

Anas SpA

Direzione Progettazione e Realizzazione Lavori

S.S. 131 ₫. "Carlo Felice"

Adeguamento e Risoluzione dal km dei nodi 158+000 messa in sicurezza della S.S.131 dei nodi critici — 1° stralcio 158+000 al km 162+700

PROGETTO

ESECUTIVO

CA283

	PROGETTAZIONE:
	ANAS-Direzione
(Progettazione
	e Realizzazione
	Lavori

PROGETTISTI:

Ordine Ing. Acrille DEVIORANCESCHI Ordine Ing. di Roma n. 19116	Dott. Ing. Alessandro MICHELI Ordine Ing. di Roma n. 19645	Aless g. di	Rom	ro MIC	HELI 19645
IL GEOLOGO					
Dott. Geol. Serena MAJETTA					
Ordine Geol. Lazio n. 928					
COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE Geom. Fabio QUONDAM	ZZA IN F/	\SE [⊆	ROGE	TTAZIONE
VISTO: IL RESP. DEL PROCEDIMENTO	ENTO				
Dott. Ing. Salvatore FRASCA					
PROTOCOLLO	DATA				

DATA

Relazione **GEOTECNICA** geotecnica generale

REV.	A	В	C	D	LOPLSP	CODICE PROGETTO PROGETTO LIV	
DESCRIZIONE	EMISSIONE				E 1	QOETTO LIV. PROG. N. PROG.	
					CODICE TOO GE OO GET REO1	NOME FILE T00GE00GETRE01A	
DATA					ET REI		
REDATTO	ing. A. Mangiola				01		
VERIFICATO	ing. E. Mittiga ing. A. Micheli				A	REVISIONE	
VERIFICATO APPROVATO	ing. A. Micheli				I	SCALA:	

S.S. 131 di "Carlo Felice"

Adeguamento e messa in sicurezza della S.S. 131

Risoluzione di nodi critici – 1° stralcio

Dal km 158+000 al km 162+700

Relazione geotecnica generale

INDICE

_	INTROD	INTRODUZIONE	O
2	RIFERI	RIFERIMENTI NORMATIVI E BIBLIOGRAFICI	7
	2.1	NORMATIVA DI RIFERIMENTO	7
	2.2	DOCUMENTI DI RIFERIMENTO PROGETTUALE	. 7
	2.3	SOFTWARE	. 7
ω	OPERE D'ARTE)'ARTE	
4.	ELEMEN	ELEMENTI GEOLOGICI DI INQUADRAMENTO	6
	4.1	ASSETTO GEOLOGICO LOCALE	10
.51	INDAGI	INDAGINI GEOTECNICHE	- 1
	5.1	SVINCOLO DI BONORVA SUD	$\frac{1}{2}$
	5.1.1	Indagini geognostiche pregresse	11
	5.1.2	Indagini geognostiche a base del PD del 2015	11
	5.2	SVINCOLO DI BONORVA NORD	4
	5.2.1	Indagini geognostiche pregresse	14
	5.2.2	Indagini geognostiche a base del PD del 2015	.20
	5.2.3	Indagini geognostiche a base del PE del 2017	.25
	CARATT	CARATTERIZZAZIONE GEOTECNICA	.30
_	6.1	CRITERI DI INTERPRETAZIONE DELLE INDAGINI	.30
	6.1.1	Depositi incoerenti	30
	6.1.2	Depositi coesivi	.35
	6.1.3	Materiali lapidei	38

6.2	SVINCOLO DI BONORVA SUD	.43
6.2.1	Unità geotecniche	43
6.2.2	Unità Rv – terreno vegetale	43
6.2.3	Unità Ra – riporto antropico (rilevato stradale)	43
6.2.4	Unità Cs – coltre superficiale ghiaioso sabbiosa	43
6.2.5	Unità Ba – Basalto di Campeda	.44
6.2.6	Sintesi parametri geotecnici di progetto – svincolo Bonorva SudSudini di progetto – svincolo Bonorva Sud	. 61
6.3	Svincolo di Bonorva Nord	.62
6.3.1	Unità geotecniche	.62
6.3.2	Unità Rv – terreno vegetale	.62
6.3.3	Unità Ra — riporto antropico	.62
6.3.4	Unità LAS – limo argilloso sabbioso	.63
6.3.5	Unità GS – ghiaia sabbiosa	.65
6.3.6	Unità M, Si, C, Ar – Formazione di Mores marnosa, siltosa, calcarenitica, arenacea	.66
6.3.7	Unità Ba – Basalti del Lugudoro	.69
6.3.8	Sintesi parametri geotecnici di progetto – svincolo Bonorva Nord 1	121
6.4	ADEGUAMENTO S.P. 1251	123
6.4.1	Unità geotecniche	126
7. CARATT	CARATTERIZZAZIONE GEOTECNICA OPERE1	127
7.1	Svincolo di Bonorva Nord1	127
7.1.1	Muro di sottoscarpa OS03 SS 131 da pk 0+091.25 a pk 0+190.771	127

197	SEZIONI DI CALCOLO	9.2	
197	PREMESSA	9.1	
197	ANALISI DEI CEDIMENTI E DEL LORO DECORSO NEL TEMPOO	ANALISI	.9
196	AZIONI SISMICHE DI PROGETTO	8.3	
195	CATEGORIA DI SOTTOSUOLO	8.2	
194	RISPOSTA SISMICA	8.1	
194	CARATTERIZZAZIONE SISMICA	CARATT	œ
189	Paratia di Controripa OS01 da pk 3+687.14 a pk 3+876.12	7.2.3	
176	7.2.2 OS12 SP125 da pk 4+117.74 a pk 4+189.49 e muro di sottoscarpa OS02 SP125 da pk 4+227.713 a pk 4+345.210	7.2.2 4+227.7.	
170	Muro di sottoscarpa OS11 SP125 da pk 3+712.83 a pk 3+750.00	7.2.1	
170	ADEGUAMENTO S.P. 125	7.2	
169	Rafforzamento corticale OS14 da km 1+373.59 a km 1+650.00	7.1.9	
168	Muro di sottoscarpa OS16 da pk 0+270.00 a pk 0+351.48	7.1.8	
168	Muro di controripa OS15 da pk 0+058.97 a pk 0+074.96	7.1.7	
167	Paratia di controripa Rampa A OS04 da pk 0+074.80 a pk 0+107.9494	7.1.6	
⁷ 2 a pk 158	7.1.5 Sottovia Scatolare - Muri Andatori OS09 da pk 0+959.00 a pk 1+028.33 e da pk 0+981.72 a pk 1+110.06, Muro di sottoscarpa OS10 da pk 0+126.80 a pk 0+177.32158	7.1.5 1+110.0	
na OS08 144	7.1.4 Muro di sottoscarpa OS07 Rampa D da pk 0+155.45 a pk 0+522.83 e muro di sottoscarpa OS08 Viabilità Interpoderale 1 da pk 0+300.00 a pk 0+513.31144	7.1.4 Viabilità i	
138	Muri di controripa OS06 Rampa C da pk 0+003.000 a pk 0+312.926	7.1.3	
129	Muro di sottoscarpa OS05 Rampa B da 0+083.63 a pk 0+308.53	7.1.2	

9.3	RISULTATI
10. AN/	ANALISI DI STABILITA'199
10.1	Premessa
10.2	METODOLOGIE DI CALCOLO VERIFICA DI STABILITÀ199
10.3	AZIONI SISMICHE PER ANALISI DI STABILITÀ200
10.4	Sezioni di calcolo
10.5	RISULTATI
11. PIA	PIANO DI POSA
12. APF	APPENDICE A. ANALISI DEI CEDIMENTI. METODOLOGIE DI CALCOLO E TABULATI CED 207
12.1	Metodologie di calcolo. Analisi dei cedimenti per rilevati
12.2	CEDIMENTI TOTALI RILEVATO
12.3	CEDIMENTI IMMEDIATI RILEVATO
13. APF	APPENDICE B. ANALISI DI STABILITA'. METODOLOGIE E TABULATI DI CALCOLO SLIDE . 215
13.1	RILEVATO – ANALISI DI STABILITÀ STATICA SLU215
13.2	RILEVATO – ANALISI DI STABILITÀ SISMICA SLU225
13.3	Trincea sez 103 SS131 – analisi di stabilità statica SLU con chiodatura
13.4	TRINCEA SEZ 104 SS131 – ANALISI DI STABILITÀ SISMICA SLU CON CHIODATURA242

1. INTRODUZIONE

svincoli di Bonorva Sud e Bonorva Nord, sull'asse principale della S.S. 131, e l'adeguamento, nel tratto da essi sotteso, della S.P. 125. nodi critici - 1º stralcio". Lo stralcio progettuale oggetto di questo studio ricade in località Bonorva, interessando i due "Adeguamento e messa in sicurezza della S.S. 131 "Carlo Felice", dal km 158+000 al km 162+700, con risoluzione dei Nel presente documento si riporta la caratterizzazione geotecnica generale per il Progetto Esecutivo denominato

Quindi nel seguito verranno affrontati i seguenti aspetti:

- breve inquadramento geologico;
- descrizione delle indagini geotecniche in sito ed in laboratorio;
- descrizione dei criteri di interpretazione delle indagini;
- definizione dei parametri geotecnici di progetto; definizione delle unità geotecniche intercettate, elaborazione dei risultati delle indagini in sito ed in laboratorio,
- caratterizzazione geotecnica (definizione stratigrafia e parametri geotecnici di progetto) per le singole opere;
- caratterizzazione sismica;
- analisi dei cedimenti dei rilevati e decorso nel tempo;
- analisi di stabilità rilevati e trincee;
- piano di posa.

La normativa di riferimento per il progetto in esame è quella di cui alle NTC 2008.

2. RIFERIMENTI NORMATIVI E BIBLIOGRAFICI

2.1 Normativa di riferimento

- \mathbb{Z}_{1} G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30. Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni",
- [N2] costruzioni" di cui al D.M. 14 gennaio 2008. Circolare 2 febbraio 2009, n. 617 - Istruzioni per l'applicazione delle "Nuove norme tecniche per le
- \mathbb{Z}_3 dell'Ordinanza P.C.M. 3274 del 20.3.2003" Delibera Regione Autonoma della Sardegna n. 15/31 del 30.03.2004 "Disposizioni preliminari in attuazione

2.2 Documenti di riferimento progettuale

- [D.1]. T00_GE00_GEO_RE07_A - "Relazione geologica e idrogeologica"
- [D.2] T00_GE00_GEO_PU01_A - "Planimetria ubicazione indagini – tav 01/04"
- [D.3] T00_GE00_GEO_PU02_A - "Planimetria ubicazione indagini – tav 02/04"
- [D.4]. T00_GE00_GEO_PU03_A - "Planimetria ubicazione indagini – tav 03/04"
- [D.5]. T00_GE00_GEO_PU04_A - "Planimetria ubicazione indagini – tav 04/04"
- [D.6]. T00_GE00_GEO_RE01_A - "Documentazione indagini geognostiche preesistenti".
- [D.7]. T00_GE00_GEO_RE02_A - "Documentazione indagini geofisiche preesistenti"
- [D.8]. T00_GE00_GEO_RE03_A - "Certificati prove di laboratorio preesistenti"
- [D.9]. T00_GE00_GEO_RE04_A - "Documentazione indagini geognostiche"
- [D.10]. [D.11]. T00_GE00_GEO_RE06_A - "Certificati prove di laboratorio". T00_GE00_GEO_RE05_A - "Documentazione indagini geofisiche"
- [D.12]. T00_GE00_GEO_RE08_A "Relazione geostrutturale".
- [D.13]. T00_GE00_GEO_CG01_A "Carta geologica generale".
- [D.14] T00_GE00_GEO_CG02_A÷ T00_GE00_GEO_CG05_A - "Carta geologica di dettaglio"
- [D.15]. T00GE00GETRE02_A "Relazione sismica".
- [D.16]. Risoluzione dei nodi critici – 1° stralcio dal km 158+000 al km 162+700. Dr. Antonello Angius. Indagine geognostica – Marzo 2017. "– Adeguamento e messa in sicurezza della S.S. 131 di Carlo Felice.
- 204/04/2017 Relazione tecnica sulle indagini - Prospezione geofisica con sismica a rifrazione. Gepservice

2.3 Software

Rockscience - Slide 7. Il programma di calcolo è stato adottato per le verifiche di stabilità, è prodotto da

codice di calcolo e l'idoneità di utilizzo nel caso specifico quanto prescritto nel paragrafo 10.2 del D.M. 14/01/2008, il progettista certifica la affidabilità del suddetto Rocscience. E' validato ed utilizzato in svariati ambiti progettuali (Italferr, Autostrade, ecc.). In accordo a

- Rockscience –RocLab. Determinazione parametri di resistenza della roccia in base al criterio di rottura di Hoek-Brown.
- E' validato ed utilizzato in svariati ambiti progettuali (Italferr, Autostrade, ecc.). CED (G. Guiducci, versione 1999). Il programma di calcolo è stato adottato per la valutazione dei cedimenti.

3. OPERE D'ARTE

avranno delle fondazioni come riportate nella seguente tabella. In considerazione della natura dei terreni, della morfologia dei luoghi e dell'entità dei carichi attesi, queste opere della S.P. 125) hanno comportato l'introduzione nuove opere d'arte o la sostituzione delle esistenti da ammodernare. Gli interventi previsti nella tratta interessata dall'intervento (nuovi svincoli, adeguamento di svincoli e riqualificazione

Opera d'arte	Parte d'opera	Tipo fondazione
Cavalcavia Svincolo Bonorva Sud	Spalle	Diretta
Cavalcavia Svincolo Bonorva Sud	Muri di Risvolto	Diretta
Sottovia Svincolo Bonorva Nord	Scatolare	Diretta

opere di sostegno. natura dei terreni, della morfologia dei luoghi e delle altezze. Nella seguente tabella si riporta una sintesi delle in delle opere di sostegno in c.a. di altezza variabile con fondazione diretta e profonda su micropali a seconda della A sostegno delle rampe di svincolo, della viabilità interferita e della strada provinciale da riqualificare sono previste

18	17	16	15	14	13	12	⇉	10	9	œ	7	6	5	4	ω	2		p.
SS131	SS131	SS131	SP125	SS131	SS131 muri andatori cavalcavia Bonorva Sud	SS131 muri andatori sottovia	Interpoderale 1	Rampa D Bonorva Nord	Rampa C Bonorva Nord	Rampa B Bonorva Nord	Rampa A Bonorva Nord	SS131	SS131	SP125	SP125	SP125	SP125	Asse
OS16	OS15	OS14	OS13	OS10	CV01	OS09	OS08	OS07	OS06	OS05	OS04	OS03	OS03	OS11	OS02	OS12	OS01	Codice
Muro di sottoscarpa	Muro di controripa	Rafforzamento corticale	Barriere paramassi	Muro di sottoscarpa	Muri di risvolto spalle	Muri andatori	Muro di Sottoscarpa	Muro di Sottoscarpa	Muro di Controripa	Muro di Sottoscarpa	Paratia di Controripa	Paratia provvisionale	Muro di Sottoscarpa	Muro di Sottoscarpa	Muro di Sottoscarpa	Rafforzamento corticale	Paratia di controripa	Tipo
0+270	0+059	1+374	3+190	0+127		0+959	0+300	0+155	0+003	0+084	0+075	0+077	0+091	3+713	4+228	4+118	3+687	dal km
0+351	0+075	1+650	3+800	0+177		1+028	0+513	523	0+313	0+309	0+108	0+200	0+191	3+750	4+345	4+189	3+876	al km
86	16	245 dx +164 sx	680	82	7+7+7+7	58+40+13+29	208	373	310	222	35	124	103	40	140	60	177	Sviluppo (m)

4. ELEMENTI GEOLOGICI DI INQUADRAMENTO

grande scala è ricavabile dall'esame della Carta Geologica generale di progetto geologica di progetto e, in particolare, dalla relazione geologica ed idrogeologica (cfr. [D.1]). Un inquadramento a L'inquadramento geologico, geomorfologico ed idrogeologico generale del sito è ricavabile dalla documentazione

4.1 Assetto geologico locale

antico al più recente. unità formazionali, che coprono un intervallo di tempo che va dal Cambriano all'Attuale, e di seguito elencati dal più complessi geologici, di natura da sedimentaria marina a continentale a vulcanica, a loro volta comprendenti diverse Geologica d'Italia in scala 1:100.000. I terreni affioranti lungo il tratto studiato sono stati accorpati all'interno di diversi L'area all'interno della quale si collocano gli interventi in progetto ricade nel Foglio n. 193 "Bonorva", della Carta

Successione sedimentaria Oligo-miocenica del Logudoro-Sassarese:

Formazione di Mores

Basalti della Campeda-Planargia:

Subunità di Campeda

Basalti del Logudoro:

- Subunità di Semestene
- Coltri eluvio-colluviali
- Depositi antropici

Per ulteriori dettagli si rimanda alla relazione geologica ed idrogeologica (cfr. [D.1]).

5. INDAGINI GEOTECNICHE

5.1 Svincolo di Bonorva Sud

seguenti campagne geognostiche: Per l'adeguamento e messa in sicurezza della SS 131 "Carlo Felice" svincolo Bonorva Sud, sono state eseguite le

- indagine pregresse : campagna geognostica del 1997 Soiltecnica s.r.l. di Nuoro;
- indagini a base del P.D.: campagna geognostica del 2015.

5.1.1 Indagini geognostiche pregresse

Durante la campagna geognostica del 1997 sono state eseguite nell'area le seguenti indagini in sito:

- n. 1 sondaggio a carotaggio continuo denominato F19dx;
- n. 3 pozzetti esplorativi spinti fino al raggiungimento del substrato lapideo

Nel corso della campagna geognostica sono state svolte le seguenti attività:

- fotografica a colori delle cassette catalogatrici; rilievo stratigrafico con descrizione dei materiali intercettati, indicazione di RQD in roccia, documentazione
- esecuzione di prove penetrometriche dinamiche SPT;
- rilievo del livello di falda a 24 ore da fine esecuzione sondaggio, con indicazione dell'eventuale livello rilevato sulla stratigrafia del sondaggio.

ı				0.51	PF18sx
ı	1	Ľ		0.41	PF17sx
1	1	1	1	0.61	PF16dx
	1	1	1	20.0	F19dx
		Ξ			
litoidi [-]	indisturbati [-]	rimaneggiati	Ξ	[m]	/ pozzetto
n. campioni	n. campioni	n. campioni	N. SPT	Profondità	Sondaggio

Tabella 1 – Indagini in sito campagna 1997 – Bonorva Sud

5.1.2 Indagini geognostiche a base del PD del 2015

Dalla ditta Sondedile s.r.l. sono stati eseguite le seguenti indagini:

- n. 2 sondaggi a carotaggio continuo denominati S6Pz, S7 spinti fino a 20 m.
- n. 4 pozzetti esplorativi: (Pz34, Pz34bis, Pz35, Pz36) con prelievo di un campione rimaneggiato ciascuno ed una prova di carico su piastra (solo su PZ36).

Tabella 2 – Indagini in sito campagna 2015 – Bonorva Sud

		1	ingagiii iii oloo caiiik	The second secon	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Sondaggio	Profondità	N. SPT	n. campioni	n. campioni	n. campioni	Strumentazione
/ pozzetto	[m]	Ξ	rimaneggiati	indisturbati [-]	litoidi [-]	
			[-]			
S6Pz	20.0	1	1	-	4	TA [3÷20]
S7	20.0	2	ω	1	4	ı
PZ34	0.30		1	-	1	I
PZ34bis	0.20		1	-	-	ı
PZ35	0.35		1	-	-	ı
PZ36	1.00		1	-	-	ı
TA [m]: piezor	TA [m]: piezometro a tubo aperto [tratto filtrante]	o [tratto filtr	ante]			

Regime delle pressioni neutre

circa 15 m di profondità da piano campagna. Le indagini eseguite in situ hanno evidenziato, come riportato in tabella seguente la presenza di falda sotterranea a

10/07/2015	14,89	12/06/2015	20,00	tubo aperto	86
Data	metri da p.c.	INSTALLAZ.	(m da pc)	III O DI FILECIMETRO	SOMBAGGIO
ZOMETRICHE	LETTURE PIEZOMETRICH	DATA DI	PROFONDITA'	TIBO DI DIEZOMETDO	SONDAGGIO

Laboratorio indagini campagna 2015:

Nelle seguenti tabelle si riportano i risultati delle prove di laboratorio:

prove di laboratorio nei terreni:

- analisi granulometriche;
- limiti di Atterberg,
- determinazione peso di volume naturale:
- determinazione contenuto naturale d'acqua;
- prove di taglio diretto;

prove di laboratorio nelle rocce:

- determinazione peso di volume naturale:
- prove a compressione monoassiale;
- prove di Point Load Test.

Tabella 3 – Laboratorio campagna 2015 – Bonorva Sud | S6Pz-2015 | S6Pz-2015 | S6Pz-2015 | S7-2015 | S7-201

Sondaggio		S6P>-2015	S6P-2015 S6P-2015 S6P-2015 S6P-2015	S6P>-2015	S6P>-2015	S7-2015						
Campione		三	Li2	Li3	댇	spt1	spt2	R	三	Li2	Lï3	
Tipo		rim	rim	rim	rim	rim	rim	rim	rim	rim	rim	
Unità	-	Ba	Ва	Ba	Ва	GS	GS	GS	Ва	Ba	Ва	
Prof.	m	0.80	4.20	9.60	15.20	2.60	6.15	4.25	7.15	9.85	13.65	\Box
Granulom e tria	ຜ											
G	%					58.0	91.0	59.0				
S	%					30.0	7.0	14.0				
L +A	%					12.0	2.0	16.0				
_	%					12.0	2.0					\neg
Α	%					0.0	0.0					
Limiti di Atterberg	berg											
WL	%							64.2				
W _P	%							29.0				
l _c	-							0.89				
ا	%							35.2				
Caratteristiche fisiche	e fisiche											
γ _N	kN/m³				24.7			17.0				
¥ z	%							32.9				
Prove edometriche (valori riferiti alla tensione geostatica in sito)	triche (val	ori riferiti a	ılla tensione	geostatica	a in sito)							
E _{ed}	kPa											
c _v	m²/s											
C_{lpha}	-											
Resistenza a compressione monoassiale	com pres s	ione mono	assiale									
$\sigma_{\!_{\!\scriptscriptstyle C}}$	MPa				71.1							
Resistenza non drenata	on dre nata	_										
(TX-UU) c _u	kPa											
Resistenza drenata	enata .											١
(TD) c	kPa							0.0				
(TD) f	0											

	Point Load Test	P	<u>_</u>	Т	Campione	Sondaggio
S	Tes	Prof.	ıità	Tipo	ne	gio
MPa	Î	3				١.
4.0		9.40	Ba	rim	Li3a	S6Pz-2015
4.2		9.48	Ba	rim	Li3b	S6Pz-2015
3.9		9.56	Ba	rim	Li3c	S6Pz-2015 S6Pz-2015 S6Pz-2015 S6Pz-2015 S6Pz-2015 S6Pz-2015 S7-2015 S7-2015 S7-2015 S7-2015 S7-2015 S7-2015
3.3		9.64	Ba	rim	Li3d	S6Pz-2015
2.9		15.00	Ва	rim	Li4a	S6Pz-2015
4.3		15.27	Ba	rim	Li4b	S6Pz-2015
6.0		15.37	Ba	rim	Li4c	S6Pz-2015
0.3		9.75	Ba	rim	Li2a	S7-2015
0.4		9.83	Ва	rim	Li2b	S7-2015
0.2		9.91	Ba	rim	Li2c	S7-2015
7.2		17.44	Ba	rim	Li4a	S7-2015
6.5		17.52	Ba	rim	Li4b	S7-2015
6.2		17.59	Ва	rim	Li4c	S7-2015

5.2 Svincolo di Bonorva Nord

geognostiche: Per l'adeguamento e messa in sicurezza della SS 131 "Carlo Felice", sono state eseguite le seguenti campagne

- indagine pregresse:
- campagna geognostica del 1992 ing. Piero Porcu;
- campagna geognostica del 1998 Micropali s.a.s.;
- campagna geognostica del 1998 Fondedile s.r.l.;
- campagna geognostica del 1998 Sardadrill s.r.l.;
- indagini a base del P.D.: campagna geognostica del 2015
- indagini a base del P.E.: campagna geognostica del 2017.

5.2.1 Indagini geognostiche pregresse

vicine alle opere in progetto e quindi utilizzate per definire la stratigrafia ed i parametri geotecnici. penetrometriche statiche) e prove di laboratorio; in particolare nella seguente tabella vengono citate le indagini più Le indagini pregresse che si sono succedute dal 1992 al 1998, sono consistite in indagini in sito (sondaggi e prove

indagini (vedasi Tabella 4): Per la campagna geognostica del 1992 (ing Piero Porcu, eseguite da Cieffe di Cagliari) sono state considerate le seguenti

3 sondaggi a carotaggio continuo.

Nel corso della campagna geognostica del 1992 sono state svolte le seguenti attività:

- rilievo stratigrafico con descrizione dei materiali intercettati, indicazione di RQD in roccia, documentazione fotografica a colori delle cassette catalogatrici;
- esecuzione di prove penetrometriche dinamiche SPT;
- prelievo di campioni rimaneggiati;
- rilievo del livello di falda a termine sondaggio.

Tabella 4 – Indagini in sito campagna 1992 (ing. Piero Porcu) — Bonorva Nord

S9	S8	S7		Sondaggio
20.0	21.0	20.5		Profondità [m]
2	2	3		N. SPT [-]
ω	4	5	rimaneggiati [-]	n. campioni
12.5	13.1	9.2		Livello falda [m]

Laboratorio campagna 1992 (ing. Piero Porcu):

Nelle seguenti tabelle si riportano i risultati delle prove di laboratorio:

prove di laboratorio nei terreni:

- analisi granulometriche;
- limiti di Atterberg,
- determinazione peso di volume naturale:
- determinazione contenuto naturale d'acqua;
- prove di taglio diretto.

Tabella 5 — Laboratorio campagna 1992 (ing. Piero Porcu) — Bonorva Nord

32.5		28.6	39.5				٥	(TD) f
24.0		56.0	12.0				kPa	(Ⅲ) c
							enata	Resistenza drenata
							MPa	σ_{c}
					assiale	ione mono	ompress	Resistenza a compressione monoassiale
18.6		15.5					%	¥ z
19.0		19.0	20.0				kN/m³	γ̈́ν
							fisiche	Caratteristiche fisiche
		17.0					%	Į,
		1.21						·_
		17.0					%	Wp
		36.0					%	W
							perg	Limiti di Atterberg
							%	А
							%	_
	84.1	83.2		72.6	42.4	88.0	%	L+A
	15.7	16.1		26.4	11.4	7.0	%	S
	0.2	0.7		1.0	46.2	5.0	%	G
								Granulometria
4.10	2.90	1.20	5.50	3.45	3.90	1.35	з	Prof.
<u>S</u> :	<u>Si</u>	<u>Si</u>	<u>Si</u>	<u>S</u> :	S	LAS		Unità
rim	rim	rim	rim	rim	rim	rim		Tipo
С	В	Α	В	Α	В	Α		Campione
S7-1992	S7-1992	S7-1992	S9-1992	S9-1992	S8-1992	S8-1992		Sondaggio
	00.00	orca)	T) 25 (1119: 11010 10104)	111) 7001		Eapolacollo cambagna		100010

Per la campagna geognostica del 1998 Sardadrill s.r.l. sono state considerate le seguenti indagini (vedasi Tabella 6):

- 2 sondaggi a carotaggio continuo.
- basi sismiche a rifrazione A, B, C, D, E, (onde sismiche longitudinali Vp).

Nel corso dell'esecuzione dei sondaggi sono state svolte le seguenti attività:

- rilievo stratigrafico con descrizione dei materiali intercettati, indicazione di RQD in roccia, documentazione fotografica a colori delle cassette catalogatrici;
- esecuzione di prove penetrometriche dinamiche SPT;
- prelievo di campioni rimaneggiati.

Tabella 6 – Indagini in sito campagna 1998 (Sardadrill s.r.l.) – Bonorva Nord

S36	S35	S6	S5		Sondaggio
20.0	20.0	20.0	18.0		Profondità [m]
1	1	1	1		N. SPT [-]
3	2	3	3	rimaneggiati [-]	n. campioni

in prossimità del sondaggio S26 e proseguendo verso nord fino al sondaggio S35. Le basi sono nominate in maggiori si 3000 m/s. 5 m con Vp compresa fra 600 e 800 m/s; localmente è assente (base C e in parte D). Il substrato tufaceo ha velocità successione con le lettere da A ed E e sono consecutive fra loro. Lo spessore della coltre superficiale è nell'ordine dei Le 5 basi sismiche a rifrazione sono state disposte nello svincolo di Bonorva nord, partendo dal settore meridionale

Laboratorio campagna 1998 (Sardadrill s.r.l.):

Nelle seguenti tabelle si riportano i risultati delle prove di laboratorio:

- analisi granulometriche;
- limiti di Atterberg,
- prove di Point Load Test.

abella 7 – Sondaggio Campione Tipo Sondaggio Tipo Unità Prof. Unità Laboratorio campagna 1998 S35-1998 ≥ 3 ΕĖ 10.00 28.0 92.9 ≥ 3 rim Ba 5.50 5.00 ≤ g (Sardadrill s.r.l.) - Bonorva Nord S36-1998 rim Ba rim Ba 15.00 I I I S6 S36-1998 ΞĖ 90.2 9.00 ΞĖ

Per la campagna geognostica del 1998 (Fondedile s.r.l.) sono state considerate le seguenti indagini (vedasi Tabella

- 5 sondaggi a carotaggio continuo;
- 1 prova penetrometrica statica CPT.

Nel corso della campagna geognostica del 1998 (Fondedile s.r.l.) sono state svolte le seguenti attività

- rilievo stratigrafico con descrizione dei materiali intercettati, indicazione di RQD in roccia, documentazione fotografica a colori delle cassette catalogatrici;
- esecuzione di prove penetrometriche dinamiche SPT;
- prelievo di campioni rimaneggiati;
- sulla stratigrafia del sondaggio. rilievo del livello di falda a 24 ore da fine esecuzione sondaggio, con indicazione dell'eventuale livello rilevato

Tabella 8 – Indagini in sito campagna 1998 (Fondedile s.r.l.) – Bonorva Nord

Sondaggio /	Profondità [m]	N. SPT [-]	n. campioni
CPT			rimaneggiati [-]
S7	30.0	1	1
S9	30.0	1	-
S11	30.0	1	1
S15a	30.0	2	1
S26a	28.0	1	-
PP3	1.4	-	1
Nota: falda asse	Nota: falda assente in tutti i sondaggi		

Laboratorio campagna 1998 (Fondedile s.r.l.):

Nelle seguenti tabelle si riportano i risultati delle prove di laboratorio:

- peso di volume naturale;
- prove di taglio diretto.

Tabella 9 — Laboratorio campagna 1998 (Fondedile s.r.l.) - Bonorva Nord

1000	- cap	mason active gine across (consecution in)	(ollacallo	J
Sondaggio	-	S11-1998-FE	S7-1998-FE	S26a-1998-FE
Tipo	-	rim	rim	rim
Unità	-	LAS	LAS	GS
Prof.	m	1.35	1.35	1.50
Caratte ristiche fisiche	e fisiche			
γ _N	kN/m³	17.4	17.1	17.6
Resistenza drenata	enata			
(TD) c	kPa	17.7	23.5	7.9
(TD) f	۰	32.0	27.3	34.6

10): Per la campagna geognostica del 1998 (Micropali S.a.s.) sono state considerate le seguenti indagini (vedasi Tabella

- 7 sondaggi a carotaggio continuo;
- 4 prove penetrometriche statiche.

Nel corso della campagna geognostica del 1998 (Micropali S.a.s.) sono state svolte le seguenti attività:

- rilievo stratigrafico con descrizione dei materiali intercettati, indicazione di RQD in roccia, documentazione fotografica a colori delle cassette catalogatrici;
- esecuzione di prove penetrometriche dinamiche SPT;
- prelievo di campioni rimaneggiati;
- sulla stratigrafia del sondaggio. rilievo del livello di falda a 24-48 ore da fine esecuzione sondaggio, con indicazione dell'eventuale livello rilevato

Tabella 10 – Indagini in sito campagna 1998 (Micropali s.a .s. Bonorva Nord

												Sonda	I dD
PP1 PP2 PP3	PP1 PP2 PP3	PP1 PP2	PP1	700	753	S33	S32	S30	S29	S28a	S28	Sondaggio / CPT	SIIG TO - TIIUG
1.8 2.6 4.8	1.8 2.6 4.8	1.8 2.6	1.8		25.0	20.0	35.0	45.0	30.0	15.0	40.0	Profondità [m]	giiii iii sito cairipagiia
			-		3	2	2	1	-	-	1	N. SPT [-]	Tago (Ivilia obair
				-	2	-	-	1	-	1	-	n. campioni rimaneggiati [-]	Tabella 10 — Hildagilli III sito callipagila 1990 (Filiciopali s.a.s.) — boliotra ivold

Laboratorio indagini campagna 1998 (Micropali s.a.s.):

prove di laboratorio nei terreni:

- peso di volume naturale;
- classificazione terre CNR UNI;
- prove di taglio diretto;
- analisi granulometriche;
- contenuto naturale d'acqua;

prove di laboratorio nelle rocce:

- prove a compressione monoassiale;
- prove di Point Load Test.

Tabella 11 – Laboratorio campagna 1998 (Micropali s.a.s.) – Bonorva Nord

Sondaggio		S28A	S34	S34	S30
Cam pione	-	1.00	2.00	1.00	1.00
Tipo	-	rim	rim	rim	rim
Unità	-	LAS	Ba	Ba	LAS
Prof.	3	2.35	15.35	4.50	4.50
Granulom etria	а				
G	%	13.3	0.5	8.4	
S	%	32.3	23.2	73.9	
L +A	%	54.4	76.3	17.7	
L	%				
Α	%				
Limiti di Atterberg	berg				

	•		
W	%	40.0	
W _P	%	16.0	
<u>-</u>			
٩	%	26.0	
Caratteristiche fisiche	e fisiche		

γ _N kN/m³ 17.5 15.6 18.8 18.8 w _N % 16.6 24.9 21.8 Resistenza a compressione monoassiale c _c MPa Resistenza non drenata (TX-UU) c _n kPa						Á.
17.5 15.6 188 16.6 24.9 cone monoassiale					кРа	(TX-UU) c,,
24.9					on drenata	Resistenza no
188					MPa	$\sigma_{\!\scriptscriptstyle c}$
kN/m³ 17.5 15.6 188 % 16.6 24.9			assiale	ione monc	compress	Resistenzaa
17.5 15.6 188	21.8	24.9		16.6	%	W _z
	18.8	188	15.6	17.5	kN/m³	γ _N

	_				
7	S30				
П	S30			Resist	(×
UFI	088	(TD) f	(TD) c	Resistenza drenata	(I V-ETT) C
E10	S30	۰	kPa	nata	Ŝ
L12	S30	31.0	39.2		
L 1 1	S30	28.6	31.4		
Z 1 Z	S30	37.6			
□16	S30	30.2	19.6		
3	S30				
П	S30				
1					

Solidaggio		000	000	000	000	000	000	000	000	000	000	000
Campione	-	E7	€8	E10	E12	E13	E14	E15	E16	E2	E4	Е6
Tipo		rim	rim	rim	rim	rim	rim	rim	rim	rim	rim	rim
Unità	-	Μ	M	Μ	С	С	С	С	Ar	Μ	Μ	≤
Prof.	m	23.80	25.10	29.70	32.70	34.10	36.10	39.10	40.40	13.30	15.10	20.15
Resistenza a compressione monoassiale	:ompress	ione mono	assiale									
$\sigma_{\!\scriptscriptstyle c}$	MPa	9.5	9.0	10.1	11.0	10.5	10.6	9.9	8.6	10.1	10.5	9.9

$\sigma_{\!\scriptscriptstyle c}$	Resistenza a compressione monoassiale	Prof.	Unità	Tipo	Campione	Sondaggio
MPa	compress	m				
9.2	ione mono	6.20	Μ	rim	D1	S28A
9.4	assiale	9.20	×	rim	D2	S28A
8.5		11.90	S	rim	몺	S28A
10.2		12.85	≤	rim	₽	S28A
18.6		5.70	Μ	rim	22	S29
23.5		5.90	≤	rim	C3	S29
20.0		13.15	≤	rim	2	S29
19.9		17.80	Μ	rim	06	S29
8.4		18.85	Δ	rim	C7	S29
9.1		25.80	С	rim	C12	S29
9.0		27.30	С	rim	C13	S29
8.7		28.70	ဂ	rim	C14	S29

Sondaggio	-	S32	S32	S32	S32	S32	S32	S32	S32	S32	S32
Cam pione	-	A2	А3	A5	A6	A8	А9	A10	A11a	A12	A13
Tipo	-	rim	rim	rim	rim	rim	rim	rim	rim	rim	rim
Unità	-	Ba	Ar	Ar	Ar	С	С	С	С	С	С
Prof.	m	2.30	9.90	18.15	18.45	23.90	28.40	29.15	32.70	33.30	33.70
Resistenza a compressione monoassiale	compress	ione mo	noassia	le							
$\sigma_{\!\scriptscriptstyle c}$	MPa	48.2	9.6	9.1	8.6	10.0	9.3	9.7	11.8	12.4	10.0

or ictory a comprose ione monograpiale	Unità - M <th>Tipo - rim rim rim rim rim rim rim rim rim rim</th> <th>Campione - 1.00 2.00 4.00 6.00 7.00 10.00 12.00 14.00 B3</th> <th>Sondaggio - S33 S33 S33 S33 S33 S33 S33 S34 S34</th>	Tipo - rim	Campione - 1.00 2.00 4.00 6.00 7.00 10.00 12.00 14.00 B3	Sondaggio - S33 S33 S33 S33 S33 S33 S33 S34 S34
--	--	--	--	---

Point				So	
Load Test	Prof.	Unità	Tipo	Sondaggio	
tse	m	-	-	-	
	5.20	Μ	rim	S28	
	5.60	Μ	rim	S28	
	12.30	Μ	rim	S28	
	15.50	Μ	rim	S28	
	22.30	Μ	rim	S28	
	30.30	Μ	rim	S28	
	33.50	Μ	rim	S28	
	2.10	Ba	rim	S32	
	14.70	Ar	rim	S32	
	23.60	0	rim	S32	
	32.60	0	rim	S32	
	10.80	Δ	rim	S33	
	11.85	Μ	rim	S33	

IS(50)	Point Load Test	Prof.	Unità	Tipo	Sondaggio
MPa	st	т			
1.1		14.20	Z	rim	S33
1.0		14.40	Μ	rim	S33
1.4		15.85	Μ	rim	S33
1.5		18.10	Δ	rim	S33
3.4		10.85	Ba	rim	S34
0.2		12.20	Ba	rim	S34
0.4		20.10	Ba	rim	S34
1.3		5.50	Z	rim	S29
1.5		14.85	Z	rim	S29
0.5		20.10	Z	rim	S29
1.1		20.30	≤	rim	S29
0.5		24.85	С	rim	S29
1.1		25.20	C	rim	S29
1.0		13.10	Z	rim	S30
8.0		13.50	Μ	rim	S30
0.9		15.30	Μ	rim	S30
0.7		25.30	Z	rim	S30
1.1		29.90	×	rim	S30

0.5

0.4

5.2.2 Indagini geognostiche a base del PD del 2015

Dalla ditta Sondedile s.r.l. sono stati eseguite le seguenti indagini:

- n. 4 sondaggi a carotaggio continuo denominati S9, S10, S11, S24.
- n. 3 pozzetti geognostici (Pz37, Pz38, Pz39) con prelievo di un campione rimaneggiato e una prova di carico su

Dalla ditta Progeo s.r.l. è stata eseguita l'indagine sismica consistita in:

n. 1 base sismica a rifrazione: (LS7)

Nel corso dei sondaggi sono state svolte le seguenti attività:

- rilievo stratigrafico con descrizione dei materiali intercettati, indicazione di RQD in roccia, documentazione fotografica a colori delle cassette catalogatrici;
- esecuzione di prove penetrometriche dinamiche SPT;
- prelievo di campioni rimaneggiati;
- prove di Pocket Penetrometer nei livelli coesivi

Tabella 12 – Indagini in sito campagna 2015 – Bonorva Nord

PZ39	PZ38	PZ37	S24	S11	S10	S9	Sondaggio
2.0	1.4	0.7	18.7	40.0	20.0	23.8	Profondità [m]
		-	2	2	1	3	N. SPT [-]
1	1	1	4	5	1	4	n. campioni rimaneggiati [-]
	-	-	-	1	-	2	n. campioni indisturbati [-]
1	ı	ı	4	2	2	4	n. campioni litoidi [-]

Indagini sismiche

sondaggio S11 è circa in corrispondenza del punto 12. km/sec) con uno spessore che giunge ad oltre 10 m. Come riferimento per la stratigrafia si può considerare che il una forma morfologica sepolta (paleoalveo) nel quale si ritrovano i parametri elastici più ridotti (Vp<1.0 e Vs<0.35 potrebbe appartenere alla formazione più rigida sottostante. L'aspetto della sezione indica la possibile presenza di meridionale della sezione (fine sezione L7) appare un elemento a maggiore velocità ($Vp\sim1400~m/s~e~Vs\sim540~m/s$) che mostrano valori abbastanza bassi, indice di un materiale probabilmente granulare a ridotto addensamento. Sul lato Nelle seguenti figure è mostrata l'ubicazione della sezione LS7 ed i risultati delle velocità delle onde di taglio (Vs) che

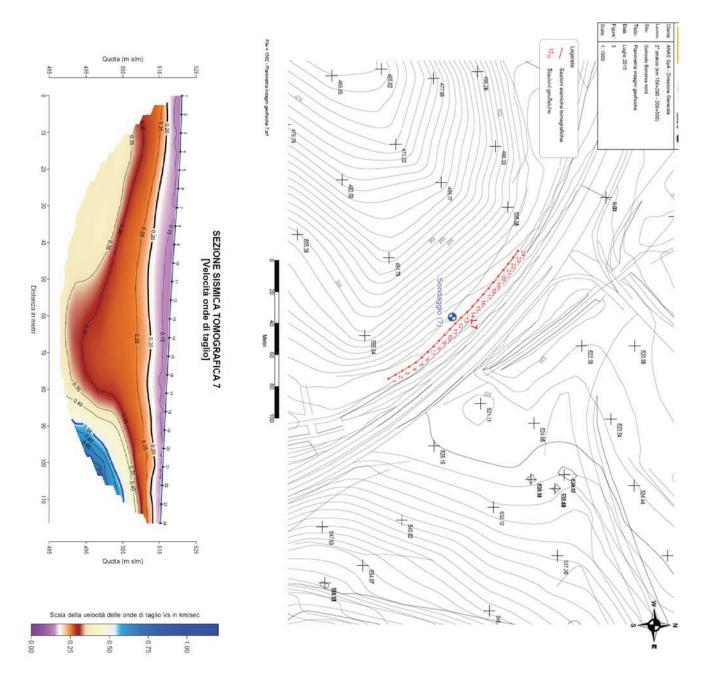


Figura 1: Indagine sismica LS7

Prove di laboratorio

In laboratorio sono state eseguite le prove, i cui risultati sono riportati nelle seguenti tabelle:

prove di laboratorio nei terreni:

- determinazione del peso di volume naturale;
- analisi granulometriche;
- determinazione dei limiti di consistenza e del contenuto naturale d'acqua;
- classificazione terre CNR UNI;
- prove di taglio diretto;
- prova triassiale non consolidata non drenata.

prove di laboratorio nelle rocce:

- determinazione del peso di volume naturale;
- prove a compressione monoassiale;
- prove di Point Load Test.

Tabella 13 – Laboratorio campagna 2015 – Bonorva Nord

(TD) f	(TD) c	Resistenza drenata	(TX-UU) c _u	Resistenza non drenata		Resistenza	C _a	c,	ůШ	Prove edom	¥z	y	Caratteristiche fisiche			Wp	W	Limiti di Atterberg			L+A			Granulometria	Prof.	Unità	Tipo	Campione	Sondaggio
°	c kPa	drenata	kPa	າon drenata	σ _c MPa	compress	α -	m²/s	кРа	etriche (val	м %	N KN/m ³	he fisiche	_խ %	-	<u>'</u> %	<u>/</u> %	rberg	Α %	L %	Α %	S %	G %	la:	r. m	à -	-	- -	-
			183.0	<u>"</u>		Resistenza a compressione monoassiale	8.00E-02	4.80E-07	8845	Prove edometriche (valori riferiti alla tensione geostatica in sito)	26.0	19.0		30.0	1.03	27.0	57.0		26.0	65.0	91.0	9.0	0.0		4.79	LAS	ind	Q1	S9-2015
35.6	34.3					siale			15607	tensione ge	22.0	18.8		20.0	1.25	27.0	47.0		23.0	48.0	71.0	29.0	0.0		10.65	LAS	ind	CI2	S9-2015
										ostatica in											57.0	14.0	29.0		3.20	GS	rim	spt1	S9-2015
										sito)									0.0	14.0	14.0	13.0	73.0		12.00	GS	rim	spt3	S9-2015
28.1	17.3										27.3	17.6		19.9	1.01	27.5	47.4				76.0	24.0	0.0		9.55	LAS	rim	CR1	S9-2015
																									14.30	Ar	rim	Lii	S9-2015
																									16.15	Ar	rim	Li2	S9-2015
																									19.40	Ar	rim	Li3	S9-2015
																									21.65	Μ	rim	Li4	S9-2015
														19.8		22.0	41.8		23.0	51.0	74.0	22.0	4.0		2.70	LAS	rim	spt1	S10-2015
					25.6							22.6													4.60	С	rim	Li	S10-2015
					42.1							24.3													6.10	С	rim	Li2	S10-2015

IS(50)	Point Load Te	(TD) f	(TD) c	Resistenza drenata	(TX-UU) c. kPa	σ _c	Resistenza a compressione monoassiale	C _a	်၀ ရှိ	F kPa)	Ϋ́N	Caratteristiche fisiche	0 6	_ ,≅	W	Limiti di Atterberg	Þ		L +A	n G	Granulom etria	Prof.	Unità	Tipo	Campione	Sondaggio	(TD) f	(TD) c	Resistenza drenata	(TX-UU) c kPa	Posis tenza no	Resistenza a compressione monoassiale	1	o v	Fad	Prove edometriche (valori riferiti alla tensione	W _N	Caratteristiche fisiche	٩		W _P	Limiti di Atterberg	>		L+A	S	Granulometria	Prof.	Unità	Tipo	Campione	Sondaggio
MPa	st		ŔPa	enata	kPa	MPa	com press		m²/s	riche (val	70	kWm³	e fisiche	%	- %	%	berg	%	%	% 8	% %	1	3					0	kPa	enata	kPa	n dronata	MP		m²/s	kРа	triche (val	% %	e fis iche	%	-	% %	berg %	%	%	%	% %		я		-	-	
							ione mono			ori riferiti a				7.4	27.5	34.9		14.0	38.0	52.0	3.0	2	1.50	Ra	rim	spt1	S11-2015						ione mono				ori riferiti a			7.4		27.5	3/10	14.0	38.0	52.0	45.0	ي د	1.50	Ra	rim	spt1	S11-2015
							assiale			la tensione				15.8	23.5	39.3		17.0	45.0	62.0	27.0		4.70	Ra	rim	spt2	S11-2015						assiale				lla tensione			15.8		23.5	30 3	17.0	45.0	62.0	27.0	110	4.70	Ra	rim		S11-2015
		30.2	21.0						0.00	e geostatica in sito)		18.6	•	21.0	23.0	44.0		19.0	50.0	69.0	3.0		3.15	Ra	ind	업	S11-2015	30.2	21.0							8400	geo	21.0		21.0	1.10	23.0	44 0	19.0	50.0	69.0	28.0	ಎ ೧	3.15	굢	ind		S11-2015
		32.6	1.0							n sito)		17.2	•	8.7	21.6	30.3		21.0	38.0	59.0	21.0	2	9.55	Ra	rim	CR1	S11-2015	32.6	1.0	ľ			1				in sito)	17.2		8.7		21.6	30 3	21.0	38.0	59.0	20.0	21.0	9.55	Ra	rim	-	S11-2015
		34.1	0.0									17.2		9.5	22.5	32.0		22.0	36.0	58.0	34.0	2	25.85	Ar	rim	CR2	S11-2015	34.1	0.0									2.71		9.5		22.5	33 0	22.0	36.0	58.0	34.0	: :	25.85	Ar	rim		S11-2015
													•	26.7	20.9	47.6		21.0	39.0	60.0	77.0		31.50	Ar	rim	CR3	S11-2015			ľ							ŀ			26.7		20.9	47.6	21.0	39.0	60.0	27.0	130	31.50	Ą	rim	₩	S11-2015
0.2					1					1													35.80	Ar	rim	드	S11-2015																						35.80	Ar	rim	Н	S11-2015
						41.0						23.2	•										39.35	Ar	rim	+	S11-2015			-		1	410				-	23.2	3										39.35	Ą	rim	Н	5 S11-2015
	-			ŀ																22.0	19.0		1.70	GS	rim	+	S24-2015																			22.0	59.0	100	1.70	GS	rim	Н	5 S24-2015
	-												•	25.7	22.0	47.7		20.0	8.0	28.0	19.0 53.0	5	0.75	GS	rim		5 S24-2015	H		ŀ	_		-	-			ŀ			25.7		22.0	47	20	8.0			1	F	GS		H	15 \$24-2015
H	-		\exists	-	$\frac{1}{1}$	-		H		$\frac{1}{1}$	L	Н		_									_			+		L			4	-								5.7		.0	7	0.0	.0	3.0	3.0	5	75	Š	3	21	2015
														6.1	13.4	19.5				27.0	24.0	2	2.85	GS	rim	CR2	S24-2015													6.1		13.4	10 5			27.0	49.0	24.0	2.85	SS	rim	CR2	S24-2015
						7.1						20.4											5.60	Ar	rim	Ξ	S24-2015			L					•		L	-1	_						1			_	<u> </u>	1			

^(*) segue da pagina precedente.

Campione	Sondaggio	IS(50)	Point Load Test	a	Resistenza a compressione monoassiale	Prof.	Unità	Tipo	Campione	Sondaggio
,	-	MPa	est	_о МРа	compress	в	-	-	-	-
Li3d	S24-2015				ione monoas	8.10	С	rim	Li2	S24-2015
Li3e	S24-2015				ssiale	14.15	M	rim	Li3	S24-2015
Li4a	S24-2015					17.25	M	rim	Li4	5 S24-2015
Li4b	S24-2015	4.1				16.08	Ar	rim	Li2b	5 S9-2015
Li4c	S24-2015	2.1				16.00	Ar	rim	Li2a	
Li4d	S24-2015	1.2				16.23	Ar	rim	Li2d	S9-2015
Li4e	S24-2015	0.7				35.71	Ar	rim	Li1	S11-2015
Li4f	5 S24-2015	1.4				8.75	С	rim	Li2a	S24-2015
)15	1.2				8.83	С	rim	Li2b	S24-2015
		1.6				8.91	С	rim	Li2c	S24-2015
		0.6				14.00	M	rim	Li3a	S24-2015
		0.8				14.08	Μ	rim	Li3b	S9-2015 S9-2015 S11-2015 S24-2015 S24-2015 S24-2015 S24-2015 S24-2015
		0.8				14.16	Μ	rim	Li3c	S24-2015

Sondaggio		S24-2015	S24-2015 S24-2015 S24-2015	S24-2015	S24-2015	S24-2015	S24-2015	S24-2015	S24-2015
Campione	-	Li3d	Li3e	Li4a	Li4b	Li4c	Li4d	Li4e	Li4f
Tipo	-	rim	rim	rim	rim	rim	rim	rim	rim
Unità	-	M	M	Μ	Μ	М	Μ	Μ	≤
Prof.	m	14.24	14.32	17.00	17.08	17.16	17.24	17.32	17.40
Resistenza a compressione monoassiale	com press	ione monoa	ıssiale						
σ_c	MPa								
Point Load Test	st								
IS(50)	MPa	0.2	0.8	1.7	1.8	0.9	0.1	0.1	0.2

1-1 1-1 1 1

Sondaggio		PZ34-2015	PZ34bis-2015	PZ35-2015	PZ36-2015	PZ37-2015	PZ38-2015	PZ39-2015
Campione	-	CR1	CR1	CR1	CR1	CR1	CR1	CR1
Tipo	-	rim	rim	rim	rim	rim	rim	rim
Unità	-	Cs	√	ಬ	ಬ	GS	LAS	GS
Prof.	m	0.20	0.10	0.20	0.75	0.40	0.70	0.55
Granulometria	а							
G	%	4.0	1.0	62.0			25.0	17.0
S	%	14.0	12.0	14.0			36.0	56.0
L +A	%	83.0	87.0	24.0			38.0	27.0
L	%						28.0	5.0
Α	%						10.0	22.0
Limiti di Atterberg	berg							
W	%	57.9	67.9	55.7	43.9	38.8	36.7	63.4
W _P	%	30.9	35.8	31.9	25.6	30.1	27.0	26.7
ď	%	27.0	32.1	8.82	18.3	8.7	9.7	36.7

(*) segue da pagina precedente.

5.2.3 Indagini geognostiche a base del PE del 2017

Dalla ditta Dr Antonello Angius (Cagliari) sono stati eseguite le seguenti indagini:

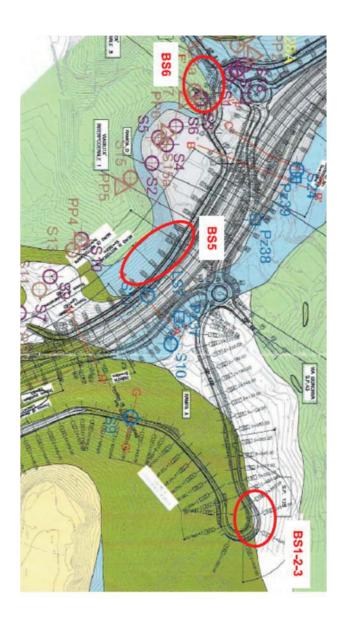
n. 5 sondaggi a carotaggio continuo di profondità da 15 a 30 m.

Dalla ditta Geoservice s.a.s. è stata eseguita l'indagine sismica consistita in:

n. 5 stendimenti sismici a rifrazione con restituzione tomografica in onde P e S: (BS1, BS2, BS3, BS5, BS6).

Nel corso dei sondaggi sono state svolte le seguenti attività:

- fotografica a colori delle cassette catalogatrici; rilievo stratigrafico con descrizione dei materiali intercettati, indicazione di RQD in roccia, documentazione
- esecuzione di prove penetrometriche dinamiche SPT;
- prelievo di campioni per prove di laboratorio.


Tabella 14 – Indagini in sito campagna 2017 – Bonorva Nord

S5	S4	S3	S2	S1	Sondaggio
27.0	25.0	18.4	15.0	29.8	Profondità [m]
7	3	4	2	4	N. SPT [-]
-	2	1	1	3	n. campioni rimaneggiati [-]
-	1	1	1		n. campioni indisturbati [-]
3	3	3	4	2	n. campioni litoidi [-]

Indagini sismiche

eseguite in generale si possono distinguere tre sismostrati a differenti velocità: Le indagini sismiche sono state localizzate in tre zone, come si evince dalla seguente figura. Dalle indagini sismiche

- Sismostrato A: terreni di copertura con spessori compresi tra 0.5 e 8 m circa e velocità Vp = 500÷1000 m/s, $Vs = 250 \div 600 \text{ m/s};$
- Sismostrato B: unità delle rocce fratturate con velocità mediamente pari a Vp = 1500 m/s e Vs = 750 m/s;
- Sismostrato C: unità delle rocce integre o poco fratturate con velocità mediamente pari a Vp > 1800 m/s e Vs> 900 m/s.

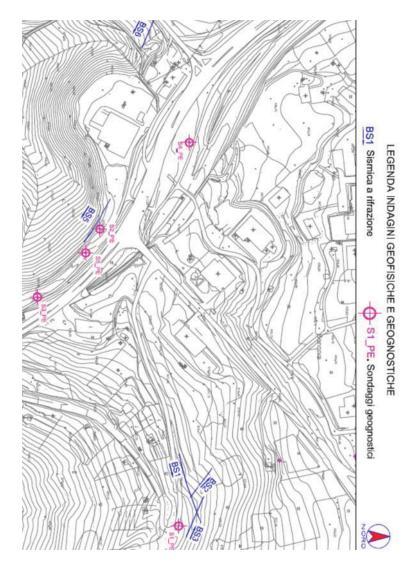


Figura 2: Indagine sismica 2017

Prove di laboratorio

prove di laboratorio nei terreni: In laboratorio sono state eseguite le prove, i cui risultati sono riportati nelle seguenti tabelle:

- determinazione del peso di volume naturale;
- analisi granulometriche;
- determinazione dei limiti di consistenza e del contenuto naturale d'acqua;
- classificazione terre CNR UNI;
- prove di taglio diretto;
- prove ad espansione laterale libera;
- prova triassiale non consolidata non drenata.

prove di laboratorio nelle rocce:

- determinazione del peso di volume naturale;
- prove a compressione monoassiale;
- prove di Point Load Test.

Tabella 15 – Laboratorio campagna 2017 – Bonorva Nord

ISI	Point Load Test		Resistenz			Caratteristiche fisiche	_	_		Cam pione	Sondaggio	Т)	(Т	Resistenza drenata	(TX-ELL) c	(TX-UU) c	Resistenza non drenata		Resistenz			Caratteristiche fisiche					Limiti di Atterberg						Granulometria	Р	_		Campione	Sondaggio
IS(50)	d Tes	င္င	aac	≷ Z	ĭ	tiche	Prof.	Unità	Tipo	one	gio	(TD) f	(TD) c	adre	-) င _ပ	J) C _L	anor	σ_{c}	aacc	Ş Z	ž	tiche	P	<u>,</u> _	≶	≥ٍ	tterb	⊳	г	L +A	S	ດ	etria	Prof.	Unità	Tipo	one	gio
MPa	t	MPa	ompress	%	kWm³	fisiche	я					o	kРа	nata	кРа	БPa	drenata	MPa	mpressi	%	kWm³	fisiche	%		%	%	erg	%	%	%	%	%		m				1
		11.0	Resistenza a compressione monoassiale		18.1		10.25	C	rim	CL1	S1-2017	19.7	36.4						Resistenza a compressione monoassiale	21.2	17.8		30.4	1.07	23.2	53.6		20.1	43.8	63.9	19.5	16.6		2.45	LAS	rim	CR1	S1-2017
		16.5	oassiale		18.4		16.20	C	rim	CL2	S1-2017	28.1	1.4						assiale				29.7		22.2	51.9				63.8	21.5	14.7		5.60	LAS	rim	CR2	S1-2017
		56.5			24.1		4.95	C	rim	QL1	S2-2017				32.5					20.9	18.2		8.9	2.15	31.1	40.0								8.55	LAS	rim	CR3	S1-2017
		60.9			23.7		9.15	Ar	rim	CL3	S2-2017	37.9	35.0										4.2		21.8	26.0		1.8	12.4	14.2	29.5	56.3		2.60	Ra	rim	CR1	S2-2017
		41.3			22.5		7.10	C	rim	<u>ρ</u>	S3-2017	29.0	38.8							23.4	19.4		16.0	1.16	25.9	41.9		18.5	41.3	59.8	34.1	6.1		4.30	LAS	ind	Q1	S3-2017
		66.2			23.6		18.10	ဂ	rim	CL3	S3-2017												9.0		24.2	33.2		3.4	15.0	18.4	29.2	52.4		2.65	₽ B	rim	CR1	S4-2017
		58.0			24.1		8.75	C	rim	CL1	S4-2017	22.0	42.0							25.9	18.2		23.5	0.94	24.6	48.1		11.1	25.6	36.7	28.5	34.8		4.50	LAS	rim	CI1	S4-2017 S4-2017
3.5							7.00	റ	rim	CL2	S2-2017	25.8	34.0										27.2		26.8	54.0				34.7	25.2	40.1		5.65	LAS	rim	CR2	S4-2017
3.3							7.10	C	rim	CL2b	S2-2017	28.0	19.7										15.4		23.4	38.8								4.60	Ra	rim	CR1	S5-2017
2.9							11.30	Ar	rim	CL4	S2-2017	31.3	11.5										16.6		24.7	41.3		17.8	41.5	59.3	33.5	7.2		8.25	Ra	rim	CR2	S5-2017
					<u> </u>							37.2	27.9										4.8		24.7	29.5				18.3	32.1	49.6		21.25	Ra	rim	CR3	S5-2017

Sondaggio Campione		S3-2017 CL2	S3-2017 CL2	S4-2017 CL2	S4-2017 CL2	S4-2017 CL2	.017
Tipo	-	rim	rim	rim	ŗ	rim	im rim
Unità	-	С	С	Ar	,	Ar	\r Ar
Prof.	m	8.20	8.40	12.20	-	12.30	2.30 12.40
Caratteristiche fisiche	e fisiche						
γ _N	kWm³						
¥z	%						
Resistenza a compressione monoassiale	compress	ione mono	assiale				
$\sigma_{\!_{ m c}}$	MPa						
Point Load Test	st						
IS(50)	MPa	3.2	2.7	1.2	0	0.6).6 1.2
					ı		

^(*) segue da pagina precedente.

6.CARATTERIZZAZIONE GEOTECNICA

Sud e Bonorva Nord, sull'asse principale della S.S. 131, e l'adeguamento, nel tratto da essi sotteso, della S.P. 125 Nei paragrafi seguenti si riporta la caratterizzazione geotecnica delle opere che riguardano i due svincoli di Bonorva

6.1 Criteri di interpretazione delle indagini

Ai fini della caratterizzazione dei terreni è stato fatto riferimento ai risultati delle:

- prove penetrometriche dinamiche SPT eseguite nei fori di sondaggio;
- prove di laboratorio eseguite sui campioni indisturbati e rimaneggiati;
- indagini sismiche.

6.1.1 Depositi incoerenti

stimati principalmente sulla base dell'interpretazione delle prove penetrometriche dinamiche SPT. Per i depositi prevalentemente incoerenti, i parametri geotecnici di resistenza al taglio e di deformabilità sono stati

Bazaraa, Terzaghi e Peck). relativa ottenuti dalle varie correlazioni che di seguito vengono esposte (correlazioni di Skempton, Gibbs e Holtz, Per quanto riguarda la stima della densità relativa dalle prove SPT, sono stati considerati i valori minimi di densità

Stato di addensamento

Correlazione di Skempton

seguente legge: In accordo a quanto indicato in Skempton (1986), la densità relativa Dr può essere correlata al valore N_{SPT} con la

$$\mathbf{D}_{r} = \left(\frac{1}{\mathbf{A} + \mathbf{B} \cdot \boldsymbol{\sigma}_{vo}} \cdot \mathbf{N}_{SPT}\right)^{0.5}$$

essendo:

A, B = costanti empiriche indicate in tabella seguente

σνο' = pressione verticale efficace alla quota della prova SPT (kg/cm²);

NSPT = numero di colpi per 30 cm di infissione;

Dr = densità relativa (-).

Tabella 16 - Costanti empiriche A e B (Skempton, 1986)

Sabbie sovraconsolidate	Sabbie grosse normalmente consolidate	Sabbie fini normalmente consolidate	Tipo di materiale
27,5+43,3	43,3	27,5	Þ
$(21,7+27,5)$. $\frac{1+2.(ko)sc}{1+2.(ko)nc}$	21,7	27,5	0

costanti empiriche relative a sabbie fini normal consolidate. Nel caso in esame, cautelativamente per le unità incoerenti (GS, Ra, Cs), sono state cautelativamente considerate le

Correlazione di Gibbs e Holtz

seguente espressione: In accordo a quanto indicato da Gibbs e Holtz (1957) la densità relativa Dr può essere correlata al valore N₅p⊤ con la

$$D_{R} = \sqrt{\frac{N_{SPT}}{(16 + 23 \cdot \sigma_{vo}')}}$$

Correlazione di Bazaraa

espressione: In accordo a quanto indicato da Bazaraa (1967) la densità relativa Dr può essere correlata al valore N_{SPT} con la seguente

$$D_{R} = \sqrt{\frac{N_{SPT}}{20 \cdot (1 + 4.1 \cdot \sigma_{vo}')}} \quad \text{per } \sigma_{vo}' \le 0.732 \text{ kg/cm}^{2}$$

$$D_{R} = \sqrt{\frac{N_{SPT}}{20 \cdot (3.24 + 1.024 \cdot \sigma_{vo}')}} \quad \text{per } \sigma_{vo}' > 0.732 \text{ kg/cm}^{2}$$

essendo:

 D_R = densità relativa (-).

 $\sigma_{vo}{}'=$ pressione verticale efficace in sito alla quota della prova SPT (kg/cm²);

N_{SPT} = numero di colpi per 30 cm di infissione.

Correlazione di Terzaghi & Peck

In accordo a quanto indicato da Terzaghi e Peck (1948) la densità relativa Dr può essere correlata al valore N₅r con la seguente espressione:

$$D_R = (10.297 + N_{SPT} \cdot 2.4142) - (N_{SPT})^2 \cdot 0.0181$$

Parametri di resistenza

Per la stima dell'angolo di resistenza al taglio dalle prove SPT sono state utilizzate diverse correlazioni (Bolton;

in cui i valori di Nspt sono in funzione della tensione verticale efficace in sito due correlazioni (Bolton; Schmertmann). Inoltre è stato anche rappresentato il grafico della correlazione di De Mello resistenza al taglio con la profondità per terreni incoerenti, cautelativamente si riportano i valori minimi ottenuti dalle valori dell'angolo di resistenza al taglio inferiori, rispetto alla correlazione di Schmertmann. Nei grafici dell'angolo di Schmertmann, De Mello) di seguito illustrate. Generalmente per i terreni in esame, la correlazione di Bolton ha fornito

Correlazione di Schmertmann

correla l'angolo di resistenza al taglio alla densità relativa attraverso la seguente relazione: L'angolo di resistenza al taglio (φ') stimato dalle prove SPT in base alla correlazione proposta da Schmertmann (1977)

$$\phi = 38.5 + 0.108 \cdot D_R$$
 valida per sabbia e ghiaia poco limosa e ghiaietto uniforme

= 34 .5 +
$$0.10 \cdot D_R$$
 sabbia grossa-media uniformemente ben gradata

 ϕ

$$p=31.5+0.115\cdot D_R$$
 sabbia medio-fine uniformemente ben gradata

$$\varphi = 28.0 + 0.14 \cdot D_R$$
 sabbia fine uniforme

essendo: Dr = densità relativa

sabbia fine uniforme Nel caso in esame si è considerata, cautelativamente, per le unità incoerenti (GS, Ra, Cs), la correlazione valida per la

Correlazione di Bolton

L'angolo di resistenza al taglio di picco φ' è stato determinato in accordo al metodo proposto da Bolton (1986):

$$\phi' = \qquad \phi_{cv} + m \cdot DI$$

$$DI = \qquad D_r \cdot \left[Q - In(p_f')\right] - 1$$

essendo

 ϕ' = angolo di attrito di picco riferito a pressioni di 272 kPa (°);

consigliato = 10; Q = fattore che dipende dalla composizione minerealogica e dalla forma delle particelle di sabbia, valore

 $pf' = 1.4 \cdot 272 = 380 \text{ kPa});$ pf′ = $1.4 \cdot \text{off}'$ kPa (vedasi Jamiokowski et al., 1988; in accordo a quanto proposto da Baligh, 1975, si assume

Nel nostro caso si assume m=3; m = costante empirica dipendente dalle condizioni di deformazione prevalenti (vedasi tabella seguente).

Dr = densità relativa (-).

Tabella 17 — Valori della costante empirica m secondo Bolton (1986)

σ_2^{\prime} = tensione principale efficace intermedia σ_3^{\prime} = tensione principale efficace minore	deformazione piana $(\sigma_2 \neq \sigma_3)$	Tipo prova triassiale in estensione o di	$(\sigma_2' = \sigma_3')$	Tipo prova triassiale di compressione	Condizioni di rottura
	თ		c	3	m

di attrito φcv' delle unità GS, Ra, Cs, si è assunto φcv'= 30°. Stroud, 1988) e sulla base delle prove di laboratorio eseguite sui campioni indisturbati. Nel caso specifico per l'angolo I valori dell'angolo di attrito φcv' sono stati ricavati in base a quanto indicato nella tabella seguente (Youd, 1972;

Tabella 18 — Valori dell'angolo di attrito φ'cv per sabbie silicee secondo quanto riportato in Stroud (1988) e Youd (1972)

φ _{cv} ' = 30°	φ _{cv} ' = 33°	Sabbie a spigoli arrotondati
φ_{cv} ' = 34°	φ _{cv} ' = 38°	Sabbie a spigoli vivi
Sabbie uniformi	Sabbie ben gradate	

Caratteristiche di deformabilità

Le caratteristiche di deformabilità dei depositi incoerenti possono essere stimate, in ordine di importanza:

- sulla base dei risultati delle indagini sismiche in sito;
- dall'interpretazione delle prove penetrometriche dinamiche SPT.

dai valori delle velocità delle onde di taglio (Vs) utilizzando le seguenti correlazioni: Il modulo di taglio iniziale (G₀) e quello di Young iniziale (E₀), associabili a piccole deformazioni, possono essere ricavati

$$G_o = \frac{\gamma_t}{9.81} \cdot (V_s)^2 \quad \text{(kPa)}$$
$$E_o = G_o \cdot 2 \cdot (I + \nu)$$

essendo

 γt = peso di volume naturale del terreno in assunto pari a 19 kN/m³;

v = coefficiente di Poisson del terreno (assunto pari a 0.3);

Vs = velocità delle onde di taglio in m/sec.

o la correlazione di Yoshida e al. (1988). sondaggio o indirettamente, interpretando i risultati delle prove SPT attraverso la correlazione di Ohta e Goto (1978) La velocità delle onde di taglio (Vs) può essere ricavata direttamente dai risultati delle prove geofisiche in foro di

Correlazione di Ohta e Goto (1978)

$$V_{s} = C \cdot \left(N_{SPT}\right)_{50\%}^{0.171} \cdot (z)^{0.199} \cdot f_{A} \cdot f_{G} \; (m/sec)$$

essendo:

C = 53.3;

z = profondità dal p.c. in metri;

fA = coefficiente funzione dell'epoca geologica del deposito (vedasi la Tabella 19);

fG = coefficiente funzione della composizione granulometrica (vedasi la Tabella 20)

Tabella 19 – Relazione di Ohta e Goto, 1978 - Coefficiente fA (funzione dell'epoca geologica del deposito)

Þ	•
1,0	Olocene
1,3	Pleistocene

Tabella 20 – Relazione Relazione di Ohta e Goto, 1978 - Coefficiente fG (funzione della granulometrica del deposito)

	र्त
1,45	Ghiaie
1,15	Sabbie ghiaiose
1,14	Sabbie grosse
1,07	Sabbie medie
1,09	Sabbie fini

Nel caso in esame, per le unità GS, Ra, Cs, è stato assunto:

$$f_A = 1.3;$$

$$f_G = 1.14$$
.

Correlazione di Yoshida et al. (1988)

$$u_{_{\scriptscriptstyle S}} = C \cdot \left(N_{SPT}^{}\right)^{0.25} \cdot \left(\sigma_{_{\scriptscriptstyle V}}^{'}\right)^{0.14} \quad (\text{m/sec})$$

essendo:

C=56 per sabbie (unità GS, Ra, Cs);

C=60 per ghiaie sabbiose

σνο' = pressione verticale efficace esistente in sito alla quota della prova.

sostegno e delle fondazioni, saranno assunti pari a 1/5 di quello iniziale (Eo). l moduli di deformabilità "operativi" (E') da adottare per il calcolo delle deformazioni/cedimenti delle opere di

Nel caso di valutazione di cedimenti di rilevati, i moduli elastici "operativi" saranno assunti pari a 1/10 di quello iniziale

6.1.2 *Depositi coesivi*

anche dai risultati delle prove di laboratorio Per i depositi coesivi la caratterizzazione geotecnica è stata fatta oltre che dall'interpretazione delle prove in sito

Classificazione

La classificazione di questi terreni avverrà essenzialmente sui risultati delle seguenti prove di laboratorio

- Analisi granulometriche;
- pesi di volume naturale e secco;
- contenuti d'acqua naturale;
- limiti di Atterberg.

Caratteristiche di resistenza

delle prove di laboratorio che sono essenzialmente prove: Per la determinazione delle caratteristiche di resistenza dei depositi coesivi ci si è basati principalmente sui risultati

- Taglio diretto per la resistenza in tensioni efficaci;
- Triassiale non consolidata non drenata (TXUU) e prove a compressione assiale semplice (ELL) per la resistenza in condizioni non drenate

influenzato dalla densità relativa per cui si suppone che quello di picco e quello a volume costante in tale caso incoerente che presentano una forte componente limosa. In questo senso l'angolo d'attrito risulta limitatamente Inoltre, seppur come indicazione, è possibile utilizzare la correlazione proposta da Peck (1953) per i litotipi di natura

$$\phi'_{p}$$
 (°) = ϕ'_{CV} (°) = 0.30 N_{SPT} + 20

(1974): (PP) e/o Torvane (TV) e delle prove penetrometriche dinamiche SPT in base alla seguente correlazione di Stroud La resistenza al taglio in condizioni non drenate è stata valutata anche dalle prove speditive di Pocket Penetometer

$$c_u \cong (5.0 \div 5.5) \cdot N_{SPT}$$
 (kPa)

Caratteristiche di deformabilità

caratteristiche di deformabilità dei depositi coesivi possono essere stimati:

- sulla base dei risultati delle indagini sismiche in sito;
- dalle prove edometriche di laboratorio;
- da correlazioni di letteratura.

derivanti dalle correlazioni per l'interpretazione delle prove in sito SPT. relazioni precedentemente indicate per i terreni incoerenti. Questi valori sono stati confrontati poi con i risultati Per quanto concerne le prove sismiche in sito, le caratteristiche di deformabilità vengono individuate con le stesse

Il valore del modulo di deformazione elastico (E'v) per terreni coesivi sovraconsolidati può anche essere stimato con la seguente correlazione (Stroud, 1974):

$$E'v = 130 \cdot cu = 130 \cdot f_1 \cdot N$$
 [kPa]

Dove:

E'v = modulo di deformazione operativo (kPa)

cu = resistenza al taglio non drenata (kPa);

 f_1 = fattore in funzione dell'indice di plasticità IP, (vedasi figura seguente), assunto pari a 5;

 $N = valori di N_{SPT}$.

Figura 3: Fattore f1 in funzione di IP

base della seguente equazione: Sulla base di quanto riportato in Simpson et al. (1979) il modulo di taglio iniziale (G0) può essere stimato anche sulla

$$G_o = (500 \div 700) \cdot cu \text{ (kPa)}$$

essendo:

cu = resistenza al taglio non drenata.

<u>sostegno e delle fondazioni, saranno assunti pari a 1/5 di quello iniziale (E0).</u> moduli di deformabilità "operativi" (E') da adottare per il calcolo delle deformazioni/cedimenti delle opere di

Nel caso di valutazione di cedimenti di rilevati, i moduli elastici "operativi" saranno assunti pari a 1/10 di quello iniziale.

k è valutato con il grafico di figura seguente essere stimato sulla base della correlazione empirica proposta da Duncan & Buchignani (1976) Eu = $k \cdot cu$; il coefficiente Nella valutazione dei cedimenti immediati dei rilevati il modulo di deformazione in condizioni non drenate (Eu) può

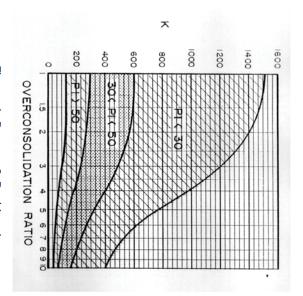


Figura 4: Duncan & Buchigani

Caratteristiche di consolidazione

e con correlazioni empiriche in funzione del limite liquido (LL), vedasi ad esempio la seguente: I valori del coefficiente di consolidazione primaria verticale sono determinati dalle prove edometriche di laboratorio

 $cv = 0.009 (LL - 0.1) [cm^2/s] NAVFAC-DM 7.1. (1971)$

Il coefficiente di consolidazione secondaria, è stimato con la correlazione proposta nel NAVFAC-DM 7.1 (1982, vedasi figura seguente), in funzione del contenuto naturale di acqua (wn).

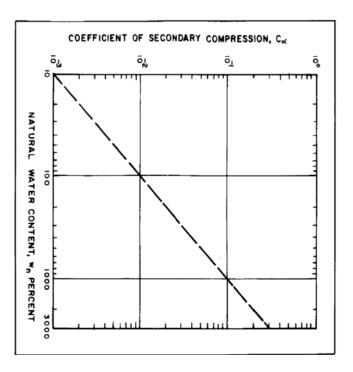


Figura 5: Abaco di calcolo del coefficiente di consolidazione secondaria da wn (NAVFAC, 1982)

.1.3 Materiali lapidei

spaziatura delle discontinuità e l'estensione della zona interessata dall'opera. numero e dall'orientazione delle discontinuità. L'importanza relativa di questi due fattori è legata al rapporto tra la La resistenza degli ammassi rocciosi dipende sia dalle caratteristiche della roccia intatta, sia dalla posizione, dal

in funzione delle caratteristiche e della frequenza delle fratture. caratterizzazione geotecnica ad un modello di continuo equivalente, ottenuto scalando opportunamente le proprietà Per grado di fratturazione elevato e uniformemente diffuso nell'ammasso, è prassi corrente fare ricorso nella

compaiono tre parametri: In particolare, Hoek e Brown (2002) hanno proposto un criterio di resistenza per ammassi rocciosi fratturati nel quale

- materiale lapideo; σci, ovvero la resistenza a compressione uniassiale della roccia intatta, per caratterizzare la resistenza del
- Nel piano delle tensioni principali il criterio di resistenza di Hoek e Brown è espresso dall'equazione: "m" ed "s", che tengono conto del grado di fatturazione del volume di materiale interagente con l'opera

$$\sigma_1 \quad \sigma_3 \quad \left(\dots \quad \sigma_3 \quad \dots \right)^n$$

$$\frac{\sigma_1}{\sigma_{ci}} = \frac{\sigma_3}{\sigma_{ci}} + \left(m_b \frac{\sigma_3}{\sigma_{ci}} + s \right) \tag{1}$$

I parametri "m" ed "s" ed "a" possono essere correlati all'indice "Geological Strength Index" (GSI, Figura 6) secondo le La stima del parametro σci è stata effettuata in base alle indicazioni provenienti dalle prove di laboratorio

espressioni (Hoek et al., 2002):

$$m = m_i \exp\left(\frac{GSI - 100}{28 - 14D}\right)$$

$$s = \exp\left(\frac{GSI - 100}{9 - 3D}\right)$$

$$a = \frac{1}{2} + \frac{1}{6}\left(e^{-GSI/15} - e^{-20/3}\right)$$

compressione della roccia σ 'c e la resistenza a trazione σ 't. Risulta semplice, ponendo rispettivamente nella (1) $\sigma'_3 = 0$ e П ٩ ۵ ۵ П σ't ricavare rispettivamente la resistenza

per scavi in roccia con mezzi meccanici e senza uso di esplosivi si può porre D = 0.5 (Figura di asportazione da scavo e dallo scarico tensionale che ne consegue. Per rocce indisturbate si può porre D=0, mentre Il coefficiente D che varia tra 0 ed 1, e rappresenta quantitativamente il disturbo arrecato alla roccia dalle operazioni Il valore di mi è stato ricavato da indicazioni di letteratura per rocce simili a quelle ritrovate nel corso delle indagini.

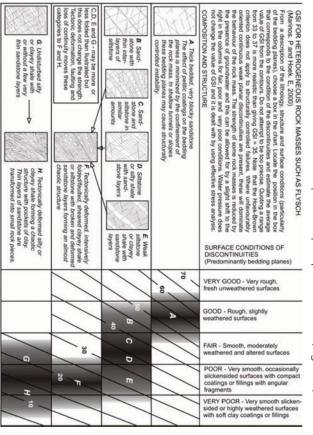


Figura 6: Tabella per la valutazione del GSI

			Appearance of rock mass
Very poor quality blasting in a hard rock tunnel results in severe local damage, extending 2 or 3 m, in the surrounding rock mass.	Mechanical or hand excavation in poor quality rock masses (no blasting) results in minimal disturbance to the surrounding rock mass. Where squeezing problems result in significant floor heave, disturbance can be severe unless a temporary invert, as shown in the photograph, is placed.	Excellent quality controlled blasting or excavation by Tunnel Boring Machine results in minimal disturbance to the confined rock mass surrounding a tunnel.	Description of rock mass
D = 0.8	D=0 $D=0.5$ No invert	D = 0	Suggested value of D

Figura 7: Tabella per la valutazione del parametro D

dominio di rottura di Hoek e Brown (linea rossa sempre Figura 8) in un intervallo: attrito del criterio di Mohr Coulomb linearizzando (linea blu Figura 8) nel piano delle tensioni principali $(\sigma_i; \sigma_3)$ il I parametri del criterio di rottura di Hoek e Brown possono essere correlati ai valori della coesione e dell'angolo di

$$\sigma_t < \sigma_3 < \sigma_{3,\,max}$$

L'angolo d'attrito · essere in queste ipotesi calcolato come:

$$\varphi = \sin^{-1} \left[\frac{6am_b (s + m_b \sigma'_{3n})^{a-1}}{2(1+a)(2+a) + 6am_b (s + m_b \sigma'_{3n})^{a-1}} \right]$$

e la coesione può essere invece ricavata dall'espressione

$$c' = \frac{\sigma'_{ci} \left[(1+2a)s + (1-a)m_b \sigma'_{3n} \right] (s+m_b \sigma'_{3n})^{a-1}}{(1+a)(2+a)\sqrt{1+6am_b (s+m_b \sigma'_{3n})^{a-1} / \left[(1+a)(2+a) \right]}}$$

in cui

$$\sigma'_{3n} = \sigma'_{3\max} / \sigma'_{ci}$$

profondità dello scavo (o altezza della scarpata). del tipo di problema esaminato (stabilità di pendii in roccia o studio del comportamento di una galleria) e della Hoek e Brown (2002) indicano un criterio razionale per scegliere il valore adeguato di $\sigma_{3, max}$ che in generale è funzione

Deformabilità

prevede che il modulo di elasticità si espresso come: stimati empiricamente per i provini. La relazione proposta da Serafim e Pereira (1983), modificata da Hoek (2002) La caratterizzazione del modulo elastico dell'ammasso, viene eseguita integrando i dati sperimentali, con ulteriori dati

$$E(GPa) = \left(1 - \frac{D}{2}\right) \cdot \sqrt{\left(\frac{\sigma_c}{100}\right) \cdot 10^{((GSI-10)/40)}}$$

compressione triassiale della roccia intatta: secondo cui c'è una proporzionalità empirica tra il modulo di elasticità della roccia intatta e la tensione di rottura in Successivamente, Hoek e Diederichs (2005), hanno proposto una relazione, recentemente implementata in Roclab,

$$E_i = MR \, \sigma_{ci}$$

spettro di prove sperimentali ed assume valori differenti in relazione al tipo di roccia. indicata per i casi in cui non si ha una misura diretta di E_i . Il coefficiente $M\!R$, è interpolato sulla base di un ampio

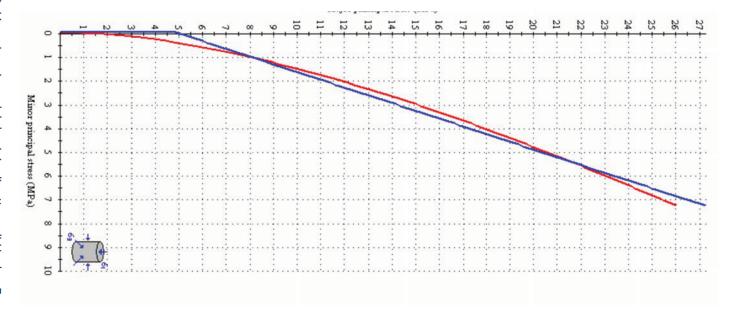


Figura 8: Linearizzazione del dominio di rottura di Hoek e Brown

6.2 Svincolo di Bonorva Sud

6.2.1 Unità geotecniche

Le unità geotecniche intercettate sono le seguenti:

Unità Rv – coltre vegetale: si tratta della coltre di terreno vegetale

Unità Ra – riporto antropico: si tratta del terreno costituente i rilevati stradali esistenti.

da materiale prevalentemente incoerente, ghiaia sabbiosa con clasti, ciottoli. Unità Cs - coltre superficiale ghiaioso sabbiosa: si tratta della coltre di alterazione della formazione di base, costituita

Unità Ba — Basalti di Campeda: substrato costituito da roccia basaltica a struttura vacuolare

6.2.2 Unità Rv – terreno vegetale

Si tratta della coltre di terreno vegetale con spessore massimo 0.3 realizzazione delle opere in progetto. 0.5 3 Φ verrà localmente asportata per la

6.2.3 Unità Ra – riporto antropico (rilevato stradale)

Si tratta del terreno costituente i rilevati stradali esistenti

Per il materiale da rilevato si assumono i seguenti parametri geotecnici di progetto

 $\gamma = 18.5 \text{ kN/m}^3$ peso di volume naturale $\phi' = 36^\circ$ angolo di resistenza al taglio

c' = 0 kPa coesione drenata

6.2.4 Unità Cs – coltre superficiale ghiaioso sabbiosa

con sabbia, talvolta limosa con clasti basaltici. Si tratta della coltre di alterazione della formazione rocciosa basaltica e quindi è costituita prevalentemente da ghiaia

Nel sondaggio S7-2015 è stata intercettata fino ad una profondità di 6 m dal p.c., nel sondaggio F19dx fino a 3 m.

strumentale (vedasi Figura 9). In corrispondenza dell'unità sono state eseguite due prove SPT che hanno dato valori tra 30 colpi/30 cm e rifiuto

La densità relativa stimata dalle prove SPT è tra 65 e 70% (vedasi Figura 10)

Dall'analisi granulometrica si ha (vedasi Figura 17): In corrispondenza dell'unità sono stati prelevati campioni rimaneggiati su cui sono state eseguite prove di laboratorio

- Percentuale di ghiaia tra 4 e 91% (valore medio 54%);
- Percentuale di sabbia tra 7 e 30% (valore medio 17%);
- 2 e 47% (17%) Percentuale di fine (limo+argilla) tra 2 e 83% (valore medio 28%) di cui argilla tra 0 e 36% (12%) e limo tra

In alcuni casi è stato possibile eseguire i limiti di consistenza (vedasi Figura 18) che hanno fornito valori di limite

liquido tra 44 e 64% (media 55%), limite plastico tra 25 e 32% (media 29%) ed indice di plasticità tra 18 e 35% (media

valore di progetto Per il peso di volume naturale si ha una sola misura che ha dato 17 kN/m³ (vedasi Figura 16) e viene assunto come

Parametri di resistenza

di 40° con la correlazione di De Mello (vedasi Figura 12). Dalle prove SPT si stimano valori dell'angolo di resistenza al taglio compresi fra 37 e 38° (vedasi Figura 11), maggiori

coesione drenata 0 kPa (sondaggio S7-2015 campione a 4 m di profondità), che ha fornito un angolo di resistenza al taglio compreso 38° e In laboratorio è stata eseguita una prova di taglio diretto su un campione rimaneggiato, ricostituito per la prova

Per l'unità si assumono i seguenti valori di parametri di resistenza di progetto:

 $\phi' = 35^{\circ}$ angolo di resistenza al taglio

c' = 0 kPa coesione drenata

Parametri di deformabilità

I parametri di deformabilità sono stati stimati dall'interpretazione delle prove SPT (vedasi Figura 13, Figura 14, Figura

Vs = 150÷300 m/s velocità delle onde di taglio

 $Go = 50 \div 160 \text{ MPa}$ modulo di deformazione a taglio iniziale (a piccole deformazioni)

Eo = 130÷400 MPa modulo di deformazione elastico iniziale (a piccole deformazioni)

6.2.5 Unità Ba – Basalto di Campeda

da alterato a molto fratturato. I valori di RQD (da stratigrafie sondaggi) variano da 50 a 85% Il substrato dell'area è rappresentato dalla Formazione basaltica di Campeda: si tratta di basalto a struttura vacuolare

In laboratorio sono state eseguite le seguenti prove sui campioni litoidi:

- determinazione peso di volume;
- resistenza a compressione monoassiale,
- Point Load Test

Nelle seguenti tabelle sono sintetizzati i risultati delle prove di laboratorio su roccia.

Il peso di volume misurato è 24.69 kN/m³ (vedasi Figura 16).

Tabella 21 – Risultati prove resistenza a compressione monoassiale su roccia

Ва	\subseteq	Roccia
S6PZ		Sondaggio
Li4	[-]	Campione
15.24	[m]	Profondità media
71	[MPa]	σ _c
24700	[MPa]	$E_{ an 50\%}$

Tabella 22 – Risultati Point Load Test

			ומטכו	abella 22 - Visultati Folilit Evan Test	חונמנו דטוו	IL LOGO I C	טכ			
Id	Profondità	Roccia	D	Carico	De	De ²	Is	TI	IS(50)	$\sigma_{\rm c}$
[-]	[m]	[-]	[mm]	[N]	[mm]	[mm2]	[MPa]	Ξ	[MPa]	[MPa]
S6pz_Li3_a	9,40	basalto	77,94	19908	77,94	6075	3,277	1,2211	4,00	88,04
S6pz_Li3_b	9,48	basalto	77,94	20773	77,94	6075	3,420	1,2211	4,18	91,87
S6pz_Li3_c	9,56	basalto	77,78	19331	77,78	6050	3,195	1,2200	3,90	85,76
S6pz_Li3_d	9,64	basalto	77,75	16157	77,75	6045	2,673	1,2198	3,26	71,72
S6pz_Li4_a	15,00	basalto	78,10	14426	78,10	6100	2,365	1,2222	2,89	63,60
S6pz_Li4_b	15,27	basalto	78,02	21639	78,02	6087	3,555	1,2217	4,34	95,54
S6pz_Li4_c	15,37	basalto	78,14	29718	78,14	6106	4,867	1,2225	5,95	130,90
S7_Li2_a	9,75	basalto	77,71	1443	77,71	6039	0,239	1,2195	0,29	6,41
S7_Li2_b	9,83	basalto	78,32	1875	78,32	6134	0,306	1,2238	0,37	8,23
S7_Li2_c	9,91	basalto	78,05	1154	78,05	6092	0,189	1,2219	0,23	5,09
S7_Li4_a	17,44	basalto	78,59	36498	78,59	6176	5,909	1,2257	7,24	159,34
S7_Li4_b	17,52	basalto	78,66	32747	78,66	6187	5,293	1,2262	6,49	142,77
S7_Li4_c	17,59	basalto	78,65	31449	78,65	6186	5,084	1,2261	6,23	137,14

ottenuti moltiplicando l'indice ls(50) per il fattore moltiplicativo ls(50) valore specifico per ls(50) per il fattore moltiplicativo ls(50) valore specifico per ls(50) per il fattore moltiplicativo ls(50) valore specifico per ls(50) per il fattore moltiplicativo ls(50) valore specifico per ls(50) per il fattore moltiplicativo ls(50) valore specifico per ls(50) per il fattore moltiplicativo ls(50) valore specifico per ls(50) per il fattore moltiplicativo ls(50) valore specifico per ls(50) per il fattore moltiplicativo ls(50) valore specifico per ls(50) per il fattore moltiplicativo ls(50) valore specifico per ls(50) valore specifico per ls(50) per il fattore moltiplicativo ls(50) valore specifico per lsNella precedente tabella sono riportati anche i valori di resistenza a compressione stimati dalla prova Point Load Test,

MPa con valore medio circa σ_{cm} =70 MPa e decimo percentile σ_{cl0} =7 MPa. In Figura 19 è riportata la resistenza a compressione monoassiale con la profondità, i valori sono compresi fra 6 e 159

1995), rispettivamente per il sondaggio S6Pz ed il sondaggio S7 Nelle seguenti tabelle si riporta la classificazione con il metodo di Bieniawski (1989) e con il Metodo GSI (Hoek et al.,

Tabella 23 – Indici RMR e GSI – sondaggio S6Pz

Tabella 24 – Indici RMR e GSI – sondaggio S6Pz

34	26	GSI
39	31	RMR
-7	-7	A6: paramentro di misura dell'orientamento delle disc.
0	10	A5: parametro di misura della condizione idraulica dei giunti
10	10	A4: parametro di misura della condizione dei giunti
7,45	7,45	A3: 15s + 5; 7.752s+ 5.9
15,73	8,68	A2: (5/23.4)*RQD - 1.367 per RQD > 76.6; A2: (7/37.6)*RQD+0.739 per RQD compreso nell'intervallo [39 ÷ 76.6];
13,27	1,59	A1: 4/44.5*σc+1 per σc <= 44,5 A1: 4/49.25*sc+1,368 per σc (44,5 - 93,75)
е:	e grandezze sopra riportat	Valori numerici derivati dalle grandezze sopra riportate:
mediocre	mediocre	6. Orientamento delle discontinuità
forti venute	umida	5. Condizione Idraulica delle discontinuità
piane o lisce Continue Apertura 1 - 5 mm Riempimento < 5 mm	piane o lisce Continue Apertura 1 - 5 mm Riempimento < 5 mm	4. Condizione di scabrezza delle discontinuità
0,2	0,2	3. Spaziatura delle discontinuità (m)
80	47	2. RQD %
146,52	6,58	$1. \sigma_c$ MPa
PLT_Li4	PLT_Li2	Campione

Coulomb è stata eseguita mediante l'ausilio del programma RocLab (rocscience) che richiede seguenti dati di input: L'approssimazione lineare dell'inviluppo di rottura secondo il criterio di Hoek e Brown attraverso il criterio di Mohr-

- sono stati considerati due valori, il decimo percentile (σ_{c10} =7 MPa) ed il valore medio (σ_{cm} =70 MPa), al fine di tensione di rottura σ_c da prove a compressione monoassiale (o derivata da prove di point load), in particolare individuare un intervallo dei parametri di resistenza di progetto;
- indice GSI , in particolare si è assunto il valore minimo di 26% e medio di 30%;
- parametro m_i assunto per il basalto pari a 25;
- parametro $\,D\,$ assunto, cautelativamente, pari a 1;

di volume 25 kN/m³. profondità media di 10-15 m (considerando le condizioni generali delle tensioni per le opere in progetto), con peso La linearizzazione dell'inviluppo (vedasi Figura 20, Figura 21) è stata valutata considerando le tensioni ad una

integra ha dato E_{150%}=24700 MPa; la stima delle deformazioni è stata fatta considerando la relazione implementata in Per le caratteristiche di deformazione della formazione si ha un risultato di una prova di laboratorio che su roccia

Roclab, (MR* σ c), con MR = 350, valore consigliato per basalto.

ai seguenti parametri di progetto per l'unità Ba-basalto: In Figura 20 e Figura 21 è mostrato un riepilogo delle valutazioni svolte per la stima dei parametri, da cui si perviene

 $\gamma = 25.0 \text{ kN/m}^3$ peso di volume

 $\phi' = 26 \div 42^{\circ}$ c′ = 26÷96 kPa angolo di resistenza al taglio coesione drenata

 $E = 63 \div 700 \text{ MPa}$ modulo di deformazione

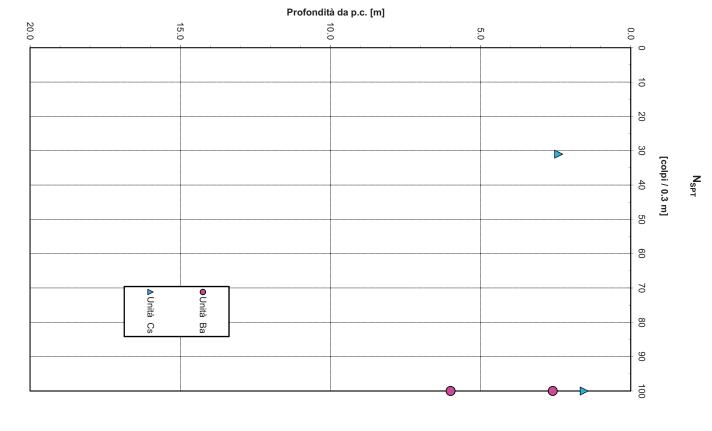


Figura 9: Valori di N_{spt} — svincolo Bonorva Sud

Densità relativa da prove SPT

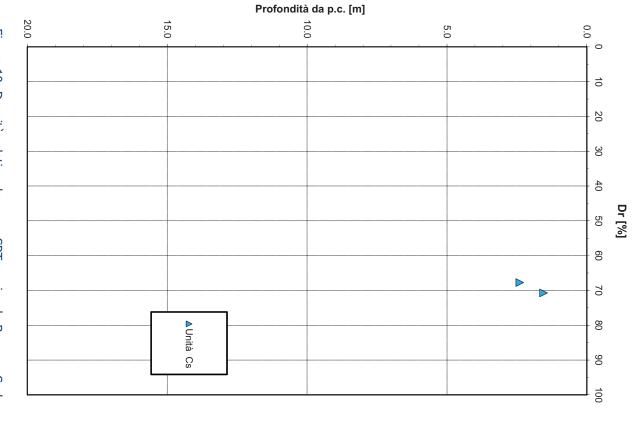


Figura 10: Densità relativa da prove SPT – svincolo Bonorva Sud

Angolo di resistenza al taglio da prove SPT

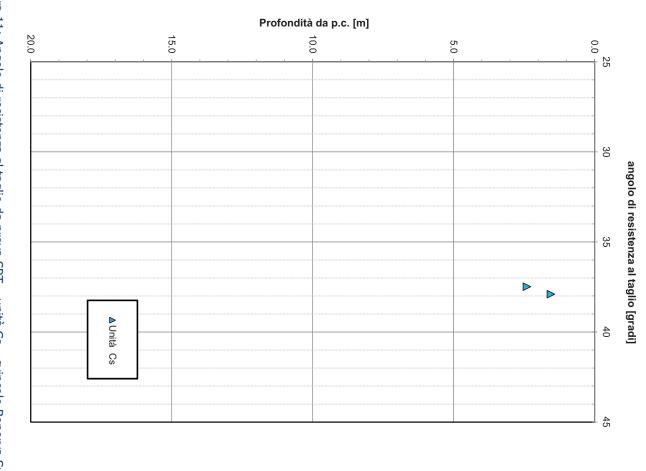


Figura 11: Angolo di resistenza al taglio da prova SPT – unità Cs – svincolo Bonorva Sud

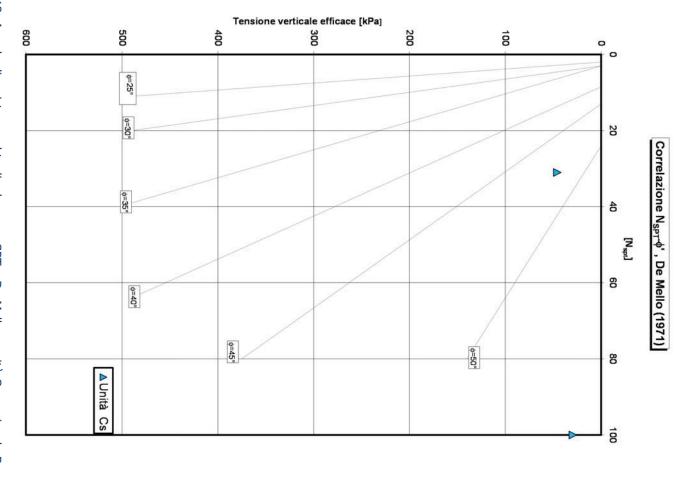


Figura 12: Angolo di resistenza al taglio da prova SPT – De Mello – unità Cs – svincolo Bonorva Sud

Velocità delle onde di taglio da prove SPT e sismiche

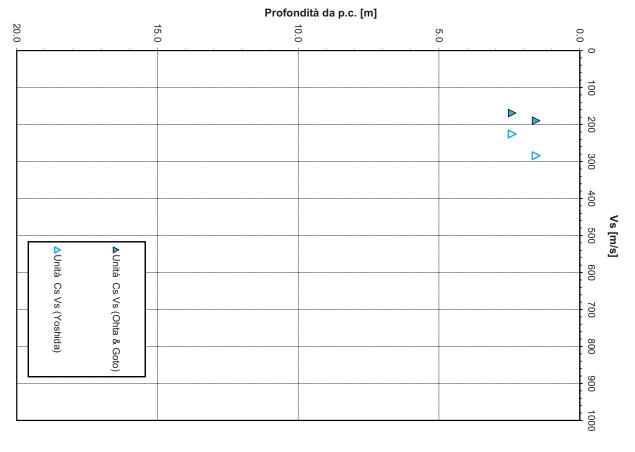
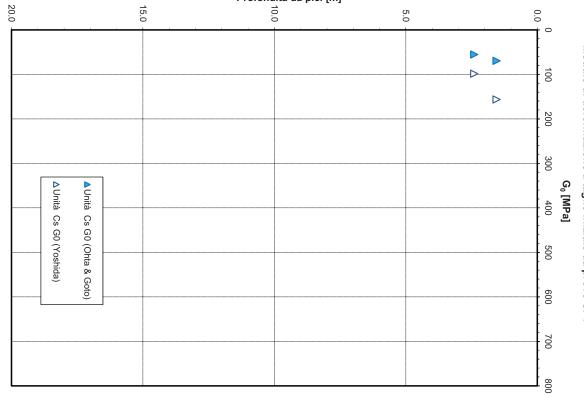



Figura 13: Velocità delle onde di taglio da prove SPT – unità Cs – svincolo Bonorva Sud

Modulo di deformazione a taglio iniziale da prove SPT

Profondità da p.c. [m]

Figura 14: Modulo di deformazione a taglio iniziale da prove SPT – unità Cs – svincolo Bonorva Sud

Modulo di deformazione elastico iniziale da prove SPT

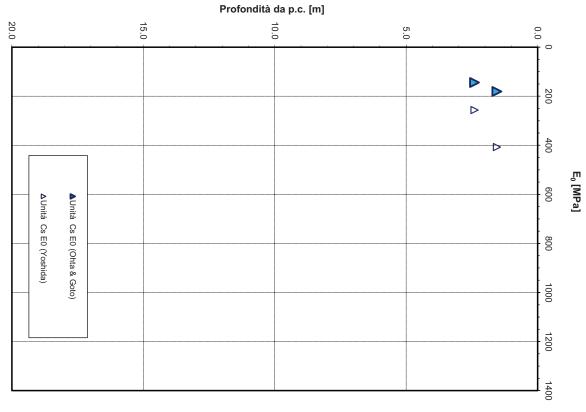
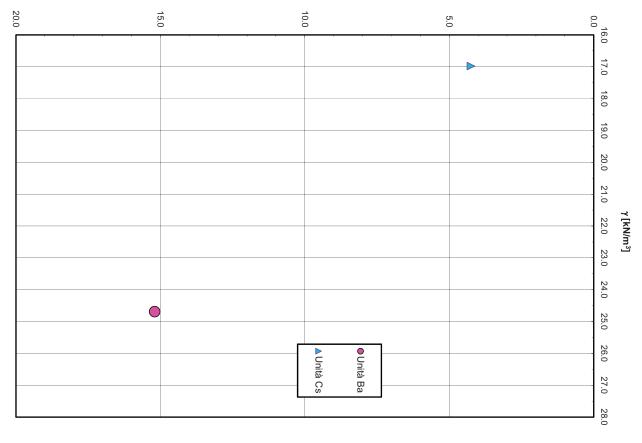
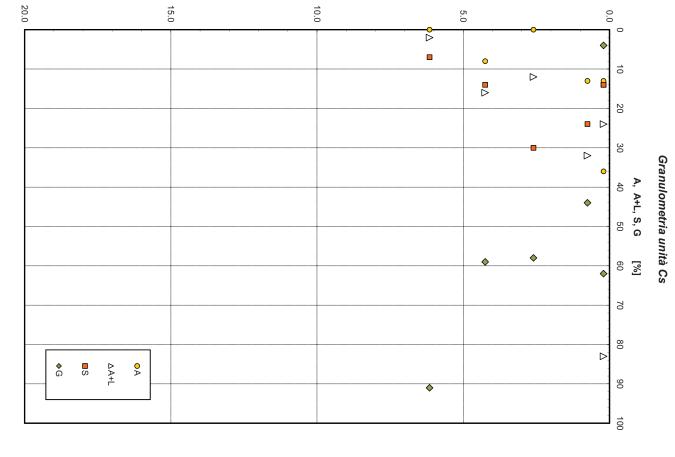



Figura 15: Modulo di deformazione elastico iniziale da prove SPT – unità Cs – svincolo Bonorva Sud


Peso di volume

Profondità da p.c. [m]

Figura 16: Peso di volume naturale – svincolo Bonorva Sud

Profondità da p.c. [m]

Figura 17: Analisi granulometrica – unità Cs – svincolo Bonorva Sud

Limiti di Atterberg e contenuto naturale d'acqua

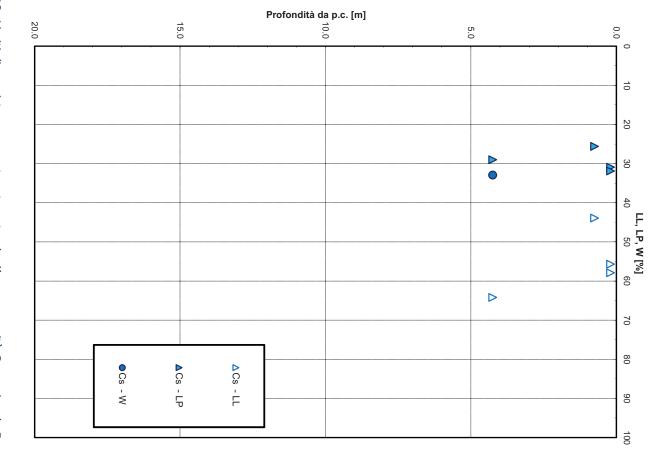


Figura 18: Limiti di consistenza e contenuto naturale d'acqua – unità Cs – svincolo Bonorva Sud

Resistenza a compressione monoassiale

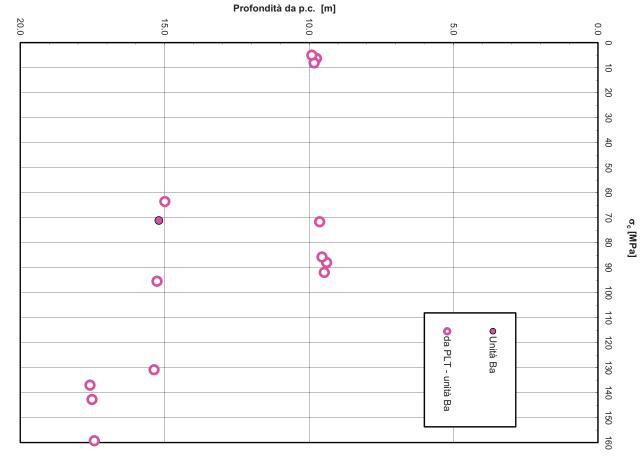


Figura 19: Resistenza a compressione monoassiale – svincolo Bonorva Sud

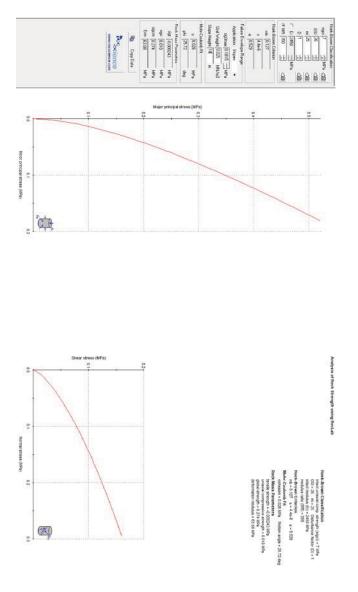


Figura 20: Parametri di resistenza (RocLab) – unità Ba (basalto) •c =7 MPa – svincolo Bonorva Sud

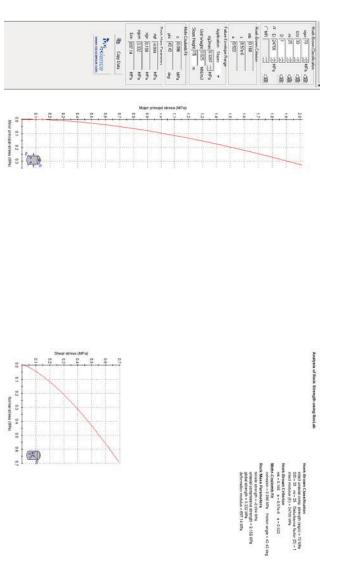


Figura 21: Parametri di resistenza (RocLab) – unità Ba (basalto) •c =70 MPa – svincolo Bonorva Sud

Sintesi parametri geotecnici di progetto – svincolo Bonorva Sud

Per le unità geotecniche intercettate si assumono i seguenti parametri caratteristici di progetto.

Unità Ra – riporto antropico (rilevato stradale)

 $\gamma = 18.5 \text{ kN/m}^3$ peso di volume naturale

oʻ = 36° angolo di resistenza al taglio

c' = 0 kPa coesione drenata

Unità Cs – coltre superficiale ghiaioso sabbiosa

 $\gamma = 17.0 \text{ kN/m}^3$ peso di volume naturale

ρ' = 35° angolo di resistenza al taglio

c' = 0 kPa coesione drenata

 $Vs = 150 \div 300 \text{ m/s}$ velocità delle onde di taglio

 $Go = 50 \div 160 \text{ MPa}$ modulo di deformazione a taglio iniziale (a piccole deformazioni)

Eo = 130÷400 MPa modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità Ba — Basalto di Campeda

 $\gamma = 25.0 \text{ kN/m}^3$ peso di volume

 $\phi' = 26 \div 42^{\circ}$ angolo di resistenza al taglio

c′ = 26÷96 kPa coesione drenata

E = 63÷700 MPa modulo di deformazione

6.3 Svincolo di Bonorva Nord

6.3.1 Unità geotecniche

Le unità geotecniche intercettate sono le seguenti:

Unità Rv – coltre vegetale: si tratta della coltre di terreno vegetale

con clasti. eterogeneo, prevalentemente incoerente, derivante da materiale di cava, costituito da ghiaia sabbiosa limosa e sabbia Unità Ra – riporto antropico: si tratta del terreno costituente i rilevati stradali esistenti ed il materiale molto

materiale prevalentemente fine coesivo, limo argilloso talvolta sabbioso. Unità LAS – limo argilloso sabbioso: si tratta della coltre di alterazione della formazione di Mores, costituita da

prevalentemente incoerente, ghiaia sabbiosa con clasti, ciottoli. Unità GS- ghiaia sabbiosa: si tratta della coltre di alterazione della formazione di Mores, costituita da materiale

Unità C - Formazione di Mores calcarenitica: substrato costituito da calcarenite; Unità M – Formazione di Mores marnosa, siltiti: substrato costituito da marna, marna argillosa, siltite, siltite marnosa

Unità Ar - Formazione di Mores arenacea: substrato costituito da arenaria

Unità Ba – Basalti del Lugudoro: formazione basaltica.

con due diverse tonalità di verde le due principali distinzioni della Formazione di Mores: Nel profilo stratigrafico longitudinale e nelle sezioni geotecniche, in conformità con gli elaborati geologici, sono distinti

- la facies costituita da una matrice più fine marnosa, siltitica (unità tipo M): rappresentate in colore verde scuro;
- Calcareniti e arenarie (Unità C, Ar): rappresentate in colore verde chiaro

6.3.2 Unità Rv – terreno vegetale

realizzazione delle opere in progetto Si tratta della coltre di terreno vegetale con spessore massimo 0.3 – 0.5 m e verrà localmente asportata per la

6.3.3 Unità Ra – riporto antropico

incoerente, derivante da materiale di cava, costituito da ghiaia sabbiosa limosa e sabbia con clasti Si tratta del terreno costituente i rilevati stradali esistenti ed il materiale molto eterogeneo, prevalentemente

strumentale, ad indicare l'elevata variabilità nello stato di addensamento del materiale (vedasi Figura 22). In corrispondenza dell'unità sono state eseguite prove SPT che hanno dato valori tra 5 e 60 colpi/ 30 cm con un rifiuto

La densità relativa stimata dalle prove SPT è tra 20 e 85% (vedasi Figura 23).

componente fine) su cui sono state eseguite prove di laboratorio In corrispondenza dell'unità sono stati prelevati campioni rimaneggiati ed alcuni indisturbati (dove c'era una maggiore

Dall'analisi granulometrica si conferma la estrema variabilità nella composizione del materiale (vedasi Figura 30):

- Percentuale di ghiaia tra 3 e 56% (valore medio 24%);

- Percentuale di sabbia tra 20 e 45% (valore medio 31%);
- Percentuale di fine (limo+argilla) tra 14 e 69% (valore medio 46%) di cui argilla tra 1 e 21% (13%) e limo tra

(media 35%), limite plastico tra 22 e 28% (media 24%) ed indice di plasticità tra 4 e 21% (media 11%), vedasi Figura In alcuni casi è stato possibile eseguire i limiti di consistenza che hanno fornito valori di limite liquido tra 26 e 44%

Figura 31). Dalla carta di plasticità di Casagrande il materiale si colloca nella zona dei limi inorganici a media plasticità (vedasi

(vedasi Figura 29). Il peso di volume naturale misurato è compreso fra 17 e 18.6 kN/m³; si assume in progetto un valore di 18.5 kN/m³

Parametri di resistenza

drenata tra 1 e 35 kPa (vedasi Figura 33, Figura 35, Figura 36). diretto che hanno fornito valori dell'angolo di resistenza al taglio compreso fra 28 e 37° (valore medio 33°) e coesione Sui campioni prelevati (anche su provini rimaneggiati ricostituiti in laboratorio) sono state eseguite prove di taglio Dalle prove SPT si stimano valori dell'angolo di resistenza al taglio compresi fra 31 e 39° (vedasi Figura 24, Figura

resistenza minimi e massimi dei parametri di resistenza di progetto (vedasi Figura 34): Nella figura sono mostrati nel grafico t-s i risultati delle prove di laboratorio e sono rappresentati gli inviluppi di

 $\phi' = 30 \div 35^{\circ}$ angolo di resistenza al taglio $c' = 0 \div 5$ kPa coesione drenata

Parametri di deformabilità

deformazione (vedasi Figura 27, Figura 28) in base alle correlazioni precedentemente illustrate. SPT e LS7 sono in buon accordo fra loro. Dalle velocità delle onde di taglio si stimano i valori dei moduli di sismica LS7 in corrispondenza della verticale del sondaggio S11. Dalla figura si osserva che i risultati delle prove in sito 2015 (LS7). In Figura 26 sono rappresentati i valori delle velocità delle onde stimati dalle prove SPT e dell'indagine I parametri di deformabilità sono stati stimati dall'interpretazione delle prove SPT e dall'indagine sismica eseguita nel

Vs = 135÷360 m/s velocità delle onde di taglio

Eo = 80÷600 MPa 30÷250 MPa modulo di deformazione a taglio iniziale (a piccole deformazioni) modulo di deformazione elastico iniziale (a piccole deformazioni)

6.3.4 Unità LAS – limo argilloso sabbioso

limo argilloso talvolta sabbioso. Si tratta della coltre di alterazione della formazione di Mores, costituita da materiale prevalentemente fine coesivo,

In corrispondenza dell'unità sono state eseguite prove SPT che hanno dato valori tra 10 e rifiuto strumentale, con

valore medio di 22 colpi/30 cm (vedasi Figura 37).

In corrispondenza dell'unità sono stati prelevati campioni rimaneggiati ed indisturbati su cui sono state eseguite prove

Dall'analisi granulometrica si ha (vedasi Figura 43):

- Percentuale di ghiaia tra 0 e 40% (valore medio 13%);
- Percentuale di sabbia tra 7 e 44% (valore medio 26%);
- 17 e 65% (41%). Percentuale di fine (limo+argilla) tra 35 e 91% (valore medio 61%) di cui argilla tra 10 e 26% (18%) e limo tra

45. Il contenuto naturale d'acqua è compreso fra 17 e 26% (media 24%). L'indice di consistenza è compreso fra 0.9 e (media 47%), limite plastico tra 22 e 31% (media 26%) ed indice di plasticità tra 10 e 30% (media 21%), vedasi **Figura** In alcuni casi è stato possibile eseguire i limiti di consistenza che hanno fornito valori di limite liquido tra 37 e 57%

Figura 44). Dalla Carta di Plasticità di Casagrande il materiale si colloca nella zona dei limi argillosi di medio-alta plasticità (vedasi

Il peso di volume naturale misurato è compreso fra 17 e 19.4 kN/m³, con valore medio di 18.5 kN/m³ (vedasi Figura

Parametri di resistenza

28°) e coesione drenata tra 1 e 42 kPa (valore medio 25 kPa), vedasi Figura 46, Figura 48, Figura 49. diretto che hanno fornito valori dell'angolo di resistenza al taglio generalmente compreso fra 20 e 32° (valore medio Sui campioni prelevati (anche su provini rimaneggiati ricostituiti in laboratorio) sono state eseguite prove di taglio

resistenza minimi e massimi dei parametri di resistenza di progetto (vedasi Figura 47): Nella figura sono mostrati nel grafico t-s i risultati delle prove di laboratorio e sono rappresentati gli inviluppi di

 $\phi' = 28 \div 30^{\circ}$ angolo di resistenza al taglio

c′ = 5÷10 kPa coesione drenata

resistenza al taglio non drenata è compresa generalmente tra 40 e 180 MPa Penetrometer e da SPT. Nel grafico è anche rappresentata la retta della normal consolidazione ($cu_{NC}=0.23*\sigma'_{V}$). La In Figura 50 sono riportati i valori della resistenza al taglio non drenata da prove di laboratorio, da Pocket

Parametri di deformabilità

sismica eseguita nel 2017 (BS1-BS2-BS3 entro 7 m circa di profondità da p.c.). In Figura 38 sono riportati i valori delle indagini sismiche sono generalmente maggiori rispetto a quelli stimati dall'interpretazione delle prove SPT velocità delle onde. I valori dei moduli di deformazione sono mostrati in Figura 39 e Figura 40; i valori stimati dalle I parametri di deformabilità sono stati stimati dall'interpretazione delle prove SPT (Simpson et al.) e dall'indagine

Vs = 250÷400 m/s velocità delle onde di taglio

Go = $35 \div 300 \text{ MPa}$ modulo di deformazione a taglio iniziale (a piccole deformazioni)

Eo = 70÷650 MPa modulo di deformazione elastico iniziale (a piccole deformazioni)

di 8.8 e 15.6 MPa rispettivamente a 5 ed a 11 m di profondità da p.c. (sondaggio S9-2015). Sono inoltre disponibili i risultati di due prove edometriche di laboratorio che hanno fornito un modulo edometrico

due diverse correlazioni empiriche; si osservano valori tra 6 e 90 MPa. In Figura 41 sono riportati i valori del modulo di deformazione elastico operativo (Eo/10) stimati dalle prove SPT con

Quindi si stima Eu = 8000÷36000 kPa. considerando un indice plastico medio del 20% e OCR=10÷12 (da prove edometriche), da cui si ha Eu/cu = 200 Il modulo di deformazione in condizioni non drenate è stimato dalla correlazione di Duncan & Buchigani (1976)

Dalle prove edometriche inoltre si ha:

 $cv = 5 \cdot E^{-07} \text{ m}^2/\text{s}$ coefficiente di consolidazione verticale

ca = 0.08 coefficiente di consolidazione secondario.

Dalle correlazioni empiriche si stima (limite liquido medio=47%, contenuto naturale d'acqua medio = 24%:

 $cv = 3 \cdot E^{-07} \text{ m}^2/\text{s}$ coefficiente di consolidazione verticale

ca = 0.002 coefficiente di consolidazione secondario.

6.3.5 Unità GS – ghiaia sabbiosa

ghiaia sabbiosa con clasti, ciottoli. Si tratta della coltre di alterazione della formazione di Mores, costituita da materiale prevalentemente incoerente,

strumentale (vedasi Figura 51). In corrispondenza dell'unità sono state eseguite prove SPT che hanno dato valori tra 30 colpi/30 cm e rifiuto

La densità relativa stimata dalle prove SPT è tra 65 e 90% (vedasi Figura 52).

Dall'analisi granulometrica si ha (vedasi Figura 58): In corrispondenza dell'unità sono stati prelevati campioni rimaneggiati su cui sono state eseguite prove di laboratorio

- Percentuale di ghiaia tra 17 e 73% (valore medio 34%);
- Percentuale di sabbia tra 13 e 59% (valore medio 38%);
- Percentuale di fine (limo+argilla) tra 5 e 36% (valore medio 15%) di cui argilla tra 0 e 22% (13%) e limo tra 5

(media 42%), limite plastico tra 13 e 30% (media 23%) ed indice di plasticità tra 6 e 37% (media 19%) In alcuni casi è stato possibile eseguire i limiti di consistenza che hanno fornito valori di limite liquido tra 20 e 63%

Per il peso di volume naturale si ha una sola misura che ha dato 17.55 kN/m³; si assume in progetto un valore di 18.5

Parametri di resistenza

superiori a 40° dalla correlazione di De Mello (Figura 54). Dalle prove SPT si stimano valori dell'angolo di resistenza al taglio compresi fra 37 e 40° (vedasi Figura 53) con valori

In laboratorio è stata eseguita una prova di taglio diretto su un campione rimaneggiato, ricostituito per la prova

drenata 8 kPa. (sondaggio S26a del 1998 Fondedile), che ha fornito un angolo di resistenza al taglio compreso 34.6° e coesione

Quindi per l'unità si assumono i seguenti valori di parametri di resistenza di progetto:

φ′ = 35° angolo di resistenza al taglio

c' = 0 kPa coesione drenata

Parametri di deformabilità

57) I parametri di deformabilità sono stati stimati dall'interpretazione delle prove SPT (vedasi Figura 55, Figura 56, Figura

Vs = 150÷350 m/s velocità delle onde di taglio

 $Go = 50 \div 230 \text{ MPa}$ modulo di deformazione a taglio iniziale (a piccole deformazioni)

Eo = 130÷600 MPa modulo di deformazione elastico iniziale (a piccole deformazioni)

0 . 3 6 Unità M, Si, C, Ar – Formazione di Mores marnosa, siltosa, calcarenitica, arenacea

si presenta come marna, siltite, poi come calcarenite e arenaria. Il substrato dell'area è rappresentato dalla Formazione di Mores che nella parte iniziale dello svincolo (zona sud-est)

dato valori tra 15 e 75 colpi/30 cm (vedasi Figura 59) alcune prove eseguite nella siltite tenera argilloso sabbiosa più superficiale (sondaggi S7, S8, S9 del 1992), che hanno Le prove SPT eseguite in corrispondenza della formazione di base sono andate quasi tutte a rifiuto, ad eccezione di

nelle parti più terrose (siltite) su cui sono state eseguite prove di laboratorio In corrispondenza della formazione sono stati prelevati spezzoni di roccia nelle parti litoidi e campioni rimaneggiati

sondaggio S7, con determinazione prima di RMR (Bieniawski 1984) e poi di GSI (=RMR-5, con il Metodo GSI (Hoek et Nella seguente tabella si riporta la classificazione dell'ammasso roccioso rispettivamente per il sondaggio S6Pz ed il

l abella 25 –
la 25
RMR e
GSI -
Indici RMR e GSI – sondaggi 201.
201

	-	_	_	_	_	_	_	_	_	_	
S4	S4	S4	S3	S3	S2	S2	S1	S1		oriu.	Sond
17.40	12.15	8.60	18.00	7.00	9.00	4.85	16.00	10.10		[m]	Protondita
5	9	58	66	41	61	56	16	11		sc [Mpa]	
2	2	7	7	7	7	7	2	2		Ρ1	
90	90	85	80	50			100	100		RQD %	
17	17	17	17	13	0	0	20	20		P2	
60-200mm	60-200mm	0.2-0.6m	0.2-0.6m	0.2-0.6m	60-200mm	60-200mm	0.6-2m	0.2-0.6m		discontinuità	Spaziatura
00	00	10	10	10	00	00	15	10		Р3	
2	2	4	4	4	4	6	4	2	continuità		
1	1	1	1	1	1	1	1	1	apertura	con	
1	1	1	1	1	1	1	1	1	scabrezza	condizioni discontinuità	
6	6	5	6	4	4	6	4	6	riempimento	tinuità	
6	6	6	6	3	5	5	5	6	alte razione		
16	16	17	18	13	15	19	15	16		P4	
no	no	no	no	no	no	no	no	no		acqua	venute
15	15	15	15	15	15	15	15	15		P5	
-5	-5	-5	-5	'n	<u>'</u> 5	-5	'n	'n		P6	
53	53	61	62	53	40	44	62	58		RMR	
48	48	56	57	48	35	39	57	53		GSI	
Ar	Ar	С	С	С	Ar	С	С	С		Unità	

Siltite

Dalle prove di laboratorio (sondaggi S7, S8, S9 del 1992) sono stati ottenuti i seguenti risultati

Dall'analisi granulometrica si ha:

- Percentuale di ghiaia tra 0 e 1%;
- Percentuale di sabbia tra 15 e 26%;
- Percentuale di fine (limo+argilla) tra 73 e 84%.

Il peso di volume naturale misurato è compreso fra 19 e 20 kN/m³ (vedasi Figura 60).

e 39.5° e coesione drenata tra 12 e 56 kPa. Sono disponibili tre prove di taglio diretto che hanno dato valori dell'angolo di resistenza al taglio compresi fra 28.6

Marne

eseguite analisi granulometriche e misure dei limiti di consistenza monoassiale e Point Load Test e tre campioni rimaneggiati terrosi (prelevati nelle parti più sfatte) su cui sono state In laboratorio sono disponibili numerosi campioni litoidi su cui sono state eseguite prove di resistenza a compressione

Dall'analisi granulometrica si ha:

- Percentuale di ghiaia tra 0 e 46% (media 15%);
- Percentuale di sabbia tra 6 e 11% (media 9%);
- Percentuale di fine (limo+argilla) tra 42 e 92% (media 75%).

Il limite liquido è compreso tra 32 e 39%, il limite plastico fra 28 e 30%, l'indice plastico tra 2 e 11%

12 MPa e decimo percentile 8 MPa (vedasi Figura 61). La resistenza a compressione monoassiale misurata sui provini litoidi è compresa fra 9 e 24 MPa, con valore medio

per il fattore moltiplicativo K =10, valore specifico per le rocce calcarenitiche, Bruschi, 2004). monoassiale tra 1 e 33 MPa, con valore medio 10 MPa (vedasi Figura 61), (valori ottenuti moltiplicando l'indice Is₍₅₀₎ L'indice Is₍₅₀₎ da prova Point Load Test è compreso tra 0.1 e 3.3 MPa, da cui si stima una resistenza a compressione

RocLab, considerando i seguenti dati: In Figura 67 e in Figura 68 si riporta la valutazione dei parametri di resistenza Mohr – Coulomb con il programma

- "slopes" in cui le tensioni sono riferite ad una profondità media di 10 m. dati generali: GSI_{min} = 40%, mi=7, MR=375, D=1, γ = 22 kN/m³, inviluppo di rottura valutato per opzione
- in Figura 67 $\sigma_{c,10 \text{ percentile}} = 8 \text{ MPa}$, in Figura 68 $\sigma_{c,m} = 12 \text{ MPa}$, al fine di individuare un intervallo di parametri

di resistenza di progetto.

Si considerano quindi i seguenti parametri di progetto:

 $\gamma = 22.0 \text{ kN/m}^3$ peso di volum

 $\phi' = 26 \div 29^{\circ}$ angolo di resistenza al taglio

 $c' = 28 \div 35$ kPa coesione drenata

E = 120÷180 MPa modulo di deformazione

Calcareniti

calcaree, medio dure con RQD tra 85 e 100%. Dalla descrizione stratigrafica si tratta di calcarenite a struttura granulare fine e medio-fine con fossili inclusioni

monoassiale, Point Load Test e misure del peso di volume. In laboratorio sono disponibili numerosi campioni litoidi su cui sono state eseguite prove di resistenza a compressione

Il peso di volume naturale è compreso tra 18 e 24 kN/m³ (vedasi Figura 60)

20 MPa e decimo percentile 9 MPa (vedasi Figura 61). La resistenza a compressione monoassiale misurata sui provini litoidi è compresa fra 9 e 66 MPa, con valore medio

controllo deformazioni) è tra 5180 e 11176 MPa. Il modulo di deformazione tangente al 50% di sc (misurato dalla prova di resistenza a compressione monoassiale con

per il fattore moltiplicativo K =10, valore specifico per le rocce calcarenitiche, Bruschi, 2004)). monoassiale tra 12 e 35 MPa, con valore medio 20 MPa (vedasi Figura 61), (valori ottenuti moltiplicando l'indice Is(50) L'indice Is₍₅₀₎ da prova Point Load Test è compreso tra 1.2 e 3.5 MPa, da cui si stima una resistenza a compressione

RocLab, considerando i seguenti dati: In <mark>Figura 63</mark> e in **Figura 64** si riporta la valutazione dei parametri di resistenza Mohr – Coulomb con il programma

- cui le tensioni sono riferite ad una profondità media di 10 m. dati generali: GSI_{min} = 40%, mi=8, D=1, γ = 22.5 kN/m³, inviluppo di rottura valutato per opzione "slopes" in
- in Figura 63 $\sigma_{\text{c,10 percentile}} = 9$ MPa, Ei=5200 MPa, in Figura 64 $\sigma_{\text{c,m}} = 20$ MPa, Ei=8500 MPa

Si considerano quindi i seguenti parametri di progetto:

 $\gamma = 22.5 \text{ kN/m}^3$ peso di volume

 $\phi' = 28 \div 34^{\circ}$ angolo di resistenza al taglio

c′ = 32÷47 kPa coesione drenata

E = 200÷340 MPa modulo di deformazione

Arenarie

più sfatte) su cui sono state eseguite analisi granulometriche, misure dei limiti di consistenza ed una prova di taglio monoassiale, Point Load Test e misure del peso di volume, e due campioni rimaneggiati terrosi (prelevati nelle parti In laboratorio sono disponibili numerosi campioni litoidi su cui sono state eseguite prove di resistenza a compressione

Il peso di volume naturale è compreso tra 17 e 23.7 kN/m³ (vedasi Figura 60)

Dall'analisi granulometrica si ha:

- Percentuale di ghiaia tra 0 e 13%:
- Percentuale di sabbia tra 27 e 34%;
- Percentuale di fine (limo+argilla) tra 58 e 60%, limo 36-39%, argilla 21-22%

Il limite liquido è compreso tra 32 e 48%, il limite plastico fra 21 e 23%, l'indice plastico tra 10 e 27%

La prova di taglio diretto ha dato valori dell'angolo di resistenza al taglio 34° e coesione drenata 0 kPa.

20 MPa e decimo percentile 8 MPa (vedasi Figura 61). La resistenza a compressione monoassiale misurata sui provini litoidi è compresa fra 8 e 66 MPa, con valore medio

monoassiale con controllo deformazioni) è 14150 MPa. Il modulo di deformazione tangente al 50% di sc (misurato da una sola prova di resistenza a compressione

per il fattore moltiplicativo K =10, valore specifico per le rocce calcarenitiche (Bruschi, 2004). monoassiale tra 2 e 29 MPa, con valore medio 15 MPa (vedasi Figura 61), (valori ottenuti moltiplicando l'indice Is(50) L'indice Is₍₅₀₎ da prova Point Load Test è compreso tra 0.2 e 2.9 MPa, da cui si stima una resistenza a compressione

RocLab, considerando i seguenti dati: In **Figura 65** e in **Figura 66** si riporta la valutazione dei parametri di resistenza Mohr – Coulomb con il programma

- in cui le tensioni sono riferite ad una profondità media di 10 m. dati generali: GSI_{min} = 35%, mi=14, D=1, γ = 22.5 kN/m³, inviluppo di rottura valutato per opzione "slopes"
- in Figura 65 $\sigma_{c,10 \text{ percentile}} = 8 \text{ MPa}$, MR=350, in Figura 66 $\sigma_{c,m} = 15 \text{ MPa}$, Ei=14000 MPa

Si considerano quindi i seguenti parametri di progetto:

 $\gamma = 22.5 \text{ kN/m}^3$ peso di volume $\phi' = 29 \div 33^\circ$ angolo di resistenza al taglio $c' = 30 \div 39 \text{ kPa}$ coesione drenata $E = 90 \div 460 \text{ MPa}$ modulo di deformazione

6.3.7 Unità Ba – Basalti del Lugudoro

caratteristiche migliori di quanto indicato dalle stratigrafie dei sondaggi della campagna Micropali. sondaggi S35 e S36 (Sardadrill), di cui si dispone anche di documentazione fotografica, la roccia sembra avere variabile da 20 a 60%) ed a strati di terreno sciolto sabbioso fine con frammenti lapidei di spessore 1-1.5 m. Nei alterata e argillificata con frammenti litoidi (RQD=0%) alternata a strati di basalto lapideo duro e compatto (RQD 2÷5 m (come confermato anche dalle indagini sismiche del 1998 – basi A, B, C, D, E). La formazione si presenta spesso sotto della coltre vegetale e/o di uno spessore di terreno sabbioso argilloso con frammenti litoidi di spessore circa campagna 1998 Micropali e sondaggi S35, S36 del 1998 Sardadrill). Dalle indagini la formazione affiora a p.c. al di Nella parte più a nord del tracciato le indagini hanno intercettato roccia basaltica (vedasi sondaggi S32, S33, S34 della

Nell'unità sono disponibili alcuni valori di Nspt, che vanno da 40 a rifiuto strumentale (vedasi Figura 69), ad indicare la variabilità nello stato di addensamento/cementazione.

Sono stati prelevati alcuni campioni rimaneggiati per prove di laboratorio.

Sui campioni terrosi sono state eseguite due analisi granulometriche che hanno dato:

- percentuale di ghiaia tra 1 e 8%;
- percentuale di sabbia tra 23 e 74%;
- percentuale di limo+argilla tra 76 e 18%.

Il peso di volume naturale misurato varia da 16 a 19 kN/m³ (vedasi Figura 70)

resistenza al taglio rispettivamente di 37.6 e 28.6° (vedasi Figura 71). Sono disponibili due prove di taglio diretto che hanno dato valori di coesione drenata di 0 e 31 kPa ed angolo di

Figura 72): Nei campioni litoidi sono state eseguite prove di resistenza a compressione monoassiale e Point Load Test (vedasi

- la resistenza a compressione è compresa tra 2.5 e 48 MPa;
- l'indice Is₍₅₀₎ da prova Point Load Test è compreso tra 0.2 e 3.4 MPa, da cui si stima una resistenza a per le rocce basaltiche) tra 3.6 e 70 MPa. compressione (valori ottenuti moltiplicando l'indice Is₍₅₀₎ per il fattore moltiplicativo K =22, valore specifico

Quindi il valore medio della resistenza a compressione è 20 MPa ed il decimo percentile è circa 3 MPa

RocLab, considerando i seguenti dati: In Figura 73 e in Figura 74 si riporta la valutazione dei parametri di resistenza Mohr – Coulomb con il programma

- "slopes" in cui le tensioni sono riferite ad una profondità di 8 15 m). dati generali: GSI = 25÷35%, mi=25, D=1, γ = 19 kN/m³, MR=350, inviluppo di rottura valutato per opzione
- Figura 74 $\sigma_{C, media} = 20 MPa$. in fig Figura 73 $\sigma_{c,10 \text{ percentile}} = 3 \text{ MPa}$, in Figura 75 in $\sigma_c = 5 \text{ MPa}$ (sezione in trincea tratto finale tracciato); in

Si considerano quindi i seguenti parametri di progetto:

 $\gamma = 19 \text{ kN/m}^3$ peso di volume

 $\phi' = 23 \div 39^{\circ}$ angolo di resistenza al taglio

 $c' = 13 \div 60$ kPa coesione drenata

E = 30÷230 MPa modulo di deformazione

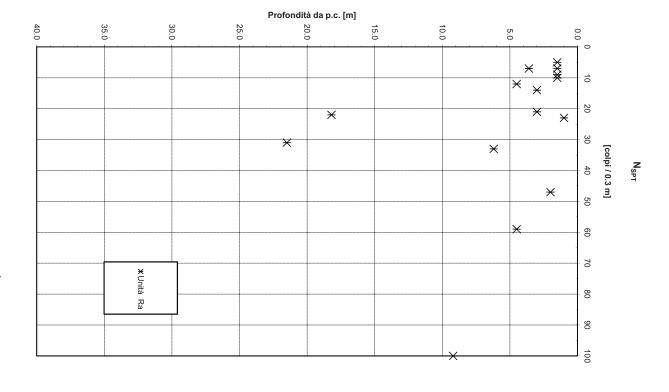


Figura 22: Valori di N_{spt} – unità Ra

Densità relativa da prove SPT

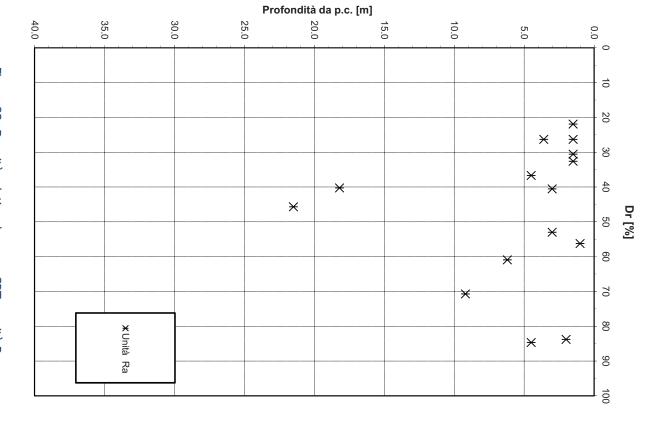


Figura 23: Densità relativa da prove SPT – unità Ra

Angolo di resistenza al taglio da prove SPT

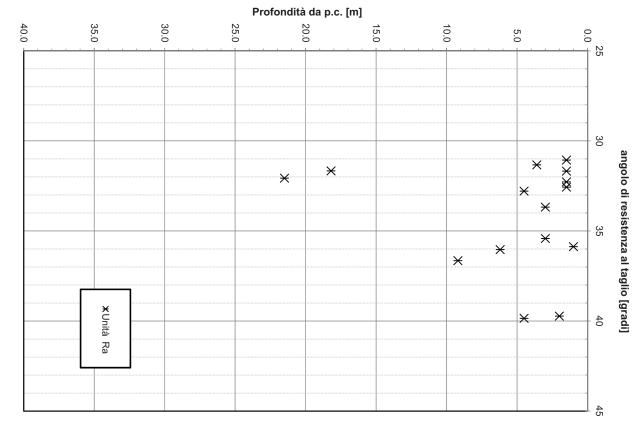


Figura 24: Angolo di resistenza al taglio da prove SPT- unità Ra

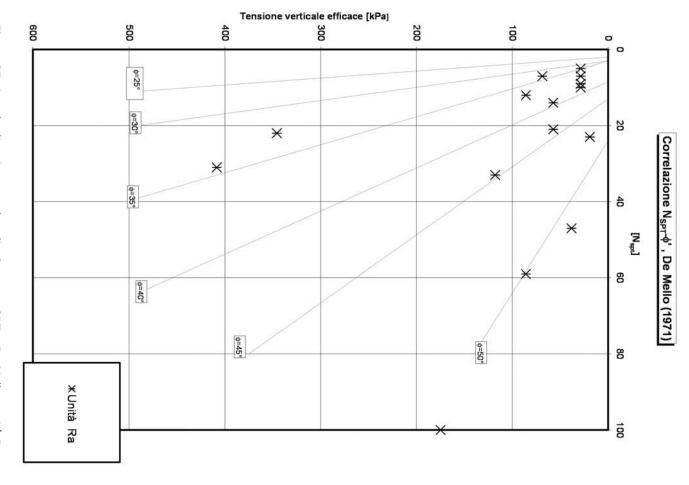


Figura 25: Angolo di resistenza al taglio da prove SPT – De Mello– unità Ra

Velocità delle onde di taglio da prove SPT e sismiche

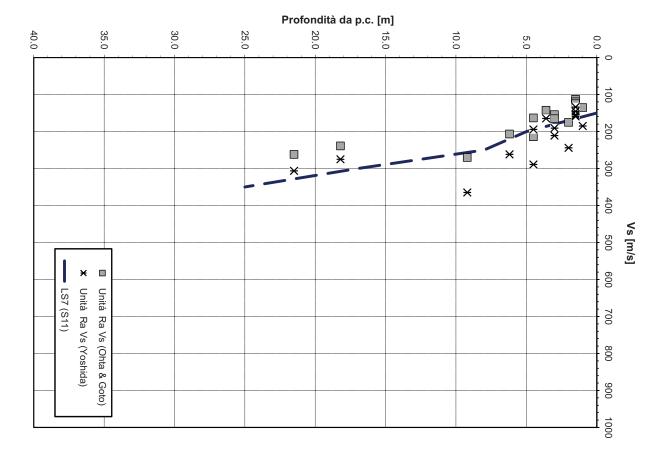


Figura 26: Velocità delle onde di taglio da prove SPT e indagini sismiche

Modulo di deformazione a taglio iniziale da prove SPT e sismiche

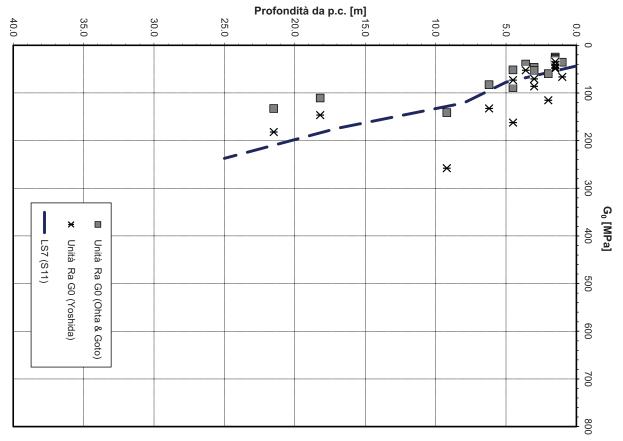


Figura 27: Modulo di deformazione a taglio iniziale da prove SPT e indagini sismiche

Modulo di deformazione elastico iniziale da prove SPT e sismiche

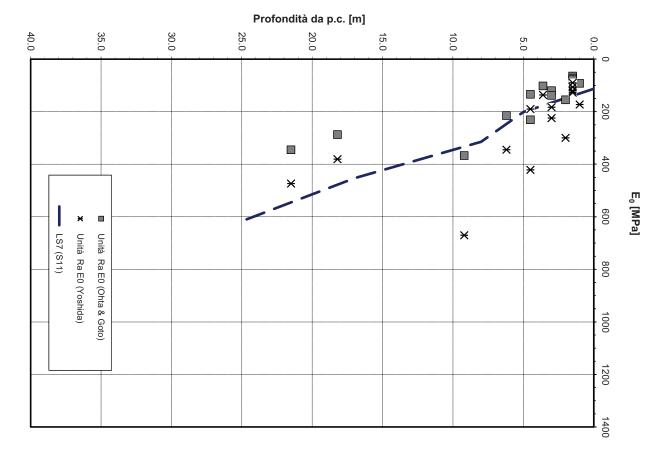
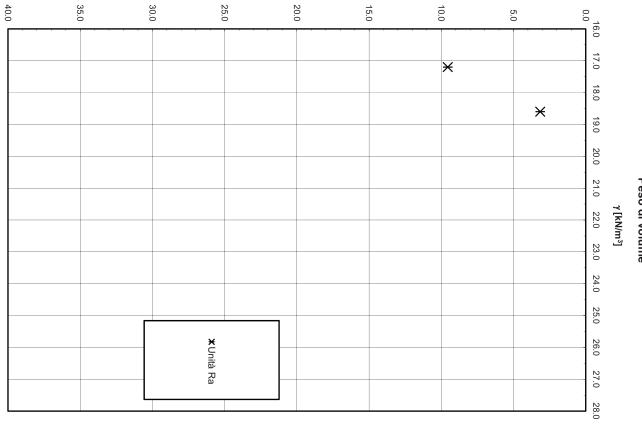



Figura 28: Modulo di deformazione elastico iniziale da prove SPT e indagini sismiche

Peso di volume



Profondità da p.c. [m]

Figura 29: Peso di volume naturale – unità Ra

Granulometria unità Ra

Profondità da p.c. [m]

Figura 30: Analisi granulometrica- unità Ra

Carta di Plasticità di Casagrande

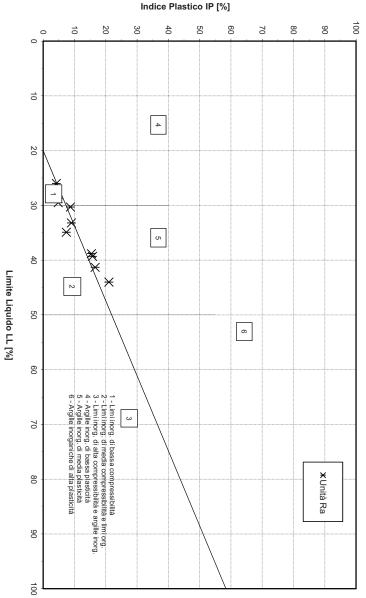


Figura 31: Carta di plasticità di Casagrande – unità Ra

Limiti di Atterberg e contenuto naturale d'acqua

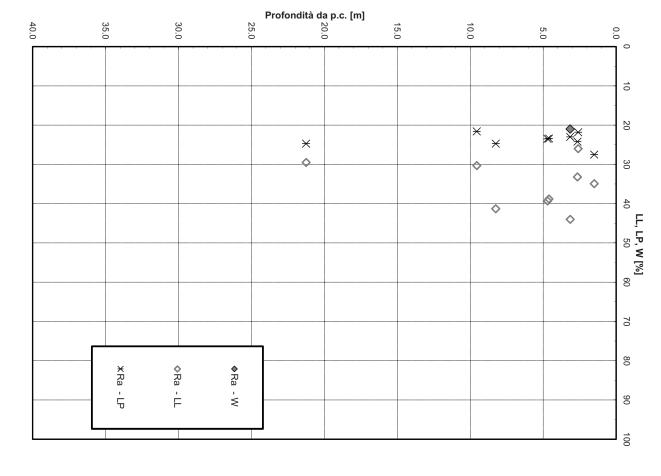


Figura 32: Limiti di consistenza – unità Ra

Andamento della coesione e dell'angolo di resistenza al taglio

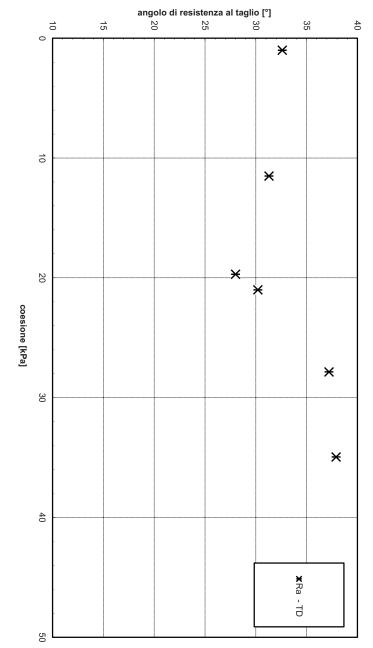


Figura 33: Angolo di resistenza al taglio e coesione drenata - laboratorio – unità Ra

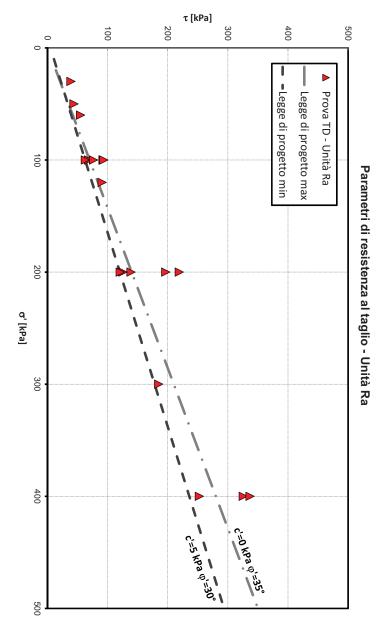


Figura 34: Parametri di resistenza - laboratorio – unità Ra

Andamento della coesione con la profondità

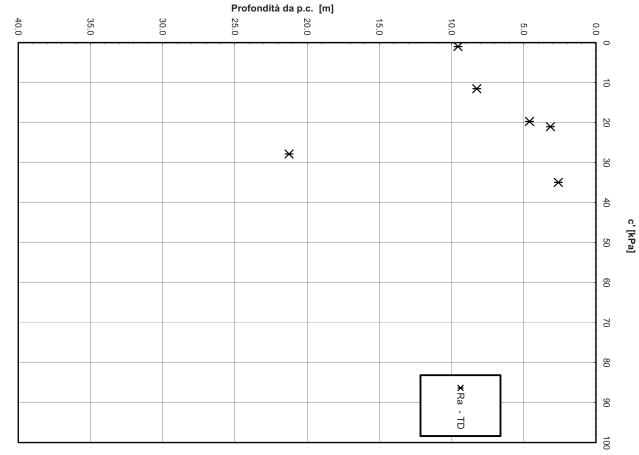


Figura 35: Coesione drenata con la profondità - laboratorio – unità Ra

Andamento della resistenza al taglio con la profondità

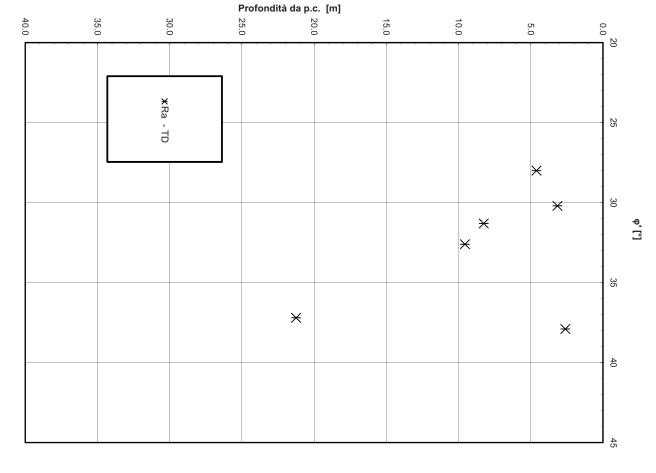


Figura 36: Angolo di resistenza al taglio con la profondità - laboratorio - unità Ra

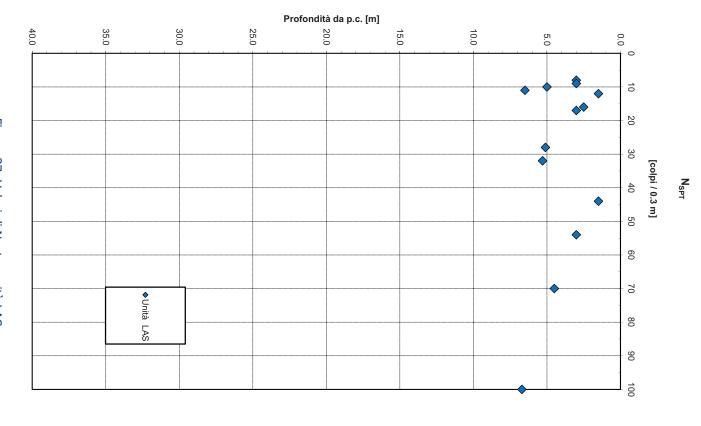


Figura 37: Valori di Nspt – unità LAS

Velocità delle onde di taglio da prove SPT e sismiche

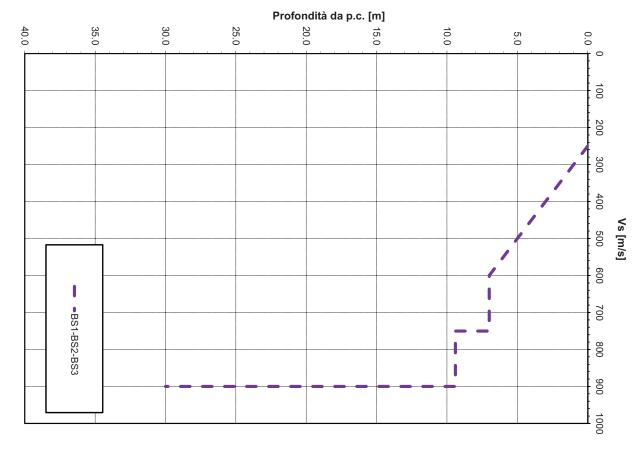


Figura 38: Velocità delle onde di taglio da sismica – unità LAS (da 0 a 7 m circa da p.c.)

Modulo di deformazione a taglio iniziale da prove SPT e sismiche

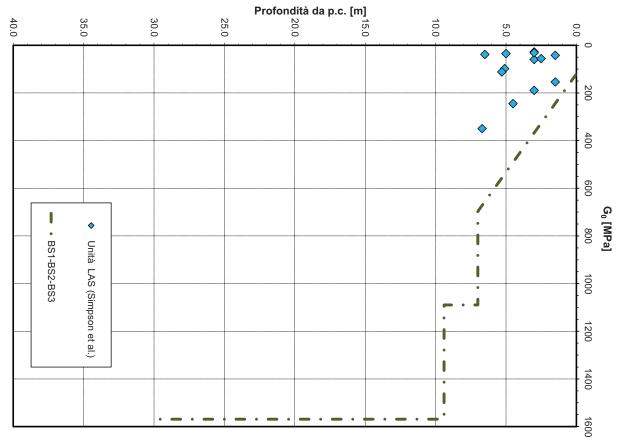


Figura 39: Modulo di deformazione a taglio iniziale da prove e indagini sismiche – unità LAS

Modulo di deformazione elastico iniziale da prove SPT e sismiche

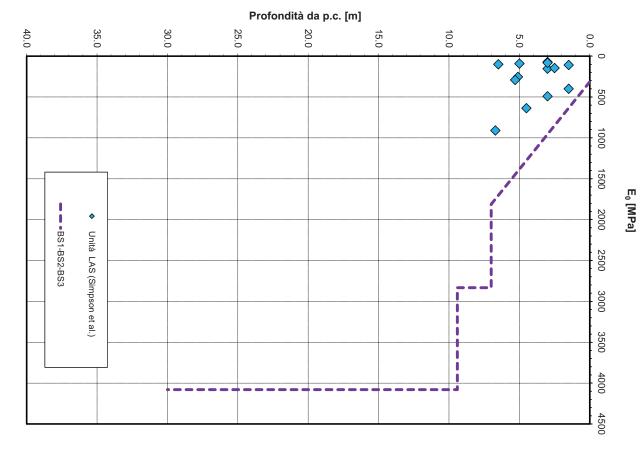


Figura 40: Modulo di deformazione elastico iniziale da prove SPT e indagini sismiche – unità LAS

Modulo di deformazione elastico operativo da prove SPT

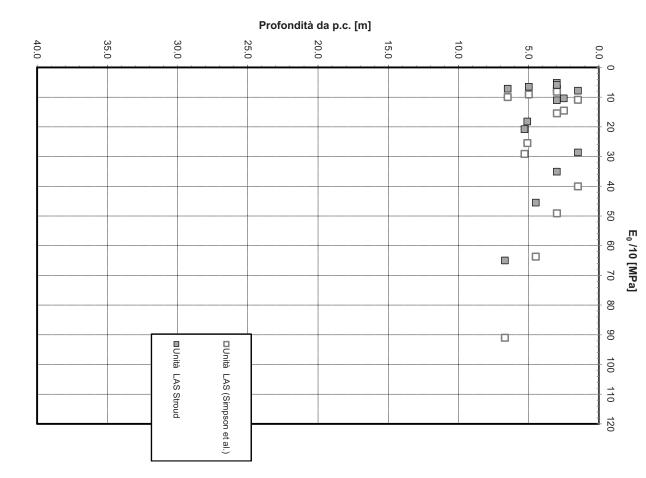


Figura 41: Modulo di deformazione elastico operativo da prove SPT – unità LAS

Peso di volume

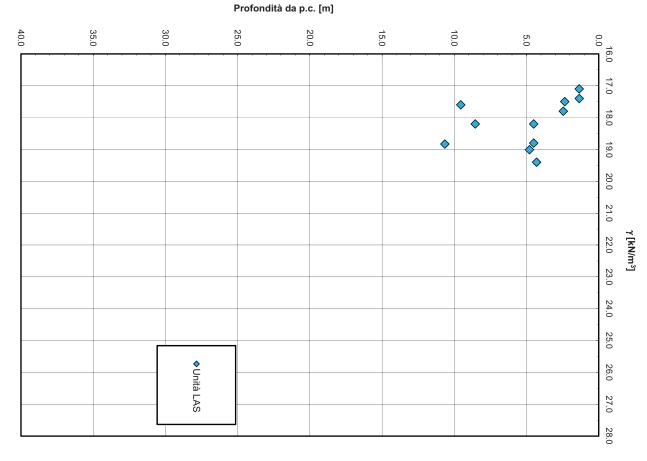
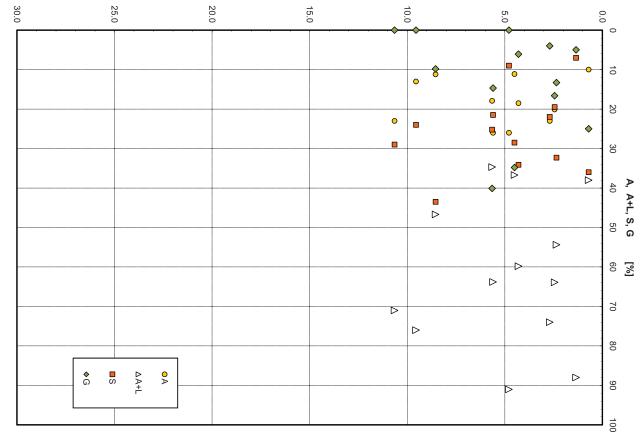



Figura 42: Peso di volume naturale – unità LAS

Granulometria unità LAS

Profondità da p.c. [m]

Figura 43: Analisi granulometrica— unità LAS

Carta di Plasticità di Casagrande

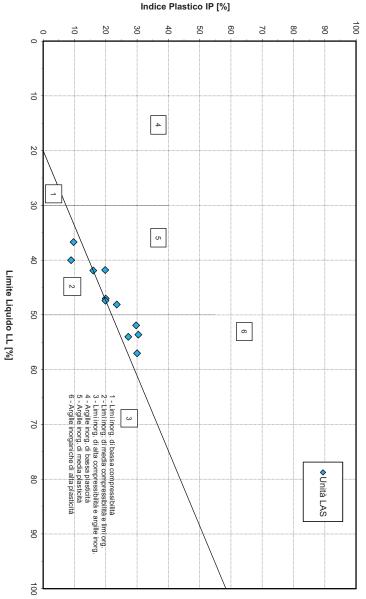


Figura 44: Carta di plasticità di Casagrande – unità LAS

Limiti di Atterberg e contenuto naturale d'acqua

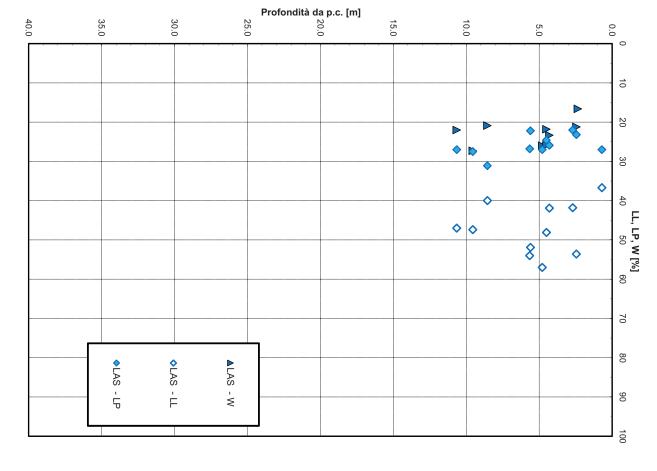


Figura 45: Limiti di consistenza – unità LAS

Andamento della coesione e dell'angolo di resistenza al taglio

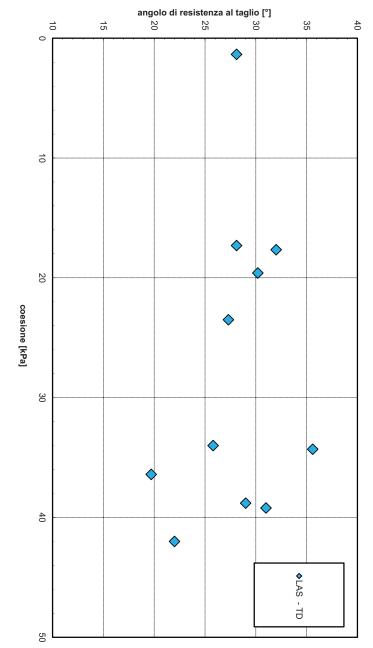


Figura 46: Angolo di resistenza al taglio e coesione drenata - laboratorio – unità LAS

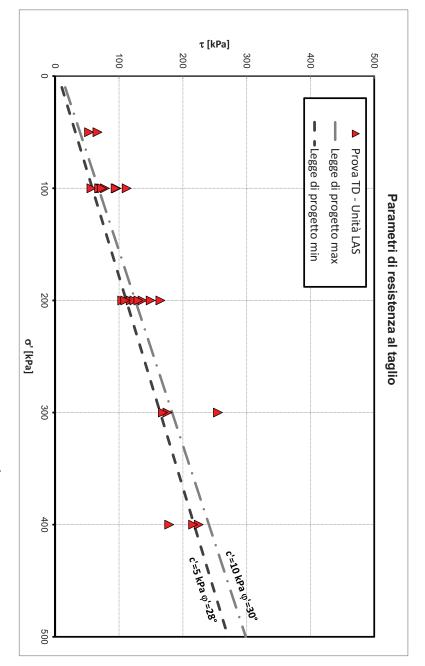


Figura 47: Parametri di resistenza - laboratorio – unità LAS

Andamento della coesione con la profondità

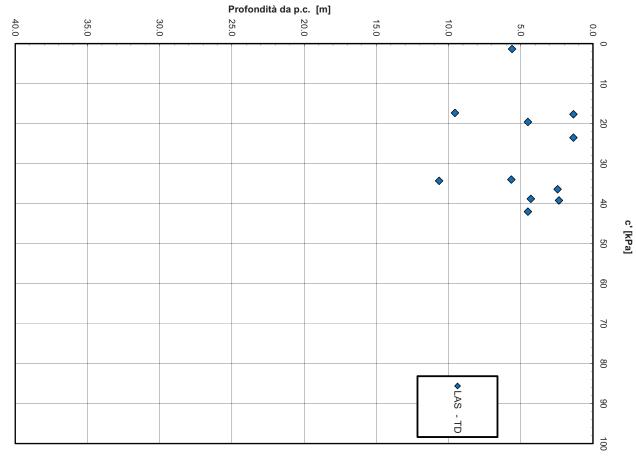


Figura 48: Coesione drenata con la profondità - laboratorio – unità LAS

Andamento della resistenza al taglio con la profondità

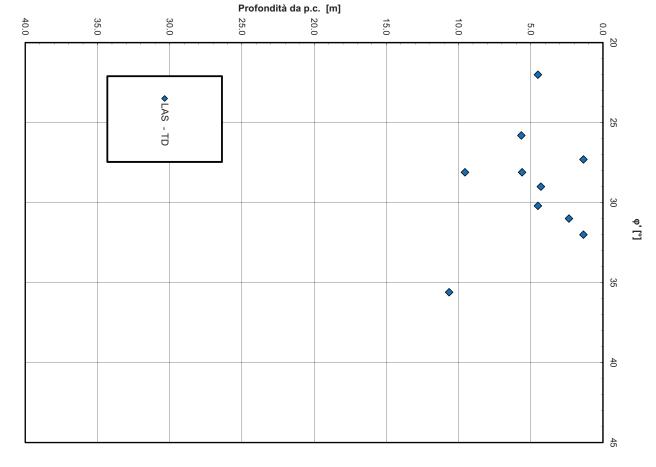


Figura 49: Angolo di resistenza al taglio con la profondità - laboratorio – unità LAS

Andamento della resistenza al taglio non drenata cu [kPa]

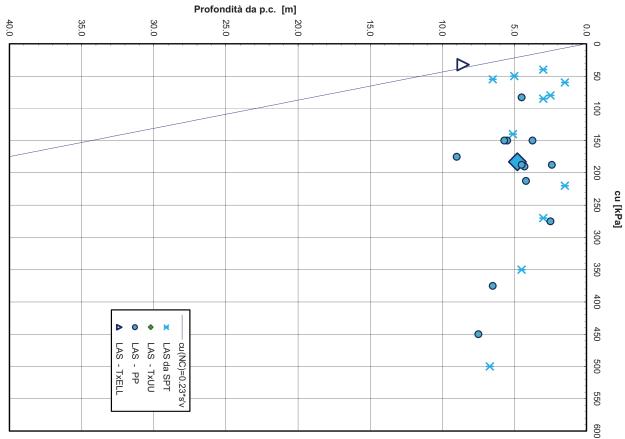


Figura 50: Resistenza al taglio in condizioni non drenate – unità LAS

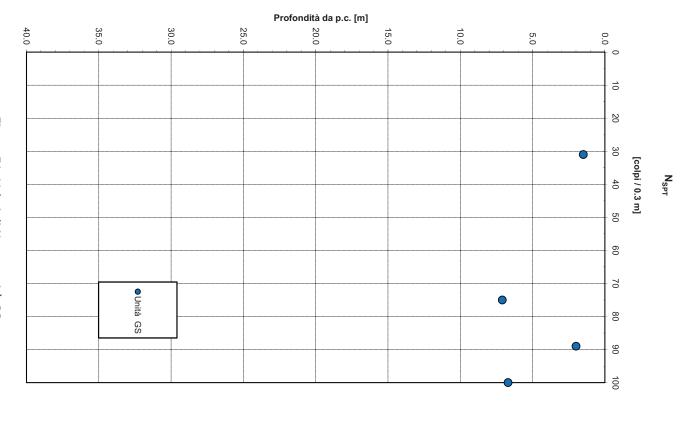


Figura 51: Valori di Nspt – unità GS

Densità relativa da prove SPT

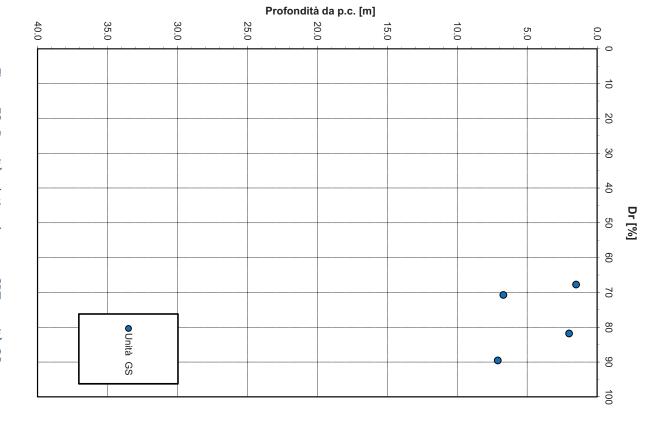


Figura 52: Densità relativa da prove SPT – unità GS

Angolo di resistenza al taglio da prove SPT

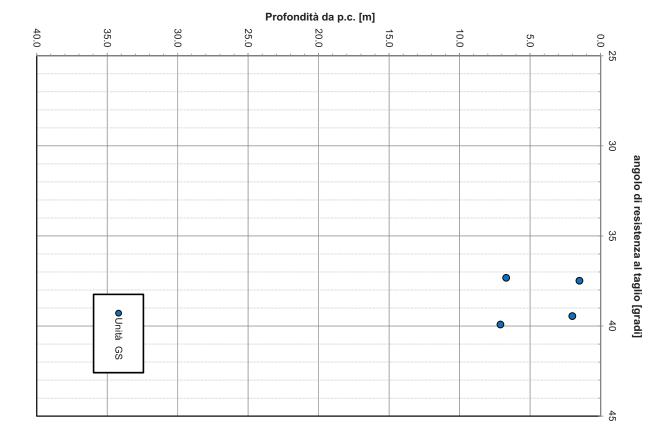


Figura 53: Angolo di resistenza al taglio da prove SPT – unità GS

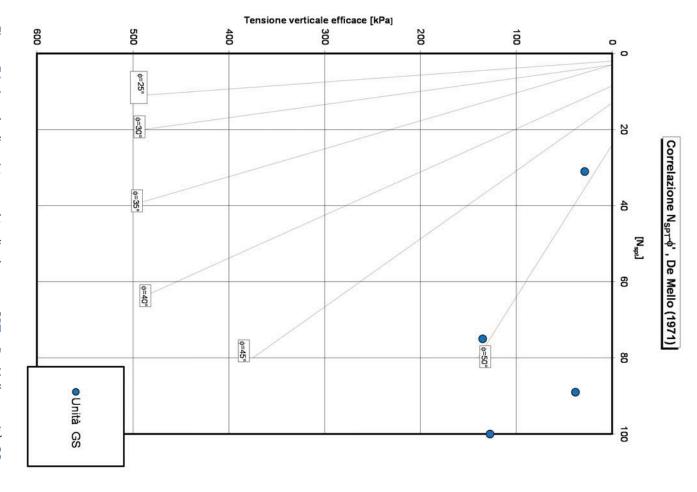


Figura 54: Angolo di resistenza al taglio da prove SPT – De Mello – unità GS

Velocità delle onde di taglio da prove SPT

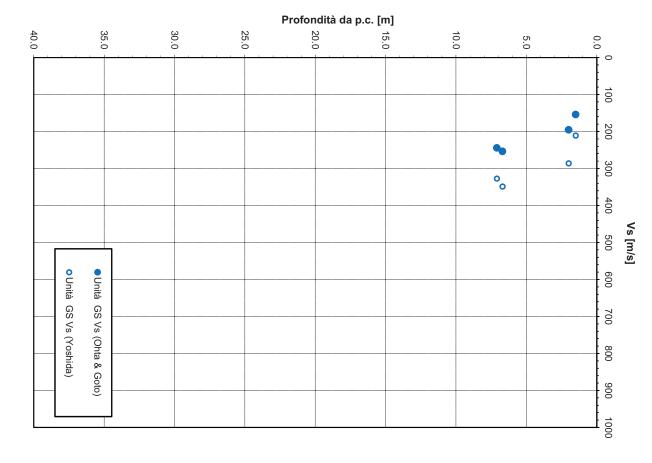


Figura 55: Velocità delle onde di taglio da prove SPT – unità GS

Modulo di deformazione a taglio iniziale da prove SPT

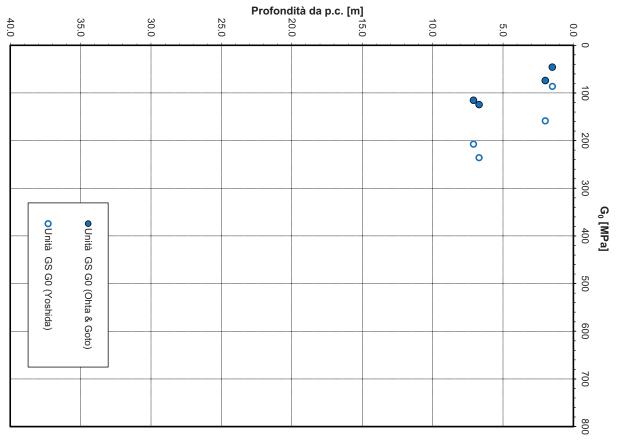


Figura 56: Modulo di deformazione a taglio iniziale da prove SPT – unità GS

Modulo di deformazione elastico iniziale da prove SPT

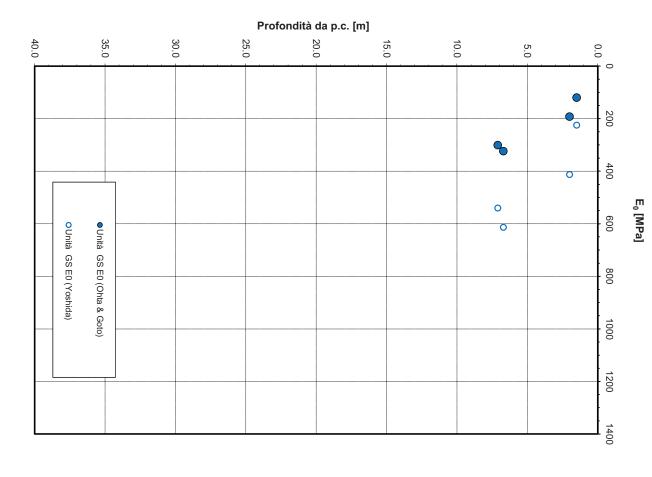
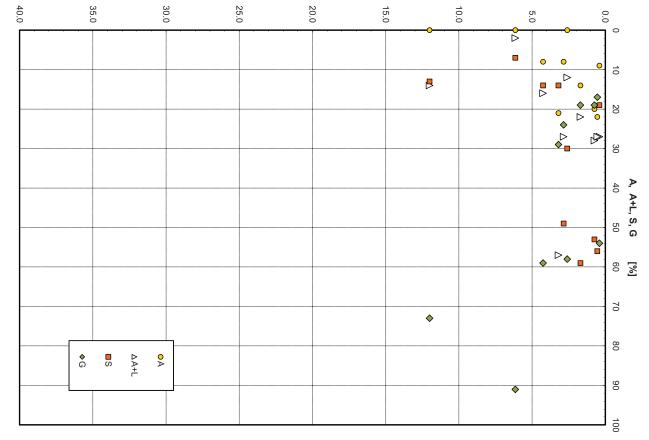



Figura 57: Modulo di deformazione elastico iniziale da prove SPT – unità GS

Granulometria unità GS

Profondità da p.c. [m]

Figura 58: Analisi granulometrica – unità GS

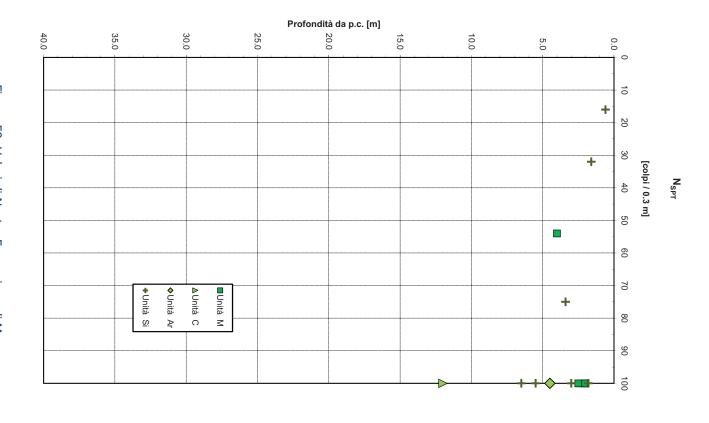


Figura 59: Valori di Nspt – Formazione di Mores

Peso di volume

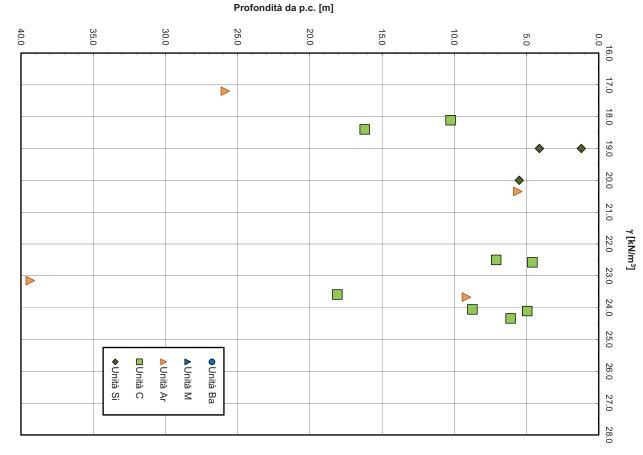


Figura 60: Peso di volume naturale – Formazione di Mores

Resistenza a compressione monoassiale

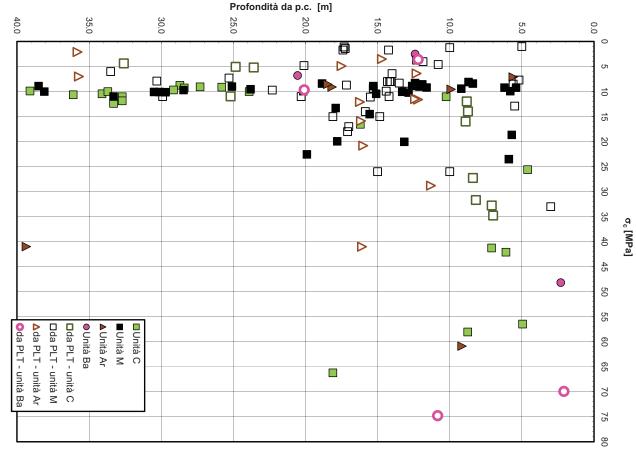


Figura 61: Resistenza a compressione monoassiale – Formazione di Mores

Andamento della coesione e dell'angolo di resistenza al taglio

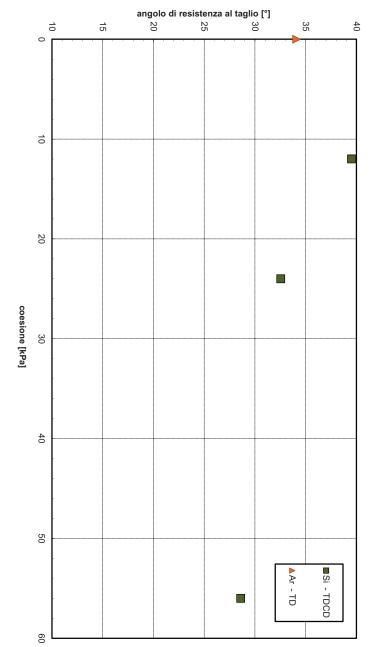


Figura 62: Angolo di resistenza al taglio e coesione drenata – Formazione di Mores

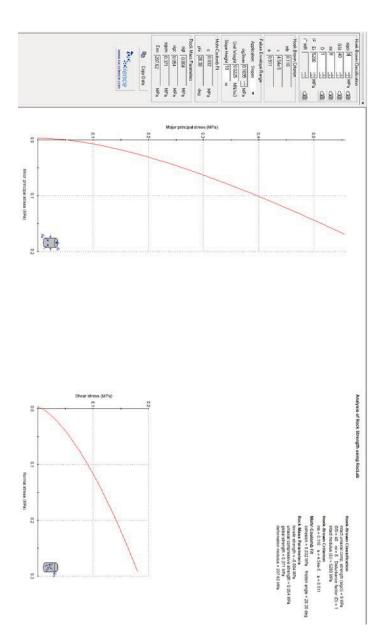


Figura 63: Parametri di resistenza (RocLab) – unità C (calcarenite) σc =9 MPa

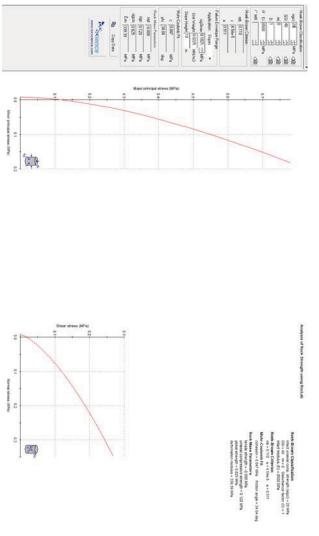


Figura 64: Parametri di resistenza (RocLab) — unità C (calcarenite) σ c =20 MPa

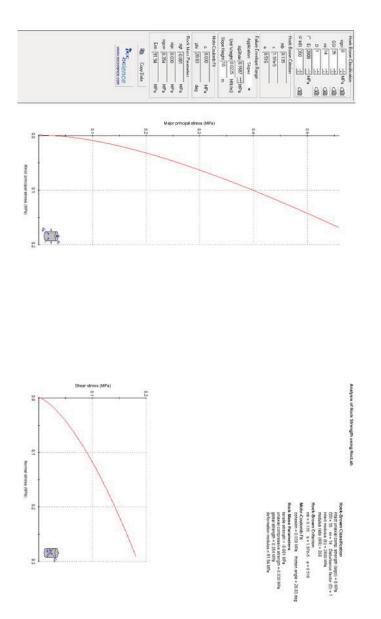


Figura 65: Parametri di resistenza (RocLab) — unità Ar (arenaria) σc =8 MPa

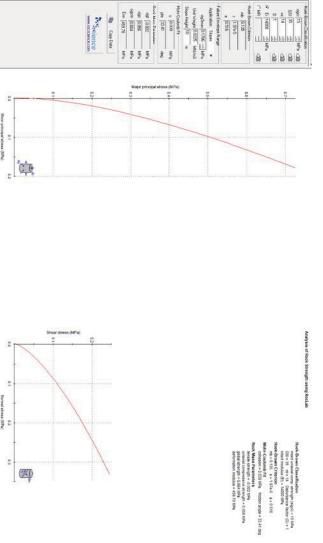


Figura 66: Parametri di resistenza (RocLab) — unità Ar (arenaria) σc =15 MPa

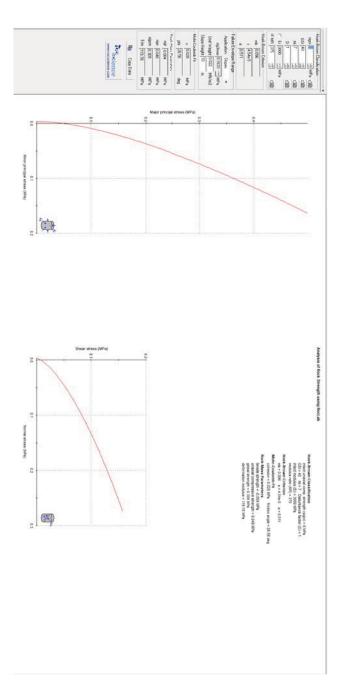


Figura 67: Parametri di resistenza (RocLab) – unità M (marna) σc =8 MPa

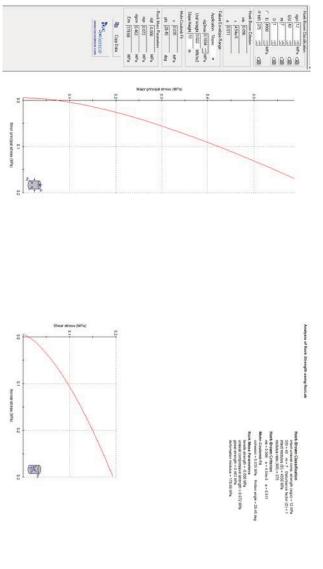


Figura 68: Parametri di resistenza (RocLab) — unità M (marna) σ c=12 MPa

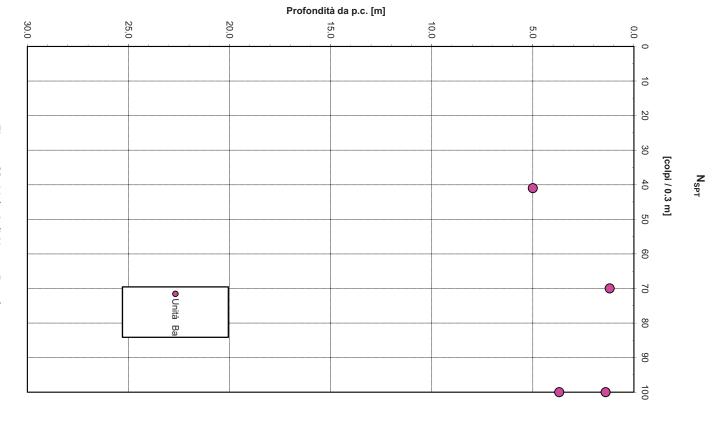
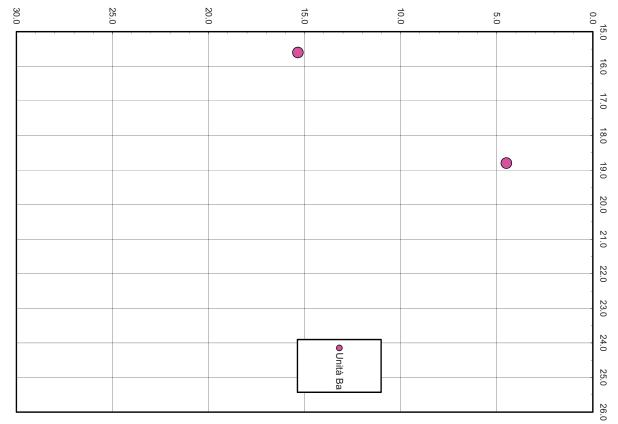



Figura 69: Valori di Nspt- Basalto

Peso di volume

γ [kN/m³]

Profondità da p.c. [m]

Figura 70: Peso di volume naturale – Basalto

Andamento della coesione e dell'angolo di resistenza al taglio

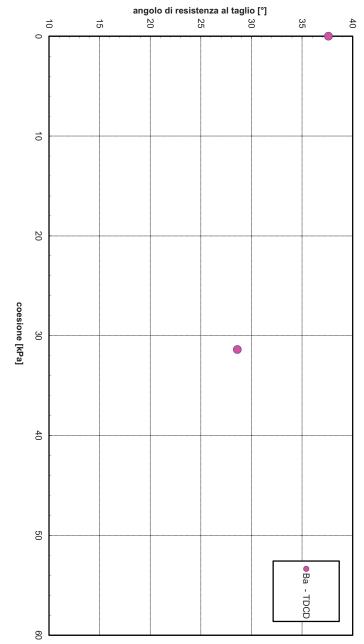


Figura 71: Angolo di resistenza al taglio e coesione drenata – Basalto (facies terrosa)

Resistenza a compressione monoassiale

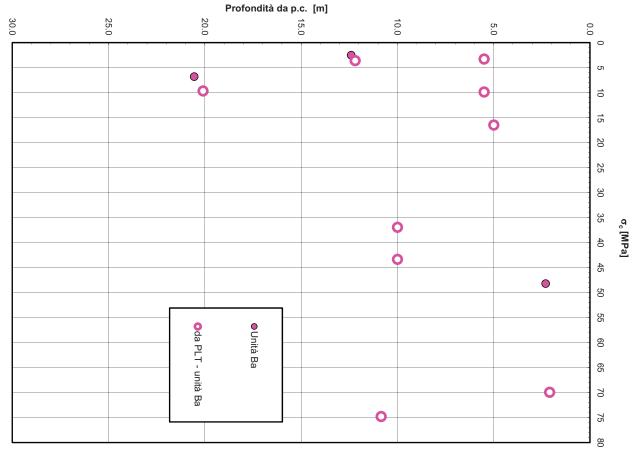


Figura 72: Resistenza a compressione – Basalto

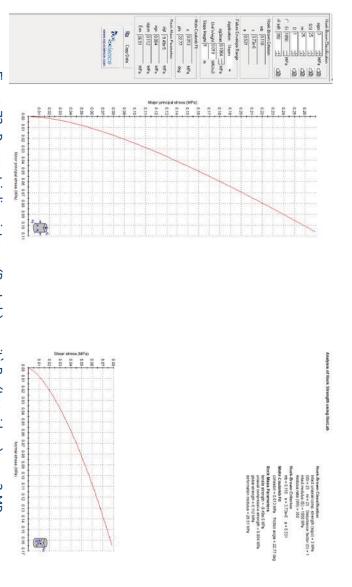


Figura 73: Parametri di resistenza (RocLab) – unità Ba (Loguidoro) σc =3 MPa

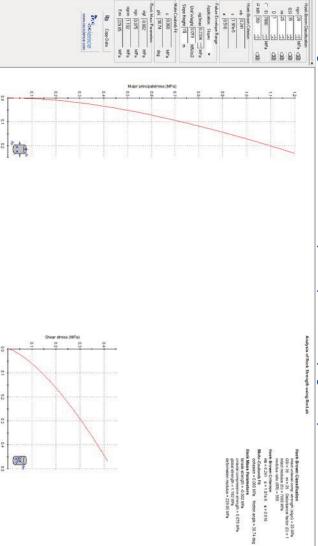


Figura 74: Parametri di resistenza (RocLab) – unità Ba (Loguidoro) $\sigma c = 20$ MPa

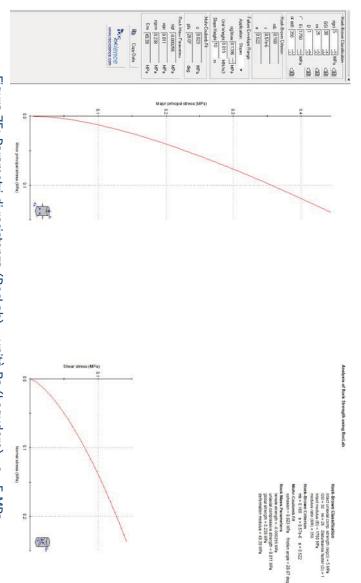


Figura 75: Parametri di resistenza (RocLab) – unità Ba (Logudoro) σc =5 MPa

Sintesi parametri geotecnici di progetto – svincolo Bonorva Nord

Per le unità geotecniche intercettate si assumono i seguenti parametri caratteristici di progetto.

Unità R – Terreno da rilevato

 γ = 18.5 kN/m³ peso di volume naturale ϕ' = 36° angolo di resistenza al taglio c' = 0 kPa coesione drenata

Unità Ra – riporto antropico

 $\gamma = 18.5 \text{ kN/m}^3$ peso di volume naturale

 $\phi' = 30 \div 35^{\circ}$ angolo di resistenza al taglio

 $c' = 0 \div 5$ kPa coesione drenata

Vs = 135÷360 m/s velocità delle onde di taglio

Go = 30÷250 MPa. modulo di deformazione a taglio iniziale (a piccole deformazioni)

 $E_0 = 80 \div 600 \text{ MPa.}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità LAS – limo argilloso sabbioso

 $\gamma = 18.5 \text{ kN/m}^3$ peso di volume naturale

 $\phi' = 28 \div 30^{\circ}$ angolo di resistenza al taglio

 $c' = 5 \div 10 \text{ kPa}$ coesione drenata

cu = 40÷ 180 kPa resistenza al taglio in condizioni non drenate

Vs = 250÷400 m/s velocità delle onde di taglio

Go = $35 \div 300 \text{ MPa}$ modulo di deformazione a taglio iniziale (a piccole deformazioni)

 $E_0 = 70 \div 650 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità GS – ghiaia sabbiosa

 $\gamma = 18.5 \text{ kN/m}^3$ peso di volume naturale

oʻ = 35° angolo di resistenza al taglio

c' = 0 kPa coesione drenata $Vs = 150 \div 350 \text{ m/s}$ velocità delle onde di taglio

Go = 50÷230 MPa modulo di deformazione a taglio iniziale (a piccole deformazioni)

Eo = 130÷600 MPa modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità M – Formazione di Mores marnosa

 $\phi'=26\div29^\circ$ $\gamma = 22.0 \text{ kN/m}^3$ $E = 120 \div 180 \text{ MPa}$ $c' = 28 \div 35$ kPa angolo di resistenza al taglio peso di volume modulo di deformazione coesione drenata

Unità C - Formazione di Mores calcarenite

 $\phi'=28\div34^\circ$ $\gamma = 22.5 \text{ kN/m}^3$ $c' = 32 \div 47 \text{ kPa}$ angolo di resistenza al taglio peso di volume coesione drenata

E = 200÷340 MPa modulo di deformazione

Unità Ar — Formazione di Mores arenaria

E = 90÷460 MPa $\phi'=29\!\div\!33^\circ$ $\gamma = 22.5 \text{ kN/m}^3$ $c' = 30 \div 39 \text{ kPa}$ angolo di resistenza al taglio peso di volume coesione drenata modulo di deformazione

Unità Ba – Basalto di Lugudoro

 $\phi'=23\div39^{\circ}$ $\gamma = 19.0 \text{ kN/m}^3$ peso di volume

angolo di resistenza al taglio

 $c' = 13 \div 60 \text{ kPa}$ coesione drenata

 $E = 30 \div 230 \text{ MPa}$ modulo di deformazione

6.4 Adeguamento S.P. 125

Lungo lo sviluppo del tracciato di adeguamento della S.P. 125 sono stati eseguite le seguenti indagini:

- S9 della campagna geognostica del 2015;
- S1 della campagna geognostica del 2017.

sabbiosa di circa 9 m (unità LAS), poi calcarenite marnosa. nord, in corrispondenza del sondaggio S1 e stese sismiche BS1, BS2, BS3 del 2017, si ha una copertura limosa argillosa da un'alternanza di strati calcarenitici ed arenacei fino a 21 m, poi siltite arenacea fino a 24 m. Proseguendo poi verso intercetta una copertura limosa argillosa sabbiosa di 12 m (unità LAS) che sovrasta la formazione di Mores costituita sondaggi S5, S6 del 1998 Sardadrill s.r.l. e S7 del 1998 Fondedile s.r.l.). In corrispondenza dI sondaggio S9 del 2015, si in facies marnosa con una copertura di qualche metro di limo argilloso sabbioso (unità LAS) (vedasi ad esempio Nella parte più a sud del tracciato fino ad arrivare al sondaggio S9-2015, affiora il substrato della formazione di Mores

determinazione prima di RMR (Bieniawski 1984) e poi di GSI (=RMR-5, con il Metodo GSI (Hoek et al. 1998). Nella seguente tabella si riporta la classificazione dell'ammasso roccioso per il sondaggio S1 del 2017, con

Tabella 26 – Indici RMR e GSI – sondaggi 2017

S1	S1		Jona.	Con.	
16.00	10.10		[m]	Profondità	
16	11		sc [Mpa]		
2	2		P1		
100	100		RQD%		
20	20		P2		
0.6-2m	0.2-0.6m		discontinuità	spaziatura	1 000
15	10		Р3		710
4	2	continuità			TITUE
1	1	apertura	con		0110110
1	1	scabrezza	condizioni discontinuit		COL
4	6	riempimento	tinuità		abolia to Tilaici in in c oot ooliaaggi toti
5	6	alterazione) - C - 1
15	16		P4		
no	no		acqua	venute	
15	15		P5		
-5	-5		P6		
62	58		RMR		
57	53		GSI		
С	С		GSI Unità		

1995) per il sondaggio S9 del 2015 Nelle seguenti tabelle si riporta la classificazione con il metodo di Bieniawski (1989) e con il Metodo GSI (Hoek et al.,

Tabella 27 – Indici RMR e GSI – sondaggio S6Pz

Campiona		SQ DIT 112	S11 DIT Ii1	S11 1 ;2
1. σ _c MPa	Ра	22,46	4,54	41,00
2. RQD %		100	90	80
3. Spaziatura delle discontinuità (m)	uità (m)	0,6	0,6	0,6
4. Condizione di scabrezza delle	elle	Continue Apertura > 5 mm	piane o lisce Continue	piane o lisce Continue
discontinuita		Riempimento > 5 mm	Riempimento < 5 mm	Riempimento < 5 mm
5.Condizione Idraulica delle discontinuità	discontinuità	asciutta	asciutta	asciutta
6. Orientamento delle discontinuità	ntinuità	mediocre	mediocre	mediocre
Valc	ori numerici d	erivati dalle grandı	Valori numerici derivati dalle grandezze sopra riportate:	
A1: 4/44.5*σc+1 per σc <= 44,5 A1: 4/49.25*sc+1,368 per σc (44,5 -	44,5 c (44,5 -	3,02	1,41	4,69
A2: (5/23.4)*ROD - 1.367 per ROD > 76.6:	r ROD > 76.6:			
A2: (7/37.6)*RQD+0.739 per RQD	RQD	20,00	17,49	15,63
compreso nell'intervallo [39 ÷ 76.6];	÷ 76.6];			
A3: 10s + 6;		14,00	10,55	10,55
A4: parametro di misura della condizione dei giunti	la condizione	0	10	10
A5: parametro di misura della condizione	la condizione	15	15	15
A6: paramentro di misura		7	7	7
dell'orientamento delle disc.		-1	-1	-1
RMR		45	47	49
GSI		40	42	44

eseguiti lungo la SP 125. Nelle seguenti tabelle si sintetizzano i risultati delle prove di laboratorio eseguite per i campioni prelevati nei sondaggi

(TD) \$ 00.7	36.4	Resistenza drenata	(TX-BL) C KPa	(TX-III) C kPa	Doe is tonya non dronata	တ _င ် MPa	compressione	w _N % 21.2	_{γν} kN/m³ 17.8	1	30.4	30.4	407	0/ 23.2	% 53.6	ŀ	A % 20.1	43.8	% 19.5 % 63.0	16.6	Granulometria	m 2.45	- LAS	- rim	Н	- \$1-2017	ls(50) MPa	Point Load Test	(TD) f	ena	(IX-ELL) c _u kPa	(TX-UU) c _u kPa 183.0	a	σ _c MPa	Resistenza a compressione monoassiale	c _u - 8.00E-02	m²/s 4.80E-07	E kPa 8845 15607	Prove edometriche (valori riferiti alla ter	_	Caratteristiche fisiche	l _p % 30.0		%	W % 57.0	0	» K % 65.0		%	%	-	Prof. m 4.79		Tipo - C	Q1
28 -	1 4	0	32.5		-			20.9	18.2		29.7 8.9	20.7	22.2	22.2	51.9 40.0	-		03.0	21.5	14.7			LAS LAS		CR2 CR3	S1-2017 S1-2017			35.6	2					ale			15607	neione gene tatica	18.8		20.0	1.25	27.0	47.0	23.0	48.0	71.0 57.0		0.0 29.0	ŀ	+	I AS GS	spt.	+
	1				ŀ	11.0 16.5		\dashv	18.1 18.4	ł												10.25 16.20			QL1 QL2	S1-2017 S1-2017												1111 5110)	in sito)							0.0	14.0			73.0	-		GS III	+	+
<u> </u>	J	L		J	Ľ	.5	l		.4]	L				J	L]	20		מ	2	017			28.1	170									27.3	17.6		19.9	1.01	27.5	47.4			76.0	24.0	0.0	-	+			\forall
																											1.6						-								-										ŀ	+	+		
																																																			ŀ	+	Δr	<u> </u>	1:3
																																	-						ŀ						4	-					ŀ	51	S 3	: F	4
																											4.1		$\frac{1}{1}$	_								$\left \right $	-		-					-						16.08	Ar III	LIZB	Li2h Li2a
																											2.1				L																					16.00	Ar III	LEA	ا در: ا
																											1.2																									16.23	Ar III	LIZu	Li2d

6.4.1 Unità geotecniche

Le unità geotecniche intercettate sono le seguenti:

Unità Rv – coltre vegetale: si tratta della coltre di terreno vegetale

eterogeneo, prevalentemente incoerente, derivante da materiale di cava, costituito da ghiaia sabbiosa limosa e sabbia Unità Ra – riporto antropico: si tratta del terreno costituente i rilevati stradali esistenti ed il materiale molto

materiale prevalentemente fine coesivo, limo argilloso talvolta sabbioso. Unità LAS – limo argilloso sabbioso: si tratta della coltre di alterazione della formazione di Mores, costituita da

Unità C - Formazione di Mores calcarenitica: substrato costituito da calcarenite; Unità M – Formazione di Mores marnosa, siltiti: substrato costituito da marna, marna argillosa, siltite, siltite marnosa.

con due diverse tonalità di verde le due principali distinzioni della Formazione di Mores: Nel profilo stratigrafico longitudinale e nelle sezioni geotecniche, in conformità con gli elaborati geologici, sono distinti

- la facies costituita da una matrice più fine marnosa, siltitica (unità tipo M): rappresentate in colore verde scuro;
- Calcareniti e arenarie (Unità C, Ar): rappresentate in colore verde chiaro

per le unità geotecniche della SS 131. appositamente eseguita (vedasi paragrafo 7.2), tenendo comunque in considerazione l'intervallo dei parametri definiti La caratterizzazione geotecnica verrà svolta nel dettaglio per le singole opere d'arte con riferimento all'indagine

7. CARATTERIZZAZIONE GEOTECNICA OPERE

7.1 Svincolo di Bonorva Nord

Muro di sottoscarpa OS03 SS 131 da pk 0+091.25 a pk 0+190.77

marnosa limosa argillosa (unità M/Si) fino alla massima profondità indagata. del substrato per i primi 2 m di spessore da p.c. (unità LAS) ed a seguire roccia della formazione di Mores in facies spinto fino ad una profondità di 18.0 m. Il sondaggio ha evidenziato la presenza di coltre alterata della formazione In corrispondenza dell'opera è stato eseguito il sondaggio S5 della campagna geognostica Sardadrill S.r.l. del 1998,

Sul sondaggio sono disponibili:

- N. 1 prova SPT, eseguita alla profondità di 2 m che ha dato valore di rifiuto strumentale;
- N. 2 prove di laboratorio di Point Load Test eseguite su spezzoni litoidi prelevati a 3 e 10 m di profondità da p.c. che hanno dato valori di Is₍₅₀₎ di 3.3 e 0.12 MPa;
- (limo+argilla = $90 \div 93\%$, sabbia = $7 \div 10\%$, ghiaia = 0%); N. 2 analisi granulometriche e limiti di Atterberg eseguite su campioni rimaneggiati prelevati a 9 Φ 7 3
- N. 2 determinazioni dei limiti di Atterberg (: limite liquido 32÷39%, limite plastico: 28÷30%, indice di plasticità

Nella seguente figura si riporta la sezione stratigrafica di riferimento.

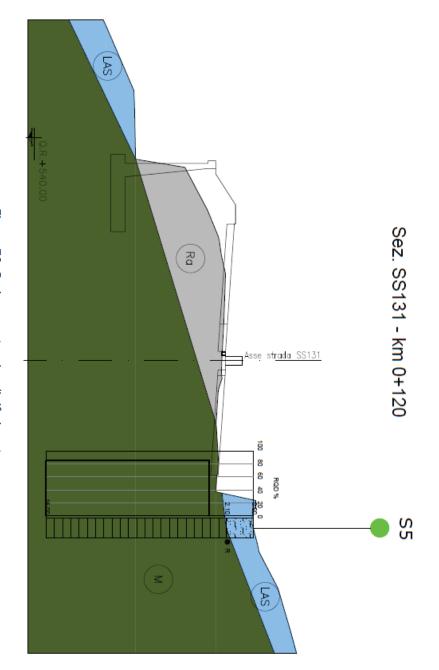


Figura 76: Sezione geotecnica di riferimento

Stratigrafia e parametri geotecnici di progetto

Unità LAS (limo argilloso sabbioso) da 0.0 a 2.0 m di profondità da p.c.

 $\gamma = 18.5 \text{ kN/m}^3$ peso di volume naturale

 ϕ = 28÷30° angolo di resistenza al taglio

 $c' = 5 \div 10$ kPa coesione drenata

 $E_0 = 70 \div 100 \text{ MPa}.$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità M (Formazione di Mores marnosa) da 2.0 a 18.0 m di profondità da p.c:

 $\gamma = 22.0 \text{ kN/m}^3$ peso di volume

 $\phi' = 26 \div 29^{\circ}$ angolo di resistenza al taglio

 $c' = 28 \div 35$ kPa coesione drenata

E = 120÷180 MPa modulo di deformazione

La falda è assente alle profondità di interesse.

7.1.2 Muro di sottoscarpa OS05 Rampa B da 0+083.63 a pk 0+308.53

debolmente cementati. sondaggio S24, l'arenaria è stata intercettata fino a 5 m molto alterata, sfatta, carotata come sabbia con livelli di Mores in facies prevalentemente arenacea e calcarenitica fino a 12 m da p.c. (S24-2015) poi marna calcarea. Nel si intercetta una coltre alterata prevalentemente limoso argilloso sabbiosa di spessore 2-3 m ed infine la formazione prevalentemente incoerente, derivante da rilevati stradali e/o ferroviari preesistenti e da materiale di cava. A seguire indagini hanno evidenziato la presenza di terreno di riporto antropico, costituito da materiale eterogeneo, Nelle vicinanze dell'opera sono stati eseguiti i sondaggi S24 della campagna geognostica del 2015 e S4 del 2017. Le

Nella seguente figura si riporta la sezione stratigrafica di riferimento.

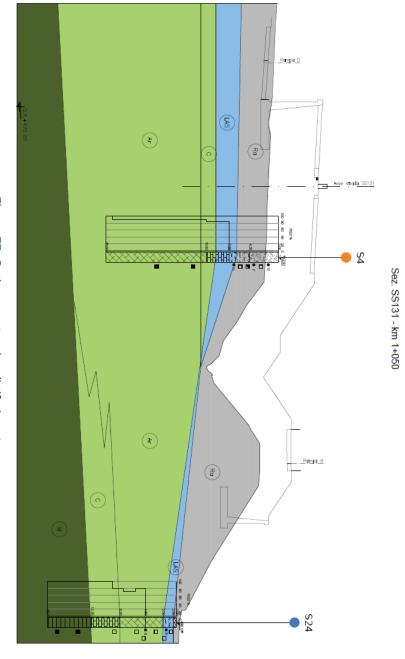


Figura 77: Sezione geotecnica di riferimento

seguito sintetizzati. indagini in corrispondenza di quest'opera, utilizzate per la determinazione dei parametri geotecnici di progetto, di Nelle seguenti figure sono riportati i risultati dell'elaborazione di tutte le prove in sito e di laboratorio eseguite sulle

Parametri geotecnici di progetto

Unità Ra (riporto antropico)

 γ = 18.5 kN/m³ peso di volume naturale

 ϕ ' = 30÷35° angolo di resistenza al taglio

c' = 0÷5 kPa coesione drenata

 $E_0 = 100 \div 150 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità LAS (limo argilloso sabbioso)

 γ = 18.5 kN/m³ peso di volume naturale

 ϕ ' = 28÷30° angolo di resistenza al taglio

 $c' = 5 \div 10 \text{ kPa}$ coesione drenata

 $E_0 = 100 \div 250 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità M (Formazione di Mores marnosa):

 $\gamma = 22.0 \text{ kN/m}^3$ peso di volume

 $\phi' = 26 \div 29^{\circ}$ angolo di resistenza al taglio

 $c' = 28 \div 35$ kPa coesione drenata

E = 120÷180 MPa modulo di deformazione

Unità C (Formazione di Mores calcarenitica):

 γ = 22.5 kN/m³ peso di volume naturale

φ' = 28÷34° angolo di resistenza al taglio

 $c' = 32 \div 47 \text{ kPa}$ coesione drenata

E = 200÷340 MPa modulo di deformazione

Unità Ar (Formazione di Mores arenacea):

 γ = 22.5 kN/m³ peso di volume

 $\phi' = 29 \div 33^{\circ}$ angolo di resistenza al taglio

c′ = 30÷39 kPa coesione drenata

E = 90÷460 MPa modulo di deformazione

La falda è assente alle profondità di interesse.

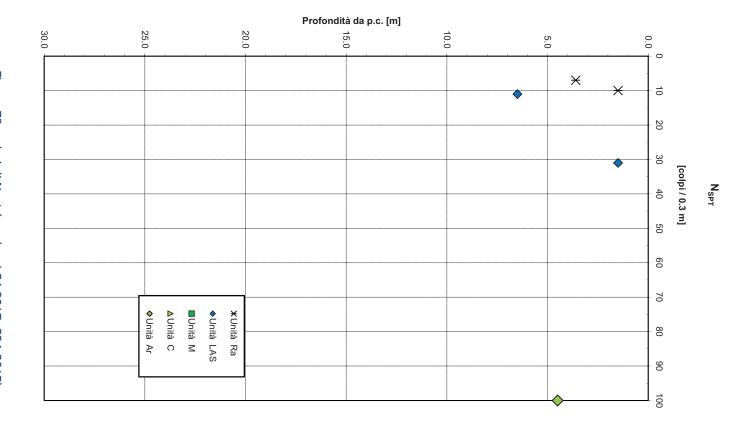


Figura 78: valori di Nspt (sondaggi S4-2017, S24-2015)

Densità relativa da prove SPT

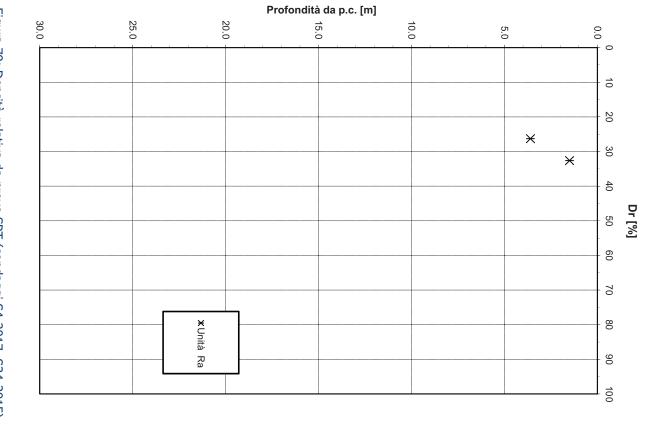


Figura 79: Densità relativa da prove SPT (sondaggi S4-2017, S24-2015)

Angolo di resistenza al taglio da prove SPT

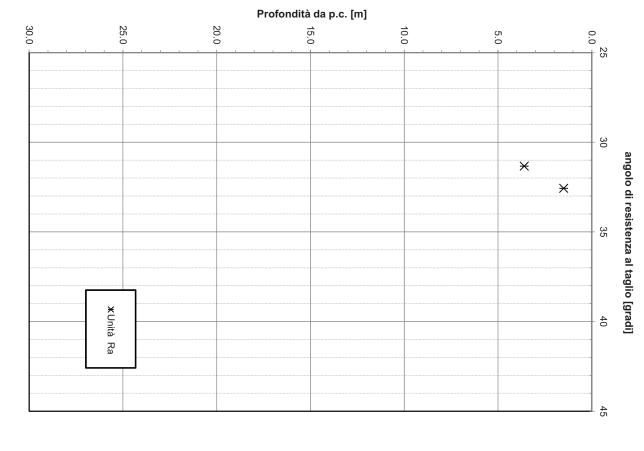


Figura 80: Angolo di resistenza al taglio da prove SPT (sondaggi S4-2017, S24-2015)

Modulo di deformazione elastico iniziale da prove SPT

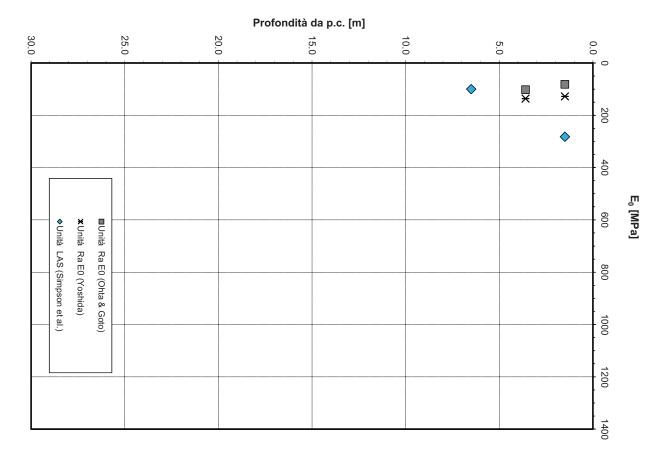
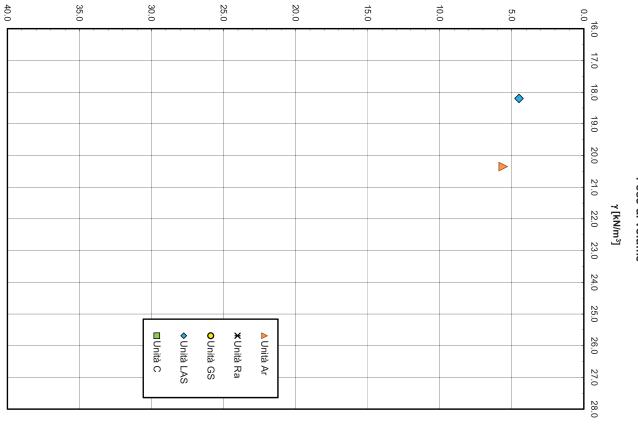



Figura 81: Modulo di deformazione elastico iniziale da prove SPT (sondaggi S4-2017, S24-2015)

Peso di volume

Profondità da p.c. [m]

Figura 82: Peso di volume naturale (sondaggi S4-2017, S24-2015)

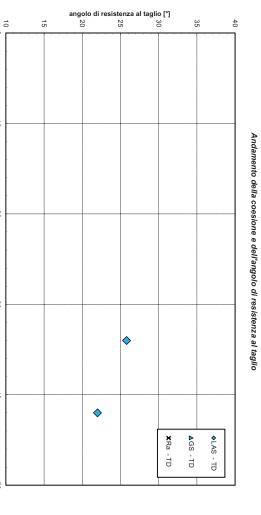


Figura 83: Angolo di resistenza al taglio e coesione drenata (sondaggi S4-2017, S24-2015)

sione [kPa]

30

40

10

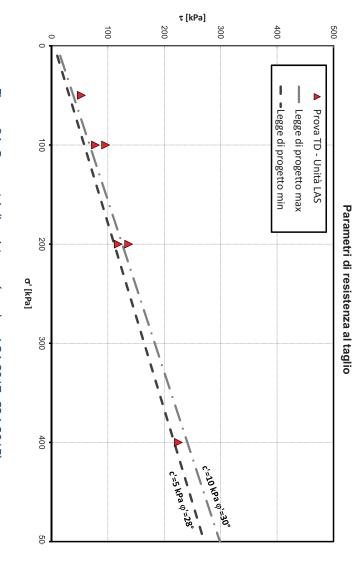


Figura 84: Parametri di resistenza (sondaggi S4-2017, S24-2015)

Resistenza a compressione monoassiale

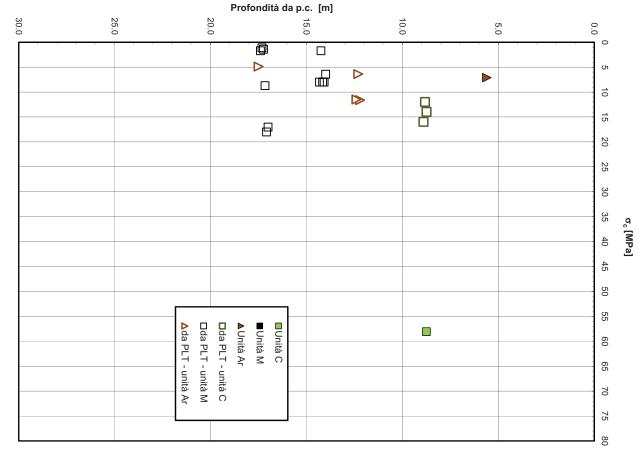


Figura 85: Resistenza a compressione monoassiale (sondaggi S4-2017, S24-2015)

7.1.3 Muri di controripa OS06 Rampa C da pk 0+003.000 a pk 0+312.926

presentano particolarmente sfatti, alterati, argillificati, almeno per uno spessore di 5.5 m circa da p.c. (RQD=0). si evince dai sondaggi S33, S34 (vedasi profilo stratigrafico), affiora la formazione dei basalti di Luguidoro che si indagata (vedasi sezione stratigrafica di riferimento mostrata nella seguente figura). Nella parte finale dell'opera, come +512.5 m s.l.m., poi calcarenitica (unità C) fino a quota +503 m e poi arenacea (unità Ar) fino alla massima profondità argillosa sabbiosa (unità LAS) di spessore 3-6 m ed a seguire la formazione di Mores marnosa (unità M) fino a quota indagini hanno consentito la ricostruzione stratigrafica, evidenziando la presenza di una coltre superficiale limoso Nella zona sono stati eseguiti i sondaggi S28, S28A, S29, S30, S32, S33 della campagna del 1998 (Micropali s.a.s.). Le

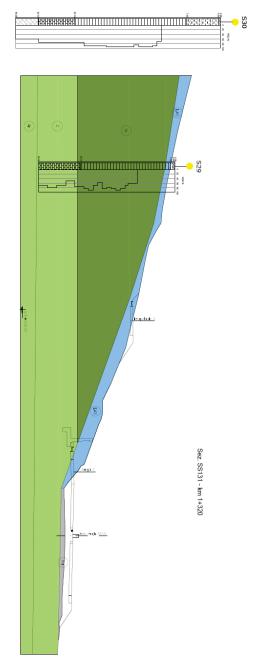


Figura 86: Sezione geotecnica di riferimento

seguito sintetizzati. indagini in corrispondenza di quest'opera, utilizzate per la determinazione dei parametri geotecnici di progetto, di Nelle seguenti figure sono riportati i risultati dell'elaborazione di tutte le prove in sito e di laboratorio eseguite sulle

Parametri geotecnici di progetto

Unità LAS (limo argilloso sabbioso)

 $\gamma = 18.5 \text{ kN/m}^3$ peso di volume naturale

 ϕ ' = 28÷30° angolo di resistenza al taglio

c′ = 5÷10 kPa coesione drenata

 $E_0 = 70 \div 250 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità M (Formazione di Mores marnosa):

 $\gamma = 22.0 \text{ kN/m}^3$ peso di volume

φ' = 26÷29° angolo di resistenza al taglio

coesione drenata

 $c' = 28 \div 35 \text{ kPa}$ E = 120 ÷ 180 MPa modulo di deformazione

Unità C (Formazione di Mores calcarenitica):

 $\gamma = 22.5 \text{ kN/m}^3$ peso di volume naturale

 $\phi' = 28 \div 34^{\circ}$ angolo di resistenza al taglio

c′ = 32÷47 kPa coesione drenata

E = 200÷340 MPa modulo di deformazione

Unità Ba (Formazione Basalti del Luguidoro): $\gamma = 19 \text{ kN/m}^3 \qquad \text{peso di volu}$

peso di volume

 $\phi' = 23 \div 39^{\circ}$ angolo di resistenza al taglio

c′ = 13÷60 kPa coesione drenata

 $E = 30 \div 230 \text{ MPa}$

modulo di deformazione

La falda è assente alle profondità di interesse.

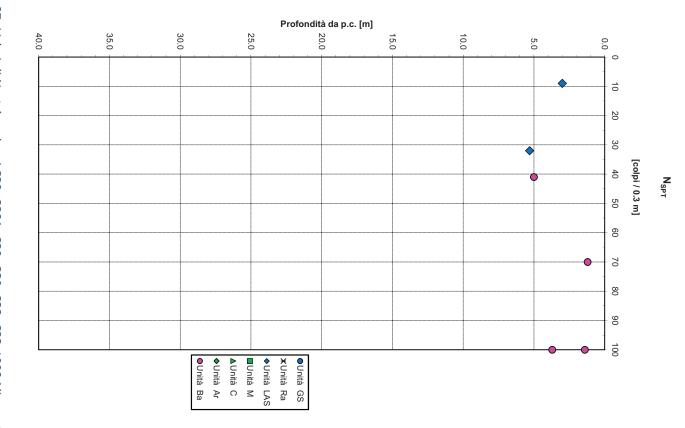


Figura 87: Valori di Nspt (sondaggi S28, S28A, S29, S30, S32, S33-1998 Micropali s.a.s.)

Modulo di deformazione elastico operativo da prove SPT

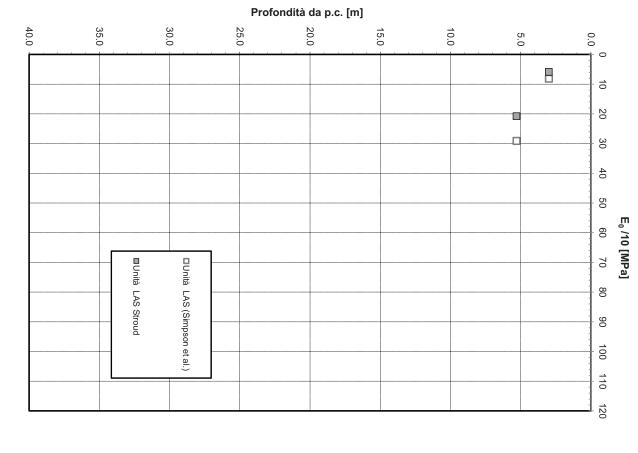


Figura 88: Modulo di deformazione operativo Eo/10 (sondaggi S28, S28A, S29, S30, S32, S33-1998 Micropali s.a.s.)

Andamento della coesione e dell'angolo di resistenza al taglio

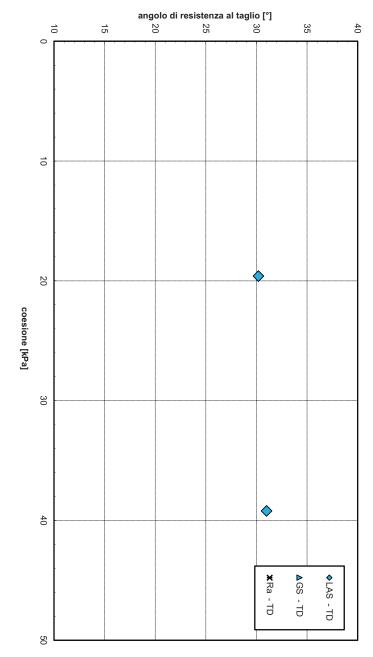


Figura 89: Angolo di resistenza al taglio e coesione drenata da laboratorio (sondaggi S28, S28A, S29, S30, S32, S33-1998 Micropali s.a.s.)

Resistenza a compressione monoassiale

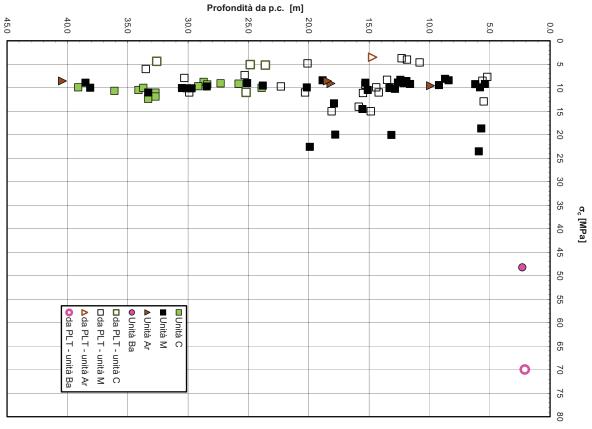
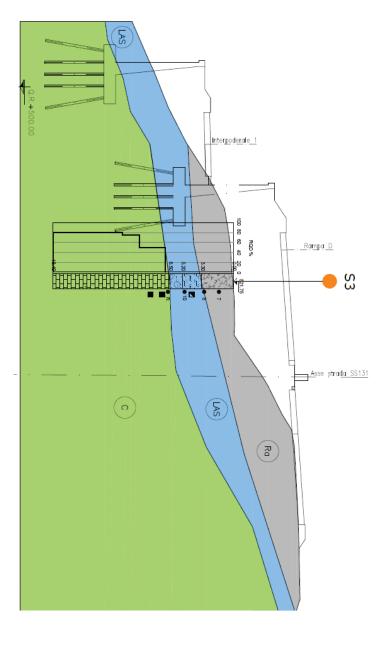


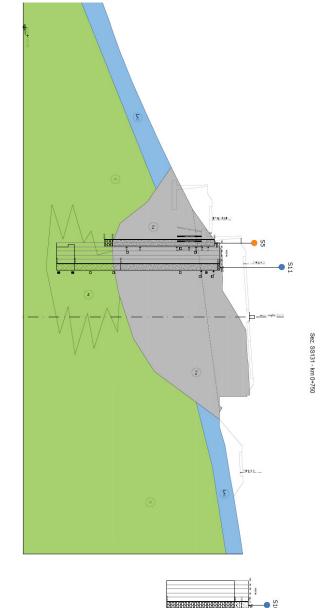
Figura 90: Resistenza a compressione monoassiale (sondaggi S28, S28A, S29, S30, S32, S33-1998 Micropali s.a.s.)


7.1.4 Muro di sottoscarpa OS07 Rampa D da pk 0+155.45 a pk 0+522.83 e muro di sottoscarpa OS08 Viabilità Interpoderale 1 da pk 0+300.00 a pk 0+513.31

In corrispondenza di queste opere sono state eseguite le seguenti indagini:

- campagna geognostica del 2017: sondaggi S2, S3, S5 e stesa sismica a rifrazione BS5;
- campagna geognostica del 2015: sondaggio S11 e stesa sismica a rifrazione LS7.

nord è in facies arenacea e calcarenitica. al km 0+645 circa (vedasi carta geologica e sondaggio S9 del 1992 posizionato più a valle), poi proseguendo verso LAS) di circa 3 m che ricopre la formazione di Mores. La formazione di base è stata intercettata in facies marnosa fino spessore è variabile da 3 m (S3 del 2017) a 25 m (S11 del 2015). Segue uno spessore di limo argilloso sabbioso (unità costituito da sabbia limoso ghiaiosa con clasti, ciottoli, talvolta blocchi litoidi, generalmente poco addensata; lo Le indagini eseguite hanno evidenziato la presenza di terreno di riporto antropico molto eterogeneo (unità Ra)


della viabilità. Nelle seguenti figure si riportano le sezioni stratigrafiche di riferimento maggiormente significative lungo lo sviluppo

Sez. SS131 - km 0+690

Figura 91: Sezione geotecnica di riferimento

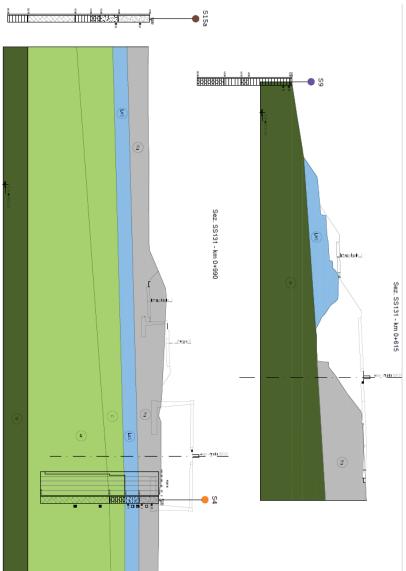


Figura 92: Sezioni geotecniche di riferimento Relazione 145 di 248

seguito sintetizzati. indagini in corrispondenza di quest'opera, utilizzate per la determinazione dei parametri geotecnici di progetto, di Nelle seguenti figure sono riportati i risultati dell'elaborazione di tutte le prove in sito e di laboratorio eseguite sulle

Parametri geotecnici di progetto

Unità Ra (riporto antropico).

 γ = 18.5 kN/m³ peso di volume naturale

 $\phi' = 30 \div 35^{\circ}$ angolo di resistenza al taglio

 $c' = 0 \div 5 \text{ kPa}$ coesione drenata

 $E_0 = 130 \div 600 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità LAS (limo argilloso sabbioso):

 γ = 18.5 kN/m³ peso di volume naturale

 φ ' = 28÷30° angolo di resistenza al taglio

 $c' = 5 \div 10$ kPa coesione drenata

cu = 50÷190 kPa resistenza al taglio non drenata

 $E_0 = 70 \div 100 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità C (Formazione di Mores calcarenitica):

 γ = 22.5 kN/m³ peso di volume naturale

 $\phi' = 28 \div 34^{\circ}$ angolo di resistenza al taglio

 $c' = 32 \div 47$ kPa coesione drenata

E = 200÷340 MPa modulo di deformazione

Unità Ar (Formazione di Mores arenacea):

 $\gamma = 22.5 \text{ kN/m}^3$ peso di volume

 $\phi' = 29 \div 33^{\circ}$ angolo di resistenza al taglio

c′ = 30÷39 kPa coesione drenata

E = 90÷460 MPa modulo di deformazione

La falda è assente alle profondità di interesse.

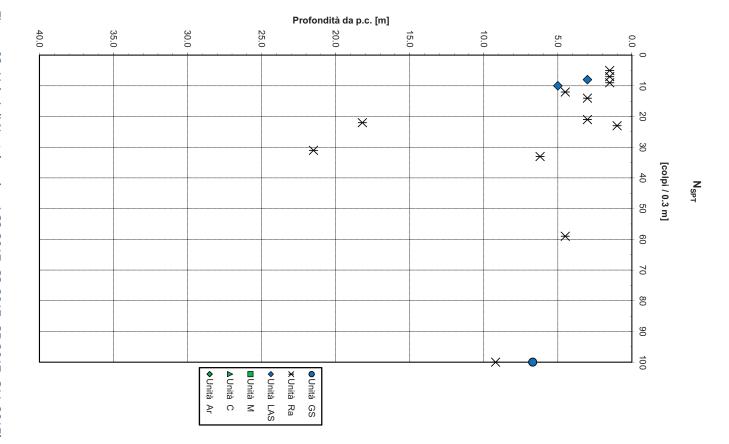


Figura 93: Valori di Nspt (sondaggi S2-2017, S3-2017, S5-2017, S11-2015)

Densità relativa da prove SPT

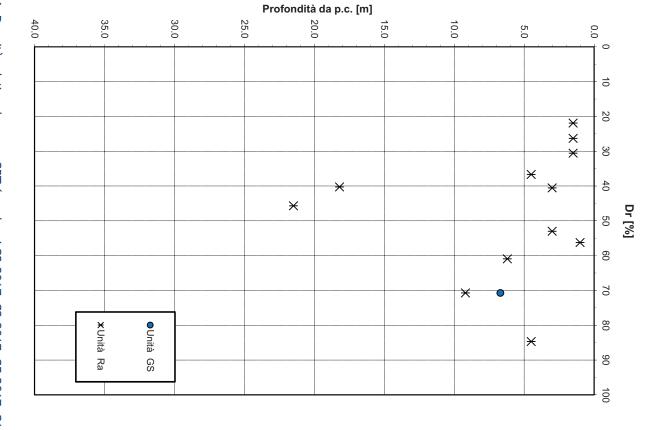


Figura 94: Densità relativa da prove SPT (sondaggi S2-2017, S3-2017, S5-2017, S11-2015)

Angolo di resistenza al taglio da prove SPT

20.0 40.0 35.0 30.0 25.0 10.0 15.0 5.0 0.0 25 30 angolo di resistenza al taglio [gradi] * * × × × 35 × × × • *Unità Ra Unità GS 40

Profondità da p.c. [m]

Figura 95: Angolo di resistenza al taglio da prove SPT (sondaggi S2-2017, S3-2017, S5-2017, S11-2015)

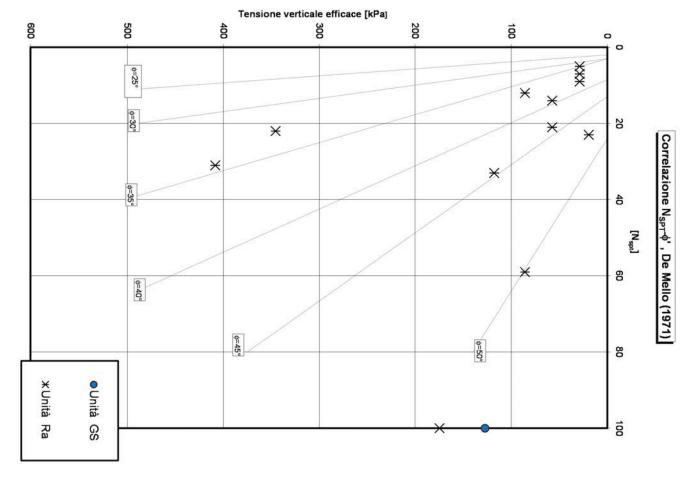


Figura 96: Angolo di resistenza al taglio da prove SPT, De Mello (sondaggi S2-2017, S3-2017, S5-2017, S11-2015)

Velocità delle onde di taglio da prove SPT e sismiche

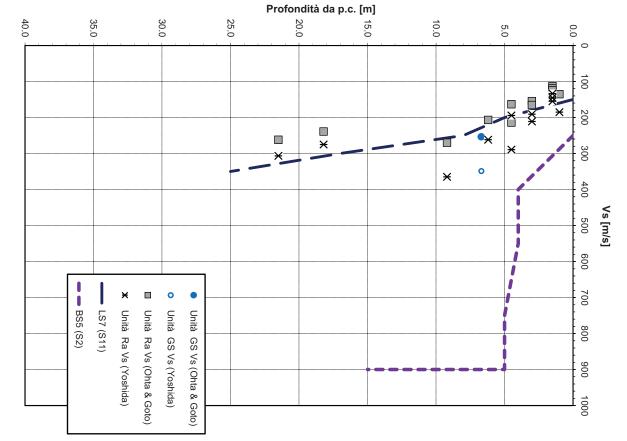


Figura 97: Velocità delle onde di taglio da prove SPT (sondaggi S2-2017, S3-2017, S5-2017, S11-2015) e indagini sismiche

Modulo di deformazione a taglio iniziale da prove SPT e sismiche

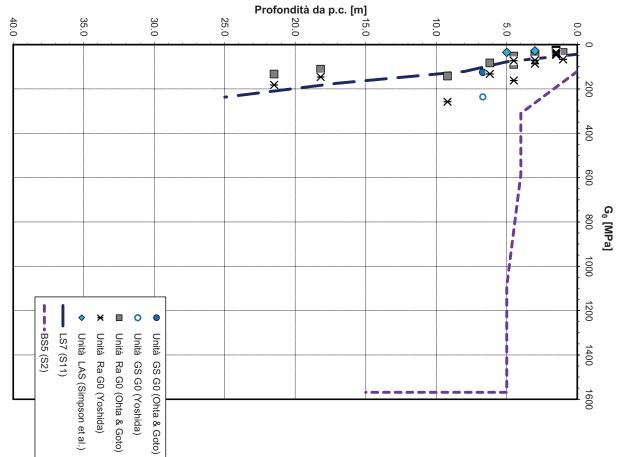


Figura 98: Modulo di deformazione a taglio iniziale da prove SPT (sondaggi S2-2017, S3-2017, S5-2017, S11-2015) e indagini sismiche

Modulo di deformazione elastico iniziale da prove SPT e sismiche

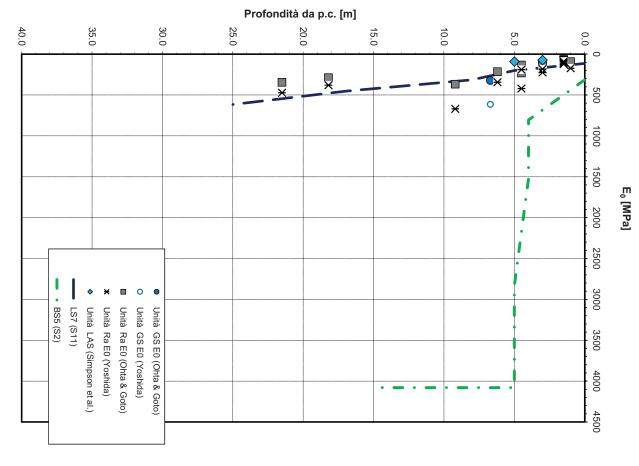
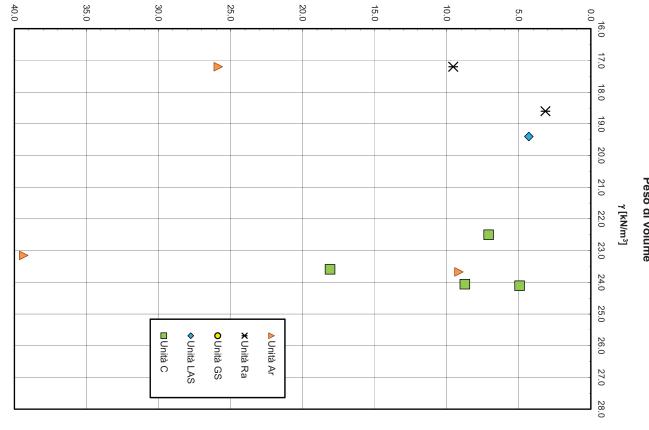



Figura 99: Modulo di deformazione elastico iniziale da prove SPT (sondaggi S2-2017, S3-2017, S5-2017, S11-2015) e indagini sismiche

Peso di volume

Profondità da p.c. [m]

Figura 100: Peso di volume naturale (sondaggi S2-2017, S3-2017, S5-2017, S11-2015)

Andamento della coesione e dell'angolo di resistenza al taglio

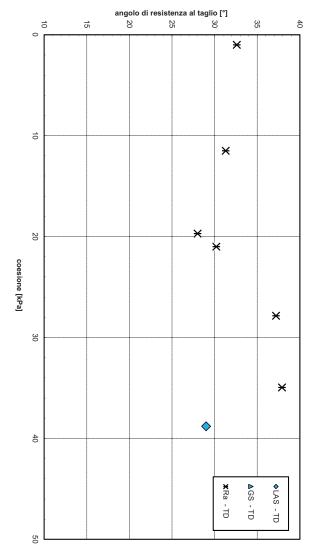


Figura 101: Angolo di resistenza al taglio e coesione da prove di laboratorio (sondaggi S2-2017, S3-2017, S5-2017, S11-2015)

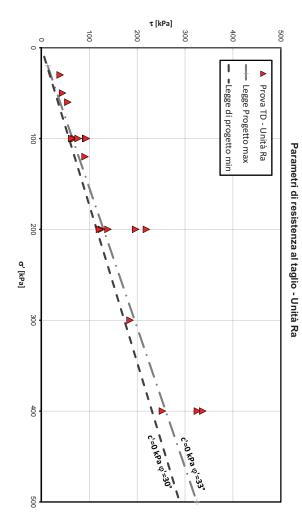


Figura 102: Parametri di resistenza da laboratorio – unità Ra

Resistenza a compressione monoassiale

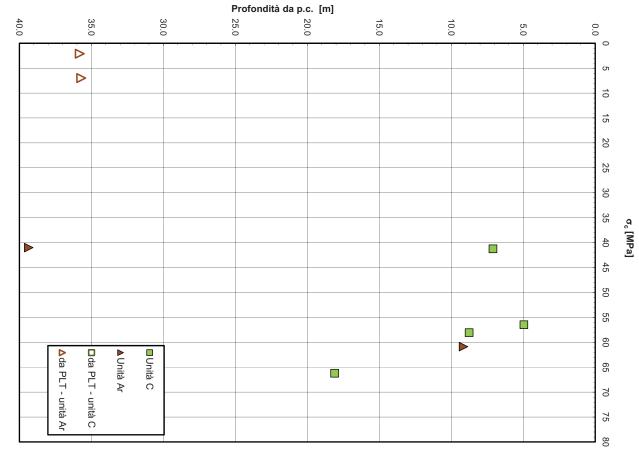


Figura 103: Resistenza a compressione monoassiale (sondaggi S2-2017, S3-2017, S5-2017, S11-2015)

Andamento della resistenza al taglio non drenata cu [kPa]

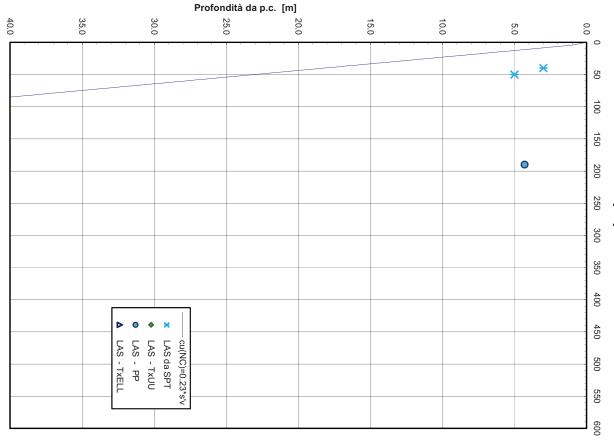


Figura 104: Resistenza al taglio non drenata (sondaggi S2-2017, S3-2017, S5-2017, S11-2015)

Muro di sottoscarpa OS10 da pk 0+126.80 a pk 0+177.32 7 . 1 . 5 Sottovia Scatolare - Muri Andatori OS09 da pk 0+959.00 a pk 1+028.33 e da pk 0+981.72 a pk 1+110.06,

m). Nella seguente figura si riporta la sezione stratigrafica di riferimento. calcarenitica fino a 10.5 m poi microconglomerato arenaceo fino a 24 m e di nuovo arenaria fino a fine sondaggio (25 spessore 4 m circa, poi limo argilloso sabbioso con clasti, blocchi fino a 7 m ed a seguire la formazione di Mores alla profondità di 25 m da p.c.. L'indagine ha evidenziato la presenza in superficie di terreno di riporto antropico con In corrispondenza di queste opere è stato eseguito il sondaggio S4 della campagna geognostica del 2017, spinto fino

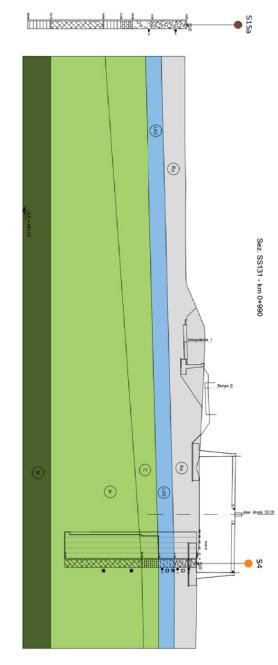


Figura 105: Sezione geotecnica di riferimento

seguito sintetizzati. indagini in corrispondenza di quest'opera, utilizzate per la determinazione dei parametri geotecnici di progetto, di Nelle seguenti figure sono riportati i risultati dell'elaborazione di tutte le prove in sito e di laboratorio eseguite sulle

Parametri geotecnici di progetto

Unità Ra (riporto antropico)

 $\gamma = 18.5 \text{ kN/m}^3$ peso di volume naturale

 ϕ ' = 30÷35° angolo di resistenza al taglio

c′ = 0÷5 kPa coesione drenata

 $E_0 = 80 \div 140 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità LAS (limo argilloso sabbioso)

 $\gamma = 18.5 \text{ kN/m}^3$ peso di volume naturale

φ' = 28÷30° angolo di resistenza al taglio

c′ = 5÷10 kPa coesione drenata

cu = 55÷80 kPa resistenza al taglio non drenata

 $E_0 = 100 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità C (Formazione di Mores calcarenitica):

 γ = 22.5 kN/m³ peso di volume naturale

 φ ' = 28÷34° angolo di resistenza al taglio

 $c' = 32 \div 47 \text{ kPa}$ coesione drenata

E = 200÷340 MPa modulo di deformazione

Unità Ar (Formazione di Mores arenacea):

 $\gamma = 22.5 \text{ kN/m}^3$ peso di volume

 $\phi' = 29 \div 33^{\circ}$ angolo di resistenza al taglio

c' = 30÷39 kPa coesione drenata

E = 90÷460 MPa modulo di deformazione

La falda è assente alle profondità di interesse.

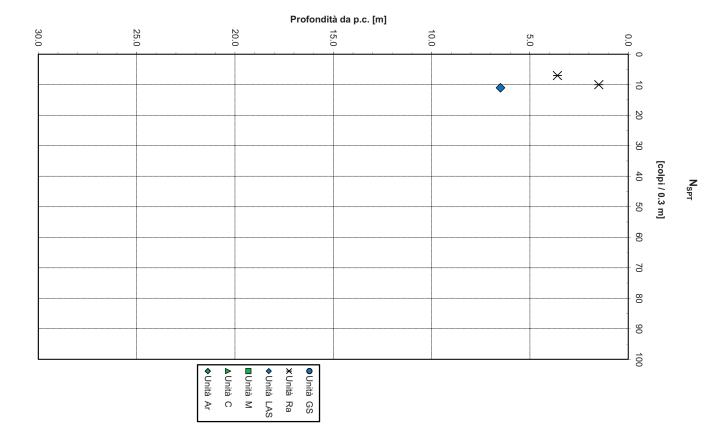


Figura 106: Valori di Nspt (sondaggio S4-2017)

Densità relativa da prove SPT

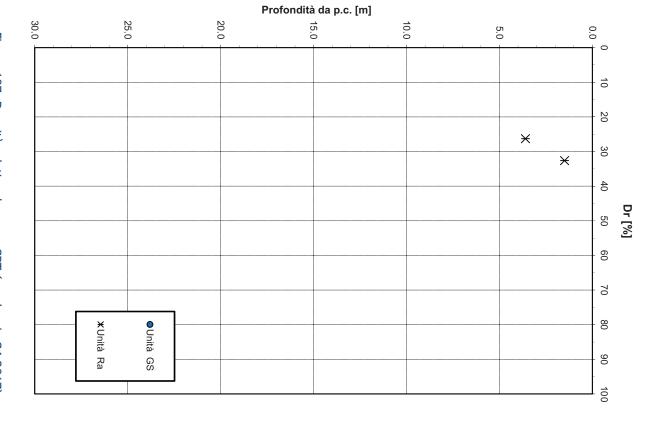


Figura 107: Densità relativa da prove SPT (sondaggio S4-2017)

Angolo di resistenza al taglio da prove SPT

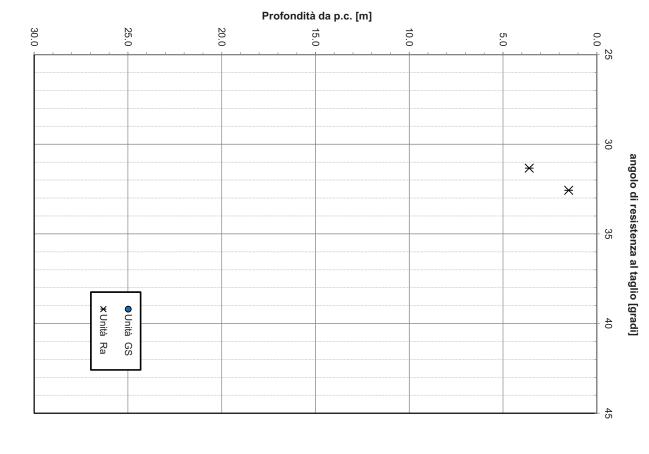


Figura 108: Angolo di resistenza al taglio da prove SPT (sondaggio S4-2017)

Modulo di deformazione elastico iniziale da prove SPT

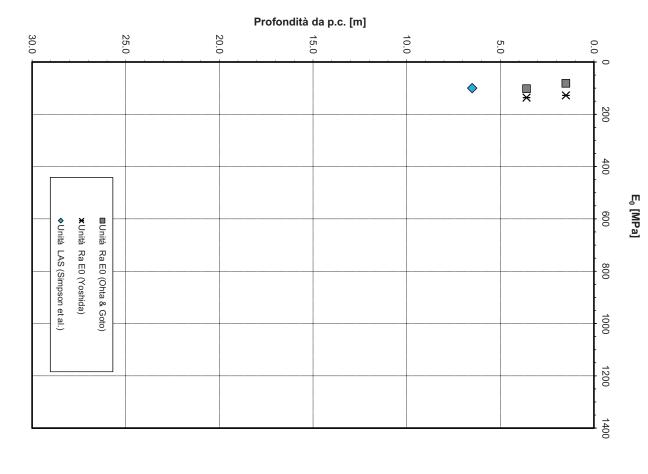


Figura 109: Modulo di deformazione elastico iniziale da prove SPT (sondaggio S4-2017)

Resistenza a compressione monoassiale

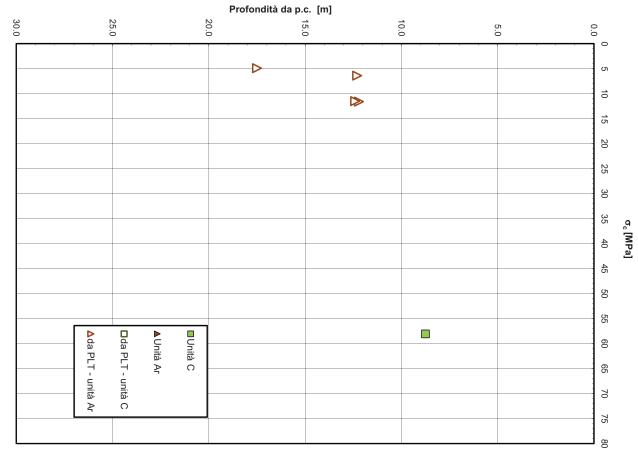


Figura 110: Resistenza a compressione monoassiale (sondaggio S4-2017)

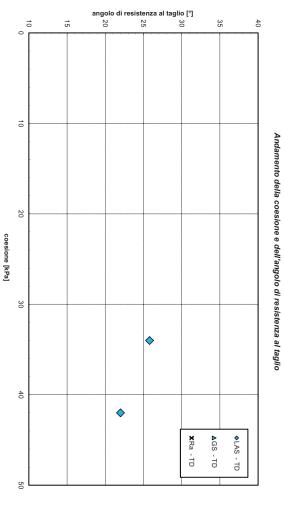


Figura 111: Angolo di resistenza al taglio e coesione drenata (sondaggio S4-2017)

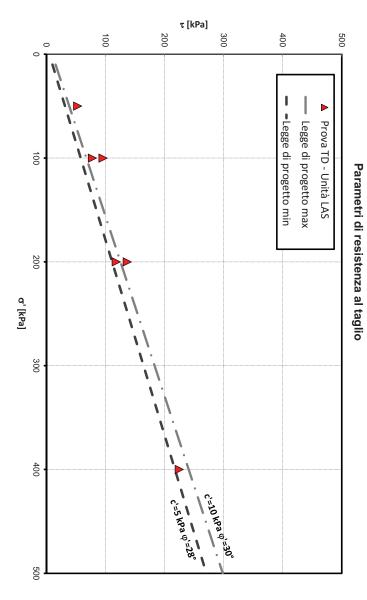


Figura 112: Parametri di resistenza (sondaggio S4-2017)

Andamento della resistenza al taglio non drenata cu [kPa]

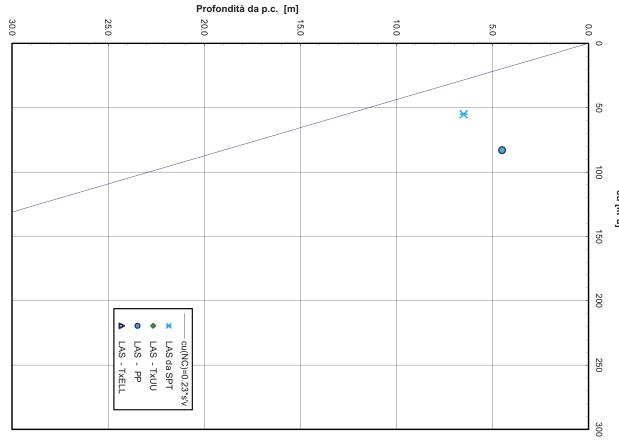


Figura 113: Resistenza al taglio in condizioni non drenate (sondaggio S4-2017)

7.1.6 Paratia di controripa Rampa A OS04 da pk 0+074.80 a pk 0+107.94

dell'interpretazione dei sondaggi vicini (S10, S9 del 2015 ed S3 del 2017) e della carta geologica. In particolare, dalla documentazione geologica dell'area, si evince che: In corrispondenza dell'opera non sono state eseguite indagini; la stratigrafia viene desunta sulla

- pari a quello individuato nel sondaggio S10-2015; - nella parte più a nord della paratia affiorano coltri limoso argillose sabbiose (unità LAS), il cui spessore viene assunto
- il substrato è costituito dalla formazione di Mores in facies marnosa (unità M).

Nella seguente figura si riporta la sezione stratigrafica di riferimento

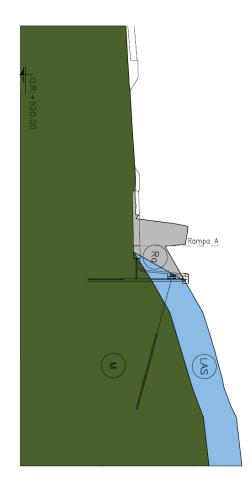


Figura 114: Sezione geotecnica di riferimento

Stratigrafia e parametri geotecnici di progetto

Unità LAS (limo argilloso sabbioso) da 0.0 a 3.0 m di profondità da p.c

 $\gamma = 18.5 \text{ kN/m}^3$ peso di volume naturale

 $\varphi' = 28 \div 30^{\circ}$ angolo di resistenza al taglio

 $c' = 5 \div 10 \text{ kPa}$ coesione drenata

 $E_0 = 70 \div 100 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità M (Formazione di Mores marnosa) da 3.0 alla massima profondità di interesse progettuale:

 $\gamma = 22.0 \text{ kN/m}^3$ peso di volume

 $\phi' = 26 \div 29^{\circ}$ angolo di resistenza al taglio

coesione drenata

E=120÷180 MPa modulo di deformazione

La falda è assente alle profondità di interesse.

7.1.7 Muro di controripa OS15 da pk 0+058.97 a pk 0+074.96

finalizzata al dimensionamento dell'opera OS04. dell'opera si può fare riferimento alla sezione geotecnica fatta in corrispondenza della Rampa A al km 0+090 In corrispondenza dell'opera non sono state eseguite indagini; per delineare la stratigrafia in corrispondenza

mentre il substrato è costituito dalla formazione di Mores in facies marnosa (unità M). L'opera è interessata dalla coltre superficiale limoso argillosa sabbiosa (unità LAS) con spessore intorno ai 3 m circa

Unità LAS (limo argilloso sabbioso) da 0.0 a 3.0 m di profondità da p.c.:

 $\gamma = 18.5 \text{ kN/m}^3$ peso di volume naturale

 $\phi' = 28 \div 30^{\circ}$ angolo di resistenza al taglio

c′ = 5÷10 kPa coesione drenata

 $E_0 = 70 \div 100 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità M (Formazione di Mores marnosa) da 3.0 m alla massima profondità di interesse progettuale:

 $\gamma = 22.0 \text{ kN/m}^3$ peso di volume naturale

 $\phi' = 26 \div 29^{\circ}$ angolo di resistenza al taglio

c' = 28÷35 kPa coesione drenata

E = 120÷180 MPa modulo di deformazione

La falda è assente alle profondità di interesse

7.1.8*Muro di sottoscarpa OS16 da pk 0+270.00 a pk 0+351.48*

si assume la seguente stratigrafia e parametri geotecnici di progetto riferimento al sondaggio S5 della campagna geognostica Sardadrill S.r.l. del 1998 e quindi in analogia all'opera OS03 è presente la formazione di Mores in facies marnosa limosa argillosa. Per la caratterizzazione geotecnica si farà In corrispondenza dell'opera non sono state eseguite indagini; comunque dalla carta geologica si evince che nell'area

Unità LAS (limo argilloso sabbioso) da 0.0 a 2.0 m di profondità da p.c.

 γ = 18.5 kN/m³ peso di volume naturale

 φ ' = 28÷30° angolo di resistenza al taglic

 $c' = 5 \div 10$ kPa coesione drenata

 $E_0 = 70 \div 100 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità M (Formazione di Mores marnosa) da 2.0 a 18.0 m di profondità da p.c:

 γ = 22.0 kN/m³ peso di volume

φ' = 26÷29° angolo di resistenza al taglio

c′ = 28÷35 kPa coesione drenata

E = 120÷180 MPa modulo di deformazione

La falda è assente alle profondità di interesse.

7.1.9 Rafforzamento corticale OS14 da km 1+373.59 a km 1+650.00

massimo 2 m circa (sondaggi S33, S34 della campagna 1998 Micropali). Nell'area affiora la formazione del basalto di Lugudoro, con una copertura di terreno alterato (unità LAS) di spessore riportato nella Figura 136; l'altezza massima di scavo è di 14 m circa e a monte è presente una stradina sterrata. Nel tratto finale del tracciato della SS131 è presente una trincea definitiva che verrà riprofilata secondo lo schema

Per la formazione rocciosa sono stati assunti i seguenti parametri di resistenza caratteristici.

Unità Ba – Basalto di Lugudoro

 $\gamma = 19 \text{ kN/m}^3$ peso di volume $\phi' = 28^\circ$ angolo di resistenza al taglio c' = 25 kPa coesione drenata

Le verifiche di stabilità della trincea definitiva sono riportate nel capitolo 10. La falda è assente alle profondità di interesse progettuale.

7.2 Adeguamento S.P. 125 7.2.1 *Muro di sottoscarpa OS11 SP125 da pk 3+712.83 a pk 3+750.00*

(unità LAS) che sovrasta la formazione di Mores in facies marnosa (unità M). 1998 (Fondedile) e S9 del 2015. Dalle indagini si delinea la presenza di una coltre superficiale limoso argillosa sabbiosa sondaggi vicini e dalla carta geologica. Le indagini più vicine all'opera sono i sondaggi S7 della campagna geognostica In corrispondenza dell'opera non sono state eseguite indagini; la stratigrafia è stata desunta dall'osservazione dei

Nella seguente figura si riporta la sezione stratigrafica di riferimento.

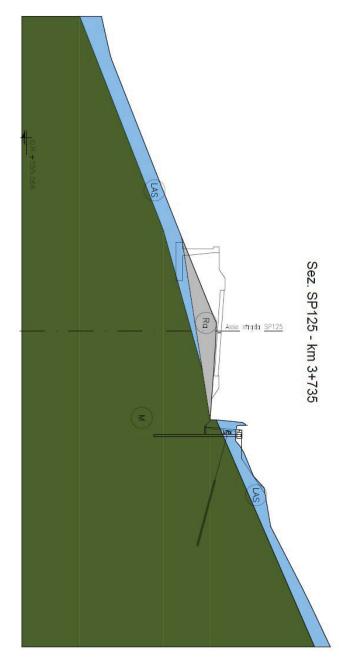


Figura 115: Sezione geologica di riferimento

seguito sintetizzati. indagini in corrispondenza di quest'opera, utilizzate per la determinazione dei parametri geotecnici di progetto, di Nelle seguenti figure sono riportati i risultati dell'elaborazione di tutte le prove in sito e di laboratorio eseguite sulle

Stratigrafia e parametri geotecnici di progetto

Unità LAS (limo argilloso sabbioso) da 0.0 a 2.0 m di profondità da p.c.

 $\gamma = 18.5 \text{ kN/m}^3$ peso di volume naturale

 $\varphi' = 28 \div 30^{\circ}$ angolo di resistenza al taglio

 $c' = 5 \div 10 \text{ kPa}$ coesione drenata

cu = 80÷ 180 kPa resistenza al taglio in condizioni non drenate

 $E_0 = 100 \div 350 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità M (Formazione di Mores marnosa) da 2.0 alla massima profondità di interesse progettuale:

 $\gamma = 22.0 \text{ kN/m}^3$ peso di volume

 $\phi' = 26 \div 29^{\circ}$ angolo di resistenza al taglio

 $c' = 28 \div 35$ kPa coesione drenata

E = 120÷180 MPa modulo di deformazione

La falda è assente alle profondità di interesse.

Parametri di resistenza al taglio

200 300 400 500 100 0 Legge di progetto min Legge di progetto max Prova TD - Unità LAS 100 200 σ' [kPa] 300 400 , - c'=5 KPa 0 =28° c'=10 kPa 0 = 30°

τ [kPa]

Figura 116: Parametri di resistenza al taglio (sondaggi S7-1998 Fondedile, S9-2015)

Andamento della resistenza al taglio non drenata cu [kPa]

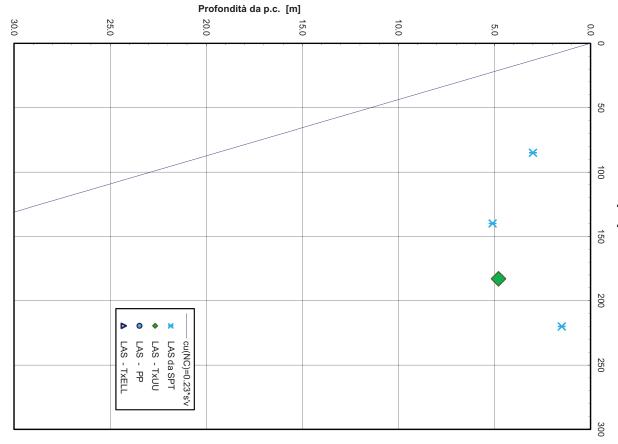


Figura 117: Resistenza al taglio in condizioni non drenate (sondaggi S7-1998 Fondedile, S9-2015)

Peso di volume

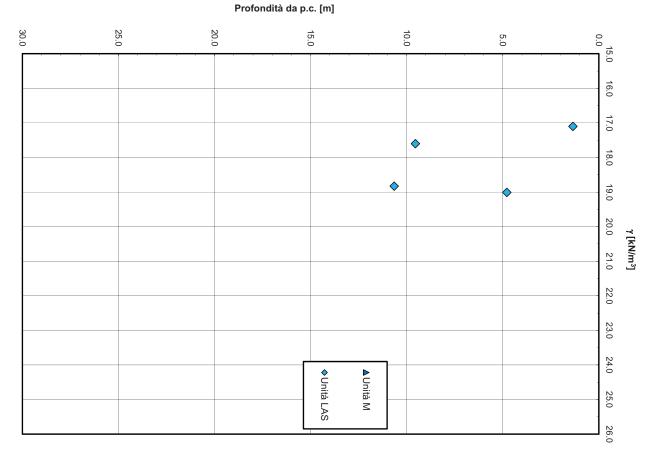


Figura 118: Peso di volume naturale (sondaggi S7-1998 Fondedile, S9-2015)

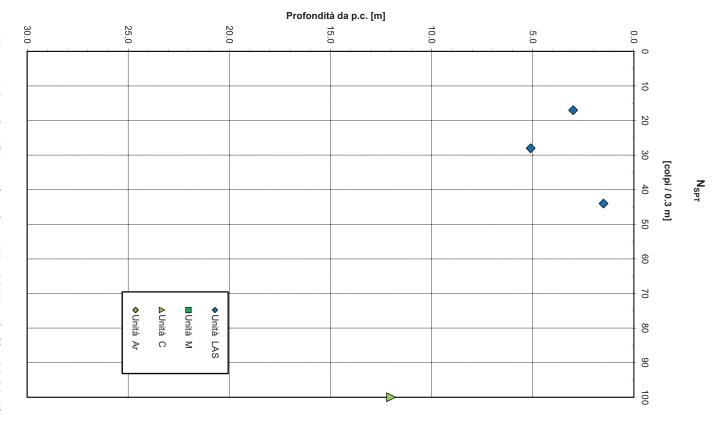
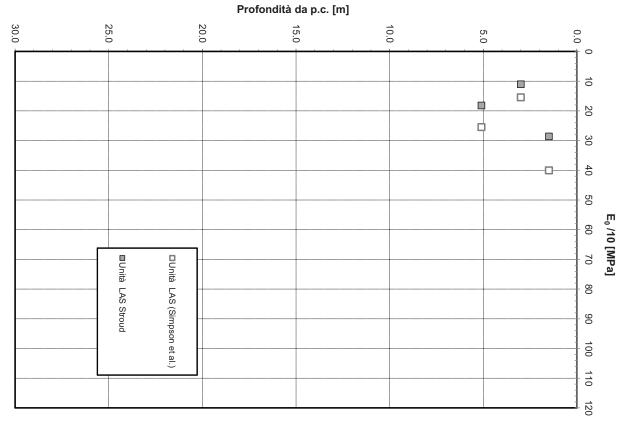
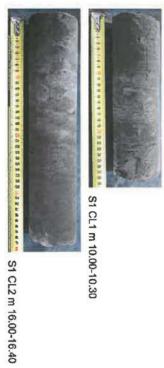


Figura 119: Valori di Nspt (sondaggi S7-1998 Fondedile, S9-2015)

Modulo di deformazione elastico operativo da prove SPT

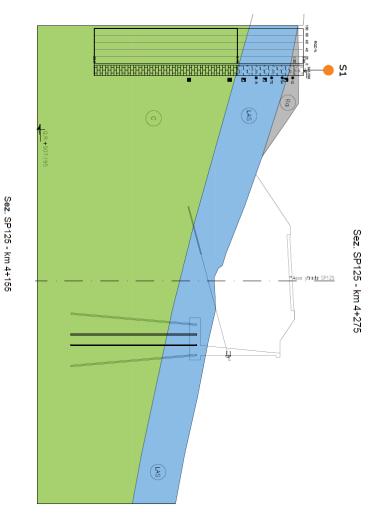



Figura 120: Modulo di deformazione elastico operativo Eo/10 da prove SPT (sondaggi S7-1998 Fondedile, S9-2015)

7.2.2 OS12 SP125 da pk 4+117.74 a pk 4+189.49 e muro di sottoscarpa OS02 SP125 da pk 4+227.713 a pk 4+345.210

marnosa (unità C). LAS) con spessore 5 m (stese sismiche) fino a 9 m (sondaggio S1) ed a seguire la formazione di Mores calcarenite BS1, BS2, BS3. Le indagini hanno evidenziato la presenza di una coltre argilloso limosa sabbiosa superficiale (unità In corrispondenza delle opere è stato eseguito il sondaggio S1 della campagna del 2017 e le stese sismiche a rifrazione

RQD è sempre pari a 100%. La resistenza a compressione monoassiale da laboratorio è 11 e 16 MPa. sottoposti a prove di compressione monoassiale e le foto delle relative cassette. A partire dai 9.4 m di profondità Nella seguente figura è mostrata la documentazione fotografica dei campioni litoidi prelevati nel sondaggio e



Nelle seguenti figure sono mostrate le sezioni stratigrafiche di riferimento.

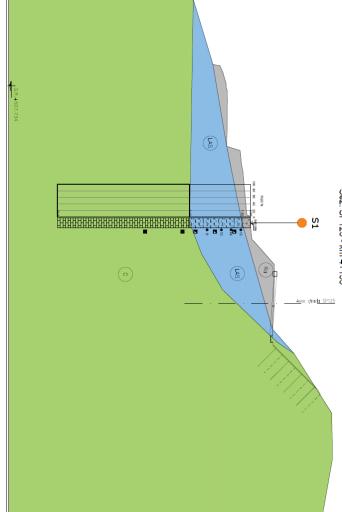


Figura 121: Sezioni geotecniche di riferimento

Relazione 178 di 248

seguito sintetizzati. indagini in corrispondenza di quest'opera, utilizzate per la determinazione dei parametri geotecnici di progetto, di Nelle seguenti figure sono riportati i risultati dell'elaborazione di tutte le prove in sito e di laboratorio eseguite sulle

Stratigrafia e parametri geotecnici di progetto

Unità LAS (limo argilloso sabbioso)

 $\gamma = 18.5 \text{ kN/m}^3$ peso di volume naturale

 ϕ ' = 28÷30° angolo di resistenza al taglio

 $c' = 5 \div 10$ kPa coesione drenata

cu = 30÷180 kPa resistenza al taglio non drenata

 $E_0 = 100 \div 600 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità C (Formazione di Mores calcarenitica marnosa):

 $\gamma = 20.0 \text{ kN/m}^3$ peso di volume naturale

 $\phi' = 30^{\circ}$ angolo di resistenza al taglio

c' = 33 kPa coesione drenata

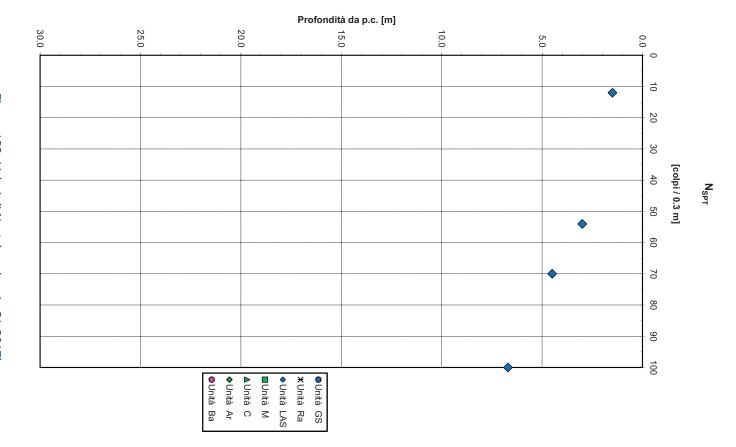


Figura 122: Valori di Nspt (sondaggio S1-2017)

Velocità delle onde di taglio da prove SPT e sismiche

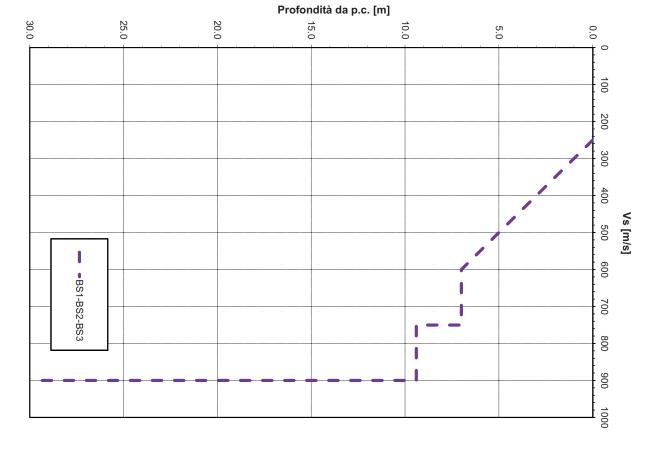


Figura 123: Velocità delle onde di taglio da prove SPT (sondaggi S2-2017, S3-2017, S5-2017, S11-2015) e indagini sismiche

Modulo di deformazione a taglio iniziale da prove SPT e sismiche

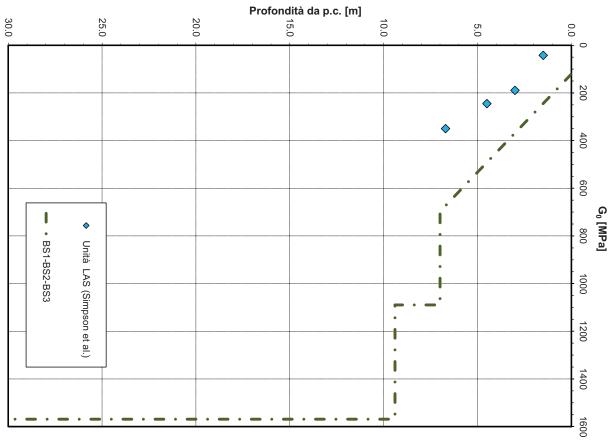


Figura 124: Modulo di deformazione a taglio iniziale da prove SPT (sondaggio S1-2017) e indagini sismiche

Modulo di deformazione elastico iniziale da prove SPT e sismiche

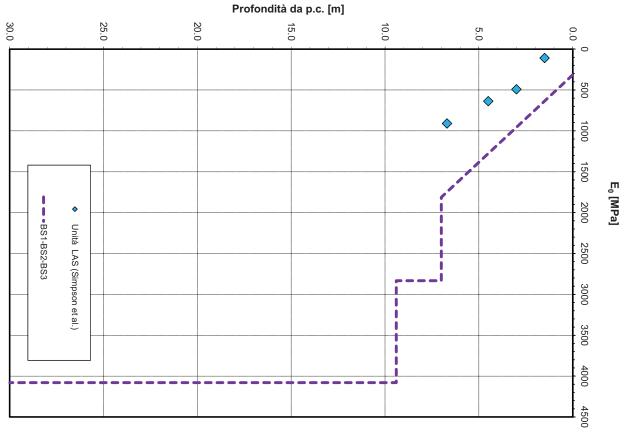
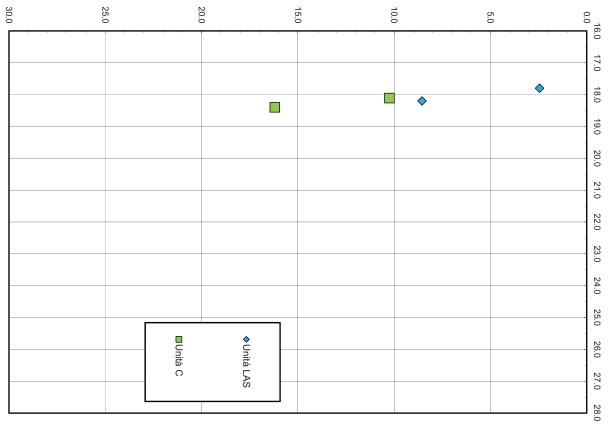



Figura 125: Modulo di deformazione elastico iniziale da prove SPT (sondaggio S1-2017) e indagini sismiche

18.0 19.0 20.0 21.0 Peso di volume γ [kN/m³] 22.0 23.0 24.0 25.0 26.0 27.0

Profondità da p.c. [m]

Figura 126: Peso di volume naturale (sondaggio S1-2017)

Andamento della coesione e dell'angolo di resistenza al taglio

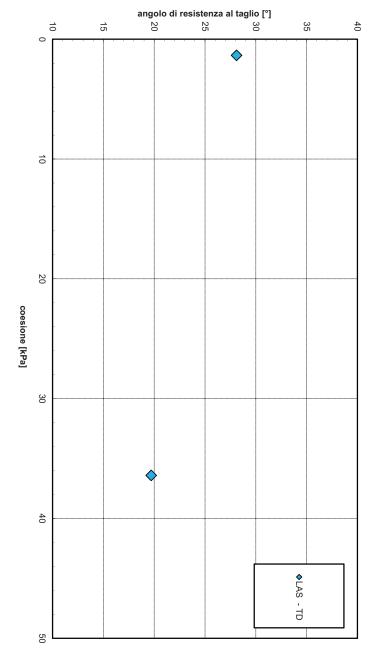


Figura 127: Angolo di resistenza al taglio e coesione drenata da laboratorio (sondaggio S1-2017)

Andamento della resistenza al taglio non drenata cu [kPa]

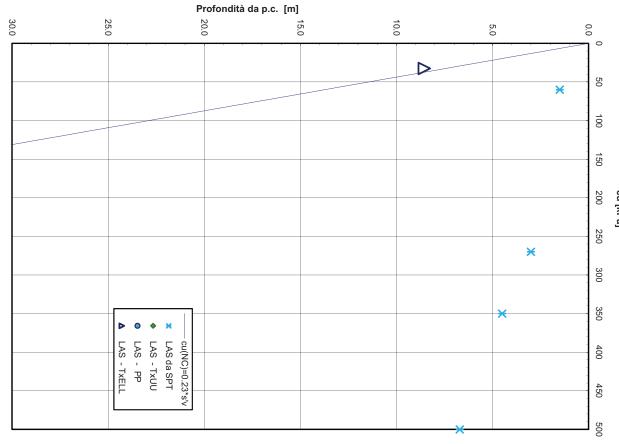


Figura 128: Resistenza al taglio in condizioni non drenate (sondaggio S1-2017)

Resistenza a compressione monoassiale

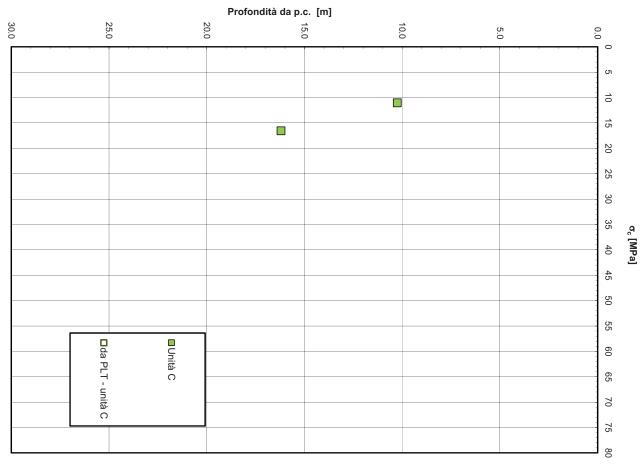
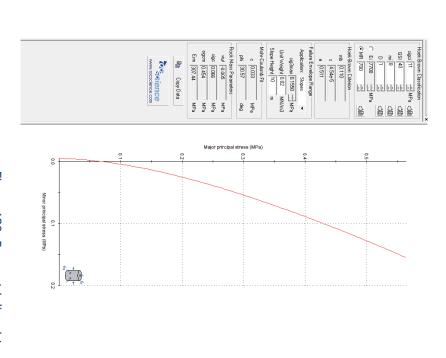



Figura 129: Resistenza a compressione monoassiale (sondaggio S1-2017)

issaffication
strength (sigci) = 11 MPa
i comp. strength (sigci) = 11 MPa
i = 8 Disturbance factor (D) = 1
us (Ei) = 7700 MPa
o (MR) = 700

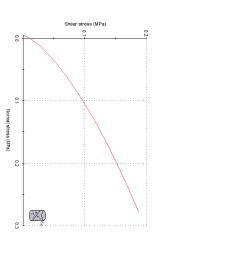


Figura 130: Parametri di resistenza (RocLab) – calcareniti marnose

7.2.3 Paratia di Controripa OS01 da pk 3+687.14 a pk 3+876.12

In corrispondenza dell'opera non è stata eseguita nessuna indagine e quindi si fa riferimento alle indagini più vicine:

- sondaggio S9 della campagna geognostica del 2015;
- sondaggio S7, S9 della campagna geognostica del 1998 Fondedile;
- sondaggio S8 della campagna geognostica del 1992.

limoso argillosa è minore (3 m al massimo) ed il substrato è costituito da siltiti e marne. arenacea. Gli altri sondaggi delle campagne pregresse, sono ubicati a sud-ovest, a valle della SS131, la copertura LAS). Il substrato è costituito da una alternanza di livelli calcarenitci ed arenacei fino a 20.8 m, a seguire da siltite copertura del substrato (12 m) costituiti prevalentemente da limo argilloso sabbioso con inclusi e talvolta ghiaia (unità Il sondaggio S9 del 2015 è ubicato più a nord dell'opera ed ha evidenziato uno spessore notevole di terreni di

rappresentato nella carta geologica in corrispondenza dell'area. intercettato dalle indagini e per la formazione di base si assume la facies marnosa (unità M), in accordo a quanto Per la definizione della stratigrafia, cautelativamente come spessore di unità LAS si prende il valore massimo

seguito sintetizzati. indagini in corrispondenza di quest'opera, utilizzate per la determinazione dei parametri geotecnici di progetto, di Nelle seguenti figure sono riportati i risultati dell'elaborazione di tutte le prove in sito e di laboratorio eseguite sulle

Stratigrafia e parametri geotecnici di progetto

Unità LAS (limo argilloso sabbioso) da 0.0 a 7.0 m di profondità da p.c.

 γ = 18.5 kN/m³ peso di volume naturale

 $\varphi' = 28 \div 30^{\circ}$ angolo di resistenza al taglio

c' = 5÷10 kPa coesione drenata

 $E_0 = 70 \div 350 \text{ MPa}$ modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità M (Formazione di Mores marnosa) da 7.0 m alla massima profondità di interesse progettuale

 $\gamma = 22.0 \text{ kN/m}^3$ peso di volume

 $\phi' = 26 \div 29^{\circ}$ angolo di resistenza al taglio

c′ = 28÷35 kPa coesione drenata

= 120÷180 MPa

modulo di deformazione

La falda è assente alle profondità di interesse.

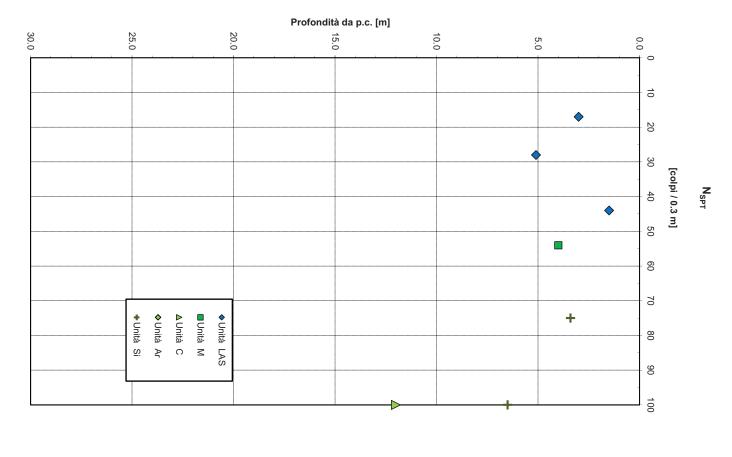


Figura 131: Valori Nspt (sondaggi S9-2015, S8-1992, S7 e S9-1998 Fondedile)

Modulo di deformazione elastico operativo da prove SPT

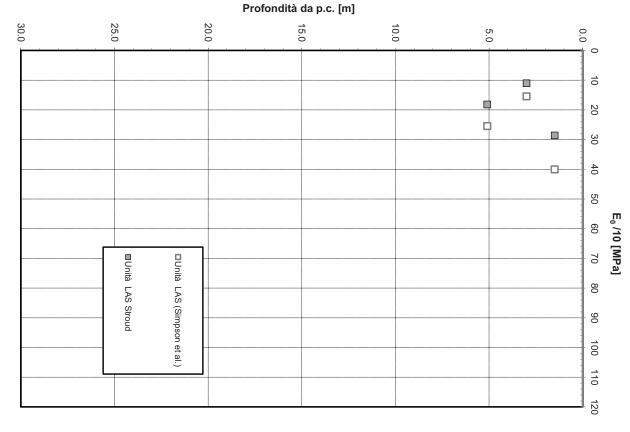
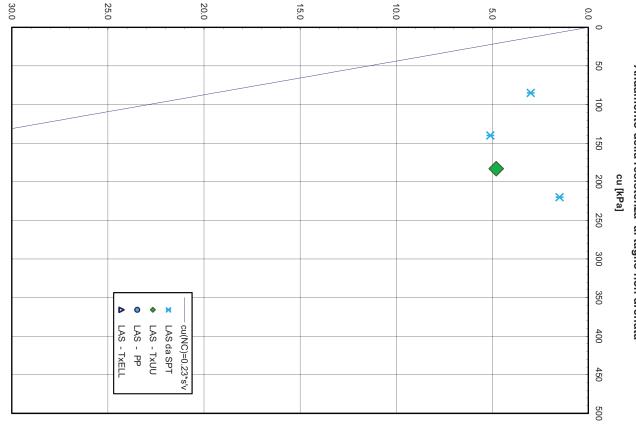



Figura 132: Modulo di deformazione elastico operativo Eo/10 da SPT (sondaggi S9-2015, S8-1992, S7 e S9-1998 Fondedile)

Relazione 191 di 248

Andamento della resistenza al taglio non drenata

Profondità da p.c. [m]

Figura 133: Resistenza a compressione monoassiale (sondaggi S9-2015, S8-1992, S7 e S9-1998 Fondedile)

Parametri di resistenza al taglio

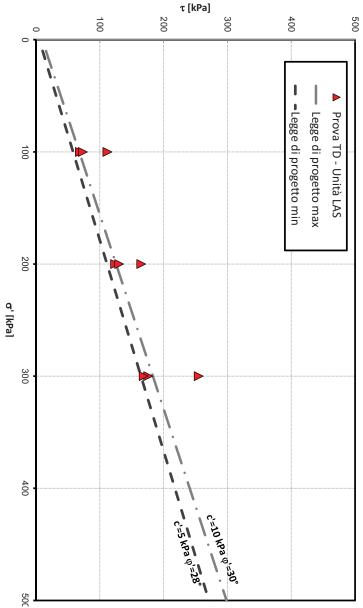


Figura 134: Parametri di resistenza (sondaggi S9-2015, S8-1992, S7 e S9-1998 Fondedile)

8.CARATTERIZZAZIONE SISMICA

8.1 Risposta sismica

di riferimento rigido con superficie topografica orizzontale. L'azione sismica sulle costruzioni è valutata a partire da una "pericolosità sismica di base", in condizioni ideali di sito

I risultati dello studio di pericolosità sono forniti, in corrispondenza dei punti di un reticolo (reticolo di riferimento) i orizzontale: cui nodi sono sufficientemente vicini fra loro (non distano più di 10 km) e nelle condizioni di sito di riferimento rigido

- accelerazione orizzontale Tc*; dello spettro in accelerazione orizzontale F0, del periodo di inizio del tratto costante in termini di valori di accelerazione orizzontale massima ag, del valore massimo del fattore di amplificazione dello spettro in
- di riferimento compreso almeno tra 45 e 1462 anni, estremi inclusi. per diverse probabilità di superamento in 75 anni e/o diversi periodi di ritorno TR ricadenti in un intervallo

Pertanto, per individuare, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche occorre

- la vita di riferimento VR della costruzione;
- le probabilità di superamento nella vita di riferimento P_{V_R} associate a ciascuno degli stati limite considerati.
- Infatti, fissata la vita di riferimento $V_{R,TR}$ è esprimibile in funzione di $P_{V_{\mathbb{R}}}$ mediante l'espressione:

$$T_{_R}=-rac{V_{_R}}{\ln(1-P_{_{V_R}})}$$

La vita di riferimento è calcolata come:

$$V_{\scriptscriptstyle R} = V_{\scriptscriptstyle N} \cdot C_{\scriptscriptstyle U}$$

dove V_N è la vita nominale dell'opera e C_U la classe d'uso.

Per le opere d'arte del presente progetto si ha in linea generale: V_N=50 anni e C_U =2.0 (classe d'uso IV), V_R = 100

sulla base della risposta sismica locale: Nota l'accelerazione orizzontale massima attesa su sito di riferimento rigido ag, l'accelerazione di picco a_{max} è valutata

$$a_{\max} = S_S \cdot S_T \cdot a_g$$

dove Ss è il coefficiente che comprende l'effetto della amplificazione stratigrafica, st è il coefficiente che comprende l'effetto della amplificazione topografica.

Sicilia, Ischia, Procida e Capri), costanti su tutto il territorio di ciascuna isola (vedasi tabella seguente) di progetto). La tabella 2, dell'Allegato B dell'NTC2008, riporta i valori di ag, F0, e Tc per le isole (con l'esclusione della omogenea (medesimi parametri spettrali sull'intero territorio insulare a parità di tempo di ritorno dell'azione sismica La Sardegna, come definito all'Allegato B di cui al D.M. 14/01/2008, è caratterizzata da una macrozonazione sismica

ritorno TR validi per tutte le isole ad eccezione della Sicilia, Ischia, Procida e Capri e costanti su tutto il territorio di ciascuna Tabella 28 - Tabella 2 dell'Allegato B delle NTC 2008 in cui vengono riportati i valori di ag, F0, e Tc per i diversi tempi di

Isole		F. =30	₫.	2	-	F, T _c a _a	,po		F, T.	, D	F. =101	F. T. S.	,20	F 140	੍ਹਾਂ. ਰ	p	100	F, =20	T,=201	T _s =201	T _c a,	T _n =201 T _n =476	F. T. a.	F. T. a.	F. T.	F. T. a. F. T. a.	F. T. A. F. T.
Arcipologo Toccano, sone Egaci Prantisena, Bandegra, Lampedusa, Linosi, Porza Painarola, Zannone	SHE	261	261 0273 0233	0,233	3.5	0.290	9,271	170	6,363	0.314	2.79	0.296 0.274 2.79 0.303 0.314 2.73 0.397	0,323	0,311 2,78		0.313	0.313 0.393	0.313 0.393 2.82	0.313 0.393 1.52 0.322	0.313 0.393 2.52 0.322 0.390	0.313 0.983 2.522 0.322 0.390 2.50	0313 0,393 252 0,322 0,390 2,58 0,340	0313 0391 252 0322 0300 238 0346 0308	0,372 0,500 2,50 0,340 0,003 2,98	0,372 0,500 2,50 0,340 0,003 2,98	0,322 0,390 2,86 0,340 0,003	0,372 0,500 2,50 0,340 0,003 2,98
Ventosene Santo Sistano	0.239	261	261 0,245 0,303	0,303	2.61	0,272	0,272 0,347	2,61	0.298 0.289	0.389	2.65	2.65 9.316 9.439 2.69	0,430	2,09	_	0,366	0.365 0,481	0.365 0.481 2.71	9,365 0,481 2,71 0,401	9,365 0,481 2,71 0,401 9,699	0.365 0.481 2.71 0.401 0.600 2.92	0.365 0.481 2.71 0.401 0.600 2.92 0.476	2,92 0,476 9,797	2,92 0,476 9,797	232 0,476 0,307 3,07 0,317	2,92 0,476 9,797 3,97 0,517 0,652	232 0,476 0,307 3,07 0,317
Uska, Tenti	0.419	2.00	0.400	0,534	2.50	0,400 0,554 2,50 0,400 0,661	9,061		0,480	0.776	1.50	1.59 6,486 0,776 1.50 0,490 0,001 1.50	0,901	2.30		0.400	0.400 1.004	1,006 2,00	1,006 2,00 0,400	1,006 2,00 0,400	1,006 2,00 0,400	1,006 2,00 0,400	1,006 2,00 0,400	1,056 2,50 0,400 1,500 2,50 0,400 1,967 2,50	1,056 2,50 0,400 1,500 2,50 0,400 1,967 2,50	1,006 2,00 0,400	1,056 2,50 0,400 1,500 2,50 0,400 1,967 2,50
AIGIR, FROID.	0051	18.2	ECC DEC	ECC.B	- 24	0.400	9,837		2,70 0,400	020.1	2.70	1.020 2.70 0.00	1214	2.10	_	1400	1.400	1.460 2.70	T-98 7.0 0.40	T-98 7.0 0.40	1.00 2.00 0.400 2.41 2.70	1.00 2.00 0.400 2.41 2.70	1.00 2.00 0.400 2.41 2.70	52.7 212.8 000.0 04.2 116.7 000.0 0.7 nwT	MEN 647 2178 MED 647 1472 MED 647 MET	52.7 212.8 000.0 04.2 116.7 000.0 0.7 nwT	MEN 647 2178 MED 647 1472 MED 647 MET
Panarta, Strumosi, Lpan, Vulcaro, Saina	3.618	265	0.307	0.517	2.48	0,350	0,983	18.5	167.0	0,394 1,366	252	0.290	E	2,56	160	280	0.390 1.580	250 1580 256	1.5EC 235.E	1.5EC 235.E	1,580	90f'0 85'T 00CT 25C'0 95'T 085'T	SST 0007 2800 957 3851	90f'0 85'T 00CT 25C'0 95'T 085'T	397 ELST 9019 SFT 00CT ZGCO 95'T 385'T	397 ELST 9019 SFT 00CT ZGCO 95'T 385'T	FIST 900'0 SST 000CT Z0C'0 95'T 38ST

Dalla tabella si ha:

ag = 0.060g (accelerazione orizzontale massima del terreno);

F0 = 2.98 (valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale);

 $TC^* = 0.372 \text{ s}$ (periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale).

8.2 Categoria di sottosuolo

relazione: propagazione delle onde di taglio nei primi 30 m di profondità Vs,30. Si può ricavare il parametro VS,30 mediante la La classificazione della categoria di sottosuolo viene eseguita sulla base di misure dirette dei valori di velocità di

$$V_{S,30} = \frac{30}{\sum_{i \neq l,N} \frac{h_i}{V_{S,i}}}$$

stendimenti, denominati "BS", della campagna del 2017 con restituzione tomografica anche in onde S. indagini sismiche a rifrazione: uno stendimento, denominato LS7, della campagna geognostica del 2015 e sismiche finalizzate alla determinazione della V_{s,30}, in particolare sono state eseguite nello svincolo di Bonorva Nord Per la definizione della categoria di sottosuolo sismica, in accordo alla normativa vigente sono state eseguite indagini

di sottosuolo. (unità Ra). Negli elaborati grafici di pertinenza (planimetrie sismiche) sono individuabili le aree con la relativa categoria in cui sono presenti gli spessori maggiori dei depositi di copertura (unità LAS, GS) o dei terreni di riporto antropico caratterizzati con categorie di sottosuolo di tipo C e B. In generale, la categoria di sottosuolo C si rinviene nei settori In relazione a quanto emerso dalle indagini, le formazioni presenti nei settori di intervento possono essere

1 m da p.c., localmente 6 m nel sondaggio S7-2015, quindi la categoria di sottosuolo è B Per lo svincolo di Bonorva Sud le indagini hanno intercettato substrato roccioso basaltico generalmente a partire da

8.3 Azioni sismiche di progetto

L'accelerazione di picco a_{max} , valutata sulla base della risposta sismica locale, vale:

$$a_{\text{max}} = S_s \cdot S_T \cdot a_g$$

l'effetto della amplificazione topografica. dove Ss è il coefficiente che comprende l'effetto della amplificazione stratigrafica, ST è il coefficiente che comprende

Quindi per il sito in esame si ha:

- piano campagna è $a_{max} = 0.090$ g. con riferimento a V_N =50 anni, C_0 =2.0, categoria tipo C: S_S = 1.50, quindi l'accelerazione massima attesa al
- con riferimento a V_N =50 anni, C_U =2.0 e categoria tipo B: Ss = 1.20 accelerazioni massime attese al piano campagna sono pari a $a_{max} = 0.072$ g.

dell'opera/intervento, come indicato da normativa ($S_T = 1.0 \text{ per T1 e } S_T = 1.2 \text{ per T2}$). Per ogni opera va inoltre applicato il fattore amplificativo dell'azione topografica S₁ in funzione dell'ubicazione

9. ANALISI DEI CEDIMENTI E DEL LORO DECORSO NEL TEMPO

9.1 Premessa

per l'asse principale e nuovi in particolare per le rampe e le viabilità secondarie. progetto è un adeguamento di una viabilità esistente e quindi i rilevati sono generalmente in ampliamento all'esistente Nel presenta capitolo si riportano le valutazioni dei cedimenti dei rilevati e la stima del decorso nel tempo. L'opera in

di scavo maggiori di 6 m. Per i rilevati si prevedono scarpate a pendenza 2 (verticale) / 3 (orizzontale) con berma di larghezza 2.5 m per altezze massima estensione trasversale) ed in relazione alla situazione stratigrafica peggiore lungo lo sviluppo del tracciato. La valutazione dei cedimenti è stata eseguita per la sezione con maggiore ingombro di rilevato (massima altezza e/o

l'ipotesi di rilevato illimitato. La valutazione dei cedimenti dei rilevati è stata effettuata con il programma di calcolo CED (G. Guiducci) considerando

10 volte la tensione geostatica efficace. contributi degli strati in corrispondenza dei quali l'incremento della tensione ottaedrica risulta superiore o uguale a Nella valutazione dei cedimenti e quindi nella determinazione dello spessore compressibile, si sono considerati i

Le metodologie di calcolo sono riportate in Appendice A.

9.2 Sezioni di calcolo

equivalente alla sagoma reale complessiva dei rilevati e con impronta di carico circa uguale alla reale dei cedimenti. Nel calcolo è stata modellata un'area rettangolare di altezza 6 m e larghezza 75 m avente area rappresentative sia per le dimensioni maggiori di rilevato, sia per le condizioni stratigrafiche più gravose, per la stima e dall'altro lato da via Maggiore Bonorva e rampa B. Nella seguente figura è mostrata la sezione di calcolo analizzata, La sezione di calcolo analizzata è la n. 60 dell'asse al km 0+885 che è affiancata da un lato dal rilevato della rampa D

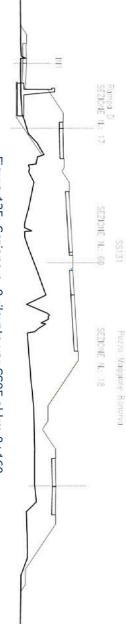


Figura 135: Sezione n. 9 rilevato var SS95 al km 0+160

è di circa 5 m. Nella seguente tabella si riassume la stratigrafia ed i parametri geotecnici utilizzati per l'analisi. La falda In corrispondenza dei rilevati di maggiore altezza, lo spessore di terreno che sovrasta la formazione rocciosa di base

è a profondità elevate, non è stata intercettata dalle indagini.

condizioni non drenate per il terreno coesivo (unità LAS) si è assunto Eu = 200 * cu. di deformazione elastico iniziale (E_0), in particolare si è assunto $E' = E_0/10$. Per il valore del modulo di deformazione in Il modulo di deformazione elastico operativo per il calcolo dei cedimenti dei rilevati (E') è stato valutato dal modulo

Tabella 29 – Stratigrafia e parametri geotecnici – sez 60 SS131

ı	1	150	22.5	Ar	> 8.5
ı	1	200	22.5	С	5.0÷8.5
70	14	10	18.5	LAS	2.0÷5.0
ı	-	15	18.5	Ra	0.0÷2.0
[kPa]	[MPa]	[MPa]	[kN/m3]	geotecnica	[m]
CU	Eu	E,	γ	Unità	Profondità

9.3 Risultati

Nella seguente tabella si riassumono i principali risultati. In Appendice A, sono riportate le metodologie generali per il calcolo dei cedimenti ed i tabulati di calcolo completi.

Tabella 30 – Cedimenti in asse rilevato

Sez. N.60 SS131+rampe			Sezione
66.5		[mm]	Cedimenti totali
18.5	[mm]	immediati	Cedimenti
48.0	[mm]	consolidazione	Cedimenti

tempi di costruzione del rilevato, in quanto si tratta di uno spessore di terreno modesto (5 m) che sovrasta il substrato cedimenti di consolidazione inferiori ai 5 cm. Si tratta di cedimenti che si svilupperanno nella quasi totalità durante i I cedimenti totali massimi stimati in asse rilevato sono dell'ordine di 6.65 cm, i cedimenti immediati 1.85 cm e quindi

10. ANALISI DI STABILITA'

10.1 Premessa

Nel presenta capitolo si riportano le verifiche di stabilità delle scarpate di rilevati e di trincee.

10.2 Metodologie di calcolo verifica di stabilità

rapporto tra la resistenza al taglio disponibile lungo la superficie e quella effettivamente mobilitata lungo la stessa potenziale scivolamento. Il coefficiente di sicurezza a rottura lungo la superficie di scorrimento viene definito come ricerca delle superfici critiche viene svolta attraverso la generazione automatica di un elevato numero di superfici di La valutazione dei fattori di sicurezza alla stabilità viene condotta mediante il codice di calcolo SLIDE 7.0, in cui la

$$FS = \frac{\int_{S} \tau \operatorname{disp}}{\int_{S} \tau \operatorname{mob}}$$

coefficiente di sicurezza

stabilità globale deve svolgersi agli SLU: A2+M2+R2. In conformità alla normativa vigente (D.M. 14/01/2008 "Norme Tecniche per le costruzioni" – NTC2008), l'analisi di

parziali di seguito riportati. Secondo la normativa quindi i parametri di resistenza del terreno devono essere abbattuti a mezzo dei coefficienti

 $\gamma_{\phi} = 1.25$ coefficiente parziale per l'angolo di resistenza al taglio

 $\gamma_{\rm c} = 1.25$ coefficiente parziale per la coesione drenata

L'analisi viene quindi condotta con i seguenti parametri geotecnici di calcolo:

 $tan(\phi'd) = tan(\phi'k) / \gamma_{\phi}$ angolo di resistenza al taglio

 $\mathbf{c'_d} = \mathbf{c'_k} / \gamma_c$ coesione drenata

 (γ_R) sia in condizioni statiche, che sismiche. Pertanto il fattore di sicurezza alla stabilità da verificare FS ≥ 1.1 . Il coefficiente di sicurezza minimo per le verifiche di sicurezza di opere di materiali sciolti e fronti di scavo è pari ad 1.1

 $\gamma_{ extsf{F}} =$ 1.3). In condizioni sismiche il carico accidentale è nullo I carichi accidentali stradali (pari a 20 kPa) sono stati amplificati secondo i coefficienti richiesti da normativa (A2 – GEO:

10.3 Azioni sismiche per analisi di stabilità

statiche equivalenti ovvero forze statiche orizzontali fh e verticali fv per unità di volume, d'intensità pari al prodotto fra il peso specifico del corpo γ sottoposto all'azione dinamica ed un coefficiente sismico: In generale, il metodo pseudo-statico modella l'azione sismica considerando in luogo delle azioni dinamiche azioni

 $fh = \gamma \cdot kh$ forza orizzontale per unità di volume

 $\mathbf{f}\mathbf{v} = \gamma \cdot \mathbf{k}\mathbf{v}$ forza verticale per unità di volume

dove:

 γ = peso specifico del volume considerato

In accordo alla normativa vigente per le analisi in esame, la componente orizzontale (ah) dell'accelerazione può essere legata all'accelerazione massima attraverso la seguente relazione:

 $k_h = \beta s \cdot a_{max} / g$

 $k_v = \pm k_h/2$

dove:

kh = coefficiente sismico in direzione orizzontale;

kv = coefficiente sismico in direzione verticale;

 βs = coefficiente di riduzione che dipende dall'accelerazione massima e dalla categoria di suolo (0.20 nel caso

Nel caso in esame si ha per i rilevati:

- con riferimento a V_N =50 anni, C_U =2.0, categoria tipo C: Ss campagna è $a_{max} = 0.09 g$ П 1.50, l'accelerazione massima attesa al piano
- $kh = \beta s \cdot a_{max} / g = 0.20 \cdot 0.09 = 0.018$
- $kv = \pm 0.009$.

Per la trincea definitiva presente a fine tracciato:

- piano campagna è $a_{max} = 0.086$ g. con riferimento a V_N =50 anni, C_U =2.0, categoria tipo B: Ss = 1.20, ST=1.2 l'accelerazione massima attesa al
- $kh = \beta s \cdot a_{max} / g = 0.20 \cdot 0.086 = 0.017$
- $kv = \pm 0.009$.

10.4 Sezioni di calcolo

di resistenza minimi. di larghezza 2.5 m a 1 m da p.c., considerando cautelativamente per il terreno di fondazione l'unità LAS con i parametri Per i rilevati viene eseguita la verifica di stabilità di una scarpata di rilevato con altezza massima di 6 m, avente berma

riportato nella seguente figura; l'altezza massima di scavo è di 14 m circa e a monte è presente una stradina sterrata Nel tratto finale del tracciato della SS131 è presente una scarpata definitiva che verrà riprofilata secondo lo schema

una copertura di terreno alterato (unità LAS) di spessore massimo 2 m circa (carico accidentale considerato nelle analisi pari a 10 kPa). Nell'area affiora la formazione del basalto di Lugudoro, con

secondo quanto indicato da normativa. Per la formazione rocciosa sono stati assunti i seguenti parametri di resistenza caratteristici, fattorizzati nelle analisi

Unità Ba – Basalto di Lugudoro

φ' = 28° angolo di resistenza al taglioc' = 25 kPa coesione drenata

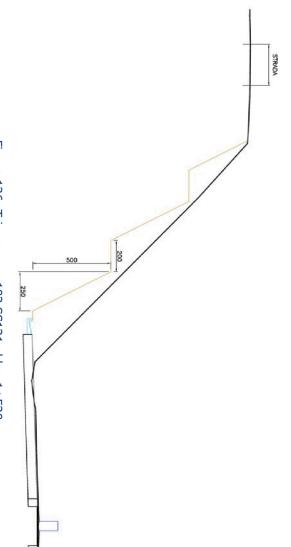


Figura 136: Trincea sez. 103 SS131 al km 1+530

10.5 Risultati

minimi sono > 1.1, quindi le verifiche di stabilità sono soddisfatte, secondo quanto previsto da normativa. sismiche; per l'analisi sismica è riportata la figura relativa a –kv, in quanto fornisce i valori minimi. I fattori di sicurezza Nelle seguenti figure si riportano i risultati delle verifiche di stabilità per la sezione in rilevato, in condizioni statiche e

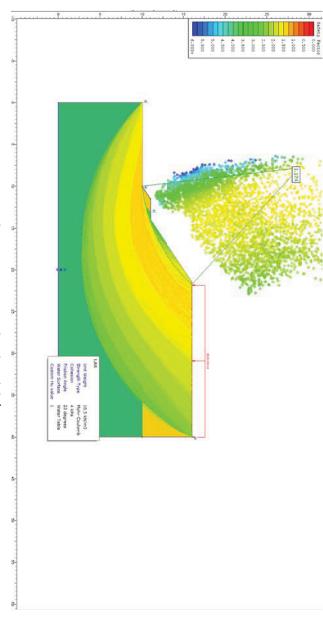


Figura 137: Rilevato H= 6 m Analisi di stabilità statica SLU

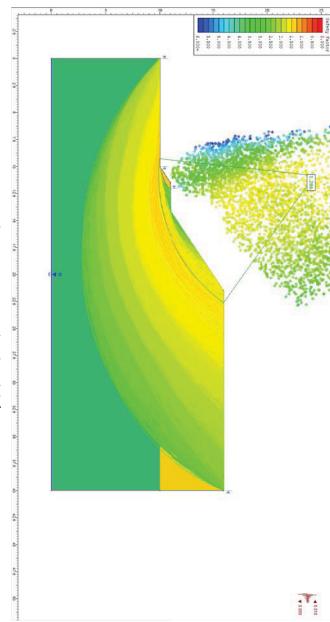


Figura 138: Rilevato H= 6 m Analisi di stabilità sismica SLU

Direzione Progettazione e Realizzazione Lavori T00GE00GETRE01A RELAZIONE GEOTECNICA GENERALE

elaborati grafici. inferiore a 1770 n/mm2, carico di rottura minimo 40.3 kN (per 16 mm). Per i dettagli dell'intervento si rimanda agli metalliche sono previste d'acciaio ad anima metallica con resistenza nominale dei fili elementari di acciaio non MPa, perforazione Dp ≥ barre metalliche f25 mm tipo Gewi con limite snervamento acciaio non minore di 500 MPa, tensione di rottura 550 un intervento di rafforzamento corticale costituito da chiodature con maglia $2.0 \,\mathrm{m}\,\mathrm{x}\,2.0 \,\mathrm{m}$, lunghezza chiodi L= $4.0 \,\mathrm{m}$, verifica di stabilità in condizioni sismiche (senza chiodature) non è soddisfatta. Quindi per il tratto di trincea si prevede di consolidamento con chiodature, rispettivamente in condizioni statiche e sismiche SLU; dalle figure si osserva che la In Figura 139 e in Figura 140 si riportano i risultati delle analisi di stabilità per la sezione in trincea senza intervento 50 mm. La rete metallica è a doppia torsione con maglia esagonale tipo 8x10. Le funi

previsto da normativa. i valori minimi. I fattori di sicurezza minimi sono > 1.1, quindi le verifiche di stabilità sono soddisfatte, secondo quanto chiodatura, in condizioni statiche e sismiche; per l'analisi sismica è riportata la figura relativa a –kv, in quanto fornisce In Figura 141, Figura 142 si riportano i risultati delle verifiche di stabilità per la sezione in trincea con intervento di

Figura 139: Trincea sez. 103 SS131 – analisi di stabilità statica SLU

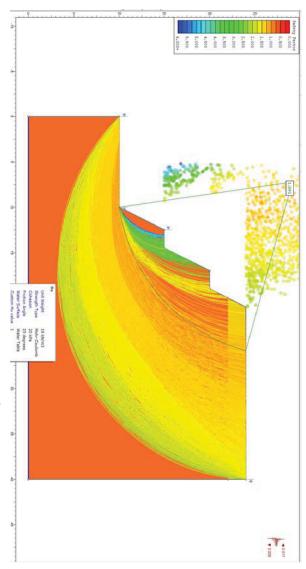


Figura 140: Trincea sez. 103 SS131 – analisi di stabilità sismica SLU

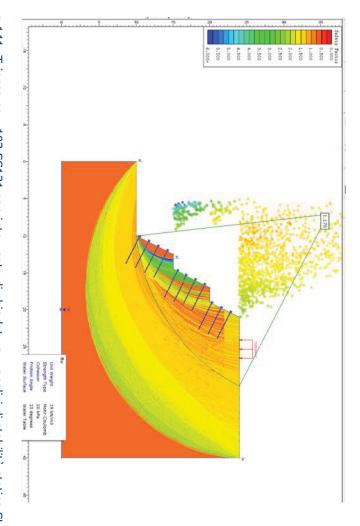


Figura 141: Trincea sez. 103 SS131 con intervento di chiodatura – analisi di stabilità statica SLU

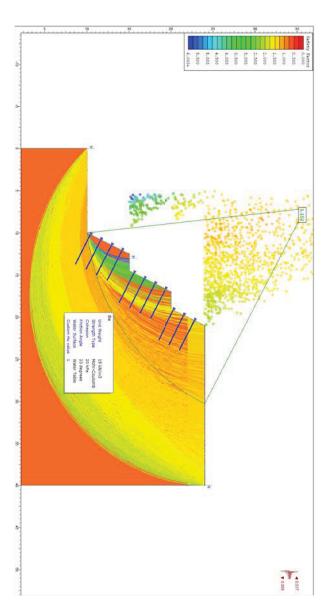


Figura 142: Trincea sez. 103 SS131 con intervento di chiodatura – analisi di stabilità sismica SLU

11. PIANO DI POSA

Sulla base delle indagini disponibili, lo spessore di vegetale è variabile da 0.2 a 0.8 m, localmente 1 m.

Quindi si prevede per lo svincolo di Bonorva Nord:

scotico: 20 cm

bonifica: vedasi tabella seguente

STRATI DI BONIFICA	BONIFICA	
VIABILITA'		SPESSORE (cm)
Rampa A	Sezz. 21÷37	40
Rampa B	Sezz. 1÷20	30
Rampa Pozzomaggiore-Bonorva	Sezz. 14÷26	60
Rampa C	Sezz. 13÷17	40
Rampa D	Sezz. 4÷29	50
	Sezz. 1÷10	
	Sezz. 13÷17	20
Asse 33 131	Sezz. 24÷29	30
	Sezz. 30÷72	30
Viabilità interpoderale 1		80
Viabilità interpoderale 2	Sezz. 2÷13	60
Viabilità interpoderale 3		60
Rotatoria Sud		60
Rotatoria Nord		40
SP8		40
SP43		40

Per lo svincolo di Bonorva Sud si prevede:

scotico: 20 cm

bonifica: vedasi tabella seguente

RAMPE A,B,C,D	S.P.125 Sez.36-76	S.P.125 Sez.7-35	S.P.125 Sez.0-7	SPESSORI BONIFICA
. 30	36-76 40	7-35 20	.0-7 0	FICA (cm)

Per la SP 125 si prevede:

scotico: 20 cm

bonifica: 30 cm.

12. APPENDICE A. ANALISI DEI CEDIMENTI. METODOLOGIE DI CALCOLO E TABULATI CED

12.1 Metodologie di calcolo. Analisi dei cedimenti per rilevati

Analisi delle tensioni indotte nel sottosuolo dai carichi applicati in superficie

riferimento a soluzioni basate sulle seguenti ipotesi semplificative: La valutazione dell'incremento dello stato tensionale indotto nel terreno dai carichi applicati viene condotta con

- il terreno è schematizzato come un semispazio elastico lineare, omogeneo ed isotropo (modello di
- l'area di carico è posta sulla superficie del semispazio ed è supposta di rigidezza nulla

sulle quali è applicata una pressione uniforme. Per una generica condizione di carico viene eseguita una discretizzazione in un numero finito di superfici rettangolari

superficie di carico componendo poi gli effetti. Per ogni direttrice di calcolo del cedimento vengono valutati gli incrementi di tensione indotti da ogni singola

verticale passante per lo spigolo di un'area di carico rettangolare: La soluzione base impiegata è quella di Florin (1959) che fornisce gli incrementi di tensione in corrispondenza di una

$$\delta\sigma_{z} = \frac{q}{2\pi} \cdot [tan^{-1} \frac{ab}{m} + \frac{abz}{m} \cdot (\frac{m}{m} + \frac{m}{m}) + \frac{m}{m} \cdot (\frac{m}{m} + \frac{m}{m})$$

$$2\pi \frac{z}{R3} \frac{R3}{R3} \frac{R1^{2}}{R2^{2}} \frac{R2^{2}}{R2^{2}}$$

$$q \frac{ab}{\delta\sigma_{x}} = \frac{abz}{m} \cdot [tan^{-1} \frac{m}{m} - \frac{m}{m}]$$

$$2\pi \qquad z R3 \qquad R1^2 R3$$

$$q \qquad ab \qquad ab z$$

$$2\pi \qquad [tan^{-1} \frac{}{z R3} - \frac{}{R2^2 R3}]$$

dove:

 $\delta \sigma_z$ = incremento di tensione verticale,

 $\delta \sigma_{x,y}$ = incrementi di tensioni orizzontali;

$$R1^2 = (a^2 + z^2),$$

$$R2^2 = (b^2 + z^2),$$

$$R3^2 = (a^2 + b^2 + z^2);$$

a = semilato dell'area di carico in direzione x

b = semilato dell'area di carico in direzione y

z = asse verticale.

Calcolo dei cedimenti

seguente relazione: Il cedimento (s) viene valutato, dopo avere discretizzato l'altezza significativa di terreno in "n" strati, in base alla

$$\begin{aligned} z &= Hc \\ S &= \sum_{z=0}^{\infty} \left[\left(\delta \sigma_{z,i} - v \left(\delta \sigma_{x,i} + \delta \sigma_{y,i} \right) \right] \cdot h_i / E'_i \right] \end{aligned}$$

dove:

 \mathbf{E}_{i} = modulo di deformazione dello strato i-esimo;

hi = altezza dello strato i-esimo,

Hc = altezza del volume di terreno significativo,

 $\delta \sigma_z$ = incremento di tensione verticale,

 $\delta \sigma_{x,y}$ = incrementi di tensioni orizzontali.

Ciò è individuato entro la profondità Hc per cui: Il calcolo dei cedimenti è limitato agli strati di terreno che realisticamente risentono del carico applicato in superficie.

$$\delta\sigma_z$$
 / σ'_{vo} > 0.10;

essendo:

 σ'_{vo} = tensione verticale efficace litostatica.

Il cedimento totale dato dagli strati coesivi (di bassa permeabilità) è generalmente dato dalla somma di tre contributi:

$$S_t = S_i + S_c + S_s$$

dove:

st = cedimento totale;

si = cedimento immediato; esso si sviluppa all'applicazione del carico, viene valutato con il modulo Eu (in condizioni non drenate).

dissipazione delle sovrappressioni interstiziali indotte dai carichi sc = cedimento per consolidazione, con sviluppo completo al tempo in cui sarà avvenuta la completa

interstiziali stabilizzate. cedimento secondario, dovuto a deformazioni viscose del terreno con carico costante e pressioni

(inserimento di dreni verticali molto fitti). da uno strato argilloso di rilevante spessore nel quale il completamento della consolidazione avviene in pochi mesi Il contributo del cedimento secondario diventa importante in pochi casi, quando il cedimento dipende in gran parte

Nei casi in cui il cedimento secondario può essere trascurato si valuterà

t, con il modulo E' (in condizioni drenate),

i, con il modulo Eu (in condizioni non drenate),

 $S_c = S_t - S_i$.

12.2 Cedimenti totali rilevato

CED

Programma per l'analisi dei

*** CED ***
Programma per l'analisi dei cedimenti
per aree di carico di rigidezza nulla

(C) G.Guiducci - aprile 1999

pag./

SS131 sezione 60 Rilevato cedimento totale

Coefficiente di Frolich S'z a quota piano di posa Profondita' falda Coefficiente di Poisson 11 11 11 11 4 .0 20.0 .30 kPa m

Caratteristiche stratigrafiche Φ meccaniche

:	7	3 I I I I I I I I I I I I I I I I I I I	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 1	:
:	m H	m H	kPa	kPa	kN/m3	kN/m3	
1	.0	2.0	15000.	15000.	18.5	8.5	
2	2.0	5.0	10000.	10000.	18.5	о. 5	
ω	5.0	8.5	200000.	200000.	22.5	12.5	
4	8.5	100.0	150000.	150000.	22.5	12.5	
						i	

S'z = tensione verticale efficace litostatica
Z in = profondita' inizio strato
Z fin = profondita' fine strato
E in = modulo elastico inizio strato
E fin = modulo elastico fine strato
G nat = peso di volume naturale
G eff = peso di volume efficace
N dv = numero suddivisioni dello strato

Dati riguardanti il rilevato (Y - asse longitudinale)

Altezza complessiva Larghezza sommita' Pendenza scarpate Peso di volume Sovraccarico in sommita' = 6.0 m = 75.0 m =1000.000 = 20.0 kN/m3 = .0 kPa (vert/orizz)

pag./ Ν

SS131 sezione 60 Rilevato cedimento totale

Caratteristiche delle aree di carico equivalenti al rilevato

		4 10	ωΝ	□	z
	 	24.0	24.0	24.0	Press.
	 	.00	00	.00	m 0
	 	00	00	.00	m c
	Carico totale	75.00 75.00	75.01 75.01	75.01	X lato
	totale =	3000.24	3000.24	3000.24	Y lato
pag./	27004.320	5400.691 5400.518	5401.037 5400.864	5401.209	Carico MN
ω	M				

SS131 sezione 60 Rilevato cedimento totale

RISULTATI relativi alla direttrice

.00 m \vdash

Incrementi di tensioni dovuti ai carichi

Prof.			-	.10 S'z	E medio
m		kPa	kPa		
	20.	0	0	. 5	500
	20.	0	0		500
	20.	9		•	500
	20.	9	9		500
2.3	120.0	59.7	59.9	4.2	10000.
	20.	9	9		000
	20.	9	9	•	000
	20.	9	9		000
	20.		9	•	000
	20.		9	•	000
	20.		9		0000
	20.	~	9	÷	0000
•	20.	7.	9	Ν.	0000
	19.	7	9	ω	0000
	19.			5	0000
	19.	ū			0000
$^{\circ}$	19.	ω		÷	5000
	19.		П		5000
	18.	2	ω	0	5000
ω	16.	7.			5000
7.	13.			2	5000
	11.	7.		7.	5000
П	07.	ω	ω	Ν.	5000
9	04.	9.		7.	5000
ω	00.	·	9	Ν.	5000
		4			5000
	·	<u>.</u>	П		000
	9	0	ω		5000

D S'z,x,y = incrementi di tensione indotti dai carichi S'z = tensione verticale efficace litostatica

pag./ 4

SS131 sezione 60 Rilevato cedimento totale

RISULTATI relativi alla direttrice

 \bowtie .00 m \vdash .00 m

Cedimenti totali

Cedimenti parziali

Prof.	Cedimento	da	മ	D cedim.
		m	m	mm
. 0	0 1			
. 5	·	.0		
				2.8
	2			
	4	•		
	0			
	9.			.2
	9.			.2
	9.			.2
	9.			.2
				.2
		•		.2
2			2	
	ω	2		
U	$_{\cdot}^{\infty}$		U	
9		U	9	
ω	ω	9.	ω	
7.		ω	7.	
		~		
U			U	
0		U	0	
54.3	2.1	50.1	54.3	2.2
α	. 0	Φ.	ω.	

Cedimento totale II

66.5 mm

12.3 Cedimenti immediati rilevato

*** CED ***
Programma per l'analisi dei cedimenti
per aree di carico di rigidezza nulla

(C) G.Guiducci - aprile 1999

pag./ ш

SS131 sezione 60 Rilevato cedimento immediato

Coefficiente di Frolich S'z a quota piano di posa Profondita' falda Coefficiente di Poisson 11 11 11 3 20.0 .50 kPa m

Caratteristiche stratigrafiche Φ meccaniche

	4	ω	2	┙	p
	8.5	5.0	2.0	.0	z in
	100.0	5	5.0	2.0	z fin z fin
	150000.	200000.	14000.	15000.	E in kPa
	150000.	200000.	14000.	15000.	E fin KPa
	22.5	22.5	18.5	18.5	G nat KN/m3
	12.5	12.5	8.5	8.5	G eff kN/m3
1 1 1 1 1 1	22	0	0	4	N dv

S'z = tensione verticale efficace litostatica
Z in = profondita' inizio strato
Z fin = profondita' fine strato
E in = modulo elastico inizio strato
E fin = modulo elastico fine strato
G nat = peso di volune naturale
G eff = peso di volune efficace
N dv = numero suddivisioni dello strato

Dati riguardanti il rilevato (Y - asse longitudinale)

Altezza complessiva Larghezza sommita' Pendenza scarpate Peso di volume Sovraccarico in sommita' = 6.0 m = 75.0 m =1000.000 = 20.0 kN/m3 = .0 kPa (vert/orizz)

Caratteristiche delle aree di carico equivalenti al rilevato

	0,40,40,40,10	3.				
5400.518	3000.24	75.00	.00	.00	24.0	 5
5400.6	3000.24	75.00	.00	.00	24.0	4
5400.864	3000.24	75.01	.00	.00	24.0	ω
5401.037	3000.24	75.01	.00	.00	24.0	2
5401.209		75.01	.00	.00	24.0	₽
Carico	Y lato m	X lato		 	Press. kPa	 Z .

Relazione 212 di 248

pag./ 3

SS131 sezione 60 Rilevato cedimento immediato

RISULTATI relativi alla direttrice

 \asymp .00 m \vdash .00 m

Incrementi di tensioni dovuti ai carichi

Prof.	D S z		D S'y	.10 S'z	E medi
m	i I KP	l k	l kp		
. ω	0	19.	· i	.5	σi
∞	120.0	116.9			1500
	20.	14.	17.		50
	20.	12.	16.		50
	20.	10.	15.	4.2	40
	20.	.80	14.		40
	20.	06.	13.		40
	19.	04.	12.	•	40
	19.	02.	11.		40
	19.	00.	10.		40
	19.	98.	09.	•	000
	19.		.80		000
•	19.	4	07.	$^{\circ}$	000
	19.	2	05.	ω	000
	19.	9.	04.		00
	19.	7.	03.		000
0	19.	9.	99.		500
4	17.	U	·		500
	15.	ω.	4	0	500
ω	12.	ω.	7.		500
√.	.80	5	2	2	500
	04.	9.	0	7.	500
U	000.	ω		2	500
9	0	9.	~	7	500
ω	Ë		4	2	500
	7.	ω.	0		500
N	ω		7.	ω	500

D S'z,x,y = incrementi di tensione indotti dai carichi S'z = tensione verticale efficace litostatica

pag./ 4

SS131 sezione 60 Rilevato cedimento immediato

RISULTATI relativi alla direttrice \vdash

 \bowtie .00 m \vdash .00 m

Cedimenti totali

Cedimenti parziali

41.8 45.9			~	ω	9	5.1	1.0	6.8	2.7	(Л	. 9	.ω	. 00	. 2	. 0	.0	Մ	.0	U	. 0	ज	. 0	5	.0		 	m	Prof. Ced	
	3.0						2		4	ū	5	ū	П	ū	ū	ū	0	9	7	7	7					. i	mm	dimento	
45.9		~	ω	9.	U		·	2				•												· 5	. 0		Ħ	da	
50.1			7.	ω	9	5		9	2																		Ħ	Ф	
																											mm	D cedim	

Cedimento totale II 18.5 mm

13. APPENDICE B. ANALISI DI STABILITA'. METODOLOGIE E TABULATI DI CALCOLO SLIDE

13.1 Rilevato – analisi di stabilità statica SLU

SLIDE - An Interactive Slope Stability Program Slide Analysis Information

Project Summary

File Name: Sez_60.slmd - Group 1 - Scenario 1

Slide Modeler Version: 7.026

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 07/08/2017, 11:53:15

General Settings

Units of Measurement: Metric Units

Time Units:

Permeability Units: meters/second

Data Output: Failure Direction: Right to Left Standard

Maximum Material Properties: 20

Maximum Support Properties: 20

Analysis Options

Slices Type: Vertical

Analysis Methods Used

Bishop simplified

Janbu simplified

Tolerance: Number of slices: 0.005

Maximum number of iterations: 75

Check malpha < 0.2: Yes

Create Interslice boundaries at intersections Yes

with water tables and piezos:

Initial trial value of FS: Yes

Steffensen Iteration:

Groundwater Analysis

Groundwater Method: Water Surfaces

Pore Fluid Unit Weight [kN/m3]: 9.81

Use negative pore pressure cutoff: Yes

Maximum negative pore pressure [kPa]: 0

Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular

Search Method: Slope Search

Number of Surfaces:

Upper Angle: **Not Defined**

Composite Surfaces: Lower Angle: Disabled **Not Defined**

Reverse Curvature: Invalid Surfaces

Minimum Elevation: **Not Defined**

Minimum Depth: **Not Defined**

Minimum Area: Not Defined

Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: No

Staged pseudostatic analysis: No

Loading

1 Distributed Load present

Distributed Load 1

Distribution: Constant

Magnitude [kPa]: 26

Orientation: Normal to boundary

Material Properties

1	1	Hu Value
Water Table	Water Table	Water Surface
23	30.2	Friction Angle [deg]
4	0	Cohesion [kPa]
18.5	18.5	Unit Weight [kN/m3]
Mohr-Coulomb Mohr-Coulomb	Mohr-Coulomb	Strength Type
		Color
LAS	Ra	Property

Global Minimums

Method: bishop simplified

FS	1.173700
Center:	7.808, 28.849
Radius:	18.976
Left Slip Surface Endpoint:	10.000, 10.000
Right Slip Surface Endpoint:	21.771, 16.000
Resisting Moment:	1180.6 kN-m
Driving Moment:	1005.87 kN-m
Total Slice Area:	6.33139 m2
Surface Horizontal Width:	11.7711 m
Surface Average Height:	0.537876 m

Method: janbu simplified

FS	1.123470
Center:	7.808, 28.849
Radius:	18.976
Left Slip Surface Endpoint:	10.000, 10.000
Right Slip Surface Endpoint:	21.771, 16.000
Resisting Horizontal Force:	53.7475 kN
Driving Horizontal Force:	47.8405 kN
Total Slice Area:	6.33139 m2
Surface Horizontal Width:	11.7711 m
Surface Average Height:	0.537876 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4743

Number of Invalid Surfaces: 257

Method: janbu simplified

Number of Valid Surfaces: 474

Number of Invalid Surfaces: 258

Slice Data

1															•																													_	
	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	00	7	6	5	4	ω	2	ъ	Number	Slice
	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	Ξ	Width
	3.00449	3.16754	3.30337	3.41301	3.49739	3.55738	3.59378	3.60733	3.59871	3.56858	3.51752	3.4461	3.35484	3.24422	3.11469	2.9667	2.80062	2.61686	2.41575	2.19763	1.96281	1.71159	1.44425	1.16104	0.862208	0.547991	0.553039	0.892204	1.21664	1.52648	1.8219	2.10307	2.37012	2.6232	2.86245	3.08798	3.25313	2.90368	2.40517	1.89335	1.36832	0.830138	0.278886	[kN]	Weight
	40.0039	39.082	38.1721	37.2733	36.3852	35.5071	34.6386	33.779	32.9279	32.085	31.2498	30.4219	29.601	28.7867	27.9787	27.1768	26.3805	25.5897	24.8041	24.0235	23.2476	22.4761	21.7089	20.9458	20.1866	19.431	18.679	17.9303	17.1847	16.4421	15.7024	14.9653	14.2307	13.4986	12.7686	12.0408	11.3149	10.5909	9.86858	9.14784	8.42856	7.71061	6.99388	Base [degrees]	Angle of Slice
	Ra	Material	Base																																										
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Cohesion [kPa]	Base
	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	Angle [degrees]	Base
	4.47006	4.75769	5.00775	5.22064	5.39668	5.53623	5.63959	5.70706	5.73889	5.73534	5.69662	5.62294	5.51446	5.37135	5.19375	4.98178	4.73551	4.45505	4.14044	3.79171	3.40889	2.99197	2.54092	2.05571	1.53629	0.982551	0.997776	1.61966	2.22219	2.80517	3.36842	3.91177	4.43507	4.93811	5.42073	5.88272	6.23424	5.59764	4.66415	3.69341	2.68505	1.63865	0.553775	Stress [kPa]	Shear
	5.24651	5.5841	5.8776	6.12746	6.33408	6.49787	6.61919	6.69838	6.73574	6.73157	6.68612	6.59964	6.47232	6.30435	6.0959	5.84711	5.55807	5.22889	4.85963	4.45033	4.00101	3.51167	2.98228	2.41279	1.80314	1.15322	1.17109	1.90099	2.60819	3.29243	3.95352	4.59125	5.20544	5.79586	6.36231	6.90455	7.31713	6.56995	5.47431	4.33496	3.15144	1.92328	0.649966	Strength [kPa]	Shear
	9.01442	9.59446	10.0987	10.528	10.8831	11.1645	11.3729	11.5089	11.5732	11.566	11.4879	11.3393	11.1206	10.832	10.4738	10.0463	9.54972	8.98413	8.34969	7.64645	6.87442	6.03364	5.12408	4.1456	3.0981	1.98142	2.01214	3.26623	4.48132	5.65698	6.79281	7.88856	8.94382	9.95828	10.9315	11.8632	12.5721	11.2883	9.40581	7.44821	5.41471	3.30452	1.11675	Stress [kPa]	Base
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Pressure [kPa]	Pore
	9.01442	9.59446	10.0987	10.528	10.8831	11.1645	11.3729	11.5089	11.5732	11.566	11.4879	11.3393	11.1206	10.832	10.4738	10.0463	9.54972	8.98413	8.34969	7.64645	6.87442	6.03364	5.12408	4.1456	3.0981	1.98142	2.01214	3.26623	4.48132	5.65698	6.79281	7.88856	8.94382	9.95828	10.9315	11.8632	12.5721	11.2883	9.40581	7.44821	5.41471	3.30452	1.11675	Stress [kPa]	Effective Normal
	12.7658	13.4585	14.0355	14.5012	14.8597	15.1145	15.269	15.3265	15.2898	15.1617	14.9447	14.6411	14.2533	13.7833	13.2329	12.6041	11.8984	11.1176	10.2632	9.33649	8.33882	7.27149	6.13569	4.93248	3.66294	2.32803	2.34946	3.79031	5.16855	6.48483	7.73978	8.93417	10.0686	11.1437	12.16	13.118	13.8195	12.335	10.2172	8.04296	5.81257	3.52638	1.18469	Stress [kPa]	Base
	12.7658	13.4585	14.0355	14.5012	14.8597	15.1145	15.269	15.3265	15.2898	15.1617	14.9447	14.6411	14.2533	13.7833	13.2329	12.6041	11.8984	11.1176	10.2632	9.33649	8.33882	7.27149	6.13569	4.93248	3.66294	2.32803	2.34946	3.79031	5.16855	6.48483	7.73978	8.93417	10.0686	11.1437	12.16	13.118	13.8195	12.335	10.2172	8.04296	5.81257	3.52638	1.18469	Stress [kPa]	Effective Vertical
- 1																																													

50	49	48	47	46	45	44
0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422
0.547091	1.3768	1.73845	2.05642	2.34047	2.59223	2.81312
46.8605	45.8306	44.8195	43.8258	42.8484	41.8862	40.9383
Ra						
0	0	0	0	0	0	0
30.2	30.2	30.2	30.2	30.2	30.2	30.2
0.753834	1.92056	2.4538	2.93562	3.3777	3.7805	4.14447
0.884775	2.25416	2.88002	3.44554	3.96441	4.43717	4.86437
1.5202	3.87305	4.94837	5.92002	6.81155	7.62384	8.35783
0	0	0	0	0	0	0
1.5202	3.87305	4.94837	5.92002	6.81155	7.62384	8.35783
2.32465	5.85012	7.38676	8.73772	9.94464	11.0142	11.9527
2.3246	5.8501	7.38676	8.7377	9.9446	11.0142	11.952

112 W W U	www.u	w u	ú	u	w	w	2	2	2	2	2	2	2	2	2	2					ь.	_		ш	ъ.	ш				_		_				Nur	SI
34				32	31	30	29	28	27	26	ij	24	23	?2	1	20	19	∞	.7	16	.5	.4	13	.2	.1	10	9	00	7	6	5	4	ω	2	1	Number	ice
1	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	Ξ	Width
3.59871		3.56858	3.51752	3.4461	3.35484	3.24422	3.11469	2.9667	2.80062	2.61686	2.41575	2.19763	1.96281	1.71159	1.44425	1.16104	0.862208	0.547991	0.553039	0.892204	1.21664	1.52648	1.8219	2.10307	2.37012	2.6232	2.86245	3.08798	3.25313	2.90368	2.40517	1.89335	1.36832	0.830138	0.278886	[kN]	Weight
	32.9279	32.085	31.2498	30.4219	29.601	28.7867	27.9787	27.1768	26.3805	25.5897	24.8041	24.0235	23.2476	22.4761	21.7089	20.9458	20.1866	19.431	18.679	17.9303	17.1847	16.4421	15.7024	14.9653	14.2307	13.4986	12.7686	12.0408	11.3149	10.5909	9.86858	9.14784	8.42856	7.71061	6.99388	Base [degrees]	Angle of Slice
	Ra	Material	Base																																		
>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	[kPa]	Base
200	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	Angle [degrees]	Base Friction
5.89518	5.92966	5.92758	5.88912	5.81446	5.70377	5.55718	5.37479	5.15673	4.90305	4.6138	4.28904	3.92877	3.53297	3.10163	2.63469	2.1321	1.59375	1.01955	1.0356	1.68146	2.30755	2.91361	3.49948	4.06495	4.60985	5.13396	5.63709	6.11902	6.48624	5.82534	4.85508	3.84556	2.79635	1.70701	0.577024	[kPa]	Shear
20209	6.6618	6.65946	6.61625	6.53237	6.40801	6.24332	6.03842	5.79343	5.50843	5.18347	4.81861	4.41385	3.96919	3.48459	2.96	2.39535	1.79053	1.14543	1.16347	1.88907	2.59246	3.27335	3.93156	4.56685	5.17903	5.76785	6.3331	6.87453	7.2871	6.5446	5.45454	4.32037	3.14162	1.91777	0.648269	[kPa]	Shear
2100	11.4461	11.4421	11.3678	11.2237	11.0101	10.7271	10.375	9.95411	9.46444	8.90609	8.2792	7.58375	6.81974	5.98713	5.0858	4.1156	3.07644	1.96804	1.99904	3.24574	4.45429	5.62418	6.75511	7.84662	8.89845	9.91017	10.8814	11.8116	12.5205	11.2448	9.37183	7.42313	5.39786	3.29506	1.11384	Stress [kPa]	Base Normal
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	[kPa]	Pore
11.3796	11.4461	11.4421	11.3678	11.2237	11.0101	10.7271	10.375	9.95411	9.46444	8.90609	8.2792	7.58375	6.81974	5.98713	5.0858	4.1156	3.07644	1.96804	1.99904	3.24574	4.45429	5.62418	6.75511	7.84662	8.89845	9.91017	10.8814	11.8116	12.5205	11.2448	9.37183	7.42313	5.39786	3.29506	1.11384	Stress [kPa]	Effective Normal
15.3229	15.2863	15.1583	14.9414	14.638	14.2504	13.7805	13.2303	12.6017	11.8963	11.1156	10.2614	9.33488	8.33745	7.27035	6.13475	4.93173	3.6624	2.3277	2.34915	3.78982	5.16792	6.48403	7.73892	8.93318	10.0676	11.1426	12.1588	13.1168	13.8184	12.334	10.2164	8.04238	5.81222	3.52618	1.18462	Stress [kPa]	Base Vertical
15.3229	15.2863	15.1583	14.9414	14.638	14.2504	13.7805	13.2303	12.6017	11.8963	11.1156	10.2614	9.33488	8.33745	7.27035	6.13475	4.93173	3.6624	2.3277	2.34915	3.78982	5.16792	6.48403	7.73892	8.93318	10.0676	11.1426	12.1588	13.1168	13.8184	12.334	10.2164	8.04238	5.81222	3.52618	1.18462	Stress [kPa]	Effective Vertical

			_	_	_							
50	49	48	47	46	45	44	43	42	41	40	39	38
0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422	0.235422
0.547091	1.3768	1.73845	2.05642	2.34047	2.59223	2.81312	3.00449	3.16754	3.30337	3.41301	3.49739	3.55738
46.8605	45.8306	44.8195	43.8258	42.8484	41.8862	40.9383	40.0039	39.082	38.1721	37.2733	36.3852	35.5071
Ra												
0	0	0	0	0	0	0	0	0	0	0	0	0
30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2
0.775286	1.97594	2.52543	3.02237	3.47867	3.89478	4.27112	4.60809	4.90609	5.1655	5.38666	5.5699	5.71555
0.871011	2.21991	2.83725	3.39554	3.90818	4.37567	4.79847	5.17705	5.51185	5.80328	6.05175	6.25762	6.42125
1.49655	3.81418	4.87489	5.83412	6.71494	7.51815	8.24459	8.89507	9.47029	9.97103	10.3979	10.7517	11.0328
0	0	0	0	0	0	0	0	0	0	0	0	0
1.49655	3.81418	4.87489	5.83412	6.71494	7.51815	8.24459	8.89507	9.47029	9.97103	10.3979	10.7517	11.0328
2.32389	5.84826	7.38446	8.73508	9.94169	11.011	11.9493	12.7622	13.4548	14.0318	14.4975	14.8559	15.1108
2.32389	5.84826	7.38446	8.73508	9.94169	11.011	11.9493	12.7622	13.4548	14.0318	14.4975	14.8559	15.1108

Interslice Data

25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	ъ	4	ω	2	1	Slice Number
15.6505	15.4151	15.1797	14.9442	14.7088	14.4734	14.238	14.0025	13.7671	13.5317	13.2963	13.0609	12.8254	12.59	12.3546	12.1192	11.8837	11.6483	11.4129	11.1775	10.9421	10.7066	10.4712	10.2358	10.0004	X coordinate [m]
11.5697	11.4648	11.3637	11.2663	11.1725	11.0824	10.9959	10.9128	10.8332	10.7571	10.6843	10.6148	10.5486	10.4857	10.426	10.3694	10.3161	10.2659	10.2188	10.1748	10.1338	10.0959	10.061	10.0291	10.0002	γ coordinate - Bottom [m]
8.53487	8.44543	8.3389	8.22288	8.10554	7.99562	7.90245	7.83591	7.76138	7.62926	7.43287	7.16613	6.82347	6.39985	5.89073	5.29208	4.60036	3.81248	2.93843	2.11879	1.40701	0.820692	0.378066	0.0979933	0	Interslice Normal Force [kN]
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Interslice Shear Force [kN]
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Interslice Force Angle [degrees]

51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
21.7715	21.536	21.3006	21.0652	20.8298	20.5944	20.3589	20.1235	19.8881	19.6527	19.4172	19.1818	18.9464	18.711	18.4756	18.2401	18.0047	17.7693	17.5339	17.2984	17.063	16.8276	16.5922	16.3568	16.1213	15.8859
16	15.7488	15.5064	15.2725	15.0465	14.8281	14.617	14.4128	14.2152	14.024	13.839	13.6598	13.4863	13.3184	13.1557	12.9982	12.8458	12.6982	12.5553	12.4171	12.2833	12.154	12.0289	11.908	11.7913	11.6785
0	-1.98459	-1.49767	-0.917154	-0.269881	0.423149	1.14361	1.87555	2.60518	3.32064	4.01184	4.67027	5.28892	5.8621	6.38539	6.8555	7.27022	7.62836	7.92966	8.17474	8.36507	8.50289	8.59124	8.63384	8.63514	8.60023
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

7 11.4129		9 11.8837 10 12.1192	, 0	,, ,
10.2188		10.3161	10.3161 10.3694 10.426	10.3161 10.3694 10.426 10.4857
3.12997	4.06715	4.06715 4.91455 5.66109	4.06715 4.91455 5.66109 6.30965	4.06715 4.91455 5.66109 6.30965 6.8636
•	0 0	0000	00000	00000
0	0 0 0	0000	00000	000000

))			
0 0 0	0	0.192653	15.7488	21.536	50
0 0	0	0.651846	15.5064	21.3006	49
0	0	1.19776	15.2725	21.0652	48
,	0	1.80455	15.0465	20.8298	47
0	0	2.45197	14.8281	20.5944	46
0	0	3.12238	14.617	20.3589	45
0	0	3.80047	14.4128	20.1235	44
0	0	4.47304	14.2152	19.8881	43
0	0	5.12877	14.024	19.6527	42
0	0	5.75809	13.839	19.4172	41
0	0	6.35298	13.6598	19.1818	40
0	0	6.90687	13.4863	18.9464	39
0	0	7.4145	13.3184	18.711	38
0	0	7.87185	13.1557	18.4756	37
0	0	8.27603	12.9982	18.2401	36
0	0	8.62521	12.8458	18.0047	35
0	0	8.91854	12.6982	17.7693	34
0	0	9.15611	12.5553	17.5339	33
0	0	9.33888	12.4171	17.2984	32
0	0	9.46865	12.2833	17.063	31
0	0	9.54798	12.154	16.8276	30
0	0	9.5802	12.0289	16.5922	29
0	0	9.56937	11.908	16.3568	28
0	0	9.52022	11.7913	16.1213	27
0	0	9.43815	11.6785	15.8859	26
0	0	9.32922	11.5697	15.6505	25
0	0	9.2001	11.4648	15.4151	24
0	0	9.05808	11.3637	15.1797	23
0	0	8.91105	11.2663	14.9442	22
0	0	8.76748	11.1725	14.7088	21
0	0	8.63642	11.0824	14.4734	20
0	0	8.52751	10.9959	14.238	19
0	0	8.45094	10.9128	14.0025	18
0	0	8.36624	10.8332	13.7671	17
0	0	8.21765	10.7571	13.5317	16
0	0	7.99871	10.6843	13.2963	15
0	0	7.70354	10.6148	13.0609	14

List Of Coordinates

Water Table

40	0	ΥΥ
0	0	~

Distributed Load

21.8399	40	×	
16	16	~	

External Boundary

0	10	11.5	14	21.5	40	40	40	0	×	
10	10	11	11	16	16	10	0	0	~	, ,

Material Boundary

40	10	×
10	10	~

13.2 Rilevato – analisi di stabilità sismica SLU

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: Sez_60.slmd - Scenario 2

Slide Modeler Version: 7.026

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 07/08/2017, 12:25:34

General Settings

Units of Measurement: Metric Units

Time Units: days

Permeability Units: meters/second

Failure Direction: Right to Left

Data Output: Standard

Maximum Material Properties: 20

Maximum Support Properties: 20

Analysis Options

Slices Type: Vertical

Analysis Methods Used

Janbu simplified Bishop simplified

Tolerance: Number of slices: 0.005 50

Maximum number of iterations: 75

Check malpha < 0.2: Yes

Create Interslice boundaries at intersections Yes

Steffensen Iteration: Initial trial value of FS: Yes

with water tables and piezos:

Relazione 225 di 248

Groundwater Analysis

Groundwater Method: Water Surfaces

Pore Fluid Unit Weight [kN/m3]: 9.81

Use negative pore pressure cutoff: Yes

Maximum negative pore pressure [kPa]: 0

Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular

Search Method: Slope Search

Number of Surfaces: 5000

Upper Angle: Not Defined

Lower Angle: Not Defined

Reverse Curvature: Invalid Surfaces

Composite Surfaces:

Disabled

Minimum Elevation: Not Defined

Minimum Depth: Not Defined

Minimum Area: Not Defined

Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: No

Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.018

Seismic Load Coefficient (Vertical): 0.009

Material Properties

Mohr-Coulomb Mohr-Coulomb 18.5 18.5 0 4 30.2 23 Water Table Water Table	Mohr-Coulomb 18.5 0 30.2 Water Table	Strength Type Unit Weight [kN/m3] Cohesion [kPa] Friction Angle [deg] Water Surface Hu Value
LAS	Ra	Property Color

Global Minimums

Method: bishop simplified

FS	1.286390
Center:	10.836, 24.349
Radius:	14.433
Left Slip Surface Endpoint:	9.285, 10.000
Right Slip Surface Endpoint:	22.609, 16.000
Resisting Moment:	2436.57 kN-m
Driving Moment:	1894.12 kN-m
Total Slice Area:	15.8039 m2
Surface Horizontal Width:	13.3241 m
Surface Average Height:	1.18611 m

Method: janbu simplified

Radius:	Center:	FS
14.433	10.836, 24.349	1.189250

Left Slip Surface Endpoint: 9.285, 10.000

Right Slip Surface Endpoint: 22.609, 16.000

Resisting Horizontal Force: 145.597 kN

Driving Horizontal Force: 122.427 kN
Total Slice Area: 15.8039 m2

Surface Horizontal Width: 13.3241 m

Surface Average Height: 1.18611 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4731 Number of Invalid Surfaces: 269

Method: janbu simplified

Number of Valid Surfaces: 4728

Number of Invalid Surfaces: 272

Slice Data

_															
15	14	13	12	11	10	9	00	7	6	5	4	ω	2	1	Slice Number
0.268989	0.268989	0.268989	0.258549	0.258549	0.258549	0.258549	0.258549	0.258549	0.258549	0.258549	0.258549	0.258549	0.258549	0.258549	Width [m]
4.5315	4.72737	4.89757	4.84437	4.9556	5.04446	4.97866	4.27596	3.47367	2.64922	1.80261	0.933815	0.284067	0.172454	0.061222	Weight [kN]
8.86349	7.78424	6.70776	5.65446	4.62389	3.59481	2.5669	1.53981	0.513214	-0.513214	-1.53981	-2.5669	-3.59481	-4.62389	-5.65446	Angle of Slice Base [degrees]
Ra	Ra	Ra	LAS	LAS	LAS	LAS	LAS	LAS	Base Material						
0	0	0	4	4	4	4	4	4	4	4	4	4	4	4	Base Cohesion [kPa]
30.2	30.2	30.2	23	23	23	23	23	23	23	23	23	23	23	23	Base Friction Angle [degrees]
7.18462	7.5565	7.89263	9.05255	9.24474	9.4107	9.38216	8.54019	7.56036	6.54028	5.47928	4.37661	3.54871	3.42273	3.29579	Shear Stress [kPa]
9.24222	9.7206	10.153	11.6451	11.8923	12.1058	12.0691	10.986	9.72557	8.41335	7.04849	5.63003	4.56503	4.40297	4.23968	Shear Strength [kPa]
15.8797	16.7017	17.4447	18.0107	18.5932	19.0961	19.0096	16.458	13.4886	10.3972	7.18178	3.84011	1.33113	0.949329	0.564645	Base Normal Stress [kPa]
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Pore Pressure [kPa]
15.8797	16.7017	17.4447	18.0107	18.5932	19.0961	19.0096	16.458	13.4886	10.3972	7.18178	3.84011	1.33113	0.949329	0.564645	Effective Normal Stress [kPa]
17.0001	17.7347	18.3729	18.907	19.3409	19.6873	19.4302	16.6876	13.5563	10.3386	7.03449	3.64391	1.10818	0.672506	0.238327	Base Vertical Stress [kPa]
17.0001	17.7347	18.3729	18.907	19.3409	19.6873	19.4302	16.6876	13.5563	10.3386	7.03449	3.64391	1.10818	0.672506	0.238327	Effective Vertical Stress [kPa]

_						-								-																				
50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989
0.91286	2.68182	4.34349	5.90919	7.0456	7.55996	7.99486	8.36262	8.66791	8.91483	9.1069	9.24726	9.33863	9.38347	9.38396	9.34203	9.25944	9.13777	8.97844	8.78276	8.55189	8.2869	7.98878	7.6584	7.29658	6.90406	6.48151	6.02957	5.54878	5.03967	4.50271	3.93831	3.78771	4.06193	4.30977
53.7522	51.9823	50.2799	48.6364	47.0449	45.4996	43.9957	42.5289	41.0959	39.6936	38.3192	36.9703	35.6451	34.3414	33.0577	31.7925	30.5444	29.3121	28.0946	26.8907	25.6995	24.5201	23.3517	22.1935	21.0448	19.9049	18.7732	17.6489	16.5317	15.4209	14.316	13.2166	12.122	11.032	9.94593
Ra																																		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2
0.958714	2.8849	4.7756	6.62877	8.05183	8.79057	9.44846	10.0354	10.5536	11.0046	11.3904	11.7123	11.9718	12.17	12.3082	12.3872	12.408	12.3712	12.2777	12.128	11.9225	11.6617	11.3459	10.9753	10.5501	10.0704	9.53622	8.94744	8.30394	7.60559	6.85204	6.04294	5.85988	6.33582	6.77756
1.23328	3.71111	6.14328	8.52718	10.3578	11.3081	12.1544	12.9094	13.576	14.1562	14.6525	15.0666	15.4004	15.6554	15.8331	15.9348	15.9615	15.9142	15.7939	15.6013	15.337	15.0015	14.5952	14.1185	13.5715	12.9545	12.2673	11.5099	10.6821	9.78376	8.8144	7.77358	7.53809	8.15034	8.71859
2.11898	6.37633	10.5552	14.6512	17.7964	19.4292	20.8833	22.1806	23.3258	24.3229	25.1755	25.887	26.4605	26.8987	27.204	27.3786	27.4245	27.3434	27.1367	26.8057	26.3516	25.7752	25.0771	24.258	23.3183	22.258	21.0773	19.776	18.3537	16.8102	15.1447	13.3564	12.9517	14.0037	14.98
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.11898	6.37633	10.5552	14.6512	17.7964	19.4292	20.8833	22.1806	23.3258	24.3229	25.1755	25.887	26.4605	26.8987	27.204	27.3786	27.4245	27.3434	27.1367	26.8057	26.3516	25.7752	25.0771	24.258	23.3183	22.258	21.0773	19.776	18.3537	16.8102	15.1447	13.3564	12.9517	14.0037	14.98
3.42661	10.0665	16.3033	22.1797	26.4445	28.3745	30.0062	31.3857	32.531	33.457	34.1773	34.7034	35.0457	35.2134	35.2147	35.0568	34.7464	34.2893	33.6909	32.9561	32.0894	31.0946	29.9756	28.7355	27.3775	25.9044	24.3187	22.6227	20.8185	18.9081	16.8933	14.7756	14.2103	15.2389	16.1685
3.42661	10.0665	16.3033	22.1797	26.4445	28.3745	30.0062	31.3857	32.531	33.457	34.1773	34.7034	35.0457	35.2134	35.2147	35.0568	34.7464	34.2893	33.6909	32.9561	32.0894	31.0946	29.9756	28.7355	27.3775	25.9044	24.3187	22.6227	20.8185	18.9081	16.8933	14.7756	14.2103	15.2389	16.1685

_	_	_	_	_	_	_		_	
9	00	7	6	ъ	4	ω	2	1	Slice Number
0.258549	0.258549	0.258549	0.258549	0.258549	0.258549	0.258549	0.258549	0.258549	Width [m]
4.97866	4.27596	3.47367	2.64922	1.80261	0.933815	0.284067	0.172454	0.061222	Weight [kN]
2.5669	1.53981	0.513214	-0.513214	-1.53981	-2.5669	-3.59481	-4.62389	-5.65446	Angle of Slice Base [degrees]
LAS	LAS	LAS	LAS	LAS	LAS	LAS	LAS	LAS	Base Material
4	4	4	4	4	4	4	4	4	Base Cohesion [kPa]
23	23	23	23	23	23	23	23	23	Base Friction Angle [degrees]
10.1362	9.231	8.17589	7.07625	5.93126	4.74004	3.84536	3.71079	3.57507	Shear Stress [kPa]
12.0545	10.978	9.72318	8.41543	7.05375	5.63709	4.5731	4.41305	4.25165	Shear Strength [kPa]
18.9751	16.4391	13.483	10.4021	7.19419	3.85674	1.35014	0.973092	0.592846	Base Normal Stress [kPa]
0	0	0	0	0	0	0	0	0	Pore Pressure [kPa]
18.9751	16.4391	13.483	10.4021	7.19419	3.85674	1.35014	0.973092	0.592846	Effective Normal Stress [kPa]
19.4295	16.6872	13.5562	10.3387	7.03475	3.64424	1.10856	0.672972	0.238877	Base Vertical Stress [kPa]
19.4295	16.687	13.5562	10.3387	7.03475	3.64424	1.10856	0.67297	0.23887	Effective Vertical Stress [kPa]

														—																			—							—
50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10
0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.268989	0.258549	0.258549	0.258549
0.91286	2.68182	4.34349	5.90919	7.0456	7.55996	7.99486	8.36262	8.66791	8.91483	9.1069	9.24726	9.33863	9.38347	9.38396	9.34203	9.25944	9.13777	8.97844	8.78276	8.55189	8.2869	7.98878	7.6584	7.29658	6.90406	6.48151	6.02957	5.54878	5.03967	4.50271	3.93831	3.78771	4.06193	4.30977	4.5315	4.72737	4.89757	4.84437	4.9556	5.04446
53.7522	51.9823	50.2799	48.6364	47.0449	45.4996	43.9957	42.5289	41.0959	39.6936	38.3192	36.9703	35.6451	34.3414	33.0577	31.7925	30.5444	29.3121	28.0946	26.8907	25.6995	24.5201	23.3517	22.1935	21.0448	19.9049	18.7732	17.6489	16.5317	15.4209	14.316	13.2166	12.122	11.032	9.94593	8.86349	7.78424	6.70776	5.65446	4.62389	3.59481
Ra	LAS	LAS	LAS																																					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4
30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	23	23	23
1.00502	3.02794	5.01807	6.97277	8.4782	9.26491	9.96737	10.5959	11.1523	11.6384	12.0559	12.4061	12.6904	12.9098	13.0656	13.1586	13.1897	13.1594	13.0686	12.9176	12.7068	12.4368	12.1076	11.7195	11.2725	10.7665	10.2017	9.57772	8.89443	8.15141	7.3483	6.4846	6.29206	6.80733	7.28651	7.729	8.13422	8.50149	9.76622	9.97824	10.1622
1.19522	3.60098	5.96774	8.29237	10.0827	11.0183	11.8537	12.6012	13.2629	13.841	14.3375	14.754	15.092	15.353	15.5383	15.6489	15.6858	15.6498	15.5418	15.3622	15.1116	14.7905	14.399	13.9374	13.4058	12.8041	12.1324	11.3903	10.5777	9.69407	8.73897	7.71181	7.48283	8.09562	8.66548	9.19171	9.67362	10.1104	11.6145	11.8666	12.0854
2.0536	6.18711	10.2536	14.2477	17.3238	18.9314	20.3667	21.6509	22.7879	23.7813	24.6343	25.3498	25.9307	26.3792	26.6975	26.8875	26.9509	26.8891	26.7034	26.3949	25.9644	25.4126	24.7399	23.9468	23.0334	21.9997	20.8456	19.5706	18.1743	16.6561	15.0151	13.2502	12.8568	13.9097	14.8888	15.7929	16.6209	17.3715	17.9386	18.5326	19.0479
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.0536	6.18711	10.2536	14.2477	17.3238	18.9314	20.3667	21.6509	22.7879	23.7813	24.6343	25.3498	25.9307	26.3792	26.6975	26.8875	26.9509	26.8891	26.7034	26.3949	25.9644	25.4126	24.7399	23.9468	23.0334	21.9997	20.8456	19.5706	18.1743	16.6561	15.0151	13.2502	12.8568	13.9097	14.8888	15.7929	16.6209	17.3715	17.9386	18.5326	19.0479
3.42439	10.0602	16.2936	22.1669	26.4298	28.3593	29.9907	31.3702	32.5153	33.4415	34.162	34.6885	35.0312	35.1993	35.2011	35.0438	34.7339	34.2775	33.6798	32.9457	32.0796	31.0856	29.9673	28.7279	27.3707	25.8982	24.3132	22.6178	20.8143	18.9045	16.8903	14.7731	14.2082	15.2368	16.1665	16.9982	17.7329	18.3714	18.9055	19.3396	19.6863
3.42439	10.0602	16.2936	22.1669	26.4298	28.3593	29.9907	31.3702	32.5153	33.4415	34.162	34.6885	35.0312	35.1993	35.2011	35.0438	34.7339	34.2775	33.6798	32.9457	32.0796	31.0856	29.9673	28.7279	27.3707	25.8982	24.3132	22.6178	20.8143	18.9045	16.8903	14.7731	14.2082	15.2368	16.1665	16.9982	17.7329	18.3714	18.9055	19.3396	19.6863

Interslice Data

41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	5	4	ω	2	1	Slice Number	:
19.9194	19.6504	19.3814	19.1124	18.8434	18.5744	18.3054	18.0364	17.7675	17.4985	17.2295	16.9605	16.6915	16.4225	16.1535	15.8845	15.6155	15.3466	15.0776	14.8086	14.5396	14.2706	14.0016	13.7326	13.4636	13.1947	12.9257	12.6567	12.3877	12.1291	11.8706	11.612	11.3535	11.0949	10.8364	10.5778	10.3193	10.0607	9.8022	9.54365	9.2851	coordinate [m]	×
13.1328	12.9202	12.7178	12.5249	12.3411	12.166	11.9993	11.8406	11.6895	11.5459	11.4095	11.2801	11.1574	11.0412	10.9315	10.828	10.7306	10.6392	10.5536	10.4738	10.3996	10.3309	10.2677	10.21	10.1575	10.1104	10.0684	10.0316	10	9.9744	9.95349	9.93725	9.92566	9.91871	9.91639	9.91871	9.92566	9.93725	9.95349	9.9744	10	coordinate - Bottom [m]	γ
14.3985	16.856	19.1193	21.1772	23.0218	24.6486	26.0557	27.2439	28.2162	28.978	29.5363	29.9004	30.081	30.0907	29.9438	29.6558	29.2441	28.7274	28.126	27.4617	26.7576	26.0385	25.3306	24.5737	23.6801	22.6445	21.4631	20.1334	18.6543	16.8663	14.9585	12.9308	10.8194	8.80674	6.94936	5.28508	3.85354	2.69634	1.76399	0.863918	0	Normal Force [kN]	Interslice
C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Shear Force [kN]	Interslice
O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Force Angle [degrees]	Interslice

51	50	49	48	47	46	45	44	43	42
22.6093	22.3403	22.0713	21.8023	21.5333	21.2643	20.9953	20.7263	20.4573	20.1884
16	15.6331	15.289	14.9653	14.6598	14.3709	14.0972	13.8374	13.5907	13.3561
0	-9.67636	-8.20878	-5.9954	-3.19293	-0.0864655	3.00756	6.03839	8.96713	11.7623
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0.000		Caci y Danisa Siiil	מוווכש/ טמוכ	ry i decei .	10010
Slice	: ×	: '	Interslice	Interslice	Interslice
Number	[m]	[m]	[kN]	[kN]	[degrees]
ъ	9.2851	10	0	0	0
2	9.54365	9.9744	0.938287	0	0
З	9.8022	9.95349	1.91483	0	0
4	10.0607	9.93725	2.92573	0	0
5	10.3193	9.92566	4.179	0	0
6	10.5778	9.91871	5.72988	0	0
7	10.8364	9.91639	7.53561	0	0
∞	11.0949	9.91871	9.55546	0	0
9	11.3535	9.92566	11.7506	0	0
10	11.612	9.93725	14.0614	0	0
11	11.8706	9.95349	16.2883	0	0
12	12.1291	9.9744	18.3911	0	0
13	12.3877	10	20.3694	0	0
14	12.6567	10.0316	22.0182	0	0
15	12.9257	10.0684	23.5097	0	0
16	13.1947	10.1104	24.8444	0	0
17	13.4636	10.1575	26.0243	0	0
18	13.7326	10.21	27.0526	0	0
19	14.0016	10.2677	27.9339	0	0
20	14.2706	10.3309	28.77	0	0
21	14.5396	10.3996	29.6347	0	0
22	14.8086	10.4738	30.5005	0	0
23	15.0776	10.5536	31.3417	0	0
24	15.3466	10.6392	32.1343	0	0
25	15.6155	10.7306	32.8555	0	0
26	15.8845	10.828	33.4842	0	0
27	16.1535	10.9315	34.0008	0	0
28	16.4225	11.0412	34.3871	0	0
29	16.6915	11.1574	34.6266	0	0
30	16.9605	11.2801	34.7043	0	0

0	0	0	16	22.6093	51
0	0	0.484077	15.6331	22.3403	50
0	0	1.84677	15.289	22.0713	49
0	0	3.89509	14.9653	21.8023	48
0	0	6.47875	14.6598	21.5333	47
0	0	9.33031	14.3709	21.2643	46
0	0	12.1565	14.0972	20.9953	45
0	0	14.9092	13.8374	20.7263	44
0	0	17.5519	13.5907	20.4573	43
0	0	20.055	13.3561	20.1884	42
0	0	22.3948	13.1328	19.9194	41
0	0	24.553	12.9202	19.6504	40
0	0	26.5156	12.7178	19.3814	39
0	0	28.2725	12.5249	19.1124	38
0	0	29.8171	12.3411	18.8434	37
0	0	31.1459	12.166	18.5744	36
0	0	32.2579	11.9993	18.3054	35
0	0	33.155	11.8406	18.0364	34
0	0	33.8411	11.6895	17.7675	33
0	0	34.3223	11.5459	17.4985	32
0	0	34.6067	11.4095	17.2295	31

List Of Coordinates

Water Table

0 0 **×**40 0

External Boundary

11.5	14	21.5	40	40	40	0	×
11	11	16	16	10	0	0	~

0	10
10	10

Material Boundary

4	10	×
40	0	
10	10	~

13.3 Trincea sez 103 SS131 – analisi di stabilità statica SLU con chiodatura

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: sez 103chiodi_00.slmd - Group 1 - Scenario 1

Slide Modeler Version: 7.026

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 07/08/2017, 14:36:59

General Settings

Units of Measurement: Metric Units

Permeability Units: Time Units: meters/second

Failure Direction: Right to Left

Maximum Material Properties: Data Output: 20 Standard

Maximum Support Properties: 20

Analysis Options

Slices Type: Vertical

Analysis Methods Used

50

Janbu simplified Bishop simplified

Tolerance: Number of slices: 0.005

Maximum number of iterations: 75

Check malpha < 0.2: Yes

Create Interslice boundaries at intersections

Yes

with water tables and piezos:

Initial trial value of FS:

Steffensen Iteration: Yes

Groundwater Analysis

Groundwater Method: Water Surfaces

Pore Fluid Unit Weight [kN/m3]: 9.81

Use negative pore pressure cutoff: Yes

Maximum negative pore pressure [kPa]: 0
Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular

Search Method: Slope Search

Number of Surfaces: 5000

Upper Angle: Not Defined Lower Angle: Not Defined

Composite Surfaces: Disabled

Reverse Curvature: Invalid Surfaces

Minimum Elevation: Not Defined

Minimum Depth: Not Defined Minimum Area: Not Defined

Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: No

Staged pseudostatic analysis: No

Loading

1 Distributed Load present

Distributed Load 1

Distribution: Constant

Magnitude [kPa]: 13

Orientation: Normal to boundary

Material Properties

Property	LAS	Ва
Color		
Strength Type	Mohr-Coulomb Mohr-Coulomb	Mohr-Coulomb
Unit Weight [kN/m3]	18.5	19
Cohesion [kPa]	4	20
Friction Angle [deg]	24.8	23
Water Surface	Water Table	Water Table
Hu Value	1	1

Support Properties

Support 1

Support Type: Soil Nail Force Application: Passive Out-of-Plane Spacing: 2.8 m Tensile Capacity: 200 kN

Plate Capacity: 200 kN Bond Strength: 18 kN/m

Global Minimums

Method: bishop simplified

. wieneste entre de	
FS	1.175530
Center:	7.124, 35.941
Radius:	26.093
Left Slip Surface Endpoint:	10.004, 10.008
Right Slip Surface Endpoint:	30.324, 24.000
Resisting Moment:	35697.2 kN-m
Driving Moment:	30366.8 kN-m
Passive Support Moment:	652.005 kN-m
Total Slice Area:	118.818 m2
Surface Horizontal Width:	20.32 m
Surface Average Height:	5.84736 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: Number of Invalid Surfaces: 1390 3610

Slice Data

$\overline{}$																																	
33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	5	4	з	2	1	Slice Number
0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	Width [m]
65.9425	68.3828	70.7257	72.9752	75.135	77.2087	76.4149	72.1734	67.8261	63.2788	58.6452	57.398	58.9426	60.4198	61.8313	63.1102	60.37	55.2671	50.1038	44.8812	39.6004	34.2635	32.1548	33.0303	33.851	34.6174	35.2864	32.0824	26.364	20.5936	14.7717	8.89857	2.97463	Weight [kN]
38.2138	37.0821	35.9671	34.8676	33.7827	32.7113	31.6527	30.606	29.5705	28.5454	27.5303	26.5245	25.5274	24.5386	23.5574	22.5836	21.6166	20.656	19.7014	18.7525	17.8089	16.8703	15.9363	15.0067	14.0811	13.1592	12.2408	11.3255	10.4132	9.50355	8.5963	7.69122	6.78807	Angle of Slice Base [degrees]
Ва	Ba	Ва	Ва	Ba	Ba	Ba	Ba	Ва	Ва	Ва	Ba	Ва	Ba	Ва	Ba	Ba	Ва	Ba	Ba	Ba	Ba	Ва	Ва	Ba	Base Material								
20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	Base Cohesion [kPa]
23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	Base Friction Angle [degrees]
58.6991	60.9204	63.0886	65.2051	67.2712	69.288	69.2409	66.6607	63.949	61.0365	58.0064	57.4635	59.0107	60.5176	61.9844	63.359	61.6305	58.0323	54.3363	50.543	46.6533	42.6687	41.224	42.1674	43.074	46.9159	44.7405	42.3469	37.8374	33.2321	28.5306	30.6063	18.8372	Shear Stress [kPa]
69.0025	71.6137	74.1625	76.6505	79.0793	81.4501	81.3947	78.3616	75.174	71.7502	68.1883	67.5501	69.3689	71.1402	72.8645	74.4804	72.4485	68.2187	63.8739	59.4148	54.8424	50.1583	48.4601	49.5691	50.6348	55.151	52.5938	49.7801	44.479	39.0653	33.5386	35.9786	22.1437	Shear Strength [kPa]
115.443	121.594	127.599	133.46	139.182	144.768	144.637	137.491	129.982	121.916	113.524	112.021	116.306	120.479	124.541	128.348	123.561	113.596	103.36	92.8554	82.0834	71.0485	67.0477	69.6605	72.1712	82.8107	76.7862	70.1575	57.6688	44.915	31.8952	37.6432	5.05018	Base Normal Stress [kPa]
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Pore Pressure [kPa]
115.443	121.594	127.599	133.46	139.182	144.768	144.637	137.491	129.982	121.916	113.524	112.021	116.306	120.479	124.541	128.348	123.561	113.596	103.36	92.8554	82.0834	71.0485	67.0477	69.6605	72.1712	82.8107	76.7862	70.1575	57.6688	44.915	31.8952	37.6432	5.05018	Effective Normal Stress [kPa]
161.657	167.638	173.38	178.893	184.187	189.269	187.322	176.924	166.266	155.119	143.76	140.702	144.487	148.107	151.566	154.7	147.983	135.474	122.817	110.015	97.0701	83.9881	78.819	80.9646	82.9755	93.7794	86.4928	78.6389	64.6223	50.4783	36.2081	41.7766	7.2924	Base Vertical Stress [kPa]
161.657	167.638	173.38	178.893	184.187	189.269	187.322	176.924	166.266	155.119	143.76	140.702	144.487	148.107	151.566	154.7	147.983	135.474	122.817	110.015	97.0701	83.9881	78.819	80.9646	82.9755	93.7794	86.4928	78.6389	64.6223	50.4783	36.2081	41.7766	7.2924	Effective Vertical Stress [kPa]

_																
50 (49 (48 (47 (46 (45 (44 (43 (42 (41 (40 (39 (38 (37 (36 (35 (34 (
0.381273	0.381273	0.381273	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004
2.51587	7.37468	11.9124	17.5206	22.227	26.6645	30.8621	34.8435	38.6284	42.2333	45.6723	48.9575	52.0993	55.1069	57.9883	60.7505	63.4001
61.8767	60.1475	58.5052	56.884	55.2775	53.7338	52.2448	50.8044	49.4071	48.0485	46.7249	45.4331	44.1701	42.9337	41.7217	40.5321	39.3633
LAS	LAS	LAS	Ba	Ba	Ba	Ва	Ba	Ва	Ва							
4	4	4	20	20	20	20	20	20	20	20	20	20	20	20	20	20
24.8	24.8	24.8	23	23	23	23	23	23	23	23	23	23	23	23	23	23
3.4564	6.53395	9.55691	20.9378	24.1245	27.2236	30.2385	33.1727	36.0294	40.6698	44.9159	47.5997	50.2155	52.7656	55.2526	55.9173	56.4231
4.0631	7.68085	11.2344	24.613	28.3591	32.0022	35.5463	38.9955	42.3536	47.8086	52.8	55.9549	59.0298	62.0276	64.9511	65.7325	66.3271
0.136563	7.9661	15.6567	10.8676	19.6927	28.2752	36.6249	44.7507	52.6617	65.5128	77.2718	84.7045	91.9485	99.0108	105.898	107.739	109.14
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.136563	7.9661	15.6567	10.8676	19.6927	28.2752	36.6249	44.7507	52.6617	65.5128	77.2718	84.7045	91.9485	99.0108	105.898	107.739	109.14
6.60348	19.3508	31.2554	42.9664	54.5037	65.3816	75.6712	85.4307	94.7084	110.758	124.977	133.029	140.73	148.102	155.164	155.551	155.426
6.60348	19.3508	31.2554	42.9664	54.5037	65.3816	75.6712	85.4307	94.7084	110.758	124.977	133.029	140.73	148.102	155.164	155.551	155.426

Interslice Data

26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	5	4	3	2	1	Slice Number	
20.204	19.796	19.388	18.98	18.572	18.164	17.756	17.348	16.94	16.532	16.124	15.716	15.308	14.9	14.492	14.084	13.676	13.268	12.86	12.452	12.044	11.636	11.228	10.8199	10.4119	10.0039	X coordinate [m]	
13.3637	13.1322	12.9103	12.6976	12.494	12.2991	12.1128	11.935	11.7653	11.6036	11.4498	11.3037	11.1651	11.0341	10.9104	10.7938	10.6845	10.5821	10.4867	10.3982	10.3165	10.2415	10.1732	10.1115	10.0564	10.0079	γ coordinate - Bottom [m]	
183.345	187.364	189.539	190.033	189.417	188.021	185.79	182.674	178.623	173.473	167.286	160.235	152.491	144.229	135.624	126.628	117.056	106.881	88.3639	76.9203	65.3886	54.2865	43.8057	34.1411	7.43457	0	Interslice Normal Force [kN]	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Interslice Shear Force [kN]	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Interslice Force Angle [degrees]	

51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27
30.3239	29.9427	29.5614	29.1801	28.7721	28.3641	27.9561	27.5481	27.1401	26.7321	26.3241	25.9161	25.5081	25.1001	24.6921	24.2841	23.8761	23.4681	23.0601	22.6521	22.2441	21.8361	21.428	21.02	20.612
24	23.2866	22.6223	22	21.3745	20.7858	20.2297	19.7028	19.2025	18.7263	18.2724	17.8391	17.4249	17.0285	16.6489	16.2851	15.9363	15.6016	15.2803	14.972	14.6759	14.3916	14.1186	13.8566	13.6051
0	-60.4239	-57.6212	-51.5189	-53.2575	-51.4991	-46.8737	-39.9061	-31.04	-20.6544	-7.49853	7.67448	23.3544	39.3258	55.3969	71.3959	86.185	99.7107	112.863	125.522	137.58	148.937	159.501	169.189	177.339
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

List Of Coordinates

Water Table

Distributed Load

External Boundary

0	10	12.5	14.5	17	19	20	21	40	40	40
10	10	15	15	20	20	22	24	24	22	0

Material Boundary

40	20	×
22	22	~

13.4 Trincea sez 104 SS131 – analisi di stabilità sismica SLU con chiodatura

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: sez 103chiodi_00.slmd - Group 1 - Scenario 2

Slide Modeler Version:

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 07/08/2017, 14:36:59

General Settings

Units of Measurement: Metric Units

Time Units: days

Permeability Units: meters/second

Data Output: Failure Direction: Standard Right to Left

Maximum Material Properties: 20

Maximum Support Properties: 20

Analysis Options

Slices Type: Vertical

Analysis Methods Used

Bishop simplified

Janbu simplified

Tolerance: Number of slices: 0.005 50

Maximum number of iterations: 75

Check malpha < 0.2: Yes

Create Interslice boundaries at intersections Yes

Initial trial value of FS:

with water tables and piezos:

Steffensen Iteration: Yes

Groundwater Analysis

Groundwater Method: Water Surfaces

Pore Fluid Unit Weight [kN/m3]: 9.81

Use negative pore pressure cutoff: Yes

Maximum negative pore pressure [kPa]: 0

Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular
Search Method: Slope Search

Number of Surfaces: 5000

Upper Angle: Not Defined Lower Angle: Not Defined

Composite Surfaces: Disabled

Reverse Curvature: Invalid Surfaces

Minimum Elevation: Not Defined

Minimum Depth: Not Defined

Minimum Area: Not Defined

Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: No

Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.017

Seismic Load Coefficient (Vertical): 0.009

Material Properties

Property
LAS
Ва

	1	1	Hu Value
	Water Table	Water Table	Water Surface
	23	24.8	Friction Angle [deg]
	20	4	Cohesion [kPa]
	19	18.5	Unit Weight [kN/m3]
	Mohr-Coulomb	Mohr-Coulomb Mohr-Coulomb	Strength Type
			Color
_			

Support Properties

Support 1

Support Type: Soil Nail Force Application: Passive Out-of-Plane Spacing: 2.8 m Tensile Capacity: 200 kN

Plate Capacity: 200 kN Bond Strength: 18 kN/m

Global Minimums

Method: bishop simplified

Surface Average Height:	Surface Horizontal Width:	Total Slice Area:	Passive Support Moment:	Driving Moment:	Resisting Moment:	Right Slip Surface Endpoint:	Left Slip Surface Endpoint:	Radius:	Center:	FS
5.84736 m	20.32 m	118.818 m2	652.005 kN-m	30748.9 kN-m	35418.6 kN-m	30.324, 24.000	10.004, 10.008	26.093	7.124, 35.941	1.151860

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 1390

Number of Invalid Surfaces: 3610

Slice Data

32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	5	4	ω	2	1	Number	Slice	
0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	3	Width	
68.3828	70.7257	72.9752	75.135	77.2087	76.4149	72.1734	67.8261	63.2788	58.6452	57.398	58.9426	60.4198	61.8313	63.1102	60.37	55.2671	50.1038	44.8812	39.6004	34.2635	32.1548	33.0303	33.851	34.6174	35.2864	32.0824	26.364	20.5936	14.7717	8.89857	2.97463	[kN]	Weight	
37.0821	35.9671	34.8676	33.7827	32.7113	31.6527	30.606	29.5705	28.5454	27.5303	26.5245	25.5274	24.5386	23.5574	22.5836	21.6166	20.656	19.7014	18.7525	17.8089	16.8703	15.9363	15.0067	14.0811	13.1592	12.2408	11.3255	10.4132	9.50355	8.5963	7.69122	6.78807	Base [degrees]	Angle of Slice	
Ва	Ba	Ba	Ba	Ва	Ba	Ва	Ва	Ba	Ba	Ba	Ba	Ва	Ва	Ва	Ва	Ва	Ba	Ba	Ва	Ва	Ва	Ba	Ва	Material	Base									
20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	[kPa]	Base Cohesion	
23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	Angle [degrees]	Base Friction	,
62.3321	64.563	66.7411	68.8679	70.9447	70.9044	68.2651	65.4901	62.5081	59.4047	58.8535	60.4479	62.001	63.5134	64.9314	63.1625	59.4727	55.6814	51.7895	47.7976	43.7072	42.2264	43.1998	44.1356	48.1247	45.8569	43.3998	38.7659	34.0327	29.1995	31.4194	19.231	[kPa]	Shear Stress	
71.7979	74.3675	76.8764	79.3262	81.7184	81.6719	78.6318	75.4354	72.0006	68.4259	67.791	69.6275	71.4165	73.1586	74.7919	72.7544	68.5042	64.1372	59.6542	55.0561	50.3446	48.6389	49.7601	50.838	55.4329	52.8207	49.9905	44.6529	39.2009	33.6337	36.1907	22.1515	[kPa]	Shear Strength	
122.028	128.082	133.992	139.764	145.399	145.29	138.128	130.598	122.506	114.084	112.589	116.915	121.13	125.234	129.082	124.282	114.269	103.981	93.4196	82.5869	71.4874	67.4689	70.1106	72.6497	83.4749	77.3208	70.6531	58.0786	45.2343	32.1191	38.1431	5.06853	Stress [kPa]	Base Normal	,
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	[kPa]	Pore	
122.028	128.082	133.992	139.764	145.399	145.29	138.128	130.598	122.506	114.084	112.589	116.915	121.13	125.234	129.082	124.282	114.269	103.981	93.4196	82.5869	71.4874	67.4689	70.1106	72.6497	83.4749	77.3208	70.6531	58.0786	45.2343	32.1191	38.1431	5.06853	Stress [kPa]	Normal	
169.139	174.933	180.496	185.837	190.965	189	178.509	167.757	156.509	145.048	141.963	145.783	149.436	152.926	156.088	149.311	136.689	123.919	111.002	97.9413	84.7419	79.5263	81.6913	83.7203	94.7262	87.2696	79.3453	65.2027	50.9316	36.5332	42.3862	7.35763	Stress [kPa]	Base Vertical	,
169.139	174.933	180.496	185.837	190.965	189	178.509	167.757	156.509	145.048	141.963	145.783	149.436	152.926	156.088	149.311	136.689	123.919	111.002	97.9413	84.7419	79.5263	81.6913	83.7203	94.7262	87.2696	79.3453	65.2027	50.9316	36.5332	42.3862	7.35763	Stress [kPa]	Vertical	

	·																
50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33
0.381273	0.381273	0.381273	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004	0.408004
2.51587	7.37468	11.9124	17.5206	22.227	26.6645	30.8621	34.8435	38.6284	42.2333	45.6723	48.9575	52.0993	55.1069	57.9883	60.7505	63.4001	65.9425
61.8767	60.1475	58.5052	56.884	55.2775	53.7338	52.2448	50.8044	49.4071	48.0485	46.7249	45.4331	44.1701	42.9337	41.7217	40.5321	39.3633	38.2138
LAS	LAS	LAS	Ba	Ва	Ba	Ва	Ва	Ba	Ba	Ba	Ba	Ba	Ва	Ba	Ba	Ba	Ba
4	4	4	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
24.8	24.8	24.8	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
3.51033	6.65364	9.74314	21.3025	24.5647	27.7388	30.828	33.8356	36.7649	39.6188	42.4004	45.1122	47.7568	50.3364	52.8534	55.3097	57.707	60.0473
4.04341	7.66406	11.2227	24.5375	28.2951	31.9512	35.5095	38.9739	42.348	45.6353	48.8393	51.9629	55.0091	57.9805	60.8797	63.709	66.4704	69.1661
0.0939544	7.92974	15.6314	10.6896	19.542	28.1552	36.5381	44.6995	52.6485	60.3931	67.941	75.2998	82.4762	89.4766	96.3065	102.972	109.477	115.828
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.0939544	7.92974	15.6314	10.6896	19.542	28.1552	36.5381	44.6995	52.6485	60.3931	67.941	75.2998	82.4762	89.4766	96.3065	102.972	109.477	115.828
6.66178	19.523	31.534	43.3476	54.9883	65.9637	76.3456	86.1926	95.5535	104.469	112.974	121.099	128.869	136.307	143.433	150.264	156.817	163.104
6.66178	19.523	31.534	43.3476	54.9883	65.9637	76.3456	86.1926	95.5535	104.469	112.974	121.099	128.869	136.307	143.433	150.264	156.817	163.104

Interslice Data

22	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	5	4	ω	2	1	Slice Number
18.572	18.164	17.756	17.348	16.94	16.532	16.124	15.716	15.308	14.9	14.492	14.084	13.676	13.268	12.86	12.452	12.044	11.636	11.228	10.8199	10.4119	10.0039	X coordinate [m]
12.494	12.2991	12.1128	11.935	11.7653	11.6036	11.4498	11.3037	11.1651	11.0341	10.9104	10.7938	10.6845	10.5821	10.4867	10.3982	10.3165	10.2415	10.1732	10.1115	10.0564	10.0079	γ coordinate - Bottom [m]
184.648	183.782	182.09	179.521	176.022	171.386	165.65	158.988	151.574	143.581	135.186	126.374	116.989	107.002	88.4913	77.2364	65.8583	54.8537	44.416	34.7416	7.54507	0	Interslice Normal Force [kN]
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Interslice Shear Force [kN]
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Interslice Force Angle [degrees]

0	0	0	24	30.3239	51
0	0	-64.5789	23.2866	29.9427	50
0	0	-61.7209	22.6223	29.5614	49
0	0	-55.5035	22	29.1801	48
0	0	-57.2058	21.3745	28.7721	47
0	0	-55.3395	20.7858	28.3641	46
0	0	-50.5396	20.2297	27.9561	45
0	0	-43.3357	19.7028	27.5481	44
0	0	-34.1754	19.2025	27.1401	43
0	0	-23.4419	18.7263	26.7321	42
0	0	-11.4664	18.2724	26.3241	41
0	0	1.46213	17.8391	25.9161	40
0	0	15.0897	17.4249	25.5081	39
0	0	29.1914	17.0285	25.1001	38
0	0	43.567	16.6489	24.6921	37
0	0	58.0368	16.2851	24.2841	36
0	0	72.4392	15.9363	23.8761	35
0	0	86.6282	15.6016	23.4681	34
0	0	100.471	15.2803	23.0601	33
0	0	113.846	14.972	22.6521	32
0	0	126.644	14.6759	22.2441	31
0	0	138.761	14.3916	21.8361	30
0	0	150.106	14.1186	21.428	29
0	0	160.591	13.8566	21.02	28
0	0	169.522	13.6051	20.612	27
0	0	176.249	13.3637	20.204	26
0	0	180.931	13.1322	19.796	25
0	0	183.708	12.9103	19.388	24
0	0	184.744	12.6976	18.98	23

•

List Of Coordinates

Water Table

External Boundary

0	10	12.5	14.5	17	19	20	21	40	40	40
10	10	15	15	20	20	22	24	24	22	0

Material Boundary

40	20	×
22	22	~