
	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	GIONE SARDEGNA RE-AMB-00	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 1 di 65	Rev. 0

METANIZZAZIONE SARDEGNA

PROGETTO DEFINITIVO ANNESSO A DERIVAZIONI DN 250 (10") / DN 150 (6")

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS LOCALITA' REGIONE SARDEGNA		RE-AMI	B-004
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 2 di 65	Rev. O

INDICE

1	INTRO	DUZIONE	3
2	DESC	RIZIONE E CARATTERISTICHE TECNICHE DELL'OPERA	5
2.	1 Lir	NEA	21
	2.1.1	Tubazioni	21
	2.1.2	Materiali	21
	2.1.3	Calcolo dello spessore delle tubazioni	22
	2.1.4	Protezione anticorrosiva	23
	2.1.5	Fascia di asservimento	23
2.	2 IM	PIANTI E PUNTI DI LINEA	24
3	FASI	DI REALIZZAZIONE DELL'OPERA	26
3.	1 FA	ASI DI COSTRUZIONE	26
	3.1.1	Realizzazione di infrastrutture provvisorie	26
	3.1.2	Apertura dell'area di passaggio	27
	3.1.3	Realizzazione degli attraversamenti	35
	3.1.4	Opere in sotterraneo	41
4	INTER	VENTI DI OTTIMIZZAZIONE, MITIGAZIONE E RIPRISTINO	42
	4.1	Ripristini morfologici e idraulici	42
	4.2.2	Ripristini idrogeologici	46
	4.2.3	Ripristini vegetazionali	47
5	ALLEC	GATI	48
1	VERIF	ICA ALLO SCUOTIMENTO SISMICO	51
1.	1 VE	ERIFICA STRUTTURALE SULLA CONDOTTA	51
1.	2 DA	ATI DI İNPUT	52
1.	3 CF	RITERI DI VERIFICA	55
	Verifica	per tubo rettilineo	56
	Elemen	nto di tubazione curvo	58
2	CONC	LUSIONI	65

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMI	3-004
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 3 di 65	Rev. 0

1 INTRODUZIONE

Il progetto denominato "Metanizzazione Sardegna – Derivazioni DN 250 (10") / DN 150 (6"), DP 75 bar" prevede la posa di otto condotte, due di diametro DN 250 (10") e sei di diametro DN 150 (6").

Le opere ricadono nel territorio della regione Sardegna, interessando tre province, Città Metropolitana di Cagliari, Sud Sardegna ed Oristano. Queste otto linee secondarie (o derivate) risultano essere funzionalmente connesse alla realizzazione delle nuove strutture di trasporto principali, ed assicureranno il collegamento tra le condotte principali e le diverse utenze esistenti lungo il tracciato delle stesse.

In sintesi, il progetto prevede la messa in opera di:

 otto linee secondarie di vario diametro (DN 250 (10") / DN 150 (6")) per una lunghezza complessiva pari a 80,060 km.

Più in dettaglio si prevede la messa in opera di sette linee secondarie derivate dal metanodotto "Cagliari – Palmas Arborea DN 650 (26"), DP 75 bar" e una linea secondaria derivata dal metanodotto "Collegamento Terminale di Oristano DN 650 (26"), DP 75".

Tale progetto integra quello relativo alle linee principali DN 650 (26") e DN 400 (16") (vedi Vol. 1 – Progetto Definitivo Doc. RE-AMB-001), in particolare si rimanda a quanto illustrato per le linee principali a riguardo:

- del quadro normativo vigente e delle relative indicazioni e prescrizioni;
- delle fasi di realizzazione del progetto e della gestione dell'opera;
- della caratterizzazione ambientale di aria vasta del territorio interessato dal progetto;
- dei ripristini idrogeologici e vegetazionali;
- dei tipologici di progetto (vedi Vol. 1, All. 3 Progetto Definitivo Dis. ST-001 "Elenco disegni standard").

Di seguito si riporta l'elenco completo delle linee secondarie in progetto (vedi Tab. 1/A).

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 4 di 65	Rev. 0

Tab. 1/A: Elenco linee secondarie in progetto

Stacchi dal Met. Cagliari - Palmas Arborea					
Denominazione metanodotti in progetto	Diametro	Pressione (bar)	Lung.za (km)	Comuni	Rif. Dis.
Met. Derivazione per Capoterra-Sarroch	DN 150 (6")	75	14,790	Uta, Capoterra, Sarroch	PG-TP-411
Met. Derivazione per Monserrato	DN 250 (10")	75	17,415	Villaspeciosa, Uta, Assemini, Sestu	PG-TP-412
Met. Derivazione per Serramanna	DN 250 (10")	75	7,855	Villacidro, Serramanna	PG-TP-413
Met. Derivazione per Villacidro	DN 150 (6")	75	5,305	Villacidro	PG-TP-414
Met. Derivazione per Sanluri	DN 150 (6")	75	11,150	Villacidro, San Gavino Monreale, Sanluri	PG-TP-415
Met. Derivazione per Guspini	DN 150 (6")	75	11,115	Pabillonis, Guspini	PG-TP-416
Met. Derivazione per Terralba	DN 150 (6")	75	8,035	Mogoro, Uras, Terralba	PG-TP-417
Stacco dal Met. Collegamento Terminale di Oristano					
Denominazione metanodotti in progetto	Diametro	Pressione (bar)	Lung.za (km)	Comuni (Provincia)	Rif. Dis.
Met. Derivazione per Oristano Città	DN 150 (6")	75	4,395	Palmas Arborea, Santa Giusta, Oristano	PG-TP-418

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA RE-AMB-00		3-004
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 5 di 65	Rev. 0

2 DESCRIZIONE E CARATTERISTICHE TECNICHE DELL'OPERA

L'opera in oggetto, progettata per il trasporto di gas naturale con densità 0,72 kg/m3 in condizioni standard ad una pressione massima di esercizio di 75 bar, sarà costituita da un sistema integrato di condotte, formate da tubi di acciaio collegati mediante saldatura (linea), che rappresenta l'elemento principale del sistema di trasporto in progetto, e da una serie di impianti e punti di linea che, oltre a garantire l'operatività della struttura, realizzano l'intercettazione della condotta in accordo alla normativa vigente.

Nell'ambito del progetto si distinguono la messa in opera di:

8 linee (secondarie o derivate), funzionalmente connesse alla realizzazione delle nuove strutture di trasporto Metanodotto Cagliari-Palmas Arborea DN 650 (26") e Metanodotto Collegamento Terminale di Oristano DN 650 (26"), che assicureranno il collegamento tra le condotte principali e le diverse utenze esistenti lungo il tracciato delle stesse.

In sintesi, l'intervento, prevede:

la messa in opera di:

- Linee secondarie otto linee di vario diametro per una lunghezza complessiva pari a 80,060 km circa, con i seguenti diametri:
 - DN 150 (6")
 25,270 km circa;
 - DN 250 (10") 54,790 km circa;
- n. 18 punti di linea di cui:
 - n. 11 punti di intercettazione di derivazione importante (PIDI);
 - n. 7 punti di intercettazione per il sezionamento della linea in tronchi (PIL).

La pressione di progetto, adottata per il calcolo dello spessore delle tubazioni, è pari a 75 bar.

A seguire sono riportate, per ogni singola derivazione, le percorrenze all'interno dei territori comunali e la finalità degli interventi.

Met. Derivazione per Capoterra-Sarroch DN 150 (6"), DP 75 bar

La nuova condotta si snoda per una lunghezza complessiva di 14,790 km nei territori comunali di:

Uta, Capoterra, Sarroch nel territorio della città metropolitana di Cagliari;

Le percorrenze della nuova condotta nei territori comunali sono riportate nella seguente tabella (vedi tab. 2/A).

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA RE-AMB		3-004
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 6 di 65	Rev. 0

Tab. 2/A: Metanodotto Derivazione per Capoterra – Sarroch DN 150 (6") - Lunghezza di percorrenza nei territori comunali

n.	Comune	Da km	A km	Percorrenza (km)
1	Uta	0+000	4+860	4,860
2	Capoterra	4+860	14+050	9,190
3	Sarroch	14+050	14+790	0,740

Tale derivazione ha come finalità quella di raggiungere i punti di consegna GPL nei comuni di Capoterra, Pula, Sarroch, Villa San Pietro, Domus de Maria e Teulada.

Fig.2/A Bacino d'utenza interessato

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 7 di 65	Rev. 0

Tab. 2/B: Metanodotto Derivazione per Capoterra – Sarroch DN 150 (6") – Dati utenti servibili e portata di punta

COMUNI	Utenti servibili RAS (*)	Portata di punta per utente [mc/h] (**)	Portata di punta per comune [mc/h]
Capoterra	6.120,00	0,80	4.896,00
Pula	1.867,00	0,80	1.493,60
Sarroch	1.466,00	0,80	1.172,80
Villa San Pietro	508,00	0,80	406,40
Domus de Maria	445,00	0,80	356,00
Teulada	1.120,00	0,80	896,00

Il bacino d'utenza interessato coinvolge un totale di 11.526 utenti ed una portata di punta totale di 9.220,80 mc/h.

Met. Derivazione per Monserrato DN 250 (10"), DP 75 bar

La nuova condotta si snoda per una lunghezza complessiva di 17,415 km nei territori comunali di:

- Villaspeciosa, in Provincia Sud Sardegna;
- Uta, Assemini, Sestu, nel territorio della città metropolitana di Cagliari;

Le percorrenze della nuova condotta nei territori comunali sono riportate nella seguente tabella (vedi tab. 2/C).

Tab. 2/C: Metanodotto Derivazione per Monserrato DN 250 (10") - Lunghezza di percorrenza nei territori comunali

n.	Comune	Da km	A km	Percorrenza (km)
1	Villaspeciosa	0+000	3+775	3,775
2	Uta	3+775	6+915	3,140
3	Assemini	6+915	15+920	9,005
4	Sestu	15+920	17+415	1,495

^{(*) (}Fonte dati "Allegato 2" alla D.G.R. 54/28 del 22 novembre 2005)

^{(**) (}Fonte Progetti esecutivi approvato dal U.T.R. (Unità Tecnica Regionale) della Regione autonoma della Sardegna)

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO	
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMI	E-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 8 di 65	Rev. 0	

Tale derivazione ha come finalità quella di raggiungere i punti di consegna GPL nei comuni di Villaspeciosa, Decimoputzu, Decimomannu, Uta, Assemini, Elmas e Sestu.

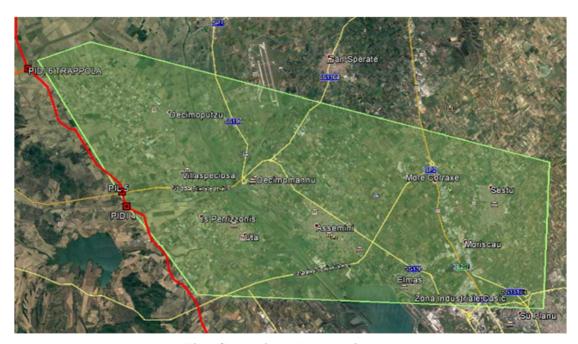


Fig.2/B Bacino d'utenza interessato

Tab. 2/D: Metanodotto Derivazione per Monserrato DN 250 (10") – Dati utenti servibili e portata di punta

COMUNI	Utenti servibili RAS (*)	Portata di punta per utente [mc/h] (**)	Portata di punta per comune [mc/h]
Villaspeciosa	685,00	0,80	548,00
Decimoputzu	607,00	0,80	485,60
Sestu	4.320,00	0,80	3.456,00
Assemini	6.643,00	0,80	5.314,40
Decimomannu	1.953,00	0,80	1.562,40
Elmas	2.285,00	0,80	1.828,00
Uta	1.907,00	0,80	1.525,60

Il bacino d'utenza interessato coinvolge un totale di **14.080 utenti** ed una portata di punta totale di **14.720 mc/h.**

^{(*) (}Fonte dati "Allegato 2" alla D.G.R. 54/28 del 22 novembre 2005)

^{(**) (}Fonte Progetti esecutivi approvato dal U.T.R. (Unità Tecnica Regionale) della Regione autonoma della Sardegna)

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO	
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMI	MB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 9 di 65	Rev. 0	

Met. Derivazione per Serramanna DN 250 (10"), DP 75 bar

La nuova condotta si snoda per una lunghezza complessiva di 7,855 km nei territori comunali di:

Villacidro, Serramanna, in Provincia Sud Sardegna;

Le percorrenze della nuova condotta nei territori comunali sono riportate nella seguente tabella (vedi tab. 2/E).

Tab. 2/E: Metanodotto Derivazione per Serramanna DN 250 (10") - Lunghezza di percorrenza nei territori comunali

n.	Comune	Da km	A km	Percorrenza (km)
1	0+000	0+545	0,545	0+000
2	0+545	7+855	7,310	0+545

Tale derivazione ha come finalità quella di raggiungere i punti di consegna GPL nei comuni di Serramanna, Samassi, Serrenti, Samatzai, Pimentel, Barrali, Nuraminis, Donori, Dolianova, Soleminis, Sant'Andrea Frius, Ussana, Monastir, San Sperate e Villasor.

Fig.2/C Bacino d'utenza interessato

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 10 di 65	Rev. 0

Tab. 2/F: Metanodotto Derivazione per Serramanna DN 250 (10") – Dati utenti servibili e portata di punta

COMUNI	Utenti servibili RAS (*)	Portata di punta per utente [mc/h] (**)	Portata di punta per comune [mc/h]
Monastir	1.285,00	0,80	1.028
Nuraminis - Villa Greca	806,00	0,80	644,8
San Sperate	1.950,00	0,80	1.560
Villasor	2.002,00	0,80	1.601,60
Ussana	1.073,00	0,80	858,4
Barrali	307,00	0,80	245,60
Pimentel	354,00	0,80	283,20
Samassi	1.473,00	0,80	1.178,40
Serramanna	2.664,00	0,80	2.131,20
Samatzai	499,00	0,80	399,20
Serrenti	1.478,00	0,80	1.182,40
Dolianova	2.759,00	0,80	2.207,20
Donori	697,00	0,80	557,60
S. Andrea Frius	632,00	0,80	505,60
Soleminis	522,00	0,80	417,60

Il bacino d'utenza interessato coinvolge un totale di **18.501 utenti** ed una portata di punta totale di **14.800,80 mc/h.**

Met. Derivazione per Villacidro DN 150 (6"), DP 75 bar

La nuova condotta si snoda per una lunghezza complessiva di 5,305 km nel territorio comunale di:

Villacidro, in Provincia Sud Sardegna;

Le percorrenze della nuova condotta nei territori comunali sono riportate nella seguente tabella (vedi tab. 2/G).

^{(*) (}Fonte dati "Allegato 2" alla D.G.R. 54/28 del 22 novembre 2005)

^{(**) (}Fonte Progetti esecutivi approvato dal U.T.R. (Unità Tecnica Regionale) della Regione autonoma della Sardegna)

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO	
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-0		
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 11 di 65	Rev. 0	

Tab. 2/G: Metanodotto Derivazione per Villacidro DN 150 (6") - Lunghezza di percorrenza nei territori comunali

n.	Comune	Da km	A km	Percorrenza (km)
1	Villacidro	0+000	5+305	5,305

Tale derivazione ha come finalità quella di raggiungere i punti di consegna GPL nel centro abitato di Villacidro, centro più importante del circondario e comune capofila del Bacino n. 24, per poi raggiungere il punto di consegna del comune di Gonnosfanadiga, Fluminimaggiore e Buggerru.

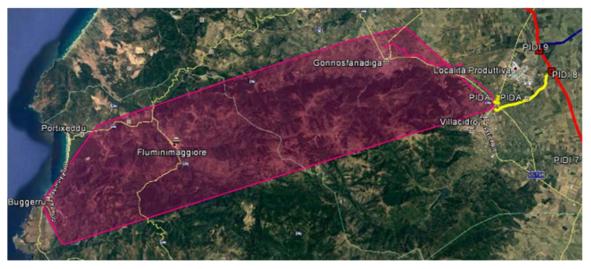


Fig.2/D Bacino d'utenza interessato

Tab. 2/H: Metanodotto Derivazione per Villacidro DN 150 (6") – Dati utenti servibili e portata di punta

COMUNI	Utenti servibili R.A.S. (*)	Portata di punta per utente [mc/h] (**)	Portata di punta per comune [mc/h]
Gonnosfanadiga	2.391,00	0,80	1.912,8
Villacidro	4.899,00	0,80	3.919,2
Buggerru	443,00	0,80	354,4
Fluminimaggiore	1.125,00	0,80	900

Il bacino d'utenza interessato coinvolge un totale di **8.858 utenti** ed una portata di punta totale di **7.085,40 mc/h.**

(*) (Fonte dati "Allegato 2" alla D.G.R. 54/28 del 22 novembre 2005)

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 12 di 65	Rev. 0

(**) (Fonte Progetti esecutivi approvato dal U.T.R. (Unità Tecnica Regionale) della Regione autonoma della Sardegna)

Met. Derivazione per Sanlurl DN 150 (6"), DP 75 bar

La nuova condotta si snoda per una lunghezza complessiva di 11,150 km nei territori comunali di:

Villacidro, San Gavino Monreale, Sanluri, in Provincia Sud Sardegna;

Le percorrenze della nuova condotta nei territori comunali sono riportate nella seguente tabella (vedi tab. 2/I).

Tab. 2/I: Metanodotto Derivazione per Sanluri DN 150 (6") - Lunghezza di percorrenza nei territori comunali

n.	Comune	Da km	A km	Percorrenza (km)
1	Villacidro	0+000	0+155	0,155
2	San Gavino Monreale	0+155	6+380	6,225
3	Sanluri	6+380	11+150	4,770

Tale derivazione ha come finalità quella di raggiungere i punti di consegna GPL nei comuni di Sanluri, Furtei, Segariu, Guasila, Guamaggiore, Selegas, Sardara, Villanovaforru, Villamar, Gesico, Suelli, Senorbì, San Basilio, Siurgus Donigala, Silius, San Nicolò Gerrei, Ballao, Armungia, Villasalto, Mogoro, Ales, Collinas, Siddi, Simala, Masullas, Morgongiori, Curcuris, Gonnosnò, Sini, Turri, Tuili, Barumini, Gesturi, Gergei, Escolca, Mandas, Gesico e Escalaplano.

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO	
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-		
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 13 di 65	Rev. 0	

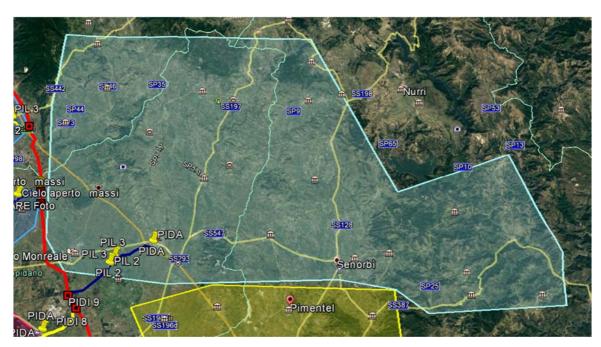


Fig.2/E Bacino d'utenza interessato

Tab. 2/L: Metanodotto Derivazione per Sanluri DN 150 (6") – Dati utenti servibili e portata di punta

COMUNI	Utenti servibili R.A.S. (*)	Portata di punta per utente [mc/h] (**)	Portata di punta per comune [mc/h]
Gesico	282,00	0,80	225,60
Guamaggiore	309,00	0,80	247,20
San Basilio	405,00	0,80	324,00
Selegas	435,00	0,80	348,00
Senorbì	1.263,00	0,80	1.010,40
Suelli	335,00	0,80	268,00
Furtei	492,00	0,80	393,60
Guasila	848,00	0,80	678,40
Segariu	388,00	0,80	310,40
Sanluri	2.415,00	0,80	1.932,00
Armungia	253,00	0,80	202,40
Ballao	369,00	0,80	295,20
S. Nicolo' Gerrei	365,00	0,80	292,00
Silius	404,00	0,80	323,20

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 14 di 65	Rev. 0

T		I	1
Siurgus Donigala	625,00	0,80	500,00
Villasalto	550,00	0,80	440,00
Sardara	1.243,00	0,80	994,40
Villanovaforru	200,00	0,80	160,00
Villamar	846,00	0,80	676,80
San Gavino Monreale	2.703,00	0,80	2.162,40
Mogoro	1.349,00	0,80	1.079,2
Ales	465,00	0,80	372
Collinas	290,00	0,80	232
Siddi	228,00	0,80	182,4
Simala	114,00	0,80	91,2
Masullas	340,00	0,80	272
Morgongiori	255,00	0,80	204
Curcuris	91,00	0,80	72,8
Gonnosnò	257,00	0,80	205,6
Sini	171,00	0,80	136,8
Turri	152,00	0,80	121,6
Tuili	339,00	0,80	271,2
Barumini	404,00	0,80	323,2
Gesturi	409,00	0,80	327,2
Gergei	414,00	0,80	331,2
Escolca	198,00	0,80	158,4
Mandas	704,00	0,80	563,2
Gesico	282,00	0,80	225,6
Escalaplano	722,00	0,80	577,6

Il bacino d'utenza interessato coinvolge un totale di 21.914 utenti ed una portata di punta totale di 17.531,20 mc/h.

Met. Derivazione per Guspini DN 150 (6"), DP 75 bar

La nuova condotta si snoda per una lunghezza complessiva di 11,115 km nei territori comunali di:

^{(*) (}Fonte dati "Allegato 2" alla D.G.R. 54/28 del 22 novembre 2005)

^{(**) (}Fonte Progetti esecutivi approvato dal U.T.R. (Unità Tecnica Regionale) della Regione autonoma della Sardegna)

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 15 di 65	Rev. 0

Pabillonis, Guspini, in Provincia Sud Sardegna;

Le percorrenze della nuova condotta nei territori comunali sono riportate nella seguente tabella (vedi tab. 2/M).

Tab. 2/M: Metanodotto Derivazione per Guspini DN 150 (6") - Lunghezza di percorrenza nei territori comunali

n.	Comune	Da km	A km	Percorrenza (km)
1	Pabillonis	0+000	5+470	5,470
2	Guspini	5+470	11+115	5,645

Tale derivazione ha come finalità quella di raggiungere i punti di consegna GPL nei comuni di Pabillonis, Guspini e Arbus.

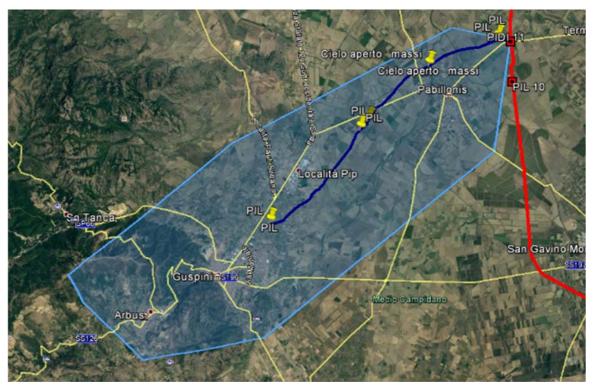


Fig.2/F Bacino d'utenza interessato

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 16 di 65	Rev. 0

Tab. 2/N: Metanodotto Derivazione per Guspini DN 150 (6") – Dati utenti servibili e portata di punta

COMUNI	Utenti servibili RAS (*)	Portata di punta per utente [mc/h] (**)	Portata di punta per comune [mc/h]
Guspini	4.424,00	0,80	3.539,2
Pabillonis	1.025,00	0,80	820
Arbus	2.005,00	0,80	1.604

Il bacino d'utenza interessato coinvolge un totale di **7.454 utenti** ed una portata di punta totale di **5.963,20 mc/h.**

Met. Derivazione per Terralba DN 150 (6"), DP 75 bar

La nuova condotta si snoda per una lunghezza complessiva di 8,035 km nei territori comunali di:

Mogoro, Uras, Terralba, in Provincia di Oristano;

Le percorrenze della nuova condotta nei territori comunali sono riportate nella seguente tabella (vedi tab. 2/O).

Tab. 2/O: Metanodotto Derivazione per Terralba DN 150 (6") - Lunghezza di percorrenza nei territori comunali

n.	Comune	Da km	A km	Percorrenza (km)
1	Mogoro	0+000	0+955	0,955
2	Uras	0+955	7+880	6,925
3	Terralba	7+880	8+035	0,155

Tale derivazione ha come finalità quella di raggiungere i punti di consegna GPL nei comuni di Terralba, San Nicolò d'Arcidano, Uras, Marrubiu e Arborea.

^{(*) (}Fonte dati "Allegato 2" alla D.G.R. 54/28 del 22 novembre 2005)

^{(**) (}Fonte Progetti esecutivi approvato dal U.T.R. (Unità Tecnica Regionale) della Regione autonoma della Sardegna)

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 17 di 65	Rev. 0

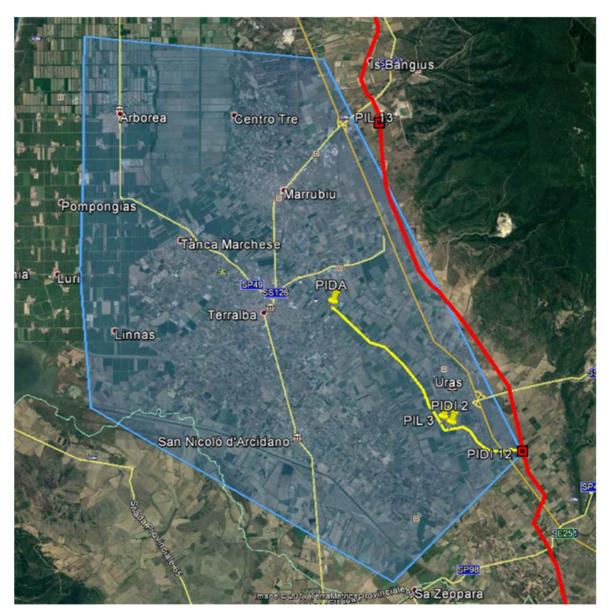


Fig.2/G Bacino d'utenza interessato

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 18 di 65	Rev. 0

Tab. 2/P: Metanodotto Derivazione per Terralba DN 150 (6") – Dati utenti servibili e portata di punta

COMUNI	Utenti servibili RAS (*)	Portata di punta per utente [mc/h] (**)	Portata di punta per comune [mc/h]
Marrubiu	1.417,00	0,80	1.133,60
Arborea	1.122,00	0,80	897,60
Terralba	2.641,00	0,80	2.112,80
San Nicolò d'Arcidano	832,00	0,80	665,60
Uras	887,00	0,80	709,60

Il bacino d'utenza interessato coinvolge un totale di **6.899 utenti** ed una portata di punta totale di **5.519,20 mc/h.**

Met. Derivazione per Oristano Città DN 150 (6")

La nuova condotta si snoda per una lunghezza complessiva di 4,395 km nei territori comunali di:

Palmas Arborea, Santa Giusta, Oristano, in Provincia di Oristano;

Le percorrenze della nuova condotta nei territori comunali sono riportate nella seguente tabella (vedi tab. 2/Q).

Tab. 2/Q: Metanodotto Derivazione per Oristano Città DN 150 (6") - Lunghezza di percorrenza nei territori comunali

n.	Comune	Da km	A km	Percorrenza (km)
1	Palmas Arborea	0+000	3+825	3,825
2	Santa Giusta	3+825	4+205	0,380
3	Oristano	4+205	4+395	0,190

Tale derivazione ha come finalità quella di raggiungere i punti di consegna GPL nei comuni di San Vero Milis, Riola Sardo, Oristano, Cabras, Siamaggiore, Simaxis, Santa Giusta, Palmas Arborea, Villaurbana, Siamanna, Ollastra, Solarussa, Zerfaliu e Tramatza.

^{(*) (}Fonte dati "Allegato 2" alla D.G.R. 54/28 del 22 novembre 2005)

^{(**) (}Fonte Progetti esecutivi approvato dal U.T.R. (Unità Tecnica Regionale) della Regione autonoma della Sardegna)

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	SARDEGNA RE-AMB-00	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 19 di 65	Rev. 0

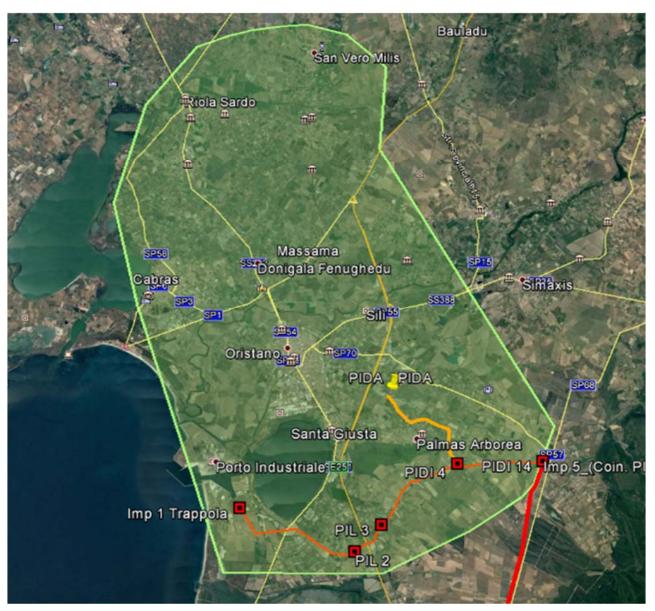


Fig.2/H Bacino d'utenza interessato

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 20 di 65	Rev. 0

Tab. 2/R: Metanodotto Derivazione per Oristano Città DN 150 (6") – Dati utenti servibili e portata di punta

COMUNI	Utenti servibili RAS (*)	Portata di punta per utente [mc/h] (**)	Portata di punta per comune [mc/h]		
San Vero Milis	685,00	0,80	548,00		
Riola Sardo	607,00	0,80	485,60		
Oristano		Dati non disponibili			
Palmas Arborea	381,00	0,80	304,80		
Cabras	2487,00	0,80	1989,60		
Siamaggiore	285,00	0,80	228,00		
Simaxis	617,00	0,80	493,60		
Santa Giusta	1259,00	0,80	1007,20		
Villaurbana	511,00	0,80	408,80		
Siamanna	247,00	0,80	197,60		
Ollastra	365,00	0,80	292,00		
Solarussa	712,00	0,80	569,60		
Zerfaliu	326,00	0,80	260,80		
Tramatza	285,00	0,80	228,00		

Il bacino d'utenza interessato coinvolge un totale di **8.767 utenti** ed una portata di punta totale di **7.373,60 mc/h.** (Escluso Oristano)

Rappresentazione cartografica del tracciato di progetto

Di seguito si illustra il criterio adottato per la rappresentazione del tracciato di progetto riportato nelle planimetrie in scala 1:10.000 allegate al presente volume (Allegato 1 - PG-TP-411, PG-TP-412, PG-TP-413, PG-TP-414, PG-TP-415, PG-TP-416, PG-TP-417, PG-TP-418, "Tracciato di progetto").

Le tavole relative alla messa in opera delle nuove condotte in progetto che vanno dal PG-TP-411 al PG-TP-417, sono state ordinate nel senso di trasporto del gas della condotta principale Metanodotto Cagliari-Palmas Arborea DN 650 (26") con una numerazione crescente, mentre la tavola PG-TP-418 ha una numerazione a sè stante in quanto si tratta dell'unica tavola relativa ad una derivazione che si stacca dalla condotta principale Metanodotto Collegamento Terminale di Oristano DN 650 (26").

^{(*) (}Fonte dati "Allegato 2" alla D.G.R. 54/28 del 22 novembre 2005)

^{(**) (}Fonte Progetti esecutivi approvato dal U.T.R. (Unità Tecnica Regionale) della Regione autonoma della Sardegna)

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 21 di 65	Rev. O

2.1 Linea

2.1.1 Tubazioni

Le tubazioni impiegate saranno in acciaio di qualità e rispondenti a quanto prescritto al punto 3 del DM 17 aprile 2008.

I tubi, collaudati singolarmente dalle industrie produttrici, avranno una lunghezza media, sia per le tre linee principali che per le linee secondarie di 12 m, saranno smussati e calibrati alle estremità per permettere la saldatura elettrica di testa ed avranno le seguenti caratteristiche (vedi Tab. 2.1/A).

Tab. 2.1/A: Caratteristiche tecniche delle tubazioni

Diametro nominale DN	Carico unitario al limite di allungamento totale (N/mm²)	Spessore minimo (mm)	Materiale (acciaio di qualità)
250 (10")	360	7,8	EN L360MB
150 (6")	360	7,1	EIN LOUIVID

Le curve saranno ricavate da tubi piegati a freddo con raggio di curvatura pari a 40 diametri nominali, oppure prefabbricate con raggio di curvatura pari a 7 diametri nominali per quanto riguarda le tubazioni di diametro DN 250 (10") e raggio di curvatura pari a 3 diametri nominali per quanto riguarda le tubazioni di diametro DN 150 (6").

In corrispondenza degli attraversamenti delle linee ferroviarie, in accordo al DM Infrastrutture e Trasporti del 4 aprile 2014, la condotta sarà messa in opera in tubo di protezione avente le seguenti caratteristiche (vedi Tab. 2.1/B):

Tab. 2.1/B: Caratteristiche tecniche dei tubi di protezione

Diametro nominale condotta (DN)	Diametro nominale tubo di protezione (DN)	Spessore (mm)	Materiale (acciaio di qualità)
250 (10")	400 (16")	11,1	EN L360MB
150 (6")	250 (10")	7,8	EN LOOUVIB

Negli attraversamenti delle strade più importanti e dove, per motivi tecnici, si è ritenuto opportuno, la condotta sarà messa in opera in tubo di protezione avente le stesse caratteristiche delle tubazioni utilizzate per gli attraversamenti delle linee ferroviarie.

2.1.2 <u>Materiali</u>

Per il calcolo dello spessore di linea della tubazione sono stati scelti i seguenti gradi di utilizzazione rispetto al carico unitario di snervamento minimo garantito:

• Condotte DN 250 (10") ÷ DN 150 (6") − 75 bar: f ≤ 0,57

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMI	B-004
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 22 di 65	Rev. 0

2.1.3 <u>Calcolo dello spessore delle tubazioni</u>

I tubi costituenti le condotte di trasporto derivate saranno di acciaio di grado EN L360MB sia per quanto riguarda le condotte di diametro DN 250 (10") che per quanto riguarda le condotte di diametro DN 150 (6").

Il grado di utilizzazione scelto per il calcolo dello spessore dei tubi è f = 0.57. In riferimento a quanto previsto al punto 2.1 del DM 17/04/08, lo spessore nominale del tubo di linea minimo t_{min} (calcolato al netto delle tolleranze negative di fabbricazione) deve risultare non inferiore al valore determinato con la seguente espressione:

$$t \ge tmin (mm) = (DP \cdot D) / (20 \cdot sp)$$

con:

D diametro esterno della condotta in mm;

DP pressione di progetto;

sp sollecitazione circonferenziale ammissibile (espressa in MPa) \leq f • Rt0,5; f grado di utilizzazione:

Rto,5 carico unitario di snervamento minimo garantito.

,

Inoltre, al fine di soddisfare le prescrizioni dei punti 2.5 e 2.7 della "Regola tecnica", lo spessore minimo t1min dei tubi posati in sede stradale di autostrade e strade statali, regionali e provinciali, per attraversamenti o con percorso parallelo alla carreggiata, viene calcolato in base alla pressione massima di esercizio aumentata del 25% come indicato nella seguente formula:

$$t \ge t1min (mm) = (1,25 DP \cdot D) / (20 \cdot sp)$$

Viene effettuato il calcolo in base ai due diametri utilizzati per le condotte derivate.

Tubazione da DN 250 (10")

$$t \ge t min (mm) = (DP \cdot D) / (20 \cdot sp) = (75 \cdot 273,1) / (20 \cdot 205,2) = 4,99 mm$$

 $t \ge t 1 min (mm) = (1,25 DP \cdot D) / (20 \cdot sp) = (1,25 \cdot 75 \cdot 273,1) / (20 \cdot 205,2) = 6,24 mm$

Lo spessore adottato per le linee a spessore normale e maggiorato è pari a **7,8** mm e risulta maggiore di tmin e di t1min calcolati al netto delle tolleranze negative di fabbricazione.

Nei casi di parallelismi ed attraversamenti di linee ferroviarie vengono applicate le norme emanate dal Ministero dei Trasporti a tutela degli impianti di propria competenza (Decreto 04 aprile 2014 - Norme Tecniche per gli attraversamenti ed i parallelismi di condotte e canali convoglianti liquidi e gas con ferrovie ed altre linee di trasporto).

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 23 di 65	Rev. 0

Lo spessore della condotta con DN 250 interessata dall'attraversamento ferroviario sarà quindi pari a **7,8** mm, valore maggiore dello spessore minimo calcolato con la formula di cui al punto 2.3.3 del Decreto 4 aprile 2014 utilizzando un fattore di sicurezza minimo Ks = 2.5.

Tubazione da DN 150 (6")

$$t \ge t min (mm) = (DP \cdot D) / (20 \cdot sp) = (75 \cdot 168,3) / (20 \cdot 205,2) = 3,08 mm$$

 $t \ge t 1 min (mm) = (1,25 DP \cdot D) / (20 \cdot sp) = (1,25 \cdot 75 \cdot 168,3) / (20 \cdot 205,2) = 3,84 mm$

Lo spessore adottato per le linee a spessore normale e maggiorato è pari a **7,1** mm e risulta maggiore di tmin e di t1min calcolati al netto delle tolleranze negative di fabbricazione.

Nei casi di parallelismi ed attraversamenti di linee ferroviarie vengono applicate le norme emanate dal Ministero dei Trasporti a tutela degli impianti di propria competenza (Decreto 04 aprile 2014 - Norme Tecniche per gli attraversamenti ed i parallelismi di condotte e canali convoglianti liquidi e gas con ferrovie ed altre linee di trasporto).

Lo spessore della condotta con DN 150 interessata dall'attraversamento ferroviario sarà quindi pari a **7,1** mm, valore maggiore dello spessore minimo calcolato con la formula di cui al punto 2.3.3 del Decreto 4 aprile 2014 utilizzando un fattore di sicurezza minimo Ks = 2.5.

2.1.4 Protezione anticorrosiva

La condotta sarà protetta da:

- una protezione passiva esterna costituita da un rivestimento di nastri adesivi in polietilene estruso ad alta densità, applicato in fabbrica, dello spessore minimo di 3 mm, ed un rivestimento interno in vernice epossidica. I giunti di saldatura saranno rivestiti in linea con fasce termorestringenti;
- una protezione attiva (catodica) attraverso un sistema di correnti indotte con apparecchiature poste lungo la linea che rende il metallo della condotta elettricamente più negativo rispetto all'elettrolito circostante (terreno, acqua, ecc.).

La protezione attiva viene realizzata contemporaneamente alla posa del metanodotto collegandolo ad uno o più impianti di protezione catodica costituiti da apparecchiature che, attraverso circuiti automatici, provvedono a mantenere il potenziale della condotta più negativo o uguale a -1 V rispetto all'elettrodo di riferimento Cu-CuS04 saturo.

2.1.5 Fascia di asservimento

L'ampiezza di tale fascia varia in rapporto al diametro ed alla pressione di esercizio del metanodotto in accordo alle vigenti normative di legge: nel caso in oggetto, la realizzazione delle nuove condotte DN 250 (10") e DN 150 (6") comporterà l'imposizione di una fascia di servitù pari a 13,5 m per parte rispetto all'asse della condotta.

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMI	B-004
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 24 di 65	Rev. 0

2.2 Impianti e punti di linea

Punti di linea

Il progetto prevede la realizzazione di punti di intercettazione.

Punti di intercettazione

In accordo alla normativa vigente (DM 17.04.08), le condotte saranno sezionabili in tronchi mediante apparecchiature di intercettazione (valvole) denominate:

- <u>Punto di intercettazione di derivazione importante (PIDI)</u> che, oltre a sezionare la condotta, ha la funzione di consentire sia l'interconnessione con altre condotte, sia l'alimentazione di condotte derivate dalla linea principale;
- <u>Punto di intercettazione di linea (PIL)</u>, che ha la funzione di sezionare la condotta interrompendo il flusso del gas;

La loro ubicazione, relativamente alle condotte in progetto, è indicata sulle allegate planimetrie in scala 1:10.000 ed elencati nella tabella seguente (vedi Tab. 2.2/A Allegato 1 - PG-TP-411, PG-TP-412, PG-TP-413, PG-TP-414, PG-TP-415, PG-TP-416, PG-TP-417, PG-TP-418, "Tracciato di progetto").

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 25 di 65	Rev. 0

Tab. 2.2/A: Ubicazione degli impianti e dei punti di linea in progetto

Progr. (km)	Comune	Località	Impianto	Super. (m²)	Strada di accesso (m)
Metanodotto Derivazione per Capoterra-Sarroch DN 150 (6") in progetto					
4,595	Uta	Marzalloi	PIDI n. 1	33	20
14,790	Sarroch	Villa d'Orri	PIDI n. 2	33	75
	Metanodotto Deriv	azione per Monser	rato DN 250 (10") ir	n progett	
7,470		Terramai	PIL n. 1	17	25
8,125	Assemini	Piripiri	PIDI n. 2	33	65
17,415	Sestu	Cantoniera di Sestu	PIDI n. 3	33	20
Metanodotto Derivazione per Serramanna DN 250 (10") in progetto					
7,725	Serramanna	Isca Matta Manna	PIL n. 1	17	20
7,855	Serramanna	Isca Samassi	PIDI n. 2	33	10
	Metanodotto Der	ivazione per Villacio	dro DN 150 (6") in p	rogetto	
5,305	Villacidro	Corte Risoni	PIDI n. 1	33	15
	Metanodotto De	rivazione per Sanlu	ıri DN 150 (6") in pr	ogetto	
5,490	San Gavino	Giba Carroga	PIL n. 1	17	450
6,410	Monreale	Ovile Ganasci	PIL n. 2	17	30
11,150	Sanluri	Pitziaris	PIDI n. 3	33	15
	Metanodotto De	rivazione per Guspi	ini DN 150 (6") in pi	rogetto	
0,505	Pabillonis	Stazione di Pabillonis	PIL n. 1	17	220
6,480	Oversiei	Pranu Murdegu	PIL n. 2	17	35
11,115	Guspini	Terras Frissas	PIDI n. 3	33	20
	Metanodotto Dei	rivazione per Terral	ba DN 150 (6") in p	rogetto	
2,590		Fundalis	PIDI n. 1	17	60
2,945	Uras	Mori Linnarbus	PIL n. 2	17	35
8,035	Terralba	Corongeddu	PIDI n. 3	33	55
	Metanodotto Deriva	zione per Oristano	Città DN 150 (6") in	progett	0
4,395	Oristano	Pirastedda	PIDI n. 1	33	15

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 26 di 65	Rev. 0

3 FASI DI REALIZZAZIONE DELL'OPERA

3.1 Fasi di costruzione

3.1.1 Realizzazione di infrastrutture provvisorie

Con il termine di "infrastrutture provvisorie" s'intendono le piazzole di stoccaggio per l'accatastamento delle tubazioni (C), della raccorderia, ecc..

Le piazzole saranno realizzate a ridosso di strade percorribili dai mezzi adibiti al trasporto dei materiali. La realizzazione delle stesse, previo scotico e accantonamento dell'humus superficiale, consiste nel livellamento del terreno. Si eseguiranno, ove non già presenti, accessi provvisori dalla viabilità ordinaria per permettere l'ingresso degli autocarri alle piazzole stesse.

In fase di progetto è stata individuata la necessità di predisporre 8 piazzole provvisorie di stoccaggio tubazioni lungo i tracciati delle condotte derivate (vedi Tab. 3.1/A). Tutte le piazzole sono collocate in corrispondenza di superfici prative o a destinazione agricola e la loro ubicazione indicativa è riportata nelle allegate planimetrie in scala 1:10.000 (vedi Allegato 1 - PG-TP-411, PG-TP-412, PG-TP-413, PG-TP-414, PG-TP-415, PG-TP-416, PG-TP-417, PG-TP-418, "Tracciato di progetto").

Tab. 3.1/A: Ubicazione delle infrastrutture provvisorie

Progr. (km)	Comune	Località	num. ordine	Sup. (m²)	
Me	tanodotto Derivazione per	Capoterra-Sarroch DN 150	(6") in prog	getto	
8,840	Capoterra	Is Pixinas	P1	3000	
	Metanodotto Derivazione p	er Monserrato DN 250 (10")) in progett	0	
6,515	Uta	Sa Turri	P1	3000	
12,810	Assemini	C. Picciau	P2	2500	
	Metanodotto Derivazione p	er Serramanna DN 250 (10") in proget	to	
2,915	Serramanna	Flumini Becciu	P1	3000	
	Metanodotto Derivazion	e per Sanluri DN 150 (6") in	progetto		
2,925	San Gavino Monreale	Giba Arritzonis	P1	3000	
	Metanodotto Derivazione	e per Guspini DN 150 (6") ir	progetto		
5,275	Pabillonis	Merdecani	P1	3500	
	Metanodotto Derivazione	e per Terralba DN 150 (6") ir	n progetto		
4,755	Uras	Masarongia	P1	3000	
ı	Metanodotto Derivazione per Oristano Città DN 150 (6") in progetto				
0,000	Palmas Arborea	Is Melonis	P1	3000	

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 27 di 65	Rev. O

3.1.2 Apertura dell'area di passaggio

L'area di passaggio per la messa in opera delle nuove condotte avrà una larghezza L (vedi Vol. 1, All. 2 - Dis. ST-002), che sarà generalmente ripartita in due fasce funzionali distinte:

- una fascia laterale continua, di larghezza A, per il deposito del materiale di scavo della trincea;
- una fascia di larghezza B per consentire:
 - l'assiemaggio della condotta;
 - il passaggio dei mezzi occorrenti per l'assiemaggio, il sollevamento e la posa della condotta e per il transito dei mezzi adibiti al trasporto del personale, dei rifornimenti e dei materiali e per il soccorso.

In tratti caratterizzati da particolari condizioni morfologiche, ambientali e vegetazionali (presenza di vegetazione arborea d'alto fusto) tale larghezza potrà, per tratti limitati, essere ridotta rinunciando alla possibilità di transito con sorpasso dei mezzi operativi e di soccorso.

L'area di passaggio ristretta, di larghezza L, dovrà soddisfare i seguenti requisiti:

- una fascia laterale continua, di larghezza A, per il deposito del materiale di scavo della trincea;
- una fascia di larghezza B per consentire:
 - l'assiemaggio della condotta;
 - il passaggio dei mezzi occorrenti per l'assiemaggio, il sollevamento e la posa della condotta.

Di seguito si riportano le larghezze dell'area di passaggio normale (vedi Tab. 3.1/B) e ristretta (vedi Tab. 3.1/C) relativamente alle otto linee secondarie in progetto.

Tab. 3.1/B: Area di passaggio normale per le linee secondarie

Motopodotto in progetto	Diametro condotta	Area di passaggio normale		
Metanodotto in progetto	DN	A (m)	B (m)	L (m)
Met. Derivazione per Capoterra- Sarroch	150 (6")	6	8	14
Met. Derivazione per Monserrato	250 (10")	7	9	16
Met. Derivazione per Serramanna	250 (10")	7	9	16
Met. Derivazione per Villacidro	150 (6")	6	8	14
Met. Derivazione per Sanluri	150 (6")	6	8	14
Met. Derivazione per Guspini	150 (6")	6	8	14
Met. Derivazione per Terralba	150 (6")	6	8	14
Met. Derivazione per Oristano Città	150 (6")	6	8	14

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 28 di 65	Rev. 0

Tab. 3.1/C: Area di passaggio ristretta per le linee secondarie

Motonodotto in progetto	Diametro condotta	Area di passaggio ristretta		
Metanodotto in progetto	DN	A (m)	B (m)	L (m)
Met. Derivazione per Capoterra- Sarroch	150 (6")	4	8	12
Met. Derivazione per Monserrato	250 (10")	5	9	14
Met. Derivazione per Serramanna	250 (10")	5	9	14
Met. Derivazione per Villacidro	150 (6")	4	8	12
Met. Derivazione per Sanluri	150 (6")	4	8	12
Met. Derivazione per Guspini	150 (6")	4	8	12
Met. Derivazione per Terralba	150 (6")	4	8	12
Met. Derivazione per Oristano Città	150 (6")	4	8	12

In corrispondenza degli attraversamenti di infrastrutture (strade, ferrovie, ecc.), di corsi d'acqua e di aree particolari (imbocchi tunnel, impianti di linea), l'ampiezza dell'area di passaggio sarà superiore ai valori sopra riportati per evidenti esigenze di carattere esecutivo ed operativo.

L'ubicazione dei tratti in cui si renderà necessario l'ampliamento delle aree di passaggio sopra indicate è riportata negli allegati grafici (vedi Allegato 1 - PG-TP-411, PG-TP-412, PG-TP-413, PG-TP-414, PG-TP-415, PG-TP-416, PG-TP-417, PG-TP-418, "Tracciato di progetto"), mentre la stima delle relative superfici interessate è riportata nella tabella 3.1/D seguente.

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 29 di 65	Rev. 0

Tab. 3.1/D: Ubicazione dei tratti di allargamento dell'area di passaggio

Progr. (km)	Comune	Località/motivazione	Superf. (m²)
Metanod	otto Derivazione pe	r Capoterra-Sarroch DN 150 (6") in proget	to
0,705-0,740	Uta	Casa Circondariale Cagliari "Ettore Scalas"/Attr. SP n. 1	300
3,500-3,670	Ula	Su Marmureri/Attr.Riu Santa Lucia	1300
4,565-4,585		Marzalloi/Realizz. PIDI n. 1	700
5,070-5,100		Is Marginus/ Attr. Fosso con difesa in cls	600
5,585-5,600		Is Marginus/ Attr. Fosso	300
6,255-6,290		C. Boero/Attr. SC Via Trento	300
6,730-6,760		Tanca de Prammeri/Attr. Strada asfaltata	300
7,445-7,495		Tanca de Prammeri/Attr. Fosso non rivestito	600
7,610-7,645		Is Pixinas/Attr. Fosso rivestito in cls	400
7,685-7,725		Is Pixinas/Attr. Strada asfaltata	300
7,765-7,800		ls Pixinas/Attr. Strada asfaltata	400
8,000-8,030		Is Pixinas/Attr. Strada asfaltata	400
8,630-8,670		Is Pixinas/Attr. SP n. 91	500
9,855-9,900		Guardia Longa/Attr. Strada comunale	500
9,970-10,015		Guardia Longa/Attr. Strada vicinale Santa Barbara	600
10,070-10,155	Capoterra	Guardia Longa/Attr. Strada in costruzione	600
10,670-10,715		Comancino/Attr. Riu San Gerolamo	600
11,200-11,265		Azienda agricola Medda Obino/Attr. Strada in costruzione	600
11,310-11,440		Azienda agricola Medda Obino/Attr. Strada in costruzione	600
11,620-11,780		Azienda agricola Medda Obino/Attr. Strada in costruzione	600
12,045-12,085		C. Gargu/Attr. Riu Baccalamanza	500
12,175-12,215		C. Gargu/Attr. Riu Baccalamanza	500
13,965-14,045		Sa Perda Scritta/Attr. SS n. 195 Sulcitana	600
14,755-14,790	Sarroch	Villa d'Orri/Realizz. PIDI n. 2	700

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 30 di 65	Rev. 0

Tab. 3.1/D: Ubicazione dei tratti di allargamento dell'area di passaggio (seguito)

Progr. (km)	Comune	Località/motivazione	Superf. (m²)
Metan	odotto Derivazione	per Monserrato DN 250 (10") in progetto	
1,305-1,370		Su Stangioni/Attr. Strada asfaltata	600
3,730-3,775	Villaspeciosa	Fermata di Uta/Realizzazione TOC SP n. 3/Strada comunale Via Stazione	2500
4,040-4,065		Is Arridelis/Realizzazione TOC SP n. 3/Strada comunale Via Stazione	700
4,160-4,215		Is Arridelis/Strada comunale Su Pixinali	500
6,510-6,565	Uta	Sa Turri/Strada comunale Via Montegranatico	400
6,670-6,740		Sa Turri/Realizzazione TOC Flumini Mannu	2500
7,195-7,250		Terramai/Realizzazione TOC Flumini Mannu	700
7,405-7,550		Terramai/Realizz. PIL n. 1	700
7,700-7,760		Su Carropu/Attr. F.S. Chilivani-Olbia Marittima	800
7,910-7,970		Su Carropu/Strada comunale Via Cagliari	500
8,115-8,140		Piripiri/Realizz. PIDI n. 2	700
8,745-8,805		Campaidali/Attr. SS n. 130	500
9,190-9,235		Campaidali/Attr. Strada asfaltata	400
10,035-10,075		Sa Ruina/Attr. Strada asfaltata	400
10,430-10,480	A i i	Sa Ruina/Attr. Strada asfaltata	400
11,120-11,170	Assemini	Motroxiu Su Moru/Attr. Strada asfaltata	400
11,210-11,265		Motroxiu Su Moru/Attr. Strada asfaltata	400
11,460-11,515		C. Piano/Attr. Affluente Riu Sa Nuxedda	500
11,585-11,630		C. Piano/Strada comunale	400
11,755-11,805		C. Piano/Strada comunale	400
11,980-12,065		C. Piano/Attr. Riu Sa Nuxedda	600
12,695-12,735		C. Picciau/Attr. Riu Sa Nuxedda	500
13,950-13,990		Su Motroxiu/Attr. Riu de Giacu Meloni	300
14,450-14,475		Sa Serra/Attr. Fosso	300
14,705-14,745		Sa Serra/Attr. Fosso	300
15,160-15,220		Sa Serra/Attr. SP n. 2	500
16,650-16,680		Sa Perda/Attr. Riu Sa Murta	500
16,790-16,835	Sestu	Sa Perda/Attr. Strada comunale Is Canadesus	500
17,390-17,405		Cantoniera di Sestu/Realizz. PIDI n. 3	700

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 31 di 65	Rev. 0

Tab. 3.1/D: Ubicazione dei tratti di allargamento dell'area di passaggio (seguito)

Progr. (km)	Comune	Località/motivazione	Superf. (m²)		
Metanodotto Derivazione per Serramanna DN 250 (10") in progetto					
1,145-1,185		Fattoria Leo/Attr. SS n. 293 di Giba	400		
2,840-2,890		Flumini Becciu/Attr. Canale in cls	600		
4,540-4,615		Perdedda di Sopra/Attr. Canale	500		
6,135-6,175		C. Muntoni/Attr. Gora Pixina Manna	400		
6,840-6,855		C. Pintus/Strada comunale San Giorgio	400		
7,085-7,165	Serramanna	C. Pintus/Realizzazione TOC Flumini Mannu	2500		
7,515-7,570		Isca Matta Manna/Realizzazione TOC Flumini Mannu	700		
7,730-7,820		Isca Matta Manna/Realizz. PIL n. 1 Isca Samassi/Attr. F.S. Chilivani-Olbia Marittima Isca Samassi/Realizz. PIDI n. 2	2000		
Meta	anodotto Derivazior	ne per Villacidro DN 150 (6") in progetto			
2,655-2,700		Fattoria Grandessa/Attr. Strada	400		
2,055-2,700	Villacidro	comunale Muntargia	400		
4,710-4,765	Villaciuio	C. Steri/Attr. SS n. 196	500		
5,295-5,305		Corte Risoni/Realizz. PIDI n. 1	700		
Me	tanodotto Derivazio	one per Sanluri DN 150 (6") in progetto			
2,280-2,335		C. Biondo/Attr. Canale Ripartitore N.O.E.A.F.	700		
2,920-2,985		Giba Arritzonis/Attr. Strada comunale Bia Casteddu	600		
3,320-3,385		Pauleddu/Attr. Canale	500		
4,725-4,775	San Gavino	Giba Carroga/Attr. Fosso	400		
5,425-5,460	Monreale	Giba Carroga/Realizz. PIL n. 1	700		
5,490-5,585		Giba Carroga/Attr. F.S. Chilivani-Olbia Marittima	400		
6,315-6,350		Ovile Ganasci/Realizz. PIL n. 2	700		
7,525-7,535		Corte Bacca/Attr. Riu Masoni Nostu	400		
8,380-8,445		Strovina Vecchia/Attr. Riu Acqua Sassa	500		
9,125-9,180		Strovina Vecchia/Attr. Riu Acqua Sassa	400		
10,345-10,470	Sanluri	Piedadis/ Attrav. E25-SS n. 131- Complanare Est/Attrav. E25-SS n. 131/ Attrav. E25-SS n. 131- Complanare Ovest	500		
10,935-10,980		Pitziaris/Attr. SP n. 59	400		
11,135 -11,150		Pitziaris/Realizz. PIDI n. 3	700		

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 32 di 65	Rev. 0

Tab. 3.1/D: Ubicazione dei tratti di allargamento dell'area di passaggio (seguito)

Progr. (km)	Comune	Località/motivazione	Superf. (m²)		
Metanodotto Derivazione per Guspini DN 150 (6") in progetto					
0,415-0,475		Stazione di Pabillonis/Attr. F.S. Chilivani- Olbia Marittima	800		
0,495-0,530		Stazione di Pabillonis/Realizz. PIL n. 1	700		
1,455-1,515	C. se Matta/Attr. Strada Vicinale		400		
1,835-1,900	Dakillania	C. se Matta/Realizzazione TOC Flumini Malu			
2,070-2,115	Pabillonis	Pardu/Realizzazione TOC Flumini Malu	800		
3,040-3,135		Pauli Sermentu/Attr. Flumini Bellu	1200		
3,435-3,495		Domu Campu/Attr. SP n. 64	400		
3,575-3,625		Domu Campu/Attr. Fosso in cls	400		
3,725-3,770		Domu Campu/Attr. Fosso	400		
4,515-4,565		Merdecani/Rio Merdecani	400		
5,465-5,515		Cumis de Cara/Attr. SP n. 69	400		
5,980-6,060	O vancini	Cumis de Cara/Attr. Canale/Attr. Strada Asfaltata	1200		
6,435-6,470	Guspini	Pranu Murdengu/Realizz. PIL n. 2	700		
10,530-10,555		Murera/Attr. Strada comunale	200		
11,090-11,115		Terras Frissas/Realizz. PIDI n. 3	700		
Met	anodotto Derivazio	ne per Terralba DN 150 (6") in progetto			
0,540-0,695	Mogoro	Rio Sassu/ Attrav. E25-SS n. 131- Complanare Est/Attrav. E25-SS n. 131/ Attrav. E25-SS n. 131- Complanare Ovest	1200		
0,935-0,980		Rio Sassu/Attrav. Fosso	400		
1,695-1,715		Nuraghe San Giovanni/Attr. Strada comunale	200		
2,205-2,225		Fundalis/Attr. Strada comunale	200		
2,575-2,695		Fundalis/Realizz. PIDI n. 1/Attr. F.S. Chilivani-Olbia Marittima	1500		
2,930-2,940		Mori Linnarbus/Realizz. PIL n. 2	700		
3,210-3,280		Stazione di Uras/Attrav. SP n. 47	400		
3,305-3,355		Stazione di Uras/Attr. Strada comunale	400		
4,260-4,350	Uras	Perdalonga/Realizzazione TOC Canale Acque Alte	800		
4,840-4,940		Masarongia/Realizzazione TOC Canale Acque Alte			
6,445-6,475		Bau Zinniga/Attr. Strada di Bonifica			
7,480-7,520		Corongeddu/Attr. Strada di Bonifica	200		
7,960 – 8,035	Terralba	Corongeddu/Attr. Strada di Bonifica/Realizz. PIDI n. 3	1100		

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 33 di 65	Rev. 0

Tab. 3.1/D: Ubicazione dei tratti di allargamento dell'area di passaggio (seguito)

Progr. (km)	Comune	Comune Località/motivazione				
Metano	Metanodotto Derivazione per Oristano Città DN 150 (6") in progetto					
0,275-0,320		Stazione di Sollevamento/Attr. Strada comunale	400			
0,595-0,645		Stazione di Sollevamento/Attr. Strada comunale	400			
0,905-0,935	Palmas Arborea	Su Campu de S'Acquidda/Attr. Strada comunale	400			
1,155-1,180		Su Campu de S'Acquidda/Attr. Strada comunale Pixiarbili	400			
1,465-1,520		Su Campu de S'Acquidda/Realizzazione TOC Riu Merd'e Cani	2500			
1,740-1,825		Isca Manna/Realizzazione TOC Riu Merd'e Cani	800			
1,915-2,010		Isca Manna/Attrav. Fosso	600			
2,275-2,315		Perda Bogada/Attrav. SP n. 53	400			
3,110-3,155	İ	Su Pardu/Attr. Strada comunale Pisciarbili	400			
3,730-3,780		Pixi Arbili/Attrav. Canale di Bonifica Spinarda	400			
4,390-4,395	Oristano	Pirastedda/Realizz. PIDI n. 1	700			

L'accessibilità all'area di passaggio è normalmente assicurata dalla viabilità ordinaria, che, durante l'esecuzione dell'opera, subirà unicamente un aumento del traffico dovuto ai soli mezzi dei servizi logistici.

I mezzi adibiti alla costruzione invece utilizzeranno l'area di passaggio messa a disposizione per la realizzazione dell'opera.

Oltre alle arterie statali e provinciali, l'accessibilità al tracciato è assicurata dalla esistente viabilità secondaria costituita da strade comunali, vicinali e forestali, spesso in terra battuta, che trova origine dalla citata rete viaria (vedi Tab. 3.1/E e Allegato 1 - PG-TP-411, PG-TP-412, PG-TP-413, PG-TP-414, PG-TP-415, PG-TP-416, PG-TP-417, PG-TP-418, "Tracciato di progetto" - strade evidenziate in colore verde).

L'accesso dei mezzi al tracciato richiederà la realizzazione di opere di adeguamento di tali infrastrutture; consistenti principalmente nella ripulitura ed adeguamento del sedime carrabile e nella sistemazione delle canalette di regimazione delle acque meteoriche.

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 34 di 65	Rev. O

Tab. 3.1/E: Ubicazione dei tratti di adeguamento della viabilità esistente

Progressiva (km)	Comune	Località	Lung.za (m)	Motivazione
Meta	nodotto Derivazio	ne per Capoterra-Sa	arroch DN	150 (6") in progetto
4,360-4,805	Uta	Marzalloi	430	Accesso area di passaggio e PIDI n. 1
5,030-5,060	Capoterra	Marzalloi	40	Accesso area di passaggio
Me	etanodotto Deriva:	zione per Monserra	to DN 250	(10") in progetto
7,885-8,170		Piripiri	290	Accesso area di passaggio e PIDI n. 2
9,245-9,375	Assemini	Campaidali	150	Accesso area di passaggio
9,505-9,615		Campaidali	85	Accesso area di passaggio
Metanodotto Derivazione per Terralba DN 150 (6") in progetto				
2,935-3,030	Uras	Mori Linnarbus	110	Accesso area di passaggio e PIL n. 2

Per permettere l'accesso all'area di passaggio o la continuità lungo la stessa, in corrispondenza di alcuni tratti particolari si prevede, inoltre, l'apertura di piste temporanee di passaggio di minime dimensioni (vedi Tab. 3.1/F e Allegato 1 - PG-TP-411, PG-TP-412, PG-TP-413, PG-TP-414, PG-TP-415, PG-TP-416, PG-TP-417, PG-TP-418, "Tracciato di progetto" - strade evidenziate in colore viola). Le piste, tracciate in modo da sfruttare il più possibile l'esistente rete di viabilità campestre, saranno rimosse al termine dei lavori di costruzione dell'opera e l'area interessata ripristinata nelle condizioni preesistenti.

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 35 di 65	Rev. 0

Tab. 3.1/F: Ubicazione delle piste temporanee di passaggio

Progressiva (km)	Comune	Località	Lung.za (m)	Motivazione
Meta	nodotto Derivaz	ione per Capoterra-	Sarroch DN	150 (6") in progetto
7,640	Capoterra	C. Panduccio	50	Accesso area di passaggio
Me	etanodotto Deriv	azione per Monser	rato DN 250	(10") in progetto
3,635	Villaspeciosa	Fermata di Uta	80	Accesso area di passaggio
12,785	Assemini	C. Picciau	30	Accesso Piazzola P2
Me	etanodotto Deriv	azione per Serrama	nna DN 250	(10") in progetto
2,675	Serramanna	Flumini Becciu	200	Accesso area di passaggio
2,880	Serramanna	Flumini Becciu	15	Accesso Piazzola P1
	Metanodotto De	erivazione per Sanlı	uri DN 150 (6	6") in progetto
2,930	S. Gavino	Giba Arritzonis	75	Accesso area di passaggio
5,555	Monreale	Giba Carroga	225	Accesso area di passaggio
	Metanodotto De	rivazione per Gusp	ini DN 150 (6") in progetto
0,460	Pabillonis	Stazione di Pabillonis	165	Accesso area di passaggio e PIL n. 1
3,445		Domu Campu	235	Accesso area di passaggio
	Metanodotto De	rivazione per Terral	ba DN 150 (6") in progetto
0,960	Mogoro	Rio Sassu	325	Accesso area di passaggio
4,755	Uras	Masarongia	25	Accesso Piazzola P1/ Realizzazione TOC Canale Acque Alte
Me	tanodotto Deriv	azione per Oristano	Città DN 15	
1,525	Palmas	Su Campu de S'Acquidda	80	Accesso area di passaggio/ Realizzazione TOC Riu Merd'e Cani
2,065	Arborea	Isca Manna	65	Accesso area di passaggio
2,290		Perda Bogada	25	Accesso area di passaggio

3.1.3 Realizzazione degli attraversamenti

Le metodologie realizzative previste per i principali attraversamenti lungo il tracciato dei metanodotti in oggetto sono riassunte nella seguente tabella (vedi Tab. 3.1/G).

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 36 di 65	Rev. 0

Tab. 3.1/G: Ubicazione attraversamenti e metodologie realizzative

Progr. (km)	Comune	Motivazione attraversamento	Tipologia attraversamento Disegno tipologico	Modalità realizzativa		
Metanodotto Derivazione per Capoterra-Sarroch DN 150 (6") in progetto						
0,000	Uta					
0,750		SP n. 1	Con tubo di protezione ST-029	In trivellazione		
3,615		Riu Santa Lucia	Senza tubo di protezione ST-035	A cielo aperto		
4,860	Capoterra					
5,055		Fosso con difesa in cls	Senza tubo di protezione ST-035	A cielo aperto		
6,240		Str. Comunale Via Trento	Con tubo di protezione ST-029	In trivellazione		
6,760		Strada Asfaltata	Senza tubo di protezione ST-031	A cielo aperto		
7,460		Fosso non rivestito	Senza tubo di protezione ST-035	A cielo aperto		
7,585		Fosso rivestito in cls	Senza tubo di protezione ST-035	A cielo aperto		
7,600		Strada Asfaltata	Con tubo di protezione ST-029	In trivellazione		
7,780		Strada Asfaltata	Senza tubo di protezione ST-031	A cielo aperto		
8,010		Strada Asfaltata	Senza tubo di protezione ST-031	A cielo aperto		
8,650		SP n. 91	Con tubo di protezione ST-029	In trivellazione		
9,885		Str. Comunale	Con tubo di protezione ST-029	In trivellazione		
10,005		Str. Vicinale Santa Barbara	Con tubo di protezione ST-029	In trivellazione		
10,690		Riu San Gerolamo	Senza tubo di protezione ST-035	A cielo aperto		
12,105		Riu Baccalamanza	Senza tubo di protezione ST-035	A cielo aperto		
14,015		SS n. 195 Sulcitana	Con tubo di protezione ST-029	In trivellazione		
Metanodotto Derivazione per Monserrato DN 250 (10") in progetto						
0,000	Villaspeci	osa				
1,335		Strada Asfaltata	Con tubo di protezione ST-029	In trivellazione		
3,775	Uta		_			
3,805]	SP n. 3	Trenchless	TOC		
3,995]	SC Via Stazione	Trenchless	TOC		
4,185		SC Su Pixinali	Con tubo di protezione ST-029	In trivellazione		

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 37 di 65	Rev. 0

Tab. 3.1/G: Ubicazione attraversamenti e metodologie realizzative (seguito)

Progr. (km)	Comune	Motivazione attraversamento	Tipologia attraversamento Disegno tipologico	Modalità realizzativa			
	Metanodo	otto Derivazione per Mo	nserrato DN 250 (10") in prog	getto			
	Uta						
6,500		SC Via Montegranatico	Con tubo di protezione ST-029				
6,915	Assemini	Assemini					
6,990]	Flumini Mannu	Trenchless	TOC			
7,400		SC Via Olimpia	Con tubo di protezione ST-029	In trivellazione			
7,735		Ferrovia Chilivani- Olbia Marittima	Con tubo di protezione ST-032	In trivellazione			
7,940		SC Via Cagliari	Con tubo di protezione ST-029	In trivellazione			
8,775		SS n. 130	Con tubo di protezione ST-029	In trivellazione			
12,030		Riu sa Nuxedda	Con tubo di protezione ST-036	In trivellazione			
12,740		Riu sa Nuxedda	Con tubo di protezione ST-036	In trivellazione			
13,970		Riu de Giacu Meloni	Senza tubo di protezione ST-035	A cielo aperto			
15,190		SP n. 2	Con tubo di protezione ST-029	In trivellazione			
15,920	Sestu						
16,685		Riu sa Murta	Senza tubo di protezione ST-035	A cielo aperto			
16,805		SC Is Canadesus	Con tubo di protezione ST-029	In trivellazione			
	Metanodo	tto Derivazione per Ser	ramanna DN 250 (10") in pro	getto			
0,545	Serraman	na					
1,165		SS n. 293 di Giba	Con tubo di protezione ST-029	In trivellazione			
2,860		Canale in cls	Con tubo di protezione ST-036	In trivellazione			
5,005		Gora su Spadoni	Senza tubo di protezione ST-035	A cielo aperto			
6,150		Gora Pixina Manna	Senza tubo di protezione ST-035	A cielo aperto			
6,865		SC San Giorgio	Con tubo di protezione ST-029	In trivellazione			
7,315		Flumini Mannu	Trenchless	TOC			
7,775		Ferrovia Chilivani- Olbia Marittima	Con tubo di protezione ST-032	In trivellazione			

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 38 di 65	Rev. 0

Tab. 3.1/G: Ubicazione attraversamenti e metodologie realizzative (seguito)

Progr. (km)	Comune	Motivazione attraversamento	Tipologia attraversamento Moda Disegno tipologico realizza	
		dotto Derivazione per V	illacidro DN 150 (6") in proge	tto
0,000	Villacidro			
0,360		Gora sa Carroccia	Senza tubo di protezione ST-035	A cielo aperto
2,680		SC Muntargia	Con tubo di protezione ST-029	In trivellazione
3,725		SC di Tresaxia	Con tubo di protezione ST-029	In trivellazione
4,755		SS n. 196	Con tubo di protezione ST-029	In trivellazione
	Metan	odotto Derivazione per	Sanluri DN 150 (6") in progett	0
0,155		no Monreale		
2,295		Canale Ripartitore N.O.E.A.F.	Con tubo di protezione ST-036	In trivellazione
2,955		SC Bia Casteddu	Con tubo di protezione ST-029	In trivellazione
3,350		Canale	Senza tubo di protezione ST-035	A cielo aperto
4,750		Fosso	Senza tubo di protezione ST-035	A cielo aperto
5,535		Ferrovia Chilivani- Olbia Marittima	Con tubo di protezione ST-032	In trivellazione
6,375		SC della Tressaglia	Senza tubo di protezione ST-031	A cielo aperto
6,380	Sanluri			
7,505		Riu Masoni Nostu	Senza tubo di protezione ST-035	A cielo aperto
8,415		Riu Acqua Sassa	Senza tubo di protezione ST-035	A cielo aperto
9,150		Riu Acqua Sassa	Senza tubo di protezione ST-035	A cielo aperto
10,095		SC Mores Serafino	Senza tubo di protezione ST-031	A cielo aperto
10,380		E25-SS n. 131- Complanare Ovest	Con tubo di protezione ST-029	In trivellazione
10,420		E25-SS n. 131	Con tubo di protezione ST-029	In trivellazione
10,460		E25-SS n. 131- Complanare Est	Con tubo di protezione ST-029	In trivellazione
10,955		SP n. 59	Con tubo di protezione ST-029	In trivellazione

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 39 di 65	Rev. 0

Tab. 3.1/G: Ubicazione attraversamenti e metodologie realizzative (seguito)

Progr. (km)	Comune	Motivazione attraversamento	Tipologia attraversamento Disegno tipologico	Modalità realizzativa	
			Guspini DN 150 (6") in proget	to	
0,000	Pabillonis 4 1				
0,445		Ferrovia Chilivani-Olbia Marittima	Con tubo di protezione ST-032	In trivellazione	
1,985		Flumini Malu	Trenchless	TOC	
3,095		Flumini Bellu	Senza tubo di protezione ST-035	A cielo aperto	
3,465		SP n. 64	Con tubo di protezione ST-029	In trivellazione	
3,600		Fosso in cls	Senza tubo di protezione ST-035	A cielo aperto	
3,750		Fosso	Senza tubo di protezione ST-035	A cielo aperto	
4,540		Rio Merdecani	Con tubo di protezione ST-036	In trivellazione	
5,470	Guspini				
5,505		SP n. 69	Con tubo di protezione ST-029	In trivellazione	
6,030		Canale	Con tubo di protezione ST-036	In trivellazione	
9,705		Gora is Mulinus	Senza tubo di protezione ST-035	A cielo aperto	
10,540		Strada Comunale	Con tubo di protezione ST-029	In trivellazione	
		dotto Derivazione per T	erralba DN 150 (6") in proget	to	
0,000	Mogoro				
0,595		E25-SS n. 131- Complanare Est	Con tubo di protezione ST-029	In trivellazione	
0,635		E25-SS n. 131	Con tubo di protezione ST-029	In trivellazione	
0,675		E25-SS n. 131- Complanare Ovest	Con tubo di protezione ST-029	In trivellazione	
0,955	Uras				
2,660		Ferrovia Chilivani-Olbia Marittima	Con tubo di protezione ST-032	In trivellazione	
3,250		SP n. 47	Con tubo di protezione ST-029	In trivellazione	
3,335		Strada Comunale	Con tubo di protezione ST-029	In trivellazione	
4,560		Canale Acque Alte	Trenchless	TOC	

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 40 di 65	Rev. 0

Tab. 3.1/G: Ubicazione attraversamenti e metodologie realizzative (seguito)

Progr. (km)	Comune Motivazione attraversamento Disegno tipologico		Modalità realizzativa			
	Metanodotto Derivazione per Oristano Città DN 150 (6") in progetto					
0,000	Palmas Ar	borea				
0,305		Strada Comunale	Con tubo di protezione ST-029	In trivellazione		
0,635		Strada Comunale	Con tubo di protezione ST-029	In trivellazione		
1,160		SC Pixiarbili	Con tubo di protezione ST-029	In trivellazione		
1,620		Riu Merd'e Cani	Trenchless	TOC		
2,285		SP n. 53	Con tubo di protezione ST-029	In trivellazione		
3,140		SC Pisciarbili	Con tubo di protezione ST-029	In trivellazione		
3,775		Canale di Bonifica Spinarda	Senza tubo di protezione ST-035	A cielo aperto		

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 41 di 65	Rev. 0

3.1.4 Opere in sotterraneo

Per superare particolari elementi morfologici (piccole dorsali, contrafforti e speroni rocciosi, porzioni sommitali di rilievi isolati, ecc.) e/o in corrispondenza di particolari situazioni di origine antropica (ad es. infrastrutture viarie) o di corsi d'acqua arginati, è possibile l'adozione di soluzioni in sotterraneo (denominate convenzionalmente nel testo trenchless) con l'utilizzo di metodologie di scavo diversificate (vedi Tab. 3.1/H):

- microtunnel a sezione monocentrica con diametro interno compreso tra 1,600 e 2,400 m, realizzati con l'ausilio di una fresa rotante a sezione piena il cui sistema di guida è, in generale, posto all'esterno del tunnel; la stabilizzazione delle pareti del foro è assicurata dalla messa in opera di conci in c.a. contestualmente all'avanzamento dello scavo;
- trivellazioni orizzontali controllate (TOC), realizzate con l'ausilio di una trivella di perforazione montata su una rampa inclinata mobile.

Tab. 3.1/H: Microtunnel e trivellazioni orizzontali controllate (TOC)

Progr. (km) (°)	Comune	Denominazione	Lung. (m)	Rif. disegni tipologici	Accesso agli imbocchi
	Metanodotto I	Derivazione per Mor	serrato l	DN 250 (10") in	progetto
3,770	Villaspeciosa/Ut a	S.P. n. 3/S.C. Via Stazione	0,270	TOC	Piste provvisorie
6,725	Uta/Assemini	Flumini Mannu	0,470	TOC	Piste provvisorie
	Metanodotto D	Derivazione per Serr	amanna	DN 250 (10") in	progetto
7,155	Serramanna	Flumini Mannu	0,370	TOC	Pista provvisoria
	Metanodott	o Derivazione per G	uspini D	N 150 (6") in pr	ogetto
1,885	Pabillonis	Flumini Malu	0,185	TOC	Pista provvisoria
	Metanodotte	o Derivazione per Te	erralba D	N 150 (6") in pr	ogetto
4,335	Uras	Canale Acque Alte	0,510	TOC	Pista provvisoria
	Metanodotto D	erivazione per Orist	tano Citta	à DN 150 (6") in	progetto
1,530	Palmas Arborea	Riu Merd'e Cani	0,215	TOC	Pista provvisoria

^(°) Progressiva chilometrica imbocco di monte (procedendo nel senso del flusso del gas)

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 42 di 65	Rev. 0

4 INTERVENTI DI OTTIMIZZAZIONE, MITIGAZIONE E RIPRISTINO

Rimandando a quanto illustrato in merito per le condotte principali (vedi Vol. 1, SPC RE-AMB-001 cap. 5), nel seguito si evidenziano gli interventi previsti dal progetto in corrispondenza dei tracciati delle Derivazioni in oggetto

Gli interventi di ripristino ambientale sono eseguiti dopo il rinterro della condotta allo scopo di ristabilire nella zona d'intervento gli equilibri naturali preesistenti e di impedire, nel contempo, l'instaurarsi di fenomeni erosivi, non compatibili con la sicurezza della condotta stessa.

In considerazione delle caratteristiche morfologiche del territorio interessato dal progetto, caratterizzato da lineamenti prevalentemente pianeggiati, gli interventi di ripristino saranno essenzialmente mirati alla ricostituzione delle sezioni di attraversamento dei corsi d'acqua e alla ricostituzione dell'originaria capacità d'uso e fertilità agronomica delle zone agricole e delle fitocenosi preesistenti, nelle aree caratterizzate da vegetazione naturale e seminaturale.

Pertanto tutte le opere previste nel progetto del metanodotto per il ripristino dei luoghi possono essere raggruppate nelle seguenti tre principali categorie:

- ripristini morfologici ed idraulici;
- ripristini idrogeologici;
- ricostituzione della copertura vegetale (ripristini vegetazionali).

Dopo il rinterro della condotta e a completamento dei lavori di costruzione, si procede inizialmente alle <u>sistemazioni generali di linea</u> che consistono nella riprofilatura dei terreni con le pendenze e le forme originarie e nella riattivazione dei fossi, dei canali irrigui e della rete di deflusso delle acque superficiali in corrispondenza di tutte le aree utilizzate per la realizzazione dell'opera.

4.1 Ripristini morfologici e idraulici

Opere di regimazione delle acque superficiali

Le opere di regimazione delle acque superficiali hanno lo scopo di allontanare le acque di ruscellamento ed evitare fenomeni di erosione superficiale ed instabilità del terreno; tali opere hanno pertanto la funzione di regolare i deflussi superficiali, sia costringendoli a scorrere in fossi e canalizzazioni durevoli, sia attraverso la riduzione della velocità delle correnti idriche mediante la rottura della continuità dei pendii.

In analogia a quanto indicato nel Progetto Definitivo delle linee principali, anche per i metanodotti in esame, il progetto prevede unicamente l'eventuale realizzazione di fascinate – (vedi Vol. 1, All. 3 - Dis. ST-050). La loro funzione è essenzialmente il consolidamento delle coltri superficiali attraverso la regimazione delle acque, evitando il ruscellamento diffuso e favorendo la ricrescita del manto erboso.

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 43 di 65	Rev. 0

Opere di sostegno

Si classificano come opere di sostegno quelle opere che assolvono la funzione di garantire il sostegno statico di pendii e scarpate naturali ed artificiali.

Detti interventi, in riferimento alle opere in esame, vengono eseguiti per il contenimento del materiale di rinterro della trincea e dell'area di passaggio utilizzata per la messa in opera delle nuove condotte in corrispondenza dei tratti ad acclività più pronunciata, corrispondenti alle scarpate di alcune incisioni fluviali.

In analogia a quanto indicato nel Progetto Definitivo delle linee principali, anche per i metanodotti in esame, il progetto prevede unicamente l'eventuale realizzazione di palizzate di contenimento in legname (vedi Vol. 1, All. 3 - Dis. ST-051) che possono svolgere una funzione di sostegno di piccole scarpate, interessate dalle fasi di movimentazione durante la costruzione, e della coltre del terreno di copertura nei tratti di versante a maggior acclività, laddove comunque si prospettano condizioni di spinta delle terre di lieve entità.

Opere di difesa idraulica

Questo tipo di opere hanno la funzione di regimare il corso d'acqua al fine di evitare fenomeni di erosione spondale e di fondo in corrispondenza della sezione di attraversamento della condotta.

Si classificano come "opere longitudinali" quelle che hanno un andamento parallelo alle sponde dei corsi d'acqua ed hanno una funzione protettiva delle stesse; come "opere trasversali" quelle che sono trasversali al corso d'acqua ed hanno la funzione di correggere o fissare le quote del fondo alveo, fino al raggiungimento del profilo di compensazione, al fine di evitare fenomeni di erosione di fondo. Tali opere si classificano come briglie, controbriglie, soglie, repellenti.

Il progetto prevede la realizzazione di opere di difesa longitudinali consistenti in ricostituzioni spondali in scogliera in massi (vedi Vol. 1, All. 3 - Dis. ST-093) eseguite contro l'erosione delle sponde e per il contenimento dei terreni a tergo; detti interventi saranno sagomati sulla base dei progetti che ne determineranno le dimensioni, nonché lo sviluppo della parte in elevazione e del piano di fondazione.

Il loro comportamento statico è del tutto analogo a quello dei muri di sostegno in massi. Anche le prescrizioni sulle modalità esecutive e sulle proprietà dei materiali da utilizzare sono analoghe a quelle per i muri in massi.

L'immorsamento alle sponde dell'opera idraulica sarà realizzato con la massima cura, particolarmente nella parte di monte. Al fine di evitare l'aggiramento dell'opera da parte della corrente idrica, tale immorsamento sarà effettuato inserendo la testa dell'opera all'interno della sponda, con un tratto curvilineo non inferiore a 2÷3 m. Per la parte terminale di valle è sufficiente un raccordo ad angolo retto con la sponda. Il progetto prevede la realizzazione di questa tipologia di intervento in corrispondenza delle sezioni di attraversamento di diversi corsi d'acqua, tra i quali il Riu Santa Lucia (km 3+615) e il Riu San Gerolamo (km 10+690) lungo il Met. Derivazione per Capoterra – Sarroch DN 150 (6"), il Riu Acqua Sassa (km 8+415) lungo

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMI	B-004
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 44 di 65	Rev. O

il Met. Derivazione per Sanluri DN 150 (6"), il Flumini Bellu (km 3+095) lungo il Met. Derivazione per Guspini DN 150 (6").

In alcuni casi, nei corsi d'acqua a regime torrentizio comunque dotati di capacità erosiva e di trasporto, associato alle difese spondali in massi o singolarmente, potrà essere realizzato una ricostituzione dell'alveo con massi (vedi Vol. 1, All. 3 - Dis. ST-096). I massi utilizzati, di adeguata natura litologica (calcarea basaltica, granitica, ecc), devono essere costituiti da pietra dura e compatta, non devono presentare piani di sfaldamento o incrinature e non devono alterarsi per effetto del gelo. I blocchi sono squadrati, a spigolo vivo, ed equidimensionali. Questa tipologia di intervento è prevista in corrispondenza delle sezioni di attraversamento del Riu Baccalamanza (km 12+105) lungo il Met. Derivazione per Capoterra – Sarroch DN 150 (6"), e del Riu Acqua Sassa (km 9+150) lungo il Met. Derivazione per Sanluri DN 150 (6").

Le tipologie degli interventi di ripristino morfologico ed idraulico precedentemente descritti ed il relativo sviluppo longitudinale sono riportati nella seguente tabella (vedi Tab. 4.2/A) mentre la loro ubicazione è indicata sull'allegata planimetria in scala 1:10.000 (vedi Dis. PG-TP-411, PG-TP-412, PG-TP-413, PG-TP-414, PG-TP-415, PG-TP-416, PG-TP-417, PG-TP-418, "Tracciato di progetto"), differenziando l'intervento tra opere longitudinali e trasversali all'asse di deflusso idrico.

Tab. 4.2/A: Ubicazione opere di ripristino morfologico ed idraulico fuori terra

Progr. (km)	N. ord. (°)	Comune	Località/corso d'acqua	Descrizione dell'intervento Rif. Disegni tipologici di progetto
	Me	tanodotto Deriv	azione per Capo	terra-Sarroch DN 150 (6") in progetto
3,615	1	Uta	Riu Santa Lucia	n. 2 difese spondali con scogliere in massi (Dis. ST-093, L = 14 m + L = 14 m, schema dim. B)
5,055	2		Fosso con difesa in cls	Ripristino come da esistente
7,460	3		Fosso non rivestito	n. 2 difese spondali con scogliere in massi (Dis. ST-093, L = 14 m + L = 14 m, schema dim. A)
7,585	4	Capoterra	Fosso rivestito in cls	Ripristino come da esistente
10,690	5		Riu San Gerolamo	n. 2 difese spondali con scogliere in massi (Dis. ST-093, L = 14 m + L = 14 m, schema dim. C)
12,105	6		Riu Baccalamanza	n. 1 ricostituzione alveo con massi (Dis. ST-096, L = 14 m, schema dim. B)

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMI	3-004
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 45 di 65	Rev. 0

Tab. 4.2/A: Ubicazione opere di ripristino morfologico ed idraulico fuori terra (seguito)

Progr. (km)	N. ord. (°)	Comune	Località/corso d'acqua	Descrizione dell'intervento Rif. Disegni tipologici di progetto
		Metanodotto De	erivazione per Mo	onserrato DN 250 (10") in progetto
11,490	1		Affluente Riu sa Nuxedda	Ripristino come da esistente
13,970	2	Assemini	Riu de Giacu Meloni	Ripristino come da esistente
14,460	3	, 1000mm	Fosso	Ripristino come da esistente
14,725	4		Fosso	n. 1 ricostituzione alveo con massi (Dis. ST-096, L = 16 m, schema dim. B)
16,685	5	Sestu	Riu sa Murta	Ripristino come da esistente
		Metanodotto De	erivazione per Se	rramanna DN 250 (10") in progetto
4,580	1		Canale	n. 2 difese spondali con scogliere in massi (Dis. ST-093, L = 16 m + L = 16 m, schema dim. B)
6,150	2	Serramanna	Gora Pixina Manna	n. 2 difese spondali con scogliere in massi (Dis. ST-093, L = 16 m + L = 16 m, schema dim. B)
	•	Metanodotto	Derivazione per	Sanluri DN 150 (6") in progetto
3,350	1		Canale	n. 2 difese spondali con scogliere in massi (Dis. ST-093, L = 14 m + L = 14 m, schema dim. A)
4,750	2	San Gavino Monreale	Fosso	n. 1 ricostituzione alveo con massi (Dis. ST-096, L = 14 m, schema dim. B)
7,505	3		Riu Masoni Nostu	n. 2 difese spondali con scogliere in massi (Dis. ST-093, L = 14 m + L = 14 m, schema dim. A)
8,415	4	Sanluri	Riu Acqua Sassa	n. 2 difese spondali con scogliere in massi (Dis. ST-093, L = 14 m + L = 14 m, schema dim. C)
9,150	5		Riu Acqua Sassa	n. 1 ricostituzione alveo con massi (Dis. ST-096, L = 14 m, schema dim. B)

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMI	B-004
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 46 di 65	Rev. 0

Tab. 4.2/A: Ubicazione opere di ripristino morfologico ed idraulico fuori terra (seguito)

Progr. (km)	N. ord. (°)	Comune	Località/corso d'acqua	Descrizione dell'intervento Rif. Disegni tipologici di progetto
		Metanodotto	Derivazione per	Guspini DN 150 (6") in progetto
3,095	1		Flumini Bellu	n. 2 difese spondali con scogliere in massi (Dis. ST-093, L = 14 m + L = 14 m, schema dim. E)
3,600	2	Pabillonis	Fosso in cls	Ripristino come da esistente
3,750	3		Fosso	n. 1 ricostituzione alveo con massi (Dis. ST-096, L = 14 m, schema dim. B)
		Metanodotto	Derivazione per	Terralba DN 150 (6") in progetto
0,960	1	Uras	Fosso	n. 2 difese spondali con scogliere in massi (Dis. ST-093, L = 14 m + L = 14 m, schema dim. A)
	N	Metanodotto De	rivazione per Ori	stano Città DN 150 (6") in progetto
1,950	1		Fosso	n. 2 difese spondali con scogliere in massi (Dis. ST-093, L = 14 m + L = 14 m, schema dim. A)
1,980	2	Palmas Arborea	Fosso	n. 2 difese spondali con scogliere in massi (Dis. ST-093, L = 14 m + L = 14 m, schema dim. A)
3,775	3		Canale di Bonifica Spinarda	Ripristino come da esistente

4.2 Ripristini idrogeologici

Gli interventi di ripristino idrogeologici saranno effettuati nelle stesse modalità e con le stesse tipologie già descritte nel capitolo corrispondente del Progetto Definitivo delle condotte principali (vedi Vol. 1, SPC RE-AMB-001 – par. 5.2.2).

Nello specifico le misure da adottare per il ripristino dell'equilibrio idrogeologico saranno stabilite di volta in volta scegliendo tra le seguenti tipologie d'intervento:

 rinterro della trincea di scavo con materiale granulare, al fine di preservare la continuità della falda in senso orizzontale;

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AM	3-004
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 47 di 65	Rev. 0

- esecuzione, per l'intera sezione di scavo, di setti impermeabili in argilla e bentonite, al fine di confinare il tratto di falda intercettata ed impedire in tal modo la formazione di vie preferenziali di drenaggio lungo la trincea medesima;
- rinterro della trincea, rispettando la successione originaria dei terreni (qualora si alternino litotipi a diversa permeabilità) al fine di ricostituire l'assetto idrogeologico originario.

4.3 Ripristini vegetazionali

Gli interventi di ripristino vegetazionale saranno effettuati nelle stesse modalità e con le stesse tipologie già descritte nel capitolo corrispondente del Progetto Definitivo dei tracciati principali.

Nello specifico si faranno interventi di messa a dimora di alberi e arbusti in tutti i tratti in cui in fase ante operam erano state individuate formazioni spontanee, ricostituendo la vegetazione di macchia, garighe e incolti arborei-arbustivi precedentemente rilevata. Verranno effettuati interventi di ripristino anche in prossimità dei sistemi ripariali, lungo rive e sponde dei corsi d'acqua e impluvi con vegetazione rappresentativa.

Gli interventi riguarderanno anche le idrosemine, localizzate in tutti i tratti non sottoposti a coltura.

Sia per il ripristino dello strato erbaceo che di quello arboreo-arbustivo, si farà uso esclusivo di specie autoctone, così come indicato nello Studio di Impatto Ambientale dei tracciati principali, che indica per ogni singola tipologia vegetazionale la percentuale per ogni singola specie.

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AM	3-004
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 48 di 65	Rev. 0

5 ALLEGATI

1 Tracciato di progetto (scala 1:10.000)

PG-TP-411	Met. Deriv. per Capoterra-Sarroch DN 150 (6") - DP 75 bar
PG-TP-412	Met. Derivazione per Monserrato DN 250 (10") - DP 75 bar
PG-TP-413	Met. Derivazione per Serramanna DN 250 (10") - DP 75 bar
PG-TP-414	Met. Derivazione per Villacidro DN 150 (6") - DP 75 bar
PG-TP-415	Met. Derivazione per Sanluri DN150 (6") - DP 75 bar
PG-TP-416	Met. Derivazione per Guspini DN150 (6") - DP 75 bar
PG-TP-417	Met. Derivazione per Terralba DN150(6") -DP 75 bar
PG-TP-418	Met. Derivazione per Oristano Città DN150(6") - DP 75 bar

2 Impianti e Punti di linea

Met. Derivazione per Capoterra-Sarroch DN 150 (6") - DP 75 bar

ST-175	Met. Derivazione per Capoterra-Sarroch DN 150 (6") - P.I.D.I.
	n.1 Loc. Uta/Marzalloi
ST-176	Met. Derivazione per Capoterra-Sarroch DN 150 (6") - P.I.D.I.
	n.2 Loc. Sarroch/Villa d'Orri

Met. Derivazione per Monserrato DN 250 (10") - DP 75 bar

ST-177	Met. Derivazione per Monserrato DN 250 (10") - P.I.L. n.1 Loc.
	Assemini/Terramai
ST-178	Met. Derivazione per Monserrato DN 250 (10") - P.I.D.I. n.2
	Loc. Assemini/Piripiri
ST-179	Met. Derivazione per Monserrato DN 250 (10") - P.I.D.I. n.3
	Las CastulCantoniano di Castu

Loc. Sestu/Cantoniera di Sestu

Met. Derivazione per Serramanna DN 250 (10") - DP 75 bar

ST-162	Derivazione per Serramanna DN 250 (10") - P.I.L. n.1 Loc.
	Serramanna/Isca Matta Manna
ST-163	Derivazione per Serramanna DN 250 (10") - P.I.D.I. n.2 Loc.
	0

Serramanna/Isca Samassi

Met. Derivazione per Villacidro DN 150 (6") - DP 75 bar

ST-164 Met. Derivazione per Villacidro DN 150 (6") - P.I.D.I. n.1 Loc.

Villacidro/Corte Risoni

Met. Derivazione per Sanluri DN150 (6") - DP 75 bar

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 49 di 65	Rev. 0

ST-165	Met. Derivazione per Sanluri DN150 (6") - P.I.L. n.1 Loc. San Gavino Monreale/Giba Carroga
ST-166	Met. Derivazione per Sanluri DN150 (6") - P.I.L. n.2 Loc. San Gavino Monreale/Ovile Ganasci
ST-167	Met. Derivazione per Sanluri DN150 (6") - P.I.D.I. n.3 Loc. Sanluri/Pitziaris
Met. Derivazione per	Guspini DN150 (6") - DP 75 bar
ST-168	Met. Derivazione per Guspini DN150 (6") - P.I.L. n.1 Loc. Pabillonis/Stazione di Pabillonis
ST-169	Met. Derivazione per Guspini DN150 (6") - P.I.L. n.2 Loc. Guspini/Pranu Murdegu
ST-170	Met. Derivazione per Guspini DN150 (6") - P.I.D.I. n.3 Loc. Guspini/Terras Frissas
Met. Derivazione per	Terralba DN150 (6") -DP 75 bar
ST-171	Met. Derivazione per Terralba DN150 (6") - P.I.D.I. n.1 Loc.Uras/Fundalis
ST-172	Met. Derivazione per Terralba DN150 (6") - P.I.L. n.2 Loc. Uras/Mori Linnarbus
ST-173	Met. Derivazione per Terralba DN150 (6") - P.I.D.I. n.3 Loc.Terralba/Corongeddu
Met. Derivazione per	Oristano Città DN150 (6") - DP 75 bar
ST-174	Met. Derivazione per Oristano Città DN150 (6") - P.I.D.I. n.1 Loc. Oristano/Pirastedda

SNAM RETE GAS	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
	LOCALITA' REGIONE SARDEGNA	RE-AM	3-004
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 50 di 65	Rev. 0

APPENDICE VERIFICA ALLO SCUOTIMENTO SISMICO

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 51 di 65	Rev. 0

1 VERIFICA ALLO SCUOTIMENTO SISMICO

1.1 Verifica Strutturale sulla condotta

I calcoli e le verifiche degli stati tensionali, indotti dallo scuotimento sismico del terreno (shaking) sui tratti rettilinei e curvi della tubazione in occasione di un terremoto (di progetto) concomitante all'esercizio, sono stati elaborati per il previsto spessore delle condotte **DN 250** (10") e **DN 150** (6").

Lo shaking è provocato dalla propagazione delle onde sismiche nel terreno che, impartendo movimenti alle particelle di suolo, sollecitano la tubazione interrata a deformarsi con la stessa deformazione del terreno. Le tensioni indotte dalle onde sismiche sulla tubazione sono variabili sia nel tempo che con la direzione di propagazione del movimento sismico rispetto l'asse della condotta.

Secondo le indicazioni di studi presentati nella Letteratura tecnica Internazionale, l'azione di contenimento del terreno circostante il tubo permette di trascurare gli effetti dinamici di amplificazione tipici delle strutture in elevazione (Hindy, Novak 1979) e la condotta può considerarsi semplicemente investita da una composizione di onde sinusoidali [ASCE Guidelines] costituito dalle onde di compressione (onde P o primarie), dalle onde di taglio (onde S o secondarie) e dalle onde superficiali (onde R o di Rayleigh).

Nei tratti di tubazione rettilinea le onde P provocano le massime sollecitazioni assiali durante la prima parte del moto; le onde S provocano le massime sollecitazioni di flessione durante la parte centrale del moto (i fenomeni non avvengono quindi contemporaneamente), mentre le onde R trasferiscono al terreno componenti di movimento sia parallelamente che perpendicolarmente la direzione di propagazione dell'onda.

In rispetto al D.M. del 17 aprile 2008, le verifiche sismiche sono state eseguite facendo riferimento ai paragrafi 7.4.1.2 e 7.4.1.3 e all'allegato E della norma EN 1594 "Gas Supply Systems – Pipelines for maximun operating pressure over 16 bar – Functional requirements", edizione 2009.

La metodologia di verifica applicata è congruente con le indicazioni della EN 1594 che, nell'annex 3 richiama le "GUIDELINES FOR THE SEISMIC DESIGN OF OIL AND GAS PIPELINE SYSTEMS" delle ASCE.

Queste ultime sono ritenutes ufficientemente conservative poiché considerano la simultaneità dell'azione (e quindi del relativo massimo effetto) delle onde P, S e R, trascurando inoltre (nei tratti rettilinei) l'interazione trasversale tra tubo e terreno che riduce le deformazioni trasmesse dal suolo alla condotta. L'interazione tubo-terreno è invece considerata nell'analisi dei tratti di tubazione curvi.

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 52 di 65	Rev. O

1.2 Dati di Input

Sulla base dei dati relativi all'analisi di pericolosità si è stimata la massima accelerazione orizzontale, a_g, del terreno lungo il tracciato a seguito dell'evento sismico di progetto:

Dati sismici

	Variabili	unità	
Parametri sismici	a _q /g		0,070
Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale	Fo		3,058
Periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale	Tc*		0,393
Periodo fondamentale corrispondente al tratto dello spettro a velocità costan	Tc		0,56
Categoria Sottosuolo	C_{S}		С
Categoria Topografica	C_T		T1
Coefficiente di amplificazione stratigrafica	S_s		1,500
Coefficiente di amplificazione topografica	S_T		1,000
Vassima accelerazione del terreno attesa per il terremoto SLV	a_{q}	m/s²	1,030
Massima Accelerazione Normalizzata rispetto alla gravità	a _{g/} g		0,105
Vlassima velocità del terreno attesa per il terremoto SLV	V _g	m/s	0,093
Velocità Apparente onde Sismiche	Ċ	m/s	900

Manolis et al. (1995) suggeriscono che C (velocità apparente delle onde Sismiche) possa assumere valori compresi tra $1.2 \div 3~V_{\scriptscriptstyle S}$ che valori piuttosto elevati anche in considerazione che valori di 2000 m/s per onde P e Rayleigh e 4000 m/s per onde S, vengono ritenuti ancora conservativi.

Inoltre il Committee on Gas and Liquid Fuel Lifelines e ASCE (4-98) suggeriscono di non usare valori sotto i 900 m/s circa (3000 fps) perché ritenuti eccessivamente conservativi, proprio per i motivi sopracitati.

Seguendo le indicazioni delle Guidelines (ASCE 1984), per un terreno mediamente denso è stata considerata una velocità apparente delle onde Sismiche nel suolo pari circa 900m/sec.

Nelle pagine seguenti si riportano le caratteristiche geometriche e dei materiali utilizzati per le tubazioni in esame.

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 53 di 65	Rev. 0

Dati Geometrici tubi rettilinei DN 150

	Variabili	unità	
Materiale tubazione			EN L360MB
Diametro Nominale	DN		150
Diametro Interno	Di	mm	154,10
Spessore tubo di linea	t	mm	7,10
Diametro Esterno	De	mm	168,30
Pressione interna di progetto	Р	bar	75
Variazione di temperatura	$_{\Delta}T$	°C	45
Modulo elastico	Е	Мра	207000
Coefficiente di Poisson	ν		0,3
Tensione Snervamento Materia Tubazione	$\sigma_{\!\scriptscriptstyle y}$	Мра	360

Dati Geometrici tubi curvi DN 150

	Variabili	unità	
Materiale tubazione			EN L360MB
Diametro Nominale	DN		150
Diametro Interno	Di	mm	154,1
Spessore tubo delle curve	t	mm	7,10
Diametro Esterno	De	mm	168,30
Pressione interna di progetto	Р	bar	75
Variazione di temperatura	ΔT	°C	45
Modulo elastico	E	Мра	207000
Coefficiente di Poisson	ν		0,3
Tensione Snervamento Materia Tubazione	$\sigma_{\!\scriptscriptstyle \sf V}$	Мра	360
Raggio curve 3DN	r _o	mm	457,0
Raggio tubazione	R	mm	84,2

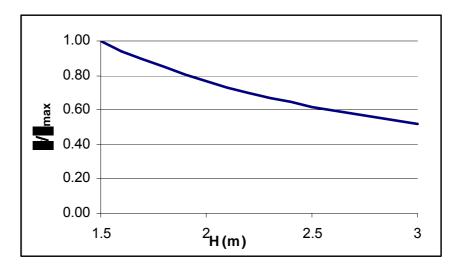
	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 54 di 65	Rev. 0

Dati Geometrici tubi rettilinei DN 250

	Variabili	unità	
Materiale tubazione			EN L360MB
Diametro Nominale	DN		250
Diametro Interno	Di	mm	257,50
Spessore tubo di linea	t	mm	7,80
Diametro Esterno	De	mm	273,10
Pressione interna di progetto	Р	bar	75
Variazione di temperatura	$_{\Delta}T$	°C	45
Modulo elastico	E	Мра	207000
Coefficiente di Poisson	ν		0,3
Tensione Snervamento Materia Tubazione	$\sigma_{\!\scriptscriptstyle y}$	Mpa	360

Dati Geometrici tubi curvi DN 250

	Variabili	unità	
Materiale tubazione			EN L360MB
Diametro Nominale	DN		250
Diametro Interno	Di	mm	257,5
Spessore tubo delle curve	t	mm	7,80
Diametro Esterno	De	mm	273,10
Pressione interna di progetto	Р	bar	75
Variazione di temperatura	ΔT	°C	45
Modulo elastico	E	Мра	207000
Coefficiente di Poisson	ν		0,3
Tensione Snervamento Materia Tubazione	$\sigma_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	Мра	360
Raggio curve 3DN	r _o	mm	762,0
Raggio tubazione	R	mm	136,6


Per il terreno circostante il tubo (suolo di trincea nei confronti del quale si realizza l'interazione tubo-terreno), sono stati considerati le seguenti caratteristiche medie:

Dati	Te	rr	е	n	o
------	----	----	---	---	---

Altezza minima di ricoprimento	Н	m	1,5
Peso specifico del terreno di rinterro	γ	kN/m³	18
Modulo di reazione del terreno	ko	Mpa	15
Angolo di attrito terreno tubo	δ		19,80
coefficiente di pressione del suolo a riposo	Ko		0,5

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 55 di 65	Rev. 0

Le verifiche saranno effettuate considerando uno spessor di ricoprimento pari a H=1.5 m. All'aumentare del ricorpimento, le tensioni indotte dal sisma risultano infatti inferiori. Si riporta il grafico in cui si evidenzia come all'aumentare del ricoprimento, diminuiscano le tensioni indotte sul tubo dal sisma.

1.3 Criteri di verifica

Con riferimento al paragrafo 7.4.1.2 della norma EN 1594, richiamata dal D.M. del 17 aprile 2008, la tensione totale risultante sulla tubazione è calcolata col criterio di Von Mises, in campo elastico per il materiale del tubo, considerando tutti i carichi "primari" e contemporaneamente agenti (operativi ed esterni).

La tensione equivalente totale $\sigma_{\scriptscriptstyle V}$, è determinata secondo la formula di seguito riportata:

$$\sigma_{V} = \sqrt{\sigma_{L}^{2} + \sigma_{P,c}^{2} - \sigma_{L}\sigma_{P,c}}$$

Dove:

 $\sigma_{P,c}$ è la tensione circonferenziale di trazione (positiva) dovuta alla pressione interna del tubo:

 σ_L è la tensione longitudinale totale risultante dalla somma delle tensioni dovute all'espansione termica impedita $\sigma_{\Delta t,L}$ di compressione (negativa), agli effetti longitudinali dovuti alla pressione interna del tubo $\sigma_{P,L}$ (positiva), e al carico occasionale rappresentato dall'evento sismico $\sigma_{sisma,L}$ (negativa).

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 56 di 65	Rev. 0

In accordo al paragrafo 7.4.1.3 della Norma EN 1594 (edizione 2009) la suddetta tensione equivalente è confrontata con il 100% dello snervamento minimo del materiale della tubazione, $\sigma_{\rm v}$ dovendo risutare:

$$\sigma_{V} \leq \sigma_{V}$$

Infine, basandosi sulla "good engineering practice", una ulteriore analisi è eseguita per verificare l'insorgere di instabilità locale di parete nel caso in cui risulti una deformazione longitudinale di compressione ε .

Per una tubazione a parete sottile, fenomeni di instabilità locale possono verificarsi per una deformazione di compressione critica ε_{cr} , data dalla seguente espressione:

$$\varepsilon_{cr} = 0.35 \frac{t}{D-t}$$

Verifica per tubo rettilineo

Applicare i criteri di verifica proposti nelle Guidelines (ASCE 1984), ovvero trascurare l'interazione tubo-terreno nei tratti di tubazione rettilinei, fornisce valori conservativi circa lo stato tensionale indotto sulla tubazione. L'ipotesi che la tubazione rettilinea si deformi come il suolo circostante si deforma a seguito del passaggio dell'onda sismica, rende pressoché indipendente il risultato delle tensioni indotte dallo spessore del tubo.

Le tensioni assiali e di flessione indotte dalle onde di taglio S, obliquamente incidenti l'asse della condotta, sono rispettivamente:

$$\sigma_{a,S} = \pm E \frac{v}{C} \sin \theta \cdot \cos \theta$$

$$\sigma_{b,S} = \pm ER \frac{a}{C^2} \cos^3 \theta$$

θ è l'angolo di incidenza tra l'asse della tubazione e la direzione di propagazione del moto sismico.

Massimizzando questi valori rispetto all'angolo di incidenza ϑ , i valori massimi delle tensioni $\sigma a e \sigma b$ si ottengono, rispettivamente, per $\vartheta = 45^{\circ}$ e $\vartheta = 0^{\circ}$:

$$\sigma_{a,S} = \pm E \frac{v}{2C}$$

$$\sigma_{b,S} = \pm ED \frac{a}{2C^2}$$

Le tensioni assiali e di flessione indotte dalle onde di compressione P, sono rispettivamente:

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 57 di 65	Rev. O

$$\sigma_{a,P} = \pm E \frac{v}{C} \cos^2 \theta$$

$$\sigma_{b,P} = \pm ED \frac{a}{2C^2} \sin \theta \cos^2 \theta$$

Massimizzando questi valori rispetto all'angolo di incidenza ϑ , i valori massimi delle tensioni $\sigma a e \sigma b$ si ottengono, rispettivamente, per $\vartheta = 0^{\circ}$ e $\vartheta = 35^{\circ}16$ ':

$$\sigma_{a,P} = \pm E \frac{v}{C}$$

$$\sigma_{b,P} = \pm 0.385 ED \frac{a}{2C^2}$$

Le massime tensioni assiali e di flessione indotte dalle onde superficiali di Rayleigh R, sono rispettivamente:

$$\sigma_{a,R} = \pm E \frac{v}{C}$$

$$\sigma_{b,P} = \pm ED \frac{a}{2C^2}$$

Si noti l'analogia fromale di queste formule con quelle riportate al paragrafo 1.3.

Una stima conservativa dei massimi stress assiali e di flessione si ottiene col metodo della radice quadrata della somma dei quadrati (SRSS method: Square Route Square Sum):

$$\sigma_a = \sqrt{\sigma_{a,S}^2 + \sigma_{a,P}^2 + \sigma_{a,R}^2}$$

$$\sigma_b = \sqrt{\sigma_{b,S}^2 + \sigma_{b,P}^2 + \sigma_{b,R}^2}$$

La massima tensione longitudinale dovuta all'evento sismico risulta quindi:

$$\sigma_{sism,L} = \sigma_a + \sigma_b$$

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 58 di 65	Rev. 0

Nelle porzioni di tubazione rettilinea, l'espansione termica impedita dall'attrito tubo terreno genera una tensione di compressione:

$$\sigma_{\Lambda T,L} = \alpha \cdot \Delta T \cdot E$$

Lontano dalle curve, l'effetto longitudinale di trazione dovuto alla pressione interna, è dato dalla seguente formula:

$$\sigma_{P,L} = v \frac{P \cdot D}{2t}$$

Elemento di tubazione curvo

Nell'analisi dello stato tensionale causato dal terremoto sugli elementi curvi della condotta, l'interazione tra tubo e terreno, contrariamente a quanto visto per il tubo rettilineo, viene presa in considerazione.

Assumendo il moto dell'onda sismica parallelo ad uno dei tratti rettilinei della curva, si indica con L' la lunghezza di scorrimento della tubazione nel terreno su cui agisce la forza di attrito tu (ASCE 1984).

$$L' = \frac{4A_p E\lambda}{3 k_o} \left[\sqrt{1 + \frac{3 \epsilon_{max} k_o}{2 t_u \lambda}} - 1 \right]$$

$$t_u = \frac{\pi D}{2} \gamma H (1 + K_o) tg\delta + W_p tg\delta$$

Dove:

 A_P = Area della sezione trasversale della tubazione;

$$\lambda = \sqrt[4]{\frac{k_O}{4EI}}$$

 k_o = Modulo di rezione del terreno;

I = Momento d'inerzia della sezione trasversale tubo;

 \mathcal{E}_{\max} = Massima deformazione del terreno;

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 59 di 65	Rev. 0

Ko = Coefficiente di pressione a riposo;

Per la tubazione in acciaio lo spostamento sulla curva dovuto allo scorrimento della stessa nel terreno è:

$$\Delta = \frac{\varepsilon_{\text{max}} \, \text{L'} - \frac{\text{t}_{\text{u}} \, \text{L'}^2}{2 \, \text{A}_{\text{p}} \, \text{E}}}{1 + \frac{\text{k}_{\text{o}} \, \text{L'}}{2 \, \lambda \, \text{A}_{\text{p}} \, \text{E}} + 2 \frac{\lambda^2 \, \text{L'I}}{\pi \, \text{A}_{\text{p}} \, \text{r}_{\text{o}}}}$$

dove ro è il raggio di curvatura dell'elemento curvo.

La forza assiale sul tratto rettilineo longitudinale (parallelo alla direzione del movimento del movimento sismico) è:

$$S = \Delta \left(\frac{k_o}{2\lambda} + \frac{2\lambda^2 K^* E I}{r_o \pi} \right)$$

Con:

$$K^* = 1 - \frac{9}{10 + 12(t r_o / R^2)^2}$$

In momento flettente sulla curva è dato da:

$$M = \Delta \frac{2\lambda K^* E I}{r_0 \pi}$$

K1 è il fattore di intensificazione dello stress:

$$K_1 = \frac{2}{3K^*} \left\{ 3 \left[\frac{6}{5 + 6(t r_o / R^2)^2} \right] \right\}^{-1/2}$$

La tensione assiale sulla curva dovuta alla forza S, si calcola con la seguente formula:

$$\sigma_a = \frac{S}{A_p}$$

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 60 di 65	Rev. 0

La tensione di flessione sulla curva dovuta al momento flettente M, vale:

$$\sigma_b = K_1 \frac{MD}{2I}$$

Nelle successive tabelle sono riportati i valori ottenuti seguendo la sopra riportata procedura di calcolo per la curva di 90°, con gli spessori riportati nelle tabelle.

In accordo ai criteri di verifica riportati precedentemente, la deformazione sismica è trasferita all'elemento curvo unitamente agli effetti della pressione interna, temperatura e gravità.

Negli elementi curvi l'effetto longitudinale di trazione dovuto alla pressione interna è dato dalla seguente espressione:

$$\sigma_{P,S} = \frac{P \cdot D}{4t}$$

Nelle pagine seguenti sono riportati in forma tabellare i risultati relativi alle analisi effettuate.

Con F, Fattore di utilizzazione generalmente definito come :

$$F = \frac{\sigma_{v}}{\sigma_{y}} \le 1$$

Che dovrà necessariamente risultare minore di 1.

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 61 di 65	Rev. 0

TUBO DN 150

IΔN	SIN	nı 1	ากข	ITΔ	ai s	iema

	Mna	-10,64
		-0,02
$\sigma_{\! extsf{bS}}$	ivipa	-0,02
$\sigma_{\!aP}$	Мра	-21,29
$\sigma_{\! extsf{bP}}$	Мра	-0,01
σ_{aB}	Мра	-21,29
σ_{bR}	Мра	-0,02
σ_{a}	Мра	-31,93
_	Mpa	-0,03
J	-	
$\sigma_{\text{sism,L}}$	Мра	-31,96
$\sigma_{\wedge t}$.	Мра	-111,78
$\sigma_{P,L}$	Мра	26,67
$\sigma_{P,C}$	Мра	88,89
$\sigma_{_{ m VS}}$	Мра	178,93
σ _{VS} F	Мра	178,93 0,50
	Мра	•
	Мра	•
F	Мра	0,50
	σ_{bP} σ_{aR} σ_{bR} σ_{a} σ_{b} $\sigma_{sism,L}$	σ_{bS} Mpa σ_{aP} Mpa σ_{bP} Mpa σ_{aR} Mpa σ_{bR} Mpa σ_{bR} Mpa σ_{bR} Mpa σ_{b} Mpa σ_{b} Mpa σ_{b} Mpa σ_{b} Mpa σ_{b} Mpa

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 62 di 65	Rev. 0

CURVA DN 150

 	razio	

	λ	1/mm	0,0011
Deformazione Max del terreno	$arepsilon_{\sf max}$		0,0001
Lunghezza di scorrimento della tubazione	L'	mm	17316
Forza d'attrito	t _u	N/mm	4,0
Spostamento sulla curva dovuto allo scorrimento nel terreno	Δ	mm	1,1
	K*		0,3
Forza assiale sul tratto rettilineo longitudinale	S	kN	9,05
Momento flettente sulla curva	M	kNm	1,21
Fattore di intensificazione dello stress	K1		1,40
Tensione assiale sulla curva dovuta alla forza S	σ_{aS}	Мра	2,52
Tensione di flessione sulla curva dovuta al momento flettente M	$\sigma_{\!\scriptscriptstyle { m bS}}$	Мра	24,38
Dati sismici			
Tensioni assiali	-	Mpa	-2,52
Tensioni flessionali	σ _{aR} σ _{bR}	Мра	-24,38
	ObR		,00
Tensione longitudinale massima di compressione dovuta al sisma	$\sigma_{sism,L}$	Мра	-26,89
Analisi tensionale			
Tensione compressione espansione termica impediata	$\sigma_{\!\scriptscriptstyle \Delta t,L}$	Mpa	-111,78
Tiro di fondo	$\sigma_{P,S}$	Мра	44,45
Tensione trazione ciconferenziale dovuto alla pressione interna	$\sigma_{P,C}$	Мра	81,39
Tensione equivalente con sisma	$oldsymbol{\sigma}_{oldsymbol{arVS}}$	Мра	152,23
fattore utilizzazione	- vs F	-	0,42

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 63 di 65	Rev. 0

TUBO DN 250

T	_:-:	-: -	J	41	eiema

Tensioni assiali Onde di Taglio	_	Mpa	-10,64
Tensioni flessionali Onde di Taglio	σ_{aS}	Mpa	-0,04
Tensionii nessionali Onde di Taglio	$\sigma_{ t bS}$	ivipa	-0,04
Tensioni assiali Onde di Pressione	$\sigma_{\!aP}$	Мра	-21,29
Tensioni flessionali Onde di Pressione	σ_{bP}	Мра	-0,01
Tensioni assiali Onde Superficiali di Rayleigh R	σ_{aR}	Мра	-21,29
Tensioni flessionali Onde di Superficiali di Rayleigh R	σ_{bR}	Мра	-0,04
Tensioni assiali	$\sigma_{\!a}$	Mpa	-31,93
Tensioni flessionali	$\sigma_{\rm b}$	Mpa	-0,05
	-		
Tensione longitudinale massima di compressione dovuta al sisma	$\sigma_{sism,L}$	Мра	-31,98
Analisi tensionale			
Tensione compressione espansione termica impediata	$\sigma_{\!\scriptscriptstyle \Delta t,L}$	Мра	-111,78
Tensione trazione dovuto alla pressione interna	$\sigma_{P,L}$	Мра	39,39
Tensione trazione circonferenziale dovuto alla pressione interna	$\sigma_{P,C}$	Мра	131,30
Tensione equivalente con sisma	$oldsymbol{\sigma}_{ extsf{VS}}$	Мра	204,54
fattore utilizzazione	F		0,57
Verifica Instabilità			
Deformazione Massima	ε _{VS}		0,0010
Deformazione Critica	$oldsymbol{arepsilon}_{ ext{cr}}$		0,0109
tasso di lavoro	F		0,09

	PROGETTISTA TechnipFMC	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	REGIONE SARDEGNA RE-AMB-0		3-004
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 64 di 65	Rev. 0

CURVA DN 250

	hoi		• -	
⊢іа	nnı	. 22	ın	nΔ

	λ	1/mm	0,0008
Deformazione Max del terreno	ϵ_{max}		0,0001
Lunghezza di scorrimento della tubazione	L'	mm	19397
Forza d'attrito	t _u	N/mm	6,4
Spostamento sulla curva dovuto allo scorrimento nel terreno	Δ	mm	1,3
	K*		0,2
Forza assiale sul tratto rettilineo longitudinale	S	kN	13,98
Momento flettente sulla curva	М	kNm	1,85
Fattore di intensificazione dello stress	K1		1,88
Tensione assiale sulla curva dovuta alla forza S	σ_{aS}	Мра	2,15
Tensione di flessione sulla curva dovuta al momento flettente M	$\sigma_{ t bS}$	Mpa	16,61
Dati sismici			
Tensioni assiali		Moo	-2,15
Tensioni assiaii Tensioni flessionali	σ_{aR}	Mpa	,
Tensioni Hessionali	$\sigma_{\! extsf{bR}}$	Мра	-16,61
Tensione longitudinale massima di compressione dovuta al sisma	$\sigma_{sism,L}$	Мра	-18,76
Analisi tensionale			
Tensione compressione espansione termica impediata	$\sigma_{\!\scriptscriptstyle \Delta t,L}$	Mpa	-111,78
Tiro di fondo	$\sigma_{P,S}$	Мра	65,65
Tensione trazione ciconferenziale dovuto alla pressione interna	$\sigma_{P,C}$	Мра	123,80
Tensione equivalente con sisma	$\sigma_{ extsf{VS}}$	Мра	166,04
fattore utilizzazione	F		0,46

	PROGETTISTA	COMMESSA NR/	CODICE TECNICO
SNAM RETE GAS	LOCALITA' REGIONE SARDEGNA	RE-AMB-004	
	PROGETTO / IMPIANTO METANIZZAZIONE SARDEGNA -DERIVAZIONI DN 250 (10") / DN 150 (6") – DP 75 bar	Pag. 65 di 65	Rev. 0

2 CONCLUSIONI

Le verifiche sismiche eseguite consentono di garantire la conformità delle condotte di gas in progetto (**DN 150** e **DN 250**) ai requisiti del D.M. del 17.04:2008 (ovvero della norma EN 1594 in esso richiamata e quindi ai criteri delle linee guida sismiche nelle "Guidelines for Seismic Design of Oil Pipeline Systems delle ASCE, richiamate nella Ref. 2 dell'annex E), nei confronti del movimento sismico del suolo (scuotimento o shaking) provocato da un evento sismico e caratterizzato da un picco di accelerazione massimo del terreno (PGA) posto cautelativamente pari a **0,070** g corrispondente allo Stato Limite di Vita per Tr = 1898 anni secondo il DM 14 gennaio 2008.

I risultati delle analisi presentate ai paragrafi precedenti hanno infatti evidenziato l'idoneità dello spessore della tubazione a sopportare le sollecitazioni trasmesse dal movimento del terreno durante l'evento sismico, risultando infatti il massimo fattor di utilizzazione ottenuto dalle analisi pari a $\mathbf{F} = \mathbf{0.57} < \mathbf{1}$

Dai risultati si evince pure che in nessun caso, per effetto dello shaking, si avvicinano i valori di resistenza a rottura dell'acciaio costituente la condotta in progetto, che sotto questo aspetto può essere considerata assolutamente sicura.

D'altra parte, per questo fenomeno, in Letteratura Tecnica Internazionale non sono riportati casi di rottura di tubazioni integre e in acciaio, saldate e controllate con le tecniche attualmente disponibili.

Si rileva a tale proposito che le tubazioni Snam Rete Gas sono periodicamente controllate dall'interno con apparecchiature automatiche che rilevano qualsiasi variazione di spessore dell'acciaio ed i fenomeni corrosivi eventualmente in atto.