

ASSE VIARIO MARCHE – UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA

MAXI LOTTO 2

Pedemontana delle Marche

Secondo Lotto funzionale –Matelica Nord – Castelraimondo Nord

GALLERIA CROCE DI CALLE

RELAZIONE TECNICA E DI CALCOLO DELLA GALLERIA NATURALE PARTE 2

INDICE

1. VERIFICA SEZIONE TIPO - COPERTURA 80 < H < 110 M	5
1.1 SEZIONE TIPO B2* – PARAMETRI DI RESISTENZA MASSIMI	
1.1.1 Fasi di calcolo	
1.1.1.1 Verifiche statiche dei rivestimenti	
1.1.1.1.1 Rivestimento di prima fase	
1.1.1.1.2 Rivestimento definitivo	
2. VERIFICA SEZIONE TIPO - COPERTURA 50 < H < 80 M	23
2.1 SEZIONE TIPO B2 – PARAMETRI DI RESISTENZA MINIMI	
2.1.1 Fasi di calcolo	
2.1.1.1 Verifiche statiche dei rivestimenti	
2.1.1.1.1 Rivestimento di prima fase	
2.1.1.1.2 Rivestimento definitivo	
2.2 SEZIONE TIPO B2 – PARAMETRI DI RESISTENZA MASSIMI	
2.2.1 Fasi di calcolo	
2.2.1.1 Verifiche statiche dei rivestimenti	45
2.2.1.1.1 Rivestimento di prima fase	
2.2.1.1.2 Rivestimento definitivo	
2.3 SEZIONE TIPO B0 – PARAMETRI DI RESISTENZA MASSIMI	56
2.3.1 Fasi di calcolo	60
2.3.1.1 Verifiche statiche dei rivestimenti	
2.3.1.1.1 Rivestimento di prima fase	
2.3.1.1.2 Rivestimento definitivo	
2.4 SEZIONE TIPO PIAZZOLA – PARAMETRI DI RESISTENZA MINIMI	
2.4.1 Fasi di calcolo	
2.4.1.1 Verifiche statiche dei rivestimenti	
2.4.1.1.1 Rivestimento di prima fase	
2.4.1.1.2 Rivestimento definitivo	
2.5 SEZIONE TIPO PIAZZOLA B0 – PARAMETRI DI RESISTENZA MASSIMI	
2.5.1 Fasi di calcolo	
2.5.1.1 Verifiche statiche dei rivestimenti	
2.5.1.1.1 Rivestimento di prima fase	
2.5.1.1.2 Rivestimento definitivo	
3. VERIFICA SEZIONE TIPO - COPERTURA 25 < H < 50 M	105
	2

3.1 SEZIONE TIPO BO – PARAMETRI DI RESISTENZA MINIMI	105
3.1.1 Fasi di calcolo	110
3.1.1.1 Verifiche statiche dei rivestimenti	112
3.1.1.1.1 Rivestimento di prima fase	112
3.1.1.1.2 Rivestimento definitivo	114
3.2 SEZIONE TIPO B0 – PARAMETRI DI RESISTENZA MASSIMI	121
3.2.1 Fasi di calcolo	125
3.2.1.1 Verifiche statiche dei rivestimenti	127
3.2.1.1.1 Rivestimento di prima fase	127
3.2.1.1.2 Rivestimento definitivo	129
3.3 SEZIONE TIPO B2 – PARAMETRI DI RESISTENZA MINIMI	137
3.3.1 Fasi di calcolo	142
3.3.1.1 Verifiche statiche dei rivestimenti	144
3.3.1.1.1 Rivestimento di prima fase	144
3.3.1.1.2 Rivestimento definitivo	146
3.4 SEZIONE TIPO B2 – PARAMETRI DI RESISTENZA MASSIMI	154
3.4.1 Fasi di calcolo	158
3.4.1.1 Verifiche statiche dei rivestimenti	160
3.4.1.1.1 Rivestimento di prima fase	160
3.4.1.1.2 Rivestimento definitivo	162
3.5 SEZIONE TIPO PIAZZOLA B0 – PARAMETRI DI RESISTENZA MASSIMI	171
3.5.1 Fasi di calcolo	175
3.5.1.1 Verifiche statiche dei rivestimenti	178
3.5.1.1.1 Rivestimento di prima fase	178
3.5.1.1.2 Rivestimento definitivo	180
4. VERIFICA SEZIONE TIPO - COPERTURA 15 < H < 25 M	189
4.1 SEZIONE TIPO BOV	
4.1.1 Fasi di calcolo	
4.1.1.1 Verifiche statiche dei rivestimenti	195
4.1.1.1.1 Rivestimento di prima fase	195
4.1.1.1.2 Rivestimento definitivo	197
4.2 SEZIONE TIPO B2 – PARAMETRI DI RESISTENZA MINIMI	203
4.2.1 Fasi di calcolo	
4.2.1.1 Verifiche statiche dei rivestimenti	209
4.2.1.1.1 Rivestimento di prima fase	
	3

4.2.1.1.2	2 Rivestimento definitivo	211
4.3 SEZIONE	TIPO B2 – PARAMETRI DI RESISTENZA MASSIMI	219
4.3.1 Fasi c	di calcolo	224
4.3.1.1 \	/erifiche statiche dei rivestimenti	225
4.3.1.1.1	1 Rivestimento di prima fase	225
4.3.1.1.2	2 Rivestimento definitivo	227
5. VERIFICA S	SEZIONE TIPO - COPERTURA H < 15 M	235
5. VERIFICA S 5.1 SEZIONE	SEZIONE TIPO - COPERTURA H < 15 M	 235
5. VERIFICA S 5.1 SEZIONE 5.1.1 Fasi c	SEZIONE TIPO - COPERTURA H < 15 M TIPO B2V di calcolo	 235 235 240
5. VERIFICA S 5.1 SEZIONE 5.1.1 Fasi c 5.1.1.1 \	SEZIONE TIPO - COPERTURA H < 15 M TIPO B2V <i>di calcolo</i> /erifiche statiche dei rivestimenti	 235 235 240 241
5. VERIFICA S 5.1 SEZIONE 5.1.1 Fasi o 5.1.1.1 V 5.1.1.1	SEZIONE TIPO - COPERTURA H < 15 M TIPO B2V <i>di calcolo</i> /erifiche statiche dei rivestimenti 1 Rivestimento di prima fase	 235 235 240 241 241

1. VERIFICA SEZIONE TIPO - COPERTURA 80 < H < 110 M

Le formazioni incluse nella tratta di copertura tra 50 e 110 m sono:

- Formazione di Camerino (Associazione Pelitica Arenacea);
- Formazione di Camerino (Associazione Arenaceo Peltica);

1.1 Sezione tipo B2* – Parametri di resistenza massimi

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Fascia di	Devementes		Sezione tipo B2*		
[m]	Parametro	U.IVI.	Intervallo di variabilità	Parametri di progetto	
	c'	[kPa]	220 – 250	250	
<u> 90 - 7 - 110</u>	arphi'	[°]	25 – 30	30	
80 < 2 < 110	E	[MPa]	300	300	
	γ	[kN/mc]	23	23	

Nel seguito si riportano le verifiche effettuate per la sezione tipo B2*.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una condizione di copertura pari a 95 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton Rck ≥ 30 MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

Step	Fase esecutiva simulata	Distanza dal fronte [m]	Fattore di rilascio	Spostamento Parete Cavo dir oriz [cm]	Spostamento Piedritto Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	71,0%	3,3	-
Step 3	Scavo	1	75,0%	0,56*	-
Step 4	Posa in opera centina (SB non reagente)	1	75,0%	0,56*	0
Step 5	Avanzamento scavo (E SB = 10 Gpa)	7	90,7%	1,63*	1,07
Step 6	Avanzamento 2 D (E SB = 31 Gpa)	29	96,5%	2,24*	1,68
Step 7	Getto arco rovescio e muretta a 2D e avanzamento fino a deformazioni esaurite	-	100,0%	-	1,68
Step 8	Getto Calotta	-	100,0%	-	1,68
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	-	1,68

Sezione tipo B2* - Riepilogo della fasi di calcolo e degli spostamenti orizzontali a quota Piano dei centri

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

1.1.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase, generalmente indicata come fase di taratura del modello, consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo. Il contributo statico fornito dalla porzione di ammasso oltre il fronte non ancora scavato viene simulato rilasciando il 71% delle forze di scavo. Tale valore è stato tarato sulla base delle indicazioni fornite dalle curve caratteristiche che, per il caso in analisi, indica una preconvergenza massima di circa 3.30 cm così come evidente dalla curva caratteristica riportata sotto.

L'output del programma di calcolo FLAC riporta lo spostamento del cavo in corrispondenza di questo step di calcolo sul piedritto sx del modello.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.00 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.750)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 200 / 100) con spritz beton (30 cm) non reagente (fattore di rilascio pari a 0.750)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.907)

<u>Fase 6</u> Viene simulato la completa maturazione dello Spritz beton e l'avanzamento dello scavo fino a 2 D (fattore di rilascio = 0.965).

<u>Fase 7</u> Viene simulato il getto delle murette e dell'arco rovescio e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1.00)

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

1.1.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose. Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli

elementi resistenti.

1.1.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 200 / 100 - SB = 30 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

1.1.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 60 cm

Verifica SLU

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	717	95
Muretta dx	711	99
Mezzeria Arco rovescio	479	-74

Verifica nei confronti dell'apertura delle fessure

Nel seguito è riportata la scheda relativa alla verifica a fessurazione effettuata per la sezione di mezzeria dell'arco rovescio.

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. UNI	EN 1992-1-1	<u>: 2005 Par.7.3</u>
Geometria della sezione		
Altezza della sezione	h	600 [mm]
Larghezza della sezione	b	1000 [mm]
Altezza utile della sezione Distanza tra asse armatura e lembo compresso	d d'	545 [mm]
Ricoprimento dell'armatura	c	55 [mm]
Armatura tesa ordinaria	-	[]
Numero di ferri tesi presenti nella sezione	n _{f.1}	<mark>4</mark> [-]
Diametro dei ferri tesi presenti nella sezione	фғ.1	<mark>1</mark> [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	3 [mm ²]
Armatura tesa di infittimento		
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	фғ.2	0 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm ²]
	·	
Caratteristiche dei materiali Registerza geretteristige gilindrige del gelegetruzzo	¢	22 [MDo]
	I _{Ck}	32 [MPa]
Resistenza a trazione media dei calcestruzzo	I _{ctm}	3,0 [MPa]
Modulo di elasticita del calcestruzzo	Ecm	33346 [MPa]
Resistenza a snervamento dell'acciaio	T _{y k}	
Modulo di elasticita dell'acciaio	Es	200000 [MPa]
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	σs	<mark>8,18</mark> [MPa]
Asse neutro della sezione	х	436,5 [mm]
Tipo e durata dei carichi applicati		Lunga 🔻
Coefficiente di omogeneizzazione	αe	6,00 [-]
Area totale delle armature presenti nella zona tesa	As	3 [mm ²]
Area efficace tesa di calcestruzzo	A _{c eff 1}	137500 [mm ²]
	A	54500 [mm ²]
	A C,el1.2	200000 [mm ²]
	A _{c,eff.3}	
	A _{c,eff.min}	54500 [mm²]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	On eff	0.00006 [-]
Resistenza efficace media del calcestruzzo	fot off	3.0 [MPa]
Fattore di durata del carico	k.	0.4 [-]
Differenza tra la deformazione nell'acciaio e nel cls		0.000025 [-]
	[csm_ccm]min	0,000020 []
	[Esm=Ecm]calc.	-0, 104909 [-] 0.000025 [-]
	Lean com	
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	S	250 [mm]
	 ¢eq	1,00 [mm]
Spaziatura massima di inferimento	S _{max,rif}	277,5 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	к ₁	0,800 [-]
	k ₂	0,500 [-]
	k ₃	3,400 [-]
	k ₄	0,425 [-]
Distanza massima tra le fessure	S _{r,max.1}	3136 [mm]
	S _{r,max.2}	213 [mm]
	S _{r,max}	3136 [mm]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{k.lim}	0,20 [mm]
Ampiezza delle fessure (di calcolo)	W _k	0,08 [mm]

Calotta – H = 60 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	2902	25
Rene dx	2886	22
Chiave	2395	-61

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

2. VERIFICA SEZIONE TIPO - COPERTURA 50 < H < 80 M

Le formazioni incluse nella tratta di copertura tra 50 e 80 m sono:

- Formazione di Camerino (Associazione Pelitica Arenacea);
- Formazione di Camerino (Associazione Arenaceo Pelitica);
- Formazione dello Schlier.

2.1 Sezione tipo B2 – Parametri di resistenza minimi

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Fascia di	Devementes		Sezione	tipo B2
[m]	Parametro	0.111.	Intervallo di variabilità	Parametri di progetto
c' [k		[kPa]	220 – 250	220
E0 < 7 < 90	arphi'	[°]	25 – 30	25
50 < 2 < 60	E	[MPa]	300	300
	γ	[kN/mc]	23	23

Nel seguito si riportano le verifiche effettuate per la sezione tipo B2.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una condizione di copertura pari a 80 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton $Rck \ge 30$ MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \geq 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

			ep e e ta ment		
Step	Fase esecutiva simulata	Distanza dal fronte [m]	Fattore di rilascio	Spostamento Parete Cavo dir oriz [cm]	Spostamento Piedritto Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	69,0%	3,39	-
Step 3	Scavo	1	73,3%	0,7*	-
Step 4	Posa in opera centina (SB non reagente)	1	73,3%	0,7*	0
Step 5	Avanzamento scavo (E SB = 10 Gpa)	7	90,1%	2,05*	1,36
Step 6	Avanzamento 2 D (E SB = 31 Gpa)	29	96,3%	2,87*	2,17
Step 7	Getto arco rovescio e muretta a 2D e avanzamento fino a deformazioni esaurite	-	100,0%	-	2,17
Step 8	Getto Calotta	-	100,0%	-	2,17
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	-	2,17

Sezione tipo B2	- Riepiloao della	fasi di calcolo e de	ali spostamenti orizzontali a	auota Piano dei centri
occione upo be	incpilogo acita j	1051 al calcolo c ac	gii spostanichti onizzontan a	14014 - 14110 401 001111

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

2.1.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase, generalmente indicata come fase di taratura del modello, consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo. Il contributo statico fornito dalla porzione di ammasso oltre il fronte non ancora scavato viene simulato rilasciando il 69% delle forze di scavo. Tale valore è stato tarato sulla base delle indicazioni fornite dalle curve caratteristiche che, per il caso in analisi, indica una preconvergenza massima di circa 3.39 cm così come evidente dalla curva caratteristica riportata sotto.

L'output del programma di calcolo FLAC riporta lo spostamento del cavo in corrispondenza di questo step di calcolo sul piedritto sx del modello.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.00 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.733)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 200 / 100) con spritz beton (30 cm) non reagente (fattore di rilascio pari a 0.733)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.901)

<u>Fase 6</u> Viene simulato la completa maturazione dello Spritz beton e l'avanzamento dello scavo fino a 2 D (fattore di rilascio = 0.963).

<u>Fase 7</u> Viene simulato il getto delle murette e dell'arco rovescio e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1.00)

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

2.1.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose.

Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli elementi resistenti.

2.1.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 200 / 100 – SB = 30 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

2.1.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 60 cm

Verifica SLU

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	783	84
Muretta dx	780	83
Mezzeria Arco rovescio	552	-60

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.
Calotta – H = 60 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	3044	16
Rene dx	3037	14
Chiave	2720	-72

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

2.2 Sezione tipo B2 – Parametri di resistenza massimi

Fascia di Profondità Darametro			Sezione tipo B2		
[m]	Parametro	0.111.	Intervallo di variabilità	Parametri di progetto	
	c'	[kPa]	220 – 250	250	
50 < 7 < 80	arphi'	[°]	25 – 30	30	
50 < 2 < 80	E	[MPa]	300	300	
	γ	[kN/mc]	23	23	

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Nel seguito si riportano le verifiche effettuate per la sezione tipo B2.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una condizione di copertura pari a 80 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton $Rck \ge 30$ MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \geq 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

Step	Fase esecutiva simulata	Distanza dal fronte [m]	Fattore di rilascio	Spostamento Parete Cavo dir oriz [cm]	Spostamento Piedritto Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	75,5%	2,89	-
Step 3	Scavo	1	78,9%	0,42*	-
Step 4	Posa in opera centina (SB non reagente)	1	78,9%	0,42*	0
Step 5	Avanzamento scavo (E SB = 10 Gpa)	7	92,2%	1,17*	0,76
Step 6	Avanzamento 2 D (E SB = 31 Gpa)	29	97,1%	1,54*	1,12
Step 7	Getto arco rovescio e muretta a 2D e avanzamento fino a deformazioni esaurite	-	100,0%	-	1,12
Step 8	Getto Calotta	-	100,0%	-	1,12
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	-	1,12

Sezione tipo B2 - parametri res max - Riepilogo della fasi di calcolo e degli spostamenti orizzontali a quota Piano dei centri

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

2.2.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase, generalmente indicata come fase di taratura del modello, consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo. Il contributo statico fornito dalla porzione di ammasso oltre il fronte non ancora scavato viene simulato rilasciando il 75.5% delle forze di scavo. Tale valore è stato tarato sulla base delle indicazioni fornite dalle curve caratteristiche che, per il caso in analisi, indica una preconvergenza massima di circa 2.89 cm così come evidente dalla curva caratteristica riportata sotto.

L'output del programma di calcolo FLAC riporta lo spostamento del cavo in corrispondenza di questo step di calcolo sul piedritto sx del modello.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.00 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.789)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 180 / 100) con spritz beton (25 cm) non reagente (fattore di rilascio pari a 0.789)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.922)

<u>Fase 6</u> Viene simulato la completa maturazione dello Spritz beton e l'avanzamento dello scavo fino a 2 D (fattore di rilascio = 0.971).

<u>Fase 7</u> Viene simulato il getto delle murette e dell'arco rovescio e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1.00)

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

2.2.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose. Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli elementi resistenti.

2.2.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 180 / 100 – SB = 20 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

2.2.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 60 cm

Verifica SLU

Momento flettente

48

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	477	74
Muretta dx	475	73
Mezzeria Arco rovescio	310	-54

Verifica nei confronti dell'apertura delle fessure

Nel seguito è riportata la scheda relativa alla verifica a fessurazione effettuata per la sezione della muretta destra dell'arco rovescio.

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. UN	II EN 1992-1-1:2	2005 Par.7.3
Coomotria della coziona		
Altezza della sezione	h	[mm] 000
Larghezza della sezione	b	1000 [mm]
Altezza utile della sezione	d	545 [mm]
Distanza tra asse armatura e lembo compresso	d'	545 [mm]
Ricoprimento dell'armatura	с	55 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n _{f.1}	<mark>4</mark> [-]
Diametro dei ferri tesi presenti nella sezione	ф _{f.1}	1 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	3 [mm²]
Armatura tesa di infittimento		
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei rem tesi presenti nella sezione	Φ _{f.2}	
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm²]
Caratteristiche dei materiali		
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	35 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3,2 [MPa]
Modulo di elasticità del calcestruzzo	E _{cm}	34077 [MPa]
Resistenza a snervamento dell'acciaio	f _{vk}	450 [MPa]
Modulo di elasticità dell'acciaio	E	200000 [MPa]
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	G	10.94 [MPa]
Asse neutro della sezione	X	377,4 [mm]
The end water deliver internet in the		
lipo e durata dei carichi applicati		
	α _e	5,07 [-]
Area totale delle armature presenti nella zona tesa	A _s	3 [mm²]
Area efficace tesa di calcestruzzo	A _{c,eff.1}	137500 [mm²]
	A _{c,eff.2}	74200 [mm ²]
	$A_{c,eff.3}$	300000 [mm²]
	$A_{c,eff,min}$	74200 [mm ²]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	0 "	0.00004 [-]
Resistenza efficace media del calcestruzzo	Pp,eff f	3.2 [MPa]
Fattore di durata del carico	k,	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	[ɛ _{sm} -ɛ _{cm}] _{min}	0,000033 [-]
	[Esm-Ecm]calc	-0,151613 [-]
	[ɛ _{sm} -ɛ _{cm}]	0,000033 [-]
Spaziatura tra la barra (aglaglata tra i barigantri dai farri)	0	250 [mm]
opaziatura tra le barre (calcolata tra i baricentri del terri) Diametro equivalente delle barre	5	200 [[1117] 1 00 [mm]
Spaziatura massima di riferimento	Φ _{eq}	277.5 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	S _{max,rif}	0.800 [-1
	k k	0.500 [-]
	k.	3,400 [-]
	k ₄	0,425 [-]
Distanza massima tra le fessure	S _{rmav 1}	4202 [mm]
	S _{Lmax2}	289 [mm]
	S _{r,max}	4202 [mm]
A maiazza limite delle fessure per la combinazione di calcole pertinente	W	0.20
Ampiezza milie delle ressure per la complitazione di calcolo pertinente	W.	0.14 [mm]
	•• k	0,14

Calotta – H = 60 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	2015	16
Rene dx	2019	16
Chiave	1683	-42

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

2.3 Sezione tipo B0 – Parametri di resistenza massimi

Fascia di Profondità Darametro			Sezione tipo B2		
[m]	Parametro	0.111.	Intervallo di variabilità	Parametri di progetto	
	c'	[kPa]	220 – 250	250	
50 < 7 < 80	arphi'	[°]	25 – 30	30	
50 < 2 < 80	E	[MPa]	300	300	
	γ	[kN/mc]	23	23	

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Nel seguito si riportano le verifiche effettuate per la sezione tipo B0.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una condizione di copertura pari a 80 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton $Rck \ge 30$ MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \geq 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

57

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

Step	Fase esecutiva simulata	Distanza dal fronte [m]	Fattore di rilascio	Spostamento Parete Cavo dir oriz [cm]	Spostamento Piedritto Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	78,5%	3,29	-
Step 3	Scavo	1	81,4%	0,37*	-
Step 4	Posa in opera centina (SB non reagente)	1	81,4%	0,37*	0
Step 5	Avanzamento scavo (E SB = 10 Gpa)	7	93,1%	1,09*	0,72
Step 6	Avanzamento fino a deformazioni esaurite (E SB = 31 Gpa)	-	100,0%	1,67*	1,3
Step 7	Getto arco rovescio e muretta	-	100,0%	-	1,3
Step 8	Getto Calotta	-	100,0%	-	1,3
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	-	1,3

Sezione tipo B0 - parametri res max - Riepilogo della fasi di calcolo e degli spostamenti orizzontali a quota Piano dei centri

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

2.3.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase, generalmente indicata come fase di taratura del modello, consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo. Il contributo statico fornito dalla porzione di ammasso oltre il fronte non ancora scavato viene simulato rilasciando il 78.5% delle forze di scavo. Tale valore è stato tarato sulla base delle indicazioni fornite dalle curve caratteristiche che, per il caso in analisi, indica una preconvergenza massima di circa 3.29 cm così come evidente dalla curva caratteristica riportata sotto.

L'output del programma di calcolo FLAC riporta lo spostamento del cavo in corrispondenza di questo step di calcolo sul piedritto sx del modello.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.00 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.814)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 180 / 100) con spritz beton (20 cm) non reagente (fattore di rilascio pari a 0.814)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.931)

<u>Fase 6</u> Viene simulato la completa maturazione dello Sprtiz beton e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1.00).

Fase 7 Viene simulato il getto delle murette e dell'arco rovescio e l'avanzamento dello scavo

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

2.3.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose. Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli elementi resistenti.

2.3.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 180 / 100 - SB = 20 cm).

63

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

2.3.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 60 cm

Verifica SLU

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	261	50
Muretta dx	260	50
Mezzeria Arco rovescio	203	-9

Verifica nei confronti dell'apertura delle fessure

Nel seguito è riportata la scheda relativa alla verifica a fessurazione effettuata per la sezione della muretta destra dell'arco rovescio.

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. UN	II EN 1992-1-1	<u>: 2005 Par.7.3</u>
Geometria della sezione		
Altezza della sezione	h	600 [mm]
Larghezza della sezione	b	1000 [mm]
Distanza tra asse armatura e lembo compresso	d'	545 [mm]
Ricoprimento dell'armatura	c	47 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n _{f.1}	4 [-]
Diametro dei ferri tesi presenti nella sezione	ф г .1	1 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	3 [mm ²]
Armatura tesa di infittimento		
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	ф г .2	0 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm ²]
Carattaristiska dai matariali		
Caratteristiche del materian Resistenza caratteristica cilindrica dal calcestruzzo	f.	35 IMPal
Resistenza a trazione media del calcestruzzo	f.	3.2 [MPa]
	rctm	34077 [MPa]
Posistonza a sponomonto dell'acciaio	L cm f	
	Ls	
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	σs	16,58 [MPa]
Asse neutro della sezione	x	323,1 [mm]
Tipo e durata dei carichi applicati		Lunga 💌
Coefficiente di omogeneizzazione	αe	5,87 [-]
Area totale delle armature presenti nella zona tesa	As	3 [mm ²]
Area efficace tesa di calcestruzzo	A _{c,eff.1}	137500 [mm ²]
	Ac eff 2	- 92300 [mm ²]
	Δ	300000 [mm ²]
	Ac,err.3	
	A _{c,eff.min}	92300 [mm]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	ρ _{p.eff}	0,00003 [-]
Resistenza efficace media del calcestruzzo	f _{ct.eff}	3,2 [MPa]
Fattore di durata del carico	k _t	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	[Fam-Fam]min	0.000050 [-]
		-0 188572 [-]
	[Esm=Ecm]caic.	0,000050 [-]
Spezieture tra le barre (calcolate tra i baricentri dei farri)		250 [mm]
Diametro equivalente delle barre	5	<u> </u>
Snaziatura massima di rifarimanto	yeq S	237 5 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	S _{max,rif}	0.800[-1
	к ₁	0,800 [-]
	к ₂	2,400[1]
	к ₃	0.425 []
Dictanza massima tra la fassura	r4	<u>5154 [mm]</u>
	⊃r,max.1	260 [mm]
	Sr,max.2	360 [mm]
	⊶r,max	200 [iiiii]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{k.lim}	0,20 [mm]
Ampiezza delle fessure (di calcolo)	W _k	0,02 [mm]

Calotta – H = 60 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	1783	18
Rene dx	1783	18
Chiave	1465	-33

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.
2.4 Sezione tipo Piazzola – Parametri di resistenza minimi

Fascia di	Parametro	U.M.	Sezione tipo Piazzola		
[m]			Intervallo di variabilità	Parametri di progetto	
50 < z < 80	c'	[kPa]	220 – 250	220	
	arphi'	[°]	25 – 30	25	
	E	[MPa]	300	300	
	γ	[kN/mc]	23	23	

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Nel seguito si riportano le verifiche effettuate per la sezione tipo Piazzola.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una condizione di copertura pari a 80 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton $Rck \ge 30$ MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

	Sezione tipo Plazzola - Riephogo dena Jusi di calcolo e degli spostamenti orizzontan a quota Plano dei centri				
Sten	Fase esecutiva simulata	Distanza dal	Fattore	Spostamento Parete	Spostamento Piedritto
Step		fronte [m]	di rilascio	Cavo dir oriz [cm]	Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	66,0%	3,73	-
Step 3	Scavo	1,1	70,0%	0,73*	-
Stop 4	Posa in opera centina (SB non	1 1	70.0%	0 72*	0
Step 4	reagente)	1,1	70,0%	0,75	U
Step 5	Avanzamento scavo (E SB = 10 Gpa)	9,13	89,1%	2,1*	1,37
Step 6	Avanzamento 2 D (E SB = 31 Gpa)	36,52	95,9%	2,93*	2,2
	Getto arco rovescio e muretta a 2D e				
Step 7	avanzamento fino a deformazioni	-	100,0%	-	2,2
	esaurite				
Step 8	Getto Calotta	-	100,0%	-	2,2
	Decadimento dei parametri di				
Step 9	resistenza del rivestimento	-	100,0%	-	2,2
	provvisorio				

Soziona tino Diazzola – Pionilago della fasi di calcolo o degli spostamenti orizzontali a quota Diano dei centri

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

2.4.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase, generalmente indicata come fase di taratura del modello, consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo. Il contributo statico fornito dalla porzione di ammasso oltre il fronte non ancora scavato viene simulato rilasciando il 66% delle forze di scavo. Tale valore è stato tarato sulla base delle indicazioni fornite dalle curve caratteristiche che, per il caso in analisi, indica una preconvergenza massima di circa 3.73 cm così come evidente dalla curva caratteristica riportata sotto.

L'output del programma di calcolo FLAC riporta lo spostamento del cavo in corrispondenza di questo step di calcolo sul piedritto sx del modello.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.10 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.700)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 220 / 100) con spritz beton (25 cm) non reagente (fattore di rilascio pari a 0.700)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.891)

<u>Fase 6</u> Viene simulato la completa maturazione dello Spritz beton e l'avanzamento dello scavo fino a 2 D (fattore di rilascio = 0.959).

<u>Fase 7</u> Viene simulato il getto delle murette e dell'arco rovescio e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1.00)

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

2.4.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose. Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli elementi resistenti.

2.4.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 220 / 100 - SB = 25 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

🎇 Verifica C.A. S.L.U File:		
File Materiali Opzioni Visualizza Progette	Sez. Rett. Sismica Normativa: NTC 2008	?
🗋 🚅 🖥 🎒		
Titolo :	N* strati barre 2 Zoom	 Tipo Sezione Rettan.re Trapezi a T Circolare
N* b [cm] h [cm]	N* As [cm ²] d [cm]	O Rettangoli O Coord.
1 100 25	1 23,912 1	
	2 23,312 23	
Sollecitazioni	P.to applicazione N	N
S.L.U. 🗲 Metodo n	⊙ Centro O Baricentro cls	
N Ed 1683 kN M xEd -42 kNm M yEd 0 0	Coord.[cm] xN 0 yN 0 Tipo rottura Lato calcestruzzo - Acciaio snervatc	- Metodo di calcolo S.L.U.+ S.L.U
Materiali	M _{xBd} 178,5 kN m	O Metodo n
Fe510 C25/30		- Tipo flessione ③ Retta
E _{su} 67,5 ‰ E _c 2 2 ‰ ^f vd 338,1 N/mm² E _{cu} 3,5	σ _c -14,17 N/mm ²	N* rett. 100
E _s 200.000 N/mm ² ^f cd 14,17	٤ 3,5 ‰	Calcola MRd Dominio M-N
E _s /E _c 15 f _{cc} / f _{cd} 0,8 ?	ε _s 46,95 ‰ L	0 cm Col. modello
ε _{syd} 1,691 % σ _{c,adm} 9,75	d 23 cm	
σ _{s,adm} 240 N/mm ² τ _{co} 0,6	x 1,596 x/d 0,06937	— p
τ _{c1} 1,829	δ 0,7	Precompresso

2.4.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 80 cm

Verifica SLU

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	1193	190
Muretta dx	1197	192
Mezzeria Arco rovescio	698	-73

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

Calotta – H = 70 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	4006	59
Rene dx	4043	62
Chiave	3453	55

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

2.5 Sezione tipo Piazzola B0 – Parametri di resistenza massimi

Fascia di	Parametro	U.M.	Sezione tipo Piazzola B0		
[m]			Intervallo di variabilità	Parametri di progetto	
50 < z < 80	c'	[kPa]	220 – 250	250	
	arphi'	[°]	25 – 30	30	
	E	[MPa]	300	300	
	γ	[kN/mc]	23	23	

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Nel seguito si riportano le verifiche effettuate per la sezione tipo Piazzola B0 con parametri di resistenza pari ai massimi tra quelli individuati dal range di variabilità.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una condizione di copertura pari a 80 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton $Rck \ge 30$ MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \geq 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

Step	Fase esecutiva simulata	Distanza dal fronte [m]	Fattore di rilascio	Spostamento Parete Cavo dir oriz [cm]	Spostamento Piedritto Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	77,0%	3,78	-
Step 3	Scavo	1,1	79,7%	0,43*	-
Step 4	Posa in opera centina (SB non reagente)	1,1	79,7%	0,43*	0
Step 5	Avanzamento scavo (E SB = 10 Gpa)	9,13	92,7%	1,03*	0,6
Step 6	Avanzamento fino ad esaurimento deformazioni (E SB = 31 Gpa)	-	100,0%	1,63*	1,2
Step 7	Getto arco rovescio e muretta	-	100,0%	-	1,2
Step 8	Getto Calotta	-	100,0%	-	1,2
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	_	1,2

Sezione tipo Piazzola B0 - Riepilogo della fasi di calcolo e degli spostamenti orizzontali a quota Piano dei centri

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

2.5.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase, generalmente indicata come fase di taratura del modello, consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo. Il contributo statico fornito dalla porzione di ammasso oltre il fronte non ancora scavato viene simulato rilasciando il 77% delle forze di scavo. Tale valore è stato tarato sulla base delle indicazioni fornite dalle curve caratteristiche che, per il caso in analisi, indica una preconvergenza massima di circa 3.78 cm così come evidente dalla curva caratteristica riportata sotto.

L'output del programma di calcolo FLAC riporta lo spostamento del cavo in corrispondenza di questo step di calcolo sul piedritto sx del modello.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.10 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.797)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 220 / 100) con spritz beton (25 cm) non reagente (fattore di rilascio pari a 0.797)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.927)

<u>Fase 6</u> Viene simulato la completa maturazione dello Spritz beton e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1).

Fase 7 Viene simulato il getto delle murette e dell'arco rovescio e l'avanzamento dello scavo

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

2.5.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose.

Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli elementi resistenti.

2.5.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 220 / 100 – SB = 25 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

Verifica C.A. S.L.U File:		
File Materiali Opzioni Visualizza Progetto Sez.	Rett. Sismica Normativa: NTC 2008	?
🗋 😅 🔚 🎒		
Titolo :	N* strati barre 2 Zoom	O Rettan.re O Trapezi O a T O Circolare
N* b [cm] h [cm] N 1 100 25 1	* As [cm²] d [cm] 1 23,912 1 2 23,912 23	O Rettangoli O Coord.
Sollecitazioni P.I. S.L.U. ▲ Metodo n ● N Ed ● -42 kNm M rc d ●	to applicazione N Centro O Baricentro cls Coord.[cm] xN 0 yN 0 30 rottura to calcestruzzo - Acciaio snervatc	Metodo di calcolo
Materiali Fe510 C25/30 Esti 67.5 %. Er2 2	4 _{xRd} 178,5 kN m	O S.L.U.+ O S.L.U O Metodo n Tipo flessione O Retta O Deviata
f _{yd} 338,1 N/mm ² ε _{cu} 3,5 E _s 200.000 N/mm ² f _{cd} 14,17	σ _c - <u>14,17</u> w/mm	N* rett. 100 alcola MRd Dominio M-N
E _s /E _c 15 f _{cc} / f _{cd} 0.8 ? E _{syd} 1.691 ‰ G _{c,adm} 9.75	c 2,3 ,∞ ε _s 46,95 ‰ L _o d 23 cm	0 cm Col. modello
$ \begin{array}{c c} \sigma_{s,adm} & \textbf{240} & \text{N/mm}^2 & \tau_{co} & \textbf{0,6} \\ & & \tau_{c1} & \textbf{1,829} \end{array}, \\ \end{array} , $	x 1,596 x/d 0,06937 ô 0,7	Precompresso

2.5.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 80 cm

Verifica SLU

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	383	100
Muretta dx	381	102
Mezzeria Arco rovescio	265	-21

Verifica nei confronti dell'apertura delle fessure

Nel seguito è riportata la scheda relativa alla verifica a fessurazione effettuata per la sezione della muretta destra dell'arco rovescio.

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. UN	I EN 1992-1-1:	2005 Par.7.3
Coomotria della coziona	-	
Altezza della sezione	h	800 [mm]
Larohezza della sezione	b	1000 [mm]
Altezza utile della sezione	d	745 [mm]
Distanza tra asse armatura e lembo compresso	d'	745 [mm]
Ricoprimento dell'armatura	С	47 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n _{f.1}	<mark>4</mark> [-]
Diametro dei ferri tesi presenti nella sezione	ф _{f.1}	1 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	3 [mm²]
Armatura tesa di infittimento		
Numero di terri tesi presenti nella sezione	n _{f.2}	[-] 0 [mm]
	Φ <u>f.2</u>	
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm²]
Caratteristiche dei materiali]
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	35 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3,2 [MPa]
Modulo di elasticità del calcestruzzo	Ecm	34077 [MPa]
Resistenza a snervamento dell'acciaio	f _{yk}	450 [MPa]
Modulo di elasticità dell'acciaio	Es	200000 [MPa]
DETERMINAZIONE DELL'AMPIEZZA DELLE EESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	G	25.63 [MPa]
Asse neutro della sezione	X	36.69 [mm]
lipo e durata dei carichi applicati		Lunga
	α _e	5,87 [-]
Area totale delle armature presenti nella zona tesa	A _s	3 [mm²]
Area efficace tesa di calcestruzzo	A _{c,eff.1}	137500 [mm²]
	A _{c eff 2}	254437 [mm ²]
	A	400000 [mm ²]
	C,ett.3	100000 [mm]
	A _{c,eff.min}	137500 [mm²]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	r _{n off}	2,285E-05 [-]
Resistenza efficace media del calcestruzzo	f ct eff	3,2099624 [MPa]
Fattore di durata del carico	k,	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	[eE_m]_	7,689E-05 [-]
		-0.2808043 [-]
	[e _{sm} -ε _{cm}] _{calc}	0,2000943 [-]
	[€ _{sm} ⁼€ _{cm}]	0,000077 [-]
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	S	250 [mm]
Diametro equivalente delle barre	f	1 [mm]
Spaziatura massima di riferimento	eq S _{max rif}	237,5 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k ₁	0,800 [-]
	k ₂	0,500 [-]
	k ₃	<mark>3,400</mark> [-]
	k ₄	0,425 [-]
Distanza massima tra le fessure	S _{r,max.1}	7600,2928 [mm]
	S _{r,max.2}	992,303 [mm]
	S _{r,max}	992 [mm]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	Wklim	0,20 [mm]
Ampiezza delle fessure (di calcolo)	W	0,08 [mm]
	n	

Calotta – H = 70 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	2412	42
Rene dx	2433	45
Chiave	1952	30

🥂 Verifica C.A. S.L.U File: Cal_70_rck30	_ 🗆 X
File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008	?
Titolo :	Tipo Sezione O Rettan.re O Trapezi O a T O Circolare
N* b [cm] h [cm] 1 100 70	O Rettangoli O Coord.
Sollecitazioni S.L.U. ← Metodo n N d 1 1952 kN H d 0 20 kN	
	- Metodo di calcolo O S.L.U.+ O S.L.U O Metodo n
B450C C25/30 ε _{su} 67,5 % ε _{c2} % f _{yd} 391,3 N/mm ² ε _{cu} 3,5	
E _s 200.000 N/mm ² ^f cd 14,17 E _s /E _c 15 fcc / fcd 0.8 ? ε _{ci} ‰	Verifica N* iterazioni: 0
σ _{s,adm} 255 N/mm² τ _{co} 0,6 τ _{c1} 1.829 1.829 1.829	Precompresso

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

3. VERIFICA SEZIONE TIPO - COPERTURA 25 < H < 50 M

Le formazioni incluse nella tratta di copertura tra 25 e 50 m sono:

- Formazione di Camerino (Associazione Pelitica Arenacea)
- Formazione dello Schlier

3.1 Sezione tipo B0 – Parametri di resistenza minimi

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Fascia di Profondità [m]	Parametro	U.M.	Sezione tipo B0	
			Intervallo di variabilità	Parametri di progetto
25 < z < 50	c'	[kPa]	220 – 250	220
	arphi'	[°]	25 – 30	25
	E	[MPa]	200	200
	γ	[kN/mc]	23	23

Nel seguito si riportano le verifiche effettuate per la sezione tipo B0.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una copertura pari a 50 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton Rck \geq 30 MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \geq 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

Step	Fase esecutiva simulata	Distanza dal fronte [m]	Fattore di rilascio	Spostamento Parete Cavo dir oriz [cm]	Spostamento Piedritto Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	71,0%	2,67	-
Step 3	Scavo	1	75,0%	0,48*	-
Step 4	Posa in opera centina (SB non reagente)	1	75,0%	0,48*	0
Step 5	Avanzamento scavo (E SB = 10 Gpa)	7	90,7%	1,52*	1,04
Step 6	Avanzamento fino a deformazioni esaurite (E SB = 31 Gpa)	-	100,0%	2,44*	1,96
Step 7	Getto arco rovescio e muretta	-	100,0%	-	1,96
Step 8	Getto Calotta	-	100,0%	-	1,96
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	-	1,96

Sezione tipo BO - Riepilogo della fasi di calcolo e degli spostamenti orizzontali a quota Piano dei centri

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

3.1.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase, generalmente indicata come fase di taratura del modello, consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo. Il contributo statico fornito dalla porzione di ammasso oltre il fronte non ancora scavato viene simulato rilasciando il 71% delle forze di scavo. Tale valore è stato tarato sulla base delle indicazioni fornite dalle curve caratteristiche che, per il caso in analisi, indica una preconvergenza massima di circa 2.67 cm così come evidente dalla curva caratteristica riportata sotto.

L'output del programma di calcolo FLAC riporta lo spostamento del cavo in corrispondenza di questo step di calcolo sul piedritto sx del modello.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.00 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.750)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 200 / 100) con sprtiz beton (25 cm) non reagente (fattore di rilascio pari a 0.750)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.907)

<u>Fase 6</u> Viene simulato la completa maturazione dello Sprtiz beton e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1.00).

Fase 7 Viene simulato il getto delle murette e dell'arco rovescio e l'avanzamento dello scavo

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

3.1.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose. Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli

elementi resistenti.

3.1.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 200 / 100 – SB = 25 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

3.1.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 60 cm

Verifica SLU

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	306	70
Muretta dx	306	70
Mezzeria Arco rovescio	242	-4

Verifica nei confronti dell'apertura delle fessure

Nel seguito è riportata la scheda relativa alla verifica a fessurazione effettuata per la sezione della muretta destra dell'arco rovescio.

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. UNI	EN 1992-1-1:	2005 Par.7.3
Coometrie delle copiene		
Alterza della sezione	h	600 [mm]
l archezza della sezione	h	
Altezza utile della sezione	d	545 [mm]
Distanza tra asse armatura e lembo compresso	d'	55 [mm]
Ricoprimento dell'armatura	c	47 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n _{f 1}	4 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.1}	1 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf 1}	3 [mm ²]
Armatura tesa di infittimento		- 1
Numero di ferri tesi presenti nella sezione	n _{f2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.2}	0 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm²]
Caratteristiche dei materiali		
Resistenza caratteristica cilindrica dal calcestruzzo	t _{ck}	35 [MPa]
Resistenza a trazione media dei calcestruzzo	ctm	3,2 [IVIPa] 24077 [MDo]
Posistenza a spervamento dell'acciaio	⊏ _{cm}	34077 [IVIPa]
Modulo di elasticità dell'acciaio	E F	200000 [MPa]
	L _s	
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	σς	66,58 [MPa]
Asse neutro della sezione	X	213,7 [mm]
Tipo e durata dei carichi applicati		Lunga 🔻
Coefficiente di omogeneizzazione	a	5.87 [-]
	α _e ∧	0,07 [] 2 [mm ²]
Area totale delle armature presenti nella zona tesa	∽s ·	3 [11117]
Area efficace tesa di calcestruzzo	A _{c,eff.1}	137500 [mm²]
	A _{c,eff.2}	128767 [mm²]
	A _{c,eff.3}	300000 [mm²]
	$A_{c,eff,min}$	128767 [mm²]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	0 "	0.00002 [-]
Resistenza efficace media del calcestruzzo	f ot off	3,2 [MPa]
Fattore di durata del carico	k,	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	[ɛ _{sm} -ɛ _{cm}] _{min}	0,000200 [-]
	[esm-ecm]calc.	-0,262843 [-]
	[ɛ _{sm} -ɛ _{cm}]	0,000200 [-]
Cooristuur tro la houra (calcalate tro i hours antri dai fauri)		250 [mm]
Spaziatura tra le barre (calcolata tra i bancentri dei rem)	s	250 [mm]
Spaziatura massima di riforimonto	Φ _{eq}	1,00 [IIII] 237.5 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	s _{max,rif} k	0.800[-1
	k	0.500 [-]
	k.	3 400 [-]
	k,	0,425 [-]
Distanza massima tra le fessure	S _{rmav 1}	7128 [mm]
	S _{r,max.2}	502 [mm]
	S _{r,max}	502 [mm]
A majazza limita della fongura por la combinacione di selecte porti conte	14/	0.20
Ampiezza ilmite delle ressure per la combinazione di calcolo pertinente	w _{k.lim}	0,20 [mm]
Ampiezza delle tessure (di calcolo)	w _k	0,10 [mm]

Calotta – H = 60 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	2005	-12
Rene dx	2001	-12
Chiave	1966	-21

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

3.2 Sezione tipo B0 – Parametri di resistenza massimi

Fascia di	Doromotro		Sezione tipo BO	
[m]	Parametro	U.IVI.	Intervallo di variabilità	Parametri di progetto
	c'	[kPa]	220 – 250	250
25 < 7 < 50	arphi'	[°]	25 – 30	30
23 < 2 < 30	E	[MPa]	200	200
	γ	[kN/mc]	23	23

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Nel seguito si riportano le verifiche effettuate per la sezione tipo B0.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una copertura pari a 50 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton Rck ≥ 30 MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \geq 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

Step	Fase esecutiva simulata	Distanza dal fronte [m]	Fattore di rilascio	Spostamento Parete Cavo dir oriz [cm]	Spostamento Piedritto Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	75,5%	2,26	-
Step 3	Scavo	1	78,9%	0,27*	-
Step 4	Posa in opera centina (SB non reagente)	1	78,9%	0,27*	0
Step 5	Avanzamento scavo (E SB = 10 Gpa)	7	92,2%	0,81*	0,53
Step 6	Avanzamento fino a deformazioni esaurite (E SB = 31 Gpa)	-	100,0%	1,22*	0,95
Step 7	Getto arco rovescio e muretta	-	100,0%	-	0,95
Step 8	Getto Calotta	-	100,0%	-	0,95
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	-	0,95

Sezione tipo B0 - parametri res max - Riepilogo della fasi di calcolo e degli spostamenti orizzontali a quota Piano dei centri

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

3.2.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase, generalmente indicata come fase di taratura del modello, consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo. Il contributo statico fornito dalla porzione di ammasso oltre il fronte non ancora scavato viene simulato rilasciando il 75.5% delle forze di scavo. Tale valore è stato tarato sulla base delle indicazioni fornite dalle curve caratteristiche che, per il caso in analisi, indica una preconvergenza massima di circa 2.26 cm così come evidente dalla curva caratteristica riportata sotto.

L'output del programma di calcolo FLAC riporta lo spostamento del cavo in corrispondenza di questo step di calcolo sul piedritto sx del modello.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.00 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.789)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 1800 / 100) con sprtiz beton (20 cm) non reagente (fattore di rilascio pari a 0.789)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.922)

<u>Fase 6</u> Viene simulato la completa maturazione dello Sprtiz beton e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1.00).

Fase 7 Viene simulato il getto delle murette e dell'arco rovescio e l'avanzamento dello scavo

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

3.2.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose. Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli elementi resistenti.

3.2.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 180 / 100 – SB = 20 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

3.2.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 60 cm

Verifica SLU

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	198	42
Muretta dx	198	42
Mezzeria Arco rovescio	164	-3

Verifica nei confronti dell'apertura delle fessure

Nel seguito è riportata la scheda relativa alla verifica a fessurazione effettuata per la sezione della muretta destra dell'arco rovescio.

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. UN	I EN 1992-1-1:	2005 Par.7.3
	h	600 [mm]
Allezza della sezione	h	1000 [mm]
Altezza utile della sezione	d	545 [mm]
Distanza tra asse armatura e lembo compresso	d'	55 [mm]
Ricoprimento dell'armatura	c	47 [mm]
Armatura tesa ordinaria	-	
Numero di ferri tesi presenti nella sezione	n.	4 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{F 1}	1 [mm]
Area dei ferri tesi presenti nella sezione	A	3 [mm ²]
Armatura tesa di infittimento	r st.1	• []
Numero di ferri tesi presenti nella sezione	n.	0[[-]
Diametro dei ferri tesi presenti nella sezione	н _{f.2}	
	φ <u>t.2</u>	0 [mm ²]
Area dei rerritesi presenti nella sezione	A _{sf.2}	
Caratteristiche dei materiali		
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	35 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3,2 [MPa]
Modulo di elasticità del calcestruzzo	E	34077 [MPa]
Resistenza a snervamento dell'acciaio	f	450 [MPa]
Modulo di elasticità dell'acciaio	E _s	200000 [MPa]
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
l'ensione nell'armatura tesa considerando la sezione ressurata	σ _s	24,05 [IVIPa]
Asse neutro della sezione	X	263,6 [mm]
Tipo e durata dei carichi applicati		Lunga 💌
Coefficiente di omogeneizzazione	α_{e}	5,87 [-]
Area totale delle armature presenti nella zona tesa	As	3 [mm²]
Area efficace tesa di calcestruzzo	A	- 137500 [mm²]
	¢,eii.1	140400 [mm ²]
	A _{c,eff.2}	112133 [mm+]
	A _{c,eff.3}	300000 [mm²]
	$A_{c,eff,min}$	112133 [mm²]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	$\rho_{p,eff}$	0,00003 [-]
Resistenza efficace media del calcestruzzo	T _{ct,eff}	3,2 [MPa]
Fattore di durata dei carico	ĸ	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	[ɛ _{sm} -ɛ _{cm}] _{min}	0,000072 [-]
	$[\varepsilon_{sm} - \varepsilon_{cm}]_{calc.}$	-0,229065 [-]
	$[\epsilon_{sm}-\epsilon_{cm}]$	0,000072 [-]
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	s	250 [mm]
Diametro equivalente delle barre	Ф _{еq}	1,00 [mm]
Spazialura massima uniterimento Coofficienti k por il calcolo dell'ampiezza di fossurazione	S _{max,rif}	
	K ₁	0,000 [-]
	k ₂	3 400 [-]
		0.425 [-]
Distanza massima tra le fessure	4 Srmov 1	6228 [mm]
	Sr may 2	437 [mm]
	S _{r,max}	437 [mm]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{klim}	0,20 [mm]
Ampiezza delle fessure (di calcolo)	w _k	0,03 [mm]

Calotta – H = 60 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	1308	-6
Rene dx	1313	-5
Chiave	1204	-13

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta, e del rene dx.

📉 Verifica C.A. S.L.U File: Cal_60_rck30	_ I ×
File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008	?
	- Tino Sezione
	⊙ Rettan.re O Trapezi
N* figure elementari 1 200m N* strati barre U 200m	O a T O Circolare
N* b[cm] h[cm] 1 100 60	O Rettangoli O Loord.
Sollecitazioni P.to applicazione N	
S.L.U. Ketodo n O Baricentro cls	
N Ed 1 1308 kN O Coord.[cm]	
M xEd	
M _{yEd} 0	O S.L.U.+ O S.L.U
Materiali P450C C25/20	O Metodo n
ε _{su} 67,5 ‰ ε _{c2} 2 ‰ σ -2.28 N/mm ²	
^f yd 391,3 N/mm² ² cu 3,5	
E _s 200.000 N/mm ² ¹ cd 14.17	Verifica
E_s/E_c 15 fcc / fcd 0.8 ? ε_{ci} %	N* iterazioni: 0
E _{syd} [1,957] ‰ O _{c,adm} [9,75]	
C _{s,adm} 233 N/mm ² C _{co} 0,6	
	1
7000	
Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008	X
Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008	?
Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Image: Imag	? Tipo Sezione
Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Image: Second Se	? Tipo Sezione O Rettan.re O Trapezi O a T O Circolare
Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Image: Second Se	? Tipo Sezione O Rettan.re O Trapezi O a T O Circolare O Rettangoli O Coord.
✓ Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 N* figure elementari 1 Zoom N* strati barre N* b [cm] 1 100	? Tipo Sezione O Rettan.re O Trapezi O a T O Circolare O Rettangoli O Coord.
Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Image: Second Sec	? 7 7 7 7 7 7 7 7 7 7 7 7 7
✓ Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Image: Second	? 7 7 7 7 7 7 7 7 7 7 7 7 7
Verifica CA. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Normativa: Normativa: Normativa: Normativa: <td>? Tipo Sezione O Rettan.re O Trapezi O a T O Circolare O Rettangoli O Coord.</td>	? Tipo Sezione O Rettan.re O Trapezi O a T O Circolare O Rettangoli O Coord.
✓ Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Image: Solid contraction of the state of the sta	? Tipo Sezione © Rettan.re O Trapezi O a T O Circolare O Rettangoli O Coord.
Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 N* figure elementari 1 Zoom N* strati barre N* b [cm] h [cm] 1 100 60 60 Sollecitazioni P.to applicazione N S.L.U. Metodo n N _ 1 1313	? 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Normativa: Normativa: Normativa: NTC 2008 Normativa: N	? Tipo Sezione O Rettan.re O Trapezi O a T O Circolare O Rettangoli O Coord.
Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Image: Solution of the second s	? Tipo Sezione © Rettan.re O Trapezi O a T O Circolare O Rettangoli O Coord. Metodo di calcolo O S.L.U.+ O S.L.U
Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Normativa: Normativa: NTC 2008 Normativa: Normativa: NTC 2008 Normativa: Normativa: NTC 2008 Normativa: Normativa: Normativa: Normativa: NTC 2008 Sollecitazioni Sollecitazioni Sollecitazioni Sollecitazioni Normativa: Netodo normativa: Norm	? Tipo Sezione O Rettan.re O Trapezi O a T O Circolare O Rettangoli O Coord. Metodo di calcolo O S.L.U.+ O S.L.U O Metodo n
Verifica C.A. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Sollecitazioni Sollecitazioni Sollecitazioni St.L.U. Metodo n N Ed N Ed N ged N ged Normativa: Normati	? 7 Tipo Sezione O Rettan.re O Trapezi O a T O Circolare O Rettangoli O Coord.
Verifica CA. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Normativa: NTC 2009 Normativa: NTC 2008 Normativa: NTC 2009 Normativa: Normativa: NTC 2009	? Tipo Sezione O Rettan.re O Trapezi O a T O Circolare O Rettangoli O Coord. Metodo di calcolo S.L.U.+ O S.L.U O Metodo n
✓ Verifica C.A. S.L.U File: Cal_ 60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Image: Sollecitazioni Normativa: NTC 2008 Normativa: Normativa: NTC 2008 Nateriali Opziona Normativa: Normativa: NTC 2008 Normativa: Normativa: Normativa: Normativa: Normativa: Normativa: Normativa: Solution Normativa: Normativa: Normativa: Solution Normativa: Solution Normativa: Solution Normativa: Solution Norma	? Tipo Sezione O Rettan.re O Trapezi O a T O Circolare O Rettangoli O Coord. Metodo di calcolo: O S.L.U.+ O S.L.U O Metodo n
Sollecitazioni Metodo n Pto applicazione N N trial 1313 N M teriali 0 0 Sollecitazioni 0 0 N trial 0 0 <td>2 7 7 7 7 7 7 7 7 7 7 7 7 7</td>	2 7 7 7 7 7 7 7 7 7 7 7 7 7
Sollecitazioni Metodo n Pl. to applicazione N N* b [cm] h [cm] N b [cm] b [cm] N* b [cm] h [cm] N* b [cm] h [cm] b [cm] <td< td=""><td>? Tipo Sezione O Rettan.re A T Circolare Rettangoli Coord.</td></td<>	? Tipo Sezione O Rettan.re A T Circolare Rettangoli Coord.
Verifica CA. S.L.U File: Cal_60_rck30 File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 Image: Sole citazioni Image: Sole citazioni N* figure elementari Image: Sole citazioni N* strati barre Image: Sole citazioni P.to applicazione N Sollecitazioni Image: Metodo n N* strati barre Image: Sole citazioni Image: Sole citazioni Image: Sole citazioni Sollecitazioni Image: Metodo n Image: Sole citazioni Image: Sole citazioni Image: Sole citazioni Image: Sole citazioni Sollecitazioni Image: Metodo n Image: Sole citazioni Image: Sole citazioni Image: Sole citazioni Image: Sole citazioni Sollecitazioni Image: Metodo n Image: Sole citazioni Image: Sole citazioni Image: Sole citazioni Image: Sole citazioni Sollecitazioni Image: Sole citazioni Materiali Image: Sole citazioni Image: Sole citazioni Image: Sole citazioni	? Tipo Sezione O Rettan.re O Trapezi a T O Circolare Rettangoli O Coord. Rettangoli O Coord. Metodo di calcolo O S.L.U.+ O S.L.U O Metodo n Verifica N* iterazioni:

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

3.3 Sezione tipo B2 – Parametri di resistenza minimi

Fascia di	Parametro	U.M.	Sezione tipo B2		
[m]			Intervallo di variabilità	Parametri di progetto	
	c'	[kPa]	220 – 250	220	
25 < 7 < 50	arphi'	[°]	25 – 30	25	
23 \ 2 \ 50	E	[MPa]	200	200	
	γ	[kN/mc]	23	23	

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Nel seguito si riportano le verifiche effettuate per la sezione tipo B2.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una condizione di copertura pari a 50 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton Rck ≥ 30 MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \geq 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

Step	Fase esecutiva simulata	Distanza dal fronte [m]	Fattore di rilascio	Spostamento Parete Cavo dir oriz [cm]	Spostamento Piedritto Centina dir oriz [cm]	
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-	
Step 2	Taratura	0	59,0%	2,09	-	
Step 3	Scavo	1	64,6%	0,32*	-	
Step 4	Posa in opera centina (SB non reagente)	1	64,6%	0,32*	0	
Step 5	Avanzamento scavo (E SB = 10 Gpa)	7	86,9%	1,45*	1,13	
Step 6	Avanzamento 2 D (E SB = 31 Gpa)	29	95,1%	2,09*	1,77	
Step 7	Getto arco rovescio e muretta a 2D e avanzamento fino a deformazioni esaurite	-	100,0%	-	1,77	
Step 8	Getto Calotta	-	100,0%	-	1,77	
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	-	1,77	

Contone time D2	many was waite Diam	ilana dalla fa	nataltanlaala a daulta	n a stance and a stance stall a s	www.ata Diama dai asutut
NP7100P TIDO KZ	- nar res min- kien	ποσο σεπα τα	151 AL CAICOLO P APALLSI	nostamenti orizzontali a l	111010 21000 021 C20111
occione apo be	partes min mep	nogo acina ja.	131 al calcolo c acgil 31		

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

3.3.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase, generalmente indicata come fase di taratura del modello, consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo. Il contributo statico fornito dalla porzione di ammasso oltre il fronte non ancora scavato viene simulato rilasciando il 59% delle forze di scavo. Tale valore è stato tarato sulla base delle indicazioni fornite dalle curve caratteristiche che, per il caso in analisi, indica una preconvergenza massima di circa 2.09 cm così come evidente dalla curva caratteristica riportata sotto.

L'output del programma di calcolo FLAC riporta lo spostamento del cavo in corrispondenza di questo step di calcolo sul piedritto sx del modello.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.00 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.646)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 200 / 100) con spritz beton (30 cm) non reagente (fattore di rilascio pari a 0.646)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.869)

<u>Fase 6</u> Viene simulato la completa maturazione dello Spritz beton e l'avanzamento dello scavo fino a 2 D (fattore di rilascio = 0.962).

<u>Fase 7</u> Viene simulato il getto delle murette e dell'arco rovescio e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1.00)

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.
3.3.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose.

Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli elementi resistenti.

3.3.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 200 / 100 – SB = 30 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

3.3.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 60 cm

Verifica SLU

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	619	72
Muretta dx	621	71
Mezzeria Arco rovescio	472	-72

Verifica nei confronti dell'apertura delle fessure

Nel seguito è riportata la scheda relativa alla verifica a fessurazione effettuata per la sezione di mezzeria dell'arco rovescio.

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. UN	I EN 1992-1-1:2	005 Par.7.3
Geometria della sezione		
Altezza della sezione	h	600 [mm]
Larghezza della sezione	b	1000 [mm]
Altezza utile della sezione	d	545 [mm]
Distanza tra asse armatura e lembo compresso	d'	545 [mm]
Ricoprimento dell'armatura	С	55 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n _{f.1}	<mark>4</mark> [-]
Diametro dei ferri tesi presenti nella sezione	ф _{f.1}	1 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	3 [mm²]
Armatura tesa di infittimento		
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	ф _{f.2}	<mark>0</mark> [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm²]
Caratteristiche dei materiali		
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	35 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3,2 [MPa]
Modulo di elasticità del calcestruzzo	E _{cm}	34077 [MPa]
Resistenza a snervamento dell'acciaio	f _{yk}	450 [MPa]
Modulo di elasticità dell'acciaio	Es	200000 [MPa]
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	<u>م</u>	7,78 [MPa]
Asse neutro della sezione	X	442,4 [mm]
Tina a durata dai aariahi annliaati		lungs -
Coefficiente di emogeneizzazione		5.87 [-]
	α _e	0. [mm ²]
Area totale delle armature presenti nella zona tesa	A _s	3 [mm+]
Area efficace tesa di calcestruzzo	A _{c,eff.1}	137500 [mm²]
	A _{c,eff.2}	52533 [mm²]
	A _{c eff 3}	300000 [mm ²]
	A _{e eff} min	52533 [mm ²]
	c,en.min	
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	$\rho_{p,eff}$	0,00006 [-]
Resistenza efficace media del calcestruzzo	f _{ct,eff}	3,2 [MPa]
Fattore di durata del carico	k,	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	[ɛ _{sm} -ɛ _{cm}] _{min}	0,000023 [-]
	$[\varepsilon_{sm} - \varepsilon_{cm}]_{calc.}$	-0,107352 [-]
	$[\varepsilon_{sm}-\varepsilon_{cm}]$	0,000023 [-]
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	s	250 [mm]
Diametro equivalente delle barre	<u>ф</u> .,	1.00 [mm]
Spaziatura massima di riferimento	Ψeq S	277.5 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k,	0,800 [-]
	k,	0,500 [-]
	k ₃	3,400 [-]
	k ₄	0,425 [-]
Distanza massima tra le fessure	S _{r,max.1}	3030 [mm]
	S _{r,max.2}	205 [mm]
	S _{r,max}	3030 [mm]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{klim}	0,20 [mm]
Ampiezza delle fessure (di calcolo)	w _k	0,07 [mm]

Calotta – H = 60 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	2529	-18
Rene dx	2532	-18
Chiave	2633	-16

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

3.4 Sezione tipo B2 – Parametri di resistenza massimi

Fascia di	Devementes		Sezione tipo B2		
[m]	Parametro	U.IVI.	Intervallo di variabilità	Parametri di progetto	
25 < z < 50	c'	[kPa]	220 – 250	250	
	arphi'	[°]	25 – 30	30	
	E	[MPa]	200	200	
	γ	[kN/mc]	23	23	

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Nel seguito si riportano le verifiche effettuate per la sezione tipo B2.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una condizione di copertura pari a 50 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton $Rck \ge 30$ MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

Step	Fase esecutiva simulata	Distanza dal fronte [m]	Fattore di rilascio	Spostamento Parete Cavo dir oriz [cm]	Spostamento Piedritto Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	70,0%	1,83	-
Step 3	Scavo	1	74,1%	0,26*	-
Step 4	Posa in opera centina (SB non reagente)	1	74,1%	0,26*	0
Step 5	Avanzamento scavo (E SB = 10 Gpa)	7	90,4%	0,85*	0,59
Step 6	Avanzamento 2 D (E SB = 31 Gpa)	29	96,4%	1,13*	0,87
Step 7	Getto arco rovescio e muretta a 2D e avanzamento fino a deformazioni esaurite	-	100,0%	-	0,87
Step 8	Getto Calotta	-	100,0%	-	0,87
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	-	0,87

Sezione tipo B2 - parametri res max - Riepilogo della fasi di calcolo e degli spostamenti orizzontali a quota Piano dei centri

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

3.4.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase, generalmente indicata come fase di taratura del modello, consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo. Il contributo statico fornito dalla porzione di ammasso oltre il fronte non ancora scavato viene simulato rilasciando il 70% delle forze di scavo. Tale valore è stato tarato sulla base delle indicazioni fornite dalle curve caratteristiche che, per il caso in analisi, indica una preconvergenza massima di circa 1.83 cm così come evidente dalla curva caratteristica riportata sotto.

L'output del programma di calcolo FLAC riporta lo spostamento del cavo in corrispondenza di questo step di calcolo sul piedritto sx del modello.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.00 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.741)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 180 / 100) con spritz beton (20 cm) non reagente (fattore di rilascio pari a 0.741)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.904)

<u>Fase 6</u> Viene simulato la completa maturazione dello Spritz beton e l'avanzamento dello scavo fino a 2 D (fattore di rilascio = 0.964).

<u>Fase 7</u> Viene simulato il getto delle murette e dell'arco rovescio e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1.00)

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

3.4.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose. Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli elementi resistenti.

3.4.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 180 / 100 - SB = 20 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

3.4.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 60 cm

Verifica SLU

Momento flettente

163

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	361	49
Muretta dx	361	48
Mezzeria Arco rovescio	252	-56

Verifica nei confronti dell'apertura delle fessure

Nel seguito è riportata la scheda relativa alla verifica a fessurazione effettuata per la sezione della mezzeria dell'arco rovescio.

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. UI	NI EN 1992-1-1:2	2005 Par.7.3
Geometria della sezione		
Altezza della sezione	h	[mm]
Larghezza della sezione	b	1000 [mm]
Altezza utile della sezione	d	545 [mm]
Distanza tra asse armatura e lembo compresso	d'	545 [mm]
Ricoprimento dell'armatura	С	47 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n _{f.1}	<mark>4</mark> [-]
Diametro dei ferri tesi presenti nella sezione	ф _{f.1}	1 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	3 [mm²]
Armatura tesa di infittimento		
Numero di ferri tesi presenti nella sezione	n _{f.2}	0[-]
Diametro dei ferri tesi presenti nella sezione	ф _{f.2}	0 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm²]
Carattaristisha dai matariali		
Resistenza caratteristica cilindrica dal calcestruzzo	f	35 [MPa]
Resistenza a trazione media del calcestruzzo	'ck f	3.2 [MPa]
Modulo di elasticità del calcestruzzo	E	34077 [MPa]
Resistenza a snervamento dell'acciaio	f _{vk}	450 [MPa]
Modulo di elasticità dell'acciaio	E _s	200000 [MPa]
	_	
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
	σ _s	43,97 [IVIPa]
Asse field to della sezione	^	200,0 [[[[]]]
Tipo e durata dei carichi applicati		Lunga 💌
Coefficiente di omogeneizzazione	α _e	5,87 [-]
Area totale delle armature presenti nella zona tesa	A _s	3 [mm²]
Area efficace tesa di calcestruzzo	A _{c,eff.1}	137500 [mm²]
	A	122233 [mm ²]
	Δ	300000 [mm ²]
	C,eff.3	
	A _{c,eff.min}	122233 [mm²]
Rannorto tra l'area di acciaio teso e quella di calcestruzzo teso	0	0 00003 [-]
Resistenza efficace media del calcestruzzo	f	3.2 [MPa]
Fattore di durata del carico	k,	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	[e -e].	0.000132 [-]
		0.240605 []
	[E _{sm} -E _{cm}] _{calc.}	-0,249005 [-]
	[& _{sm} -& _{cm}]	0,000132 [-]
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	S	250 [mm]
Diametro equivalente delle barre	φ _{eq}	1,00 [mm]
Spaziatura massima di riferimento	S _{max,rif}	237,5 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k ₁	<mark>0,800</mark> [-]
	k ₂	0,500 [-]
	k ₃	3,400 [-]
	K ₄	0,425 [-]
Distanza massima tra le tessure	S _{r,max.1}	0//4 [MM]
	s	4// [IIII] 477 [mm]
	s _{r,max}	477 [mm]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{klim}	0,20 [mm]
Ampiezza delle fessure (di calcolo)	W _k	0,06 [mm]

Calotta – H = 60 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	1473	-1
Rene dx	1470	-2
Chiave	1327	-20

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

3.5 Sezione tipo Piazzola B0 – Parametri di resistenza massimi

Fascia di	Devementes		Sezione tipo	o Piazzola BO	
[m]	Parametro	0.111.	Intervallo di variabilità	Parametri di progetto	
25 < z < 50	c'	[kPa]	220 – 250	250	
	arphi'	[°]	25 – 30	30	
	E	[MPa]	200	200	
	γ	[kN/mc]	23	23	

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Nel seguito si riportano le verifiche effettuate per la sezione tipo Piazzola B0 con parametri di resistenza pari ai massimi tra quelli individuati dal range di variabilità.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una condizione di copertura pari a 50 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton $Rck \ge 30$ MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \geq 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

Stop	Faso osocutiva simulata	Distanza dal fronte	stanza dal fronte Fattore di	Spostamento Parete Cavo	Spostamento Piedritto
step	Fase esecutiva sillulata	[m]	rilascio	dir oriz [cm]	Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	78,0%	2,6	-
Step 3	Scavo	1	80,6%	0,27*	-
Step 4	Posa in opera centina (SB non reagente)	1	80,6%	0,27*	0
Step 5	Avanzamento scavo (E SB = 10 Gpa)	7	93,0%	0,69*	0,42
Step 6	Avanzamento fino a deformazioni esaurite (E SB = 31 Gpa)	-	100,0%	1,01*	0,74
Step 7	Getto arco rovescio e muretta	-	100,0%	-	0,74
Step 8	Getto Calotta	-	100,0%	-	0,74
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	-	0,74

Sezione tipo Piazzola B0 - Riepilogo della fasi di calcolo e degli spostamenti orizzontali a quota Piano dei centri

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

3.5.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase, generalmente indicata come fase di taratura del modello, consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo. Il contributo statico fornito dalla porzione di ammasso oltre il fronte non ancora scavato viene simulato rilasciando il 78% delle forze di scavo. Tale valore è stato tarato sulla base delle indicazioni fornite dalle curve caratteristiche che, per il caso in analisi, indica una preconvergenza massima di circa 2.6 cm così come evidente dalla curva caratteristica riportata sotto.

L'output del programma di calcolo FLAC riporta lo spostamento del cavo in corrispondenza di questo step di calcolo sul piedritto sx del modello.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.10 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.806)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 220 / 100) con spritz beton (25 cm) non reagente (fattore di rilascio pari a 0.806)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.930)

<u>Fase 6</u> Viene simulato la completa maturazione dello Spritz beton e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1).

Fase 7 Viene simulato il getto delle murette e dell'arco rovescio e l'avanzamento dello scavo

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

3.5.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose. Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli elementi resistenti.

3.5.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 220 / 100 - SB = 25 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

\Upsilon Verifica C.A. S.L.U File:		
File Materiali Opzioni Visualizza Progett	o Sez. Rett. Sismica Normativa: NTC 2008	?
🗋 🖻 🖥 🎒		
Titolo :		Tipo Sezione
	N* strati barre 2 Zoom	O a T O Circolare
N* b [cm] h [cm]	N* As [cm ²] d [cm]	O Rettangoli O Coord.
1 100 25	1 23,912 1	
	2 23,312 23	
- Sollecitazioni	P to applicazione N	- In Internet
S.L.U. Metodo n	⊙ Centro O Baricentro cls	
	0 //x x N	
N Ed 0 1683 KN	O Coord.[cm]	
M vEd 0 -42 kNm	- Tipo rothura	
M _{und} 0	Lato calcestruzzo - Acciaio snervato	- Metodo di calcolo
yeu		O Metodo n
Materiali Fe510 C25/30	^M xRd 178,5 KN m	- Tipo flessione
		⊙ Retta O Deviata
	σ _c -14,17 N/mm ²	N* rett 100
yd 336,1 N/mm² Ccu 3,5		Calcola MRd Dominia M N
E _s 200.000 N/mm ² cd 14,17	ε _c 3,5 ‰ _	
Ls/Lc 15 /cc / tcd 0,8 ?	ε _s 46,95 ‰ L	0 cm Col. modello
ε _{syd} 1,691 ‰ σ _{c,adm} 9,75	d 23 cm	
σ _{s,adm} 240 N/mm ² τ _{co} 0,6	× 1,596 ×/d 0,06937	
τ _{c1} 1.829	δ 0.7	Precompresso

3.5.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 80 cm

Verifica SLU

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	218	64
Muretta dx	219	64
Mezzeria Arco rovescio	162	-17

Verifica nei confronti dell'apertura delle fessure

Nel seguito è riportata la scheda relativa alla verifica a fessurazione effettuata per la sezione della muretta sinistra dell'arco rovescio.

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. UN	II EN 1992-1-1:	2005 Par.7.3
Geometria della sezione		
Altezza della sezione	h	800 [mm]
Larghezza della sezione	b	1000 [mm]
Distanza tra asse armatura e lembo compresso	d'	745 [mm]
Ricoprimento dell'armatura	c	47 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n _{f.1}	<mark>4</mark> [-]
Diametro dei ferri tesi presenti nella sezione	φř.1	1 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf 1}	3 [mm ²]
Armatura tesa di infittimento	51.1	
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	dr.2	0 [mm]
Area dei ferri tesi presenti pella sezione	A	0 [mm ²]
	¹ st.2	o []
Caratteristiche dei materiali		
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	35 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3,2 [MPa]
Modulo di elasticità del calcestruzzo	Ecm	34077 [MPa]
Resistenza a snervamento dell'acciaio	f _{y k}	450 [MPa]
Modulo di elasticità dell'acciaio	Es	200000 [MPa]
	_	
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	σs	27,32 [MPa]
Asse neutro della sezione	x	313,9 [mm]
Tipo e durata dei carichi applicati		Lunga 🔻
Coefficiente di omogeneizzazione	αe	5,87 [-]
Area totale delle armature presenti nella zona tesa	As	3 [mm ²]
Area efficace tesa di calcestruzzo	A	137500 [mm ²]
	A C,eff.1	160000 [mm ²]
	Ac,eff.2	162033 [mm]
	A _{c,eff.3}	400000 [mm²]
	$A_{c,eff.min}$	137500 [mm ²]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	r _{p,eff}	2,28479E-05 [-]
Resistenza efficace media del calcestruzzo	f _{ct,eff}	3,209962442 [MPa]
Fattore di durata del carico	k _t	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	[e _{sm} - _{Ecm}] _{min}	0,00008196 [-]
	[es]	-0 28088581 [-]
	[esm-ecm]	0.000082 [-]
	Losm ocm	-, []
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	S	250 [mm]
Diametro equivalente delle barre	f _{eq}	1 [mm]
Spaziatura massima di riferimento	S _{max,rif}	237,5 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k ₁	0,800 [-]
	k ₂	0,500 [-]
	k ₃	3,400 [-]
	k ₄	0,425 [-]
Distanza massima tra le fessure	Sr may 1	7600,292769 [mm]
	Sr may 2	631.93 [mm]
	Sr mar	632 [mm]
	←r,maX	[]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{k.lim}	0,20 [mm]
Ampiezza delle fessure (di calcolo)	W _k	0,05 [mm]

Calotta – H = 70 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	1389	14
Rene dx	1389	15
Chiave	1149	30

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

4. VERIFICA SEZIONE TIPO - COPERTURA 15 < H < 25 M

Le formazioni incluse nella tratta di copertura tra 15 e 25 m sono:

- Formazione di Camerino (Associazione Pelitica Arenacea)
- Formazione dello Schlier

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Fascia di	Downstein		Sezione tipo BOV		
[m]	Parametro	U.IVI.	Intervallo di variabilità	Parametri di progetto	
	c'	[kPa]	50 – 60	50	
15 < z < 25	arphi'	[°]	26 – 28	26	
	E	[MPa]	100	100	
	γ	[kN/mc]	23	23	

4.1 Sezione tipo B0V

Nel seguito si riportano le verifiche effettuate per la sezione tipo BOV.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una copertura pari a 25 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton Rck \geq 30 MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \geq 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

Step	Fase esecutiva simulata	Distanza dal fronte [m]	Fattore di rilascio	Spostamento Parete Cavo dir oriz [cm]	Spostamento Piedritto Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	28,0%	0,65	-
Step 3	Scavo	1	37,9%	0,37*	-
Step 4	Posa in opera centina (SB non reagente)	1	37,9%	0,37*	0
Step 5	Avanzamento scavo (E SB = 10 Gpa)	7	77,0%	2,11*	1,74
Step 6	Avanzamento fino a deformazioni esaurite (E SB = 31 Gpa)	-	100,0%	8,96*	8,6
Step 7	Getto arco rovescio e muretta	-	100,0%	-	8,6
Step 8	Getto Calotta	-	100,0%	-	8,6
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	-	8,6

Sezione tipo BOV - Riepilogo della fasi di calcolo e degli spostamenti orizzontali a quota Piano dei centi
--

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

4.1.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo e, classicamente, per classi di copertura fino a 25 m è simulata attraverso l'adozione di un fattore di rilascio pari al 28 %.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.00 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.379)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 200 / 100) con spritz beton (25 cm) non reagente (fattore di rilascio pari a 0.379)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.770)

<u>Fase 6</u> Viene simulato la completa maturazione dello Spritz beton e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1).

Fase 7 Viene simulato il getto delle murette e dell'arco rovescio.

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

4.1.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose.

Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli elementi resistenti.

4.1.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 200 / 100 – SB = 25 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

4.1.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 60 cm

Verifica SLU

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	437	8
Muretta dx	437	3
Mezzeria Arco rovescio	371	-34

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

Calotta – H = 60 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]	
Rene sx	1541	14	
Rene dx	1550	19	
Chiave	1602	-4	

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

4.2 Sezione tipo B2 – Parametri di resistenza minimi

Fascia di	Parametro	U.M.	Sezione tipo B2		
[m]			Intervallo di variabilità	Parametri di progetto	
15 < z < 25	c'	[kPa]	120 – 150	120	
	arphi'	[°]	31 – 35	31	
	E	[MPa]	100	100	
	γ	[kN/mc]	23	23	

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Nel seguito si riportano le verifiche effettuate per la sezione tipo B2.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una condizione di copertura pari a 25 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton Rck ≥ 30 MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \geq 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

Step	Eaco acocutivo cimulato	Distanza dal fronte	Fattore di	Spostamento Parete Cavo	Spostamento Piedritto
	Fase esecutiva sintulata	[m]	rilascio	dir oriz [cm]	Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	28,0%	0,64	-
Step 3	Scavo	1	37,9%	0,23*	-
Step 4	Posa in opera centina (SB non reagente)	1	37,9%	0,23*	0
Step 5	Avanzamento scavo (E SB = 10 Gpa)	7	77,0%	0,8*	0,57
Step 6	Avanzamento 2 D (E SB = 31 Gpa)	29	91,4%	1,34*	1,11
Step 7	Getto arco rovescio e muretta a 2D e avanzamento fino a deformazioni esaurite	-	100,0%	-	1,11
Step 8	Getto Calotta	-	100,0%	-	1,11
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	-	1,11

Sezione tipo B2 - Riepilogo della	fasi di calcolo e deali spostamenti orizzontali a a	uota Piano dei centri
	jusi ui culcolo c'ucgli spostullicitti olizzollituli u q	uota i lano aci centili

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

4.2.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo e, classicamente, per classi di copertura fino a 25 m è simulata attraverso l'adozione di un fattore di rilascio pari al 28 %.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.00 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.379)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 180 / 100) con spritz beton (20 cm) non reagente (fattore di rilascio pari a 0.379)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.770)

<u>Fase 6</u> Viene simulato la completa maturazione dello Spritz beton e l'avanzamento dello scavo fino a 2 D (fattore di rilascio = 0.914).

<u>Fase 7</u> Viene simulato il getto delle murette e dell'arco rovescio e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1.00)

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

4.2.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose.

Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli elementi resistenti.

4.2.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 180 / 100 - SB = 20 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

Verifica C.A. S.L.U File:		×
File Materiali Opzioni Visualizza Progetto	Sez. Rett. Sismica Normativa: NTC 2008	?
🗅 😅 🖬 🎒		
Titolo :	N* strati barre 2 Zoom	Tipo Sezione Image: Rettan.re Image: O a T Image: O circolare
N* b [cm] h [cm]	N* As [cm ²] d [cm]	O Rettangoli O Coord.
	1 17,056 1	
0-United at	Dia analiani an N	
	Centro	
S.L.U.	Buildening Cas	
N _{Ed} M _{xEd} 0 kNm	C Coord.[cm]	-Metodo di calcolo
M _{yEd}	Lato calcestruzzo - Acciaio snervato	● S.L.U.+ ● S.L.U
Materiali	M 95.52 kN m	O Metodo n
Fe510 C25/30	xRd	-Tipo flessione
ε _{su} 67,5 ‰ ε _{c2} 2 ‰	7 1417 N/mm ²	Retta O Deviata
^f yd 308.7 N/mm² ε _{cu} 3.5	σ 308.7 N/mm ²	N* rett. 100
E _s 200.000 N/mm ² ^f cd 14,17	ε ₋ 3.5 %	alcola MRd Dominio M-N
E _s /E _c 15 ^f cc / ^f cd 0.8 ?	ε _s 42,82 ‰ L _α	0 cm Col. modello
ε _{syd} 1.544 ‰ σ _{c,adm} 9.75	d 19 cm	
σ _{s,adm} 240 _{N/mm²} τ _{co} 0,6	x 1,436 x/d 0,07556	
τ _{c1} 1,829	δ 0,7	Precompresso

4.2.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 60 cm

Verifica SLU

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	522	49
Muretta dx	528	49
Mezzeria Arco rovescio	364	-138

Verifica nei confronti dell'apertura delle fessure

Nel seguito è riportata la scheda relativa alla verifica a fessurazione effettuata per la sezione di mezzeria dell'arco rovescio.

STATO LIMITE DI APERTURA DELLE FESSURE - Rif.	. UNI EN 1992-1-	<u>1: 2005 Par.7.3</u>
Geometria della sezione		
Altezza della sezione	h	600 [mm]
Larghezza della sezione	b	1000 [mm]
Altezza utile della sezione	d	545 [mm]
Distanza tra asse armatura e lembo compresso	d'	65 [mm]
Ricoprimento dell'armatura	С	55 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n.	4 [-]
Diametro dei terri tesi presenti nella sezione	фf.1	20 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	1257 [mm ²]
Armatura tesa di infittimento		-
Numero di ferri tesi presenti nella sezione	n _{f a}	0 [-]
Diamatra dai farri tagi progenti nella gaziona	1.2	0 [mm]
Jiametro dei lem tesi presenti nella sezione	Фf.2	Uninj
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm ²]
Caratteristiche dei materiali		
Resistenza caratteristica cilindrica dal calcestruzzo	f.,	35 IMPal
	'CK	
Resistenza a trazione media del calcestruzzo	† _{ctm}	3,2 [MPa]
Modulo di elasticità del calcestruzzo	Ecm	34077 [MPa]
Resistenza a snervamento dell'acciaio	fyk	450 [MPa]
Madula di alasticità dall'acciaio	5	200000 [MPo]
	Es	200000 [[WIF a]
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
lensione nell'armatura tesa considerando la sezione fessurata	σs	90,68 [MPa]
Asse neutro della sezione	x	214,9 [mm]
Tipo e durata dei carichi applicati		Lunga
Coefficiente di omogeneizzazione	αe	5,87 [-]
Area totale delle armature presenti nella zona tesa	As	1257 [mm ²]
Area efficace tesa di calcestruzzo	A _{c.eff.1}	137500 [mm ²]
	A _{2 off 2}	128367 [mm ²]
	Δ	300000 [mm ²]
	Λ	128367 [mm ²]
	∽c,eff.min	120307 [mm]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	On eff	0.00979 [-]
Resistenza efficace media del calcestruzzo	fat off	3.2 [MPa]
Eattors di durata del carico	Letter L	0.4 []
	ĸt	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	[&sm=&cm]min	0,000272 [-]
	[Esm=Ecm]calc	-0,000240 [-]
	[ɛ _{sm} -ɛ _{cm}]	0,000272 [-]
Charietura tra la harra (calcalata tra i hariaantri dai farri)		050 [mm]
Spaziatura tra le barte (Galcolata tra i baricentri del ferri)	5	[[[[[]]]062
Diametro equivalente delle barre	феq	20,00 [mm]
Spaziatura massima di riferimento	S _{max,rif}	325 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k ₁	0,800 [-]
	k ₂	0,500 [-]
	- k.	3 400 [-]
	13	
	К4	0,425 [-]
Distanza massima tra le fessure	S _{r,max.1}	534 [mm]
	S _{r,max.2}	501 [mm]
	S _{r,max}	534 [mm]
Ampiezza limite delle tessure per la combinazione di calcolo pertinente	W _{k.lim}	0,20 [mm]
Ampiezza delle tessure (di calcolo)	Wk	0,15 [mm]
Calotta – H = 60 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	2055	17
Rene dx	2073	23
Chiave	2031	-56

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

4.3 Sezione tipo B2 – Parametri di resistenza massimi

Fascia di	Doromotro		Sezione	tipo B2	
[m]	Parametro	0.111.	Intervallo di variabilità	Parametri di progetto	
15 < z < 25	c'	[kPa]	120 – 150	150	
	arphi'	[°]	31 – 35	35	
	E	[MPa]	100	100	
	γ	[kN/mc]	23	23	

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Nel seguito si riportano le verifiche effettuate per la sezione tipo B2.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una condizione di copertura pari a 25 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton Rck ≥ 30 MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

Step	Face ecocutive cimulate	Distanza dal fronte Fattore di S	Spostamento Parete Cavo	Spostamento Piedritto	
	Fase esecutiva sintulata	[m]	rilascio	dir oriz [cm]	Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	28,0%	0,36	-
Step 3	Scavo	1	37,9%	0,13*	-
Step 4	Posa in opera centina (SB non reagente)	1	37,9%	0,13*	0
Step 5	Avanzamento scavo (E SB = 10 Gpa)	7	77,0%	0,32*	0,19
Step 6	Avanzamento 2 D (E SB = 31 Gpa)	29	91,4%	0,57*	0,44
Step 7	Getto arco rovescio e muretta a 2D e avanzamento fino a deformazioni esaurite	-	100,0%	-	0,44
Step 8	Getto Calotta	-	100,0%	-	0,44
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	-	0,44

Sezione tino B2 - Rienilogo della	fasi di calcolo e degli spostamenti i	orizzontali a quota Piano dei centr
Sezione lipo bz - kiepilogo della	jusi ul culcolo e degli spostumenti (011220111011 0 90010 P10110 081 (81111

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

4.3.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo e, classicamente, per classi di copertura fino a 25 m è simulata attraverso l'adozione di un fattore di rilascio pari al 28 %.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.00 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.379)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 180 / 100) con spritz beton (20 cm) non reagente (fattore di rilascio pari a 0.379)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.770)

<u>Fase 6</u> Viene simulato la completa maturazione dello Spritz beton e l'avanzamento dello scavo fino a 2 D (fattore di rilascio = 0.914).

<u>Fase 7</u> Viene simulato il getto delle murette e dell'arco rovescio e l'avanzamento dello scavo fino all'esaurimento delle deformazioni (fattore di rilascio = 1.00)

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

4.3.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose.

Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli elementi resistenti.

4.3.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

I diagrammi delle tensioni principali sono riportati nel seguito.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 180 / 100 - SB = 20 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

Verifica C.A. S.L.U File:		
File Materiali Opzioni Visualizza Progetto	Sez. Rett. Sismica Normativa: NTC 2008	3 ?
🗅 😅 🖶 🎒		
Titolo :	N* strati barre 2 Zoom N* As [cm*] d [cm]	Tipo Sezione Rettan.re O Trapezi a T O Circolare O Rettangoli O Coord.
1 100 20	<u>1 17,056 1</u> 2 17,056 19	
Sollecitazioni	P.to applicazione N	
S.L.U. 🗲 Metodo n	Centro C Baricentro cis	
N _{Ed} M _{vFd} 0 kNm	O Coord.[cm] xN U yN U	
	Lato calcestruzzo - Acciaio snervato	-Metodo di calcolo
Materiali	M _{vBd} 95,52 kN m	O Metodo n
Fe510 C25/30		-Tipo flessione
ε _{su} 67,5 ‰ ε _{c2} 2 ‰	σ14,17 N/mm ²	• Retta • Deviata
[†] yd 308.7 N/mm ² & cu 3.5	σ _s 308,7 N/mm ²	N* rett. 100
E _s 200.000 N/mm ² cd 14.17	ε _c 3,5 ‰	Calcola MRd Dominio M-N
E _s /E _c 15 fcc / fcd 0,8 ?	ε _s 42,82 ‰ L	0 cm Col. modello
ε _{syd} 1.544 ‰ σ _{c,adm} 9.75	d 19 cm	
σ _{s,adm} 240 N/mm ² τ _{co} 0,6	× 1,436 ×/d 0,07556	
τ _{c1} 1.829	δ 0,7	- Frecompresso

4.3.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 60 cm

Verifica SLU

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	415	59
Muretta dx	417	60
Mezzeria Arco rovescio	268	-141

Verifica nei confronti dell'apertura delle fessure

Nel seguito è riportata la scheda relativa alla verifica a fessurazione effettuata per la sezione di mezzeria dell'arco rovescio.

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. UNI EN 1992-1-1: 2005 Par.7.3				
Geometria della sezione				
Altezza della sezione	h	<u>600</u> [mm]		
Larghezza della sezione	b	1000 [mm]		
Altezza utile della sezione Distanza tra asse armatura e lembo compresso	a d'	545 [mm]		
Ricoprimento dell'armatura	c	55 [mm]		
Armatura tesa ordinaria	-	[]		
Numero di ferri tesi presenti nella sezione	n _{f.1}	<mark>4</mark> [-]		
Diametro dei ferri tesi presenti nella sezione	фг.1	20 [mm]		
Area dei ferri tesi presenti nella sezione	A _{sf 1}	1257 [mm ²]		
Armatura tesa di infittimento	31.1	· ·]		
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]		
Diametro dei ferri tesi presenti nella sezione	φ.2	0 [mm]		
Area dei ferri tesi presenti nella sezione	Δ	0 [mm ²]		
	/tst.2	o [iiiii]		
Caratteristiche dei materiali				
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	<mark>35</mark> [MPa]		
Resistenza a trazione media del calcestruzzo	f _{ctm}	3,2 [MPa]		
Modulo di elasticità del calcestruzzo	E _{cm}	34077 [MPa]		
Resistenza a snervamento dell'acciaio	f _{yk}	<mark>450</mark> [MPa]		
Modulo di elasticità dell'acciaio	Es	200000 [MPa]		
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		125 4 [MDo]		
	Os Y	120,4 [Mir a]		
	<u>×</u>			
Tipo e durata dei carichi applicati		Lunga		
Coefficiente di omogeneizzazione	α _e	5,87 [-]		
Area totale delle armature presenti nella zona tesa	As	1257 [mm ²]		
Area efficace tesa di calcestruzzo	A _{c,eff.1}	137500 [mm ²]		
	Ac eff 2	139967 [mm ²]		
	Δ	300000 [mm ²]		
	Ac,ett.3	407500 [mm ²]		
	A _{c,eff.min}	137500 [mm ⁻]		
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	ρ _{p,eff}	0,00914 [-]		
Resistenza efficace media del calcestruzzo	f _{ct,eff}	3,2 [MPa]		
Fattore di durata del carico	k _t	0,4 [-]		
Differenza tra la deformazione nell'acciaio e nel cls	[Esm-Ecm]min	0,000376 [-]		
	[Esm=Ecm]calc	-0,000113 [-]		
	[ɛsm-ɛcm]	0,000376 [-]		
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	S	250 [mm]		
	Ф еq	20,00 [mm]		
Spaziatura massima di riferimento	S _{max,rif}	280 [mm]		
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k ₁	0,800 [-]		
	k ₂	0,500 [-]		
	k ₃	3,400 [-]		
	k ₄	<mark>0,425</mark> [-]		
Distanza massima tra le fessure	S _{r,max.1}	528 [mm]		
	S _{r,max.2}	546 [mm]		
	S _{r,max}	528 [mm]		
Ampiozza limita della faccura par la combinazione di calcela particente	M/	0.20[mm]		
Ampiezza initite delle lessure per la combinazione di calcolo pertinente	wk.lim			
Amplezza delle lessure (di calcolo)	w k	0,20 [mm]		

Calotta – H = 60 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	1860	28
Rene dx	1870	31
Chiave	1655	-78

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.

5. VERIFICA SEZIONE TIPO - COPERTURA H < 15 M

Le formazioni incluse nella tratta di copertura tra 0 e 15 m sono:

- Formazione di Camerino (Associazione Pelitica Arenacea)
- Formazione dello Schlier

I parametri geotecnici utilizzati per il calcolo sono riportati nella tabella seguente:

Fascia di	Downstein		Sezione	tipo B2V
[m]	Parametro U.M.		Intervallo di variabilità	Parametri di progetto
	c'	[kPa]	50 – 60	50
0 < z < 15	arphi'	[°]	26 – 28	26
	E	[MPa]	100	100
	γ	[kN/mc]	23	23

5.1 Sezione tipo B2V

Nel seguito si riportano le verifiche effettuate per la sezione tipo B2V.

Si precisa che i calcoli sono stati effettuati in corrispondenza di una copertura pari a 15 m e adottando un modello costitutivo tipo Mohr – Coulomb.

I rivestimenti di prima fase e definitivo sono stati simulati mediante elementi tipo zone.

Il prerivestimento, costituito da spritz-beton Rck \geq 30 MPa associato a centine di tipo IPN accoppiate, è stato schematizzato come materiale a comportamento elastico-lineare, adottando i seguenti moduli elastici:

- centine	E = 210.0 GPa;
- spritz-beton (breve termine)	E = 10.0 GPa;
- spritz-beton (lungo termine)	E = 31 GPa.

Il rivestimento definitivo di arco rovescio e murette è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \geq 45 MPa e modulo E = 35 GPa.

Il rivestimento definitivo di calotta è stato schematizzato come materiale a comportamento elastico -lineare assumendo un cls con Rck \ge 30 MPa e modulo E = 31 GPa.

La mesh di calcolo utilizzata è riportata nella figura seguente.

Relativamente ai parametri di deformabilità ed al peso di unità di volume si riporta l'output delle assegnazioni al modello.

La tabella seguente riporta una sintesi delle fasi esecutive simulate nelle analisi riportate nel seguito ed un riepilogo degli spostamenti orizzontali registrati a quota Piano dei centri ai diversi step di calcolo.

Step	Fase esecutiva simulata	Distanza dal fronte [m]	Fattore di rilascio	Spostamento Parete Cavo dir oriz [cm]	Spostamento Piedritto Centina dir oriz [cm]
Step 1	Generazione tensioni litostatiche	-	0,0%	-	-
Step 2	Taratura	0	28,0%	0,97	-
Step 3	Scavo	1	37,9%	0,35*	-
Step 4	Posa in opera centina (SB non reagente)	1	37,9%	0,35*	0
Step 5	Avanzamento scavo (E SB = 10 Gpa)	7	77,0%	1,47*	1,12
Step 6	Avanzamento 3 D(E SB = 31 Gpa)	43	94,3%	3,12*	2,76
Step 7	Getto arco rovescio e muretta a 3D e avanzamento fino a deformazioni esaurite	-	100,0%	-	2,76
Step 8	Getto Calotta	-	100,0%	-	2,76
Step 9	Decadimento dei parametri di resistenza del rivestimento provvisorio	-	100,0%	-	2,76

Sezione tipo B2V - Riepilogo della fasi di calcolo e degli spostamenti orizzontali a quota Piano dei centri

* spostamento al netto della preconvergenza del fronte (step2 - taratura)

5.1.1 Fasi di calcolo

Le analisi sono state organizzate in 9 successive fasi di calcolo che consentono la descrizione dei vari interventi costruttivi e la schematizzazione di diverse condizioni di carico per il prerivestimento e per il rivestimento definitivo.

Di seguito si elencano le fasi di calcolo considerate.

<u>Fase 1</u> In questa prima fase di calcolo viene applicato il peso proprio del terreno; viene cioè ricostruito lo stato tensionale preesistente gli scavi.

<u>Fase 2</u> Questa fase consente di simulare la preconvergenza del cavo prima dell'arrivo del fronte di scavo e, classicamente, per classi di copertura fino a 25 m è simulata attraverso l'adozione di un fattore di rilascio pari al 28 %.

<u>Fase 3</u> Viene simulato lo scavo a piena sezione per sfondi pari a 1.00 m propedeutico alla posa in opera della centina (fattore di rilascio pari a 0.379)

<u>Fase 4</u> Viene simulata la posa in opera della centina (2 IPN 200 / 100) con spritz beton (25 cm) non reagente (fattore di rilascio pari a 0.379)

<u>Fase 5</u> Viene simulato l'avanzamento dello scavo fino a $\frac{1}{2}$ D corrispondente alla situazione di parziale maturazione dello Spritz Beton (E = 10 GPa) (fattore di rilascio = 0.770)

<u>Fase 6</u> Viene simulato la completa maturazione dello Spritz beton e l'avanzamento dello scavo fino a 3D (fattore di rilascio = 0.943)

<u>Fase 7</u> Viene simulato il getto delle murette e dell'arco rovescio a 3D e avanzamento fino ad esaurimento delle deformazioni (fattore di rilascio = 1)

Fase 8 Viene simulato il getto del rivestimento definitivo di calotta

<u>Fase 9</u> Viene simulato il decadimento delle caratteristiche di resistenza del sistema di rivestimento provvisorio.

5.1.1.1 Verifiche statiche dei rivestimenti

Le verifiche dei rivestimenti provvisori e definitivi sono state eseguite in corrispondenza delle sezioni resistenti più sollecitate al termine delle fasi di calcolo ritenute più gravose.

Nel seguito sono riportati i diagrammi delle tensioni principali sulle zone rappresentative degli elementi resistenti.

5.1.1.1.1 Rivestimento di prima fase

Le verifiche sul rivestimento di prima fase sono state condotte in corrispondenza della fase di calcolo 7 ritenuta quella più gravosa per l'elemento. Dalla fase successiva, infatti, si assiste al getto della calotta.

Nel seguito sono riportate le sollecitazioni agenti ed il dominio resistente della sezione omogeneizzata Centine e Spritz – beton prevista (2 IPN 200 / 100 – SB = 25 cm).

Le figure seguenti mostrano gli output del programma di calcolo VCA Slu con il quale è stato creato il dominio resistente della sezione.

5.1.1.1.2 Rivestimento definitivo

Le verifiche del rivestimento definitivo sono state condotte per le sollecitazioni agenti alla fase di calcolo 9 (decadimento delle caratteristiche di resistenza del rivestimento di prima fase). La figura seguente mostra le tensioni principali in corrispondenza di questo step di calcolo

Arco rovescio - H = 60 cm

Verifica SLU

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Stato limite di fessurazione

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del punto di attacco muretta sx, della mezzeria dell'arco rovescio e del punto di attacco muretta dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Muretta sx	501	9
Muretta dx	504	9
Mezzeria Arco rovescio	402	-75

Verifica nei confronti dell'apertura delle fessure

Nel seguito è riportata la scheda relativa alla verifica a fessurazione effettuata per la sezione di mezzeria dell'arco rovescio.

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. UNI EN 1992-1-1: 2005 Par.7.3				
Coometria della sozione				
	h	[mm]		
Larabezza della sezione	h	1000 [mm]		
Altezza utile della sezione	d	545 [mm]		
Distanza tra asse armatura e lembo compresso	d'	55 [mm]		
Ricoprimento dell'armatura	c	47 [mm]		
Armatura tesa ordinaria		· ·		
Numero di ferri tesi presenti nella sezione	n _{f.1}	4 [-]		
Diametro dei ferri tesi presenti nella sezione	ф _{г.1}	20 [mm]		
Area dei ferri tesi presenti nella sezione	A _{sf 1}	1257 [mm ²]		
Armatura tesa di infittimento	0	- ,		
Numero di ferri tesi presenti nella sezione	n _{f2}	0 [-]		
Diametro dei ferri tesi presenti nella sezione	φ _{f,2}	0 [mm]		
Area dei ferri tesi presenti nella sezione	A _{st 2}	 0 [mm ²]		
	51.2			
Caratteristiche dei materiali				
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	35 [MPa]		
Resistenza a trazione media del calcestruzzo	f _{ctm}	3,2 [MPa]		
Modulo di elasticità del calcestruzzo	E _{cm}	34077 [MPa]		
Resistenza a snervamento dell'acciaio	f _{yk}	450 [MPa]		
Modulo di elasticità dell'acciaio	Es	200000 [MPa]		
DELERMINAZIONE DELL'AMPIEZZA DELLE FESSORE		10.54 [MPa]		
Asse neutro della sezione	o _s	399.2 [mm]		
	~			
Tipo e durata dei carichi applicati		Lunga 💌		
Coefficiente di omogeneizzazione	α_{e}	5,87 [-]		
Area totale delle armature presenti nella zona tesa	A _s	1257 [mm²]		
Area efficace tesa di calcestruzzo	A _{c,eff.1}	137500 [mm ²]		
	Α ".	66933 [mm ²]		
	с,еп.2	200000 [mm ²]		
	A _{c,eff.3}			
	$A_{c,eff,min}$	66933 [mm²]		
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	0 "	0.01877 [-]		
Resistenza efficace media del calcestruzzo	Pp,eπ f _{ot off}	3,2 [MPa]		
Fattore di durata del carico	k,	0,4 [-]		
Differenza tra la deformazione nell'acciaio e nel cls	[EE]	0.000032 [-]		
	Losm ocmimin	0.000227 []		
	[E _{sm} =E _{cm}] _{calc.}			
	[ɛ _{sm} -ɛ _{cm}]	0,000032 [-]		
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	s	250 [mm]		
Diametro equivalente delle barre	φ _{eq}	20,00 [mm]		
Spaziatura massima di riferimento	Smaxrif	285 [mm]		
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k ₁	0,800 [-]		
	k ₂	0,500 [-]		
	k ₃	<mark>3,400</mark> [-]		
	k ₄	0,425 [-]		
Distanza massima tra le fessure	S _{r,max.1}	341 [mm]		
	S _{r,max.2}	261 [mm]		
	S _{r,max}	341 [mm]		
Ampiazza limita della fassura por la combinazione di calcolo portinente	W	0.20 [mm]		
Ampiezza delle fessure (di calcolo)	w klim	0.01 [mm]		
	** k	0,01		

Calotta – H = 60 cm

Momento flettente

Verifica SLE

Nel seguito sono descritte le verifiche allo SLE nei confronti di:

- Punte tensionali
- Apertura delle fessure

Verifica nei confronti delle Punte tensionali

Nel seguito sono riportati gli output del programma di calcolo per la verifica delle tensioni massime agenti in corrispondenza del rene sx, della chiave della calotta e del rene dx.

Le sollecitazioni di verifica sono:

Elemento	N [kN]	M [kN * m]
Rene sx	1723	-29
Rene dx	1737	-30
Chiave	2107	48

Verifica nei confronti dell'apertura delle fessure

Relativamente alla verifica a fessurazione si segnala che, essendo la sezione interamente compressa, la verifica è soddisfatta nei confronti del limite imposto sulla decompressione della sezione.