

TAP AG Project Title / Facility Name:

Trans Adriatic Pipeline Project

Document Title:

Capitolato d'appalto

secondo quanto definito

dalla Prescrizione A.32 del Decreto di Compatibilità Ambientale n. 223/2014

APPENDICE 2: Piano di utilizzo terre e rocce da scavo

					Alexandra Cayoti		
					abhallen of losses	Jada John	a- ui
0	01/09/2017	Issued for Information		IFR	A. Cargioli F. Di Rosario	L. Volpi	C.Mordini
Rev.	Revision Date (dd-mm-yyyy)	Reason for issue and Abbrevi	ation for it, e.g,	IFR	Prepared by	Checked by	Approved by
			Contractor Name:	RINA Cor	nsulting S.p.A.		
			Contractor Project No.:	16-1352			
			Contractor Doc. No.:	13-1352-H	19 Rev.0		
			Tag No's.:	-1			
TAP AG	G Contract No.: C4	93/006	Project No.:				
7711 710	0011114011140 04	33,000	Trojoutivo				
PO No.:	·		RD Code:				
TAP AG	Document No.:						

OPL00-C493-150-Y-TRX-0007

TAP AG Project Title / Facility Name:

Trans Adriatic Pipeline Project

Piano di Utilizzo Terre e Rocce da Scavo

Revisionato dove indicato

1	07-07-2017	Emesso per informazione		IFR	CLC Oblig Scalandle	MAS	AP	
0	12-09-2016	Emesso per informazione		IFR	CLC	MAS	TNE	
Rev.	Rev. Data revisione (gg-mm-aaaa) Motivo dell'emissione		IFR	Preparato da	Verificato da	Approvato da		
			Contrattore nome:	RSK - SHELTER				
HSK			Contrattore Progetto No.:	806	80635			
(6	SHEL	TED	Contrattore Doc. No.:	RSF	RSK/H/P/P80635/04/01/01			
5)	The Consulting to Sim	your Eusiness	Tag No's.: N/A					
TAP A	G Contratto No.:	C5577	Progetto No.: WBS11D	01F004				
PO No.: P0269223						Pagina: 1	of 84	
TAP A	TAP AG Documento No.:							
	IPL00-C5577-100-Y-TRS-0001							

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Consulting to Control your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	2 of 84

INDICE

1.	INTRO	DUZIONE	6
1.1	CONTE	NUTI DEL DOCUMENTO	7
2.	QUAD	RO DI RIFERIMENTO NORMATIVO	9
3.	INQU	ADRAMENTO GENERALE	10
3.1	INQUA	DRAMENTO TERRITORIALE	10
3.2	INQUA 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	DRAMENTO PROGETTUALE Opere attraversate e metodologie realizzative Opere provvisionali in terra Aree di cantiere e di intervento, viabilità di cantiere Aree di deposito in attesa di utilizzo Durata del deposito delle terre	15 15 16 17
3.3	INQUA 3.3.1 3.3.2	DRAMENTO GEOLOGICO ED IDROGEOLOGICO Assetto geologico Assetto idrogeologico	19
3.4	INQUA	DRAMENTO GEOMORFOLOGICO	26
3.5	USO D	EL SUOLO	27
4.		TTERIZZAZIONE AMBIENTALE DEI MATERIALI DA SC	
	IN FA	SE DI PROGETTAZIONE	29
4.1	CAMPA 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6	AGNE INDAGINI Precedenti campagne Campagna di indagine 2016 Ubicazione Metodiche di campionamento Checklist inquinanti analizzati Conformità	29 30 33
4.2	SINTES	SI DEI RISULTATI DELLE ANALISI DI LABORATORIO	36
4.3	INTERI	FERENZA PORZIONE SATURA TERRENA	36
5.	МЕТО	DOLOGIE DI SCAVO PREVISTE	39
5.1 TAP		IZIONE DEL PUNTO DI APPRODO, AREA DEL MICROTUNNEL	39

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Consulting to Continuo your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	3 of 84

	5.1.1 5.1.3	Pozzo di spinta	
5.2	INSTAL 5.2.1	LAZIONE DELLA CONDOTTA LUNGO LA ROW/PISTA DI LAVORO Attraversamenti	
5.3	COSTR	UZIONE PRT	44
5.4	NORM/ 5.4.1 5.4.2	ALE PRATICA INDUSTRIALEVagliaturaFrantumazione	45
5.5	CRITER 5.5.1 5.5.2	RI OPERATIVI DI GESTIONE DEI MATERIALI DI SCAVO	46
6.	SITI D	I MOVIMENTAZIONE DEI MATERIALI DA SCAVO	49
6.1	6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7	TUNNEL (KPof 104,916 - KPof 105,026) Principali siti di produzione terre Principali siti di riutilizzo terre Aree di deposito in attesa di utilizzo Inquadramento territoriale Inquadramento geologico-geomorfologico-idrogeologico Caratterizzazione ambientale dei materiali Classificazione dei terreni, volumi movimentati e metodiche di scavo applicate	51 52 52 52 53
6.2	6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7	Principali siti di produzione terre	54 54 54 54 54
6.3	TERMII 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7	NALE DI RICEZIONE - PRT (KP 8,075) Principali siti di produzione terre Principali siti di riutilizzo terre Aree di deposito in attesa di utilizzo Inquadramento territoriale Inquadramento geologico-geomorfologico-idrogeologico Caratterizzazione ambientale dei materiali Classificazione dei terreni, volumi movimentati e metodiche di scavo applicate	56 56 56 57 57

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Consulting to Suching your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	4 of 84

7.	CARATTERIZZAZIONE AMBIENTALE DEI MATERIALI DI SCAVO IN CORSO D'OPERA	
8.	GESTIONE E TRASPORTO IN FASE DI CANTIERE	60
8.1	VIABILITÀ INTERESSATA DALLA MOVIMENTAZIONE TERRE E MATERIALI .	. 60

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Consulting to Continue your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	5 of 84

LISTA DELLE TABELLE

Tabella 3-1 Opere attraversate e metodologie realizzative	15
Tabella 3-2 Andamento piezometrico	23
Tabella 4-1 Coordinate dei punti di indagine del campionamento dei terreni	31
Tabella 4-2 Set analitico terreni	35
Tabella 4-3 Set analitico acque di falda	37
Tabella 6-1 Stima del volume dei materiali inerti che verranno movimentati.	50
Tabella 6-2 Destinazione/impiego del materiale prodotto durante gli scavi.	50
Tabella 6-3 Provenienza del materiale fornito/acquistato	51
Tabella 6-4 Siti di riutilizzo delle terre e localizzazione siti di smaltimento/recupero	51
Tabella 6-5 Aree di deposito	52
Tabella 6-6 Siti di riutilizzo delle terre e localizzazione siti di smaltimento/recupero	56
Tabella 6-7 Localizzazione aree di deposito	57
ALLEGATI	
ALLEGATO A – LAYOUT	61
ALLEGATO B – CRONOPROGRAMMA DELLE ATTIVITA'	69
ALLEGATO C – STUDI DI CARATTERIZZAZIONE DEI SUOLI - IPL00-C5577-100-Y-TAT-	
0001 - IPL00-C5577-100-Y-TRX-0001	71
ALLEGATO D – RISULTATI ANALITICI ACQUA DI FALDA	74
ALLEGATO E – PIANO DI GESTIONE DEI MATERIALI PROVENIENTI DAL	
MICROTUNNEL PER L'APPRODO ITALIANO DEL GASDOTTO	84

ACRONIMI

BVS: Block Valve Station

CSC: Concentrazione Soglia di Contaminazione

DAU: Dichiarazione di Avvenuto Utilizzo

FOC: Cavo a Fibre Ottiche

KP: Punto chilometrico, tratto onshore (Kilometre Point onshore section) KP_{of} : Punto chilometrico, tratto offshore (Kilometre Point offshore section)

MATTM: Ministero dell'Ambiente e del Territorio e del Mare

MT: Microtunnel

MT-WS: Cantiere Temporaneo Microtunnel

PRT: Pipeline Receiving Terminal, Terminale di Ricezione

PTCP: Piano Territoriale di Coordinamento

RFO: Area di collaudo idraulico RoW: Right of Way– Pista di lavoro

TAP: Trans Adriatic Pipeline

TBM/MTBM: Microtunnel Boring Machine, Testa di perforazione

TW: Area Rampa di Tiro

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO THE CONSIDER TO SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	6 of 84

1. INTRODUZIONE

Il presente elaborato costituisce l'ottemperanza alla prescrizione A25 comma b del decreto di compatibilità ambientale del progetto TAP, DM 223 del 11 settembre 2014; inoltre il presente Piano è stato aggiornato al fine di tener conto di quanto richiesto nella nota tecnica (Prot. 0034076-32 del 29/05/2017) che ISPRA e ARPA Puglia hanno congiuntamente predisposto.

La prescrizione A.25 riporta quanto segue: "In merito alla gestione delle terre e rocce da scavo, prodotte dalla realizzazione dell'intera opera (condotta, approdo, area di cantiere, PRT, ecc.), in conformità a quanto stabilito dall'art. 186 del DIgs 152/2006 e s.m.i:

- a) il proponente dovrà effettuare ulteriormente il campionamento dei terreni nell'area interessata dai lavori per la caratterizzazione chimica e chimico-fisica di essi, al fine di accertare la piena compatibilità delle terre e rocce rispetto al loro riutilizzo. Il piano di campionamento, che dovrà essere approvato dalla competente ARPA Puglia, dovrà considerare la potenziale presenza di sostanze inquinanti connesse con le attivitàà antropiche e con le fonti di pressione ambientale riscontrate sull'area interessata dai lavori;
- b) accertata l'idoneità del materiale scavato al riutilizzo, il proponente dovrà redigere un apposito progetto ove vengano definiti:
- le aree di scavo:
- la quantità del materiale che sarà riutilizzato, la collocazione e durata degli stoccaggi temporanei dello stesso e la sua collocazione definitiva;
- la quantità del materiale scavato eccedente e le modalità di rimozione, raccolta e smaltimento dello stesso e degli eventuali corpi estranei provenienti dall'escavazione, secondo le disposizioni in materia di rifiuti."

Per quanto riguarda il punto a) della prescrizione A.25, si evidenzia che TAP ha prodotto il Piano di Campionamento relativo all'Area di Costruzione del micro tunnel (doc n. IAL00-ERM-643-Y-TAE-1031) ed il Piano di Campionamento On-shore (relativo a PRT-BVS-RoW) (doc n. IAL00-ERM-643-TAE-1034). Tali piani sono stati emessi in rev. 02 nel Luglio 2016 al fine di rispondere alle richieste formulate da ARPA/ISPRA nel corso dell'incontro tecnico tenutosi con tali amministrazioni il 30.05.2016.

Il presente documento è stato strutturato tenendo conto di quanto previsto dall'articolo 186 del D.Lgs. n. 152/2006 e di quanto contenuto nella prescrizione sopra riportata.

Nel presente documento sono pertanto riportate e descritte tutte le attività progettuali relative alla caratterizzazione ambientale delle terre, che nel caso specifico risultano articolate in tre fasi di indagine:

la prima, eseguita nel marzo 2016 nell'area di costruzione del Microtunnel;

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO CONTROL TO STATE OF THE CONTROL TO STA	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	7 of 84

- la seconda, eseguita tra giugno e luglio 2016, presso l'area del terminale di ricezione (PRT), le strade di accesso e lungo la Pista di Lavoro (RoW);
- la terza, eseguita a luglio 2016, ha riguardato la raccolta dei campioni di acqua di falda tramite i piezometri collocati in prossimità delle aree in cui le operazioni di scavo potranno interessare la porzione satura del terreno ovvero la sola area del microtunnel (i monitoraggi relativi a quest'ultima campagna sono previsti nell'ambito del Piano di Monitoraggio Ambientale (doc n. IALOO-ERM-643-Y-TAE-1028 rev. 02 Agosto 2016) redatto al fine di ottemperare alla Prescrizione A.31 del D.M. 223/2014.

Si sottolinea che le campagne di caratterizzazione ambientale non considerano i materiali derivanti dalla perforazione del Microtunnel infatti, tali materiali di scavo in uscita dall'impianto di recupero della bentonite saranno trattati come rifiuto.

L'approccio utilizzato risponde all'esigenza di migliorare l'uso delle risorse naturali, limitando, di fatto, il ricorso all'approvvigionamento di materiali da cava, e di prevenire, nel rispetto dell'art. 179, comma 1, del decreto legislativo n. 152 del 2006 e s.m.i., la produzione di rifiuti e la riduzione della destinazione degli stessi materiali a forme di smaltimento.

A far data dalla validità del presente Piano, ciascun esecutore sarà tenuto a far proprio e a rispettare il presente Piano di Utilizzo e ne diverrà responsabile. Ogni esecutore sarà inoltre tenuto a redigere la modulistica necessaria a garantire la tracciabilità del materiale da scavo.

In accordo a quanto citato dall'art. 183 c.2 bis del D.lgs. 152/2006, tale piano non si applica comunque alle ipotesi disciplinate dall'articolo 109 del presente decreto (*Immersione in mare di materiale derivante da attività di escavo e attività di posa in mare di cavi e condotte*). Pertanto la gestione del materiale di scavo relativo alla parte offshore del progetto non verrà trattata nel presente documento.

1.1 CONTENUTI DEL DOCUMENTO

Oltre il corrente capitolo introduttivo, il documento è strutturato in altri 7 capitoli principali, in relazione ai punti essenziali nella gestione delle terre e rocce da scavo (quantificazione, qualificazione, destinazione e tracciabilità).

Nel capitolo 2 è riportato il quadro di riferimento normativo.

Nel capitolo 3 sono descritti gli inquadramenti territoriale, progettuale e geologico/idrogeologico.

Nel capitolo 4 vengono descritte le campagne di indagine eseguite nel 2016 per la caratterizzazione dei terreni in sito, svolte nell'ambito della Progettazione Definitiva al fine di valutare la qualità del chimismo del suolo interessato dall'opera in oggetto.

Nel capitolo 5 vengono descritte le operazioni di scavo.

	Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK	SHELTER The Consulting to Sustain your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	8 of 84

Nel capitolo 6 sono trattati i siti di movimentazione dei materiali da scavo individuati in 3 aree per le quali è descritto l'inquadramento territoriale, urbanistico e geologico-geomorfologico, i risultati della caratterizzazione dei materiali, la classificazione dei terreni secondo le norme tecniche UNI in base all'utilizzo previsto dal progetto, i volumi movimentati e le metodiche di scavo applicate.

Nel capitolo 7 si riportano le modalità con cui l'Impresa esecutrice dovrà effettuate le eventuali ulteriori caratterizzazioni in corso d'opera sui materiali da scavo precisandone l'applicabilità.

Infine, nel capitolo 8, sono indicate le caratteristiche e le modalità di trasporto.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SSHELTER The Consulting to Law your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	9 of 84	

2. QUADRO DI RIFERIMENTO NORMATIVO

In conformità alla prescrizione A25 il riferimento normativo per la redazione del presente Piano di Utilizzo delle terre e rocce da scavo quali sottoprodotti è costituito dall'art.186 del decreto legislativo n. 152 del 2006 e s.m.i.,

L'articolo 186 risulta, ad oggi, essere abrogato, ma sulla base dell'articolo 15 del DM 161/2012 inerente alle "disposizioni finali e transitorie" risulta essere applicabile in quanto lo stesso prevede che "entro 180 giorni dalla data di entrata in vigore del presente regolamento, i progetti per i quali è in corso la procedura ai sensi e per gli effetti dell'articolo 186, del Decreto Legislativo n.152 del 2006, possono essere assoggettati alla disciplina prevista dal presente regolamento con la presentazione di un piano di utilizzo ai sensi e per gli effetti dell'articolo 5. Decorso il predetto termine senza che sia stato presentato un piano di utilizzo ai sensi dell'articolo 5, i progetti sono portati a termine secondo la procedura prevista dall'articolo 186 del Decreto Legislativo n. 152 del 2006".

Nella lettera inviata dal Ministero dell'Ambiente con protocollo DVA-2013-0023971 del 21/10/2013, si sottolinea che "ritenendo per il caso in questione già attivata al momento della presentazione dell'istanza di VIA la procedura prevista dall'articolo 186 del D.Lgs.152 del 2006, e non essendo intervenuta nei 180 giorni dalla data di entrata in vigore del DM 161/2012 alcuna opzione da parte del proponente in merito all'attivazione del procedimento di cui al medesimo decreto ministeriale, se ne deduce che l'approvazione del progetto Terre e rocce da scavo debba avvenire secondo quanto previsto dal detto articolo 186 del Decreto Legislativo n. 152/2006 e s.m.i.".

In merito alla normativa regionale, la regione Puglia ha pubblicato sul bollettino regionale n.44 del 28/03/2011 il regolamento con il quale ha disciplinato la gestione delle terre e rocce da scavo. Tale regolamento disciplina le attività derivanti dalla lavorazione della pietra, del lavaggio degli inerti e di altre attività di scavo che non interessano terreni contaminati.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SSHELTER TO THE CONSTRUCTION OF THE CONSTR	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	10 of 84	

3. INQUADRAMENTO GENERALE

3.1 INQUADRAMENTO TERRITORIALE

Il progetto "Trans Adriatic Pipeline" TAP è un gasdotto DN 900 (36") che trasporterà il gas naturale proveniente dalla Grecia e dall'Albania verso la Puglia e l'Europa occidentale attraverso il Mare Adriatico. Attraversando l'Adriatico a partire dall'Albania centro-occidentale, il gasdotto offshore raggiungerà le coste dell'Italia sud-orientale e si collegherà alla rete italiana a sud di Lecce.

Il punto di approdo della condotta si troverà sulla costa tra San Foca e Torre Specchia Ruggeri, nel comune di Melendugno. Tale approdo sarà realizzato mediante la tecnologia del microtunneling, per minimizzare l'impatto visivo e ambientale sulla costa. La Figura 3-1 mostra la panoramica generale del progetto TAP.

Figura 3-1 Trans Adriatic Pipeline, panoramica generale del progetto

Attraverso la successiva sezione a terra, il gas verrà trasportato verso un terminale di ricezione onshore (terminale di ricezione TAP) che verrà collegato alla rete italiana.

Il progetto mira a incrementare la sicurezza dell'approvvigionamento e a diversificare i fornitori di gas naturale sui mercati europei. Il progetto TAP prevede inoltre la possibilità di invertire il flusso del gas.

In Italia, il sistema consiste:

- in una condotta offshore lunga circa 45 km, dal confine delle acque di giurisdizione italiane (al centro del Mare Adriatico) fino alla costa nazionale (KPof 60,142 – KPof 105,026, dove KPof 0 è il punto di approdo albanese);
- in una condotta onshore lunga circa 7,965 km (KP 0,110 KP 8,075). Dall'estremo a terra del tunnel (entrata) all'origine del tratto onshore è previsto un tratto di 110 m di competenza offshore;

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SSHELTER The Consulting to Law your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	11 of 84	

• un terminale di ricezione (di seguito, PRT) in prossimità di Melendugno, in provincia di Lecce, con una capacità iniziale nominale di 10 BCM (con possibilità di estensione fino a 20 BCM) di gas naturale all'anno (circa 1.190.000 metri cubi standard all'ora).

L'entrata del microtunnel, in prossimità dell'approdo, corrisponde al KPof 104,916.

Il punto di intersezione tra il gasdotto offshore e quello onshore sarà ubicato 110 m a valle dell'ingresso del microtunnel corrispondente al KPof 105,026 (fine della sezione offshore) e al KP 0,110 (inizio della sezione onshore).

Il progetto prevede inoltre l'istallazione di un cavo a fibre ottiche (FOC), che consentirà la comunicazione tra il terminale di ricezione di TAP, all'interno del quale si troverà la sala di controllo, le stazioni di compressione in Albania e Grecia e le stazioni delle valvole di intercettazione installate lungo gli 871 km del gasdotto.

Il FOC verrà posato parallelamente al gasdotto per tutta la sua lunghezza (onshore e offshore) e sarà il principale strumento di comunicazione tra le stazioni del gasdotto.

3.2 INQUADRAMENTO PROGETTUALE

Il progetto oggetto del presente Piano prevede tre principali fasi di realizzazione:

- Allestimento di un punto di approdo della condotta offshore, area Microtunnel (KP 0 KP 0,110);
- Posa di una condotta onshore lunga circa 7,965 km (KP 0,110 KP 8,075)
- Costruzione di un terminale di ricezione (PRT) del gasdotto (KP 8,075).

Nel presente paragrafo vengono riassunte le attività di costruzione previste per il punto di approdo della condotta (area del Microtunnel), la pista di lavoro (*Right of Way* – RoW) che percorre il tratto di posa della condotta e il terminale di ricezione del Gasdotto (*Pipeline Receiving Terminal* - PRT).

La realizzazione del gasdotto in prossimità del punto di approdo sulla costa italiana si basa sulla tecnologia del Microtunnel Figura 3-2. Il Micro-tunnel (MT) verrà costruito con la tecnica del "pipe jacking", che consiste sostanzialmente nello spingere conci di cemento armato nel terreno, precedentemente trasportate in loco. La testa di perforazione (TBM) verrà calata in uno pozzo di spinta a tenuta, di dimensioni adeguate e scavato precedentemente. I conci verranno spinti per mezzo di una serie di cilindri idraulici, mentre la TBM scaverà sul fronte.

Il terreno scavato durante la trivellazione viene espulso dalla parte anteriore della testa di perforazione e portato in un'apposita unità di frantumazione (allocata all'interno della macchina stessa). Il prodotto frantumato, miscelato con acqua o fango bentonitico, viene trasportato in superficie, mediante un sistema idraulico costituito da una pompa a circuito chiuso, ad una unità di trattamento dei fanghi, che consente il recupero e il trattamento dei fanghi e dei materiali di scavo.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO SALE TO SHELL THE RESERVE BUSINESS	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	12 of 84

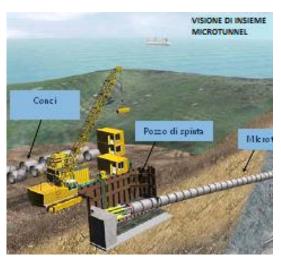


Figura 3-2 Visione schematica della diposizione schematica del metodo operativo del microtunnel

Una volta completato il microtunnel e dopo aver recuperato la TBM dal fondale, la condotta (tubo) che arriva dal tratto offshore verrà tirata all'interno del tunnel per mezzo di un argano e di un sistema a puleggia. Infine, verranno eseguite le operazioni di riempimento dello scavo.

Il punto di connessione tra la pipeline offshore e onshore è a 110 metri dal punto di approdo. In prossimità del punto di approdo del gasdotto verrà installata una valvola di intercettazione (BVS) per permettere l'isolamento della condotta offshore rispetto al tratto onshore, per motivi legati alla sicurezza ed alla manutenzione. La valvola di intercettazione consterà solo di una piccola cabina contenente i sistemi di alimentazione e controllo e di una recinzione per evitare ogni interferenza con l'esterno; la valvola interesserà una superficie totale di circa 13 x 14 m (più la vegetazione circostante messa a dimora per il mascheramento).

La Figura 3-3 di seguito mostra la planimetria prevista per la BVS.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO THE CONSIDER TO SHELL TERM	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	13 of 84

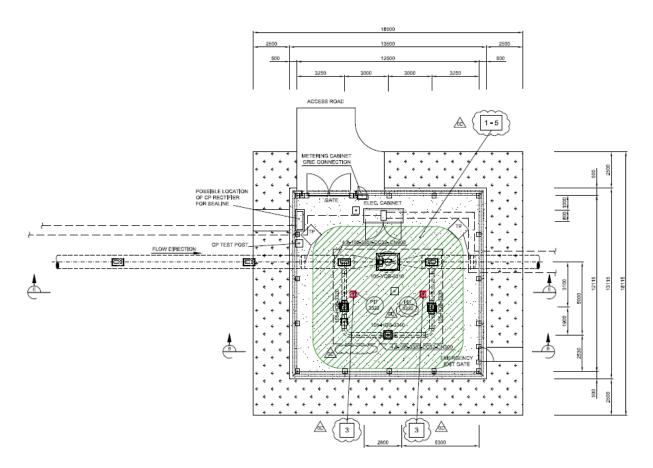


Figura 3-3 Planimetria della BVS (Fonte: TAP 2015)

Per quanto riguarda i metodi di costruzione dei gasdotti in Italia, il Decreto Ministeriale 17/04/2008 prevede una copertura minima della condotta, a partire dalla parte superiore del tubo, non inferiore a 0,9 m e a 0,4 m in presenza di suoli rocciosi. In ogni caso, i gasdotti in Italia sono generalmente posati con una copertura minima di 1,5 m, per garantire la massima protezione dalle interferenze con le attività umane (scavi, scassi del terreno per scopi agricoli, ecc.). Le dimensioni tipiche delle trincee sono indicate nella seguente Figura 3-4.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO THE CONSISTENCY TO SERVER SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	14 of 84

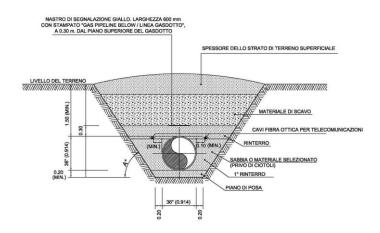


Figura 3-4 Trincea tipica onshore per una condotta DN 900 (36")

Il punto finale del gasdotto è costituito dal PRT (Pipeline Receiving Terminal, Figura 3-5) e sarà anche il punto di connessione con la rete italiana gestita da Snam Rete Gas (SRG). Il PRT occuperà un'area di circa 12 ettari, includendo anche la strada che corre lungo la recinzione esterna e includerà al suo interno tutte le attrezzature e gli impianti necessari per il funzionamento del gasdotto e il suo collegamento con la rete nazionale.

Figura 3-5 Layout generale del PRT

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	15 of 84	

3.2.1 Opere attraversate e metodologie realizzative

Conformemente alla normativa italiana, nessun gruppo di fabbricati deve trovarsi all'interno di un raggio di 100 m dal gasdotto. In prossimità del gasdotto si trovano solo fabbricati isolati, ad una distanza comunque superiore (20 m dall'asse condotta) ai limiti previsti dal DM 17/04/2008.

Oltre alla strada provinciale e a una più piccola strada asfaltata attraversate con il microtunnel, verranno interessate un'altra strada provinciale che incrocia il gasdotto a KP 6,5 e altre strade comunali più piccole. Nella Tabella 3-1 vengono presentate nel dettaglio tutte le informazioni delle strade asfaltate attraversate dal gasdotto e la relativa modalità realizzativa.

Tabella 3-1 Opere attraversate e metodologie realizzative

Progr. (km)	Infrastruttura	Modalità realizzativa
0,560	Strada comunale "S. Niceta"	Scavo a cielo aperto
1,090	Strada comunale "S. Niceta"	Scavo a cielo aperto
1,985	Strada comunale "S. Niceta"	Scavo a cielo aperto
3,990	Strada comunale "S. Niceta"	Scavo a cielo aperto
4,600	Strada comunale "Via Cimitero"	Scavo a cielo aperto
5,600	Viabilità secondaria Strada Regionale n.8 (in progetto)	Scavo a cielo aperto con tubo di protezione o Trivellazione con tubo di protezione
5,625	Str. Vic. "Via Vecchia Acquarica-Melendugno)	Scavo a cielo aperto
5,770	Collegamento Complanare Strada Regionale n.8 (in progetto)	Scavo a cielo aperto con tubo di protezione o Trivellazione con tubo di protezione
5,880	Strada comunale S. Nicola	Scavo a cielo aperto
5,900	Strada Regionale n.8 (in progetto)	Scavo a cielo aperto con tubo di protezione o Trivellazione con tubo di protezione
5,915	Complanare Strada Regionale n.8 (in progetto)	Scavo a cielo aperto con tubo di protezione o Trivellazione con tubo di protezione
6,430	Strada provinciale n.145	Trivellazione con Tubo di Protezione
7,580	Strada comunale "Via Vecchia Vernole-Melendugno"	Scavo a cielo aperto

3.2.2 Opere provvisionali in terra

Tra i manufatti in terra con durata temporanea, per cui non considerati parte compiuta dell'opera, perché comunque rimossi prima, sono da considerare soprattutto le viabilità, piste di cantiere e le opere accessorie per la realizzazione del microtunnel.

Le viabilità di cantiere sono percorsi all'interno delle aree operative: sono organizzate secondo caratteristiche e condizioni studiate per ogni fase di cantierizzazione prevista a supporto dell'esecuzione di una o più opere a progetto.

In allegato A si riportano le strade di accesso al cantiere che sono:

- 2 strade di accesso al PRT;
- 1 strada di accesso alla Valvola di sezionamento onshore (Block Valve Station BVS);
- Right of Way.

TAP AG

Piano di Utilizzo Terre e Rocce da Scavo Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER The Consulting to Latine your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	16 of 84

Le opere accessorie provvisorie per la realizzazione del microtunnel riguardano la realizzazione di un pozzo di spinta. Il pozzo sarà realizzato in calcestruzzo armato ed è stato dimensionato (Figura 3-6) al fine di eseguire in sicurezza le fasi di esecuzione del Microtunnel e per consentire l'installazione del sistema di pompaggio da utilizzare per i test idraulici.

La costruzione del pozzo prevede la realizzazione di paratie con pali secanti e stabilizzazione e impermeabilizzazione del fondo scavo tramite jet grounting.

Al suo interno ospiterà le seguenti attrezzature:

- Postazione di spinta dei conci tubolari in calcestruzzo;
- Pompe per il funzionamento dei circuiti idraulici operanti durante l'esecuzione del microtunnel;
- Pompe per il test idraulico della condotta.

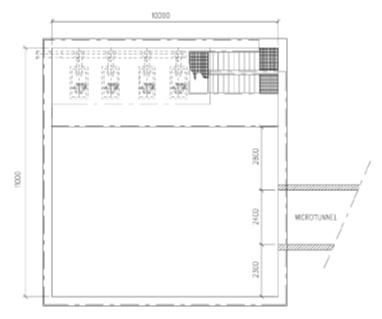


Figura 3-6 Pozzo di spinta

Una volta conclusa l'attività di scavo e collaudo del microtunnel il pozzo verrà parzialmente demolito e rinterrato. Il materiale derivante dalle attività di demolizione verrà allontanato e gestito come rifiuto in accordo alla normativa vigente.

3.2.3 Aree di cantiere e di intervento, viabilità di cantiere

In relazione alle attività da eseguire, sono state individuate 3 aree di cantiere con le seguenti funzioni: area di cantiere del microtunnel, pista di lavoro RoW e area del PRT.

Le suddette aree risultano localizzate nel seguente modo:

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Consulting to Same your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	17 of 84

Area di cantiere del microtunnel: L'area ricopre una superficie di circa 26.000 m² e l'accesso sarà previsto da una pista di accesso temporanea che connetterà l'area di lavoro con la strada municipale di S.Niceta. La pista temporanea, lunga circa 490 m, sarà realizzata all'interno della pista di lavoro (RoW) che corre lungo la condotta (pipeline).

All'interno dell'area saranno predisposte delle aree per lo stoccaggio del top soil, del terreno degli scavi a cielo aperto delle aree per la caratterizzazione del materiale di scavo del microtunnel (al fine di assegnare il codice CER) che verrà successivamente inviato a smaltimento/recupero in conformità alla normativa vigente in materia di rifiuti. Per ulteriori dettagli si veda Allegato A.

<u>Pista di lavoro RoW</u>: carreggiata lungo tutto il tratto di posa della condotta onshore, lunga quasi 8 km e larga circa 18 m, al cui interno è presente il cantiere operativo e, a lato della pista sono stoccati sia i terreni di scotico che quelli di scavo Allegato A).

<u>Area del PRT</u>: accessibile sia da Nord che da Sud, al cui interno sono predisposti un cantiere operativo e le aree di deposito relative ai terreni di scotico e di scavo dell'area stessa (Allegato A).

3.2.4 Aree di deposito in attesa di utilizzo

Nell'ambito delle aree di cantiere sono individuati i siti di deposito localizzati nelle predette aree di cantiere:

- L'area del microtunnel raccoglierà i terreni provenienti dallo scotico e dagli scavi previsti nell'area stessa;
- L'area della RoW raccoglierà i terreni provenienti dallo scotico e dagli scavi previsti lungo tutto lo scavo del gasdotto;
- L'area del PRT raccoglierà i terreni provenienti dallo scotico e dagli scavi previsti nell'area stessa e dalle due strade di accesso.

Queste aree sono individuate per la deposizione del materiale in attesa della destinazione/utilizzo finale.

Sono utilizzate e organizzate sulla base della caratterizzazione chimica dei terreni e dei materiali, sulla loro compatibilità ambientale ed idoneità ad essere riutilizzati nella fase di corso d'opera.

Caratteristiche e tipologie delle aree di deposito in attesa di utilizzo

I materiali che verranno depositati nelle aree possono essere suddivisi genericamente nelle seguenti categorie:

- terreno sterile derivante da scavi all'aperto;
- terreno vegetale (corrispondente al primo strato di terreno, risultante dalle operazioni di scotico, 20 cm per microtunnel e RoW, 30 cm per il PRT);

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Consulting to Same your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	18 of 84

Si precisa ancora una volta che il materiale proveniente dallo scavo del microtunnel sarà invece gestito conformemente alla normativa vigente in materia di rifiuti.

All'interno delle singole aree il terreno verrà stoccato in cumuli separati, distinti per natura e provenienza del materiale, con altezza massima derivante dall'angolo di riposo del materiale in condizioni sature, tenendo conto degli spazi necessari per operare in sicurezza durante le attività di deposito e prelievo del materiale.

La preparazione e disposizione delle aree di deposito richiede in breve le seguenti lavorazioni:

- lo scotico del terreno vegetale, che verrà accantonato presso ciascuna area con le modalità descritte nei dettagli nei successivi paragrafi;
- la regolarizzazione, compattazione ed impermeabilizzazione del fondo;
- la creazione di un fosso di guardia per allontanare le acque di pioggia;
- la posa, ove ritenuto necessario, di una recinzione di delimitazione.

Aree di caratterizzazione

Non sono previste aree di caratterizzazione dei terreni in fase di cantiere in quanto la caratterizzazione è stata già effettuato in accordo ai Piani approvati dall'Autorità di Controllo.

Aree di deposito per terreno vegetale

La rimozione del terreno vegetale interessa non solo le aree di sedime dell'opera, ma anche tutte le aree interessate dalla cantierizzazione (ivi comprese le piste, le aree di cantiere propriamente dette e le stesse aree di deposito).

Le aree di deposito del terreno vegetale saranno separate dalle aree di deposito di altre tipologie di terre, come sopra indicato.

I cumuli di scotico tipicamente, non saranno alti più di 2 m, per prevenirne l'erosione, e metterli al sicuro da eventuali danneggiamenti o compattamenti indesiderati.

3.2.5 Durata del deposito delle terre

Il deposito del materiale escavato avrà una durata compatibile con i tempi di validità del presente Piano indicati in Allegato B.

Le durate dei depositi comprendono i tempi necessari per la realizzazione del progetto, nonché il ripristino del terreno vegetale di copertura ed il ripristino ambientale delle aree, attività che saranno necessariamente tra le ultime lavorazioni previste dal cronoprogramma di progetto.

Definito il tempo massimo di deposito, va evidenziato che il sistema che verrà impiegato per la maggior parte delle aree sarà di tipo "dinamico". In altre parole in ciascuna area di deposito saranno normalmente collocate delle terre, derivanti da scavi e sterri, che verranno quindi

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Consulting to Same your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	19 of 84

reimpiegate, con tempistica diversa in funzione dell'avanzamento dei lavori, per la realizzazione di rinterri lungo tutto il progetto.

Faranno generalmente eccezione a questa logica le aree che verranno impiegate per il deposito del terreno vegetale. Questo avrà origine dalle operazioni di scotico eseguite sia nelle aree di lavoro che in quelle destinate ai cantieri, svolte nella prima fase di attività, e verrà reimpiegato nell'ambito dei ripristini, delle riambientalizzazioni e del rivestimento. Tipicamente quindi il terreno vegetale verrà stoccato fin dalla fase iniziale dei lavori e riutilizzato solo nella fase finale dei lavori.

3.3 INQUADRAMENTO GEOLOGICO ED IDROGEOLOGICO

I seguenti paragrafi riassumono l'assetto geologico ed idrogeologico dell'area di Progetto sulla base delle informazioni riportate nell' ESIA e successivamente integrate con specifici studi redatti nel corso della procedura di Valutazione di Impatto Ambientale.

3.3.1 Assetto geologico

Dal punto di vista geologico, il Salento appartiene alla Piattaforma Apula, la quale rappresenta l'avampaese dell'Appennino Campano-Lucano, ed è formato da una spessa sequenza stratigrafica carbonatica di età mesozoica, ricoperta in trasgressione da depositi organogenici e/o calcarenitici paleogenico-oligocenici e da una sottile successione carbonatico-terrigena di età quaternaria ("F° 214 – Gallipoli of the Carta Geologica d'Italia").

Per quanto riguarda l'area del microtunnel, secondo quanto riportato dalla Carta Geologica d'Italia (Figura 3-7), l'area è caratterizzata dalla presenza di Calcareniti del Salento. Tale formazione è caratterizzata da una considerevole variabilità litologica che comprende calcareniti marnose, da grana media a fine, poco coerenti, generalmente di colore giallo o grigio che mutano fino a calcareniti fossilifere a grana grossa e alla sabbia calcarea a grana grossa, più o meno cementata e argillosa, ricoperta da un crostone di colore giallo intenso o rossastro.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Considering for Same your flusiness	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	20 of 84

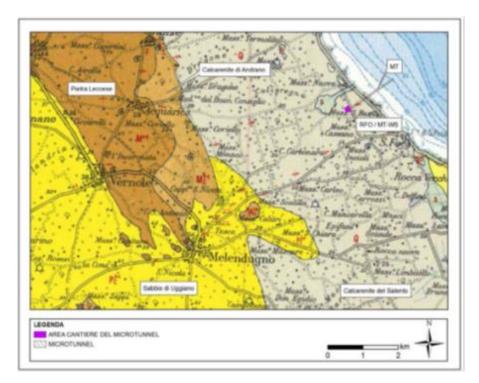


Figura 3-7 Inquadramento geologico dell'area del microtunnel (Estratto carta geologica d'Italia)

La litologia caratteristica del tracciato del gasdotto, è descritta di seguito con riferimento alla Carta Geologica d'Italia Figura 3-8).

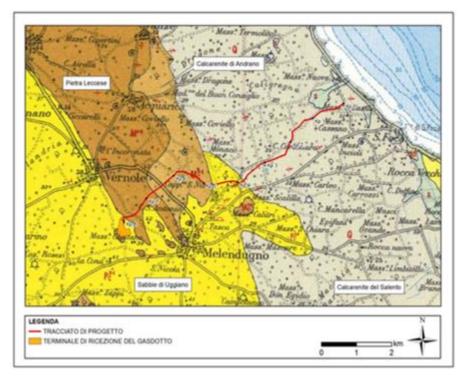


Figura 3-8 Inquadramento geologico dell'area della RoW e PRT (Estratto carta geologica d'Italia)

TAP AG Piano di Utilizzo Terre e Rocce da Scavo Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SSHELTER TO STATE OF PLANE	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	21 of 84	

Calcarenite e calcare del periodo Miocenico

- Pietra Leccese: la tipologia litologica predominante che caratterizza la Pietra Leccese
 consiste in calcareniti marnose organogene, a grana fine, omogenee, generalmente porose
 e non molto resilienti, paglierine, talvolta biancastre, spesso glauconitiche. Questa
 formazione è stata riscontrata tra le città di Acquarica e Vernole, nell'area del PRT. La
 formazione si colloca all'incirca tra il Kp 6,7 e il Kp 7,8 e in parte dell'area sud occidentale
 del PRT.
- Calcareniti di Andrano: la formazione è costituita da calcareniti organogene, di colore grigio chiaro, talvolta marnose giallastre o leggermente glauconitiche; calcare detritico, poroso, o calcare bioclastico di colore grigio chiaro uniforme e biancastro. In generale, tale formazione è riscontrata nella sezione sudest di Acquarica, anche se è difficile da identificare la transizione tra le Calcareniti di Andrano e la Pietra Leccese. La litologia è segnalata tra il Kp 4,7 e il Kp 6,7.

Calcarenite e sabbia dei periodi Pliocene e Pleistocene

- Sabbie di Uggiano: la formazione si colloca nel contesto delle rocce carbonatico-detritiche, con un'elevata variabilità litologica; la litologia varia, infatti, da una facies sabbioso-calcarea poco cementata, o da calcarenite detritico-organogena, talvolta marnosa, con vari gradi di cementazione, in genere più o meno friabile, a calcare detritico organogeno compatto. Alla base della formazione si possono trovare anche livelli di conglomerati. La formazione si colloca all'incirca tra il Kp 3,8 e il Kp 4,7, tra il Kp 7,8 e il Kp 8,0 e nell'area del PRT.
- Calcareniti del Salento: le calcareniti del Salento sono caratterizzate da una considerevole variabilità litologica che comprende calcareniti marnose, da grana media a fine, poco coerenti, generalmente di colore giallo o grigio che mutano fino a calcareniti fossilifere a grana grossa e alla sabbia calcarea a grana grossa, più o meno cementata e argillosa, ricoperta da un crostone di colore giallo intenso o rossastro. Le Calcareniti del Salento si estendono in maniera continua dalla linea di costa, fino al Kp 3,8.

Sulla base delle indagini geotecniche e geofisiche svolte nel corso della procedura di VIA e dai sondaggi effettuati dallo studio di caratterizzazione dei suoli (Allegato C), si può definire la seguente successione stratigrafica dal piano campagna fino alla profondità investigata (10 m da p.c.):

- a) "Terra rossa", composta da limo sabbioso o argilloso e più raramente sabbia limosa residuale con spessore variabile da pochi centimetri (sugli alti morfologici) a circa 2 metri (nelle depressioni) che ricopre in modo discontinuo le unità descritte di seguito;
- b) sabbia, limo sabbioso sabbia limosa, più raramente limo argilloso, con la presenza frequente di sabbia limosa biancastra rinvenuta nella parte bassa, affiorante all'incirca dal Kp 4.7 alla costa; essa è prevalentemente ricoperta da, ma a volte ricopre, una calcarenite

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER The Consulting to Latina your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	22 of 84

tenera giallastra, in generale piuttosto fratturata ed alterata, che affiora lungo la condotta dal Kp 4.75 al Kp 1.75; le osservazioni eseguite sulle carote e le posizioni dei sondaggi permettono di affermare verosimilmente che i suddetti litotipi sono membri eteropici all'interno della stessa unità stratigrafica, correlata con la formazione denominata "Calcarenite del Salento", conosciuta anche come "Calcarenite di Gravina";

c) Calcarenite biancastra, dura, in media meno fratturata ed alterata, affiorante all'incirca dal Kp 7.7 al 7.55 e dal Kp 7.1 al 4.75, correlata con la formazione denominata "Calcareniti di Andrano"; dalle prospezioni geofisiche provengono indicazioni della sua presenza nel sottosuolo tra il Kp 2.7 fino al Kp1.6, al di sotto dell'unità b) ad a profondità comprese tra circa 12 e 20 m dal p.c.

3.3.2 Assetto idrogeologico

La Puglia rappresenta un ambiente idrogeologico complesso. Il Salento è caratterizzato da due acquiferi:

- Il primo acquifero, superficiale, è composto da sedimenti del Mio-Plio-Pleistocene contenenti uno o due corpi idrici, il secondo dei quali possiede una geometria spesso difficile da determinare, poiché i sedimenti giacciono in limitati intervalli di roccia permeabile all'interno di un più generale contesto di depositi impermeabili.
- Il secondo acquifero, profondo, è composto da formazioni carbonatiche mesozoiche. Tale acquifero è localizzato a quote comprese tra 40 e 60 m al di sotto del livello marino.

In particolare:

- l'acquifero superficiale è ubicato nelle Calcareniti del Salento e nelle Sabbie di Uggiano; la sua ricarica è dovuta quasi esclusivamente alle precipitazioni che interessano gli affioramenti di tali formazioni; esso mostra un grado di permeabilità relativo alla frazione limosa e/o limoso-argillosa all'interno delle sabbie; in genere non possiede un'elevata capacità di immagazzinamento e la falda idrica è soggetta a variazioni stagionali del livello;
- le Argille subappenniniche formano un acquitardo che separa la falda superficiale da una falda semiconfinata presente nelle Calcareniti di Andrano; tali falde sono tra di loro connesse;
- la Pietra Leccese rappresenta un impermeabile che separa l'acquifero multifalda superficiale dall'acquifero profondo ubicato nella Formazione dei Calcari di Altamura; la falda profonda è perciò confinata in questi depositi cretacei dai sovrastanti sedimenti miocenici (generalmente impermeabili).

L'acquifero superficiale e l'acquifero semi-confinato appartengono al sistema denominato acquifero multilivello superficiale. Il tracciato di progetto attraversa le aree morfologicamente depresse occupate da terreni plio-pleistocenici: qui si può ritrovare l'acquifero multilivello superficiale. In

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Consulting to Sales your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	23 of 84

particolare, nel tratto iniziale (all'incirca nel primo km) il livello di falda è stato rinvenuto a profondità da variabili tra circa 2 m a 6 m dal piano campagna (luglio e dicembre 2015), le quali aumentano gradualmente dalla costa verso l'interno.

Tabella 3-2 Andamento piezometrico

Piezometro	Coor	dinate	Z (m s.l.m.)	Luglio 2015	Dicembre 2015	Luglio 2016
	Х	Υ		(m da p.c.)	(m da p.c.)	(m da pc)
Piezo2	277683	4465001		2,31	2,36	2,80
Piezo3	277639	4465156	8,64	2,55	2,57	3,00
Piezo4	277912	4465191	7,66	4,43	4,43	5,00
(STBH2)						
Piezo5	276887	4464756	15	6,3	6,5	6,95
Piezo6	277804	4465092	8,3	2,66	2,7	3,25
(STBH1)						

Fonte: OPL00-SPF-200-G-TRX-0019 Potenziale interferenza del microtunnel sull'assetto idrogeologico locale

Si riporta nella Figura 4-2 l'ubicazione dei piezometri riportati nella Tabella 3-2.

La Figura 3-9 riporta la carta delle isofreatiche realizzata a seguito dei monitoraggi freatimetrici, effettuati nel 2015, dai piezometri di nuova realizzazione elencati nella precedente tabella.

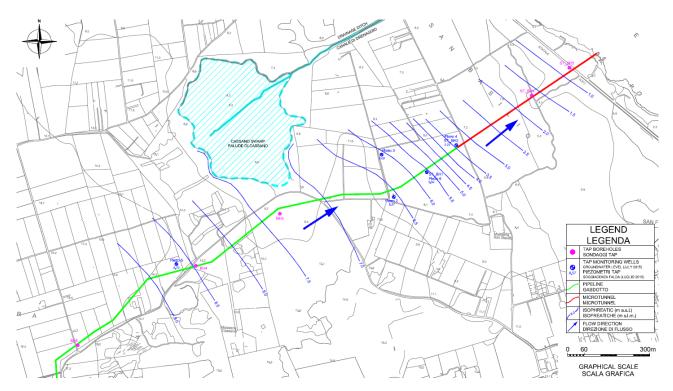


Figura 3-9 Carta delle isofreatiche (Fonte: URS 2015)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SSHELTER The Consulting to Survive Stations	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	24 of 84	

La Figura 3-10 mostra il PRT, il gasdotto ed il microtunnel sovrapposti alla Carta Idrogeologica del PTCP (Piano Territoriale di Coordinamento Provinciale) di Lecce. Essa evidenzia:

- le isofreatiche dell'acquifero superficiale, che diminuiscono gradualmente da 16 a 2 m s.l.m.;
- la direzione di flusso della falda nell'acquifero superficiale, indicata dalle frecce;
- la presenza di assi di drenaggio (SW-NE) che caratterizzano l'acquifero superficiale;
- il grado di vulnerabilità dell'acquifero, connesso alla permeabilità primaria e secondaria, dovuta al contenuto di limo e/op argilla nelle sabbie ed al grado di cementazione delle calcareniti.

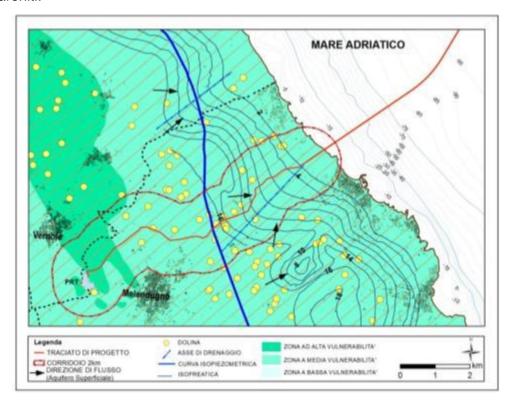


Figura 3-10 Aree del PRT, gasdotto e microtunnel sovrapposti alla Carta Idrogeologica del PTCP (Fonte: ERM 2013)

Dagli studi effettuati si evince che:

- Il pozzo di spinta è stato progettato per raggiungere circa 11 m di profondità, di cui circa 8 m sono attesi nella zona satura.
- La Rampa di Tiro raggiungerà profondità massime di circa 4 metri, per tale motivo potrebbero esserci delle minime interferenze, a fondo scavo, con la falda superficiale.

	Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK S	SHELTER The Consulting to Section your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	25 of 84

O Il microtunnel attraverserà tutto l'acquifero superficiale, nel tratto in cui il livello di base della falda è ancora rappresentato da strati sedimentari aventi caratteristiche di acquiclude o, almeno, di acquitardo. La perforazione proseguirà, attraversando l'acquiclude sino al punto di uscita, senza intercettare l'acquifero miocenico, confinato a profondità notevolmente maggiori. Probabilmente sarà incontrata la parte inferiore della formazione calcarenitica pliocenica avente caratteristiche di acquitardo e, quindi, con presenza di acque marine di invasione.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	26 of 84

3.4 INQUADRAMENTO GEOMORFOLOGICO

Il paesaggio salentino è caratterizzato da una serie di piane lievemente ondulate di varia estensione e forma, in genere estese in direzione NO-SE, e caratterizzate da differenti quote. I versanti che congiungono le piane rappresentano principalmente superfici di faglia o antiche scarpate costiere (Sansò et al., 2004).

I più importanti rilievi sono le "Serre", bassi crinali tabulari nel settore occidentale del Salento, con andamento NNO – SSE e NO – SE, che di norma tagliano i calcari cretaceo-paleogenici e raggiungono quote di 200 m s.l.m. Esse hanno una complessa origine strutturale, rappresentando porzioni di un'antica (pre-miocenica) superficie di erosione tropicale (etchplain, Sansò et al., 2004) modellata da doline riempite di depositi residuali bauxitici e da piccoli rilievi a forma di cupola.

Verso la costa adriatica il rilievo è meno marcato e le creste tabulari meno estese. Lungo la costa, a n di Otranto, dei bacini lacustri occupano delle depressioni a forma romboidale allineate in direzione N-S e probabilmente associate a recente attività tettonica (Sansò et al., 2004).

A causa dell'estesa presenza di rocce carbonatiche, il Salento è particolarmente interessato dal carsismo, che è esteso dai calcari e le dolomie del Mesozoico alle unità più recenti, coinvolgendo anche i depositi pleistocenici delle Calcareniti di Gravina.

Secondo Sansò et al. (2004), si possono riconoscere quattro fasi di sviluppo del carsismo:

- 1) la prima ha età paleogenica e si è sviluppata sui calcari mesozoici, producendo un paesaggio tabulare in un clima tropicale, con intensi processi di dissoluzione;
- 2) la seconda ha avuto luogo nel Pliocene: si possono osservare solo poche forme carsiche di questa fase, nei depositi della Pietra Leccese, forse a causa dell'intensa erosione che ha colpito il paesaggio;
- 3) la terza ha età infra-medio-pleistocenica ed è connessa ad un livello di base del mare più basso di quello attuale. Gran parte delle forme carsiche attuali appartengono a questa fase;
- 4) l'ultima fase è datata Pleistocene medio-superiore. Solo poche forme sotterranee rinvenute nella Calcarenite di Gravina possono essere attribuite a questa fase.

Nel Salento settentrionale il carsismo sotterraneo è principalmente caratterizzato da grotte ipogee di varia grandezza, di solito a sviluppo sub-orizzontale 1) vicino a dislocazioni tettoniche e/o 2) lungo i giunti di stratificazione delle formazioni calcaree o 3) come carsismo di contatto tra i calcari mesozoici e le meno solubili formazioni cenozoiche. Queste grotte possono occasionalmente collassare e quindi formare delle doline, particolarmente diffuse nelle aree costiere sia dello Ionio che dell'Adriatico (Parise et al., 2008).

Altro tipico carattere del paesaggio salentino, in relazione con il carsismo, è l'assenza di un reticolo idrografico ben sviluppato e la presenza di bacini endoreici in cui si trovano depressioni e doline che costituiscono i punti di recapito del ruscellamento. In questi tipi di bacini non è possibile

Trans Pipelii	Adriatic ne	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHI	ELTER g to Sentile your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	27 of 84

definire un'efficace rete di drenaggio; il ruscellamento è normalmente disperso e solo localmente incanalato in vie preferenziali nei dintorni di depressioni più ripide.

In particolare, l'area di attraversata dalla condotta è caratterizzata da una morfologia leggermente ondulata, quasi pianeggianete, con quote che variano da circa 7 m a 46 m s.l.m. senza interruzioni da parte di scarpate mentre il tratto di microtunnel su terraferma è caratterizzata da un profilo quasi piatto, con quote da circa 10 a 0 m s.l.m.

3.5 USO DEL SUOLO

Le aree cantiere occupate dalla Pista di Lavoro e dal PRT interessano prevalentemente uliveti (58,3% delle aree oggetto di scavo), seminativi semplici in aree irrigue (37,4% localizzati essenzialmente nell'area del PRT e del Kp 1.0) e aree a pascolo naturale, praterie ed incolti (3,9% delle aree oggetto di scavo).

La distribuzione spaziale di tali superfici lungo le aree di cantiere è riportata nella Figura 3-11.

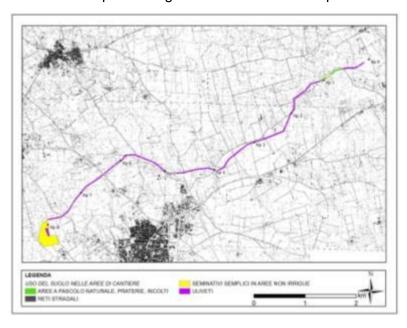


Figura 3-11 Destinazione d'uso del suolo area del PRT e Pista di Lavoro (Fonte ERM 2015)

L'Area del Microtunnel (che comprende l'area del Collaudo Idraulico (RFO), l'area della Rampa di Tiro (TW) e il Cantiere Temporaneo del Microtunnel (MT-WS) ricadono interamente in un'area di ulivi. Non sono previsti cambiamenti di destinazione d'uso dei suoli agricoli e forestali per quanto concerne l'area del microtunnel (MT).

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
SHELTER THE CONTRIBUTION OF THE PROPERTY OF TH	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	28 of 84

Figura 3-12 Destinazione d'uso del suolo area dell'area del Microtunnel (MT: microtunnel, RFO: area di collaudo idraulico, MT WS: cantiere temporaneo microtunnel, TW: Area rampa di tiro). (Fonte: ERM giugno 2015)

Tali aree non interessano aree urbane, industriali, commerciali o produttive ma esclusivamente terreni naturali caratterizzati da una limitata pressione antropica costituita essenzialmente dall'olivicoltura.

Per le aree del PRT è invece previsto il cambio di destinazione d'uso a "immobili a destinazione speciale - gruppo D/7 - Fabbricati costruiti o adattati per le speciali esigenze di un'attività industriale e non suscettibili di destinazione diversa senza radicali trasformazioni".

Per la RoW non è previsto il cambio di destinazione d'uso ad eccezione della valvola di intercettazione di linea BVS (Block Valve Station) dove è previsto il cambio di destinazione d'uso a "immobili a destinazione particolari – gruppo E/9 - Edifici a destinazione particolare non compresi nelle categorie precedenti del gruppo E".

Le destinazioni d'uso suddette sono quelle contemplate dalle attuali "tabelle delle categorie catastali" previste dal Catasto Terreni.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SSHELTER The Consulting to Survive Stations	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	29 of 84	

4. CARATTERIZZAZIONE AMBIENTALE DEI MATERIALI DA SCAVO IN FASE DI PROGETTAZIONE

4.1 CAMPAGNE INDAGINI

4.1.1 Precedenti campagne

Durante la procedura di VIA, al fine di verificare un'eventuale contaminazione esistente nel suolo, sono state eseguite due campagne di misura: una a luglio 2013 e una a novembre 2013. Le campagne hanno previsto la raccolta dei campioni ogni 500 m lungo il tracciato, nell'area del PRT e nel cantiere del microtunnel.

Figura 4-1 Ubicazione punti di campionamento della campagna svolta nel 2013 (*Fonte: ERM 2013*)

Entrambe le campagne, non hanno evidenziato superamenti delle Concentrazioni soglia di contaminazione (Tabella 1, Allegato 5, Parte IV, Titolo 5 del D.lgs. 152/2006) riferite alla destinazione ad uso residenziale/verde pubblico o privato.

I risultati delle campagne citate sono disponibili nei piani di caratterizzazione inviati alle Autorità Competenti in data 8 agosto 2016 con Protocollo n. LT-TAPIT-ITSK-00827.

4.1.2 Campagna di indagine 2016

Il progetto è stato interessato da una campagna di indagine per la caratterizzazione ambientale dei terreni in sito, svolta durante il periodo marzo-luglio 2016 in accordo alla prescrizione A.25 a) del decreto VIA. Più precisamente, il 21-22 marzo 2016 sono stati raccolti i campioni relativi all'area del microtunnel e del punto RoW13, mentre tra il 28 giugno e il 1 luglio 2016 i campioni relativi alle aree del terminale di ricezione (PRT) della pista di lavoro (RoW) e delle strade di accesso al PRT e alla BVS.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001		1
RSK SHELTER The Considering for Same your flusiness	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	30 of 84

In allegato si riportano i rapporti relativi allo studio di caratterizzazione dei suoli (Allegato C).

Per quanto riguarda l'analisi dei risultati della caratterizzazione ambientale ed il confronto con i limiti di contaminazione previsti dalla normativa va evidenziato che, poiché l'opera in progetto ricade all'interno di un'area ad uso prevalentemente agricolo, essa determina un uso del territorio assimilabile a quello che la normativa (D.Lgs. 152/2006 e ss.mm.ii., Allegato 5 alla parte IV) indica come uso residenziale/verde pubblico, privato. Di conseguenza come limiti di contaminazione di riferimento per le varie sostanze inquinanti possono essere assunti quelli della colonna A. della Tabella 1 dell'Allegato 5 della Parte IV al Titolo V del D. Lgs. 152/2006 e ss.mm.ii.

La campagna di indagine ha previsto l'esecuzione di 29 sondaggi geognostici verticali e 34 top soil e sono stati sono stati prelevati un totale di 112 campioni di terreno in duplice copia.

4.1.3 Ubicazione

L'ubicazione dei punti di campionamento, la profondità di scavo e la profondità del terreno prelevato sono state definite in base al volume di terreno da movimentare secondo il progetto del gasdotto. In tal senso sono stati selezionati un totale di 29 sondaggi e 34 top soil, come già anticipato, prelevando un totale di 112 campioni di terreno in duplice copia.

L'ubicazione planimetrica delle indagini eseguite è riportata in allegato (Allegato C).

Nella tabella seguente sono riportate le coordinate geografiche espresse in Gauss-Boaga dei punti di indagine con le relative profondità di campionamento.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SSHELTER TO THE CONSTRUCTION OF THE CONSTR	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	31 of 84	

Tabella 4-1 Coordinate dei punti di indagine del campionamento dei terreni

	ID	Coordinate WGS 84 – UTM 34 N		Profondità	n.	Opera prevista: MT – Microtunnel	
Tipologia		Est	Nord	Campione	prelievi	RoW – Pista da lavoro PRT – Terminale di ricezione AR –Strade di accesso	
	MT1v	277768,874	4465190,073	0-0,2	2	MT	
	MT2v	277812,533	4465218,823	0-0,2	2	MT	
	MT3v	277855,901	4465241,992	0-0,2	2	MT	
	MT4v	277796,625	4465151,186	0-0,2	2	MT	
	MT5v	277840,082	4465178,914	0-0,2	2	MT	
	MT6v	277882,659	4465199,772	0-0,2	2	MT	
	MT7v	277825,397	4465105,318	0-0,2	2	MT	
	MT8v	277867,508	4465130,469	0-0,2	2	MT	
	MT9v	277907,269	4465161,400	0-0,2	2	MT	
	MT10v	277893,014	4465088,334	0-0,2	2	MT	
	MT11v	277935,316	4465115,109	0-0,2	2	MT	
	PRT34	271498,00	4461798,00	0-0,2	2	PRT	
	PRT35	271562,00	4461813,00	0-0,15	2	PRT	
	PRT37	271513,00	4461735,00	0-0,2	2	PRT	
	PRT38	271576,00	4461750,00	0-0,2	2	PRT	
	PRT40	271473,00	4461659,00	0-0,2	2	PRT	
Top soil	PRT41	271527,00	4461672,00	0-0,2	2	PRT	
100 3011	PRT42	271591,00	4461686,00	0-0,2	2	PRT	
	PRT43	271654,00	4461701,00	0-0,2	2	PRT	
	PRT44	271717,00	4461715,00	0-0,2	2	PRT	
	PRT45	271781,00	4461730,00	0-0,2	2	PRT	
	PRT46	271542,00	4461608,00	0-0,2	2	PRT	
	PRT47	271605,00	4461623,00	0-0,2	2	PRT	
	PRT48	271669,00	4461638,00	0-0,2	2	PRT	
	PRT49	271732,00	4461652,00	0-0,2	2	PRT	
	PRT50	271795,00	4461667,00	0-0,2	2	PRT	
	PRT51	271557,00	4461545,00	0-0,2	2	PRT	
	PRT52	271620,00	4461560,00	0-0,2	2	PRT	
	PRT53	271683,00	4461574,00	0-0,2	2	PRT	
	PRT54	271747,00	4461589,00	0-0,2	2	PRT	
	PRT55	271810,00	4461603,00	0-0,2	2	PRT	
	AR1	271676,00	4461113,00	0-0,2	2	AR	
	AR2	271758,00	4461390,00	0-0,2	2	AR	
	AR3	271686,00	4462106,00	0-0,2	2	AR	
				0-1	2		
	SB1v	277902,707	4465179,985	5,5-6,5	2	MT	
				11,5-12	2		
	SB2v			0-1	2		
Sondaggi		277908,304	4465180,286	5,5-6,5	2	MT	
Johnayyi				11,5-12	2		
				0-1	2		
	SB3v	277905,789	4465174,668	5,5-6,5	2	MT	
	,		·	11,5-12	2		
	SB4v	277869,777	4465152,418	5,5-6,5	2	MT	

Est Nord Campione prelievi PRT	RoW – Pista da lavoro – Terminale di ricezione
	R -Strade di accesso
SB5v 277815 734 4465116 866 1 5-2 5 2	
	MT
3-4 2	
0-0,2 2	
RoW13v 277455,871 4465004,035 1-1,5 2	RoW
2,4-2,6 2	-
0-1 2	
PRT29 271540,00 4461994,00 1-2 2	PRT
0-1 2	
PRT30 271532,00 4461940,00 1-2 2	PRT
0-1 2	DDT
PRT31 271596,00 4461954,00 1-2 2	PRT
0-1 2	DDT
PRT32 271547,00 4461876,00 1-2 2	PRT
PDT00 074040 00 4404004 00 0-1 2	DDT
PRT33 271610,00 4461891,00 1-2 2	PRT
DDT26 274624.00 4464927.02 0-1 2	PRT
PRT36 271621,88 4461827,83 1-2 2	PKI
PRT39 271639,00 4461764,00 0-1 2	PRT
1-2 2	FNI
0-0,2 2	
RoW12 277908,00 4465177,00 1-1,5 2	RoW
2,4-2,6 2	
0-0,2 2	
RoW14 276919,18 4464738,04 1-1,5 2	RoW
2,4-2,6 2	
0-0,2 2	
RoW15 276614,00 4464525,00 1-1,5 2	RoW
2,4-2,6 2	
RoW16 270427 42 4404400 44 4.15 2	
(3) 276427,12 4464169,14 1-1,5 2	RoW
2,4-2,6 2	
0-0,2 2	D 144
RoW17 276138,00 4463731,00 1-1,5 2	RoW
2,4-2,6 2	
0-0,2 2	D-14/
RoW18 275669,00 4463559,00 1-1,5 2	RoW
2,4-2,6 2	
RoW19 275256,00 4463287,00 1-1,5 2	Po\//
	RoW
2,4-2,6 2 0-0,2 2	
RoW20 274887,00 4463020,00 1-1,5 2	RoW
274667,00 4463020,00 1-1,5 2 2,4-2,6 2	IVOAA
0-0.2 2	
RoW21 274398,00 4462993,00 1-1,5 2	RoW

	ID	Coordinate WGS 84 – UTM 34 N		Profondità	n.	Opera prevista: MT – Microtunnel	
Tipologia		Est	Nord	Campione	n. prelievi	RoW – Pista da lavoro PRT – Terminale di ricezione AR –Strade di accesso	
				2,4-2,6	2		
				0-0,2	2		
	RoW22	273926,00	4462996,00	1-1,5	2	RoW	
				2,4-2,6	2		
			504,34 4463249,01	0-0,2	2		
	RoW23 273504,34	273504,34		1-1,5	2	RoW	
			2,4-2,6	2			
			4463199,00	0-0,2	2		
	RoW24	273065,00		1-1,5	2	RoW	
				2,4-2,6	2		
			4462884,00	0-0,2	2		
	RoW25	RoW25 272677,00 4462		1-1,5	2	RoW	
				2,4-2,6	2		
				0-0,2	2		
	RoW26	272292,00	4462572,00	1-1,5	2	RoW	
		·		2,4-2,6	2		
		271996,00		0-0,2	2		
	RoW27		4462174,40	1-1,5	2	RoW	
				2,4-2,6	2]	
				0-0,2	2		
	RoW28 271644,00	271644,00	4461952,00	1-1,5	2	RoW	
		,		2,4-2,6	2	1	

4.1.4 Metodiche di campionamento

Le indagini ambientali in sito sono state effettuate in conformità a quanto previsto dal "Piano di campionamento dell'Area di costruzione del Microtunnel" e dal "Piano di campionamento Onshore (PRT-BVS-RoW)".

La raccolta dei terreni per il campionamento del top soil (fino a 20 cm dal p.c.) è avvenuta selezionando in campo, mediante apposito setaccio, la frazione granulometrica di diametro inferiore ai 2 cm. Le aliquote di ogni campione sono state preparate mediante l'ausilio di mezzi manuali (spatole/palette in acciaio inox), e posizionando il terreno su telo impermeabile in polietilene per la successiva quartatura.

In ciascun punto di indagine, i campioni, raccolti in contenitori in vetro di capacità volumetrica pari a un litro, e chiusi ermeticamente, sono stati prelevati in duplice aliquota di cui una per le determinazioni analitiche del laboratorio ed una a disposizione per eventuali controanalisi.

I sondaggi geognostici verticali sono stati realizzati tramite un impianto di perforazione a carotaggio continuo a secco e sono stati spinti a profondità variabile. Le carote sono state disposte all'interno di scatole catalogatrici.

Per quanto concerne le modalità di campionamento sono state rispettate le seguenti procedure:

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	34 of 84

- stesura su telo impermeabile in polietilene
- campionamento secondo quanto riportato dalla normativa
- suddivisione del campione in più parti omogenee
- disposizione del campione in contenitori stagni di vetro opportunatamente sigillati ed etichettati e conservati in ambiente refrigerato per la spedizione al laboratorio di analisi.

A completamento delle operazioni di perforazione, i fori di sondaggio sono stati chiusi con miscela di boiacca di cemento e materiali di risulta.

Per ogni metodica di indagine, la fase vera e propria di prelievo e formazione delle aliquote di terreno (campioni) è sempre avvenuta utilizzando utensili metallici inox debitamente lavati.

Le operazioni di selezione da sondaggio a carotaggio continuo sono stati effettuate, prelevando con guanti monouso lo spezzone di carota di interesse appena estratto dal carotiere.

4.1.5 Checklist inquinanti analizzati

Le aree oggetto del presente Piano interessano aree agricole naturali quali uliveti, seminativi semplici, aree a pascolo naturale ed incolti. Nessuna delle aree oggetto di caratterizzazione interessa aree urbane, industriali, commerciali o produttive.

Considerando che, storicamente, l'area investigata non è mai stata oggetto di industrializzazioni, urbanizzazione o attività antropica diversa da quella agricola le sostanze indicatrici ricercate corrisponderanno al set analitico standard riportato nella Tabella 4.1 dell'allegato 4 del DM 161/2012 "Procedure di caratterizzazione chimico fisiche e accertamento delle qualità ambientali". Tale test analitico standard è stato integrato con tutti i parametri che hanno raggiunto un valore pari almeno all'80% delle CSC riferita alla destinazione ad uso residenziale/verde pubblico, privato, conservativamente utilizzato in quanto le aree ripristinate saranno utilizzate per attività agricole. A questi sono stati aggiunti i pesticidi, che rappresentano il principale effetto della pressione antropica sull'area di intervento.

I 112 campioni di terreno sono stati analizzati secondo il piano analitico riportato nei Piani di Campionamento e riassunti nella seguente Tabella 4-2.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001		1
RSK SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	35 of 84

Tabella 4-2 Set analitico terreni

Set analitico	dei terreni		
Parametro	Metodica analitica		
Scheletro (2 mm)	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1		
Scheletro (2mm - 2cm)	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3		
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2		
Arsenico, Cadmio, Cobalto, Nichel, Cromo, Piombo, Rame, Zinco, Mercurio, Berillio, Vanadio, Tallio	EPA 6020B 2014		
Cromo VI	EPA 7196A 1992		
Idrocarburi Pesanti C>12	EPA 8015C 2007		
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B		
Alaclor, Aldrin, Atrazina, a-esacloroesano, b- esacloroesano, g-esacloroesano (Lindano), Clordano, DDD, DDT, DDE, Dieldrin, Endrin	EPA 8270D 2007		

4.1.6 Conformità

Il rispetto dei requisiti di qualità ambientale di cui all'art. 184 bis comma 1 lettera d) del D.lgs. 152/2006 e s.m.i. per l'utilizzo dei materiali da scavo come sottoprodotti è garantito quando il contenuto di sostanze inquinanti all'interno dei materiali da scavo sia inferiore alle Concentrazioni Soglia di Contaminazione (CSC), di cui alle colonne A e B tabella 1 allegato 5, al Titolo V parte IV del decreto legislativo n. 152 del 2006 e s.m.i., con riferimento alla specifica destinazione d'uso urbanistica, o ai valori di fondo naturali.

I materiali da scavo sono utilizzabili per rinterri, riempimenti, rimodellazioni, ripascimenti, interventi in mare, miglioramenti fondiari o viari oppure altre forme di ripristini e miglioramenti ambientali, per rilevati, per sottofondi e nel corso di processi di produzione industriale in sostituzione dei materiali di cava:

- se la concentrazione di inquinanti rientra nei limiti di cui alla colonna A, in qualsiasi sito a prescindere dalla sua destinazione;
- se la concentrazione di inquinanti è compresa fra i limiti di cui alle colonne A e B, in siti a destinazione produttiva (commerciale e industriale).

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	36 of 84

4.2 SINTESI DEI RISULTATI DELLE ANALISI DI LABORATORIO

Da quanto sinora descritto, si possono sintetizzare di seguito i risultati delle analisi chimiche di laboratorio accreditato eseguite sui campioni di terreno prelevati durante le campagne di indagine.

Considerata la destinazione d'uso delle aree di studio, i risultati analitici delle analisi del terreno sono stati confrontati con le Concentrazioni Soglia di Contaminazione (CSC) per Siti ad uso Verde pubblico o privato (cfr. D.Lgs. 152/06, Parte IV, Titolo V - Allegato 5, Tabella 1, Colonna A).

In conclusione, per ciò che attiene la matrice suolo e sottosuolo, dalle indagini effettuate non emergono superamenti delle CSC degli analiti considerati.

Tutte le risultanze analitiche, i Rapporti di Prova delle analisi eseguite da SGS (laboratorio accreditato) su tutti i campioni sono riportati in Allegato C.

4.3 INTERFERENZA PORZIONE SATURA TERRENA

Come anticipato nel paragrafo 3.3.2, le operazioni di scavo potranno interessare la porzione satura del terreno, interferendo con la falda solo per quanto riguarda il cantiere del microtunnel.

Allo scopo di monitorare lo stato di qualità della matrice acque sotterranee, come richiesto durante gli incontri con ISPRA ed ARPA del 5 febbraio 2016 e 30 maggio 2016, potenzialmente intercettate dal microtunnel, in accordo al "*Piano di campionamento onshore*", si deve effettuare uno specifico campionamento delle acque di falda da un piezometro (Piezo 3) a monte idrogeologico dell'area di costruzione del microtunnel e da due piezometri (ancora da realizzare) a valle dell'area di intervento (Piezo 7 e Piezo 8 - Figura 4-2).

Figura 4-2 Ubicazione dei piezometri (Fonte: ERM 2016)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER The Consulting to Law your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	37 of 84

L'area interessata dallo scavo della porzione satura di terreno risulterà quella del microtunnel e quindi il monitoraggio da tenere in considerazione per la caratterizzazione delle terre e rocce di scavo è quello relativo al Piezo 4-6. In allegato D vengono comunque riportati tutti i risultati delle analisi delle acque dei piezometri 2-3-4-5-6.

L'attività di monitoraggio della qualità delle acque sotterranee è stata effettuata seguendo le disposizioni individuate dal D.Lgs.152/2006 Allegato 1 Parte III e dalle Linee Guida di ISPRA per la predisposizione del PMA delle opere soggette a procedure di VIA.

I campioni sono stati inviati a un laboratorio accreditato e le analisi dei parametri chimico-fisici sono state effettuate come richiesto dalla normativa tecnica italiana e internazionale per le metodiche di analisi di ciascun parametro (Norme IRSA-CNR, Standard EPA).

Le analisi chimiche sono state effettuate in conformità alle specifiche fornite in Allegato 2 al Titolo V del D.lgs. 152/2006 e s.m.i. e comparate con le CSC contenute in Tabella 2 nell'Allegato 5 al Titolo V del D. Lgs. 152/2006 e s.m.i..

Il pacchetto analitico ricercato per la matrice acque sotterranee è riportato nella seguente tabella.

Tabella 4-3 Set analitico acque di falda

Parametro	Set Standard	Metodica congliata
Arsenico		
Cadmio		
Cobalto		
Nichel		
Cromo totale		
Piombo		FD 4 00000 0007
Rame		EPA 6020° 2007
Zinco		
Mercurio		
Berillio		
Vanadio		
Tallio		
Cromo VI		APAT CNR IRSA 3150 C Man 29 2003
Idrocarburi >12		EPA 8015D 2003
Amianto		Tecnica SEM
Atrazina		
Alaclor		
Aldrin		
a - esacloroesano		
b - esacloroesano		
g- esacloroesano (Lindano)		EPA 3510 + EPA 8270
Clordano		
DDD, DDT, DDE		
Dieldrin		
Endrin		

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Consulting to Same your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	38 of 84

I risultati delle analisi su tutti i campioni prelevati non hanno evidenziato superi delle CSC contenute in Tabella 2 nell'Allegato 5 al Titolo V del D. Lgs. 152/2006 e s.m.i fatta eccezione per il parametro Nichel dei campioni prelevati nel Piezo3 e Piezo4 che a fronte di una CSC di 20 μ g/l ha evidenziato un valore rispettivamente di 22 μ g/l e 44 μ g/l. Si sottolinea che il tali superi sono stati riscontrati durante il monitoraggio *ante operam* e quindi antecedentemente a qualsiasi attività che verrà svolta da TAP.

Si precisa comunque che, alla luce del rispetto delle CSC di tutti i campioni di terreno prelevato (sia top soil che sondaggi profondi), non si ritiene che i due superi di Nichel possano costituire alcun rischio per il riutilizzo dei terreni scavati in loco, trattandosi presumibilmente di valori tipici dell'area indagata. Tuttavia, al fine di tener conto della osservazione nr. 10 della nota tecnica (prot. 0034076-32 del 29 maggio 2017) di ISPRA e ARPA Puglia, tutto il materiale saturo scavato nell'area del microtunnel sarà gestito in conformità alla normativa vigente in materia di rifiuti.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER The Consulting to Law your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	39 of 84

5. METODOLOGIE DI SCAVO PREVISTE

Nel presente capitolo sono descritte in sintesi le procedure ed i metodi di scavo individuati nel progetto suddivisi nelle tre fasi/cantieri di progetto, ovvero:

- Fase di esecuzione del punto di approdo e microtunneling o area del Microtunnel;
- Fase di scavo e interramento del gasdotto o RoW/Pista di Lavoro e della strada di accesso alla BVS;
- Fase di costruzione del Terminale di Ricezione del Gas (PRT) e delle due strade di accesso.

5.1 ESECUZIONE DEL PUNTO DI APPRODO, AREA DEL MICROTUNNEL

L'approdo sarà completato per mezzo di un microtunnel, tramite una talpa a controllo remoto nota con l'acronimo MTBM (Microtunnel Boring Machine), associata ad un sistema idraulico (tecnica "spingitubo") per l'installazione diretta di conci in cemento che formeranno il microtunnel interrato. La condotta sarà poi fatta passare attraverso il microtunnel.

Per consentire l'attività di costruzione del microtunnel sarà necessario predisporre un cantiere provvisorio sulla terraferma. La preparazione del cantiere prevede lo scotico di circa 5.200 m3 di terreno che verrà stoccato in loco per essere successivamente riutilizzato durante le attività di ripristino.

Si prevede inoltre la necessità di un livellamento al termine dei lavori di "scotico" superficiale, con movimentazione e apporto di materiale misto granulare di natura calcarenitica, generalmente proveniente da cave locali. Una volta terminati i lavori il materiale misto granulare verrà rimosso ed allontanato ai sensi della normativa vigente.

Oltre ai movimenti terra legati allo scotico, all'interno dell'area di approdo sono previsti i seguenti scavi:

- · Pozzo di spinta;
- Scavo del tubo camicia di protezione;
- Scavo trincea dell'argano;
- Scavo microtunnel.

Il materiale di scavo prodotto dalle attività legate alla costruzione dell'approdo è approssimativamente stimato a 12.850 m3, (1.300 m3 per lo scavo della stazione di lancio, 100 m3 per lo scavo del tubo camicia di protezione, 950 m3 per la trincea dell'argano e 10.500 m3 per lo scavo del microtunnel).

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SSHELTER TO STATE OF PLANE PARK	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	40 of 84	

5.1.1 Pozzo di spinta

Per un corretto allineamento della condotta il microtunnel necessita inoltre dello scavo di una "stazione di lancio" nel punto in cui partirà la MTBM.

Il progetto per la realizzazione del pozzo di spinta prevede un dimensionamento interno pari a 10 m lungo l'asse del gasdotto e 11 m nella direzione ortogonale (Figura 3-6). Come anticipato nel paragrafo 3.2.2, a cui si rimanda per ulteriori dettagli, il pozzo sarà rivestito in cemento armato e realizzato attraverso l'uso di paratie e stabilizzazione e impermeabilizzazione del fondo scavo tramite jet grounting

5.1.2 Scavo del tubo camicia di protezione e della trincea dell'argano

Alle spalle del pozzo di spinta sarà installato un tubo camicia di protezione di 48". Tale installazione avverrà tramite tecnologia trenchless ovvero la posa di tubazioni gallerie senza scavo a cielo aperto. La sezione del tubo sarà di circa 80 m di lunghezza e la guida sarà dritta, con una pendenza pari a 0,068 m/m.

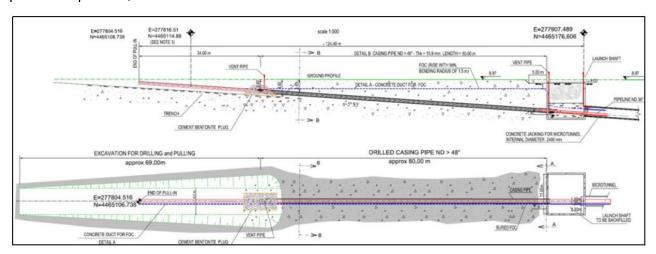


Figura 5-1 Sezione e pianta del tubo camicia di protezione (Fonte: SAIPEM 2016).

5.1.3 Scavo microtunnel

La perforazione con la metodologia del microtunnel prevede l'utilizzo di una talpa a controllo remoto (MTBM) che prevede l'utilizzo di fluidi a base di acqua e bentonite.

Il terreno scavato viene portato in superficie tramite un circuito di evacuazione idraulica di tipo chiuso, tale da garantire il riutilizzo dei fanghi di perforazione minimizzandone lo scarico.

Il sistema di scavo prevede che il fluido di perforazione (acqua e bentonite) venga pompato dal relativo serbatoio di accumulo al cono di frantumazione (interno alla macchina di perforazione), dove si mescola con il terreno disgregato per formare una miscela fluida (slurry), che viene a sua volta pompata in un container, all'esterno del tunnel, attraverso un circuito idraulico chiuso.

La separazione del materiale in sospensione nello smarino, dal fluido di perforazione, si ottiene utilizzando un impianto di separazione. L'impianto di separazione che sfrutta le migliori tecnologie

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Consulting to Same your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	41 of 84

attualmente disponibili sul mercato prevede l'impiego di unità speciali, in relazione alla classe granulometrica di cui si richiede un'efficace separazione.

L'impianto comprende dissabbiatori, che trattengono la frazione solida mediante vibrovagli e cicloni, e successive unità quali centrifughe e/o filtropresse che realizzano un'ulteriore riduzione volumetrica dei fanghi trattati. In generale il dissabbiatore è costituito da un vibrovaglio sgrossatore centrale, per la separazione del materiale grossolano (ghiaia e sabbia grossolana) e da una o più unità laterali composte da cicloni e vagli asciugatori, per la separazione della frazione fine (sabbia).

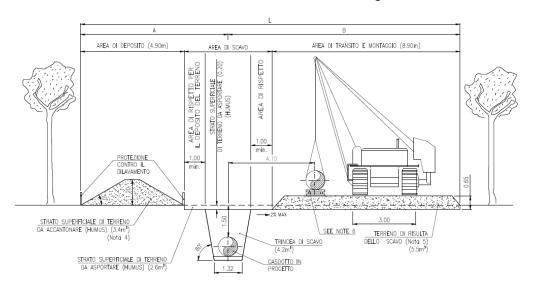
In aggiunta è prevista una speciale unità composta da una batteria di vagli microfini a più livelli abbinati a sistemi di vibrazione variabile ad elevata accelerazione che permette di ridurre considerevolmente la frazione composta da sabbie fini e limi. L'eventuale frazione fine di materiale ancora presente nello slurry sarà sottoposta a separazione con centrifughe e/o filtropresse.

Come ultimo stadio dell'impianto, l'utilizzo di filtropresse consente di ottenere un prodotto di consistenza paragonabile ad un'argilla. L'acqua separata potrà essere riutilizzata nel circuito di perforazione o smaltita in conformità alle vigenti disposizioni in materia ambientale. Nel processo di esame i fanghi prelevati dai vasconi di accumulo agitati vengono pompati all'interno di unità di condizionamento, dove vengono additivati con agenti condizionanti (ad es. latte di calce) al fine di favorire la flocculazione e coadiuvare la successiva filtrazione. Una volta condizionati i fanghi vengono convogliati alla pompa a membrana e compressi all'interno del pacco piastre ove si realizza la separazione solido-liquido alla pressione finale di circa 12-14bar.

Il materiale di scavo prodotto dall'attività di perforazione del microtunnel verrà gestito conformemente a quanto previsto dalla normativa vigente in materia di rifiuti.

5.2 INSTALLAZIONE DELLA CONDOTTA LUNGO LA ROW/PISTA DI LAVORO

Lo scavo della trincea e l'assemblaggio della condotta richiederanno l'apertura della pista di lavoro che sarà per quanto possibile continua e di larghezza tale da garantire la massima sicurezza nei lavori ed il transito dei mezzi di servizio e di soccorso.


Prima di ogni operazione di posa della condotta, lo strato superficiale di terreno (lo scotico), che supporta la vita delle piante e contiene al suo interno i semi delle stesse, verrà rimosso dalla pista di lavoro utilizzando un adeguato veicolo per il movimento terra. Il terreno sarà stoccato sottoforma di cumulo continuo lungo un lato del corridoio di costruzione. I cumuli di scotico, tipicamente, non saranno alti più di 2 metri, per prevenirne l'erosione, e metterli al sicuro da eventuali danneggiamenti o compattamenti indesiderati. Lo stoccaggio avverrà lungo la pista di lavoro e in modo tale da evitarne la miscelazione con il materiale di scavo della trincea o che sia smosso dai veicoli.

La pista di lavoro sarà quindi livellata per eliminare irregolarità, rocce, cippi e altre anomalie che possano creare disturbo alle attività di costruzione,

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER The Consulting to Latina your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	42 of 84

La condotta a terra sarà posata all'interno di una trincea che, generalmente, avrà una profondità di circa 2,6 m. La trincea avrà una larghezza alla base di circa 1,4 m e sarà scavata fino a raggiungere la profondità richiesta con un escavatore o un macchinario analogo per lo scavo di trincee.

Il terreno scavato sarà posizionato lungo la pista di lavoro, separando il deposito dello scotico dal terreno evitandone così la miscelazione, come mostrato nella Figura 5-2.

DIAMETRO CONDOTTA	DIMENSIONI AREA DI PASSAGGIO				
DN 900	RISTRETTA (DD)	Α	В	Г	
(36")	m	7	11	18	

Figura 5-2 Disposizione del materiale di scavo lungo la RoW/Pista di lavoro

La trincea verrà realizzata tramite escavatrici, trencher e/o altre macchine per la movimentazione del terreno, adatte alle caratteristiche morfologiche e litologiche del terreno interessato (escavatrici per terreni più morbidi, martelli pneumatici sulle rocce).

Una volta ultimata la trincea vi verrà posata la condotta, precedentemente saldata, utilizzando un gruppo di side boom, mezzi cingolati dotati di braccio laterale.

Immediatamente dopo la posa ed ultimate le normali procedure di controllo qualità, la condotta verrà ricoperta dal materiale di scavo. Il materiale di rinterro posizionato nelle immediate vicinanze del tubo sarà compattato in strati.

Si utilizzerà un escavatore per movimentare il materiale di scavo in trincea e per coprire il gasdotto.

Nelle fasi iniziali di riempimento sarà prestata estrema cura al fine di evitare il danneggiamento del rivestimento. Successivamente alla posa della condotta, la stessa verrà ricoperta con un primo

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Consulting to Same your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	43 of 84

strato di materiale vagliato o con della sabbia. La rimanente miscela di terra e rocce sarà posizionata per completare il rinterro della condotta.

Allo scopo di evitare eventuali danni al rivestimento della condotta e al fondo della trincea, il materiale di riempimento in prossimità della condotta sarà per l'appunto costituito da materiale "morbido", senza pietre, come materiale di scavo macinato e vagliato se in presenza di roccia.

5.2.1 Attraversamenti

Le modalità realizzative degli attraversamenti sono state progettate in conformità con quanto previsto nella Regola Tecnica allegata al DM 17/04/2008 e in linea al DLgs n. 285 del 30/04/1992 "Nuovo Codice della Strada".

Gli attraversamenti delle infrastrutture vengono realizzati con piccoli cantieri, che operano contestualmente all'avanzamento della linea.

I mezzi utilizzati sono scelti in relazione alle caratteristiche e all'importanza dell'attraversamento stesso. Le macchine operatrici fondamentali (trattori posatubi ed escavatori) sono sempre presenti ed a volte coadiuvate da mezzi particolari, quali spingitubo, trivelle, ecc.

Le metodologie realizzative previste per ciascun attraversamento cambiano in funzione di diversi fattori (profondità di posa, presenza di acqua o di roccia, intensità del traffico, eventuali prescrizioni dell'ente competente, ecc.) e si possono così raggruppare:

- Scavo a Cielo Aperto: Gli attraversamenti di strade a poca densità di traffico, strade comunali, strade secondarie e di particolari servizi interrati (collettori fognari, cavi, ecc.) sono realizzati con scavo a cielo aperto ed eventuale messa in opera di tubo di protezione. La realizzazione dell'attraversamento avviene, analogamente ai normali tratti di linea, mediante le operazioni di scavo, posa, rinterro della tubazione e ripristino del manto stradale. In corrispondenza dell'attraversamento di strade in progetto a traffico intenso (strade regionali) si prevede la realizzazione dello scavo a cielo aperto con messa in opera del tubo di protezione, qualora l'infrastruttura non sia già realizzata.
- <u>Scavo con Tecnologia Trenchless</u>: In corrispondenza di particolari situazioni di origine antropica: infrastrutture viarie a traffico intenso (strade regionali e provinciali) e servizi interrati (collettori fognari, cavi, ecc.) ove non è possibile operare mediante scavo a cielo aperto, è possibile l'adozione di soluzioni in sotterraneo denominate convenzionalmente trenchless che prevedono l'utilizzo di tubo di protezione. La messa in opera del tubo di protezione, in particolare, comporta le seguenti operazioni:
 - scavo del pozzo di spinta;
 - impostazione dei macchinari e verifiche topografiche;

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER The Consulting to Survive Stations	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	44 of 84

 esecuzione della trivellazione mediante l'avanzamento del tubo di protezione, spinto da martinetti idraulici, al cui interno agisce solidale la trivella dotata di coclee per lo smarino del materiale di scavo.

Contemporaneamente alla messa in opera del tubo di protezione, si procede, fuori opera, alla preparazione del cosiddetto "sigaro". Questo è costituito dal tubo di linea a cui si applicano alcuni collari distanziatori che facilitano le operazioni di inserimento della condotta. Il "sigaro" viene poi inserito nel tubo di protezione e collegato alla linea. Una volta completate le operazioni di inserimento, verrà intasata l'intercapedine presente fra la condotta ed il tubo di protezione e alle estremità del tubo di protezione saranno applicati i tappi di chiusura (ad esclusione di collettori non in pressione, quali fognature).

Le metodologie realizzative previste per i principali attraversamenti lungo il tracciato del metanodotto in oggetto sono riassunte nella tabella riportata al paragrafo 3.2.1 (Tabella 3-1). Si evidenzia che, prima dell'inizio dei lavori di realizzazione dell'attraversamento, TAP ottempererà alle eventuali prescrizioni richieste dall'ente/autorità gestore dell'infrastruttura o servizio intercettato dalla condotta in fase di iter autorizzativo.

5.3 COSTRUZIONE PRT

I lavori di movimentazione terra riguardanti il sito di costruzione del PRT:

- Rimozione dello strato di terreno superficiale;
- Livellamento della superficie (scavi/rinterri);
- Scavo per la realizzazione dei fabbricati e delle strade di accesso (Fase I);
- Scavo per fondazioni dei macchinari e posa tubazioni (Fase II);
- Scavo per fondazioni minori (Fase III).

Il materiale di scavo prodotto dalle attività legate alla costruzione del PRT è approssimativamente stimato a 80.000 m³, (40.000 m³ per lo scavo/rinterro per livellare il terreno, 24.000 m³ per la realizzazione delle strade di accesso e dei fabbricati, 12.000 m³ per le fondazioni dei macchinari e posa delle tubazioni e 4.000 m³ per le fondazioni minori).

Complessivamente, con i 34.500 m³ di scotico, saranno movimentati 114.500 m³ per la costruzione del PRT e l'area del cantiere.

Approssimativamente circa il 60% del materiale scavato potrà essere riutilizzato per il rinterro. Il materiale in eccesso (il restante 40%) sarà rimosso e gestito come rifiuto in conformità al D.Lgs 152/06 e alle sue successive modifiche ed integrazioni. Anche per la realizzazione delle strade temporanee/parcheggi e iarde di lavorazione, oltre alla quota parte di materiale di scavo riutilizzato, sarà necessario l'utilizzo di ulteriore materiale di riempimento dalle caratteristiche appropriate (quale ad esempio la ghiaia).

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SSHELTER The Consulting to Law your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	45 of 84	

5.4 NORMALE PRATICA INDUSTRIALE

Le operazioni di normale pratica industriale sono finalizzate a migliorare le caratteristiche merceologiche, tecniche e prestazionali dei materiali da scavo per il loro utilizzo.

Le lavorazioni effettuate sui materiali di scavo per ottimizzarne l'utilizzo costituiscono un trattamento di normale pratica industriale in quanto non incidono sulla classificazione come sottoprodotto dei materiali da scavo, non ne modificano le caratteristiche chimico-fisiche bensì consentono di rendere maggiormente produttivo e tecnicamente efficace l'utilizzo di tali materiali (in sostanza si tratta delle stesse lavorazioni che si praticano sui materiali di cava proprio per ottimizzarne l'utilizzo), ferma restando la compatibilità delle frazioni ottenute con i siti di destinazione.

L'attività di gestione delle terre e rocce da scavo di cui al presente Piano di Utilizzo prevede il ricorso a talune tipologie di operazioni di normale pratica industriale.

5.4.1 Vagliatura

La vagliatura è realizzata tramite macchinari idonei che consentono la separazione delle diverse granulometrie. I cumuli a valle del vaglio sono poi presi in carico per essere inviati all'impianto di frantumazione.

Il sistema di vagliatura del materiale è previsto all'interno del cantiere della pista di lavoro – RoW qualora siano rinvenuti elementi rocciosi.

5.4.2 Frantumazione

L'impianto di frantumazione consente la frantumazione del materiale lapideo per produrre una geometria del materiale a spigoli vivi avente una granulometria che rientri nel fuso granulometrico da utilizzare per la realizzazione delle opere a progetto in terra (rilevati, sottofondazioni per pavimentazioni, ritombamenti, modellazioni morfologiche, sistemazioni ambientali).

Il sistema di frantumazione del materiale è previsto all'interno del cantiere della pista di lavoro – RoW qualora siano rinvenuti elementi rocciosi.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SSHELTER TO STATE OF PLANE PARK	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	46 of 84	

5.5 CRITERI OPERATIVI DI GESTIONE DEI MATERIALI DI SCAVO

I materiali da scavo prodotti nelle aree di cantiere saranno:

- in parte riutilizzati in sito come sottoprodotto;
- in parte gestiti come rifiuto.

Come anticipato nei precedenti paragrafi, preliminarmente alle attività di scavo sono state definite le aree di deposito delle terre in attesa di utilizzo e le aree di deposito temporaneo dei rifiuti e, quindi, delle terre eccedenti. Tali aree sono riportate nei Layout in Allegato A (Microtunnel, RoW e PRT).

5.5.1 Materiali identificati come sottoprodotti

Prima di iniziare le operazioni di rinterro degli scavi con il riutilizzo del medesimo materiale proveniente dall'escavazione, questo dovrà essere ispezionato rimuovendo eventuali parti estranee presenti. I materiali rimossi verranno raccolti in apposite aree di stoccaggio temporaneo identificate all'interno o nelle immediate vicinanze delle aree di cantiere e gestiti in conformità alla normativa vigente in materia, come descritto nel paragrafo successivo.

Le aree di deposito dei terreni in attesa di utilizzo saranno opportunatamente distinte dalle aree di deposito temporaneo dei rifiuti, garantendo una corretta separazione tra i flussi. Tali aree sono riportate nei Layout in Allegato A (Microtunnel, RoW e PRT).

Per quanto concerne i tempi previsti per il deposito delle terre da scavo in attesa di utilizzo, trattandosi di terre e rocce da scavo realizzate nel medesimo progetto (comma 2, art. 186 del D.Lgs. 152/06) possono essere quelli della realizzazione del progetto, i quali non potranno comunque avere una durata superiore a tre anni, come rappresentato nel Cronoprogramma di massima di cui all'Allegato B.

5.5.2 Gestione dei materiali identificati come non sottoprodotti

I volumi di terreno scavato che non saranno riutilizzati nei siti di produzione verranno gestiti come rifiuto e conferiti, mediante soggetti autorizzati dotati di iscrizione all'Albo Gestori Ambientali, presso idonei impianti autorizzati al recupero/smaltimento della specifica tipologia di rifiuto individuata, in funzione degli esiti delle analisi di classificazione/caratterizzazione rifiuto previsti dalla norma vigente. Si sottolinea che, per quanto possibile, saranno privilegiate le attività di recupero rispetto allo smaltimento.

Saranno immediatamente identificati quali rifiuto, e quindi opportunamente gestiti, le seguenti tipologie di materiali:

- i materiali di risulta derivanti da perforazioni profonde per la realizzazione del microtunnel;
- eventuali corpi estranei rinvenuti dalle escavazioni;
- i terreni di risulta derivanti dallo scavo di opere che comportano l'utilizzo di fanghi;

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO THE CONSUMER TO SHELT ER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	47 of 84

• i terreni saturi prodotti durante gli scavi nell'area del microtunnel.

Si precisa che tutte le acque eventualmente aggottate nell'area del microtuneni saranno gestite in conformità alla normativa vigente in materia di rifiuti.

Tali operazioni rientrano nel piano di gestione dei rifiuti secondo l'art. 183 del D.Lgs. 152/05 ss.mm.ii. Pertanto la gestione avverrà conformemente alle disposizioni normative vigenti e a quanto indicato nel piano di gestione dei rifiuti di TAP e dei propri contrattisti. In particolare:

- per quanto riguarda la gestione dei materiali/rifiuti provenienti dal Microtunnel si rimanda allo specifico Piano di Gestione riportato in Allegato E;
- per quanto riguarda il PRT sono state identificate apposite aree di deposito temporaneo dei rifiuti prodotti durante la realizzazione dell'opera, come rappresentato nel Layout in Allegato A;
- per quanto riguarda la RoW, in considerazione del carattere mobile del cantiere, non sono state individuate aree di deposito specifiche, ma nel caso in cui si producano residui di costruzione occasionali lungo la pista di lavoro, questi saranno raccolti e temporaneamente immagazzinati in appositi contenitori mobili o serbatoi a seconda della tipologia e quantità dei rifiuti. Il materiale sarà raccolto su base giornaliera o prima di lasciare l'area frontale del lavoro e spostato nell'area di deposito temporaneo dei rifiuti all'interno del PRT. Nel caso in cui sia prodotto un rifiuto pericoloso lo stesso sarà direttamente trasferito al PRT.

Le aree di deposito verranno gestite conformemente a quanto previsto dall'Art. 183 c.1 lettera bb) del D.Lgs. 152/06 "Deposito temporaneo dei rifiuti". Al fine di preservare l'area saranno prese tutte le misure idonee alla protezione del suolo disponendo sulla superficie interessata appositi teli impermeabili di spessore adeguato o cassoni a tenuta stagna prima di essere conferiti presso idonei impianti di recupero/smaltimento.

Inoltre, nell'eventualità in cui, durante le attività di scavo, si rilevi la presenza di materiali di riporto si procederà ad effettuare le analisi di laboratorio per verificare che tali materiali rispettino entrambe le seguenti condizioni:

- conformità del test di cessione, effettuato secondo le metodiche previste nel D.M. 5.2.1998, definendo il campionamento e l'elenco degli analiti da ricercare con gli Enti di controllo (ARPA) e verificando la conformità dell'eluato con i limiti di cui alla Tabella 2 dell'Allegato 5 al Titolo V della parte Quarta del D. Lgs. 152/06;
- conformità delle CSC relative ai terreni in relazione alla destinazione urbanistica dell'area in oggetto (Tabella 1, Colonna A o B, dell'Allegato 5 al Titolo V della parte Quarta del D. Lgs. 152/06).

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER The Consulting to Latine your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	48 of 84

Se, a seguito delle analisi, i materiali di riporto rispettano i limiti di cui sopra, essi saranno assimilati ai materiali da scavo. Se i materiali di riporto non rispettano anche una sola delle condizioni di cui sopra, essi saranno gestiti come rifiuti.

Nell'ipotesi invece di ritrovamento di rifiuti durante le operazioni di scavo si procederà come di seguito:

- Ai sensi dell'art. 242 del TU Ambiente, al verificarsi di un evento che sia potenzialmente in grado di contaminare il sito entro ventiquattro ore, si metteranno in atto le misure necessarie di prevenzione e si darà immediata comunicazione ai sensi e con le modalità di cui all'art. 304, comma. 2 del TU.
- Ai sensi dell'art. 304 comma 2, preventivamente agli interventi sarà data apposita comunicazione al Comune, alla Provincia, alla Regione nonché al Prefetto della Provincia.
- Successivamente sarà effettuata un'indagine preliminare sui parametri oggetto dell'inquinamento confrontandoli con le CSC (Concentrazioni Soglia Contaminazione) dell'area.
- Sulla base delle risultanze della caratterizzazione, al sito sarà applicata la procedura di analisi del rischio sito specifica per la determinazione delle concentrazioni soglia di rischio (CSR).
- Infine sarà sottoposto alla Regione, nei successivi sei mesi dall'approvazione del documento di analisi di rischio, il progetto operativo degli interventi di bonifica o di messa in sicurezza, operativa o permanente, (All.3 Parte IV TU).

Durante la gestione dei materiali di scavo sono immediatamente identificati quali rifiuto, e quindi opportunamente gestiti, le seguenti tipologie:

- i materiali di risulta derivanti da perforazioni profondo per la realizzaziono del microtunnel;
- eventuali corpi estranei rinvenuti dalle escavazioni.

Tali operazioni rientrano nel piano di gestione dei rifiuti secondo l'art. 183 del D.Lgs. 152/05 ss.mm.ii..

Si sottolinea che le acque, utilizzate durante lo scavo del microtunnel saranno raccolte e trattate e che il materiale di risulta dal processo di recupero, costituito da bentonite, sarà considerato rifiuto. Tutti i rifiuti saranno gestiti conformemente alla normativa vigente in materia e stoccato nelle zone di deposito individuate presso le aree di cantiere Microtunnel, RoW e PRT.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SSHELTER TO STATE OF PLANE	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	49 of 84	

6. SITI DI MOVIMENTAZIONE DEI MATERIALI DA SCAVO

Negli elaborati grafici (Allegato A) allegati al presente Piano sono riportati i siti principali relativi alla movimentazione delle terre e rocce da scavo.

Le aree sono:

- 1. Punto di approdo / Area del Microtunnel;
- 2. Pista di Lavoro / RoW;
- 3. Terminale di ricezione del gasdotto / PRT.

La suddivisione in tratte non è da intendersi nel senso che ciascuna tratta sia di per sé autonoma dal punto di vista della gestione dei materiali da scavo, ma è semplicemente funzionale ad una trattazione più dettagliata delle specifiche caratteristiche tratto per tratto, produzione e fabbisogno di terre compresi, all'interno comunque di una visione organica dell'intero intervento e del bilancio complessivo dei materiali da scavo.

In sostanza il riutilizzo dei volumi indicati, tratta per tratta, si distribuisce all'interno dell'intero progetto essendo il proponente unico.

Nella tabella 6-1 vengono riportati, suddivisi per ciascuna tratta ed espressi in metri cubi, i volumi di scavo e di top soil (scotico), insieme ai volumi riutilizzati all'interno della stessa tratta, i volumi residui (cioè i volumi disponibili ma non riutilizzati nella tratta) e ai fabbisogni, cioè i quantitativi da approvvigionare dall'esterno (sabbie/ghiaie).

Il completamento delle attività di Progetto comporterà la movimentazione di materiale inerte, che sarà prodotto durante le attività di rimozione dello strato superficiale di terreno (top soil) e di scavo per la realizzazione dell'opera e acquistato / individuato per la posa del gasdotto e dei drenaggi nel sito del PRT e per la realizzazione del terrapieno e degli interventi post posa nella sezione del Microtunnel.

Nella Tabella 6-1 sono fornite le stime dei volumi dei vari materiali che dovranno essere movimentati nell'arco dell'intero progetto. Questi sono stati calcolati considerando una profondità dello strato di "scotico" di:

- 20 cm per il microtunnel e RoW;
- 30 cm per l'area del PRT.

I tempi previsti per il deposito delle terre da scavo in attesa di utilizzo, trattandosi di terre e rocce da scavo realizzate nel medesimo progetto (comma 2, art. 186 del D.Lgs. 152/06) possono essere quelli della realizzazione del progetto, i quali non potranno comunque avere una durata superiore a tre anni, così come rappresentato nel Cronoprogramma di massima di cui all'Allegato B.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	50 of 84

Tabella 6-1 Stima del volume dei materiali inerti che verranno movimentati.

Fase/Area	Tipologia di materiale movimentato	
	Prodotto da scavo o acquistato	Volume m ³
Microtunnel	Scotico e terreno scavato	18.440
	Materiale granulare	5.000 ¹
RoW	Scotico e terreno scavato	70.800
ROW	Materiale-granulare	10.000
Terminale di ricezione del	Scotico e terreno scavato	114.500
gasdotto (PRT)	Materiale granulare	8.000 ²

Tutto il materiale prodotto durante l'installazione del gasdotto sarà riutilizzato come riempimento a chiusura degli scavi.

Durante le attività di costruzione del Progetto saranno movimentate le seguenti tipologie di materiale:

- Terreno superficiale ("scotico") che verrà utilizzato per il ripristino (si veda Tabella 6-2);
- Terre di scavo prodotti durante le attività di scavo (si veda Tabella 6-2);
- Sabbia/ghiaia (si veda Tabella 6-3).

Tabella 6-2 Destinazione/impiego del materiale prodotto durante gli scavi.

		Volume	Ubicazione sito	
Fase	Tipologia di materiale	Ricollocato come riempimento scavi (m³)	Inviato a impianto esterno (smaltimento/ recupero) (m³)	di smaltimento/ recupero
	Scotico	28.800	0	
RoW	Terreno scavato	42.000	0	
Terminale di	Scotico	12.000	22.500	Da definire
ricezione del gasdotto (PRT)	Terreno scavato	73.600	6.400	Da definire
Microtunnel	Scotico	5.200	0	
Microturinei	Terreno scavato	0	13.240	Da definire

La Tabella 6-3 mostra come più del 70% del terreno di scavo sarà riutilizzato come riempimento scavi, mentre la parte rimanente sarà inviata a smaltimento/recupero presso idonei impianti autorizzati.

TAP AG

Piano di Utilizzo Terre e Rocce da Scavo Project no. 80635

¹ Materiale che verrà successivamente allontanato dall'area

² Materiale per strade temporanee e parcheggi e iarde di lavorazione (3.000 m3) e per sistemazione finale dell'area (5.000 m3)

71137	Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSI	SHELTER The Consulting to Section your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	51 of 84

Tabella 6-3 Provenienza del materiale fornito/acquistato

Fase	Tipologia di materiale	Volume di materiale acquistato m ³	Localizzazione cava/ sito di acquisto	
Terminale di ricezione del gasdotto (PRT)	Materiale granulare	8.000	Da definire	
ReW	Materiale granulare	10.000	Da definire	
Microtunnel	Materiale granulare	5.000	Da definire	

Si sottolinea che la sabbia/ghiaia necessaria alle attività di cantiere verrà approvvigionata da siti locali e trasportata via terra.

Di seguito viene infine riportato l'elenco delle singole aree afferenti le singole tratte, mentre in allegato al presente Piano (Allegato A) vengono riportati gli elaborati grafici che individuano la posizione planimetrica delle singole aree, oltre alle tabelle riepilogative con i relativi volumi di movimentazione materiali.

6.1 MICROTUNNEL (KPof 104,916 - KPof 105,026)

6.1.1 Principali siti di produzione terre

Le attività di costruzione dell'approdo sono:

- Predisposizione cantiere provvisorio sulla terraferma (Scotico di circa 5.160 m3 di terreno);
- Scavo della stazione di lancio/pozzo di spinta;
- Scavo del tubo camicia di protezione;
- Scavo trincea argano;
- Realizzazione microtunnel interrato.

6.1.2 Principali siti di riutilizzo terre

Di seguito viene riassunta la ridistribuzione del materiale derivante dall'area di lavoro relativa al Microtunnel.

Tabella 6-4 Siti di riutilizzo delle terre e localizzazione siti di smaltimento/recupero

Sottofase	Volume totale m ³	Materiale riutilizzato in sito	Materiale inviato a smaltimento/ recupero	Localizzazione sito smaltimento/ recupero
Scotico	5.200 superficie area cantiere microtunnel 26.000 x h scotico 0,2 m	100%	0%	
Scavo stazione di lancio	1.300 area scavo 11x11x10,70	0%	100%	Da definire
Scavo tubo camicia di protezione	100	0%	100%	Da definire
Scavo trincea argano	950	0%	100%	Da definire
Scavo microtunnel	10.890	0%	100%	Da definire

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER The Consulting to Law your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	52 of 84

6.1.3 Aree di deposito in attesa di utilizzo

Nell'ambito della cantierizzazione, nell'area sono individuati i siti di deposito come precisato al paragrafo 3.2.3 e nell'Allegato A.

Tabella 6-5 Aree di deposito

Sottofase	Volume totale m ³	Localizzazione area di deposito temporaneo
Scotico	5.200	Area deposito terreno in attesa di riutilizzo. All'interno dell'area del cantiere del Microtunnel
Scavo stazione di lancio	1.300	Area di deposito temporaneo dei rifiuti prossimità dell'area di scavo . Area del Microtunnel
Scavo tubo camicia di protezione	100	Area di deposito temporaneo dei rifiuti. Area del Microtunne All'interno dell'area del cantiore del Microtunnel
Scavo trincea argano	950	Area di deposito temporaneo dei rifiuti. Area del Microtunnel In pressimità dell'area di scavo. Area del Microtunnel
Scavo microtunnel	10.890	Area di deposito temporaneo dei rifiuti. Area del Microtunnel All'interno dell'area del cantiero del Microtunnel

6.1.4 Inquadramento territoriale

Il tratto ricade nel Comune di Melendugno (LE). Non sono segnalati vincoli particolari per la gestione e movimentazione delle terre e rocce da scavo.

6.1.5 Inquadramento geologico-geomorfologico-idrogeologico

Le stratigrafie ricavate dalla realizzazione dei sondaggi nell'area di studio rivelano un terreno di copertura dello spessore variabile da 0,2 a 0,6 m da p.c. costituito da sabbia debolmente ghiaiosa/limosa di colore marrone rossastro. Il secondo orizzonte è costituito principalmente da Calcarenite a grana medio-grossa, poco cementata tanto da assumere la consistenza di sabbia sciolta di colore biancastro. In tale orizzonte sono intercalati pochi e piccoli livelli cementati di spessore 3-5 cm ed alcuni livelli a grana fine.

Le stratigrafie dei sondaggi realizzati nel corso delle indagini suggeriscono una correlazione con la formazione denominata "Calcarenite del Salento" e confermano le caratteristiche geologiche descritte al paragrafo 3.3.

I piezometri più prossimi all'area indicano una quota della falda di circa 3 m. La morfologia risulta prevalentemente pianeggiante.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO CONSIDER TO STATE OF CONSIDERS TO STATE OF CONSIDE	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	53 of 84

6.1.6 Caratterizzazione ambientale dei materiali

Si evidenzia un totale rispetto della colonna A per il materiale da utilizzare per il rinterro.

Per maggiori approfondimenti si rimanda al Capitolo 4 e all'Allegato C.

6.1.7 Classificazione dei terreni, volumi movimentati e metodiche di scavo applicate

- Litologie dominanti:
 - o prevalentemente sabbie e calcareniti sabbiose/ghiaiose.
- Volumi:
 - o Predisposizione cantiere e area di lavoro

- scavo: 13.240 m³

riutilizzo: 2.350 0 m³

inviato a recupero/smaltimento: 10.500 13.240 m³

- fabbisogno di tratta (ghiaia): 5.000 m³

terreno vegetale superficiale

- - scotico: 5.200 m³

- sistemazione vegetale: 5.200 m³

- - riutilizzo vegetale: 5.200 m³

residuo vegetale di tratta: 0

- Classificazione ambientale:
 - Top soil: sotto i limiti della tabella A
 - Scavo: sotto i limiti di tabella A
- Metodica di scavo nei siti di produzione terre:
 - o con mezzi meccanici (bulldozer, escavatori, demolitore oleadinamico o trencher per le sezioni in roccia, mezzi per la rimozione dei detriti).
- Pratica industriale per il riutilizzo delle terre:
 - Non sono previste pratiche industriali (riduzione volumetrica, etc.) per il riutilizzo delle terre.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER The Consulting to Law your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	54 of 84

6.2 PISTA DI LAVORO LUNGO IL GASDOTTO - ROW

6.2.1 Principali siti di produzione terre

I siti di produzione terra riguardanti la posa della condotta nella parte onshore e il cantiere temporaneo derivano dalle attività di:

- Scotico e apertura della pista di lavoro;
- Scavo della trincea.

6.2.2 Principali siti di riutilizzo terre

Ridistribuzione di tutto il materiale per il ripristino delle aree di scavo e livellamento.

6.2.3 Aree di deposito in attesa di utilizzo

Lungo la pista di lavoro verrà stoccato il materiale di scavo. Lo strato superficiale di terreno sarà separato dal terreno di risulta dello sbancamento e dello scavo (Figura 5-2).

6.2.4 Inquadramento territoriale

Il tratto ricade nel Comune di Melendugno (LE).

Non sono segnalati vincoli particolari per la gestione e movimentazione delle terre e rocce da scavo.

6.2.5 Inquadramento geologico-geomorfologico-idrogeologico

Le stratigrafie ricavate dai sondaggi effettuati lungo l'area della RoW rilevano un terreno di copertura dello spessore variabile compreso tra 0,1 e 0,6 m da p.c.; costituito generalmente da sabbia fine debolmente limosa di colore marrone.

Al di sotto del primo orizzonte è presente uno strato di calcarenite a grana medio-fine che raggiunge la profondità del fondo scavo (3 m da p.c.), di colore biancastro e con una compattezza variabile da tenera a cementata. Alcuni punti di indagine hanno rilevato la presenza di sabbie debolmente limoso-sabbiose di colore marrone.

I piezometri più prossimi all'area indicano una quota della falda di circa 3 m nei pressi dell'area del microtunnel per poi aumentare verso il PRT. La morfologia risulta prevalentemente pianeggiante.

6.2.6 Caratterizzazione ambientale dei materiali

Si evidenzia un totale rispetto della colonna A per il materiale da utilizzare per il rinterro.

Per maggiori approfondimenti si rimanda al Capitolo 4 e all'Allegato C.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO SHELL TERM TO	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	55 of 84

6.2.7 Classificazione dei terreni, volumi movimentati e metodiche di scavo applicate

- Litologie dominanti:
 - o prevalentemente sabbie e calcareniti sabbiose/ghiaiose.
- Volumi:
 - o Apertura pista da lavoro e scavo della trincea

- scavo: 42.000 mc

riporto: 0 mc

- riutilizzo: 42.000 mc

o terreno vegetale superficiale

scotico: 28.800mc

sistemazione vegetale: 28.800mc

- riutilizzo vegetale: 28.800mc

- residuo vegetale di tratta: 0

- Classificazione ambientale:
 - Top soil: sotto i limiti della tabella A
 - Scavo: sotto i limiti di tabella A
- Metodica di scavo nei siti di produzione terre:
 - Operazioni all'aperto, con mezzi meccanici (trencher, escavatrici per i terreni più morbidi, martelli pneumatici sulle rocce.
- Pratica industriale per il riutilizzo delle terre:
 - Sono previste pratiche industriali in caso di presenza di rocce (macinatura e vagliatura in sito) per il riutilizzo delle terre.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	56 of 84

6.3 TERMINALE DI RICEZIONE - PRT (KP 8,075)

6.3.1 Principali siti di produzione terre

I siti di produzione terra riguardanti la costruzione del PRT e il cantiere temporaneo derivano dalle attività di:

- Rimozione dello strato di terreno superficiale dell'area di cantiere,
- Livellamento della superficie (scavi/rinterri),
- Scavo per la realizzazione dei fabbricati all'interno del PRT e delle strade di accesso Accesso Nord ed Accesso Sud (Fase I);
- Scavo per fondazioni dei macchinari e posa tubazioni del PRT (Fase II);
- Scavo per fondazioni minori (Fase III).

6.3.2 Principali siti di riutilizzo terre

Di seguito viene riassunta la ridistribuzione del materiale derivante dall'area di lavoro relativa al PRT.

Tabella 6-6 Siti di riutilizzo delle terre e localizzazione siti di smaltimento/recupero

Sottofase	Volume totale m ³	Materiale riutilizzato in sito	Materiale inviato a smaltimento/ recupero	Localizzazione sito smaltimento/ recupero
Scotico	34.500	12.000 m ³	22.500 m ³	Da definire
Livellamento (scavi/rinterri)	40.000	40.000 m3	0 m ³	
Scavo fabbricati e strade	24.000	19.200 m ³	4.800 m ³	Da definire
Scavo fondazioni macchinari	12.000	11.200 ³ m ³	800 m ³	Da definire
Scavo fondazioni minori	4.000	3.200 m ³	800 m ³	Da definire

6.3.3 Aree di deposito in attesa di utilizzo

Nell'ambito della cantierizzazione, nell'area sono individuati i siti di deposito come precisato al paragrafo 3.2.4 e nell'Allegato A.

TAP AG

Piano di Utilizzo Terre e Rocce da Scavo Project no. 80635

³ Un volume di terreno pari a 1.600 m3 verrà riutilizzato nell'area del microtunnel per il riempimento degli scavi del pozzo di spinta (650 m3) e della trincea (950 m3).

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SSHELTER The Consulting to Law your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	57 of 84	

Tabella 6-7 Localizzazione aree di deposito

Sottofase	Volume totale m ³	Localizzazione area di deposito
Scotico	12.000	All'interno dell'area del cantiere del PRT
Livellamento (scavi/rinterri)	04	
Scavo fabbricati e strade	24.000	All'interno dell'area del cantiere del PRT
Scavo fondazioni macchinari	12.000	All'interno dell'area del cantiere del PRT
Scavo fondazioni minori	4.000	All'interno dell'area del cantiere del PRT

6.3.4 Inquadramento territoriale

Il tratto ricade nel Comune di Melendugno (LE).

Non sono segnalati vincoli particolari per la gestione e movimentazione delle terre e rocce da scavo.

6.3.5 Inquadramento geologico-geomorfologico-idrogeologico

Nell'area del PRT le stratigrafie ricavate dalla realizzazione dei sondaggi rivelano un terreno di copertura dello spessore variabile tra 0,2 m a 0,6 m dal p.c. costituto da sabbia limosa di colore marrone.

Al di sotto del primo orizzonte il terreno è costituito principalmente da uno strato di Calcarenite a grana medio fine che raggiunge profondità variabili tra 1,3 e 2,0 m da p.c.. Il grado di compattezza di tale orizzonte litostratigrafico varia da poco cementata a tenera, tanto da assumere la consistenza di sabbia sciolta di colore biancastro. In tale orizzonte sono intercalati anche piccoli livelli ben cementati e clasti di calcare.

In taluni casi si è osservato un terzo orizzonte litologico al di sotto della Calcarenite costituito da sabbia limosa di colore marroncino rossastro.

6.3.6 Caratterizzazione ambientale dei materiali

Si evidenzia un totale rispetto della colonna A per il materiale da utilizzare per il rinterro.

Per maggiori approfondimenti si rimanda al Capitolo 4 e all'Allegato C.

TAP AG

Piano di Utilizzo Terre e Rocce da Scavo Project no. 80635

⁴ Il volume di terreno relativo alla fase di livellamento prevede lo scavo ed il successivo rinterro senza necessità di alcun deposito

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO THE CONSIDER TO SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	58 of 84

6.3.7 Classificazione dei terreni, volumi movimentati e metodiche di scavo applicate

- Litologie dominanti:
 - o prevalentemente sabbie e calcareniti sabbiose/ghiaiose.
- Volumi:
 - o Scavo e livellamento

- scavo: 80.000 mc

- riutilizzo: 73.600 mc

- residuo area: 6.400 mc

fabbisogno di tratta (materiale granulare): 8.000 m³

o Terreno vegetale superficiale

- scotico: 34.500 m³

- riutilizzo vegetale: 12.000 m³

residuo vegetale di area: 22.500 m³

- Classificazione ambientale:
 - Top soil/scotico: sotto i limiti della tabella A
 - Scavo: sotto i limiti di tabella A
- Metodica di scavo nei siti di produzione terre:
 - Operazioni all'aperto, con mezzi meccanici (escavatrici per i terreni più morbidi, martelli pneumatici sulle rocce).
- Pratica industriale per il riutilizzo delle terre:
 - Non sono previste pratiche industriali (riduzione volumetrica, etc.) per il riutilizzo delle terre.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER The Consulting to Latina your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	59 of 84

7. CARATTERIZZAZIONE AMBIENTALE DEI MATERIALI DI SCAVO IN CORSO D'OPERA

Non si riporta nel presente capitolo alcuna caratterizzazione ambientale dei materiali di scavo in corso d'opera in quanto tutta la caratterizzazione del materiale che verrà riutilizzato è già stata eseguita in precedenza alla preparazione del cantiere in accordo ai piani di caratterizzazioni approvati dall'Autorità di Controllo.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SSHELTER The Consulting to Law your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	60 of 84	

8. GESTIONE E TRASPORTO IN FASE DI CANTIERE

8.1 VIABILITÀ INTERESSATA DALLA MOVIMENTAZIONE TERRE E MATERIALI

Nella realizzazione del microtunnel e del PRT circa 23.000 m³ di materiale esterno saranno necessari per essere utilizzato come materiale di cantierizzazione (strade, piazzali, etc.) o di finalizzazione delle aree.

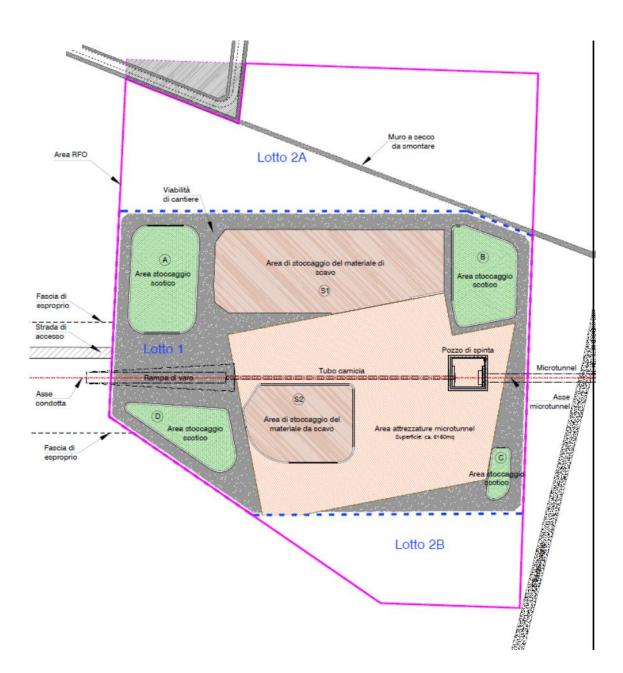
Quindi il traffico totale relativo alla gestione di tale materiale è stimato in circa 920 carichi complessivi (i viaggi a camion vuoto non sono stati presi in considerazione).

I percorsi attraverso i quali avviene la movimentazione dei materiali da scavo dal luogo di produzione al sito di cantiere, e da quest'ultimo al sito di destinazione finale nel caso specifico del presente intervento, sono individuabili direttamente con la strada SP 366.

Tutti gli automezzi lungo i suddetti percorsi si atterranno al Codice della Strada.

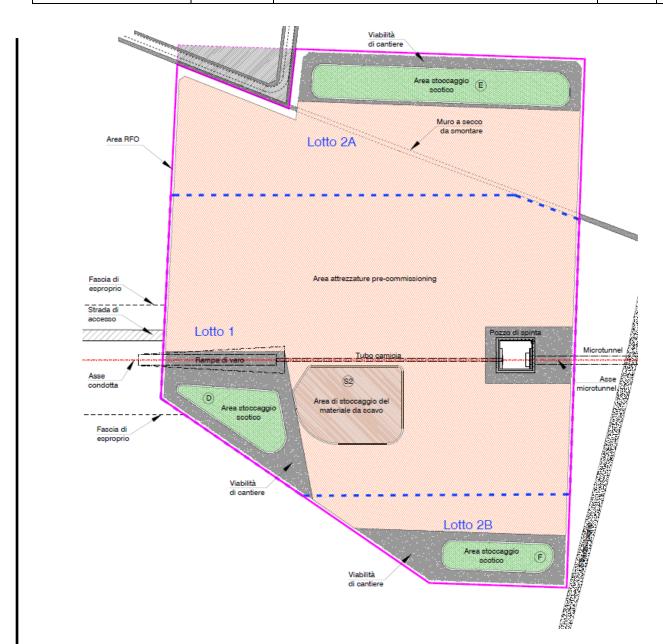
Tutti gli automezzi saranno opportunamente coperti per evitare interferenze tra il materiale trasportato e gli agenti atmosferici o eventuali altri materiali con cui potrebbero venire in contatto.

I percorsi sono fissi e definiti a priori ed i conducenti, a meno di situazioni di emergenza, vi si atterranno senza operare variazioni.


Si veda lo specifico allegato relativo ai percorsi mezzi di cantiere (Allegato A).

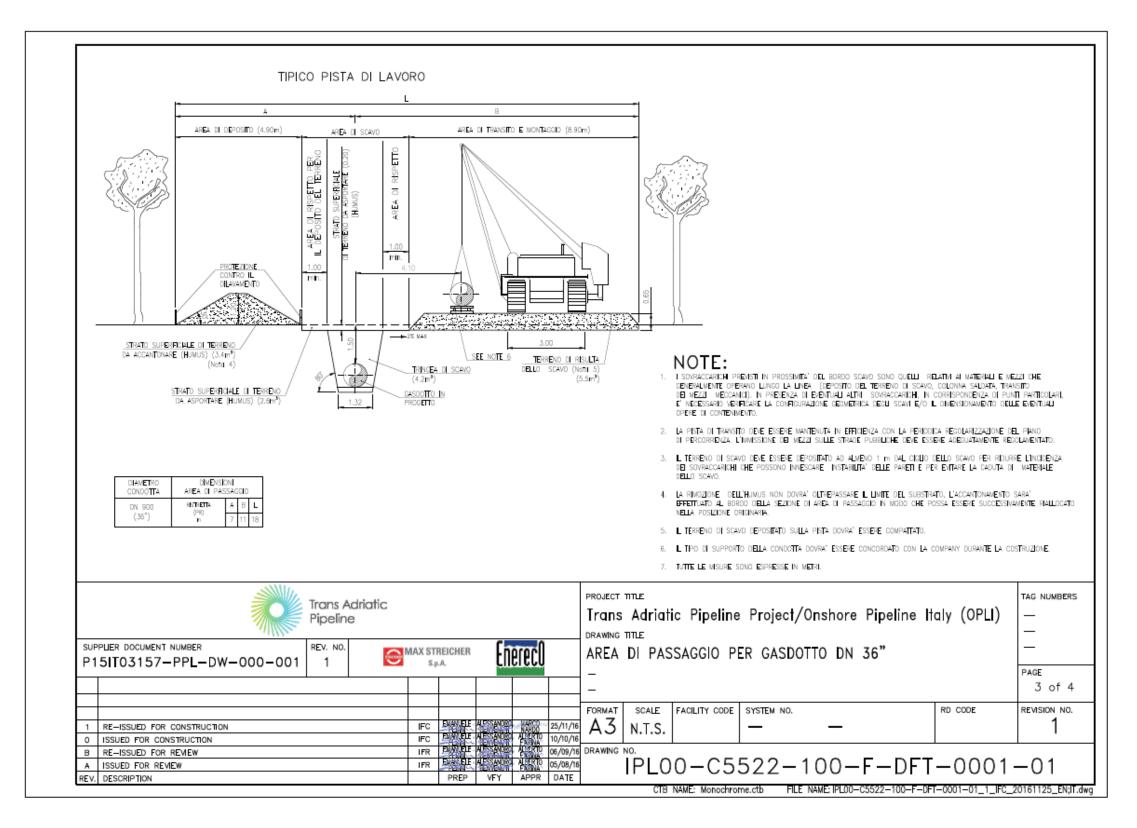
Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
PSK SSHELTER The Consulting to the your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	61 of 84

ALLEGATO A – LAYOUT

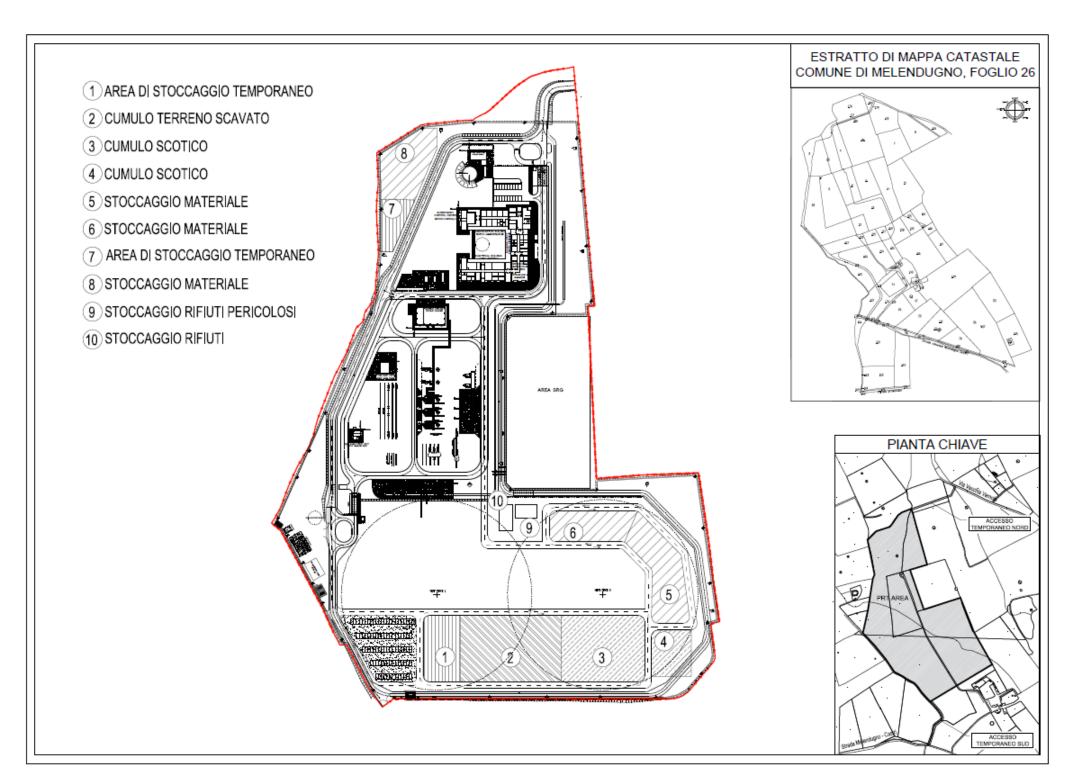

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SHELTER The Consulting to Sentine your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	62 of 84	

Area microtunnel

Fase 1

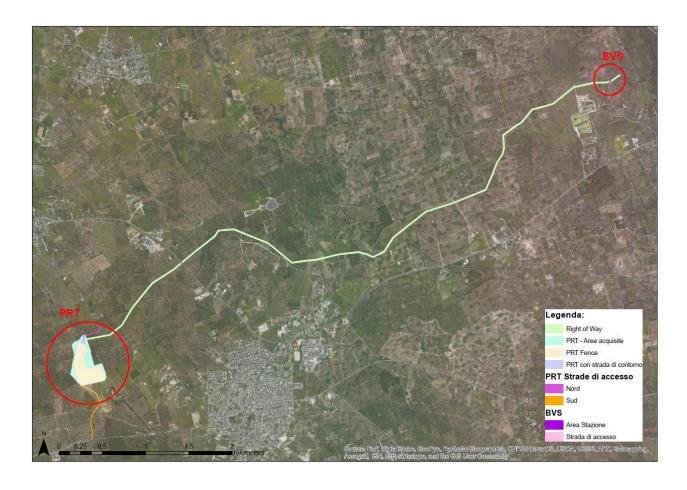

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO THE CONSULTING TO SERVICE BUSINESS	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	63 of 84

Fase 2


Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	64 of 84

Pista di lavoro - RoW

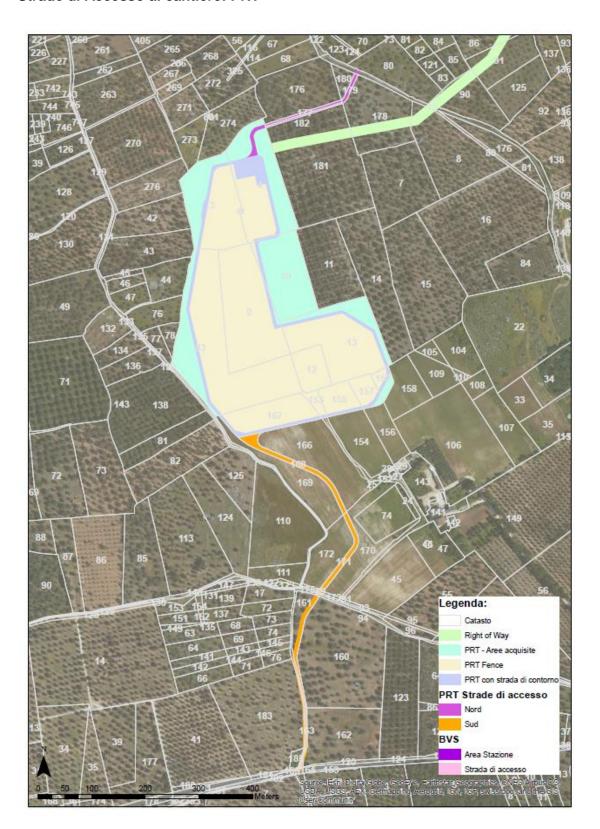
Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	65 of 84


Area del PRT

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Consulting to Land your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	66 of 84

Viabilità di cantiere

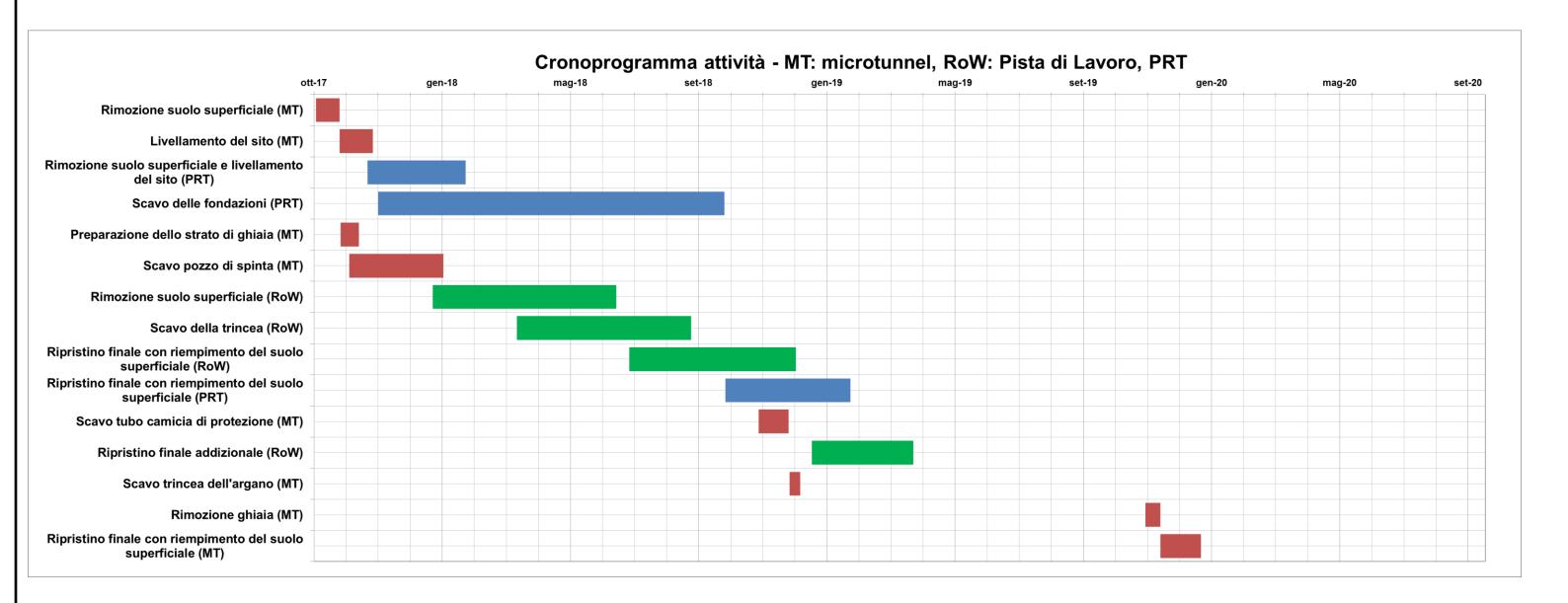
Strade di Accesso al cantiere


Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	67 of 84

Strade di Accesso al cantiere: BVS

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	68 of 84

Strade di Accesso al cantiere: PRT



TAP AG Piano di Utilizzo Terre e Rocce da Scavo Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER The Consulting to Continue your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	69 of 84

ALLEGATO B – CRONOPROGRAMMA DELLE ATTIVITA'

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	70 of 84

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1	
RSK SHELTER TO THE Consulting to Sentency your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	71 of 84	

ALLEGATO C - STUDI DI CARATTERIZZAZIONE DEI SUOLI - IPL00-C5577-100-Y-TAT-0001 - IPL00-C5577-100-Y-TRX-0001

TAP AG

Progetto Trans Adriatic Pipeline

Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13

				Leli	15 la	1
0	04-07-2016	Emesso per informazione	IFR	L. Righi	M. Scabbia	T. Newton
В	04-07-2016	Rilasciato per la revisione	IFR	L. Righi	M. Scabbia	T. Newton
Α	20-06-2016	Rilasciato per la revisione	IFR	L. Righi	M. Scabbia	T. Newton
Rev.	Data revisione (gg-mm-aaaa)	Motivo dell'emissione IFR		Preparato da	Verificato da	Approvato da

RSK - SHELTER Contrattore nome: Contrattore Progetto No.: 80635 Contrattore Doc. No.: RSK/H/P/P80635/04/01/01 Tag No's.: N/A

TAP AG Contratto No.: C5577 Progetto No.: WBS11D01F004

PO No.: WBS11D01F004 Pagina: 1 of 79

TAP AG Documento No.:

IPL00-C5577-100-Y-TAT-0001

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER THE CHARLES TO BE	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 2 a 79

INDICE

1.	INTRODUZIONE	4
1.1	BREVE SINTESI DEI LAVORI	4
1.2	CONTENUTO DEL DOCUMENTO	5
2.	DESCRIZIONE DELLE ATTIVITÀ DI INDAGINE ESEGUITE	6
2.1	PREMESSA	6
2.2	ATTIVITÀ PROPEDEUTICHE ALLE INDAGINI	6
2.3	RILEVAMENTO TOPOGRAFICO	7
2.4	MODALITÀ DI ESECUZIONE DELLE INDAGINI	8
2.5	MODALITÀ DI CAMPIONAMENTO DEI TERRENI 2.5.1 Campionamento dei Top Soil 2.5.2 Campionamento dei Terreni Profondi	10
2.6	CRITERI DI GESTIONE E CONSERVAZIONE DEI CAMPIONI	12
2.7	ANALISI CHIMICHE	12
2.8	CONTROLLO QUALITÀ	13
3.	RISULTATI DELLE INDAGINI	14
3.1	GEOLOGIA LOCALE	14
3.2	RISULTATI DELLE ANALISI CHIMICHE DEI TERRENI 3.2.1 Metalli 3.2.2 Cromo VI. 3.2.3 Idrocarburi Pesanti C>12. 3.2.4 Amianto 3.2.5 Pesticidi	15 15 15
4.	CONCLUSIONI	16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Canading to States your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 3 a 79

ELENCO DELLE TABELLE

LELINOO DELLE TABLELL	
Tabella 1-1 – Elaborati allegati al Rapporto di Campionamento	5
Tabella 2-1 - Sintesi delle Attività di Indagine in Campo	6
Tabella 2-2 - Coordinate dei punti di indagine per il campionamento dei terreni su base	
volontaria	8
Tabella 2-3 – Schema di esecuzione dei sondaggi	9
Tabella 2-4 - Schema di campionamento dei Top Soil	11
Tabella 2-5 - Schema di campionamento dei Sondaggi	12
Tabella 2-6 – Set analitico	13
ALLEGATI	
ALLEGATO A - ELABORATI GRAFICI	17
ALLEGATO B - RISULTATI ANALITICI TERRENI	19
ALLEGATO C - RISULTATI ANALITICI TERRENI – CERTIFICATI ANALITICI	28
ALLEGATO D - STRATIGRAFIE	49
ALLEGATO E - PHOTOLOG	63

ACRONIMI

TAP: Trans Adriatic Pipeline

RoW: Right of Way - Pista di Lavoro

MT: Microtunnel

MT-WS: Microtunnel Work Site – Cantiere temporaneo del Microtunnel PRT: Pipeline Receiving Terminal – Terminale di Ricezione del Gasdotto

BVS: Block Valve Station - Valvola di Intercettazione di Linea

CSC: Concentrazione Soglia di Contaminazione

RTK: Real Time Kinematic

ISPRA: Istituto Superiore per la Protezione e la Ricerca Ambientale

ARPA: Agenzia Regionale per la Protezione dell'Ambiente

HSE: Healt, Safety and Environment (Salute, Sicurezza e Ambiente)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 4 a 79

1. INTRODUZIONE

Il presente documento costituisce la relazione tecnico descrittiva delle attività di campionamento e analisi dei terreno eseguite su base volontaria nel periodo intercorso tra il 21 Marzo 2016 e il 22 Marzo 2016 da SHELTER SrI – RSK. L'attività è stata richiesta da TAP ed eseguita come da Comunicazione Edilizia Libera del 18 Marzo 2016 e per come comunicato ad ARPA Puglia in data 15/03/2016 con nota prot. LT-TAPIT-ITSK-00672, presso l'area di Cantiere Temporaneo del Microtunnel (MT-WS), le strade di accesso e presso il punto RoW13 lungo la Pista di Lavoro ricadenti in terreni privati in agro di Melendugno (LE). I sondaggi, campionamenti ed analisi dei suoli sono stati eseguiti secondo la metodologia riportata nel Piano di Campionamento dell'Area di Costruzione del Microtunnel e nel Piano di Campionamento Onshore (PRT – BVS - RoW) trasmessi all'Autorità competente in riferimento alla prescrizione A.25a.

Il presente documento richiama i contenuti, relativamente alle modalità campionamento ed analisi dei terreni, dei seguenti documenti (di seguito Piani):

- Piano di Campionamento Onshore (PRT BVS RoW). Doc n°: IAL00-ERM-643-Y-TAE-1034;
- Piano di Campionamento dell'Area di Costruzione del Microtunnel. Doc n°: IAL00-ERM-643-Y-TAE-1031.

L'articolazione delle attività di campionamento si è inoltre basata sulle indicazioni ricevute durante il sopralluogo preliminare del 22 Febbraio 2016 (presenti TAP, SHELTER, SGS Italia Spa e Trivelsonda). Tali indicazioni, ricevute da TAP, prevedevano l'esecuzione delle indagini in punti di campionamento prossimi a quelli previsti dai Piani di Campionamento in corso di valutazione da parte di ISPRA/ARPA. Suddette indagini non sono localizzate nelle posizioni identificate nei Piani, ma collocate in posizioni leggermente differenti al fine di non interferire con gli stessi qualora siano necessari ulteriori campionamenti.

1.1 BREVE SINTESI DEI LAVORI

Le attività di indagine presso il sito in oggetto si sono svolte nel periodo 21/03/2016 – 22/03/2016.

Nel corso delle attività di campo, sono stati realizzati 6 sondaggi (postazioni SBv, come nominate nel Piano di Campionamento dell'Area di Costruzione del Microtunnel di ERM, e RoWv) e 11 Top Soil (MTv) nel pieno rispetto delle procedure operative definite dal Piani succitati.

Complessivamente, sono stati raccolti 27 campioni di terreno sottoposti ad analisi.

Sono inoltre state eseguite le seguenti attività:

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Canading to States your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 5 a 79

- battitura topografica dei 6 sondaggi (postazioni SBv e RoWv);
- battitura topografica degli 11 Top Soil (MTv).

1.2 CONTENUTO DEL DOCUMENTO

Il presente documento si articola nelle seguenti 4 sezioni:

- 1. Introduzione
- 2. Descrizione delle Attività di Indagine Eseguite: illustra le modalità utilizzate per l'esecuzione delle attività di campo oltre alle procedure di campionamento ed acquisizione dati per le matrici suolo e sottosuolo;
- 3. Risultati delle Indagini Eseguite: definisce i caratteri principali dei terreni campionati tramite i dati ottenuti, fornendo inoltre una rappresentazione grafica e tabellare di questi ultimi;
- 4. Conclusioni.

Sono inoltre riportati in allegato i seguenti elaborati (cfr. Tabella 1-1).

Tabella 1-1 – Elaborati allegati al Rapporto di Campionamento

Allegato	Titolo	Formato Digitale (pdf)
	Elaborati Grafici	
Α	Figura 1 - Inquadramento generale dell'area di campionamento dei suoli;	X
	Figura 2 - Punti di campionamento dei suoli.	
В	Risultati Analitici Terreni – Tabelle	X
С	Risultati Analitici Terreni – Certificati Analitici - SGS	X
D	Stratigrafie - Trivelsonda	X
Е	Photolog	X

TAP AG

Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Canading to States your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 6 a 79

2. DESCRIZIONE DELLE ATTIVITÀ DI INDAGINE ESEGUITE

2.1 PREMESSA

Le Attività di Indagine in sito si sono svolte nell'arco temporale compreso tra il 21/03/2016 e il 22/03/2016. Informazioni riguardanti la tipologia di indagine e le date di esecuzione vengono sintetizzate nella seguente Tabella 2-1.

Tabella 2-1 - Sintesi delle Attività di Indagine in Campo

Tipologia di Indagine	Numero di Indagini realizzate	Date di realizzazione
Rilievo topografico	17	21/03/2016
Perforazione di Sondaggi	6	21/03/2016 22/03/2016
Perforazione di Top Soil	11	21/03/2016 22/03/2016
Prelievo di campioni di Terreno	27 (per analisi chimiche)	21/03/2016 22/03/2016

Per le specifiche sull'ubicazione dei punti di indagine si rimanda alle Figure 1 e 2 di cui all'Allegato A.

2.2 ATTIVITÀ PROPEDEUTICHE ALLE INDAGINI

Preliminarmente all'avvio delle attività di campionamento, è stato effettuato in data 22/02/2016 un sopralluogo in Sito dai seguenti tecnici:

- TAP: personale HSE
- SGS Italia Spa: società incaricata alle attività di prelievo e analisi dei campioni di terreno;
- Trivelsonda: società incaricata delle attività di rilevamento topografico dei punti di indagine e perforazione dei sondaggi e
- SHELTER: in qualità di società incaricata nella direzione dei lavori.

Durante l'incontro si è provveduto a:

- definire le indagini di campionamento dei terreni su base volontaria in accordo alle modalità previste dal Piano di Campionamento dell'Area di Costruzione del Microtunnel e dal Piano di Campionamento Onshore (PRT – BVS - RoW) – Prescrizione A.25a;
- verificare la logistica delle postazioni di perforazione e Top Soil proposte.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 7 a 79

2.3 RILEVAMENTO TOPOGRAFICO

Il giorno 21/03/2016 la società Trivelsonda ha eseguito l'attività di rilevamento topografico dei punti di indagine presso l'area di Cantiere Temporaneo del Microtunnel (MT-WS), la strada di accesso e presso il punto RoW13 lungo la Pista di Lavoro in agro di Melendugno (LE) e riportate in Figura 1 e Figura 2 all'Allegato A.

Sulla base dei Piani e delle indicazioni ricevute da TAP (cfr. Capitolo 1), sono stati individuati i punti di campionamento (da eseguire su base volontaria) ad una distanza di circa 1-2 m dai rispettivi "ufficiali" previsti dai Piani al fine di non interferire con gli stessi.

Il rilievo topografico è stato eseguito servendosi di un sistema di rilievo GPS Ashtech ProMark 200 che opera in doppia frequenza RTK per reti permanenti e garantisce un livello di precisione entro il centimetro.

Localizzati i punti di indagine, si è proceduto alla loro materializzazione con l'ausilio di picchetti in legno e cartellino identificativo.

Sono stati localizzati:

- 11 punti di prelievo di terreno superficiale (Top Soil) nell'area del Microtunnel denominati con la sigla "MT", il numero progressi da 1 a 11 e la lettera "v" di "volontario" in riferimento all'attività di campionamento su base volontaria;
- 5 sondaggi profondi nell'area del Microtunnel denominati con la sigla "SB", il numero progressivo da 1 a 5 e la lettera "v" di "volontario" in riferimento all'attività di campionamento su base volontaria;
- 1 sondaggio profondo nell'area della Pista di Lavoro denominato con la sigla "RoW", il numero 13 e la lettera "v" di "volontario" in riferimento all'attività di campionamento su base volontaria.

La tabella seguente riassume la griglia di campionamento e le coordinate di ciascun punto di indagine eseguito su base volontaria. Per la visualizzazione grafica si rimanda alle Figure 1 e 2 in Allegato A.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER TO CONDUCTOR TO THE PROPERTY OF TH	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 8 a 79

Tabella 2-2 - Coordinate dei punti di indagine per il campionamento dei terreni su base volontaria

Tinologia	ID	Coordinate WG	S 84 – UTM 34 N	Quota p.c.
Tipologia	ID	Est	Nord	(m.l.m.m.)
	MT1v	277768,874	4465190,073	9,59
	MT2v	277812,533	4465218,823	9,11
	MT3v	277855,901	4465241,992	7,84
	MT4v	277796,625	4465151,186	8,90
	MT5v	277840,082	4465178,914	8,35
Top soil	MT6v	277882,659	4465199,772	9,36
	MT7v	277825,397	4465105,318	8,74
	MT8v	277867,508	4465130,469	9,05
	MT9v	277907,269	4465161,400	8,81
	MT10v	277893,014	4465088,334	9,60
	MT11v	277935,316	4465115,109	10,07
	SB1v	277902,707	4465179,985	9,67
	SB2v	277908,304	4465180,286	9,94
Condoggi	SB3v	277905,789	4465174,668	9,54
Sondaggi	SB4v	277869,777	4465152,418	8,93
	SB5v	277815,734	4465116,866	9,14
	RoW13v	277455,871	4465004,035	10,14

2.4 MODALITÀ DI ESECUZIONE DELLE INDAGINI

Le perforazioni dei sondaggi e dei Top Soil, la cui ubicazione è riportata in Figura 1 e Figura 2 all'Allegato A sono state eseguite rispettivamente dalle società Trivelsonda e SGS Italia Spa sotto la supervisione di personale SHELTER.

Le attività di campo (perforazioni e campionamenti) sono state realizzate in linea con quanto previsto dai Piani e le indicazioni di TAP ricevute nel corso del sopralluogo congiunto del 22/02/2016.

2.4.1 Modalità di esecuzione dei Sondaggi

Complessivamente sono stati realizzati n. 6 sondaggi denominati SB1v-SB5v presso l'area di Cantiere Temporaneo del Microtunnel (MT-WS) e RoW13v lungo la Pista di Lavoro.

I sondaggi sono stati realizzati da Trivelsonda utilizzando un impianto di perforazione oleodinamico. Tale impianto è costituito da una macchina perforatrice "Fraste XL Multidrill" montata su un carro cingolato e avente le seguenti caratteristiche:

- Velocità massima di rotazione 600 Rpm;
- Coppia massima 1000 kgm;

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 9 a 79

- Spinta 3500 kg;
- Tiro 5000 kg.

I sondaggi sono stati eseguiti col metodo a carotaggio continuo a secco, senza circolazione di fluidi, con carotiere di diametro pari a 101 mm e tubazioni di rivestimento di diametro pari a 127 mm.

Tutte le postazioni sono state realizzate sulla verticale del piano campagna fino ad una profondità variabile tra 3m e 12m dal p.c. in accordo ai contenuti dei Piani. Nella Tabella 2-3 viene illustrato lo schema di perforazione.

Tabella 2-3 – Schema di esecuzione dei sondaggi

Tipologia	ID	Profondità del sondaggio (m da p.c.)
	SB1v	12
	SB2v	12
Condonsia	SB3v	12
Sondaggio	SB4v	7
	SB5v	4
	RoW13v	3

I terreni estratti dal carotiere sono stati posizionati in apposite cassette catalogatrici a singolo scomparto, atte a contenere 5 metri di carota e munite di coperchio. Le singole cassette sono state fotografate con fotocamera digitale e, a fine lavori, trasportate ed immagazzinate da Trivelsonda, presso la loro struttura, come richiesto da TAP.

A completamento delle operazioni di perforazione, i fori di sondaggio sono stati chiusi con miscela di boiacca di cemento e materiale di risulta come da Piani.

2.4.2 Modalità di esecuzione dei Top Soil

Complessivamente sono state realizzate n. 11 indagini del terreno superficiale (Top Soil) denominati MT1v-MT11v presso l'area di Cantiere Temporaneo del Microtunnel.

Tutte le indagini sono state condotte dal personale SGS Italia Spa con l'ausilio di utensili manuali fino ad una profondità di 0,20m da p.c. come da Piani.

Le singole postazioni sono state fotografate con fotocamera digitale e, a fine lavori, sono state chiuse col terreno di risulta.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 10 a 79

2.5 MODALITÀ DI CAMPIONAMENTO DEI TERRENI

Con riferimento al dettaglio di seguito riportato relativamente alle modalità di prelievo previste per le indagini, in Allegato B è possibile visualizzare l'elenco completo dei campioni di terreno prelevati nel corso dell'indagine.

Tutti i campioni di terreno prelevati sono stati trasportati al laboratorio SGS Italia Spa di Villafranca Padovana (PD) accreditato secondo la norma UNI CEI EN ISO/IEC 17025, al n. 0080 di Accredia.

2.5.1 Campionamento dei Top Soil

Come da Piani di campionamento dei terreni superficiali spinti fino ad una profondità di 0,2 m da p.c., la raccolta dei terreni è avvenuta selezionando in campo, mediante apposito setaccio, la frazione granulometrica di diametro inferiore ai 2 cm. Le aliquote di ogni campione sono state preparate mediante l'ausilio di mezzi manuali (spatole/palette in acciaio inox), opportunamente decontaminati tra un campionamento e il successivo, e posizionando il terreno su telo impermeabile in polietilene per la successiva quartatura.

In ciascun punto di indagine, i campioni, raccolti in contenitori in vetro di capacità volumetrica pari a un litro e chiusi ermeticamente, sono stati prelevati in duplice aliquota di cui una per le determinazioni analitiche del laboratorio ed una a disposizione per eventuali controanalisi.

La Tabella successiva riassume lo schema di campionamento dei Top Soil.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 11 a 79

Tabella 2-4 - Schema di campionamento dei Top Soil

Tipologia	ID	Profondità di scavo (m da p.c.)	Orizzonte prelevato (m)	Campioni prelevati
	MT1v	0,20	0-0,2	2
	MT2v	0,20	0-0,2	2
	MT3v	0,20	0-0,2	2
	MT4v	0,20	0-0,2	2
	MT5v	0,20	0-0,2	2
Top soil	MT6v	0,20	0-0,2	2
•	MT7v	0,20	0-0,2	2
	MT8v	0,20	0-0,2	2
	MT9v	0,20	0-0,2	2
	MT10v	0,20	0-0,2	2
	MT11v	0,20	0-0,2	2

Sono stati quindi prelevati complessivamente 11 campioni in duplice aliquota relativamente ai terreni superficiali.

2.5.2 Campionamento dei Terreni Profondi

Come da Piano di campionamento dei terreni spinti fino ad una profondità compresa tra 3 m e 12 m da p.c., la raccolta di ciascuna aliquota dei terreni profondi è avvenuta selezionando in campo porzioni della matrice da più spezzoni di carota rappresentativi dell'orizzonte individuato, al fine di considerare una rappresentatività media.

Ciascuna aliquota è stata quindi posizionata su telo impermeabile in polietilene, mediante l'ausilio di mezzi manuali (spatole/palette in acciaio inox) opportunamente decontaminati tra un campionamento e il successivo, per eliminare la sua parte grossolana e procedere allo stoccaggio in contenitori in vetro di capacità pari a un chilogrammo.

Il "Piano di Campionamento Onshore (PRT – BVS - RoW). Doc n°: IAL00-ERM-643-Y-TAE-1034 Rev. 01 - Marzo 2016" prevede il campionamento di terreno al punto ufficiale RoW13 nell'orizzonte 2,4-2,6. Durante le attività di campionamento su base volontaria, si è osservato che il quantitativo di materiale estratto mediante carotaggio al punto RoW13v non ha permesso la composizione di due aliquote complete in contenitori di vetro di capacità volumetrica pari a un litro. Si precisa che tale problema era stato segnalato da SHELTER-SGS prima dell'inizio delle attività.

La Tabella successiva riassume lo schema di campionamento dei Terreni profondi.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER TO CONCLUDING TO CONTROL TO CONT	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 12 a 79

Tabella 2-5 - Schema di campionamento dei Sondaggi

Tipologia	ID	Profondità del sondaggio (m da p.c.)	Orizzonte prelevato (m)	Campioni prelevati
	SB1v		0-1	2
	SB1v	12	5,5-6,5	2
	SB1v		11,5-12	2
	SB2v		0-1	2
	SB2v	12	5,5-6,5	2
	SB2v		11,5-12	2
	SB3v	12	0-1	2
0	SB3v		5,5-6,5	2
Sondaggi	SB3v		11,5-12	2
	SB4v	7	5,5-6,5	2
	SB5v		0-1	2
	SB5v	4	1,5-2,5	2
	SB5v		3-4	2
	RoW13v		0-0,2	2
	RoW13v	3	1-1,5	2
	RoW13v		2,4-2,6	2

Sono stati quindi prelevati complessivamente 16 campioni in duplice aliquota relativamente ai terreni profondi.

2.6 CRITERI DI GESTIONE E CONSERVAZIONE DEI CAMPIONI

Tutti i campioni, stoccati in contenitori di vetro della capacità di un chilogrammo e chiusi ermeticamente, sono stati prelevati in duplice aliquota di cui una per le determinazioni analitiche del laboratorio ed una a disposizione per eventuali controanalisi.

Ciascuna aliquota è stata identificata in modo univoco mediante etichetta adesiva riportante il nome identificativo del campione, la data di prelievo, l'identificativo della matrice campionata e l'orizzonte campionato (es: MT1v_210316_SO_0_0,2) oltre ai codici interni del laboratorio SGS Italia Spa.

I campioni raccolti sono stati immediatamente stoccati in Sito all'interno di box frigo in polistirolo, in apposito spazio dedicato, lontano da fonti luminose e a temperature non superiori ai 4 °C fino al momento della consegna al laboratorio analitico.

2.7 ANALISI CHIMICHE

I 27 campioni di terreno (raccolti in duplice aliquota) sono stati sottoposti ad analisi chimiche per le determinazioni dei parametri analitici indicati nei Piani.

TAP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Canading to States your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 13 a 79

La Tabella seguente riporta il set analitico e le metodiche analitiche utilizzate per la determinazione dei parametri chimici così come indicato nei Piani.

Tabella 2-6 - Set analitico

Set analitico dei terreni nell'area di costruzione del microtunnel e nel punto RoW13					
Parametro	Metodo analitico				
Scheletro (2 mm)	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1				
Scheletro (2mm - 2cm)	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3				
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2				
Arsenico, Cadmio, Cobalto, Nichel, Cromo, Piombo, Rame, Zinco, Mercurio, Berillio, Vanadio, Tallio	EPA 6020B 2014				
Cromo VI	EPA 7196A 1992				
Idrocarburi Pesanti C>12	EPA 8015C 2007				
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B				
Alaclor, Aldrin, Atrazina, a-esacloroesano, b- esacloroesano, g-esacloroesano (Lindano), Clordano, DDD, DDT, DDE, Dieldrin, Endrin	EPA 8270D 2007				

2.8 CONTROLLO QUALITÀ

Come previsto dai Piani, durante le attività di campionamento su base volontaria si è proceduto all'esecuzione del programma di controllo qualità al fine di verificare la precisione e l'accuratezza delle operazioni di campionamento e analisi. A tal fine si è provveduto a prelevare ed analizzare un quantitativo pari, al 10% dei campioni complessivi prelevati, di:

- Blind duplicate: due campioni identici (sia per il numero sia per la tipologia di contenitori) contrassegnati con due identificativi differenti allo scopo di verificare la precisione dei risultati delle analisi. Sono stati prelevati complessivamente 3 Blind duplicate;
- Equipment blank: campione costituito da acqua distillata con la quale è stata pulita l'attrezzatura di campionamento al fine di verificare l'accuratezza delle attività di prelievo dei campioni. Sono stati prelevati complessivamente 3 Equipment blank.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER TO CONCEIN TO SAME YOUR DEADORS	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 14 a 79

3. RISULTATI DELLE INDAGINI

La seguente sezione propone una definizione dei caratteri principali della matrice ambientale campionata, tramite l'analisi dei dati ottenuti mediante le indagini di campo e di laboratorio. Esso fornisce inoltre una chiara rappresentazione grafica e tabellare dei risultati elaborati e consultabili agli Allegati A-E.

3.1 GEOLOGIA LOCALE

Le stratigrafie ricavate dalla realizzazione dei sondaggi nell'area di studio rivelano un terreno di copertura dello spessore variabile da 0,2m a 0,6m da p.c. costituito da sabbia debolmente ghiaiosa di colore marrone rossastro (sondaggi SB1v, SB2v e SB3v) e sabbia debolmente limosa di colore marrone rossastro (sondaggi SB4v, SB5v e RoW13v).

Al di sotto del primo orizzonte rappresentato dal terreno di copertura, il secondo orizzonte è costituito principalmente da Calcarenite a grana medio-grossa, poco cementata tanto da assumere la consistenza di sabbia sciolta di colore biancastro. In tale orizzonte sono intercalati pochi e piccoli livelli cementati di spessore 3 – 5 cm ed alcuni livelli a grana fina.

Nel solo punto di indagine SB4v, al di sotto del terreno di copertura si è osservato un livello di spessore pari a 0,3m costituito da Calcarenite a grana medio-grossa, poco cementata tanto da assumere l'aspetto di sabbia grossolana e colore rosa. L'orizzonte successivo, compreso tra la profondità di 0,7m da p.c. e fondo scavo (7m da p.c.) coincide con quello sopradescritto per tutti gli altri sondaggi.

Le stratigrafie dei sondaggi realizzati nel corso delle indagini suggeriscono una correlazione col con la formazione denominata "Calcarenite del Salento" e confermano le caratteristiche geologiche descritte negli studi geotecnici e geofisici allegati ai Piani.

Per l'osservazione grafica di dettaglio delle stratigrafie dei sondaggi eseguiti si rimanda all'Allegato D ed E.

3.2 RISULTATI DELLE ANALISI CHIMICHE DEI TERRENI

Considerata la destinazione d'uso delle aree di studio, i risultati analitici delle analisi del terreno sono stati confrontati con le Concentrazioni Soglia di Contaminazione (CSC) per Siti ad uso Verde pubblico o privato (cfr. D.Lgs. 152/06, Parte IV, Titolo V - Allegato 5, Tabella 1, Colonna A).

Tutte le risultanze analitiche sono riportate in forma tabellare all'Allegato B, i Rapporti di Prova delle analisi eseguite da SGS su tutti i campioni sono riportati all'Allegato C.

TAP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER TO CONCEIN TO SAME YOUR DEADORS	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 15 a 79

3.2.1 Metalli

I valori di concentrazione dei metalli (Arsenico, Cadmio, Cobalto, Nichel, Cromo, Piombo, Rame, Zinco, Mercurio, Berillio, Vanadio, Tallio) rilevati nei campioni di suolo risultano tutti inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato mentre il Tallio è risultato in alcuni casi uguale a detta CSC (pari a 1 mg/kg).

In alcuni campioni, le concentrazioni ottenute sono risultate inferiore anche al limite di rapportaggio del metodo analitico utilizzato.

3.2.2 Cromo VI

Relativamente al parametro Cromo VI, le concentrazioni rilevate nei campioni di suolo risultano inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

3.2.3 Idrocarburi Pesanti C>12

Relativamente agli Idrocarburi Pesanti C>12, le concentrazioni rilevate nei campioni di suolo risultano inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

In alcuni campioni, le concentrazioni ottenute sono risultate inferiore anche al limite di rapportaggio del metodo analitico utilizzato.

3.2.4 Amianto

Le concentrazioni di Amianto rilevante nei campioni di suolo risultano sempre inferiore al limite di rapportaggio del metodo analitico utilizzato, dunque inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

3.2.5 Pesticidi

Le concentrazioni di pesticidi (Alaclor, Aldrin, Atrazina, a-esacloroesano, b-esacloroesano, g-esacloroesano (Lindano), Clordano, DDD, DDT, DDE, Dieldrin, Endrin) rilevate nei campioni di suolo risultano sempre inferiore al limite di rapportaggio del metodo analitico utilizzato, dunque inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 16 a 79

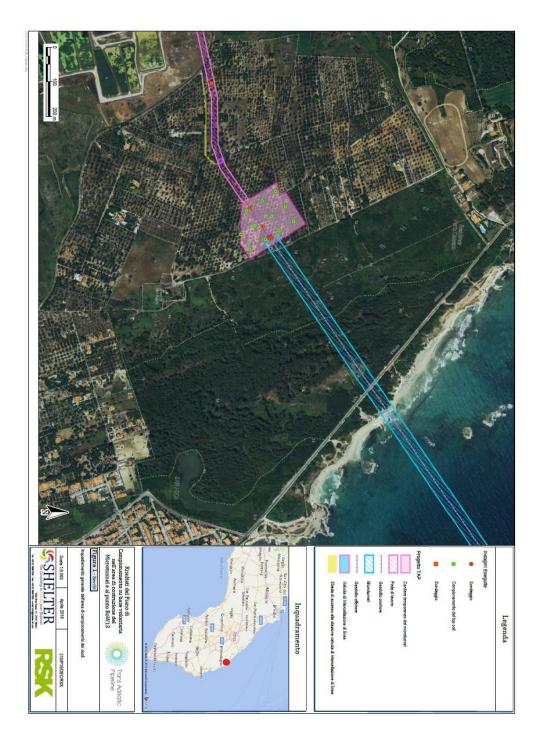
4. CONCLUSIONI

Le attività di campionamento di terreno eseguite su base volontaria sono state condotte nel periodo intercorso tra il 21 Marzo 2016 e il 22 Marzo 2016 da SHELTER Srl – RSK, secondo le indicazioni fornite da TAP, contenute nei Piani e come da Comunicazione Edilizia Libera del 18 Marzo 2016, presso l'area di Cantiere Temporaneo del Microtunnel (MT-WS), strade di accesso e presso il punto RoW13 lungo la Pista di Lavoro.

Le modalità campionamento ed analisi dei terreni sono state inoltre condotte sulla base dei seguenti Piani:

- Piano di Campionamento Onshore (PRT BVS RoW). Doc n°: IAL00-ERM-643-Y-TAE-1034 Rev. 01 Marzo 2016;
- Piano di Campionamento dell'Area di Costruzione del Microtunnel. Doc n°: IAL00-ERM-643-Y-TAE-1031 Rev. 01 Marzo 2016.

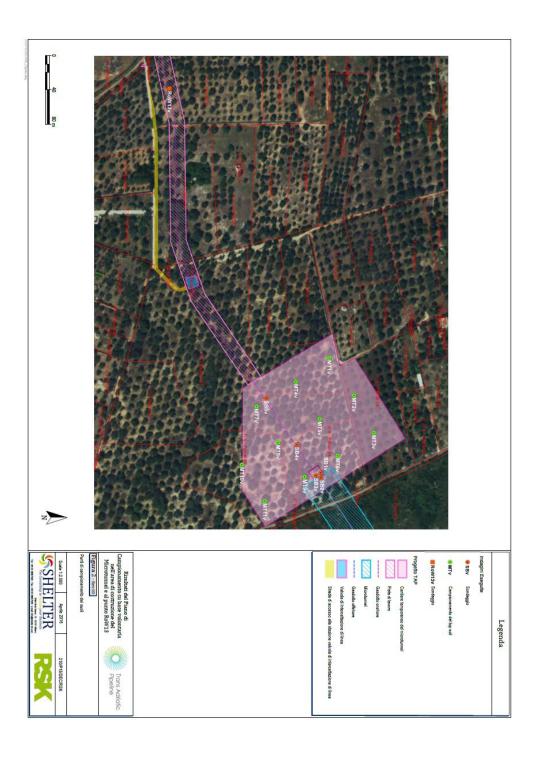
L'articolazione delle attività di campionamento si è altresì basata sulle indicazioni ricevute durante il sopralluogo preliminare del 22 Febbraio (presenti TAP, SHELTER, SGS Italia Spa e Trivelsonda). Tali indicazioni, ricevute da TAP, prevedevano l'esecuzione delle indagini in punti di campionamento prossimi a quelli previsti dai Piani di Campionamento sopra riportati e in corso di valutazione da parte di ISPRA/ARPA. Suddette indagini non sono localizzate nelle posizioni identificate nei Piani, ma collocate in posizioni leggermente differenti (1-2m dalle postazioni dichiarate nei Piani) al fine di non interferire con gli stessi nel caso in cui l'Autorità chieda l'esecuzione di ulteriori campagne di indagine.


Le attività svolte, che hanno comportato la realizzazione di 6 sondaggi e 11 Top Soil e l'esecuzione di analisi su 27 campioni di terreno, hanno evidenziato quanto segue:

- Il primo sottosuolo dell'area di studio, che risulta coperto da un terreno costituito da sabbia debolmente ghiaiosa o limosa di colore marrone, è costituito principalmente da Calcarenite a grana medio-grossa, poco cementata tanto da assumere l'aspetto di sabbia grossolana e colore biancastro. In tale orizzonte sono intercalati pochi e piccoli livelli cementati di spessore 3 5 cm ed alcuni livelli a grana fina. Le stratigrafie dei sondaggi realizzati nel corso delle indagini suggeriscono una correlazione con la formazione denominata "Calcarenite del Salento" confermare le caratteristiche geologiche descritte negli studi geotecnici e geofisici allegati ai Piani;
- Per ciò che attiene la matrice suolo e sottosuolo, dalle indagini non emergono superamenti delle CSC relativamente ai Metalli, Cromo IV, Idrocarburi Pesanti C>12, Amianto e pesticidi ricercati.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to sense your flusions	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 17 a 79

ALLEGATO A - ELABORATI GRAFICI


Figura 1 - Inquadramento generale dell'area di campionamento dei suoli;

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to sense your flusions	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 18 a 79

Figura 2 - Punti di campionamento dei suoli;

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to sense your flusions	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 19 a 79

<u>ALLEGATO B - RISULTATI ANALITICI TERRENI</u>

Tabelle

Allegato B	Aladion EPA 82700 2007 mg/kg 0.01 0.1 4.00 4.00 Aldrin EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.00 4.00 Aldrin EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.00 4.00 4.00 alf-8HC EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.01 4.01 4.01 bata-8HC EPA 82700 2007 mg/kg 0.01 0.01 0.0 4.01 4.01 4.01 Cordano EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.01 4.01 Deletim EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.01 4.01 Deletim EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.01 4.01 Deletim EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.01 4.01 EPA 82700 2007 mg/kg 0.01 0.01 0.1	Arvanido EPA 8000B 2014 mg/kg 1 20 80 2 3 Berillio EPA 8000B 2014 mg/kg 0.1 2 16 0.8 0.7 Cadrinio EPA 8000B 2014 mg/kg 0.1 2 15 0.1 0.1 Cobilito EPA 8002B 2014 mg/kg 0.1 20 250 2.5 2.3 Commo EPA 8002B 2014 mg/kg 0.1 1 5 40.1 2.0 Mercurio EPA 8002B 2014 mg/kg 0.1 1 5 40.1 40.1 Nichel EPA 8002B 2014 mg/kg 1 100 50 40.1 40.1 Plambo EPA 8002B 2014 mg/kg 1 100 1000 7 9 Rame EPA 8002B 2014 mg/kg 0.1 1 10 0.8 5 Tallio EPA 8002B 2014 mg/kg 0.1 1 10 0.8 5 Tallio <t< th=""><th> Schelero Schelero Su campione seco all'aria (Ezione - 2 mm) 13009/1999 (SU n° 1) 129 </th><th>PD18-01004 PD18-01004 PD18-01004.001 PD18-01004.002 MT1v_210316_50_0_0.2 MT2v_220316_50_0_0.2 21/32016 22/3/2016 24/3/2016</th></t<>	Schelero Schelero Su campione seco all'aria (Ezione - 2 mm) 13009/1999 (SU n° 1) 129	PD18-01004 PD18-01004 PD18-01004.001 PD18-01004.002 MT1v_210316_50_0_0.2 MT2v_220316_50_0_0.2 21/32016 22/3/2016 24/3/2016
Risultati Analitici Terreni – Tabeli	A A A A A A A A A A A A A A A A A A A	\$\frac{1}{2} \times \frac{1}{2}	\$0.4	PD19-01004 PD19-01004 PD19-01004.003 PD19-01004.004 MT3v_22031e_50_0_0.2 MT4v_21031e_50_0_0.2 2232016 2132016 2432016 2432016

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 20 a 79

Allegato B	Afrazina afra-BHC beta-BHC gamma-BHC (Lindano) Clordano DOD, DDT, DDE Dieldrin Endrin	Arsenco Berillo Cadmio Cobalto Coromo Mercurio Nichel Piombo Rame Talio Vanadio Zinco Idrocarbur Pesanti C>12 Aminto (SEM) S.V.O.C. Aldrin Aldrin Aldrin	Metodo Unita Misura Limite di Coloma B Soheletro Soheletro Oma	IAP AG No Accettazione No Rapport Sigla Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE) Mod. di Campionamento: Effettuato da ns. personale - Scaranto Preferato il Rapp Data
	EPA 8270D 2007	EPA 00208 2014	Metodo Unita DM 13/06/1999 GU n* 9 ≪2 cmi) DM 13/06/1999 GU n* 9 Z mm) DM 13/06/1999 GU n* 9 Z mm) abs sepressa sulla totalità EFA, 3000A 1999 € EFA mg/kg ISO 15/192-2010 mg/kg ISO 15/192-2010 mg/kg	uato da ns. personale - So:
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	100 kg 10	Unita Misura g/kg g/kg g/kg totalità dei maten mg/kg	sranto
	000000000000000000000000000000000000000	0.0	Limite di Rapportaggio 1 1 1 1 0,1 1 ai seconi < 2 cm	
	0.0000000000000000000000000000000000000	20 2 2 2 2 2 2 3 150 120 120 120 120 120 120 120 120 120 12	unita Misura Limite di colonna B parte IV del ID.Las 15206 AII.5 parte Quarta AII.5 parte Quarta Golonna B g/kg 1 g/	Risultati del Pia nell'area di costi
	2999999 299999999	50 16 16 260 260 800 1000 600 600 1500 1500 1500 1500	della della Las 15206 Quarta colonna B Rabella 1-All. 5	ruzione del Microtu
	40,01 40,01 40,01 40,01 40,01 40,01	1.3 0.1 2.0 0.1 0.1 0.1 0.1 0.1 1.3 0.8 0.8 0.8 0.8	N 4 8 40 40	Risultati del Piarro di Campionamento su base volontaria nell'area di costruzione del Microtunnel e al punto ROW 13 PD 16-01004 PD 16-01004 005 MT5v_210316_50_0_02 21/3/2016 24/3/2016
	40,01 40,01 40,01 40,01 40,01 40,01	0.5 0.1 0.1 10 23 20 50,1 11 11 12 28 28 20 11 11 11 11 11 11 11 11 11 11 11 11 11	192 192 192 85,9 84,0	PD16-01004 PD16-01004-006 MT6v_220316_SO_0_0.2 22/3/2016 24/3/2016
Risi	0,01 0,00 0,01 0,00 0,01 0,00 0,01 0,00 0,01	0.7 0.7 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	108 108 87.3 1	PD18-01004 PD18-01004.007 MT7-, 210316_SO_0_0.2 21/3/2016
Risultati Analitici Terreni – Tabelle	0,01 0,00 0,01 0,00 0,01 0,00 0,01 0,00 0,01	0.7 0.7 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.7 0.7	193 193 198.7 <0.2	PD18-01004 PD18-01004-008 MT8V_210316_SO_0_0.2 21/3/2016

TAP AG 20

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SERVICE DE L'ACCEPTANT D	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 21 a 79

	EPA 8270D 2007	DDD, DDT, DDE EPA 8270D 2007 mg/	EFA 82/00/2007	HC (Lindano)	beta-BHC EPA 8270D 2007 mg/	EFA 02/00/2007	2002 OU2CO VOZ	18	EPA 8270D 2007	Alador EPA 8270D 2007 mg/kg	S.V.O.C.	Amianto (SEM) DM 08/09/1994 GU n° mg/kg	anti C>12 EPA 80150 2007	EFA 00200 2014	EDA 80200 2014			EPA 6020B 2014	Piombo EPA 6020B 2014 mg/kg	Nichel EPA 6020B 2014 mg/kg	Mercurio EPA 6020B 2014 mg/kg	EPA 80208 2014	EPA 60208 2014	EFA 0020B 2014	EFA 0020B 2014	EFA 60208 2014		esavalente (Cr VI)	EPA 3060A 1996 + EPA	secco all'aria (trazione < 1	Residuo a 105°C DM 13/09/1899 GU n° 2/ %	quale (frazione < 2 mm)	Scheletro (2mm - 2cm) DM 13/09/1999 GU n° g/kg	(frazione <2 cm)	Scheletro (2 mm) DM 13/09/1999 GU n° g/kg	ne secco all'aria	Scheletro	Metodo Unita N		Rapp Data	Description in the second seco	mod. di Campionamento: Effettuato da ns. personale - Scaranto Prolevato il	Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)	Sigla	No Rapport	No Accettazione	202	200		TAP AG
	0.01								kg 0,01			kg 100							kg 1	kg 1	kg 0,1							0,2	3 -	ei materiali secchi <	2.1		9 1		9		rapportage	fisura Limite di					10 (LE)							
0,01	0.01	0,01	0,01	0.01	0.01	0,01	0	0,01	0,01	0,01		1000	2	100	i e	8	_	120	100	120	_	150	20	3 ^	, ,	. 2	3	2	2 12	2 cm (105°C) compre							Jo Toocho T-All.	colon Tabella	parte IV de	titol									nell'area di	Risultati de
n :	0.1	0.1	5	0.5	0.5			_	9.	_		1000	00	1000	1500	250	10	600	1000	500	On.	800	250	3 5	i	6 8	5	3	i 5	ensiva dello scheletro							Topcilo A-All. 5	colonna B	parte IV del D.Lgs 152/06 All.5 parte Quarta	titolo V della									costruzione del Micro	Piano di Campionan
<0.01	<0.01	<0,01	:U,U>	<0.01	<0,01	/0,0/	/nn1	<0,01	<0,01	<0,01		<100	-	10	- P	21	0.3	22	15	13	<0,1	3/	3.7	2.5	2.4			2			85,9		36		36					24/3/2010	24/2/2018	21/3/2018		MT9v_210316_SO_0_0,2	PD16-01004.009	PD16-01004			nell'area di costruzione dei Microtunnei e al punto RoW13	Risultati del Piano di Campionamento su base volontaria
<0,01	<0.01	<0,01	10,03	<0.01	<0,01	/0,0/	- nn	<0,01	<0,01	<0,01		<100		0 ~	1				7		<0,1		1.5				ı,	N.A.			87		125		125					24/3/2010	24/2/2018	21/3/2016		MT10v_210316_SO_0_0,2		PD16-01004				
<0,01	<0.01	<0,01	10,03	<0.01	<0,01	/0,01	Z001	<0,01	<0,01	<0,01																0 10		Z	2 .		86,5		208		208					24/3/2010	2420018	21/3/2016		MT11v_210316_SO_0_0.2						
<0.01	>0.0	<0,0>	0,0>	<0.01	<0,01	/0,01	Z0 01	<0,01	<0,01	<0,01																		NA.	× 4		88,7		76		76					24/3/2010	24/3/2016	21/3/2018		SB1v_210316_SO_0_1	PD16-01004.012	PD16-01004				

TAP AG

Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 22 a 79

Endrin	Dieldrin	Clordano	gamma-BHC (Lindano)	beta-BHC	alfa-BHC	Atrazina	Alacior	S.V.O.C.	Amianto (SEM)	Idrocarburi Pesanti C>12	Zinco	Vanadio	Tallio	Piombo	Nichel	Mercurio	Cromo	Cobalto	Cadmio	Arsenico	Metalli	Cromo esavalente (Cr VI)	Cromo VI	Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello scheletro	Residuo a 105°C	Su campione tal quale (frazione < 2 mm)	Scheletro (2mm - 2cm) Od carrier >2 cm)	Su camo secon all'aria (frazione	Su campione secco all'aria	Scheletro			Rapp Data	Mod. di Campionamento: Effettuato da ns. personale - Scaranto Prelevato il	Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)	No Napport	No Accettazione	SGS		TAP AG
EPA 8270D 2007	EPA 82700 2007	EPA 8270D 2007	EPA 8270D 2007	EPA 8270D 2007	EPA 8270D 2007	EPA 8270D 2007	EPA 8270D 2007		DM 06/09/1994 GU n°	EPA 8015C 2007	EPA 6020B 2014	EPA 60205 2014	EPA 60208 2014	EPA 6020B 2014	EPA 8020B 2014	EBA 60208 2014	EBA ROODS OOM	ISO 15192: 2010	EPA 3060A 1996 + EPA mg/kg	< 2 mm) dati espressi sulla t	DM 13/09/1999 GU n° 2-	< 2 mm)	DM 13/09/1999 GU n°	CO COM I SUBMITING THE COLOR	DM 13/00/1000 GILE®		Metodo			tuato da ns. personale - Scar	cess Area, Municipality of Me									
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ı	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	otalità dei materii	%		g/kg	9/Kg			Unita Misura Limite di Rapportaggio			anto	elendugno (LE)					
0,01	0.0	0.01	0.01	0.01	0,01	0.0	0.01		100	O1	on .	4 5	2 -		-	0.1	-	2 :	2.5	2 -	•	0,2	_	ali secchi < 2 cm	<u>.</u> 1		_	_		;	Limite di Rapportaggio									
0,01	0.01	0.01	0,01	0,01	0,01	0.01	0,01		1000	50	150	8 -	120	6	120	_	150	20	2 6	2 د	3	2	2	(105°C) comprensi							parte iv dei Dugs 102006 All.5 parte Quarta colonna A colonna B Tabella 1-All. 5 Tabella 1-All. 5	titolo V della							nell'area di cos	Risultati del Pi
2	2.5	2.2	0,5	0,5	0.1	4.5	2 -		1000	750	1500	250	900	1000	500	Oil	800	250	5 1 0	5 8	3	15	3	va dello scheletro				,			Quarta colonna B Tabella 1-All. 5	della							truzione del Microt	ano di Campionam
<0,01	<0.01	<0,01	<0,01	<0,01	<0,01	<0.01	<0.01		<100	Oi	Si .	ن غ د	2 4	. 4	2	<0,1	11	0.3	01		2	N.A.	<u>^</u>		76,3		98	128	200				24/3/2016	21/3/2018	0014_210010_00_0,0	10-010-0104-013 mm	PD16-01004		nell'area di costruzione del Microtunnel e al punto RoW13	Risultati del Piano di Campionamento su base volontaria
<0,01	<0.01	<0,01	<0,01	<0,01	<0,01	<0.01	<0,01		<100	Å	Ĝ.	201		. ^	2	<0,1	= {	0.20	A.		1	N.A.	Δ		82,2		21	21	2				24/3/2016	21/3/2018	0014_210010_00_11,0_12	SB1:: 210218 SO 11 5 12	PD16-01004			
<0,01	<0.01	<0,01	<0,01	<0,01	<0,01	<0.01	<0,01		<100	16	7	- rc	32	4 (2	<0.1	14	0.5	^D.1		1	N.A.	4		90,2		74	/4	7.				24/3/2016	21/3/2016	000000000000000000000000000000000000000					
<0,01	<0.01	<0,01	<0,01	<0,01	<0.01	<0.01	<0.01		<100	On	A.	,	2 -		_	<0.1	13	<0.1	^O.1	AD 4	1	N.A.	<u>^</u>		80,9		On.	o					24/3/2016	21/3/2018	002474700000000000000000000000000000000	210318 SO 55 85	PD18-01004			

TAP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 23 a 79

e de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiumeil acceses Area, Municipality of Melendulgro (LE) re de 34 Minordiu	SGS.						PD16-01004	PD18-01004
Part Value Part Value Part Value Part Value Part Value Value Part Value Value Part Value Val	No Accettazione No Rapport Sigla Proveniente da: Microtumel access / Mod. di Campionamento: Effettuato Prefevanto il Rapp Data	Area, Municipality of Mel da ns. personale - Scara	endugno (LE) nto				PD16-01004 PD16-01004 017 SB2v_210316_SO_11.5_12 21/3/2016 24/3/2016	PD16-01004 PD16-01004.018 SB3v_210316_SO_0_1 21/3/2016 24/3/2016
coo alffariais DM 13006/1898 GU n* g/kg 1 - 42 Billiaria finazione <2 cmi)			nita Misura	Limite di lapportaggio	parte IV del I All.5 pari colonna A Tabella 1-All. 5	v della D.Lgs 152/06 te Quarta colonna B Tabella 1-All. 5		
Silibria (flazione <2 om) 20m) 10m (1300/1696 GU n* 2) 20m) 20m) 10m (1300/1696 GU n* 2) 20m) 10m (1300	Scheletro Su campione secco all'aria Scheletro (2 mm) DN		g/kg	_ :				108
quale (frazione < 2 mm) M 300011909 GU n° 2 % 0.1 S 33 all'aria (frazione < 2 mm) dati expressi sulla totalità dei materiali aecchi < 2 cm (705°C) comprenziva dello scheletro 83.3 all'aria (frazione < 2 mm) dati expressi sulla totalità dei materiali aecchi < 2 cm (705°C) comprenziva dello scheletro 5 < 1 EPA 3000A 1908 + EPA mg/Ng 1 2 15 N.A. EPA 4002B 2014 mg/Ng 0.1 10 2 0.1 1 EPA 4002B 2014 mg/Ng 0.1 110 500 0.1 1 EPA 4002B 2014 mg/Ng 0.1 120 800 0.1 1 EPA 4002B 2014 mg/Ng 0.1 120 800 0.1 0.1 EPA 4002B 2014 mg/Ng 0.1 120 800 0.1 0.1	ıll'aria (frazione <2 2cm)	m) M 13/09/1999 GU n°	g/kg	_		,	42	106
silf and inflactiones < 2 mm) dath exponential data intelligible executive 2 cm) dath exponential data intelligible executive 4 cm	(frazione < 2	m) M 13/09/1999 G∪ n° 2·	*	0.1			83.3	88,2
e (C/V)) ISO 1519(2: 2010 mg/kg 0.1 2 15 N.A. ISO 1519(2: 2010 mg/kg 0.1 1 150 N.A. ISO 1519(2: 2010 mg/kg 0.1 1 1519(2: 2010 mg/kg 0.1	Su camp. secco all'aria (frazione < 2 m	nm) dati espressi sulla to	talità dei materi	ali secchi < 2 cr	n (105°C) comprens	iva dello scheletro		
EPA 00208 2014 mg/kg 0.1 22 10 40.1 EPA 00208 2014 mg/kg 0.1 2 10 40.1 EPA 00208 2014 mg/kg 0.1 2 15 40.1 EPA 00208 2014 mg/kg 0.1 20 250 40.1 EPA 00208 2014 mg/kg 0.1 150 800 110 110 EPA 00208 2014 mg/kg 1 1 150 800 110 110 EPA 00208 2014 mg/kg 1 1 120 500 110 110 EPA 00208 2014 mg/kg 1 1 120 500 110 110 EPA 00208 2014 mg/kg 1 1 120 600 11 120 EPA 00208 2014 mg/kg 1 1 120 600 11 120 600 600 11 120 600 600 11 120 600 600 11 120 600 600 11 120 600 600 600 600 600 600 600 600 600 6	Cromo vi Cromo esavalente (Cr VI) ISI	O 15192: 2010 n	g/kg	0,2	2 1	3 5	N.A.	N.A.
EPA 80208 2014 mg/kg 0.1 2 16 EPA 80208 2014 mg/kg 0.1 2 16 EPA 80208 2014 mg/kg 0.1 20 250 EPA 80208 2014 mg/kg 0.1 150 800 EPA 80208 2014 mg/kg 0.1 150 800 EPA 80208 2014 mg/kg 1 150 500 EPA 80208 2014 mg/kg 1 190 500 EPA 80208 2014 mg/kg 1 190 220 EPA 8015C 2007 mg/kg 5 500 750 EPA 82700 2007 mg/kg 0.01 0.01 1 EPA 82700 2007 mg/kg 0.01 0.01 1 1000 EPA 82700 2007 mg/kg 0.01 0.01 0.1 40.01	0	PA 6020B 2014	mg/kg	_	20	50	<u>^</u>	_
EPA 00208 2014 mg/kg 0.1 2 15 EPA 00208 2014 mg/kg 0.1 20 250 EPA 00208 2014 mg/kg 0.1 150 40.1 EPA 00208 2014 mg/kg 0.1 150 500 100 EPA 00208 2014 mg/kg 1 120 500 1100 EPA 00208 2014 mg/kg 1 120 500 1100 EPA 00208 2014 mg/kg 1 120 500 1100 EPA 00208 2014 mg/kg 1 1 120 500 1100 EPA 00208 2014 mg/kg 0.1 1 100 250 41 EPA 00208 2014 mg/kg 0.1 1 100 250 41 EPA 00208 2014 mg/kg 0.1 1 100 250 45 EPA 00208 2014 mg/kg 1 1 90 250 45 EPA 80208 2014 mg/kg 5 150 750 45 EPA 80208 2017 mg/kg 0.1 100 1000 45 EPA 82700 2007 mg/kg 0.01 0.01 1 1 EPA 82700 2007 mg/kg 0.01 0.01 0.1 40.01 40 EPA 82700 20		PA 6020B 2014	mg/kg	2	2	10	<0.1	<0.1
EPA 80208 2014 mg/kg 0,1 20 250 EPA 80208 2014 mg/kg 0,1 150 800 40,1 EPA 80208 2014 mg/kg 0,1 150 800 40,1 EPA 80208 2014 mg/kg 1 1 120 500 41,0 EPA 80208 2014 mg/kg 1 1 100 1000 41,0 EPA 80208 2014 mg/kg 1 1 100 1000 41,0 EPA 80208 2014 mg/kg 1 1 100 1000 41,0 EPA 80208 2014 mg/kg 1 1 100 20,0 EPA 80208 2014 mg/kg 1 1 90 250 EPA 80208 2014 mg/kg 1 1 90 250 EPA 80208 2014 mg/kg 1 1 90 250 EPA 80208 2014 mg/kg 1 1 90 40,0 EPA 80208 2014 mg/kg 1 1 90 40,0 EPA 80200 2007 mg/kg 0,0 EPA 82700 2007		PA 6020B 2014	mg/kg	2	2	15	<0,1	2.
EPA 00208 2014 mg/kg 1 100 1000 41 EPA 00208 2014 mg/kg 1 1 100 1000 41 EPA 00208 2014 mg/kg 1 1 100 1000 41 EPA 00208 2014 mg/kg 1 1 100 1000 41 EPA 00208 2014 mg/kg 1 1 100 1000 41 EPA 00208 2014 mg/kg 1 1 100 1000 41 EPA 00208 2014 mg/kg 5 5 100 1200 45 EPA 00208 2014 mg/kg 5 5 100 1200 45 EPA 00208 2014 mg/kg 6 5 50 750 750 45 EPA 00208 2014 mg/kg 6 5 50 750 750 45 EPA 00208 2014 mg/kg 6 5 50 750 750 45 EPA 00208 2017 mg/kg 100 1000 1000 4100 4001 45 EPA 00208 2017 mg/kg 0.01 0.01 1 1 4001 4001 4001 4001 4001	Cobalto EF	PA 6020B 2014 PA 6020B 2014	mg/kg ma/ka	- 2	20 150	250 800	<0,1 10	<0,1 12
EPA 80208 2014 mg/kg 1 120 500 1 1	<u>o</u>	PA 6020B 2014	mg/kg	2 -	→	on S	<0,1	^O,1
EPA 80208 2014 mg/kg 1 100 1000 41 EPA 80208 2014 mg/kg 1 100 1000 41 EPA 80208 2014 mg/kg 0,1 1 10 800 1 EPA 80208 2014 mg/kg 1 1 90 250 25 EPA 80208 2014 mg/kg 1 1 90 250 25 EPA 80208 2014 mg/kg 5 150 1500 45 EPA 8015C 2007 mg/kg 0,01 0,01 1 4 4,01 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		PA 6020B 2014	mg/kg	_	120	500	-	2
EPA 80208 2014 mg/kg 1 120 8000 1 1 12		PA 6020B 2014	mg/kg	_	100	1000	^1	7
EPA 80208 2014 mg/kg 0,1 1 90 250 EPA 80208 2014 mg/kg 1 1 90 250 EPA 80208 2014 mg/kg 5 150 1500 45 EPA 80208 2014 mg/kg 5 150 750 5 EPA 80208 2017 mg/kg 5 150 750 5 DM 05(0)F1994 GU n* mg/kg 100 1000 1000 400 EPA 8270D 2007 mg/kg 0,01 0,01 1 4 40,01 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		PA 6020B 2014	mg/kg	-	120	600	-	8
EPA 00208 2014 mg/kg 1 90 250 2 EPA 00208 2014 mg/kg 5 150 1500 45 EPA 00208 2014 mg/kg 5 50 750 55 DM 001091094 GU n* mg/kg 5 50 750 400 EPA 82700 2007 mg/kg 100 1000 1000 4100 EPA 82700 2007 mg/kg 0,01 0,01 0,1 4,011 EPA 82700 2007 mg/kg 0,01 0,01 0,1 4,011 EPA 82700 2007 mg/kg 0,01 0,01 0,1 4,011 EPA 82700 2007 mg/kg 0,01 0,01 0,5 4,011 EPA 82700 2007 mg/kg 0,01 0,01 0,5 4,011 EPA 82700 2007 mg/kg 0,01 0,01 0,1 4,011 EPA 82700 2007 mg/kg 0,01 0,01 0,5 4,011 EPA 82700 2007 mg/kg 0,01 0,01 0,1 4,011		PA 6020B 2014	mg/kg	0,1	-	10	<0,1	0,7
## C512 EPA 8016C 2017 mg/kg 5 100 1000 5 5 100 1000 5 5 100 1000 5 100 100	ō	PA 6020B 2014	mg/kg	-	90	250	i N	4
EPA 82700 2007 mg/kg 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0		PA 8020B 2014 PA 8015C 2007	mg/kg	on on	50	1500 750	on A	. A
EPA 92700 2007 mg/kg 0.01 0.01 1 4.001 EPA 92700 2007 mg/kg 0.01 0.01 0.1 0.1 4.001 EPA 92700 2007 mg/kg 0.01 0.01 0.1 1 4.001 EPA 82700 2007 mg/kg 0.01 0.01 0.1 1 4.001 EPA 82700 2007 mg/kg 0.01 0.01 0.5 4.001 EPA 82700 2007 mg/kg 0.01 0.01 0.5 4.001 EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.001		M 06/09/1994 GU n°	mg/kg	100	1000	1000	<100	<100
EPA 82700 2007 mg/kg 0.01 0.01 1 4.001 EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.001 EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.001 EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.001 EPA 82700 2007 mg/kg 0.01 0.01 0.5 4.001 EPA 82700 2007 mg/kg 0.01 0.01 0.5 4.001 EPA 82700 2007 mg/kg 0.01 0.01 0.5 4.001 EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.001			9	ě		i		
EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.001 EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.001 EPA 82700 2007 mg/kg 0.01 0.01 0.5 4.011 EPA 82700 2007 mg/kg 0.01 0.01 0.5 4.011 EPA 82700 2007 mg/kg 0.01 0.01 0.5 4.011 EPA 82700 2007 mg/kg 0.01 0.01 0.1 4.011		PA 8270D 2007	mg/kg	0,01	0,01	2 -	<0,01	<0,01
EPA 82700 2007 mg/kg 0.01 0.01 0.5 dano) EPA 82700 2007 mg/kg 0.01 0.01 0.5 <0.01 EPA 82700 2007 mg/kg 0.01 0.01 0.5 <0.01 <0.01 EPA 82700 2007 mg/kg 0.01 0.01 0.5 <0.01 <0.01 EPA 82700 2007 mg/kg 0.01 0.01 0.1 <0.01 <0.01 EPA 82700 2007 mg/kg 0.01 0.01 0.1 <0.01 <0.01 EPA 82700 2007 mg/kg 0.01 0.01 2 <0.01 <0.01	Atrazina EF	PA 8270D 2007	mg/kg	0.01	99	4 S	<0,01	<0,01
EPA 82700 2007 mg/kg 0.01 0,01 0,5 <0.01 sdano) EPA 82700 2007 mg/kg 0.01 0.01 0.5 <0.01		PA 8270D 2007	mg/kg	0.01	0,01	0,1	<0,01	<0,01
Idano EPA 82700 2007 mg/kg 0.01 0.01 0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		PA 8270D 2007	mg/kg	0,01	0,01	0.5	<0,01	<0,01
EPA 8270D 2007 mg/kg 0.01 0.01 0.1 <0.01 EPA 8270D 2007 mg/kg 0.01 0.01 0.1 <0.01	HC (Lindano)	PA 8270D 2007	mg/kg	0,01	0,01	<u>.</u>	<0,01	<0,01
EPA 82700 2007 mg/kg 0.01 0.01 0.1 <0.01		PA 8270D 2007	mo/ka	0.01	0.01	2 :	<0.01	<0.01
EPA 9270D 2007 mg/kg 0,01 0,01 0,1 <0,01 <0.01 EPA 9270D 2007 mg/kg 0,01 0,01 2 <0,01	DDD, DDT, DDE EF	PA 8270D 2007	mg/kg	0.01	0.01	2.5	<0,01	^0,01
mg/kg 0.01 0.01 2 <0.01		PA 8270D 2007	mo/ka	0.01	0.00	2.5	<0.01	<0.01
		200100	Burg	0.01	0.01	2 :	<0.01	<0,01

TAP AG

Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 24 a 79

	Alador Alador Alador Arazina Arrazina alfa-BHO beta-BHC gamma-BHC (Lindano) Clordano DDD, DDT, DDE Dieldrin Endrin	Arsenico Berilio Cadmio Cadmio Cobalto Cromo Mercurio Nichel Pionibo Rame Tallio Vanadio Zinco Idrocarburi Pesanti C>12 Amilanto (SEM) S.V.O.C.	Scheletro Su campione secco all'aria Su campione	TAP AG No Accettazione No Rapport Sigla Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE) Mod di Campionamento: Effettuato da ns. personale - Scaranto Prelevato il Rapp Data
	EPA 82700 2007	EPA 6020B 2014	Metodo Unita DM 130901999 GU n* 9 22 cmi) DM 130901999 GU n* 9 22 cmi) DM 130901999 GU n* 2 C2 mi) DM 130901999 GU n* 2 EM 3909A 1999-EPA mg/kg ISO 15192-2010 mg/kg	uato da ns. personale - Sca
	mg/kg	mg/kg	Unita Misura Rap 9/kg 9/kg 9/kg % totalità dei materiali i mg/kg	elendugno (LE)
	000000000000000000000000000000000000000	0.1	Limite di apportaggio 1 1 1 1 0.1 5 secohi < 2 cm	
	000000000000000000000000000000000000000	20 20 20 150 170 170 170 170 170 170 170 170 170 17	Unita Misura Limite di colonna A colonna B Unita Misura Rapportaggio Tabelia 1-Ali. 5 Tabelia 1-Ali. 5 g/kg 1 g/kg	Risultati del Pia nell'area di costi
	222288212	50 10 15 2250 2250 800 6 6 5 6 6 6 6 1000 1000 1000 1500 1700	Jes 15206 Quarta colonna B abella 1-All. 5 a dello scheletro 15	uzione del Microturu
	4001 4001 4001 4001 4001 4001	400 A A A A A A A A A A A A A A A A A A	161 161 79 <1	Risultati del Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel e al punto RoW13 PD18-01004.021 SB4v_220310_S0_5,5_6,5 22/3/2016
	0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0 0,000 0	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	80 80 41 40.2	PD18-01004 PD18-01004.002 SB6v_220316_SO_0_1 22/3/2018
ļ	0.001 0.001 0.001 0.001 0.001 0.001	40.1 40.1	78 78 78 89.3 <1	PD18-01004 PD16-01004.023 SB6v_22031@_SO_1.5-2.5 22/3/2018 24/3/2018
	40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01	400 6 6 6 2 2 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	154 154 83,9 <1	PD16-01004 PD16-01004.024 S86v_220316_SO_3_4 22/3/2016

TAP AG

Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 25 a 79

SGS						PD19-01004		PD18-01004
No Accettazione No Rapport Sigila Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE) Mod. di Campionamento: Effettuato da ns. personale - Scaranto Preferato il	sss Area, Municipality of M ato da ns. personale - Sca	elendugno (LE) ranto				PD18-01004 PD18-01004.025 RoW13v_220316_SO_1_1.5 22/3/2018	Now 1	PD18-01004 PD18-01004 PD18-01004 PD18-01004 PD18-01004 PD18-01004.025 PD18-01004.025 PD18-01004.026 PD18-01004.026 PD18-01004.026 PD18-01004.027 PD18-01004.026 PD18-01004.027 PD18-01004.026 PD18-01004.
Scheletro	Metodo	Unita Misura	Limite di Rapportaggio	titolo V della parte IV del D.1.gs 152/06 AII. S parte Quarta Limite di colonna A colonna B Rapportaggio Tabella 1-AII. 5 Tabella 1-AII. 5	della).Lgs 152/06 e Quarta coloma B Tabella 1-All. 5			
Su campione secco all'aria	DM 13/00/1000 GH 5°		•				3	
Scheletro (2 mm) Su camp. secco all'aria (frazione <2 cm) Scheletro (2mm - 2cm) DM	DM 13/08/1999 GU n° (2 cm) DM 13/08/1999 GU n°	g/kg					e 2	32 186 32 186
Su campione tal quale (frazione < 2 mm) Residuo a 105°C DM 1	2 mm) DM 13/09/1999 GU n° 2:	8	2				86,5	86,5 79,3
Su camp. secoo all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello scheletro Cromo VI EPA 3050A 1986 + EPA mg/kg 1 15	2 mm) dati espressi sulla totalità EPA 3060A 1996 + EPA mg/kg	totalità dei mater mg/kg	iali secchi < 2 cm 1	(105°C) comprens	va dello scheletro 15		Δ	<u>.</u>
Metalli		9		,	i			
Arsenico Berillio	EPA 6020B 2014	mg/kg	2 -	2 20	100		<u>^</u> ^	
Cadmio	EPA 6020B 2014	mg/kg	2.5	N 14	5 6		2 5	
Cobalto	EPA 6020B 2014	mg/kg	2	20	250		<u>6</u> ,1	
Mercurio	EPA 6020B 2014	mg/kg	르 -	150	5 80		<0.1	12 Y
Nichel	EPA 6020B 2014	mg/kg		120	500		2	
Rame	EPA 6020B 2014	mg/kg		120	600		<u>^</u> _	4 4
Tallio	EPA 6020B 2014	mg/kg	· 2	3 -	350 10		<0,1	
Zinco	EPA 6020B 2014	mg/kg	on -	150	1500		۵,	
Idrocarburi Pesanti C>12 Amianto (SEM)	EPA 8015C 2007 DM 06/09/1994 GU n°	mg/kg mg/kg	100	1000	1000		<100	<100 <100
Alador	EPA 8270D 2007	mg/kg	20.01	0,01	2 -		<0,01	
Atrazina	EPA 8270D 2007	mg/kg	0.01	0.01	→ ⁶		<0,01	
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0.01	2.1		<0,01	
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0.01	0,5		<0,01	
Clordano DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	9.9		<0,01	<0.01 <0.01 <0.01 <0.01
Dieldrin Endrin	EPA 8270D 2007	mg/kg	0,01	200	9.1 2		<0,01	

TAP AG 25

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER TO CONCLUDE TO LOW PORT OF THE PROPERTY OF THE PRO	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 26 a 79

-	
(D)	
60	
(4)	
=	
•	
•	

Alador Alador Alador Aladin Atrazina alfa-BHC beta-BHC gamma-BHC (Lindano) Clocdano DDD, DDT, DDE Dieldrin Endrin	Arsenico Berilio Berilio Cadmio Cobalto Como Mercurio Nichel Piombo Rame Tallio Vanadio Vanadio Vanadio Vanadio Vanadio (SEM) S VA C	Su campione secon all'aria DM 13(06/1986 GU n° g/kg 1 Sonèsiero (2 mm) DM 13(06/1986 GU n° g/kg 1 Su campione call'aria (frazione <2 mm) DM 13(06/1986 GU n° g/kg 1 Su campione de di quale (frazione <2 mm) DM 13(06/1986 GU n° 2 Su campione tal quale (frazione <2 mm) data espressi sulla totalità dei materiali secoli <2 cm (105°C) comprensiva dello scheletro Como VI EFA 3(00/A 1986 + EFA Angl/kg 1 Como VI GOND Savaliente (Cr VI) ISO 15(92: 2010 mg/kg 0.2 2 15	No Accettazione No Acpport Sigla Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE) Mod. di Campionamento: Effettuato da ns. personale - Scaranto Prelevato il Rapp Data Rapp Data Metodo Unita Misura
EPA 8270D 2007	EPA 60208 2014	DM 13/09/1999 GU n* 9 22 cmi) DM 13/09/1999 GU n* 9 22 mm) DM 13/09/1999 GU n* 2. 22 mm) dat expressi sulfa totalità EFA 3000A 1999-EFA mg/kg ISO 15192: 2010 mg/kg	ess Area, Municipality of N uato da ns. personale - Sc Metodo
mg/kg	mg/kg	g/kg g/kg g/kg	reiendugno (LE) sranto
000000000000000000000000000000000000000	866-22-222	1 1 0,1 eriali secchi < 2 or 1 0,2	Limite di Rapportaggio
0.01	20 2 2 2 2 2 2 150 1120 1 1 100 1 100 1 100 1 100	m (105°C) compr 2 2	tito pante IV d All. 5 d Colonna A Tabella 1-All.
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50 10 15 250 800 600 1000 1000 1000 1000 1000 1000	enaiva dello scheletro 15	ranio titolo V della parte IV del D.Lgs 15206 All.5 parte Quarta Colonna B Unita Misura Rapportaggio Tabella 1-All. 5 Tabella 1-All. 5
<pre><pre><pre><pre></pre></pre></pre><pre><pre><pre><pre></pre></pre></pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre>	40,1 40,1 40,1 40,1 40,1 40,1 40,1 40,1	138 138 88.2 N.A.	PD16-01004 PD16-01004.029 BIANCO 2D - 210316 21/3/2016 24/3/2016
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	3 0,1 0,1 4,4 4,0 6,0 10,1 10,1 10,1 10,1 10,1 10,1 10,	130 130 83.8 <1 N.A.	PD16-01004 PD16-01004.030 BIANCO 3D - 220316 22/3/2016 24/3/2016

Risultati Analitici Terreni - Tabe

del Microtunnel, strade di accesso e al punto RoW13 Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER PROGRAMMED TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 27 a 79

	₽
	<u></u>
١	윤
	#
	0

alfa-Esaclorocicloesano EPA 82700 2007 beta-Esaclorocicloesano EPA 22700 2007 gamma-Esaclorocicloesano (Linda EPA 82700 2007 Clordano EPA 82700 2007 DDD, DDT, DDE EPA 82700 2007 Deidrin EPA 82700 2007 Endrin EPA 82700 2007	Cromo essaviente (come Cr) Idrocarburi Pesanti C >= 12 S.V.O.C. Alaclor Aldrin Attazina	Nichel Piombo Rame Tallio Vanadio Zinco Su campione Tal Quale	Campionamento Su campione Tal Quale Amianto Metalli Arsenico Berillio Cadmio Codalto Cromo Mercurio Nichel	No Accettazione No Rapport Sigla Proveniente da: Microtunnel a Mod. di Campionamento: Effe Prelevato il Rapp Data	SGS
EPA 82700 2007	APAT CNR IRSA 3150 C Man 29 2003 EPA 8015C 2007 EPA 8270D 2007 EPA 8270D 2007 EPA 8270D 2007	EPA 6020B 2014	Metodo DLgs n.152 03/04/2006 GU n.88 14/04/ DM 06/09/1994 GU n° 288 10/12/1994 EPA 60208 2014	No Accettazione Mo Rapport Siglia Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE) Mod. di Campionamento: Effettuato da ns. personale - Scaranto Prelevato il Rapp Data	
19/7 19/7 19/7 19/7		ng/L ng/L ng/L ng/L	Unita Misura / - n fibre/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug	Ξ)	-
0,000	1 20 0,05 0,03	O	Unita Misura di Rapportaggio n fibrell 5000 ug/L 1 ug/L 0,1 ug/L 0,5 ug/L 1 ug/L 1 ug/L 1		ell'area di costru
0.00	5 350 0,1 0,03	100 1000 2 2 3000	io Upper Limit 1 non definito 10 4 5 50 10 20		nell'area di costruzione dei Microtunnel e al punto RoW13
A A A A A A A A A A A A A A A A A A A	<0,05 <0,05 <0,05 <0,05	φ Δ Δ Δ Δ Δ ·	4.000 4.000 4.000	PD16-01011 PD16-01011.001 Bianco 2A 21/3/2016 24/3/2016	al punto RoW13
A A A A A A A A A A A A A A A A A A A	√ 20,0 √ 0,05 √ 0,03	2 △ 4 △ 65	<u>,</u> 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PD16-01011 PD16-01011.002 Bianco 3A 22/3/2016 24/3/2016	
40,05 40,05 40,05 40,05 40,05	<0.05 <0.05 <0.05 <0.05	17, ISO 21, IS	4000 4000 41000	PD16-01011 PD16-01011.003 Bianco 1A 22/3/2016 24/3/2016	

Risultati Analitici Terreni – Tabell

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Statute your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 28 a 79

<u>ALLEGATO C - RISULTATI ANALITICI TERRENI - CERTIFICATI ANALITICI</u>

Certificati analitici - SGS

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consuling to Senting your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 29 a 79

PD16-01004_0

Prima pagina

CLIENTE		LABORATORIO	
Cliente	SHELTER SRL	Head of Laboratory	Cristiano Toffoletti
		Laboratorio	SGS Italia S.p.A.
Indirizzo	Viale Gran Sasso, 13	Indirizzo	Via Campodoro, 25
	Milano 20131		Villafranca Padovana (PD) 35010
Contatto	Ing. Claudio Scura	Telefono	+39 049 9050013
Telefono	0236687050	Fax	+39 049 9050065
Fax	0236687069	Email	sgs.eco@sgs.com
Email		Accettazione n°	PD16-01004
Progetto	Terreno Tab. A	Pervenuto II	24/03/2016
Ordine n°	1153/2015/C1/PD/Rev.4	Data inizio prove di lab.	
Matrice	TERRENI(30)	Data fine prove lab.	18/05/2016
		Rapporto di Prova nº	PD16-01004_0
		Data emissione	24/05/2016

COMMENTI

Incertezza estesa di misura stimata al 95% di livello di confidenza e fattore di copertura k=2

Documento con firma digitale avanzata ai sensi della normativa vigente. Firmato digitalmente da Dr. Cristiano Toffoletti Ordine dei chimici della Provincia di Venezia/94004270271

RIFERIMENTI

Mattia Favaro Cristiano Toffoletti Project Agent Head Of Laboratory

SGS Italia S.p.A Via Campodoro, 25 35010 Villafranca Padovana (PD) Italy

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Security sport Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 30 a 79

PD16-01004_0

INDICE

Prima Pagina	1
Indice	2
Risultati	4
Limiti Di Riferimento	ŧ
Legenda 1	E

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 31 a 79

PD16-01004_0

	Cample	one n°	PD16-01004.001	PD16-01004.002	PD16-01004.003	PD16-01004.004	PD16-01004
	Sigla can	npione	MT1v_210316_SO_	MT2v_220316_SO_	MT3v_220316_SO_	MT4v_210316_SO	MT5v_210316
			0_0,2	0_0,2	0_0,2	0_0,2	0_0,2
	Provenie	nte da	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel a
			Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	Area, Munici
	_				of Melendugno (LE)		
	Tipo can		TERRENI	TERRENI	TERRENI	TERRENI	TERREN
	Campion	ato da	Effettuato da ns. personale -	Effettuato da ns. personale -	Effettuato da ns. personale -	Effettuato da ns. personale -	Effettuato da personale
			Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
	Campio	nato II	21/03/2016	22/03/2016	22/03/2016	21/03/2016	21/03/201
Parametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
u campione secco all'aria + DM 13/09/1999 GU n						1 32 33 33	,
Scheletro (2 mm)	9/kg	1	220 ±22	129 ±13	160 ±16	41 ±4	49 ±5
u camp. secco all'aria (frazione <2 cm) + DM 13/0					100210	4124	40 20
Scheletro (2mm - 2cm)	9/kg	1	220 ±22	129 ±13	160 ±16	41 ±4	49 ±5
u campione tal quale (frazione < 2 mm) + DM 13/	-				100 210	41.24	40 20
Residuo a 105°C	%	0,1	82.7 ±5.0	86,1±5,2	86.3 ±5.2	86,9 ±5,2	86.0 ±5.2
							80,0 ±5,
ou camp. secco all'aria (frazione < 2 mm) dati espr	essi sulla ti	otalita	dei materiali sec	chi < 2 cm (105°	C) comprensiva	dello	
eletro + EPA 3060A 1996 + EPA 7196A 1992]							
Cromo VI	mg/kg	1	<1	<1	<1	1 ±1	<1
omo esavalente (Cr VI) [Su camp. secco all'aria (frazione < 2						<1
omo esavalente (Cr VI) [Su camp. secco all'aria (frazione < 2						ধ
omo esavalente (Cr VI) [Su camp. secco all'aria (5°C) comprensiva dello scheletro + ISO 15192: 20	frazione < 2						٠
mo esavalente (Cr VI) [Su camp. secco all'aria (5°C) comprensiva dello scheletro + ISO 15192: 20 Cromo esavalente (Cr VI)	frazione < 2 010] mg/kg	2 mm) 0,2	dati espressi sul	la totalità dei ma <0,2	teriali secchi < 2	cm -	
mo esavalente (Cr VI) [Su camp. secco all'aria (' 5°C) comprensiva dello scheletro + ISO 15192: 20 Cromo esavalento (Cr VI) talli [Su camp. secco all'aria (frazione < 2 mm) da	frazione < 2 010] mg/kg ati espressi	2 mm) 0,2	dati espressi sul	la totalità dei ma <0,2	teriali secchi < 2	cm -	
omo esavalente (Cr VI) [Su camp. secco all'aria (5°C) comprensiva dello scheletro + ISO 15192: 20 Cromo esavalente (Cr VI) talli [Su camp. secco all'aria (frazione < 2 mm) da	frazione < 2 010] mg/kg ati espressi	2 mm) 0,2	dati espressi sul	la totalità dei ma <0,2	teriali secchi < 2	cm -	
omo esavalente (Cr VI) [Su camp. secco all'aria (5°C) comprensiva dello scheletro + ISO 15192: 20 Cromo esavalente (Cr VI) talli [Su camp. secco all'aria (frazione < 2 mm) da lo scheletro + EPA 3050B 1996 + EPA 6020B 201	frazione < 2 010] mg/kg ati espressi [4] mg/kg	2 mm) 0,2 sulla t	dati espressi sul <0,2 totalità dei materi	la totalità dei ma <0,2 iali secchi < 2 cm	<0,2 (105°C) compre	cm - ensiva	- 4±1
omo esavalente (Cr VI) [Su camp. secco all'aria (: 5°C) comprensiva dello scheletro + ISO 15192: 20 • Cromo esavalento (Cr VI) talli [Su camp. secco all'aria (frazione < 2 mm) da lo scheletro + EPA 3050B 1996 + EPA 6020B 201 Arsonico	frazione < ; 010] mg/kg ati espressi [4]	2 mm) 0,2 sulla 1	dati espressi sul <0,2 totalità dei materi 2±1	la totalità dei ma <0,2 iali secchi < 2 cm 3±1	<0,2 (105°C) compre		4 ±1 0,1 ±0,1
omo esavalente (Cr VI) [Su camp. secco all'aria (: 5°C) comprensiva dello scheletro + ISO 15192; 20 • Cromo esavalento (Cr VI) talli [Su camp. secco all'aria (frazione < 2 mm) da lo scheletro + EPA 3050B 1996 + EPA 6020B 201 Amenico Cadmio	frazione < 2 010] mg/kg tti espressi [4] mg/kg mg/kg	0,2 sulla 1	dati espressi sul <0,2 totalità dei materi 2 ±1 0,1 ±0,1	40,2 iali secchi < 2 cm 3 ±1 0,1 ±0,1	40,2 1 (105°C) compre 3 ±1 0,2 ±0,1	5 ±1 0,1 ±0,1	4 ±1 0,1 ±0,1
omo esavalente (Cr VI) [Su camp. secco all'aria (: 5°C) comprensiva dello scheletro + ISO 15192: 20 • Cromo esavalento (Cr VI) talli [Su camp. secco all'aria (frazione < 2 mm) da lo scheletro + EPA 3050B 1996 + EPA 6020B 201 Arsenico Cadmio Cobalto	frazione < 2 010] mg/kg ati espressi [4] mg/kg mg/kg mg/kg	0,2 sulla 1 1 0,1 0,1	dati espressi sul <0,2 totalità dei materi 2 ±1 0,1 ±0,1 2,5 ±2,3 7 ±2	40,2 ali secchi < 2 cm 3 ±1 0,1 ±0,1 2,3 ±2,2 6 ±2	steriali secchi < 2 <0,2 1 (105°C) compre 3 ±1 0,2 ±0,1 2,1 ±2,2 6 ±2	5 ±1 0,1 ±0,1 3,9 ±2,6 12 ±3	4±1 0,1±0,1 2,9±2,4 9±2
omo esavalente (Cr VI) [Su camp. secco all'aria (5°C) comprensiva dello scheletro + ISO 15192: 20 Cromo esavalento (Cr VI) talli [Su camp. secco all'aria (frazione < 2 mm) da lo scheletro + EPA 3050B 1996 + EPA 6020B 201 Arsenico Cadmio Cobalto Nichel	frazione < 2 010] mg/kg tti espressi [4] mg/kg mg/kg mg/kg mg/kg	0,2 sulla 1 1 0,1 0,1 1	dati espressi sul <0,2 totalità dei materi 2 ±1 0,1 ±0,1 2,5 ±2,3 7 ±2 25 ±6	3 ±1 0,1 ±0,1 2,3 ±2,2 6 ±2 21 ±6	3±1 0,2±0,1 2,1±2,2 6±2 27±6	5 ±1 0,1 ±0,1 3,9 ±2,6 12 ±3 35 ±7	4 ±1 0,1 ±0,1 2,9 ±2,4 9 ±2 36 ±7
mo esavalente (Cr VI) [Su camp. secco all'aria (5°C) comprensiva dello scheletro + ISO 15192: 20 Cromo esavalente (Cr VI) talli [Su camp. secco all'aria (frazione < 2 mm) da lo scheletro + EPA 3050B 1996 + EPA 6020B 201 Arsenico Cadmio Cobalto Nichel Cromo Plombo	frazione < 2 010] mg/kg tti espressi [4] mg/kg mg/kg mg/kg mg/kg mg/kg	0,2 sulla 1 1 0,1 0,1 1 1	dati espressi sul <0,2 totalità dei materi 2 ±1 0,1 ±0,1 2,5 ±2,3 7 ±2 25 ±6 16 ±2	3 ±1 0,1 ±0,1 2,3 ±2,2 6 ±2 21 ±5 8 ±1	3±1 0,2±0,1 2,1±2,2 6±2 27±6 13±2	5 ±1 0,1 ±0,1 3,9 ±2,6 12 ±3 35 ±7 16 ±2	4 ±1 0,1 ±0,1 2,9 ±2,4 9 ±2 36 ±7 13 ±2
mo esavalente (Cr VI) [Su camp. secco all'aria (5°C) comprensiva dello scheletro + ISO 15192: 20 Cromo esavalente (Cr VI) talli [Su camp. secco all'aria (frazione < 2 mm) da to scheletro + EPA 3050B 1996 + EPA 6020B 201 Arsenico Cadmio Cobalto Nichel Cromo Plombo Rame	frazione < 2 010] mg/kg sti espressi [4] mg/kg mg/kg	0,2 sulla 1 1 0,1 0,1 1 1	dati espressi sul <0,2 <0,2 totalità dei materi 2 ±1 0,1 ±0,1 2,5 ±2,3 7 ±2 25 ±6 16 ±2 80 ±16	3 ±1 0,1 ±0,1 2,3 ±2,2 6 ±2 21 ±5 8 ±1 5 ±4	3±1 0,2±0,1 2,1±2,2 6±2 27±6 13±2 8±7	5 ±1 0,1 ±0,1 3,9 ±2,6 12 ±3 35 ±7 16 ±2 17 ±8	4 ±1 0.1 ±0.1 2.9 ±2.4 9 ±2 36 ±7 13 ±2 42 ±11
mo esavalente (Cr VI) [Su camp. secco all'aria (5°C) comprensiva dello scheletro + ISO 15192: 20 Cromo esavalente (Cr VI) talli [Su camp. secco all'aria (frazione < 2 mm) da to scheletro + EPA 3050B 1996 + EPA 6020B 201 Arsonico Cadmio Cobatto Nichel Cromo Plombo Ramo Zinco	frazione < 2 010] mg/kg sti espressi [4] mg/kg	0,2 sulla 1 0,1 0,1 1 1 1 1	dati espressi sul <0,2 totalità dei materi 2 ±1 0,1 ±0,1 2,5 ±2,3 7 ±2 25 ±6 16 ±2 80 ±16 17 ±5 	3 ±1 0,1 ±0,1 2,3 ±2,2 6 ±2 21 ±5 8 ±1 5 ±4 11 ±5	3 ±1 0,2±0,1 2,1±2,2 6 ±2 27 ±6 13 ±2 8 ±7 15 ±5	5 ±1 0,1 ±0,1 3,9 ±2,6 12 ±3 35 ±7 16 ±2 17 ±8 17 ±5	4 ±1 0,1 ±0,1 2,9 ±2,4 9 ±2 36 ±7 13 ±2 42 ±11 16 ±5
mo esavalente (Cr VI) [Su camp. secco all'aria (5°C) comprensiva dello scheletro + ISO 15192: 20 Cromo esavalente (Cr VI) talli [Su camp. secco all'aria (frazione < 2 mm) da to scheletro + EPA 3050B 1996 + EPA 6020B 201 Arsonico Cadmio Cobalto Nichel Cromo Plombo Rame Zinco Mercurio	frazione < 2 010] mg/kg ati espressi [4] mg/kg	2 mm) 0,2 sulla 1 1 0,1 1 1 1 5 0,1	dati espressi sul <0,2 totalità dei materi 2 ±1 0,1 ±0,1 2,5 ±2,3 7 ±2 25 ±6 16 ±2 80 ±16 17 ±5 <0,1 	3±1 0,1±0,1 2,3±22 6±2 21±5 8±1 5±4 11±5 <0,1	3 ±1 0,2 ±0,1 2,1 ±2,2 6 ±2 27 ±6 13 ±2 8 ±7 15 ±5 <0,1	5 ±1 0,1 ±0,1 3,9 ±2,6 12 ±3 35 ±7 16 ±2 17 ±8 17 ±5 <0,1	4 ±1 0,1 ±0,1 2,9 ±2,4 9 ±2 36 ±7 13 ±2 42 ±11 16 ±5 <0,1
mo esavalente (Cr VI) [Su camp. secco all'aria (5°C) comprensiva dello scheletro + ISO 15192: 20 Cromo esavalente (Cr VI) talli [Su camp. secco all'aria (frazione < 2 mm) da lo scheletro + EPA 3050B 1996 + EPA 6020B 201 Arsenico Cadmio Cobalto Nichel Cromo Plombo Rame Zinco Mercurio Berillio	frazione < 2 010] mg/kg tti espressi [4] mg/kg	0,2 sulla 1 0,1 0,1 1 1 1 5 0,1 0,1	dati espressi sul <0,2 totalità dei materi 2 ±1 0,1 ±0,1 2,5 ±2,3 7 ±2 25 ±6 16 ±2 80 ±16 17 ±5 <0,1 0,8 ±0,6 	3 ±1 0,1 ±0,1 2,3 ±2,2 6 ±2 21 ±5 8 ±1 5 ±4 11 ±5 <0,1 0,7 ±0,5	3 ±1 0,2 ±0,1 2,1 ±2,2 6 ±2 27 ±6 13 ±2 8 ±7 15 ±5 <0,1 0,7 ±0,5	5 ±1 0,1 ±0,1 3,9 ±2,6 12 ±3 35 ±7 16 ±2 17 ±8 17 ±5 <0,1 1,6 ±0,8	4 ±1 0,1 ±0,1 2,9 ±2,4 9 ±2 36 ±7 13 ±2 42 ±11 16 ±5 <0,1 1,3 ±0,7
mo esavalente (Cr VI) [Su camp. secco all'aria (5°C) comprensiva dello scheletro + ISO 15192: 20 Cromo esavalente (Cr VI) talli [Su camp. secco all'aria (frazione < 2 mm) da lo scheletro + EPA 3050B 1996 + EPA 6020B 201 Arsenico Cadmio Cobalto Nichel Cromo Plombo Rame Zinco Mercurio	frazione < 2 010] mg/kg ati espressi [4] mg/kg	2 mm) 0,2 sulla 1 1 0,1 1 1 1 5 0,1	dati espressi sul <0,2 totalità dei materi 2 ±1 0,1 ±0,1 2,5 ±2,3 7 ±2 25 ±6 16 ±2 80 ±16 17 ±5 <0,1 	3±1 0,1±0,1 2,3±22 6±2 21±5 8±1 5±4 11±5 <0,1	3 ±1 0,2 ±0,1 2,1 ±2,2 6 ±2 27 ±6 13 ±2 8 ±7 15 ±5 <0,1	5 ±1 0,1 ±0,1 3,9 ±2,6 12 ±3 35 ±7 16 ±2 17 ±8 17 ±5 <0,1	4 ±1 0,1 ±0,1 2,9 ±2,4 9 ±2 36 ±7 13 ±2 42 ±11 16 ±5

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

Idrocarburi Pesanti C>12 mg/kg 5 17

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

Alacior <0,01 <0,01 <0,01 <0,01 <0,01 mg/kg

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 32 a 79

PD16-01004_0

RISULTATI

	Campione n°	PD16-01004.001	PD16-01004.002	PD16-01004.003	PD16-01004.004	PD16-01004.005
	Sigla campione	MT1v_210316_SO_	MT2v_220316_SO_	MT3v_220316_SO_	MT4v_210316_SO_	MT5v_210316_SO_
		0_0,2	0_0,2	0_0,2	0_0,2	0_0,2
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)				
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
1	Campionato da	Effettuato da ns.				
		personale -				
1		Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
	Campionato il	21/03/2016	22/03/2016	22/03/2016	21/03/2016	21/03/2016
l	Parametro U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

 $S.V.O.C.\ [\ Su\ camp.\ secco\ all'aria\ (frazione \le 2\ mm)\ dati\ espressi\ sulla\ totalità\ dei\ materiali\ secchi \le 2\ cm\ (105^{\circ}C)\ comprensiva$

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160524 4 / 16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Canading to States your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 33 a 79

PD16-01004_0

e

SULTATI							
	Camp	pione n°	PD16-01004.006	PD16-01004.007	PD16-01004.008	PD16-01004.009	PD16-01004.0
	Sigla ca	mpione	MT6v_220316_SO_	MT7v_210316_SO_	MT8v_210316_SO_	MT9v_210316_SO_	MT10v_210316
			0_0,2	0_0,2	0_0,2	0_0,2	_0_0,2
	Proven	iente da	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel ao
			Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipa
						of Melendugno (LE)	
		ampione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campio	onato da	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da
			personale - Scaranto	personale - Scaranto	personale - Scaranto	personale - Scaranto	personale Scaranto
	Camo	ionato il	22/03/2016	21/03/2016	21/03/2016	21/03/2016	21/03/2016
Parametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
u campione secco all'aria + DM 13/09/1999	GU n° 248 21/	10/1999	Met II.1]				
Scheletro (2 mm)	g/kg	1	192 ±19	108 ±11	193 ±19	36 ±4	125 ±13
u camp. secco all'aria (frazione <2 cm) + DN	M 13/09/1999 G	6U n° 24	8 21/10/1999 Me	et II.3]			
Scheletro (2mm - 2cm)	9/kg	1	192 ±19	108 ±11	193 ±19	36 ±4	125 ±13
u campione tal quale (frazione < 2 mm) + DI	M 13/09/1999 G	3U nº 24	48 21/10/1999 M	et II.2]			
				87.3 ±5.2	85.7 ±5.1	85.9 ±5.2	87.0 ±5.2
eletro + EPA 3060A 1996 + EPA 7196A 199	92]			chi < 2 cm (105°	C) comprensiva	dello	
u camp. secco all'aria (frazione < 2 mm) dat eletro + EPA 3060A 1996 + EPA 7196A 199 Cromo VI mo esavalente (Cr VI) [Su camp. secco all'	ti espressi sulla 92] mg/kg l'aria (frazione <	totalità 1	dei materiali sec	chi < 2 cm (105° 1 ±1	C) comprensiva	dello 1±1	1±1
u camp. secco all'aria (frazione < 2 mm) dat eletro + EPA 3060A 1996 + EPA 7196A 199 Cromo VI mo esavalente (Cr VI) [Su camp. secco all' 5°C) comprensiva dello scheletro + ISO 151	ti espressi sulla 92] mg/kg l'aria (frazione <	totalità 1 (2 mm)	dei materiali sec <1 dati espressi sul	chi < 2 cm (105° 1 ±1 lla totalità dei ma	C) comprensiva (<1 teriali secchi < 2	1±1	1±1
u camp. secco all'aria (frazione < 2 mm) dat eletro + EPA 3060A 1996 + EPA 7196A 199 Cromo VI mo esavalente (Cr VI) [Su camp. secco all' 5°C) comprensiva dello scheletro + ISO 151 Cromo esavalente (Cr VI)	ti espressi sulla 92] mg/kg l'aria (frazione < 192: 2010] mg/kg	totalità 1 2 mm)	dei materiali sec <1 dati espressi sul	chi < 2 cm (105° 1±1 lla totalità dei ma	<1 comprensiva of the comprensiv	1±1 cm	
u camp. secco all'aria (frazione < 2 mm) dat eletro + EPA 3060A 1996 + EPA 7196A 199 Cromo VI mo esavalente (Cr VI) [Su camp. secco all' 5°C) comprensiva dello scheletro + ISO 151 Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m	ti espressi sulla 92] mg/kg l'aria (frazione < 192: 2010] mg/kg nm) dati espress	totalità 1 2 mm)	dei materiali sec <1 dati espressi sul	chi < 2 cm (105° 1±1 lla totalità dei ma	<1 comprensiva of the comprensiv	1±1 cm	1±1
u camp. secco all'aria (frazione < 2 mm) dat eletro + EPA 3060A 1996 + EPA 7196A 199 Cromo VI mo esavalente (Cr VI) [Su camp. secco all' 5°C) comprensiva dello scheletro + ISO 151 Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020	ti espressi sulla 92] mg/kg l'aria (frazione < 192: 2010] mg/kg nm) dati espress 08 2014]	totalità 1 < 2 mm) 0,2 si sulla t	dei materiali sec <1 dati espressi sul totalità dei materi	1±1 la totalità dei ma - ali secchi < 2 cm	<1 teriali secchi < 2 <0,2 (105°C) compre	1±1 cm - ensiva	1±1
u camp. secco all'aria (frazione < 2 mm) dati eletro + EPA 3060A 1996 + EPA 7196A 199 Cromo VI mo esavalente (Cr VI) [Su camp. secco all' 5°C) comprensiva dello scheletro + ISO 151 Cromo esavalento (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsenico	ti espressi sulla 92] mg/kg l'aria (frazione < 192: 2010] mg/kg nm) dati espress 0B 2014] mg/kg	totalità 1 (2 mm) 0,2 si sulla t	dei materiali sec <1 dati espressi sul . totalità dei materi	1±1 la totalità dei ma - ali secchi < 2 cm	<1 teriali secchi < 2 <0,2 (105°C) compre	dello 1±1 cm - ensiva 5±1	1 ±1
u camp. secco all'aria (frazione < 2 mm) dati eletro + EPA 3060A 1996 + EPA 7196A 199 Cromo VI mo esavalente (Cr VI) [Su camp. secco all' 5°C) comprensiva dello scheletro + ISO 151 Cromo osavalento (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsonico	ti espressi sulla 92] mg/kg l'aria (frazione < 192: 2010] mg/kg mg/kg mg/kg	totalità 1 (2 mm) 0,2 si sulla t 1 0,1	dei materiali sec <1 dati espressi sul cotalità dei materi 2 ±1 0,1 ±0,1	1±1 lla totalità dei ma . ali secchi < 2 cm 3±1 0,1±0,1	<1 teriali secchi < 2 <0,2 (105°C) compre	1±1 cm - ensiva 5±1 0,1±0,1	1 ±1
u camp. secco all'aria (frazione < 2 mm) dati eletro + EPA 3060A 1996 + EPA 7196A 199 Cromo VI mo esavalente (Cr VI) [Su camp. secco all' 5°C) comprensiva dello scheletro + ISO 151 Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsonico Cadmio	ti espressi sulla 92] mg/kg l'aria (frazione < 192: 2010] mg/kg mm) dati espress 18 2014] mg/kg mg/kg mg/kg	1 (2 mm) 0,2 si sulla t 1 0,1	dei materiali sec <1 dati espressi sul cotalità dei materi 2 ±1 0,1 ±0,1 1,0 ±2,0	1±1 lla totalità dei ma . ali secchi < 2 cm 3±1 0,1±0,1 2,0±2,2	C) comprensiva (41 teriali secchi < 2 <0,2 (105°C) compre 2 ±1 0,1 ±0,1 1,8 ±2,1	1 ±1 cm - ensiva 5 ±1 0,1 ±0,1 3,7 ±2,5	1±1 - 2±1 <0,1 1,5±2,1
u camp. secco all'aria (frazione < 2 mm) dat eletro + EPA 3060A 1996 + EPA 7196A 199 Cromo VI mo esavalente (Cr VI) [Su camp. secco all' 5°C) comprensiva dello scheletro + ISO 151: Cromo esavalento (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobatto Nichel	ti espressi sulla 92] mg/kg l'aria (frazione < 192: 2010] mg/kg nm) dati espress 18 2014] mg/kg mg/kg mg/kg mg/kg	1 (2 mm) 0,2 si sulla t 1 (0,1 (0,1 (1))	dei materiali sec <1 dati espressi sul - totalità dei materi 2 ±1 0,1 ±0,1 1,0 ±2,0 5 ±1	1±1 lla totalità dei ma - ali secchi < 2 cm 3±1 0,1±0,1 2,0±2,2 6±2	<1 teriali secchi < 2 <0,2 (105°C) compre 2 ±1 0,1 ±0,1 1,8 ±2,1 5 ±1	1 ±1 cm - ensiva 5 ±1 0,1 ±0,1 3,7 ±2,5 13 ±3	1±1 - 2±1 <0,1 1,5±2,1 5±1
u camp. secco all'aria (frazione < 2 mm) dati eletro + EPA 3060A 1996 + EPA 7196A 1996 cromo VI mo esavalente (Cr VI) [Su camp. secco all' 5°C) comprensiva dello scheletro + ISO 151 cromo esavalento (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto Nichel Cromo	ti espressi sulla 92] mg/kg l'aria (frazione < 192: 2010] mg/kg nm) dati espress 18 2014] mg/kg mg/kg mg/kg mg/kg mg/kg	1 0,2 si sulla t 1 0,1 0,1 1 1	dei materiali sec <1 dati espressi sul totalità dei materi 2 ±1 0,1 ±0,1 1,0 ±2,0 5 ±1 23 ±5	1±1 la totalità dei ma - (ali secchi < 2 cm 3±1 0,1±0,1 2,0±2,2 6±2 27±6	C) comprensiva (<1 teriali secchi < 2 <0,2 (105°C) compre 2 ±1 0,1 ±0,1 1,8 ±2,1 5 ±1 24 ±5	1 ±1 cm 5 ±1 0,1 ±0,1 3,7 ±2,5 13 ±3 37 ±7	2±1 <0,1 1,5±2,1 5±1 25±6
u camp. secco all'aria (frazione < 2 mm) dati eletro + EPA 3060A 1996 + EPA 7196A 199 Cromo VI mo esavalente (Cr VI) [Su camp. secco all' 5°C) comprensiva dello scheletro + ISO 151 Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto Nichel Cromo Piombo	ti espressi sulla 92] mg/kg l'aria (frazione < 192: 2010] mg/kg nm) dati espress 0B 2014] mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0,2 si sulla t 1 0,1 0,1 1 1 1	dei materiali sec <1 dati espressi sul totalità dei materi 2 ±1 0,1 ±0,1 1,0 ±2,0 5 ±1 23 ±5 10 ±1	1±1 la totalità dei ma . (ali secchi < 2 cm 3±1 0,1±0,1 2,0±2,2 6±2 27±6 9±1	C) comprensiva (<1 teriali secchi < 2 <0,2 (105°C) compre 2 ±1 0,1 ±0,1 1,8 ±2,1 5 ±1 24 ±5 8 ±1	5 ±1 0,1 ±0,1 3,7 ±2,5 13 ±3 37 ±7 15 ±2	2±1 <0,1 1,5±2,1 6±1 25±6 7±1
a camp. secco all'aria (frazione < 2 mm) dati eletro + EPA 3060A 1996 + EPA 7196A 1996 cromo VI mo esavalente (Cr VI) [Su camp. secco all' 9°C) comprensiva dello scheletro + ISO 151 cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto Nichel Cromo Plombo Rame	ti espressi sulla 92] mg/kg l'aria (frazione < 192: 2010] mg/kg nm) dati espress 08 2014] mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	totalità 1 (2 mm) 0,2 si sulla t 0,1 0,1 1 1	dei materiali sec <1 dati espressi sul cotalità dei materi 0,1 ±0,1 1,0 ±2,0 5 ±1 23 ±5 10 ±1 28 ±9	1±1 lia totalità dei ma ali secchi < 2 cm 3±1 0,1±0,1 2,0±2,2 6±2 27±6 9±1 11±7	C) comprensiva (<1 teriali secchi < 2 <0,2 (105°C) compre 2 ±1 0,1 ±0,1 1,8 ±2,1 5 ±1 24 ±5 8 ±1 39 ±11	5 ±1 0,1 ±0,1 3,7 ±2,5 13 ±3 37 ±7 15 ±2 22 ±9	2±1 <0,1 1,5±2,1 6±1 25±6 7±1 11±7
u camp. secco all'aria (frazione < 2 mm) dati eletro + EPA 3060A 1996 + EPA 7196A 1996 Cromo VI mo esavalente (Cr VI) [Su camp. secco all'5°C) comprensiva dello scheletro + ISO 151°C Cromo enavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto Nichel Cromo Piombo Rame Zinco	ti espressi sulla 92] mg/kg ['aria (frazione < 192: 2010] mg/kg nm) dati espress 08 2014] mg/kg	totalità 1 (2 mm) 0,2 si sulla t 1 0,1 1 1 1 5	cotalità dei materi 0,1 ±0,1 1,0 ±2,0 5 ±1 23 ±5 10 ±1 28 ±9 7 ±5	1±1 lia totalità dei ma ali secchi < 2 cm 3±1 0,1±0,1 2,0±2,2 6±2 27±6 9±1 11±7 11±5	C) comprensiva (<1 teriali secchi < 2 <0,2 (105°C) compre 2 ±1 0,1 ±0,1 1,8 ±2,1 5 ±1 24 ±5 8 ±1 39 ±11 10 ±5	5±1 0,1±0,1 3,7±2,6 13±3 37±7 15±2 22±9 15±5	2±1 <0,1 1,5±2,1 5±1 25±6 7±1 11±7 7±5
u camp. secco all'aria (frazione < 2 mm) dati eletro + EPA 3060A 1996 + EPA 7196A 1996 cromo VI mo esavalente (Cr VI) [Su camp. secco all'5°C) comprensiva dello scheletro + ISO 151 Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto Nichel Cromo Plombo Rame Zinco	ti espressi sulla 92] mg/kg ['aria (frazione < 192: 2010] mg/kg nm) dati espress 08 2014] mg/kg	totalità 1 (2 mm) 0,2 si sulla t 1 0,1 1 1 1 5 0,1	cotalità dei materiali sec cotalità dei materi 0,1 ±0,1 1,0 ±2,0 5 ±1 23 ±5 10 ±1 28 ±9 7 ±5 <0,1	1±1 lia totalità dei ma ali secchi < 2 cm 3±1 0,1±0,1 2,0±2,2 6±2 27±6 9±1 11±7 11±5 <0,1	C) comprensiva (<1 teriali secchi < 2 <0,2 (105°C) compre 2 ±1 0,1 ±0,1 1,8 ±2,1 5 ±1 24 ±5 8 ±1 39 ±11 10 ±5 <0,1	5±1 0,1±0,1 3,7±2,5 13±3 37±7 15±2 22±9 15±5 <0,1	2±1 <0,1 1,5±2,1 5±1 25±6 7±1 11±7 7±5 <0,1
u camp. secco all'aria (frazione < 2 mm) dati eletro + EPA 3060A 1996 + EPA 7196A 1996 cromo VI mo esavalente (Cr VI) [Su camp. secco all'5°C) comprensiva dello scheletro + ISO 1511 Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto Nichel Cromo Piombo Rame Zinco Mercurio Berillio	ti espressi sulla 92] mg/kg ['aria (frazione < 192: 2010] mg/kg nm) dati espress 08 2014] mg/kg	totalità 1 (2 mm) 0,2 si sulla t 1 0,1 0,1 1 1 5 0,1 0,1 0,1	dei materiali sec <1 dati espressi sul - totalità dei materi 2 ±1 0,1 ±0,1 1,0 ±2,0 5 ±1 23 ±5 10 ±1 28 ±9 7 ±5 <0,1 0,5 ±0,4	1±1 la totalità dei ma - ali secchi < 2 cm 3±1 0,1±0,1 2,0±2,2 6±2 27±6 9±1 11±7 11±5 <0,1 0,7±0,5	C) comprensiva (<1 teriali secchi < 2 <0,2 (105°C) compre 2 ±1 0,1 ±0,1 1,8 ±2,1 5 ±1 24 ±5 8 ±1 39 ±11 10 ±5 <0,1 0,7 ±0,5	1±1 cm 5±1 0,1±0,1 3,7±2,5 13±3 37±7 15±2 22±9 15±5 <0,1 1,4±0,8	2±1 <0,1 1,5±2,1 5±1 25±6 7±1 11±7 7±5 <0,1 0,6±0,4
u camp, secco all'aria (frazione < 2 mm) dati eletro + EPA 3060A 1996 + EPA 7196A 1996 cromo VI mo esavalente (Cr VI) [Su camp, secco all'5°C) comprensiva dello scheletro + ISO 151°C cromo esavalente (Cr VI) talli [Su camp, secco all'aria (frazione < 2 m to scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto Nichel Cromo Piombo Rame Zinoo	ti espressi sulla 92] mg/kg ['aria (frazione < 192: 2010] mg/kg nm) dati espress 08 2014] mg/kg	totalità 1 (2 mm) 0,2 si sulla t 1 0,1 1 1 1 5 0,1	cotalità dei materiali sec cotalità dei materi 0,1 ±0,1 1,0 ±2,0 5 ±1 23 ±5 10 ±1 28 ±9 7 ±5 <0,1	1±1 lia totalità dei ma ali secchi < 2 cm 3±1 0,1±0,1 2,0±2,2 6±2 27±6 9±1 11±7 11±5 <0,1	C) comprensiva (<1 teriali secchi < 2 <0,2 (105°C) compre 2 ±1 0,1 ±0,1 1,8 ±2,1 5 ±1 24 ±5 8 ±1 39 ±11 10 ±5 <0,1	5±1 0,1±0,1 3,7±2,5 13±3 37±7 15±2 22±9 15±5 <0,1	2±1 <0,1 1,5±2,1 5±1 25±6 7±1 11±7 7±5 <0,1

Idrocarburi Pesanti C>12

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

<100 <100 mg/kg 100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

<0,01 <0,01 <0,01 <0,01 <0,01 0,01

20160524 5/16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER PROGRAMMED TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 34 a 79

PD16-01004_0

RISULTATI

Campione n°	PD16-01004.006	PD16-01004.007	PD16-01004.008	PD16-01004.009	PD16-01004.010
Sigla campione	MT6v_220316_SO_	MT7v_210316_SO_	MT8v_210316_SO_	MT9v_210316_SO_	MT10v_210316_S0
	0_0,2	0_0,2	0_0,2	0_0,2	_0_0,2
Proveniente da	Microtunnel access				
	Area, Municipality				
	of Melendugno (LE)				
Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
Campionato da	Effettuato da ns.				
	personale -				
	Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
Campionato ii	22/03/2016	21/03/2016	21/03/2016	21/03/2016	21/03/2016
Parametro U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007 I (seque)

Scrieleito + EFA 3000C 2001+EFA 3020C 2014 + EFA 0210D 2001] (segue)									
Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01		
Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01		
alfa-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01		
beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01		
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01		
Clordano	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01		
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01		
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01		
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01		

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to sense your flusions	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 35 a 79

PD16-01004_0

RISULTATI

	Cam	pione n°	PD16-01004.011	PD16-01004.012	PD16-01004.013	PD16-01004.014	PD16-01004.0
	Sigla ca	ampione	MT11v_210316_SO	SB1v_210316_SO_	SB1v_210316_SO_	SB1v_210316_SO_	SB2v_210316_
			_0_0,2	0_1	5,5_6,5	11,5_12	0_1
	Proven	iente da	Microtunnel access				
					Area, Municipality		
	T		of Melendugno (LE)				
		ampione onato da	TERRENI Effettuato da ns.	TERRENI Effettuato da ns.	TERRENI Effettuato da ns.	TERRENI Effettuato da ns.	TERRENI Effettuato da
	Campic	maio qa	personale -	personale -	personale -	personale -	personale -
			Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
	Camp	ionato il	21/03/2016	21/03/2016	21/03/2016	21/03/2016	21/03/2016
Parametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
u campione secco all'aria + DM 13/09/199	9 GU n° 248 21/	10/1999	Met II.1]				
Scheletro (2 mm)	9/kg	1	208 ±21	76 ±8	126 ±13	21 ±2	74 ±7
u camp. secco all'aria (frazione <2 cm) + [DM 13/09/1999 G	6U n° 24	18 21/10/1999 Me	et II.3]			
Scheletro (2mm - 2cm)	g/kg	1	208 ±21	76 ±8	99 ±10	21 ±2	74 ±7
	99						
			48 21/10/1999 M	et II.2]			
u campione tal quale (frazione < 2 mm) + Residuo a 106°C	DM 13/09/1999 0	3U n° 2	86,5 ±5,2	88,7 ±5,3	76,3 ±4,6 C) comprensiva o	82,2 ±4,9 dello	90,2 ±5,4
u campione tal quale (frazione < 2 mm) + Residuo a 106°C u camp. secco all'aria (frazione < 2 mm) d eletro + EPA 3060A 1996 + EPA 7196A 1	DM 13/09/1999 (% lati espressi sulla 992]	GU n° 2 0,1 totalità	86,5 ±5,2 dei materiali seco	88,7 ±5,3 chi < 2 cm (105°	C) comprensiva o	dello	
u campione tal quale (frazione < 2 mm) + Residuo a 106°C u camp. secco all'aria (frazione < 2 mm) d eletro + EPA 3060A 1996 + EPA 7196A 1 Cromo VI	DM 13/09/1999 (% lati espressi sulla 992] mg/kg	GU n° 2 0,1 totalità	86,5 ±5,2 dei materiali seco 1 ±1	88,7 ±5,3 chi < 2 cm (105°(C) comprensiva o	dello <1	90,2 ±5,4
u campione tal quale (frazione < 2 mm) + Residuo a 106°C u camp. secco all'aria (frazione < 2 mm) d eletro + EPA 3060A 1996 + EPA 7196A 1	DM 13/09/1999 0 % lati espressi sulla 992] mg/kg mm) dati espress	GU n° 2 0,1 totalità	86,5 ±5,2 dei materiali seco 1 ±1	88,7 ±5,3 chi < 2 cm (105°(C) comprensiva o	dello <1	
u campione tal quale (frazione < 2 mm) + Residuo a 105°C u camp. secco all'aria (frazione < 2 mm) d eletro + EPA 3060A 1996 + EPA 7196A 1 Cromo VI alli [Su camp. secco all'aria (frazione < 2	DM 13/09/1999 0 % lati espressi sulla 992] mg/kg mm) dati espress	GU n° 2 0,1 totalità	86,5 ±5,2 dei materiali seco 1 ±1	88,7 ±5,3 chi < 2 cm (105°(C) comprensiva o	dello <1	
u campione tal quale (frazione < 2 mm) + Residuo a 105°C u camp. secco all'aria (frazione < 2 mm) d eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI alli [Su camp. secco all'aria (frazione < 2 o scheletro + EPA 3050B 1996 + EPA 602	DM 13/09/1999 0 % lati espressi sulla 992] mg/kg mm) dati espress 20B 2014]	GU nº 2 0,1 totalità 1 si sulla t	86,5 ±5,2 dei materiali seco 1 ±1 totalità dei materi	88,7 ±5,3 chi < 2 cm (105% <1 ali secchi < 2 cm	<1 (105°C) compre	dello <1 nsiva	<1
u campione tal quale (frazione < 2 mm) + Rosiduo a 106°C u camp. secco all'aria (frazione < 2 mm) deletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI alli [Su camp. secco all'aria (frazione < 2 describedo e EPA 3050B 1996 + EPA 6020 Arsonico	DM 13/09/1999 0 % lati espressi sulla 992] mg/kg mm) dati espress 20B 2014]	GU nº 2: 0,1 totalità 1 si sulla t	86,5±5,2 dei materiali seco 1±1 totalità dei materi 2±1	88,7 ±5,3 chi < 2 cm (105% <1 ali secchi < 2 cm	<1 (105°C) compre	dello <1 nsiva <1	ব
u campione tal quale (frazione < 2 mm) + Rosiduo a 106°C u camp. secco all'aria (frazione < 2 mm) deletro + EPA 3060A 1996 + EPA 7196A 1900 Cromo VI alli [Su camp. secco all'aria (frazione < 2 deletro + EPA 3050B 1996 + EPA 6020 Arsonico Cadmio	DM 13/09/1999 0 % (ati espressi sulla 992] mg/kg mm) dati espress 20B 2014] mg/kg	O,1 totalità 1 si sulla t 1 0,1	86,5 ±5,2 dei materiali seco 1 ±1 totalità dei materi 2 ±1 <0,1	88,7 ±5,3 chi < 2 cm (105% <1 ali secchi < 2 cm <1 <0,1	<1 (105°C) compresiva of the compresivation of the compressivation of the	dello <1 nsiva <1 <0,1	<1 <1 <0,1
u campione tal quale (frazione < 2 mm) + Residuo a 106°C u camp. secco all'aria (frazione < 2 mm) di eletro + EPA 3060A 1996 + EPA 7196A 1! Cromo VI alli [Su camp. secco all'aria (frazione < 2 o scheletro + EPA 3050B 1996 + EPA 602 Arsenico Cadmio Cobalto	DM 13/09/1999 0 % (ati espressi sulla 992] mg/kg mm) dati espress 20B 2014] mg/kg mg/kg	O,1 totalità 1 si sulla t 1 0,1	86,5±5,2 dei materiali seco 1±1 totalità dei materi 2±1 <0,1 1,7±2,1	88,7 ±5,3 chi < 2 cm (105% <1 ali secchi < 2 cm <1 <0,1 0,8 ±0,7	<1 (105°C) compresiva of (105°C) compresiva	<1 <1 <0.1 <0.2 ±0.2	<1 <1 <0,1 0,5±0,5
u campione tal quale (frazione < 2 mm) + Residuo a 106°C u camp. secco all'aria (frazione < 2 mm) di eletro + EPA 3060A 1996 + EPA 7196A 1! Cromo VI alli [Su camp. secco all'aria (frazione < 2 p scheletro + EPA 3050B 1996 + EPA 602 Arsenico Cadnio Cobalto Nichel	DM 13/09/1999 (% lati espressi sulla 992] mg/kg mm) dati espress 20B 2014] mg/kg mg/kg mg/kg mg/kg	SU n° 2: 0,1 totalità 1 si sulla 1 0,1 0,1	86,5 ±5,2 dei materiali seco 1 ±1 totalità dei materi 2 ±1 <0,1 1,7 ±2,1 5 ±1	88,7 ±5,3 chi < 2 cm (105%) <1 ali secchi < 2 cm <1 <0,1 0,8 ±0,7 2 ±1	<1 (105°C) compresiva (<1 (105°C) compre <1 (0,1±0,1 (0,3±0,3 (2±1) (0,0))	dello <1 nsiva <1 <0,1 0,2 ±0,2 2 ±1	<1 <1 <0,1 0,5±0,5 2±1
u campione tal quale (frazione < 2 mm) + Residuo a 106°C u camp. secco all'aria (frazione < 2 mm) di eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI alli [Su camp. secco all'aria (frazione < 2 b scheletro + EPA 3050B 1996 + EPA 602 Arsenico Cadallo Nichel Cromo	DM 13/09/1999 (% lati espressi sulla 992] mg/kg mm) dati espress 20B 2014] mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	9 0,1 totalità 1 si sulla t 1 0,1 0,1	86,5 ±5,2 dei materiali seco 1 ±1 totalità dei materi 2 ±1 <0,1 1,7 ±2,1 5 ±1 18 ±4	88,7 ±5,3 chi < 2 cm (105%) <1 ali secchi < 2 cm <1 <0,1 0,8 ±0,7 2 ±1 12 ±4	<1 (105°C) compresiva (105°C) co	dello <1 nsiva <1 <0,1 0,2 ±0,2 2 ±1 11 ±3	<1 <0,1 0,5±0,5 2±1 14±4
u campione tal quale (frazione < 2 mm) + 1 Residuo a 106°C u camp. secco all'aria (frazione < 2 mm) deletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI alli [Su camp. secco all'aria (frazione < 2 po scheletro + EPA 3050B 1996 + EPA 602 Arsenico Cadmio Cobalto Nichel Cromo Piombo	DM 13/09/1999 (% lati espressi sulla 992] mg/kg mm) dati espress 20B 2014] mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	9U n° 2 0,1 totalità 1 si sulla 1 0,1 0,1 1	86,5 ±5,2 dei materiali seco 1 ±1 totalità dei materi 2 ±1 <0,1 1,7 ±2,1 5 ±1 18 ±4 6 ±1	88,7 ±5,3 chi < 2 cm (105°) <1 ali secchi < 2 cm <1 <0,1 0,8 ±0,7 2 ±1 12 ±4 2 ±1	C) comprensiva of the compressiva of the compressivation of the c	dello <1 nsiva <1 <0,1 0,2±0,2 2±1 11±3 <1	<1 <0,1 0,5±0,5 2±1 14±4 4±1
u campione tal quale (frazione < 2 mm) + Residuo a 105°C u camp. secco all'aria (frazione < 2 mm) deletro + EPA 3060A 1996 + EPA 7196A 1900 Cromo VI alli [Su camp. secco all'aria (frazione < 2 deletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto Nichol Cromo Piombo Ramo	DM 13/09/1999 (% lati espressi sulla 992] mg/kg mm) dati espress 20B 2014] mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	9U n° 2 0,1 totalità 1 si sulla 1 0,1 0,1 1 1	86,5 ±5,2 dei materiali seco 1 ±1 totalità dei materi 2 ±1 <0,1 1,7 ±2,1 5 ±1 18 ±4 6 ±1 10 ±7	88,7 ±5,3 chi < 2 cm (105°) <1 ali secchi < 2 cm <1 <0,1 0,8 ±0,7 2 ±1 12 ±4 2 ±1 2 ±2	C) comprensiva of the compressivation of t	dello <1 nsiva <1 <0,1 0,2±0,2 2±1 11±3 <1 1±1	<1 <0,1 0,5±0,5 2±1 14±4 4±1 32±10
u campione tal quale (frazione < 2 mm) + 1 Residuo a 108°C u camp. secco all'aria (frazione < 2 mm) deletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI alli [Su camp. secco all'aria (frazione < 2 po scheletro + EPA 3050B 1996 + EPA 602 Arsenico Cadmio Cobalto Nichel Cromo Plombo Rame Zinco	DM 13/09/1999 (% lati espressi sulla 992] mg/kg mm) dati espress 20B 2014] mg/kg	9 0,1 totalità 1 si sulla 1 0,1 0,1 1 1 1 5	86,5 ±5,2 dei materiali seco 1 ±1 totalità dei materi 2 ±1 <0,1 1,7 ±2,1 5 ±1 18 ±4 6 ±1 10 ±7 6 ±6	88,7 ±5,3 chi < 2 cm (105°) <1 ali secchi < 2 cm <1 <0,1 0,8 ±0,7 2 ±1 12 ±4 2 ±1 2 ±2 <5	C) comprensiva of the compressivation of t	<pre>clelio <1 nsiva <1 <0,1 0,2±0,2 2±1 11±3 <1 1±1 <5</pre>	<1 <0,1 <0,5 ±0,5 2 ±1 14 ±4 4 ±1 32 ±10 7 ±5
I campione tal quale (frazione < 2 mm) + Residuo a 106°C I camp. secco all'aria (frazione < 2 mm) deletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI alli [Su camp. secco all'aria (frazione < 2 po scheletro + EPA 3050B 1996 + EPA 602 Arsenico Cadmio Cobalto Nichel Cromo Plombo Rame Zinco Mercurio	DM 13/09/1999 (% lati espressi sulla 992] mg/kg mm) dati espress 20B 2014] mg/kg mg/kg	9U n° 2 0,1 totalità 1 si sulla t 1 0,1 0,1 1 1 1 5 0,1	86,5 ±5,2 dei materiali seco 1 ±1 totalità dei materi 2 ±1 <0,1 1,7 ±2,1 5 ±1 18 ±4 6 ±1 10 ±7 6 ±5 <0,1	88,7 ±5,3 chi < 2 cm (105°) <1 ali secchi < 2 cm <1 <0,1 0,8 ±0,7 2 ±1 12 ±4 2 ±1 2 ±2 <5 <0,1	C) comprensiva of the comprensiva of the comprensivation of the c	<pre>ciello <1 nsiva <1 <0.1 0.2 ±0.2 2 ±1 11 ±3 <1 1 ±1 <5 <0.1</pre>	<1 <0,1 0,5±0,5 2±1 14±4 4±1 32±10 7±5 <0,1

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

Idrocarburi Pesanti C>12 mg/kg 5 10 34 5 <5 16

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100 <100 <100 <100

 $S.V.O.C.\ [\ Su\ camp.\ secco\ all'aria\ (frazione \le 2\ mm)\ dati\ espressi\ sulla\ totalità\ dei\ materiali\ secchi \le 2\ cm\ (105^{\circ}C)\ comprensiva$

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

Alacior	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160524 7/16 e

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 36 a 79

PD16-01004_0

RISULTATI

c	ampione n*	PD16-01004.011	PD16-01004.012	PD16-01004.013	PD16-01004.014	PD16-01004.015
Sigl	a campione	MT11v_210316_SO	SB1v_210316_SO_	SB1v_210316_SO_	SB1v_210316_SO_	SB2v_210316_SO_
		_0_0,2	0_1	5,5_6,5	11,5_12	0_1
Pro	veniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)				
Tip	o campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
Can	npionato da	Effettuato da ns.				
		personale -				
		Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
Ca	ampionato il	21/03/2016	21/03/2016	21/03/2016	21/03/2016	21/03/2016
Parametro U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato

 $S.V.O.C.\ [\ Su\ camp.\ secco\ all'aria\ (frazione \le 2\ mm)\ dati\ espressi\ sulla\ totalità\ dei\ materiali\ secchi \le 2\ cm\ (105°C)\ comprensiva$

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160524 8716

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Security your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 37 a 79

PD16-01004_0

RISULTATI

PD16-01004.016 PD16-01004.017 PD16-01004.018 PD16-01004.019 PD16-01004.020 Sigla campione SB2v_210316_SO_ SB2v_210316_SO_ SB3v_210316_SO_ SB3v_210316_SO_ SB3v_210316_SO_ 5.5 6.5 11.5 12 0.1 5.5 6.5 11.5 12 Microtunnel access Microtunnel access Microtunnel access Microtunnel acce Area, Municipality Area, Municipality Area, Municipality Area, Municipality Area, Municipality of Melendugno (LE) of Melendugno (LE) of Melendugno (LE) of Melendugno (LE) TERRENI TERRENI TERRENI Tipo campione Campionato da Effettuato da ns. Scaranto Scaranto Scaranto Scaranto Scaranto 21/03/2016 21/03/2016 21/03/2016 21/03/2016 21/03/2016 Risultato Risultato Risultato Risultato Risultato

[Su campione secco all'aria + DM 13/09/1999 GU n° 248 21/10/1999 Met II.1]

Scheletro (2 mm) g/kg 1 5±1 42±4 106±11 43±4 26±3

[Su camp. secco all'aria (frazione <2 cm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.3]

Scheletro (2mm - 2cm) g/kg 1 5±1 42±4 106±11 43±4 26±3

[Su campione tal quale (frazione < 2 mm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.2]

Residuo a 105°C % 0,1 80,9 ±4,9 83,3 ±5,0 88,2 ±5,3 77,1 ±4,6 88,1 ±5,3

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mg/kg 1 <1 <1 <1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

Arsenico	mg/kg	1	<1	<1	<1	<1	<1
Cadmio	mg/kg	0,1	<0,1	<0,1	0,1 ±0,1	<0,1	<0,1
Cobalto	mg/kg	0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Nichel	mg/kg	1	1 ±1	1±1	2 ±1	1 ±1	2 ±1
Cromo	mg/kg	1	13 ±4	10 ±3	12 ±4	12 ±4	11 ±3
Plombo	mg/kg	1	<1	<1	7 ±1	<1	<1
Rame	mg/kg	1	1 ±1	1±1	8 ±7	<1	<1
Zinco	mg/kg	5	<5	<5	<5	<5	<5
Mercurio	mg/kg	0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Berillio	mg/kg	0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Vanadio	mg/kg	1	2 ±1	2±1	4 ±1	3 ±1	2 ±1
Tallio	mg/kg	0,1	0,1 ±0,1	<0,1	0,7 ±0,2	0,1 ±0,1	<0,1

 $[Su\ camp,\ secco\ all'aria\ (frazione \le 2\ mm)\ dati\ espressi\ sulla\ totalità\ dei\ materiali\ secchi \le 2\ cm\ (105^{\circ}C)\ comprensiva\ dello$

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

Idrocarburi Pesanti C>12 mg/kg 5 5 5 6 <5 11

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100 <100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

Alacior	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160524 9 / 16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Security your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 38 a 79

PD16-01004_0

RISULTATI

Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato
	Campionato II	21/03/2016	21/03/2016	21/03/2016	21/03/2016	21/03/2016
		Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
		personale -				
	Campionato da	Effettuato da ns.				
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	\$ 1000 per 200	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (Li
		Area, Municipality				
	Proveniente da	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel acces
	0.000.000.000	5,5_6,5	11,5_12	0_1	5,5_6,5	11,5_12
	Sigla campione	SB2v_210316_SO_	SB2v_210316_SO_	SB3v_210316_SO_	SB3v_210316_SO_	SB3v_210316_S0
	Campione n*	PD16-01004.016	PD16-01004.017	PD16-01004.018	PD16-01004.019	PD16-01004.020

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Canading to States your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 39 a 79

PD16-01004_0

e

	Camp	pione n*	PD16-01004.021	PD16-01004.022	PD16-01004.023	PD16-01004.024	PD16-01004.0
	Sigla ca	mpione	SB4v_220316_SO_	SB5v_220316_SO_	SB5v_220316_SO_	SB5v_220316_SO_	RoW13v_2203
			5,5_6,5	0_1	1,5-2,5	3_4	80_1_1,5
	Proven	iente da	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel ac
						Area, Municipality	
	-					of Melendugno (LE)	
		ampione	TERRENI Effettuato da ns.	TERRENI	TERRENI Effettueta da es	TERRENI Effettueta da es	TERREN
	Campio	onato da	personale -	Effettuato da ns. personale -	Effettuato da ns. personale -	Effettuato da ns. personale -	Effettuato da personale
			Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
	Camp	ionato il	22/03/2016	22/03/2016	22/03/2016	22/03/2016	22/03/2010
Parametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
ı campione secco all'aria + DM 13/09/1999	GU n° 248 21/1	10/1999	Met II.1]				
Scheletro (2 mm)	9/kg	1	161 ±16	80 ±8	78 ±8	154 ±15	32 ±3
ı camp. secco all'aria (frazione <2 cm) + D	M 13/09/1999 G	U n° 24	8 21/10/1999 Me	et II.3]			
Scheletro (2mm - 2cm)	9/40	1	161 ±16	80 ±8	78 ±8	154 ±15	32 ±3
ı campione tal quale (frazione < 2 mm) + D		3U n° 24	18 21/10/1999 M	et II.2]			
				000.50	000.54	00.0.50	00 5 45 3
Residuo a 105°C	%	0,1	79,0 ±4,7	88,2 ±5,3	89,3 ±5,4	83,9 ±5,0	80,0 ±0,2
							86,5 ±5,2
ı camp. secco all'aria (frazione < 2 mm) da	iti espressi sulla						80,5 ±5,2
ı camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19	iti espressi sulla 192]	totalità (dei materiali sec	chi < 2 cm (105°	C) comprensiva (dello	
u camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI	iti espressi sulla 192] mg/kg	totalità (dei materiali seco	chi < 2 cm (105°)	C) comprensiva (dello <1	<1
u camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI mo esavalente (Cr VI) [Su camp. secco al	nti espressi sulla 192] mg/kg ll'aria (frazione <	totalità (dei materiali seco	chi < 2 cm (105°)	C) comprensiva (dello <1	
i camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI mo esavalente (Cr VI) [Su camp. secco al 6°C) comprensiva dello scheletro + ISO 15°	ti espressi sulla 192] mg/kg Il'aria (frazione < 192: 2010]	totalità (dei materiali seco	chi < 2 cm (105°) <1 la totalità dei ma	C) comprensiva (<1 teriali secchi < 2	dello <1 cm	<1
i camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI mo esavalente (Cr VI) [Su camp. secco al 9°C) comprensiva dello scheletro + ISO 15° Cromo esavalente (Cr VI)	ti espressi sulla 192] mg/kg Il'aria (frazione < 192: 2010] mg/kg	totalità (1 (2 mm)	dei materiali seco <1 dati espressi sul	chi < 2 cm (105% <1 la totalità dei ma <0,2	<1 comprensiva of the comprensiv	<1 cm	
i camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI mo esavalente (Cr VI) [Su camp. secco al 6°C) comprensiva dello scheletro + ISO 15°	ti espressi sulla 192] mg/kg Il'aria (frazione < 192: 2010] mg/kg	totalità (1 (2 mm)	dei materiali seco <1 dati espressi sul	chi < 2 cm (105% <1 la totalità dei ma <0,2	<1 comprensiva of the comprensiv	<1 cm	<1
a camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI mo esavalente (Cr VI) [Su camp. secco al 6°C) comprensiva dello scheletro + ISO 15° Cromo esavalento (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m	iti espressi sulla 192] mg/kg ll'aria (frazione < 192: 2010] mg/kg	totalità (1 (2 mm)	dei materiali seco <1 dati espressi sul	chi < 2 cm (105% <1 la totalità dei ma <0,2	<1 comprensiva of the comprensiv	<1 cm	<1
I camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI no esavalente (Cr VI) [Su camp. secco al 6°C) comprensiva dello scheletro + ISO 15° Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 n	iti espressi sulla 192] mg/kg ll'aria (frazione < 192: 2010] mg/kg	totalità (1 (2 mm)	dei materiali seco <1 dati espressi sul	chi < 2 cm (105% <1 la totalità dei ma <0,2	<1 comprensiva of the comprensiv	<1 cm	<1
I camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI no esavalente (Cr VI) [Su camp. secco al 6°C) comprensiva dello scheletro + ISO 15° Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020	mg/kg Il'aria (frazione < 192: 2010] mg/kg nm) dati espress 0B 2014]	totalità (1 2 mm) 0,2 si sulla tr	dei materiali seco <1 dati espressi sul otalità dei materi	chi < 2 cm (105°) <1 la totalità dei ma <0.2 ali secchi < 2 cm	<1 teriali secchi < 2 (105°C) compre	dello <1 cm -	٠.
camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI no esavalente (Cr VI) [Su camp. secco al l'C) comprensiva dello scheletro + ISO 15 Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsenico	iti espressi sulla 192] mg/kg Il'aria (frazione < 192: 2010] mg/kg nm) dati espress 0B 2014] mg/kg	totalità (1 2 mm) 0,2 si sulla tr	dei materiali seco <1 dati espressi sul . otalità dei materi	chi < 2 cm (105%) <1 la totalità dei ma <0.2 ali secchi < 2 cm 1 ±1	<1 teriali secchi < 2 (105°C) compre	dello <1 cm - nsiva <1	- -
camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI mo esavalente (Cr VI) [Su camp. secco al PC) comprensiva dello scheletro + ISO 15 Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m) scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio	iti espressi sulla 192] mg/kg Il'aria (frazione < 192: 2010] mg/kg nm) dati espress 0B 2014] mg/kg mg/kg	totalità (1 2 mm) 0,2 si sulla tr 1 0,1	dei materiali seco <1 dati espressi sul cotalità dei materi <1 <0,1	chi < 2 cm (105%) <1 la totalità dei ma <0,2 ali secchi < 2 cm 1 ± 1 <0,1	<1 teriali secchi < 2 (105°C) compre	cm - nsiva <1 <0,1	<1 - <1 0,1 ±0,1
camp, secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI mo esavalente (Cr VI) [Su camp, secco al PC) comprensiva dello scheletro + ISO 15 Cromo esavalento (Cr VI) alli [Su camp, secco all'aria (frazione < 2 m) scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto	iti espressi sulla 192] mg/kg Il'aria (frazione < 192: 2010] mg/kg nm) dati espress 0B 2014] mg/kg mg/kg mg/kg	1 (2 mm) 0,2 si sulla tr 1 0,1	dei materiali seco <1 dati espressi sul cotalità dei materi <1 <0,1 0,3±0,3	chi < 2 cm (105°) <1 la totalità dei ma <0,2 ali secchi < 2 cm 1 ±1 <0,1 0,8 ±0,7	<1 teriali secchi < 2 (105°C) compre <1 <0,1 0,2 ±0,2	dello <1 cm - nsiva <1 <0,1 0,1±0,1	<1 - <1 0,1 ±0,1 <0,1
camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI mo esavalente (Cr VI) [Su camp. secco al PC) comprensiva dello scheletro + ISO 15 Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto Nichel	iti espressi sulla 192] mg/kg Il'aria (frazione < 192: 2010] mg/kg nm) dati espress 08 2014] mg/kg mg/kg mg/kg	1 (2 mm) 0,2 (3 si sulla tr 0,1 (0,1 (1)	dei materiali seco <1 dati espressi sul cotalità dei materi <1 <0,1 0,3±0,3 1±1	chi < 2 cm (105°) <1 la totalità dei ma <0,2 ali secchi < 2 cm 1 ±1 <0,1 0,8 ±0,7 2 ±1	<1 comprensiva (dello <1 cm - nsiva <1 <0,1 0,1±0,1 2±1	<1 - <1 0,1±0,1 <0,1 2±1
camp, secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI no esavalente (Cr VI) [Su camp, secco al PC) comprensiva dello scheletro + ISO 15 Cromo esavalente (Cr VI) alli [Su camp, secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Codmio Cobalto Nichel Cromo	ti espressi sulla 192] mg/kg Il'aria (frazione < 192: 2010] mg/kg nm) dati espress 0B 2014] mg/kg mg/kg mg/kg mg/kg mg/kg	1 (2 mm) 0,2 (5 si sulla tr	dei materiali seco <1 dati espressi sul cotalità dei materi <1 <0,1 0,3±0,3 1±1 10±3	chi < 2 cm (105°) <1 la totalità dei ma <0,2 ali secchi < 2 cm 1 ±1 <0,1 0,8 ±0,7 2 ±1 15 ±4	C) comprensiva (1 teriali secchi < 2 (105°C) compre <1 <0,1 0,2 ±0,2 1 ±1 9 ±3	dello <1 cm - nsiva <1 <0,1 0,1±0,1 2±1 9±3	<1 - - 0,1±0,1 <0,1 2±1 12±4
camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI no esavalente (Cr VI) [Su camp. secco al PC) comprensiva dello scheletro + ISO 15 Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto Nichel Cromo Piombo	ti espressi sulla 192] mg/kg Il'aria (frazione < 192: 2010] mg/kg nm) dati espress 0B 2014] mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0,2 si sulla ti 0,1 1 1 1 1	ctalità dei materi	chi < 2 cm (105°) <1 Ia totalità dei ma <0,2 ali secchi < 2 cm 1 ±1 <0,1 0,8 ±0,7 2 ±1 15 ±4 3 ±1	C) comprensiva (1 teriali secchi < 2 (105°C) compre <1 <0,1 0,2 ±0,2 1 ±1 9 ±3 <1	dello <1 cm - nsiva <1 <0,1 <0,1 2±1 9±3 <1	<1 0,1±0,1 <0,1 2±1 12±4 <1
camp, secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI no esavalente (Cr VI) [Su camp, secco al PC) comprensiva dello scheletro + ISO 15 Cromo esavalente (Cr VI) alli [Su camp, secco all'aria (frazione < 2 m o scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto Nichel Cromo Piombo Rame	mg/kg Il'aria (frazione < 192: 2010] mg/kg Il'aria (frazione < 192: 2010] mg/kg	1 0,2 si sulla tr 0,1 1 1 1 1 1	dei materiali seco <1 dati espressi sul cotalità dei materi <1 <0,1 0,3±0,3 1±1 10±3 <1 <1 <5	chi < 2 cm (105°) <1 la totalità dei ma <0,2 ali secchi < 2 cm 1 ± 1 <0,1 0,8 ± 0,7 2 ± 1 15 ± 4 3 ± 1 12 ± 7	C) comprensiva (1 teriali secchi < 2 (105°C) compre <1 <0,1 0,2 ±0,2 1 ±1 9 ±3 <1 <1 <1	dello <1 cm - nsiva <1 <0,1 0,1±0,1 2±1 9±3 <1 <1 <1	<1 0,1±0,1 <0,1 2±1 12±4 <1 <1
camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI no esavalente (Cr VI) [Su camp. secco al PC) comprensiva dello scheletro + ISO 15° Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m) scheletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto Nichel Cromo Plombo Rame Zinco	mg/kg Il'aria (frazione < 192: 2010] mg/kg Il'aria (frazione < 192: 2010] mg/kg nm) dati espress 0B 2014] mg/kg	1 0,2 si sulla tr 0,1 1 1 1 1 5	dei materiali seco <1 dati espressi sul otalità dei materi <1 <0,1 0,3±0,3 1±1 10±3 <1 <1	chi < 2 cm (105%) <1 lia totalità dei ma <0,2 ali secchi < 2 cm 1 ±1 <0,1 0,8 ±0,7 2 ±1 15 ±4 3 ±1 12 ±7 7 ±5	C) comprensiva (<1 teriali secchi < 2 (105°C) compre <1 <0,1 0,2 ±0,2 1 ±1 9 ±3 <1 <1 <5		<1 0,1±0,1 <0,1 2±1 12±4 <1 <1
i camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI no esavalente (Cr VI) [Su camp. secco al eletro + ISO 15' Cromo esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m eletro + EPA 3050B 1996 + EPA 6020 Arsenico Cadmio Cobalto Nichel Cromo Plombo Rame Zinco Mercurio	mg/kg Il'aria (frazione < 192: 2010] mg/kg Il'aria (frazione < 192: 2010] mg/kg nm) dati espress 0B 2014] mg/kg	1 0,1 1 1 5 0,1 0,1	c1 dati espressi sul cotalità dei materi cotalità dei materi	chi < 2 cm (105%) <1 lia totalità dei ma <0,2 ali secchi < 2 cm 1 ±1 <0,1 0,8 ±0,7 2 ±1 15 ±4 3 ±1 12 ±7 7 ±5 <0,1 0,3 ±0,2	C) comprensiva (<1 teriali secchi < 2 (105°C) compre <1 <0,1 0,2 ±0,2 1 ±1 9 ±3 <1 <1 <5 <0,1 <0,1 <0,1 <0,1	cm	<1 0,1±0,1 <0,1 2±1 12±4 <1 <1 <5 <0,1
I camp. secco all'aria (frazione < 2 mm) da eletro + EPA 3060A 1996 + EPA 7196A 19 Cromo VI mo esavalente (Cr VI) [Su camp. secco al 6°C) comprensiva dello scheletro + ISO 15°C como esavalente (Cr VI) alli [Su camp. secco all'aria (frazione < 2 m) scheletro + EPA 3050B 1996 + EPA 6020 Arsonico Cadmio Cobalto Nichel Cromo Piombo Rame Zinoo Mercurio Borillio	mg/kg Il'aria (frazione < 192: 2010] mg/kg Il'aria (frazione < 192: 2010] mg/kg nm) dati espress 0B 2014] mg/kg	1 0,2 si sulla tr 1 0,1 1 1 1 5 0,1	ctalità dei materiali seco ctalità dei materi	chi < 2 cm (105%) <1 lia totalità dei ma <0,2 ali secchi < 2 cm 1 ±1 <0,1 0,8 ±0,7 2 ±1 15 ±4 3 ±1 12 ±7 7 ±5 <0,1	C) comprensiva (<1 teriali secchi < 2 (105°C) compre <1 <0,1 0,2 ±0,2 1 ±1 9 ±3 <1 <1 <5 <0,1		<1 0,1 ±0,1 <0,1 2 ±1 12 ±4 <1 <1 <5

mg/kg 5 <5 9 6

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

<100 <100 mg/kg 100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

<0,01 <0,01 <0,01 <0,01 <0,01

11 / 16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Canaditag to Santar your Bainess	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 40 a 79

PD16-01004_0

RISULTATI

Campione n°	PD16-01004.021	PD16-01004.022	PD16-01004.023	PD16-01004.024	PD16-01004.025
Sigla campione	SB4v_220316_SO_	SB5v_220316_SO_	SB5v_220316_SO_	SB5v_220316_SO_	RoW13v_220316_
	5,5_6,5	0_1	1,5-2,5	3_4	80_1_1,5
Proveniente da	Microtunnel access				
	Area, Municipality				
	of Melendugno (LE)				
Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
Campionato da	Effettuato da ns.				
	personale -				
	Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
Campionato ii	22/03/2016	22/03/2016	22/03/2016	22/03/2016	22/03/2016
Parametro U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

 $S.V.O.C.\ [\ Su\ camp.\ secco\ all'aria\ (frazione \le 2\ mm)\ dati\ espressi\ sulla\ totalità\ dei\ materiali\ secchi \le 2\ cm\ (105^{\circ}C)\ comprensiva$

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160524 12 / 16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 41 a 79

PD16-01004_0

RISULTATI

RIS	ULTATI							
(Camo	ione n*	PD16-01004-026	PD16-01004.027	PD16-01004.028	PD16-01004.029	PD16-01004.030
		Sigla car		RoW13v_220316_		BIANCO 1D -	BIANCO 2D -	BIANCO 3D -
		Ogia ca	IIIpiolio	90 24 26	80 0 02	220316	210316	220316
		Provenic	ente da			Microtunnel access		
				Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality
				of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)
		Tipo car	mpione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
		Campior	nato da	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.
				personale -	personale -	personale -	personale -	personale -
				Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
ŀ			onato il	22/03/2016	22/03/2016	22/03/2016	21/03/2016	22/03/2016
l	Parametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
[St	campione secco all'aria + DM 13/09/1999 GU n°	248 21/1	0/1999	Met II.1]				
	Scheletro (2 mm)	g/kg	1	186 ±19	20 ±2	124 ±12	138 ±14	130 ±13
[St	camp. secco all'aria (frazione <2 cm) + DM 13/0	9/1999 GI	U nº 24	8 21/10/1999 Me	et II.3]			
	Scheletro (2mm - 2cm)	9/kg	1	186 ±19	20 ±2	124 ±12	138 ±14	130 ±13
[St	a campione tal quale (frazione < 2 mm) + DM 13/0	9/1999 G	U nº 2	48 21/10/1999 M	et II.2]			
	Residuo a 105°C	%	0,1	79,3 ±4,8	91,5 ±5,5	86,3 ±5,2	86,2 ±5,2	83,6 ±5,0
[St	ı camp. secco all'aria (frazione < 2 mm) dati espre	essi sulla t	totalità	dei materiali sec	chi < 2 cm (105°0	C) comprensiva d	iello	
sche	eletro + EPA 3060A 1996 + EPA 7196A 1992]							
	Cromo VI	mg/kg	1	<1	<1	<1	<1	<1
Cror	mo esavalente (Cr VI) [Su camp. secco all'aria (f	razione <	2 mm)	dati espressi sul	la totalità dei mai	teriali secchi < 2	cm	
(105	5°C) comprensiva dello scheletro + ISO 15192: 20	10]						
•	Cromo esavalente (Cr VI)	mg/kg	0,2	-	0,3	-	-	-
Met	alli [Su camp. secco all'aria (frazione < 2 mm) da	ti espress	i sulla t	otalità dei materi	ali secchi < 2 cm	(105°C) compre	nsiva	
dello	o scheletro + EPA 3050B 1996 + EPA 6020B 201	41						
	Arsenico	mg/kg	1	<1	4±1	3 ±1	<1	3 ±1
	Cadmio	mg/kg	0,1	<0,1	<0,1	0,2 ±0,1	<0,1	0,1 ±0,1
	Cobalto	mg/kg	0,1	<0,1	1,7 ±2,1	1,6 ±2,1	<0,1	1,4 ±2,0
	Nichel	mg/kg	1	2 ±1	6 ±2	7 ±2	2 ±1	5 ±1
	Cromo	mg/kg	1	9 ±3	19 ±5	29 ±6	10 ±3	25 ±6
	Plombo	mg/kg	1	<1	12 ±2	13 ±2	<1	9 ±1
	Rame	mg/kg	1	<1	13 ±7	8 ±7	1 ±1	40 ±11
	Zinco	mg/kg	5	<5	15 ±5	16 ±5	<5	10 ±5
	Mercurio	mg/kg	0,1	<0,1	<0,1	<0,1	<0,1	<0,1
	Berillio	mg/kg	0,1	<0,1	0,7 ±0,5	0,7 ±0,5	<0,1	0,7 ±0,5

[Su camp, secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

mg/kg

mg/kg

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

Idrocarburi Pesanti C>12 mg/kg 5 <5 10 15 6 12

<0,1

16 ±3

<0,1

17 ±3

 $0,7\pm0,2$

0,1 ±0,1

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Vanadio

Tallio

Amianto (SEM) mg/kg 100 <100 <100 <100 <100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

Alacior mg/kg 0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01

20160524 13 / 16

e

12 ±3

<0,1

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER TO CONCLUDING TO CONTROL TO CONT	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 42 a 79

PD16-01004_0

RISULTATI

Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato
	Campionato il	Scaranto 22/03/2016	Scaranto 22/03/2016	Scaranto 22/03/2016	Scaranto 21/03/2016	Scaranto 22/03/2016
		personale -				
	Campionato da	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ne
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
		of Melenduano (LE)	of Melendugno (LE)	of Melenduano (LE)	of Melenduano (LE)	of Melenduano (L
		Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipalit
	Proveniente da	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel accer
		30_2,4_2,6	80_0_0,2	220316	210316	220316
	Sigla campione	RoW13v_220316_	RoW13v_220316_	BIANCO 1D -	BIANCO 2D -	BIANCO 3D -
	Campione n*	PD16-01004.026	PD16-01004.027	PD16-01004.028	PD16-01004.029	PD16-01004.03

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
beta-BHC	make	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Ciordano	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Canading to States your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 43 a 79

PD16-01004_0

LIMITI DI RIFERIMENTO

Matrice		Descrizione limiti						
TERRENI		L3:I limiti si riferiscono alle C.S.C. della colonna A della Tabella 1 dell'All. 5 al titolo V della parte IV del D.Lgs 152/06. L4:I limiti si riferiscono alle C.S.C. della colonna B della Tabella 1 dell'All. 5 al titolo V della parte IV del D.Lgs 152/06.						
	Parametro		U.M.	L1	L2	L3	L4	
EPA 3060A 1996	+ EPA 7196A 1992]							
	Cromo VI		mg/kg		-	2	15	
romo esavalente	(Cr VI) [ISO 15192: 201	0]						
	Cromo esavalente (Cr VI)		mg/kg			2	15	
Metalli [EPA 3050	B 1996 + EPA 6020B 201	4]			•	•		
	Arsenico	-	mg/kg			20	50	
	Cadmio		mg/kg			2	15	
	Cobalto		mg/kg		-	20	250	
	Nichel		mg/kg	-	-	120	500	
	Cromo		mg/kg	-	-	150	800	
	Piombo		mg/kg	-	-	100	1000	
	Rame		mg/kg		-	120	600	
	Zinco		mg/kg			150	1500	
	Mercurio		mg/kg		-	1	5	
	Berillio		mg/kg		-	2	10	
	Vanadio		mg/kg		-	90	250	
	Tallio		mg/kg		-	1	10	
EPA 3550C 2007	7 + EPA 3620C 2007 + EF	A 8015C 2007]						
	Idrocarburi Pesanti C>12	-	mg/kg			50	750	
DM 06/09/1994 0	GU n° 288 10/12/1994 All	1B1			•	•		
	Amianto (SEM)	-	mg/kg			1000	1000	
S.V.O.C. [EPA 358	50C 2007+EPA 3620C 20	114 + EPA 8270D 2007]						
	Alacior	•	mg/kg			0,01	1	
	Aldrin		mg/kg			0,01	0,1	
	Atrazina		mg/kg		-	0,01	1	
	alfa-BHC		mg/kg			0,01	0,5	
	beta-BHC		mg/kg			0,01	0,5	
	gamma-BHC (Lindano)		mg/kg			0,01	0,5	
	Clordano		mg/kg			0,01	0,1	
	DDD, DDT, DDE		mg/kg		-	0,01	0,1	
	Dieldrin		mg/kg		-	0,01	0,1	
	Endrin		mg/kg			0.01	2	

20160524 15/16 e

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 44 a 79

PD16-01004 0

LEGENDA

NOTE

- Eseguito presso altro laboratorio SGS.
- AA Eseguito presso laboratorio esterno.
- RL Limite di Rapportaggio
- Limite di rapportaggio innalzato
- Limite di rapportaggio diminuito

- IS Campione insufficiente per l'analisi.
- LNR Campione elencato ma non ricevuto.
- NA Campione non analizzato per questo parametro
- TBA Parametro non ancora analizzato

NOTE RELATIVE ALL'ACCREDITAMENTO

Prova non accreditata ACCREDIA.

I presente Rapporto è emesso dalla Società in accordo con le Condizioni Generali SGS per i servizi di ispezione e controllo (copia disponibile su richiesta). Il rilascio di questo Rapporto non esonera le parti negoziali dall'esercitare i diritti e dall'adempiere alle obbligazioni derivanti dai negozio tra loro stipulato. Ogni patto contrario non è alla Società opponibile. La responsabilità della Società in base a questo Rapporto è limitata al caso di provata colpa grave ed in ogni caso ad un ammontare non superiore a disci volte i diritti e le commissioni dovute. Eccetto accordi particolari, gli eventuali campioni, se presi, non saranno trattenuti dalla Società per più di un mese. I risultati contenuti nei seguente rapporto si riferiscono esclusivamente al campione provato.

Il presente Rapporto o copia dello stesso verrà conservato dalla Società per un periodo pari a 10 anni.
Il confronto dei risultati con i rispettivi limiti, quando presente, non tiene conto dell'incertezza di misura stimata.
Eventuali risultati fuori limite sono segnalati in rosso.

Il recupero ove previsto, è da intendersi compreso all'interno dei limiti di accettabilità specifici. Se non diversamente indicato il risultato è da intendersi non corretto per il recupero ottenuto.

Il presente rapporto può essere riprodotto solamente per intero.

- Fine del Rapporto di Prova -

20160524 16 / 16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Security your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 45 a 79

PD16-01011 _0

Prima pagina

CLIENTE		LABORATORIO	
Cliente	SHELTER SRL	Head of Laboratory	Cristiano Toffoletti
		Laboratorio	SGS Italia S.p.A.
Indirizzo	Viale Gran Sasso, 13	Indirizzo	Via Campodoro, 25
	Milano 20131		Villafranca Padovana (PD) 35010
Contatto	Ing. Claudio Scura	Telefono	+39 049 9050013
Telefono	0236687050	Fax	+39 049 9050065
Fax	0236687069	Email	sgs.eco@sgs.com
Email		Accettazione n°	PD16-01011
Progetto	Terreno Tab. A	Pervenuto II	24/03/2016
Ordine n°	1153/2015/C1/PD/Rev.4	Data inizio prove di lab.	24/03/2016
Matrice	ACQUA(3)	Data fine prove lab.	05/04/2016
		Rapporto di Prova n°	PD16-01011 _0
		Data emissione	24/05/2016

COMMENTI

Incertezza estesa di misura stimata al 95% di livello di confidenza e fattore di copertura k=2

Documento con firma digitale avanzata ai sensi della normativa vigente. Firmato digitalmente da Dr. Cristiano Toffoletti Ordine dei chimici della Provincia di Venezia/94004270271

RIFERIMENTI

Mattia Favaro Cristiano Toffoletti Project Agent Head Of Laboratory

SGS Italia S.p.A Via Campodoro, 25 35010 Villafranca Padovana (PD) Italy

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Security your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 46 a 79

PD16-01011 _0

INDICE

Prima Pagina.
Indice
Risultati
Lancada

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Canading to States your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 47 a 79

PD16-01011 _0

SULTATI						
	0	pione n*	PD16-01011.001	PD16-01011.002	PD16-01011.003	
	Sigla ca		Bianco 2A	Bianco 3A	Bianco 1A	
		ente da		Microtunnel access		
	1104011	oillo Ga		Area, Municipality		
				of Melendugno (LE)		
	Tipo ca	mpione	ACQUA	ACQUA	ACQUA	
		nato da	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	
			personale -	personale -	personale -	
			Scaranto	Scaranto	Scaranto	
	Camp	ionato il	21/03/2016	22/03/2016	22/03/2016	
Parametro	U.M.	RL	Risultato	Risultato	Risultato	
ampionamento [DLgs n.152 03/04/2006 GU n.88	14/04/2006	all. 2 p	xarte IV]			
Campionamento	-	-	:	:	:	
nianto [Su campione tal quale + DM 06/09/1994	GU n° 288	10/12/1	994 All 1B]			
Amianto	n fibre/L	5000	<5000	<5000	<5000	
etalli [Su campione tal quale + EPA 3005A 1992	+ EPA 602	0B 2014	4]			
Arsenico	ug/L	1	1,00 ±1	2,00 ±1	2,00 ±1	
Berillio	ug/L	0,1	<0,10	<0,10	<0,10	
Cadmio	ug/L	1	<1,000	<1,000	<1,000	
Cobalto	ug/L	1	<1,000	<1,000	<1,000	
Cromo	ug/L	1	<1,000	1,000 ±1	1,000 ±1	
Mercurio	ug/L	1	<1,000	<1,000	<1,000	
Nichel	ug/L	1	7,00 ±1	5,00 ±1	<1,00	
Plombo	ug/L	1	<1,00	<1,00	<1,00	
Rame	ug/L	1	2,00 ±1	4,00 ±1	2,00 ±1	
Tallio	ug/L	1	<1,000	<1,000	<1,000	
Vanadio	ug/L	1	<1,000	<1,000	<1,000	
Zinco	ug/L	1	9,0 ±1	29,0 ±3,2	17,0 ±1,9	
omo esavalente [Su campione tal quale + APAT	CNR IRSA	3150 0	C Man 29 2003]			
Cromo esavalente (come Cr)	ug/L	1	<1	1 ±1	<1	
rocarburi [Su campione tal quale + EPA 3510C 1	996 + EPA	3620C	2014 + EPA 801	5C 2007]		
Idrocarburi Pesanti C >= 12	ug/L	20	<20,0	<20,0	<20,0	
V.O.C. [Su campione tal quale + EPA 3520C 199	96 + EPA 8	270D 2	007]			
Alacior	ug/L	0,05	<0,05	<0,05	<0,05	
Aldrin	ug/L	0,03	<0,03	<0,03	<0,03	
Atrazina	ug/L	0,05	<0,05	<0,05	<0,05	
alfa-Esaciorocicioesano	ug/L	0,05	<0,05	<0,05	<0,05	
beta-Esaciorocicioesano	ug/L	0,05	<0,05	<0,05	<0,05	
gamma-Esaciorocicloesano (Lindano)	ug/L	0,05	<0,05	<0,05	<0,05	
Clordano	ug/L	0,05	<0,05	<0,05	<0,05	
DDD, DDT, DDE	ug/L	0,05	<0,05	<0,05	<0,05	
Dieldrin	ug/L	0,03	<0,03	<0,03	<0,03	
Endrin	ug/L	0.05	< 0.05	< 0.05	< 0.05	

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Canaditag to Santar your Bainess	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 48 a 79

PD16-01011 0

LEGENDA

NOTE

- Eseguito presso altro laboratorio SGS.
- AA Eseguito presso laboratorio esterno.
- RL Limite di Rapportaggio
- Limite di rapportaggio innalzato
- ↓ Limite di rapportaggio diminuito

- IS Campione insufficiente per l'analisi.
- LNR Campione elencato ma non ricevuto.
- NA Campione non analizzato per questo parametro
- TBA Parametro non ancora analizzato

NOTE RELATIVE ALL'ACCREDITAMENTO

Prova non accreditata ACCREDIA.

I presente Rapporto è emesso dalla Società in accordo con le Condizioni Generali SGS per i servizi di ispezione e controllo (copia disponibile su richiesta). Il rilascio di questo Rapporto non esonera le parti negoziali dall'esercitare i diritti e dall'adempiere alle obbligazioni derivanti dal negozio tra loro stipulato. Ogni patto contrario non è alla Società opponibile. La responsabilità della Società in base a questo Rapporto è limitata al caso di provata colpa grave ed in ogni caso ad un ammontare non superiore a disci volte i diritti e le commissioni dovute. Eccetto accordi particolari, gli eventuali campioni, se presi, non saranno trattenuti dalla Società per più di un mese. I risultati contenuti nei seguente rapporto si riferiscono esclusivamente al campione provato.

Il presente Rapporto o copia dello stesso verrà conservato dalla Società per un periodo pari a 10 anni.
Il confronto dei risultati con i rispettivi limiti, quando presente, non tiene conto dell'incertezza di misura stimata.
Eventuali risultati fuori limite sono segnalati in rosso.

Il recupero ove previsto, è da intendersi compreso all'interno dei limiti di accettabilità specifici. Se non diversamente indicato il risultato è da intendersi non corretto per il recupero ottenuto.

Il presente rapporto può essere riprodotto solamente per intero.

- Fine del Rapporto di Prova -

20160524 4/4

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Station's your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 49 a 79

ALLEGATO D - STRATIGRAFIE

Stratigrafie – Trivelsonda

TAP AG

Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Canading to States your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 50 a 79

Committente:

SHELTER S.R.L.

Viale Gran Sasso, 13 - 20131 Milano

RELAZIONE SULL'ATTIVITA D'INDAGINE GEOGNOSTICO-AMBIENTALE

Allegato

REPORT STRATIGRAFICO DEI SONDAGGI

Riferimento:

Trans Adriatic Pipeline - TAP -

"Piano di Campionamento dell'Area di Costruzione del Microtunnel e RoW 13" Località San Foca Comune di Melendugno in provincia di Lecce

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Sendad your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 51 a 79

Comn		HELTER s.r.l. Viale Gran Sasso, 13 – 20131 Milano								tic Pipeline - Area Microtunnel (MT) nune di Melendugno in provincia di l				_	
De	nominazion	e sondaggio V	27790	584 - UTM34N 02,707 E 79,985 N	Quota 9,67 m	Direzion	e Lavo			Geok	ogo	Perf	foratore trepido		
	Data iniz	io/fine	Profondità 12.0 m				di perforazione ggio continuo				anto di per aste XL Mu			14/:	
	21/03/	2018	12,0111	104/12/ 11111	Cal	otaggio conti					aste XL Mic	JIGGI III	S	iche	
Profondità (m)	Litologie		Descriz	ione stratigra	fica		Profondità falda	Carotiere	Rivestimento	Top Soil	Campione	Aliquote	Profondità	Riempimento	
0,2							m	ø	ø	m	m/n. 0,0	n.		L	
0,2		Terreno d marrone re	i copertura; : ossastro	sabbia debol	mente ghi	iosa, colore					C	2	1,0		
											1,0				
													2,0		
													3,0		
							= 4,5						4,0		
							=				5,5		5,0		
		assumere	aspetto di sa	medio-grossa, poco cem sabbia grossolana, colon coli livelli cementati di s	ana, colore	biancastro.		Ø=101 mm	Ø=127 mm		С	2	6,0		
			ni livelli a gra								6,5		7,0		
													8,0		
													9,0		
													10,0		
													11,0		
1											11,5 C	2	+		

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Security your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 52 a 79

		HELTER s.r.l. /iale Gran Sass		Milano								rotunnel (MT) in provincia di			
Der	nominazione			84 - UTM34N	Quota	Direzione			lune	Geok			oratore		_
	SB 2	v		8,304 E 80,286 N	9,94 m s.l.m.m.	Shel	ter			P. Re	scio	F. In	trepid	lo	
	Data inizio		Profondità	Diametro	Meto	do di perforaz					anto di peri		_	mme	
	21/03/2	016	12,0 m	101/127 mm	Can	otaggio contin	uo			Fr	aste XL Mu	iltidrill	_	14/10 chem	
Profondità (m)	Litologie		Descrizi	ione stratigra	ifica		Profondità falda	Carotiere	Rivestimento	Top Soil	Campione	Aliquote		Riempimento	
							m	ø	ø	m	m/n.	n.		-	t
0,3		Terreno di marrone ros		sabbia debo	lmente ghia	iosa, colore					0,0 C	2	1,0		İ
													2,0		
													3,0		
							-44						4,0		
							* 4,5				5,5		5,0		
		assumere a	spetto di sa	edio-grossa, abbia grosso oli livelli cem	lana, colore	biancastro.		Ø=101 mm	Ø=127 mm		с	2	6,0		
		cm ed alcun	i livelli a grar	na fina. Bagn	ato intorno	a 4,5 m.					6,5		7,0		
													8,0		
													9,0		
													10,0		
											11,5		11,0		
							l	l	l		C 12,0	2	12.0	l	١

Form n* 21 pag.1 di 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 54 a 79

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER PROGRAMMED TO SHELL THE RESERVE THE RESERVE TO SHELL THE RESERVE TO SHELL THE RESERVE TO SHELL THE RESERVE TO SHE THE SHE THE RESERVE TO SHE THE RESERVE TO SHE THE RESERVE TO SHE THE THE RESERVE TO SHE THE RESERVE TO SHE THE RESERVE TO SHE THE RE	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 55 a 79

Com		HELTER s.r.l. Viale Gran Sass		Milana								rotunnel (MT) in provincia di		
D	enominazion	e sondaggio	Coord. WGS	84 - UTM34N 5,789 E	Quota 9,54 m	Direzion			une	Geok			orator	
	SB 3			4,668 N Diametro	s.l.m.m.	Shel do di perforaz			<u> </u>	P. Res	s cio into di per		trepid	lo omm
	21/03/		12,0 m	101/127 mm		otaggio contin					aste XL Mu		_	14/1
							da		0					che
Profondità (m)	Litologie		Descrizi	one stratigra	ifica		Profondità falda	Carotiere	Rivestimento	Top Soil	Campione	Aliquote	Profondità	Riempimento
							m	ø	ø	m	m/n.	n.		
0,4		Terreno di marrone ros		abbia debol	lmente ghia	iosa, colore					0,0 C	2	1,0	
											1,0		2,0	
													2,0	
													3,0	
													4,0	
							-4,5						5,0	
		Calcarenite assumere as	spetto di sa	bbia grossol	lana, colore	biancastro.		Ø=101 mm	Ø=127 mm		5,5 C	2	6,0	
		Intercalati p cm ed alcuni						2	8		6,5		7,0	
													8,0	
													9,0	
													10,0	
													11,0	
12,6											11,5 C 12,0	2	12,0	
C; To	op Soit : cam	pione per analis	i chimiche		Ann	otazioni								

Form n° 21 pag.2 di 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER THE CONSISTING TO SEARCH SHOWS TO SHOW THE SHOWS THE S	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 57 a 79

	75	TRIV	ELSONDA d exploration i del soccesso	ant W		Vi	a Degli Stagnir	ni, 8 - 1	73018				12 785237 fax 0 om info@trive			
	Comm	nittente: S	HELTER s.r.l. Viale Gran Sass		Milano		l			tic Pipeline - Area Microtunnel (MT) - nune di Melendugno in provincia di Lecce						
ı	Der	nominazior	ne sondaggio	Coord. WGS	84 - UTM34N	Quota	Direzione				Geok	_	Perfora			
-		SB	4 v		9,777 E 2,418 N	8,93 m s.l.m.m.	Shel	ter		l	P. Re	scio	F. Int	repid	0	
١		Data iniz		Profondità	Diametro		do di perforazi	ione				pianto di perforazione		Commessa		ssa
ı		22/03/	2016	7,0 m	101/127 mm	Care	otaggio contin	uo		Fraste XL Mu					14/16	
-	~							ep		_					chem zome	
9/310/2010	Profondità (m)	Litologie		Descrizi	one stratigra	fica		Profondità falda	Carotiere	Rivestimento	Top Soil	Campione	Aliquote	Profondità	Riempimento	Tubo
10/								m	ø	ø	m	m/n.	n.			
5	0,4		Terreno di marrone ros		sabbia debo	olmente lim	iosa, colore									
į l	0,7				edio-grossa,	poco ceme	ntata si da									
22 50			assumere as	petto di sabl	bia grossolan	a, colore ros	ia							1,0		
9																
8																
?														2,0		
ŝ																
E,														2.0		
8									Ē	Ē				3,0		
2			6-1		4			* 3,5	Ø=101 mm	Ø=127 mm						
ž			1		edio-grossa, bbia grossol		ntata si da biancastro.	=	Ø=1(Ø=1:				4,0		
ë			Intercalati p	ochi e picco	li livelli cem	entati di sp	essore 3 - 5							-		
ens			cm ed alcuni	i livelli a grar	a fina. Bagn	ato intorno a	3,5 m.									
ě														5,0		
8																
ġ												5,5				
6 2 d												С	2	6,0		
8												_	_			
2												6,5				
į	7,0													7,0		
Lab oratono autorizato con																
	C; Top	Soil : can	npione per analis	i chimiche		Ann	otazioni									
	.,															
1																

Form n* 21 pag.1 di 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Security your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 58 a 79

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Senten your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 59 a 79

	15	TRIV	ELSONDA 1 esploracioni del soccesso	ant is		Via				w	ww.tri	velsonda.co	2 785237 fax 0 om info@trive	lsond		
ı	Comm		HELTER s.r.l. Viale Gran Sasso		Milano								rotunnel (MT) n provincia di l			
١	Der		e sondaggio	Coord. WGS	84 - UTM34N	Quota				une	Geok			rator		
١		SB 5	5 v		5,734 E .6,866 N	9,14 m s.l.m.m.	Shel	ter			P. Res	scio	F. Int	repid	0	
ı		Data iniz		Profondità	Diametro			do di perforazione				into di peri			mme	
ŀ		22/03/	2016	4,0 m	101/127 mm	Care	otaggio contin	uo		Fraste XI			itidrili	_	14/16 chem	
/sic/zuro	Profondità (m) Descrizione stratigra Descrizione stratigra				one stratigra	fica		Profondità falda	Carotiere	Rivestimento	Top Soil	Campione	Aliquote		Riempimento au	
7								m	ó	ó	m	m/n.	n.		_	\vdash
ala PUSUP II. /	0,5		Terreno di marrone ros		sabbia debo	olmente lim	osa, colore					0,0 C	2	1,0		
9												1,0				
. 59 - Cirolia			Calcarenite assumere as Intercalati p	spetto di sa	bbia grosso	lana, colore	biancastro.		Ø=101 mm	Ø=127 mm		C	2	2,0		
E,			cm ed alcuni									2,5				
9/0								= 3,2				3,0		3,0		
ě								=				С	2			
ž	4,0											4,0				
Laboratono autonizato con U. Nr. nº 5 ues des des dividad, as																
	C; Top	Soil : cam	pione per analis	i chimiche		Ann	otazioni									

Form n* 21 pag.1 di 2

Laboratorio autorizzato con D.M. n° 5029 del 24,05,2011, al sensi del DPR n° 380/01, art. 59 - Circolare d

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Station your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 61 a 79

De		IELTER s.r.l. Tale Gran Sasso sondaggio	,	I Milano 84 - UTM34N	Quota	Cantiere: Trans Adriatic Pipeline - Area Pista di Lavoro (RoW) - Località San Foca Comune di Melendugno in provincia di Lecce Direzione Lavori Geologo Perforatore								
	RoW			5,871 E 4,035 N	10,14 m	Shelter			Г	P. Res		F. In	trepid	lo
	Data inizio		Profondità	Diametro	s.l.m.m. Meto	do di perforaz	ione			Impia	nto di peri	forazione	Co	mme
	22/03/2	016	3,0 m	101/127 mm	Caro	otaggio contin	uo		_	Fr	aste XL Mu	iltidrill	╙	14/16
Profondità (m)	Litologie		Descrizi	one stratigra	fica		Profondità falda	Carotiere	Rivestimento	Top Soil	Campione	Aliquote		Riempimento somo somo somo somo somo somo somo so
							m	ø	ø	m 0,0	m/n.	n.		
0,6		Calcarenite assumere as Intercalati p cm ed alcuni	a grana me spetto di sa ochi e picco	edio-grossa, bbia grossol li livelli cem	poco ceme lana, colore entati di spo	ntata si da biancastro. essore 3 - 5		Ø=101 mm	Ø=127 mm	0,2	1,0 C 1,5	2	2,0	
3,0							=				2,6		3,0	

Agentatorio autorios

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK _{5SHELTER}	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 63 a 79

ALLEGATO E - PHOTOLOG

1.	MT1v	. 64
2.	MT2v	. 64
3.	MT3v	. 65
4.	MT4v	. 65
5.	MT5v	. 66
6.	MT6v	. 66
7.	MT7v	. 67
8.	MT8v	. 67
9.	MT9v	. 68
10.	MT10v	. 68
11.	MT11v	. 69
12.	SB1v	. 70
13.	SB2v	.72
14.	SB3v	.74
15.	SB4v	.76
16.	SB5v	.78
17.	RoW13v	. 79

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 64 a 79

1. MT1v

2. MT2v

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 65 a 79

3. MT3v

4. MT4v

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 66 a 79

5. MT5v

6. MT6v

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 67 a 79

7. MT7v

8. MT8v

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to sense your flusions	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 68 a 79

9. MT9v

10. MT10v

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER TO CONDITION OF THE PROPERTY OF TH	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 69 a 79

11. MT11v

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER TO CONSIDER TO THE	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 70 a 79

12. SB1v

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 71 a 79

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001	Rev. No.:	0
RSK SHELTER The Consulting to Senting your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 72 a 79

13. SB2v

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001		0
RSK SHELTER The Consulting to sense your flusions	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 73 a 79

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001		0
RSK SHELTER The Consulting to Senting your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 74 a 79

14. SB3v

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001		0
RSK SHELTER The Consulting to Section your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 75 a 79

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001		0
PSK SHELTER Doc. Title:		Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 76 a 79

15. SB4v

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001		0
PSK SHELTER Doc. Title:		Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 77 a 79

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001		0
RSK SHELTER The Consulting to sense your flusions	Risultati dello studio di caratterizzazio Piano di Campionamento su base vol costruzione del Microtunnel, strade di		Page:	Pag. 78 a 79

16. SB5v

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TAT-0001		0
RSK SHELTER The Consulting to sense your flusions	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13	Page:	Pag. 79 a 79

17. RoW13v

TAP AG
Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13
Project no. 80635

TAP AG

Progetto Trans Adriatic Pipeline

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

					LAN.	X In	1 - 11-
0	06/09/2016	Emesso per informazione		IFR	LUR-VAA	MAS	TN
Rev.	Data revisione (gg-mm-aaaa)	Motivo dell'emissione	IFR		Preparato da	Verificato da	Approvato da
			Contrattore nome:	RSK - SHE	ELTER		
D	SHELTER The Consulting to Sustain your Business		Contrattore Progetto No.:	80635			
		The Consulting to Sustain your Business	Contrattore Doc. No.:	RSK/H/P/F	P80635/04/01/	01	
			Tag No's.: N/A				
TAP AG	Contratto No.: C	5577	Progetto No.: WBS11D01F0	004			
PO No.: WBS11D01F004						Pagina: 1 of	152
TAPAG	Documento No.:					220	

IPL00-C5577-100-Y-TRX-0001

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001		0
RSK SHELTER The Consulting to Station your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	2 di 152

INDICE

1.	INTRODUZIONE	4
1.1	BREVE SINTESI DEI LAVORI	4
1.2	CONTENUTO DEL DOCUMENTO	5
2.	DESCRIZIONE DELLE ATTIVITÀ DI INDAGINE ESEGUITE	6
2.1	PREMESSA	6
2.2	ATTIVITÀ PROPEDEUTICHE ALLE INDAGINI	6
2.3	RILEVAMENTO TOPOGRAFICO	7
2.4	MODALITÀ DI ESECUZIONE DELLE INDAGINI	9
2.5	MODALITÀ DI CAMPIONAMENTO DEI TERRENI 2.5.1 Campionamento dei Top Soil 2.5.2 Campionamento dei Terreni Profondi	10
2.6	CRITERI DI GESTIONE E CONSERVAZIONE DEI CAMPIONI	14
2.7	ANALISI CHIMICHE	15
2.8	CONTROLLO QUALITÀ	15
3.	RISULTATI DELLE INDAGINI	16
3.1	GEOLOGIA LOCALE	16
3.2	RISULTATI DELLE ANALISI CHIMICHE DEI TERRENI 3.2.1 Risultati area PRT e Strade di accesso (AR) 3.2.2 Risultati area RoW	17
4.	CONCLUSIONI	20

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001		0
RSK SHELTER TO CONCRETE TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	3 di 152

ELENCO DELLE TABELLE	
Tabella 1-1 – Elaborati allegati al Rapporto di Campionamento	5
Tabella 2-1 - Sintesi delle Attività di Indagine in Campo Tabella 2-2 - Coordinate dei punti di indagine per il campionamento dei terreni in	6
ottemperanza alla prescrizione A.25 a)	7
Tabella 2-3 – Schema di esecuzione dei sondaggi	9
Tabella 2-4 - Schema di campionamento dei Top Soil	11
Tabella 2-5 - Schema di campionamento dei Sondaggi	13
Tabella 2-6 – Set analitico	15
ALLEGATI	
ALLEGATO A - ELABORATI GRAFICI	21
ALLEGATO B - RISULTATI ANALITICI TERRENI	23
ALLEGATO C – CERTIFICATI ANALITICI TERRENI	49

ACRONIMI

TAP: Trans Adriatic Pipeline

RoW: Right of Way - Pista di Lavoro

PRT: Pipeline Receiving Terminal - Terminale di Ricezione del Gasdotto

BVS: Block Valve Station - Valvola di Intercettazione di Linea

AR: Access Road - Strade di Accesso

UXO: Unexploded Ordnance

MT: Microtunnel

MT-WS: Microtunnel Work Site – Cantiere temporaneo del Microtunnel

CSC: Concentrazione Soglia di Contaminazione

ALLEGATO D - STRATIGRAFIE E FOTOLOG

PMA: Piano di Monitoraggio Ambientale

ISPRA: Istituto Superiore per la Protezione e la Ricerca Ambientale

ARPA: Agenzia Regionale per la Protezione dell'Ambiente

HSE: Healt, Safety and Environment (Salute, Sicurezza e Ambiente)

105

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consulting to Sensor your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	4 di 152

1. INTRODUZIONE

Il presente documento costituisce la relazione tecnico descrittiva delle attività di campionamento e analisi dei terreni eseguite nel periodo intercorso tra il 28 Giugno 2016 e il 1 Luglio 2016 da SHELTER Srl – RSK. L'attività è stata richiesta da TAP ed eseguita, come comunicato ad ARPA Puglia in data 16/06/2016 con nota prot. LT-TAPIT-ITSK-00803, presso l'area del terminale di ricezione (PRT), le strade di accesso e lungo la Pista di Lavoro (RoW) ricadenti nell'agro di Melendugno (LE).

Le attività oggetto del presente rapporto sono state eseguite in ottemperanza alla prescrizione A25 comma a) del decreto di compatibilità ambientale del progetto TAP (D.M. 223 del 11/09/2014). Qui di seguito si riporta un estratto del decreto di compatibilità ambientale con la prescrizione in oggetto A25: "In merito alla gestione delle terre e rocce da scavo, prodotte dalla realizzazione dell'intera opera (condotta, Area di Costruzione del Microtunnel, area di cantiere, PRT, ecc.) in conformità a quanto stabilito dall'art.186 del D.Lgs. n. 152/2006 e s.m.i.: a) Il proponente dovrà effettuare ulteriormente il campionamento dei terreni nell'area interessata dai lavori per la caratterizzazione chimica e chimica-fisica di essi, al fine di accertare la piena compatibilità ambientale delle terre e rocce rispetto al loro riutilizzo. Il Piano di Campionamento, che dovrà essere approvato dalla competente ARPA Puglia, dovrà considerare la potenziale presenza di sostanze inquinati connesse con le attività antropiche e con le fonti di pressione ambientale riscontrate sull'area interessata dai lavori."

Il Piano di Campionamento è stato trasmesso all'Autorità competente dalla società TAP AG con nota prot. LT-TAPIT-ITSK-00822 in data 28/07/2016 che tiene conto dei commenti effettuati congiuntamente da ISPRA e ARPA Puglia pervenuti con la relazione tecnica per la verifica di ottemperanza alla prescrizione A.25 a), del D.M. 223/2014, trasmessa con nota prot. 30214 del 01/05/2016.

Le attività oggetto del presente documento, relativamente ai sondaggi, campionamenti ed analisi dei terreni, sono state eseguite secondo la metodologia riportata nel seguente Piano di Campionamento:

• Piano di Campionamento Onshore (PRT – BVS - RoW). Doc n°: IAL00-ERM-643-Y-TAE-1034.

Si ricorda che i risultati della caratterizzazione del sondaggio RoW13 sono stati riportati nella relazione "Risultati dello studio di caratterizzazione dei suoli. Piano di Campionamento su base volontaria nell'area di costruzione del Microtunnel, strade di accesso e al punto RoW13 - IPL00-C5577-100-Y-TAT-0001" in quanto tale attività è stata condotta in concomitanza alla caratterizzazione su base volontaria dell'area del microtunnel (21-22 marzo – 2016).

1.1 BREVE SINTESI DEI LAVORI

Le attività di indagine presso il sito in oggetto si sono svolte nel periodo 28/06/2016 – 01/07/2016.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0	
RSI SHELTER The Consulting to Suction your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	5 di 152	

Nel corso delle attività di campo, sono stati realizzati 23 sondaggi (postazioni PRT e RoW) e 23 Top Soil (postazioni PRT e AR) nel pieno rispetto delle procedure operative definite dal Piano succitato.

Complessivamente, sono stati raccolti 85 campioni di terreno sottoposti ad analisi.

Sono inoltre state eseguite le seguenti attività:

- battitura topografica dei 23 sondaggi (postazioni PRT e RoW);
- battitura topografica dei 23 Top Soil (postazioni PRT e AR);

1.2 CONTENUTO DEL DOCUMENTO

Il presente documento si articola nelle seguenti 4 sezioni:

- 1. Introduzione
- Descrizione delle Attività di Indagine Eseguite: illustra le modalità utilizzate per l'esecuzione delle attività di campo oltre alle procedure di campionamento ed acquisizione dati per le matrici suolo e sottosuolo;
- 3. Risultati delle Indagini Eseguite: definisce i caratteri principali dei terreni campionati tramite i dati ottenuti, fornendo inoltre una rappresentazione grafica e tabellare di questi ultimi;
- 4. Conclusioni.

Sono inoltre riportati in allegato i seguenti elaborati (cfr. Tabella 1-1).

Tabella 1-1 – Elaborati allegati al Rapporto di Campionamento

Allegato	Titolo	Formato Digitale (pdf)	
А	Elaborati Grafici Tavola 1 – Area PRT - Inquadramento e punti di campionamento dei suoli;	Х	
	Tavola 2 – Area RoW - Inquadramento e punti di campionamento dei suoli.	V	
В	Risultati Analitici Terreni – Tabelle X		
С	Risultati Analitici Terreni – Certificati Analitici - SGS X		
D	Stratigrafie e Fotolog - Trivelsonda	X	

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	6 di 152

2. DESCRIZIONE DELLE ATTIVITÀ DI INDAGINE ESEGUITE

2.1 PREMESSA

Le Attività di Indagine in sito si sono svolte nell'arco temporale compreso tra il 28/06/2016 e il 01/07/2016. Informazioni riguardanti la tipologia di indagine e le date di esecuzione vengono sintetizzate nella seguente Tabella 2-1.

Tabella 2-1 - Sintesi delle Attività di Indagine in Campo

Tipologia di Indagine	Numero di Indagini realizzate	Date di realizzazione
Diliovo topografico	46	28/06/2016
Rilievo topografico	40	29/06/2016
		28/06/2016
Derferezione di Condeggi	22	29/06/2016
Perforazione di Sondaggi	23	30/06/2016
		01/07/2016
	23	28/06/2016
Dorforazione di Tan Cail		29/06/2016
Perforazione di Top Soil		30/06/2016
		01/07/2016
		28/06/2016
Draliava di campioni di Tarrana	QE (per englisi shimishs)	29/06/2016
Prelievo di campioni di Terreno	85 (per analisi chimiche)	30/06/2016
		01/07/2016

Per le specifiche sull'ubicazione dei punti di indagine si rimanda alle Tavole 1 e 2 di cui all'Allegato A.

2.2 ATTIVITÀ PROPEDEUTICHE ALLE INDAGINI

Preliminarmente all'avvio delle attività di campionamento, è stato effettuato in data 06/06/2016 un sopralluogo in Sito dai seguenti tecnici:

- TAP: personale HSE
- SGS Italia Spa: società incaricata alle attività di prelievo e analisi dei campioni di terreno;
- Trivelsonda: società incaricata delle attività di rilevamento topografico dei punti di indagine e perforazione dei sondaggi;
- SHELTER: in qualità di società incaricata nella direzione dei lavori.

Durante l'incontro si è provveduto a:

- definire le indagini di campionamento dei terreni in adempimento alla Prescrizione A.25 a)
 in accordo alle modalità previste dal Piano di Campionamento;
- verificare la logistica delle postazioni di perforazione e Top Soil proposte con definizione delle vie di accesso ai punti di indagine.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0	
RSI SHELTER The Consulting to Suction your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	7 di 152	

In taluni casi si è reso necessario individuare dei nuovi punti di campionamento prossimi a quelli identificati nel *Piano di Campionamento Onshore (PRT – BVS - RoW). Doc n°: IAL00-ERM-643-Y-TAE-1034* in quanto non accessibili con i mezzi di perforazione. Nella Tabella 2-2 vengono riportati i dettagli delle modifiche apportate.

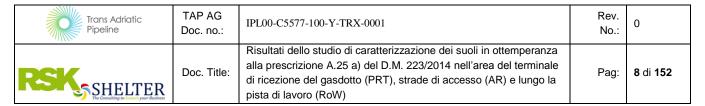
2.3 RILEVAMENTO TOPOGRAFICO

Nei giorni 28/06/2016 e 29/06/2016 la società Trivelsonda ha eseguito l'attività di rilevamento topografico dei punti di indagine presso l'area del terminale di ricezione (PRT), le strade di accesso (AR) e lungo la Pista di Lavoro (RoW) ricadenti nell'agro di Melendugno (LE).

Il rilievo topografico è stato eseguito servendosi di un sistema di rilievo GPS Ashtech ProMark 200 che opera in doppia frequenza RTK per reti permanenti e garantisce un livello di precisione entro il centimetro.

Localizzati i punti di indagine, si è proceduto alla loro materializzazione con l'ausilio di picchetti in legno e cartellino identificativo.

Sono stati localizzati:


- 20 punti di prelievo di terreno superficiale (0-0,2 m) nell'area di ricezione del Terminale denominati con la sigla "PRT": 34; 35; 37; 38; 40÷55;
- 3 punti di prelievo di terreno superficiale (0-0,2 m) sulle strade di accesso del Terminale denominati con la sigla "AR": 1÷3;
- 7 punti di sondaggi profondi (0-2 m) nell'area di ricezione del Terminale denominati con la sigla "PRT": 29÷33, 36, 39;
- 16 punti di sondaggi profondi (0-2,6 m) lungo la pista di lavoro denominati con la sigla "RoW": 12, 14÷28.

La tabella seguente riassume la griglia di campionamento e le coordinate di ciascun punto di indagine eseguito su base volontaria. Per la visualizzazione grafica si rimanda alle Tavole 1 e 2 in Allegato A.

Tabella 2-2 - Coordinate dei punti di indagine per il campionamento dei terreni in ottemperanza alla prescrizione A.25 a)

Tipologia	ID	Coordinate WG	S 84 – UTM 34 N
Tipologia	ID	Est	Nord
	PRT34	271498,00	4461798,00
	PRT35	271562,00	4461813,00
	PRT37	271513,00	4461735,00
Top soil	PRT38	271576,00	4461750,00
	PRT40	271473,00	4461659,00
	PRT41	271527,00	4461672,00
	PRT42	271591,00	4461686,00

TAP AG

Tipologia	ID	Coordinate WGS 84 – UTM 34 N	
Tipologia	lD.	Est	Nord
	PRT43	271654,00	4461701,00
	PRT44	271717,00	4461715,00
	PRT45	271781,00	4461730,00
	PRT46	271542,00	4461608,00
	PRT47	271605,00	4461623,00
	PRT48	271669,00	4461638,00
	PRT49	271732,00	4461652,00
	PRT50	271795,00	4461667,00
	PRT51	271557,00	4461545,00
	PRT52	271620,00	4461560,00
	PRT53	271683,00	4461574,00
	PRT54	271747,00	4461589,00
	PRT55	271810,00	4461603,00
	AR1	271676,00	4461113,00
	AR2	271758,00	4461390,00
	AR3	271686,00	4462106,00
	PRT29	271540,00	4461994,00
	PRT30	271532,00	4461940,00
	PRT31	271596,00	4461954,00
	PRT32	271547,00	4461876,00
	PRT33	271610,00	4461891,00
	PRT36 (1)	271621,88	4461827,83
	PRT39	271639,00	4461764,00
	RoW12	277908,00	4465177,00
	RoW14 (2)	276919,18	4464738,04
	RoW15	276614,00	4464525,00
	RoW16 (3)	276427,12	4464169,14
Sondaggi	RoW17	276138,00	4463731,00
	RoW18	275669,00	4463559,00
	RoW19	275256,00	4463287,00
	RoW20	274887,00	4463020,00
	RoW21	274398,00	4462993,00
	RoW22	273926,00	4462996,00
	RoW23 (4)	273504,34	4463249,01
	RoW24	273065,00	4463199,00
	RoW25	272677,00	4462884,00
	RoW26	272292,00	4462572,00
	RoW27	271996,00	4462174,40
	RoW28	271644,00	4461952,00

Note

^{(1):} Il sondaggio PRT36 è stato eseguito nel punto indicato in Tabella in quanto il punto previsto da progetto (Coordinate WGS 84 – UTM 34 N, Est: 271625, Nord: 4461828) non era raggiungibile con i mezzi di perforazione.

^{(2):} Il sondaggio RoW14 è stato eseguito nel punto indicato in Tabella in quanto il punto previsto da progetto (Coordinate WGS 84 – UTM 34 N, Est: 277026, Nord: 4464771) non era raggiungibile con i mezzi di perforazione.

^{(3):} Il sondaggio RoW16 è stato eseguito nel punto indicato in Tabella in quanto il punto previsto da progetto (Coordinate WGS 84 – UTM 34 N, Est: 276399, Nord: 4464126) non era raggiungibile con i mezzi di perforazione.

^{(4):} Il sondaggio RoW23 è stato eseguito nel punto indicato in Tabella in quanto il punto previsto da progetto (Coordinate WGS 84 – UTM 34 N, Est: 273502, Nord: 4463249) non era raggiungibile con i mezzi di perforazione.

	Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0	
R	SK SHELTER THE CONTROL TO SHE WAS A SHELT OF THE CONTROL TO SHE WAS A SHE WA	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	9 di 152	

2.4 MODALITÀ DI ESECUZIONE DELLE INDAGINI

L'esecuzione dei sondaggi e dei Top Soil, la cui ubicazione è riportata in Tavola 1 e Tavola 2 all'Allegato A, è stata effettuata rispettivamente dalle società Trivelsonda e SGS Italia Spa sotto la supervisione di personale SHELTER.

Le attività di campo (perforazioni e campionamenti) sono state realizzate in linea con quanto previsto dal Piano di Campionamento e dalle informazioni ricevute nel corso del sopralluogo congiunto del 06/06/2016.

2.4.1 Modalità di esecuzione dei Sondaggi

Complessivamente sono stati realizzati n. 23 sondaggi di cui n. 16 sondaggi (0-3 m) denominati RoW lungo la Pista di Lavoro e n. 7 sondaggi (0-2 m) denominati PRT nell'area di ricezione del Terminale.

I sondaggi sono stati realizzati da Trivelsonda utilizzando un impianto di perforazione oleodinamico "Fraste FS250" montato su autocarro e una macchina perforatrice "Fraste XL Multidrill" montata su un carro cingolato.

I sondaggi sono stati eseguiti col metodo a carotaggio continuo a secco, senza circolazione di fluidi, con carotiere di diametro pari a 152 mm e tubazioni di rivestimento di diametro pari a 131 mm.

Tutte le postazioni sono state realizzate sulla verticale del piano campagna e fino ad una profondità massima di 3 m dal p.c.. Nella

Tabella 2-3 viene illustrato lo schema di perforazione.

Tabella 2-3 – Schema di esecuzione dei sondaggi

Tipologia	ID	Profondità del sondaggio (m da p.c.)
	PRT29	2
	PRT30	2
	PRT31	2
	PRT32	2
	PRT33	2
	PRT36	2
	PRT39	2
	RoW12	3
Sondaggio	RoW14	3
	RoW15	3
	RoW16	3
	RoW17	3
	RoW18	3
	RoW19	3
	RoW20	3
	RoW21	3
	RoW22	3

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSV SHELTER The Consulting to Security sport Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	10 di 152

Tipologia	ID	Profondità del sondaggio (m da p.c.)
	RoW23	3
	RoW24	3
	RoW25	3
	RoW26	3
	RoW27	3
	RoW28	3

I terreni estratti dal carotiere sono stati posizionati in apposite cassette catalogatrici a singolo scomparto, atte a contenere 5 metri di carota e munite di coperchio. Le singole cassette sono state fotografate con fotocamera digitale e, a fine lavori, trasportate ed immagazzinate da Trivelsonda, presso la loro struttura, come richiesto da TAP.

A completamento delle operazioni di perforazione, i fori di sondaggio sono stati chiusi con materiale di risulta come da Piano di Campionamento.

2.4.2 Modalità di esecuzione dei Top Soil

Complessivamente sono state realizzate n. 23 indagini del terreno superficiale Top Soil (0-0,2 m) di cui n. 20 denominati PRT nell'area di ricezione del Terminale e n. 3 denominati AR lungo le strade di accesso.

Tutte le indagini sono state condotte dal personale SGS Italia Spa con l'ausilio di utensili manuali fino ad una profondità di 0,2 m da p.c. come da Piano.

2.5 MODALITÀ DI CAMPIONAMENTO DEI TERRENI

Con riferimento al dettaglio di seguito riportato relativamente alle modalità di prelievo previste per le indagini, in Allegato B è possibile visualizzare l'elenco completo dei campioni di terreno prelevati nel corso dell'indagine.

Tutti i campioni di terreno prelevati sono stati trasportati al laboratorio SGS Italia Spa di Villafranca Padovana (PD) accreditato secondo la norma UNI CEI EN ISO/IEC 17025, al n. 0080 di Accredia.

2.5.1 Campionamento dei Top Soil

Come da Piano di campionamento dei terreni superficiali spinti fino ad una profondità di 0,2 m da p.c., la raccolta dei terreni è avvenuta selezionando in campo, mediante apposito setaccio, la frazione granulometrica di diametro inferiore ai 2 cm. Le aliquote di ogni campione sono state preparate mediante l'ausilio di mezzi manuali (spatole/palette in acciaio inox), opportunamente decontaminati tra un campionamento e il successivo, e posizionando il terreno su telo impermeabile in polietilene per la successiva quartatura.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Station your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	11 di 152

In ciascun punto di indagine, i campioni, raccolti in contenitori in vetro di capacità volumetrica pari a un litro e chiusi ermeticamente, sono stati prelevati in duplice aliquota di cui una per le determinazioni analitiche del laboratorio ed una a disposizione per eventuali controanalisi.

La Tabella successiva riassume lo schema di campionamento dei Top Soil.

Tabella 2-4 - Schema di campionamento dei Top Soil

Tipologia	ID	Profondità di scavo (m da p.c.)	Orizzonte prelevato (m)	Campioni prelevati
	PRT34	0,20	0-0,2	2
	PRT35	0,15	0-0,15	2
	PRT37	0,20	0-0,2	2
	PRT38	0,20	0-0,2	2
	PRT40	0,20	0-0,2	2
	PRT41	0,20	0-0,2	2
	PRT42	0,20	0-0,2	2
	PRT43	0,20	0-0,2	2
	PRT44	0,20	0-0,2	2
	PRT45	0,20	0-0,2	2
Compioni	PRT46	0,20	0-0,2	2
Campioni Top Soil	PRT47	0,20	0-0,2	2
10p 30ii	PRT48	0,20	0-0,2	2
	PRT49	0,20	0-0,2	2
	PRT50	0,20	0-0,2	2
	PRT51	0,20	0-0,2	2
	PRT52	0,20	0-0,2	2
	PRT53	0,20	0-0,2	2
	PRT54	0,20	0-0,2	2
	PRT55	0,20	0-0,2	2
	AR1	0,20	0-0,2	2
	AR2	0,20	0-0,2	2
	AR3	0,20	0-0,2	2

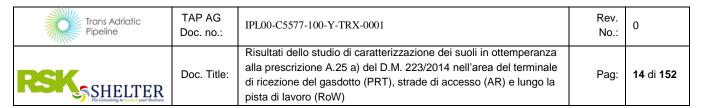
Sono stati prelevati complessivamente 23 campioni in duplice aliquota relativamente ai terreni superficiali.

Per il campione PRT35, la presenza di uno strato compatto di calcarenite ad una profondità di 0,15 m dal p.c. non ha permesso il campionamento di suolo superficiale fino alla profondità di 0,2 m.

2.5.2 Campionamento dei Terreni Profondi

Come da Piano di campionamento dei terreni spinti fino ad una profondità massima di 3 m da p.c., la raccolta di ciascuna aliquota dei terreni profondi è avvenuta selezionando in campo porzioni della matrice da più spezzoni di carota rappresentativi dell'orizzonte individuato, al fine di considerare una rappresentatività media.

Ciascuna aliquota è stata quindi posizionata su telo impermeabile in polietilene, mediante l'ausilio di mezzi manuali (spatole/palette in acciaio inox) opportunamente decontaminati tra un campionamento e il successivo, per eliminare la sua parte grossolana e procedere allo stoccaggio in contenitori in vetro di capacità pari a un litro.


Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Senter your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	12 di 152

La Tabella successiva riassume lo schema di campionamento dei Terreni profondi.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONSUME TO CONTROL	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	13 di 152

Tabella 2-5 - Schema di campionamento dei Sondaggi

Tipologia	ID	Profondità del sondaggio (m da p.c.)	Orizzonte prelevato (m)	Campioni prelevati
	PRT29		0-1	2
-	PRT29	2	1-2	2
ŀ	PRT30		0-1	2
ŀ	PRT30	2	1-2	2
-	PRT31		0-1	2
 	PRT31	2	1-2	2
 	PRT32		0-1	2
-	PRT32	2	1-2	2
-	PRT33		0-1	2
ŀ	PRT33	4	1-2	2
-	PRT36		0-1	2
-	PRT36	2	1-2	2
-	PRT39		0-1	2
-	PRT39	2	1-2	2
-	RoW12		0-0,2	2
-	RoW12	3	1-1,5	2
-	RoW12	3	2,4-2,6	2
-	RoW12		0-0,2	2
-	RoW14	3	1-1,5	2
-	RoW14		2,4-2,6	2
-	RoW14	3	0-0,2	2
Compioni	RoW15		1-1,5	2
Campioni Sondaggi	RoW15		2,4-2,6	2
Sondayyı	RoW15	3	0-0,2	2
-	RoW16		1-1,5	2
-	RoW16		2,4-2,6	2
-	RoW16 RoW17		0-0,2	2
-		3	1-1,5	2
-	RoW17	3		
-	RoW17		2,4-2,6	2 2
-	RoW18	2	0-0,2	2
-	RoW18	3	1-1,5	2
_	RoW18		2,4-2,6	
_	RoW19	2	0-0,2	2 2
_	RoW19	3	1-1,5	
_	RoW19		2,4-2,6	2
-	RoW20	•	0-0,2	2
_	RoW20	3	1-1,5	2
-	RoW20		2,4-2,6	2
-	RoW21	^	0-0,2	2
-	RoW21	3	1-1,5	2
-	RoW21		2,4-2,6	2
-	RoW22	-	0-0,2	2
-	RoW22	3	1-1,5	2
	RoW22		2,4-2,6	2
<u> </u>	RoW23		0-0,2	2
Campioni	RoW23	3	1-1,5	2
Sondaggi	RoW23		2,4-2,6	2
-	RoW24	3	0-0,2	2
	RoW24	3	1-1,5	2

Tipologia	ID	Profondità del sondaggio (m da p.c.)	Orizzonte prelevato (m)	Campioni prelevati
	RoW24		2,4-2,6	2
	RoW25		0-0,2	2
	RoW25	3	1-1,5	2
	RoW25		2,4-2,6	2
	RoW26		0-0,2	2
	RoW26	3	1-1,5	2
	RoW26		2,4-2,6	2
	RoW27		0-0,2	2
	RoW27	3	1-1,5	2
	RoW27		2,4-2,6	2
	RoW28		0-0,2	2
	RoW28	3	1-1,5	2
	RoW28		2,4-2,6	2

Sono stati quindi prelevati complessivamente 62 campioni in duplice aliquota relativamente ai sondaggi.

Al fine di poter campionare due aliquote complete alla profondità 2,4m-2,6m come indicato nel *Piano di Campionamento Onshore (PRT – BVS - RoW). Doc n°: IAL00-ERM-643-Y-TAE-1034* è stato utilizzato un carotatore di diametro maggiore, pertanto non è stato necessario campionare alla profondità 2m-2,6m indicata nell'ultima versione del *Piano di Campionamento Onshore – Luglio 2016*.

Il "Piano di Campionamento Onshore (PRT – BVS - RoW). Doc nº: IAL00-ERM-643-Y-TAE-1034 prevede un campionamento di terreno al punto RoW28 nell'orizzonte 0-0,20 m. Durante le attività di campionamento, si è osservato che il quantitativo di materiale estratto mediante carotaggio al punto RoW28 non ha permesso la composizione in modo completo della seconda aliquota nel contenitore di vetro di capacità volumetrica pari a un litro.

2.6 CRITERI DI GESTIONE E CONSERVAZIONE DEI CAMPIONI

Tutti i campioni, stoccati in contenitori di vetro della capacità di un litro e chiusi ermeticamente, sono stati prelevati in duplice aliquota di cui una per le determinazioni analitiche del laboratorio ed una a disposizione per eventuali controanalisi.

Ciascuna aliquota è stata identificata in modo univoco mediante etichetta adesiva riportante il nome identificativo del campione, la data di prelievo, l'identificativo della matrice campionata e l'orizzonte campionato (es: PRT34_280616_SO_0_0,2) oltre ai codici interni del laboratorio SGS Italia Spa.

I campioni raccolti sono stati immediatamente stoccati in Sito all'interno di box frigo in polistirolo, in apposito spazio dedicato, lontano da fonti luminose e a temperature non superiori ai 4 °C fino al momento della consegna al laboratorio analitico.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CHARLES IN THE OWNER OF THE OWNER OW	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	15 di 152

2.7 ANALISI CHIMICHE

I campioni di terreno (raccolti in duplice aliquota) sono stati sottoposti ad analisi chimiche per la determinazione dei parametri analitici indicati nel Piano.

La Tabella seguente riporta il set analitico e le metodiche analitiche utilizzate per la determinazione dei parametri chimici così come indicato nel Piano.

Tabella 2-6 - Set analitico

Set analitico dei terreni					
Parametro	Metodo analitico				
Scheletro (2 mm)	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1				
Scheletro (2mm - 2cm)	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3				
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2				
Arsenico, Cadmio, Cobalto, Nichel, Cromo, Piombo, Rame, Zinco, Mercurio, Berillio, Vanadio, Tallio	EPA 6020B 2014				
Cromo VI	EPA 7196A 1992				
Idrocarburi Pesanti C>12	EPA 8015C 2007				
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B				
Alaclor, Aldrin, Atrazina, a-esacloroesano, b- esacloroesano, g-esacloroesano (Lindano), Clordano, DDD, DDT, DDE, Dieldrin, Endrin	EPA 8270D 2007				

2.8 CONTROLLO QUALITÀ

Come previsto dal Piano, durante le attività di campionamento si è proceduto all'esecuzione del programma di controllo qualità al fine di verificare la precisione e l'accuratezza delle operazioni di campionamento e analisi. A tal fine si è provveduto a prelevare ed analizzare un quantitativo di Blind Duplicate e Field Blank compreso nel 5-10% dei campioni complessivi prelevati, ovvero:

- Blind Duplicate: due campioni identici (sia per il numero sia per la tipologia di contenitori) contrassegnati con due identificativi differenti allo scopo di verificare la precisione dei risultati delle analisi. Sono stati prelevati complessivamente 7 Blind Duplicate;
- Field blank: campione costituito da acqua distillata con la quale è stata pulita l'attrezzatura di campionamento al fine di verificare l'accuratezza delle attività di prelievo dei campioni. Sono stati prelevati complessivamente 7 Field Blank.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0	
RSI SHELTER The Consulting to Suchas your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	16 di 152	

3. RISULTATI DELLE INDAGINI

La seguente sezione è suddivisa in base alle aree indagate RoW e PRT, inclusiva delle indagini alle vie di accesso AR, e propone una definizione dei caratteri principali della matrice ambientale campionata, tramite l'analisi dei dati ottenuti mediante le indagini di campo e di laboratorio. Esso fornisce inoltre una chiara rappresentazione grafica e tabellare dei risultati elaborati e consultabili agli Allegati A-D.

3.1 GEOLOGIA LOCALE

Le stratigrafie dei sondaggi realizzati nel corso delle indagini suggeriscono una correlazione con la formazione denominata "Calcarenite del Salento" e confermano le caratteristiche geologiche descritte negli studi geotecnici e geofisici allegati al Piano.

Per l'osservazione grafica di dettaglio delle stratigrafie dei sondaggi eseguiti si rimanda all'Allegato D.

3.1.1 Geologia area PRT

Nell'area PRT le stratigrafie fino alla profondità massima di 2 m dal p.c., ricavate dalla realizzazione dei sondaggi nell'area di studio, rivelano un terreno di copertura dello spessore variabile da 0,2 m a 0,6 m da p.c. costituito da sabbia limosa di colore marrone (sondaggi PRT29, PRT30, PRT31, PRT32, PRT33, PRT36, PRT39).

Al di sotto del primo orizzonte rappresentato dal terreno di copertura, il secondo orizzonte è costituito principalmente da uno strato di Calcarenite a grana medio-fina che raggiunge profondità variabili fra 1,3 m da p.c e 2 m da p.c. Il grado di compattezza di tale orizzonte litostratigrafico varia da poco cementata a tenera, tanto da assumere la consistenza di sabbia sciolta di colore biancastro. In tale orizzonte sono intercalati anche piccoli livelli ben cementati e clasti di calcare.

In taluni casi si è osservato un terzo orizzonte litologico al di sotto della Calcarenite costituito da sabbia limosa di colore marroncino rossastro.

Nel solo punto di indagine PRT39, al di sotto del terreno di copertura, è presente un orizzonte fino a 2m dal p.c. costituito da sabbia debolmente ghiaiosa di colore marroncino chiaro con clasti di calcare.

3.1.2 Geologia area RoW

Lungo l'area RoW le stratigrafie fino alla profondità massima di 3 m dal p.c., ricavate dalla realizzazione dei sondaggi nell'area di studio, rivelano un terreno di copertura dello spessore variabile da 0,1 m a 0,6 m da p.c. costituito generalmente da sabbia fina debolmente limosa di colore marrone.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Station your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	17 di 152

Anche nell'area di studio RoW, al di sotto del primo orizzonte rappresentato dal terreno di copertura, è presente uno strato di Calcarenite a grana medio fina che raggiunge la profondità del fondo scavo di 3 m da p.c, di colore biancastro e con una compattezza variabile da tenera a poco cementata. Nei sondaggi RoW22, RoW24, RoW25 e RoW27 tale orizzonte litostratigrafico è costituito da Calcarenite a grana fine ben cementata o con livelli ben cementati.

Nei punti di indagine RoW15, RoW21 e RoW23 al di sotto del terreno di copertura e fino a 3m dal p.c. è presente un orizzonte costituito da sabbia debolmente limosa o ghiaiosa di colore prevalentemente marrone.

3.2 RISULTATI DELLE ANALISI CHIMICHE DEI TERRENI

Considerata la destinazione d'uso delle aree di studio, i risultati analitici delle analisi del terreno sono stati confrontati con le Concentrazioni Soglia di Contaminazione (CSC) per Siti ad uso Verde pubblico o privato (cfr. D.Lgs. 152/06, Parte IV, Titolo V - Allegato 5, Tabella 1, Colonna A).

Tutte le risultanze analitiche sono riportate in forma tabellare all'Allegato B, i Rapporti di Prova delle analisi eseguite da SGS su tutti i campioni sono riportati all'Allegato C.

3.2.1 Risultati area PRT e Strade di accesso (AR)

3.2.1.1 Metalli

I valori di concentrazione dei metalli (Arsenico, Cadmio, Cobalto, Nichel, Cromo, Piombo, Rame, Zinco, Mercurio, Berillio, Vanadio, Tallio) rilevati nei campioni di suolo risultano tutti inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

3.2.1.2 Cromo VI

Relativamente al parametro Cromo VI, le concentrazioni rilevate nei campioni di suolo risultano inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

3.2.1.3 Idrocarburi Pesanti C>12

Relativamente agli Idrocarburi Pesanti C>12, le concentrazioni rilevate nei campioni di suolo risultano inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0	
RSI SHELTER The Consulting to Suchas your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	18 di 152	

3.2.1.4 Amianto

Le concentrazioni di Amianto rilevante nei campioni di suolo risultano sempre inferiore al limite di rapportaggio del metodo analitico utilizzato, dunque inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

3.2.1.5 Pesticidi

Le concentrazioni di pesticidi (Alaclor, Aldrin, Atrazina, a-esacloroesano, b-esacloroesano, g-esacloroesano (Lindano), Clordano, DDD, DDT, DDE, Dieldrin, Endrin) rilevate nei campioni di suolo risultano sempre inferiore al limite di rapportaggio del metodo analitico utilizzato, dunque inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

3.2.2 Risultati area RoW

3.2.2.1 Metalli

I valori di concentrazione dei metalli (Arsenico, Cadmio, Cobalto, Nichel, Cromo, Piombo, Rame, Zinco, Mercurio, Berillio, Vanadio, Tallio) rilevati nei campioni di suolo risultano tutti inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

3.2.2.2 Cromo VI

Relativamente al parametro Cromo VI, le concentrazioni rilevate nei campioni di suolo risultano inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

3.2.2.3 Idrocarburi Pesanti C>12

Relativamente agli Idrocarburi Pesanti C>12, le concentrazioni rilevate nei campioni di suolo risultano inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO LOW DE BOARDS	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	19 di 152

3.2.2.4 Amianto

Le concentrazioni di Amianto rilevante nei campioni di suolo risultano sempre inferiore al limite di rapportaggio del metodo analitico utilizzato, dunque inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

3.2.2.5 Pesticidi

Le concentrazioni di pesticidi (Alaclor, Aldrin, Atrazina, a-esacloroesano, b-esacloroesano, g-esacloroesano (Lindano), Clordano, DDD, DDT, DDE, Dieldrin, Endrin) rilevate nei campioni di suolo risultano sempre inferiore al limite di rapportaggio del metodo analitico utilizzato, dunque inferiori alle CSC previste dal D. Lgs. 152/06 parte IV, titolo V, Allegato 5 tab. 1/A per Siti ad uso Verde pubblico o privato.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Senter your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	20 di 152

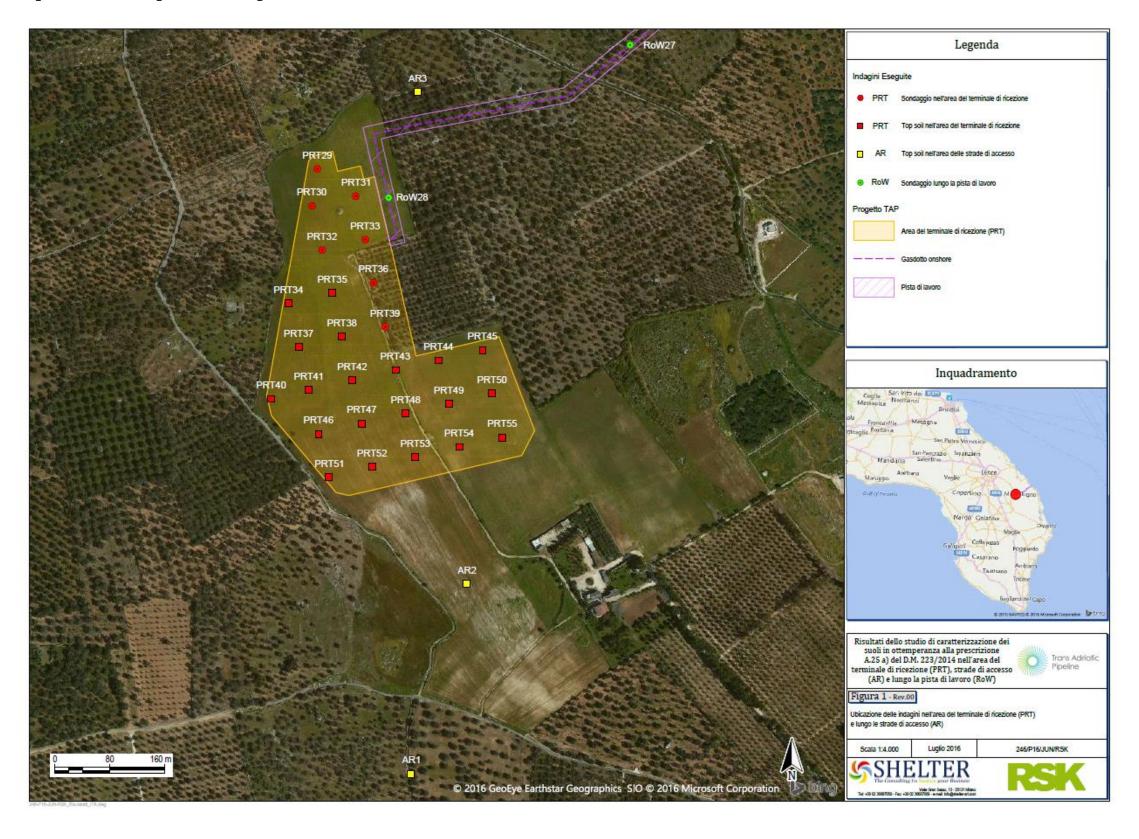
4. CONCLUSIONI

Le Attività di Indagine in sito, in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014, si sono svolte nell'arco temporale compreso tra il 28/06/2016 e il 01/07/2016 da SHELTER Srl – RSK, secondo le indicazioni fornite da TAP, contenute nel Piano di Campionamento, e come comunicato ad ARPA con nota prot. LT-TAPIT-ITSK-00803, nell'area del terminale di ricezione (PRT), presso le strade di accesso e lungo la pista di lavoro (RoW).

Le attività oggetto del presente documento, relativamente ai sondaggi, campionamenti ed analisi dei terreni, sono state eseguite secondo la metodologia riportata nel seguente Piano di Campionamento:

 Piano di Campionamento Onshore (PRT – BVS - RoW). Doc n°: IAL00-ERM-643-Y-TAE-1034.

L'articolazione delle attività di campionamento si è inoltre basata sulle indicazioni ricevute durante il sopralluogo preliminare del 6 giugno 2016 (presenti TAP, SHELTER, SGS Italia Spa e Trivelsonda) al fine di definire la logistica delle attività e l'accesso ai punti di campionamento.


Le attività svolte, che hanno comportato la realizzazione di 23 sondaggi e 23 Top Soil e l'esecuzione di analisi su 85 campioni di terreno, hanno evidenziato quanto segue:

- Il primo sottosuolo delle aree di studia (PRT e RoW), che risulta coperto da un terreno di costituito da sabbia limosa o debolmente limosa di colore marrone, è costituito principalmente da Calcarenite a grana medio-fina di colore biancastro. Nell'area di studio RoW l'unità litostratigrafica di Calcarenite si estende ad una profondità maggiore rispetto all'area PRT e presenta un maggior grado di compattezza. Le stratigrafie dei sondaggi realizzati nel corso delle indagini suggeriscono una correlazione con la formazione denominata "Calcarenite del Salento" a confermare le caratteristiche geologiche descritte negli studi geotecnici e geofisici allegati al Piano;
- Per ciò che attiene la matrice suolo e sottosuolo, dalle indagini non emergono superamenti delle CSC relativamente ai Metalli, Cromo IV, Idrocarburi Pesanti C>12, Amianto e pesticidi ricercati.

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Salan your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	21 di 152


ALLEGATO A - ELABORATI GRAFICI

Tavola 1 – Area PRT - Inquadramento e punti di campionamento dei suoli

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0	
RSK SHELTER TO Consulting to same your flushess	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	22 di 152	

Tavola 2 - Area RoW - Inquadramento e punti di campionamento dei suoli

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SECOND TO	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	23 di 152

ALLEGATO B - RISULTATI ANALITICI TERRENI

Tabelle

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Canading to Senter your Plainess	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	24 di 152

 No Accettazione
 PD16-02983
 PD16-02983
 PD16-02983
 PD16-02983
 PD16-02983
 PD16-02983

 No Rapport
 PD16-02983.001
 PD16-02983.002
 PD16-02983.003
 PD16-02983.004
 PD16-02983.005

 Sigla
 PRT29_280616_0-1
 PRT39_280616_1-2
 PRT30_280616_0-1
 PRT30_280616_0-1
 PRT30_280616_0-1
 PRT30_280616_0-1

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 28/6/2016
 28/6/2016
 28/6/2016
 28/6/2016
 28/6/2016
 28/6/2016
 28/6/2016
 28/6/2016
 28/6/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

				Allio pui	to quarta					
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5					
Scheletro										
Su campione secco all'aria										
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1									
Scheletro (2 mm)		g/kg	1	-	-	170	193	204	323	172
Su camp. secco all'aria (frazione	e <2 cm)									
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	m/l.m	1			170	193	204	323	172
Scheletro (2mm - 2cm)		g/kg	1	-	-	170	193	204	323	172
Su campione tal quale (frazione	< 2 mm)									
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1	-	-	94	91,3	93,9	90	91,9
Su camp. secco all'aria (frazione	e < 2 mm) dati espressi sulla totalità dei materiali sed	chi < 2 cm (105°0	C) comprensiva de	ello scheletro						
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1	<1
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.	N.A.
Metalli										
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	7	4	10	6	9
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	0,1	<0,1	0,1	<0,1	0,1
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	9,2	5,5	7,4	4,8	8,9
Nichel	EPA 6020B 2014	mg/kg	1	120	500	34	30	29	19	41
Cromo	EPA 6020B 2014	mg/kg	1	150	800	21	13	24	10	27
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	7	4	9	3	11
Rame	EPA 6020B 2014	mg/kg	1	120	600	20	10	21	7	28
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	21	16	21	13	27
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1	<0,1
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	0,9	0,3	0,9	0,2	1,1
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	20	11	26	12	27
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,3	<0,1	0,3	<0,1	0,3
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	6	<5	6	<5	8
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100	<100
S.V.O.C.										
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01	<0,01
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01	<0,01
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01	<0,01

TAP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Canading to Senter your Basiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	25 di 152

 No Accettazione
 PD16-02983
 PD

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 28/6/2016
 28/6/2016
 28/6/2016
 28/6/2016
 28/6/2016
 28/6/2016
 28/6/2016
 28/6/2016
 28/6/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

	All.5 parte Quarta										
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5						
Scheletro											
Su campione secco all'aria											
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	a/ka	1			154	373	201	408	537	
Scheletro (2 mm)		g/kg	'	-	-	154	3/3	201	400	557	
Su camp. secco all'aria (frazione											
0.1.1.4.60	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	-	-	154	373	201	408	537	
Scheletro (2mm - 2cm)		3 3									
Su campione tal quale (frazione	,	٥,	0.4			20	20.0	20.4	24.2	00.5	
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1		-	88	93,9	90,4	94,8	92,5	
,	< 2 mm) dati espressi sulla totalità dei materiali sec	•	, ,		45	4	4	4	4	4	
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992 ISO 15192: 2010	mg/kg	1 0,2	2	15	<1	<1	<1	<1 N. A	<1	
Cromo esavalente (Cr VI) Metalli	130 13192. 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.	N.A.	
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	3	4	6	4	3	
Cadmio	EPA 6020B 2014 EPA 6020B 2014	mg/kg	0,1	20	15	<0,1	0,1	<0,1	<0,1	<0,1	
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	4,4	4,1	6	4,4	3	
Nichel	EPA 6020B 2014	mg/kg	1	120	500	25	18	21	22	14	
Cromo	EPA 6020B 2014	mg/kg	1	150	800	13	14	12	12	6	
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	4	4	3	5	2	
Rame	EPA 6020B 2014	mg/kg	1	120	600	9	12	16	14	5	
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	15	13	15	15	10	
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1	<0,1	
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	0,3	0,6	0,3	0,4	0,1	
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	13	16	13	12	7	
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,1	0,2	0,1	0,1	<0,1	
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	<5	6	<5	<5	<5	
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100	<100	
S.V.O.C.											
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01	<0,01	
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01	
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01	<0,01	
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01	
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01	<0,01	
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01	<0,01	
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01	
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01	
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01	
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01	<0,01	

ΓAP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SEARCH TO SHE THE S	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	26 di 152

 No Accettazione
 PD16-02983
 PD16-02983
 PD16-02983
 PD16-02983
 PD16-02983
 PD16-02983
 PD16-02983
 PD16-02983
 PD16-02983.012
 PD16-02983.013
 PD16-02983.014
 PD16-02983.015

 Sigla
 PRT34_280616_0-0,2
 PRT35_280616_0-0,2
 PRT36_290616_0-1
 PRT36_290616_1-2
 PRT37_280616_0-0,2

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 28/6/2016
 28/6/2016
 29/6/2016
 29/6/2016
 28/6/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

All 5 parte Quarta										
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5					
Scheletro										
Su campione secco all'aria										
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1						445	0.40	200	
Scheletro (2 mm)		g/kg	1	-	-	58	115	246	306	17
Su camp. secco all'aria (frazione	<2 cm)									
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1			58	115	246	306	17
Scheletro (2mm - 2cm)		g/kg	'	-	<u>-</u>	30	115	240	300	17
Su campione tal quale (frazione <	: 2 mm)									
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1	-	-	95,6	94,5	95,7	92,3	96,1
,	< 2 mm) dati espressi sulla totalità dei materiali sec	,	, ·							
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1	<1
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.	N.A.
Metalli										
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	6	10	5	4	8
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	0,3	0,2	<0,1	<0,1	0,2
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	5,8	9,1	5,6	1,9	6,8
Nichel	EPA 6020B 2014	mg/kg	1	120	500	20	34	23	10	20
Cromo	EPA 6020B 2014	mg/kg	1	150	800	27	37	13	7	34
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	14	16	5	2	17
Rame	EPA 6020B 2014	mg/kg	1	120	600	17	16	33	4	12
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	33	37	15	8	30
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1	<0,1
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	1,9	1,7	0,4	0,1	1,9
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	27	40	13	6	34
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,4	0,4	0,1	<0,1	0,4
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	6	7	16	<5	8
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100	<100
S.V.O.C.										
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01	<0,01
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01	<0,01
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01	<0,01

AP AG 26

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CHARGE TO SEE THE CONTROL TO SECURE TO SEE THE CONTROL TO SEE THE CONTROL TO SECURE TO SECURE	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	27 di 152

 No Accettazione
 PD16-02983
 PD

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 28/6/2016
 29/6/2016
 29/6/2016
 28/6/2016
 28/6/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5					
Scheletro										
Su campione secco all'aria										
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	m/l+m	4			144	247	399	128	400
Scheletro (2 mm)		g/kg	1	-	-	144	241	399	120	108
Su camp. secco all'aria (frazione										
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	-	-	144	247	399	128	108
Scheletro (2mm - 2cm)		9/119						000	.20	.00
Su campione tal quale (frazione <	•									
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1	.	-	94,8	92,6	91,9	95,4	94,4
,	< 2 mm) dati espressi sulla totalità dei materiali sec	•	, ,							
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1	<1
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.	N.A.
Metalli										
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	8	9	4	9	9
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	0,2	0,1	<0,1	0,2	0,2
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	7	6,9	5,6	8,1	8,4
Nichel	EPA 6020B 2014	mg/kg	1	120	500	26	30	15	26	28
Cromo	EPA 6020B 2014	mg/kg	1	150	800	33	23	7	36	37
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	14	9	2	15	15
Rame	EPA 6020B 2014	mg/kg	1	120	600	13	14	7	13	12
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	31	23	10	33	32
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1	<0,1
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	1,6	0,9	0,1	1,6	1,5
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	33	25	9	38	40
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,4	0,3	<0,1	0,4	0,4
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	5	12	5	<5	<5
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100	<100
S.V.O.C.										
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01	<0,01
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01	<0,01
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01	<0,01

TAP AG 27

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	28 di 152

 No Accettazione
 PD16-02983
 PD16-02983
 PD16-02983
 PD16-02983

 No Rapport
 PD16-02983.021
 PD16-02983.022
 PD16-02983.023
 PD16-02983.024

 Sigla
 PRT42_280616_0-0,2
 PRT43_300616_0-0,2
 PRT44_300616_0-0,2
 PRT44_300616_0-0,2
 PRT45_300616_0-0,2

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 28/6/2016
 30/6/2016
 30/6/2016
 30/6/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

	All.5 parte Quarta								
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5				
Scheletro									
Su campione secco all'aria									
·	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1						0.40	440	
Scheletro (2 mm)		g/kg	1	-	-	28	348	116	147
Su camp. secco all'aria (frazione									
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1		-	28	348	116	147
Scheletro (2mm - 2cm)		g/kg	'	-	<u>-</u>	20	340	110	147
Su campione tal quale (frazione	< 2 mm)								
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1	-	-	96,2	94,4	93,7	95
,	< 2 mm) dati espressi sulla totalità dei materiali sec	chi < 2 cm (105°C	, ,						
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.
Metalli									
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	8	4	10	8
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	0,2	0,1	0,1	0,1
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	6,9	3,3	8,9	8
Nichel	EPA 6020B 2014	mg/kg	1	120	500	22	15	36	31
Cromo	EPA 6020B 2014	mg/kg	1	150	800	33	12	32	28
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	15	9	14	13
Rame	EPA 6020B 2014	mg/kg	1	120	600	11	8	15	12
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	30	24	31	28
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	1,9	0,4	1,5	1,3
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	34	13	34	30
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,4	0,1	0,3	0,3
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	5	7	7	6
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100
S.V.O.C.									
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01

TAP AG 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Canaditay to Senter your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	29 di 152

 No Accettazione
 PD16-02983
 PD16-02983
 PD16-02983
 PD16-02983

 No Rapport
 PD16-02983.025
 PD16-02983.026
 PD16-02983.027
 PD16-02983.028

 Sigla
 PRT46_280616_0-0,2
 PRT47_280616_0-0,2
 PRT48_300616_0-0,2
 PRT49_300616_0-0,2

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 28/6/2016
 28/6/2016
 30/6/2016
 30/6/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

	All.5 parte Quarta								
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5				
Scheletro									
Su campione secco all'aria									
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1					00	444	405	440
Scheletro (2 mm)		g/kg	1	-	-	92	141	165	116
Su camp. secco all'aria (frazione	•								
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	_	_	92	141	165	116
Scheletro (2mm - 2cm)		9/119				52	141	100	110
Su campione tal quale (frazione <	•								
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1		-	96,1	96,6	96,6	93,6
	< 2 mm) dati espressi sulla totalità dei materiali sec	•							
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.
Metalli	ED4 0000D 0044						_	_	_
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	8	6	5	6
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	0,2	0,2	0,1	0,2
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	6,4	5,4	4	5,3
Nichel	EPA 6020B 2014	mg/kg	1	120	500	22	19	14	18
Cromo	EPA 6020B 2014	mg/kg	1	150	800	33	28	20	27
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	14	11	8	13
Rame	EPA 6020B 2014 EPA 6020B 2014	mg/kg	1	120	600	12	10	8	12
Zinco	EPA 6020B 2014 EPA 6020B 2014	mg/kg	5	150	1500	29	24	18	26
Mercurio Berillio	EPA 6020B 2014 EPA 6020B 2014	mg/kg	0,1 0,1	1	5	<0,1	<0,1	<0,1	<0,1
Vanadio	EPA 6020B 2014 EPA 6020B 2014	mg/kg	0,1	2 90	10 250	1,6	1,3 26	1	1,4 26
Tallio	EPA 6020B 2014 EPA 6020B 2014	mg/kg mg/kg	0,1	90	250 10	32 0,4	0,3	19 0,2	0,3
Idrocarburi Pesanti C>12	EPA 8015C 2007		5	50	750	0,4 11	0,3 <5	0,2 <5	0,3 <5
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg mg/kg	100	1000	1000	<100	<100	<100	<100
S.V.O.C.	DW 00/03/1334 GO 11 200 10/12/1334 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01
·		99	0,0.	٥,٥.	-	-0,0.		10,01	-0,0.

TAP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Canaditay to Senter your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	30 di 152

 No Accettazione
 PD16-02983
 PD16-02983
 PD16-02984
 PD16-02984

 No Rapport
 PD16-02983.029
 PD16-02983.030
 PD16-02984.001
 PD16-02984.002

 Sigla
 PRT50_300616_0-0,2
 PRT51_010716_0-0,2
 PRT52_010716_0-0,2
 PRT53_010716_0-0,2

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 30/6/2016
 1/7/2016
 1/7/2016
 1/7/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

	And part data											
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5							
Scheletro												
Su campione secco all'aria												
·	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1					400	400	407	040			
Scheletro (2 mm)		g/kg	1	-	-	132	126	187	218			
Su camp. secco all'aria (frazione	<2 cm)											
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1			132	126	187	218			
Scheletro (2mm - 2cm)		g/kg	ı	-	-	132	120	107	210			
Su campione tal quale (frazione <												
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1	-	-	95,3	95,6	97,1	96,7			
Su camp. secco all'aria (frazione	< 2 mm) dati espressi sulla totalità dei materiali sec	chi < 2 cm (105°C	C) comprensiva (dello scheletro								
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1			
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.			
Metalli												
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	7	9	5	6			
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	0,1	0,2	0,1	0,2			
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	5,2	7,7	3,8	5,1			
Nichel	EPA 6020B 2014	mg/kg	1	120	500	21	27	17	16			
Cromo	EPA 6020B 2014	mg/kg	1	150	800	26	38	23	27			
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	10	14	8	10			
Rame	EPA 6020B 2014	mg/kg	1	120	600	9	12	6	8			
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	22	33	19	26			
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1			
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	1	1,5	1	1,2			
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	26	38	21	27			
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,2	0,4	0,3	0,3			
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	<5	<5	<5	<5			
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100			
S.V.O.C.												
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01			
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01			
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01			
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01			
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01			
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01			
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01			
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01			
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01			
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01			

TAP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Canading to Senter your Balance	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	31 di 152

 No Accettazione
 PD16-02984
 PD16-02984
 PD16-02984
 PD16-02984

 No Rapport
 PD16-02984.003
 PD16-02984.004
 PD16-02984.005
 PD16-02984.006

 Sigla
 PRT54_300616_0-0,2
 PRT55_300616_0-0,2
 ROW12_010716_0-0,2
 ROW12_010716_1-1,5

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 30/6/2016
 30/6/2016
 1/7/2016
 1/7/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5				
Scheletro									
Su campione secco all'aria									
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	g/kg	1	_	_	176	157	154	174
Scheletro (2 mm)		grig	·			170	101	104	17-7
Su camp. secco all'aria (frazione									
Cabalatra (2mm, 2am)	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	-	-	176	157	154	174
Scheletro (2mm - 2cm)	. 2								
Su campione tal quale (frazione «	•	0/	0.4			05.0	00.5	05.0	00.0
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2 < 2 mm) dati espressi sulla totalità dei materiali seco	% ohi + 2 om (105%	0,1	- alla aabalatra	-	95,9	93,5	95,2	90,3
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	•			45	.4	.4	.4	.4
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	1 0,2	2 2	15 15	<1 N.A.	<1 N.A.	<1 N.A.	<1 N.A.
Metalli	130 13192. 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	7	8	1	.4
Cadmio	EPA 6020B 2014 EPA 6020B 2014	mg/kg	0,1	20	15	0,1	<0,1	<0,1	<1 <0,1
Cobalto	EPA 6020B 2014 EPA 6020B 2014	mg/kg	0,1	20	250	5,6	6,4	<0,1 1	0,4
Nichel	EPA 6020B 2014 EPA 6020B 2014	mg/kg	1	20 120	500	5,6 18	23	2	0,4
Cromo	EPA 6020B 2014 EPA 6020B 2014	mg/kg	1	150	800	24	23 27	12	9
	EPA 6020B 2014 EPA 6020B 2014		1	100	1000	10	10	10	
Piombo	EPA 6020B 2014 EPA 6020B 2014	mg/kg	1						<1
Rame Zinco	EPA 6020B 2014 EPA 6020B 2014	mg/kg	5	120	600	8	9	43	2
	EPA 6020B 2014 EPA 6020B 2014	mg/kg		150	1500	23	28	10	<5
Mercurio Berillio	EPA 6020B 2014 EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1
	EPA 6020B 2014 EPA 6020B 2014	mg/kg	0,1	2	10	1	1,2	0,3	<0,1
Vanadio		mg/kg	1	90	250	25	29	6	2
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,3	0,3	<0,1	<0,1
Idrocarburi Pesanti C>12	EPA 8015C 2007 DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	5	50	750	<5	5	5	5
Amianto (SEM) S.V.O.C.	DW 00/09/1994 GO 11 200 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100
Alaclor	EPA 8270D 2007		0.04	0.04	4	0.04	0.04	0.04	0.04
Aldrin	EPA 8270D 2007 EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01
		mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01

AP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	32 di 152

 No Accettazione
 PD16-02984
 PD16-02984
 PD16-02984
 PD16-02984

 No Rapport
 PD16-02984.007
 PD16-02984.008
 PD16-02984.009
 PD16-02984.010

 Sigla
 RoW12_010716_2,4-2,6
 RoW14_010716_0-0,2
 RoW14_010716_1-1,5
 RoW14_010716_2,4-2,6

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 1/7/2016
 1/7/2016
 1/7/2016
 1/7/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

All.5 parte Quarta											
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5						
Scheletro											
Su campione secco all'aria											
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	m/l.m	1			70	00	400	4.45		
Scheletro (2 mm)		g/kg	'	-	-	78	66	198	145		
Su camp. secco all'aria (frazione											
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	-	_	78	66	198	145		
Scheletro (2mm - 2cm)		gring				70	00	100	140		
Su campione tal quale (frazione											
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1		-	90,8	96,9	97	94,3		
,	< 2 mm) dati espressi sulla totalità dei materiali sec	,	, ,								
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1		
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.		
Metalli											
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	<1	5	<1	<1		
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	<0,1	0,1	<0,1	<0,1		
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	0,4	4	0,4	0,3		
Nichel	EPA 6020B 2014	mg/kg	1	120	500	2	10	2	1		
Cromo	EPA 6020B 2014	mg/kg	1	150	800	11	33	10	10		
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	<1	12	<1	<1		
Rame	EPA 6020B 2014	mg/kg	1	120	600	<1	5	<1	<1		
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	<5	21	<5	<5		
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1		
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	<0,1	1,1	<0,1	<0,1		
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	3	32	2	2		
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	<0,1	0,3	<0,1	<0,1		
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	<5	<5	<5	<5		
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100		
S.V.O.C.	EDA 0070D 0007			0.04		0.04	2.24	0.04	2.24		
Alaclor	EPA 8270D 2007 EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01		
Aldrin		mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01		
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01		
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01		
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Dieldrin Endrin	EPA 8270D 2007 EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
EHUHA	EFM 02/UD 200/	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01		

TAP AG 32

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CANADA TO LOT THE PARTY OF TH	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	33 di 152

 No Accettazione
 PD16-02984
 PD16-02984
 PD16-02984
 PD16-02984

 No Rapport
 PD16-02984.011
 PD16-02984.012
 PD16-02984.013
 PD16-02984.014

 Sigla
 RoW15_300616_0-0,2
 RoW15_300616_1-1,5
 RoW15_300616_2,4-2,6
 RoW16_010716_0-0,2

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 30/6/2016
 30/6/2016
 30/6/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

1/7/2016

4/7/2016

	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5				
Scheletro									
Su campione secco all'aria									
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	a/ka	1			11	<1	102	168
Scheletro (2 mm)		g/kg	1	-	-	11	<1	102	100
Su camp. secco all'aria (frazione									
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	_	_	11	<1	102	168
Scheletro (2mm - 2cm)		9/19					.	102	100
Su campione tal quale (frazione <	•								
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1	-	-	92,4	94,3	90,6	95,2
,	< 2 mm) dati espressi sulla totalità dei materiali sec	•	C) comprensiva d	lello scheletro					
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.
Metalli									
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	9	8	1	1
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	0,3	<0,1	0,2	<0,1
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	8,6	6,7	0,9	1
Nichel	EPA 6020B 2014	mg/kg	1	120	500	20	16	3	2
Cromo	EPA 6020B 2014	mg/kg	1	150	800	59	35	16	11
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	28	12	1	4
Rame	EPA 6020B 2014	mg/kg	1	120	600	30	9	2	4
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	36	26	<5	7
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	1,9	1,8	0,2	0,3
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	53	38	5	7
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,6	0,4	<0,1	<0,1
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	14	5	<5	<5
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100
S.V.O.C.									
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0.01	<0,01
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01
		0 0		•		•	•	•	•

AP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consider to Same your flusions	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	34 di 152

 No Accettazione
 PD16-02984
 PD16-02984
 PD16-02984
 PD16-02984
 PD16-02984

 No Rapport
 PD16-02984.015
 PD16-02984.016
 PD16-02984.017
 PD16-02984.018

 Sigla
 RoW16_010716_1-1,5
 RoW16_010716_2,4-2,6
 RoW17_010716_0-0,2
 RoW17_010716_1-1,5

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

Prelevato il Rapp Data

> titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

1/7/2016

4/7/2016

1/7/2016

4/7/2016

1/7/2016

4/7/2016

1/7/2016

4/7/2016

	Ail.5 parte Quarta										
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5						
Scheletro											
Su campione secco all'aria											
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	m/l.m	4			400	400	424	101		
Scheletro (2 mm)		g/kg	1	-	-	103	123	131	121		
Su camp. secco all'aria (frazione											
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	_	_	103	123	131	121		
Scheletro (2mm - 2cm)		g/kg	'			103	123	101	121		
Su campione tal quale (frazione <	*										
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1	-	-	88,4	92	94	88,2		
,	< 2 mm) dati espressi sulla totalità dei materiali sed	chi < 2 cm (105°C	C) comprensiva de	ello scheletro							
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1		
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.		
Metalli											
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	<1	<1	3	<1		
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	<0,1	<0,1	0,2	0,1		
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	0,4	0,5	2,8	0,6		
Nichel	EPA 6020B 2014	mg/kg	1	120	500	2	2	9	4		
Cromo	EPA 6020B 2014	mg/kg	1	150	800	11	9	19	9		
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	<1	<1	7	<1		
Rame	EPA 6020B 2014	mg/kg	1	120	600	<1	<1	17	2		
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	<5	<5	18	<5		
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1		
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	<0,1	<0,1	0,8	<0,1		
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	2	2	17	6		
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	<0,1	<0,1	0,2	<0,1		
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	<5	<5	<5	<5		
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100		
S.V.O.C.											
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01		
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01		
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01		
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01		
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01		

AP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	35 di 152

 No Accettazione
 PD16-02984
 PD16-02984
 PD16-02984
 PD16-02984

 No Rapport
 PD16-02984.019
 PD16-02984.020
 PD16-02984.021
 PD16-02984.022

 Sigla
 RoW17_010716_2,4-2,6
 RoW18_010716_0-0,2
 RoW18_010716_1-1,5
 RoW18_010716_1-2,4-2,6

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 1/7/2016
 1/7/2016
 1/7/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

1/7/2016

4/7/2016

	All.5 parte Quarta										
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5						
Scheletro											
Su campione secco all'aria											
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	m/l.m	1			176	39	108	139		
Scheletro (2 mm)		g/kg	ı	-	-	176	39	100	139		
Su camp. secco all'aria (frazione											
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	-	-	176	39	108	139		
Scheletro (2mm - 2cm)		33	•								
Su campione tal quale (frazione <	,										
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1	-	-	85,4	97,4	94,3	93,1		
,	< 2 mm) dati espressi sulla totalità dei materiali sec	,	, ,								
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1		
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.		
Metalli	EDA 0000D 0044						•				
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	<1	3	<1	<1		
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	0,1	0,1	<0,1	<0,1		
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	0,4	2,4	0,3	0,3		
Nichel	EPA 6020B 2014	mg/kg	1	120	500	4	6	2	2		
Cromo	EPA 6020B 2014	mg/kg	1	150	800	8	23 7	9	11		
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	<1	•	<1	<1		
Rame	EPA 6020B 2014	mg/kg	1	120	600	2	13	1	1		
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	<5	12	<5	<5		
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1		
Berillio Vanadio	EPA 6020B 2014 EPA 6020B 2014	mg/kg	0,1 1	2 90	10	<0,1 5	0,7	<0,1	<0,1		
Tallio	EPA 6020B 2014 EPA 6020B 2014	mg/kg mg/kg	0,1	90	250 10	5 <0,1	18	3	4		
Idrocarburi Pesanti C>12	EPA 8015C 2007		5	50	750		0,2 6	<0,1 <5	<0,1		
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg mg/kg	100	1000	1000	<5 <100	<100	<5 <100	<5 <100		
S.V.O.C.	DW 00/03/1334 GO 11 200 10/12/1334 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100		
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0.01		
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01		
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01		
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01		
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01		
	2. 7. 32. 32 2001	mg/ng	0,01	0,01	_	\0,0 1	\0,01	\0,01	\0,0 1		

TAP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consulting to Same your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	36 di 152

 No Accettazione
 PD16-02984
 PD16-02984
 PD16-02984
 PD16-02984

 No Rapport
 PD16-02984.023
 PD16-02984.024
 PD16-02984.025
 PD16-02984.026

 Sigla
 RoW19_010716_0-0,2
 RoW19_010716_1-1,5
 RoW19_010716_2,4-2,6
 RoW20_300616_0-0,2

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

Prelevato il Rapp Data

> titolo V della parte IV del D.Lgs 152/06

1/7/2016

4/7/2016

1/7/2016

4/7/2016

30/6/2016

4/7/2016

1/7/2016

4/7/2016

		All.5 parte Quarta											
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5								
Scheletro													
Su campione secco all'aria													
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	g/kg	1			151	134	264	47				
Scheletro (2 mm)		g/kg	'	-	-	131	134	204	41				
Su camp. secco all'aria (frazione													
0.1.1.4.60	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	-	-	151	134	264	47				
Scheletro (2mm - 2cm)	0	3 3											
Su campione tal quale (frazione «		0/	0.4			07.4	04.5	04.0	00.5				
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2 < 2 mm) dati espressi sulla totalità dei materiali sed	%	0,1	-	-	97,1	94,5	94,2	96,5				
Cromo VI	< 2 mm) dati espressi sulla totalità dei materiali sec EPA 3060A 1996 + EPA 7196A 1992		5) comprensiva di 1		45	.4	.4	.4	.4				
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg mg/kg	0,2	2 2	15 15	<1 N.A.	<1 N.A.	<1 N.A.	<1 N.A.				
Metalli	130 13192. 2010	mg/kg	0,2	2	13	N.A.	IN.A.	N.A.	IN.A.				
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	3	<1	<1	4				
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	0,1	0,1	<0,1	0,2				
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	2,9	0,8	0,6	4,3				
Nichel	EPA 6020B 2014	mg/kg	1	120	500	10	5	4	15				
Cromo	EPA 6020B 2014	mg/kg	1	150	800	17	9	6	20				
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	6	<1	<1	13				
Rame	EPA 6020B 2014	mg/kg	1	120	600	9	2	2	8				
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	13	<5	- <5	19				
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1				
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	0,7	<0,1	<0,1	0,8				
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	14	3	2	19				
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,1	<0,1	<0,1	0,2				
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	<5	<5	<5	5				
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100				
S.V.O.C.													
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01				
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01				
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01				
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01				
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01				
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01				
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01				
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01				
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01				
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01				

AP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Canaditay to Senter your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	37 di 152

 No Accettazione
 PD16-02984
 PD16-02984
 PD16-02984
 PD16-02984

 No Rapport
 PD16-02984.027
 PD16-02984.028
 PD16-02984.029
 PD16-02984.030

 Sigla
 RoW20_300616_1-1,5
 RoW20_300616_2,4-2,6
 RoW20_300616_2,4-2,6
 RoW21_010716_0-0,2
 RoW21_010716_1-1,5

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 30/6/2016
 30/6/2016
 1/7/2016
 1/7/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

	All.5 parte Quarta											
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5							
Scheletro												
Su campione secco all'aria												
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	m/l+m	4			93	234	178	4			
Scheletro (2 mm)		g/kg	ı	-	-	93	234	170	4			
Su camp. secco all'aria (frazione												
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	-	_	93	234	178	4			
Scheletro (2mm - 2cm)		99	•			00	20.		•			
Su campione tal quale (frazione <	,											
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1	.	-	93,3	92,7	96,4	89,4			
,	< 2 mm) dati espressi sulla totalità dei materiali sec	•	, ,									
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1			
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.			
Metalli	ED4 0000D 0044							_	_			
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	<1	<1	2	7			
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	0,2	<0,1	0,2	0,2			
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	1,3	0,7	2,1	9,4			
Nichel	EPA 6020B 2014	mg/kg	1	120	500	9	5	9	30			
Cromo	EPA 6020B 2014	mg/kg	1	150	800	7	6	12	35			
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	<1	<1	4	15			
Rame	EPA 6020B 2014	mg/kg	1	120	600	3	2	6	16			
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	<5	<5	9	28			
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1			
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	0,1	<0,1	0,2	1,6			
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	3	2	7	32			
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	<0,1	<0,1	<0,1	0,4			
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	<5	<5	<5	<5			
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100			
S.V.O.C.												
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01			
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01			
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01			
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01			
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01			
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01			
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01			
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01			
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01			
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01			

TAP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CAUGHTU to STATE OF THE CONTROL OF T	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	38 di 152

 No Accettazione
 PD16-02985
 PD16-02985
 PD16-02985
 PD16-02985

 No Rapport
 PD16-02985.001
 PD16-02985.002
 PD16-02985.003
 PD16-02985.004

 Sigla
 RoW21_010716_2,4-2,6
 RoW22_300616_0-0,2
 RoW22_300616_1-1,5
 RoW22_300616_2,4-2,6

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 1/7/2016
 30/6/2016
 30/6/2016
 30/6/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

	All.5 parte Quarta										
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5						
Scheletro											
Su campione secco all'aria											
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	g/kg	1	_	_	<1	384	285	330		
Scheletro (2 mm)		g/kg	'			~1	304	203	330		
Su camp. secco all'aria (frazione											
O-h-l-t (O O)	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	-	-	<1	384	285	330		
Scheletro (2mm - 2cm)	. 2	0 0									
Su campione tal quale (frazione <		0/	0.4			00.4	00.0	04.0	00.4		
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2 < 2 mm) dati espressi sulla totalità dei materiali sed	%	0,1	- dalla aabalatra	-	88,4	96,8	94,2	93,4		
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1		
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.		
Metalli	100 13132. 2010	mg/kg	0,2	2	13	IN.A.	N.A.	N.A.	IN.A.		
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	8	1	<1	<1		
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	0,1	<0,1	<0,1	<0,1		
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	7,2	0,9	0,3	0,2		
Nichel	EPA 6020B 2014	mg/kg	1	120	500	26	2	1	1		
Cromo	EPA 6020B 2014	mg/kg	1	150	800	36	4	2	2		
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	12	3	- <1	- <1		
Rame	EPA 6020B 2014	mg/kg	1	120	600	9	2	<1	<1		
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	33	<5	<5	<5		
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1		
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	1,3	0,2	<0,1	<0,1		
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	37	5	2	2		
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,4	<0,1	<0,1	<0,1		
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	10	5	<5	<5		
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100		
S.V.O.C.											
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01		
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01		
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01		
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01		
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01		

TAP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CANADA TO LOT THE PARTY OF TH	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	39 di 152

 No Accettazione
 PD16-02985
 PD16-02985
 PD16-02985
 PD16-02985

 No Rapport
 PD16-02985.005
 PD16-02985.006
 PD16-02985.007
 PD16-02985.008

 Sigla
 RoW23_290616_0-0,2
 RoW23_290616_1-1,5
 RoW23_290616_1-1,5
 RoW23_290616_2,4-2,6
 RoW24_290616_0-0,2

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 29/6/2016
 29/6/2016
 29/6/2016
 29/6/2016
 29/6/2016
 29/6/2016
 29/6/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016</

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

					All.5 pa	rte Quarta				
Substance Common		Metodo	Unita Misura							
Scholetro (2 mm)	Scheletro									
Scheletro (2 mm)	Su campione secco all'aria									
Scrience Carmin Scrience Carmin		DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	a/ka	1	_	_	35	-1	306	84
Sheleton (2mm - 2cm) Sm 1300/1999 GU n* 248 21/10/1999 Met II.2 9kg of 1 2 5 5 5 5 5 5 5 5 5	` '		g/kg				33	\ 1	300	04
Schelpto (2mm - 2cm)	Su camp. secco all'aria (frazione									
Scientificate Carlin Car	Cabalatus (2mm 2am)	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	-	-	35	<1	306	84
Residua 105°C DM 1300/1998 DG Un *248 21/10/1998 Met II 2	. ,	- 2 mml								
Su camp. secco all'aria (frazione v 2 mm) dati espressi sulla totalità dei materiali secchi v 2 mm (105°C) comprensiva dello schellero (Ciromo VI 160 16192: 2010 mg/kg 0.2 2 15 NA.		*	0/	0.1			90.0	00.5	00.3	04.7
Crome Savalente (Cr VI) 180 15192: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190 1519: 2010 190					lello scheletro	-	69,9	90,5	90,3	94,7
Motestal						15	-1	-1	-1	-1
Motalil Arsenico EPA 6020B 2014 mg/kg 0.1 20 50 11 9 3 5 Cadinio EPA 6020B 2014 mg/kg 0.1 2 15 0.3 -0.1 -0.1 -0.1 Cobalto EPA 6020B 2014 mg/kg 0.1 20 250 15 11 7,5 4,7 Nichel EPA 6020B 2014 mg/kg 1 120 500 54 41 36 16 Cromo EPA 6020B 2014 mg/kg 1 150 800 47 34 14 22 Piombo EPA 6020B 2014 mg/kg 1 120 600 25 12 8 13 Rame EPA 6020B 2014 mg/kg 5 150 150 49 32 17 17 Mercurio EPA 6020B 2014 mg/kg 0.1 1 5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1										
Assenico		100 10192. 2010	mg/kg	0,2	2	13	IN.A.	N.A.	IN.A.	N.A.
Cadmio EPA 60208 2014 mg/kg 0.1 2 15 0,3 <0,1 <0,1 <0,1 Cobalto EPA 6020B 2014 mg/kg 0,1 20 250 15 11 7,5 4,7 Nichel EPA 6020B 2014 mg/kg 1 120 500 54 41 36 16 Cromo EPA 6020B 2014 mg/kg 1 150 800 47 34 14 12 Piombo EPA 6020B 2014 mg/kg 1 100 1000 26 13 4 14 15 Rame EPA 6020B 2014 mg/kg 1 120 600 25 12 8 13 Zinco EPA 6020B 2014 mg/kg 5 150 1500 49 32 17 17 Berillio EPA 6020B 2014 mg/kg 0,1 1 5 0,1 4 0,1 4,1 2 Vanactio EPA 6020B 2014 mg/kg<		FPA 6020B 2014	ma/ka	1	20	50	11	q	3	5
Cobalto										
Niche								•		
Cromo EPA 6020B 2014 mg/kg 1 150 800 47 34 14 22 Piombo EPA 6020B 2014 mg/kg 1 100 1000 26 13 4 15 Rame EPA 6020B 2014 mg/kg 1 120 600 25 12 8 13 Zinco EPA 6020B 2014 mg/kg 5 150 1500 49 32 17 17 Mercurio EPA 6020B 2014 mg/kg 0,1 1 5 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 </td <td></td>										
Piombo EPA 6020B 2014 mg/kg 1 100 1000 26 13 4 15 Rame EPA 6020B 2014 mg/kg 1 120 600 25 12 8 13 Zinco EPA 6020B 2014 mg/kg 5 150 1500 49 32 17 17 Mercurio EPA 6020B 2014 mg/kg 0,1 1 5 0,1 0,1 0,1 0,1 0,1 Berillio EPA 6020B 2014 mg/kg 0,1 2 10 2 1,6 0,4 1,2 Vanadio EPA 6020B 2014 mg/kg 0,1 2 10 2 1,6 0,4 1,2 Vanadio EPA 6020B 2014 mg/kg 0,1 1 10 0,7 0,5 0,1 0,4 Idrocarburi Pesanti C>12 EPA 8015C 2007 mg/kg 5 50 750 18 5 5 5 5 Arianto (SEM) DMO6/9/1994 GU n° 288 10/12/1994 All 1B mg/kg 100 10000 1000 1000 10000 10000 10000 10000 10000										
Rame EPA 6020B 2014 mg/kg 1 120 600 25 12 8 13 Zinco EPA 6020B 2014 mg/kg 5 150 1500 49 32 17 17 Mercurio EPA 6020B 2014 mg/kg 0,1 1 5 <0,1	Piombo	EPA 6020B 2014		1	100			13		
Zinco EPA 6020B 2014 mg/kg 5 150 1500 49 32 17 17 17 Mercurio EPA 6020B 2014 mg/kg 0,1 1 5 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <	Rame	EPA 6020B 2014		1	120	600	25	12	8	13
Mercurio EPA 6020B 2014 mg/kg 0,1 1 5 <0,1 <0,1 <0,1 <0,1 Berillio EPA 6020B 2014 mg/kg 0,1 2 10 2 1,6 0,4 1,2 Vanadio EPA 6020B 2014 mg/kg 1 90 250 50 36 12 27 Tallio EPA 6020B 2014 mg/kg 0,1 1 10 0,7 0,5 0,1 0,4 Idrocarburi Pesanti C>12 EPA 8015C 2007 mg/kg 5 50 750 18 <5	Zinco	EPA 6020B 2014		5						
Vanadio EPA 6020B 2014 mg/kg 1 90 250 50 36 12 27 Tallio EPA 6020B 2014 mg/kg 0,1 1 10 0,7 0,5 0,1 0,4 Idrocarburi Pesanti C>12 EPA 8015C 2007 mg/kg 5 50 750 18 -5 -5 -5 -5 Amianto (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1B mg/kg 100 1000 1000 -100 -100 -5 -5 -5 -5 Amianto (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1B mg/kg 100 1000 1000 -100 -100 -5<	Mercurio	EPA 6020B 2014		0,1			<0,1		<0,1	<0,1
Tallio EPA 6020B 2014 mg/kg 0,1 1 10 0,7 0,5 0,1 0,4 Idrocarburi Pesanti C>12 EPA 8015C 2007 mg/kg 5 50 750 18 <5	Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	2	1,6	0,4	1,2
Idrocarburi Pesanti C>12 EPA 8015C 2007 mg/kg 5 50 750 18 <5 <5 <5 <5 <5 <5 <5 <	Vanadio	EPA 6020B 2014	mg/kg	1	90	250	50	36	12	27
Amianto (SEM) DM 06/09/1994 GU n° 288 10/12/1994 All 1B mg/kg 100 1000 1000 2100 2100 2100 2100 2100	Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,7	0,5	0,1	0,4
S.V.O.C. Alaclor EPA 8270D 2007 mg/kg 0,01 0,01 1 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,	Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	18	<5	<5	<5
Alaclor EPA 8270D 2007 mg/kg 0,01 0,01 1 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01	Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100
Aldrin EPA 8270D 2007 mg/kg 0,01 0,01 0,1 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01	S.V.O.C.									
Atrazina EPA 8270D 2007 mg/kg 0,01 0,01 1 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01	Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01
alfa-BHC EPA 8270D 2007 mg/kg 0,01 0,01 0,1 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01	Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
beta-BHC EPA 8270D 2007 mg/kg 0,01 0,01 0,5 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01	Atrazina	EPA 8270D 2007	mg/kg		,				<0,01	
gamma-BHC (Lindano) EPA 8270D 2007 mg/kg 0,01 0,01 0,5 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,		EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Clordano EPA 8270D 2007 mg/kg 0,01 0,01 0,1 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01			mg/kg	0,01	,			,	<0,01	<0,01
DDD, DDT, DDE EPA 8270D 2007 mg/kg 0,01 0,01 0,1 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01	• ,		mg/kg		0,01	0,5		<0,01	<0,01	
Dieldrin EPA 8270D 2007 mg/kg 0,01 0,01 0,1 <0,01 <0,01 <0,01 <0,01					•			,	•	
					•					
Endrin EPA 8270D 2007 mg/kg 0,01 0,01 2 <0,01 <0,01 <0,01 <0,01 <0,01										
	Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01

AP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	40 di 152

 No Accettazione
 PD16-02985
 PD16-02985
 PD16-02985
 PD16-02985

 No Rapport
 PD16-02985.019
 PD16-02985.010
 PD16-02985.011
 PD16-02985.012

 Sigla
 RoW24_290616_1-1,5
 RoW24_290616_2,4-2,6
 RoW24_290616_0-0,2
 RoW25_290616_0-0,2
 RoW25_290616_1-1,5

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 29/6/2016
 29/6/2016
 29/6/2016
 29/6/2016
 29/6/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

	All.5 parte Quarta										
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5						
Scheletro											
Su campione secco all'aria											
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	g/kg	1	_	_	278	361	75	236		
Scheletro (2 mm)		g/kg				210	301	75	230		
Su camp. secco all'aria (frazione «											
Cabalatra (2mm 2am)	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	-	-	278	361	75	236		
Scheletro (2mm - 2cm) Su campione tal quale (frazione <	2 mml										
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1			95,4	96,6	98,1	91,8		
	< 2 mm) dati espressi sulla totalità dei materiali sec			alla scholatra	-	95,4	90,0	96,1	91,0		
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	<i>5) comprensiva u</i> 1	2	15	<1	<1	<1	<1		
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.		
Metalli	100 10102. 2010	mg/ng	0,2	2	15	IV.A.	IV.A.	N.A.	N.A.		
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	5	1	5	1		
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	<0,1	<0,1	<0,1	<0,1		
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	3	0,9	2,9	0,7		
Nichel	EPA 6020B 2014	mg/kg	1	120	500	10	4	11	3		
Cromo	EPA 6020B 2014	mg/kg	1	150	800	13	3	18	4		
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	5	1	10	<1		
Rame	EPA 6020B 2014	mg/kg	1	120	600	3	2	7	1		
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	9	<5	13	<5		
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1		
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	0,9	<0,1	0,8	<0,1		
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	14	3	20	3		
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,2	<0,1	0,2	<0,1		
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	6	<5	<5	<5		
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100		
S.V.O.C.											
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01		
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01		
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01		
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01		
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01		

TAP AG 40

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SEARCH TO SHE THE S	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	41 di 152

 No Accettazione
 PD16-02985
 PD16-02985
 PD16-02985
 PD16-02985

 No Rapport
 PD16-02985.013
 PD16-02985.014
 PD16-02985.015
 PD16-02985.016

 Sigla
 RoW25_290616_2,4-2,6
 RoW26_300616_0-0,2
 RoW26_300616_1-1,5
 RoW26_300616_2,4-2,6

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

Prelevato il

 Prelevato il
 29/6/2016
 30/6/2016
 30/6/2016
 30/6/2016
 30/6/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

	All.5 parte Quarta										
	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5						
Scheletro											
Su campione secco all'aria											
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	m/l.m	1			343	114	258	461		
Scheletro (2 mm)		g/kg	'	-	-	343	114	236	401		
Su camp. secco all'aria (frazione											
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	-	_	343	114	258	461		
Scheletro (2mm - 2cm)		9/119	•			0.0		200	101		
Su campione tal quale (frazione <	,										
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1		-	91,4	97,2	96	94,4		
,	< 2 mm) dati espressi sulla totalità dei materiali sec	•									
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1		
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.		
Metalli											
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	<1	3	<1	<1		
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	<0,1	<0,1	<0,1	<0,1		
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	0,4	2,4	3,2	0,2		
Nichel	EPA 6020B 2014	mg/kg	1	120	500	2	7	1	1		
Cromo	EPA 6020B 2014	mg/kg	1	150	800	2	14	1	<1		
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	<1	11	<1	<1		
Rame	EPA 6020B 2014	mg/kg	1	120	600	1	3	<1	<1		
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	<5	11	<5	<5		
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1		
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	<0,1	0,6	<0,1	<0,1		
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	2	17	1	<1		
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	<0,1	0,2	<0,1	<0,1		
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	<5	5	<5	<5		
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100		
S.V.O.C.											
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01		
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01		
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01		
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01		
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01		
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01		

TAP AG 4

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SEARCH TO SHE THE S	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	42 di 152

No Accettazione PD16-02985 PD16-02985 PD16-02985 PD16-02985 No Rapport PD16-02985.017 PD16-02985.018 PD16-02985.019 PD16-02985.020 Sigla RoW27 _290616_0-0,2 RoW27 _290616_1-1,5 RoW27 _290616_2,4-2,6 RoW28 _280616_0-0,2

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

Prelevato il

29/6/2016 29/6/2016 29/6/2016 28/6/2016 Rapp Data 4/7/2016 4/7/2016 4/7/2016 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5				
Scheletro									
Su campione secco all'aria									
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	g/kg	1			176	435	423	303
Scheletro (2 mm)		g/kg	,	-	-	170	433	423	303
Su camp. secco all'aria (frazione									
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	_	_	176	435	423	303
Scheletro (2mm - 2cm)		3,3	•						
Su campione tal quale (frazione	,								
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1		-	96,4	97,8	96,5	94,3
,	< 2 mm) dati espressi sulla totalità dei materiali sec	•	, ,						
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.
Metalli									
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	7	<1	<1	8
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	<0,1	<0,1	<0,1	0,1
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	4,5	0,5	0,5	6,2
Nichel	EPA 6020B 2014	mg/kg	1	120	500	14	2	3	29
Cromo	EPA 6020B 2014	mg/kg	1	150	800	20	2	3	21
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	10	<1	<1	9
Rame	EPA 6020B 2014	mg/kg	1	120	600	7	<1	1	21
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	17	<5	<5	19
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	1	<0,1	<0,1	0,8
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	26	2	3	21
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,2	<0,1	<0,1	0,2
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	5	<5	<5	6
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100
S.V.O.C.									
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consulting to Same your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	43 di 152

No Accettazione PD16-02985 PD16-02985 PD16-02985 PD16-02985 PD16-02985 No Rapport PD16-02985.021 PD16-02985.022 PD16-02985.023 PD16-02985.024 PD16-02985.025 Sigla RoW28_280616_1-1,5 RoW28_280616_2,4-2,6 AR1_010716_0-0,2 AR2_010716_0-0,2 AR3_010716_0-0,2 Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE) Mod. di Campionamento: Effettuato da ns. personale - Scaranto

Prelevato il

28/6/2016 28/6/2016 1/7/2016 1/7/2016 1/7/2016 Rapp Data 4/7/2016 4/7/2016 4/7/2016 4/7/2016 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

	Metodo	Unita Misura	Limite di Rapportaggio	colonna A Tabella 1-All. 5	colonna B Tabella 1-All. 5					
Scheletro										
Su campione secco all'aria										
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	m/l+m	1			386	388	23	375	109
Scheletro (2 mm)		g/kg	1	-	-	386	388	23	3/5	109
Su camp. secco all'aria (frazione										
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1		_	386	388	23	375	109
Scheletro (2mm - 2cm)		9/1.9	•			000	000	20	0.0	
Su campione tal quale (frazione <	,									
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2	%	0,1	-	-	95,1	91,1	97,2	98	93,8
,	< 2 mm) dati espressi sulla totalità dei materiali sec									
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	1	2	15	<1	<1	<1	<1	<1
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.	N.A.
Metalli										
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	2	7	9	2	10
Cadmio	EPA 6020B 2014	mg/kg	0,1	2	15	<0,1	<0,1	<0,1	0,1	0,2
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	1	1,8	4,1	1,9	8,7
Nichel	EPA 6020B 2014	mg/kg	1	120	500	9	15	13	6	36
Cromo	EPA 6020B 2014	mg/kg	1	150	800	6	7	24	13	30
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	1	2	11	5	15
Rame	EPA 6020B 2014	mg/kg	1	120	600	3	5	7	3	34
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	6	10	17	9	28
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1	<0,1
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	0,1	0,2	0,9	0,5	1,2
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	5	9	26	11	31
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	<0,1	<0,1	0,2	0,1	0,3
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	<5	<5	<5	<5	7
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100	<100
S.V.O.C.										
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01	<0,01
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01	<0,01
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01	<0,01

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CAUGHTU to STATE OF THE CONTROL OF T	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	44 di 152

 No Accettazione
 PD16-02985
 PD

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

 Prelevato il
 28/6/2016
 28/6/2016
 29/6/2016
 29/6/2016
 30/6/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016
 4/7/2016

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta

	All.5 parte Quarta									
	Metodo	Unita Misura	Limite di	colonna A	colonna B					
			Rapportaggio	Tabella 1-All. 5	Tabella 1-All. 5					
Scheletro										
Su campione secco all'aria										
	DM 13/09/1999 GU n° 248 21/10/1999 Met II.1	g/kg	1	_	_	42	121	286	78	120
Scheletro (2 mm)		9/19	•			72	121	200	70	120
Su camp. secco all'aria (frazione										
Cabalatra (2mm, 2am)	DM 13/09/1999 GU n° 248 21/10/1999 Met II.3	g/kg	1	-	-	42	121	286	78	120
Scheletro (2mm - 2cm)	. 2									
Su campione tal quale (frazione «	,	0/	0.4			00.0	07.0	00	04.5	05.4
Residuo a 105°C	DM 13/09/1999 GU n° 248 21/10/1999 Met II.2 < 2 mm) dati espressi sulla totalità dei materiali sed	% nobi + 2 om (105%	0,1	- Ialla aabalatra	-	96,2	87,6	92	94,5	95,1
Cromo VI	EPA 3060A 1996 + EPA 7196A 1992	mg/kg	<i>1</i> comprensiva u		15	<1	<1	<1	<1	<1
Cromo esavalente (Cr VI)	ISO 15192: 2010	mg/kg	0,2	2 2	15	N.A.	< 1 N.A.	N.A.	N.A.	<1 N.A.
Metalli	130 13192. 2010	mg/kg	0,2	2	15	N.A.	N.A.	N.A.	N.A.	N.A.
Arsenico	EPA 6020B 2014	mg/kg	1	20	50	8	3	5	5	8
Cadmio	EPA 6020B 2014	mg/kg	0,1	20	15	0,2	<0,1	<0,1	0,1	0,1
Cobalto	EPA 6020B 2014	mg/kg	0,1	20	250	6,9	4,4	2,2	4,8	7,5
Nichel	EPA 6020B 2014	mg/kg	1	120	500	22	23	11	16	7,5 29
Cromo	EPA 6020B 2014	mg/kg	1	150	800	33	12	8	23	27
Piombo	EPA 6020B 2014	mg/kg	1	100	1000	15	4	2	17	13
Rame	EPA 6020B 2014	mg/kg	1	120	600	11	8	4	12	11
Zinco	EPA 6020B 2014	mg/kg	5	150	1500	29	16	9	17	27
Mercurio	EPA 6020B 2014	mg/kg	0,1	1	5	<0,1	<0,1	<0,1	<0,1	<0,1
Berillio	EPA 6020B 2014	mg/kg	0,1	2	10	1,8	0,3	0,1	1,2	1,2
Vanadio	EPA 6020B 2014	mg/kg	1	90	250	34	12	7	28	29
Tallio	EPA 6020B 2014	mg/kg	0,1	1	10	0,4	<0,1	<0,1	0,4	0,3
Idrocarburi Pesanti C>12	EPA 8015C 2007	mg/kg	5	50	750	<5	<5	<5	6	9
Amianto (SEM)	DM 06/09/1994 GU n° 288 10/12/1994 All 1B	mg/kg	100	1000	1000	<100	<100	<100	<100	<100
s.v.o.c.										
Alaclor	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01	<0,01
Aldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	EPA 8270D 2007	mg/kg	0,01	0,01	1	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
beta-BHC	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	EPA 8270D 2007	mg/kg	0,01	0,01	0,5	<0,01	<0,01	<0,01	<0,01	<0,01
Clordano	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	EPA 8270D 2007	mg/kg	0,01	0,01	0,1	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	EPA 8270D 2007	mg/kg	0,01	0,01	2	<0,01	<0,01	<0,01	<0,01	<0,01

TAP AG 44

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSV SHELTER The Consulting to Section your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	45 di 152

 No Accettazione
 PD16-02985
 PD16-02985

 No Rapport
 PD16-02985.031
 PD16-02985.032

 Sigla
 B.D. 6_300616_2,4-2,6
 B.D. 7_010716_0-0,2

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

Prelevato il Rapp Data

titolo V della parte IV del D.Lgs 152/06 All.5 parte Quarta 30/6/2016

4/7/2016

1/7/2016

4/7/2016

Limite di colonna A colonna B Metodo Unita Misura Rapportaggio Tabella 1-All. 5 Tabella 1-All. 5 Scheletro Su campione secco all'aria DM 13/09/1999 GU n° 248 21/10/1999 Met II.1 g/kg 390 223 Scheletro (2 mm) Su camp. secco all'aria (frazione <2 cm) DM 13/09/1999 GU n° 248 21/10/1999 Met II.3 g/kg 1 390 223 Scheletro (2mm - 2cm) Su campione tal quale (frazione < 2 mm) Residuo a 105°C DM 13/09/1999 GU n° 248 21/10/1999 Met II.2 % 0,1 93,6 97 Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello scheletro EPA 3060A 1996 + EPA 7196A 1992 Cromo VI mg/kg 15 <1 <1 Cromo esavalente (Cr VI) ISO 15192: 2010 mg/kg 0,2 2 15 N.A. N.A. Metalli EPA 6020B 2014 Arsenico mg/kg 1 20 50 <1 5 mg/kg Cadmio EPA 6020B 2014 0,1 2 15 <0,1 0,1 EPA 6020B 2014 0,1 20 250 0,2 Cobalto mg/kg 3,9 EPA 6020B 2014 500 Nichel mg/kg 1 120 13 EPA 6020B 2014 150 800 21 Cromo mg/kg EPA 6020B 2014 100 1000 <1 8 Piombo mg/kg Rame EPA 6020B 2014 mg/kg 120 600 <1 6 EPA 6020B 2014 mg/kg 5 150 1500 <5 17 Zinco EPA 6020B 2014 0,1 5 <0,1 <0,1 Mercurio mg/kg 1 Berillio EPA 6020B 2014 mg/kg 0,1 2 10 < 0.1 0.9 Vanadio EPA 6020B 2014 mg/kg 1 90 250 2 21 Tallio EPA 6020B 2014 mg/kg 0,1 1 10 <0,1 0,2 Idrocarburi Pesanti C>12 EPA 8015C 2007 50 750 mg/kg 5 <5 <5 DM 06/09/1994 GU n° 288 10/12/1994 All 1B Amianto (SEM) 1000 1000 <100 <100 mg/kg 100 S.V.O.C. Alaclor EPA 8270D 2007 0.01 0.01 < 0.01 < 0.01 mg/kg Aldrin EPA 8270D 2007 0,01 0,01 0,1 <0,01 <0,01 mg/kg EPA 8270D 2007 Atrazina mg/kg 0,01 0,01 1 <0,01 <0,01 alfa-BHC EPA 8270D 2007 mg/kg 0,01 0,01 0,1 <0,01 <0,01 beta-BHC EPA 8270D 2007 0,5 <0,01 mg/kg 0,01 0,01 <0,01 gamma-BHC (Lindano) EPA 8270D 2007 0.01 0.01 0.5 < 0.01 < 0.01 mg/kg Clordano EPA 8270D 2007 0,01 0,01 0,1 <0,01 <0,01 mg/kg DDD, DDT, DDE EPA 8270D 2007 mg/kg 0,01 0,01 0,1 <0,01 <0,01 Dieldrin EPA 8270D 2007 0,01 0,1 <0,01 mg/kg 0,01 <0,01 Endrin EPA 8270D 2007 mg/kg 0,01 0,01 2 <0,01 <0,01

TAP AG 45

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCLUDE TO LOCALIZE TO LOC	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	46 di 152

No Accettazione
No Rapport
Sigla
Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)
Mod. di Campionamento: Effettuato da ns. personale - Scaranto

Prelevato il 28/6/2016 29/6/2016 Rapp Data 28/6/2016 4/7/2016

		Unita Misura	Limite di Rapportaggio	Upper Limit 1		
Compionomento	Metodo Di go p 152 03/04/2006 CH p 99 14/04/2006 oil 2 porto IV					
Campionamento Su campione Tal Quale	DLgs n.152 03/04/2006 GU n.88 14/04/2006 all. 2 parte IV	-	0			
Amianto		n fibre/L	5000	non definito	<5000	<5000
Metalli		II libre/L	3000	non delinito	~5000	<5000
Arsenico	EPA 6020B 2014	ug/L	1	10	<1	<1
Berillio	EPA 6020B 2014	ug/L	0,1	4	0,1	0,1
Cadmio	EPA 6020B 2014	ug/L	0,5	5	<0,5	<0,5
Cobalto	EPA 6020B 2014	ug/L	1	50	<1	<1
Cromo	EPA 6020B 2014	ug/L	1	50	<1	<1
Mercurio	EPA 6020B 2014	ug/L	0,1	1	<0,1	<0,1
Nichel	EPA 6020B 2014	ug/L	1	20	<1	<1
Piombo	EPA 6020B 2014	ug/L	1	10	<1	4
Rame	EPA 6020B 2014	ug/L	1	1000	1	2
Tallio	EPA 6020B 2014	ug/L	1	2	<1	<1
Vanadio	EPA 6020B 2014	ug/L	1	-	<1	<1
Zinco	EPA 6020B 2014	ug/L	5	3000	7	8
Su campione Tal Quale						
Cromo esavalente (come Cr)	APAT CNR IRSA 3150 C Man 29 2003	ug/L	1	5	<1	<1
Idrocarburi Pesanti C >= 12	EPA 8015C 2007	ug/L	20	350	28	27
S.V.O.C.						
Alaclor	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05
Aldrin	EPA 8270D 2007	ug/L	0,03	0,03	<0,03	<0,03
Atrazina	EPA 8270D 2007	ug/L	0,05	0,3	<0,05	<0,05
alfa-Esaclorocicloesano	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05
beta-Esaclorocicloesano	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05
gamma-Esaclorocicloesano (Linda		ug/L	0,05	0,1	<0,05	<0,05
Clordano	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05
DDD, DDT, DDE Dieldrin	EPA 8270D 2007 EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05
Endrin	EPA 8270D 2007 EPA 8270D 2007	ug/L	0,03 0.05	0,03 0.1	<0,03 <0,05	<0,03 <0,05
LIMIN	LI A 0210D 2001	ug/L	0,05	U, I	~0,05	~0,05

PD16-02986

PD16-02986.001

F.B. 1

PD16-02986

PD16-02986.002

F.B. 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Surface your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	47 di 152

No Accettazione
No Rapport
PD16-02986
PD16-02986
PD16-02986
PD16-02986.003
PD16-02986.004
PD16-02986.005
PD16-0

 Prelevato il
 29/6/2016
 30/6/2016
 30/6/2016

 Rapp Data
 4/7/2016
 4/7/2016
 4/7/2016

	Metodo	Unita Misura	Limite di Rapportaggio	Upper Limit 1			
Campionamento Su campione Tal Quale	DLgs n.152 03/04/2006 GU n.88 14/04/2006 all. 2 parte IV	-	0				
Amianto Metalli		n fibre/L	5000	non definito	<5000	<5000	<5000
Arsenico	EPA 6020B 2014	ug/L	1	10	<1	<1	<1
Berillio	EPA 6020B 2014	ug/L	0,1	4	0,1	<0,1	<0,1
Cadmio	EPA 6020B 2014	ug/L	0,5	5	<0,5	<0,5	<0,5
Cobalto	EPA 6020B 2014	ug/L	1	50	<1	<1	<1
Cromo	EPA 6020B 2014	ug/L	1	50	<1	<1	<1
Mercurio	EPA 6020B 2014	ug/L	0,1	1	<0,1	<0,1	<0,1
Nichel	EPA 6020B 2014	ug/L	1	20	<1	<1	<1
Piombo	EPA 6020B 2014	ug/L	1	10	<1	<1	<1
Rame	EPA 6020B 2014	ug/L	1	1000	<1	<1	<1
Tallio	EPA 6020B 2014	ug/L	1	2	<1	<1	<1
Vanadio	EPA 6020B 2014	ug/L	1	-	<1	<1	<1
Zinco	EPA 6020B 2014	ug/L	5	3000	<5	<5	<5
Su campione Tal Quale	ADAT OND IDOA 2450 O Marr 20 2002			-	-4	-4	-4
Cromo esavalente (come Cr)	APAT CNR IRSA 3150 C Man 29 2003	ug/L	1	5	<1 <20.0	<1	<1 27
Idrocarburi Pesanti C >= 12 S.V.O.C.	EPA 8015C 2007	ug/L	20	350	<20,0	<20,0	21
Alaclor	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05	<0,05
Aldrin	EPA 8270D 2007	ug/L	0,03	0,03	<0,03	<0,03	<0,03
Atrazina	EPA 8270D 2007	ug/L	0,05	0,3	<0,05	<0,05	<0,05
alfa-Esaclorocicloesano	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05	<0,05
beta-Esaclorocicloesano	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05	<0,05
gamma-Esaclorocicloesano (Linda		ug/L	0,05	0,1	<0,05	<0,05	<0,05
Clordano	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05	<0,05
DDD, DDT, DDE	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05	<0,05
Dieldrin	EPA 8270D 2007	ug/L	0,03	0,03	<0,03	<0,03	<0,03
Endrin	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05	<0,05

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	48 di 152

 No Accettazione
 PD16-02986
 PD16-02986

 No Rapport
 PD16-02986.007
 PD16-02986.007

 Sigla
 F.B. 6
 F.B. 7

Proveniente da: Microtunnel access Area, Municipality of Melendugno (LE)

Mod. di Campionamento: Effettuato da ns. personale - Scaranto

Prelevato il
Rapp Data

1/7/2016 1/7/2016 4/7/2016 4/7/2016

	Metodo	Unita Misura	Limite di Rapportaggio	Upper Limit 1		
Campionamento Su campione Tal Quale	DLgs n.152 03/04/2006 GU n.88 14/04/2006 all. 2 parte IV	-	0			
Amianto Metalli		n fibre/L	5000	non definito	<5000	<5000
Arsenico	EPA 6020B 2014	ug/L	1	10	<1	<1
Berillio	EPA 6020B 2014	ug/L	0,1	4	<0,1	<0,1
Cadmio	EPA 6020B 2014	ug/L	0,5	5	0,9	1
Cobalto	EPA 6020B 2014	ug/L	1	50	<1	<1
Cromo	EPA 6020B 2014	ug/L	1	50	<1	<1
Mercurio	EPA 6020B 2014	ug/L	0,1	1	<0,1	<0,1
Nichel	EPA 6020B 2014	ug/L	1	20	<1	<1
Piombo	EPA 6020B 2014	ug/L	1	10	<1	<1
Rame	EPA 6020B 2014	ug/L	1	1000	<1	<1
Tallio	EPA 6020B 2014	ug/L	1	2	<1	<1
Vanadio	EPA 6020B 2014	ug/L	1	-	<1	<1
Zinco	EPA 6020B 2014	ug/L	5	3000	5	5
Su campione Tal Quale						
Cromo esavalente (come Cr)	APAT CNR IRSA 3150 C Man 29 2003	ug/L	1	5	<1	<1
Idrocarburi Pesanti C >= 12	EPA 8015C 2007	ug/L	20	350	21	71
S.V.O.C.						
Alaclor	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05
Aldrin	EPA 8270D 2007	ug/L	0,03	0,03	<0,03	<0,03
Atrazina	EPA 8270D 2007	ug/L	0,05	0,3	<0,05	<0,05
alfa-Esaclorocicloesano	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05
beta-Esaclorocicloesano	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05
gamma-Esaclorocicloesano (Linda		ug/L	0,05	0,1	<0,05	<0,05
Clordano	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05
DDD, DDT, DDE	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05
Dieldrin	EPA 8270D 2007	ug/L	0,03	0,03	<0,03	<0,03
Endrin	EPA 8270D 2007	ug/L	0,05	0,1	<0,05	<0,05

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Seating your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	49 di 152

<u>ALLEGATO C – CERTIFICATI ANALITICI TERRENI</u>

Certificati Analitici SGS

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consulting to same your flusions	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	50 di 152

Prima pagina

CLIENTE	-	LABORATORIO	
Cliente	SHELTER SRL	Head of Laboratory	Cristiano Toffoletti
		Laboratorio	SGS Italia S.p.A.
Indirizzo	Viale Gran Sasso n. 13	Indirizzo	Via Campodoro, 25
	MILANO 20131		Villafranca Padovana (PD) 35010
Contatto		Telefono	+39 049 9050013
Telefono		Fax	+39 049 9050065
Fax		Email	sgs.eco@sgs.com
Email		Accettazione nº	PD16-02983
Progetto	Default Project	Pervenuto II	04/07/2016
Ordine n°	1153/2015/C1/PD/Rev.4	Data inizio prove di lab.	05/07/2016
Matrice	TERRENI(30)	Data fine prove lab.	05/08/2016
		Rapporto di Prova nº	PD16-02963_0
		Data emissione	08/08/2016

COMMENTI

Incertezza estesa di misura stimata al 95% di livello di confidenza e fattore di copertura k=2

Documento con firma digitale avanzata ai sensi della normativa vigente. Firmato digitalmente da Dr. Cristiano Toffoletti Ordine dei chimici della Provincia di Venezia/94004270271

RIFERIMENTI Head Of Laboratory Project Agent 3GS Italia S.p.A. Via Campodoro, 25 35010 Villafranca Padovana (PD) Italy

Membri del Gruppo SGS (Société Générale de Surveillance) - veveraga com

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	51 di 152

INDICE

Prima Pagina	1
Indice	2
Risultati	3-14
Limiti Di Riferimento	15
Legenda	16

20160808 2718

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	52 di 152

PD16-02983_0

RISULTATI

SULTATI							
	Came	olone n°	PD16-02983.001	PD16-02983.002	PD16-02983.003	PD16-02983.004	PD16-02983.0
	Sigla ca		PRT29_280616_0-	PRT29	PRT30	PRT30	PRT31
	Organ Ca	IIIpiolio	1	_280616_1-2	_280616_0-1	_280616_1-2	_280616_0
	Pmunni	ente da	Microtuppel access		Microtunnel access		
	Fiovali	orito da		Area, Municipality	Area, Municipality	Area, Municipality	
					of Melendugno (LE)		
	Tino na	mpione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campio		Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da na.	Effettuato da
	Campio		personale -	personale -	personale -	personale -	personale
			Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
	Campi	onato il	28/06/2016	28/06/2016	28/06/2016	28/06/2016	28/06/201
Parametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
u campione secco all'aria + DM 13/09/1	999 GU n° 248 21/1	0/1999	Met II.1]				
Scheletro (2 mm)	g/kg	1	170±17	193 ±19	204 ±20	323 ±32	172 ±17
u camp. secco all'aria (frazione <2 cm)	+ DM 13/09/1999 G	U nº 24	18 21/10/1999 Me	et II.3]			
Scheletro (2mm - 2cm)	g/kg	1	170±17	193 ±19	204 ±20	323 ±32	172 ±17
u campione tal quale (frazione < 2 mm)	+ DM 13/09/1999 G	SU nº 2	48 21/10/1999 M	et II.2]			
Residuo a 105°C	%	0,1	94,0 ±5,6	91,3 ±5,5	93,9 ±5,6	90,0 ±5,4	91,9 ±5,5
u camp. secco all'aria (frazione < 2 mm) dati espressi sulla	totalità	dei materiali seo	chi < 2 cm (105°	C) comprensiva	dello	
eletro + EPA 3060A 1996 + EPA 7196A	1992]						
Cromo VI	mg/kg	1	<1	<1	<1	<1	<1
talli [Su camp. secco all'aria (frazione <	2 mm) dati espress	i sulla 1	totalità dei materi	ali secchi < 2 cm	(105°C) compre	nsiva	
lo scheletro + EPA 3050B 1996 + EPA 6					(,		
Arsenico				4 - 4			
	mg/kg	1	7±1	4±1	10 ±2	6 ±1	9 ±2
Cadmio	mg/kg	0,1	0,1±0,1	<0,1	0,1 ±0,1	<0,1	0,1 ±0,1
Cobalto	mg/kg	0,1	9,2±3,7	5,5 ±2,9	7,4 ±3,3	4,8 ±2,8	8,9 ±3,6
Nichel	mg/kg	1	34±6	30±6	29 ±6	19 ±4	41 ±8
Cromo	mg/kg	1	21 ±5	13 ±4	24 ±5	10 ±3	27 ±6
Plombo	mg/kg	1	7±1	4±1	9 ±1	3 ±1	11 ±1
Rame	mg/kg	1	20 ±8	10+7	21 +8	7 ±6	28 ±9
Zince							
	mg/kg	5	21 ±5	16±5	21 ±5	13 ±5	27 ±5
Mercurio	mg/kg	0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Berillio	mg/kg	0,1	0,9	0,3±0,2	0,9	0,2 ±0,1	1,1 ±0,7
Vanadio	mg/kg	1	20 ±4	11 ±2	26 ±5	12 ±3	27 ±5
Tallio	mg/kg	0,1	0,3±0,1	<0,1	0,3 ±0,1	<0,1	0,3 ±0,1
u camp. secco all'aria (frazione < 2 mm) dati espressi sulla	totalità	dei materiali sec	chi < 2 cm (105°	C) comprensiva	dello	
eletro + EPA 3550C 2007 + EPA 36200	2007 + EPA 80150	C 2007	1				
Idrocarburi Pesanti C>12	mg/kg	5	6	<5	6	<5	8
							0
u camp. secco all'aria (frazione < 2 mm) dati espressi sulla	totalità	dei materiali sec	chi < 2 cm (105°	C) comprensiva	dello	
eletro + DM 06/09/1994 GU n° 288 10/1	12/1994 All 1B]						
Amianto (SEM)	mg/kg	100	<100	<100	<100	<100	<100
O.C. [Su camp. secco all'aria (frazione	e < 2 mm) dati espre	ssi sull	a totalità dei mat	eriali secchi < 2 d	cm (105°C) come	orensiva	
o scheletro + EPA 3550C 2007+EPA 36					(5) 55/14		
Alacior	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
alfa-BHC	mg/kg	0,01	<0.01	<0.01	<0.01	<0.01	<0.01
	ngag	0,01	40,01	-0,01	-4,01	40,01	~0,01

20160808 3/16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SECOND TO	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	53 di 152

PD16-02983_0

RISULTATI

Campione	n*	PD16-02983.001	PD16-02983.002	PD16-02983.003	PD16-02983.004	PD16-02983.005
Sigla campio	по	PRT29_280616_0-	PRT29	PRT30	PRT30	PRT31
		1	_280616_1-2	_280616_0-1	_280616_1-2	_280616_0-1
Proveniente	da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)				
Tipo campio	ne	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
Campionato	da	Effettuato da ns.				
		personale -				
		Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
Campionat	o ii	28/06/2016	28/06/2016	28/06/2016	28/06/2016	28/06/2016
Parametro U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (
--

			21 2 7				
beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160808 4 / 16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	54 di 152

PD16-02983_0

RISULTATI

SULTATI							
	Camp	olone n°	PD16-02983.006	PD16-02983.007	PD16-02983.008	PD16-02983.009	PD16-02983.0
	Sigla ca		PRT31	PRT32	PRT32	PRT33	PRT33
			_280616_1-2	_280616_0-1	_280616_1-2	_280616_0-1	_280616_1-2
	Proveni	ente da	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel acc
			Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipa
			of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno
	Tipo ca	mpione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campio	nato da	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da
			personale -	personale -	personale -	personale -	personale -
			Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
	Campi	ionato il	28/06/2016	28/06/2016	28/06/2016	28/06/2016	28/06/2016
Parametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
ou campione secco all'aria + DM 13/09	9/1999 GU n° 248 21/1	0/1999	Met II.1]				
Scheletro (2 mm)	g/kg	1	154 ±15	373 ±37	201 ±20	408 ±41	537 ±54
Su camp. secco all'aria (frazione <2 cn	n) + DM 13/09/1999 G	U nº 24	18 21/10/1999 Me	t II.3]			
Scheletro (2mm - 2cm)	g/kg	1	154 ±15	373 ±37	201 ±20	408 ±41	537 ±54
u campione tal quale (frazione < 2 m	m) + DM 13/09/1999 G	iU n° 2	48 21/10/1999 M	et II.2]			
Residuo a 105°C	%	0,1	88,0 ±5,3	93,9 ±5,6	90,4 ±5,4	94,8 ±5,7	92,5 ±5,6
u camp. secco all'aria (frazione < 2 m	nm) dati espressi sulla	totalità	dei materiali sec	chi < 2 cm (105°	C) comprensiva o	dello	
eletro + EPA 3060A 1996 + EPA 719	6A 1992]						
Cromo VI	mg/kg	1	<1	<1	<1	<1	<1
talli [Su camp. secco all'aria (frazione	e < 2 mm) dati espress	i sulla 1	totalità dei materi	ali secchi < 2 cm	(105°C) compre	nsiva	
lo scheletro + EPA 3050B 1996 + EPA							
Arsenico	mg/kg	1	3 ±1	4±1	6 ±1	4±1	3 ±1
Cadmio							
Cobalto	mg/kg	0,1	<0,1	0,1 ±0,1	<0,1	<0,1	<0,1
	mg/kg	0,1	4,4±2,7	4,1±2,6	6,0 ±3,0	4,4 ±2,7	3,0 ±2,4
Nichel	mg/kg	1	25±5	18±4	21 ±4	22 ±4	14 ±3
Cromo	mg/kg	1	13 ±4	14 ±4	12 ±4	12 ±4	6 ±3
Plombo	mg/kg	1	4 ±1	4±1	3 ±1	5 ±1	2 ±1
Rame	mg/kg	1	9 ±7	12±7	16 ±8	14 ±7	5 ±4
Zinco	mg/kg	5	15±5	13±5	15 ±5	15 ±5	10 ±5
Mercurio	mg/kg	0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Berillio	mg/kg	0,1	0,3±0,2	0,6±0,4	0,3 ±0,2	0,4 ±0,3	0,1 ±0,1
Vanadio	mg/kg	1	13±3	16±3	13 ±3	12 ±3	7 ±2
Tallio	mg/kg	0,1	0,1±0,1	0,2±0,1	0,1 ±0,1	0,1 ±0,1	<0,1
Vicenza and all'aria (ferriana d' 2 m							
Su camp. secco all'aria (frazione < 2 m				un ~ 2 un (105)	c) comprensiva o	ielo	
neletro + EPA 3550C 2007 + EPA 362			•				
Idrocarburi Pesanti C>12	mg/kg	5	<5	6	<5	<5	<5
Su camp. secco all'aria (frazione < 2 m	nm) dati espressi sulla	totalità	dei materiali sec	chi < 2 cm (105°)	C) comprensiva o	dello	
heletro + DM 06/09/1994 GU n° 288 1	0/12/1994 All 1B]						
Amianto (SEM)	mg/kg	100	<100	<100	<100	<100	<100
/.O.C. [Su camp. secco all'aria (frazio		essi sull	a totalità dei mat	eriali secchi < 2 d	cm (105°C) comp	rensiva	
lo scheletro + EPA 3550C 2007+EPA				-21	(0)	/	
Alaclor	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	<0.01	<0,01	<0,01	<0.01
Atrazina		0,01	<0,01	<0.01	<0,01	<0,01	<0.01
alfa-BHC	mg/kg						
ana-SHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160808 5/16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	55 di 152

PD16-02983_0

RISULTATI

Campione (PD16-02983.006	PD16-02983.007	PD16-02983.008	PD16-02983.009	PD16-02983.010
Sigla campior	PRT31	PRT32	PRT32	PRT33	PRT33
	_280616_1-2	_280616_0-1	_280616_1-2	_280616_0-1	_280616_1-2
Proveniente d	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access
	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality
	of Melendugno (LE)	of Molendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)
Tipo campior	 TERRENI 	TERRENI	TERRENI	TERRENI	TERRENI
Campionato d	a Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.
	personale -	personale -	personale -	personale -	personale -
	Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
Campionato	II 28/06/2016	28/06/2016	28/06/2016	28/06/2016	28/06/2016
Parametro U.M. F	L Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

Schedule - El Mosso Zoon - El Moszo Zo		2100 200	, I (segue)				
beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160808 6716

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	56 di 152

PD16-02983_0

RISULTATI

SULTATI							
	Camp	lone n*	PD16-02983.011	PD16-02983.012	PD16-02983.013	PD16-02983.014	PD16-02983.
	Sigla car		PRT34	PRT35 280616 0-	PRT36	PRT36	PRT37
	-		280616_0-0,2	0.2	290616_0-1	290616_1-2	280616_04
	Provenic	ente da		Microtunnel access			
			Area, Municipality	Area, Municipality		Area, Municipality	
				of Melendugno (LE)			
	Tipo car	molone	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campior		Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da na.	Effettuato da
			personale -	personale -	personale -	personale -	personale
			Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
	Campi	onato il	28/06/2016	28/06/2016	29/06/2016	29/06/2016	28/06/201
Parametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
u campione secco all'aria + DM 13/09/	1999 GU n° 248 21/1	0/1999	Met II.1]				
Scheletro (2 mm)	g/kg	1	58±6	115 ±12	246 ±25	306 ±31	17 ±2
u camp. secco all'aria (frazione <2 cm)	+ DM 13/09/1999 GI	U nº 24	18 21/10/1999 Me	et II.3]			
Scheletro (2mm - 2cm)	g/kg	1	58 ±6	115 ±12	246 ±25	306 ±31	17 ±2
u campione tal quale (frazione < 2 mm) + DM 13/09/1999 G	U nº 2	48 21/10/1999 M	et II.2]			
Residuo a 105°C	%	0,1	95,6±5,7	94,5 ±5,7	95,7 ±5,7	92,3 ±5,5	96,1 ±5,8
u camp. secco all'aria (frazione < 2 mn	n) dati espressi sulla t	totalità	dei materiali seo	chi < 2 cm (105°	C) comprensiva	dello	
eletro + EPA 3060A 1996 + EPA 7196	A 1992]						
Cromo VI	mg/kg	1	<1	<1	<1	<1	<1
talli [Su camp. secco all'aria (frazione	< 2 mm) dati espressi	i sulla 1	totalità dei materi	ali secchi < 2 cm	(105°C) compre	nsiva	
lo scheletro + EPA 3050B 1996 + EPA					(,		
Amenico							
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/kg	1	6 ±1	10±2	5±1	4 ±1	8 ±1
Cadmio	mg/kg	0,1	0,3±0,1	0,2±0,1	<0,1	<0,1	0,2 ±0,1
Cobalto	mg/kg	0,1	5,8±3,0	9,1 ±3,7	5,6 ±2,9	1,9 ±2,1	6,8 ±3,2
Nichel	mg/kg	1	20 ±4	34±6	23 ±5	10 ±2	20 ±4
Cromo	mg/kg	1	27 ±6	37 ±7	13 ±4	7 ±3	34 ±7
Plombo	mg/kg	1	14±2	16±2	5 ±1	2 ±1	17 ±2
Rame	mg/kg	1	17 ±8	16±8	33 ±10	4 ±3	12 ±7
Zinco		5	33 ±5	37±6	15 ±5	8 ±5	30 ±5
Mercurio	mg/kg						
	mg/kg	0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Berillo	mg/kg	0,1	1,9±0,8	1,7 ±0,8	0,4 ±0,3	0,1 ±0,1	1,9 ±0,8
Vanadio	mg/kg	1	27 ±5	40±6	13 ±3	6±2	34 ±6
Tallio	mg/kg	0,1	0,4±0,1	0,4 ±0,1	0,1 ±0,1	<0,1	0,4 ±0,1
u camp. secco all'aria (frazione < 2 mr	n) dati espressi sulla t	totalità	dei materiali sec	chi < 2 cm (105°	C) comprensiva	dello	
eletro + EPA 3550C 2007 + EPA 3620	C 2007 + EPA 80150	2007	1				
Idrocarburi Pesanti C>12	mg/kg	5	6	7	16	<5	8
							•
u camp. secco all'aria (frazione < 2 mr		totalità	qei materiali sec	cni < 2 cm (105°)	L) comprensiva	iello	
eletro + DM 06/09/1994 GU n° 288 10	/12/1994 All 1B]						
Amianto (SEM)	mg/kg	100	<100	<100	<100	<100	<100
.O.C. [Su camp. secco all'aria (frazion	ne < 2 mm) dati espre	ssi sull	a totalità dei mat	eriali secchi < 2 d	cm (105°C) come	orensiva	
lo scheletro + EPA 3550C 2007+EPA 3					(5) 55/14		
Alacior	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	mg/kg	0,01	<0.01	<0.01	<0.01	<0,01	<0.01
alfa-BHC	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	grig	0,01	-9/91	-0,01	-9/01	-0,01	-9,01

20160808 7/16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	57 di 152

PD16-02983_0

RISULTATI

	Campione n*	PD16-02983.011	PD16-02983.012	PD16-02983.013	PD16-02983.014	PD16-02983.015
	Sigla campione	PRT34	PRT35_280616_0-	PRT36	PRT36	PRT37
		_280616_0-0,2	0,2	_290616_0-1	_290616_1-2	_280616_0-0,2
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)				
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
	Campionato il	28/06/2016	28/06/2016	29/06/2016	29/06/2016	28/06/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (
--

			21 2 7				
beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160808 8/16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	58 di 152

PD16-02983_0

RISULTATI

	Camp	olone n°	PD16-02983.016	PD16-02983.017	PD16-02983.018	PD16-02983.019	PD16-02983.0
	Sigla ca	mpione	PRT38	PRT39	PRT39	PRT40	PRT41
			_280616_0-0,2	_290616_0-1	_290616_1-2	_280616_0-0,2	_280616_0-0
	Proveni	ente da	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel acc
			Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipa
			of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno
	Tipo ca	mpione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campio	nato da	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da
			personale -	personale -	personale -	personale -	personale
			Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
		ionato il	28/06/2016	29/06/2016	29/06/2016	28/06/2016	28/06/2016
Parametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
u campione secco all'aria + DM 13/09/1999	GU n° 248 21/1	0/1999	Met II.1]				
Scheletro (2 mm)	g/kg	1	144 ±14	247 ±25	399 ±40	128 ±13	108 ±11
u camp. secco all'aria (frazione <2 cm) + DN	M 13/09/1999 G	U n° 24	18 21/10/1999 Me	t II.3]			
Scheletro (2mm - 2cm)	g/kg	1	144 ±14	247 ±25	399 ±40	128 ±13	108 ±11
u campione tal quale (frazione < 2 mm) + DI	M 13/09/1999 G	U nº 2	48 21/10/1999 M	et II.2]			
Residuo a 105°C	%	0,1	94,8 ±5,7	92,6 ±5,6	91,9 ±5,5	95,4 ±5,7	94,4 ±5,7
u camp. secco all'aria (frazione < 2 mm) dat	ti espressi sulla	totalità	dei materiali sec	chi < 2 cm (105°	C) comprensiva o	dello	
eletro + EPA 3060A 1996 + EPA 7196A 199	92]						
Cromo VI	mg/kg	1	<1	<1	<1	<1	<1
talli [Su camp. secco all'aria (frazione < 2 m	nm) dati espress	i sulla 1	totalità dei materi	ali secchi < 2 cm	(105°C) compre	nsiva	
lo scheletro + EPA 3050B 1996 + EPA 6020					,		
Arsenico	mg/kg	1	8 ±1	9±2	4 ±1	9 ±2	9 ±2
Cadmio	mg/kg	0,1	0,2±0,1	0,1±0,1	<0,1	0,2 ±0,1	0,2 ±0,1
Cobalto		0,1	7.0±3.2	6.9±3.2	5.6 ±2.9	8.1 ±3.5	0,2 20,1
							04.05
	mg/kg				-1		8,4 ±3,5
Nichel	mg/kg	1	26±5	30±6	15 ±3	26 ±5	28 ±5
Nichel Cromo	mg/kg mg/kg	1	26±5 33±7	30 ±6 23 ±5	15 ±3 7 ±3	26 ±5 36 ±7	28 ±5 37 ±7
Nichel Cromo Plombo	mg/kg	1	26±5	30±6	15±3 7±3 2±1	26 ±5 36 ±7 15 ±2	28 ±5
Nichel Cromo	mg/kg mg/kg	1	26±5 33±7	30 ±6 23 ±5	15 ±3 7 ±3	26 ±5 36 ±7	28 ±5 37 ±7
Nichel Cromo Plombo	mg/kg mg/kg mg/kg	1 1	26 ±5 33 ±7 14 ±2	30±6 23±5 9±1	15±3 7±3 2±1	26 ±5 36 ±7 15 ±2	28 ±5 37 ±7 15 ±2
Nichel Cromo Plombo Rame	mg/kg mg/kg mg/kg	1 1 1	26±5 33±7 14±2 13±7	30±6 23±5 9±1 14±7	15 ±3 7 ±3 2 ±1 7 ±6	26 ±5 36 ±7 15 ±2 13 ±7	28 ±5 37 ±7 15 ±2 12 ±7
Nichel Cromo Plombo Rame Zinco	mg/kg mg/kg mg/kg mg/kg	1 1 1 1 5	26±5 33±7 14±2 13±7 31±5	30±6 23±5 9±1 14±7 23±5	15 ±3 7 ±3 2 ±1 7 ±6 10 ±5	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5	28 ±5 37 ±7 15 ±2 12 ±7 32 ±5
Nichel Cromo Plombo Rame Zinoo Mercurio	mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 1 5	26±5 33±7 14±2 13±7 31±5 <0,1	30±6 23±5 9±1 14±7 23±5 <0,1	15±3 7±3 2±1 7±6 10±5 <0,1	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1	28 ±5 37 ±7 15 ±2 12 ±7 32 ±5 <0,1
Nichel Cromo Plombo Rame Zinoo Mercurio Berillio	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 1 5 0,1	26±5 33±7 14±2 13±7 31±5 <0,1 1,6±0,8	30±6 23±5 9±1 14±7 23±5 <0,1 0,9	15 ±3 7 ±3 2 ±1 7 ±6 10 ±5 <0,1 0,1 ±0,1	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1 1,6 ±0,8	28 ±5 37 ±7 15 ±2 12 ±7 32 ±5 <0,1 1,5 ±0,8
Nichel Cromo Plombo Rame Zinco Mercurio Berillio Vanadio Tallio	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 1 5 0,1 0,1 1 0,1	26±5 33±7 14±2 13±7 31±5 <0,1 1,6±0,8 33±5 0,4±0,1	30±6 23±5 9±1 14±7 23±5 <0,1 0,9 25±4 0,3±0,1	15 ±3 7 ±3 2 ±1 7 ±6 10 ±5 <0,1 0,1 ±0,1 9 ±2 <0,1	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1 1,6 ±0,8 38 ±6 0,4 ±0,1	28±5 37±7 15±2 12±7 32±5 <0,1 1,5±0,8 40±6
Nichol Cromo Plombo Rame Zinco Mercurio Berillo Vanadio Tallo u camp. secco all'aria (frazione < 2 mm) dat	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ti espressi sulia	1 1 1 5 0,1 0,1 1 0,1 totalità	26±5 33±7 14±2 13±7 31±5 <0,1 1,6±0,8 33±5 0,4±0,1 dei materiali seco	30±6 23±5 9±1 14±7 23±5 <0,1 0,9 25±4 0,3±0,1	15 ±3 7 ±3 2 ±1 7 ±6 10 ±5 <0,1 0,1 ±0,1 9 ±2 <0,1	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1 1,6 ±0,8 38 ±6 0,4 ±0,1	28±5 37±7 15±2 12±7 32±5 <0,1 1,5±0,8 40±6
Nichol Cromo Plombo Rame Zinco Mercurio Berillio Vanadio Tallio lu camp. secco all'aria (frazione < 2 mm) dat leletro + EPA 3550C 2007 + EPA 3620C 200	mg/kg 16 espressi sulla 07 + EPA 80150	1 1 1 5 0,1 0,1 1 totalità	26±5 33±7 14±2 13±7 31±5 <0,1 1,6±0,8 33±5 0,4±0,1 dei materiali seco	30±6 23±5 9±1 14±7 23±5 <0,1 0,9 25±4 0,3±0,1 chi < 2 cm (105°)	15±3 7±3 2±1 7±6 10±5 <0,1 0,1±0,1 9±2 <0,1 C) comprensiva o	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1 1,6 ±0,8 38 ±6 0,4 ±0,1 dello	28 ±5 37 ±7 15 ±2 12 ±7 32 ±5 <0,1 1,5 ±0,8 40 ±6 0,4 ±0,1
Nichel Cromo Plombo Rame Zinco Mercurio Berillio Vanadio Tallio du camp. secco all'aria (frazione < 2 mm) dat teletro + EPA 3650C 2007 + EPA 3620C 200 Idrocarburi Pesanti C>12	mg/kg	1 1 1 5 0,1 0,1 1 0,1 totalità	26±5 33±7 14±2 13±7 31±5 <0,1 1,6±0,8 33±5 0,4±0,1 dei materiali seco	30±6 23±5 9±1 14±7 23±5 <0,1 0,9 25±4 0,3±0,1 chi < 2 cm (105°6)	15 ±3 7 ±3 2 ±1 7 ±6 10 ±5 <0,1 0,1 ±0,1 9 ±2 <0,1 C) comprensiva o	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1 1,6 ±0,8 38 ±6 0,4 ±0,1 dello <5	28 ±5 37 ±7 15 ±2 12 ±7 32 ±5 <0,1 1,5 ±0,8 40 ±6
Nichol Cromo Plombo Rame Zinco Mercurio Berillio Vanadio Tallio lu camp. secco all'aria (frazione < 2 mm) dat leletro + EPA 3550C 2007 + EPA 3620C 200	mg/kg	1 1 1 5 0,1 0,1 1 0,1 totalità	26±5 33±7 14±2 13±7 31±5 <0,1 1,6±0,8 33±5 0,4±0,1 dei materiali seco	30±6 23±5 9±1 14±7 23±5 <0,1 0,9 25±4 0,3±0,1 chi < 2 cm (105°6)	15 ±3 7 ±3 2 ±1 7 ±6 10 ±5 <0,1 0,1 ±0,1 9 ±2 <0,1 C) comprensiva o	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1 1,6 ±0,8 38 ±6 0,4 ±0,1 dello <5	28 ±5 37 ±7 15 ±2 12 ±7 32 ±5 <0,1 1,5 ±0,8 40 ±6 0,4 ±0,1
Nichel Cromo Plombo Rame Zinco Mercurio Berillio Vanadio Tallio tu camp. secco all'aria (frazione < 2 mm) dat teletro + EPA 3550C 2007 + EPA 3620C 200 idrocarburi Posanti C>12 tu camp. secco all'aria (frazione < 2 mm) dat teletro + DM 06/09/1994 GU n° 288 10/12/15	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ti espressi sulla 07 + EPA 8015/c mg/kg ti espressi sulla	1 1 1 5 0,1 0,1 1 0,1 totalità	26±5 33±7 14±2 13±7 31±5 <0,1 1,6±0,8 33±5 0,4±0,1 dei materiali seco	30±6 23±5 9±1 14±7 23±5 <0,1 0,9 25±4 0,3±0,1 chi < 2 cm (105°6)	15 ±3 7 ±3 2 ±1 7 ±6 10 ±5 <0,1 0,1 ±0,1 9 ±2 <0,1 C) comprensiva o	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1 1,6 ±0,8 38 ±6 0,4 ±0,1 dello <5	28 ±5 37 ±7 15 ±2 12 ±7 32 ±5 <0,1 1,5 ±0,8 40 ±6 0,4 ±0,1
Nichel Cromo Piombo Rame Zinco Mercurio Berillio Vanadio Tallio tu camp. secco all'aria (frazione < 2 mm) dat seletro + EPA 3550C 2007 + EPA 3620C 200 Idrocarburi Pesanti C>12 tu camp. secco all'aria (frazione < 2 mm) dat	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ti espressi sulla 07 + EPA 8015/c mg/kg ti espressi sulla	1 1 1 5 0,1 0,1 1 0,1 totalità	26±5 33±7 14±2 13±7 31±5 <0,1 1,6±0,8 33±5 0,4±0,1 dei materiali seco	30±6 23±5 9±1 14±7 23±5 <0,1 0,9 25±4 0,3±0,1 chi < 2 cm (105°6)	15 ±3 7 ±3 2 ±1 7 ±6 10 ±5 <0,1 0,1 ±0,1 9 ±2 <0,1 C) comprensiva o	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1 1,6 ±0,8 38 ±6 0,4 ±0,1 dello <5	28 ±5 37 ±7 15 ±2 12 ±7 32 ±5 <0,1 1,5 ±0,8 40 ±6 0,4 ±0,1
Nichel Cromo Piombo Rame Zinco Mercurio Berillio Vanadio Tallio u camp. secco all'aria (frazione < 2 mm) dat seletro + EPA 3650C 2007 + EPA 3620C 200 idrocarburi Pesanti C>12 u camp. secco all'aria (frazione < 2 mm) dat seletro + DM 06/09/1994 GU n° 288 10/12/15 Amianto (SEM)	mg/kg ti espressi sulia 07 + EPA 80150 mg/kg ti espressi sulia	1 1 1 1 5 0,1 0,1 1 totalità C 2007 5 totalità	26±5 33±7 14±2 13±7 31±5 <0,1 1,6±0,8 33±5 0,4±0,1 dei materiali seco] 5 dei materiali seco	30 ±6 23 ±5 9 ±1 14 ±7 23 ±5 <0,1 0,9 25 ±4 0,3 ±0,1 chi < 2 cm (105°) 12 chi < 2 cm (105°)	15 ±3 7 ±3 2 ±1 7 ±6 10 ±5 <0,1 0,1 ±0,1 9 ±2 <0,1 C) comprensiva of	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1 1,6 ±0,8 38 ±6 0,4 ±0,1 iello <5	28±5 37±7 15±2 12±7 32±5 <0,1 1,5±0,8 40±6 0,4±0,1
Nichel Cromo Piombo Rame Zinco Mercurio Berillio Vanadio Tallio u camp. secco all'aria (frazione < 2 mm) dat eletro + EPA 3550C 2007 + EPA 3620C 200 Idrocarburi Pesanti C-12 u camp. secco all'aria (frazione < 2 mm) dat eletro + DM 06/09/1994 GU n° 288 10/12/15 Amianto (SEM) .O.C. [Su camp. secco all'aria (frazione < 2	mg/kg ti espressi sulla 07 + EPA 80150 mg/kg ti espressi sulla 994 All 1B] mg/kg 2 mm) dati espre	1 1 1 1 5 0,1 0,1 1 0,1 totalità C 2007 5 totalità 100	26±5 33±7 14±2 13±7 31±5 <0,1 1,6±0,8 33±5 0,4±0,1 dei materiali seco] 5 dei materiali seco <100 la totalità dei mate	30 ±6 23 ±5 9 ±1 14 ±7 23 ±5 <0,1 0,9 25 ±4 0,3 ±0,1 chi < 2 cm (105°) 12 chi < 2 cm (105°)	15 ±3 7 ±3 2 ±1 7 ±6 10 ±5 <0,1 0,1 ±0,1 9 ±2 <0,1 C) comprensiva of	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1 1,6 ±0,8 38 ±6 0,4 ±0,1 iello <5	28±5 37±7 15±2 12±7 32±5 <0,1 1,5±0,8 40±6 0,4±0,1
Nichel Cromo Plombo Rame Zinco Mercurio Berillio Vanadio Tallio tu camp. secco all'aria (frazione < 2 mm) dat teletro + EPA 3550C 2007 + EPA 3620C 200 idrocarburi Posanti C>12 tu camp. secco all'aria (frazione < 2 mm) dat teletro + DM 06/09/1994 GU n° 288 10/12/15	mg/kg ti espressi sulla 07 + EPA 80150 mg/kg ti espressi sulla 994 All 1B] mg/kg 2 mm) dati espre	1 1 1 1 5 0,1 0,1 1 0,1 totalità C 2007 5 totalità 100	26±5 33±7 14±2 13±7 31±5 <0,1 1,6±0,8 33±5 0,4±0,1 dei materiali seco] 5 dei materiali seco <100 la totalità dei mate	30 ±6 23 ±5 9 ±1 14 ±7 23 ±5 <0,1 0,9 25 ±4 0,3 ±0,1 chi < 2 cm (105°) 12 chi < 2 cm (105°)	15 ±3 7 ±3 2 ±1 7 ±6 10 ±5 <0,1 0,1 ±0,1 9 ±2 <0,1 C) comprensiva of	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1 1,6 ±0,8 38 ±6 0,4 ±0,1 iello <5	28 ±5 37 ±7 15 ±2 12 ±7 32 ±5 <0,1 1,5 ±0,8 40 ±6 0,4 ±0,1
Nichel Cromo Plombo Rame Zinco Mercurio Berillo Vanadio Tallo U camp. secco all'aria (frazione < 2 mm) dat eletro + EPA 3550C 2007 + EPA 3620C 200 Idrocarburi Pesanti C>12 Gu camp. secco all'aria (frazione < 2 mm) dat eletro + DM 06/09/1994 GU n° 288 10/12/15 Amianto (SEM) /.O.C. [Su camp. secco all'aria (frazione < 2 lo scheletro + EPA 3550C 2007+EPA 3620C	mg/kg ti espressi sulla 07 + EPA 80150 mg/kg ti espressi sulla 994 All 1B] mg/kg 2 mm/kg	1 1 1 1 5 0,1 0,1 1 0,1 totalità C 2007 5 totalità 100 270D 2	26±5 33±7 14±2 13±7 31±5 <0,1 1,6±0,8 33±5 0,4±0,1 dei materiali seco] 5 dei materiali seco <100 ia totalità dei materiali	30±6 23±5 9±1 14±7 23±5 <0,1 0,9 25±4 0,3±0,1 chi < 2 cm (105°) 12 chi < 2 cm (105°) <100 eriali secchi < 2 c	15 ±3 7 ±3 2 ±1 7 ±6 10 ±5 <0,1 0,1 ±0,1 9 ±2 <0,1 C) comprensiva of 5 C) comprensiva of (105°C) comp	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1 1,6 ±0,8 38 ±6 0,4 ±0,1 dello <5	28 ±5 37 ±7 15 ±2 12 ±7 32 ±5 <0,1 1,5 ±0,8 40 ±6 0,4 ±0,1 <<5
Nichel Cromo Plombo Rame Zinco Mercurio Berillo Vanadio Tallo U camp. secco all'aria (frazione < 2 mm) dat eletro + EPA 3550C 2007 + EPA 3620C 200 Idrocarburi Pesanti C>12 Gu camp. secco all'aria (frazione < 2 mm) dat eletro + DM 06/09/1994 GU n° 288 10/12/15 Amianto (SEM) /.O.C. [Su camp. secco all'aria (frazione < 2 lo scheletro + EPA 3550C 2007+EPA 3620C Alacior	mg/kg ti espressi sulla 07 + EPA 80150 mg/kg ti espressi sulla 994 All 1B] mg/kg 2 mm) dati espre	1 1 1 1 1 5 0,1 0,1 1 0,1 totalità 1 totalità 100 12270D 2 0,01	26±5 33±7 14±2 13±7 31±5 <0,1 1,6±0,8 33±5 0,4±0,1 dei materiali seco] 5 dei materiali seco <100 ia totalità dei mate	30 ±6 23 ±5 9 ±1 14 ±7 23 ±5 <0,1 0,9 25 ±4 0,3 ±0,1 chi < 2 cm (105°) 12 chi < 2 cm (105°) <100 eriali secchi < 2 c	15 ±3 7 ±3 2 ±1 7 ±6 10 ±5 <0,1 0,1 ±0,1 9 ±2 <0,1 C) comprensiva of 5 C) comprensiva of <100 cm (105°C) comp	26 ±5 36 ±7 15 ±2 13 ±7 33 ±5 <0,1 1,6 ±0,8 38 ±6 0,4 ±0,1 iello <100 orensiva <0,01	28 ±5 37 ±7 15 ±2 12 ±7 32 ±5 <0,1 1,5 ±0,8 40 ±6 0,4 ±0,1 <<5

20160808 9/16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Scalar your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	59 di 152

PD16-02983_0

RISULTATI

Campione n	PD16-02983.016	PD16-02983.017	PD16-02983.018	PD16-02983.019	PD16-02983.020
Sigla campions	PRT38	PRT39	PRT39	PRT40	PRT41
	_280616_0-0,2	_290616_0-1	_290616_1-2	_280616_0-0,2	_280616_0-0,2
Proveniente de	Microtunnel access				
	Area, Municipality				
	of Melendugno (LE)				
Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
Campionato de	Effettuato da ns.				
	personale -				
	Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
Campionato	28/06/2016	29/06/2016	29/06/2016	28/06/2016	28/06/2016
Parametro U.M. R	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione \leq 2 mm) dati espressi sulla totalità dei materiali secchi \leq 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270	OD 2007 1	(seque)
--	-----------	---------

mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	mg/kg mg/kg mg/kg mg/kg	mg/kg 0,01 mg/kg 0,01 mg/kg 0,01 mg/kg 0,01	mg/kg 0,01 <0,01	mg/kg 0,01 <0,01	mg/kg 0,01 <0,01	mg/kg 0,01 <0,01

20160808 10 / 16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	60 di 152

PD16-02983_0

RISULTATI

SULTATI							
	Camr	pione n°	PD16-02983.021	PD16-02983.022	PD16-02983.023	PD16-02983.024	PD16-02983.0
		mpione	PRT42	PRT43	PRT44	PRT45	PRT46
			280616_0-0,2	_300616_0-0.2	300616_0-0,2	300616_0-0,2	280616_0-0
	Proveni	iente da			Microtunnel access		
	1104011	MINO GA	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	
					of Melendugno (LE)		
	Tino na	mpione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
		nato da	Effettuato da na.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da
			personale -	personale -	personale -	personale -	personale
			Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
	Camp	ionato il	28/06/2016	30/06/2016	30/06/2016	30/06/2016	28/06/2016
Parametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
Su campione secco all'aria + DM 13/09/199	99 GU n° 248 21/1	10/1999	Met II.1]				
Scheletro (2 mm)	g/kg	1	28±3	348 ±35	116 ±12	147 ±15	92 ±9
iu camp. secco all'aria (frazione <2 cm) + l		U n° 24	18 21/10/1999 Me	at II.3]			
Scheletro (2mm - 2cm)	g/kg	- 1	28 ±3	348 ±35	116 ±12	147 ±15	92 ±9
ou campione tal quale (frazione < 2 mm) +	DM 13/09/1999 G	SU nº 2	48 21/10/1999 M	et II.2]			
Residuo a 105°C	%	0,1	96,2±5,8	94,4 ±5,7	93,7 ±5,6	95,0 ±5,7	96,1 ±5,8
u camp. secco all'aria (frazione < 2 mm) d	dati espressi sulla	totalità	dei materiali sec	chi < 2 cm (105°	C) comprensiva	dello	
eletro + EPA 3060A 1996 + EPA 7196A 1					,		
Cromo VI	mg/kg	1	<1	<1	<1	<1	<1
talli [Su camp. secco all'aria (frazione < 2	mm) dati espress	i sulla t	totalità dei materi	ali secchi < 2 cm	(105°C) compre	nsiva	
		n Juliu i	ocanica del maien	an secon 42 on	(100 C) compre	1 DIVE	
lo scheletro + EPA 3050B 1996 + EPA 60							
Arsenico	mg/kg	1	8 ±1	4±1	10 ±2	8 ±1	8 ±1
Cadmio	mg/kg	0,1	0,2±0,1	0,1±0,1	0,1 ±0,1	0,1 ±0,1	0,2 ±0,1
Cobalto	mg/kg	0,1	6,9±3,2	3,3 ±2,4	8,9 ±3,6	8,0 ±3,4	6,4 ±3,1
Nichel	mg/kg	1	22 ±4	15±3	36 ±7	31 ±6	22 ±4
Cromo	mg/kg	1	33 ±7	12±4	32 ±7	28 ±6	33 ±7
Plombo	mg/kg	1	15±2	9±1	14 ±2	13 ±2	14 ±2
Rame	mg/kg	1	11 ±7	8+7	15 ±8	12 ±7	12 ±7
Zinco							
	mg/kg	5	30 ±5	24±5	31 ±5	28 ±5	29 ±5
Mercurio	mg/kg	0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Berillio	mg/kg	0,1	1,9±0,8	0,4±0,3	1,5 ±0,8	1,3 ±0,7	1,6 ±0,8
Vanadio	mg/kg	1	34 ±6	13 ±3	34 ±6	30 ±5	32 ±5
Tallio	mg/kg	0,1	0,4±0,1	0,1±0,1	0,3 ±0,1	0,3 ±0,1	0,4 ±0,1
u camp. secco all'aria (frazione < 2 mm) d	lati espressi sulla	totalità	dei materiali sec	chi < 2 cm (105°	C) comprensiva	dello	
eletro + EPA 3550C 2007 + EPA 3620C 2	2007 + EPA 8015	C 2007	1				
Idrocarburi Pesanti C>12	mg/kg	5	5	7	7	6	11
Su camp. secco all'aria (frazione < 2 mm) d		totalità	dei materiali sec	chi < 2 cm (105°	C) comprensiva	dello	
eletro + DM 06/09/1994 GU n° 288 10/12	/1994 All 1B]						
Amianto (SEM)	mg/kg	100	<100	<100	<100	<100	<100
/.O.C. [Su camp. secco all'aria (frazione <	2 mm) dati espre	essi sull	la totalità dei mat	eriali secchi < 2 d	cm (105°C) come	orensiva	
lo scheletro + EPA 3550C 2007+EPA 362					(5) 55/14		
Alacior	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	mg/kg	0.01	<0,01	<0.01	<0.01	<0.01	<0.01
alfa-BHC	mg/kg	0,01	<0.01	<0.01	<0.01	<0.01	<0.01
	mgreg	0,01	*0,01	-0,01	-4,01	40,01	~0,01

20160808 11 / 16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	61 di 152

PD16-02983_0

RISULTATI

ſ	Campione n	PD16-02983.021	PD16-02983.022	PD16-02983.023	PD16-02983.024	PD16-02983.025
	Sigla campione	PRT42	PRT43	PRT44	PRT45	PRT46
		_280616_0-0,2	_300616_0-0,2	_300616_0-0,2	_300616_0-0,2	_280616_0-0,2
	Proveniente de	Microtunnel access				
1		Area, Municipality				
1		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
1	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
1	Campionato de	Effettuato da ns.				
1		personale -				
1		Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
L	Campionato	28/06/2016	30/06/2016	30/06/2016	30/06/2016	28/06/2016
	Parametro U.M. RI	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione \leq 2 mm) dati espressi sulla totalità dei materiali secchi \leq 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270	OD 2007 1	(seque)
--	-----------	---------

mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	mg/kg mg/kg mg/kg mg/kg	mg/kg 0,01 mg/kg 0,01 mg/kg 0,01 mg/kg 0,01	mg/kg 0,01 <0,01	mg/kg 0,01 <0,01	mg/kg 0,01 <0,01	mg/kg 0,01 <0,01

20160808 12 / 16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	62 di 152

PD16-02983_0

RISULTATI

		Campi	ione n°	PD16-02983.026	PD16-02983.027	PD16-02983.028	PD16-02983.029	PD16-02983.0
		Sigla car	mpione	PRT47	PRT48	PRT49	PRT50	PRT51
				_280616_0-0,2	_300616_0-0,2	_300616_0-0,2	_300616_0-0,2	_010716_0-0
		Provenic	ente da	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel acc
				Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipa
				of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno
		Tipo car	mpione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
		Campior	nato da	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da
				personale -	personale -	personale -	personale -	personale -
				Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
\vdash		Cample		28/06/2016	30/06/2016	30/06/2016	30/06/2016	01/07/2016
Pa	arametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
	ampione secco all'aria + DM 13/09/1999 GU n°	248 21/1	0/1999	Met II.1]				
Sch	heletro (2 mm)	g/kg	1	141 ±14	165 ±17	116 ±12	132 ±13	126 ±13
	amp. secco all'aria (frazione <2 cm) + DM 13/0	9/1999 GI	J n° 24	l8 21/10/1999 Me	t II.3]			
Sch	heletro (2mm - 2cm)	g/kg	1	141 ±14	165 ±17	116 ±12	132 ±13	126 ±13
	ampione tal quale (frazione < 2 mm) + DM 13/0	/9/1999 G	U n° 24	48 21/10/1999 M	et II.2]			
Re	reiduo a 105°C	%	0,1	96,6±5,8	96,6 ±5,8	93,6 ±5,6	95,3 ±5,7	95,6 ±5,7
	amp. secco all'aria (frazione < 2 mm) dati espre tro + EPA 3060A 1996 + EPA 7196A 1992 l	essi sulla t	totalità	dei materiali seco	chi < 2 cm (105°	C) comprensiva o	dello	
	omo VI	mg/kg	1	<1	<1	<1	<1	<1
lo sc	[Su camp. secco all'aria (frazione < 2 mm) dal cheletro + EPA 3050B 1996 + EPA 6020B 2010 senico	4]						0.0
		mg/kg	1	6±1	5±1	6±1	7±1	9 ±2
	admio	mg/kg	0,1	0,2±0,1	0,1 ±0,1	0,2 ±0,1	0,1 ±0,1	0,2 ±0,1
	balto	mg/kg	0,1	5,4±2,9	4,0 ±2,6	5,3 ±2,9	5,2 ±2,8	7,7 ±3,4
	chel	mg/kg	1	19±4	14 ±3	18 ±4	21 ±4	27 ±5
Cro	omo	mg/kg	1	28 ±6	20±5	27 ±6	26 ±6	38 ±7
Plo	ombo	mg/kg	1	11 ±1	8±1	13 ±2	10 ±1	14 ±2
Ra	me	mg/kg	1	10 ±7	8 ±7	12 ±7	9 ±7	12 ±7
Zin	100	mg/kg	5	24 ±5	18 ±5	26 ±5	22 ±5	33 ±5
Me	erourio	mg/kg	0,1	<0,1	<0,1	<0,1	<0,1	<0,1
	rillio	mg/kg	0,1	1,3±0,7	1,0±0,7	1,4 ±0,8	1,0 ±0,7	1.5 ±0.8
Ber	nadio	mg/kg	1	26±5			26 ±5	
	illadio.			20 10	19 ±4	26 ±5	20 ±0	38 ±6
		mg/kg	0,1	0,3±0,1	19±4 0,2±0,1	26 ±5 0,3 ±0,1	0,2 ±0,1	38 ±6 0,4 ±0,1
Var Tal		mg/kg essi sulla t	totalità	0,3±0,1 dei materiali seco	0,2±0,1	0,3 ±0,1	0,2 ±0,1	
Var Tal Su ca	illo amp. secco all'aria (frazione < 2 mm) dati espre	mg/kg essi sulla t	totalità	0,3±0,1 dei materiali seco	0,2±0,1	0,3 ±0,1	0,2 ±0,1	
Var Tal iu ca ieleti idro	amp. secco all'aria (frazione < 2 mm) dati espre tro + EPA 3550C 2007 + EPA 3620C 2007 + E coorburi Posanti C>12 amp. secco all'aria (frazione < 2 mm) dati espre tro + DM 06/09/1994 GU n° 288 10/12/1994 All	mg/kg essi sulla t PA 80150 mg/kg essi sulla t	totalità 2007 5	0,3±0,1 dei materiali seco] <5	0,2±0,1 chi < 2 cm (105°0	0,3 ±0,1 C) comprensiva o	0,2±0,1 dello <5	0,4 ±0,1
Var Tal Su ca neleti Idro	nto amp. secco all'aria (frazione < 2 mm) dati espre tro + EPA 3550C 2007 + EPA 3620C 2007 + E coarburl Posanti C>12 amp. secco all'aria (frazione < 2 mm) dati espre	mg/kg essi sulla t PA 80150 mg/kg essi sulla t	totalità 2007 5	0,3±0,1 dei materiali seco] <5	0,2±0,1 chi < 2 cm (105°0	0,3 ±0,1 C) comprensiva o	0,2±0,1 dello <5	0,4 ±0,1
Vari Tal Su ca neleti Su ca neleti Am	amp. secco all'aria (frazione < 2 mm) dati espre tro + EPA 3550C 2007 + EPA 3620C 2007 + E coarburi Posanti C>12 amp. secco all'aria (frazione < 2 mm) dati espre tro + DM 06/09/1994 GU n° 288 10/12/1994 All nianto (3EM) C. [Su camp. secco all'aria (frazione < 2 mm) o	mg/kg essi sulla t PA 80150 mg/kg essi sulla t 1B] mg/kg dati espre	totalità 2007 6 totalità 100 ssi sull	0,3±0,1 dei materiali seco] <5 dei materiali seco <100 a totalità dei materiali	0.2±0,1 chi < 2 cm (105°(<5 chi < 2 cm (105°(0,3 ±0,1 C) comprensiva o <5 C) comprensiva o <100	0,2 ±0,1 dello <5 dello	0,4 ±0,1
Var Tal Gu ca nelet Idro Gu ca nelet Am	amp. secco all'aria (frazione < 2 mm) dati espre tro + EPA 3550C 2007 + EPA 3620C 2007 + E coarburl Pesanti C>12 amp. secco all'aria (frazione < 2 mm) dati espre tro + DM 06/09/1994 GU n° 288 10/12/1994 All nianto (8EM)	mg/kg essi sulla t PA 80150 mg/kg essi sulla t 1B] mg/kg dati espre	totalità 2007 6 totalità 100 ssi sull	0,3±0,1 dei materiali seco] <5 dei materiali seco <100 a totalità dei materiali	0.2±0,1 chi < 2 cm (105°(<5 chi < 2 cm (105°(0,3 ±0,1 C) comprensiva o <5 C) comprensiva o <100	0,2 ±0,1 dello <5 dello	0,4 ±0,1
Variante de la caracteria de la caracter	amp. secco all'aria (frazione < 2 mm) dati espre tro + EPA 3550C 2007 + EPA 3620C 2007 + E coarburi Posanti C>12 amp. secco all'aria (frazione < 2 mm) dati espre tro + DM 06/09/1994 GU n° 288 10/12/1994 All nianto (8EM) C. [Su camp. secco all'aria (frazione < 2 mm) d cheletro + EPA 3550C 2007+EPA 3620C 2014	mg/kg essi sulla 1 PA 80150 mg/kg essi sulla 1 1B] mg/kg dati espre + EPA 82 mg/kg	totalità 2 2007 6 totalità 100 ssi sull 270D 2 0,01	0,3±0,1 dei materiali seco <5 dei materiali seco <100 a totalità dei mate	0,2±0,1 chi < 2 cm (105°) <5 chi < 2 cm (105°) <100 eriali secchi < 2 c	0,3 ±0,1 C) comprensiva o <5 C) comprensiva o <100 cm (105°C) comp	0,2 ±0,1 iello <5 dello <100 rensiva	0,4 ±0,1
Van Tal	amp. secco all'aria (frazione < 2 mm) dati espre tro + EPA 3550C 2007 + EPA 3620C 2007 + E coarburi Posanti C>12 amp. secco all'aria (frazione < 2 mm) dati espre tro + DM 06/09/1994 GU nº 288 10/12/1994 All nilanto (3EM) C. [Su camp. secco all'aria (frazione < 2 mm) de cheletro + EPA 3550C 2007+EPA 3620C 2014	mg/kg essi sulla t PA 80150 mg/kg essi sulla t I 1B] mg/kg dati espre + EPA 82	totalità 2007 5 totalità 100 ssi sull 270D 2	0,3±0,1 dei materiali seco <5 dei materiali seco <100 ia totalità dei materiali <007]	0,2±0,1 chi < 2 cm (105°) <5 chi < 2 cm (105°) <100 eriali secchi < 2 c	0,3 ±0,1 C) comprensiva o <5 C) comprensiva o <100 cm (105°C) comp	0,2 ±0,1 iello <5 dello <100 orensiva <0,01	0,4±0,1 <5 <100

20160808 13 / 16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluitness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	63 di 152

PD16-02983_0

RISULTATI

Campione r	PD16-02983.026	PD16-02983.027	PD16-02983.028	PD16-02983.029	PD16-02983.030
Sigla campion	o PRT47	PRT48	PRT49	PRT50	PRT51
	_280616_0-0,2	_300616_0-0,2	_300616_0-0,2	_300616_0-0,2	_010716_0-0,2
Proveniente d	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access
	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality
	of Melendugno (LE	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)
Tipo campion	o TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
Campionato d	a Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.
	personale -	personale -	personale -	personale -	personale -
	Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
Campionato	II 28/06/2016	30/06/2016	30/06/2016	30/06/2016	01/07/2016
Parametro U.M. F	L Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione \leq 2 mm) dati espressi sulla totalità dei materiali secchi \leq 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (
--

			21 2 1				
beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160808 14 / 16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SECOND TO	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	64 di 152

PD16-02983_0

LIMITI DI RIFERIMENTO

Matrice		Descrizione limiti						
TERRENI		parte IV del D.Lgs 152/06.	ella colonna A della Tabella 1 dell'All. 5 al titolo V della ella colonna B della Tabella 1 dell'All. 5 al titolo V della					
	Parametro		U.M.	L1	L2	L3	L4	
[EPA 3060A 1996	6 + EPA 7196A 1992]							
	Cromo VI		mg/kg			2	15	
Cromo esavalente	(Cr VI) [ISO 15192: 201	0]						
	Cromo esavalente (Cr VI)		mg/kg		-	2	15	
Metalli [EPA 3050	0B 1996 + EPA 6020B 201	4]			•			
	Arsenico		mg/kg			20	50	
	Cadmio		mg/kg		-	2	15	
	Cobalto		mg/kg		-	20	250	
	Nichel		mg/kg		-	120	500	
	Cromo		mg/kg		-	150	800	
	Piombo		mg/kg	-	-	100	1000	
	Rame		mg/kg		-	120	600	
	Zinco		mg/kg			150	1500	
	Mercurio		mg/kg		-	1	5	
	Berillio		mg/kg		-	2	10	
	Vanadio		mg/kg		-	90	250	
	Tallio		mg/kg		-	1	10	
[EPA 3550C 2007	7 + EPA 3620C 2007 + EF	PA 8015C 2007]						
	Idrocarburi Pesanti C>12		mg/kg			50	750	
[DM 06/09/1994	GU n° 288 10/12/1994 All	1B]						
	Amianto (SEM)		mg/kg			1000	1000	
S.V.O.C. [EPA 35	550C 2007+EPA 3620C 20	M4 + EPA 8270D 2007 1						
	Alacior	,	mg/kg			0,01	1	
	Aldrin		mg/kg			0,01	0,1	
	Atrazina		mg/kg			0,01	1	
	alfa-BHC		mg/kg			0,01	0,5	
	beta-BHC		mg/kg			0,01	0,5	
	gamma-BHC (Lindano)		mg/kg	-	-	0,01	0,5	
	Clordano		mg/kg	-	-	0,01	0,1	
	DDD, DDT, DDE		mg/kg			0,01	0,1	
	Dieldrin		mg/kg			0,01	0,1	
	Endrin		mg/kg	-	-	0,01	2	

20160808 15 / 16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SECOND TO	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	65 di 152

LEGENDA

NOTE

- Eseguito presso altro laboratorio SGS.
- As Eseguito presso laboratorio esterno.
- RL Limite di Rapportaggio
- † Limite di rapportaggio innalzato
- Limite di rapportaggio diminuito

- IS Campione insufficiente per l'analisi.
- LNR Campione elencato ma non ricevuto.
- NA Campione non analizzato per questo parametro
- TBA Parametro non ancora analizzato

NOTE RELATIVE ALL'ACCREDITAMENTO

* Prova non accreditata ACCREDIA.

il presente Rapporto è emesso dalla Società in accordo con le Condizioni Generali SGS per i servizi di ispezione e controllo (copia disponibile su richiesta). Il rilascio di questo Rapporto non escenera le parti negoziali dall'esercitare i diritti e dall'adempiere alle obbligazioni derivanti dal negozio tra lore stipulato. Ogni patto contrario non è alla Società opponibile. La responsabilità della Società in base a questo Rapporto è limitata ai caso di provata colpa grave ed in ogni caso ad un ammontare non superiore a dicci votte i diritti e le commissioni dovute. Eccetto accordi particolari, gli eventuali campioni, se presi, non saranno tratteruti dalla Società per più di un mese. I risultati contenuti nel seguente rapporto si inferiscono esclusivamente al campione provato.

Il presente Rapporto o copia dello stesso verrà conservato dalla Società per un periodo pari a 10 anni.
Il confronto dei risultati con i rispettivi limiti, quando presente, non tiene conto dell'incertazza di misura stimata.
Eventuali risultati fuori limite sono segnalati in rosso.

Il recupero ove previsto, è da intendersi compreso all'interno dei limiti di accettabilità specifici. Se non diversamente indicato il risultato è da intendersi non corretto per il recupero ottenuto.

Il presente rapporto può essere riprodotto solamente per intero.

20160808 16 / 16

TAP AG
Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consulting to same your flusions	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	66 di 152

PD16-02984_0

Prima pagina

CLIENTE		LABORATORIO	
Cliente	SHELTER SRL	Head of Laborator∮	Cristiano Toffoletti
		Laboratorio	SGS Italia S.p.A.
Indirizzo	Viale Gran Sasso n. 13	Indirizzo	Via Campodoro, 25
	MILANO 20131		Villafranca Padovana (PD) 36010
Contatto		Telefono	+39 049 9050013
Telefono		Fax	+39 049 9050066
Fax		Email	sgs.eco@sgs.com
Email		Accettazione n°	PD16-02984
Progetto	Default Project	Pervenuto il	04/07/2016
Ordine n*	1163/2016/C1/PD/Rev.4	Data inizio prove di lab.	05/07/2016
Matrice	TERRENI(30)	Data fine prove lab.	01/08/2016
		Rapporto di Prova n°	PD16-02984_0
		Data emissione	08/08/2016

COMMENTI

Incertezza estesa di misura stimata al 96% di livello di confidenza e fattore di copertura k=2

Mattia Favaro Cristiano Toffoletti
Project Agent Head Of Laboratory

SGS Italia S.p.A. Via Campodoro, 26 35010 Villafranca Padovana (PD) Italiy t +39 049 9050013 f +39 049 9050065 www.sgs.com

Membri del Gruppo SGS (Société Générale de Surveillance) - www.ags.co

Sede legale C/O Calders business park, via Calders 21, Ed. D, 4 plano sis 3, 25153 Millano, billy - Capitale sociale Euro 2:500.000 liz. C.F./N. lecr. Reg. Imprese di Millano 04112500276 - P. IVA.n.11370520154 - Cod. Mecc. n.N02239136

TAP AG 66

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Canading to Salary your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	67 di 152

INDICE

Prima Pagina	1
ndice	17.40
Risultati	3-14
imiti Di Riferimento	15
_egenda	16

20160808 27.16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Concluding to some your flusters	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	68 di 152

PD16-02984_0

175 +18

95,9 ±5,8

157 +16

93,5 ±5,6

154 +15

95,2 ±5,7

RISULTATI

Scheletro (2 mm)

Residuo a 105°C

	Campione n*	PD16-02984.001	PD16-02984.002	PD16-02984.003	PD16-02984.004	PD16-02984.005
	Sigla campione	PRT62	PRT63	PRT64	PRT55	RoW12
		_010716_0-0,2	_010716_0-0,2	_300616_0-0,2	_300616_0-0,2	_010716_0-0,2
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)				
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	01/07/2016	01/07/2016	30/06/2016	30/06/2016	01/07/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

[Su campione secco all'aria + DM 13/09/1999 GU n° 248 21/10/1999 Met II.1]

	(9.09		.0. 2.2	2.0 222		101 210	107210			
[S	[Su camp. secco all'aria (frazione <2 cm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.3]										
	Scheletro (2mm - 2cm)	g/kg	1	187 ±19	218 ±22	176 ±18	157 ±16	154 ±15			
[S	Su campione tal quale (frazione < 2 mm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.2]										

218 +22

0,1 97,1 ±5,8 96,7 ±5,8 [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mg/kg 1 <1 <1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

mg/kg mg/kg mg/kg	1 0,1	5 ±1 0,1 ±0,1	6±1	7±1	8±1	1±1
	0,1	0.1 ±0.1	00104			
maka			0,2 ±0,1	0,1 ±0,1	⊲0,1	⊲0,1
mgmg	0,1	3,8 ±2,5	5,1 ±2,8	5,6 ±2,9	6,4 ±3,1	1,0 ±2,0
mg/kg	1	17 ±3	16 ±3	18 ±4	23 ±5	2 ±1
mg/kg	1	23 ±5	27 ±6	24 ±5	27 ±6	12 ±4
mg/kg	1	8 ±1	10 ±1	10 ±1	10 ±1	10 ±1
mg/kg	1	6 ±6	8 ±7	8 ±7	9 ±7	43 ±11
mg/kg	5	19 ±5	26 ±5	23 ±5	28 ±5	10 ±6
mg/kg	0,1	⊲0,1	<0,1	<0,1	⊲0,1	⊲0,1
mg/kg	0,1	1,0 ±0,7	1,2 ±0,7	1,0 ±0,7	1,2 ±0,7	0,3 ±0,2
mg/kg	1	21 ±4	27 ±5	25 ±4	29 ±5	6 ±2
mg/kg	0,1	0,3 ±0,1	0,3 ±0,1	0,3 ±0,1	0,3 ±0,1	⊲0,1
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mgkg 1 mgkg 1 mgkg 1 mgkg 1 mgkg 1 mgkg 6 mgkg 0,1 mgkg 0,1 mgkg 1	mg/kg 1 17±3 mg/kg 1 23±5 mg/kg 1 8±1 mg/kg 1 6±6 mg/kg 6 19±5 mg/kg 0,1 -0,1 mg/kg 0,1 1,0±0,7 mg/kg 1 21±4	mg/kg 1 17 ±3 16 ±3 mg/kg 1 23 ±6 27 ±6 mg/kg 1 8 ±1 10 ±1 mg/kg 1 6 ±6 8 ±7 mg/kg 5 19 ±6 26 ±6 mg/kg 0,1 <0,1 <0,1 mg/kg 0,1 1,0 ±0,7 1,2 ±0,7 mg/kg 1 21 ±4 27 ±6	mg/kg 1 17±3 16±3 18±4 mg/kg 1 23±5 27±6 24±5 mg/kg 1 8±1 10±1 10±1 mg/kg 1 6±5 8±7 8±7 mg/kg 5 19±5 26±5 23±5 mg/kg 0,1 <0,1	mg/kg 1 17±3 16±3 18±4 23±5 mg/kg 1 23±5 27±6 24±6 27±6 mg/kg 1 8±1 10±1 10±1 10±1 mg/kg 1 6±5 8±7 8±7 9±7 mg/kg 5 19±5 26±5 23±5 28±5 mg/kg 0,1 <0,1

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

Idrocarburi Pesanti C>12 mg/kg − 6 <6 ⊲5 ⊲5

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

Alacior	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
Atrazina	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
alfa-BHC	mg/kg	0,01	<0,01	<0,01	⊲0,01	⊲0,01	<0,01

20160808 3 / 16

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	69 di 152

PD16-02984_0

RISULTATI

	Campione n°	PD16-02984.001	PD16-02984.002	PD16-02984.003	PD16-02984.004	PD16-02984.005
	Sigla campione	PRT52	PRT63	PRT64	PRT55	RoW12
		_010716_0-0,2	_010716_0-0,2	_300616_0-0,2	_300616_0-0,2	_010716_0-0,2
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	01/07/2016	01/07/2016	30/06/2016	30/06/2016	01/07/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

			. 1 (negat)				
beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	⊲0,01	⊲0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160808 4 / 16

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consulting to Sensor your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	70 di 152

PD16-02984_0

RISULTATI

	Campione n*	PD16-02984.006	PD16-02984.007	PD16-02984.008	PD16-02984.009	PD16-02984.010
	Sigla campione	RoW12	RoW12	RoW14	RoW14	RoW14
		_010716_1-1,6	_010716_2,4-2,6	_010716_0-0,2	_010716_1-1,6	_010716_2,4-2,6
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	01/07/2016	01/07/2016	01/07/2016	01/07/2016	01/07/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

	Scheleto (2 mm)	greg		1/411/	/0 IO	00 I/	190 120	140 I 10			
[Su camp. secco all'aria (frazione <2 cm) + DM 13/09/1999 GU n* 248 21/10/1999 Met II.3]											
	Scheletro (2mm - 2cm)	g/kg	1	174 ±17	78 ±8	66 ±7	198 ±20	145 ±15			
[Su campione tal quale (frazione < 2 mm) + DM 13/09/1999 GU n* 248 21/10/1999 Met II.2]											
	Residuo a 105°C	96	0,1	90,3 ±5,4	90,8 ±5,4	96,9 ±5,8	97,0 ±5,8	94,3 ±5,7			

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mg/kg 1 <1 <1 <1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

mg/kg	1	<1	<1	5 ±1	<1	<1
mg/kg	0,1	⊲0,1	<0,1	0,1 ±0,1	<0,1	⊲0,1
mg/kg	0,1	0,4 ±0,4	0,4 ±0,4	4,0 ±2,6	0,4 ±0,4	0,3 ±0,3
mg/kg	1	1 ±1	2 ±1	10 ±2	2 ±1	1 ±1
mg/kg	1	9 ±3	11 ±3	33 ±7	10 ±3	10 ±3
mg/kg	1	<1	<1	12 ±2	<1	<1
mg/kg	1	2 ±2	<1	5 ±4	<1	<1
mg/kg	5	<5	5	21 ±5	⊲ 5	<5
mg/kg	0,1	⊲0,1	<0,1	<0,1	<0,1	⊲0,1
mg/kg	0,1	⊲0,1	<0,1	1,1 ±0,7	<0,1	⊲0,1
mg/kg	1	2 ±1	3 ±1	32 ±5	2 ±1	2 ±1
mg/kg	0,1	⊲0,1	<0,1	0,3 ±0,1	<0,1	⊲0,1
	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	mg/kg 0,1 mg/kg 0,1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 6 mg/kg 0,1 mg/kg 0,1 mg/kg 1	mg/kg 0,1 <0,1 mg/kg 0,1 0,4±0,4 mg/kg 1 1±1 mg/kg 1 9±3 mg/kg 1 <1	mg/kg 0,1 <0,1 <0,1 mg/kg 0,1 0,4±0,4 0,4±0,4 mg/kg 1 1±1 2±1 mg/kg 1 9±3 11±3 mg/kg 1 <1	mg/kg 0,1 <0,1 <0,1 0,1±0,1 mg/kg 0,1 0,4±0,4 0,4±0,4 4,0±2,6 mg/kg 1 1±1 2±1 10±2 mg/kg 1 9±3 11±3 33±7 mg/kg 1 <1	mg/kg 0,1 <0,1 <0,1 0,1±0,1 <0,1 mg/kg 0,1 0,4±0,4 0,4±0,4 4,0±2,6 0,4±0,4 mg/kg 1 1±1 2±1 10±2 2±1 mg/kg 1 9±3 11±3 33±7 10±3 mg/kg 1 <1

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

| Idrocarburi Pesanti C>12 mg/kg 6 6 <6 <6 <6 <6

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100 <100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

Alacior	mg/kg	0,01	<0,01	⊲0,01	<0,01	⊲0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	mg/kg	0,01	<0,01	⊲0,01	⊲0,01	<0,01	<0,01

20160808 5 / 16

TAP AG

70
Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	71 di 152

PD16-02984_0

RISULTATI

	Campione n°	PD16-02984.006	PD16-02984.007	PD16-02984.008	PD16-02984.009	PD16-02984.010
	Sigla campione	RoW12	RoW12	RoW14	RoW14	RoW14
		_010716_1-1,6	_010716_2,4-2,6	_010716_0-0,2	_010716_1-1,6	_010716_2,4-2,6
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	01/07/2016	01/07/2016	01/07/2016	01/07/2016	01/07/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

School Car A decoration for A decoration								
beta-BHC	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01	
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	⊲0,01	⊲0,01	<0,01	<0,01	
Clordano	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01	
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01	
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01	
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01	

20160808 6 / 16

TAP AG
Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	72 di 152

PD16-02984_0

RISULTATI

	Campione n°	PD16-02984.011	PD16-02984.012	PD16-02984.013	PD16-02984.014	PD16-02984.015
s	igla campione	RoW15	RoW16	RoW15	RoW16	RoW16
		_300616_0-0,2	_300616_1-1,6	_300616_2,4-2,6	_010716_0-0,2	_010716_1-1,6
P	roveniente da	Microtunnel access				
		Area, Municipality	Area, Municipality	Area, Municipalit	Area, Municipality	Area, Municipalit
		of Melendugno (LE)				
1	ipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
c	ampionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	30/06/2016	30/06/2016	30/06/2016	01/07/2016	01/07/2016
Parametro U.)	M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

[Su campione secco all'aria + DM 13/09/1999 GU n° 248 21/10/1999 Met II.1]

| Scheletro (2 mm) | g/kg 1 | 11±1 | <1 | 102±10 | 168±17 | 103±10 |
| Su camp. secco all'aria (frazione <2 cm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.3 |
| Scheletro (2mm - 2cm) | g/kg 1 | 11±1 | <1 | 102±10 | 168±17 | 103±10 |

[Su campione tal quale (frazione < 2 mm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.2]

Residuo a 105°C % 0,1 92,4±5,5 94,3±6,7 90,6±5,4 95,2±5,7 88,4±6,3

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mg/kg 1 <1 <1 <1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

Arsenico	mg/kg	1	9 ±2	8 ±1	1±1	1 ±1	<1
Cadmio	mg/kg	0,1	0,3 ±0,1	<0,1	0,2 ±0,1	⊲0,1	⊲0,1
Cobalto	mg/kg	0,1	8,6 ±3,6	6,7 ±3,2	0,9 ±0,8	1,0 ±2,0	0,4 ±0,4
Nichel	mg/kg	1	20 ±4	16 ±3	3 ±1	2 ±1	2 ±1
Cromo	mg/kg	1	69 ±10	35 ±7	16 ±4	11 ±3	11 ±3
Piombo	mg/kg	1	28 ±5	12 ±2	1 ±1	4±1	<1
Rame	mg/kg	1	30 ±10	9 ±7	2 ±2	4 ±3	<1
Zinco	mg/kg	5	36 ±6	26 ±5	<6	7 ±5	<5
Mercurio	mg/kg	0,1	⊲0,1	<0,1	<0,1	⊲0,1	⊲0,1
Berillio	mg/kg	0,1	1,9 ±0,8	1,8 ±0,8	0,2 ±0,1	0,3 ±0,2	⊲0,1
Vanadio	mg/kg	1	63 ±8	38 ±6	5 ±2	7 ±2	2 ±1
Talio	mg/kg	0,1	0,6 ±0,1	0,4 ±0,1	<0,1	⊲0,1	⊲0,1

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

Idrocarburi Peranti C>12 mg/kg 6 14 6 <6 <6 <6 <6

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100 <100 <100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

-	Sellelello - El Modero Edel - El Modero Ed I		E1 0D E00	. 1				
	Alacior	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
	Aldrin	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
	Atrazina	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
	alfa-BHC	ma/kg	0,01	<0.01	⊲0,01	<0.01	⊲0,01	<0,01

20160808 7 / 16

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	73 di 152

PD16-02984_0

RISULTATI

ĺ	Campione r	* PD16-02984.011	PD16-02984.012	PD16-02984.013	PD16-02984.014	PD16-02984.015
	Sigla campion	e RoW15	RoW16	RoW15	RoW16	RoW16
		_300616_0-0,2	_300616_1-1,5	_300616_2,4-2,6	_010716_0-0,2	_010716_1-1,6
	Proveniente d	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access
		Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)
	Tipo campion	e TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato d	a Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.
		personale -	personale -	personale -	personale -	personale -
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato	30/06/2016	30/06/2016	30/06/2016	01/07/2016	01/07/2016
l	Parametro U.M. R	L Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

220101210 - 217100000 2001 - 217100200 2		21 00 200	, 1 (segue)				
beta-BHC	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	⊲0,01	⊲0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160808 8 / 16

TAP AG
Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	74 di 152

PD16-02984_0

RISULTATI

	Campione n°	PD16-02984.016	PD16-02984.017	PD16-02984.018	PD16-02984.019	PD16-02984.020
Sig	la campione	RoW16	RoW17	RoW17	RoW17	RoW18
		_010716_2,4-2,6	_010716_0-0,2	_010716_1-1,6	_010716_2,4-2,6	_010716_0-0,2
Pro	oveniente da	Microtunnel access				
		Area, Municipality	Area, Municipality	Area, Municipalit	Area, Municipality	Area, Municipalit
		of Melendugno (LE)				
Tip	oo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
Ca	mpionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
c	ampionato il	01/07/2016	01/07/2016	01/07/2016	01/07/2016	01/07/2016
Parametro U.M.	. RL	Risultato	Risultato	Risultato	Risultato	Risultato

[Su campione secco all'aria + DM 13/09/1999 GU n° 248 21/10/1999 Met II.1]

	Scheletro (2 mm)	g/kg	1	123 ±12	131 ±13	121 ±12	176 ±18	39 ±4		
[Su camp. secco all'aria (frazione <2 cm) + DM 13/09/1999 GU n* 248 21/10/1999 Met II.3]										
	Scheletro (2mm - 2cm)	g/kg	1	123 ±12	131 ±13	121 ±12	176 ±18	39 ±4		
[S	[Su campione tal quale (frazione < 2 mm) + DM 13/09/1999 GU n* 248 21/10/1999 Met II.2]									
	Residuo a 105°C	%	0,1	92,0 ±5,5	94,0 ±5,6	88,2 ±5,3	85,4 ±5,1	97,4 ±5,8		

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mg/kg 1 <1 <1 <1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

Arsenico	mg/kg	1	<1	3 ±1	<1	<1	3 ±1
Cadmio	mg/kg	0,1	⊲0,1	0,2 ±0,1	0,1 ±0,1	0,1 ±0,1	0,1 ±0,1
Cobalto	mg/kg	0,1	0,5±0,5	2,8 ±2,3	0,6 ±0,5	0,4 ±0,4	2,4 ±2,3
Nichel	mg/kg	1	2 ±1	9 ±2	4±1	4±1	6 ±2
Cromo	mg/kg	1	9 ±3	19 ±5	9 ±3	8 ±3	23 ±6
Piombo	mg/kg	1	<1	7±1	<1	<1	7 ±1
Rame	mg/kg	1	<1	17 ±8	2 ±2	2 ±2	13 ±7
Zinco	mg/kg	5	<5	18 ±5	⊲5	⊲ 5	12 ±6
Mercurio	mg/kg	0,1	<0,1	<0,1	<0,1	⊲0,1	⊲0,1
Berilio	mg/kg	0,1	⊲0,1	0,8 ±0,6	<0,1	⊲0,1	0,7 ±0,5
Vanadio	mg/kg	1	2 ±1	17 ±3	6 ±2	5 ±2	18 ±3
Tallio	mg/kg	0,1	⊲0,1	0,2 ±0,1	<0,1	⊲0,1	0,2 ±0,1

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

| Idrocarburi Pesanti C>12 mg/kg 6 <6 <5 <6 <6 6

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100 <100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

Alacior	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	mg/kg	0,01	<0,01	<0,01	⊲0,01	⊲0,01	<0,01

20160808 9 / 16

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	75 di 152

PD16-02984_0

RISULTATI

,						
	Campione n*	PD16-02984.016	PD16-02984.017	PD16-02984.018	PD16-02984.019	PD16-02984.020
	Sigla campione	RoW16	RoW17	RoW17	RoW17	RoW18
		_010716_2,4-2,6	_010716_0-0,2	_010716_1-1,6	_010716_2,4-2,6	_010716_0-0,2
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	01/07/2016	01/07/2016	01/07/2016	01/07/2016	01/07/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

20101010 - 217100000 2007 - 217100200 2		.,	, I (segue)				
beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	⊲0,01	⊲0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01

20160808 10 / 16

TAP AG
Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSV SHELTER The Consulting to Section your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	76 di 152

PD16-02984_0

94,2 ±6,7

RISULTATI

Campi	one n°	PD16-02984.021	PD16-02984.022	PD16-02984.023	PD16-02984.024	PD16-02984.025
Sigla car	npione	RoW18	RoW18	RoW19	RoW19	RoW19
		_010716_1-1,6	_010716_2,4-2,6	_010716_0-0,2	_010716_1-1,6	_010716_2,4-2,6
Provenie	nte da	Microtunnel access				
		Area, Municipality	Area, Municipality	Area, Municipalit	Area, Municipality	Area, Municipality
		of Melendugno (LE)				
Tipo car	npione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
Campion	ato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
Campio	nato il	01/07/2016	01/07/2016	01/07/2016	01/07/2016	01/07/2016
Parametro U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato

	Screens (2 mm)	grkg		100 111	139 114	101 110	134 113	204 120			
[Su camp. secco all'aria (frazione <2 cm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.3]											
	Scheletro (2mm - 2cm)	g/kg	1	108 ±11	139 ±14	161 ±16	134 ±13	264 ±26			
f Si	Su campione tal quale (frazione < 2 mm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II 21										

| Residuo a 105°C | % 0,1 94,3 ±6,7 93,1 ±6,6 97,1 ±6,8 94,5 ±6,7 |
| Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mg/kg 1 <1 <1 <1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

Arsenico	mg/kg	1	<1	<1	3 ±1	<1	<1
Cadmio	mg/kg	0,1	⊲0,1	<0,1	0,1 ±0,1	0,1 ±0,1	⊲0,1
Cobalto	mg/kg	0,1	0,3 ±0,3	0,3 ±0,3	2,9 ±2,4	0,8 ±0,7	0,6 ±0,5
Nichel	mg/kg	1	2 ±1	2 ±1	10 ±2	5±1	4 ±1
Cromo	mg/kg	1	9 ±3	11 ±3	17 ±4	9 ±3	6 ±3
Piombo	mg/kg	1	<1	<1	6±1	<1	<1
Rame	mg/kg	1	1 ±1	1 ±1	9 ±7	2 ±2	2 ±2
Zinco	mg/kg	6	<5	⊲5	13 ±5	⊲5	<5
Mercurio	mg/kg	0,1	⊲0,1	<0,1	<0,1	⊲0,1	⊲0,1
Berillio	mg/kg	0,1	⊲0,1	<0,1	0,7 ±0,5	⊲0,1	⊲0,1
Vanadio	mg/kg	1	3 ±1	4 ±1	14 ±3	3 ±1	2 ±1
Talio	mg/kg	0,1	⊲0,1	<0,1	0,1 ±0,1	<0,1	⊲0,1

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

| Idrocarburi Pesanti C>12 | mg/kg | 6 < 6 < 6 < 6 < 6 < 6 < 6

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100 <100 <100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

-	Sellelello - El Modero Edel - El Modero Ed I		E1 0D E00	. 1				
	Alacior	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
	Aldrin	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
	Atrazina	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
	alfa-BHC	ma/kg	0,01	<0.01	⊲0,01	<0.01	⊲0,01	<0,01

20160808 11 / 16

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	77 di 152

PD16-02984_0

RISULTATI

	Campione n*	PD16-02984.021	PD16-02984.022	PD16-02984.023	PD16-02984.024	PD16-02984.025
	Sigla campione	RoW18	RoW18	RoW19	RoW19	RoW19
		_010716_1-1,6	_010716_2,4-2,6	_010716_0-0,2	_010716_1-1,6	_010716_2,4-2,6
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	01/07/2016	01/07/2016	01/07/2016	01/07/2016	01/07/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

220101210 - 217100000 2001 - 217100200 2		21 00 200	, 1 (segue)				
beta-BHC	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	⊲0,01	⊲0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160808 12 / 16

TAP AG
Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	78 di 152

PD16-02984_0

RISULTATI

	Campione n*	PD16-02984.026	PD16-02984.027	PD16-02984.028	PD16-02984.029	PD16-02984.030
	Sigla campione	RoW20	RoW20	RoW20	RoW21	RoW21
		_300616_0-0,2	_300616_1-1,5	_300616_2,4-2,6	_010716_0-0,2	_010716_1-1,5
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	30/06/2016	30/06/2016	30/06/2016	01/07/2016	01/07/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

[Su campione secco all'aria + DM 13/09/1999 GU n° 248 21/10/1999 Met II.1]

	Scheletro (2 mm)	grkg	1	4/10	93 19	234 123	1/8 118	411				
[St	[Su camp. secco all'aria (frazione <2 cm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.3]											
	Scheletro (2mm - 2cm)	g/kg	1	47 ±5	93 ±9	234 ±23	178 ±18	4 ±1				
[Su campione tal quale (frazione < 2 mm) + DM 13/09/1999 GU n* 248 21/10/1999 Met II.2]												
	Residuo a 105°C	%	0,1	96,5 ±5,8	93,3 ±5,6	92,7 ±5,6	96,4 ±5,8	89,4 ±6,4				

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mg/kg 1 <1 <1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

mg/kg	1	4 ±1	<1	<1	2±1	7±1
mg/kg	0,1	0,2 ±0,1	0,2 ±0,1	<0,1	0,2 ±0,1	0,2 ±0,1
mg/kg	0,1	4,3 ±2,7	1,3 ±2,0	0,7 ±0,6	2,1 ±2,2	9,4 ±3,7
mg/kg	1	15 ±3	9 ±2	5±1	9 ±2	30 ±6
mg/kg	1	20 ±5	7±3	6 ±3	12 ±4	35 ±7
mg/kg	1	13 ±2	<1	<1	4 ±1	16 ±2
mg/kg	1	8 ±7	3 ±2	2 ±2	6 ±5	16 ±8
mg/kg	5	19 ±5	⊲5	⊲5	9 ±5	28 ±6
mg/kg	0,1	⊲0,1	<0,1	<0,1	<0,1	⊲0,1
mg/kg	0,1	0,8 ±0,6	0,1 ±0,1	<0,1	0,2 ±0,1	1,6 ±0,8
mg/kg	1	19 ±4	3 ±1	2 ±1	7 ±2	32 ±6
mg/kg	0,1	0,2 ±0,1	<0,1	<0,1	<0,1	0,4 ±0,1
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg 0,1 mg/kg 0,1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 5 mg/kg 6,1 mg/kg 0,1 mg/kg 1,1	mg/kg 0,1 0,2±0,1 mg/kg 0,1 4,3±2,7 mg/kg 1 16±3 mg/kg 1 20±6 mg/kg 1 13±2 mg/kg 1 8±7 mg/kg 6 19±6 mg/kg 0,1 <0,1	mg/kg 0,1 0,2±0,1 0,2±0,1 mg/kg 0,1 4,3±2,7 1,3±2,0 mg/kg 1 15±3 9±2 mg/kg 1 20±6 7±3 mg/kg 1 13±2 <1	mg/kg 0,1 0,2±0,1 0,2±0,1 <0,1 mg/kg 0,1 4,3±2,7 1,3±2,0 0,7±0,6 mg/kg 1 16±3 9±2 5±1 mg/kg 1 20±6 7±3 6±3 mg/kg 1 13±2 <1 <1 mg/kg 1 8±7 3±2 2±2 mg/kg 5 19±5 <5 <5 <5 mg/kg 0,1 <0,1 <0,1 <0,1 <0,1 mg/kg 0,1 0,8±0,5 0,1±0,1 <0,1 mg/kg 1 19±4 3±1 2±1	mg/kg 0,1 0,2±0,1 0,2±0,1 <0,1 0,2±0,1 mg/kg 0,1 4,3±2,7 1,3±2,0 0,7±0,6 2,1±2,2 mg/kg 1 16±3 9±2 5±1 9±2 mg/kg 1 20±6 7±3 6±3 12±4 mg/kg 1 13±2 <1

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

Idrocarburi Pesanti C>12 mg/kg δ 5 ⊲5 ⊲5 ⊲6 <6

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

Alacior	mg/kg	0,01	<0,01	⊲0,01	<0,01	⊲0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	mg/kg	0,01	<0,01	⊲0,01	⊲0,01	<0,01	<0,01

20160808 13 / 16

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	79 di 152

PD16-02984_0

RISULTATI

	Campione n°	PD16-02984.026	PD16-02984.027	PD16-02984.028	PD16-02984.029	PD16-02984.030
	Sigla campione	RoW20	RoW20	RoW20	RoW21	RoW21
		_300616_0-0,2	_300616_1-1,5	_300616_2,4-2,6	_010716_0-0,2	_010716_1-1,5
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	30/06/2016	30/06/2016	30/06/2016	01/07/2016	01/07/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

220101210 - 217100000 2001 - 217100200 2		21 00 200	, 1 (segue)				
beta-BHC	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	⊲0,01	⊲0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160808 14 / 16

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SERVICE TO SERVIC	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	80 di 152

PD16-02984_0

LIMITI DI RIFERIMENTO

Matrice		Descrizione limiti					
TERRENI		L3:I limiti si riferiscono alle C.S.C. della co parte IV del D.Lgs 152/05. L4:I limiti si riferiscono alle C.S.C. della co parte IV del D.Los 152/05.					
	Parametro		U.M.	L1	L2	L3	L4
EPA 3060A 19	96 + EPA 7196A 1992]						
	Cromo VI		mg/kg	-	-	2	15
Cromo esavalent	te (Cr VI) [ISO 15192: 201	0]					
	Cromo esavalente (Cr VI)		mg/kg	-	-	2	15
Metalli [EPA 305	50B 1996 + EPA 6020B 201	4]			•		
	Arsenico		mg/kg			20	50
	Cadmio		rng/kg	-	-	2	15
	Cobalto		mg/kg	-	-	20	250
	Nichel		mg/kg	-	-	120	500
	Cromo		mg/kg	-	-	150	800
	Piombo		mg/kg	-	-	100	1000
	Rame		mg/kg	-	-	120	600
	Zinco		mg/kg		-	150	1500
	Mercurio		mg/kg		-	1	6
	Berilio		mg/kg	-	-	2	10
	Vanadio		mg/kg	-		90	250
	Tallio		mg/kg	-	-	1	10
EPA 3550C 20	07 + EPA 3620C 2007 + EI	PA 8015C 2007]					
	Idrocarburi Pesanti C>12		mg/kg			60	750
DM 06/09/1994	F GU n° 288 10/12/1994 All	1B]				•	
	Arnianto (SEM)		mg/kg	-		1000	1000
S.V.O.C. [EPA 3	8550C 2007+EPA 3620C 20	014 + EPA 8270D 2007 1					
	Alacior		mg/kg	-		0,01	1
	Aldrin		mg/kg			0,01	0,1
	Atrazina		mg/kg			0,01	1
	alfa-BHC		mg/kg	-	-	0,01	0,5
	beta-BHC		mg/kg	-	-	0,01	0,5
	gamma-BHC (Lindano)		rng/kg	-	-	0,01	0,5
	Clordano		mg/kg	-		0,01	0,1
	DDD, DDT, DDE		mg/kg	-	-	0,01	0,1
	Dieldrin		mg/kg	-	-	0,01	0,1
	Endrin		mg/kg			0.01	2

20160808 15 / 16

TAP AG
Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW) Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001		0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	81 di 152

LEGENDA

NOTE

- Eseguito presso altro laboratorio SGS.
- As Eseguito presso laboratorio esterno.
- RL Limite di Rapportaggio
- Limite di rapportaggio innalzato
- Limite di rapportaggio diminuito

- IS Campione insufficiente per l'analisi.
- LNR Campione elencato ma non ricevuto.
- NA Campione non analizzato per questo parametro TBA Parametro non ancora analizzato

NOTE RELATIVE ALL'ACCREDITAMENTO

Prova non accreditata ACCREDIA.

il presente Rapporto è emesso dalla Società in accordo con le Condizioni Generali SGS per i servizi di ispezione e controllo (copia disponibile su richiesta). Il rilascio di questo Rapporto non esonera le parti negoziali dall'esercitare i diritti e dall'adempiere alle obbligazioni derivanti dal negozio tra loro stipulato. Ogni patto contrario non è alla Società opportibile. La responsabilità della Società in base a questo Rapporto è limitata al caso di provata colpa grave ed in ogni caso ad un ammontare non superiore a dieci volte i difitti e le commissioni dovute. Eccetto accordi particolari, gli eventuali campioni, se presi, non aranno trattenuti dalla Società per più di un mese. I risultati contenuti nel seguente rapporto si riferiscono esclusivamente al campione provato.

Il presente Rapporto o copia dello stesso verrà conservato dalla Società per un periodo pari a 10 anni. Il confronto dei risultati con i rispettivi limiti, quando presente, non tiene conto dell'incertezza di misura stimata. Eventuali risultati fuori limite sono segnalati in rosso.

Il recupero ove previsto, è da intendersi compreso all'interno dei limiti di accettabilità specifici. Se non diversamente indicato il risultato è da intendersi non corretto per il recupero ottenuto.

Il presente rapporto può essere riprodotto solamente per intero.

20160808 16 / 16

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW) Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consider to Same your flusions	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	82 di 152

PD16-02985_0

Prima pagina

CLIENTE		LABORATORIO	
Cliente	SHELTER SRL	Head of Laboratory	Cristiano Toffoletti
		Laboratorio	SGS Italia S.p.A.
Indirizzo	Viale Gran Sasso n. 13	Indirizzo	Via Campodoro, 25
	MILANO 20131		Villafranca Padovana (PD) 35010
Contatto		Telefono	+39 049 9050013
Telefono		Fax	+39 049 9050065
Fax		Email	sgs.eco@sgs.com
Email		Accettazione n°	PD16-02985
Progetto	Default Project	Pervenuto il	04/07/2016
Ordine n°	1153/2015/C1/PD/Rev.4	Data inizio prove di lab.	05/07/2016
Matrice	TERRENI(32)	Data fine prove lab.	01/08/2016
		Rapporto di Prova n°	PD16-02985_0
		Data emissione	08/08/2016

Incertezza estesa di misura stimata al 95% di livello di confidenza e fattore di copertura k=2

SGS Italia S.p.A Via Campodoro, 25 35010 Villafranca Padovana (PD) Italy

Documento con firma digitale avanzata ai sensi della normativa vigente. Firmato digitalmente da Dr. Cristiano Toffoletti Ordine dei chimici della Provincia di Venezia/94004270271

Mattia Favaro Cristiano Toffoletti
Project Agent Head Of Laboratory

Membri del Gruppo SGS (Société Générale de Surveillance) - www.sgs.com

t +39 049 9050013 f +39 049 9050065 www.sgs.com

Sede legate CIO Caldera business park, via Caldera 21, Ed. B, 4 plano als 3, 20153 Milano, Italy - Capitale sociale Euro 2.500.000 Lv. C.F./N. Isor. Reg. Impress di Milano 04112800378 - P. IVA n.11370520154 - Cod. Meoc. n.Mi223013

TAP AG 82

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	83 di 152

PD16-02985_0

INDICE

Prima Pagina	1
Indice	2
Risultati	3-16
Limiti Di Riferimento	17
Legenda	18

20160808 2/18

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	84 di 152

PD16-02985 0

RISULTATI

	Campione n*	PD16-02985.001	PD16-02985.002	PD16-02985.003	PD16-02986.004	PD16-02985.005
	Sigla campione	RoW21	RoW22	RoW22	RoW22	RoW23
		_010716_2,4-2,6	_300616_0-0,2	_300616_1-1,6	_300616_2,4-2,6	_290616_0-0,2
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)				
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	01/07/2016	30/06/2016	30/06/2016	30/06/2016	29/06/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

[Su campione secco all'aria + DM 13/09/1999 GU n° 248 21/10/1999 Met II.1]

	Scheletro (2 mm)	grkg	1	<1	304 138	286 129	330 233	36 14			
[Su camp. secco all'aria (frazione <2 cm) + DM 13/09/1999 GU n* 248 21/10/1999 Met II.3]											
	Scheletro (2mm - 2cm)	g/kg	1	<1	384 ±38	285 ±29	330 ±33	35 ±4			
[Su campione tal quale (frazione < 2 mm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.2]											
	Residuo a 105°C	%	0,1	88,4 ±5,3	96,8 ±5,8	94,2 ±5,7	93,4 ±5,6	89,9 ±6,4			

Cromo esavalente (come Cr) [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm

(105°C) comprensiva dello scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mg/kg 1 <1 <1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

mg/kg	1	8 ±1	1 ±1	<1	<1	11 ±2
mg/kg	0,1	0,1 ±0,1	<0,1	<0,1	<0,1	0,3 ±0,1
mg/kg	0,1	7,2 ±3,3	0,9 ±0,8	0,3 ±0,3	0,2 ±0,2	15 ±4,9
mg/kg	1	26 ±5	2 ±1	1±1	1±1	64 ±10
mg/kg	1	36 ±7	4 ±2	2 ±2	2 ±2	47 ±9
mg/kg	1	12 ±2	3 ±1	<1	<1	26 ±4
mg/kg	1	9 ±7	2 ±2	<1	<1	26 ±9
mg/kg	5	33 ±5	⊲ 5	⊲5	⊲5	49 ±7
mg/kg	0,1	⊲0,1	<0,1	<0,1	⊲0,1	⊲0,1
mg/kg	0,1	1,3 ±0,7	0,2 ±0,1	<0,1	⊲0,1	2,0 ±0,8
mg/kg	1	37 ±6	5 ±2	2 ±1	2 ±1	60 ±8
mg/kg	0,1	0,4 ±0,1	<0,1	<0,1	<0,1	0,7 ±0,2
	mg/kg	mg/kg 0,1 mg/kg 0,1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 6 mg/kg 6,1 mg/kg 0,1 mg/kg 1,1	mg/kg 0,1 0,1±0,1 mg/kg 0,1 7,2±3,3 mg/kg 1 26±6 mg/kg 1 36±7 mg/kg 1 12±2 mg/kg 1 9±7 mg/kg 6 33±5 mg/kg 0,1 <0,1	mg/kg 0,1 0,1±0,1 <0,1 mg/kg 0,1 7,2±3,3 0,9±0,8 mg/kg 0,1 7,2±3,3 0,9±0,8 mg/kg 1 26±6 2±1 mg/kg 1 36±7 4±2 mg/kg 1 12±2 3±1 mg/kg 1 9±7 2±2 mg/kg 5 33±6 <6	mg/kg 0,1 0,1±0,1 <0,1 <0,1 <0,1 mg/kg 0,1 7,2±3,3 0,9±0,8 0,3±0,3 mg/kg 1 26±5 2±1 1±1 mg/kg 1 36±7 4±2 2±2 mg/kg 1 12±2 3±1 <1	mg/kg 0.1 0.1 ±0.1 <0.1 <0.1 <0.1 <0.1 <0.1 mg/kg 0.1 7.2 ±3,3 0.9 ±0,8 0.3 ±0,3 0.2 ±0,2 0.2 ±0,2 0.3 ±0,3 0.2 ±0,2 0.2 ±0,2 0.3 ±0,3 0.2 ±0,2 0.2 ±

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

Idrocarburi Pesanti C>12 mg/kg 5 10 6 ⊲5 ⊲6 18

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

Alacior	mg/kg	0,01	<0,01	⊲0,01	<0,01	⊲0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	⊲0,01	<0,01	⊲0,01	<0,01
Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	mg/kg	0,01	<0,01	⊲0,01	<0,01	<0,01	<0,01

20160808 3 / 18

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	85 di 152

PD16-02985_0

RISULTATI

	Campione n*	PD16-02985.001	PD16-02985.002	PD16-02985.003	PD16-02985.004	PD16-02986.006
	Sigla campione	RoW21	RoW22	RoW22	RoW22	RoW23
		_010716_2,4-2,6	_300616_0-0,2	_300616_1-1,6	_300616_2,4-2,6	_290616_0-0,2
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	01/07/2016	30/06/2016	30/06/2016	30/06/2016	29/06/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

220101210 - 217100000 2001 - 217100200 2		21 00 200	, 1 (segue)				
beta-BHC	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	⊲0,01	⊲0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160808 4/18

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW) Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	86 di 152

PD16-02985 0

RISULTATI

	Campione n*	PD16-02985.006	PD16-02985.007	PD16-02985.008	PD16-02985.009	PD16-02985.010
	Sigla campione	RoW23	RoW23	RoW24	RoW24	RoW24
		_290616_1-1,6	_290616_2,4-2,6	_290616_0-0,2	_290616_1-1,6	_290616_2,4-2,6
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	29/06/2016	29/06/2016	29/06/2016	29/06/2016	29/06/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

[Su campione secco all'aria + DM 13/09/1999 GU n° 248 21/10/1999 Met II.1]

	Scheletro (2 mm)	g/kg	1	<1	306 ±31	84 ±8	278 ±28	361 ±36	
[S	u camp. secco all'aria (frazione <2 cm) + DM 13	/09/1999 G	U n° 248 2	21/10/1999 Me	et II.3]				
	Scheletro (2mm - 2cm)	a/ka	1	<1	306 ±31	84 ±8	278 ±28	361 ±36	ı

[Su campione tal quale (frazione < 2 mm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.2]

Residuo a 105°C % 0,1 90,5 ±5,4 90,3 ±5,4 94,7 ±5,7 95,4 ±5,7 96,6 ±6,8

Cromo esavalente (come Cr) [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm

(105°C) comprensiva dello scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mg/kg 1 <1 <1 <1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

3 SCHEIEII 0 + EFA 3030B 1336 +	EFA 6020B 2014]						
Arsenico	mg/kg	1	9 ±2	3 ±1	5 ±1	5±1	1 ±1
Cadmio	mg/kg	0,1	⊲0,1	<0,1	<0,1	⊲0,1	⊲0,1
Cobalto	mg/kg	0,1	11 ±4,1	7,5 ±3,3	4,7 ±2,7	3,0 ±2,4	0,9 ±0,8
Nichel	mg/kg	1	41 ±8	36 ±7	16 ±3	10 ±2	4 ±1
Cromo	mg/kg	1	34 ±7	14 ±4	22 ±5	13 ±4	3 ±2
Piombo	mg/kg	1	13 ±2	4±1	15 ±2	5±1	1 ±1
Rame	mg/kg	1	12 ±7	8 ±7	13 ±7	3 ±2	2 ±2
Zinco	mg/kg	5	32 ±5	17 ±5	17 ±5	9 ±5	<5
Mercurio	mg/kg	0,1	⊲0,1	<0,1	<0,1	<0,1	⊲0,1
Berillio	mg/kg	0,1	1,6 ±0,8	0,4 ±0,3	1,2 ±0,7	0,9	⊲0,1
Vanadio	mg/kg	1	36 ±6	12 ±3	27 ±5	14 ±3	3 ±1
Talio	mg/kg	0,1	0,5 ±0,1	0,1 ±0,1	0,4 ±0,1	0,2 ±0,1	⊲0,1

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

| Idrocarburi Pesanti C>12 mg/kg 6 <6 <6 <6 <6 <6

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100 <100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

o serieled . El 71 decedo Eggi, El 71 decedo E		E1 0D E00					
Alacior	mg/kg	0,01	<0,01	<0,01	<0,01	⊲0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	⊲0,01	<0,01
Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	⊲0,01	<0,01
alfa-BHC	malka	0,01	<0,01	⊲0,01	<0,01	⊲0,01	<0.01

20160808 5 / 18

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	87 di 152

PD16-02985_0

RISULTATI

	Campione n*	PD16-02985.006	PD16-02985.007	PD16-02985.008	PD16-02985.009	PD16-02985.010
	Sigla campione	RoW23	RoW23	RoW24	RoW24	RoW24
		_290616_1-1,6	_290616_2,4-2,6	_290616_0-0,2	_290616_1-1,6	_290616_2,4-2,6
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	29/06/2016	29/06/2016	29/06/2016	29/06/2016	29/06/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

220101210 - 217100000 2001 - 217100200 2		21 00 200	, 1 (segue)				
beta-BHC	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	⊲0,01	⊲0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160808 6 / 18

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Concluding to some your flusters	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	88 di 152

PD16-02985 0

RISULTATI

	Campione n°	PD16-02986.011	PD16-02985.012	PD16-02986.013	PD16-02985.014	PD16-02985.015
	Sigla campione	RoW25	RoW26	RoW25	RoW26	RoW26
		_290616_0-0,2	_290616_1-1,5	_290616_2,4-2,6	_300616_0-0,2	_300616_1-1,5
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)				
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	29/06/2016	29/06/2016	29/06/2016	30/06/2016	30/06/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

[Su campione secco all'aria + DM 13/09/1999 GU n° 248 21/10/1999 Met II.1]

	Scheletro (2 mm)	g/kg	1	75 ±8	236 ±24	343 ±34	114 ±11	268 ±26		
[Su camp. secco all'aria (frazione <2 cm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.3]										
	Scheletro (2mm - 2cm)	g/kg	1	75 ±8	236 ±24	343 ±34	114 ±11	258 ±26		
re.	1 Current and American (2 and 1 DM 42/00/000 CH - 2 2/0 2/4/04/000 Med H 2 1									

Residuo a 105°C 98,1 ±5,9

91,8 ±5,5 91,4 ±5,5 96,0 ±6,8

Cromo esavalente (come Cr) [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm

(105°C) comprensiva dello scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mg/kg 1 <1 <1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

mg/kg	1	5 ±1	1±1	<1	3 ±1	<1
mg/kg	0,1	⊲0,1	<0,1	<0,1	⊲0,1	⊲0,1
mg/kg	0,1	2,9 ±2,4	0,7 ±0,6	0,4 ±0,4	2,4 ±2,3	3,2 ±2,4
mg/kg	1	11 ±2	3 ±1	2 ±1	7 ±2	1 ±1
mg/kg	1	18 ±4	4 ±2	2 ±2	14 ±4	1 ±2
mg/kg	1	10 ±1	<1	<1	11 ±1	<1
mg/kg	1	7 ±6	1 ±1	1 ±1	3 ±2	<1
mg/kg	5	13 ±5	⊲ 5	⊲5	11 ±5	<5
mg/kg	0,1	⊲0,1	<0,1	<0,1	⊲0,1	⊲0,1
mg/kg	0,1	0,8 ±0,6	<0,1	<0,1	0,6 ±0,4	⊲0,1
mg/kg	1	20 ±4	3 ±1	2 ±1	17 ±3	1 ±1
mg/kg	0,1	0,2 ±0,1	<0,1	<0,1	0,2 ±0,1	⊲0,1
	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	mg/kg 0,1 mg/kg 0,1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 6 mg/kg 0,1 mg/kg 0,1 mg/kg 1	mg/kg 0,1 <0,1 mg/kg 0,1 2,9 ±2,4 mg/kg 1 11 ±2 mg/kg 1 18 ±4 mg/kg 1 10 ±1 mg/kg 1 7 ±6 mg/kg 6 13 ±5 mg/kg 0,1 <0,1 mg/kg 0,1 0,8 ±0,6 mg/kg 1 20 ±4	mg/kg 0,1 <0,1 <0,1 mg/kg 0,1 2,9 ± 2,4 0,7 ± 0,6 mg/kg 1 11 ± 2 3 ± 1 mg/kg 1 18 ± 4 4 ± 2 mg/kg 1 10 ± 1 < 1	mg/kg 0,1 <0,1 <0,1 <0,1 mg/kg 0,1 2,9±2,4 0,7±0,6 0,4±0,4 mg/kg 1 11±2 3±1 2±1 mg/kg 1 18±4 4±2 2±2 mg/kg 1 10±1 <1	mg/kg 0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 mg/kg 0,1 2,9±2,4 0,7±0,6 0,4±0,4 2,4±2,3 mg/kg 1 11±2 3±1 2±1 7±2 7±2 mg/kg 1 18±4 4±2 2±2 14±4 14±4 11±1 <1 <1 11±1 <1 11±1 3±2 mg/kg 1 7±6 1±1 1±1 3±2 mg/kg 5 13±5 <5 <5 11±5 1±5 mg/kg 0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,5±0,4 mg/kg 1 20±4 3±1 2±1 17±3

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

Idrocarburi Pesanti C>12 mg/kg 5 <6 ⊲5 ⊲5 <6

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

<100 Amianto (SEM) mg/kg 100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

o serieled . El 71 decedo Eggi, El 71 decedo E		E1 0D E00					
Alacior	mg/kg	0,01	<0,01	<0,01	<0,01	⊲0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	⊲0,01	<0,01
Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	⊲0,01	<0,01
alfa-BHC	malka	0,01	<0,01	⊲0,01	<0,01	⊲0,01	<0.01

20160808 7/18

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	89 di 152

PD16-02985_0

RISULTATI

	Campione n*	PD16-02985.011	PD16-02985.012	PD16-02985.013	PD16-02985.014	PD16-02985.015
	Sigla campione	RoW25	RoW26	RoW25	RoW26	RoW26
		_290616_0-0,2	_290616_1-1,6	_290616_2,4-2,6	_300616_0-0,2	_300616_1-1,5
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	29/06/2016	29/06/2016	29/06/2016	30/06/2016	30/06/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

- Selicities - El Massaco Essa, -El Massaco E		ETOD EOO	, 1 (segue)				
beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	⊲0,01	⊲0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01

20160808 8 / 18

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW) Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	90 di 152

PD16-02985 0

RISULTATI

Cam	pione n°	PD16-02985.016	PD16-02985.017	PD16-02986.018	PD16-02985.019	PD16-02985.020
Sigla c	ampione	RoW26	RoW27	RoW27	RoW27	RoW28
		_300616_2,4-2,6	_290616_0-0,2	_290616_1-1,6	_290616_2,4-2,6	_280616_0-0,2
Prover	niente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)				
Tipo c	ampione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
Campi	onato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
Carry	pionato il	30/06/2016	29/06/2016	29/06/2016	29/06/2016	28/06/2016
Parametro U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato

[Su campione secco all'aria + DM 13/09/1999 GU n° 248 21/10/1999 Met II.1]

	Scheletro (2 mm)	g/kg	1	461 ±46	176 ±18	435 ±44	423 ±42	303 ±30			
[Su camp. secco all'aria (frazione <2 cm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.3]											
	Scheletro (2mm - 2cm)	g/kg	1	461 ±45	176 ±18	435 ±44	423 ±42	303 ±30			
[Su campione tal quale (frazione < 2 mm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.2]											
	Residuo a 105°C	96	0,1	94,4 ±5,7	96,4 ±5,8	97,8 ±5,9	96,5 ±5,8	94,3 ±6,7			

Cromo esavalente (come Cr) [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm

(105°C) comprensiva dello scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mg/kg 1 <1 <1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

Arsenico	mg/kg	1	<1	7±1	<1	<1	8 ±1
Cadmio	mg/kg	0,1	⊲0,1	<0,1	<0,1	<0,1	0,1 ±0,1
Cobalto	mg/kg	0,1	0,2 ±0,2	4,5 ±2,7	0,5 ±0,5	0,5 ±0,5	6,2 ±3,1
Nichel	mg/kg	1	1±1	14 ±3	2 ±1	3±1	29 ±6
Cromo	mg/kg	1	<1	20 ±5	2 ±2	3 ±2	21 ±6
Piombo	mg/kg	1	<1	10 ±1	<1	<1	9 ±1
Rame	mg/kg	1	<1	7 ±6	<1	1 ±1	21 ±8
Zinco	mg/kg	5	<5	17 ±5	⊲5	⊲5	19 ±6
Mercurio	mg/kg	0,1	⊲0,1	<0,1	<0,1	⊲0,1	⊲0,1
Berillio	mg/kg	0,1	⊲0,1	1,0 ±0,7	<0,1	⊲0,1	0,8 ±0,6
Vanadio	mg/kg	1	<1	26 ±5	2 ±1	3 ±1	21 ±4
Talio	mg/kg	0,1	⊲0,1	0,2 ±0,1	<0,1	⊲0,1	0,2 ±0,1

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

Idrocarburi Pesanti C>12 mg/kg 5 <6 6 ⊲5 ⊲6

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

D Schelene - El M SSCOTO ESST - El M SSESS		E1 00 E00					
Alaclor	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
Aldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
alfa-BHC	ma/kg	0,01	<0,01	⊲0,01	<0,01	⊲0,01	<0,01

20160808 9 / 18

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	91 di 152

PD16-02985_0

RISULTATI

	Campione n*	PD16-02985.016	PD16-02985.017	PD16-02985.018	PD16-02986.019	PD16-02985.020
	Sigla campione	RoW26	RoW27	RoW27	RoW27	RoW28
		_300616_2,4-2,6	_290616_0-0,2	_290616_1-1,6	_290616_2,4-2,6	_280616_0-0,2
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	30/06/2016	29/06/2016	29/06/2016	29/06/2016	28/06/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

- Selicities - El Massaco Essa, -El Massaco E		ETOD EOO	, 1 (segue)				
beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	⊲0,01	⊲0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01

20160808 10 / 18

TAP AG
Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	92 di 152

PD16-02985 0

RISULTATI

	Campione n*	PD16-02985.021	PD16-02985.022	PD16-02985.023	PD16-02986.024	PD16-02985.025
	Sigla campione	RoW28	RoW28	AR1	AR2	AR3
		_280616_1-1,6	_280616_2,4-2,6	_010716_0-0,2	_010716_0-0,2	_010716_0-0,2
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	28/06/2016	28/06/2016	01/07/2016	01/07/2016	01/07/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

[Su campione secco all'aria + DM 13/09/1999 GU n° 248 21/10/1999 Met II.1]

	Scheletro (2 mm)	g/kg	1	386 ±39	388 ±39	23 ±2	375 ±38	109 ±11				
[Su camp. secco all'aria (frazione <2 cm) + DM 13/09/1999 GU n* 248 21/10/1999 Met II.3]												
	Scheletro (2mm - 2cm)	g/kg	1	386 ±39	388 ±39	23 ±2	375 ±38	109 ±11				
[Su campione tal quale (frazione < 2 mm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.2]												
	Residuo a 105°C	96	0,1	96,1 ±5,7	91,1 ±5,5	97,2 ±5,8	98,0 ±5,9	93,8 ±6,6				

Cromo esavalente (come Cr) [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm

(105°C) comprensiva dello scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mg/kg 1 <1 <1 <1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

mg/kg	1	2 ±1	7±1	9 ±2	2 ±1	10 ±2
mg/kg	0,1	⊲0,1	<0,1	<0,1	0,1 ±0,1	0,2 ±0,1
mg/kg	0,1	1,0 ±2,0	1,8 ±2,1	4,1 ±2,6	1,9 ±2,1	8,7 ±3,6
mg/kg	1	9 ±2	15 ±3	13 ±3	6 ±2	36 ±7
mg/kg	1	6 ±3	7±3	24 ±5	13 ±4	30 ±6
mg/kg	1	1±1	2 ±1	11 ±1	5±1	15 ±2
mg/kg	1	3 ±2	5 ±4	7 ±6	3 ±2	34 ±10
mg/kg	5	6 ±6	10 ±5	17 ±5	9 ±5	28 ±6
mg/kg	0,1	⊲0,1	<0,1	<0,1	⊲0,1	⊲0,1
mg/kg	0,1	0,1 ±0,1	0,2 ±0,1	0,9	0,5 ±0,4	1,2 ±0,7
mg/kg	1	5 ±2	9 ±2	26 ±5	11 ±2	31 ±6
mg/kg	0,1	<0,1	<0,1	0,2 ±0,1	0,1 ±0,1	0,3 ±0,1
	mg/kg	mg/kg 0,1 mg/kg 0,1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 6 mg/kg 0,1 mg/kg 0,1 mg/kg 1,1	mg/kg 0,1 <0,1 mg/kg 0,1 1,0±2,0 mg/kg 1 9±2 mg/kg 1 6±3 mg/kg 1 1±1 mg/kg 1 3±2 mg/kg 5 6±6 mg/kg 0,1 <0,1 mg/kg 0,1 0,1±0,1 mg/kg 1 5±2	mg/kg 0,1 <0,1 <0,1 mg/kg 0,1 1,0±2,0 1,8±2,1 mg/kg 1 9±2 15±3 mg/kg 1 6±3 7±3 mg/kg 1 1±1 2±1 mg/kg 1 3±2 5±4 mg/kg 6 6±5 10±5 mg/kg 0,1 <0,1	mg/kg 0,1 <0,1 <0,1 <0,1 <0,1 <0,1 mg/kg 0,1 1,0±2,0 1,8±2,1 4,1±2,6 4,1±2,6 mg/kg 1 9±2 15±3 13±3 13±3 13±3 13±3 24±6 12±1 12±1 11±1	mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 0.1 0.1±0.1 mg/kg 0.1 1.0±2.0 1.8±2.1 4.1±2.6 1.9±2.1 mg/kg 1 9±2 16±3 13±3 6±2 mg/kg 1 6±3 7±3 24±6 13±4 mg/kg 1 1±1 2±1 11±1 6±1 mg/kg 1 3±2 6±4 7±6 3±2 mg/kg 6 6±6 10±5 17±6 9±6 mg/kg 0.1 <0.1

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

| Idrocarburi Pesanti C>12 mg/kg 6 <6 <6 <6 <6 7

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU nº 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100 <100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

-	Selleren - El M 00000 E007 - El M 00E00 E011		E1 00 E00					
	Alacior	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
	Aldrin	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
	Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	alfa-BHC	ma/kg	0,01	<0,01	⊲0,01	<0,01	⊲0,01	<0.01

20160808 11 / 18

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Scalar your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	93 di 152

PD16-02985_0

RISULTATI

	Campione n*	PD16-02986.021	PD16-02985.022	PD16-02986.023	PD16-02985.024	PD16-02985.025
	Sigla campione	RoW28	RoW28	AR1	AR2	AR3
		_280616_1-1,6	_280616_2,4-2,6	_010716_0-0,2	_010716_0-0,2	_010716_0-0,2
	Proveniente da	Microtunnel access				
		Area, Municipality				
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	28/06/2016	28/06/2016	01/07/2016	01/07/2016	01/07/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

			, 1 (segme)				
beta-BHC	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	⊲0,01	<0,01	⊲0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	⊲0,01	⊲0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	⊲0,01	<0,01

20160808 12 / 18

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	94 di 152

PD16-02985 0

95,1 ±5,7

RISULTATI

Residuo a 105°C

pione n°	PD16-02985.026	PD16-02985.027	PD16-02985.028	PD16-02985.029	PD16-02985.030
ampione	B.D.	B.D. 1_280616_1-2	B.D. 3_290616_1-2	B.D.	B.D.
	1_280616_0-0,2			4_290616_0-0,2	5_300616_0-0,2
riente da	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access
	Area, Municipality	Area, Municipality	Area, Municipalit	Area, Municipalit	Area, Municipality
	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
ampione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
onato da	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.
	personale -	personale -	personale -	personale -	personale -
	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
pionato il	28/06/2016	28/06/2016	29/06/2016	29/06/2016	30/06/2016
RL	Risultato	Risultato	Risultato	Risultato	Risultato
	ampione onato da pionato il	ampione B.D. 1_280616_0-0,2 niente da Microtunnel access Area, Municipalit of Melendugno (LE) TERRENI effetuato da ns. personale - Lorenzoni pionato ill 28/06/2016	ampione B.D. B.D. 1_280616_1-2 1_280616_0-0,2 niente da Microtunnel access Microtunnel access Area, Municipality of Melendugno (LE) of Melendugno (LE) TERRENI TERRENI Effettuato da ns. Effettuato da ns. personale - personale - Lorenzoni Lorenzoni pionato il 28/06/2016 28/05/2016	ampione B.D. B.D. 1_280616_1-2 B.D. 3_290616_1-2 1_280616_0-0,2 Microtunnel access Microtunnel access Microtunnel access Area, Municipality Area, Municipality of Melendugno (LE) are personale - personale	ampione B.D. B.D. 1_280616_1-2 B.D. 3_290616_1-2 B.D. 4_290616_0-0,2 1_280616_0-0,2

[Su campione secco all'aria + DM 13/09/1999 GU n° 248 21/10/1999 Met II.1]

Scheletro (2 mm)	g/kg	1	42 ±4	121 ±12	286 ±29	78 ±8	120 ±12			
[Su camp. secco all'aria (frazione <2 cm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.3]										
Scheletro (2mm - 2cm)	g/kg	1	42 ±4	121 ±12	286 ±29	78 ±8	120 ±12			
Su campione tal quale (frazione < 2 mm) + DM 13/09/1999 GU n* 248 21/10/1999 Met II.2]										

96,2 ±5,8

87,6 ±5,3

92,0 ±5,5

94,5 ±5,7

Cromo esavalente (come Cr) [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm

(105°C) comprensiva dello scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mg/kg 1 <1 <1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

Arsenico							
Arsenico	mg/kg	1	8 ±1	3 ±1	5±1	5 ±1	8 ±1
Cadmio	mg/kg	0,1	0,2 ±0,1	<0,1	<0,1	0,1 ±0,1	0,1 ±0,1
Cobalto	mg/kg	0,1	6,9 ±3,2	4,4 ±2,7	2,2 ±2,2	4,8 ±2,8	7,5 ±3,3
Nichel	mg/kg	1	22 ±4	23 ±5	11 ±2	16 ±3	29 ±6
Cromo	mg/kg	1	33 ±7	12 ±4	8 ±3	23 ±5	27 ±6
Piombo	mg/kg	1	15 ±2	4±1	2 ±1	17 ±2	13 ±2
Rame	mg/kg	1	11 ±7	8 ±7	4 ±3	12 ±7	11 ±7
Zinco	mg/kg	5	29 ±5	16 ±5	9 ±5	17 ±5	27 ±6
Mercurio	mg/kg	0,1	<0,1	<0,1	<0,1	⊲0,1	⊲0,1
Berilio	mg/kg	0,1	1,8 ±0,8	0,3 ±0,2	0,1 ±0,1	1,2 ±0,7	1,2 ±0,7
Vanadio	mg/kg	1	34 ±6	12 ±3	7 ±2	28 ±5	29 ±6
Tallio	mg/kg	0,1	0,4 ±0,1	<0,1	<0,1	0,4 ±0,1	0,3 ±0,1

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

Idrocarburi Pesanti C>12 mg/kg 5 <6 ⊲5 ⊲5

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

-	Selleren - El M 00000 E007 - El M 00E00 E011		E1 00 E00					
	Alacior	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
	Aldrin	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
	Atrazina	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	alfa-BHC	ma/kg	0,01	<0,01	⊲0,01	<0,01	⊲0,01	<0.01

20160808 13 / 18

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	95 di 152

PD16-02985_0

RISULTATI

		_				
	Campione n*	PD16-02985.026	PD16-02985.027	PD16-02985.028	PD16-02985.029	PD16-02985.030
	Sigla campione	B.D.	B.D. 1_280616_1-2	B.D. 3_290616_1-2	B.D.	B.D.
		1_280616_0-0,2			4_290616_0-0,2	5_300616_0-0,2
	Proveniente da	Microtunnel access				
		Area, Municipality	Area, Municipality	Area, Municipalit	Area, Municipality	Area, Municipality
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
	Tipo campione	TERRENI	TERRENI	TERRENI	TERRENI	TERRENI
	Campionato da	Effettuato da ns.				
		personale -				
		Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni	Lorenzoni
	Campionato il	28/06/2016	28/06/2016	29/06/2016	29/06/2016	30/06/2016
Parametro	U.M. RL	Risultato	Risultato	Risultato	Risultato	Risultato

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

220101210 - 217100000 2001 - 217100200 2		21 00 200	, 1 (segue)				
beta-BHC	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	⊲0,01	⊲0,01	<0,01	<0,01
Clordano	mg/kg	0,01	<0,01	<0,01	⊲0,01	<0,01	<0,01
DDD, DDT, DDE	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Dieldrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Endrin	mg/kg	0,01	<0,01	<0,01	<0,01	<0,01	<0,01

20160808 14 / 18

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	96 di 152

PD16-02985_0

RISULTATI

Campione n*	PD16-02985.031	PD16-02985.032
Sigla campione	B.D.	B.D.
	6_300616_2,4-2,6	7_010716_0-0,2
Proveniente da	Microtunnel access	Microtunnel access
	Area, Municipality	Area, Municipality
	of Melendugno (LE)	of Melendugno (LE)
Tipo campione	TERRENI	TERRENI
Campionato da	Effettuato da ns.	Effettuato da ns.
	personale -	personale -
	Lorenzoni	Lorenzoni
Campionato il	30/06/2016	01/07/2016
Parametro U.M. RL	Risultato	Risultato

[Su campione secco all'aria + DM 13/09/1999 GU n° 248 21/10/1999 Met II.1]

Scheletro (2 mm) g/kg 1 390 ±39 223 ±22

[Su camp. secco all'aria (frazione <2 cm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.3]

Scheletro (2mm - 2cm) g/kg 1 390 ±39 223 ±22

[Su campione tal quale (frazione < 2 mm) + DM 13/09/1999 GU n° 248 21/10/1999 Met II.2]

Residuo a 105°C % 0,1 93,6±6,6 97,0±6,8

Cromo esavalente (come Cr) [Su camp, secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm

(105°C) comprensiva dello scheletro + EPA 3060A 1996 + EPA 7196A 1992]

Cromo VI mgkg 1 <1 <1

Metalli [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3050B 1996 + EPA 6020B 2014]

mg/kg	1	<1	5 ±1	
mg/kg	0,1	⊲0,1	0,1 ±0,1	
mg/kg	0,1	0,2 ±0,2	3,9 ±2,6	
mg/kg	1	1 ±1	13 ±3	
mg/kg	1	1 ±2	21 ±5	
mg/kg	1	<1	8 ±1	
mg/kg	1	<1	6 ±5	
mg/kg	5	<6	17 ±5	
mg/kg	0,1	⊲0,1	<0,1	
mg/kg	0,1	⊲0,1	0,9	
mg/kg	1	2 ±1	21 ±4	
mg/kg	0,1	⊲0,1	0,2 ±0,1	
	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	mg/kg 1 mg/kg 0,1 mg/kg 0,1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 5 mg/kg 0,1 mg/kg 0,1 mg/kg 1	mg/kg 1 <1 mg/kg 0,1 <0,1 mg/kg 0,1 0,2±0,2 mg/kg 1 1±1 mg/kg 1 1±2 mg/kg 1 <1 mg/kg 1 <1 mg/kg 6 <5 mg/kg 0,1 <0,1 mg/kg 0,1 <0,1 mg/kg 1 2±1	mg/kg 0,1 <0,1 0,1±0,1 mg/kg 0,1 0,2±0,2 3,9±2,6 mg/kg 1 1±1 13±3 mg/kg 1 1±2 21±6 mg/kg 1 <1

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + EPA 3550C 2007 + EPA 3620C 2007 + EPA 8015C 2007]

Idrocarburi Pesanti C>12 mg/kg 6 <6 <6

[Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva dello

scheletro + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Amianto (SEM) mg/kg 100 <100 <100

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007]

Alacior	mg/kg	0,01	<0,01	<0,01	
Aldrin	mg/kg	0,01	<0,01	⊲0,01	
Atrazina	mg/kg	0,01	<0,01	⊲0,01	
alfa-BHC	mg/kg	0,01	<0,01	⊲0,01	

20160808 15 / 18

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SERVICE TO SERVIC	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	97 di 152

PD16-02985 0

RISULTATI

	Campion	en*	PD16-02985.031	PD16-02985.032	
	Sigla campi	one	B.D.	B.D.	
			6_300616_2,4-2,6	7_010716_0-0,2	
	Proveniente	e da	Microtunnel access	Microtunnel access	
			Area, Municipality	Area, Municipality	
			of Melendugno (LE)	of Melendugno (LE)	
	Tipo campi	one	TERRENI	TERRENI	
	Campionato	o da	Effettuato da ns.	Effettuato da ns.	
			personale -	personale -	
			Lorenzoni	Lorenzoni	
	Campiona	li ot	30/06/2016	01/07/2016	
Parametro	U.M.	RL	Risultato	Risultato	

S.V.O.C. [Su camp. secco all'aria (frazione < 2 mm) dati espressi sulla totalità dei materiali secchi < 2 cm (105°C) comprensiva

dello scheletro + EPA 3550C 2007+EPA 3620C 2014 + EPA 8270D 2007] (segue)

NO SCHOOL CONTROL OF THE SCHOOL OF THE SCHOOL CONTROL OF THE SCHOOL OF THE S	11 - 21 / 10	EFOD EOC	// I (Segue)		
beta-BHC	mg/kg	0,01	<0,01	⊲0,01	
gamma-BHC (Lindano)	mg/kg	0,01	<0,01	⊲0,01	
Clordano	mg/kg	0,01	<0,01	<0,01	
DDD, DDT, DDE	mg/kg	0,01	<0,01	⊲0,01	
Dieldrin	mg/kg	0,01	<0,01	⊲0,01	
Endrin	mg/kg	0,01	<0,01	<0,01	

20160808 16 / 18

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)
Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SERVICE TO SERVIC	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	98 di 152

PD16-02985_0

LIMITI DI RIFERIMENTO

Matrice		Descrizione limiti					
TERRENI		L3:I limiti si riferiscono alle C.S.C. della co parte IV del D.Lgs 162/06. L4:I limiti si riferiscono alle C.S.C. della co parte IV del D.Los 162/06.					
	Parametro		U.M.	L1	L2	L3	L4
Cromo esavalente	(come Cr) [EPA 3060A 1	996 + EPA 7196A 1992]				_	
	Cromo VI		mg/kg	-	-	2	15
Cromo esavalente	e (Cr VI) [ISO 15192: 201	0]					
	Cromo esavalente (Cr VI)		mg/kg	-	-	2	15
Metalli [EPA 3050	0B 1996 + EPA 6020B 201	[4]					
	Arsenico		mg/kg	-	-	20	50
	Cadmio		rng/kg	-	-	2	15
	Cobalto		mg/kg	-	-	20	250
	Nichel		mg/kg	-	-	120	500
	Cromo		mg/kg	-	-	160	800
	Piombo		rng/kg	-	-	100	1000
	Rame		mg/kg	-	-	120	600
	Zinco		mg/kg	-	-	160	1500
	Mercurio		mg/kg	-	-	1	5
	Berilio		mg/kg		-	2	10
	Vanadio		mg/kg			90	250
	Tallio		mg/kg		-	1	10
[EPA 3550C 200	7 + EPA 3620C 2007 + E	PA 8015C 2007]					
	Idrocarburi Pesanti C>12		rng/kg			60	750
[DM 06/09/1994	GU n° 288 10/12/1994 All	1B]		•			
	Amianto (SEM)	-	mg/kg			1000	1000
S.V.O.C. [EPA 35	550C 2007+EPA 3620C 20	014 + EPA 8270D 2007 1					
	Alacior		mg/kg			0,01	1
	Aldrin		mg/kg			0,01	0,1
	Atrazina		mg/kg			0,01	1
	alfa-BHC		mg/kg			0,01	0,6
	beta-BHC		mg/kg			0,01	0,6
	gamma-BHC (Lindano)		mg/kg	-		0,01	0,6
	Clordano		mg/kg	-		0,01	0,1
	DDD, DDT, DDE		rng/kg	-		0,01	0,1
	Dieldrin		rng/kg	-		0,01	0,1
	Endrin		mg/kg			0.01	2

20160808 17 / 18

TAP AG

Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricorione (AR) a lungo la ricorio di lungo (RAN).

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER THE CONTROL OF THE PARKET	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	99 di 152

LEGENDA

NOTE

- Eseguito presso altro laboratorio SGS.
- A. Eseguito presso laboratorio esterno.
- RL Limite di Rapportaggio
- Limite di rapportaggio innalzato
- Limite di rapportaggio diminuito

- IS Campione insufficiente per l'analisi.
- LNR Campione elencato ma non ricevuto.
- NA Campione non analizzato per questo parametro
- TBA Parametro non ancora analizzato

NOTE RELATIVE ALL'ACCREDITAMENTO

Prova non accreditata ACCREDIA.

il presente Rapporto è emesso dalla Società in accordo con le Condizioni Generali SGS per i servizi di ispezione e controllo (copia disponibile su richiesta). Il rilascio di questo Rapporto non esonera le parti negoziali dall'esercitare i diritti e dall'adempiere alle obbligazioni derivanti dal negozio tra loro stipulato. Ogni patto contrario non è alla Società opportibile. La responsabilità della Società in base a questo Rapporto è limitata al caso di provata colpa grave ed in ogni caso ad un ammontare non superiore a dieci volte i diritti e le commissioni dovute. Eccetto accordi particolari, gli eventuali campioni, se presi, non saranno trattenuti dalla Società per più di un mese. I risultati contenuti nel seguente rapporto si riferiscono esclusivamente al campione provato.

Il presente Rapporto o copia dello stesso verrà conservato dalla Società per un periodo pari a 10 anni. Il confronto dei risultati con i rispettivi limiti, quando presente, non tiene conto dell'incertezza di misura stimata. Eventuali risultati fuori limite sono segnalati in rosso.

Il recupero ove previsto, è da intendersi compreso all'interno dei limiti di accettabilità specifici. Se non diversamente indicato il risultato è da intendersi non corretto per il recupero ottenuto.

Il presente rapporto può essere riprodotto solamente per intero.

20160808 18 / 18

TAP AG
Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SERVICE TO SERVIC	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	100 di 152

PD16-02986_0

Prima pagina

CLIENTE		LABORATORIO	
Cliente	SHELTER SRL	Head of Laborator	Cristiano Toffoletti
		Laboratorio	SGS Italia S.p.A.
Indirizzo	Viale Gran Sasso n. 13	Indirizzo	Via Campodoro, 25
	MILANO 20131		Villafranca Padovana (PD) 36010
Contatto		Telefono	+39 049 9060013
Telefono		Fax	+39 049 9060066
Fax		Email	sgs.eco@sgs.com
Email		Accettazione n°	PD16-02986
Progetto	Default Project	Pervenuto il	04/07/2016
Ordine n*	1163/2016/C1/PD/Rev.4	Data inizio prove di lab.	05/07/2016
Matrice	ACQUA(7)	Data fine prove lab.	19/07/2016
		Rapporto di Prova n°	PD16-02986_0
		Data emissione	08/08/2016

COMMENTI

Incertezza estesa di misura stimata al 96% di livello di confidenza e fattore di copertura k=2

Documento con firma digitale avanzata ai sensi della normativa vigente. Firmato digitalmente da Dr. Cristiano Toffoletti Ordine dei chimici della Provincia di Venezia/94004270271

Mattia Favaro Cristiano Toffoletti Project Agent Head Of Laborator Head Of Laborator SGS Italia S.p.A. Via Campodoro, 25 35010 Villafranca Padovana (PD) Itali t +39 049 9050013 f +39 049 9050065 www.sgs.com

Membri del Gruppo SGS (Société Générale de Survellance) - www.ags.com

Sade legals C/O Californ business path, via Californ 21, Ed. 8, 4 plano ale 3, 20153 Mileon, buly - Capitale acidale Euro 2.500.000 lz. C.F.M. lacz. Reg. Impress of Mileon 04112802078 - P. IVA.n.11279530154 - Cod. Micc. n.M.223413

TAP AG

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CANADA TO LOT THE PARTY OF TH	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	101 di 152

Legenda...

Rapporto di Prova

INDICE

20160808

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consulting to Same your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	102 di 152

Rapporto di Prova

PD16-02986_0

SULTATI							
	Cam	pione n°	PD16-02986.001	PD16-02986.002	PD16-02986.003	PD16-02986.004	PD16-02986.008
	Sigla ca	mpione	F.B. 1	F.B. 2	F.B. 3	F.B. 4	F.B. 6
	Proven	iente da	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel acce
			Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipalit
			of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (L
	Tipo ca	mpione	ACQUA	ACQUA	ACQUA	ACQUA	ACQUA
	Campio	nato da	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da no
			personale -				
			Lorenzoni 28/06/2016	Lorenzoni 29/06/2016	Lorenzoni 29/06/2016	Lorenzoni 30/06/2016	Lorenzoni 30/06/2016
Parametro	U.M.	ionato il RL	Risultato	Z9/06/2016 Risultato	Pisultato	Risultato	Risultato
mpionamento [DLgs n.152 03/04/2006 GU n.8				Torinio	Torino	1 decimale.	Tapanato
Campionamento	-	-	:	:	:	:	:
nianto [Su campione tal quale + DM 06/09/199	4 GU n° 288	10/12/1	994 All 1B]				
* Amianto	n fibre/L	6000	⊲5000	<5000	<6000	<5000	<5000
talli [Su campione tal quale + EPA 3005A 199	2 + EPA 602	0B 201	4]				
Arsenico	ug/L	1	<1	<1	<1	<1	<1
Berilio	ug/L	0,1	0,1 ±0,1	0,1 ±0,1	0,1 ±0,1	<0,1	⊲0,1
Cadmio	ug/L	0,5	<0,5	<0,5	<0,5	⊲0,5	⊲0, 5
Cobalto	ug/L	1	<1	<1	<1	<1	<1
Cromo	ug/L	1	<1	<1	<1	<1	<1
Mercurio	ug/L	0,1	<0,1	<0,1	<0,1	<0,1	⊲0,1
Nichel	ug/L	1	<1	<1	<1	<1	<1
Piombo	ug/L	1	<1	4 ±2	<1	<1	<1
Rame	ug/L	1	1±1	2 ±1	<1	<1	<1
Tallio	ug/L	1	<1	<1	<1	<1	<1
Vanadio	ug/L	1	<1	<1	<1	<1	<1
Zinco	ug/L	5	7 ±6	8 ±5		⊲5	<5
ocarburi [Su campione tal quale + EPA 3510C	1996 + EPA	3620C	2014 + EPA 801	5C 2007]			
Idrocarburi Pesanti C >= 12	ug/L	20	28,0	27,0	<20,0	<20,0	27,0
omo esavalente [Su campione tal quale + APA	T CNR IRSA	3150 0	C Man 29 2003]				
Cromo esavalente (come Cr)	ug/L	1	<1	<1	<1	<1	<1
/.O.C. [Su campione tal quale + EPA 3520C 1	996 + EPA 8	270D 2	007]				
Alacior	ug/L	0,05	<0,05	<0,05	<0,05	<0,05	<0,06
Aldrin	ug/L	0,03	<0,03	<0,03	<0,03	<0,03	<0,03
Atrazina	ug/L	0,06	<0,05	<0,05	<0,05	<0,05	<0,06
alfa-Esaclorocicloesano	ug/L	0,06	<0,05	<0,05	⊲0,05	<0,05	<0,06
beta-Esaclorocicloesano	ug/L	0,06	<0,05	<0,05	<0,05	<0,05	<0,06
gamma-Esaclorocicloesano (Lindano)	ug/L	0,06	<0,05	<0,05	<0,05	<0,05	<0,06
Clordano	ug/L	0,06	<0,05	<0,05	<0,05	<0,05	<0,06
DDD, DDT, DDE	ug/L	0,06	<0,05	<0,05	<0,05	<0,05	<0,06
Dieldrin	ug/L	0,03	<0,03	<0,03	⊲0,03	<0,03	<0,03
							•

20160808

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consulting to Same your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	103 di 152

Rapporto di Prova

PD16-02986_0

RISULTATI

	Campione n*	PD16-02986.006	PD16-02986.007	
	Sigla campione	F.B. 6	F.B. 7	
	Proveniente da	Microtunnel access	Microtunnel access	
		Area, Municipality	Area, Municipality	
		of Melendugno (LE)	of Melendugno (LE)	
	Tipo campione	ACQUA	ACQUA	
	Campionato da	Effettuato da ns.	Effettuato da ns.	
		personale -	personale -	
		Lorenzoni	Lorenzoni	
	Campionato il	01/07/2016	01/07/2016	
Parametro	U.M. RL	Risultato	Risultato	

Campionamento [DLgs n.152 03/04/2006 GU n.88 14/04/2006 all. 2 parte IV]

* Campionamento : : :

Amianto [Su campione tal quale + DM 06/09/1994 GU n° 288 10/12/1994 All 1B]

Metalli [Su campione tal quale + EPA 3005A 1992 + EPA 6020B 2014]

Arsenico	ug/L	1	<1	<1	
Berilio	ug/L	0,1	<0,1	<0,1	
Cadmio	ug/L	0,5	0,9 ±0,5	1,0 ±0,5	
Cobalto	ug/L	1	<1	<1	
Cromo	ug/L	1	<1	<1	
Mercurio	ug/L	0,1	⊲0,1	<0,1	
Nichel	ug/L	1	<1	<1	
Piombo	ug/L	1	<1	<1	
Rame	ug/L	1	<1	<1	
Talio	ug/L	1	<1	<1	
Vanadio	ug/L	1	<1	<1	
Zinco	ug/L	5	5 ±5	5 ±5	

Idrocarburi [Su campione tal quale + EPA 3510C 1996 + EPA 3620C 2014 + EPA 8015C 2007]

|--|

Cromo esavalente [Su campione tal quale + APAT CNR IRSA 3150 C Man 29 2003]

Cromo esavalente (come Cr)	ug/L 1	<1	<1	

S.V.O.C. [Su campione tal quale + EPA 3520C 1996 + EPA 8270D 2007]

	ETOD EOO.	' J		
ug/L	0,06	<0,05	⊲0,05	
ug/L	0,03	<0,03	⊲0,03	
ug/L	0,06	<0,05	⊲0,05	
ug/L	0,06	<0,05	<0,05	
ug/L	0,06	<0,05	⊲0,05	
ug/L	0,06	<0,05	⊲0,05	
ug/L	0,06	<0,05	⊲0,05	
ug/L	0,06	<0,05	⊲0,05	
ug/L	0,03	<0,03	⊲0,03	
ug/L	0,06	<0,05	⊲0,05	
	ugl. ugl. ugl. ugl. ugl. ugl. ugl. ugl.	ugl. 0,06 ugl. 0,08 ugl. 0,06	ug/L 0,03 <0,03 ug/L 0,06 <0,06 ug/L 0,06 <0,05	

20160808 4/5

TAP AG
Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER THE CONTROL OF THE PARTY OF THE	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	104 di 152

Rapporto di Prova

LEGENDA

NOTE

- Eseguito presso altro laboratorio SGS.
- As Eseguito presso laboratorio esterno.
- RL Limite di Rapportaggio
- Limite di rapportaggio innalzato
- Limite di rapportaggio diminuito

- IS Campione insufficiente per l'analisi.
- LNR Campione elencato ma non ricevuto.
- NA Campione non analizzato per questo parametro
- TBA Parametro non ancora analizzato

NOTE RELATIVE ALL'ACCREDITAMENTO

Prova non accreditata ACCREDIA.

il presente Rapporto è emesso dalla Società in accordo con le Condizioni Generali SGS per i servizi di ispezione e controllo (copia disponibile su richiesta). Il rilascio di questo Rapporto non esonera le parti negoziali dall'esercitare i diritti e dall'adempiere alle obbligazioni derivanti dal negozio tra loro stipulato. Ogni patto contrario non è alla Società opportibile. La responsabilità della Società in base a questo Rapporto è limitata al caso di provata colpa grave ed in ogni caso ad un ammontare non superiore a dieci volte i diritti e le commissioni dovute. Eccetto accordi particolari, gli eventuali campioni, se presi, non aranno trattenuti dalla Società per più di un mese. I risultati contenuti nel seguente rapporto si riferiscono esclusivamente al campione provato.

Il presente Rapporto o copia dello stesso verrà conservato dalla Società per un periodo pari a 10 anni. Il confronto dei risultati con i rispettivi limiti, quando presente, non tiene conto dell'incertezza di misura stimata. Eventuali risultati fuori limite sono segnalati in rosso.

Il recupero ove previsto, è da intendersi compreso all'interno dei limiti di accettabilità specifici. Se non diversamente indicato il risultato è da intendersi non corretto per il recupero ottenuto.

Il presente rapporto può essere riprodotto solamente per intero.

20160808 5 / 5

TAP AG
Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)

Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSV SHELTER The Consulting to Security sport Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	105 di 152

<u>ALLEGATO D – STRATIGRAFIE E FOTOLOG</u>

Stratigrafie – Trivelsonda

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSV SHELTER The Consulting to Security sport Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	106 di 152

Committente:

SHELTER S.R.L.

Viale Gran Sasso, 13 - 20131 Milano

RELAZIONE SULL'ATTIVITA D'INDAGINE GEOGNOSTICO-AMBIENTALE

Allegato

REPORT STRATIGRAFICO DEI SONDAGGI

Riferimento:

Trans Adriatic Pipeline - TAP -

"Piano di Campionamento dell'Area di Costruzione del Terminale PRT e lungo la Pista di Lavoro RoW" Comune di Melendugno in provincia di Lecce

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER THE CONTROL OF THE PARKET	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	107 di 152

Denomination stordage Coard W6594 UMMAN Coatta Directione Lavori Geologe Perforatore PRT 29	Der						Cantiere: Tra									
PRT 29 271540,00 E a 4661994,00 N a Metodo di perforazione 28/06/2016 2,0 m 101/152 mm Carotaggio continuo Praste F5 250 Schema piezometr P. Rescio Impianto di perforazione Carotaggio continuo Fraste F5 250 Schema piezometr Schema piezometr P. Rescio F. Marinaci Commess Schema piezometr Schema piezometr Schema piezometr P. Rescio F. Marinaci Carotaggio continuo Fraste F5 250 Schema piezometr Schema p		nominazion				Quota				une o						_
Data inizio/fine Profondità Diametro Metodo di perforazione Impianto di perforazione Commess 58/06/2016 2,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 Schema piezometro profondità perforazione Commess 55/16 pp. 101/152 mm Carotaggio continuo Praste FS 250 55/16 Schema piezometro profondità perforazione Carotaggio continuo Praste FS 250 55/16 Schema piezometro profondità perforazione Carotaggio continuo Praste FS 250 55/16 pp. 101/152 mm Profondità perforazione Carotaggio continuo Praste FS 250 55/16 pp. 101/152 mm Profondità perforazione Carotaggio continuo Praste FS 250 55/16 pp. 101/152 mm Profondità profondità perforazione Praste FS 250 55/16 pp. 101/152 mm Profondità profondità perforazione Praste FS 250 55/16 pp. 101/152 mm Profondità profondità perforazione Praste FS 250 55/16 pp. 101/152 mm Profondità profon		PRT	29	27154	40,00 E											
Descrizione stratigrafica Descrizione stratigra				Profondità	Diametro											
Descrizione stratigrafica Descrizione stratigra		28/05/2	:016	2,0 m	101/152 mm	Can	otaggio contini	10				Fraste F5	250	_		
0,3 Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite marnosa, tenera, poco cementata si da assumere aspetto di limo argilloso, colore da biancastro a marroncino Sabbia limo-argillosa, colore marroncino-rossastro	(m)	ė						falda	re	anto	=	e e			zome	
Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite marnosa, tenera, poco cementata si da assumere aspetto di limo argilloso, colore da biancastro a marroncino chiaro Sabbia limo-argillosa, colore marroncino-rossastro	Profondit	Litologi		Descrizi	one stratigra	efica							•	Profondità	Riem pirmento	
marrone Calcarenite marnosa, tenera, poco cementata si da assumere aspetto di limo argilloso, colore da biancastro a marroncino Chiaro Sabbia limo-argillosa, colore marroncino-rossastro			Terreno di	copertura:	sabbia deb	olmente lim	osa. colore	m	φ	φ	0,0	m/n.	n.	\vdash		╀
Substitution of girlose, colore mail oriento 1030000			marrone Calcarenite r	marnosa, ter	nera, poco ce	ementata si o	da assumere		52 mm	52 mm	0,2	1.0		1.0		
Sabola linio di ginosa, colore manoneno rossesso	1,1				,				=101/1	=127/1			2			
	20		Sabbia limo-	argillosa, col	ore marrono	ino-rossastr	0		100	100		20		2.0		
			pione per analisi			Ann	otazioni									_

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	108 di 152

Form n* 21 pag. 2 di 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCLUDE TO LOW DE BOARDS	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	109 di 152

Denominazione sondaggio PRT 30 271532,00 E 4461940,00 N Data inizio/fine Profondità Diametro Metodo di perforazione 28/06/2016 2,0 m 101/152 mm Carotaggio continuo Descrizione stratierafica Descrizione stratierafica Directione Lavori Shelter P. Rescio F. Marinaci Fraste FS 250 Schema piezometr O Aliquote Diametro Descrizione stratierafica	Comn		HELTER s.r.l. Viale Gran Sasso		1 Milano								e Pista di Lav in provincia di			
Data inizio/fine	De			Coord. WGS	84 - UTM34N							_				
28/06/2016 2,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 Schema piezometr 101/152 mm Descrizione stratigrafica Descrizione stratigrafica M		PRT	30				Shel	ter			P. Res	scio	F. M	larina	ti	
Descrizione stratigrafica Descrizione stratigra														_		
Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite tenera a grana medio fina a luoghi marnosa e con clasti di calcare grigio; colore bianco-giallastro Terreno di copertura; sabbia debolmente limosa, colore e con colore marrone E C C C C C C C C C C C C C C C C C C		20/00/2	2010	2,0111	101/132 mm	Cal	otaggio contin					riaste rs .	230	_		
Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite tenera a grana medio fina a luoghi marnosa e con clasti di calcare grigio; colore bianco-giallastro Terreno di copertura; sabbia debolmente limosa, colore di c	Profondità (m)	Litologie		Descrizi	one stratigra	efica		Profondità falda	Carotiere	Rivestimento	Top Soil	Campione	Aliquote	Ľ.	-	tr
Calcarenite tenera a grana medio fina a luoghi marnosa e con clasti di calcare grigio; colore bianco-giallastro								m	φ	ф		m/n.	n.			ļ
Calcarenite tenera a grana medio fina a luoghi marnosa e con clasti di calcare grigio; colore bianco-giallastro				copertura;	sabbia debo	olmente lin	nosa, colore			_						
	0,6		marrone						2 m n	2 mm						
	ļ		Calcarenite t	enera a grar	na medio fina	a luoghi m	amosa e con		1/15	7/15		1,0		1,0		
									%=10	9=12		С	2			
	20								84	Θ.				20		l

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CAUGHTU to STATE OF THE CONTROL OF T	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	110 di 152

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO LONG TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	111 di 152

Descrizione stratigrafica Constitution Constit	Comm		HELTER s.r.l. Viale Gran Sass		1 Milano								l e Pista di Lav in provincia di		
Data inizio/fine Profondità Diametro Metodo di perforazione Impianto di perforazione Commes 28/06/2016 2,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 Descrizione stratigrafica Profondità Diametro Metodo di perforazione Impianto di perforazione Commes Fraste FS 250 55/16 Schem: piezome piez	De	nominazion	e sondaggio	Coord. WGS	84 - UTM34N		Direzione	e Lavo		Geologo			Perf	orator	e
28/06/2016 2,0 m 101/152 mm Carotaggio continuo Fraste FS 250 S5/16 (ii) 19 00 101/152 mm Carotaggio continuo Fraste FS 250 S5/16 Schem: piezome pie				44619	54,00 N					_					
Descrizione stratigrafica Descrizione stratigra															
Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite tenera, poco cementata si da assumere aspetto di sabbia fina limosa, addensata, colore da biancastro a marroncino chiaro Sabbia limosa, colore rossastro Sabbia limosa, colore rossastro C 2	2							ga							
Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite tenera, poco cementata si da assumere aspetto di sabbia fina limosa, addensata, colore da biancastro a marroncino chiaro 1.5 Sabbia limosa, colore rossastro Sabbia fina limosa, colore marroncino chiaro C 2	Profondità (n	Litologie		Descrizi	one stratigra	efica		Profondità fal	Carotiere	Rivestiment	Top Soil	Campione	Aliquote		_
marrone Calcarenite tenera, poco cementata si da assumere aspetto di sabbia fina limosa, addensata, colore da biancastro a marroncino chiaro 1.5 Sabbia limosa, colore rossastro Sabbia fina limosa, colore marroncino chiaro Sabbia fina limosa, colore marroncino chiaro			Terreno di	conertura	cabbia dabe	olmente lin	noca colora	m	φ	φ		m/n.	n.		
Sabbia fina limo-areillosa, colore marroncino-chiaro	0,3			copertura,	sabbia debe	omiente in	nosa, colore		ε	ε					
Sabbia fina limo-arcillosa, colore marroncino-chiaro			di sabbia fi	na limosa,					/152 m	/152 m		1,0		1,0	
Sabhia fina limo-areillosa, colore marroncino-chiaro			_		sastro				=101	=127		С	2		
						roncino-chi	aro		100	100					

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	112 di 152

TAP AG

112

Picultati della studia di caratterizzazione dei quali in ettemperanza alla precesizione A 25 a) del D.M. 222/2014 poll'

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCLUDE TO LOW DE BOARDS	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	113 di 152

Denominazione sondaggio Coord. WG584 - UTM34N Quota Direzione Lavori Geologo Perforatore PRT 32 271547,00 E Shelter P. Rescio F. Marinaci Data inizio/fine Profondita Diametro Metodo di perforazione Impianto di perforazione Commess 28/06/2016 2,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 Coord. WG584 - UTM34N Quota Direzione Lavori Geologo Perforatore P. Rescio F. Marinaci			HELTER s.r.l. Viale Gran Sasso	, 13 – 2013:	1 Milano								e Pista di Lav in provincia di			
Data inizio/fine Profondità Diametro Metodo di perforazione Implanto di perforazione Commess 28/06/2016 2,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 Profondità Diametro Metodo di perforazione Implanto di perforazione Fraste FS 250 55/16 Carotaggio continuo Fraste FS 250 55/16	De	nominazior	e sondaggio				Direzione	Lavo	ri		Geolo	ogo	Perf	orator	2	_
28/06/2016 2,0 m 101/152 mm Carotaggio continuo Fraste F5 250 55/16 Schema piezomet 100/05 pt		PRT	32				Shel	ter			P. Res	scio	F. M	larina	ti	
Descrizione stratigrafica Descrizione stratigra														_		
Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite a grana medio-fina, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore giallo-biancastro Calcarenite marrosa, tenera, poco cementata si da assumere aspetto di sabbia limosa; colore marroncino chiaro; a luoghi		20,00,	2010	2,0111	101/132 11111	Car	otaggio contar					Trance 15.	2.50	-		
Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite a grana medio-fina, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore giallo-biancastro Calcarenite marnosa, tenera, poco cementata si da assumere aspetto di sabbia limosa; colore marroncino chiaro; a luoghi	Profondità (m)	Litologie		Descrizi	ione stratigra	fica		Profondità falda	Carotiere	Rivestimento	Top Soil	Campione	Aliquote	Ľ.	-	etr
marrone Calcarenite a grana medio-fina, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore giallo-biancastro Calcarenite marnosa, tenera, poco cementata si da assumere aspetto di sabbia limosa; colore marroncino chiaro; a luoghi			*					m	φ	ф		m/n.	n.			F
Calcarenite a grana medio-fina, poco cementata si da assumere aspetto di sabbia ginaiosa, colore giallo-biancastro Calcarenite marnosa, tenera, poco cementata si da assumere aspetto di sabbia limosa; colore marroncino chiaro; a luoghi	0,2			copertura;	sabbia debo	olmente lin	nosa, colore		E	_						
aspecto di sabula limbas, conce marioricino cinato, a laugin			Calcarenite						/152 mr	/152 mr		1,0		1,0		
aspecto di sabula limbas, conce marioricino cinato, a laugin	1,3								101,	127,		с	2			
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0						roncino chia	aro; a luoghi		6	163						l

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	114 di 152

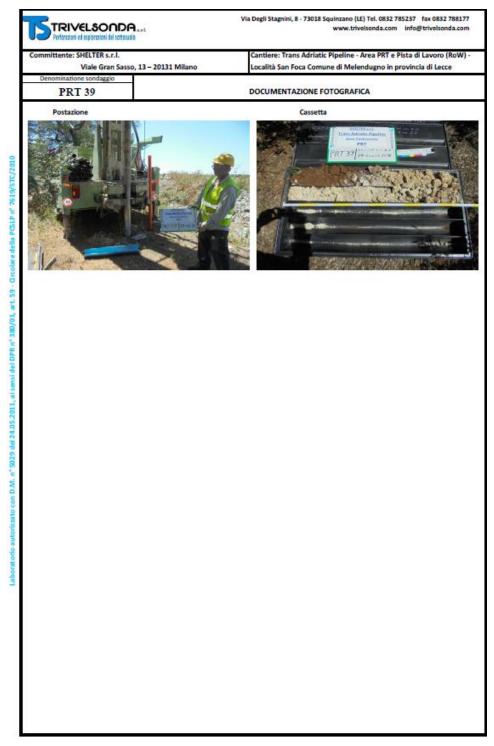
Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consulting to Same your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	115 di 152

28/06/2016 2,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55, Schipiezor Piezor Pi		Perforasioni ed explorazioni del cottescudo								73018				32 785237 fax (om info@triv				
Denominatione analogo Coord, WOSSA - UNDASAN Questa Directione Lavori Geologo Perforatore PRT 33 446893,00 % Shelter PRT 33 446893,00 % Shelter PRT 33 466893,00 % Shelter Production Diametro Method of perforazione Implanto di perforazione Com Production Diametro Company (Control of Control of Con	ı	Comm			. 13 – 2013:	1 Milano												
Data initio (Free Protocidia Dametro Metodo di perforazione impianto di perforazione Control 28/06/2016 2.0 m 101/132 mm Carotaggio continuo Frazi ES 200 5.5ch piezo del 19 19 19 19 19 19 19 19 19 19 19 19 19		Der	nominazione	e sondaggio	Coord. WGS84 - UTM34N Quota 271610,00 E =			Direzione Lavori			Geolo	ogo	Perf	orator	e			
Descrizione stratigrafica Descrizione stratigra	ı		Data inizi	o/fine	Profondità	Diametro		do di perforaz	ione		Impianto di peri			forazione Co		Commessa		
Descrizione stratigrafica Descrizione stratigra	ŀ		28/06/2	2016	2,0 m	101/152 mm	Can	otaggio contin	uo				Fraste FS :	250	_	55/16 chem	5/16 hema	
Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite a grana medio fina con livelli ben cementati, colore bianco-giallastro; a luoghi presenza di clasti di calcare grigio 2.2	١	(m)	ė					falda	re	anto	79	ue			zome			
2,0 The state of t	.9/STC/2010	Profondit	Litolog		Descrizi	ione stratigra	efica		Profondità	Carotie	Rivestim	Top So		Aliquote	Profondità	Riempimento	Tubo	
2,0 Total form of the company of the	. 761	0.2		Terreno di	conertura:	sabbia dab	olmente lim	osa colora	m	φ	Ф		m/n.	n.	\vdash			
2,0 Total form of the company of the	la PCSLP n	marrone								152 mm	152 mm		1,0		1,0			
Laboratorio autoritzato con D.M. n° 5029 del 20.05, al 1.59- iutoritzato con D.M. n° 5029 del 20.05, al 1.59- iutoritzatouty	76			colore biance						Ø=101/	Ø=127/		С	2				
Annotazioni	ĕ	2,0											2,0		2,0			
	Laboratorio autorizzato con D.M. n° 5029 del 24.05.2011, al																	
		C; Top	Soil: cam	pione per analisi	chimiche		Ann	otazioni										

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	116 di 152

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	117 di 152

PRT 36 Coord. WGS84 - UTM34N Quota Direzione Lavori Geologo Perforatore PRT 36 271621,88 E	Comn		HELTER s.r.l. Viale Gran Sass		Milano		Cantiere: Trans Adriatic Pipeline - Area PRT e Pista di Lavoro (RoV Località San Foca Comune di Melendugno in provincia di Lecce										
Data Inizio/fine Profondità Diametro Metodo di perforazione Impianto di perforazione Commess 29/06/2016 2,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 (E) 10 10 1/152 mm Carotaggio continuo Fraste FS 250 55/16 Schema piezomet 10 1/152 mm 10 1/152	De	nominazion	e sondaggio	Coord. WGS 27162	84 - UTM34N 21,88 E		Direzione Lavori				Geolo	ogo	Perf	orator	e	=	
Descrizione stratigrafica Descrizione stratigra		Data iniz	io/fine			Meto	odo di perfora:	ione		Impianto di perf					Commessa		
Descrizione stratigrafica Descrizione stratigra		29/06/	2016	2,0 m	101/152 mm	Car	rotaggio contir	uo					250	_	_		
Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite tenera, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore biancastro Sabbia ghiaiosa debolmente limosa, colore marroncino Sabbia addensata, colore bianco-giallastro	Œ						falda	9	nto	_	e e						
Calcarenite tenera, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore biancastro Sabbia ghiaiosa debolmente limosa, colore marroncino Sabbia addensata, colore bianco-giallastro	Descrizione stratigrafica							Profondità	Carotier	Rivestime	Top Sol	Campior	Aliquote	Profondità	Riempimento		
C 2 Interest of copertura; sabola debolmente limosa, colore marrone Calcarenite tenera, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore biancastro Sabbia ghiaiosa debolmente limosa, colore marroncino Sabbia addensata, colore bianco-giallastro	0,2							m	ф	ф		m/n.	n.			F	
Sabbia addensata, colore bianco-gialiastro		0.5 Terreno di copertura; sabbia deboimente limosa, colore marrone								8						l	
Sabbia addensata, colore bianco-gialiastro						si da assun	nere aspetto		32 m	25 mi						l	
Sabbia addensata, colore bianco-gialiastro	1,1					colore marro	oncino	İ	1/18	1/2		1,0		1,0	1	l	
Sabbia addensata, colore bianco-gialiastro									Ø=10	Ø=12		С	2			1	
	2,0		Sabbia adde	nsata, colore								l		1		l	
												2,0		2,0			


Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	118 di 152

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consulting to Same your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	119 di 152

PRT 39 445174.60 N Data Interiorie PRT 39 445174.60 N Data Interiorie 29/06/2016 2.0 m 101/152 mm Carotaggio continuo Carotaggio continuo Carotaggio continuo Carotaggio continuo Descrizione stratigrafica Descrizione stratig	Comn		HELTER s.r.l. Viale Gran Sasso	o, 13 – 20131	1 Milano											Cantiere: Trans Adriatic Pipeline - Area PRT e Pista di Lavoro (RoW) - Località San Foca Comune di Melendugno in provincia di Lecce									
Data inizio/fine Profondità Diametro Metodo di perforazione Implanto di perforazione Commess 29/06/2016 2,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 (iii) 19	De	nominazion	e sondaggio	Coord. WGS 27163	84 - UTM34N 89,00 E		1						Perf	orator	e	_									
Descrizione stratigrafica Descrizione stratigra		Data iniz	io/fine				shelter			Impianto di per			forazione	Co	omme										
Descrizione stratigrafica Descrizione stratigrafica D		29/06/	2016	2,0 m	101/152 mm	Car	otaggio contin	uo				Fraste FS	250	55/16											
Terreno di copertura; sabbia debolmente limosa, colore marroncino chiaro; inclusi clasti di calcare tenace grigio m	Œ							falda	9	nto	_	9													
Terreno di copertura; sabbia debolmente limosa, colore marrone Sabbia debolmente ghiaiosa, addensata, colore marroncino chiaro; inclusi clasti di calcare tenace grigio	Profondit	Litologi		Descrizi		Profondità	Carotie	Rivestime	Top So	Campion	Aliquote	Profondità	Riem pirmento												
0,5 marrone Sabbia debolmente ghiaiosa, addensata, colore marroncino chiaro; inclusi clasti di calcare tenace grigio 0,2 1,0 1,0 1,0 C 2								m	φ	ф		m/n.	n.			F									
									E E	mm															
			Eabhia daha	lmonto abio	ioro oddon	cata coloro	marran sin a		/152	/152		1,0		1,0											
									5=101	5=127		С	2												
	2,0								-	•		2.0		2,0											

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	120 di 152

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	121 di 152

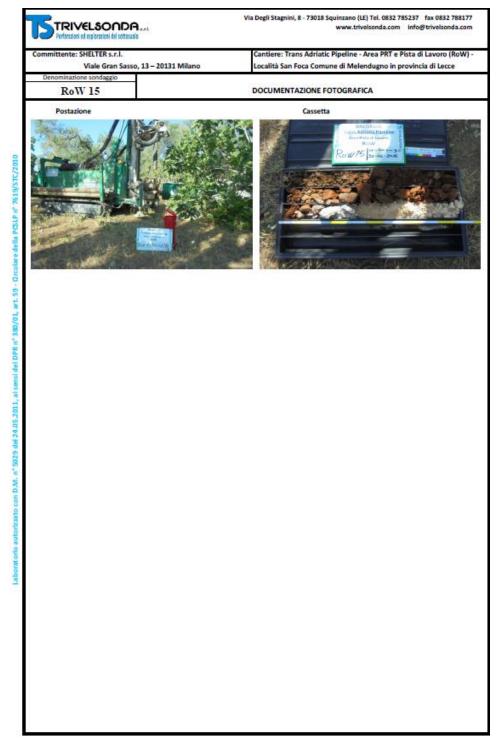
	12	TRIVE Perforazioni ed	ELSONDF espiorazioni del sottosual	s.el		Vi				w	ww.triv	velsonda.c	2 785237 fax (om info@triv	elsond	a.com	
	Comm		HELTER s.r.l. Viale Gran Sasso	, 13 – 2013:	1 Milano								e Pista di Lav n provincia di			
	Der		e sondaggio	Coord. WGS 27790	84 - UTM34N 08,00 E 77,00 N	Quota *	Direzione Shel	e Lavo			Geold P. Res	ogo	Perf	orator arina	e	
		Data inizi	o/fine	Profondità	Diametro	Meto	do di perforaz					into di peri				
		01/07/2	2016	3,0 m	101/152 mm	Can	otaggio contin	uo				Fraste FS 2	250	5	55/16 Schema	
e della PCSLP n° 7619/STC/2010	Profondità (m)	Litologie	efica		Profondità falda	Carotiere	Rivestimento	Top Soil	Campione	Aliquote	Profondità di	Riempimento amoz	Tubo			
761	0,2 Terreno di copertura; sabbia fina debolmente limosa, co							m	φ	φ	m 0,0	m/n.	n.			
a PCSLP n					-		0,2	1,0		1,0						
e dell		Calcarenite a grana medio-grossa, colore biancastro								52 mm		С	2	-		
he 1										Ø=127/152		1,5		1		
9 - Cl									Ø=101/152 mm	Ø=1				2,0		
art.5												2,4 C 2,6	2	1		
7,01,	3,0									Ш		2,0		3,0		Ш
Laboratorio autorizzato con D.M. n° 5029 del 24.05.2011, al sensi del DPR n° 380/01, art. 59 - Circol																
	C; Top	Soil: cam	pione per analisi	chimiche		Ann	otazioni									

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	122 di 152

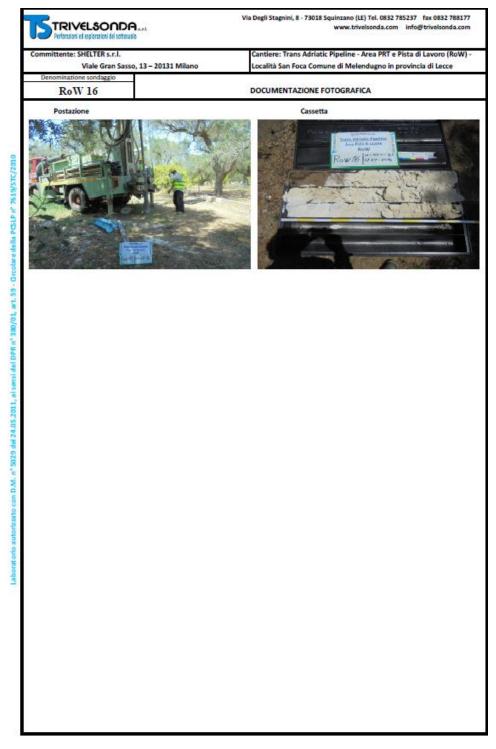
TAP AG

122

Picultati della studia di caratterizzazione dei quali in ettemperanza alla precesizione A 25 a) del D.M. 222/2014 pell'


Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001		0
RSK SHELTER TO Consulting to Same your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	123 di 152

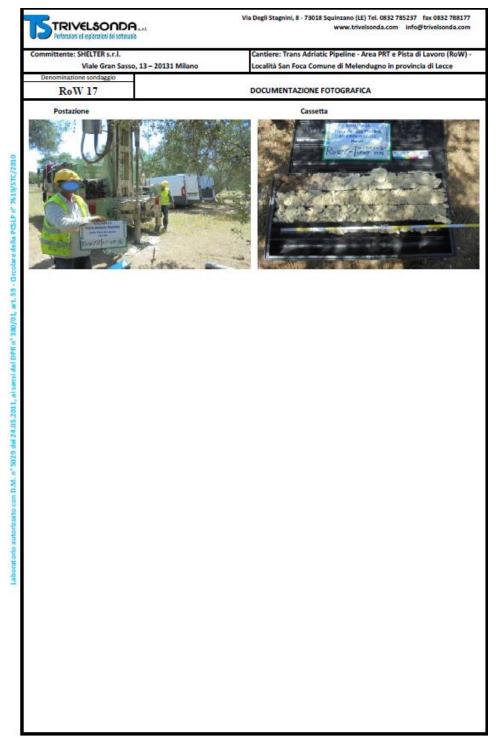
Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001		0
RSK SHELTER TO CHARLES TO BE THE AUTOMOTION OF THE PROPERTY OF	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	124 di 152


Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001		0
RSK SHELTER TO CONCRETE TO LONG TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	125 di 152

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001		0
RSK SHELTER TO CHARLES TO BE THE AUTOMOTION OF THE PROPERTY OF	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	126 di 152

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001		0
RSK SHELTER TO Consulting to Same your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	127 di 152

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001		0
RSK SHELTER TO CHARLES TO BE THE AUTOMOTION OF THE PROPERTY OF	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	128 di 152



128

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001		0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	129 di 152

	15	TRIVELSOODA on L. Perivasiari et epitraleni del zetterusia								velsonda.c	om info@triv	elsond	a.com						
	Committee of the control of the cont							Cantiere: Trans Adriatic Pipeline - Area PRT e Pista di Lavoro (RoW) - Località San Foca Comune di Melendugno in provincia di Lecce											
	Der	Denominazione sondaggio RoW 17			84 - UTM34N 88,00 E 31,00 N	Quota	Direzion	e Lavo		Geologo P. Rescio		ogo	Perf	oratore arinaci					
		do di perforaz					nto di peri		Co	omme:									
		01/07/2	otaggio contin	uo				Fraste FS 2	250	55/16 Schema									
e della PCSLP n° 7619/STC/2010	(m) gi gi gi gi gi gi gi gi gi gi gi gi gi							Profondità falda	Carotiere	Rivestimento	Top Soil	Campione	Aliquote	Profondità	Riempimento auoza	Tubo			
761	0,2		Terreno di c	onertura: ca	bhia fina de	holmente lir	mosa colora	m	ф	0	m 0,0	m/n.	n.	\vdash					
a PCSLP n	*,*	Terreno di copertura; sabbia fina debolmente limosa, color marrone							-		0,2	1,0		1,0					
e dell									22 mm	52 mm		С	2		1				
76			Calcarenite r	marnosa ten	era a grana f	ina, colore b	iancastro		Ø=101/152 mm	Ø=127/152		1,5		1					
0-6						,			<u>@</u>	Ø=1				2,0					
art.5												2,4 C 2,6	2						
0/01	3,0									Ш		2,0		3,0					
Laboratorio autorizzato con D.M. n° 5029 del 24.05.2011, al sensi del DPR n° 380/01, art. 59 - Circol																			
	C; Top	Soil: camp	pione per analisi	i chimiche		Ann	otazioni												

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001		0
RSK SHELTER TO CHARLES TO BE THE AUTOMOTION OF THE PROPERTY OF	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	130 di 152

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	131 di 152

	Comm		f esplorazioni del sottesua HELTER s.r.l.				Cantiere: Tr	rans A	\driat	ic Pin	eline -	Area PRT	e Pista di Lav	oro (R	oW)	_
	Comm		Viale Gran Sasso		l Milano								n provincia di			
ı	Der	RoW	e sondaggio	27566	84 - UTM34N 9,00 E 59,00 N	Quota	Direzion		ri		P. Res			orator larina		
ı		Data inizi 01/07/2		Profondità 3,0 m	Diametro		do di perforaz					into di perf Fraste FS 2			55/16	
ł		01/0//	2010	3,0111	101/152 mm	Carr	otaggio contin					riaste rs 2	230	_	chem	
e della PCSLP n° 7619/STC/2010	Profondità (m)	Litologie		Descrizi	one stratigra	ifica		Profondità falda	Carotiere	Rivesti mento	Top Soil	Campione	Aliquote	Profondità	Riempimento auoz	Tubo
191			T		bbis Reside	h - I P -		m	φ	φ	m 0,0	m/n.	n.			
PCSLP n°	0,3		Terreno di c marrone	opertura; sa	bbia fina de	bolmente lir	nosa, colore				0,2					
della	1								mm.	mm 2		1,0 C	2	1,0		
76			Calcarenite t	enera a grar	na medio-gro	ossa, colore b	biancastro; a		Ø=101/152 mm	Ø=127/152		1,5	-	1		
- Clrc		Calcarenite tenera a grana medio-grossa, colore biano luoghi livelli ben cementati a grana fina						Ø=10	Ø=12				2,0			
rt. 59										2,4 C	2	-				
01, a	3,0											2,6		3,0		
del 24.05.2011, al sensi del DPR																
Laboratorio autorizzato con D.M. n° 5029 del 24.05.2011, al sensi del DPR n° 380/01, art. 59 - Circol																

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	132 di 152

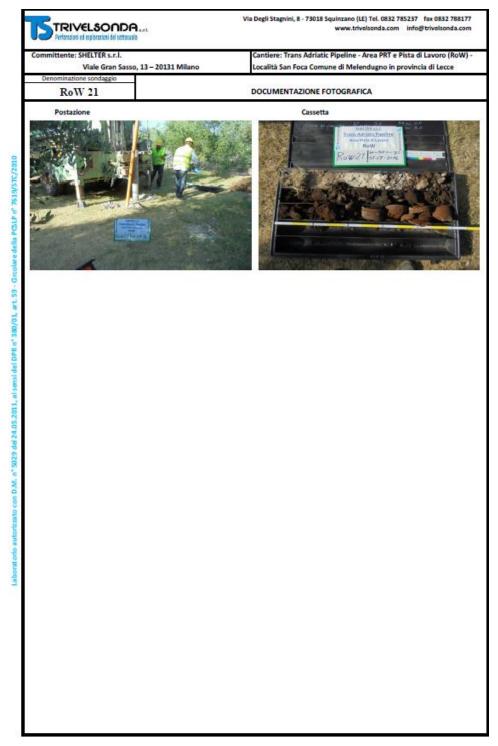
132

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consulting to Same your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	133 di 152

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CHARLES TO BE THE AUTOMOTION OF THE PROPERTY OF	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	134 di 152

134

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	135 di 152


Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CHARLES TO BE THE AUTOMOTION OF THE PROPERTY OF	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	136 di 152

136

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consulting to Same your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	137 di 152

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	138 di 152

Form n° 21 pag.2 di 2

138

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCLUDE TO LOW DE BOARDS	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	139 di 152

Form n° 21 pag.1 di 2

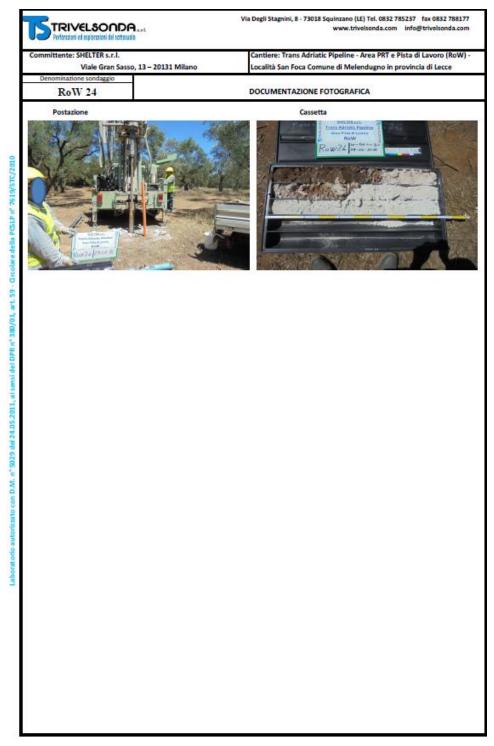
Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	140 di 152

Form n° 21 pag.2 di 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO Consulting to Same your Business	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	141 di 152

Form n° 21 pag.1 di 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	142 di 152


Form n° 21 pag.2 di 2

142

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCLUDE TO LOW DE BOARDS	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	143 di 152

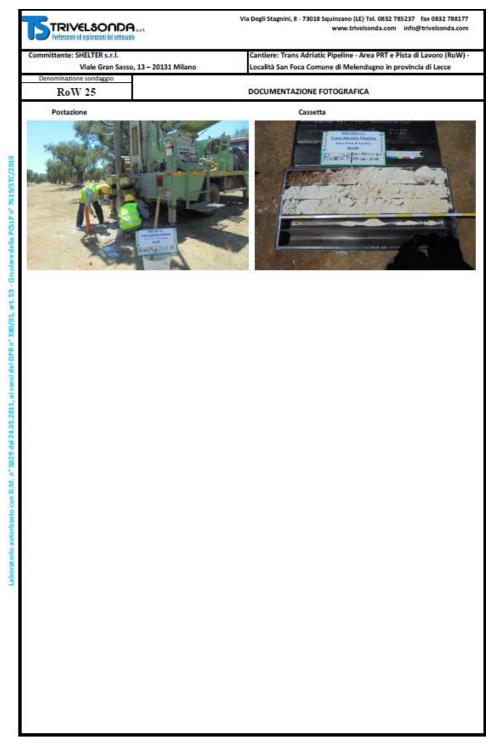
Form n° 21 pag.1 di 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	144 di 152

Form n* 21 pag. 2 di 2

TAP AG

144


Pisultati della studio di carattorizzazione dei sueli in ettemperanza alla prescrizione A 25 a) del D.M. 223/2014 poll'a

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCLUDE TO LOW DE BOARDS	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	145 di 152

Viale Gran Sasso, 13 - 20131 Milano Denominazione sondaggio Coord. WGS84 - UTM34N Ro W 25 Ro W 25 4452884_00 N 272677_00 E 4462884_00 N 29/06/2016 3,0 m 101/152 mm Carotaggio continuo Direzione Lavori Shelter P. Rescio F. Marinaci Caromas Schem piezomet Profondità Diametro Carotaggio continuo Descrizione stratigrafica Des
Data initio/fine Profondità Diametro Metodo di perforazione Impianto di perforazione Commes 29/06/2016 3,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 Descrizione stratigrafica Profondità Diametro Metodo di perforazione Impianto di perforazione Fraste FS 250 55/16 Schem: piezometro Profondità Diametro Metodo di perforazione Fraste FS 250 55/16 Schem: piezometro Profondità Diametro Metodo di perforazione Fraste FS 250 55/16 Schem: piezometro Profondità Diametro Profondi
29/06/2016 3,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 Schemi piezomet 1,0
Descrizione stratigrafica Descrizione stratigra
Terreno di copertura; sabbia fina debolmente limosa, colore marrone Calcarenite a grana fina con livelli ben cementati, colore biancastro Calcarenite a grana medio-fina di colore bianco-giallastro; a luoghi inclusi clasti di calcare grigio m
Terreno di copertura; sabbia fina debolmente limosa, colore marrone Calcarenite a grana fina con livelli ben cementati, colore biancastro Calcarenite a grana medio-fina di colore bianco-giallastro; a luoghi inclusi clasti di calcare grigio
Calcarenite a grana medio-fina di colore bianco-giallastro; a luoghi inclusi clasti di calcare grigio
Calcarenite a grana fina con livelli ben cementati, colore biancastro Calcarenite a grana medio-fina di colore bianco-giallastro; a luoghi inclusi clasti di calcare grigio Calcarenite a grana medio-fina di colore bianco-giallastro; a luoghi inclusi clasti di calcare grigio
C 2
3,0

Form n° 21 pag.1 di 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	146 di 152

Form n° 21 pag.2 di 2

146

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCLUDE TO LOW DE BOARDS	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	147 di 152

Form n° 21 pag.1 di 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CHARLES TO BE THE AUTOMOTION OF THE PROPERTY OF	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	148 di 152

Form n° 21 pag.2 di 2

148

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO LONG TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	149 di 152

Descrizione stratigrafica Descrizione stratigrafica	Denominazione sondaggio RoW 27 4462174,40 N Shelter P. Rescio F. Marinaci Data inizio/fine Profondità Diametro Metodo di perforazione Z9/06/2016 3,0 m 101/152 mm Carotaggio continuo Descrizione stratigrafica Descrizione str	-	nittente: S	SHELTER s.r.l. Viale Gran Sass		Milano								e Pista di Lav in provincia di			-
Data inizio/fine Profondità Diametro Metodo di perforazione Impianto di perforazione Commess 29/06/2016 3,0 m 101/152 mm Carotaggio continuo Fraste FS 250 SS/16 Aliquote Poscrizione stratigrafica Poscrizione stratigrafi	Data inizio/fine Profondità Diametro Metodo di perforazione Impianto di perforazione Commess 29/06/2016 3,0 m 101/152 mm Carotaggio continuo Fraste FS 250 SS/16 Aliquote Poscrizione stratigrafica Poscrizione stratigrafi	De		ne sondaggio	Coord. WGS	84 - UTM34N		Direzione	e Lavo			Geolo	ogo	Perf	forator	e	
29/06/2016 3,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 (E) 41 PPUO) Aliquote Descrizione stratigrafica Descrizio	29/06/2016 3,0 m 101/152 mm Carotaggio continuo Fratte F5 250 55/16 Carotaggio continuo Fratte F5 250 55/16 Schema piezomet Aliquote Physical Properties of the prope				44621	74,40 N					<u> </u>						
Descrizione stratigrafica Descrizione stratigra	Descrizione stratigrafica Descrizione stratigra											шри			_		-
Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite a grana fina con livelli ben cementati, colore biancastro Calcarenite a grana media, colore biancastro con livelli di colore marroncino-rosa Calcarenite a grana medio-fina con livelli ben cementati, colore dal biancastro al rosa Calcarenite a grana medio-fina con livelli ben cementati, colore dal biancastro al rosa	Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite a grana fina con livelli ben cementati, colore biancastro Calcarenite a grana media, colore biancastro con livelli di colore marroncino-rosa Calcarenite a grana medio-fina con livelli ben cementati, colore di biancastro Calcarenite a grana medio-fina con livelli ben cementati, colore dal biancastro al rosa	0							la								
Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite a grana fina con livelli ben cementati, colore biancastro Calcarenite a grana media, colore biancastro con livelli di colore marroncino-rosa Calcarenite a grana medio-fina con livelli ben cementati, colore di biancastro al rosa Calcarenite a grana medio-fina con livelli ben cementati, colore dal biancastro al rosa	Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite a grana fina con livelli ben cementati, colore biancastro Calcarenite a grana media, colore biancastro con livelli di colore marroncino-rosa Calcarenite a grana medio-fina con livelli ben cementati, colore di biancastro al rosa Calcarenite a grana medio-fina con livelli ben cementati, colore dal biancastro al rosa	Profondità (m	Litologie		Descrizi	one stratigra	ifica		Profondità falc	Carotiere	Rivesti mento	Top Soil	Campione	Aliquote		_	
marrone Calcarenite a grana fina con livelli ben cementati, colore biancastro Li,7 Calcarenite a grana media, colore biancastro con livelli di colore marroncino-rosa Calcarenite a grana medio-fina con livelli ben cementati, colore dal biancastro al rosa Calcarenite a grana medio-fina con livelli ben cementati, colore dal biancastro al rosa	Calcarenite a grana fina con livelli ben cementati, colore biancastro Calcarenite a grana media, colore biancastro con livelli di colore marroncino-rosa Calcarenite a grana medio-fina con livelli ben cementati, colore dal biancastro al rosa Calcarenite a grana medio-fina con livelli ben cementati, colore dal biancastro al rosa			T					m	φ	φ		m/n.	n.	\vdash		ļ
biancastro 1,7 Calcarenite a grana media, colore biancastro con livelli di colore marroncino-rosa Calcarenite a grana medio-fina con livelli ben cementati, colore dal biancastro al rosa Calcarenite a grana medio-fina con livelli ben cementati, colore dal biancastro al rosa	biancastro 1,7 Calcarenite a grana media, colore biancastro con livelli di colore marroncino-rosa Calcarenite a grana medio-fina con livelli ben cementati, colore di biancastro al rosa Calcarenite a grana medio-fina con livelli ben cementati, colore dal biancastro al rosa	0,1		marrone													
Calcarenite a grana medio-fina con livelli ben cementati, 2.4 C 2	Calcarenite a grana medio-fina con livelli ben cementati, C 2 C 2 colore dal biancastro al rosa 2,6				a grana fina o	on livelli ber	n cementati	, colore		E	mm			2	1,0	1	l
Calcarenite a grana medio-fina con livelli ben cementati, 2.4 C 2	Calcarenite a grana medio-fina con livelli ben cementati, C 2 C 2 colore dal biancastro al rosa 2,6	1,7								1/152	7/152			-	-		
Calcarenite a grana medio-fina con livelli ben cementati, 2.4 C 2	Calcarenite a grana medio-fina con livelli ben cementati, C 2 C 2 colore dal biancastro al rosa 2,6					a, colore bia	ncastro con	livelli di		Ø=10	Ø=12				2,0		
colore dal biancastro al rosa 2,6	colore dal biancastro al rosa 2,6			Calcarenite	a grana medi	io-fina con liv	velli ben cer	mentati,						,	-		l
3,0				colore dal bi	iancastro al r	osa									۱		l
) 																	

Form n° 21 pag.1 di 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	150 di 152

Form n° 21 pag.2 di 2

150

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER TO CONCRETE TO LONG TO SHELTER	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	151 di 152

Denominazione sondaggio Coord. WGS84 - UTM34N Quota Direzione Lavori Geologo Perforatore RoW 28 271644,00 E a Shelter P. Rescio F. Marinaci Data inizio/fine Profondità Diametro Metodo di perforazione Impianto di perforazione 28/06/2016 3,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 Schem	Denominazione sondaggio Coord. WGS84 - UTM34N Quota Direzione Lavori Geologo Perforatore RoW 28		nittente: S	HELTER s.r.l. Viale Gran Sass		Milano								e Pista di Lav in provincia di			
Data inizio/fine Profondità Diametro Metodo di perforazione Impianto di perforazione Commes 28/06/2016 3,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 Schem. piezome	Data inizio/fine Profondità Diametro Metodo di perforazione Impianto di perforazione Commes 28/06/2016 3,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 Schem piezome P 28/06/2016 3,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 Schem piezome P 28/06/2016 3,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 Schem piezome P 28/06/2016 Aliquote P 28/06/20	De		ne sondaggio	Coord. WGS	84 - UTM34N		Direzione	e Lavo			Geolo	ogo	Perf	orator	2	-
28/06/2016 3,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 Schem piezome Poly and play a	28/06/2016 3,0 m 101/152 mm Carotaggio continuo Fraste FS 250 55/16 (ii) quadratic properties and the properties and the properties are statistical properties and the properties and the properties are statistical properties and the properties and the properties are statistical properties are statistical properties and the properties are statistical properties and the properties are statistical properties are statistical properties and the properties are statistical properties and the properties are statistical properties are statistical properties and the properties are statistical properties are statistical properties and the properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical properties are statistical pr				44619	52,00 N											
Descrizione stratigrafica Descrizione stratigra	Descrizione stratigrafica Descrizione stratigra											imple			_		-
Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite tenera, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore biancastro Calcarenite tenera, poco cementata con intercalati livelli di limo sabbioso, colore da giallo a marroncino chiaro m	Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite tenera, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore biancastro Calcarenite tenera, poco cementata con intercalati livelli di limo sabbioso, colore da giallo a marroncino chiaro m	2							fa								
Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite tenera, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore biancastro Calcarenite tenera, poco cementata con intercalati livelli di limo sabbioso, colore da giallo a marroncino chiaro Terreno di copertura; sabbia debolmente limosa, colore di co	Terreno di copertura; sabbia debolmente limosa, colore marrone Calcarenite tenera, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore biancastro Calcarenite tenera, poco cementata con intercalati livelli di limo sabbioso, colore da giallo a marroncino chiaro Terreno di copertura; sabbia debolmente limosa, colore di co	Profondità (n	Litologie		Descrizi	one stratigra	ifica		Profondità fal	Carotiere	Rivestimento	Top Soil	Campione	Aliquote	<u> </u>		
Calcarenite tenera, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore biancastro Calcarenite tenera, poco cementata con intercalati livelli di limo sabbioso, colore da giallo a marroncino chiaro	Calcarenite tenera, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore biancastro Calcarenite tenera, poco cementata con intercalati livelli di limo sabbioso, colore da giallo a marroncino chiaro	0.2		Tomono di	concetture.	cabbia daba	almonto lin	anca coloro	m	φ	ф		m/n.	n.			
Calcarenite tenera, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore biancastro 1,5 Calcarenite tenera, poco cementata con intercalati livelli di limo sabbioso, colore da giallo a marroncino chiaro	Calcarenite tenera, poco cementata si da assumere aspetto di sabbia ghiaiosa, colore biancastro 1,5 Calcarenite tenera, poco cementata con intercalati livelli di limo sabbioso, colore da giallo a marroncino chiaro	0,2		marrone													
limo sabbioso, colore da giallo a marroncino chiaro 2.4 C 2 2,6	limo sabbioso, colore da giallo a marroncino chiaro 2.4 C 2 2,6	1					si da assun	nere aspetto		E	mm			_	1,0		
limo sabbioso, colore da giallo a marroncino chiaro 2.4 C 2 2.6	limo sabbioso, colore da giallo a marroncino chiaro 2.4 C 2 2.6	1,5			,					/152	/152			2	-		
limo sabbioso, colore da giallo a marroncino chiaro 2.4 C 2 2.6	limo sabbioso, colore da giallo a marroncino chiaro 2.4 C 2 2.6									D=101	5=123				2,0		
2,6	2,6			I						- Ca.	- Ox			,			
3,0	3,0													2	┨		

Form n° 21 pag.1 di 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRX-0001	Rev. No.:	0
RSK SHELTER The Consulting to Section your fluiness	Doc. Title:	Risultati dello studio di caratterizzazione dei suoli in ottemperanza alla prescrizione A.25 a) del D.M. 223/2014 nell'area del terminale di ricezione del gasdotto (PRT), strade di accesso (AR) e lungo la pista di lavoro (RoW)	Pag:	152 di 152

Form n* 21 pag. 2 di 2

TAP AG

152

Picultati della atudia di caratterizzazione dei quali in ettemperanza alla procesizione A 25 a) del D.M. 222/2014 poll'

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER The Consulting to Latina your Business	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	74 of 84

ALLEGATO D – RISULTATI ANALITICI ACQUA DI FALDA

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER THE CAMBRIDGE DO SAME PROPERTY.	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	75 of 84

PD16-03612_0

Prima pagina

CLIENTE		LABORATORIO	
Cliente	SHELTER SRL	Head of Laboratory	Cristiano Toffoletti
		Laboratorio	SGS Italia S.p.A.
Indirizzo	Viale Gran Sasso n. 13	Indirizzo	Via Campodoro, 25
	MILANO 20131		Villafranca Padovana (PD) 35010
Contatto		Telefono	+39 049 9050013
Telefono		Fax	+39 049 9050065
Fax		Email	sgs.eco@sgs.com
Email		Accettazione n°	PD16-03612
Progetto	Default Project	Pervenuto il	28/07/2016
Ordine n°	1153/2015/C1/PD/Rev.4	Data inizio prove di lab.	27/07/2016
Matrice	ACQUE SOTTERRANEE(5)	Data fine prove lab.	30/08/2016
		Rapporto di Prova n°	PD16-03612_0
		Data emissione	12/09/2016

_		AI	-	ĸт	TI

Incertezza estesa di misura stimata al 95% di livello di confidenza e fattore di copertura k=2

Documento con firma digitale avanzata ai sensi della normativa vigente. Firmato digitalmente da Dr. Cristiano Toffoletti Ordine dei chimici della Provincia di Venezia/94004270271

RIFERIMENTI

Mattia Favaro Cristiano Toffoletti Project Agent Head Of Laboratory

SGS Italia S.p.A Via Campodoro, 25 35010 Villafranca Padovana (PD) Italy

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO COMMUNICATION OF THE COMMUNICATION	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	76 of 84

PD16-03612_0

INDICE

Prima Pagina	1
Indice	2
Risultati	3-6
Limiti Di Riferimento	7-8
Legenda	9

2/9

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	77 of 84

PD16-03612_0

RISULTATI							
			DD40 00040 004	DD40 00040 000	DD 40 00040 000	5545 55545 554	PD40 00040 005
	Campion		PD16-03612.001	PD16-03612.002	PD16-03612.003	PD16-03612.004	PD16-03612.005
	Sigla camp Provenient		Piezo2	Piezo3	Piezo4 Microtunnel access	Piezo5	Piezo6
	Provenient	e ua	Area, Municipality	Area, Municipality	Area, Municipality		Area, Municipality
			of Melendugno (LE)				
	Tipo camp	ione	ACQUE	ACQUE	ACQUE	ACQUE	ACQUE
			SOTTERRANEE	SOTTERRANEE	SOTTERRANEE	SOTTERRANEE	SOTTERRANEE
	Campionat	o da	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.
			personale -	personale -	personale -	personale -	personale -
			Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
	Campiona	ato il	28/07/2016	28/07/2016	28/07/2016	27/07/2016	28/07/2016
Parametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
Campionamento [0001 + DLgs n.152 03/04/2006	GU n.88 14/04/	/2006	6 all. 2 parte IV]				
Campionamento	-	-	:	:	:	:	:
Livello piezometrico (m)	m	-	2,8	3,0	5,0	7,0	3,3
Profondità piezometro	m	-	9,8	10	9,8	10	9,7
pH [Analisi eseguita al prelievo + APAT CNR IR:		200			-		
• pH	-	1	7,2 ±1	7,2 ±1	7,2 ±1	7,3 ±1	7,2 ±1
	T OND IDEA 044			1,2 11	7,221	7,011	1,2 21
Temperatura [Analisi eseguita al prelievo + APA 							
Temperatura		0,1	19,0 ±0,2	18,5 ±0,2	18,8 ±0,2	19,0 ±0,2	19,1 ±0,2
Conducibilita' a 20'C [Analisi eseguita al prelievo	+ APAT CNR IF	RSA	2030 Man 29 200	03]			
Conducibilita'	uS/cm	1	1230 ±12	1220 ±12	1240 ±12	6390 ±64	1120 ±11
Potenziale Redox [Analisi eseguita al prelievo +	APHA Standard	Meth	nods for the Exan	nination of Wate	and Wastewate	r 22nd	
Ed.2012, 2580]							
Potenziale Redox	mV -	-500	143	134	23	104	105
Ossigeno disciolto [Analisi eseguita al prelievo +	APAT CNR IRS	A 41	20 Man 29 2003]			
Ossigeno disciolto	mg/L	0,5	<0,5	<0,5	1,3 ±0,5	3,8 ±0,5	0,9 ±0,5
BOD5 (come O2) [Su campione tal quale + APA		20 A	Man 29 2003 1				
Richiesta biochimica di ossigeno (BOD5)	mg/L	3	<3	<3	<3	<3	<3
Solidi sospesi totali [Su campione tal quale + AP							
Solidi sospesi totali	mg/L	5	64 ±5	<5	<5	6 ±5	<5
Solidi totali disciolti (180°C) [Su campione tal qua	ale + APHA Stan	dard	Methods for the	Examination of \	Water and Waste	water	
22nd Ed.2012, 2540 C]							
TDS (Solidi totali disciolti)	mg/L	1	744 ±25	708 ±24	720 ±24	403 ±20	682 ±24
Carbonio organico [Su campione tal quale + UN	EN 1484:1999]						
Carbonio organico totale (TOC)	mg/L	0,5	2,4 ±0,5	2,2 ±0,5	2,3 ±0,5	1,5 ±0,5	2,3 ±0,5
Conta Coliformi totali [Su campione tal quale + A	PAT CNR IRSA	701	0 C Man 29 2003	1			
Conta Coliformi totali	UFC/100 mL	-	4500	2600	350	22	270
Incertezza espressa come intervallo di fiducia al 95%	UFC/100 mL	_	3300	1700	230	13	170
di probabilità: limite inferiore	5. 5. 700 IIIE	-	3300	.,,,,	250	.5	110
Incertezza espressa come intervallo di fiducia al 95%	UFC/100 mL	-	5800	3600	460	31	370
di probabilità: limite superiore							
Azoto nitroso [Su campione tal quale + APAT Cl	NR IRSA 4050 M	lan 2	9 2003]				
Azoto nitroso (come NO2)	ug/L NO2	30	<30	<30	<30	<30	<30
Anioni [Su campione tal quale + APAT CNR IRS		2003	1				
Solfati	mg/L SO4	1	46 ±3	47 ±3	55 ±4	33 ±2	52 ±4
Fosfati	mg/L PO4	0,2	<0,2	<0,2	<0,2	<0,2	<0,2
	mg/L FO4	0,2	~0,2	~0,2	~0,2	~0,2	~0,2

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001		1
RSK SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	78 of 84

PD16-03612_0

SULTATI									
	Campione n'	PD16-03612.001	PD16-03612.002	PD16-03612.003	PD16-03612.004	PD16-03612.00			
	Sigla campione	Piezo2	Piezo3	Piezo4	Piezo5	Piezo6			
	Proveniente da	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel acce			
		Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipal			
		of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (l			
	Tipo campione	ACQUE	ACQUE	ACQUE	ACQUE	ACQUE			
		SOTTERRANEE	SOTTERRANEE	SOTTERRANEE	SOTTERRANEE	SOTTERRANE			
	Campionato da	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da ns.	Effettuato da n			
		personale -			Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
	Campionato i	28/07/2016	28/07/2016	28/07/2016	27/07/2016	28/07/2016			
Parametro	U.M. RI	Risultato	Risultato	Risultato	Risultato	Risultato			
ioni [Su campione tal quale + APAT C	NR IRSA 4020 Man 29 200	3] (segue)							
Cloruri	mg/L 0,1	188 ±11	188 ±11	184 ±11	40 ±2,6	154 ±9,1			
Nitrati	mg/L NO3 1	19 ±1,8	9,6 ±1,3	20 ±1,8	29 ±2,3	22 ±2,0			
omo esavalente [Su campione tal qua	e + APAT CNR IRSA 3150	C Man 29 2003]							
Cromo esavalente (come Cr)	ug/L 1	<1	<1	<1	<1	<1			
talli [Su campione dopo filtrazione 0.4	5 micron in campo + EPA 3	8005A 1992 + EPA	A 6020B 2014]						
Alluminio	ug/L 10	<10	<10	<10	33 ±11	<10			
Antimonio	ug/L 1	<1	<1	<1	<1	<1			
Arsenico	ug/L 1	<1	<1	<1	<1	<1			
Argento	ug/L 1	<1	<1	<1	<1	<1			
Berillio	ug/L 0,1	<0,1	<0,1	<0,1	<0,1	<0,1			
Boro	ug/L 10	130 ±24	95 ±19	330 ±51	30 ±10	150 ±27			
Cadmio	ug/L 0,5	<0.5	<0,5	<0,5	<0,5	<0,5			
Cobalto		7 ±2	9 ±3	4 ±1	<1				
Cromo						4 ±1			
	ug/L 1	<1	<1	1 ±1	<1	<1			
Ferro	ug/L 10	<10	<10	30 ±10	15 ±10	<10			
Manganese	ug/L 1	5 ±2	10 ±3	8 ±2	1 ±1	2 ±1			
Mercurio	ug/L 0,1	<0,1	<0,1	<0,1	<0,1	<0,1			
Nichel	ug/L 1	17 ±1	22 ±1 L4	44 ±3 L4	8 ±1	16 ±1			
Piombo	ug/L 1	<1	<1	<1	<1	<1			
Rame	ug/L 1	2 ±1	1 ±1	1 ±1	<1	1 ±1			
Selenio	ug/L 1	<1	<1	<1	<1	<1			
Tallio	ug/L 1	<1	<1	<1	<1	<1			
Zinco	ug/L 5	5 ±5	5 ±5	12 ±5	30 ±5	8 ±5			
ocarburi totali [Su campione tal quale	+ APAT CNR IRSA 5160 B	2 Man 29 2003]							
Idrocarburi totali (come n-esano)	ug/L 35	<35	<35	<35	<35	<35			
D.C. [Su campione tal quale + EPA 50	30C 2003 + EPA 8260C 20	06]							
COMPOSTI ORGANICI AROMATICI									
Benzene	ug/L 0,1	<0,1	<0,1	<0,1	<0,1	<0,1			
Etil Benzene	ug/L 0,1		<0,1	<0,1	<0,1	<0,1			
Stirene	ug/L 0,1	<0,1	<0,1	<0,1	<0,1	<0,1			
Toluene	ug/L 0,1		0,1	<0,1	0,1	<0,1			
orto Xilene	ug/L 0,1		<0,1	<0,1	<0,1	<0,1			
meta Xilene + para Xilene									
\	ug/L 0,1	<0,1	<0,1	<0,1	<0,1	<0,1			
ALIFATICI CLORURATI CANCEROGENI									
Cloro Metano	ug/L 0,1	<0,1	<0,1	<0,1	<0,1	<0,1			

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001		IPL00-C5577-100-Y-TRS-0001 Rev. No.:		1
RSK SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	79 of 84		

PD16-03612_0

RIS	SULTATI							
		Cam	pione n°	PD16-03612.001	PD16-03612.002	PD16-03612.003	PD16-03612.004	PD16-03612.005
			ampione	Piezo2	Piezo3	Piezo4	Piezo5	Piezo6
		Proven	iente da	Microtunnel access				
				Area, Municipality				
				of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE
		Tipo ca	ampione	ACQUE	ACQUE	ACQUE	ACQUE	ACQUE
				SOTTERRANEE	SOTTERRANEE	SOTTERRANEE	SOTTERRANEE	SOTTERRANEE
		Campio	onato da	Effettuato da ns.				
				personale -				
		Came	oionato il	Scaranto 28/07/2016	Scaranto 28/07/2016	Scaranto 28/07/2016	Scaranto 27/07/2016	Scaranto 28/07/2016
	Parametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
vc	D.C. [Su campione tal quale + EPA 5030C 2003							
٧.٠	Cloroformio	ug/L	0,01	0,01	<0,01	0,01	<0,01	0,01
	Cloruro di Vinile	ug/L	0,05	<0,05	<0,05	<0,05	<0,05	<0,05
	1,2-Dicloro Etano	ug/L	0,1	<0,1	<0,1	<0,1	<0,1	<0,1
	1,1-Dicloro Etilene	ug/L	0,005	<0,005	<0,005	<0,005	<0,005	<0,005
	Tricloro Etilene	ug/L	0,01	<0,01	<0,01	<0,01	0,01	<0,01
	Tetracloro Etilene	ug/L	0,01	0,04	0,01	0,01	0,01	0,01
	Esacloro Butadiene	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	Somma dei Composti Organoalogenati	ug/L	1	<1	<1	<1	<1	<1
	ALIFATICI CLORURATI NON CANCEROGENI							
	1,1-Dicloro Etano	ug/L	0,1	<0,1	<0,1	<0,1	<0,1	<0,1
	1,2-Dicloro Etilene (cis+trans)	ug/L	0,2	<0,2	<0,2	<0,2	<0,2	<0,2
	1,2-Dicloro Propano	ug/L	0,01	0,01	<0,01	<0,01	<0,01	<0,01
	1,1,2-Tricloro Etano	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	1,2,3-Tricloro Propano	ug/L	0,001	<0,001	<0,001	<0,001	<0,001	<0,001
	1,1,2,2-Tetracloro Etano	ug/L	0,005	<0,005	<0,005	<0,005	<0,005	<0,005
	ALIFATICI ALOGENATI CANCEROGENI							
	Bromoformio	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	1,2-Dibromo Etano	ug/L	0,001	<0,001	<0,001	<0,001	<0,001	<0,001
	Dibromo Cloro Metano	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	Dicloro Bromo Metano	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
S.V	O.C. [Su campione tal quale + EPA 3520C 199	96 + EPA 8	270D 2	014]				
	IDROCARBURI POLICICLICI AROMATICI							
	Benzo (a) Antracene	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	Benzo (a) Pirene	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	Benzo (b) Fluorantene	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	benzo (k) fluorantene	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	Benzo (g,h,i) Perilene	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	Crisene	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	Dibenzo (a,h) Antracene	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	Indeno (1,2,3-cd) Pirene	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	Pirene	ug/L	0,01	<0,01	<0,01	<0,01	<0,01	<0,01
	Sommatoria Policiclici Aromatici (31, 32, 33, 36	ug/L	0,05	<0,05	<0,05	<0,05	<0,05	<0,05
	D.LGS.152/2006) FITOFARMACI							
	Alaclor	ug/L	0,05	<0,05	<0,05	<0,05	<0,05	<0,05
		ug/L	0,00	~0,00	~0,00	~0,00	~0,00	~0,00

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	80 of 84

PD16-03612_0

RIS	ULTATI							
		Campi	one n°	PD16-03612.001	PD16-03612.002	PD16-03612.003	PD16-03612.004	PD16-03612.005
		Sigla can	npione	Piezo2	Piezo3	Piezo4	Piezo5	Piezo6
		Provenie	nte da	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access	Microtunnel access
				Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality	Area, Municipality
				of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)	of Melendugno (LE)
		Tipo can	npione	ACQUE	ACQUE	ACQUE	ACQUE	ACQUE
				SOTTERRANEE	SOTTERRANEE	SOTTERRANEE	SOTTERRANEE	SOTTERRANEE
		Campion	ato da	Effettuato da ns.				
				personale -				
				Scaranto	Scaranto	Scaranto	Scaranto	Scaranto
		Campio	onato il	28/07/2016	28/07/2016	28/07/2016	27/07/2016	28/07/2016
(Parametro	U.M.	RL	Risultato	Risultato	Risultato	Risultato	Risultato
S.V.	O.C. [Su campione tal quale + EPA 3520C 1996	+ EPA 82	70D 20	014] (segue)				
	Aldrin	ug/L	0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	Atrazina	ug/L	0,05	<0,05	<0,05	<0,05	<0,05	<0,05
	alfa-Esaclorocicloesano	ug/L	0,05	<0,05	<0,05	<0,05	<0,05	<0,05
	beta-Esaclorocicloesano	ug/L	0,05	<0,05	<0,05	<0,05	<0,05	<0,05
	gamma-Esaclorocicloesano (Lindano)	ug/L	0,05	<0,05	<0,05	<0,05	<0,05	<0,05
	Clordano	ug/L	0,05	<0,05	<0,05	<0,05	<0,05	<0,05
	DDD, DDT, DDE	ug/L	0,05	<0,05	<0,05	<0,05	<0,05	<0,05
	Dieldrin	ug/L	0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	Endrin	ug/L	0,05	<0,05	<0,05	<0,05	<0,05	<0,05
	Sommatoria Fitofarmaci	ug/L	0,25	<0,25	<0,25	<0,25	<0,25	<0,25

6/9

Piano di Utilizzo Terre e Rocce da Scavo Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO SALE TO SHELL THE RESERVE BUSINESS	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	81 of 84

PD16-03612_0

LIMITI DI RIFERIMENTO

Matrice	Descrizione limiti						
ACQUE SOTTERRANEE	I limiti si riferiscono al DLgs 152/06 - All.5, p	I limiti si riferiscono al DLgs 152/06 - All.5, parte IV, Tab 2 - Acque sotterranee.					
Parametro		U.M.	L1	L2	L3	L4	
Azoto nitroso [APAT CNR IRSA 4050 M	Man 29 2003]						
Azoto nitroso (come N	102)	ug/L NO2	-	-	-	500	
Anioni [APAT CNR IRSA 4020 Man 29	2003 1	'				•	
Solfati		mg/L SO4	-	-	-	250	
Cromo esavalente [APAT CNR IRSA 3	150 C Man 29 2003 1				I .	1	
Cromo esavalente (co		ug/L		_	-	5	
Metalli [EPA 3005A 1992 + EPA 6020B		-92					
Alluminio	2014]	um/l		_	_	200	
Antimonio		ug/L ug/L		-		5	
Arsenico		ug/L		_	_	10	
Argento		ug/L	_	_	-	10	
Berillio		ug/L	-	-	-	4	
Boro		ug/L	-	-	-	1000	
Cadmio		ug/L	-	-	-	5	
Cobalto		ug/L	-	-	-	50	
Cromo		ug/L	-	-	-	50	
Ferro		ug/L	-	-	-	200	
Manganese		ug/L	-	-	-	50	
Mercurio		ug/L	-	-	-	1	
Nichel		ug/L	-	-	-	20	
Piombo		ug/L	-	-	-	10	
Rame		ug/L	-	-	-	1000	
Selenio		ug/L	-	-	-	10	
Tallio		ug/L	-	-	-	2	
Zinco		ug/L	-	-	-	3000	
Idrocarburi totali [APAT CNR IRSA 516	0 B2 Man 29 2003]						
Idrocarburi totali (com	e n-esano)	ug/L	-	-	-	350	
V.O.C. [EPA 5030C 2003 + EPA 82600	2006]						
Benzene	-	ug/L	-	-	-	1	
Etil Benzene		ug/L	-	-	-	50	
Stirene		ug/L	-	-	-	25	
Toluene		ug/L	-	-	-	15	
meta Xilene + para Xi	ene	ug/L	-	-	-	10	
Cloro Metano		ug/L	-	-	-	1,5	
Cloroformio		ug/L	-	-	-	0,15	
Cloruro di Vinile		ug/L	-	-	-	0,5	
1,2-Dicloro Etano		ug/L	-	-	-	3	
1,1-Dicloro Etilene		ug/L	-	-	-	0,05	
Tricloro Etilene		ug/L	-	-	-	1,5	
Tetracloro Etilene		ug/L	-	-	-	1,1	

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO CONTROL TO STATE OF CONTROL TO	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	82 of 84

PD16-03612_0

LIMITI DI RIFERIMENTO

Esacloro Butadiene	ug/L	-	-	-	0,15
Somma dei Composti Organoalogenati	ug/L	-	•	-	10
1,1-Dicloro Etano	ug/L	-	-	-	810
1,2-Dicloro Etilene (cis+trans)	ug/L	-	-	-	60
1,2-Dicloro Propano	ug/L	-	-	-	0,15
1,1,2-Tricloro Etano	ug/L	-	-	-	0,2
1,2,3-Tricloro Propano	ug/L	-	-	-	0,001
1,1,2,2-Tetracloro Etano	ug/L	-	-	-	0,05
Bromoformio	ug/L	-	-	-	0,3
1,2-Dibromo Etano	ug/L	-	-	-	0,001
Dibromo Cloro Metano	ug/L	-	-	-	0,13
Dicloro Bromo Metano	ug/L	-	-	-	0,17

S.V.O.C. [EPA 3520C 1996 + EPA 8270D 2014]

C 1996 + EPA 82/0D 2014]					
Benzo (a) Antracene	ug/L		-	-	0,1
Benzo (a) Pirene	ug/L	-	-	-	0,01
Benzo (b) Fluorantene	ug/L	-	-	-	0,1
benzo (k) fluorantene	ug/L		-	-	0,05
Benzo (g,h,i) Perilene	ug/L	-	-	-	0,01
Crisene	ug/L	-	-	-	5
Dibenzo (a,h) Antracene	ug/L	-	-	-	0,01
Indeno (1,2,3-cd) Pirene	ug/L	-	-	-	0,1
Pirene	ug/L	-	-	-	50
Sommatoria Policiclici Aromatici (31, 32, 33, 36	ug/L	-	-	-	0,1
D.LGS.152/2006)					
Alaclor	ug/L	•	-	-	0,1
Aldrin	ug/L	•	-	-	0,03
Atrazina	ug/L		-	-	0,3
alfa-Esaclorocicloesano	ug/L		-	-	0,1
beta-Esaclorocicloesano	ug/L	-	-	-	0,1
gamma-Esaclorocicloesano (Lindano)	ug/L		-	-	0,1
Clordano	ug/L	-	-	-	0,1
DDD, DDT, DDE	ug/L	-	-	-	0,1
Dieldrin	ug/L	-	-	-	0,03
Endrin	ug/L	-	-	-	0,1
Sommatoria Fitofarmaci	ug/L	-	-	-	0,5

8/9

Piano di Utilizzo Terre e Rocce da Scavo Project no. 80635

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	83 of 84

PD16-03612_0

LEGENDA

NOTE

- Eseguito presso altro laboratorio SGS.
- Eseguito presso laboratorio esterno.
- RL Limite di Rapportaggio
- Limite di rapportaggio innalzato
- Limite di rapportaggio diminuito

- IS Campione insufficiente per l'analisi.
- LNR Campione elencato ma non ricevuto.
- NA Campione non analizzato per questo parametro
- TBA Parametro non ancora analizzato

NOTE RELATIVE ALL'ACCREDITAMENTO

* Prova non accreditata ACCREDIA.

il presente Rapporto è emesso dalla Società in accordo con le Condizioni Generali SGS per i servizi di ispezione e controllo (copia disponibile su richiesta). Il rilascio di questo Rapporto non esonera le parti negoziali dall'esercitare i diritti e dall'adempiere alle obbligazioni derivanti dal negozio tra loro stipulato. Ogni patto contrario non è alla Società opponibile. La responsabilità della Società in base a questo Rapporto è limitata al caso di provata colpa grave ed in ogni caso ad un ammontare non superiore a dieci volte i diritti e le commissioni dovute. Eccetto accordi particolari, gli eventuali campioni, se presi, non saranno trattenuti dalla Società per più di un mese. I risultati contenuti nel seguente rapporto si riferiscono esclusivamente al campione provato.

9/9

Il presente Rapporto o copia dello stesso verrà conservato dalla Società per un periodo pari a 10 anni. Il confronto dei risultati con i rispettivi limiti, quando presente, non tiene conto dell'incertezza di misura stimata. Eventuali risultati fuori limite sono segnalati in rosso.

Il recupero ove previsto, è da intendersi compreso all'interno dei limiti di accettabilità specifici. Se non diversamente indicato il risultato è da intendersi non corretto per il recupero ottenuto.

Il presente rapporto può essere riprodotto solamente per intero.

TAP AG

20160912

Trans Adriatic Pipeline	TAP AG Doc. no.:	IPL00-C5577-100-Y-TRS-0001	Rev. No.:	1
RSK SSHELTER TO CONSUME DE L'ANNE DE	Titolo Doc.	Piano di Utilizzo Terre e Rocce da Scavo	Pagina:	84 of 84

ALLEGATO E - PIANO DI GESTIONE DEI MATERIALI PROVENIENTI DAL MICROTUNNEL PER L'APPRODO ITALIANO DEL GASDOTTO

TAP AG Project Title / Facility Name:

Trans Adriatic Pipeline Project

Titolo del Documento:

Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto

0	07-07-2017	Emesso per informazione		IFR	CLC Obliq Swandle	MAS	AP	
Rev.	Data revisione (gg-mm-aaaa)	Motivo dell'emissione		IFR	Preparato da	Verificato da	Approvato da	
			Contrattore nome:	RSK - SHELTER				
		SHELTER The Consulting to Sustain your Business	Contrattore Progetto No.:	80635				
- 10			Contrattore Doc. No.:	RSK/H/P/P80635/04/01/01				
			Tag No's.: N/A					
TAP AG Contratto No.: C5577		Progetto No.: WBS11D01F0	004					
PO No.: P0269223						Page: 1 of 2	1	
TAP AG	TAP AG Document No.:							

ILF01-C5577-100-Y-TTM-0001

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK & SHELTER The Consulting to Section your Business	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	2 of 21

<u>INDICE</u>

1	INTRODUZIONE	3
2	DESCRIZIONE DELLE ATTIVITÀ DI SCAVO E SCOTICO	4
2.1	SCOTICO SUPERFICIALE	4
2.2	COSTRUZIONE DEL POZZO DI SPINTA	6
2.3	SCAVO DEL MICROTUNNEL	9
2.4	POSA IN OPERA DEL TUBO CAMICIA	10
2.5	SCAVO A CIELO APERTO / TRINCEA	11
2.6	AREE DI STOCCAGGIO DEL MATERIALE DI SCAVO	11
2.7	ACQUA DI FALDA	12
3	GESTIONE DEI RIFIUTI	. 13
3.1	CRITERI DI BASE PER LA GESTIONE RIFIUTI DI PROGETTO	13
3.2	GERARCHIA DEI RIFIUTI	13
3.3	DEFINIZIONE E CLASSIFICAZIONE DEI RIFIUTI	14
3.4	TIPOLOGIA DI RIFIUTI	14
3.5	GESTIONE DEI RIFIUTI	17 18
	3.5.4 TRASPORTO DEI RIFIUTI	20
	3.5.6 DOCUMENTAZIONE RELATIVA AI RIFIUTI – TRACCIABILITÀ	

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK & SHELTER	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	3 of 21

1 INTRODUZIONE

Il presente "Piano di gestione dei materiali / rifiuti provenienti dal Microtunnel per l'approdo italiano del gasdotto" è stato richiesto da TAP AG (in seguito TAP) a RSK / SHELTER per rispondere all'osservazione 6 contenuta nel Parere "Verifica di ottemperanza della prescrizione A.25 b)" del 29/05/2017 e firmata congiuntamente da ISPRA e ARPA Puglia.

L'osservazione 6 è riportata di seguito in estratto:

Si ritiene necessario che le modalità di trattamento dei materiali provenienti dallo scavo del MT siano dettagliate in uno specifico Piano, da predisporre in sede di progettazione esecutiva. Tale piano dovrà contenere, inoltre, le modalità di gestione dei materiali prodotti dalla demolizione del pozzo di spinta nonché di ogni altro rifiuto prodotto dall'intervento in esame.

Le attività oggetto del presente Piano si svolgeranno nell'area di cantiere ubicata in corrispondenza del punto di partenza del microtunnel d'approdo, denominata area RFO (Figura 1).

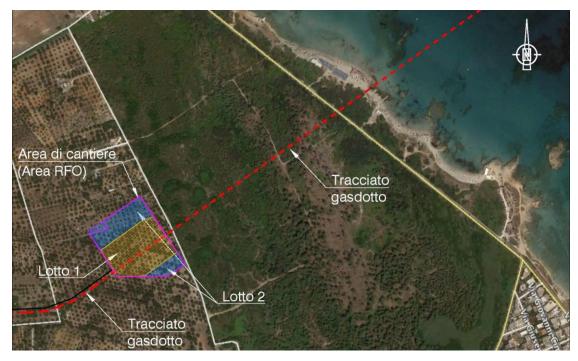


Figura 1 - Inquadramento dell'area cantiere (RFO)

In particolare la realizzazione dell'approdo in Italia del gasdotto TAP prevede lo svolgimento delle seguenti lavorazioni, comportanti l'esecuzione di attività di scavo:

- costruzione del pozzo di spinta;
- scavo del microtunnel in calcestruzzo armato (c.a.);
- posa in opera del tubo camicia in acciaio;
- posa in opera del tubo camicia;
- scavo a cielo aperto/trincea.

Inoltre è previsto anche:

- lo scotico del terreno superficiale dell'area cantiere (area RFO);
- il livellamento dell'area cantiere (area RFO).

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK SSHELTER The Consulting to Sentime your Business	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	4 of 21

2 DESCRIZIONE DELLE ATTIVITÀ DI SCAVO E SCOTICO

La presente sezione descrive le attività di scavo e scotico, specificando le metodologie esecutive, i volumi di materiale scavato/movimentato e le relative modalità di gestione.

2.1 SCOTICO SUPERFICIALE

La prima attività che sarà svolta per la preparazione dell'area cantiere (area RFO) consiste nella rimozione del terreno vegetale (scotico), corrispondente a c.a. 0,2 m.

Poiché l'area verrà preparata in due fasi distinte, prima il Lotto 1 e successivamente il Lotto 2 (2A + 2B), anche la relativa attività di scotico sarà svolta in due fasi.

Per la rimozione e lo spostamento del terreno vegetale si utilizzeranno escavatori, pale meccaniche e camion.

Il terreno vegetale rimosso dal Lotto 1 sarà accatastato in cumuli nelle aree appositamente designate all'interno del Lotto 1 (vedi Figura 2).

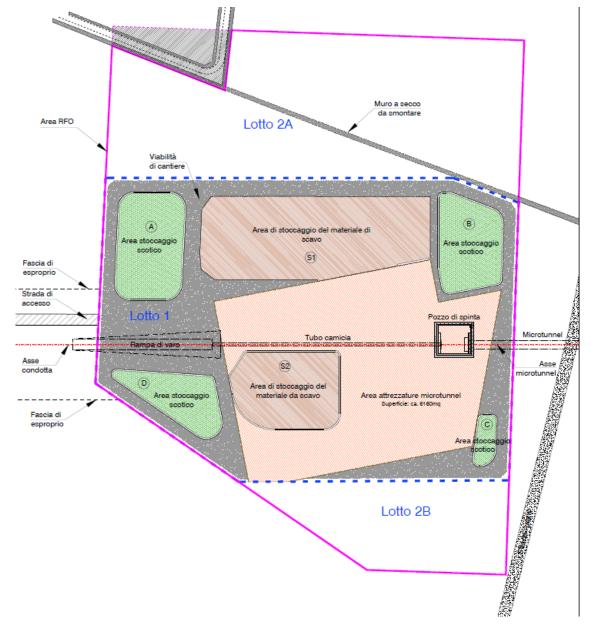


Figura 2 – Ubicazione delle aree di stoccaggio del materiale del Lotto 1 (fase 1)

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK & SHELTER The Consulting to Surine your Business	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	5 of 21

Nella seconda fase, quando si preparerà il Lotto 2 (2A+2B) per le attività di pre-commissioning, si eseguirà il restante scotico dei Lotti 2A e 2B, ed il terreno vegetale sarà accatastato nelle aree appositamente designate all'interno del Lotto 2 (vedi **Figura 3**).

Il volume totale, in banco, che si stima dover movimentare è di circa 3.200 m³. Il trasporto e lo stoccaggio di tutto lo scotico sarà effettuato in accordo al Piano di Utilizzo Terre e Rocce da Scavo.

Al termine dei lavori, lo scotico superficiale dell'area RFO area sarà riutilizzato per il ripristino dell'area stessa.

La superficie dell'area RFO, che sarà complessivamente scoticata, è pari a ca. 26.000 m³.

Considerando un'altezza di terreno vegetale pari a 0,2m, si stima che il volume di scotico - in banco - sia pari a circa 5.200 m³.

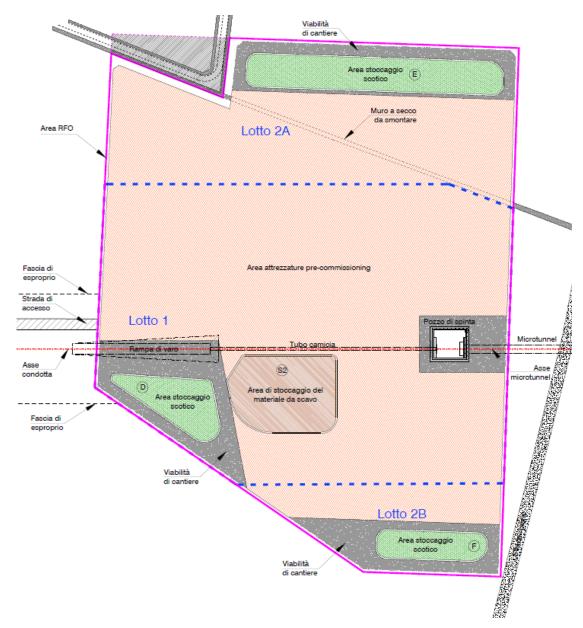


Figura 3 – Ubicazione delle aree di stoccaggio del materiale dei Lotti 1 e 2

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK SSHELTER The Consulting to Sentime your Business	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	6 of 21

2.2 COSTRUZIONE DEL POZZO DI SPINTA

Il pozzo di spinta è un'opera temporanea, funzionale all'esecuzione delle attività di costruzione del microtunnel, di installazione e di collaudo idraulico della condotta di linea. Al termine dei lavori, il pozzo sarà completamente rinterrato e la struttura del pozzo sarà parzialmente demolita, fino a una profondità di 1,5 m dal piano campagna.

Le dimensioni planimetriche interne del pozzo sono circa 10 m x 11 m; la quota di progetto del fondo scavo è circa -10 m rispetto al livello medio del piano di lavoro.

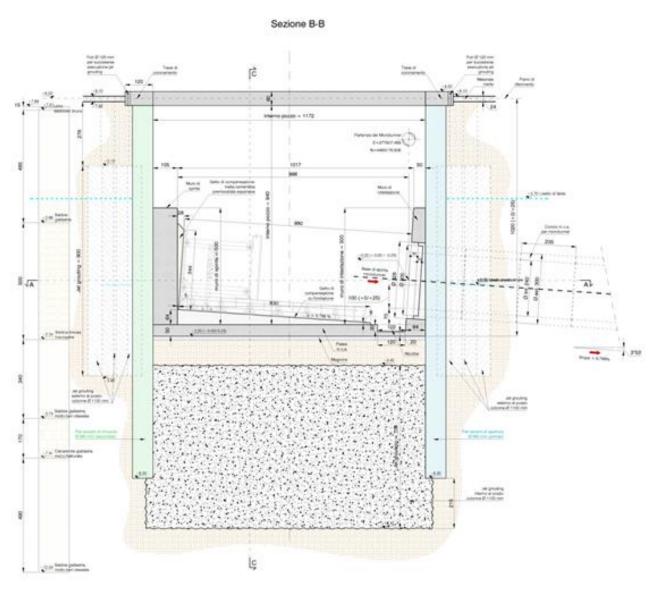


Figura 4 - Sezione del pozzo di spinta

Il pozzo di spinta sarà costruito secondo le seguenti fasi principali:

- costruzione delle pareti in calcestruzzo armato del pozzo, mediante la tecnica dei pali secanti;
- esecuzione del jet-grouting per la realizzazione del tappo di fondo;
- scavo all'interno del pozzo;
- esecuzione di opere in c.a. all'interno del pozzo.

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK SSHELTER The Consulting to some your fluidest	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	7 of 21

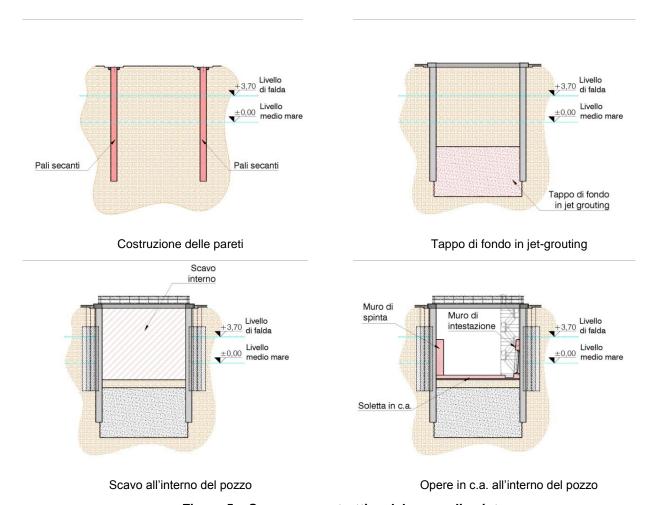


Figura 5 – Sequenza costruttiva del pozzo di spinta

Nell'ambito della sequenza costruttiva, sono previste quindi due distinte fasi di scavo:

- lo scavo dei pali secanti;
- lo scavo all'interno del pozzo.

I pali secanti saranno realizzati utilizzando la tecnica dei pali rivestiti trivellati ad elica continua rivestita e gettati in opera.

Lo scavo all'interno del pozzo sarà eseguito mediante escavatore idraulico.

Il materiale di scavo dei pali e del pozzo sarà accatastato nell'area di stoccaggio temporaneo appositamente designata all'interno del cantiere (aree S1 e S2 in Figura 2 e Figura 3). Tale materiale sarà inviato a recupero/smaltimento una volta caratterizzato in accordo alla normativa vigente.

La tabella seguente riporta il volume di scavo stimato per la costruzione del pozzo:

Fase di lavoro	Tipo di materiale movimentato	Volume (in situ)
Scavo pozzo	Materiale di scavo	1300 m ³

Al termine dei lavori, il pozzo di spinta sarà completamente rinterrato previa demolizione fino ad una profondità di 1,5 m dal piano campagna (vedi **Figura 6**).

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK & SHELTER	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	8 of 21

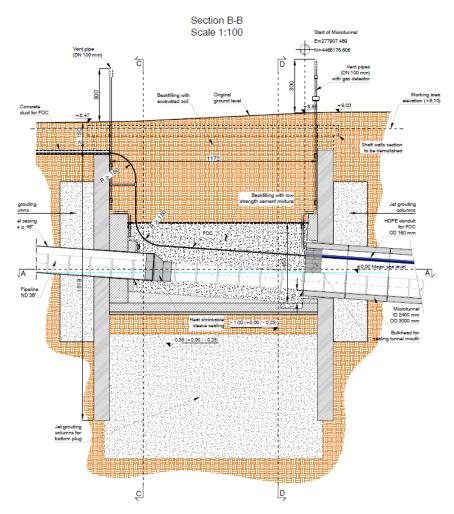


Figura 6 – Schema di ripristino del pozzo di spinta al termine dei lavori

Si stima che il volume di materiale di demolizione della struttura in c.a., fino ad una profondità di 1,5 m dal piano campagna, sia pari a circa 80 m³.

Il materiale risultante dalla demolizione di cui sopra verrà smaltito in conformità con la normativa vigente. Si prevede, in via preliminare, l'attribuzione del codice CER 17 09 04 « rifiuti misti dell'attività di costruzione e demolizione, diversi da quelli di cui alle voci 17 09 01, 17 09 02 e 17 09 03». L'area di deposito temporaneo di questo materiale sarà individuato all'interno dell'area S2; in tale area il materiale risultante dalla demolizione sarà stoccato avendo cura di mantenerlo separato dal materiale risultante dello scavo eventualmente ancora presente.

Si stima che il volume di materiale necessario per il rinterro del pozzo sia pari a circa 650 m³, in quanto la parte inferiore del pozzo sarà riempita con una miscela a base cementizia con funzioni di chiusura dell'imbocco del microtunnel e del tubo camicia e di protezione meccanica della tubazione posata durante le operazioni di demolizione del pozzo. Il tappo di fondo raggiungerà un livello pari a 4,5 m dall'estradosso della platea di base ed il completamento del rinterro del pozzo sarà effettuate riutilizzando il terreno di scavo eccedente proveniente dal PRT.

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK & SHELTER	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	9 of 21

2.3 SCAVO DEL MICROTUNNEL

Il metodo costruttivo per l'approdo italiano del gasdotto TAP prevede la realizzazione di un microtunnel tramite la tecnica del "pipe jacking", che consiste nel far avanzare a spinta conci cilindrici di calcestruzzo armato, appositamente progettati per questa funzione, all'interno di un foro contemporaneamente scavato da una macchina a scudo fresante.

Il microtunnel si svilupperà per una lunghezza di circa 1.540 metri e sarà costituito da conci tubolari in calcestruzzo armato prefabbricati in stabilimento, con diametro esterno di 3000 mm e diametro interno di 2400 mm, con giunti appositamente progettati per la tenuta idraulica e la corretta trasmissione della spinta assiale.

Lo scudo fresante (TBM), del tipo a bilanciamento idraulico della pressione, sarà posto in un "pozzo di spinta" ("Shaft" o "Entry Pit") a tenuta idraulica di dimensioni di circa 10x11x10 metri.

Il terreno, rimosso dal fronte di scavo dalla fresa in avanzamento, sarà trasportato a giorno con sistema ad umido attraverso un apposito circuito idraulico di tipo chiuso, con una condotta di mandata, dal pozzo di spinta allo scudo fresante, ed una condotta di ritorno verso l'impianto di separazione in superficie, dove il fluido attraverserà l'unità di separazione solido/liquido.

Il fluido di perforazione sarà composto da una miscela di acqua e bentonite, mentre nel tratto terminale della perforazione (Figura 7), il fluido di perforazione sarà preparato con acqua ed un polimero solubile in acqua, biodegradabile, derivato dalla cellulosa presente in natura.

L'impianto di separazione avrà la funzione di separare la frazione solida (smarino), presente nella miscela evacuata dal fronte di scavo della fresa, dalla frazione liquida e sarà composto da sotto-unità, diversificate in funzione della classe granulometrica:

- vasconi/contenitori;
- vibrovagli;
- · cicloni e vagli asciugatori;
- · centrifughe;
- filtropresse.

Il principio di funzionamento del sistema di separazione consiste nel far passare lo smarino attraverso i diversi elementi, separando prima le frazioni solide più grossolane e poi, progressivamente, quelle più fini.

Il fluido di scavo prosegue quindi il suo percorso all'interno del circuito idraulico, ed il materiale scavato viene accatastato nell'area di stoccaggio designata all'interno dell'area cantiere (area S1 e S2 in **Figura 2**) in attesa di recupero/smaltimento una volta caratterizzato in accordo alla normativa vigente.

Al termine delle operazioni di scavo eventuali fluidi in esubero saranno smaltiti in conformità con la normativa vigente.

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK SSHELTER	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	10 of 21

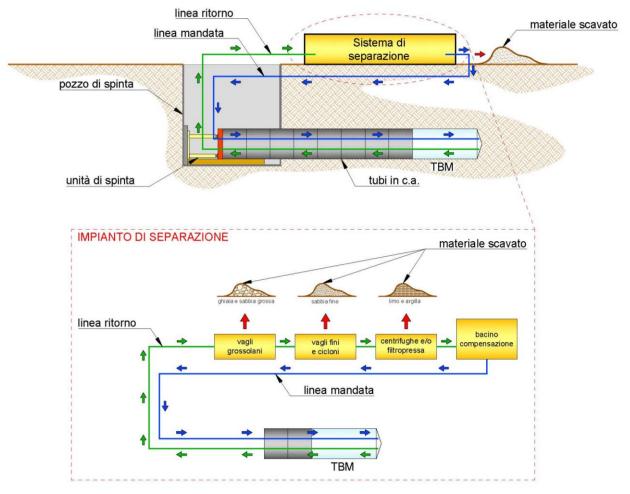


Figura 7 – Schema di funzionamento del sistema di scavo ad evacuazione idraulica del materiale di scavo

La tabella seguente riporta i volumi di scavo teorici nominali previsti per la realizzazione del microtunnel.

Fase di lavoro	Tipo di materiale movimentato	Volume (in situ)
Scavo Microtunnel	Materiale di scavo	10.890 m ³

2.4 POSA IN OPERA DEL TUBO CAMICIA

I lavori di realizzazione dell'approdo italiano prevedono l'installazione, a tergo del pozzo di spinta del microtunnel, di un tubo camicia in acciaio in continuità di allineamento con la condotta da varare all'interno del microtunnel.

Il tubo camicia in acciaio avrà un diametro esterno di almeno 1200 mm ed una lunghezza di ca. 80-85 m. Il volume di scavo teorico nominale previsto per la posa in opera del tubo di protezione è quindi pari a circa 100 m³.

Il tubo camicia verrà posto in opera mediante tecnologia trenchless. Il materiale di scavo derivante dalla trivellazione, considerata la possibile presenza nel terreno di acqua di falda, in accordo alla nota ISPRA/ARPA del 29 maggio 2017, sarà gestito come rifiuto ed accatastato nell'area di stoccaggio designata all'interno dell'area cantiere (aree S1 e S2 in Figura 2) in attesa di smaltimento, previa caratterizzazione in accordo alla normativa vigente (vedere seguente sezione 3).

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK & SHELTER	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	11 of 21

2.5 SCAVO A CIELO APERTO / TRINCEA

Una trincea, che si estende dal punto terminale del tubo camicia fino alla zona di installazione dell'argano di tiro, completa le opere di preparazione per le operazioni di tiro a terra del gasdotto sull'approdo italiano.

Si prevede che la trincea abbia una lunghezza di circa 50-55 metri ed una larghezza pari a 4 metri. Lo scavo sarà realizzato mediante escavatore ed il volume di scavo stimato è di circa 950 m³.

Il materiale di scavo, considerata la possibile presenza nel terreno di acqua di falda, in accordo alla nota ISPRA/ARPA del 29 maggio 2017, sarà gestito come rifiuto ed accatastato nell'area di stoccaggio designata all'interno dell'area cantiere (aree S1 e S2 in **Figura 2**) in attesa di smaltimento, previa caratterizzazione in accordo alla normativa vigente (vedere seguente sezione 3)

Per le successive operazioni di reinterro sarà utilizzato il terreno di scavo eccedente proveniente dal PRT.

2.6 AREE DI STOCCAGGIO DEL MATERIALE DI SCAVO

Le aree di stoccaggio del materiale di scavo individuate all'interno dell'area RFO saranno:

- Area di stoccaggio del terreno vegetale/scotico in attesa di ripristino:
 - Queste aree (A, B, C, D in Figura 2 e D, E, F in Figura 3) non prevedono nessun tipo di preparazione del terreno di fondo in quanto lo scotico non risulta essere saturo né interessato da alcuna lavorazione
- Area di stoccaggio del materiale di scavo del Pozzo di Spinta/Microtunnel/Scavo a Cielo Aperto (Trincea) e installazione del Tubo Camicia in attesa di recupero/smaltimento (deposito temporaneo gestito con criterio temporale):
 - Lo stoccaggio del materiale di scavo proveniente dalle attività di preparazione del pozzo di spinta, costruzione del microtunnel, installazione del tubo camicia e realizzazione della trincea (scavo a cielo aperto) è previsto nelle aree S1 e S2 indicate in Figura 2.

Le suddette aree saranno delimitate da un argine in terra ed impermeabilizzate mediante un telo costituito da materiale geo-composito. Al fine di preservare l'integrità del telo impermeabile uno strato di materiale inerte sarà steso al di sopra dello stesso per consentire lo svolgimento delle attività di cantiere.

In fase di ripristino questo materiale sarà recuperato ed inviato a smaltimento come rifiuto.

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK & SHELTER The Consulting to Survey Quarters	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	12 of 21

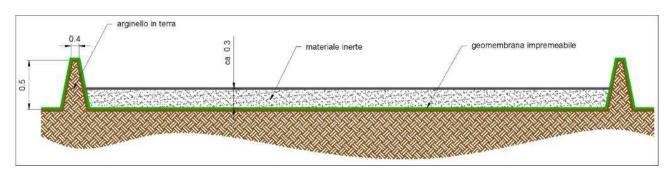


Figura 8 - Esempio di installazione tipica di un sistema di separazione

2.7 ACQUA DI FALDA

Come anticipato nei paragrafi precedenti le operazioni di scavo previste nell'area microtunell potranno raggiungere quote tali da interessare la porzione satura del terreno con presenza di acqua di falda.

In considerazione dei superamenti puntuali del parametro nichel (22 μ g/l e 44 μ g/l, rispetto al limite di 20 μ g/l) rinvenuti durante il monitoraggio ante operam nei piezometri in prossimità dell'area del microtunell ed in accordo alla nota ARPA/ISPRA del 29 maggio 2017, le acque di aggottamento eventualmente generate durante gli scavi saranno gestite nel rispetto della normativa vigente sui rifiuti.

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK SSHELTER The Consulting to Sentime your Business	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	13 of 21

3 GESTIONE DEI RIFIUTI

3.1 CRITERI DI BASE PER LA GESTIONE RIFIUTI DI PROGETTO

Durante le fasi di gestione dei rifiuti prodotti dal cantiere sarà assicurato il completo rispetto di tutte le normative applicabili, di tutte le istruzioni e procedure definite, di tutti gli standard e Best Practices relativi alla gestione dei rifiuti.

I rifiuti saranno gestiti in maniera da evitare danni ambientali o effetti nocivi sulla salute, nonché la riduzione dei costi e la gestione di potenziali passività future.

L'impresa appaltatrice dovrà promuove la minimizzazione della produzione rifiuti e promuove attività/programmi basati su principi di riduzione/riuso/riciclo del rifiuto, totale controllo della filiera di generazione, gestione, stoccaggio e deposito finale del rifiuto.

I rifiuti saranno inviati esclusivamente presso impianti esterni autorizzati ed il personale coinvolto nella movimentazione e gestione dei rifiuti sarà adeguatamente formato prima di procedere alle attività di gestione dei rifiuti stessi.

La documentazione inerente la gestione rifiuti e le attività di reporting saranno eseguiti regolarmente, in conformità alla legge vigente e ai requisiti stabiliti da TAP.

Sarà assolutamente vietato, in cantiere, bruciare o interrare rifiuti.

3.2 GERARCHIA DEI RIFIUTI

L'impresa appaltatrice promuoverà attività volte alla minimizzazione dei rifiuti. Un approccio volto alla minimizzazione dei rifiuti consiste nell'evitare, ridurre, riusare, recuperare le risorse e riciclare i rifiuti al fine di minimizzare la quantità di rifiuti che richiedono un trattamento/smaltimento, come mostrato nella **Figura 9**.

La minimizzazione dei rifiuti è generalmente raggiunta attraverso le "4R" – riduzione, riuso, riciclo, recupero.

Figura 9 – Gerarchia della gestione dei rifiuti

L'approccio di minimizzazione dei rifiuti, basato sul principio ALARP (as low as reasonably practicable), ha l'obiettivo di evitare e ridurre il volume e la tossicità dei rifiuti generati. Questo approccio è basato sull'impegno organizzato, esaustivo e continuo di ridurre sistematicamente la produzione di rifiuti.

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK & SHELTER	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	14 of 21

Le procedure di gestione dei rifiuti da adottare da parte dell'impresa appaltatrice includono le buone norme di gestione dei rifiuti relative a:

- · Comportamento del personale;
- Trattamento e inventario dei materiali;
- Registrazione e gestione documentale dei rifiuti;
- Trasferimento e smaltimento dei rifiuti;
- Gestione dell'inventario:
 - Acquisto di quantità che minimizzino i contenitori di rifiuti e la scadenza della validità;
 - Sostituzione con materiali meno pericolosi;
 - Acquisto di prodotti riutilizzabili piuttosto che smaltibili;
 - Acquisto di prodotti con meno imballaggio;
- Miglioramento delle operazioni:
 - Migliorare la ricezione, lo stoccaggio e le pratiche di trattamento dei materiali per ridurre eventuali perdite;
 - Migliorare la produzione, stoccaggio e rimozione dei rifiuti;
 - Aumentare la consapevolezza e motivazione dell'operatore incaricato;
- Modifiche dell'equipaggiamento:
 - Installare equipaggiamenti più efficienti e che generino meno rifiuti o migliorare l'efficacia dell'equipaggiamento esistente;
 - Modificare gli equipaggiamenti per facilitare il recupero dei rifiuti e il riciclaggio;
- · Cambi di metodo:
 - Separare i rifiuti per tipologia.

3.3 DEFINIZIONE E CLASSIFICAZIONE DEI RIFIUTI

3.3.1 DEFINIZIONE DEI RIFIUTI

La legislazione italiana in materia definisce come rifiuto "qualsiasi sostanza od oggetto di cui il detentore si disfi o abbia deciso o abbia l'obbligo di disfarsi".

3.3.2 CLASSIFICAZIONE DEI RIFIUTI

La classificazione dei rifiuti generati dalle attività di progetto sarà effettuata sulle basi definite dalla normativa nazionale applicabile

3.4 TIPOLOGIA DI RIFIUTI

La tabella seguente riporta un elenco dei possibili rifiuti prodotti durante le attività di costruzione presso l'approdo italiano, con indicazione del tipo di deposito temporaneo ed il tipo di impianto di destino.

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK & SHELTER	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	15 of 21

Tabella 1 – Elenco preliminare rifiuti tipici di cantiere (approdo italiano)

CER	Tipo di rifiuto	Attività di origine	Descrizio ne	Modalità di stoccaggio	Destinazione finale
01 xx xx	Rifiuti derivanti da prospe chimico di minerali	ezione, estrazione da minie	ra o cava, r	onchè dal trat	tamento fisico o
01 05 04	Fanghi e rifiuti di perforazione di pozzi per acque dolci	Fluido di perforazione residuo, non disidratato	Fangoso	Stoccaggio in vasche/baci ni dedicati.	Impianto esterno autorizzato di recupero/smalti mento
01 05 07	Fanghi e rifiuti di perforazione contenenti barite, diversi da quelli delle voci 01 05 05 e 01 05 06	Fluido di perforazione residuo, non disidratato	Fangoso	Stoccaggio in vasche/baci ni dedicati.	Impianto esterno autorizzato di recupero/smalti mento
01 05 99	Rifiuti non specificati altrimenti	Fluido di perforazione residuo, non disidratato	Fangoso	Stoccaggio in vasche/baci ni dedicati.	Impianto esterno autorizzato di recupero/smalti mento
13 xx xx	Oli esauriti e residui di con	bustibili liquidi (tranne oli c	ommestibili,	voci 05 e 12)	
13 01 10*	Oli minerali per circuiti idraulici, non clorurati	Attività di manutenzione: residui di oli minerali per circuiti idraulici, non clorurati	Liquido	Fusti con sistema di conteniment o perdite	Impianto esterno autorizzato al recupero/smalti mento per rifiuti pericolosi
13 02 05*	Oli minerali per motori, ingranaggi e lubrificazione, non clorurati	Attività di manutenzione: residui di oli minerali per motori, ingranaggi e lubrificazione, non clorurati	Liquido	Fusti/cistern ette (1000 l - 200 l) con sistema di conteniment o perdite	Impianto esterno autorizzato al recupero/smalti mento per rifiuti pericolosi
13 02 08*	Altri oli per motori, ingranaggi e lubrificazione	Altri oli per motori, ingranaggi e lubrificazione	Liquido	Fusti (200 I) con sistema di conteniment o perdite	Impianto esterno autorizzato al recupero/smalti mento per rifiuti pericolosi
13 08 02*	Altre emulsioni	Altre emulsioni	Liquido	Cisternette (1000 I) con sistema di conteniment o perdite	Impianto esterno autorizzato al recupero/smalti mento per rifiuti pericolosi
15 xx xx	Rifiuti di imballaggio; ass altrimenti	orbenti, stracci, materiali fi	Itranti e indu	ımenti protettiv	i non specificati
15 01 03	Imballaggi in legno	Casse da imballaggio in legno	Solido	Cassone da 5 mc	Impianto esterno autorizzato al recupero
15 01 06	Imballaggi in materiali misti	Imballaggio in materiali misti tipo aste in metallo, vasi e contenitori in vetro o poliestere	Solido	Cassone scarrabile da 20 mc	Impianto esterno autorizzato al recupero
15 01 10*	Imballaggi contenenti residui di sostanze pericolose o contaminati da tali sostanze	Confezioni, lattine, vasi, cilindri spray in vari materiali con residui di vernici, olii o altre sostanze pericolose	Solido	Big-bags idonei per I rifiuti pericolosi (deposito in area coperta)	Impianto esterno autorizzato al recupero/smalti mento per rifiuti pericolosi
15 02 02*	Assorbenti, materiali filtranti (inclusi filtri dell'olio non specificati altrimenti), stracci e indumenti protettivi, contaminati da sostanze pericolose	Filtri olio, filtri diesel, filtri aria, sabbia, segatura, riempitivo, stracci, stoffa, carta e altri materiali assorbenti contaminati da sostanze pericolose (tipo olio, olio diesel, diluizione, vernici, ecc.) Attività di manutenzioni, riparazioni, pulizie attrezzature medie	Solido	Contenitore chiuso da 200 l	Impianto esterno autorizzato al recupero/smalti mento per rifiuti pericolosi
16 xx xx	Rifiuti non specificati altrin		Colida	Foot :::	Impiente
16 02 16	Componenti rimossi da	Toner (fotocopiatrici e	Solido	Ecobox	Impianto

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK SHELTER TO CONSUME DESCRIPTION OF PROPERTY OF THE PROPERTY	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	16 of 21

	apparecchiature fuori uso, diversi da quelli di cui alla voce 16 02 15	stampanti)			esterno autorizzato al recupero
16 06 04	Batterie alcaline	Manutenzione	Solido	Вох	Impianto esterno autorizzato allo smaltimento
16 10 02	Rifiuti liquidi acquosi, diversi da quelli di cui alla voce 16 10 01	Surplus (alla fine delle attività) dell'acqua di processo separata dalla filtropressa	Liquido	TanksCister nett/serbatoi /container a tenuta	Impianto esterno autorizzato di recupero/smalti mento
17 xx xx	Rifiuti da costruzione e der	molizione (compreso il terre	no provenier	nte da siti contar	minati)
17 04 05	Ferro e acciaio	Residui di lavorazione e manutenzione, tipo ferro e acciaio da taglio da carpenteria metallica, ecc	Solido	Cassone in acciaio da 2 mc	Impianto esterno autorizzato al recupero
17 05 04	Terra e rocce, diverse da quelle di cui alla voce 17 05 03	Materiale di scavo	Solido / fangoso	Stoccaggio in cumuli in aree dedicate	Impianto esterno autorizzato di recupero/smalti mento
17 09 04	Rifiuti misti dell'attività di costruzione e demolizione, diversi da quelli di cui alle voci 17 09 01, 17 09 02 e 17 09 03	Materiali misti da demolizione	Solido	Stoccaggio in cumuli in aree dedicate o in cassoni a tenuta	Impianto esterno autorizzato di recupero/smalti mento
18 xx xx		sanitario e veterinario o da e non derivino direttamente			(tranne i rifiuti di
	Rifiuti che devono essere raccolti e smaltiti		Solido	Contenitore specifici specifico per	Impianto esterno autorizzato al
18 01 03*	applicando precauzioni particolari per evitare infezioni	Trattamenti medici	Collado	rifiuti medicali	recupero/smalti mento per rifiuti pericolosi
18 01 03* 20 xx xx	particolari per evitare infezioni Rifiuti Urbani (rifiuti domes	i rattamenti medici stici ed assimilabili prodotti fiuti della raccolta differenzia	da attività co	rifiuti medicali ommerciali ed ir	mento per rifiuti pericolosi
	particolari per evitare infezioni Rifiuti Urbani (rifiuti domes	stici ed assimilabili prodotti	da attività co	rifiuti medicali	mento per rifiuti pericolosi
20 xx xx	particolari per evitare infezioni Rifiuti Urbani (rifiuti domes dalle istituzioni) inclusi i rif	stici ed assimilabili prodotti fiuti della raccolta differenzia Carta e cartone da attività	da attività co	rifiuti medicali ommerciali ed ir Raccolta da cestini degli uffici e deposito in	mento per rifiuti pericolosi ndustriali nonché Impianto esterno autorizzato al
20 xx xx 20 01 01	particolari per evitare infezioni Rifiuti Urbani (rifiuti domes dalle istituzioni) inclusi i rifi Carta e cartone	ctici ed assimilabili prodotti fiuti della raccolta differenzia Carta e cartone da attività d'ufficio Bottiglie di vetro e contenitori da uffici e	da attività co ata. Solido	rifiuti medicali ommerciali ed ir Raccolta da cestini degli uffici e deposito in bidoni Raccolta da cestini degli uffici e deposito in degli uffici e deposito in in bidoni	mento per rifiuti pericolosi ndustriali nonché Impianto esterno autorizzato al recupero Impianto esterno autorizzato al autorizzato al autorizzato al autorizzato al
20 xx xx 20 01 01 20 01 02	particolari per evitare infezioni Rifiuti Urbani (rifiuti domes dalle istituzioni) inclusi i rif Carta e cartone Vetro Rifiuti biodegradabili di	catici ed assimilabili prodotti riuti della raccolta differenzia Carta e cartone da attività d'ufficio Bottiglie di vetro e contenitori da uffici e spogliatoi	da attività co ata. Solido	rifiuti medicali medicali Raccolta da cestini degli uffici e deposito in bidoni Raccolta da cestini degli uffici e deposito in bidoni Raccolta da cestini degli uffici e deposito in bidoni Raccolta da cestini degli uffici e deposito in bidoni Baccolta da cestini degli uffici e deposito in bidoni Box	mento per rifiuti pericolosi ndustriali nonché Impianto esterno autorizzato al recupero Impianto esterno autorizzato al recupero Impianto esterno autorizzato al recupero Impianto esterno autorizzato al compostaggio/r
20 xx xx 20 01 01 20 01 02 20 01 08	particolari per evitare infezioni Rifiuti Urbani (rifiuti domes dalle istituzioni) inclusi i rif Carta e cartone Vetro Rifiuti biodegradabili di cucine e mense Tubi fluorescenti ed altri	catici ed assimilabili prodotti riuti della raccolta differenzia Carta e cartone da attività d'ufficio Bottiglie di vetro e contenitori da uffici e spogliatoi Residui dei pasti Tubi fluorescenti inutilizzati da	da attività conta. Solido Solido	rifiuti medicali Paccolta da cestini degli uffici e deposito in bidoni Raccolta da cestini degli uffici e deposito in bidoni Raccolta da cestini degli uffici e deposito in bidoni Raccolta da cestini degli uffici e deposito in bidoni Box Raccolta da cestini degli uffici e deposito in bidoni	mento per rifiuti pericolosi ndustriali nonché Impianto esterno autorizzato al recupero Impianto esterno autorizzato al recupero Impianto esterno autorizzato al compostaggio/r ecupero Impianto esterno autorizzato al compostaggio/r ecupero Impianto esterno autorizzato al compostaggio/r autorizzato al compostaggio/r ecupero
20 xx xx 20 01 01 20 01 02 20 01 08 20 01 21	particolari per evitare infezioni Rifiuti Urbani (rifiuti domes dalle istituzioni) inclusi i rif Carta e cartone Vetro Rifiuti biodegradabili di cucine e mense Tubi fluorescenti ed altri rifiuti contenenti mercurio	catici ed assimilabili prodotti riuti della raccolta differenzia Carta e cartone da attività d'ufficio Bottiglie di vetro e contenitori da uffici e spogliatoi Residui dei pasti Tubi fluorescenti inutilizzati da manutenzione	da attività conta. Solido Solido Solido	rifiuti medicali Paccolta da cestini degli uffici e deposito in bidoni Raccolta da cestini degli uffici e deposito in bidoni Raccolta da cestini degli uffici e deposito in bidoni Raccolta da cestini degli uffici e deposito in bidoni Box Raccolta da cestini degli uffici e deposito in bidoni	mento per rifiuti pericolosi ndustriali nonché Impianto esterno autorizzato al recupero Impianto esterno autorizzato al recupero Impianto esterno autorizzato al compostaggio/r ecupero Impianto esterno autorizzato al compostaggio/r ecupero Impianto esterno autorizzato al recupero Impianto esterno autorizzato al recupero Impianto esterno autorizzato al recupero

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK SSHELTER The Consulting to some your Business	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	17 of 21

3.5 GESTIONE DEI RIFIUTI

3.5.1 RACCOLTA E SEGREGAZIONE DEI RIFIUTI

La raccolta dei rifiuti in cantiere sarà condotta in maniera da prevenire:

- rischi per la salute dei lavoratori e della comunità;
- inquinamento dell'ambiente;
- il riprodursi di animali nocivi;
- odori, polvere, condizioni sgradevoli e di disturbo;
- corrosione del container di stoccaggio e sversamenti/perdite accidentali.

La raccolta e la differenziazione dei rifiuti sarà stabilita in accordo con la loro natura generale, fisica e chimica, e sulla base della loro classificazione di pericolosità, potenziale di riuso o riciclo e smaltimento finale.

La raccolta e la separazione di rifiuti tra pericolosi e non pericolosi sarà sempre una priorità. Ogni volta che un lavoratore non possa determinare se uno scarto sia da considerarsi pericoloso o non pericoloso, dovrà trattare i rifiuti come pericolosi, non avvicinarsi più ai rifiuti e chiamare un supervisore qualificato perché determini il corretto trattamento e trasporto del materiale di scarto.

Tutti i materiali di scarto saranno separati, raccolti, stoccati e trasportati separatamente in appropriati unità di raccolta (es. bidoni e containers).

Per quanto riguarda i rifiuti generati dalle attività di scavo e demolizione saranno raccolti in cumuli e segregati nelle apposite aree di stoccaggio. La movimentazione dei mezzi di trasporto delle terre avverrà con l'utilizzo di accorgimenti idonei ad evitare la dispersione di polveri (bagnatura delle vie di accesso al cantiere, telonatura, e lavaggio ruote dei mezzi di trasporto)..Tutti i containers, bidoni etc. saranno etichettati in doppia lingua se richiesto. I lavoratori saranno informati di che tipo di rifiuto dovrebbe o non dovrebbe essere depositato in essi. I containers e i bidoni per metallo, plastica, carta/cartone saranno colorati in colori differenti per una facile identificazione.

Containers, bidoni dei rifiuti saranno etichettati in modo da indicare:

- la denominazione dei rifiuti;
- il codice europeo dei rifiuti (C.E.R.);
- una fascia colorata identificante il tipo di rifiuto;
- una targa gialla con una R nera, che mostri la presenza di rifiuti pericolosi all'interno del contenitore.

In tutte le aree operative poster informativi saranno resi disponibili, descrivendo le specifiche caratteristiche dei tipi di rifiuti in modo da permettere un'appropriata caratterizzazione degli stessi.

I bidoni/ container/ cassoni dei rifiuti saranno coperti per evitare odori, disturbo di mosche o la presenza di uccelli e adattato con una vasca di contenimento per raccogliere tutti i possibili sversamenti.

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK & SHELTER	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	18 of 21

3.5.2 AREE TEMPORANEE DI DEPOSITO DEI RIFIUTI PRESSO L'APPRODO ITALIANO.

Le aree di deposito temporaneo dei rifiuti facilmente identificabili sono state stabilite all'interno del cantiere, dove i rifiuti generati dal Progetto saranno trasferiti e depositati prima del successivo trasferimento a smaltimento/recupero.

Le aree di deposito temporaneo saranno delimitate con apposita cartellonistica ed identificate. I materiali di scarto provenienti dalle attività di cantiere saranno depositate differenziando i materiali riusabili, i rifiuti pericolosi e i non pericolosi.

Il deposito temporaneo dei rifiuti nelle aree predisposte sarà in accordo con le seguenti disposizioni:

- il deposito temporaneo dei rifiuti sarà organizzato in accordo con la legislazione italiana;
- le aree di deposito dei rifiuti saranno separate dalle aree di produzione, uffici e stoccaggio di materie prime e saranno posizionate in aree non accessibili ad animali e avranno un basso rischio di emissioni potenziali, perdite, incendio, esplosioni ed inondazione;
- i rifiuti non saranno stoccati in vicinanza di aree ad elevata sensibilità ambientale;
- le aree di deposito temporaneo dei rifiuti saranno di dimensione e capacità adeguate a contenere il numero richiesto di containers coerente con la normale produzione di rifiuti e il programma di raccolta;
- containers/bidoni contenenti liquidi pericolosi di scarto saranno posizionati in aree pavimentate dotate di sistemi di contenimento di eventuali perdite;
- nessun bidone o containers dovrà essere depositato direttamente sul suolo.

Le terre e rocce da scavo gestite come rifiuto ed i materiali prevenienti dalle demolizioni saranno ubicati nelle apposite aree di stoccaggio temporaneo designate all'interno del cantiere. La superficie dell'area di stoccaggio sarà impermeabilizzata con un telo in modo da garantire l'idoneo isolamento dal suolo.

I rifiuti liquidi saranno messi a deposito in area cordolata con capacità di stoccaggio pari al 110% del volume di rifiuto depositato (per singolo contenitore), o pari al 25% del volume totale dei rifiuti depositati presso l'area cordolata.

Le aree di deposito temporaneo saranno rese accessibili ai veicoli.

Sistemi antincendio ed attrezzature per il contenimento e gestione degli sversamenti saranno rese disponibili presso le aree di deposito rifiuti; tali attrezzature saranno sempre pronte all'uso.

I liquidi infiammabili saranno essere messi a deposito separatamente. Non sarà permesso effettuare lavorazioni che possono produrre scintille all'interno delle aree di deposito dei liquidi infiammabili.

Saranno realizzate apposite, e ben evidenziate, aree per il deposito dei rifiuti pericolosi e non pericolosi; saranno posizionati idonei cartelli in posizione ben visibile contenenti descrizioni dei rifiuti contenuti, specifiche indicazioni di sicurezza, e specifiche indicazioni in merito alle procedure di emergenza

I materiali oggetto di riciclo o riutilizzo, saranno idoneamente separati dai materiali oggetto di smaltimento.

Sarà predisposta idonea cartellonistica al fine di informare le maestranze in relazione ai pericoli ed ai DPI necessari all'interno delle aree di deposito rifiuto.

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK SHELTER The Consulting to Senting your Business	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	19 of 21

I rifiuti/materiali pericolosi saranno messi a deposito insieme alle relative schede di sicurezza (MSDS) al fine di informare il personale operativo in relazione alle precauzioni da tenere durante la movimentazione, il trasporto e il deposito dei rifiuti.

I liquidi pericolosi dovranno essere messi a deposito in contenitori chiusi, a prova di perdita, e costruiti con materiali compatibili con il rifiuto in essi contenuto.

La quantità di rifiuti messi a deposito dovrà essere mantenuta al minimo possibile, in ogni caso rispettando le tempistiche definite dalla normativa italiana vigente.

I contenitori con perdite, corrosi o danneggiati dovranno essere sostituiti con idonei contenitori in buone condizioni.

Saranno adottate specifiche procedure operative per assicurarsi che i contenitori non vengano riempiti oltre il consentito e che gli stessi contenitori vengano coperti al fine di evitare spargimenti di rifiuto nelle immediate vicinanze.

Tutte le aree di deposito e le attrezzature per la movimentazione dei rifiuti saranno mantenute in buone condizioni e pulite regolarmente

Tutte le aree di deposito rifiuti saranno regolarmente ispezionate verificando le condizioni generali, eventuali spillamenti e le condizioni della cartellonistica.

Sarà assicurata la fornitura di idonei contenitori per il deposito temporaneo almeno delle seguenti tipologie di rifiuti:

- 1. rifiuti derivanti dalle attività di costruzione:
- 2. filtri usati, materiali assorbenti sporchi, stracci e abiti da lavoro sporchi;
- 3. olii esausti;
- 4. imballaggi non contaminati (divisi per tipo, in accordo ai codici CER);
- 5. imballaggi contaminati;
- 6. sfridi di ferro e acciaio;
- 7. rifiuti assimilabili agli urbani (uffici):
 - rifiuti organici,
 - carta e cartone,
 - plastica,
 - vetro,
 - rifiuti indifferenziati misti (secco)
 - batterie
 - toner (fotocopiatrici e stampanti)
 - altri rifiuti (se necessario)
- 8. rifiuti sanitari;
- 9. suolo contaminato da idrocarburi (forniti in quantità necessaria, in caso di sversamenti al suolo o ritrovamenti di suolo contaminato durante gli scavi).

Saranno tenuti a disposizione in cantiere ulteriori unità di stoccaggio da utilizzare in caso di necessità.

3.5.3 MOVIMENTAZIONE DEI RIFIUTI

Tutto il personale operativo coinvolto nelle attività di movimentazione rifiuti sarà adeguatamente istruito in materia ed equipaggiato con adeguati dispositivi di protezione individuale (DPI).

L'impresa appaltatrice sarà responsabile della pulizia giornaliera delle aree di lavoro; in particolare si provvederà alla fornitura di specifici sistemi per la raccolta dei residui di cibo e delle bottiglie di plastica, immediatamente a valle della pausa pranzo.

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK SSHELTER	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	20 of 21

3.5.4 TRASPORTO DEI RIFIUTI

Tutti i rifiuti generati durante le attività di costruzione saranno trasportati, agli idonei impianti esterni di recupero/smaltimento, in maniera sicura e responsabile, per mezzo di trasportatori legalmente autorizzati.

Prima dell'inizio delle attività, saranno stipulati contratti con idonee società di trasporto autorizzate al trasporto dei rifiuti prodotti.

L'impresa appaltatrice assicurerà che tutti i subappaltatori incaricati, per proprio conto, delle attività di gestione finale del rifiuto (stoccaggio, trattamento, recupero, smaltimento) siano competenti ed effettueranno le proprie attività conformemente alle normative vigenti.

Tutti i rifiuti, dalle aree di deposito temporaneo agli impianti finali di recupero/smaltimento, saranno trasportati da società autorizzate ed iscritte all''Albo Nazionale Gestori Ambientali'.

Tutti i mezzi di trasporto saranno verificati in cantiere al fine di controllare se effettivamente il singolo mezzo è idoneo al trasporto dello specifico codice CER.

Il trasporto rifiuti dovrà avvenire in accordo alle seguenti prescrizioni:

- i rifiuti saranno divisi per tipologia, caratteristiche di pericolosità e reattività reciproca (rispettando le medesime divisioni adottate nelle aree di deposito temporaneo);
- non sarà permesso il sovraccarico dei container;
- le attività di carico e scarico saranno effettuate, nel limite del possibile, mediante mezzi meccanici al fine di escludere la possibilità di spandimenti e perdite;
- completamento corretto della documentazione di accompagnamento del rifiuto (F.I.R. Formulario di Identificazione del Rifiuto); il formulario sarà completato in ogni sua parte e
 accompagnerà il trasporto del rifiuto. Per i rifiuti pericolosi sarà necessaria la Scheda
 Movimentazione SISTRI. La documentazione completa sarà redatta in accordo alla
 normativa italiana vigente.

Le attività di gestione rifiuti saranno effettuate da personale adeguatamente formato e supervisionato dal responsabile al fine di garantire la sicura movimentazione del rifiuto.

Prima di effettuare il carico dei rifiuti, il veicolo del trasportatore autorizzato sarà soggetto a ispezione visiva da parte di personale dell'impresa appaltatrice o subappaltatrice, al fine di assicurare che il mezzo sia idoneo al trasporto dello specifico codice CER e che non sia in sovraccarico.

Il veicolo sarà completamente chiuso o coperto al fine di evitare perdite di rifiuto durante il trasporto su strada.

Il trasportatore autorizzato assicurerà:

- l'idoneità di veicoli/equipaggiamenti per effettuare le attività richieste, incluso le specifiche autorizzazioni per ogni codice CER trasportato e, per i rifiuti pericolosi, i mezzi saranno dotati di black box per il sistema SISTRI, in conformità con la normativa italiana vigente in materia;
- il trasporto dei rifiuti liquidi mediante container a tenuta;
- il trasporto dei rifiuti solidi mediante container chiusi o coperti;
- conducenti dei mezzi di trasporto idoneamente formati, in particolare sui potenziali pericoli legati ai rifiuti trasportati ed alle relative misure/procedure di risposta alle emergenze;
- la dotazione di apposito sistema di tracciabilità degli incidenti e delle emergenze occorse, con relative procedure di risposta/gestione;
- mezzi sono equipaggiati con idonei sistemi antincendio, sistemi di contenimento delle perdite e DPI.

Trans Adriatic Pipeline	TAP AG Doc. no.:	ILF01-C5577-100-Y-TTM-0001	Rev. No.:	0
RSK & SHELTER	Doc. Title:	Piano di gestione dei materiali provenienti dal Microtunnel per l'approdo italiano del gasdotto	Page:	21 of 21

3.5.5 TRATTAMENTO/SMALTIMENTO FINALE

I rifiuti prodotti dalle attività di progetto potranno essere inviati a:

- Idonei impianti esterni autorizzati di recupero
- Idonei impianti esterni autorizzati di smaltimento

Successivamente alla caratterizzazione e classificazione dei rifiuti sarà definita l'appropriata destinazione finale dei rifiuti in accordo con la gerarchia dei rifiuti.

3.5.6 DOCUMENTAZIONE RELATIVA AI RIFIUTI – TRACCIABILITÀ

La tracciabilità dei rifiuti, dalla produzione fino al destino finale, sarà garantita in completo accordo con la normativa italiana vigente, gli standard internazionali, i requisiti definiti da TAPe gli standard definiti dall'impresa appaltatrice.

Il produttore dei rifiuti presso il cantiere dell'approdo italiano sarà responsabile della compilazione e gestione di tutta la documentazione prevista dalla normativa italiana, incluso il Registro di carico e scarico dei rifiuti ed il Formulario di Identificazione del Rifiuto (FIR).

In relazione alla produzione di rifiuti pericolosi, in accordo con i requisiti stabiliti dal sistema SISTRI (previsto dalla normativa italiana in vigore), il produttore / trasportatore compilerà il Registro Cronologico SISTRI e la Scheda Movimentazione SISTRI, così come previsto dalla normativa italiana in vigore.