	GU/ March	DRIL e Umbria	. ATER(8 S.p.A.										
	ASSE VIARIO M	[ARCH]	E – UMBR	IA									
E OUAI	ASSE VIAKIU MAKUHE – UMBKIA E OHADRILATERO DI PENETRAZIONE INTERNA												
2 2011	ΜΑΥΙ) 2										
INIAALLULLU Z LAVORI DI COMPLETAMENTO DELLA DIRETTRICE PERUGIA ANCONA: SS. 318 DI "VALFABBRICA". TRATTO PIANELLO – VALFABBRICA SS. 76 "VAL D'ESINO". TRATTI FOSSATO VICO – CANCELLI E ALBACINA – SERRA SAN QUIRICO "PEDEMONTANA DELLE MARCHE", TRATTO FABRIANO – MUCCIA – SFERCIA PROCETTO ESECUTIVO													
CONTRAENTE GENERALE		<u>U ESECI</u>											
	A 2	Generale:	Il responsabile Integraz	ioni delle Prestazio	ni Specialistiche:								
5.0.01.1	• Ing. Federico Montanari		Ing. Salvatore Lieto										
Mandataria: PROGETTAZIONE GRANDI INFRASTRUTTURE PROGIN _{S,p.A.}			OMBARDI-REICO	SGA I SGA I www.sgal.com	I S.F.I. Forlani & C. gegrete 6 Geologia Applicate Network Market Market Market Applications (Market Applications) Market Applications) Market Applications (Market Applications)								
RESPONSABILE DELLA PROGETTAZIONE PER l'ATI Ing. Antonio Grimaldi GEOLOGO Dott. Geol. Fabrizio Por COORDINATORE DELLA SICUREZZA IN FASE DI PROGETTAZIONE Ing. Michele Curiale	ntoni	Q ^{INE} DEI GE Fabriz Geolo * ALBC	OLOGI DELLE MAR tio PONTONI OF go Specialista T N. 176 *	NI GEGN UNICULAR AND AND AND AND AND AND AND AND AND AND	ERIDE t. Ing. HELE VIALE 0"Sec. A" 0"Sec. A" 0"Size A" 0"Size A" 0"Sec. A" 0"Se								
IL RESPONSABILE DEL PROCEDIMENTO Ing. Giulio Petrizzelli													
2.1.2 PEDEMONTANA DELLE MARCHE SCALA: Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord GEOLOGIA E GEOTECNICA Relazione geotecnica generale sulle opere in sotterraneo DATA: Febbraio 2017 Febbraio 2017													
Codice Unico di Progette	o (CUP) F12C03000050021 (Assegn	nato CIPE 23-12-20)15)										
Opera Tratto Settore CEE WBS Id. doc. N. prog. Rev. Codice Elaborato: L 0 7 0 3 2 1 2 E 0 2 G E 0 0 0 R E L 0 2 C													
REV. DATA	DESCRIZIONE	R	edatto	Controllato	Approvato								
A Agosto 2016	Emissione per progetto esecutivo	PROGIN	G. Furlani	S. Lieto	A. Grimaldi								
B Nov. 2016 E	Emissione a seguito di istruttoria ANAS	PROGIN	G. Furlani	S. Lieto	A. Grimaldi								
C Feb. 2017 E	missione a seguito variante altimetrica	PROGIN	G. Furlani	S. Lieto	A. Grimaldi								

Г

L

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. RFI	N.prog. 02	Rev. C	Pag.diPag. 2 di 86
					KEL			

INDICE

INTRODUZIONE	3
1 NORMATIVA DI RIFERIMENTO	4
	4
GEOMORFOLOGICO	6
	6
2 GALLERIA MISTRIANELLO	
INDAGINI GEOTECNICHE	8
1 GENERALITA'	8
2 CAMPAGNA GEOGNOSTICA DEL 2002	
3.2.1 Prove pressiometriche in foro	9
3.2.2 Prove di permeabilità	9
3.2.4 Prove di laboratorio	
3 CAMPAGNA GEOGNOSTICA DEL 2004	10
3.3.1 Prove pressiometriche in foro tipo Menard	11
4 CAMPAGNA GEOGNOSTICA DEL 2006-2007	12
3.4.1 Prove di permeabilità	
3.4.2 Indagini sismiche	14
3.4.3 Letture inclinometricne	14
5 CAMPAGNA GEOGNOSTICA DEL 2016	17
3.5.1 Letture inclinometriche	
3.5.2 Prove di laboratorio	21
	27
1 DEFINIZIONE DELLE UNITA GEOTECNICHE INTERCETTATE	27
2 CRITERI DI INTERPRETAZIONE DELLE INDAGINI GEOTECNICHE	28
4.2.1 Depositi incoerenti	
4.2.3 Depositi coesivi	
	36 11
4 DEPOSITI DI ALTERAZIONE DEL SUBSTRATO – UNITÀ SALT	41
5 FORMAZIONE DI CAMERINO - UNITÀ PA / UNITÀ AP	43
4.5.1 Parametri di resistenza	45
4.5.2 Parametri di deformabilità	
6 FORMAZIONE DELLO SCHLIER - Sсн	
7 SINTESI DEI PARAMETRI GEOTECNICI DI PROGETTO	50
8 FALDA	85
	INTRODUZIONE NORMATIVA DI RIFERIMENTO

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 3 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	-------------------------

1. INTRODUZIONE

Nella presente relazione viene riportata la caratterizzazione geotecnica-geomeccanica per le opere in sotterraneo previste nel tracciato del lotto 2 della Pedemontana delle Marche – Progetto Esecutivo.

In particolare nella presente relazione sono affrontati i seguenti aspetti:

- breve inquadramento geologico, morfologico e idrogeologico;
- descrizione delle indagini geotecniche eseguite in sito ed in laboratorio;
- rilievo del livello di falda;
- descrizione dei criteri in base ai quali sono stati interpretati i risultati delle indagini geotecniche effettuate;
- interpretazione dei risultati delle indagini e definizione dei parametri geotecnici geomeccanici di progetto.
- Falda.

GUADRILATERO Marche Umbria 8.p.A.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 4 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	-------------------------

1.1 NORMATIVA DI RIFERIMENTO

Si è fatto riferimento ai seguenti documenti normativi.

- [N.1]. Norme Tecniche per le Costruzioni D.M. 14-01-08 (NTC-2008);
- [N.2]. Circolare n. 617 del 2 febbraio 2009 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008;

1.2 DOCUMENTI DI RIFERIMENTO

Alcune delle informazioni di seguito elaborate sono state acquisite mediante alcuni sopralluoghi effettuati sul sito di progetto e dall'esame della seguente documentazione:

Progetto Definitivo

- [DR_1]. 200E02GE0000REL01A Asse viario Marche Umbria e quadrilatero di penetrazione interna Maxi lotto 2 Progetto definitivo "Relazione geologica, geomorfologica e geoidrologica generale".
- [DR_2]. 200E02GE0000REL04A Asse viario Marche Umbria e quadrilatero di penetrazione interna Maxi lotto 2 Progetto definitivo "Indagini sismiche".
- [DR_3]. 200E02GE0000REL05A Asse viario Marche Umbria e quadrilatero di penetrazione interna Maxi lotto 2 Progetto definitivo "Relazione sulle indagini geofisiche".
- [DR_4]. 200E02GE0000REL06A÷200E02GE0000REL07A Asse viario Marche Umbria e quadrilatero di penetrazione interna Maxi lotto 2 – Progetto definitivo -"Indagini geognostiche in sito".
- [DR_5]. 200E02GE0000REL08A Asse viario Marche Umbria e quadrilatero di penetrazione interna Maxi lotto 2 Progetto definitivo "Indagini sismiche".
- [DR_6]. 200E02GE0000REL09A÷200E02GE0000REL11A Asse viario Marche Umbria e quadrilatero di penetrazione interna Maxi lotto 2 – Progetto definitivo – "Raccolta dei certificati delle prove di laboratorio".
- [DR_7]. 200E02GE0000PRF03B÷200E02GE0000PRF05B Asse viario Marche Umbria e quadrilatero di penetrazione interna Maxi lotto 2 Progetto definitivo "Profilo geologico".

Progetto Esecutivo

- [DR_8]. L0703212E02GE0000PRF07÷L0703212E02GE0000PRF12 Asse viario Marche – Umbria e quadrilatero di penetrazione interna Maxi lotto 2 – Progetto esecutivo - "Profilo geologico".
- [DR_9]. L0703212E02GE0000SEZ01÷L0703212E02GE0000SEZ02 Asse viario Marche – Umbria e quadrilatero di penetrazione interna Maxi lotto 2 – Progetto esecutivo - "Sezioni geologiche".
- [DR_10]. L0703212E02GE0000REL04A Asse viario Marche Umbria e quadrilatero di penetrazione interna Maxi lotto 2 Progetto esecutivo "Relazione illustrativa sulle indagini geognostiche e geotecniche".
- [DR_11]. L0703212E02GE0000REL05A Asse viario Marche Umbria e quadrilatero di penetrazione interna Maxi lotto 2 Progetto esecutivo "Relazione illustrativa sulle indagini geofisiche".
- [DR_12]. L0703212E02GE0000REL06A÷L0703212E02GE0000REL07A Asse viario Marche – Umbria e quadrilatero di penetrazione interna Maxi lotto 2 – Progetto esecutivo – "Stratigrafia dei sondaggi".
- [DR_13]. L0703212E02GE0000REL09A Asse viario Marche Umbria e quadrilatero

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 5 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	-------------------------

di penetrazione interna Maxi lotto 2 – Progetto esecutivo – "Pozzetti e prove di carico su piastra".

- [DR_14]. L0703212E02GE0000REL12A Asse viario Marche Umbria e quadrilatero di penetrazione interna Maxi lotto 2 Progetto esecutivo "Misure piezometriche e misure inclinometriche".
- [DR_15]. L0703212E02GE0000REL13A Asse viario Marche Umbria e quadrilatero di penetrazione interna Maxi lotto 2 Progetto esecutivo "Raccolta dei certificati delle prove di laboratorio".
- [DR_16]. L0703212E02GE0000REL02C Asse viario Marche Umbria e quadrilatero di penetrazione interna Maxi lotto 2 Progetto esecutivo "Relazione geotecnica generale sulle opere all'aperto (geotecnica-geomeccanica)".

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 6 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	-------------------------

2. INQUADRAMENTO GEOLOGICO, IDROGEOLOGICO E GEOMORFOLOGICO

Nelle due gallerie in progetto sono stati eseguiti ulteriori sondaggi geognostici rispetto alle precedenti campagne del definitivo:

- Galleria Croce di Calle: n.19 sondaggi;
- Galleria Mistrianello: n.13 sondaggi.

Trattandosi prevalentemente di unità torbiditiche, nelle carote di sondaggio è stata effettuata, oltre all'analisi strutturale, un'analisi di facies con riferimento alla sequenza di Bouma ed è stato calcolato il rapporto sabbia/argilla in riferimento alla classificazione delle sequenze arenaceo-pelitiche pubblicata dall'A.G.I. (1979).

Tale studio ha permesso di individuare livelli e markers diagnostici delle associazioni di facies e quindi di caratterizzare con maggior dettaglio le associazioni presenti nell'ambito della Formazione torbiditica di Camerino e di correlarle stratigraficamente tra loro, consentendo altresì di definire maggiormente anche il locale assetto strutturale che è stato confermato nelle sue linee generali.

In entrambe le gallerie è stato individuato il contatto tettonico ed erosivo tra la Formazione dello Schlier e la sovrastante Formazione di Camerino. Sono state distinte le varie associazioni di litofacies con indicazione del rapporto sabbia/argilla; rapporto che ha permesso di definire la tipologia di complessità strutturale e l'eterogeneità delle associazioni, dovute essenzialmente al processo genetico con la presenza alternata e ritmica di strati con proprietà meccaniche differenti (componente litoide o semilitoide - componente argillosa o marnosa).

Le opere in sotterraneo sono in materiali definiti da poco permeabili ad impermeabili; la presenza d'acqua è quindi modesta e localizzata e non si hanno interferenze particolari con le falde acquifere, presenti in fondovalle sulle alluvioni terrazzate (e mai interessate da opere in sotterraneo).

2.1 GALLERIA CROCE DI CALLE

La galleria naturale in progetto si sviluppa da nord verso sud dapprima nella Formazione di Camerino e successivamente, attraverso un contatto tettonico/erosivo, nella Formazione dello Schlier. In particolare la Formazione di Camerino è stata suddivisa, alla luce dei nuovi dati geognostici, in:

- litofacies Pelitica, con rapporto A/P \leq 0,2;
- litofacies Pelitico-Arenacea, con rapporto $0.2 \le A/P \le 1$;
- litofacies Arenaceo-Pelitica, con rapporto $A/P \ge 1$.

In riferimento alle coperture colluviali, i nuovi sondaggi hanno evidenziato solo localmente spessori di poco maggiori.

2.2 GALLERIA MISTRIANELLO

La galleria artificiale Mistrianello si sviluppa dal km 4+996 al km 5+280 nella Formazione di Camerino, suddivisa, in: litofacies Pelitica, litofacies Pelitico-Arenacea, litofacies Arenaceo-Pelitica, con gli stessi rapporti A/P di cui sopra. Le coperture eluvio-colluviali

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 7 di 86

hanno spessori variabili da 3 a 8 m circa.

ADRILATERO

Marche Umbria 8.p.A.

L'analisi delle carote dei sondaggi ha permesso di evidenziare anche che le litofacies argillose della Formazione di Camerino si presentano spesso bituminose, fetide con elementi carboniosi, fittamente e sottilmente laminate, con intercalazioni di diatomiti e più rari livelli lenticolari di calcari marnosi, evidenziando un passaggio transizionale alla sovrastante Formazione gessoso-solfifera, in cui detti litotipi sono tipici. Tali evidenze giustificano il rinvenimento di gas metano durante le perforazioni di sondaggio.

La metodologia di analisi adottata da una parte ha consentito la definizione, la correlazione e l'assetto strutturale delle litofacies presenti nella Formazione di Camerino con adeguato dettaglio, dall'altra ha comunque permesso di evidenziare che in entrambe le gallerie nel complesso domina la componente pelitico-arenacea con un rapporto complessivo medio sabbia/argilla inferiore a 1 (valore medio di circa 0,8).

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 8 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	-------------------------

3. INDAGINI GEOTECNICHE

3.1 GENERALITA'

Al fine di caratterizzare i terreni in corrispondenza delle gallerie in progetto si è fatto riferimento alle seguenti campagne di indagine:

- Campagna geognostica del 2002;
- Campagna geognostica del 2004;
- Campagna geognostica del 2006-2007;
- Campagna geognostica del 2016 finalizzata al Progetto Esecutivo.

Nei seguenti paragrafi sono descritte nel dettaglio le indagini in sito e le prove di laboratorio eseguite nelle suddette campagne d'indagine in corrispondenza delle gallerie in oggetto.

3.2 CAMPAGNA GEOGNOSTICA DEL 2002

La campagna di indagine è stata svolta nel periodo ottobre-dicembre 2002 e, con riferimento alle due gallerie, è consistita in:

- sondaggi geognostici a carotaggio continuo (denominati "S") di profondità compresa tra 20.0 e 45.0 m;
- n. 1 sondaggio geognostico (S20) spinto fino a 80.5 m con distruzione di nucleo nei primi 50.0 m;
- installazione di piezometri a tubo aperto per la lettura del livello di falda;
- stendimenti per prove geofisiche di sismica a rifrazione.

Durante l'esecuzione dei sondaggi sono stati effettuati:

- esecuzione di prove SPT (Standard Penetration Test) in foro;
- prelievo di campioni di terreno e roccia sottoposti a prove geotecniche di laboratorio;
- esecuzione di prove di permeabilità Lugeon;
- esecuzione di prove pressiometriche in foro;
- misure di valori di Pocket Penetrometer.

Nella seguente tabella si sintetizzano le attività svolte con riferimento alle due gallerie.

Tabella	1 – Riepilogo d	lei sondaaai e	delle prove	eseguite nella	campaana	aeoanostica	del 2002
labena	. mepnegee	iei seinaaggi e		esegune nena	campagna	geogneenea	40. 2002

Sondaggio	Profondità [m]	Quota boccaforo [m] s.l.m.	n. prove SPT	Prelievo campioni	Strumentazi one installata	n. prove pressiometriche	n. prove Lugeon
S19	45.0	402.27	-	-	-	2	2
S20	80.5	457.70	-	C.L.: 5	T.A.[0÷80.5]	2	2
S24	20.0	409.28	1	C.L.: 5 C.I.: 1,C.R.: 5	T.A.[3÷20]	-	-
S25	40.0	430.00	1	C.L.: 5	-	3	3
S26	25.0	401.89	1	C.L.: 5 C.R.:1	-	-	-
TA [m]: Piezo IN. = Inclinor C.L. = Camp	ometro a Tubo metro pione litoide	o Aperto [prof	ondità tra	atto filtrante]			

C.R. = Campione rimaneggiato C.I. = Campione indisturbato

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N. prog. 02	Rev. C	Pag. di Pag. 9 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	----------------	-----------	-------------------------

3.2.1 Prove pressiometriche in foro

Nella seguente tabella sono elencati i risultati delle prove pressiometriche disponibili.

Prova	Prof.	Unità	Pa	G	Em	E I ciclo	E II ciclo
-	-	-	кга	MPa	MPa	MPa	mra
S20P1	56.4	Sch	834	118.51	315.24	418.17	495.96
S20P2	67.6	Sch	1071	157.88	419.92	632.66	698.59

Pa = pressione iniziale tratto pseudo-elastico

G = modulo di taglio

Em = modulo pressiometrico

El= modulo di elasticità calcolato in I ciclo di carico-ricarico

Ell = modulo di elasticità calcolato in Il ciclo di carico-ricarico

3.2.2 Prove di permeabilità

Nella campagna del 2002 sono disponibili i risultati delle prove di permeabilità Lugeon elencate nella seguente tabella.

Tabella 3 – Risultati prove di permeabilità Lugeon campagna geognostica 2002

Anno	Sondaggio	Tipo prova	Profondità prova [m]	Coefficiente di permeabilità media [m/s]	Unità geotecnica	
•	-		-	•	-	
2002	S20	LU	60.00	3.00E-10	Sch	
2002	S20	LU	70.00	1.20E-09	Sch	
2002	S25	LU	15.00	1.93E-08	Pa	
2002	S25	LU	24.50	7.41E-08	Pa	
2002	S25	LÜ	24.50	1.61E-08	Pa	
2002	S25	LU	35.00	1.07E-08	Pa	

3.2.3 Indagini sismiche

Durante la campagna di indagine del 2002 sono state eseguite prove sismiche a rifrazione, consistite in n.3 profili sismici in onde P ubicati all'imbocco sud della Galleria Croce di Calle (30, 31, 32) e n.3 ubicati all'imbocco nord (33, 34, 35).

Si riporta la tabella riassuntiva delle indagini eseguite.

Tabella 4 – Indagini sismiche a rifrazione campagna 2002

Sigla indagine	Lunghezza [m]				
30	60				
31	84				
32	60				
33	60				
34	60				
35	84				

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N. prog. 02	Rev. C	Pag.diPag. 10 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	----------------	-----------	------------------------

3.2.4 Prove di laboratorio

Sui campioni prelevati dai sondaggi della campagna geognostica in esame sono state eseguite le seguenti prove di laboratorio:

Nei terreni:

- analisi granulometriche;
- determinazioni dei limiti di Atterberg;
- determinazioni del peso di volume naturale (γ_N);
- determinazioni del contenuto naturale d'acqua (w_N);
- prove di taglio diretto;

In roccia:

- determinazioni del peso di volume naturale (γ_N);
- determinazione della resistenza a compressione monoassiale (σ_c).

							-	-				
Sondaggio	-	S24	S24	S24	S24	S24	S2	D	S20	S20	S20	S20
Campione	-	R1	R2	R2	R4	R5	C3		C4	C5	C7	C8
Unità	-	Pa	Pa	Pa	Pa	Pa	Sc	h	Sch	Sch	Sch	Sch
Prof.	m	5.10	8.20	11.00	14.20	17.20	59.3	35	63.80	68.25	76.05	79.60
Caratteristiche fisiche												
γ _N	kN/m ³	20.9	23.5	23.6	22.9	22.0			24.7	25.2	26.1	
Resistenza a d	compres	sione mono	assiale									
σc	MPa	0.0986			0.462	0.136	В		9.644	13.035	16.819	
Sondaggio	-	\$25	S25	S25	S25	S25	S26	S26	S26	S26	S26	S26
Campione	-	C6	C7	C8	C9	C10	C1	C2	C3	C5	C6	C7
Unità	-	Pa	Pa	Pa	Pa	Pa	Fola	Ba	Pa	Pa	Pa	Pa

Tabella 5 – Tabelle laboratorio campagna 2002

Sondaggio	-	S25	S25	S25	S25	S25	S26	S26	S26	S26	S26	S26
Campione	-	C6	C7	C8	C9	C10	C1	C2	C3	C5	C6	C7
Unità	-	Pa	Pa	Pa	Pa	Pa	Ecla	Pa	Pa	Pa	Pa	Pa
Prof.	m	22.05	25.50	28.60	32.00	36.20	6.40	9.50	12.50	18.50	21.00	24.20
Granulometria	а											
G	%						0.0					
S	%						16.5					
L +A	%						83.5					
L	%						53.9					
A	%						29.6					
D50	mm											
Limiti di Atter	berg											
WL	%						40.0					
WP	%						18.0					
ե	-						1.12					
le	%						22.0					
Caratteristich	e fisiche											
γn	kN/m ³	22.7	22.1	22.5	23.4	22.1	21.3	24.7	22.1	22.3	23.6	23.2
W N	%						15.3					
Resistenza a	compress	ione monoass	iale									
σ _c	MPa		0.06083	0.94834	0.14389	0.05942		0.95543	0.74025	0.5462	0.87001	0.69482
Resistenza dr	enata											
(TD) c	kPa	186.7					42.4					
(TD) f	۰	4.6					22.7					

(*) segue da pagina precedente.

3.3 CAMPAGNA GEOGNOSTICA DEL 2004

La campagna di indagine effettuata nel corso del 2004 è consistita in:

- sondaggi geognostici a carotaggio continuo (denominati BH4 e BH5), con profondità rispettivamente di 25.0 e 30.0 m, eseguiti in corrispondenza degli imbocchi della galleria Croce di Calle;
- installazione di piezometri a tubo aperto nei fori di sondaggio eseguiti;
- tomografie sismiche a rifrazione.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 11 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	------------------------

Durante l'esecuzione dei sondaggi sono stati effettuati:

- esecuzione di prove SPT (Standard Penetration Test) in foro;
- prove pressiometriche Menard.

Nella seguente tabella si sintetizzano le attività svolte con riferimento alle due gallerie.

abella 6 ·	- Riepilogo	dei sondaggi e	delle prove	eseguite nella	campagna	geognostica del 2004
------------	-------------	----------------	-------------	----------------	----------	----------------------

Sondaggio	Profondità [m]	Quota boccaforo [m] s.l.m.	n. prove SPT	Prelievo campioni	Strumentazione installata	n. prove pressiometriche
BH4	25.0	372.6	2	-	T.A.[2÷25]	1
BH5	30.0	395.3	2	-	T.A.[0÷30]	1
TA [m]: Piezo	ometro a Tubo	Aperto [profond	ità tratto f	iltrante]		

3.3.1 Prove pressiometriche in foro tipo Menard

Nella seguente tabella sono elencati i risultati delle prove pressiometriche eseguite su ciascun sondaggio.

Tabella 7 – Risultati prove pressiometriche	campagna geognostica 2004
---	---------------------------

Prova	Prof. Unità		PI P'I		Em	E
-	-	-	kPa	kPa	MPa	MPa
BH4	14.2	Pa	4300	4029	49.795	74.321
BH5	14.4	Pa	4500	4290	126.782	253.564

PI = pressione limite

P'I = pressione limite netta

Em = modulo pressiometrico

E= modulo di Young

3.3.2 Indagini sismiche

Durante la campagna di indagine del 2004 sono state eseguite prove sismiche a rifrazione, consistite in n. 4 profili sismici in onde P ubicati nella GN Mistrianello (T7, T8, T9, T10) e n. 2 ubicati all'imbocco nord della stessa galleria (T3, T4).

Si riporta la tabella riassuntiva delle indagini eseguite.

Tabella 8 – Indagini sismiche a rifrazione campagna 2004

Sigla indagine	Lunghezza [m]
T3	55
T4	55
Τ7	55
T8	55
T9	55
T10	55

L'indagine geofisica di sismica a rifrazione con modalità tomografica ha fornito la caratterizzazione in termini di velocità sismiche del settore di sottosuolo interessato dagli stendimenti.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 82	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 12 di 86

I risultati hanno evidenziato sostanzialmente la presenza di tre unità:

IUADRILATE Iarche Umbria 8.p.A.

- la prima è contraddistinta da velocità delle onde di compressione P variabili da 200 a 600 m/s circa. Si tratta principalmente di depositi superficiali di spessore variabile;
- la seconda è contraddistinta da velocità di onde di compressione comprese tra 800 e 1700 m/s, tale unità è attribuibile al substrato alterato e/o allentato (facies di argille con livelli o inclusi più argillitici marnosi o arenaci);
- la terza è contraddistinta da velocità di onde di compressione crescenti con la profondità fino a circa 2000 m/s e localmente fino a 2300-2600 m/s. Si tratta del substrato costituito principalmente da argille marnose e/o da marne arenacee fratturate.

3.4 CAMPAGNA GEOGNOSTICA DEL 2006–2007

Con riferimento alle due gallerie, la campagna di indagine effettuata nel 2006-2007 è consistita in:

- sondaggi geognostici a carotaggio continuo (denominati "SN") di profondità compresa tra 20.0 e 120.0 m;
- n. 2 sondaggio geognostici (SN2128, SN2203bis) eseguiti a distruzione di nucleo;
- installazione di piezometri a tubo aperto (Norton) e piezometri Casagrande nei fori dei sondaggi eseguiti;
- installazione di n. 3 tubi inclinometrici nei fori di sondaggio SN2125bis, SN2127, SN2203bis;
- prospezioni sismiche a rifrazione;

Durante l'esecuzione dei sondaggi sono stati effettuati:

- descrizione dettagliata della stratigrafia con foto a colori;
- esecuzione di prove SPT (Standard Penetration Test) in foro;
- prelievo di campioni di terreno e roccia sottoposti a prove di laboratorio;
- prove di permeabilità Lefranc;
- prove dilatometriche su roccia (DRT);
- misure di valori di Pocket Penetrometer sulle carote dei sondaggi.

Nella seguente tabella si sintetizzano le attività svolte con riferimento alle due gallerie.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 13 di 86

Tabella 9 – Riepilogo dei sondaggi e delle prove eseguite nella campagna geognostica del 2006-2007

Sondaggio /Pozzetto	Profondità [m]	Quota boccaforo [m] s.l.m.	n. prove SPT	Prelievo campioni	Strumentazione installata	n. prove Lefranc
SN2124bis	20.0	369.27	2	C.I.: 1 C.R.: 1 C.L.: 3	T.A.[3÷20]	-
SN2125bis	34.0	382.19	-	C.I.: 2 C.L.: 3	IN.	-
SN2126	120.0	498.00	-	C.L.: 5	T.A.[6÷72] C.C.[113]	3
SN2127	25.0	402.00	-	C.I.: 2 C.R.: 3	IN.	3
SN2128	9.0	402.60	-	-	C.C.[8]	-
SN2203	21.0	412.38	2	C.I.: 1	C.C.[20]	-
SN2203bis	12.0	412.00	-	-	T.A.[3÷12] IN.	-
TA [m]: Piezon CC=piezome DH [m]: Provo IN. = Inclinom C.L. = Campi	metro a Tubo A etro a cella di C a sismica Dowr netro one litoide	Aperto [profond Casagrande [pr Hole [profond	dità tratto rofondità ità di pro	filtrante] cella] va]		

Campione rimaneggiato C.I. = Campione indisturbato

.ATERO

ADRI Marche Umbria S.p.A.

Nella seguente tabella si riportano i risultati delle prove dilatometriche:

Anno	Sondaggio	Unità	z [m]	EG [MPa]
Τ.	•	•	*	*
2007	SN2126	Pa	80.3	443
2007	SN2126	Ар	96.5	293
2007	SN2126	Pa	112.5	450
2007	SN2127	Sch	10	164
2007	SN2127	Sch	15	236
2007	SN2127	Sch	25	168
EG = mod	ulo di deform	azione elas	tico operati	QV

Tabella 10 – Risultati prove dilatometriche campagna geognostica del 2006-2007

3.4.1 Prove di permeabilità

Nella campagna del 2006-2007 sono disponibili i risultati delle prove di permeabilità Lefranc a carico variabile elencate nella seguente tabella.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 14 di 86

Tabella 11 – Risultati prove di permeabilità Lefranc campagna geognostica 2006-2007

Anno	Sondaggio	Tipo prova	Profondità prova [m]	Coefficiente di permeabilità media [m/s]	Unità geotecnica
•	-	-	•	· · · · · · · · · · · · · · · · · · ·	-
2007	SN2126	LE_CV	80.00	3.68E-09	Pa
2007	SN2126	LE_CV	95.50	1.10E-08	Ар
2007	SN2126	LE_CV	111.00	5.79E-09	Pa
2007	SN2127	LE_CV	8.00	7.05E-08	Salt
2007	SN2127	LE_CV	13.00	1.44E-08	Sch
2007	SN2127	LE_CV	22.00	9.24E-09	Sch

3.4.2 Indagini sismiche

Sono state eseguite prospezioni sismiche a rifrazione in corrispondenza della galleria Croce di Calle, che constano di 7 profili sismici in onde P e 2 in onde S.

Si riporta la tabella riassuntiva delle indagini eseguite.

Sigle indexine	lunghorra [m]	Prospezioni		
sigia inaagine	Lunghezza [m]	onda S	onda P	
BS2118	120	Х	Х	
BS2119	120		Х	
BS2120	120		Х	
BS2121	120		Х	
BS2122	120		Х	
BS2123	120	Х	Х	

Tabella 12 – Indagini sismiche a rifrazione campagna 2006-2007

Il sottosuolo investigato può essere schematizzato in quattro intervalli sismostratigrafici:

- terreno areato e coperture vegetali/riporto: caratterizzato da valori delle velocità delle onde P non superiori ai 600 m/s (correlabili a valori delle Vs < 300 m/s); interessa spessori variabili dal decimetro a qualche metro;
- coperture eluvio colluviali o detrito di falda a vario grado di cementazione: caratterizzati da valori di Vp compresi tra 1000 e 1800 m/s, associate a valori di Vs non superiori ai 600 m/s. Gli spessori di tale sismostrato sono variabili dal metro sino a 10-15 metri;
- substrato alterato e destrutturato, o intensamente fratturato: caratterizzato da valori di Vp superiori ai 1800 m/s ma comunque non superiori ai 2400 m/s, da correlare al substrato superficiale alterato costituito da calcari e calcari marnosi nonché marne; per tale sismostrto le proprietà elastiche di tagli risultano ottime con valori di Vs > 800 m/s ma comunque non superiori ai 1100 m/s;
- substrato compatto: poco fratturato dotato di
- ottime proprietà elastiche sia di compressione (Vp>3500 m/s) che di taglio (Vs>1200 m/s).

3.4.3 Letture inclinometriche

Nell'area catalogata dal PAI con la sigla F-12-1418 (progressive 4+860÷4+960 circa) è stato installato un tubo inclinometrico nel foro di sondaggio SN2203bis. Da una prima ricognizione, in sede di predisposizione della campagna geognostica 2016, risultava

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera	Tratto	Settore	CEE	WBS	ld.	N.prog.	Rev.	Pag. di Pag.
L0703	212	E	02	GEOOO	REL	02	С	15 di 86

ancora funzionante. Purtroppo in sede di attivazione monitoraggio del 2016, si è constatato che l'inclinometro SN2203bis non era più utilizzabile per ulteriori misure; quindi si hanno misure relativamente al periodo 13/07/2007 ÷ 11/05/2009. Nella seguente figura è mostrato l'andamento degli spostamenti con la profondità per l'inclinometro SN2203bis. Lo strumento ha evidenziato uno spostamento di circa 1.4 cm con profondità di movimento di circa 3,5 m dal p.c. locale.

ATERO

GUADRILATERO Marche Umbria 8.p.A.

2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

				-				-
Opera L0703	Tratto 212	Settore E	C⊞ 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 16 di 86

Risultante spost. [mm]

Figura 1- Letture Inclinometro installato nel foro di sondaggio SN2203bis (frana F-12-1418)

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 17 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	------------------------

3.4.4 Prove di laboratorio

Sui campioni prelevati dai sondaggi della campagna geognostica in esame sono stati recuperati i certificati delle seguenti prove di laboratorio:

- analisi granulometriche;
- determinazione dei limiti di Atterberg;
- determinazione del peso di volume naturale (γ_N);
- determinazione del contenuto d'acqua naturale (w_N);
- prove di taglio diretto.

Sondaggio	-	SN2125bis	SN2203	SN2203bis					
Campione	-	1.00	1S	1M					
Unità	-	Ecls	Ecla	Pa					
Prof.	m	2.00	3.00	10.00					
Granulometria	a								
G	%	0.1	2.4						
S	%	54.6	5.9						
L +A	%	45.3	91.7						
L	%		24.3						
A	%		67.4						
Limiti di Atterberg									
WL	%		49.4						
W _P	%		27.7						
l _c	-		1.45						
l _P	%		21.7						
Caratteristich	e fisiche								
γ _N	kN/m ³	19.1	18.5	24.4					
W _N	%	12.8	18.0	4.0					
Resistenza a o	compress	ione monoass	iale						
σ _c	MPa								
Resistenza no	on drenata	1							
(TX-UU) c _u	kPa								
(TX-ELL) c _u	kPa								
Resistenza dr	enata								
(TD) c	kPa	12.3	20.4						
(TD) f	0	31.9	25.9						

Tabella 13 – Tabelle laboratorio campagna 2006-2007

3.5 CAMPAGNA GEOGNOSTICA DEL 2016

Con riferimento alle due gallerie, la campagna di indagine integrativa effettuata nel 2016 è consistita in:

- n. 1 sondaggio geognostico a carotaggio continuo (denominati "X") spinto fino alla profondità di 20.0 m, eseguito nelle vicinanze dell'imbocco A della galleria Croce di Calle;
- n. 2 sondaggi geognostici a distruzione di nucleo (X5 e X5bis), eseguiti nelle vicinanze dell'imbocco A della galleria Croce di Calle;
- n. 25 sondaggi geognostici eseguiti in corrispondenza delle due gallerie (denominati "A");
- installazione di piezometri a tubo aperto per la lettura del livello di falda;

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 18 di 86

installazione di tubi inclinometrici nei fori di sondaggio. •

Durante l'esecuzione dei sondaggi sono stati effettuati:

- descrizione stratigrafica, foto a colori, rilievo geomeccanico; •
- esecuzione di prove SPT (Standard Penetration Test); •
- prelievo di campioni di terreno e roccia sottoposti a prove di laboratorio; •
- misure di valori di Pocket Penetrometer nei terreni;
- prove dilatometriche su roccia; •
- rilievo falda. •

adri

Nella seguente tabella si sintetizzano le attività svolte con riferimento alle due gallerie.

Sondaggio /Pozzetto	Profondità [m]	Quota boccaforo [m] s.l.m.	n. prove SPT	Prelievo campioni	Strumentazione installata
X4	20.0	347.64	3	C.I.: 2 C.L.: 2	I.[20]
X5	20.0	362.91	-	-	1.[20]
X5bis	15.0	363.87	-	-	T.A.[3÷15]
A1.2	53.0	381.60	-	C.L.: 5	T.A.[6÷30]
A2.2	63.0	395.37	-	C.I.: 1 C.L.: 5	1.[20]
A3.2	73.0	406.91	-	C.L.: 3	-
A4.2	83.0	419.87	-	C.L.: 5	-
A5.2	111.0	447.80	-	C.L.: 3	-
A6.2	118.0	459.73	-	C.L.: 3	T.A.[9÷80]
A7.2	134.0	481.65	-	C.L.: 3	-
A8.2	145.0	487.94	-	C.L.: 3	-
A9.2	125.0	475.14	-	C.L.: 4	-
A10.2	115.0	460.47	-	C.L.: 3	-
A11.2	108.0	452.66	-	C.L.: 3	-
A12.2	93.0	442.58	-	C.L.: 3	-
A13.2	76.0	426.16	-	C.L.: 4	1.[30]
A14.2	53.0	404.96	-	C.I.: 1 C.L.: 2	T.A.[3÷21]
A15.2	43.0	406.27	-	C.I.: 1 C.L.: 4	-
A16.2	47.0	410.41	-	C.L.: 3	-
A17.2	43.0	407.18	-	C.R.: 1 C.L.: 2	-
A18.2	60.0	425.67	-	C.I.: 2 C.L.: 4	1.[20]
A19.2	9.0	412.91	-	C.L.: 4	-
A20.2	45.0	407.06	-	C.I.: 1 C.L.: 2 C.R.: 2	T.A.[3÷15]
A21.2	60.0	422.92	-	C.L.: 5	-
A22.2	71.0	433.39	-	C.L.: 5	T.A.[9÷40]
A23.2	61.0	423.09	-	C.L.: 6	-
A24.2	48.0	411.16	-	C.I.: 1 C.L.: 4	-
A25.2	20.0	402.86	2	C.I.: 1	1 [20]

Tabella 14 – Riepilogo delle indagini in sito eseguite nella campagna geognostica del 2016

Nella seguente tabella si riportano i risultati delle prove dilatometriche:

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 19 di 86

Tabella 15 –	Risultati prove	dilatometriche	campaana	aeoanostica	del 2016
	Risonan prove	anaionnemene	campagna	geognosnea	4012010

Anno	Sondaggio	Unità	z [m]	EG [MPa]
-T-	+	-	*	•
2016	A9.2	Pa	84.5	917
2016	A10.2	Sch	71	147
2016	A10.2	Sch	86	162
2016	A11.2	Sch	78	1146
2016	A12.2	Sch	54	853
2016	A12.2	Sch	64	424
2016	A13.2	Sch	36	266
2016	A15.2	Sch	12.5	160
2016	A18.2	Ар	27	74
2016	A16.2	Pa	16	154
2016	A1.2	Pa	25.5	337
2016	A3.2	Pa	39.5	132
2016	A4.2	Ар	49.5	287
2016	A5.2	Pa	71	334
2016	A5.2	Pa	79	290
2016	A6.2	Ар	85	852
2016	A7.2	Ар	96	437
2016	A7.2	Pa	106	763
2016	A8.2	Pa	107.5	111
2016	A8.2	Pa	112.5	118
2016	A14.2	Sch	19.5	255
2016	A20.2	Pa	9	44
2016	A21.2	Ар	24	527
2016	A24.2	Pa	18	136
2016	A22.2	Pa	30.5	277
2016	A22.2	Pa	40.5	319

3.5.1 Letture inclinometriche

BUADRILATE Iarche Umbria 8.p.A.

Sono stati installati i tubi inclinometrici nei fori di sondaggio: A13.2, A2.2, A18.2, A25.2, X4, X5.

Al momento della stesura del presente elaborato sono disponibili 3 letture (oltre alla lettura di zero inziale), effettuate il 29/06/2016, 03/08/2016 e 15-17/11/2016. Quindi la seconda e terza letture include il periodo a cavallo dell'importante sciame sismico iniziato nell'agosto 2016.

Le anomalie riscontrate sulle verticali inclinometriche X4, A2.2 afferiscono al periodo di misura 3 agosto – 15 novembre 2016, e si manifestano con misura degli spostamenti max in testa di 1.0-1.5 cm, con interessamento a profondità elevate ben superiore allo spessore delle coltri interecettate potenzialmente instabili, ed andamento della deformata a volte marcatamente irregolare.

Vanno quindi interpretate anche alla luce dei recenti eventi sismici subiti: si può ipotizzare che l'interazione cinematica tubo-terreno abbia configurato una configurazione deformata di difficile interpretazione, non direttamente ascrivibile ai movimenti gravitativi in atto. Nel caso limite, la perdita di cementazioni può aver compromesso la precisione della misura. Sono in corso verifiche per valutare l'affidabilità del sistema caso per caso. L'interpretazione delle successive letture, elaborate anche con lettura di zero sulla precedente (post-sisma), consentiranno di meglio circostanziare tale ipotesi.

L'inclinometro X4 è ubicato nell'intorno del km 1+710, in prossimità del Ponte Faranghe. Ricade all'interno di un potenziale movimento gravitativo che interessa il tracciato fino all'imbocco nord della GN Croce di Calle (tra il km 1+650 e il km 2+500 circa). Ha misurato

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

KH I I I I I I I I I I I I I I I I I I I		Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. RFI	N.prog. 02	Rev. C	Pag.diPag. 20 di 86
--	--	----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	------------------------

uno spostamento massimo di circa 0.6 cm con direzione nord-est. La misura evidenzia i maggiori spostamenti nei primi 3-4 m dal p.c.; spostamenti trascurabili di circa 0.2-0.3 cm sono rilevati fino a circa 13 m di profondità.

ero

arche Umbria S.p.A.

Il vicino inclinometro X5 afferente al medesimo potenziale corpo gravitativo (km 1+810, imbocco nord GN Corce di Calle) ha misurato spostamenti trascurabili (2-3 mm), al limite della precisione strumentale. L'inclinomtero A2.2 si colloca poco lontano, nell'intorno del km 2+030: ha misurato uno spostamento massimo di circa 1 cm in direzione nord, di cui circa la metà entro i primi 3 m dal p.c., ed andamento decrescente a profondità maggiori ove lo spostamento si annulla a circa 15 m dal p.c..

L'inclinometro A18.2 è ubicato al km 4+680 (entro l'area catalogata dal PAI con sigla F-12-1423) e ha misurato uno spostamento di circa 1 cm, con fascia di taglio a circa 6 m dal p.c. locale (l'evoluzione dei cedimenti èè confermata anche dall'ultima lettura eseguita nel gennaio 2017, vedasi seguente).

I restanti inclinometri non hanno rilevato spostamenti apprezzabili o oppure di entità ridotta (1-3 mm), confrontabile con la precisione strumentale.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 21 di 86

3.5.2 Prove di laboratorio

GUADRILATERO Marche Umbria 8.p.A.

Sui campioni prelevati dai sondaggi della campagna geognostica in esame sono state eseguite le seguenti prove di laboratorio:

Nei terreni:

• analisi granulometriche;

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 22 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	--------------------------

- determinazione dei limiti di Atterberg;
- determinazione del peso di volume naturale (γ_N);
- determinazione del contenuto d'acqua naturale (w_N);
- prove di taglio diretto (anche in tensioni residue);
- prove di compressione triassiale (del tipo CID, UU, CIU);
- prove ad espansione laterale libera (ELL).

Nella roccia:

- determinazione del peso di volume naturale (γ_N) ;
- determinazione della resistenza a compressione monoassiale (σ_c).

Sondaggio	-	X4	X4	X4	X4	X4	X4	X4	X4
Cam pione	-	CL1	C1	C2	CL1	CL2	SPT1	SPT2	SPT3
Тіро	-	lit	ind	ind	lit	lit			
Unità	-	Pa	ECla	ECla	Pa	Pa	ECla	ECla	ECla
Prof.	m	14.22	3.00	6.00	14.16	18.00	3.50	6.00	9.00
Granulometria	l								
G	%	0.0	1.0	0.0	0.0	0.0	0.0	2.0	0.0
S	%	52.0	15.0	13.0	1.0	10.0	16.0	11.0	7.0
L +A	%	48.0	84.0	87.0	100.0	90.0	84.0	86.0	93.0
L	%	24.0	37.0	34.0	53.0	33.0	37.0	35.0	40.0
А	%	24.0	47.0	53.0	47.0	57.0	47.0	51.0	53.0
D50	mm								
Limiti di Atterl	berg								
WL	%		46.8	59.9	42.0	50.3			
W _P	%		22.3	20.7	19.9	15.7			
ار	-		0.96	0.82	1.21	1.45			
l _P	%		24.6	39.2	22.1	34.6			
Caratteristiche	e fisiche								
ŶΝ	kN/m ³		20.0	19.6					
γs	kN/m ³								
Gs	-								
W N	%		23.3	27.7	15.4				
е	-								
Resistenza a c	ompress	ione monoa	ssiale						
σ _c	MPa	0.447			0.447	1.898			
Resistenza no	n drenata								
(TX-UU) c _u	kPa			100.3					
(TX-ELL) c _u	kPa		101.0						
Resistenza dro	enata								
(TD) c	kPa			13.5					
(TD) f	0			27.2					
(TD) c _r	kPa			7.9					
(TD) f _r	0			20.5					

Tabella 16 – Tabelle laboratorio campagna 2016 – imbocco A galleria Croce di Calle

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 23 di 86

Tabella 17 – Tabelle laboratorio campagna 2016 – Gallerie Croce di Calle e Mistrianello

Sondaggio	-	A1.2	A1.2	A1.2	A2.2	A2.2	A2.2	A2.2	A3.2	A4.2	A4.2	A4.2	A5.2	A6.2
Campione	-	C1	R1	R2	C1	C2	R1	R2	R1	C1	R1	R2	R1	R1
Tipo	-	lit	lit	lit	ind	lit								
Unità	-	Pa	Ap	Pa	Salt	Ap	Pa	Pa	Ар	Pa	Ap	Pa	Pa	Pa
Prof.	m	13.00	14.65	23.30	3.00	31.90	26.30	32.35	42.40	54.00	44.00	55.15	74.00	77.50
Granulometria	a													
G	%				0.0		0.0		0.0	0.0				
S	%				1.0		25.0		19.0	1.0				
L +A	%				99.0		75.0		81.0	100.0				
L	%				-		-		-	51.0				
A	%				-		-		-	49.0				
D50	mm													
Limiti di Atter	berg													
WL	%				54.7		51.0			53.0				
W _P	%				23.0		20.5			23.9				
l _c	-				1.14		1.42			1.48				
l _P	%				31.7		30.5			29.1				
Caratteristich	e fisiche													
ŶΝ	kN/m ³	22.8	24.2	23.3	20.0		22.9		23.4		24.2	24.5	24.0	23.8
γs	kN/m ³													
Gs	-													
W N	%				18.6	7.8	7.8	2.9	8.8	9.9	3.1	6.3		
е	-													
Resistenza a	compress	ione mo	noassial	e										
σ _c	MPa		58.2	2.9							59.6	4.7	3.4	6
Resistenza no	on drenata	1												
(TX-UU) c _u	kPa													
(TX-ELL) c _u	kPa													
Resistenza dr	enata													
(TD) c	kPa				2.0									
(TD) f	٥				38.3									
(TD) c _r	kPa				5.0									
(TD) f _r	٥				17.7									
(TX-CIU) c	kPa						447.0							
(TX-CIU) f	0						33.3							

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 24 di 86

Sondaggio	-	A7.2	A14.2	A17.2	A18.2	A18.2	A19.2	A19.2	A20.2	A20.2	A20.2	A21.2	A21.2	A21.2
Campione	-	R1	Cl1	R1	Cl1	CI3	C1	R1	C1	R1	R2	C1	R1	R2
Тіро	-	lit	ind	lit	ind	lit	lit	lit	ind	rim	lit	lit	lit	lit
Unità	-	Pa	Ecla	Pa	Ecla	Pa	Ap	Ар	Ecla	Ecla	Pa	Pa	Pa	Pa
Prof.	m	102.30	3.00	13.40	3.55	25.00	15.25	15.55	3.50	3.00	15.50	27.00	27.25	25.30
Granulometria	a													
G	%		1.0	0.0	1.0		0.0	0.0	5.0	2.0	0.0	0.0	0.0	
S	%		17.0	45.0	24.0		9.0	9.0	22.0	25.0	0.0	35.0	19.0	
L +A	%		83.0	54.0	75.0		91.0	91.0	72.0	73.0	100.0	65.0	80.0	
L	%		-	-	-		-	45.0	34.0	34.0	32.0	28.0	32.0	
A	%		-	-	-		-	46.0	38.0	39.0	68.0	37.0	48.0	
D50	mm													
Limiti di Atter	berg													
WL	%		40.7	32.2	47.7		47.1	43.0	45.4	47.4	53.0	32.1	34.0	
W _P	%		17.0	17.7	16.7		19.0	19.4	18.8	18.1	20.8	16.2	19.2	
l _c	-		0.75	1.25	0.79		1.30	1.30	0.95	1.62	1.27	1.49	1.69	
l _P	%		23.7	14.5	31.0		28.1	23.6	26.6	29.3	32.2	15.9	14.7	
Caratteristich	e fisiche													
γ _N	kN/m ³	23.0	20.0	23.3	20.2	24.9	22.6		20.5		22.2		23.1	23.3
γs	kN/m ³													
Gs	-													
w _N	%		23.0	14.1	23.1	8.4	10.5	12.4	20.1		12.2	8.4	9.2	8.5
е	-													
Resistenza a	compress	ione mo	noassial	e										
σ _c	MPa	2.7												3.8
Resistenza no	on drenata	1												
(TX-UU) c _u	kPa								105.0				1519.0	
(TX-ELL) c _u	kPa													
Resistenza dr	enata													
(TD) c	kPa								20.5				378.0	
(TD) f	٥								28.4				41.9	
(TD) c _r	kPa								1.7				16.0	
(TD) f _r	٥								28.2				31.8	
(TX-CIU) c	kPa													
(TX-CIU) f	۰													
(TX-CID) c	kPa		16.8	2.7	26.3		439.8	247.8		63.0	31.6			
(TX-CID) f	0		28.7	55.7	20.9		17.7	25.8	1	17.4	38.4			

(*) segue da pagina precedente.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 25 di 86

Sondaggio	-	A22.2	A22.2	A22.2	A23.2	A23.2	A23.2	A24.2	A24.2	A24.2	A24.2	A25.2	A25.2	A25.2
Campione	-	C1	R1	R2	C1	R1	R2	C1	C1	C2	R1	C1	SPT1	SPT2
Tipo	-	lit	lit	lit	lit	lit	lit	ind	ind	lit	lit	ind	0.00	0.00
Unità	-	Pa	Pa	Ар	Pa	Pa	Pa	Ecla	Ecla	Pa	Pa	Ecla	Ecla	Ecla
Prof.	m	36.00	36.17	42.00	26.00	26.55	28.00	3.76	3.56	16.00	13.30	2.70	3.25	6.00
Granulometria	a													
G	%	0.0			0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
S	%	36.0			6.0	4.0	43.0	34.0	51.0	11.0	4.0	16.0	23.0	19.0
L +A	%	63.0			94.0	96.0	56.0	65.0	48.0	89.0	96.0	84.0	78.0	81.0
L	%	30.0			58.0	59.0	39.0	30.0	23.0	47.0	46.0	36.0	36.0	38.0
A	%	33.0			36.0	37.0	17.0	35.0	25.0	42.0	50.0	48.0	42.0	43.0
D50	mm													
Limiti di Atter	berg													
WL	%	34.3			38.0	42.9	35.1	48.7	48.5	37.6	45.0	44.0	43.1	49.2
W _P	%	16.0			18.4	20.7	15.9	22.9	21.6	20.6	23.6	24.6	19.8	21.4
l,	-	1.24			1.43	1.48	1.28	1.24	1.80	1.50	1.51	1.12	1.85	1.77
l _P	%	18.3			19.6	22.3	19.2	25.8	26.9	17.0	21.4	19.4	23.3	27.8
Caratteristich	e fisiche													
γ _N	kN/m ³	22.2	22.4	22.7	22.2			20.2		22.0		19.6		
γs	kN/m ³													
Gs	-													
W N	%	11.7	6.8	8.7	10.0	9.9	10.6	16.8		12.2	12.7	22.3		
е	-													
Resistenza a o	compress	ione mo	noassiale	e										
σ _c	MPa		1.3	1										
Resistenza no	on drenata	i												
(TX-UU) c _u	kPa													
(TX-ELL) c _u	kPa													
Resistenza dr	enata													
(TD) c	kPa	326.0			137.6			26.5			116.5	61.0		
(TD) f	٥	22.6			34.6			29.8			36.5	23.1		
(TD) c _r	kPa	43.0			23.9			12.0			29.5			
(TD) f _r	٥	24.9			14.7			50.6			15.9	22.5		
(TX-CIU) c	kPa													
(TX-CIU) f	٥													
(TX-CID) c	kPa					203.0	275.0	22.5						
(TX-CID) f	0					41.0	42.7	23.1						

(*) segue da pagina precedente.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 26 di 86

Condoraio		A 10 0	40.0	40.2	40.2	A 10 0	A 15 0	A 15 0	A 10 0	A 16 0	A 11 0	A 10 0	A 12 2	A 12 2
Compione	-	A 16.2	A0.2	A9.2	A9.2	A 10.2	A 15.2	A 15.2	A 10.2	A 10.2	ATT.Z	A IZ.Z	A 13.2	A13.2
Campione	-	C2	K 1	KI E4	RZ	KI E4	UI		KI E4	RI E4	rt I	R I	R I	RZ
l ipo	-	Ind					Ind Tala	Ind			rim Och	rim Osh		
Unita	-	Ecla	Pa	Pa	Pa	Pa	Ecia	Sch	Sch	Pa	Scn	Sch	Sch	Scn 40.50
Prot.	m	5.45	112.00	94.70	96.30	25.00	3.00	12.00	75.00	12.35	75.70	59.80	43.00	46.58
Granulometria	a													
G	%	0.0					1.0	0.0		0.0				
S	%	15.0					29.0	10.0		1.0				
L +A	%	85.0					76.0	89.0		99.0				
L	%	39.0					35.0	44.0		11.0				
A	%	46.0					41.0	45.0		88.0				
D50	mm													
Limiti di Atter	berg													
WL	%	49.1					35.5	39.4		58.9				
W _P	%	18.4					16.3	19.8		24.7				
l.	-	0.90					0.97	1.40		1.33				
l _P	%	30.7					19.2	19.6		34.2				
Caratteristich	e fisiche													
γ _N	kN/m ³	19.4	22.7	23.2	24.4	24.9	19.7	22.5	23.7	21.9	24.3	24.4	23.7	23.9
γs	kN/m ³													
Gs	-													
W N	%	21.6					17.0	11.9	7.4	13.3			6.6	
е	-													
Resistenza a o	compress	ione mo	noassial	e										
σ _c	MPa		12.8	10.6	9.9	18.3			19.8			13.8	14.7	10.8
Resistenza no	on drenata	1												
(TX-UU) c _u	kPa													
(TX-ELL) c _u	kPa													
Resistenza dr	enata													
(TD) c	kPa	27.5					38.0							
(TD) f	٥	24.3					28.2							
(TD) c _r	kPa	8.5					22.5							
(TD) f _r	0	25.2					28.3							
(TX-CIU) c	kPa													
(TX-CIU) f	٥													
(TX-CID) c	kPa									118.9				
(TX-CID) f	٥							45.6		28.9				

(*) segue da pagina precedente.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 27 di 86

4. CARATTERIZZAZIONE GEOTECNICA

UADRILATE larche Umbria 8.p.A.

Nel presente capitolo si riporta la caratterizzazione geotecnica generale con riferimento alle opere in sotterraneo (GN Croce di Calle e GA Mistrianello), valutata sulla base dell'interpretazione delle indagini geotecniche svolte in sito ed in laboratorio.

Dopo aver individuato le principali unità geotecniche intercettate, verranno interpretati i risultati delle indagini geotecniche sulla base dei criteri di seguito esposti e quindi verranno definiti i parametri geotecnici di progetto.

Nel profilo stratigrafico longitudinale sono riportati in forma grafica i risultati delle indagini e sono mostrate le correlazioni stratigrafiche con indicazione delle unità geotecniche intercettate; è anche indicato l'andamento del livello di falda massimo rilevato da letture piezometriche.

4.1 DEFINIZIONE DELLE UNITÀ GEOTECNICHE INTERCETTATE

Il substrato è costituito dalla Formazione di Camerino (e sovrastante Formazione gessososolfifera) e dalla formazione dello Schlier.

All'interno della formazione di Camerino si sviluppa la maggior parte del tracciato di progetto. In funzione dell'alternanza e la posizione degli strati arenacei e degli strati pelitico-marnosi, si può giungere ad una stima del rapporto arenaria/pelite secondo la classificazione AGI – 1979.

- Unità Pa Substrato Pelitico Arenaceo con 0,2 ≤ A/P ≤ 1 (Formazione di Camerino): rappresentata da litofacies pelitico-arenacee con un rapporto A/P ≤ 1.
- Unità Ap Substrato Arenaceo Pelitico A/P ≥ 1 (Formazione di Camerino): formata essenzialmente da litofacies costituite da arenarie e marne siltose grigie con un rapporto A/P ≥ 1.

Da una dettagliata analisi visiva delle carote, è stato possibile stimare il valore A/P delle varie associazioni (si rimanda alla Relazione geologica e ai report stratigrafici dei sondaggi per gli approfondimenti del caso). Le varie associazioni presentano un rapporto complessivo medio pari a A/P = 0.9 in corrispondenza della GN Croce di Calle, A/P = 0.65 in corrispondenza della GA Mistrianello, A/P = 0.8 come valore medio complessivo. Quindi prevale generalmente la componente pelitico-marnosa (A/P < 1) il cui comportamento meccanico è principalmente governato dalla stratificazione e laminazione delle litofacies torbiditiche.

Per la caratterizzazione geotecnica, le due componenti litologiche, Ap e Pa, sono fittamente intercalate e difficilmente distinguibili. Risulta quindi corretto considerarli come accorpati in una unità unica geotecnica.

La formazione gessoso solfifera (unità geologica denominata gs) nell'area è prevalentemente pelitica e quindi viene accorpata all'unità geotecnica Pa.

• Unità Sch – Formazione dello Schlier: si tratta di alternanze di marne argillose, marne siltose e arenacee con intercalazioni di calcare detritico e calcareniti.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Manaha Ilmhnia B n A									
	Opera L0703	Tratto 212	Settore E	CEE 02	WBS GEOOOO	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 28 di 86

Lo Schlier si presenta come una marna più o meno argillosa con caratteristiche meccaniche e caratteristiche fisiche che possono essere assimilate alla frazione più marnosa della formazione di Camerino (Pa).

4.2 CRITERI DI INTERPRETAZIONE DELLE INDAGINI GEOTECNICHE

4.2.1 Premessa

QUADRILATERO

Ai fini della caratterizzazione dei terreni è stato fatto riferimento ai risultati di tutte le indagini ad oggi disponibili, ed in particolare:

- prove penetrometriche dinamiche SPT eseguite nei fori di sondaggio;
- prove penetrometriche statiche CPT;
- prove dilatometriche in foro di sondaggio in roccia;
- prove di laboratorio eseguite sui campioni indisturbati e rimaneggiati;
- indagini sismiche (prove Down-Hole).

Occorre premettere che le formazioni pelitico arenacee del substrato (di rilevanza progettuale per lo scavo delle gallerie) si inquadrano nell'ambito delle formazioni complesse, che si pongono al confine fra le terre e le rocce. Si tratta di una formazione complessa fortemente anisotropa, in cui la stratificazione/laminazione chiaramente influenzano il comportamento meccanico della stessa. In base al quadro conoscitivo complessivamente disponibile la caratterizzazione geotecnica si è basata, in ordine di importanza:

- prove di laboratorio eseguite sui campioni indisturbati, mediante un classico approccio di meccanica delle terre;
- prove pressiometriche in sito, con particolare riferimento ai parametri di deformabilità, che coinvolgendo un volume di materiale superiore forniscono valori maggiormente rappresentativi riferiti alla scala di progetto;
- in sub-ordine e per confronto, mediante indici di classificazioni dell'ammasso, basati sull'esame visivo ed i rilievi geomeccanici eseguiti sulle carote.

4.2.2 Depositi incoerenti

Per i depositi prevalentemente incoerenti, i parametri geotecnici di resistenza al taglio e di deformabilità sono stati stimati principalmente sulla base dell'interpretazione delle prove penetrometriche dinamiche SPT e poi anche tarati dai risultati dell'interpretazione delle prove penetrometriche statiche CPT, ove disponibili.

Per quanto riguarda la stima della densità relativa dalle prove SPT, sono stati considerati i valori minimi di densità relativa ottenuti dalle varie correlazioni che di seguito vengono esposte.

<u>Stato di addensamento</u>

Correlazione di Skempton

In accordo a quanto indicato in Skempton (1986), la densità relativa Dr può essere correlata al valore NSPT con la seguente legge:

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera	Tratto	Settore	CEE	WBS	ld.	N.prog.	Rev.	Pag.diPag.
L0703	212	E	02	GE0000	doc.	02	C	29 di 86
					REL			

$$\mathbf{D}_{\mathrm{r}} = \left(\frac{1}{\mathbf{A} + \mathbf{B} \cdot \boldsymbol{\sigma}_{\mathrm{vo}}} \cdot \mathbf{N}_{\mathrm{SPT}}\right)^{0.5}$$

essendo:

A, B = costanti empiriche indicate in tabella seguente

 σ_{vo} '= pressione verticale efficace alla quota della prova SPT (kg/cm²);

N_{SPT} = numero di colpi per 30 cm di infissione;

Dr = densità relativa (-).

Tabella 18 – Costanti empiriche A e B (Skempton, 1986)

Tipo di materiale	Α	В
Sabbie fini normalmente consolidate	27,5	27,5
Sabbie grosse normalmente consolidate	43,3	21,7
Sabbie sovraconsolidate	27,5÷43,3	$(21,7+27,5) \cdot \frac{1+2.(ko)sc}{1+2.(ko)nc}$

Nel caso in esame sono state cautelativamente considerate le costanti empiriche relative a sabbie fini normal consolidate.

Correlazione di Gibbs e Holtz

In accordo a quanto indicato da Gibbs e Holtz (1957) la densità relativa Dr può essere correlata al valore N_{SPT} con la seguente espressione:

$$D_{R} = \sqrt{\frac{N_{SPT}}{(16+23 \cdot \sigma_{vo}')}}$$

Correlazione di Bazaraa

In accordo a quanto indicato da Bazaraa (1967) la densità relativa Dr può essere correlata al valore N_{SPT} con la seguente espressione:

$$\begin{split} D_{R} &= \sqrt{\frac{N_{SPT}}{20 \cdot (1 + 4.1 \cdot \sigma_{vo}')}} & \text{per } \sigma_{vo}' \leq 0.732 \text{ kg/cm2} \\ D_{R} &= \sqrt{\frac{N_{SPT}}{20 \cdot (3.24 + 1.024 \cdot \sigma_{vo}')}} & \text{per } \sigma_{vo}' > 0.732 \text{ kg/cm2} \end{split}$$

essendo:

D_R = densità relativa (-).

 σ_{vo} ' = pressione verticale efficace in sito alla quota della prova SPT (kg/cm²); N_{SPT} = numero di colpi per 30 cm di infissione.

Correlazione di Terzaghi & Peck

In accordo a quanto indicato da Terzaghi e Peck (1948) la densità relativa Dr può essere correlata al valore NSPT con la seguente espressione:

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

	Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 30 di 86
--	----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	------------------------

 $D_{R} = (10.297 + N_{SPT} \cdot 2.4142) - (N_{SPT})^{2} \cdot 0.0181$

Dalle prove CPT, la densità relativa viene stimata sulla base della correlazione proposta da Jamiolkowskj et al. 1985 in funzione della resistenza penetrometrica alla punta.

Parametri di resistenza

BUADRILATE Marche Umbria 8.p.A.

Per la stima dell'angolo di resistenza al taglio dalle prove SPT sono state utilizzate due diverse correlazioni (Bolton; Schmertmann) di seguito illustrate. Generalmente, la correlazione di Bolton ha sempre fornito valori dell'angolo di resistenza al taglio inferiori, rispetto alla correlazione di Schmertmann per tutte le unità geotecniche in esame. Cautelativamente per la definizione dei parametri di resistenza di progetto si è fatto riferimento ai valori minimi ottenuti dalle correlazioni.

Correlazione di Schmertmann

L'angolo di resistenza al taglio (ϕ ') stimato dalle prove SPT in base alla correlazione proposta da Schmertmann (1977) correla l'angolo di resistenza al taglio alla densità relativa attraverso la seguente relazione:

$$\begin{split} \varphi &= 38.5 + 0.108 \cdot D_R & \text{valida per sabbia e ghiaia poco limosa e ghiaietto uniforme} \\ \varphi &= 34.5 + 0.10 \cdot D_R & \text{sabbia grossa-media uniformemente ben gradata} \\ \varphi &= 31.5 + 0.115 \cdot D_R & \text{sabbia medio-fine uniformemente ben gradata} \\ \varphi &= 28.0 + 0.14 \cdot D_R & \text{sabbia fine uniforme} \end{split}$$

essendo: Dr = densità relativa

Nel caso in esame si è considerata, cautelativamente per le unità incoerenti GS la correlazione valida per sabbia medio-fine uniformemente ben gradata e per le unità S la correlazione per sabbia fine uniforme.

Correlazione di Bolton

L'angolo di resistenza al taglio di picco ϕ' è stato determinato in accordo al metodo

proposto da Bolton (1986):

$$\varphi' = \varphi'_{cv} + m \cdot Dl$$

$$Dl = D_r \cdot [Q - In(p'_f)] - 1$$

essendo:

 φ' = angolo di attrito di picco riferito a pressioni di 272 kPa (°);

Q = fattore che dipende dalla composizione minerealogica e dalla forma delle particelle di sabbia, valore consigliato = 10;

pf' = $1.4 \cdot \sigma ff'$ kPa (vedasi Jamiokowski et al., 1988; in accordo a quanto proposto da Baligh, 1975, si assume pf' = $1.4 \cdot 272 = 380$ kPa);

m = costante empirica dipendente dalle condizioni di deformazione prevalenti (vedasi tabella seguente (°). Nel nostro caso si assume m=3;

Dr = densità relativa (-).

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 31 di 86

Tabella 19 – Valori della costante empirica m secondo Bolton (1986)

Condizioni di rottura	m
Tipo prova triassiale di compressione	3
$(\sigma_2 = \sigma_3)$	
l ipo prova triassiale in estensione o di deformazione piana	5
$(\sigma_2' \neq \sigma_3')$	
σ_2 ' = tensione principale efficace intermedia	
σ_3 ' = tensione principale efficace minore	

l valori dell'angolo di attrito $\varphi cv'$ sono stati ricavati in base a quanto indicato nella tabella seguente (Youd, 1972; Stroud, 1988) e sulla base delle prove di taglio diretto in laboratorio eseguite sui campioni prelevati. Nel caso specifico per l'angolo di attrito $\varphi_{cv'}$ si è assunto, cautelativamente:

 φ_{cv} ' = 33° per le sabbie con ghiaia (unità Ag);

 ϕ_{cv} '= 30° per le sabbie (unità As).

Tabella 20 – Valori dell'angolo di attrito φ'cv per sabbie silicee secondo quanto riportato in Stroud (1988) e Youd (1972)

	Sabbie ben gradate	Sabbie uniformi
Sabbie a spigoli vivi	φ_{cv} = 38°	φ _{cv} ' = 34°
Sabbie a spigoli arrotondati	φ _{cv} ' = 33°	φ_{cv} ' = 30°

Dalle prove CPT, la resistenza al taglio per depositi incoerenti può essere stimata dalla correlazione di Dorgunoglu & Mitchell 1975 in funzione della resistenza penetrometrica e della tensione efficace in sito.

Caratteristiche di deformabilità

Le caratteristiche di deformabilità dei depositi incoerenti possono essere stimate, in ordine di importanza:

- sulla base dei risultati delle indagini sismiche in sito (prove Down-Hole);

- dall'interpretazione delle prove penetrometriche dinamiche SPT.

Il modulo di taglio iniziale (G₀) e quello di Young iniziale (E₀), associabili a piccole deformazioni, possono essere ricavati dai valori delle velocità delle onde di taglio (Vs) utilizzando le seguenti correlazioni:

$$G_{o} = \frac{\gamma_{t}}{9.81} \cdot (V_{s})^{2} \quad (kPa)$$
$$E_{o} = G_{o} \cdot 2 \cdot (l + v)$$

essendo:

 γ_{t} = peso di volume naturale del terreno in assunto pari a 19 kN/m³;

- v = coefficiente di Poisson del terreno (assunto pari a 0.3);
- Vs = velocità delle onde di taglio in m/sec.

La velocità delle onde di taglio (Vs) può essere ricavata direttamente dai risultati delle prove geofisiche in foro di sondaggio o indirettamente, interpretando i risultati delle prove SPT attraverso la correlazione di Ohta e Goto (1978) o la correlazione di Yoshida e

GUADRILATERO Marche Umbria 8.p.A.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 32 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	--------------------------

al. (1988).

Correlazione di Ohta e Goto (1978)

$$V_{s} = C \cdot \left(N_{SPT}\right)_{50\%}^{0.171} \cdot (z)^{0.199} \cdot f_{A} \cdot f_{G} \text{ (m/sec)}$$

essendo:

C = 53.3; z = profondità dal p.c. in metri; f_A = coefficiente funzione dell'epoca geologica del deposito (vedasi la Tabella 21); f_G = coefficiente funzione della composizione granulometrica (vedasi la Tabella 22).

Tabella 21 – Relazione di Ohta e Goto, 1978 - Coefficiente f_A (funzione dell'epoca geologica del deposito)

f	Olocene	Pleistocene		
٩	1,0	1,3		

Tabella 22 – Relazione di Ohta e Goto, 1978 - Coefficiente fG (funzione della granulometrica del deposito)

f _G	Ghiaie	Sabbie ghiaiose	Sabbie grosse	Sabbie medie	Sabbie fini	
	1,45	1,15	1,14	1,07	1,09	

Nel caso in esame è stato assunto:

 $f_A = 1.3;$ $f_G = 1.15$ per Ag, fG = 1.14 per As.

Correlazione di Yoshida et al. (1988)

$$v_s = C \cdot (N_{SPT})^{0.25} \cdot (\sigma_v)^{0.14}$$
(m/sec)

essendo:

C=49 per sabbie fini ;

C=56 per sabbie grosse con almeno il 25% di ghiaia;

- C=60 per 50% di ghiaia;
- σ_{vo} ' = pressione verticale efficace esistente in sito alla quota della prova.

<u>I moduli di deformabilità "operativi" (E') da adottare per il calcolo delle deformazioni/cedimenti delle opere di sostegno e delle fondazioni, saranno assunti pari a 1/5 di quello iniziale (E₀).</u>

Nel caso di valutazione di cedimenti di rilevati, i moduli elastici "operativi" saranno assunti pari a 1/10 di quello iniziale (E_{op} '= $E_0/10$).

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 82	WBS GEOOOO	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 33 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	--------------------------

4.2.3 Depositi coesivi

Per i depositi coesivi la caratterizzazione geotecnica è stata fatta oltre che dall'interpretazione delle prove in sito, anche dai risultati delle prove di laboratorio.

Classificazione

La classificazione di questi terreni avverrà essenzialmente sui risultati delle seguenti prove di laboratorio:

- Analisi granulometriche;
- pesi di volume naturale e secco;
- contenuti d'acqua naturale;
- limiti di Atterberg.

Caratteristiche di resistenza

Per la determinazione delle caratteristiche di resistenza dei depositi coesivi ci si è basati principalmente sui risultati delle prove di laboratorio che sono essenzialmente prove:

- Taglio diretto e prove triassiali per la resistenza in tensioni efficaci;
- Triassiale non consolidata non drenata (TXUU) e prova di compressione assiale semplice (ELL) per la resistenza in condizioni non drenate.

I risultati delle prove di laboratorio sono stati anche stimati con i valori ottenuti dall'interpretazione delle prove penetrometriche statiche CPT. La resistenza al taglio in condizioni drenate è stata stimata con la carta di classificazione e di interpretazione di Searle (1979) e la resistenza al taglio in condizioni non drenate sulla base della seguente relazione: cu = (qc- σ_v) / 15 (dove qc è la resistenza penetrometrica alla punta e σ_v è la tensione verticale).

La resistenza al taglio in condizioni non drenate è stata valutata anche dalle prove speditive di Pocket Penetometer (PP) e delle prove penetrometriche dinamiche SPT in base alla seguente correlazione di Stroud (1974):

$$c_u \cong (5.0 \div 5.5) \cdot N_{SPT} \quad \text{(kPq)}$$

l valori sono stati poi riportati nello stesso grafico, con indicato anche l'andamento della resistenza al taglio per un terreno normal consolidato ricavato dalla seguente relazione: $cu_{NC} = 0.23 \cdot \sigma'_v$.

Caratteristiche di deformabilità

Le caratteristiche di deformabilità dei depositi coesivi possono essere stimati:

- sulla base dei risultati delle indagini sismiche in sito (prove Down-Hole);
- da correlazioni di letteratura sulla base delle prove in sito.

Per quanto concerne le prove sismiche in sito, le caratteristiche di deformabilità vengono individuate con le stesse relazioni precedentemente indicate per i terreni incoerenti. Questi valori sono stati confrontati poi con i risultati derivanti dalle correlazioni per l'interpretazione delle prove in sito SPT e CPT.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

	Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 34 di 86
--	----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	--------------------------

Il valore del modulo di deformazione elastico (E'v) per terreni coesivi sovraconsolidati può anche essere stimato con la seguente correlazione (Stroud, 1974):

E'v = 130 cu = 130 fl N [kPa]

dove:

larche Umbria S.o.A.

E'v = modulo di deformazione operativo (kPa) cu = resistenza al taglio non drenata (kPa); f1 = fattore in funzione dell'indice di plasticità IP, (vedasi figura seguente), assunto pari a 5; N = valori di N_{SPT}.

Sulla base di quanto riportato in Simpson et al. (1979) il modulo di taglio iniziale (G_0) può essere stimato anche sulla base della seguente equazione:

 $G_{0} = (500 \div 700) \cdot cu (kPa)$

essendo:

 c_{υ} = resistenza al taglio non drenata.

Il modulo di deformazione a taglio iniziale può inoltre essere stimato dai risultati delle prove CPT con la correlazione di Mayne e Rix (1993).

<u>I moduli di deformabilità "operativi" (E') da adottare per il calcolo delle deformazioni/cedimenti delle opere di sostegno e delle fondazioni, saranno assunti pari a 1/5 di quello iniziale (E₀).</u>

Nel caso di valutazione di cedimenti di rilevati, i moduli elastici "operativi" saranno assunti pari a 1/10 di quello iniziale.

Nella valutazione dei cedimenti immediati dei rilevati il modulo di deformazione in condizioni non drenate (E_u) può essere stimato sulla base della correlazione empirica proposta da Duncan & Buchignani (1976) Eu = $k \cdot c_u$; il coefficiente k è valutato con il grafico di figura seguente.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 35 di 86

Figura 4 – Duncan & Buchigani

Caratteristiche di consolidazione

I valori del coefficiente di consolidazione primaria verticale sono stati determinati dalle prove edometriche di laboratorio e con correlazioni empiriche in funzione del limite liquido (LL), vedasi ad esempio:

c_v = 0.009 (LL – 0.1) [cm²/s] NAVFAC-DM 7.1. (1971)

Il coefficiente di consolidazione secondaria, è stato stimato con la correlazione proposta nel NAVFAC-DM 7.1 (1982, vedasi figura seguente), in funzione del contenuto naturale di acqua (w_n).

Nei paragrafi che seguono verranno riportati a confronto per le varie unità geotecniche tutti i risultati delle prove in sito e dell'interpretazione delle prove eseguite.

Opera	Tratto	Settore	CEE	WBS	ld.	N.prog.	Rev.	Pag.diPag.
L0703	212	E	02	GE0000	doc.	02	C	36 di 86
					REL			

4.2.4 Depositi lapidei

Ci si riferisce alle formazioni di substrato (formazione di Camerino e Shlier) che vengono intercettate dallo scavo delle due gallerie naturali.

L'ambito in cui si è chiamati ad operare è quello delle formazioni complesse che si pongono al confine fra le terre e fra le roccie. Per tale formazione è stato quindi seguito un doppio approccio sia in base alla meccanica delle terre (principlamente basato sulle prove di laboratorio), sia in base alla meccanica delle rocce mediante rilievi geomeccanici eseguiti sulle carote ed indici di classificazione dell'ammasso.

Si afferma sin d'ora che quest'ultimo approccio è da considerarsi in sub-ordine, rispetto a quello principalmente basato sulle prove di laboratorio che è anche quello maggiormente idoneo, e nel seguito utilizzato, per la caratterizzazione geotecnica delle formazioni di sub-strato.

Se si usa un approccio di meccanica delle rocce, la resistenza degli ammassi dipende sia dalle caratteristiche della roccia intatta, sia dalla posizione, dal numero e dall'orientazione delle discontinuità. L'importanza relativa di questi due fattori è legata al rapporto tra la spaziatura delle discontinuità e l'estensione della zona interessata dall'opera.

Generalmente i metodi di classificazione consentono di assegnare all'ammasso un indice numerico, rappresentativo della qualità. Tra i diversi metodi disponibili nel seguito si richiama:

- RMR (Rock Structure Rating System, Bieniawski 1989);
- GSI (Geological Strength Index, Hoek et al. 1998).

Il metodo RMR prevede la definizione di 6 parametri (P1, ..., P6) associate ad altrettante caratteristiche dell'ammasso. L'RMR ottenuto dalla somma dei 6 indici è detto globale.

Il metodo GSI nasce per ovviare alle difficoltà di applicazione del metodo agli ammassi rocciosi complessi e di qualità scadente. E' possibile determinare il valore in funzione dell'indice RMR opportunamente modifcato (ovvero fissando l'indice relativo alle venute d'acqua $P_5=15$ ed il sesto parametro relativo all'orientazione delle fratture $P_6=0$) e trasformandolo mediante:

GSI = RMR - 5.

In alternativa l'indice GSI può essere valutato in maniera semplificata e speditiva identificando, mediante un apposita tabella, la categoria di appartenenza dell'ammasso roccioso in esame in funzione di una descrizione qualitativa dello stesso. Con riferimento alle formazioni rocciose strutturalmente complesse, Marinos & Hoek (2001) hanno proposto un nuovo abaco per la stima di GSI in formazioni flyshoidi (Figura 6).

Hoek e Brown (2002) hanno proposto un criterio di resistenza per ammassi rocciosi fratturati nel quale compaiono tre parametri:

• σ_{ci} , ovvero la resistenza a compressione uniassiale della roccia intatta, per caratterizzare la resistenza del materiale lapideo;

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

	1		1					
Opera L0703	Tratto 212	Settore E	C⊞ 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 37 di 86

• "m" ed "s", che tengono conto del grado di fatturazione del volume di materiale interagente con l'opera.

Nel piano delle tensioni principali il criterio di resistenza di Hoek e Brown è espresso dall'equazione:

$$\frac{\sigma_1}{\sigma_{ci}} = \frac{\sigma_3}{\sigma_{ci}} + \left(m_b \frac{\sigma_3}{\sigma_{ci}} + s\right)^a$$

ERO

larche Umbria S.p.A.

(1)

La stima del parametro σ_{ci} è stata effettuata in base alle indicazioni provenienti dalle prove di laboratorio.

I parametri "m" ed "s" ed "a" possono essere correlati all'indice "Geological Strength Index" (GSI, Figura 6) secondo le espressioni (Hoek et al., 2002):

$$m = m_i \exp\left(\frac{GSI - 100}{28 - 14D}\right)$$
$$s = \exp\left(\frac{GSI - 100}{9 - 3D}\right)$$
$$a = \frac{1}{2} + \frac{1}{6}\left(e^{-GSI/15} - e^{-20/3}\right)$$

Risulta semplice, ponendo rispettivamente nella (1) $\sigma'_3 = 0$ e $\sigma'_1 = \sigma'_3 = \sigma'_1$ ricavare rispettivamente la resistenza a compressione della roccia σ'_c e la resistenza a trazione σ'_t .

Il valore di mi = 7 è stato ricavato da indicazioni di letteratura per rocce simili a quelle ritrovate nel corso delle indagini.

Il coefficiente D che varia tra 0 ed 1, e rappresenta quantitativamente il disturbo arrecato alla roccia dalle operazioni di asportazione da scavo e dallo scarico tensionale che ne consegue. Per rocce indisturbate si può porre D = 0, mentre per scavi in roccia con mezzi meccanici e senza uso di esplosivi si può porre D = 0.5 (Figura 7).

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 38 di 86

GUADRILATERO Marche Umbria 8.p.A.

Figura 6– Ta	bella per la	valutazione	del GSI
--------------	--------------	-------------	---------

Appearance of rock mass	Description of rock mass	Suggested value of D
	Excellent quality controlled blasting or excavation by Tunnel Boring Machine results in minimal disturbance to the confined rock mass surrounding a tunnel.	<i>D</i> = 0
	Mechanical or hand excavation in poor quality rock masses (no blasting) results in minimal disturbance to the surrounding rock mass. Where squeezing problems result in significant floor heave, disturbance can be severe unless a temporary invert, as shown in the photograph, is placed.	D = 0 D = 0.5 No invert
	Very poor quality blasting in a hard rock tunnel results in severe local damage, extending 2 or 3 m, in the surrounding rock mass.	D = 0.8

Figura 7 – Tabella per la valutazione del parametro D

I parametri del criterio di rottura di Hoek e Brown possono essere correlati ai valori della coesione e dell'angolo di attrito del criterio di Mohr Coulomb linearizzando (linea blu

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Menche Ilmbrie 6 p A									
	Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 39 di 86

Figura 8) nel piano delle tensioni principali (σ'_1 ; σ'_3) il dominio di rottura di Hoek e Brown (linea rossa sempre Figura 8) in un intervallo:

$\sigma_{t} < \sigma < \sigma_{3, \max}$

RUADRILATERO

L'angolo d'attrito ϕ essere in queste ipotesi calcolato come:

$$\varphi = \sin^{-1} \left[\frac{6am_b (s + m_b \sigma'_{3n})^{a-1}}{2(1+a)(2+a) + 6am_b (s + m_b \sigma'_{3n})^{a-1}} \right]$$

e la coesione può essere invece ricavata dall'espressione:

$$c' = \frac{\sigma'_{ci} \left[(1+2a)s + (1-a)m_b \sigma'_{3n} \right] (s+m_b \sigma'_{3n})^{a-1}}{(1+a)(2+a)\sqrt{1+6am_b (s+m_b \sigma'_{3n})^{a-1} / \left[(1+a)(2+a) \right]}}$$

in cui

$$\sigma'_{3n} = \sigma'_{3max} / \sigma'_{ci}$$

Hoek e Brown (2002) indicano un criterio razionale per scegliere il valore adeguato di $\sigma_{3,max}$, che in generale è funzione del tipo di problema esaminato (stabilità di pendii in roccia o studio del comportamento di una galleria) e della profondità dello scavo (o altezza della scarpata).

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 40 di 86

Figura 8 Linearizzazione del dominio di rottura di Hoek e Brown.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 41 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	------------------------

4.3 DEPOSITI ELUVIO COLLUVIALI LIMOSO ARGILLOSI – UNITÀ ECLA

Si tratta di depositi coesivi limoso argillosi, intercettati lungo il tracciato a partire dal p.c. con spessore variabile fino ad un massimo di 10 m circa. Alcune coperture detritiche eluvio-colluviali, hanno evidenziato movimenti gravitativi in atto e quiescenti; questo materiale di accumulo di frana è stato identificato nel profilo stratigrafico con la sigla (**a**) in accordo a quanto riportato anche negli elaborati geologici. Le zone dove sono state individuate potenziali frane sono monitorate attraverso stumentazione inclinometrica installata nella campagna geognostica del 2016. Al momento della stesura del presente elaborato si ha a disposizione una sola lettura inclinometrica.

In corrispondenza di questa unità sono disponibili prove SPT che hanno dato valori compresi fra 10 e 68 colpi/30 cm (Figura 9).

Nell'unità geotecnica in esame sono stati prelevati sia campioni rimaneggiati sia campioni indisturbati, su cui sono state eseguite prove di laboratorio.

Il peso di volume naturale è compreso mediamente fra 18.5 e 20.5 kN/m³ (Figura 10).

Dalle analisi granulometriche si ha (Figura 11).

- percentuale di ghiaia trascurabile, generalmente compresa fra 0 e 5% (media 2%);
- percentuale di sabbia marcatamente variabile, compresa fra 4 e 50% (media 20%);
- percentuale di fine (limo+argilla) generalmente maggiore del 50% con percentuale di limo compresa fra 23 e 54% e percentuale di argilla compresa fra 30 e 67%.

Il contenuto naturale d'acqua è compreso fra 15 e 28% (Figura 12).

Il limite liquido è compreso fra 36 e 60%, il limite plastico tra 15 e 29%, l'indice plastico fra 19 e 39% (Figura 12). Nella Figura 13 è mostrata la carta di plasticità di Casagrande: il materiale si colloca nella zona delle argille inorganiche a media plasticità.

Dalle prove penetrometriche statiche CP2201, CP2202, CP2203, CP2204 si osservano valori di resistenza alla punta penetrometrica (qc) compresi tra 1 e 2 MPa.

Parametri di resistenza:

Dalle analisi di laboratorio eseguite sui campioni prelevati si sono ottenuti i seguenti valori dei parametri di resistenza (Figura 14, Figura 15, Figura 16, Figura 17):

c' = 10÷63 kPa	coesione drenata
φ' = 17÷36 °	angolo di resistenza al taglio
c∪=100-170 kPa	resistenza al taglio in condizioni non drenate

Nella Figura 17 sono state anche inseriti i valori di resistenza al taglio non drenata desunti dalle Pocket Penetrometer e dall'interpretazione delle prove SPT, da cui si osservano valori generalmente compresi tra 50 e 170 kPa, quindi confrontabili con quelli ottenuti in laboratorio.

Nella Figura 18 sono inseriti i risultati di tutte le prove di laboratorio (valori di picco e

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

GUADRILATERO Marche Umbria 8.p.A.

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 42 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	------------------------

residui) ed i valori di progetto di picco:

φ' = 24÷27°	angolo di resistenza al taglio
c' = 5÷15 kPa	coesione drenata

e in condizioni residue:

φr' = 19÷21°	angolo di resistenza al taglio residuo
$c_r' = 0 kPa$	coesione drenata residua.

Per le area individuate con fenomeni di instabilità attivi la coltre è stata caratterizzata anche mediante back-analysis determinando per tentativi le caratteristiche di resistenza residua dei materiali che conducono all'equilibrio del pendio limite (FS=1) nelle condizioni idrauliche maggiormente critiche. Considerata la dolce pendenza media che caratterizza la superficie topografica dei pendii in esame, pari a circa 8÷9°, nell'ipotesi di pendio indefinito si ottiene:

φr' ≈ 14°	angolo di resistenza al taglio residuo
cr' = 0 kPa	coesione drenata residua.

Per i dettagli delle analisi svolte si rimanda al capitolo 5 della relazione geologica. I parametri residui minimi sopra indicati sono da intendersi rappresentativi delle zone classificate come frane attive, le cui coltri sono identificate nei profili geotecnici come unità "a". In attesa delle necessarie conferme mediante le misure inclinometriche tutt'ora in corso, si considera il rilievo geomorfologico rappresentato nell'apposito elaborato grafico, che individua le seguenti zone potenzialmente instabili che interferiscono con il tracciato:

- da km 0+480 al km 0+680 (tratto in rilevato);
- da km 1+650 al km 2+500 (spalla 2 del ponte Faranghe e imbocco nord GN Croce di Calle);
- da km 3+000 al km 3+320 (imbocco sud GN Croce di Calle)
- da km 4+620 al km 4+740 (area catalogata dal PAI con sigla F-12-1423) e da km 4+860 al km 4+960 (area catalogata dal PAI con sigla F-12-1418), (zona galleria artificiale Mistrianello).

Parametri di deformabilità:

Dalla singola prova Down-Hole eseguita nell'unità in esame (DH SN2120 per profondità inferiore ai 10 m da p.c.) e dalle correlazioni delle prove SPT si ricavano valori del modulo elastico di deformazione iniziale compresi tra 100 e 400 MPa (Figura 19).

4.4 DEPOSITI DI ALTERAZIONE DEL SUBSTRATO – UNITÀ SALT

Si tratta di una fascia di spessore variabile costituita da argilla limosa, marnosa, generalmente consistente che sovrasta il substrato a carattere da semilitoide a litoide, rappresenta la parte superiore alterata del substrato.

In corrispondenza di questa unità sono disponibili prove SPT che hanno dato valori compresi fra 13 e 100 colpi/30 cm (Figura 20), ad indicare una consistenza variabile.

Nell'unità geotecnica in esame sono stati prelevati sia campioni rimaneggiati sia campioni indisturbati, su cui sono state eseguite prove di laboratorio.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 43 di 86

Il peso di volume naturale è compreso mediamente fra 20 e 22.0 kN/m³ (Figura 21).

Dalle analisi granulometriche si ha (Figura 22).

- percentuale di ghiaia generalmente compresa fra 0 e 30%;
- percentuale di sabbia generalmente compresa fra 1 e 50%;
- percentuale di fine (limo+argilla) maggiore del 40% con percentuale di limo compresa fra 44 e 100% e percentuale di argilla compresa fra 24 e 56%.

Il contenuto naturale d'acqua è compreso fra 13 e 19% (Figura 23).

Il limite liquido è compreso fra 35 e 54%, il limite plastico tra 18 e 24%, l'indice plastico fra 19 e 39% (Figura 23). Nella carta di plasticità di Casagrande il materiale si colloca nella zona delle argille inorganiche di media plasticità (Figura 24).

Parametri di resistenza:

arche Umbria S.p.A.

Dalle analisi di laboratorio eseguite sui campioni prelevati si sono ottenuti i seguenti valori dei parametri di resistenza (Figura 25, Figura 26, Figura 27, Figura 28 e Figura 29):

c' = 2÷93 kPa	coesione drenata
φ' = 22÷38 °	angolo di resistenza al taglio
c∪= 430 kPa	resistenza al taglio in condizioni non drenate

Nella Figura 28 sono inseriti anche i valori di resistenza al taglio non drenata desunti dalle prove di Pocket Penetrometer e dall'interpretazione delle prove SPT, che hanno fornito valori molto dispersi tra 75 e maggiori di 700 kPa nei livelli più consistenti.

Nella Figura 29 sono riportati tutti i valori delle prove di laboratorio (parametri di picco e residui) confrontati con i valori assunti in progetto:

φ' = 27÷30°	angolo di resistenza al taglio
c' = 20 kPa	coesione drenata

Sono state inoltre eseguite prove di taglio in condizioni residue che, come era lecito attendersi, hanno misurato angoli di resistenza al taglio simili a quelli ottenuti sui depositi eluvio colluviali:

φr' = 19°	angolo di resistenza al taglio residuo
cr' = 0 kPa	coesione drenata residua

Dalla figura si osserva che i valori di progetto si correlano bene con i valori minimi del laboratorio.

Parametri di deformabilità:

Per l'unità in esame le caratteristiche di deformazione sono state stimate dalla prova Down-Hole (SN2120 tra 9 e 13 m da p.c.) e dalle correlazioni in base alle prove SPT. Da cui si stimano valori del modulo elastico di deformazione iniziale compresi fra 150 e 600 MPa (Figura 30).

4.5 FORMAZIONE DI CAMERINO – UNITÀ Pa / UNITÀ Ap

All'interno della formazione di Camerino si sviluppa la maggior parte del tracciato di

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

	Opera L0703	Tratto 212	Settore E	CEE 02	WBS GEOOOO	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 44 di 86
--	----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	--------------------------

progetto. Da una attenta analisi dei sondaggi è stato determinando lo spessore e la posizione degli strati arenacei e degli strati pelitico-marnosi, al fine di giungere ad una stima del rapporto arenaria/pelite secondo la classificazione AGI – 1979.

larche Umbria S.o.A.

- Unità Pa Substrato Pelitico Arenaceo con 0,2 ≤ A/P ≤ 1: rappresentata da litofacies pelitico-arenacee con un rapporto A/P < 1.
- Unità Ap Substrato Arenaceo Pelitico A/P ≥ 1: formata essenzialmente da litofacies costituite da arenarie e marne siltose grigie con un rapporto A/P >1.

Le varie associazioni presentano un rapporto complessivo medio pari a A/P = 0.9 in corrispondenza della GN Croce di Calle, A/P = 0.65 in corrispondenza della GN Mistrianello, A/P = 0.8 come valore medio complessivo (si rimanda alla Relazione geologica e ai report stratigrafici dei sondaggi per gli approfondimenti del caso). Prevale generalmente la componente pelitico-marnosa (A/P < 1) il cui comportamento meccanico è principalmente governato dalla stratificazione e laminazione delle litofacies torbiditiche.

Tale distinzione geologica di facies, sicuramente corretta in relazione alla variabilità granulometrica ed alla genesi dei materiali (fasi deposizionali connotate da differente energia), non è percorribile dal punto di vista prettamente geotecnico per i seguenti motivi:

- le due componenti litologiche, Ap e Pa, sono fittamente intercalate e difficilmente distinguibili alla scala di progetto;
- dalle prove di laboratorio non si riscontra una sostanziale differenza della distribuzione granulometrica fra le due associazioni (Pa e Ap, Figura 32 e Figura 33); il contenuto di sabbia è generalmente inferiore al 50% che significa la presenza di una importante matrice fine (limo e argilla) che ne governa il comportamento meccanico;
- le prove meccaniche di resistenza condotte in laboratorio non evidenziano una sostanziale differenza di comportamento per le due facies (come riscontrabile nei grafici di seguito commentati ove i risultati sono rappresentati distintamente per Pa e Ap).

Pertanto, ai fini della caratterizzazione geotecnica di progetto, si è scelto di accorpare la formazione di Camerino in una unica unità geotecnica.

Per gli stessi motivi sopra riportati, la corretta definizione del modello geotecnico è ricondotto ai principi di meccanica delle terre. Quindi in base al quadro conoscitivo complessivamente disponibile la caratterizzazione geotecnica si basa, in ordine di importanza:

- prove di laboratorio eseguite sui campioni indisturbati, mediante un classico approccio di meccanica delle terre;
- prove pressiometriche in sito, con particolare riferimento ai parametri di deformabilità, che coinvolgendo un volume di materiale superiore forniscono valori maggiormente rappresentativi riferiti alla scala di progetto;
- in sub-ordine per confronto, mediante indici di classificazioni dell'ammasso, basati sull'esame visivo ed i rilievi geomeccanici eseguiti sulle carote.

Il peso di volume naturale è compreso generalmente fra 22.0 e 26.0 kN/m³ (Figura 31). Si adotta un range di progetto di 23.0÷23.5 kN/m³.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera	Tratto 212	Settore F	CEE	WBS	ld. doc.	N.prog.	Rev.	Pag.diPag.
10/03	212	E	02	GEUUU	REL	02	C	45 AI 86

Dalle analisi granulometriche sull'unità Pa si ha (Figura 32).

- percentuale di sabbia generalmente compresa fra 0 e 55% (media circa 20%);
- percentuale di fine (limo+argilla) generalmente maggiore del 50% con percentuale di limo compresa fra 11 e 59% e percentuale di argilla compresa fra 17 e 88%.

Dalle analisi granulometriche sull'unità Ap si ha (Figura 33).

- percentuale di sabbia generalmente compresa fra 9 e 19%;
- percentuale di fine (limo+argilla) maggiore dell' 80% con percentuale di limo compresa fra 45 e 49% e percentuale di argilla compresa fra 32 e 46%.

Si osserva che la differenziazione delle facies, non trova completo riscontro nella distribuzione granulometrica determinata in laboratorio; la percentuale di fine è quella prevalente (limo e argilla) con percentuali variabili tra 45÷100%; costituisce la matrice del materiale e ne governa il comportamento meccanico dell'ammasso.

4.5.1 Parametri di resistenza

arche Umbria S.p.A.

La campagna geognostica del 2016 è stata programmata anche alla luce delle difficoltà riscontrate nelle precedenti fasi di indagine ove non è stato possibile eseguire prove meccaniche di laboratorio in numero staticamente rappresentativo (si disponeva di prove triassiali eseguite su soli due macro-campioni Ø84 mm). Tale limite viene esplicitamente dichiarato nel PD ove si affermava: "...Nella futura fase progettuale, per la definizione esecutiva delle opere, si ritiene pertanto necessario integrare i dati attualmente disponibili prelevando, già nella fase di perforazione in sito, campioni di diametro idoneo alle prove triassiali di laboratorio...", cfr. doc. LO703_200_E_02_GE0000_REL_03_A. Infatti l'elevata consistenza dei materiali rende particolarmente difficoltoso sia il recupero dei campioni in sito, che il successivo confezionamento dei provini in laboratorio.

In un tale contesto, si è operato in campo con le massime attenzioni al fine di ridurre il disturbo dei campioni ed incrementare la rappresentatività statistica dei prelievi. A tal fine si è fatto ricorso a differenti metodologie di prelievo alla stessa quota (campionatore Mazier, carotaggio immediatamente sigillato con paraffina) in modo da poter confrontare i risultati ottenuti e validare la prova. Si è inoltre optato per il confezionamento dei campioni di medio e grande diametro quando la natura del terreno lo richiedeva.

I campioni così ottenuti sono stati testati in laboratorio mediante prove triassiali consolidate isotropicamente drenate (TxCID), che costituiscono il mezzo d'indagine maggiormente idoneo.

Dalle analisi di laboratorio complessivamente disponibili si sono ottenuti i seguenti valori dei parametri di resistenza mostrati in Figura 34,33 e 34

c' = 3÷378 kPa	coesione drenata
φ' = 18÷43 °	angolo di resistenza al taglio.

Per una corretta interpretazione i risultati vengono rappresentati in un unico grafico nel piano τ - σ ' (piano Mohr-Coulomb). A tal fine i risultati delle prove triassiali generalmente restituiti nel piano degli invarianti t-s sono stati trasformati nel piano τ - σ ' mediante semplici relazioni trigonometriche. Infatti il grafico t-s rappresenta il luogo dei punti della sommità

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 46 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	------------------------

del semicerchio di Mohr nel piano τ - σ '.

arche Umbria S.p.A.

I risultati sono sintetizzati nel grafico di Figura 37.

Nella stessa Figura 37 è rappresentato graficamente il range dei parametri di resistenza scelti come valori caratteristici di progetto:

- Per tensioni σ_v' > 700 kPa: φ' =25÷30° angolo di resistenza al taglio c' = 220÷250 kPa coesione drenata

Il criterio di resistenza è unico. Il cambiamento dei parametri si ha perché si è scelto di linearizzare un inviluppo sperimentale pseudo-curvilineo mediante due tratti rettilinei con vertice a $\sigma v' = 700$ kPa (circa 30 m di profondità, vedasi Figura 37).

L'intervallo di progetto si colloca volutamente nel range medio basso della dispersione sperimentale osservata, per i motivi descritti nel seguito.

Tenuto conto delle formazioni attraverate, la caratterizzazione meccanica può risultare sbilanciata dai risultati ottenuti su campioni più intatti, sempre di buona qualità e facilmente prelevabili. Meno dati sono invece disponibili per i campioni delle porzioni più destrutturati ovvero terrigeni per le inevitabili difficoltà di campionamento, prima, e confezionamento dei provini poi. Inoltre per materiali strutturalmente complessi occorre considerare come la presenza e l'orientamento delle discontinuità/laminazioni può influenzare la resistenza misurata durante la prova. Pertanto le resistenze massime misurate in laboratorio sono rappresentative delle porzioni di materiale maggiormente intatto e/o con laminazioni orientate favorevolmente, mentre le resistenze minime sono rappresentative dei campioni confezionati con l'orientamento più sfavorevole delle discontinuità presenti. Tenuto conto della rappresentatività statistica dei campioni testati, la media delle resistenze misurate nei tests di laboratorio sovrastima la reale resistenza in sito del materiale. Pertanto è indispensabile tenere conto di tale valutazione, adottando parametri di progetto corrispondenti alla fascia medio bassa.

Nel seguito, l'insieme delle informazioni disponibili vengono anche elaborate in base ad un approccio tipico di meccanica delle rocce.

Sui campioni litoidi sono state eseguite prove di compressione monoassiale che per l'unità Pa hanno fornito i seguenti valori medi e relativi frattili inferiore al 10% (Figura 39):

 $\sigma_{c,media}' = 0.5 \text{ MPa per z<10m}$ $\sigma_{c,10\%'} = 0.2 \text{ MPa}$ $\sigma_{c,media}' = 2.3 \text{ MPa per 10<z<40m}$ $\sigma_{c,10\%'} = 0.2 \text{ MPa}$ $\sigma_{c,media}' = 7.2 \text{ MPa per z>40m}$ $\sigma_{c,10\%'} = 3.1 \text{ MPa}.$

Per l'unità Ap si osservano valori più elevati, solo localmente rappresentativi delle

GUADRILATERO	
Marche Umbria S.p.A.	

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 47 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	--------------------------

stratificazioni arenacee. In ogni caso il frattile inferiore al 10% è in linea con i valori dell'unità Pa:

 $\sigma_{c,media}$ ' = 20 MPa $\sigma_{c,10\%'}$ = 2 MPa per z>40m.

Dalle stratigrafie dei sondaggi del 2016 è stato eseguito il rilievo geomeccanico delle carote su 25 sondaggi generalmente ubicati in corrispondenza delle gallerie. Si è pervenuti ad un range di valori per il parametro GSI, come dettagliatamente documentato in Appendice E:

GSI =45÷85 (valore medio 70),

senza sostanziali differenze tra la formazione di Camerino e lo Schlier.

Nella Figura 38 per la formazione di substrato sono riportati a confronto gli inviluppi della caratterizzazione alla Hoek & Brown ottenuti facendo variare il GSI tra il valore minimo e medio (GSI = 45-70) e la resistenza a compressione tra il valore minimo e medio (σ ci = 2, 4, 7 MPa). I restanti parametri sono stati fissati come mi = 7 e D = 0. Si sono volutamente esclusi le resistenze a compressione massime non rappresentative alla scala di progetto ove si ha una prevalenze dei termini pelitici terrigeni.

Si osserva che i valori di resistenza di progetto assunti si correlano bene con la caratterizzazione dell'ammasso roccioso Hoek & Brown con GSI medio - σ ci minimo e GSI minimo - σ ci medio.

In ogni caso la discrezionalità inevitabilmente legata alla scelta dei parametri (GSI, σ ci, mi, D) porta ad una marcata dispersione dei risultati. Chiaramente non sono ammissibili inviluppi che massimizzano quelli ottenuti dalle prove di laboratorio che, come tali, rappresentano la resistenza del materiale intatto sull'elemento di volume. I due inviluppi al massimo possono coincidere nella teorica ipotesi di ammasso continuo ovvero in assenza di fratture (GSI = 100).

4.5.2 Parametri di deformabilità

In Figura 41 sono riportati tutti i valori del modulo di deformazione elastico operativo E'operativo ottenuti dalle varie prove disponibili (prove dilatometriche e prove triassiali di laboratorio).

I moduli determinati dalle prove dilatometriche si collocano tra 50 e 600 MPa (eccetto 5 prove che hanno misurato valori > 700 MPa).

Il grafico include anche i moduli operativi determinati alla luce delle prove triassiali di laboratorio eseguite nella campagna del 2016 (E'₅₀), opportunamente amplificati (x 2.5 volte) per considerare il minore livello deformativo atteso in esercizio durante lo scavo delle gallerie (0.1-1.0%), rispetto a quello mediamente testato in laboratorio al 50% della rottura (circa 2%). Infatti, considerando le tipiche curve di decadimento G/Go=f(ϵ a) si valuta un rapporto tra il modulo elastico misurato (E'₅₀) e quello operativo (E'op) compreso tra 2÷3 volte (vedasi Figura 40).

In progetto si assume la seguente correlazione in funzione della profondità (graficata anch'essa in Figura 41):

 $E'_{operativo} = 20+5.75 \cdot z \text{ MPa per } z < 40 \text{ m}$ $E'_{operativo} = 250+0.8 \cdot z \text{ MPa per } z > 40 \text{ m}.$

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 48 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	--------------------------

4.5.3 Permeabilità

In corrispondenza dell'unità Pa sono disponibili prove di permeabilità Lefranc e Lugeon che hanno fornito valori compresi tra 5.79 E-09 e 1.07E-08 m/s, mentre per l'unità Ap è disponibile solo una prova Lefranc che ha fornito un valore di permeabilità di 1.10 E-08 m/s.

4.6 FORMAZIONE DELLO SCHLIER – SCH

E' stata intercettata verso la fine della prima GN Croce di Calle fino all'imbocco della seconda GN Mistrianello.

Si tratta di alternanze di marne argillose, siltose e con intercalazioni di calcare detritico e calcareniti. A livello di ammasso prevale la componente marnosa più o meno argillosa con caratteristiche meccaniche e caratteristiche fisiche che possono essere assimilate alla frazione più marnosa del Camerino (Pa).

Il peso di volume naturale è compreso mediamente fra 22.0 e 24.0 kN/m³ (Figura 42).

In laboratorio si ha a disposizione 3 prove triassiale (eseguite sullo stesso campione) che nel report di laboratorio è stata interpretata con i seguenti parametri di resistenza: c' = 0 kPa , ϕ' = 42°, che diventano c' = 100 kPa, ϕ' = 20° considerando solo i due provini testati alle tensioni di confinamento inferiori (Figura 43).

Sui campioni litoidi sono state eseguite prove di compressione monoassiale che evidenziano un marcato incremento delle resistenze a profondità maggiori di 30÷40 m; hanno fornito i seguenti valori (Figura 39):

$\sigma_{c,media}$ ' = 0.8 MPa	per z<30÷40m
$\sigma_{c,media}$ ' = 14 MPa	per z>30÷40m
$\sigma_{c,10\%'} = 10 \text{ MPa.}$	

Dalle stratigrafie dei sondaggi del 2016 è stato eseguito il rilievo geomeccanico ai fini della caratterizzazione dell'ammasso roccioso e quindi si è pervenuti ad un range di valori per il parametro GSI (vedasi Appendice E): GSI =44÷84 (valore medio 67).

I dati a disposizione (prove di laboratorio) per la formazione dello Schlier sono minori rispetto alla formazione di Camerino ed anche piuttosto dispersi; inoltre le formazioni come si evince dalle stratigrafie dei sondaggi sono difficilmente distinguibili, quindi si è scelto di caratterizzarle in maniera similare a grande profondità.

Sia in affioramento che in alcuni dei sondaggi effettuati per la campagna geognostica, lo Schlier

e risultato essere particolarmente tettonizzato/fratturato con un diffuso e tipico "clivaggio" che ne

oblitera spesso la stratificazione, con superfici traslucide e segni di rigonfiamento; indizi questi di potenziale decadimento delle caratteristiche meccaniche che si possono riscontrare alle basse coperture e agli imbocchi delle GN..

Pertanto, seppure assimilabile alla formazione di Camerino, si è cautelativamente scelto di caratterizzare il materiale con una resistenza inferiore se intercettato dallo scavo alle

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. RFI	N.prog. 02	Rev. C	Pag.diPag. 49 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	------------------------

basse coperture (profondità < 20-30 m,) e ai tratti di imbocco delle gallerie.

Per tensioni $\sigma_v' < 550$ kPa si assumono i seguenti parametri di resistenza (Figura 43): $\phi' = 26 \div 28^{\circ}$ angolo di resistenza al taglio c' = 50 \div 60 kPa coesione drenata

Per tensioni $\sigma v' > 550$ kPa si assumono i seguenti parametri di resistenza (Figura 43): $\gamma' = 25 \div 30^{\circ}$ angolo di resistenza al taglio $c' = 220 \div 250$ kPa coesione drenata

In Figura 41 sono riportati i valori del modulo di deformazione elastico operativo E' operativo ottenuti dalle varie prove, rappresentati insieme ai dati della formazione di Camerino (cfr. paragrafo 4.5.2. Si adotta una legge di progetto unica per le due unità come rappresentata in Figura 41:

 $E'_{operativo} = 20+5.75 \cdot z \text{ MPa per } z < 40 \text{m}$ $E'_{operativo} = 250+0.8 \cdot z \text{ MPa per } z > 40 \text{m}$

ERO

BUADRILATE Marche Umbria 8.p.A.

In corrispondenza dell'unità in esame sono disponibili prove di permeabilità Lefranc e Lugeon che hanno fornito valori compresi tra 3.00 E-10 e 1.44E-08 m/s.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 50 di 86
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	--------------------------

4.7 SINTESI DEI PARAMETRI GEOTECNICI DI PROGETTO

Nel seguito si riassumono i parametri geotecnici di progetto per le unità geotecniche intercettate dagli scavi delle gallerie naturali in progetto.

Unità Ecla - Depositi eluvio colluviali limoso argillosi

$\gamma = 18.5 \div 20.5 \text{ kN/m}^3$	peso di volume naturale
φ' = 24÷27°	angolo di resistenza al taglio
c' = 5÷15 kPa	coesione drenata
φr' = 14°÷21°	angolo di resistenza al taglio residuo (i parametri minimi
	vanno associate alle coltri con instabilità attiva, unità a)
cr' = 0 kPa	coesione drenata residua
c∪ = 50÷160 kPa	resistenza al taglio in condizioni non drenate
E ₀ = 100÷400 MPa	modulo di deformazione elastico iniziale

Unità Salt – Substrato alterato argilloso limoso

peso di volume naturale
angolo di resistenza al taglio
coesione drenata
angolo di resistenza al taglio residuo
coesione drenata residua
resistenza al taglio in condizioni non drenate
modulo di deformazione elastico iniziale

Unità Pa – Substrato pelitico areanaceo / Unità Ap – substrato arenaceo pelitico

	$\gamma = 23.0 \div 23.5 \text{ kN/m}^3$	peso di volume naturale
	per tensioni σ _v ' < 700 kPa: φ' =31÷35° c' = 120÷150 kPa	angolo di resistenza al taglio coesione drenata
	per tensioni σ _v ' > 700 kPa: φ' =25÷30° c' = 220÷250 kPa	angolo di resistenza al taglio coesione drenata
	E' _{op} = 20+5.75·z MPa per z< 40m operativo E' _{op} = 250+0.8·z MPa per z> 40m	modulo di deformazione elastico
Unità :	Sch – Formazione dello Schlier	
	$\gamma = 23.0 \div 24.0 \text{ kN/m}^3$	peso di volume naturale
	per tensioni σ _v ' < 550 kPa: φ' =26÷28° c' = 50÷60 kPa	angolo di resistenza al taglio coesione drenata

per tensioni σ_v'> 550 kPa: φ' =25÷30° c' = 220÷250 kPa

angolo di resistenza al taglio coesione drenata

Mancha Ilmhnia 8 n A					-				
warene empire erhiwi	Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. RFI	N.prog. 02	Rev. C	Pag.diPag. 51 di 86

E'_{operativo} = 20+5.75·z MPa per z< 40 m modulo di deformazione elastico operativo E'_{operativo} = 250+0.8·z MPa per z> 40 m.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 52 di 86

N_{SPT}

Figura 9 – Valori di N_{SPT} – Unità Ecla

2.1.2 PEDEMONTANA DELLE MARCHE Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

ld. Pag. di Pag. Tratto Settore CEE WBS Rev. Opera N.prog. doc. L0703 53 di 86 212 02 GE0000 Е 02 С REL

Peso di volume

Figura 10 – Peso di volume naturale – Unità Ecla

GUADRILATERO Marche Umbria 8.p.A.

2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 54 di 86

Granulometria unità Ecla

Figura 11 – Analisi granulometrica – Unità Ecla

GUADRILATERO Marche Umbria S.p.A.

2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 55 di 86

Limiti di Atterberg e contenuto naturale d'acqua

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Oper L0703	a Tratto 3 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 56 di 86

QUADRI

Marche Umbria S.p.A.

AT

ero

Figura 14 – Angolo di resistenza al taglio e coesione drenata – Unità Ecla

Andamento della coesione con la profondità

60.0

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera	Tratto	Settore	CEE	WBS	ld.	N.prog.	Rev.	Pag.diPag.
L0703	212	E	02	GE0000	doc.	02	C	57 di 86
10/00	212	L	02		REL	02	C	57 01 00

c' [kPa] 30 50 60 70 10 20 40 0 0.0 **~** 0 \diamond \diamond 8 5.0 \diamond 10.0 15.0 20.0 25.0 Profondità da p.c. [m] 32:0 32:0 40.0 ♦Ecla - TDCD 45.0 50.0 Ecla - TXCD 55.0

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 58 di 86

Andamento della resistenza al taglio con la profondità

LATERO

QUADRI

Marche Umbria S.p.A.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 59 di 86

Andamento della resistenza al taglio non drenata

Figura 17 – Resistenza al taglio non drenata – Unità Ecla

2.1.2 PEDEMONTANA DELLE MARCHE Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo LATERO nord JADRI Marche Umbria S.p.A. ld. Pag. di Pag. Tratto Settore CEE WBS Rev. Opera N.prog. doc. . L0703 212 02 GE0000 С 60 di 86 Е 02 REL

Figura 18 – Parametri di resistenza coltri eluvio colluviali coesive – Unità Ecla

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	C⊞ 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 61 di 86

Modulo di deformazione elastico iniziale da prove SPT

JADRILATERO

Marche Umbria S.p.A.

E₀ [MPa]

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 62 di 86

N_{SPT}

Figura 20 – Valori di N_{SPT} – Unità Salt

GUADRILATERO Marche Umbria 8.p.A.

2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 63 di 86

Peso di volume

Figura 21 – Peso di volume naturale – Unità Salt

GUADRILATERO Marche Umbria 8.p.A.

2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 64 di 86

A, A+L, S, G [%] 70 0 10 20 30 40 50 60 80 90 100 0.0 Ξ, 0 Δ Δ $\phi \circ \circ$ Ν • • ♦ Δ 5.0 0 Δ \diamond • Δ 10.0 15.0 20.0 ОΑ ∆A+L 25.0 • Profondità da p.c. [m] ∎S ♦G 30.0 35.0 40.0 45.0 50.0 55.0 60.0

Granulometria unità Salt

Figura 22 – Analisi granulometrica – Unità Salt

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 65 di 86

Limiti di Atterberg e contenuto naturale d'acqua

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 66 di 86

QUADRI

Marche Umbria S.p.A.

ATERO

Andamento della coesione e dell'angolo di resistenza al taglio

Figura 25 – Angolo di resistenza al taglio e coesione drenata – Unità Salt

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 67 di 86

Andamento della coesione con la profondità c' [kPa]

ATERO

guadri

Marche Umbria S.p.A.

50 100 150 200 250 300 350 400 0 0.0 5.0 10.0 15.0 20.0 25.0 Profondità da p.c. [m] 32:0 32:0 40.0 Salt - TXCD 45.0 50.0 □Salt - TDCD 55.0 60.0

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 68 di 86

Andamento della resistenza al taglio con la profondità

GUADRILATERO

Marche Umbria S.p.A.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 69 di 86

Andamento della resistenza al taglio non drenata

Figura 28 – Resistenza al taglio non drenata – Unità Salt

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 70 di 86

GUADRILATERO

Marche Umbria S.p.A.

Figura 29 – Parametri di resistenza substrato alterato – Unità Salt

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	E	02	GE0000	REL	02	С	71 di 86

Modulo di deformazione elastico iniziale da prove SPT

E₀ [MPa]

GUADRILATERO Marche Umbria 8.p.A.

CUADRILATERO Nord

Marche Umbria S.p.A.

2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 82	WBS GE0000	ld. doc. REL	N. prog. 02	Rev. C	Pag. di Pag. 72 di 86

Peso di volume

Figura 31 – Peso di volume naturale – Unità Ap e Pa
GUADRILATERO Marche Umbria 8.p.A.

2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N. prog. 02	Rev. C	Pag. di Pag. 73 di 86

Granulometria unità Pa

Figura 32 – Analisi granulometrica – Unità Pa

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 74 di 86

Granulometria unità Ap

Figura 33 – Analisi granulometrica – Unità Ap

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 75 di 86

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	C⊞ 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 76 di 86

Andamento della coesione con la profondità

c' [kPa]

ATERO

JADR

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N. prog. 02	Rev. C	Pag. di Pag. 77 di 86

Andamento della resistenza al taglio con la profondità

GUADRILATERO

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 78 di 86

Figura 37 - Parametri di resistenza substrato pelitico arenaceo – Unità Pa e Ap

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 79 di 86

GUADRILATERO

Figura 38 – Inviluppi di rottura Hoek & Brown – Unità Pa e Ap

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	C⊞ 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 80 di 86

Resistenza a compressione monoassiale

Figura 39 – Resistenza a compressione monoassiale – Unità Pa, Ap, Sch

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 81 di 86

Figura 40 – Definizione di E₅₀ e Curve di decadimento del modulo

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 82 di 86

Modulo di deformazione elastico operativo - substrato

E'operativo [MPa]

UADRILATERO

Figura 41 – Modulo di deformazione elastico operativo – Unità Pa, Ap, Sch

GUADRILATERO Marche Umbria S.p.A.

2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CH 82	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag. di Pag. 83 di 86

Peso di volume

Figura 42 – Peso di volume naturale – Unità Sch

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 02	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 84 di 86

JADRILATERO

Figura 43 – Parametri di Parametri di resistenza formazione Schlier– Unità Sch

<u> </u>	T 11	0.11		14/00	ld.			
Opera	Iratto	Settore	CE	AAR2	doc	N.prog.	Rev.	Pag. ai Pag.
10703	212	F	02	GF0000	aoc.	02	С	85 di 86
20/ 00		-		010000	REL		U U	

4.8 **FALDA**

adei Marche Umbria S.p.A.

.ATERO

Nella tabella e figura seguenti si riportano le letture piezometriche espresse in metri di profondità dal p.c. ed in quota assoluta.

Nel profilo stratigrafico longitudinale è stato rappresentato il livello di falda massimo lungo il tracciato, desunto dalle letture piezometriche a disposizione.

	Ouete				
SONDAGGIO	boccaforo	Min (m da n c)	Max (m da n.c.)	MEDIA (m da p.c.)	
	(m s.l.m.)	(in da p.c.)	(in da p.c.)		
BH04	372.60	0.72	4.28	1.97	
BH05	395.30	9.10	9.10	9.10	
S19	407.27	3.60	12.72	8.48	
S20	257.70	26.26	26.71	26.53	
S24	409.00	0.54	1.38	0.97	
S25	430.00	0.20	9.15	4.11	
S26	402.86	4.60	4.60	4.60	
SN2124bis	370.43	8.65	10.42	9.70	
SN2126	498.63	2.20	9.20	7.06	
SN2126	498.63	21.84	23.20	22.63	
SN2128	402.61	0.43	5.34	3.15	
SN2203	412.38	1.69	3.18	2.47	
A1.2	381.60	26.05	26.57	26.31	
A22.2	433.39	4.54	6.45	5.63	
A20.2	407.06	0.35	0.58	0.43	
A6.2	459.73	1.11	1.20	1.16	
A14.2	404.96	1.76	2.08	1.92	
X5bis	363.87	5.60	5.70	5.67	

Tabella 23 – Tabelle Letture piezometriche in m da p.c.

Secondo stralcio funzionale: Matelica Nord – Matelica sud/Castelraimondo nord

Opera L0703	Tratto 212	Settore E	CEE 82	WBS GE0000	ld. doc. REL	N.prog. 02	Rev. C	Pag.diPag. 86 di 86

SONDAGGIO	Quota boccaforo (m s.l.m.)	Min (m s.l.m.)	Max (m s.l.m.)	MEDIA (m s.l.m.)
BH04	372.60	368.32	371.88	370.63
BH05	395.30	386.20	386.20	386.20
S19	407.27	394.55	403.67	398.79
S20	257.70	230.99	231.44	231.17
S24	409.00	407.62	408.46	408.03
S25	430.00	420.85	429.80	425.89
S26	402.86	398.26	398.26	398.26
SN2124bis	370.43	360.01	361.78	360.73
SN2126	498.63	489.43	496.43	491.57
SN2126	498.63	475.43	476.79	476.00
SN2128	402.61	397.27	402.18	399.46
SN2203	412.38	409.20	410.69	409.91
A1.2	381.60	355.03	355.55	355.29
A22.2	433.39	426.94	428.85	427.76
A20.2	407.06	406.48	406.71	406.63
A6.2	459.73	458.53	458.62	458.57
A14.2	404.96	402.88	403.20	403.04
X5bis	363.87	358 17	358 27	358 20

Tabella 24 – Tabelle Letture piezometriche in quota assoluta

Figura 44 – Livello falda in m da p.c.