5	0.32	3.2074	20.2037
6	0.40	5.0312	25.4025
7	0.48	7.2733	30.6604
8	0.56	9.9385	35.9774
9	0.64	13.0313	41.3535
10	0.72	16.5566	46.7888
11	0.80	20.5191	52.2832

Sollecitazioni fondazione di monte

Combinazione n° 30

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.27	-0.0735	-0.6564
3	0.54	-0.4150	-1.9858
4	0.81	-1.2064	-3.9882
5	1.08	-2.6292	-6.6637
6	1.35	-4.8653	-10.0122
7	1.62	-8.0964	-14.0337
8	1.89	-11.9626	-13.0283
9	2.16	-15.0963	-10.2960
10	2.43	-17.5830	-8.2366
11	2.70	-19.4046	-4.8503

Sollecitazioni mensola di contrappeso

Combinazione n° 30

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 30

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	?fs	? _{fi}
1	0.00	100, 50	18.85	18.85	0.000	0.000	0.000	0.000
2	0.18	100, 50	18.85	18.85	0.013	0.000	-0.187	-0.067
3	0.35	100, 50	18.85	18.85	0.017	0.001	-0.238	-0.135
4	0.53	100, 50	18.85	18.85	0.019	0.002	-0.276	-0.217
5	0.71	100, 50	18.85	18.85	0.021	0.003	-0.293	-0.319
6	0.89	100, 50	18.85	18.85	0.031	0.005	-0.282	-0.450
7	1.06	100, 50	18.85	18.85	0.044	0.008	-0.233	-0.619
8	1.24	100, 50	18.85	18.85	0.061	0.012	-0.122	-0.848
9	1.42	100, 50	18.85	18.85	0.087	0.018	0.126	-1.179
10	1.59	100, 50	18.85	18.85	0.129	0.024	0.825	-1.695
11	1.77	100, 50	18.85	18.85	0.189	0.030	2.241	-2.399
12	1.95	100, 50	18.85	18.85	0.266	0.038	4.424	-3.262
13	2.13	100, 50	18.85	18.85	0.359	0.045	7.354	-4.275
14	2.30	100, 50	18.85	18.85	0.468	0.054	11.032	-5.447
15	2.48	100, 50	18.85	18.85	0.594	0.062	15.477	-6.787
16	2.66	100, 50	18.85	18.85	0.738	0.071	20.719	-8.307
17	2.83	100, 50	18.85	18.85	0.902	0.081	26.792	-10.018
18	3.01	100, 50	18.85	18.85	1.085	0.091	33.732	-11.930
19	3.19	100, 50	18.85	18.85	1.290	0.101	41.575	-14.053
20	3.37	100, 50	18.85	18.85	1.517	0.112	50.357	-16.398
21	3.54	100, 50	18.85	18.85	1.767	0.124	60.115	-18.972

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 30

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 30

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.007	0.013	0.366	-0.066
3	0.16	100, 51	12.57	12.57	0.028	0.025	1.446	-0.262
4	0.24	100, 52	12.57	12.57	0.062	0.037	3.218	-0.581
5	0.32	100, 53	12.57	12.57	0.108	0.049	5.657	-1.018
6	0.40	100, 54	12.57	12.57	0.165	0.060	8.743	-1.569
7	0.48	100, 54	12.57	12.57	0.233	0.072	12.455	-2.229
8	0.56	100, 55	12.57	12.57	0.312	0.083	16.775	-2.994
9	0.64	100, 56	12.57	12.57	0.400	0.094	21.685	-3.859
10	0.72	100, 56	12.57	12.57	0.498	0.105	27.167	-4.820
11	0.80	100, 57	12.57	12.57	0.604	0.116	33.206	-5.875

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.001	-0.001	-0.012	0.056
3	0.54	100, 76	18.85	18.85	0.006	-0.003	-0.069	0.328
4	0.81	100, 74	18.85	18.85	0.019	-0.007	-0.210	0.987

5	1.08	100, 71	18.85	18.85	0.043	-0.012	-0.479	2.230
6	1.35	100, 69	18.85	18.85	0.085	-0.018	-0.931	4.284
7	1.62	100, 67	18.85	18.85	0.150	-0.026	-1.629	7.414
8	1.89	100, 64	18.85	18.85	0.235	-0.025	-2.536	11.409
9	2.16	100, 62	12.57	12.57	0.388	-0.021	-3.872	22.324
10	2.43	100, 59	12.57	12.57	0.483	-0.017	-4.760	27.173
11	2.70	100, 57	12.57	12.57	0.572	-0.011	-5.556	31.402

Verifiche a fessurazione

Combinazione n° 30

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	18.85	-68.98	0.00	0.0000	0.00	0.000
2	0.18	18.85	18.85	68.98	0.25	0.0000	0.00	0.000
3	0.35	18.85	18.85	68.98	0.21	0.0000	0.00	0.000
4	0.53	18.85	18.85	68.98	0.12	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-0.05	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-0.34	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-0.79	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-1.49	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-2.53	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-3.96	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-5.84	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-8.19	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-11.06	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-14.49	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-18.49	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-23.11	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-28.38	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-34.33	0.0000	0.00	0.000

19	3.19	18.85	18.85	-68.98	-40.99	0.0000	0.00	0.000
20	3.37	18.85	18.85	-68.98	-48.39	0.0000	0.00	0.000
21	3.54	18.85	18.85	-68.98	-56.56	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_{fs}	A_fi	M_{pf}	М	? _m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.20	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	0.80	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	1.80	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	3.21	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	5.03	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	7.27	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	9.94	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	13.03	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	16.56	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	20.52	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-19.40	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-17.58	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-15.10	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-11.96	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-8.10	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-4.87	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-2.63	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-1.21	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-0.42	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.07	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
Vorif	ica fessuraz	ione mensolo	a di monte					
<u>verij</u>	icu jessui uz	TOTIE THEHSUIC	a ur monte					
N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	\mathbf{s}_{m}	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 31

Valore della spinta statica 87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70	[m]	Υ	=	-2.60
	[m]				
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	81.8587	[kN]			
Risultante dei carichi applicati in dir. verticale	383.1538	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	388.8302	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	48.1531	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.16	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	391.8005	[kN]			
Inclinazione della risultante (rispetto alla normale)	7.06	[°]			
Momento rispetto al baricentro della fondazione	-61.4080	[kNm]			
Carico ultimo della fondazione	5113.8975	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.07398	[N/mmq			
Tensione terreno allo spigolo di monte	0.11969	[N/mmq			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.24

Coefficiente di sicurezza a carico ultimo	13.15

Sollecitazioni paramento

Combinazione n° 31

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	T
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2452	0.0804
3	0.35	6.9297	-0.2120	0.3217
4	0.53	9.1445	-0.1217	0.7238
5	0.71	11.3594	0.0540	1.2868
6	0.89	13.5742	0.3438	2.0164
7	1.06	15.7890	0.7912	3.1211
8	1.24	18.0039	1.4872	4.8244
9	1.42	20.2187	2.5251	6.9382
10	1.59	22.4336	3.9609	9.3077
11	1.77	24.6484	5.8370	11.9055
12	1.95	26.8632	8.1924	14.7153
13	2.13	29.0781	11.0636	17.7254
14	2.30	31.2929	14.4852	20.9275
15	2.48	33.5078	18.4907	24.3152
16	2.66	35.7226	23.1126	27.8839
17	2.83	37.9374	28.3825	31.6300
18	3.01	40.1523	34.3318	35.5506
19	3.19	42.3671	40.9909	39.6435
20	3.37	44.5820	48.3905	43.9069
21	3.54	46.7968	56.5591	48.3125

Sollecitazioni fondazione di valle

Combinazione n° 31

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.1981	4.9622
3	0.16	0.7955	9.9836
4	0.24	1.7970	15.0641
5	0.32	3.2074	20.2037
6	0.40	5.0312	25.4025
7	0.48	7.2733	30.6604
8	0.56	9.9385	35.9774
9	0.64	13.0313	41.3535
10	0.72	16.5566	46.7888
11	0.80	20.5191	52.2832

Sollecitazioni fondazione di monte

Combinazione n° 31

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.27	-0.0735	-0.6564
3	0.54	-0.4150	-1.9858
4	0.81	-1.2064	-3.9882
5	1.08	-2.6292	-6.6637
6	1.35	-4.8653	-10.0122
7	1.62	-8.0964	-14.0337
8	1.89	-11.9626	-13.0283
9	2.16	-15.0963	-10.2960
10	2.43	-17.5830	-8.2366
11	2.70	-19.4046	-4.8503

Sollecitazioni mensola di contrappeso

Combinazione n° 31

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 31

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? c	$\mathbf{Z}_{\mathbf{c}}$	$ m ?_{fs}$? _{fi}
1	0.00	100, 50	18.85	18.85	0.000	0.000	0.000	0.000
2	0.18	100, 50	18.85	18.85	0.013	0.000	-0.187	-0.067
3	0.35	100, 50	18.85	18.85	0.017	0.001	-0.238	-0.135
4	0.53	100, 50	18.85	18.85	0.019	0.002	-0.276	-0.217
5	0.71	100, 50	18.85	18.85	0.021	0.003	-0.293	-0.319
6	0.89	100, 50	18.85	18.85	0.031	0.005	-0.282	-0.450
7	1.06	100, 50	18.85	18.85	0.044	0.008	-0.233	-0.619
8	1.24	100, 50	18.85	18.85	0.061	0.012	-0.122	-0.848
9	1.42	100, 50	18.85	18.85	0.087	0.018	0.126	-1.179
10	1.59	100, 50	18.85	18.85	0.129	0.024	0.825	-1.695
11	1.77	100, 50	18.85	18.85	0.189	0.030	2.241	-2.399
12	1.95	100, 50	18.85	18.85	0.266	0.038	4.424	-3.262
13	2.13	100, 50	18.85	18.85	0.359	0.045	7.354	-4.275
14	2.30	100, 50	18.85	18.85	0.468	0.054	11.032	-5.447
15	2.48	100, 50	18.85	18.85	0.594	0.062	15.477	-6.787
16	2.66	100, 50	18.85	18.85	0.738	0.071	20.719	-8.307
17	2.83	100, 50	18.85	18.85	0.902	0.081	26.792	-10.018
18	3.01	100, 50	18.85	18.85	1.085	0.091	33.732	-11.930
19	3.19	100, 50	18.85	18.85	1.290	0.101	41.575	-14.053
20	3.37	100, 50	18.85	18.85	1.517	0.112	50.357	-16.398
21	3.54	100, 50	18.85	18.85	1.767	0.124	60.115	-18.972

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 31

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 31

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.007	0.013	0.366	-0.066
3	0.16	100, 51	12.57	12.57	0.028	0.025	1.446	-0.262
4	0.24	100, 52	12.57	12.57	0.062	0.037	3.218	-0.581
5	0.32	100, 53	12.57	12.57	0.108	0.049	5.657	-1.018
6	0.40	100, 54	12.57	12.57	0.165	0.060	8.743	-1.569
7	0.48	100, 54	12.57	12.57	0.233	0.072	12.455	-2.229
8	0.56	100, 55	12.57	12.57	0.312	0.083	16.775	-2.994
9	0.64	100, 56	12.57	12.57	0.400	0.094	21.685	-3.859
10	0.72	100, 56	12.57	12.57	0.498	0.105	27.167	-4.820
11	0.80	100, 57	12.57	12.57	0.604	0.116	33.206	-5.875

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.001	-0.001	-0.012	0.056
3	0.54	100, 76	18.85	18.85	0.006	-0.003	-0.069	0.328
4	0.81	100, 74	18.85	18.85	0.019	-0.007	-0.210	0.987

5	1.08	100, 71	18.85	18.85	0.043	-0.012	-0.479	2.230
6	1.35	100, 69	18.85	18.85	0.085	-0.018	-0.931	4.284
7	1.62	100, 67	18.85	18.85	0.150	-0.026	-1.629	7.414
8	1.89	100, 64	18.85	18.85	0.235	-0.025	-2.536	11.409
9	2.16	100, 62	12.57	12.57	0.388	-0.021	-3.872	22.324
10	2.43	100, 59	12.57	12.57	0.483	-0.017	-4.760	27.173
11	2.70	100, 57	12.57	12.57	0.572	-0.011	-5.556	31.402

Verifiche a fessurazione

Combinazione n° 31

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	18.85	-68.98	0.00	0.0000	0.00	0.000
2	0.18	18.85	18.85	68.98	0.25	0.0000	0.00	0.000
3	0.35	18.85	18.85	68.98	0.21	0.0000	0.00	0.000
4	0.53	18.85	18.85	68.98	0.12	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-0.05	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-0.34	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-0.79	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-1.49	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-2.53	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-3.96	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-5.84	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-8.19	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-11.06	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-14.49	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-18.49	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-23.11	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-28.38	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-34.33	0.0000	0.00	0.000

19	3.19	18.85	18.85	-68.98	-40.99	0.0000	0.00	0.000
20	3.37	18.85	18.85	-68.98	-48.39	0.0000	0.00	0.000
21	3.54	18.85	18.85	-68.98	-56.56	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	zione fondazi	<u>one</u>					
N°	Υ	${\sf A}_{\sf fs}$	A_{fi}	M_{pf}	М	? _m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.20	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	0.80	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	1.80	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	3.21	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	5.03	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	7.27	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	9.94	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	13.03	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	16.56	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	20.52	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-19.40	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-17.58	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-15.10	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-11.96	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-8.10	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-4.87	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-2.63	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-1.21	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-0.42	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.07	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
Vorif	ica fessura	zione mensolo	a di monte					
verij	icu jessui uz	.10116 1116113010	a di monte					
N°	Υ	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 32

Valore della spinta statica

87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70	[m]	Υ	=	-2.60
Inclinaz della chinta vicnetta alla normale alla cunorficia	[m] 21.33	[0]			
Inclinaz. della spinta rispetto alla normale alla superficie		[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Risultanti carichi esterni					
Componente dir. X	3.34	[kN]			
componente dii. A	3.34	[KIV]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	85.1987	[kN]			
Risultante dei carichi applicati in dir. verticale	383.1538	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	389.1213	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	51.4804	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.12	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	392.5119	[kN]			
Inclinazione della risultante (rispetto alla normale)	7.54	[°]			
Momento rispetto al baricentro della fondazione	-45.2636	[kNm]			
Carico ultimo della fondazione	5228.9303	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.08007	[N/mmq	1		
Tensione terreno allo spigolo di monte	0.11376	[N/mmq	_		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq			
. c cerrente un estrennea dena mensola ai contrappeso	3.000	۱۰۰, ،،،،،۱۹	,		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.03

Coefficiente di sicurezza a carico ultimo 13.44

Sollecitazioni paramento

Combinazione n° 32

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	2.2000	3.3400
2	0.18	4.7148	2.5466	3.4204
3	0.35	6.9297	3.1716	3.6617
4	0.53	9.1445	3.8537	4.0638
5	0.71	11.3594	4.6212	4.6268
6	0.89	13.5742	5.5029	5.3564
7	1.06	15.7890	6.5420	6.4611
8	1.24	18.0039	7.8299	8.1644
9	1.42	20.2187	9.4596	10.2782
10	1.59	22.4336	11.4871	12.6477
11	1.77	24.6484	13.9551	15.2455
12	1.95	26.8632	16.9023	18.0553
13	2.13	29.0781	20.3652	21.0654
14	2.30	31.2929	24.3787	24.2675
15	2.48	33.5078	28.9760	27.6552
16	2.66	35.7226	34.1897	31.2239
17	2.83	37.9374	40.0514	34.9700
18	3.01	40.1523	46.5924	38.8906
19	3.19	42.3671	53.8434	42.9835
20	3.37	44.5820	61.8348	47.2469
21	3.54	46.7968	70.5952	51.6525

Sollecitazioni fondazione di valle

Combinazione n° 32

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2172	5.4354
3	0.16	0.8707	10.9107
4	0.24	1.9639	16.4260
5	0.32	3.4999	21.9811
6	0.40	5.4820	27.5761
7	0.48	7.9132	33.2111
8	0.56	10.7968	38.8859
9	0.64	14.1360	44.6007
10	0.72	17.9340	50.3553
11	0.80	22.1939	56.1499

Sollecitazioni fondazione di monte

Combinazione n° 32

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.2816	-2.1618
3	0.54	-1.2083	-4.7777
4	0.81	-2.9025	-7.8477
5	1.08	-5.4869	-11.3716
6	1.35	-9.0840	-15.3496
7	1.62	-13.8165	-19.7817
8	1.89	-19.2655	-18.9677
9	2.16	-24.0040	-16.2079
10	2.43	-28.0586	-13.9020
11	2.70	-31.3519	-10.0502

Sollecitazioni mensola di contrappeso

Combinazione n° 32

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 32

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? c	$\mathbf{Z}_{\mathbf{c}}$	$ m ?_{fs}$	\mathbf{P}_{fi}
1	0.00	100, 50	18.85	18.85	0.066	0.009	2.780	-0.663
2	0.18	100, 50	18.85	18.85	0.082	0.009	2.109	-0.937
3	0.35	100, 50	18.85	18.85	0.102	0.009	2.399	-1.194
4	0.53	100, 50	18.85	18.85	0.125	0.010	2.763	-1.468
5	0.71	100, 50	18.85	18.85	0.150	0.012	3.232	-1.769
6	0.89	100, 50	18.85	18.85	0.178	0.014	3.838	-2.108
7	1.06	100, 50	18.85	18.85	0.212	0.017	4.635	-2.498
8	1.24	100, 50	18.85	18.85	0.253	0.021	5.733	-2.970
9	1.42	100, 50	18.85	18.85	0.305	0.026	7.251	-3.552
10	1.59	100, 50	18.85	18.85	0.370	0.032	9.261	-4.259
11	1.77	100, 50	18.85	18.85	0.448	0.039	11.822	-5.104
12	1.95	100, 50	18.85	18.85	0.540	0.046	14.986	-6.097
13	2.13	100, 50	18.85	18.85	0.648	0.054	18.800	-7.246
14	2.30	100, 50	18.85	18.85	0.773	0.062	23.310	-8.563
15	2.48	100, 50	18.85	18.85	0.916	0.071	28.558	-10.056
16	2.66	100, 50	18.85	18.85	1.076	0.080	34.586	-11.735
17	2.83	100, 50	18.85	18.85	1.257	0.089	41.434	-13.609
18	3.01	100, 50	18.85	18.85	1.457	0.099	49.142	-15.688
19	3.19	100, 50	18.85	18.85	1.679	0.110	57.747	-17.980
20	3.37	100, 50	18.85	18.85	1.924	0.121	67.289	-20.495
21	3.54	100, 50	18.85	18.85	2.191	0.132	77.804	-23.241

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 32

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 32

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? c	$\mathbf{P}_{\mathbf{c}}$	$ m ?_{fi}$? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.008	0.014	0.401	-0.073
3	0.16	100, 51	12.57	12.57	0.031	0.027	1.583	-0.287
4	0.24	100, 52	12.57	12.57	0.067	0.040	3.516	-0.635
5	0.32	100, 53	12.57	12.57	0.117	0.053	6.173	-1.111
6	0.40	100, 54	12.57	12.57	0.180	0.066	9.526	-1.710
7	0.48	100, 54	12.57	12.57	0.254	0.078	13.551	-2.425
8	0.56	100, 55	12.57	12.57	0.339	0.090	18.224	-3.252
9	0.64	100, 56	12.57	12.57	0.434	0.102	23.523	-4.186
10	0.72	100, 56	12.57	12.57	0.539	0.113	29.427	-5.221
11	0.80	100, 57	12.57	12.57	0.654	0.125	35.916	-6.354

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.004	-0.003	-0.045	0.215
3	0.54	100, 76	18.85	18.85	0.018	-0.008	-0.201	0.954
4	0.81	100, 74	18.85	18.85	0.045	-0.013	-0.505	2.374

5	1.08	100, 71	18.85	18.85	0.090	-0.020	-1.000	4.653
6	1.35	100, 69	18.85	18.85	0.158	-0.028	-1.739	7.999
7	1.62	100, 67	18.85	18.85	0.256	-0.037	-2.781	12.652
8	1.89	100, 64	18.85	18.85	0.379	-0.037	-4.084	18.374
9	2.16	100, 62	12.57	12.57	0.617	-0.033	-6.157	35.496
10	2.43	100, 59	12.57	12.57	0.771	-0.030	-7.596	43.362
11	2.70	100, 57	12.57	12.57	0.923	-0.022	-8.976	50.736

Verifiche a fessurazione

Combinazione n° 32

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? m	\mathbf{S}_{m}	w
1	0.00	18.85	18.85	-68.98	-2.20	0.0000	0.00	0.000
2	0.18	18.85	18.85	-68.98	-2.55	0.0000	0.00	0.000
3	0.35	18.85	18.85	-68.98	-3.17	0.0000	0.00	0.000
4	0.53	18.85	18.85	-68.98	-3.85	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-4.62	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-5.50	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-6.54	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-7.83	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-9.46	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-11.49	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-13.96	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-16.90	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-20.37	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-24.38	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-28.98	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-34.19	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-40.05	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-46.59	0.0000	0.00	0.000

19	3.19	18.85	18.85	-68.98	-53.84	0.0000	0.00	0.000		
20	3.37	18.85	18.85	-68.98	-61.83	0.0000	0.00	0.000		
21	3.54	18.85	18.85	-68.98	-70.60	0.0227	203.88	0.079		
<u>Verifica fessurazione fondazione</u>										
- crigica jessar azione jonaazione										
N°	Υ	A_{fs}	A_fi	$M_{\sf pf}$	М	? _m	S _m	w		
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000		
2	-1.22	12.57	12.57	67.37	0.22	0.0000	0.00	0.000		
3	-1.14	12.57	12.57	69.18	0.87	0.0000	0.00	0.000		
4	-1.06	12.57	12.57	71.02	1.96	0.0000	0.00	0.000		
5	-0.98	12.57	12.57	72.87	3.50	0.0000	0.00	0.000		
6	-0.90	12.57	12.57	74.75	5.48	0.0000	0.00	0.000		
7	-0.82	12.57	12.57	76.65	7.91	0.0000	0.00	0.000		
8	-0.74	12.57	12.57	78.58	10.80	0.0000	0.00	0.000		
9	-0.66	12.57	12.57	80.52	14.14	0.0000	0.00	0.000		
10	-0.58	12.57	12.57	82.49	17.93	0.0000	0.00	0.000		
11	-0.50	12.57	12.57	84.49	22.19	0.0000	0.00	0.000		
12	0.00	12.57	12.57	-84.49	-31.35	0.0000	0.00	0.000		
13	0.27	12.57	12.57	-91.50	-28.06	0.0000	0.00	0.000		
14	0.54	12.57	12.57	-98.78	-24.00	0.0000	0.00	0.000		
15	0.81	18.85	18.85	-111.03	-19.27	0.0000	0.00	0.000		
16	1.08	18.85	18.85	-119.07	-13.82	0.0000	0.00	0.000		
17	1.35	18.85	18.85	-127.39	-9.08	0.0000	0.00	0.000		
18	1.62	18.85	18.85	-135.98	-5.49	0.0000	0.00	0.000		
19	1.89	18.85	18.85	-144.85	-2.90	0.0000	0.00	0.000		
20	2.16	18.85	18.85	-153.98	-1.21	0.0000	0.00	0.000		
21	2.43	18.85	18.85	-163.38	-0.28	0.0000	0.00	0.000		
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000		
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte							
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w		
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000		
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000		
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000		
J	0.20	20.00	12.57	00.11	5.00	3.5000	3.00	2.000		

COMBINAZIONE n° 33

Valore della spinta statica 87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti carichi esterni</u>					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	91.8787	[kN]			
Risultante dei carichi applicati in dir. verticale	383.1538	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	389.7035	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	58.1350	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.03	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	394.0158	[kN]			
Inclinazione della risultante (rispetto alla normale)	8.48	[°]			
Momento rispetto al baricentro della fondazione	-12.9746	[kNm]			
Carico ultimo della fondazione	5458.4804	[kN]			
Tensioni sul terreno					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.09223	[N/mmc	1]		
Tensione terreno allo spigolo di monte	0.10188	[N/mmc			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	1]		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.69
Coefficiente di sicurezza a carico ultimo 14.01

Sollecitazioni paramento

Combinazione n° 33

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	6.6000	10.0200
2	0.18	4.7148	8.1302	10.1004
3	0.35	6.9297	9.9388	10.3417
4	0.53	9.1445	11.8045	10.7438
5	0.71	11.3594	13.7557	11.3068
6	0.89	13.5742	15.8209	12.0364
7	1.06	15.7890	18.0437	13.1411
8	1.24	18.0039	20.5151	14.8444
9	1.42	20.2187	23.3285	16.9582
10	1.59	22.4336	26.5396	19.3277
11	1.77	24.6484	30.1912	21.9255
12	1.95	26.8632	34.3220	24.7353
13	2.13	29.0781	38.9686	27.7454
14	2.30	31.2929	44.1656	30.9475
15	2.48	33.5078	49.9465	34.3352
16	2.66	35.7226	56.3438	37.9039
17	2.83	37.9374	63.3892	41.6500
18	3.01	40.1523	71.1138	45.5706
19	3.19	42.3671	79.5484	49.6635
20	3.37	44.5820	88.7234	53.9269
21	3.54	46.7968	98.6675	58.3325

Sollecitazioni fondazione di valle

Combinazione n° 33

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2553	6.3818
3	0.16	1.0211	12.7650
4	0.24	2.2977	19.1497
5	0.32	4.0851	25.5358
6	0.40	6.3835	31.9234
7	0.48	9.1929	38.3125
8	0.56	12.5135	44.7030
9	0.64	16.3454	51.0949
10	0.72	20.6887	57.4883
11	0.80	25.5436	63.8832

Sollecitazioni fondazione di monte

Combinazione n° 33

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.6980	-5.1728
3	0.54	-2.7948	-10.3617
4	0.81	-6.2947	-15.5666
5	1.08	-11.2021	-20.7875
6	1.35	-17.5214	-26.0245
7	1.62	-25.2568	-31.2775
8	1.89	-33.8712	-30.8466
9	2.16	-41.8194	-28.0317
10	2.43	-49.0097	-25.2328
11	2.70	-55.2465	-20.4500

Sollecitazioni mensola di contrappeso

Combinazione n° 33

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 33

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? c	? _c	? _{fs}	? _{fi}
1	0.00	100, 50	18.85	18.85	0.198	0.026	8.341	-1.989
2	0.18	100, 50	18.85	18.85	0.251	0.026	9.122	-2.650
3	0.35	100, 50	18.85	18.85	0.309	0.026	10.872	-3.285
4	0.53	100, 50	18.85	18.85	0.368	0.027	12.695	-3.936
5	0.71	100, 50	18.85	18.85	0.430	0.029	14.626	-4.613
6	0.89	100, 50	18.85	18.85	0.495	0.031	16.701	-5.325
7	1.06	100, 50	18.85	18.85	0.565	0.034	18.974	-6.084
8	1.24	100, 50	18.85	18.85	0.642	0.038	21.561	-6.919
9	1.42	100, 50	18.85	18.85	0.730	0.043	24.578	-7.859
10	1.59	100, 50	18.85	18.85	0.830	0.049	28.096	-8.920
11	1.77	100, 50	18.85	18.85	0.943	0.056	32.168	-10.115
12	1.95	100, 50	18.85	18.85	1.070	0.063	36.845	-11.456
13	2.13	100, 50	18.85	18.85	1.214	0.071	42.172	-12.953
14	2.30	100, 50	18.85	18.85	1.373	0.079	48.193	-14.617
15	2.48	100, 50	18.85	18.85	1.551	0.088	54.951	-16.459
16	2.66	100, 50	18.85	18.85	1.747	0.097	62.488	-18.486
17	2.83	100, 50	18.85	18.85	1.962	0.107	70.843	-20.710
18	3.01	100, 50	18.85	18.85	2.198	0.117	80.055	-23.138
19	3.19	100, 50	18.85	18.85	2.455	0.127	90.165	-25.781
20	3.37	100, 50	18.85	18.85	2.734	0.138	101.210	-28.647
21	3.54	100, 50	18.85	18.85	3.037	0.149	113.227	-31.746

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 33

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 33

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- ☑c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	? _c	?fi	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.009	0.016	0.471	-0.086
3	0.16	100, 51	12.57	12.57	0.036	0.032	1.857	-0.336
4	0.24	100, 52	12.57	12.57	0.079	0.047	4.114	-0.743
5	0.32	100, 53	12.57	12.57	0.137	0.062	7.205	-1.297
6	0.40	100, 54	12.57	12.57	0.209	0.076	11.093	-1.991
7	0.48	100, 54	12.57	12.57	0.295	0.090	15.742	-2.817
8	0.56	100, 55	12.57	12.57	0.393	0.103	21.122	-3.769
9	0.64	100, 56	12.57	12.57	0.502	0.116	27.199	-4.840
10	0.72	100, 56	12.57	12.57	0.622	0.129	33.947	-6.023
11	0.80	100, 57	12.57	12.57	0.752	0.142	41.337	-7.313

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.010	-0.008	-0.111	0.533
3	0.54	100, 76	18.85	18.85	0.041	-0.017	-0.465	2.207
4	0.81	100, 74	18.85	18.85	0.098	-0.026	-1.095	5.148

5	1.08	100, 71	18.85	18.85	0.185	-0.036	-2.043	9.500
6	1.35	100, 69	18.85	18.85	0.306	-0.047	-3.354	15.429
7	1.62	100, 67	18.85	18.85	0.467	-0.059	-5.083	23.128
8	1.89	100, 64	18.85	18.85	0.666	-0.060	-7.181	32.305
9	2.16	100, 62	12.57	12.57	1.075	-0.057	-10.727	61.841
10	2.43	100, 59	12.57	12.57	1.346	-0.054	-13.268	75.740
11	2.70	100, 57	12.57	12.57	1.627	-0.045	-15.818	89.405

Verifiche a fessurazione

Combinazione n° 33

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	\mathbf{P}_{m}	S _m	w
1	0.00	18.85	18.85	-68.98	-6.60	0.0000	0.00	0.000
2	0.18	18.85	18.85	-68.98	-8.13	0.0000	0.00	0.000
3	0.35	18.85	18.85	-68.98	-9.94	0.0000	0.00	0.000
4	0.53	18.85	18.85	-68.98	-11.80	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-13.76	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-15.82	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-18.04	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-20.52	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-23.33	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-26.54	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-30.19	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-34.32	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-38.97	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-44.17	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-49.95	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-56.34	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-63.39	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-71.11	0.0233	203.88	0.081

19	3.19	18.85	18.85	-68.98	-79.55	0.0263	203.88	0.091
20	3.37	18.85	18.85	-68.98	-88.72	0.0317	203.88	0.110
21	3.54	18.85	18.85	-68.98	-98.67	0.0394	203.88	0.136
<u>Verif</u>	ica fessuraz	<u>ione fondazi</u>	<u>one</u>					
			_			_		
N°	Y	A _{fs}	A _{fi}	M_{pf}	M	? _m	S _m	W
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.26	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	1.02	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.30	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	4.09	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	6.38	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	9.19	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	12.51	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	16.35	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	20.69	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	25.54	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-55.25	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-49.01	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-41.82	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-33.87	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-25.26	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-17.52	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-11.20	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-6.29	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-2.79	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.70	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	М	Pm	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
-	- 							

COMBINAZIONE n° 34

Valore della spinta statica 87.8802

[kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti carichi esterni</u>					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	91.8787	[kN]			
Risultante dei carichi applicati in dir. verticale	383.1538	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	389.7035	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	58.1350	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.03	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	394.0158	[kN]			
Inclinazione della risultante (rispetto alla normale)	8.48	[°]			
Momento rispetto al baricentro della fondazione	-12.9746	[kNm]			
Carico ultimo della fondazione	5458.4804	[kN]			
Tensioni sul terreno					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.09223	[N/mmc	1]		
Tensione terreno allo spigolo di monte	0.10188	[N/mmc			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	1]		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.69
Coefficiente di sicurezza a carico ultimo 14.01

Sollecitazioni paramento

Combinazione n° 34

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	6.6000	10.0200
2	0.18	4.7148	8.1302	10.1004
3	0.35	6.9297	9.9388	10.3417
4	0.53	9.1445	11.8045	10.7438
5	0.71	11.3594	13.7557	11.3068
6	0.89	13.5742	15.8209	12.0364
7	1.06	15.7890	18.0437	13.1411
8	1.24	18.0039	20.5151	14.8444
9	1.42	20.2187	23.3285	16.9582
10	1.59	22.4336	26.5396	19.3277
11	1.77	24.6484	30.1912	21.9255
12	1.95	26.8632	34.3220	24.7353
13	2.13	29.0781	38.9686	27.7454
14	2.30	31.2929	44.1656	30.9475
15	2.48	33.5078	49.9465	34.3352
16	2.66	35.7226	56.3438	37.9039
17	2.83	37.9374	63.3892	41.6500
18	3.01	40.1523	71.1138	45.5706
19	3.19	42.3671	79.5484	49.6635
20	3.37	44.5820	88.7234	53.9269
21	3.54	46.7968	98.6675	58.3325

Sollecitazioni fondazione di valle

Combinazione n° 34

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2553	6.3818
3	0.16	1.0211	12.7650
4	0.24	2.2977	19.1497
5	0.32	4.0851	25.5358
6	0.40	6.3835	31.9234
7	0.48	9.1929	38.3125
8	0.56	12.5135	44.7030
9	0.64	16.3454	51.0949
10	0.72	20.6887	57.4883
11	0.80	25.5436	63.8832

Sollecitazioni fondazione di monte

Combinazione n° 34

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.6980	-5.1728
3	0.54	-2.7948	-10.3617
4	0.81	-6.2947	-15.5666
5	1.08	-11.2021	-20.7875
6	1.35	-17.5214	-26.0245
7	1.62	-25.2568	-31.2775
8	1.89	-33.8712	-30.8466
9	2.16	-41.8194	-28.0317
10	2.43	-49.0097	-25.2328
11	2.70	-55.2465	-20.4500

Sollecitazioni mensola di contrappeso

Combinazione n° 34

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 34

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fs}	? _{fi}
1	0.00	100, 50	18.85	18.85	0.198	0.026	8.341	-1.989
2	0.18	100, 50	18.85	18.85	0.251	0.026	9.122	-2.650
3	0.35	100, 50	18.85	18.85	0.309	0.026	10.872	-3.285
4	0.53	100, 50	18.85	18.85	0.368	0.027	12.695	-3.936
5	0.71	100, 50	18.85	18.85	0.430	0.029	14.626	-4.613
6	0.89	100, 50	18.85	18.85	0.495	0.031	16.701	-5.325
7	1.06	100, 50	18.85	18.85	0.565	0.034	18.974	-6.084
8	1.24	100, 50	18.85	18.85	0.642	0.038	21.561	-6.919
9	1.42	100, 50	18.85	18.85	0.730	0.043	24.578	-7.859
10	1.59	100, 50	18.85	18.85	0.830	0.049	28.096	-8.920
11	1.77	100, 50	18.85	18.85	0.943	0.056	32.168	-10.115
12	1.95	100, 50	18.85	18.85	1.070	0.063	36.845	-11.456
13	2.13	100, 50	18.85	18.85	1.214	0.071	42.172	-12.953
14	2.30	100, 50	18.85	18.85	1.373	0.079	48.193	-14.617
15	2.48	100, 50	18.85	18.85	1.551	0.088	54.951	-16.459
16	2.66	100, 50	18.85	18.85	1.747	0.097	62.488	-18.486
17	2.83	100, 50	18.85	18.85	1.962	0.107	70.843	-20.710
18	3.01	100, 50	18.85	18.85	2.198	0.117	80.055	-23.138
19	3.19	100, 50	18.85	18.85	2.455	0.127	90.165	-25.781
20	3.37	100, 50	18.85	18.85	2.734	0.138	101.210	-28.647
21	3.54	100, 50	18.85	18.85	3.037	0.149	113.227	-31.746

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 34

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 34

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	? c	$ m ?_{fi}$? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.009	0.016	0.471	-0.086
3	0.16	100, 51	12.57	12.57	0.036	0.032	1.857	-0.336
4	0.24	100, 52	12.57	12.57	0.079	0.047	4.114	-0.743
5	0.32	100, 53	12.57	12.57	0.137	0.062	7.205	-1.297
6	0.40	100, 54	12.57	12.57	0.209	0.076	11.093	-1.991
7	0.48	100, 54	12.57	12.57	0.295	0.090	15.742	-2.817
8	0.56	100, 55	12.57	12.57	0.393	0.103	21.122	-3.769
9	0.64	100, 56	12.57	12.57	0.502	0.116	27.199	-4.840
10	0.72	100, 56	12.57	12.57	0.622	0.129	33.947	-6.023
11	0.80	100, 57	12.57	12.57	0.752	0.142	41.337	-7.313

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.010	-0.008	-0.111	0.533
3	0.54	100, 76	18.85	18.85	0.041	-0.017	-0.465	2.207
4	0.81	100, 74	18.85	18.85	0.098	-0.026	-1.095	5.148

5	1.08	100, 71	18.85	18.85	0.185	-0.036	-2.043	9.500
6	1.35	100, 69	18.85	18.85	0.306	-0.047	-3.354	15.429
7	1.62	100, 67	18.85	18.85	0.467	-0.059	-5.083	23.128
8	1.89	100, 64	18.85	18.85	0.666	-0.060	-7.181	32.305
9	2.16	100, 62	12.57	12.57	1.075	-0.057	-10.727	61.841
10	2.43	100, 59	12.57	12.57	1.346	-0.054	-13.268	75.740
11	2.70	100, 57	12.57	12.57	1.627	-0.045	-15.818	89.405

Verifiche a fessurazione

Combinazione n° 34

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	\mathbf{P}_{m}	S _m	w
1	0.00	18.85	18.85	-68.98	-6.60	0.0000	0.00	0.000
2	0.18	18.85	18.85	-68.98	-8.13	0.0000	0.00	0.000
3	0.35	18.85	18.85	-68.98	-9.94	0.0000	0.00	0.000
4	0.53	18.85	18.85	-68.98	-11.80	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-13.76	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-15.82	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-18.04	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-20.52	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-23.33	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-26.54	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-30.19	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-34.32	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-38.97	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-44.17	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-49.95	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-56.34	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-63.39	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-71.11	0.0233	203.88	0.081

19	3.19	18.85	18.85	-68.98	-79.55	0.0263	203.88	0.091
20	3.37	18.85	18.85	-68.98	-88.72	0.0317	203.88	0.110
21	3.54	18.85	18.85	-68.98	-98.67	0.0394	203.88	0.136
<u>Verif</u>	ica fessuraz	<u>ione fondazi</u>	<u>one</u>					
			_			_		
N°	Y	A _{fs}	A _{fi}	M_{pf}	M	? _m	S _m	W
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.26	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	1.02	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.30	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	4.09	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	6.38	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	9.19	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	12.51	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	16.35	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	20.69	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	25.54	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-55.25	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-49.01	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-41.82	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-33.87	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-25.26	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-17.52	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-11.20	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-6.29	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-2.79	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.70	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	М	Pm	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
-	- 							

COMBINAZIONE n° 35

Valore della spinta statica 87.8802

[kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Risultanti carichi esterni					
Componente dir. X	16.70	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	98.5587	[kN]			
Risultante dei carichi applicati in dir. verticale	383.1538	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	390.2857	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	64.7896	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.05	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	395.6269	[kN]			
Inclinazione della risultante (rispetto alla normale)	9.43	[°]			
Momento rispetto al baricentro della fondazione	19.3143	[kNm]			
Carico ultimo della fondazione	5413.7091	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.10439	[N/mmc	[]		
Tensione terreno allo spigolo di monte	0.09001	[N/mmc	-		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	[]		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.42
Coefficiente di sicurezza a carico ultimo 13.87

Sollecitazioni paramento

Combinazione n° 35

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Y	N	М	Т
1	0.00	0.0000	11.0000	16.7000
2	0.18	4.7148	13.7138	16.7804
3	0.35	6.9297	16.7061	17.0217
4	0.53	9.1445	19.7553	17.4238
5	0.71	11.3594	22.8901	17.9868
6	0.89	13.5742	26.1390	18.7164
7	1.06	15.7890	29.5453	19.8211
8	1.24	18.0039	33.2004	21.5244
9	1.42	20.2187	37.1973	23.6382
10	1.59	22.4336	41.5921	26.0077
11	1.77	24.6484	46.4273	28.6055
12	1.95	26.8632	51.7417	31.4153
13	2.13	29.0781	57.5719	34.4254
14	2.30	31.2929	63.9525	37.6275
15	2.48	33.5078	70.9171	41.0152
16	2.66	35.7226	78.4980	44.5839
17	2.83	37.9374	86.7270	48.3300
18	3.01	40.1523	95.6352	52.2506
19	3.19	42.3671	105.2534	56.3435
20	3.37	44.5820	115.6120	60.6069
21	3.54	46.7968	126.7397	65.0125

Sollecitazioni fondazione di valle

Combinazione n° 35

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2935	7.3325
3	0.16	1.1722	14.6280
4	0.24	2.6330	21.8866
5	0.32	4.6731	29.1081
6	0.40	7.2894	36.2926
7	0.48	10.4789	43.4401
8	0.56	14.2388	50.5507
9	0.64	18.5660	57.6242
10	0.72	23.4577	64.6607
11	0.80	28.9108	71.6602

Sollecitazioni fondazione di monte

Combinazione n° 35

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.27	-1.1123	-8.1690
3	0.54	-4.3733	-15.9161
4	0.81	-9.6690	-23.2412
5	1.08	-16.8855	-30.1443
6	1.35	-25.9089	-36.6255
7	1.62	-36.6253	-42.6847
8	1.89	-48.3792	-42.6220
9	2.16	-59.5072	-39.7373
10	2.43	-69.7994	-36.4307
11	2.70	-78.9418	-30.7021

Sollecitazioni mensola di contrappeso

Combinazione n° 35

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 35

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	? c	? _{fs}	2_{fi}
1	0.00	100, 50	18.85	18.85	0.330	0.043	13.902	-3.314
2	0.18	100, 50	18.85	18.85	0.419	0.043	16.172	-4.338
3	0.35	100, 50	18.85	18.85	0.513	0.044	19.412	-5.334
4	0.53	100, 50	18.85	18.85	0.608	0.045	22.725	-6.347
5	0.71	100, 50	18.85	18.85	0.705	0.046	26.146	-7.385
6	0.89	100, 50	18.85	18.85	0.806	0.048	29.711	-8.458
7	1.06	100, 50	18.85	18.85	0.912	0.051	33.476	-9.578
8	1.24	100, 50	18.85	18.85	1.025	0.055	37.554	-10.773
9	1.42	100, 50	18.85	18.85	1.148	0.060	42.063	-12.072
10	1.59	100, 50	18.85	18.85	1.284	0.067	47.075	-13.491
11	1.77	100, 50	18.85	18.85	1.433	0.073	52.643	-15.044
12	1.95	100, 50	18.85	18.85	1.596	0.080	58.815	-16.741
13	2.13	100, 50	18.85	18.85	1.774	0.088	65.638	-18.595
14	2.30	100, 50	18.85	18.85	1.970	0.096	73.157	-20.615
15	2.48	100, 50	18.85	18.85	2.183	0.105	81.413	-22.812
16	2.66	100, 50	18.85	18.85	2.414	0.114	90.447	-25.195
17	2.83	100, 50	18.85	18.85	2.665	0.124	100.299	-27.773
18	3.01	100, 50	18.85	18.85	2.936	0.134	111.010	-30.557
19	3.19	100, 50	18.85	18.85	3.229	0.144	122.618	-33.555
20	3.37	100, 50	18.85	18.85	3.543	0.155	135.160	-36.776
21	3.54	100, 50	18.85	18.85	3.881	0.166	148.675	-40.230

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 35

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 35

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.011	0.018	0.542	-0.098
3	0.16	100, 51	12.57	12.57	0.041	0.036	2.131	-0.386
4	0.24	100, 52	12.57	12.57	0.090	0.054	4.715	-0.851
5	0.32	100, 53	12.57	12.57	0.157	0.070	8.242	-1.484
6	0.40	100, 54	12.57	12.57	0.239	0.086	12.667	-2.273
7	0.48	100, 54	12.57	12.57	0.336	0.102	17.945	-3.212
8	0.56	100, 55	12.57	12.57	0.447	0.117	24.034	-4.289
9	0.64	100, 56	12.57	12.57	0.570	0.131	30.895	-5.498
10	0.72	100, 56	12.57	12.57	0.706	0.145	38.490	-6.830
11	0.80	100, 57	12.57	12.57	0.852	0.159	46.786	-8.278

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.016	-0.013	-0.177	0.849
3	0.54	100, 76	18.85	18.85	0.065	-0.026	-0.727	3.453
4	0.81	100, 74	18.85	18.85	0.151	-0.039	-1.682	7.907

5	1.08	100, 71	18.85	18.85	0.278	-0.053	-3.079	14.320
6	1.35	100, 69	18.85	18.85	0.452	-0.066	-4.959	22.815
7	1.62	100, 67	18.85	18.85	0.678	-0.080	-7.371	33.538
8	1.89	100, 64	18.85	18.85	0.951	-0.083	-10.256	46.142
9	2.16	100, 62	12.57	12.57	1.529	-0.081	-15.264	87.998
10	2.43	100, 59	12.57	12.57	1.917	-0.077	-18.896	107.868
11	2.70	100, 57	12.57	12.57	2.325	-0.068	-22.602	127.750

Verifiche a fessurazione

Combinazione n° 35

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	${f A}_{\sf fi}$	M_{pf}	M	\mathbf{P}_{m}	S _m	w
1	0.00	18.85	18.85	-68.98	-11.00	0.0000	0.00	0.000
2	0.18	18.85	18.85	-68.98	-13.71	0.0000	0.00	0.000
3	0.35	18.85	18.85	-68.98	-16.71	0.0000	0.00	0.000
4	0.53	18.85	18.85	-68.98	-19.76	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-22.89	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-26.14	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-29.55	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-33.20	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-37.20	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-41.59	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-46.43	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-51.74	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-57.57	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-63.95	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-70.92	0.0237	203.88	0.082
16	2.66	18.85	18.85	-68.98	-78.50	0.0264	203.88	0.091
17	2.83	18.85	18.85	-68.98	-86.73	0.0311	203.88	0.108
18	3.01	18.85	18.85	-68.98	-95.64	0.0380	203.88	0.132

19	3.19	18.85	18.85	-68.98	-105.25	0.0451	203.88	0.156	
20	3.37	18.85	18.85	-68.98	-115.61	0.0525	203.88	0.182	
21	3.54	18.85	18.85	-68.98	-126.74	0.0603	203.88	0.209	
<u>Verifica fessurazione fondazione</u>									
N°	Υ	A_fs	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	c	w	
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	s _m 0.00	0.000	
2	-1.22	12.57	12.57	67.37	0.29	0.0000	0.00	0.000	
3	-1.22	12.57	12.57	69.18	1.17	0.0000	0.00	0.000	
4	-1.14	12.57	12.57	71.02	2.63	0.0000	0.00	0.000	
5	-0.98	12.57	12.57	72.87	4.67	0.0000	0.00	0.000	
6	-0.90	12.57	12.57	72.87 74.75	7.29	0.0000	0.00	0.000	
7	-0.90	12.57	12.57	74.73 76.65	10.48	0.0000	0.00	0.000	
8	-0.82 -0.74		12.57		14.24	0.0000	0.00		
9		12.57		78.58		0.0000		0.000	
	-0.66	12.57	12.57	80.52	18.57		0.00	0.000	
10	-0.58	12.57	12.57	82.49	23.46	0.0000	0.00	0.000	
11	-0.50	12.57	12.57	84.49	28.91	0.0000	0.00	0.000	
12	0.00	12.57	12.57	-84.49	-78.94	0.0000	0.00	0.000	
13	0.27	12.57	12.57	-91.50	-69.80	0.0000	0.00	0.000	
14	0.54	12.57	12.57	-98.78	-59.51	0.0000	0.00	0.000	
15	0.81	18.85	18.85	-111.03	-48.38	0.0000	0.00	0.000	
16	1.08	18.85	18.85	-119.07	-36.63	0.0000	0.00	0.000	
17	1.35	18.85	18.85	-127.39	-25.91	0.0000	0.00	0.000	
18	1.62	18.85	18.85	-135.98	-16.89	0.0000	0.00	0.000	
19	1.89	18.85	18.85	-144.85	-9.67	0.0000	0.00	0.000	
20	2.16	18.85	18.85	-153.98	-4.37	0.0000	0.00	0.000	
21	2.43	18.85	18.85	-163.38	-1.11	0.0000	0.00	0.000	
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000	
	·		P t .						
<u>verif</u>	<u>ıca Jessuraz</u>	rione mensolo	<u>a ai monte</u>						
N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	⊡m	S _m	w	
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000	
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000	
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000	

COMBINAZIONE n° 36

Valore della spinta statica 87.8802

[kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	7.7343	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Y	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia verticale del muro	1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia verticale del terrapieno fondazione di monte	3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	100.4865	[kN]			
Risultante dei carichi applicati in dir. verticale	391.6792	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	398.9467	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	65.9670	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.09	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	404.3638	[kN]			
Inclinazione della risultante (rispetto alla normale)	9.39	[°]			
Momento rispetto al baricentro della fondazione	-34.6674	[kNm]			
Carico ultimo della fondazione	5310.2818	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.08646	[N/mmq]		
Tensione terreno allo spigolo di monte	0.11226	[N/mmq]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		
Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	9.39 -34.6674 5310.2818 4.02 0.08646 0.11226	[°] [kNm] [kN] [m] [n/mmq	[]		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{a} = 1.00$	s _□ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.42
Coefficiente di sicurezza a carico ultimo 13.31

Sollecitazioni paramento

Combinazione n° 36

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2384	0.1607
3	0.35	6.9297	-0.1826	0.4986
4	0.53	9.1445	-0.0512	1.0138
5	0.71	11.3594	0.1871	1.7062
6	0.89	13.5742	0.5639	2.5822
7	1.06	15.7890	1.1271	3.8715
8	1.24	18.0039	1.9770	5.8204
9	1.42	20.2187	3.2164	8.2217
10	1.59	22.4336	4.9070	10.9047
11	1.77	24.6484	7.0956	13.8393
12	1.95	26.8632	9.8251	17.0074
13	2.13	29.0781	13.1357	20.3964
14	2.30	31.2929	17.0655	23.9968
15	2.48	33.5078	21.6516	27.8018
16	2.66	35.7226	26.9296	31.8063
17	2.83	37.9374	32.9345	36.0062
18	3.01	40.1523	39.7006	40.3984
19	3.19	42.3671	47.2618	44.9804
20	3.37	44.5820	55.6516	49.7503
21	3.54	46.7968	64.9017	54.6770

Sollecitazioni fondazione di valle

Combinazione n° 36

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2373	5.9379
3	0.16	0.9508	11.9032
4	0.24	2.1426	17.8957
5	0.32	3.8148	23.9154
6	0.40	5.9698	29.9625
7	0.48	8.6096	36.0369
8	0.56	11.7364	42.1385
9	0.64	15.3525	48.2675
10	0.72	19.4599	54.4237
11	0.80	24.0610	60.6072

Sollecitazioni fondazione di monte

Combinazione n° 36

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.3308	-2.5021
3	0.54	-1.3791	-5.3145
4	0.81	-3.2286	-8.4372
5	1.08	-5.9631	-11.8702
6	1.35	-9.6664	-15.6135
7	1.62	-14.4223	-19.6671
8	1.89	-19.7731	-18.3310
9	2.16	-24.2530	-14.9053
10	2.43	-27.8499	-11.7898
11	2.70	-30.4474	-6.9846

Sollecitazioni mensola di contrappeso

Combinazione n° 36

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 36

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	\mathbf{P}_{fs}	? _{fi}
1	0.00	100, 50	18.85	18.85	0.000	0.000	0.000	0.000
2	0.18	100, 50	18.85	18.85	0.013	0.000	-0.185	-0.069
3	0.35	100, 50	18.85	18.85	0.016	0.001	-0.231	-0.142
4	0.53	100, 50	18.85	18.85	0.017	0.003	-0.259	-0.234
5	0.71	100, 50	18.85	18.85	0.024	0.004	-0.260	-0.352
6	0.89	100, 50	18.85	18.85	0.035	0.007	-0.228	-0.503
7	1.06	100, 50	18.85	18.85	0.050	0.010	-0.151	-0.701
8	1.24	100, 50	18.85	18.85	0.071	0.015	0.010	-0.972
9	1.42	100, 50	18.85	18.85	0.106	0.021	0.495	-1.403
10	1.59	100, 50	18.85	18.85	0.159	0.028	1.641	-2.037
11	1.77	100, 50	18.85	18.85	0.231	0.035	3.585	-2.846
12	1.95	100, 50	18.85	18.85	0.319	0.043	6.323	-3.818
13	2.13	100, 50	18.85	18.85	0.424	0.052	9.855	-4.956
14	2.30	100, 50	18.85	18.85	0.548	0.061	14.203	-6.274
15	2.48	100, 50	18.85	18.85	0.691	0.071	19.400	-7.783
16	2.66	100, 50	18.85	18.85	0.855	0.081	25.483	-9.496
17	2.83	100, 50	18.85	18.85	1.041	0.092	32.494	-11.425
18	3.01	100, 50	18.85	18.85	1.249	0.103	40.473	-13.580
19	3.19	100, 50	18.85	18.85	1.480	0.115	49.460	-15.973
20	3.37	100, 50	18.85	18.85	1.737	0.127	59.498	-18.613
21	3.54	100, 50	18.85	18.85	2.019	0.140	70.626	-21.511

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 36

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 36

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.009	0.015	0.438	-0.080
3	0.16	100, 51	12.57	12.57	0.033	0.030	1.729	-0.313
4	0.24	100, 52	12.57	12.57	0.074	0.044	3.836	-0.692
5	0.32	100, 53	12.57	12.57	0.128	0.058	6.728	-1.211
6	0.40	100, 54	12.57	12.57	0.196	0.071	10.374	-1.862
7	0.48	100, 54	12.57	12.57	0.276	0.084	14.743	-2.639
8	0.56	100, 55	12.57	12.57	0.368	0.097	19.810	-3.535
9	0.64	100, 56	12.57	12.57	0.472	0.110	25.547	-4.546
10	0.72	100, 56	12.57	12.57	0.585	0.122	31.931	-5.666
11	0.80	100, 57	12.57	12.57	0.709	0.135	38.938	-6.889

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	A_{fs}	\mathbf{A}_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.005	-0.004	-0.053	0.253
3	0.54	100, 76	18.85	18.85	0.020	-0.009	-0.229	1.089
4	0.81	100, 74	18.85	18.85	0.050	-0.014	-0.562	2.640

5	1.08	100, 71	18.85	18.85	0.098	-0.021	-1.087	5.057
6	1.35	100, 69	18.85	18.85	0.169	-0.028	-1.850	8.512
7	1.62	100, 67	18.85	18.85	0.267	-0.037	-2.903	13.207
8	1.89	100, 64	18.85	18.85	0.389	-0.036	-4.192	18.859
9	2.16	100, 62	12.57	12.57	0.623	-0.030	-6.221	35.865
10	2.43	100, 59	12.57	12.57	0.765	-0.025	-7.540	43.039
11	2.70	100, 57	12.57	12.57	0.897	-0.016	-8.718	49.273

Verifiche a fessurazione

Combinazione n° 36

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]

A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]

M_{pf} Momento di prima fessurazione espressa in [kNm]

M Momento agente nella sezione espressa in [kNm]

☑_m deformazione media espressa in [%]

s_m Distanza media tra le fessure espressa in [mm]

w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	18.85	-68.98	0.00	0.0000	0.00	0.000
2	0.18	18.85	18.85	68.98	0.24	0.0000	0.00	0.000
3	0.35	18.85	18.85	68.98	0.18	0.0000	0.00	0.000
4	0.53	18.85	18.85	68.98	0.05	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-0.19	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-0.56	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-1.13	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-1.98	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-3.22	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-4.91	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-7.10	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-9.83	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-13.14	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-17.07	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-21.65	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-26.93	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-32.93	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-39.70	0.0000	0.00	0.000

19	3.19	18.85	18.85	-68.98	-47.26	0.0000	0.00	0.000
20	3.37	18.85	18.85	-68.98	-55.65	0.0000	0.00	0.000
21	3.54	18.85	18.85	-68.98	-64.90	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
NIº	Υ	^	•	8.4	D. 4	а	_	
N°		A fs	A fi	M _{pf}	M		S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.24	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	0.95	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.14	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	3.81	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	5.97	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	8.61	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	11.74	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	15.35	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	19.46	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	24.06	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-30.45	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-27.85	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-24.25	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-19.77	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-14.42	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-9.67	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-5.96	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-3.23	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-1.38	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.33	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Y	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	М	? m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 37

Valore della spinta statica 87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70	[m]	Υ	=	-2.60
and the second s	[m]				
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	4.8834	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70	[m]	Υ	=	-2.60
	[m]				
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	[m] 0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia del muro	-1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia dei terrapierio iondazione di monte	-3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
merzia verticale del terrapieno mensora di contrappeso	0.0000	[KIV]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	97.8309	[kN]			
Risultante dei carichi applicati in dir. verticale	379.2186	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	386.3020	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	64.4075	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.08	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	391.6345	[kN]			
Inclinazione della risultante (rispetto alla normale)	9.47	[°]			
Momento rispetto al baricentro della fondazione	-32.6643	[kNm]			
Carico ultimo della fondazione	5316.7539	[kN]			
Tansiani sul tarrana					
<u>Tensioni sul terreno</u> Lunghezza fondazione reagente	4.02	[m]			
		[m]	.1		
Tensione terreno allo spigolo di valle	0.08405	[N/mmq			
Tensione terreno allo spigolo di monte	0.10836	[N/mmq			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq	IJ		

Fattori per il calcolo della capacità portante

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.41

Coefficiente di sicurezza a carico ultimo 13.76

Sollecitazioni paramento

Combinazione n° 37

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2385	0.1581
3	0.35	6.9297	-0.1838	0.4882
4	0.53	9.1445	-0.0554	0.9903
5	0.71	11.3594	0.1773	1.6645
6	0.89	13.5742	0.5447	2.5168
7	1.06	15.7890	1.0933	3.7703
8	1.24	18.0039	1.9207	5.6640
9	1.42	20.2187	3.1265	7.9968
10	1.59	22.4336	4.7705	10.6030
11	1.77	24.6484	6.8983	13.4533
12	1.95	26.8632	9.5514	16.5304
13	2.13	29.0781	12.7689	19.8218
14	2.30	31.2929	16.5879	23.3184
15	2.48	33.5078	21.0441	27.0136
16	2.66	35.7226	26.1723	30.9024
17	2.83	37.9374	32.0063	34.9808
18	3.01	40.1523	38.5796	39.2459
19	3.19	42.3671	45.9249	43.6953
20	3.37	44.5820	54.0749	48.3270
21	3.54	46.7968	63.0601	53.1109

Sollecitazioni fondazione di valle

Combinazione n° 37

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.08	0.2296	5.7440
3	0.16	0.9197	11.5129
4	0.24	2.0723	17.3067
5	0.32	3.6894	23.1254
6	0.40	5.7730	28.9690
7	0.48	8.3251	34.8375
8	0.56	11.3477	40.7309
9	0.64	14.8427	46.6492
10	0.72	18.8122	52.5924
11	0.80	23.2582	58.5605

Sollecitazioni fondazione di monte

Combinazione n° 37

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.4717	-3.5416
3	0.54	-1.9379	-7.3663
4	0.81	-4.4750	-11.4741
5	1.08	-8.1595	-15.8651
6	1.35	-13.0677	-20.5392
7	1.62	-19.2761	-25.4965
8	1.89	-26.3198	-25.0368
9	2.16	-32.7255	-22.4603
10	2.43	-38.4738	-20.1670
11	2.70	-43.4412	-16.1567

Sollecitazioni mensola di contrappeso

Combinazione n° 37

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 37

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? c	? _c	\mathbf{P}_{fs}	? _{fi}
1	0.00	100, 50	18.85	18.85	0.000	0.000	0.000	0.000
2	0.18	100, 50	18.85	18.85	0.013	0.000	-0.185	-0.069
3	0.35	100, 50	18.85	18.85	0.016	0.001	-0.232	-0.142
4	0.53	100, 50	18.85	18.85	0.018	0.003	-0.260	-0.233
5	0.71	100, 50	18.85	18.85	0.024	0.004	-0.263	-0.349
6	0.89	100, 50	18.85	18.85	0.035	0.006	-0.233	-0.499
7	1.06	100, 50	18.85	18.85	0.050	0.010	-0.159	-0.692
8	1.24	100, 50	18.85	18.85	0.070	0.014	-0.008	-0.957
9	1.42	100, 50	18.85	18.85	0.103	0.020	0.438	-1.373
10	1.59	100, 50	18.85	18.85	0.155	0.027	1.512	-1.987
11	1.77	100, 50	18.85	18.85	0.224	0.034	3.367	-2.777
12	1.95	100, 50	18.85	18.85	0.310	0.042	6.000	-3.726
13	2.13	100, 50	18.85	18.85	0.413	0.051	9.409	-4.837
14	2.30	100, 50	18.85	18.85	0.533	0.060	13.613	-6.122
15	2.48	100, 50	18.85	18.85	0.673	0.069	18.644	-7.593
16	2.66	100, 50	18.85	18.85	0.832	0.079	24.536	-9.261
17	2.83	100, 50	18.85	18.85	1.012	0.089	31.330	-11.139
18	3.01	100, 50	18.85	18.85	1.214	0.100	39.064	-13.236
19	3.19	100, 50	18.85	18.85	1.440	0.112	47.778	-15.564
20	3.37	100, 50	18.85	18.85	1.689	0.124	57.512	-18.133
21	3.54	100, 50	18.85	18.85	1.963	0.136	68.305	-20.951

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 37

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 37

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Х	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.008	0.014	0.424	-0.077
3	0.16	100, 51	12.57	12.57	0.032	0.029	1.672	-0.303
4	0.24	100, 52	12.57	12.57	0.071	0.042	3.711	-0.670
5	0.32	100, 53	12.57	12.57	0.124	0.056	6.507	-1.171
6	0.40	100, 54	12.57	12.57	0.189	0.069	10.032	-1.801
7	0.48	100, 54	12.57	12.57	0.267	0.082	14.256	-2.551
8	0.56	100, 55	12.57	12.57	0.356	0.094	19.154	-3.418
9	0.64	100, 56	12.57	12.57	0.456	0.106	24.699	-4.395
10	0.72	100, 56	12.57	12.57	0.566	0.118	30.868	-5.477
11	0.80	100, 57	12.57	12.57	0.685	0.130	37.638	-6.659

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.007	-0.006	-0.075	0.360
3	0.54	100, 76	18.85	18.85	0.029	-0.012	-0.322	1.530
4	0.81	100, 74	18.85	18.85	0.070	-0.019	-0.779	3.660

5	1.08	100, 71	18.85	18.85	0.135	-0.028	-1.488	6.920
6	1.35	100, 69	18.85	18.85	0.228	-0.037	-2.501	11.507
7	1.62	100, 67	18.85	18.85	0.357	-0.048	-3.880	17.651
8	1.89	100, 64	18.85	18.85	0.518	-0.049	-5.580	25.102
9	2.16	100, 62	12.57	12.57	0.841	-0.046	-8.394	48.394
10	2.43	100, 59	12.57	12.57	1.057	-0.043	-10.416	59.458
11	2.70	100, 57	12.57	12.57	1.279	-0.036	-12.438	70.300

Verifiche a fessurazione

Combinazione n° 37

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	18.85	-68.98	0.00	0.0000	0.00	0.000
2	0.18	18.85	18.85	68.98	0.24	0.0000	0.00	0.000
3	0.35	18.85	18.85	68.98	0.18	0.0000	0.00	0.000
4	0.53	18.85	18.85	68.98	0.06	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-0.18	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-0.54	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-1.09	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-1.92	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-3.13	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-4.77	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-6.90	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-9.55	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-12.77	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-16.59	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-21.04	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-26.17	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-32.01	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-38.58	0.0000	0.00	0.000

19	3.19	18.85	18.85	-68.98	-45.92	0.0000	0.00	0.000
20	3.37	18.85	18.85	-68.98	-54.07	0.0000	0.00	0.000
21	3.54	18.85	18.85	-68.98	-63.06	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_{fs}	A_{fi}	M_{pf}	М	□m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.23	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	0.92	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.07	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	3.69	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	5.77	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	8.33	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	11.35	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	14.84	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	18.81	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	23.26	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-43.44	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-38.47	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-32.73	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-26.32	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-19.28	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-13.07	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-8.16	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-4.48	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-1.94	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.47	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
Vorif	ica fossura:	ziona mansali	a di monto					
verij	icu jessui UZ	rione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${f A}_{\sf fi}$	$M_{\sf pf}$	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 38

Valore della spinta statica 87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	7.7343	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Y	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia verticale del muro	1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia verticale del terrapieno fondazione di monte	3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	100.4865	[kN]			
Risultante dei carichi applicati in dir. verticale	391.6792	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	398.9467	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	65.9670	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.09	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	404.3638	[kN]			
Inclinazione della risultante (rispetto alla normale)	9.39	[°]			
Momento rispetto al baricentro della fondazione	-34.6674	[kNm]			
Carico ultimo della fondazione	5310.2818	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.08646	[N/mmq]		
Tensione terreno allo spigolo di monte	0.11226	[N/mmq]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		
Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	9.39 -34.6674 5310.2818 4.02 0.08646 0.11226	[°] [kNm] [kN] [m] [n/mmq	[]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{\alpha} = 1.00$	$s_{0} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.42
Coefficiente di sicurezza a carico ultimo 13.31

Sollecitazioni paramento

Combinazione n° 38

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2384	0.1607
3	0.35	6.9297	-0.1826	0.4986
4	0.53	9.1445	-0.0512	1.0138
5	0.71	11.3594	0.1871	1.7062
6	0.89	13.5742	0.5639	2.5822
7	1.06	15.7890	1.1271	3.8715
8	1.24	18.0039	1.9770	5.8204
9	1.42	20.2187	3.2164	8.2217
10	1.59	22.4336	4.9070	10.9047
11	1.77	24.6484	7.0956	13.8393
12	1.95	26.8632	9.8251	17.0074
13	2.13	29.0781	13.1357	20.3964
14	2.30	31.2929	17.0655	23.9968
15	2.48	33.5078	21.6516	27.8018
16	2.66	35.7226	26.9296	31.8063
17	2.83	37.9374	32.9345	36.0062
18	3.01	40.1523	39.7006	40.3984
19	3.19	42.3671	47.2618	44.9804
20	3.37	44.5820	55.6516	49.7503
21	3.54	46.7968	64.9017	54.6770

Sollecitazioni fondazione di valle

Combinazione n° 38

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2373	5.9379
3	0.16	0.9508	11.9032
4	0.24	2.1426	17.8957
5	0.32	3.8148	23.9154
6	0.40	5.9698	29.9625
7	0.48	8.6096	36.0369
8	0.56	11.7364	42.1385
9	0.64	15.3525	48.2675
10	0.72	19.4599	54.4237
11	0.80	24.0610	60.6072

Sollecitazioni fondazione di monte

Combinazione n° 38

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.3308	-2.5021
3	0.54	-1.3791	-5.3145
4	0.81	-3.2286	-8.4372
5	1.08	-5.9631	-11.8702
6	1.35	-9.6664	-15.6135
7	1.62	-14.4223	-19.6671
8	1.89	-19.7731	-18.3310
9	2.16	-24.2530	-14.9053
10	2.43	-27.8499	-11.7898
11	2.70	-30.4474	-6.9846

Sollecitazioni mensola di contrappeso

Combinazione n° 38

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 38

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? c	? _c	\mathbf{P}_{fs}	$?_{fi}$
1	0.00	100, 50	18.85	18.85	0.000	0.000	0.000	0.000
2	0.18	100, 50	18.85	18.85	0.013	0.000	-0.185	-0.069
3	0.35	100, 50	18.85	18.85	0.016	0.001	-0.231	-0.142
4	0.53	100, 50	18.85	18.85	0.017	0.003	-0.259	-0.234
5	0.71	100, 50	18.85	18.85	0.024	0.004	-0.260	-0.352
6	0.89	100, 50	18.85	18.85	0.035	0.007	-0.228	-0.503
7	1.06	100, 50	18.85	18.85	0.050	0.010	-0.151	-0.701
8	1.24	100, 50	18.85	18.85	0.071	0.015	0.010	-0.972
9	1.42	100, 50	18.85	18.85	0.106	0.021	0.495	-1.403
10	1.59	100, 50	18.85	18.85	0.159	0.028	1.641	-2.037
11	1.77	100, 50	18.85	18.85	0.231	0.035	3.585	-2.846
12	1.95	100, 50	18.85	18.85	0.319	0.043	6.323	-3.818
13	2.13	100, 50	18.85	18.85	0.424	0.052	9.855	-4.956
14	2.30	100, 50	18.85	18.85	0.548	0.061	14.203	-6.274
15	2.48	100, 50	18.85	18.85	0.691	0.071	19.400	-7.783
16	2.66	100, 50	18.85	18.85	0.855	0.081	25.483	-9.496
17	2.83	100, 50	18.85	18.85	1.041	0.092	32.494	-11.425
18	3.01	100, 50	18.85	18.85	1.249	0.103	40.473	-13.580
19	3.19	100, 50	18.85	18.85	1.480	0.115	49.460	-15.973
20	3.37	100, 50	18.85	18.85	1.737	0.127	59.498	-18.613
21	3.54	100, 50	18.85	18.85	2.019	0.140	70.626	-21.511

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 38

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 38

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.009	0.015	0.438	-0.080
3	0.16	100, 51	12.57	12.57	0.033	0.030	1.729	-0.313
4	0.24	100, 52	12.57	12.57	0.074	0.044	3.836	-0.692
5	0.32	100, 53	12.57	12.57	0.128	0.058	6.728	-1.211
6	0.40	100, 54	12.57	12.57	0.196	0.071	10.374	-1.862
7	0.48	100, 54	12.57	12.57	0.276	0.084	14.743	-2.639
8	0.56	100, 55	12.57	12.57	0.368	0.097	19.810	-3.535
9	0.64	100, 56	12.57	12.57	0.472	0.110	25.547	-4.546
10	0.72	100, 56	12.57	12.57	0.585	0.122	31.931	-5.666
11	0.80	100, 57	12.57	12.57	0.709	0.135	38.938	-6.889

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	?fi	₽ _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.005	-0.004	-0.053	0.253
3	0.54	100, 76	18.85	18.85	0.020	-0.009	-0.229	1.089
4	0.81	100, 74	18.85	18.85	0.050	-0.014	-0.562	2.640

5	1.08	100, 71	18.85	18.85	0.098	-0.021	-1.087	5.057
6	1.35	100, 69	18.85	18.85	0.169	-0.028	-1.850	8.512
7	1.62	100, 67	18.85	18.85	0.267	-0.037	-2.903	13.207
8	1.89	100, 64	18.85	18.85	0.389	-0.036	-4.192	18.859
9	2.16	100, 62	12.57	12.57	0.623	-0.030	-6.221	35.865
10	2.43	100, 59	12.57	12.57	0.765	-0.025	-7.540	43.039
11	2.70	100, 57	12.57	12.57	0.897	-0.016	-8.718	49.273

Verifiche a fessurazione

Combinazione n° 38

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? m	S _m	w
1	0.00	18.85	18.85	-68.98	0.00	0.0000	0.00	0.000
2	0.18	18.85	18.85	68.98	0.24	0.0000	0.00	0.000
3	0.35	18.85	18.85	68.98	0.18	0.0000	0.00	0.000
4	0.53	18.85	18.85	68.98	0.05	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-0.19	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-0.56	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-1.13	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-1.98	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-3.22	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-4.91	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-7.10	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-9.83	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-13.14	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-17.07	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-21.65	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-26.93	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-32.93	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-39.70	0.0000	0.00	0.000

19	3.19	18.85	18.85	-68.98	-47.26	0.0000	0.00	0.000
20	3.37	18.85	18.85	-68.98	-55.65	0.0000	0.00	0.000
21	3.54	18.85	18.85	-68.98	-64.90	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_{fs}	A_fi	M_{pf}	М	? _m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.24	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	0.95	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.14	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	3.81	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	5.97	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	8.61	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	11.74	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	15.35	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	19.46	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	24.06	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-30.45	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-27.85	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-24.25	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-19.77	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-14.42	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-9.67	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-5.96	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-3.23	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-1.38	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.33	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
Verif	ica fessuraz	ione mensolo	a di monte					
-	-							
N°	Y	A_{fs}	A_fi	M_{pf}	M	? _m	S _m	W
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 39

Valore della spinta statica 87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	4.8834	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia verticale del muro	-1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	97.8309	[kN]			
Risultante dei carichi applicati in dir. verticale	379.2186	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	386.3020	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	64.4075	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.08	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	391.6345	[kN]			
Inclinazione della risultante (rispetto alla normale)	9.47	[°]			
Momento rispetto al baricentro della fondazione	-32.6643	[kNm]			
Carico ultimo della fondazione	5316.7539	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.08405	[N/mmq]		
Tensione terreno allo spigolo di monte	0.10836	[N/mmq	[]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

Fattori per il calcolo della capacità portante

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{e} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.41

Coefficiente di sicurezza a carico ultimo 13.76

Sollecitazioni paramento

Combinazione n° 39

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2385	0.1581
3	0.35	6.9297	-0.1838	0.4882
4	0.53	9.1445	-0.0554	0.9903
5	0.71	11.3594	0.1773	1.6645
6	0.89	13.5742	0.5447	2.5168
7	1.06	15.7890	1.0933	3.7703
8	1.24	18.0039	1.9207	5.6640
9	1.42	20.2187	3.1265	7.9968
10	1.59	22.4336	4.7705	10.6030
11	1.77	24.6484	6.8983	13.4533
12	1.95	26.8632	9.5514	16.5304
13	2.13	29.0781	12.7689	19.8218
14	2.30	31.2929	16.5879	23.3184
15	2.48	33.5078	21.0441	27.0136
16	2.66	35.7226	26.1723	30.9024
17	2.83	37.9374	32.0063	34.9808
18	3.01	40.1523	38.5796	39.2459
19	3.19	42.3671	45.9249	43.6953
20	3.37	44.5820	54.0749	48.3270
21	3.54	46.7968	63.0601	53.1109

Sollecitazioni fondazione di valle

Combinazione n° 39

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.08	0.2296	5.7440
3	0.16	0.9197	11.5129
4	0.24	2.0723	17.3067
5	0.32	3.6894	23.1254
6	0.40	5.7730	28.9690
7	0.48	8.3251	34.8375
8	0.56	11.3477	40.7309
9	0.64	14.8427	46.6492
10	0.72	18.8122	52.5924
11	0.80	23.2582	58.5605

Sollecitazioni fondazione di monte

Combinazione n° 39

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.4717	-3.5416
3	0.54	-1.9379	-7.3663
4	0.81	-4.4750	-11.4741
5	1.08	-8.1595	-15.8651
6	1.35	-13.0677	-20.5392
7	1.62	-19.2761	-25.4965
8	1.89	-26.3198	-25.0368
9	2.16	-32.7255	-22.4603
10	2.43	-38.4738	-20.1670
11	2.70	-43.4412	-16.1567

Sollecitazioni mensola di contrappeso

Combinazione n° 39

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 39

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? c	? _c	\mathbf{P}_{fs}	? _{fi}
1	0.00	100, 50	18.85	18.85	0.000	0.000	0.000	0.000
2	0.18	100, 50	18.85	18.85	0.013	0.000	-0.185	-0.069
3	0.35	100, 50	18.85	18.85	0.016	0.001	-0.232	-0.142
4	0.53	100, 50	18.85	18.85	0.018	0.003	-0.260	-0.233
5	0.71	100, 50	18.85	18.85	0.024	0.004	-0.263	-0.349
6	0.89	100, 50	18.85	18.85	0.035	0.006	-0.233	-0.499
7	1.06	100, 50	18.85	18.85	0.050	0.010	-0.159	-0.692
8	1.24	100, 50	18.85	18.85	0.070	0.014	-0.008	-0.957
9	1.42	100, 50	18.85	18.85	0.103	0.020	0.438	-1.373
10	1.59	100, 50	18.85	18.85	0.155	0.027	1.512	-1.987
11	1.77	100, 50	18.85	18.85	0.224	0.034	3.367	-2.777
12	1.95	100, 50	18.85	18.85	0.310	0.042	6.000	-3.726
13	2.13	100, 50	18.85	18.85	0.413	0.051	9.409	-4.837
14	2.30	100, 50	18.85	18.85	0.533	0.060	13.613	-6.122
15	2.48	100, 50	18.85	18.85	0.673	0.069	18.644	-7.593
16	2.66	100, 50	18.85	18.85	0.832	0.079	24.536	-9.261
17	2.83	100, 50	18.85	18.85	1.012	0.089	31.330	-11.139
18	3.01	100, 50	18.85	18.85	1.214	0.100	39.064	-13.236
19	3.19	100, 50	18.85	18.85	1.440	0.112	47.778	-15.564
20	3.37	100, 50	18.85	18.85	1.689	0.124	57.512	-18.133
21	3.54	100, 50	18.85	18.85	1.963	0.136	68.305	-20.951

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 39

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	Х	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 39

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.008	0.014	0.424	-0.077
3	0.16	100, 51	12.57	12.57	0.032	0.029	1.672	-0.303
4	0.24	100, 52	12.57	12.57	0.071	0.042	3.711	-0.670
5	0.32	100, 53	12.57	12.57	0.124	0.056	6.507	-1.171
6	0.40	100, 54	12.57	12.57	0.189	0.069	10.032	-1.801
7	0.48	100, 54	12.57	12.57	0.267	0.082	14.256	-2.551
8	0.56	100, 55	12.57	12.57	0.356	0.094	19.154	-3.418
9	0.64	100, 56	12.57	12.57	0.456	0.106	24.699	-4.395
10	0.72	100, 56	12.57	12.57	0.566	0.118	30.868	-5.477
11	0.80	100, 57	12.57	12.57	0.685	0.130	37.638	-6.659

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	?fi	₽ _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.007	-0.006	-0.075	0.360
3	0.54	100, 76	18.85	18.85	0.029	-0.012	-0.322	1.530
4	0.81	100, 74	18.85	18.85	0.070	-0.019	-0.779	3.660

5	1.08	100, 71	18.85	18.85	0.135	-0.028	-1.488	6.920
6	1.35	100, 69	18.85	18.85	0.228	-0.037	-2.501	11.507
7	1.62	100, 67	18.85	18.85	0.357	-0.048	-3.880	17.651
8	1.89	100, 64	18.85	18.85	0.518	-0.049	-5.580	25.102
9	2.16	100, 62	12.57	12.57	0.841	-0.046	-8.394	48.394
10	2.43	100, 59	12.57	12.57	1.057	-0.043	-10.416	59.458
11	2.70	100, 57	12.57	12.57	1.279	-0.036	-12.438	70.300

Verifiche a fessurazione

Combinazione n° 39

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	18.85	-68.98	0.00	0.0000	0.00	0.000
2	0.18	18.85	18.85	68.98	0.24	0.0000	0.00	0.000
3	0.35	18.85	18.85	68.98	0.18	0.0000	0.00	0.000
4	0.53	18.85	18.85	68.98	0.06	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-0.18	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-0.54	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-1.09	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-1.92	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-3.13	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-4.77	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-6.90	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-9.55	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-12.77	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-16.59	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-21.04	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-26.17	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-32.01	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-38.58	0.0000	0.00	0.000

19	3.19	18.85	18.85	-68.98	-45.92	0.0000	0.00	0.000
20	3.37	18.85	18.85	-68.98	-54.07	0.0000	0.00	0.000
21	3.54	18.85	18.85	-68.98	-63.06	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_{fs}	A_{fi}	M_{pf}	М	□m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.23	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	0.92	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.07	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	3.69	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	5.77	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	8.33	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	11.35	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	14.84	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	18.81	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	23.26	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-43.44	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-38.47	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-32.73	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-26.32	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-19.28	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-13.07	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-8.16	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-4.48	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-1.94	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.47	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
Vorif	ica fossura:	ziona mansali	a di monto					
verij	icu jessui UZ	rione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${f A}_{\sf fi}$	$M_{\sf pf}$	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 40

Valore della spinta statica 87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70	[m]	Υ	=	-2.60
and the second s	[m]				
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	7.7343	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70	[m]	Υ	=	-2.60
	[m]				
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
	242.2524	[1.61]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]	.,		4 70
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia verticale del muro	1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia verticale del terrapieno fondazione di monte	3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	100.4865	[kN]			
Risultante dei carichi applicati in dir. verticale	391.6792	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	398.9467	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	65.9670	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.09	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	404.3638	[kN]			
Inclinazione della risultante (rispetto alla normale)	9.39	[°]			
Momento rispetto al baricentro della fondazione	-34.6674	[kNm]			
Carico ultimo della fondazione	5310.2818	[kN]			
Tensioni sul terreno					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.08646	[N/mmq	1]		
Tensione terreno allo spigolo di monte	0.11226	[N/mmg	-		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq			

Fattori per il calcolo della capacità portante

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.42
Coefficiente di sicurezza a carico ultimo 13.31

Sollecitazioni paramento

Combinazione n° 40

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2384	0.1607
3	0.35	6.9297	-0.1826	0.4986
4	0.53	9.1445	-0.0512	1.0138
5	0.71	11.3594	0.1871	1.7062
6	0.89	13.5742	0.5639	2.5822
7	1.06	15.7890	1.1271	3.8715
8	1.24	18.0039	1.9770	5.8204
9	1.42	20.2187	3.2164	8.2217
10	1.59	22.4336	4.9070	10.9047
11	1.77	24.6484	7.0956	13.8393
12	1.95	26.8632	9.8251	17.0074
13	2.13	29.0781	13.1357	20.3964
14	2.30	31.2929	17.0655	23.9968
15	2.48	33.5078	21.6516	27.8018
16	2.66	35.7226	26.9296	31.8063
17	2.83	37.9374	32.9345	36.0062
18	3.01	40.1523	39.7006	40.3984
19	3.19	42.3671	47.2618	44.9804
20	3.37	44.5820	55.6516	49.7503
21	3.54	46.7968	64.9017	54.6770

Sollecitazioni fondazione di valle

Combinazione n° 40

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2373	5.9379
3	0.16	0.9508	11.9032
4	0.24	2.1426	17.8957
5	0.32	3.8148	23.9154
6	0.40	5.9698	29.9625
7	0.48	8.6096	36.0369
8	0.56	11.7364	42.1385
9	0.64	15.3525	48.2675
10	0.72	19.4599	54.4237
11	0.80	24.0610	60.6072

Sollecitazioni fondazione di monte

Combinazione n° 40

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.3308	-2.5021
3	0.54	-1.3791	-5.3145
4	0.81	-3.2286	-8.4372
5	1.08	-5.9631	-11.8702
6	1.35	-9.6664	-15.6135
7	1.62	-14.4223	-19.6671
8	1.89	-19.7731	-18.3310
9	2.16	-24.2530	-14.9053
10	2.43	-27.8499	-11.7898
11	2.70	-30.4474	-6.9846

Sollecitazioni mensola di contrappeso

Combinazione n° 40

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 40

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	\mathbf{P}_{fs}	? _{fi}
1	0.00	100, 50	18.85	18.85	0.000	0.000	0.000	0.000
2	0.18	100, 50	18.85	18.85	0.013	0.000	-0.185	-0.069
3	0.35	100, 50	18.85	18.85	0.016	0.001	-0.231	-0.142
4	0.53	100, 50	18.85	18.85	0.017	0.003	-0.259	-0.234
5	0.71	100, 50	18.85	18.85	0.024	0.004	-0.260	-0.352
6	0.89	100, 50	18.85	18.85	0.035	0.007	-0.228	-0.503
7	1.06	100, 50	18.85	18.85	0.050	0.010	-0.151	-0.701
8	1.24	100, 50	18.85	18.85	0.071	0.015	0.010	-0.972
9	1.42	100, 50	18.85	18.85	0.106	0.021	0.495	-1.403
10	1.59	100, 50	18.85	18.85	0.159	0.028	1.641	-2.037
11	1.77	100, 50	18.85	18.85	0.231	0.035	3.585	-2.846
12	1.95	100, 50	18.85	18.85	0.319	0.043	6.323	-3.818
13	2.13	100, 50	18.85	18.85	0.424	0.052	9.855	-4.956
14	2.30	100, 50	18.85	18.85	0.548	0.061	14.203	-6.274
15	2.48	100, 50	18.85	18.85	0.691	0.071	19.400	-7.783
16	2.66	100, 50	18.85	18.85	0.855	0.081	25.483	-9.496
17	2.83	100, 50	18.85	18.85	1.041	0.092	32.494	-11.425
18	3.01	100, 50	18.85	18.85	1.249	0.103	40.473	-13.580
19	3.19	100, 50	18.85	18.85	1.480	0.115	49.460	-15.973
20	3.37	100, 50	18.85	18.85	1.737	0.127	59.498	-18.613
21	3.54	100, 50	18.85	18.85	2.019	0.140	70.626	-21.511

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 40

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 40

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.009	0.015	0.438	-0.080
3	0.16	100, 51	12.57	12.57	0.033	0.030	1.729	-0.313
4	0.24	100, 52	12.57	12.57	0.074	0.044	3.836	-0.692
5	0.32	100, 53	12.57	12.57	0.128	0.058	6.728	-1.211
6	0.40	100, 54	12.57	12.57	0.196	0.071	10.374	-1.862
7	0.48	100, 54	12.57	12.57	0.276	0.084	14.743	-2.639
8	0.56	100, 55	12.57	12.57	0.368	0.097	19.810	-3.535
9	0.64	100, 56	12.57	12.57	0.472	0.110	25.547	-4.546
10	0.72	100, 56	12.57	12.57	0.585	0.122	31.931	-5.666
11	0.80	100, 57	12.57	12.57	0.709	0.135	38.938	-6.889

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	?fi	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.005	-0.004	-0.053	0.253
3	0.54	100, 76	18.85	18.85	0.020	-0.009	-0.229	1.089
4	0.81	100, 74	18.85	18.85	0.050	-0.014	-0.562	2.640

5	1.08	100, 71	18.85	18.85	0.098	-0.021	-1.087	5.057
6	1.35	100, 69	18.85	18.85	0.169	-0.028	-1.850	8.512
7	1.62	100, 67	18.85	18.85	0.267	-0.037	-2.903	13.207
8	1.89	100, 64	18.85	18.85	0.389	-0.036	-4.192	18.859
9	2.16	100, 62	12.57	12.57	0.623	-0.030	-6.221	35.865
10	2.43	100, 59	12.57	12.57	0.765	-0.025	-7.540	43.039
11	2.70	100, 57	12.57	12.57	0.897	-0.016	-8.718	49.273

Verifiche a fessurazione

Combinazione n° 40

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	18.85	-68.98	0.00	0.0000	0.00	0.000
2	0.18	18.85	18.85	68.98	0.24	0.0000	0.00	0.000
3	0.35	18.85	18.85	68.98	0.18	0.0000	0.00	0.000
4	0.53	18.85	18.85	68.98	0.05	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-0.19	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-0.56	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-1.13	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-1.98	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-3.22	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-4.91	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-7.10	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-9.83	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-13.14	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-17.07	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-21.65	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-26.93	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-32.93	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-39.70	0.0000	0.00	0.000

19	3.19	18.85	18.85	-68.98	-47.26	0.0000	0.00	0.000
20	3.37	18.85	18.85	-68.98	-55.65	0.0000	0.00	0.000
21	3.54	18.85	18.85	-68.98	-64.90	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	\mathbf{A}_{fs}	A_{fi}	M_{pf}	М	? _m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.24	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	0.95	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.14	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	3.81	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	5.97	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	8.61	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	11.74	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	15.35	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	19.46	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	24.06	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-30.45	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-27.85	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-24.25	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-19.77	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-14.42	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-9.67	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-5.96	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-3.23	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-1.38	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.33	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
Vorif	ica fossuraz	ione mensolo	a di monto					
<u>verij</u>	icu jessui uz	TOTIC THEHSON	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${f A}_{\sf fi}$	\mathbf{M}_{pf}	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 41

Valore della spinta statica 87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	4.8834	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia verticale del muro	-1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	97.8309	[kN]			
Risultante dei carichi applicati in dir. verticale	379.2186	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	386.3020	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	64.4075	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.08	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	391.6345	[kN]			
Inclinazione della risultante (rispetto alla normale)	9.47	[°]			
Momento rispetto al baricentro della fondazione	-32.6643	[kNm]			
Carico ultimo della fondazione	5316.7539	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.08405	[N/mmq]		
Tensione terreno allo spigolo di monte	0.10836	[N/mmq	[]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

Fattori per il calcolo della capacità portante

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.41

Coefficiente di sicurezza a carico ultimo 13.76

Sollecitazioni paramento

Combinazione n° 41

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	T
1	0.00	0.0000	0.0000	0.0000
2	0.18	4.7148	-0.2385	0.1581
3	0.35	6.9297	-0.1838	0.4882
4	0.53	9.1445	-0.0554	0.9903
5	0.71	11.3594	0.1773	1.6645
6	0.89	13.5742	0.5447	2.5168
7	1.06	15.7890	1.0933	3.7703
8	1.24	18.0039	1.9207	5.6640
9	1.42	20.2187	3.1265	7.9968
10	1.59	22.4336	4.7705	10.6030
11	1.77	24.6484	6.8983	13.4533
12	1.95	26.8632	9.5514	16.5304
13	2.13	29.0781	12.7689	19.8218
14	2.30	31.2929	16.5879	23.3184
15	2.48	33.5078	21.0441	27.0136
16	2.66	35.7226	26.1723	30.9024
17	2.83	37.9374	32.0063	34.9808
18	3.01	40.1523	38.5796	39.2459
19	3.19	42.3671	45.9249	43.6953
20	3.37	44.5820	54.0749	48.3270
21	3.54	46.7968	63.0601	53.1109

Sollecitazioni fondazione di valle

Combinazione n° 41

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.08	0.2296	5.7440
3	0.16	0.9197	11.5129
4	0.24	2.0723	17.3067
5	0.32	3.6894	23.1254
6	0.40	5.7730	28.9690
7	0.48	8.3251	34.8375
8	0.56	11.3477	40.7309
9	0.64	14.8427	46.6492
10	0.72	18.8122	52.5924
11	0.80	23.2582	58.5605

Sollecitazioni fondazione di monte

Combinazione n° 41

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.4717	-3.5416
3	0.54	-1.9379	-7.3663
4	0.81	-4.4750	-11.4741
5	1.08	-8.1595	-15.8651
6	1.35	-13.0677	-20.5392
7	1.62	-19.2761	-25.4965
8	1.89	-26.3198	-25.0368
9	2.16	-32.7255	-22.4603
10	2.43	-38.4738	-20.1670
11	2.70	-43.4412	-16.1567

Sollecitazioni mensola di contrappeso

Combinazione n° 41

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 41

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	? _{fs}	? _{fi}
1	0.00	100, 50	18.85	18.85	0.000	0.000	0.000	0.000
2	0.18	100, 50	18.85	18.85	0.013	0.000	-0.185	-0.069
3	0.35	100, 50	18.85	18.85	0.016	0.001	-0.232	-0.142
4	0.53	100, 50	18.85	18.85	0.018	0.003	-0.260	-0.233
5	0.71	100, 50	18.85	18.85	0.024	0.004	-0.263	-0.349
6	0.89	100, 50	18.85	18.85	0.035	0.006	-0.233	-0.499
7	1.06	100, 50	18.85	18.85	0.050	0.010	-0.159	-0.692
8	1.24	100, 50	18.85	18.85	0.070	0.014	-0.008	-0.957
9	1.42	100, 50	18.85	18.85	0.103	0.020	0.438	-1.373
10	1.59	100, 50	18.85	18.85	0.155	0.027	1.512	-1.987
11	1.77	100, 50	18.85	18.85	0.224	0.034	3.367	-2.777
12	1.95	100, 50	18.85	18.85	0.310	0.042	6.000	-3.726
13	2.13	100, 50	18.85	18.85	0.413	0.051	9.409	-4.837
14	2.30	100, 50	18.85	18.85	0.533	0.060	13.613	-6.122
15	2.48	100, 50	18.85	18.85	0.673	0.069	18.644	-7.593
16	2.66	100, 50	18.85	18.85	0.832	0.079	24.536	-9.261
17	2.83	100, 50	18.85	18.85	1.012	0.089	31.330	-11.139
18	3.01	100, 50	18.85	18.85	1.214	0.100	39.064	-13.236
19	3.19	100, 50	18.85	18.85	1.440	0.112	47.778	-15.564
20	3.37	100, 50	18.85	18.85	1.689	0.124	57.512	-18.133
21	3.54	100, 50	18.85	18.85	1.963	0.136	68.305	-20.951

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 41

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 41

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.008	0.014	0.424	-0.077
3	0.16	100, 51	12.57	12.57	0.032	0.029	1.672	-0.303
4	0.24	100, 52	12.57	12.57	0.071	0.042	3.711	-0.670
5	0.32	100, 53	12.57	12.57	0.124	0.056	6.507	-1.171
6	0.40	100, 54	12.57	12.57	0.189	0.069	10.032	-1.801
7	0.48	100, 54	12.57	12.57	0.267	0.082	14.256	-2.551
8	0.56	100, 55	12.57	12.57	0.356	0.094	19.154	-3.418
9	0.64	100, 56	12.57	12.57	0.456	0.106	24.699	-4.395
10	0.72	100, 56	12.57	12.57	0.566	0.118	30.868	-5.477
11	0.80	100, 57	12.57	12.57	0.685	0.130	37.638	-6.659

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.007	-0.006	-0.075	0.360
3	0.54	100, 76	18.85	18.85	0.029	-0.012	-0.322	1.530
4	0.81	100, 74	18.85	18.85	0.070	-0.019	-0.779	3.660

5	1.08	100, 71	18.85	18.85	0.135	-0.028	-1.488	6.920
6	1.35	100, 69	18.85	18.85	0.228	-0.037	-2.501	11.507
7	1.62	100, 67	18.85	18.85	0.357	-0.048	-3.880	17.651
8	1.89	100, 64	18.85	18.85	0.518	-0.049	-5.580	25.102
9	2.16	100, 62	12.57	12.57	0.841	-0.046	-8.394	48.394
10	2.43	100, 59	12.57	12.57	1.057	-0.043	-10.416	59.458
11	2.70	100, 57	12.57	12.57	1.279	-0.036	-12.438	70.300

Verifiche a fessurazione

Combinazione n° 41

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	\mathbf{P}_{m}	S _m	w
1	0.00	18.85	18.85	-68.98	0.00	0.0000	0.00	0.000
2	0.18	18.85	18.85	68.98	0.24	0.0000	0.00	0.000
3	0.35	18.85	18.85	68.98	0.18	0.0000	0.00	0.000
4	0.53	18.85	18.85	68.98	0.06	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-0.18	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-0.54	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-1.09	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-1.92	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-3.13	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-4.77	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-6.90	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-9.55	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-12.77	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-16.59	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-21.04	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-26.17	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-32.01	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-38.58	0.0000	0.00	0.000

19	3.19	18.85	18.85	-68.98	-45.92	0.0000	0.00	0.000
20	3.37	18.85	18.85	-68.98	-54.07	0.0000	0.00	0.000
21	3.54	18.85	18.85	-68.98	-63.06	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_{fs}	A_{fi}	M_{pf}	М	□m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.23	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	0.92	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.07	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	3.69	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	5.77	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	8.33	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	11.35	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	14.84	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	18.81	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	23.26	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-43.44	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-38.47	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-32.73	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-26.32	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-19.28	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-13.07	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-8.16	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-4.48	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-1.94	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.47	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
Vorif	ica fossura:	ziona mansali	a di monto					
verij	icu jessui UZ	rione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	${f A}_{\sf fi}$	$M_{\sf pf}$	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 42

Valore della spinta statica 87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70	[m]	Υ	=	-2.60
	[m]				
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	7.7343	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70	[m]	Υ	=	-2.60
	[m]	503			
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
	242.2524	[1.61]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]	.,		4 70
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia verticale del muro	1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia verticale del terrapieno fondazione di monte	3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
merzia verticale del terrapieno mensola di contrappeso	0.0000	[KI4]			
Risultanti carichi esterni					
Componente dir. X	3.34	[kN]			
·					
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	103.8265	[kN]			
Risultante dei carichi applicati in dir. verticale	391.6792	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	399.2378	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	69.2943	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.05	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	405.2068	[kN]			
Inclinazione della risultante (rispetto alla normale)	9.85	[°]			
Momento rispetto al baricentro della fondazione	-18.5230	[kNm]			
Carico ultimo della fondazione	5422.2565	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.09254	[N/mmc	[]		
Tensione terreno allo spigolo di monte	0.10632	[N/mmc	[]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	[]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{g} = 1.00$	s _□ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.31

Coefficiente di sicurezza a carico ultimo 13.58

Sollecitazioni paramento

Combinazione n° 42

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	2.2000	3.3400
2	0.18	4.7148	2.5534	3.5007
3	0.35	6.9297	3.2010	3.8386
4	0.53	9.1445	3.9242	4.3538
5	0.71	11.3594	4.7543	5.0462
6	0.89	13.5742	5.7230	5.9222
7	1.06	15.7890	6.8779	7.2115
8	1.24	18.0039	8.3197	9.1604
9	1.42	20.2187	10.1509	11.5617
10	1.59	22.4336	12.4333	14.2447
11	1.77	24.6484	15.2137	17.1793
12	1.95	26.8632	18.5350	20.3474
13	2.13	29.0781	22.4373	23.7364
14	2.30	31.2929	26.9590	27.3368
15	2.48	33.5078	32.1369	31.1418
16	2.66	35.7226	38.0067	35.1463
17	2.83	37.9374	44.6034	39.3462
18	3.01	40.1523	51.9613	43.7384
19	3.19	42.3671	60.1143	48.3204
20	3.37	44.5820	69.0959	53.0903
21	3.54	46.7968	78.9378	58.0170

Sollecitazioni fondazione di valle

Combinazione n° 42

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.08	0.2564	6.4111
3	0.16	1.0260	12.8303
4	0.24	2.3095	19.2575
5	0.32	4.1074	25.6928
6	0.40	6.4205	32.1362
7	0.48	9.2494	38.5876
8	0.56	12.5947	45.0471
9	0.64	16.4572	51.5146
10	0.72	20.8373	57.9902
11	0.80	25.7358	64.4739

Sollecitazioni fondazione di monte

Combinazione n° 42

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.5390	-4.0076
3	0.54	-2.1723	-8.1065
4	0.81	-4.9247	-12.2967
5	1.08	-8.8207	-16.5781
6	1.35	-13.8851	-20.9509
7	1.62	-20.1425	-25.4150
8	1.89	-27.0759	-24.2705
9	2.16	-33.1607	-20.8172
10	2.43	-38.3254	-17.4552
11	2.70	-42.3947	-12.1845

Sollecitazioni mensola di contrappeso

Combinazione n° 42

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 42

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? c	$\mathbf{Z}_{\mathbf{c}}$	$ m ?_{fs}$	\mathbf{P}_{fi}
1	0.00	100, 50	18.85	18.85	0.066	0.009	2.780	-0.663
2	0.18	100, 50	18.85	18.85	0.082	0.009	2.118	-0.940
3	0.35	100, 50	18.85	18.85	0.103	0.010	2.435	-1.204
4	0.53	100, 50	18.85	18.85	0.127	0.011	2.848	-1.491
5	0.71	100, 50	18.85	18.85	0.154	0.013	3.392	-1.813
6	0.89	100, 50	18.85	18.85	0.185	0.015	4.104	-2.180
7	1.06	100, 50	18.85	18.85	0.222	0.018	5.042	-2.608
8	1.24	100, 50	18.85	18.85	0.269	0.023	6.330	-3.129
9	1.42	100, 50	18.85	18.85	0.327	0.030	8.098	-3.774
10	1.59	100, 50	18.85	18.85	0.399	0.036	10.428	-4.561
11	1.77	100, 50	18.85	18.85	0.487	0.044	13.383	-5.501
12	1.95	100, 50	18.85	18.85	0.591	0.052	17.020	-6.607
13	2.13	100, 50	18.85	18.85	0.712	0.061	21.390	-7.890
14	2.30	100, 50	18.85	18.85	0.852	0.070	26.543	-9.360
15	2.48	100, 50	18.85	18.85	1.012	0.080	32.526	-11.028
16	2.66	100, 50	18.85	18.85	1.192	0.090	39.385	-12.904
17	2.83	100, 50	18.85	18.85	1.395	0.101	47.163	-15.000
18	3.01	100, 50	18.85	18.85	1.620	0.112	55.904	-17.324
19	3.19	100, 50	18.85	18.85	1.869	0.124	65.650	-19.887
20	3.37	100, 50	18.85	18.85	2.143	0.136	76.445	-22.700
21	3.54	100, 50	18.85	18.85	2.443	0.148	88.327	-25.772

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 42

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 42

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	? c	$?_{fi}$? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.009	0.016	0.473	-0.086
3	0.16	100, 51	12.57	12.57	0.036	0.032	1.865	-0.338
4	0.24	100, 52	12.57	12.57	0.079	0.047	4.135	-0.746
5	0.32	100, 53	12.57	12.57	0.138	0.062	7.244	-1.304
6	0.40	100, 54	12.57	12.57	0.211	0.076	11.157	-2.002
7	0.48	100, 54	12.57	12.57	0.297	0.090	15.839	-2.835
8	0.56	100, 55	12.57	12.57	0.395	0.104	21.259	-3.794
9	0.64	100, 56	12.57	12.57	0.506	0.117	27.385	-4.873
10	0.72	100, 56	12.57	12.57	0.627	0.130	34.191	-6.067
11	0.80	100, 57	12.57	12.57	0.758	0.143	41.648	-7.369

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.008	-0.006	-0.086	0.411
3	0.54	100, 76	18.85	18.85	0.032	-0.013	-0.361	1.715
4	0.81	100, 74	18.85	18.85	0.077	-0.021	-0.857	4.027

5	1.08	100, 71	18.85	18.85	0.145	-0.029	-1.608	7.480
6	1.35	100, 69	18.85	18.85	0.242	-0.038	-2.658	12.227
7	1.62	100, 67	18.85	18.85	0.373	-0.048	-4.054	18.445
8	1.89	100, 64	18.85	18.85	0.532	-0.047	-5.740	25.824
9	2.16	100, 62	12.57	12.57	0.852	-0.042	-8.506	49.037
10	2.43	100, 59	12.57	12.57	1.053	-0.037	-10.376	59.228
11	2.70	100, 57	12.57	12.57	1.249	-0.027	-12.138	68.607

Verifiche a fessurazione

Combinazione n° 42

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	18.85	-68.98	-2.20	0.0000	0.00	0.000
2	0.18	18.85	18.85	-68.98	-2.55	0.0000	0.00	0.000
3	0.35	18.85	18.85	-68.98	-3.20	0.0000	0.00	0.000
4	0.53	18.85	18.85	-68.98	-3.92	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-4.75	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-5.72	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-6.88	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-8.32	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-10.15	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-12.43	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-15.21	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-18.53	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-22.44	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-26.96	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-32.14	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-38.01	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-44.60	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-51.96	0.0000	0.00	0.000

19	3.19	18.85	18.85	-68.98	-60.11	0.0000	0.00	0.000
20	3.37	18.85	18.85	-68.98	-69.10	0.0223	203.88	0.077
21	3.54	18.85	18.85	-68.98	-78.94	0.0257	203.88	0.089
<u>Verif</u>	<u>ica fessuraz</u>	ione fondazi	<u>one</u>					
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.26	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	1.03	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.31	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	4.11	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	6.42	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	9.25	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	12.59	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	16.46	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	20.84	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	25.74	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-42.39	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-38.33	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-33.16	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-27.08	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-20.14	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-13.89	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-8.82	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-4.92	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-2.17	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.54	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
14	* 6	•						
<u>verij</u>	<u>ica Jessuraz</u>	ione mensolo	<u>a ai monte</u>					
N°	Υ	${\sf A}_{\sf fs}$	A_fi	$M_{\sf pf}$	М	□m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 43

Valore della spinta statica

87.8802

[kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	4.8834	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia verticale del muro	-1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti carichi esterni					
Componente dir. X	3.34	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	101.1709	[kN]			
Risultante dei carichi applicati in dir. verticale	379.2186	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	386.5931	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	67.7348	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.04	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	392.4822	[kN]			
Inclinazione della risultante (rispetto alla normale)	9.94	[°]			
Momento rispetto al baricentro della fondazione	-16.5199	[kNm]			
Carico ultimo della fondazione	5432.3862	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.09013	[N/mmc	1]		
Tensione terreno allo spigolo di monte	0.10243	[N/mmc			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	[]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.29

Coefficiente di sicurezza a carico ultimo 14.05

Sollecitazioni paramento

Combinazione n° 43

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	2.2000	3.3400
2	0.18	4.7148	2.5533	3.4981
3	0.35	6.9297	3.1998	3.8282
4	0.53	9.1445	3.9200	4.3303
5	0.71	11.3594	4.7445	5.0045
6	0.89	13.5742	5.7037	5.8568
7	1.06	15.7890	6.8441	7.1103
8	1.24	18.0039	8.2633	9.0040
9	1.42	20.2187	10.0609	11.3368
10	1.59	22.4336	12.2968	13.9430
11	1.77	24.6484	15.0164	16.7933
12	1.95	26.8632	18.2613	19.8704
13	2.13	29.0781	22.0706	23.1618
14	2.30	31.2929	26.4814	26.6584
15	2.48	33.5078	31.5294	30.3536
16	2.66	35.7226	37.2493	34.2424
17	2.83	37.9374	43.6752	38.3208
18	3.01	40.1523	50.8403	42.5859
19	3.19	42.3671	58.7774	47.0353
20	3.37	44.5820	67.5192	51.6670
21	3.54	46.7968	77.0962	56.4509

Sollecitazioni fondazione di valle

Combinazione n° 43

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2486	6.2172
3	0.16	0.9949	12.4400
4	0.24	2.2392	18.6685
5	0.32	3.9820	24.9027
6	0.40	6.2238	31.1426
7	0.48	8.9650	37.3882
8	0.56	12.2061	43.6394
9	0.64	15.9474	49.8963
10	0.72	20.1896	56.1589
11	0.80	24.9330	62.4271

Sollecitazioni fondazione di monte

Combinazione n° 43

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.6799	-5.0471
3	0.54	-2.7312	-10.1583
4	0.81	-6.1711	-15.3336
5	1.08	-11.0171	-20.5731
6	1.35	-17.2864	-25.8767
7	1.62	-24.9963	-31.2444
8	1.89	-33.6226	-30.9763
9	2.16	-41.6332	-28.3722
10	2.43	-48.9494	-25.8324
11	2.70	-55.3885	-21.3566

Sollecitazioni mensola di contrappeso

Combinazione n° 43

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 43

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Installation of the content of
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? c	$\mathbf{Z}_{\mathbf{c}}$	$ m ?_{fs}$	\mathbf{P}_{fi}
1	0.00	100, 50	18.85	18.85	0.066	0.009	2.780	-0.663
2	0.18	100, 50	18.85	18.85	0.082	0.009	2.118	-0.940
3	0.35	100, 50	18.85	18.85	0.103	0.010	2.433	-1.204
4	0.53	100, 50	18.85	18.85	0.127	0.011	2.843	-1.490
5	0.71	100, 50	18.85	18.85	0.154	0.013	3.380	-1.810
6	0.89	100, 50	18.85	18.85	0.185	0.015	4.081	-2.174
7	1.06	100, 50	18.85	18.85	0.221	0.018	5.001	-2.597
8	1.24	100, 50	18.85	18.85	0.267	0.023	6.261	-3.111
9	1.42	100, 50	18.85	18.85	0.324	0.029	7.987	-3.745
10	1.59	100, 50	18.85	18.85	0.395	0.036	10.259	-4.517
11	1.77	100, 50	18.85	18.85	0.481	0.043	13.138	-5.439
12	1.95	100, 50	18.85	18.85	0.582	0.051	16.678	-6.522
13	2.13	100, 50	18.85	18.85	0.701	0.059	20.931	-7.776
14	2.30	100, 50	18.85	18.85	0.837	0.068	25.944	-9.213
15	2.48	100, 50	18.85	18.85	0.993	0.078	31.763	-10.841
16	2.66	100, 50	18.85	18.85	1.169	0.088	38.432	-12.673
17	2.83	100, 50	18.85	18.85	1.367	0.098	45.994	-14.716
18	3.01	100, 50	18.85	18.85	1.586	0.109	54.491	-16.983
19	3.19	100, 50	18.85	18.85	1.829	0.120	63.965	-19.481
20	3.37	100, 50	18.85	18.85	2.095	0.132	74.456	-22.222
21	3.54	100, 50	18.85	18.85	2.387	0.144	86.004	-25.214

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 43

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 43

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.009	0.016	0.459	-0.083
3	0.16	100, 51	12.57	12.57	0.035	0.031	1.809	-0.327
4	0.24	100, 52	12.57	12.57	0.077	0.046	4.009	-0.724
5	0.32	100, 53	12.57	12.57	0.134	0.060	7.023	-1.264
6	0.40	100, 54	12.57	12.57	0.204	0.074	10.815	-1.941
7	0.48	100, 54	12.57	12.57	0.288	0.088	15.352	-2.748
8	0.56	100, 55	12.57	12.57	0.383	0.101	20.603	-3.677
9	0.64	100, 56	12.57	12.57	0.490	0.114	26.537	-4.722
10	0.72	100, 56	12.57	12.57	0.607	0.126	33.128	-5.878
11	0.80	100, 57	12.57	12.57	0.734	0.139	40.349	-7.139

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	?fi	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.010	-0.008	-0.108	0.519
3	0.54	100, 76	18.85	18.85	0.040	-0.017	-0.454	2.157
4	0.81	100, 74	18.85	18.85	0.096	-0.026	-1.074	5.047

5	1.08	100, 71	18.85	18.85	0.182	-0.036	-2.009	9.343
6	1.35	100, 69	18.85	18.85	0.302	-0.047	-3.309	15.222
7	1.62	100, 67	18.85	18.85	0.462	-0.059	-5.031	22.890
8	1.89	100, 64	18.85	18.85	0.661	-0.061	-7.128	32.067
9	2.16	100, 62	12.57	12.57	1.070	-0.058	-10.679	61.566
10	2.43	100, 59	12.57	12.57	1.345	-0.055	-13.252	75.647
11	2.70	100, 57	12.57	12.57	1.631	-0.047	-15.858	89.634

Verifiche a fessurazione

Combinazione n° 43

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	18.85	-68.98	-2.20	0.0000	0.00	0.000
2	0.18	18.85	18.85	-68.98	-2.55	0.0000	0.00	0.000
3	0.35	18.85	18.85	-68.98	-3.20	0.0000	0.00	0.000
4	0.53	18.85	18.85	-68.98	-3.92	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-4.74	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-5.70	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-6.84	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-8.26	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-10.06	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-12.30	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-15.02	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-18.26	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-22.07	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-26.48	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-31.53	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-37.25	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-43.68	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-50.84	0.0000	0.00	0.000

19	3.19	18.85	18.85	-68.98	-58.78	0.0000	0.00	0.000
20	3.37	18.85	18.85	-68.98	-67.52	0.0000	0.00	0.000
21	3.54	18.85	18.85	-68.98	-77.10	0.0251	203.88	0.087
<u>Verifi</u>	<u>ica fessuraz</u>	ione fondazio	<u>one</u>					
N°	Υ	\mathbf{A}_{fs}	\mathbf{A}_{fi}	M_{pf}	М	? _m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.25	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	0.99	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.24	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	3.98	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	6.22	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	8.96	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	12.21	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	15.95	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	20.19	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	24.93	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-55.39	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-48.95	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-41.63	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-33.62	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-25.00	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-17.29	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-11.02	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-6.17	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-2.73	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.68	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
Verifi	ica fessuraz	ione mensolo	a di monte					
-	-		_					
N°	Υ	A_{fs}	A_fi	M_{pf}	M	\mathbb{P}_{m}	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 44

Valore della spinta statica 87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70	[m]	Υ	=	-2.60
	[m]				
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	7.7343	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36	[m]	Υ	=	-1.79
	[m]				
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia verticale del muro	1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia verticale del terrapieno fondazione di monte	3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti carichi esterni					
Componente dir. X	10.02	[kN]			
		[]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	110.5065	[kN]			
Risultante dei carichi applicati in dir. verticale	391.6792	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	399.8200	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	75.9489	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.03	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	406.9696	[kN]			
Inclinazione della risultante (rispetto alla normale)	10.76	[°]			
Momento rispetto al baricentro della fondazione	13.7659	[kNm]			
Carico ultimo della fondazione	5455.3379	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.10470	[N/mmc	1]		
Tensione terreno allo spigolo di monte	0.09445	[N/mmc	1]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	1]		

Fattori per il calcolo della capacità portante

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.11
Coefficiente di sicurezza a carico ultimo 13.64

Sollecitazioni paramento

Combinazione n° 44

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	6.6000	10.0200
2	0.18	4.7148	8.1370	10.1807
3	0.35	6.9297	9.9682	10.5186
4	0.53	9.1445	11.8750	11.0338
5	0.71	11.3594	13.8888	11.7262
6	0.89	13.5742	16.0410	12.6022
7	1.06	15.7890	18.3796	13.8915
8	1.24	18.0039	21.0049	15.8404
9	1.42	20.2187	24.0198	18.2417
10	1.59	22.4336	27.4858	20.9247
11	1.77	24.6484	31.4498	23.8593
12	1.95	26.8632	35.9547	27.0274
13	2.13	29.0781	41.0406	30.4164
14	2.30	31.2929	46.7460	34.0168
15	2.48	33.5078	53.1074	37.8218
16	2.66	35.7226	60.1608	41.8263
17	2.83	37.9374	67.9411	46.0262
18	3.01	40.1523	76.4827	50.4184
19	3.19	42.3671	85.8193	55.0004
20	3.37	44.5820	95.9845	59.7703
21	3.54	46.7968	107.0100	64.6970

Sollecitazioni fondazione di valle

Combinazione n° 44

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2946	7.3606
3	0.16	1.1769	14.6908
4	0.24	2.6443	21.9906
5	0.32	4.6946	29.2601
6	0.40	7.3251	36.4991
7	0.48	10.5336	43.7077
8	0.56	14.3176	50.8860
9	0.64	18.6746	58.0338
10	0.72	23.6022	65.1513
11	0.80	29.0980	72.2384

Sollecitazioni fondazione di monte

Combinazione n° 44

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.9539	-7.0080
3	0.54	-3.7531	-13.6693
4	0.81	-8.3041	-19.9840
5	1.08	-14.5133	-25.9519
6	1.35	-22.2870	-31.5732
7	1.62	-31.5316	-36.8477
8	1.89	-41.6120	-36.0756
9	2.16	-50.8852	-32.5568
10	2.43	-59.1615	-28.6912
11	2.70	-66.1473	-22.4790

Sollecitazioni mensola di contrappeso

Combinazione n° 44

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 44

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	? c	? _{fs}	? fi
1	0.00	100, 50	18.85	18.85	0.198	0.026	8.341	-1.989
2	0.18	100, 50	18.85	18.85	0.252	0.026	9.131	-2.652
3	0.35	100, 50	18.85	18.85	0.310	0.027	10.909	-3.294
4	0.53	100, 50	18.85	18.85	0.370	0.028	12.784	-3.958
5	0.71	100, 50	18.85	18.85	0.434	0.030	14.793	-4.654
6	0.89	100, 50	18.85	18.85	0.501	0.032	16.978	-5.392
7	1.06	100, 50	18.85	18.85	0.575	0.036	19.397	-6.187
8	1.24	100, 50	18.85	18.85	0.657	0.041	22.177	-7.069
9	1.42	100, 50	18.85	18.85	0.751	0.047	25.448	-8.070
10	1.59	100, 50	18.85	18.85	0.858	0.054	29.287	-9.208
11	1.77	100, 50	18.85	18.85	0.981	0.061	33.753	-10.498
12	1.95	100, 50	18.85	18.85	1.120	0.069	38.902	-11.953
13	2.13	100, 50	18.85	18.85	1.276	0.078	44.783	-13.583
14	2.30	100, 50	18.85	18.85	1.451	0.087	51.446	-15.401
15	2.48	100, 50	18.85	18.85	1.646	0.097	58.938	-17.418
16	2.66	100, 50	18.85	18.85	1.862	0.107	67.303	-19.644
17	2.83	100, 50	18.85	18.85	2.099	0.118	76.586	-22.089
18	3.01	100, 50	18.85	18.85	2.359	0.129	86.831	-24.764
19	3.19	100, 50	18.85	18.85	2.644	0.141	98.080	-27.679
20	3.37	100, 50	18.85	18.85	2.953	0.153	110.376	-30.844
21	3.54	100, 50	18.85	18.85	3.288	0.165	123.760	-34.268

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 44

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 44

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.011	0.019	0.544	-0.099
3	0.16	100, 51	12.57	12.57	0.041	0.036	2.140	-0.387
4	0.24	100, 52	12.57	12.57	0.091	0.054	4.735	-0.855
5	0.32	100, 53	12.57	12.57	0.158	0.071	8.280	-1.490
6	0.40	100, 54	12.57	12.57	0.240	0.087	12.729	-2.285
7	0.48	100, 54	12.57	12.57	0.338	0.102	18.038	-3.228
8	0.56	100, 55	12.57	12.57	0.449	0.118	24.167	-4.313
9	0.64	100, 56	12.57	12.57	0.574	0.132	31.075	-5.530
10	0.72	100, 56	12.57	12.57	0.710	0.147	38.728	-6.872
11	0.80	100, 57	12.57	12.57	0.857	0.160	47.089	-8.331

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.013	-0.011	-0.152	0.728
3	0.54	100, 76	18.85	18.85	0.056	-0.022	-0.624	2.964
4	0.81	100, 74	18.85	18.85	0.130	-0.034	-1.445	6.791

5	1.08	100, 71	18.85	18.85	0.239	-0.045	-2.646	12.308
6	1.35	100, 69	18.85	18.85	0.389	-0.057	-4.266	19.626
7	1.62	100, 67	18.85	18.85	0.583	-0.069	-6.346	28.874
8	1.89	100, 64	18.85	18.85	0.818	-0.071	-8.822	39.687
9	2.16	100, 62	12.57	12.57	1.308	-0.066	-13.052	75.248
10	2.43	100, 59	12.57	12.57	1.625	-0.061	-16.016	91.428
11	2.70	100, 57	12.57	12.57	1.948	-0.050	-18.939	107.045

Verifiche a fessurazione

Combinazione n° 44

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	\mathbf{P}_{m}	s _m	w
1	0.00	18.85	18.85	-68.98	-6.60	0.0000	0.00	0.000
2	0.18	18.85	18.85	-68.98	-8.14	0.0000	0.00	0.000
3	0.35	18.85	18.85	-68.98	-9.97	0.0000	0.00	0.000
4	0.53	18.85	18.85	-68.98	-11.88	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-13.89	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-16.04	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-18.38	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-21.00	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-24.02	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-27.49	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-31.45	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-35.95	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-41.04	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-46.75	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-53.11	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-60.16	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-67.94	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-76.48	0.0253	203.88	0.088

19	3.19	18.85	18.85	-68.98	-85.82	0.0296	203.88	0.103					
20	3.37	18.85	18.85	-68.98	-95.98	0.0376	203.88	0.130					
21	3.54	18.85	18.85	-68.98	-107.01	0.0458	203.88	0.159					
<u>Verif</u>	<u>Verifica fessurazione fondazione</u>												
N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	? _m	S _m	w					
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000					
2	-1.22	12.57	12.57	67.37	0.29	0.0000	0.00	0.000					
3	-1.14	12.57	12.57	69.18	1.18	0.0000	0.00	0.000					
4	-1.06	12.57	12.57	71.02	2.64	0.0000	0.00	0.000					
5	-0.98	12.57	12.57	72.87	4.69	0.0000	0.00	0.000					
6	-0.90	12.57	12.57	74.75	7.33	0.0000	0.00	0.000					
7	-0.82	12.57	12.57	76.65	10.53	0.0000	0.00	0.000					
8	-0.74	12.57	12.57	78.58	14.32	0.0000	0.00	0.000					
9	-0.66	12.57	12.57	80.52	18.67	0.0000	0.00	0.000					
10	-0.58	12.57	12.57	82.49	23.60	0.0000	0.00	0.000					
11	-0.50	12.57	12.57	84.49	29.10	0.0000	0.00	0.000					
12	0.00	12.57	12.57	-84.49	-66.15	0.0000	0.00	0.000					
13	0.27	12.57	12.57	-91.50	-59.16	0.0000	0.00	0.000					
14	0.54	12.57	12.57	-98.78	-50.89	0.0000	0.00	0.000					
15	0.81	18.85	18.85	-111.03	-41.61	0.0000	0.00	0.000					
16	1.08	18.85	18.85	-119.07	-31.53	0.0000	0.00	0.000					
17	1.35	18.85	18.85	-127.39	-22.29	0.0000	0.00	0.000					
18	1.62	18.85	18.85	-135.98	-14.51	0.0000	0.00	0.000					
19	1.89	18.85	18.85	-144.85	-8.30	0.0000	0.00	0.000					
20	2.16	18.85	18.85	-153.98	-3.75	0.0000	0.00	0.000					
21	2.43	18.85	18.85	-163.38	-0.95	0.0000	0.00	0.000					
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000					
Verif	ica fessuraz	rione mensolo	a di monte										
<u>verij</u>	ica jessui uz	ione mensul	a di monte										
N°	Υ	A_{fs}	A_fi	M_{pf}	М	? _m	S _m	w					
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000					
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000					
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000					

COMBINAZIONE n° 45

Valore della spinta statica 87.8802

[kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70	[m]	Υ	=	-2.60
Inclinaz. della spinta rispetto alla normale alla superficie	[m] 21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
	37.127				
Incremento sismico della spinta	4.8834	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia verticale del muro	-1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti carichi esterni					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	107.8509	[kN]			
Risultante dei carichi applicati in dir. verticale	379.2186	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	387.1753	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	74.3894	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.04	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	394.2569	[kN]			
Inclinazione della risultante (rispetto alla normale)	10.88	[°]			
Momento rispetto al baricentro della fondazione	15.7690	[kNm]			
Carico ultimo della fondazione	5437.9255	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.10229	[N/mmc	[]		
Tensione terreno allo spigolo di monte	0.09056	[N/mmc			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	[]		

Fattori per il calcolo della capacità portante

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.09

Coefficiente di sicurezza a carico ultimo 14.05

Sollecitazioni paramento

Combinazione n° 45

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	6.6000	10.0200
2	0.18	4.7148	8.1369	10.1781
3	0.35	6.9297	9.9670	10.5082
4	0.53	9.1445	11.8709	11.0103
5	0.71	11.3594	13.8789	11.6845
6	0.89	13.5742	16.0218	12.5368
7	1.06	15.7890	18.3458	13.7903
8	1.24	18.0039	20.9486	15.6840
9	1.42	20.2187	23.9298	18.0168
10	1.59	22.4336	27.3493	20.6230
11	1.77	24.6484	31.2525	23.4733
12	1.95	26.8632	35.6810	26.5504
13	2.13	29.0781	40.6739	29.8418
14	2.30	31.2929	46.2683	33.3384
15	2.48	33.5078	52.4999	37.0336
16	2.66	35.7226	59.4035	40.9224
17	2.83	37.9374	67.0130	45.0008
18	3.01	40.1523	75.3617	49.2659
19	3.19	42.3671	84.4824	53.7153
20	3.37	44.5820	94.4078	58.3470
21	3.54	46.7968	105.1684	63.1309

Sollecitazioni fondazione di valle

Combinazione n° 45

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2869	7.1671
3	0.16	1.1459	14.3015
4	0.24	2.5743	21.4030
5	0.32	4.5695	28.4718
6	0.40	7.1289	35.5078
7	0.48	10.2498	42.5110
8	0.56	13.9298	49.4815
9	0.64	18.1660	56.4191
10	0.72	22.9560	63.3240
11	0.80	28.2970	70.1962

Sollecitazioni fondazione di monte

Combinazione n° 45

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-1.0946	-8.0460
3	0.54	-4.3112	-15.7181
4	0.81	-9.5487	-23.0163
5	1.08	-16.7063	-29.9407
6	1.35	-25.6831	-36.4912
7	1.62	-36.3780	-42.6679
8	1.89	-48.1486	-42.7707
9	2.16	-59.3445	-40.0996
10	2.43	-69.7687	-37.0546
11	2.70	-79.1203	-31.6358

Sollecitazioni mensola di contrappeso

Combinazione n° 45

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 45

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Installation of the content of
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? c	? _c	?fs	? _{fi}
1	0.00	100, 50	18.85	18.85	0.198	0.026	8.341	-1.989
2	0.18	100, 50	18.85	18.85	0.252	0.026	9.131	-2.652
3	0.35	100, 50	18.85	18.85	0.310	0.027	10.908	-3.294
4	0.53	100, 50	18.85	18.85	0.370	0.028	12.778	-3.957
5	0.71	100, 50	18.85	18.85	0.433	0.030	14.781	-4.651
6	0.89	100, 50	18.85	18.85	0.501	0.032	16.954	-5.386
7	1.06	100, 50	18.85	18.85	0.574	0.035	19.355	-6.176
8	1.24	100, 50	18.85	18.85	0.655	0.040	22.107	-7.052
9	1.42	100, 50	18.85	18.85	0.748	0.046	25.335	-8.042
10	1.59	100, 50	18.85	18.85	0.854	0.053	29.115	-9.167
11	1.77	100, 50	18.85	18.85	0.975	0.060	33.505	-10.438
12	1.95	100, 50	18.85	18.85	1.111	0.068	38.557	-11.869
13	2.13	100, 50	18.85	18.85	1.265	0.076	44.321	-13.472
14	2.30	100, 50	18.85	18.85	1.437	0.085	50.844	-15.256
15	2.48	100, 50	18.85	18.85	1.628	0.095	58.171	-17.234
16	2.66	100, 50	18.85	18.85	1.839	0.105	66.347	-19.414
17	2.83	100, 50	18.85	18.85	2.071	0.115	75.415	-21.808
18	3.01	100, 50	18.85	18.85	2.326	0.126	85.416	-24.425
19	3.19	100, 50	18.85	18.85	2.603	0.137	96.393	-27.275
20	3.37	100, 50	18.85	18.85	2.905	0.149	108.386	-30.367
21	3.54	100, 50	18.85	18.85	3.232	0.161	121.435	-33.712

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 45

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 45

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.010	0.018	0.530	-0.096
3	0.16	100, 51	12.57	12.57	0.040	0.035	2.083	-0.377
4	0.24	100, 52	12.57	12.57	0.088	0.052	4.609	-0.832
5	0.32	100, 53	12.57	12.57	0.153	0.069	8.059	-1.451
6	0.40	100, 54	12.57	12.57	0.234	0.084	12.388	-2.223
7	0.48	100, 54	12.57	12.57	0.329	0.100	17.552	-3.141
8	0.56	100, 55	12.57	12.57	0.437	0.114	23.512	-4.196
9	0.64	100, 56	12.57	12.57	0.558	0.129	30.229	-5.379
10	0.72	100, 56	12.57	12.57	0.690	0.142	37.667	-6.683
11	0.80	100, 57	12.57	12.57	0.833	0.156	45.793	-8.102

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.015	-0.013	-0.174	0.836
3	0.54	100, 76	18.85	18.85	0.064	-0.026	-0.717	3.404
4	0.81	100, 74	18.85	18.85	0.149	-0.039	-1.661	7.809

5	1.08	100, 71	18.85	18.85	0.275	-0.052	-3.046	14.168
6	1.35	100, 69	18.85	18.85	0.448	-0.066	-4.916	22.616
7	1.62	100, 67	18.85	18.85	0.673	-0.080	-7.321	33.312
8	1.89	100, 64	18.85	18.85	0.947	-0.084	-10.207	45.922
9	2.16	100, 62	12.57	12.57	1.525	-0.082	-15.222	87.757
10	2.43	100, 59	12.57	12.57	1.917	-0.079	-18.888	107.821
11	2.70	100, 57	12.57	12.57	2.330	-0.070	-22.653	128.039

Verifiche a fessurazione

Combinazione n° 45

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	\mathbf{P}_{m}	s _m	w
1	0.00	18.85	18.85	-68.98	-6.60	0.0000	0.00	0.000
2	0.18	18.85	18.85	-68.98	-8.14	0.0000	0.00	0.000
3	0.35	18.85	18.85	-68.98	-9.97	0.0000	0.00	0.000
4	0.53	18.85	18.85	-68.98	-11.87	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-13.88	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-16.02	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-18.35	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-20.95	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-23.93	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-27.35	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-31.25	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-35.68	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-40.67	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-46.27	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-52.50	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-59.40	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-67.01	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-75.36	0.0249	203.88	0.086

19	3.19	18.85	18.85	-68.98	-84.48	0.0285	203.88	0.099
20	3.37	18.85	18.85	-68.98	-94.41	0.0363	203.88	0.126
21	3.54	18.85	18.85	-68.98	-105.17	0.0444	203.88	0.154
<u>Verif</u>	<u>ica fessuraz</u>	ione fondazi	<u>one</u>					
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.29	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	1.15	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.57	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	4.57	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	7.13	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	10.25	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	13.93	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	18.17	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	22.96	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	28.30	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-79.12	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-69.77	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-59.34	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-48.15	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-36.38	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-25.68	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-16.71	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-9.55	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-4.31	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-1.09	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
Vouis	ion formula	.:						
<u>verij</u>	ica jessuraz	rione mensolo	<u>a ui monte</u>					
N°	Υ	${\sf A}_{\sf fs}$	A_{fi}	M_{pf}	М	$ boldsymbol{?}_{m}$	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 46

Valore della spinta statica

87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70	[m]	Υ	=	-2.60
	[m]				
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	7.7343	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36	[m]	Υ	=	-1.79
	[m]				
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia verticale del muro	1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia verticale del terrapieno fondazione di monte	3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti carichi esterni					
Componente dir. X	10.02	[kN]			
		[]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	110.5065	[kN]			
Risultante dei carichi applicati in dir. verticale	391.6792	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	399.8200	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	75.9489	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.03	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	406.9696	[kN]			
Inclinazione della risultante (rispetto alla normale)	10.76	[°]			
Momento rispetto al baricentro della fondazione	13.7659	[kNm]			
Carico ultimo della fondazione	5455.3379	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.10470	[N/mmq			
Tensione terreno allo spigolo di monte	0.09445	[N/mmq			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante $N_c = 44.04$ $N_q = 28.52$ $N_{\mathbb{B}} = 27.33$ Fattori forma $s_c = 1.00$ $s_q = 1.00$ $s_{\mathbb{B}} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.11
Coefficiente di sicurezza a carico ultimo 13.64

Sollecitazioni paramento

Combinazione n° 46

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	6.6000	10.0200
2	0.18	4.7148	8.1370	10.1807
3	0.35	6.9297	9.9682	10.5186
4	0.53	9.1445	11.8750	11.0338
5	0.71	11.3594	13.8888	11.7262
6	0.89	13.5742	16.0410	12.6022
7	1.06	15.7890	18.3796	13.8915
8	1.24	18.0039	21.0049	15.8404
9	1.42	20.2187	24.0198	18.2417
10	1.59	22.4336	27.4858	20.9247
11	1.77	24.6484	31.4498	23.8593
12	1.95	26.8632	35.9547	27.0274
13	2.13	29.0781	41.0406	30.4164
14	2.30	31.2929	46.7460	34.0168
15	2.48	33.5078	53.1074	37.8218
16	2.66	35.7226	60.1608	41.8263
17	2.83	37.9374	67.9411	46.0262
18	3.01	40.1523	76.4827	50.4184
19	3.19	42.3671	85.8193	55.0004
20	3.37	44.5820	95.9845	59.7703
21	3.54	46.7968	107.0100	64.6970

Sollecitazioni fondazione di valle

Combinazione n° 46

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2946	7.3606
3	0.16	1.1769	14.6908
4	0.24	2.6443	21.9906
5	0.32	4.6946	29.2601
6	0.40	7.3251	36.4991
7	0.48	10.5336	43.7077
8	0.56	14.3176	50.8860
9	0.64	18.6746	58.0338
10	0.72	23.6022	65.1513
11	0.80	29.0980	72.2384

Sollecitazioni fondazione di monte

Combinazione n° 46

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-0.9539	-7.0080
3	0.54	-3.7531	-13.6693
4	0.81	-8.3041	-19.9840
5	1.08	-14.5133	-25.9519
6	1.35	-22.2870	-31.5732
7	1.62	-31.5316	-36.8477
8	1.89	-41.6120	-36.0756
9	2.16	-50.8852	-32.5568
10	2.43	-59.1615	-28.6912
11	2.70	-66.1473	-22.4790

Sollecitazioni mensola di contrappeso

Combinazione n° 46

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 46

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? c	? c	? _{fs}	? _{fi}
1	0.00	100, 50	18.85	18.85	0.198	0.026	8.341	-1.989
2	0.18	100, 50	18.85	18.85	0.252	0.026	9.131	-2.652
3	0.35	100, 50	18.85	18.85	0.310	0.027	10.909	-3.294
4	0.53	100, 50	18.85	18.85	0.370	0.028	12.784	-3.958
5	0.71	100, 50	18.85	18.85	0.434	0.030	14.793	-4.654
6	0.89	100, 50	18.85	18.85	0.501	0.032	16.978	-5.392
7	1.06	100, 50	18.85	18.85	0.575	0.036	19.397	-6.187
8	1.24	100, 50	18.85	18.85	0.657	0.041	22.177	-7.069
9	1.42	100, 50	18.85	18.85	0.751	0.047	25.448	-8.070
10	1.59	100, 50	18.85	18.85	0.858	0.054	29.287	-9.208
11	1.77	100, 50	18.85	18.85	0.981	0.061	33.753	-10.498
12	1.95	100, 50	18.85	18.85	1.120	0.069	38.902	-11.953
13	2.13	100, 50	18.85	18.85	1.276	0.078	44.783	-13.583
14	2.30	100, 50	18.85	18.85	1.451	0.087	51.446	-15.401
15	2.48	100, 50	18.85	18.85	1.646	0.097	58.938	-17.418
16	2.66	100, 50	18.85	18.85	1.862	0.107	67.303	-19.644
17	2.83	100, 50	18.85	18.85	2.099	0.118	76.586	-22.089
18	3.01	100, 50	18.85	18.85	2.359	0.129	86.831	-24.764
19	3.19	100, 50	18.85	18.85	2.644	0.141	98.080	-27.679
20	3.37	100, 50	18.85	18.85	2.953	0.153	110.376	-30.844
21	3.54	100, 50	18.85	18.85	3.288	0.165	123.760	-34.268

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 46

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 46

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- ☑c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.011	0.019	0.544	-0.099
3	0.16	100, 51	12.57	12.57	0.041	0.036	2.140	-0.387
4	0.24	100, 52	12.57	12.57	0.091	0.054	4.735	-0.855
5	0.32	100, 53	12.57	12.57	0.158	0.071	8.280	-1.490
6	0.40	100, 54	12.57	12.57	0.240	0.087	12.729	-2.285
7	0.48	100, 54	12.57	12.57	0.338	0.102	18.038	-3.228
8	0.56	100, 55	12.57	12.57	0.449	0.118	24.167	-4.313
9	0.64	100, 56	12.57	12.57	0.574	0.132	31.075	-5.530
10	0.72	100, 56	12.57	12.57	0.710	0.147	38.728	-6.872
11	0.80	100, 57	12.57	12.57	0.857	0.160	47.089	-8.331

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.013	-0.011	-0.152	0.728
3	0.54	100, 76	18.85	18.85	0.056	-0.022	-0.624	2.964
4	0.81	100, 74	18.85	18.85	0.130	-0.034	-1.445	6.791

5	1.08	100, 71	18.85	18.85	0.239	-0.045	-2.646	12.308
6	1.35	100, 69	18.85	18.85	0.389	-0.057	-4.266	19.626
7	1.62	100, 67	18.85	18.85	0.583	-0.069	-6.346	28.874
8	1.89	100, 64	18.85	18.85	0.818	-0.071	-8.822	39.687
9	2.16	100, 62	12.57	12.57	1.308	-0.066	-13.052	75.248
10	2.43	100, 59	12.57	12.57	1.625	-0.061	-16.016	91.428
11	2.70	100, 57	12.57	12.57	1.948	-0.050	-18.939	107.045

Verifiche a fessurazione

Combinazione n° 46

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- S_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	\mathbf{P}_{m}	s _m	w
1	0.00	18.85	18.85	-68.98	-6.60	0.0000	0.00	0.000
2	0.18	18.85	18.85	-68.98	-8.14	0.0000	0.00	0.000
3	0.35	18.85	18.85	-68.98	-9.97	0.0000	0.00	0.000
4	0.53	18.85	18.85	-68.98	-11.88	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-13.89	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-16.04	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-18.38	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-21.00	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-24.02	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-27.49	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-31.45	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-35.95	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-41.04	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-46.75	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-53.11	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-60.16	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-67.94	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-76.48	0.0253	203.88	0.088

19	3.19	18.85	18.85	-68.98	-85.82	0.0296	203.88	0.103
20	3.37	18.85	18.85	-68.98	-95.98	0.0376	203.88	0.130
21	3.54	18.85	18.85	-68.98	-107.01	0.0458	203.88	0.159
<u>Verif</u>	ica fessuraz	<u>ione fondazi</u>	<u>one</u>					
N°	Y	A _{fs}	A _{fi}	M_{pf}	M		S _m	W
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.29	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	1.18	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.64	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	4.69	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	7.33	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	10.53	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	14.32	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	18.67	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	23.60	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	29.10	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-66.15	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-59.16	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-50.89	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-41.61	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-31.53	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-22.29	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-14.51	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-8.30	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-3.75	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-0.95	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	<u>a di monte</u>					
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
-					3.00		2.00	2.000

COMBINAZIONE n° 47

Valore della spinta statica 87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70	[m]	Υ	=	-2.60
Inclinaz. della spinta rispetto alla normale alla superficie	[m] 21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
	37.127				
Incremento sismico della spinta	4.8834	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36 [m]	[m]	Υ	=	-1.79
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia verticale del muro	-1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti carichi esterni					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	107.8509	[kN]			
Risultante dei carichi applicati in dir. verticale	379.2186	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	387.1753	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	74.3894	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.04	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	394.2569	[kN]			
Inclinazione della risultante (rispetto alla normale)	10.88	[°]			
Momento rispetto al baricentro della fondazione	15.7690	[kNm]			
Carico ultimo della fondazione	5437.9255	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.10229	[N/mmc	[]		
Tensione terreno allo spigolo di monte	0.09056	[N/mmc			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	[]		

Fattori per il calcolo della capacità portante

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.09

Coefficiente di sicurezza a carico ultimo 14.05

Sollecitazioni paramento

Combinazione n° 47

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Y	N	M	Т
1	0.00	0.0000	6.6000	10.0200
2	0.18	4.7148	8.1369	10.1781
3	0.35	6.9297	9.9670	10.5082
4	0.53	9.1445	11.8709	11.0103
5	0.71	11.3594	13.8789	11.6845
6	0.89	13.5742	16.0218	12.5368
7	1.06	15.7890	18.3458	13.7903
8	1.24	18.0039	20.9486	15.6840
9	1.42	20.2187	23.9298	18.0168
10	1.59	22.4336	27.3493	20.6230
11	1.77	24.6484	31.2525	23.4733
12	1.95	26.8632	35.6810	26.5504
13	2.13	29.0781	40.6739	29.8418
14	2.30	31.2929	46.2683	33.3384
15	2.48	33.5078	52.4999	37.0336
16	2.66	35.7226	59.4035	40.9224
17	2.83	37.9374	67.0130	45.0008
18	3.01	40.1523	75.3617	49.2659
19	3.19	42.3671	84.4824	53.7153
20	3.37	44.5820	94.4078	58.3470
21	3.54	46.7968	105.1684	63.1309

Sollecitazioni fondazione di valle

Combinazione n° 47

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2869	7.1671
3	0.16	1.1459	14.3015
4	0.24	2.5743	21.4030
5	0.32	4.5695	28.4718
6	0.40	7.1289	35.5078
7	0.48	10.2498	42.5110
8	0.56	13.9298	49.4815
9	0.64	18.1660	56.4191
10	0.72	22.9560	63.3240
11	0.80	28.2970	70.1962

Sollecitazioni fondazione di monte

Combinazione n° 47

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-1.0946	-8.0460
3	0.54	-4.3112	-15.7181
4	0.81	-9.5487	-23.0163
5	1.08	-16.7063	-29.9407
6	1.35	-25.6831	-36.4912
7	1.62	-36.3780	-42.6679
8	1.89	-48.1486	-42.7707
9	2.16	-59.3445	-40.0996
10	2.43	-69.7687	-37.0546
11	2.70	-79.1203	-31.6358

Sollecitazioni mensola di contrappeso

Combinazione n° 47

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 47

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Installation of the content of
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? c	? _c	? _{fs}	? _{fi}
1	0.00	100, 50	18.85	18.85	0.198	0.026	8.341	-1.989
2	0.18	100, 50	18.85	18.85	0.252	0.026	9.131	-2.652
3	0.35	100, 50	18.85	18.85	0.310	0.027	10.908	-3.294
4	0.53	100, 50	18.85	18.85	0.370	0.028	12.778	-3.957
5	0.71	100, 50	18.85	18.85	0.433	0.030	14.781	-4.651
6	0.89	100, 50	18.85	18.85	0.501	0.032	16.954	-5.386
7	1.06	100, 50	18.85	18.85	0.574	0.035	19.355	-6.176
8	1.24	100, 50	18.85	18.85	0.655	0.040	22.107	-7.052
9	1.42	100, 50	18.85	18.85	0.748	0.046	25.335	-8.042
10	1.59	100, 50	18.85	18.85	0.854	0.053	29.115	-9.167
11	1.77	100, 50	18.85	18.85	0.975	0.060	33.505	-10.438
12	1.95	100, 50	18.85	18.85	1.111	0.068	38.557	-11.869
13	2.13	100, 50	18.85	18.85	1.265	0.076	44.321	-13.472
14	2.30	100, 50	18.85	18.85	1.437	0.085	50.844	-15.256
15	2.48	100, 50	18.85	18.85	1.628	0.095	58.171	-17.234
16	2.66	100, 50	18.85	18.85	1.839	0.105	66.347	-19.414
17	2.83	100, 50	18.85	18.85	2.071	0.115	75.415	-21.808
18	3.01	100, 50	18.85	18.85	2.326	0.126	85.416	-24.425
19	3.19	100, 50	18.85	18.85	2.603	0.137	96.393	-27.275
20	3.37	100, 50	18.85	18.85	2.905	0.149	108.386	-30.367
21	3.54	100, 50	18.85	18.85	3.232	0.161	121.435	-33.712

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 47

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	₽ _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 47

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- ②c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	? _c	?fi	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.010	0.018	0.530	-0.096
3	0.16	100, 51	12.57	12.57	0.040	0.035	2.083	-0.377
4	0.24	100, 52	12.57	12.57	0.088	0.052	4.609	-0.832
5	0.32	100, 53	12.57	12.57	0.153	0.069	8.059	-1.451
6	0.40	100, 54	12.57	12.57	0.234	0.084	12.388	-2.223
7	0.48	100, 54	12.57	12.57	0.329	0.100	17.552	-3.141
8	0.56	100, 55	12.57	12.57	0.437	0.114	23.512	-4.196
9	0.64	100, 56	12.57	12.57	0.558	0.129	30.229	-5.379
10	0.72	100, 56	12.57	12.57	0.690	0.142	37.667	-6.683
11	0.80	100, 57	12.57	12.57	0.833	0.156	45.793	-8.102

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.015	-0.013	-0.174	0.836
3	0.54	100, 76	18.85	18.85	0.064	-0.026	-0.717	3.404
4	0.81	100, 74	18.85	18.85	0.149	-0.039	-1.661	7.809

5	1.08	100, 71	18.85	18.85	0.275	-0.052	-3.046	14.168
6	1.35	100, 69	18.85	18.85	0.448	-0.066	-4.916	22.616
7	1.62	100, 67	18.85	18.85	0.673	-0.080	-7.321	33.312
8	1.89	100, 64	18.85	18.85	0.947	-0.084	-10.207	45.922
9	2.16	100, 62	12.57	12.57	1.525	-0.082	-15.222	87.757
10	2.43	100, 59	12.57	12.57	1.917	-0.079	-18.888	107.821
11	2.70	100, 57	12.57	12.57	2.330	-0.070	-22.653	128.039

Verifiche a fessurazione

Combinazione n° 47

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	? m	S _m	w
1	0.00	18.85	18.85	-68.98	-6.60	0.0000	0.00	0.000
2	0.18	18.85	18.85	-68.98	-8.14	0.0000	0.00	0.000
3	0.35	18.85	18.85	-68.98	-9.97	0.0000	0.00	0.000
4	0.53	18.85	18.85	-68.98	-11.87	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-13.88	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-16.02	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-18.35	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-20.95	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-23.93	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-27.35	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-31.25	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-35.68	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-40.67	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-46.27	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-52.50	0.0000	0.00	0.000
16	2.66	18.85	18.85	-68.98	-59.40	0.0000	0.00	0.000
17	2.83	18.85	18.85	-68.98	-67.01	0.0000	0.00	0.000
18	3.01	18.85	18.85	-68.98	-75.36	0.0249	203.88	0.086

19	3.19	18.85	18.85	-68.98	-84.48	0.0285	203.88	0.099
20	3.37	18.85	18.85	-68.98	-94.41	0.0363	203.88	0.126
21	3.54	18.85	18.85	-68.98	-105.17	0.0444	203.88	0.154
Verifica fessurazione fondazione								
N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	? _m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.29	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	1.15	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.57	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	4.57	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	7.13	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	10.25	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	13.93	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	18.17	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	22.96	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	28.30	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-79.12	0.0000	0.00	0.000
13	0.27	12.57	12.57	-91.50	-69.77	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-59.34	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-48.15	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-36.38	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-25.68	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-16.71	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-9.55	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-4.31	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-1.09	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
Verif	ica fessuraz	rione mensolo	a di monte					
<u> </u>	,							
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 48

Valore della spinta statica

87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70	[m]	Υ	=	-2.60
	[m]				
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	7.7343	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70	[m]	Υ	=	-2.60
to allow a towns of the state o	[m]	F01			
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36	[m]	Υ	=	-1.79
Barrochiro terrapieno gravante sana fondazione a monte	[m]	[]	•		1.75
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia verticale del muro	1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia verticale del terrapieno fondazione di monte	3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti carichi esterni					
Componente dir. X	16.70	[kN]			
		į			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	117.1865	[kN]			
Risultante dei carichi applicati in dir. verticale	391.6792	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	400.4022	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	82.6035	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.12	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	408.8340	[kN]			
Inclinazione della risultante (rispetto alla normale)	11.66	[°]			
Momento rispetto al baricentro della fondazione	46.0548	[kNm]			
Carico ultimo della fondazione	5232.5273	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.11686	[N/mmc	[]		
Tensione terreno allo spigolo di monte	0.08258	[N/mmc			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc			
• • • • • • • • • • • • • • • • • • • •					

Fattori per il calcolo della capacità portante

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.94
Coefficiente di sicurezza a carico ultimo 13.07

Sollecitazioni paramento

Combinazione n° 48

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	11.0000	16.7000
2	0.18	4.7148	13.7206	16.8607
3	0.35	6.9297	16.7355	17.1986
4	0.53	9.1445	19.8259	17.7138
5	0.71	11.3594	23.0232	18.4062
6	0.89	13.5742	26.3591	19.2822
7	1.06	15.7890	29.8812	20.5715
8	1.24	18.0039	33.6902	22.5204
9	1.42	20.2187	37.8887	24.9217
10	1.59	22.4336	42.5383	27.6047
11	1.77	24.6484	47.6859	30.5393
12	1.95	26.8632	53.3744	33.7074
13	2.13	29.0781	59.6440	37.0964
14	2.30	31.2929	66.5329	40.6968
15	2.48	33.5078	74.0780	44.5018
16	2.66	35.7226	82.3150	48.5063
17	2.83	37.9374	91.2789	52.7062
18	3.01	40.1523	101.0041	57.0984
19	3.19	42.3671	111.5243	61.6804
20	3.37	44.5820	122.8731	66.4503
21	3.54	46.7968	135.0822	71.3770

Sollecitazioni fondazione di valle

Combinazione n° 48

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.08	0.3330	8.3143
3	0.16	1.3284	16.5597
4	0.24	2.9808	24.7363
5	0.32	5.2844	32.8441
6	0.40	8.2340	40.8830
7	0.48	11.8239	48.8530
8	0.56	16.0486	56.7543
9	0.64	20.9027	64.5866
10	0.72	26.3806	72.3502
11	0.80	32.4769	80.0448

Sollecitazioni fondazione di monte

Combinazione n° 48

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.27	-1.3669	-9.9943
3	0.54	-5.3263	-19.2039
4	0.81	-11.6664	-27.6288
5	1.08	-20.1752	-35.2690
6	1.35	-30.6410	-42.1246
7	1.62	-42.8519	-48.1954
8	1.89	-56.0544	-47.7816
9	2.16	-68.4873	-44.1830
10	2.43	-79.8426	-39.7998
11	2.70	-89.7085	-32.6319

Sollecitazioni mensola di contrappeso

Combinazione n° 48

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 48

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	?fs	? _{fi}
1	0.00	100, 50	18.85	18.85	0.330	0.043	13.902	-3.314
2	0.18	100, 50	18.85	18.85	0.420	0.043	16.181	-4.341
3	0.35	100, 50	18.85	18.85	0.514	0.044	19.449	-5.343
4	0.53	100, 50	18.85	18.85	0.610	0.045	22.814	-6.368
5	0.71	100, 50	18.85	18.85	0.709	0.047	26.314	-7.425
6	0.89	100, 50	18.85	18.85	0.813	0.049	29.989	-8.524
7	1.06	100, 50	18.85	18.85	0.922	0.053	33.900	-9.679
8	1.24	100, 50	18.85	18.85	1.040	0.058	38.172	-10.921
9	1.42	100, 50	18.85	18.85	1.169	0.064	42.936	-12.281
10	1.59	100, 50	18.85	18.85	1.312	0.071	48.269	-13.777
11	1.77	100, 50	18.85	18.85	1.471	0.078	54.231	-15.425
12	1.95	100, 50	18.85	18.85	1.645	0.086	60.876	-17.235
13	2.13	100, 50	18.85	18.85	1.837	0.095	68.254	-19.222
14	2.30	100, 50	18.85	18.85	2.047	0.104	76.414	-21.396
15	2.48	100, 50	18.85	18.85	2.278	0.114	85.403	-23.768
16	2.66	100, 50	18.85	18.85	2.529	0.124	95.266	-26.349
17	2.83	100, 50	18.85	18.85	2.802	0.135	106.047	-29.149
18	3.01	100, 50	18.85	18.85	3.097	0.146	117.790	-32.179
19	3.19	100, 50	18.85	18.85	3.417	0.158	130.537	-35.450
20	3.37	100, 50	18.85	18.85	3.762	0.170	144.331	-38.970
21	3.54	100, 50	18.85	18.85	4.132	0.183	159.212	-42.749

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 48

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	Х	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 48

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	? _c	?fi	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.012	0.021	0.615	-0.112
3	0.16	100, 51	12.57	12.57	0.047	0.041	2.415	-0.437
4	0.24	100, 52	12.57	12.57	0.102	0.061	5.337	-0.963
5	0.32	100, 53	12.57	12.57	0.177	0.079	9.320	-1.678
6	0.40	100, 54	12.57	12.57	0.270	0.097	14.308	-2.568
7	0.48	100, 54	12.57	12.57	0.379	0.114	20.248	-3.624
8	0.56	100, 55	12.57	12.57	0.504	0.131	27.088	-4.834
9	0.64	100, 56	12.57	12.57	0.642	0.147	34.783	-6.189
10	0.72	100, 56	12.57	12.57	0.793	0.163	43.287	-7.681
11	0.80	100, 57	12.57	12.57	0.957	0.178	52.557	-9.299

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	?fi	₽ _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.019	-0.016	-0.217	1.043
3	0.54	100, 76	18.85	18.85	0.079	-0.031	-0.885	4.206
4	0.81	100, 74	18.85	18.85	0.182	-0.047	-2.030	9.541

5	1.08	100, 71	18.85	18.85	0.333	-0.062	-3.679	17.109
6	1.35	100, 69	18.85	18.85	0.535	-0.076	-5.865	26.982
7	1.62	100, 67	18.85	18.85	0.793	-0.091	-8.624	39.240
8	1.89	100, 64	18.85	18.85	1.102	-0.093	-11.883	53.462
9	2.16	100, 62	12.57	12.57	1.760	-0.090	-17.567	101.277
10	2.43	100, 59	12.57	12.57	2.193	-0.085	-21.615	123.389
11	2.70	100, 57	12.57	12.57	2.642	-0.072	-25.685	145.174

Verifiche a fessurazione

Combinazione n° 48

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	$M_{\sf pf}$	M	\mathbf{P}_{m}	S _m	w
1	0.00	18.85	18.85	-68.98	-11.00	0.0000	0.00	0.000
2	0.18	18.85	18.85	-68.98	-13.72	0.0000	0.00	0.000
3	0.35	18.85	18.85	-68.98	-16.74	0.0000	0.00	0.000
4	0.53	18.85	18.85	-68.98	-19.83	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-23.02	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-26.36	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-29.88	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-33.69	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-37.89	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-42.54	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-47.69	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-53.37	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-59.64	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-66.53	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-74.08	0.0249	203.88	0.086
16	2.66	18.85	18.85	-68.98	-82.31	0.0278	203.88	0.096
17	2.83	18.85	18.85	-68.98	-91.28	0.0348	203.88	0.121
18	3.01	18.85	18.85	-68.98	-101.00	0.0422	203.88	0.146

19	3.19	18.85	18.85	-68.98	-111.52	0.0498	203.88	0.173
20	3.37	18.85	18.85	-68.98	-122.87	0.0578	203.88	0.200
21	3.54	18.85	18.85	-68.98	-135.08	0.0662	203.88	0.229
14	* 6	·						
<u>verij</u>	<u>ica Jessuraz</u>	zione fondazio	<u>one</u>					
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.33	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	1.33	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.98	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	5.28	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	8.23	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	11.82	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	16.05	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	20.90	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	26.38	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	32.48	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-89.71	0.0423	314.16	0.226
13	0.27	12.57	12.57	-91.50	-79.84	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-68.49	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-56.05	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-42.85	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-30.64	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-20.18	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-11.67	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-5.33	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-1.37	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
Verif	ica fessuraz	zione mensolo	a di monte					
<u> </u>								
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 49

Valore della spinta statica

87.8802 [kN]

Componente orizzontale della spinta statica	81.8587	[kN]			
Componente verticale della spinta statica	31.9702	[kN]			
Punto d'applicazione della spinta	X = 2.70	[m]	Υ	=	-2.60
	[m]				
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	4.8834	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 2.70 [m]	[m]	Υ	=	-2.60
Inclinazione linea di rottura in condizioni sismiche	55.54	[°]			
memazione inica di rottura in condizioni sismiche	33.34	. 1			
Peso terrapieno gravante sulla fondazione a monte	240.2601	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.36	[m]	Υ	=	-1.79
	[m]				
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	3.6082	[kN]			
Inerzia verticale del muro	-1.8041	[kN]			
Inerzia del terrapieno fondazione di monte	7.8153	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-3.9076	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti carichi esterni					
Componente dir. X	16.70	[kN]			
		į			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	114.5309	[kN]			
Risultante dei carichi applicati in dir. verticale	379.2186	[kN]			
Resistenza passiva a valle del muro	-4.0684	[kN]			
Sforzo normale sul piano di posa della fondazione	387.7575	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	81.0440	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.12	[m]			
Lunghezza fondazione reagente	4.02	[m]			
Risultante in fondazione	396.1364	[kN]			
Inclinazione della risultante (rispetto alla normale)	11.81	[°]			
Momento rispetto al baricentro della fondazione	48.0579	[kNm]			
Carico ultimo della fondazione	5207.8753	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	4.02	[m]			
Tensione terreno allo spigolo di valle	0.11446	[N/mmc	[]		
Tensione terreno allo spigolo di monte	0.07869	[N/mmc	[]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	[]		

Fattori per il calcolo della capacità portante

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.92
Coefficiente di sicurezza a carico ultimo 13.43

Sollecitazioni paramento

Combinazione n° 49

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	11.0000	16.7000
2	0.18	4.7148	13.7205	16.8581
3	0.35	6.9297	16.7342	17.1882
4	0.53	9.1445	19.8217	17.6903
5	0.71	11.3594	23.0134	18.3645
6	0.89	13.5742	26.3398	19.2168
7	1.06	15.7890	29.8475	20.4703
8	1.24	18.0039	33.6339	22.3640
9	1.42	20.2187	37.7987	24.6968
10	1.59	22.4336	42.4018	27.3030
11	1.77	24.6484	47.4886	30.1533
12	1.95	26.8632	53.1007	33.2304
13	2.13	29.0781	59.2772	36.5218
14	2.30	31.2929	66.0552	40.0184
15	2.48	33.5078	73.4705	43.7136
16	2.66	35.7226	81.5576	47.6024
17	2.83	37.9374	90.3507	51.6808
18	3.01	40.1523	99.8830	55.9459
19	3.19	42.3671	110.1874	60.3953
20	3.37	44.5820	121.2964	65.0270
21	3.54	46.7968	133.2407	69.8109

Sollecitazioni fondazione di valle

Combinazione n° 49

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3253	8.1208
3	0.16	1.2974	16.1704
4	0.24	2.9107	24.1487
5	0.32	5.1593	32.0558
6	0.40	8.0377	39.8917
7	0.48	11.5401	47.6563
8	0.56	15.6608	55.3497
9	0.64	20.3942	62.9719
10	0.72	25.7344	70.5229
11	0.80	31.6759	78.0026

Sollecitazioni fondazione di monte

Combinazione n° 49

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.27	-1.5076	-11.0322
3	0.54	-5.8843	-21.2526
4	0.81	-12.9110	-30.6611
5	1.08	-22.3683	-39.2578
6	1.35	-34.0371	-47.0426
7	1.62	-47.6982	-54.0155
8	1.89	-62.5909	-54.4766
9	2.16	-76.9465	-51.7258
10	2.43	-90.4498	-48.1632
11	2.70	-102.6816	-41.7887

Sollecitazioni mensola di contrappeso

Combinazione n° 49

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.2500	2.5000	0.0000
2	0.10	0.0625	1.2500	0.0000
3	0.20	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 49

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	?fs	? _{fi}
1	0.00	100, 50	18.85	18.85	0.330	0.043	13.902	-3.314
2	0.18	100, 50	18.85	18.85	0.420	0.043	16.181	-4.340
3	0.35	100, 50	18.85	18.85	0.514	0.044	19.448	-5.343
4	0.53	100, 50	18.85	18.85	0.610	0.045	22.809	-6.367
5	0.71	100, 50	18.85	18.85	0.709	0.047	26.302	-7.422
6	0.89	100, 50	18.85	18.85	0.812	0.049	29.965	-8.518
7	1.06	100, 50	18.85	18.85	0.921	0.052	33.857	-9.669
8	1.24	100, 50	18.85	18.85	1.038	0.057	38.101	-10.904
9	1.42	100, 50	18.85	18.85	1.167	0.063	42.822	-12.254
10	1.59	100, 50	18.85	18.85	1.308	0.070	48.097	-13.736
11	1.77	100, 50	18.85	18.85	1.465	0.077	53.982	-15.365
12	1.95	100, 50	18.85	18.85	1.637	0.085	60.530	-17.153
13	2.13	100, 50	18.85	18.85	1.826	0.093	67.791	-19.111
14	2.30	100, 50	18.85	18.85	2.033	0.102	75.811	-21.251
15	2.48	100, 50	18.85	18.85	2.259	0.112	84.636	-23.584
16	2.66	100, 50	18.85	18.85	2.506	0.122	94.310	-26.120
17	2.83	100, 50	18.85	18.85	2.774	0.132	104.875	-28.869
18	3.01	100, 50	18.85	18.85	3.064	0.143	116.374	-31.841
19	3.19	100, 50	18.85	18.85	3.377	0.154	128.849	-35.046
20	3.37	100, 50	18.85	18.85	3.714	0.166	142.339	-38.493
21	3.54	100, 50	18.85	18.85	4.077	0.179	156.886	-42.193

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 49

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 49

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000
2	0.08	100, 51	12.57	12.57	0.012	0.020	0.601	-0.109
3	0.16	100, 51	12.57	12.57	0.046	0.040	2.359	-0.427
4	0.24	100, 52	12.57	12.57	0.100	0.059	5.212	-0.941
5	0.32	100, 53	12.57	12.57	0.173	0.077	9.100	-1.638
6	0.40	100, 54	12.57	12.57	0.264	0.095	13.967	-2.507
7	0.48	100, 54	12.57	12.57	0.370	0.112	19.762	-3.537
8	0.56	100, 55	12.57	12.57	0.492	0.128	26.434	-4.717
9	0.64	100, 56	12.57	12.57	0.627	0.144	33.937	-6.039
10	0.72	100, 56	12.57	12.57	0.774	0.159	42.226	-7.492
11	0.80	100, 57	12.57	12.57	0.933	0.173	51.261	-9.069

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000
2	0.27	100, 79	18.85	18.85	0.021	-0.017	-0.240	1.151
3	0.54	100, 76	18.85	18.85	0.087	-0.035	-0.978	4.647
4	0.81	100, 74	18.85	18.85	0.202	-0.052	-2.246	10.559

5	1.08	100, 71	18.85	18.85	0.369	-0.069	-4.079	18.969
6	1.35	100, 69	18.85	18.85	0.594	-0.085	-6.515	29.973
7	1.62	100, 67	18.85	18.85	0.882	-0.102	-9.600	43.678
8	1.89	100, 64	18.85	18.85	1.231	-0.106	-13.269	59.696
9	2.16	100, 62	12.57	12.57	1.978	-0.105	-19.737	113.787
10	2.43	100, 59	12.57	12.57	2.485	-0.102	-24.487	139.782
11	2.70	100, 57	12.57	12.57	3.024	-0.093	-29.399	166.168

Verifiche a fessurazione

Combinazione n° 49

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	\mathbf{P}_{m}	S _m	w
1	0.00	18.85	18.85	-68.98	-11.00	0.0000	0.00	0.000
2	0.18	18.85	18.85	-68.98	-13.72	0.0000	0.00	0.000
3	0.35	18.85	18.85	-68.98	-16.73	0.0000	0.00	0.000
4	0.53	18.85	18.85	-68.98	-19.82	0.0000	0.00	0.000
5	0.71	18.85	18.85	-68.98	-23.01	0.0000	0.00	0.000
6	0.89	18.85	18.85	-68.98	-26.34	0.0000	0.00	0.000
7	1.06	18.85	18.85	-68.98	-29.85	0.0000	0.00	0.000
8	1.24	18.85	18.85	-68.98	-33.63	0.0000	0.00	0.000
9	1.42	18.85	18.85	-68.98	-37.80	0.0000	0.00	0.000
10	1.59	18.85	18.85	-68.98	-42.40	0.0000	0.00	0.000
11	1.77	18.85	18.85	-68.98	-47.49	0.0000	0.00	0.000
12	1.95	18.85	18.85	-68.98	-53.10	0.0000	0.00	0.000
13	2.13	18.85	18.85	-68.98	-59.28	0.0000	0.00	0.000
14	2.30	18.85	18.85	-68.98	-66.06	0.0000	0.00	0.000
15	2.48	18.85	18.85	-68.98	-73.47	0.0247	203.88	0.085
16	2.66	18.85	18.85	-68.98	-81.56	0.0275	203.88	0.095
17	2.83	18.85	18.85	-68.98	-90.35	0.0341	203.88	0.118
18	3.01	18.85	18.85	-68.98	-99.88	0.0413	203.88	0.143

19	3.19	18.85	18.85	-68.98	-110.19	0.0488	203.88	0.169
20	3.37	18.85	18.85	-68.98	-121.30	0.0567	203.88	0.196
21	3.54	18.85	18.85	-68.98	-133.24	0.0649	203.88	0.225
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_fs	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	-1.30	12.57	12.57	-65.59	0.00	0.0000	0.00	0.000
2	-1.22	12.57	12.57	67.37	0.33	0.0000	0.00	0.000
3	-1.14	12.57	12.57	69.18	1.30	0.0000	0.00	0.000
4	-1.06	12.57	12.57	71.02	2.91	0.0000	0.00	0.000
5	-0.98	12.57	12.57	72.87	5.16	0.0000	0.00	0.000
6	-0.90	12.57	12.57	74.75	8.04	0.0000	0.00	0.000
7	-0.82	12.57	12.57	76.65	11.54	0.0000	0.00	0.000
8	-0.74	12.57	12.57	78.58	15.66	0.0000	0.00	0.000
9	-0.66	12.57	12.57	80.52	20.39	0.0000	0.00	0.000
10	-0.58	12.57	12.57	82.49	25.73	0.0000	0.00	0.000
11	-0.50	12.57	12.57	84.49	31.68	0.0000	0.00	0.000
12	0.00	12.57	12.57	-84.49	-102.68	0.0544	314.16	0.291
13	0.27	12.57	12.57	-91.50	-90.45	0.0000	0.00	0.000
14	0.54	12.57	12.57	-98.78	-76.95	0.0000	0.00	0.000
15	0.81	18.85	18.85	-111.03	-62.59	0.0000	0.00	0.000
16	1.08	18.85	18.85	-119.07	-47.70	0.0000	0.00	0.000
17	1.35	18.85	18.85	-127.39	-34.04	0.0000	0.00	0.000
18	1.62	18.85	18.85	-135.98	-22.37	0.0000	0.00	0.000
19	1.89	18.85	18.85	-144.85	-12.91	0.0000	0.00	0.000
20	2.16	18.85	18.85	-153.98	-5.88	0.0000	0.00	0.000
21	2.43	18.85	18.85	-163.38	-1.51	0.0000	0.00	0.000
22	2.70	18.85	18.85	-173.06	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	A_fs	${f A}_{ m fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.25	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
3	0.20	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
9	0.20	10.00	12.51	55.71	5.00	0.0000	5.00	5.000

Inviluppo Sollecitazioni paramento

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kNm]

Sforzo normale positivo di compressione, espresso in [kN]

Taglio positivo se diretto da monte verso valle, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	Υ	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	16.5000	0.0000	25.0500
2	0.18	4.7148	4.7148	-0.2440	20.6947	0.1019	25.1546
3	0.35	6.9297	6.9297	-0.2019	25.1765	0.4076	25.4682
4	0.53	9.1445	9.1445	-0.0875	29.7324	0.9171	25.9910
5	0.71	11.3594	11.3594	0.1352	34.3994	1.6305	26.7229
6	0.89	13.5742	13.5742	0.5023	39.2146	2.5476	27.6640
7	1.06	15.7890	15.7890	1.0500	44.2162	3.6686	28.8537
8	1.24	18.0039	18.0039	1.8144	49.4765	4.9933	30.6381
9	1.42	20.2187	20.2187	2.8316	55.1094	6.5219	33.0009
10	1.59	22.4336	22.4336	4.1377	61.1883	8.2543	35.6612
11	1.77	24.6484	24.6484	5.7687	67.7626	10.1905	38.5895
12	1.95	26.8632	26.8632	7.7609	74.8784	12.3305	41.7709
13	2.13	29.0781	29.0781	10.1504	82.5795	14.6743	45.1953
14	2.30	31.2929	31.2929	12.9732	90.9084	17.2219	48.8550
15	2.48	33.5078	33.5078	16.2654	99.9061	19.9733	52.7445
16	2.66	35.7226	35.7226	20.0632	109.6130	22.9286	56.8598
17	2.83	37.9374	37.9374	24.4027	120.0689	26.0876	61.1977
18	3.01	40.1523	40.1523	29.3201	131.3129	29.4505	65.7559
19	3.19	42.3671	42.3671	34.8513	143.3840	33.0171	70.5324
20	3.37	44.5820	44.5820	41.0325	156.3206	36.7876	75.5257
21	3.54	46.7968	46.7968	47.8984	170.1595	40.7293	80.7003

Inviluppo combinazioni SLE

Nr.	Υ	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	11.0000	0.0000	16.7000
2	0.18	4.7148	4.7148	-0.2452	13.7206	0.0804	16.8607
3	0.35	6.9297	6.9297	-0.2120	16.7355	0.3217	17.1986
4	0.53	9.1445	9.1445	-0.1217	19.8259	0.7238	17.7138
5	0.71	11.3594	11.3594	0.0540	23.0232	1.2868	18.4062
6	0.89	13.5742	13.5742	0.3438	26.3591	2.0164	19.2822
7	1.06	15.7890	15.7890	0.7912	29.8812	3.1211	20.5715

8	1.24	18.0039	18.0039	1.4872	33.6902	4.8244	22.5204	
9	1.42	20.2187	20.2187	2.5251	37.8887	6.9382	24.9217	
10	1.59	22.4336	22.4336	3.9609	42.5383	9.3077	27.6047	
11	1.77	24.6484	24.6484	5.8370	47.6859	11.9055	30.5393	
12	1.95	26.8632	26.8632	8.1924	53.3744	14.7153	33.7074	
13	2.13	29.0781	29.0781	11.0636	59.6440	17.7254	37.0964	
14	2.30	31.2929	31.2929	14.4852	66.5329	20.9275	40.6968	
15	2.48	33.5078	33.5078	18.4907	74.0780	24.3152	44.5018	
16	2.66	35.7226	35.7226	23.1126	82.3150	27.8839	48.5063	
17	2.83	37.9374	37.9374	28.3825	91.2789	31.6300	52.7062	
18	3.01	40.1523	40.1523	34.3318	101.0041	35.5506	57.0984	
19	3.19	42.3671	42.3671	40.9909	111.5243	39.6435	61.6804	
20	3.37	44.5820	44.5820	48.3905	122.8731	43.9069	66.4503	
21	3.54	46.7968	46.7968	56.5591	135.0822	48.3125	71.3770	

Inviluppo Sollecitazioni fondazione di valle

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	0.0000
2	0.08	0.1508	0.3473	3.7788	8.6682
3	0.16	0.6062	1.3844	7.6165	17.2439
4	0.24	1.3710	3.1039	11.5129	25.7271
5	0.32	2.4498	5.4983	15.4682	34.1177
6	0.40	3.8474	8.5603	19.4822	42.4158
7	0.48	5.5685	12.2824	23.5550	50.6213
8	0.56	7.6178	16.6572	27.6866	58.7343
9	0.64	10.0000	21.6774	31.8771	66.7548
10	0.72	12.7197	27.3355	36.1263	74.6828
11	0.80	15.7817	33.6242	40.4343	82.5182

Inviluppo combinazioni SLE

	Nr.	Х	Mmin	Mmax	Tmin	Tmax
--	-----	---	------	------	------	------

1	0.00	0.0000	0.0000	0.0000	0.0000
2	0.08	0.1981	0.3330	4.9622	8.3143
3	0.16	0.7955	1.3284	9.9836	16.5597
4	0.24	1.7970	2.9808	15.0641	24.7363
5	0.32	3.2074	5.2844	20.2037	32.8441
6	0.40	5.0312	8.2340	25.4025	40.8830
7	0.48	7.2733	11.8239	30.6604	48.8530
8	0.56	9.9385	16.0486	35.9774	56.7543
9	0.64	13.0313	20.9027	41.3535	64.5866
10	0.72	16.5566	26.3806	46.7888	72.3502
11	0.80	20.5191	32.4769	52.2832	80.0448

Inviluppo Sollecitazioni fondazione di monte

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	0.0000
2	0.27	-2.3562	0.3084	-17.2774	2.1926
3	0.54	-9.2350	1.1345	-33.5009	3.8352
4	0.81	-20.3518	2.3299	-48.6705	4.9280
5	1.08	-35.4222	3.7461	-62.7862	5.4708
6	1.35	-54.1615	5.2347	-75.8480	5.4638
7	1.62	-76.2853	6.6471	-87.8559	4.9068
8	1.89	-101.0395	7.8349	-93.8698	3.8000
9	2.16	-126.7969	8.6496	-96.7499	2.1432
10	2.43	-153.1896	8.9427	-98.5760	-0.0634
11	2.70	-179.6731	8.7658	-96.7483	-0.2560

Inviluppo combinazioni SLE

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	0.0000
2	0.27	-1.5076	-0.0735	-11.0322	-0.6564
3	0.54	-5.8843	-0.4150	-21.2526	-1.9858

4	0.81	-12.9110	-1.2064	-30.6611	-3.9882
5	1.08	-22.3683	-2.6292	-39.2578	-6.6637
6	1.35	-34.0371	-4.8653	-47.0426	-10.0122
7	1.62	-47.6982	-8.0964	-54.0155	-14.0337
8	1.89	-62.5909	-11.9626	-54.4766	-13.0283
9	2.16	-76.9465	-15.0963	-51.7258	-10.2960
10	2.43	-90.4498	-17.5830	-48.1632	-8.2366
11	2.70	-102.6816	-19.4046	-41.7887	-4.8503

Inviluppo sollecitazioni mensola di contrappeso

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N			
<u>Invil</u>	ирро сс	mbinazioni S	<u>LU</u>				
Nr.	X	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
0	0.00	0.0000	0.0000	0.2500	0.2500	2.5000	2.5000
1	0.10	0.0000	0.0000	0.0625	0.0625	1.2500	1.2500
2	0.20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Inviluppo combinazioni SLE							
Nr.	X	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
0	0.00	0.0000	0.0000	0.2500	0.2500	2.5000	2.5000
1	0.10	0.0000	0.0000	0.0625	0.0625	1.2500	1.2500
2	0.20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Inviluppo armature e tensioni nei materiali del muro

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □_{fs} tensione nell'armatura disposta sul lembo di monte in [N/mmq]
- □_{fi} tensione nell'armatura disposta sul lembo di valle in [N/mmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	18.85	0.00	0.00	18.54	200.11		
2	0.18	100, 50	18.85	18.85	73.05	315.83	15.49	200.76		
3	0.35	100, 50	18.85	18.85	89.15	116.23	12.86	201.06		
4	0.53	100, 50	18.85	18.85	100.31	-48.79	10.97	201.37		
5	0.71	100, 50	18.85	18.85	108.23	-82.71	9.53	201.67		
6	0.89	100, 50	18.85	18.85	113.84	-249.00	8.39	201.98		
7	1.06	100, 50	18.85	18.85	117.72	-329.67	7.46	202.28		
8	1.24	100, 50	18.85	18.85	120.14	-330.16	6.67	202.59		
9	1.42	100, 50	18.85	18.85	121.21	-330.37	5.99	202.90		
10	1.59	100, 50	18.85	18.85	121.12	-330.35	5.40	203.20		
11	1.77	100, 50	18.85	18.85	120.09	-330.15	4.87	203.51		
12	1.95	100, 50	18.85	18.85	118.31	-329.79	4.40	203.81		
13	2.13	100, 50	18.85	18.85	115.96	-329.31	3.99	204.12		
14	2.30	100, 50	18.85	18.85	113.16	-328.75	3.62	204.42		
15	2.48	100, 50	18.85	18.85	110.05	-328.12	3.28	204.73		
16	2.66	100, 50	18.85	18.85	106.71	-327.44	2.99	205.03		
17	2.83	100, 50	18.85	18.85	103.24	-326.74	2.72	205.34		
18	3.01	100, 50	18.85	18.85	99.69	-326.02	2.48	205.65		
19	3.19	100, 50	18.85	18.85	96.12	-325.30	2.27	205.95		

20	3.37	100, 50	18.85	18.85	92.57	-324.58	2.08	206.26	
21	3.54	100, 50	18.85	18.85	89.07	-323.88	1.90	206.56	
<u>Invilu</u>	ppo SLE								
Nr.	Υ	В, Н	A_{fs}	${\sf A}_{\sf fi}$? _c	? _c	?fs	? _{fi}	
1	0.00	100, 50	18.85	18.85	0.330	0.043	13.902	-3.314	
2	0.18	100, 50	18.85	18.85	0.420	0.043	16.181	-4.341	
3	0.35	100, 50	18.85	18.85	0.514	0.044	19.449	-5.343	
4	0.53	100, 50	18.85	18.85	0.610	0.045	22.814	-6.368	
5	0.71	100, 50	18.85	18.85	0.709	0.047	26.314	-7.425	
6	0.89	100, 50	18.85	18.85	0.813	0.049	29.989	-8.524	
7	1.06	100, 50	18.85	18.85	0.922	0.053	33.900	-9.679	
8	1.24	100, 50	18.85	18.85	1.040	0.058	38.172	-10.921	
9	1.42	100, 50	18.85	18.85	1.169	0.064	42.936	-12.281	
10	1.59	100, 50	18.85	18.85	1.312	0.071	48.269	-13.777	
11	1.77	100, 50	18.85	18.85	1.471	0.078	54.231	-15.425	
12	1.95	100, 50	18.85	18.85	1.645	0.086	60.876	-17.235	
13	2.13	100, 50	18.85	18.85	1.837	0.095	68.254	-19.222	
14	2.30	100, 50	18.85	18.85	2.047	0.104	76.414	-21.396	
15	2.48	100, 50	18.85	18.85	2.278	0.114	85.403	-23.768	
16	2.66	100, 50	18.85	18.85	2.529	0.124	95.266	-26.349	
17	2.83	100, 50	18.85	18.85	2.802	0.135	106.047	-29.149	
18	3.01	100, 50	18.85	18.85	3.097	0.146	117.790	-32.179	
19	3.19	100, 50	18.85	18.85	3.417	0.158	130.537	-35.450	
20	3.37	100, 50	18.85	18.85	3.762	0.170	144.331	-38.970	
21	3.54	100, 50	18.85	18.85	4.132	0.183	159.212	-42.749	

Inviluppo armature e tensioni nei materiali della mensola di contrappeso

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑c tensione nel calcestruzzo espressa in [N/mmq]
- tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${f A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	1223.88	200.11		
2	0.10	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
3	0.20	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		
<u>Invilu</u>	ppo SLE									
Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	\mathbf{P}_{fi}	? _{fs}		
1	0.00	100, 50	18.85	12.57	0.008	0.006	0.317	-0.081		
2	0.10	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020		
3	0.20	100, 50	18.85	12.57	0.000	0.000	0.000	0.000		

Inviluppo armature e tensioni nei materiali della fondazione

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_u	M_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	12.57	12.57	0.00	0.00	1000.00	174.81		
2	0.08	100, 51	12.57	12.57	0.00	209.38	602.80	176.05		
3	0.16	100, 51	12.57	12.57	0.00	212.63	153.59	177.28		
4	0.24	100, 52	12.57	12.57	0.00	215.89	69.55	179.07		
5	0.32	100, 53	12.57	12.57	0.00	219.14	39.86	180.91		
6	0.40	100, 54	12.57	12.57	0.00	222.39	25.98	182.74		
7	0.48	100, 54	12.57	12.57	0.00	225.64	18.37	184.57		
8	0.56	100, 55	12.57	12.57	0.00	228.90	13.74	186.40		
9	0.64	100, 56	12.57	12.57	0.00	232.15	10.71	188.22		
10	0.72	100, 56	12.57	12.57	0.00	235.41	8.61	190.03		
11	0.80	100, 57	12.57	12.57	0.00	238.66	7.10	191.85		
<u>Invilu</u>	ppo SLE									
Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}		
12	0.00	100, 50	12.57	12.57	0.000	0.000	0.000	0.000		
13	0.08	100, 51	12.57	12.57	0.012	0.021	0.615	-0.112		

14	0.16	100, 51	12.57	12.57	0.047	0.041	2.415	-0.437
15	0.24	100, 52	12.57	12.57	0.102	0.061	5.337	-0.963
16	0.32	100, 53	12.57	12.57	0.177	0.079	9.320	-1.678
17	0.40	100, 54	12.57	12.57	0.270	0.097	14.308	-2.568
18	0.48	100, 54	12.57	12.57	0.379	0.114	20.248	-3.624
19	0.56	100, 55	12.57	12.57	0.504	0.131	27.088	-4.834
20	0.64	100, 56	12.57	12.57	0.642	0.147	34.783	-6.189
21	0.72	100, 56	12.57	12.57	0.793	0.163	43.287	-7.681
22	0.80	100, 57	12.57	12.57	0.957	0.178	52.557	-9.299

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_u	$M_{\rm u}$	CS	V_{Rd}	\mathbf{V}_{Rcd}	V_{Rsd}
1	0.00	100, 81	18.85	18.85	0.00	0.00	1000.00	174.81		
2	0.27	100, 79	18.85	18.85	0.00	-505.83	214.68	176.05		
3	0.54	100, 76	18.85	18.85	0.00	-489.04	52.96	177.28		
4	0.81	100, 74	18.85	18.85	0.00	-472.24	23.20	179.07		
5	1.08	100, 71	18.85	18.85	0.00	-455.45	12.86	180.91		
6	1.35	100, 69	18.85	18.85	0.00	-438.67	8.10	182.74		
7	1.62	100, 67	18.85	18.85	0.00	-421.88	5.53	184.57		
8	1.89	100, 64	18.85	18.85	0.00	-405.10	4.01	186.40		
9	2.16	100, 62	12.57	12.57	0.00	-261.00	2.06	188.22		
10	2.43	100, 59	12.57	12.57	0.00	-249.83	1.63	190.03		
11	2.70	100, 57	12.57	12.57	0.00	-238.66	1.33	191.85		
<u>Invilu</u>	ippo SLE									
Nr.	Х	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	\mathbf{P}_{c}	? _c	? _{fi}	$ m ?_{fs}$		
12	0.00	100, 81	18.85	18.85	0.000	0.000	0.000	0.000		
13	0.27	100, 79	18.85	18.85	0.021	-0.017	-0.240	1.151		
14	0.54	100, 76	18.85	18.85	0.087	-0.035	-0.978	4.647		
15	0.81	100, 74	18.85	18.85	0.202	-0.052	-2.246	10.559		
16	1.08	100, 71	18.85	18.85	0.369	-0.069	-4.079	18.969		
17	1.35	100, 69	18.85	18.85	0.594	-0.085	-6.515	29.973		
18	1.62	100, 67	18.85	18.85	0.882	-0.102	-9.600	43.678		
19	1.89	100, 64	18.85	18.85	1.231	-0.106	-13.269	59.696		
20	2.16	100, 62	12.57	12.57	1.978	-0.105	-19.737	113.787		
21	2.43	100, 59	12.57	12.57	2.485	-0.102	-24.487	139.782		
22	2.70	100, 57	12.57	12.57	3.024	-0.093	-29.399	166.168		

Spostamenti

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione

 $ag_{Critico}$ Accelerazione critica espressa in [m/s²]

D Spostamento espresso in [cm]

Spostamento limite imposto **D**_{limite} = 1.00 [cm]

С	Tipo	ag _{Critico}	D
29	SLEQ	9.4023	0.0000
30	SLEF	9.4023	0.0000
31	SLEF	9.4023	0.0000
32	SLEF	9.1264	0.0001
33	SLER	8.5715	0.0001
34	SLER	8.5715	0.0001
35	SLER	8.0166	0.0001
36	SLEQ	10.0675	0.0000
37	SLEQ	10.0675	0.0000
38	SLEF	10.0675	0.0000
39	SLEF	10.0675	0.0000
40	SLEF	10.0675	0.0000
41	SLEF	10.0675	0.0000
42	SLEF	9.7701	0.0000
43	SLEF	9.7701	0.0000
44	SLER	9.1785	0.0001
45	SLER	9.1785	0.0001
46	SLER	9.1785	0.0001
47	SLER	9.1785	0.0001
48	SLER	8.5838	0.0001
49	SLER	8.5838	0.0001

3. Allegato 3

N.T.C. 2008 - Approccio 1

C: I		
Simpoi	חחוח	adottata
21111001	oura	aaottata

Coefficiente parziale sfavorevole sulle azioni permanenti
Coefficiente parziale favorevole sulle azioni permanenti
Coefficiente parziale sfavorevole sulle azioni variabili
Coefficiente parziale favorevole sulle azioni variabili
Coefficiente parziale di riduzione dell'angolo di attrito drenato
Coefficiente parziale di riduzione della coesione drenata
Coefficiente parziale di riduzione della coesione non drenata
Coefficiente parziale di riduzione del carico ultimo
Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti di partecipazione combinazioni statiche

					delle azioni:
COCITICICITE	parzian	PC: 1C	uzioiii o	per i crietto	aciic azioiii.

Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	? Gfav	1.00	1.00	0.90	0.90
Permanenti	Sfavorevole	[₹] _{Gsfav}	1.30	1.00	1.10	1.30
Variabili	Favorevole	? _{Qfav}	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	? _{Qsfav}	1.50	1.30	1.50	1.50
Coofficienti parziali	per i parametri geotec	nici dal tarrana:				
Coefficienti parzian	per i parametri geotec	mici dei terreno.				
Parametri			M1	M2	M2	M1
Tangente dell'ango	lo di attrito	? tan?'	1.00	1.25	1.25	1.00
Coesione efficace		? _{c'}	1.00	1.25	1.25	1.00
Resistenza non dre	nata	?	1.00	1.40	1.40	1.00
Resistenza a compr	essione uniassiale	?qu	1.00	1.60	1.60	1.00

?

1.00

1.00

1.00

1.00

Coefficienti di partecipazione combinazioni sismiche

Peso dell'unità di volume

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	? Gfav	1.00	1.00	1.00	0.90
Permanenti	Sfavorevole	? Gsfav	1.00	1.00	1.00	1.30
Variabili	Favorevole	? Qfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	? Qsfav	1.00	1.00	1.00	1.50

Coefficienti parziali per i parametri geotecr	nici del terreno	<u>):</u>			
Parametri		M1	M2	M2	M1
Tangente dell'angolo di attrito	? tan?'	1.00	1.25	1.25	1.00
Coesione efficace	? _{c'}	1.00	1.25	1.25	1.00
Resistenza non drenata	?]cu	1.00	1.40	1.40	1.00
Resistenza a compressione uniassiale	?] _{qu}	1.00	1.60	1.60	1.00
Peso dell'unità di volume	?	1.00	1.00	1.00	1.00

FONDAZIONE SUPERFICIALE

Coefficienti parziali \mathbb{Z}_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Coefficienti parziali				
	R1	R2	R3		
Capacità portante della fondazione	1.00	1.00	1.40		
Scorrimento	1.00	1.00	1.10		
Resistenza del terreno a valle	1.00	1.00	1.40		
Stabilità globale		1.10			

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.
Altezza del paramento Spessore in sommità Spessore all'attacco con la fondazione Inclinazione paramento esterno Inclinazione paramento interno Lunghezza del muro Mensola di contrappeso	4.40 [m] 0.60 [m] 0.60 [m] 0.00 [°] 0.00 [°] 10.00 [m]
Posizione rispetto alla testa del muro Lunghezza mensola Spessore all'estremità libera Spessore all'incastro	0.00 [m] 0.10 [m] 0.50 [m] 0.50 [m]
Lunghezza mensola fondazione di valle Lunghezza mensola fondazione di monte Lunghezza totale fondazione Inclinazione piano di posa della fondazione Spessore estremità fondazione di valle Spessore all'incastro fondazione di valle Spessore all'incastro fondazione di monte Spessore estremità fondazione di monte Spessore magrone	0.80 [m] 3.60 [m] 5.00 [m] 5.00 [°] 0.60 [m] 0.67 [m] 0.69 [m] 1.01 [m] 0.10 [m]

Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico 25.000 [kN/mc]

Classe di Resistenza C25/30

Resistenza caratteristica a compressione R_{ck} 30.00 [N/mmq]
Modulo elastico E 30874.286 [N/mmq]

Acciaio

Tipo FeB44K

Tensione di snervamento 🛚 fa 431.50 [N/mmq]

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	X	Y	Α
1	0.50	0.00	0.00
2	1.00	0.00	0.00
3	4.00	0.00	0.00
4	10.20	0.00	0.00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0.00 [m]

Descrizione terreni

Simbologia adottata

Nr. Indice del terreno
Descrizione Descrizione terreno

Peso di volume del terreno espresso in [kN/mc]

 \mathbb{Z}_s Peso di volume saturo del terreno espresso in [kN/mc]

Angolo d'attrito interno espresso in [°]Angolo d'attrito terra-muro espresso in [°]

c Coesione espressa in [N/mmq]

c_a Adesione terra-muro espressa in [N/mmq]

Descrizione	?	? _s	?	?	С	Ca
Riporto	20.00	22.00	35.00	23.33	0.0000	0.0000
С	20.00	22.00	32.00	21.33	0.0000	0.0000
FLgs	21.00	23.00	35.00	23.33	0.0000	0.0000
Terreno di Riporto	20.00	20.00	32.00	21.33	0.0000	0.0000
Fla	21.00	23.00	26.00	17.33	0.0000	0.0000

Stratigrafia

Simbologia adottata

N Indice dello strato

H Spessore dello strato espresso in [m]

a Inclinazione espressa in [°]

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta Terreno dello strato

Nr.	Н	а	Kw	Ks	Terreno
1	5.00	0.00	3.68	0.54	С
2	3.00	0.00	4.31	0.43	Terreno di Riporto

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

X	Ascissa del punto	di applicazione	del carico	concentrato e	Iml ni capana
^	Ascissa dei buillo	ui applicazione	uei carico	concentrato	25012554 111 11111

- F_x Componente orizzontale del carico concentrato espressa in [kN]
- F_y Componente verticale del carico concentrato espressa in [kN]
- M Momento espresso in [kNm]
- X_i Ascissa del punto iniziale del carico ripartito espressa in [m]
- X_f Ascissa del punto finale del carico ripartito espressa in [m]
- Q_i Intensità del carico per $x=X_i$ espressa in [kN/m]
- Q_f Intensità del carico per x=X_f espressa in [kN/m]
- D/C Tipo carico : D=distribuito C=concentrato

Condizione n° 1 (Strada)						
D	Profilo	$X_{i}=1.00$	$X_f = 6.00$	$Q_i = 20.0000$	$Q_f = 20.0000$	
Condizione n° 2 (Strada Sismica)						
D	Profilo	$X_{i}=1.00$	$X_f = 6.00$	$Q_i = 10.0000$	$Q_f = 10.0000$	

Condizione n° 3 (Urto)

C Paramento X=-0.30 Y=0.00 $F_x=16.7000$ $F_y=0.0000$ M=11.0000

Descrizione combinazioni di carico

Simbologia adottata

F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

- Coefficiente di partecipazione della condizione
- Coefficiente di combinazione della condizione

Combinazione n° 1 - Caso A1-M1 (STR)									
	S/F	?	?	? * ?					
Peso proprio muro	FAV	1.00	1.00	1.00					
Peso proprio terrapieno	FAV	1.00	1.00	1.00					
Spinta terreno	SFAV	1.30	1.00	1.30					
Combinazione n° 2 - Caso A2-M	Combinazione n° 2 - Caso A2-M2 (GEO)								
	S/F	?	?	? * ?					
Peso proprio muro	SFAV	1.00	1.00	1.00					
Peso proprio terrapieno	SFAV	1.00	1.00	1.00					
Spinta terreno	SFAV	1.00	1.00	1.00					
Combinazione n° 3 - Caso EQU (SLU)									
	S/F	?	?	? * ?					
Peso proprio muro	FAV	0.90	1.00	0.90					
Peso proprio terrapieno	FAV	0.90	1.00	0.90					
Spinta terreno	SFAV	1.10	1.00	1.10					
Combinazione n° 4 - Caso A2-M	2 (GEO-STAB)							
	S/F	?	?	? * ?					
Peso proprio muro	SFAV	1.00	1.00	1.00					
Peso proprio terrapieno	SFAV	1.00	1.00	1.00					
Spinta terreno	SFAV	1.00	1.00	1.00					
Combinazione n° 5 - Caso A1-M	1 (STR)								
	S/F	?	?	? * ?					
Peso proprio muro	FAV	1.00	1.00	1.00					
Peso proprio terrapieno	FAV	1.00	1.00	1.00					
Spinta terreno	SFAV	1.30	1.00	1.30					
Strada	SFAV	1.50	1.00	1.50					
Combinazione n° 6 - Caso A2-M	2 (GEO)								
	S/F	?	?	? * ?					
Peso proprio muro	SFAV	1.00	1.00	1.00					
Peso proprio terrapieno	SFAV	1.00	1.00	1.00					

Spinta terreno	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.30	1.00	1.30	
	21111				
Combinazione n° 7 - Caso EQL	J (SLU)				
	S/F	?	?	? * ?	
Peso proprio muro	FAV	0.90	1.00	0.90	
Peso proprio terrapieno	FAV	0.90	1.00	0.90	
Spinta terreno	SFAV	1.10	1.00	1.10	
Strada	SFAV	1.50	1.00	1.50	
Combinazione n° 8 - Caso A2-	M2 (GEO-STAB)			
	S/F	?	?	? * ?	
Peso proprio muro	SFAV	1.00	1.00	1.00	
Peso proprio terrapieno	SFAV	1.00	1.00	1.00	
Spinta terreno	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.30	1.00	1.30	
Combinazione n° 9 - Caso A1-	M1 (STR)				
	S/F	?	?	? * ?	
Peso proprio muro	FAV	1.00	1.00	1.00	
Peso proprio terrapieno	FAV	1.00	1.00	1.00	
Spinta terreno	SFAV	1.30	1.00	1.30	
Strada	SFAV	1.50	1.00	1.50	
Urto	SFAV	1.50	1.00	1.50	
Combinazione n° 10 - Caso A2	-M2 (GEO)				
COMBINAZIONE II 10 Caso 712	S/F	?	?	? * ?	
Peso proprio muro	SFAV	1.00	1.00	1.00	
Peso proprio terrapieno	SFAV	1.00	1.00	1.00	
Spinta terreno	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.30	1.00	1.30	
Urto	SFAV	1.30	1.00	1.30	
Combinazione nº 11 Cose EC	NII (CI II)				
Combinazione n° 11 - Caso EC	<u>(U (SLU)</u> S/F	?	?	? * ?	
Pasa proprio muro	5/F FAV	0.90	1.00	0.90	
Peso proprio muro	FAV	0.90	1.00	0.90	
Peso proprio terrapieno	SFAV	0.90 1.10	1.00		
Spinta terreno	SFAV			1.10	
Strada	SEAV	1.50	1.00	1.50	
Lluka		4 50	4.00	1 50	
Urto	SFAV	1.50	1.00	1.50	
Urto Combinazione n° 12 - Caso A2	SFAV -M2 (GEO-STA	<u>B)</u>	1.00		
	SFAV		1.00 ? 1.00	1.50 ? * ? 1.00	

Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Strada	SFAV	1.30	1.00	1.30		
Urto	SFAV	1.30	1.00	1.30		
Combinazione n° 13 - Caso A1	-M1 (STR) - Sis	ma Vert. neg	ativo_			
	S/F	?	?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Combinazione n° 14 - Caso A1		ma Vert. pos	<u>itivo</u>			
	S/F	?	?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Combinazione n° 15 - Caso A2		sma Vert. po:				
	S/F	?	?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Combinazione n° 16 - Caso A2	M2 (CEO) Si	cma Vart na	gativo			
Combinazione ii 10 - Caso Az	S/F	<u> </u>	<u>gativo</u> ?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Spirita terreno	SFAV	1.00	1.00	1.00		
Combinazione n° 17 - Caso EQ	U (SLU) - Sisma	a Vert. negat	ivo			
	S/F	?	<u> </u>	? * ?		
Peso proprio muro	FAV	1.00	1.00	1.00		
Peso proprio terrapieno	FAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
·						
Combinazione n° 18 - Caso EQ	լ <mark>Ս (SLU) - Sism</mark> ։	a Vert. positi	<u>vo</u>			
	S/F	?	?	? * ?		
Peso proprio muro	FAV	1.00	1.00	1.00		
Peso proprio terrapieno	FAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Combinazione n° 19 - Caso A2	-M2 (GEO-STA	B) - Sisma Ve	rt. positivo			
	S/F	?	?	? * ?		
Peso proprio muro	SFAV	1.00	1.00	1.00		

Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 20 - Caso A2-	M2 (GEO-STA	B) - Sisma Ve	rt. negativo	
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 21 - Caso A1-	M1 (STR) - Sis	ma Vert. pos	itivo	
	S/F	?	?	? * ?
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 22 - Caso A1-	N/1 (STD) Sic	ma Vort noo	ativo	
COMBINAZIONE II 22 - Caso A1-			<u>ativo</u> [?]	? * ?
Doco proprio muro	S/F SFAV	1.00	1.00	
Peso proprio muro	•	1.00		1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV		1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 23 - Caso A2-	M2 (GEO) - Si	sma Vert. ne	gativo	
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 24 - Caso A2-	M2 (GEO) - Si	sma Vert no	sitivo	
COMMUNICIONE II 21 CUSO 712	S/F	<u> </u>	<u> </u>	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Strada Sistinca	3171	1.00	1.00	1.00
Combinazione n° 25 - Caso EQL				
	S/F	?	?	? * ?
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00

Combinazione n° 26 - Caso EQU (SLU) - Sisma Vert. negativo				
	S/F	?	?	? * ?
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 27 - Caso A	2-M2 (GEO-STA	B) - Sisma Ve	rt. positivo	
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 28 - Caso A	2-M2 (GEO-STA	B) - Sisma Ve	rt. negativo	
	S/F	?	?	? * ?
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 29 - Quasi I		<u>E)</u>		
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
0 1: : 000 5	. (6) 5)			
Combinazione n° 30 - Freque				-*-
D	S/F	?	2	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 31 - Freque	unto (SLE)			
Combinazione ii 31 - Freque	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Stidud	SFAV	1.00	1.00	1.00

Combinazione n° 32 - Frequente (SLE)				
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Urto	SFAV	1.00	0.20	0.20
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 33 - Rara (SLE	<u>=)</u>			
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Urto	SFAV	1.00	0.60	0.60
Combinazione n° 34 - Rara (SLE	<u>=)</u>			
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Urto	SFAV	1.00	0.60	0.60
Combinazione n° 35 - Rara (SLE	<u>=)</u>			
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Urto	SFAV	1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00
Combinazione n° 36 - Quasi Pe	rmanente (SLI	E) - Sisma Ve	rt. positivo	
	S/F	?	?	? * ?
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Strada	SFAV	1.00	1.00	1.00
Strada Sismica	SFAV	1.00	1.00	1.00

Combinazione n° 37 - Quasi Permanente (SLE) - Sisma Vert. negativo					
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Combinazione n° 38 - Frequen	te (SLE) - Sism	a Vert. positi	<u>vo</u>		
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Combinazione n° 39 - Frequen	te (SLE) - Sism	a Vert. negat	<u>ivo</u>		
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Combinazione n° 40 - Frequen	te (SLE) - Sism	a Vert. positi	<u>vo</u>		
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Combinazione n° 41 - Frequen	te (SLE) - Sism	a Vert. negat	<u>ivo</u>		
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Combinazione n° 42 - Frequen	te (SLE) - Sism	a Vert. positi	<u>vo</u>		
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	

Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Urto	SFAV	1.00	0.20	0.20	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Combinazione n° 43 - Frequer	nte (SLE) - Sisma	a Vert. negat	<u>tivo</u>		
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Urto	SFAV	1.00	0.20	0.20	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Combinazione n° 44 - Rara (SL	.E) - Sisma Vert	. positivo			
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Urto	SFAV	1.00	0.60	0.60	
Combinazione n° 45 - Rara (SL	.E) - Sisma Vert	. negativo			
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Urto	SFAV	1.00	0.60	0.60	
Combinazione n° 46 - Rara (SL	.E) - Sisma Vert	. positivo			
	S/F	?	?	? * ?	
Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Urto	SFAV	1.00	0.60	0.60	
Combinazione n° 47 - Rara (SL	<u>.E) - Sis</u> ma Vert	. negativo			
	S/F	?	?	? * ?	

Peso proprio muro		1.00	1.00	1.00	
Peso proprio terrapieno		1.00	1.00	1.00	
Spinta terreno		1.00	1.00	1.00	
Strada Sismica	SFAV	1.00	1.00	1.00	
Strada	SFAV	1.00	1.00	1.00	
Irto	SFAV	1.00	0.60	0.60	
ombinazione n° 48 - Rara (SI	₋E) - Sisma Vert	. positivo			
	S/F	?	?	? * ?	
eso proprio muro		1.00	1.00	1.00	
eso proprio terrapieno		1.00	1.00	1.00	
pinta terreno		1.00	1.00	1.00	
rto	SFAV	1.00	1.00	1.00	
trada	SFAV	1.00	1.00	1.00	
rada Sismica	SFAV	1.00	1.00	1.00	
ombinazione n° 49 - Rara (SI	₋E) - Sisma Vert	. negativo			
	S/F	?	?	? * ?	
eso proprio muro		1.00	1.00	1.00	
eso proprio terrapieno		1.00	1.00	1.00	
ointa terreno		1.00	1.00	1.00	
rto	SFAV	1.00	1.00	1.00	
trada	SFAV	1.00	1.00	1.00	
trada Sismica	SFAV	1.00	1.00	1.00	

Impostazioni di analisi

Metodo verifica sezioni	Stato limite
Impostazioni verifiche SLU	
Coefficienti parziali per resistenze di calcolo dei materiali	
Coefficiente di sicurezza calcestruzzo a compressione	1.50
Coefficiente di sicurezza calcestruzzo a trazione	1.50
Coefficiente di sicurezza acciaio	1.15
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza per la sezione	1.00

Impostazioni verifiche SLE

Condizioni ambientali	Ordinarie
Armatura ad aderenza migliorata	
<u>Verifica fessurazione</u>	
Sensibilità delle armature	Poco sensibile
Valori limite delle aperture delle fessure	$w_1 = 0.20$
	$w_2 = 0.30$
	$w_3 = 0.40$
Metodo di calcolo aperture delle fessure	E.C. 2
<u>Verifica delle tensioni</u>	
Combinazione di carico	Rara $\mathbb{C}_c < 0.60 f_{ck} - \mathbb{C}_f < 0.80 f_{yk}$
	Quasi permanente \mathbb{Z}_c < 0.45 f_{ck}

Calcolo della portanza metodo di Terzaghi

Coefficiente correttivo su N2 per effetti cinematici (combinazioni sismiche SLU): 1.00 Coefficiente correttivo su N2 per effetti cinematici (combinazioni sismiche SLE): 1.00

Impostazioni avanzate

Influenza del terreno sulla fondazione di valle nelle verifiche e nel calcolo delle sollecitazioni Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione *Sisma* Combinazione sismica

 CS_{SCO} Coeff. di sicurezza allo scorrimento CS_{RIB} Coeff. di sicurezza al ribaltamento CS_{QLIM} Coeff. di sicurezza a carico limite CS_{STAB} Coeff. di sicurezza a stabilità globale

C	Tipo	Sisma	CS _{sco}	CS _{rib}	CS _{qlim}	CS _{stab}
1	A1-M1 - [1]		4.06		15.13	
2	A2-M2 - [1]		3.31		6.54	
3	EQU - [1]			9.59		
4	STAB - [1]					1.88
5	A1-M1 - [2]		3.27		13.14	
6	A2-M2 - [2]		2.55		5.85	
7	EQU - [2]			6.52		
8	STAB - [2]					1.70
9	A1-M1 - [3]		2.47		13.14	
10	A2-M2 - [3]		1.99		5.64	
11	EQU - [3]			4.22		
12	STAB - [3]					1.70
13	A1-M1 - [4]	Orizzontale + Verticale negativo	2.27		16.69	
14	A1-M1 - [4]	Orizzontale + Verticale positivo	2.41		15.38	
15	A2-M2 - [4]	Orizzontale + Verticale positivo	1.54		6.26	
16	A2-M2 - [4]	Orizzontale + Verticale negativo	1.47		6.79	
17	EQU - [4]	Orizzontale + Verticale negativo		4.86		
18	EQU - [4]	Orizzontale + Verticale positivo		6.09		
19	STAB - [4]	Orizzontale + Verticale positivo				1.52
20	STAB - [4]	Orizzontale + Verticale negativo				1.49
21	A1-M1 - [5]	Orizzontale + Verticale positivo	2.29		14.38	
22	A1-M1 - [5]	Orizzontale + Verticale negativo	2.17		15.60	
23	A2-M2 - [5]	Orizzontale + Verticale negativo	1.42		6.32	
24	A2-M2 - [5]	Orizzontale + Verticale positivo	1.48		5.83	
25	EQU - [5]	Orizzontale + Verticale positivo		5.47		
26	EQU - [5]	Orizzontale + Verticale negativo		4.47		
27	STAB - [5]	Orizzontale + Verticale positivo				1.48
28	STAB - [5]	Orizzontale + Verticale negativo				1.46
29	SLEQ - [1]		4.42		13.21	
30	SLEF - [1]		4.42		13.21	

31	SLEF - [1]		4.42	 13.21	
32	SLEF - [1]		4.17	 13.39	
33	SLER - [1]		3.75	 13.73	
34	SLER - [1]		3.75	 13.73	
35	SLER - [1]		3.41	 13.94	
36	SLEQ - [1]	Orizzontale + Verticale positivo	3.13	 13.38	
37	SLEQ - [1]	Orizzontale + Verticale negativo	3.11	 13.83	
38	SLEF - [1]	Orizzontale + Verticale positivo	3.13	 13.38	
39	SLEF - [1]	Orizzontale + Verticale negativo	3.11	 13.83	
40	SLEF - [1]	Orizzontale + Verticale positivo	3.13	 13.38	
41	SLEF - [1]	Orizzontale + Verticale negativo	3.11	 13.83	
42	SLEF - [1]	Orizzontale + Verticale positivo	3.01	 13.54	
43	SLEF - [1]	Orizzontale + Verticale negativo	2.98	 14.01	
44	SLER - [1]	Orizzontale + Verticale positivo	2.79	 13.54	
45	SLER - [1]	Orizzontale + Verticale negativo	2.76	 13.95	
46	SLER - [1]	Orizzontale + Verticale positivo	2.79	 13.54	
47	SLER - [1]	Orizzontale + Verticale negativo	2.76	 13.95	
48	SLER - [1]	Orizzontale + Verticale positivo	2.60	 13.19	
49	SLER - [1]	Orizzontale + Verticale negativo	2.57	 13.57	

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta	metodo di Culmann
Calcolo del carico limite	metodo di Terzaghi
Calcolo della stabilità globale	metodo di Bishop
Calcolo della spinta in condizioni di	Spinta attiva

<u>Sisma</u>

Combinazioni SLU

Accelerazione al suolo a _g	2.54 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.15
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (∑m)	0.31
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g^* ?_m * St * S) = 9.24$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 4.62$

Combinazioni SLE

Accelerazione al suolo a _g	1.11 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.20
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (2m)	0.24
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g^* \mathbb{Z}_m^* St^* S) = 3.25$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 1.63$

Forma diagramma incremento sismico Stessa forma diagramma statico

Partecipazione spinta passiva (percento)	50.0
Lunghezza del muro	10.00 [m]
Peso muro	166.8937 [kN]
Baricentro del muro	X=0.66 Y=-3.76
Superficie di spinta Punto inferiore superficie di spinta Punto superiore superficie di spinta Altezza della superficie di spinta Inclinazione superficie di spinta(rispetto alla verticale)	X = 3.60 Y = -5.44 X = 3.60 Y = 0.00 5.44 [m] 0.00 [°]

COMBINAZIONE n° 1

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	105.6216 98.3844 38.4244 X = 3.60 [m]	[kN] [kN] [kN] [m]	Υ	=	-3.62
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Peso terrapieno gravante sulla fondazione a monte	317.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	98.3844	[kN]			
Risultante dei carichi applicati in dir. verticale	523.2762	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	529.8597	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	52.4035	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.17	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	532.4448	[kN]			
Inclinazione della risultante (rispetto alla normale)	5.65	[°]			
Momento rispetto al baricentro della fondazione	-90.6526	[kNm]			
Carico ultimo della fondazione	8014.7492	[kN]			

Tensioni sul terreno

Lunghezza fondazione reagente	5.02	[m]
Tensione terreno allo spigolo di valle	0.08398	[N/mmq]
Tensione terreno allo spigolo di monte	0.12716	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mma]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	$N_{?} = 27.33$
Fattori forma	$s_c = 1.00$	$s_a = 1.00$	s _ℙ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{g} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 4.06

Coefficiente di sicurezza a carico ultimo 15.13

Sollecitazioni paramento

Combinazione n° 1

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0504	0.1636
3	0.44	7.8987	0.0342	0.6543
4	0.66	11.2231	0.2638	1.4722
5	0.89	14.5475	0.7109	2.6172
6	1.11	17.8718	1.4480	4.0894
7	1.33	21.1962	2.5477	5.8888
8	1.55	24.5206	4.0824	8.0152
9	1.77	27.8450	6.1246	10.4689
10	1.99	31.1693	8.7469	13.2497
11	2.22	34.4937	12.0217	16.3576
12	2.44	37.8181	16.0216	19.7928
13	2.66	41.1424	20.8190	23.5550
14	2.88	44.4668	26.4865	27.6444
15	3.10	47.7912	33.0965	32.0610
16	3.32	51.1155	40.7217	36.8047
17	3.55	54.4399	49.4344	41.8756
18	3.77	57.7643	59.3071	47.2736
19	3.99	61.0887	70.4125	52.9988
20	4.21	64.4130	82.8230	59.0511
21	4.43	67.7374	96.6080	65.3782

Sollecitazioni fondazione di valle

Combinazione n° 1

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.08	0.2218	5.5520
3	0.16	0.8894	11.1452
4	0.24	2.0061	16.7797
5	0.32	3.5753	22.4555
6	0.40	5.6001	28.1725
7	0.48	8.0840	33.9308
8	0.56	11.0301	39.7305
9	0.64	14.4419	45.5713
10	0.72	18.3227	51.4535
11	0.80	22.6756	57.3769

Sollecitazioni fondazione di monte

Combinazione n° 1

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.8951	-5.1122
3	0.72	-3.7811	-11.0604
4	1.08	-8.9589	-17.8446
5	1.44	-16.7295	-25.4648
6	1.80	-27.3939	-33.9211
7	2.16	-41.2531	-43.2134
8	2.52	-58.6079	-53.3416
9	2.88	-79.7593	-64.3059
10	3.24	-105.0085	-76.1062
11	3.60	-134.5911	-87.4425

Sollecitazioni mensola di contrappeso

Combinazione n° 1

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 1

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	$N_{\rm u}$	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	21.99	21.99	0.00	0.00	1000.00	231.23		
2	0.22	100, 60	21.99	21.99	8323.33	91.73	1819.56	231.88		
3	0.44	100, 60	21.99	21.99	8383.65	-36.27	1061.39	232.34		
4	0.66	100, 60	21.99	21.99	8213.17	-193.03	731.81	232.81		
5	0.89	100, 60	21.99	21.99	7998.05	-390.84	549.79	233.27		
6	1.11	100, 60	21.99	21.99	7433.00	-602.24	415.91	233.74		
7	1.33	100, 60	21.99	21.99	6439.20	-773.96	303.79	234.20		
8	1.55	100, 60	21.99	21.99	5459.88	-909.00	222.67	234.67		
9	1.77	100, 60	21.99	21.99	4583.36	-1008.13	164.60	235.13		
10	1.99	100, 60	21.99	21.99	3697.73	-1037.67	118.63	235.60		
11	2.22	100, 60	21.99	21.99	2828.80	-985.89	82.01	236.06		
12	2.44	100, 60	21.99	21.99	2124.76	-900.15	56.18	236.53		
13	2.66	100, 60	21.99	21.99	1613.40	-816.42	39.21	236.99		
14	2.88	100, 60	21.99	21.99	1241.95	-739.76	27.93	237.46		
15	3.10	100, 60	21.99	21.99	982.51	-680.41	20.56	237.93		
16	3.32	100, 60	21.99	21.99	796.13	-634.25	15.58	238.39		
17	3.55	100, 60	21.99	21.99	661.84	-600.98	12.16	238.86		
18	3.77	100, 60	21.99	21.99	561.03	-576.01	9.71	239.32		
19	3.99	100, 60	21.99	21.99	482.96	-556.68	7.91	239.79		
20	4.21	100, 60	21.99	21.99	421.00	-541.33	6.54	240.25		
21	4.43	100, 60	21.99	21.99	370.85	-528.90	5.47	240.72		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 1

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${f A}_{\sf fs}$	A_{fi}	N_{u}	M_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 1

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	1435.35	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	362.53	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	162.76	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	92.47	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	59.76	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	41.90	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	31.08	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	24.02	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	19.16	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	15.66	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	-745 61	832 98	292 56		

3	0.72	100, 95	21.99	21.99	0.00	-719.48	190.28	284.93	
4	1.08	100, 91	21.99	21.99	0.00	-693.35	77.39	277.26	
5	1.44	100, 88	21.99	21.99	0.00	-667.22	39.88	269.55	
6	1.80	100, 85	21.99	21.99	0.00	-641.09	23.40	261.81	
7	2.16	100, 82	21.99	21.99	0.00	-614.97	14.91	254.02	
8	2.52	100, 79	21.99	21.99	0.00	-588.84	10.05	246.18	
9	2.88	100, 75	15.71	15.71	0.00	-404.00	5.07	238.30	
10	3.24	100, 72	15.71	15.71	0.00	-385.36	3.67	230.37	
11	3.60	100, 69	15.71	15.71	0.00	-366.71	2.72	222.38	

COMBINAZIONE n° 2

Valore della spinta statica	100.4609	[kN]			
Componente orizzontale della spinta statica	95.8895	[kN]			
Componente verticale della spinta statica	29.9600	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.62
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Peso terrapieno gravante sulla fondazione a monte	317.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>		EL 5.13			
Risultante dei carichi applicati in dir. orizzontale	95.8895	[kN]			
Risultante dei carichi applicati in dir. verticale	514.8118	[kN]			
Resistenza passiva a valle del muro	-4.7117	[kN]			
Sforzo normale sul piano di posa della fondazione	521.2101	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	50.6558	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.14	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	523.6659	[kN]			
Inclinazione della risultante (rispetto alla normale)	5.55	[°]			
Momento rispetto al baricentro della fondazione	-73.4713	[kNm]			
Carico ultimo della fondazione	3408.4971	[kN]			
Tanciani sul tarrana					
Tensioni sul terreno	г 02	[]			
Lunghezza fondazione reagente	5.02	[m]	,		
Tensione terreno allo spigolo di valle	0.08635	[N/mmq	J		

Tensione terreno allo spigolo di monte	0.12134	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.31

Coefficiente di sicurezza a carico ultimo 6.54

Sollecitazioni paramento

Combinazione n° 2

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0507	0.1594
3	0.44	7.8987	0.0317	0.6377
4	0.66	11.2231	0.2555	1.4349
5	0.89	14.5475	0.6913	2.5509
6	1.11	17.8718	1.4097	3.9857
7	1.33	21.1962	2.4815	5.7394
8	1.55	24.5206	3.9773	7.8120
9	1.77	27.8450	5.9677	10.2034
10	1.99	31.1693	8.5235	12.9137
11	2.22	34.4937	11.7153	15.9428
12	2.44	37.8181	15.6137	19.2908
13	2.66	41.1424	20.2895	22.9577
14	2.88	44.4668	25.8132	26.9434
15	3.10	47.7912	32.2557	31.2480
16	3.32	51.1155	39.6874	35.8714
17	3.55	54.4399	48.1792	40.8137
18	3.77	57.7643	57.8016	46.0748
19	3.99	61.0887	68.6254	51.6548
20	4.21	64.4130	80.7211	57.5537
21	4.43	67.7374	94.1565	63.7203

Sollecitazioni fondazione di valle

Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.08	0.2291	5.7337
3	0.16	0.9182	11.4983
4	0.24	2.0697	17.2936
5	0.32	3.6860	23.1197
6	0.40	5.7697	28.9767
7	0.48	8.3231	34.8644
8	0.56	11.3488	40.7829
9	0.64	14.8492	46.7322
10	0.72	18.8268	52.7124
11	0.80	23.2840	58.7233

Sollecitazioni fondazione di monte

Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	0.4602	2.4529
3	0.72	1.6914	4.2831
4	1.08	3.4693	5.4904
5	1.44	5.5697	6.0750
6	1.80	7.7685	6.0367
7	2.16	9.8414	5.3757
8	2.52	11.5643	4.0919
9	2.88	12.7129	2.1853
10	3.24	13.0630	-0.3440
11	3.60	12.4405	-2.4962

Sollecitazioni mensola di contrappeso

Combinazione n° 2

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 2

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_u	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	21.99	21.99	0.00	0.00	1000.00	231.23		
2	0.22	100, 60	21.99	21.99	8322.73	92.29	1819.43	231.88		
3	0.44	100, 60	21.99	21.99	8386.46	-33.68	1061.75	232.34		
4	0.66	100, 60	21.99	21.99	8219.59	-187.12	732.38	232.81		
5	0.89	100, 60	21.99	21.99	8009.20	-380.59	550.56	233.27		
6	1.11	100, 60	21.99	21.99	7490.04	-590.81	419.10	233.74		
7	1.33	100, 60	21.99	21.99	6513.31	-762.53	307.29	234.20		
8	1.55	100, 60	21.99	21.99	5542.93	-899.07	226.05	234.67		
9	1.77	100, 60	21.99	21.99	4663.62	-999.50	167.49	235.13		
10	1.99	100, 60	21.99	21.99	3808.47	-1041.46	122.19	235.60		
11	2.22	100, 60	21.99	21.99	2923.78	-993.02	84.76	236.06		
12	2.44	100, 60	21.99	21.99	2214.27	-914.19	58.55	236.53		
13	2.66	100, 60	21.99	21.99	1685.63	-831.27	40.97	236.99		
14	2.88	100, 60	21.99	21.99	1292.21	-750.13	29.06	237.46		
15	3.10	100, 60	21.99	21.99	1022.97	-690.43	21.41	237.93		
16	3.32	100, 60	21.99	21.99	826.60	-641.79	16.17	238.39		
17	3.55	100, 60	21.99	21.99	685.78	-606.91	12.60	238.86		
18	3.77	100, 60	21.99	21.99	580.45	-580.82	10.05	239.32		
19	3.99	100, 60	21.99	21.99	499.10	-560.67	8.17	239.79		
20	4.21	100, 60	21.99	21.99	434.66	-544.71	6.75	240.25		
21	4.43	100, 60	21.99	21.99	382.59	-531.81	5.65	240.72		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 2

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 2

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

N_u sforzo normale ultimo espresso in [kN]

M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	1389.36	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	351.16	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	157.76	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	89.69	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	58.00	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	40.70	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	30.21	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	23.36	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	18.64	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	15.25	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	745 61	1620 16	292 56		

3	0.72	100, 95	21.99	21.99	0.00	719.48	425.38	284.93	
4	1.08	100, 91	21.99	21.99	0.00	693.35	199.85	277.26	
5	1.44	100, 88	21.99	21.99	0.00	667.22	119.79	269.55	
6	1.80	100, 85	21.99	21.99	0.00	641.09	82.52	261.81	
7	2.16	100, 82	21.99	21.99	0.00	614.97	62.49	254.02	
8	2.52	100, 79	21.99	21.99	0.00	588.84	50.92	246.18	
9	2.88	100, 75	15.71	15.71	0.00	404.00	31.78	238.30	
10	3.24	100, 72	15.71	15.71	0.00	385.36	29.50	230.37	
11	3.60	100, 69	15.71	15.71	0.00	366.71	29.48	222.38	

COMBINAZIONE n° 3

Valore della spinta statica	110.5070	[kN]			
Componente orizzontale della spinta statica	105.4785	[kN]			
Componente verticale della spinta statica	32.9560	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.62
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Peso terrapieno gravante sulla fondazione a monte	286.1622	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	105.4785	[kN]			
Risultante dei carichi applicati in dir. verticale	469.3226	[kN]			
Resistenza passiva a valle del muro	-4.2406	[kN]			
Momento ribaltante rispetto allo spigolo a valle	145.1850	[kNm]			
Momento stabilizzante rispetto allo spigolo a valle	1392.0743	[kNm]			
Sforzo normale sul piano di posa della fondazione	476.7297	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	64.1729	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.11	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	481.0295	[kN]			
Inclinazione della risultante (rispetto alla normale)	7.67	[°]			
Momento rispetto al baricentro della fondazione	-50.5123	[kNm]			

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 9.59

Stabilità globale muro + terreno

Combinazione n° 4

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -1.03 Y[m] = 2.58

Raggio del cerchio R[m]= 9.26

Ascissa a valle del cerchio Xi[m] = -7.13Ascissa a monte del cerchio Xs[m] = 7.86

Larghezza della striscia dx[m]= 0.60 Coefficiente di sicurezza C= 1.88

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	?(°)	Wsin?	b/cos?	?	С	u
1	934.04	68.57	869.45	1.64	26.56	0.000	0.000
2	2502.31	59.97	2166.35	1.20	26.56	0.000	0.000
3	3625.94	53.16	2901.86	1.00	26.56	0.000	0.000
4	4513.01	47.32	3317.91	0.88	26.56	0.000	0.000
5	5241.77	42.08	3513.03	0.81	26.56	0.000	0.000
6	5851.67	37.25	3541.87	0.75	26.56	0.000	0.000
7	6365.95	32.71	3440.07	0.71	26.56	0.000	0.000
8	7067.26	28.39	3360.63	0.68	26.56	0.000	0.000
9	7449.15	24.25	3059.14	0.66	26.56	0.000	0.000
10	7733.13	20.23	2674.34	0.64	26.56	0.000	0.000
11	7959.33	16.32	2236.54	0.62	26.56	0.000	0.000
12	8131.57	12.48	1757.77	0.61	26.56	0.000	0.000
13	8260.35	8.70	1250.13	0.61	26.56	0.000	0.000

14	9540.02	4.96	825.39	0.60	26.56	0.000	0.000	
15	3761.63	1.24	81.61	0.60	26.56	0.000	0.000	
16	2854.98	-2.47	-123.12	0.60	26.56	0.000	0.000	
17	2715.02	-6.20	-293.08	0.60	26.56	0.000	0.000	
18	2610.90	-9.95	-451.09	0.61	26.56	0.000	0.000	
19	2456.89	-13.74	-583.75	0.62	26.56	0.000	0.000	
20	2250.87	-17.60	-680.73	0.63	26.56	0.000	0.000	
21	1989.76	-21.55	-730.77	0.64	26.56	0.000	0.000	
22	1669.30	-25.60	-721.31	0.66	26.56	0.000	0.000	
23	1283.63	-29.80	-637.92	0.69	26.56	0.000	0.000	
24	824.63	-34.18	-463.30	0.72	26.56	0.000	0.000	
25	280.71	-38.81	-175.93	0.77	26.56	0.000	0.000	

2W_i= 1057.8975 [kN] 2W_isin2_i= 295.5289 [kN] 2W_itan2_i= 528.8382 [kN] 2tan2_itan2_i= 3.66

COMBINAZIONE n° 5

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	139.8538 130.2709 50.8778 X = 3.60 [m]	[kN] [kN] [kN] [m]	Υ	=	-3.24
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	21.33 63.36	[°] [°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	130.2709	[kN]			
Risultante dei carichi applicati in dir. verticale	613.7296	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	622.7480	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	76.2852	[kN]			

Eccentricità rispetto al baricentro della fondazione	-0.12	[m]
Lunghezza fondazione reagente	5.02	[m]
Risultante in fondazione	627.4030	[kN]
Inclinazione della risultante (rispetto alla normale)	6.98	[°]
Momento rispetto al baricentro della fondazione	-76.2793	[kNm]
Carico ultimo della fondazione	8181.3175	[kN]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	5.02	[m]
Tensione terreno allo spigolo di valle	0.10591	[N/mmq]
Tensione terreno allo spigolo di monte	0.14224	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 44.04$$
 $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	3.27
Coefficiente di sicurezza a carico ultimo	13.14

Sollecitazioni paramento

Combinazione n° 5

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0504	0.1636
3	0.44	7.8987	0.0342	0.6543
4	0.66	11.2231	0.2638	1.4722
5	0.89	14.5475	0.7109	2.6172
6	1.11	17.8718	1.4666	4.3449
7	1.33	21.1962	2.7091	7.0176
8	1.55	24.5206	4.6250	10.3567
9	1.77	27.8450	7.3328	14.1496
10	1.99	31.1693	10.9269	18.3504
11	2.22	34.4937	15.4950	22.9363
12	2.44	37.8181	21.1207	27.8924
13	2.66	41.1424	27.8849	33.2084
14	2.88	44.4668	35.8664	38.8766
15	3.10	47.7912	45.1426	44.8917
16	3.32	51.1155	55.7899	51.2497
17	3.55	54.4399	67.8841	57.9476
18	3.77	57.7643	81.5001	64.9830
19	3.99	61.0887	96.7126	72.3542
20	4.21	64.4130	113.5957	80.0596
21	4.43	67.7374	132.2204	88.0450

Sollecitazioni fondazione di valle

Combinazione n° 5

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2918	7.2999
3	0.16	1.1689	14.6323
4	0.24	2.6338	21.9973
5	0.32	4.6893	29.3947
6	0.40	7.3378	36.8247
7	0.48	10.5821	44.2872
8	0.56	14.4247	51.7821
9	0.64	18.8681	59.3096
10	0.72	23.9151	66.8696
11	0.80	29.5681	74.4622

Sollecitazioni fondazione di monte

Combinazione n° 5

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	т
1	0.00	0.0000	0.0000
2	0.36	-1.8527	-10.4027
3	0.72	-7.5690	-21.4640
4	1.08	-17.3859	-33.1839
5	1.44	-31.5404	-45.5623
6	1.80	-50.2697	-58.5992
7	2.16	-73.8108	-72.2947
8	2.52	-102.4009	-86.6487
9	2.88	-135.1009	-93.2612
10	3.24	-169.5320	-98.1324
11	3.60	-205.7702	-102.3620

Sollecitazioni mensola di contrappeso

Combinazione n° 5

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 5

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
0.00	100, 60	21.99	21.99	0.00	0.00	1000.00	231.23		
0.22	100, 60	21.99	21.99	8323.33	91.73	1819.56	231.88		
0.44	100, 60	21.99	21.99	8383.65	-36.27	1061.39	232.34		
0.66	100, 60	21.99	21.99	8213.17	-193.03	731.81	232.81		
0.89	100, 60	21.99	21.99	7998.05	-390.84	549.79	233.27		
1.11	100, 60	21.99	21.99	7405.60	-607.73	414.37	233.74		
1.33	100, 60	21.99	21.99	6265.32	-800.78	295.59	234.20		
1.55	100, 60	21.99	21.99	5067.89	-955.89	206.68	234.67		
1.77	100, 60	21.99	21.99	3964.30	-1043.98	142.37	235.13		
1.99	100, 60	21.99	21.99	2807.77	-984.31	90.08	235.60		
2.22	100, 60	21.99	21.99	1938.96	-871.01	56.21	236.06		
2.44	100, 60	21.99	21.99	1373.02	-766.81	36.31	236.53		
2.66	100, 60	21.99	21.99	1016.23	-688.76	24.70	236.99		
2.88	100, 60	21.99	21.99	781.99	-630.74	17.59	237.46		
3.10	100, 60	21.99	21.99	627.15	-592.39	13.12	237.93		
3.32	100, 60	21.99	21.99	517.98	-565.35	10.13	238.39		
3.55	100, 60	21.99	21.99	437.37	-545.38	8.03	238.86		
3.77	100, 60	21.99	21.99	375.72	-530.11	6.50	239.32		
3.99	100, 60	21.99	21.99	327.26	-518.11	5.36	239.79		
4.21	100, 60	21.99	21.99	288.32	-508.46	4.48	240.25		
4.43	100, 60	21.99	21.99	256.44	-500.57	3.79	240.72		
	0.00 0.22 0.44 0.66 0.89 1.11 1.33 1.55 1.77 1.99 2.22 2.44 2.66 2.88 3.10 3.32 3.55 3.77 3.99 4.21	0.00 100, 60 0.22 100, 60 0.44 100, 60 0.66 100, 60 0.89 100, 60 1.11 100, 60 1.33 100, 60 1.55 100, 60 1.77 100, 60 1.99 100, 60 2.22 100, 60 2.44 100, 60 2.44 100, 60 2.88 100, 60 3.10 100, 60 3.32 100, 60 3.55 100, 60 3.77 100, 60 3.99 100, 60 4.21 100, 60	0.00 100, 60 21.99 0.22 100, 60 21.99 0.44 100, 60 21.99 0.66 100, 60 21.99 0.89 100, 60 21.99 1.11 100, 60 21.99 1.33 100, 60 21.99 1.55 100, 60 21.99 1.99 100, 60 21.99 2.22 100, 60 21.99 2.44 100, 60 21.99 2.88 100, 60 21.99 3.10 100, 60 21.99 3.32 100, 60 21.99 3.55 100, 60 21.99 3.77 100, 60 21.99 3.99 100, 60 21.99 4.21 100, 60 21.99	0.00 100, 60 21.99 21.99 0.22 100, 60 21.99 21.99 0.44 100, 60 21.99 21.99 0.66 100, 60 21.99 21.99 0.89 100, 60 21.99 21.99 1.11 100, 60 21.99 21.99 1.33 100, 60 21.99 21.99 1.55 100, 60 21.99 21.99 1.99 100, 60 21.99 21.99 2.22 100, 60 21.99 21.99 2.44 100, 60 21.99 21.99 2.88 100, 60 21.99 21.99 3.10 100, 60 21.99 21.99 3.32 100, 60 21.99 21.99 3.55 100, 60 21.99 21.99 3.77 100, 60 21.99 21.99 3.99 100, 60 21.99 21.99 4.21 100, 60 21.99 21.99	0.00 100, 60 21.99 21.99 0.00 0.22 100, 60 21.99 21.99 8323.33 0.44 100, 60 21.99 21.99 8383.65 0.66 100, 60 21.99 21.99 8213.17 0.89 100, 60 21.99 21.99 7998.05 1.11 100, 60 21.99 21.99 7405.60 1.33 100, 60 21.99 21.99 6265.32 1.55 100, 60 21.99 21.99 5067.89 1.77 100, 60 21.99 21.99 3964.30 1.99 100, 60 21.99 21.99 3964.30 1.99 100, 60 21.99 21.99 1938.96 2.44 100, 60 21.99 21.99 1938.96 2.44 100, 60 21.99 21.99 1016.23 2.88 100, 60 21.99 21.99 781.99 3.10 100, 60 21.99 21.99 517.98 3.55 100, 60 21.99 21.99 375.72	0.00 100, 60 21.99 21.99 0.00 0.00 0.22 100, 60 21.99 21.99 8323.33 91.73 0.44 100, 60 21.99 21.99 8383.65 -36.27 0.66 100, 60 21.99 21.99 8213.17 -193.03 0.89 100, 60 21.99 21.99 7998.05 -390.84 1.11 100, 60 21.99 21.99 7405.60 -607.73 1.33 100, 60 21.99 21.99 6265.32 -800.78 1.55 100, 60 21.99 21.99 5067.89 -955.89 1.77 100, 60 21.99 21.99 3964.30 -1043.98 1.99 100, 60 21.99 21.99 2807.77 -984.31 2.22 100, 60 21.99 21.99 1938.96 -871.01 2.44 100, 60 21.99 21.99 1373.02 -766.81 2.66 100, 60 21.99 21.99 781.99 -630.74 3.10 100, 60 21.99 21.99	0.00 100, 60 21.99 21.99 0.00 0.00 1000.00 0.22 100, 60 21.99 21.99 8323.33 91.73 1819.56 0.44 100, 60 21.99 21.99 8383.65 -36.27 1061.39 0.66 100, 60 21.99 21.99 8213.17 -193.03 731.81 0.89 100, 60 21.99 21.99 7998.05 -390.84 549.79 1.11 100, 60 21.99 21.99 7405.60 -607.73 414.37 1.33 100, 60 21.99 21.99 6265.32 -800.78 295.59 1.55 100, 60 21.99 21.99 5067.89 -955.89 206.68 1.77 100, 60 21.99 21.99 3964.30 -1043.98 142.37 1.99 100, 60 21.99 21.99 1938.96 -871.01 56.21 2.44 100, 60 21.99 21.99 1373.02 -766.81 36.31 2.66 100, 60 21.99 21.99 781.99 -630.74	0.00 100, 60 21.99 21.99 0.00 0.00 1000.00 231.23 0.22 100, 60 21.99 21.99 8323.33 91.73 1819.56 231.88 0.44 100, 60 21.99 21.99 8383.65 -36.27 1061.39 232.34 0.66 100, 60 21.99 21.99 8213.17 -193.03 731.81 232.81 0.89 100, 60 21.99 21.99 7998.05 -390.84 549.79 233.27 1.11 100, 60 21.99 21.99 7405.60 -607.73 414.37 233.74 1.33 100, 60 21.99 21.99 6265.32 -800.78 295.59 234.20 1.55 100, 60 21.99 21.99 5067.89 -955.89 206.68 234.67 1.77 100, 60 21.99 21.99 3964.30 -1043.98 142.37 235.13 1.99 100, 60 21.99 21.99 1938.96 -871.01	0.00 100, 60 21.99 21.99 0.00 0.00 1000.00 231.23 0.22 100, 60 21.99 21.99 8323.33 91.73 1819.56 231.88 0.44 100, 60 21.99 21.99 8383.65 -36.27 1061.39 232.34 0.66 100, 60 21.99 21.99 8213.17 -193.03 731.81 232.81 0.89 100, 60 21.99 21.99 7998.05 -390.84 549.79 233.27 1.11 100, 60 21.99 21.99 7405.60 -607.73 414.37 233.74 1.33 100, 60 21.99 21.99 6265.32 -800.78 295.59 234.20 1.55 100, 60 21.99 21.99 5067.89 -955.89 206.68 234.67 1.77 100, 60 21.99 21.99 3964.30 -1043.98 142.37 235.13 1.99 100, 60 21.99 21.99 1373.02 -766

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 5

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${f A}_{\sf fs}$	A_{fi}	N_{u}	M_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 5

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

N_u sforzo normale ultimo espresso in [kN]

M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	1091.11	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	275.86	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	123.97	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	70.50	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	45.61	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	32.01	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	23.77	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	18.39	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	14.68	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	12.01	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	-745 61	402 44	292 56		

3	0.72	100, 95	21.99	21.99	0.00 -719.48	95.06	284.93	
4	1.08	100, 91	21.99	21.99	0.00 -693.35	39.88	277.26	
5	1.44	100, 88	21.99	21.99	0.00 -667.22	21.15	269.55	
6	1.80	100, 85	21.99	21.99	0.00 -641.09	12.75	261.81	
7	2.16	100, 82	21.99	21.99	0.00 -614.97	8.33	254.02	
8	2.52	100, 79	21.99	21.99	0.00 -588.84	5.75	246.18	
9	2.88	100, 75	15.71	15.71	0.00 -404.00	2.99	238.30	
10	3.24	100, 72	15.71	15.71	0.00 -385.36	2.27	230.37	
11	3.60	100, 69	15.71	15.71	0.00 -366.71	1.78	222.38	

COMBINAZIONE n° 6

133.8684	[kN]			
127.7767	[kN]			
39.9230	[kN]			
X = 3.60 [m]	[m]	Υ	=	-3.18
17.35	[°]			
62.07	[°]			
385.5580	[kN]			
X = 1.81 [m]	[m]	Υ	=	-2.22
0.0000	[kN]			
X = 0.00	Y = 0.00			
127.7767	[kN]			
592.3747	[kN]			
-4.7117	[kN]			
601.2570	[kN]			
75.6616	[kN]			
-0.06	[m]			
5.02	[m]			
605.9989	[kN]			
7.17	[°]			
-38.9341	[kNm]			
3518.1643	[kN]			
5.02	[m]			
0.11052	[N/mmq]		
	127.7767 39.9230 X = 3.60 [m] 17.35 62.07 385.5580 X = 1.81 [m] 0.0000 X = 0.00 127.7767 592.3747 -4.7117 601.2570 75.6616 -0.06 5.02 605.9989 7.17 -38.9341 3518.1643	127.7767 [kN] 39.9230 [kN] X = 3.60 [m] [m] 17.35 [°] 62.07 [°] 385.5580 [kN] X = 1.81 [m] [m] 0.0000 [kN] X = 0.00 Y = 0.00 127.7767 [kN] 592.3747 [kN] -4.7117 [kN] 601.2570 [kN] 75.6616 [kN] -0.06 [m] 5.02 [m] 605.9989 [kN] 7.17 [°] -38.9341 [kNm] 3518.1643 [kN]	127.7767 [kN] 39.9230 [kN] X = 3.60 [m] Y [m] 17.35 [°] 62.07 [°] 385.5580 [kN] X = 1.81 [m] Y [m] 0.0000 [kN] X = 0.00 Y = 0.00 127.7767 [kN] 592.3747 [kN] -4.7117 [kN] 601.2570 [kN] 75.6616 [kN] -0.06 [m] 5.02 [m] 605.9989 [kN] 7.17 [°] -38.9341 [kNm] 3518.1643 [kN]	127.7767 [kN] 39.9230 [kN] X = 3.60 [m] Y = [m] 17.35 [°] 62.07 [°] 385.5580 [kN] X = 1.81 [m] Y = [m] 0.0000 [kN] X = 0.00 Y = 0.00 127.7767 [kN] 592.3747 [kN] -4.7117 [kN] 601.2570 [kN] 75.6616 [kN] -0.06 [m] 5.02 [m] 605.9989 [kN] 7.17 [°] -38.9341 [kNm] 3518.1643 [kN]

Tensione terreno allo spigolo di monte	0.12907	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{z} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.55

Coefficiente di sicurezza a carico ultimo 5.85

Sollecitazioni paramento

Combinazione n° 6

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0507	0.1594
3	0.44	7.8987	0.0317	0.6377
4	0.66	11.2231	0.2559	1.4446
5	0.89	14.5475	0.7106	2.8089
6	1.11	17.8718	1.5743	5.1480
7	1.33	21.1962	3.0407	8.1691
8	1.55	24.5206	5.2298	11.6600
9	1.77	27.8450	8.2401	15.5728
10	1.99	31.1693	12.1614	19.8776
11	2.22	34.4937	17.0783	24.5547
12	2.44	37.8181	23.0718	29.5911
13	2.66	41.1424	30.2204	34.9774
14	2.88	44.4668	38.6008	40.7068
15	3.10	47.7912	48.2886	46.7744
16	3.32	51.1155	59.3582	53.1763
17	3.55	54.4399	71.8835	59.9097
18	3.77	57.7643	85.9375	66.9724
19	3.99	61.0887	101.5931	74.3626
20	4.21	64.4130	118.9228	82.0789
21	4.43	67.7374	137.9955	90.0683

Sollecitazioni fondazione di valle

Combinazione n° 6

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3060	7.6522
3	0.16	1.2246	15.3140
4	0.24	2.7565	22.9857
5	0.32	4.9026	30.6670
6	0.40	7.6635	38.3582
7	0.48	11.0401	46.0590
8	0.56	15.0332	53.7696
9	0.64	19.6435	61.4899
10	0.72	24.8719	69.2200
11	0.80	30.7190	76.9598

Sollecitazioni fondazione di monte

Combinazione n° 6

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.36	-0.7026	-3.9363
3	0.72	-2.8577	-8.0690
4	1.08	-6.5359	-12.3980
5	1.44	-11.8078	-16.9233
6	1.80	-18.7442	-21.6450
7	2.16	-27.4158	-26.5631
8	2.52	-37.8932	-31.6775
9	2.88	-49.2279	-29.7083
10	3.24	-59.2235	-25.8554
11	3.60	-67.8174	-21.1989

Sollecitazioni mensola di contrappeso

Combinazione n° 6

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 6

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	21.99	21.99	0.00	0.00	1000.00	231.23		
2	0.22	100, 60	21.99	21.99	8322.73	92.29	1819.43	231.88		
3	0.44	100, 60	21.99	21.99	8386.46	-33.68	1061.75	232.34		
4	0.66	100, 60	21.99	21.99	8219.26	-187.43	732.35	232.81		
5	0.89	100, 60	21.99	21.99	7998.21	-390.70	549.80	233.27		
6	1.11	100, 60	21.99	21.99	7246.47	-638.32	405.47	233.74		
7	1.33	100, 60	21.99	21.99	5919.79	-849.21	279.29	234.20		
8	1.55	100, 60	21.99	21.99	4678.69	-997.88	190.81	234.67		
9	1.77	100, 60	21.99	21.99	3481.56	-1030.29	125.03	235.13		
10	1.99	100, 60	21.99	21.99	2402.26	-937.29	77.07	235.60		
11	2.22	100, 60	21.99	21.99	1674.35	-828.99	48.54	236.06		
12	2.44	100, 60	21.99	21.99	1197.56	-730.60	31.67	236.53		
13	2.66	100, 60	21.99	21.99	897.73	-659.41	21.82	236.99		
14	2.88	100, 60	21.99	21.99	704.48	-611.54	15.84	237.46		
15	3.10	100, 60	21.99	21.99	573.02	-578.98	11.99	237.93		
16	3.32	100, 60	21.99	21.99	478.40	-555.55	9.36	238.39		
17	3.55	100, 60	21.99	21.99	407.42	-537.96	7.48	238.86		
18	3.77	100, 60	21.99	21.99	352.45	-524.35	6.10	239.32		
19	3.99	100, 60	21.99	21.99	308.79	-513.53	5.05	239.79		
20	4.21	100, 60	21.99	21.99	273.40	-504.77	4.24	240.25		
21	4.43	100, 60	21.99	21.99	244.23	-497.54	3.61	240.72		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 6

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${f A}_{\sf fs}$	A_{fi}	N_{u}	M_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 6

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	1040.33	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	263.30	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	118.45	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	67.43	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	43.67	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	30.68	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	22.80	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	17.66	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	14.11	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	11.56	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	-745 61	1061 16	292 56		

 	284.93	251.77	-719.48	0.00	21.99	21.99	100, 95	0.72	3
 	277.26	106.08	-693.35	0.00	21.99	21.99	100, 91	1.08	4
 	269.55	56.51	-667.22	0.00	21.99	21.99	100, 88	1.44	5
 	261.81	34.20	-641.09	0.00	21.99	21.99	100, 85	1.80	6
 	254.02	22.43	-614.97	0.00	21.99	21.99	100, 82	2.16	7
 	246.18	15.54	-588.84	0.00	21.99	21.99	100, 79	2.52	8
 	238.30	8.21	-404.00	0.00	15.71	15.71	100, 75	2.88	9
 	230.37	6.51	-385.36	0.00	15.71	15.71	100, 72	3.24	10
 	222.38	5.41	-366.71	0.00	15.71	15.71	100, 69	3.60	11

COMBINAZIONE n° 7

Valore della spinta statica	149.3244	[kN]			
Componente orizzontale della spinta statica	142.5295	[kN]			
Componente verticale della spinta statica	44.5324	[kN]			
Punto d'applicazione della spinta	X = 3.60	[m]	Υ	=	-3.17
	[m]				
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	62.57	[°]			
Peso terrapieno gravante sulla fondazione a monte	364.1622	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	142.5295	[kN]			
Risultante dei carichi applicati in dir. verticale	558.8989	[kN]			
Resistenza passiva a valle del muro	-4.2406	[kN]			
Momento ribaltante rispetto allo spigolo a valle	260.9255	[kNm]			
Momento stabilizzante rispetto allo spigolo a valle	1699.9585	[kNm]			
Sforzo normale sul piano di posa della fondazione	569.1944	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	93.2758	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.02	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	576.7865	[kN]			
Inclinazione della risultante (rispetto alla normale)	9.31	[°]			
Momento rispetto al baricentro della fondazione	-10.6115	[kNm]			

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 6.52

Stabilità globale muro + terreno

Combinazione n° 8

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -1.03 Y[m] = 1.55

Raggio del cerchio R[m]= 8.38

Ascissa a valle del cerchio Xi[m] = -6.94Ascissa a monte del cerchio Xs[m] = 7.21

Larghezza della striscia dx[m]= 0.57 Coefficiente di sicurezza C= 1.70

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	w	?(°)	Wsin 	b/cos?	?	С	u
1	1045.18	72.62	997.48	1.90	26.56	0.000	0.000
2	2711.48	62.23	2399.22	1.22	26.56	0.000	0.000
3	5081.90	54.72	4148.44	0.98	26.56	0.000	0.000
4	6127.41	48.44	4585.15	0.85	26.56	0.000	0.000
5	6800.04	42.88	4627.19	0.77	26.56	0.000	0.000
6	7357.29	37.79	4507.91	0.72	26.56	0.000	0.000
7	8001.29	33.03	4360.77	0.68	26.56	0.000	0.000
8	8489.05	28.51	4052.08	0.64	26.56	0.000	0.000
9	8799.04	24.18	3604.70	0.62	26.56	0.000	0.000
10	9050.41	20.00	3095.44	0.60	26.56	0.000	0.000
11	9205.53	15.93	2525.83	0.59	26.56	0.000	0.000
12	7894.65	11.93	1632.20	0.58	26.56	0.000	0.000
13	8356.86	8.00	1162.58	0.57	26.56	0.000	0.000

14	8039.09	4.10	574.71	0.57	26.56	0.000	0.000	
15	2988.10	0.22	11.54	0.57	26.56	0.000	0.000	
16	2821.66	-3.66	-179.92	0.57	26.56	0.000	0.000	
17	2720.82	-7.55	-357.50	0.57	26.56	0.000	0.000	
18	2611.06	-11.48	-519.66	0.58	26.56	0.000	0.000	
19	2454.15	-15.47	-654.42	0.59	26.56	0.000	0.000	
20	2247.66	-19.53	-751.39	0.60	26.56	0.000	0.000	
21	1988.10	-23.70	-799.10	0.62	26.56	0.000	0.000	
22	1670.58	-28.01	-784.51	0.64	26.56	0.000	0.000	
23	1288.28	-32.50	-692.16	0.67	26.56	0.000	0.000	
24	831.45	-37.23	-503.01	0.71	26.56	0.000	0.000	
25	285.61	-42.28	-192.14	0.77	26.56	0.000	0.000	

2W_i= 1165.7025 [kN] 2W_isin2_i= 361.3949 [kN] 2W_itan2_i= 582.7294 [kN] 2tan2_itan2_i= 3.87

COMBINAZIONE n° 9

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica	139.8538	[kN]			
Componente orizzontale della spinta statica	130.2709	[kN]			
Componente verticale della spinta statica	50.8778	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.24
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	63.36	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti carichi esterni</u>					
Componente dir. X	25.05	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	155.3209	[kN]			
Risultante dei carichi applicati in dir. verticale	613.7296	[kN]			

Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente	-5.8584 624.9313 101.2398 0.11 5.02	[kN] [kN] [kN] [m]
Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	633.0787 9.20 70.9499 8212.0128	[kN] [°] [kNm] [kN]
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte Tensione terreno all'estremità della mensola di contrappeso	5.02 0.14141 0.10761 0.000	[m] [N/mmq] [N/mmq] [N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _ℙ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.47
Coefficiente di sicurezza a carico ultimo	13.14

Sollecitazioni paramento

Combinazione n° 9

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	т
1	0.00	0.0000	16.5000	25.0500
2	0.22	4.5744	22.0013	25.2136
3	0.44	7.8987	27.6376	25.7043
4	0.66	11.2231	33.4189	26.5222
5	0.89	14.5475	39.4177	27.6672
6	1.11	17.8718	45.7251	29.3949
7	1.33	21.1962	52.5193	32.0676
8	1.55	24.5206	59.9869	35.4067
9	1.77	27.8450	68.2464	39.1996
10	1.99	31.1693	77.3922	43.4004
11	2.22	34.4937	87.5120	47.9863
12	2.44	37.8181	98.6894	52.9424
13	2.66	41.1424	111.0053	58.2584
14	2.88	44.4668	124.5384	63.9266
15	3.10	47.7912	139.3663	69.9417
16	3.32	51.1155	155.5654	76.2997
17	3.55	54.4399	173.2112	82.9976
18	3.77	57.7643	192.3790	90.0330
19	3.99	61.0887	213.1431	97.4042
20	4.21	64.4130	235.5780	105.1096
21	4.43	67.7374	259.7544	113.0950

Sollecitazioni fondazione di valle

Combinazione n° 9

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.4037	10.0841
3	0.16	1.6119	20.1109
4	0.24	3.6200	30.0805
5	0.32	6.4233	39.9928
6	0.40	10.0173	49.8479
7	0.48	14.3974	59.6457
8	0.56	19.5591	69.3862
9	0.64	25.4977	79.0695
10	0.72	32.2087	88.6955
11	0.80	39.6874	98.2643

Sollecitazioni fondazione di monte

Combinazione n° 9

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.36	-3.9968	-22.0110
3	0.72	-15.7088	-42.8626
4	1.08	-34.7187	-62.5550
5	1.44	-60.6093	-81.0881
6	1.80	-92.9630	-98.4618
7	2.16	-131.3627	-114.6762
8	2.52	-175.3908	-129.7314
9	2.88	-223.4541	-135.2272
10	3.24	-272.5193	-137.1637
11	3.60	-322.0079	-136.6410

Sollecitazioni mensola di contrappeso

Combinazione n° 9

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 9

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	21.99	21.99	0.00	-437.05	26.49	231.23		
2	0.22	100, 60	21.99	21.99	95.80	-460.78	20.94	231.88		
3	0.44	100, 60	21.99	21.99	134.42	-470.34	17.02	232.34		
4	0.66	100, 60	21.99	21.99	160.09	-476.70	14.26	232.81		
5	0.89	100, 60	21.99	21.99	177.53	-481.02	12.20	233.27		
6	1.11	100, 60	21.99	21.99	189.13	-483.89	10.58	233.74		
7	1.33	100, 60	21.99	21.99	195.98	-485.59	9.25	234.20		
8	1.55	100, 60	21.99	21.99	198.78	-486.28	8.11	234.67		
9	1.77	100, 60	21.99	21.99	198.37	-486.18	7.12	235.13		
10	1.99	100, 60	21.99	21.99	195.52	-485.48	6.27	235.60		
11	2.22	100, 60	21.99	21.99	190.90	-484.33	5.53	236.06		
12	2.44	100, 60	21.99	21.99	185.04	-482.88	4.89	236.53		
13	2.66	100, 60	21.99	21.99	178.36	-481.23	4.34	236.99		
14	2.88	100, 60	21.99	21.99	171.19	-479.45	3.85	237.46		
15	3.10	100, 60	21.99	21.99	163.78	-477.62	3.43	237.93		
16	3.32	100, 60	21.99	21.99	156.33	-475.77	3.06	238.39		
17	3.55	100, 60	21.99	21.99	148.96	-473.94	2.74	238.86		
18	3.77	100, 60	21.99	21.99	141.77	-472.16	2.45	239.32		
19	3.99	100, 60	21.99	21.99	134.83	-470.45	2.21	239.79		
20	4.21	100, 60	21.99	21.99	128.18	-468.80	1.99	240.25		
21	4.43	100, 60	21.99	21.99	121.84	-467.23	1.80	240.72		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 9

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- $A_{fi} \qquad \text{ area di armatura in corrispondenza del lembo inferiore in [cmq]} \\$
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	M_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	V_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 9

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

N_u sforzo normale ultimo espresso in [kN]

M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	788.53	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	200.03	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	90.20	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	51.47	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	33.41	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	23.53	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	17.53	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	13.60	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	10.90	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	8.95	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	-745 61	186 55	292 56		

3	0.72	100, 95	21.99	21.99	0.00 -719.48	45.80	284.93	
4	1.08	100, 91	21.99	21.99	0.00 -693.35	19.97	277.26	
5	1.44	100, 88	21.99	21.99	0.00 -667.22	11.01	269.55	
6	1.80	100, 85	21.99	21.99	0.00 -641.09	6.90	261.81	
7	2.16	100, 82	21.99	21.99	0.00 -614.97	4.68	254.02	
8	2.52	100, 79	21.99	21.99	0.00 -588.84	3.36	246.18	
9	2.88	100, 75	15.71	15.71	0.00 -404.00	1.81	238.30	
10	3.24	100, 72	15.71	15.71	0.00 -385.36	5 1.41	230.37	
11	3.60	100, 69	15.71	15.71	0.00 -366.71	1.14	222.38	

COMBINAZIONE n° 10

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	133.8684 127.7767 39.9230 X = 3.60 [m] 17.35 62.07	[kN] [kN] [kN] [m] [°]	Υ	=	-3.18
Peso terrapieno gravante sulla fondazione a monte	385.5580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Risultanti carichi esterni Componente dir. X Risultanti	21.71	[kN]			
Risultante dei carichi applicati in dir. orizzontale	149.4867	[kN]			
Risultante dei carichi applicati in dir. verticale	592.3747	[kN]			
Resistenza passiva a valle del muro	-4.7117	[kN]			
Sforzo normale sul piano di posa della fondazione	603.1492	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	97.2890	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.15	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	610.9452	[kN]			
Inclinazione della risultante (rispetto alla normale)	9.16	[°]			
Momento rispetto al baricentro della fondazione	88.6645	[kNm]			
Carico ultimo della fondazione	3399.8057	[kN]			

Ton	cinr	si d	-11	tori	reno
I CII.	SIUI	11 3	uı	LEII	CIIU

Lunghezza fondazione reagente	5.02	[m]
Tensione terreno allo spigolo di valle	0.14129	[N/mmq]
Tensione terreno allo spigolo di monte	0.09905	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.99
Coefficiente di sicurezza a carico ultimo 5.64

Sollecitazioni paramento

Combinazione n° 10

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	14.3000	21.7100
2	0.22	4.5744	19.0607	21.8694
3	0.44	7.8987	23.9547	22.3477
4	0.66	11.2231	28.9903	23.1546

т.	0.00	0.0000	14.3000	21.7100
2	0.22	4.5744	19.0607	21.8694
3	0.44	7.8987	23.9547	22.3477
4	0.66	11.2231	28.9903	23.1546
5	0.89	14.5475	34.2565	24.5189
6	1.11	17.8718	39.9316	26.8580
7	1.33	21.1962	46.2095	29.8791
8	1.55	24.5206	53.2101	33.3700
9	1.77	27.8450	61.0319	37.2828
10	1.99	31.1693	69.7646	41.5876
11	2.22	34.4937	79.4930	46.2647
12	2.44	37.8181	90.2980	51.3011
13	2.66	41.1424	102.2580	56.6874
14	2.88	44.4668	115.4500	62.4168
15	3.10	47.7912	129.9492	68.4844
16	3.32	51.1155	145.8303	74.8863
17	3.55	54.4399	163.1670	81.6197
18	3.77	57.7643	182.0325	88.6824
19	3.99	61.0887	202.4996	96.0726
20	4.21	64.4130	224.6407	103.7889
21	4.43	67.7374	248.5249	111.7783

Sollecitazioni fondazione di valle

Combinazione n° 10

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.4032	10.0690
3	0.16	1.6092	20.0700
4	0.24	3.6126	30.0030
5	0.32	6.4079	39.8678
6	0.40	9.9896	49.6646
7	0.48	14.3524	59.3934
8	0.56	19.4908	69.0541
9	0.64	25.3993	78.6467
10	0.72	32.0724	88.1713
11	0.80	39.5048	97.6278

Sollecitazioni fondazione di monte

Combinazione n° 10

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	М	Т
1	0.00	0.0000	0.0000
2	0.36	-2.5576	-13.9790
3	0.72	-9.8994	-26.5789
4	1.08	-21.5289	-37.7997
5	1.44	-36.9497	-47.6414
6	1.80	-55.6653	-56.1040
7	2.16	-77.1791	-63.1874
8	2.52	-100.9947	-68.8917
9	2.88	-125.5964	-65.9369
10	3.24	-148.2206	-59.5230
11	3.60	-168.2375	-50.7299

Sollecitazioni mensola di contrappeso

Combinazione n° 10

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 10

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	21.99	21.99	0.00	-437.05	30.56	231.23		
2	0.22	100, 60	21.99	21.99	111.52	-464.67	24.38	231.88		
3	0.44	100, 60	21.99	21.99	156.93	-475.92	19.87	232.34		
4	0.66	100, 60	21.99	21.99	187.14	-483.40	16.67	232.81		
5	0.89	100, 60	21.99	21.99	207.42	-488.42	14.26	233.27		
6	1.11	100, 60	21.99	21.99	219.99	-491.54	12.31	233.74		
7	1.33	100, 60	21.99	21.99	226.17	-493.07	10.67	234.20		
8	1.55	100, 60	21.99	21.99	227.35	-493.36	9.27	234.67		
9	1.77	100, 60	21.99	21.99	224.80	-492.73	8.07	235.13		
10	1.99	100, 60	21.99	21.99	219.56	-491.43	7.04	235.60		
11	2.22	100, 60	21.99	21.99	212.48	-489.68	6.16	236.06		
12	2.44	100, 60	21.99	21.99	204.23	-487.63	5.40	236.53		
13	2.66	100, 60	21.99	21.99	195.31	-485.42	4.75	236.99		
14	2.88	100, 60	21.99	21.99	186.09	-483.14	4.18	237.46		
15	3.10	100, 60	21.99	21.99	176.84	-480.85	3.70	237.93		
16	3.32	100, 60	21.99	21.99	167.76	-478.60	3.28	238.39		
17	3.55	100, 60	21.99	21.99	158.96	-476.42	2.92	238.86		
18	3.77	100, 60	21.99	21.99	150.52	-474.33	2.61	239.32		
19	3.99	100, 60	21.99	21.99	142.49	-472.34	2.33	239.79		
20	4.21	100, 60	21.99	21.99	134.90	-470.46	2.09	240.25		
21	4.43	100, 60	21.99	21.99	127.74	-468.69	1.89	240.72		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 10

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 10

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	789.56	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	200.37	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	90.38	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	51.59	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	33.50	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	23.60	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	17.59	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	13.66	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	10.94	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	8.99	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	-745 61	291 53	292 56		

3	0.72	100, 95	21.99	21.99	0.00 -719.48	72.68	284.93	
4	1.08	100, 91	21.99	21.99	0.00 -693.35	32.21	277.26	
5	1.44	100, 88	21.99	21.99	0.00 -667.22	18.06	269.55	
6	1.80	100, 85	21.99	21.99	0.00 -641.09	11.52	261.81	
7	2.16	100, 82	21.99	21.99	0.00 -614.97	7.97	254.02	
8	2.52	100, 79	21.99	21.99	0.00 -588.84	5.83	246.18	
9	2.88	100, 75	15.71	15.71	0.00 -404.00	3.22	238.30	
10	3.24	100, 72	15.71	15.71	0.00 -385.36	2.60	230.37	
11	3.60	100, 69	15.71	15.71	0.00 -366.71	2.18	222.38	

COMBINAZIONE n° 11

Valore della spinta statica	149.3244	[kN]			
Componente orizzontale della spinta statica	142.5295	[kN]			
Componente verticale della spinta statica	44.5324	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.17
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	62.57	[°]			
Peso terrapieno gravante sulla fondazione a monte	364.1622	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Risultanti carichi esterni					
Componente dir. X	25.05	[kN]			
Risultanti					
Risultante dei carichi applicati in dir. orizzontale	167.5795	[kN]			
Risultante dei carichi applicati in dir. verticale	558.8989	[kN]			
Resistenza passiva a valle del muro	-4.2406	[kN]			
Momento ribaltante rispetto allo spigolo a valle	402.6757	[kNm]			
Momento stabilizzante rispetto allo spigolo a valle	1699.9585	[kNm]			
Sforzo normale sul piano di posa della fondazione	571.3777	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	118.2305	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.24	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	583.4817	[kN]			
Inclinazione della risultante (rispetto alla normale)	11.69	[°]			
Momento rispetto al baricentro della fondazione	136.6177	[kNm]			

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento

4.22

Stabilità globale muro + terreno

Combinazione n° 12

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -1.03 Y[m] = 1.55

Raggio del cerchio R[m]= 8.38

Ascissa a valle del cerchio Xi[m] = -6.94Ascissa a monte del cerchio Xs[m] = 7.21

Larghezza della striscia dx[m]= 0.57 Coefficiente di sicurezza C= 1.70

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	?(°)	Wsin?	b/cos2	?	С	u
1	1045.18	72.62	997.48	1.90	26.56	0.000	0.000
2	2711.48	62.23	2399.22	1.22	26.56	0.000	0.000
3	5081.90	54.72	4148.44	0.98	26.56	0.000	0.000
4	6127.41	48.44	4585.15	0.85	26.56	0.000	0.000
5	6800.04	42.88	4627.19	0.77	26.56	0.000	0.000
6	7357.29	37.79	4507.91	0.72	26.56	0.000	0.000
7	8001.29	33.03	4360.77	0.68	26.56	0.000	0.000
8	8489.05	28.51	4052.08	0.64	26.56	0.000	0.000
9	8799.04	24.18	3604.70	0.62	26.56	0.000	0.000
10	9050.41	20.00	3095.44	0.60	26.56	0.000	0.000
11	9205.53	15.93	2525.83	0.59	26.56	0.000	0.000
12	7894.65	11.93	1632.20	0.58	26.56	0.000	0.000
13	8356.86	8.00	1162.58	0.57	26.56	0.000	0.000

14	8039.09	4.10	574.71	0.57	26.56	0.000	0.000	
15	2988.10	0.22	11.54	0.57	26.56	0.000	0.000	
16	2821.66	-3.66	-179.92	0.57	26.56	0.000	0.000	
17	2720.82	-7.55	-357.50	0.57	26.56	0.000	0.000	
18	2611.06	-11.48	-519.66	0.58	26.56	0.000	0.000	
19	2454.15	-15.47	-654.42	0.59	26.56	0.000	0.000	
20	2247.66	-19.53	-751.39	0.60	26.56	0.000	0.000	
21	1988.10	-23.70	-799.10	0.62	26.56	0.000	0.000	
22	1670.58	-28.01	-784.51	0.64	26.56	0.000	0.000	
23	1288.28	-32.50	-692.16	0.67	26.56	0.000	0.000	
24	831.45	-37.23	-503.01	0.71	26.56	0.000	0.000	
25	285.61	-42.28	-192.14	0.77	26.56	0.000	0.000	

@W_i= 1165.7025 [kN]
@W_isin@_i= 361.3949 [kN]
@W_itan@_i= 582.7294 [kN]
@tan@_itan@_i= 3.87

COMBINAZIONE n° 13

Valore della spinta statica	81.2474	[kN]			
Componente orizzontale della spinta statica	75.6803	[kN]			
Componente verticale della spinta statica	29.5573	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.62
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta	14.1208	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.62
Inclinazione linea di rottura in condizioni sismiche	52.11	[°]			
Peso terrapieno gravante sulla fondazione a monte	317.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	15.4277	[kN]			
Inerzia verticale del muro	-7.7139	[kN]			
Inerzia del terrapieno fondazione di monte	29.3922	[kN]			

Inerzia verticale del terrapieno fondazione di monte Inerzia del terrapieno mensola di contrappeso Inerzia verticale del terrapieno mensola di contrappeso	-14.6961 0.0000 0.0000	[kN] [kN] [kN]
<u>Risultanti</u>		
Risultante dei carichi applicati in dir. orizzontale	133.6534	[kN]
Risultante dei carichi applicati in dir. verticale	497.1361	[kN]
Resistenza passiva a valle del muro	-5.8584	[kN]
Sforzo normale sul piano di posa della fondazione	506.8930	[kN]
Sforzo tangenziale sul piano di posa della fondazione	89.8165	[kN]
Eccentricità rispetto al baricentro della fondazione	0.04	[m]
Lunghezza fondazione reagente	5.02	[m]
Risultante in fondazione	514.7888	[kN]
Inclinazione della risultante (rispetto alla normale)	10.05	[°]
Momento rispetto al baricentro della fondazione	21.1180	[kNm]
Carico ultimo della fondazione	8458.3391	[kN]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	5.02	[m]
Tensione terreno allo spigolo di valle	0.10602	[N/mmq]
Tensione terreno allo spigolo di monte	0.09596	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	$N_{2} = 27.33$				
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00				
I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.							
	$N'_{c} = 44.04$	$N'_q = 28.52$	N' _? = 27.33				

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	2.27
Coefficiente di sicurezza a carico ultimo	16.69

Sollecitazioni paramento

Combinazione n° 13

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0175	0.4550
3	0.44	7.8987	0.1610	1.2054
4	0.66	11.2231	0.5386	2.2512
5	0.89	14.5475	1.1807	3.5924
6	1.11	17.8718	2.1527	5.2290
7	1.33	21.1962	3.5202	7.1609
8	1.55	24.5206	5.3486	9.3883
9	1.77	27.8450	7.7034	11.9110
10	1.99	31.1693	10.6500	14.7292
11	2.22	34.4937	14.2539	17.8428
12	2.44	37.8181	18.5806	21.2517
13	2.66	41.1424	23.6955	24.9560
14	2.88	44.4668	29.6642	28.9558
15	3.10	47.7912	36.5520	33.2509
16	3.32	51.1155	44.4244	37.8414
17	3.55	54.4399	53.3470	42.7273
18	3.77	57.7643	63.3851	47.9086
19	3.99	61.0887	74.6043	53.3853
20	4.21	64.4130	87.0699	59.1574
21	4.43	67.7374	100.8448	65.1776

Sollecitazioni fondazione di valle

Combinazione n° 13

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2909	7.2684
3	0.16	1.1622	14.5098
4	0.24	2.6118	21.7245
5	0.32	4.6374	28.9122
6	0.40	7.2370	36.0731
7	0.48	10.4084	43.2070
8	0.56	14.1494	50.3141
9	0.64	18.4579	57.3944
10	0.72	23.3318	64.4477
11	0.80	28.7689	71.4742

Sollecitazioni fondazione di monte

Combinazione n° 13

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-1.1231	-6.1484
3	0.72	-4.3614	-11.7517
4	1.08	-9.5189	-16.8099
5	1.44	-16.3992	-21.3230
6	1.80	-24.8060	-25.2909
7	2.16	-34.5432	-28.7138
8	2.52	-45.4145	-31.5915
9	2.88	-57.2237	-33.9241
10	3.24	-69.7745	-35.7116
11	3.60	-82.8206	-35.9539

Sollecitazioni mensola di contrappeso

Combinazione n° 13

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 13

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	21.99	21.99	0.00	0.00	1000.00	231.23		
2	0.22	100, 60	21.99	21.99	8388.12	32.16	1833.72	231.88		
3	0.44	100, 60	21.99	21.99	8240.43	-167.97	1043.26	232.34		
4	0.66	100, 60	21.99	21.99	8005.31	-384.16	713.29	232.81		
5	0.89	100, 60	21.99	21.99	7429.39	-602.96	510.70	233.27		
6	1.11	100, 60	21.99	21.99	6433.16	-774.89	359.96	233.74		
7	1.33	100, 60	21.99	21.99	5467.72	-908.07	257.96	234.20		
8	1.55	100, 60	21.99	21.99	4609.07	-1005.36	187.97	234.67		
9	1.77	100, 60	21.99	21.99	3758.29	-1039.74	134.97	235.13		
10	1.99	100, 60	21.99	21.99	2901.33	-991.33	93.08	235.60		
11	2.22	100, 60	21.99	21.99	2211.08	-913.69	64.10	236.06		
12	2.44	100, 60	21.99	21.99	1694.88	-832.72	44.82	236.53		
13	2.66	100, 60	21.99	21.99	1308.17	-753.43	31.80	236.99		
14	2.88	100, 60	21.99	21.99	1042.05	-695.16	23.43	237.46		
15	3.10	100, 60	21.99	21.99	845.14	-646.39	17.68	237.93		
16	3.32	100, 60	21.99	21.99	703.33	-611.26	13.76	238.39		
17	3.55	100, 60	21.99	21.99	596.87	-584.89	10.96	238.86		
18	3.77	100, 60	21.99	21.99	514.41	-564.46	8.91	239.32		
19	3.99	100, 60	21.99	21.99	448.92	-548.24	7.35	239.79		
20	4.21	100, 60	21.99	21.99	395.86	-535.10	6.15	240.25		
21	4.43	100, 60	21.99	21.99	352.16	-524.28	5.20	240.72		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 13

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	V_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100.50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 13

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	1094.36	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	277.43	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	125.02	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	71.29	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	46.24	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	32.55	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	24.23	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	18.79	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	15.04	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	12.34	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	-745 61	663 91	292 56		

3	0.72	100, 95	21.99	21.99	0.00	-719.48	164.96	284.93	
4	1.08	100, 91	21.99	21.99	0.00	-693.35	72.84	277.26	
5	1.44	100, 88	21.99	21.99	0.00	-667.22	40.69	269.55	
6	1.80	100, 85	21.99	21.99	0.00	-641.09	25.84	261.81	
7	2.16	100, 82	21.99	21.99	0.00	-614.97	17.80	254.02	
8	2.52	100, 79	21.99	21.99	0.00	-588.84	12.97	246.18	
9	2.88	100, 75	15.71	15.71	0.00	-404.00	7.06	238.30	
10	3.24	100, 72	15.71	15.71	0.00	-385.36	5.52	230.37	
11	3.60	100, 69	15.71	15.71	0.00	-366.71	4.43	222.38	

COMBINAZIONE n° 14

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie	81.2474 75.6803 29.5573 X = 3.60 [m] 21.33	[kN] [kN] [kN] [m]	Υ	=	-3.62
Inclinazione linea di rottura in condizioni statiche	57.17	[°]			
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta	21.4475 X = 3.60 [m]	[kN] [m]	Υ	=	-3.62
Inclinazione linea di rottura in condizioni sismiche	52.54	[°]			
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	317.9580 X = 1.81 [m]	[kN] [m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	15.4277	[kN]			
Inerzia verticale del muro	7.7139	[kN]			
Inerzia del terrapieno fondazione di monte	29.3922	[kN]			
Inerzia verticale del terrapieno fondazione di monte	14.6961	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	140.4781	[kN]			
Risultante dei carichi applicati in dir. verticale	544.6214	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	554.7924	[kN]			

Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	92.4767 0.02 5.02 562.4469 9.46 11.3335 8531.1136	[kN] [m] [m] [kN] [s] [kNm] [kNm]
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte Tensione terreno all'estremità della mensola di contrappeso	5.02 0.11324 0.10784 0.000	[m] [N/mmq] [N/mmq] [N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N _? = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.41
Coefficiente di sicurezza a carico ultimo 15.38

Sollecitazioni paramento

Combinazione n° 14

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0167	0.4663
3	0.44	7.8987	0.1677	1.2508
4	0.66	11.2231	0.5612	2.3533
5	0.89	14.5475	1.2343	3.7739
6	1.11	17.8718	2.2575	5.5126
7	1.33	21.1962	3.7013	7.5694
8	1.55	24.5206	5.6361	9.9443
9	1.77	27.8450	8.1326	12.6373
10	1.99	31.1693	11.2611	15.6483
11	2.22	34.4937	15.0922	18.9774
12	2.44	37.8181	19.6963	22.6247
13	2.66	41.1424	25.1440	26.5900
14	2.88	44.4668	31.5058	30.8734
15	3.10	47.7912	38.8522	35.4749
16	3.32	51.1155	47.2535	40.3945
17	3.55	54.4399	56.7805	45.6321
18	3.77	57.7643	67.5034	51.1879
19	3.99	61.0887	79.4930	57.0617
20	4.21	64.4130	92.8195	63.2536
21	4.43	67.7374	107.5506	69.7128

Sollecitazioni fondazione di valle

Combinazione n° 14

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3141	7.8484
3	0.16	1.2552	15.6759
4	0.24	2.8217	23.4824
5	0.32	5.0118	31.2681
6	0.40	7.8240	39.0328
7	0.48	11.2565	46.7767
8	0.56	15.3077	54.4996
9	0.64	19.9759	62.2016
10	0.72	25.2594	69.8827
11	0.80	31.1566	77.5429

Sollecitazioni fondazione di monte

Combinazione n° 14

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.36	-0.3609	-1.9342
3	0.72	-1.3417	-3.4441
4	1.08	-2.7898	-4.5298
5	1.44	-4.5522	-5.1911
6	1.80	-6.4764	-5.4281
7	2.16	-8.4095	-5.2408
8	2.52	-10.1989	-4.6292
9	2.88	-11.6916	-3.5933
10	3.24	-12.7351	-2.1330
11	3.60	-13.1265	0.7515

Sollecitazioni mensola di contrappeso

Combinazione n° 14

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 14

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	21.99	21.99	0.00	0.00	1000.00	231.23		
2	0.22	100, 60	21.99	21.99	8389.79	30.62	1834.09	231.88		
3	0.44	100, 60	21.99	21.99	8232.99	-174.80	1042.32	232.34		
4	0.66	100, 60	21.99	21.99	7988.66	-399.47	711.80	232.81		
5	0.89	100, 60	21.99	21.99	7333.34	-622.21	504.10	233.27		
6	1.11	100, 60	21.99	21.99	6298.73	-795.63	352.44	233.74		
7	1.33	100, 60	21.99	21.99	5308.99	-927.05	250.47	234.20		
8	1.55	100, 60	21.99	21.99	4439.80	-1020.50	181.06	234.67		
9	1.77	100, 60	21.99	21.99	3533.68	-1032.07	126.91	235.13		
10	1.99	100, 60	21.99	21.99	2685.09	-970.09	86.15	235.60		
11	2.22	100, 60	21.99	21.99	2019.64	-883.66	58.55	236.06		
12	2.44	100, 60	21.99	21.99	1537.48	-800.75	40.65	236.53		
13	2.66	100, 60	21.99	21.99	1194.39	-729.95	29.03	236.99		
14	2.88	100, 60	21.99	21.99	948.40	-671.96	21.33	237.46		
15	3.10	100, 60	21.99	21.99	773.18	-628.56	16.18	237.93		
16	3.32	100, 60	21.99	21.99	645.80	-597.01	12.63	238.39		
17	3.55	100, 60	21.99	21.99	549.54	-573.17	10.09	238.86		
18	3.77	100, 60	21.99	21.99	474.58	-554.60	8.22	239.32		
19	3.99	100, 60	21.99	21.99	414.82	-539.80	6.79	239.79		
20	4.21	100, 60	21.99	21.99	366.25	-527.77	5.69	240.25		
21	4.43	100, 60	21.99	21.99	326.14	-517.83	4.81	240.72		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 14

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 14

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	1013.66	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	256.88	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	115.72	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	65.96	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	42.77	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	30.09	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	22.40	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	17.37	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	13.89	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	11.40	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	-745 61	2066.04	292 56		

3	0.72	100, 95	21.99	21.99	0.00	-719.48	536.24	284.93	
4	1.08	100, 91	21.99	21.99	0.00	-693.35	248.53	277.26	
5	1.44	100, 88	21.99	21.99	0.00	-667.22	146.57	269.55	
6	1.80	100, 85	21.99	21.99	0.00	-641.09	98.99	261.81	
7	2.16	100, 82	21.99	21.99	0.00	-614.97	73.13	254.02	
8	2.52	100, 79	21.99	21.99	0.00	-588.84	57.74	246.18	
9	2.88	100, 75	15.71	15.71	0.00	-404.00	34.55	238.30	
10	3.24	100, 72	15.71	15.71	0.00	-385.36	30.26	230.37	
11	3.60	100, 69	15.71	15.71	0.00	-366.71	27.94	222.38	

COMBINAZIONE n° 15

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie	100.4609 95.8895 29.9600 X = 3.60 [m] 17.35	[kN] [kN] [kN] [m]	Υ	=	-3.62
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta	24.5310 X = 3.60	[kN] [m]	Υ	=	-3.62
Inclinazione linea di rottura in condizioni sismiche	[m] 48.89	[°]	•		3.02
Peso terrapieno gravante sulla fondazione a monte	317.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	15.4277	[kN]			
Inerzia verticale del muro	7.7139	[kN]			
Inerzia del terrapieno fondazione di monte	29.3922	[kN]			
Inerzia verticale del terrapieno fondazione di monte	14.6961	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	164.1241	[kN]			
Risultante dei carichi applicati in dir. verticale	544.5375	[kN]			
Resistenza passiva a valle del muro	-4.7117	[kN]			
Sforzo normale sul piano di posa della fondazione	556.7697	[kN]			

Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	116.0400 0.09 5.02 568.7335 11.77 49.2625 3484.0236	[kN] [m] [m] [kN] [s] [kNm] [kNm]
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	5.02 0.12266 0.09920	[m] [N/mmq] [N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.54
Coefficiente di sicurezza a carico ultimo 6.26

Sollecitazioni paramento

Combinazione n° 15

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0138	0.5057
3	0.44	7.8987	0.1909	1.4080
4	0.66	11.2231	0.6396	2.7071
5	0.89	14.5475	1.4202	4.4030
6	1.11	17.8718	2.6205	6.4955
7	1.33	21.1962	4.3286	8.9847
8	1.55	24.5206	6.6323	11.8707
9	1.77	27.8450	9.6196	15.1534
10	1.99	31.1693	13.3784	18.8328
11	2.22	34.4937	17.9965	22.9089
12	2.44	37.8181	23.5620	27.3817
13	2.66	41.1424	30.1628	32.2513
14	2.88	44.4668	37.8867	37.5175
15	3.10	47.7912	46.8217	43.1805
16	3.32	51.1155	57.0557	49.2402
17	3.55	54.4399	68.6767	55.6966
18	3.77	57.7643	81.7725	62.5497
19	3.99	61.0887	96.4311	69.7996
20	4.21	64.4130	112.7404	77.4462
21	4.43	67.7374	130.7846	85.4260

Sollecitazioni fondazione di valle

Combinazione n° 15

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3439	8.5910
3	0.16	1.3734	17.1380
4	0.24	3.0848	25.6410
5	0.32	5.4748	34.0999
6	0.40	8.5397	42.5148
7	0.48	12.2760	50.8857
8	0.56	16.6802	59.2125
9	0.64	21.7488	67.4953
10	0.72	27.4783	75.7341
11	0.80	33.8651	83.9288

Sollecitazioni fondazione di monte

Combinazione n° 15

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.8927	-4.8104
3	0.72	-3.3564	-8.7282
4	1.08	-7.0699	-11.7534
5	1.44	-11.7117	-13.8860
6	1.80	-16.9606	-15.1259
7	2.16	-22.4953	-15.4732
8	2.52	-27.9943	-14.9280
9	2.88	-33.1363	-13.4900
10	3.24	-37.6000	-11.1595
11	3.60	-41.0140	-6.9364

Sollecitazioni mensola di contrappeso

Combinazione n° 15

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 15

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	21.99	21.99	0.00	0.00	1000.00	231.23		
2	0.22	100, 60	21.99	21.99	8395.56	25.32	1835.35	231.88		
3	0.44	100, 60	21.99	21.99	8207.33	-198.40	1039.07	232.34		
4	0.66	100, 60	21.99	21.99	7931.50	-452.03	706.71	232.81		
5	0.89	100, 60	21.99	21.99	6994.02	-682.79	480.77	233.27		
6	1.11	100, 60	21.99	21.99	5853.10	-858.24	327.50	233.74		
7	1.33	100, 60	21.99	21.99	4814.79	-983.26	227.15	234.20		
8	1.55	100, 60	21.99	21.99	3856.46	-1043.09	157.27	234.67		
9	1.77	100, 60	21.99	21.99	2860.69	-988.28	102.74	235.13		
10	1.99	100, 60	21.99	21.99	2081.33	-893.34	66.77	235.60		
11	2.22	100, 60	21.99	21.99	1533.02	-799.83	44.44	236.06		
12	2.44	100, 60	21.99	21.99	1160.31	-722.91	30.68	236.53		
13	2.66	100, 60	21.99	21.99	900.32	-660.05	21.88	236.99		
14	2.88	100, 60	21.99	21.99	723.20	-616.18	16.26	237.46		
15	3.10	100, 60	21.99	21.99	597.05	-584.93	12.49	237.93		
16	3.32	100, 60	21.99	21.99	503.21	-561.69	9.84	238.39		
17	3.55	100, 60	21.99	21.99	431.09	-543.83	7.92	238.86		
18	3.77	100, 60	21.99	21.99	374.21	-529.74	6.48	239.32		
19	3.99	100, 60	21.99	21.99	328.40	-518.39	5.38	239.79		
20	4.21	100, 60	21.99	21.99	290.87	-509.09	4.52	240.25		
21	4.43	100, 60	21.99	21.99	259.67	-501.37	3.83	240.72		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 15

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${f A}_{\sf fs}$	A_fi	N_{u}	M_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 15

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	925.65	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	234.77	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	105.84	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	60.38	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	39.19	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	27.59	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	20.55	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	15.95	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	12.77	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	10.48	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	-745 61	225 22	292 56		

3	0.72	100, 95	21.99	21.99	0.00	-719.48	214.36	284.93	
4	1.08	100, 91	21.99	21.99	0.00	-693.35	98.07	277.26	
5	1.44	100, 88	21.99	21.99	0.00	-667.22	56.97	269.55	
6	1.80	100, 85	21.99	21.99	0.00	-641.09	37.80	261.81	
7	2.16	100, 82	21.99	21.99	0.00	-614.97	27.34	254.02	
8	2.52	100, 79	21.99	21.99	0.00	-588.84	21.03	246.18	
9	2.88	100, 75	15.71	15.71	0.00	-404.00	12.19	238.30	
10	3.24	100, 72	15.71	15.71	0.00	-385.36	10.25	230.37	
11	3.60	100, 69	15.71	15.71	0.00	-366.71	8.94	222.38	

COMBINAZIONE n° 16

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie	100.4609 95.8895 29.9600 X = 3.60 [m] 17.35	[kN] [kN] [kN] [m]	Υ	=	-3.62
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta	15.4646 X = 3.60	[kN] [m]	Y	=	-3.62
runto d'applicazione dell'incremento sismico di spinta	[m]	נייין	1	_	-3.02
Inclinazione linea di rottura in condizioni sismiche	48.32	[°]			
Peso terrapieno gravante sulla fondazione a monte	317.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	15.4277	[kN]			
Inerzia verticale del muro	-7.7139	[kN]			
Inerzia del terrapieno fondazione di monte	29.3922	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-14.6961	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti					
Risultante dei carichi applicati in dir. orizzontale	155.4703	[kN]			
Risultante dei carichi applicati in dir. verticale	497.0138	[kN]			
Resistenza passiva a valle del muro	-4.7117	[kN]			
Sforzo normale sul piano di posa della fondazione	508.6726	[kN]			

Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	111.5611 0.11 5.02 520.7626 12.37 56.2254 3452.2864	[kN] [m] [m] [kN] [°] [kNm]
<u>Tensioni sul terreno</u> Lunghezza fondazione reagente Tensione terreno allo spigolo di valle	5.02 0.11474	[m] [N/mmq]
Tensione terreno allo spigolo di monte Tensione terreno all'estremità della mensola di contrappeso	0.08796 0.000	[N/mmq] [N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.47
Coefficiente di sicurezza a carico ultimo 6.79

Sollecitazioni paramento

Combinazione n° 16

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0149	0.4913
3	0.44	7.8987	0.1824	1.3505
4	0.66	11.2231	0.6109	2.5776
5	0.89	14.5475	1.3522	4.1727
6	1.11	17.8718	2.4877	6.1358
7	1.33	21.1962	4.0990	8.4668
8	1.55	24.5206	6.2677	11.1657
9	1.77	27.8450	9.0754	14.2325
10	1.99	31.1693	12.6035	17.6673
11	2.22	34.4937	16.9336	21.4701
12	2.44	37.8181	22.1473	25.6408
13	2.66	41.1424	28.3260	30.1794
14	2.88	44.4668	35.5515	35.0860
15	3.10	47.7912	43.9051	40.3605
16	3.32	51.1155	53.4684	46.0029
17	3.55	54.4399	64.3230	52.0133
18	3.77	57.7643	76.5504	58.3916
19	3.99	61.0887	90.2322	65.1379
20	4.21	64.4130	105.4499	72.2521
21	4.43	67.7374	122.2816	79.6754

Sollecitazioni fondazione di valle

Combinazione n° 16

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3185	7.9550
3	0.16	1.2715	15.8616
4	0.24	2.8551	23.7200
5	0.32	5.0654	31.5302
6	0.40	7.8986	39.2920
7	0.48	11.3509	47.0056
8	0.56	15.4182	54.6708
9	0.64	20.0969	62.2878
10	0.72	25.3830	69.8566
11	0.80	31.2727	77.3770

Sollecitazioni fondazione di monte

Combinazione n° 16

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	т
1	0.00	0.0000	0.0000
2	0.36	-1.6159	-8.8143
3	0.72	-6.2288	-16.6500
4	1.08	-13.4865	-23.5070
5	1.44	-23.0365	-29.3855
6	1.80	-34.5266	-34.2855
7	2.16	-47.6046	-38.2068
8	2.52	-61.9181	-41.1495
9	2.88	-77.1148	-43.1136
10	3.24	-92.8425	-44.0992
11	3.60	-108.6988	-43.1061

Sollecitazioni mensola di contrappeso

Combinazione n° 16

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 16

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	$N_{\rm u}$	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
0.00	100, 60	21.99	21.99	0.00	0.00	1000.00	231.23		
0.22	100, 60	21.99	21.99	8393.45	27.26	1834.89	231.88		
0.44	100, 60	21.99	21.99	8216.70	-189.78	1040.25	232.34		
0.66	100, 60	21.99	21.99	7952.33	-432.88	708.57	232.81		
0.89	100, 60	21.99	21.99	7115.56	-661.38	489.13	233.27		
1.11	100, 60	21.99	21.99	6011.61	-836.79	336.37	233.74		
1.33	100, 60	21.99	21.99	4988.15	-964.63	235.33	234.20		
1.55	100, 60	21.99	21.99	4064.82	-1039.02	165.77	234.67		
1.77	100, 60	21.99	21.99	3083.56	-1005.01	110.74	235.13		
1.99	100, 60	21.99	21.99	2284.11	-923.59	73.28	235.60		
2.22	100, 60	21.99	21.99	1696.90	-833.04	49.19	236.06		
2.44	100, 60	21.99	21.99	1274.76	-746.53	33.71	236.53		
2.66	100, 60	21.99	21.99	991.51	-682.64	24.10	236.99		
2.88	100, 60	21.99	21.99	792.03	-633.23	17.81	237.46		
3.10	100, 60	21.99	21.99	651.35	-598.38	13.63	237.93		
3.32	100, 60	21.99	21.99	547.45	-572.65	10.71	238.39		
3.55	100, 60	21.99	21.99	468.01	-552.97	8.60	238.86		
3.77	100, 60	21.99	21.99	405.60	-537.51	7.02	239.32		
3.99	100, 60	21.99	21.99	355.50	-525.10	5.82	239.79		
4.21	100, 60	21.99	21.99	314.56	-514.96	4.88	240.25		
4.43	100, 60	21.99	21.99	280.60	-506.55	4.14	240.72		
	0.00 0.22 0.44 0.66 0.89 1.11 1.33 1.55 1.77 1.99 2.22 2.44 2.66 2.88 3.10 3.32 3.55 3.77 3.99 4.21	0.00 100, 60 0.22 100, 60 0.44 100, 60 0.66 100, 60 0.89 100, 60 1.11 100, 60 1.33 100, 60 1.55 100, 60 1.77 100, 60 1.99 100, 60 2.22 100, 60 2.44 100, 60 2.44 100, 60 2.88 100, 60 3.10 100, 60 3.32 100, 60 3.55 100, 60 3.77 100, 60 3.99 100, 60 4.21 100, 60	0.00 100, 60 21.99 0.22 100, 60 21.99 0.44 100, 60 21.99 0.66 100, 60 21.99 0.89 100, 60 21.99 1.11 100, 60 21.99 1.33 100, 60 21.99 1.55 100, 60 21.99 1.99 100, 60 21.99 2.22 100, 60 21.99 2.44 100, 60 21.99 2.88 100, 60 21.99 3.10 100, 60 21.99 3.32 100, 60 21.99 3.55 100, 60 21.99 3.77 100, 60 21.99 3.99 100, 60 21.99 4.21 100, 60 21.99	0.00 100, 60 21.99 21.99 0.22 100, 60 21.99 21.99 0.44 100, 60 21.99 21.99 0.66 100, 60 21.99 21.99 0.89 100, 60 21.99 21.99 1.11 100, 60 21.99 21.99 1.33 100, 60 21.99 21.99 1.55 100, 60 21.99 21.99 1.99 100, 60 21.99 21.99 2.22 100, 60 21.99 21.99 2.44 100, 60 21.99 21.99 2.88 100, 60 21.99 21.99 3.10 100, 60 21.99 21.99 3.32 100, 60 21.99 21.99 3.55 100, 60 21.99 21.99 3.77 100, 60 21.99 21.99 3.99 100, 60 21.99 21.99 4.21 100, 60 21.99 21.99	0.00 100, 60 21.99 21.99 0.00 0.22 100, 60 21.99 21.99 8393.45 0.44 100, 60 21.99 21.99 8216.70 0.66 100, 60 21.99 21.99 7952.33 0.89 100, 60 21.99 21.99 7115.56 1.11 100, 60 21.99 21.99 6011.61 1.33 100, 60 21.99 21.99 4988.15 1.55 100, 60 21.99 21.99 4064.82 1.77 100, 60 21.99 21.99 3083.56 1.99 100, 60 21.99 21.99 3083.56 1.99 100, 60 21.99 21.99 1696.90 2.44 100, 60 21.99 21.99 1274.76 2.66 100, 60 21.99 21.99 991.51 2.88 100, 60 21.99 21.99 991.51 2.88 100, 60 21.99 21.99 547.45 3.55 100, 60 21.99 21.99 547.45	0.00 100, 60 21.99 21.99 0.00 0.00 0.22 100, 60 21.99 21.99 8393.45 27.26 0.44 100, 60 21.99 21.99 8216.70 -189.78 0.66 100, 60 21.99 21.99 7952.33 -432.88 0.89 100, 60 21.99 21.99 7115.56 -661.38 1.11 100, 60 21.99 21.99 6011.61 -836.79 1.33 100, 60 21.99 21.99 4988.15 -964.63 1.55 100, 60 21.99 21.99 4064.82 -1039.02 1.77 100, 60 21.99 21.99 3083.56 -1005.01 1.99 100, 60 21.99 21.99 284.11 -923.59 2.22 100, 60 21.99 21.99 1696.90 -833.04 2.44 100, 60 21.99 21.99 1274.76 -746.53 2.66 100, 60 21.99 21.99 792.03 -633.23 3.10 100, 60 21.99 21.99 <td>0.00 100, 60 21.99 21.99 0.00 0.00 1000.00 0.22 100, 60 21.99 21.99 8393.45 27.26 1834.89 0.44 100, 60 21.99 21.99 8216.70 -189.78 1040.25 0.66 100, 60 21.99 21.99 7952.33 -432.88 708.57 0.89 100, 60 21.99 21.99 7115.56 -661.38 489.13 1.11 100, 60 21.99 21.99 6011.61 -836.79 336.37 1.33 100, 60 21.99 21.99 4988.15 -964.63 235.33 1.55 100, 60 21.99 21.99 4064.82 -1039.02 165.77 1.77 100, 60 21.99 21.99 3083.56 -1005.01 110.74 1.99 100, 60 21.99 21.99 1284.11 -923.59 73.28 2.22 100, 60 21.99 21.99 1274.76 -746.53 33.71</td> <td>0.00 100, 60 21.99 21.99 0.00 0.00 1000.00 231.23 0.22 100, 60 21.99 21.99 8393.45 27.26 1834.89 231.88 0.44 100, 60 21.99 21.99 8216.70 -189.78 1040.25 232.34 0.66 100, 60 21.99 21.99 7952.33 -432.88 708.57 232.81 0.89 100, 60 21.99 21.99 7115.56 -661.38 489.13 233.27 1.11 100, 60 21.99 21.99 6011.61 -836.79 336.37 233.74 1.33 100, 60 21.99 21.99 4064.82 -1039.02 165.77 234.67 1.77 100, 60 21.99 21.99 3083.56 -1005.01 110.74 235.13 1.99 100, 60 21.99 21.99 2284.11 -923.59 73.28 235.60 2.22 100, 60 21.99 21.99 1274.76 -746.53</td> <td>0.00 100, 60 21.99 21.99 0.00 0.00 1000.00 231.23 0.22 100, 60 21.99 21.99 8393.45 27.26 1834.89 231.88 0.44 100, 60 21.99 21.99 8216.70 -189.78 1040.25 232.34 0.66 100, 60 21.99 21.99 7952.33 -432.88 708.57 232.81 0.89 100, 60 21.99 21.99 7115.56 -661.38 489.13 233.27 1.11 100, 60 21.99 21.99 6011.61 -836.79 336.37 233.74 1.33 100, 60 21.99 21.99 4988.15 -964.63 235.33 234.20 1.55 100, 60 21.99 21.99 3083.56 -1005.01 110.74 235.13 1.99 100, 60 21.99 21.99 3083.56 -1005.01 110.74 235.13 1.99 100, 60 21.99 21.99 1696.90 -8</td>	0.00 100, 60 21.99 21.99 0.00 0.00 1000.00 0.22 100, 60 21.99 21.99 8393.45 27.26 1834.89 0.44 100, 60 21.99 21.99 8216.70 -189.78 1040.25 0.66 100, 60 21.99 21.99 7952.33 -432.88 708.57 0.89 100, 60 21.99 21.99 7115.56 -661.38 489.13 1.11 100, 60 21.99 21.99 6011.61 -836.79 336.37 1.33 100, 60 21.99 21.99 4988.15 -964.63 235.33 1.55 100, 60 21.99 21.99 4064.82 -1039.02 165.77 1.77 100, 60 21.99 21.99 3083.56 -1005.01 110.74 1.99 100, 60 21.99 21.99 1284.11 -923.59 73.28 2.22 100, 60 21.99 21.99 1274.76 -746.53 33.71	0.00 100, 60 21.99 21.99 0.00 0.00 1000.00 231.23 0.22 100, 60 21.99 21.99 8393.45 27.26 1834.89 231.88 0.44 100, 60 21.99 21.99 8216.70 -189.78 1040.25 232.34 0.66 100, 60 21.99 21.99 7952.33 -432.88 708.57 232.81 0.89 100, 60 21.99 21.99 7115.56 -661.38 489.13 233.27 1.11 100, 60 21.99 21.99 6011.61 -836.79 336.37 233.74 1.33 100, 60 21.99 21.99 4064.82 -1039.02 165.77 234.67 1.77 100, 60 21.99 21.99 3083.56 -1005.01 110.74 235.13 1.99 100, 60 21.99 21.99 2284.11 -923.59 73.28 235.60 2.22 100, 60 21.99 21.99 1274.76 -746.53	0.00 100, 60 21.99 21.99 0.00 0.00 1000.00 231.23 0.22 100, 60 21.99 21.99 8393.45 27.26 1834.89 231.88 0.44 100, 60 21.99 21.99 8216.70 -189.78 1040.25 232.34 0.66 100, 60 21.99 21.99 7952.33 -432.88 708.57 232.81 0.89 100, 60 21.99 21.99 7115.56 -661.38 489.13 233.27 1.11 100, 60 21.99 21.99 6011.61 -836.79 336.37 233.74 1.33 100, 60 21.99 21.99 4988.15 -964.63 235.33 234.20 1.55 100, 60 21.99 21.99 3083.56 -1005.01 110.74 235.13 1.99 100, 60 21.99 21.99 3083.56 -1005.01 110.74 235.13 1.99 100, 60 21.99 21.99 1696.90 -8

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 16

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${f A}_{\sf fs}$	A_{fi}	N_{u}	M_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 16

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	999.51	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	253.59	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	114.36	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	65.26	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	42.37	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	29.84	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	22.23	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	17.26	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	13.83	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	11.35	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	-745 61	461 42	292 56		

3	0.72	100, 95	21.99	21.99	0.00	-719.48	115.51	284.93	
4	1.08	100, 91	21.99	21.99	0.00	-693.35	51.41	277.26	
5	1.44	100, 88	21.99	21.99	0.00	-667.22	28.96	269.55	
6	1.80	100, 85	21.99	21.99	0.00	-641.09	18.57	261.81	
7	2.16	100, 82	21.99	21.99	0.00	-614.97	12.92	254.02	
8	2.52	100, 79	21.99	21.99	0.00	-588.84	9.51	246.18	
9	2.88	100, 75	15.71	15.71	0.00	-404.00	5.24	238.30	
10	3.24	100, 72	15.71	15.71	0.00	-385.36	4.15	230.37	
11	3.60	100, 69	15.71	15.71	0.00	-366.71	3.37	222.38	

COMBINAZIONE n° 17

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	100.4609 95.8895 29.9600 X = 3.60 [m]	[kN] [kN] [kN] [m]	Υ	=	-3.62
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 54.01	[°]			
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta	15.4646 X = 3.60	[kN] [m]	Υ	=	-3.62
Inclinazione linea di rottura in condizioni sismiche	[m] 48.32	[°]			
Peso terrapieno gravante sulla fondazione a monte	317.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	15.4277	[kN]			
Inerzia verticale del muro	-7.7139	[kN]			
Inerzia del terrapieno fondazione di monte	29.3922	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-14.6961	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	155.4703	[kN]			
Risultante dei carichi applicati in dir. verticale	497.0138	[kN]			
Resistenza passiva a valle del muro	-4.7117	[kN]			
Momento ribaltante rispetto allo spigolo a valle	316.2062	[kNm]			

Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente	1536.5200 508.6726 111.5611 0.11 5.02	[kNm] [kN] [kN] [m] [m]			
Risultante in fondazione	520.7626	[kN]			
Inclinazione della risultante (rispetto alla normale)	12.37	[°]			
Momento rispetto al baricentro della fondazione	56.2254	[kNm]			
COEFFICIENTI DI SICUREZZA					
Coefficiente di sicurezza a ribaltamento	4.86				
COMBINAZIONE n° 18					
Valore della spinta statica	100.4609	[kN]			
Componente orizzontale della spinta statica	95.8895	[kN]			
Componente verticale della spinta statica	29.9600	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.62
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	54.01	[°]			
Incremento sismico della spinta	24.5310	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.62
Inclinazione linea di rottura in condizioni sismiche	48.89	[°]			
Peso terrapieno gravante sulla fondazione a monte	317.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	15.4277	[kN]			
Inerzia verticale del muro	7.7139	[kN]			
Inerzia del terrapieno fondazione di monte	29.3922	[kN]			
Inerzia verticale del terrapieno fondazione di monte	14.6961	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>		<u>.</u>			
Risultante dei carichi applicati in dir. orizzontale	164.1241	[kN]			
Risultante dei carichi applicati in dir. verticale	544.5375	[kN]			
Resistenza passiva a valle del muro	-4.7117	[kN]			

Momento ribaltante rispetto allo spigolo a valle	265.0890	[kNm]
Momento stabilizzante rispetto allo spigolo a valle	1613.0677	[kNm]
Sforzo normale sul piano di posa della fondazione	556.7697	[kN]
Sforzo tangenziale sul piano di posa della fondazione	116.0400	[kN]
Eccentricità rispetto al baricentro della fondazione	0.09	[m]
Lunghezza fondazione reagente	5.02	[m]
Risultante in fondazione	568.7335	[kN]
Inclinazione della risultante (rispetto alla normale)	11.77	[°]
Momento rispetto al baricentro della fondazione	49.2625	[kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 6.09

Stabilità globale muro + terreno

Combinazione n° 19

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -1.03 Y[m] = 4.64

Raggio del cerchio R[m]= 11.09

Ascissa a valle del cerchio Xi[m] = -7.47Ascissa a monte del cerchio Xs[m] = 9.05

Larghezza della striscia dx[m]= 0.66 Coefficiente di sicurezza C= 1.52

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	w	?(°)	Wsin?	b/cos?	?	С	u
1	818.79	61.47	719.38	1.38	26.56	0.000	0.000
2	2276.79	55.15	1868.46	1.16	26.56	0.000	0.000
3	3437.69	49.53	2615.25	1.02	26.56	0.000	0.000
4	4396.85	44.51	3082.14	0.93	26.56	0.000	0.000
5	5206.30	39.89	3338.68	0.86	26.56	0.000	0.000
6	5896.49	35.56	3429.41	0.81	26.56	0.000	0.000
7	6487.05	31.46	3385.90	0.77	26.56	0.000	0.000
8	6991.45	27.54	3232.20	0.75	26.56	0.000	0.000
9	7670.26	23.75	3088.65	0.72	26.56	0.000	0.000
10	8093.05	20.06	2776.37	0.70	26.56	0.000	0.000
11	8367.37	16.47	2371.63	0.69	26.56	0.000	0.000
12	8581.34	12.93	1920.70	0.68	26.56	0.000	0.000
13	8737.87	9.45	1434.86	0.67	26.56	0.000	0.000

14	9320.09	6.00	974.89	0.66	26.56	0.000	0.000	
15	7437.63	2.58	334.64	0.66	26.56	0.000	0.000	
16	2925.67	-0.84	-42.76	0.66	26.56	0.000	0.000	
17	2715.09	-4.26	-201.53	0.66	26.56	0.000	0.000	
18	2621.85	-7.69	-350.89	0.67	26.56	0.000	0.000	
19	2473.99	-11.15	-478.58	0.67	26.56	0.000	0.000	
20	2269.81	-14.66	-574.39	0.68	26.56	0.000	0.000	
21	2006.88	-18.22	-627.50	0.70	26.56	0.000	0.000	
22	1681.84	-21.86	-626.14	0.71	26.56	0.000	0.000	
23	1290.16	-25.59	-557.24	0.73	26.56	0.000	0.000	
24	825.78	-29.44	-405.92	0.76	26.56	0.000	0.000	
25	280.53	-33.45	-154.63	0.79	26.56	0.000	0.000	

2W_i= 1106.3117 [kN] 2W_isin2_i= 299.6329 [kN] 2W_itan2_i= 553.0402 [kN] 2tan2_itan2_i= 3.32

Stabilità globale muro + terreno

Combinazione n° 20

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -1.03 Y[m] = 4.64

Raggio del cerchio R[m]= 11.09

Ascissa a valle del cerchio Xi[m] = -7.47Ascissa a monte del cerchio Xs[m] = 9.05

Larghezza della striscia dx[m]= 0.66 Coefficiente di sicurezza C= 1.49

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	w	?(°)	Wsin?	b/cos?	?	С	u
1	818.79	61.47	719.38	1.38	26.56	0.000	0.000
2	2276.79	55.15	1868.46	1.16	26.56	0.000	0.000
3	3437.69	49.53	2615.25	1.02	26.56	0.000	0.000
4	4396.85	44.51	3082.14	0.93	26.56	0.000	0.000
5	5206.30	39.89	3338.68	0.86	26.56	0.000	0.000
6	5896.49	35.56	3429.41	0.81	26.56	0.000	0.000
7	6487.05	31.46	3385.90	0.77	26.56	0.000	0.000
8	6991.45	27.54	3232.20	0.75	26.56	0.000	0.000
9	7670.26	23.75	3088.65	0.72	26.56	0.000	0.000
10	8093.05	20.06	2776.37	0.70	26.56	0.000	0.000
11	8367.37	16.47	2371.63	0.69	26.56	0.000	0.000
12	8581.34	12.93	1920.70	0.68	26.56	0.000	0.000
13	8737.87	9.45	1434.86	0.67	26.56	0.000	0.000

14	9320.09	6.00	974.89	0.66	26.56	0.000	0.000	
15	7437.63	2.58	334.64	0.66	26.56	0.000	0.000	
16	2925.67	-0.84	-42.76	0.66	26.56	0.000	0.000	
17	2715.09	-4.26	-201.53	0.66	26.56	0.000	0.000	
18	2621.85	-7.69	-350.89	0.67	26.56	0.000	0.000	
19	2473.99	-11.15	-478.58	0.67	26.56	0.000	0.000	
20	2269.81	-14.66	-574.39	0.68	26.56	0.000	0.000	
21	2006.88	-18.22	-627.50	0.70	26.56	0.000	0.000	
22	1681.84	-21.86	-626.14	0.71	26.56	0.000	0.000	
23	1290.16	-25.59	-557.24	0.73	26.56	0.000	0.000	
24	825.78	-29.44	-405.92	0.76	26.56	0.000	0.000	
25	280.53	-33.45	-154.63	0.79	26.56	0.000	0.000	

2W_i= 1106.3117 [kN] 2W_isin2_i= 299.6329 [kN] 2W_itan2_i= 553.0402 [kN] 2tan2_itan2_i= 3.32

COMBINAZIONE n° 21

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica	91.9660	[kN]			
Componente orizzontale della spinta statica	85.6644	[kN]			
Componente verticale della spinta statica	33.4566	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.43
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	59.73	[°]			
Incremento sismico della spinta	22.0942	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.43
Inclinazione linea di rottura in condizioni sismiche	54.98	[°]			
Peso terrapieno gravante sulla fondazione a monte	343.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	15.4277	[kN]			
Inerzia verticale del muro	7.7139	[kN]			

Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte Inerzia del terrapieno mensola di contrappeso Inerzia verticale del terrapieno mensola di contrappeso	31.7956 15.8978 0.0000 0.0000	[kN] [kN] [kN]
<u>Risultanti</u>		
Risultante dei carichi applicati in dir. orizzontale	153.4681	[kN]
Risultante dei carichi applicati in dir. verticale	575.9577	[kN]
Resistenza passiva a valle del muro	-5.8584	[kN]
Sforzo normale sul piano di posa della fondazione	587.1417	[kN]
Sforzo tangenziale sul piano di posa della fondazione	102.6861	[kN]
Eccentricità rispetto al baricentro della fondazione	0.05	[m]
Lunghezza fondazione reagente	5.02	[m]
Risultante in fondazione	596.0535	[kN]
Inclinazione della risultante (rispetto alla normale)	9.92	[°]
Momento rispetto al baricentro della fondazione	26.8480	[kNm]
Carico ultimo della fondazione	8444.4070	[kN]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	5.02	[m]
Tensione terreno allo spigolo di valle	0.12338	[N/mmq]
Tensione terreno allo spigolo di monte	0.11059	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00
. CC:	1 . C	10.1 10 10 10 10 10 10 10 10 10 10 10 10 10	

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.29

Coefficiente di sicurezza a carico ultimo 14.38

Sollecitazioni paramento

Combinazione n° 21

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0166	0.4680
3	0.44	7.8987	0.1687	1.2574
4	0.66	11.2231	0.5645	2.3682
5	0.89	14.5475	1.2421	3.8004
6	1.11	17.8718	2.2728	5.5592
7	1.33	21.1962	3.7447	7.8259
8	1.55	24.5206	5.7892	10.7115
9	1.77	27.8450	8.5239	14.0285
10	1.99	31.1693	12.0333	17.6994
11	2.22	34.4937	16.3945	21.7133
12	2.44	37.8181	21.6826	26.0641
13	2.66	41.1424	27.9719	30.7476
14	2.88	44.4668	35.3358	35.7609
15	3.10	47.7912	43.8472	41.1021
16	3.32	51.1155	53.5785	46.7698
17	3.55	54.4399	64.6019	52.7628
18	3.77	57.7643	76.9895	59.0803
19	3.99	61.0887	90.8131	65.7219
20	4.21	64.4130	106.1446	72.6869
21	4.43	67.7374	123.0524	79.9233

Sollecitazioni fondazione di valle

Combinazione n° 21

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3464	8.6549
3	0.16	1.3840	17.2794
4	0.24	3.1103	25.8736
5	0.32	5.5229	34.4373
6	0.40	8.6195	42.9707
7	0.48	12.3974	51.4738
8	0.56	16.8545	59.9465
9	0.64	21.9881	68.3888
10	0.72	27.7958	76.8007
11	0.80	34.2754	85.1823

Sollecitazioni fondazione di monte

Combinazione n° 21

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.8192	-4.4484
3	0.72	-3.1290	-8.2810
4	1.08	-6.7076	-11.4977
5	1.44	-11.3334	-14.0986
6	1.80	-16.7847	-16.0835
7	2.16	-22.8397	-17.4527
8	2.52	-29.2767	-18.2059
9	2.88	-35.4820	-15.5433
10	3.24	-40.3620	-11.4648
11	3.60	-43.6128	-5.7704

Sollecitazioni mensola di contrappeso

Combinazione n° 21

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 21

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	21.99	21.99	0.00	0.00	1000.00	231.23		
2	0.22	100, 60	21.99	21.99	8390.03	30.40	1834.14	231.88		
3	0.44	100, 60	21.99	21.99	8231.91	-175.80	1042.18	232.34		
4	0.66	100, 60	21.99	21.99	7986.24	-401.70	711.59	232.81		
5	0.89	100, 60	21.99	21.99	7319.55	-624.97	503.15	233.27		
6	1.11	100, 60	21.99	21.99	6279.52	-798.59	351.36	233.74		
7	1.33	100, 60	21.99	21.99	5272.31	-931.44	248.74	234.20		
8	1.55	100, 60	21.99	21.99	4342.73	-1025.30	177.11	234.67		
9	1.77	100, 60	21.99	21.99	3347.85	-1024.85	120.23	235.13		
10	1.99	100, 60	21.99	21.99	2438.79	-941.53	78.24	235.60		
11	2.22	100, 60	21.99	21.99	1780.19	-846.10	51.61	236.06		
12	2.44	100, 60	21.99	21.99	1317.43	-755.34	34.84	236.53		
13	2.66	100, 60	21.99	21.99	1011.25	-687.53	24.58	236.99		
14	2.88	100, 60	21.99	21.99	799.05	-634.97	17.97	237.46		
15	3.10	100, 60	21.99	21.99	652.53	-598.68	13.65	237.93		
16	3.32	100, 60	21.99	21.99	545.98	-572.28	10.68	238.39		
17	3.55	100, 60	21.99	21.99	465.46	-552.34	8.55	238.86		
18	3.77	100, 60	21.99	21.99	402.76	-536.81	6.97	239.32		
19	3.99	100, 60	21.99	21.99	352.78	-524.43	5.77	239.79		
20	4.21	100, 60	21.99	21.99	312.14	-514.36	4.85	240.25		
21	4.43	100, 60	21.99	21.99	278.57	-506.05	4.11	240.72		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 21

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 21

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	919.07	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	232.98	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	104.98	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	59.86	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	38.83	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	27.32	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	20.34	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	15.78	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	12.63	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	10.36	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	N_{u}	M_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	-745 61	910 18	292 56		

3	0.72	100, 95	21.99	21.99	0.00	-719.48	229.94	284.93	
4	1.08	100, 91	21.99	21.99	0.00	-693.35	103.37	277.26	
5	1.44	100, 88	21.99	21.99	0.00	-667.22	58.87	269.55	
6	1.80	100, 85	21.99	21.99	0.00	-641.09	38.19	261.81	
7	2.16	100, 82	21.99	21.99	0.00	-614.97	26.93	254.02	
8	2.52	100, 79	21.99	21.99	0.00	-588.84	20.11	246.18	
9	2.88	100, 75	15.71	15.71	0.00	-404.00	11.39	238.30	
10	3.24	100, 72	15.71	15.71	0.00	-385.36	9.55	230.37	
11	3.60	100, 69	15.71	15.71	0.00	-366.71	8.41	222.38	

COMBINAZIONE n° 22

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	91.9660 85.6644 33.4566 X = 3.60 [m]	[kN] [kN] [kN] [m]	Υ	=	-3.43
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	21.33 59.73	[°]			
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta	13.7710 X = 3.60 [m]	[kN] [m]	Υ	=	-3.43
Inclinazione linea di rottura in condizioni sismiche	54.48	[°]			
Peso terrapieno gravante sulla fondazione a monte	343.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	15.4277	[kN]			
Inerzia verticale del muro	-7.7139	[kN]			
Inerzia del terrapieno fondazione di monte	31.7956	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-15.8978	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	145.7151	[kN]			
Risultante dei carichi applicati in dir. verticale	525.7065	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	536.4059	[kN]			

Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	99.3423 0.07 5.02 545.5274 10.49 36.2249 8369.6700	[kN] [m] [m] [kN] [s] [kNm] [kNm]
Tensioni sul terreno		
Lunghezza fondazione reagente	5.02	[m]
Tensione terreno allo spigolo di valle	0.11550	[N/mmq]
Tensione terreno allo spigolo di monte	0.09824	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N _? = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.17

Coefficiente di sicurezza a carico ultimo 15.60

Sollecitazioni paramento

Combinazione n° 22

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0174	0.4567
3	0.44	7.8987	0.1620	1.2121
4	0.66	11.2231	0.5419	2.2663
5	0.89	14.5475	1.1886	3.6192
6	1.11	17.8718	2.1683	5.2758
7	1.33	21.1962	3.5628	7.4043
8	1.55	24.5206	5.4944	10.1083
9	1.77	27.8450	8.0725	13.2132
10	1.99	31.1693	11.3754	16.6471
11	2.22	34.4937	15.4748	20.3998
12	2.44	37.8181	20.4407	24.4657
13	2.66	41.1424	26.3421	28.8408
14	2.88	44.4668	33.2470	33.5226
15	3.10	47.7912	41.2234	38.5091
16	3.32	51.1155	50.3386	43.7990
17	3.55	54.4399	60.6596	49.3914
18	3.77	57.7643	72.2536	55.2854
19	3.99	61.0887	85.1871	61.4806
20	4.21	64.4130	99.5270	67.9765
21	4.43	67.7374	115.3370	74.7247

Sollecitazioni fondazione di valle

Combinazione n° 22

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3211	8.0220
3	0.16	1.2826	16.0079
4	0.24	2.8814	23.9578
5	0.32	5.1148	31.8715
6	0.40	7.9799	39.7492
7	0.48	11.4738	47.5908
8	0.56	15.5935	55.3963
9	0.64	20.3362	63.1657
10	0.72	25.6990	70.8990
11	0.80	31.6791	78.5963

Sollecitazioni fondazione di monte

Combinazione n° 22

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.36	-1.6120	-8.8336
3	0.72	-6.2724	-16.9356
4	1.08	-13.7179	-24.3060
5	1.44	-23.6849	-30.9447
6	1.80	-35.9102	-36.8517
7	2.16	-50.1304	-42.0272
8	2.52	-66.0820	-46.4709
9	2.88	-83.1097	-47.3831
10	3.24	-100.0780	-46.7636
11	3.60	-116.6417	-44.4124

Sollecitazioni mensola di contrappeso

Combinazione n° 22

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 22

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	21.99	21.99	0.00	0.00	1000.00	231.23		
2	0.22	100, 60	21.99	21.99	8388.37	31.93	1833.78	231.88		
3	0.44	100, 60	21.99	21.99	8239.33	-168.98	1043.12	232.34		
4	0.66	100, 60	21.99	21.99	8002.85	-386.43	713.07	232.81		
5	0.89	100, 60	21.99	21.99	7415.04	-605.84	509.71	233.27		
6	1.11	100, 60	21.99	21.99	6412.84	-778.03	358.82	233.74		
7	1.33	100, 60	21.99	21.99	5429.56	-912.63	256.16	234.20		
8	1.55	100, 60	21.99	21.99	4526.40	-1014.25	184.60	234.67		
9	1.77	100, 60	21.99	21.99	3563.51	-1033.09	127.98	235.13		
10	1.99	100, 60	21.99	21.99	2645.54	-965.50	84.88	235.60		
11	2.22	100, 60	21.99	21.99	1942.86	-871.62	56.33	236.06		
12	2.44	100, 60	21.99	21.99	1446.91	-782.06	38.26	236.53		
13	2.66	100, 60	21.99	21.99	1113.30	-712.81	27.06	236.99		
14	2.88	100, 60	21.99	21.99	874.12	-653.56	19.66	237.46		
15	3.10	100, 60	21.99	21.99	710.79	-613.11	14.87	237.93		
16	3.32	100, 60	21.99	21.99	592.93	-583.91	11.60	238.39		
17	3.55	100, 60	21.99	21.99	504.35	-561.97	9.26	238.86		
18	3.77	100, 60	21.99	21.99	435.68	-544.96	7.54	239.32		
19	3.99	100, 60	21.99	21.99	381.11	-531.45	6.24	239.79		
20	4.21	100, 60	21.99	21.99	336.85	-520.48	5.23	240.25		
21	4.43	100, 60	21.99	21.99	300.37	-511.45	4.43	240.72		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 22

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	M_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 22

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	991.42	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	251.40	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	113.32	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	64.63	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	41.94	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	29.52	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	21.98	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	17.06	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	13.66	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	11.21	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	N_{u}	M_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	-745 61	462 54	292 56		

3	0.72	100, 95	21.99	21.99	0.00	-719.48	114.71	284.93	
4	1.08	100, 91	21.99	21.99	0.00	-693.35	50.54	277.26	
5	1.44	100, 88	21.99	21.99	0.00	-667.22	28.17	269.55	
6	1.80	100, 85	21.99	21.99	0.00	-641.09	17.85	261.81	
7	2.16	100, 82	21.99	21.99	0.00	-614.97	12.27	254.02	
8	2.52	100, 79	21.99	21.99	0.00	-588.84	8.91	246.18	
9	2.88	100, 75	15.71	15.71	0.00	-404.00	4.86	238.30	
10	3.24	100, 72	15.71	15.71	0.00	-385.36	3.85	230.37	
11	3.60	100, 69	15.71	15.71	0.00	-366.71	3.14	222.38	

COMBINAZIONE n° 23

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie	112.2705 107.1617 33.4820 X = 3.60 [m] 17.35	[kN] [kN] [kN] [m]	Υ	=	-3.42
Inclinazione linea di rottura in condizioni statiche	56.82	[°]			
Incremento sismico della spinta	14.7213	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.42
Inclinazione linea di rottura in condizioni sismiche	51.01	[°]			
Peso terrapieno gravante sulla fondazione a monte	343.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	15.4277	[kN]			
Inerzia verticale del muro	-7.7139	[kN]			
Inerzia del terrapieno fondazione di monte	31.7956	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-15.8978	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti					
Risultante dei carichi applicati in dir. orizzontale	168.4364	[kN]			
Risultante dei carichi applicati in dir. verticale	525.1123	[kN]			
Resistenza passiva a valle del muro	-4.7117	[kN]			
Sforzo normale sul piano di posa della fondazione	537.7943	[kN]			

Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	122.0289 0.15 5.02 551.4651 12.78 79.0798 3399.7452	[kN] [m] [m] [kN] [°] [kNm]
<u>Tensioni sul terreno</u>		
Lunghezza fondazione reagente	5.02	[m]
Tensione terreno allo spigolo di valle	0.12598	[N/mmq]
Tensione terreno allo spigolo di monte	0.08831	[N/mmq]
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.42
Coefficiente di sicurezza a carico ultimo 6.32

Sollecitazioni paramento

Combinazione n° 23

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0147	0.4932
3	0.44	7.8987	0.1836	1.3584
4	0.66	11.2231	0.6149	2.5954
5	0.89	14.5475	1.3615	4.2043
6	1.11	17.8718	2.5188	6.3602
7	1.33	21.1962	4.2359	9.2458
8	1.55	24.5206	6.6527	12.6353
9	1.77	27.8450	9.8674	16.4436
10	1.99	31.1693	13.9711	20.6548
11	2.22	34.4937	19.0517	25.2596
12	2.44	37.8181	25.1960	30.2520
13	2.66	41.1424	32.4892	35.6279
14	2.88	44.4668	41.0161	41.3844
15	3.10	47.7912	50.8608	47.5195
16	3.32	51.1155	62.1070	54.0318
17	3.55	54.4399	74.8381	60.9201
18	3.77	57.7643	89.1375	68.1836
19	3.99	61.0887	105.0882	75.8217
20	4.21	64.4130	122.7731	83.8340
21	4.43	67.7374	142.2716	92.1601

Sollecitazioni fondazione di valle

Combinazione n° 23

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3543	8.8476
3	0.16	1.4140	17.6331
4	0.24	3.1740	26.3563
5	0.32	5.6293	35.0173
6	0.40	8.7751	43.6160
7	0.48	12.6062	52.1526
8	0.56	17.1178	60.6270
9	0.64	22.3049	69.0391
10	0.72	28.1624	77.3890
11	0.80	34.6854	85.6767

Sollecitazioni fondazione di monte

Combinazione n° 23

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.36	-2.2237	-12.1440
3	0.72	-8.5924	-23.0273
4	1.08	-18.6521	-32.6497
5	1.44	-31.9489	-41.0114
6	1.80	-48.0290	-48.1123
7	2.16	-66.4385	-53.9525
8	2.52	-86.7235	-58.5318
9	2.88	-108.0381	-59.0504
10	3.24	-129.0565	-57.5082
11	3.60	-149.2428	-53.7053

Sollecitazioni mensola di contrappeso

Combinazione n° 23

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 23

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	21.99	21.99	0.00	0.00	1000.00	231.23		
2	0.22	100, 60	21.99	21.99	8393.74	26.99	1834.95	231.88		
3	0.44	100, 60	21.99	21.99	8215.41	-190.97	1040.09	232.34		
4	0.66	100, 60	21.99	21.99	7949.46	-435.52	708.31	232.81		
5	0.89	100, 60	21.99	21.99	7098.63	-664.36	487.96	233.27		
6	1.11	100, 60	21.99	21.99	5973.73	-841.91	334.25	233.74		
7	1.33	100, 60	21.99	21.99	4883.29	-975.90	230.38	234.20		
8	1.55	100, 60	21.99	21.99	3842.96	-1042.63	156.72	234.67		
9	1.77	100, 60	21.99	21.99	2762.98	-979.12	99.23	235.13		
10	1.99	100, 60	21.99	21.99	1945.50	-872.03	62.42	235.60		
11	2.22	100, 60	21.99	21.99	1397.46	-771.85	40.51	236.06		
12	2.44	100, 60	21.99	21.99	1044.20	-695.69	27.61	236.53		
13	2.66	100, 60	21.99	21.99	806.39	-636.79	19.60	236.99		
14	2.88	100, 60	21.99	21.99	647.76	-597.50	14.57	237.46		
15	3.10	100, 60	21.99	21.99	535.25	-569.63	11.20	237.93		
16	3.32	100, 60	21.99	21.99	451.81	-548.96	8.84	238.39		
17	3.55	100, 60	21.99	21.99	387.80	-533.10	7.12	238.86		
18	3.77	100, 60	21.99	21.99	337.38	-520.61	5.84	239.32		
19	3.99	100, 60	21.99	21.99	296.79	-510.56	4.86	239.79		
20	4.21	100, 60	21.99	21.99	263.55	-502.33	4.09	240.25		
21	4.43	100, 60	21.99	21.99	235.90	-495.48	3.48	240.72		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 23

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_u	M_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 23

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	898.52	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	228.04	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	102.87	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	58.73	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	38.14	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	26.87	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	20.03	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	15.55	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	12.46	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	10.24	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	-745 61	335 30	292 56		

3	0.72	100, 95	21.99	21.99	0.00	-719.48	83.73	284.93	
4	1.08	100, 91	21.99	21.99	0.00	-693.35	37.17	277.26	
5	1.44	100, 88	21.99	21.99	0.00	-667.22	20.88	269.55	
6	1.80	100, 85	21.99	21.99	0.00	-641.09	13.35	261.81	
7	2.16	100, 82	21.99	21.99	0.00	-614.97	9.26	254.02	
8	2.52	100, 79	21.99	21.99	0.00	-588.84	6.79	246.18	
9	2.88	100, 75	15.71	15.71	0.00	-404.00	3.74	238.30	
10	3.24	100, 72	15.71	15.71	0.00	-385.36	2.99	230.37	
11	3.60	100, 69	15.71	15.71	0.00	-366.71	2.46	222.38	

COMBINAZIONE n° 24

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	112.2705 107.1617 33.4820 X = 3.60 [m]	[kN] [kN] [kN] [m]	Υ	=	-3.42
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 56.82	[°] [°]			
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta	24.8888 X = 3.60 [m]	[kN] [m]	Υ	=	-3.42
Inclinazione linea di rottura in condizioni sismiche	51.57	[°]			
Peso terrapieno gravante sulla fondazione a monte	343.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	15.4277	[kN]			
Inerzia verticale del muro	7.7139	[kN]			
Inerzia del terrapieno fondazione di monte	31.7956	[kN]			
Inerzia verticale del terrapieno fondazione di monte	15.8978	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	178.1413	[kN]			
Risultante dei carichi applicati in dir. verticale	575.3678	[kN]			
Resistenza passiva a valle del muro	-4.7117	[kN]			
Sforzo normale sul piano di posa della fondazione	588.7044	[kN]			

Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	127.3168 0.12 5.02 602.3142 12.20 73.2423 3432.3136	[kN] [m] [m] [kN] [°] [kNm]
<u>Tensioni sul terreno</u> Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte Tensione terreno all'estremità della mensola di contrappeso	5.02 0.13474 0.09985 0.000	[m] [N/mmq] [N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 28.26$	$N_q = 15.13$	N ₂ = 10.72
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 28.26$ $N'_{q} = 15.13$ $N'_{B} = 10.72$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.48
Coefficiente di sicurezza a carico ultimo 5.83

Sollecitazioni paramento

Combinazione n° 24

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0136	0.5076
3	0.44	7.8987	0.1921	1.4158
4	0.66	11.2231	0.6435	2.7247
5	0.89	14.5475	1.4294	4.4341
6	1.11	17.8718	2.6524	6.7327
7	1.33	21.1962	4.4732	9.8174
8	1.55	24.5206	7.0424	13.4450
9	1.77	27.8450	10.4660	17.5236
10	1.99	31.1693	14.8418	22.0363
11	2.22	34.4937	20.2649	26.9729
12	2.44	37.8181	26.8284	32.3271
13	2.66	41.1424	34.6243	38.0944
14	2.88	44.4668	43.7440	44.2718
15	3.10	47.7912	54.2779	50.8569
16	3.32	51.1155	66.3163	57.8484
17	3.55	54.4399	79.9491	65.2449
18	3.77	57.7643	95.2659	73.0456
19	3.99	61.0887	112.3563	81.2498
20	4.21	64.4130	131.3096	89.8571
21	4.43	67.7374	152.2113	98.8025

Sollecitazioni fondazione di valle

Combinazione n° 24

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3824	9.5497
3	0.16	1.5264	19.0407
4	0.24	3.4273	28.4730
5	0.32	6.0805	37.8467
6	0.40	9.4812	47.1617
7	0.48	13.6248	56.4181
8	0.56	18.5066	65.6158
9	0.64	24.1218	74.7549
10	0.72	30.4658	83.8353
11	0.80	37.5338	92.8570

Sollecitazioni fondazione di monte

Combinazione n° 24

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-1.4807	-8.0280
3	0.72	-5.6375	-14.8672
4	1.08	-12.0424	-20.5178
5	1.44	-20.2676	-24.9796
6	1.80	-29.8851	-28.2528
7	2.16	-40.4670	-30.3372
8	2.52	-51.5852	-31.2330
9	2.88	-62.4200	-28.1400
10	3.24	-71.6714	-23.0583
11	3.60	-78.8294	-15.7880

Sollecitazioni mensola di contrappeso

Combinazione n° 24

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 24

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Y	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	21.99	21.99	0.00	0.00	1000.00	231.23		
2	0.22	100, 60	21.99	21.99	8395.85	25.05	1835.41	231.88		
3	0.44	100, 60	21.99	21.99	8206.06	-199.57	1038.91	232.34		
4	0.66	100, 60	21.99	21.99	7928.70	-454.62	706.46	232.81		
5	0.89	100, 60	21.99	21.99	6977.90	-685.63	479.66	233.27		
6	1.11	100, 60	21.99	21.99	5816.34	-863.21	325.45	233.74		
7	1.33	100, 60	21.99	21.99	4711.66	-994.34	222.29	234.20		
8	1.55	100, 60	21.99	21.99	3601.59	-1034.39	146.88	234.67		
9	1.77	100, 60	21.99	21.99	2534.48	-952.62	91.02	235.13		
10	1.99	100, 60	21.99	21.99	1775.29	-845.34	56.96	235.60		
11	2.22	100, 60	21.99	21.99	1268.51	-745.24	36.78	236.06		
12	2.44	100, 60	21.99	21.99	946.59	-671.51	25.03	236.53		
13	2.66	100, 60	21.99	21.99	735.92	-619.33	17.89	236.99		
14	2.88	100, 60	21.99	21.99	593.78	-584.12	13.35	237.46		
15	3.10	100, 60	21.99	21.99	492.15	-558.95	10.30	237.93		
16	3.32	100, 60	21.99	21.99	416.36	-540.18	8.15	238.39		
17	3.55	100, 60	21.99	21.99	357.98	-525.72	6.58	238.86		
18	3.77	100, 60	21.99	21.99	311.84	-514.29	5.40	239.32		
19	3.99	100, 60	21.99	21.99	274.61	-505.07	4.50	239.79		
20	4.21	100, 60	21.99	21.99	244.04	-497.50	3.79	240.25		
21	4.43	100, 60	21.99	21.99	218.59	-491.19	3.23	240.72		

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 24

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${f A}_{\sf fs}$	A_{fi}	N_u	M_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		

Armature e tensioni nei materiali della fondazione

Combinazione n° 24

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	832.59	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	211.24	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	95.27	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	54.37	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	35.30	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	24.86	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	18.52	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	14.38	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	11.52	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	9.46	218.80		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	300.16		
2	0.36	100 98	21 99	21 99	0.00	-745 61	503 56	292 56		

3	0.72	100, 95	21.99	21.99	0.00	-719.48	127.62	284.93	
4	1.08	100, 91	21.99	21.99	0.00	-693.35	57.58	277.26	
5	1.44	100, 88	21.99	21.99	0.00	-667.22	32.92	269.55	
6	1.80	100, 85	21.99	21.99	0.00	-641.09	21.45	261.81	
7	2.16	100, 82	21.99	21.99	0.00	-614.97	15.20	254.02	
8	2.52	100, 79	21.99	21.99	0.00	-588.84	11.41	246.18	
9	2.88	100, 75	15.71	15.71	0.00	-404.00	6.47	238.30	
10	3.24	100, 72	15.71	15.71	0.00	-385.36	5.38	230.37	
11	3.60	100, 69	15.71	15.71	0.00	-366.71	4.65	222.38	

COMBINAZIONE n° 25

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta	112.2705 107.1617 33.4820 X = 3.60 [m]	[kN] [kN] [kN] [m]	Υ	=	-3.42
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	17.35 56.82	[°] [°]			
	30.02				
Incremento sismico della spinta	24.8888	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.42
Inclinazione linea di rottura in condizioni sismiche	51.57	[°]			
Peso terrapieno gravante sulla fondazione a monte	343.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	15.4277	[kN]			
Inerzia verticale del muro	7.7139	[kN]			
Inerzia del terrapieno fondazione di monte	31.7956	[kN]			
Inerzia verticale del terrapieno fondazione di monte	15.8978	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti					
Risultante dei carichi applicati in dir. orizzontale	178.1413	[kN]			
Risultante dei carichi applicati in dir. verticale	575.3678	[kN]			
Resistenza passiva a valle del muro	-4.7117	[kN]			
Momento ribaltante rispetto allo spigolo a valle	314.2562	[kNm]			

Momento stabilizzante rispetto allo spigolo a valle	1718.3968	[kNm]			
Sforzo normale sul piano di posa della fondazione	588.7044	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	127.3168	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.12	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	602.3142	[kN]			
Inclinazione della risultante (rispetto alla normale)	12.20	[°]			
Momento rispetto al baricentro della fondazione	73.2423	[kNm]			
COEFFICIENTI DI SICUREZZA					
Coefficiente di sicurezza a ribaltamento	5.47				
COMBINAZIONE n° 26					
Valore della spinta statica	112.2705	[kN]			
Componente orizzontale della spinta statica	107.1617	[kN]			
Componente verticale della spinta statica	33.4820	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.42
Inclinaz. della spinta rispetto alla normale alla superficie	17.35	[°]			
Inclinazione linea di rottura in condizioni statiche	56.82	[°]			
Incremento sismico della spinta	14.7213	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.42
Inclinazione linea di rottura in condizioni sismiche	51.01	[°]			
Peso terrapieno gravante sulla fondazione a monte	343.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	15.4277	[kN]			
Inerzia verticale del muro	-7.7139	[kN]			
Inerzia del terrapieno fondazione di monte	31.7956	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-15.8978	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>		El e · 3			
Risultante dei carichi applicati in dir. orizzontale	168.4364	[kN]			
Risultante dei carichi applicati in dir. verticale	525.1123	[kN]			
Resistenza passiva a valle del muro	-4.7117	[kN]			

Momento ribaltante rispetto allo spigolo a valle	365.8138	[kNm]
Momento stabilizzante rispetto allo spigolo a valle	1636.3554	[kNm]
Sforzo normale sul piano di posa della fondazione	537.7943	[kN]
Sforzo tangenziale sul piano di posa della fondazione	122.0289	[kN]
Eccentricità rispetto al baricentro della fondazione	0.15	[m]
Lunghezza fondazione reagente	5.02	[m]
Risultante in fondazione	551.4651	[kN]
Inclinazione della risultante (rispetto alla normale)	12.78	[°]
Momento rispetto al baricentro della fondazione	79.0798	[kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 4.47

Stabilità globale muro + terreno

Combinazione n° 27

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -1.03 Y[m] = 3.61

Raggio del cerchio R[m]= 10.16

Ascissa a valle del cerchio Xi[m] = -7.30Ascissa a monte del cerchio Xs[m] = 8.48

Larghezza della striscia dx[m]= 0.63 Coefficiente di sicurezza C= 1.48

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	?(°)	Wsin?	b/cos?	?	С	u
1	862.83	64.80	780.68	1.48	26.56	0.000	0.000
2	2364.17	57.54	1994.86	1.18	26.56	0.000	0.000
3	3510.93	51.37	2742.86	1.01	26.56	0.000	0.000
4	4489.02	45.96	3227.06	0.91	26.56	0.000	0.000
5	5856.19	41.04	3845.22	0.84	26.56	0.000	0.000
6	6509.90	36.47	3869.40	0.78	26.56	0.000	0.000
7	7065.35	32.15	3760.13	0.75	26.56	0.000	0.000
8	7625.41	28.04	3584.08	0.71	26.56	0.000	0.000
9	8245.54	24.07	3362.99	0.69	26.56	0.000	0.000
10	8558.52	20.22	2958.68	0.67	26.56	0.000	0.000
11	8810.17	16.47	2498.14	0.66	26.56	0.000	0.000
12	8904.93	12.79	1971.61	0.65	26.56	0.000	0.000
13	8500.56	9.16	1353.85	0.64	26.56	0.000	0.000

14	9426.13	5.57	915.52	0.63	26.56	0.000	0.000	
15	5666.45	2.01	198.26	0.63	26.56	0.000	0.000	
16	2889.94	-1.56	-78.46	0.63	26.56	0.000	0.000	
17	2713.59	-5.12	-242.29	0.63	26.56	0.000	0.000	
18	2614.97	-8.71	-395.98	0.64	26.56	0.000	0.000	
19	2463.97	-12.33	-526.23	0.65	26.56	0.000	0.000	
20	2258.71	-16.00	-622.76	0.66	26.56	0.000	0.000	
21	1996.44	-19.75	-674.52	0.67	26.56	0.000	0.000	
22	1673.41	-23.58	-669.39	0.69	26.56	0.000	0.000	
23	1284.51	-27.53	-593.67	0.71	26.56	0.000	0.000	
24	822.77	-31.62	-431.42	0.74	26.56	0.000	0.000	
25	278.59	-35.91	-163.40	0.78	26.56	0.000	0.000	

2W_i= 1131.6367 [kN] 2W_isin2_i= 320.3415 [kN] 2W_itan2_i= 565.7001 [kN]

②tan②itan②i= 3.48

Stabilità globale muro + terreno

Combinazione n° 28

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kN]
- angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -1.03 Y[m] = 3.61

Raggio del cerchio R[m]= 10.16

Ascissa a valle del cerchio Xi[m] = -7.30Ascissa a monte del cerchio Xs[m] = 8.48

Larghezza della striscia dx[m]= 0.63 Coefficiente di sicurezza C= 1.46

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	w	?(°)	Wsin?	b/cos?	?	С	u
1	862.83	64.80	780.68	1.48	26.56	0.000	0.000
2	2364.17	57.54	1994.86	1.18	26.56	0.000	0.000
3	3510.93	51.37	2742.86	1.01	26.56	0.000	0.000
4	4489.02	45.96	3227.06	0.91	26.56	0.000	0.000
5	5856.19	41.04	3845.22	0.84	26.56	0.000	0.000
6	6509.90	36.47	3869.40	0.78	26.56	0.000	0.000
7	7065.35	32.15	3760.13	0.75	26.56	0.000	0.000
8	7625.41	28.04	3584.08	0.71	26.56	0.000	0.000
9	8245.54	24.07	3362.99	0.69	26.56	0.000	0.000
10	8558.52	20.22	2958.68	0.67	26.56	0.000	0.000
11	8810.17	16.47	2498.14	0.66	26.56	0.000	0.000
12	8904.93	12.79	1971.61	0.65	26.56	0.000	0.000
13	8500.56	9.16	1353.85	0.64	26.56	0.000	0.000

14	9426.13	5.57	915.52	0.63	26.56	0.000	0.000	
15	5666.45	2.01	198.26	0.63	26.56	0.000	0.000	
16	2889.94	-1.56	-78.46	0.63	26.56	0.000	0.000	
17	2713.59	-5.12	-242.29	0.63	26.56	0.000	0.000	
18	2614.97	-8.71	-395.98	0.64	26.56	0.000	0.000	
19	2463.97	-12.33	-526.23	0.65	26.56	0.000	0.000	
20	2258.71	-16.00	-622.76	0.66	26.56	0.000	0.000	
21	1996.44	-19.75	-674.52	0.67	26.56	0.000	0.000	
22	1673.41	-23.58	-669.39	0.69	26.56	0.000	0.000	
23	1284.51	-27.53	-593.67	0.71	26.56	0.000	0.000	
24	822.77	-31.62	-431.42	0.74	26.56	0.000	0.000	
25	278.59	-35.91	-163.40	0.78	26.56	0.000	0.000	

@W_i= 1131.6367 [kN]
@W_isin@_i= 320.3415 [kN]
@W_itan@_i= 565.7001 [kN]
@tan@_itan@_i= 3.48

COMBINAZIONE n° 29

Valore della spinta statica	116.6559	[kN]			
Componente orizzontale della spinta statica	108.6626	[kN]			
Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	108.6626	[kN]			
Risultante dei carichi applicati in dir. verticale	605.2904	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	612.4576	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	55.4946	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.15	[m]			

Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	5.02 614.9667 5.18 -90.7722 8093.1604	[m] [kN] [°] [kNm] [kN]
<u>Tensioni sul terreno</u> Lunghezza fondazione reagente	5.02	[m]
Tensione terreno allo spigolo di valle	0.10041	[m] [N/mmq]
Tensione terreno allo spigolo di monte	0.14365	[N/mmq]

Fattori per il calcolo della capacità portante

Tensione terreno all'estremità della mensola di contrappeso

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _ℙ = 1.00
I coefficienti N' tengono conto	dei fattori di forma profondit	à inclinazione carico	inclinazione niano

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

0.000

[N/mmq]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 4.42
Coefficiente di sicurezza a carico ultimo 13.21

Sollecitazioni paramento

Combinazione n° 29

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0532	0.1258
3	0.44	7.8987	0.0119	0.5033
4	0.66	11.2231	0.1885	1.1325
5	0.89	14.5475	0.5335	2.0314
6	1.11	17.8718	1.1324	3.5194
7	1.33	21.1962	2.1588	5.8662
8	1.55	24.5206	3.7672	8.7129
9	1.77	27.8450	6.0480	11.9273
10	1.99	31.1693	9.0785	15.4740
11	2.22	34.4937	12.9297	19.3308
12	2.44	37.8181	17.6686	23.4830
13	2.66	41.1424	23.3596	27.9203
14	2.88	44.4668	30.0648	32.6351
15	3.10	47.7912	37.8452	37.6221
16	3.32	51.1155	46.7606	42.8772
17	3.55	54.4399	56.8700	48.3974
18	3.77	57.7643	68.2321	54.1802
19	3.99	61.0887	80.9046	60.2238
20	4.21	64.4130	94.9454	66.5267
21	4.43	67.7374	110.4092	73.0466

Sollecitazioni fondazione di valle

Combinazione n° 29

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2744	6.8663
3	0.16	1.0997	13.7739
4	0.24	2.4793	20.7228
5	0.32	4.4165	27.7132
6	0.40	6.9145	34.7448
7	0.48	9.9767	41.8178
8	0.56	13.6065	48.9322
9	0.64	17.8070	56.0879
10	0.72	22.5816	63.2849
11	0.80	27.9337	70.5233

Sollecitazioni fondazione di monte

Combinazione n° 29

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.0495	-0.4143
3	0.72	-0.3987	-1.6651
4	1.08	-1.3487	-3.7522
5	1.44	-3.2006	-6.6757
6	1.80	-6.2556	-10.4357
7	2.16	-10.8147	-15.0320
8	2.52	-17.1790	-20.4648
9	2.88	-24.4737	-18.3339
10	3.24	-30.3838	-14.6395
11	3.60	-35.0645	-10.7814

Sollecitazioni mensola di contrappeso

Combinazione n° 29

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 29

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	?fs	? _{fi}
1	0.00	100, 60	21.99	21.99	0.000	0.000	0.000	0.000
2	0.22	100, 60	21.99	21.99	0.008	0.000	-0.112	-0.094
3	0.44	100, 60	21.99	21.99	0.012	0.001	-0.176	-0.180
4	0.66	100, 60	21.99	21.99	0.019	0.002	-0.220	-0.286
5	0.89	100, 60	21.99	21.99	0.029	0.004	-0.235	-0.420
6	1.11	100, 60	21.99	21.99	0.042	0.007	-0.206	-0.599
7	1.33	100, 60	21.99	21.99	0.061	0.012	-0.103	-0.852
8	1.55	100, 60	21.99	21.99	0.089	0.018	0.165	-1.228
9	1.77	100, 60	21.99	21.99	0.135	0.025	0.942	-1.819
10	1.99	100, 60	21.99	21.99	0.202	0.033	2.526	-2.638
11	2.22	100, 60	21.99	21.99	0.288	0.041	4.990	-3.656
12	2.44	100, 60	21.99	21.99	0.392	0.049	8.332	-4.867
13	2.66	100, 60	21.99	21.99	0.515	0.059	12.568	-6.281
14	2.88	100, 60	21.99	21.99	0.659	0.069	17.730	-7.913
15	3.10	100, 60	21.99	21.99	0.824	0.079	23.862	-9.776
16	3.32	100, 60	21.99	21.99	1.012	0.090	31.010	-11.885
17	3.55	100, 60	21.99	21.99	1.224	0.102	39.222	-14.254
18	3.77	100, 60	21.99	21.99	1.462	0.114	48.548	-16.895
19	3.99	100, 60	21.99	21.99	1.726	0.127	59.038	-19.824
20	4.21	100, 60	21.99	21.99	2.018	0.140	70.741	-23.051
21	4.43	100, 60	21.99	21.99	2.338	0.153	83.706	-26.591

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 29

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 29

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- ☐_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.006	0.014	0.333	-0.067
3	0.16	100, 61	15.71	15.71	0.026	0.028	1.317	-0.265
4	0.24	100, 62	15.71	15.71	0.057	0.042	2.932	-0.588
5	0.32	100, 63	15.71	15.71	0.099	0.055	5.159	-1.031
6	0.40	100, 64	15.71	15.71	0.152	0.069	7.978	-1.589
7	0.48	100, 64	15.71	15.71	0.215	0.082	11.372	-2.257
8	0.56	100, 65	15.71	15.71	0.288	0.095	15.324	-3.032
9	0.64	100, 66	15.71	15.71	0.370	0.107	19.818	-3.909
10	0.72	100, 66	15.71	15.71	0.462	0.120	24.839	-4.885
11	0.80	100, 67	15.71	15.71	0.561	0.132	30.371	-5.954

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.000	-0.001	-0.005	0.026
3	0.72	100, 95	21.99	21.99	0.004	-0.002	-0.046	0.214
4	1.08	100, 91	21.99	21.99	0.014	-0.005	-0.163	0.751

5	1.44	100, 88	21.99	21.99	0.035	-0.009	-0.406	1.853
6	1.80	100, 85	21.99	21.99	0.072	-0.015	-0.837	3.770
7	2.16	100, 82	21.99	21.99	0.132	-0.023	-1.529	6.796
8	2.52	100, 79	21.99	21.99	0.224	-0.032	-2.571	11.275
9	2.88	100, 75	15.71	15.71	0.405	-0.030	-4.419	23.371
10	3.24	100, 72	15.71	15.71	0.539	-0.025	-5.831	30.426
11	3.60	100, 69	15.71	15.71	0.671	-0.020	-7.172	36.907

Verifiche a fessurazione

Combinazione n° 29

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	0.00	0.0000	0.00	0.000
2	0.22	21.99	21.99	99.75	0.05	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-0.01	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-0.19	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-0.53	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-1.13	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-2.16	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-3.77	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-6.05	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-9.08	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-12.93	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-17.67	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-23.36	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-30.06	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-37.85	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-46.76	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-56.87	0.0000	0.00	0.000
18	3.77	21.99	21.99	-99.75	-68.23	0.0000	0.00	0.000

19	3.99	21.99	21.99	-99.75	-80.90	0.0000	0.00	0.000
20	4.21	21.99	21.99	-99.75	-94.95	0.0000	0.00	0.000
21	4.43	21.99	21.99	-99.75	-110.41	0.0244	208.31	0.086
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_fs	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.27	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.10	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	2.48	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	4.42	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	6.91	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	9.98	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	13.61	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	17.81	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	22.58	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	27.93	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-35.06	0.0000	0.00	0.000
13	0.36	15.71	15.71	-136.19	-30.38	0.0000	0.00	0.000
14	0.72	15.71	15.71	-148.04	-24.47	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-17.18	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-10.81	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-6.26	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-3.20	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-1.35	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-0.40	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-0.05	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	\mathbf{A}_{fs}	A_{fi}	$M_{\sf pf}$	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
2	0.10		12.57	-68.41	0.00	0.0000	0	.00

COMBINAZIONE n° 30

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	42.4386 X = 3.60 [m] 21.33 65.48	[kN] [m] [°]	Υ	=	-3.18
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Peso terrapieno gravante sulla mensola di contrappeso	395.9580 X = 1.81 [m] 0.0000	[°] [kN] [m] [kN]	Υ	=	-2.22
Baricentro terrapieno della mensola di contrappeso <u>Risultanti</u>	X = 0.00	Y = 0.00			
Risultante dei carichi applicati in dir. orizzontale	108.6626	[kN]			
Risultante dei carichi applicati in dir. verticale	605.2904	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	612.4576	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	55.4946	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.15	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	614.9667	[kN]			
Inclinazione della risultante (rispetto alla normale)	5.18	[°]			
Momento rispetto al baricentro della fondazione	-90.7722	[kNm]			
Carico ultimo della fondazione	8093.1604	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.10041	[N/mmq]		
Tensione terreno allo spigolo di monte	0.14365	[N/mmq]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33				
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00				
I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano							

di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{g} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 4.42

Coefficiente di sicurezza a carico ultimo 13.21

Sollecitazioni paramento

Combinazione n° 30

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0532	0.1258
3	0.44	7.8987	0.0119	0.5033
4	0.66	11.2231	0.1885	1.1325
5	0.89	14.5475	0.5335	2.0314
6	1.11	17.8718	1.1324	3.5194
7	1.33	21.1962	2.1588	5.8662
8	1.55	24.5206	3.7672	8.7129
9	1.77	27.8450	6.0480	11.9273
10	1.99	31.1693	9.0785	15.4740
11	2.22	34.4937	12.9297	19.3308
12	2.44	37.8181	17.6686	23.4830
13	2.66	41.1424	23.3596	27.9203
14	2.88	44.4668	30.0648	32.6351
15	3.10	47.7912	37.8452	37.6221
16	3.32	51.1155	46.7606	42.8772
17	3.55	54.4399	56.8700	48.3974
18	3.77	57.7643	68.2321	54.1802
19	3.99	61.0887	80.9046	60.2238
20	4.21	64.4130	94.9454	66.5267
21	4.43	67.7374	110.4092	73.0466

Sollecitazioni fondazione di valle

Combinazione n° 30

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.2744	6.8663
3	0.16	1.0997	13.7739
4	0.24	2.4793	20.7228
5	0.32	4.4165	27.7132
6	0.40	6.9145	34.7448
7	0.48	9.9767	41.8178
8	0.56	13.6065	48.9322
9	0.64	17.8070	56.0879
10	0.72	22.5816	63.2849
11	0.80	27.9337	70.5233

Sollecitazioni fondazione di monte

Combinazione n° 30

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.0495	-0.4143
3	0.72	-0.3987	-1.6651
4	1.08	-1.3487	-3.7522
5	1.44	-3.2006	-6.6757
6	1.80	-6.2556	-10.4357
7	2.16	-10.8147	-15.0320
8	2.52	-17.1790	-20.4648
9	2.88	-24.4737	-18.3339
10	3.24	-30.3838	-14.6395
11	3.60	-35.0645	-10.7814

Sollecitazioni mensola di contrappeso

Combinazione n° 30

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 30

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- Image: Tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	A_{fs}	A_{fi}	? _c	? c	? _{fs}	? _{fi}
1	0.00	100, 60	21.99	21.99	0.000	0.000	0.000	0.000
2	0.22	100, 60	21.99	21.99	0.008	0.000	-0.112	-0.094
3	0.44	100, 60	21.99	21.99	0.012	0.001	-0.176	-0.180
4	0.66	100, 60	21.99	21.99	0.019	0.002	-0.220	-0.286
5	0.89	100, 60	21.99	21.99	0.029	0.004	-0.235	-0.420
6	1.11	100, 60	21.99	21.99	0.042	0.007	-0.206	-0.599
7	1.33	100, 60	21.99	21.99	0.061	0.012	-0.103	-0.852
8	1.55	100, 60	21.99	21.99	0.089	0.018	0.165	-1.228
9	1.77	100, 60	21.99	21.99	0.135	0.025	0.942	-1.819
10	1.99	100, 60	21.99	21.99	0.202	0.033	2.526	-2.638
11	2.22	100, 60	21.99	21.99	0.288	0.041	4.990	-3.656
12	2.44	100, 60	21.99	21.99	0.392	0.049	8.332	-4.867
13	2.66	100, 60	21.99	21.99	0.515	0.059	12.568	-6.281
14	2.88	100, 60	21.99	21.99	0.659	0.069	17.730	-7.913
15	3.10	100, 60	21.99	21.99	0.824	0.079	23.862	-9.776
16	3.32	100, 60	21.99	21.99	1.012	0.090	31.010	-11.885
17	3.55	100, 60	21.99	21.99	1.224	0.102	39.222	-14.254
18	3.77	100, 60	21.99	21.99	1.462	0.114	48.548	-16.895
19	3.99	100, 60	21.99	21.99	1.726	0.127	59.038	-19.824
20	4.21	100, 60	21.99	21.99	2.018	0.140	70.741	-23.051
21	4.43	100, 60	21.99	21.99	2.338	0.153	83.706	-26.591

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 30

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 30

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- ☑c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.006	0.014	0.333	-0.067
3	0.16	100, 61	15.71	15.71	0.026	0.028	1.317	-0.265
4	0.24	100, 62	15.71	15.71	0.057	0.042	2.932	-0.588
5	0.32	100, 63	15.71	15.71	0.099	0.055	5.159	-1.031
6	0.40	100, 64	15.71	15.71	0.152	0.069	7.978	-1.589
7	0.48	100, 64	15.71	15.71	0.215	0.082	11.372	-2.257
8	0.56	100, 65	15.71	15.71	0.288	0.095	15.324	-3.032
9	0.64	100, 66	15.71	15.71	0.370	0.107	19.818	-3.909
10	0.72	100, 66	15.71	15.71	0.462	0.120	24.839	-4.885
11	0.80	100, 67	15.71	15.71	0.561	0.132	30.371	-5.954

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.000	-0.001	-0.005	0.026
3	0.72	100, 95	21.99	21.99	0.004	-0.002	-0.046	0.214
4	1.08	100, 91	21.99	21.99	0.014	-0.005	-0.163	0.751

5	1.44	100, 88	21.99	21.99	0.035	-0.009	-0.406	1.853
6	1.80	100, 85	21.99	21.99	0.072	-0.015	-0.837	3.770
7	2.16	100, 82	21.99	21.99	0.132	-0.023	-1.529	6.796
8	2.52	100, 79	21.99	21.99	0.224	-0.032	-2.571	11.275
9	2.88	100, 75	15.71	15.71	0.405	-0.030	-4.419	23.371
10	3.24	100, 72	15.71	15.71	0.539	-0.025	-5.831	30.426
11	3.60	100, 69	15.71	15.71	0.671	-0.020	-7.172	36.907

Verifiche a fessurazione

Combinazione n° 30

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	0.00	0.0000	0.00	0.000
2	0.22	21.99	21.99	99.75	0.05	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-0.01	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-0.19	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-0.53	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-1.13	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-2.16	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-3.77	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-6.05	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-9.08	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-12.93	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-17.67	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-23.36	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-30.06	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-37.85	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-46.76	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-56.87	0.0000	0.00	0.000
18	3.77	21.99	21.99	-99.75	-68.23	0.0000	0.00	0.000

19	3.99	21.99	21.99	-99.75	-80.90	0.0000	0.00	0.000
20	4.21	21.99	21.99	-99.75	-94.95	0.0000	0.00	0.000
21	4.43	21.99	21.99	-99.75	-110.41	0.0244	208.31	0.086
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_fs	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.27	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.10	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	2.48	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	4.42	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	6.91	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	9.98	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	13.61	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	17.81	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	22.58	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	27.93	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-35.06	0.0000	0.00	0.000
13	0.36	15.71	15.71	-136.19	-30.38	0.0000	0.00	0.000
14	0.72	15.71	15.71	-148.04	-24.47	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-17.18	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-10.81	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-6.26	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-3.20	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-1.35	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-0.40	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-0.05	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	\mathbf{A}_{fs}	A_{fi}	$M_{\sf pf}$	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
2	0.10		12.57	-68.41	0.00	0.0000	0	.00

COMBINAZIONE n° 31

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica Punto d'applicazione della spinta	42.4386 X = 3.60	[kN] [m]	Y	=	-3.18
Tunto a applicazione della spinta	[m]	נייין	ļ	_	3.10
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	108.6626	[kN]			
Risultante dei carichi applicati in dir. verticale	605.2904	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	612.4576	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	55.4946	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.15	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	614.9667	[kN]			
Inclinazione della risultante (rispetto alla normale)	5.18	[°]			
Momento rispetto al baricentro della fondazione	-90.7722	[kNm]			
Carico ultimo della fondazione	8093.1604	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.10041	[N/mmq]		
Tensione terreno allo spigolo di monte	0.14365	[N/mmq]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33				
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00				
I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano							
di posa, inclinazione pendio.							

 $N'_{q} = 28.52$ $N'_{2} = 27.33$ $N'_{c} = 44.04$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 4.42 Coefficiente di sicurezza a carico ultimo 13.21

Sollecitazioni paramento

Combinazione n° 31

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0532	0.1258
3	0.44	7.8987	0.0119	0.5033
4	0.66	11.2231	0.1885	1.1325
5	0.89	14.5475	0.5335	2.0314
6	1.11	17.8718	1.1324	3.5194
7	1.33	21.1962	2.1588	5.8662
8	1.55	24.5206	3.7672	8.7129
9	1.77	27.8450	6.0480	11.9273
10	1.99	31.1693	9.0785	15.4740
11	2.22	34.4937	12.9297	19.3308
12	2.44	37.8181	17.6686	23.4830
13	2.66	41.1424	23.3596	27.9203
14	2.88	44.4668	30.0648	32.6351
15	3.10	47.7912	37.8452	37.6221
16	3.32	51.1155	46.7606	42.8772
17	3.55	54.4399	56.8700	48.3974
18	3.77	57.7643	68.2321	54.1802
19	3.99	61.0887	80.9046	60.2238
20	4.21	64.4130	94.9454	66.5267
21	4.43	67.7374	110.4092	73.0466

Sollecitazioni fondazione di valle

Combinazione n° 31

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	М	т
1	0.00	0.0000	0.0000
2	0.08	0.2744	6.8663
3	0.16	1.0997	13.7739
4	0.24	2.4793	20.7228
5	0.32	4.4165	27.7132
6	0.40	6.9145	34.7448
7	0.48	9.9767	41.8178
8	0.56	13.6065	48.9322
9	0.64	17.8070	56.0879
10	0.72	22.5816	63.2849
11	0.80	27.9337	70.5233

Sollecitazioni fondazione di monte

Combinazione n° 31

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.0495	-0.4143
3	0.72	-0.3987	-1.6651
4	1.08	-1.3487	-3.7522
5	1.44	-3.2006	-6.6757
6	1.80	-6.2556	-10.4357
7	2.16	-10.8147	-15.0320
8	2.52	-17.1790	-20.4648
9	2.88	-24.4737	-18.3339
10	3.24	-30.3838	-14.6395
11	3.60	-35.0645	-10.7814

Sollecitazioni mensola di contrappeso

Combinazione n° 31

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 31

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	A_{fs}	A_{fi}	? c	? _c	? _{fs}	? _{fi}
1	0.00	100, 60	21.99	21.99	0.000	0.000	0.000	0.000
2	0.22	100, 60	21.99	21.99	0.008	0.000	-0.112	-0.094
3	0.44	100, 60	21.99	21.99	0.012	0.001	-0.176	-0.180
4	0.66	100, 60	21.99	21.99	0.019	0.002	-0.220	-0.286
5	0.89	100, 60	21.99	21.99	0.029	0.004	-0.235	-0.420
6	1.11	100, 60	21.99	21.99	0.042	0.007	-0.206	-0.599
7	1.33	100, 60	21.99	21.99	0.061	0.012	-0.103	-0.852
8	1.55	100, 60	21.99	21.99	0.089	0.018	0.165	-1.228
9	1.77	100, 60	21.99	21.99	0.135	0.025	0.942	-1.819
10	1.99	100, 60	21.99	21.99	0.202	0.033	2.526	-2.638
11	2.22	100, 60	21.99	21.99	0.288	0.041	4.990	-3.656
12	2.44	100, 60	21.99	21.99	0.392	0.049	8.332	-4.867
13	2.66	100, 60	21.99	21.99	0.515	0.059	12.568	-6.281
14	2.88	100, 60	21.99	21.99	0.659	0.069	17.730	-7.913
15	3.10	100, 60	21.99	21.99	0.824	0.079	23.862	-9.776
16	3.32	100, 60	21.99	21.99	1.012	0.090	31.010	-11.885
17	3.55	100, 60	21.99	21.99	1.224	0.102	39.222	-14.254
18	3.77	100, 60	21.99	21.99	1.462	0.114	48.548	-16.895
19	3.99	100, 60	21.99	21.99	1.726	0.127	59.038	-19.824
20	4.21	100, 60	21.99	21.99	2.018	0.140	70.741	-23.051
21	4.43	100, 60	21.99	21.99	2.338	0.153	83.706	-26.591

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 31

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 31

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- ☑c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	? c	$ m ?_{fi}$	$ m ?_{fs}$
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.006	0.014	0.333	-0.067
3	0.16	100, 61	15.71	15.71	0.026	0.028	1.317	-0.265
4	0.24	100, 62	15.71	15.71	0.057	0.042	2.932	-0.588
5	0.32	100, 63	15.71	15.71	0.099	0.055	5.159	-1.031
6	0.40	100, 64	15.71	15.71	0.152	0.069	7.978	-1.589
7	0.48	100, 64	15.71	15.71	0.215	0.082	11.372	-2.257
8	0.56	100, 65	15.71	15.71	0.288	0.095	15.324	-3.032
9	0.64	100, 66	15.71	15.71	0.370	0.107	19.818	-3.909
10	0.72	100, 66	15.71	15.71	0.462	0.120	24.839	-4.885
11	0.80	100, 67	15.71	15.71	0.561	0.132	30.371	-5.954

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.000	-0.001	-0.005	0.026
3	0.72	100, 95	21.99	21.99	0.004	-0.002	-0.046	0.214
4	1.08	100, 91	21.99	21.99	0.014	-0.005	-0.163	0.751

5	1.44	100, 88	21.99	21.99	0.035	-0.009	-0.406	1.853
6	1.80	100, 85	21.99	21.99	0.072	-0.015	-0.837	3.770
7	2.16	100, 82	21.99	21.99	0.132	-0.023	-1.529	6.796
8	2.52	100, 79	21.99	21.99	0.224	-0.032	-2.571	11.275
9	2.88	100, 75	15.71	15.71	0.405	-0.030	-4.419	23.371
10	3.24	100, 72	15.71	15.71	0.539	-0.025	-5.831	30.426
11	3.60	100, 69	15.71	15.71	0.671	-0.020	-7.172	36.907

Verifiche a fessurazione

Combinazione n° 31

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	0.00	0.0000	0.00	0.000
2	0.22	21.99	21.99	99.75	0.05	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-0.01	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-0.19	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-0.53	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-1.13	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-2.16	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-3.77	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-6.05	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-9.08	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-12.93	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-17.67	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-23.36	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-30.06	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-37.85	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-46.76	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-56.87	0.0000	0.00	0.000
18	3.77	21.99	21.99	-99.75	-68.23	0.0000	0.00	0.000

19	3.99	21.99	21.99	-99.75	-80.90	0.0000	0.00	0.000
20	4.21	21.99	21.99	-99.75	-94.95	0.0000	0.00	0.000
21	4.43	21.99	21.99	-99.75	-110.41	0.0244	208.31	0.086
<u>Verif</u>	ica fessuraz	zione fondazi	<u>one</u>					
N°	Υ	A_fs	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.27	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.10	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	2.48	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	4.42	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	6.91	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	9.98	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	13.61	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	17.81	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	22.58	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	27.93	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-35.06	0.0000	0.00	0.000
13	0.36	15.71	15.71	-136.19	-30.38	0.0000	0.00	0.000
14	0.72	15.71	15.71	-148.04	-24.47	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-17.18	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-10.81	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-6.26	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-3.20	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-1.35	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-0.40	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-0.05	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	zione mensol	a di monte					
N°	Υ	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 32

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica Punto d'applicazione della spinta	42.4386 X = 3.60	[kN] [m]	Y	=	-3.18
Tunto a applicazione acina spirita	[m]	[,,,]	•	_	3.10
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Disultanti savishi setami					
Risultanti carichi esterni Componente din X	2.24	[LAI]			
Componente dir. X	3.34	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	112.0026	[kN]			
Risultante dei carichi applicati in dir. verticale	605.2904	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	612.7487	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	58.8219	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.12	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	615.5656	[kN]			
Inclinazione della risultante (rispetto alla normale)	5.48	[°]			
Momento rispetto al baricentro della fondazione	-71.1417	[kNm]			
Carico ultimo della fondazione	8203.2037	[kN]			
Tensioni sul terreno					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.10514	[N/mmg	ıl		
Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	0.13903	[N/mmg			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmg			
Tensione terreno un estremita dena mensora ai contrappeso	3.000	[. •,	רו		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s ₂ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{e} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 4.17

Coefficiente di sicurezza a carico ultimo 13.39

Sollecitazioni paramento

Combinazione n° 32

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	2.2000	3.3400
2	0.22	4.5744	2.8870	3.4658
3	0.44	7.8987	3.6923	3.8433
4	0.66	11.2231	4.6092	4.4725
5	0.89	14.5475	5.6944	5.3714
6	1.11	17.8718	7.0336	6.8594
7	1.33	21.1962	8.8002	9.2062
8	1.55	24.5206	11.1488	12.0529
9	1.77	27.8450	14.1698	15.2673
10	1.99	31.1693	17.9405	18.8140
11	2.22	34.4937	22.5320	22.6708
12	2.44	37.8181	28.0111	26.8230
13	2.66	41.1424	34.4423	31.2603
14	2.88	44.4668	41.8877	35.9751
15	3.10	47.7912	50.4083	40.9621
16	3.32	51.1155	60.0640	46.2172
17	3.55	54.4399	70.9137	51.7374
18	3.77	57.7643	83.0159	57.5202
19	3.99	61.0887	96.4287	63.5638
20	4.21	64.4130	111.2097	69.8667
21	4.43	67.7374	127.4137	76.3866

Sollecitazioni fondazione di valle

Combinazione n° 32

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	т
1	0.00	0.0000	0.0000
2	0.08	0.2892	7.2361
3	0.16	1.1586	14.5016
4	0.24	2.6103	21.7965
5	0.32	4.6468	29.1208
6	0.40	7.2704	36.4744
7	0.48	10.4835	43.8574
8	0.56	14.2884	51.2698
9	0.64	18.6874	58.7116
10	0.72	23.6830	66.1827
11	0.80	29.2774	73.6832

Sollecitazioni fondazione di monte

Combinazione n° 32

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.3365	-1.9683
3	0.72	-1.4884	-4.5306
4	1.08	-3.6698	-7.6869
5	1.44	-7.0943	-11.4372
6	1.80	-11.9758	-15.7816
7	2.16	-18.5283	-20.7199
8	2.52	-26.9655	-26.2523
9	2.88	-36.3252	-23.9788
10	3.24	-44.2055	-19.8992
11	3.60	-50.6740	-15.4137

Sollecitazioni mensola di contrappeso

Combinazione n° 32

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 32

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fs}	? _{fi}
1	0.00	100, 60	21.99	21.99	0.045	0.007	1.946	-0.484
2	0.22	100, 60	21.99	21.99	0.063	0.007	1.646	-0.766
3	0.44	100, 60	21.99	21.99	0.082	0.008	1.742	-1.017
4	0.66	100, 60	21.99	21.99	0.103	0.009	1.948	-1.289
5	0.89	100, 60	21.99	21.99	0.127	0.011	2.298	-1.602
6	1.11	100, 60	21.99	21.99	0.157	0.014	2.854	-1.978
7	1.33	100, 60	21.99	21.99	0.196	0.019	3.757	-2.459
8	1.55	100, 60	21.99	21.99	0.248	0.025	5.146	-3.081
9	1.77	100, 60	21.99	21.99	0.314	0.032	7.111	-3.862
10	1.99	100, 60	21.99	21.99	0.396	0.040	9.730	-4.816
11	2.22	100, 60	21.99	21.99	0.495	0.048	13.071	-5.955
12	2.44	100, 60	21.99	21.99	0.612	0.056	17.197	-7.293
13	2.66	100, 60	21.99	21.99	0.748	0.066	22.166	-8.841
14	2.88	100, 60	21.99	21.99	0.906	0.076	28.035	-10.613
15	3.10	100, 60	21.99	21.99	1.085	0.086	34.856	-12.622
16	3.32	100, 60	21.99	21.99	1.287	0.097	42.683	-14.880
17	3.55	100, 60	21.99	21.99	1.514	0.109	51.569	-17.401
18	3.77	100, 60	21.99	21.99	1.766	0.121	61.563	-20.198
19	3.99	100, 60	21.99	21.99	2.044	0.134	72.718	-23.282
20	4.21	100, 60	21.99	21.99	2.351	0.147	85.084	-26.667
21	4.43	100, 60	21.99	21.99	2.686	0.160	98.710	-30.365

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 32

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 32

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.007	0.015	0.351	-0.071
3	0.16	100, 61	15.71	15.71	0.027	0.030	1.388	-0.279
4	0.24	100, 62	15.71	15.71	0.060	0.044	3.087	-0.619
5	0.32	100, 63	15.71	15.71	0.104	0.058	5.428	-1.084
6	0.40	100, 64	15.71	15.71	0.160	0.072	8.389	-1.670
7	0.48	100, 64	15.71	15.71	0.226	0.086	11.950	-2.372
8	0.56	100, 65	15.71	15.71	0.303	0.099	16.092	-3.184
9	0.64	100, 66	15.71	15.71	0.389	0.112	20.798	-4.103
10	0.72	100, 66	15.71	15.71	0.484	0.125	26.050	-5.123
11	0.80	100, 67	15.71	15.71	0.588	0.138	31.832	-6.241

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.003	-0.002	-0.037	0.174
3	0.72	100, 95	21.99	21.99	0.014	-0.006	-0.171	0.799
4	1.08	100, 91	21.99	21.99	0.037	-0.010	-0.442	2.045

5	1.44	100, 88	21.99	21.99	0.077	-0.016	-0.900	4.108
6	1.80	100, 85	21.99	21.99	0.137	-0.023	-1.602	7.218
7	2.16	100, 82	21.99	21.99	0.226	-0.031	-2.619	11.643
8	2.52	100, 79	21.99	21.99	0.351	-0.041	-4.036	17.698
9	2.88	100, 75	15.71	15.71	0.600	-0.040	-6.559	34.689
10	3.24	100, 72	15.71	15.71	0.785	-0.034	-8.484	44.267
11	3.60	100, 69	15.71	15.71	0.969	-0.028	-10.365	53.337

Verifiche a fessurazione

Combinazione n° 32

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	A_{fi}	M_{pf}	M	\mathbf{P}_{m}	S _m	w
1	0.00	21.99	21.99	-99.75	-2.20	0.0000	0.00	0.000
2	0.22	21.99	21.99	-99.75	-2.89	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-3.69	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-4.61	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-5.69	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-7.03	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-8.80	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-11.15	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-14.17	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-17.94	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-22.53	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-28.01	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-34.44	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-41.89	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-50.41	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-60.06	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-70.91	0.0000	0.00	0.000
18	3.77	21.99	21.99	-99.75	-83.02	0.0000	0.00	0.000

3.99	21.99	21.99	-99.75	-96.43	0.0000	0.00	0.000
4.21	21.99	21.99	-99.75	-111.21	0.0248	208.31	0.088
4.43	21.99	21.99	-99.75	-127.41	0.0295	208.31	0.104
ca fessuraz	ione fondazio	<u>one</u>					
Υ	Δ.	A £	М	M	[?]	S	w
							0.000
							0.000
							0.000
							0.000
			104.18		0.0000	0.00	0.000
-1.00	15.71	15.71	106.42	7.27	0.0000	0.00	0.000
-0.92	15.71	15.71	108.68	10.48	0.0000	0.00	0.000
-0.84	15.71	15.71	110.97	14.29	0.0000	0.00	0.000
-0.76	15.71	15.71	113.28	18.69	0.0000	0.00	0.000
-0.68	15.71	15.71	115.61	23.68	0.0000	0.00	0.000
-0.60	15.71	15.71	117.97	29.28	0.0000	0.00	0.000
0.00	15.71	15.71	-124.83	-50.67	0.0000	0.00	0.000
0.36	15.71	15.71	-136.19	-44.21	0.0000	0.00	0.000
0.72	15.71	15.71	-148.04	-36.33	0.0000	0.00	0.000
1.08	21.99	21.99	-166.39	-26.97	0.0000	0.00	0.000
1.44	21.99	21.99	-179.50	-18.53	0.0000	0.00	0.000
1.80	21.99	21.99	-193.10	-11.98	0.0000	0.00	0.000
2.16	21.99	21.99	-207.17	-7.09	0.0000	0.00	0.000
2.52	21.99	21.99	-221.73	-3.67	0.0000	0.00	0.000
2.88	21.99	21.99	-236.77	-1.49	0.0000	0.00	0.000
3.24	21.99	21.99	-252.29	-0.34	0.0000	0.00	0.000
3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
ca fessuraz	ione mensolo	a di monte					
Y	A_fs	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
	4.21 4.43 Y -1.40 -1.32 -1.24 -1.16 -1.08 -1.00 -0.92 -0.84 -0.76 -0.68 -0.60 0.00 0.36 0.72 1.08 1.44 1.80 2.16 2.52 2.88 3.24 3.60	4.21 21.99 4.43 21.99 Ca fessurazione fondazio Y A _{fs} -1.40 15.71 -1.32 15.71 -1.24 15.71 -1.16 15.71 -1.08 15.71 -1.00 15.71 -0.92 15.71 -0.84 15.71 -0.68 15.71 -0.68 15.71 -0.68 15.71 -0.60 15.71 0.36 15.71 0.36 15.71 0.72 15.71 1.08 21.99 1.44 21.99 1.80 21.99 2.16 21.99 2.16 21.99 2.88 21.99 3.24 21.99 3.60 21.99	4.21 21.99 21.99 4.43 21.99 21.99 **Ca fessurazione fondazione** Y A _{fs} A _{fi} -1.40 15.71 15.71 -1.32 15.71 15.71 -1.24 15.71 15.71 -1.16 15.71 15.71 -1.08 15.71 15.71 -1.00 15.71 15.71 -0.92 15.71 15.71 -0.84 15.71 15.71 -0.84 15.71 15.71 -0.68 15.71 15.71 -0.68 15.71 15.71 -0.60 15.71 15.71 -0.60 15.71 15.71 0.00 15.71 15.71 0.00 15.71 15.71 0.100	4.21 21.99 21.99 -99.75 4.43 21.99 21.99 -99.75 The example of t	4.21 21.99 21.99 -99.75 -111.21 4.43 21.99 21.99 -99.75 -127.41 Ca fessurazione fondazione Y Afs Afs Mpf M -1.40 15.71 15.71 -95.45 0.00 -1.32 15.71 15.71 97.59 0.29 -1.24 15.71 15.71 99.77 1.16 -1.16 15.71 15.71 101.96 2.61 -1.08 15.71 15.71 104.18 4.65 -1.00 15.71 15.71 106.42 7.27 -0.92 15.71 15.71 108.68 10.48 -0.84 15.71 15.71 110.97 14.29 -0.68 15.71 15.71 115.61 23.68 -0.60 15.71 15.71 117.97 29.28 0.00 15.71 15.71 -124.83 -50.67 0.36 15.71 15.71 -148.04 -36.33 1.08 21.99 21.99 -179.50	4.21 21.99 21.99 -99.75 -111.21 0.0248 4.43 21.99 21.99 -99.75 -127.41 0.0295 Ca fessurazione fondazione Y A _{fs} A _{fi} M _{pf} M E _m -1.40 15.71 15.71 -95.45 0.00 0.0000 -1.32 15.71 15.71 97.59 0.29 0.0000 -1.24 15.71 15.71 99.77 1.16 0.0000 -1.08 15.71 15.71 101.96 2.61 0.0000 -1.08 15.71 15.71 106.42 7.27 0.0000 -0.92 15.71 15.71 108.68 10.48 0.0000 -0.84 15.71 15.71 110.97 14.29 0.0000 -0.68 15.71 15.71 115.61 23.68 0.0000 -0.60 15.71 15.71 117.97 29.28 0.0000 0.36 15.71 15.71 114.80 -36.33 0.0000 0.72 15.71	4.21 21.99 21.99 -99.75 -111.21 0.0248 208.31 4.43 21.99 21.99 -99.75 -127.41 0.0295 208.31 Ca fessurazione fondazione Y Afs Afs Mpf M Em Sm -1.40 15.71 15.71 -95.45 0.00 0.0000 0.00 -1.32 15.71 15.71 97.59 0.29 0.0000 0.00 -1.24 15.71 15.71 19.79 1.16 0.0000 0.00 -1.08 15.71 15.71 101.96 2.61 0.0000 0.00 -1.08 15.71 15.71 106.42 7.27 0.0000 0.00 -0.92 15.71 15.71 106.42 7.27 0.0000 0.00 -0.84 15.71 15.71 108.68 10.48 0.0000 0.00 -0.76 15.71 15.71 113.28 18.69 0.0000 0.00 -0.68 15.71 15.71 115.61 23.68 0.0000

COMBINAZIONE n° 33

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica Punto d'applicazione della spinta	42.4386 X = 3.60	[kN] [m]	Υ	=	-3.18
	[m]	[]	•		0.20
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti carichi esterni</u>					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	118.6826	[kN]			
Risultante dei carichi applicati in dir. verticale	605.2904	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	613.3309	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	65.4764	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.05	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	616.8160	[kN]			
Inclinazione della risultante (rispetto alla normale)	6.09	[°]			
Momento rispetto al baricentro della fondazione	-31.8806	[kNm]			
Carico ultimo della fondazione	8422.9768	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.11461	[N/mmq]		
Tensione terreno allo spigolo di monte	0.12979	[N/mmq]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s ₂ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{e} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.75 Coefficiente di sicurezza a carico ultimo 13.73

Sollecitazioni paramento

Combinazione n° 33

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	6.6000	10.0200
2	0.22	4.5744	8.7675	10.1458
3	0.44	7.8987	11.0532	10.5233
4	0.66	11.2231	13.4505	11.1525
5	0.89	14.5475	16.0162	12.0514
6	1.11	17.8718	18.8358	13.5394
7	1.33	21.1962	22.0829	15.8862
8	1.55	24.5206	25.9119	18.7329
9	1.77	27.8450	30.4134	21.9473
10	1.99	31.1693	35.6646	25.4940
11	2.22	34.4937	41.7365	29.3508
12	2.44	37.8181	48.6961	33.5030
13	2.66	41.1424	56.6077	37.9403
14	2.88	44.4668	65.5336	42.6551
15	3.10	47.7912	75.5347	47.6421
16	3.32	51.1155	86.6707	52.8972
17	3.55	54.4399	99.0009	58.4174
18	3.77	57.7643	112.5836	64.2002
19	3.99	61.0887	127.4769	70.2438
20	4.21	64.4130	143.7383	76.5467
21	4.43	67.7374	161.4228	83.0666

Sollecitazioni fondazione di valle

Combinazione n° 33

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3190	7.9758
3	0.16	1.2763	15.9571
4	0.24	2.8723	23.9438
5	0.32	5.1074	31.9359
6	0.40	7.9822	39.9335
7	0.48	11.4969	47.9365
8	0.56	15.6522	55.9450
9	0.64	20.4483	63.9589
10	0.72	25.8857	71.9783
11	0.80	31.9649	80.0030

Sollecitazioni fondazione di monte

Combinazione n° 33

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.9104	-5.0761
3	0.72	-3.6679	-10.2615
4	1.08	-8.3119	-15.5562
5	1.44	-14.8815	-20.9601
6	1.80	-23.4163	-26.4733
7	2.16	-33.9554	-32.0958
8	2.52	-46.5383	-37.8275
9	2.88	-60.0283	-35.2685
10	3.24	-71.8487	-30.4187
11	3.60	-81.8929	-24.6782

Sollecitazioni mensola di contrappeso

Combinazione n° 33

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 33

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- ②c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	? c	? _{fs}	? fi
1	0.00	100, 60	21.99	21.99	0.134	0.021	5.838	-1.453
2	0.22	100, 60	21.99	21.99	0.185	0.021	6.810	-2.087
3	0.44	100, 60	21.99	21.99	0.235	0.022	8.155	-2.695
4	0.66	100, 60	21.99	21.99	0.288	0.023	9.603	-3.326
5	0.89	100, 60	21.99	21.99	0.344	0.025	11.200	-3.993
6	1.11	100, 60	21.99	21.99	0.405	0.028	13.022	-4.717
7	1.33	100, 60	21.99	21.99	0.476	0.033	15.219	-5.536
8	1.55	100, 60	21.99	21.99	0.558	0.039	17.927	-6.487
9	1.77	100, 60	21.99	21.99	0.654	0.046	21.225	-7.589
10	1.99	100, 60	21.99	21.99	0.765	0.054	25.183	-8.858
11	2.22	100, 60	21.99	21.99	0.893	0.062	29.863	-10.311
12	2.44	100, 60	21.99	21.99	1.040	0.070	35.325	-11.962
13	2.66	100, 60	21.99	21.99	1.206	0.080	41.628	-13.824
14	2.88	100, 60	21.99	21.99	1.393	0.090	48.826	-15.911
15	3.10	100, 60	21.99	21.99	1.601	0.100	56.974	-18.236
16	3.32	100, 60	21.99	21.99	1.833	0.111	66.125	-20.811
17	3.55	100, 60	21.99	21.99	2.089	0.123	76.331	-23.650
18	3.77	100, 60	21.99	21.99	2.371	0.135	87.645	-26.766
19	3.99	100, 60	21.99	21.99	2.679	0.148	100.118	-30.170
20	4.21	100, 60	21.99	21.99	3.016	0.161	113.801	-33.876
21	4.43	100, 60	21.99	21.99	3.381	0.175	128.743	-37.895

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 33

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 33

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.008	0.017	0.387	-0.078
3	0.16	100, 61	15.71	15.71	0.030	0.033	1.529	-0.307
4	0.24	100, 62	15.71	15.71	0.065	0.048	3.397	-0.681
5	0.32	100, 63	15.71	15.71	0.114	0.064	5.966	-1.192
6	0.40	100, 64	15.71	15.71	0.175	0.079	9.210	-1.834
7	0.48	100, 64	15.71	15.71	0.248	0.094	13.105	-2.601
8	0.56	100, 65	15.71	15.71	0.332	0.108	17.628	-3.488
9	0.64	100, 66	15.71	15.71	0.425	0.122	22.758	-4.489
10	0.72	100, 66	15.71	15.71	0.529	0.136	28.473	-5.599
11	0.80	100, 67	15.71	15.71	0.642	0.149	34.754	-6.813

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	${f A}_{\sf fs}$	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.008	-0.006	-0.100	0.472
3	0.72	100, 95	21.99	21.99	0.035	-0.013	-0.421	1.969
4	1.08	100, 91	21.99	21.99	0.085	-0.021	-1.002	4.631

5	1.44	100, 88	21.99	21.99	0.161	-0.029	-1.888	8.617
6	1.80	100, 85	21.99	21.99	0.269	-0.038	-3.132	14.113
7	2.16	100, 82	21.99	21.99	0.414	-0.049	-4.799	21.337
8	2.52	100, 79	21.99	21.99	0.606	-0.060	-6.966	30.544
9	2.88	100, 75	15.71	15.71	0.992	-0.058	-10.839	57.324
10	3.24	100, 72	15.71	15.71	1.275	-0.052	-13.790	71.949
11	3.60	100, 69	15.71	15.71	1.567	-0.045	-16.751	86.197

Verifiche a fessurazione

Combinazione n° 33

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	-6.60	0.0000	0.00	0.000
2	0.22	21.99	21.99	-99.75	-8.77	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-11.05	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-13.45	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-16.02	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-18.84	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-22.08	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-25.91	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-30.41	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-35.66	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-41.74	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-48.70	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-56.61	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-65.53	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-75.53	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-86.67	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-99.00	0.0000	0.00	0.000
18	3.77	21.99	21.99	-99.75	-112.58	0.0255	208.31	0.090

3.99 4.21	21.99	21.99	00.75				
4 21			-99.75	-127.48	0.0304	208.31	0.108
7.21	21.99	21.99	-99.75	-143.74	0.0393	208.31	0.139
4.43	21.99	21.99	-99.75	-161.42	0.0484	208.31	0.171
ca fessuraz	ione fondazio	<u>one</u>					
Υ	A_{fs}	A_{fi}	M_{nf}	M	? _m	S _m	w
-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
-1.32	15.71	15.71	97.59	0.32	0.0000	0.00	0.000
-1.24	15.71	15.71	99.77	1.28	0.0000	0.00	0.000
-1.16	15.71	15.71	101.96	2.87	0.0000	0.00	0.000
-1.08	15.71	15.71	104.18	5.11	0.0000	0.00	0.000
-1.00	15.71	15.71	106.42	7.98	0.0000	0.00	0.000
-0.92	15.71	15.71	108.68	11.50	0.0000	0.00	0.000
-0.84	15.71	15.71	110.97	15.65	0.0000	0.00	0.000
-0.76	15.71	15.71	113.28	20.45	0.0000	0.00	0.000
-0.68	15.71	15.71	115.61	25.89	0.0000	0.00	0.000
-0.60	15.71	15.71	117.97	31.96	0.0000	0.00	0.000
0.00	15.71	15.71	-124.83	-81.89	0.0000	0.00	0.000
0.36	15.71	15.71	-136.19	-71.85	0.0000	0.00	0.000
0.72	15.71	15.71	-148.04	-60.03	0.0000	0.00	0.000
1.08	21.99	21.99	-166.39	-46.54	0.0000	0.00	0.000
1.44	21.99	21.99	-179.50	-33.96	0.0000	0.00	0.000
1.80	21.99	21.99	-193.10	-23.42	0.0000	0.00	0.000
2.16	21.99	21.99	-207.17	-14.88	0.0000	0.00	0.000
2.52	21.99	21.99	-221.73	-8.31	0.0000	0.00	0.000
2.88	21.99	21.99	-236.77	-3.67	0.0000	0.00	0.000
3.24	21.99	21.99	-252.29	-0.91	0.0000	0.00	0.000
3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
ca fessuraz	ione mensolo	a di monte					
Υ	\mathbf{A}_{fs}	A_{fi}	$M_{\sf pf}$	M	? _m	S _m	w
0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
	Y -1.40 -1.32 -1.24 -1.16 -1.08 -1.00 -0.92 -0.84 -0.76 -0.68 -0.60 0.00 0.36 0.72 1.08 1.44 1.80 2.16 2.52 2.88 3.24 3.60 ca fessuraz	Y A _{fs} -1.40 15.71 -1.32 15.71 -1.24 15.71 -1.16 15.71 -1.08 15.71 -1.00 15.71 -0.92 15.71 -0.84 15.71 -0.68 15.71 -0.68 15.71 -0.60 15.71 0.00 15.71 0.36 15.71 0.72 15.71 1.08 21.99 1.44 21.99 1.80 21.99 2.16 21.99 2.16 21.99 2.88 21.99 3.24 21.99 3.60 21.99	-1.40	Y A _{fs} A _{fi} M _{pf} -1.40 15.71 15.71 -95.45 -1.32 15.71 15.71 97.59 -1.24 15.71 15.71 101.96 -1.08 15.71 15.71 104.18 -1.00 15.71 15.71 106.42 -0.92 15.71 15.71 108.68 -0.84 15.71 15.71 110.97 -0.76 15.71 15.71 113.28 -0.68 15.71 15.71 113.28 -0.68 15.71 15.71 115.61 -0.60 15.71 15.71 115.61 -0.60 15.71 15.71 -124.83 0.36 15.71 15.71 -124.83 0.36 15.71 15.71 -148.04 1.08 21.99 21.99 -166.39 1.44 21.99 21.99 -166.39 1.44 21.99 21.99 -179.50 1.80 21.99 21.99 -207.17 2.52 21.99 21.99 -207.17 2.52 21.99 21.99 -221.73 2.88 21.99 21.99 -221.73 2.88 21.99 21.99 -221.73 2.88 21.99 21.99 -252.29 3.60 21.99 21.99 -268.29	Y A _{fs} A _{fi} M _{pf} M -1.40 15.71 15.71 -95.45 0.00 -1.32 15.71 15.71 97.59 0.32 -1.24 15.71 15.71 101.96 2.87 -1.08 15.71 15.71 104.18 5.11 -1.00 15.71 15.71 106.42 7.98 -0.92 15.71 15.71 108.68 11.50 -0.84 15.71 15.71 110.97 15.65 -0.76 15.71 15.71 113.28 20.45 -0.68 15.71 15.71 115.61 25.89 -0.60 15.71 15.71 117.97 31.96 0.00 15.71 15.71 -124.83 81.89 0.36 15.71 15.71 -124.83 81.89 0.36 15.71 15.71 -136.19 -71.85 0.72 15.71 15.71 -148.04 -60.03 1.08 21.99 21.99 -166.39 -46.54 1.44 21.99 21.99 -166.39 -46.54 1.44 21.99 21.99 -193.10 -23.42 2.16 21.99 21.99 -193.10 -23.42 2.16 21.99 21.99 -207.17 -14.88 2.52 21.99 21.99 -207.17 -14.88 2.52 21.99 21.99 -221.73 -8.31 2.88 21.99 21.99 -221.73 -8.31 2.88 21.99 21.99 -252.29 -0.91 3.60 21.99 21.99 -252.29 -0.91 3.60 21.99 21.99 -252.29 -0.91	Y A _{fs} A _{fi} M _{pf} M E _m -1.40 15.71 15.71 -95.45 0.00 0.0000 -1.32 15.71 15.71 97.59 0.32 0.0000 -1.24 15.71 15.71 199.77 1.28 0.0000 -1.16 15.71 15.71 101.96 2.87 0.0000 -1.08 15.71 15.71 104.18 5.11 0.0000 -1.00 15.71 15.71 106.42 7.98 0.0000 -0.92 15.71 15.71 108.68 11.50 0.0000 -0.84 15.71 15.71 110.97 15.65 0.0000 -0.76 15.71 15.71 113.28 20.45 0.0000 -0.68 15.71 15.71 113.28 20.45 0.0000 -0.68 15.71 15.71 115.61 25.89 0.0000 -0.60 15.71 15.71 117.97 31.96 0.0000	Y A _{fs} A _{fi} M _{pf} M E _m s _m -1.40 15.71 15.71 -95.45 0.00 0.0000 0.00 -1.32 15.71 15.71 97.59 0.32 0.0000 0.00 -1.24 15.71 15.71 99.77 1.28 0.0000 0.00 -1.16 15.71 15.71 101.96 2.87 0.0000 0.00 -1.08 15.71 15.71 104.18 5.11 0.0000 0.00 -1.00 15.71 15.71 106.42 7.98 0.0000 0.00 -0.92 15.71 15.71 108.68 11.50 0.0000 0.00 -0.84 15.71 15.71 110.97 15.65 0.0000 0.00 -0.76 15.71 15.71 113.28 20.45 0.0000 0.00 -0.68 15.71 15.71 115.61 25.89 0.0000 0.00 -0.60 15.71 15.7

COMBINAZIONE n° 34

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica Punto d'applicazione della spinta	42.4386 X = 3.60	[kN] [m]	Υ	=	-3.18
	[m]	[]	•		0.20
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti carichi esterni</u>					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	118.6826	[kN]			
Risultante dei carichi applicati in dir. verticale	605.2904	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	613.3309	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	65.4764	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.05	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	616.8160	[kN]			
Inclinazione della risultante (rispetto alla normale)	6.09	[°]			
Momento rispetto al baricentro della fondazione	-31.8806	[kNm]			
Carico ultimo della fondazione	8422.9768	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.11461	[N/mmq]		
Tensione terreno allo spigolo di monte	0.12979	[N/mmq]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s ₂ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{e} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.75 Coefficiente di sicurezza a carico ultimo 13.73

Sollecitazioni paramento

Combinazione n° 34

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	6.6000	10.0200
2	0.22	4.5744	8.7675	10.1458
3	0.44	7.8987	11.0532	10.5233
4	0.66	11.2231	13.4505	11.1525
5	0.89	14.5475	16.0162	12.0514
6	1.11	17.8718	18.8358	13.5394
7	1.33	21.1962	22.0829	15.8862
8	1.55	24.5206	25.9119	18.7329
9	1.77	27.8450	30.4134	21.9473
10	1.99	31.1693	35.6646	25.4940
11	2.22	34.4937	41.7365	29.3508
12	2.44	37.8181	48.6961	33.5030
13	2.66	41.1424	56.6077	37.9403
14	2.88	44.4668	65.5336	42.6551
15	3.10	47.7912	75.5347	47.6421
16	3.32	51.1155	86.6707	52.8972
17	3.55	54.4399	99.0009	58.4174
18	3.77	57.7643	112.5836	64.2002
19	3.99	61.0887	127.4769	70.2438
20	4.21	64.4130	143.7383	76.5467
21	4.43	67.7374	161.4228	83.0666

Sollecitazioni fondazione di valle

Combinazione n° 34

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3190	7.9758
3	0.16	1.2763	15.9571
4	0.24	2.8723	23.9438
5	0.32	5.1074	31.9359
6	0.40	7.9822	39.9335
7	0.48	11.4969	47.9365
8	0.56	15.6522	55.9450
9	0.64	20.4483	63.9589
10	0.72	25.8857	71.9783
11	0.80	31.9649	80.0030

Sollecitazioni fondazione di monte

Combinazione n° 34

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.9104	-5.0761
3	0.72	-3.6679	-10.2615
4	1.08	-8.3119	-15.5562
5	1.44	-14.8815	-20.9601
6	1.80	-23.4163	-26.4733
7	2.16	-33.9554	-32.0958
8	2.52	-46.5383	-37.8275
9	2.88	-60.0283	-35.2685
10	3.24	-71.8487	-30.4187
11	3.60	-81.8929	-24.6782

Sollecitazioni mensola di contrappeso

Combinazione n° 34

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 34

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	? c	? _{fs}	? fi
1	0.00	100, 60	21.99	21.99	0.134	0.021	5.838	-1.453
2	0.22	100, 60	21.99	21.99	0.185	0.021	6.810	-2.087
3	0.44	100, 60	21.99	21.99	0.235	0.022	8.155	-2.695
4	0.66	100, 60	21.99	21.99	0.288	0.023	9.603	-3.326
5	0.89	100, 60	21.99	21.99	0.344	0.025	11.200	-3.993
6	1.11	100, 60	21.99	21.99	0.405	0.028	13.022	-4.717
7	1.33	100, 60	21.99	21.99	0.476	0.033	15.219	-5.536
8	1.55	100, 60	21.99	21.99	0.558	0.039	17.927	-6.487
9	1.77	100, 60	21.99	21.99	0.654	0.046	21.225	-7.589
10	1.99	100, 60	21.99	21.99	0.765	0.054	25.183	-8.858
11	2.22	100, 60	21.99	21.99	0.893	0.062	29.863	-10.311
12	2.44	100, 60	21.99	21.99	1.040	0.070	35.325	-11.962
13	2.66	100, 60	21.99	21.99	1.206	0.080	41.628	-13.824
14	2.88	100, 60	21.99	21.99	1.393	0.090	48.826	-15.911
15	3.10	100, 60	21.99	21.99	1.601	0.100	56.974	-18.236
16	3.32	100, 60	21.99	21.99	1.833	0.111	66.125	-20.811
17	3.55	100, 60	21.99	21.99	2.089	0.123	76.331	-23.650
18	3.77	100, 60	21.99	21.99	2.371	0.135	87.645	-26.766
19	3.99	100, 60	21.99	21.99	2.679	0.148	100.118	-30.170
20	4.21	100, 60	21.99	21.99	3.016	0.161	113.801	-33.876
21	4.43	100, 60	21.99	21.99	3.381	0.175	128.743	-37.895

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 34

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_fi	? _c	? c	? _{fi}	? fs
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100.50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 34

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.008	0.017	0.387	-0.078
3	0.16	100, 61	15.71	15.71	0.030	0.033	1.529	-0.307
4	0.24	100, 62	15.71	15.71	0.065	0.048	3.397	-0.681
5	0.32	100, 63	15.71	15.71	0.114	0.064	5.966	-1.192
6	0.40	100, 64	15.71	15.71	0.175	0.079	9.210	-1.834
7	0.48	100, 64	15.71	15.71	0.248	0.094	13.105	-2.601
8	0.56	100, 65	15.71	15.71	0.332	0.108	17.628	-3.488
9	0.64	100, 66	15.71	15.71	0.425	0.122	22.758	-4.489
10	0.72	100, 66	15.71	15.71	0.529	0.136	28.473	-5.599
11	0.80	100, 67	15.71	15.71	0.642	0.149	34.754	-6.813

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.008	-0.006	-0.100	0.472
3	0.72	100, 95	21.99	21.99	0.035	-0.013	-0.421	1.969
4	1.08	100, 91	21.99	21.99	0.085	-0.021	-1.002	4.631

5	1.44	100, 88	21.99	21.99	0.161	-0.029	-1.888	8.617
6	1.80	100, 85	21.99	21.99	0.269	-0.038	-3.132	14.113
7	2.16	100, 82	21.99	21.99	0.414	-0.049	-4.799	21.337
8	2.52	100, 79	21.99	21.99	0.606	-0.060	-6.966	30.544
9	2.88	100, 75	15.71	15.71	0.992	-0.058	-10.839	57.324
10	3.24	100, 72	15.71	15.71	1.275	-0.052	-13.790	71.949
11	3.60	100, 69	15.71	15.71	1.567	-0.045	-16.751	86.197

Verifiche a fessurazione

Combinazione n° 34

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	$M_{\sf pf}$	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	-6.60	0.0000	0.00	0.000
2	0.22	21.99	21.99	-99.75	-8.77	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-11.05	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-13.45	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-16.02	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-18.84	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-22.08	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-25.91	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-30.41	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-35.66	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-41.74	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-48.70	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-56.61	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-65.53	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-75.53	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-86.67	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-99.00	0.0000	0.00	0.000
18	3.77	21.99	21.99	-99.75	-112.58	0.0255	208.31	0.090

3.99 4.21	21.99	21.99	00.75				
4 21			-99.75	-127.48	0.0304	208.31	0.108
7.21	21.99	21.99	-99.75	-143.74	0.0393	208.31	0.139
4.43	21.99	21.99	-99.75	-161.42	0.0484	208.31	0.171
ca fessuraz	ione fondazio	<u>one</u>					
Υ	A_{fs}	A_{fi}	M_{nf}	М	? _m	S _m	w
-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
-1.32	15.71	15.71	97.59	0.32	0.0000	0.00	0.000
-1.24	15.71	15.71	99.77	1.28	0.0000	0.00	0.000
-1.16	15.71	15.71	101.96	2.87	0.0000	0.00	0.000
-1.08	15.71	15.71	104.18	5.11	0.0000	0.00	0.000
-1.00	15.71	15.71	106.42	7.98	0.0000	0.00	0.000
-0.92	15.71	15.71	108.68	11.50	0.0000	0.00	0.000
-0.84	15.71	15.71	110.97	15.65	0.0000	0.00	0.000
-0.76	15.71	15.71	113.28	20.45	0.0000	0.00	0.000
-0.68	15.71	15.71	115.61	25.89	0.0000	0.00	0.000
-0.60	15.71	15.71	117.97	31.96	0.0000	0.00	0.000
0.00	15.71	15.71	-124.83	-81.89	0.0000	0.00	0.000
0.36	15.71	15.71	-136.19	-71.85	0.0000	0.00	0.000
0.72	15.71	15.71	-148.04	-60.03	0.0000	0.00	0.000
1.08	21.99	21.99	-166.39	-46.54	0.0000	0.00	0.000
1.44	21.99	21.99	-179.50	-33.96	0.0000	0.00	0.000
1.80	21.99	21.99	-193.10	-23.42	0.0000	0.00	0.000
2.16	21.99	21.99	-207.17	-14.88	0.0000	0.00	0.000
2.52	21.99	21.99	-221.73	-8.31	0.0000	0.00	0.000
2.88	21.99	21.99	-236.77	-3.67	0.0000	0.00	0.000
3.24	21.99	21.99	-252.29	-0.91	0.0000	0.00	0.000
3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
ca fessuraz	ione mensolo	a di monte					
Υ	\mathbf{A}_{fs}	A_{fi}	$M_{\sf pf}$	M	? _m	S _m	w
0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
	Y -1.40 -1.32 -1.24 -1.16 -1.08 -1.00 -0.92 -0.84 -0.76 -0.68 -0.60 0.00 0.36 0.72 1.08 1.44 1.80 2.16 2.52 2.88 3.24 3.60 ca fessuraz	Y A _{fs} -1.40 15.71 -1.32 15.71 -1.24 15.71 -1.16 15.71 -1.08 15.71 -1.00 15.71 -0.92 15.71 -0.84 15.71 -0.68 15.71 -0.68 15.71 -0.60 15.71 0.00 15.71 0.36 15.71 0.72 15.71 1.08 21.99 1.44 21.99 1.80 21.99 2.16 21.99 2.16 21.99 2.88 21.99 3.24 21.99 3.60 21.99	-1.40	Y A _{fs} A _{fi} M _{pf} -1.40 15.71 15.71 -95.45 -1.32 15.71 15.71 97.59 -1.24 15.71 15.71 101.96 -1.08 15.71 15.71 104.18 -1.00 15.71 15.71 106.42 -0.92 15.71 15.71 108.68 -0.84 15.71 15.71 110.97 -0.76 15.71 15.71 113.28 -0.68 15.71 15.71 113.28 -0.68 15.71 15.71 115.61 -0.60 15.71 15.71 115.61 -0.60 15.71 15.71 -124.83 0.36 15.71 15.71 -124.83 0.36 15.71 15.71 -148.04 1.08 21.99 21.99 -166.39 1.44 21.99 21.99 -166.39 1.44 21.99 21.99 -179.50 1.80 21.99 21.99 -207.17 2.52 21.99 21.99 -207.17 2.52 21.99 21.99 -221.73 2.88 21.99 21.99 -221.73 2.88 21.99 21.99 -221.73 2.88 21.99 21.99 -252.29 3.60 21.99 21.99 -268.29	Y A _{fs} A _{fi} M _{pf} M -1.40 15.71 15.71 -95.45 0.00 -1.32 15.71 15.71 97.59 0.32 -1.24 15.71 15.71 101.96 2.87 -1.08 15.71 15.71 104.18 5.11 -1.00 15.71 15.71 106.42 7.98 -0.92 15.71 15.71 108.68 11.50 -0.84 15.71 15.71 110.97 15.65 -0.76 15.71 15.71 113.28 20.45 -0.68 15.71 15.71 115.61 25.89 -0.60 15.71 15.71 117.97 31.96 0.00 15.71 15.71 -124.83 81.89 0.36 15.71 15.71 -124.83 81.89 0.36 15.71 15.71 -136.19 -71.85 0.72 15.71 15.71 -148.04 -60.03 1.08 21.99 21.99 -166.39 -46.54 1.44 21.99 21.99 -166.39 -46.54 1.44 21.99 21.99 -193.10 -23.42 2.16 21.99 21.99 -193.10 -23.42 2.16 21.99 21.99 -207.17 -14.88 2.52 21.99 21.99 -207.17 -14.88 2.52 21.99 21.99 -221.73 -8.31 2.88 21.99 21.99 -221.73 -8.31 2.88 21.99 21.99 -252.29 -0.91 3.60 21.99 21.99 -252.29 -0.91 3.60 21.99 21.99 -252.29 -0.91	Y A _{fs} A _{fi} M _{pf} M E _m -1.40 15.71 15.71 -95.45 0.00 0.0000 -1.32 15.71 15.71 97.59 0.32 0.0000 -1.24 15.71 15.71 199.77 1.28 0.0000 -1.16 15.71 15.71 101.96 2.87 0.0000 -1.08 15.71 15.71 104.18 5.11 0.0000 -1.00 15.71 15.71 106.42 7.98 0.0000 -0.92 15.71 15.71 108.68 11.50 0.0000 -0.84 15.71 15.71 110.97 15.65 0.0000 -0.76 15.71 15.71 113.28 20.45 0.0000 -0.68 15.71 15.71 113.28 20.45 0.0000 -0.68 15.71 15.71 115.61 25.89 0.0000 -0.60 15.71 15.71 117.97 31.96 0.0000	Y A _{fs} A _{fi} M _{pf} M E _m s _m -1.40 15.71 15.71 -95.45 0.00 0.0000 0.00 -1.32 15.71 15.71 97.59 0.32 0.0000 0.00 -1.24 15.71 15.71 99.77 1.28 0.0000 0.00 -1.16 15.71 15.71 101.96 2.87 0.0000 0.00 -1.08 15.71 15.71 104.18 5.11 0.0000 0.00 -1.00 15.71 15.71 106.42 7.98 0.0000 0.00 -0.92 15.71 15.71 108.68 11.50 0.0000 0.00 -0.84 15.71 15.71 110.97 15.65 0.0000 0.00 -0.76 15.71 15.71 113.28 20.45 0.0000 0.00 -0.68 15.71 15.71 115.61 25.89 0.0000 0.00 -0.60 15.71 15.7

COMBINAZIONE n° 35

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
<u>Risultanti carichi esterni</u>					
Componente dir. X	16.70	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	125.3626	[kN]			
Risultante dei carichi applicati in dir. verticale	605.2904	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	613.9131	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	72.1310	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.01	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	618.1361	[kN]			
Inclinazione della risultante (rispetto alla normale)	6.70	[°]			
Momento rispetto al baricentro della fondazione	7.3806	[kNm]			
Carico ultimo della fondazione	8559.9245	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.12407	[N/mmq]		
Tensione terreno allo spigolo di monte	0.12056	[N/mmq]		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{e} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.41
Coefficiente di sicurezza a carico ultimo 13.94

Sollecitazioni paramento

Combinazione n° 35

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	11.0000	16.7000
2	0.22	4.5744	14.6479	16.8258
3	0.44	7.8987	18.4141	17.2033
4	0.66	11.2231	22.2919	17.8325
5	0.89	14.5475	26.3380	18.7314
6	1.11	17.8718	30.6381	20.2194
7	1.33	21.1962	35.3656	22.5662
8	1.55	24.5206	40.6751	25.4129
9	1.77	27.8450	46.6570	28.6273
10	1.99	31.1693	53.3887	32.1740
11	2.22	34.4937	60.9410	36.0308
12	2.44	37.8181	69.3811	40.1830
13	2.66	41.1424	78.7732	44.6203
14	2.88	44.4668	89.1795	49.3351
15	3.10	47.7912	100.6610	54.3221
16	3.32	51.1155	113.2775	59.5772
17	3.55	54.4399	127.0881	65.0974
18	3.77	57.7643	142.1513	70.8802
19	3.99	61.0887	158.5250	76.9238
20	4.21	64.4130	176.2669	83.2267
21	4.43	67.7374	195.4318	89.7466

Sollecitazioni fondazione di valle

Combinazione n° 35

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3488	8.7166
3	0.16	1.3942	17.4147
4	0.24	3.1346	26.0943
5	0.32	5.5688	34.7554
6	0.40	8.6950	43.3980
7	0.48	12.5119	52.0221
8	0.56	17.0181	60.6277
9	0.64	22.2119	69.2148
10	0.72	28.0919	77.7834
11	0.80	34.6567	86.3335

Sollecitazioni fondazione di monte

Combinazione n° 35

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.36	-1.4835	-8.1792
3	0.72	-5.8440	-15.9829
4	1.08	-12.9462	-23.4111
5	1.44	-22.6549	-30.4638
6	1.80	-34.8350	-37.1410
7	2.16	-49.3514	-43.4427
8	2.52	-66.0687	-49.3689
9	2.88	-83.6759	-46.5196
10	3.24	-99.4218	-40.8948
11	3.60	-113.0252	-33.8945

Sollecitazioni mensola di contrappeso

Combinazione n° 35

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 35

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	? _c	? _{fs}	? _{fi}
1	0.00	100, 60	21.99	21.99	0.224	0.035	9.730	-2.422
2	0.22	100, 60	21.99	21.99	0.305	0.035	12.005	-3.387
3	0.44	100, 60	21.99	21.99	0.386	0.036	14.651	-4.328
4	0.66	100, 60	21.99	21.99	0.469	0.037	17.398	-5.293
5	0.89	100, 60	21.99	21.99	0.556	0.039	20.294	-6.294
6	1.11	100, 60	21.99	21.99	0.648	0.042	23.415	-7.351
7	1.33	100, 60	21.99	21.99	0.748	0.047	26.913	-8.502
8	1.55	100, 60	21.99	21.99	0.861	0.053	30.925	-9.783
9	1.77	100, 60	21.99	21.99	0.987	0.060	35.530	-11.213
10	1.99	100, 60	21.99	21.99	1.129	0.068	40.797	-12.810
11	2.22	100, 60	21.99	21.99	1.287	0.076	46.787	-14.589
12	2.44	100, 60	21.99	21.99	1.464	0.084	53.562	-16.564
13	2.66	100, 60	21.99	21.99	1.660	0.094	61.177	-18.750
14	2.88	100, 60	21.99	21.99	1.877	0.104	69.687	-21.161
15	3.10	100, 60	21.99	21.99	2.115	0.114	79.148	-23.809
16	3.32	100, 60	21.99	21.99	2.377	0.125	89.612	-26.708
17	3.55	100, 60	21.99	21.99	2.663	0.137	101.132	-29.871
18	3.77	100, 60	21.99	21.99	2.975	0.149	113.759	-33.310
19	3.99	100, 60	21.99	21.99	3.313	0.162	127.544	-37.038
20	4.21	100, 60	21.99	21.99	3.679	0.175	142.540	-41.068
21	4.43	100, 60	21.99	21.99	4.075	0.189	158.794	-45.411

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 35

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 35

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.008	0.018	0.423	-0.085
3	0.16	100, 61	15.71	15.71	0.032	0.036	1.670	-0.336
4	0.24	100, 62	15.71	15.71	0.071	0.053	3.708	-0.743
5	0.32	100, 63	15.71	15.71	0.125	0.070	6.505	-1.299
6	0.40	100, 64	15.71	15.71	0.191	0.086	10.032	-1.998
7	0.48	100, 64	15.71	15.71	0.270	0.102	14.262	-2.831
8	0.56	100, 65	15.71	15.71	0.360	0.117	19.167	-3.793
9	0.64	100, 66	15.71	15.71	0.462	0.132	24.721	-4.877
10	0.72	100, 66	15.71	15.71	0.574	0.147	30.900	-6.077
11	0.80	100, 67	15.71	15.71	0.696	0.161	37.681	-7.387

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	${f A}_{\sf fs}$	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.014	-0.010	-0.162	0.768
3	0.72	100, 95	21.99	21.99	0.056	-0.021	-0.670	3.137
4	1.08	100, 91	21.99	21.99	0.132	-0.032	-1.560	7.213

5	1.44	100, 88	21.99	21.99	0.245	-0.043	-2.873	13.118
6	1.80	100, 85	21.99	21.99	0.399	-0.054	-4.660	20.995
7	2.16	100, 82	21.99	21.99	0.602	-0.066	-6.976	31.011
8	2.52	100, 79	21.99	21.99	0.860	-0.078	-9.889	43.362
9	2.88	100, 75	15.71	15.71	1.383	-0.077	-15.109	79.906
10	3.24	100, 72	15.71	15.71	1.765	-0.071	-19.082	99.560
11	3.60	100, 69	15.71	15.71	2.162	-0.061	-23.118	118.966

Verifiche a fessurazione

Combinazione n° 35

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	-11.00	0.0000	0.00	0.000
2	0.22	21.99	21.99	-99.75	-14.65	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-18.41	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-22.29	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-26.34	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-30.64	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-35.37	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-40.68	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-46.66	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-53.39	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-60.94	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-69.38	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-78.77	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-89.18	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-100.66	0.0231	208.31	0.082
16	3.32	21.99	21.99	-99.75	-113.28	0.0261	208.31	0.092
17	3.55	21.99	21.99	-99.75	-127.09	0.0311	208.31	0.110
18	3.77	21.99	21.99	-99.75	-142.15	0.0392	208.31	0.139

19	3.99	21.99	21.99	-99.75	-158.53	0.0477	208.31	0.169
20	4.21	21.99	21.99	-99.75	-176.27	0.0564	208.31	0.200
21	4.43	21.99	21.99	-99.75	-195.43	0.0656	208.31	0.232
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	${\sf A}_{\sf fs}$	A_{fi}	M_{pf}	М	? m	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.35	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.39	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	3.13	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	5.57	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	8.70	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	12.51	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	17.02	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	22.21	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	28.09	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	34.66	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-113.03	0.0000	0.00	0.000
13	0.36	15.71	15.71	-136.19	-99.42	0.0000	0.00	0.000
14	0.72	15.71	15.71	-148.04	-83.68	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-66.07	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-49.35	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-34.84	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-22.65	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-12.95	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-5.84	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-1.48	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	A_{fs}	A_{fi}	$M_{\sf pf}$	М	⊡ _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 36

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	7.8168	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.79	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	134.2525	[kN]			
Risultante dei carichi applicati in dir. verticale	617.2884	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	626.6403	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	79.9414	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.06	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	631.7188	[kN]			
Inclinazione della risultante (rispetto alla normale)	7.27	[°]			
Momento rispetto al baricentro della fondazione	-39.8235	[kNm]			
Carico ultimo della fondazione	8383.3174	[kN]			
<u>Tensioni sul terreno</u>	5.00	r 1			
Lunghezza fondazione reagente	5.02	[m]	,		
Tensione terreno allo spigolo di valle	0.11537	[N/mmq			
Tensione terreno allo spigolo di monte	0.13434	[N/mmq	_		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq	J		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s ₂ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.13

Coefficiente di sicurezza a carico ultimo 13.38

Sollecitazioni paramento

Combinazione n° 36

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0403	0.2462
3	0.44	7.8987	0.0670	0.7687
4	0.66	11.2231	0.3208	1.5673
5	0.89	14.5475	0.7834	2.6621
6	1.11	17.8718	1.5486	4.4034
7	1.33	21.1962	2.8069	7.0872
8	1.55	24.5206	4.7279	10.3199
9	1.77	27.8450	7.4110	13.9558
10	1.99	31.1693	10.9408	17.9567
11	2.22	34.4937	15.3954	22.2979
12	2.44	37.8181	20.8482	26.9633
13	2.66	41.1424	27.3699	31.9415
14	2.88	44.4668	35.0288	37.2245
15	3.10	47.7912	43.8917	42.8060
16	3.32	51.1155	54.0243	48.6819
17	3.55	54.4399	65.4914	54.8487
18	3.77	57.7643	78.3573	61.3038
19	3.99	61.0887	92.6854	68.0451
20	4.21	64.4130	108.5392	75.0710
21	4.43	67.7374	125.9789	82.3350

Sollecitazioni fondazione di valle

Combinazione n° 36

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3215	8.0402
3	0.16	1.2867	16.0907
4	0.24	2.8963	24.1514
5	0.32	5.1512	32.2225
6	0.40	8.0522	40.3038
7	0.48	11.6001	48.3954
8	0.56	15.7957	56.4973
9	0.64	20.6399	64.6095
10	0.72	26.1335	72.7319
11	0.80	32.2773	80.8647

Sollecitazioni fondazione di monte

Combinazione n° 36

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.36	-0.6210	-3.4843
3	0.72	-2.5336	-7.1760
4	1.08	-5.8125	-11.0749
5	1.44	-10.5324	-15.1812
6	1.80	-16.7679	-19.4949
7	2.16	-24.5936	-24.0159
8	2.52	-34.0842	-28.7442
9	2.88	-44.1383	-25.2798
10	3.24	-52.2145	-19.6228
11	3.60	-58.2416	-13.1731

Sollecitazioni mensola di contrappeso

Combinazione n° 36

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 36

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? c	\mathbf{P}_{fs}	? _{fi}
1	0.00	100, 60	21.99	21.99	0.000	0.000	0.000	0.000
2	0.22	100, 60	21.99	21.99	0.007	0.001	-0.110	-0.096
3	0.44	100, 60	21.99	21.99	0.013	0.002	-0.166	-0.190
4	0.66	100, 60	21.99	21.99	0.021	0.003	-0.197	-0.308
5	0.89	100, 60	21.99	21.99	0.032	0.006	-0.192	-0.464
6	1.11	100, 60	21.99	21.99	0.048	0.009	-0.134	-0.671
7	1.33	100, 60	21.99	21.99	0.070	0.015	0.022	-0.969
8	1.55	100, 60	21.99	21.99	0.107	0.022	0.531	-1.452
9	1.77	100, 60	21.99	21.99	0.165	0.029	1.772	-2.174
10	1.99	100, 60	21.99	21.99	0.244	0.038	3.923	-3.116
11	2.22	100, 60	21.99	21.99	0.342	0.047	7.000	-4.264
12	2.44	100, 60	21.99	21.99	0.460	0.057	11.020	-5.627
13	2.66	100, 60	21.99	21.99	0.600	0.067	16.018	-7.218
14	2.88	100, 60	21.99	21.99	0.763	0.078	22.042	-9.054
15	3.10	100, 60	21.99	21.99	0.950	0.090	29.144	-11.151
16	3.32	100, 60	21.99	21.99	1.163	0.102	37.377	-13.524
17	3.55	100, 60	21.99	21.99	1.402	0.115	46.797	-16.189
18	3.77	100, 60	21.99	21.99	1.670	0.129	57.459	-19.159
19	3.99	100, 60	21.99	21.99	1.968	0.143	69.417	-22.449
20	4.21	100, 60	21.99	21.99	2.296	0.158	82.728	-26.074
21	4.43	100, 60	21.99	21.99	2.657	0.173	97.443	-30.047

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 36

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 36

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	$\mathbf{P}_{\mathbf{c}}$	$?_{fi}$? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.008	0.017	0.390	-0.079
3	0.16	100, 61	15.71	15.71	0.030	0.033	1.541	-0.310
4	0.24	100, 62	15.71	15.71	0.066	0.049	3.426	-0.686
5	0.32	100, 63	15.71	15.71	0.115	0.064	6.017	-1.202
6	0.40	100, 64	15.71	15.71	0.177	0.080	9.291	-1.850
7	0.48	100, 64	15.71	15.71	0.250	0.095	13.223	-2.625
8	0.56	100, 65	15.71	15.71	0.335	0.109	17.790	-3.520
9	0.64	100, 66	15.71	15.71	0.429	0.123	22.971	-4.531
10	0.72	100, 66	15.71	15.71	0.534	0.137	28.746	-5.653
11	0.80	100, 67	15.71	15.71	0.648	0.151	35.094	-6.880

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.006	-0.004	-0.068	0.322
3	0.72	100, 95	21.99	21.99	0.024	-0.009	-0.291	1.360
4	1.08	100, 91	21.99	21.99	0.059	-0.015	-0.700	3.238

5	1.44	100, 88	21.99	21.99	0.114	-0.021	-1.336	6.099
6	1.80	100, 85	21.99	21.99	0.192	-0.028	-2.243	10.106
7	2.16	100, 82	21.99	21.99	0.300	-0.036	-3.476	15.454
8	2.52	100, 79	21.99	21.99	0.444	-0.045	-5.102	22.370
9	2.88	100, 75	15.71	15.71	0.730	-0.042	-7.970	42.150
10	3.24	100, 72	15.71	15.71	0.927	-0.034	-10.021	52.287
11	3.60	100, 69	15.71	15.71	1.114	-0.024	-11.913	61.303

Verifiche a fessurazione

Combinazione n° 36

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	0.00	0.0000	0.00	0.000
2	0.22	21.99	21.99	99.75	0.04	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-0.07	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-0.32	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-0.78	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-1.55	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-2.81	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-4.73	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-7.41	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-10.94	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-15.40	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-20.85	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-27.37	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-35.03	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-43.89	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-54.02	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-65.49	0.0000	0.00	0.000
18	3.77	21.99	21.99	-99.75	-78.36	0.0000	0.00	0.000

19	3.99	21.99	21.99	-99.75	-92.69	0.0000	0.00	0.000
20	4.21	21.99	21.99	-99.75	-108.54	0.0241	208.31	0.085
21	4.43	21.99	21.99	-99.75	-125.98	0.0286	208.31	0.101
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.32	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.29	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	2.90	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	5.15	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	8.05	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	11.60	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	15.80	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	20.64	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	26.13	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	32.28	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-58.24	0.0000	0.00	0.000
13	0.36	15.71	15.71	-136.19	-52.21	0.0000	0.00	0.000
14	0.72	15.71	15.71	-148.04	-44.14	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-34.08	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-24.59	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-16.77	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-10.53	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-5.81	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-2.53	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-0.62	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	\mathbf{A}_{fs}	A_{fi}	$M_{\sf pf}$	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 37

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	4.0285	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.73	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	-2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	130.7238	[kN]			
Risultante dei carichi applicati in dir. verticale	597.6016	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	606.7208	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	78.1419	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.06	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	611.7322	[kN]			
Inclinazione della risultante (rispetto alla normale)	7.34	[°]			
Momento rispetto al baricentro della fondazione	-36.8645	[kNm]			
Carico ultimo della fondazione	8392.8816	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]	-		
Tensione terreno allo spigolo di valle	0.11210	[N/mmq			
Tensione terreno allo spigolo di monte	0.12966	[N/mmq			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq	J		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.11

Coefficiente di sicurezza a carico ultimo 13.83

Sollecitazioni paramento

Combinazione n° 37

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0406	0.2422
3	0.44	7.8987	0.0646	0.7524
4	0.66	11.2231	0.3127	1.5306
5	0.89	14.5475	0.7640	2.5963
6	1.11	17.8718	1.5098	4.2893
7	1.33	21.1962	2.7349	6.8970
8	1.55	24.5206	4.6037	10.0373
9	1.77	27.8450	7.2128	13.5691
10	1.99	31.1693	10.6444	17.4550
11	2.22	34.4937	14.9741	21.6711
12	2.44	37.8181	20.2733	26.2018
13	2.66	41.1424	26.6105	31.0362
14	2.88	44.4668	34.0519	36.1663
15	3.10	47.7912	42.6625	41.5862
16	3.32	51.1155	52.5061	47.2916
17	3.55	54.4399	63.6454	53.2795
18	3.77	57.7643	76.1428	59.5470
19	3.99	61.0887	90.0601	66.0924
20	4.21	64.4130	105.4586	72.9139
21	4.43	67.7374	122.3968	79.9665

Sollecitazioni fondazione di valle

Combinazione n° 37

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3111	7.7777
3	0.16	1.2447	15.5640
4	0.24	2.8015	23.3587
5	0.32	4.9823	31.1618
6	0.40	7.7876	38.9735
7	0.48	11.2183	46.7936
8	0.56	15.2748	54.6223
9	0.64	19.9580	62.4593
10	0.72	25.2686	70.3049
11	0.80	31.2071	78.1590

Sollecitazioni fondazione di monte

Combinazione n° 37

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.9220	-5.1504
3	0.72	-3.7288	-10.4717
4	1.08	-8.4820	-15.9637
5	1.44	-15.2432	-21.6265
6	1.80	-24.0736	-27.4601
7	2.16	-35.0350	-33.4646
8	2.52	-48.1886	-39.6398
9	2.88	-62.4201	-37.5858
10	3.24	-75.1749	-33.3026
11	3.60	-86.3685	-28.1903

Sollecitazioni mensola di contrappeso

Combinazione n° 37

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 37

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? c	\mathbf{P}_{fs}	? _{fi}
1	0.00	100, 60	21.99	21.99	0.000	0.000	0.000	0.000
2	0.22	100, 60	21.99	21.99	0.007	0.001	-0.110	-0.096
3	0.44	100, 60	21.99	21.99	0.013	0.002	-0.167	-0.189
4	0.66	100, 60	21.99	21.99	0.021	0.003	-0.198	-0.307
5	0.89	100, 60	21.99	21.99	0.032	0.005	-0.195	-0.460
6	1.11	100, 60	21.99	21.99	0.047	0.009	-0.140	-0.665
7	1.33	100, 60	21.99	21.99	0.069	0.014	0.006	-0.955
8	1.55	100, 60	21.99	21.99	0.104	0.021	0.476	-1.421
9	1.77	100, 60	21.99	21.99	0.161	0.029	1.641	-2.122
10	1.99	100, 60	21.99	21.99	0.237	0.037	3.693	-3.041
11	2.22	100, 60	21.99	21.99	0.333	0.046	6.651	-4.162
12	2.44	100, 60	21.99	21.99	0.448	0.055	10.530	-5.491
13	2.66	100, 60	21.99	21.99	0.584	0.065	15.362	-7.042
14	2.88	100, 60	21.99	21.99	0.743	0.076	21.191	-8.831
15	3.10	100, 60	21.99	21.99	0.925	0.087	28.068	-10.873
16	3.32	100, 60	21.99	21.99	1.131	0.099	36.045	-13.183
17	3.55	100, 60	21.99	21.99	1.364	0.112	45.174	-15.775
18	3.77	100, 60	21.99	21.99	1.625	0.125	55.509	-18.665
19	3.99	100, 60	21.99	21.99	1.914	0.139	67.103	-21.865
20	4.21	100, 60	21.99	21.99	2.233	0.153	80.011	-25.390
21	4.43	100, 60	21.99	21.99	2.584	0.168	94.282	-29.253

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 37

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 37

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.007	0.016	0.377	-0.076
3	0.16	100, 61	15.71	15.71	0.029	0.032	1.491	-0.300
4	0.24	100, 62	15.71	15.71	0.064	0.047	3.314	-0.664
5	0.32	100, 63	15.71	15.71	0.111	0.062	5.820	-1.163
6	0.40	100, 64	15.71	15.71	0.171	0.077	8.985	-1.789
7	0.48	100, 64	15.71	15.71	0.242	0.091	12.787	-2.538
8	0.56	100, 65	15.71	15.71	0.324	0.106	17.203	-3.404
9	0.64	100, 66	15.71	15.71	0.415	0.119	22.212	-4.382
10	0.72	100, 66	15.71	15.71	0.517	0.133	27.794	-5.466
11	0.80	100, 67	15.71	15.71	0.627	0.146	33.930	-6.652

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.008	-0.006	-0.101	0.478
3	0.72	100, 95	21.99	21.99	0.036	-0.014	-0.428	2.002
4	1.08	100, 91	21.99	21.99	0.087	-0.021	-1.022	4.726

5	1.44	100, 88	21.99	21.99	0.165	-0.030	-1.933	8.826
6	1.80	100, 85	21.99	21.99	0.276	-0.040	-3.220	14.509
7	2.16	100, 82	21.99	21.99	0.428	-0.051	-4.952	22.015
8	2.52	100, 79	21.99	21.99	0.628	-0.063	-7.213	31.627
9	2.88	100, 75	15.71	15.71	1.032	-0.062	-11.271	59.608
10	3.24	100, 72	15.71	15.71	1.334	-0.057	-14.428	75.280
11	3.60	100, 69	15.71	15.71	1.652	-0.051	-17.666	90.908

Verifiche a fessurazione

Combinazione n° 37

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

Υ	${f A}_{\sf fs}$	\mathbf{A}_{fi}	$M_{\sf pf}$	M	? _m	S _m	w
0.00	21.99	21.99	-99.75	0.00	0.0000	0.00	0.000
0.22	21.99	21.99	99.75	0.04	0.0000	0.00	0.000
0.44	21.99	21.99	-99.75	-0.06	0.0000	0.00	0.000
0.66	21.99	21.99	-99.75	-0.31	0.0000	0.00	0.000
0.89	21.99	21.99	-99.75	-0.76	0.0000	0.00	0.000
1.11	21.99	21.99	-99.75	-1.51	0.0000	0.00	0.000
1.33	21.99	21.99	-99.75	-2.73	0.0000	0.00	0.000
1.55	21.99	21.99	-99.75	-4.60	0.0000	0.00	0.000
1.77	21.99	21.99	-99.75	-7.21	0.0000	0.00	0.000
1.99	21.99	21.99	-99.75	-10.64	0.0000	0.00	0.000
2.22	21.99	21.99	-99.75	-14.97	0.0000	0.00	0.000
2.44	21.99	21.99	-99.75	-20.27	0.0000	0.00	0.000
2.66	21.99	21.99	-99.75	-26.61	0.0000	0.00	0.000
2.88	21.99	21.99	-99.75	-34.05	0.0000	0.00	0.000
3.10	21.99	21.99	-99.75	-42.66	0.0000	0.00	0.000
3.32	21.99	21.99	-99.75	-52.51	0.0000	0.00	0.000
3.55	21.99	21.99	-99.75	-63.65	0.0000	0.00	0.000
3.77	21.99	21.99	-99.75	-76.14	0.0000	0.00	0.000
	0.00 0.22 0.44 0.66 0.89 1.11 1.33 1.55 1.77 1.99 2.22 2.44 2.66 2.88 3.10 3.32 3.55	0.00 21.99 0.22 21.99 0.44 21.99 0.66 21.99 0.89 21.99 1.11 21.99 1.33 21.99 1.55 21.99 1.77 21.99 1.99 21.99 2.22 21.99 2.44 21.99 2.88 21.99 3.10 21.99 3.32 21.99 3.55 21.99	0.00 21.99 21.99 0.22 21.99 21.99 0.44 21.99 21.99 0.66 21.99 21.99 0.89 21.99 21.99 1.11 21.99 21.99 1.33 21.99 21.99 1.55 21.99 21.99 1.77 21.99 21.99 1.99 21.99 21.99 2.22 21.99 21.99 2.44 21.99 21.99 2.88 21.99 21.99 3.10 21.99 21.99 3.32 21.99 21.99 3.55 21.99 21.99	0.00 21.99 21.99 -99.75 0.22 21.99 21.99 99.75 0.44 21.99 21.99 -99.75 0.66 21.99 21.99 -99.75 0.89 21.99 21.99 -99.75 1.11 21.99 21.99 -99.75 1.33 21.99 21.99 -99.75 1.55 21.99 21.99 -99.75 1.77 21.99 21.99 -99.75 1.99 21.99 21.99 -99.75 2.22 21.99 21.99 -99.75 2.44 21.99 21.99 -99.75 2.88 21.99 21.99 -99.75 3.10 21.99 21.99 -99.75 3.32 21.99 21.99 -99.75 3.55 21.99 21.99 -99.75	0.00 21.99 21.99 -99.75 0.00 0.22 21.99 21.99 99.75 0.04 0.44 21.99 21.99 -99.75 -0.06 0.66 21.99 21.99 -99.75 -0.31 0.89 21.99 21.99 -99.75 -0.76 1.11 21.99 21.99 -99.75 -1.51 1.33 21.99 21.99 -99.75 -2.73 1.55 21.99 21.99 -99.75 -4.60 1.77 21.99 21.99 -99.75 -7.21 1.99 21.99 21.99 -99.75 -10.64 2.22 21.99 21.99 -99.75 -20.27 2.66 21.99 21.99 -99.75 -26.61 2.88 21.99 21.99 -99.75 -34.05 3.10 21.99 21.99 -99.75 -52.51 3.55 21.99 21.99 -99.75 -63.65	0.00 21.99 21.99 -99.75 0.00 0.0000 0.22 21.99 21.99 99.75 0.04 0.0000 0.44 21.99 21.99 -99.75 -0.06 0.0000 0.66 21.99 21.99 -99.75 -0.31 0.0000 0.89 21.99 21.99 -99.75 -0.76 0.0000 1.11 21.99 21.99 -99.75 -1.51 0.0000 1.33 21.99 21.99 -99.75 -2.73 0.0000 1.55 21.99 21.99 -99.75 -4.60 0.0000 1.77 21.99 21.99 -99.75 -7.21 0.0000 1.99 21.99 21.99 -99.75 -10.64 0.0000 2.22 21.99 21.99 -99.75 -20.27 0.0000 2.44 21.99 21.99 -99.75 -26.61 0.0000 2.88 21.99 21.99 -99.75 -34.05 0.0000 3.10 21.99 21.99 -99.75 -52.51 0.0000 <td>0.00 21.99 21.99 -99.75 0.00 0.0000 0.00 0.22 21.99 21.99 99.75 0.04 0.0000 0.00 0.44 21.99 21.99 -99.75 -0.06 0.0000 0.00 0.66 21.99 21.99 -99.75 -0.31 0.0000 0.00 0.89 21.99 21.99 -99.75 -0.76 0.0000 0.00 1.11 21.99 21.99 -99.75 -1.51 0.0000 0.00 1.33 21.99 21.99 -99.75 -2.73 0.0000 0.00 1.55 21.99 21.99 -99.75 -7.21 0.0000 0.00 1.77 21.99 21.99 -99.75 -10.64 0.0000 0.00 2.22 21.99 21.99 -99.75 -14.97 0.0000 0.00 2.44 21.99 21.99 -99.75 -26.61 0.0000 0.00 2.88 21.99 21.99 -99.75 -34.05 0.0000 0.00 3.32 21</td>	0.00 21.99 21.99 -99.75 0.00 0.0000 0.00 0.22 21.99 21.99 99.75 0.04 0.0000 0.00 0.44 21.99 21.99 -99.75 -0.06 0.0000 0.00 0.66 21.99 21.99 -99.75 -0.31 0.0000 0.00 0.89 21.99 21.99 -99.75 -0.76 0.0000 0.00 1.11 21.99 21.99 -99.75 -1.51 0.0000 0.00 1.33 21.99 21.99 -99.75 -2.73 0.0000 0.00 1.55 21.99 21.99 -99.75 -7.21 0.0000 0.00 1.77 21.99 21.99 -99.75 -10.64 0.0000 0.00 2.22 21.99 21.99 -99.75 -14.97 0.0000 0.00 2.44 21.99 21.99 -99.75 -26.61 0.0000 0.00 2.88 21.99 21.99 -99.75 -34.05 0.0000 0.00 3.32 21

19	3.99	21.99	21.99	-99.75	-90.06	0.0000	0.00	0.000
20	4.21	21.99	21.99	-99.75	-105.46	0.0233	208.31	0.083
21	4.43	21.99	21.99	-99.75	-122.40	0.0275	208.31	0.097
<u>Verif</u>	ica fessuraz	zione fondazi	<u>one</u>					
N°	Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	M	™	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.31	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.24	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	2.80	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	4.98	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	7.79	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	11.22	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	15.27	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	19.96	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	25.27	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	31.21	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-86.37	0.0000	0.00	0.000
13	0.36	15.71	15.71	-136.19	-75.17	0.0000	0.00	0.000
14	0.72	15.71	15.71	-148.04	-62.42	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-48.19	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-35.03	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-24.07	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-15.24	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-8.48	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-3.73	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-0.92	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	zione mensolo	a di monte					
N°	Υ	A_{fs}	A_{fi}	$M_{\sf pf}$	М	□m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 38

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	7.8168	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.79	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	134.2525	[kN]			
Risultante dei carichi applicati in dir. verticale	617.2884	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	626.6403	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	79.9414	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.06	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	631.7188	[kN]			
Inclinazione della risultante (rispetto alla normale)	7.27	[°]			
Momento rispetto al baricentro della fondazione	-39.8235	[kNm]			
Carico ultimo della fondazione	8383.3174	[kN]			
<u>Tensioni sul terreno</u>	5.00	f 3			
Lunghezza fondazione reagente	5.02	[m]	,		
Tensione terreno allo spigolo di valle	0.11537	[N/mmq			
Tensione terreno allo spigolo di monte	0.13434	[N/mmq	_		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq	j		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _® = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.13

Coefficiente di sicurezza a carico ultimo 13.38

Sollecitazioni paramento

Combinazione n° 38

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0403	0.2462
3	0.44	7.8987	0.0670	0.7687
4	0.66	11.2231	0.3208	1.5673
5	0.89	14.5475	0.7834	2.6621
6	1.11	17.8718	1.5486	4.4034
7	1.33	21.1962	2.8069	7.0872
8	1.55	24.5206	4.7279	10.3199
9	1.77	27.8450	7.4110	13.9558
10	1.99	31.1693	10.9408	17.9567
11	2.22	34.4937	15.3954	22.2979
12	2.44	37.8181	20.8482	26.9633
13	2.66	41.1424	27.3699	31.9415
14	2.88	44.4668	35.0288	37.2245
15	3.10	47.7912	43.8917	42.8060
16	3.32	51.1155	54.0243	48.6819
17	3.55	54.4399	65.4914	54.8487
18	3.77	57.7643	78.3573	61.3038
19	3.99	61.0887	92.6854	68.0451
20	4.21	64.4130	108.5392	75.0710
21	4.43	67.7374	125.9789	82.3350

Sollecitazioni fondazione di valle

Combinazione n° 38

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3215	8.0402
3	0.16	1.2867	16.0907
4	0.24	2.8963	24.1514
5	0.32	5.1512	32.2225
6	0.40	8.0522	40.3038
7	0.48	11.6001	48.3954
8	0.56	15.7957	56.4973
9	0.64	20.6399	64.6095
10	0.72	26.1335	72.7319
11	0.80	32.2773	80.8647

Sollecitazioni fondazione di monte

Combinazione n° 38

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.6210	-3.4843
3	0.72	-2.5336	-7.1760
4	1.08	-5.8125	-11.0749
5	1.44	-10.5324	-15.1812
6	1.80	-16.7679	-19.4949
7	2.16	-24.5936	-24.0159
8	2.52	-34.0842	-28.7442
9	2.88	-44.1383	-25.2798
10	3.24	-52.2145	-19.6228
11	3.60	-58.2416	-13.1731

Sollecitazioni mensola di contrappeso

Combinazione n° 38

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 38

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? c	\mathbf{P}_{fs}	? _{fi}
1	0.00	100, 60	21.99	21.99	0.000	0.000	0.000	0.000
2	0.22	100, 60	21.99	21.99	0.007	0.001	-0.110	-0.096
3	0.44	100, 60	21.99	21.99	0.013	0.002	-0.166	-0.190
4	0.66	100, 60	21.99	21.99	0.021	0.003	-0.197	-0.308
5	0.89	100, 60	21.99	21.99	0.032	0.006	-0.192	-0.464
6	1.11	100, 60	21.99	21.99	0.048	0.009	-0.134	-0.671
7	1.33	100, 60	21.99	21.99	0.070	0.015	0.022	-0.969
8	1.55	100, 60	21.99	21.99	0.107	0.022	0.531	-1.452
9	1.77	100, 60	21.99	21.99	0.165	0.029	1.772	-2.174
10	1.99	100, 60	21.99	21.99	0.244	0.038	3.923	-3.116
11	2.22	100, 60	21.99	21.99	0.342	0.047	7.000	-4.264
12	2.44	100, 60	21.99	21.99	0.460	0.057	11.020	-5.627
13	2.66	100, 60	21.99	21.99	0.600	0.067	16.018	-7.218
14	2.88	100, 60	21.99	21.99	0.763	0.078	22.042	-9.054
15	3.10	100, 60	21.99	21.99	0.950	0.090	29.144	-11.151
16	3.32	100, 60	21.99	21.99	1.163	0.102	37.377	-13.524
17	3.55	100, 60	21.99	21.99	1.402	0.115	46.797	-16.189
18	3.77	100, 60	21.99	21.99	1.670	0.129	57.459	-19.159
19	3.99	100, 60	21.99	21.99	1.968	0.143	69.417	-22.449
20	4.21	100, 60	21.99	21.99	2.296	0.158	82.728	-26.074
21	4.43	100, 60	21.99	21.99	2.657	0.173	97.443	-30.047

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 38

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 38

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	$\mathbf{P}_{\mathbf{c}}$	$?_{fi}$? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.008	0.017	0.390	-0.079
3	0.16	100, 61	15.71	15.71	0.030	0.033	1.541	-0.310
4	0.24	100, 62	15.71	15.71	0.066	0.049	3.426	-0.686
5	0.32	100, 63	15.71	15.71	0.115	0.064	6.017	-1.202
6	0.40	100, 64	15.71	15.71	0.177	0.080	9.291	-1.850
7	0.48	100, 64	15.71	15.71	0.250	0.095	13.223	-2.625
8	0.56	100, 65	15.71	15.71	0.335	0.109	17.790	-3.520
9	0.64	100, 66	15.71	15.71	0.429	0.123	22.971	-4.531
10	0.72	100, 66	15.71	15.71	0.534	0.137	28.746	-5.653
11	0.80	100, 67	15.71	15.71	0.648	0.151	35.094	-6.880

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.006	-0.004	-0.068	0.322
3	0.72	100, 95	21.99	21.99	0.024	-0.009	-0.291	1.360
4	1.08	100, 91	21.99	21.99	0.059	-0.015	-0.700	3.238

5	1.44	100, 88	21.99	21.99	0.114	-0.021	-1.336	6.099
6	1.80	100, 85	21.99	21.99	0.192	-0.028	-2.243	10.106
7	2.16	100, 82	21.99	21.99	0.300	-0.036	-3.476	15.454
8	2.52	100, 79	21.99	21.99	0.444	-0.045	-5.102	22.370
9	2.88	100, 75	15.71	15.71	0.730	-0.042	-7.970	42.150
10	3.24	100, 72	15.71	15.71	0.927	-0.034	-10.021	52.287
11	3.60	100, 69	15.71	15.71	1.114	-0.024	-11.913	61.303

Verifiche a fessurazione

Combinazione n° 38

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	${f A}_{\sf fs}$	${f A}_{\sf fi}$	M_{pf}	M	? m	$\mathbf{S}_{\mathbf{m}}$	w
1	0.00	21.99	21.99	-99.75	0.00	0.0000	0.00	0.000
2	0.22	21.99	21.99	99.75	0.04	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-0.07	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-0.32	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-0.78	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-1.55	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-2.81	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-4.73	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-7.41	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-10.94	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-15.40	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-20.85	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-27.37	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-35.03	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-43.89	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-54.02	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-65.49	0.0000	0.00	0.000
18	3.77	21.99	21.99	-99.75	-78.36	0.0000	0.00	0.000

3.99 4.21 4.43 <i>a fessuraz</i>	21.99 21.99 21.99	21.99 21.99 21.99	-99.75 -99.75 -99.75	-92.69 -108.54	0.0000 0.0241	0.00 208.31	0.000 0.085
4.43					0.0241	208.31	0.085
	21.99	21.99	-99.75				
a fessuraz				-125.98	0.0286	208.31	0.101
	ione fondazio	<u>one</u>					
Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
-1.32	15.71	15.71	97.59	0.32	0.0000	0.00	0.000
-1.24	15.71	15.71	99.77	1.29	0.0000	0.00	0.000
-1.16	15.71	15.71	101.96	2.90	0.0000	0.00	0.000
-1.08	15.71	15.71	104.18	5.15	0.0000	0.00	0.000
-1.00	15.71	15.71	106.42	8.05	0.0000	0.00	0.000
-0.92	15.71	15.71	108.68	11.60	0.0000	0.00	0.000
-0.84	15.71	15.71	110.97	15.80	0.0000	0.00	0.000
-0.76	15.71	15.71	113.28	20.64	0.0000	0.00	0.000
-0.68	15.71	15.71	115.61	26.13	0.0000	0.00	0.000
-0.60	15.71	15.71	117.97	32.28	0.0000	0.00	0.000
0.00	15.71	15.71	-124.83	-58.24	0.0000	0.00	0.000
0.36	15.71	15.71	-136.19	-52.21	0.0000	0.00	0.000
0.72	15.71	15.71	-148.04	-44.14	0.0000	0.00	0.000
1.08	21.99	21.99	-166.39	-34.08	0.0000	0.00	0.000
1.44	21.99	21.99	-179.50	-24.59	0.0000	0.00	0.000
1.80	21.99	21.99	-193.10	-16.77	0.0000	0.00	0.000
2.16	21.99	21.99	-207.17	-10.53	0.0000	0.00	0.000
2.52	21.99	21.99	-221.73	-5.81	0.0000	0.00	0.000
2.88	21.99	21.99	-236.77	-2.53	0.0000	0.00	0.000
3.24	21.99	21.99	-252.29	-0.62	0.0000	0.00	0.000
3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
a fessuraz	ione mensolo	a di monte					
Υ	\mathbf{A}_{fs}	A_{fi}	M_{pf}	M	? _m	S _m	w
0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
<u>~</u>	-1.40 -1.32 -1.24 -1.16 -1.08 -1.00 -0.92 -0.84 -0.76 -0.68 -0.60 0.00 0.36 0.72 1.08 1.44 1.80 2.16 2.52 2.88 3.24 3.60	-1.40 15.71 -1.32 15.71 -1.24 15.71 -1.16 15.71 -1.08 15.71 -1.00 15.71 -0.92 15.71 -0.84 15.71 -0.76 15.71 -0.68 15.71 -0.60 15.71 0.00 15.71 0.36 15.71 0.72 15.71 1.08 21.99 1.44 21.99 1.80 21.99 2.16 21.99 2.16 21.99 2.88 21.99 3.24 21.99 3.24 21.99 3.60 21.99	-1.40	-1.40 15.71 15.71 -95.45 -1.32 15.71 15.71 97.59 -1.24 15.71 15.71 99.77 -1.16 15.71 15.71 101.96 -1.08 15.71 15.71 104.18 -1.00 15.71 15.71 106.42 -0.92 15.71 15.71 108.68 -0.84 15.71 15.71 110.97 -0.76 15.71 15.71 113.28 -0.68 15.71 15.71 113.28 -0.68 15.71 15.71 113.28 -0.60 15.71 15.71 117.97 0.00 15.71 15.71 117.97 0.00 15.71 15.71 -124.83 0.36 15.71 15.71 -124.83 0.36 15.71 15.71 -148.04 1.08 21.99 21.99 -166.39 1.44 21.99 21.99 -166.39 1.44 21.99 21.99 -179.50 1.80 21.99 21.99 -207.17 2.52 21.99 21.99 -221.73 2.88 21.99 21.99 -221.73 2.88 21.99 21.99 -221.73 2.88 21.99 21.99 -268.29	-1.40	-1.40	-1.40

COMBINAZIONE n° 39

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	4.0285	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.73	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	-2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	130.7238	[kN]			
Risultante dei carichi applicati in dir. verticale	597.6016	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	606.7208	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	78.1419	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.06	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	611.7322	[kN]			
Inclinazione della risultante (rispetto alla normale)	7.34	[°]			
Momento rispetto al baricentro della fondazione	-36.8645	[kNm]			
Carico ultimo della fondazione	8392.8816	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.11210	[N/mmq			
Tensione terreno allo spigolo di monte	0.12966	[N/mmq	_		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq	J		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s ₂ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.11

Coefficiente di sicurezza a carico ultimo 13.83

Sollecitazioni paramento

Combinazione n° 39

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0406	0.2422
3	0.44	7.8987	0.0646	0.7524
4	0.66	11.2231	0.3127	1.5306
5	0.89	14.5475	0.7640	2.5963
6	1.11	17.8718	1.5098	4.2893
7	1.33	21.1962	2.7349	6.8970
8	1.55	24.5206	4.6037	10.0373
9	1.77	27.8450	7.2128	13.5691
10	1.99	31.1693	10.6444	17.4550
11	2.22	34.4937	14.9741	21.6711
12	2.44	37.8181	20.2733	26.2018
13	2.66	41.1424	26.6105	31.0362
14	2.88	44.4668	34.0519	36.1663
15	3.10	47.7912	42.6625	41.5862
16	3.32	51.1155	52.5061	47.2916
17	3.55	54.4399	63.6454	53.2795
18	3.77	57.7643	76.1428	59.5470
19	3.99	61.0887	90.0601	66.0924
20	4.21	64.4130	105.4586	72.9139
21	4.43	67.7374	122.3968	79.9665

Sollecitazioni fondazione di valle

Combinazione n° 39

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.08	0.3111	7.7777
3	0.16	1.2447	15.5640
4	0.24	2.8015	23.3587
5	0.32	4.9823	31.1618
6	0.40	7.7876	38.9735
7	0.48	11.2183	46.7936
8	0.56	15.2748	54.6223
9	0.64	19.9580	62.4593
10	0.72	25.2686	70.3049
11	0.80	31.2071	78.1590

Sollecitazioni fondazione di monte

Combinazione n° 39

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.9220	-5.1504
3	0.72	-3.7288	-10.4717
4	1.08	-8.4820	-15.9637
5	1.44	-15.2432	-21.6265
6	1.80	-24.0736	-27.4601
7	2.16	-35.0350	-33.4646
8	2.52	-48.1886	-39.6398
9	2.88	-62.4201	-37.5858
10	3.24	-75.1749	-33.3026
11	3.60	-86.3685	-28.1903

Sollecitazioni mensola di contrappeso

Combinazione n° 39

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 39

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- Image: Tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	A_{fs}	A_{fi}	? _c	? _c	? _{fs}	? _{fi}
1	0.00	100, 60	21.99	21.99	0.000	0.000	0.000	0.000
2	0.22	100, 60	21.99	21.99	0.007	0.001	-0.110	-0.096
3	0.44	100, 60	21.99	21.99	0.013	0.002	-0.167	-0.189
4	0.66	100, 60	21.99	21.99	0.021	0.003	-0.198	-0.307
5	0.89	100, 60	21.99	21.99	0.032	0.005	-0.195	-0.460
6	1.11	100, 60	21.99	21.99	0.047	0.009	-0.140	-0.665
7	1.33	100, 60	21.99	21.99	0.069	0.014	0.006	-0.955
8	1.55	100, 60	21.99	21.99	0.104	0.021	0.476	-1.421
9	1.77	100, 60	21.99	21.99	0.161	0.029	1.641	-2.122
10	1.99	100, 60	21.99	21.99	0.237	0.037	3.693	-3.041
11	2.22	100, 60	21.99	21.99	0.333	0.046	6.651	-4.162
12	2.44	100, 60	21.99	21.99	0.448	0.055	10.530	-5.491
13	2.66	100, 60	21.99	21.99	0.584	0.065	15.362	-7.042
14	2.88	100, 60	21.99	21.99	0.743	0.076	21.191	-8.831
15	3.10	100, 60	21.99	21.99	0.925	0.087	28.068	-10.873
16	3.32	100, 60	21.99	21.99	1.131	0.099	36.045	-13.183
17	3.55	100, 60	21.99	21.99	1.364	0.112	45.174	-15.775
18	3.77	100, 60	21.99	21.99	1.625	0.125	55.509	-18.665
19	3.99	100, 60	21.99	21.99	1.914	0.139	67.103	-21.865
20	4.21	100, 60	21.99	21.99	2.233	0.153	80.011	-25.390
21	4.43	100, 60	21.99	21.99	2.584	0.168	94.282	-29.253

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 39

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_fs	A_fi	? _c	? c	? _{fi}	? fs
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100.50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 39

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- ☑c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.007	0.016	0.377	-0.076
3	0.16	100, 61	15.71	15.71	0.029	0.032	1.491	-0.300
4	0.24	100, 62	15.71	15.71	0.064	0.047	3.314	-0.664
5	0.32	100, 63	15.71	15.71	0.111	0.062	5.820	-1.163
6	0.40	100, 64	15.71	15.71	0.171	0.077	8.985	-1.789
7	0.48	100, 64	15.71	15.71	0.242	0.091	12.787	-2.538
8	0.56	100, 65	15.71	15.71	0.324	0.106	17.203	-3.404
9	0.64	100, 66	15.71	15.71	0.415	0.119	22.212	-4.382
10	0.72	100, 66	15.71	15.71	0.517	0.133	27.794	-5.466
11	0.80	100, 67	15.71	15.71	0.627	0.146	33.930	-6.652

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.008	-0.006	-0.101	0.478
3	0.72	100, 95	21.99	21.99	0.036	-0.014	-0.428	2.002
4	1.08	100, 91	21.99	21.99	0.087	-0.021	-1.022	4.726

5	1.44	100, 88	21.99	21.99	0.165	-0.030	-1.933	8.826
6	1.80	100, 85	21.99	21.99	0.276	-0.040	-3.220	14.509
7	2.16	100, 82	21.99	21.99	0.428	-0.051	-4.952	22.015
8	2.52	100, 79	21.99	21.99	0.628	-0.063	-7.213	31.627
9	2.88	100, 75	15.71	15.71	1.032	-0.062	-11.271	59.608
10	3.24	100, 72	15.71	15.71	1.334	-0.057	-14.428	75.280
11	3.60	100, 69	15.71	15.71	1.652	-0.051	-17.666	90.908

Verifiche a fessurazione

Combinazione n° 39

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	${f A}_{\sf fs}$	${f A}_{\sf fi}$	M_{pf}	M	? m	$\mathbf{S}_{\mathbf{m}}$	w
1	0.00	21.99	21.99	-99.75	0.00	0.0000	0.00	0.000
2	0.22	21.99	21.99	99.75	0.04	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-0.06	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-0.31	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-0.76	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-1.51	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-2.73	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-4.60	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-7.21	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-10.64	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-14.97	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-20.27	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-26.61	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-34.05	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-42.66	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-52.51	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-63.65	0.0000	0.00	0.000
18	3.77	21.99	21.99	-99.75	-76.14	0.0000	0.00	0.000

19	3.99	21.99	21.99	-99.75	-90.06	0.0000	0.00	0.000
20	4.21	21.99	21.99	-99.75	-105.46	0.0233	208.31	0.083
21	4.43	21.99	21.99	-99.75	-122.40	0.0275	208.31	0.097
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_fs	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.31	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.24	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	2.80	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	4.98	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	7.79	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	11.22	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	15.27	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	19.96	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	25.27	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	31.21	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-86.37	0.0000	0.00	0.000
13	0.36	15.71	15.71	-136.19	-75.17	0.0000	0.00	0.000
14	0.72	15.71	15.71	-148.04	-62.42	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-48.19	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-35.03	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-24.07	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-15.24	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-8.48	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-3.73	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-0.92	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	rione mensolo	a di monte					
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 40

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	7.8168	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.79	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	134.2525	[kN]			
Risultante dei carichi applicati in dir. verticale	617.2884	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	626.6403	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	79.9414	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.06	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	631.7188	[kN]			
Inclinazione della risultante (rispetto alla normale)	7.27	[°]			
Momento rispetto al baricentro della fondazione	-39.8235	[kNm]			
Carico ultimo della fondazione	8383.3174	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]	_		
Tensione terreno allo spigolo di valle	0.11537	[N/mmq			
Tensione terreno allo spigolo di monte	0.13434	[N/mmq			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

<u>Fattori per il calcolo della capacità portante</u>

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s ₂ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.13

Coefficiente di sicurezza a carico ultimo 13.38

Sollecitazioni paramento

Combinazione n° 40

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0403	0.2462
3	0.44	7.8987	0.0670	0.7687
4	0.66	11.2231	0.3208	1.5673
5	0.89	14.5475	0.7834	2.6621
6	1.11	17.8718	1.5486	4.4034
7	1.33	21.1962	2.8069	7.0872
8	1.55	24.5206	4.7279	10.3199
9	1.77	27.8450	7.4110	13.9558
10	1.99	31.1693	10.9408	17.9567
11	2.22	34.4937	15.3954	22.2979
12	2.44	37.8181	20.8482	26.9633
13	2.66	41.1424	27.3699	31.9415
14	2.88	44.4668	35.0288	37.2245
15	3.10	47.7912	43.8917	42.8060
16	3.32	51.1155	54.0243	48.6819
17	3.55	54.4399	65.4914	54.8487
18	3.77	57.7643	78.3573	61.3038
19	3.99	61.0887	92.6854	68.0451
20	4.21	64.4130	108.5392	75.0710
21	4.43	67.7374	125.9789	82.3350

Sollecitazioni fondazione di valle

Combinazione n° 40

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3215	8.0402
3	0.16	1.2867	16.0907
4	0.24	2.8963	24.1514
5	0.32	5.1512	32.2225
6	0.40	8.0522	40.3038
7	0.48	11.6001	48.3954
8	0.56	15.7957	56.4973
9	0.64	20.6399	64.6095
10	0.72	26.1335	72.7319
11	0.80	32.2773	80.8647

Sollecitazioni fondazione di monte

Combinazione n° 40

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	т
1	0.00	0.0000	0.0000
2	0.36	-0.6210	-3.4843
3	0.72	-2.5336	-7.1760
4	1.08	-5.8125	-11.0749
5	1.44	-10.5324	-15.1812
6	1.80	-16.7679	-19.4949
7	2.16	-24.5936	-24.0159
8	2.52	-34.0842	-28.7442
9	2.88	-44.1383	-25.2798
10	3.24	-52.2145	-19.6228
11	3.60	-58.2416	-13.1731

Sollecitazioni mensola di contrappeso

Combinazione n° 40

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 40

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? c	?fs	? _{fi}
1	0.00	100, 60	21.99	21.99	0.000	0.000	0.000	0.000
2	0.22	100, 60	21.99	21.99	0.007	0.001	-0.110	-0.096
3	0.44	100, 60	21.99	21.99	0.013	0.002	-0.166	-0.190
4	0.66	100, 60	21.99	21.99	0.021	0.003	-0.197	-0.308
5	0.89	100, 60	21.99	21.99	0.032	0.006	-0.192	-0.464
6	1.11	100, 60	21.99	21.99	0.048	0.009	-0.134	-0.671
7	1.33	100, 60	21.99	21.99	0.070	0.015	0.022	-0.969
8	1.55	100, 60	21.99	21.99	0.107	0.022	0.531	-1.452
9	1.77	100, 60	21.99	21.99	0.165	0.029	1.772	-2.174
10	1.99	100, 60	21.99	21.99	0.244	0.038	3.923	-3.116
11	2.22	100, 60	21.99	21.99	0.342	0.047	7.000	-4.264
12	2.44	100, 60	21.99	21.99	0.460	0.057	11.020	-5.627
13	2.66	100, 60	21.99	21.99	0.600	0.067	16.018	-7.218
14	2.88	100, 60	21.99	21.99	0.763	0.078	22.042	-9.054
15	3.10	100, 60	21.99	21.99	0.950	0.090	29.144	-11.151
16	3.32	100, 60	21.99	21.99	1.163	0.102	37.377	-13.524
17	3.55	100, 60	21.99	21.99	1.402	0.115	46.797	-16.189
18	3.77	100, 60	21.99	21.99	1.670	0.129	57.459	-19.159
19	3.99	100, 60	21.99	21.99	1.968	0.143	69.417	-22.449
20	4.21	100, 60	21.99	21.99	2.296	0.158	82.728	-26.074
21	4.43	100, 60	21.99	21.99	2.657	0.173	97.443	-30.047

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 40

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_fi	? _c	? c	? _{fi}	? fs
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100.50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 40

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.008	0.017	0.390	-0.079
3	0.16	100, 61	15.71	15.71	0.030	0.033	1.541	-0.310
4	0.24	100, 62	15.71	15.71	0.066	0.049	3.426	-0.686
5	0.32	100, 63	15.71	15.71	0.115	0.064	6.017	-1.202
6	0.40	100, 64	15.71	15.71	0.177	0.080	9.291	-1.850
7	0.48	100, 64	15.71	15.71	0.250	0.095	13.223	-2.625
8	0.56	100, 65	15.71	15.71	0.335	0.109	17.790	-3.520
9	0.64	100, 66	15.71	15.71	0.429	0.123	22.971	-4.531
10	0.72	100, 66	15.71	15.71	0.534	0.137	28.746	-5.653
11	0.80	100, 67	15.71	15.71	0.648	0.151	35.094	-6.880

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.006	-0.004	-0.068	0.322
3	0.72	100, 95	21.99	21.99	0.024	-0.009	-0.291	1.360
4	1.08	100, 91	21.99	21.99	0.059	-0.015	-0.700	3.238

5	1.44	100, 88	21.99	21.99	0.114	-0.021	-1.336	6.099
6	1.80	100, 85	21.99	21.99	0.192	-0.028	-2.243	10.106
7	2.16	100, 82	21.99	21.99	0.300	-0.036	-3.476	15.454
8	2.52	100, 79	21.99	21.99	0.444	-0.045	-5.102	22.370
9	2.88	100, 75	15.71	15.71	0.730	-0.042	-7.970	42.150
10	3.24	100, 72	15.71	15.71	0.927	-0.034	-10.021	52.287
11	3.60	100, 69	15.71	15.71	1.114	-0.024	-11.913	61.303

Verifiche a fessurazione

Combinazione n° 40

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	\mathbf{P}_{m}	S _m	w
1	0.00	21.99	21.99	-99.75	0.00	0.0000	0.00	0.000
2	0.22	21.99	21.99	99.75	0.04	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-0.07	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-0.32	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-0.78	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-1.55	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-2.81	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-4.73	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-7.41	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-10.94	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-15.40	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-20.85	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-27.37	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-35.03	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-43.89	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-54.02	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-65.49	0.0000	0.00	0.000
18	3.77	21.99	21.99	-99.75	-78.36	0.0000	0.00	0.000

19	3.99	21.99	21.99	-99.75	-92.69	0.0000	0.00	0.000
20	4.21	21.99	21.99	-99.75	-108.54	0.0241	208.31	0.085
21	4.43	21.99	21.99	-99.75	-125.98	0.0286	208.31	0.101
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	? _m	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.32	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.29	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	2.90	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	5.15	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	8.05	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	11.60	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	15.80	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	20.64	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	26.13	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	32.28	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-58.24	0.0000	0.00	0.000
13	0.36	15.71	15.71	-136.19	-52.21	0.0000	0.00	0.000
14	0.72	15.71	15.71	-148.04	-44.14	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-34.08	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-24.59	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-16.77	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-10.53	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-5.81	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-2.53	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-0.62	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	\mathbf{A}_{fs}	A_{fi}	\mathbf{M}_{pf}	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 41

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]	_	_	_
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	4.0285	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.73	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	-2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	130.7238	[kN]			
Risultante dei carichi applicati in dir. verticale	597.6016	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	606.7208	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	78.1419	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.06	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	611.7322	[kN]			
Inclinazione della risultante (rispetto alla normale)	7.34	[°]			
Momento rispetto al baricentro della fondazione	-36.8645	[kNm]			
Carico ultimo della fondazione	8392.8816	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]	,		
Tensione terreno allo spigolo di valle	0.11210	[N/mmq			
Tensione terreno allo spigolo di monte	0.12966	[N/mmq	_		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq	J		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _₽ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.11

Coefficiente di sicurezza a carico ultimo 13.83

Sollecitazioni paramento

Combinazione n° 41

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	0.0000	0.0000
2	0.22	4.5744	-0.0406	0.2422
3	0.44	7.8987	0.0646	0.7524
4	0.66	11.2231	0.3127	1.5306
5	0.89	14.5475	0.7640	2.5963
6	1.11	17.8718	1.5098	4.2893
7	1.33	21.1962	2.7349	6.8970
8	1.55	24.5206	4.6037	10.0373
9	1.77	27.8450	7.2128	13.5691
10	1.99	31.1693	10.6444	17.4550
11	2.22	34.4937	14.9741	21.6711
12	2.44	37.8181	20.2733	26.2018
13	2.66	41.1424	26.6105	31.0362
14	2.88	44.4668	34.0519	36.1663
15	3.10	47.7912	42.6625	41.5862
16	3.32	51.1155	52.5061	47.2916
17	3.55	54.4399	63.6454	53.2795
18	3.77	57.7643	76.1428	59.5470
19	3.99	61.0887	90.0601	66.0924
20	4.21	64.4130	105.4586	72.9139
21	4.43	67.7374	122.3968	79.9665

Sollecitazioni fondazione di valle

Combinazione n° 41

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.08	0.3111	7.7777
3	0.16	1.2447	15.5640
4	0.24	2.8015	23.3587
5	0.32	4.9823	31.1618
6	0.40	7.7876	38.9735
7	0.48	11.2183	46.7936
8	0.56	15.2748	54.6223
9	0.64	19.9580	62.4593
10	0.72	25.2686	70.3049
11	0.80	31.2071	78.1590

Sollecitazioni fondazione di monte

Combinazione n° 41

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.9220	-5.1504
3	0.72	-3.7288	-10.4717
4	1.08	-8.4820	-15.9637
5	1.44	-15.2432	-21.6265
6	1.80	-24.0736	-27.4601
7	2.16	-35.0350	-33.4646
8	2.52	-48.1886	-39.6398
9	2.88	-62.4201	-37.5858
10	3.24	-75.1749	-33.3026
11	3.60	-86.3685	-28.1903

Sollecitazioni mensola di contrappeso

Combinazione n° 41

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 41

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$? _c	? _c	?fs	? _{fi}
1	0.00	100, 60	21.99	21.99	0.000	0.000	0.000	0.000
2	0.22	100, 60	21.99	21.99	0.007	0.001	-0.110	-0.096
3	0.44	100, 60	21.99	21.99	0.013	0.002	-0.167	-0.189
4	0.66	100, 60	21.99	21.99	0.021	0.003	-0.198	-0.307
5	0.89	100, 60	21.99	21.99	0.032	0.005	-0.195	-0.460
6	1.11	100, 60	21.99	21.99	0.047	0.009	-0.140	-0.665
7	1.33	100, 60	21.99	21.99	0.069	0.014	0.006	-0.955
8	1.55	100, 60	21.99	21.99	0.104	0.021	0.476	-1.421
9	1.77	100, 60	21.99	21.99	0.161	0.029	1.641	-2.122
10	1.99	100, 60	21.99	21.99	0.237	0.037	3.693	-3.041
11	2.22	100, 60	21.99	21.99	0.333	0.046	6.651	-4.162
12	2.44	100, 60	21.99	21.99	0.448	0.055	10.530	-5.491
13	2.66	100, 60	21.99	21.99	0.584	0.065	15.362	-7.042
14	2.88	100, 60	21.99	21.99	0.743	0.076	21.191	-8.831
15	3.10	100, 60	21.99	21.99	0.925	0.087	28.068	-10.873
16	3.32	100, 60	21.99	21.99	1.131	0.099	36.045	-13.183
17	3.55	100, 60	21.99	21.99	1.364	0.112	45.174	-15.775
18	3.77	100, 60	21.99	21.99	1.625	0.125	55.509	-18.665
19	3.99	100, 60	21.99	21.99	1.914	0.139	67.103	-21.865
20	4.21	100, 60	21.99	21.99	2.233	0.153	80.011	-25.390
21	4.43	100, 60	21.99	21.99	2.584	0.168	94.282	-29.253

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 41

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 41

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.007	0.016	0.377	-0.076
3	0.16	100, 61	15.71	15.71	0.029	0.032	1.491	-0.300
4	0.24	100, 62	15.71	15.71	0.064	0.047	3.314	-0.664
5	0.32	100, 63	15.71	15.71	0.111	0.062	5.820	-1.163
6	0.40	100, 64	15.71	15.71	0.171	0.077	8.985	-1.789
7	0.48	100, 64	15.71	15.71	0.242	0.091	12.787	-2.538
8	0.56	100, 65	15.71	15.71	0.324	0.106	17.203	-3.404
9	0.64	100, 66	15.71	15.71	0.415	0.119	22.212	-4.382
10	0.72	100, 66	15.71	15.71	0.517	0.133	27.794	-5.466
11	0.80	100, 67	15.71	15.71	0.627	0.146	33.930	-6.652

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.008	-0.006	-0.101	0.478
3	0.72	100, 95	21.99	21.99	0.036	-0.014	-0.428	2.002
4	1.08	100, 91	21.99	21.99	0.087	-0.021	-1.022	4.726

5	1.44	100, 88	21.99	21.99	0.165	-0.030	-1.933	8.826
6	1.80	100, 85	21.99	21.99	0.276	-0.040	-3.220	14.509
7	2.16	100, 82	21.99	21.99	0.428	-0.051	-4.952	22.015
8	2.52	100, 79	21.99	21.99	0.628	-0.063	-7.213	31.627
9	2.88	100, 75	15.71	15.71	1.032	-0.062	-11.271	59.608
10	3.24	100, 72	15.71	15.71	1.334	-0.057	-14.428	75.280
11	3.60	100, 69	15.71	15.71	1.652	-0.051	-17.666	90.908

Verifiche a fessurazione

Combinazione n° 41

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	${f A}_{\sf fs}$	${f A}_{\sf fi}$	M_{pf}	M	? m	$\mathbf{S}_{\mathbf{m}}$	w
1	0.00	21.99	21.99	-99.75	0.00	0.0000	0.00	0.000
2	0.22	21.99	21.99	99.75	0.04	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-0.06	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-0.31	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-0.76	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-1.51	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-2.73	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-4.60	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-7.21	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-10.64	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-14.97	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-20.27	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-26.61	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-34.05	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-42.66	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-52.51	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-63.65	0.0000	0.00	0.000
18	3.77	21.99	21.99	-99.75	-76.14	0.0000	0.00	0.000

19	3.99	21.99	21.99	-99.75	-90.06	0.0000	0.00	0.000
20	4.21	21.99	21.99	-99.75	-105.46	0.0233	208.31	0.083
21	4.43	21.99	21.99	-99.75	-122.40	0.0275	208.31	0.097
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_fs	A_{fi}	M_{pf}	M	? _m	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.31	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.24	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	2.80	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	4.98	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	7.79	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	11.22	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	15.27	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	19.96	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	25.27	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	31.21	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-86.37	0.0000	0.00	0.000
13	0.36	15.71	15.71	-136.19	-75.17	0.0000	0.00	0.000
14	0.72	15.71	15.71	-148.04	-62.42	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-48.19	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-35.03	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-24.07	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-15.24	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-8.48	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-3.73	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-0.92	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	\mathbf{A}_{fs}	A_{fi}	M_{pf}	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.00	00	0.00

COMBINAZIONE n° 42

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	7.8168	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.79	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti carichi esterni</u>					
Componente dir. X	3.34	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	137.5925	[kN]			
Risultante dei carichi applicati in dir. verticale	617.2884	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	626.9314	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	83.2687	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.03	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	632.4371	[kN]			
Inclinazione della risultante (rispetto alla normale)	7.57	[°]			
Momento rispetto al baricentro della fondazione	-20.1929	[kNm]			
Carico ultimo della fondazione	8490.7365	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.12010	[N/mmc			
Tensione terreno allo spigolo di monte	0.12972	[N/mmc	•-		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	IJ		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{a} = 1.00$	s _[?] = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.01

Coefficiente di sicurezza a carico ultimo 13.54

Sollecitazioni paramento

Combinazione n° 42

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	2.2000	3.3400
2	0.22	4.5744	2.8999	3.5862
3	0.44	7.8987	3.7475	4.1087
4	0.66	11.2231	4.7415	4.9073
5	0.89	14.5475	5.9443	6.0021
6	1.11	17.8718	7.4497	7.7434
7	1.33	21.1962	9.4483	10.4272
8	1.55	24.5206	12.1095	13.6599
9	1.77	27.8450	15.5328	17.2958
10	1.99	31.1693	19.8028	21.2967
11	2.22	34.4937	24.9976	25.6379
12	2.44	37.8181	31.1907	30.3033
13	2.66	41.1424	38.4526	35.2815
14	2.88	44.4668	46.8517	40.5645
15	3.10	47.7912	56.4549	46.1460
16	3.32	51.1155	67.3277	52.0219
17	3.55	54.4399	79.5350	58.1887
18	3.77	57.7643	93.1411	64.6438
19	3.99	61.0887	108.2095	71.3851
20	4.21	64.4130	124.8035	78.4110
21	4.43	67.7374	142.9834	85.6750

Sollecitazioni fondazione di valle

Combinazione n° 42

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3364	8.4100
3	0.16	1.3456	16.8184
4	0.24	3.0273	25.2251
5	0.32	5.3815	33.6301
6	0.40	8.4081	42.0334
7	0.48	12.1068	50.4350
8	0.56	16.4776	58.8349
9	0.64	21.5204	67.2331
10	0.72	27.2349	75.6297
11	0.80	33.6211	84.0246

Sollecitazioni fondazione di monte

Combinazione n° 42

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-0.9079	-5.0382
3	0.72	-3.6233	-10.0414
4	1.08	-8.1336	-15.0096
5	1.44	-14.4260	-19.9427
6	1.80	-22.4881	-24.8408
7	2.16	-32.3072	-29.7038
8	2.52	-43.8706	-34.5317
9	2.88	-55.9898	-30.9247
10	3.24	-66.0362	-24.8825
11	3.60	-73.8511	-17.8054

Sollecitazioni mensola di contrappeso

Combinazione n° 42

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 42

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? c	? c	? _{fs}	? fi
1	0.00	100, 60	21.99	21.99	0.045	0.007	1.946	-0.484
2	0.22	100, 60	21.99	21.99	0.064	0.008	1.657	-0.769
3	0.44	100, 60	21.99	21.99	0.083	0.009	1.788	-1.030
4	0.66	100, 60	21.99	21.99	0.105	0.010	2.057	-1.322
5	0.89	100, 60	21.99	21.99	0.132	0.013	2.501	-1.664
6	1.11	100, 60	21.99	21.99	0.166	0.016	3.192	-2.080
7	1.33	100, 60	21.99	21.99	0.210	0.022	4.292	-2.618
8	1.55	100, 60	21.99	21.99	0.268	0.029	5.951	-3.313
9	1.77	100, 60	21.99	21.99	0.343	0.036	8.269	-4.186
10	1.99	100, 60	21.99	21.99	0.435	0.045	11.330	-5.252
11	2.22	100, 60	21.99	21.99	0.546	0.054	15.206	-6.525
12	2.44	100, 60	21.99	21.99	0.678	0.064	19.966	-8.020
13	2.66	100, 60	21.99	21.99	0.832	0.074	25.673	-9.751
14	2.88	100, 60	21.99	21.99	1.008	0.085	32.388	-11.732
15	3.10	100, 60	21.99	21.99	1.210	0.097	40.169	-13.979
16	3.32	100, 60	21.99	21.99	1.437	0.109	49.075	-16.505
17	3.55	100, 60	21.99	21.99	1.691	0.122	59.163	-19.324
18	3.77	100, 60	21.99	21.99	1.973	0.136	70.489	-22.451
19	3.99	100, 60	21.99	21.99	2.286	0.150	83.110	-25.899
20	4.21	100, 60	21.99	21.99	2.629	0.165	97.081	-29.683
21	4.43	100, 60	21.99	21.99	3.004	0.180	112.456	-33.815

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 42

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 42

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.008	0.017	0.408	-0.082
3	0.16	100, 61	15.71	15.71	0.031	0.034	1.612	-0.324
4	0.24	100, 62	15.71	15.71	0.069	0.051	3.581	-0.718
5	0.32	100, 63	15.71	15.71	0.120	0.067	6.286	-1.256
6	0.40	100, 64	15.71	15.71	0.185	0.083	9.701	-1.932
7	0.48	100, 64	15.71	15.71	0.261	0.099	13.800	-2.739
8	0.56	100, 65	15.71	15.71	0.349	0.114	18.558	-3.672
9	0.64	100, 66	15.71	15.71	0.448	0.128	23.951	-4.725
10	0.72	100, 66	15.71	15.71	0.557	0.143	29.957	-5.891
11	0.80	100, 67	15.71	15.71	0.675	0.157	36.555	-7.166

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.008	-0.006	-0.099	0.470
3	0.72	100, 95	21.99	21.99	0.035	-0.013	-0.415	1.945
4	1.08	100, 91	21.99	21.99	0.083	-0.020	-0.980	4.532

5	1.44	100, 88	21.99	21.99	0.156	-0.028	-1.830	8.353
6	1.80	100, 85	21.99	21.99	0.258	-0.036	-3.008	13.554
7	2.16	100, 82	21.99	21.99	0.394	-0.045	-4.566	20.301
8	2.52	100, 79	21.99	21.99	0.571	-0.054	-6.566	28.793
9	2.88	100, 75	15.71	15.71	0.926	-0.051	-10.110	53.467
10	3.24	100, 72	15.71	15.71	1.172	-0.043	-12.674	66.128
11	3.60	100, 69	15.71	15.71	1.413	-0.032	-15.106	77.733

Verifiche a fessurazione

Combinazione n° 42

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	-2.20	0.0000	0.00	0.000
2	0.22	21.99	21.99	-99.75	-2.90	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-3.75	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-4.74	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-5.94	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-7.45	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-9.45	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-12.11	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-15.53	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-19.80	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-25.00	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-31.19	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-38.45	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-46.85	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-56.45	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-67.33	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-79.54	0.0000	0.00	0.000
18	3.77	21.99	21.99	-99.75	-93.14	0.0000	0.00	0.000

19	3.99	21.99	21.99	-99.75	-108.21	0.0242	208.31	0.086
20	4.21	21.99	21.99	-99.75	-124.80	0.0284	208.31	0.101
21	4.43	21.99	21.99	-99.75	-142.98	0.0384	208.31	0.136
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_fs	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.34	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.35	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	3.03	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	5.38	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	8.41	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	12.11	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	16.48	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	21.52	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	27.23	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	33.62	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-73.85	0.0000	0.00	0.000
13	0.36	15.71	15.71	-136.19	-66.04	0.0000	0.00	0.000
14	0.72	15.71	15.71	-148.04	-55.99	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-43.87	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-32.31	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-22.49	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-14.43	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-8.13	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-3.62	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-0.91	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 43

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	4.0285	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.73	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	-2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti carichi esterni</u>					
Componente dir. X	3.34	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	134.0638	[kN]			
Risultante dei carichi applicati in dir. verticale	597.6016	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	607.0119	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	81.4692	[kN]			
Eccentricità rispetto al baricentro della fondazione	-0.03	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	612.4547	[kN]			
Inclinazione della risultante (rispetto alla normale)	7.64	[°]			
Momento rispetto al baricentro della fondazione	-17.2340	[kNm]			
Carico ultimo della fondazione	8503.8211	[kN]			
<u>Tensioni sul terreno</u>	5.0 2				
Lunghezza fondazione reagente	5.02	[m]	,		
Tensione terreno allo spigolo di valle	0.11684	[N/mmq	-		
Tensione terreno allo spigolo di monte	0.12505	[N/mmq	-		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq	1]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	s _[?] = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.98

Coefficiente di sicurezza a carico ultimo 14.01

Sollecitazioni paramento

Combinazione n° 43

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	2.2000	3.3400
2	0.22	4.5744	2.8996	3.5822
3	0.44	7.8987	3.7451	4.0924
4	0.66	11.2231	4.7333	4.8706
5	0.89	14.5475	5.9249	5.9363
6	1.11	17.8718	7.4110	7.6293
7	1.33	21.1962	9.3762	10.2370
8	1.55	24.5206	11.9853	13.3773
9	1.77	27.8450	15.3346	16.9091
10	1.99	31.1693	19.5064	20.7950
11	2.22	34.4937	24.5764	25.0111
12	2.44	37.8181	30.6158	29.5418
13	2.66	41.1424	37.6932	34.3762
14	2.88	44.4668	45.8749	39.5063
15	3.10	47.7912	55.2257	44.9262
16	3.32	51.1155	65.8095	50.6316
17	3.55	54.4399	77.6890	56.6195
18	3.77	57.7643	90.9267	62.8870
19	3.99	61.0887	105.5842	69.4324
20	4.21	64.4130	121.7229	76.2539
21	4.43	67.7374	139.4014	83.3065

Sollecitazioni fondazione di valle

Combinazione n° 43

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3259	8.1476
3	0.16	1.3035	16.2917
4	0.24	2.9325	24.4323
5	0.32	5.2126	32.5694
6	0.40	8.1435	40.7031
7	0.48	11.7250	48.8332
8	0.56	15.9567	56.9599
9	0.64	20.8385	65.0830
10	0.72	26.3699	73.2027
11	0.80	32.5508	81.3189

Sollecitazioni fondazione di monte

Combinazione n° 43

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.36	-1.2089	-6.7044
3	0.72	-4.8186	-13.3372
4	1.08	-10.8031	-19.8984
5	1.44	-19.1368	-26.3880
6	1.80	-29.7939	-32.8060
7	2.16	-42.7485	-39.1525
8	2.52	-57.9751	-45.4274
9	2.88	-74.2717	-43.2307
10	3.24	-88.9966	-38.5624
11	3.60	-101.9780	-32.8225

Sollecitazioni mensola di contrappeso

Combinazione n° 43

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 43

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? c	? c	? _{fs}	? _{fi}
1	0.00	100, 60	21.99	21.99	0.045	0.007	1.946	-0.484
2	0.22	100, 60	21.99	21.99	0.064	0.008	1.657	-0.769
3	0.44	100, 60	21.99	21.99	0.083	0.009	1.786	-1.030
4	0.66	100, 60	21.99	21.99	0.105	0.010	2.050	-1.320
5	0.89	100, 60	21.99	21.99	0.132	0.012	2.485	-1.659
6	1.11	100, 60	21.99	21.99	0.165	0.016	3.161	-2.071
7	1.33	100, 60	21.99	21.99	0.208	0.022	4.232	-2.600
8	1.55	100, 60	21.99	21.99	0.266	0.028	5.846	-3.283
9	1.77	100, 60	21.99	21.99	0.339	0.036	8.100	-4.139
10	1.99	100, 60	21.99	21.99	0.429	0.044	11.074	-5.183
11	2.22	100, 60	21.99	21.99	0.538	0.053	14.841	-6.428
12	2.44	100, 60	21.99	21.99	0.666	0.062	19.465	-7.889
13	2.66	100, 60	21.99	21.99	0.816	0.072	25.008	-9.579
14	2.88	100, 60	21.99	21.99	0.988	0.083	31.530	-11.513
15	3.10	100, 60	21.99	21.99	1.184	0.094	39.088	-13.704
16	3.32	100, 60	21.99	21.99	1.405	0.106	47.738	-16.166
17	3.55	100, 60	21.99	21.99	1.653	0.119	57.536	-18.913
18	3.77	100, 60	21.99	21.99	1.928	0.132	68.536	-21.959
19	3.99	100, 60	21.99	21.99	2.232	0.146	80.793	-25.316
20	4.21	100, 60	21.99	21.99	2.566	0.160	94.362	-29.000
21	4.43	100, 60	21.99	21.99	2.931	0.175	109.293	-33.022

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 43

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 43

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	\mathbf{Z}_{c}	$?_{fi}$? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.008	0.017	0.395	-0.080
3	0.16	100, 61	15.71	15.71	0.030	0.033	1.561	-0.314
4	0.24	100, 62	15.71	15.71	0.067	0.049	3.468	-0.695
5	0.32	100, 63	15.71	15.71	0.117	0.065	6.089	-1.216
6	0.40	100, 64	15.71	15.71	0.179	0.080	9.396	-1.871
7	0.48	100, 64	15.71	15.71	0.253	0.095	13.365	-2.653
8	0.56	100, 65	15.71	15.71	0.338	0.110	17.971	-3.556
9	0.64	100, 66	15.71	15.71	0.434	0.124	23.192	-4.575
10	0.72	100, 66	15.71	15.71	0.539	0.138	29.006	-5.704
11	0.80	100, 67	15.71	15.71	0.654	0.152	35.391	-6.938

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	${f A}_{\sf fs}$	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.011	-0.008	-0.132	0.626
3	0.72	100, 95	21.99	21.99	0.047	-0.017	-0.553	2.587
4	1.08	100, 91	21.99	21.99	0.110	-0.027	-1.302	6.019

5	1.44	100, 88	21.99	21.99	0.207	-0.037	-2.427	11.081
6	1.80	100, 85	21.99	21.99	0.342	-0.048	-3.985	17.957
7	2.16	100, 82	21.99	21.99	0.522	-0.059	-6.042	26.862
8	2.52	100, 79	21.99	21.99	0.755	-0.072	-8.678	38.050
9	2.88	100, 75	15.71	15.71	1.228	-0.071	-13.411	70.926
10	3.24	100, 72	15.71	15.71	1.580	-0.067	-17.081	89.121
11	3.60	100, 69	15.71	15.71	1.951	-0.059	-20.859	107.338

Verifiche a fessurazione

Combinazione n° 43

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	-2.20	0.0000	0.00	0.000
2	0.22	21.99	21.99	-99.75	-2.90	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-3.75	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-4.73	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-5.92	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-7.41	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-9.38	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-11.99	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-15.33	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-19.51	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-24.58	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-30.62	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-37.69	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-45.87	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-55.23	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-65.81	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-77.69	0.0000	0.00	0.000
18	3.77	21.99	21.99	-99.75	-90.93	0.0000	0.00	0.000

19	3.99	21.99	21.99	-99.75	-105.58	0.0235	208.31	0.083		
20	4.21	21.99	21.99	-99.75	-121.72	0.0275	208.31	0.097		
21	4.43	21.99	21.99	-99.75	-139.40	0.0364	208.31	0.129		
<u>Verif</u>	ica fessuraz	zione fondazi	<u>one</u>							
N°	Υ	A_fs	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w		
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000		
2	-1.32	15.71	15.71	97.59	0.33	0.0000	0.00	0.000		
3	-1.24	15.71	15.71	99.77	1.30	0.0000	0.00	0.000		
4	-1.16	15.71	15.71	101.96	2.93	0.0000	0.00	0.000		
5	-1.08	15.71	15.71	104.18	5.21	0.0000	0.00	0.000		
6	-1.00	15.71	15.71	106.42	8.14	0.0000	0.00	0.000		
7	-0.92	15.71	15.71	108.68	11.72	0.0000	0.00	0.000		
8	-0.84	15.71	15.71	110.97	15.96	0.0000	0.00	0.000		
9	-0.76	15.71	15.71	113.28	20.84	0.0000	0.00	0.000		
10	-0.68	15.71	15.71	115.61	26.37	0.0000	0.00	0.000		
11	-0.60	15.71	15.71	117.97	32.55	0.0000	0.00	0.000		
12	0.00	15.71	15.71	-124.83	-101.98	0.0000	0.00	0.000		
13	0.36	15.71	15.71	-136.19	-89.00	0.0000	0.00	0.000		
14	0.72	15.71	15.71	-148.04	-74.27	0.0000	0.00	0.000		
15	1.08	21.99	21.99	-166.39	-57.98	0.0000	0.00	0.000		
16	1.44	21.99	21.99	-179.50	-42.75	0.0000	0.00	0.000		
17	1.80	21.99	21.99	-193.10	-29.79	0.0000	0.00	0.000		
18	2.16	21.99	21.99	-207.17	-19.14	0.0000	0.00	0.000		
19	2.52	21.99	21.99	-221.73	-10.80	0.0000	0.00	0.000		
20	2.88	21.99	21.99	-236.77	-4.82	0.0000	0.00	0.000		
21	3.24	21.99	21.99	-252.29	-1.21	0.0000	0.00	0.000		
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000		
<u>Verif</u>	<u>Verifica fessurazione mensola di monte</u>									
N°	Υ	A_{fs}	A_{fi}	$M_{\sf pf}$	М	? _m	S _m	w		
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000		
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000		

COMBINAZIONE n° 44

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	7.8168	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.79	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
Risultanti carichi esterni					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	144.2725	[kN]			
Risultante dei carichi applicati in dir. verticale	617.2884	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	627.5136	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	89.9232	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.03	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	633.9239	[kN]			
Inclinazione della risultante (rispetto alla normale)	8.16	[°]			
Momento rispetto al baricentro della fondazione	19.0682	[kNm]			
Carico ultimo della fondazione	8496.9820	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.12957	[N/mmq]		
Tensione terreno allo spigolo di monte	0.12048	[N/mmq	-		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N _? = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s ₂ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.79

Coefficiente di sicurezza a carico ultimo 13.54

Sollecitazioni paramento

Combinazione n° 44

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	Т
1	0.00	0.0000	6.6000	10.0200
2	0.22	4.5744	8.7804	10.2662
3	0.44	7.8987	11.1084	10.7887
4	0.66	11.2231	13.5828	11.5873
5	0.89	14.5475	16.2661	12.6821
6	1.11	17.8718	19.2520	14.4234
7	1.33	21.1962	22.7310	17.1072
8	1.55	24.5206	26.8727	20.3399
9	1.77	27.8450	31.7764	23.9758
10	1.99	31.1693	37.5269	27.9767
11	2.22	34.4937	44.2022	32.3179
12	2.44	37.8181	51.8757	36.9833
13	2.66	41.1424	60.6181	41.9615
14	2.88	44.4668	70.4976	47.2445
15	3.10	47.7912	81.5812	52.8260
16	3.32	51.1155	93.9345	58.7019
17	3.55	54.4399	107.6223	64.8687
18	3.77	57.7643	122.7088	71.3238
19	3.99	61.0887	139.2577	78.0651
20	4.21	64.4130	157.3321	85.0910
21	4.43	67.7374	176.9925	92.3550

Sollecitazioni fondazione di valle

Combinazione n° 44

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3663	9.1525
3	0.16	1.4637	18.2794
4	0.24	3.2903	27.3807
5	0.32	5.8439	36.4563
6	0.40	9.1226	45.5063
7	0.48	13.1243	54.5307
8	0.56	17.8468	63.5295
9	0.64	23.2883	72.5026
10	0.72	29.4466	81.4501
11	0.80	36.3196	90.3720

Sollecitazioni fondazione di monte

Combinazione n° 44

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-1.4797	-8.1337
3	0.72	-5.7939	-15.7475
4	1.08	-12.7555	-22.8416
5	1.44	-22.1775	-29.4159
6	1.80	-33.8726	-35.4703
7	2.16	-47.6537	-41.0050
8	2.52	-63.3338	-46.0198
9	2.88	-79.5496	-42.1148
10	3.24	-93.4981	-35.2900
11	3.60	-104.8460	-26.9455

Sollecitazioni mensola di contrappeso

Combinazione n° 44

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 44

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? _c	? c	? _{fs}	? fi
1	0.00	100, 60	21.99	21.99	0.134	0.021	5.838	-1.453
2	0.22	100, 60	21.99	21.99	0.185	0.022	6.821	-2.090
3	0.44	100, 60	21.99	21.99	0.236	0.023	8.204	-2.708
4	0.66	100, 60	21.99	21.99	0.291	0.024	9.719	-3.356
5	0.89	100, 60	21.99	21.99	0.349	0.027	11.420	-4.049
6	1.11	100, 60	21.99	21.99	0.414	0.030	13.387	-4.810
7	1.33	100, 60	21.99	21.99	0.489	0.036	15.788	-5.682
8	1.55	100, 60	21.99	21.99	0.577	0.043	18.770	-6.703
9	1.77	100, 60	21.99	21.99	0.682	0.050	22.423	-7.894
10	1.99	100, 60	21.99	21.99	0.803	0.059	26.820	-9.276
11	2.22	100, 60	21.99	21.99	0.944	0.068	32.032	-10.863
12	2.44	100, 60	21.99	21.99	1.105	0.078	38.125	-12.672
13	2.66	100, 60	21.99	21.99	1.288	0.088	45.161	-14.718
14	2.88	100, 60	21.99	21.99	1.494	0.099	53.202	-17.015
15	3.10	100, 60	21.99	21.99	1.725	0.111	62.307	-19.579
16	3.32	100, 60	21.99	21.99	1.982	0.123	72.534	-22.423
17	3.55	100, 60	21.99	21.99	2.266	0.136	83.941	-25.562
18	3.77	100, 60	21.99	21.99	2.578	0.150	96.585	-29.009
19	3.99	100, 60	21.99	21.99	2.920	0.164	110.522	-32.778
20	4.21	100, 60	21.99	21.99	3.293	0.179	125.809	-36.883
21	4.43	100, 60	21.99	21.99	3.699	0.194	142.499	-41.337

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 44

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ②c tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 44

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	? c	$ m ?_{fi}$	$ m ?_{fs}$
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.009	0.019	0.444	-0.090
3	0.16	100, 61	15.71	15.71	0.034	0.037	1.753	-0.352
4	0.24	100, 62	15.71	15.71	0.075	0.055	3.892	-0.780
5	0.32	100, 63	15.71	15.71	0.131	0.073	6.826	-1.364
6	0.40	100, 64	15.71	15.71	0.200	0.090	10.526	-2.096
7	0.48	100, 64	15.71	15.71	0.283	0.107	14.960	-2.970
8	0.56	100, 65	15.71	15.71	0.378	0.123	20.100	-3.977
9	0.64	100, 66	15.71	15.71	0.485	0.138	25.919	-5.113
10	0.72	100, 66	15.71	15.71	0.602	0.154	32.390	-6.370
11	0.80	100, 67	15.71	15.71	0.730	0.169	39.489	-7.742

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	${f A}_{\sf fs}$	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.014	-0.010	-0.162	0.766
3	0.72	100, 95	21.99	21.99	0.056	-0.020	-0.664	3.110
4	1.08	100, 91	21.99	21.99	0.130	-0.031	-1.537	7.107

5	1.44	100, 88	21.99	21.99	0.240	-0.041	-2.813	12.842
6	1.80	100, 85	21.99	21.99	0.388	-0.052	-4.531	20.415
7	2.16	100, 82	21.99	21.99	0.582	-0.062	-6.736	29.944
8	2.52	100, 79	21.99	21.99	0.825	-0.073	-9.480	41.567
9	2.88	100, 75	15.71	15.71	1.315	-0.069	-14.364	75.966
10	3.24	100, 72	15.71	15.71	1.660	-0.061	-17.945	93.628
11	3.60	100, 69	15.71	15.71	2.006	-0.049	-21.445	110.357

Verifiche a fessurazione

Combinazione n° 44

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	$M_{\sf pf}$	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	-6.60	0.0000	0.00	0.000
2	0.22	21.99	21.99	-99.75	-8.78	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-11.11	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-13.58	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-16.27	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-19.25	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-22.73	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-26.87	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-31.78	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-37.53	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-44.20	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-51.88	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-60.62	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-70.50	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-81.58	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-93.93	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-107.62	0.0245	208.31	0.087
18	3.77	21.99	21.99	-99.75	-122.71	0.0281	208.31	0.100

3.99	21.99	21.99	-99.75	-139.26	0.0372	208.31	0.132
4.21	21.99	21.99	-99.75	-157.33	0.0466	208.31	0.165
4.43	21.99	21.99	-99.75	-176.99	0.0564	208.31	0.200
<u>fessura.</u>	zione fondazio	<u>one</u>					
Υ	${\sf A}_{\sf fs}$	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
-1.32	15.71	15.71	97.59	0.37	0.0000	0.00	0.000
-1.24	15.71	15.71	99.77	1.46	0.0000	0.00	0.000
-1.16	15.71	15.71	101.96	3.29	0.0000	0.00	0.000
-1.08	15.71	15.71	104.18	5.84	0.0000	0.00	0.000
-1.00	15.71	15.71	106.42	9.12	0.0000	0.00	0.000
-0.92	15.71	15.71	108.68	13.12	0.0000	0.00	0.000
-0.84	15.71	15.71	110.97	17.85	0.0000	0.00	0.000
-0.76	15.71	15.71	113.28	23.29	0.0000	0.00	0.000
-0.68	15.71	15.71	115.61	29.45	0.0000	0.00	0.000
-0.60	15.71	15.71	117.97	36.32	0.0000	0.00	0.000
0.00	15.71	15.71	-124.83	-104.85	0.0000	0.00	0.000
0.36	15.71	15.71	-136.19	-93.50	0.0000	0.00	0.000
0.72	15.71	15.71	-148.04	-79.55	0.0000	0.00	0.000
1.08	21.99	21.99	-166.39	-63.33	0.0000	0.00	0.000
1.44	21.99	21.99	-179.50	-47.65	0.0000	0.00	0.000
1.80	21.99	21.99	-193.10	-33.87	0.0000	0.00	0.000
2.16	21.99	21.99	-207.17	-22.18	0.0000	0.00	0.000
2.52	21.99	21.99	-221.73	-12.76	0.0000	0.00	0.000
2.88	21.99	21.99	-236.77	-5.79	0.0000	0.00	0.000
3.24	21.99	21.99	-252.29	-1.48	0.0000	0.00	0.000
3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
fessura	zione mensolo	a di monte					
Υ	\mathbf{A}_{fs}	\mathbf{A}_{fi}	\mathbf{M}_{pf}	М	? _m	S _m	w
0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
0.00	(A _{fs} 18.85	18.85 12.57	M _{pf} A _{fs} A _{fi} M _{pf} 18.85 12.57 -68.41	M _{fs} A _{fi} M _{pf} M 0 18.85 12.57 -68.41 -0.06	M_{pf} M	M_{fs} M_{fi} M_{pf} M \mathbb{E}_{m} S_{m} M_{pf} M_{fi} M_{fi

COMBINAZIONE n° 45

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	4.0285	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.73	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	-2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti carichi esterni</u>					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	140.7438	[kN]			
Risultante dei carichi applicati in dir. verticale	597.6016	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	607.5941	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	88.1238	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.04	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	613.9515	[kN]			
Inclinazione della risultante (rispetto alla normale)	8.25	[°]			
Momento rispetto al baricentro della fondazione	22.0272	[kNm]			
Carico ultimo della fondazione	8476.8764	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.12630	[N/mmc			
Tensione terreno allo spigolo di monte	0.11581	[N/mmc	•-		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	[]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{g} = 1.00$	s ₂ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.76

Coefficiente di sicurezza a carico ultimo 13.95

Sollecitazioni paramento

Combinazione n° 45

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	M	т
1	0.00	0.0000	6.6000	10.0200
2	0.22	4.5744	8.7801	10.2622
3	0.44	7.8987	11.1060	10.7724
4	0.66	11.2231	13.5747	11.5506
5	0.89	14.5475	16.2467	12.6163
6	1.11	17.8718	19.2132	14.3093
7	1.33	21.1962	22.6590	16.9170
8	1.55	24.5206	26.7485	20.0573
9	1.77	27.8450	31.5783	23.5891
10	1.99	31.1693	37.2305	27.4750
11	2.22	34.4937	43.7809	31.6911
12	2.44	37.8181	51.3008	36.2218
13	2.66	41.1424	59.8586	41.0562
14	2.88	44.4668	69.5208	46.1863
15	3.10	47.7912	80.3521	51.6062
16	3.32	51.1155	92.4162	57.3116
17	3.55	54.4399	105.7763	63.2995
18	3.77	57.7643	120.4944	69.5670
19	3.99	61.0887	136.6323	76.1124
20	4.21	64.4130	154.2515	82.9339
21	4.43	67.7374	173.4104	89.9865

Sollecitazioni fondazione di valle

Combinazione n° 45

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3558	8.8905
3	0.16	1.4217	17.7536
4	0.24	3.1956	26.5892
5	0.32	5.6753	35.3974
6	0.40	8.8585	44.1782
7	0.48	12.7431	52.9315
8	0.56	17.3268	61.6574
9	0.64	22.6075	70.3559
10	0.72	28.5830	79.0270
11	0.80	35.2511	87.6706

Sollecitazioni fondazione di monte

Combinazione n° 45

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.36	-1.7803	-9.7979
3	0.72	-6.9877	-19.0394
4	1.08	-15.4219	-27.7246
5	1.44	-26.8826	-35.8534
6	1.80	-41.1696	-43.4259
7	2.16	-58.0825	-50.4421
8	2.52	-77.4212	-56.9019
9	2.88	-97.8092	-54.4054
10	3.24	-116.4303	-48.9525
11	3.60	-132.9382	-41.9433

Sollecitazioni mensola di contrappeso

Combinazione n° 45

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 45

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	${f A}_{\sf fi}$? c	? c	? _{fs}	? _{fi}
1	0.00	100, 60	21.99	21.99	0.134	0.021	5.838	-1.453
2	0.22	100, 60	21.99	21.99	0.185	0.022	6.821	-2.090
3	0.44	100, 60	21.99	21.99	0.236	0.023	8.202	-2.707
4	0.66	100, 60	21.99	21.99	0.291	0.024	9.712	-3.354
5	0.89	100, 60	21.99	21.99	0.349	0.027	11.403	-4.045
6	1.11	100, 60	21.99	21.99	0.413	0.030	13.353	-4.802
7	1.33	100, 60	21.99	21.99	0.487	0.036	15.725	-5.666
8	1.55	100, 60	21.99	21.99	0.575	0.042	18.661	-6.675
9	1.77	100, 60	21.99	21.99	0.678	0.050	22.248	-7.850
10	1.99	100, 60	21.99	21.99	0.797	0.058	26.559	-9.209
11	2.22	100, 60	21.99	21.99	0.935	0.067	31.661	-10.769
12	2.44	100, 60	21.99	21.99	1.093	0.076	37.619	-12.543
13	2.66	100, 60	21.99	21.99	1.273	0.086	44.492	-14.549
14	2.88	100, 60	21.99	21.99	1.474	0.097	52.341	-16.798
15	3.10	100, 60	21.99	21.99	1.700	0.108	61.222	-19.306
16	3.32	100, 60	21.99	21.99	1.951	0.120	71.194	-22.086
17	3.55	100, 60	21.99	21.99	2.228	0.133	82.311	-25.153
18	3.77	100, 60	21.99	21.99	2.533	0.146	94.630	-28.518
19	3.99	100, 60	21.99	21.99	2.866	0.160	108.204	-32.197
20	4.21	100, 60	21.99	21.99	3.230	0.174	123.088	-36.202
21	4.43	100, 60	21.99	21.99	3.626	0.189	139.334	-40.546

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 45

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 45

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? c	\mathbf{Z}_{c}	$?_{fi}$	$ m ?_{fs}$
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.008	0.018	0.432	-0.087
3	0.16	100, 61	15.71	15.71	0.033	0.036	1.703	-0.342
4	0.24	100, 62	15.71	15.71	0.073	0.054	3.780	-0.757
5	0.32	100, 63	15.71	15.71	0.127	0.071	6.629	-1.324
6	0.40	100, 64	15.71	15.71	0.195	0.087	10.221	-2.035
7	0.48	100, 64	15.71	15.71	0.275	0.103	14.525	-2.883
8	0.56	100, 65	15.71	15.71	0.367	0.119	19.514	-3.862
9	0.64	100, 66	15.71	15.71	0.470	0.134	25.161	-4.963
10	0.72	100, 66	15.71	15.71	0.584	0.149	31.440	-6.183
11	0.80	100, 67	15.71	15.71	0.708	0.164	38.327	-7.514

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.016	-0.012	-0.195	0.922
3	0.72	100, 95	21.99	21.99	0.067	-0.025	-0.801	3.751
4	1.08	100, 91	21.99	21.99	0.157	-0.037	-1.858	8.592

5	1.44	100, 88	21.99	21.99	0.290	-0.050	-3.410	15.566
6	1.80	100, 85	21.99	21.99	0.472	-0.063	-5.507	24.813
7	2.16	100, 82	21.99	21.99	0.709	-0.076	-8.210	36.498
8	2.52	100, 79	21.99	21.99	1.008	-0.090	-11.588	50.813
9	2.88	100, 75	15.71	15.71	1.617	-0.090	-17.661	93.403
10	3.24	100, 72	15.71	15.71	2.067	-0.084	-22.346	116.592
11	3.60	100, 69	15.71	15.71	2.543	-0.076	-27.191	139.926

Verifiche a fessurazione

Combinazione n° 45

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	-6.60	0.0000	0.00	0.000
2	0.22	21.99	21.99	-99.75	-8.78	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-11.11	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-13.57	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-16.25	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-19.21	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-22.66	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-26.75	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-31.58	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-37.23	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-43.78	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-51.30	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-59.86	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-69.52	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-80.35	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-92.42	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-105.78	0.0240	208.31	0.085
18	3.77	21.99	21.99	-99.75	-120.49	0.0276	208.31	0.098

19	3.99	21.99	21.99	-99.75	-136.63	0.0357	208.31	0.126
20	4.21	21.99	21.99	-99.75	-154.25	0.0450	208.31	0.159
21	4.43	21.99	21.99	-99.75	-173.41	0.0546	208.31	0.193
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_fs	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.36	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.42	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	3.20	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	5.68	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	8.86	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	12.74	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	17.33	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	22.61	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	28.58	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	35.25	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-132.94	0.0408	291.92	0.202
13	0.36	15.71	15.71	-136.19	-116.43	0.0000	0.00	0.000
14	0.72	15.71	15.71	-148.04	-97.81	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-77.42	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-58.08	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-41.17	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-26.88	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-15.42	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-6.99	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-1.78	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	ione mensolo	a di monte					
N°	Υ	${f A}_{\sf fs}$	A_{fi}	$M_{\sf pf}$	М	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 46

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	7.8168	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.79	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti carichi esterni</u>					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	144.2725	[kN]			
Risultante dei carichi applicati in dir. verticale	617.2884	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	627.5136	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	89.9232	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.03	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	633.9239	[kN]			
Inclinazione della risultante (rispetto alla normale)	8.16	[°]			
Momento rispetto al baricentro della fondazione	19.0682	[kNm]			
Carico ultimo della fondazione	8496.9820	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.12957	[N/mmq]		
Tensione terreno allo spigolo di monte	0.12048	[N/mmq			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmq]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{a} = 1.00$	s _[?] = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.79

Coefficiente di sicurezza a carico ultimo 13.54

Sollecitazioni paramento

Combinazione n° 46

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

ragilo positivo se diretto	o da monte verso	valle, espresso ir	ı KIN

Nr.	Υ	N	M	Т
1	0.00	0.0000	6.6000	10.0200
2	0.22	4.5744	8.7804	10.2662
3	0.44	7.8987	11.1084	10.7887
4	0.66	11.2231	13.5828	11.5873
5	0.89	14.5475	16.2661	12.6821
6	1.11	17.8718	19.2520	14.4234
7	1.33	21.1962	22.7310	17.1072
8	1.55	24.5206	26.8727	20.3399
9	1.77	27.8450	31.7764	23.9758
10	1.99	31.1693	37.5269	27.9767
11	2.22	34.4937	44.2022	32.3179
12	2.44	37.8181	51.8757	36.9833
13	2.66	41.1424	60.6181	41.9615
14	2.88	44.4668	70.4976	47.2445
15	3.10	47.7912	81.5812	52.8260
16	3.32	51.1155	93.9345	58.7019
17	3.55	54.4399	107.6223	64.8687
18	3.77	57.7643	122.7088	71.3238
19	3.99	61.0887	139.2577	78.0651
20	4.21	64.4130	157.3321	85.0910
21	4.43	67.7374	176.9925	92.3550

Sollecitazioni fondazione di valle

Combinazione n° 46

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3663	9.1525
3	0.16	1.4637	18.2794
4	0.24	3.2903	27.3807
5	0.32	5.8439	36.4563
6	0.40	9.1226	45.5063
7	0.48	13.1243	54.5307
8	0.56	17.8468	63.5295
9	0.64	23.2883	72.5026
10	0.72	29.4466	81.4501
11	0.80	36.3196	90.3720

Sollecitazioni fondazione di monte

Combinazione n° 46

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-1.4797	-8.1337
3	0.72	-5.7939	-15.7475
4	1.08	-12.7555	-22.8416
5	1.44	-22.1775	-29.4159
6	1.80	-33.8726	-35.4703
7	2.16	-47.6537	-41.0050
8	2.52	-63.3338	-46.0198
9	2.88	-79.5496	-42.1148
10	3.24	-93.4981	-35.2900
11	3.60	-104.8460	-26.9455

Sollecitazioni mensola di contrappeso

Combinazione n° 46

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 46

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? c	? c	? _{fs}	? _{fi}
1	0.00	100, 60	21.99	21.99	0.134	0.021	5.838	-1.453
2	0.22	100, 60	21.99	21.99	0.185	0.022	6.821	-2.090
3	0.44	100, 60	21.99	21.99	0.236	0.023	8.204	-2.708
4	0.66	100, 60	21.99	21.99	0.291	0.024	9.719	-3.356
5	0.89	100, 60	21.99	21.99	0.349	0.027	11.420	-4.049
6	1.11	100, 60	21.99	21.99	0.414	0.030	13.387	-4.810
7	1.33	100, 60	21.99	21.99	0.489	0.036	15.788	-5.682
8	1.55	100, 60	21.99	21.99	0.577	0.043	18.770	-6.703
9	1.77	100, 60	21.99	21.99	0.682	0.050	22.423	-7.894
10	1.99	100, 60	21.99	21.99	0.803	0.059	26.820	-9.276
11	2.22	100, 60	21.99	21.99	0.944	0.068	32.032	-10.863
12	2.44	100, 60	21.99	21.99	1.105	0.078	38.125	-12.672
13	2.66	100, 60	21.99	21.99	1.288	0.088	45.161	-14.718
14	2.88	100, 60	21.99	21.99	1.494	0.099	53.202	-17.015
15	3.10	100, 60	21.99	21.99	1.725	0.111	62.307	-19.579
16	3.32	100, 60	21.99	21.99	1.982	0.123	72.534	-22.423
17	3.55	100, 60	21.99	21.99	2.266	0.136	83.941	-25.562
18	3.77	100, 60	21.99	21.99	2.578	0.150	96.585	-29.009
19	3.99	100, 60	21.99	21.99	2.920	0.164	110.522	-32.778
20	4.21	100, 60	21.99	21.99	3.293	0.179	125.809	-36.883
21	4.43	100, 60	21.99	21.99	3.699	0.194	142.499	-41.337

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 46

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 46

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- □_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Х	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.009	0.019	0.444	-0.090
3	0.16	100, 61	15.71	15.71	0.034	0.037	1.753	-0.352
4	0.24	100, 62	15.71	15.71	0.075	0.055	3.892	-0.780
5	0.32	100, 63	15.71	15.71	0.131	0.073	6.826	-1.364
6	0.40	100, 64	15.71	15.71	0.200	0.090	10.526	-2.096
7	0.48	100, 64	15.71	15.71	0.283	0.107	14.960	-2.970
8	0.56	100, 65	15.71	15.71	0.378	0.123	20.100	-3.977
9	0.64	100, 66	15.71	15.71	0.485	0.138	25.919	-5.113
10	0.72	100, 66	15.71	15.71	0.602	0.154	32.390	-6.370
11	0.80	100, 67	15.71	15.71	0.730	0.169	39.489	-7.742

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	${f A}_{\sf fs}$	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.014	-0.010	-0.162	0.766
3	0.72	100, 95	21.99	21.99	0.056	-0.020	-0.664	3.110
4	1.08	100, 91	21.99	21.99	0.130	-0.031	-1.537	7.107

5	1.44	100, 88	21.99	21.99	0.240	-0.041	-2.813	12.842
6	1.80	100, 85	21.99	21.99	0.388	-0.052	-4.531	20.415
7	2.16	100, 82	21.99	21.99	0.582	-0.062	-6.736	29.944
8	2.52	100, 79	21.99	21.99	0.825	-0.073	-9.480	41.567
9	2.88	100, 75	15.71	15.71	1.315	-0.069	-14.364	75.966
10	3.24	100, 72	15.71	15.71	1.660	-0.061	-17.945	93.628
11	3.60	100, 69	15.71	15.71	2.006	-0.049	-21.445	110.357

Verifiche a fessurazione

Combinazione n° 46

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	${f A}_{\sf fs}$	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	-6.60	0.0000	0.00	0.000
2	0.22	21.99	21.99	-99.75	-8.78	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-11.11	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-13.58	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-16.27	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-19.25	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-22.73	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-26.87	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-31.78	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-37.53	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-44.20	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-51.88	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-60.62	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-70.50	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-81.58	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-93.93	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-107.62	0.0245	208.31	0.087
18	3.77	21.99	21.99	-99.75	-122.71	0.0281	208.31	0.100

19	3.99	21.99	21.99	-99.75	-139.26	0.0372	208.31	0.132
20	4.21	21.99	21.99	-99.75	-157.33	0.0466	208.31	0.165
21	4.43	21.99	21.99	-99.75	-176.99	0.0564	208.31	0.200
<u>Verif</u>	ica fessuraz	ione fondazi	<u>one</u>					
N°	Υ	A_fs	${\sf A}_{\sf fi}$	M_{pf}	М	? _m	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.37	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.46	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	3.29	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	5.84	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	9.12	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	13.12	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	17.85	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	23.29	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	29.45	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	36.32	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-104.85	0.0000	0.00	0.000
13	0.36	15.71	15.71	-136.19	-93.50	0.0000	0.00	0.000
14	0.72	15.71	15.71	-148.04	-79.55	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-63.33	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-47.65	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-33.87	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-22.18	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-12.76	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-5.79	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-1.48	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	īica fessuraz	ione mensolo	a di monte					
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	$M_{\sf pf}$	М	⊡ _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 47

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	4.0285	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.73	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	-2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti carichi esterni</u>					
Componente dir. X	10.02	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	140.7438	[kN]			
Risultante dei carichi applicati in dir. verticale	597.6016	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	607.5941	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	88.1238	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.04	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	613.9515	[kN]			
Inclinazione della risultante (rispetto alla normale)	8.25	[°]			
Momento rispetto al baricentro della fondazione	22.0272	[kNm]			
Carico ultimo della fondazione	8476.8764	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.12630	[N/mmc			
Tensione terreno allo spigolo di monte	0.11581	[N/mmc	•-		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	[]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N _? = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s ₂ = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.76

Coefficiente di sicurezza a carico ultimo 13.95

Sollecitazioni paramento

Combinazione n° 47

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Y	N	М	Т
1	0.00	0.0000	6.6000	10.0200
2	0.22	4.5744	8.7801	10.2622
3	0.44	7.8987	11.1060	10.7724
4	0.66	11.2231	13.5747	11.5506
5	0.89	14.5475	16.2467	12.6163
6	1.11	17.8718	19.2132	14.3093
7	1.33	21.1962	22.6590	16.9170
8	1.55	24.5206	26.7485	20.0573
9	1.77	27.8450	31.5783	23.5891
10	1.99	31.1693	37.2305	27.4750
11	2.22	34.4937	43.7809	31.6911
12	2.44	37.8181	51.3008	36.2218
13	2.66	41.1424	59.8586	41.0562
14	2.88	44.4668	69.5208	46.1863
15	3.10	47.7912	80.3521	51.6062
16	3.32	51.1155	92.4162	57.3116
17	3.55	54.4399	105.7763	63.2995
18	3.77	57.7643	120.4944	69.5670
19	3.99	61.0887	136.6323	76.1124
20	4.21	64.4130	154.2515	82.9339
21	4.43	67.7374	173.4104	89.9865

Sollecitazioni fondazione di valle

Combinazione n° 47

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3558	8.8905
3	0.16	1.4217	17.7536
4	0.24	3.1956	26.5892
5	0.32	5.6753	35.3974
6	0.40	8.8585	44.1782
7	0.48	12.7431	52.9315
8	0.56	17.3268	61.6574
9	0.64	22.6075	70.3559
10	0.72	28.5830	79.0270
11	0.80	35.2511	87.6706

Sollecitazioni fondazione di monte

Combinazione n° 47

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.36	-1.7803	-9.7979
3	0.72	-6.9877	-19.0394
4	1.08	-15.4219	-27.7246
5	1.44	-26.8826	-35.8534
6	1.80	-41.1696	-43.4259
7	2.16	-58.0825	-50.4421
8	2.52	-77.4212	-56.9019
9	2.88	-97.8092	-54.4054
10	3.24	-116.4303	-48.9525
11	3.60	-132.9382	-41.9433

Sollecitazioni mensola di contrappeso

Combinazione n° 47

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	Х	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 47

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- Image: Tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? c	? c	? _{fs}	? _{fi}
1	0.00	100, 60	21.99	21.99	0.134	0.021	5.838	-1.453
2	0.22	100, 60	21.99	21.99	0.185	0.022	6.821	-2.090
3	0.44	100, 60	21.99	21.99	0.236	0.023	8.202	-2.707
4	0.66	100, 60	21.99	21.99	0.291	0.024	9.712	-3.354
5	0.89	100, 60	21.99	21.99	0.349	0.027	11.403	-4.045
6	1.11	100, 60	21.99	21.99	0.413	0.030	13.353	-4.802
7	1.33	100, 60	21.99	21.99	0.487	0.036	15.725	-5.666
8	1.55	100, 60	21.99	21.99	0.575	0.042	18.661	-6.675
9	1.77	100, 60	21.99	21.99	0.678	0.050	22.248	-7.850
10	1.99	100, 60	21.99	21.99	0.797	0.058	26.559	-9.209
11	2.22	100, 60	21.99	21.99	0.935	0.067	31.661	-10.769
12	2.44	100, 60	21.99	21.99	1.093	0.076	37.619	-12.543
13	2.66	100, 60	21.99	21.99	1.273	0.086	44.492	-14.549
14	2.88	100, 60	21.99	21.99	1.474	0.097	52.341	-16.798
15	3.10	100, 60	21.99	21.99	1.700	0.108	61.222	-19.306
16	3.32	100, 60	21.99	21.99	1.951	0.120	71.194	-22.086
17	3.55	100, 60	21.99	21.99	2.228	0.133	82.311	-25.153
18	3.77	100, 60	21.99	21.99	2.533	0.146	94.630	-28.518
19	3.99	100, 60	21.99	21.99	2.866	0.160	108.204	-32.197
20	4.21	100, 60	21.99	21.99	3.230	0.174	123.088	-36.202
21	4.43	100, 60	21.99	21.99	3.626	0.189	139.334	-40.546

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 47

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 47

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	? _c	? c	$ m ?_{fi}$? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.008	0.018	0.432	-0.087
3	0.16	100, 61	15.71	15.71	0.033	0.036	1.703	-0.342
4	0.24	100, 62	15.71	15.71	0.073	0.054	3.780	-0.757
5	0.32	100, 63	15.71	15.71	0.127	0.071	6.629	-1.324
6	0.40	100, 64	15.71	15.71	0.195	0.087	10.221	-2.035
7	0.48	100, 64	15.71	15.71	0.275	0.103	14.525	-2.883
8	0.56	100, 65	15.71	15.71	0.367	0.119	19.514	-3.862
9	0.64	100, 66	15.71	15.71	0.470	0.134	25.161	-4.963
10	0.72	100, 66	15.71	15.71	0.584	0.149	31.440	-6.183
11	0.80	100, 67	15.71	15.71	0.708	0.164	38.327	-7.514

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.016	-0.012	-0.195	0.922
3	0.72	100, 95	21.99	21.99	0.067	-0.025	-0.801	3.751
4	1.08	100, 91	21.99	21.99	0.157	-0.037	-1.858	8.592

5	1.44	100, 88	21.99	21.99	0.290	-0.050	-3.410	15.566
6	1.80	100, 85	21.99	21.99	0.472	-0.063	-5.507	24.813
7	2.16	100, 82	21.99	21.99	0.709	-0.076	-8.210	36.498
8	2.52	100, 79	21.99	21.99	1.008	-0.090	-11.588	50.813
9	2.88	100, 75	15.71	15.71	1.617	-0.090	-17.661	93.403
10	3.24	100, 72	15.71	15.71	2.067	-0.084	-22.346	116.592
11	3.60	100, 69	15.71	15.71	2.543	-0.076	-27.191	139.926

Verifiche a fessurazione

Combinazione n° 47

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	-6.60	0.0000	0.00	0.000
2	0.22	21.99	21.99	-99.75	-8.78	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-11.11	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-13.57	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-16.25	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-19.21	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-22.66	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-26.75	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-31.58	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-37.23	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-43.78	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-51.30	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-59.86	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-69.52	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-80.35	0.0000	0.00	0.000
16	3.32	21.99	21.99	-99.75	-92.42	0.0000	0.00	0.000
17	3.55	21.99	21.99	-99.75	-105.78	0.0240	208.31	0.085
18	3.77	21.99	21.99	-99.75	-120.49	0.0276	208.31	0.098

3.99	21.99	24.00					
		21.99	-99.75	-136.63	0.0357	208.31	0.126
4.21	21.99	21.99	-99.75	-154.25	0.0450	208.31	0.159
4.43	21.99	21.99	-99.75	-173.41	0.0546	208.31	0.193
ca fessuraz	ione fondazio	<u>one</u>					
Υ	A_{fs}	A_{fi}	M_{nf}	М	? _m	S _m	w
-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
-1.32	15.71	15.71	97.59	0.36	0.0000	0.00	0.000
-1.24	15.71	15.71	99.77	1.42	0.0000	0.00	0.000
-1.16	15.71	15.71	101.96	3.20	0.0000	0.00	0.000
-1.08	15.71	15.71	104.18	5.68	0.0000	0.00	0.000
-1.00	15.71	15.71	106.42	8.86	0.0000	0.00	0.000
-0.92	15.71	15.71	108.68	12.74	0.0000	0.00	0.000
-0.84	15.71	15.71	110.97	17.33	0.0000	0.00	0.000
-0.76	15.71	15.71	113.28	22.61	0.0000	0.00	0.000
-0.68	15.71	15.71	115.61	28.58	0.0000	0.00	0.000
-0.60	15.71	15.71	117.97	35.25	0.0000	0.00	0.000
0.00	15.71	15.71	-124.83	-132.94	0.0408	291.92	0.202
0.36	15.71	15.71	-136.19	-116.43	0.0000	0.00	0.000
0.72	15.71	15.71	-148.04	-97.81	0.0000	0.00	0.000
1.08	21.99	21.99	-166.39	-77.42	0.0000	0.00	0.000
1.44	21.99	21.99	-179.50	-58.08	0.0000	0.00	0.000
1.80	21.99	21.99	-193.10	-41.17	0.0000	0.00	0.000
2.16	21.99	21.99	-207.17	-26.88	0.0000	0.00	0.000
2.52	21.99	21.99	-221.73	-15.42	0.0000	0.00	0.000
2.88	21.99	21.99	-236.77	-6.99	0.0000	0.00	0.000
3.24	21.99	21.99	-252.29	-1.78	0.0000	0.00	0.000
3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
ca fessuraz	ione mensolo	a di monte					
Υ	\mathbf{A}_{fs}	A_{fi}	M_{pf}	M	? _m	S _m	w
0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000
	4.43 Y -1.40 -1.32 -1.24 -1.16 -1.08 -1.00 -0.92 -0.84 -0.76 -0.68 -0.60 0.00 0.36 0.72 1.08 1.44 1.80 2.16 2.52 2.88 3.24 3.60 xa fessuraz	Y A _{fs} -1.40 15.71 -1.32 15.71 -1.24 15.71 -1.16 15.71 -1.08 15.71 -1.00 15.71 -0.92 15.71 -0.84 15.71 -0.68 15.71 -0.68 15.71 -0.68 15.71 0.00 15.71 0.36 15.71 0.72 15.71 1.08 21.99 1.44 21.99 1.80 21.99 2.16 21.99 2.16 21.99 2.16 21.99 2.88 21.99 3.24 21.99 3.60 21.99	4.43 21.99 Ca fessurazione fondazione Y A _{fi} -1.40 15.71 15.71 -1.32 15.71 15.71 -1.24 15.71 15.71 -1.08 15.71 15.71 -1.08 15.71 15.71 -0.92 15.71 15.71 -0.84 15.71 15.71 -0.76 15.71 15.71 -0.68 15.71 15.71 -0.60 15.71 15.71 0.00 15.71 15.71 0.72 15.71 15.71 1.08 21.99 21.99 1.80 21.99 21.99 2.16 21.99 21.99 2.88 21.99 21.99 2.88 21.99 21.99 3.60 21.99 21.99 **Ca fessurazione mensola di monte Y A _{fi} 0.00 18.85 12.57	4.43 21.99 -99.75 Ca fessurazione fondazione Y A _{fs} M _{pf} -1.40 15.71 15.71 -95.45 -1.32 15.71 15.71 97.59 -1.24 15.71 15.71 101.96 -1.08 15.71 15.71 104.18 -1.00 15.71 15.71 106.42 -0.92 15.71 15.71 108.68 -0.84 15.71 15.71 110.97 -0.68 15.71 15.71 115.61 -0.60 15.71 15.71 117.97 0.00 15.71 15.71 117.97 0.00 15.71 15.71 -124.83 0.36 15.71 15.71 -136.19 0.72 15.71 15.71 -148.04 1.08 21.99 21.99 -166.39 1.44 21.99 21.99 -207.17 2.52 21.99 21.99 -221.73 2.88 21.99 21.99 </td <td>4.43 21.99 -99.75 -173.41 Colfessurazione fondazione Y Afs Mpf M -1.40 15.71 15.71 -95.45 0.00 -1.32 15.71 15.71 97.59 0.36 -1.24 15.71 15.71 99.77 1.42 -1.16 15.71 15.71 101.96 3.20 -1.08 15.71 15.71 104.18 5.68 -1.00 15.71 15.71 106.42 8.86 -0.92 15.71 15.71 108.68 12.74 -0.84 15.71 15.71 110.97 17.33 -0.76 15.71 15.71 113.28 22.61 -0.68 15.71 15.71 117.97 35.25 0.00 15.71 15.71 117.97 35.25 0.00 15.71 15.71 -124.83 -132.94 0.36 15.71</td> <td>Y A_{fs} A_{fi} M_{pf} M E_m -1.40 15.71 15.71 -95.45 0.00 0.0000 -1.32 15.71 15.71 97.59 0.36 0.0000 -1.24 15.71 15.71 99.77 1.42 0.0000 -1.06 15.71 15.71 101.96 3.20 0.0000 -1.08 15.71 15.71 104.18 5.68 0.0000 -1.00 15.71 15.71 106.42 8.86 0.0000 -0.92 15.71 15.71 108.68 12.74 0.0000 -0.84 15.71 15.71 110.97 17.33 0.0000 -0.68 15.71 15.71 113.28 22.61 0.0000 -0.68 15.71 15.71 117.97 35.25 0.0000 -0.60 15.71 15.71 117.97 35.25 0.0000 0.36 15.71 15.71 -124.83 -132.94 0.0408</td> <td>Y A_{fs} A_{fi} M_{pf} M E_m s_m -1.40 15.71 15.71 -95.45 0.00 0.0000 0.00 -1.32 15.71 15.71 97.59 0.36 0.0000 0.00 -1.24 15.71 15.71 99.77 1.42 0.0000 0.00 -1.08 15.71 15.71 101.96 3.20 0.0000 0.00 -1.08 15.71 15.71 104.18 5.68 0.0000 0.00 -1.00 15.71 15.71 106.42 8.86 0.0000 0.00 -0.92 15.71 15.71 109.7 17.33 0.0000 0.00 -0.84 15.71 15.71 106.42 8.86 0.0000 0.00 -0.84 15.71 15.71 110.97 17.33 0.0000 0.00 -0.68 15.71 15.71 113.61 28.58 0.0000 0.00 -0.60 15.71 15.71<</td>	4.43 21.99 -99.75 -173.41 Colfessurazione fondazione Y Afs Mpf M -1.40 15.71 15.71 -95.45 0.00 -1.32 15.71 15.71 97.59 0.36 -1.24 15.71 15.71 99.77 1.42 -1.16 15.71 15.71 101.96 3.20 -1.08 15.71 15.71 104.18 5.68 -1.00 15.71 15.71 106.42 8.86 -0.92 15.71 15.71 108.68 12.74 -0.84 15.71 15.71 110.97 17.33 -0.76 15.71 15.71 113.28 22.61 -0.68 15.71 15.71 117.97 35.25 0.00 15.71 15.71 117.97 35.25 0.00 15.71 15.71 -124.83 -132.94 0.36 15.71	Y A _{fs} A _{fi} M _{pf} M E _m -1.40 15.71 15.71 -95.45 0.00 0.0000 -1.32 15.71 15.71 97.59 0.36 0.0000 -1.24 15.71 15.71 99.77 1.42 0.0000 -1.06 15.71 15.71 101.96 3.20 0.0000 -1.08 15.71 15.71 104.18 5.68 0.0000 -1.00 15.71 15.71 106.42 8.86 0.0000 -0.92 15.71 15.71 108.68 12.74 0.0000 -0.84 15.71 15.71 110.97 17.33 0.0000 -0.68 15.71 15.71 113.28 22.61 0.0000 -0.68 15.71 15.71 117.97 35.25 0.0000 -0.60 15.71 15.71 117.97 35.25 0.0000 0.36 15.71 15.71 -124.83 -132.94 0.0408	Y A _{fs} A _{fi} M _{pf} M E _m s _m -1.40 15.71 15.71 -95.45 0.00 0.0000 0.00 -1.32 15.71 15.71 97.59 0.36 0.0000 0.00 -1.24 15.71 15.71 99.77 1.42 0.0000 0.00 -1.08 15.71 15.71 101.96 3.20 0.0000 0.00 -1.08 15.71 15.71 104.18 5.68 0.0000 0.00 -1.00 15.71 15.71 106.42 8.86 0.0000 0.00 -0.92 15.71 15.71 109.7 17.33 0.0000 0.00 -0.84 15.71 15.71 106.42 8.86 0.0000 0.00 -0.84 15.71 15.71 110.97 17.33 0.0000 0.00 -0.68 15.71 15.71 113.61 28.58 0.0000 0.00 -0.60 15.71 15.71<

COMBINAZIONE n° 48

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	7.8168	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.79	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti carichi esterni</u>					
Componente dir. X	16.70	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	150.9525	[kN]			
Risultante dei carichi applicati in dir. verticale	617.2884	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	628.0958	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	96.5778	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.09	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	635.4775	[kN]			
Inclinazione della risultante (rispetto alla normale)	8.74	[°]			
Momento rispetto al baricentro della fondazione	58.3293	[kNm]			
Carico ultimo della fondazione	8282.8405	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.13903	[N/mmc			
Tensione terreno allo spigolo di monte	0.11125	[N/mmc			
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	IJ		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	s _? = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.60

Coefficiente di sicurezza a carico ultimo 13.19

Sollecitazioni paramento

Combinazione n° 48

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Υ	N	М	Т
1	0.00	0.0000	11.0000	16.7000
2	0.22	4.5744	14.6608	16.9462
3	0.44	7.8987	18.4693	17.4687
4	0.66	11.2231	22.4242	18.2673
5	0.89	14.5475	26.5879	19.3621
6	1.11	17.8718	31.0542	21.1034
7	1.33	21.1962	36.0137	23.7872
8	1.55	24.5206	41.6358	27.0199
9	1.77	27.8450	48.0200	30.6558
10	1.99	31.1693	55.2510	34.6567
11	2.22	34.4937	63.4067	38.9979
12	2.44	37.8181	72.5607	43.6633
13	2.66	41.1424	82.7835	48.6415
14	2.88	44.4668	94.1435	53.9245
15	3.10	47.7912	106.7075	59.5060
16	3.32	51.1155	120.5413	65.3819
17	3.55	54.4399	135.7095	71.5487
18	3.77	57.7643	152.2765	78.0038
19	3.99	61.0887	170.3058	84.7451
20	4.21	64.4130	189.8607	91.7710
21	4.43	67.7374	211.0015	99.0350

Sollecitazioni fondazione di valle

Combinazione n° 48

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3962	9.8979
3	0.16	1.5823	19.7463
4	0.24	3.5543	29.5450
5	0.32	6.3082	39.2943
6	0.40	9.8401	48.9939
7	0.48	14.1459	58.6440
8	0.56	19.2218	68.2445
9	0.64	25.0637	77.7955
10	0.72	31.6678	87.2969
11	0.80	39.0299	96.7487

Sollecitazioni fondazione di monte

Combinazione n° 48

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.36	-2.0490	-11.2159
3	0.72	-7.9549	-21.4273
4	1.08	-17.3561	-30.6341
5	1.44	-29.8909	-38.8363
6	1.80	-45.1977	-46.0340
7	2.16	-62.9148	-52.2271
8	2.52	-82.6807	-57.4156
9	2.88	-102.9575	-53.1996
10	3.24	-120.7678	-45.5789
11	3.60	-135.6038	-35.9538

Sollecitazioni mensola di contrappeso

Combinazione n° 48

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 48

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	A_{fs}	${\sf A}_{\sf fi}$? _c	? c	₽ _{fs}	? _{fi}
1	0.00	100, 60	21.99	21.99	0.224	0.035	9.730	-2.422
2	0.22	100, 60	21.99	21.99	0.305	0.036	12.017	-3.390
3	0.44	100, 60	21.99	21.99	0.387	0.037	14.700	-4.341
4	0.66	100, 60	21.99	21.99	0.472	0.038	17.514	-5.322
5	0.89	100, 60	21.99	21.99	0.561	0.041	20.514	-6.349
6	1.11	100, 60	21.99	21.99	0.656	0.044	23.782	-7.443
7	1.33	100, 60	21.99	21.99	0.762	0.050	27.485	-8.646
8	1.55	100, 60	21.99	21.99	0.881	0.057	31.773	-9.996
9	1.77	100, 60	21.99	21.99	1.015	0.064	36.733	-11.516
10	1.99	100, 60	21.99	21.99	1.167	0.073	42.440	-13.223
11	2.22	100, 60	21.99	21.99	1.338	0.082	48.963	-15.136
12	2.44	100, 60	21.99	21.99	1.529	0.092	56.368	-17.269
13	2.66	100, 60	21.99	21.99	1.742	0.102	64.717	-19.639
14	2.88	100, 60	21.99	21.99	1.978	0.113	74.071	-22.260
15	3.10	100, 60	21.99	21.99	2.239	0.125	84.488	-25.148
16	3.32	100, 60	21.99	21.99	2.525	0.137	96.029	-28.315
17	3.55	100, 60	21.99	21.99	2.839	0.150	108.748	-31.777
18	3.77	100, 60	21.99	21.99	3.181	0.164	122.705	-35.548
19	3.99	100, 60	21.99	21.99	3.553	0.178	137.955	-39.641
20	4.21	100, 60	21.99	21.99	3.957	0.193	154.553	-44.070
21	4.43	100, 60	21.99	21.99	4.392	0.208	172.555	-48.849

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 48

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_fi	? _c	? c	? _{fi}	? fs
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100.50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 48

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.009	0.021	0.481	-0.097
3	0.16	100, 61	15.71	15.71	0.037	0.040	1.895	-0.381
4	0.24	100, 62	15.71	15.71	0.081	0.060	4.204	-0.842
5	0.32	100, 63	15.71	15.71	0.141	0.079	7.369	-1.472
6	0.40	100, 64	15.71	15.71	0.216	0.097	11.354	-2.261
7	0.48	100, 64	15.71	15.71	0.305	0.115	16.124	-3.201
8	0.56	100, 65	15.71	15.71	0.407	0.132	21.648	-4.284
9	0.64	100, 66	15.71	15.71	0.521	0.149	27.895	-5.503
10	0.72	100, 66	15.71	15.71	0.647	0.165	34.833	-6.850
11	0.80	100, 67	15.71	15.71	0.784	0.181	42.436	-8.319

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	${f A}_{\sf fs}$	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.019	-0.014	-0.224	1.061
3	0.72	100, 95	21.99	21.99	0.077	-0.028	-0.912	4.271
4	1.08	100, 91	21.99	21.99	0.177	-0.041	-2.091	9.670

5	1.44	100, 88	21.99	21.99	0.323	-0.054	-3.791	17.308
6	1.80	100, 85	21.99	21.99	0.518	-0.067	-6.046	27.241
7	2.16	100, 82	21.99	21.99	0.768	-0.079	-8.893	39.534
8	2.52	100, 79	21.99	21.99	1.077	-0.091	-12.375	54.265
9	2.88	100, 75	15.71	15.71	1.702	-0.088	-18.590	98.319
10	3.24	100, 72	15.71	15.71	2.144	-0.079	-23.178	120.936
11	3.60	100, 69	15.71	15.71	2.594	-0.065	-27.737	142.731

Verifiche a fessurazione

Combinazione n° 48

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	\mathbf{A}_{fs}	${f A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	-11.00	0.0000	0.00	0.000
2	0.22	21.99	21.99	-99.75	-14.66	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-18.47	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-22.42	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-26.59	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-31.05	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-36.01	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-41.64	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-48.02	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-55.25	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-63.41	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-72.56	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-82.78	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-94.14	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-106.71	0.0246	208.31	0.087
16	3.32	21.99	21.99	-99.75	-120.54	0.0280	208.31	0.099
17	3.55	21.99	21.99	-99.75	-135.71	0.0361	208.31	0.128
18	3.77	21.99	21.99	-99.75	-152.28	0.0447	208.31	0.158

19	3.99	21.99	21.99	-99.75	-170.31	0.0538	208.31	0.190
20	4.21	21.99	21.99	-99.75	-189.86	0.0633	208.31	0.224
21	4.43	21.99	21.99	-99.75	-211.00	0.0732	208.31	0.259
<u>Verif</u>	fica fessuraz	zione fondazi	<u>one</u>					
N°	Υ	A_fs	${\sf A}_{\sf fi}$	M_{pf}	M	? _m	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.40	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.58	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	3.55	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	6.31	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	9.84	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	14.15	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	19.22	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	25.06	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	31.67	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	39.03	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-135.60	0.0416	291.92	0.206
13	0.36	15.71	15.71	-136.19	-120.77	0.0000	0.00	0.000
14	0.72	15.71	15.71	-148.04	-102.96	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-82.68	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-62.91	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-45.20	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-29.89	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-17.36	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-7.95	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-2.05	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	fica fessuraz	zione mensol	a di monte					
N°	Υ	A_fs	A_{fi}	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

COMBINAZIONE n° 49

Valore della spinta statica 116.6559 [kN] Componente orizzontale della spinta statica 108.6626 [kN]

Componente verticale della spinta statica	42.4386	[kN]			
Punto d'applicazione della spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinaz. della spinta rispetto alla normale alla superficie	21.33	[°]			
Inclinazione linea di rottura in condizioni statiche	65.48	[°]			
Incremento sismico della spinta	4.0285	[kN]			
Punto d'applicazione dell'incremento sismico di spinta	X = 3.60 [m]	[m]	Υ	=	-3.18
Inclinazione linea di rottura in condizioni sismiche	63.73	[°]			
Peso terrapieno gravante sulla fondazione a monte	395.9580	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte	X = 1.81 [m]	[m]	Υ	=	-2.22
Peso terrapieno gravante sulla mensola di contrappeso	0.0000	[kN]			
Baricentro terrapieno della mensola di contrappeso	X = 0.00	Y = 0.00			
Inerzia del muro	5.4288	[kN]			
Inerzia verticale del muro	-2.7144	[kN]			
Inerzia del terrapieno fondazione di monte	12.8799	[kN]			
Inerzia verticale del terrapieno fondazione di monte	-6.4399	[kN]			
Inerzia del terrapieno mensola di contrappeso	0.0000	[kN]			
Inerzia verticale del terrapieno mensola di contrappeso	0.0000	[kN]			
<u>Risultanti carichi esterni</u>					
Componente dir. X	16.70	[kN]			
<u>Risultanti</u>					
Risultante dei carichi applicati in dir. orizzontale	147.4238	[kN]			
Risultante dei carichi applicati in dir. verticale	597.6016	[kN]			
Resistenza passiva a valle del muro	-5.8584	[kN]			
Sforzo normale sul piano di posa della fondazione	608.1763	[kN]			
Sforzo tangenziale sul piano di posa della fondazione	94.7784	[kN]			
Eccentricità rispetto al baricentro della fondazione	0.10	[m]			
Lunghezza fondazione reagente	5.02	[m]			
Risultante in fondazione	615.5172	[kN]			
Inclinazione della risultante (rispetto alla normale)	8.86	[°]			
Momento rispetto al baricentro della fondazione	61.2883	[kNm]			
Carico ultimo della fondazione	8255.7405	[kN]			
<u>Tensioni sul terreno</u>					
Lunghezza fondazione reagente	5.02	[m]			
Tensione terreno allo spigolo di valle	0.13577	[N/mmc			
Tensione terreno allo spigolo di monte	0.10657	[N/mmc	•-		
Tensione terreno all'estremità della mensola di contrappeso	0.000	[N/mmc	IJ		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 44.04$	$N_q = 28.52$	N ₂ = 27.33
Fattori forma	$s_c = 1.00$	$s_{a} = 1.00$	s _[?] = 1.00

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 44.04$ $N'_{q} = 28.52$ $N'_{B} = 27.33$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.57

Coefficiente di sicurezza a carico ultimo 13.57

Sollecitazioni paramento

Combinazione n° 49

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN

Taglio positivo se diretto da monte verso valle, espresso in kN

Nr.	Y	N	M	Т
1	0.00	0.0000	11.0000	16.7000
2	0.22	4.5744	14.6605	16.9422
3	0.44	7.8987	18.4669	17.4524
4	0.66	11.2231	22.4161	18.2306
5	0.89	14.5475	26.5686	19.2963
6	1.11	17.8718	31.0155	20.9893
7	1.33	21.1962	35.9417	23.5970
8	1.55	24.5206	41.5117	26.7373
9	1.77	27.8450	47.8219	30.2691
10	1.99	31.1693	54.9546	34.1550
11	2.22	34.4937	62.9854	38.3711
12	2.44	37.8181	71.9858	42.9018
13	2.66	41.1424	82.0241	47.7362
14	2.88	44.4668	93.1666	52.8663
15	3.10	47.7912	105.4784	58.2862
16	3.32	51.1155	119.0230	63.9916
17	3.55	54.4399	133.8635	69.9795
18	3.77	57.7643	150.0621	76.2470
19	3.99	61.0887	167.6805	82.7924
20	4.21	64.4130	186.7801	89.6139
21	4.43	67.7374	207.4195	96.6665

Sollecitazioni fondazione di valle

Combinazione n° 49

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.08	0.3858	9.6359
3	0.16	1.5404	19.2204
4	0.24	3.4597	28.7536
5	0.32	6.1396	38.2354
6	0.40	9.5760	47.6658
7	0.48	13.7647	57.0448
8	0.56	18.7018	66.3725
9	0.64	24.3830	75.6488
10	0.72	30.8042	84.8738
11	0.80	37.9614	94.0473

Sollecitazioni fondazione di monte

Combinazione n° 49

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	т
1	0.00	0.0000	0.0000
2	0.36	-2.3497	-12.8801
3	0.72	-9.1488	-24.7191
4	1.08	-20.0225	-35.5171
5	1.44	-34.5961	-45.2739
6	1.80	-52.4948	-53.9896
7	2.16	-73.3437	-61.6642
8	2.52	-96.7681	-68.2977
9	2.88	-121.2171	-65.4901
10	3.24	-143.7000	-59.2414
11	3.60	-163.6960	-50.9516

Sollecitazioni mensola di contrappeso

Combinazione n° 49

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	Т	N
1	0.00	0.0625	1.2500	0.0000
2	0.10	0.0000	0.0000	0.0000

Armature e tensioni nei materiali del muro

Combinazione n° 49

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- □
 c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- Image: Image:
- Image: The state of t

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	?fs	? _{fi}
1	0.00	100, 60	21.99	21.99	0.224	0.035	9.730	-2.422
2	0.22	100, 60	21.99	21.99	0.305	0.036	12.016	-3.390
3	0.44	100, 60	21.99	21.99	0.387	0.037	14.698	-4.340
4	0.66	100, 60	21.99	21.99	0.472	0.038	17.507	-5.320
5	0.89	100, 60	21.99	21.99	0.561	0.041	20.497	-6.345
6	1.11	100, 60	21.99	21.99	0.656	0.044	23.748	-7.434
7	1.33	100, 60	21.99	21.99	0.760	0.050	27.422	-8.630
8	1.55	100, 60	21.99	21.99	0.878	0.056	31.663	-9.969
9	1.77	100, 60	21.99	21.99	1.011	0.064	36.558	-11.472
10	1.99	100, 60	21.99	21.99	1.161	0.072	42.178	-13.157
11	2.22	100, 60	21.99	21.99	1.329	0.081	48.591	-15.042
12	2.44	100, 60	21.99	21.99	1.517	0.090	55.861	-17.142
13	2.66	100, 60	21.99	21.99	1.726	0.100	64.046	-19.471
14	2.88	100, 60	21.99	21.99	1.958	0.111	73.208	-22.044
15	3.10	100, 60	21.99	21.99	2.214	0.122	83.403	-24.876
16	3.32	100, 60	21.99	21.99	2.494	0.134	94.687	-27.980
17	3.55	100, 60	21.99	21.99	2.801	0.147	107.117	-31.369
18	3.77	100, 60	21.99	21.99	3.136	0.160	120.748	-35.059
19	3.99	100, 60	21.99	21.99	3.500	0.174	135.635	-39.061
20	4.21	100, 60	21.99	21.99	3.894	0.188	151.831	-43.390
21	4.43	100, 60	21.99	21.99	4.319	0.203	169.389	-48.058

Armature e tensioni nei materiali della mensola di contrappeso

Combinazione n° 49

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑ tensione nel calcestruzzo espressa in [N/mmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Nr.	X	В, Н	A_{fs}	A_fi	? _c	? c	? _{fi}	? _{fs}
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000

Armature e tensioni nei materiali della fondazione

Combinazione n° 49

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione nel calcestruzzo espressa in [N/mmq]
- ☑c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- lefs tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000
2	0.08	100, 61	15.71	15.71	0.009	0.020	0.468	-0.094
3	0.16	100, 61	15.71	15.71	0.036	0.039	1.845	-0.371
4	0.24	100, 62	15.71	15.71	0.079	0.058	4.092	-0.820
5	0.32	100, 63	15.71	15.71	0.137	0.077	7.172	-1.433
6	0.40	100, 64	15.71	15.71	0.210	0.094	11.049	-2.200
7	0.48	100, 64	15.71	15.71	0.297	0.111	15.690	-3.115
8	0.56	100, 65	15.71	15.71	0.396	0.128	21.063	-4.168
9	0.64	100, 66	15.71	15.71	0.507	0.144	27.137	-5.353
10	0.72	100, 66	15.71	15.71	0.630	0.160	33.883	-6.663
11	0.80	100, 67	15.71	15.71	0.763	0.176	41.274	-8.092

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}
1	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000
2	0.36	100, 98	21.99	21.99	0.021	-0.016	-0.257	1.217
3	0.72	100, 95	21.99	21.99	0.088	-0.032	-1.049	4.912
4	1.08	100, 91	21.99	21.99	0.204	-0.048	-2.413	11.156

5	1.44	100, 88	21.99	21.99	0.374	-0.063	-4.388	20.033
6	1.80	100, 85	21.99	21.99	0.602	-0.078	-7.022	31.639
7	2.16	100, 82	21.99	21.99	0.895	-0.093	-10.367	46.087
8	2.52	100, 79	21.99	21.99	1.260	-0.108	-14.484	63.510
9	2.88	100, 75	15.71	15.71	2.004	-0.108	-21.887	115.756
10	3.24	100, 72	15.71	15.71	2.551	-0.102	-27.580	143.900
11	3.60	100, 69	15.71	15.71	3.132	-0.092	-33.483	172.300

Verifiche a fessurazione

Combinazione n° 49

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- M_{pf} Momento di prima fessurazione espressa in [kNm]
- M Momento agente nella sezione espressa in [kNm]
- ☑_m deformazione media espressa in [%]
- s_m Distanza media tra le fessure espressa in [mm]
- w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	${f A}_{\sf fi}$	$M_{\sf pf}$	M	? _m	S _m	w
1	0.00	21.99	21.99	-99.75	-11.00	0.0000	0.00	0.000
2	0.22	21.99	21.99	-99.75	-14.66	0.0000	0.00	0.000
3	0.44	21.99	21.99	-99.75	-18.47	0.0000	0.00	0.000
4	0.66	21.99	21.99	-99.75	-22.42	0.0000	0.00	0.000
5	0.89	21.99	21.99	-99.75	-26.57	0.0000	0.00	0.000
6	1.11	21.99	21.99	-99.75	-31.02	0.0000	0.00	0.000
7	1.33	21.99	21.99	-99.75	-35.94	0.0000	0.00	0.000
8	1.55	21.99	21.99	-99.75	-41.51	0.0000	0.00	0.000
9	1.77	21.99	21.99	-99.75	-47.82	0.0000	0.00	0.000
10	1.99	21.99	21.99	-99.75	-54.95	0.0000	0.00	0.000
11	2.22	21.99	21.99	-99.75	-62.99	0.0000	0.00	0.000
12	2.44	21.99	21.99	-99.75	-71.99	0.0000	0.00	0.000
13	2.66	21.99	21.99	-99.75	-82.02	0.0000	0.00	0.000
14	2.88	21.99	21.99	-99.75	-93.17	0.0000	0.00	0.000
15	3.10	21.99	21.99	-99.75	-105.48	0.0243	208.31	0.086
16	3.32	21.99	21.99	-99.75	-119.02	0.0276	208.31	0.098
17	3.55	21.99	21.99	-99.75	-133.86	0.0350	208.31	0.124
18	3.77	21.99	21.99	-99.75	-150.06	0.0436	208.31	0.154

19	3.99	21.99	21.99	-99.75	-167.68	0.0524	208.31	0.186
20	4.21	21.99	21.99	-99.75	-186.78	0.0617	208.31	0.219
21	4.43	21.99	21.99	-99.75	-207.42	0.0715	208.31	0.253
Vouis	ion formula	.;						
verij	<u>ica jessuraz</u>	zione fondazi	<u>one</u>					
N°	Υ	A_{fs}	A_{fi}	M_{pf}	М	□m	S _m	w
1	-1.40	15.71	15.71	-95.45	0.00	0.0000	0.00	0.000
2	-1.32	15.71	15.71	97.59	0.39	0.0000	0.00	0.000
3	-1.24	15.71	15.71	99.77	1.54	0.0000	0.00	0.000
4	-1.16	15.71	15.71	101.96	3.46	0.0000	0.00	0.000
5	-1.08	15.71	15.71	104.18	6.14	0.0000	0.00	0.000
6	-1.00	15.71	15.71	106.42	9.58	0.0000	0.00	0.000
7	-0.92	15.71	15.71	108.68	13.76	0.0000	0.00	0.000
8	-0.84	15.71	15.71	110.97	18.70	0.0000	0.00	0.000
9	-0.76	15.71	15.71	113.28	24.38	0.0000	0.00	0.000
10	-0.68	15.71	15.71	115.61	30.80	0.0000	0.00	0.000
11	-0.60	15.71	15.71	117.97	37.96	0.0000	0.00	0.000
12	0.00	15.71	15.71	-124.83	-163.70	0.0602	291.92	0.299
13	0.36	15.71	15.71	-136.19	-143.70	0.0419	291.92	0.208
14	0.72	15.71	15.71	-148.04	-121.22	0.0000	0.00	0.000
15	1.08	21.99	21.99	-166.39	-96.77	0.0000	0.00	0.000
16	1.44	21.99	21.99	-179.50	-73.34	0.0000	0.00	0.000
17	1.80	21.99	21.99	-193.10	-52.49	0.0000	0.00	0.000
18	2.16	21.99	21.99	-207.17	-34.60	0.0000	0.00	0.000
19	2.52	21.99	21.99	-221.73	-20.02	0.0000	0.00	0.000
20	2.88	21.99	21.99	-236.77	-9.15	0.0000	0.00	0.000
21	3.24	21.99	21.99	-252.29	-2.35	0.0000	0.00	0.000
22	3.60	21.99	21.99	-268.29	0.00	0.0000	0.00	0.000
<u>Verif</u>	ica fessuraz	rione mensolo	a di monte					
N°	Υ	${\sf A}_{\sf fs}$	A_{fi}	M_{pf}	M	? _m	S _m	w
1	0.00	18.85	12.57	-68.41	-0.06	0.0000	0.00	0.000
2	0.10	18.85	12.57	-68.41	0.00	0.0000	0.00	0.000

Inviluppo Sollecitazioni paramento

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kNm]

Sforzo normale positivo di compressione, espresso in [kN]

Taglio positivo se diretto da monte verso valle, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	Υ	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	16.5000	0.0000	25.0500
2	0.22	4.5744	4.5744	-0.0507	22.0013	0.1594	25.2136
3	0.44	7.8987	7.8987	0.0317	27.6376	0.6377	25.7043
4	0.66	11.2231	11.2231	0.2555	33.4189	1.4349	26.5222
5	0.89	14.5475	14.5475	0.6913	39.4177	2.5509	27.6672
6	1.11	17.8718	17.8718	1.4097	45.7251	3.9857	29.3949
7	1.33	21.1962	21.1962	2.4815	52.5193	5.7394	32.0676
8	1.55	24.5206	24.5206	3.9773	59.9869	7.8120	35.4067
9	1.77	27.8450	27.8450	5.9677	68.2464	10.2034	39.1996
10	1.99	31.1693	31.1693	8.5235	77.3922	12.9137	43.4004
11	2.22	34.4937	34.4937	11.7153	87.5120	15.9428	47.9863
12	2.44	37.8181	37.8181	15.6137	98.6894	19.2908	52.9424
13	2.66	41.1424	41.1424	20.2895	111.0053	22.9577	58.2584
14	2.88	44.4668	44.4668	25.8132	124.5384	26.9434	63.9266
15	3.10	47.7912	47.7912	32.2557	139.3663	31.2480	69.9417
16	3.32	51.1155	51.1155	39.6874	155.5654	35.8714	76.2997
17	3.55	54.4399	54.4399	48.1792	173.2112	40.8137	82.9976
18	3.77	57.7643	57.7643	57.8016	192.3790	46.0748	90.0330
19	3.99	61.0887	61.0887	68.6254	213.1431	51.6548	97.4042
20	4.21	64.4130	64.4130	80.7211	235.5780	57.5537	105.1096
21	4.43	67.7374	67.7374	94.1565	259.7544	63.7203	113.0950

Inviluppo combinazioni SLE

Nr.	Υ	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	11.0000	0.0000	16.7000
2	0.22	4.5744	4.5744	-0.0532	14.6608	0.1258	16.9462
3	0.44	7.8987	7.8987	0.0119	18.4693	0.5033	17.4687
4	0.66	11.2231	11.2231	0.1885	22.4242	1.1325	18.2673
5	0.89	14.5475	14.5475	0.5335	26.5879	2.0314	19.3621
6	1.11	17.8718	17.8718	1.1324	31.0542	3.5194	21.1034
7	1.33	21.1962	21.1962	2.1588	36.0137	5.8662	23.7872

8	1.55	24.5206	24.5206	3.7672	41.6358	8.7129	27.0199	
9	1.77	27.8450	27.8450	6.0480	48.0200	11.9273	30.6558	
10	1.99	31.1693	31.1693	9.0785	55.2510	15.4740	34.6567	
11	2.22	34.4937	34.4937	12.9297	63.4067	19.3308	38.9979	
12	2.44	37.8181	37.8181	17.6686	72.5607	23.4830	43.6633	
13	2.66	41.1424	41.1424	23.3596	82.7835	27.9203	48.6415	
14	2.88	44.4668	44.4668	30.0648	94.1435	32.6351	53.9245	
15	3.10	47.7912	47.7912	37.8452	106.7075	37.6221	59.5060	
16	3.32	51.1155	51.1155	46.7606	120.5413	42.8772	65.3819	
17	3.55	54.4399	54.4399	56.8700	135.7095	48.3974	71.5487	
18	3.77	57.7643	57.7643	68.2321	152.2765	54.1802	78.0038	
19	3.99	61.0887	61.0887	80.9046	170.3058	60.2238	84.7451	
20	4.21	64.4130	64.4130	94.9454	189.8607	66.5267	91.7710	
21	4.43	67.7374	67.7374	110.4092	211.0015	73.0466	99.0350	

Inviluppo Sollecitazioni fondazione di valle

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	0.0000
2	0.08	0.2218	0.4037	5.5520	10.0841
3	0.16	0.8894	1.6119	11.1452	20.1109
4	0.24	2.0061	3.6200	16.7797	30.0805
5	0.32	3.5753	6.4233	22.4555	39.9928
6	0.40	5.6001	10.0173	28.1725	49.8479
7	0.48	8.0840	14.3974	33.9308	59.6457
8	0.56	11.0301	19.5591	39.7305	69.3862
9	0.64	14.4419	25.4977	45.5713	79.0695
10	0.72	18.3227	32.2087	51.4535	88.6955
11	0.80	22.6756	39.6874	57.3769	98.2643

Inviluppo combinazioni SLE

Nr.	(Mm	in Mma	x Tmin	Tmax

1	0.00	0.0000	0.0000	0.0000	0.0000
2	0.08	0.2744	0.3962	6.8663	9.8979
3	0.16	1.0997	1.5823	13.7739	19.7463
4	0.24	2.4793	3.5543	20.7228	29.5450
5	0.32	4.4165	6.3082	27.7132	39.2943
6	0.40	6.9145	9.8401	34.7448	48.9939
7	0.48	9.9767	14.1459	41.8178	58.6440
8	0.56	13.6065	19.2218	48.9322	68.2445
9	0.64	17.8070	25.0637	56.0879	77.7955
10	0.72	22.5816	31.6678	63.2849	87.2969
11	0.80	27.9337	39.0299	70.5233	96.7487

Inviluppo Sollecitazioni fondazione di monte

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in [kNm]

Taglio positivo se diretto verso l'alto, espresso in [kN]

Inviluppo combinazioni SLU

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	0.0000
2	0.36	-3.9968	0.4602	-22.0110	2.4529
3	0.72	-15.7088	1.6914	-42.8626	4.2831
4	1.08	-34.7187	3.4693	-62.5550	5.4904
5	1.44	-60.6093	5.5697	-81.0881	6.0750
6	1.80	-92.9630	7.7685	-98.4618	6.0367
7	2.16	-131.3627	9.8414	-114.6762	5.3757
8	2.52	-175.3908	11.5643	-129.7314	4.0919
9	2.88	-223.4541	12.7129	-135.2272	2.1853
10	3.24	-272.5193	13.0630	-137.1637	-0.3440
11	3.60	-322.0079	12.4405	-136.6410	0.7515

Inviluppo combinazioni SLE

Nr.	X	Mmin	Mmax	Tmin	Tmax
1	0.00	0.0000	0.0000	0.0000	0.0000
2	0.36	-2.3497	-0.0495	-12.8801	-0.4143
3	0.72	-9.1488	-0.3987	-24.7191	-1.6651

4	1.08	-20.0225	-1.3487	-35.5171	-3.7522
5	1.44	-34.5961	-3.2006	-45.2739	-6.6757
6	1.80	-52.4948	-6.2556	-53.9896	-10.4357
7	2.16	-73.3437	-10.8147	-61.6642	-15.0320
8	2.52	-96.7681	-17.1790	-68.2977	-20.4648
9	2.88	-121.2171	-24.4737	-65.4901	-18.3339
10	3.24	-143.7000	-30.3838	-59.2414	-14.6395
11	3.60	-163.6960	-35.0645	-50.9516	-10.7814

Inviluppo sollecitazioni mensola di contrappeso

L'ascissa X(espressa in [m]) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

Momento positivo se tende le fibre inferiori, epresso in [kNm]

Taglio positivo se diretto verso il basso, epresso in [kN]

Sforzo Normale positivo se di compressione, epresso in [kN]

Nr.	X	M	T	N								
<u>Invil</u>	Inviluppo combinazioni SLU											
Nr.	х	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax					
0	0.00	0.0000	0.0000	0.0625	0.0625	1.2500	1.2500					
1	0.10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
<u>Invil</u>	Іирро со	mbinazioni S	<u>LE</u>									
Nr.	X	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax					
0	0.00	0.0000	0.0000	0.0625	0.0625	1.2500	1.2500					
1	0.10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					

Inviluppo armature e tensioni nei materiali del muro

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- □_{fs} tensione nell'armatura disposta sul lembo di monte in [N/mmq]
- □_{fi} tensione nell'armatura disposta sul lembo di valle in [N/mmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	${\sf A}_{\sf fs}$	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	\mathbf{V}_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 60	21.99	21.99	0.00	0.00	26.49	231.23		
2	0.22	100, 60	21.99	21.99	95.80	25.05	20.94	231.88		
3	0.44	100, 60	21.99	21.99	134.42	-33.68	17.02	232.34		
4	0.66	100, 60	21.99	21.99	160.09	-187.12	14.26	232.81		
5	0.89	100, 60	21.99	21.99	177.53	-380.59	12.20	233.27		
6	1.11	100, 60	21.99	21.99	189.13	-483.89	10.58	233.74		
7	1.33	100, 60	21.99	21.99	195.98	-485.59	9.25	234.20		
8	1.55	100, 60	21.99	21.99	198.78	-486.28	8.11	234.67		
9	1.77	100, 60	21.99	21.99	198.37	-486.18	7.12	235.13		
10	1.99	100, 60	21.99	21.99	195.52	-485.48	6.27	235.60		
11	2.22	100, 60	21.99	21.99	190.90	-484.33	5.53	236.06		
12	2.44	100, 60	21.99	21.99	185.04	-482.88	4.89	236.53		
13	2.66	100, 60	21.99	21.99	178.36	-481.23	4.34	236.99		
14	2.88	100, 60	21.99	21.99	171.19	-479.45	3.85	237.46		
15	3.10	100, 60	21.99	21.99	163.78	-477.62	3.43	237.93		
16	3.32	100, 60	21.99	21.99	156.33	-475.77	3.06	238.39		
17	3.55	100, 60	21.99	21.99	148.96	-473.94	2.74	238.86		
18	3.77	100, 60	21.99	21.99	141.77	-472.16	2.45	239.32		
19	3.99	100, 60	21.99	21.99	134.83	-470.45	2.21	239.79		

20	4.21	100, 60	21.99	21.99	128.18	-468.80	1.99	240.25	
21	4.43	100, 60	21.99	21.99	121.84	-467.23	1.80	240.72	
<u>Invilu</u>	ppo SLE								
Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? c	? _c	? _{fs}	? _{fi}	
1	0.00	100, 60	21.99	21.99	0.224	0.035	9.730	-2.422	
2	0.22	100, 60	21.99	21.99	0.305	0.036	12.017	-3.390	
3	0.44	100, 60	21.99	21.99	0.387	0.037	14.700	-4.341	
4	0.66	100, 60	21.99	21.99	0.472	0.038	17.514	-5.322	
5	0.89	100, 60	21.99	21.99	0.561	0.041	20.514	-6.349	
6	1.11	100, 60	21.99	21.99	0.656	0.044	23.782	-7.443	
7	1.33	100, 60	21.99	21.99	0.762	0.050	27.485	-8.646	
8	1.55	100, 60	21.99	21.99	0.881	0.057	31.773	-9.996	
9	1.77	100, 60	21.99	21.99	1.015	0.064	36.733	-11.516	
10	1.99	100, 60	21.99	21.99	1.167	0.073	42.440	-13.223	
11	2.22	100, 60	21.99	21.99	1.338	0.082	48.963	-15.136	
12	2.44	100, 60	21.99	21.99	1.529	0.092	56.368	-17.269	
13	2.66	100, 60	21.99	21.99	1.742	0.102	64.717	-19.639	
14	2.88	100, 60	21.99	21.99	1.978	0.113	74.071	-22.260	
15	3.10	100, 60	21.99	21.99	2.239	0.125	84.488	-25.148	
16	3.32	100, 60	21.99	21.99	2.525	0.137	96.029	-28.315	
17	3.55	100, 60	21.99	21.99	2.839	0.150	108.748	-31.777	
18	3.77	100, 60	21.99	21.99	3.181	0.164	122.705	-35.548	
19	3.99	100, 60	21.99	21.99	3.553	0.178	137.955	-39.641	
20	4.21	100, 60	21.99	21.99	3.957	0.193	154.553	-44.070	
21	4.43	100, 60	21.99	21.99	4.392	0.208	172.555	-48.849	

Inviluppo armature e tensioni nei materiali della mensola di contrappeso

L'ascissa X, espressa in [m], è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della mensola

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- ☑c tensione nel calcestruzzo espressa in [N/mmq]
- tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 12 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_u	M_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 50	18.85	12.57	0.00	-305.97	4895.51	200.11		
2	0.10	100, 50	18.85	12.57	0.00	0.00	1000.00	200.11		
<u>Invilu</u>	ppo SLE									
Nr.	X	В, Н	\mathbf{A}_{fs}	A_{fi}	? _c	? c	? _{fi}	?fs		
1	0.00	100, 50	18.85	12.57	0.002	0.003	0.079	-0.020		
2	0.10	100, 50	18.85	12.57	0.000	0.000	0.000	0.000		

Inviluppo armature e tensioni nei materiali della fondazione

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- □_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]
- lensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]
- 🗓 tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]
- N_u sforzo normale ultimo espresso in [kN]
- M_u momento ultimo espresso in [kNm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]
- VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	100, 60	15.71	15.71	0.00	0.00	1000.00	206.70		
2	0.08	100, 61	15.71	15.71	0.00	318.36	788.53	207.94		
3	0.16	100, 61	15.71	15.71	0.00	322.44	200.03	209.17		
4	0.24	100, 62	15.71	15.71	0.00	326.51	90.20	210.39		
5	0.32	100, 63	15.71	15.71	0.00	330.59	51.47	211.61		
6	0.40	100, 64	15.71	15.71	0.00	334.67	33.41	212.82		
7	0.48	100, 64	15.71	15.71	0.00	338.74	23.53	214.03		
8	0.56	100, 65	15.71	15.71	0.00	342.82	17.53	215.23		
9	0.64	100, 66	15.71	15.71	0.00	346.90	13.60	216.43		
10	0.72	100, 66	15.71	15.71	0.00	350.98	10.90	217.62		
11	0.80	100, 67	15.71	15.71	0.00	355.05	8.95	218.80		
<u>Invilu</u>	ppo SLE									
Nr.	X	В, Н	A_{fs}	A_{fi}	? _c	? _c	? _{fi}	? _{fs}		
12	0.00	100, 60	15.71	15.71	0.000	0.000	0.000	0.000		
13	0.08	100, 61	15.71	15.71	0.009	0.021	0.481	-0.097		

14	0.16	100, 61	15.71	15.71	0.037	0.040	1.895	-0.381
15	0.24	100, 62	15.71	15.71	0.081	0.060	4.204	-0.842
16	0.32	100, 63	15.71	15.71	0.141	0.079	7.369	-1.472
17	0.40	100, 64	15.71	15.71	0.216	0.097	11.354	-2.261
18	0.48	100, 64	15.71	15.71	0.305	0.115	16.124	-3.201
19	0.56	100, 65	15.71	15.71	0.407	0.132	21.648	-4.284
20	0.64	100, 66	15.71	15.71	0.521	0.149	27.895	-5.503
21	0.72	100, 66	15.71	15.71	0.647	0.165	34.833	-6.850
22	0.80	100, 67	15.71	15.71	0.784	0.181	42.436	-8.319

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	100, 101	21.99	21.99	0.00	0.00	1000.00	206.70		
2	0.36	100, 98	21.99	21.99	0.00	-745.61	186.55	207.94		
3	0.72	100, 95	21.99	21.99	0.00	-719.48	45.80	209.17		
4	1.08	100, 91	21.99	21.99	0.00	-693.35	19.97	210.39		
5	1.44	100, 88	21.99	21.99	0.00	-667.22	11.01	211.61		
6	1.80	100, 85	21.99	21.99	0.00	-641.09	6.90	212.82		
7	2.16	100, 82	21.99	21.99	0.00	-614.97	4.68	214.03		
8	2.52	100, 79	21.99	21.99	0.00	-588.84	3.36	215.23		
9	2.88	100, 75	15.71	15.71	0.00	-404.00	1.81	216.43		
10	3.24	100, 72	15.71	15.71	0.00	-385.36	1.41	217.62		
11	3.60	100, 69	15.71	15.71	0.00	-366.71	1.14	218.80		
<u>Invilu</u>	ppo SLE									
Nr.	X	В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	? _c	? _c	? _{fi}	? _{fs}		
12	0.00	100, 101	21.99	21.99	0.000	0.000	0.000	0.000		
13	0.36	100, 98	21.99	21.99	0.021	-0.016	-0.257	1.217		
14	0.72	100, 95	21.99	21.99	0.088	-0.032	-1.049	4.912		
15	1.08	100, 91	21.99	21.99	0.204	-0.048	-2.413	11.156		
16	1.44	100, 88	21.99	21.99	0.374	-0.063	-4.388	20.033		
17	1.80	100, 85	21.99	21.99	0.602	-0.078	-7.022	31.639		
18	2.16	100, 82	21.99	21.99	0.895	-0.093	-10.367	46.087		
19	2.52	100, 79	21.99	21.99	1.260	-0.108	-14.484	63.510		
20	2.88	100, 75	15.71	15.71	2.004	-0.108	-21.887	115.756		
21	3.24	100, 72	15.71	15.71	2.551	-0.102	-27.580	143.900		
22	3.60	100, 69	15.71	15.71	3.132	-0.092	-33.483	172.300		

Spostamenti

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione

 $ag_{\textit{Critico}}$ Accelerazione critica espressa in [m/s²]

D Spostamento espresso in [cm]

Spostamento limite imposto **D**_{limite} = 1.00 [cm]

C	Tipo	ag _{Critico}	D
29	SLEQ	11.2968	0.0000
30	SLEF	11.2968	0.0000
31	SLEF	11.2968	0.0000
32	SLEF	11.1313	0.0000
33	SLER	10.8002	0.0000
34	SLER	10.8002	0.0000
35	SLER	10.4660	0.0000
36	SLEQ	12.5691	0.0000
37	SLEQ	12.5691	0.0000
38	SLEF	12.5691	0.0000
39	SLEF	12.5691	0.0000
40	SLEF	12.5691	0.0000
41	SLEF	12.5691	0.0000
42	SLEF	12.3821	0.0000
43	SLEF	12.3821	0.0000
44	SLER	12.0050	0.0000
45	SLER	12.0050	0.0000
46	SLER	12.0050	0.0000
47	SLER	12.0050	0.0000
48	SLER	11.6249	0.0000
49	SLER	11.6249	0.0000