

# ASSE VIARIO MARCHE – UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA MAXI LOTTO 2

LAVORI DI COMPLETAMENTO DELLA DIRETTRICE PERUGIA ANCONA:
SS. 318 DI "VALFABBRICA". TRATTO PIANELLO – VALFABBRICA
SS. 76 "VAL D'ESINO". TRATTI FOSSATO VICO – CANCELLI E ALBACINA – SERRA SAN QUIRICO
"PEDEMONTANA DELLE MARCHE", TRATTO FABRIANO – MUCCIA – SFERCIA

PROGETTO ESECUTIVO CONTRAENTE GENERALE: Il responsabile del Contraente Generale: Il responsabile Integrazioni delle Prestazioni Specialistiche: Ing. Federico Montanari Ing. Salvatore Lieto PROGETTAZIONE: Associazione Temporanea di Imprese Mandataria: PROGETTAZIONE Lombardi sa LOMBARDI-REICO INGEGNERI CONSULENTI PROGIN S.P.A INGEGNERIA S. r. L. RESPONSABILE DELLA PROGETTAZIONE PER l'ATI Ing. Antonio Grimaldi DEI GEOLOGI DELLE ORDINE *GEOLOGO* NGEGNERI Fabrizio PONTONI Dott. Geol. Fabrizio Pontoni ROMA Geologo Specialista N. 176 COORDINATORE DELLA 20860 BO SEZIONE SICUREZZA IN FASE DI PROGETTAZIONE Ing. Michele Curiale IL RESPONSABILE DEL PROCEDIMENTO Ing. Giulio Petrizzelli SCALA: 2.1.2 PEDEMONTANA DELLE MARCHE Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord DATA: OPERE D'ARTE MINORI: Opere di sostegno e dreni Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40 Maggio 2017 Relazione tecnica e di calcolo Codice Unico di Progetto (CUP) F12C0300050021 (Assegnato CIPE 23-12-2015) Opera Tratto Settore CEE WBS Id. doc. Rev N. prog. 7 3 Ε 9 RIEIL 2 1 2 S Codice Elaborato:

Redatto

**PROGIN** 

**PROGIN** 

Controllato

S. LIETO

Approvato A.GRIMALDI

REV.

Α

DATA

Maggio 2017

**DESCRIZIONE** 

Emissione per Validazione RINA



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS    | ld.<br>doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|--------|-------------|----------|------|--------------|
| L073  | 212    | Е       | 17  | OS0900 | RFI         | 01       |      | 2 di 136     |

# INDICE

| 1.         | GENERALITA'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3         |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1.1        | DESCRIZIONE DELLE OPERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3         |
| <b>2</b> . | UNITA' DI MISURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4         |
| <b>3</b> . | NORMATIVA DI RIFERIMENTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4         |
| 4.         | CARATTERISTICHE DEI MATERIALI IMPIEGATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5         |
| 4.1        | CALCESTRUZZO PARAMENTO MURI C25/305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 4.2        | 0, 12 0 2 1 1 1 2 2 2 2 2 2 1 1 2 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 4.3        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| <b>5.</b>  | CARATTERIZZAZIONE GEOTECNICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 5.1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| <b>6</b> . | CARATTERIZZAZIONE SISMICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| <b>7.</b>  | VERIFICHE STRUTTURALI – CRITERI GENERALI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| 7.1<br>7.2 | VERIFICA SLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 8.         | CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 8.1        | STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 9.         | ANALISI DEI CARICHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 9.1        | CARICHI FISSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| 9.2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 9.3        | SOVRACCARICHI ACCIDENTALI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 9.4        | , = 0 = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 10.        | COMBINAZIONI DI CALCOLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _         |
| 11.        | RISULTATI ANALISI E VERIFICHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>28</b> |
| 11.        | THOOLING TO THE PROPERTY OF TH |           |
|            | 2 RISULTATI ANALISI E VERIFICHE MURI DI TIPO 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| ALLE       | GATO 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
|            | TABULATI DI CALCOLO MURO TIPO 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48        |
| ALLE       | GATO 2 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|            | TABULATI DI CALCOLO MURO TIPO 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92        |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| L073 212 E 17 080900 COC. 01 A 3 di 1 |  |  |  | Settore<br>E |  | WBS<br>OS0900 | aoc. | N.prog.<br>01 |  | Pag.diPag<br>3 di 136 |
|---------------------------------------|--|--|--|--------------|--|---------------|------|---------------|--|-----------------------|
|---------------------------------------|--|--|--|--------------|--|---------------|------|---------------|--|-----------------------|

# 1. GENERALITA'

Nell'ambito dei lavori di completamento della direttrice Perugia – Ancona "Pedemontana delle Marche": Sub Lotto 2.2 Tratto Fabriano – Muccia Sfercia, è prevista la realizzazione di muri in situati tra Pk 4+369.71 e Pk 4+561.50. Nella presente relazione viene riportato il dimensionamento, le analisi e le verifiche strutturali e geotecniche delle opere.

#### 1.1 DESCRIZIONE DELLE OPERE

Nella seguente tabella vengono riassunte le caratteristiche geometriche dei muri in oggetto:

| Lato | Pk. IN<br>(Km) | Pk. FIN<br>(Km) | Descrizione                              | Denominazione |
|------|----------------|-----------------|------------------------------------------|---------------|
| DX   | 4+680          | 4+844           | Muro di controripa con 2 pali allineati  | Tipo 2        |
| DA   | 4+000          | 4+044           | Muro di controripa su fondazione diretta | Tipo 1        |

| Denominazione | Hmax<br>[m] | Lfond<br>[m] | Sfond.<br>[m] | n° Pali<br>(Allineati) | Lpali<br>[m] |
|---------------|-------------|--------------|---------------|------------------------|--------------|
| TIPO 2        | 4.50        | 4.60         | 1.0           | 2                      | 14           |
| TIPO 1        | 3.00        | 3.60         | 0.6           | -                      | -            |

Di seguito si riportano a titolo indicativo pianta e profilo dei muri in esame:

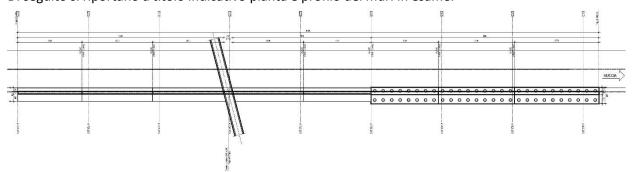



Figura 1: Pianta Muri

Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento.



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| L073   212   E   17   OS0900   GOS.   01   A   4 di 136 | Opera<br>L073 | Tratto<br>212 | Settore<br>E |  | WBS<br>OS0900 | ld.<br>doc.<br>PB | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>4 di 136 |
|---------------------------------------------------------|---------------|---------------|--------------|--|---------------|-------------------|----------------|-----------|--------------------------|
|---------------------------------------------------------|---------------|---------------|--------------|--|---------------|-------------------|----------------|-----------|--------------------------|

# 2. UNITA' DI MISURA

Nel seguito si adotteranno le seguenti unità di misura:

per le lunghezze per i carichi per le azioni di calcolo per le tensioni

 $\Rightarrow$  m, mm  $\Rightarrow$  kN, kN/m<sup>2</sup>, kN/m<sup>3</sup>  $\Rightarrow$  kN, kNm

 $\Rightarrow$  MPa, kPa

## 3. NORMATIVA DI RIFERIMENTO

Nella redazione del progetto esecutivo si è fatto riferimento ai seguenti documenti normativi.

• D.M. 14/01/2008.

Norme tecniche per le costruzioni (NTC).

• Circolare del02/02/2009.

Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. del 14/01/2008.

UNI EN1993 -1-1.

EUROCODICE 2, parte 1.1. Progettazione delle strutture in calcestruzzo. Regole generali e regole per gli edifici.

UNI EN1993 -1-1.

EUROCODICE 3, parte 1.1. Progettazione delle strutture in acciaio. Regole generali e regole per gli edifici.

UNI EN1993 -1-2.

EUROCODICE 3. Parte 2. Progettazione delle strutture in acciaio. Ponti di acciaio.

UNI EN 1998-1.

EUROCODICE 8, parte 1. Progettazione delle strutture per la resistenza sismica. Regole generali, azioni sismiche e regole per gli edifici

• UNI EN 1998-2.

EUROCODICE 8, parte 2. Ponti.



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| L073   212   E   17   OS0900   CCC.   01   A   5 di 1 |  |  |  |  | WBS<br>OS0900 | acc. | N.prog.<br>01 |  | Pag. di Pag.<br>5 di 136 |
|-------------------------------------------------------|--|--|--|--|---------------|------|---------------|--|--------------------------|
|-------------------------------------------------------|--|--|--|--|---------------|------|---------------|--|--------------------------|

## 4. CARATTERISTICHE DEI MATERIALI IMPIEGATI

Per la realizzazione delle strutture sono stati previsti i materiali di seguito descritti. Per i controlli si fa riferimento a quanto previsto dal DM 14/01/2008

Tabella – Calcestruzzi: classi di resistenza, classi di esposizione e specifiche

| Elemento                                 | Classe | Classe di Esposizione | a/c | Tipi di<br>cementi | Quantitativo di cemento [kg/m³] | Classi di<br>consistenza |
|------------------------------------------|--------|-----------------------|-----|--------------------|---------------------------------|--------------------------|
| Calcestruzzo per magrone di fondazione   | C12/15 | -                     | -   | CEM III-IV         | -                               | -                        |
| Calcestruzzo per strutture in Elevazione | C25/30 | XC2                   | 0.5 | CEM III-IV         | 300                             | S4                       |
| Calcestruzzo armato fondazione           | C32/40 | XA2                   | 0.5 | CEM III-IV         | 360                             | S4                       |

Per le barre d'armatura del calcestruzzo si utilizza acciaio ad aderenza migliorata B450C.

# 4.1 CALCESTRUZZO PARAMENTO MURI C25/30

• Rck = 30 MPa resistenza caratteristica cubica a 28 giorni

• fck = 24.9 MPa resistenza caratteristica cilindrica a 28 giorni

• fcm = fck + 8 = 32.9 MPa resistenza cilindrica valore medio

• fctm = 0.30·fck2/3 = 2.56 MPa resistenza media a trazione semplice (assiale)

• fctk = 0.7·fctm =1.79 MPa resistenza caratteristica a trazione

• Ecm = 22000 [fcm/10]0.3 = 31447 MPa modulo elastico

• y = 25.0 kN/m3 peso per unità di volume

#### Resistenze di progetto allo SLU

• fcd = 0.85·fck/γc = 14.1 MPa; γc = 1.50 resistenza di progetto a compressione

fctd = fctk/γc = 1.19 MPa resistenza di progetto a trazione

#### Resistenze di progetto allo SLE

 $\sigma_{c,r} = 0.60 \cdot fck = 14.9 \text{ MPa}$  tensione limite in comb. caratteristica (rara)  $\sigma_{c,f} = 0.45 \cdot fck = 11.2 \text{ MPa}$  tensione limite in comb. quasi permanente

•  $\sigma t = fctm/1.2 = 2.13 \text{ MPa}$  tensione limite di fessurazione (trazione)

#### 4.2 CALCESTRUZZO C32/40

R<sub>ck</sub> = 40 MPa resistenza caratteristica cubica a 28 giorni
 f<sub>ck</sub> = 32 MPa resistenza caratteristica cilindrica a 28 giorni

•  $f_{cm} = f_{ck} + 8 = 40 \text{ MPa}$  resistenza cilindrica valore medio

•  $f_{ctm} = 0.30 \cdot f_{ck}^{2/3} = 3.02 \text{ MPa}$  resistenza media a trazione semplice (assiale)

•  $f_{ctk} = 0.7 \cdot f_{ctm} = 2.12 \text{ MPa}$  resistenza caratteristica a trazione

 $E_{cm} = 22000 [f_{cm}/10]^{0.3} = 33346 \text{ MPa}$  modulo elastico

•  $y = 25.0 \text{ kN/m}^3$  peso per unità di volume

#### Resistenze di progetto allo SLU

•  $f_{cd} = 0.85 \cdot f_{ck}/\gamma_c = 18.1$  MPa;  $\gamma_c = 1.50$  resistenza di progetto a compressione

•  $f_{ctd} = f_{ctk}/\gamma_c = 1.41 \text{ MPa}$  resistenza di progetto a trazione



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera | Tratto | Settore |    |        |     | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|----|--------|-----|----------|------|--------------|
| L073  | 212    | Е       | 17 | OS0900 | REL | 01       | Α    | 6 di 136     |

#### Resistenze di progetto allo SLE

 $\sigma_{c,r} = 0.60 \cdot f_{ck} = 19.2 \text{ MPa}$  tensione limite in comb. caratteristica (rara)  $\sigma_{c,f} = 0.45 \cdot f_{ck} = 14.4 \text{ MPa}$  tensione limite in comb. quasi permanente  $\sigma_t = f_{ctm}/1.2 = 2.52 \text{ MPa}$  tensione limite di fessurazione (trazione)

#### 4.3 ACCIAIO DI ARMATURA B450C

• f<sub>yk</sub> = 450 MPa resistenza caratteristica di snervamento

• f<sub>tk</sub> = 540 MPa resistenza caratteristica a rottura

• E<sub>s</sub> = 210000 MPa modulo elastico

Resistenza di progetto allo SLU

•  $f_{yd} = f_{yk}/\gamma_s = 391$  MPa;  $\gamma_s = 1.15$  resistenza di progetto a compressione

Resistenza di progetto allo SLE

•  $\sigma_{s,r} = 0.80 \cdot f_{yk} = 360 \text{ MPa}$  tensione limite in comb. rara



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| L073   212   E   17   OS0900   GCC.   01   A   7 di |  |  | Settore<br>E |  | WBS<br>OS0900 | acc. | N. prog.<br>01 |  | Pag.diPag.<br>7 di 136 |
|-----------------------------------------------------|--|--|--------------|--|---------------|------|----------------|--|------------------------|
|-----------------------------------------------------|--|--|--------------|--|---------------|------|----------------|--|------------------------|

# 5. CARATTERIZZAZIONE GEOTECNICA

Nel presente paragrafo si riporta la caratterizzazione geotecnica specifica per l'opera in esame. Per dettagli si rimanda alla *Relazione Geotecnica Generale*.

La stratigrafia di progetto è indicata nelle tabelle seguenti.

Tabella 1 – Stratigrafia di riferimento

| Unità geotecnica      | Profondità [m] da p.c. |                                                  |
|-----------------------|------------------------|--------------------------------------------------|
| Ecla                  | 7.0                    | Depositi alluvionali limoso argillosi            |
| Salt                  | 3.0                    | Substrato alterato limoso argilloso              |
| Ap/Pa                 | >10.0                  | Substrato arenaceo pelitico / Substrato pelitico |
| Ар/га                 | >10.0                  | areanaceo                                        |
| Falda: si assume pros | sima al piano campagna |                                                  |

I parametri geotecnici considerati per l'opera in esame sono riportati nella seguente tabella.

Tabella 2 - Parametri geotecnici

|            | γ<br>[kN/m³] | φ'<br>[°] | c'<br>[kPa] |
|------------|--------------|-----------|-------------|
| Ecla       | 19.0         | 25        | 10          |
| Salt       | 20.0         | 27        | 20          |
| Ap/Pa (**) | 23.0         | 31        | 120         |

γ = peso di volume naturale

 $\phi'$  = angolo di resistenza al taglio

c' = coesione drenata

# 5.1 CAPACITA' PORTANTE DEI PALI

Nella seguente tabella si riportano i parametri principali per il calcolo della capacità portante dei pali dell'opera in esame.

I parametri di calcolo della portanza dei pali vengono riportati nella seguente tabella, mentre per la metodologia di calcolo si rimanda alla *Relazione Geotecnica Generale*.

Tabella 3 –Parametri per il calcolo della capacità portante dei pali

| Approccio    | n. di<br>verticali<br>indagate | ξ <sub>3</sub> | Υs   | γь   | F <sub>SL</sub> | F <sub>SB</sub> | D <sub>palo</sub><br>[mm] |
|--------------|--------------------------------|----------------|------|------|-----------------|-----------------|---------------------------|
| 2 (A1+M1+R3) | 2                              | 1.65           | 1.15 | 1.35 | 1.9             | 2.2             | 800                       |

Nella tabella seguente si riportano i valori della portata di progetto (Q<sub>d</sub>) per l'opera in esame; il significato dei termini riportati è il seguente:

- L<sub>p</sub> = Lunghezza utile del palo
- Q<sub>II</sub> = Portata laterale limite
- Q<sub>bl</sub> = Portata di base limite
- W<sub>p</sub> = Peso efficace del palo
- Q<sub>u</sub> = Portata totale limite
- $Q_d$  = Portata di progetto =  $Q_{II}/F_{S,I} + Q_{bI}/F_{S,b} W_p$



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|  | era<br>173 | Tratto<br>212 | Settore<br>E |  | WBS<br>OS0900 | ld.<br>doc. | N. prog.<br>01 |  | Pag. di Pag.<br>8 di 136 |
|--|------------|---------------|--------------|--|---------------|-------------|----------------|--|--------------------------|
|--|------------|---------------|--------------|--|---------------|-------------|----------------|--|--------------------------|

# Tabella – Capacità portante palo D=800 mm

| Lp<br>m        | Qll<br>kN      | Qbl<br>kN      | Wp<br>kN   | Qu<br>kN         | Qd<br>kN       |
|----------------|----------------|----------------|------------|------------------|----------------|
|                |                |                |            |                  | ·              |
| .00            | 0.             | 571.           | 0.         | 571.             | 248.           |
| .50            | 11.            | 611.           | 1.         | 620.             | 270.           |
| 1.00<br>1.50   | 25.<br>42.     | 650.<br>690.   | 3.<br>4.   | 673.<br>728.     | 293.<br>318.   |
| 2.00           | 42.<br>62.     | 729.           | 5.         | 728.             | 344.           |
| 2.50           | 86.            | 769.           | 6.         | 848.             | 372.           |
| 3.00           | 112.           | 718.           | 8.         | 823.             | 362.           |
| 3.50           | 142.           | 667.           | 9.         | 800.             | 354.           |
| 4.00           | 174.           | 616.           | 10.        | 780.             | 347.           |
| 4.50           | 210.           | 565.           | 11.        | 764.             | 342.           |
| 5.00           | 249.           | 514.           | 13.        | 751.             | 339.           |
| 5.50           | 291.           | 689.           | 14.        | 966.             | 435.           |
| 6.00           | 337.           | 864.           | 15.        | 1185.            | 533.           |
| 6.50<br>7.00   | 386.<br>455.   | 1038.<br>1213. | 16.<br>18. | 1408.<br>1651.   | 633.<br>743.   |
| 7.50           | 627.           | 1373.          | 19.        | 1980.            | 899.           |
| 8.00           | 815.           | 1532.          | 20.        | 2327.            | 1064.          |
| 8.50           | 1004.          | 1692.          | 21.        | 2674.            | 1229.          |
| 9.00           | 1192.          | 1851.          | 23.        | 3021.            | 1394.          |
| 9.50           | 1381.          | 2011.          | 24.        | 3367.            | 1558.          |
| 10.00          | 1569.          | 2011.          | 25.        | 3555.            | 1654.          |
| 10.50          | 1758.          | 2011.          | 26.        | 3742.            | 1749.          |
| 11.00          | 1946.          | 2011.          | 28.        | 3929.            | 1845.          |
| 11.50          | 2135.          | 2011.          | 29.        | 4116.            | 1940.          |
| 12.00          | 2323.          | 2011.          | 30.        | 4304.            | 2035.          |
| 12.50          | 2512.          | 2011.          | 31.        | 4491.            | 2131.          |
| 13.00<br>13.50 | 2700.<br>2892. | 2011.<br>2011. | 33.<br>34. | 4678.<br>4868.   | 2226.<br>2323. |
| 14.00          | 3102.          | 2011.          | 34.        | 5178.            | 2323.          |
| 14.50          | 3316.          | 2212.          | 36.        | 5491.            | 2626.          |
| 15.00          | 3530.          | 2312.          | 38.        | 5804.            | 2778.          |
| 15.50          | 3743.          | 2413.          | 39.        | 6117.            | 2930.          |
| 16.00          | 3957.          | 2513.          | 40.        | 6430.            | 3082.          |
| 16.50          | 4170.          | 2513.          | 41.        | 6642.            | 3190.          |
| 17.00          | 4384.          | 2513.          | 43.        | 6855.            | 3298.          |
| 17.50          | 4598.          | 2513.          | 44.        | 7067.            | 3407.          |
| 18.00          | 4811.          | 2513.          | 45.        | 7279.            | 3515.          |
| 18.50<br>19.00 | 5025.<br>5239. | 2513.<br>2513. | 46.<br>48. | 7492.<br>7704.   | 3623.          |
| 19.00          | 5452.          | 2513.          | 48.        | 7704.            | 3731.<br>3840. |
| 20.00          | 5666.          | 2513.          | 50.        | 8129.            | 3948.          |
| 20.50          | 5879.          | 2513.          | 52.        | 8341.            | 4056.          |
| 21.00          | 6093.          | 2513.          | 53.        | 8554.            | 4165.          |
| 21.50          | 6307.          | 2513.          | 54.        | 8766.            | 4273.          |
| 22.00          | 6520.          | 2513.          | 55.        | 8978.            | 4381.          |
| 22.50          | 6734.          | 2513.          | 57.        | 9191.            | 4489.          |
| 23.00          | 6948.          | 2513.          | 58.        | 9403.            | 4598.          |
| 23.50          | 7161.          | 2513.          | 59.        | 9615.            | 4706.          |
| 24.00          | 7375.          | 2513.          | 60.        | 9828.            | 4814.          |
| 24.50          | 7588.          | 2513.          | 62.        | 10040.           | 4923.          |
| 25.00<br>25.50 | 7802.<br>8016. | 2513.<br>2513. | 63.<br>64. | 10253.<br>10465. | 5031.<br>5139. |
| 26.00          | 8016.          | 2513.          | 65.        | 10465.           | 5139.          |
| 26.50          | 8443.          | 2513.          | 67.        | 10890.           | 5356.          |
| 27.00          | 8657.          | 2513.          | 68.        | 11102.           | 5464.          |
| 27.50          | 8870.          | 2513.          | 69.        | 11314.           | 5572.          |
| 28.00          | 9084.          | 2513.          | 70.        | 11527.           | 5681.          |
| 28.50          | 9297.          | 2513.          | 72.        | 11739.           | 5789.          |
|                |                |                |            |                  |                |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E |    | WBS<br>OS0900 | ld.<br>doc. | N. prog.<br>01 |     | Pag.diPag.<br>9 di 136 |   |
|---------------|---------------|--------------|----|---------------|-------------|----------------|-----|------------------------|---|
| 20/0          | 212           | _            | 17 | 000700        | REL.        | 01             | , , | 7 di 100               | Į |

# Tabella – Capacità portante a trazione palo D=800 mm

| 1.50       42.       0.       -11.       53.       31.         2.00       62.       0.       -15.       77.       44.         2.50       86.       0.       -19.       104.       59.         3.00       112.       0.       -23.       135.       75.         3.50       142.       0.       -26.       168.       93.         4.50       210.       0.       -34.       244.       132.         5.00       249.       0.       -38.       287.       155.         5.50       291.       0.       -41.       332.       178.         6.00       337.       0.       -45.       382.       203.         6.50       386.       0.       -49.       435.       230.         7.50       627.       0.       -53.       508.       266.         7.50       627.       0.       -57.       683.       351.         8.00       815.       0.       -60.       875.       443.         8.50       1004.       0.       -64.       1068.       535.         9.50       1381.       0.       -72.       1452.       720.<                                                                                                                                                                                                                                                                       | Lp<br>m | Qll<br>kN | Qbl<br>kN | Wp<br>kN | Qu<br>kN | Qd<br>kN |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|----------|----------|----------|
| 1.00         25.         0.         -8.         32.         19.           1.50         42.         0.         -11.         53.         31.           2.00         62.         0.         -15.         77.         44.           2.50         86.         0.         -19.         104.         59.           3.00         112.         0.         -23.         135.         75.           3.50         142.         0.         -26.         168.         93.           4.00         174.         0.         -30.         204.         112.           4.50         201.         0.         -34.         244.         132.           5.00         249.         0.         -38.         287.         155.           5.50         291.         0.         -41.         332.         178.           6.00         337.         0.         -45.         382.         203.           6.50         386.         0.         -49.         435.         230.           7.50         627.         0.         -57.         683.         351.           8.00         815.         0.         -60.         875.                                                                                                                                                                                         |         |           |           | 0.       |          |          |
| 1.50       42.       0.       -11.       53.       31.         2.00       62.       0.       -15.       77.       44.         2.50       86.       0.       -19.       104.       59.         3.00       112.       0.       -23.       135.       75.         3.50       142.       0.       -26.       168.       93.         4.00       174.       0.       -30.       204.       112.         4.50       210.       0.       -34.       244.       132.         5.00       249.       0.       -38.       287.       155.         5.50       291.       0.       -41.       332.       178.         6.00       337.       0.       -45.       382.       203.         7.50       627.       0.       -57.       683.       351.         7.50       627.       0.       -57.       683.       351.         8.50       1004.       0.       -64.       1068.       535.         9.50       1381.       0.       -72.       1452.       720.         10.50       1758.       0.       -779.       1837.       9                                                                                                                                                                                                                                                                       | .50     | 11.       | 0.        |          | 15.      | 9.       |
| 2.00         62.         0.         -15.         77.         44           2.50         86.         0.         -19.         104.         59           3.00         112.         0.         -23.         135.         75.           3.50         142.         0.         -26.         168.         93           4.00         174.         0.         -30.         204.         112.           4.50         210.         0.         -34.         244.         132.           5.00         249.         0.         -38.         287.         155.           5.50         291.         0.         -41.         332.         178.           6.00         337.         0.         -45.         382.         203.           6.50         386.         0.         -49.         435.         230.           7.50         627.         0.         -57.         683.         351.           8.00         815.         0.         -60.         875.         443.           8.50         1004.         0.         -64.         1068.         535.           9.50         1381.         0.         -775.         1645.<                                                                                                                                                                               | 1.00    | 25.       | 0.        |          |          | 19.      |
| 2.50         86.         0.         -19.         104.         59.           3.00         112.         0.         -23.         135.         75.           3.50         142.         0.         -26.         168.         93.           4.00         174.         0.         -30.         204.         112.           4.50         210.         0.         -34.         244.         132.           5.00         249.         0.         -38.         287.         155.           5.50         291.         0.         -41.         332.         178.           6.00         337.         0.         -45.         382.         203.           7.00         455.         0.         -53.         508.         266.           7.50         627.         0.         -57.         683.         351.           8.00         815.         0.         -66.         875.         443.           8.50         1004.         0.         -64.         1068.         535.           9.50         1381.         0.         -72.         1452.         720.           10.00         1569.         0.         -75. <t< td=""><td></td><td></td><td>0.</td><td></td><td></td><td>31.</td></t<>                                                                                                           |         |           | 0.        |          |          | 31.      |
| 3.00 112. 023. 135. 75. 3.50 142. 026. 168. 93. 4.00 174. 030. 204. 112. 4.50 210. 034. 244. 132. 5.00 249. 038. 287. 155. 5.50 291. 041. 332. 178. 6.00 337. 045. 382. 203. 6.50 386. 049. 435. 230. 7.00 455. 053. 508. 266. 7.50 627. 057. 683. 351. 8.00 815. 060. 875. 443. 8.50 1004. 064. 1068. 535. 9.00 1192. 066. 1260. 628. 9.50 1381. 072. 1452. 720. 10.50 1758. 075. 1645. 812. 10.50 1758. 079. 1837. 904. 11.00 1946. 083. 2029. 997. 11.50 2135. 087. 2221. 1089. 12.50 2512. 094. 2606. 1273. 13.00 2700. 098. 2798. 1366. 15.50 3743. 0102. 2994. 1459. 14.00 3102. 0106. 3208. 1562. 14.50 353. 0117. 3860. 1874. 16.00 3957. 0117. 3860. 1874. 16.50 458. 0124. 4295. 2082. 17.00 4384. 0128. 4512. 2186. 17.50 4598. 0132. 4730. 2290. 18.50 5025. 0139. 5164. 2499. 19.00 5239. 0143. 5382. 2603. 19.50 5879. 0155. 6034. 2499. 19.00 5239. 0162. 6469. 3123. 22.00 6520. 0132. 4730. 2290. 23.00 6948. 0132. 4730. 2290. 22.50 6520. 0147. 5599. 2707. 20.00 5666. 0151. 5817. 2811. 20.50 5879. 0126. 6469. 3123. 23.00 6948. 0177. 7338. 3539. 24.50 7588. 0177. 7338. 3539. 24.50 7588. 0185. 7773. 3747. 25.50 8870. 0188. 7991. 3851.                                                                                                                     |         |           |           |          |          | 44.      |
| 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |           |           |          |          | 59.      |
| 4.00       174.       0.       -30.       204.       112.         4.50       210.       0.       -34.       244.       132.         5.00       249.       0.       -38.       287.       155.         5.50       291.       0.       -41.       332.       178.         6.00       337.       0.       -45.       382.       203.         6.50       386.       0.       -49.       435.       230.         7.00       455.       0.       -53.       508.       266.         7.50       627.       0.       -57.       683.       351.         8.00       815.       0.       -60.       875.       443.         8.50       1004.       0.       -64.       1068.       535.         9.00       1192.       0.       -68.       1260.       628.         9.50       1381.       0.       -72.       1452.       720.         10.00       1569.       0.       -75.       1645.       812         10.50       1758.       0.       -79.       1837.       904         11.50       1946.       0.       -83.       2029. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                               |         |           |           |          |          |          |
| 4.50       210.       0.       -34.       244.       132.         5.00       249.       0.       -38.       287.       155.         5.50       291.       0.       -41.       332.       203.         6.50       386.       0.       -49.       435.       230.         7.00       455.       0.       -53.       508.       266.         7.50       627.       0.       -57.       683.       351.         8.00       815.       0.       -60.       875.       443.         8.50       1004.       0.       -64.       1068.       535.         9.00       1192.       0.       -66.       875.       443.         8.50       1004.       0.       -64.       1068.       535.         9.50       1381.       0.       -72.       1452.       720.         10.50       1569.       0.       -75.       1645.       812         10.50       1578.       0.       -779.       1837.       904         11.50       2135.       0.       -87.       2221.       1089         12.00       2323.       0.       -90.       24                                                                                                                                                                                                                                                              |         |           |           |          |          | 93.      |
| 5.00         249.         0.         -38.         287.         155.           5.50         291.         0.         -41.         332.         178.           6.00         337.         0.         -45.         382.         203.           6.50         386.         0.         -49.         435.         230.           7.00         455.         0.         -53.         508.         266.           7.50         627.         0.         -57.         683.         351.           8.00         815.         0.         -60.         875.         443.           8.50         1004.         0.         -64.         1068.         535.           9.50         1381.         0.         -72.         1452.         720.           10.00         1569.         0.         -75.         1645.         812           10.50         1758.         0.         -79.         1837.         904           11.00         1946.         0.         -83.         2029.         99.           11.50         2135.         0.         -87.         2221.         1089           12.50         2512.         0.         -90. <td></td> <td></td> <td></td> <td></td> <td></td> <td>112.</td>                                                                                                         |         |           |           |          |          | 112.     |
| 5.50         291.         0.         -41.         332.         178.           6.00         337.         0.         -45.         382.         203.           6.50         386.         0.         -49.         435.         230.           7.00         455.         0.         -53.         508.         266.           7.50         627.         0.         -57.         683.         351.           8.00         815.         0.         -60.         875.         443.           8.50         1004.         0.         -64.         1068.         535.           9.00         1192.         0.         -68.         1260.         628.           9.50         1381.         0.         -72.         1452.         720.           10.00         1569.         0.         -75.         1645.         812.           10.50         1758.         0.         -79.         1837.         904           11.00         1946.         0.         -83.         2029.         997           11.50         2135.         0.         -87.         2221.         1089           12.50         2512.         0.         -94.                                                                                                                                                                      |         |           |           |          |          |          |
| 6.00 337. 045. 382. 203. 6.50 386. 049. 435. 230. 7.00 455. 053. 508. 266. 7.50 627. 057. 683. 351. 8.00 815. 060. 875. 443. 8.50 1004. 064. 1068. 535. 9.00 1192. 068. 1260. 628. 9.50 1381. 072. 1452. 720. 10.00 1569. 075. 1645. 812. 10.50 1758. 079. 1837. 904 11.00 1946. 083. 2029. 997 11.50 2135. 087. 2221. 1089 12.50 2512. 090. 2414. 1181 12.50 233. 090. 2414. 1181 25.50 2512. 094. 2606. 1273 13.00 2700. 098. 2798. 1366 13.50 3316. 0102. 2994. 1459 14.00 3102. 0106. 3208. 1562 14.50 3316. 0109. 3425. 1666 15.00 3530. 0113. 3643. 1770 15.50 3743. 0117. 3860. 1874 16.00 3957. 0121. 4077. 1978 16.50 4170. 0124. 4295. 2082 17.00 4384. 0128. 4512. 2186 17.50 4598. 0132. 4730. 2290 18.50 5025. 0139. 5164. 2499 19.00 5239. 0143. 5382. 2603 19.50 5452. 0147. 5599. 2707 20.00 5666. 0151. 5817. 2811 20.50 5879. 0125. 6034. 2915 21.50 6307. 0162. 6469. 3123 22.00 6520. 0162. 6469. 3123 22.00 6520. 0166. 6686. 3227 22.50 634. 0170. 6904. 3331 23.50 7358. 0155. 6034. 2915 21.50 6307. 0162. 6469. 3123 22.00 6520. 0166. 6686. 3227 22.50 6734. 0177. 7338. 3539 24.00 7375. 0181. 7556. 3643 24.50 7588. 0173. 7121. 3435 25.50 8870. 0188. 7991. 3851 25.50 8870. 01996. 8425. 4060 26.50 8443. 0200. 8643. 4164 27.50 8870. 0204. 8860. 4268 |         |           |           |          |          | 155.     |
| 6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |           |           |          |          | 178.     |
| 7.00         455.         0.         -53.         508.         266.           7.50         627.         0.         -57.         683.         351.           8.00         815.         0.         -60.         875.         443.           8.50         1004.         0.         -64.         1068.         535.           9.00         1192.         0.         -68.         1260.         628.           9.50         1381.         0.         -72.         1452.         720.           10.00         1569.         0.         -75.         1645.         812.           10.50         1758.         0.         -79.         1837.         904           11.00         1946.         0.         -83.         2029.         997           11.50         2135.         0.         -87.         2221.         1089           12.00         2323.         0.         -90.         2414.         1181           12.50         2512.         0.         -94.         2606.         1273           13.00         2700.         0.         -98.         2798.         1366           13.50         2892.         0.                                                                                                                                                                          |         |           |           |          |          | 203.     |
| 7.50       627.       0.       -57.       683.       351.         8.00       815.       0.       -60.       875.       443.         8.50       1004.       0.       -64.       1068.       535.         9.00       1192.       0.       -68.       1260.       628.         9.50       1381.       0.       -72.       1452.       720.         10.00       1569.       0.       -75.       1645.       812.         10.50       1758.       0.       -79.       1837.       904         11.00       1946.       0.       -83.       2029.       997         11.50       2135.       0.       -87.       2221.       1089         12.00       2323.       0.       -90.       2414.       1181         12.50       2512.       0.       -94.       2606.       1273         13.00       2700.       0.       -98.       2798.       1366         13.50       2892.       0.       -102.       2994.       1459         14.00       3102.       0.       -106.       3208.       1562         14.50       3316.       0.       -109                                                                                                                                                                                                                                                     |         |           |           |          |          |          |
| 8.00       815.       0.       -60.       875.       443.         8.50       1004.       0.       -64.       1068.       535.         9.00       1192.       0.       -68.       1260.       628.         9.50       1381.       0.       -72.       1452.       720.         10.00       1569.       0.       -75.       1645.       812.         10.50       1758.       0.       -79.       1837.       904         11.00       1946.       0.       -83.       2029.       997         11.50       2135.       0.       -87.       2221.       1089         12.00       2323.       0.       -90.       2414.       1181         12.50       2512.       0.       -94.       2606.       1273         13.50       2892.       0.       -102.       2994.       1459         14.00       3102.       0.       -106.       3208.       1562         14.50       3316.       0.       -109.       3425.       1666         15.00       3530.       0.       -117.       3860.       1874         16.50       4170.       0. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                   |         |           |           |          |          |          |
| 8.50       1004.       0.       -64.       1068.       535.         9.00       1192.       0.       -68.       1260.       628.         9.50       1381.       0.       -75.       1452.       720.         10.00       1569.       0.       -75.       1645.       812.         10.50       1758.       0.       -79.       1837.       904         11.00       1946.       0.       -83.       2029.       997         11.50       2135.       0.       -87.       2221.       1089         12.00       2323.       0.       -90.       2414.       1181         12.50       2512.       0.       -94.       2606.       1273         13.00       2700.       0.       -98.       2798.       1366         13.50       2892.       0.       -102.       2994.       1459         14.00       3102.       0.       -106.       3208.       1562         14.50       3316.       0.       -109.       3425.       1666         15.00       3530.       0.       -113.       3643.       1770         15.50       3743.       0.                                                                                                                                                                                                                                                        |         |           |           |          |          |          |
| 9.00       1192.       0.       -68.       1260.       628.         9.50       1381.       0.       -72.       1452.       720.         10.00       1569.       0.       -75.       1645.       812.         10.50       1758.       0.       -79.       1837.       904         11.00       1946.       0.       -83.       2029.       997         11.50       2135.       0.       -87.       2221.       1089         12.00       2323.       0.       -90.       2414.       1181         12.50       2512.       0.       -94.       2606.       1273         13.00       2700.       0.       -98.       2798.       1366         13.50       2892.       0.       -102.       2994.       1459         14.00       3102.       0.       -106.       3208.       1562         14.50       3316.       0.       -109.       3425.       1662         15.50       3743.       0.       -117.       3860.       1874         16.50       4170.       0.       -121.       4077.       1978         16.50       4170.       0.                                                                                                                                                                                                                                                      |         |           |           |          |          |          |
| 9.50       1381.       0.       -72.       1452.       720.         10.00       1569.       0.       -75.       1645.       812         10.50       1758.       0.       -79.       1837.       904         11.00       1946.       0.       -83.       2029.       997         11.50       2135.       0.       -87.       2221.       1089         12.00       2323.       0.       -90.       2414.       1181         12.50       2512.       0.       -94.       2606.       1273         13.00       2700.       0.       -98.       2798.       1366         13.50       2892.       0.       -102.       2994.       1459         14.00       3102.       0.       -106.       3208.       1562         14.50       3316.       0.       -109.       3425.       1666         15.00       3530.       0.       -113.       3643.       1770         16.50       3743.       0.       -117.       3860.       1874         16.50       4170.       0.       -124.       4295.       2082         17.50       4598.       0.                                                                                                                                                                                                                                                     |         |           |           |          |          |          |
| 10.00       1569.       0.       -75.       1645.       812         10.50       1758.       0.       -79.       1837.       904         11.00       1946.       0.       -83.       2029.       997         11.50       2135.       0.       -87.       2221.       1089         12.00       2323.       0.       -90.       2414.       1181         12.50       2512.       0.       -94.       2606.       1273         13.00       2700.       0.       -98.       2798.       1366         13.50       2892.       0.       -102.       2994.       1459         14.00       3102.       0.       -106.       3208.       1562         14.50       3316.       0.       -109.       3425.       1666         15.00       3530.       0.       -113.       3643.       1770         15.50       3743.       0.       -117.       3860.       1874         16.50       4170.       0.       -124.       4295.       2082         17.00       4384.       0.       -128.       4512.       2186         17.50       4598.       0.                                                                                                                                                                                                                                                   |         |           |           |          |          |          |
| 10.50       1758.       0.       -79.       1837.       904         11.00       1946.       0.       -83.       2029.       997         11.50       2135.       0.       -87.       2221.       1089         12.00       2323.       0.       -90.       2414.       1181         12.50       2512.       0.       -94.       2606.       1273         13.00       2700.       0.       -98.       2798.       1366         13.50       2892.       0.       -102.       2994.       1459         14.50       3316.       0.       -109.       3425.       1666         15.00       3530.       0.       -113.       3643.       1770         15.50       3743.       0.       -117.       3860.       1874         16.50       4170.       0.       -124.       4295.       2082         17.00       4384.       0.       -128.       4512.       2186         17.50       4598.       0.       -132.       4730.       2290         18.50       5025.       0.       -139.       5164.       2499         19.00       5239.       0.                                                                                                                                                                                                                                                 |         | 1381.     |           |          |          |          |
| 11.00       1946.       0.       -83.       2029.       997         11.50       2135.       0.       -87.       2221.       1089         12.00       2323.       0.       -90.       2414.       1181         12.50       2512.       0.       -94.       2606.       1273         13.00       2700.       0.       -98.       2798.       1366         13.50       2892.       0.       -102.       2994.       1459         14.00       3102.       0.       -106.       3208.       1562         14.50       3316.       0.       -109.       3425.       1666         15.00       3530.       0.       -113.       3643.       1770         15.50       3743.       0.       -117.       3860.       1874         16.00       3957.       0.       -121.       4077.       1978         16.50       4170.       0.       -124.       4295.       208         17.50       4384.       0.       -128.       4512.       2186         17.50       4598.       0.       -132.       4730.       2290         18.00       4811.       0. <td></td> <td></td> <td></td> <td></td> <td></td> <td>812.</td>                                                                                                                                                                                |         |           |           |          |          | 812.     |
| 11.50       2135.       0.       -87.       2221.       1089         12.00       2323.       0.       -90.       2414.       1181         12.50       2512.       0.       -94.       2606.       1273         13.00       2700.       0.       -98.       2798.       1366         13.50       2892.       0.       -102.       2994.       1459         14.00       3102.       0.       -106.       3208.       1562         14.50       3316.       0.       -109.       3425.       1666         15.00       3530.       0.       -113.       3643.       1770         15.50       3743.       0.       -117.       3860.       1874         16.00       3957.       0.       -121.       4077.       1978         16.50       4170.       0.       -124.       4295.       2082         17.00       4384.       0.       -128.       4512.       2186         17.50       4598.       0.       -132.       4730.       2290         18.50       5025.       0.       -139.       5164.       2499         19.00       5239.       0.<                                                                                                                                                                                                                                            |         |           |           |          |          |          |
| 12.00       2323.       0.       -90.       2414.       1181         12.50       2512.       0.       -94.       2606.       1273         13.00       2700.       0.       -98.       2798.       1366         13.50       2892.       0.       -102.       2994.       1459         14.00       3102.       0.       -106.       3208.       1562         14.50       3316.       0.       -109.       3425.       1666         15.00       3530.       0.       -113.       3643.       1770         15.50       3743.       0.       -117.       3860.       1874         16.00       3957.       0.       -121.       4077.       1978         16.50       4170.       0.       -124.       4295.       2082         17.00       4384.       0.       -128.       4512.       2186         17.50       4598.       0.       -132.       4730.       2290         18.50       5025.       0.       -139.       5164.       2499         19.00       5239.       0.       -143.       5382.       2603         19.50       5452.       0.                                                                                                                                                                                                                                            |         |           |           | -83.     |          | 997.     |
| 12.50       2512.       0.       -94.       2606.       1273         13.00       2700.       0.       -98.       2798.       1366         13.50       2892.       0.       -102.       2994.       1459         14.00       3102.       0.       -106.       3208.       1562         14.50       3316.       0.       -109.       3425.       1666         15.00       3530.       0.       -113.       3643.       1770         15.50       3743.       0.       -117.       3860.       1874         16.00       3957.       0.       -121.       4077.       1978         16.50       4170.       0.       -124.       4295.       2082         17.00       4384.       0.       -128.       4512.       2186         17.50       4598.       0.       -132.       4730.       2290         18.00       4811.       0.       -136.       4947.       2395         18.50       5025.       0.       -139.       5164.       2499         19.00       5239.       0.       -143.       5382.       2603         19.50       5452.       0                                                                                                                                                                                                                                            |         |           |           |          |          | 1089.    |
| 13.00       2700.       0.       -98.       2798.       1366         13.50       2892.       0.       -102.       2994.       1459         14.00       3102.       0.       -106.       3208.       1562         14.50       3316.       0.       -109.       3425.       1666         15.00       3530.       0.       -113.       3643.       1770         15.50       3743.       0.       -117.       3860.       1874         16.00       3957.       0.       -121.       4077.       1978         16.50       4170.       0.       -124.       4295.       2082         17.00       4384.       0.       -128.       4512.       2186         17.50       4598.       0.       -132.       4730.       2290         18.00       4811.       0.       -136.       4947.       2395         18.50       5025.       0.       -139.       5164.       2499         19.00       5239.       0.       -143.       5382.       2603         19.50       5452.       0.       -147.       5599.       2707         20.00       5666.                                                                                                                                                                                                                                                   |         |           |           |          |          |          |
| 13.50       2892.       0.       -102.       2994.       1459         14.00       3102.       0.       -106.       3208.       1562         14.50       3316.       0.       -109.       3425.       1666         15.00       3530.       0.       -113.       3643.       1770         15.50       3743.       0.       -117.       3860.       1874         16.00       3957.       0.       -121.       4077.       1978         16.50       4170.       0.       -124.       4295.       2082         17.00       4384.       0.       -128.       4512.       2186         17.50       4598.       0.       -132.       4730.       2290         18.00       4811.       0.       -136.       4947.       2395         18.50       5025.       0.       -139.       5164.       2499         19.00       5239.       0.       -143.       5382.       2603         19.50       5452.       0.       -147.       5599.       2707         20.00       5666.       0.       -151.       5817.       2811         20.50       5879. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                          |         |           |           |          |          |          |
| 14.00       3102.       0.       -106.       3208.       1562         14.50       3316.       0.       -109.       3425.       1666         15.00       3530.       0.       -113.       3643.       1770         15.50       3743.       0.       -117.       3860.       1874         16.00       3957.       0.       -121.       4077.       1978         16.50       4170.       0.       -124.       4295.       2082         17.00       4384.       0.       -128.       4512.       2186         17.50       4598.       0.       -132.       4730.       2290         18.00       4811.       0.       -136.       4947.       2395         18.50       5025.       0.       -139.       5164.       2499         19.00       5239.       0.       -143.       5382.       2603         19.50       5452.       0.       -147.       5599.       2707         20.00       5666.       0.       -151.       5817.       2811         20.50       5879.       0.       -158.       6251.       3019         21.50       6307. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                          |         |           |           |          |          |          |
| 14.50       3316.       0.       -109.       3425.       1666         15.00       3530.       0.       -113.       3643.       1770         15.50       3743.       0.       -117.       3860.       1874         16.00       3957.       0.       -121.       4077.       1978         16.50       4170.       0.       -124.       4295.       2082         17.00       4384.       0.       -128.       4512.       2186         17.50       4598.       0.       -132.       4730.       2290         18.00       4811.       0.       -136.       4947.       2395         18.50       5025.       0.       -139.       5164.       2499         19.00       5239.       0.       -143.       5382.       2603         19.50       5452.       0.       -147.       5599.       2707         20.00       5666.       0.       -151.       5817.       281         20.50       5879.       0.       -155.       6034.       2915         21.50       6307.       0.       -162.       6469.       3123         22.00       6520.                                                                                                                                                                                                                                                   |         |           |           | -102.    |          |          |
| 15.00       3530.       0.       -113.       3643.       1770         15.50       3743.       0.       -117.       3860.       1874         16.00       3957.       0.       -121.       4077.       1978         16.50       4170.       0.       -124.       4275.       2082         17.00       4384.       0.       -128.       4512.       2186         17.50       4598.       0.       -132.       4730.       2290         18.00       4811.       0.       -136.       4947.       2395         18.50       5025.       0.       -139.       5164.       2499         19.00       5239.       0.       -143.       5382.       2603         19.50       5452.       0.       -147.       5599.       2707         20.00       5666.       0.       -151.       5817.       2811         20.50       5879.       0.       -155.       6034.       2915         21.00       6093.       0.       -158.       6251.       3019         22.50       6307.       0.       -162.       6469.       3123         22.50       6734. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                          |         |           |           |          |          |          |
| 15.50       3743.       0.       -117.       3860.       1874         16.00       3957.       0.       -121.       4077.       1978         16.50       4170.       0.       -124.       4295.       2082         17.00       4384.       0.       -128.       4512.       2186         17.50       4598.       0.       -132.       4730.       2290         18.00       4811.       0.       -136.       4947.       2395         18.50       5025.       0.       -139.       5164.       2499         19.00       5239.       0.       -143.       5382.       2603         19.50       5452.       0.       -147.       5599.       2707         20.00       5666.       0.       -151.       5817.       2811         20.50       5879.       0.       -155.       6034.       2915         21.00       6093.       0.       -158.       6251.       3019         22.00       6307.       0.       -162.       6469.       3123         22.50       6734.       0.       -170.       6904.       3331         23.00       6948. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                          |         |           |           |          |          |          |
| 16.00       3957.       0.       -121.       4077.       1978         16.50       4170.       0.       -124.       4295.       2082         17.00       4384.       0.       -128.       4512.       2186         17.50       4598.       0.       -132.       4730.       2290         18.00       4811.       0.       -136.       4947.       2395         18.50       5025.       0.       -139.       5164.       2499         19.00       5239.       0.       -143.       5382.       2603         19.50       5452.       0.       -147.       5599.       2707         20.00       5666.       0.       -151.       5817.       2811         20.50       5879.       0.       -155.       6034.       2915         21.00       6093.       0.       -158.       6251.       3019         22.00       6520.       0.       -162.       6469.       3123         22.00       6520.       0.       -166.       6686.       3227.         22.50       6734.       0.       -170.       6904.       3331         23.50       7161. <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                           |         |           |           |          |          |          |
| 16.50         4170.         0.         -124.         4295.         2082           17.00         4384.         0.         -128.         4512.         2186           17.50         4598.         0.         -132.         4730.         2290           18.00         4811.         0.         -136.         4947.         2395           18.50         5025.         0.         -139.         5164.         2499           19.00         5239.         0.         -143.         5382.         2603           19.50         5452.         0.         -147.         5599.         2707           20.00         5666.         0.         -155.         6034.         2915           21.00         6093.         0.         -158.         6251.         3019           21.50         6307.         0.         -162.         6469.         3123           22.00         6520.         0.         -166.         6686.         3227           22.50         6734.         0.         -170.         6904.         3331           23.00         6948.         0.         -173.         7121.         3435           24.00         7375.                                                                                                                                                          |         |           |           |          |          |          |
| 17.00       4384.       0.       -128.       4512.       2186         17.50       4598.       0.       -132.       4730.       2290         18.00       4811.       0.       -136.       4947.       2395         18.50       5025.       0.       -139.       5164.       2499         19.00       5239.       0.       -143.       5382.       2603         19.50       5452.       0.       -147.       5599.       2707         20.00       5666.       0.       -151.       5817.       2811         20.50       5879.       0.       -155.       6034.       2915         21.00       6093.       0.       -158.       6251.       3019         21.50       6307.       0.       -162.       6469.       3123         22.50       6520.       0.       -166.       6686.       3227         22.50       6734.       0.       -170.       6904.       3331         23.50       7161.       0.       -177.       7338.       3539         24.50       7375.       0.       -181.       7556.       3643         24.50       7588. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                          |         |           |           |          |          |          |
| 17.50     4598.     0.     -132.     4730.     2290       18.00     4811.     0.     -136.     4947.     2395       18.50     5025.     0.     -139.     5164.     2499       19.00     5239.     0.     -143.     5382.     2603       19.50     5452.     0.     -147.     5599.     2707       20.00     5666.     0.     -151.     5817.     2811       20.50     5879.     0.     -155.     6034.     2915       21.00     6093.     0.     -158.     6251.     3019       21.50     6307.     0.     -162.     6469.     3123       22.00     6520.     0.     -166.     6686.     3227       22.50     6734.     0.     -170.     6904.     3331       23.00     6948.     0.     -173.     7121.     3435       23.50     7161.     0.     -177.     7338.     3539       24.00     7375.     0.     -181.     7556.     3643       24.50     7588.     0.     -185.     7773.     3747       25.00     7802.     0.     -188.     7991.     3851       25.50     8016.                                                                                                                                                                                                                                                                                                        |         |           |           |          |          |          |
| 18.00       4811.       0.       -136.       4947.       2395         18.50       5025.       0.       -139.       5164.       2499         19.00       5239.       0.       -143.       5382.       2603         19.50       5452.       0.       -147.       5599.       2707         20.00       5666.       0.       -151.       5817.       2811         20.50       5879.       0.       -155.       6034.       2915         21.00       6093.       0.       -158.       6251.       3019         22.00       6307.       0.       -162.       6469.       3123         22.00       6520.       0.       -166.       6686.       3227         22.50       6734.       0.       -170.       6904.       3331         23.00       6948.       0.       -173.       7121.       3435         24.50       7375.       0.       -181.       7556.       3643         24.50       7588.       0.       -185.       7773.       3747         25.00       7802.       0.       -188.       7991.       3851         25.50       8016. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                          |         |           |           |          |          |          |
| 18.50     5025.     0.     -139.     5164.     2499       19.00     5239.     0.     -143.     5382.     2603       19.50     5452.     0.     -147.     5599.     2707       20.00     5666.     0.     -151.     5817.     2811       20.50     5879.     0.     -155.     6034.     2915       21.00     6093.     0.     -158.     6251.     3019       22.00     6520.     0.     -162.     6469.     3123       22.50     6734.     0.     -170.     6904.     3331       23.00     6948.     0.     -173.     7121.     3435       23.50     7161.     0.     -177.     7338.     3539       24.00     7375.     0.     -181.     7556.     3643       24.50     7588.     0.     -185.     7773.     3747       25.00     7802.     0.     -188.     7991.     3851       25.50     8016.     0.     -192.     8208.     3956       26.00     8229.     0.     -196.     8425.     4060       26.50     8443.     0.     -200.     8643.     4164       27.50     8870.                                                                                                                                                                                                                                                                                                        |         |           |           |          |          |          |
| 19.00     5239.     0.     -143.     5382.     2603       19.50     5452.     0.     -147.     5599.     2707       20.00     5666.     0.     -151.     5817.     2811       20.50     5879.     0.     -155.     6034.     2915       21.00     6093.     0.     -158.     6251.     3019       21.50     6307.     0.     -162.     6469.     3123       22.00     6520.     0.     -166.     6686.     3227       22.50     6734.     0.     -170.     6904.     3331       23.00     6948.     0.     -173.     7121.     3435       23.50     7161.     0.     -177.     7338.     3539       24.00     7375.     0.     -181.     7556.     3643       24.50     7588.     0.     -185.     7773.     3747       25.00     7802.     0.     -188.     7991.     3851       25.50     8016.     0.     -192.     8208.     3956       26.50     8443.     0.     -200.     8643.     4164       27.00     8657.     0.     -204.     8860.     4268       27.50     8870.                                                                                                                                                                                                                                                                                                        |         |           |           |          |          |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |           |           |          |          |          |
| 20.00       5666.       0.       -151.       5817.       2811         20.50       5879.       0.       -155.       6034.       2915         21.00       6093.       0.       -158.       6251.       3019         21.50       6307.       0.       -162.       6469.       3123         22.00       6520.       0.       -166.       6686.       3227         22.50       6734.       0.       -170.       6904.       3331         23.00       6948.       0.       -173.       7121.       3435         23.50       7161.       0.       -177.       7338.       3539         24.00       7375.       0.       -181.       7556.       3643         24.50       7588.       0.       -185.       7773.       3747         25.00       7802.       0.       -188.       7991.       3851         25.50       8016.       0.       -192.       8208.       3956         26.00       8229.       0.       -196.       8425.       4060         26.50       8443.       0.       -200.       8643.       4164         27.50       8870. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                          |         |           |           |          |          |          |
| 20.50         5879.         0.         -155.         6034.         2915           21.00         6093.         0.         -158.         6251.         3019           21.50         6307.         0.         -162.         6469.         3123           22.00         6520.         0.         -166.         6686.         3227           22.50         6734.         0.         -170.         6904.         3331           23.00         6948.         0.         -173.         7121.         3435           23.50         7161.         0.         -177.         7338.         3539           24.00         7375.         0.         -181.         7556.         3643           24.50         7588.         0.         -185.         7773.         3747           25.00         7802.         0.         -188.         7991.         3851           25.50         8016.         0.         -192.         8208.         3956           26.00         8229.         0.         -196.         8425.         4060           26.50         8443.         0.         -200.         8643.         4164           27.50         8870.                                                                                                                                                          |         |           |           |          |          |          |
| 21.00     6093.     0.     -158.     6251.     3019       21.50     6307.     0.     -162.     6469.     3123       22.00     6520.     0.     -166.     6686.     3227       22.50     6734.     0.     -170.     6904.     3331       23.00     6948.     0.     -173.     7121.     3435       23.50     7161.     0.     -177.     7338.     3539       24.00     7375.     0.     -181.     7556.     3643       24.50     7588.     0.     -185.     7773.     3747       25.00     7802.     0.     -188.     7991.     3851       25.50     8016.     0.     -192.     8208.     3956       26.00     8229.     0.     -196.     8425.     4060       26.50     8443.     0.     -200.     8643.     4164       27.00     8657.     0.     -204.     8860.     4268       27.50     8870.     0.     -207.     9078.     4372                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |           |           |          |          |          |
| 21.50     6307.     0.     -162.     6469.     3123       22.00     6520.     0.     -166.     6686.     3227       22.50     6734.     0.     -170.     6904.     3331       23.00     6948.     0.     -173.     7121.     3435       23.50     7161.     0.     -177.     7338.     3539       24.00     7375.     0.     -181.     7556.     3643       24.50     7588.     0.     -185.     7773.     3774       25.00     7802.     0.     -188.     7991.     3851       25.50     8016.     0.     -192.     8208.     3956       26.00     8229.     0.     -196.     8425.     4060       26.50     8443.     0.     -200.     8643.     4164       27.00     8657.     0.     -204.     8860.     4268       27.50     8870.     0.     -207.     9078.     4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           |           |          |          |          |
| 22.00     6520.     0.     -166.     6686.     3227       22.50     6734.     0.     -170.     6904.     3331       23.00     6948.     0.     -173.     7121.     3435       23.50     7161.     0.     -177.     7338.     3539       24.00     7375.     0.     -181.     7556.     3643       24.50     7588.     0.     -185.     7773.     3747       25.00     7802.     0.     -188.     7991.     3851       25.50     8016.     0.     -192.     8208.     3956       26.00     8229.     0.     -196.     8425.     4060       26.50     8443.     0.     -200.     8643.     4164       27.00     8657.     0.     -204.     8860.     4268       27.50     8870.     0.     -207.     9078.     4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |           |           |          |          |          |
| 22.50     6734.     0.     -170.     6904.     3331       23.00     6948.     0.     -173.     7121.     3435       23.50     7161.     0.     -177.     7338.     3539       24.00     7375.     0.     -181.     7556.     3643       24.50     7588.     0.     -185.     7773.     3747       25.00     7802.     0.     -188.     7991.     3851       25.50     8016.     0.     -192.     8208.     3956       26.00     8229.     0.     -196.     8425.     4060       26.50     8443.     0.     -200.     8643.     4164       27.00     8657.     0.     -204.     8860.     4268       27.50     8870.     0.     -207.     9078.     4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |           |          |          |          |
| 23.00     6948.     0.     -173.     7121.     3435       23.50     7161.     0.     -177.     7338.     3539       24.00     7375.     0.     -181.     7556.     3643       24.50     7588.     0.     -185.     7773.     3747       25.00     7802.     0.     -188.     7991.     3851       25.50     8016.     0.     -192.     8208.     3956       26.00     8229.     0.     -196.     8425.     4060       26.50     8443.     0.     -200.     8643.     4164       27.00     8657.     0.     -204.     8860.     4268       27.50     8870.     0.     -207.     9078.     4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |           |           |          |          |          |
| 23.50     7161.     0.     -177.     7338.     3539       24.00     7375.     0.     -181.     7556.     3643       24.50     7588.     0.     -185.     7773.     3774       25.00     7802.     0.     -188.     7991.     3851       25.50     8016.     0.     -192.     8208.     3956       26.00     8229.     0.     -196.     8425.     4060       26.50     8443.     0.     -200.     8643.     4164       27.00     8657.     0.     -204.     8860.     4268       27.50     8870.     0.     -207.     9078.     4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           |           |          |          |          |
| 24.00     7375.     0.     -181.     7556.     3643       24.50     7588.     0.     -185.     7773.     3747       25.00     7802.     0.     -188.     7991.     3851       25.50     8016.     0.     -192.     8208.     3956       26.00     8229.     0.     -196.     8425.     4060       26.50     8443.     0.     -200.     8643.     4164       27.00     8657.     0.     -204.     8860.     4268       27.50     8870.     0.     -207.     9078.     4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |           |           |          |          |          |
| 24.50     7588.     0.     -185.     7773.     3747       25.00     7802.     0.     -188.     7991.     3851       25.50     8016.     0.     -192.     8208.     3956       26.00     8229.     0.     -196.     8425.     4060       26.50     8443.     0.     -200.     8643.     4164       27.00     8657.     0.     -204.     8860.     4268       27.50     8870.     0.     -207.     9078.     4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |           |           |          |          |          |
| 25.00     7802.     0.     -188.     7991.     3851       25.50     8016.     0.     -192.     8208.     3956       26.00     8229.     0.     -196.     8425.     4060       26.50     8443.     0.     -200.     8643.     416       27.00     8657.     0.     -204.     8860.     4268       27.50     8870.     0.     -207.     9078.     4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |           |           |          |          |          |
| 25.50     8016.     0.     -192.     8208.     3956       26.00     8229.     0.     -196.     8425.     4060       26.50     8443.     0.     -200.     8643.     4164       27.00     8657.     0.     -204.     8860.     4268       27.50     8870.     0.     -207.     9078.     4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           |           |          |          | 3851.    |
| 26.00     8229.     0.     -196.     8425.     4060       26.50     8443.     0.     -200.     8643.     4164       27.00     8657.     0.     -204.     8860.     4268       27.50     8870.     0.     -207.     9078.     4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |           |           |          |          |          |
| 26.50     8443.     0.     -200.     8643.     4164       27.00     8657.     0.     -204.     8860.     4268       27.50     8870.     0.     -207.     9078.     4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |           |          |          |          |
| 27.00     8657.     0.     -204.     8860.     4268       27.50     8870.     0.     -207.     9078.     4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |           |           |          |          |          |
| 27.50 8870. 0207. 9078. 4372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |           |           |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |           |           |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |           |           |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |           |           |          |          | 4580.    |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera | Tratto | Settore |    |        |     | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|----|--------|-----|----------|------|--------------|
| L073  | 212    | Е       | 17 | OS0900 | REL | 01       | Α    | 10 di 136    |

# 6. CARATTERIZZAZIONE SISMICA

L'opera è progettata per una vita nominale  $V_N$  pari a 50 anni. Gli si attribuisce inoltre una classe d'uso III ("Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza.") ai sensi del D. Min. 14/01/2008, da cui scaturisce un coefficiente d'uso  $C_U = 1.5$ .

L'azione sismica di progetto è valutata a partire dalla pericolosità sismica di base del sito su cui l'opera insiste, descritta in termini geografici e temporali:

- attraverso i valori di accelerazione orizzontale di picco ag (attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale) e le espressioni che definiscono le ordinate del relativo spettro di risposta elastico in accelerazione S<sub>e</sub>(T);
- in corrispondenza del punto del reticolo che individua la posizione geografica dell'opera;
- con riferimento a prefissate probabilità di eccedenza PVR.

In particolare, la forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

- ag, accelerazione orizzontale massima del terreno
- F<sub>0</sub>, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- T<sub>c</sub>\*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera, utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici.

In particolare, si può notare come  $F_0$  descriva la pericolosità sismica locale del sito su cui l'opera insiste. Infatti, da quest'ultimo, attraverso le espressioni fornite dalla normativa, sono valutati i valori d'amplificazione stratigrafica e topografica. Di seguito sono riassunti i valori dei parametri assunti per l'opera in oggetto.

Vita nominale V<sub>N</sub> = 50 anni; Classe d'uso = |||; Coefficiente d'uso Cu = 1.5; Periodo di riferimento V<sub>R</sub> = 75 anni; = 712 anni;  $T_{R,SLV}$ Comune = Fabriano; = 0.206 g;**a**g,SLV = 2.526; F<sub>0,SLV</sub> =0.331 sec. T\*<sub>c,SLV</sub>



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc. | N. prog.<br>01 |     | Pag.diPag.<br>11 di 136 |   |
|---------------|---------------|--------------|-----------|---------------|-------------|----------------|-----|-------------------------|---|
| 20/0          | 212           | _            | 17        | 000700        | REL         | 01             | / \ | 11 01 100               | ı |

Accelerazione (ag), fattore (F0) e periodo (T\*c) per comune di riferimento - Fabriano

| V <sub>R</sub><br>[anni] | Stato Limite | PV <sub>R</sub> | T <sub>R</sub> [anni] | a <sub>g</sub><br>[g] | F。<br>[-] | T <sub>C</sub> *<br>[s] |
|--------------------------|--------------|-----------------|-----------------------|-----------------------|-----------|-------------------------|
|                          | SLO          | 81%             | 45                    | 0.073                 | 2.450     | 0.286                   |
| 75                       | SLD          | 63%             | 75                    | 0.090                 | 2.454     | 0.297                   |
| 75                       | SLV          | 10%             | 712                   | 0.206                 | 2.526     | 0.331                   |
|                          | SLC          | 5%              | 1462                  | 0.262                 | 2.555     | 0.339                   |

Lo spettro di risposta elastico per la descrizione della componente orizzontale del moto sismico è infine costruito a partire dai parametri seguenti.

Categoria di suolo = B;

• Categoria topografica = T1;

• S<sub>s</sub>, fattore stratigrafico = 1.25;

• S<sub>T</sub>, fattore topografico = 1.0;

• C<sub>c</sub>, fattore correttivo del periodo TC\* = 1.5.



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|   |      | Tratto<br>212 | Settore<br>E |    | WBS<br>OS0900 | acc. | N. prog.<br>01 |     | Pag. di Pag.<br>12 di 136 |
|---|------|---------------|--------------|----|---------------|------|----------------|-----|---------------------------|
| ı | 20,0 |               | _            | 17 | 000700        | REL  | 0.             | , · | 12 01 100                 |

# 7. VERIFICHE STRUTTURALI – CRITERI GENERALI

#### 7.1 VERIFICA SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle Combinazioni di Calcolo allo SLE, il tasso di Lavoro nei Materiali e l'ampiezza delle fessure nel calcestruzzo attesa, secondo quanto di seguito specificato:

#### 7.1.1 Verifiche delle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, quelli di seguito indicati, in accordo alle prescrizioni della normativa vigente:

Per il caso in esame risulta in particolare:

#### CALCESTRUZZO C32/40

$$\sigma_{cmax \, QP}$$
 = (0,45 f<sub>cK</sub>) = 14.94 MPa (Combinazione di Carico Quasi Permanente) (Combinazione di Carico Caratteristica -  $\sigma_{cmax \, R}$  = (0,60 f<sub>cK</sub>) = 19.92 MPa Rara)

#### CALCESTRUZZO C25/30

$$\sigma_{cmax QP}$$
 = (0,45 f<sub>cK</sub>) = 11.21 MPa (Combinazione di Carico Quasi Permanente) (Combinazione di Carico Caratteristica -  $\sigma_{cmax R}$  = (0,60 f<sub>cK</sub>) = 14.94 MPa Rara)

#### ACCIAIO

$$\sigma_{\text{fmax}}$$
 = (0,80 f<sub>yK</sub>) =  $\frac{\text{Combinazione di Carico}}{\text{MPa}}$  Caratteristica(Rara)



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc. | N. prog.<br>01 |     | Pag. di Pag.<br>13 di 136 |   |
|---------------|---------------|--------------|-----------|---------------|-------------|----------------|-----|---------------------------|---|
| 20/0          |               | _            | .,        | 000700        | REL.        | J 01           | , , | 10 01 100                 | ı |

#### 7.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

| Crummi       |                  |                  | Armatura              |                 |                 |                 |
|--------------|------------------|------------------|-----------------------|-----------------|-----------------|-----------------|
| Gruppi<br>di | Condizioni       | Combinazione di  | Sensibile             |                 | Poco sensi      | bile            |
| esigenza     | ambientali       | azione           | Stato limite          | wd              | Stato<br>limite | wd              |
| _            | Ordinarie        | frequente        | ap. fessure           | ≤w <sub>2</sub> | ap.<br>fessure  | ≤w <sub>3</sub> |
| а            | Ordinalle        | quasi permanente | ap. fessure           | ≤w <sub>1</sub> | ap.<br>fessure  | ≤w <sub>2</sub> |
| ٦            | Aggregative      | frequente        | ap. fessure           | ≤w <sub>1</sub> | ap.<br>fessure  | ≤w <sub>2</sub> |
| b            | Aggressive       | quasi permanente | decompressione        | -               | ap.<br>fessure  | ≤w <sub>1</sub> |
|              | Molto Aggressive | frequente        | formazione<br>fessure | -               | ap.<br>fessure  | ≤w <sub>1</sub> |
| С            | Molio Agglessive | quasi permanente | decompressione        | -               | ap.<br>fessure  | ≤w <sub>1</sub> |

Risultando in particolare::

 $w_1 = 0.2 \text{ mm}$   $w_2 = 0.3 \text{ mm}$   $w_3 = 0.4 \text{ mm}$ 

Nel caso in esame si ha:

- Per le strutture di fondazione:

Condizioni Ambientali: aggressive

Armature: Poco Sensibili

- Per le strutture in elevazione:

Condizioni Ambientali: Ordinarie

Armature: Poco Sensibili

Conseguentemente dovrà risultare:

Combinazione Quasi permanente : w≤0.2mm

Combinazione Frequente: w≤0.3mm

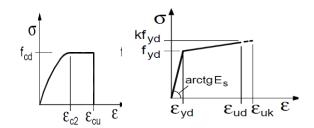


Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

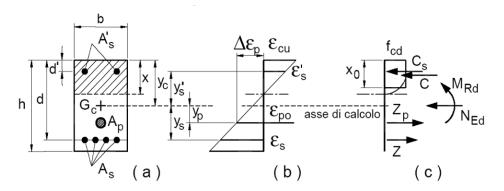
Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo


| Opera Tratto Settore CEE WBS Id. doc. 17073 212 E 17 OS0900 RF 000 0 | g. Rev. Pag.diPag.<br>A 14 di 136 |
|----------------------------------------------------------------------|-----------------------------------|
|----------------------------------------------------------------------|-----------------------------------|

Riguardo infine il valore di calcolo dell'ampiezza delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura del D.M. 9 gennaio 1996, in accordo a quanto previsto al punto" C4.1.2.2.4.6 Verifica allo stato limite di fessurazione" della Circolare n.617/09.


#### 7.2 VERIFICHE ALLO SLU

#### 7.2.1 Pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.1.2.4 delle NTC08, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:



Legami costitutivi Calcestruzzo ed Acciaio -



Schema di riferimento per la valutazione della capacità resistente a pressoflessione generica sezione -

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove

M<sub>Rd</sub> è il valore di calcolo del momento resistente corrispondente a N<sub>Ed</sub>;

 $N_{Ed}$  è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

M<sub>Ed</sub> è il valore di calcolo della componente flettente dell'azione.



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra<br/>imondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40 Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS    | ld. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|--------|-----|----------|------|--------------|
| L073  | 212    | Е       | 17  | OS0900 | REL | 01       | Α    | 15 di 136    |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| 1 1 1 1 1 1 1 1 1 1 1 |  |  | Tratto<br>212 |  |  | WBS<br>OS0900 |  | N. prog.<br>01 |  | Pag. di Pag.<br>16 di 136 |
|-----------------------|--|--|---------------|--|--|---------------|--|----------------|--|---------------------------|
|-----------------------|--|--|---------------|--|--|---------------|--|----------------|--|---------------------------|

#### 7.2.2 Taglio

La resistenza a taglio V<sub>Rd</sub> della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}} \right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

Dove:

• 
$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$
;

• 
$$k = 1 + (200/d)^{1/2} \le 2$$

• 
$$\rho_1 = A_{sw}/(b_w * d)$$

- d = altezza utile per piedritti soletta superiore ed inferiore;
- bw= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio  $V_{Rd}$  è il minimo tra la resistenza a taglio trazione  $V_{Rsd}$  e la resistenza a taglio compressione  $V_{Rcd}$ 

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin \alpha$$

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left(ctg\alpha + ctg\theta\right)}{\left(1 + ctg^{2}\theta\right)}$$

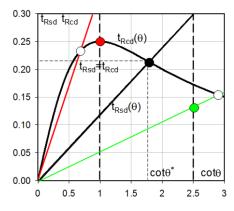
#### Essendo:

 $1 \le ctg \theta \le 2.5$ 

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.1.3 delle NTC08, considerando ai fini delle verifiche, un angolo  $\theta$  di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.

$$1 \le \text{ctg } \theta \le 2.5$$
  $45^{\circ} \ge \theta \ge 21.8^{\circ}$ 




Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera Tratto Settore CEE WBS doc. N.prog. L073 212 E 17 OS0900 DD 01 |  |  |  | Settore<br>E |  | WBS<br>OS0900 | acc. | N. prog.<br>01 |  | Pag. di Pag.<br>17 di 136 |
|----------------------------------------------------------------------|--|--|--|--------------|--|---------------|------|----------------|--|---------------------------|
|----------------------------------------------------------------------|--|--|--|--------------|--|---------------|------|----------------|--|---------------------------|



L'angolo effettivo di inclinazione delle bielle ( $\theta$ ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato :

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

(  $\theta^*$  angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature)

dove

v = f'cd / fcd = 0.5

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

 $\omega_{\text{sw}}$ : Percentuale meccanica di armatura trasversale.

$$\omega_{sw} = \frac{A_{SW} f_{yd}}{b s f_{cd}}$$

- Se la cotθ\* è compresa nell'intervallo (1,0-2,5) è possibile valutare il taglic resistente V<sub>Rd</sub>(=V<sub>Rcd</sub>=V<sub>Rsd</sub>)
- Se la  $\cot\theta^*$  è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasversale e il taglio resistente  $V_{Rd}(=V_{Rsd})$  coincide con il massimo taglio sopportato dalle armature trasversali valutabile per una  $\cot\theta=2,5$ .
- Se la  $\cot\theta^*$  è minore di 1.0 la crisi è da attribuirsi alle bielle compresse e il taglio resistente  $V_{Rd}(=V_{Rcd})$  coincide con il massimo taglio sopportato dalle bielle di calcestruzzo valutabile per una  $\cot\theta=1,0$ .



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|  |  |  | Settore<br>E |  |  | acc. | N. prog.<br>01 |  | Pag.diPag<br>18 di 136 |
|--|--|--|--------------|--|--|------|----------------|--|------------------------|
|--|--|--|--------------|--|--|------|----------------|--|------------------------|

# 8. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO

#### 8.1 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08

Per i muri di sostegno o per altre strutture miste ad essi assimilabili, devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite:

- SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU)
  - stabilità globale del complesso opera di sostegno-terreno;
  - scorrimento sul piano di posa;
  - collasso per carico limite dell'insieme fondazione-terreno;
  - ribaltamento;
- SLU di tipo strutturale (STR)
  - raggiungimento della resistenza negli elementi strutturali,

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo l'Approccio 1 - Combinazione 2: (A2+M2+R2)

Le rimanenti verifiche devono essere invece effettuate secondo uno dei seguenti approcci:

Approccio 1:

Combinazione 1: (A1+M1+R1)Combinazione 2: (A2+M2+R2)

Approccio 2:

(A1+M1+R3)

tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.Il per le azioni e i parametri geotecnici, e della Tabelle 6.5.I e 6.8.I per ciò che concerne i coefficienti parziali sulle resistenze che di seguito si riportano per maggiore chiarezza.

Tabella 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni.

| W                              |             | 1 1/                                                         |     |             |             |
|--------------------------------|-------------|--------------------------------------------------------------|-----|-------------|-------------|
| CARICHI                        | EFFETTO     | Coefficiente<br>Parziale<br><sub>YF</sub> (o <sub>YE</sub> ) | EQU | (A1)<br>STR | (A2)<br>GEO |
| Permanenti                     | Favorevole  |                                                              | 0,9 | 1,0         | 1,0         |
| Permanenti                     | Sfavorevole | γ <sub>G1</sub>                                              | 1,1 | 1,3         | 1,0         |
| Permanenti non strutturali (1) | Favorevole  | 24                                                           | 0,0 | 0,0         | 0,0         |
| remanenti non sututuran        | Sfavorevole | γ <sub>G2</sub>                                              | 1,5 | 1,5         | 1,3         |
| Variabili                      | Favorevole  | .,                                                           | 0,0 | 0,0         | 0,0         |
| Variaoni                       | Sfavorevole | γ <sub>Qi</sub>                                              | 1,5 | 1,5         | 1,3         |

Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera Tratto Settore CEE WBS Id. doc. N.p. 12073 212 E 17 OS0900 PB C |  |  |  |  | WBS<br>OSO900 |  | N. prog.<br>01 |  | Pag. di Pag.<br>19 di 136 |
|-----------------------------------------------------------------------|--|--|--|--|---------------|--|----------------|--|---------------------------|
|-----------------------------------------------------------------------|--|--|--|--|---------------|--|----------------|--|---------------------------|

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

| della dizitt coogjicionii pa | restain per i parament georgemen aci | 10110110          |      |      |
|------------------------------|--------------------------------------|-------------------|------|------|
| PARAMETRO                    | GRANDEZZA ALLA QUALE                 | COEFFICIENTE      | (M1) | (M2) |
|                              | APPLICARE IL                         | PARZIALE          |      |      |
|                              | COEFFICIENTE PARZIALE                | $\gamma_{ m M}$   |      |      |
| Tangente dell'angolo di      | tan φ′ <sub>k</sub>                  | $\gamma_{\phi'}$  | 1,0  | 1,25 |
| resistenza al taglio         |                                      |                   |      |      |
| Coesione efficace            | c' <sub>k</sub>                      | γ <sub>c′</sub>   | 1,0  | 1,25 |
| Resistenza non drenata       | Cuk                                  | γ <sub>cu</sub>   | 1,0  | 1,4  |
| Peso dell'unità di volume    | γ                                    | $\gamma_{\gamma}$ | 1,0  | 1,0  |
|                              |                                      |                   |      |      |

Tabella 6.5.I - Coefficienti parziali 7/2 per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno

| VERIFICA                           | COEFFICIENTE<br>PARZIALE<br>(R1) | COEFFICIENTE<br>PARZIALE<br>(R2) | COEFFICIENTE<br>PARZIALE<br>(R3) |
|------------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Capacità portante della fondazione | $y_{R} = 1.0$                    | $y_{R.} = 1.0$                   | $\gamma_{R} = 1.4$               |
| Scorrimento                        | $\gamma_{\mathbb{R}} = 1.0$      | $\gamma_{R} = 1.0$               | $\gamma_R = 1.1$                 |
| Resistenza del terreno a valle     | $\gamma_R = 1.0$                 | $\gamma_{R} = 1.0$               | $\gamma_{R} = 1.4$               |

Tabella 6.8.I – Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo.

| Coefficiente | R2  |
|--------------|-----|
| γr           | 1.1 |

Nel caso in esame si è fatto riferimento all'approccio di Verifica 1,

Le verifiche in condizioni sismiche vanno infine effettuati con gli stessi criteri di cui sopra, ponendo pari dell'unità i coefficienti parziali sulle Azioni (A1=1 /A2=1), in accordo a quanto specificato al punto 7.11.1 del DM 14.01.08

# 9. ANALISI DEI CARICHI

#### 9.1 CARICHI FISSI

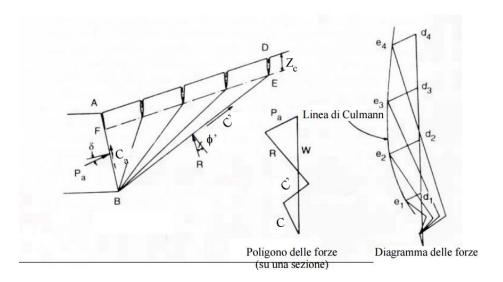
Per carichi fissi si intendono le azioni associate ai pesi propri del muro e del terrapieno spingente, valutati in automatico dal Software di calcolo utilizzato.

A tal riguardo, al calcestruzzo strutturale costituente il muro è stato assegnato un peso dell'unità di Volume $\gamma$ =25 KN/m³, mentre per il terreno si è assunto  $\gamma$ =20 KN/m³

#### 9.2 SPINTE DEL TERRENO

Per la valutazione delle spinte del terreno in fase statica, si è fatto riferimento al metodo di Culmann, che ben si adatta a superfici di pendio a monte dell'opera di forma generica.




Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|  | Tratto<br>212 | Settore<br>E |  | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 |  | Pag. di Pag.<br>20 di 136 |
|--|---------------|--------------|--|---------------|--------------------|---------------|--|---------------------------|
|--|---------------|--------------|--|---------------|--------------------|---------------|--|---------------------------|



Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb.

La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo).

Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione  $\theta$  rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C') e resistenza per coesione lungo la parete ( $C_A$ );
- dal poligono di equilibrio si ricava quindi il valore della spinta S sulla parete (Pa).

+

# Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano quindi derivando l'espressione della spinta



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|  | Tratto<br>212 | Settore<br>E |  | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 |  | Pag. di Pag.<br>21 di 136 |
|--|---------------|--------------|--|---------------|--------------------|---------------|--|---------------------------|
|--|---------------|--------------|--|---------------|--------------------|---------------|--|---------------------------|

S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Analogamente, nota la Spinta complessiva **S**, è possibile ricavare eventualmente in maniera indiretta, il valore del coefficiente di spinta Ka della nota espressione di Coulomb:

 $S=1/2 \times y \times H^2 \times Ka$ 

Si precisa infine che per la valutazione delle spinte al terreno di rilevato sono state assegnati i seguenti parametri fisico –meccanici:

 $\gamma = 20 \text{ KN/m}^3$ 

C' = 0

 $\phi' = 35$ 

 $\delta = 0.5\varphi$ ' (attrito terra muro)

#### 9.3 SOVRACCARICHI ACCIDENTALI

Per la determinazione dei carichi accidentali da applicare sul terrapieno a monte delle opere di sostegno sulla zona destinata al traffico veicolare, si è fatto riferimento agli schemi di carico stabilità al punto 5.1.3.3.3 del DM 14/01/08 di cui nel seguito:

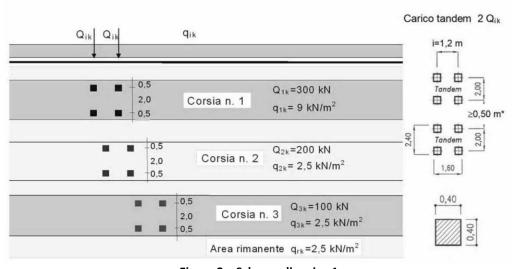



Figura 2 – Schema di carico 1

Lo schema di carico di Normativa, è in particolare costituito dalle seguenti colonne di carico:

- una colonna di carichi (ingombro = 3 m) costituita da un automezzo convenzionale Q1k di 600 kN dotato di 2 assi di 2 ruote ciascuno, distanti 1.20 m in senso longitudinale e con interasse ruote in senso trasversale di 2.00 m; un carico ripartito q1k di 9 kN/m2 uniformemente distribuito;
- una seconda colonna di carichi (ingombro = 3 m), analoga alla precedente, ma con carichi pari rispettivamente a 400 kN di Q1k e 2.5 kN/m2 di q1k e posta ad interasse di 3.00 m. da essa:



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera | Tratto<br>212 |        | WBS<br>OS0900 | acc. | N.prog. | Pag. di Pag.<br>22 di 136 |
|-------|---------------|--------|---------------|------|---------|---------------------------|
| 10/3  | 212           | <br>17 | C30700        | REL  | OI OI   | <br>22 UI 130             |

- una terza colonna di carichi (ingombro = 3 m), analoga alla precedente, ma con carichi pari rispettivamente a 200 kN di Q1k e 2.5 kN/m2 di q1k e posta ad interasse di 3.00 m. da essa:
- un carico uniforme qrk = 2.5 kN/m2 nella zona di carreggiata non impegnata dai carichi precedenti.

Ai fini delle analisi, si è assunto di trasformare i carichi concentrati Qik, in un carico distribuiti equivalente,

tenendo conto tuttavia dell'effetto collaborazione dei muri in direzione longitudinale, in relazione a cui si è ipotizzato che detti carichi vadano ad interessare uno sviluppo complessivo longitudinale di muro di circa 5m, corrispondente, nel caso fondazioni su pali, alla lunghezza di un tratto tipo comprendente la singola fila di pali e le due adiacenti.

In questa ipotesi risulta dunque:

Q1k  $d = 600 / 2.40x5.00 = 50 KN/m^2$ 

Q2k d = 400 / 2.40x5.00 = 33 KN/m<sup>2</sup>

Q3k d = 200 / 2.40x5.00 = 17 KN/m<sup>2</sup>

In aggiunta, sul lato corsia 1, va considerato un ulteriore carico distribuito di 9KN/m2, mentre sul lato corsia 3, il carico aggiuntivo è pari a 2.5 KN/m2.

In definitiva, nell'ipotesi di disporre le tre corsie in affiancamento, è possibile considerare, ai fini delle analisi, il carico uniforme equivalente negli schemi di figura seguente:



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera | Tratto | Settore |    | WBS    |     | N. prog. |   | Pag. di Pag. |
|-------|--------|---------|----|--------|-----|----------|---|--------------|
| L073  | 212    | Е       | 17 | OS0900 | REL | 01       | Α | 23 di 136    |

# MURO DI SOSTEGNO 720 MURO DI SOTTOSCARPA 720 60 KPa 20 KPa 20 KPa

Schemi Carico Azioni da traffico Veicolare

#### 9.4 AZIONE SISMICA

Per la Valutazione degli effetti dell'azione sismica sulle masse e sui coefficienti di spinta del terreno, si è fatto riferimento al metodo pseudo-statico previsto al punto 7.11.3.5.2 - "Metodi di Analisi" - delle NTC secondo il quale, nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le seguenti espressioni:

$$k_h = \beta_m \cdot \frac{a_{max}}{g} \tag{7.11.6}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$
 (7.11.7)

dove

 $a_{\text{max}}$  = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_g = S_S \cdot S_T \cdot a_g \tag{7.11.8}$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S<sub>S</sub>) e dell'amplificazione topografica (S<sub>T</sub>), di cui al § 3.2.3.2;

 $a_g$  = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente  $\beta_m$  assume i valori riportati nella Tab. 7.11-II.



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 |  | Pag. di Pag.<br>24 di 136 |  |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|--|---------------------------|--|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|--|---------------------------|--|

 Tabella 7.11.II - Coefficienti di riduzione dell'accelerazione massima attesa al sito.

|                                       | Categoria di sottosuolo |             |  |  |  |  |
|---------------------------------------|-------------------------|-------------|--|--|--|--|
|                                       | A                       | B, C, D, E  |  |  |  |  |
|                                       | $\beta_{m}$             | $\beta_{m}$ |  |  |  |  |
| $0.2 < a_{\rm g}(g) \le 0.4$          | 0,31                    | 0,31        |  |  |  |  |
| $0,1 \le a_{g}(g) \le 0,2$            | 0,29                    | 0,24        |  |  |  |  |
| $a_{\mathbf{g}}(\mathbf{g}) \leq 0,1$ | 0,20                    | 0,18        |  |  |  |  |

Tenendo tuttavia conto della specifica che prescrive, nel caso di muri che non siano in grado di subire spostamenti (quale è il caso dei muri su pali) un valore del coefficiente  $\beta_m$  pari ad 1.0. Assumendo tale valore si considera che, cautelativamente, il terreno di riempimento è rigidamente connesso all'opera e non subisce deformazioni o movimenti relativi rispetto ad essa.

Nel caso in specie si ha:

Per i muri su fondazione diretta:

 $a_g/g = 0.206$ ; amax/g=0.285  $\beta$ m=0.31; Kh=0.089

Per i muri su pali:

 $a_g/g = 0.206$ ; amax/g=0.285 βm=1;

Kh=0.285



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|   | Tratto<br>212 | Settore<br>E | WBS<br>OS0900 |     | N. prog.<br>01 | Pag. di Pag.<br>25 di 136 |
|---|---------------|--------------|---------------|-----|----------------|---------------------------|
| ı |               |              |               | RH. |                |                           |

#### 9.4.1 Forze d'inerzia

Per le verifiche in fase sismica verranno pertanto applicate a tutti carichi fissi le seguenti forze d'inerzia:

 $\mathbf{F}_h = \mathbf{K}_h^* \mathbf{W}_i$  (Forza d'inerzia legata alla componente orizzontale del sisma)

 $F_v = \pm 0.5K_h*W_i$  (Forza d'inerzia legata alla componente verticale del sisma)

essendo Wi il peso dell'elemento in esame o l'entità del carico fisso.

#### 9.4.2 Effetti sismici sulle spinte del terreno

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta.

Per le verifiche in fase sismica infatti, nell'equazione risolutiva dell'equilibrio del cuneo, vengono infattiaggiunte anche le forze d'inerzia proprie del Cuneo $F_h$  e  $F_v$ .

La superfice di rottura nel caso di sisma risulta generalmente meno inclinata della corrispondente superficie in assenza di sisma.

#### 9.4.3 Effetti dell'Azione sismica sulla falda

Normalmente gli effetti idrodinamici considerati per il calcolo delle paratie sono calcolati con il metodo di Westergaard (Westergaard, 1931) e sono applicate sempre come pressioni esterne. La pressione idrodinamica viene calcolata come in particoalre come segue:

$$p_{\rm W} = \frac{7}{8} a_{\rm x} \gamma_{\rm W} \sqrt{z_{\rm W} H}$$

H è l'altezza del livello di falda rispetto a fondo scavo

 $z_w$  è la profondità del punto considerato dalla superficie libera della falda



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 |   |    | WBS<br>OS0900 | aoc. | N. prog.<br>01 | Rev.<br>A     | Pag.diPag.<br>26 di 136 |
|---------------|---------------|---|----|---------------|------|----------------|---------------|-------------------------|
| 10/3          | 212           | _ | 17 | 030/00        | RFI  | O1             | $\overline{}$ | 20 UI                   |

# 10. COMBINAZIONI DI CALCOLO

Si riporta nel seguito il riepilogo delle Combinazioni di Carico esaminate per l'Analisi e Verifica dei muri di Sottoscarpa.

#### Simbologia adottata

*F/S* Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

 $\gamma$  Coefficiente di partecipazione della condizione

 $\Psi$  Coefficiente di combinazione della condizione

| Combinazione n° 1 - Caso A1-M1 (STR)      |                    |      |                  |               |
|-------------------------------------------|--------------------|------|------------------|---------------|
|                                           | S/F                | γ    | Ψ                | γ*Ψ           |
| Peso proprio muro                         | FAV                | 1,00 | 1.00             | 1,00          |
| Peso proprio terrapieno                   | FAV                | 1,00 | 1.00             | 1,00          |
| Spinta terreno                            | SFAV               | 1,30 | 1.00             | 1,30          |
|                                           | 3.7.1              | 2,00 | 2.00             | 2,00          |
| Combinazione n° 2 - Caso A1-M1 (STR)      | - 1-               |      | \ <del>\\\</del> | 4 274         |
| _                                         | S/F                | γ    | Ψ                | γ*Ψ           |
| Peso proprio muro                         | FAV                | 1,00 | 1.00             | 1,00          |
| Peso proprio terrapieno                   | FAV                | 1,00 | 1.00             | 1,00          |
| Spinta terreno                            | SFAV               | 1,30 | 1.00             | 1,30          |
| SOVRACCARICO STRADALE                     | SFAV               | 1.50 | 1.00             | 1.50          |
| Combinazione n° 3 - Caso A1-M1 (STR) - Si | sma Vert. positivo |      |                  |               |
|                                           | S/F                | γ    | Ψ                | γ*Ψ           |
| Peso proprio muro                         | SFAV               | 1,00 | 1.00             | 1,00          |
| Peso proprio terrapieno                   | SFAV               | 1,00 | 1.00             | 1,00          |
| Spinta terreno                            | SFAV               | 1,00 | 1.00             | 1,00          |
| Carabinasiana nº 4 Casa A4 N41 (CTD) Ci   | \/tti              |      |                  |               |
| Combinazione n° 4 - Caso A1-M1 (STR) - Si |                    |      | )Tr              | <b>* )T</b> ( |
|                                           | S/F                | γ    | Ψ                | γ*Ψ           |
| Peso proprio muro                         | SFAV               | 1,00 | 1.00             | 1,00          |
| Peso proprio terrapieno                   | SFAV               | 1,00 | 1.00             | 1,00          |
| Spinta terreno                            | SFAV               | 1,00 | 1.00             | 1,00          |
| Combinazione n° 5 - Caso A1-M1 (STR) - Si | sma Vert. positivo |      |                  |               |
|                                           | S/F                | γ    | Ψ                | γ*Ψ           |
| Peso proprio muro                         | FAV                | 1,00 | 1.00             | 1,00          |
| Peso proprio terrapieno                   | FAV                | 1,00 | 1.00             | 1,00          |
| Spinta terreno                            | SFAV               | 1,00 | 1.00             | 1,00          |
|                                           | _,                 |      |                  |               |
| Combinazione n° 6 - Quasi Permanente (SI  |                    |      | ,                |               |
| _                                         | S/F                | γ    | Ψ                | γ*Ψ           |
| Peso proprio muro                         |                    | 1,00 | 1.00             | 1,00          |
| Peso proprio terrapieno                   |                    | 1,00 | 1.00             | 1,00          |
| Spinta terreno                            |                    | 1,00 | 1.00             | 1,00          |
| Combinazione n° 7 - Frequente (SLE)       |                    |      |                  |               |
|                                           | S/F                | γ    | Ψ                | γ * Ψ         |
| Peso proprio muro                         |                    | 1,00 | 1.00             | 1,00          |
| Peso proprio terrapieno                   |                    | 1,00 | 1.00             | 1,00          |
| Spinta terreno                            |                    | 1,00 | 1.00             | 1,00          |
| SOVRACCARICO STRADALE                     | SFAV               | 1.00 | 0.75             | 0.75          |
|                                           |                    |      |                  |               |
| Combinazione n° 8 - Rara (SLE)            | o /=               |      | )T/              | <b>*</b> )T(  |
| _                                         | S/F                | γ    | Ψ                | γ*Ψ           |
| Peso proprio muro                         |                    | 1,00 | 1.00             | 1,00          |
| Peso proprio terrapieno                   |                    | 1,00 | 1.00             | 1,00          |
| Spinta terreno                            |                    | 1,00 | 1.00             | 1,00          |
| SOVRACCARICO STRADALE                     | SFAV               | 1.00 | 1.00             | 1.00          |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|  | Opera<br>L073 | Tratto<br>212 | Settore<br>E |  | WBS<br>OS0900 | ld.<br>doc. | N. prog.<br>01 |  | Pag.diPag.<br>27 di 136 |  |
|--|---------------|---------------|--------------|--|---------------|-------------|----------------|--|-------------------------|--|
|--|---------------|---------------|--------------|--|---------------|-------------|----------------|--|-------------------------|--|

Si riporta nel seguito il riepilogo delle Combinazioni di Carico esaminate per l'Analisi e Verifica dei muri di sostegno.

| Combinazione n° 1 - Caso A1-M1 (STR)                                                                                                                      |                                        |                                      |                                                    |                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------------|-----------------------------------------------------|
| <u> </u>                                                                                                                                                  | S/F                                    | γ                                    | Ψ                                                  | γ * Ψ                                               |
| Peso proprio muro                                                                                                                                         | FAV                                    | 1,00                                 | 1.00                                               | 1,00                                                |
| Peso proprio terrapieno                                                                                                                                   | FAV                                    | 1,00                                 | 1.00                                               | 1,00                                                |
| Spinta terreno                                                                                                                                            | SFAV                                   | 1,30                                 | 1.00                                               | 1,30                                                |
|                                                                                                                                                           |                                        |                                      |                                                    |                                                     |
| Combinazione n° 2 - Caso A1-M1 (STR)                                                                                                                      |                                        |                                      |                                                    |                                                     |
|                                                                                                                                                           | S/F                                    | γ                                    | Ψ                                                  | γ*Ψ                                                 |
| Peso proprio muro                                                                                                                                         | FAV                                    | 1,00                                 | 1.00                                               | 1,00                                                |
| Peso proprio terrapieno                                                                                                                                   | FAV                                    | 1,00                                 | 1.00                                               | 1,00                                                |
| Spinta terreno                                                                                                                                            | SFAV                                   | 1,30                                 | 1.00                                               | 1,30                                                |
| SOVRACCARICO STRADALE                                                                                                                                     | SFAV                                   | 1.50                                 | 1.00                                               | 1.50                                                |
| Combinazione n° 3 - Caso A1-M1 (STR)                                                                                                                      |                                        |                                      |                                                    |                                                     |
| <u>,</u>                                                                                                                                                  | S/F                                    | γ                                    | Ψ                                                  | γ*Ψ                                                 |
| Peso proprio muro                                                                                                                                         | FAV                                    | 1,00                                 | 1.00                                               | 1,00                                                |
| Peso proprio terrapieno                                                                                                                                   | FAV                                    | 1,00                                 | 1.00                                               | 1,00                                                |
| Spinta terreno                                                                                                                                            | SFAV                                   | 1,30                                 | 1.00                                               | 1,30                                                |
| Urto Veicolo                                                                                                                                              | SFAV                                   | 1.50                                 | 1.00                                               | 1.50                                                |
|                                                                                                                                                           |                                        |                                      |                                                    |                                                     |
| Combinazione n° 4 - Caso A1-M1 (STR) - Sis                                                                                                                |                                        |                                      |                                                    |                                                     |
|                                                                                                                                                           | S/F                                    | γ                                    | Ψ                                                  | γ*Ψ                                                 |
| Peso proprio muro                                                                                                                                         | SFAV                                   | 1,00                                 | 1.00                                               | 1,00                                                |
| Peso proprio terrapieno                                                                                                                                   | SFAV                                   | 1,00                                 | 1.00                                               | 1,00                                                |
| Spinta terreno                                                                                                                                            | SFAV                                   | 1,00                                 | 1.00                                               | 1,00                                                |
| Combinazione n° 5 - Caso A1-M1 (STR) - Sis                                                                                                                | sma Vert. positivo                     |                                      |                                                    |                                                     |
|                                                                                                                                                           | S/F                                    | γ                                    | Ψ                                                  | γ*Ψ                                                 |
| Peso proprio muro                                                                                                                                         | SFAV                                   | 1,00                                 | 1.00                                               | 1,00                                                |
| Peso proprio terrapieno                                                                                                                                   | SFAV                                   | 1,00                                 | 1.00                                               | 1,00                                                |
| Spinta terreno                                                                                                                                            | SFAV                                   | 1,00                                 | 1.00                                               | 1,00                                                |
| Combinazione nº 6. Quasi Rermanente (SI                                                                                                                   | Γ\                                     |                                      |                                                    |                                                     |
| Combinazione n° 6 - Quasi Permanente (SL                                                                                                                  | <u>5)</u><br>S/F                       | •                                    | Ψ                                                  | γ*Ψ                                                 |
| Peso proprio muro                                                                                                                                         | 3/F<br>                                | γ<br>1,00                            | 1.00                                               | 1,00                                                |
| Peso proprio terrapieno                                                                                                                                   |                                        | 1,00                                 | 1.00                                               | 1,00                                                |
| Spinta terreno                                                                                                                                            |                                        | 1,00                                 | 1.00                                               | 1,00                                                |
|                                                                                                                                                           |                                        | 2,00                                 | 2.00                                               |                                                     |
|                                                                                                                                                           |                                        |                                      |                                                    |                                                     |
| Combinazione n° 7 - Frequente (SLE)                                                                                                                       |                                        |                                      |                                                    |                                                     |
| Combinazione n° 7 - Frequente (SLE)                                                                                                                       | S/F                                    | γ                                    | Ψ                                                  | γ*Ψ                                                 |
| Combinazione n° 7 - Frequente (SLE)  Peso proprio muro                                                                                                    | S/F<br>                                | γ<br>1,00                            | Ψ<br>1.00                                          | γ*Ψ<br>1,00                                         |
|                                                                                                                                                           |                                        | -                                    | _                                                  | •                                                   |
| Peso proprio muro<br>Peso proprio terrapieno<br>Spinta terreno                                                                                            | <br><br>                               | 1,00<br>1,00<br>1,00                 | 1.00<br>1.00<br>1.00                               | 1,00<br>1,00<br>1,00                                |
| Peso proprio muro<br>Peso proprio terrapieno                                                                                                              | <br>                                   | 1,00<br>1,00                         | 1.00<br>1.00                                       | 1,00<br>1,00                                        |
| Peso proprio muro<br>Peso proprio terrapieno<br>Spinta terreno<br>SOVRACCARICO STRADALE                                                                   | <br><br>                               | 1,00<br>1,00<br>1,00                 | 1.00<br>1.00<br>1.00                               | 1,00<br>1,00<br>1,00                                |
| Peso proprio muro<br>Peso proprio terrapieno<br>Spinta terreno                                                                                            | <br><br><br>SFAV                       | 1,00<br>1,00<br>1,00<br>1,00         | 1.00<br>1.00<br>1.00<br>0.75                       | 1,00<br>1,00<br>1,00<br>0.75                        |
| Peso proprio muro Peso proprio terrapieno Spinta terreno SOVRACCARICO STRADALE  Combinazione n° 8 - Rara (SLE)                                            | <br><br>                               | 1,00<br>1,00<br>1,00<br>1,00<br>1.00 | 1.00<br>1.00<br>1.00<br>0.75                       | 1,00<br>1,00<br>1,00<br>0.75                        |
| Peso proprio muro Peso proprio terrapieno Spinta terreno SOVRACCARICO STRADALE  Combinazione n° 8 - Rara (SLE) Peso proprio muro                          | <br><br><br>SFAV<br><b>S/F</b>         | 1,00<br>1,00<br>1,00<br>1,00<br>1.00 | 1.00<br>1.00<br>1.00<br>0.75<br>\P<br>1.00         | 1,00<br>1,00<br>1,00<br>0.75<br>γ*Ψ<br>1,00         |
| Peso proprio muro Peso proprio terrapieno Spinta terreno SOVRACCARICO STRADALE  Combinazione n° 8 - Rara (SLE)                                            | <br><br><br>SFAV<br><b>S/F</b><br>     | 1,00<br>1,00<br>1,00<br>1,00<br>1.00 | 1.00<br>1.00<br>1.00<br>0.75                       | 1,00<br>1,00<br>1,00<br>0.75                        |
| Peso proprio muro Peso proprio terrapieno Spinta terreno SOVRACCARICO STRADALE  Combinazione n° 8 - Rara (SLE)  Peso proprio muro Peso proprio terrapieno | <br><br><br>SFAV<br><b>S/F</b><br><br> | 1,00<br>1,00<br>1,00<br>1.00<br>1.00 | 1.00<br>1.00<br>1.00<br>0.75<br>\P<br>1.00<br>1.00 | 1,00<br>1,00<br>1,00<br>0.75<br>γ*Ψ<br>1,00<br>1,00 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera Tratto Settore CEE WBS doc. N. prog. Rev L073 212 E 17 OS0900 PH 01 A |
|-----------------------------------------------------------------------------|
|-----------------------------------------------------------------------------|

# 11. RISULTATI ANALISI E VERIFICHE

Si riportano di seguito risultati delle analisi e verifiche delle diverse sezioni tipo dei muri

#### 11.1 RISULTATI ANALISI E VERIFICHE MURI DI TIPO 2

#### 11.1.1 Modello di calcolo

Le sollecitazioni proventienti dal muro vengono ripartite sui pali restituendo le sollecitazioni nei pali in termini di Taglio, Momento e sforzo normale. Gli scarichi sui pali vengono determinati mediante il metodo delle rigidezze. La piastra di fondazione viene considerata infinitamente rigida (3 gradi di libertà) ed i pali vengono considerati incastrati o incernierati a tale piastra.

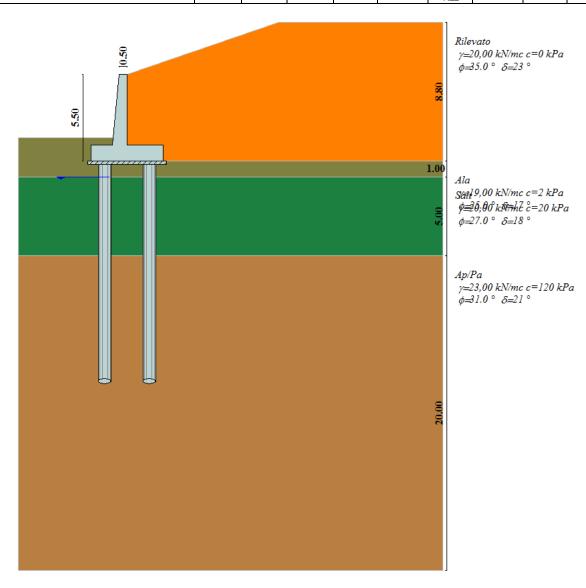
Viene effettuata una prima analisi di ogni palo di ciascuna fila (i pali di ogni fila hanno le stesse caratteristiche) per costruire una curva carichi-spostamenti del palo. Questa curva viene costruita considerando il palo elastico. Si tratta, in definitiva, della matrice di rigidezza del palo Ke, costruita imponendo traslazioni e rotazioni unitarie per determinare le corrispondenti sollecitazioni in testa al palo. Nota la matrice di rigidezza di ogni palo si assembla la matrice globale (di dimensioni 3x3) della palificata, K. A questo punto, note le forze agenti in fondazione (N, T, M) si possono ricavare gli spostamenti della piastra (abbassamento, traslazione e rotazione) e le forze che si scaricano su ciascun palo. Infatti indicando con p il vettore dei carichi e con u il vettore degli spostamenti della piastra abbiamo:

$$u = K-1p$$

Noti gli spostamenti della piastra, e quindi della testa dei pali, abbiamo gli scarichi su ciascun palo. Allora per ciascun palo viene effettuata un'analisi elastoplastica incrementale (tramite il metodo degli elementi finiti) che, tenendo conto della plasticizzazione del terreno, calcola le sollecitazioni in tutte le sezioni del palo., le caratteristiche del terreno (rappresentate da Kh) sono tali che se non è possibile raggiungere l'equilibrio si ha collasso per rottura del terreno. In tale analisi i pali sono considerati incastrati alla fondazione di base. Di seguito si riportano i principali risultati delle analisi svolte sul muro su pali. Per ulteriori dettagli si ribanda ai tabulati in allegato.

Si riportano di seguito in forma tabellare i valori delle spinte di natura statica e sismica per le combinazioni analizzate, gli inviluppi delle sollecitazioni nel muro, sulla fondazione e nei pali.




Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

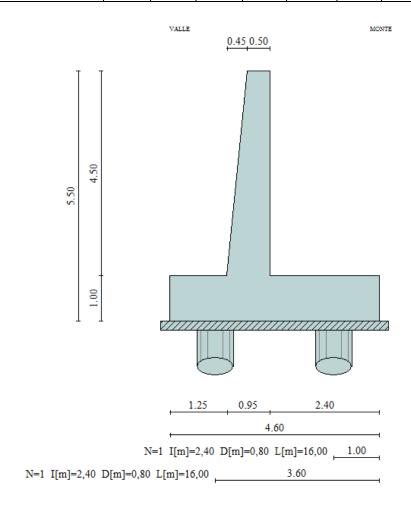
Relazione tecnica e di calcolo

ld. Tratto Settore Pag. di Pag. Opera CEE **WBS** N. prog. Rev. doc. L073 212 Е 17 OS0900 29 di 136 01 Α REL



Modello di calcolo muro su PALI




Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS    | ld.  | N. prog. |    | Pag.diPag. |
|-------|--------|---------|-----|--------|------|----------|----|------------|
| L073  | 212    | E       | 17  | OS0900 | doc. | 01       |    | 30 di 136  |
| 10/3  | ZIZ    | _       | 17  | C30700 | REL  | OI OI    | Α. | 30 ai 136  |

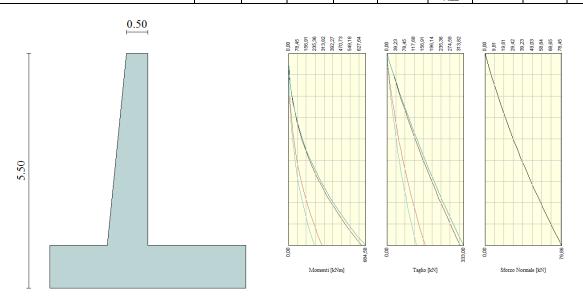


# Geometria muro

| Γ | Comb. | Tipo comb.  | Sisma                    | FS (ribalt) | FS (scorr) | FS (qult) | FS (stab) | Spinta[kN] | Incr. sism.[kN] |
|---|-------|-------------|--------------------------|-------------|------------|-----------|-----------|------------|-----------------|
| Þ | 1     | A1-M1 - [1] |                          |             |            |           |           | 317,1581   | 0,0000          |
|   | 2     | A1-M1 - [2] |                          |             |            |           |           | 328,0107   | 0,0000          |
|   | 3     | A1-M1 - [3] | SismaH + SismaV positivo |             |            |           |           | 243,9677   | 253,9174        |
|   | 4     | A1-M1 - [3] | SismaH + SismaV negativo |             |            |           |           | 243,9677   | 215,3830        |
|   | 5     | A1-M1 - [4] | SismaH + SismaV positivo |             |            |           |           | 243,9677   | 253,9174        |
|   | 6     | SLEQ - [1]  |                          |             |            |           |           | 243,9677   | 0,0000          |
|   | 7     | SLEF - [1]  |                          |             |            |           |           | 247,3666   | 0,0000          |
|   | 8     | SLER - [1]  |                          |             |            |           |           | 250,2619   | 0,0000          |

Azioni risultanti sul muro




Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc. | N. prog.<br>01 |     | Pag. di Pag.<br>31 di 136 |   |
|---------------|---------------|--------------|-----------|---------------|-------------|----------------|-----|---------------------------|---|
| 20/0          | 212           | _            | 17        | 000700        | REL         | 01             | / \ | 01 01 100                 | I |



Inviluppo sollecitazioni sul muro



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Tratto<br>212 | Settore<br>E | WBS<br>OS0900 |     | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>32 di 136 |
|---------------|--------------|---------------|-----|----------------|-----------|---------------------------|
|               |              |               | REL | _              |           |                           |

# 11.1.2 Verifiche strutturali

Nella tabella seguente si riportano le armature di progetto previste per la sezione di calcolo in questione, come desumibili dagli elaborati grafici di armatura delle opere relative:

|           | Armatura a | flessione  |  |  |
|-----------|------------|------------|--|--|
| Elemento  | Lato monte | Lato valle |  |  |
| PARAMENTO | 1φ22/20    | 1φ18/20    |  |  |

|            | Armatura a flessione |                |  |  |  |  |  |
|------------|----------------------|----------------|--|--|--|--|--|
| Elemento   | Lato inferiore       | Lato superiore |  |  |  |  |  |
| FONDAZIONE | 1φ22/20              | 1φ22/10        |  |  |  |  |  |

28,9007

34,4218

28,9007

34,4218

Ai fini delle verifiche si è fatto riferimento per la parte in elevazione (paramento e fondazione muro) ad un copriferro di calcolo (asse armature) pari a 4 cm, mentre per i pali si è assunto un copriferro di calcolo pari a 7 cm.

#### Verifiche strutturali per paramento e fondazione

Di seguito si riporta l'inviluppo delle sollecitazioni nel paramento e nella fondazione ed i risultati delle verifiche strutturali.

Inviluppo Sollecitazioni paramento

#### Inviluppo combinazioni SLU

8

9

1,57

1,80

22,3323

26,0166

| Nr.    | Υ          | Nmin       | Nmax    | Mmin     | Mmax     | Tmin     | Tmax     |
|--------|------------|------------|---------|----------|----------|----------|----------|
| 1      | 0,00       | 0,0000     | 0,0000  | 0,0000   | 0,000    | 0,0000   | 0,0000   |
| 2      | 0,23       | 2,8199     | 2,8199  | 0,4254   | 1,4453   | 3,9994   | 13,0519  |
| 3      | 0,45       | 5,7633     | 5,7633  | 1,7706   | 5,8384   | 8,4629   | 26,4910  |
| 4      | 0,68       | 8,8301     | 8,8301  | 4,1374   | 13,2643  | 13,3806  | 40,3099  |
| 5      | 0,90       | 12,0205    | 12,0205 | 7,6263   | 23,8067  | 18,7503  | 54,5067  |
| 6      | 1,13       | 15,3343    | 15,3343 | 12,3376  | 37,5493  | 24,5719  | 69,0815  |
| 7      | 1,35       | 18,7716    | 18,7716 | 18,3715  | 54,5756  | 30,8455  | 84,0342  |
| 8      | 1,57       | 22,3323    | 22,3323 | 25,8283  | 74,9694  | 37,5709  | 99,3648  |
| 9      | 1,80       | 26,0166    | 26,0166 | 34,8084  | 98,8143  | 44,7483  | 115,0734 |
| 10     | 2,02       | 29,8243    | 29,8243 | 45,4120  | 126,1938 | 52,3777  | 131,1600 |
| 11     | 2,25       | 33,7555    | 33,7555 | 57,7394  | 157,1918 | 60,4589  | 147,6244 |
| 12     | 2,48       | 37,8101    | 37,8101 | 71,8909  | 191,8917 | 68,9921  | 164,4669 |
| 13     | 2,70       | 41,9883    | 41,9883 | 87,9668  | 230,3772 | 77,9772  | 181,6872 |
| 14     | 2,93       | 46,2899    | 46,2899 | 106,0673 | 272,7321 | 87,4142  | 199,2855 |
| 15     | 3,15       | 50,7150    | 50,7150 | 126,2928 | 319,0398 | 97,3032  | 217,2618 |
| 16     | 3,38       | 55,2636    | 55,2636 | 148,7436 | 369,3842 | 107,6441 | 235,6160 |
| 17     | 3,60       | 59,9356    | 59,9356 | 173,5199 | 423,8487 | 118,4369 | 254,3481 |
| 18     | 3,83       | 64,7312    | 64,7312 | 200,7220 | 482,5170 | 129,6817 | 273,4582 |
| 19     | 4,05       | 69,6502    | 69,6502 | 230,4502 | 545,4729 | 141,3783 | 292,9462 |
| 20     | 4,28       | 74,6927    | 74,6927 | 262,8048 | 612,7999 | 153,5270 | 312,8122 |
| 21     | 4,50       | 79,8586    | 79,8586 | 297,8818 | 684,5783 | 166,0552 | 333,0005 |
| Invilu | ppo combin | azioni SLE |         |          |          |          |          |
| Nr.    | Υ          | Nmin       | Nmax    | Mmin     | Mmax     | Tmin     | Tmax     |
| 1      | 0,00       | 0,0000     | 0,0000  | 0,0000   | 0,000    | 0,0000   | 0,0000   |
| 2      | 0,23       | 2,8199     | 2,8199  | 0,3236   | 0,3236   | 3,0765   | 3,0765   |
| 3      | 0,45       | 5,7633     | 5,7633  | 1,3472   | 1,3472   | 6,5099   | 6,5099   |
| 4      | 0,68       | 8,8301     | 8,8301  | 3,1489   | 3,1489   | 10,2928  | 10,2928  |
| 5      | 0,90       | 12,0205    | 12,0205 | 5,8056   | 5,8056   | 14,4233  | 14,4233  |
| 6      | 1,13       | 15,3343    | 15,3343 | 9,3941   | 9,3941   | 18,9015  | 18,9015  |
| 7      | 1,35       | 18,7716    | 18,7716 | 13,9912  | 13,9912  | 23,7273  | 23,7273  |

19,6738

26,5187

19,6738

26,5187

22,3323

26,0166



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|    |      | -       | Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>33 di 136 |
|----|------|---------|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|---------------------------|
| 10 | 2,02 | 29,8243 | 29,8243       | 34            | ,6028        | 34,6      | 028           | 40,2               | 905            | 40,2905   |                           |
| 11 | 2,25 | 33,7555 | 33,7555       | 44            | ,0027        | 44,0      | 027           | 46,5               | 069            | 46,5069   |                           |
| 12 | 2,48 | 37,8101 | 37,8101       | 54            | ,7954        | 54,7      | 954           | 53,0               | 708            | 53,0708   |                           |
| 13 | 2,70 | 41,9883 | 41,9883       | 67,0577       |              | 67,0577   |               | 59,9               | 825            | 59,9825   |                           |
| 14 | 2,93 | 46,2899 | 46,2899       | 80            | 80,8664      |           | 664           | 67,2               | 417            | 67,2417   |                           |
| 15 | 3,15 | 50,7150 | 50,7150       | 96            | ,2983        | 96,2      | 983           | 74,8               | 486            | 74,8486   |                           |
| 16 | 3,38 | 55,2636 | 55,2636       | 113           | ,4303        | 113,4     | 303           | 82,8               | 032            | 82,8032   |                           |
| 17 | 3,60 | 59,9356 | 59,9356       | 132           | ,3391        | 132,3     | 391           | 91,1               | 053            | 91,1053   |                           |
| 18 | 3,83 | 64,7312 | 64,7312       | 153           | ,1016        | 153,1     | 016           | 99,7               | 551            | 99,7551   |                           |
| 19 | 4,05 | 69,6502 | 69,6502       | 175           | ,7946        | 175,7     | 946           | 108,7              | 526            | 108,7526  |                           |
| 20 | 4,28 | 74,6927 | 74,6927       | 200           | ,4950        | 200,4     | 950           | 118,0              | 977            | 118,0977  |                           |
| 21 | 4,50 | 79,8586 | 79,8586       | 227           | ,2762        | 227,2     | 762           | 127,7              | 348            | 127,7348  |                           |
|    |      |         |               |               |              |           |               |                    |                |           |                           |

#### Inviluppo armature e tensioni nei materiali del muro

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

A<sub>fs</sub> area di armatura in corrispondenza del lembo di monte in [mq]

A<sub>fi</sub> area di armatura in corrispondenza del lembo di valle in [mq]

 $\sigma_c$  tensione nel calcestruzzo espressa in [kPa]

τ<sub>c</sub> tensione tangenziale nel calcestruzzo espressa in [kPa]

 $\sigma_{\!fs}$  tensione nell'armatura disposta sul lembo di monte in [kPa]

 $\sigma_{fi}$  tensione nell'armatura disposta sul lembo di valle in [kPa]

 $N_u \hspace{1cm} sforzo \hspace{1cm} normale \hspace{1cm} ultimo \hspace{1cm} espresso \hspace{1cm} in \hspace{1cm} [kN]$ 

M<sub>u</sub> momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRd Resistenza al taglio, espresso in [kN]

#### Inviluppo SLU

| Nr.      | Υ     | В, Н       | $A_{fs}$ | $A_{fi}$ | Nu      | Mu      | CS          | $V_{Rd}$        | $V_{Rcd}$ | $V_{Rsd}$ |
|----------|-------|------------|----------|----------|---------|---------|-------------|-----------------|-----------|-----------|
| 1        | 0,00  | 1,00, 0,50 | 0,000000 | 0,001272 | 0,00    | 0,00    | 1000,00     | 173,53          |           |           |
| 2        | 0,23  | 1,00, 0,52 | 0,001901 | 0,001272 | 1083,09 | -555,12 | 384,09      | 205,59          |           |           |
| 3        | 0,45  | 1,00, 0,54 | 0,001901 | 0,001272 | 444,77  | -450,57 | 77,17       | 210,46          |           |           |
| 4        | 0,68  | 1,00, 0,57 | 0,001901 | 0,001272 | 290,65  | -436,60 | 32,92       | 215,26          |           |           |
| 5        | 0,90  | 1,00, 0,59 | 0,001901 | 0,001272 | 222,05  | -439,77 | 18,47       | 220,02          |           |           |
| 6        | 1,13  | 1,00, 0,61 | 0,001901 | 0,001272 | 183,33  | -448,92 | 11,96       | 224,72          |           |           |
| 7        | 1,35  | 1,00, 0,63 | 0,001901 | 0,001272 | 158,52  | -460,87 | 8,44        | 229,38          |           |           |
| 8        | 1,57  | 1,00, 0,66 | 0,001901 | 0,001272 | 141,30  | -474,35 | 6,33        | 233,99          |           |           |
| 9        | 1,80  | 1,00, 0,68 | 0,001901 | 0,001272 | 128,68  | -488,76 | 4,95        | 238,56          |           |           |
| 10       | 2,02  | 1,00, 0,70 | 0,001901 | 0,001272 | 119,06  | -503,77 | 3,99        | 243,10          |           |           |
| 11       | 2,25  | 1,00, 0,72 | 0,001901 | 0,001272 | 111,49  | -519,20 | 3,30        | 247,61          |           |           |
| 12       | 2,48  | 1,00, 0,75 | 0,001901 | 0,001272 | 105,40  | -534,94 | 2,79        | 252,08          |           |           |
| 13       | 2,70  | 1,00, 0,77 | 0,001901 | 0,001272 | 100,40  | -550,89 | 2,39        | 256,52          |           |           |
| 14       | 2,93  | 1,00, 0,79 | 0,001901 | 0,001272 | 96,24   | -567,02 | 2,08        | 260,94          |           |           |
| 15       | 3,15  | 1,00, 0,81 | 0,001901 | 0,001272 | 92,72   | -583,29 | 1,83        | 265,33          |           |           |
| 16       | 3,38  | 1,00, 0,84 | 0,001901 | 0,001272 | 89,72   | -599,66 | 1,62        | 269,70          |           |           |
| 17       | 3,60  | 1,00, 0,86 | 0,001901 | 0,001272 | 87,13   | -616,13 | 1,45        | 274,04          |           |           |
| 18       | 3,83  | 1,00, 0,88 | 0,000000 | 0,001272 | 0,22    | -1,66   | 0,00        | 278,77          |           |           |
| 19       | 4,05  | 1,00, 0,90 | 0,001901 | 0,001272 | 82,90   | -649,26 | 1,19        | 284,90          |           |           |
| 20       | 4,28  | 1,00, 0,93 | 0,001901 | 0,001272 | 81,17   | -665,91 | 1,09        | 291,03          |           |           |
| 21       | 4,50  | 1,00, 0,95 | 0,001901 | 0,001272 | 79,63   | -682,61 | 1,00        | 297,16          |           |           |
| Invilupp | o SLE |            |          |          |         |         |             |                 |           |           |
| Nr.      | Υ     | В, Н       | $A_{fs}$ | Afi      | σα      | το      | <b>σ</b> fs | σ <sub>fi</sub> |           |           |
| 1        | 0,00  | 1,00, 0,50 | 0,000000 | 0,001272 | 0       | 0       | 0           | 0               |           |           |
| 2        | 0,23  | 1,00, 0,52 | 0,001901 | 0,001272 | 11      | 8       | 6           | -155            |           |           |
| 3        | 0,45  | 1,00, 0,54 | 0,001901 | 0,001272 | 39      | 15      | 406         | -511            |           |           |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|    |      | E          |               |          |              |           |               |                    |                |           |                           |
|----|------|------------|---------------|----------|--------------|-----------|---------------|--------------------|----------------|-----------|---------------------------|
| ^  |      | -          | Opero<br>L073 |          | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>34 di 136 |
| 4  | 0,68 | 1,00, 0,57 | 0,001901      | 0,001272 | 86           | 5         | 23            | 1529               | -1075          |           |                           |
| 5  | 0,90 | 1,00, 0,59 | 0,001901      | 0,001272 | 148          | 3         | 31            | 3373               | -1811          |           |                           |
| 6  | 1,13 | 1,00, 0,61 | 0,001901      | 0,001272 | 223          | 3         | 39            | 5915               | -2705          |           |                           |
| 7  | 1,35 | 1,00, 0,63 | 0,001901      | 0,001272 | 312          | <u> </u>  | 47            | 9138               | -3746          |           |                           |
| 8  | 1,57 | 1,00, 0,66 | 0,001901      | 0,001272 | 412          | <u> </u>  | 55            | 13031              | -4929          |           |                           |
| 9  | 1,80 | 1,00, 0,68 | 0,001901      | 0,001272 | 522          | <u> </u>  | 63            | 17585              | -6246          |           |                           |
| 10 | 2,02 | 1,00, 0,70 | 0,001901      | 0,001272 | 643          | 3         | 72            | 22793              | -7691          |           |                           |
| 11 | 2,25 | 1,00, 0,72 | 0,001901      | 0,001272 | 774          | ļ         | 80            | 28647              | -9259          |           |                           |
| 12 | 2,48 | 1,00, 0,75 | 0,001901      | 0,001272 | 914          | ļ         | 88            | 35143              | -10946         |           |                           |
| 13 | 2,70 | 1,00, 0,77 | 0,001901      | 0,001272 | 1063         | 3         | 97            | 42276              | -12747         |           |                           |
| 14 | 2,93 | 1,00, 0,79 | 0,001901      | 0,001272 | 1220         | )         | 105           | 50041              | -14658         |           |                           |
| 15 | 3,15 | 1,00, 0,81 | 0,001901      | 0,001272 | 1384         | ļ         | 114           | 58434              | -16676         |           |                           |
| 16 | 3,38 | 1,00, 0,84 | 0,001901      | 0,001272 | 1557         | 7         | 122           | 67453              | -18797         |           |                           |
| 17 | 3,60 | 1,00, 0,86 | 0,001901      | 0,001272 | 1737         | 7         | 131           | 77093              | -21017         |           |                           |
| 18 | 3,83 | 1,00, 0,88 | 0,000000      | 0,001272 | 325936       | 5         | 139           | 0                  | 3088858        |           |                           |
| 19 | 4,05 | 1,00, 0,90 | 0,001901      | 0,001272 | 2118         | 3         | 148           | 98228              | -25747         |           |                           |
| 20 | 4,28 | 1,00, 0,93 | 0,001901      | 0,001272 | 2318         | 3         | 157 1         | 109719             | -28251         |           |                           |
| 21 | 4,50 | 1,00, 0,95 | 0,001901      | 0,001272 | 2525         | 5         | 165 1         | 21820              | -30843         |           |                           |
|    |      |            |               |          |              |           |               |                    |                |           |                           |

#### Inviluppo armature e tensioni nei materiali della fondazione

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

#### Inviluppo SLU

| Nr.      | Υ     | В, Н       | $A_{fs}$ | $A_{fi}$ | Nu           | Mu        | CS                     | $V_{Rd}$      | $V_{Rcd}$ | $V_{Rsd}$ |
|----------|-------|------------|----------|----------|--------------|-----------|------------------------|---------------|-----------|-----------|
| 1        | 0,00  | 1,00, 1,00 | 0,000000 | 0,000000 | 0,00         | 0,00      | 0,00                   | 297,79        |           |           |
| 2        | 0,15  | 1,00, 1,00 | 0,000000 | 0,000000 | 0,00         | 0,00      | 0,00                   | 297,79        |           |           |
| 3        | 0,30  | 1,00, 1,00 | 0,003801 | 0,001901 | 0,00         | -1360,65  | 57,03                  | 362,37        |           |           |
| 4        | 0,45  | 1,00, 1,00 | 0,003801 | 0,001901 | 0,00         | -1360,65  | 26,74                  | 362,37        |           |           |
| 5        | 0,60  | 1,00, 1,00 | 0,003801 | 0,001901 | 0,00         | -1360,65  | 14,34                  | 362,37        |           |           |
| 6        | 0,73  | 1,00, 1,00 | 0,003801 | 0,001901 | 0,00         | -1360,65  | 9,18                   | 362,37        |           |           |
| 7        | 0,87  | 1,00, 1,00 | 0,003801 | 0,001901 | 0,00         | -1360,65  | 6,40                   | 362,37        |           |           |
| 8        | 1,00  | 1,00, 1,00 | 0,003801 | 0,001901 | 0,00         | 689,50    | 4,84                   | 362,37        |           |           |
| 9        | 1,17  | 1,00, 1,00 | 0,003801 | 0,001901 | 0,00         | 689,50    | 2,39                   | 362,37        |           |           |
| 10       | 1,35  | 1,00, 1,00 | 0,003801 | 0,001901 | 0,00         | 689,50    | 1,03                   | 362,37        |           |           |
| Invilupp | o SLE |            |          |          |              |           |                        |               |           |           |
|          |       |            |          |          |              |           |                        |               |           |           |
| Nr.      | Х     | В, Н       | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{c}$ | $\sigma_{\mathrm{fi}}$ | $\sigma_{fs}$ |           |           |
| 11       | 0,00  | 1,00, 1,00 | 0,000000 | 0,000000 | 0            | 4         | 0                      | 0             |           |           |
| 12       | 0,15  | 1,00, 1,00 | 0,000000 | 0,000000 | 0            | 10        | 0                      | 0             |           |           |
| 13       | 0,30  | 1,00, 1,00 | 0,003801 | 0,001901 | 40           | 23        | 2731                   | 1016          |           |           |
| 14       | 0,45  | 1,00, 1,00 | 0,003801 | 0,001901 | 84           | 40        | 5774                   | 2402          |           |           |
| 15       | 0,60  | 1,00, 1,00 | 0,003801 | 0,001901 | 201          | 69        | 10826                  | 8130          |           |           |
| 16       | 0,73  | 1,00, 1,00 | 0,003801 | 0,001901 | 257          | 95        | 17001                  | 10423         |           |           |
| 17       | 0,87  | 1,00, 1,00 | 0,003801 | 0,001901 | 357          | 215       | 24454                  | 5532          |           |           |
| 18       | 1,00  | 1,00, 1,00 | 0,003801 | 0,001901 | 472          | 327       | 32323                  | -5442         |           |           |
| 19       | 1,17  | 1,00, 1,00 | 0,003801 | 0,001901 | 994          | 489       | 68019                  | -11452        |           |           |
| 20       | 1,35  | 1,00, 1,00 | 0,003801 | 0,001901 | 2478         | 714       | 169594                 | -28553        |           |           |
|          |       |            |          |          |              |           |                        |               |           |           |

#### <u>Fondazione di monte</u>

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

#### Inviluppo SLU

| Nr. | Y    | В, Н       | $A_{fs}$ | $A_{fi}$ | Nu   | $M_u$ | CS   | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|------------|----------|----------|------|-------|------|----------|-----------|-----------|
| 1   | 0,00 | 1,00, 1,00 | 0,000000 | 0,000000 | 0,00 | 0,00  | 0,00 | 297,79   |           |           |
| 2   | 0.15 | 1 00 1 00  | 0.000000 | 0.000000 | 0.00 | 0.00  | 0.00 | 297 79   |           |           |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| •        |        | •          |     | Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>35 di 136 |
|----------|--------|------------|-----|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|---------------------------|
|          |        |            |     |               |               |              |           |               |                    |                |           |                           |
| 3        | 0,30   | 1,00, 1,00 |     |               | 0,001901      | 0,00         |           |               | 97,06              | 362,37         |           |                           |
| 4        | 0,45   | 1,00, 1,00 | ,   |               | 0,001901      | 0,00         |           |               | 75,98              | 362,37         |           |                           |
| 5        | 0,60   | 1,00, 1,00 |     |               | 0,001901      | 0,00         |           |               | 32,16              | 362,37         |           |                           |
| 6        | 0,73   | 1,00, 1,00 |     |               | 0,001901      | 0,00         |           |               | 18,51              | 362,37         |           |                           |
| 7        | 0,87   | 1,00, 1,00 |     |               | 0,001901      | 0,00         |           |               | 11,92              | 362,37         |           |                           |
| 8        | 1,00   | 1,00, 1,00 | ,   |               | 0,001901      | 0,00         |           | •             | 8,25               | 362,37         |           |                           |
| 9        | 1,13   | 1,00, 1,00 |     |               | 0,001901      | 0,00         |           |               | 6,02               | 362,37         |           |                           |
| 10       | 1,27   | 1,00, 1,00 |     |               | 0,001901      | 0,00         |           |               | 4,58               | 362,37         |           |                           |
| 11       | 1,40   | 1,00, 1,00 |     |               | 0,001901      | 0,00         |           |               | 3,61               | 297,79         |           |                           |
| 12       | 1,55   | 1,00, 1,00 |     |               | 0,001901      | 0,00         |           |               | 2,86               | 297,79         |           |                           |
| 13       | 1,70   | 1,00, 1,00 | ,   |               | 0,001901      | 0,00         |           |               | 2,28               | 362,37         |           |                           |
| 14       | 1,85   | 1,00, 1,00 |     |               | 0,001901      | 0,00         |           |               | 1,88               | 362,37         |           |                           |
| 15       | 2,00   | 1,00, 1,00 |     |               | 0,001901      | 0,00         |           |               | 1,59               | 362,37         |           |                           |
| 16       | 2,15   | 1,00, 1,00 |     |               | 0,001901      | 0,00         |           |               | 1,37               | 362,37         |           |                           |
| 17       | 2,30   | 1,00, 1,00 | 0,0 | 03801         | 0,001901      | 0,00         | -1360     | 7,05          | 1,18               | 362,37         |           |                           |
| Invilupp | 10 SLE |            |     |               |               |              |           |               |                    |                |           |                           |
| Nr.      | Х      | В, Н       |     | $A_{fs}$      | $A_{fi}$      | σ            | :         | $	au_{c}$     | $\sigma_{\rm fi}$  | $\sigma_{fs}$  |           |                           |
| 18       | 0,00   | 1,00, 1,00 | 0,0 | 00000         | 0,000000      | 0            | )         | 0             | 0                  | 0              |           |                           |
| 19       | 0,15   | 1,00, 1,00 | 0,0 | 00000         | 0,000000      | 0            | )         | 0             | 0                  | 0              |           |                           |
| 20       | 0,30   | 1,00, 1,00 | 0,0 | 03801         | 0,001901      | 45           | ;         | 0             | -568               | 1813           |           |                           |
| 21       | 0,45   | 1,00, 1,00 | 0,0 | 03801         | 0,001901      | 100          | )         | 0             | -1274              | 4065           |           |                           |
| 22       | 0,60   | 1,00, 1,00 | 0,0 | 03801         | 0,001901      | 182          | !         | 0             | -2308              | 7365           |           |                           |
| 23       | 0,73   | 1,00, 1,00 | 0,0 | 03801         | 0,001901      | 274          | ļ         | 0             | -3477              | 11093          |           |                           |
| 24       | 0,87   | 1,00, 1,00 | 0,0 | 03801         | 0,001901      | 385          | ;         | 0             | -4883              | 15578          |           |                           |
| 25       | 1,00   | 1,00, 1,00 | 0,0 | 03801         | 0,001901      | 514          | ļ         | 0             | -6525              | 20819          |           |                           |
| 26       | 1,13   | 1,00, 1,00 | 0,0 | 03801         | 0,001901      | 662          | !         | 0             | -8404              | 26812          |           |                           |
| 27       | 1,27   | 1,00, 1,00 | 0,0 | 03801         | 0,001901      | 829          | )         | 0 -1          | L0514              | 33545          |           |                           |
| 28       | 1,40   | 1,00, 1,00 | 0,0 | 03801         | 0,001901      | 1013         | ;         | 0 -1          | L2850              | 41000          |           |                           |
| 29       | 1,55   | 1,00, 1,00 | 0,0 | 03801         | 0,001901      | 1240         | )         | 0 -1          | L5740              | 50218          |           |                           |
| 30       | 1,70   | 1,00, 1,00 |     |               | 0,001901      | 1493         |           |               | L8942              | 60436          |           |                           |
| 31       | 1,85   | 1,00, 1,00 |     |               | 0,001901      | 1767         |           |               | 22416              | 71520          |           |                           |
| 32       | 2,00   | 1,00, 1,00 |     |               | 0,001901      | 2061         |           |               | 26151              | 83436          |           |                           |
| 33       | 2,15   | 1,00, 1,00 |     |               | 0,001901      | 2376         |           |               | 30150              | 96196          |           |                           |
| 34       | 2,30   | 1,00, 1,00 | 0,0 | 03801         | 0,001901      | 2713         | }         | 0 -3          | 34426              | 109838         |           |                           |
|          |        |            |     |               |               |              |           |               |                    |                |           |                           |

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro
A<sub>fs</sub> area di armatura in corrispondenza del lembo di monte in [mq]
A<sub>fi</sub> area di armatura in corrispondenza del lembo di valle in [mq]
M<sub>pf</sub> Momento di prima fessurazione espressa in [kNm]
M Momento agente nella sezione espressa in [kNm]

ε<sub>m</sub> s<sub>m</sub> deformazione media espressa in [%]
Distanza media tra le fessure espressa in [mm]
Apertura media della fessura espressa in [mm]

#### Verifica fessurazione paramento

| N° | Υ    | ${\sf A}_{\sf fs}$ | $A_{fi}$ | $M_{pf}$ | М      | ε <sub>m</sub> | Sm   | w     |
|----|------|--------------------|----------|----------|--------|----------------|------|-------|
| 1  | 0,00 | 0,000000           | 0,001272 | -59,91   | 0,00   | 0,0000         | 0,00 | 0,000 |
| 2  | 0,23 | 0,001901           | 0,001272 | 71,94    | 0,00   | 0,0000         | 0,00 | 0,000 |
| 3  | 0,45 | 0,001901           | 0,001272 | -80,49   | -0,04  | 0,0000         | 0,00 | 0,000 |
| 4  | 0,68 | 0,001901           | 0,001272 | -86,94   | -0,21  | 0,0000         | 0,00 | 0,000 |
| 5  | 0,90 | 0,001901           | 0,001272 | -93,62   | -0,57  | 0,0000         | 0,00 | 0,000 |
| 6  | 1,13 | 0,001901           | 0,001272 | -100,54  | -1,21  | 0,0000         | 0,00 | 0,000 |
| 7  | 1,35 | 0,001901           | 0,001272 | -107,70  | -2,21  | 0,0000         | 0,00 | 0,000 |
| 8  | 1,57 | 0,001901           | 0,001272 | -115,10  | -3,63  | 0,0000         | 0,00 | 0,000 |
| 9  | 1,80 | 0,001901           | 0,001272 | -122,74  | -5,56  | 0,0000         | 0,00 | 0,000 |
| 10 | 2,02 | 0,001901           | 0,001272 | -130,61  | -8,08  | 0,0000         | 0,00 | 0,000 |
| 11 | 2,25 | 0,001901           | 0,001272 | -138,72  | -11,25 | 0,0000         | 0,00 | 0,000 |
| 12 | 2,48 | 0,001901           | 0,001272 | -147,07  | -15,16 | 0,0000         | 0,00 | 0,000 |
| 13 | 2,70 | 0,001901           | 0,001272 | -155,65  | -19,89 | 0,0000         | 0,00 | 0,000 |
| 14 | 2,93 | 0,001901           | 0,001272 | -164,48  | -25,50 | 0,0000         | 0,00 | 0,000 |
| 15 | 3,15 | 0,001901           | 0,001272 | -173,54  | -32,09 | 0,0000         | 0,00 | 0,000 |
| 16 | 3,38 | 0,001901           | 0,001272 | -182,84  | -39,72 | 0,0000         | 0,00 | 0,000 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

|              | Marche Umbria S.p.A. |                      |                      | Relazione tecnica e di calcolo |                    |           |               |                    |               |           |                           |  |
|--------------|----------------------|----------------------|----------------------|--------------------------------|--------------------|-----------|---------------|--------------------|---------------|-----------|---------------------------|--|
|              |                      |                      | Opera<br>L073        | Tratto<br>212                  | Settore<br>E       | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>36 di 136 |  |
| 17           | 2.60                 | 0.001001             | 0.001272             |                                | 102.27             | 4.0       | ) 47          | 0,0000             |               | 0.00      | 0.000                     |  |
| 17<br>18     | 3,60<br>3,83         | 0,001901<br>0,000000 | 0,001272<br>0,001272 |                                | -192,37<br>-185,48 |           | 3,47<br>3,41  | 0,0000             |               | 0,00      | 0,000<br>0,000            |  |
| 18<br>19     | 3,83<br>4,05         | 0,000000             | 0,001272             |                                | -185,48<br>-212,16 |           | 3,41<br>9,64  | 0,0000             |               | 0,00      | 0,000                     |  |
| 20           | 4,05<br>4,28         | 0,001901             | 0,001272             |                                | -212,16<br>-222,41 |           | 2,04<br>2,21  | 0,0000             |               | 0,00      | 0,000                     |  |
| 21           | 4,50                 | 0,001901             | 0,001272             |                                | -232,89            |           | 5,21          | 0,0000             |               | 0,00      | 0,000                     |  |
| <u>Verif</u> | ica fessurazio       | one fondazion        | <u>1e</u>            |                                |                    |           |               |                    |               |           |                           |  |
| N°           | Υ                    | A <sub>fs</sub>      | A <sub>fi</sub>      |                                | $M_{pf}$           |           | М             | €m                 |               | Sm        | w                         |  |
| 1            | -2,30                | 0,000000             | 0,000000             |                                | 235,31             | _         | ),11          | 0,0000             |               | 0,00      | 0,000                     |  |
| 2            | -2,15                | 0,000000             | 0,000000             |                                | -235,31            |           | 1,32          | 0,0000             |               | 0,00      | 0,000                     |  |
| 3            | -2,00                | 0,003801             | 0,001901             |                                | -278,23            |           | 2,45          | 0,0000             |               | 0,00      | 0,000                     |  |
| 4            | -1,85                | 0,003801             | 0,001901             |                                | -278,23            |           | 5,77          | 0,0000             |               | 0,00      | 0,000                     |  |
| 5            | -1,70                | 0,003801             | 0,001901             |                                | -278,23            |           | 7,97          | 0,0000             |               | 0,00      | 0,000                     |  |
| 6            | -1,57                | 0,003801             | 0,001901             |                                | -278,23            |           | 3,43          | 0,0000             |               | 0,00      | 0,000                     |  |
| 7            | -1,43                | 0,003801             | 0,001901             |                                | 263,35             |           | L,44          | 0,0000             |               | 0,00      | 0,000                     |  |
| 8            | -1,30                | 0,003801             | 0,001901             |                                | 263,35             |           | 3,31          | 0,0000             |               | 0,00      | 0,000                     |  |
| 9            | -1,12                | 0,003801             | 0,001901             |                                | 263,35             | 63        | 3,12          | 0,0000             |               | 0,00      | 0,000                     |  |
| 10           | -0,95                | 0,003801             | 0,001901             |                                | 263,35             |           | 5,38          | 0,0000             |               | 0,00      | 0,000                     |  |
| 11           | 0,00                 | 0,003801             | 0,001901             | -                              | -278,23            | -164      | 1,75          | 0,0000             |               | 0,00      | 0,000                     |  |
| 12           | 0,15                 | 0,003801             | 0,001901             | -                              | -278,23            | -126      | 5,47          | 0,0000             |               | 0,00      | 0,000                     |  |
| 13           | 0,30                 | 0,003801             | 0,001901             | -                              | -278,23            | -103      | 3,95          | 0,0000             |               | 0,00      | 0,000                     |  |
| 14           | 0,45                 | 0,003801             | 0,001901             | -                              | -278,23            | -87       | 7,71          | 0,0000             |               | 0,00      | 0,000                     |  |
| 15           | 0,60                 | 0,003801             | 0,001901             | -                              | -278,23            | -75       | 5,30          | 0,0000             |               | 0,00      | 0,000                     |  |
| 16           | 0,75                 | 0,003801             | 0,001901             | -                              | -278,23            | -67       | 7,66          | 0,0000             |               | 0,00      | 0,000                     |  |
| 17           | 0,90                 | 0,003801             | 0,001901             | -                              | -278,23            | -68       | 3,22          | 0,0000             |               | 0,00      | 0,000                     |  |
| 18           | 1,03                 | 0,003801             | 0,001901             | -                              | -278,23            | -69       | 9,67          | 0,0000             |               | 0,00      | 0,000                     |  |
| 19           | 1,17                 | 0,003801             | 0,001901             | -                              | -278,23            | -67       | 7,08          | 0,0000             |               | 0,00      | 0,000                     |  |
| 20           | 1,30                 | 0,003801             | 0,001901             | -                              | -278,23            | -61       | l,61          | 0,0000             |               | 0,00      | 0,000                     |  |
| 21           | 1,43                 | 0,003801             | 0,001901             |                                | -278,23            |           | 3,68          | 0,0000             |               | 0,00      | 0,000                     |  |
| 22           | 1,57                 | 0,003801             | 0,001901             |                                | -278,23            |           | 2,97          | 0,0000             |               | 0,00      | 0,000                     |  |
| 23           | 1,70                 | 0,003801             | 0,001901             | -                              | -278,23            | -28       | 3,50          | 0,0000             |               | 0,00      | 0,000                     |  |
| 2.4          | 4.05                 | 0.000004             | 0.004004             |                                | 270 22             |           | 1 40          | 0.0000             |               | 0.00      | 0.000                     |  |

#### **VERIFICHE A TAGLIO**

1,85

2,00

2,15

2,30

0,003801

0,003801

0,000000

0,000000

0,001901

0,001901

0,000000

0,000000

24

25

26

27

I risultati ottenuti dalle verifiche delle sezioni maggiormente sollecitate per la struttura in esame sono riepilogati nella seguente tabella.

-278,23

-278,23

-235,31

235,31

-14,40

-7,17

-2,65

0,28

0,0000

0,0000

0,0000

0,0000

0,00

0,00

0,00

0,00

0,000

0,000

0,000

0,000

| Verifica a taglio (per metro lineare di sviluppo longitudinale) |          |      |      |          |            |                   |
|-----------------------------------------------------------------|----------|------|------|----------|------------|-------------------|
| Sezione                                                         | $V_{Ed}$ | b    | h    | $V_{Rd}$ | ESITO      | Armatura a taglio |
| [-]                                                             | [kN]     | [cm] | [cm] | [kN]     | [-]        | [-]               |
| Paramento                                                       | 333      | 100  | 95   | 388      | verificato | Spilli Φ12/40x40  |
| Fondazione                                                      | 502      | 100  | 100  | 737      | verificato | Ф18/20            |

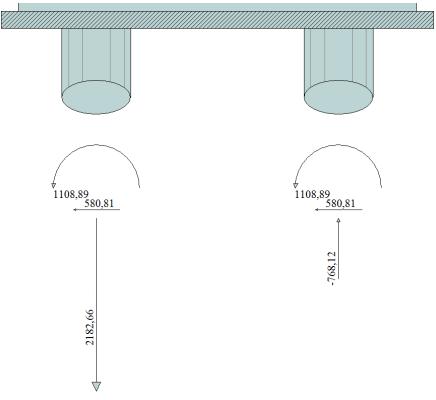
#### VERIFICHE STRUTTURALI PALI DI FONDAZIONE

Per i pali di fondazione si prevedono le seguenti armature:

- Gabbia superiore 26φ24 e staffa a spirale φ16/20
- Gabbia inferiore 18φ18 e staffa a spirale φ14/20

Si riportano i risultati in termini di sollecitazione sul palo e verifiche a flessione e taglio:




Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS    | ld. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|--------|-----|----------|------|--------------|
| L073  | 212    | Е       | 17  | OS0900 | RFI | 01       | Α    | 37 di 136    |



Sollecitazioni massime testa palo – SLU

| Verifica a pressoflessione - SLU                   |       |      |  |  |  |  |
|----------------------------------------------------|-------|------|--|--|--|--|
| M <sub>Ed,Max</sub> M <sub>Rd</sub> c.s. Flessione |       |      |  |  |  |  |
| [kNm]                                              | [kNm] | [-]  |  |  |  |  |
| 1109                                               | 1142  | 1.03 |  |  |  |  |

| Verifica a taglio - SLU |          |             |  |  |  |  |
|-------------------------|----------|-------------|--|--|--|--|
| V <sub>Ed,Max</sub>     | $V_{Rd}$ | c.s. Taglio |  |  |  |  |
| [kNm]                   | [kNm]    | [-]         |  |  |  |  |
| 580                     | 670      | 1.16        |  |  |  |  |

| Verifica tensionale - SLE |       |       |  |  |  |  |  |  |
|---------------------------|-------|-------|--|--|--|--|--|--|
| Combo Rara                |       |       |  |  |  |  |  |  |
| Med,Max σc,MAX σs,MIN     |       |       |  |  |  |  |  |  |
| [kNm]                     | [MPa] | [MPa] |  |  |  |  |  |  |
| 423 8.3 -160              |       |       |  |  |  |  |  |  |

| Verifica a fessurazione - SLE |            |                     |      |  |  |  |  |
|-------------------------------|------------|---------------------|------|--|--|--|--|
| Comb                          | o QP       | Combo F             |      |  |  |  |  |
| M <sub>Ed,Max</sub>           | w          | M <sub>Ed,Max</sub> | w    |  |  |  |  |
| [kNm]                         | [kNm] [mm] |                     | [mm] |  |  |  |  |
| 390                           | 0.17       | 412                 | 0.19 |  |  |  |  |

#### 11.1.3 Verifiche capacità portante

Nel seguito si riportano i risultati riguardanti la valutazione della lunghezza minima dei pali necessaria al soddisfacimento delle verifiche di capacità portante. In particolare da un confronto tra i valori massimi degli sforzi normali massimi attesi e le curve di capacità portante presentate nella "Relazione geotecnica generale sulle opere all'aperto" – L0703212E02GE0001REL01, con riferimento ai pali di diametro D800 si è ottenuto

 $N_{Ed,Max} = 2183 \text{ kN}; N_{Ed,Min} = -768 \text{ kN}.$ 

In definitiva si è assunto Lpali = 14.00m.



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Pag. di Pag.<br>38 di 136 |
|---------------|---------------|--------------|---------------|--------------------|----------------|---------------------------|
|               |               |              |               | K□L                |                |                           |

#### 11.2 RISULTATI ANALISI E VERIFICHE MURI DI TIPO 1

#### 11.2.1 Modello di calcolo

Le sollecitazioni proventienti dal muro vengono ripartite sui pali restituendo le sollecitazioni nei pali in termini di Taglio, Momento e sforzo normale. Gli scarichi sui pali vengono determinati mediante il metodo delle rigidezze. La piastra di fondazione viene considerata infinitamente rigida (3 gradi di libertà) ed i pali vengono considerati incastrati o incernierati a tale piastra.

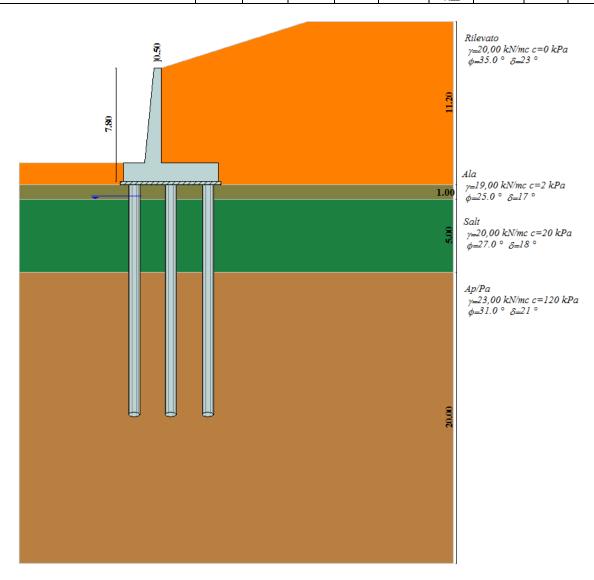
Viene effettuata una prima analisi di ogni palo di ciascuna fila (i pali di ogni fila hanno le stesse caratteristiche) per costruire una curva carichi-spostamenti del palo. Questa curva viene costruita considerando il palo elastico. Si tratta, in definitiva, della matrice di rigidezza del palo Ke, costruita imponendo traslazioni e rotazioni unitarie per determinare le corrispondenti sollecitazioni in testa al palo. Nota la matrice di rigidezza di ogni palo si assembla la matrice globale (di dimensioni 3x3) della palificata, K. A questo punto, note le forze agenti in fondazione (N, T, M) si possono ricavare gli spostamenti della piastra (abbassamento, traslazione e rotazione) e le forze che si scaricano su ciascun palo. Infatti indicando con p il vettore dei carichi e con u il vettore degli spostamenti della piastra abbiamo:

$$u = K-1p$$

Noti gli spostamenti della piastra, e quindi della testa dei pali, abbiamo gli scarichi su ciascun palo. Allora per ciascun palo viene effettuata un'analisi elastoplastica incrementale (tramite il metodo degli elementi finiti) che, tenendo conto della plasticizzazione del terreno, calcola le sollecitazioni in tutte le sezioni del palo., le caratteristiche del terreno (rappresentate da Kh) sono tali che se non è possibile raggiungere l'equilibrio si ha collasso per rottura del terreno. In tale analisi i pali sono considerati incastrati alla fondazione di base. Di seguito si riportano i principali risultati delle analisi svolte sul muro su pali. Per ulteriori dettagli si ribanda ai tabulati in allegato.

Si riportano di seguito in forma tabellare i valori delle spinte di natura statica e sismica per le combinazioni analizzate, gli inviluppi delle sollecitazioni nel muro, sulla fondazione e nei pali.




Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

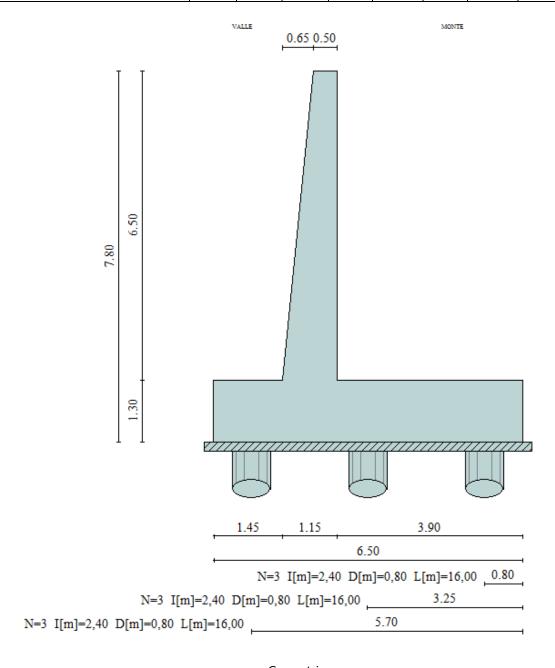
Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS    | ld.         | N. prog. | Rev. | Pag. di Pag. |  |
|-------|--------|---------|-----|--------|-------------|----------|------|--------------|--|
| L073  | 212    | Е       | 17  | OS0900 | doc.<br>RFI | 01       | Α    | 39 di 136    |  |



Modello di calcolo muro su PALI




Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera     Tratto     Settore     CEE     WBS     I.O.     N.prog.     Rev.     P       L073     212     E     17     OS0900     REL     01     A     4 |  |  |  |  | WBS<br>OS0900 | acc. | N. prog.<br>01 |  | Pag. di Pag.<br>40 di 136 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|---------------|------|----------------|--|---------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|---------------|------|----------------|--|---------------------------|

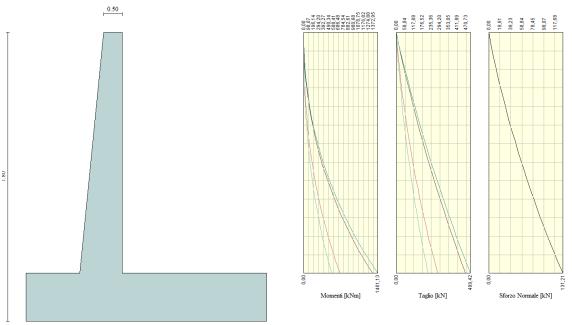


<u>Geometria muro</u>



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni


Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E |    | WBS<br>OS0900 | ld.<br>doc.<br>RFI | N.prog.<br>01 |   | Pag. di Pag.<br>41 di 136 |
|---------------|---------------|--------------|----|---------------|--------------------|---------------|---|---------------------------|
| L073          | 212           | E            | 17 | OS0900        |                    | 01            | Α | 41 di 136                 |

| T | Comb. | Tipo comb.  | Sisma                    | FS (ribalt) | FS (scorr) | FS (qult) | FS (stab) | Spinta[kN] | Incr. sism.[kN] |
|---|-------|-------------|--------------------------|-------------|------------|-----------|-----------|------------|-----------------|
| P | 1     | A1-M1 - [1] |                          |             |            |           |           | 505,0767   | 0,0000          |
| T | 2     | A1-M1 - [2] |                          |             |            |           |           | 549,2607   | 0,0000          |
| 1 | 3     | A1-M1 - [3] | SismaH + SismaV positivo |             |            |           |           | 388,5205   | 356,9118        |
| T | 4     | A1-M1 - [3] | SismaH + SismaV negativo |             |            |           |           | 388,5205   | 289,9647        |
| 1 | 5     | A1-M1 - [4] | SismaH + SismaV positivo |             |            |           |           | 388,5205   | 356,9118        |
| T | 6     | SLEQ - [1]  |                          |             |            |           |           | 388,5205   | 0,0000          |
| 1 | 7     | SLEF - [1]  |                          |             |            |           | -         | 409,1950   | 0,0000          |
|   | 8     | SLER - [1]  |                          |             |            |           |           | 417,3159   | 0,0000          |

#### Azioni risultanti sul muro



Inviluppo sollecitazioni sul muro



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Tratto<br>212 | Settore<br>E | WBS<br>OS0900 |     | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>42 di 136 |
|---------------|--------------|---------------|-----|----------------|-----------|---------------------------|
| <br>          | _            | <br>          | REL |                |           |                           |

# 11.2.2 Verifiche strutturali

Nella tabella seguente si riportano le armature di progetto previste per la sezione di calcolo in questione, come desumibili dagli elaborati grafici di armatura delle opere relative:

|           | Armatura a flessione |            |  |  |  |  |
|-----------|----------------------|------------|--|--|--|--|
| Elemento  | Lato monte           | Lato valle |  |  |  |  |
| PARAMENTO | 1φ24/10              | 1φ22/20    |  |  |  |  |

|            | Armatura a flessione |                       |  |  |  |  |
|------------|----------------------|-----------------------|--|--|--|--|
| Elemento   | Lato inferiore       | Lato superiore        |  |  |  |  |
| FONDAZIONE | 1φ24/10              | 1\phi24/10+1\phi24/20 |  |  |  |  |

Ai fini delle verifiche si è fatto riferimento per la parte in elevazione (paramento e fondazione muro) ad un copriferro di calcolo (asse armature) pari a 4 cm, mentre per i pali si è assunto un copriferro di calcolo pari a 7 cm.

#### Verifiche strutturali per paramento e fondazione

Di seguito si riporta l'inviluppo delle sollecitazioni nel paramento e nella fondazione ed i risultati delle verifiche strutturali.

Inviluppo Sollecitazioni paramento

| Nr.    | Υ            | Nmin        | Nmax     | Mmin     | Mmax      | Tmin     | Tmax     |
|--------|--------------|-------------|----------|----------|-----------|----------|----------|
| 1      | 0,00         | 0,000       | 0,000    | 0,0000   | 0,0000    | 0,0000   | 0,0000   |
| 2      | 0,33         | 4,1128      | 4,1128   | 1,0177   | 2,9816    | 6,5990   | 18,6648  |
| 3      | 0,55         | 8,4833      | 8,4833   | 4,2401   | 12,0699   | 13,9916  | 38,0032  |
| 4      | 0,63         | 13,1114     | 13,1114  | 9,9193   | 27,4782   | 22,1666  | 58,0068  |
| 5      | 1,30         | 17,9971     | 17,9971  | 18,3047  | 49,4179   | 31,1214  | 78,6734  |
| 6      | 1,63         | 23,1404     | 23,1404  | 29,6453  | 78,1003   | 40,8558  | 100,0030 |
| 7      | 1,05         | 28,5413     | 28,5413  | 44,1905  | 113,7367  | 51,3701  | 121,9956 |
| 8      | 2,27         | 34,1999     | 34,1999  | 62,1895  | 156,5385  | 62,6641  | 144,6513 |
| 9      | 2,60         | 40,1161     | 40,1161  | 83,8915  | 206,7168  | 74,7378  | 167,9700 |
| 10     | 2,93         | 46,2899     | 46,2899  | 109,5457 | 264,4829  | 87,5913  | 191,9518 |
| 11     | 2,95<br>3,25 | 52,7214     | 52,7214  | 139,4012 | 330,0481  | 101,2245 | 216,5965 |
| 12     | 3,58         | 59,4104     | 59,4104  | 173,7074 | 403,6238  | 115,6375 | 241,9044 |
| 13     | 3,90         | 66,3571     | 66,3571  | 212,7134 | 485,4211  | 130,8302 | 267,8752 |
| 14     | 4,23         | 73,5614     | 73,5614  | 256,6684 | 575,6514  | 146,8027 | 294,5091 |
| 15     | 4,25         | 81,0234     | 81,0234  | 305,8217 | 674,5260  | 163,5549 | 321,8060 |
| 16     | 4,88         | 88,7429     | 88,7429  | 360,4224 | 782,2561  | 181,0868 | 349,7660 |
| 17     | 5,20         | 96,7201     | 96,7201  | 420,7198 | 899,0530  | 199,3985 | 378,3890 |
| 18     | 5,53         | 104,9549    | 104,9549 | 486,9631 | 1025,1279 | 218,4900 | 407,6750 |
| 19     | 5,85         | 113,4474    | 113,4474 | 559,4015 | 1160,6923 | 238,3612 | 437,6241 |
| 20     | 6,17         | 122,1974    | 122,1974 | 638,2841 | 1305,9572 | 259,0121 | 468,2362 |
| 21     | 6,50         | 131,2051    | 131,2051 | 723,8495 | 1461,1258 | 280,3180 | 499,4154 |
| 21     | 0,50         | 131,2031    | 131,2031 | 723,0493 | 1401,1236 | 200,3100 | 499,4134 |
| Invilu | ppo combin   | nazioni SLE |          |          |           |          |          |
|        |              |             |          |          |           |          |          |
| Nr.    | Υ            | Nmin        | Nmax     | Mmin     | Mmax      | Tmin     | Tmax     |
| 1      | 0,00         | 0,0000      | 0,0000   | 0,000    | 0,0000    | 0,0000   | 0,0000   |
| 2      | 0,33         | 4,1128      | 4,1128   | 0,7752   | 0,7752    | 5,0762   | 5,0762   |
| 3      | 0,65         | 8,4833      | 8,4833   | 3,2304   | 3,2304    | 10,7628  | 10,7628  |
| 4      | 0,98         | 13,1114     | 13,1114  | 7,5586   | 7,5586    | 17,0512  | 17,0512  |
| 5      | 1,30         | 17,9971     | 17,9971  | 13,9505  | 13,9505   | 23,9395  | 23,9395  |
| 6      | 1,63         | 23,1404     | 23,1404  | 22,5969  | 22,5969   | 31,4276  | 31,4276  |
| 7      | 1,95         | 28,5413     | 28,5413  | 33,6885  | 33,6885   | 39,5155  | 39,5155  |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|    |      | •        |         | oera<br>073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>43 di 136 |
|----|------|----------|---------|-------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|---------------------------|
|    | 2.27 | 24.4000  | 24.400  |             |               |              | 47.4      | 161           | 40.0               | 224            | 40.0004   |                           |
| 8  | 2,27 | 34,1999  | 34,199  |             |               | ,4161        | 47,4      |               | 48,2               |                | 48,2031   |                           |
| 9  | 2,60 | 40,1161  | 40,116  | 51          | 63            | ,9703        | 63,9      | 703           | 57,4               | 906            | 57,4906   |                           |
| 10 | 2,93 | 46,2899  | 46,289  | 99          | 83            | ,5420        | 83,5      | 420           | 67,3               | 779            | 67,3779   |                           |
| 11 | 3,25 | 52,7214  | 52,721  | L4          | 106           | ,3219        | 106,3     | 219           | 77,8               | 650            | 77,8650   |                           |
| 12 | 3,58 | 59,4104  | 59,410  | )4          | 132           | ,5006        | 132,5     | 006           | 88,9               | 519            | 88,9519   |                           |
| 13 | 3,90 | 66,3571  | 66,357  | 71          | 162           | ,2689        | 162,2     | 689           | 100,6              | 386            | 100,6386  |                           |
| 14 | 4,23 | 73,5614  | 73,561  | L4          | 195           | ,8176        | 195,8     | 176           | 112,9              | 251            | 112,9251  |                           |
| 15 | 4,55 | 81,0234  | 81,023  | 34          | 233           | ,3373        | 233,3     | 373           | 125,8              | 114            | 125,8114  |                           |
| 16 | 4,88 | 88,7429  | 88,742  | 29          | 275           | ,0189        | 275,0     | 189           | 139,2              | 975            | 139,2975  |                           |
| 17 | 5,20 | 96,7201  | 96,720  | )1          | 321           | ,0529        | 321,0     | 529           | 153,3              | 835            | 153,3835  |                           |
| 18 | 5,53 | 104,9549 | 104,954 | 19          | 371           | ,6303        | 371,6     | 303           | 168,0              | 692            | 168,0692  |                           |
| 19 | 5,85 | 113,4474 | 113,447 | 74          | 426           | ,9416        | 426,9     | 416           | 183,3              | 547            | 183,3547  |                           |
| 20 | 6,17 | 122,1974 | 122,197 | 74          | 487           | ,1777        | 487,1     | 777           | 199,2              | 401            | 199,2401  |                           |
| 21 | 6,50 | 131,2051 | 131,205 | 51          | 552           | ,5208        | 552,5     | 208           | 215,6              | 292            | 215,6292  |                           |
|    |      |          |         |             |               |              |           |               |                    |                |           |                           |

#### Inviluppo armature e tensioni nei materiali del muro

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

A<sub>fs</sub> area di armatura in corrispondenza del lembo di monte in [mq]

A<sub>fi</sub> area di armatura in corrispondenza del lembo di valle in [mq]

 $\sigma_c$  tensione nel calcestruzzo espressa in [kPa]

τ<sub>c</sub> tensione tangenziale nel calcestruzzo espressa in [kPa]

 $\sigma_{\text{fs}}$  tensione nell'armatura disposta sul lembo di monte in [kPa]

 $\sigma_{fi}$  tensione nell'armatura disposta sul lembo di valle in [kPa]  $N_u$  sforzo normale ultimo espresso in [kN]

M<sub>u</sub> momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRd Resistenza al taglio, espresso in [kN]

#### Inviluppo SLU

| Nr.      | Υ      | В, Н       | $A_{fs}$ | $A_{fi}$ | $N_u$   | Mu       | CS          | $V_{Rd}$    | $V_{Rcd}$ | $V_{Rsd}$ |
|----------|--------|------------|----------|----------|---------|----------|-------------|-------------|-----------|-----------|
| 1        | 0,00   | 1,00, 0,50 | 0,000000 | 0,000000 | 0,00    | 0,00     | 1000,00     | 173,53      |           |           |
| 2        | 0,33   | 1,00, 0,53 | 0,004524 | 0,001901 | 1047,43 | -960,34  | 254,67      | 277,20      |           |           |
| 3        | 0,65   | 1,00, 0,56 | 0,004524 | 0,001901 | 525,09  | -944,22  | 61,90       | 286,31      |           |           |
| 4        | 0,98   | 1,00, 0,60 | 0,004524 | 0,001901 | 370,22  | -980,00  | 28,24       | 295,25      |           |           |
| 5        | 1,30   | 1,00, 0,63 | 0,004524 | 0,001901 | 296,38  | -1027,25 | 16,47       | 304,03      |           |           |
| 6        | 1,63   | 1,00, 0,66 | 0,004524 | 0,001901 | 253,40  | -1078,88 | 10,95       | 312,68      |           |           |
| 7        | 1,95   | 1,00, 0,69 | 0,004524 | 0,001901 | 225,45  | -1132,66 | 7,90        | 321,22      |           |           |
| 8        | 2,27   | 1,00, 0,73 | 0,004524 | 0,001901 | 205,94  | -1187,66 | 6,02        | 329,64      |           |           |
| 9        | 2,60   | 1,00, 0,76 | 0,004524 | 0,001901 | 191,62  | -1243,41 | 4,78        | 337,96      |           |           |
| 10       | 2,93   | 1,00, 0,79 | 0,004524 | 0,001901 | 180,74  | -1299,67 | 3,90        | 346,19      |           |           |
| 11       | 3,25   | 1,00, 0,82 | 0,004524 | 0,001901 | 172,24  | -1356,29 | 3,27        | 354,33      |           |           |
| 12       | 3,58   | 1,00, 0,86 | 0,004524 | 0,001901 | 165,46  | -1413,16 | 2,79        | 362,40      |           |           |
| 13       | 3,90   | 1,00, 0,89 | 0,004524 | 0,001901 | 159,96  | -1470,23 | 2,41        | 370,40      |           |           |
| 14       | 4,23   | 1,00, 0,92 | 0,004524 | 0,001901 | 155,43  | -1527,46 | 2,11        | 378,34      |           |           |
| 15       | 4,55   | 1,00, 0,95 | 0,004524 | 0,001901 | 151,66  | -1584,81 | 1,87        | 386,22      |           |           |
| 16       | 4,88   | 1,00, 0,99 | 0,004524 | 0,001901 | 148,50  | -1642,27 | 1,67        | 394,04      |           |           |
| 17       | 5,20   | 1,00, 1,02 | 0,004524 | 0,001901 | 145,83  | -1699,82 | 1,51        | 401,82      |           |           |
| 18       | 5,53   | 1,00, 1,05 | 0,004524 | 0,001901 | 143,56  | -1757,42 | 1,37        | 409,55      |           |           |
| 20       | 6,17   | 1,00, 1,12 | 0,004524 | 0,001901 | 139,95  | -1872,82 | 1,15        | 424,90      |           |           |
| 21       | 6,50   | 1,00, 1,15 | 0,004524 | 0,001901 | 138,51  | -1930,60 | 1,06        | 432,52      |           |           |
| Invilupp | oo SLE |            |          |          |         |          |             |             |           |           |
| Nr.      | Υ      | В, Н       | Afs      | Afi      | σα      | το       | <b>σ</b> fs | <b>σ</b> fi |           |           |
| 1        | 0,00   | 1,00, 0,50 | 0,000000 | 0,000000 | 0       | 0        | 0           | 0           |           |           |
| 2        | 0,33   | 1,00, 0,53 | 0,004524 | 0,001901 | 26      | 16       | 185         | -341        |           |           |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|    |      | o orbital  |               |               |              |           |               |                    |               |           |                           |
|----|------|------------|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|---------------------------|
| ^  |      | -          | Opero<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>44 di 136 |
|    |      |            |               |               |              |           |               |                    |               |           |                           |
| 3  | 0,65 | 1,00, 0,56 | 0,004524      | 0,001901      | 88           | ;         | 31            | 1239               | -1127         |           |                           |
| 4  | 0,98 | 1,00, 0,60 | 0,004524      | 0,001901      | 180          | )         | 46            | 3164               | -2279         |           |                           |
| 5  | 1,30 | 1,00, 0,63 | 0,004524      | 0,001901      | 296          | i         | 61            | 5898               | -3744         |           |                           |
| 6  | 1,63 | 1,00, 0,66 | 0,004524      | 0,001901      | 434          | ļ         | 75            | 9398               | -5486         |           |                           |
| 7  | 1,95 | 1,00, 0,69 | 0,004524      | 0,001901      | 590          | )         | 90            | 13625              | -7472         |           |                           |
| 8  | 2,27 | 1,00, 0,73 | 0,004524      | 0,001901      | 762          | !         | 104           | 18552              | -9680         |           |                           |
| 9  | 2,60 | 1,00, 0,76 | 0,004524      | 0,001901      | 948          | 3         | 118           | 24153              | -12088        |           |                           |
| 10 | 2,93 | 1,00, 0,79 | 0,004524      | 0,001901      | 1148         | 3         | 133           | 30410              | -14681        |           |                           |
| 11 | 3,25 | 1,00, 0,82 | 0,004524      | 0,001901      | 1359         | )         | 147           | 37306              | -17443        |           |                           |
| 12 | 3,58 | 1,00, 0,86 | 0,004524      | 0,001901      | 1581         |           | 161           | 44827              | -20364        |           |                           |
| 13 | 3,90 | 1,00, 0,89 | 0,004524      | 0,001901      | 1814         | ļ         | 175           | 52960              | -23432        |           |                           |
| 14 | 4,23 | 1,00, 0,92 | 0,004524      | 0,001901      | 2056         | j         | 189           | 61697              | -26640        |           |                           |
| 15 | 4,55 | 1,00, 0,95 | 0,004524      | 0,001901      | 2307         | ,         | 202           | 71028              | -29979        |           |                           |
| 16 | 4,88 | 1,00, 0,99 | 0,004524      | 0,001901      | 2566         | j         | 216           | 80946              | -33442        |           |                           |
| 17 | 5,20 | 1,00, 1,02 | 0,004524      | 0,001901      | 2833         | }         | 230           | 91444              | -37025        |           |                           |
| 18 | 5,53 | 1,00, 1,05 | 0,004524      | 0,001901      | 3108         | 3         | 244 1         | 02517              | -40721        |           |                           |
| 20 | 6,17 | 1,00, 1,12 | 0,004524      | 0,001901      | 3679         | )         | 271 1         | 26367              | -48437        |           |                           |
| 21 | 6,50 | 1,00, 1,15 | 0,004524      | 0,001901      | 3974         | ļ         | 284 1         | 39133              | -52447        |           |                           |
|    |      |            |               |               |              |           |               |                    |               |           |                           |

#### Inviluppo armature e tensioni nei materiali della fondazione

#### Fondazione di valle

 $(L'ascissa~X, espressa~in~[m], \`e~positiva~verso~monte~con~origine~in~corrispondenza~dell'estremo~libero~della~fondazione~di~valle)$ 

#### Inviluppo SLU

| Nr.     | Υ      | В, Н       | $A_{fs}$ | Afi      | $N_{u}$      | $M_{u}$  | CS                | $V_{Rd}$      | $V_{Rcd}$ | $V_{Rsd}$ |
|---------|--------|------------|----------|----------|--------------|----------|-------------------|---------------|-----------|-----------|
| 1       | 0,00   | 1,00, 1,30 | 0,002262 | 0,000000 | 0,00         | -1073,57 | 1,67              | 367,73        |           |           |
| 2       | 0,17   | 1,00, 1,30 | 0,002262 | 0,000000 | 0,00         | -1073,57 | 0,07              | 367,73        |           |           |
| 3       | 0,35   | 1,00, 1,30 | 0,006786 | 0,004524 | 0,00         | -3202,97 | 42,91             | 505,97        |           |           |
| 4       | 0,55   | 1,00, 1,30 | 0,006786 | 0,004524 | 0,00         | -3202,97 | 20,19             | 505,97        |           |           |
| 5       | 0,75   | 1,00, 1,30 | 0,006786 | 0,004524 | 0,00         | 2157,11  | 11,25             | 505,97        |           |           |
| 6       | 0,95   | 1,00, 1,30 | 0,006786 | 0,004524 | 0,00         | 2157,11  | 7,22              | 505,97        |           |           |
| 7       | 1,15   | 1,00, 1,30 | 0,006786 | 0,004524 | 0,00         | 2157,11  | 4,67              | 505,97        |           |           |
| 8       | 1,45   | 1,00, 1,30 | 0,006786 | 0,004524 | 0,00         | 2157,11  | 2,03              | 505,97        |           |           |
| Invilup | po SLE |            |          |          |              |          |                   |               |           |           |
|         |        |            |          |          |              |          |                   |               |           |           |
| Nr.     | Х      | В, Н       | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_c$  | $\sigma_{\rm fi}$ | $\sigma_{fs}$ |           |           |
| 9       | 0,00   | 1,00, 1,30 | 0,002262 | 0,000000 | 966          | 7        | 0                 | 6029          |           |           |
| 10      | 0,17   | 1,00, 1,30 | 0,002262 | 0,000000 | 21503        | 27       | 0                 | 134250        |           |           |
| 11      | 0,35   | 1,00, 1,30 | 0,006786 | 0,004524 | 82           | 63       | 4162              | 2770          |           |           |
| 12      | 0,55   | 1,00, 1,30 | 0,006786 | 0,004524 | 172          | 103      | 8780              | 3876          |           |           |
| 13      | 0,75   | 1,00, 1,30 | 0,006786 | 0,004524 | 308          | 236      | 15729             | -3980         |           |           |
| 14      | 0,95   | 1,00, 1,30 | 0,006786 | 0,004524 | 480          | 361      | 24476             | -6193         |           |           |
| 15      | 1,15   | 1,00, 1,30 | 0,006786 | 0,004524 | 744          | 482      | 37961             | -9604         |           |           |
| 16      | 1,45   | 1,00, 1,30 | 0,006786 | 0,004524 | 1737         | 473      | 88576             | -22411        |           |           |

#### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

#### <u>Inviluppo SLU</u>

| Nr. | Υ    | В, Н       | $A_{fs}$ | $A_{fi}$ | $N_u$ | $M_u$    | cs     | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|------------|----------|----------|-------|----------|--------|----------|-----------|-----------|
| 1   | 0,00 | 1,00, 1,30 | 0,002262 | 0,000000 | 0,00  | 1,34     | 0,55   | 367,73   |           |           |
| 2   | 0,30 | 1,00, 1,30 | 0,006786 | 0,004524 | 0,00  | -3202,97 | 154,38 | 367,73   |           |           |
| 3   | 0,50 | 1,00, 1,30 | 0,006786 | 0,004524 | 0,00  | -3202,97 | 57,97  | 505,97   |           |           |
| 4   | 0,70 | 1,00, 1,30 | 0,006786 | 0,004524 | 0,00  | -3202,97 | 29,57  | 505,97   |           |           |
| 5   | 0,90 | 1,00, 1,30 | 0,006786 | 0,004524 | 0,00  | -3202,97 | 17,77  | 505,97   |           |           |
| 6   | 1,10 | 1,00, 1,30 | 0,006786 | 0,004524 | 0,00  | -3202,97 | 11,89  | 505,97   |           |           |
| 7   | 1,32 | 1,00, 1,30 | 0,006786 | 0,004524 | 0,00  | -3202,97 | 8,24   | 505,97   |           |           |



3,90

4,23

4,55

4,88

5,20

5,53

5,85

6,17

6,50

13

14

15

16

17

18

19

20

21

0,004524

0,004524

0,004524

0,004524

0,004524

0,004524

0,000000

0,004524

0,004524

0,001901

0,001901

0,001901

0,001901

0,001901

0,001901

0,000000

0,001901

0,001901

-229,94

-245,62

-261,80

-278,48

-295,65

-313,32

-276,46

-350,15

-369,30

-162,27

-195,82

-233,34

-275,02

-321,05

-371,63

-426,94

-487,18

-552,52

0,0000

0,0000

0,0000

0,0000

0,0205

0,0231

0,0329

0,0385

100000,0000

0,000

0,000

0,000

0,000

0,034

0,038

0,055

0,064

1000,000

0,00

0,00

0,00

0,00

97,64

97,64

97,64

97,64

1000,00

#### 2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni Muri di controripa in dx in c a da 4+680 00 a 4+844 40

|          |                | ILATER                   | 1.1011               |                      | a in dx in c. |                | 580.00 a 4   | +844.40        |                  |                |              |
|----------|----------------|--------------------------|----------------------|----------------------|---------------|----------------|--------------|----------------|------------------|----------------|--------------|
|          | Marche Umb     | ria S.p.A.               | Relazi               | one tecnica          | e di calcolo  | )              |              | 1              | 1                | 1              | 1            |
| an S     |                |                          | Operc                | Tratto               | Settore       | C⊞             | WBS          | ld.            | N. prog.         | Rev.           | Pag. di Pag. |
|          |                |                          | L073                 | 212                  | E             | 17             | OS0900       | doc.           | 01               | Α              | 45 di 136    |
|          |                |                          | 20,0                 | 2.2                  |               | .,             |              | REL            | Ŭ,               | , ,            | 10 01 100    |
| _        |                |                          |                      |                      |               |                |              |                |                  |                |              |
| 8        | 1,54           | 1,00, 1,30               | 0,006786             | 0,004524             | 0,00          | -3202          |              | 6,10           | 505,97           |                |              |
| 9        | 1,76           | 1,00, 1,30               | 0,006786             | 0,004524             | 0,00          | -3202          |              | 4,81           | 367,73           |                |              |
| 10       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 0,00          | -3202          |              | 3,92           | 367,73           |                |              |
| 11       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 0,00          | -3202<br>-3202 |              | 3,28           | 505,97           |                |              |
| 12       | -              | 1,00, 1,30               | 0,006786             | 0,004524             | 0,00          |                | •            | 2,79           | 505,97           |                |              |
| 13       | -              | 1,00, 1,30               | 0,006786             | 0,004524             | 0,00          | -3202          |              | 2,42           | 505,97           |                |              |
| 14       | -              | 1,00, 1,30               | 0,006786             | 0,004524             | 0,00          | -3202          |              | 2,10           | 505,97           |                |              |
| 15<br>16 | -              | 1,00, 1,30               | 0,006786             | 0,004524<br>0,004524 | 0,00          | -3202<br>-3202 |              | 1,88<br>1,72   | 505,97           |                |              |
| 17       |                | 1,00, 1,30<br>1,00, 1,30 | 0,006786<br>0,006786 | 0,004524             | 0,00<br>0,00  | -3202          |              | 1,72           | 505,97<br>505,97 |                |              |
| 18       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 0,00          | -3202          |              | 1,50           | 505,97           |                |              |
| 19       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 0,00          | -3202          |              | 1,31           | 505,97           |                | <br>         |
|          | iluppo SLE     | 1,00, 1,30               | 0,000780             | 0,004324             | 0,00          | -3202          | .,57         | 1,37           | 303,37           |                |              |
|          |                |                          |                      |                      |               |                |              |                |                  |                |              |
| Nr.      | х              | В, Н                     | $A_{fs}$             | $A_{fi}$             | σα            |                | τα           | <b>σ</b> fi    | σfs              |                |              |
| 20       | 0,00           | 1,00, 1,30               | 0,002262             | 0,000000             | 3512          |                | 0            | 0              | 21930            |                |              |
| 21       | 0,30           | 1,00, 1,30               | 0,006786             | 0,004524             | 39            |                | 0            | -527           | 1425             |                |              |
| 22       | 0,50           | 1,00, 1,30               | 0,006786             | 0,004524             | 97            |                | 0            | -1299          | 3510             |                |              |
| 23       | •              | 1,00, 1,30               | 0,006786             | 0,004524             | 137           |                |              | -1829          | 4944             |                |              |
| 24       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 168           |                |              | -2241          | 6055             |                |              |
| 25       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 179           |                |              | -2395          | 6471             |                |              |
| 26       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 227           |                |              | -3040          | 8214             |                |              |
| 27       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 310           |                |              | -4144          | 11198            |                |              |
| 28       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 418           |                |              | -5590          | 15106            |                |              |
| 29       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 555           |                |              | -7420          | 20051            |                |              |
| 30       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 720           |                |              | -9635          | 26036            |                |              |
| 31       | -              | 1,00, 1,30               | 0,006786             | 0,004524             | 911           |                |              | 12191          | 32943            |                |              |
| 32       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 1124          |                |              | 15030          | 40615            |                |              |
| 33       | -              | 1,00, 1,30               | 0,006786             | 0,004524             | 1422          |                |              | 19017          | 51387            |                |              |
| 34       | -              | 1,00, 1,30               | 0,006786             | 0,004524             | 1692          |                |              | 22638          | 61174            |                |              |
| 35       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 1883          |                |              | 25190          | 68070            |                |              |
| 36       |                | 1,00, 1,30               | 0,006786             | 0,004524             | 2004          |                |              | 26811          | 72450            |                |              |
| 37       | -              | 1,00, 1,30               | 0,006786             | 0,004524             | 2130          | 24242          |              | 28494          | 76997            |                |              |
| 38       | 3,90           | 1,00, 1,30 0,000         | 6786 0,0045          | 24 2560              | 52            | -34243         | 92533        |                |                  |                |              |
|          | :c:            | _•                       |                      |                      |               |                |              |                |                  |                |              |
| ve       | rifica fessura | zione parame             | <u>nto</u>           |                      |               |                |              |                |                  |                |              |
| N°       | Υ              | $A_{fs}$                 |                      | <b>A</b> fi          | $M_{pf}$      |                | М            | ε <sub>m</sub> |                  | S <sub>m</sub> | w            |
| 1        | 0,00           | 0,000000                 | 0,00000              |                      | -58,83        | n              | ,00          | 0,0000         |                  | 0,00           | 0,000        |
| 2        | 0,33           | 0,004524                 | 0,00000              |                      | -90,13        |                | ,,00<br>),78 | 0,0000         |                  | 0,00           | 0,000        |
| 3        | 0,65           | 0,004524                 | 0,00190              |                      | -100,35       |                | ,,78<br>,,23 | 0,0000         |                  | 0,00           | 0,000        |
| 4        | 0,98           | 0,004524                 | 0,00190              |                      | -111,08       |                | ,,23<br>,,56 | 0,0000         |                  | 0,00           | 0,000        |
| 5        | 1,30           | 0,004524                 | 0,00190              |                      | -122,30       |                | ,95          | 0,0000         |                  | 0,00           | 0,000        |
| 6        | 1,63           | 0,004524                 | 0,00190              |                      | -134,02       |                | ,,60         | 0,0000         |                  | 0,00           | 0,000        |
| 7        | 1,95           | 0,004524                 | 0,00190              |                      | -146,23       |                | ,69          | 0,0000         |                  | 0,00           | 0,000        |
| 8        | 2,27           | 0,004524                 | 0,00190              |                      | -158,94       |                | ,,42         | 0,0000         |                  | 0,00           | 0,000        |
| 9        | 2,60           | 0,004524                 | 0,00190              |                      | -172,15       |                | ,42<br>5,97  | 0,0000         |                  | 0,00           | 0,000        |
| 10       | 2,93           | 0,004524                 | 0,00130              |                      | -185,85       |                | ,54          | 0,0000         |                  | 0,00           | 0,000        |
| 11       | 3,25           | 0,004524                 | 0,00130              |                      | -200,05       | -106           |              | 0,0000         |                  | 0,00           | 0,000        |
| 12       | 3,58           | 0,004524                 | 0,00190              |                      | -214,75       | -132           |              | 0,0000         |                  | 0,00           | 0,000        |
| 12       | 3,30           | 0,004524                 | 0,00130              |                      | 220.04        | 162            |              | 0,0000         |                  | 0,00           | 0,000        |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS    | ld.<br>doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|--------|-------------|----------|------|--------------|
| L073  | 212    | Е       | 17  | OS0900 | RFI         | 01       |      | 46 di 136    |

#### Verifica fessurazione fondazione

| N° | Υ     | $A_{fs}$ | $A_{fi}$ | $M_{pf}$ | M       | €m     | Sm    | w     |
|----|-------|----------|----------|----------|---------|--------|-------|-------|
| 1  | -2,60 | 0,002262 | 0,000000 | -428,11  | -0,48   | 0,0000 | 0,00  | 0,000 |
| 2  | -2,42 | 0,002262 | 0,000000 | 404,93   | 9,03    | 0,0000 | 0,00  | 0,000 |
| 3  | -2,25 | 0,006786 | 0,004524 | 480,94   | 21,67   | 0,0000 | 0,00  | 0,000 |
| 4  | -2,05 | 0,006786 | 0,004524 | 480,94   | 45,70   | 0,0000 | 0,00  | 0,000 |
| 5  | -1,85 | 0,006786 | 0,004524 | 480,94   | 81,87   | 0,0000 | 0,00  | 0,000 |
| 6  | -1,65 | 0,006786 | 0,004524 | 480,94   | 127,38  | 0,0000 | 0,00  | 0,000 |
| 7  | -1,45 | 0,006786 | 0,004524 | 480,94   | 197,60  | 0,0000 | 0,00  | 0,000 |
| 8  | -1,15 | 0,006786 | 0,004524 | 480,94   | 461,47  | 0,0000 | 0,00  | 0,000 |
| 9  | 0,00  | 0,006786 | 0,004524 | -504,74  | -706,45 | 0,0329 | 81,68 | 0,046 |
| 10 | 0,25  | 0,006786 | 0,004524 | -504,74  | -585,65 | 0,0232 | 81,68 | 0,032 |
| 11 | 0,45  | 0,006786 | 0,004524 | -504,74  | -550,25 | 0,0204 | 81,68 | 0,028 |
| 12 | 0,65  | 0,006786 | 0,004524 | -504,74  | -516,69 | 0,0192 | 81,68 | 0,027 |
| 13 | 0,85  | 0,006786 | 0,004524 | -504,74  | -463,65 | 0,0000 | 0,00  | 0,000 |
| 14 | 1,05  | 0,006786 | 0,004524 | -504,74  | -388,22 | 0,0000 | 0,00  | 0,000 |
| 15 | 1,27  | 0,006786 | 0,004524 | -504,74  | -305,32 | 0,0000 | 0,00  | 0,000 |
| 16 | 1,49  | 0,006786 | 0,004524 | -504,74  | -246,63 | 0,0000 | 0,00  | 0,000 |
| 17 | 1,71  | 0,006786 | 0,004524 | -504,74  | -193,95 | 0,0000 | 0,00  | 0,000 |
| 18 | 1,92  | 0,006786 | 0,004524 | -504,74  | -148,54 | 0,0000 | 0,00  | 0,000 |
| 19 | 2,14  | 0,006786 | 0,004524 | -504,74  | -111,30 | 0,0000 | 0,00  | 0,000 |
| 20 | 2,36  | 0,006786 | 0,004524 | -504,74  | -82,18  | 0,0000 | 0,00  | 0,000 |
| 21 | 2,58  | 0,006786 | 0,004524 | -504,74  | -60,26  | 0,0000 | 0,00  | 0,000 |
| 22 | 2,80  | 0,006786 | 0,004524 | -504,74  | -48,20  | 0,0000 | 0,00  | 0,000 |
| 23 | 3,00  | 0,006786 | 0,004524 | -504,74  | -46,40  | 0,0000 | 0,00  | 0,000 |
| 24 | 3,20  | 0,006786 | 0,004524 | -504,74  | -38,57  | 0,0000 | 0,00  | 0,000 |
| 25 | 3,40  | 0,006786 | 0,004524 | -504,74  | -27,57  | 0,0000 | 0,00  | 0,000 |
| 26 | 3,60  | 0,006786 | 0,004524 | -504,74  | -11,19  | 0,0000 | 0,00  | 0,000 |
| 27 | 3,90  | 0,002262 | 0,000000 | 404,93   | 1,52    | 0,0000 | 0,00  | 0,000 |

#### **VERIFICHE A TAGLIO**

I risultati ottenuti dalle verifiche delle sezioni maggiormente sollecitate per la struttura in esame sono riepilogati nella seguente tabella.

| Verifica a taglio (per metro lineare di sviluppo longitudinale) |                 |      |      |          |            |                   |  |  |  |  |  |
|-----------------------------------------------------------------|-----------------|------|------|----------|------------|-------------------|--|--|--|--|--|
| Sezione                                                         | V <sub>Ed</sub> | b    | h    | $V_{Rd}$ | ESITO      | Armatura a taglio |  |  |  |  |  |
| [-]                                                             | [kN]            | [cm] | [cm] | [kN]     | [-]        | [-]               |  |  |  |  |  |
| Paramento                                                       | 500             | 100  | 115  | 645      | verificato | Spilli Φ14/40x40  |  |  |  |  |  |
| Fondazione                                                      | 1423            | 100  | 130  | 1640     | verificato | Ф20/20            |  |  |  |  |  |

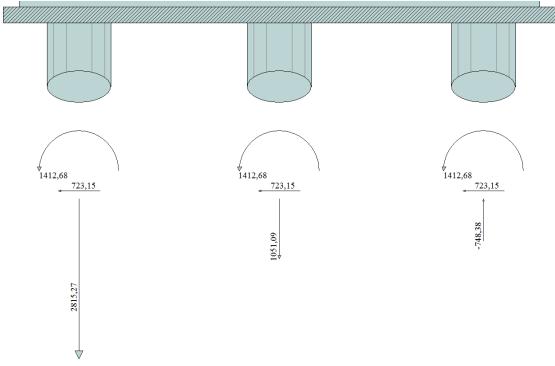
#### VERIFICHE STRUTTURALI PALI DI FONDAZIONE

Per i pali di fondazione si prevedono le seguenti armature:

- Gabbia superiore 29φ26 e staffa a spirale φ14/10
- Gabbia inferiore 18φ20 e staffa a spirale φ14/20

Si riportano i risultati in termini di sollecitazione sul palo e verifiche a flessione e taglio:




Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS    | ld.         | N. prog. | Rev. | Pag. di Pag. |  |
|-------|--------|---------|-----|--------|-------------|----------|------|--------------|--|
| L073  | 212    | Е       | 17  | OS0900 | doc.<br>RFI | 01       | Α    | 47 di 136    |  |



Sollecitazioni massime testa palo - SLU

| Verifica a pressoflessione - SLU |          |                |  |  |  |  |
|----------------------------------|----------|----------------|--|--|--|--|
| M <sub>Ed,Max</sub>              | $M_{Rd}$ | c.s. Flessione |  |  |  |  |
| [kNm]                            | [kNm]    | [-]            |  |  |  |  |
| 1412                             | 1454     | 1.03           |  |  |  |  |

| Verifica a taglio - SLU |          |             |  |  |  |
|-------------------------|----------|-------------|--|--|--|
| V <sub>Ed,Max</sub>     | $V_{Rd}$ | c.s. Taglio |  |  |  |
| [kNm]                   | [kNm]    | [-]         |  |  |  |
| 723                     | 1097     | 1.52        |  |  |  |

| Verifica tensionale - SLE |        |        |  |  |  |  |  |
|---------------------------|--------|--------|--|--|--|--|--|
| Combo Rara                |        |        |  |  |  |  |  |
| $M_{\text{Ed,Max}}$       | σс,мах | σs,min |  |  |  |  |  |
| [kNm]                     | [MPa]  | [MPa]  |  |  |  |  |  |
| 597                       | 9.8    | -204   |  |  |  |  |  |

| Verifica a fessurazione - SLE |       |                     |       |  |  |  |
|-------------------------------|-------|---------------------|-------|--|--|--|
| Comb                          | o QP  | Combo F             |       |  |  |  |
| M <sub>Ed,Max</sub>           | w     | M <sub>Ed,Max</sub> | w     |  |  |  |
| [kNm]                         | [mm]  | [kNm]               | [mm]  |  |  |  |
| 514                           | 0.178 | 576                 | 0.209 |  |  |  |

#### 11.2.3 Verifiche capacità portante

Nel seguito si riportano i risultati riguardanti la valutazione della lunghezza minima dei pali necessaria al soddisfacimento delle verifiche di capacità portante. In particolare da un confronto tra i valori massimi degli sforzi normali massimi attesi e le curve di capacità portante presentate nella "Relazione geotecnica generale sulle opere all'aperto" – L0703212E02GE0001REL01, con riferimento ai pali di diametro D800 si è ottenuto

 $N_{Ed,Max} = 2815 \text{ kN}; N_{Ed,Min} = -748 \text{ kN}$ 

In definitiva si è assunto per il muro **Lpali = 16.00m**.



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

Pag. di Pag. Opera Tratto Settore CEE WBS N. prog. Rev. doc. L073 17 48 di 136 212 Ε OS0900 01 Α REL

# **ALLEGATO 1**

# TABULATI DI CALCOLO MURO TIPO 1



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>49 di 136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|---------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|---------------------------|

#### Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilitàdei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l' esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008)
- Circolare 617 del 02/02/2009
- Circolare C.S.L.P. 02/02/2009 n.617 Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale

Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 |  | Settore<br>E |  | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 |  | Pag. di Pag.<br>50 di 136 |
|---------------|--|--------------|--|---------------|--------------------|---------------|--|---------------------------|
|---------------|--|--------------|--|---------------|--------------------|---------------|--|---------------------------|

#### Calcolo della spinta sul muro

#### Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali  $\gamma$ . In particolare si distinguono combinazioni di carico di tipo **A1-M1** nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo **A2-M2** nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

#### Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

- I passi del procedimento risolutivo sono i seguenti:
- si impone una superficie di rottura (angolo di inclinazione  $\rho$  rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

#### Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta  $\epsilon$  l'inclinazione del terrapieno rispetto all'orizzontale e  $\beta$  l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \epsilon$$

$$\beta' = \beta + \theta$$

dove  $\theta$  = arctg( $k_h/(1\pm k_v)$ ) essendo  $k_h$  il coefficiente sismico orizzontale e  $k_v$  il coefficiente sismico verticale, definito in funzione di  $k_h$ . In presenza di falda a monte,  $\theta$  assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = arctg[(\gamma_{sat}/(\gamma_{sat}-\gamma_{w}))*(k_{h}/(1\pm k_{v}))]$$

Terreno a permeabilità elevata



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS    | ld.<br>doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|--------|-------------|----------|------|--------------|
| L073  | 212    | Е       | 17  | OS0900 | OOC.<br>REL | 01       |      | 51 di 136    |

$$\theta = arctg[(\gamma/(\gamma_{sat}-\gamma_w))*(k_h/(1\pm k_v))]$$

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta \cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di  $\theta$ .

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W \qquad F_{iV} = \pm k_v W$$

dove *W* è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

#### Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a  $\eta_{\text{E}}$ 

Eseguendo il calcolo mediante gli Eurocodici si può impostare  $\eta_g$ >=1.0

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\Sigma_{i} \; \left( \frac{c_{i}b_{i}+\left(W_{i}-u_{i}b_{i}\right)tg\phi_{i}}{m} \right)$$

$$\eta = \frac{\sum_{i}W_{i}sin\alpha_{i}}{m}$$

dove il termine m è espresso da

$$m = (1 + \frac{\mathsf{tg}\phi_i \mathsf{tg}\alpha_i}{n}) \cos\alpha_i$$



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 |  |  | WBS<br>OS0900 | ld.<br>doc.<br>RFI | N.prog.<br>01 |  | Pag. di Pag.<br>52 di 136 |
|---------------|---------------|--|--|---------------|--------------------|---------------|--|---------------------------|
|---------------|---------------|--|--|---------------|--------------------|---------------|--|---------------------------|

In questa espressione n è il numero delle strisce considerate,  $b_i$  e  $\alpha_i$  sono la larghezza e l'inclinazione della base della striscia i<sub>esima</sub> rispetto all'orizzontale,  $W_i$  è il peso della striscia i<sub>esima</sub> ,  $c_i$  e  $\phi_i$  sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed  $u_i$  è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di  $\eta$ . Quindi essa viene risolta per successive approsimazioni assumendo un valore iniziale per  $\eta$  da inserire nell'espressione di m ed iterare finquando il valore calcolato coincide con il valore assunto.

# Analisi dei pali

Per l'analisi della capacità portante dei pali occorre determinare alcune caratteristiche del terreno in cui si va ad operare. In particolare bisogna conoscere l'angolo d'attrito  $\phi$  e la coesione c. Per pali soggetti a carichi trasversali è necessario conoscere il modulo di reazione laterale o il modulo elastico laterale.

La capacità portante di un palo solitamente viene valutata come somma di due contributi: portata di base (o di punta) e portata per attrito laterale lungo il fusto. Cioè si assume valida l'espressione:

$$Q_T = Q_P + Q_L - W_P$$

dove:

Q<sub>T</sub> portanza totale del palo Q<sub>P</sub> portanza di base del palo

Q<sub>L</sub> portanza per attrito laterale del palo

W<sub>P</sub> peso proprio del palo

e le due componenti Q<sub>P</sub> e Q<sub>L</sub> sono calcolate in modo indipendente fra loro.

Dalla capacità portante del palo si ricava il carico ammissibile del palo  $Q_A$  applicando il coefficiente di sicurezza della portanza alla punta  $\eta_P$  ed il coefficiente di sicurezza della portanza per attrito laterale  $\eta_I$ .

Palo compresso:

$$Q_A = Q_p / \eta_p + Q_l / \eta_l - W_p$$

Palo teso:

$$Q_A = Q_I / \eta_I + W_p$$

#### Capacità portante di punta

In generale la capacità portante di punta viene calcolata tramite l'espressione:

$$Q_P = A_P(cN'_c + qN'_q + 1/2B\gamma N'_\gamma)$$

dove  $A_P$  è l'area portante efficace della punta del palo, c è la coesione, q è la pressione geostatica alla quota della punta del palo,  $\gamma$  è il peso specifico del terreno, D è il diametro del palo ed i coefficienti  $N'_c$   $N'_q$   $N'_g$  sono i coefficienti delle formule della capacità portante corretti per tener conto degli effetti di forma e di profondità. Possono essere utilizzati sia i coefficienti di Hansen che quelli di Vesic con i corrispondenti fattori correttivi per la profondità e la forma.

Il parametro  $\eta$  che compare nell'espressione assume il valore:

quando si usa la formula di Vesic e viene posto uguale ad 1 per le altre formule.  $K_0$  rappresenta il coefficiente di spinta a riposo che può essere espresso come:  $K_0 = 1$  -  $\sin\phi$ .



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|  | Tratto<br>212 | Settore<br>E |  | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 |  | Pag. di Pag.<br>53 di 136 |
|--|---------------|--------------|--|---------------|--------------------|---------------|--|---------------------------|
|--|---------------|--------------|--|---------------|--------------------|---------------|--|---------------------------|

#### Capacità portante per resistenza laterale

La resistenza laterale è data dall'integrale esteso a tutta la superficie laterale del palo delle tensioni tangenziali palo-terreno in condizioni limite:

 $Q_L = integrale_S \tau_a dS$ 

dove  $\tau_a$  è dato dalla nota relazione di Coulomb  $\tau_a = c_a + \sigma_h tg \delta$ 

dove  $c_a$  è l'adesione palo-terreno,  $\delta$  è l'angolo di attrito palo-terreno,  $\gamma$  è il peso specifico del terreno, z è la generica quota a partire dalla testa del palo, L e P sono rispettivamente la lunghezza ed il perimetro del palo,  $K_s$  è il coefficiente di spinta che dipende dalle caratteristiche meccaniche e fisiche del terreno dal suo stato di addensamento e dalle modalità di realizzazione del palo.

#### Portanza trasversale dei pali - Analisi ad elementi finiti

Nel modello di terreno alla Winkler il terreno viene schematizzato come una serie di molle elastiche indipendenti fra di loro. Le molle che schematizzano il terreno vengono caratterizzate tramite una costante elastica K espressa in Kg/cm²/cm che rappresenta la pressione (in Kg/cm²) che bisogna applicare per ottenere l'abbassamento di 1 cm.

Nel metodo degli elementi finiti occorre discretizzare il particolare problema. Nel caso specifico il palo viene suddiviso in un certo numero di elementi di eguale lunghezza. Ogni elemento è caratterizzato da una sezione avente area ed inerzia coincidente con quella del palo.

Il terreno viene schematizzato come una serie di molle orizzontali che reagiscono agli spostamenti nei due versi. La rigidezza assiale della singola molla è proporzionale alla costante di Winkler orizzontale del terreno, al diametro del palo ed alla lunghezza dell'elemento. La molla, però, non viene vista come un elemento infinitamente elastico ma come un elemento con comportamento del tipo elastoplastico perfetto (diagramma sforzi-deformazioni di tipo bilatero). Essa presenta una resistenza crescente al crescere degli spostamenti fino a che l'entità degli spostamenti si mantiene al di sotto di un certo spostamento limite, X<sub>max</sub> oppure fino a quando non si raggiunge il valore della pressione limite. Superato tale limite non si ha un incremento di resistenza. E' evidente che assumendo un comportamento di questo tipo ci si addentra in un tipico problema non lineare che può essere risolto solo mediante una analisi al passo.

Questa modellazione presenta il notevole vantaggio di poter schematizzare tutti quei comportamenti individuati da Broms e che sarebbe impossibile trattare in un modello numerico. In particolare risulta automatico analizzare casi in cui si ha insufficiente portanza non per rottura del palo ma per rottura del terreno (vedi il caso di un palo molto rigido in un terreno molle).

#### Determinazione degli scarichi sul palo.

Gli scarichi sui pali vengono determinati mediante il metodo delle rigidezze.

La piastra di fondazione viene considerata infinitamente rigida (3 gradi di libertà) ed i pali vengono considerati incastrati o incernierati (la scelta del vincolo viene fatta dall'Utente nella tabella CARATTERISTICHE del sottomenu PALI) a tale piastra.

Viene effettuata una prima analisi di ogni palo di ciascuna fila (i pali di ogni fila hanno le stesse caratteristiche) per costruire una curva carichi-spostamenti del palo. Questa curva viene costruita considerando il palo elastico. Si tratta, in definitiva, della matrice di rigidezza del palo *Ke*, costruita imponendo traslazioni e rotazioni unitarie per determinare le corrispondenti sollecitazioni in testa al palo.

Nota la matrice di rigidezza di ogni palo si assembla la matrice globale (di dimensioni 3x3) della palificata, K.

A questo punto, note le forze agenti in fondazione (N, T, M) si possono ricavare gli spostamenti della piastra (abbassamento, traslazione e rotazione) e le forze che si scaricano su ciascun palo. Infatti indicando con p il vettore dei carichi e con u il vettore degli spostamenti della piastra abbiamo:

u = K<sup>-1</sup>p

Noti gli spostamenti della piastra, e quindi della testa dei pali, abbiamo gli scarichi su ciascun palo. Allora per ciascun palo viene effettuata un'analisi elastoplastica incrementale (tramite il metodo degli elementi finiti) che, tenendo conto della plasticizzazione del terreno, calcola le sollecitazioni in tutte le sezioni del palo., le caratteristiche del terreno (rappresentate da *Kh*) sono tali che se non è possibile raggiungere l'equilibrio si ha collasso per rottura del terreno.



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|  | ratto Set<br>212 | ettore ( | CEE 17 | WBS<br>OS0900 | ld.<br>doc.<br>RFI | N.prog.<br>01 |  | Pag. di Pag.<br>54 di 136 |  |
|--|------------------|----------|--------|---------------|--------------------|---------------|--|---------------------------|--|
|--|------------------|----------|--------|---------------|--------------------|---------------|--|---------------------------|--|

#### Normativa

#### N.T.C. 2008 - Approccio 2

| Simbolo       | ogia adottata                                                     |  |
|---------------|-------------------------------------------------------------------|--|
| γGsfav        | Coefficiente parziale sfavorevole sulle azioni permanenti         |  |
| γGfav         | Coefficiente parziale favorevole sulle azioni permanenti          |  |
| γQsfav        | Coefficiente parziale sfavorevole sulle azioni variabili          |  |
| γQfav         | Coefficiente parziale favorevole sulle azioni variabili           |  |
| γtanφ'        | Coefficiente parziale di riduzione dell'angolo di attrito drenato |  |
| $\gamma_{c'}$ | Coefficiente parziale di riduzione della coesione drenata         |  |
| $\gamma_{cu}$ | Coefficiente parziale di riduzione della coesione non drenata     |  |
| ν             | Coefficiente parziale di riduzione del carico ultimo              |  |

 $\gamma_{\gamma}$  Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

#### Coefficienti di partecipazione combinazioni statiche

| Coefficienti parziali per le  | azioni o per l'effetto delle azio            | ni:                       |              |              |              |              |
|-------------------------------|----------------------------------------------|---------------------------|--------------|--------------|--------------|--------------|
| Carichi                       | Effetto                                      | _                         | A1           | A2           | EQU          | HYD          |
| Permanenti                    | Favorevole                                   | γGfav                     | 1,00         | 1,00         | 0,90         | 0,90         |
| Permanenti                    | Sfavorevole                                  | γGsfav                    | 1,30         | 1,00         | 1,10         | 1,30         |
| Variabili                     | Favorevole                                   | γQfav                     | 0,00         | 0,00         | 0,00         | 0,00         |
| Variabili                     | Sfavorevole                                  | γQsfav                    | 1,50         | 1,30         | 1,50         | 1,50         |
|                               | arametri geotecnici del terren               | <u>o:</u>                 |              |              |              |              |
| Parametri                     |                                              |                           | M1           | M2           | M2           | M1           |
| Tangente dell'angolo di at    | trito                                        | $\gamma_{tan_{\phi}}$     | 1,00         | 1,25         | 1,25         | 1,00         |
| Coesione efficace             |                                              | γ <sub>c'</sub>           | 1,00         | 1,25         | 1,25         | 1,00         |
| Resistenza non drenata        |                                              | $\gamma_{cu}$             | 1,00         | 1,40         | 1,40         | 1,00         |
| Resistenza a compression      | e uniassiale                                 | $\gamma_{qu}$             | 1,00         | 1,60         | 1,60         | 1,00         |
| Peso dell'unità di volume     |                                              | $\gamma_{\gamma}$         | 1,00         | 1,00         | 1,00         | 1,00         |
| Carichi                       | azioni o per l'effetto delle azio<br>Effetto | <del></del>               | A1           | A2           | EQU<br>1.00  | HYD          |
| Permanenti<br>Permanenti      | Favorevole<br>Sfavorevole                    | γGfav                     | 1,00<br>1,00 | 1,00<br>1,00 | 1,00<br>1,00 | 0,90<br>1,30 |
| Variabili                     | Favorevole                                   | γGsfav<br>γQfav           | 0,00         | 0,00         | 0,00         | 0,00         |
| Variabili                     | Sfavorevole                                  | γαταν<br>γαsfav           | 1,00         | 1,00         | 1,00         | 1,50         |
| variabili                     | Stavorevoie                                  | PQSIAV                    | 1,00         | 1,00         | 1,00         | 1,50         |
| Coefficienti parziali per i p | arametri geotecnici del terren               | <u>o:</u>                 |              |              |              |              |
| Parametri                     |                                              |                           | M1           | M2           | M2           | M1           |
| Tangente dell'angolo di at    | trito                                        | $\gamma_{tan_{\varphi'}}$ | 1,00         | 1,25         | 1,25         | 1,00         |
| Coesione efficace             |                                              | γ <sub>c'</sub>           | 1,00         | 1,25         | 1,25         | 1,00         |
| Resistenza non drenata        |                                              | $\gamma_{cu}$             | 1,00         | 1,40         | 1,40         | 1,00         |
| Resistenza a compression      | e uniassiale                                 | $\gamma_{qu}$             | 1,00         | 1,60         | 1,60         | 1,00         |
| Peso dell'unità di volume     |                                              | $\gamma_{\gamma}$         | 1,00         | 1,00         | 1,00         | 1,00         |
|                               |                                              |                           |              |              |              |              |

#### FONDAZIONE SUPERFICIALE

Coefficienti parziali  $\gamma_R$  per le verifiche agli stati limite ultimi STR e GEO

| Coefficient parzial /k per le verniche agn stati innite ditiini 51K e GLO |                       |      |      |  |  |  |
|---------------------------------------------------------------------------|-----------------------|------|------|--|--|--|
| Verifica                                                                  | Coefficienti parziali |      |      |  |  |  |
|                                                                           | R1                    | R2   | R3   |  |  |  |
| Capacità portante della fondazione                                        | 1,00                  | 1,00 | 1,40 |  |  |  |
| Scorrimento                                                               | 1,00                  | 1,00 | 1,10 |  |  |  |
| Resistenza del terreno a valle                                            | 1,00                  | 1,00 | 1,40 |  |  |  |
| Stabilità globale                                                         |                       | 1,10 |      |  |  |  |
|                                                                           |                       |      |      |  |  |  |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 |   |    | WBS<br>OS0900 | aoc. | N. prog. |     | Pag. di Pag.<br>55 di 136 |
|---------------|---------------|---|----|---------------|------|----------|-----|---------------------------|
| 10/0          | 212           | _ | 17 | 000/00        | REL  | O1       | / \ | 33 di 130                 |

#### PALI DI FONDAZIONE

CARICHI VERTICALI. Coefficienti parziali  $\gamma_{\text{R}}$  per le verifiche dei pali

| Pali trivellat | : |
|----------------|---|

|                                                 |                            | R1                      | R2                   | R3   |
|-------------------------------------------------|----------------------------|-------------------------|----------------------|------|
| Punta                                           | γь                         | 1,00                    | 1,70                 | 1,35 |
| Laterale compressione                           | $\gamma_{s}$               | 1,00                    | 1,45                 | 1,15 |
| Totale compressione                             | $\gamma_{t}$               | 1,00                    | 1,60                 | 1,30 |
| Laterale trazione                               | $\gamma_{st}$              | 1,00                    | 1,60                 | 1,25 |
| CARICHI TRASVERSALI. Coefficienti parzia        | li γτ per le verifiche dei | •                       |                      |      |
|                                                 |                            | R1                      | R2                   | R3   |
|                                                 | γт                         | 1,00                    | 1,60                 | 1,30 |
| Coefficienti di riduzione $\xi$ per la determin | azione della resistenza    | caratteristica dei pali |                      |      |
| Numero di verticali indagate                    | 3                          | ξ₃=1,60                 | ξ <sub>4</sub> =1,48 |      |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera |     | Settore |    | WBS    |      | N. prog. |   | Pag. di Pag. |
|-------|-----|---------|----|--------|------|----------|---|--------------|
| L073  | 212 | E       | 17 | OS0900 | PE   | UI UI    | А | 56 di 136    |
|       |     |         |    |        | INLL |          |   |              |

# Geometria muro e fondazione

| Descrizione                                 | Muro a mensola in c.a. |
|---------------------------------------------|------------------------|
| Altezza del paramento                       | 4,50 [m]               |
| Spessore in sommità                         | 0,50 [m]               |
| Spessore all'attacco con la fondazione      | 0,95 [m]               |
| Inclinazione paramento esterno              | 5,70 [°]               |
| Inclinazione paramento interno              | 0,00 [°]               |
| Lunghezza del muro                          | 7,20 [m]               |
| <u>Fondazione</u>                           |                        |
| Lunghezza mensola fondazione di valle       | 1,35 [m]               |
| Lunghezza mensola fondazione di monte       | 2,30 [m]               |
| Lunghezza totale fondazione                 | 4,60 [m]               |
| Inclinazione piano di posa della fondazione | 0,00 [°]               |
| Spessore fondazione                         | 1,00 [m]               |
| Spessore magrone                            | 0,20 [m]               |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera   Iratto   Settore   Ctt   WBS   Ctc   N.prog.   Rev.   Pag.atr |  |  | ' | Settore<br>E | CEE<br>17 | WBS<br>OSO900 | ld.<br>doc.<br>RE | N.prog.<br>01 |  | Pag.diPag<br>57 di 136 |  |
|-----------------------------------------------------------------------|--|--|---|--------------|-----------|---------------|-------------------|---------------|--|------------------------|--|
|-----------------------------------------------------------------------|--|--|---|--------------|-----------|---------------|-------------------|---------------|--|------------------------|--|

# Descrizione pali di fondazione

Pali in c.a.

2 Numero di file di pali Vincolo pali/fondazione Incastro Tipo di portanza Portanza di punta

#### Simbologia adottata

numero d'ordine della fila

ascissa della fila misurata dallo spigolo di monte della fondazione espressa in [m] Numero di pali della fila

D

diametro dei pali della fila espresso in [m] lunghezza dei pali della fila espressa in [m] inclinazione dei pali della fila rispetto alla verticale espressa in [°] ALL

allineamento dei pali della fila rispetto al baricentro della fondazione (CENTRATI o SFALSATI)

| N | X    | Nr. | D      | L     | alfa | ALL      |
|---|------|-----|--------|-------|------|----------|
| 1 | 0,90 | 3   | 0,8000 | 14,00 | 0,00 | Centrati |
| 2 | 3,70 | 3   | 0,8000 | 14,00 | 0,00 | Centrati |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E |    | WBS<br>OS0900 | ld.<br>doc. | N. prog.<br>01 |   | Pag.diPag.<br>58 di 136 |
|---------------|---------------|--------------|----|---------------|-------------|----------------|---|-------------------------|
| L0/3          | 212           | Е            | 17 | OS0900        | REL         | 01             | Α | 58 di 136               |

#### Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico 24,517 [kN/mc] Classe di Resistenza C25/30 Resistenza caratteristica a compressione  $R_{ck}$  30000 [kPa] Modulo elastico E 31447048 [kPa]

Acciaio

Tipo B450C Tensione di snervamento  $\sigma_{\text{fa}}$  449936 [kPa]

Calcestruzzo utilizzato per i pali

Classe di Resistenza C32/40 Resistenza caratteristica a compressione  $R_{ck}$  40000 [kPa] Modulo elastico E 33642648 [kPa]

Acciaio utilizzato per i pali

Tipo B450C Tensione ammissibile  $\sigma_{fa}$  449936 [kPa] Tensione di snervamento  $\sigma_{fa}$  449936 [kPa]

#### Geometria profilo terreno a monte del muro

#### Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [\*]

| N | Х     | Υ    | Α     |
|---|-------|------|-------|
| 1 | 9,62  | 3,30 | 18,93 |
| 2 | 20.00 | 3 30 | 0.00  |

#### Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0,00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0,50 [m]

#### Falda

Quota della falda a valle del muro rispetto al piano di posa della fondazione -1,00 [m]

# Descrizione terreni

#### Simbologia adottata

Vr. Indice del terreno

Descrizione Descrizione terreno

γ Peso di volume del terreno espresso in [kN/mc]
γ Peso di volume saturo del terreno espresso in [kN/mc]

φ Angolo d'attrito interno espresso in [°]

 $\delta$  Angolo d'attrito terra-muro espresso in [°]



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra<br/>imondo Nord

Opere d'arte minori: Opere di sostegno e dreni Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40 Relazione tecnica e di calcolo

| Opera Tratto Set<br>L073 212 | ore CEE WBS 17 OS0900 | ld.<br>doc.<br>pp N. prog. | Rev.<br>A | Pag. di Pag.<br>59 di 136 |
|------------------------------|-----------------------|----------------------------|-----------|---------------------------|
|------------------------------|-----------------------|----------------------------|-----------|---------------------------|

| C<br>Ca               | Coesione espressa in [kPa<br>Adesione terra-muro esp |              |       |       |       |     |
|-----------------------|------------------------------------------------------|--------------|-------|-------|-------|-----|
|                       |                                                      |              | _     | _     |       |     |
| Descrizione           | γ                                                    | $\gamma_{s}$ | ф     | δ     | С     | Ca  |
| Rilevato              | 20,00                                                | 20,00        | 35.00 | 23.33 | 0,0   | 0,0 |
| Ala                   | 19,00                                                | 20,00        | 25.00 | 16.67 | 2,0   | 0,0 |
| Salt                  | 20,00                                                | 20,00        | 27.00 | 18.00 | 20,0  | 0,0 |
| Ap/Pa                 | 23,00                                                | 23,00        | 31.00 | 20.67 | 120,0 | 0,0 |
| <u>Parametri medi</u> |                                                      |              |       |       |       |     |
| Descrizione           | γ                                                    | γs           | ф     | δ     | С     | Ca  |
| Rilevato              | 20,00                                                | 20,00        | 35.00 | 23.33 | 0,0   | 0,0 |
| Ala                   | 19,00                                                | 20,00        | 25.00 | 16.67 | 2,0   | 0,0 |
| Salt                  | 20,00                                                | 20,00        | 27.00 | 18.00 | 20,0  | 0,0 |
| Ap/Pa                 | 23,00                                                | 23,00        | 31.00 | 20.67 | 120,0 | 0,0 |
| Parametri minimi      |                                                      |              |       |       |       |     |
| Descrizione           | γ                                                    | γs           | ф     | δ     | С     | Ca  |
| Rilevato              | 20,00                                                | 20,00        | 30.00 | 20.00 | 0,0   | 0,0 |
| Ala                   | 19,00                                                | 20,00        | 25.00 | 16.67 | 2,0   | 0,0 |
| Salt                  | 20,00                                                | 20,00        | 27.00 | 18.00 | 20,0  | 0,0 |
| Ap/Pa                 | 23,00                                                | 23,00        | 31.00 | 20.67 | 120,0 | 0,0 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera Tratto Settore CEE WBS L073 212 E 17 OS0900 | doc.<br>RH 01 A 60 di 13 | _ |
|---------------------------------------------------|--------------------------|---|
|---------------------------------------------------|--------------------------|---|

#### Condizioni di carico

#### Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra. Momento positivo senso antiorario.

X F<sub>x</sub> F<sub>y</sub> M X<sub>i</sub> X<sub>f</sub> Q<sub>i</sub> Ascissa del punto di applicazione del carico concentrato espressa in [m] Componente orizzontale del carico concentrato espressa in [kN] Componente verticale del carico concentrato espressa in [kN]

Momento espresso in [kNm]
Ascissa del punto iniziale del carico ripartito espressa in [m] Ascissa del punto finale del carico ripartito espressa in [m]

Intensità del carico per x=X<sub>i</sub> espressa in [kN/m] Intensità del carico per x=X<sub>i</sub> espressa in [kN/m] D/C Tipo carico : D=distribuito C=concentrato

#### Condizione n° 1 (SOVRACCARICO STRADALE)

Profilo **X**<sub>f</sub>=17,45  $Q_i = 60,0000$ **Q**<sub>f</sub>=20,0000  $X_i = 9,65$ 



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>RA | N.prog.<br>01 |  | Pag. di Pag.<br>61 di 136 |  |
|---------------|---------------|--------------|-----------|---------------|-------------------|---------------|--|---------------------------|--|
|---------------|---------------|--------------|-----------|---------------|-------------------|---------------|--|---------------------------|--|

#### Descrizione combinazioni di carico

| Sim | hol | loaia | adottata | 1 |
|-----|-----|-------|----------|---|

 $\begin{array}{ll} \textit{F/S} & \textit{Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)} \\ \gamma & \textit{Coefficiente di partecipazione della condizione} \\ \varPsi & \textit{Coefficiente di combinazione della condizione} \end{array}$ 

|--|

| Combinazione ii 1 - Caso A1-IVII (STIV)                                                                                                                   |                                |                                      |                                                    |                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------|----------------------------------------------------|-----------------------------------------------------|
|                                                                                                                                                           | S/F                            | γ                                    | Ψ                                                  | γ*Ψ                                                 |
| Peso proprio muro                                                                                                                                         | FAV                            | 1,00                                 | 1.00                                               | 1,00                                                |
| Peso proprio terrapieno                                                                                                                                   | FAV                            | 1,00                                 | 1.00                                               | 1,00                                                |
| Spinta terreno                                                                                                                                            | SFAV                           | 1,30                                 | 1.00                                               | 1,30                                                |
| ·                                                                                                                                                         |                                |                                      |                                                    |                                                     |
| Combinazione n° 2 - Caso A1-M1 (STR)                                                                                                                      |                                |                                      |                                                    |                                                     |
|                                                                                                                                                           | S/F                            | γ                                    | Ψ                                                  | γ*Ψ                                                 |
| Peso proprio muro                                                                                                                                         | FAV                            | 1,00                                 | 1.00                                               | 1,00                                                |
| Peso proprio terrapieno                                                                                                                                   | FAV                            | 1,00                                 | 1.00                                               | 1,00                                                |
| Spinta terreno                                                                                                                                            | SFAV                           | 1,30                                 | 1.00                                               | 1,30                                                |
| SOVRACCARICO STRADALE                                                                                                                                     | SFAV                           | 1.50                                 | 1.00                                               | 1.50                                                |
| 30 VIIACCANICO STIADALE                                                                                                                                   | SIAV                           | 1.50                                 | 1.00                                               | 1.50                                                |
| Combinazione n° 3 - Caso A1-M1 (STR) - Sis                                                                                                                | ma Vert nositivo               |                                      |                                                    |                                                     |
| Combinazione ii 3 - Caso A1-IVII (511) - Sis                                                                                                              | S/F                            | •                                    | Ψ                                                  | γ*Ψ                                                 |
| Dana manania manan                                                                                                                                        | SFAV                           | γ                                    | _                                                  |                                                     |
| Peso proprio muro                                                                                                                                         |                                | 1,00                                 | 1.00                                               | 1,00                                                |
| Peso proprio terrapieno                                                                                                                                   | SFAV                           | 1,00                                 | 1.00                                               | 1,00                                                |
| Spinta terreno                                                                                                                                            | SFAV                           | 1,00                                 | 1.00                                               | 1,00                                                |
|                                                                                                                                                           |                                |                                      |                                                    |                                                     |
| Combinazione n° 4 - Caso A1-M1 (STR) - Sis                                                                                                                |                                |                                      |                                                    |                                                     |
|                                                                                                                                                           | S/F                            | γ                                    | Ψ                                                  | γ*Ψ                                                 |
| Peso proprio muro                                                                                                                                         | SFAV                           | 1,00                                 | 1.00                                               | 1,00                                                |
| Peso proprio terrapieno                                                                                                                                   | SFAV                           | 1,00                                 | 1.00                                               | 1,00                                                |
| Spinta terreno                                                                                                                                            | SFAV                           | 1,00                                 | 1.00                                               | 1,00                                                |
|                                                                                                                                                           |                                |                                      |                                                    |                                                     |
| Combinazione n° 5 - Caso A1-M1 (STR) - Sis                                                                                                                | ma Vert. positivo              |                                      |                                                    |                                                     |
|                                                                                                                                                           | S/F                            | γ                                    | Ψ                                                  | γ*Ψ                                                 |
| Peso proprio muro                                                                                                                                         | FAV                            | 1,00                                 | 1.00                                               | 1,00                                                |
| Peso proprio terrapieno                                                                                                                                   | FAV                            | 1,00                                 | 1.00                                               | 1,00                                                |
| Spinta terreno                                                                                                                                            | SFAV                           | 1,00                                 | 1.00                                               | 1,00                                                |
| Spirita terreno                                                                                                                                           | SIAV                           | 1,00                                 | 1.00                                               | 1,00                                                |
| Combinazione n° 6 - Quasi Permanente (SL                                                                                                                  | F)                             |                                      |                                                    |                                                     |
| Combinazione ii o · Quasi i ermanente (SE                                                                                                                 | <u>-/</u><br>S/F               | •                                    | Ψ                                                  | γ*Ψ                                                 |
| Doco proprio muro                                                                                                                                         |                                | γ                                    | 1.00                                               | •                                                   |
| Peso proprio muro                                                                                                                                         |                                | 1,00                                 |                                                    | 1,00                                                |
| Peso proprio terrapieno                                                                                                                                   |                                | 1,00                                 | 1.00                                               | 1,00                                                |
| Spinta terreno                                                                                                                                            |                                | 1,00                                 | 1.00                                               | 1,00                                                |
|                                                                                                                                                           |                                |                                      |                                                    |                                                     |
|                                                                                                                                                           |                                |                                      |                                                    |                                                     |
| Combinazione n° 7 - Frequente (SLE)                                                                                                                       | - 4-                           |                                      | \ <del>-</del> -                                   |                                                     |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                     | S/F                            | γ                                    | Ψ                                                  | γ*Ψ                                                 |
| Combinazione n° 7 - Frequente (SLE)  Peso proprio muro                                                                                                    | S/F<br>                        | γ<br>1,00                            | Ψ<br>1.00                                          | γ*Ψ<br>1,00                                         |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                     | <del>-</del>                   | ·                                    |                                                    | •                                                   |
| Peso proprio muro                                                                                                                                         |                                | 1,00                                 | 1.00                                               | 1,00                                                |
| Peso proprio muro<br>Peso proprio terrapieno                                                                                                              | <br>                           | 1,00<br>1,00                         | 1.00<br>1.00                                       | 1,00<br>1,00                                        |
| Peso proprio muro<br>Peso proprio terrapieno<br>Spinta terreno                                                                                            | <br><br>                       | 1,00<br>1,00<br>1,00                 | 1.00<br>1.00<br>1.00                               | 1,00<br>1,00<br>1,00                                |
| Peso proprio muro<br>Peso proprio terrapieno<br>Spinta terreno                                                                                            | <br><br>                       | 1,00<br>1,00<br>1,00                 | 1.00<br>1.00<br>1.00                               | 1,00<br>1,00<br>1,00                                |
| Peso proprio muro<br>Peso proprio terrapieno<br>Spinta terreno<br>SOVRACCARICO STRADALE                                                                   | <br><br>                       | 1,00<br>1,00<br>1,00                 | 1.00<br>1.00<br>1.00                               | 1,00<br>1,00<br>1,00<br>0.75                        |
| Peso proprio muro Peso proprio terrapieno Spinta terreno SOVRACCARICO STRADALE  Combinazione n° 8 - Rara (SLE)                                            | <br><br><br>SFAV               | 1,00<br>1,00<br>1,00<br>1,00<br>1.00 | 1.00<br>1.00<br>1.00<br>0.75                       | 1,00<br>1,00<br>1,00<br>0.75                        |
| Peso proprio muro Peso proprio terrapieno Spinta terreno SOVRACCARICO STRADALE  Combinazione n° 8 - Rara (SLE) Peso proprio muro                          | <br><br><br>SFAV<br><b>S/F</b> | 1,00<br>1,00<br>1,00<br>1,00<br>1.00 | 1.00<br>1.00<br>1.00<br>0.75<br>\Psi               | 1,00<br>1,00<br>1,00<br>0.75<br>γ*Ψ<br>1,00         |
| Peso proprio muro Peso proprio terrapieno Spinta terreno SOVRACCARICO STRADALE  Combinazione n° 8 - Rara (SLE)  Peso proprio muro Peso proprio terrapieno | <br><br><br>SFAV<br><b>S/F</b> | 1,00<br>1,00<br>1,00<br>1.00<br>1.00 | 1.00<br>1.00<br>1.00<br>0.75<br>\P<br>1.00<br>1.00 | 1,00<br>1,00<br>1,00<br>0.75<br>γ*Ψ<br>1,00<br>1,00 |
| Peso proprio muro Peso proprio terrapieno Spinta terreno SOVRACCARICO STRADALE  Combinazione n° 8 - Rara (SLE) Peso proprio muro                          | <br><br><br>SFAV<br><b>S/F</b> | 1,00<br>1,00<br>1,00<br>1,00<br>1.00 | 1.00<br>1.00<br>1.00<br>0.75<br>\Psi               | 1,00<br>1,00<br>1,00<br>0.75<br>γ*Ψ<br>1,00         |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E |  | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 |  | Pag.diPag.<br>62 di 136 |
|---------------|---------------|--------------|--|---------------|--------------------|----------------|--|-------------------------|
|---------------|---------------|--------------|--|---------------|--------------------|----------------|--|-------------------------|

Stato limite

# Impostazioni analisi pali

 Numero elementi palo
 40

 Tipo carico palo
 Distribuito

 Calcolo della portanza
 metodo di Vesic

 Costante di Winkler
 da Strato

Criterio di rottura del sistema terreno-palo

Spostamento limite pari a 0,0150 m

Pressione limite passiva con moltiplicatore pari a 1,00

Andamento pressione verticale

Geostatica

# Impostazioni di analisi

Metodo verifica sezioni

| Impostazioni verifiche SLU                                    |                                                        |
|---------------------------------------------------------------|--------------------------------------------------------|
| Coefficienti parziali per resistenze di calcolo dei materiali |                                                        |
| Coefficiente di sicurezza calcestruzzo a compressione         | 1.50                                                   |
| Coefficiente di sicurezza calcestruzzo a trazione             | 1.50                                                   |
| Coefficiente di sicurezza acciaio                             | 1.15                                                   |
| Fattore riduzione da resistenza cubica a cilindrica           | 0.83                                                   |
| Fattore di riduzione per carichi di lungo periodo             | 0.85                                                   |
| Coefficiente di sicurezza per la sezione                      | 1.00                                                   |
| Impostazioni verifiche SLE                                    |                                                        |
| Condizioni ambientali                                         | Aggressive                                             |
| Armatura ad aderenza migliorata                               |                                                        |
| <u>Verifica fessurazione</u>                                  |                                                        |
| Sensibilità delle armature                                    | Poco sensibile                                         |
| Valori limite delle aperture delle fessure                    | $w_1 = 0.20$                                           |
|                                                               | $w_2 = 0.30$                                           |
|                                                               | $w_3 = 0.40$                                           |
| Metodo di calcolo aperture delle fessure                      | Circ. Min. 252 (15/10/1996)                            |
| <u>Verifica delle tensioni</u>                                |                                                        |
| Combinazione di carico                                        | Rara $\sigma_c < 0.60 f_{ck} - \sigma_f < 0.80 f_{yk}$ |
|                                                               | Quasi permanente $\sigma_c$ < 0.45 $f_{ck}$            |

#### Impostazioni avanzate

Terreno a monte a elevata permeabilità



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore |    | WBS<br>OS0900 |    | N. prog. |          | Pag.diPag.<br>63 di 136 |
|---------------|---------------|---------|----|---------------|----|----------|----------|-------------------------|
| 10/3          | 212           | L       | 17 | 030700        | PE | UI       | $\wedge$ | 65 UI 136               |
|               |               |         |    |               |    |          |          |                         |

# Quadro riassuntivo coeff. di sicurezza calcolati

#### Simbologia adottata

 ${\cal C}$  Identificativo della combinazione  ${\it Tipo}$  Tipo combinazione  ${\it Sisma}$  Combinazione sismica  ${\it CS_{SCO}}$  Coeff. di sicurezza allo scorrimento  ${\it CS_{RIB}}$  Coeff. di sicurezza al ribaltamento

 $C_{SCO}$  Coeff. di sicurezza allo scorrimento  $C_{SRIB}$  Coeff. di sicurezza al ribaltamento  $C_{SOLM}$  Coeff. di sicurezza a carico limite  $C_{STAB}$  Coeff. di sicurezza a stabilità globale

| C | Tipo        | Sisma                            | CS <sub>sco</sub> | CS <sub>rib</sub> | CS <sub>qlim</sub> | <b>CS</b> <sub>stab</sub> |
|---|-------------|----------------------------------|-------------------|-------------------|--------------------|---------------------------|
| 1 | A1-M1 - [1] | <del></del>                      |                   |                   |                    |                           |
| 2 | A1-M1 - [2] |                                  |                   |                   |                    |                           |
| 3 | A1-M1 - [3] | Orizzontale + Verticale positivo |                   |                   |                    |                           |
| 4 | A1-M1 - [3] | Orizzontale + Verticale negativo |                   |                   |                    |                           |
| 5 | A1-M1 - [4] | Orizzontale + Verticale positivo |                   |                   |                    |                           |
| 6 | SLEQ - [1]  |                                  |                   |                   |                    |                           |
| 7 | SLEF - [1]  |                                  |                   |                   |                    |                           |
| 8 | SLER - [1]  |                                  |                   |                   |                    |                           |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | WBS<br>OS0900 |       | N. prog.<br>01 | Pag. di Pag.<br>64 di 136 |
|---------------|---------------|--------------|---------------|-------|----------------|---------------------------|
|               |               |              |               | I KEL |                |                           |

#### Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :
Origine in testa al muro (spigolo di monte)
Ascisse X (espresse in [m]) positive verso monte
Ordinate Y (espresse in [m]) positive verso l'alto
Le forze orizzontali sono considerate positive se agenti da monte verso valle
Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

#### Tipo di analisi

Calcolo della spinta metodo di Culmann
Calcolo della stabilità globale metodo di Bishop
Calcolo della spinta in condizioni di Spinta a riposo

#### <u>Sisma</u>

#### Combinazioni SLU

Accelerazione al suolo  $a_g$  2.06 [m/s^2] Coefficiente di amplificazione per tipo di sottosuolo (S) 1.19 Coefficiente di amplificazione topografica (St) 1.00 Coefficiente riduzione ( $\beta_m$ ) 1.00 Rapporto intensità sismica verticale/orizzontale 0.50 Coefficiente di intensità sismica orizzontale (percento)  $k_h = (a_g/g^*\beta_m^*St^*S)$ 

Coefficiente di intensità sismica orizzontale (percento)  $k_h=(a_g/g^*\beta_m^*St^*S)=24.51$ Coefficiente di intensità sismica verticale (percento)  $k_v=0.50 * k_h=12.25$ 

Forma diagramma incremento sismico Rettangolare

Partecipazione spinta passiva (percento) 0,0
Lunghezza del muro 7,20 [m]

Peso muro 192,6981 [kN]
Baricentro del muro X=-0,15 Y=-3,96

#### Superficie di spinta

Punto inferiore superficie di spinta X = 2,30 Y = -5,50 Punto superiore superficie di spinta X = 2,30 Y = 0,79 Altezza della superficie di spinta X = 0,79 [m] Inclinazione superficie di spinta(rispetto alla verticale) 0,00 [°]

#### COMBINAZIONE n° 1

#### Peso muro favorevole e Peso terrapieno favorevole

| Valore della spinta statica                                  | 255,5081 | [kN] |           |     |
|--------------------------------------------------------------|----------|------|-----------|-----|
| Componente orizzontale della spinta statica                  | 234,6117 | [kN] |           |     |
| Componente verticale della spinta statica                    | 101,2016 | [kN] |           |     |
| Punto d'applicazione della spinta                            | X = 2,30 | [m]  | Y = -3,02 | [m] |
| Inclinaz. della spinta rispetto alla normale alla superficie | 23,33    | [°]  |           |     |
| Inclinazione linea di rottura in condizioni statiche         | 54,19    | [°]  |           |     |
| Punto d'applicazione della spinta della falda                | X = 2,30 | [m]  | Y = -5,50 | [m] |
| Peso terrapieno gravante sulla fondazione a monte            | 225,1466 | [kN] |           |     |
| Baricentro terrapieno gravante sulla fondazione a monte      | X = 1,18 | [m]  | Y = -2,05 | [m] |
|                                                              |          |      |           |     |

#### <u>Risultanti</u>

Risultante dei carichi applicati in dir. orizzontale 234,6117 [kN] Risultante dei carichi applicati in dir. verticale 519,0462 [kN]



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra<br/>imondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40 Relazione tecnica e di calcolo

| Opera Tro | to Settore<br>2 E |  | WBS<br>OS0900 | ld.<br>doc.<br>RFI | N. prog.<br>01 |  | Pag. di Pag.<br>65 di 136 |  |
|-----------|-------------------|--|---------------|--------------------|----------------|--|---------------------------|--|
|-----------|-------------------|--|---------------|--------------------|----------------|--|---------------------------|--|

| Sforzo normale sul piano di posa della fondazione     | 519.0462 | [kN]  |
|-------------------------------------------------------|----------|-------|
| ·                                                     | / -      |       |
| Sforzo tangenziale sul piano di posa della fondazione | 234,6117 | [kN]  |
| Eccentricità rispetto al baricentro della fondazione  | 0,22     | [m]   |
| Lunghezza fondazione reagente                         | 4,60     | [m]   |
| Risultante in fondazione                              | 569,6066 | [kN]  |
| Inclinazione della risultante (rispetto alla normale) | 24,32    | [°]   |
| Momento rispetto al baricentro della fondazione       | 113,1162 | [kNm] |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera Tratto Settore CEE WBS doc. N.prog. Rev. Pag<br>L073 212 E 17 OS0900 PB 01 A 66 a |
|-----------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------|

# Sollecitazioni paramento

 $\underline{Combinazione\ n^{\circ}\ 1}$  L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Υ    | N       | М        | т        |
|-----|------|---------|----------|----------|
| 1   | 0,00 | 0,000   | 0,000    | 0,0000   |
| 2   | 0,23 | 2,8199  | 0,3414   | 3,2405   |
| 3   | 0,45 | 5,7633  | 1,4236   | 6,8727   |
| 4   | 0,68 | 8,8301  | 3,3325   | 10,8887  |
| 5   | 0,90 | 12,0205 | 6,1527   | 15,2866  |
| 6   | 1,13 | 15,3343 | 9,9688   | 20,0664  |
| 7   | 1,35 | 18,7716 | 14,8652  | 25,2281  |
| 8   | 1,57 | 22,3323 | 20,9265  | 30,7717  |
| 9   | 1,80 | 26,0166 | 28,2372  | 36,6971  |
| 10  | 2,02 | 29,8243 | 36,8818  | 43,0045  |
| 11  | 2,25 | 33,7555 | 46,9450  | 49,6937  |
| 12  | 2,48 | 37,8101 | 58,5112  | 56,7649  |
| 13  | 2,70 | 41,9883 | 71,6649  | 64,2179  |
| 14  | 2,93 | 46,2899 | 86,4907  | 72,0529  |
| 15  | 3,15 | 50,7150 | 103,0731 | 80,2697  |
| 16  | 3,38 | 55,2636 | 121,4966 | 88,8684  |
| 17  | 3,60 | 59,9356 | 141,8458 | 97,8490  |
| 18  | 3,83 | 64,7312 | 164,2052 | 107,2116 |
| 19  | 4,05 | 69,6502 | 188,6593 | 116,9560 |
| 20  | 4,28 | 74,6927 | 215,2927 | 127,0823 |
| 21  | 4,50 | 79,8586 | 244,1862 | 137,5293 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 |   |    | WBS<br>OS0900 | aoc. | N.prog. | Rev.<br>A | Pag. di Pag.<br>67 di 136 |
|---------------|---------------|---|----|---------------|------|---------|-----------|---------------------------|
| 10/0          | 212           | _ | 17 | 000700        | REL  | O1      | / \       | 07 di 100                 |

# Inviluppo sollecitazioni piastra di fondazione

#### Combinazione n° 1

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 4.60

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Υ    | $M_{ymin}$ | $M_{ymax}$ | Tymin     | $T_{ymax}$ |
|-----|------|------------|------------|-----------|------------|
| 1   | 0,00 | -0,2063    | 0,2311     | -4,9898   | 8,8450     |
| 2   | 0,17 | -2,4889    | 3,8771     | -40,5877  | 28,5527    |
| 3   | 0,33 | -4,4736    | 8,2933     | -95,0260  | 57,4275    |
| 4   | 0,50 | -21,5309   | 17,7612    | -123,3435 | 85,5328    |
| 5   | 0,63 | -30,9424   | 28,6899    | 0,0000    | 119,8643   |
| 6   | 0,77 | -20,4518   | 42,2942    | 0,0000    | 191,6835   |
| 7   | 0,90 | 0,0000     | 57,1261    | 0,0000    | 351,6258   |
| 8   | 1,03 | 0,0000     | 76,8635    | 0,0000    | 513,0102   |
| 9   | 1,17 | 0,0000     | 131,9058   | 0,0000    | 704,9084   |
| 10  | 1,30 | 0,0000     | 256,2767   | -48,0632  | 984,0450   |
| 11  | 1,35 | 0,0000     | 318,3585   | -48,9443  | 982,8268   |
| 12  | 2,30 | -344,6657  | 0,0000     | -315,4168 | 0,0000     |
| 13  | 2,44 | -300,5225  | 0,0000     | -295,2445 | 0,0000     |
| 14  | 2,58 | -260,7866  | 0,0000     | -266,2548 | 0,0000     |
| 15  | 2,73 | -224,6552  | 0,0000     | -241,6284 | 0,0000     |
| 16  | 2,87 | -191,7838  | 0,0000     | -220,5175 | 0,0000     |
| 17  | 3,01 | -161,9176  | 0,0000     | -201,7915 | 0,0000     |
| 18  | 3,16 | -135,2046  | 0,0000     | -183,6386 | 0,0000     |
| 19  | 3,30 | -113,4231  | 0,0000     | -165,8026 | 0,0000     |
| 20  | 3,43 | -95,6548   | 0,0000     | -149,8284 | 0,0000     |
| 21  | 3,57 | -78,4819   | 0,0000     | -133,9739 | 0,0000     |
| 22  | 3,70 | -62,4066   | 0,0000     | -120,8788 | 0,0000     |
| 23  | 3,83 | -47,5656   | 0,0000     | -113,6247 | 0,0000     |
| 24  | 3,97 | -33,8716   | 0,0000     | -106,7463 | 0,0000     |
| 25  | 4,10 | -20,8920   | 0,0000     | -101,3034 | 0,0000     |
| 26  | 4,27 | -9,0903    | 0,0000     | -66,0555  | 0,0000     |
| 27  | 4,43 | -2,5344    | 0,0000     | -32,6648  | 0,0000     |
| 28  | 4,60 | 0,0000     | 0,3856     | -5,0061   | 0,0000     |

#### Sollecitazioni in direzione X

| Nr. | x    | M <sub>xmin</sub> | $M_{xmax}$ | T <sub>xmin</sub> | T <sub>xmax</sub> |
|-----|------|-------------------|------------|-------------------|-------------------|
| 1   | 0,00 | -0,8296           | 2,3100     | -10,5373          | 159,6984          |
| 2   | 0,40 | -2,0682           | 13,2613    | -123,0306         | 247,7248          |
| 3   | 0,80 | -27,4696          | 8,6132     | -230,9075         | 246,9365          |
| 4   | 1,20 | -51,6949          | 1,0789     | -179,3556         | 175,2375          |
| 5   | 1,60 | -23,4167          | 9,3543     | -263,3437         | 252,5157          |
| 6   | 1,92 | -2,1899           | 22,4145    | -264,2229         | 158,1479          |
| 7   | 2,24 | 0,0000            | 30,4853    | -98,0375          | 56,8624           |
| 8   | 2,56 | 0,0000            | 30,5293    | -55,5724          | 95,0030           |
| 9   | 2,88 | -2,1827           | 22,4051    | -156,5941         | 260,8103          |
| 10  | 3,20 | -23,1102          | 9,3262     | -236,5458         | 259,9326          |
| 11  | 3,60 | -50,2189          | 1,0758     | -175,8887         | 175,8887          |
| 12  | 4,00 | -23,1102          | 9,3262     | -259,9326         | 236,5458          |
| 13  | 4,32 | -2,1827           | 22,4051    | -260,8103         | 156,5941          |
| 14  | 4,64 | 0,0000            | 30,5293    | -95,0030          | 55,5724           |
| 15  | 4,96 | 0,0000            | 30,4853    | -56,8624          | 98,0375           |
| 16  | 5,28 | -2,1899           | 22,4145    | -158,1479         | 264,2229          |



# 2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra<br/>imondo Nord

Opere d'arte minori: Opere di sostegno e dreni

| ٦<br>Ma                                                                                                        | JADRIL.<br>rche Umbria :                                | ATERO<br>8.p.A.                                        | Muri di       | controripa         | in dx in c<br>e di calcol       | .a. da 4+6        | 580.00 a 4+                                    | 844.40             |                                                         | <del>.</del> |                           |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------|--------------------|---------------------------------|-------------------|------------------------------------------------|--------------------|---------------------------------------------------------|--------------|---------------------------|
|                                                                                                                |                                                         |                                                        | Opera<br>L073 | Tratto<br>212      | Settore<br>E                    | CEE<br>17         | WBS<br>OS0900                                  | ld.<br>doc.<br>REL | N. prog.<br>01                                          | Rev.<br>A    | Pag. di Pag.<br>68 di 136 |
| 17<br>18<br>19<br>20<br>21                                                                                     | 5,60<br>6,00<br>6,40<br>6,80<br>7,20                    | -23,4167<br>-51,6949<br>-27,4696<br>-2,0682<br>-0,8296 | i<br>i        | 1,0<br>8,6<br>13,2 | 543<br>789<br>132<br>613<br>100 | -17<br>-24<br>-24 | 2,5157<br>5,2375<br>6,9365<br>7,7248<br>9,6984 |                    | 263,3437<br>179,3556<br>230,9075<br>123,0306<br>10,5373 |              |                           |
| COMBINAZIONE n° 2 Peso muro favorevole e Peso terrapieno favorevole  Valore della spinta statica 255,5081 [kN] |                                                         |                                                        |               |                    |                                 |                   |                                                |                    |                                                         |              |                           |
|                                                                                                                | nente orizzontale<br>nente verticale de                 |                                                        | ca            |                    |                                 |                   | 234,611<br>101,201                             |                    | [kN]<br>[kN]                                            |              |                           |
| •                                                                                                              | l'applicazione dell                                     | •                                                      |               |                    |                                 |                   | X = 2,30                                       |                    | [M]                                                     | Y = -3,02    | [m]                       |
|                                                                                                                | . della spinta risp                                     |                                                        | •             | icie               |                                 |                   | 23,33                                          |                    | [°]                                                     |              |                           |
|                                                                                                                | ione linea di rottu                                     |                                                        |               |                    |                                 |                   | 54,19                                          |                    | [°]                                                     |              |                           |
| Punto c                                                                                                        | l'applicazione del                                      | la spinta della falo                                   | da            |                    |                                 |                   | X = 2,30                                       |                    | [m]                                                     | Y = -5,50    | [m]                       |
| Peso te                                                                                                        | rrapieno gravante                                       | e sulla fondazione                                     | a monte       |                    |                                 |                   | 225,1466                                       | 6                  | [kN]                                                    |              |                           |
|                                                                                                                | tro terrapieno gra                                      |                                                        |               | onte               |                                 |                   | X = 1,18                                       |                    | [m]                                                     | Y = -2,05    | [m]                       |
| Risultar                                                                                                       | n+i                                                     |                                                        |               |                    |                                 |                   |                                                |                    |                                                         |              |                           |
| Risultar                                                                                                       | <u>nı</u><br>nte dei carichi app<br>nte dei carichi app |                                                        |               |                    |                                 |                   | 234,611<br>519,046                             |                    | [kN]<br>[kN]                                            |              |                           |
|                                                                                                                | normale sul piano                                       |                                                        |               |                    |                                 |                   | 519,046                                        |                    | [kN]                                                    |              |                           |
|                                                                                                                | angenziale sul pia                                      | •                                                      |               | <b>!</b>           |                                 |                   | 234,611                                        |                    | [kN]                                                    |              |                           |
|                                                                                                                | icità rispetto al ba                                    |                                                        | ndazione      |                    |                                 |                   | 0,22                                           |                    | [m]                                                     |              |                           |
| _                                                                                                              | zza fondazione re                                       | agente                                                 |               |                    |                                 |                   | 4,60                                           |                    | [m]                                                     |              |                           |
|                                                                                                                | nte in fondazione<br>ione della risultar                | nte (rispetto alla :                                   | normale)      |                    |                                 |                   | 569,6060<br>24,32                              |                    | [kN]<br>[°]                                             |              |                           |
|                                                                                                                | ito rispetto al bar                                     |                                                        |               |                    |                                 |                   | 24,32<br>113,1162                              |                    | l J<br>[kNm]                                            |              |                           |
|                                                                                                                | •                                                       |                                                        |               |                    |                                 |                   | ,                                              |                    |                                                         |              |                           |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| ' | Opera<br>L073 |  | Settore<br>E | CEE<br>17 | WBS<br>OSO900 | ld.<br>doc.<br>RE | N. prog.<br>01 |  | Pag. di Pag.<br>69 di 136 |
|---|---------------|--|--------------|-----------|---------------|-------------------|----------------|--|---------------------------|
|---|---------------|--|--------------|-----------|---------------|-------------------|----------------|--|---------------------------|

# Sollecitazioni paramento

#### Combinazione n° 2

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Y    | N       | M        | т        |
|-----|------|---------|----------|----------|
| 1   | 0,00 | 0,0000  | 0,0000   | 0,0000   |
| 2   | 0,23 | 2,8199  | 0,3414   | 3,2405   |
| 3   | 0,45 | 5,7633  | 1,4236   | 6,8727   |
| 4   | 0,68 | 8,8301  | 3,3325   | 10,8887  |
| 5   | 0,90 | 12,0205 | 6,1527   | 15,2866  |
| 6   | 1,13 | 15,3343 | 9,9688   | 20,0664  |
| 7   | 1,35 | 18,7716 | 14,8652  | 25,2281  |
| 8   | 1,57 | 22,3323 | 20,9265  | 30,7717  |
| 9   | 1,80 | 26,0166 | 28,2372  | 36,6971  |
| 10  | 2,02 | 29,8243 | 36,8818  | 43,0045  |
| 11  | 2,25 | 33,7555 | 46,9450  | 49,6937  |
| 12  | 2,48 | 37,8101 | 58,5112  | 56,7649  |
| 13  | 2,70 | 41,9883 | 71,6649  | 64,2179  |
| 14  | 2,93 | 46,2899 | 86,4907  | 72,0529  |
| 15  | 3,15 | 50,7150 | 103,0731 | 80,2697  |
| 16  | 3,38 | 55,2636 | 121,4966 | 88,8684  |
| 17  | 3,60 | 59,9356 | 141,8458 | 97,8490  |
| 18  | 3,83 | 64,7312 | 164,2052 | 107,2116 |
| 19  | 4,05 | 69,6502 | 188,6593 | 116,9560 |
| 20  | 4,28 | 74,6927 | 215,2927 | 127,0823 |
| 21  | 4,50 | 79,8586 | 244,1862 | 137,5293 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore |    | WBS<br>OS0900 |      | N. prog. | Pag. di Pag.<br>70 di 136 |
|---------------|---------------|---------|----|---------------|------|----------|---------------------------|
| 10/3          | ZIZ           |         | 17 | 030700        | PΠ   | UI       | <br>70 al 136             |
|               |               |         |    |               | INLL |          |                           |

# Inviluppo sollecitazioni piastra di fondazione

#### Combinazione n° 2

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 4.60

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Υ    | $M_{ymin}$ | $M_{ymax}$ | $T_{ymin}$ | $T_{ymax}$ |
|-----|------|------------|------------|------------|------------|
| 1   | 0,00 | -0,2063    | 0,2311     | -4,9898    | 8,8450     |
| 2   | 0,17 | -2,4889    | 3,8771     | -40,5877   | 28,5527    |
| 3   | 0,33 | -4,4736    | 8,2933     | -95,0260   | 57,4275    |
| 4   | 0,50 | -21,5309   | 17,7612    | -123,3435  | 85,5328    |
| 5   | 0,63 | -30,9424   | 28,6899    | 0,0000     | 119,8643   |
| 6   | 0,77 | -20,4518   | 42,2942    | 0,0000     | 191,6835   |
| 7   | 0,90 | 0,0000     | 57,1261    | 0,0000     | 351,6258   |
| 8   | 1,03 | 0,0000     | 76,8635    | 0,0000     | 513,0102   |
| 9   | 1,17 | 0,0000     | 131,9058   | 0,0000     | 704,9084   |
| 10  | 1,30 | 0,0000     | 256,2767   | -48,0632   | 984,0450   |
| 11  | 1,35 | 0,0000     | 318,3585   | -48,9443   | 982,8268   |
| 12  | 2,30 | -344,6657  | 0,0000     | -315,4168  | 0,0000     |
| 13  | 2,44 | -300,5225  | 0,0000     | -295,2445  | 0,0000     |
| 14  | 2,58 | -260,7866  | 0,0000     | -266,2548  | 0,0000     |
| 15  | 2,73 | -224,6552  | 0,0000     | -241,6284  | 0,0000     |
| 16  | 2,87 | -191,7838  | 0,0000     | -220,5175  | 0,0000     |
| 17  | 3,01 | -161,9176  | 0,0000     | -201,7915  | 0,0000     |
| 18  | 3,16 | -135,2046  | 0,0000     | -183,6386  | 0,0000     |
| 19  | 3,30 | -113,4231  | 0,0000     | -165,8026  | 0,0000     |
| 20  | 3,43 | -95,6548   | 0,0000     | -149,8284  | 0,0000     |
| 21  | 3,57 | -78,4819   | 0,0000     | -133,9739  | 0,0000     |
| 22  | 3,70 | -62,4066   | 0,0000     | -120,8788  | 0,0000     |
| 23  | 3,83 | -47,5656   | 0,0000     | -113,6247  | 0,0000     |
| 24  | 3,97 | -33,8716   | 0,0000     | -106,7463  | 0,0000     |
| 25  | 4,10 | -20,8920   | 0,0000     | -101,3034  | 0,0000     |
| 26  | 4,27 | -9,0903    | 0,000      | -66,0555   | 0,0000     |
| 27  | 4,43 | -2,5344    | 0,000      | -32,6648   | 0,0000     |
| 28  | 4,60 | 0,0000     | 0,3856     | -5,0061    | 0,0000     |

#### Sollecitazioni in direzione X

| Nr. | X    | $M_{xmin}$ | $M_{xmax}$ | T <sub>xmin</sub> | T <sub>xmax</sub> |
|-----|------|------------|------------|-------------------|-------------------|
| 1   | 0,00 | -0,8296    | 2,3100     | -10,5373          | 159,6984          |
| 2   | 0,40 | -2,0682    | 13,2613    | -123,0306         | 247,7248          |
| 3   | 0,80 | -27,4696   | 8,6132     | -230,9075         | 246,9365          |
| 4   | 1,20 | -51,6949   | 1,0789     | -179,3556         | 175,2375          |
| 5   | 1,60 | -23,4167   | 9,3543     | -263,3437         | 252,5157          |
| 6   | 1,92 | -2,1899    | 22,4145    | -264,2229         | 158,1479          |
| 7   | 2,24 | 0,0000     | 30,4853    | -98,0375          | 56,8624           |
| 8   | 2,56 | 0,0000     | 30,5293    | -55,5724          | 95,0030           |
| 9   | 2,88 | -2,1827    | 22,4051    | -156,5941         | 260,8103          |
| 10  | 3,20 | -23,1102   | 9,3262     | -236,5458         | 259,9326          |
| 11  | 3,60 | -50,2189   | 1,0758     | -175,8887         | 175,8887          |
| 12  | 4,00 | -23,1102   | 9,3262     | -259,9326         | 236,5458          |
| 13  | 4,32 | -2,1827    | 22,4051    | -260,8103         | 156,5941          |
| 14  | 4,64 | 0,0000     | 30,5293    | -95,0030          | 55,5724           |
| 15  | 4,96 | 0,0000     | 30,4853    | -56,8624          | 98,0375           |
| 16  | 5,28 | -2,1899    | 22,4145    | -158,1479         | 264,2229          |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra<br/>imondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40 Relazione tecnica e di calcolo

| Marche Umbria S.p.A.                                   |                                    |                                              | Relazione tecnica e di calcolo |               |               |              |           |               |                    |                |           |                         |
|--------------------------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------|
|                                                        |                                    |                                              |                                | Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OSO900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag.diPag.<br>71 di 136 |
| 1                                                      | 17                                 | 5,60                                         | -23,4167                       | ,             | 9.3           | 543          | -25       | 2,5157        |                    | 263,3437       |           |                         |
|                                                        | 18                                 | 6,00                                         | -51,6949                       |               |               | 789          |           | 5,2375        |                    | 179,3556       |           |                         |
|                                                        | 19                                 | 6,40                                         | -27,4696                       |               | -             | 132          |           | 6,9365        |                    | 230,9075       |           |                         |
|                                                        | 20                                 | 6,80                                         | -2,0682                        |               | 13,2          |              |           | 7,7248        |                    | 123,0306       |           |                         |
| 2                                                      | 21                                 | 7,20                                         | -0,8296                        | i             | 2,3           | 100          | -15       | 9,6984        |                    | 10,5373        |           |                         |
|                                                        |                                    |                                              |                                |               |               |              |           |               |                    |                |           |                         |
| <u>C</u>                                               | COMBINAZI                          | ONE n° 3                                     |                                |               |               |              |           |               |                    |                |           |                         |
| ١                                                      | /alore della                       | spinta statica                               |                                |               |               |              |           | 196,544       | 7                  | [kN]           |           |                         |
| (                                                      | Component                          | e orizzontale della                          | spinta stati                   | ca            |               |              |           | 180,470       | 5                  | [kN]           |           |                         |
|                                                        | -                                  | e verticale della sp                         |                                |               |               |              |           | 77,8474       |                    | [kN]           |           |                         |
|                                                        |                                    | licazione della spir                         |                                |               |               |              |           | X = 2,30      |                    | [m]            | Y = -3,02 | [m]                     |
|                                                        |                                    | a spinta rispetto a                          |                                | •             | icie          |              |           | 23,33         |                    | [°]            |           |                         |
| ı                                                      | nclinazione                        | linea di rottura in                          | condizioni                     | statiche      |               |              |           | 54,19         |                    | [°]            |           |                         |
| - 1                                                    | ncremento                          | sismico della spint                          | ta                             |               |               |              |           | 211,921       | 6                  | [kN]           |           |                         |
| Punto d'applicazione dell'incremento sismico di spinta |                                    |                                              |                                |               |               |              | X = 2,30  |               | [m]                | Y = -2,36      | [m]       |                         |
| Inclinazione linea di rottura in condizioni sismiche   |                                    |                                              |                                |               |               | 43,32        |           | [°]           |                    |                |           |                         |
| F                                                      | ounto d'app                        | licazione della spir                         | nta della falo                 | da            |               |              |           | X = 2,30      |                    | [m]            | Y = -5,50 | [m]                     |
| F                                                      | eso terrapi                        | eno gravante sulla                           | a fondazione                   | a monte       |               |              |           | 225,146       | 6 [                | [kN]           |           |                         |
| Е                                                      | Baricentro to                      | errapieno gravant                            | e sulla fonda                  | azione a mo   | onte          |              |           | X = 1,18      | [                  | [m]            | Y = -2,05 | [m]                     |
| - 1                                                    | nerzia del m                       | nuro                                         |                                |               |               |              |           | 47,2951       | [                  | [kN]           |           |                         |
|                                                        |                                    | cale del muro                                |                                |               |               |              |           | 23,6476       |                    | [kN]           |           |                         |
|                                                        |                                    | errapieno fondazio                           |                                |               |               |              |           | 55,2592       |                    | [kN]           |           |                         |
| ı                                                      | nerzia verti                       | cale del terrapieno                          | o fondazione                   | e di monte    |               |              |           | 27,6296       |                    | [kN]           |           |                         |
| _                                                      | <u>Risultanti</u><br>Risultante di | ei carichi applicati                         | in dir orizz                   | ontale        |               |              |           | 477,614       | 6 1                | [kN]           |           |                         |
|                                                        |                                    | ei carichi applicati<br>ei carichi applicati |                                |               |               |              |           | 630,907       |                    | [kN]           |           |                         |
|                                                        |                                    | ale sul piano di po                          |                                |               |               |              |           | 630,907       |                    | [kN]           |           |                         |
|                                                        |                                    | enziale sul piano di                         |                                |               |               |              |           | 477,614       |                    | [kN]           |           |                         |
|                                                        | _                                  | rispetto al baricen                          | •                              |               |               |              |           | 1,09          |                    | [m]            |           |                         |
|                                                        |                                    | ondazione reagent                            |                                |               |               |              |           | 3,64          |                    | [m]            |           |                         |
|                                                        |                                    | fondazione                                   |                                |               |               |              |           | 791,302       |                    | [kN]           |           |                         |
| - 1                                                    | nclinazione                        | della risultante (ri                         | ispetto alla r                 | normale)      |               |              |           | 37,13         |                    | [°]            |           |                         |
| N                                                      | Momento ri                         | spetto al baricenti                          | ro della fond                  | dazione       |               |              |           | 686,331       |                    | [kNm]          |           |                         |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E |    | WBS<br>OS0900 | ld.<br>doc. | N. prog.<br>01 |   | Pag.diPag.<br>72 di 136 |
|---------------|---------------|--------------|----|---------------|-------------|----------------|---|-------------------------|
| LU/3          | 212           | E            | 1/ | 030300        | REL         | UI             | Α | /2 al 136               |

# Sollecitazioni paramento

#### Combinazione n° 3

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Υ    | N       | M        | Т        |
|-----|------|---------|----------|----------|
| 1   | 0,00 | 0,0000  | 0,0000   | 0,0000   |
| 2   | 0,23 | 2,8199  | 1,1225   | 10,1731  |
| 3   | 0,45 | 5,7633  | 4,5388   | 20,6777  |
| 4   | 0,68 | 8,8301  | 10,3215  | 31,5079  |
| 5   | 0,90 | 12,0205 | 18,5422  | 42,6622  |
| 6   | 1,13 | 15,3343 | 29,2724  | 54,1405  |
| 7   | 1,35 | 18,7716 | 42,5836  | 65,9429  |
| 8   | 1,57 | 22,3323 | 58,5474  | 78,0694  |
| 9   | 1,80 | 26,0166 | 77,2352  | 90,5199  |
| 10  | 2,02 | 29,8243 | 98,7187  | 103,2945 |
| 11  | 2,25 | 33,7555 | 123,0692 | 116,3932 |
| 12  | 2,48 | 37,8101 | 150,3584 | 129,8160 |
| 13  | 2,70 | 41,9883 | 180,6578 | 143,5628 |
| 14  | 2,93 | 46,2899 | 214,0388 | 157,6337 |
| 15  | 3,15 | 50,7150 | 250,5730 | 172,0287 |
| 16  | 3,38 | 55,2636 | 290,3319 | 186,7477 |
| 17  | 3,60 | 59,9356 | 333,3871 | 201,7908 |
| 18  | 3,83 | 64,7312 | 379,8100 | 217,1580 |
| 19  | 4,05 | 69,6502 | 429,6721 | 232,8492 |
| 20  | 4,28 | 74,6927 | 483,0451 | 248,8645 |
| 21  | 4,50 | 79,8586 | 539,9976 | 265,1569 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E |    | WBS<br>OS0900 | ld.<br>doc.<br>RFI | N.prog.<br>01 |   | Pag. di Pag.<br>73 di 136 |
|---------------|---------------|--------------|----|---------------|--------------------|---------------|---|---------------------------|
| L0/3          | 212           | E            | 17 | OS0900        | REL                | OI.           | Α | /3 ai 136                 |

## Inviluppo sollecitazioni piastra di fondazione

#### Combinazione n° 3

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 4.60

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Υ    | $M_{ymin}$ | $M_{ymax}$ | $T_{ymin}$ | $T_{ymax}$ |
|-----|------|------------|------------|------------|------------|
| 1   | 0,00 | -0,4465    | 0,3903     | -8,0770    | 17,5357    |
| 2   | 0,17 | -4,4887    | 7,6458     | -73,0626   | 58,4986    |
| 3   | 0,33 | -7,3689    | 17,0484    | -173,3492  | 117,1025   |
| 4   | 0,50 | -38,3389   | 36,6653    | -216,4609  | 174,2845   |
| 5   | 0,63 | -54,6066   | 59,1804    | 0,0000     | 243,1344   |
| 6   | 0,77 | -32,5244   | 87,1877    | 0,0000     | 385,3356   |
| 7   | 0,90 | 0,0000     | 117,9217   | 0,0000     | 691,3505   |
| 8   | 1,03 | 0,0000     | 158,3866   | 0,0000     | 1001,6578  |
| 9   | 1,17 | 0,0000     | 266,6443   | 0,0000     | 1370,3345  |
| 10  | 1,30 | 0,0000     | 507,5235   | -63,1700   | 1905,7676  |
| 11  | 1,35 | 0,0000     | 627,4276   | -63,9456   | 1904,5490  |
| 12  | 2,30 | -714,9904  | 0,0000     | -605,2842  | 0,0000     |
| 13  | 2,44 | -629,4421  | 0,0000     | -589,0716  | 0,0000     |
| 14  | 2,58 | -552,0063  | 0,0000     | -560,1307  | 0,0000     |
| 15  | 2,73 | -479,0692  | 0,0000     | -534,8688  | 0,0000     |
| 16  | 2,87 | -409,3817  | 0,0000     | -520,0127  | 0,0000     |
| 17  | 3,01 | -341,8730  | 0,0000     | -514,7626  | 0,0000     |
| 18  | 3,16 | -275,1287  | 0,0000     | -521,4383  | 0,0000     |
| 19  | 3,30 | -219,4509  | 0,0000     | -540,0114  | 0,0000     |
| 20  | 3,43 | -173,8367  | 0,0000     | -445,4029  | 0,0000     |
| 21  | 3,57 | -133,2470  | 0,0000     | -359,1711  | 0,0000     |
| 22  | 3,70 | -98,0459   | 0,0000     | -275,1806  | 0,0000     |
| 23  | 3,83 | -68,5390   | 0,0000     | -213,6905  | 0,0000     |
| 24  | 3,97 | -44,5872   | 0,0000     | -172,8693  | 0,0000     |
| 25  | 4,10 | -26,0018   | 0,0000     | -133,4791  | 11,0132    |
| 26  | 4,27 | -11,0112   | 0,0000     | -88,1458   | 6,0427     |
| 27  | 4,43 | -6,1176    | 1,8126     | -41,7655   | 0,0000     |
| 28  | 4,60 | 0,000      | 0,4045     | -10,0469   | 2,1829     |
|     |      |            |            |            |            |

#### Sollecitazioni in direzione X

| Nr. | x    | M <sub>xmin</sub> | $M_{xmax}$ | T <sub>xmin</sub> | T <sub>xmax</sub> |
|-----|------|-------------------|------------|-------------------|-------------------|
| 1   | 0,00 | -1,8707           | 2,5871     | -95,0314          | 305,3986          |
| 2   | 0,40 | -3,9399           | 25,1647    | -235,6286         | 471,9850          |
| 3   | 0,80 | -52,4379          | 36,2569    | -467,3061         | 471,2277          |
| 4   | 1,20 | -98,6085          | 57,6960    | -342,2983         | 334,2651          |
| 5   | 1,60 | -44,7063          | 27,5000    | -502,8190         | 506,9382          |
| 6   | 1,92 | -17,8119          | 42,7637    | -503,6640         | 302,8774          |
| 7   | 2,24 | -30,4308          | 58,1533    | -186,0757         | 109,8928          |
| 8   | 2,56 | -31,2674          | 58,2365    | -107,4259         | 180,2735          |
| 9   | 2,88 | -20,1888          | 42,7447    | -299,9325         | 497,1398          |
| 10  | 3,20 | -44,1245          | 22,7135    | -473,8738         | 496,2966          |
| 11  | 3,60 | -95,7990          | 49,4185    | -335,6824         | 335,6824          |
| 12  | 4,00 | -44,1245          | 22,7135    | -496,2966         | 473,8738          |
| 13  | 4,32 | -20,1888          | 42,7447    | -497,1398         | 299,9325          |
| 14  | 4,64 | -31,2674          | 58,2365    | -180,2735         | 107,4259          |
| 15  | 4,96 | -30,4308          | 58,1533    | -109,8928         | 186,0757          |
| 16  | 5,28 | -17,8119          | 42,7637    | -302,8774         | 503,6640          |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra<br/>imondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40 Relazione tecnica e di calcolo

| - | 📅 March                                                                                                                 | e Umbria S.p.                                                                                                                                                                                                                                                                  | A.                                                                                                                          | Relazion                                                                | e tecnica                           | e di calcol  | 0                 |                                                                                                             |                                           |                                                            |                                                  |                           |
|---|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|--------------------------------------------------|---------------------------|
|   |                                                                                                                         |                                                                                                                                                                                                                                                                                |                                                                                                                             | Opera<br>L073                                                           | Tratto<br>212                       | Settore<br>E | CEE<br>17         | WBS<br>OS0900                                                                                               | ld.<br>doc.<br>REL                        | N. prog.<br>01                                             | Rev.<br>A                                        | Pag. di Pag.<br>74 di 136 |
|   | 17<br>18<br>19<br>20<br>21                                                                                              | 5,60<br>6,00<br>6,40<br>6,80<br>7,20                                                                                                                                                                                                                                           | -44,7063<br>-98,6085<br>-52,4379<br>-3,9399<br>-1,8707                                                                      |                                                                         | 27,5<br>57,6<br>36,2<br>25,1<br>2,5 | 960<br>569   | -33<br>-47<br>-47 | 16,9382<br>14,2651<br>11,2277<br>11,9850<br>15,3986                                                         |                                           | 502,8190<br>342,2983<br>467,3061<br>235,6286<br>95,0314    |                                                  |                           |
|   | COMBINAZI                                                                                                               | ONE n° 4                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                         |                                     |              |                   |                                                                                                             |                                           |                                                            |                                                  |                           |
|   | Component Component Punto d'app Inclinaz. del Inclinazione Incremento Punto d'app Inclinazione Punto d'app Peso terrapi | spinta statica e orizzontale della e verticale della spi<br>licazione della spi<br>la spinta rispetto a<br>linea di rottura in<br>sismico della spin<br>licazione dell'incre<br>linea di rottura in<br>dicazione della spi<br>eno gravante sulla<br>errapieno gravante<br>nuro | ointa statica<br>nta<br>alla normale<br>condizioni s<br>ta<br>emento sism<br>condizioni s<br>nta della fale<br>a fondazione | alla superf<br>statiche<br>nico di spini<br>sismiche<br>da<br>e a monte | ra                                  |              |                   | 196,544' 180,470' 77,8474 X = 2,30 23,33 54,19  181,018: X = 2,30 39,69 X = 2,30  225,1460 X = 1,18 47,2951 | 5                                         | kN] kN] kN] m] "] (kN) [m] [m] [m] [kN] [kN] [m] [kN]      | Y = -3,02<br>Y = -2,36<br>Y = -5,50<br>Y = -2,05 | [m]<br>[m]<br>[m]         |
|   | Inerzia del t                                                                                                           | cale del muro<br>errapieno fondazio<br>cale del terrapieno                                                                                                                                                                                                                     |                                                                                                                             |                                                                         |                                     |              |                   | -23,6476<br>55,2592<br>-27,6296                                                                             | ĺ                                         | [kN]<br>[kN]<br>[kN]                                       |                                                  |                           |
|   | Risultante d<br>Sforzo norm<br>Sforzo tange<br>Eccentricità<br>Lunghezza fi<br>Risultante ir<br>Inclinazione            | ei carichi applicati<br>ei carichi applicati<br>ale sul piano di po<br>enziale sul piano d<br>rispetto al baricer<br>ondazione reagen<br>i fondazione<br>della risultante (r<br>spetto al baricent                                                                             | i in dir. vertio<br>osa della fon<br>i posa della<br>ntro della fon<br>te<br>ispetto alla r                                 | cale<br>dazione<br>fondazione<br>ndazione<br>normale)                   |                                     |              |                   | 449,238;<br>516,112;<br>516,112;<br>449,238;<br>1,32;<br>2,93;<br>684,242;<br>41,04;<br>683,138;            | 6  <br>6  <br>8  <br> <br> <br> <br> <br> | kN]<br>kN]<br>kN]<br>kN]<br>m]<br>m]<br>kN]<br>c°]<br>kNm] |                                                  |                           |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CŒ | WBS    | ld.<br>doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|----|--------|-------------|----------|------|--------------|
| L073  | 212    | Е       | 17 | OS0900 | RFI         | 01       |      | 75 di 136    |

## Sollecitazioni paramento

#### Combinazione n° 4

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Υ    | N       | М        | т                                     |
|-----|------|---------|----------|---------------------------------------|
| 1   | 0,00 | 0,0000  | 0,0000   | 0,0000                                |
|     |      | •       | •        | · · · · · · · · · · · · · · · · · · · |
| 2   | 0,23 | 2,8199  | 1,0616   | 9,6318                                |
| 3   | 0,45 | 5,7633  | 4,2952   | 19,5951                               |
| 4   | 0,68 | 8,8301  | 9,7734   | 29,8840                               |
| 5   | 0,90 | 12,0205 | 17,5678  | 40,4970                               |
| 6   | 1,13 | 15,3343 | 27,7500  | 51,4341                               |
| 7   | 1,35 | 18,7716 | 40,3914  | 62,6952                               |
| 8   | 1,57 | 22,3323 | 55,5635  | 74,2803                               |
| 9   | 1,80 | 26,0166 | 73,3380  | 86,1896                               |
| 10  | 2,02 | 29,8243 | 93,7862  | 98,4229                               |
| 11  | 2,25 | 33,7555 | 116,9797 | 110,9803                              |
| 12  | 2,48 | 37,8101 | 142,9901 | 123,8618                              |
| 13  | 2,70 | 41,9883 | 171,8889 | 137,0673                              |
| 14  | 2,93 | 46,2899 | 203,7475 | 150,5969                              |
| 15  | 3,15 | 50,7150 | 238,6375 | 164,4506                              |
| 16  | 3,38 | 55,2636 | 276,6305 | 178,6283                              |
| 17  | 3,60 | 59,9356 | 317,7979 | 193,1301                              |
| 18  | 3,83 | 64,7312 | 362,2113 | 207,9560                              |
| 19  | 4,05 | 69,6502 | 409,9421 | 223,1060                              |
| 20  | 4,28 | 74,6927 | 461,0619 | 238,5800                              |
| 21  | 4,50 | 79,8586 | 515,6395 | 254,3311                              |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E |    | WBS<br>OS0900 | ld.<br>doc.<br>RFI | N. prog.<br>01 |   | Pag. di Pag.<br>76 di 136 |
|---------------|---------------|--------------|----|---------------|--------------------|----------------|---|---------------------------|
| L073          | 212           | Е            | 17 | OS0900        |                    | 01             | Α | 76 di 13                  |

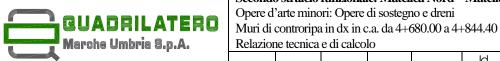
## Inviluppo sollecitazioni piastra di fondazione

## Combinazione n° 4

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 4.60

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra


Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Υ    | $M_{ymin}$ | $M_{ymax}$ | $T_{ymin}$ | $T_{ymax}$ |
|-----|------|------------|------------|------------|------------|
| 1   | 0,00 | -0,4017    | 0,3606     | -7,5052    | 15,9192    |
| 2   | 0,17 | -4,1155    | 6,9426     | -67,0055   | 52,9132    |
| 3   | 0,33 | -6,8286    | 15,4147    | -158,7360  | 105,9686   |
| 4   | 0,50 | -35,2026   | 33,1379    | -199,1397  | 157,7242   |
| 5   | 0,63 | -50,1909   | 53,4911    | 0,0000     | 220,1345   |
| 6   | 0,77 | -30,2717   | 78,8108    | 0,000      | 349,2140   |
| 7   | 0,90 | 0,0000     | 106,5775   | 0,0000     | 627,9614   |
| 8   | 1,03 | 0,0000     | 143,1747   | 0,0000     | 910,4790   |
| 9   | 1,17 | 0,0000     | 241,5027   | 0,0000     | 1246,1689  |
| 10  | 1,30 | 0,0000     | 460,6420   | -60,3539   | 1733,7784  |
| 11  | 1,35 | 0,0000     | 569,7567   | -61,1436   | 1732,5598  |
| 12  | 2,30 | -768,6333  | 0,0000     | -650,2599  | 0,0000     |
| 13  | 2,44 | -676,6326  | 0,0000     | -634,0622  | 0,0000     |
| 14  | 2,58 | -593,5328  | 0,0000     | -603,3769  | 0,0000     |
| 15  | 2,73 | -515,2096  | 0,0000     | -576,9846  | 0,0000     |
| 16  | 2,87 | -440,2491  | 0,0000     | -562,5184  | 0,0000     |
| 17  | 3,01 | -367,4326  | 0,0000     | -558,9326  | 0,0000     |
| 18  | 3,16 | -295,1464  | 0,0000     | -568,9842  | 0,0000     |
| 19  | 3,30 | -235,0894  | 0,0000     | -592,4661  | 0,0000     |
| 20  | 3,43 | -185,9899  | 0,0000     | -486,8560  | 0,0000     |
| 21  | 3,57 | -142,3184  | 0,0000     | -390,7907  | 0,0000     |
| 22  | 3,70 | -104,4829  | 0,0000     | -297,2079  | 0,0000     |
| 23  | 3,83 | -72,8298   | 0,0000     | -229,8538  | 0,0000     |
| 24  | 3,97 | -47,1990   | 0,0000     | -185,6795  | 0,0000     |
| 25  | 4,10 | -27,3726   | 0,0000     | -143,1410  | 16,2621    |
| 26  | 4,27 | -11,5912   | 0,0000     | -94,4479   | 15,9069    |
| 27  | 4,43 | -6,7643    | 2,2739     | -44,5605   | 0,0000     |
| 28  | 4,60 | 0,0000     | 0,4191     | -10,9745   | 2,3333     |

#### Sollecitazioni in direzione X

| Nr. | x    | M <sub>xmin</sub> | $M_{xmax}$ | $T_{xmin}$ | T <sub>xmax</sub> |
|-----|------|-------------------|------------|------------|-------------------|
| 1   | 0,00 | -1,6764           | 2,3865     | -107,2783  | 278,2336          |
| 2   | 0,40 | -3,8913           | 22,9436    | -214,6235  | 430,1378          |
| 3   | 0,80 | -47,7790          | 41,1921    | -422,9718  | 429,3773          |
| 4   | 1,20 | -89,8546          | 65,6629    | -311,8941  | 304,5915          |
| 5   | 1,60 | -40,7337          | 31,2665    | -458,1354  | 459,2779          |
| 6   | 1,92 | -20,2837          | 38,9666    | -458,9839  | 275,8768          |
| 7   | 2,24 | -34,6626          | 52,9906    | -169,6353  | 100,0053          |
| 8   | 2,56 | -35,6122          | 53,0665    | -97,7581   | 164,3492          |
| 9   | 2,88 | -22,9816          | 38,9494    | -273,1916  | 453,0404          |
| 10  | 3,20 | -40,2033          | 25,8344    | -429,4275  | 452,1936          |
| 11  | 3,60 | -87,2940          | 56,2734    | -305,8658  | 305,8658          |
| 12  | 4,00 | -40,2033          | 25,8344    | -452,1936  | 429,4275          |
| 13  | 4,32 | -22,9816          | 38,9494    | -453,0404  | 273,1916          |
| 14  | 4,64 | -35,6122          | 53,0665    | -164,3492  | 97,7581           |
| 15  | 4,96 | -34,6626          | 52,9906    | -100,0053  | 169,6353          |
| 16  | 5,28 | -20,2837          | 38,9666    | -275,8768  | 458,9839          |



Momento rispetto al baricentro della fondazione

## 2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra<br/>imondo Nord

[kNm]

686,3311

| Muri di controripa in dx in c.a Relazione tecnica e di calcolo |                                          |                        |               |               |              |          | 580.00 a 4+          | 844.40             |                |           |                         |
|----------------------------------------------------------------|------------------------------------------|------------------------|---------------|---------------|--------------|----------|----------------------|--------------------|----------------|-----------|-------------------------|
|                                                                |                                          | •                      | Opera<br>L073 | Tratto<br>212 | Settore<br>E | CŒ<br>17 | WBS<br>OS0900        | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag.diPag.<br>77 di 136 |
| 17                                                             | 5,60                                     | -40,7337               |               | 31,2          | 665          | -45      | 9,2779               |                    | 458,1354       |           |                         |
| 18                                                             | 6,00                                     | -89,8546               |               | 65,6          |              |          | 4,5915               |                    | 311,8941       |           |                         |
| 19                                                             | 6,40                                     | -47,7790               |               | 41,1          |              |          | 9,3773               |                    | 422,9718       |           |                         |
| 20                                                             | 6,80                                     | -3,8913                |               | 22,9          |              |          | 0,1378               |                    | 214,6235       |           |                         |
| 21                                                             | 7,20                                     | -1,6764                |               | 2,3           | 865          | -27      | 8,2336               |                    | 107,2783       |           |                         |
|                                                                | <u>NAZIONE n° 5</u><br>nuro favorevole e | Peso terrapieno i      | favorevole    |               |              |          |                      |                    |                |           |                         |
| Valore                                                         | della spinta statio                      | a                      |               |               |              |          | 196,5447             | 7                  | [kN]           |           |                         |
|                                                                | •                                        | della spinta statio    | ca            |               |              |          | 180,470              |                    | [kN]           |           |                         |
| Compo                                                          | nente verticale de                       | ella spinta statica    |               |               |              |          | 77,8474              |                    | [kN]           |           |                         |
|                                                                | d'applicazione del                       | •                      |               |               |              |          | X = 2,30             |                    | [m]            | Y = -3,02 | [m]                     |
|                                                                |                                          | etto alla normale      |               | icie          |              |          | 23,33                |                    | [°]            |           |                         |
| Inclinaz                                                       | zione linea di rotti                     | ura in condizioni s    | tatiche       |               |              |          | 54,19                |                    | [°]            |           |                         |
|                                                                | ento sismico della                       |                        |               |               |              |          | 211,9216             |                    | [kN]           |           |                         |
|                                                                | • •                                      | l'incremento sism      |               | ta            |              |          | X = 2,30             |                    | [m]            | Y = -2,36 | [m]                     |
|                                                                |                                          | ura in condizioni s    |               |               |              |          | 43,32                |                    | [°]            |           |                         |
| Punto                                                          | d'applicazione del                       | la spinta della falo   | da            |               |              |          | X = 2,30             |                    | [m]            | Y = -5,50 | [m]                     |
| Peso te                                                        | errapieno gravanto                       | e sulla fondazione     | a monte       |               |              |          | 225,1466             |                    | [kN]           |           |                         |
|                                                                |                                          | avante sulla fonda     | azione a m    | onte          |              |          | X = 1,18             |                    | [m]            | Y = -2,05 | [m]                     |
|                                                                | del muro                                 |                        |               |               |              |          | 47,2951              |                    | [kN]           |           |                         |
|                                                                | verticale del mur                        |                        |               |               |              |          | 23,6476              |                    | [kN]           |           |                         |
|                                                                | •                                        | ndazione di monte      |               |               |              |          | 55,2592              |                    | [kN]           |           |                         |
| Inerzia                                                        | verticale del terra                      | apieno fondazione      | e di monte    |               |              |          | 27,6296              |                    | [kN]           |           |                         |
| <u>Risulta</u>                                                 |                                          |                        |               |               |              |          |                      | _                  |                |           |                         |
|                                                                |                                          | olicati in dir. orizzo |               |               |              |          | 477,6146             |                    | [kN]           |           |                         |
|                                                                |                                          | olicati in dir. vertic |               |               |              |          | 630,9070             |                    | [kN]           |           |                         |
|                                                                | •                                        | o di posa della fon    |               |               |              |          | 630,9070             |                    | [kN]           |           |                         |
|                                                                |                                          | ano di posa della f    |               | :             |              |          | 477,6146             |                    | [kN]<br>[m]    |           |                         |
|                                                                | ezza fondazione re                       | aricentro della for    | iuazione      |               |              |          | 1,09<br>3,64         |                    | [m]            |           |                         |
| •                                                              | nte in fondazione                        | -                      |               |               |              |          | 791,302 <sup>4</sup> |                    | [iii]<br>[kN]  |           |                         |
|                                                                |                                          | nte (rispetto alla r   | normale)      |               |              |          | 37,13                |                    | [°]            |           |                         |
|                                                                | ac.ia risalta                            | (spected and i         |               |               |              |          | 3.,13                |                    |                |           |                         |



 $Secondo\ stralcio\ funzionale:\ Matelica\ Nord-Matelica\ Sud/Castelraimondo\ Nord$ 

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| L073   212   E   17   OS0900   OCC.   01   A   78 di 136 |  |  | Settore<br>E |  | WBS<br>OS0900 | ld.<br>doc. | N. prog.<br>01 |  | Pag. di Pag.<br>78 di 136 |
|----------------------------------------------------------|--|--|--------------|--|---------------|-------------|----------------|--|---------------------------|
|----------------------------------------------------------|--|--|--------------|--|---------------|-------------|----------------|--|---------------------------|

## Sollecitazioni paramento

#### Combinazione n° 5

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Υ    | N       | М        | т        |
|-----|------|---------|----------|----------|
| 1   | 0,00 | 0,000   | 0,0000   | 0,0000   |
| 2   | 0,23 | 2,8199  | 1,1225   | 10,1731  |
| 3   | 0,45 | 5,7633  | 4,5388   | 20,6777  |
| 4   | 0,68 | 8,8301  | 10,3215  | 31,5079  |
| 5   | 0,90 | 12,0205 | 18,5422  | 42,6622  |
| 6   | 1,13 | 15,3343 | 29,2724  | 54,1405  |
| 7   | 1,35 | 18,7716 | 42,5836  | 65,9429  |
| 8   | 1,57 | 22,3323 | 58,5474  | 78,0694  |
| 9   | 1,80 | 26,0166 | 77,2352  | 90,5199  |
| 10  | 2,02 | 29,8243 | 98,7187  | 103,2945 |
| 11  | 2,25 | 33,7555 | 123,0692 | 116,3932 |
| 12  | 2,48 | 37,8101 | 150,3584 | 129,8160 |
| 13  | 2,70 | 41,9883 | 180,6578 | 143,5628 |
| 14  | 2,93 | 46,2899 | 214,0388 | 157,6337 |
| 15  | 3,15 | 50,7150 | 250,5730 | 172,0287 |
| 16  | 3,38 | 55,2636 | 290,3319 | 186,7477 |
| 17  | 3,60 | 59,9356 | 333,3871 | 201,7908 |
| 18  | 3,83 | 64,7312 | 379,8100 | 217,1580 |
| 19  | 4,05 | 69,6502 | 429,6721 | 232,8492 |
| 20  | 4,28 | 74,6927 | 483,0451 | 248,8645 |
| 21  | 4,50 | 79,8586 | 539,9976 | 265,1569 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E |    | WBS<br>OS0900 |      | N. prog. |     | Pag.diPag.<br>79 di 136 |
|---------------|---------------|--------------|----|---------------|------|----------|-----|-------------------------|
| 20/0          | 212           | _            | 17 | 000700        | REL. | 01       | , , | // di 100               |

## Inviluppo sollecitazioni piastra di fondazione

## Combinazione n° 5

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 4.60

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Υ    | $M_{ymin}$ | $M_{ymax}$ | T <sub>ymin</sub> | $T_{ymax}$ |
|-----|------|------------|------------|-------------------|------------|
| 1   | 0,00 | -0,4465    | 0,3903     | -8,0770           | 17,5357    |
| 2   | 0,17 | -4,4887    | 7,6458     | -73,0626          | 58,4986    |
| 3   | 0,33 | -7,3689    | 17,0484    | -173,3492         | 117,1025   |
| 4   | 0,50 | -38,3389   | 36,6653    | -216,4609         | 174,2845   |
| 5   | 0,63 | -54,6066   | 59,1804    | 0,0000            | 243,1344   |
| 6   | 0,77 | -32,5244   | 87,1877    | 0,000             | 385,3356   |
| 7   | 0,90 | 0,0000     | 117,9217   | 0,0000            | 691,3505   |
| 8   | 1,03 | 0,000      | 158,3866   | 0,0000            | 1001,6578  |
| 9   | 1,17 | 0,0000     | 266,6443   | 0,0000            | 1370,3345  |
| 10  | 1,30 | 0,0000     | 507,5235   | -63,1700          | 1905,7676  |
| 11  | 1,35 | 0,000      | 627,4276   | -63,9456          | 1904,5490  |
| 12  | 2,30 | -714,9904  | 0,0000     | -605,2842         | 0,0000     |
| 13  | 2,44 | -629,4421  | 0,0000     | -589,0716         | 0,0000     |
| 14  | 2,58 | -552,0063  | 0,0000     | -560,1307         | 0,0000     |
| 15  | 2,73 | -479,0692  | 0,0000     | -534,8688         | 0,0000     |
| 16  | 2,87 | -409,3817  | 0,0000     | -520,0127         | 0,0000     |
| 17  | 3,01 | -341,8730  | 0,0000     | -514,7626         | 0,0000     |
| 18  | 3,16 | -275,1287  | 0,0000     | -521,4383         | 0,0000     |
| 19  | 3,30 | -219,4509  | 0,0000     | -540,0114         | 0,0000     |
| 20  | 3,43 | -173,8367  | 0,0000     | -445,4029         | 0,0000     |
| 21  | 3,57 | -133,2470  | 0,0000     | -359,1711         | 0,0000     |
| 22  | 3,70 | -98,0459   | 0,0000     | -275,1806         | 0,0000     |
| 23  | 3,83 | -68,5390   | 0,0000     | -213,6905         | 0,0000     |
| 24  | 3,97 | -44,5872   | 0,0000     | -172,8693         | 0,0000     |
| 25  | 4,10 | -26,0018   | 0,0000     | -133,4791         | 11,0132    |
| 26  | 4,27 | -11,0112   | 0,000      | -88,1458          | 6,0427     |
| 27  | 4,43 | -6,1176    | 1,8126     | -41,7655          | 0,0000     |
| 28  | 4,60 | 0,0000     | 0,4045     | -10,0469          | 2,1829     |

#### Sollecitazioni in direzione X

| Nr. | x    | M <sub>xmin</sub> | $M_{xmax}$ | T <sub>xmin</sub> | T <sub>xmax</sub> |
|-----|------|-------------------|------------|-------------------|-------------------|
| 1   | 0,00 | -1,8707           | 2,5871     | -95,0314          | 305,3986          |
| 2   | 0,40 | -3,9399           | 25,1647    | -235,6286         | 471,9850          |
| 3   | 0,80 | -52,4379          | 36,2569    | -467,3061         | 471,2277          |
| 4   | 1,20 | -98,6085          | 57,6960    | -342,2983         | 334,2651          |
| 5   | 1,60 | -44,7063          | 27,5000    | -502,8190         | 506,9382          |
| 6   | 1,92 | -17,8119          | 42,7637    | -503,6640         | 302,8774          |
| 7   | 2,24 | -30,4308          | 58,1533    | -186,0757         | 109,8928          |
| 8   | 2,56 | -31,2674          | 58,2365    | -107,4259         | 180,2735          |
| 9   | 2,88 | -20,1888          | 42,7447    | -299,9325         | 497,1398          |
| 10  | 3,20 | -44,1245          | 22,7135    | -473,8738         | 496,2966          |
| 11  | 3,60 | -95,7990          | 49,4185    | -335,6824         | 335,6824          |
| 12  | 4,00 | -44,1245          | 22,7135    | -496,2966         | 473,8738          |
| 13  | 4,32 | -20,1888          | 42,7447    | -497,1398         | 299,9325          |
| 14  | 4,64 | -31,2674          | 58,2365    | -180,2735         | 107,4259          |
| 15  | 4,96 | -30,4308          | 58,1533    | -109,8928         | 186,0757          |
| 16  | 5,28 | -17,8119          | 42,7637    | -302,8774         | 503,6640          |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra<br/>imondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

| ■ Me                                                                    | ırche Umbria S                                                                                                                                                                                                                                | 3.p.A.                                                                                                                | Relazion                                              | ne tecnica                          | e di calcol  | lo                |                                                                                         |                    |                                                           |           |                           |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|--------------|-------------------|-----------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------|-----------|---------------------------|
|                                                                         |                                                                                                                                                                                                                                               |                                                                                                                       | Opera<br>L073                                         | Tratto<br>212                       | Settore<br>E | CEE<br>17         | WBS<br>OS0900                                                                           | ld.<br>doc.<br>REL | N. prog.<br>01                                            | Rev.<br>A | Pag. di Pag.<br>80 di 136 |
| 17<br>18<br>19<br>20<br>21                                              | 5,60<br>6,00<br>6,40<br>6,80<br>7,20                                                                                                                                                                                                          | -44,7063<br>-98,6085<br>-52,4379<br>-3,9399<br>-1,8707                                                                |                                                       | 27,5<br>57,6<br>36,2<br>25,1<br>2,5 | 960<br>569   | -33<br>-47<br>-47 | 16,9382<br>4,2651<br>1,2277<br>1,9850<br>15,3986                                        |                    | 502,8190<br>342,2983<br>467,3061<br>235,6286<br>95,0314   |           |                           |
| Valore                                                                  | NAZIONE n° 6<br>della spinta statica                                                                                                                                                                                                          |                                                                                                                       |                                                       |                                     |              |                   | 196,544                                                                                 |                    | [kN]                                                      |           |                           |
| Compo<br>Punto                                                          | onente orizzontale o<br>onente verticale del<br>d'applicazione della<br>z. della spinta rispe                                                                                                                                                 | lla spinta statica<br>a spinta                                                                                        |                                                       | icie                                |              |                   | 180,470<br>77,8474<br>X = 2,30<br>23,33                                                 |                    | [kN]<br>[kN]<br>[m]<br>[°]                                | Y = -3,02 | [m]                       |
|                                                                         | zione linea di rottui<br>d'applicazione della                                                                                                                                                                                                 |                                                                                                                       |                                                       |                                     |              |                   | 54,19<br>X = 2,30                                                                       |                    | [°]<br>[m]                                                | Y = -5,50 | [m]                       |
|                                                                         | errapieno gravante<br>ntro terrapieno gra                                                                                                                                                                                                     |                                                                                                                       |                                                       | onte                                |              |                   | 225,146<br>X = 1,18                                                                     |                    | [kN]<br>[m]                                               | Y = -2,05 | [m]                       |
| Risulta<br>Sforzo<br>Sforzo<br>Eccenti<br>Lunghe<br>Risulta<br>Inclina: | nti<br>nte dei carichi appl<br>nte dei carichi appl<br>normale sul piano o<br>tangenziale sul pian<br>ricità rispetto al ban<br>ezza fondazione rea<br>nte in fondazione<br>zione della risultant<br>nto rispetto al bano<br>rispetto al bano | icati in dir. vertion<br>di posa della fon<br>no di posa della<br>ricentro della fon<br>ngente<br>te (rispetto alla r | cale<br>dazione<br>fondazione<br>ndazione<br>normale) |                                     |              |                   | 180,470<br>495,692<br>495,692<br>180,470<br>0,07<br>4,60<br>527,522<br>20,01<br>32,5838 | 0<br>0<br>5<br>7   | [kN]<br>[kN]<br>[kN]<br>[kN]<br>[m]<br>[m]<br>[kN]<br>[°] |           |                           |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera   Iratto   Settore   CEE   WBS   COC   N. prog.   Rev.   Pag. a.P. | Opera<br>L073 |  |  | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>RE | N. prog.<br>01 |  | Pag. di Pag.<br>81 di 136 |
|--------------------------------------------------------------------------|---------------|--|--|--------------|-----------|---------------|-------------------|----------------|--|---------------------------|
|--------------------------------------------------------------------------|---------------|--|--|--------------|-----------|---------------|-------------------|----------------|--|---------------------------|

## Sollecitazioni paramento

#### Combinazione n° 6

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Y    | N       | M        | т        |
|-----|------|---------|----------|----------|
| 1   | 0,00 | 0,0000  | 0,0000   | 0,0000   |
| 2   | 0,23 | 2,8199  | 0,2590   | 2,4927   |
| 3   | 0,45 | 5,7633  | 1,0803   | 5,2867   |
| 4   | 0,68 | 8,8301  | 2,5298   | 8,3759   |
| 5   | 0,90 | 12,0205 | 4,6721   | 11,7589  |
| 6   | 1,13 | 15,3343 | 7,5719   | 15,4357  |
| 7   | 1,35 | 18,7716 | 11,2941  | 19,4062  |
| 8   | 1,57 | 22,3323 | 15,9032  | 23,6705  |
| 9   | 1,80 | 26,0166 | 21,4639  | 28,2286  |
| 10  | 2,02 | 29,8243 | 28,0411  | 33,0804  |
| 11  | 2,25 | 33,7555 | 35,6993  | 38,2260  |
| 12  | 2,48 | 37,8101 | 44,5033  | 43,6653  |
| 13  | 2,70 | 41,9883 | 54,5178  | 49,3984  |
| 14  | 2,93 | 46,2899 | 65,8074  | 55,4253  |
| 15  | 3,15 | 50,7150 | 78,4369  | 61,7459  |
| 16  | 3,38 | 55,2636 | 92,4710  | 68,3603  |
| 17  | 3,60 | 59,9356 | 107,9744 | 75,2685  |
| 18  | 3,83 | 64,7312 | 125,0118 | 82,4704  |
| 19  | 4,05 | 69,6502 | 143,6478 | 89,9661  |
| 20  | 4,28 | 74,6927 | 163,9472 | 97,7556  |
| 21  | 4,50 | 79,8586 | 185,9719 | 105,7918 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|   | Opera<br>L073 | Tratto<br>212 |  | WBS<br>OS0900 |      | N. prog.<br>01 | Pag. di Pag.<br>82 di 136 |
|---|---------------|---------------|--|---------------|------|----------------|---------------------------|
| ı |               |               |  |               | I KH |                |                           |

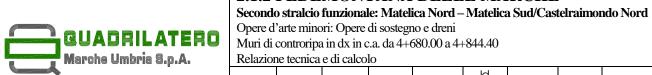
## Inviluppo sollecitazioni piastra di fondazione

## Combinazione n° 6

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 4.60

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra


Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Υ    | $M_{ymin}$ | $M_{ymax}$ | $T_{ymin}$ | $T_{ymax}$ |
|-----|------|------------|------------|------------|------------|
| 1   | 0,00 | -0,1623    | 0,2019     | -4,4110    | 7,2325     |
| 2   | 0,17 | -2,1219    | 3,1855     | -34,6201   | 23,0486    |
| 3   | 0,33 | -3,9422    | 6,6864     | -80,6464   | 46,4711    |
| 4   | 0,50 | -18,4460   | 14,2916    | -106,1073  | 69,2422    |
| 5   | 0,63 | -26,5992   | 23,0937    | 0,0000     | 97,2339    |
| 6   | 0,77 | -18,2360   | 34,0545    | 0,0000     | 156,0991   |
| 7   | 0,90 | 0,0000     | 45,9678    | 0,0000     | 289,2669   |
| 8   | 1,03 | 0,0000     | 61,9009    | 0,0000     | 423,3229   |
| 9   | 1,17 | 0,0000     | 107,1761   | 0,0000     | 582,7774   |
| 10  | 1,30 | 0,0000     | 210,1632   | -45,2844   | 814,8733   |
| 11  | 1,35 | 0,0000     | 261,6324   | -46,1971   | 813,6553   |
| 12  | 2,30 | -204,9944  | 0,0000     | -218,8540  | 0,0000     |
| 13  | 2,44 | -170,2957  | 0,0000     | -203,1448  | 0,0000     |
| 14  | 2,58 | -143,8078  | 0,0000     | -166,1090  | 0,0000     |
| 15  | 2,73 | -121,8934  | 0,0000     | -140,0345  | 0,0000     |
| 16  | 2,87 | -103,2587  | 0,0000     | -121,8960  | 0,0000     |
| 17  | 3,01 | -87,1996   | 0,0000     | -109,3699  | 0,0000     |
| 18  | 3,16 | -74,2978   | 0,0000     | -98,4000   | 0,0000     |
| 19  | 3,30 | -67,4534   | 0,0000     | -88,4647   | 0,0000     |
| 20  | 3,43 | -62,7727   | 0,0000     | -80,5639   | 0,0000     |
| 21  | 3,57 | -56,0223   | 0,0000     | -73,2590   | 0,0000     |
| 22  | 3,70 | -48,1889   | 0,0000     | -68,2694   | 0,0000     |
| 23  | 3,83 | -39,5340   | 0,0000     | -79,1966   | 0,0000     |
| 24  | 3,97 | -29,8551   | 0,0000     | -90,9302   | 0,0000     |
| 25  | 4,10 | -18,2516   | 0,0000     | -105,9563  | 0,0000     |
| 26  | 4,27 | -8,0213    | 0,000      | -68,2159   | 0,0000     |
| 27  | 4,43 | -2,8668    | 0,4435     | -32,9193   | 0,0000     |
| 28  | 4,60 | 0,0000     | 0,3302     | -6,9513    | 0,0000     |
|     |      |            |            |            |            |

#### Sollecitazioni in direzione X

| Nr. | х    | $M_{xmin}$ | $M_{xmax}$ | T <sub>xmin</sub> | T <sub>xmax</sub> |
|-----|------|------------|------------|-------------------|-------------------|
| 1   | 0,00 | -0,6385    | 2,0481     | -8,7421           | 132,9085          |
| 2   | 0,40 | -1,9875    | 11,0766    | -102,3478         | 206,5685          |
| 3   | 0,80 | -22,8869   | 7,1795     | -188,1122         | 205,7663          |
| 4   | 1,20 | -43,0845   | 0,8977     | -149,4489         | 146,0494          |
| 5   | 1,60 | -19,5092   | 7,7882     | -219,3863         | 206,3199          |
| 6   | 1,92 | -1,8236    | 18,6796    | -220,2806         | 131,5680          |
| 7   | 2,24 | 0,0000     | 25,4072    | -81,9285          | 47,1043           |
| 8   | 2,56 | 0,0000     | 25,4440    | -46,0301          | 79,4039           |
| 9   | 2,88 | -1,8176    | 18,6720    | -130,2690         | 217,4392          |
| 10  | 3,20 | -19,2533   | 7,7646     | -193,4238         | 216,5462          |
| 11  | 3,60 | -41,8532   | 0,8949     | -146,5600         | 146,5600          |
| 12  | 4,00 | -19,2533   | 7,7646     | -216,5462         | 193,4238          |
| 13  | 4,32 | -1,8176    | 18,6720    | -217,4392         | 130,2690          |
| 14  | 4,64 | 0,0000     | 25,4440    | -79,4039          | 46,0301           |
| 15  | 4,96 | 0,0000     | 25,4072    | -47,1043          | 81,9285           |
| 16  | 5,28 | -1,8236    | 18,6796    | -131,5680         | 220,2806          |



| <br>March                                                                                                                                                  | e Umbria                                              | 8.p.A.                                                 |               |                    | e di calcol                                                                             |                   | 080.00 a 4+                                               | -844.40            |                                                        |           |                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------|--------------------|-----------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------|--------------------|--------------------------------------------------------|-----------|---------------------------|
| <br>^                                                                                                                                                      |                                                       |                                                        | Opera<br>L073 | Tratto<br>212      | Settore<br>E                                                                            | CEE<br>17         | WBS<br>OS0900                                             | ld.<br>doc.<br>REL | N. prog.<br>01                                         | Rev.<br>A | Pag. di Pag.<br>83 di 136 |
| 17<br>18<br>19<br>20<br>21                                                                                                                                 | 5,60<br>6,00<br>6,40<br>6,80<br>7,20                  | -19,5092<br>-43,0845<br>-22,8869<br>-1,9875<br>-0,6385 | ;<br>)<br>;   | 0,8<br>7,1<br>11,0 | 882<br>977<br>795<br>766<br>481                                                         | -14<br>-20<br>-20 | 6,3199<br>6,0494<br>5,7663<br>6,5685<br>2,9085            |                    | 219,3863<br>149,4489<br>188,1122<br>102,3478<br>8,7421 |           |                           |
| •                                                                                                                                                          | spinta statio                                         | ca<br>e della spinta stati<br>ella spinta statica      | са            |                    |                                                                                         |                   | 196,544<br>180,470<br>77,8474                             | 5                  | [kN]<br>[kN]<br>[kN]                                   |           |                           |
| Punto d'app<br>Inclinaz. dell                                                                                                                              | licazione de<br>a spinta risp                         | •                                                      | •             | icie               |                                                                                         |                   | X = 2,30<br>23,33<br>54,19                                |                    | [m]<br>[°]<br>[°]                                      | Y = -3,02 | [m]                       |
| Punto d'app                                                                                                                                                | licazione de                                          | lla spinta della fal                                   | da            |                    |                                                                                         |                   | X = 2,30                                                  |                    | [m]                                                    | Y = -5,50 | [m]                       |
| •                                                                                                                                                          | -                                                     | e sulla fondazione<br>avante sulla fond                |               | onte               |                                                                                         |                   | 225,146<br>X = 1,18                                       |                    | [kN]<br>[m]                                            | Y = -2,05 | [m]                       |
| Risultanti<br>Risultante de<br>Risultante de<br>Sforzo norm<br>Sforzo tange<br>Eccentricità<br>Lunghezza fo<br>Risultante in<br>Inclinazione<br>Momento ri | cale<br>dazione<br>fondazione<br>ndazione<br>normale) |                                                        |               |                    | 180,470<br>495,692<br>495,692<br>180,470<br>0,07<br>4,60<br>527,522<br>20,01<br>32,5838 | 0<br>0<br>5       | [kN]<br>[kN]<br>[kN]<br>[kN]<br>[m]<br>[m]<br>[kN]<br>[°] |                    |                                                        |           |                           |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| ' | Opera<br>L073 | Tratto<br>212 |  | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>RE | N. prog.<br>01 |  | Pag. di Pag.<br>84 di 136 |  |
|---|---------------|---------------|--|--------------|-----------|---------------|-------------------|----------------|--|---------------------------|--|
|---|---------------|---------------|--|--------------|-----------|---------------|-------------------|----------------|--|---------------------------|--|

## Sollecitazioni paramento

#### Combinazione n° 7

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Y    | N       | M        | т        |
|-----|------|---------|----------|----------|
| 1   | 0,00 | 0,0000  | 0,000    | 0,0000   |
| 2   | 0,23 | 2,8199  | 0,2590   | 2,4927   |
| 3   | 0,45 | 5,7633  | 1,0803   | 5,2867   |
| 4   | 0,68 | 8,8301  | 2,5298   | 8,3759   |
| 5   | 0,90 | 12,0205 | 4,6721   | 11,7589  |
| 6   | 1,13 | 15,3343 | 7,5719   | 15,4357  |
| 7   | 1,35 | 18,7716 | 11,2941  | 19,4062  |
| 8   | 1,57 | 22,3323 | 15,9032  | 23,6705  |
| 9   | 1,80 | 26,0166 | 21,4639  | 28,2286  |
| 10  | 2,02 | 29,8243 | 28,0411  | 33,0804  |
| 11  | 2,25 | 33,7555 | 35,6993  | 38,2260  |
| 12  | 2,48 | 37,8101 | 44,5033  | 43,6653  |
| 13  | 2,70 | 41,9883 | 54,5178  | 49,3984  |
| 14  | 2,93 | 46,2899 | 65,8074  | 55,4253  |
| 15  | 3,15 | 50,7150 | 78,4369  | 61,7459  |
| 16  | 3,38 | 55,2636 | 92,4710  | 68,3603  |
| 17  | 3,60 | 59,9356 | 107,9744 | 75,2685  |
| 18  | 3,83 | 64,7312 | 125,0118 | 82,4704  |
| 19  | 4,05 | 69,6502 | 143,6478 | 89,9661  |
| 20  | 4,28 | 74,6927 | 163,9472 | 97,7556  |
| 21  | 4,50 | 79,8586 | 185,9719 | 105,7918 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera Tratto Settore CE WBS doc. N | N.prog. Rev. Pag.diPa<br>01 A 85 di 13 |  |  |  |  |  |
|------------------------------------|----------------------------------------|--|--|--|--|--|
|------------------------------------|----------------------------------------|--|--|--|--|--|

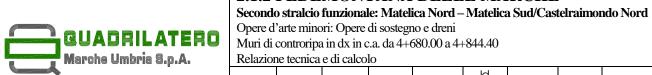
## Inviluppo sollecitazioni piastra di fondazione

## Combinazione n° 7

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 4.60

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra


Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Υ    | $M_{ymin}$ | $M_{ymax}$ | $T_{ymin}$ | $T_{ymax}$ |
|-----|------|------------|------------|------------|------------|
| 1   | 0,00 | -0,1623    | 0,2019     | -4,4110    | 7,2325     |
| 2   | 0,17 | -2,1219    | 3,1855     | -34,6201   | 23,0486    |
| 3   | 0,33 | -3,9422    | 6,6864     | -80,6464   | 46,4711    |
| 4   | 0,50 | -18,4460   | 14,2916    | -106,1073  | 69,2422    |
| 5   | 0,63 | -26,5992   | 23,0937    | 0,0000     | 97,2339    |
| 6   | 0,77 | -18,2360   | 34,0545    | 0,0000     | 156,0991   |
| 7   | 0,90 | 0,0000     | 45,9678    | 0,0000     | 289,2669   |
| 8   | 1,03 | 0,0000     | 61,9009    | 0,0000     | 423,3229   |
| 9   | 1,17 | 0,0000     | 107,1761   | 0,0000     | 582,7774   |
| 10  | 1,30 | 0,0000     | 210,1632   | -45,2844   | 814,8733   |
| 11  | 1,35 | 0,0000     | 261,6324   | -46,1971   | 813,6553   |
| 12  | 2,30 | -204,9944  | 0,000      | -218,8540  | 0,0000     |
| 13  | 2,44 | -170,2957  | 0,0000     | -203,1448  | 0,0000     |
| 14  | 2,58 | -143,8078  | 0,0000     | -166,1090  | 0,0000     |
| 15  | 2,73 | -121,8934  | 0,0000     | -140,0345  | 0,0000     |
| 16  | 2,87 | -103,2587  | 0,0000     | -121,8960  | 0,0000     |
| 17  | 3,01 | -87,1996   | 0,0000     | -109,3699  | 0,0000     |
| 18  | 3,16 | -74,2978   | 0,0000     | -98,4000   | 0,0000     |
| 19  | 3,30 | -67,4534   | 0,0000     | -88,4647   | 0,0000     |
| 20  | 3,43 | -62,7727   | 0,0000     | -80,5639   | 0,0000     |
| 21  | 3,57 | -56,0223   | 0,0000     | -73,2590   | 0,0000     |
| 22  | 3,70 | -48,1889   | 0,0000     | -68,2694   | 0,0000     |
| 23  | 3,83 | -39,5340   | 0,0000     | -79,1966   | 0,0000     |
| 24  | 3,97 | -29,8551   | 0,0000     | -90,9302   | 0,0000     |
| 25  | 4,10 | -18,2516   | 0,0000     | -105,9563  | 0,0000     |
| 26  | 4,27 | -8,0213    | 0,0000     | -68,2159   | 0,0000     |
| 27  | 4,43 | -2,8668    | 0,4435     | -32,9193   | 0,0000     |
| 28  | 4,60 | 0,0000     | 0,3302     | -6,9513    | 0,0000     |

#### Sollecitazioni in direzione X

| Nr. | x    | $M_{xmin}$ | $M_{xmax}$ | T <sub>xmin</sub> | T <sub>xmax</sub> |
|-----|------|------------|------------|-------------------|-------------------|
| 1   | 0,00 | -0,6385    | 2,0481     | -8,7421           | 132,9085          |
| 2   | 0,40 | -1,9875    | 11,0766    | -102,3478         | 206,5685          |
| 3   | 0,80 | -22,8869   | 7,1795     | -188,1122         | 205,7663          |
| 4   | 1,20 | -43,0845   | 0,8977     | -149,4489         | 146,0494          |
| 5   | 1,60 | -19,5092   | 7,7882     | -219,3863         | 206,3199          |
| 6   | 1,92 | -1,8236    | 18,6796    | -220,2806         | 131,5680          |
| 7   | 2,24 | 0,0000     | 25,4072    | -81,9285          | 47,1043           |
| 8   | 2,56 | 0,0000     | 25,4440    | -46,0301          | 79,4039           |
| 9   | 2,88 | -1,8176    | 18,6720    | -130,2690         | 217,4392          |
| 10  | 3,20 | -19,2533   | 7,7646     | -193,4238         | 216,5462          |
| 11  | 3,60 | -41,8532   | 0,8949     | -146,5600         | 146,5600          |
| 12  | 4,00 | -19,2533   | 7,7646     | -216,5462         | 193,4238          |
| 13  | 4,32 | -1,8176    | 18,6720    | -217,4392         | 130,2690          |
| 14  | 4,64 | 0,0000     | 25,4440    | -79,4039          | 46,0301           |
| 15  | 4,96 | 0,0000     | 25,4072    | -47,1043          | 81,9285           |
| 16  | 5,28 | -1,8236    | 18,6796    | -131,5680         | 220,2806          |



| Mai                                                                                                                                                                                                                                               | Marche Umbria 8.p.A. Relazione tecnica e di calcolo                                                                                                                     |                                                                                                                                                                         |                                                       |                    |                                 |                   |                                                                                         |                    |                                                           |                        |                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------|---------------------------------|-------------------|-----------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------|------------------------|---------------------------|
|                                                                                                                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                         | Opera<br>L073                                         | Tratto<br>212      | Settore<br>E                    | CEE<br>17         | WBS<br>OSO900                                                                           | ld.<br>doc.<br>REL | N. prog.<br>01                                            | Rev.<br>A              | Pag. di Pag.<br>86 di 136 |
| 17<br>18<br>19<br>20<br>21                                                                                                                                                                                                                        | 5,60<br>6,00<br>6,40<br>6,80<br>7,20                                                                                                                                    | -19,5092<br>-43,0845<br>-22,8869<br>-1,9875<br>-0,6385                                                                                                                  | ;<br>)<br>;                                           | 0,8<br>7,1<br>11,0 | 882<br>977<br>795<br>766<br>481 | -14<br>-20<br>-20 | 06,3199<br>16,0494<br>15,7663<br>16,5685<br>12,9085                                     |                    | 219,3863<br>149,4489<br>188,1122<br>102,3478<br>8,7421    |                        |                           |
| Valore d                                                                                                                                                                                                                                          | NAZIONE n° 8<br>della spinta static<br>nente orizzontale                                                                                                                |                                                                                                                                                                         | ca                                                    |                    |                                 |                   | 196,544<br>180,470                                                                      |                    | [kN]<br>[kN]                                              |                        |                           |
| Componente orizzontale della spinta statica<br>Componente verticale della spinta statica<br>Punto d'applicazione della spinta<br>Inclinaz. della spinta rispetto alla normale alla superf<br>Inclinazione linea di rottura in condizioni statiche |                                                                                                                                                                         |                                                                                                                                                                         |                                                       | icie               |                                 |                   | 77,8474<br>X = 2,30<br>23,33<br>54,19                                                   |                    | [kN]<br>[m]<br>[°]                                        | Y = -3,02              | [m]                       |
| Peso ter                                                                                                                                                                                                                                          | rapieno gravante                                                                                                                                                        | la spinta della fal<br>e sulla fondazione<br>avante sulla fond                                                                                                          | a monte                                               | onte               |                                 |                   | X = 2,30<br>225,146<br>X = 1,18                                                         | 6                  | [m]<br>[kN]<br>[m]                                        | Y = -5,50<br>Y = -2,05 | [m]<br>[m]                |
| Risultan<br>Sforzo n<br>Sforzo ta<br>Eccentri<br>Lunghez<br>Risultan<br>Inclinazi                                                                                                                                                                 | te dei carichi app<br>te dei carichi app<br>ormale sul piano<br>angenziale sul pia<br>cità rispetto al ba<br>za fondazione re<br>te in fondazione<br>one della risultar | olicati in dir. orizz<br>olicati in dir. verti<br>di posa della fon<br>ano di posa della<br>aricentro della for<br>agente<br>nte (rispetto alla i<br>icentro della fond | cale<br>dazione<br>fondazione<br>ndazione<br>normale) |                    |                                 |                   | 180,470<br>495,692<br>495,692<br>180,470<br>0,07<br>4,60<br>527,522<br>20,01<br>32,5838 | 0<br>0<br>5<br>7   | [kN]<br>[kN]<br>[kN]<br>[kN]<br>[m]<br>[m]<br>[kN]<br>[°] |                        |                           |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera | Tratto | Settore |    |        | ld.<br>doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|----|--------|-------------|----------|------|--------------|
| L073  | 212    | Е       | 17 | OS0900 | RFI         | 01       | Α    | 87 di 136    |

## Sollecitazioni paramento

#### Combinazione n° 8

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Y    | N       | M        | т        |
|-----|------|---------|----------|----------|
| 1   | 0,00 | 0,000   | 0,0000   | 0,0000   |
| 2   | 0,23 | 2,8199  | 0,2590   | 2,4927   |
| 3   | 0,45 | 5,7633  | 1,0803   | 5,2867   |
| 4   | 0,68 | 8,8301  | 2,5298   | 8,3759   |
| 5   | 0,90 | 12,0205 | 4,6721   | 11,7589  |
| 6   | 1,13 | 15,3343 | 7,5719   | 15,4357  |
| 7   | 1,35 | 18,7716 | 11,2941  | 19,4062  |
| 8   | 1,57 | 22,3323 | 15,9032  | 23,6705  |
| 9   | 1,80 | 26,0166 | 21,4639  | 28,2286  |
| 10  | 2,02 | 29,8243 | 28,0411  | 33,0804  |
| 11  | 2,25 | 33,7555 | 35,6993  | 38,2260  |
| 12  | 2,48 | 37,8101 | 44,5033  | 43,6653  |
| 13  | 2,70 | 41,9883 | 54,5178  | 49,3984  |
| 14  | 2,93 | 46,2899 | 65,8074  | 55,4253  |
| 15  | 3,15 | 50,7150 | 78,4369  | 61,7459  |
| 16  | 3,38 | 55,2636 | 92,4710  | 68,3603  |
| 17  | 3,60 | 59,9356 | 107,9744 | 75,2685  |
| 18  | 3,83 | 64,7312 | 125,0118 | 82,4704  |
| 19  | 4,05 | 69,6502 | 143,6478 | 89,9661  |
| 20  | 4,28 | 74,6927 | 163,9472 | 97,7556  |
| 21  | 4,50 | 79,8586 | 185,9719 | 105,7918 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| L073   212   E   17   OS0900   OCC.   01   A   88 di 136 | Opera<br>L073 | Tratto<br>212 | Settore<br>E |  | WBS<br>OS0900 | ld.<br>doc. | N. prog.<br>01 |  | Pag. di Pag.<br>88 di 136 |
|----------------------------------------------------------|---------------|---------------|--------------|--|---------------|-------------|----------------|--|---------------------------|
|----------------------------------------------------------|---------------|---------------|--------------|--|---------------|-------------|----------------|--|---------------------------|

## Inviluppo sollecitazioni piastra di fondazione

## Combinazione n° 8

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 4.60

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Υ    | $M_{ymin}$ | $M_{ymax}$ | $T_{ymin}$ | $T_{ymax}$ |
|-----|------|------------|------------|------------|------------|
| 1   | 0,00 | -0,1623    | 0,2019     | -4,4110    | 7,2325     |
| 2   | 0,17 | -2,1219    | 3,1855     | -34,6201   | 23,0486    |
| 3   | 0,33 | -3,9422    | 6,6864     | -80,6464   | 46,4711    |
| 4   | 0,50 | -18,4460   | 14,2916    | -106,1073  | 69,2422    |
| 5   | 0,63 | -26,5992   | 23,0937    | 0,0000     | 97,2339    |
| 6   | 0,77 | -18,2360   | 34,0545    | 0,0000     | 156,0991   |
| 7   | 0,90 | 0,0000     | 45,9678    | 0,0000     | 289,2669   |
| 8   | 1,03 | 0,0000     | 61,9009    | 0,0000     | 423,3229   |
| 9   | 1,17 | 0,0000     | 107,1761   | 0,0000     | 582,7774   |
| 10  | 1,30 | 0,0000     | 210,1632   | -45,2844   | 814,8733   |
| 11  | 1,35 | 0,0000     | 261,6324   | -46,1971   | 813,6553   |
| 12  | 2,30 | -204,9944  | 0,0000     | -218,8540  | 0,0000     |
| 13  | 2,44 | -170,2957  | 0,0000     | -203,1448  | 0,0000     |
| 14  | 2,58 | -143,8078  | 0,0000     | -166,1090  | 0,0000     |
| 15  | 2,73 | -121,8934  | 0,0000     | -140,0345  | 0,0000     |
| 16  | 2,87 | -103,2587  | 0,0000     | -121,8960  | 0,0000     |
| 17  | 3,01 | -87,1996   | 0,0000     | -109,3699  | 0,0000     |
| 18  | 3,16 | -74,2978   | 0,0000     | -98,4000   | 0,0000     |
| 19  | 3,30 | -67,4534   | 0,0000     | -88,4647   | 0,0000     |
| 20  | 3,43 | -62,7727   | 0,0000     | -80,5639   | 0,0000     |
| 21  | 3,57 | -56,0223   | 0,0000     | -73,2590   | 0,0000     |
| 22  | 3,70 | -48,1889   | 0,0000     | -68,2694   | 0,0000     |
| 23  | 3,83 | -39,5340   | 0,0000     | -79,1966   | 0,0000     |
| 24  | 3,97 | -29,8551   | 0,0000     | -90,9302   | 0,0000     |
| 25  | 4,10 | -18,2516   | 0,0000     | -105,9563  | 0,0000     |
| 26  | 4,27 | -8,0213    | 0,0000     | -68,2159   | 0,0000     |
| 27  | 4,43 | -2,8668    | 0,4435     | -32,9193   | 0,0000     |
| 28  | 4,60 | 0,0000     | 0,3302     | -6,9513    | 0,0000     |

#### Sollecitazioni in direzione X

| Nr. | x    | M <sub>xmin</sub> | $M_{xmax}$ | T <sub>xmin</sub> | T <sub>xmax</sub> |
|-----|------|-------------------|------------|-------------------|-------------------|
| 1   | 0,00 | -0,6385           | 2,0481     | -8,7421           | 132,9085          |
| 2   | 0,40 | -1,9875           | 11,0766    | -102,3478         | 206,5685          |
| 3   | 0,80 | -22,8869          | 7,1795     | -188,1122         | 205,7663          |
| 4   | 1,20 | -43,0845          | 0,8977     | -149,4489         | 146,0494          |
| 5   | 1,60 | -19,5092          | 7,7882     | -219,3863         | 206,3199          |
| 6   | 1,92 | -1,8236           | 18,6796    | -220,2806         | 131,5680          |
| 7   | 2,24 | 0,0000            | 25,4072    | -81,9285          | 47,1043           |
| 8   | 2,56 | 0,0000            | 25,4440    | -46,0301          | 79,4039           |
| 9   | 2,88 | -1,8176           | 18,6720    | -130,2690         | 217,4392          |
| 10  | 3,20 | -19,2533          | 7,7646     | -193,4238         | 216,5462          |
| 11  | 3,60 | -41,8532          | 0,8949     | -146,5600         | 146,5600          |
| 12  | 4,00 | -19,2533          | 7,7646     | -216,5462         | 193,4238          |
| 13  | 4,32 | -1,8176           | 18,6720    | -217,4392         | 130,2690          |
| 14  | 4,64 | 0,0000            | 25,4440    | -79,4039          | 46,0301           |
| 15  | 4,96 | 0,0000            | 25,4072    | -47,1043          | 81,9285           |
| 16  | 5,28 | -1,8236           | 18,6796    | -131,5680         | 220,2806          |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra<br/>imondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40 Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 |  | Pag.diPag.<br>89 di 136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|--|-------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|--|-------------------------|

| 17 | 5,60 | -19,5092 | 7,7882  | -206,3199 | 219,3863 |
|----|------|----------|---------|-----------|----------|
| 18 | 6,00 | -43,0845 | 0,8977  | -146,0494 | 149,4489 |
| 19 | 6,40 | -22,8869 | 7,1795  | -205,7663 | 188,1122 |
| 20 | 6,80 | -1,9875  | 11,0766 | -206,5685 | 102,3478 |
| 21 | 7,20 | -0,6385  | 2,0481  | -132,9085 | 8,7421   |



Mmax

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Mmin

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>F |    | WBS<br>OS0900 |     | N. prog. |     | Pag.diPag.<br>90 di 136 |
|---------------|---------------|--------------|----|---------------|-----|----------|-----|-------------------------|
| 20/0          | 212           | _            | 17 | 000700        | REL | 01       | / \ | 70 di 100               |

Tmin

Tmax

## Inviluppo Sollecitazioni paramento

Nmin

79,8586

21

4,50

79,8586

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kNm] Sforzo normale positivo di compressione, espresso in [kN] Taglio positivo se diretto da monte verso valle, espresso in [kN]

Nmax

#### Inviluppo combinazioni SLU

Nr.

|                                                              | INITITI                                                                                                                                                         | IVIIIAA                                                                                                                                                                                                                                                                                                                                                                                             | IVIIIIIII                                                                                         | IVIIIIAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IIIIax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0,00                                                         | 0,0000                                                                                                                                                          | 0,0000                                                                                                                                                                                                                                                                                                                                                                                              | 0,0000                                                                                            | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0,23                                                         | 2,8199                                                                                                                                                          | 2,8199                                                                                                                                                                                                                                                                                                                                                                                              | 0,3414                                                                                            | 1,1225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,2405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,1731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0,45                                                         | 5,7633                                                                                                                                                          | 5,7633                                                                                                                                                                                                                                                                                                                                                                                              | 1,4236                                                                                            | 4,5388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,8727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20,6777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0,68                                                         | 8,8301                                                                                                                                                          | 8,8301                                                                                                                                                                                                                                                                                                                                                                                              | 3,3325                                                                                            | 10,3215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,8887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31,5079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0,90                                                         | 12,0205                                                                                                                                                         | 12,0205                                                                                                                                                                                                                                                                                                                                                                                             | 6,1527                                                                                            | 18,5422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15,2866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42,6622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1,13                                                         | 15,3343                                                                                                                                                         | 15,3343                                                                                                                                                                                                                                                                                                                                                                                             | 9,9688                                                                                            | 29,2724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20,0664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54,1405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1,35                                                         | 18,7716                                                                                                                                                         | 18,7716                                                                                                                                                                                                                                                                                                                                                                                             | 14,8652                                                                                           | 42,5836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25,2281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 65,9429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1,57                                                         | 22,3323                                                                                                                                                         | 22,3323                                                                                                                                                                                                                                                                                                                                                                                             | 20,9265                                                                                           | 58,5474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30,7717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78,0694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1,80                                                         | 26,0166                                                                                                                                                         | 26,0166                                                                                                                                                                                                                                                                                                                                                                                             | 28,2372                                                                                           | 77,2352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36,6971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90,5199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2,02                                                         | 29,8243                                                                                                                                                         | 29,8243                                                                                                                                                                                                                                                                                                                                                                                             | 36,8818                                                                                           | 98,7187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43,0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103,2945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2,25                                                         | 33,7555                                                                                                                                                         | 33,7555                                                                                                                                                                                                                                                                                                                                                                                             | 46,9450                                                                                           | 123,0692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49,6937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116,3932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2,48                                                         | 37,8101                                                                                                                                                         | 37,8101                                                                                                                                                                                                                                                                                                                                                                                             | 58,5112                                                                                           | 150,3584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56,7649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 129,8160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2,70                                                         | 41,9883                                                                                                                                                         | 41,9883                                                                                                                                                                                                                                                                                                                                                                                             | 71,6649                                                                                           | 180,6578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64,2179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 143,5628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2,93                                                         | 46,2899                                                                                                                                                         | 46,2899                                                                                                                                                                                                                                                                                                                                                                                             | 86,4907                                                                                           | 214,0388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72,0529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 157,6337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3,15                                                         | 50,7150                                                                                                                                                         | 50,7150                                                                                                                                                                                                                                                                                                                                                                                             | 103,0731                                                                                          | 250,5730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80,2697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 172,0287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3,38                                                         | 55,2636                                                                                                                                                         | 55,2636                                                                                                                                                                                                                                                                                                                                                                                             | 121,4966                                                                                          | 290,3319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88,8684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 186,7477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3,60                                                         | 59,9356                                                                                                                                                         | 59,9356                                                                                                                                                                                                                                                                                                                                                                                             | 141,8458                                                                                          | 333,3871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 97,8490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 201,7908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3,83                                                         | 64,7312                                                                                                                                                         | 64,7312                                                                                                                                                                                                                                                                                                                                                                                             | 164,2052                                                                                          | 379,8100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107,2116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 217,1580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4,05                                                         | 69,6502                                                                                                                                                         | 69,6502                                                                                                                                                                                                                                                                                                                                                                                             | 188,6593                                                                                          | 429,6721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116,9560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 232,8492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4,28                                                         | 74,6927                                                                                                                                                         | 74,6927                                                                                                                                                                                                                                                                                                                                                                                             | 215,2927                                                                                          | 483,0451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 127,0823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 248,8645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4,50                                                         | 79,8586                                                                                                                                                         | 79,8586                                                                                                                                                                                                                                                                                                                                                                                             | 244,1862                                                                                          | 539,9976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 137,5293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 265,1569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                              |                                                                                                                                                                 | None                                                                                                                                                                                                                                                                                                                                                                                                | N. Grandian                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>T</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              | •                                                                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                              | •                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,4927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                              | •                                                                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5,2867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                                                            |                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8,3759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11,7589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15,4357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19,4062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                              | •                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23,6705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -                                                            | 26,0166                                                                                                                                                         | 26,0166                                                                                                                                                                                                                                                                                                                                                                                             | 71.4639                                                                                           | 71 4639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /X / /Xh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28,2286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                              |                                                                                                                                                                 | 20.0242                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2,02                                                         | 29,8243                                                                                                                                                         | 29,8243                                                                                                                                                                                                                                                                                                                                                                                             | 28,0411                                                                                           | 28,0411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33,0804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33,0804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2,25                                                         | 33,7555                                                                                                                                                         | 33,7555                                                                                                                                                                                                                                                                                                                                                                                             | 28,0411<br>35,6993                                                                                | 28,0411<br>35,6993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33,0804<br>38,2260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33,0804<br>38,2260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2,25<br>2,48                                                 | 33,7555<br>37,8101                                                                                                                                              | 33,7555<br>37,8101                                                                                                                                                                                                                                                                                                                                                                                  | 28,0411<br>35,6993<br>44,5033                                                                     | 28,0411<br>35,6993<br>44,5033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33,0804<br>38,2260<br>43,6653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33,0804<br>38,2260<br>43,6653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2,25<br>2,48<br>2,70                                         | 33,7555<br>37,8101<br>41,9883                                                                                                                                   | 33,7555<br>37,8101<br>41,9883                                                                                                                                                                                                                                                                                                                                                                       | 28,0411<br>35,6993<br>44,5033<br>54,5178                                                          | 28,0411<br>35,6993<br>44,5033<br>54,5178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33,0804<br>38,2260<br>43,6653<br>49,3984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33,0804<br>38,2260<br>43,6653<br>49,3984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2,25<br>2,48<br>2,70<br>2,93                                 | 33,7555<br>37,8101<br>41,9883<br>46,2899                                                                                                                        | 33,7555<br>37,8101<br>41,9883<br>46,2899                                                                                                                                                                                                                                                                                                                                                            | 28,0411<br>35,6993<br>44,5033<br>54,5178<br>65,8074                                               | 28,0411<br>35,6993<br>44,5033<br>54,5178<br>65,8074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33,0804<br>38,2260<br>43,6653<br>49,3984<br>55,4253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33,0804<br>38,2260<br>43,6653<br>49,3984<br>55,4253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2,25<br>2,48<br>2,70<br>2,93<br>3,15                         | 33,7555<br>37,8101<br>41,9883<br>46,2899<br>50,7150                                                                                                             | 33,7555<br>37,8101<br>41,9883<br>46,2899<br>50,7150                                                                                                                                                                                                                                                                                                                                                 | 28,0411<br>35,6993<br>44,5033<br>54,5178<br>65,8074<br>78,4369                                    | 28,0411<br>35,6993<br>44,5033<br>54,5178<br>65,8074<br>78,4369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33,0804<br>38,2260<br>43,6653<br>49,3984<br>55,4253<br>61,7459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33,0804<br>38,2260<br>43,6653<br>49,3984<br>55,4253<br>61,7459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2,25<br>2,48<br>2,70<br>2,93<br>3,15<br>3,38                 | 33,7555<br>37,8101<br>41,9883<br>46,2899<br>50,7150<br>55,2636                                                                                                  | 33,7555<br>37,8101<br>41,9883<br>46,2899<br>50,7150<br>55,2636                                                                                                                                                                                                                                                                                                                                      | 28,0411<br>35,6993<br>44,5033<br>54,5178<br>65,8074<br>78,4369<br>92,4710                         | 28,0411<br>35,6993<br>44,5033<br>54,5178<br>65,8074<br>78,4369<br>92,4710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33,0804<br>38,2260<br>43,6653<br>49,3984<br>55,4253<br>61,7459<br>68,3603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33,0804<br>38,2260<br>43,6653<br>49,3984<br>55,4253<br>61,7459<br>68,3603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2,25<br>2,48<br>2,70<br>2,93<br>3,15<br>3,38<br>3,60         | 33,7555<br>37,8101<br>41,9883<br>46,2899<br>50,7150<br>55,2636<br>59,9356                                                                                       | 33,7555<br>37,8101<br>41,9883<br>46,2899<br>50,7150<br>55,2636<br>59,9356                                                                                                                                                                                                                                                                                                                           | 28,0411<br>35,6993<br>44,5033<br>54,5178<br>65,8074<br>78,4369<br>92,4710<br>107,9744             | 28,0411<br>35,6993<br>44,5033<br>54,5178<br>65,8074<br>78,4369<br>92,4710<br>107,9744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33,0804<br>38,2260<br>43,6653<br>49,3984<br>55,4253<br>61,7459<br>68,3603<br>75,2685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33,0804<br>38,2260<br>43,6653<br>49,3984<br>55,4253<br>61,7459<br>68,3603<br>75,2685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2,25<br>2,48<br>2,70<br>2,93<br>3,15<br>3,38<br>3,60<br>3,83 | 33,7555<br>37,8101<br>41,9883<br>46,2899<br>50,7150<br>55,2636<br>59,9356<br>64,7312                                                                            | 33,7555<br>37,8101<br>41,9883<br>46,2899<br>50,7150<br>55,2636<br>59,9356<br>64,7312                                                                                                                                                                                                                                                                                                                | 28,0411<br>35,6993<br>44,5033<br>54,5178<br>65,8074<br>78,4369<br>92,4710<br>107,9744<br>125,0118 | 28,0411<br>35,6993<br>44,5033<br>54,5178<br>65,8074<br>78,4369<br>92,4710<br>107,9744<br>125,0118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33,0804<br>38,2260<br>43,6653<br>49,3984<br>55,4253<br>61,7459<br>68,3603<br>75,2685<br>82,4704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33,0804<br>38,2260<br>43,6653<br>49,3984<br>55,4253<br>61,7459<br>68,3603<br>75,2685<br>82,4704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,25<br>2,48<br>2,70<br>2,93<br>3,15<br>3,38<br>3,60         | 33,7555<br>37,8101<br>41,9883<br>46,2899<br>50,7150<br>55,2636<br>59,9356                                                                                       | 33,7555<br>37,8101<br>41,9883<br>46,2899<br>50,7150<br>55,2636<br>59,9356                                                                                                                                                                                                                                                                                                                           | 28,0411<br>35,6993<br>44,5033<br>54,5178<br>65,8074<br>78,4369<br>92,4710<br>107,9744             | 28,0411<br>35,6993<br>44,5033<br>54,5178<br>65,8074<br>78,4369<br>92,4710<br>107,9744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33,0804<br>38,2260<br>43,6653<br>49,3984<br>55,4253<br>61,7459<br>68,3603<br>75,2685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33,0804<br>38,2260<br>43,6653<br>49,3984<br>55,4253<br>61,7459<br>68,3603<br>75,2685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              | 0,23 0,45 0,68 0,90 1,13 1,35 1,57 1,80 2,02 2,25 2,48 2,70 2,93 3,15 3,38 3,60 3,83 4,05 4,28 4,50  ppo combin  Y 0,00 0,23 0,45 0,68 0,90 1,13 1,35 1,57 1,80 | 0,23 2,8199 0,45 5,7633 0,68 8,8301 0,90 12,0205 1,13 15,3343 1,35 18,7716 1,57 22,3323 1,80 26,0166 2,02 29,8243 2,25 33,7555 2,48 37,8101 2,70 41,9883 2,93 46,2899 3,15 50,7150 3,38 55,2636 3,60 59,9356 3,83 64,7312 4,05 69,6502 4,28 74,6927 4,50 79,8586  POPO COMBINAZIONI SLE  Y Nmin 0,00 0,0000 0,23 2,8199 0,45 5,7633 0,68 8,8301 0,90 12,0205 1,13 15,3343 1,35 18,7716 1,57 22,3323 | 0,23                                                                                              | 0,00 0,000 0,0000 0,0000 0,0000 0,23 2,8199 2,8199 0,3414 0,45 5,7633 5,7633 1,4236 0,68 8,8301 8,8301 3,3325 0,90 12,0205 12,0205 6,1527 1,13 15,3343 15,3343 9,9688 1,35 18,7716 18,7716 14,8652 1,57 22,3323 22,3323 20,9265 1,80 26,0166 26,0166 28,2372 2,02 29,8243 29,8243 36,8818 2,25 33,7555 33,7555 46,9450 2,48 37,8101 37,8101 58,5112 2,70 41,9883 41,9883 71,6649 2,93 46,2899 46,2899 86,4907 3,15 50,7150 50,7150 103,0731 3,38 55,2636 55,2636 121,4966 3,60 59,9356 59,9356 141,8458 3,83 64,7312 64,7312 164,2052 4,05 69,6502 69,6502 188,6593 4,28 74,6927 74,6927 215,2927 4,50 79,8586 79,8586 244,1862   POPO COMBINAZIONI SLE  Y Nmin Nmax Mmin 0,00 0,0000 0,0000 0,0000 0,023 2,8199 2,8199 0,2590 0,45 5,7633 5,7633 1,0803 0,68 8,8301 8,8301 2,5298 0,90 12,0205 12,0205 4,6721 1,13 15,3343 15,3343 7,5719 1,35 18,7716 18,7716 11,2941 1,57 22,3323 22,3323 15,9032 | 0,00 0,000 0,0000 0,0000 0,0000 0,0000 0,23 2,8199 2,8199 0,3414 1,1225 0,45 5,7633 5,7633 1,4236 4,5388 0,68 8,8301 8,8301 3,3325 10,3215 0,90 12,0205 12,0205 6,1527 18,5422 1,13 15,3343 15,3343 9,9688 29,2724 1,35 18,7716 18,7716 14,8652 42,5836 1,57 22,3323 22,3323 20,9265 58,5474 1,80 26,0166 26,0166 28,2372 77,2352 2,02 29,8243 29,8243 36,8818 98,7187 2,25 33,7555 46,9450 123,0692 2,48 37,8101 37,8101 58,5112 150,3584 2,70 41,9883 41,9883 71,6649 180,6578 2,93 46,2899 46,2899 86,4907 214,0388 3,15 50,7150 50,7150 103,0731 250,5730 3,38 55,2636 55,2636 121,4966 290,3319 3,60 59,9356 59,9356 141,8458 333,3871 3,83 64,7312 64,7312 164,2052 379,8100 4,05 69,6502 69,6502 188,6593 429,6721 4,28 74,6927 74,6927 215,2927 483,0451 4,50 79,8586 79,8586 244,1862 539,9976 | 0,00 0,000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,23 2,8199 2,8199 0,3414 1,1225 3,2405 0,45 5,7633 5,7633 1,4236 4,5388 6,8727 0,688 8,8301 8,8301 3,3325 10,3215 10,8887 0,90 12,0205 12,0205 6,1527 18,5422 15,2866 1,13 15,3343 15,3343 9,9688 29,2724 20,0664 1,35 18,7716 18,7716 14,8652 42,5836 25,2281 1,57 22,3323 22,3323 20,9265 58,5474 30,7717 1,80 26,0166 26,0166 28,2372 77,2352 36,6971 2,02 29,8243 29,8243 36,8818 98,7187 43,0045 2,25 33,7555 34,5950 123,0692 49,6937 2,48 37,8101 37,8101 58,5112 150,3584 56,7649 2,70 41,9883 41,9883 71,6649 180,6578 64,2179 2,93 46,2899 46,2899 86,4907 214,0388 72,0529 3,15 50,7150 50,7150 103,0731 250,5730 80,2697 3,38 55,2636 55,2636 121,4966 290,3319 88,8684 3,60 59,9356 59,9356 141,8458 333,3871 97,8490 3,83 64,7312 64,7312 164,2052 379,8100 107,2116 4,05 69,6502 69,6502 188,6593 429,6721 116,9560 4,28 74,6927 74,6927 215,2927 483,0451 127,0823 4,50 79,8586 79,8586 244,1862 539,9976 137,5293 0,000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0, |

185,9719

185,9719

105,7918

105,7918



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OSO900 | 년.<br>영<br>RFI | N.prog.<br>01 | Rev.<br>A | Pag.diPag.<br>91 di 136 |
|---------------|---------------|--------------|-----------|---------------|----------------|---------------|-----------|-------------------------|
|---------------|---------------|--------------|-----------|---------------|----------------|---------------|-----------|-------------------------|

## Dichiarazioni secondo N.T.C. 2008 (punto 10.2)

#### Analisi e verifiche svolte con l'ausilio di codici di calcolo

Il sottoscritto, in qualità di calcolatore delle opere in progetto, dichiara quanto segue.

#### Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale
- Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali.
- Calcolo della portanza assiale e trasversale dei pali. Progetto e verifica delle armature dei pali inseriti.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM 14/01/2008.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

#### Origine e caratteristiche dei codici di calcolo

Titolo MAX - Analisi e Calcolo Muri di Sostegno

Versione 10.10

Produttore Aztec Informatica srl, Casole Bruzio (CS)

Utente PROGIN S.P.A. Licenza AIU01054U

#### Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. La società produttrice Aztec Informatica srl ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

#### Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

### Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

#### Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, io sottoscritto asserisco che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

Pag. di Pag. Opera Tratto Settore CEE WBS N. prog. Rev. doc. L073 17 92 di 136 212 Е OS0900 01 Α REL

# **ALLEGATO 2**

## TABULATI DI CALCOLO MURO TIPO 2



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

|  | ratto<br>212 | Settore<br>E |  | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 |  | Pag. di Pag.<br>93 di 136 |
|--|--------------|--------------|--|---------------|--------------------|----------------|--|---------------------------|
|--|--------------|--------------|--|---------------|--------------------|----------------|--|---------------------------|

#### Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilitàdei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l' esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008)
- Circolare 617 del 02/02/2009
- Circolare C.S.L.P. 02/02/2009 n.617 Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale

Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| L073   212   E   17   OS0900   GOS.   01   A   94 di 1 |  |  |  |  | WBS<br>OS0900 | acc. | N. prog.<br>01 |  | Pag. di Pag.<br>94 di 136 |
|--------------------------------------------------------|--|--|--|--|---------------|------|----------------|--|---------------------------|
|--------------------------------------------------------|--|--|--|--|---------------|------|----------------|--|---------------------------|

## Calcolo della spinta sul muro

#### Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali  $\gamma$ . In particolare si distinguono combinazioni di carico di tipo **A1-M1** nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo **A2-M2** nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

#### Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

- si impone una superficie di rottura (angolo di inclinazione  $\rho$  rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

#### Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta  $\epsilon$  l'inclinazione del terrapieno rispetto all'orizzontale e  $\beta$  l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove  $\theta$  = arctg( $k_h/(1\pm k_v)$ ) essendo  $k_h$  il coefficiente sismico orizzontale e  $k_v$  il coefficiente sismico verticale, definito in funzione di  $k_h$ . In presenza di falda a monte,  $\theta$  assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = arctg[(\gamma_{sat}/(\gamma_{sat}-\gamma_{w}))*(k_{h}/(1\pm k_{v}))]$$

Terreno a permeabilità elevata



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E |     | WBS<br>OS0900 | ld.<br>doc. | N.prog.<br>01 | Pag.diPag.<br>95 di 136 |
|---------------|---------------|--------------|-----|---------------|-------------|---------------|-------------------------|
|               |               |              | · · |               | I RH        | -             |                         |

$$\theta = arctg[(\gamma/(\gamma_{sat}-\gamma_w))*(k_h/(1\pm k_v))]$$

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta\cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di  $\theta$ .

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W \qquad F_{iV} = \pm k_v W$$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

### Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a  $\eta_{\text{E}}$ 

Eseguendo il calcolo mediante gli Eurocodici si può impostare  $\eta_g$ >=1.0

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\Sigma_{i} \; \left( \frac{c_{i}b_{i}+(W_{i}\text{-}u_{i}b_{i})tg\varphi_{i}}{m} \right)$$
 
$$\eta = \frac{\sum_{i}W_{i}sin\alpha_{i}}{\sum_{i}W_{i}sin\alpha_{i}}$$

dove il termine *m* è espresso da

$$m = (1 + \frac{\mathsf{tg}\phi_i \mathsf{tg}\alpha_i}{n}) \cos\alpha_i$$



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 |  |  | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>96 di 136 |
|---------------|---------------|--|--|---------------|--------------------|---------------|-----------|---------------------------|
|---------------|---------------|--|--|---------------|--------------------|---------------|-----------|---------------------------|

In questa espressione n è il numero delle strisce considerate,  $b_i$  e  $\alpha_i$  sono la larghezza e l'inclinazione della base della striscia i<sub>esima</sub> rispetto all'orizzontale,  $W_i$  è il peso della striscia i<sub>esima</sub> ,  $c_i$  e  $\phi_i$  sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed  $u_i$  è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di  $\eta$ . Quindi essa viene risolta per successive approsimazioni assumendo un valore iniziale per  $\eta$  da inserire nell'espressione di m ed iterare finquando il valore calcolato coincide con il valore assunto.

## Analisi dei pali

Per l'analisi della capacità portante dei pali occorre determinare alcune caratteristiche del terreno in cui si va ad operare. In particolare bisogna conoscere l'angolo d'attrito  $\phi$  e la coesione c. Per pali soggetti a carichi trasversali è necessario conoscere il modulo di reazione laterale o il modulo elastico laterale.

La capacità portante di un palo solitamente viene valutata come somma di due contributi: portata di base (o di punta) e portata per attrito laterale lungo il fusto. Cioè si assume valida l'espressione:

$$Q_T = Q_P + Q_L - W_P$$

dove:

Q<sub>T</sub> portanza totale del palo Q<sub>P</sub> portanza di base del palo

Q<sub>L</sub> portanza per attrito laterale del palo

W<sub>P</sub> peso proprio del palo

e le due componenti Q<sub>P</sub> e Q<sub>L</sub> sono calcolate in modo indipendente fra loro.

Dalla capacità portante del palo si ricava il carico ammissibile del palo  $Q_A$  applicando il coefficiente di sicurezza della portanza alla punta  $\eta_P$  ed il coefficiente di sicurezza della portanza per attrito laterale  $\eta_I$ .

Palo compresso:

$$Q_A = Q_p / \eta_p + Q_l / \eta_l - W_p$$

Palo teso:

$$Q_A = Q_I / \eta_I + W_p$$

#### Capacità portante di punta

In generale la capacità portante di punta viene calcolata tramite l'espressione:

$$Q_P = A_P(cN'_c + qN'_q + 1/2B\gamma N'_\gamma)$$

dove  $A_P$  è l'area portante efficace della punta del palo, c è la coesione, q è la pressione geostatica alla quota della punta del palo,  $\gamma$  è il peso specifico del terreno, D è il diametro del palo ed i coefficienti  $N'_c$   $N'_q$   $N'_g$  sono i coefficienti delle formule della capacità portante corretti per tener conto degli effetti di forma e di profondità. Possono essere utilizzati sia i coefficienti di Hansen che quelli di Vesic con i corrispondenti fattori correttivi per la profondità e la forma.

Il parametro  $\eta$  che compare nell'espressione assume il valore:

quando si usa la formula di Vesic e viene posto uguale ad 1 per le altre formule.  $K_0$  rappresenta il coefficiente di spinta a riposo che può essere espresso come:  $K_0 = 1$  -  $\sin\phi$ .



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera Tratto Settore CE WBS Id. doc. N.p. 1073 212 E 17 OS0900 RFI |  | Pag. di Pag.<br>97 di 136 |
|--------------------------------------------------------------------|--|---------------------------|
|--------------------------------------------------------------------|--|---------------------------|

#### Capacità portante per resistenza laterale

La resistenza laterale è data dall'integrale esteso a tutta la superficie laterale del palo delle tensioni tangenziali palo-terreno in condizioni limite:

 $Q_L = integrale_S \tau_a dS$ 

dove  $\tau_a$  è dato dalla nota relazione di Coulomb  $\tau_a = c_a + \sigma_h t g \delta$ 

dove  $c_a$  è l'adesione palo-terreno,  $\delta$  è l'angolo di attrito palo-terreno,  $\gamma$  è il peso specifico del terreno, z è la generica quota a partire dalla testa del palo, L e P sono rispettivamente la lunghezza ed il perimetro del palo,  $K_s$  è il coefficiente di spinta che dipende dalle caratteristiche meccaniche e fisiche del terreno dal suo stato di addensamento e dalle modalità di realizzazione del palo.

#### Portanza trasversale dei pali - Analisi ad elementi finiti

Nel modello di terreno alla Winkler il terreno viene schematizzato come una serie di molle elastiche indipendenti fra di loro. Le molle che schematizzano il terreno vengono caratterizzate tramite una costante elastica K espressa in Kg/cm²/cm che rappresenta la pressione (in Kg/cm²) che bisogna applicare per ottenere l'abbassamento di 1 cm.

Nel metodo degli elementi finiti occorre discretizzare il particolare problema. Nel caso specifico il palo viene suddiviso in un certo numero di elementi di eguale lunghezza. Ogni elemento è caratterizzato da una sezione avente area ed inerzia coincidente con quella del palo.

Il terreno viene schematizzato come una serie di molle orizzontali che reagiscono agli spostamenti nei due versi. La rigidezza assiale della singola molla è proporzionale alla costante di Winkler orizzontale del terreno, al diametro del palo ed alla lunghezza dell'elemento. La molla, però, non viene vista come un elemento infinitamente elastico ma come un elemento con comportamento del tipo elastoplastico perfetto (diagramma sforzi-deformazioni di tipo bilatero). Essa presenta una resistenza crescente al crescere degli spostamenti fino a che l'entità degli spostamenti si mantiene al di sotto di un certo spostamento limite, X<sub>max</sub> oppure fino a quando non si raggiunge il valore della pressione limite. Superato tale limite non si ha un incremento di resistenza. E' evidente che assumendo un comportamento di questo tipo ci si addentra in un tipico problema non lineare che può essere risolto solo mediante una analisi al passo.

Questa modellazione presenta il notevole vantaggio di poter schematizzare tutti quei comportamenti individuati da Broms e che sarebbe impossibile trattare in un modello numerico. In particolare risulta automatico analizzare casi in cui si ha insufficiente portanza non per rottura del palo ma per rottura del terreno (vedi il caso di un palo molto rigido in un terreno molle).

#### Determinazione degli scarichi sul palo.

Gli scarichi sui pali vengono determinati mediante il metodo delle rigidezze.

La piastra di fondazione viene considerata infinitamente rigida (3 gradi di libertà) ed i pali vengono considerati incastrati o incernierati (la scelta del vincolo viene fatta dall'Utente nella tabella CARATTERISTICHE del sottomenu PALI) a tale piastra.

Viene effettuata una prima analisi di ogni palo di ciascuna fila (i pali di ogni fila hanno le stesse caratteristiche) per costruire una curva carichi-spostamenti del palo. Questa curva viene costruita considerando il palo elastico. Si tratta, in definitiva, della matrice di rigidezza del palo *Ke*, costruita imponendo traslazioni e rotazioni unitarie per determinare le corrispondenti sollecitazioni in testa al palo.

Nota la matrice di rigidezza di ogni palo si assembla la matrice globale (di dimensioni 3x3) della palificata, K.

A questo punto, note le forze agenti in fondazione (N, T, M) si possono ricavare gli spostamenti della piastra (abbassamento, traslazione e rotazione) e le forze che si scaricano su ciascun palo. Infatti indicando con p il vettore dei carichi e con u il vettore degli spostamenti della piastra abbiamo:

u = K<sup>-1</sup>p

Noti gli spostamenti della piastra, e quindi della testa dei pali, abbiamo gli scarichi su ciascun palo. Allora per ciascun palo viene effettuata un'analisi elastoplastica incrementale (tramite il metodo degli elementi finiti) che, tenendo conto della plasticizzazione del terreno, calcola le sollecitazioni in tutte le sezioni del palo., le caratteristiche del terreno (rappresentate da *Kh*) sono tali che se non è possibile raggiungere l'equilibrio si ha collasso per rottura del terreno.



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E |    | WBS<br>OS0900 | ld.<br>doc. | N. prog.<br>01 | Rev.<br>A | Pag.diPag.<br>98 di 136 |
|---------------|---------------|--------------|----|---------------|-------------|----------------|-----------|-------------------------|
| 20/0          | 212           | _            | 17 | 000700        | RFI         | 01             | , ,       | / 0 di 10               |

#### Normativa

#### N.T.C. 2008 - Approccio 2

| Simbologi        | ia adottata                                                       |
|------------------|-------------------------------------------------------------------|
| $\gamma_{Gsfav}$ | Coefficiente parziale sfavorevole sulle azioni permanenti         |
| γGfav            | Coefficiente parziale favorevole sulle azioni permanenti          |
| γosfav           | Coefficiente parziale sfavorevole sulle azioni variabili          |
| γQfav            | Coefficiente parziale favorevole sulle azioni variabili           |
| γtanφ'           | Coefficiente parziale di riduzione dell'angolo di attrito drenato |
| γ <sub>c'</sub>  | Coefficiente parziale di riduzione della coesione drenata         |
| $\gamma_{cu}$    | Coefficiente parziale di riduzione della coesione non drenata     |

 $\gamma_{qu}$  Coefficiente parziale di riduzione del carico ultimo

 $\gamma_{\gamma}$  Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

#### Coefficienti di partecipazione combinazioni statiche

| Coefficienti parziali per le a | azioni o per l'effetto delle azio                                         | ni:                  |      |      |      |      |
|--------------------------------|---------------------------------------------------------------------------|----------------------|------|------|------|------|
| Carichi                        | Effetto                                                                   |                      | A1   | A2   | EQU  | HYD  |
| Permanenti                     | Favorevole                                                                | $\gamma_{\sf Gfav}$  | 1,00 | 1,00 | 0,90 | 0,90 |
| Permanenti                     | Sfavorevole                                                               | $\gamma_{\sf Gsfav}$ | 1,30 | 1,00 | 1,10 | 1,30 |
| Variabili                      | Favorevole                                                                | $\gamma_{\sf Qfav}$  | 0,00 | 0,00 | 0,00 | 0,00 |
| Variabili                      | Sfavorevole                                                               | γQsfav               | 1,50 | 1,30 | 1,50 | 1,50 |
| Coefficienti parziali per i pa | arametri geotecnici del terren                                            | 0:                   |      |      |      |      |
| Parametri                      |                                                                           | <del>-</del>         | M1   | M2   | M2   | M1   |
| Tangente dell'angolo di att    | rito                                                                      | γ <sub>tanφ'</sub>   | 1,00 | 1,25 | 1,25 | 1,00 |
| Coesione efficace              |                                                                           | γ <sub>c'</sub>      | 1,00 | 1,25 | 1,25 | 1,00 |
| Resistenza non drenata         |                                                                           | γcu                  | 1,00 | 1,40 | 1,40 | 1,00 |
| Resistenza a compressione      | uniassiale                                                                | γqu                  | 1,00 | 1,60 | 1,60 | 1,00 |
| Peso dell'unità di volume      |                                                                           | $\gamma_{\gamma}$    | 1,00 | 1,00 | 1,00 | 1,00 |
|                                | one combinazioni sismiche<br>azioni o per l'effetto delle azio<br>Effetto | ni:                  | A1   | A2   | EQU  | HYD  |
| Permanenti                     | Favorevole                                                                | γGfav                | 1,00 | 1,00 | 1,00 | 0,90 |
| Permanenti                     | Sfavorevole                                                               | γGsfav               | 1,00 | 1,00 | 1,00 | 1,30 |
| Variabili                      | Favorevole                                                                | γQfav                | 0,00 | 0,00 | 0,00 | 0,00 |
| Variabili                      | Sfavorevole                                                               | γQsfav               | 1,00 | 1,00 | 1,00 | 1,50 |
| Coefficienti parziali per i pa | arametri geotecnici del terren                                            | <u>o:</u>            | M1   | M2   | M2   | M1   |
| Tangente dell'angolo di att    | rito                                                                      | γ <sub>tanφ'</sub>   | 1,00 | 1,25 | 1,25 | 1,00 |
| Coesione efficace              |                                                                           | γ <sub>c'</sub>      | 1,00 | 1,25 | 1,25 | 1,00 |
| Resistenza non drenata         |                                                                           | γ <sub>cu</sub>      | 1,00 | 1,40 | 1,40 | 1,00 |
| Resistenza a compressione      | uniassiale                                                                | γ <sub>qu</sub>      | 1,00 | 1,60 | 1,60 | 1,00 |
| Peso dell'unità di volume      |                                                                           | $\gamma_{\gamma}$    | 1,00 | 1,00 | 1,00 | 1,00 |
|                                |                                                                           |                      |      |      |      |      |

#### **FONDAZIONE SUPERFICIALE**

Coefficienti parziali  $\gamma_R$  per le verifiche agli stati limite ultimi STR e GEO

| coefficient partial /k per ic vermene agni stati ininte attini sitt e deo |      |                      |      |
|---------------------------------------------------------------------------|------|----------------------|------|
| Verifica                                                                  | (    | Coefficienti parzial | li   |
|                                                                           | R1   | R2                   | R3   |
| Capacità portante della fondazione                                        | 1,00 | 1,00                 | 1,40 |
| Scorrimento                                                               | 1,00 | 1,00                 | 1,10 |
| Resistenza del terreno a valle                                            | 1,00 | 1,00                 | 1,40 |
| Stabilità globale                                                         |      | 1,10                 |      |
|                                                                           |      |                      |      |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 |   |    | WBS<br>OS0900 | aoc. | N. prog.<br>01 | Rev.<br>A | Pag.diPag.<br>99 di 136 |
|---------------|---------------|---|----|---------------|------|----------------|-----------|-------------------------|
| 10/0          | 212           | _ | 17 | 030700        | RFI  | O1             | / \       | // di 10                |

#### PALI DI FONDAZIONE

CARICHI VERTICALI. Coefficienti parziali  $\gamma_R$  per le verifiche dei pali

| $D \sim $ | ı | + | ive | II. | .+: |
|-----------|---|---|-----|-----|-----|
|           |   |   |     |     |     |

|                                                 |                            | R1                      | R2                   | R3   |
|-------------------------------------------------|----------------------------|-------------------------|----------------------|------|
| Punta                                           | γь                         | 1,00                    | 1,70                 | 1,35 |
| Laterale compressione                           | $\gamma_{s}$               | 1,00                    | 1,45                 | 1,15 |
| Totale compressione                             | $\gamma_{t}$               | 1,00                    | 1,60                 | 1,30 |
| Laterale trazione                               | $\gamma_{st}$              | 1,00                    | 1,60                 | 1,25 |
| CARICHI TRASVERSALI. Coefficienti parzia        | li γτ per le verifiche dei | •                       |                      |      |
|                                                 |                            | R1                      | R2                   | R3   |
|                                                 | γт                         | 1,00                    | 1,60                 | 1,30 |
| Coefficienti di riduzione $\xi$ per la determin | azione della resistenza    | caratteristica dei pali |                      |      |
| Numero di verticali indagate                    | 3                          | ξ₃=1,60                 | ξ <sub>4</sub> =1,48 |      |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | C⊞<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>100 di<br>136 |
|---------------|---------------|--------------|----------|---------------|--------------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|----------|---------------|--------------------|---------------|-----------|-------------------------------|

## Geometria muro e fondazione

| Descrizione                                                                                                                                                                                             | Muro a mensola in c.a.                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Altezza del paramento Spessore in sommità Spessore all'attacco con la fondazione Inclinazione paramento esterno Inclinazione paramento interno Lunghezza del muro                                       | 6,50 [m]<br>0,50 [m]<br>1,15 [m]<br>5,70 [°]<br>0,00 [°]<br>7,20 [m] |
| <u>Fondazione</u>                                                                                                                                                                                       |                                                                      |
| Lunghezza mensola fondazione di valle<br>Lunghezza mensola fondazione di monte<br>Lunghezza totale fondazione<br>Inclinazione piano di posa della fondazione<br>Spessore fondazione<br>Spessore magrone | 1,45 [m]<br>3,90 [m]<br>6,50 [m]<br>0,00 [°]<br>1,30 [m]<br>0,20 [m] |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag.diPag.<br>101 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-----------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-----------------------------|

## Descrizione pali di fondazione

Pali in c.a.

Numero di file di pali 3 Vincolo pali/fondazione Incastro Tipo di portanza Portanza di punta

#### Simbologia adottata

numero d'ordine della fila

ascissa della fila misurata dallo spigolo di monte della fondazione espressa in [m] Numero di pali della fila

D

diametro dei pali della fila espresso in [m] lunghezza dei pali della fila espressa in [m] inclinazione dei pali della fila rispetto alla verticale espressa in [°] allineamento dei pali della fila rispetto al baricentro della fondazione (CENTRATI o SFALSATI) ALL

| N | Х    | Nr. | D      | L     | alfa | ALL      |
|---|------|-----|--------|-------|------|----------|
| 1 | 0,70 | 3   | 0,8000 | 16,00 | 0,00 | Centrati |
| 2 | 3,25 | 3   | 0,8000 | 16,00 | 0,00 | Centrati |
| 3 | 5.75 | 3   | 0.8000 | 16.00 | 0.00 | Centrati |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>102 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|

## Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico24,517 [kN/mc]Classe di ResistenzaC25/30Resistenza caratteristica a compressione Rck30000 [kPa]Modulo elastico E31447048 [kPa]

Acciaio

Tipo B450C Tensione di snervamento  $\sigma_{\text{fa}}$  449936 [kPa]

Calcestruzzo utilizzato per i pali

Classe di Resistenza C32/40 Resistenza caratteristica a compressione  $R_{ck}$  40000 [kPa] Modulo elastico E 33642648 [kPa]

Acciaio utilizzato per i pali

Tipo B450C Tensione ammissibile  $\sigma_{fa}$  449936 [kPa] Tensione di snervamento  $\sigma_{fa}$  449936 [kPa]

## Geometria profilo terreno a monte del muro

#### Simbologia adottata e sistema di riferimento

20,00

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

3,20

0,00

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m] A inclinazione del tratto espressa in [°]

N X Y A 1 10,00 3,20 17,74

#### Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0,00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0,00 [m]

#### Falda

2

Quota della falda a valle del muro rispetto al piano di posa della fondazione -1,00 [m]

## Descrizione terreni

#### Simbologia adottata

Vr. Indice del terreno

Descrizione Descrizione terreno

γ Peso di volume del terreno espresso in [kN/mc]
γ Peso di volume saturo del terreno espresso in [kN/mc]

Angolo d'attrito interno espresso in [°]

 $\delta$  Angolo d'attrito terra-muro espresso in [°]



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra<br/>imondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40 Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>103 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|

| C<br>Ca          | Coesione espressa in [kPa<br>Adesione terra-muro esp |       |            |       |       |     |  |
|------------------|------------------------------------------------------|-------|------------|-------|-------|-----|--|
| Descrizione      | γ                                                    | γs    | ф          | δ     | С     | Ca  |  |
| Rilevato         | 20,00                                                | 20,00 | φ<br>35.00 | 23.33 | 0,0   | 0,0 |  |
| Ala              | 19,00                                                | 20,00 | 25.00      | 16.67 | 2,0   | 0,0 |  |
| Salt             | 20,00                                                | 20,00 | 27.00      | 18.00 | 20,0  | 0,0 |  |
| Ap/Pa            | 23,00                                                | 23,00 | 31.00      | 20.67 | 120,0 | 0,0 |  |
| Parametri medi   |                                                      |       |            |       |       |     |  |
| Descrizione      | γ                                                    | γs    | ф          | δ     | С     | Ca  |  |
| Rilevato         | 20,00                                                | 20,00 | 35.00      | 23.33 | 0,0   | 0,0 |  |
| Ala              | 19,00                                                | 20,00 | 25.00      | 16.67 | 2,0   | 0,0 |  |
| Salt             | 20,00                                                | 20,00 | 27.00      | 18.00 | 20,0  | 0,0 |  |
| Ap/Pa            | 23,00                                                | 23,00 | 31.00      | 20.67 | 120,0 | 0,0 |  |
| Parametri minimi |                                                      |       |            |       |       |     |  |
| Descrizione      | γ                                                    | γs    | ф          | δ     | С     | Ca  |  |
| Rilevato         | 20,00                                                | 20,00 | 30.00      | 20.00 | 0,0   | 0,0 |  |
| Ala              | 19,00                                                | 20,00 | 25.00      | 16.67 | 2,0   | 0,0 |  |
| Salt             | 20,00                                                | 20,00 | 27.00      | 18.00 | 20,0  | 0,0 |  |
| Ap/Pa            | 23,00                                                | 23,00 | 31.00      | 20.67 | 120,0 | 0,0 |  |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>104 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|

#### Condizioni di carico

#### Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra. Momento positivo senso antiorario.

X F<sub>x</sub> F<sub>y</sub> M X<sub>i</sub> X<sub>f</sub> Q<sub>i</sub> Ascissa del punto di applicazione del carico concentrato espressa in [m] Componente orizzontale del carico concentrato espressa in [kN] Componente verticale del carico concentrato espressa in [kN]

Momento espresso in [kNm]
Ascissa del punto iniziale del carico ripartito espressa in [m] Ascissa del punto finale del carico ripartito espressa in [m]

Intensità del carico per x=X<sub>i</sub> espressa in [kN/m] Intensità del carico per x=X<sub>i</sub> espressa in [kN/m] D/C Tipo carico : D=distribuito C=concentrato

## Condizione n° 1 (SOVRACCARICO STRADALE)

 $X_i = 10,00$ Profilo **X**<sub>f</sub>=17,45  $Q_i = 60,0000$ **Q**<sub>f</sub>=20,0000



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

1,00

1,00

1,30

1,00

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>105 di<br>136 |  |
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|--|
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|--|

1.00

1.00

1.00

1.00

1,00

1,00

1,30

1,00

## Descrizione combinazioni di carico

| Sim | hol | loaia | adottata | 1 |
|-----|-----|-------|----------|---|

Spinta terreno

 $\begin{array}{ll} \textit{F/S} & \textit{Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)} \\ \gamma & \textit{Coefficiente di partecipazione della condizione} \\ \varPsi & \textit{Coefficiente di combinazione della condizione} \end{array}$ 

| Combinazione n° 1 - Caso A1-M1 (STR) |      |
|--------------------------------------|------|
|                                      | S/F  |
| Peso proprio muro                    | FAV  |
| Peso proprio terrapieno              | FAV  |
| Spinta terreno                       | SFAV |

Combinazione n° 2 - Caso A1-M1 (STR)

|                         | S/F  | γ    | Ψ    | γ*Ψ  |
|-------------------------|------|------|------|------|
| Peso proprio muro       | FAV  | 1,00 | 1.00 | 1,00 |
| Peso proprio terrapieno | FAV  | 1,00 | 1.00 | 1,00 |
| Spinta terreno          | SFAV | 1,30 | 1.00 | 1,30 |
| SOVRACCARICO STRADALE   | SFAV | 1.50 | 1.00 | 1.50 |

| Combinazione n° 3 - Caso A1-M1 (STR) - Sisma Vert. positivo |      |      |      |      |  |  |  |
|-------------------------------------------------------------|------|------|------|------|--|--|--|
|                                                             | S/F  | γ    | Ψ    | γ*Ψ  |  |  |  |
| Peso proprio muro                                           | SFAV | 1,00 | 1.00 | 1,00 |  |  |  |
| Peso proprio terrapieno                                     | SFAV | 1,00 | 1.00 | 1,00 |  |  |  |
| Spinta terreno                                              | SFAV | 1,00 | 1.00 | 1,00 |  |  |  |

| Combinazione n° 4 - Caso A1-M1 (STR) - Sisma Vert. negativo |      |      |      |      |  |  |  |  |
|-------------------------------------------------------------|------|------|------|------|--|--|--|--|
|                                                             | S/F  | γ    | Ψ    | γ*Ψ  |  |  |  |  |
| Peso proprio muro                                           | SFAV | 1,00 | 1.00 | 1,00 |  |  |  |  |
| Peso proprio terrapieno                                     | SFAV | 1,00 | 1.00 | 1,00 |  |  |  |  |

SFAV

| Combinazione n° 5 - Caso A1-M1 (STR) - S |      |      |      |      |
|------------------------------------------|------|------|------|------|
|                                          | S/F  | γ    | Ψ    | γ*Ψ  |
| Peso proprio muro                        | FAV  | 1,00 | 1.00 | 1,00 |
| Peso proprio terrapieno                  | FAV  | 1,00 | 1.00 | 1,00 |
| Spinta terreno                           | SFAV | 1,00 | 1.00 | 1,00 |

| Combinazione n° 6 - Quasi Permanente (SLE) |     |      |      |      |
|--------------------------------------------|-----|------|------|------|
|                                            | S/F | γ    | Ψ    | γ*Ψ  |
| Peso proprio muro                          |     | 1,00 | 1.00 | 1,00 |
| Peso proprio terrapieno                    |     | 1,00 | 1.00 | 1,00 |
| Spinta terreno                             |     | 1,00 | 1.00 | 1,00 |

| Combinazione n° 7 - Frequente (SLE) |      |      |      |      |
|-------------------------------------|------|------|------|------|
|                                     | S/F  | γ    | Ψ    | γ*Ψ  |
| Peso proprio muro                   |      | 1,00 | 1.00 | 1,00 |
| Peso proprio terrapieno             |      | 1,00 | 1.00 | 1,00 |
| Spinta terreno                      |      | 1,00 | 1.00 | 1,00 |
| SOVRACCARICO STRADALE               | SEAV | 1.00 | 0.75 | 0.75 |

| SOVRACCARICO STRADALE          | SFAV | 1.00 | 0.75 | 0.75 |
|--------------------------------|------|------|------|------|
| Combinazione n° 8 - Rara (SLE) |      |      |      |      |
|                                | S/F  | γ    | Ψ    | γ*Ψ  |
| Peso proprio muro              |      | 1,00 | 1.00 | 1,00 |
| Peso proprio terrapieno        |      | 1,00 | 1.00 | 1,00 |
| Spinta terreno                 |      | 1,00 | 1.00 | 1,00 |
| SOVRACCARICO STRADALE          | SFAV | 1.00 | 1.00 | 1.00 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>106 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|

Stato limite

## Impostazioni analisi pali

 Numero elementi palo
 40

 Tipo carico palo
 Distribuito

 Calcolo della portanza
 metodo di Vesic

 Costante di Winkler
 da Strato

Criterio di rottura del sistema terreno-palo

Spostamento limite pari a 0,0150 m

Pressione limite passiva con moltiplicatore pari a 1,00

Andamento pressione verticale

Geostatica

## Impostazioni di analisi

Metodo verifica sezioni

| Impostazioni verifiche SLU                                    |                                                              |
|---------------------------------------------------------------|--------------------------------------------------------------|
| Coefficienti parziali per resistenze di calcolo dei materiali |                                                              |
| Coefficiente di sicurezza calcestruzzo a compressione         | 1.50                                                         |
| Coefficiente di sicurezza calcestruzzo a trazione             | 1.50                                                         |
| Coefficiente di sicurezza acciaio                             | 1.15                                                         |
| Fattore riduzione da resistenza cubica a cilindrica           | 0.83                                                         |
| Fattore di riduzione per carichi di lungo periodo             | 0.85                                                         |
| Coefficiente di sicurezza per la sezione                      | 1.00                                                         |
| Impostazioni verifiche SLE                                    |                                                              |
| Condizioni ambientali                                         | Aggressive                                                   |
| Armatura ad aderenza migliorata                               |                                                              |
| <u>Verifica fessurazione</u>                                  |                                                              |
| Sensibilità delle armature                                    | Poco sensibile                                               |
| Valori limite delle aperture delle fessure                    | $w_1 = 0.20$                                                 |
|                                                               | $w_2 = 0.30$                                                 |
|                                                               | $w_3 = 0.40$                                                 |
| Metodo di calcolo aperture delle fessure                      | Circ. Min. 252 (15/10/1996)                                  |
| Verifica delle tensioni                                       |                                                              |
| Combinazione di carico                                        | Rara $\sigma_c$ < 0.60 $f_{ck}$ - $\sigma_f$ < 0.80 $f_{yk}$ |
|                                                               | Quasi permanente $\sigma_c$ < 0.45 $f_{ck}$                  |

#### Impostazioni avanzate

Terreno a monte a elevata permeabilità



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>107 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|

## Quadro riassuntivo coeff. di sicurezza calcolati

#### Simbologia adottata

 ${\cal C}$  Identificativo della combinazione  ${\it Tipo}$  Tipo combinazione  ${\it Sisma}$  Combinazione sismica  ${\it CS_{SCO}}$  Coeff. di sicurezza allo scorrimento  ${\it CS_{RIB}}$  Coeff. di sicurezza al ribaltamento

 $C_{SCO}$  Coeff. di sicurezza allo scorrimento  $C_{SRIB}$  Coeff. di sicurezza al ribaltamento  $C_{SOLM}$  Coeff. di sicurezza a carico limite  $C_{STAB}$  Coeff. di sicurezza a stabilità globale

| С | Tipo        | Sisma                            | CS <sub>sco</sub> | CS <sub>rib</sub> | CS <sub>qlim</sub> | <b>CS</b> <sub>stab</sub> |
|---|-------------|----------------------------------|-------------------|-------------------|--------------------|---------------------------|
| 1 | A1-M1 - [1] |                                  |                   |                   |                    |                           |
| 2 | A1-M1 - [2] |                                  |                   |                   |                    |                           |
| 3 | A1-M1 - [3] | Orizzontale + Verticale positivo |                   |                   |                    |                           |
| 4 | A1-M1 - [3] | Orizzontale + Verticale negativo |                   |                   |                    |                           |
| 5 | A1-M1 - [4] | Orizzontale + Verticale positivo |                   |                   |                    |                           |
| 6 | SLEQ - [1]  |                                  |                   |                   |                    |                           |
| 7 | SLEF - [1]  |                                  |                   |                   |                    |                           |
| 8 | SLER - [1]  |                                  |                   |                   |                    |                           |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | 년<br>영<br>R크 | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>108 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------|----------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------|----------------|-----------|-------------------------------|

## Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate : Origine in testa al muro (spigolo di monte) Ascisse X (espresse in [m]) positive verso monte Ordinate Y (espresse in [m]) positive verso l'alto Le forze orizzontali sono considerate positive se agenti da monte verso valle Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

## Tipo di analisi

Calcolo della spinta metodo di Culmann Calcolo della stabilità globale metodo di Bishop Calcolo della spinta in condizioni di Spinta a riposo

#### <u>Sisma</u>

#### Combinazioni SLU

Accelerazione al suolo ag 2.06 [m/s^2] Coefficiente di amplificazione per tipo di sottosuolo (S) 1.19 Coefficiente di amplificazione topografica (St) 1.00 Coefficiente riduzione ( $\beta_m$ ) 1.00 Rapporto intensità sismica verticale/orizzontale 0.50

 $k_h = (a_g/g^*\beta_m^*St^*S) = 24.51$ Coefficiente di intensità sismica orizzontale (percento) Coefficiente di intensità sismica verticale (percento)  $k_v$ =0.50 \*  $k_h$  = 12.25

Forma diagramma incremento sismico Rettangolare

Partecipazione spinta passiva (percento) 0,0 Lunghezza del muro 7,20 [m]

Peso muro 338,5059 [kN] Baricentro del muro X=0,23 Y=-5,80

#### Superficie di spinta

Punto inferiore superficie di spinta X = 3,90 Y = -7,80X = 3,90 Y = 1,25 Punto superiore superficie di spinta Altezza della superficie di spinta 9,05 [m] Inclinazione superficie di spinta(rispetto alla verticale) 0,00 [°]

#### COMBINAZIONE n° 1

#### Peso muro favorevole e Peso terrapieno favorevole

| Valore della spinta statica                                  | 505,0767 | [kN] |           |     |
|--------------------------------------------------------------|----------|------|-----------|-----|
| Componente orizzontale della spinta statica                  | 463,7696 | [kN] |           |     |
| Componente verticale della spinta statica                    | 200,0507 | [kN] |           |     |
| Punto d'applicazione della spinta                            | X = 3,90 | [m]  | Y = -4,17 | [m] |
| Inclinaz. della spinta rispetto alla normale alla superficie | 23,33    | [°]  |           |     |
| Inclinazione linea di rottura in condizioni statiche         | 57,07    | [°]  |           |     |
| Punto d'applicazione della spinta della falda                | X = 3,90 | [m]  | Y = -7,80 | [m] |
| Peso terrapieno gravante sulla fondazione a monte            | 555,6720 | [kN] |           |     |
| Baricentro terrapieno gravante sulla fondazione a monte      | X = 2,01 | [m]  | Y = -2,93 | [m] |
| Risultanti                                                   |          |      |           |     |

Risultante dei carichi applicati in dir. orizzontale 463,7696 [kN] Risultante dei carichi applicati in dir. verticale 1094,2285 [kN]



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>109 di<br>136 |  |
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|--|
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|--|

| Sforzo normale sul piano di posa della fondazione     | 1094.2285 | [kN]  |
|-------------------------------------------------------|-----------|-------|
| Sforzo tangenziale sul piano di posa della fondazione | 463,7696  | [kN]  |
| Eccentricità rispetto al baricentro della fondazione  | 0,39      | [m]   |
| Lunghezza fondazione reagente                         | 6,50      | [m]   |
| Risultante in fondazione                              | 1188,4521 | [kN]  |
| Inclinazione della risultante (rispetto alla normale) | 22,97     | [°]   |
| Momento rispetto al baricentro della fondazione       | 422,6700  | [kNm] |



 $Secondo\ stralcio\ funzionale:\ Matelica\ Nord-Matelica\ Sud/Castelraimondo\ Nord$ 

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | id.<br>doci.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>110 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|---------------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|---------------------|---------------|-----------|-------------------------------|

# Sollecitazioni paramento

### Combinazione n° 1

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Υ    | N        | M        | т        |
|-----|------|----------|----------|----------|
| 1   | 0,00 | 0,0000   | 0,0000   | 0,0000   |
| 2   | 0,33 | 4,1128   | 1,0177   | 6,5990   |
| 3   | 0,65 | 8,4833   | 4,2401   | 13,9916  |
| 4   | 0,98 | 13,1114  | 9,9193   | 22,1666  |
| 5   | 1,30 | 17,9971  | 18,3047  | 31,1214  |
| 6   | 1,63 | 23,1404  | 29,6453  | 40,8558  |
| 7   | 1,95 | 28,5413  | 44,1905  | 51,3701  |
| 8   | 2,27 | 34,1999  | 62,1895  | 62,6641  |
| 9   | 2,60 | 40,1161  | 83,8915  | 74,7378  |
| 10  | 2,93 | 46,2899  | 109,5457 | 87,5913  |
| 11  | 3,25 | 52,7214  | 139,4012 | 101,2245 |
| 12  | 3,58 | 59,4104  | 173,7074 | 115,6375 |
| 13  | 3,90 | 66,3571  | 212,7134 | 130,8302 |
| 14  | 4,23 | 73,5614  | 256,6684 | 146,8027 |
| 15  | 4,55 | 81,0234  | 305,8217 | 163,5549 |
| 16  | 4,88 | 88,7429  | 360,4224 | 181,0868 |
| 17  | 5,20 | 96,7201  | 420,7198 | 199,3985 |
| 18  | 5,53 | 104,9549 | 486,9631 | 218,4900 |
| 19  | 5,85 | 113,4474 | 559,4015 | 238,3612 |
| 20  | 6,17 | 122,1974 | 638,2841 | 259,0121 |
| 21  | 6,50 | 131,2051 | 723,8495 | 280,3180 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>111 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|

# Inviluppo sollecitazioni piastra di fondazione

## Combinazione n° 1

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 6.50

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Υ    | $M_{ymin}$ | $M_{ymax}$ | Tymin     | $T_{ymax}$ |
|-----|------|------------|------------|-----------|------------|
| 1   | 0,00 | -0,5896    | 0,4724     | -15,6488  | 33,1570    |
| 2   | 0,17 | -3,7191    | 10,8848    | -113,0665 | 85,5785    |
| 3   | 0,35 | -25,0182   | 26,2967    | -116,7535 | 151,6823   |
| 4   | 0,55 | -34,6646   | 55,5864    | 0,0000    | 242,5911   |
| 5   | 0,75 | 0,0000     | 99,6384    | 0,0000    | 418,0071   |
| 6   | 0,95 | 0,0000     | 155,1132   | 0,0000    | 712,8884   |
| 7   | 1,15 | 0,0000     | 240,3566   | 0,0000    | 1045,7860  |
| 8   | 1,45 | 0,0000     | 558,3464   | 0,0000    | 1025,2680  |
| 9   | 2,60 | -1258,6104 | 0,0000     | -640,8848 | 0,0000     |
| 10  | 2,85 | -1085,6985 | 0,0000     | -594,3092 | 0,0000     |
| 11  | 3,05 | -1012,6179 | 0,0000     | -491,9366 | 0,0000     |
| 12  | 3,25 | -937,7603  | 0,0000     | -485,4678 | 0,0000     |
| 13  | 3,45 | -843,9527  | 0,0000     | -560,7738 | 0,0000     |
| 14  | 3,65 | -728,1075  | 0,0000     | -687,3692 | 0,0000     |
| 15  | 3,87 | -602,1719  | 0,0000     | -571,9419 | 0,0000     |
| 16  | 4,09 | -502,7939  | 0,0000     | -485,5144 | 0,0000     |
| 17  | 4,31 | -411,3810  | 0,0000     | -419,4452 | 0,0000     |
| 18  | 4,52 | -329,1594  | 0,0000     | -361,5353 | 0,0000     |
| 19  | 4,74 | -257,1535  | 0,0000     | -306,4813 | 0,0000     |
| 20  | 4,96 | -195,5132  | 0,0000     | -262,0113 | 0,0000     |
| 21  | 5,18 | -143,8197  | 0,0000     | -222,5975 | 0,0000     |
| 22  | 5,40 | -102,9337  | 0,0000     | -185,3741 | 0,0000     |
| 23  | 5,60 | -76,8172   | 0,0000     | -152,9032 | 0,0000     |
| 24  | 5,80 | -52,2552   | 0,0000     | -128,1120 | 0,0000     |
| 25  | 6,00 | -30,8920   | 0,0000     | -116,5597 | 0,0000     |
| 26  | 6,20 | -11,5625   | 0,0000     | -107,6156 | 0,0000     |
| 27  | 6,50 | 0,0000     | 1,7917     | -18,4566  | 0,0000     |

| Nr. | x    | $M_{xmin}$ | M <sub>xmax</sub> | T <sub>xmin</sub> | T <sub>xmax</sub> |
|-----|------|------------|-------------------|-------------------|-------------------|
| 1   | 0,00 | -1,0090    | 3,4006            | -23,4792          | 170,8058          |
| 2   | 0,40 | -3,7622    | 20,2838           | -225,8252         | 188,3112          |
| 3   | 0,80 | -60,3684   | 1,6804            | -513,4574         | 185,9080          |
| 4   | 1,20 | -107,1594  | 0,0000            | -173,6513         | 205,2464          |
| 5   | 1,60 | -46,4073   | 2,2579            | -144,2946         | 565,6793          |
| 6   | 2,00 | 0,0000     | 51,7778           | -146,3932         | 269,3831          |
| 7   | 2,40 | 0,0000     | 70,5254           | -70,8952          | 75,2357           |
| 8   | 2,80 | 0,0000     | 52,1813           | -263,4153         | 140,7756          |
| 9   | 3,20 | -44,6453   | 2,3003            | -529,5486         | 138,7112          |
| 10  | 3,60 | -101,1334  | 0,0000            | -167,8389         | 167,8389          |
| 11  | 4,00 | -44,6453   | 2,3003            | -138,7112         | 529,5486          |
| 12  | 4,40 | 0,0000     | 52,1813           | -140,7756         | 263,4153          |
| 13  | 4,80 | 0,0000     | 70,5254           | -75,2357          | 70,8952           |
| 14  | 5,20 | 0,0000     | 51,7778           | -269,3831         | 146,3932          |
| 15  | 5,60 | -46,4073   | 2,2579            | -565,6793         | 144,2946          |
| 16  | 6,00 | -107,1594  | 0,0000            | -205,2464         | 173,6513          |
| 17  | 6,40 | -60,3684   | 1,6804            | -185,9080         | 513,4574          |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>112 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|

426,2218

[kNm]

| 18 | 6,80 | -3,7622 | 20,2838 | -188,3112 | 225,8252 |
|----|------|---------|---------|-----------|----------|
| 19 | 7,20 | -1,0090 | 3,4006  | -170,8058 | 23,4792  |

#### COMBINAZIONE n° 2

### Peso muro favorevole e Peso terrapieno favorevole

Momento rispetto al baricentro della fondazione



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | id.<br>doci.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>113 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|---------------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|---------------------|---------------|-----------|-------------------------------|

# Sollecitazioni paramento

### Combinazione n° 2

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Y    | N        | M        | т        |
|-----|------|----------|----------|----------|
| 1   | 0,00 | 0,000    | 0,0000   | 0,0000   |
| 2   | 0,33 | 4,1128   | 1,0177   | 6,5990   |
| 3   | 0,65 | 8,4833   | 4,2401   | 13,9916  |
| 4   | 0,98 | 13,1114  | 9,9193   | 22,1666  |
| 5   | 1,30 | 17,9971  | 18,3047  | 31,1214  |
| 6   | 1,63 | 23,1404  | 29,6453  | 40,8558  |
| 7   | 1,95 | 28,5413  | 44,1905  | 51,3701  |
| 8   | 2,27 | 34,1999  | 62,1895  | 62,6641  |
| 9   | 2,60 | 40,1161  | 83,8915  | 74,7378  |
| 10  | 2,93 | 46,2899  | 109,5457 | 87,5913  |
| 11  | 3,25 | 52,7214  | 139,4012 | 101,2245 |
| 12  | 3,58 | 59,4104  | 173,7074 | 115,6375 |
| 13  | 3,90 | 66,3571  | 212,7134 | 130,8302 |
| 14  | 4,23 | 73,5614  | 256,6684 | 146,8027 |
| 15  | 4,55 | 81,0234  | 305,8217 | 163,5549 |
| 16  | 4,88 | 88,7429  | 360,4224 | 181,0868 |
| 17  | 5,20 | 96,7201  | 420,7198 | 199,3985 |
| 18  | 5,53 | 104,9549 | 486,9631 | 218,4900 |
| 19  | 5,85 | 113,4474 | 559,4015 | 238,3612 |
| 20  | 6,17 | 122,1974 | 638,2841 | 259,0121 |
| 21  | 6,50 | 131,2051 | 723,8495 | 280,3180 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | C⊞<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>114 di<br>136 |
|---------------|---------------|--------------|----------|---------------|--------------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|----------|---------------|--------------------|---------------|-----------|-------------------------------|

# Inviluppo sollecitazioni piastra di fondazione

## Combinazione n° 2

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 6.50

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Y    | $M_{ymin}$ | $M_{ymax}$ | $T_{ymin}$ | $T_{ymax}$ |
|-----|------|------------|------------|------------|------------|
| 1   | 0,00 | -0,6138    | 0,4865     | -16,1470   | 34,3725    |
| 2   | 0,17 | -3,8385    | 11,2929    | -116,8999  | 88,8710    |
| 3   | 0,35 | -25,8526   | 27,3119    | -120,5837  | 157,5462   |
| 4   | 0,55 | -35,7432   | 57,7568    | 0,0000     | 251,9845   |
| 5   | 0,75 | 0,0000     | 103,5411   | 0,0000     | 434,0083   |
| 6   | 0,95 | 0,0000     | 161,2029   | 0,0000     | 739,6511   |
| 7   | 1,15 | 0,0000     | 249,7474   | 0,0000     | 1084,7241  |
| 8   | 1,45 | 0,0000     | 579,6215   | 0,0000     | 1063,7954  |
| 9   | 2,60 | -1290,9998 | 0,0000     | -648,4662  | 0,0000     |
| 10  | 2,85 | -1116,1540 | 0,0000     | -601,8605  | 0,0000     |
| 11  | 3,05 | -1042,5468 | 0,0000     | -500,7552  | 0,0000     |
| 12  | 3,25 | -966,3148  | 0,0000     | -494,1991  | 0,0000     |
| 13  | 3,45 | -870,7050  | 0,0000     | -572,0653  | 0,0000     |
| 14  | 3,65 | -752,5726  | 0,0000     | -701,1683  | 0,0000     |
| 15  | 3,87 | -623,9406  | 0,0000     | -584,6556  | 0,0000     |
| 16  | 4,09 | -522,0805  | 0,0000     | -497,6657  | 0,0000     |
| 17  | 4,31 | -428,1556  | 0,0000     | -431,4060  | 0,0000     |
| 18  | 4,52 | -343,3952  | 0,0000     | -373,4860  | 0,0000     |
| 19  | 4,74 | -268,8485  | 0,0000     | -318,5660  | 0,0000     |
| 20  | 4,96 | -204,6952  | 0,0000     | -272,0921  | 0,0000     |
| 21  | 5,18 | -150,5923  | 0,0000     | -231,7209  | 0,0000     |
| 22  | 5,40 | -107,1051  | 0,0000     | -193,2142  | 0,0000     |
| 23  | 5,60 | -78,6630   | 0,0000     | -159,2805  | 0,0000     |
| 24  | 5,80 | -52,6584   | 0,0000     | -132,6094  | 0,0000     |
| 25  | 6,00 | -30,5499   | 0,0000     | -116,9498  | 0,0000     |
| 26  | 6,20 | -11,3288   | 0,0000     | -103,5185  | 0,0000     |
| 27  | 6,50 | 0,000      | 1,7808     | -16,7042   | 0,0000     |

| Nr. | x    | $M_{xmin}$ | $M_{xmax}$ | $T_{xmin}$ | $T_{xmax}$ |
|-----|------|------------|------------|------------|------------|
| 1   | 0,00 | -1,0603    | 3,3636     | -24,3424   | 176,8864   |
| 2   | 0,40 | -3,5124    | 21,0055    | -234,0132  | 195,0488   |
| 3   | 0,80 | -62,5429   | 1,7266     | -533,9374  | 192,6502   |
| 4   | 1,20 | -111,0138  | 0,0000     | -181,6120  | 214,6576   |
| 5   | 1,60 | -48,0762   | 2,3059     | -149,5240  | 587,7435   |
| 6   | 2,00 | 0,0000     | 53,6396    | -151,6181  | 279,1606   |
| 7   | 2,40 | 0,0000     | 73,0614    | -73,5222   | 78,0228    |
| 8   | 2,80 | 0,0000     | 54,0577    | -272,9770  | 145,7977   |
| 9   | 3,20 | -46,2505   | 2,3410     | -550,2400  | 143,7378   |
| 10  | 3,60 | -104,7696  | 0,0000     | -175,5246  | 175,5246   |
| 11  | 4,00 | -46,2505   | 2,3410     | -143,7378  | 550,2400   |
| 12  | 4,40 | 0,0000     | 54,0577    | -145,7977  | 272,9770   |
| 13  | 4,80 | 0,0000     | 73,0614    | -78,0228   | 73,5222    |
| 14  | 5,20 | 0,0000     | 53,6396    | -279,1606  | 151,6181   |
| 15  | 5,60 | -48,0762   | 2,3059     | -587,7435  | 149,5240   |
| 16  | 6,00 | -111,0138  | 0,0000     | -214,6576  | 181,6120   |
| 17  | 6,40 | -62,5429   | 1,7266     | -192,6502  | 533,9374   |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag.diPag.<br>115 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-----------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-----------------------------|

| 18 | 6,80 | -3,5124 | 21,0055 | -195,0488 | 234,0132   |
|----|------|---------|---------|-----------|------------|
| 10 | 7.20 | -1 0603 | 3 3636  | -176 8864 | 2/1 3/12/1 |

#### COMBINAZIONE n° 3

| 200 E20E  |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 300,3203  | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 356,7458  | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 153,8851  | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| X = 3,90  | [m]                                                                                                                                                                                                                                              | Y = -4,17                                                                                                                                                                                                                                                                                                             | [m]                                                                                                                                                                                                                                                                                                                                                          |
| 23,33     | [°]                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 57,07     | [°]                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 356,9118  | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| X = 3,90  | [m]                                                                                                                                                                                                                                              | Y = -3,28                                                                                                                                                                                                                                                                                                             | [m]                                                                                                                                                                                                                                                                                                                                                          |
| 45,51     | [°]                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| X = 3,90  | [m]                                                                                                                                                                                                                                              | Y = -7,80                                                                                                                                                                                                                                                                                                             | [m]                                                                                                                                                                                                                                                                                                                                                          |
| 555,6720  | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| X = 2,01  | [m]                                                                                                                                                                                                                                              | Y = -2,93                                                                                                                                                                                                                                                                                                             | [m]                                                                                                                                                                                                                                                                                                                                                          |
| 83,0817   | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 41,5408   | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 136,3821  | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 68,1911   | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
|           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 903,9318  | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 1299,1605 | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 1299,1605 | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 903,9318  | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 1,51      | [m]                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| •         | [m]                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 1582,6909 | [kN]                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 34,83     |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
| 1962,6672 | [kNm]                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |
|           | 153,8851<br>X = 3,90<br>23,33<br>57,07<br>356,9118<br>X = 3,90<br>45,51<br>X = 3,90<br>555,6720<br>X = 2,01<br>83,0817<br>41,5408<br>136,3821<br>68,1911<br>903,9318<br>1299,1605<br>1299,1605<br>903,9318<br>1,51<br>5,22<br>1582,6909<br>34,83 | 356,7458 [kN] 153,8851 [kN] X = 3,90 [m] 23,33 [°] 57,07 [°]  356,9118 [kN] X = 3,90 [m] 45,51 [°] X = 3,90 [m]  555,6720 [kN] X = 2,01 [m] 83,0817 [kN] 41,5408 [kN] 136,3821 [kN] 136,3821 [kN] 903,9318 [kN] 1299,1605 [kN] 1299,1605 [kN] 1299,1605 [kN] 903,9318 [kN] 1,51 [m] 5,22 [m] 1582,6909 [kN] 34,83 [°] | 356,7458 [kN] 153,8851 [kN] X = 3,90 [m] Y = -4,17 23,33 [°] 57,07 [°]  356,9118 [kN] X = 3,90 [m] Y = -3,28 45,51 [°] X = 3,90 [m] Y = -7,80  555,6720 [kN] X = 2,01 [m] Y = -2,93 83,0817 [kN] 41,5408 [kN] 136,3821 [kN] 136,3821 [kN] 68,1911 [kN]  903,9318 [kN] 1299,1605 [kN] 1299,1605 [kN] 1299,1605 [kN] 151 [m] 5,22 [m] 1582,6909 [kN] 34,83 [°] |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | C⊞<br>17 | WBS<br>OS0900 | 년<br>영<br>교 | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>116 di<br>136 |
|---------------|---------------|--------------|----------|---------------|-------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|----------|---------------|-------------|---------------|-----------|-------------------------------|

# Sollecitazioni paramento

## Combinazione n° 3

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Y    | N        | М         | т            |
|-----|------|----------|-----------|--------------|
|     | =    |          |           | <del>-</del> |
| 1   | 0,00 | 0,000    | 0,0000    | 0,0000       |
| 2   | 0,33 | 4,1128   | 2,9816    | 18,6648      |
| 3   | 0,65 | 8,4833   | 12,0699   | 38,0032      |
| 4   | 0,98 | 13,1114  | 27,4782   | 58,0068      |
| 5   | 1,30 | 17,9971  | 49,4179   | 78,6734      |
| 6   | 1,63 | 23,1404  | 78,1003   | 100,0030     |
| 7   | 1,95 | 28,5413  | 113,7367  | 121,9956     |
| 8   | 2,27 | 34,1999  | 156,5385  | 144,6513     |
| 9   | 2,60 | 40,1161  | 206,7168  | 167,9700     |
| 10  | 2,93 | 46,2899  | 264,4829  | 191,9518     |
| 11  | 3,25 | 52,7214  | 330,0481  | 216,5965     |
| 12  | 3,58 | 59,4104  | 403,6238  | 241,9044     |
| 13  | 3,90 | 66,3571  | 485,4211  | 267,8752     |
| 14  | 4,23 | 73,5614  | 575,6514  | 294,5091     |
| 15  | 4,55 | 81,0234  | 674,5260  | 321,8060     |
| 16  | 4,88 | 88,7429  | 782,2561  | 349,7660     |
| 17  | 5,20 | 96,7201  | 899,0530  | 378,3890     |
| 18  | 5,53 | 104,9549 | 1025,1279 | 407,6750     |
| 19  | 5,85 | 113,4474 | 1160,6923 | 437,6241     |
| 20  | 6,17 | 122,1974 | 1305,9572 | 468,2362     |
| 21  | 6,50 | 131,2051 | 1461,1258 | 499,4154     |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | id.<br>doci.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>117 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|---------------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|---------------------|---------------|-----------|-------------------------------|

# Inviluppo sollecitazioni piastra di fondazione

## Combinazione n° 3

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 6.50

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | ,    |            | $M_{ymax}$ | $T_{ymin}$ | $T_{ymax}$ |
|-----|------|------------|------------|------------|------------|
| 1   | 0,00 | -1,1610    | 0,8061     | -27,3795   | 61,8478    |
| 2   | 0,17 | -6,5378    | 20,5226    | -203,5855  | 163,3296   |
| 3   | 0,35 | -44,7251   | 50,2738    | -207,2301  | 290,1660   |
| 4   | 0,55 | -60,1366   | 106,8479   | 0,0000     | 464,4184   |
| 5   | 0,75 | 0,0000     | 191,8129   | 0,0000     | 795,8552   |
| 6   | 0,95 | 0,0000     | 298,9381   | 0,0000     | 1344,9460  |
| 7   | 1,15 | 0,0000     | 462,1466   | 0,0000     | 1965,4119  |
| 8   | 1,45 | 0,0000     | 1060,8166  | 0,0000     | 1935,2017  |
| 9   | 2,60 | -2149,1599 | 0,0000     | -812,1869  | 0,0000     |
| 10  | 2,85 | -1950,9452 | 0,0000     | -772,7624  | 0,0000     |
| 11  | 3,05 | -1856,9723 | 0,0000     | -725,7893  | 0,0000     |
| 12  | 3,25 | -1738,6028 | 0,0000     | -730,8469  | 0,0000     |
| 13  | 3,45 | -1595,3038 | 0,0000     | -842,9046  | 0,0000     |
| 14  | 3,65 | -1423,0930 | 0,0000     | -1007,7500 | 0,0000     |
| 15  | 3,87 | -1230,4132 | 0,0000     | -884,8648  | 0,0000     |
| 16  | 4,09 | -1064,9465 | 0,0000     | -800,1612  | 0,0000     |
| 17  | 4,31 | -905,2506  | 0,0000     | -743,5203  | 0,0000     |
| 18  | 4,52 | -752,7248  | 0,0000     | -698,2604  | 0,0000     |
| 19  | 4,74 | -613,6740  | 0,0000     | -666,1795  | 0,0000     |
| 20  | 4,96 | -482,3675  | 0,0000     | -643,7890  | 0,0000     |
| 21  | 5,18 | -357,0679  | 0,0000     | -641,3521  | 0,0000     |
| 22  | 5,40 | -248,5377  | 0,0000     | -667,4561  | 0,0000     |
| 23  | 5,60 | -166,3334  | 0,0000     | -496,1187  | 0,0000     |
| 24  | 5,80 | -100,0887  | 0,0000     | -334,7505  | 0,0000     |
| 25  | 6,00 | -51,1524   | 0,0000     | -227,1820  | 0,0000     |
| 26  | 6,20 | -19,2552   | 0,0000     | -141,7768  | 17,9176    |
| 27  | 6,50 | 0,0000     | 2,3381     | -35,4417   | 0,0000     |

| Nr. | X    | $M_{xmin}$ | $M_{xmax}$ | T <sub>xmin</sub> | $T_{xmax}$ |
|-----|------|------------|------------|-------------------|------------|
| 1   | 0,00 | -2,2208    | 4,1850     | -43,8378          | 314,5481   |
| 2   | 0,40 | -1,6474    | 37,3293    | -419,1616         | 347,4634   |
| 3   | 0,80 | -111,7242  | 51,6890    | -1000,2657        | 345,1192   |
| 4   | 1,20 | -198,1913  | 79,9049    | -363,7579         | 430,6348   |
| 5   | 1,60 | -85,8229   | 40,9427    | -267,7767         | 1088,8784  |
| 6   | 2,00 | -24,1447   | 95,7494    | -269,8169         | 500,2565   |
| 7   | 2,40 | -39,1888   | 130,4198   | -132,8756         | 140,9984   |
| 8   | 2,80 | -27,2120   | 96,4978    | -489,1899         | 259,4096   |
| 9   | 3,20 | -82,5549   | 34,2231    | -1020,2882        | 257,4039   |
| 10  | 3,60 | -187,0130  | 68,6796    | -351,4131         | 351,4131   |
| 11  | 4,00 | -82,5549   | 34,2231    | -257,4039         | 1020,2882  |
| 12  | 4,40 | -27,2120   | 96,4978    | -259,4096         | 489,1899   |
| 13  | 4,80 | -39,1888   | 130,4198   | -140,9984         | 132,8756   |
| 14  | 5,20 | -24,1447   | 95,7494    | -500,2565         | 269,8169   |
| 15  | 5,60 | -85,8229   | 40,9427    | -1088,8784        | 267,7767   |
| 16  | 6,00 | -198,1913  | 79,9049    | -430,6348         | 363,7579   |
| 17  | 6,40 | -111,7242  | 51,6890    | -345,1192         | 1000,2657  |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>118 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|

| 18 | 6,80 | -1,6474 | 37,3293 | -347,4634 | 419,1616 |
|----|------|---------|---------|-----------|----------|
| 19 | 7,20 | -2,2208 | 4,1850  | -314,5481 | 43,8378  |

#### COMBINAZIONE n° 4

| Valore della spinta statica                                  | 388,5205  | [kN]   |           |     |
|--------------------------------------------------------------|-----------|--------|-----------|-----|
| Componente orizzontale della spinta statica                  | 356,7458  | [kN]   |           |     |
| Componente verticale della spinta statica                    | 153,8851  | [kN]   |           |     |
| Punto d'applicazione della spinta                            | X = 3,90  | [m]    | Y = -4,17 | [m] |
| Inclinaz. della spinta rispetto alla normale alla superficie | 23,33     | [°]    |           |     |
| Inclinazione linea di rottura in condizioni statiche         | 57,07     | [°]    |           |     |
|                                                              |           |        |           |     |
| Incremento sismico della spinta                              | 289,9647  | [kN]   |           |     |
| Punto d'applicazione dell'incremento sismico di spinta       | X = 3,90  | [m]    | Y = -3,28 | [m] |
| Inclinazione linea di rottura in condizioni sismiche         | 41,63     | [°]    |           |     |
| Punto d'applicazione della spinta della falda                | X = 3,90  | [m]    | Y = -7,80 | [m] |
|                                                              |           |        |           |     |
| Peso terrapieno gravante sulla fondazione a monte            | 555,6720  | [kN]   |           |     |
| Baricentro terrapieno gravante sulla fondazione a monte      | X = 2,01  | [m]    | Y = -2,93 | [m] |
| Inerzia del muro                                             | 83,0817   | [kN]   |           |     |
| Inerzia verticale del muro                                   | -41,5408  | [kN]   |           |     |
| Inerzia del terrapieno fondazione di monte                   | 136,3821  | [kN]   |           |     |
| Inerzia verticale del terrapieno fondazione di monte         | -68,1911  | [kN]   |           |     |
| Oin Marchi                                                   |           |        |           |     |
| Risultanti                                                   | 042.4500  | [].61] |           |     |
| Risultante dei carichi applicati in dir. orizzontale         | 842,4599  | [kN]   |           |     |
| Risultante dei carichi applicati in dir. verticale           | 1053,1802 | [kN]   |           |     |
| Sforzo normale sul piano di posa della fondazione            | 1053,1802 | [kN]   |           |     |
| Sforzo tangenziale sul piano di posa della fondazione        | 842,4599  | [kN]   |           |     |
| Eccentricità rispetto al baricentro della fondazione         | 1,82      | [m]    |           |     |
| Lunghezza fondazione reagente                                | 4,28      | [m]    |           |     |
| Risultante in fondazione                                     | 1348,6761 | [kN]   |           |     |
| Inclinazione della risultante (rispetto alla normale)        | 38,66     | [°]    |           |     |
| Momento rispetto al baricentro della fondazione              | 1920,7537 | [kNm]  |           |     |
|                                                              |           |        |           |     |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | id.<br>doci.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>119 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|---------------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|---------------------|---------------|-----------|-------------------------------|

# Sollecitazioni paramento

### Combinazione n° 4

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Υ    | N        | М         | Т        |
|-----|------|----------|-----------|----------|
| 1   | 0,00 | 0,000    | 0,000     | 0,0000   |
| 2   | 0,33 | 4,1128   | 2,7250    | 17,0853  |
| 3   | 0,65 | 8,4833   | 11,0432   | 34,8442  |
| 4   | 0,98 | 13,1114  | 25,1681   | 53,2682  |
| 5   | 1,30 | 17,9971  | 45,3111   | 72,3553  |
| 6   | 1,63 | 23,1404  | 71,6835   | 92,1054  |
| 7   | 1,95 | 28,5413  | 104,4966  | 112,5185 |
| 8   | 2,27 | 34,1999  | 143,9616  | 133,5947 |
| 9   | 2,60 | 40,1161  | 190,2898  | 155,3339 |
| 10  | 2,93 | 46,2899  | 243,6925  | 177,7361 |
| 11  | 3,25 | 52,7214  | 304,3810  | 200,8014 |
| 12  | 3,58 | 59,4104  | 372,5666  | 224,5297 |
| 13  | 3,90 | 66,3571  | 448,4605  | 248,9210 |
| 14  | 4,23 | 73,5614  | 532,2740  | 273,9754 |
| 15  | 4,55 | 81,0234  | 624,2184  | 299,6928 |
| 16  | 4,88 | 88,7429  | 724,5051  | 326,0733 |
| 17  | 5,20 | 96,7201  | 833,3451  | 353,1168 |
| 18  | 5,53 | 104,9549 | 950,9500  | 380,8233 |
| 19  | 5,85 | 113,4474 | 1077,5308 | 409,1928 |
| 20  | 6,17 | 122,1974 | 1213,2990 | 438,2254 |
| 21  | 6,50 | 131,2051 | 1358,4574 | 467,8251 |
|     |      |          |           |          |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | id.<br>doci.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>120 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|---------------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|---------------------|---------------|-----------|-------------------------------|

# Inviluppo sollecitazioni piastra di fondazione

## Combinazione n° 4

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 6.50

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Υ    | $M_{ymin}$ | $M_{ymax}$ | T <sub>ymin</sub> | $T_{ymax}$ |
|-----|------|------------|------------|-------------------|------------|
| 1   | 0,00 | -1,0386    | 0,7346     | -24,8714          | 55,7060    |
| 2   | 0,17 | -5,9343    | 18,4589    | -184,2046         | 146,6821   |
| 3   | 0,35 | -40,5053   | 45,1396    | -187,8547         | 260,5136   |
| 4   | 0,55 | -54,6823   | 95,8713    | 0,0000            | 416,9213   |
| 5   | 0,75 | 0,0000     | 172,0757   | 0,0000            | 714,9543   |
| 6   | 0,95 | 0,0000     | 268,1411   | 0,0000            | 1209,6064  |
| 7   | 1,15 | 0,0000     | 414,6551   | 0,0000            | 1768,4944  |
| 8   | 1,45 | 0,0000     | 953,2235   | 0,0000            | 1740,3587  |
| 9   | 2,60 | -2345,1271 | 0,0000     | -897,3641         | 0,0000     |
| 10  | 2,85 | -2125,7521 | 0,0000     | -857,5626         | 0,0000     |
| 11  | 3,05 | -2004,8293 | 0,000      | -812,9997         | 0,0000     |
| 12  | 3,25 | -1864,7036 | 0,000      | -810,6498         | 0,0000     |
| 13  | 3,45 | -1705,6567 | 0,0000     | -898,4985         | 0,0000     |
| 14  | 3,65 | -1524,4803 | 0,0000     | -1024,9830        | 0,0000     |
| 15  | 3,87 | -1323,5291 | 0,0000     | -916,5238         | 0,0000     |
| 16  | 4,09 | -1146,4227 | 0,0000     | -840,1944         | 0,0000     |
| 17  | 4,31 | -975,8711  | 0,0000     | -787,9076         | 0,0000     |
| 18  | 4,52 | -816,1655  | 0,0000     | -747,3727         | 0,0000     |
| 19  | 4,74 | -666,5825  | 0,0000     | -717,7972         | 0,0000     |
| 20  | 4,96 | -524,7081  | 0,0000     | -698,7267         | 0,0000     |
| 21  | 5,18 | -388,5469  | 0,0000     | -702,5403         | 0,0000     |
| 22  | 5,40 | -269,4874  | 0,0000     | -738,7205         | 0,0000     |
| 23  | 5,60 | -180,2369  | 0,0000     | -546,3667         | 0,0000     |
| 24  | 5,80 | -108,3148  | 0,0000     | -365,8996         | 0,0000     |
| 25  | 6,00 | -55,2520   | 0,0000     | -247,7846         | 0,0000     |
| 26  | 6,20 | -20,7476   | 0,0000     | -154,7925         | 23,8958    |
| 27  | 6,50 | 0,0000     | 2,4547     | -40,1604          | 4,9633     |
|     |      |            |            |                   |            |

| Nr. | x    | $M_{xmin}$ | $M_{xmax}$ | T <sub>xmin</sub> | $T_{xmax}$ |
|-----|------|------------|------------|-------------------|------------|
| 1   | 0,00 | -1,9613    | 3,8154     | -39,4813          | 283,7550   |
| 2   | 0,40 | -1,5017    | 33,6794    | -377,7676         | 313,3818   |
| 3   | 0,80 | -100,7275  | 60,5372    | -895,6670         | 311,0302   |
| 4   | 1,20 | -178,6988  | 93,3146    | -322,8122         | 382,0135   |
| 5   | 1,60 | -77,3829   | 48,1872    | -287,1673         | 976,6082   |
| 6   | 2,00 | -27,3180   | 86,3338    | -243,3858         | 450,8253   |
| 7   | 2,40 | -44,8703   | 117,5947   | -119,6105         | 126,9235   |
| 8   | 2,80 | -31,1047   | 87,0084    | -440,8507         | 234,0041   |
| 9   | 3,20 | -74,4374   | 40,0350    | -914,9723         | 269,1197   |
| 10  | 3,60 | -168,6238  | 79,8973    | -311,8700         | 311,8700   |
| 11  | 4,00 | -74,4374   | 40,0350    | -269,1197         | 914,9723   |
| 12  | 4,40 | -31,1047   | 87,0084    | -234,0041         | 440,8507   |
| 13  | 4,80 | -44,8703   | 117,5947   | -126,9235         | 119,6105   |
| 14  | 5,20 | -27,3180   | 86,3338    | -450,8253         | 243,3858   |
| 15  | 5,60 | -77,3829   | 48,1872    | -976,6082         | 287,1673   |
| 16  | 6,00 | -178,6988  | 93,3146    | -382,0135         | 322,8122   |
| 17  | 6,40 | -100,7275  | 60,5372    | -311,0302         | 895,6670   |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>121 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|

| 18 | 6,80 | -1,5017 | 33,6794 | -313,3818 | 377,7676 |
|----|------|---------|---------|-----------|----------|
| 19 | 7.20 | -1 9613 | 3 8154  | -283 7550 | 39.4813  |

#### COMBINAZIONE n° 5

### Peso muro favorevole e Peso terrapieno favorevole

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche | 388,5205<br>356,7458<br>153,8851<br>X = 3,90<br>23,33<br>57,07 | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]<br>[°] | Y = -4,17 | [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|-----------|-----|
| Incremento sismico della spinta                                                                                                                                                                                                                                       | 356,9118                                                       | [kN]                                      |           |     |
| Punto d'applicazione dell'incremento sismico di spinta                                                                                                                                                                                                                | X = 3,90                                                       | [m]                                       | Y = -3,28 | [m] |
| Inclinazione linea di rottura in condizioni sismiche                                                                                                                                                                                                                  | 45,51                                                          | [°]                                       |           |     |
| Punto d'applicazione della spinta della falda                                                                                                                                                                                                                         | X = 3,90                                                       | [m]                                       | Y = -7,80 | [m] |
| Peso terrapieno gravante sulla fondazione a monte                                                                                                                                                                                                                     | 555,6720                                                       | [kN]                                      |           |     |
| Baricentro terrapieno gravante sulla fondazione a monte                                                                                                                                                                                                               | X = 2,01                                                       | [m]                                       | Y = -2,93 | [m] |
| Inerzia del muro                                                                                                                                                                                                                                                      | 83,0817                                                        | [kN]                                      | . 2,55    | []  |
| Inerzia verticale del muro                                                                                                                                                                                                                                            | 41,5408                                                        | [kN]                                      |           |     |
| Inerzia del terrapieno fondazione di monte                                                                                                                                                                                                                            | 136,3821                                                       | [kN]                                      |           |     |
| Inerzia verticale del terrapieno fondazione di monte                                                                                                                                                                                                                  | 68,1911                                                        | [kN]                                      |           |     |
| <u>Risultanti</u>                                                                                                                                                                                                                                                     |                                                                |                                           |           |     |
| Risultante dei carichi applicati in dir. orizzontale                                                                                                                                                                                                                  | 903,9318                                                       | [kN]                                      |           |     |
| Risultante dei carichi applicati in dir. verticale                                                                                                                                                                                                                    | 1299,1605                                                      | [kN]                                      |           |     |
| Sforzo normale sul piano di posa della fondazione                                                                                                                                                                                                                     | 1299,1605                                                      | [kN]                                      |           |     |
| Sforzo tangenziale sul piano di posa della fondazione                                                                                                                                                                                                                 | 903,9318                                                       | [kN]                                      |           |     |
| Eccentricità rispetto al baricentro della fondazione                                                                                                                                                                                                                  | 1,51                                                           | [m]                                       |           |     |
| Lunghezza fondazione reagente                                                                                                                                                                                                                                         | 5,22                                                           | [m]                                       |           |     |
| Risultante in fondazione                                                                                                                                                                                                                                              | 1582,6909                                                      | [kN]                                      |           |     |
| Inclinazione della risultante (rispetto alla normale)                                                                                                                                                                                                                 | 34,83                                                          | [°]                                       |           |     |
| Momento rispetto al baricentro della fondazione                                                                                                                                                                                                                       | 1962,6672                                                      | [kNm]                                     |           |     |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>122 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|

# Sollecitazioni paramento

### Combinazione n° 5

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Y    | N        | М         | т            |
|-----|------|----------|-----------|--------------|
|     | =    |          |           | <del>-</del> |
| 1   | 0,00 | 0,000    | 0,0000    | 0,0000       |
| 2   | 0,33 | 4,1128   | 2,9816    | 18,6648      |
| 3   | 0,65 | 8,4833   | 12,0699   | 38,0032      |
| 4   | 0,98 | 13,1114  | 27,4782   | 58,0068      |
| 5   | 1,30 | 17,9971  | 49,4179   | 78,6734      |
| 6   | 1,63 | 23,1404  | 78,1003   | 100,0030     |
| 7   | 1,95 | 28,5413  | 113,7367  | 121,9956     |
| 8   | 2,27 | 34,1999  | 156,5385  | 144,6513     |
| 9   | 2,60 | 40,1161  | 206,7168  | 167,9700     |
| 10  | 2,93 | 46,2899  | 264,4829  | 191,9518     |
| 11  | 3,25 | 52,7214  | 330,0481  | 216,5965     |
| 12  | 3,58 | 59,4104  | 403,6238  | 241,9044     |
| 13  | 3,90 | 66,3571  | 485,4211  | 267,8752     |
| 14  | 4,23 | 73,5614  | 575,6514  | 294,5091     |
| 15  | 4,55 | 81,0234  | 674,5260  | 321,8060     |
| 16  | 4,88 | 88,7429  | 782,2561  | 349,7660     |
| 17  | 5,20 | 96,7201  | 899,0530  | 378,3890     |
| 18  | 5,53 | 104,9549 | 1025,1279 | 407,6750     |
| 19  | 5,85 | 113,4474 | 1160,6923 | 437,6241     |
| 20  | 6,17 | 122,1974 | 1305,9572 | 468,2362     |
| 21  | 6,50 | 131,2051 | 1461,1258 | 499,4154     |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>123 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|

# Inviluppo sollecitazioni piastra di fondazione

## Combinazione n° 5

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 6.50

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Υ    | $M_{ymin}$ | $M_{ymax}$ | $T_{ymin}$ | $T_{ymax}$ |
|-----|------|------------|------------|------------|------------|
| 1   | 0,00 | -1,1610    | 0,8061     | -27,3795   | 61,8478    |
| 2   | 0,17 | -6,5378    | 20,5226    | -203,5855  | 163,3296   |
| 3   | 0,35 | -44,7251   | 50,2738    | -207,2301  | 290,1660   |
| 4   | 0,55 | -60,1366   | 106,8479   | 0,0000     | 464,4184   |
| 5   | 0,75 | 0,0000     | 191,8129   | 0,0000     | 795,8552   |
| 6   | 0,95 | 0,0000     | 298,9381   | 0,0000     | 1344,9460  |
| 7   | 1,15 | 0,0000     | 462,1466   | 0,0000     | 1965,4119  |
| 8   | 1,45 | 0,0000     | 1060,8166  | 0,0000     | 1935,2017  |
| 9   | 2,60 | -2149,1599 | 0,0000     | -812,1869  | 0,0000     |
| 10  | 2,85 | -1950,9452 | 0,0000     | -772,7624  | 0,0000     |
| 11  | 3,05 | -1856,9723 | 0,0000     | -725,7893  | 0,0000     |
| 12  | 3,25 | -1738,6028 | 0,0000     | -730,8469  | 0,0000     |
| 13  | 3,45 | -1595,3038 | 0,0000     | -842,9046  | 0,0000     |
| 14  | 3,65 | -1423,0930 | 0,0000     | -1007,7500 | 0,0000     |
| 15  | 3,87 | -1230,4132 | 0,0000     | -884,8648  | 0,0000     |
| 16  | 4,09 | -1064,9465 | 0,0000     | -800,1612  | 0,0000     |
| 17  | 4,31 | -905,2506  | 0,0000     | -743,5203  | 0,0000     |
| 18  | 4,52 | -752,7248  | 0,0000     | -698,2604  | 0,0000     |
| 19  | 4,74 | -613,6740  | 0,0000     | -666,1795  | 0,0000     |
| 20  | 4,96 | -482,3675  | 0,0000     | -643,7890  | 0,0000     |
| 21  | 5,18 | -357,0679  | 0,0000     | -641,3521  | 0,0000     |
| 22  | 5,40 | -248,5377  | 0,0000     | -667,4561  | 0,0000     |
| 23  | 5,60 | -166,3334  | 0,0000     | -496,1187  | 0,0000     |
| 24  | 5,80 | -100,0887  | 0,0000     | -334,7505  | 0,0000     |
| 25  | 6,00 | -51,1524   | 0,0000     | -227,1820  | 0,0000     |
| 26  | 6,20 | -19,2552   | 0,0000     | -141,7768  | 17,9176    |
| 27  | 6,50 | 0,0000     | 2,3381     | -35,4417   | 0,0000     |

| Nr. | x    | $M_{xmin}$ | $M_{xmax}$ | T <sub>xmin</sub> | T <sub>xmax</sub> |
|-----|------|------------|------------|-------------------|-------------------|
| 1   | 0,00 | -2,2208    | 4,1850     | -43,8378          | 314,5481          |
| 2   | 0,40 | -1,6474    | 37,3293    | -419,1616         | 347,4634          |
| 3   | 0,80 | -111,7242  | 51,6890    | -1000,2657        | 345,1192          |
| 4   | 1,20 | -198,1913  | 79,9049    | -363,7579         | 430,6348          |
| 5   | 1,60 | -85,8229   | 40,9427    | -267,7767         | 1088,8784         |
| 6   | 2,00 | -24,1447   | 95,7494    | -269,8169         | 500,2565          |
| 7   | 2,40 | -39,1888   | 130,4198   | -132,8756         | 140,9984          |
| 8   | 2,80 | -27,2120   | 96,4978    | -489,1899         | 259,4096          |
| 9   | 3,20 | -82,5549   | 34,2231    | -1020,2882        | 257,4039          |
| 10  | 3,60 | -187,0130  | 68,6796    | -351,4131         | 351,4131          |
| 11  | 4,00 | -82,5549   | 34,2231    | -257,4039         | 1020,2882         |
| 12  | 4,40 | -27,2120   | 96,4978    | -259,4096         | 489,1899          |
| 13  | 4,80 | -39,1888   | 130,4198   | -140,9984         | 132,8756          |
| 14  | 5,20 | -24,1447   | 95,7494    | -500,2565         | 269,8169          |
| 15  | 5,60 | -85,8229   | 40,9427    | -1088,8784        | 267,7767          |
| 16  | 6,00 | -198,1913  | 79,9049    | -430,6348         | 363,7579          |
| 17  | 6,40 | -111,7242  | 51,6890    | -345,1192         | 1000,2657         |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>124 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|

18,80

184,0727

[°]

[kNm]

| 18 | 6,80 | -1,6474 | 37,3293 | -347,4634 | 419,1616 |
|----|------|---------|---------|-----------|----------|
| 10 | 7.20 | -2 2208 | / 1850  | -314 5481 | 12 8278  |

#### COMBINAZIONE n° 6

Inclinazione della risultante (rispetto alla normale)

Momento rispetto al baricentro della fondazione

| Valore della spinta statica                                  | 388,5205  | [kN] |           |     |
|--------------------------------------------------------------|-----------|------|-----------|-----|
| Componente orizzontale della spinta statica                  | 356,7458  | [kN] |           |     |
| Componente verticale della spinta statica                    | 153,8851  | [kN] |           |     |
| Punto d'applicazione della spinta                            | X = 3,90  | [m]  | Y = -4,17 | [m] |
| Inclinaz. della spinta rispetto alla normale alla superficie | 23,33     | [°]  |           |     |
| Inclinazione linea di rottura in condizioni statiche         | 57,07     | [°]  |           |     |
| Punto d'applicazione della spinta della falda                | X = 3,90  | [m]  | Y = -7,80 | [m] |
| Peso terrapieno gravante sulla fondazione a monte            | 555,6720  | [kN] |           |     |
| Baricentro terrapieno gravante sulla fondazione a monte      | X = 2,01  | [m]  | Y = -2,93 | [m] |
| <u>Risultanti</u>                                            |           |      |           |     |
| Risultante dei carichi applicati in dir. orizzontale         | 356,7458  | [kN] |           |     |
| Risultante dei carichi applicati in dir. verticale           | 1048,0630 | [kN] |           |     |
| Sforzo normale sul piano di posa della fondazione            | 1048,0630 | [kN] |           |     |
| Sforzo tangenziale sul piano di posa della fondazione        | 356,7458  | [kN] |           |     |
| Eccentricità rispetto al baricentro della fondazione         | 0,18      | [m]  |           |     |
| Lunghezza fondazione reagente                                | 6,50      | [m]  |           |     |
| Risultante in fondazione                                     | 1107,1150 | [kN] |           |     |
|                                                              |           |      |           |     |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>125 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|

# Sollecitazioni paramento

### Combinazione n° 6

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Υ    | N        | M        | т        |
|-----|------|----------|----------|----------|
| 1   | 0,00 | 0,0000   | 0,000    | 0,0000   |
| 2   | 0,33 | 4,1128   | 0,7752   | 5,0762   |
| 3   | 0,65 | 8,4833   | 3,2304   | 10,7628  |
| 4   | 0,98 | 13,1114  | 7,5586   | 17,0512  |
| 5   | 1,30 | 17,9971  | 13,9505  | 23,9395  |
| 6   | 1,63 | 23,1404  | 22,5969  | 31,4276  |
| 7   | 1,95 | 28,5413  | 33,6885  | 39,5155  |
| 8   | 2,27 | 34,1999  | 47,4161  | 48,2031  |
| 9   | 2,60 | 40,1161  | 63,9703  | 57,4906  |
| 10  | 2,93 | 46,2899  | 83,5420  | 67,3779  |
| 11  | 3,25 | 52,7214  | 106,3219 | 77,8650  |
| 12  | 3,58 | 59,4104  | 132,5006 | 88,9519  |
| 13  | 3,90 | 66,3571  | 162,2689 | 100,6386 |
| 14  | 4,23 | 73,5614  | 195,8176 | 112,9251 |
| 15  | 4,55 | 81,0234  | 233,3373 | 125,8114 |
| 16  | 4,88 | 88,7429  | 275,0189 | 139,2975 |
| 17  | 5,20 | 96,7201  | 321,0529 | 153,3835 |
| 18  | 5,53 | 104,9549 | 371,6303 | 168,0692 |
| 19  | 5,85 | 113,4474 | 426,9416 | 183,3547 |
| 20  | 6,17 | 122,1974 | 487,1777 | 199,2401 |
| 21  | 6,50 | 131,2051 | 552,5208 | 215,6292 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| CEE<br>17            | OSO900 | ld.<br>doc.<br>REL | N. prog.<br>01         | Rev.<br>A                                   | Pag. di Pag.<br>126 di<br>136                                                           |
|----------------------|--------|--------------------|------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------|
| atto Settore<br>12 E |        |                    | 17 Settore CE WBS doc. | iffo   Seffore   CEE   WBS   doc.   N.prog. | itto Settore CE   WBS   doc.   N. prog.   Rev.<br>12   F   17   OSO900   doc.   0.1   A |

# Inviluppo sollecitazioni piastra di fondazione

## Combinazione n° 6

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 6.50

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Y    | $M_{ymin}$ | $M_{ymax}$ | $T_{ymin}$ | $T_{ymax}$ |
|-----|------|------------|------------|------------|------------|
| 1   | 0,00 | -0,4794    | 0,4081     | -13,3772   | 27,6206    |
| 2   | 0,17 | -3,1757    | 9,0267     | -95,6102   | 70,5849    |
| 3   | 0,35 | -21,2187   | 21,6740    | -99,3146   | 124,9808   |
| 4   | 0,55 | -29,7538   | 45,7033    | 0,0000     | 199,8169   |
| 5   | 0,75 | 0,0000     | 81,8675    | 0,0000     | 345,1395   |
| 6   | 0,95 | 0,0000     | 127,3844   | 0,0000     | 591,0254   |
| 7   | 1,15 | 0,0000     | 197,5964   | 0,0000     | 868,4849   |
| 8   | 1,45 | 0,0000     | 461,4723   | 0,0000     | 849,8378   |
| 9   | 2,60 | -706,4542  | 0,0000     | -418,5809  | 98,2287    |
| 10  | 2,85 | -585,6533  | 0,0000     | -382,8947  | 128,5663   |
| 11  | 3,05 | -550,2493  | 0,0000     | -278,8184  | 0,0000     |
| 12  | 3,25 | -516,6869  | 0,0000     | -279,3148  | 0,0000     |
| 13  | 3,45 | -463,6494  | 0,0000     | -347,2753  | 0,0000     |
| 14  | 3,65 | -388,2212  | 0,0000     | -478,4878  | 0,0000     |
| 15  | 3,87 | -305,3228  | 0,0000     | -378,2621  | 0,0000     |
| 16  | 4,09 | -246,6260  | 0,0000     | -302,1863  | 0,0000     |
| 17  | 4,31 | -193,9543  | 0,0000     | -245,5014  | 0,0000     |
| 18  | 4,52 | -148,5409  | 0,0000     | -196,3312  | 0,0000     |
| 19  | 4,74 | -111,2992  | 0,0000     | -155,0692  | 0,0000     |
| 20  | 4,96 | -82,1830   | 0,0000     | -126,4894  | 0,0000     |
| 21  | 5,18 | -60,2625   | 0,0000     | -102,7359  | 0,0000     |
| 22  | 5,40 | -48,2040   | 0,0000     | -83,3745   | 14,6415    |
| 23  | 5,60 | -46,3955   | 0,0000     | -69,1991   | 0,0000     |
| 24  | 5,80 | -38,5722   | 0,0000     | -58,5132   | 0,0000     |
| 25  | 6,00 | -27,5672   | 0,0000     | -81,5382   | 0,000      |
| 26  | 6,20 | -11,1915   | 0,0000     | -115,7845  | 0,000      |
| 27  | 6,50 | 0,000      | 1,5171     | -26,5558   | 0,9096     |

| Nr. | X    | $M_{xmin}$ | $M_{xmax}$ | T <sub>xmin</sub> | $T_{xmax}$ |
|-----|------|------------|------------|-------------------|------------|
| 1   | 0,00 | -0,7754    | 3,0222     | -19,5460          | 143,1339   |
| 2   | 0,40 | -6,0992    | 16,9975    | -188,5372         | 157,6346   |
| 3   | 0,80 | -50,4673   | 1,4757     | -420,5003         | 155,2054   |
| 4   | 1,20 | -89,6089   | 0,0000     | -137,6058         | 162,6899   |
| 5   | 1,60 | -38,8082   | 2,0848     | -120,4805         | 465,4151   |
| 6   | 2,00 | 0,0000     | 43,3002    | -122,6050         | 224,8566   |
| 7   | 2,40 | 0,0000     | 58,9780    | -58,9267          | 62,5376    |
| 8   | 2,80 | 0,0000     | 43,6373    | -219,8715         | 117,9109   |
| 9   | 3,20 | -37,3365   | 2,1787     | -435,5317         | 115,8203   |
| 10  | 3,60 | -84,5762   | 0,0000     | -133,0422         | 133,0422   |
| 11  | 4,00 | -37,3365   | 2,1787     | -115,8203         | 435,5317   |
| 12  | 4,40 | 0,0000     | 43,6373    | -117,9109         | 219,8715   |
| 13  | 4,80 | 0,0000     | 58,9780    | -62,5376          | 58,9267    |
| 14  | 5,20 | 0,0000     | 43,3002    | -224,8566         | 122,6050   |
| 15  | 5,60 | -38,8082   | 2,0848     | -465,4151         | 120,4805   |
| 16  | 6,00 | -89,6089   | 0,0000     | -162,6899         | 137,6058   |
| 17  | 6,40 | -50,4673   | 1,4757     | -155,2054         | 420,5003   |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>127 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|

182,7185

[kNm]

| 18 | 6,80 | -6,0992 | 16,9975 | -157,6346 | 188,5372 |
|----|------|---------|---------|-----------|----------|
| 19 | 7 20 | -0.7754 | 3 0222  | -143 1339 | 19.5460  |

#### COMBINAZIONE n° 7

Momento rispetto al baricentro della fondazione

| Valore della spinta statica<br>Componente orizzontale della spinta statica<br>Componente verticale della spinta statica                             | 409,1950<br>375,7295<br>162,0739 | [kN]<br>[kN]<br>[kN] |           |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------|-----------|-----|
| Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche | X = 3,90<br>23,33<br>54,69       | [m]<br>[°]<br>[°]    | Y = -4,29 | [m] |
| Punto d'applicazione della spinta della falda                                                                                                       | X = 3,90                         | [m]                  | Y = -7,80 | [m] |
| Peso terrapieno gravante sulla fondazione a monte                                                                                                   | 555,6720                         | [kN]                 |           |     |
| Baricentro terrapieno gravante sulla fondazione a monte                                                                                             | X = 2,01                         | [m]                  | Y = -2,93 | [m] |
| Risultanti                                                                                                                                          |                                  |                      |           |     |
| Risultante dei carichi applicati in dir. orizzontale                                                                                                | 375,7295                         | [kN]                 |           |     |
| Risultante dei carichi applicati in dir. verticale                                                                                                  | 1056,2517                        | [kN]                 |           |     |
| Sforzo normale sul piano di posa della fondazione                                                                                                   | 1056,2517                        | [kN]                 |           |     |
| Sforzo tangenziale sul piano di posa della fondazione                                                                                               | 375,7295                         | [kN]                 |           |     |
| Eccentricità rispetto al baricentro della fondazione                                                                                                | 0,17                             | [m]                  |           |     |
| Lunghezza fondazione reagente                                                                                                                       | 6,50                             | [m]                  |           |     |
| Risultante in fondazione                                                                                                                            | 1121,0889                        | [kN]                 |           |     |
| Inclinazione della risultante (rispetto alla normale)                                                                                               | 19,58                            | [°]                  |           |     |



 $Secondo\ stralcio\ funzionale:\ Matelica\ Nord-Matelica\ Sud/Castelraimondo\ Nord$ 

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | C⊞<br>17 | WBS<br>OS0900 | 년<br>영<br>교 | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>128 di<br>136 |
|---------------|---------------|--------------|----------|---------------|-------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|----------|---------------|-------------|---------------|-----------|-------------------------------|

# Sollecitazioni paramento

### Combinazione n° 7

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm

Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Y    | N        | M        | т        |
|-----|------|----------|----------|----------|
| 1   | 0,00 | 0,0000   | 0,0000   | 0,0000   |
| 2   | 0,33 | 4,1128   | 0,7752   | 5,0762   |
| 3   | 0,65 | 8,4833   | 3,2304   | 10,7628  |
| 4   | 0,98 | 13,1114  | 7,5586   | 17,0512  |
| 5   | 1,30 | 17,9971  | 13,9505  | 23,9395  |
| 6   | 1,63 | 23,1404  | 22,5969  | 31,4276  |
| 7   | 1,95 | 28,5413  | 33,6885  | 39,5155  |
| 8   | 2,27 | 34,1999  | 47,4161  | 48,2031  |
| 9   | 2,60 | 40,1161  | 63,9703  | 57,4906  |
| 10  | 2,93 | 46,2899  | 83,5420  | 67,3779  |
| 11  | 3,25 | 52,7214  | 106,3219 | 77,8650  |
| 12  | 3,58 | 59,4104  | 132,5006 | 88,9519  |
| 13  | 3,90 | 66,3571  | 162,2689 | 100,6386 |
| 14  | 4,23 | 73,5614  | 195,8176 | 112,9251 |
| 15  | 4,55 | 81,0234  | 233,3373 | 125,8114 |
| 16  | 4,88 | 88,7429  | 275,0189 | 139,2975 |
| 17  | 5,20 | 96,7201  | 321,0529 | 153,3835 |
| 18  | 5,53 | 104,9549 | 371,6303 | 168,0692 |
| 19  | 5,85 | 113,4474 | 426,9416 | 183,3547 |
| 20  | 6,17 | 122,1974 | 487,1777 | 199,2401 |
| 21  | 6,50 | 131,2051 | 552,5208 | 215,6292 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | C⊞<br>17 | WBS<br>OS0900 | 년<br>영<br>교 | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>129 di<br>136 |
|---------------|---------------|--------------|----------|---------------|-------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|----------|---------------|-------------|---------------|-----------|-------------------------------|

# Inviluppo sollecitazioni piastra di fondazione

## Combinazione n° 7

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 6.50

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Υ    | $M_{ymin}$ | $M_{ymax}$ | T <sub>ymin</sub> | $T_{ymax}$ |
|-----|------|------------|------------|-------------------|------------|
| 1   | 0,00 | -0,4901    | 0,4143     | -13,5983          | 28,1590    |
| 2   | 0,17 | -3,2285    | 9,2073     | -97,3076          | 72,0428    |
| 3   | 0,35 | -21,5882   | 22,1235    | -101,0100         | 127,5770   |
| 4   | 0,55 | -30,2312   | 46,6642    | 0,0000            | 203,9760   |
| 5   | 0,75 | 0,0000     | 83,5953    | 0,0000            | 352,2249   |
| 6   | 0,95 | 0,0000     | 130,0804   | 0,0000            | 602,8740   |
| 7   | 1,15 | 0,0000     | 201,7539   | 0,0000            | 885,7235   |
| 8   | 1,45 | 0,0000     | 470,8911   | 0,0000            | 866,8944   |
| 9   | 2,60 | -719,8345  | 0,0000     | -421,6477         | 98,2210    |
| 10  | 2,85 | -598,2346  | 0,0000     | -385,9384         | 128,5323   |
| 11  | 3,05 | -562,6658  | 0,0000     | -281,9732         | 0,0000     |
| 12  | 3,25 | -528,5750  | 0,0000     | -282,8413         | 0,0000     |
| 13  | 3,45 | -474,8085  | 0,0000     | -351,8595         | 0,0000     |
| 14  | 3,65 | -398,4243  | 0,0000     | -484,3636         | 0,0000     |
| 15  | 3,87 | -314,3917  | 0,0000     | -383,6205         | 0,0000     |
| 16  | 4,09 | -254,6631  | 0,0000     | -307,2786         | 0,0000     |
| 17  | 4,31 | -200,9455  | 0,0000     | -250,5000         | 0,0000     |
| 18  | 4,52 | -154,4738  | 0,0000     | -201,3173         | 0,0000     |
| 19  | 4,74 | -116,1731  | 0,0000     | -159,5007         | 0,0000     |
| 20  | 4,96 | -86,0094   | 0,0000     | -130,7218         | 0,0000     |
| 21  | 5,18 | -63,0848   | 0,0000     | -106,6058         | 0,0000     |
| 22  | 5,40 | -49,9411   | 0,0000     | -86,7335          | 0,9204     |
| 23  | 5,60 | -47,1642   | 0,0000     | -71,9752          | 0,0000     |
| 24  | 5,80 | -38,7395   | 0,0000     | -60,5833          | 0,0000     |
| 25  | 6,00 | -27,4248   | 0,0000     | -82,6013          | 0,0000     |
| 26  | 6,20 | -11,0942   | 0,0000     | -114,4296         | 0,0000     |
| 27  | 6,50 | 0,000      | 1,5126     | -26,0229          | 0,8197     |

| Nr. | X    | $M_{xmin}$ | $M_{xmax}$ | $T_{xmin}$ | $T_{xmax}$ |
|-----|------|------------|------------|------------|------------|
| 1   | 0,00 | -0,7981    | 3,0068     | -19,9287   | 145,8230   |
| 2   | 0,40 | -5,9982    | 17,3170    | -192,1631  | 160,6170   |
| 3   | 0,80 | -51,4299   | 1,4964     | -429,5131  | 158,1907   |
| 4   | 1,20 | -91,3153   | 0,0000     | -141,0931  | 166,8023   |
| 5   | 1,60 | -39,5470   | 2,1066     | -122,7961  | 475,1462   |
| 6   | 2,00 | 0,0000     | 44,1245    | -124,9176  | 229,1863   |
| 7   | 2,40 | 0,000      | 60,1007    | -60,0910   | 63,7728    |
| 8   | 2,80 | 0,000      | 44,4680    | -224,1057  | 120,1337   |
| 9   | 3,20 | -38,0471   | 2,1975     | -444,6557  | 118,0462   |
| 10  | 3,60 | -86,1860   | 0,0000     | -136,4084  | 136,4084   |
| 11  | 4,00 | -38,0471   | 2,1975     | -118,0462  | 444,6557   |
| 12  | 4,40 | 0,0000     | 44,4680    | -120,1337  | 224,1057   |
| 13  | 4,80 | 0,0000     | 60,1007    | -63,7728   | 60,0910    |
| 14  | 5,20 | 0,000      | 44,1245    | -229,1863  | 124,9176   |
| 15  | 5,60 | -39,5470   | 2,1066     | -475,1462  | 122,7961   |
| 16  | 6,00 | -91,3153   | 0,0000     | -166,8023  | 141,0931   |
| 17  | 6,40 | -51,4299   | 1,4964     | -158,1907  | 429,5131   |



 $Secondo\ stralcio\ funzionale:\ Matelica\ Nord-Matelica\ Sud/Castelraimondo\ Nord$ 

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>130 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-------------------------------|

184,9417

[kNm]

| 18 | 6,80 | -5,9982 | 17,3170 | -160,6170 | 192,1631 |
|----|------|---------|---------|-----------|----------|
| 19 | 7.20 | -0 7981 | 3 0068  | -145 8230 | 19 9287  |

#### COMBINAZIONE n° 8

Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione

| 417,3159<br>383,1862 | [kN]<br>[kN]                                                                                                                                                          |                                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X = 3,90             | [m]                                                                                                                                                                   | Y = -4,32                                                                                                                                                                                         | [m]                                                                                                                                                                                                                             |
| 54,19                | [°]                                                                                                                                                                   | Y = -7.80                                                                                                                                                                                         | [m]                                                                                                                                                                                                                             |
| 555,6720             | [kN]                                                                                                                                                                  | ,                                                                                                                                                                                                 | []                                                                                                                                                                                                                              |
| X = 2,01             | [m]                                                                                                                                                                   | Y = -2,93                                                                                                                                                                                         | [m]                                                                                                                                                                                                                             |
|                      |                                                                                                                                                                       |                                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| 383,1862             | [kN]                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| 1059,4683            | [kN]                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| 1059,4683            | [kN]                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| 383,1862             | [kN]                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| 0,17                 | [m]                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| 6,50                 | [m]                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| 1126,6342            | [kN]                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
| 19,88                | [°]                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                                                                                                                 |
|                      | 383,1862<br>165,2904<br>X = 3,90<br>23,33<br>54,19<br>X = 3,90<br>555,6720<br>X = 2,01<br>383,1862<br>1059,4683<br>1059,4683<br>383,1862<br>0,17<br>6,50<br>1126,6342 | 383,1862 [kN] 165,2904 [kN] X = 3,90 [m] 23,33 [°] 54,19 [°] X = 3,90 [m]  555,6720 [kN] X = 2,01 [m]  383,1862 [kN] 1059,4683 [kN] 1059,4683 [kN] 383,1862 [kN] 0,17 [m] 6,50 [m] 1126,6342 [kN] | 383,1862 [kN] 165,2904 [kN] X = 3,90 [m] Y = -4,32 23,33 [°] 54,19 [°] X = 3,90 [m] Y = -7,80  555,6720 [kN] X = 2,01 [m] Y = -2,93  383,1862 [kN] 1059,4683 [kN] 1059,4683 [kN] 383,1862 [kN] 0,17 [m] 6,50 [m] 1126,6342 [kN] |



 $Secondo\ stralcio\ funzionale:\ Matelica\ Nord-Matelica\ Sud/Castelraimondo\ Nord$ 

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag.diPag.<br>131 di<br>136 |  |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-----------------------------|--|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-----------------------------|--|

# Sollecitazioni paramento

### Combinazione n° 8

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kNm Sforzo normale positivo di compressione, espresso in kN Taglio positivo se diretto da monte verso valle, espresso in kN

| Nr. | Υ    | N        | М        | т        |
|-----|------|----------|----------|----------|
| 1   | 0,00 | 0,0000   | 0,0000   | 0,0000   |
| 2   | 0,33 | 4,1128   | 0,7752   | 5,0762   |
| 3   | 0,65 | 8,4833   | 3,2304   | 10,7628  |
| 4   | 0,98 | 13,1114  | 7,5586   | 17,0512  |
| 5   | 1,30 | 17,9971  | 13,9505  | 23,9395  |
| 6   | 1,63 | 23,1404  | 22,5969  | 31,4276  |
| 7   | 1,95 | 28,5413  | 33,6885  | 39,5155  |
| 8   | 2,27 | 34,1999  | 47,4161  | 48,2031  |
| 9   | 2,60 | 40,1161  | 63,9703  | 57,4906  |
| 10  | 2,93 | 46,2899  | 83,5420  | 67,3779  |
| 11  | 3,25 | 52,7214  | 106,3219 | 77,8650  |
| 12  | 3,58 | 59,4104  | 132,5006 | 88,9519  |
| 13  | 3,90 | 66,3571  | 162,2689 | 100,6386 |
| 14  | 4,23 | 73,5614  | 195,8176 | 112,9251 |
| 15  | 4,55 | 81,0234  | 233,3373 | 125,8114 |
| 16  | 4,88 | 88,7429  | 275,0189 | 139,2975 |
| 17  | 5,20 | 96,7201  | 321,0529 | 153,3835 |
| 18  | 5,53 | 104,9549 | 371,6303 | 168,0692 |
| 19  | 5,85 | 113,4474 | 426,9416 | 183,3547 |
| 20  | 6,17 | 122,1974 | 487,1777 | 199,2401 |
| 21  | 6,50 | 131,2051 | 552,5208 | 215,6292 |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>132 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|

# Inviluppo sollecitazioni piastra di fondazione

## Combinazione n° 8

Dimensioni della piastra

Larghezza(m) = 7.20 Altezza(m) = 6.50

Origine all'attacco con il muro all'estremità sinistra del muro Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero I momenti negativi tendono le fibre superiori

#### Sollecitazioni in direzione Y

| Nr. | Υ    | $M_{ymin}$ | $M_{ymax}$ | $T_{ymin}$ | $T_{ymax}$ |
|-----|------|------------|------------|------------|------------|
| 1   | 0,00 | -0,4949    | 0,4171     | -13,6967   | 28,3985    |
| 2   | 0,17 | -3,2520    | 9,2877     | -98,0626   | 72,6912    |
| 3   | 0,35 | -21,7525   | 22,3234    | -101,7641  | 128,7318   |
| 4   | 0,55 | -30,4436   | 47,0916    | 0,0000     | 205,8259   |
| 5   | 0,75 | 0,0000     | 84,3638    | 0,0000     | 355,3763   |
| 6   | 0,95 | 0,0000     | 131,2796   | 0,0000     | 608,1442   |
| 7   | 1,15 | 0,0000     | 203,6031   | 0,0000     | 893,3911   |
| 8   | 1,45 | 0,0000     | 475,0805   | 0,0000     | 874,4811   |
| 9   | 2,60 | -726,7118  | 0,0000     | -423,2991  | 97,6995    |
| 10  | 2,85 | -604,7014  | 0,0000     | -387,5735  | 127,9669   |
| 11  | 3,05 | -568,9933  | 0,0000     | -283,7148  | 0,0000     |
| 12  | 3,25 | -534,5902  | 0,0000     | -284,7392  | 0,0000     |
| 13  | 3,45 | -480,4330  | 0,0000     | -354,2213  | 0,0000     |
| 14  | 3,65 | -403,5689  | 0,0000     | -487,2193  | 0,0000     |
| 15  | 3,87 | -318,9743  | 0,0000     | -386,2605  | 0,0000     |
| 16  | 4,09 | -258,7220  | 0,0000     | -309,8173  | 0,0000     |
| 17  | 4,31 | -204,4753  | 0,0000     | -253,0067  | 0,0000     |
| 18  | 4,52 | -157,4694  | 0,0000     | -203,8257  | 0,0000     |
| 19  | 4,74 | -118,6342  | 0,0000     | -161,7442  | 0,0000     |
| 20  | 4,96 | -87,9418   | 0,0000     | -132,8623  | 0,0000     |
| 21  | 5,18 | -64,5101   | 0,0000     | -108,5605  | 0,0000     |
| 22  | 5,40 | -50,8196   | 0,0000     | -88,4285   | 2,1986     |
| 23  | 5,60 | -47,5529   | 0,0000     | -73,3744   | 0,0000     |
| 24  | 5,80 | -38,8241   | 0,0000     | -61,6258   | 0,0000     |
| 25  | 6,00 | -27,3527   | 0,0000     | -83,1168   | 0,0000     |
| 26  | 6,20 | -11,0450   | 0,0000     | -113,7395  | 0,0000     |
| 27  | 6,50 | 0,0000     | 1,5103     | -25,7518   | 0,7740     |

| Nr. | x    | M <sub>xmin</sub> | $M_{xmax}$ | T <sub>xmin</sub> | T <sub>xmax</sub> |
|-----|------|-------------------|------------|-------------------|-------------------|
| 1   | 0,00 | -0,8082           | 2,9990     | -20,0989          | 147,0192          |
| 2   | 0,40 | -5,9440           | 17,4592    | -193,7758         | 161,9436          |
| 3   | 0,80 | -51,8581          | 1,5053     | -433,5239         | 159,5186          |
| 4   | 1,20 | -92,0743          | 0,0000     | -142,6455         | 168,6335          |
| 5   | 1,60 | -39,8756          | 2,1157     | -123,8261         | 479,4759          |
| 6   | 2,00 | 0,0000            | 44,4911    | -125,9463         | 231,1121          |
| 7   | 2,40 | 0,0000            | 60,6001    | -60,6088          | 64,3222           |
| 8   | 2,80 | 0,0000            | 44,8375    | -225,9890         | 121,1225          |
| 9   | 3,20 | -38,3632          | 2,2051     | -448,7154         | 119,0362          |
| 10  | 3,60 | -86,9020          | 0,0000     | -137,9070         | 137,9070          |
| 11  | 4,00 | -38,3632          | 2,2051     | -119,0362         | 448,7154          |
| 12  | 4,40 | 0,0000            | 44,8375    | -121,1225         | 225,9890          |
| 13  | 4,80 | 0,0000            | 60,6001    | -64,3222          | 60,6088           |
| 14  | 5,20 | 0,0000            | 44,4911    | -231,1121         | 125,9463          |
| 15  | 5,60 | -39,8756          | 2,1157     | -479,4759         | 123,8261          |
| 16  | 6,00 | -92,0743          | 0,0000     | -168,6335         | 142,6455          |
| 17  | 6,40 | -51,8581          | 1,5053     | -159,5186         | 433,5239          |



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>133 di<br>136 | - |
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|---|
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|---|

 18
 6,80
 -5,9440
 17,4592
 -161,9436
 193,7758

 19
 7,20
 -0,8082
 2,9990
 -147,0192
 20,0989



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | C⊞<br>17 | WBS<br>OS0900 | 년<br>영<br>교 | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>134 di<br>136 |
|---------------|---------------|--------------|----------|---------------|-------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|----------|---------------|-------------|---------------|-----------|-------------------------------|

# Inviluppo Sollecitazioni paramento

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kNm] Sforzo normale positivo di compressione, espresso in [kN] Taglio positivo se diretto da monte verso valle, espresso in [kN]

### Inviluppo combinazioni SLU

21

6,50

131,2051

131,2051

| Nr.                                                                                        | Y                                                                                                                                    | Nmin                                                                                                                                                                                   | Nmax                                                                                                                                                                                   | Mmin                                                                                                                                         | Mmax                                                                                                                                         | Tmin                                                                                                                                                                                         | Tmax                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                          | 0,00                                                                                                                                 | 0,0000                                                                                                                                                                                 | 0,0000                                                                                                                                                                                 | 0,0000                                                                                                                                       | 0,0000                                                                                                                                       | 0,0000                                                                                                                                                                                       | 0,0000                                                                                                                                                                                       |
| 2                                                                                          | 0,33                                                                                                                                 | 4,1128                                                                                                                                                                                 | 4,1128                                                                                                                                                                                 | 1,0177                                                                                                                                       | 2,9816                                                                                                                                       | 6,5990                                                                                                                                                                                       | 18,6648                                                                                                                                                                                      |
| 3                                                                                          | 0,65                                                                                                                                 | 8,4833                                                                                                                                                                                 | 8,4833                                                                                                                                                                                 | 4,2401                                                                                                                                       | 12,0699                                                                                                                                      | 13,9916                                                                                                                                                                                      | 38,0032                                                                                                                                                                                      |
| 4                                                                                          | 0,98                                                                                                                                 | 13,1114                                                                                                                                                                                | 13,1114                                                                                                                                                                                | 9,9193                                                                                                                                       | 27,4782                                                                                                                                      | 22,1666                                                                                                                                                                                      | 58,0068                                                                                                                                                                                      |
| 5                                                                                          | 1,30                                                                                                                                 | 17,9971                                                                                                                                                                                | 17,9971                                                                                                                                                                                | 18,3047                                                                                                                                      | 49,4179                                                                                                                                      | 31,1214                                                                                                                                                                                      | 78,6734                                                                                                                                                                                      |
| 6                                                                                          | 1,63                                                                                                                                 | 23,1404                                                                                                                                                                                | 23,1404                                                                                                                                                                                | 29,6453                                                                                                                                      | 78,1003                                                                                                                                      | 40,8558                                                                                                                                                                                      | 100,0030                                                                                                                                                                                     |
| 7                                                                                          | 1,95                                                                                                                                 | 28,5413                                                                                                                                                                                | 28,5413                                                                                                                                                                                | 44,1905                                                                                                                                      | 113,7367                                                                                                                                     | 51,3701                                                                                                                                                                                      | 121,9956                                                                                                                                                                                     |
| 8                                                                                          | 2,27                                                                                                                                 | 34,1999                                                                                                                                                                                | 34,1999                                                                                                                                                                                | 62,1895                                                                                                                                      | 156,5385                                                                                                                                     | 62,6641                                                                                                                                                                                      | 144,6513                                                                                                                                                                                     |
| 9                                                                                          | 2,60                                                                                                                                 | 40,1161                                                                                                                                                                                | 40,1161                                                                                                                                                                                | 83,8915                                                                                                                                      | 206,7168                                                                                                                                     | 74,7378                                                                                                                                                                                      | 167,9700                                                                                                                                                                                     |
| 10                                                                                         | 2,93                                                                                                                                 | 46,2899                                                                                                                                                                                | 46,2899                                                                                                                                                                                | 109,5457                                                                                                                                     | 264,4829                                                                                                                                     | 87,5913                                                                                                                                                                                      | 191,9518                                                                                                                                                                                     |
| 11                                                                                         | 3,25                                                                                                                                 | 52,7214                                                                                                                                                                                | 52,7214                                                                                                                                                                                | 139,4012                                                                                                                                     | 330,0481                                                                                                                                     | 101,2245                                                                                                                                                                                     | 216,5965                                                                                                                                                                                     |
| 12                                                                                         | 3,58                                                                                                                                 | 59,4104                                                                                                                                                                                | 59,4104                                                                                                                                                                                | 173,7074                                                                                                                                     | 403,6238                                                                                                                                     | 115,6375                                                                                                                                                                                     | 241,9044                                                                                                                                                                                     |
| 13                                                                                         | 3,90                                                                                                                                 | 66,3571                                                                                                                                                                                | 66,3571                                                                                                                                                                                | 212,7134                                                                                                                                     | 485,4211                                                                                                                                     | 130,8302                                                                                                                                                                                     | 267,8752                                                                                                                                                                                     |
| 14                                                                                         | 4,23                                                                                                                                 | 73,5614                                                                                                                                                                                | 73,5614                                                                                                                                                                                | 256,6684                                                                                                                                     | 575,6514                                                                                                                                     | 146,8027                                                                                                                                                                                     | 294,5091                                                                                                                                                                                     |
| 15                                                                                         | 4,55                                                                                                                                 | 81,0234                                                                                                                                                                                | 81,0234                                                                                                                                                                                | 305,8217                                                                                                                                     | 674,5260                                                                                                                                     | 163,5549                                                                                                                                                                                     | 321,8060                                                                                                                                                                                     |
| 16                                                                                         | 4,88                                                                                                                                 | 88,7429                                                                                                                                                                                | 88,7429                                                                                                                                                                                | 360,4224                                                                                                                                     | 782,2561                                                                                                                                     | 181,0868                                                                                                                                                                                     | 349,7660                                                                                                                                                                                     |
| 17                                                                                         | 5,20                                                                                                                                 | 96,7201                                                                                                                                                                                | 96,7201                                                                                                                                                                                | 420,7198                                                                                                                                     | 899,0530                                                                                                                                     | 199,3985                                                                                                                                                                                     | 378,3890                                                                                                                                                                                     |
| 18                                                                                         | 5,53                                                                                                                                 | 104,9549                                                                                                                                                                               | 104,9549                                                                                                                                                                               | 486,9631                                                                                                                                     | 1025,1279                                                                                                                                    | 218,4900                                                                                                                                                                                     | 407,6750                                                                                                                                                                                     |
| 19                                                                                         | 5,85                                                                                                                                 | 113,4474                                                                                                                                                                               | 113,4474                                                                                                                                                                               | 559,4015                                                                                                                                     | 1160,6923                                                                                                                                    | 238,3612                                                                                                                                                                                     | 437,6241                                                                                                                                                                                     |
| 20                                                                                         | 6,17                                                                                                                                 | 122,1974                                                                                                                                                                               | 122,1974                                                                                                                                                                               | 638,2841                                                                                                                                     | 1305,9572                                                                                                                                    | 259,0121                                                                                                                                                                                     | 468,2362                                                                                                                                                                                     |
| 21                                                                                         | 6,50                                                                                                                                 | 131,2051                                                                                                                                                                               | 131,2051                                                                                                                                                                               | 723,8495                                                                                                                                     | 1461,1258                                                                                                                                    | 280,3180                                                                                                                                                                                     | 499,4154                                                                                                                                                                                     |
| Invilu                                                                                     | ppo combin                                                                                                                           | azioni SLE                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| Nr.                                                                                        | Υ                                                                                                                                    | Nmin                                                                                                                                                                                   | Nmax                                                                                                                                                                                   | Mmin                                                                                                                                         | Mmax                                                                                                                                         | Tmin                                                                                                                                                                                         | Tmax                                                                                                                                                                                         |
|                                                                                            |                                                                                                                                      |                                                                                                                                                                                        |                                                                                                                                                                                        |                                                                                                                                              | 0.0000                                                                                                                                       |                                                                                                                                                                                              |                                                                                                                                                                                              |
| 1                                                                                          | 0,00                                                                                                                                 | 0,000                                                                                                                                                                                  | 0,0000                                                                                                                                                                                 | 0,0000                                                                                                                                       | 0,0000                                                                                                                                       | 0,0000                                                                                                                                                                                       | 0,0000                                                                                                                                                                                       |
| 1<br>2                                                                                     | 0,00<br>0,33                                                                                                                         | 0,0000<br>4,1128                                                                                                                                                                       | 0,0000<br>4,1128                                                                                                                                                                       | 0,0000<br>0,7752                                                                                                                             | 0,0000<br>0,7752                                                                                                                             | 0,0000<br>5,0762                                                                                                                                                                             | 0,0000<br>5,0762                                                                                                                                                                             |
| 2<br>3                                                                                     | 0,33<br>0,65                                                                                                                         |                                                                                                                                                                                        | •                                                                                                                                                                                      | 0,7752<br>3,2304                                                                                                                             |                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| 2                                                                                          | 0,33                                                                                                                                 | 4,1128                                                                                                                                                                                 | 4,1128                                                                                                                                                                                 | 0,7752                                                                                                                                       | 0,7752                                                                                                                                       | 5,0762                                                                                                                                                                                       | 5,0762                                                                                                                                                                                       |
| 2<br>3                                                                                     | 0,33<br>0,65                                                                                                                         | 4,1128<br>8,4833                                                                                                                                                                       | 4,1128<br>8,4833                                                                                                                                                                       | 0,7752<br>3,2304                                                                                                                             | 0,7752<br>3,2304                                                                                                                             | 5,0762<br>10,7628                                                                                                                                                                            | 5,0762<br>10,7628                                                                                                                                                                            |
| 2<br>3<br>4                                                                                | 0,33<br>0,65<br>0,98                                                                                                                 | 4,1128<br>8,4833<br>13,1114                                                                                                                                                            | 4,1128<br>8,4833<br>13,1114                                                                                                                                                            | 0,7752<br>3,2304<br>7,5586                                                                                                                   | 0,7752<br>3,2304<br>7,5586                                                                                                                   | 5,0762<br>10,7628<br>17,0512                                                                                                                                                                 | 5,0762<br>10,7628<br>17,0512                                                                                                                                                                 |
| 2<br>3<br>4<br>5                                                                           | 0,33<br>0,65<br>0,98<br>1,30                                                                                                         | 4,1128<br>8,4833<br>13,1114<br>17,9971                                                                                                                                                 | 4,1128<br>8,4833<br>13,1114<br>17,9971                                                                                                                                                 | 0,7752<br>3,2304<br>7,5586<br>13,9505                                                                                                        | 0,7752<br>3,2304<br>7,5586<br>13,9505                                                                                                        | 5,0762<br>10,7628<br>17,0512<br>23,9395                                                                                                                                                      | 5,0762<br>10,7628<br>17,0512<br>23,9395                                                                                                                                                      |
| 2<br>3<br>4<br>5<br>6                                                                      | 0,33<br>0,65<br>0,98<br>1,30<br>1,63                                                                                                 | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404                                                                                                                                      | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404                                                                                                                                      | 0,7752<br>3,2304<br>7,5586<br>13,9505<br>22,5969                                                                                             | 0,7752<br>3,2304<br>7,5586<br>13,9505<br>22,5969                                                                                             | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276                                                                                                                                           | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276                                                                                                                                           |
| 2<br>3<br>4<br>5<br>6<br>7                                                                 | 0,33<br>0,65<br>0,98<br>1,30<br>1,63<br>1,95                                                                                         | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413                                                                                                                           | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413                                                                                                                           | 0,7752<br>3,2304<br>7,5586<br>13,9505<br>22,5969<br>33,6885                                                                                  | 0,7752<br>3,2304<br>7,5586<br>13,9505<br>22,5969<br>33,6885                                                                                  | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155                                                                                                                                | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155                                                                                                                                |
| 2<br>3<br>4<br>5<br>6<br>7<br>8                                                            | 0,33<br>0,65<br>0,98<br>1,30<br>1,63<br>1,95<br>2,27                                                                                 | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999                                                                                                                | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999                                                                                                                | 0,7752<br>3,2304<br>7,5586<br>13,9505<br>22,5969<br>33,6885<br>47,4161                                                                       | 0,7752<br>3,2304<br>7,5586<br>13,9505<br>22,5969<br>33,6885<br>47,4161                                                                       | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031                                                                                                                     | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031                                                                                                                     |
| 2<br>3<br>4<br>5<br>6<br>7<br>8                                                            | 0,33<br>0,65<br>0,98<br>1,30<br>1,63<br>1,95<br>2,27<br>2,60                                                                         | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161                                                                                                     | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161                                                                                                     | 0,7752<br>3,2304<br>7,5586<br>13,9505<br>22,5969<br>33,6885<br>47,4161<br>63,9703                                                            | 0,7752<br>3,2304<br>7,5586<br>13,9505<br>22,5969<br>33,6885<br>47,4161<br>63,9703                                                            | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906                                                                                                          | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906                                                                                                          |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                       | 0,33<br>0,65<br>0,98<br>1,30<br>1,63<br>1,95<br>2,27<br>2,60<br>2,93                                                                 | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899                                                                                          | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899                                                                                          | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420                                                                         | 0,7752<br>3,2304<br>7,5586<br>13,9505<br>22,5969<br>33,6885<br>47,4161<br>63,9703<br>83,5420                                                 | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779                                                                                               | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779                                                                                               |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                           | 0,33<br>0,65<br>0,98<br>1,30<br>1,63<br>1,95<br>2,27<br>2,60<br>2,93<br>3,25                                                         | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214                                                                               | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214                                                                               | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219                                                                | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219                                                                | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650                                                                                    | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650                                                                                    |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                     | 0,33<br>0,65<br>0,98<br>1,30<br>1,63<br>1,95<br>2,27<br>2,60<br>2,93<br>3,25<br>3,58                                                 | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104                                                                    | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104                                                                    | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006                                                       | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006                                                       | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519                                                                         | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519                                                                         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                               | 0,33<br>0,65<br>0,98<br>1,30<br>1,63<br>1,95<br>2,27<br>2,60<br>2,93<br>3,25<br>3,58<br>3,90                                         | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104<br>66,3571                                                         | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104<br>66,3571                                                         | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006 162,2689                                              | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006 162,2689                                              | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519<br>100,6386                                                             | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519<br>100,6386                                                             |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                         | 0,33<br>0,65<br>0,98<br>1,30<br>1,63<br>1,95<br>2,27<br>2,60<br>2,93<br>3,25<br>3,58<br>3,90<br>4,23                                 | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104<br>66,3571<br>73,5614                                              | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104<br>66,3571<br>73,5614                                              | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006 162,2689 195,8176                                     | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006 162,2689 195,8176                                     | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519<br>100,6386<br>112,9251                                                 | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519<br>100,6386<br>112,9251                                                 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                   | 0,33<br>0,65<br>0,98<br>1,30<br>1,63<br>1,95<br>2,27<br>2,60<br>2,93<br>3,25<br>3,58<br>3,90<br>4,23<br>4,55                         | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104<br>66,3571<br>73,5614<br>81,0234                                   | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104<br>66,3571<br>73,5614<br>81,0234                                   | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006 162,2689 195,8176 233,3373                            | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006 162,2689 195,8176 233,3373                            | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519<br>100,6386<br>112,9251<br>125,8114                                     | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519<br>100,6386<br>112,9251<br>125,8114                                     |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16             | 0,33<br>0,65<br>0,98<br>1,30<br>1,63<br>1,95<br>2,27<br>2,60<br>2,93<br>3,25<br>3,58<br>3,90<br>4,23<br>4,55<br>4,88                 | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104<br>66,3571<br>73,5614<br>81,0234<br>88,7429                        | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104<br>66,3571<br>73,5614<br>81,0234<br>88,7429                        | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006 162,2689 195,8176 233,3373 275,0189                   | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006 162,2689 195,8176 233,3373 275,0189                   | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519<br>100,6386<br>112,9251<br>125,8114<br>139,2975                         | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519<br>100,6386<br>112,9251<br>125,8114<br>139,2975                         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17       | 0,33<br>0,65<br>0,98<br>1,30<br>1,63<br>1,95<br>2,27<br>2,60<br>2,93<br>3,25<br>3,58<br>3,90<br>4,23<br>4,55<br>4,88<br>5,20         | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104<br>66,3571<br>73,5614<br>81,0234<br>88,7429<br>96,7201             | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104<br>66,3571<br>73,5614<br>81,0234<br>88,7429<br>96,7201             | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006 162,2689 195,8176 233,3373 275,0189 321,0529          | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006 162,2689 195,8176 233,3373 275,0189 321,0529          | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519<br>100,6386<br>112,9251<br>125,8114<br>139,2975<br>153,3835             | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519<br>100,6386<br>112,9251<br>125,8114<br>139,2975<br>153,3835             |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 0,33<br>0,65<br>0,98<br>1,30<br>1,63<br>1,95<br>2,27<br>2,60<br>2,93<br>3,25<br>3,58<br>3,90<br>4,23<br>4,55<br>4,88<br>5,20<br>5,53 | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104<br>66,3571<br>73,5614<br>81,0234<br>88,7429<br>96,7201<br>104,9549 | 4,1128<br>8,4833<br>13,1114<br>17,9971<br>23,1404<br>28,5413<br>34,1999<br>40,1161<br>46,2899<br>52,7214<br>59,4104<br>66,3571<br>73,5614<br>81,0234<br>88,7429<br>96,7201<br>104,9549 | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006 162,2689 195,8176 233,3373 275,0189 321,0529 371,6303 | 0,7752 3,2304 7,5586 13,9505 22,5969 33,6885 47,4161 63,9703 83,5420 106,3219 132,5006 162,2689 195,8176 233,3373 275,0189 321,0529 371,6303 | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519<br>100,6386<br>112,9251<br>125,8114<br>139,2975<br>153,3835<br>168,0692 | 5,0762<br>10,7628<br>17,0512<br>23,9395<br>31,4276<br>39,5155<br>48,2031<br>57,4906<br>67,3779<br>77,8650<br>88,9519<br>100,6386<br>112,9251<br>125,8114<br>139,2975<br>153,3835<br>168,0692 |

552,5208

552,5208

215,6292

215,6292



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40

Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N.prog.<br>01 | Rev.<br>A | Pag. di Pag.<br>135 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|---------------|-----------|-------------------------------|

## Dichiarazioni secondo N.T.C. 2008 (punto 10.2)

#### Analisi e verifiche svolte con l'ausilio di codici di calcolo

Il sottoscritto, in qualità di calcolatore delle opere in progetto, dichiara quanto segue.

#### Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale
- Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali.
- Calcolo della portanza assiale e trasversale dei pali. Progetto e verifica delle armature dei pali inseriti.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM 14/01/2008.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

### Origine e caratteristiche dei codici di calcolo

Titolo MAX - Analisi e Calcolo Muri di Sostegno

Versione 10.10

Produttore Aztec Informatica srl, Casole Bruzio (CS)

Utente PROGIN S.P.A. Licenza AIU01054U

#### Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. La società produttrice Aztec Informatica srl ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

## Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

## Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

#### Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, io sottoscritto asserisco che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra<br/>imondo Nord

Opere d'arte minori: Opere di sostegno e dreni

Muri di controripa in dx in c.a. da 4+680.00 a 4+844.40 Relazione tecnica e di calcolo

| Opera<br>L073 | Tratto<br>212 | Settore<br>E | CEE<br>17 | WBS<br>OS0900 | ld.<br>doc.<br>REL | N. prog.<br>01 | Rev.<br>A | Pag.diPag.<br>136 di<br>136 |
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-----------------------------|
|---------------|---------------|--------------|-----------|---------------|--------------------|----------------|-----------|-----------------------------|